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TABLE F. 1 Formulas for Unit Conversions* 

Name, Symbol, Dimensions Conversion Formula I 
Length L L I m = 3.281 ft = 1.094 yd = 39.37 in = km/1000 = 106 J..Lm 

I ft = 0.3048 m = 12 in = mile/5280 = km/3281 
I mm = m/1000 = in/25.4 = 39.37 mil = 1000 11-m = 107 A 

Speed v LIT I m/s = 3.600 km/hr = 3.281 ft/s = 2.237 mph = 1.944 knots 
I ft/s = 0.3048 m/s = 0.6818 mph = 1.097 km/hr = 0.5925 knots 

Mass m M I kg= 2.205lbm = 1000 g = slug/14.59 = (metric ton or tonne or Mg)/1000 
I ibm= lbf · s2/(32. 17 ft) = kg/2.205 = slug/32.17 = 453.6 g 

= 16 oz = 7000 grains = short ton/2000 = metric ton (tonne)/2205 

Density p M/U 1000 kglm3 = 62.43 lbm/ft3 = 1.940 slug/ft3 = 8.345 Ibm/gal (US) 

Force F ML/P Ilbf = 4.448 N = 32.17lbm · ft/s 2 

IN= kg· m/s2 = 0.2248lbf = 105 dyne 

Pressure, Shear p, T M/LT2 I Pa = N/m2 = kg/m · s2 = 10- 5 bar = 1.450 X 10- 4 lbf/in2 = inch Hp/249.1 
Stress = 0.007501 torr= 10.00 dyne/cm2 

I atm = 101.3 kPa = 2116 psf = 1.013 bar= 14.70 lbf/in2 = 33.90 ft of water 
= 29.92 in of mercury= 10.33 m of water= 760 mm of mercury= 760 torr 

I psi= atm/14.70 = 6.895 kPa = 27.68 in H
2
0 = 51.71 torr 

Volume ¥ p I m3 = 35.31 ft3 = 1000 L = 264.2 U.S. gal 
I ft3 = 0.02832 m3 = 28.32 L = 7.481 U.S. gal= acre-ft/43,560 
I U.S. gal = 231 in3 = barrel (petroleum)/42 = 4 U.S. quarts = 8 U.S. pints 

= 3.785 L = 0.003785 m3 

Volume Flow Q PIT I m'/s = 35.31 ft3/s = 2119 cfm = 264.2 gal (US)/s = 15850 gal (US)/m 
Rate (Discharge) I cfs = 1 ft3/s = 28.32 Lis = 7.481 gal (US)/s = 448.8 gal (US)/m 

Mass Flow Rate m MIT I kg/s = 2.205lbm/s = 0.06852 slug/s 

Energy and E,W MV/P I J =kg· m2/s2 = N · m = W · s = volt• coulomb = 0.7376 ft ·lbf 
Work = 9.478 X 10- 4 Btu = 0.2388 cal = 0.0002388 Cal= 107 erg= kWh/3.600 X 106 

Power P,E, W MV!T' I W = J/s = N · m/s = kg · m2/s3 = 1.341 X 10- 3 hp 
= 0.7376 ft ·lbf/s = 1.0 volt-ampere= 0.2388 calls = 9.478 X 10- 4 Btu/s 

I hp = 0.7457 kW = 550ft ·lbf/s = 33,000 ft · lbf/min = 2544 Btu/h 

Angular Speed w T - l 1.0 rad/s = 9.549 rpm = 0.1591 rev/s 

Viscosity J..L MILT I Pa · s = kg/m · s = N · s/m2 = 10 poise = 0.02089lbf · s/ft2 = 0.6720 lbm/ft · s 

Kinematic v V/T I m2/s = 10.76 ft2/s = 106 eSt 
Viscosity 

Temperature T 0 K = °C + 273.15 = 0 R/1.8 
°C = (°F - 32)/1.8 
0 R = °F + 459.67 = 1.8 K 
°F = 1.8°C + 32 

*A useful online reference is www.onlineconversion.com 
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TABLE F.2 Commonly Used Equations 

Ideal gas law 
p = pRT 

Specific weight 

"Y = pg 

Specific gravity 

S= _ _:_P __ 

PH,O at 4°C "YH,O at 4·c 

Kinematic viscosity 
v = J..L/p 

Definition of viscosity 
dV 

T=J..L-
dy 

Pressure equations 

Pgage = Pabs - Patm 

Pvacuum = Patm - Pabs 

Hydrostatic equation 
p, P2 
- + z1 = - + z2 = constant 
"Y "Y 
Pz = p, + -yz, = p2 + -yzz = constant 

t.p = --yt.z 

Manometer equations 

Pz = p, + L -y,h, - L -y,h, 
down up 

Hydrostatic force equations (flat panels) 
Fp = pA 

Buoyant force (Archimedes equation) 
FB = -yVo 

The Bernoulli equation 

(
p, VT ) (Pz V~ ) -:y + 2g + z, = -:y + 2g + z2 

Coefficient of pressure 

Pz- Pzo h - ho c = =--
p pVJ/2 v;t(2g) 

Volume flow rate equation 

Q = vA = m = I vdA =I v · dA 
p A A 

(Eq. 1.10, p. 14) 

(Eq. 2.3, p. 31) 

(Eq. 2.5, p. 32) 

(Eq. 2.15, p. 38) 

(Eq. 2.16, p. 39) 

(Eq. 3.3a; p. 62) 
(Eq. 3.3b, p. 62) 

(Eq. 3.10a, p. 66) 

(Eq. 3.10b, p. 66) 

(Eq. 3.10c, p. 66) 

(Eq. 3.21, p. 74) 

(Eq. 3.22, p. 75) 

(Eq. 3.28, p. 80) 

(Eq. 3.33, p. 81) 

(Eq. 3.41a, p. 87) 

(Eq.4.21b,p.l33) 

(Eq. 4.21a, p.133) 

(Eq. 4.47, p. 147) 

(Eq. 5.10, p. 17 4) 

Mass flow rate equation 

m=pAV=pQ= IpVdA= IpV·dA (Eq.5.ll,p.174) 
A A 

Continuity equation 

:J pdV + f p V · dA = 0 (Eq. 5.28, p. 183) 
cv cs 

Momentum equation 

L F = :J vp dV + J vpV · dA 
cv cs 

The power equation 
P = FV = Tw 

P = mgh = -vQh 

Efficiency of a machine 

Poutput 
11 =--

Pinput 

Reynolds number (pipe) 
VD pVD 4Q 4m 

Re 0 = -= --= --= --
v J..L TIDY TIDJ..L 

Combined head loss equation 

L V 2 V 2 

hL= 2:J--+ L K-
pipes D 2g components 2g 

(Eq. 5.29, p. 183) 

(Eq. 5.33, p. 189) 

(Eq. 6.7, p. 213) 

(Eq. 6.10, p. 213) 

(Eq. 7.29; p. 262) 

(Eq. 7.3, p. 255) 
(Eq. 7.31; p. 265) 

(Eq. 7.32; p. 267) 

(Eq. 10.1, p. 361) 

(Eq. 10.45, p. 382) 

Friction factor f (Resistance coefficient) 
64 f = - Re :s 2000 (Eq. 10.34, p. 370) 

Rev 
0.25 

f = [ ( k, 5.74 )] 2 (Re :=::: 3000) (Eq.10.39, p. 375) 

log10 3.7D + Re~9 

Drag force equation 

Fo = C0A(p~~) (Eq. 11.5, p. 409) 

Lift force equation 

( pV~) FL = CLA -2- (Eq.11.17,p.424) 



TABLE F.3 Useful Constants 

I Name of Constant Value 

Acceleration of gravity 

Universal gas constant 

Standard atmospheric pressure 

______ ,_+~ = 9.81 m/s2 = 32.:?. ftN __ _ __ 

R. = 8.314 kj/kmol· K = 1545 ft · lbf/lbmol · 0 R 
--+--

P •• m = 1.0 atm = 101.3 kPa = 14.70 p£I = 2116 psf = 33.90 li of .,.-ater 
P.,m = 10.33 m of water= 760 mm of Hg = 29.92 in ofHg = 160 torr= 1.013 bar 

TABLE F.4 Properties of Air [T = 20°C (68°F), p = 1 atm] 

Property 

Specific gas constant 

Density 

Specific weight 

Viscosity 

Kinematic viscosity 

Specific heat ratio 

Specific heat 

Speed of sound 

SI Units 

R,,. = 287.0 j/kg · K 

p = 1.20 kg/m·' 

-y = 11.8 N/m' 

1.1.= 1.81 X 10 'N ·s/m: 
- ----~----.. -r-l v=!.51Xl0-sm2/s 

k = c /c = 1.40 

r> = 1~0~ Jlkg. K 

I c =343m/~ 

TABLE F.S Properties of Water [T = l5°C (59°F),p = I atm] 

Specific weight 

SJ Units 

p - 999kg/m' 

'Y = 9800 N/m' 

------- ---- ---~----

1-l = 3.8 L X 10"7 lbf · s/ft1 

v = 1.63 X 10-~ ft1/s 

k = c,tc, = 1.40 
-1-~- --

1 

cP-:: 0.241 Btu/lbm · oR 

c = 1130 ft/s 

p = 62.4lbm/ft3 = 1.94 slug/ft' 
---

1 -y - 62.4lbf/ft' 

-=~::, ~"~~~=-=--- J___-: :: : :::: ::,:'~' - ~- - _t' : : ::: : ::_: ::~ ,,., 
Surface tension (water-air) 1 u = 0.073 N/m CJ = 0.0050 lbflft -- -- ----- - ~ 

Hulk modulus of elasticity li. :- 2.14 X 109 Pa I E, = 3.10 X 10' p~ri 

TABLE F.6 Properties of Water [T = 4°C (39°F),p = 1 alml 

Propertr 

Density 

Specific wc1ght 

• SI Units 
:~-

_i p = 1000 kglm' 

!:; = 9Sl0 N/m1 

<::-·.•; 
:::: 

p = 62.4 lbm/ftJ = 1.94 slug/ft' 
- -- --------

'1 = 62.4 lbf/ft3 
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PREFACE 

Audience 

This book is written for engineering students of all majors who are taking a first or second 
course in ftttid mechanics. Students should have background knowledge in physics (mechanics), 
chemistry. statics, and calculus. 

Why We Wrote This Book 

As students and as teachers. we love flttid mechanics. So, we wrote a book to share our passion 
for the discipline. As educators our motivation is to present knowledge so that students can 
learn in depth. 

Approach 

Knowledge. The chapters are organized to lay out the knowledge for students. Each chap­
ter begins with statements of what is important to learn. These learning outcomes are formu­
lated in terms of what Students will be able to do. Then, the sections present the knowledge. 
Last. the knowledge is summarized at the end of each chapter. 

Practice with Feedback. Learning anything takes a lot of practice. Thus, this text has more 
than I ,000 end-of-chapter problems. In addition, we are building online problems that provide 
practice with feedback. The online resources, presented in Wiley PLUS, are organized so that 
the grading and record keeping are done by the computer, thereby freeing up the teacher to 
focus on more important tasks such as mentoring students. WileyPLUS is an online learning 
system; see www.wiley.com/college/elger for more information. 

Features of this Book 

Learning Outcomes. Each chapter begins with learn­
ing outcomes so students can identify what knowledge they 
should gain by studying the chapter. These learning outcomes 
are formulated in terms of what Students will be able to do. 

Seminal Equations. This text emphasizes technical 
derivations so that students can learn to do the derivations 
on their own, increasing their levels of knowledge. Features 
include the following: 

Rationale. Each section describes what content is pre­
sented and why this content is relevant so students can con­
nect their learning to what is important to them. 

Visual Approach. The text uses sketches and photo­
graphs to help students learn more effectively by connecting 
images to words and equations. 

~oundational Conceph. This text presents major con­
cepts in a clear and concise format. These concepts form 
building blocks for higher levels of learning. 

• Derivations of each main equation are presented in 
a step-by-step fashion. 

• The assumptions associated ""'ith each main equa­
tion are stated during the derivation and after the 
equation is developed. 

• The holistic meaning of main equations is explained 
using words. 

• Main equations are nan1ed and listed in Table F.2. 

xi 
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• Main equations are summarized in tables in the 
chapters. 

• A process for applying each main equation is presented 
in the relevant chapter. 

Chapter Summaries. Each chapter concludes with a 
summary so students can review the key knowledge in the 
chapter. 

Online Problems. We have created many online problems 
that provide immediate feedback to students while also ensur­
ing that students complete the assigned work on time. These 
problems are available in Wiley PLUS at instructor's discretion. 

Process Approach. A process is a method for get­
ting results. A process approach involves figuring out how 
experts do things and adapting this same approach. This 
textbook presents multiple processes. 

Wales-Woods Model. The Wales-Woods Model repre­
sents how experts solve problem. This model is presented in 
Chapter 1 and used in example problems throughout the text. 

Grid .Method. This text presents a systematic process, 
called the grid method, for carrying and canceling units. 
Unit practice is emphasized because it helps engineers spot 
and fix mistakes and because it helps engineers put meaning 
on concepts and equations. 

Traditional and SI Units. Examples and homework 
problems are presented using both SI and traditional unit sys­
tems. This presentation helps students develop unit practice and 
gain familiarity with units that are used in professional practice. 

What is New in the 1Oth Edition 

Example Problems. Each chapter has approximately 
10 example problems, each worked out in detail. The pur­
pose of these examples is to show how the knowledge is 
used in context and to present essential details needed for 
application. 

Solutions Manual. The text includes a detailed solu­
tions manual for instructors. Many solutions are presented 
with the Wales-Woods model. 

lmage Gallery. The ligures from the text are available 
in PowerPoint fom1at, for easy inclusion in lecture presen­
tations. This resource is available only to instructors. To re­
quest access to this password-protected resource, visit the 
Instructor Companion Site portion of the Web site located at 
www.wiley.com/college/elger, and register for a password. 

Interdisciplinary Approach. Historically, this text was 
written for the civil engineer. We are retaining this approach 
while adding material so that the text is also appropriate for 
other engineering disciplines. For example, the text presents 
the Bernoulli equation using both head terms (civil engi­
neering approach) and terms with units of pressure (the 
approach used by chemical and mechanical engineers). We 
include problems that are relevant to product development 
as practiced by mechanical and electrical engineers. Some 
problems feature other disciplines, such as exercise physiol­
ogy. The reason for this interdisciplinary approach is that 
the world of today's engineer is becoming more and more 
interdisciplinary. 

• Chapters 1, 2, 4, 5, 6, and 7 were rewritten to present knowledge in a simpler, more­
accessible way. 

• Checkpoint Problems were added to the text so students can assess their understanding as 
they are reading. 

• Learning objectives were rewritten to communicate to students what they should be able 
to do after they have learned the material. 

• Learning objectives were rewritten so that they align with sections. 

• Summary sections for each chapter were rewritten so that they align with the learning 
objectives . 

• Chapter 16 was added. This chapter describes modeling, the partial differential equation 
approach, and computational fluid dynamics. 

• The Wales-Woods model was formally introduced and incorporated into the text. 

• Approximately 30% of the end-of-chapter problems are new or modified. 

• Many additional online problems with feedback have been created and are available in 
WileyPLUS at instructor's discretion. 
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BUILDING A SOLID 
FOUNDATION 

l Chapter Rood Map j 

The purpose of this chapter is to help students build a 
foundation for learning fluid mechanics. The chapter 
has three main objectives: to define engineering, to 
describe fluids, and to introduce skills that are useful 
for solving engineering problems. 

FIGURE 1.1 

A5 engineers, we gel to design cool systems like this glider. 
This is exciting!(© Ben Blankenburg/Corbis RF/Age 
Fotostock America, Inc.} 

j Learning Obiectives j 

STUDENTS WILL BE ABLE TO 

• Define engineering, flu id mechanics, and learning. {§ 1. I) 
• Define fluid, liquid, and gas. (§ 1.2) 

• Describe the characterishcs of liquids and gases. !§ 1 2) 

• Explain macroscopic and microscopic descriptions. I§ 1.3) 
• Explain the continuum assumption . (§ 1.3) 
• Define a fluid particle. (§ 1 .3) 

• Describe units and d1mensions. {§ 1.4) 
• Determine if a set of units are consistent (§ 1.4) 

• Apply the grid method to carry and cancel units. I§ 1.5) 
• Apply the ideal gas law, or IGL. !§ 1.6) 
• Describe the Wales-Woods model, or WWM. (§ 1.7) 
• Check for d1mensional homogeneity, or DH. (§ 1.8) 
• Define o -r.group. Define tne derivative and the integra!. (§ 1.8) 

"Begin difficult things while they are easy. Do great things when they are small. The difficult 
things of the world must have once been easy. The great things must have once been small. 
A thousand-mile journey begins with one step." 

-Lao-tzu (Chinese philosopher who founded Taoism in about 600 BC) 

In this chapter, we invite you to take the first steps of your journey in learning fluid 
mechanics. We have been on this journey most of our lives, and we love to share our passion 
and our knowledge with you as you walk your path. 

1 
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FIGURE 1.2 

(a) Commercial wind 
turbines in Oregon. 
(b) Engineering slow sand 
Filler technology near 
Nairobi Kenyo (Photos by 
Donald Elger) 

1. 1 Defining Engineering Fluid Mechanics 

As engineers we ought to be able to explain to a layperson what our discipline is about. Thus, 
this section defines engineering fluid mechanics and defines learning. 

Engineering 

Engineers design systems that benefit people. For example, Fig. 1.1 shows a glider and Fig. 1.2a 
shows wind turbines being used to generate electrical power for a community. Fig. l.2b shows 
people working on slow-sand filter technology. This technology is used to produce safe drink­
ing water for families. The person in the center of the photo is a mechanical engineering stu­
dent who worked on this project during his senior year. We also design hydroelectric power 
systems such as Hoover Dam. We design oil pipelines, artificial hearts, jet engines, and cooling 
systems for buildings. Engineers design the technology of the world. 

(U) (b) 

The National Research Council (1) states that "engineering rs tire process of designing tlte 
human made world." They assert that science involves study of the natural world, whereas 
engineering involves modifying the world to meet human needs. Of course, science, math, and 
engineering are interwoven. Thus, the central purpose of engineering education is to teach 
engineering students how to design the human-made world in ways that integrate and capital­
ize on math and science while considering foremost the needs of people. 

Regarding math, this can be defined as the abstract and logical study of numbers, quanti­
ties, and space. Science is the systematic study of the physical world through observation and 
experiment. Science differs from math in that math is about abstraction and symbols, whereas 
science is about understanding the physical world. Science is the music and math is means of 
writing the music down. Tedtnolo ., is the collection of machinery, equipment, and tools 
developed from scientific knowledge. By applying existing technology, engineers leverage the 
progress of those who have come before. 

In addition to math, science, and technology, engineers apply knowledge from other fields 
such as economics, sociology, and psychology. Although these fields are applied to a Jesser 
degree than math and science, they are still important. Thus, we say that engineers apply the 
knowledge (i.e., collective wisdom) of hlllnankind. 

When Cegnar (2), a practicing engineer, saw Katehi et al.'s description (1}, he suggested 
that engineering requires more that just math, science, and technology. Cegnar stated that 



solutions also involve creativity and innovation. Solutions involve persistence and struggle in 
the face of challenges. Solutions involve constraints such as time and money. Solutions involve 
the ability to simplify and idealize that which is complex. The skills that professionals use to 
be creative, to handle adversity, to manage constraints, and to idealize are called the art of 
engineering. 

Fig. 1.3 summarizes ideas about engineering. The upper row summarizes what engineer­
ing is. The lower row summarizes how engineering is done and why engineering is done. The 
term process means a systematic and effective method for getting results. 

Math, 
.:s(;iepce. &, . to 

9'e¢nology 

Engineering is Ail: Art aild for 
a·:p~~-s · applying 

Definition of Fluid Mechanics 

t 
apply a pro<:es.v 

tlutl i.,. AyMematic. 
yer highly creal in: 

t 
appzvthe 

col/ecrn·e wisdom 
<{humankind 

.Design 

Produc(s that 
B<:ne:ti( Peo~-te 

t 
build a 

better world 

Mechanics is the field of science focused on the motion of material bodies. Mechanics involves 
force, energy, motion, deformation, and material properties. When mechanics applies to mate­
rial bodies in the solid phase, the discipline is called solid mechanics. When the material body 
is in the gas or liquid phase, the discipline is called fluid mechanics. 

In summary, fluid mechanics is the science of energy, motion, deformation, and proper­
ties when the material is in the gas or liquid phase. 

Definition of Learning 
Researchers at the Harvard Graduate School of Education (3, 4) define understanding as the 
ability to carry out performances that show one's grasp of a subject and advance it at the same 
time. Understanding is about being able to apply knowledge in new ways. Based on these ideas, 
we define learning as the process of developing (or improving) one's abilities to do something 
useful while also advancing one's ability to learn in the future. 

Summary To learn engineering fluid mechanics means to develop the ability to design sys­
tems that involve fluids while also advancing one's abilities to learn in the future. 

1.2 Describing Liquids and Gases 

Designers need to understand the nature of the materials they work with. Thus, this section 
describes fluids. A wonderful starting point is the atomic hypothesis as stated by the Nobel­
prize-winning physicist Richard Feynman (5): 

If, in some cataclysm, all of scientific knowledge ·were to be destroyed, and only one sen­
tence passed on to the next generation of creatures, what statement would contain the most 
information in the fewest words? I believe it is the atomic hypothesis (or atomic fact, or 
whatever you wish to call it) that all things are made of atoms-little particles that move 
around in perpetual motion, attracting each other when they are a little distance apart, but 
repelling upon being squeezed into one another. In that one sentence, you will see, there is 
an enormous amount of information about the world, if just a little imagination and thinking 
are applied. 

FIGURE 1.3 

A summary of ideas about 
engineering. 
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A fluid is a substance whose molecules move freely past each other. More specificaUy, a 
fluid is a substance that wiU continuously deform (i.e., flow) under the action of a shear stress. 
Alternatively, a solid will deform under the action of a shear stress but will not flow like a fluid. 
Both liquids and gases are classified as fluids. 

Because of differences in the forces between molecules, liquids and gases behave differ­
ently. As shown in the first row of Table 1.1, a liquid will take the shape of a container, 
whereas a gas will expand to fill a closed container. The behavior of the liquid is produced by 
strong attractive force between the molecules. This strong attractive force also explains why 
the density of a liquid is much higher than the densi ty of gas (see the fourth row). The 
attributes in Table 1.1 can be generalized by defining a gas and liquid based on the differ­
ences in the attractive forces between molecules. A gas is a phase of material in which mol­
ecules are widely spaced, molecules move about freely, and forces between molecules are 
minuscule, except during collisions. Alternatively, a liquid is a phase of material in which 
molecules are closely spaced, molecules move about, and there are strong attractive forces 
between molecules. 

TABLE 1.1 Comparison of Solids, liquids, and Gases 

Typical Visualization 

Description Solids hold their shape; no need 
for a container 

Liquids take the shape of the 
container and will stay in open 
container 

Gases ex'Pand to fill a closed 
con tamer 

Mobility of Molecules Molecules have low mobility 
because they are bound in 

Molecules move around freely 
even though there are strong 
intermolecular forces between 
molecules 

Molecules move around freely 
with little interaction except 
during collisions; this is why 
gases expand to fill their 

Typical Density 

Molecular Spacing 

Effect of Shear Stress 

Effect ofNormaJ 
Stress 

Viscosity 

Compressibility 

a structure by strong 
intermolecular forces 

con tamer 

Ofton high; ,,g , don•lty of""' I Modlum; o.g .. &mlty of wot~ Sm.U; o.g., don•lty of~' " '" 
is 7700 kglm3 1000 kg/m3 level is 1.2 kg/mJ 

---- --- - ·--·- -- __ .____ -- - ······-
Small-molecules are dose Small-molecules are held close Large-on average, molecules are 
together together by mtermolecular forces far apart 

Produces deformation 

Produces deformation that may 
associate with volume change; 
can cause failure 

NA 

Difficult to compress; bulk 
modulus of steel is 160 X I 09 Pa 

Produces flow Produces flow 
-----t 

Produces deformation associated Produces deformation associated 
with volume change with volume change 

~igh; decreases as temperature ---t -- ~.ow; in~~;~ses as te~perature 
mcreases ancreases 

Difficult to compress; bulk 
modulus of liquid water 
is 2.2 X 109 Pa 

Easy to compress; bulk modulus 
of a gas at room conditions is 
about 1.0 X 10~ Pa 
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1.3 Idealizing MaHer 

Engineers apply idealized* models to characterize material behavior. Thus, this section pres­
ents ideas for understanding materials and their behaviors. 

The Microscopic and Macroscopic Viewpoints 
A microscopic viewpoint desa·ibes material behavior by characterizing the behavior of atoms 
and molecules, often using statistical methods to characterize average molecular behavior. 
Alternatively, a macroscopic viewpoint describes material behavior without resulting to mod­
els at the atomic level. The macroscopic viewpoint is simpler, so it is used more often. 

Matter can be studied from a macroscopic viewpoint or a microscopic viewpoint. Most 
engineering models are based on a macroscopic viewpoint. However, in selected cases such as 
the kinetic theory of gases, the microscopic viewpoint is useful. In addition, the microscopic 
model is useful for understanding phenomena such as surface tension and viscosity. 

The Continuum Assumption 
Because a body of fluid is comprised of molecules, properties are due to average molecular be­
havior. That is, a fluid usually behaves as if it were comprised of continuous matter that is infi­
nitely divisible into smaller and smaller parts. This idea is called the continuum assumption. 

When the continuum assumption is valid, engineers can apply limit concepts from dif­
ferential calculus. A limit concept typically involves letting a length, an area, or a volume 
approach zero. Because of the continuum assumption, fluid properties such as density and 
velocity can be considered continuous functions of position with a value at each point in space. 

To gain insight into the validity of the continuum assumption, consider a hypothetical 
experiment to find density. Fig. 1.4a shows a container of gas in which a volume Ll¥ has been 
identified. The idea is to find the mass of the molecules Llm inside the volume and then to 
calculate density by 

Llm 
p = 6.-¥ 

The calculated density is plotted in Fig. 1.4b. When the measuring volume Ll¥ is very small 
(approaching zero), the number of molecules in the volume will vary with time because of 
the random nature of molecular motion. Thus, the density will vary as shown by the wiggles in 
the blue line. As volume increases, the variations in calculated density will decrease until the 
calculated density is independent of the measuring volume. This condition corresponds to the 

Gas molecules 

(a) 

Continuum assumption 

M 
is valid 1

1 Am 

A¥ HIHIHif·t-il y,f>l-----1'
1
.....: 

(b) 

• Engineers idealize because this makes things easier and faster. To idealize means to simplify an entity (an idea, 
a physical system, a mathematical model, etc.) by removing extraneous details that have little impact on utility. 

FIGURE 1.4 

When o measuring volume 
AV is Iorge enough for 
random molecular effects 
to overage out, the 
continuum assumption is 
valid. 
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vertical line at ~¥1 • If the volume is too large, as shown by £1~. then the value of density may 
change due to spatial variations. 

In most applications, the continuum assumption is valid as shown by the next example. 

EXAMPLE . Probability theory shows that including 106 molecules in a volume will allow 
the determination of density to within 1%. Thus, a cube that contains 106 molecules should 
be large enough to accurately estimate macroscopic properties such as density and velocity. 
Find the length of a cube that contains L06 molecules. Assume room conditions. Do calcula­
tions for (a) water, and (b) air. 

Solution. (a) The number of moles of water is 106/6.02 X 1023 = 1.66 X 10 18 mol. The mass 
of the water is (1.66 X LO 18 moi)(O.Ol80 kg/mol)= 2.99 X L0 - 20 kg. Thevolwne ofthe cube 
is (2.99 X 10- 20 kg)/(999 kglm3) = 2.99 X 10- 23 m3• Thus, the length of the side of a cube is 
3.1 X 10- 8 m. (b) Repeating this calculation with air gives a length of 3.5 X 10- 7 m. 

Review. For the continuum assumption to apply, the object being analyzed would need 
to be larger than the lengths calculated in the solution. If we select 100 times larger as our 
criteria, then the continuum assumption applies to objects with: 

• Length (L) > 3.1 X 10- 6 m (for liquid water at room conditions) 

• Length (L) > 3.5 X 10-5 m (for air at room conditions) 

Given the two length scales just calculated, it is apparent that the continuum assumption 
applies to most problems of engineering importance. However, there are a few situations where 
the problem length scales are too small. 

EXAMPLE. When air is in motion at a very low density, such as when a spacecraft enters 
the earth's atmosphere, then the spacing between molecules is significant in comparison to 
the size of the spacecraft. 

EXAMPLE. When a fluid flows through the tiny passages in nanotechnology devices, then 
the spacing between molecules is significant compared to the size of these passageways. 

The Fluid Particle 
When developing equations or visualizing the flow of a fluid, it is useful to visualize a small 
unit of fluid that is part of a larger body. A fluid parlide is defined as a small quantity of fluid 
with fixed identity. Small means that the lengths of the particle are much smaller that the char­
acteristic length(s) of the problem under study. The words fixed identity mean that the particle 
is always comprised of the same matter. Typically, a fluid particle in a flow will change shape 
(i.e., deform) and change orientation in response to forces. However, the tluid particle will 
always be comprised of the same matter. 

In the development of equations, it is common to let the dimensions of a fluid particle 
approach zero in sense of the limit from calculus. In this case, we say that the fluid particle is 
infinitesimal in size. Because the tluid particle is a macroscopic concept (i.e., assume the con­
tinuum assumption applies), the idea of an infinitesimal particle is valid. 

1.4 Dimensions and Units 

As engineers we record data; we measure things. The foundation of measurement is the dimen­
sion and the unit. Thus, this section introduces these topics. 
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Dimensions 

A dimension is a category for measurement. For example, engineers measure power, so power 
is a dimension. Dimensions can be identified by asking the question: what are we interested in 
measuring? Answers to this question can include force, length, volw11e, work, and viscosity. 
11ms, these variables are dimensions. 

Dimensions can be related by using equations. For example, Newton's second law, F = rna, 
relates the dimensions of force, mass, and acceleration. Because dimensions can be related, 
engineers and scientists can express dimensions using a limited set that are called primary 
dimensions. Table 1.2 lists one set of primary dimensions. 

TABLE 1.2 Primary Dimensions 

6 kelvin (K) 
----

ampere (A) ----
Amount of light c candela (cd) 

Amount of matter N mole (mol) 

A secondary dimension is any dimension that can be expressed using primary dimensions. 
For example, the secondary dimension "force" is expressed in primary din1ensions by using 
F = ma. The primary dimensions of acceleration are L/T2

, so 

L ML 
[F] = [ma] = MT2 = Tl (1.1} 

In Eq. (1.1), the square brackets means "dimensions of." Tims [F] means "the dimension of 
force. Similarly, [ma] means the dimensions of mass times acceleration. TI1is equation reads "the 
primary dimensions of force are mass times length divided by time squared." Notice that primary 
dimensions are not enclosed in brackets. For example, MLIT1 is not enclosed in brackets. 

One can find primary dimensions by applying a known equation. 

EXAMPLE. Suppose the goal is to find the primary dimensions of work. 

Step 1 : Find an equation. 

(work)= (force)( distance) 

W=Fd 

Step 2: Use the equation to relate the secondary dimensions: 

(W] = [Fd] = (F][d] 

Step 3: Insert primary dimensions and do algebra. 

ML ML2 

[W] = [F][d] = Tl XL= 7 
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FIGURE 1.5 

The relationship between 
units and o dimension. 

One can also find primary dimensions by looking them up. For example, Table F.1 (inside front 
cover) shows that, the primary dimensions of viscosity are MILT. Similarly, Table A.6 (inside 
back cover) lists primary dimensions for symbols used in this text. 

Units 

A unit is a standard for measurement so that size or magnitude can be characterized. Units 
allow quantification. For example, to quantify how much volume (a dimension), one selects 
from a variety of units: liters, cubic meters, cubic feet, etc. For example, one might state that a 
tank has a volume of 42 liters. The dimension describes what (i.e., the volume) and the unit 
describes how much (42 liters). Similarly, measurement of energy (a dimension) can be ex­
pressed using units of joules or units of calories. The relationship between units and dimen­
sions is illustrated in Fig. 1.5. As shown, a dimension can be visualized as a number line, and a 
unit is a way to increment a dimension so that magnitude can be measured. 

I 
llnil: A standard for measuring "how much .. 
(Example: Newtons can t>e applied lo quan1ity 
bow much fon:c) 

newtons (N) 
r-+-~-r~--~1 -+1_,1--~1 -+--~~ Force r-______ / 

Dimtn>iun: A ca1cgory for mc~urement; what we wan110 measure 
Visualize a dimension as a number line. 

v CHECKPOINT PROBLEM 1.1 

Weightwatchers, Inc. has developed "Points"™, which are used to track food intake. Points are 
calculated as a function of calories, grams of fat, and grams of fiber. You're only supposed to eat a 
certain number of Points™ in a day. Is the PointTM a dimension or a unit? 

Unit Systems 

This text uses two units systems: 

• The International System of Units (abbreviated SI from the French "Le Systeme 
International d'Unites") is based on the meter, kilogram, and second. The SI system is 
the international standard for measurement. 

• The "traditional unit system" employs English units such as the slug for mass, the foot (ft) 
for length, the pound-force (lbf) for force, and the second (s) for time. 

Consistent Units 

Consistent units are defined as a set of units for which the conversion factors only contain the 
number 1.0. This means, for example, that 

(1 unit of force)= (1 unit of mass)(1 unit of acceleration) 

(1 unit of power)= (1 unit ofwork)/(1 unit of time) (1.2) 

(1 unit of speed) = (1 unit of distance)/(! unit of time) 



SECTION 1 .5 CARRYING AND CANCEliNG UNITS 9 ..... .. .................. .. .......... ······ ...... ... .... . 

Table 1.3 lists consistent units in the SI system and in the traditional system. 

TABLE 1 .3 Consistent Units 

pressure pascal (Pa) pound force per square foot (psf) 

density kilogram per meter cubed (kglm3) slug per foot cubed (slug!frl) 

cubic meters (m 3
) cubic feet (ft3

) 

power watt (W) foot-pound force per second (ft-lbf/s) 

Regarding unit practice, three recommendations are 

• Use consistent units because this eliminates extraneous unit conversions. 

• Use the Sl system whenever possible because this system is the international standard, and 
this system is simpler and leads to more accurate work for most people. 

• Become proficient with traditional units because these units are still commonly used. 

Organizing Units and Dimensions 
Table F.l (inside front cover) shows how units and dimensions fit together in fluid mechanics. 
Four primary dimensions (M, L, T, 6) are used to build approximately 12 secondary dimen­
sions (flow rate, pressure, power, etc.). Each of these dimensions can be quantified with many 
different units. 

1.5 Carrying and Canceling Units 

Carrying and canceling units in engineering is beneficial, if not essential. Thus, this section 
introduces a method called the grid method, developed by Wales and Stager (6). Although 
other methods are available, the grid method is presented here because it is simple and 
clear. 

Example of the Grid Method 
The grid method is illustrated in Fig. 1.6. As shown, this calculation is an estimate of the power P 
required to ride a bicycle at a speed of V = 20 mph. The engineer estimated that the required 
force to move against wind drag is F = 4.0 lbf and applied the equation P = FV. As shown, the 
calculation reveals that the power is 159 watts. 
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FIGURE 1.6 

Grid method. 
P = F x v _ _4_1M:~I-2_0:::;...Jllplf.:__t-.,'..,.,·o=-m-/s-.,......,f---,.-I-. O.,..,N.,..,...+I.,.-w-·-'-11 

2.237 snp!f 0.2248lb( 'N. R1 

I P= I59W I 
The idea of the grid method is to keep multiplying the right side of the equation by the 

number 1.0 until the units are the desired units. For example in Fig. 1.6, the engineer multi­
plied the right side of the equation by 1.0 three times. 

I m/s 
1.0 = (first time) 

2.237 mph 

LON 
1.0 = 0.2249 lbf (second time) 

W·s 
1.0 = - - (third time) 

N ·m 

Finding Unity Conversion Ratios 

Each equation listed above is called a unity coversion ratio (co ·ersiu r raho for short) because 
the pure number 1.0 without units appears on the left side. There are three methods for finding 
unity conversion ratios. The first method is to derive a formula. 

Step 1. Start with a definition: 

work 
power= - .­

time 

Step 2. List the units of each variable. 

1.0 joule 1.0 nev>ton-meter 1.0 N-m 
l.OW = I.Owatt = ----

1.0 second second s 

Step 3. Do algebra. 

W· s 
1.0 = - ­

N·m 

The second method is look up a formula in the inside front cover of this book. 

EXAMPLE. Find the row labeled "speed" in Table F. I and note that 1.0 m/s = 2.237 mph. 
This formula can be rearranged to give 

1 m/s 
1.0 = ----

2.237 mph 

'TI1e third method is use a memorized fact. For example, if one can remember that 1.00 inch 
is equal to 2.54 centimeters, one can write 

vCHECKPOINT PROBLEM 1.2 

Which conversion ratio is correct? 

linch 
1.0 = ---

2.54 em 

(a) l.O = (3.785 US gallons)/(1.0 L), (b) 1.0 == (1.0 cm)/(2.54 in), (c) 1.0 = (LO lbm)/(2.205 kg), 
(d) 1.0 = (3.281 yd)/(1.0 m), (e) 1.0 = (14.7 pSi)/(101.3 kPa) 
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Examples of the Grid Method 
"The steps of the grid method are listed in the first column of Table 1.4. Examples showing how 
to apply the steps are presented in the second and third columns. 

TABLE 

Situation: Convert a pressure of 2.00 psi to 
pascals. needed to accelerate a mass of 1 0 g at a rate of 

15 ft/s2
• 

not applicable ; F= rna Step 1. Write the equation down 

Step 2. Insert numbers and units 

Step 3. Look up conversion ratios 
(see Table F.l) 

---------------------
p = 2.00 psi 

J 
I.O = 1 Pa 

1.45 X 10- 4 psi 

f F = ma = (0.01 kg)( IS ftls2
) 

1.0 = ~ 1.0 = N . sz 
3.281 ft kg · m 

Step 4. Multiply terms and cancel 
units. 

= [200 l[ lPa ] 

--··-··-···t-·---··--··········-···--· ---·-···----

1

! F= [O.Ol.kg][lSft.][ l.Om ][~] 
p . psi 1.45 X 10 4 psi 

Step 5. Do calculations. p = 13.8 kPa F= 0.0457N 

Using Pounds-Mass and Slugs 
Engineers often use pounds-mass (Ibm) and slugs in calculations. Thus, this subsection shows 
how to use these units. 

Table F.l shows how mass units are related. One kilogram of mass is equivalent to 
1.2 pounds mass ( 1 kg = 2.2lbm). One pound of mass is equivalent to 454 grams ( 1.0 Ibm = 453.6 g). 
One slug of mass is equivalent to 32.2 pounds mass or 14.6 kilograms (1.0 slug = 32.17lbm = 
14.59 kg). 

Mass units can be related to force units by application ofF = ma. In the SI unit system, a 
force of 1.0 N is defined as the magnitude of force that will accelerate a mass of 1.0 kg at a rate 
of 1.0 m/s2

• Thus, 

(1.0 N) = (1.0 kg)(l.O m/s2
) 

Rewriting this expression gives a conversion ratio 

kg· m 
1.0 = --2 

N · s 
(1.3) 

When the mass unit is the slug. a force of 1.0 pound-force (lbf) is defined as the force that will 
accelerate a mass of 1.0 slugs at a rate of 1 ftls2

• Thus, 

(1.0 lbf) = (1.0 slug)(l.O ft/s2
) 

~ewriting this expression gives the conversion factor 

slug· ft 
1.0 = _::;....__ 

lbf · s2 
(1.4) 

t 2 3.281ft kg . ffi 
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When the mass unit is Ibm, a force of 1.0 lbf is defined as the magnitude of force that will 
accelerate a mass of 1.0 Ibm at a rate of 32.2 ft/~. So, 

(1.0 lbf) = (1.0 lbm)(32.2 ft/s2
) 

Thus, the conversion ratio relating force and mass units becomes 

V'CHECKPOINT PROBLEM 1.3 

32.2lbm • ft 
1.0 =---2-

lbf . s 
(1.5) 

A force ofF = 10 lbf accelerates a block at a rate of a = 5 ft/s2
• Using F = ma, calculate the mass of 

the block in units of pounds-mass. 

Example l.l shows how to use the grid method. 

EXAMPLE 1.1 

Grid Method Applied to Calculating Thrust from a Rocket 

Problem Statement 

A water rocket is fabricated by attaching fins to a 1-liter 
plastic bottle. The rocket is partially filled with water, and the 
air space above the water is pressurized, causing water to jet 
out of the rocket and propel the rocket upward The thrust 
force T from the water jet is given by T = m V, where m is 
the rate at which the water flows out of the rocket in units 
of mass per time and Vis the speed of the water jet. 
(a) Estimate the thrust force in newtons for a jet velocity 
of V = 30 m/s (98.4 ft/s) where the mass flow rate is 
n1 = 9 kg/s {I9.8lbm /s). (b) Estimate the thrust force in units 
of pounds-force (lbf). Apply the grid method during your 
calculations. 

Define the Situation 

A rocket is propelled by a water jet. 

Thrust Force = T = rnV 

\0 

l/Waterjet 
Velocity,. V .. 30 mfs = 98.4 fils 
Mass Oow rate= m = 9 kgls = 19.R lbm/s 

State the goal 

T(N), T(lbf) .. thrust force in newtons and pounds-force 

Gener.1te Ideas and Make a Plan 

Apply the process given in lable 1.4. When traditional units 
are used, apply Eq. (1.5). 

Take Action (Execute the Plan) 

1. Thrust force (Sl units) 

T= tnV 
• Insert numbers and units: 

T (N) = mV = {9 kg/s)(30 m/s) 

• lnsert conversion ratios and cancel units: 

T (N) = [;kg] [ 30% m] [ ~ ·. :] 
IT= 270 N I 

2. Thrust force (traditional units) 
T= ,;,v 

• Insert numbers and units: 

T (lbf) = mV = (19.8lbm/s)(98.4 ft/s) 

• Insert conversion ratios and cancel units: 

T{lbf) = [19.8 lbm. ][98.4ft][ lbf· s
2 

] 

1 I 32.2 !btu • ftc 

I T = 60.5 lbf l 
Review 

I. Validate. Because 270 N = 60.5 lbf, the answers are the same. 

2. Tip. To validate calculations in traditional wuts, one can 
repeat the calculation in ST units. 



1.6 Applying the Ideal Gas Law (IGL} 

The design of systems that involve gases (e.g., airbags, shock absorbers, combustion systems, 
aircraft) often involve application of the IGL. Thus, this section presents this topic. 

Theoretical Development of the IGL 

Brown et al. (7) states that the IGL was developed empirically. An empirical equation is one 
that was developed by the logical process called induction. Induction is the process of making 
many experimental observations and then concluding that something is always true because 
every experiment indicates this truth. For example, if a person concludes that the sun will rise 
tomorrow because it has risen every day in the past, this is an example of inductive reasoning. 

The IGL was developed by combining three empirical equations that had been discovered 
previously. The first of these equation, called Boyle's law, states that when temperature Tis held 
constant, the pressure p and volume¥ of a fixed quantity of gas are related by: 

p¥ = constant (Boyle's law) 

The second equation, Charles's law, states that when pressure is held constant, the temperature 
and volume \l of a fixed quantity of gas are related by: 

.v 
-=constant 
T 

(Charles's law) 

The third equation was derived by a hypothesis formulated by Avogadro: Equal volumes of gases 
at the same temperature and pressure contain equal r1umber of molecules. When Boyle's law, 
Charles's law, and Avogadro's law are combined, the result is the ideal gas equation in this form: 

p.V = nR,T (1.6) 

where n is the amount of gas measured in units of moles. A mole is defined as the amount of 
matter that contains as many particles as there are atoms in 12 g of carbon-12. This means that 
a mole of gas will contain 6.02214 X 1 02

-' particles. In Eq. ( 1.6), Ru is a constant caJled the uni­
versal gas constant; some useful values are 

kJ ft . lbf 
Ru = 8.314km J = 1545-lb J 0 R 

o · K moe· 

To make the ideal gas law more useful, it can be rearranged to use mass units instead of 
mole units. To relate moles and mass, let 

(grams) 
n(moles) X .M. (mole) = m(grams) (1.7) 

where .({. is the molar mass of the gas and m is mass of the gas. To develop the mass form of the 
ideal gas equation, substitute Eq. (1.7) into Eq. (1.6). 

m (Ru) tUI = -R T = m - T = mRT 
J'T Jf,t II At (1.8) 

p¥ = mRT 

where the specific gas constant R is given by 

Ru ideal gas constant 
R = (specific gas constant) = - = 

1 At roo armass 
(1.9) 
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To introduce density into the IGL, rewrite Eq. (1.8) and then introduce the definition of 
density p: 

p = (:)Rr = pRT (1.10) 

vCHECKPOINT PROBLEM 1.4 

If the molar mass of a gas is 35 grams per mole, what is the specific gas con..~tant for this gas in 
Sl units? 

Validity of the IGL 
An equation is valid when calculated values closely match (say within 5%) values that would 
be measured if an experiment was done. Regarding the validity of the IGL, some useful tips are 
presented here. 

• For gases near atmospheric conditions, the IGL is a good approximation. 

• When both the liquid phase and the gas phase are present (e.g., propane in a tank used 
for a barbecue), one can consult thermodynamic tables (8) to find the density of the gas 
phase. 

• When a gas is very hot such as the exhaust stream of a rocket, then the gas can ionize or 
disassociate. Both of these effects can invalidate the ideal gas law. 

• To determine if a gas can be characterized with the IGL, one can calculate the 
compressibllity factor, which is commonly given the symbol Z and presented in 
thermodynamics texts (8). 

Working Equations 
An equation that is used for applications is called a working equation. Working equations for 
fluid mechanics are presented in Table F.2 in the front of the book. In addition, many of these 
working equations are described in more detail; see, for example, Table 1 .5 for the IGL. 

Table 1.5 lists the most useful forms of the IGL and lists the variables. Notice the tips in the 
last column of the table. Tips are identified by parenthesis. 

TABLE 1.5 Summary of the Ideal Gas Law Equations 

il 

Density form of the JGI. p = pRT 

Mass torm of the IGL p¥ = mRT 

( l.l O) p = pressure (Pa) 
(use absolute pressure, not gage or vacuum pressure) 

p = density (kg/m3
) 

R =specific gas constant {JJ(kg • K)) (look up R in Table A.2) 

T = temperature (K) (use absolute temperature) 

(1.8) ¥=volume {m3) 

m =rna\:. (kg) 
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TABLE 1.5 Summary of the Ideal Gas law Equations (Continued) 

Description 

Mole form of the IGL 

1l1is equation is used to relate gas 
constants 

R,. 
R-­

Jt{ 

1.7 The Wales-Woods Model 

(1.6) 

(1.9) 

Varjnbles 

11 = number of moles 

l Ru = universal gas constant 

(Ru = 8.314 f/(mol· ~2_:'_. 1545 (ft · lbf)/(I~~O.l.~ .~R))_ 

JU. = molar mass (kg/mol) 

Engineers use calculations to figure things out. Thus, this section presents a model, called the 
Wales-Woods model, that reveals how professionals do calculations. 

Rationale for the Wales-Woods Model r.HWM) 

An expert is a person who does things well with minimal effort. For example, an expert golf 
player hits a golf ball far with little effort. It is human nature to desire the ability to create great 
results with minimal effort. 

Learning to do something well is facilitated by deliberate practice according to Dr. 
Anders Ericsson and his colleagues (9). Dr. Ericsson is the Conradi Eminent Scholar of 
Psychology at Florida State University and an international authority on the development 
of expertise. He asserts that it is deliberate practice, not innate talent, that leads to exper­
tise. Deliberate practice involves understanding how experts do things and then practic­
ing these fundamentals over a long period of time. Thus, the rationale for the WWM is to 
reveal how experts solve technical problems so that students can practice these skills and 
Jevelop themselves over time into professionals who solve difficult problems with minimal 
'{fort. 

The WWM is based on the research of Professors Charles Wales, Anni Nardi, Robert 
Stager, and Donald Woods (6, 10-17). These researchers studied how experts solved problems, 
and then they figured out how to teach these patterns to students. 

The WWM is effective. Based on 5 years of data, Wales (11) reports that when students 
,·ere taught problem solving as freshman, the graduation rate increased by 32% and the aver­

age grade point average increased by 25%, as compared to the control group, who were 
~ot taught these skills. Based on 20 years of data, Woods (17) reports that students taught 
':"roblem-solving skills, as compared to control groups, showed significant gains in confidence, 
~roblem-solving ability, attitude toward lifetime learning, self-assessment, and recruiter 
response. 

Introduction to the WWM 

E~perts have a method or process that they apply to solve problems. Thus, this subsection in­
troduces this process in the context of solving a textbook problem. 

Example 1.2 shows the WWM appHed to a textbook problem. The left colwnn shows the 
p;- •blem and the solution. The right column explains how to apply the WWM and lists skills 

t ~ , actions) that are used in the model. 



EXAMPLE 1.2 

Applying the IGL to Predict Weight 

PROBLEM AND THE SOLUTIO~ 

Problem Statement 

Find the total weight of a 17 ftl tank of nitrogen if the nitrogen 
is pressurized to 500 psia, the tank itself weighs SO lbf, and the 

F.XPLANATIO~ OF THE WWM 

To the left is a typical problem statement from a textbook. 

Experts read and interpret the problem statement. Experts 
present their own interpretation of the problem. 

temperature is 20°C. Work in Sf units. 
----------------~----------------------------------

Define the Situation 

A tank contains nitrogen. W ~>nk = 50 lbf = 222 N 

¥= 171\3 • 0.4Rl m3 

p = 500 psia = 3.45 MPa absolute 

T= 20"C=293 K 

Assumption: The IGL applies. 

Nitrogen: (Table A.2) Rs
2 

= 297 (Jikg • K). 

State the Gual 

WT(N) • Weight total (nitrogen + tank) 

Generate Idea~ and Make a Plan 

Because weight is the goal, let 

Wr = W,ank + WN2 (a) 

ln Eq. (a), W is known and WK
2 

is unknown, so it becomes 
the new goal. Select Newton's law of gravitation because thts 
equation has the new goal in it 

WN2 = mt;2g (b) 

In Eq. (b), identify that m N
2 

is unknown. Thls parameter can 
be found by applying the ideal gas law. 

p¥= mRT (c) 

ln £q. (c), all new variables are known. Thus, the problem 
is cracked. There are three equations (a, b, and c) and three 
unknown variables (weight of nitrogen, mass of nitrogen, and 
total weight of the tank). The step-by-step plan is 

1. Calculate mass of nitrogen using Eq. (c). 

2. Calculate weight of nitrogen using Eq. (b). 

To define the situation is to summarize the problem in a way 
that shows how you are idealizing the problem. Actions: 

• Visualize the problem as if it exists in the real world. 
A useful question to ask is, what am T looking at? 

• Identify scientific concepts that may be useful. 
A useful question to ask is, what are the physics? 

• Summariu the physical situation (write down I to 2 sentences). 

• List known values of variables. 

• Sketch the situation; this sketch is called a situation diagram. 
Use engineering conventions on this diagram. 

• Convert units to consistent units. 

• State main assumptions. 

• List fluid properties (sec Section 2.4) 

To state the goal is to summarize 1l1e results you intend to 
create. Actions: 

• List the variable(s) to be solved for. 

• List the units on these variables. 

• Describe each variable{s) with a short statement. 

To generate ideas is to consider alternative approaches to 
reach your goal(s) and to select the best ideas. 

The actions that work on most problems are listed here. 
These steps from Wales et al. (6) can be remembered with the 
acronym GENI. 

• Step l. Start with Goal 

• Step 2. Identify an Equation that contains the goal 

• Step 3. Jn this equation, identify the unknowns (Needs) 

• Step 4. In this equation, identify the knowns (Information) 

• Step 5. Repeat steps l to 4 until the number of equations ts 
equal to the number of unknowns. At this point the problem 
is figured out (we say the problem is cracked) 

To make a plan is to figure out the steps to reach your goals. 

• identify the easiest and fastest way to get to your goal. 

• List the steps. 

Note: Most of the time, the steps of the plan are in reverse 
order of the steps of the reasoning process. 3. Calculate the total weight using Eq. (a). 

~~-------------------------------



Take Action (Execute the Plan) 

1. Ideal gas law (mass form) 

p¥ 
mNz = RT 

= (3.45 X 10
6 

N)(0.481 m
3
)( kg · K )(-~-) 

m2 297 N · m 293 K 

= 19.1 kg 

2. Newton's law of gravity 

\V'I2 = mg = {19.1 kg)(9.81 m/s2
) = 187 N 

3. Total weight 

SECTION l .7 DOING ENGINEERING CALCULATIONS 17 .. .................. ... . .......... . 

To take action is to execute the steps of the plan. Actions: 

• On each step, list the name of the main equation or give 
another descriptive label. 

• Carry and cancel units with the grid method. (Note: Unit 
cancellations are not shown in the text or solution manual 
because we have not yet found a simple way to do this.) 

• Box the final answer(s). 

Wt = W12nk + W~>2 = (222 N) + (187 N) = j409 Nj 
-----~===--~~---------------------------------

Review the Solution and the Process 

1. Knowledge. Use the mass form of the 1Gl when mass is the 
goal. 

2. Knowledge. W = mg can be derived from Newton's law of 
gravity. Thus, this equation is a special case of this law. 

3. Validate. To check the IGL assumption, we calculated the 
compressibility factor and found that the IGL was accurate 
to within about 98%. 

4. Implications. For this problem, the weight of the gas is 
significant as compared to the weight of the tank. 

5. Skill. To save time, add problem information to the 
situation diagram. 

Structure of the Wales-Woods Model fWWM) 

To review the solution and the process is to think critically 
and then to write one to three useful or insightful thoughts. An 
effective approach is to ask questions. Examples: 

• Validate. How can I check (validate) my solution? Does my 
solution make sense? Why? 

• Implications. What did I learn? What might my result mean 
in the real world? 

• Skill(s). What skills helped me solve this problem? What 
skills will help me solve problems in the future? 

• Knowledge. V\'bat knowledge was useful for solving this 
problem? What new ideas did 1 gain? 

• Discussion. What aspects of the solution are worthwhile to 
point out? 

.au shown by Example 1.2, the WWM is comprised of l!ix thinking operations. A thinking 
1peration (Table 1.6) is a collection of skills for achieving a certain outcome. Notice that each 
:hinking operation has an outcome and a rationale. 

JABLE 1.6 Structure of the WWM (Thinking Operations) 
=-~~--~~~~~m==-~~----~------

Define the The model (idealization) used to solve the problem is 
~tuation clear, specific, and organized. 

State the goal ~-The goal is specific and- ac-t-io-n-ab_l_e-(n_o_t_v_a_gu- e). 

Generate ideas f The ideas tor solving Lhe problem are clear and I specific. In addition, there is a logical process that 
, shows how the problem solver was able to find a path 
I to the solution. 

• Why Do 'lhi~Thinking Operation? (Ratiqn3te) 

So you know how you are idealizing the problem. 

So you know where you are at (i.e., the situation) and 
where you need to go (i.e., the goal). 

------
Because the reasoning process reveals how the 
problem can be solved. This gives one the ability to 
solve unfamiliar problems and reduces or eliminates 
the need to memorize solutions. In addition, this 
gives one the satisfaction that I cracked the problem! 

(Continued) 
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TABLE 1.6 Structure of the WWM {Thinking Operations) (Continued) 

Make a plan 

Take action 
(Execution) 

Review the 
solution and the 
process 

There is a list of steps for reaching the goal. 

The steps for reaching the goal have been executed, 
and the goal has been attained. 

--.-
1 On< to thre< ""'ghtful ""'m'n" •re writt<n down. 

I 
To find a simple and effective solution method. 
To create an organized plan of attack. 

To reach the goals and enjoy the satisfaction of 
1 completing the problem. 

To grow. This growth can take multiple forms. 
Examples: to become better at problem solving, to 
increase knowledge, to increase abilities to validate, to 

increase abilities to think critically, and to increase 
self-awareness of problem solving. 

Applying the WWM to a Design Problem 

The WWM can be applied to a design problem, for example, redesigning a bike pump (see 
Fig. 1.7). Suppose that a conventional bike pump take too many strokes to inflate a tire, and a 
designer wishes to redesign the pump to solve this problem. Example 1.3 illustrates how to ap­
ply the WWM to this task. 

FIGURE 1.7 

A bike pump being used to 
inflate o mountain bike tire. 
(Photo by Donald Elger} 

EXAMPLE 1.3 

The Wales-Woods Model Applied to a Design Problem 

Problem Statement 

Size a bike pump that will inflate a typical mountain bike tire 
in 20 strokes. 

Define the Situotion 

Redesign a bike pump to inflate a bike tire in 20 strokes. 
Idealize the bike tire as a volumetric region. 

Air: (Table A.2) Rm = 287 (J/kg · K) 

¥UN=( "t)L 
.----+---., D = 0.045 m 

L:J.94m 

,-alve 



Assumptions: 

• Idealize the tire as a cylinder oflength L = 1.94 m and 
diameter D = 0.045 m. 

• Assume that Pinflate = 50 psig "" 450 kPa absolute. 

• Isothermal compression: T = 20 •c = 293 K 

State the Goal 

¥r.,mp(L) .. Volwne of pump cylinder in liters. (Note: Using 
this volume, a designer can select a pump diameter and then 
calculate a stroke length.) 

Generate Ideas and Make a Plan 

Because the goal is¥, apply the IGL to the pump. 

In Eq. (a), all parameters are known except for the mass of 
air inside the pump = (mpumpl· To find this variable, apply 
conservation of mass: 

(a) 

(
mass of air) 

(mass of air in tire) = k (number of strokes) (b) 
stro ·e 

mure = 111pwnpi'J 

In Eq. (b), the unknown, (mur,), can be found using the 
IGL. Thus, the problem is cracked! The steps for doing 
calculations are 

1. Calculate the ma~s of air inside the tin: using the IGL. 

2. Relate masses using: mlirc == (m1,.,mp)(20 strokes). 

3. Calculate the volume of the pump using the lGL. 

Tal~ Action (Execute the Plan) 

l. IGL (apply to tire) 

(
-rrd) -rr(0.45 m)2 

-¥11,... = -
4
- L = 

4 
{1.94 m) = 3.085 X 10-3 m3 

learning the Wales-Woods Model 

Pain:¥!= 
m = - -

ur• R.,. T 

= (450 X 10
3 

N)(0.003085 ml)( kg · K )(-~-) 
m2 287 N · m 293 K 

= 0.0165kg 

2. Conservation of mass (Eq. b) 

m~m: 0.0165 kg 
nlpump = N = --

20 
= 0.000825 kg 

3. IGL (apply to pump cylinder): 

= {0.000825 kg) ( 287J )(293 K) 
(101 X 103 Pa) kg· K 1 

= 0.687 L 

Review thr Solulion and the Proce~>s 

1. Skills. Notice how the system was idealized: a piston/ 
cylinder, a check valve, and a volume to hold air. 

2. Discussion. The calculated volume is slightly less than the 
volume of a typical wine bottle (750 mL). 

3. Knowledge. The specific gas constant R was found in Table A.2. 
Note that R is different than the universal gas constant R,. 

4. Discussion. To estimate the size of bike pump, assume the 
typical user can comfortably apply a downward force of 
aboul125 N (28 lbf). Thus, the area of the piston (using 
gage pressure) is about 

A= F/p = (125 N)/(350 X 10' Pa) = 0.00036 m2
• 

The corresponding length of the pump is 

l,.umr = ¥ /A 

= (0.000687 m3}/(0.00036 m2
) = 1.92 m 

A pump that is nearly 2 meters tall is not practical, so we 
would not recommend this solution. 

earning the WWM is straightforward. Practice the six thinking operations and the embedded 
-.-ills. Get feedback from teachers or coaches. Recognize that learning the WWM requires a lot 
c ~tune and patience. It is much like learning the golf swing. Understanding the golf swing is 
eJS)', but learning to swing the golf club consistently requires practice over a long period of time. 

1.8 Checking for Dimensional Homogeneity (DH) 

hecking for DH is a simple and effective approach for checking an equation. Because engi­
eers frequently check for validity, this topic is presented next. 
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EXAMPLE 1.4 

Dimensional Homogeneity (DH) 

When the primary dimensions of each term of an equation are the same, the equation is 
Dimensionally Homogeneous, or DH for short. Example 1.4 shows how to check an equation 
for dimensional homogeneity. 

'lake A...:tion (Execute the Plan) 

Applying Dimensional Homogeneity to the Ideal Gos Low l. Primary dimensions (first term) 

Prohlem Statemenf 

Show that the ideal gas law (density form) is dimensionally 
homogeneous. 

From Table A.6, the primary dimensions are 

M 
[p) = LT2 

Oc i 1e the Si. 1 01 
2. Primary dimensions (second term) 

The ideal gas law (density form) is p = pRT. 
From Table A.6, the primary dimensions are 

[p) = M/L3 

State the Goal [R] = eter2 

Prove that the ideal gas law is DH. [T] = 0 

f. em: rate Idea~ and Make a Plan 

To check for DH, show that the primary dimensions of each 
term are the same. The steps are 

1. Find the primary dimensions of the first term. 

2. Find the primary dimensions of the second term. 

3. Prove dimensional homogeneity by comparing the terms. 

Dimensionless Groups 

• Thus 

[pRT] = (~)(6;2 }e) = L~ 
3. Conclusion: The ideal gas law is dimensionally 

homogeneous because the primary dimensions of each 
term are the same. 

Engineers often arrange variables so that primary dimensions cancel out. For example, con­
sider a pipe with an inside diameter D and length L. These variables can be grouped to form a 
new variable LID, which is an example of a dimensionless group. A dimensionless group is any 
arrangement of variables in which the primary dimensions cancel. 

EXAMPLE . The Mach number M, which relates fluid speed V to the speed of sound c, is a 
common dimensionless group. 

v 
M= ­

c 

EXAMPLE . Another common dimensionless group is named the Reynolds number and 
given the symbol Re. The Reynolds number involves density, velocity, length, and visco$ity 1-\-: 

Re = 
pVL 

(1.11 J 
1-\-

The convention in this text is to use the symbol [-] to indicate that the primary dimensions of 
a dimensionless group cancel out. For example, 

[pVL] 
[Re] = 7 -= [-] (1. 12) 

Dimensionless groups are also called 'TT -groups. 



Primary Dimensions of Derivative and Integral Terms 

Because many equations in fluid mechanics involve derivatives or integrals, this subsection 
:)hows how to analyze these terms and introduces the definition of the derivative and integral. 

Let's start with the derivative. In calculus, the derivative is defmed as a ratio: 

df . tlf 
-= hm­
dy ~y--+0 tly 

·.here tlf is an amount or change in a dependent variable and tly is an amount or change in a 
mdependent variable. Thus, the primary dimensions of a first-order derivative can be found by 
using a ratio: 

[ df] = (LJ = UJ 
dy y [y] 

(1.13) 

The primary dimensions for a higher-order derivative can also be found by using the basic 
definition of the derivative. The resulting formula for a second-order derivative is 

[
d

2
f] . tl(dfldy) [ f] [!) 

dl = ;:!o tly = Jl = [lJ (1.14) 

<:or example, applying Eq. (1.14) to acceleration shows that 

[
d

2y] [y' L 
dt2 = t l J = y2 

To fi nd primary dimensions of an integral, recall from calculus that an integral is defined as an 
nfmite sum of terms that are very small (i.e., infinitesimal). 

I 
" 

fdy = .J~ ~! .lyl 

Thus, 

[fJdy] = UJ[yJ (1.15) 

.or example, position is given by the integral of velocity with respect to time. Checking pri­
nary dimensions for this integral gives 

[I v dt] = [ V] [ t] = $ . T = L 

':ummary One can find primary dimensions on derivative and integral terms by applying 
undamental definitions from calculus. This process is illustrated by Example 1.5. 

EXAMPLE 1.5 

Finding the Primary Dimensions for a Derivative and an 
Integral 

t'roblcm Statement 

d2u 
Find the primary dimensions of JJ.-2 , where JJ. is viscosity, 

dy d I 
~ots fluid velocity, andy is distance. Repeat ford p d¥ where 
t ts time,¥ is volume, and p is density. 1 ~· 

Define the Situatiun 

.;;tate the Goal 

Term 2 is :tIp dV·. 
-I' 

Find the primary dimensions on term 1 and term 2. 
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Generate Idea' and Make a Plan 
• Combine the previous two steps: 

1. Because a second-order derivative is involved in term 1, 
apply Eq. (1.14). 

[<:':] = [~J[ ~:~J =(~.)(L;;) =~ 
2. Because a first-order derivative and an integral is involved 

in term 2, apply Eqs. (1.13) and (1.15). 2. Primary dimensions of~~ J p d¥ 

Take A<.tion (hc.:utl' the Plan) 

d2u 
1. Primary dimensions of~-, 

dy" 

• Find primary dimensions from Table A.6: 

[t] == T 

[p} = M/L3 

(¥] == L3 • From Table A.6: 

• Apply Eq. (1.14): 

( ~ ] = M/l.T 

[u] =LIT 

(y) = L 

• Apply Eqs. (1.13) and ( 1.1 5) together: 

[ d
2u] = [ u] = LIT 

dyl l L2 

Primary Dimensions of a Constant 

Some equations have constants, so this subsection shows how to analyze these terms. The 
method is illustrated by the next two examples. 

EXAMPLE. The hydrostatic equation (below) relates pressure p, density p, the gravitational 
constant g, and elevation z. Find the primary dimensions on the constant C. 

p + pgz = constant = C 

Solution. For DH, the constant C needs to have the same primary dimensions asp and pgz. 
Thus the dimensions of Care [C] = MILT2

. 

EXAMPLE. Suppose velocity Vis given as a function of distance y using two constants a 
and b (below). Find the primary dimensions of the constanrs. 

V(y) = ay(b - y) 

Solution. For dimensional homogeneity borh sides of this equation need to have primary di­
mensions of velocity: [LIT]. By inspection, one can conclude that fbl = Land [a] = L-1T - 1

• 

To validate thjs solution, check the primary dimensions on the right side of the given equation. 

( 
1 ) [, [ay(b- y)] = [a][y][b - y] = L. T (r.)(L) = T 

Because these dimensions match the dimensions on velocity, the equation is DH. 

1 . 9 Summarizing Key Knowledge 

Definition of Engineering Fluid Mechanics and Learning 

• Engineering is an art and a process for applying math, science, and technology to design 
products that benefit humankind. 



• Fluid Mechanics is the branch of physics that is concerned with forces, motion, and energy 
as these ideas apply to materials that are in the liquid or gas phases. 

• Learning is the process of (a) developing (or improving) one's abilities to do something 
useful, while also (b) increasing one's capacity for future learning. 

Fluids, Liquids, and Gases 
Both liquids and gasses are classified as fluids. A fluid is defined as a material that deforms 
continuously under the action of a shear stress. 

• A significant difference between gases and liquids is that the molecules in liquids 
experience strong intermolecular forces, whereas the molecules in gases move about freely 
with lirtle or no interactions except during collisions. 

• Liquids and gases differ in many important respects. Gases expand to fill their containers, 
whereas liquids will occupy a fixed volume. Gases have much smaller values of density 
than liquids. For other differences, see Table 1.1 (p. 4). 

Ideas for Idealizing Material Behavior 
• A microscopic viewpoint involves understanding material behavior by understanding what 

the molecules are doing. 

• A macroscopic viewpoint involves understanding material behavior \vithout the need to 
consider what the molecules are doing. 

• In the continuum assumption, matter is idealized as consisting of continuous material that 
can be broken into smaller and smaller parts. 

• The continuum assumptions applies to most fluid .flows. 

" A fluid particle is a small quantity of fluid with fixed identity and 'vith length dimensions 
that are very small (e.g., 1/lOOth) as compared to problem dimensions. 

Units and Dimensions 
• Dimensions and units are the basis for measurement. 

• A dimension is a category for measurement. Examples include mass, force, and energy. 

• Units are the divisions by which a dimension is measured. 

Each dimension can be quantified using a variety of different units. For example, energy 
can be quantified using joules, calories, ft-lbf; and N-m. 

• All dimensions can be expressed using a limited set of primary dimensions. Dimensions 
that are not primary dimensions are called secondary dimensions. 

• Fluid mechanics uses four primary dimensions: mass (M), lcngth (L), time (T}, and 
temperature (6). 

The Grid Method 
• The grid method is a systematic way to carry and cancel units. 

The main idea of the grid method is to multiply terms in equations by the pure number 
1 0 (called a conversion ratio). 

• :\. conversion ratio is an equality relationship between units such that the pure number 
1.0 appears on one side of an equation. Examples of conversion ratios are 1.0 = ( 1.0 kg)/ 
2.2 lbm) and 1.0 = (1.0 lbf)/(4.45 N). 
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The Ideal Gas Law (IGL) 
• Many real gases can be idealized as an ideal gas. 

• In the IGL, temperature must be in absolute temperature units (Kelvin or Rankine). 

• In the IGL, pressure must be absolute pressure, not gage or vacuum pressure. 

• Three useful and equivalent ways to express the IGL are given here. 

p = pRT (density form) 

p = mRT (mass form) 

pJ,t. = nR,T (mole form) 

• The universal gas constant R" and the specific gas constant R are related by R = R11/.t( 
where .. t{ is the molar mass (kg/ mol) of the gas. 

• For a summary of the equations of the IGL, see Table 1.5 (p. 14). 

The Wales-Woods Model (WWM) 

• The WWM is an idealization of what experts do when they solve problems. 

• The WWM is comprised of six thinking operations: define the situation, state the goal, 
generate ideas, make a plan, take action, and review the process and the results. Table 1.6 
on page 17 summarizes the thinking operations. 

• Each thinking operation can be broken down into specific actions (skills); see Example 1.2 
(p. 16) for a listing of relevant skills. 

Dimensional Homogeneity (DH) 

• Dimension homogeneity means that each term in an equation has the same primaq 
dimensions. This means that each term v.rill also have the same units. 

• To check to see if an equation is DH, calculate the primary dimensions on each term. 

• A dimensionless group (also known as a 'iT-group) is a group of variables arranged so that 
the primary dimensions cancel out. 

• from calculus 

~ The derivative is defined as a ratio: 

df !1f 
-= lim ­
dy ..>y-.o !1y 

~ The integral is defined as a infinite sum of small terms: 

I 
N 

f dy = )~oo ~~ ~Y; 

• To find the primary dimensions on a derivative or integral term, apply the definitions of 
these operations. 
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PROBLEMS 

PNS Problem available in WileyPLUS at instructor's discretion. 

Defining Engineering Fluid Mechanics (§ 1. 1) 

1.1 Read the definition of engineering in * 1.1. How does this 
compare with your ideas of what engineering is? What is sin1ilar? 
What is different? 

1.2 Given the definition of engineering in §l.l, what do you 
think that you should be learning? How do you know if you have 
learned it? 

1.3 Should the definition of engineering in § 1.1 include the idea 
that engineers also need to be very good with humanities and 
~cial sciences? What do you believe? Why? 

1.4 Select an engineered design (e.g., hydroelectric power as in 
a dam, an artificial heart) that involves fluid mechanics and is 
also highly motivating to you. Write a one-page essay that 
addresses the following questions. Why is this application 
motivating to you? How docs the system you selected work? 
What role did engineers play in the design and development of 
this system? 

J.S Many engineering students believe that fixing a washing 
machine is an example of engineering because it involves 
llOiving a problem. Write a brief essay in which you address the 
iollowing questions: Is fixing a washing machine an example of 
engineering? Why or why not? How do your ideas align or 
misalign with the definition of engineering given in § 1.1? 

Describing liquids and Gases (§ 1.2) 

1.6 Propose three new rows for Table l.l,(p.4, §1.2) and fill them in. 

1.7 Based on molecular mechanisms, explain why aluminum 
'Tielts at 660°C, whereas ice will melt at o•c. 
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·~ Guided Online (GO) Pmblem, available in WileyPLUS at 
instructor's discretion. 

Idealizing Matter (§ 1.3) ,......, 
1.8 p"(ils The continuum assumption (select all that apply) 

a. applies in a vacuum such as in outer space 

b. assumes that fluids are infinitely divisible into smaller 
and smaller parts 

c. is a bad assumption when the length scale of the problem 
or design is simiJar to the spacing of the molecules 

d. means that density can idealized as a continuous function 
of position 

e. only applies to gases 

1.9 ~s A fluid parlide 

a. IS defined as one molecule 

b. is small given the scale of the problem being considered 

c. is so small that the continuum assumption does not appl}' 

Dimensions and Units (§ 1.4} 

1.10 Ms ror each variable given, list three common ll11its. 

a. Volume flow rate ( Q), mass flow rate (1n ), and pressure (p) 

b. force, energy, power 

c. Viscosity 
-... 

1.11 p'(\/s In Table F.2 (front of book), ftnd the hydrostatic 
equation. For each form of the equation that appears, list the 
name, S}mbol, and primary dimensions of each variable. 

1.12 ~s For each of the following units in Table F.l (front of 
book), present in terms of its primary c.limensions: kWh, poise, 
slug, cfm, eSt. 
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1.13 ln the context of measurement, a dimension is: 

a. a category for measurement 

b. a standard of measurement for size or magnitude 

c. an increment for measuring "how much" 

1.14 't>tti"s What is the approximate mass in units of slugs for 

a. a 2-liter bottle of water? 

b. a typical adult male? 

c. a typical automobile? 

1.15 P ~·s In the following list, identify which parameters are 
dimensions and which paramentcrs are unit.~: ~lug, mass. 
kg, energy/time, meters, horsepower, pressure, and pascals. 

. ""' 1.16 P'tlls Of the three lists below, which sets of units are 
consbtent? Select all that apply. 

a. pounds-mass, patmds-force, feet, and seconds. 

b. slugs, pounds-force, feet, and seconds 

c. kilograms, newtons, meters, and seconds. 

Carrymg/Canceling Units: Grid Method (§ 1.5) 
.. ...__ 

1.17 P'[u"s In your own words, describe what actions need to be 
taken in each step of the grid method. 

1.18 Pds Which of these is a correct conversion ratio? Select all 
that apply. 

a. 1 = l hp/(550 ft-lbf/s) 

b. 1 ""' l 01.3 kPa/(14.7lbf/ in2) 

c. 1 = 3.785 U.S. gal/(1.0 L) 

1.19 P~·s If the local atmospheric pressure is 93 kPa, usc the 
grid method to find the pressure in units of 

a. psia 

b. psf 

c. bar 

d. atmospheres 

e. feet of water 

f. inches of mercury 
-.. 

1.20 PL'u"s Apply the grid method to calculate the density of 
an ideal gas using the formula p = p/RT. Express your answer 
in lbm/ft~. Use the following data: absolute pressure is p = 60 psi, 
the gas constant is R = 1716 ft-lbf!slug-0 R,and the temperature 
is T = 180 oF. ....... 
1.21 P"Lu"s "The pressure rise !lp associated with wind hitting 

a window of a building can be estimated using the formula 
!lp = p( vz/2), where fl is density of air and Vis the speed of 

the wind. Apply the grid method to calculate pressure rise for 
p = 1.2 kg/m3 and V = 60 mph. 

a. Express your answer in pascals. 

b. Express your answer in pounds-force per square 
inch (psi). 

c. E..'{press your answer in inches of water column 
(in HzO). 

1.22 Apply the grid method to calculate force using F = rna. 

a. Find force in newtons form = 10 kg and a = 10 m/s2. -b. GO • Find force in pounds-force form - 10 Ibm 
and a = 10 ft/s2• 

c. ;;:u.s Hnd force in newtons form= 10 slug and a = 10 ft/s~. 
1.23 P ~·s When a bicycle rider is traveling at a speed of 
V = 24 mph, the power P she needs to supply is given by 
P = fV, where F = 51bf is the force necessary to overcome 
aerodynamic drag. Apply the grid method to calculate: 

a. power in watts. 

b. energy in food calories to ride for 1 hour. 
-.. 

1.24 GO • Apply the grid method to calculate the cost in 
U.S. doUars to operate a pump for one year. The pump power 
is 20 hp. The pump operates for 20 hr/day, and electricity costs 
SO.IO per k\Vh. 

Ideal Gas law (IGL) (§ 1.6) 

1.25 Start with the ideal gas law and prove that 

a. Boyle's law is true. 

b. Charles's law is true. 

1.26 Calculate the number of molecules in 

a. one cubic centimeter of liquid water at room conditions 

b. one cubic centimeter of air at room conditions 

1.27 Start with the mole-form of the ideal gas law and show the 
steps to prove that the mass form is corred. 

1.28 Start with the universal gas constant and show that 

R,.,-2 = 297 J /(kg · K). 

1.29 Pt~ts A spherical tank hold~ C01 at a pressure of3 atm<>spheres 
and a temperature of 20°C. During a fire. the temperature is 
increased by a factor of 4 to 80°C. Does the pressure also increase 
by a factor of 4? Justify your answer using equations. 

1.30 An engineer living at an elevation of 2500 ft is conducting 

experiments to verify predictions of glider performance. To 
process data, density of ambient air is needed. The engineer 
measures temperature (74.3°F) and atmospheric pressure 
(27.3 inches of mercury). Calculate density in units of kg/m). 

Compare the calculated value with data from Table A.2 and 
make a recommendation about the effects of elevation on 
density; that is, are the effects of elevation significant? 

1.31 G-;- Calculate the density and specific weight of carbon 
dioxide at a pressure of 300 kN/m2 absolute and 60°C. 

1.32 Determine the density of methane gas at a pressure of 
300 kN!m2 absolute and 60°C. 

1.33 ~A spherical tank is being designed to hold 10 mole5 of 
methane gas at a pressure of 2 bar and a temperature of 70°F. 
What diameter spherical tank should be used? 

1.34 G-;;• Natural gas is stored in a spherical tank at a 
temperature of l 0°C. At a given iniltal time, the pressure in the 
tank is I 00 kPa gage, and the atmospheric pressure is 100 kPa 
absolute. Some time later. after considerably more gas is pumped 



into the tank, the pressure in the tank is 200 kPa gage, and the 
temperature is still10°C. What will be the ratio of the mass of 
natural gas in the tank when p = 200 kPa gage to that when the 
pressure was 100 kPa gage? 

1.35 p·@s At a temperature of 100°C and an absolute pressure of 

5 atmospheres, what is the ratio of the density of water to the 
density of air, p,./p.? 

1.36 ·~ find the total weight of a 6ft~ tank of oxygen if the 
oxygen is pressurized to 400 psia, the tank itself weighs 90 lbf, 
and the temperature is 70°F. 

1.37 -;;;;--A 4m3 oxygen tank is at 20"C and 700 kPa. The valve 
is opened, and some oxygen is released until the pres~ure in the 
tank dropl> to 500 kPa. Calculate the mass of oxygen that has 
been released from the tank if the temperature in the tank does 
not change during the process. 

1.38 i[7ts What is the (a) ~pecilic weight, and (b) density 

of air at an absolute pressure of 600 kPa and a temperature 
of so·c? 
1.39 flt•s Meteorologists often refer to air masses in forecasting 
the weather. Estimate the mass of I rni\ of air in slugs and 
kilogran1s. Make your own reasonable assumptions with 
respect to the conditions of the atmosphere. 

1.40 A bicycle rider has several reasons to be interested in the 
effects of temperature on air density. The aerodynantic drag force 
decreases linearly with density. Also. a change in temperature 
will affect the tire pressure. 

a. To visualize the effects of temperature on air densit)~ 
write a computer program that calculates the air density 
at atmospheric pressure for temperatures from - l0°C 
to so•c. 

b. Also assume that a bicycle Lire was inflated to an absolute 
pressure of 450 kPa at 20°C. Assume the volume of the 
tire does not change with temperature. Write a program 
to show how the tire pressure changes with temperature 
in the same temperature range, - l0°C to 50°C. 

Prepare a table or graph of your results for both problems. What 
engineering insights do you gain from these calculations? 

1.41 A design team is developing a prototype C02 cartridge for 
a manufacturer of rubber rafts. This cartridge will al low a user to 
quickly inflate a raft. A typical raft is shown in the sketch. 

I'ROTH.E\ 11.11 
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Assume a raft inflation pressure of 3 psi (this means that the 
absolute pressure is 3 psi greater than local atmospheric 
pressure). Estimate the volume of the raft and the mass of C02 

in grams in the prototype cartridge. 

1.42 A team is designing a helium-filled balloon that ·will fly to 
an altitude of 80,000 ft. As the balloon ascends, the upward force 
(buoyant torce) will need to exceed the total weight. TI1us, weight 
is critical. Estimate the weight (in newtons) of the helium inside 
the balloon. The balloon is inflated at a site where the atmospheric 
pressure is 0.89 bar and the temperature is 22°C. When inflated 
prior to launch, the balloon is spherical (radius 1.3 m) and the 

inflation pressure equals the local atmospheric pressure. 

Engineering Calculations and the WWM (§ 1.7) 

1.43 Apply the WWM and the grid method to find the 
acceleration for a force of 2 N acting on an object of mass 
7 ounces. The relevant equation is Newton's second law of 
motion, F = ma. Work in SI units, and provide the answer 
in meters per second squared {m/s2). 

1.44 fn Example 1.2 (p. 16, §1.7), what are the three steps that an 
engineer takes to "State the GoaJ»? 

1.45 for Problem 1.37 above, complete the "Define the Situation;' 
"State the Goat:• and "Generate Ideas and Make a Plan" 
operations of the WWM. 

Dimensional Homogeneity (DH) (§ 1 .8) 

1.46 The hydrostatic equation is pl-y + z = C, where p is pressure, 
'Y is specific weight, z is elevation, and Cis a conbtant. Prove that 
the hydrostatic equation i~ dimensionally homogeneous. 

1.47 P""Jis find the primary dimensions of each of the following 
terms. 

a. (p V2)/2 (kinetic pressure). where pis fluid den sit)' and 
Vis velocity 

b. T (torque) 

c. P (power) 

d. {p V2L)/u (Weber number), when: p is fluid density, Vis 
velocity, L is length, and u is surface tension 

1.48 The power provided by a centrifugal pump is given by 
p = lngh, where m is mass flow ratc,g is the gravitational 
constant, and h is pump head. Prove that this equation i~ 
dimensionally homogeneous. 

1.49 PUfS Find the primary dimensions of each of the following 
terms. 

a. J p V2 dA, where pis fluid density, Vis velocity, and A is area. 
A 

df d b. dl ,/ V dV:, where dt is the derivative with respect to 

time, p is density, and ¥is volume. 
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FLUID PROPERTIES 

rc-hapter Road M~ 
This chapter introduces ideas for idealizing real-world 
problems, introduces fluid properties, and presents 
the viscosity equation. 

· .. j Learning Objectives I 
STUDENTS WILL BE ABLE TO 

• Define system, boundary, surroundings, state, process, and 
property. (§2.1 I 

• Define density, specific gravity, and specific weight. Relate 
these properties us1ng calculations. ( § 2. 21 

This photo shows engineers observing a flume. A flume is 
an artificial channel for conveying water. The flume shown 
is si tuated in Boise, Idaho, and is used to study sediment 
transport in rivers. (Photo courtesy of Professor Ralph 
Budwig of the Center for Ecohydraulics Research, University 
of Idaho. I 

• Explam the meaning of a constant density flow and discuss 
the relevant issues. (§2 3) 

• Look up fluid properties; document the results. (§2 .41 
• Define viscosity, shear stress, shear force, velocity gradient, 

velocity profile, the no-slip cond ition, and kinematic 
viscosity. (§2.41 

• Apply the shear stress equation to problem solving. (§2.61 

28 

• Describe a Newtonian and non-Newtonian fluid. (§2.71 
• Describe surface tension, solve relevant problems. (§2.81 
• Describe vapor pressure; look up data for water. (§2 .91 

2. 1 Defining the System 

To solve real-world problems, engineers idealize the physical world. One aspect of the engi­
neering process is to create a precise definition of what is being analyzed. A system is what­
ever is being studied or analyzed by the engineer. A system can be a collection of matter, or 
it can be a region in space. Anything that is not part of the system is considered to be part of 
the surroundings. The boundary is the imaginary surface that separates the system from its 
surroundings. 
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EXAMPLE. For the flume shown in Fig. 2.1, the water that is situated inside the flume could 
be defined as the system. For this system, the surroundings would be the flume walls, the air 
above the flume, etc. Notice that engineers are specific about what the system is, what the sur­
roundings are, and what boundary is. 

EXAMPLE. Suppose an engineer is analyzing the air flow from a lank being used by a 
SCUBA diver. As shown in Fig. 2.2, the engineer might select a system comprised of the tank 
and the regulator. For this system, everything that is external to the tank and regulator is the 
surroundings. Notice that the system is defined with a sketch because lhis is good professional 
practice. 

'>~ srrm: Whnt the engmeer 
selects for ,rudy (tank plus 
regulator in this example) 

sepamting the system and the 
surroundings (shown by dotted 
blue line m thi> example) 

0 

~ Surrnunllmgs: Everythmg thai 
-;l - 1s not pan of the system (m 

/ 

this example, the air bubbles, 
water, diver. etc.) 

Engineers select systems in ways that make problem solving the easiest and most correct. 
Although the choice of system must fit the problem at hand, there are often multiple possibili­
ties for which system to select. This topic will be revisited throughout the text as various kinds 
of systems are introduced and applied. 

Systems are described by specifying numbers that characterize the system. The numbers 
are called properties. A property is a measurable characteristic of a system that depends only 
on the present conditions within the system. 

EXAMPLE. In Fig. 2.2, some examples of properties (i.e., measurable characteristics) are 

• The pressure of the air inside the tank 

• The density of air inside the tank 

• The weight of the system (tank plus air plus regulator) 

Some parameters in engineering are measurable, yet they are not properties. For example, 
work is not a property because the quantity of work depends on how a system interacts with its 
surroundings. Similarly, neither force nor torque are properties because these parameters de­
pend on the interaction between a system and its surroundings. Heat transfer is not a property. 
Mass flow rate is not a property. 

The state of a system means the condition of the system as defined by specifying its properties. 

EXAMPLE. Fig. 2.3 shows air being compressed by a piston in a cylinder. The air inside the 
cylinder is defined as the system. At state 1, the conditions of the system are defined by 
specifying properties such as pressure, temperature, and density. Similarly, state 2 is defined 
by specifying these same properties. 

The change of a system from one state to another state is called a process. 

EXAMPLE. When air is compressed (Fig. 2.3), this is a process because the air (i.e., the 
system) has changed from one set of conditions (state 1) to another set of conditions (state 2). 
Engineers label processes that commonly occur. For example, an isothermal process is one in 
which the temperature of the system is held constant. For example, an adiabatic process is 
one in which there is no heat transfer between the system and the surroundings. 

. .. . 

FIGURE 2.2 

Example of o system, its 
surroundings, and the 
boundary. 
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FIGURE 2.3 

Air in a cylinder being 

comp1essed by a piston. 
State 1 is a label for the 
conditions of the system 
prior to compression. 
State 2 is a label for the 
conditions of the system 
after compression . 

S~stem: What the engineer 
selects for study (the air 

.-...--'JI inside the cyhnder m this 
example) 

Srate 1. The pressure, 
temperature, volume. 
etc. of the air before 

Srme J. The pressure, 
tempemturc. volume, 
eh.:. of the air after 

compression. compression. '------, _____ _....., 
State: The condition of a system as specified 
by giving values of properties 

Properties can be organized into categories. One category is called material properties. The 
purpose of this chapter is to describe the material properties of fluids, which are called fluid 
properties. Examples of fluid properties include density, viscosity, and surface tension. 

2.2 Characterizing Mass and Weight 

Engineers characterize the weight and mass of a fluid with three properties: density, specific 
weight, and specific gravity. 

Mass Density, p 

Mass Density, p (rho), gives the ratio of mass to volume at a point. In particular, select a point 
(x, y, z) in space and select a small volume ~ V surrounding the point. The mass of the matter 
within the volume is ~m, and the density is 

( 
mass ) 

p = volume point 

~m 
lim -­

c,v_,.o ~¥ 
(2.1) 

For simplicity, the label mass density is shortened to density for the remainder of this book. 
The reason that density is defined at a point is that density can vary with location. 

EXAMPLE. In a lake, the temperature of the water varies with depth. Therefore, the density 
will also vary with depth because density changes with temperature. 

Based on Eq. (2.1 ), the dimensions of density are 

[p] = [mass] 
[volume] 

The SI unit of density is the kilogram per cubic meter (kg/m3). The traditional units of density 
are slugs per cubic foot (slug/fP) or pounds-mass per cubic foot (lbm/frl). 

In general, density varies with both temperature and pressure. However for liquids, the 
density is changed very little by changes in pressure, so engineers assume that density depends 
on temperature only. Fig. 2.4 compares density values for common liquids. 

In Fig. 2.4, notice the following: 
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( iasolinc (vehtclc), 16'C 

Alcohol (ethyl). IO"C 

Oil (SAE IOW-30 ), JX"C 

Water (pure). 9o•c 

Water (pure), 4"C 

Water ('eawater). IO"C 

Refrigerant (R 134a). 20'C 

Carbon tet rachloride, 2o•c 

~ J Mercury, 2o•c 
0 200 400 (>()() 800 1000 1200 1400 1600 13,550 

Density (kgtm') 

• When water is heated, the density goes down slightly; in particular, density drops 3.5% for 
a temperature change of 90°C. 

• Most, but not all, liquids have a density within 30% of the density of water. 

• Seawater is slightly heavier than freshwater. 

• Some liquids, such as oil and gasoline, are lighter than water. When such liquids are 
immiscible with water, they will float on water. 

Because water is common in application, some useful values to memorize are 

PwMer, 4·c = 1000 kg/m3 = 1 kilogram/liter = 1 gram/milliliter 

Pwater, 59"f = 62.4 lbm/ft3 = 1.94 slug/ft3 = 8.345lbm/gal (US) 

For easy reference, these properties along with similar data for air are presented in the inside 
"ronl cover of the text in Tables F.3, F.4, and F.S. Additional property data are presented in the 
appendices in Tables A.2 to A.S. 

Specific Weight, 'Y 

Specific weight is represented by the Greek symbol 'Y (gamma). Specific weight is the ratio of 
,·eight to volume at a point. Tn particular, select a point (x, y, z) in space and image a small 

-olume 11¥ surrounding the point. The weight of the matter within the volume is 11 W, and the 
.specific weight is: 

'Y = (weight) = lim 11 W (2.21 
volume point A¥ ->0 11¥ 

To relate 'Y and p, recall that weight and mass are related by W = mg. Divide this equation by 
ulume to give 

'Y = pg 

3ecause water is common in application, some useful values to memorize are 

'Ywatcr, IS'C = 9800 N/m
3 

'Ywatcr, 59'f = 62.4lbf/ft3 

(2.3) 

Other values of 'Y are presented in Tables F.4 to F.6 (inside front cover) and in Tables A.2 to A.S 
appendices in back of book). 

FIGURE 2.4 

Density of common liquids. 
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Specific Gravity, 5 or SG 
Specific gravity, which is represented asS or SG, is commonly used to characterize liquids and 
solids. Specific gravity is the ratio of the density of a material to the density of water at a refer­
ence temperature of 4°C. 

P material S= - - --
Pliquid wat<r, 4"C 

(2.4) 

Thus, a material with S < 1 is less dense than water, and a material with S > I is more dense 
than water. Combining Eqs. (2.3) and (2.4) gives 

Pliquid s = __ .:...__ 'Yiiquid 
(2.5) 

P liquid water, 4•c 'Yiiquid water , 4•c 

The properties p, -y, and SG are related; if one of these properties is known, the other two 
can be calculated. 

EXAMPLE. Specific weight for mercury is 'Ymercurv = 133 kN/m3
. Calculate the density and 

specific gravity. Use ST units. · 

Solution. Applying Eq. (2.3) gives density: 

'Ymercury ( 133, 000 N/m3
) 

3 
Pmcrcury = - -- = ( 2) = 13, 600 kg/m 

g 9.81 m/s 

Applying Eq. (2.5) and the reference value for 'YH
2
o from Table F.6 gives 

'Ymercury (133, 000 N/m 3
) 

Smercury = = 3 = 13.6 
'Yiiquid water, 4•c (9810 Nfm· ) 

Review. To validate the calculated values of p and S, one can consult Table A.4. Note that S 
has no units because it is a ratio. 

2.3 Modeling Fluids as Constant Density 

Engineers decide if they will idealize a fluid as constant density or as variable density. This sec­
tion introduces concepts that are useful for making informed decisions. 

The Bulk Modulus of Elasticity 

All fluids are compressible. To characterize compressibility, engineers use bulk modulus of 
elasticity, Ev(kPa) 

dp change in pressure 

Ev = - dJ,lf J,l = fractional change in volume 
(2.6) 

where dp is the differential pressure change, d¥ is the differential volume change, and ¥is the 
volume of fluid. Because d¥1¥ is negative for a positive dp, a negative sign is used in the defini­
tion to yield a positive Ev. 

The bulk modulus of elasticity of water is approximately 2.2 GN/m2
, which corresponds to 

a volume change of about 1/20 of 1% for pressure change of about 10 atmospheres. Thus, water 
and most liquids are assumed to be incompressible. 
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Two useful formulas for the bulk modulus of an ideal gas are 

E,. = p (isothermal process) 

Ev = kp (adiabatic process) 

:here pis pressure and k = epic,. is the specific heat ratio. 

EXAMPLE. Compare the compressibility of air and water at room conditions. 

(2.7) 

Solution. Assume the air is at 100 kPa and that the air is being compressed isothermally. 
With these assumptions, the bulk modulus of air is Ev(air) = l X 105 Pa. The bulk modulus 
of water is Ev(water) = 2.2 X 109 Pa. Thus, 

compressibility (air) (ll Ev)air 2.2 X 109 Pa - = =----= 22000 
compressibility (water) ( 1 I Ev)watrr 1.0 X 105 Pa ' 

Review. This value (22,000) means that the volume change of air will be 22,000 that of water 
for the same applied pressure change. 

The Constant Density Assumption 

Constant density means that the density of a flowing fluid can be assumed to be constant spatially 
and temporally without causing significant changes (say 5%) in numbers that are calculated. 

Because liquids have a high value of bulk modulus, they are commonly assumed to be 
mcompressible. lncompressible means that the density of each fluid particle is independent of 
pressure. 

A fluid that is incompressible can still have a variable dcn~it)· , meaning that density dif­
fers at various points in space or time. 

EXAMPLE. When saline and freshwater are mixing as in estuaries, density variations occur 
even though the water can assumed to be incompressible. 

Regarding gases, it is common to assume that a flowing gas has a constant density. The 
reason this assumption works is that pressure variations within the flow are not large enough 
to cause significant density variations. 

High-speed flows of gases, such as the flow around a jet airplane, need to be modeled as 
compressible flows (see Chapter 12). To distinguish constant density gas flow from variable 
density gas flow, engineers use the Mach number M. The Mach number is the ratio of the speed 
of the flowing fluid V to the speed at which sound travels in the fluid c: 

v 
Mach number = M = -

c 

A criterion for idealizing a gas as constant density is: 

(M < 0.3) 

When flow is steady and Eq. (2.8) is satisfied, the density variation is less than 5% (2). 

(2.8) 

EXAMPLE. To gain a feel what Eq. (2.8) means, consider air at 20°C. The speed of sound is 
c = 340 m/s. Thus, a flow of air can be assumed to be incompressible for V < = 100 m /s 
(220 mph). Because this is quite fast, the majority of gas flows in industrial applications can 
be idealized as constant density. 
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FIGURE 2 .5 

Recommended practices 
for documenting fluid 
properties . 

Both liquids and gases can have significant density variations when the fluid is being 
heated or cooled. Common engineering practice is to assume constant density and then look 
up property values at an appropriate average temperature. 

EXAMPLE. When liquid water enters a heat exchanger at 20°C and exits at 80°C, common 
practice is to assume constant density and look up a value at 50°C. This value, from Table A.S, 
is p = 988 kg/m 3

. 

In summary, it is common to assume constant density when solving fluid mechanics prob­
lems. Most problems and methods in this text are based on this assumption. An important 
exception is the high-speed flow of gases, a topic presented in Chapter 12. 

2.4 Finding Fluid Properties 

One can look up fluid properties in engineering handbooks, textbooks, or off the Internet. A 
fluid property often depends on the temperature and pressure of the fluid. Thus, it is good 
engineering practice to document as shown in Fig. 2.5. Six aspects of good practice are 

1. List the name of the fluid. 

2. List the temperature and pressure at which the property was reported by the source. 

3. Cite the source of the fluid property. 

4. List relevant asswnptions. 

5. List the value and units of the fluid property. 

6. Be concise; write down the minimum information required to get the job done. 

I SITUATION l 
Air is !lowing from a large tank to ambient through a horizontal pipe. 
l'ip< is I" Sch«lule 40. D = 1.049 in= 0.0266 m. 
V = I 0 m/s, f = 0.0 15, /.=50 m. 

A 
. /~~umptitlll(~) 

ssump!Ions: ,.-- ......,. 
Air has constant density (look up propenics at I atm). 
K I' correction factor is u 2 = 1.0. 

Propenies: ,.--- symbol 

/ Air(20°C, I atm, TableA.3):p = 1.20kgfm3. 

lluid/ IG'oAL l\ \ ~ "--,aluc\\ithunih 

pre:-..,ure ~OllfCC' (WhC'rC fluiJ f'IH1fh;rty \ ... 1.._ found! 
tt:mpcralurc 

While looking up fluid properties, many details are important. The details are swnmarized in 
Table 2.2 (page 53). As shown in the next example, Table 2.2 will be used throughout this chapter. 

EXAMPLE. Where are values of specific gravity (SG) tabulated? Does specific gravity 
depend on temperature, on pressure, or on both? 

Solution. Table 2.2 shows that values of SG are tabulated in Table A.4. Table 2.2 indicates 
that SG goes down as temperature increases and that SG is constant with pressure. 
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2.5 Describing Viscous Effects 

Viscous effects influence energy loss, drag force, flow separation, and other parameters of in­
terest. Thus, this section introduces concepts that are useful for describing and characterizing 
viscous effects. 

Viscosity 

Viscosity, f.J. (mu), is the fluid property that characterizes resistance to flow. 

EXAMPLE. Fluids resist being forced to flow through pipes, so pumps are added to drive the 
flow through the pipe. For the same flow rate, a fluid with high viscosity (e.g., molasses) will 
require more power from a pump than a fluid with low viscosity (e.g., water). 

EXAMPLE. Fluids resist the motion of in1mersed objects through them. A small force wilJ 
easily push a spoon through a bowl of water. This same force will barely move a spoon 
through a bowl of honey because the viscosity of honey is much higher than the viscosity of 
water. 

Viscosity is also referred to as absolute viscosity and dynamic viscosity. Viscosity is defined 
mathematically as the ratio of shear stress to the rate of shear strain at a point. 

. . ( ) _ shear stress T 
V1SCOStty f.!. = = --

rate of shear strain ( ~;) 
(2.9) 

The symbols on the right side of Eq. (2.9) are described in the next subsections. Eq. (2.9) is 
called The Viscosity Equation in this textbook. Other engineering references call this equation 
KNewton's Law ofViscosit/' 

Shear Force and Shear Stress 

Viscosity leads to forces that are analogous to frictional forces. For example, when fluid flows 
past a flat plate as shown in Fig. 2.6 the flowing fluid causes a drag force that is called the shear 
·orce. 

( 

Shear Force: Force caused by vtscous etrecto 
(in th1> e~tomple, the shea r force is the 

- force of the flowing fluid on the plate.) 
- X 

--
~ t-:::j ? > , ' > > , ; , z z z )•z J 
Flow I 

\...flat pla te 

The shear force is a distributed force meaning that the force is spread out over an area. Because 
'le force per unit area is not the same at each x location, a concept called shear stress is used. 

ear stress is the ratio of tangential force to area at a point on a surface: 

(
tangential force) .6.Ftangcntial 

shear stress(-r) = = lim 
surface area point on a surface ll.A ->0 .6. A 

(2.10) 

1he terms in Eq. (2.10) are illustrated in Fig. 2.7. 
Now that T has been introduced, we can define shear force F, as the net force on a body 

Je to shear stress acting over the body. 

FIGURE 2.6 

Viscosity causes a force 
that is called the shear 
force. 
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FIGURE 2.7 

This sketch shows terms 
that appear in the 
definition of shear stress. 

-----+-==: ~ttl'erenllal area (t.A) centered around a point on the surface 
_ r ""_t;Tangt nttal fMcc (Mu.,.~.,1 ) actmg on area (6A) 

~ ":;;:!, (FI ' 
1

1 
' t r~in~ o~ the ~urtace a 

at pate 

Rate of Shear Strain 

Viscosity causes a fluid particle to continuously change shape or deform. This deformation is 
illustrated in Fig. 2.8.As shown, a fluid particle that is rectangular at time I will deform so that 
it is nonrectangular at timet + 6.t. 1he deformation occurs because the fluid at the top of the 
particle is moving faster than the fluid at the bottom of the particle. Tn particular the fluid at 
the top is moving with speed V + 6. V, and the fluid at the bottom is moving with speed V. 
1his change in velocity over distance (called velocity gradient) is linked to deformation of the 
fluid particle. 

FIGURE 2.8 
Depiction of stroin caused by o shear stress (force per oreo) in o fluid The rotc 
of stram is the rate of change of the Interior angle of the original rectangle. 
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The rate of shear strain describes the change in an angle of a particle as a function of time. 'lhe 
mathematical definition is 

f h . I' 6.<!> rate o s ear stram = 1m -
t.t ->0 6. t 

(2.11) 
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re the angle ~<t> is defined in the lower sketch of Fig. 2.8. To evaluate Eq. (2.11), use the 
-..dt in Fig. 2.8 to write 

tan ( ~<\>) = ~ V~l 
~y 

(2.12) 

i: the limit as ~t ~ 0, apply the small angle approximation to write 

tan (~¢)= ~<\> (2.13) 

Combine Eqs. (2.11) to (2.13) to give 

. . ~<\> . ~ V dV 
rate of shear slram = hm - = hm ~ = d 

llt--->0 ~t M - >0 uy y 
(2.14) 

Fq. (2. 14) shows that the rate of shear strain of a fluid particle is equal to the derivative of the 
··elocity with respect to distance. The derivative on the right side of Eq. (2.14) is called the 
elocity gradient, which is the next topic. 

The Velocity Profile 
'.lscous effects cause the velocity of a flowing fluid to vary with distance y as shown in Fig. 2.9. 
;\otice that y measures distance from the wall. The variation of velocity with distance is called 
a velocity profile. The change in velocity is often called a velocity gradient because the gradient 
m mathematics describes a change in a variable with respect to distance. 

FIGURE 2.9 

Viscosity causes fluid near a wall to slow down, 
thereby creating the no-slip condition and a velocity 
profile. The velocity profile causes a fluid particle to 
experience shear stresses as shown. 

(
\rlo~it~ Profik: Velocity 
varies with distance 

=:: ~ ' " '""'-""' - = on each fluid particle 
:::::::: f Y 'fboooo1 

Flow '""' z ; la: p;at: 

1 

~:li; c~n~i;io:1
1

: Velocity 
of lluid equab wall velocity 

The presence of a velocity gradient indicates that shear stresses act on fluid particles. 

EXAMPLE. Fig. 2.9 shows a fluid particle (blue shading) situated in a velocity profile. The fluid 
above this particle is moving fast relative to the particle, and this causes the particle to expe­
rience a force that acts to the right. Similarly, the fluid below the particle is moving slower, 
and this causes the particle to experience a force acting to the left. These forces can be repre­
sented as shear stresses. 

l1,e No-Slip Condition 
~ addition to causing shear stress, viscosity causes the no-slip condition, which is labeled in 
-=-:g. 2.9. The no-slip condition, originally deduced from experiments, tells us that the velocity of 
";.,id in contact with a solid will equal the velocity of the solid. Therefore, in Fig. 2.9 the velocity 
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of the fluid at the surface of the plate will equal zero: V(y = 0) = 0. lf a body is moving, for ex­
ample a wing moving through the air, the velocity of the air at a point on the wing surface will 
equal the velocity of the wing at this same point. 

Finding Values of Viscosity 
Table 2.2 (page 53) summarizes information for looking up viscosity values. The following 
example illustrates how to use this table. 

EXAMPLE. Find the dynamic viscosity of air at a pressure of 5 atmospheres and a tempera­
ture of 120°C. Assume that air at these conditions is an ideal gas. 

Ideas/Plan. Table 2.2 (page 53) indicates that (a) viscosity can be looked up in Table A.3, 
and (b) viscosity will vary with temperature, but not pressure. 1lms look up viscosity at 
T = 120°C and p = 1 atm. 

Action From Table A.3, the viscosity of air at T = I20°C and p = 1 atm is fl.= 2.26 X 10-5 

N · s/m2
• 

vCHECKPOINT PROBLEM 2.1 

An inventor is considering two lubricants: glycerin and SAE lOW-30 oil. 

(a) Which lubricant has a higher viscosity at 150°F? 

(b) Which lubricant has a higher viscosity at 230°F? 

Kinematic Viscosity, t> 

Kinematic viscosity, v (nu), is a property that combines the viscous and the mass characteristics 
of a fluid. It is defined mathematically as the ratio of viscosity to density: 

,.... 
v =-

r 
N · s/m2 

2 -----=-- = m Is 
kg/m.l 

(2.15) 

The reason that kinematic viscosity is defined as a property is that the ratio f.1./p occurs 
frequently in equations. Hence, researchers have identified it as a distinct property. As 
shown in Eq. (2.15), the units of v are m2/s. The units can be helpful for distinguishing 
kinematic viscosity from viscosity. Be careful not to mix up fl. and v; they are different 
properties! 

EXAMPLE. Find the kinematic viscosity of water at a pressure of 5 atmospheres and a tem­
perature of80°C. 

Ideas/Plan. From Table 2.2 (page 53), the kinematic viscosity of water can be found in 
Table A.5. Also, the kinematic viscosity of a liquid is independent of pressure. 

Action. From Table A.S, the kinematic viscosity of water at T = 80°C and p = 1 atm is 
v = 3.64 X 10- 7 m2/s. 

to/CHECKPOINT PROBLEM 2.2 

What is the kinematic viscosity of nitrogen at 7 atmospheres of pressure (absolute) and a temperature 
of l5°C? 
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2.6 Applying the Viscosity Equation 

This section shows how to solve problems when shear stress is a parameter. The working equa­
tion is the viscosity equation, Eq. (2.9), which is usually written as 

dV 
'T = j.L-

dy 
(2.16) 

The equation tells us that shear stress, T, in a flowing fluid is linearly related to the velocity 
gradient (dV/dy). 1he constant of proportionality is the viscosity (~J.). Terms in Eq. (2.16) are 
summarized in Table 2.1. 

TABLE 2.1 Summary of the Viscosity Equation 

i 
dV 

T=j.L-
dy 

1 T = shear stress (N/m2
) 

(2.16) I 
1-L = viscosity (Pa · s) 

I (also called dynamic viscosity or absolute viscosity) 

dV . . 
dy = veloctty grachent (s 1

) 

(also called the rate of shear strain) 

One type of problem involves specifying two of the three variables in the viscosity equa­
tion and asking for the third variable. This case is illustrated in Example 2.1. 

EXAMPLE 2.1 

Applying the Viscosity Equation to Calculate Shear Stress 
in a Poiseuille Flow 

Problem Statement 

A famous solution in fluid mechanics, called Poiseuille flow, 
involves laminar flow in a round pipe (See Chapter 10 for 
details). Consider Poiseuille flow with a velocity profile in the 
pipe given by 

V(r) = V0 (1 - (rlr0 )
2

) 

where r is radial position as measured from the centerline, V0 

is the velocity at the center of the pipe, and r0 is the pipe radius. 
Find the shear stress at the center of the pipe, at the wall, and 
where r = 1 em. The fluid is water (15°C), the pipe diameter is 
4 em, and v;, = 1 m/s. 

'1efine the Situation 

Water flows in a round pipe (Poiseuille Flow). 

-Water 

Water (l5°C, latm, Table A.S): 1-L = 1.14 X 10- 3 N · s/m2
. 

State the Goal 

Calculate the shear stress at three points: 

-r(r = 0.00 m) (N/m2
) ~ pipe centerline 

-r(r = 0.01 m) (N/m2
) ~ middle of the pipe 

-r(r = 0.02 m) (N/m2
) ~the wall 

Generate Ideas and Make a Plan 

Because the goal is T, select the Viscosity Equation (Eq. 2.16). 

Let the position variable be r instead of y. 

dV 
T = -1-L- (a) 

dr 
Regarding the minus sign in Eq. (a), they in the viscosity 
equation is measured from the wall (see Fig. 2.9) The 
coordinate r is in the opposite direction. The sign change 
occurs when the variable is changed from y to r. 

To find J.L, use Table 2.2 on page 53 to identify that 

• Viscosity of water at l5°C can be found in Table F.S. 

• Viscosity of a liquid is independent of pressure. 

To find the velocity gradient in Eq. (a), differentiate the given 
velocity profile. 

dV(r) d -2V. r 
- = - (V0 (1 - (r/r0 )1 )) = -- (b) 

dr dr r: 
Now, the goal can be found. Plan. Apply Eq. (b) to find the 
velocity gradient. Then, substitute into Eq. (a). 
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Take Action (Execute the Plan) 

1. Viscosity Equation (r = 0 m) 

-2V0 (0 m) -2(1 m/s)(O m) _
1 

r~ = ~ m)-z~ = O.Os 

dV(r) I 
T(r =O m)= -iJ.--

dr r=Om 

= (1.14 X 10 3 N · s/m2)(0.0 s-1
) 

=io.o N/m2
1 

2. Viscosity Equation (r = 0.01 m) 

dV(r) I -2V.,(O.Ol m) 

----;J;- r~ll.lll m rJ 
-2(1 m/s)(O.O l m) _ 
_ ....:.__....:....:....,...-:--..:...=-50s 1 

(0.02 m)2 

Next, calculate shear stress. 

dV(r) I T(r = 0.01 m) = - iJ.--
dr r=O.OI m 

= (1.14 X 10- 3 N · s/m2)(50 s 1
) 

= lo.OS70 N/m2
1 

3. Viscosity Equation (r = 0.02 m) 

dV(r) I -2V0 (0.02 m) 

dr r~om m r; 
- 2(1 m/s)(0.02 m) 
~-....:....:.-:-_..:... = - IOO s- 1 

(0.02 m)2 

Next, calculate shear stress. 

dV(r) I T(r = 0.02 m) = - iJ. ~-
dr r • 0.02m 

= (1.14 X 10- 3 N · s/m2)(100 s-1
) 

= [{Ui4 N/m2] 

Re"iew the Solution and the Proccs' 

1. Tip. On most problems, including this example, carrying 
and canceling units is useful, if not critical. 

2. Notice. Shear stress varies with location. For this example, 
Tis zero on the centerline of the flow and nonzero 
everywhere else. The maximum value of shear stress occurs 
at the wall of the pipe. 

3. Notice. For flow in a round pipe, the viscosity equation has 
a minus sign and uses the position coordinate r. 

dV 
'T = -iJ. dr 

Example 2.1 showed that the magnitude of shear stress is proportional the velocity gradient. 

FIGURE 2.10 

The velocity profile from 
example 2 . 1. This figure 
shows that one can make 
qualitative predictions 
of the sheor stress by 
examining the slope of the 
velocity profile. 

This idea is illustrated in Fig. 2.1 0. Notice that the figure is drawn vertically so that the variable 
Vis upward and the variable r is horizontal. This was done so that a slope of zero is a horizon­
tal line and an infinite slope is a vertical line. Another way to show the relationship between 
slope and shear stress is an equation. 

dV '!'t= j.l.-t 
dr 

(2.17) 

Eq. (2.17) means that if dV!dy increases, then shear stress 'I' will increase. Or, that if dV!dy 
decreases then 'I' will decrease. 

Shear stress at any point 
is proportional to dV/dr 
(slope of velocity profile) 

Shear stress is zero at 
centerline because 
slope= dV/dr = 0 

1--'--'-.l....-!~ Shear stres; •• maximum 
I at the wall because slope 

is maximum 

A second category of problems involves a type of flow, called Couette Flow. In Couette flow, 
as shown in Fig. 2.11, a moving plate causes fluid to flow. Because of the no-slip condition, the 
velocity of the fluid at the top is equal to the velocity of the moving plate. Similarly, the velocity of 
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:he fluid at the bottom is zero because the bottom plate is stationary. In the region between the 
plates, the velocity profile is linear. Additional details about Couette flow are presented in Chapter 9. 

When the viscosity equation (Eq. 2.16) is applied to the Couette flow that is shown in 
Fig. 2.11, the derivative can be replaced with a ratio because the velocity gradient is linear. 

dV ll V 
T= f.J.- = f.J.-

dy lly 
(2.18) 

The terms on the right side of Eq. (2.18) can be analyzed as follows 

ll v vo- 0 vo 
'T = f.J.- = f.J.--- = f.J. -

Ily H- 0 H 

Rewrite the equation to give a form of the Viscosity Equation that is useful for Couette flow. 

I 
Vo 

'T Couette Flow = constant = f-1 H (2.19) 

Eq. (2.19) reveals that the shear stress at all points in a Couette flow is constant with a magni­
rude of f.J. V:, I H. Example 2.2 presents a typical problem that involves Couette flow. 

I 

-~-

Linear velocity profile 

c:::::!'======:::::r-~!501====- v = v. 
FIGURE 2.11 

Couette flow is o flow thot 
is driven by a moving wall. 
The velocity profile in the 
fluid is linear. 

H 

_!_clr:;;::;:::;=:~::;!f:;:::;::::;::;::::;:::;::;::::;:::<;::'! 
/ 

EXAMPlE 2.2 

Applying the Viscosity Equation to Couette Flow 

Problem Statement 

A board 1 m by 1 m that weighs 25 N slides down an inclined 
ramp (slope = 20°) with a constant velocity of 2.0 cm/s. The 
board is separated from the ramp by a thin film of oil with 
a viscosity of 0.05 N • s/m2

• Assuming that the oil can be 
modeled as a Couette flow, calculate the space between the 
board and the ramp. 

Define the Situation 

A board slides down an oil film on a inclined plane. 

I' = 0.02 m/s 

~ 

Assumptions. (I ) Couette flow. (2) Board has constant speed. 

State the Goal 

H(mm) • Thickness of the film of oil 

Generate Ideas and Make a Plan 

Because the goal isH, apply the Viscosity Equation (Eq. 2.19): 

Vo 
H = J..L­

T 
(a) 

To find the shear stress Tin Eq. (a), draw a Free Body Diagram 
(FBD) of the board. In the FBD, W is the weight, N is the normal 
force, and F sh<ar is shear force. Because shear stress is constant 
with x, the shear force can be expressed as Fshcar = 'TA. 

Because the board moves at constant speed, the forces are in 
balance. Thus, apply force equilibrium. 

'LFx = 0 = Wsin9- TA (b) 

Rewrite Eq. (b) as 

T = (W sinS)/ A 

Eq. (c) can be solved forT. The plan is 

1. Calculate Tusing Force Equilibrium (Eq. c). 

2. Calculate H using the Shear Stress Equation (Eq. a). 

(c) 
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Take Action (Execute the Plan) 

1. Force equilibrium 

Re\ iew the Solution and the Process 

I. His about 12% of a millimeter; this is quite small. 

T = (Wsinfl)/A = (25 N)(sin20°)/(1.0 m2
) = 8.55 N/m2 2. Tip. Solving this problem involved drawing an FBD.The 

FBD is useful for most problems involving Couette flow. 
2. Shear stress equation 

V0 (0.02 m/s) 
H = f.L- = (0.05 N · s/m2

) - - =~.117 mmj 
T (8.55 N/m2

) 

FIGURE 2.12 

Visualization of molecules 
in a liquid. 

2.7 Characterizing Viscosity 

This section presents ideas about developing equations for viscosity as a function of tempera­
ture. This section also introduces the non-Newtonian fluid. 

Temperature Effects 

The viscosity of a gas increases with a temperature rise. T n comparison, the viscosity of liquid 
decreases. To understand the influence of a temperature change on a liquid, it is helpful to rely 
on an approximate theory (3). In this theory, the molecules in a liquid form a latticelike struc­
ture with "holes" where there are no molecules, as shown in Fig. 2.12. Even when the liquid is 
at rest, the molecules are in constant motion, but confined to cells, or "cages:' The cage or lat­
tice structure is caused by attractive forces between the molecules. 1he cages may be thought 
of as energy barriers. When the liquid is flowing, there is a shear stress, T, imposed by one layer 
on another in the fluid. This shear stress assists a molecule in overcoming the energy barrier so 
that it can more easily move into the next hole. At a higher temperature the size of the energy 
barrier is smaller, and it is easier for molecules to make the jump, so that the net effect is that 
the fluid has a a lower viscosity. 

An equation for the variation of liquid viscosity with temperature is 

1.1.. = Ceb!T (2.20) 

where C and b are empirical constants that require viscosity data at two temperatures for 
evaluation. This equation should be used primarily for data interpolation. ' 
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The variation of viscosity (dynamic and kinematic) for other fluids is given in Figs. A.2 
and A.3. Example 2.3 shows how to find the constants that appear in Eq. (2.20). 

' 

EXAMPLE 2.3 

Developing an A lgebraic Equation for Viscosity of a Liquid 
as a Function of Temperature 

Problem Statement 

The dynamic viscosity of water at 20°C is 1.00 X 10- 3 N · s/m2
, 

and the viscosity at 40°C is 6.53 X 10 4 N · s/m2
• 

Using Eq. (2.20), estimate the viscosity at 30°C. 

Define the Situation 

An equation for the viscosity of water can be found by using 
Eq. (2.20) plus the following two data points: 

• Water (293 K, 1 atm): JL = 1.00 X 10 3 N · s!m1
. 

• Water (313 K, 1 atm): JL = 6.53 X 10- 4 N · s/m2
• 

State the Goal 

1. Find an equation for tJ.(T) for water. 

2. Calculate the viscosity of water at T = 303 K = 30°C. 

Generate Idea~ and Make a Plan 

Because Eq. (2.20) has two unknown constants (C and b), and 
there are two known values for viscosity, the two constants can 
be found. The plan is 

1. Linearize Eq. (2.20) by taking the logarithm. 

2. Plug values of IL and T into the linearized equation. 

Take Adion (Execute the Plan) 

I. Take logrithms of both sides of Eq. (2.20) 

lnJL =InC + biT 

2. Plug data points into Eq. (a) 

-6.908 = InC + 0.00341 b 

- 7.334 = lnC + 0.00319 b 

3. Solve equations in step 2 for C and b 

InC = -13.51 b=l936K 

C = e - IJ.SJ = 1.357 X 10- 6 (N · s/m2) 

4. Substitute C and b into Eq. (2.20) 

jtJ.(T) = (1.357 X 10-6 N . sfm2)e !1•36K)trj 

Solve for viscosity at 303 K. 

JL =(iOF X 10 4 N · s/m' l 

Review the Solution and the Process 

1. Validation. The calculated value can be checked by 
comparing to data in Table A.S. The result differs by 1% 
from the table value. 

2. Tip. This solution required absolute temperature units of 
Kelvin (K). Some problems cannot be solved correctly if 
one uses temperature units in Celsius (0 C). 

(a) 

(b) 

(c) 

3. Solve for C and b using the linear equations from step 2. 

4. Find the equation for tJ.(T) and then find JL(T = 303 K). 

3. 'lip. Notice how units were applied in this solution. Using 
units is good engineering practice. 

As compared to liquids, gases do not have zones or cages to which molecules are con­
.;ned by intermolecular bonding. Gas molecules are always undergoing random motion. If 
· 1is random motion of molecules is superimposed on two layers of gas, where the top layer 
- moving faster than the bottom layer, periodically a gas molecule will randomly move from 
ne layer to the other. This behavior of a molecule in a low-density gas is analogous to people 

..llllping back and forth between two conveyor belts moving at different speeds, as shown in 
1g. 2.13. When people jump from the high-speed belt to the low-speed belt, a restraining 
r braking) force has to be applied to slow the person down (analogous to viscosity). If the 

.:ople are heavier, or are moving faster, a greater braking force must be applied. This anal-
5}' also applies for gas molecules translating between fluid layers where a shear force is 
~~ded to maintain the layer speeds. As the gas temperature increases, more of the mole­
_les will be making random jumps. Just as the jumping person causes a braking action on 
-e belt, highly mobile gas molecules have momentum, which must be resisted by the layer 

which the molecules jump. Therefore, as the temperature increases, the viscosity, or resis -
'1ce to shear, also increases. 
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FIGURE 2.13 

Analogy of people 
moving between conveyor 
belts and gas molecules 
translating between fluid 
layers. 

FIGURE 2.14 

Sheor stress relations for 
different types of fluids . 

Force to keep belt 
moving at same veloctty 

- F 

Force to restrain belt 
from speeding up 

People jumping 
between mov111g belts 

Shear force nc:c:ded 
to mmntain layer speed 

._ ,.~ 

Re,traming shear force needed 
to maintain layor ,peed 

Molecules lmnslating 
het"een fluid layers 

An estimate for the variation of gas viscosity with temperature is Sutherland's equation, 

~ = ( '[' )3/2 To + S 
1-lo T0 T + S 

(2.21) 

where 1-lo is the viscosity at temperature T0 , and Sis Sutherland's constant. All temperatures are 
absolute. Sutherland's constant for air is 111 K; values for other gases are given in Table A.2. 
Using Sutherland's equation for air yields viscosities with an accuracy of ± 2% for temperatures 
between 170 K and 1900 K. In general, the effect of pressure on the viscosity of common gases 
is minimal for pressures less than 10 atmospheres. 

Newtonian versus non-Newtonian Fluids 

Fluids for which the shear stress is directly proportional to the rate of strain are called New­
tonian fluids. Because shear stress is directly proportional to the shear strain, dV! dy, a plot 
relating these variables (see Fig. 2.14) results in a straight line passing through the origin. 
The slope of thi s line is the value of the dynamic (absolute) viscosity. For some fluids the 

r 

dV 
d;: -
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~hear stress may not be directly proportional to the rate of strain; these are called non-
ewtonian fluids. One class of non-Newtonian fluids, shear-thinning fluids, has the inter­

e~ting property that the ratio of shear stress to shear strain decreases as the shear strain 
tncreases (see Fig. 2.14). Some common shear-thinning fluids are toothpaste, catsup, 
paints, and printer's ink. Fluids for which the viscosity increases with shear rate are shear­
th ickening fluids. Some examples of these fluids are mixtures of glass particles in water 
and gypsum-water mixtures. Another type of non-Newtonian fluid, called a Bingham 
plastic, acts like a solid for small values of shear stress and then behaves as a fluid at higher 
.;hear stress. The shear stress versus shear strain rate for a Bingham plastic is also shown 
.n Fig. 2.14. 

ln general, non-Newtonian fluids have molecules that are more complex than Newtonian 
tluids. Thus, if you are working with a fluid that may be non-Newtonian, consider doing some 
research. The reason is that many of the equations and math models presented in textbooks 
including this one) only apply to Newtonian fluids. 

To Jearn more about non-Newtonian fluids, watch the film entitled Rheological Behavior 
4 Fluids (4). For more information on the theory of flow of non-Newtonian fluids, see refer­
ences (5) and (6). 

2.8 Characterizing Surface Tension* 

Engineers need to be able to predict and characterize surface tension effects because they affect 
many industrial problems. Some examples of surface tension effects: 

• Wicking. Water will wick into a paper towel. Tnk will wick into paper. Polypropylene, 
an excellent fiber for cold-weather aerobic activity, wicks perspiration away from 
the body. 

• Capillary Rise. A liquid will rise in a small-diameter tube. Water will rise in soil. 

• Capillary Instability. A liquid jet will break up into drops. 

• Drop and Bubble Formation. Water on a leaf beads up. A leaky faucet drips. Soap bubbles 
form. 

Excess Pressure: The pressure inside a water drop is higher than ambient pressure. The 
pressure inside a vapor bubble during boiling is higher than ambient pressure. 

Walking on Water. The water strider, an insect, can walk on water. Similarly, a metal paper 
clip or a metal needle can be positioned to float (through the action of surface tension) on 
the surface of water. 

• Detergents. Soaps and detergents improve the cleaning of clothes because they lower 
the surface tension of water so that the water can more easily wick into the pores of the 
fabric. 

'any experiments have shown that the surface of liquid behaves like a stretched membrane. 
'l.e material property that characterizes this behavior is surface tension, a (sigma). Surface 

te"'lsion can be expressed in terms of force: 

Force along an interface 
Surface Tension (a ) = f . [; 

Length o the mter ace 
(2.22) 

-t ~authors acknowledge and thank Dr. Eric Aston for his feedback and inputs on this section. Dr. Aston is a Chemical 
• nee ring Professor at the University of Idaho. 
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FIGURE 2.15 

Forces between molecules 
in a liquid 

FIGURE 2.16 

Surface tens1on of water 
for a wote1 / o ir interface. 
Property values from 
White(71. 

Surface tension can also be expressed in terms of the energy: 

Energy required to increase the surface area of a liquid 
Surface Tension (a) = . 

Umt area 
(2.23) 

From Eq. (2.22), the units of surface tension are newton per meter (N/m). Surface tension 
typically has a magnitude ranging from 1 to I 00 mN/m. Units of surface tension can also be 
joule per meter squared (J/m2

) because: 

N N·m 
= ---= 

m m·m 

The physical mechanism of surface tension is based on cohesive force, which is the attrac­
tive force between like molecules. Because liquid molecules attract one another, molecules in 
the interior of a liquid (see Fig. 2.15) are attracted equally in all directions. Tn contrast, mole­
cules at the surface are pulled toward the center because they have no liquid molecules above 
them. This pull on surface molecules draws the surface inward and causes the liquid to seek to 
minimize surface area. This is why a drop of water draws into a spherical shape. 

~ 
A molecule at the~ j -
surfnce 1s pulled O O O O O 
toward the center '. l / 

~;:::o o 
A molecule in the O O ~ O O 
Inte rior is pulled 
equal ly in a ll directions 

Surface tension of water decreases with temperature (see Fig. 2.16) because thermal ex pan­
sion moves the molecules farther apart, and this reduces the average attractive force between 
molecules (i.e., cohesive force goes down). Surface tension is strongly affected by the presence of 
contaminants or impurities. For example, adding soap to water decreases the surface tension. The 
reason is that impurities concentrate on the surface, and these molecules decrease the average 
attractive force between the water molecules. As shown in Fig. 2.16, the surface tension of water 
at 20°C is <T = 0.0728 = 0.073 N /m. This value is used in many of the calculations in this text. 

E" o.os 
~ 
~ O.o7 
0 
:; 
c 
~ 0.06 
~ 

~ 0.05 

r-

Cll 0 

Jr a - 0.0728 Nim at T = 20°C 
~ I I 

! 1---l. 
J I ---;-_ 
I I 
I I 

20 40 bO 80 100 

Temperature ("C) 

Tn Fig. 2.16, surface tension is reported for an interface of air and water. It is common 
practice to report surface tension data based on the materials that were used during the mea­
surement of the surface tension data. 

To learn more about surface tension, we recommend the online film entitled Surface Ten 
sian in Fluid Mechanics (8) and Shaw's book (9). 
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Example Problems 
.lost problems involving surface tension are solved by drawing a free body diagram and apply­

'1g force equilibrium. TI1e force due to surface tension, from Eq. (2.22), is 

I 

Force due to surface tension = F" = aL (2.24) 

·here L is the length of a line that lies along the surface of the liquid. The use of force equilib­
mm to solve problems is illustrated in Examples 2.4 and 2.5. 

EXAMPLE 2.4 

Applying Force Equilibrium to Calculate the Pressure Rise 
inside a Water Droplet. 

"'roblem Statement 

The pressure inside a water drop is higher than the pressure 
of the surroundings. Derive a formula for this pressure rise. 
Then, calculate the pressure rise for a 2-mm-diameter water 
drop. Use a = 73 mN/m. 

')•fine the Situation 

Pressure inside a water drop is larger than ambient pressure. 
d = 0.002 m, a = 73 mN/m. 

tate the Goal 

I. Derive an equation for p,. 

2. Calculate p; in pascals. 

"';enerale Ideas ami Make a Plan 

Because pressure is involved in a force balance, draw a Free 
Body Diagram (FBD) of the drop. 

F~D 
Fu~ 

~=orce due to pressure = Force due to surface tension 

flp = Fa (a) 

dhesion and Capillary Action 

From Eq. (2.24), the surface tension force is a times the length 
of the interface: 

Fa = uL = aTid 

The pressure force is pressure times area: 

7rd2 
F =p-

P ' 4 

Combine Eqs. (a) to (c): 

Solve for pressure 

/ - 4a j 
p,- d 

The first goal (equation for pressure) has been attained. The 
next goal (value of pressure) can be found by substituting 
numbers inlo Eq. (e). 

Take Ac.:tion ('Execute the Plan) 

4a 4(0.073 N/m) 
p = - = = 146 Pa gagej 
' d (0.002 m) 

Review the Results and the Proces~ 

I . Notice. The answer is expressed as gage pressure. 
Gage pressure in this context is the pressure rise above 
ambient. 

(b) 

(c) 

(d) 

(e) 

2. Physics. The pressure rise inside a liquid drop is a 
consequence of the membrane effect of surface tension. 
One way to visualize this is make an analogy with a balloon 
filled with air. '!be pressure inside the balloon pushes 
outward against the membrane force of the rubber skin. 
ln the same way, the pressure inside a liquid drop 
pushes outward against the membrane like force of 
surface tension. 

nen a drop of water is placed on glass, the water will wet the glass (see Fig. 2.1 7) because 
.1ter is strongly attracted to glass. This attractive force pulls the water o utward as shown. The 

·.::e betw·een dissimiJar surfaces is called adhesion (see Fig. 2.17b). Water will "wet out" on a 

\':.:.Tfacc when adhesion is greater than cohesion. 
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FIGURE 2.17 

Water wets gloss because 
adhesion is greater than 
cohesion. Wetting is 
associated with a contact 
angle less than 90°. 

FIGURE 2.18 

W ater beads up a 
hydrophobic material such 
as Teflon because adhesion 
is less than coheston 
A nonwetting surface is 
associated with a contact 
angle greater than 90°. 

FIGURE 2.19 

W ater will rise up a 
gloss tube (capillary rise), 
whereas mercury will 
move downward (capillary 
repulsion). 

Contact , , ~ Water drop 

Angle ~ ~ cGia» 
I 

(a) 

..\dht'\ion: Force between dissimilar matenab 
(water and glass in thi , example; stronger 
adhesive force pulls the water outward) 

Weaker 

---,..01=--------.- cohesive 
force 

(b) 

On some surfaces such as Teflon and wax paper, a drop of water will bead up (Fig 2.18) 
because adhesion between the water and teflon is less than cohesion of the water. A surface in 
which water beads up is called hydrophobic (water hating). Surface such as glass in which water 
drops spread out are called hydrophillic (water loving). 

Contact 
Angl< Teflon 
---~~--~--~ 

(a) 

c The stronger cohesive force r ::: '"' .... , .. ""'"'"' ···~ 
~ l 

Weaker adhesive 
(b) force 

Capillaq action describes the tendency of a liquid to rise in narrow tubes or to be drawn into 
small openings. Capillary action is responsible for water being drawn into the narrow open­
ings in soil or into the narrow openings between the fibers of a dry paper towel. 

When a capillary tube is placed into a container of water, the water rises up the tube 
(Fig 2.19) because the adhesive force bet ween the water and the glass pulls the water up the 
tube. This is called capillary rise. Notice how the contact angle for the water is the same in Figs. 
2.17 and 2.19. Alternatively, when a fluid is nonwetting such as mercury on glass, then the 
liquid will display capillary repulsion. 

Ula" 
Capillary rise 

1 
tube ~Captllary repulsion 

, • .,.,'"' ''~ <~=o '"" ' '"'' 

To derive an equation for capillary rise (see Fig. 2.20), define a system comprised of the water 
inside the capillary tube. Then, draw a free body diagram (FBD). As shown, the pull of surface 
tension is lifting the column of water. Applying force equilibrium gives 

Weight = Surface Tension Force 

'Y( Tf: 2

)Llh = a 'IT dcos a {2.25 
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·o· 
'' 

\ / F.==d(cose) 
'-" 

Assume the contact angle is nearly zero so cos e = 1.0. Note that this is a good assumption for 
.1 water/glass interface. Eq. (2.25) simplifies to 

flh = 4u 
"(d 

(2.26) 

EXAMPLE. C alculate the capillary rise for water (20°C) in a glass tube of diameter 

d = 1.6 mm. 

Solution. From Table A.S, "Y = 9790 N/m3
• From Fig. 2.16, cr = 0.0728. Now, calculate capillary 

rise using Eq. (2.26): 

Ah = 4(0.0728 N/ m) 
u ...,....-------''-------_:__-- = 18.6 mm 

(9790 N/m3)(1.6 x 10 3 m ) 

.v CHECKPOINT PROBLEM 2.3 

Two capillary tubes are placed in a liquid. The diameter of tube A is twice the diameter of tube B. 
Which statement is true? 

a. Capillary rise in both tubes is the same. 

b. Capillary rise in tube A is twice that of tube B. 

c. Capillary rise in tube B is twice that of tube A. 

d. None of the above. 

Example 2.5 shows a case involving a non-wetting surface. 

EXAMPLE 2.5 Define the Situation 

FIGURE 2.20 

Sketches used for deriving 
on equation for capillary 
rise. 

Applying Force Equilibrium to Determine the Size of a 
Sewing Needle That Can Be Supported by Surface Tension 

A sewing needle is supported by the surface tension of a water 
surface. 

">roblem Statement 

The Internet shows examples of sewing needles that appear 
ro be "floating" on top of water. This effect is due to surface 
tension supporting the needle. Determine the largest diameter 
of sewing needle that can be supported by water. Assume that 
•he needle material is stainless steel with SG,. = 7.7. 

~ Needle (stain tess steel) 

.----.--/Water 
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Assumptions 
• Assume the sewing needle is a cylinder. 

• Neglect end effects. 

Properties 
• Water {20°C, l atm, Fig. 2.16): a = 0.0728 N/m 

• Water (4°C, 1 atrn, Table F.6): 'Ymo = 9810 N/m3 

• SS: -y., = (7.7)(9810 N/m3) = 75.5 kN/m3 

State the Goal 

d(mm) .. Diameter of the largest needle that can be supported 
by the water. 

<..encrate Ideas and Make a Plan 

Because the weight of the needle is supported by the surface 
tension force, draw a Free Body Diagram (FBD). Select a 
system comprised of the needle plus the surface layer oft he 
water. The FBD is 

w 

Apply force equilibrium. 

Force due to surface tension = Weight of needle 

F., = W 

From Eq. (2.24) 
F., = cr2L cos 6 

(a) 

(b) 

where Lis the length of the needle. 1he weight of the needle is 

(
weight) [(7Td2) ] W = -

1
- [volume] = 'Y" - L 

vo ume 4 
(c) 

Combine Eqs. (a), (h), and (c). Also, assume the angle e is zero 
because this gives the maximum possible diameter: 

u2l. = -v~,( 71":
2

) L 

Plan. Solve Eq. (d) ford and then plug numbers in. 

Take Action (Execute the Plan) 

8(0.0728 N~ --, 
- = l.57mm l 
7r(75.5 X 10' N/m3) 

Review the Solution and the Process 

Notice. When applying specific gravity, look up water 
properties at the reference temperature of 4°C. 

(d) 

2. 9 Predicting Boiling Using Vapor Pressure 

FIGURE 2.21 

A phose diagram 
for water. 

A liquid, even at a low temperature, can boil as it flows through a system. 1his boiling can re­
duce performance and damage equipment. Thus, engineers need to be able to predict when 
boiling will occur. This prediction is based on the vapor pressure. 

Vapor pressure, Pv(kPa), is the pressure at which the liquid phase and the vapor phase of 
a material will be in thermal equilibrium. Vapor pressure is also called saturation pressure, and 
the corresponding temperature is called saturation temperature. 

Vapor pressure can be visualized on a phase diagram. A phase diagram for water is shown in 
Fig. 2.21. As shown, water will exist in the liquid phase for any combination of temperature and 
pressure that Lies above the blue line. Similarly, the water will exist in the vapor phase for points 
below the blue line. Along the blue line, the liquid and vapor phases are in thermal equilibrium. 
When boiling occurs, the pressure and temperature of the water will be given by one of the points 
on the blue line. In addition to Fig. 2.21, data for vapor pressure of water are tabulated in Table A.S. 

100 

-;;- Liqutd 
~ 

10 (above line) 
!! \._ " ~ 
l. ) :s 
0. Vil(l<IT 

" > (below lim!) + 

0.1 
0 10 20 30 40 50 (,0 70 HO 90 100 

Temperature ( °C) 
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EXAMPLE. Water at 20°C flows through a venturi nozzle and boils. Explain why. Also, give 
the value of pressure in the nozzle. 

Solution. The water is boiling because the pressure has dropped to the vapor pressure. 
Table 2.2 (page 53) indicates that Pv can be looked up in Table A.S. Thus, the vapor pressure 
at 20°C (Table A.S) is Pv = 2.34 kPa absolute. This value can be validated by using Fig. 2.21. 

Review. Vapor pressure is commonly expressed used absolute pressure. Absolute pressure is 
the value of pressure as measured relative to a pressure of absolute zero. 

2. 1 0 Characterizing Thermal Energy in Flowing Gases 

Engineers characterize thermal energy changes using properties introduced in this section. 
Thermal energy is the energy associated with molecules in motion. 1his means that thermal 
energy is associated with temperature change (sensible energy change) and phase change 
latent energy change). For most fluids problems, thermal properties are not important. How­

ever, thermal properties are used for compressible flow of gases (Chapter 12). 

Specific Heat, c 
pecific heat characterizes the amount of thermal energy that must be transferred to a unit 

"'lass of substance to raise its temperature by one degree. The dimensions of specific heat are 
energy per unit mass per degree temperature change, and the corresponding units are J/kg · K. 

The magnitude of c depends on the process. If a gas is heated at constant volume, less en­
ergy is required than if the gas is heated at constant pressure. This is because a gas that is heated 
•t constant pressure must do work as it expands against its surroundings. 

The constant volume specific heat, cv, applies to a process carried out at constant volume. 
The constant pressure specific heat, cP, applies to process carried out at constant pressure. 1he 
-atio cp!cv is called the specific heat ratio and given the symbol k. Values for Cp and k for vari­
us gases are given in Table A.2. 

nternal Energy 

~'lternal energy includes all the energy in matter except for the kinetic energy and potential 
mergy. 1bus, internal energy includes multiple forms of energy such as chemical energy, elec­
"'"ical energy, and thermal energy. Specific internal energy, u, has dimensions of energy per 
~t mass. The units are J/kg. 

E11thalpy 
.'hen a material is heated at constant pressure, the energy balance is 

dd d) (
energy to increase) ( energy to do work ) 

(energy a e = + 
thermal energy as the material expands 

-:-ne work term is needed because the material is exerting a force over a distance as it pushes its 
urroundings away during the process of thermal expansion. 

Enthalpy is a property that characterizes the amount of energy associated with a constant 
· •mperature heating or cooling process. Enthalpy per unit mass is defined mathematically by 

(enthalpy) = (internal energy) + (pressure over density) 

h = u +pip 
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Ideal Gas Behavior 
For an ideal gas, the properties h, u, cp, and cv depend only on temperature, not on pressure. 

2.11 Summarizing Key Knowledge 

Systems and Associated Concepts 
• The system is the matter that the engineer selects for study. 

• The surroundings are everything else that is not part of the system. 

• The boundary is the surface that separates the system from its surroundings. 

• The state of a system is the condition of the system as specified by values of the properties 
of the system. 

• A process is a change of a system from one state to another. 

• A property is a measurable characteristic of a system that depends only on the present 
state. 

Constant Density Assumption 
• All fluids, including liquids, are compressible. 

• Modeling a fluid as constant density means that one assumes the density is constant with 
position and time. Variable density means the density can change with position or time. 

• Modeling a fluid as incompressible means one assumes that the density of each fluid 
particle is constant. 

• Most fluid problems are idealized as constant density problems. A notable exception is the 
high speed flow of gases. 

• A gas should be modeled as compressible when the Mach number is greater than 0.3. 

Viscosity Concepts 
• Viscosity fL is also called dynamic viscosity or absolute viscosity. 

• Viscosity is related to kinematic viscosity by v = fLip. Viscosity and kinematic are different 
properties. 

• The velocity profile is a plot or equation that shows how velocity varies with position. 

• The no-slip condition means that the velocity of fluid in contact with a solid surface will 
equal the velocity of the surface. 

• The shear force, F, is the net force due to shear stress. 

• Shear stress T is the tangential force per area at a point. 

• A Newtonian liquid is one in which a plot ofT versus dV!dy is a straight line. 

• A non-Newtonian liquid has a stress-strain relationship that is nonlinear. In general 
non-Newtonian liquids have more complex molecular structures than Newtonian 
fluids; examples of non-Newtonian liquids include paint, toothpaste, and molten 
plastics. 

• Equations developed for Newtonian fluids (i.e., many textbook equations) do not apply to 
non-Newtonian fluids. 
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The Viscosity Equation 

:he viscosity equation (Eq. 2.16) relates shear stress to velocity gradient. The equation is 

dV 
'T=j..L-

dy 

Terms in the viscosity equation are summarized in Table 2.1 (page 39). Problems that are solv­
able with the viscosity equation can be classified into two categories. 

Direct Calculations Problems. Problems in this category specify two of the three variables 
in the equation and ask for the third variable. See Example 2.1 on page 39. 

• Couette Flow Problems. Problems in this category involve a linear velocity profile in a 
small gap. See Example 2.2 on page 41. 

Miscellaneous Topics 

A liquid flowing in a system can boil when the pressure drops to the vapor pressure. TI1is 
boiling is typically detrimental to a design. 

• To document a fluid property, list the source, temperature, pressure, and main assumptions. 

Surface tension problems are usually solved by drawing an FBD and summing forces. 

• The formula for capillary rise of water in a glass tube is Mr = (4rr)/(-yd). 

Fluid Propertie~ 

Table 2.2 summarizes the most useful fluid properties. Columns 1 and 2 describe the property. 
Columns 3 and 4 describe how the property varies with temperature and pressure. Blue shad­
mg is used to distinguish between gases and liquids. For example, look in the row for viscosity. 
The viscosity of gases increases with a temperature rise, whereas the viscosity of liquids de­
.:reases with a temperature rise. The Notes column gives lips and lists the locations in this text 
.·here fluid properties can be found. 

TABLE 2.2 Summary of Fluid Properties 

Propert} 

~cnsity (p): Ratio of mass 
to volume at a point 

Units 
(~I) 

Temperatur~ Pressure Effects , 
Effects (wmmon trend~) 

' p,J, as Ti if pi as pi if gas is 
compressed. 

Notes 

• Air. Find p in Table F.4 or Table A.3. 

I gas is free to 
expand 

I 

'

•• Other Gases. Find pin Table A.2. 
Caution! Tables for gases are for p = 1 atm. For other 
pressures, find p using the ideal gas law. 

oecific Weight ( 'Y ): Ratio 
of weight to volume at a 
point 

----~- ---------
p~ as Tt for p of I iquids are • Water. Find p in Table F.S or Table A.S. 
liquids constant with • Note. For water, pi as Tt for temperatures from 0 to 

1 pressure I about 4°C. Maxin1t1m densitY of water is at T = 4°C. 
! I • Other Liquids. Find pin Table A.4. 

---+- --1 - i-
N 'Y,j, as Tt if same trends as • Use same tables as for density. 
m1 fluid is free to density • p and 'Y can be related using 'Y = pg. 

expand • Caution! Tables for gases are for p = 1 atm. For other 
pressures, find 'Y using the ideal gas law and 'Y = pg. 

pecific Gravity (S or SG): none 1 SG-L. as Tt SG of liquids are 1 • Find SG data in Table A.4. 
Ratio of (density of a liquid) constant with • SG is used for liquids, not commonly used for gases. 
to (density of water at 4°C) pressure • Density of water (at 4°C) is listed in Table F.6. 

(continued) 
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TABLE 2.2 Summary of Fluid Properties (Continued) 

Temperature 
Effects 

Viscosity (J.L): A property N · s fL t as Tt for J.L of gases is 
that characterizes resistance m2 gases. independent of 

pressure to shear stress and fluid 
friction 

Kinematic Vi\co~i I y { v ): A 
property that characterizes 
the mass and viscous 
properties of a fluid 

Surface Tension (rr): A 
property that characterizes 
the tendency of a liquid 
surface to behave as a 
stretched membrane 

Vapor Pressure Pv: The 
pressure at which a liquid 
will boil 

Bulk Modulus of Elasticity 
E.: A property that 
characterizes the 
compressibility of a fluid 

REFERENCES 

I 
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m2 

I J.Li as Tt for 
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liquids. 

.l 
vt as Tt for 
gases 

v!. as Tt for 
liquids. 
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fL of liquids is 
independent of 
pressure 

vt as pt for gases 
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~ ' of liq oid• ;, 
I independent of 

pressure 

N J <Ti as Tt for a of liquids is 
m' m2 liquids. independent of 

pressure 

Pa 

Pa 
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liquids 

not presented 
here 
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PROBLEMS 

Ms Problem available in WileyPLUS at instructor's discretion. 

Defining the System (§2.1) 

~~ A system is separated from its surrounding by a 

a. border 

b. boundary 

c. dashed line 

d. dividing surface 

~'l<lracterizing Weight and Mass (§2.2) 

~ How are density and specific weight related? 

1-3 ;(;Is Density is (select all that apply) 

a. weight/volume 

b. mass/volume 

c. volume/mass 

d. mass/weight 

~4 ;r;;s Which of these arc units of density? (select all that apply) 

a. kglm3 

b. mglcm3 

c. lbm/ft3 

d. slug/ft3 

!..5 Ms Specific gravity (select all that apply) 

a. can have units of N/m3 

b. is dimensionless 

c. increases with temperature 

d. decreases with temperature 

1.6 If a liquid has a specific gravity of 1.7, what is the density in 
.JSS per cubic feet? What is the specific weight in lbf per cubic feet? 

!. - What are SG, -y, and p for mercury? State your answers in SI 
..ruts and in traditional units. 

!.8 pas If a gas has -y = 15 N/m3, what is its density? State your 
.mswers in SI units and in traditional units. 

....,•k Modulus of Elasticity (§2.3) 

~9 r>"'l'lrs If you have a bulk modulus of elasticity that is a very 
...rge number, then a small change in pressure would cause 

a. a very large change in volume 

b. a very small change in volume 

~10 Ms Dimensions of the bulk modulus of elasticity are 

a. the same as the dimensions of pressure/density 

b. the same as the dimensions of pressure/volume 

c. the same as the dimensions of pressure 

!. 11 The bulk modulus of elasticity of ethyl alcohol is 
a6 X I 09 Pa. for water, it is 2. 15 X I 09 Pa. Which of 

'lese liquids is easier to compress? 
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--... 
db • Guided Online (GO) Problem, available in WileyPLUS at 

instructor's discretion. 

a. ethyl alcohol 

b. water 

2.12 PWs A pressure of2 X 106 N/m2 is applied to a mass of 
water that initially filled a 2000 cm3 volume. Estimate its volume 
after the pressure is applied. 

2.13 Pds Calculate the pressure increase that must be applied 
to water to reduce its volume by 2%. 

2.14 Pds An open vat in a food processing plant contains 400 L 
of water at 20°C and atmospheric pressure. If the water is heated 
to 80°C, what will be the percentage change in its volume? If the 
vat has a diameter of 3 m, how much will the water level rise due 
to this temperature increase? 

Finding Fluid Properties (§2.4) 

2.15 Where in this text can you find: 

a. density data for such liquids as oil and mercury? 

b. specific weight data for air (at standard atmospheric 
pressure) at different temperatures? 

c. specific gravity data for sea water and kerosene? 
--.. 

2.16 PLu"s Regarding water and seawater: 

a. Which is more dense, seawater or freshwater? 

b. Find (SI units) the density of seawater (1 0°C, 3.3% 
salinity). 

c. Find the same in traditional units. 

d . What pressure is specified for the values in (b) and (c)? 

2.17 P ~s If the density, p, of air (in an open system at atmospheric' 
pressure) increases by a factor of 1.4x due to a temperature change, 

a. specific weight increases by I .4x 

b. specific weight increases by 13.7x 

c. specific weight remains the same 

Describing Viscous Effects (§2.5) 

2.18 The following questions relate to viscosity. 

a. What are the primary dimensions of viscosity? What are 
five common units? 

b. What is the viscosity of SAE lOW-30 motor oil at II 5°F 
(in traditional units)? 

2.19 Pds Shear stress has dimensions of 

a. force/area 

b. dimensionless 

2.20 Ms The term dV!dy, the velocity gradient 

a. has dimensions of UT and represents shear strain 

b. has dimensions ofT 1 and represents the rate of shear 
strain 
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2.21 pl?iJ's For the velocity gradient dV/ dy 

a. the change in velocity dV is in the direction of flow 

b. the change in velocity dV is perpendicular to flow 

2.22 ~s The no-slip condition 

a. only applies to ideal flow 

b. only applies to rough surfaces 

c. means velocity, V, is zero at the wall 

d. means velocity, V, is the velocity of the wall -2.23 PLu"s Kinematic viscosity (select all that apply) 

a. is another name for absolute viscosity 

b. is viscosity/density 

c. is dimensionless because forces are canceled out 

d. has dimensions of L2/T 

e. is only used with compressible fluids 

2.24 What is the change in the viscosity and density of water 
between l0°C and 70°C? What is the change in the viscosity 
and density of air between l0°C and 70°C? Assume standard 
atmospheric pressure (p =- I 0 I kN/m2 absolute). 

2.25 p'Jfs Determine the change in the kinematic viscosity of air 
that is heated from 10°C to 70°C. Assume standard atmospheric 
pressure. 

2.26 Pds Find the dynamic and kinematic viscosities of 
kerosene, SAE I OW-30 motor oil, and water at a temperature 
of 38°C (l00°F). 

2.27 What is the ratio of the dynamic viscosity of air to that of 
water at standard pressure and a temperature of 20°C? What is 
the ratio of the kinematic viscosity of air to that of water for the 
same conditions? 

Applying the Viscosity Equation (§2.6) 

2.28 P-;:-u-S At a point in a flowing fluid, the shear stress is l X 10- 4 

psi, and the velocity gradient is l s-t. 

a. What is the viscosity in traditional units? 

b. Convert this viscosity to Sl units. 

c. Is this fluid more, or less, viscous than water? 

2.29 ~s SAE lOW-30 oil with viscosity 1 X I0- 4 lbf · slfi is used 
as a lubricant between two parts of a machine that slide past one 
another with a velocity difference of 6 ft/s. What spacing, in inches, 
is required if you don't want a shear stress of more than 2lbf/tr? 

2.30 The velocity distribution for water (20°C) near a wall is 
given by u = a(ylb)116

, where a = lO m/s, b = 2 mm, and y is the 
distance from the wall in mm. Determine the shear stress in the 
water at y = I mm. 

2.31 The velocity distribution for the flow of crude oil at 
l00°F ( f.L = 8 X I 0-; lbf · s/ ft 2

) between two walls is shown 
and is given by u = lOOy(O.l - y) ft/s, where y is measured in 
feet and the space between the walls is 0.1 ft. Plot the velocity 
distribution and determine the shear stress at the walls. 

-x 

PROm F.\1'\ 2.31. 2.32, 2.33 

2.32 P~S (part a only) A liquid flows between parallel 
boundaries as shown above. The velocity distribution near 
the lower wall is given in the following table: 

0.0 0.00 

1.0 1.00 

2.0 1.99 

3.0 2.98 

a. If the viscosity of the liquid is 10- 3 N · s/m2
, what is the 

maximum shear stress in the liquid? 

b. Where will the minimum shear stress occur? 
-. 

2.33 GO • Suppose that glycerin is flowing (T = 20°C) and that 
the pressure gradient dpldx is - 1.6 kN/m3

• What are the velocity 
and shear stress at a distance of 12 mm from the wall if the space 
B between the walls is 5.0 em? What are the shear stress and 
velocity at the wall? The velocity distribution for viscous flow 
between stationary plates is 

I dp 
u =---(By- y 2) 

2f.L dx 

2.34 P~S Two plates are separated by a l/8-in. space. The 
lower plate is stationary; the upper plate moves at a velocity of 
25 ft /s. Oil (SAE IOW-30, 150°F), which fills the space between 
the plates, has the same velocity as the plates at the surface of 
contact. The variation in velocity of the oil is linear. What is the 
shear stress in the oil? -2.35 P L u"s The sliding plate viscometer shown below is used to 
measure the viscosity of a fluid. The top plate is moving to the 
right with a constant velocity of lO m/s in response to a force 
of 3 N. The bottom plate is stationary. What is the viscosity of 
the fluid? Assume a linear velocity distribution. 

F 

_j_ 
lmmT 

PROBII:\1 2.35 



2.36 A laminar flow occurs between two horizontal parallel 
plates under a pressure gradient dplds (p decreases in the 
positives direction). The upper plate moves left (negative) at 
·elocity u,. The expression for local velocity u is given as 

1 dp y 
u = - - (Hy - y2

) + u,-
2f-L ds H 

a. ls the magnitude of the shear stress greater at the mov­
ing plate (y = H) or at the stationary plate (y = 0)? 

b. Derive an expression for they position of zero shear 
stress. 

c. Derive an expression for the plate speed u1 required to 
make the shear stress zero at y = 0. 

PROBLEM 2.36 

2.37 This problem involves a cylinder falling inside a pipe that is 
5lled with oil, as depicted in the figure. The small space between 
:he cylinder and the pipe is lubricated with an oil film that has 
-lSCosity IJ.. Derive a formula for the steady rate of descent of a 
~ylinder with weight w; diameter d, and length e sliding inside a 
.certical smooth pipe that has inside diameter D. Assume that the 
cYlinder is concentric with the pipe as it falls. Use the general 
"Ormula to find the rate of descent of a cylinder 100 mm in diameter 
that slides inside a 100.5 mm pipe. The cylinder is 200 mm long 
Uld weighs 15 N. The lubricant is SA.E 20W oil at 10°C. 

PROBl.r .. \ 1 2.37 

:!..38 ~ The device shown consists of a disk that is rotated by 
.. shaft. The disk is positioned very close to a solid boundary. 
.;.etween the disk and the boundary is viscous oil. 

a. If the disk is rotated at a rate of 1 rad/s, what will be 
the ratio of the shear stress in the oil at r = 2 em to the 
shear stress at r = 3 em ? 
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b. If the rate of rotation is 2 rad/s, what b the speed of the 
oil in contact with the disk at r = 3 em? 

'· If the oil viscosity is 0.01 N · s/m2 and the spacingy is 
2 mm, what is the shear stress for the conditions noted 
in part (b)? 

Orl v 

\ r-----'-+-1---"--, -~ 

PROBI.l.M 2.38 

2.39 Some instruments having angular motion are damped by 
means of a disk connected to the shaft. The disk, in turn, is 
immersed in a container of oil, as shown. Derive a formula for 
the damping torque as a function of the disk diameter D, spacing S, 
rate of rotation w, and oil viscosity IJ.. 

s Shan Cont.um:r 

}E~5~j_ 
t Oil s 

PROBLEM 2.39 

2.40 One type of viscometer involves the use of a rotating 
cylinder inside a fixed cylinder The gap between the cylinders 
must be very small to achieve a linear velocity distribution in the 
liquid. (Assume the max.imum spacing for proper operation is 
0.05 in.). Design a viscometer that will be used to measure the 
viscosity of motor oil from 50°f to 200°f. 

Oil 

Fixed cylinder 

PROBI.l:::-1 2..!0 

Characterizing Viscosity (§2.7) 

2.41 If temperature increases, does the viscosity of water 
increase or decrease? Why? If temperature increases, does the 
viscosity of air increase or decrease? Why? 
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2.42 Sutherland's equation (select all that apply): 

a. relates temperature and viscosity 

b. must be calculated using Kelvin 

c. requires usc of a single universal constant for all gases 

d. requires use of a different constant for each gas 

2.43 flVs When looking up values for density, absolute viscosity, 
and kinematic viscosity, which statement is true for both liquids 
and gases? 

a. all three of these properties vary with temperature 

b. all three of these properties vary with pressure 

c. all three of these properties vary with temperature and 
pressure 

2.44 Common Newtonian fluids are 

a. toothpaste, catsup, and paint 

b. water, oil, and mercury 

c. all of the above 

2.45 Which of these flows (deforms) with even a small shear 
stress applied? 

a. a Bingham plastic 

b. a Newtonian fluid 

2.46 Using Sutherland's equation and the ideal gas law, develop 
an expression for the kinematic viscosity ratio v/v0 in terms of 

pressures p and Po and temperatures T and T0, where the 
subscript 0 refers to a reference condition. 

2.47 Ms The dynamic viscosity of air at 15°C is 1.78 X 

10- 5 N · s/m2
. Using Sutherland's equation, find the viscosity 

at 100°C. 

2.48 The kinematic viscosity of methane at 15°C and 
atmospheric pressure is 1.59 X I o-s m 2/s. Using Sutherland's 
equation and the ideal gas law, find the kinematic viscosity at 
200°C and 2 atmospheres. 

2.49 lhe dynamic viscosity of nitrogen at 59°F is 3.59 X 
10- 7 lbf · s/ft2

. Using Sutherland's equation, find the dynamic 
viscosity at 200°F. 

2.50 i((!s The kinematic viscosity of helium at 59°F and 
1 atmosphere is 1.22 X 10- 3 frZ/s. Using Sutherland's equation 
and the ideal gas law, find the kinematic v iscosity at 30°1:' and a 
pressure of 1.5 atmospheres. 

2.51 Ammonia is very volatile, so it may be either a gas or a 

liquid at room temperature. When it is a gas, its absolute 
viscosity at 68°F is 2.07 X I0- 7 1bf · s/ft2 and at 392°F is 3.46 X 

l0- 7 lbf · s/ft2• Using these two data points, find Sutherland's 
constant for ammonia. 

2.52 r>Ns The viscosity of SAE 10W-30 motor oil at 38°C 

is 0.067 N · s/m2 and at 99°C is 0.011 N · s/m 2
• Using Eq. (2.20) 

(p. 42, §2.7) for interpolation, find the viscosity at 60°C. Compare 
this value with that obtained by linear interpolation. 

2.53 The viscosity of grade 100 aviation oil at 100°F is 4.43 X 

10 3 lbf · s/ft2 and at 210°F is 3.9 X 10 '1 lbf · s/ft2
• Using 

Eq. (2.20) (p. 42, §2.7), find the viscosity at 150°F. 

2.54 Find the kinematic and dynan1ic viscosities of air and water 
at a temperature of 40°C (I 04°F) and an absolute pressure of 
170 kPa (25 psia). 

2.55 t>Ws Consider the ratio !l- 10oi~L5o. where 11- is the 
viscosity of oxygen and the subscripts I 00 and 50 are the 
temperatures of the oxygen in degrees Fahrenheit. Does this 
ratio have a value (a) less than 1, (b) equal to 1, or (c) greater 
than I? 

Characterizing Surface Tension (§2.8) 

2.56 P'ru•s Surface tension: (select all that apply) 

a. only occurs at an interface, or surface 

b. has dimensions of energy/area 

c. has dimensions of force/area 

d. has dimensions of force/ length 

e. depends on adhesion and cohesion 

f. varies as a function of temperature 

2.57 ,f(\!5 Which of the following is the formula for the gage 
pressure within a very small spherical droplet of water: 

(a) p = u /d, (b) p = 4u/d, or (c) p = 8u/d? 

2.58 A spherical soap bubble has an inside radius R, a film 
thickness t, and a surface tension IT. Derive a formula for 
the pressure within the bubble relative to the outside 
atmospheric pressure. What is the pressure difference for a 
bubble with a 4 mm radius? Assume u is the same as for 
pure water. 

2.59 ,f(U-5 A water bug is suspended on the surface of a pond by 
surface tension (water does not wet the legs). The bug has six 
legs, and each leg is in contact with the water over a length of 
5 mm. What is the maximum mass (in grams) of the bug if it is 
to avoid sinking? 

PRORI.T'Iv! 2.59 

2.60 A water column in a glass tube is used to measure the 
pressure in a pipe. The tube is 1/4 in. (6.35 mm) in diameter. 
How much of the water column is due to surface-tension effects? 
What would be the surface-tension effects if the tube were 1/8 in. 
(3.2 mm) or 1/32 in. (0.8 mm) in diameter? 



2.61 Calculate the maximum capillary rise of water between two 
certical glass plates spaced 1 mm apart. 

PROBLE~I2.61 

:!.62 What is the pressure within a 1 mm spherical droplet of 
a ter relative to the atmospheric pressure outside? 

2.63 By measuring the capillary rise in a tube, one can calculate 
;he surface tension. The surface tension of water varies linearly 

i th temperature from 0.0756 N/m at 0°C to 0.0589 N/ m at 
l00°C. Size a tube (specify diameter and length) that uses 
capillary rise of water to measure temperature in the range from 
_ ·c to I 00°C. Is this design for a thermometer a good idea? 

2.64 ~ Capillary rise can be used to describe how far water 
,[( rise above a water table because the interconnected pores in 

Jte soil act like capillary tubes. lhis means that deep-rooted 
:-!ants in the desert need only grow to the top of the "capillary 
Tinge" in order to get water; they do not have to extend all the 
"llY down to the water table. 

a. Assuming that interconnected pores can be represented 
as a continuous capillary tube, how high is the capillary 
rise in a soil consisting of a silty soil, with pore diameter 
of 10 J.UU? 

b. Is the capillary rise higher in a soil with fine sand (pore 
diam. approx. 0.1 mm), or in fine gravel (pore diam. 
approx. 3 mm)? 

c. Root cells extract water from soil using capillarity. For 
root cells to extract water from the capillary zone, do the 
pores in a root need to be smaller than, or greater than, 
the pores in the soil? Ignore osmotic eflects. 

1-65 Consider a soap bubble 2 mm in diameter and a droplet of 
..-ater, also 2 mm in diameter, that are falling in air. If the value of 
;.'le surface tension for the film of the soap bubble is assumed to 
~ the same as that for water, which has the greater pressure 
"lside it? (a) the bubble, (b) the droplet, (c) neither-the pressure 
• the san1e for both. 

.2.66 A drop of water at 20°C is forming under a solid surface. 
:he configuration just before separating and falling as a drop is 

own in the figure. Assume the forming drop has the volume of 
. hemisphere. What is the diameter of the hemisphere just before 
;epa rating? 
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PROBLEM 2.66 

2.67 Pllrs The surface tension of a liquid is being measured with 
a ring as shown. The ring has an outside diameter of 10 em and 
an inside diameter of9.5 em. The mass of the ring is 10 g. The 
force required to pull the riJ1g from the liquid is the weight 
corresponding to a mass of 16 g. What is the surface tension of 
the liquid (in N/ m)? 

PROBLEM 2.67 

Vapor Pressure (§2.9) 

2.68 If liquid water at 30°C is flowing iJ1 a pipe and the pressure 
drops to the vapor pressure, what happens in the water? 

a. the water begins condensing on the walls of the pipe 

b. the water boils 

c. the water flashes to vapor 

2.69 Ms How does vapor pressure change with increasing 
temperature? 

a. it increases 

b. it decreases 

c. it stays the same 

2.70 PlJs Water is at 20°C, and the pressure is lowered until 
vapor bubbles are noticed to be forming. What must the magnitude 
of the pressure be? 

2.71 A student iJ1 the laboratory plans to exert a vacuum in the 
head space above a surface of water in a closed tank. She plans 
for the absolute pressure in the tank to be 10,400 Pa. The 
temperature in the lab is 20°C. Will water bubble into the vapor 
phase under these circumstances? 

2.72 The vapor pressure of water at I 00°C is I 0 I kN/m 2 because 
water boils under these conditions. The vapor pressure of water 
decreases approximately linearly with decreasing temperature at 
a rate of 3.1 kN!m2rC. Calculate the boiling temperature of 
water at an altitude of 3000 m, where the atmospheric pressure is 
69 kN/m 2 absolute. 
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FIGURE 3.1 

The first man-made structure to exceed the masonry mass of 
the Great Pyramid of Giza was the Hoover Dam. Design 
of dams rnvolves calculations of hydrostatic forces. (Photo 
courtesy of U.S. Bureau of Reclamation, Lower Colorado 

Region) 
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··J Chapter Road Map J 

This chapter introduces concepts related to pressure 
and describes how to calculate forces associated with 
distributions of pressure. The emphasis is on fluids in 
hydrostatic equilibrium. 

·1 Learning Objectives I 

STUDENTS WILL BE ABLE TO 

• Define hydrostatic equilibrium. Define pressure. (§3.1) 

• Convert between gage, absolute, and vacuum pressure. (§3.11 

• Convert pressure units.1§3.1) 

• List the steps Ia derive the hydrostatic differential equation. 
(§3.2) 

• Describe the physics of the hydrostatics equation and the 
meaning of the variables that appear in the equation. Apply 
the hydrostatic equation. 1§3 .2) 

• Explain how these instruments work: mercury barometer, 
piezometer, manometer, and Bourdon tube gage . (§3.3) 

• Apply the manometer equations. (§3.3) 

• Explain center-of-pressure and hydrostatically equivalent force. 
Describe how pressure is related to pressure force. (§3.4) 

• Apply the panel equations to predict forces and moments. 
(§3.4) 

• Solve problems that involve curved surfaces. (§3.5) 

• Describe the physics of the buoyancy equation and the 
meaning of the variables that appear in the equation. Apply 
the buoyancy equation. (§3.6) 

• Determine if floating objects are stable or unstable. (§3.7) 
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As shown in Fig. 3.2, the hydrostatic condition involves equilibrium of a fluid particle. 
Hydrostatic equilibrium means that each fluid particle is in force equilibrium with the net 
force due to pressure balancing the weight of the fluid particle. Equations in this chapter are 
based on an assumption of hydrostatic equilibrium. 

(a) 

3.1 Describing Pressure 

ywe1gh1 err- Fluid par1icle 

f.r-- Net force r of pressure 

(b) 

Because engineers use pressure in the solution of nearly all fluid mechanics problems, this 
section introduces fundamental ideas about pressure. 

Pressure 

Pressure is the ratio of normal force to area at a point 

_ magnitude of normal force I . lilFnormarl 
P - . atapninl = Inn 

umt area d uo to a fluid aA--+O !lA 
(3.1) 

Pressure is defined at a point because pressure typically varies with each (x, y, z) location in a 
--lowing fluid. 

Pressure is a scalar that produces a resultant force by its action on an area. The resultant 
orce is normal to the area and acts in a direction toward the surface (compressive). 

Pressure is caused by the molecules of the fluid interacting with the surface. For example, 
·hen a soccer ball is inflated, the internal pressure on the skin of the ball is caused by air mol­

ecules striking the wall. 
Units of pressure can be organized into three categories: 

Force per area. The SI unit is the newtons per square meter or pascals (Pa). 1he traditional 
units include psi, which is pounds-force per square inch, and psf, which is pounds-force 

per square foot. 

Liquid column height. Sometimes pressure units give an equivalent height of a column of 
liquid. For example, pressure in a balloon will push a water colLUnn upward about 8 inches 
as shown in Fig. 3.3. Engineers state that the pressure in the balloon is 8 inches of water: p = 
8 in-H20. When pressure is given in units of"height of a fluid column;' the pressure value can 
be directly converted to other units using Table F.l. For example, the pressure in the balloon is 

p = (8 in-H20)(248.8 Palin-H20) = 1.99 kPa 

Atmospheres. Sometimes pressure units are stated in terms of atmopheres where 1.0 atm is 
the air pressure at sea level at standard conditions. Another common unit is the bar, which 
lS very nearly equal to 1.0 atm. (1.0 bar = 105 kPa) 

FIGURE 3.2 

The hydrostatic condition. 
(a) A fluid particle in a 
body of fluid. 
(b) Forces acting on the 
fluid particle 

FIGURE 3.3 

Pressure in a balloon 
causing a column of water 
to rise 8 mches. 

}•= 8 inches 
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FIGURE 3.4 

Example of pressure 
relations. 

Standard atmospheric pressure in various units is 

l.O atm = 101.3 kPa = 14.70 psi = 33.9 ft-H20 = 760 mm-Hg = 29.92 in-Hg = 1.013 bar 

Absolute Pressure, Gage Pressure, and Vacuum Pressure 

Absolute pressure is referenced to regions such as outer space, where the pressure is essentially 
zero because the region is devoid of gas. The pressure in a perfect vacuum is called absolute 
zero, and pressure measured relative to this zero pressure is termed absolute pressure. 

When pressure is measured relative to prevailing local atmospheric pressure, the pressure 
value is called gage pres~urc. For example, when a tire pressure gage gives a value of 300 kPa 
(44 psi), this means that the absolute pressure in the tire is 300 kPa greater than local atmo­
spheric pressure. To convert gage pressure to absolute pressure, add the local atmospheric 
pressure. For example, a gage pressure of 50 kPa recorded in a location where the atmospheric 
pressure is 100 kPa is expressed as either 

p = 50 kPa gage or p = ISO kPa abs (3.2) 

In SI units, gage and absolute pressures are identified after the unit as shown in Eq. (3.2). In 
tradtional units, gage pressure is identifed by adding the letter g to the unit abbreviation. For 
example, a gage pressure of I 0 pounds per square foot is designated as 10 psfg. Similarly, the 
letter a is used to denote absolute pressure. For example, an absolute pressure of 20 pounds 
force per square inch is designated as 20 psia. 

When pressure is less than atmospheric, the pressure can be described using vacuum pres­
sure. Vacuum pressure is defined as the difference between atmospheric pressure and actual 
pressure. Vacuum pressure is a positive number and equals the absolute value of gage pressure 
(which will be negative). For example, if a gage connected to a tank indicates a vacuum pres­
sure of 31.0 kPa, this can also be stated as 70.0 kPa absolute, or - 31.0 k.Pa gage. 

Figure 3.4 provides a visual description of the three pressure scales. Notice that Pn = 
7.45 psia is equivalent to - 7.25 psig and + 7.25 psi vacuum. Notice that PA = of 301 kPa abs is 
equivalent to 200 k.Pa gage. Gage, absolute, and vacuum pressure can be related using equa­
tions labeled as the "pressure equations." 

P sage = Pabs - Patm 

P vacuum = Palm - Pabs 

P va<uum = - P gage 

- ....-------,.------------ p=pA 

PA = 30 1 kPa abs 

(PA = 43.6 psia) 

p A= 200 kPa gage 

( PA = 28.9 psi g) 

Local atmospheric pressure (gage ref.) p = 0 Pa gage = I 0 1 kPa abs 
--t----,-__.;. __ ....;_;_ __ (p = O psig = 14.7 psia) 

p8 = - 50 kPa gage 

I 
( p8 =-7.25 psig or 7.25 ps i vacuum) 

_;tl--------p =ps 
Poun = 101 kPa abs 

<Pa~m= 14.7 ps ta) 
p8 =5 1.0 kPa abs 

(p8 =7.45 ps ia) 

Absolute zero ( 0b~iutc) 

-l-..-----1----l-..L------- p = 0 Pa abs 
(p = 0 psta) 

(3.3a) 

(3.3b) 

(3.3c) 
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EXAMPLE. Convert 5 psi vacuum to absolute pressure in SI units. 

Solution. First, convert vacuum pressure to absolute pressure. 

Pabs = Potm - Pvacuum = 14.7 psi - 5 psi = 9.7 psia. 

Second, convert units by applying a conversion ratio from Table F.l. 

(
101.3 kPa) p = (9.7 psi) . = 66,900 Pa absolute. 
14.7 pSI 

Review. lt is good practice, when writing pressure units, to specify whether the pressure is 
absolute, gage, or vacuum. 

EXAMPLE. Suppose the pressure in a car tire is specified as 3 bar. Find the absolute pressure 
in units of kPa. 

Solution. Recognize that tire pressure is commonly specified in gage pressure. Thus, convert 
the gage pressure to absolute pressure. 

( 101.3 kPa} 
Pau> = Parm + Ps•s• = (I 01.3 kPa) + (3 bar) ( ) = 40 I kPa absolute 

1.013 bar 

Hydraulic Machines 
A hydraulic machine uses a fluid to transmit forces or energy to assist in the performance of a 
::mman task. An example of a hydraulic machine is a hydraulic car jack in which a user can 
upply a small force to a handle and lift an automobile. Other examples of hydraulic machines 
'ldude braking systems in cars, forklift trucks, power steering systems in cars, and airplane 

control systems (3). 
1he hydraulic machine provides a mechanical advantage (Fig. 3.5). Mechanical advantage 

ll defined as the ratio of output force to input force: 

(output force) 
(mechanical advantage) = (' " ) 

mput 10rce 
(3.4) 

.[echanical advantage of a lever (Fig. 3.5) is found by summing moments about the fulcrum to 
;xve F1 L1 = F2L2 , where L denotes the length of the lever arm. 

(output force) F2 L1 
(mechanical advantage; lever) = (' • ) = - = -

mput 10rce F1 L2 
(3.5) 

~o find mechanical advantage of the hydraulic machine, apply force equilibrium to each piston 
Fig. 3.5) to give F1 = p 1A 1 and F2 = p2A2 , where pis pressure in the cylinder and A is face area 
f the piston. Next, let p1 = p 2 and solve for the mechanical advantage 

(output force) F2 A 2 Di 
(mechanical advantage; hydraulic machine)= (' " ) = - = - = - 2 mput 10rce F1 A 1 D1 

(3.6) 

he hydraulic machine is often used to illustrate Pascal's principle. This principle states that 
nen there is an increase in pressure at any point in a confined fluid, there is an equal increase 
every other point in the container. This principle is evident when a balloon is inflated 

ecause the balloon expands evenly in all directions. The principle is also evident in the 
·draulic machine (Fig. 3.6). 

FIGURE 3.5 

Both the lever and 
hydraulic machine provide 
a mechanical advantage. 

Piston 

Hydraulic 
fluid 
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FIGURE 3 .6 

The figures show how the 
hydraulic machine con be 
used to illustrate Pascal's 
principle. 

Pascal's principle. An applied 
force cr~ates a pressure change 
that is transmined to every 
point in the fl uid and to the 
walls of the container 

ei'CHECKPOINT PROBLEM 3.1 

What is the mechanical advantage of this hydraulic machine? 
(neglect pressure changes due to elevation changes) 

W = 2 tons, S = 0.9 

h = 3 inch, D2 = 6 inch, D1 = 1 inch Piston: D.ameter = /J1 

a. 2:1 

b. 4:1 

c. 6:1 

d. 16:1 

e. 36:1 

EXAMPLE 3.1 

Applying Force Equilibrium to a Hydraulic Jack 

Problem Statement 

A hydraulic jack has the dimensions shown. Tf one exerts a 
force F of 100 N on the handle of the jack, what load, F2, can 

the jack support? Neglect lifter weight 

Check valve 

Piston: Diameter= D, 

Define the Situation 

A force ofF = 100 N is applied to the handle of a jack. 

Assumption: Weight of the lifter (see sketch) is negligible. 

State the Goal 

F2(N) .. Load that the jack can lift 

Gtncratc Ideas and Make a Plan 

Because the goal is F2, apply force equilibrium to the lifter. 
Then, analyze the small piston and the handle. The plan is 

1. Calculate force acting on the small piston by applying 
moment equilibrium. 

2. Calculate pressure p1 in the hydraulic fluid by applying 

force equilibrium. 

3. Calculate the load F2 by applying force equilibrium. 

Take _\ction (Execute the Plan) 

I. Moment equilibrium (handle) 

LMr= 0 

(0.33 m) X (100 N) - (0.03 m)F1 = 0 

0.33m X lOON OON F = =11 1 0.03m 
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2. Force equilibrium (small piston) 
Review the Results and the Process 

Thus 

L Fsm:illpioton = PIAl - F, = 0 

p1A 1 = F1 = 1100 N 
1. Discussion. The jack in this example, which combines 

a lever and a hydraulic machine, provides an output 
force of 12,200 N from an input force of 100 N. 

F, 1100 N 
P1 = - = -- = 6.22 X 106 N/m2 

Thus, this jack provides a mechanical advantage of 
122 to 1. 

AI -rrd2/4 

3. Force equilibrium (lifter) 

Note that p1 = Pz because they are at the same elevation 
(this fact will be established in the next section). 

2. Knowledge. Hydraulic machines are analyzed by applying 
force and moment equilibriwn. The force of pressure is 
typical given by F = pA. 

_LFliner = Fz- P1Az = 0 

F2 = p1A2 = (6.22 X IOfi:z)(~ X (0.05 m?) = ~] 

3.2 Calculating Pressure Changes 
Associated with Elevation Changes 

Pressure changes when elevation changes. For example, as a submarine dives to deeper depth, 
,-ater pressure increases. Conversely, as an airplane gains elevation, air pressure decreases. 

Because engineers predict pressure changes associated with elevation change, this section in­
troduces the relevant equations. 

neory: The Hydrostatic Differential Equation 

\ll equations in fluid statics are based on the hydrostatic differential equation, which is derived 
;.n this subsection. To begin the derivation, visualize any region of static fluid (e.g., water 
:>ehind a dam), isolate a cylindrical body, and then sketch a free-body diagram (FBD) as shown 
;.n Fig. 3.7. Notice that the cylindrical body is oriented so that its longitudinal axis is parallel to 
m arbitrary e direction. The body is D.e long, D.A in cross-sectional area, and inclined at an 
mgle a with the horizontal. Apply force equilibrium in the e direction: 

pD.A- (p + D.p)D.A - ')'tlAD. esina. = o 

· unplify and divide by the volume of the body D.f D.A to give 

D.p 

D.e 
- ')'sina 

FIGURE 3.7 

65 

(p + t.p)t.A 

The system used to derive 
the hydrostatic differential 
equation. 

pi'>.A 
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From Fig. 3.7, the sine of the angle is given by 

. ~z 
Sill a = ~f 

Combining the previous two equations and letting ~z approach zero gives 

~p 
lim - = -"'{ 

6 z--+O ~z 

The final result is 

dp - = - "'{ 
dz 

(hydrostatic differential equation) !3.n 

Equation (3.7) is valid in a body of fluid when the force balance shown in Fig. 3.2 is satisfied. 
Equation (3.7) means that changes in pressure correspond to changes in elevation. If one 

travels upward in the fluid (positive z direction), the pressure decreases; if one goes downward 
(negative z), the pressure increases; if one moves along a horizontal plane, the pressure remains 
constant. Of course, these pressure variations are exactly what a diver experiences when as­
cending or descending in a lake or pool. 

Derivation of the Hydrostatic Equation 

This subsection shows how to derive the hydrostatic equation, which is used to calculate pressure 
variations in a fluid with constant density. To begin, assume that specific weight "'{ is constant and 
integrate Eq. (3.7) to give 

p + -yz = Pz = constant (3.8) 

where the term z is the elevation (vertical distance) above a fixed horizontal reference plane 
called a datum, and Pz is piezometric pressure. Dividing Eq. (3.8) by"'{ gives 

~z = (~ + z) = h =constant (3.9) 

where h is the piezometric head. Because h is constant Eq. (3.9) can be written as: 

(3.10a) 

where the subscripts 1 and 2 identify any two points in a static fluid of constant density. Mul­
tiplying Eq. (3.10a) by"'{ gives 

PI + "'fZI = P2 + "'fZ2 

In Eq. (3.10b),letting ~p = p2 - PI and letting ~z = z2 - zi gives 

~p = -"'{~Z 

(3.10b) 

(3.10c) 

The hydrostatic equation is given by either Eq. (3.10a), (3.10b), or (3.10c). These three 
equations are equivalent because any one of the equations can be used to derive the other two. 
The hydrostatic equation is valid for any constant density tluid in hydrostatic equilibrium. 

Notice that the hydrostatic equation involves 

piezometric head = h = ( ~ + z) (3.11) 

piezometric pressure = Pz = (p + "'fZ) (3.12) 
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To calculate piezometric head or piezometric pressure, an engineer identifies a specific loca­
tion in a body of fluid and then uses the value of pressure and elevation at that location. Piezo­
netric pressure and head are related by 

FIGURE 3.8 

Oil floating on woler. 

Pz = h-y (3.13) 

?Jezometric head, h, a property that is widely used in fluid mechanics, characterizes hydrostatic 
equilibrium. When hydrostatic equilibrium prevails in a body of fluid of constant density, then h 
,iJJ be constant at all locations. For example, Fig. 3.8 shows a container with oil floating on water. 

Because piewmetric head is constant in the water, ha = hb = he Similarly the piewmetric head is 
constant in the oil: hd = he = hr Notice that piezometric head is not constant when density changes. 
For example, he ¢ h,1 because points c and dare in different fluids with different values of density. • 

® • 
-.I CHECKPOINT PROBLEM 3.2 

0 

In the glass of water shown, which location has the highest value of piezeometric head? Which loca­
tion has the highest value of the piezometric pressure? 

a. A 

b. B 

c.C 

d. None of the above rr
~ 

B 

Hydrostatic Equation: Working Equations and Examples 

The hydrostatic equation is summarized in Table 3.1. 

TABLE 3 . 1 Summary of the Hydrostatic Equation 

a me and J)escription 

Head Form: 
Physics: (pressure head + elevation head 
at point 1) = (pressure head +elevation 
bead at point 2). 

Another way to state the physics: The 
piezometric head in a static fluid with 
uniform density is constant at every 
point. 

Pressure Change (!::.p) Form: 
Physics: For an elevation change of l::.z, 
:he pressure in a static fluid with 
ani form density will change by -yl::.z. 

muation 

Pt Pz - + Zt =- + Zz 
'Y 'Y 

l::.p = --yl::.z = - pgl::.z 

Example 3.2 shows the process for applying the hydrostatic equation. 

(3.10) 

Tenns 

p = pressure (N/m2) 

(usc absolute or gage pressure; not 
vacuum pressure) 
(ply is also called pressure head) 

z = elevation (m) 
(sketch a datum and measure z from 
this datum) 
(z is also called elevation head) 

'Y = specific weight (N/m3
) 

I pl-y + z = piezometric head (m) 
---+--

(3.10) l::.p = change in pressure between 
points 1 & 2 (Pa) 

l::.z = change in elevation between 
points 1 & 2 (m) 

p = density (kglm3
) 

g = gravitational constant (9.81 m/s2
) 
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EXAMPLE 3.2 

Applying the Hydrostatic Equation to Find Pressure in a Tank 

Problem Statement 

What is the water pressure at a depth of 3S ft in the tank shown? 

CD I u 

r 

...,.,.. Elevation =250 ft 

35ft 

l (j) 

Water 
Tz 50°F 

.__ Elevation = 200 tl 

Define the Situation 

Water is contained in a tame that is SO ft deep. 

Properties. Water (SO °F, I atm, Table A.S): -y = 62.4lbf/ rtl. 

State the Goal 

p2 (psig) .. Water pressure at point 2. 

Generate Ideas and Make a Plan 

Apply the idea that piezometric head is constant. Steps: 

I. Equate piezometric head at elevation I with piezometric 
head at elevation 2 (i.e., apply Eq. 3.1 Oa). 

2. Analyze each term in Eq. (3.10a). 

3. Solve for the pressure at elevation 2. 

Take Action (Execute the Plan) 

I. Hydrostatic equation (Eq. 3.10a) 

Pt P2 - + Zt = - + z2 
"Y "Y 

2. Term-by-term analysis of Eq. (3.10a) yields: 

• Pt = Parm = 0 psig 

• z, = 2SO ft 

• z2 = 21S ft 

3. Combine steps 1 and 2; solve for p2 

Pt P2 - + z1 = - + z2 
"Y "Y 

0 + 2SO ft = p2 ttl + 215ft 
62.4lbf/ 

p2 = 2180 psfg = 11S.2 psig l 

Review the Solution and the Process 

I. Validation. The calculated pressure change (1S psig) is 
slightly greater than I atm (14.7 psi). Because one 
atmosphere corresponds to a water column of 33.9 ft and 
this problem involves 3S ft of water column, the solution 
appears correct. 

2. Skill. This example shows how to write down a governing 
equation and then analyze each term. 1his skill is called 
term-by-term analysis. 

3. Knowledge. The gage pressure at the free surface of a liquid in 
contact with the atmosphere is zero (p1 = 0 in this example). 

4. Skill. Label a pressure as absolute or gage or vacuum. For this 
example, the pressure unit (psi g) denotes a gage pressure. 

S. Knowledge. The hydrostatic equation is valid when density 
is constant. This condition is met on this problem. 

Example 3.3 shows how to find pressure by applying the idea of'constant pierometric head" 
to a problem involving several fluids. Notice the continuity of pressure across a planar interface. 

EXAMPLE 3.3 

Applying the Hydrostatic Equation to Oil and Water in 
a Tank 

Problem Statement 

Oil with a specific gravity of 0.80 forms a layer 0.90 m deep in 
an open tank that is otherwise filled with water (l0°C}. The 
total depth of water and oil is 3 m. What is the gage pressure at 
the bottom of the tank? 

Problem Definition 

Oil and water are contained in a tank. 

1 
0.90m 

i 
2. 10m 

'-------'L-J J 
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Water (10°C.1 atm, Table A.S) 'Ywat« = 9810 N/m3
. 

Oil. "'foil = S"'fwatcr,4'C = 0.8(9810 N/m3
) = 7850 N/m3

. 

State the Goal 

p3 (kPa gage) .. pressure at bottom of the tank 

enerate Ideas and Make a Plan 

Because the goal is p3, apply the hydrostatic equation to the 
water. Then, analyze the oil. The plan steps are 

1. Find p2 by applying the hydrostatic equation (3. I Oa). 

2. Equate pressures across the oil-water interface. 

3. Find p3 by applying tl1e hydrostatic equation given in 
Eq. (3.10a). 

Solution 

1. Hydrostatic equation (oil) 

PI P2 - + Z1 = - + Zz 
l'oil 'Yml 

0 Pa P2 - + 3 m = 
3 

+ 2.1 m 
l'oH 0.8 X 9810 N/m 

p2 = 7.063 kPa 

Pressure Variation in the Atmosphere 

2. Oil-water interface 

Pzluil = P2lw.rcr = 7.063kPa 

3. Hydrostatic equation (water) 

P2 PJ -- + Zz = -- + z3 
'Ywatf.!r 'Ywatcr 

7.063 X 103 Pa PJ 
----~ + 2.1 m = + 0 m 

9810 N/m3 9810 N/m3 

[?3 = 27.7 kPa ga;) 
Review 

Validation: Because oil is less dense than water, the answer 
should be slightly smaller than the pressure corresponding 
to a water column of 3 m. From Table F. I, a water column 
of 10m = 1 atm. Thus, a 3 m water column should produce 
a pressure of about 0.3 atm = 30 kPa. The calculated value 
appears correct. 

This subsection describes how to calculate pressure, density and temperature in the atmo­
·phere for applications such as modeling of atmospheric dynamics and the design of gliders, 
airplanes, balloons, and rockets. 

Equations for pressure variation in the earth's atmosphere are derived by integrating the 
wdrostatic di.fferential equation (3.7). To begin the derivation, write the ideal gas law (2.5): 

iultiply by g: 

p 
p = RT (3.14) 

(3.15) 

Equation (3. J 5) requires temperature-versus-elevation data for the atmosphere. It is com­
'DOn practice to use the U.S. Standard Atmosphere ( 1 ). The U.S. Standard Atmosphere defines 
-alues for atmospheric temperature, density, and pressure over a wide range of altitudes. 1be 
"rst model was published in 1958; this was updated in 1962, 1966, and 1976. The U.S. Standard 
.\J.mosphere gives average conditions over the United States at 45° N latitude in July. 

The U.S. Standard Atmosphere also gives average conditions at sea level. The sea level 
.:mperature is l5°C (59°F), the pressure is 101.33 kPa abs (14.696 psia), and the density is 
.225 kglm3 (0.002377 slugs/ft3). 

Temperature data for the U.S. Standard Atmosphere are given in Fig. 3.9 for the lower 
30 km of the atmosphere. The atmosphere is about 1000 km thick and is divided into five 
3Yers, so Fig. 3.9 only gives data near the earth's surface. In the troposphere, defined as the 



70 CHAPTER 3 • FLUID STATICS 

FIGURE 3.9 

Temperature variation 
with altitude for the U.S. 
standard atmosphere in 
July 11 ). 

30 

25 

20 
E 
-"' 

" -o 
Stratosphere 

~ 15 
< 

10 
Data Troposphere 

dT/dz = -5.87 Klkm 

o~~~~~~~~~~~~~~~~~ 

....so -60 -40 20 0 20 40 

Temperature, oc 

layer between sea level and 13.7 km (45,000 ft), the temperature decreases nearly linearly with 
increasing elevation at a lapse rate of 5.87 K/km. The stratosphere is the layer that begins at the 
top of the troposphere and extends up to about 50 km. In the lower regions of the stratosphere, 
the temperature is constant at -57.SOC, to an altitude of 16.8 km {55,000 ft), and then the 
temperature increases monotonically to - 38.5°C at 30.5 km (I 00,000 ft). 

Pressure Variation in the Troposphere 

Let the temperature T be given by 

T = T0 - a(z - Zo) (3.16) 

Tn this equation T0 is the temperature at a reference level where the pressure is known, and a is 
the lapse rate. Combine Eq. (3.15) with the hydrostatic difte rential equation (3.7) to give 

dp pg 
- =--
dz RT 

Substituting Eq. (3.16) into Eq. (3.17) gives 

dp pg 

dz R[T0 - a(z- Zo)] 

Separate the variables and integrate to obtain 

l!._ = [To - a(z - z0) ]glaR 
Po To 

Thus, the atmospheric pressure variation in the troposphere is 

[
To - a(z - z0) ]glnR 

P = Po 
To 

(3.17) 

(3.18) 

Example 3.7 shows how to apply Eq. (3.18) to find pressure at a specified elevation in the 
troposphere. 
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Pressure Variation in the Lower Stratosphere 

In the lower part of the stratosphere (13.7 to 16.8 km above the earth's surface as shown in Fig. 3.9), 
the temperature is approximately constant. In this region, integration of Eq. (3.17) gives 

zg 
Inp = RT + C 

At z = z0, p = p0, so the preceding equation reduces to 

}!__ = e-<z-z.)g/RT 

Po 

so the atmospheric pressure variation in the stratosphere takes the form 

p = Poe-(z-:to)gtRT (3.19) 

where p0 is pressure at the interface between the troposphere and stratosphere, z0 is the eleva­
tion of the interface, and T is the temperature of the stratosphere. Example 3.5 shows how to 
apply Eq. (3.19) to find pressure at a specified elevation in the troposphere. 

EXAMPLE 3.4 

Predicting Pressure in the Troposphere 

Problem Statement 

lf the sea level pressure and temperature are 101.3 kPa and 
23°C, what is the pressure at an elevation of 2000 m, assuming 
that standard atmospheric conditions prevail? 

Situation 

Standard atmospheric conditions prevail at an elevation of 
2000 m. 

Goal 

p(kPa absolute) ~ atmospheric pressure at z = 2000 m 

Plan 

Calculate pressure using Eq. (3.18). 

Action 

[
To - a(z - Zo) ]gla.R 

P = Po -- -
Tn 

where Po= 101,300 N/m2
, T0 = 273 + 23 = 296 K, a = 5.87 X 

10 3 K/m, z - z0 = 2000 m, and gla.R = 5.823. Then 

(
296 - 5.87 X 10- 3 X 2000)5·823 

p = I01.3 __ ._ 296 

= 180.0 kPa absolute I 

I EXAMPLE 3.5 Plan 

Calculating Pressure in the Lower Stratosphere 

Problem Statement 

lf the pressure and temperature are 2.31 psia (p = 15.9 kPa 
absolute) and -7l.5°F (-57 .SOC) at an elevation of 45,000 ft 
13.72 km), what is the pressure at 55,000 ft (16.77 km), 

assuming isothermal conditions over this range of elevation? 

Situation 

Standard atmospheric conditions prevail at an elevation of 
55,000 ft (16.77 km). 

Goal 

p .. Atmospheric pressure (psia and kPa absolute) at an 
elevation of 55,000 ft (16.77 km) 

Calculate pressure using Eq. (3.19). 

Action 

For isothermal conditions, 

T = - 71.5 + 460 = 388.5°R 

p = p
0
e-<z-..,)g!R'I' = 2.31e-(lo,oooxn2)/(1716X388.5) 

= 2.3le-"'" 

Therefore the pressure at 55,000 ft is 

IP = 1.43 psia / 

SI units 

F 9.83 kPa absolute I 
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FIGURE 3.10 

A mercury barometer 

h 

Vapor 
pressure 
ofllg 

Column of 
mercury rises 
to hetght h 

3.3 Measuring Pressure 

When engineers design and conduct experiments, pressure nearly always needs to be mea­
sured. Thus, this section describes five scientific instruments for measuring pressure. 

Barometer 

An instrument that is used to measure atmospheric pressure is called a barometer. The most 
common types are the mercury barometer and the aneroid barometer. A mercury barometer 
is made by inverting a mercury-filled tube in a container of mercury as shown in Fig. 3.1 0. 
The pressure at the top of the mercury barometer will be the vapor pressure of mercury, 
which is very small: Pv = 2.4 X 10- 6 atm al 20°C. Thus, atmospheric pressure will push the 
mercury up the tube to a height h. The mercury barometer is analyzed by applying the hydro­
static equation: 

(3.20) 

Thus, by measuring h, local atmospheric pressure can be determined using Eq. (3.20). 
An aneroid barometer works mechanically. An aneroid is an elastic bellows that has 

been tightly sealed after some air was removed. When atmospheric pressure changes, this 
causes the aneroid to change size, and this mechanical change can be used to deflect a needle 
to indicate local atmospheric pressure on a scale. An aneroid barometer has some advan­
tages over a mercury barometer because it is smaller and allows data recording over time. 

Bourdon-Tube Gage 

A Bourdon-tube gage, Fig. 3.11, measures pressure by sensing the deflection of a coiled tube. 
The tube has an elliptical cross seclion and is bent into a circular arc, as shown in Fig. 3. llb. 
When atmospheric pressure (zero gage pressure) prevails, the tube is undeflected, and for this 

FIGURE 3.11 

Bourdon·tube gage. (a) View of typical gage. (Photo by Donald Elgei) (b) Internal 
mechanism (schematic). 

A l'omler 

(b) 

(a) 

13ounlon-tubc 
spring 

Secuon A-A 
througb tube 
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condition the gage pointer is calibrated to read zero pressure. When pressure is applied to the 
gage, the curved tube tends to straighten (much like blowing into a party favor to straighten it 
out), thereby actuating the pointer to read a positive gage pressure. The Bourdon-tube gage is 
conunon because it is low cost, reliable, easy to install, and available in many different pressure 
ranges. There are disadvantages: dynamic pressures are difficult to read accurately; accuracy of 
the gage can be lower than other instruments; and the gage can be damaged by excessive pres­
sure pulsations. 

Piezometer 

FIGURE 3.12 

Piezometer attached 

to a pipe. 

--\. piezometer is a vertical tube, usually transparent, in which a liquid rises in response to a 
positive gage pressure. For example, Fig. 3.12 shows a piezometer attached to a pipe. Pressure 
lfi the pipe pushes the water column to a height h, and the gage pressure at the center of the 
pipe is p = -yh, which follows directly from the hydrostatic equation (3.l0c). The piezometer 
has several advantages: simplicity, direct measurement (no need for calibration), and accu­
!'llcy. However, a piezometer cannot easily be used for measuring pressure in a gas, and a 
piezometer is limited to low pressures because the column height becomes too large at high 
pressures. l 
Manometer 

-\ manometer, often shaped like the letter "u;· is a device for measuring pressure by rais­
Ulg or lowering a column of liquid. For example, Fig. 3.13 shows a U-tube manometer 
·hat is being used to measure pressure in a flowing fluid . In the case shown, positive gage 
~ressure in the pipe pushes the manometer liquid up a height tJ.h. To use a manometer, 
engineers relate the height of the liquid in the manometer to pressure as illustrated in 
Example 3.6. 

-- 4 -
Flow 

e 

-2 J 
-I 

Y.,(manomctcr liquid) 

I EXAMPLE 3.6 Define the Situation 

---Flow 

FIGURE 3.13 

U-tube manometer. 

Pressure Measurement (U-Tube Manometer) Pressure in a pipe is being measured using aU-tube 
manometer. 

Problem Statement 

Water at 10°C is the fluid in the pipe of Fig. 3.13, and mercury 
the manometer fluid. If the deflection ilh is 60 em and f is 

180 em, what is the gage pressure at the center of the pipe? 

Properties: 

Water (10°C), Table A.S, -y = 9810 N/m3
• 

Mercury, Table A.4: -y = 133,000 N/m3
• 

, 
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State the Goal 
2. Find the pressure at point 3. 

Calculate gage pressure (kPa) in the center of the pipe. 
• The hydrostatic equation with z3 = z2 gives 

PJJ,.,Icr = P2Jwoter = 79.8 kPa 
Generate Ideas and Make a Plan 

• When a fluid-fluid interface is flat, pressure is constant 
across the interface. Thus, at the oil- water interface Start at point 1 and work to point4 using ideas from Eq. (3. 10c). 

When fluid depth increases, add a pressure change. When fluid 
depth decreases, subtract a pressure change. PJJmercury = P3J"·ater = 79.8 kPa 

Take Action (Execute the Plan) 
3. Find the pressure at point 4 using the hydrostatic equation 

given in Eq. (3.10c). 

I. Calculate the pressure at point 2 using the hydrostatic 
equation (3.10c). 

p4 = p3 - pressure decrease between 3 and 4 = p3 - 'Ywe 

= 79,800 Pa - (9810 N/m3)(1.8 m) 
p2 = p, + pressure increase between 1 and 2 = 0 + -y,.,t:.h12 

= -y,.,(0.6 m) = ( 133,000 N I m3)(0.6 m) 
= 62.1 kPa gage 

= 79.8 kPa 

EXAMPLE 3.7 

Manometer Analysis 

Problem Statement 

Once one is familiar with the basic principle of manometry, it is straightforward to write 
a single equation rather than separate equations as was done in Example 3.6. The single equa­
tion for evaluation of the pressure in the pipe of Fig 3.13 is 

0 + 'Ymt:.h - -yt = P4 

One can read the equation in this way: Zero pressure at the open end, plus the change in pres­
sure from point 1 to 2, minus the change in pressure from point 3 to 4, equals the pressure in 
the pipe. The main concept is that pressure increases as depth increases and decreases as depth 
decreases. 

The general equation for the pressure difference measured by the manometer is: 

P2 = PI + L. -y,h; - L. -y,h, 
down up 

(3.21) 

where -y1 and h1 are the specific weight and deflection in each leg of the manometer. It does not 
matter where one starts; that is, where one defines the initial point 1 and final point 2. When 
liquids and gases are both involved in a manometer problem, it is well within engineering ac­
curacy to neglect the pressure changes due to the columns of gas. This is because 'Yioquid >> 'Yga<· 

Example 3.7 shows how to apply Eq. (3.21) to perform an analysis of a manometer that uses 
multiple fluids. 

Air 

What is the pressure of the air in the tank if e, = 40 em, e2 = 
100 em, and eJ = 80 em? 

(S ~ O.R) 
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etine the Situation Generate Ideas and Make a Plan 

A tank is pressurized with air. Apply the manometer equation (3.21) from location 1 to location 2. 

Assumptions: Neglect the pressure change in the air 
.:olumn. 

Properties: 

Take Action (Execute the Plan) 

Manometer equation 

• Oil: 'Yoil = S'Ywalcr = 0.8 X 9810 N/m3 = 7850 N/m3. Pt + ~ -y, h, - ~ -y, h, = P2 
do.,.,.n up 

• Mercury, Table A.4: -y = 133,000 N/m3
• PI + 'Ymorcur/3 - 'Y.~re2 + 'Yone, = P2 

tate the Goal 0 + (133,000 N/m3)(0.8 m) - 0 + (7850 N / m3)(0.4 m) = p2 

l:ind the pressure (kPa gage) in the air . j P2 = Po.ir = 110 kPa gage J 

• -ecause the manometer configuration shown in Fig. 3.14 is common, it is useful to derive an 
quation specific to this application. To begin, apply the manometer equation (3.21) between 

mts 1 and 2: 

P1 + ~ -y, h; - ~ 'Y; h; = P2 
down up 

p1 + -yA(~y- ~h)- 'YR~h - 'YA(~y + z2- z1) = P2 

i.IDplifying gives 

..,;ding through by 'YA gives 

(~~ + z,)- (~: + z2) = ~h(~: - 1) 
.<!Cognize that the terms on the left side of the equation are piezometric head and rewrite to 

·e the final result: 

(3.22) 

-1uation (3.22) is valid when a manometer is used as shown in Fig. 3.14. Example 3.8 shows 
" this equation is used. 

FIGURE 3 .1 4 

Apparatus for determining 
cha nge in piezometric 
head corresponding to 
flow in a pipe. 
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EXAMPLE 3.8 

Change in Piezometric Head for Pipe Flow 

Problem Statement 

A differential mercury manometer is connected to two 
pressure taps in an inclined pipe as shown in Fig. 3.14. Water 
at 50°F is flowing through the pipe. The deflection of mercury 
in the manometer is 1 inch. Find the change in piezometric 
pressure and piezometric head between points I and 2. 

Define the Situation 

Water is flowing in a pipe. 

Properties: 
I. Water (SO °F), Table A.S, 'Ywator = 62.4 lbf/fe. 

2. Mercury, Table A.4, 'YHg = 847lbf/fe. 

State tJ1e Goal 

Find the 

• Change in piezometric head (ft) between points 1 and 2. 

• Change in piezometric pressure (psfg) between 1 and 2. 

Generate Ideas and Make a Plan 

1. Find difference in the piezometric head using Eq. (3.22). 

2. Relate piezometric head to piezometric pressure using 
Eq. (3.13). 

Take Action (Execute the Plan) 

1. Difference in piezometric head 

hi - hz = t.h( 'YHg - t) = (_!_ ft)( 847lbf/ftl - 1) 
'Ywotcr 12 62.4lbf/ft3 

= j1.os rt] 
2. Piezometric pressure 

P z = h-y wat<r 

= (1.05 ft)(62.4 1bf/ ft3
) = [ 65.5 p~ 

Summary of the Manometer Equations 

These manometer equations are summarized in Table 3.1. Because the equations were derived 
from the hydrostatic equation, they have the same assumptions: constant fluid density and 
hydrostatic conditions. 

The process for applying the manometer equations is 

Step l. For measurement of pressure at a point, select Eq. (3.21). For measurement of pres­
sure or head change between two points in a pipe, select Eq. (3.22). 

Step 2. Select points 1 and 2 where you know information or where you want to find 
information. 

Step 3. Write the general form of the manometer equation. 
Step 4. Perform a "term-by-term analysis." 

TABLE 3.2 Summary of the Manometer Equations 

Description Equt~tion 

Use this equation for a manometer that + "" h "" h Pz = Pt ..t:.; "f, ; - ..t:.; 'Y1 , 
has an open end (for an example of down up 

this type of manometer, see Fig. 3. 1~ 
on page 73). 

-----
Use this equation for a manometer that ('Ya ) 
is being used to measure differential h1 - h2 = t.h 'YA - l 

pressure in a pipe with a flowing fluid 
(for an example of this type of 
manometer, see Fig. 3.14 on page 75). 

(3.21) 

----
(3.22) 

Terms 

P1 = pressure at point 1 (N/m 2
) 

p2 = pressure at point 2 (N/m2
) 

'Y; = specific weight of fluid i (N/m3
} 

h, = deflection of fluid in leg i (m) 

ht = p11-y,.. + z1 = piezometric head at point I (m) 
hz = Pzl'YA + z2 = piezometric head at point 2 (m) 
tlh = deflection of the manometer fluid (m) 
'YA =specific weight of the flowing fluid (N/m3

) 

'YB = specific weight of the manometer fluid (N/m3
) 
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Pressure Transducers 

A pressure transducer is a device that converts pressure to an electrical signal. Modern fac­
"':lries and systems that involve flow processes are controlled automatically, and much of their 
vperation involves sensing of pressure at critical points of the system. Therefore, pressure­
sensing devices, such as pressure transducers, are designed to produce electronic signals that 
.:an be transmitted to oscillographs or digital devices for record-keeping or to control other 
.ie\'ices for process operation. Basically, most transducers are tapped into the system with one 
-•de of a small diaphragm exposed to the active pressure of the system. When the pressure 
.:banges, the diaphragm flexes, and a sensing element connected to the other side of the dia­
-hragm produces a signal that is usually linear with the change in pressure in the system. There 
.&re many types of sensing elements; one common type is the resistance-wire strain gage 
,.:.rrached to a flexible diaphragm as shown in Fig. 3.15. As the diaphragm flexes, the wires of the 
·,:rain gage change length, thereby changing the resistance of the wire. This change in resis-
1:..mce is converted into a voltage change that can then be used in various ways. 

Strain gage Diaphragm Digital voltage 

Another type of pressure transducer used for measuring rapidly changing high pressures, 
~.:h as the pressure in the cylinder head of an internal combustion engine, is the piezoelectric 

=ansducer (2). These transducers operate with a quartz crystal that generates a charge when 
::bjected to a pressure. Sensitive electronic circuitry is required to convert the charge to a 

"'"Jeasurable vo!Lage signal. 
Computer data acquisition systems are used widely with pressure transducers. The analog 

. ptal from the transducer is converted (through an AID converter) to a digital signal that can be 
-.:ocessed by a computer. This expedites the data acquisition process and facilitates storing data. 

3.4 Predicting Forces on Plane Surfaces (Panels) 

-=:gineers predict hydrostatic forces on large structures such as dams. Thus, this section ex­
ams how to relate pressure to force. Next, this section describes how to calculate hydrostatic 
-rces on panels, where a panel is a flat surface. 

The Pressure Distribution 

..,ressure distribution (Fig. 3.16) is a visual or mathematical description that shows how pres­
_..-e varies from point to point along a surface. For example, in the figure the pressure will be high 

l- :be front of the cylinder and low in the back of the cylinder. Notice that the pressure distribution 
.;lways compressive and that pressure is always normal to the surface. 

-----flow 

,. ~- -r ... ~ Pre~sure di~lrihution: How pressure varies 
' "-~' . r (' h' 1 ' from point~to-poult aJong a sun ace m t IS 

~ ~ example, pressure is large in front and low 
' / ' ' in back) ', ___ t, ' 

FIGURE 3.15 

Schematic diagram of 
strain-gage pressure 
transducer. 

FIGURE 3.16 

The pressure distribution 
caused by a fluid flowing 
over a circular cylinder. 
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FIGURE 3.17 

Terms used to define the 
pressure force. 

FIGURE 3.18 

lal Uniform pressure 
distribution, and 
(bl equivalent force. 

Relating Pressure to Force 

To relate pressure to force, select a small area dA (Fig. 3.17) on a surface. Then, define a normal 
vector n that is positive in a direction outward from the surface. The magnitude of the force is 
dF = pdA, and lhe direction of the force is inward toward the surface. Thus, the force dF is 

dF = (- p) ndA 

__.,---- n is an unit vec1or lhal >S 

/~.=oUiward fro m a surface. 

~ smallareadA 
dF is the force on (shown in blue) 
a small area dA 

where the negative sign is used because the force acts inward. To obtain the total force, add up 
the forces acting on each small area: 

Net force due to a pressure distribution = Fp = L dF = L ( - p)ndA 

Because an integral is defined as an infinite sum, this equation can be written as 

Net force due to a pressure distribution = FP = I ( - p)ndA 

Area 

(3.23) 

In summary, the net force due to pressure can be found by integrating pressure over area 
while using a normal vector to keep track of the direction of incremental force on each unit 
of area. 

Force of a Uniform Pressure Distribution 

When pressure is the same at every point, as shown in Fig. 3.18a, the pressure distribution is called 
a uniform pressure distribution. For a uniform pressure distribution, Eq. (3.23) reduces to 

FP = JpdA = pA 

" 
The resultant force of pressure FP passes through a point called the center of pressure (CP). 

Notice that the CP is represented using a circle with a "plus symbol" inside. for a uniform pres­
sure distribution on a panel, the CP is located at the centroid of area. 

(a ) (b) 

Center of 
pressure 

(CP) 



~Ec:nqN 3.4 PREDICTINc;; _FOR_CES ON PLANE S~.R~~q~ W:A!':J.ELS) 79 

Hydrostatic Pressure Distribution 

'.nen a pressure distribution is produced by a fluid in hydrostatic equilibrium (Fig. 3.19a), then 
.he pressure distribution is called a hydrostatic pressure distribution. Notice that a hydrostatic 
ressure distribution is linear with depth. In Fig. 3.19b, the pressure distribution is represented 
.·a resultant force that acts at the CP. Notice that the CP is located below the centroid of area. 

llydrostatic 

pre~sure distribution 

/Line of action 

Centroid 

'-(,<# _•sullllnt force 

Center of pressure 

(a) (b) 

force on a Panel (Magnitude) 

' ' ', 

Scxt, we will show how to find the force on one face of a panel (e.g., a gate, a wall, a dam) that is acted 
"l by a hydrostatic pressure distribution. To begin, sketch a panel of arbitrary shape submerged in a 
~d (Fig. 3.20). Line AB is the edge view of a paneL The plane of the panel intersects the horizontal 
~uid surface at axis 0-0 with an angle a. The distance from the axis 0-0 to the horizontal axis 
_"'ugh the centroid of the area is given by y. The distance from 0-0 to the differential area dA is y. 

The force due to pres~ure is given by Eq. {3.23), which reduces to 

FP = J pdA 
A 

- Eq. (3.24), the pressure can be found with the hydrostatic equation: 

p = -y6.z = -yy sina 

0 

(3.24) 

(3.25) 

FIGURE 3.19 

(a) Hydrostatic pressure 
distribution, and 

(b) Resultant bee F acting 
at the center of pressure. 

FIGURE 3.20 

Distribution of hydrostatic 
pressure on a plane 
surface. 
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Combine Eqs (3.24) and (3.25) to give 

Fp = I pdA = I 'YY sino: dA = 'Y sino: I ydA 
A A A 

(3.26} 

Because the integral on the right side of Eq. (3.24) is the first moment of the area, replace the 
integral by its equivalent, .Y A. 1herefore 

Fp = 'YJ A sino:= ('YY sin o:)A (3.27) 

Apply the hydrostatic equation to show that the variables within the parentheses on the right 
side of Eq. (3.27) is the pressure at the centroid of the area. Thus, 

(3.28) 

Equation (3.28) shows that the hydrostatic force on a panel of arbitrary shape (e.g., rectan­
gular, round, elliptical) is given by the product of panel area and pressure at the centroid 
of area. 

Finding the Location of the Force on Panel {Center of Pressure) 

This subsection shows how to derive an equation for the vertical location of the center of pres­
sure (CP). For the panel shown in Fig. 3.20 to be in moment equilibrium, the torque due to the 
resultant force FP must balance the torque due to each differential force. 

ycpFp = Jy dF 

Note that Yep is "slant" distance from the center of pressure to the surface of the liquid. The label 
"slant" denotes that the distance is measured in the plane that runs through the panel. The dif­
ferential force dF is given by dF = p dA; therefore, 

Also,p = 'YY sino:, so 

y,PF = J yp dA 
A 

YcpF = J 'Y/ sino: dA 
A 

Because 'Y and sin o: are constants, 

YcpF = 'Y sin o: I/ dA 
A 

{3.29) 

(3.30) 

The integral on the right-hand side of Eq. (3.30) is the second moment of the area (often called 
the area moment of inertia). This shall be identified as 10. However, for engineering applica­
tions it is convenient to express the second moment with respect to the horizontal centroidal 
axis of the area. Hence by the parallel-axis theorem, 

(3.31) 
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Substitute Eq. (3.31) into Eq. (3.30) to give 

y,PF = 'Y sin a(T + y2 A) 

H 'wever, from Eq. (3.25), F = 'YY sin aA. Therefore, 

Ycp('Y.Y sin a A) = 'Y sin a(l + y2A) 

- I 
Ycv = Y + jiA 

- I 
Yep- Y = yA 

(3.32) 

(3.33) 

In Eq. (3.33), the area moment of inertia I is taken about a horizontal axis that passes 
t:u'Ough the centroid of area. Formulas for I are presented in Fig. A.l. The slant distance y 
-easures the length from the surface of the liquid to the centroid of the panel along an axis 
t:lat is aligned with the "slant of the panel" as shown in Fig. 3.20. 

Equation (3.33) shows that the Center of Pressure (CP) will be situated below the centroid. 
-"le distance between the CP and the centroid depends on the depth of s~bmersion, which is 

laracterized by y, and on the panel geometry, which is characterized by II A. 
Due to assumptions in the derivations, Eqs. (3.28) and (3.33) have several limitations. 

J.J'St, they only apply to a single fluid of constant density. Second, the pressure at the liquid 
urface needs to be p = 0 gage to correctly locate the CP. Third, Eq. (3.33) gives only the verti­
al location of the CP, not the lateral location. 

Summary of the Panel Equations 

ne panel equations (Table 3.3) are used to calculate the force on a flat plate that is subjected to 
. hydrostatic pressure distribution. 

TABLE 3.3 Summary of the Panel Equations 

De~cription 

Apply this equation to predict the 
"Jlagnitude of the hydrostatic force. 

Equation Terms 

(3.28) Fp = resultant force due to pressure distribution (N) 
p = pressure at the depth of the centroid (Pa) 

~ A = area of the surface of the plate (m2
) 

Apply this equation to locate the center l ___ _!_ j (y,P - y) = slant distance from the centroid to the 
of pressure (CP). Yep Y - yA <3·33) center of pressure (m) 

l = area moment of inertia of panel about centroidal 
axis (m4

) (for formulas, see Fig. A.l on page A-1) 
y = slant distance from centroid to liquid surface (m) 

----------------~ 
This figure defines terms. 

(y - ji) =slant distance between CP and centroid 
"' (this distance) 

~-~--------------~~----- -~--
p = pressure at depU• of the F , 

centroid (this depth)~ _·x ......_ Ji =slant distance 
between centroid 
and surface 
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EXAMPLE 3.9 

Hydrostatic Force Due to Concrete 

Problem Statement 

Determine the force acting on one side of a concrete form 
2.44 m high and 1.22 m wide (8ft by 4ft) that is used for 
pouring a basement wall. The specific weight of concrete is 
23.6 kN/m1 (ISO lbf/ft3

). 

Define the Situation 

Concrete in a liquid state acts on a vertical surface. 

The vertical wall is 2.44 m high and 1.22 m wide 

Assumptions: Freshly poured concrete can be represented as a 
liquid. 

Properties: Concrete: -y = 23.6 kN/m3• 

State the < ;oal 

Find the resultant force (kN) acting on the wall. 

EXAMPLE 3.10 

Force to Open an Elliptical Gate 

Problem Statement 

An elliptical gate covers the end of a pipe 4 m in diameter. If 
the gate is hinged at the top, what normal force F is required 
to open the gate when water is 8 m deep above the top of the 
pipe and the pipe is open to the atmosphere on the other side? 
Neglect the weight of the gate. 

1 

y 
Water 

8tn 

1 Hinge 

Define the Situation 

Water pressure is acting on an elliptical gate. 

Properties: Water (I 0°C), Table A.S: -y = 9810 N/m3• 

Plan 

Apply the panel equation (3.28). 

Solution 

1. Panel equation 

F = pA 

2. Term-by-term analysis 

• p = pressure at depth of the centroid 

p = bmo~cttte)(z, •• troid) = (23.6 kN/m3)(2.44/2 m) 

= 28.79 kPa 

• A = area of panel 

A = (2.44 m)(l.22 m) - 2.977 m2 

3. Resultant force 

F = pA = (28.79 kPa)(2.977 m2
) = 85.7 kN J 

Assumptions: 

1. Neglect the weight of the gate. 

2. Neglect friction between the bottom on the gate and the 
pipe wall. 

State the Goal 

F(N) .. Force needed to open gate. 

Generate Ideas and Make a Plan 

1. Calculate resultant hydrostatic force using F = pA. 

2. Find the location of the center of pressure using 
Eq. (3.33). 

3. Draw an FBD of the gate. 

4. Apply moment equilibrium about the hinge. 

Take Action (Execute the Plan) 

I . Hydrostatic (resultant) force 

• p = pressure at depth of the centroid 

P = ('Ywater)(zccntmtd) = (9810 N/m3){10 m) = 98.1 kPa 

• A =area of elliptical panel (using Fig. A.l to find 
formula) 

A = 'l'l'ab 

= '1'1'(2.5 m)(2 m) = 15.71 m2 
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• Calculate resultant force 

Fp = pA = (98. 1 kPa)( 15.71 m2
) = ~54~ 

2. Center of pressure 

• y = 12.5 m, where ji is the slant distance from the water 
surface to the centroid. 

• Area moment of inertia i of an elliptical panel using a 
formula from Fig. A.l 

_ 1ra3b 1r(2.S m)3(2 m) 
T = -- = = 24.54m4 

4 4 

3. FBD of the gate: 

4. Moment equilibrium 
Finding center of pressure 

i 25.54 m4 
2: Mhinge = 0 

Ycv- y = jiA = (12.5 m)(15.71 m2) = 0·125111 1.541 X l06 N X 2.625 m - F X 5111 = 0 

F = Jso9kNJ 

3.5 Calculating Forces on Curved Surfaces 

· engineers, we calculate forces on curved surfaces when we are designing components such 
tanks, pipes, and curved gates. Thus, this topic is described in this section. 

Consider the curved surface AB in Fig. 3.2 la. The goal is to represent the pressure distri­
tion with a resultant force that passes through the center of pressure. One approach is to 

tegrate the pressure force along the curved surface and find the equivalent force. However, it 
easier to sum forces for the free body shown in the upper part of Fig. 3.21 b. The lower sketch 
Fig. 3.2lb shows how the force acting on the curved surface relates to the force F acting on 

'1e free body. Using the FBD and summing forces in the horizontal direction shows that 

(3.34) 

'le line of action for the force FAc is through the center of pressure for side A C. 
The vertical component of the equivalent force is 

Fy = W + Fc;8 (3.35) 

'lere W is the weight of the fluid in the free body and fc8 is the force on the side CB. 

I Fen 
C __ t_ __ B 

I I 
F . I ~W I 
~ f I Free-body 

· I / diagram 
A I-

F 

A~/ 
(a) (b) 

FIGURE 3.21 

ial Pressure distribution and 
equivolenl force. 
ibi Free-body diagram and 
acfion·reaction force pair. 
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The force Fc8 acts through the centroid of surface CB, and the weight acts through the 
center of gravity of the free body. The line of action for the vertical force may be found by sum­
ming the moments about any convenient axis. 

Example 3.11 illustrates how curved surface problems can be solved by applying equilib­
rium concepts together with the panel force equations. 

EXAMPLE 3.11 

Hydrostatic Force on a Curved Surface 

Problem Statement 

Surface A B is a circular arc with a radius of 2 m and a width 
of 1 m into the paper. The distance EB is 4 m. The fluid above 
surface AB is water, and atmospheric pressure prevails on the 
free surface of the water and on the bottom side of surface AB. 
Find the magnitude and line of action of the hydrostatic force 
acting on surface AB. 

Define the Situation 

Situation: A body of water is contained by a curved surface. 

Properties: Water (10°C), Table A.5: 'Y = 9810 N/m3. 

State the Goal 

Find: 

l. Hydrostatic force (in newtons) on the curved surface AB. 

2. Line of action of the hydrostatic force. 

Generate Ideas and Make a Plan 

Apply equilibrium concepts to the body of fluid ABC. 

1. Find the horizontal component ofF by applying 
Eq. (3 .34). 

2. Find the vertical component ofF by applying Eq. (3.35). 

3. Find the line of action ofF by finding the lines of action of 
components and then using a graphical solution. 

Take Action (Execute the Plan) 

1. Force in the horizontal direction 

Fx = FH = pA = (5 m)(9810 N /m3)(2 X 1m2
) 

= 98. 1 kN 

2. Force in the vertical direction 

• Vertical force on side CB 

Fv = p0 A = 9.81 kN/m3 X 4 m X 2m X 1m= 78.5 kN 

• Weight of the water in volume ABC 

W = "f'\l..wc = ('y)(~'TTr2)( w) 

= (9.81 kN/m3
) X (0.25 X 'TT X 4 m 2)(1 m) = 30.8 kN 

• Summing forces 

F1 = W + Fv = 109.3 kN 

3. Line of action (horizontal force) 

l ( 1 X 2
3
/12 ) 

Y ep = y + yA = (5 m ) + 5 X 2 X 1 m 

Ycv = 5.067 m 

4. ll1e line of action (x<p) for the vertical force is found by 
summing moments about point C: 

x<vFr = F~ X 1 m + W X xw 
The horizontal distance from point C to the centroid of the 
area ABC is found using Fig. A.1: xw = 4r/3'TT = 0.849 m. 
Thus, 

78.5 kN X 1 m + 30.8 kN X 0.849 m 
Xcp = k = 0.957 Ill 

109.3 N 

5. The resultant force that acts on the curved surface is shown 
in the following figure. 

.-t--- ~e:-+-,_. 'IX. I kN 

10'1.3 kN 

tan 9 = IO'I.J - 1.11 
98.1 

9=48° 

F,..,.;ult = 146.9 kN 
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The central idea of this section is that forces on curved surfaces may be found by applying 
quilibrium concepts to systems comprised of the fluid in contact with the curved surface. Notice 

-_'Ow equilibrium concepts are used in each of the following situations. 
Consider a sphere holding a gas pressurized to a gage pressure p; as shown in Fig. 3.22. The 

TJdicated forces act on the fluid in volume ABC. Applying equilibrium in the vertical direction 
i;l\'eS 

F = p;AAc + W 

ecause the specific weight for a gas is quite small, engineers usually neglect the weight of 
'le gas: 

(3.36) 

Another example is finding the force on a curved surface submerged in a reservoir of liquid 
..s shown in Fig. 3.23a.lf atmospheric pressure prevails above the free surface and on the outside 
:surface AB, then force caused by atmospheric pressure cancels out, and equilibrium gives 

F = -v¥Ancn = w.t (3.37) 

,ence the force on surface AR equals the weight of liquid above the surface, and the arrow 
:1dicates that the force acts downward. 

Now consider the situation where the pressure distribution on a thin curved surface comes 
rom the liquid underneath, as shown in Fig. 3.23b. lf the region above the surface, volume abed, 
-ere filled with the same liquid, the pressure acting at each point on the upper surface of ab 
:ould equal the pressure acting at each point on the lower surface. In other words, there would 

"e no net force on the surface. Thus, the equivalent force on surface ab is given by 

F = -y¥avcd = W.l- (3.38) 

·here W is the weight of liquid needed to fill a volume that extends from the curved surface to 
he free surface of the liquid. 

/) d c 
- I 

r-----

I 
I 
I 
I 
I r I 
I 
I 
I 
I 

'"' 
A H 

(a) (h) 

3.6 Calculating Buoyant Forces 

fngineers calculate buoyant forces for applications such as the design of ships, sediment trans­
rort in rivers, and fish migration. Buoyant forces are sometimes significant in problems involv­
~g gases, for example, a weather balloon. Thus, this section describes how to calculate the 
~uoyant force on an object. 

FIGURE 3.22 

Pressurized spherical tonk 
showing forces that oct on 
the fluid inside the marked 
region. 

FIGURE 3.23 

Curved surface with (a) 
liquid above and !b) liquid 
below. In (a). arrows 

represent forces acting on 
the liquid. In (b). arrows 
represent the pressure 
distribution on surface ob. 
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FIGURE 3.24 

Two views of a body 
immersed in a liquid. 

FIGURE 3.25 

A body partially 
submerged in a liquid. 

A buoyant force is defined as an upward force (with respect to gravity) on a body that is 
totally or partially submerged in a fluid, either a liquid or gas. Buoyant forces are caused by the 
hydrostatic pressure distribution. 

The Buoyant Force Equation 

To derive an equation, consider a body ABCD submerged in a liquid of specific weight 'Y 
(Fig. 3.24). The sketch on the left shows the pressure distribution acting on the body. As shown 
by Eq. (3.38), pressures acting on the lower portion of the body create an upward force equal 
to the weight of liquid needed to fill the volume above surface ADC. The upward force is 

E F 

1 
I 

0
18 : 

A I 

c 
D 

Fup = 'Y(¥b + ¥.) 

where ¥ b is the volume of the body (i.e., volume ABCD) and ¥ . is the volume of liquid above 
the body (i.e., volume ABCFE). As shown by Eq. (3.37}, pressures acting on the top surface of 
the body create a downward force equal to the weight of the liquid above the body: 

Subtracting the downward force from the upward force gives the net or buoyant force F8 acting 
on the body: 

(3.39' 

Hence, the net force or buoyant force (F8) equals the weight of liquid that would be needed to 
occupy the volume of the body. 

Consider a body that is floating as shown in Fig. 3.25. The marked portion of the object 
has a volume ¥n. Pressure acts on curved surface ADC causing an upward force equal to the 
weight of liquid that would be needed to fill volume ¥n. The buoyant force is given by 

(3.40) 

B 
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Hence, the buoyant force equals the weight of liquid that would be needed to occupy the vol­
ume ¥ 0 . This volume is called the displaced volume. Comparison of Eqs. (3.39) and (3.40) 
shows that one can write a single equation for the buoyant force: 

(3.41a} 

In Eq. (3.4la), .Vn is the volume that is displaced by the body. If the body is totally submerged, 
the displaced volume is the volume of the body. If a body is partially submerged, the displaced 
•:olume is the portion of the volume that is submerged. 

Eq. (3.41 b) is only valid for a single fluid of uniform density. The general principle of 
buoyancy is called Archimedes' principle: 

(buoyant force)= F8 =(weight of the displaced fluid) (3.41b) 

The buoyant force acts at a point called the center of buoyancy, which is located at the center 
of gravity of the displaced fluid. 

V'CHECKPOINT PROBLEM 3.3 

Consider a balloon filled with helium (case A) 
and a balloon filled with air (case B). Which 
statement is correct? 

a. Buoyant force (case A) > Buoyant force 
(case B) 

b. Buoyant force (case A) < Buoyant force 
(case B) 

c. Buoyant force (case A) = Buoyant force 
(case B) 

The Hydrometer 

::-:: "'" /' 0 
Case A Case B 

A hydrometer (Fig. 3.26) is an instrument for measuring the specific gravity of liquids. It is 
typically made of a glass bulb that is weighted on one end so the hydrometer floats in an up­
right position. A stem of constant diameter is marked with a scale, and the specific weight of 
the liquid is determined by the depth at which the hydrometer floats. The operating principle 
-:~f the hydrometer is buoyancy. In a heavy liquid (i.e., high -y), the hydrometer will float shal­
lower because a lesser volume of the liquid must be displaced to balance the weight of the 
f)ydrometer. In a light liquid, the hydrometer will float deeper. 

EXAMPLE 3.12 Define the Situation 

FIGURE 3.26 

Hydrometer 

Lend 
weight 

Buoyant Force on a Metal Part A metal part is suspended from a floating block of wood. 

Problem Statement 

A metal part (object 2) is hanging by a thin cord from a 
floating wood block (object 1). The wood block has a specific 
gravity S1 = 0.3 and dimensions of SO X SO X 10 mm. The 
metal part has a volume of 6600 mm3. Find the mass m2 of the 
metal part and the tension Tin the cord. 

Properties: 

Water (JS°C), Table A.S: -y = 9800 N/m3
• 

Wood: S1 = 0.3. 
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State the Goal 

• Find the mass (in grams) of the metal part. 

• Calculate the tension (in newtons) in the cord. 

Hp,ts•c 

Generate Ideas and Make a Plan 

I. Draw FBDs of the block and the part. 

2. Apply equilibrium to the block to find the tension. 

3. Apply equilibrium to the part to find the weight of the part. 

4. Calculate the mass of the metal part using W = mg. 

Take Action (Execute the Plan) 

I. FBDs 

_i 

n rrn~ 
k 

2. Force equilibrium (vertical direction) applied to block 

T = PHI- WI 

• Buoyant force FH1 = -y¥D1, where ¥D1 is the submerged 
volume 

FBI = -y¥Dl 

= (9800 N/ m3)(50 X SO X 7.5 mm3)(10-9 m3/mm3
) 

= 0.184 N 

• Weight of the block 

W1 = -yS1¥ 1 

= (9800 N/m3)(0.3)(50 X 50 X 10 mm3)(10- 9 m3/mm3
) 

= 0.0735 N 

• Tension in the cord 

T = (0.184 - 0.0735) = I 0.110 N J 
3. Force equilibrium (vertical direction) applied to metal part 

• Buoyant force 

• Equilibrium equation 

W2 = T + F82 = (0.110 N) + (0.0647 N) 

4. Mass of metal part 

m2 = W2/g = ~7.8JU 

Review the Solution and the Process 

Discussion. Notice that tension in the cord (0. 1 I N) is less than 
the weight of the metal part (0.18 N). This result is consistent 
with the common observation that an object will "weigh less 
in water than in air:' 

Tip. When solving problems that involve buoyancy, draw an 
FBD. 

3.7 Predicting Stability of Immersed 
and Floating Bodies 

Engineers calcuate whether an object will tip over or remain in an upright position when 
placed in a liquid, for example for the design of ships and buoys. Thus, stability is presented in 
this section. 



SECTION 3.7 PREDICTING STABILITY OF IMMERSED AND FLOATING BODIES 89 ........... ... ... .. . .. ..................... . . . . .. . ..... .. ..... . 

Immersed Bodies 

\'hen a body is completely immersed in a liquid, its stability depends on the relative positions 
,f the center of gravity of the body and the centroid of the displaced volume of fluid, which is 

called the center of buoyancy. If the center of buoyancy is above the center of gravity (see 
Fig. 3.27a) any tipping of the body produces a righting couple, and consequently, the body is 
,table. Alternatively, if the center of gravity is above the center of buoyancy, any tipping pro­
duces an overturning moment, thus causing the body to rotate through 180° (see Fig. 3.27c). lf 
the center of buoyancy and center of gravity are coincident, the body is neutrally stable-that 
15, it lacks a tendency for righting itself or for overturning (see Fig. 3.27b ). 

Floating Bodies 

Center of 
buoyancy 

(]wo,w 
(a) (b) (c) 

The question of stability is more involved for floating bodies than for immersed bodies because 
the center of buoyancy may take different positions with respect to the center of gravity, 
depending on the shape of the body and the position in which it is floating. For example, con­
~ider the cross section of a ship shown in Fig. 3.28a. Here the center of gravity G is above the 
.:enter of buoyancy C. Therefore, at first glance it would appear that the ship is unstable and 
.:ould flip over. However, notice the position of C and G after the ship has taken a small angle 
of heel. As shown in Fig. 3.28b, the center of gravity is in the same position, but the center of 
~uoyancy has moved outward of the center of gravity, thus producing a righting moment. 
A ship having such characteristics is stable. 

---~r----+--~-+:. 
• C 
1 

(a) (b) 

The reason for the change in the center of buoyancy for the ship is that part of the original 
'uoyant volume, as shown by the wedge shape AOB, is transferred to a new buoyant volume 
EOD. Because the buoyant center is at the centroid of the displaced volume, it follows that for 

!lis case the buoyant center must move laterally to the right. The point of intersection of the 

FIGURE 3.27 

Conditions of stability for 
immersed bodies. 
(o) Stable. (b) Neutral. 
(c) Unstable. 

FIGURE 3.28 

Ship stability relations. 
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FIGURE 3.29 

(a) Plan v1ew of sh1p 
at waterline. 
(b) Section A-A of ship. 

lines of action of the buoyant force before and after heel Is called the metacenter M, and the 
distance GM is called the metacentric height. If GM is positive- that is, if M is above G-the 
ship is stable; however, if GM is negative, the ship is unstable. Quantitative relations involving 
these basic principles of stability are presented in the next paragraph. 

Consider the ship shown in Fig. 3.29, which has taken a small angle of heel a. First evalu­
ate the lateral displacement of the center of buoyancy, CC'; then it will be easy by simple trigo­
nometry to solve for the metacentric height GM or to evaluate the righting moment. Recall 
that the center of buoyancy is at the centroid of the displaced volume. Therefore, resort to the 
fundamentals of centroids to evaluate the displacement CC'. From the definition of the cen­
troid of a volume, 

13.42) 

where :X = CC', which is the distance from the plane about which moments are taken to the 
centroid of ¥ ; J,l is the total volume displaced; 6.¥; is the volume increment; and X; is the 
moment arm of the increment of volume. 

A r;A 
0 

L 
A 

(a) 

(b) 

Take moments about the plane of symmetry of the ship. Recall from mechanics that vol­
umes to the left produce negative moments and volumes to the right produce positive mo­
ments. For the right side of Eq. (3.42) write terms for the moment of the submerged volume 
about the plane of symmetry. A convenient way to do this is to consider the moment of the 
volume before heel, subtract the moment of the volume represented by the wedge AOB, and 
add the moment represented by the wedge EOD.In a general way this is given by the following 
equation: 

x ¥ = moment of J,l before heel - moment of Y AOB + moment of ¥ mn 13.43) 
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3ecause the original buoyant volume is symmetrical with y-y, the moment for the first term on 
·he right is zero. Also, the sign of the moment of ¥Ann is negative; therefore, when this negative 
moment is subtracted from the right-hand side ofEq. (3.43}, the result is 

(3.44) 

·ow, express Eq. (3.44} in integral form: 

x¥ = I xd¥ + f x d¥ 
AOB EOD 

(3.45) 

But it may be seen from Fig. 3.29b that dV can be given as the product of the length of the 
differential volume, xtan a, and the differential area, dA. Consequently, Eq. (3.45) can be 
. ritten as 

:X¥= I x 2 tan adA + f x? tan adA 
AOB EOD 

Here tan a is a constant with respect to the integration. Also, because the two terms on the 
right-hand side are identical except for the area over which integration is to be performed, 
.:ombine them as follows: 

x¥ = tan a I x2 dA 
A\Qt~rhnc 

(3.46) 

The second moment, or moment of inertia of the area defined by the waterline, is given the 
wmbollc,0 , and the following is obtained: 

x¥ = 100 tan a 

~ext, replace :X by CC' and solve for CC': 

From Fig. 3.29b, 

100 tan a 
CC' = 

¥ 

CC' = CMtan a 

Thus eliminating CC' and tan a yields 

However, 

Therefore the metacentric height is 

CM = Ioo 
¥ 

GM= CM- CG 

Too 
GM =-- CG 

-V 
(3.47) 

Equation (3.47) is used to determine the stability of floating bodies. As already noted, if 
GM is positive, the body is stable; if GM is negative, it is unstable. 

Note that for small angles of heel a, the righting moment or overturning moment is given 
as follows: 

RM = -y:VGMa (3.48) 

However, for large angles of heel, direct methods of calculation based on these same principles 
. ·ould have to be employed to evaluate the righting or overturning moment. 
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EXAMPLE 3. 13 

Stability of a Floating Block 

Problem Statement 

A block of wood 30 em square in cross sect ion and 60 em long 
weighs 318 N. Will the block float with sides vertical as shown? 

1--- 60 em ---i 

Side view End view 

Define the Situation 

A block of wood is floating in water. 

State the Goal 

Determine the stable configuration of the block of wood. 

Generate Idea~ and Make a Plan 

1. Apply force equilibrium to find the depth of submergence. 

2. Determine if block is stable about the long axis by applying 
Eq. (3.47). 

3. Tf block is not stable, repeat steps 1 and 2. 

Take Action (Execute the Plan) 

1. Equilibrium (vertical direction) 

'LF, = 0 

- weight + buoyant force = 0 

-3 18 N + 9810 N/m3 X 0.30m X 0.60m X d = 0 

d = 0.18 m = 18 em 

2. Stability (longitudinal axis) 

loo /2 X 60 X 303 

GM = ¥ - CG = 18 X 60 X 30 - (15 - 9) 

= 4.167 - 6 = - 1.833 em 

Because the metacentric height is negative, the block is not 
stable about the longitudinal axis. Thus a slight disturbance 
will make it tip to the orientation shown below. 

3. Equilibrium (vertical direction-see preceding figure) 

- weight + buoyant force = 0 

-(318 N) + (9810 N/ml)(¥n) = 0 

¥ 0 = 0.0324 m3 

4. Find the dimension w. 

(Displaced volume) 
= (Block volume) - (Volume above the waterline). 

w z 
¥ 0 = 0.0324 m3 = (0.32)(0.6) m3 

- 4 (0.6 m) 

w = 0.379 m 

5. Moment of inertia at the waterline 

_ b!t1 _ (0.6 m)(0.379 m)3 
_ 

4 100 - - - - 0.00273 m 
12 12 

6. Metacentric height 

loo 0.00273 m4 

CM = - - CG = - - - 0.0573 m = 0.027 m 
¥ 0.0324 m3 

Because the metacentric height is positive, the block will be 
stable in this position. 

3.8 Summarizing Key Knowledge 

Pressure and Hydrostatic Equilibrium 

• A hydrostatic condition means that the weight of each fluid particle is balanced by the net 
pressure force. 

• Pressure pis ratio of (magnitude of normal force due to a fluid) to (area) at a point. 
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~ Pressure always acts to compress the material that is in contact with the fluid exerting 
the pressure. 

~ Pressure is a scalar quantity; not a vector. 

Engineers express pressure with gage pressure, absolute pressure, and vacuum pressure. 

~ Absolute pressure is measured relative to absolute zero. 

~ Gage pressure gives the magnitude of pressure relative to atmospheric pressure. 

P abs = Patm + P sage 

~ Vacuum pressure gives the magi tude of the pressure below atmospheric pressure. 

Pvacuum = Patm - Pabs 

Describing Pressure and Hydrostatic Equilibrium 

o The weight of a fluid causes pressure to increase with increasing depth, giving the 
hydrostatic differential equation. The equations that are used in hydrostatics are derived 
from this equation. The hydrostatic differential equation is 

dp 
- = --y = -pg 
dz 

• If density is constant, the hydrostatic differential equation can be integrated to give the 
hydrostatic equation. The meaning (i.e., physics) of the hydrostatic equation is that 
pizeometric head (or piezometric pressure) is everywhere constant in a static body 
of fluid. 

p 
- + z = constant 
'Y 

f;»ressure Distributions and Forces Due to Pressure 

• A fluid in contact with a surface produces a pressure distribution, which is a mathematical 
or visual description of how the pressure varies along the surface. 

o To find the force due to a pressure distribution, integrate the pressure distribution over area 
using a normal vector to track the direction of the force acting on dA. 

Net force due to a pressure distribution = Fp = J ( -p)ndA 
A 

• A pressure distribution is often represented as a statically equivalent force FP acting at the 
center of pressure (CP) 

A uniform pressure distribution means that the pressure is the same at every point on a 
suface. Pressure distributions due to gases are typically idealized as uniform pressure 
distributions. 

o A hydrostatic pressure distibution means that the pressure varies according to dp!dz = - -y 

r=orce on a Flat Surface (Hydrostatic Pressure Distribution) 

o For a panel subjected to a hydrostatic pressure distribution, the hydrostatic force is 

FP = pA 
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• This hydrostatic force 

~ Acts at the centroid of area for a uniform pressure distribution 

~ Acts below the centroid of area for a hydrostatic pressure distibution. The slant distance 
between the center of pressure and the centroid of area is given by 

- 1 
Yep- Y = yA 

Hydrostatic Forces on a Curved Surface 

• When a surface is curved, one can find the pressure force by applying force equilibrium to 
a free body comprised of the fluid in contact with the surface. 

The Buoyant Force 
• The buoyant force is the pressure force on a body that is partially or totally submerged in a fluid. 

• The magnitude of the buoyant force is given by 

Buoyant force = Fn = Weight of the displaced fluid 

• The center of buoyancy is located at the center of gravity of the displaced fluid. The 
direction of the buoyant force is opposite the gravity vector. 

• When the buoyant force is due to a single fluid with constant density, the magnitude of the 
buoyant force is: 

Hydrodynamic Stability 
• Hydrodynamic stability means that if an object is displaced from equilibrium then there is 

a moment that causes the object to return to equilibrium. 

• The criteria for stability are 

~ Immersed object. The body is stable if the center of gravity is below the center of buoyancy. 

~ Floating object. The body is stable if the metacentric height is positive. 
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PROBLEMS 

?iJ/s Problem available in Wiley PLUS at instructor's discretion. 

Describing Pressure (§3.1) 

3.1 PNs Apply the grid method (§ 1.5 inCh. 1) to each situation. 

a. If pressure is 6 inches of water (vacuum), what is gage 
pressure in kPa? 

;;-- Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

b. lf the pressure is 180 kPa abs, what is the gage pressure in psi? 

c. If gage pressure is 0.4 bar, what is absolute pressure in psi? 

d. [fa person's blood pressure is 96 mm Hg, what is their 
blood pressure in kPa abs? 



.---. 
'.2 PLu•s A 100 mm diameter sphere contains an ideal gas at 20°C. 
:'-pply the grid method(§ 1.5 inCh. 1) to calculate the density in 
.:nits of kg/ m3

. 

a. Gas is helium. Gage pressure is 20 in H20. 

b. Gas is methane. Vacuum pressure is 3 psi. 

3.3 pDfs For the questions below, assume standard atmospheric 
pressure. 

a. For a vacuum pressure of 30 kPa, what is the absolute 
pressure? Gage pressure? 

b. For a pressure of 13.8 psig, what is the pressure in psia? 

c. For a pressure of 200 kPa gage, what is the absolute 
pressure in kPa? 

d . Give the pressure 100 psfg in psfa. 

! 4. ;?u-s The local atmospheric pressure is 99.0 kPa. A gage on 
m oxygen tank reads a pressure of 300 kPa gage. What is the 
ressure in the lank in kPa abs? 

~.5 Using §3.1 and other resources, answer the following 
~estions. Strive for depth, clarity, and accuracy while also 
~ombining sketches, words, and equations in ways that enhance 
!e effectiveness of your communication. 

a. What are five important facts that engineers need to 
know about pressure? 

b. What are five common instances in which people use 
gage pressure? 

c. What are the most common units for pressure? 

d. Why is pressure defined using a derivative? 

e. How is pressure similar to shear stress? How does 
pressure differ from shear stress? 

'·6 ~The Crosby gage tester shown in the figure is used 
· calibrate or to test pressure gages. When the weights and the 
:- ·ton together weigh 140 N, the gage being tested indicates 
.:.00 kPa. If the piston diameter is 30 mm, what percentage of 
aror exists in the gage? 

Air 

Oil 

PROHl.b\1 3.6 

:; - pDfs As shown, a mouse can use the mechanical advantage 
-ovided by a hydraulic machine to lift up an elephant. 

a. Derive an algebraic equation that gives the mechanical 
advantge of the hydraulic machine shown. Assume the 
pistons are friction less and massless. 

b. A mouse can have a mass of 25 g and an elephant a mass 
of7500 kg. Determine a value of D1 and D2 so that the 
mouse can support the elephant. 

,__...,___Mouse with 
mass m1 

D2 
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Elephant with 
mass m2 

Piston (2 pl,.ces) 

Hydraulic fluid 

3.8 Find a parked automobile for which you have information 
on tire pressure and weight. Measure the area of tire contact 
with the pavement. Next, using the weight information and tire 
pressure, use engineering principles to calculate the contact 
area. Compare your measurement with your calculation and 
discuss. 

Deriving and Applying the Hydrostatic Equation (§3.2) 
3.9 P"Jis 1o derive the hydrostatic equation, which of the 
following must be assumed? (Select all that are correct.) 

a. the specific weight is constant 

b. the fluid has no charged particles 

c. the fluid is at equilibrium 

3.10 Imagine two tanks. Tank A is filled to depth h with 
water. Tank B is filled to depth h with oil. Which tank has the 
largest pressure? Why? Where in the tank does the largest 
pressure occur? 

3.11 Consider Figure 3.8 on p. 67 of §3.2. 

a. Which fluid has the larger density? 

b. lf you graphed pressure as a function of z in these two 
layered liquids, in which fluid does the pressure change 
more with each incremental change in z? 

3.12 Pds Apply the grid method (§1.5 in Ch. l ) with the 
hydrostatic equation (tlp = 'Ytlz) to each of the following 
cases. 

a. Predict the pressure change t:.p in kPa for an elevation 
change tlz of I 0 ft in a fluid with a density of 90 lbm/ft 1. 

b. Predict the pressure change in psf for a fluid with S = 0.8 
and an elevation change of 22 m. 

c. Predict pressure change in inches of water for a fluid 
with a density of 1.2 kg/m3 and an elevation change of 
1000 ft. 

d. Predict the elevation change in millimeters for a fluid 
with S = 13 that corresponds to a change in pressure of 
l /6atm. 

......... 
3.13 P'L u·s Using §3.2 and other resources, answer the following 
questions. Strive for depth, clarity, and accuracy while also 
combining sketches, words, and equations in ways that enhance 
the effectiveness of your communication. 
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a. What does hydrostatic mean? How do engineers identify 
whether a fluid is hydrostatic? 

b. What are the common forms on the hydrostatic 
equation? Are the forms equivalent or are they 
different? 

c. What is a datum? How do engineers establish a datum? 

d. What are the main ideas of Eq. (3.10) on p. 66 of §3.2? 
That is, what is the meaning of this equation? 

e. What assumptions need to be satisfied to apply the 
hydrostatic equation? 

3.14 7o" Apply the grid method to each situation. 

a. What is the change in air pressure in pascals between 
the floor and the ceiling of a room with walls that are 
10 ft tall. 

b. A diver in the ocean (S = 1.03) records a pressure of 
2.5 atm on her depth gage. How deep is she? 

c. A hiker starts a hike at an elevation where the air pressure 
is 940 mbar, and he ascends 1200 ft to a mountain sum­
mit. Assuming the density of air is constant, what is the 
pressure in mbar at the summit? 

d. Lake Pend Oreille, in northern Idaho, is one of the deepest 
lakes in the world, with a depth of 350 m in some 
locations. 'fl1is lake is used as a test faci lity for submarines. 
What is the maximum pressure that a submarine could 
experience in this lake? 

e. A 70 m tall standpipe (a standpipe is vertical pipe that is 
filled with water and open to the atmosphere) is used 
to supply water for fire fighting. What is the maximum 
pressure in the standpipe? 

3.15 ffi!s As shown, an air space above a long tube is pressurized 
to 50 kPa vacuum. Water (20°C) from a reservoir fills the tube to 
a height h. If the pressure in the air space is changed to 25 kPa 
vacuum, will h increase or descrease and by how much? Assume 
atmospheric pressure is 100 kPa. 

Wat<r 

PROBLEM 3.15 

3.16 ms For the closed tank with Bourdon-tube gages tapped 
into it, what is the specific gravity of the oil and the pressure 
reading on gage C? 

PA = 50.0 kPa 

PR ~ 5K.5 kPa 
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3.17 This manometer contains water at room temperature. The 
glass tube on the left has an inside diameter of 1 mm (d = 1.0 mm). 
The glass tube on the right is three times as large. For these 
conditions, the water surface level in the left tube will be 
(a) higher than the water surface level in the right tube, 
(b) equal to the water surface level in the right tube, or (c) less 
than the water surface level in the right tube. State your main 
reason or assumption for making your choice. 

d 3d 
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3.18 ffi•s Tf a 200 N force f 1 is applied to the piston with the 
4 ern diameter, what is the magnitude of the force F2 that can be 
resisted by the piston with the 10 em diameter? Neglect the 
weights of the pistons. 

r- I 0 em diam<ter 

r 
2m 

l Vertical 

Oil (S = 0.85) 

1+--~~-- 2.2 m ------1 

PROBLEM 3.lll 

3.19 Regarding the hydraulic jack in Problem 3.18, which ideas 
were used to analyze the jack? (select all that apply) 



a. pressure = (force)(area) 

b. pressure increases linearly with depth in a hydrostatic fluid 

c. the pressure at the very bottom of the 4-cm chamber is larger 
than the pressure at the very bottom of the I 0-cm chamber 

d. when a body is stationary, the sum of forces on the object 
is zero 

e. when a body is stationary, the sum of moments on the 

object is zero 

f. pressure= (weight/volume)( change in elevation) 

~ 10 Some skin divers go as deep as 50 m. What is the gage 
:'Cessure at this depth in fresh water, and what is the ratio of the 
1.0solute pressure at tllis depth to normal atmospheric pressure? 

usume T = 20°C. 

J .11 ;ill;s Water occupies the bottom 0.8 m of a cylindrical lank. 

. n lop of the water is 0.3 m of kerosene, which is open to the 
.:mosphere. If the temperature is 20°C, what is the gage pressure 

u the bottom of the tank? 

'.22 An engineer is designing a hydraulic lift with a capacity of 
.v tons. The moving parts of this lift weigh 1000 lbf. The lift 
itx>U!d raise the load to a height of 6 ft in 20 seconds. This will be 

J.:complished with a hydraulic pump that delivers fluid to a 
:Iinder. Hydraulic cylinders with a stroke of 72 inches are 

_ ·ailable with bore sizes from 2 to 8 inches. Hydraulic piston 
u.mps with an operating pressure range from 200 to 3000 psig 
~available with pumping capacities of 5, 10, and 15 gallons per 

IDlJlute. Select a hydraulic pump size and a hydraulic cylinder 
.u that can be used for this application. 
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Hydmulic oil 
(return line) 

Piston slop 

l lydraulic 011 
(from pump) 

· -23 ~ A tank with an attached manometer contains water at 
_""C. The atmospheric pressure is 100 kPa. There is a stopcock 

ocated 1 m from the surface of the water in the manometer. The 
·opcock is closed, trapping the air in the manometer, and water 
added to the tank to the level of the stopcock. Find the increase 

'l elevation of the water in the manometer assuming the air in 
~ manometer is compressed isothermally. 
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T 
lm 

l~ 

Initial Final 
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3.24 ft:lrs A tank is fitted with a manometer on the side, as 
shown. 1he liquid in the bottom of the tank and in the manometer 
has a specific gravity (S) of 3.0. The depth of tllis bottom liquid is 
20 em. A 15 ern layer of water lies on top of the bottom liquid. 
Find the position of the liquid surface in the manometer . 

\J 
T 1 15 em Water 

t 
llh='l 

--
1 

20cm f>u).O 

l '--

PROBLeM 3.24 

,......_ 
3.25 PLils As shown, a load acts on a piston of diameter D 1 • 

The piston rides on a reservoir of oil of depth h1 and specific 
gravity S. The reservoir is connected to a round tube of diameter 
D2 and oil rises in the tube to height h2. The oil in tl1e tube is 

open to atmosphere. Derive an equation for the height h2 in 
terms of the weight W of the load and other relevant variables. 
Neglect the weight of the piston. 

3.26 As shown, a load of mass 5 kg is situated on a piston of 

diameter D1 = 120 mm. The piston rides on a reservoir of oil of 
depth ht = 42 mm and specific gravity S = 0.8. The reservoir is 

connected to a round tube of diameter D2 = 5 mm and oil rises 
in the tube to height h2. Find h2• Assume the oil in the tube is 
open to atmosphere and neglect the weight of the piston. 

Weight 
Oil 

Piston 

PROB! L\tS 3.25, 3.26 
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3.27 ~What is the maximum gage pressure in the odd tank 
shown in the figure? Where will the maximum pressure occur? 
What is the hydrostatic force acting on the top (CD) of the last 
chamber on the right-hand side of the tank? Assume T = 10°C. 

Opent{> I 
atmosphere \ 

L\ I ! 
Plan VICW (View£-£) 

Open to atmosphere 

f """''"' / : lim 

r-- 2m--t-J m-J 
C D 

S = 3.0 

Water 

Liquid 

Elevation view 
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3.28 fri!s The steel pipe and steel chamber shown in the figure 
together weigh 600 lbf. What force will have to be exerted on the 
chamber by all the bolts to hold it in place? The dimension e is 
equal to 2.5 ft. Note: ll1ere is no bottom on the chamber-only a 
flange bolted to the floor. 

PROHLEM 3.28 

3.29 What force must be exerted through the bolts to hold the 
dome in place? The metal dome and pipe weigh 6 kN. The dome 
has no bottom. Here e = 80 em and the specific weight of 
the water is -y = 9810 N/m3

. 

PROTH.EM t29 

3.30 Find the vertical component of force in the metal at the 
base of the spherical dome shown when gage A reads 5 psig. 
Indicate whether the metal is in compression or tension. The 
specific gravity of the enclosed fluid is 1.5. lhe dimension L 
is 2 ft. Assume the dome weighs 1000 lbf. 

Liquid (S •d .5) 
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3.31 db" The piston shown weighs I 0 lbf. In its initial position, 
the piston is restrained from moving to the bottom of the 
cylinder by means of the metal stop. Assuming there is neither 
friction nor leakage between piston and cylinder, what volume of 
oil (S = 0.85) would have to be added to the I in. tube to cause 
the piston to rise I in. from its initial position? 

Stop 

I in (ID) lUbe 

Oil (S ~ 0 .85) 

4 in (!D) cylindor 
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3.32 Consider an air bubble rising from the bottom of a lake. 
Neglecting surface tension, determine approximately what the 
ratio of the density of the air in the bubble will be at a depth of 
34 ft to its density at a depth of 8 ft. 



3.33 One means of determining the surface level of liquid in a 
:.ank is by discharging a small amount of air through a small 
-:~be, the end of which is submerged in the tank, and reading the 
~ssure on the gage that is tapped into the tube. Then the level 
i the liquid surface in the tank can be calculated. If the pressure 
n the gage is IS kPa, what is the depth d of liquid in the tank? 

J Liquid _1_ 
L ~___<S_=_o._ss_>_o_o_o....J -T 
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Calculating Pressure in the Atmosphere (§3.2) 

3.34 For Fig. 3.9 on p. 70 of §3.2 that describes temperature 
"afiation with altitude, answer the following questions. 

a. Does the linear approximation relating temperature to 
altitude apply in the troposphere or the stratosphere? 

b. At approximately what altitude in the earth's atmosphere 
does the linear approximation for temperature variation fail? 

3.3S The boiling point of water decreases with elevation because 
f the prcssun:: change. What is the boiling point of water at an 

d evation of 2000 m and at an elevation of 4000 m for standard 
mnospheric conditions? 

3.36 From a depth of 10m in a lake to an elevation of 4000 min 
the atmosphere, plot the variation of absolute pressure. Assume 
that the lake water surface elevation is at mean sea level and 
.iSSume standard atmospheric conditions. 
~ th '\.37 P _L Us Assume that a woman must brea e a constant mass 

rate of air to maintain her metabolic processes. lf she inhales and 
exhales 16 times per minute at sea level, where the temperature is 
; 9"F (lS0C) and the pressure is 14.7 psia (101 kPa), what would 
"'U expect her rate of breathing at 18,000 ft (S486 m) to be? Use 
-tandard atmospheric conditions. 

3.38 A pressure gage in an airplane indicates a pressure of 
95 kPa at takeott: where the airport elevation is 1 km and the 
:em perature is l0°C. If the standard lapse rate of S.87°C/km is 
J.:>Sumed, at what elevation is the plane when a pressure of 7S kPa 
a read? What is the temperature for that condition? 

3.39 Denver, Colorado, is called the "mile· high" city. What are 
the pressure, temperature, and density of the air when standard 
mnospheric conditions prevail? Give your answer in traditional 
m d SI units. 

3.40 h'U-s An airplane is flying at 10 km altitude in a U.S. 
tandard atmosphere. If the internal pressure of the aircraft 
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interior is 100 kPa, what is the outward force on a window? 
The window is flat and has an elliptical shape with lengths 
of 300 mm along the major axis and 200 mm along the 
minor axis. 

3.41 The mean atmospheric pressure on the surface of Mars 
is 7 mbar, and the mean surface temperature is -63°C. The 
atmosphere consists primarily of C02 (9S.3%) with small 
amounts of nitrogen and argon. The acceleration due to 
gravity on the surface is 3.72 m/s2

• Data from probes entering 
the Martian atmosphere show that the temperature variation 
with altitude can be approximated as constant at -63°C from 
the Martian surface to 14 km, and then a linear decrease with 
a lapse rate of I.S°C/km up to 34 km. find the pressure at 
8 km and 30 km altitude. Assume the atmosphere is pure 
carbon dioxide. Note that the temperature distribution in 
the atmosphere of Mars differs from that of Earth because the 
region of constant temperature is adjacent to the surface and the 
region of decreasing temperature starts at an altitude of 14 km. 

3.42 Design a computer program that calculates the pressure 
and density for the U.S. standard atmosphere from 0 to 30 km 
altitude. Assume the temperature profiles are linear and are 
approximated by the following ranges, where z is the altitude in 
kilometers: 

0- 13.72 km 

13.7-16.8 km 

16.8- 30 km 

T = 23.1 - S.87z (°C) 

'J' = - S7.5°C 

T = - S7.5 + 1.387(z - 16.8tC 

Measuring Pressure (§3.3) 

3.43 Match the following pressure-measuring devices with the 
correct name. The device names arc: barometer, Bourdon gage, 
piezometer, manometer, and pressure transducer. 

a. A vertical or U-shaped tube where changes in pressure 
are documented by changes in relative elevation of a 
liquid that is usually denser than the fluid in the system 
measured; can be used to measure vacuum . 

b. Typically contains a diaphragm, a sensing element, and 
conversion to an electric signal. 

c. A round face with a scale to measure needle deflection, 
where the needle is deflected by changes in extension of a 
coiled hollow tube. 

d. A vertical tube where a liquid rises in response to a 
positive gage pressure. 

e. An instrument used to measure atmospheric pressure; of 
various designs. 

Applying the Manometer Equations (§3.3) 

3.44 Ms Which is the more correct way to describe the two 
summation (I) terms of the manometer equation, Eq (3.21) on 
p. 74 of §3.3? 

a. Add the downs and subtract the ups. 

b. Subtract the downs and add the ups. 
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3.45 fLVs Using the Internet and other resources, answer the 
following questions: 

a. What are three common types of manometers? For each 
type, make a sketch and give a brief description. 

b. How would you build a manometer from materials that 
are commonly available? Sketch your design concept. 

3.46 ftlrs As shown, gas at pressure Pg raises a column of 
liquid to a height h. The gage pressure in the gas is given by 
Pg = 'Yhquidh. Apply the grid method (p. 00) to each situation that 
follows. 

a. The manometer uses a liquid with S = 1.3. Calculate 
pressure in psia for h = 1 ft. 

b. The manometer uses mercury. Calculate the column rise 
in mm for a gage pressure of 0.25 atm. 

c. The liquid has a density of 30 lbm/ft1
. Calculate pressure 

in psfg for h = 4 inches. 

d. The liquid has a density of 800 kglm3
• Calculate the gage 

pressure in bar for h = 3 m. 

Gas at pressure Ps: 

I 
PROBLEM 3.46 

3.47 i'rVs Is the gage pressure at the center of the pipe (a) negative, 
(b) zero, or (c) positive? Neglect surface tension effects and state 

your rationale. 

Specific gmvoty = 1.00 

---,-
6 in 

-+ 
12 in 
l_ 

l 
30in 

J 
Specific gravity = 2.00 
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3.48 Determine the gage pressure at the center of the pipe (point A) 
in pounds per square inch when the temperature is 70°F with 
ht = 16in.andh2 = 2in. 

T 
L 

/ Pipe (secnon voew) 

0 

j_ 

t 
Mercuty 

PROBLEM 3.18 

3.49 'flirs Considering the effects of surface tension, estimate 
the gage pressure at the center of pipe A for h = 120 mm and 
T = 20°C. 

Glass tub.: (0.5 mm I D. 4 mm 00) 

r 
Water le\ el on tune 

h 

1 A 
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3.50 ;ru-s What is the pressure at the center of pipe B? 

y - JOkNiml 

PROBLEM 3.50 

3.5 1 The ratio of container diameter to tube diameter is 8. When 
air in the container is at atmospheric pressure, the free surface in 
the tube is at position I. When the container is pressurized, the 



liquid in the tube moves 40 em up the tube from position 1 to 
"'OSition 2. What is the container pressure that causes this 
deflection? The liquid density is 1200 kg!m3

• 

3.52 The ratio of container diameter to tube diameter is I 0. 
·\'hen air in the container is at atmospheric pressure, the free 
-urface in the tube is at position I. When the container is 
:-ressurized, the liquid in the tube moves 3 ft up the tube from 
position I to position 2. What is the container pressure that causes 
this deflection? The specific weight of the liquid is 50 lbf/ft1. 

PROBLl:..\.~ 3.51, 3.52 

3.53 ~s Determine the gage pressure at the center of pipe A in 
;>ounds per square inch and in k.ilopascals. 

T Water 

Alr I OOcm 3.28 ft 

~ ~ 
4U cm 1.31 fl 
_L _L 

3.54 A device for measuring the specific weight of a liquid 
-onsists of a U-tube manometer as shown. 1he manometer tube 
"'as an internal diameter of0.5 em and originally has water in it. 
::.Xactly 2 em 1 of unknown liquid is then poured into one leg of 

"!e manometer, and a displacement of 5 em is measured between 
~e surfaces as shown. What is the specific weight of the 
~nknown liquid? 

T 
Unknown liquid 

0.5 em 

Water 

PROBLbvl 3.51 
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3.55 Mercury is poured into the tube in the figure until the 
mercury occupies 375 nun of the tube's length. An equal volume of 
water is then poured into the left leg. Locate the water and mercury 
surfaces. Also determine the maximwn pressure in the tube. 

j.- 160 rmn ......J 

......- Umform 
diameter rube 
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3.56 P LJs Find the pressure at the center of pipe A. T = I 0°C. 

Oil (S = 0.8) 

r T Water 

90cm I 50 em Water 

1 Mercury !lOom 
($ = 13.6) 30cm 
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3.57 Determine (a) the difference in pressure and (b) the 
difference in piezometric head between points A and B. The 
elevations zA and z8 are 10m and II m, respectively, et = l m , 
and the manometer deflection f 2 is 50 em. 

PRORI F ,\1 3 'i7 

3.58 The deflection on the manometer is h meters when the 
pressure in the tank is 150 kPa absolute. If the absolute pressure in 
the tank is doubled, what will the deflection on the manometer be? 
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Gas 

p = 150 kPn abs l_ 
h 

T 

PROI\1.1 .• "'1 3.58 

Allllosphenc 

pressure = I 00 kPa abs 

Manometer 
liqutd 

3.59 Pds A vertical conduit is carrying oil (S = 0.95). 
A differential mercury manometer is tapped into the conduit at 
points A and R. Determine the difference in pressure between 
A and B when h = 3 in. What is the difference in piezometric 
head between A and 8? 

1 
IS in 

Oil j 
2 in 

-t 
h= 3 in 

_l_ 

Mercury 
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3.60 Two water manometers are connected to a tank of air. One 
leg of the manometer is open to I 00 kPa pressure (absolute) 
while the other leg is subjected to 90 kPa. Find the difference in 
deflection between both manometers, CJ.h. - CJ.hb. 

0.9Pntm 

! 
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3.61 A manometer is used to measure the pressure difference 
between points A and B in a pipe as shown. Water flows in the pipe, 
and the specific gravity of the manometer fluid is 2.8. The distances 
and manometer deflection are indicated on the figure. Find (a) 
the pressure differences PA - p8 , and (b) the difference in 
piezometric prcssure,pz,A - Pt.H· Express both answers in kPa. 

PROBJ r \I l.ol 

3.62 A novelty scale for measuring a person's weight by having 
the person stand on a piston connected to a water reservoir and 
stand pipe is shown in the diagram. The level of the water in the 
stand pipe is to be calibrated to yield the person's weight in 
pounds force. When the person stands on lhe scale, the height of 
the water in the stand pipe should be near eye level so the person 
can read it. There is a seal around the piston that prevents leaks 
but docs not cause a significant frictional force. The scale should 
function for people who weigh between 60 and 250 lbf and arc 
between 4 and 6 feet tall. Choose the piston size and standpipe 
diameter. Clearly stale the design features you considered. 
Indicate how you would calibrate the scale on the standpipe. 
Would the scale be linear? 

Water 

PROBLEM J.62 

Applymg the Panel Force Equations (§3.4) 
3.63 Using §3.4 and other resources, answer the que~tions 

below. Strive for depth, clarity, and accuracy while also 
combining sketches, words, and equations in ways that enhance 
the effectiveness of your communication. 

a. For hydrostatic conditions, what do typical pressure 
distributions on a panel look like? Sketch three examples 
that correspond to different situations. 



b. What is a center of pressure (CP)?What is a centroid of area? 

c. In Eq. (3.28) on p. 80 of *3.4, what does p mean? What 
factors influence the value of p? 

d. What is the relationship between the pressure distribu­
tion on a panel and the resultant force? 

e. How far is the CP from the centroid of area? What factors 
influence this distance? 

3.64 ~ Part 1. Consider the equation for the distance 
Oetween the CP and the centroid of a submerged panel 
Eq. (3.33) on p. 81 of §3.4). In that equation, y ep is 

a. the vertical distance from the water surface to the CP. 

b. the slant distance from the water surface to the CP. 

Part 2. Consider the figure shown. For case 1 as shown, the viewing 
.~indow on the front of a submersible exploration vehicle is at 
a depth of 11- For case 2, the submersible has moved deeper in 
:he ocean, to Yz- As a result of this increased overall depth of the 
submersible and its window, does the spacing between the CP and 
.:entroid (a) get larger, (b) stay the same, or (c) get smaller? 

y, 

Case I Case 2 
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3.65 Which of these assumptions and/or limitations must be 
mown when using Eq. (3.33) on p. 81 of §3.4 for a submerged 
-urface or panel to calculate the distance between the centroid of 
::he panel and the center of pressure of the hydrostatic force 
select all that apply): 

a. The equation only applies to a single fluid of constant density 

b. The pressure at the surface must be p = 0 gage 

c. The panel must be vertical 

d. The equation gives only the vertical location (as a slant 
distance) to the CP, not the lateral distance from the edge 
of the body 

3.66 7U/s Two cylindrical tanks have bottom areas A and 4A 

""eSpectively, and are filled with water to the depths shown. 

a. Which tank has the higher pressure at the bottom of the tank? 

b. Which tank has the greater force acting downward on the 
bottom circular surface? 

3.67 Ms What is the force acting on the gate of an irrigation 
.:.;tch if the ditch and gate are 4 ft wide, 4ft deep, and the ditch is 
.:ompetely full of water? There is no water on the other side of 
:.:.e gate. The weather has been hot for weeks, so the water is 70°F. 

PROBLEMS 1 03 

1 ~ 
h -r~~------~ 

l '----.--l \ j L....---~--l 
Area A '\Area 4A 

Tank 1 Tank 2 
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3.68 Ws Consider the two rectangular gates shown in the 
figure. They are both the same size, but gate A is held in place by 
a horizontal shaft through its midpoint and gate B is cantilevered 
to a shaft at its top. Now consider the torque T required to hold 
the gates in place as His increased. Choose the valid statement(s): 
(a) TA increases with H. (b) T8 increases with H. (c) TA does not 
change with H. (d) T8 does not change with H. 

3.69 i~~S For gate A, choose the statements that are valid: 
(a) The hydrostatic force acting on the gate increases asH 
increases. (b) The distance between the CP on the gate and the 
centroid of the gate decreases as H increases. (c) The distance 
between the CP on the gate and the centroid of the gate remains 
constant asH increases. (d) 1he torque applied to the shaft to 
prevent the gate from turning must be increased as H increases. 
(e) The torque applied to the shaft to prevent the gate from 
turning remains constant as H increases. 

Atmospheric 
pressure 

PROBLf.MS .Hi8, 3.69 

Atmospheric 
pn:ssure 

3.70 Ms As shown, water (15°C) is in contact with a square 
panel; d = I m and h = 2 m. 

a. Calculate the depth of the centroid 

b. Calculate the resultant force on the panel 

c. Calculate the distance from the centroid to the CP. 

PROBLEM 3.70 
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3.71 ~As shown, a round viewing window of diameter 
D = 0.5 m is situated in a large tank of seawater (S = 1.03). The top 
of the window is 1.5 m below the water surface, and the window is 
angled at 60° with respect to the horizontal. Find the hydrostatic 
force acting on the window and locate the corresponding CP. 
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3.72 ift.Vs Find the force of the gate on the block. See sketch. 

" 
r;:'"" 

-
' 

Water ~ 

!Om ; 
4m x4mgatc 

I . , f . . ( -
2m II 

l'ivot 
2m .. 
I· . \ ~ • 0 l 

\ 
.. 'I. ~~ - ... 

Block . • . -· 
PROBLEM 3.72 

3.73 Assume that wet concrete (-y = 150 lbf/ft3) behaves as a liquid. 
Determine the force per unit foot of length exerted on the forms. If 
the forms are held in place as shown, with ties between vertical 
braces spaced every 2ft. what force is exerted on the bottom tie? 

r 
9ft 

t 

Top tie 

. . 

· V Brace 

. . vF orm 

·"'" 
·" 

~ ... 
. 

/ Concrete 

Bottom 
tie 

PROBLEM 3.73 

3.74 ;;:n;s A rectangular gate is hinged at the water line, as 
shown. The gate is 4 ft high and 8 ft wide. The specific weight of 
water is 62.4lbf/ft 3

. Find the necessary force (in lbf) applied at 
the bottom of the gate to keep it dosed. 

1 
Hinge 

4ft 

1 
PROBLEM~ 74 

3.75 The gate shown is rectangular and has dimensions 6 m by 4 m. 
What is the reaction at point A? Neglect the weight of the gate. 

Water 

Atmospheric 
pressure 

PROBLEM 3.71 

3.76 1ftVs Determine P necessary to just start opening the 
2m- wide gate. 

PROBLEM 3.7h 

3.77 ~s The square gate shown is eccentrically pivoted so that 
it automatically opens at a certain value of h. What is that value 
in terms of C? 

Water 

Pivot 

Atmospheric 
pressure 

Stop 

PROBLLM 3.-7 



3.78 ?a- This l 0 ft-diameter butterfly valve is used to 
.:ontrol the flow in a 10ft- diameter outlet pipe in a dam. In 
:he position shown, it is closed. The valve is supported by a 
'lorizontal shaft through its center. What torque would have 
:o be applied to the shaft to hold the valve in the position 
;.nown? 

pn:ssure 

I 0 ft diameter 

PRORT EM 3.7R 

~ h h 0 d J.79 Pl.US Fort egate s own,a = 45 ,y1 = lm, an y2 = 4m. 
~,~ill the gate fall or stay in position under the action of the 
-vdrostatic and gravity forces if the gate itself weighs 150 kN 
and is 1.0 m wide? Assume T = 10°C. Use calculations to 

~ify your answer. 

~ h' 0 3ft d ft J.BO PLUS Fort 1sgate, a = 45 ,y1 = ,an Y2 = 6 . . 

-.\"ill the gate fall or stay in position under the action of the 
"'Ydrostatic and gravity forces if the gate itself weighs 18,000 Jb 
.od is 3 ft wide? Assume T = 50°F. Use calculations to justify 
our answer. 

T Water 

y, 

PROBLEMS 3.79, 3.80 

'..81 Determine the hydrostatic force F on the triangular gate, 
-b.ich is hinged at the bottom edge and held by the reaction Rr 
· the upper corner. Express Fin terms of -y, h, and W Also 

;aermine the ratio Rrl F. Neglect the weight of the gate. 

A 

r 

L 
A 

View A-A 

PROBLEM 3.Rl 

PROBLEMS 1 05 

3.82 hits ln constructing dams, the concrete is poured in lifts 
of approximately 1.5 m ( y1 = 1.5 m). The forms for the face of 
the dan1 are reused from one lift to the next. The figure shows 
one such form, which is bolted to the already cured concrete. For 
the new pour, what moment will occur at the base of the form 
per meter of length (normal to the page)? Assume that concrete 
acts as a liquid when it is first poured and has a specific weight of 
24 kN/m3

. 

New pour level 

--(------

Cured 

concrete 

PROBl EM 3.82 

3.83 1he plane rectangular gate can pivot about the support at B. 
For the conditions given, is it stable or unstable? Neglect the 

weight of the gate. Justify your answer with calculations. 

Sm 

PROBTFM 3.83 

Calculating Pressure on Curved Surfaces (§3.5) 

3.84 Ws Two hemispheric shells are perfectly sealed together, 
and the internal pressure is reduced to 25% of atmospheric 
pressure. The inner radius is 10.5 em, and the outer radius is 
10.75 em. The seal is located halfway between the inner and 
outer radius. If the atmospheric pressure is 101.3 kPa, what force 

is required to pull the shells apart? 

3.85 If exactly 20 bolts of 2.5 em diameter are needed to hold 

the air chamber together at A·A as a result of the high pressure 
within, how many bolts will be needed at B-B? Here D = 40 em 

and d = 20cm. 

A A 

PROBLEM 3.85 



3.86 For the plane rectangular gate (C X win ~ize), figure (a), 

what is the magnitude of the reaction at A in terms of -y,.. and 
the dimensions£ and w? For the cylindrical gate, figure (b) , will 
the magnitude of the reaction at A be greater than, less than, or 
the same as that for the plane gate? Neglect the weight of the 
gates. 

Water lhngc 

B 

Rectangular 
gate 

(a) Plane gat• 

(b) Curved gate 

PROBLE~f 3JI6 

Smooth 
boundary 

Smooth 
boundary 

3.87 Water is held back by this radial gate. Does the resultant of 
the pressure forces acting on the gate pass above the pin, through 
the pin, or below the pin? 

Water 

PROnl E~l 3.87 

3.88 For the curved surface AB: 

Pm (center of 
curvature of gate) 

a. Determine the magnitude, direction, and line of action of 
the vertical component of hydrostatic force acting on the 
surface. Here f = 1 m. 

b. Determine the magnitude, direction, and line of action of 
the horizontal component of hydrostatic force acting on 
the surface. 

c. Determine the resultant hydrostatic force acting on the 
surface. 

Surface ts I m 
lung (normal to page) 

Water 

PROIH £· :Vl 3.88 

1 
e 

l 

3.89 Determine the hydrostatic force acting on the radial gate if 
the gate is 40ft long (normal to the page). Show the line of action 

of the hydrostatic force acting on the gate. 

I'ROni 1 ~.\l 3.R9 

3.90 ~s A plug in the shape of a hemisphere is inserted in a 
hole in the side of a tan k as shown in the figure. The plug is 

sealed by an 0-ring with a radius of 0.2 m. The radius of the 
hemispherical plug is 0.25 m. The depth of the center of the plug 
is 2 m in fresh water. Find the horizontal and vertical forces on 
the plug due to hydrostatic pressure. 

0 -ring 

PROBI.I:-.M 3.90 

3.91 Ms This dome (hemisphere) is located below the water 
surface as shown. Determine the magnitude and sign of the force 
components needed to hold the dome in place and the line of 
action of the horizontal component of force. Here Yt = 1 m 
and y2 = 2 m. Assume T = 10°C. 



3.92 Consider the dome shown. This dome is 10ft in diameter, 
!Jut now the dome is not submerged. The water surface is at the 
lf'Vel of the center of curvature of the dome. For these comlitions, 
:!etennine the magnitude and direction of the resultant 
vdrostatic force acting on the dome. 

Homi· 
Y2 spherical 

J dome 

PROBLl:.M 3.91, 3.92 

Calculating Buoyant Forces {§3.6) 

3.93 Apply the grid method(* 1.5 inCh. I) to each situation 
-.elow. 

a. Determine the buoyant force in newtons on a basketball 
that is floating in a lake {10°C). 

b. Determine the buoyant force in newtons on a 1 mm 
copper sphere that is immersed in kerosene. 

c. Determine the buoyant force in newtons on a 12 inch­
diameter balloon. The balloon is filled with helium and 
situated in ambient air (20°C). 

3.94 Using §3.6 and other resources, answer the following 
i'lestions. Strive for depth, clarity, and accuracy while also 

.:r:>mbining sketches, words, and equations in ways that enhance 
~e effectiveness of your commw1ication. 

a. Why learn about buoyancy? That is, what are important 
technical problems that involve buoyant forces? 

b. For a buoyant force, where is the CP? Where is the line 
of action? 

c. What is displaced volume? Why is it important? 

d. What is the relationship between pressure distribution 
and buoyant force? 

'.95 Three spheres of the same diameter are submerged in the 
.l.llle body of water. One sphere is steel, one is a spherical 
.illoon filled with water, and one is a spherical balloon filled 
'lth air. 

a. Which sphere has the largest buoyant force? 

b. If you move the steel sphere from a depth of 1 ft to 10 ft, 
what happens to the magnitude of the buoyant force 
acting on that sphere? 

c. Tf all 3 spheres are released from a cage at a depth of I m, 
what happens to the 3 spheres, and why? 

PROBLEMS 107 

3.96 As shown, a uniform-diameter rod is weighted at one end 
and is floating in a liquid. The liquid (a) is lighter than water, 
(b) must he water, or {c) is heavier than water. Show your work. 

l'ROBLI:M 3.96 

3.97 AVs An 800 ft ship has a displacement of 35,000 tons, and 
the area defined hy the waterline is 38,000 ft2

• Will the ship take 
more or less draft when steaming from salt water to fresh water? 
How much will it settle or rise? 

3.98 lfrVs A submerged spherical steel buoy that is 1.2 m in 
diameter and weighs 1200 N is to be anchored in salt water 
20 m below the surface. Find the weight of scrap iron that 
should be sealed inside the buoy in order that the force on its 
anchor chain will not exceed 4.5 kN. 

3.99 A buoy is designed with a hemispherical bottom and 
conical top as shown in the figure. The diameter of the 
hemisphere is 1 m, and the half angle of the cone is 30°. The buoy 
has a mass of 460 kg. Find the location of the water line on the 
buoy floating in sea water {p = 1010 kg/mJ). 

PROBLEM 3.99 

3.100 iiD/s A rock weighs 925 N in air and 781 N in water. Find 
its volume. 

3.101 ifrtrs As shown, a cube (L = 60 mm) suspended in carbon 
tetrad or ide is exactly balanced by an object of mass m1 = 700 g. 
Find the mass m2 of the cube. 
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Balance beam sC<~Ie 

llluc~ with 
mass m1 

Cube with mass m2 

Carbon tetrachloride 

PROBLEM 3.101 

3.102 ;;:tU-s A block of material of unknown volume is 
submerged in water and found to weigh 300 N (in water). The 
same block weighs 700 N in air. Determine the specific weight 
and volume of the material. 

3.103 A I ft- diameter cylindrical Lank is filled with water to a 
depth of 2 ft. A cylinder of wood 5 in. in diameter and 2.5 in. long 
is set afloat on the water. 'I he weight of the wood cylinder is 21bf. 
Determine the change (if any) in the depth of the water in the tank. 

3.104 A 90° inverted cone contains water as shown. The volume 
of the water in the cone is given by V = ('1T/3)h3

• The original 
depth of the water is 10 em. A block with a volume of 200 cm3 

and a specific gravity of 0.6 is floated in the water. What will be 
the change (in em) in water surface height in the cone? 

PROBLEM 3.10,1 

?- fl 3.105 P1.US The oating platform shown is supported at each 
corner by a hollow scaled cylinder l m in diameter. The platform 
itself weighs 30 kN in air, and each cylinder weighs 1.0 kN per 
meter of length. What total cylinder length L is required for the 
platform to float 1 m above the water surface? Assume that the 
specific weight of the water (brackish) is 10,000 N/m3

• The 
platform is square in plan view. 

Floatmg 
platform 

Weight = 30 kN 
+--4------------~~---------+--~---

PROBLEM 3.105 

3.106 To what depth d will this rectangular block (with density 
0. 75 times that of water) float in the two-liquid reservoir? 

PROBLE~1 3.106 

3.107 Ms Determine the minimum volume of concrete 
(-y = 23.6 kN/m3) needed to keep the gate (I m wide) in a closed 
position, withe= 2m. Note the hinge at the bottom of the gate. 

( 

PROBLEM 3.107 

3.108 A cylindrical container 4ft high and 2ft in diameter holds 
water to a depth of 2 ft. How much does the level of the water in 
the tank change when a 5 lb block of ice is placed in the 
container? Is there any change in the water level in the tank when 

the block of ice melts? Does it depend on the specific gravity of 
the ice? Explain all the processes. 

3.109 Ms The partially submerged wood pole is attached to 
the wall by a hinge as shown. The pole is in equilibrium under 

the action of the weight and buoyant forces. Determine the 
density of the wood. 
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3.110 A gate with a circular cross section is held closed by a 
lever 1 m long attached to a buoyant cylinder. The cylinder is 
25 em in diameter and weighs 200 N. The gate is attached to a 
horizontal shaft so it can pivot about its center. The liquid is 
water. The chain and lever attached to the gate have negligible 
weight. Find the length of the chain such that the gate is just on 
the verge of opening when the water depth above the gate hinge 
is 10m. 

PROBLEM 3.110 

3.11 1 A balloon is to be used to carry meteorological 
mstruments to an elevation of 15,000 ft where the air pressure is 
S.l psi a. The balloon is to be filled with helium, and the material 
from which it is to be fabricated weighs O.Qllbf/ft2

• If the 
mstruments weigh 8lbf, what diameter should the spherical 
balloon have? 

3. 112 A weather balloon is constructed of a flexible material 
such that the internal pressure of the balloon is always 10 kPa 
hlgher than the local atmospheric pressure. At sea level the 
diameter of the balloon is 1 m, and it is filled with helium. The 
oalloon material, structure, and instruments have a mass of 
100 g. This does not include the mass of the helium. As the 
Oalloon rises, it will expand. The temperature of the helium is 
always equal to the local atmospheric temperature, so it 
decreases as the balloon gains altitude. Calculate the maximum 
.Uti tude of the balloon in a standard atmosphere. 

• 11easuring p, -y, and S with Hydrometers (§3.6) 

3.113 Ms The hydrometer shown weighs 0.015 N. If the stem 
sinks 6.0 em in oil (z = 6.0 em), what is the specific gravity of 
:he oil? 

PROBLEMS 1 09 

3.114 frVs The hydrometer shown sinks 5.3 em (z = 5.3 em) in 
water (15°C). The bulb displaces 1.0 cm3,and the stem area is 0.1 cm2

. 

Find the weight of the hydrometer. 

A = 0.1 cm2 

PROm EMS 3.113, 3.114 

3.115 ~A common commercial hydrometer for measuring 
the amount of antifreeze in the coolant system of an automobile 
engine consists of a chamber with differently colored balls. The 
system is calibrated to give the range of specific gravity by 
distinguishing between the balls that sink and those that float. 
The specific gravity of an ethylene glycol-water mixture varies 
from 1.012 to 1.065 for 10% to 50% by weight of ethylene glycol. 
Assume there are six balls, 1 em in diameter each, in the 
chamber. What should the weight of each ball be to provide 
a range of specific gravities between 1.01 and 1.06 with 
0.01 intervals? 

3.1 16 fNs A hydrometer with the configuration shown 
has a bulb diameter of 2 em, a bulb length of 8 em, a stem 
diameter of 1 em, a length of 8 em, and a mass of 40 g. What 
is the range of specific gravities that can be measured with this 
hydrometer? 

(Hint: Liquid levels range between bottom and top of stem.) 

---j 1-- I em diameter 

1 
8cm 

1 
~ 

2cm 
diameter 

PROBLtM 3.116 

Predicting Stability (§3.7) 

3.117 A barge 20ft wide and 40ft long is loaded with rocks as 
shown. Assume that the center of gravity of the rocks and barge 
is located along the centerline at the top surface of the barge. If 
the rocks and the barge weigh 400,000 lbf, will the barge float 
upright or tip over? 
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1-----20ft - ---l 

PROBLf.M 3.117 

3.11 8 A floating body has a square cross section with side was 
shown in the figure. The center of gravity is at the centroid of the 
cross section. Find the location of the water line, C/ w, where the 
body would be neutrally stable (GM = 0). If the body is floating 
in water, what would be the specific gravity of the body material? 

r-ll' ·I 

sz 

I 11 
l'ROBLE.\1 3.118 

3.119 A cylindrical block of wood I m in diameter and 1 m long 
has a specific weight of 7500 N/m3

. Will it float in water with its 

axis vertical? 

3.120 PWs A cylindrical block of wood 1 min diameter and 1 m 
long has a specific weight of 5000 N/m3

• Will it float in water 

with the ends horizontal? 

3.121 Is the block in this figure stable floating in the position 

shown? Show your calculations. 

Water 

PROBLEM '1.121 



THE BERNOULLI 
EQUATION AND 

PRESSURE 
VARIATION 

F GURE 4.1 

is photo shows flow over a model truck in a wind-tunnel. 
- :e purpose of the study was to compare the drag force on 
.,:o•rous designs of tonneau covers. The study was done by 
Stephen Lydo while he was on undergraduate engineering 
!1./dent. (Photo by Stephen Lyda) 

j Chapter Road Map j 
This chapter describes flowing fluids, introduces the 

Bernoulli equation, and describes pressure variations 

in flowing fluids. 

j Learning Obiectives I 
STUDENTS WILL BE ABLE TO 

• Describe streamlines, streaklines, and pothlines. Explain 
how these ideas d iffer. (§4.1) 

• Describe velocity and the velocity field. (§4.2) 

• Describe the Eulerian and Lagrangian approaches. (§4.2) 

• Describe flowing fluids using the concepts introduced in 
section §4.3. 

• Define acceleration. Sketch the direction of the acceleration 
vector of a fluid particle. Define local acceleration and 
convective acceleration. (§4.4) 

• Apply Euler's equation to describe pressure venations. (§4.5) 

• Apply the Bernoulli equation along a streamline. (§4.6) 

• Define static pressure and kinetic pressure. Explain how to 
measure velocity using a Pitot-static tube. (§4.7) 

• Define the rate-of-rotation and vorticity. Define an irrotational 
flow. (§4.8) 

• Apply the Bernoulli equation in on irrotational flow. (§4.9) 

• Define the pressure coefficient. Sketch the pressUie variation 
for flow around a ci rcular cylinder. (§4.1 0 ) 

• Calculate the pressure variation in a rotating flow. (§4.11) 

111 
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FIGURE 4.2 

(a) Flow through an 
opening in a tank. 
(b) Flow over an airfoil 
section. 

4. 1 Describing Streamlines, Streaklines, and Pathlines 

To visualize and describe flowing fluids, engineers use the streamline, streakline, and pathline. 
Hence, these topics are introduced in this section. 

Pathlines and Streaklines 

The pathline is the path of a fluid particle as it moves through a flow field. For example, when 
the wind blows a leaf, this provides an idea about what the flow is doing. If we imagine that the 
leaf is tiny and attached to a particle of air as this particle moves, then the motion of the leaf 
will reveal the motion of the particle. Another way to think of a pathline is to imagine attach­
ing a light to a fluid particle. A time exposure photograph taken of the moving light would be 
the pathline. One way to reveal pathlines in a flow of water is to add tiny beads that are neu­
trally buoyant so that bead motion is the same as motion of fluid particles. Observing these 
beads as they move through the flow reveals the pathline of each particle. 

1he strcakline is the line generated by a tracer fluid, such as a dye, continuously injected 
into a flow field at a starting point. for example, if smoke is introduced into a flow of air, the 
resulting lines are streaklines. Streaklines are shown in Fig. 4.1. These streaklines were pro­
duced by vaporizing mineral oi l on a vertical wire that was heated by passing an electrical 
current through the wire. 

Streamlines 

The streamline is defined as a line that is everywhere tangent to the local velocity vector. 

EXAMPLE. The flow pattern for water draining through an opening in a tank (Fig. 4.2a) 
can be visualized by examining streamlines. Notice that velocity vectors at points a, b, and c 
are tangent to the streamlines. Also, the streamlines adjacent to the wall follow the contour 
of the wall because the fluid velocity is parallel to the wall. The generation of a flow pattern 
is an effective way of illustrating the flow field. 

Streamlines for flow around an airfoil (Fig. 4.2b) reveal that part of the flow goes over the 
airfoil and part goes under. The flow is separated by the dh iding streamline. At Lhe location 

(a) 

[ 

Dlvidmg streamline -- -
----~t~-~ ---- -----

Stagnatic: poin-;-- - - --

(b) 
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•. ..,here the dividing streamline intersects the body, the velocity will be zero with respect to the 
body. This is called the stagnation point. 

Streamlines for flow over an Volvo ECC prototype (Fig. 4.3) allow engineers to assess 
aerodynamic features of the flow and possibly change the shape to achieve better performance, 
such as reduced drag. 

FIGURE 4.3 

Predicted streaml ine pattern over the Volvo ECC prototype. 
!Courtesy of Analytical Methods, VSAERO software, Volvo 
Concept Center.) 

Comparing Streamlines, Streaklines, and Pathlines 
T hen flow is steady, the pathline, streak line, and streamline look the same so long as they all pass 
:hrough the same point. Thus, the streakline, which can be revealed by experimental means, 

~-ill show what the streamline looks like. Similarly, a particle in the flow will follow a line 
;raced out of a streakline. 

When flow is unsteady, then the streamline, streak lines, and path lines look different. A cap­
uvating film entitled Flow Visualization (l) shows how and why the streamline, streakline, and 
--athline differ in unsteady flow. 

EXAMPLE. To show how pathlines, streaklines, and streamlines differ in unsteady flow, 
consider a two-dimensional flow that initially has horizontal streamlines {Fig. 4.4). At a 
given time, t0 , the flow instantly changes direction, and the flow moves upward to the right 
at 45° with no further change. A fluid particle is tracked from the starting point, and up to 
time t0, the pathline is the horizontal line segment shown on Fig. 4.4a. After time t0, the 
particle continues to follow the streamline and moves up the right as shown in Fig. 4.4b. 
Both line segments constitute the pathline. Notice in Fig. 4.4b that the pathline (black dotted 
line) differs from an streamline for (t < t0 ) and any streamline for (t > t0) . Thus, the path line 
and the streamline are not the same. 

Next consider the streakline by introducing black tracer fluid as shown in Figures 4.4c 
and d. As shown, the streakline in Fig. 4.4d differs from the pathline and from any 
streamline. 
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FIGURE 4.4 

Streamlines, pathlines, and 
slreakline for an unsteady 
flow field. 

FIGURE 4.5 

Water draining out of 
a tank. (a) The velocity 
of Particle A is the lime 
derivative of the position. 
(b) The velocity field 
represents the velocity of 
each fluid particle throughout 
the region of flow 

.. . 

Streamlines for 1 > 10 

f'alhlinc of 1 = 10 

(a) 

r Streamlines for I< lo 

Streakllnc of r ~ 10 

(c) 

l'athlinc of 1 > r0 

(b) 

Strcakline of r > 10 

(d) 

4.2 Characterizing Velocity of a Flowing Fluid 

This section introduces velocity and the velocity field. TI1en, these ideas are used to introduce 
two alternative methods for describing motion. 

• Lagrangian approach: Describes motion of a specified collection of matter. 

• Eulerian approach. Describes motion at locations in space. 

Describing Velocity 
Velocity, a property of a fluid particle, gives the speed and direction of travel of the particle at 
an instant in time. The mathematical definition of velocity is: 

drA 
VA =- (4.1) 

dt 

where VA is the velocity of particle A, and rA is the position of particle A at timet. 

EXAMPLE. When water drains from a tank (Fig. 4.5a), V A gives the speed and direction of 
travel of the particle at point A. The velocity VA is the time rate of change of the vector rA . 

y 

B 

A /' 

h F==V=c=loc=i~ty 
............. Position 
f 

(a) 

• t 

l.:=:::=:=:J., 1 ! I 
III 

(b) 

. 
r 

' 
\dod!} field: Description 
of the velocity at oach 
spatial location 
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Velocity Field 
A. description of the velocity of each fluid particle in a flow is called a velocity field. In general 
each fluid particle in a flow has a different velocity. For example, particles A and B in Fig 4.5a 
have different velocities. Thus, the velocity field describes how the velocity varies with position 
see Fig. 4.Sb). 

A velocity field can be described visually (Fig. 4.Sb) or mathematically as shown by the 
following example. 

EXAMPLE. A steady, two-dimensional velocity field in a corner is given by 

V =(2xs-1)i -(2ys 1)j (4.2) 

where x and y are position coordinates measured in meters, and i and j are unit vectors in 
the x andy directions, respectively. 

When a velocity field is given by an equation, a plot can help one visualize the flow. For 
example, select the location (x, y) = ( 1, 1) and then substitute x = 1.0 meter andy = 1.0 meter 
mto Eq. (4.2) to give the velocity as 

V = (2 m /s) i - (2 m /s) j (4.3) 

Plot this point and repeat this process at other points to create Fig. 4.6a. Last, one can use 
definition of the streamline (line that is everywhere tangent to the velocity vector) to create a 
--rreamline pattern (Fig. 4.6b). 

FIGURE 4.6 

The velocity field specified by Eq . (4 2): (a) velocity vectors, 
and (b) ihe streamline pattern. 

- 4 
~ 

" ;; 3 
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3 4 5 
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(a) 

~ ', / \ ..-;;Streamlines 
' ' ' 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ', 

(b) 

'Summary The velocity field describes the velocity of each fluid particle in a spatial region. 
"be velocity field can be shown visually as in Figs. 4.5 and 4.6 or described mathematically as 
:n Eq.4.2. 

The concept of a field can be generalized. A field is a mathematical or visual description 
{a variable as a function of position and time. 

EXAMPLES . A pressure field describes the distribution of pressure at various points in 
space and time. A temperature field describes the distribution of temperature at various 
points in space and time. 
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FIGURE 4.7 

This figure shows small 
particles released from rest 
and fa lling under the action 
of gravity Equations on the 
lek side of the image show 
how motion is described 
using a Lagrangian 
approach. Equations on 
the right side show an 
Eulerian approach. 

A field can be scalar valued (e.g., temperature field, pressure field) or a field can be vector 
valued (e.g., velocity field, acceleration field). 

v CHECKPOINT PROBLEM 4.1 

A velocity field is given as V =(ax+ by)i where a== b = 2 s-1 and (x,y) is the position in the field 
in meters. A particle moving in this field 

a. Moves in the x -direction only 

b. Moves in they-direction only 

c. Moves in both the x- andy-directions. 

The Eulerian and lagrangian Approaches 

In solid mechanics, it is straightforward to describe the motion of a particle or a rigid body. 
In contrast, the particles in a flowing fluid move in more complicated ways and it is not prac­
tical to track the motion of each particle. Thus, researchers invented a second way to describe 
motion. 

The first way to describe motion (called the Lagrangian approach) involves selecting 
a body and then describing the motion of this body. The second way (called the Eulerian 
approach) involves selecting a region in space and then describing the motion that is oc­
curring at points in space.ln addition, the Eulerian approach allows properties to be evalu­
ated at spatial locations as a function of time. This is because the Eulerian approach uses 
fields. 

EXAMPLE. Consider falling particles (Fig. 4.7). The Lagrangian approach uses equations 
that describe an individual particle. The Eulerian approach uses an equation for the ve­
locity field. Although the equations of the two approaches are different, they predict the 
same values of velocity. Note that the equation v = VzgfZf in Fig. 4.7 was derived 
by lett ing the kinetic energy of the particle equal the change in gravitational potential 
energy. 

Lagrangian : Select a body and 
describe its motion. 

Eulerian: Describe the 
motion at spatial locntions. 

E.g .. lorthtspan•ck~ L 
the. equatllm' are ·! • /v E.g., at any location in 

v = K' ·' • 'pace, the speed of a 

111
, • particle is jpven hy 

~= T 

• 
v= spetd of panicle (m/s ) ,. = ..j2gjZi 
s = position from origin (m) • v = speed at location : (m/s) 

1 = time to fall a distance r (s) z = vcnicallocat•on (m) 

g= grav•tntlonal constant (9.81 m•s') • 

When the ideas in Fig. 4. 7 are generalized, the independent variables of the Lagrangian 
approach are initial position and time. The independent variable of the Eulerian approach 
are position in the field and time. Table 4.1 compares the Lagrangian and the Eulerian 
approaches. 
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f ABLE 4.1 Comparison of the Lagrangian and the Eulerian Approaches 

Lagrangian· Approach 

Basic idea Observe or describe the motion of a body 
of matter of fixed identity. 

Eulerian Approach 

Observe or describe the motion of matter at 
spatial locations. 

---+ ---------4 -----------
Solid mechanics (application) Used in dynamics. Used in elasticity. Can be used to model the flow 

of materials. 

fluid mechanics (application) Fluid mechanics uses Eulerian ideas 
(e.g., fluid particle, streakline, acceleration of a 
fluid particle). Equations in fluid mechanics are 
often derived from an Lagrangian viewpoint. 

Nearly all mathematical equations in fluid 
1 mechanics are written using the Eulerian 

approach. 

- -----
Independent variables 

Mathematical complexity 

Initial position (x0, y0, z0) and time (t). 
1 

Spatial location (x, y, z) and time (t). 

Simpler. More complex; e.g .. partial derivatives and 
nonlinear terms appear. 

Field concept Not used in the Lagrangian approach. The field is an Eulerian concepts. When fields 
are used, the mathematics often includes the 
divergence, gradient, and curl. 

Types of systems used Closed systems, particles, rigid bodies, 
system-of-particles. 

!Representing Velocity Using Components 

Control volumes. 

'hen the velocity field is represented in Cartesian components the mathematical form is 

V = u(x,y,z,t)i + u(x,y,z,t)j + u(x,y,z,t)k (4.4) 

here u = u(x, y, z, t) is the x-component of the velocity vector in and i is a unit vector in the 
direction. The coordinates (x, y, z) give the spatial location in the field and tis time. Similarly, 

:he components v and w give the y- and z-components of the velocity vector. 
Another way to represent a velocity is to use normal and tangential components. In this 

.tpproach (Fig. 4.8), unit vectors are attached to the particle and move with the particle. The 
·.a.ngential unit vector u1 is tangent to the path of the particle and the normal unit vector Un is 
"llrmal to path and directed inward toward the center of curvature. The position coordinates 
-,easures distance traveled along the path. The velocity of a fluid particle is represented as 
· = V(s, t)u1 where Vis the speed of the particle and t is time. 

(?) 

4.3 Describing Flow 

: :1gineers use many words to describe flowing fluids. Speaking and understanding this language 
seminal to professional practice. Thus, this section introduces concepts for describing flowing 

.uds. Because there are many ideas, a summary table is presented (see Table 4.4 on page 153). 

FIGURE 4.8 

Describing motion of 
a fluid particle using 
normal and tangential 
components. 
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FIGURE 4.11 

F- low patterns for 
nonuniform flow. 
(o) Converging flow. 
(b) Vortex flow. 

Uniform and Nonuniform Flow 

To introduce uniform flow, consider a velocity field of the form 

V = V(s, t) 

where s is distance traveled by a fluid particle along a path, and tis time (Fig. 4.9). This math­
ematical representation is called normal and tangential components. This approach is useful 
when the path of a particle is known. 

In a uniform flow, the velocity is constant in magnitude and direction along a streamline 
at each instant in time. In uniform flow the streamlines must be rectilinear, which means 
straight and parallel (see Fig. 4.10). Uniform flow can be described by an equation. 

(i'JV) = av = 0 
i'Js 1 os 

(uniform flow) (4.5) 

Regarding notation in this text, we omit the variables that are held constant when writing par­
tial derivatives. For example, in Eq. (4.5), the leftmost terms show the formal way to write a 
partial derivative, and the middle term shows a simpler notation. The rationale for the simpler 
notation is that variables that are held constant can be inferred from the context. 

In nonuniform flow, the velocity changes along a streamline either in magnitude, direc­
tion, or both. It follows that any flow with streamline curvature is nonuniform. Also, any flow 
in which the speed of the flow is changing spatially is also nonuniform. 

av 
-;C 0 
OS 

(nonuniform flow) 

EXAMPLES. Nonuniform flow occurs in the converging duct in Fig. 4.lla because the 
speed increases as the duct converges. Nonuniform flow occurs for the vortex in Fig. 4.llb 
because the streamlines are curved. 

FIGURE 4.9 

Fluid particle moving along o 
pothline. 

(a) 

v 

\:Fluid panicle 

Pantclc path 

Initial point 
(s ~ 0,1; 0) 

FIGURE 4.10 

Uniform flow in o pipe. 

(b) 
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Steady and Unsteady Flow 

·n general, a velocity field V depends of position rand time t: V = V(r, t). However, in many 
:)ituations, the velocity is constant with time, so V = V(r ). This is called steady flow. Steady 
low means that velocity at each location in space is constant with time. This idea can be writ­
:en mathematically as: 

avj - = 0 
at all pomts In velocity field 

In an unsteady flow the velocity is changing, at least at some points, in the velocity field. 
This idea can be represented with an equation. 

av - :;e 0 
at 

EXAMPLE. If the flow in a pipe changed with time due to a valve opening or closing, the 
flow would be unsteady; that is, the velocity at locations in the velocity field would be in­
creasing or decreasing with time. 

t/ CHECKPOINT PROBLEM 4.2 

As shown, water drains out of a small opening in a container. 
Which statement is true? 

a. The flow in the container is steady. 

b. The flow in the container is unsteady. 

!Laminar and Turbulent Flow 

tJ -Flow 

In a famous experiment, Osborne Reynolds showed that there are two different kinds of flow 
.hat can occur in a pipe.* The first type, called laminar flow, is a well-ordered state of flow in 
~·hich adjacent fluid layers move smoothly with respect to each other.1he flow occurs in layers 
•r laminae. An example of laminar flow is the flow of thick syrup (Fig. 4.12a). 

rlGURE 4.12 

E ~am pies of laminar and turbulent flow (a) the flow of maple syrup is laminar (La uri Patterson/The Agency 
Collect1on/Getty Images) (b) the flow of steam out of o smokestack is turbulent (Photo by Donald Elger) 

(a) (b) 

"llqnolds experiment i> described in Chapter 10. 
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FIGURE 4.13 

Laminar and turbulent 
flow in a straight pipe. 
lol Laminar flow. 
!b) Turbulent flow. 
Both sketches assume 
fully developed flow 

The second type of flow identified by Reynolds is called turbulent tlow, which is an un­
steady flow characterized by eddies of various sizes and intense cross-stream mixing. Turbu­
lent flow can be observed in the wake of a ship. Also, turbulent flow can be observed for a 
smokestack (Fig. 4.12b ). Notice that the mixing of the turbulent flow is apparent because the 
plume widens and disperses. 

Laminar flow in a pipe (Fig. 4.13a) has a smooth parabolic velocity distribution. Turbulent 
flow (Fig. 4.13b) has a plug-shaped velocity distribution because eddies mix the flow, which 
tends to keep the distribution uniform. In both laminar and turbulent flow, the no-slip condi­
tion applies. 

(a) (b) 

Time-Averaged Velocity 

Turbulent flow is unsteady, so the standard approach is to represent the velocity as a time­
averaged velocity u plus a fluctuating component u' . Thus, the velocity is expressed as 
u = u + u' (see Fig. 4.13b ). 1hus, the fluctuating component is defined as the difference be­
tween the local velocity and the time-averaged velocity. A turbulent flow is designated as 
"steady" if the time-averaged velocity is unchanging with time. For an interesting look at turbu­
lent flows, see the film entitled Turbulence (3). Table 4.2 compares laminar and turbulent flows. 

TABLE 4.2 Comparison of the Laminar and Turbulent Flow 

Basic description 

Velocity profile in a pipe 

Mixing of materials added 
to the flow 

Variation with time 

Dimensionality of flow 

Availability of 
mathematical solutions 

Laminar How 

Smooth flow in layers (laminae). 

Parabolic; ratio of mean velocity to centerline 
velocity is 0.5 for fully developed flow. 

Low levels of mixing. Difficult to get a 
material to mix with a fluid in laminar flow. 

I Ca~ be steady or unsteady. 

I Can be lD, 2D, or 3D. 

In principle, any laminar flow can be solved 
with an analytical or computer solution. 
There are many existing analytical solutions. 
Solutions are very close to what would be 
measured with an experiment. 

--L-

The flow has many eddies of various sizes. The 
flow appears random, chaotic, and unsteady. 

Plug! ike; ratio of mean velocity to centerline 
velocity is between 0.8 and 0.9. 

High levels of mixing. Easy to get a material to 
mix; e.g., visualize cream mixing with coffee. 

Always unsteady. 
---

Always 3D. 
--t---

There is no complete theory of turbulent flow. 
There are a limited number of semiempirical 
solution approaches. Many turbulent flows 
cannot be accurately predicted with computer 
models or analytical solutions. Engineers often 
rely on experiments to characterize turbulent 
flow. 
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Featufe Turbulent Flow 

Practical importance Although many problems of practical 
problems involve laminar flow, these problems 
are not nearly as common as problems that 
involve turbulent flow. 

'Ihe majority of practical problems involve 
turbulent flow. Typically, the flow of air and 
water in piping systems is turbulent. Most flows 
of water in open channels are turbulent. 

Occurrence 
Reynolds number) 

Occurs at lower values of Reynolds numbers. 
(Reynolds number is introduced in Chapter 8.) 

Occurs at higher values of Reynolds numbers. 

One-Dimensional and Multidimensional Flows 

The dimensionality of a flow field can be illustrated by example. Fig. 4.14a shows the velocity 
distribution for an axisymmetric flow in a circular duct. The flow is uniform, or fully devel­
ped, so the velocity does not change in the flow direction (z). The velocity depends on only 
ne spatial dimension, namely the radius r, so the flow is one-dimensional or 1 D. Fig. 4.14b 

-hows the velocity distribution for uniform flow in a square duct. tn this case the velocity de-
?tnds on two dimensions, namely x andy, so the flow is two dimensional. Figure 4.14c also 
-hows the velocity distribution for the flow in a square duct but the duct cross-sectional area is 
expanding in the flow direction so the velocity will be dependent on z as well as x andy. This 
·iow is three-dimensional, or 3-D. 

Another good example of three-dimensional flow is turbulence because the velocity com­
ponents at any one time depend on the three coordinate directions. For example, the velocity 
.:omponent u at a given time depends on x, y, and z; that is, u(x, y, z). Turbulent flow is un­
.teady, so the velocity components also depend on time. 

Another definition frequently used in fluid mechanics is quasi-one-dimensional flow. By 
this definition it is assumed that there is only one component of velocity in the flow direction 
and that the velocity profiles are uniformly distributed; that is, constant velocity across the 
duct cross section. 

I ' \ -- ..... 
I I \ ', 
I I I ' 
I I -r--- \ ...-~r- ____ >I u ( r) 
1 I I I 
\ I 1 ,/ 
\ I I _.,.. 

L _ 
(a) 

/ I <'L_. .--r-1 - -> 
I II • , / 
I I ' I 

I) 1----- I (-1-,- - ---~ II(XJ') 
I II .,/ 
I):::.---- -" 

(b) 
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I II ' ,, )_ 
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1
_;--- ----1 u(<J'Z) 

...j --'I . ' 
1--r~-- -- ;... -
I ~ ::'- ----- -
, v 

(c) 

FIGURE 4 . 14 

Flow dimensionality, 
(a) one-dimensional flow, 
(b) two-dimensional flow, 
and (c) three-dimensional 
flow. 
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FIGURE 4.15 

Flow pattern around a 
sphere when the Reynolds 
number is high. The sketch 
shows the regions of flow. 

FIGURE 4.16 

Flow pattern past a square 
rod illustrating separation 
at the edges. 

Viscous and lnviscid Flow 

In a viscous flow the forces associated with viscous shear stresses are large enough to effect the 
dynamic motion of the particles that comprise the flow. For example, when a fluid flows in a 
pipe as shown in Fig. 4.13, this is a viscous flow. Indeed, both laminar and turbulent flows are 
types of viscous flows. 

In a imiscid flow the forces associated with viscous shear stresses are small enough so 
that they do not affect the dynamic motion of the particles that comprise the flow. Thus, in 
inviscid flow, the viscous stresses can be neglected in the equations for motion. 

Boundary Layer, Wake, and Potential Flow Regions 

To idealize many complex flows, engineers use ideas that can be illustrated by flow over a 
sphere (Fig. 4.15). As shown, the flow is divided into three regions: an inviscid flow region, a 
wake, and a boundary layer. 

Flow Separation 

Flow separation (Fig. 4.15) occurs when the fluid particles adjacent to a body deviate from the 
contours of the body. Fig. 4.I6 shows flow separation behind a square rod. Notice that the flow 
separates from the shoulders of the rod and that the wake region is large. In both Figs. 4.15 and 
4.16 the flow follows the contours of the body on the upstream sides of the objects. The region 
in which a flow follows the body contour is called attached flow. 

When flow separates (Fig. 4.16), the drag force on the body is usually large. Thus, designers 
strive to reduce or eliminate flow separation when designing products such as automobiles and 
airplanes. In addition, flow separation can lead to structural failure because the wake is un­
steady due to vortex shedding, and this creates oscillatory forces. These forces cause structural 
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ibrations, which can lead to failure when the structure's natural frequency is closely matched 
10 the vortex shedding frequency. In a famous example, vortex shedding associated with flow 
.:>eparation caused the Tacoma Narrows Bridge near Seattle, Washington, to oscillate wildly and 
to fail catastrophically. 

Fig. 4.17 shows flow separation for an airfoil (an airfoil is a body with the cross sectional 
shape of a wing). Flow separation occurs when the airfoil is rotated to an angle of allack that is 
too high. Flow separation in this context causes an airplane to stall, which means that the lift­
mg force drops dramatically and the wings can no longer keep the airplane in level flight. Stall 
:s to be avoided. 

Flow separation can occurs inside pipes. For example, flow passing through an orifice in a 
"'tpe will separate (sec Fig. 13.14 in Section 13.2). In this case, the zone of separated flow is 
:.ually called a recirculating zone. Separating flow within a pipe is usually undesirable because 
- causes energy losses, low pressure zones that can lead to cavitation and vibrations. 

:);,mmary Attached flow means that flow is moving parallel to walls of a body. Flow separa­
. -'On, which occurs in both internal and external flows, means the flow moves away from the 

all Flow separation is related to phenomenon of engineering interest such as drag, structural 
ibrations, and cavitation. 

4.4 Acceleration 

redicting forces is important to the designer. Because forces are related to acceleration, this 
cction describes what acceleration means in the context of a flowing fluid. 

Definition of Acceleration 

:eleration is a property of a fluid particle that characterizes the change in speed of the par­
~e and the change in the direction of travel at an instant in time. The mathematical definition 
acceleration is: 

dV 
a -=- dt 

~re V is the velocity of the particle and t is time. 

(4.6) 

. .. . . . .... ... . 

FIGURE 4.17 

Smoke traces showing 
separation on an a1rfoil 
section at a large angle of 
attack. (Courtesy Education 
Development Center, Inc. , 
Waltham, MA) 
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FIGURE 4.18 

This figure shows flow 
over a sphere. The blue 
sphere is a fluid particle 
that is moving along the 
slognalion streamline. 

FIGURE 4.19 

This figure shows a particle 
moving on a curved 
slreomline. 

Physical Interpretation of Acceleration 

Acceleration occurs when a fluid particle is changing its speed, changing its direction of travel, 
or both. 

EXAMPLE. As a particle moves along the straight streamline in Fig 4.18, it is slowing down. 
Because the particle is changing speed, it is accelerating (actually decelerating in this case). 
Anytime a particle is changing speed, there must be a component of Lhc acceleration vector 
tangent to the palh. This component of acceleration is called the tangential component of 
acceleration. 

-----Flow 

( 

Whon a partoclc is changong speed 
there is a component of acceleratonn 
tangent to path. 

\_ ,.,.~ .. ~ v @ 
Streamline 

EXAMPLE. As a particle moves along a curved streamline (see Fig 4.19), the particle must 
have a component of acceleration directed inward as shown. This component is called the 
normal component of the acceleration vector. In addition, if the particle is changing speed, 
the tangential component will also be present. 

')\-.:--c :;h;:-'' 

( If a panock "moving on a curved 
path line there must be a component 
of acceleration inward toward the center 
of curvaturo of the path line at 
that point. 

(a) 

a, 

' , .... ..... , ""' 
' - -I; ---

,' " • """' '' ;,.;ro """''"' speed there must bt: a 
component of acceleration 
tangent to the pathlone. 

Summary Acceleration is a property of a fluid particle. The tangential component of the 
acceleration vector is associated with a change in speed. The normal component is associ­
ated with a change in direction. The normal component will be nonzero anytime a particle 
is moving on a curved streamline because the particle is continually changing its direction 
of travel. 

Describing Acceleration Mathematically 

Because the velocity of a flowing fluid is described wilh a velocity field (i.e., an Eulerian 
approach), the mathematical representation of acceleration is different from what is presented 
in courses like physics and dynamics. This subsection develops the ideas. 
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To begin, picture a fluid particle on a streamline as shown in Fig. 4.20. Write the velocity 
~ing normal-tangential components: 

V = V(s, t) u1 

In this equation, the speed of the particle Vis a function of position s and time t. The di­
:ection of travel of the particle is given by the unit vector u1 which, by definition, is tangent to 
·l}e streamline. 

FIGURE 4.20 

Particle moving on a pothl ine. (a) Velocity. (b) Acceleration. 

V(s,r)u, 

P~-,', ---· ..- ' -
C :a~h~ine 

, (a) 

u, 

-~ ' ' ' , ... ,. "" 
' ' -I -- - """ 

' a. 
(b) 

Using the definition of acceleration, 

a = dV = (dV)u + v(du1
) 

df dt I df 
(4.7) 

10 evaluate the derivative of speed in Eq. ( 4. 7), the chain rule for a function of two variables 
can be used. 

dV(s, t) = (av)(ds) + av 
dt as dt at (4.8) 

In a time dt , the fluid particle moves a distance ds, so the derivative ds!dt corresponds to the 
-q>eed V of the particle, and Eq. ( 4.8) becomes 

dv = v(av) + av 
dt as at (4.9) 

'1 Eq. (4.7), the derivative of the unit vector du 1/dt is nonzero because the direction of the unit 
·ector changes with time as the particle moves along the pathline. The derivative is 

d u1 V 
-= -u 
dt r n 

(4.10) 

· :here u1 is the unit vector perpendicular to the pathline and pointing inward toward the center 
f curvature (2). 

Substituting Eqs. (4.9) and (4.10) into Eq. (4.7) gives the acceleration of the fluid 
t-article: 

a = (vav + av)u + ( y2)u as at t r n 
(4.11) 

The interpretation of this equation is as follows. The acceleration on the left side is acceleration 
f the fluid particle. The terms on the right side represent a way to evaluate this acceleration by 
~ing the velocity, the velocity gradient, and the velocity change with time. 
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FIGURE 4.21 

Measuring convective 
acceleration by two 
different opprooches. 
!Sketch by Chad Crowe) 

Eq. (4.11) shows that the magnitude of the normal component of acceleration is V 2/r. 
'!he direction of this acceleration component is normal to the streamline and inward toward 
the center of curvature of the streamline. This term is sometimes called the centripetal 
acceleration, where the centripetal means center seeking. 

Convective and local Acceleration 

In Eq. (4.11), the term avtat means the time rate of change of speed while holding posi­
tion (x, y, z) constant. Time derivative terms in Eulerian formulation for acceleration are 
called local acceleration because position is held constant. All other terms are called con­
vective acceleration because they typically involve variables associated with fluid 
motion. 

EXAMPLE. The concepts of Eq. (4.11) can be illustrated by use of the cartoon in Fig. 4.21. 
The carriage represents the fluid particle, and the track, the pathline. A direct way to mea­
sure the acceleration is to ride on the carriage and read the acceleration off an accelerom ­
eter. This gives the acceleration on the left side of Eq. (4.11). The Eulerian approach is to 
record data so terms on the right side of Eq. ( 4.11) can be calculated. One would measure 
the carriage velocity at two locations separated by a distance 6.s and calculate the convec­
tive term using 

av 6. v 
V- =::o V-

As 6.s 

Next, one would measure V and r and then calculate V2/r. The local acceleration, for this 
example, would be zero. When one did the calculations on the right side of Eq. ( 4.11 ), the 
calculated value would match the value recorded by the accelerometer. 

Summary The physics of acceleration are described by considering changing speed and 
changing direction of a fluid particle. Local and convective acceleration are labels for the math­
ematical terms that appear in the Eulerian formulation of acceleration. 

When a velocity field is specified, this denotes an Eulerian approach, and one can calculate 
the acceleration by substituting into an appropriate formula. Example 4.1 illustrates this 
method. 
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EXAMPLE 4.1 

Calculating Acceleration when a Velocity Field is Specified 

roblem Statement 

A nozzle is designed such that the velocity in the nozzle 
:aries as 

uo 
u(x) = 1.0 _ 0.5x/L 

·..-here the velocity u0 is the entrance velocity and Lis the nozzle 
length. The entrance velocity is 10 m/s, and the length is 0.5 m. 
The velocity is uniform across each section. Find the acceleration 
at the station halfway through the nozzle (x/L = 0.5). 

Define the Situation 

-\ velocity distribution is specified in a nozzle. 

I~ 
I 
I 

X 

- u 
~-------L --------~ 

20 mis 

Assumptions: Flow field is quasi one-dimensional (negligible 
\'elocity normal to nozzle centerline). 

~tate the Goal 

Calculate the acceleration at nozzle midpoint. 

~enerate Ideas and Make a Plan 

1. Select the pathline along the centerline of the nozzle. 

2. Evaluate the terms in Eq. (4. I I). 

~ake Action (Execute the Plan) 

The distance along the pathline is x, so sin Eq. (4.11) becomes 
x and V becomes u. The pathline is straight, so r ~ oo. 

4.5 Applying Euler's Equation 
to Understand Pressure Variation 

1. Term-by-term analysis: 

Convective acceleration 

au uo ( 0.5) 
ax=- (1- 0.5x/L)2 X -T 

1 0.5u0 

= L (1 - O.Sx/L)2 

au u~ 1 
u - = 0.5 

ax L ( I - O.Sx/L)3 

Evaluation at x/L = 0.5: 

au 102 I 
u- = 0.5 X- X --

3 ax 0.5 0.75 

Local acceleration 

= 237 m/s2 

au = 0 
at 

Centripetal acceleration (also a convective acceleration) 

2. Combine the terms 

ti 
-= 0 
r 

ax = 237 m/s2 + 0 

= J237 m/s2 j 

an (normal to pathline) = [§] 

Review the Solution and the Process 

Knowledge. Because ax is positive, the direction of the 
acceleration is positive; that is, the velocity increases in the 
x-direction, as expected. Even though the flow is steady, 
the fluid particles still accelerate. 

uler's equation, the topic of this section, is used by engineers to understand pressure variation. 

~erivation of Euler's Equation 

~ uler's equation is derived by applying ~F = ma to a fluid particle. The derivation is similar to 
1e derivation of the hydrostatic differential equation (Chapter 3). 
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FIGURE 4.22 

(a) Forces acting on a fluid 
particle, and (b) sketch 
showing the geometry. 

To begin, select a fluid particle (Fig. 4.22a) and orient the particle in an arbitrary direction 
e and at an angle a with respect to the horizontal plane (Fig. 4.22b ). Assume that viscous forces 
are zero. Assume the particle is in a flow and that the particle is accelerating. Now, apply New­
ton's second law in the £-direction: 

2:Fe =mae 

Fpressure + Fgravity = map 

The mass of the particle is 

m = p~A~£ 

The net force due to pressure in the e -direction is 

Fpressure = p~A - (p + llp)llA = -~pllA 

The force due to gravity is 

Fgravity = -~We = -~ W sin a 

(a) (b) 

From Fig. 4.22b note that sin a= ~z!~C, so Eq. (4.13) becomes 

llz 
F gravity = - ~ W ~£ 

(4.12) 

(4.13) 

The weight of the particle is~ W = -y~C~A. Substituting the mass of the particle and the forces 
on the particle into Eq. ( 4.12) yields 

Dividing through by the volume of the particle Mll£ results in 

~p ~z 
--- -y- = pa 
~e ,:l.£ e 

Taking the limit as ,:l£ approaches zero (reduce the particle to an infinitesimal size) leads to 

ap az 
- -- -y- = pae ae ae (4.14) 

Assume a constant density flow, so "' is constant and Eq. ( 4.14) reduces to 

(4.15) 
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Equation (4.15) is a scalar form of Euler's equation. Because this equation is true in any 
-alar direction, one can write this in an equivalent vector form: 

- Vp, = pa (4.16) 

·here Vp, is the gradient of the piezometric pressure, and a is the acceleration of the fluid 
-.article. 

Physical Interpretation of Euler's Equation 

- uler's equation shows that the pressure gradient is colinear with the acceleration vector and 
pposite in direction. 

(woo;m:1.,.,~~') ( =•/) ~\ 
- = --- (accclcrauon of partic le) 

pressure field volume 

Thus, by using knowledge of acceleration, one can make inferences about the pressure varia­
ion.1bree important cases are presented next. At this point, we recommend the film entitled 
ressure Fields and Fluid Acceleration (4) because this film illustrates fundamental concepts 

..sing laboratory experiments. 

Case 1: Pressure Variation Due to Changing Speed of a Particle 
'(hen a fluid particle is speeding up or slowing down as it moves along a streamline, then pres­
.ure will vary in a direction tangent to the streamline. For example fig. 4.23 shows a fluid 
·article moving along a stagnation streamline. Because the particle is slowing down, the ac-

~eleration vector points to the left. Therefore the pressure gradient must point to the right. 
Thus, the pressure is increasing along the streamline, and the direction of increasing pressure 
'to the right. Summary. When a particle is changing speed, then pressure will vary in a direc­
. .on that is tangent to the streamline. 

FIGURE 4.23 

Th1s figure shows flow over o sphere. The blue object is a fluid 
particle moving along the stagnation streamline. 

-----l'lm• 

( 

Because this p.1rt1dc 1s slowmg down. 
rht: a<.:celerauon vector must be t:.mgc:nt 
to path and acung to the left 

a .!..~' ~ Th<ref=. '"'""""" 

'"""'M \:J_ """ ~ ,_,,.,'" 
Streamline to the nght. 

Case 2: Pressure Variation Normal to Rectilinear Streamlines 
·nen streamlines are straight and parallel (Fig. 4.24), then piezometric pressure will be con­
·ant along a line that is normal to the streamlines. To prove this fact, draw a line that is normal 

the streamlines (see Fig. 4.24). Then recognize that 

y 2 y 2 
a = - = - =0 
" r oo 

129 
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FIGURE 4.25 

Flow w ith curved 
streamlines. Assume that 
the fluid particle has 
constant speed Thus, the 

acceleration vector pamts 
inward towards the center 
of curvature. 

FIGURE 4.24 

Flow with rectil inear streamlines. The numbered steps give the logic to show that pressure 
variation normal to rectilinear streamlines is hydrostatic. 

~. ];~ ooO.O ro ·=·z 
----- I 

~ 

2. Recognize that the: nonnal component of 

acceleration for this panicle mu't he '""'· 

3. Because acceleration is zero. presssure gradient 
along thts line must be zero. 

4. Conclude that piezometric pre» urc: mu>L be 
coru;tant along this line. Therefore. pressure 
variation normal to rectilinear streamlines is 
itydrosratic. 

Because a" = 0, Euler's equation shows that the pressure gradient must be zero: iJ(p + -yz)/ 
an = 0. Thus, conclude that piezometric pressure ( p + -yz) is constant along any line that is 
normal to the streamlines. Summary. Pressure variation normal to rectilinear streamlines is 
hydrostatic. 

Case 3: Pressure Variation Normal to Curved Streamlines 
When streamlines are curved (Fig. 4.25), then piezometric pressure will increase along a line 
that is normal to the streamlines. The direction of increasing pressure will be outward from the 
center of curvature of the streamlines. Fig. 4.25 shows why pressure will vary. A fluid particle 
on a curved streamline must have a component of acceleration inward. Therefore, the gradient 
of the pressure will point outward. Because the gradient points in the direction of increasing 
pressure, we conclude that pressure will increase along the line drawn normal to the stream­
lines. Summary. When streamlines are curved, then pressure increases outward from the cen­
ter of curvature* of the streamlines. 

1 
--- Direction of increasing pressure is outward 

~ (o~y<mm""'""''~'=ofoh<,_ll~). 

~"'~·=·""'-"'"''""'••"" (toward center of curvature of the streamlines). 

Calculations Involving Euler's Equation 

In most cases, calculations involving Euler's equation are beyond the scope of this book.. How­
ever, when a fluid is accelerating as a rigid body, then Euler's equation can be applied in a 
simple way. Examples 4.2 and 4.3 show how to do this. 

*Each streamline has a center of curvature at each point along the streamline. "There is not a single center of curvature 
of a group of streamlines. 
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EXAMPLE 4.2 

Applying Euler's equation to a Column of Fluid being 
Accelerated Upward 

Problem Statement 

A column water in a vertical tube is being accelerated by a 
piston in the vertical direction at 100 m/s2

• The depth of the 
water column is 10 em. Find the gage pressure on the piston. 
The water density is 103 kg/m3

• 

Define the Situation 

A column of water is being accelerated by a piston. 

ECD 
m 

CD 1 r 
g 

u,- 100 m/s2 

Assumptions: 

• Acceleration is constant. 

• Viscous effects are unimportant. 

• Water is incompressible. 

Properties: p = 103 kglm3 

State the Goal 

Find: The gage pressure on the piston. 

EXAMPLE 4.3 

Applying Euler's Equation to Gasoline in a Decelerating 
Tanker 

Problem Statement 

The tank on a trailer truck is filled completely with gasoline, 
which has a specific weight of 42lbf/ft3 (6.60 kN/m3

). The 
truck is decelerating at a rate of 10 ft/s2 (3.05 m/ s2

). 

a. If the tank on the trailer is 20 ft ( 6.1 m) long and if the 
pressure at the top rear end of the tank is atmospheric, 
what is the pressure at the top front? 

b. If the tank is 6 ft ( 1.83 m) hlgh, what is the maximum 
pressure in the tank? 

Generate Ideas and Make a Plan 

l. Apply Euler's equation, Eq. ( 4.15), in the z-direction. 

2. Integrate between locations 1 and 2. 

3. Set pressure equal to zero (gage pressure) at section 2. 

4. Calculate the pressure on the piston. 

Take Action (Execute the Plan) 

1. Because the acceleration is constant, there is no 
dependence on time, so the partial derivative in Euler's 
equation can be replaced by an ordinary derivative. Euler's 
equation becomes: 

d 
dz (p + -yz) = - pa, 

2. Integration between sections I and 2: 
2 2 

f d(p + -yz) = f ( - pa,)dz 

CP2 + 'YZ2) - (p, + -yz,) = - pa,(z2 - z,) 

3. Algebra: 

p1 = (-y + pa.)Az = p(g + a.)Az 

4. Evaluation of pressure: 

p1 = 103 kg/m3 X (9.8 1 + I 00) m/s2 X 0.1 m 

p1 = Jt0.9 X 103 Pa = 10.9 kPa, gage] 

p - O r-- r-
~--------20ft -----4--~ 

Define the Situation 

Situation: Decelerating tank of gasoline with pressure equal to 
zero gage at top rear end. 
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Assumptions: 

I. Deceleration is constant. 

2. Gasoline is incompressible. 

Properties: 'Y = 42lbf/tP (6.60 kN/m3) 

State the Goal 

Find: 
1. Pressure (psfg and kPa, gage) at top front of tank. 

2. Maximum pressure (psfg and kPa, gage) in tank. 

Make a Plan 

I. Apply Euler's equation, Eq. ( 4.15 ), along top of tank. 
Elevation, z, is constant. 

2. Evaluate pressure at top front. 

3. Maximum pressure will be at front bottom. Apply Euler's 
equation from top to bottom at front of tank. 

4. Using result from step 2, evaluate pressure at front bottom. 

Take Action (Execute the Plan) 

I. Euler's equation along the top of the tank 

dp 
de = - pae 

Integration from back (I) to front (2) 

'Y 
Pz - p, = - pacil e = - - aeilf. 

g 

2. Evaluation of p2 with p1 = 0 

(421bf/f~) Pz =-
2 

X (- 10ft/s2
) X 20ft 

32.2 ft /s 

= 1261 psfg l 

In Sl units 

(
6.60 kN/m3

) Pz = - 2 X (-3.05 m /s2
) X 6.1 m 

9.81 m/s 

= !12.5 (kPa gage)! 

3. Euler's equation in vertical direction 

d 
dz (p + 'YZ) = - pa, 

4. For vertical direction, a,= O.lntegration from top of tank 
(2) to bottom (3): 

Pz + "(Zz = Pl + 'YZ1 

P3 = Pz + 'Y(Zz - Z3) 

p3 = 261 lbf/ft2 + 42lbf/ft3 X 6ft =~fi) 

In Sl units 

p3 = 12.5 kN/m2 + 6.6 kN/m3 X 1.83 m 

p3 = 124.6 kPa gage I 

4.6 Applying the Bernoulli Equation along a Streamline 

FIGURE 4.26 

Sketch used for the 
derivation of the 
Bernoulli equation. 

Because the Bernoulli equation is used frequently in fluid mechanics, this section introduces 
this topic. 

Derivation of the Bernoulli Equation 

Select a particle on a streamline (Fig. 4.26). The position coordinates gives the particle's posi­
tion. The unit vector u1 is tangent to the streamline, and the unit vector u, is normal to the 
streamline. Assume steady flow so the velocity of the particle depends on position only. That is, 
V = V(s). 

(_Streamline 
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Assume that viscous forces on the particle can be neglected. Then, apply Euler's equation 
Eq. 4.15) to the particle in the u, direction. 

a 
-as (p + 'YZ) = pa, (4.17) 

Acceleration is given by Eq. ( 4.11). Because the flow is steady, a VI at = 0, and Eq. ( 4.11) 

gives 

av av av 
a,= V-+ - = V-

as at as 
(4.18) 

.i>ecause p, z, and V in Eqs. ( 4.17) and ( 4.18) depend only on positions, the partial derivatives 

..,ecome ordinary derivatives (i.e., functions only of a single variable). Thus, write the these 
Jerivatives as ordinary derivatives and combine Eqs. ( 4.17) and ( 4.18) to give 

d dV d (V2
) - -(p + 'YZ) = pV- = p- -

ds ds ds 2 
(4.19) 

.love all the terms to one side: 

d ( v2) 
ds P + 'YZ + r2 = o (4.20) 

-.'hen the derivative of an expression is zero, the expression is equal to a constant. Thus, 
-ewrite Eq. ( 4.20) as: 

v2 
p + 'YZ + p- = C 

2 
(4.21a) 

·here Cis a constant. Eq. ( 4.21a) is the pressure form of the Bernoulli equation. This is called 
:::1e pressure form because all terms have units of pressure. Dividing Eq. ( 4.21a) by the specific 
·eight yields the head form of the Bernoulli equation, which is given as Eq. ( 4.21 b). In the head 
rm, all terms have units of length. 

P v2 
- + z +-= C 
'Y 2g 

(4.21b) 

Physical Interpretation # 1 (Energy Is Conserved) 

ne way to interpret the Bernoulli equation leads to the idea that when the Bernoulli equation 
?Plies, the total head of the flowing fluid is a constant along a streamline. To develop this inter­

-:-etation, recall that piezometric head, introduced in Chapter 3, is defined as 

piezometric head = h = E._ + z 
'Y 

-rroduce Eq. (4.22) into Eq. (4.21b) 

• ..w, velocity head is defined by 

vz 
h + - = Constant 

2g 

vz 
velocity head = -

2g 

(4.22) 

(4.23) 

(4.24) 
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FIGURE 4.27 

Water flowing through 
a Venturi nozzle. The 
piezometers shows the 
piezometric head at 
locations 1, 2, and 3. 

Combine Eqs. (4.22) to (4.24) to give 

(
Piezometric) + (Velocity) = (Constant ~long) 

head head streamlme 
(4.25) 

Eq. (4.25) is shown visually in Fig. 4.27. Notice that piezometric head (blue lines) and the 
velocity head (gray lines) are changing, but the sum of the piezometric head plus velocity head 
is everywhere constant. Thus, the total head is constant for all points along a streamline when 
the Bernoulli equation applies. 

/Total head~ conotant 

V/t 2g t r:- Velocity head ___ .....:._ 

F Ptotorndric head 

I 
---------~-------------

Centerline Datum (z- 0) 
(streamline) 

The previous discussion introduced head. Head is a concept that is used to characterize 
the balance of work and energy in a flowing fluid. As shown in Fig. 4.27, head can be visualized 
as the height of a column of liquid. Each type of head describes a work or energy term. Velocity 
head characterizes the kinetic energy in a flowing fluid, elevation head characterizes the grav­
itational potential energy of a fluid, and pressure head is related to work done by the pressure 
force. As shown in Fig. 4.27, the total head is constant. This means that when the Bernoulli 
equation applies, the fluid is not losing energy as it flows. The reason is that viscous effects are 
the cause of energy loses, and viscous effects are negligible when the Rernoulli equation 
applies. 

Physical Interpretation #2 (Velocity and Pressure Vary Inversely) 

A second way to interpret the Bernoulli equation leads to the idea that when velocity increases, 
then pressure will decrease. To develop this interpretation, recall that piezometric pressure, 
introduced in Chapter 3, is defined as 

piezometric pressure = Pz = p + "{Z 

Introduce Eq. (4.26) into Eq. (4.2 la) 

pVl 
p, + -

2
- = Constant 

(4.26) 

(4.27) 

For Eq. ( 4.27) to be true, piezometric pressure and velocity must vary inversely so that the sum 
of p, and (V212g) is a constant. Thus, the pressure form of the Bernoulli equation shows that 
piezometric pressure varies inversely with velocity. In regions of high velocity, piezometric pres­
sure will be low; in regions of low velocity, piezometric pressure will be high. 
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EXAMPLE. Fig. 4.28 shows a Vinturi™ red wine aerator, which is a product that is used 
to add air to wine. When wine flows through the Vinturi™, the shape of the device 
causes an increase in the wine's velocity and a corresponding decrease in its pressure. At 
the throat, the pressure is below atmospheric pressure so air flows inward through two 
inlet ports and mixes with the wine to create aerated wine, which tastes better to most 
people. 

(a) 

Vorking Equations and Process 

:-able 4.3 summarizes the Bernoulli equation. 

TABLE 4.3 Summary of the Bernoulli Equation 

escription 

Bernoulli equation 
bead form) 

Recommend form 
o use for liquids 

3ernoulli equation 
pressure form) 

:".ecommcnd form 
:o use for gases 

Equation 

(
P t Vr ) (P2 V~ ) -:; + 2g + Zt = -:; + Zg + z2 

1 ( p v~ ) ( p v~ ) Pt + 
2 

+ pgz1 = P2 + -
2
- + pgz2 

@1 No"'="' M~ 
Air ~-:-~r CAir 

FIGURE 4.28 

(a) The Vinturir" wine 
aerator, and (b) a sketch 

illustrating the operating 
principle. (Photo courtesy 
of Vinturi Inc.) 

Throat/ 

(b) 

Eq. (4.2 1 b) 

Eq. (4.2 la) 

Aerated wine 

Terms 

p = static pressure (Pa) 
(use gage pressure or abs pressure) (avoid 
vacuum pressure; will be wrong) 

'Y = specific weight (N/ m3
) 

V = speed (m/s) 

g = gravitational constant = 9.81 m/s3 

z = elevation or elevation head (m) 

J p 
i - = pressure head ( rn) 

'Y 
v2 
- = velocity head (m) 
2g 

!!_ + z = piezometric head (m) 
'Y 

p + "{ Z = piezometric pressure (Pa) 

pV2 
- = kinetic pressure (Pa) 

2 
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'The process for applying the Bernoulli equation is 

Step 1. Selection. Select the head form or Lhe pressure form. Check that the assumptions 
are satisfied. 

Step 2. Sketching. Select a streamline. Then, select points l and 2 where you know infor­
mation or where you want to find information. Annotate your documentation to show the 
streamline and points. 

Step 3. General Equation. Write the general form of the Bernoulli equation. Perform a 
term-by-term analysis to simplify the general equation to a reduced equation that applies 
to the problem at hand. 

Step 4. Validation. Check the reduced equation to ensure that it makes physical sense. 

Example 4.4 shows how to apply the Bernoulli equation to a draining tank of water. 

EXAMPLE 4.4 

Applying the Bernoulli Equation to Water Draining out o Tonk 

Problem Statement 

Water in an open tank drains through a port at the bottom of 
the tank. The elevation of the water in the tank is 10m above 
the drain. Find the velocity of the liquid in the drain port. 

Define the Situation 

Water flows out of a tank. 

!Om 

Datum ---'---11----

Assumptions: 

• Steady flow. 

• Viscous effects are negligible. 

State the Goal 

V2 (m/s) ~Velocity at the exit port. 

Generate Idea' and Make a Plan 

Streamline 

Selection. Select the head form of the Bernoulli equation 
because the fluid is a liquid. Document assumptions (see above). 

Sketching. Select point 1 where information is known and 
point 2 where information is desired. On the situation diagram 
(see above), sketch the streamline, label points 1 and 2, and 
label the datum. 

General Equation. 

(a) 

Term-by-term analysis. 

• p 1 = p2 = 0 kPa gage 

• Let VI = 0 because v, << v2 
• Let z1 = 10 m and z2 = 0 m 

Reduce Eq. (a) so it applies to the problem at hand. 

(0 + 0 + 10m) = ( 0 + ~; + 0) (b) 

Simplify Eq. (b): 

V2 = V2g(10 m) (c) 

Because Eq. (c) has only one unknown, the plan is to use this 
equation to solve for v2. 

Take Action (Execute the Plan) 

V2 = v'2K(lo m) 

V2 = V 2(9.81 m/ s2)(10 m) 

I V2 = 14 1U!S] 

Review the Solution and the Process 

I. Knowledge. Notice that the same answer would be 
calculated for an object dropped from the same elevation as 
the water in the tank. This is because both problems involve 
equating gravitational potential energy at 1 with kinetic 
energy at 2. 

2. Validate. The assumption of the small velocity at the 
liquid surface is generally valid. It can be shown 
(Chapter 5) that 

V1 = D~ 
V2 D~ 

For example, a diameter ratio of 10 to 1 (D2/D1 = 0.1) 
results in the velocity ratio of 100 to I (V1/V2 = 11100). 
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When the Bernoulli equation is applied to a gas, it is common to neglect the elevation terms 
">ecause these terms are negligibly small as compared to the pressure and velocity terms. An 
aample of applying the Bernoulli equation to a flow of air is presented in Example 4.5. 

' 

EXAMPLE 4.5 

Applying the Bernoulli Equation to Air Flowing around a 
Bicycle Helmet 

Problem Statement 

The problem is to estimate the pressure at locations A and B 
so these values can be used to estimate the ventilation in a 
bicycle helmet that is being designed. Assume an air density 
of p = 1.2 kg/ m3 and an air speed of 12 m/s relative to the 
helmet. Point A is a stagnation point, and the velocity of air 
at point B is 18 m/s. 

Air 
V = l2m/s 

Define the Situation 

------

r® 
'· --- . ' 

~·v 

Idealize flow around a bike helmet as flow around the upper 
half of a sphere. Assume steady flow. Assume that point B is 
outside the boundary layer. Relabel the points as shown in 
the situation diagram because this makes application of the 
Bernoulli equation easier. 

0 V4 = 18m/s 

§
~ ~ ·---=------

0 
- ==========~ 
Air CD Q) 
v, ~ V3 = 12 m/s 
p - 1.2 kg/m1 

\tate the Goal 

2(Pa gage)~ Pressure at the forward stagnation point. 
n 4(Pa gage)~ Pressure at the shoulder. 

•enerate Ideas and Make a Plan 

election. Select the pressure form of the Bernoulli 
equation because the flow is air. Then write the Bernoulli 
equation al.ong the stagnation streamline (i.e., from point 1 
·.o point 2). 

( 
pV2 ) ( pVz ) 

P1 + T + pgz1 = P2 + --:/- + pgz2 (a) 

Conduct a term-by-term analysis. 

• p1 = 0 kPa gage because the external flow is at atmospheric 
pressure. 

• vl = 12m/s 

• let z1 = z2 = 0 because elevation terms are negligibly small 
for a gas flow such as a flow of air 

• let v2 = 0 because thi s is a stagnation point. 

Now, simplify Eq. (a). 

pV~ 
o + - + o = p2 + 0 + o 

2 

Eq. (b) has only a single unknown ( p2) . 

Next, apply the Bernoulli equation to the streamline that 
connects points 3 and 4. 

( 
pVz ) ( pVz ) 

P3 + ~ + pgz3 = P4 + T + pgz4 

Do a term-by-term analysis to give: 

( o + P ~5 + 0) = (P1 + P ~i + o) 
Eq. (d) has only one unknown (p4). The plan is 

I. Calculate (p2) using Eq. (b). 

2. Calculate (p4 ) using Eq. (d). 

Take Action (Execute the Plan) 

I. Bernoulli equation (point 1 to point 2) 

pVf (1.2 kg/ m3)(12 m/s}2 

Pz = - 2- = 2 

J P2 = 86.4 Pa gage j 

2. Bernoulli equation (point 3 to point 4) 

p(V~- VD (1.2 kg/m3}(122 
- l82}(m /sr 

P2 = 
2 2 

I Pz = -1-08 Pa gage I 

Review the Solution and the Process 

I. Discussion. Notice that where the velocity is high (i.e., 
point 4), the pressure is low (negative gage pressure). 

2. Knowledge. Remember to specify pressure units in gage 
pressure or absolute pressure. 

(b) 

(c) 

(d) 

3. Knowledge. Theory shows that the velocity at the shoulder 
of a sphere is 3/2 the velocity in the free stream. 
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Example 4.6 involves a venturi . A venturi (also called a venturi nozzle) is a constricted 
section as shown in this example. As fluid flows through a venturi , the pressure is reduced in 
the narrow area, called the throat. This drop in pressure is called the venturi effect. 

The venturi can be used to entrain liquid drops into a flow of gas as in a carburetor. The 
venturi can also be used to measure the flow rate. The venturi is commonly analyzed with the 
Bernoulli equation. 

EXAMPLE 4.6 

Applying the Bernoulli Equation to Flow through a Venturi 
Nozzle 

Problem Statement 

Piezometric tubes are tapped into a venturi section as shown 
in the figure. The liquid is incompressible. The upstream 
piezometric head is 1 m, and the piezometric head at the 
throat is 0.5 m. The velocity in the throat section is twice 
as large as in the approach section. Find the velocity in the 
throat section. 

Define the Situation 

A liquid flows through a venturi nozzle. 

State the Goal 

V1 (m/s) .. Velocity at point 2. 

Generate Ideas and Make a Plan 

Select the Bernoulli equation because the problem involves 
flow through a nozzle. Select the head form because a liquid is 

involved. Select a streamline and points 1 and 2. Sketch these 
choices on the situation diagram. 

Write the general form of the Bernoulli equation. 

Pz V~ 
+ z + -

"{ 2 2g 

Introduce piezometric head because this is what the 
piezometer measures: 

Vi Vi 
h +- =h + -

1 2g 2 2g 

v~ v~ 
(1.0 m) + = (0.5 m) + -

2g 2g 

Let V1 = 0.5 V2 

(0.5 Vzf V~ 
(LOrn) + - = (O.S m) + -

2g 2g 

Plan. Use Eq. (b) to solve for V2. 

Take Action (Execute the Plan) 

Bernoulli equation (i.e., Eq. b): 

Thus, 

( ) 
0.75 v~ 

O.Sm = - -
2g 

2g(0.5 m) 
0.75 

V = {2(9.81 m / s2)(0.5 m) 
2 -y - 0.75 

Review the Solution and the Proces-; 

1. Knowledge. Notice how a piezometer is used to measure 
piezometric head in the nozzle. 

{a) 

(b) 

2. Knowledge. A piezometer could not be used to measure the 
piezometric head if the pressure anywhere in the line were 
subatmospheric. In this case, pressure gages or manometers 
could be used. 
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4.7 Measuring Velocity and Pressure 

The piezometer, stagnation tube, and Pitot-static tube have long been used to measure pressure 
and velocity. Indeed, many concepts in measurement are based on these instruments. Thus, 
this section describes these instruments. 

Static Pressure 

Static pressure is the pressure in a flowing fluid. A common way to measure static pressure is 
to drill a small hole in the wall of a pipe and then connect a piezometer or pressure gage to this 
port (see fig. 4.29). This port is called a pressure tap. The reason that a pressure tap is useful 
IS that it provides a way to measure static pressure that. does not disturb the flow. 

------l'ie>Ometer applied to me<tsure FIGURE 4.29 

wall for atlacrung an instru- I me. For trus case, the static e tnes a 

( 

Pressure tap: Small hoi< in static pressure at the pipe center· This figure d f" 

ment for measuring pressure pressure is given by PA ~ yto.:. pressure pail and shows 

t;.z connected to a wall and ~ 
how a piezometer is 

used to measure static 

-
- pressure. 

---How ~ 
A _, ... ··-· ..,.. ~ ;.... ...... ~ .. - _,.... ~ ..... ·~· 4i-

""CHECKPOINT PROBLEM 4.3 

Restaurants often use large coffee dispensers (sec sketch). The sight 
glass shows the level of coffee. If the valve is opened, what happens to 
the level of coffee that is visible in the sight glass? Will the level go up, go 
down, or stay the same? Why? 

ri ~/Sight glass 

LJ.kValve 

.. 'rag nation Tube 

• stagnation tube (also known as a total head tube) is an open-ended tube directed upstream in 
_:low (see Fig. 4.30). A stagnation tube measures the sum of static pressure and kinetic pressure. 

Kinetic pressure is defined at an arbitrary point A as: 

(
kinetic pressure) = p v~ 

at point A 2 

:ext, we will derive an equation for velocity in an open channel flow. For the stagnation tube in 
.g. 4.30, select points 0 and l on the streamline, and let Zo = z1• The Bernoulli equation reduces to 

pVf pV5 
p, +-= p0 + - (4.28) 

2 2 

-,e velocity at point I is zero (stagnation point). Hence, Eq. ( 4.28) simplifies to 

2 - 2 ( Vo - p Pt - Po) (4.29) 
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FIGURE 4.30 

Stagnation tube. 

1 
I 

d 

/'' ~=====~ l 
® T\? /1 

Stroamline /0'--~ 

FIGURE 4.31 

Pitot·static tube. 

Static pressure tap 

Stagnation pressure top 

2 

Next, apply the hydrostatic equation: p0 = -yd and p1 = -y(/ + d). Therefore, Eq. ( 4.29) can be 
written as 

which reduces to 

Pitot-Static Tube 

2 v5 = - (-y(l + d) - -yd) 
p 

(4.30) 

The Pitot-static tube, named after the eighteenth-century French hydraulic engineer who in­
vented it, is based on the same principle as the stagnation tube, but it is much more versatile 
than the stagnation tube. The Pitot-static tube, shown in Fig. 4.31, has a pressure tap at the 
upstream end of the tube for sensing the kinetic pressure. There are also ports located several 
tube diameters downstream of the front end of the tube for sensing the static pressure in the 
fluid where the velocity is essentially the same as the approach velocity. When the Bernoulli 
equation, Eq. (4.2la), is applied between points 1 and 2 along the streamline shown in Fig. 4.31, 
the result is 

pV? pV~ 
P1 + 'YZ1 + - = P2 + "'(Zz + -

2 2 

But V1 = 0, so solving that equation for V2 gives an equation for velocity. 

[ 
2 ] 1/2 

Vz = P (Pz.l - Pz.2) (4.31) 
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Here V2 = V, where V is the velocity of the stream and Pz. t and Pz,2 are the piezometric 
;-ressures at points 1 and 2, respectively. 

By connecting. a pressure gage or manometer between the pressure taps shown in 
Fig. 4.31 that lead to points 1 and 2, one can easily measure the flow velocity with the 
Pitot-static tube. A major advantage of the Pitot-static tube is that it can be used to mea­
ure velocity in a pressurized pipe; a stagnation tube is not convenient to use in such a 
ttuation. 

If a differential pressure gage is connected across the taps, the gage measures the differ­
ence in piezometric pressure directly. Therefore Eq. (4.31) simplifies to 

v = V2t::.plp (4.32) 

·here !::.pis the pressure difference measured by the gage. 
More information on Pitot-static tubes and flow measurement is available in the 

.-low Measurement Engineering Handbook (5). Example 4.7 illustrates the application of 
1e Pitot-static tube with a manometer. Then, Example 4.8 illustrates application with a 

...,ressure gage. 

EXAMPLE 4.7 

Applying a Pitot·Static Tube (pressure measured 
with a manometer). 

Problem Statement 

A mercury manometer is connected to the Pitot-static tube in 
a pipe transporting kerosene as shown. If the deflection on the 
manometer is 7 in., what is the kerosene velocity in the pipe? 
Assume that the specific gravity of the kerosene is 0.81 . 

z2 

Define the Situation 

-\ Pitot-static tube is mounted in a pipe and connected to a 
manometer. 

Assumptions: Pitot-static tube equation is applicable. 

Properties: Skero = 0.81, from Table A.4, SHg = 13.55. 

State the Goal 

Find: Flow velocity (m/s). 

Generate Ideas and Make a Plan 

l. Find difference in piezometric pressure using the 
manometer equation. 

2. Substitute in Pitot-static tube equation. 

3. Evaluate velocity. 

Take Action (Execute the Plan) 

1. Manometer equation between points 1 and 2 on Pitot-static 
tube: 

Pt + (z, - .q)-ykcro + f-ykcro - Y"YHg - (f- Yhkero = P2 

or 

P1 + "YkeroZI - (p2 + "YkeroZ2) = y("YHg - "Ykero) 

Pt,l - Pz.2 = y( "YHg - "Ykero) 

2. Substitution into the Pitot-static tube equation: 

[ 
2 ] 1/2 

V = - y('YHg - "Ykero) 
Pkero 

[ ( 
'fHg )] 1/2 = 2gy --1 

'Ykrro 



142 CHAPTER 4 • THE BERNOULLI EQUATION AND PRESSURE VARIATION 

3. Velocity evaluation: 

V = 2 X 32.2 ft /s2 X - ft --· - - 1 ( 7 (13 55 )]1
'
2 

12 0.81 

( 
7 ]1/2 

= 2 X 32.2 X (2(16.7 - l ) ft2 /s2 

= 124.3 ft!sJ 

EXAMPLE 4.8 

Applying a Pitot·Static Tube (pressure measured 
with a pressure gage) 

Problem Statement 

A differential pressure gage is connected across the taps of a 
Pitot-static tube. When this Pitot-static tube is used in a wind 
tunnel test, the gage indicates a t:.p of 730 Pa. What is the air 
velocity in the tunnel? The pressure and temperature in the 
tunnel are 98 k.Pa absolute and 20°C, respectively. 

------------------------------- ---
Define the Situation 

A differential pressure gage is attached to a Pitot-static tube 
for velocity measurement in a wind tunnel. 

p - 98 kPa 

v-
r -2o•c 

Review the Solution and the Process 

Discussion. The -I in the quantity (16. 7 _: 1) reflects the effect 
of the column of kerosene in the right leg of the manometer, 
which tends to counterbalance the mercury in the left leg. 
Thus with a gas-liquid manometer, the counterbalancing 
effect is negligible. 

Assumptions: 

• Airflow is steady. 

• Pitot-tube equation applicable. 

Properties: Table A.2, R • ., = 287 Jlkg K. 

State the Goal 

Find the air velocity (in m/s) . 

Generate Ideas and Make a Plan 

1. Using the ideal gas law, calculate air density. 

2. Using the Pitot-static tube equation, calculate the velocity. 

Take Action (Execute the Plan) 

1. Density calculation: 

= _!_ = 98 X 103N/m2 = 117 k / mJ 
p RT (287 J/ kg K) X (20 + 273 K) . g 

2. Pitot-static tube equation with differential pressure gage: 

v = V 2t:.pl p 

V = Y (2 x 730 N/ m2)/( l.l 7 kg/m3
) = [35.~ 

4.8 Characterizing Rotational Motion of a Flowing Fluid 

In addition to velocity and acceleration, engineers also describe the rotation of a fluid. Thus 
this topic is introduced in this section. At this point, we recommend the online vorticity film 
(6) because this film shows the concepts in this section using laboratory experiments. 

Concept of Rotation 

Rotation of a fluid particle is defined as the average rotation of two init ially mutually per­
pendicular faces of a fluid particle. The test is to look at the rotation of the line that bisect 
both faces (a-a and b-b in Fig. 4.32). The angle between this line and the horizontal axis 1~ 
the rotation, e. 
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Partocle at tome 11 Pamcle at time 12 

v 
~~~======~==· --

b apa 
b 

The general relationship between 8 and the angles defining the sides is shown in Fig. 4.33, 
·here eA is the angle of one side with the x-axis and the angle 88 is the angle of the other side 

1T 
.;th they-aXiS. The angle between the Sides is l3 = - + (:)B - (:)A> SO the orientation of the 

-article with respect to the x-axis is 2 

1 1T I 
e = - 13 + eA = - + - (eA + eB) 

2 4 2 

he rotational rate of the particle is 

. 1 . . 
e = -(eA + Sa) 

2 

' X 

(4.33) 

e = 0, the flow is irrotational, which means that the rotation rate (as defined by Eq. 4.33) is 
ero for all points in the velocity field .. 

Next, we derive an equation for e in terms of the velocity field. Consider the particle 
-own in Fig. 4.34. The sides of the particle are initially perpendicular with lengths 6.x and 6.y . 
. 1en the particle moves with time and deforms as shown with point 0 going to 0', point 1 to 1', 
id point 2 to 2'. The lengths of the sides are unchanged. After time 6.t the horizontal side has 
tated counterclockwise by 6.8 A and the vertical side clockwise (negative direction) by -6.8 8. 

l he y velocity component of point 1 is v + ( av/ ax)6.x, and the x component of point 2 is 
- (iiu/ ay)Lly. The net displacements of points 1 and 2 are* 

[( av ) J av ~y1 - v + iix 6.x 6. t- v6.t = ax 6.x6.t 

(4.34) 

[( 
au ) ] il u 

6.x2 - u + ay 6.y 6.t - u6.t = ay 6.y6.t 

"n t symbol - means that the quantities are approximately equal but become exactly equal as the quantities approach 
tz:! 

FIGURE 4.32 

Rotation of a fluid particle 
in flow between a moving 
and stationary parallel 
plate 

FIGURE 4.33 

Onentotion of rotated 
fluid particle. 
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FIGURE 4.34 

Transla tion and 
defo rmation of 
a fluid particle. 

Fluid panicle 
at lime t 

y 

(),. 
(I' ~- L\ t)ill 

Cl.·· 

Referring to Fig. 4.34, the angles Ll8A and Ll88 are given by 

Dividing the angles by Llt and taking the limit as Ll t--+- 0, 

· . Ll()A iJv 
()A = hm --

At-40 flt ax 
. Ll!:la au 
88 = lim -- =-

At->o Llt ay 

(4.35) 

(4.36) 

Substituting these results into Eq. ( 4.33) gives the rotational rate of the particle about the z-axis 
(normal to the page), 

e = .!_(ilv - au) 
2 ax ay 

This component of rotational velocity is defined as D.z, so 

(4.37a) 

Likewise, the rotation rates about the other axes are 

(4.37b) 

(4.37c) 

The rate-of-rotation vector is 

(4.38) 
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n irrotational flow (!1 = 0) requires that 

av au 
(4.39a) - =-

ax ay 
aw av 

(4.39b) - ==-ay iJz 
au aw 

(4.39c} - =-
c)z ax 

The most extensive application of these equations is in ideal flow theory. An ideal flow is 
~-e flow of an irrotational, incompressible fluid. Flow fields in which viscous effects are small 
.:m often be regarded as irrotational. ln fact, if a flow of an incompressible, inviscid fluid is 
;;.itially irrotational, it will remain irrotational. 

,·orticity 
~-e most common way to describe rotation is to use vorticity, which is a vector equal to twice 

e rate-of-rotation vector. The magnitude of the vorticity indicates the rotationality of a flow 
-d is very important in flows where viscous effects dominate, such as boundary layer, sepa­

ed, and wake flows. The vorticity equation is 

I 

w = 2!1 

= (aw _ av)i + (au _ aw); + (av _ au)k 
ay az az ax ax ay (4.40) 

= V XV 

lere V X V is the curl of the velocity field. 
An irrotational flow signifies that the vorticity vector is everywhere zero. Example 4.9 

Oo3trates how to evaluate the rotationality of a flow field, and Example 4.10 evaluates the rota­
... of a fluid particle. 

EXAMPLE 4.9 Generate Ideas and Make a Plan 

a =-aluating Rotation 
Because w = 0 and - = 0, apply Eq. ( 4.39a) to evaluate az 

,bJem Statement 

... ~vector V = I Oxi - I Oyj represents a two-dimensional 
docity field . Is the flow irrotational? 

ne the Situation 

·e the Goal 

~=ermine if flow is irrotational. 

rotationality . 

Take Action (Execute the Plan) 

Velocity components and derivatives 

iJu 
u = lOx = 0 

v = - lOy 

Thus, flow is irrotational. 

ay 

av = 0 
ax 
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EXAMPLE 4. 1 0 t 
Rotation of a Fluid Particle 

Problem Definition 

A fluid exists between stationary and moving parallel flat 
plates, and the velocity is linear as shown. The distance 
between the plates is I em, and the upper plate moves at 
2 cm/s. Find the amount of rotation that the fluid particle 
located at 0.5 em will undergo after it has traveled a distance 
of 1 em. 

Sketch: 

v~2cm/s 

Define the Situation 

This problem involves Couette flow. 

• iJ 
Assumptions: Planar flow (w = 0 and-= 0). az 
State the Goal 

Find the rotation of a fluid particle (in radians) at the 
midpoint after traveling 1 em. 

Generate Ideas and Make a Plan 

I. Use Eq. (4.37a) to evaluate rotational rate with v = 0. 

2. Find time for particle to travel 1 em. 

3. Calculate amount of rotation. 

Take Action (Execute the Plan) 

1. Velocity distribution 

u = 0.02 mls X O.~ m = 2y(lls) 

~otational rate 

n. = }(t -:;) =-I rad/ s 

2. Time to travel I em: 

u = 2 (!Is) X 0.005 m = 0.01 m ls 

t.t = t.x = 0.01 rn = 1 s 
u 0.01 m l s 

3. Amount of rotation 

t.O = n. X t.t = - I X 1 = - I rad 

Review the Solution and the Process 

Discussion. Note that the rotation is negative (in clockwise 
direction). 

4. 9 The Bernoulli Equation for lrrotational Flow 

When flow is irrotational, the Bernoulli equation can be applied between any two points in this 
flow. That is, the points do not need to be on the same streamline. This irrotationa/ form of the 
Bernoulli equation is used extensively in applications such as classical hydrodynamics, the 
aerodynamics of lifting surfaces (wings), and atmospheric winds. Thus, this section describes 
how to derive the Bernoulli equation for an irrotational flow. 

FIGURE 4.35 

Two adjacent streamlines 
showing d1rection n 
between lines. 

Streamlines 

\ II 

r 

To begin the derivation, apply the Euler equation, Eq. ( 4.15), in the n direction (normal to 
the streamline) 

(4.41) 

where the partial derivative of n is replaced by the ordinary derivative because the flow is 
assumed steady (no time dependence). Two adjacent streamlines and the direction n is shown 
in Fig. 4.35. The local fluid speed is V, and the local radius of curvature of the streamline is r. 
The acceleration normal to the streamline is the centripetal acceleration, so 

a = n 
r 

(4.42) 
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here the negative sign occurs because the direction n is outward from the center of curvature 
-,d the centripetal acceleration is toward the center of curvature. Using the irrotationality 

ndition, the acceleration can be written as 

a,= v~ = _ v(~) = vdv = i_(V2
) 

r r dr dr 2 
(4.43) 

~iso the derivative with respect to r can be expressed as a derivative with respect to n by 

i_( y2) = i__( y2) dn = d (~) 
dr 2 dn 2 dr dn 2 

-f'Cause the direction of n is the same as r so dn!dr = l. Eq. ( 4.43) can be rewritten as 

a,= d~ (~2) (4.44) 

.bstituting the expression for acceleration into Euler's equation, Eq. ( 4.41), and assuming 
nstant density results in 

d ( y
2

) - p + "fZ + p- = 0 
dn 2 

(4.45) 

y2 
p + -yz + p = C 

2 
(4.46) 

1ch is the Bernoulli equation, and Cis constant in then direction (across streamlines). 

_-,mary For an irrotationa1 flow, the constant C in the Bernoulli equation is the same across 
o;;:-eamlines as well as along streamlines, so it is the same everywhere in the flow field. Thus, 

m applying the Bernoulli equation for irrotational flow, one can select points 1 and 2 at any 
<lions, not just along a streamline . 

. 1 0 Describing the Pressure Field 
r Flow over a Circular Cylinder 

-, over a circular cylinder is a paradigm (i.e., model) for external flow over many objects. 
_.s, this flow is described in this section. 

Pressure Coefficient 

describe the pressure field, engineers often use a dimensionless group called the pressure 
'icient: 

h- ho 

V~/(2g) 
(4.47) 
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FIGURE 4.36 

lrrotational flow past a cylinder. (a) Streamline pattern. (b) Pressure distribution. 

(a) 

Note: Pu,ilave CP 
ploned inwanl from 

cylmder >urface: 

negative (~ ploned 

outward. p _ p 
(' a __ o 

p pl';/2 --

Pressure Distribution for on Ideal Fluid 

(b) 

Negat ive c. 

An ideal fluid is defined as a fluid that is nonviscous and that has constant density. If we 
asswne an irrotational flow of an ideal fluid, then calculations reveal the results shown in 
Fig. 4.36a. Features to notice in this figure are 

• The pressure distribution is symmetric on the front and back of the cylinder. 

• The pressure coefficient is sometimes negative (plotted outward), which corresponds to 
negative gage pressure. 

• The pressure coefficient is sometimes positive (plotted inward), which corresponds to 
positive gage pressure. 

• The maximum pressure (Cp = + 1.0) occurs on the front and back of the cylinder at the 
stagnation points (points B and D). 

• The minimum pressure (Cp = -3.0) occurs at the midsection, where the velocity is 
highest (point C). 

Next, we introduce the concepts of a favorable and adverse pressure gradient. To begin, apply 
Euler's equation while neglecting gravitational effects: 

One notes that a, > 0 if ap/ as < 0; that is, the fluid particle accelerates if the pressure 
decreases with distance along a pathline. This is a favorable pressure gradient. On the other 
hand, at < 0 if up/ as > 0, so the fluid particle decelerates if the pressure increases along a 
pathline. 1l1is is an adverse pressure gradient. The definitions of pressure gradient are sum­
marized in the table. 

Favorable pressure gradient 
Adverse pressure gradient 

aptos < o 
aptas > o 

a, > 0 (acceleration) 
a, < 0 (deceleration) 

Visualize the motion of a fluid particle in Fig. 4.36a as it travels around the cylinder from 
A to B to C to D and finally to E. Notice that it first decelerates from the free-stream velocity to 
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zero velocity at the forward stagnation point as it travels in an adverse pressure gradient. Then 
&S it passes from B to C, it is in a favorable pressure gradient, and it accelerated to its highest 
;peed. From C to D the pressure increases again toward the rearward stagnation point, and the 
:"article decelerates but has enough momentum to reach D. Finally, the pressure decreases 
~m D to E, and this favorable pressure gradient accelerates the particle back to the free­
tream velocity. 

Pressure Distribution for a Viscous Flow 

Consider the flow of a real (viscous) fluid past a cylinder as shown in Fig. 4.37. The flow pattern 
.1pstream of the midsection is very similar to the pattern for an ideal fluid. However, in a vis­
.:ous fluid the velocity at the surface is zero (no-slip condition), whereas with the flow of an 
nviscid fluid the surface velocity need not be zero. Because of viscous effects, a boundary layer 
· 1rms next to the surface. The velocity changes from zero at the surface to the free-stream ve­
:ocity across the boundary layer. Over the forward section of the cylinder, where the pressure 
;--adient is favorable, the boundary layer is quite thin. 

FIGURE 4.37 

Flow of a real fluid post a circular cylinder. (ol Flow pattern. (b) Pressure distribution. 

Separation point 

d~=~~ 
~~r~))f-9> . 
~ q ~ 5) 

~~~----4__/· . ~ --' ---·---- - --~·:.,---

Wake Boundary layer 

(a) 

cP = p - po 

p VJ!2 

Vo -

(b) 

C~= -1.2 

Downstream of the midsection, the pressure gradient is adverse, and the fluid particles in 
e boundary layer, slowed by viscous effects, can only go so far and then are forced to detour 

_ 1ay from the surface. The particle is pushed off the wall by pressure force associated with the 
,dverse pressure gradient. The point where the flow leaves the wall is called the separation 
':'Oint. A recirculatory flow called a wake develops behind the cylinder. The flow in the wake 
~ion is called separated flow. The pressure distribution on the cylinder surface in the wake 
~on is nearly constant, as shown in Fig. 4.37b. The reduced pressure in the wake leads to in­
-eased drag. 

4. 11 Calculating the Pressure Field for a Rotating Flow 

~'lis section describes how to relate pressure and velocity for a flu id in a solid body rotation. To 
-'lderstand solid body rotation, consider a cylindrical container of water (Fig. 4.38a) which is 
:.ationary. Imagine that the container is placed into rotational motion about an axis (Fig. 4.38b) 



FIGURE 4.38 

Sketch used to define a 
fluid in solid body rotation. l±Water 

-
Platform r (stationary) 

(a) 

I 
~(I) 

E /Platform 
(rotating) 

(b) 

and allowed to reach steady state with an angular speed of w. At steady state, the fluid particles 
will be at rest with respect to each other. That is, the distance between any two fluid particles 
will be constant. This condition also describes rotation of a rigid body; thus, this type of mo­
tion is defined as a fluid in a solid body rotation. 

Situations in which a fluid rotates as a solid body are found in many engineering applica­
tions. One common application is the centrifugal separator. The centripetal accelerations re­
sulting from rotating a fluid separate the heavier particles from the lighter particles as the 
heavier particles move toward the outside and the lighter particles are displaced toward the 
center. A milk separator operates in this fashion, as does a cyclone separator for removing 
particulates from an air stream. 

Derivation of an Equation for a Fluid in Solid Body Rotation 

To begin, apply Euler's equation in the direction normal to the streamlines and outward from 
the center of rotation. In this case the fluid particles rotate as the spokes of a wheel, so the 
direction e in Euler's equation, Eq. ( 4.15), is replaced by r giving 

d 
- dr(p + -yz) = pa, (4.48) 

where the partial derivative has been replaced by an ordinary derivative because the flow is 
steady and a function only of the radius r. From Eq. ( 4.11 ), the acceleration in the radial direc­
tion (away from the center of curvature) is 

and Euler's equation becomes 

d V 2 

- -(p + -yz) = -p-
dr r 

For solid body rotation about a fixed axis, 

V = wr 

Substituting this velocity distribution into Euler's equation results in 

d 
-(p + -yz) = prw2 

dr 

(4.49) 

(4.50) 
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·.,tegrating Eq. (4.50) with respect tor gives 

przw2 
p + -yz = - - + const 

2 
or 

p wzrz 
- + z- - =C 
'Y 2g 

This equation can also be written as 

w2r 2 
p + "fZ - p- = C 

2 

(4.51) 

(4.52a} 

(4.52b) 

-:bese equivalent equations describe the pressure variation in rotatingjlow. Example 4.11 shows 
·.ow to apply the equation. 

EXAMPLE 4. 11 

Calculating the Surface ProRie of a Rotating liquid 

· ·roblem Statement 

A cylindrical tank of liquid shown in the figure is rotating as 
a solid body at a rate of 4 rad/ s. The tank diameter is 0.5 m. 
The line AA depicts the liquid surface before rotation, and 
the line A' A' shows the surface profile after rotation has been 
established. Find the elevation difference between the liquid at 
the center and the wall during rotation. 

A' 

<.J..;>oo- 4 radls 

r z (vertical) 

eDt A' 

A I ' , y I / lA 

1-- ----- O.S.m ------~ 

""~efine the Situation 

A liquid is rotating in a cylindrical tank. 

'•tate the Goal 

Calculate the elevation difference (in meters) between liquid 
at the center and at the wall. 

Generate Ideas and Make a Plan 

I. Apply Eq. (4.52a), between points 1 and 2. 

2. Calculate the elevation difference. 

Take Action (.E.xecute the Plan) 

1. Equation (4.52a). 

P1 w2rf Pz oh~ + zl - - - = - + Zz - --
'Y 2g 'Y 2g 

The pressure at both points is atmospheric, so p1 = p2 and 
the pressure terms cancel out. At point l , r 1 = 0, and at 
point 2, r = r2• The equation reduces to 

ohi 
z2 - - - = z1 

2g 

2. Elevation difference: 

2 2 w rz 
Zz- Zi = 2g 

(4 rad / s)2 X (0.25 m)Z 
Zz- z. = 

2 X 9.81 m/s2 

= J 0.051 m or 5.1 em J 

Rc\ iew the Solution and the Process 

Notice that the surface profile is parabolic. 



152 CHAPTER 4 • THE BERNOULLI EQUATION AND PRESSURE VARIATION 

Example 4.12 illustrates the analysis of a rotating flow in a manometer. 

EXAMPLE 4. 12 

Evaluating a Rotating Manometer Tube 

with, that liquid remains in the bottom leg. The pressure at the 
top of the liquid in each leg is atmospheric. 

1. Apply the equation for pressure variation in rotating flows, 
Eq. (4.52a), to evaluate difference in elevation in each leg. Problem Statement 

When the U-tube is not rotated, the water stands in the tube as 
shown. If the tube is rotated about the eccentric axis at a rate 
of 8 rad/s, what are the new levels of water in the tube? 

2. Using constraint of total liquid length, find the level in 
each leg. 

Take Action (Execute the Plan) 
Define the Situation 

A manometer tube is rotated around an eccentric axis. 
I. Application of Eq. (4.52a) between top of leg on left (1) and 

on right (2): 

r·~~. 
' 

CD 
I 

CD r ' 

I 18 cm 

L 
)...- 18 cm 36cm 

l 
18cm 

J 

r~wz dwz 
z1 - zg = Zz - zg 

(J)2 

Zz - z1 = 
2
g (d - r f) 

(8 rad/s)2 

= (0.362 m2 - 0.182 m2
) = 0.317 m 

2 X 9.81 m/ s2 

2. The sum of the heights in each leg is 36 em. 

z2 + z1 = 0.36 m 

Solution for the leg heights: 

Assumptions: Liquid is incompressible. z2 = 0.338m 

z1 = 0.022 m 
State the Goal 

Find the levels of water in each leg. Review the Solution and the Proce~s 

Generate Ideas and Make a Plan 

The total length of the liquid in the manometer must be the 
same before and after rotation, namely 90 em. Assume, to start 

Discussion. If the result was a negative height in one leg, it 
would mean that one end of the liquid column would be 
in the horizontal leg, and the problem would have to be 
reworked to reflect this configuration. 

4. 12 Summarizing Key Knowledge 

Pathline, Streamlines, and Streaklines 

• To visualize flow, engineers use the streamline, streakline, and the pathline. 

~ The streamline is a curve that is everywhere tangent to the local velocity vector. 

~ The streamline is a mathematical entity that cannot be observed in the physical world. 

~ The configuration of streamlines in a flow field is called the flow pattern. 

~ The pathline is the line (straight or curved) that a particle follows. 

~ A streakline is the line produced by a dye or other marker fluid introduced at a point. 

• In steady flow, pathlines, streaklines, and streamlines are coincident (i.e., on top of each 
other) if they share a common point. 

• In unsteady flow, pathlines, streaklines, and streamlines are not coincident. 
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Velocity and Velocity Field 

• In a flowing fluid, velocity is defined as the speed and direction of travel of a fluid particle. 

• A velocity field is a mathematical or graphical description that shows the velocity at each 
point (i.e., spatial location) within a flow. 

Eulerian and Lagrangian Descriptions 

There are two ways to describe motion (Lagrangian and Eulerian). 

• In the Lagrangian approach, the engineer identifies a specified collection of matter and 
describes its motion. For example, when a engineer is describing the motion of a fluid 
particle this is a Lagrangian-based description. 

• In the Eulerian approach, the engineer identifies a region in space and describes the 
motion of matter that is passing by in terms of what is happening at various spatial 
locations. For example, the velocity field is an Eulerian-based concept. 

~ The Eulerian approach uses fields. A field is a mathematical or graphical description that 
shows how a variable is distributed spatially. A field can be a scalar field or a vector field. 

~ The Eulerian approach uses the divergence, gradient, and curl operators. 

~ The Eulerian approach uses more complicated mathematics (e.g., partial derivatives) 
than the Lagrangian approach. 

Describing Flow 

Engineers describe flowing fluids using the ideas summarized in Table 4.4. 

TABLE 4.4 How Engineers Describe Flowing Fluids 

Description 

Engineers classify flows as uniform or nonuniform. 

Engineers classify flows as steady or unsteady. 

Engineers classify flows as laminar or turbulent. 

Key Knowledge 

• Uniform and nonuniform flow describe how velocity varies spatially. 

• Uniform flow means that the velocity at each point on a given 
streamline is the same. Uniform flow requires rectilinear streamlines 
(straight and parallel). 

• Nonuniform flow means that velocity at various points on a given 
streamline differs. 

• Steady flow means the velocity is constant with respect to time at 
every point in space. 

• Unsteady flow means the velocity is changing with time at some or all 
points in space. 

• Engineers often idealize unsteady flows as steady flow. Example: 
A draining tank of water is commonly assumed to be a steady flow. 

• Laminar flow involves flow in smooth layers (laminae) with low levels 
of mixing between layers. 

• Tttrbulent flow involves flow that is dominated by eddies of various size. 
Flow is chaotic, unsteady, 3D. High levels of mixing. 

• Occasionally, engineers describe a flow as transitional. This means 
that the flow is changing from a laminar flow to a turbulent flow. 

(Continued ) 
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TABLE 4.4 How Engineers Describe Flowing Fluids (Continued) 

Engineers classify flows as lD, 2D, or 3D. 

Engineers classify flows as viscous flow or inviscid flow. 

Engineers describe flows by describing an inviscid flow 
regior1, a boundary layer, and a wake. 

Engineers describe flows as separated or attached. 

Acceleration 

Key Knowledge 

• One-dimensional (1-D) flow means the velocity depends on one 
spatial variable. E.g., velocity depends on radius r only. 

• Three-dimensional (3-D) flow means the velocity depends on three 
spatial variables. E.g., velocity depends on three position coordinates: 
V = V(x,y, z). 

• In a viscous flow, the forces associated with viscous shear stresses arc 
significant. Thus, viscous terms arc included when solving the 
equations of motion. 

• In an inviscidflow, the forces associated with viscous shear stresses 
are insignificant. Thus, viscous terms are neglected when solving the 
equations of motion_ The fluid behaves as if its viscosity were zero. 

• In the inviscid flow region, the streamlines are smooth and the flow 
can be analyzed with Euler's equation. 

• The boundary layer is a thin region of fluid next to wall. Viscous 
effects are significant in the boundary layer. 

• The wake is the region of separated flow behind a body. 

• Flow separation is when fluid particles move away from the wall. 

• Attached flow is when fluid particles are moving along a wall or 
boundary. 

• The region of separated flow inside a pipe or duct is often called a 
recirculation zone. 

• Acceleration is a property of a fluid particle that characterizes 

~ The change in speed of the particle 

~ The change in direction of travel of the particle 

• Acceleration is defined mathematically as the derivative of the velocity vector. 

• Acceleration of a fluid particle can be described qualitatively. Guidelines: 

~ If a particle is traveling on a curved streamline, there will be a component of 
acceleration that is normal to the streamline and directed inwards toward the center of 

curvature. 

~ If the particle is changing speed, there will be a component of acceleration that is 

tangent to the streamline. 

• In an Eulerian representation of acceleration, 

~ Terms that involve derivatives with respect to time are weal acceleration terms. 

~ All other terms are convective acceleration terms. Most of these terms involve derivatives 

with respect to position. 

Euler's Equation 

• Euler's equation is Newton's second law of motion applied to a fluid particle when the flow is 

inviscid and incompressible. 



• Euler's equation can be written as a vector equation: 

-Vpz = pa 

SECTION 4.12 SUMMARIZING KEY KNOWLEDGE 155 ....... . ...... . ............ . 

• This vector form can be also be written as a scalar equation in an arbitrary e direction. 

() (iiPz) --(p + 'YZ) = - - = 1Ja1 ae ue 
• Physics of Euler's equation: The gradient of piezometric pressure is coli near with 

acceleration and opposite in direction. This reveals how pressure varies: 

~ When streamlines are curved, pressure will increase outward from the center of curvature. 

~ When a streamline is rectilinear and a particle on the streamline is changing speed, then 
the pressure will change in a direction tangent to the streamline. The direction of 
increasing pressure is opposite of the acceleration vector. 

~ When streamlines are rectilinear, pressure variation nom1al to the streamlines is hydrostatic. 

The Bernoulli Equation 

• The Bernoulli equation is conservation of energy applied to a fluid particle. It is derived by 
integrating Euler's equation for steady, inviscid, and constant density flow. 

• For the assumptions just stated, the Bernoulli equation is applied between any two points 
on the same streamline. 

• The Bernoulli equations has two forms: 

~ Head Form: pi'Y + z + V 2!(2g) = constant 

~ Pressure form: p + pgz + (p V 2)/2 = constant 

• There are two equivalent ways to describe the physics of~he Bernoulli equation: 

~ When speed increases, then piezometric pressure decreases (along a streamline). 

~ The total head (velocity head plus piezometric head) is constant along a streamline. This 
means that energy is conserved as a fluid particle moves along a streamline. 

Measuring Velocity and Pressure 

• When pressure is measured at a pressure tap on the wall of a pipe, this provides a 
measurement of static pressure. This same measurement can also be used to determine 
pressure head or piezometric head. 

• Static pressure is defined as the pressure in a flowing fluid. Static pressure must be 
measured in a way that does not change the value of the measured pressure. 

• Kinetic pressure is (IJ V 2)12. 

• A stagnation tube provides a measurement of (static pressure) + (kinetic pressure): 

p + (pV2)/2 

• The Pilot-static tube, provides a method to measure both static pressure and kinetic pressure 
at a point in a flowing fluid. Thus, this instrument provides a way to measure fluid velocity. 

:tluid Rotation, Vorticity, and lrrotational Flow 

• Rate of rotation !1 

~ Is a property of a fluid particle that describes how fast the particle is rotating. 

~ Is defined by placing two perpendicular lines on a fluid particle and then averaging the 
rotational rate of these lines. 

~ Is a vector quantity with the direction of the vector given by the right-hand rule. 



156 CHAPTER 4 • THE BERNOULLI EQUATION AND PRESSURE VARIATION 

REFERENCES 

• A common way to describe rotation is to use the vorticity vector w, which is twice the 
rotation vector: w = 2!1 

• In Cartesian coordinates, the vorticity is given by 

w = (aw _ a~)i + (au _ aw)j + (av _ au)k 
ay ()z az fix fix ay 

• An irrotational flow is one in which vorticity is everywhere zero. 

• When applying the Bernoulli equation for irrotational flow, one can select points 1 and 2 
at any locations, not just along a streamline. 

Describing the Pressure Field 

• The pressure field is often described using a 1T-group called the pressure coefficient. 

• The pressure gradient near a body is related to flow separation. 

~ An adverse pressure gradient is associated with flow separation. 

~ A positive pressure gradient is associated with attached flow. 

• The pressure field for flow over a circular cylinder is a paradigm for understanding external 
flows. The pressure along the front of the cylinder is high, and the pressure in the wake is low. 

• When flow is rotating as a solid body, the pressure field p can be described using 

w2r 2 
p + -yz- p- = C 

2 

where w is the rotational speed, and r is the distance from the axis of rotation to the point in 
the field. 

Describing the Pressure Field (Summary) 
Pressure variations in a flowing fluid are associated with three phenomenon: 

• Weight. Due to the weight of a fluid, pressure increases with increasing depth (i.e., 
decreasing elevation). This topic is presented in Chapter 3 (Hydrostatics) 

• Acceleration. When fluid particles are accelerating, there are usually pressure variations 
associated with the acceleration. In inviscid flow, the gradient of the pressure field is 
aligned in a direction opposite of the acceleration vector. 

• Viscous Effects. When viscous effects are significant, there can be associated pressure 
changes. For example, there are pressure drops associated with flows in horizontal pipes 
and du cts. This topic is presented in Chapter 10 (Conduit Flow). 
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:»ROBLEMS 

~·s Problem available in Wiley PLUS at instructor's discretion. 

Streamlines, Streaklines, and Pathlines (§4. 1) 

4.1 If somehow you could attach a light to a fluid particle and 
:ake a time exposure photo, would the image you photographed 
"e a pathline or streakline? Explain from definition of each. 

4.2 Is the pattern produced by smoke rising from a chimney on 
a windy day analogous to a path line or streakline? Explain from 
:he definition of each. 

4.3 rt:ifs A windsock is a sock-shaped device attached to a swivel 
10 top of a pole. Wmdsocks at airports are used by pilots to see 

mstantaneous shifts in the direction of the wind. If one drew a line 
co-linear with a windsock's orientation at any instant, the line would 
be best approximate a (a) pathline, (b) streakli.ne, or (c) streamline. 

4.4 p=;:Js For streamlines, streaklines, and streamlines to all be 
co-linear, the flow must be 

a. dividing 

b. stagnant 

c. steady 

d. a tracer 

4.5 At time t = 0, dye was injected at point A in a flow field of a 
.1quid. When the dye had been injected for 4 s, a path line for a 
particle of dye that was emitted at the 4 s instant was started. The 
streakline at the end of 10 s is shown below. Assume that the speed 
'but not the velocity) of flow is the same throughout the 10 s period. 
Draw the pathli.ne of the particle that was emitted at t = 4 s. Make 
•"Our own assumptions for any missing information. 

~~;~ 

A 

PRORI.E.\1 4.5 

4.6 For a given hypothetical flow, the velocity from time t = 0 to 
= 5 s was u = 2 m/s, v = 0. Then, from time I = 5 s to I = 10 s, 

ihe velocity was u = + 3 m/s, v = - 4 m/s. A dye streak was 
narted at a point in the flow field at time t = 0, and the path of a 
particle in the fluid was also traced from that same point starting 
at the same time. Draw to scale the streakline, path line of the 
?article, and streamlines at timet= 10 s. 

4.7 At time t = 0, a dye streak was started at point A in a flow 
field of liquid. The speed of the flow is constant over a 10 s 
period, but the flow direction is not necessarily constant. At any 
particular instant the velocity in the entire field of flow is the 
~e. The streakline produced by the dye is shown above. Draw 
and label) a streamline for the flow field at t = 8 s. 

Draw (and label) a pathline that one would see at t = 10 s 
for a particle of dye that was emitted from point A at t = 2 s. 
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~Guided Online (GO) Problem, available in Wiley PLUS at 
instructor's discretion. 

A 

PROBLEM 4.7 

Velocity and the Velocity Field (§4.2) 

4.8 ;:('ifs A velocity field is given mathematically as V = 2i + 4yj. 

The velocity field is: 

a. !Dinx 

b. lD in y 

c. 20 in x and y 

The Eulerian and lagrangian Approaches (§4.2) 

4.9 ;&s There is a gasoline spill in a major river. The mayor of a 
large downstream city demands an estimate of how many hours 
it will take for the spill to get to the water supply plant intake. 
l11e emergency responders measure the speed of the leading 
edge of the spill, effectively focusing on one particle of fluid. 
Meanwhile, environmental engineers at the local university 
employ a computer model, which simulates the velocity field for 
any stage of the river, and for all locations (including steep 
narrow canyon sections with fast velocities, and an extremely 
wide reach with slow velocities). To compare these two 
mathematical approac~es, which statement is most correct? 

a. The responders have an Eulerian approach, and the 
engineers have a Lagrangian one 

b. The responders have a Lagrangian approach, and the 
engineers have an Eulerian one. 

Describing Flow (§4.3) 

4.10 Identify five examples of an unsteady flow and explain what 
features classify them as an unsteady flow. 

4.11 You are pouring a heavy syrup on your pancakes. As the 
syrup spreads over the pancake, would the thin film of syrup be a 
laminar or turbulent flow? Why? 

4.12 ~s A velocity field is given by V = 1 Oxyi . It is 

a. 1-D and steady 

b. 1-D and unsteady 

c. 2-0 and steady 

d. 2-D and unsteady 

4.13 Which is the most correct way to characterize turbulent flow? 

a. 10 

b. 20 

c. 30 
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4.14 In the system in the figure, the valve at Cis gradually 
opened in such a way that a constant rate of increase in discharge 
is produced. How would you classify the flow at B while the valve 
is being opened? How would you classify the flow at A? 

A 
8 

c 

PROI:ILE~itll 

4.15 Water flows in the passage shown. If the flow rate is 
decreasing with time, the flow is classified as (a) steady, (b) 
unsteady, (c) uniform, or (d) nonuniform. 

PROBLEM 1.1 'i 

4.16 If a flow pattern has converging streamlines, how would 
you classify the flow? 

4.17 Consider flow in a straight conduit. The conduit is circular 
in cross section. Part of the conduit has a constant diameter, and 
part has a diameter that changes with distance. Then, relative to 
flow in that conduit, correctly match the items in column A with 
those in column B. 

A B 

Steady flow av,tas = o 
Unsteady flow av,tas ¥ 0 

Uniform flow iiV,Iat = 0 

Nonuniform flow iJV,IiJt >" 0 

4.18 Classify each of the following as a one-dimensional, two­
dimensional, or three-dimensional flow. 

a. Water flow over the crest of a long spillway of a dam. 

b. Flow in a straight horizontal pipe. 

c. Flow in a constant-diameter pipeline that follows the 
contour of the ground in hilly country. 

d. Airflow from a slit in a plate at the end of a large rectan-
gular duct. 

e. Airflow past an automobile. 

f. Airflow past a house. 

g. Water flow past a pipe that is laid normal to the flow 
across the bottom of a wide rectangular channel. 

Acceleration (§4.4) 

4.19 Acceleration is the rate of change of velocity with time. Js 
the acceleration vector always aligned with the velocity vector? 
Explain. 

4.20 For a rotating body, is the acceleration toward the center of 
rotation a centripetal or centrifugal acceleration? Look up word 
meanings and word roots. 

4.21 li:'Js In a flowing fluid, acceleration means that a fluid 
particle is 

a. changing direction 

b. changing speed 

c. changing both speed and direction 

d. any of the above 

4.22 ~s The flow passing through a nozzle is steady. The speed 
of the fluid increases between the entrance and the exit of the 
nozzle. The acceleration halfway between the entrance and the 
nozzle is 

a. convective 

b. local 

c. both 

4.23 ~s Local acceleration 

a. is dose to the origin 

b. is quasi nonuniform 

c. occurs in unsteady flow 

4.24 iJ" Figure 4.36 on p. 148 in §4.10 shows the flow pattern 
for flow past a circular cylinder. Assume that the approach 
velocity at A is constant (does not vary with time). 

a. Is the flow past the cylinder steady or unsteady? 

b. Is this a case of one-dimensional, two-dimensional, or 
three-dimensional flow? 

c. Are there any regions of the flow where local accelera­
tion is present? If so, show where they are and show 
vectors representing the local acceleration in the regions 
where it occurs. 

d. Are there any regions of flow where convective 
acceleration is present? If so, show vectors represent­
ing the convective acceleration in the regions where it 
occurs. 

--.. 
4.25 PLu•s The velocity along a pathline is given by 
V (mls) = s2t112 where sis in meters and tis in seconds. 
The radius of curvature is 0.4 m. Evaluate the acceleration 
tangent and normal to the path at s = 1.5 m and t = 0.5 seconds. 

4.26 Tests on a sphere are conducted in a wind tunnel at an 
air speed of U0• The velocity of flow toward the sphere along 
the longitudinal axis is found to be u = - U0 (I - r~/_xl), 
where r0 is the radius of the sphere and x the distance 
from its center. Determine the acceleration of an air 
particle on the x-axis upstream of the sphere in terms 
of x, r0 , and U0• 
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-t-27 GO • In this flow passage the velocity is varying with time. The 
elocity varies with time at section A-A as 

t 
V = 5 m/s - 2.25 - m/s 

/o 

: time t = 0.50 s, it is known that at section A-A the velocity 
;;radient in the s direction is +2 m/s per meter. Given that t0 is 
5 sand assuming quasi-one-dimensional flow, answer the 
Uowing questions for time t = 0.5 s. 

a. What is the local acceleration at A-A? 

b. What is the convective acceleration at A-A? 

A 

_, 
A 

PROBJ.E:-.1 4.27 

US ;D/s The nozzle in the figure is shaped such that the 
d ocity of flow varies linearly from the base of the nozzle to 
u tip. Assuming quasi-one-dimensional flow, what is the 

nvective acceleration midway between the base and the tip if 
e velocity is 1 ft/s at the base and 4 ft/s at the lip? Nozzle length 
18 inches. 

D 

t+--L=--_J 
PROHLE\1$ ·1.2R, 4.29 

U9 ~s In Pro h. 4.28 the velocity varies linea.rly with time 
.roughout the nozzle. The velocity at the base is 21 (fl/s) and at 
e tip is 6t (ftls). What is the local acceleration midway along 

"'e nozzle when t = 2 s? 

.UO Liquid flows through this two-dimensional slot with a 
docity of V = 2(qofb)(t/t0), where q0 and t0 are reference values. 
nat will be the local acceleration at X = 2B andy = 0 in terms 
8, t, t0, and q0? 
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- B Lx b ....!!.._. 

~------48------~ 

PROHLJ:..\IS l3U, ·I. 31 

lf2B 

! -
4.31 What will be the convective acceleration for the conditions 
of Prob. 4.30? -4.32 PLils The velocity of water flow in the nozzle shown is 
given by the following expression: 

V = 2t/(1 - O.Sx/ L)2
, 

where V = velocity in feet per second, t = time in seconds, 
x = distance along the nozzle, and L = length of nozzle = 4 ft. 
When x = 0.5L and t = 3 s, what is the local acceleration along 
the centerline? What is the convective acceleration? Assume 
quasi-one-dimensional flow prevails. 

I fi dtameter L = 4 f\ l 
! _______ _;_T . ===e Water r--x- -

PROBLE\1 ·U2 

Euler's Equation and Pressure Variation (§4.5) 

4.33 State Newton's second law of motion. What arc the 
limitations on the use of Newton's second law? Explain. 

4.34 What is the differences between a force due to weight and a 
force due to pressure? Explain. 

4.35 A pipe slopes upward in the direction ofliquid flow at an 
angle of 30° with the horizontal. What is the pressure gradient in 
the flow direction along the pipe in terms of the specific weight 
of the liquid if the liquid is decelerating (accelerating opposite to 
flow direction) at a rate of 0.4 g? 

4.36 ~s What pressure gradient is required to accelerate 
kerosene (S = 0.81) vertically upward in a vertical pipe at a rate 
ofO.S g? 

4.37 The hypothetical liquid in the tube shown in the figure has zero 
viscosity and a specific weight of 10 kN/m3

• If PR- PAis equal to 12 
kPa, one can conclude that the liquid in the tube is being accelerated 
(a) upward, (b) downward, or (c) neither: acceleration = 0. 

r V<!rtical 

ADI 
8 1 
PROBLLM 1.37 
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4.38 If the piston and water (p = 62.4lbm/ft3
) are accelerated 

upward at a rate of 0.4g, what will be the pressure at a depth of 

2ft in the water column? 

PROBU:.MS 4.38, 4.39 

4.39 ~Water (p = 62.4 lbm/ ftl ) stands at a depth of 10ft in a 
vertical pipe that is open at the top and closed at the bottom by a 
piston. What upward acceleration of the piston is necessary 
to create a pressure of 8 psig immediately above the piston? 

4.40 frVs What pressure gradient is required to accelerate water 
(p = 1000 kg/m 3

) in a horizontal pipe at a rate of 8 m/s2? 

4.41 Water (p = 1000 kg/m3
) is accelerated from rest in a 

horizontal pipe that is 80 m long and 30 em in diameter. If the 
acceleration rate (toward the downstream end) is 5 m/s2

, what is 
the pressure at the upstream end if the pressure at the 
downstream end is 90 kPa gage? 

4.42 Water (p = 62.4lbm/ft3) stands at a depth of 10ft in a 
vertical pipe that is closed at the bottom by a piston. Assuming 
that the vapor pressure is zero (abs), determine the maximum 
downward acceleration that can be given to the piston without 
causing the water immediately above it to vaporize. 

4.43 A liquid with a specific weight of 100 lbf/ftl is in the conduit. 
This is a special kind of liquid that has zero viscosity. The pressures 
at points A and Bare 170 psf and 100 psf, respectively. Which one 
(or more) of the following conclusions can one draw with certainty? 
(a) The velocity is in the positive e direction. (b) The velocity is in 
the negative e direction. (c) The acceleration is in the positive f 
direction. (d) The acceleration is in the negative e direction. 

Vertical r 

PROBLEM 4.43 

4.44 If the velocity varies linearly with distance through this 
water nozzle, what is the pressure gradient, dp/dx, halfway 
through the nozzle? (p = 62.4 lbm/ft 3

) . 

30 ft/s 
80 ft/s 

-----'h =::t ---+- .x ------
t-----1 ft -----i 

PRORI.EM 4 .4~ 

4.45 The closed tank shown, which is full of liquid, is accelerated 

downward at 1.5g and to the right at 0.9g. Here L = 3ft, H = 4ft, 
and the specific gravity of the Liquid is 1.2. Determine Pc - PA 
andpR- PA· 
4.46 ~s The closed tank shown, which is full of liquid, is 
accelerated downward at ig- and to the right at lg. Here L = 2.5 m, 
H = 3 m, and the liquid has a specific gravity of 1.3. Determine 

Pc - PA and PB - PA-

r---- L----J 

'1 
Liquid II 

c .._________. .1 
PROBLEMS 1.45, .J.46 

Applying the Bernoulli Equation (§4.6) 
4.47 Describe in your own words how an aspirator works. ,........ 
4.48 P't u•s When the Bernoulli Equation applies to a venturi, 
such as in Fig. 4.27 on p. 134 in §4.6, which of the following are 
true? (Select all that apply.) 

a. If the velocity head and elevation head increase, then 

the pressure head must decrease. 

b. Pressure always decreases in the direction of flow along 

a streamline. 

c. The total head of the flowing fluid is constant along 

a streamline. 

4.49 flVs A water jet issues vertically from a nozzle, as shown. 
The water velocity as it exits the nozzle is 18 m/s. Calculate how 
high h the jet will rise. (Hint: Apply the Bernoulli equation along 
the centerline.) 

PROBLEM 4.49 

4.50 A pressure of 10 kPa, gage, is applied to the surface of water 
in an enclosed tank. The distance from the water surface to the 
outlet is 0.5 m. The temperature of the water is 20°C. Find the 
velocity (m/s) of water at the outlet. The speed of the water 
surface is much less than the water speed at the outlet. 



10 kPa gage 

\1 

0.5 m 

-
PROT\1 .F\1 -150 

4.51 ~Water flows through a vertical contraction (venturi) 
..ection. Piezometers are attached to the upstream pipe and 
::nmimum area section as shown. The velocity in the pipe is 10 ft/s. 
ne difference in elevation between the two water levels in the 
"'tezometers is 6 inches. The water temperature is 68°F. What is 
he velocity (ft/s) at the minimum area? 

LJI~ 

1 
!Ofh 

PROBLEM · 1.~1 

4.52 Ms Kerosene at 20°C flows through a contraction section 
. shown. A pressure gage connected between the upstream pipe 
-,d throat section shows a pressure difference of 20 kPa. The 
~line velocity in the throat section is 8 m/s. What is the 
'docity (m/s) in the upstream pipe? 

- - !Om/s 

Kerosene at 20° C 

PROBLEM 4.52 

'lagnation Tubes and Pitot-Static Tubes {§4.7) 

•..53 fcJs A stagnation tube placed in a river (select all that apply) 

a. can be used to determine air pressure 

b. can be used to determine fluid velocity 

c. measures kinetic pressure 

PROBLEMS 161 

-4.54 PLils A Pitot-static tube is mounted on an airplane to 
measure airspeed. At an altitude of 10,000 ft, where the temperature 
is 23°F and the pressure is 10 psia, a pressure difference 
corresponding to 10 in of water is measured. What is the airspeed? 

4.55 Pds A gla'iS tube is inserted into a flowing stream of water 
with one opening directed upstream and the other end vertical. If 
the water velocity is 5 m/s, how high will the water rise in the 
vertical leg relative to the level of the water surface of the stream? 

""'='"" 

-4 m/s 

Water 

PROm EM 4.55 

4.56 A Bourdon-tube gage is taped into the center of a disk as 
shown. Then for a disk that is about 1 ft in diameter and for an 
approach velocity of air ( V0 ) of 40 ft/s, the gage would read a 
pressure intensity that is (a) less than p V~/2, (b) equal top V512, 
or (c) greater than p V5!2. 

J ') 
..) -:;, 

,) 
./ 'I 

) 
'"/~ Bourdon-tubc gage ) . C' 

-.;._) 

) 
_) _ ) 

" "'\ ..) 
l_) 

.) 
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4.57 An air-water manometer is connected to a Pilot-static tube 
used to measure air velocity. If the manometer deflects 2 in., 
what is the velocity? Assume T = 60°F and p = 15 psia. 

4.58 'The flow-metering device shown consists of a stagnation 
probe at station 2 and a static pressure tap at station 1. The velocity at 
station 2 is 1.5 times that at station LAir with a density of 1.2 kglm3 

flows through the duct. A water manometer is connected between 
the stagnation probe and the pressure tap, and a deflection of 
10 em is measured. What is the velocity at station 2? 

~ 
.L 
I 

IOcm 

PROI:ILcM 4.58 
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4.59 The "spherical" Pitot probe shown is used to measure the 
flow velocity in water (p = 1000 kg/m 1

). Pressure taps are located 
at the forward stagnation point and at 90° from the forward 
stagnation point. The speed of fluid next to the surface of the 
sphere varies as 1.5 Y0 sin 6, where V0 is the free-stream velocity 
and 9 is measured from the forward stagnation point. The 
pressure taps are at the same level; that is, they are in the same 
horizontal plane. 1he piezometric pressure difference between 
the two Laps is 2 kPa What is the free-stream velocity Y0? 

v- 1.5 v0 -
,. 
~ 

PROBJHvl 4.59 

4.60 PNs A device used to measure the velocity of fluid in a 
pipe consists of a cylinder, with a diameter much smaller than 
the pipe diameter, mounted in the pipe with pressure taps at 
the forward stagnation point and at the rearward side of the 
cylinder. Data show that the pressure coefficient at the rearward 
pressure tap is - 0.3. Water with a density of 1000 kg/m' flows 
in the pipe. A pressure gage connected by lines to the pressure 
taps shows a pressure difference of 500 Pa. What is the velocity 
in the pipe? 

PROm I· \1 4.60 

4.61 Explain how you might design a spherical Pitot-static 
probe to provide the direction and velocity of a flowing stream. 
The Pitot-static probe will be mounted on a string that can be 
oriented in any direction. 

4.62 ~S Two Pitot-static tubes are shown. The one on the top 
is used to measure the velocity of air, and it is connected to an 
air-water manometer as shown. The one on the bottom is used 
to measure the velocity of water, and it too is connected to an 
air-water manometer as shown. If the deflection h is the same 
for both manometers, then one can conclude that (a) Y.-~ = Y..,, 
(b) Y .... > V..,, or (c) YA < Y..,. 

4.63 A Pitot-static tube is used to measure the velocity at the 
center of a 12 in. pipe. If kerosene at 68°F is flowing and the 
deflection on a mercury-kerosene manometer connected to 
the Pitot tube is 4 in., what is the velocity? 

v~ ---

1'1\0BLf:.~! 4.62 

Air 

Water 

4.64 PWs A Pitot-static tube used to measure air velocity is 
connected to a differential pressure gage. If the air temperature 
is 20°C at standard atmospheric pressure at sea level, and if the 
differential gage reads a pressure difference of 2 kPa, what is the 
air velocity? 

4.65 A Pilot-static tube used to measure air velocity is 
connected to a differential pressure gage. If the air temperature 
is 60°F at standard atmospheric pressure at sea level, and if the 
differential gage reads a pressure difference of 15 psf, what is 
the air velocity? 

4.66 A Pilot-static tube is used to measure the gas velocity in a 
duct. A pressure transducer connected to the Pitot tube registers 
a pressure difference of 2.0 psi. The density of the gas in the duct 
is 0.14lbm/ft 3• What is the gas velocity in the duct? 

4.67 A sphere moves horizontally through still water at a speed 
of II ft/s. A short distance directly ahead of the sphere (call it 
point A), the velocity, with respect to the earth, induced by the 
sphere is 1 ft/s in the same direction as the motion of the sphere. 
If p0 is the pressure in the undisturbed water at the same depth 
as the center of the sphere, then the value of the ratio PAip0 will 
be (a) Jess than unity, (b) equal to unity, or (c) greater than 
unity. 
~ 

4.68 PLUS Body A travels through water at a constant speed 
of 13 m/s as shown. Velocities at points B and Care induced by 
the moving body and are observed to have magnitudes of 5 m/s 
and 3 m/s, respectively. What is Ps - Pc? 

PROBI.l:-.~1 4.6S 



4.69 Water in a flume is shown for two conditions. if the depth d 
IS the same for each case, will gage A read greater or less than 

gage B? Explain. 

Prc:ssure gage 

'Sl 

(a) 

""' 3 m/s 
~ 

d 

Pressure gage 

(h) 
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d 

4.70 ~The apparatus shown in the figure is used lo measure 

:he velocity of air at the center of a duct having a l 0 em diameter. 
_-\ tube mounted at the center of the duct has a 2 111111 diameter 
.md is attached to one leg of a slant-tube manometer. A pressure 
tap in the wall of the duct is connected to the other end of the 

Jant-tube manometer. The well of the slant-tube manometer 
.s sufficiently large that the elevation of the fluid in it docs not 
.:hange significantly when fluid moves up the leg of the 

manometer. The air in the duct is at a temperature of 20°C, and 
the pressure is 150 kPa. The manometer liquid has a specific 
;cavity of 0.7, and the slope of the leg is 30°. When there is no 
·low in the duct, the liquid surface in the manometer lies at 
:!.3 em on the slauted scale. When there is How in the duct, the 

!::quid moves up to 6.7 em on the slanted scale. Find the velocity 
.f the air in the duct. Assuming a uniform velocity profile in the 

duct, calculate the rate of flow of the air. 

v -p~ 150kPa 

T= 20°C 

PROBLEM 4.70 
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4.71 ~A rugged instrument used frequently for monitoring 
gas velocity in smokestacks consists of two open tubes oriented 
to the flow direction as shown and connected to a manometer. 
The pressure coefficient is 1.0 at A and - 0.3 at B. Assume that 
water, at 20°C, is used in the manometer and that a 5 mm 
deflection is noted. The pressure and temperature of the stack 

gases are I 0 I kPa and 250°C. The gas constant of the stack gases 
is 200 )/kg K. Determine the velocity of the stack gases. 

8 

j_ 
/'.h 

1 
PROBLEM 1.71 

4. 72 The pressure in the wake of a bluff body is approximately 
equal to the pressure at the point of separation. The velocity 
distribution for flow over a sphere is V = 1.5 V0 sin ll, where V0 

is the free-stream velocity and 0 is the angle measured from the 
forward stagnation point. The flow separates at 0 = 120°. If the 
free-stream velocity is 100m/sand the tluid is air (p = 1.2 kglm3

), 

find tl1e pressure coefficient in the separated region next to the 
sphere. Also, what is the gage pressure in this region if the 

free-stream pressure is atmospheric? 

4.73 ~SA Pitot-static tube is used to measure the airspeed 

of an airplane. The Pi tot tube is connected to a pressure-sensing 
device calibrated to indicate the correct airspeed when the 

temperature is l7°C and the pressure is 101 kPa. The airplaue 
flies at an altitude of 3000 m, where the pressure and temperature 
are 70 kPa and -6.3°C. The indicated airspeed is 70 m/s. What is 
the true airspeed? 

4.74 An aircraft flying at 10,000 feet uses a Pitot-static tube to 
measure speed. The instrumentation on the aircraft provides the 
differential pressure as well as the local static pressure and the 
local temperature. The local static pressure is 9.8 psig, and the air 
temperature is 25°F. The differential pressure is 0.5 psid. Find the 
speed of the aircraft in mph. 

4.75 You need to measure air flow velocity. You order a 
commercially available Pi tot-static tube, and the accompanying 
instructions state that the airflow velocity is given by 

{h. 
v(ft/min) = I096.7,f"d 

where hv is the "velocity pressure" in inches of water and dis the 
density in pounds per cubic foot. The velocity pressure is the 
deflection measured on a water manometer attached to the static 
and total pressure ports. The instructions also state the density d 
can be calculated using 

d (lbm/ft3
) = 1.325 ~ 
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where P" is the barometric pressure in inches of mercury and Tis 
the absolute temperature in degrees Rankine. Before you use the 
Pi tot tube you want to confirm that the equations are correct. 
Determine if they are correct. 

4.76 Consider the flow of water over the surfaces shown. For 
each case the depth of water at section D-D is the same ( 1 ft), and 
the mean velocity is the same and equal to 10 ft/s. Which of the 
following statements are valid? 

a. pc;> pB>pA 

b. Ps > Pc > P11 

c. PA = PB = Pc 
d. PH<pr<PA 

e. PA <pH<Pr 

~ 
(i( ~ \\ 

/) 
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D 

Characterizing Rotational Motion of a Fluid (§4.8) 

4.77 What is meant by rotation of a fluid particle? Use a sketch 
to explain. 

4.78 Consider a spherical fluid particle in an inviscid fluid (no 
shear stresses).If pressure and gravitational forces are the only 
forces acting on the particle, can they cause the particle to rotate? 
Explain. 

4. 79 ftVs The vector V = I Oxi - I Oyj represents a two-dimensional 
velocity field. Is the flow irrotational? 

4.80 The u and v velocity components of a flow field are given by 
u = - wy and v = wx. Determine the vorticity and the rate of 
rotation of flow field. 

4.81 The velocity components for a two-dimensional flow are 

Cx Cy 
u = v = 

(/ + x2) (x2 + /) 
where Cis a constant. Is the flow irrotational? 

4.82 'fiVs A two-dimensional flow field is defined by u = x2 - I 
and v = - 2xy. Is the flow rotational or irrotational? 

4.83 Fluid flows between two parallel stationary plates. The 
distance between the plates is I em. The velocity profile between 
the two plates is a parabola with a maximum velocity at the 
centerline of 2 cm/s. The velocity is given by 

u = 2(1 - 4/) 
where y is measured from the centerline. The cross-flow 
component of velocity, v, is zero. There is a reference line located 
I em downstream. Find an expression, as a function of y, for the 
amount of rotation (in radian) a fluid particle will undergo when 
it travels a distance of I em downstream. 

4.84 A combination of a forced and a free vortex is represented 
by the velocity distribution 

I 
v0 = - [1 - exp(- r 2

)] 
r 

For r ~ 0 the velocity approaches a rigid body rotation, and as r 
becomes large, a free-vortex velocity distribution is approached. 
Find the amount of rotation (in radians) that a fluid particle will 
experience in completing one circuit around the center as a 
function of r. Hint: The rotation rate in a flow with concentric 
streamlines is given by 

. dvu Yo I d 
20 = +- = --d (vor) 

dr r r r 

Evaluate the rotation for r = 0.5, 1.0, and 1.5. 

The Bernoulli Equation (lrrotational Flow) (§4.9) 

4.85 tilJs Liquid flows with a free surface around a bend. The 
liquid is inviscid and incompressible, and the flow is steady and 
irrotational. The velocity varies with the radius across the flow as 
V = 1/r m/s, where r is in meters. Find the difference in depth of 
the liquid from the inside to the outside radius. The inside radius 
of the bend is I m and the outside radius is 3 m. 

4.86 The velocity in the outlet pipe from this reservoir is 30 ft!s 
and h = 18ft. Because of the rounded entrance to the pipe, the 
flow is assumed to be irrotational. Under these conditions, what 
is the pressure at A? 

Water 

PRORLI~MS 4.86, ·U!7 

4.87 ;w-s The velocity in the outlet pipe from this reservoir 
is 8 m/s and h = 19 m. Because of the rounded entrance to the 
pipe, the flow is assumed to be irrotational. Under these 
conditions, what is the pressure at A? 

4.88 The maximum velocity of the flow past a circular cylinder, 
as shown, is twice the approach velocity. What is l:lp between the 
point of highest pressure and the point of lowest pressure in a 
40 m/s wind? Assume irrotational flow and standard 
atmospheric conditions. 

PRORLn1 t.88 



4.89 The velocity and pressure are given at two points in the 
flow field. Assume that the two points lie in a horizontal plane 
and that the fluid density is uniform in the flow field and is equal 
to 1000 kg/m3• Assume steady flow. Then, given these data, 
determine which of the following statements is true. (a) Tile flow 
' n the contraction is nonuniform and irrotational. (b) The flow in 
the contraction is uniform and irrotational. (c) The flow in the 
contraction is nonuniform and rotational. (d) The flow in the 
contraction is uniform and rotational. 

---------
v~ J m ts z::==~~ 
p~JokPa ~ 

PROBLEM 4.1!~ 

V = 2 m/s 
p = 7 kl'a 

4.90 Water (p = 62.4lbm/fe) flows from the large orifice at the 
oottom of the tank as shown. Assume that lhe flow is irrotational. 
Point B is at zero elevation, and point A is at 1 ft elevation. If 
\:~ = 4ft/sat an angle of 45° with the horizontal and if V8 = 12 ft/s 
•.oertically downward, what is the value of PA- PB? 

" 
t Vertical 

I 

A>j_4s• 
Br 
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4.91 ~Ideal flow theory will yield a flow pattern past an 
-rfoil similar to that shown. If the approach air velocity V0 is 
·':> m/s, what is the pressure difference between the bottom and 
::1e top of this airfoil at points where the velocities are V1 = 85 m/ s 
..:~d V2 = 75 m/s? Assume Pair is uniform at 1.2 kg/m3

. 

v, 

'·~~~ 
v2 
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• 92 Consider the flow of water between two parallel plates in 
mch one plate is fixed as shown. The distance between the 

PROBLEMS 165 

plates is h, and the speed of the moving plate is V. A person 
wishes to calculate the pressure difference between the plates 
and applies the Bernoulli equation between points 1 and 2, 

p, v [ Pz v~ 
z1 + - + - = z2 + - + -

-y 2g -y 2g 
and concludes that 

y l 
p, - P2 = -y(z2 - z1) + p-2. 

2 
yl 

= -yh + p-
2 

Is this correct? Provide the reason for your answer. 

~~ > ~ 
PROI3LE:v1 ·t92 

4.93 Euler's equations for a planar (two-dimensional) flow in the 
xy-plane are 

au au ah 
u - + v- = - g- x = direction 

ax ay ax 
av av ilh 

u- + v- = -g- y =direction 
ax ay ay 

a. The slope of a streamline is given by 

dy v 
- = 
dx u 

Using this relation in Euler's equation, show that 

(
u2 + vl ) 
d~+h = 0 

or 

d(~; +h)= 0 
which means that V2/2g + his constant along a streamline. 

b. For an irrotational flow, 

au av 
ay ilx 

Substituting this equation into Euler's equation, show that 

a (v2 ) - -+h =0 
ax 2g 

a (v2 
) ay 2g + h = 0 

which means that V 2/2g + h is constant in all directions. 
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Pressure Field for a Circular Cylinder (§4.10) 
4.94 1'2U-s A fluid is flowing arow1d a cylinder as shown in Fig 4.37 
on p. 149 in §4.1 0. A favorable pressure gradient can be found 

a. upstream of the stagnation point 

b. at the stagnation point 

c. between the stagnation point and separation point 

4.95 The velocity distribution over the surface of a sphere 
upstream of the separation point is Ue = 1.5 U Sin 9, where U is the 
free stream velocity and 9 is the angle measured from the forward 
stagnation point. A pressure of -2.5 in H20 gage is measured at 
the point of separation on a sphere in a 100 ft/s airflow with a 
density of 0.07lbmtfe. The pressure far upstream of the sphere 
in atmospheric. Estimate the location of the stagnation point (ll). 
Separation occurs on the windward side of the sphere. 

4.96 Knowing the speed at point 1 of a fluid upstream of a 

sphere and the average speed at point 2 in the wake of in the 
sphere, can one use the Bernoulli equation to find the pressure 
difference between the two points? Provide the rationale for your 
decision. 

PROBLEM 4.96 

Pressure Field for a Rotating Flow (§4.11) 
4.97 Take a spoon and rapidly stir a cup of liquid. Report on the 
contour of the surface. Provide an explanation for the observed 
shape. 

4 .98 This closed tank, which is 4ft in diameter, is filled with 
water (p = 62.4 lbm/ft3

) and is spun around its vertical 
centroidal axis at a rate of 10 rad!s. An open piezometer is 
connected to the tank as shown so that it is also rotating with the 
tank. For these conditions, what is the pressure at the center of 
the bottom of the tank? 

PRORI EM 4.98 

_l 
6in 

t 
12 10 

-t 

4.99 A tank of liquid (S = 0.80) that is 1 ft in diameter and 1.0 ft 
high (h = l.O ft) is rigidly fixed (as shown) to a rotating arm 
having a 2 ft radius. The arm rotates such that the speed at point A 

is 20 ft!s. lf the pressure at A is 25 psf, what is the pressure at B? 

Liquid 

I . 
'-'---.-+-..--_.A 

11 1
'--------1 

1~· -------r ------~ 
PROBI F;\1 4.99 -4.100 P"l u"s Separators are used to separate liquids of different 

densities, such as cream from skin1 milk, by rotating the mLxture 
at high speeds. In a cream separator the skim milk goes to the 
outside while the cream migrates toward the middle. A factor 
of merit for the centrifuge is the centrifugal acceleration force 
(RCF), which is the radial acceleration divided by the acceleration 
due to gravity. A cream separator can operate at9000 rpm (rev/min ). 
If the bowl oft he separator is 20 em in diameter, what is the 
centripetal acceleration if the liquid rotates as a solid body and 
what is the RCF? 

4.101 A closed tank ofliquid (S = 1.2) is rotated about a vertical 
axis (see the figure), and at the san1e time the entire tank is 
accelerated upward at 4 m/s2. lf the rate of rotation is I 0 rad/s, what 

is the difference in pressure between points A and 8 (p8 - PA)? 
Point 8 is at the bottom of the tank at a radius of 0.5 m from the 
axis of rotation, and point A is at the top on the axis of rotation. 

. l 
I 2m 

·l 
8 
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4.102 ~AU-tube is rotated about one leg, as shown. Before 
being rotated the liquid in the tube fills 0.25 m of each leg. 
The length of the base of the U-tube is 0.5 m, and each leg is 
0.5 m long. What would be the maximum rotation rate (in rad/s) 
to ensure that no liquid is expelled from the outer leg? 

r 
0.5m ~ 

l J'm 
1.- 0.5 m -----J 
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4.103 An arm with a stagnation tube on the end is rotated at I 00 
rad/s in a horizontal plane I 0 em below a liquid surface as shown. 

The arm is 20 em long, and the tube at the center of rotation 
extends above the liquid surface. The liquid in the tube is the 

same as that in the tank and has a specific weight of I 0,000 N/ m3
. 

Find the location of the liquid surface in the central tube. 

lOcm 

1. 
f..- 20cm --J 

Elevation view Plan view 
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4.104 AU-tube is rotated at 50 rev/min about one leg. "!he fluid 
.at the bottom of the U-tube has a specific gravity of 3.0. The 
distance between the two legs of the U-tube is I ft. A 6 in. height 
of another fluid is in the outer leg of the U-tube. Both legs are 
open to the atmosphere. Calculate the specific gravity of the 
•ther fluid. 

r----111----j 
r Venical 

f 

I 
I 
I 
I 

~ I -
I 
.Y 
I 

~50rpm 
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~. . 
4.105 PLUS A manometer IS rotated around one leg, as shown. 
:he difference in elevation between the liquid surfaces in the 

.egs is 20 em. The radius of the rotating arm is 10 em. The liquid 
·-o the manometer is oil with a specific gravity of 0.8. Find the 
"':umber of g's of acceleration in the leg with greatest amount 

.>foil. 

T 
20cm 

1 
I-- 10 em ---J 

PROBLEM 4.105 
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4.106 A fuel tank for a rocket in space under a zero-g 
environment is rotated to keep the fuel in one end of the tank. 
The system is rotated at 3 rev/min. The end of the tank (point A) 
is 1.5 m from the axis of rotation, and the fuel level is 1 rn from 
the rotation axis. The pressure in the nonliquid end of the tank is 
0.1 kPa, and the density of the fuel is 800 kg/m3

• What is the 
pressure at the exit (point A)? 

It~h 
___L __ 

1 f~3 rpm 
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4.107 Water stands in these tubes as shown when no rotation 

occurs. Derive a fo rmula for the angular speed at which water 
will just begin to spill out of the small tube when the entire 
system is rotated about axis A-A. 

r 
3f 

2d 

~ 
d 

t 
~ 

~-----{------~ 

A 
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4.108 ~s Water (p = 1000 kg/m3
) fills a slender tube 1 em in 

diameter, 40 em long, and closed at one end. When the tube is 
rotated in the horizontal plane about its open end at a constant 
speed of 50 rad/s, what force is exerted on the closed end? 

4.109 Water (p = 1000 kglrn3
) stands in the closed-end U-tube 

as shown when there is no rotation. [f e = 2 em and if the entire 
system is rotated about axis A-A, at what angular speed will 

I~ 
6C 

lJ 
d~f 

Air 

Water 

r-- 6e ------1 
A 

PROBLE.M 4.109 
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water just begin to spill out of the open tube? Assume that the 
temperature for the system is the same before and after rotation 
and that the pressure in the closed end is initially atmospheric. 
~ 

4.110 PLUS A simple centrifugal pump consists of a 10 em disk 
with radial ports as shown. Water is pumped from a reservoir 
through a central tube on the axis. The wheel spins at 3000 rev/ min, 
and the liquid discharges to atmospheric pressure. To establish 
the maximum height for operation of the pump, assume that 
the A ow rate is zero and the pressure at the pump intake is 
atmospheric pressure. Calculate the maximum operational 
height z for the pump. 

View A-A 

PROBLD14.IIO 

4.111 A closed cylindrical tank of water (p = 1000 kg/m3
) is 

rotated about its horizontal axis as shown. The water inside the 
tank rotates with the tank (V = rw). Derive an equation for dpldz 
along a vertical-radialline through the center of rotation. What 
is dpldz along this line for z = -1m, z = 0, and z = + 1 m when 
w = 5 rad/s? Here z = 0 at the axis. 

r: (vertical) 

-Q-,-o f------f 
End view Side view 

PRORI I· :\1S 4.111. 1 112 

4.112 The tank shown is 4 ft in diameter and I 2 ft long and is 
closed and filled with water (p = 62.4lbm/ft3

). It is rotated about 
its horizontal·centroidal axis. and the water in the tank rotates 
with the tank (V = rw). The maximum velocity is 25 ft/s. What 
is the maximum difference in pressure in the tank? Where is the 
point of minimum pressure? 



CONTROL VOLUME 
APPROACH AND 

CONTINUITY 
EQUATION 

AGURE 5.1 

1-e photo shows on evacuated-tube solar collector that 
.. being tested to measure the efficiency. This project 
os done by undergraduate engineering students. The 

"'Xlm applied the control volume concept, the continuity 
-:quotion, the flow rate equations as well as knowledge 
om thermodynamics and heat transfer. (Photo by Donald 

-9er.) 

· --:· ·· 1 Chapter Road Map I 
This chapter describes how conservation of mass can 
be applied to a flowing fluid. The resulting equation 
is called the continuity equation. The continuity 
equation is applied to a spatial region called a 
control volume, which is also introduced. 

: ···1 Learning Objectives I 
STUDENTS WILL BE ABLE TO 

• Define moss flow rote and volume flow rate. (§5.11 

• Apply the flow rote equations. Describe how the flow 
rate equations are derived. (§5.1) 

• Define and calculate the mean velocity. (§5. 1) 

• Describe the types of systems that engineers use for 
analysis. List the key differences between a CV and 
o closed system. (§5.21 

• Describe the purpose, application, and derivation 
of the Reynolds transport theorem . (§5.2) 

• Describe and apply the continuity equation. Describe 
how the equation is derived. (§5.3, §5.4) 

• Explain what cavitation means, describe why it is 
important, and list guidelines for designing to ovoid 
cavitation. (§5.5) 

169 
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FIGURE 5.2 

Sketches used to define 
volume flow rate 
!a) gasoline flow ing out of 
a valve at a filling station, 
!b) a ir flowing inward to 
a person during inhalation. 

. ...... ....... .... .. . . . ... . 

5. 1 Characterizing the Rate of Flow 

Engineers characterize the rate of flow using the (a) mass flow rate, m, and (b) lhe volume flow 
rate Q. Thus, these concepts and associated equations are introduced in this section. 

Volume Flow Rate (Discharge) 

Volume flow rate Q is the ratio of volume to time at an instant i11 time. In equation form, 

(
volume of fluid passing through a cross sectional area) . .!l¥ 

Q = = lim -
interval of time wstnnl tl.t ->0 Ll t 

mtime 

(5.1) 

EXAMPLE . To describe volume Oow rate (Q) for a gas pump (Fig. 5.2a), select a cross­
sectional area. Then, Q is the volume of gasoline that flowed across the specified section 
during a specified time interval (say one second) divided by the time interval. The units 
could be gallons per minute or liters per second. 

EXAMPLE. To describe volume flow rate (Q) for a person inhaling while doing yoga 
(Fig. 5.2b), select a cross-sectional area as shown. Then, Q is the volume of air that flowed 
across the specified section during a specified tlme interval (say M = 0.01 s) divided by the 
time interval. Notice that the time interval should be short because the flow rate is continu­
ously varying during breathing. The idea is to let .!lt ~ 0 so that the flow rate is character­
ized at an instant in time. 

( 

Q - >nlumc ttme 
of air (msl.ant in tam•) 

::-=::::: 

(a) (b) 

Volume flow rate is often called discharge. Because these two terms are synonyms, this text 
uses both terms interchangeably. 

The SI units of discharge are cubic meters of volume per second (m3/s). In traditional 
units, the consistent unit is cubic feet of volume per second (ft3/s). Often this unit is written 
as cfs, which stands for cubic feet per second. 

Deriving Equations for Volume Flow Rate (Discharge) 

This subsection shows how to derive useful equations for discharge Q in terms of fluid velocity 
and section area A. 

To relate Q to velocity V, select a flow of fluid (Fig. 5.3) in which velocity is assumed to be 
constant across the pipe cross section. Suppose a marker is injected over the cross section at 

section A-A for a period of time .!lt. The fluid that passes A-A in time .!lt is represented by the 



-narked volume. The length of the marked volume is V t:.t so the volume is t:.¥ = AV u t. Apply 
the definition of Q: 

t:. \l AVt:.t 
Q = lim - = lim -- = VA 

J.t--40 ~ t J.t--+0 .l t 

--: Eq. (5.2), notice how the units work out: 

Q =VA 

Flow Rate (m-1/s) = Velocity (m / s) X Area (m2
) 

FIGURE 5.3 

Volume of fluid in flow with 
uniform velocity disl11bulion that 
passes seclton A-A 111 lime j. f_ 

A 

FIGURE 5.4 

Volume of fluid that passes section 
A-A in lime j. f_ 

I 
A 

(5.2) 

Because Eq. (5.2) is based on a uniform velocity distribution, consider a flow in which the 
docity varies across the section (see Fig. 5.4). The blue shaded region shows the volume of 
;uid that passes across a differential area of the section. Using the idea of Eq. (5.2), let dQ = V dA. 

- obtain the total flow rate, add up the volume flow rate through each differential element and 
en apply the definition of the integral: 

Q = ~ V; d A t = I v dA 
section A 

(5.3) 

'i· (5.3) means that velocity integrated over section area gives discharge. To develop another 
oeful result, divide Eq. (5.3) by area A to give 

V=- =- VdA - Q 1 I 
A A A 

(5.4) 

+ (5.4) provides a definition of V, which is called the mean velocit). As shown, the mean 
docity is an area-weighted average velocity. For this reason, mean velocity is sometimes 
illed area-averaged velocity. This label is useful for distinguishing an area-averaged velocity 

m a time-averaged velocity, which is used for characterizing turbulent flow (see Section 4.3). 
me useful values of mean velocity are summarized in Table 5.1. 
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TABLE S. 1 Values of Mean Velocity 

Situation 

Fully developed laminar flow in a round pipe. 
For more information, see Section 10.5. 

FuUy developed laminar flow in a rectangular 
channel (channel has infinite width). 

Fully developed turbulent flow in a round pipe. 
For more information, see Section I 0.6. 

Equation for Mean Velodty 

VI Vm•x = 0.5, where Vmax is the value of the 
max:imwn velocity in the pipe. Note that V m.,. is 
the value of the velocity at the center of the pipe. 

VIVmu = 213 = 0.667 

r VI vm .. "" 0. 79 to 0.86. where the ratio depends 
on Reynolds number. 

The following checkpoint problems gives you a chance to test your understanding of 
flow rate. 

VCHECKPOINT PROBLEM 5.1 

Consider flow through two round pipes. 
Pipe A has twice the diameter of pipe B. 
The mean velocity in each pipe is the 
same. What is Cltl(b? 

a. 1 

b.2 

c.4 

d.S 

V CHECKPOINT PROBLEM 5.2 

Consider flow through two 
round pipes. The maximwn 
velocity in each pipe is the 
same. The only difference is the 
velocity distribution. Which 
pipe bas the larger value of 
mean velocity? Why? 

a. Pipe A 

b. Pipe 8 

2D 

! 

·~==:J 
t 

Pipe A 

Pipe A 

c. They both have the same mean velocity 

/} 

! 
v-- 3 

Pipe B 

Pip~ B 

Eq. (5.4) can be generalized by using the concept of the dot product. The dot produc 
is useful when the velocity vector is aligned at an angle with respect to the section area 
(Fig. 5.5). The only component of velocity that contributes to the flow through the di f· 
ferential area dA is the component normal to the area, Vn. The differential discharge 
through area dA is 
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Veloctly component 
nonnallo surface 

. . 

veclor '----Fluid velocity 
veclor 

If the vector, d.A, is defined with magnitude equal to the differential area, dA, and direction normal 
to the surface, then Vn dA = lVI cos 8 dA = V · dA where V · dA is the dot product of the two 
1·ectors. Thus a more general equation for the discharge or volume flow rate through a surface A is 

o = I v . dA (5.5) 
A 

If the velocity is constant over the area and the area is a planar surface, then the discharge is 

Q = V ·A 

r£, in addition, the velocity and area vectors are aligned, then 

Q =VA 

··:hich reverts to the original equation developed for discharge, Eq. (5.2). 

\ass Flow Rate 

~fass flow rate m is the ratio of mass to time at an instant in time. In equation form, 

m = = hm -
. (mass of fluid passing through a cross sectional area) . Am 

interval oftime instanl .:it--+0 At 
mume 

The common units tor mass flow rate are kg/s, lbm/s, and slugs/s. 

(5.6) 

Using the same approach as for volume flow rate, the mass of the fluid in the marked 
'Olume in Fig. 5.3 is Am = pA¥, where p is the average density. Thus, one can derive several 

useful equations: 
Am A¥ 

m = lim - = p lim - = pQ 
at-+o At c.r-+o At (5.7) 

= pAV 

The generalized form of the mass flow equation corresponding to Eq. (5.5) is 

m = I P v · dA (5.81 
A 

·here both the velocity and fluid density can vary over the cross-sectional area. If the density 
constant, then Eq. (5.7) is recovered. Also if the velocity vector is aligned with the area 

ector, such as integrating over the cross-sectional area of a pipe, Eq. (5.8) reduces to 

m = J P v dA (5. 91 
A 

Working Equations 

-able 5.2 summarizes the flow rate equations. Notice that multiplying Eq. (5.10) by density 
<:Ives Eq. (5.11). 

FIGURE 5.5 

Velocity vector oriented 
ot angle e with respect to 
normal. 
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TA BLE 5 . 2 Summary of the Flow Rate Equations 

Volume flow rate 
equation 

Mass flow rate 
equation 

Equation 

- m I I Q = VA = - = V dA = V · dA 
p A A 

m = pA v = pQ = I pv dA = I rv . dA 
A A 

Example Problems 

(5.10) 

(5.11) 

Terms 

Q = volume flow rate= discharge (m3/s) 

V = mean velocity = area averaged velocity (m/ s) 
A = cross section area (m2

) 

1n = mass flow rate (kg/ s) 

V = speed of a fluid particle (m/s) 

dA = differential area (m2) 

V = velocity of a fluid particle (m/s) 

dA = differential area vector (m2
) 

(points outward from control surface) 

~~ = mass flow rate (kg/s) 

p = mass density (kg!m3
) 

For most problems, application of the flow rate equation involves substituting numbers into the 
appropriate equation; see Example 5.1 for this case. 

EXAMPLE 5.1 

Applying the Flow Rate Equations to a Flow of Air in a Pipe 

Problem Statement 

Air that has a mass density of 1.24 kg!m3 (0.00241 slugs/ ftl) 
flows in a pipe with a diameter of 30 em (0.984 ft) at a mass 
rate of flow of 3 kg/s (0.206 slugs/s). What are the mean 
velocity and discharge in this pipe for both systems of units? 

Define the Situation 

Air flows in a pipe. 

-Air 

l ~ 0.3 m =0.984 ft 

p = 1.24 kg/ m 1 = 0.0024 1 slug/ft 1 

m = 3 kgis = 0.0206 slug/• 

State the Goal 

Q(m3/s and ft3/s) .. Volume flow rate (discharge) 

V(m!s and ft/s) .. Mean velocity 

Generate Ideas and Make a Plan 

Because Q is the goal and ri1 and p are known, apply the mass 
flow rate equation (Eq. 5.11): 

m = pQ (a) 

To find the last goal (v'). apply the volume flow rate equation 
(Eq. 5.10): 

The plan is 

I. Calculate Q using Eq. (a). 

2. Calculate V using Eq. (b). 

Take Action (Execute the Plan) 

l. Mass flow rate equation: 

m 3kg/s ~~ Q = - = = 2.42 m3/s 
p 1.24 kg/ m3 

Q = 2.42 m3/ s X e5~3~3fe) = 1 85.5 cfs ; 

2. Volume flow rate equation: 

Q 2.42 m
3/s j I 

V = - = = 34.2 m / s 
A (!'IT) X (0.30 mY ~---

V = 34.2 m / s X ( l ft ) =fill ftfsl 
0.3048m ~ ~ 

(b) 



When fluid passes across a control surface and the velocity vector is at an angle with respect 
~o the surface normal vector, then one uses the dot product. This case is illustrated by Example 5.2. 

EXAMPLE 5.2 State the Goal 

Calculating the Volume Flow Rate by Applying the Dot Product Q(m3/s} • discharge per meter of width of the channel 

Problem Statement 

Water flows in a channel that has a slope of 30°. If the velocity 
is assumed to be constant, 12 m/s, and if a depth of 60 em is 
measured along a vertical line, what is the discharge per meter 
of width of the channel? 

Dcfmc the Situation 

Water flows in an open channel. 

Generate Ideas and Make a Plan 

Because V and A are not at right angles, apply 

Q = V · A = VA cos 9. Because all variables are known except 
Q, the plan is to substitute in values. 

Take Action (Execute the Plan) 

Q = V · A = V( cos 30°}A 

= (12 m/s)(cos 30°}(0.6m} 

= ~3/s per met:i] 

Re' iew the Solution and the Process 

1. Knowledge. This example involves a channel flow. A flow is 
a channel flow when a liquid (usually water) flows with 
open surface exposed to air under the action of gravity. 

2. Knowledge. The discharge per unit width is usually 
designated as q. 

Another important case is when velocity varies at different points on the control surface. 
"this case, one uses an integral to determine flow rate as specified by Eq. (5.10): 

Q =I VdA. 
A 

· n this integral, the differential area dA depends on the physics of the problem. Two common 
~.lles are shown in Table 5.3. Analyzing a variable velocity is illustrated by Example 5.3. 

TABLE 5.3 Differential Areas for Determining Flow Rate 

Label 

Channel Flow 

)' t 

Pipe Flow 

Sketch 

fdA;wdy 

I V'" Channel wall 

1---11---

dA; 2lrrdr 

Pipe wall 

;Description 

When velocity varies as V = V(y) in a rectangular channel, then use a 
differential area dA given by dA = wdy where w is the width of the 
channel and dy is a differential height. 

When velocity varies as V = V(r) in a round pipe, then use a 
differential area dA given by dA = 27Trdr where r is the radius of the 
differential area and dr is a differential radius. 



' 

1!6 ~HAPTE~ 5 • C:QNTRQL VOLUME ,A.PPRQACH ANP CQ.NTJ~UITX _EOl,JAT!O.N 

EXAMPLE 5.3 

Determining Flow Rote by Integration 

Problem Statement 

The water velocity in the channel shown in the accompanying 
figure has a velocity distribution across the vertical section 
equal to ulu,u = (yld)112. What is the discharge in the 
channel if the water is 2m deep (d =2m), the channel is 5 m 
wide, and the maximum velocity is 3 m/s? 

Generate Ideas and Make a Plan 

Because velocity is varying over the cross-sectional area, apply 
Eq. (5.10): 

o=JvdA 
A 

(a) 

Because Eq. (a) has two unknowns (Vand dA), find equations 
for these unknowns. The velocity is given: 

V = u(y) = Umu.( y!d)112 

From Table 5.3, the differential area is 

(b) 

u • u ... (y)l/2 
max d dA = wdy (c) 

Define the Situation 

Water flows in a channel. 

I 
d 

Notice that the differential area is sketched in the situation 
diagram. Substitute Eqs. (b) and (c) into Eq. (a): 

Q = r Um:u.(yfd )112wdy 
0 

The plan is to integrate Eq. (d) and then plug nun1bers in. 

Take Action (Execute the Plan) 

Q = r Umax (y/d)112 wdy 
0 

(d) 

-.......&..+.L.o::::.--------"-' dy 

! dA ::::¢> p z z c z z z z z z z ,-
j--w•5m-IT 

State the Goal (5 m)(3 m/s) 2 ~~ 
= X- X (2 m)312 = 20 m3/s 

Q(m3/s) .. Discharge (Volume Flow Rate) 
(2 m) 112 3 

5.2 The Control Volume Approach 

Engineers solve problems in fluid mechanics using the control volume approach. Equations for 
this approach are derived using Reynolds transport theorem. These topics are presented in this 
section. 

The Closed System and the Control Volume 

As introduced in Section 2.1, a system is whatever the engineer selects for study. The surround­
ings are everything that is external to the system, and the boundary is the interface between the 
system and the surroundings. Systems can be classified into two categories: the closed system 
and the open system (also known as a control volume). 

The dosed l>}'Stem (also known as a control mass) is a fixed collection of matter that the 
engineer selects for analysis. By definition, mass cannot cross the boundary of a closed system. 



SECTION 5.2 THE CONTROL VOLUME APPROACH 177 ....... ············ .. . .... ... . 

The boundary of a closed system can move and deform. 

EXAMPLE. Consider air inside a cylinder (see Fig. 5.6). If the goal is to calculate the pres­
sure and temperature of the air during compression, engineers select a closed system com­
prised of the air inside the cylinder. The system boundaries would deform as the piston 
moves so that the closed system always contains the same matter. This is an example of a 
closed system because the mass within the system is always the same. 

Clo,ed system 
(air inside the cylinder) 

System boundary 

Because the closed system involves selection and analysis of a specific collection of matter, 
the closed system is a Lagrangian concept. 

1be control volume (CV or cv; also known as an open system) is a specified volumetric 
:egion in space that the engineer selects for analysis. The matter inside a control volume is usu­
.illy changing with lime because mass is flowing across the boundaries. Because the control 
·olume involves selection and analysis of a region in space, the CV is an Eulerian concept. 

EXAMPLE. Suppose water is flowing through a tank (Fig. 5.7) and the goal is to calculate the 
depth of water has a function of time. A key to solving this problem is to select a system, and 
the best choice of a system is a CV surrounding the tank. Note that the CV is always three 
dimensional because it is a volumetric region. However, CVs are usually drawn in two di ­
mensions. The boundary surfaces of a CV are called the control surface. This is abbreviated 
as CS orcs. 

C ontrol \olumt· (CV): volumetric 
reg1on 'um>undmg the tank 

I 

I 
1 ~ Control ~urface (CS): surface of 
o' the control volume 

-- .J 

A control volume can be defined so that it is deforming or fixed. When a fixed CV is 
.iefined, this means that the shape of the CV and its volume are constant with time. When a 
·.:forming CV is defined, the shape of the CV and its volume change with time, typically to 
:n.imic the volume of a region of fluid. 

EXAMPLE. To model a rocket made from a balloon suspended on a string, one can define 
a deforming CV that surrounds the deflating balloon and follow the shape of the balloon 
during the process of deflation. 

FIGURE 5.6 

Example of a closed 
system. 

FIGURE 5.7 

Water entering a lank 
through the top and exiting 
through the bottom. 
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Summary When engineers analyze a problem, they select the type of system that is most 
useful (see Fig. 5.8). There are two approaches. Using the control volume approach the engineer 
selects a region in space and analyzes flow through this region. Using the closed system approach. 
the engineer selects a body of matter of fixed identity and analyzes this matter. 

Table 5.4 compares the Control Volume Approach and Closed System Approach. 

FIGURE 5.8 

When engmeers select a system , they choose either the control volume 
approach or the closed system approach Then, they select the specific type 
of system from o choice of six possibilities. 

Rigid hod): 
many panicles with 

fixed di.rancc between 

Clo•ed system 
~ appmacb 

/ (l.agrangi~n) 

holaltd sHtem: 
no work or hem 

transfer 81 boundane> 

TABLE 5.4 Comparison of the Control Volume and the Closed System Approaches 

Basic idea 

Lagrangian versus Eulerian 

Mass crossing the boundaries 

Mass (quantity) 

Mass (identity) 

Application 

Closed System Approach 

Analyze a body or fixed collection of maller. 

Lagrangian approach. 

Mass cannot cross Lhe boundaries. 

The mass of the closed system must stay 
constant with time; always the same number 
of kilograms. 

Always contains the same matter. 

Control Volume Approach 

Analyze a spatial region. 

Eulerian approach. 

Mass is allowed to cross the boundaries. 

The mass of the materials inside the CV can stay 
constant or can change with time. 

Can contain the same matter at all times. Or the 
identity of the matter can vary with time. 

-!---

Solid mechanics, fluid mechanics, thermody- Fluid mechanics, thermodynamics, and other 
namics, and other thermal sciences. thermal sciences. 

Intensive and Extensive Properties 

Properties, which are measurable characteristics of a system, can be classified into two catego­
ries. An extensive proper ty is any property that depends on the amount of matter present. An 
intensive property is any property that is independent of the amount of matter present. 

Examples (extensive) . Mass, momentum, energy, and weight are extensive properties 
because each of these properties depends on the amount of matter present. Examples (intensive). 
Pressure, temperature, and density are intensive properties because each of these properties 
are independent on the amount of matter present. 
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Many intensive properties are obtained by taking the ratio of two extensive properties. For 
l3lllple, density is the ratio of mass to volume. Similarly, specific energy e is the ratio of energy 

mass. 
To develop a general equation to relate intensive and extensive properties, define a generic 

:xtensive property, B. Also, define a corresponding intensive property b. 

b - ( B ) 
mass po~nt m sp•ce 

he amount of extensive property B contained in a control volume at a given instant is 

Bcv = J bdm = J bpdV 
cv cv 

(5.12) 

here dm and d¥ are the differential mass and differential volume, respectively, and the inte­
~ is carried out over the control volume. 

Property Transport across the Control Surface 

.ecause flow transports mass, momentum, and energy across the control surface, the next step 
to describe this transport. Consider flow through a duct (Fig. 5.9) and assume that the veloc­
. is uniformly distributed across the control surface. Then, the mass flow rate through each 

ection is given by 

-r:te rate of outflow minus the rate of inflow is 

~ext, we'll introduce velocity. The same control volume is shown in Fig. 5.10 with each control 
-urface area represented by a vector, A, oriented outward from the control volume and with 
~agnitude equal to the cross-sectional area. The velocity is represented by a vector, V. Taking 

e dot product of the velocity and area vectors at both stations gives 

(j) 
r ---I ---v1_.....,1 Comrolvolume ---, 
1 

ContrOl ~urfacc 

~~-~-========~===-========~'~==~~~ 

(j) 

FIGURE 5.9 

Flow lhrough control 
volume in a duct. 

FIGURE 5.10 

Control surfoces 

1 v
1 

represenled by oreo 
__.-

1 
ContrOl surface vectors and velocities 

--------------

A~, ;:dl:::-::-:::::=:::=:::=:j:=::::::::=.====::=:::=:::::::::-~~;;A~z \ '2 by velocity vectors. 
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because at station 1 the velocity and area have the opposite directions while at station 2 the 
velocity and area vectors are in the same direction. Now the net mass outflow rate can be 
written as 

net mass outflow rate= p2 V2 A2 - p1 V1A 1 

= P2V2 · A2 + PtVt ·At (5.13) 

Equation (5.13) states that if the dot product pV ·A is summed for all flows into and out of the 
control volume, the result is the net mass flow rate out of the control volume, or the net mass 
efflux (efflux means outflow). If the summation is positive, the net mass flow rate is out of the 
control volume. If it is negative, the net mass flow rate is into the control volume. If the inflow 
and outflow rates are equal, then 

To obtain the net rate of flow of an extensive property B across a section, write 

b m B 
......-"----- ......-"----- ....--"----

{m!ss)(::s:) = Ci!J 

Next, include all inlet and outlet ports: 

m 
....--"---­

Bnet = _2: b p V • A 
cs 

(5.14) 

Equation (5.14) is applicable for all flows where the properties are uniformly distributed 
across the flow area. To account for property variation, replace the sum with an integral: 

Bnct = f bpV · dA 
cs 

(5.15) 

Eq. (5.15) will be used in the derivation of the Reynolds transport theorem. 

Reynolds Transport Theorem 

The Reynolds transport theorem is an equation that relates a derivative for a closed system to 
the corresponding terms for a control volume. The reason for the theorem is that the conserva· 
tion laws of science were originally formulated for closed systems. Over time, researchers fig­
ured out how to modify the equations so that they apply to a control volume. The result is the 
Reynolds transport theorem. 

To derive the Reynolds transport theorem, consider a flowing fluid; see Fig. 5.11. The 
darker shaded region is a closed system. As shown, the boundaries of the closed system change 
with time so that the system always contains the same matter. Also, define a CV as identified 
by the dashed line. At time t the closed system consists of the material inside the control vol­
ume and the material going in, so the property B of the system at this time is 

(5.16) 
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Control surface 

I 

:.-----
Conuol volume 
(fixed volume) 

Sy,tem at to me 1 

(dark shaded reg10n) 

,..low ___ __J --
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-------..1 

System at nmo 1 + AI 
(dark shaded region) 

~ time t + l1t the closed system has moved and now consists of the material in the control 
··olume and the material passing out, so B of the system is 

Bdosedsystem( t + M) = Bcv( t + ilf} + LlBout 

The rate of change of the property B is 

dBcloscdsy~rem . [ Bdo;ed•ptem(t + At)- Bdoscdsystcm(l} J 
---- = hm 

dt ~r-+o At 

Substituting in Eqs. (5.16) and (5.1 7) results in 

dBclosedsystcm , [Bcv(l + At}- B,.(t) + ABout- AB;n] 
- - --= lim 

dt ~r-+0 ~~ 

Rearranging terms yields 

dBclo<ed .<ystem , [Bcv(l + At} - Bcv(f}] . ABout lim AB;0 - - - -= bm + lim - - -
dt ~t-+o At ~t-+o At At-+o At 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

The first term on the right side of Eq. (5.20) is the rate of change of the property B inside the 
control volume, or 

hm = - -
. [ B,.(t + At) - Bc..(t)] dB". 

~t-+o At dt 

The remaining terms are 

. ABout · 
lim - A- = Bout 
~t-+0 u/ 

These two terms can be combined to give 

and 

. . . 

AB · lim __ UI = B 
~t-+0 tlt lJ1 

Bnet = B out - Bill 

(5.21) 

(5.22) 

1r the net efflux, or net outflow rate, of the property B through the control surface. Equation 
5.20) can now be written as 

dB closed syst<m d · - ---'---- = - B + B 
dt dt cv n<t 

FIGURE 5.11 

Progression of o closed 
system through a control 
volume. 
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Substituting in Eq. (5.15) for Bnrt and Eq. (5.12) for B,v results in the general form of the 
Reynolds transport theorem: 

dB dosed ')"tem d l l - - --'----- == - bpd¥ + bpV · dA 
dt dt C\' cs 

~ 

Lagrangian 

Eq. (5.23) may be expressed in words as 

Eulerian 

{ 

Rate of change } { Rate of change } { Net outflow } 
of property B == of property B + of property B 

in closed system in control volume through control surface 

(5.23) 

The left side of the equation is the Lagrangian form, that is, the rate of change of property B 
for the closed system. The right side is the Eulerian form, that is, the change of property B 
evaluated in the control volume and the flux measured at the control surface. This equation 
applies at the instant the system occupies the control volume and provides the connection 
between the Lagrangian and Eulerian descriptions of fluid flow. The velocity V is always 
measured with respect to the control surface because it relates to the mass flux across the 
surface. 

A simplified form of the Reynolds transport theorem can be written if the mass cross­
ing the control surface occurs through a number of inlet and outlet ports, and the velocity, 
density and intensive property b are uniformly distributed (constant) across each port. 
Then 

dBcloscd S)"tem d l ~ 
--~- == - bpdV- + ~pbV ·A 

dt dt cv cs 

(5.24) 

where the summation is carried out for each port crossing the control surface. 
An alternative form can be written in terms of the mass flow rates: 

(5.25) 

where the subscripts i and o refer to the inlet and outlet ports, respectively, located on the 
control surface. This form of the equation docs not require that the velocity and density be 
uniformly distributed across each inlet and outlet port, but the property b must be. 

5.3 Continuity Equation (Theory) 

The continuity equation is the law of conservation of mass applied to a control volume. 
Because this equation is commonly used by engineers, this section presents the relevant 
topics. 

Derivation 

The law of conservation of mass for a closed system can be written as 

d(mass of a closed system) dmdoscd ry.tem 
- - - - - ------ = - = 0 

dt dt 
(5.26) 
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-::"o transform (Eq. 5.26) into an equation for a control volume, apply the Reynolds transport 
:beorem, Eq. (5.23). In Eq. (5.23), the extensive property is mass, Bcv = mdo~d syst(m· The cor­
·esponding value intensive property is mass per unit mass, or simply, unity. 

mclo~ system 
b = = 1 

m clo<etl system 

·ubstituting for Bcv and bin Eq. (5.23) gives 

dmdosed syst(m d i i 
=- pd.J,L + cs pV·dA 

dt dt cv 
(5.27) 

':ombining Eq. (5.26) to Eq. (5.27} gives the general form of the continuity equation. 

:J pd¥ + J p v . dA = 0 
CV C!; 

(5.28) 

If mass crosses the boundaries at a number of inlet and exit ports, then Eq. (5.28) reduces 
give the simplified form of the continuity equation: 

!!_m + 2>-n - 2>·•, = 0 
dt cv a 

0 
cs 

(5.29) 

P~ysicallnterpretation of the Continuity Equation 

::tg. 5.12 shows the meaning of the terms in the continuity equation. The top row gives the 
;eneral form (Eq. 5.28), and the second row gives the simplified form (Eq. 5.29). The arrows 

'lOWS which terms have the same conceptual meaning. 
The accumulation term describes the changes in the quantity of mass inside the control 

lume (CV) with respect to time. Mass inside a CV can increase with time (accumulation is 
~sitive), decrease with time (accumulation is negative) or stay the same (accumulation is 
.ero). 

The intlow and outflow terms describe the rates at which mass is flowing across the 
arfaces of the control volume. Sometimes inflow and outflow are combined to give efflux, 
hich is defined as the net positive rate at which is mass is flowing out of a CV. That is, 

efflux) = (outflow) - (inflow). When efflux is positive, there is a net flow of mass out 
[ the CV, and accumulation is negative. When efflux is negative, then accumulation is 

·oositive. 

(.\ crumula tiun) (lnflu\\ ) 

,....._ General equation 

,....._ Simplified equnnon 

- Main 1deas 
(mas; balance) 

,....._ Names of tenm 

FIGURE 5.12 

This figure shows the 

conceptual meaning of 
the continuity equation. 
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As shown in Fig. 5.12, the physics of the continuity equation can be summarized as: 

accumulation = inflow - outflow 

where all terms in Eq. (5.30) are rates (see Fig. 5.12) 

(5.30) 

Eq. (5.30) is called a balance equation because the ideas relate to our everyday experiences 
with how things balance. For example, the accumulation of cash in a bank account equals the 
inflows (deposits) minus the outflows (withdrawals). Because the continuity equation is a bal­
ance equation, it is sometimes called the mass balance equation. 

The continuity equation is applied at an instant in time and the units are kgls. Sometimes 
the continuity equation is integrated with respect to time and the units are kg. To recognize a 
problem that will involve integration, look for a change in state during a time interval. 

5.4 Continuity Equation (Application) 

This section describes how to apply the continuity equation and presents example problems. 

Working Equations 
Three useful forms of the continuity equations are summarized in Table 5.5. 

TABLE S.S Summary of the Continuity Equation 

General form: valid for any 
problem. 

Simplified form: useful when 
there are well defined inlet and 
exit ports. 

Pipe flow form; valid for flow 
in a pipe. 

(gases: density can vary but the 
density must be uniform across 
sections I and 2). 

(liquids: the equation reduces 
to A 1 V1 = A 1 V1 for a constant 
density assumption). 

Equations 

:tf pdV +I pV . dA = 0 (Eq.5.28) 
cv cs 

d 
-mcv + 2:. rn. - 2:. tn, = 0 (Eq. 5.29) 
dt cs l\ 

I-

P2A 2V2 = P1A1Vt (Eq. 5.33) 

Terms 

t = time (s) 

p = density (kg/m3
) 

d-V- = differential volume (m3) 

V = fluid velocity vector (m/s) 
(reference frame is the control surface) 

dA =differential area vector (m2
) 

(positive direction of dA is outward from CS) 

mcv = mass inside the control volume (kg) 

m = pA V = mass/time crossing CS (kg/s) 

A = area of flow (m2
) 

V = mean velocity (rnls) 

The process for applying the continuity equation is 

Step 1. Selection. Select the continuity equation when flow rates, velocity, or mass 
accumulation are involved in the problem. 

Step 2. Sketching. Select a CV by locating CSs that cut through where (a) you know infor­
mation or (b) you want information. Sketch the CV and label it appropriately. Note that it 
is common to label the inlet port as section 1 and the outlet port as section 2. 

Step 3. Analysis. Write the continuity equation and perform a term-by-term analysis to 
simplify the starting equation to the reduced equation. 

Step 4. Validation . Check units. Check the basic physics; that is, check that (inflow minus 
outflow) = (accumulation). 



Example Problems 
The first example problem (Example 5.4) shows how continuity is applied to a problem that 
mvolves accumuJation of mass. 

I EXAMPLE 5.4 

Applying the Continuity Equation to a Tank with an lnAow 
and an OutAow 

Problem Statement 

A stream of water flows into an open tank. The speed of 
the incoming water is V = 7 m/s, and the section area is 
A = 0.0025 m2

• Water also flows out of the tank at rate of 
Q = 0.003 m3/s. Water density is 1000 kg/m3

• What is the rate 
at which water is being stored (or removed from) the tank? 

y : 7 m/s, A - 0.0025 m' 

~ Q - 0.003 m'ls 

Define the Situation 

Water flows into a tank at the top and out at the bottom. 

= 1 Water 

I 

I 

1'-------. 
CV/'1 

p=IOOOkglm' 

(fixed)- - - - - - - -@-~ Q~; 0.003 m'is 

State the Goal 

(dmcvldt) (kg/s) .. rate of accumulation of water in tank 

Generate Ideas and Make a Plan 

Selection. Select the simplified form of the continuity 
equation (Eq. 5.29). 

Sketching. Modify the situation diagram to show the CV 
and sections 1 and 2. Notice that the CV in the upper left 
corner is sketched so that it is at a right angle to the 
inlet flow. 

Analysis. Write the continuity equation (simplified form) 

d ~ . ~ . 
-d mcv + ~ m. - .£J m; ::: 0 

t <• "-' 

Analyze the outflow and inflow terms. 

cs 

Combine Eqs. (a), (b), and (c). 

d 
dtm"" ::: pA tYt - pQz 

Validate. Each term has units of kilograms per second. 

{a) 

(b) 

(c) 

(d) 

Eq. (d ) makes physical sense: (rate of accumulation of mass) = 
(rate of mass flow in) - (rate of mass flow out). 

Because variables on the right side of Eq. (d) are known, the 
problem can be solved. The plan is: 

1. Calculate the flow rates on the right side of Eq. (d). 

2. Apply Eq. (d) to calculate the rate of accumulation. 

Take Action (Execute the Plan) 

1. Mass flow rates (inlet and outlet). 

p A1 V1 = (1000 kg/m3){0.0025 m2)(7 m/s) = 17.5 kg/s 

pQ2 = (1000 kg/m~)(0.003 m3/s) = 3 kg/s 

2. Accumulation 

dmcv dt = 17.5 kg/s - 3 kg/s 

= j14.5 kgts j 

Review the Solution and the Process 

1. Discussion. Because the accumulation is positive, the 
quantity of mass within the control volume is increasing 
with time. 

2. Discussion. The rising level of water in the tank causes air 
to flow out of the CV. Because air has a density that is 
about 1/ 1000 of the density of water, this effect is 
negligible. 
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Example 5.5 shows how to solve a problem that involves accumulation by using a 
fixed CV. 

EXAMPLE 5.5 

Applying the Continuity Equation to Calculate the Rate 
of Water Rise in a Reservoir 

Problem Statement 

A r iver discharges into a reservoir at a rate of 400,000 fr.l Is 
(cfs), and the outflow rate from the reservoir through the 
flow passages in a dam is 250,000 cfs. If the reservoir 
surface area is 40 mtl, what is the rate of rise of water in 
the reservoir? 

River (400,000 cis) 
~Water surface (A= 40 mi') 

2~ --

Define the Situation 

A reservoir is filling with water. 

State the Goal 

Resel'\-oir -
Outlet 
(250,000 ct's) 

0 
Q, = 250,000 cfs 

V3(ft/h) .. Speed at which the water surface is rising 

Generate Ideas and Make a Plan 

Selection. Select the continuity equation because the problem 
involves flow rates and accumulation of mass in a reservoir. 

Sketching. Select a fixed control volume and sketch this CV on 
the situation diagram. The control surface at section 3 is just 
below the water surface and is stationary. Mass passes through 

control surface 3 as the water level in the reservoir rises (or 
falls). The mass within the control volume is constant because 
the volume of the CV is constant. 

Analysis. Write the continuity equation (simplified form): 

d 2:' 2: ' -m + m - m· = 0 
dt CV CS 0 CS I 

(a) 

Next, analyze each term 

. . Mass in the control volume is constant. Thus, 

dm,Jdt = 0. (b) 

There are two outflows, at sections 2 and 3. Thus, 

2: mo = pQ2 + pA3 VJ (c) 
C5 

: . There is one inflow, at section I . Thus, 

(d) 

Substitute Eqs. (b), (c), and (d) into Eq. (a). Then, divide each 

term by density 

(e) 

Validation. Eq. (e) is dimensionally homogeneous because 
each term has dimensions of volume per time . .Eq. (e) makes 

physical sense: (outflow through sections 2 and 3) equals 
(inflow from section 1) . 

.Because Eq. (e) contains the problem goal and all other 
variables are known, the problem is cracked. The plan 

is to 

1. Use Eq. (e) to derive an equation for V3. 

2. Solve for V3. 

Take Action (Execute the Plan) 

1. Continuity Equation 

2. Calculations 

400, 000 cfs - 250, 000 cfs 
V.; ,. =---'--- - - -

40 mi2 X (5280 ft/ mi)2 

= 1.34 X I 0-4 ft / s = .-, 0_.4.:._82_ ft_/_h_,r I 

Example 5.6 shows (a) how to usc a deforming CV and (b) how to integrate the continuity 
equation. 



EXAMPLE 5.6 

Applying the Continuity Equation to Predict the Time 
for a Tonk to Drain 

Problem Statement 

A I 0 em jet of water issues from a 1-m-diameter tank. 
Assume t11e Bernoulli equation applies so the velocity in the 
jet is V2gh m/s where h is the elevation of the water surface 
above the outlet jet. How long will it take for the water 
surface in the tank to drop from h0 = 2m to h1 = 0.50 m? 

1-- lm ----i 

Wultr 

Define the Situation 

Water is draining from a tank. 

1-D-Im-1 

State the Goal 

CV 
(dcfomung) 

h 

l 

Initial State: lr = Jr, = 2 m 
Final State: h = h

1 
= 0.5 m 

v = J2ii, 

t1(s) .. Time for the tank to drain from h. to h1 

Generate Ideas and Make a Plan 

Selection. Select the continuity equation by recognizing that the 
problem involves outflow and accumulation of mass in a tank. 

Also note that the continuity equation will need to be 
integrated because this problem involves time and a defined 
initial state and final state. 

Sketching. Select a deforming CV that is defined so that the top 
surface area is coincident with the surface level of the water. 

Sketch this CV in the situation diagram. 

Analysis. Write the continuity equation. 

d "' " ' - m,-v + ~ m0 - ~ m ; = 0 
dt "' " 

{a) 

Analyze each term in a step-by-step fashion. 

• Mass in the control volume is given by* 

me.· = (density)( volume) = p( 1T~2

) h (b) 

• Differentiate Eq. (b) with respect to time. Note that the 
only variable that changes with time is water depth h so 
the other variables can come out of the derivative. 

dmcv = d ( ('Tt'Dl)1r) = (1TD 2
)dh 

dt dt p 4 p 4 dt 

• The inflow is zero and the outflow is 

Substitute Eqs. (b), (c), and (d) into Eq. (a). 

(
1TD

2
) dh ('Tt'd2

) 
p - 4- dt = - p 4 V2ih 

Validation. In Eq. (e), each term has w1its ofkg/s. Also, this 
equation makes physical sense: (accumulation rate) = (the 
negative of the outflow rate). 

Integration. To begin, simplify Eq. (e) 

(
D)

2
dh - -= - V2gh 

d dt 

Next, apply the method of separation of variables. Put the 
variables involving h on the left side and the other variables 
on the right side. Integrate using definite integrals 

Perform the integration to give: 

2('V'li;; - YhJ} = ( d)2t 
v'2g D f 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Because Eq. (h) contains the problem goal (t1) and all other 
variables in this equation are known, the plan is to use Eq. (h) 
to calculate (t1). 

Take Action (Execute the Plan) 

t = (!Z.)2(2('V'li;;- ~)) 
I d V2g 

( 
1m )

2(2(v'l2rTi}- v'[55 m})) 
= D.lm Y2(9.8lm/s2) 

~= 31.9s) 

The mass in the CV also include the mass of the water below the outlet. However, when dmrvldt is evaluated, this term 
'iU go lo zero. 
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Example 5.7 shows another instance in which the continuity equation is integrated with 

respect to time. 

EXAMPLE 5.7 

Depressurization of Gas in Tonk 

Problem Definition 

Methane escapes through a small (10 7 m2
) hole in a 10m3 

tank. The methane escapes so slowly that the temperature 
in the tank remains constant at 23°C. The mass flow rate of 
methane through the hole is given by m = 0.66 pAIYRT, 
where pis the pressure in the tank, A is the area of the hole, 
R is the gas constant, and Tis the temperature in the tank. 
Calculate the time required for the absolute pressure in the 
tank to decrease from 500 to 400 kPa. 

,--------1 
I I 
I I 
I I . 
I I" -~m 
I I 
I I 
I I 
L I 

Define the Situation 

Methane leaks through a 10 1 m1 hole in 10m3 tank. 

Asswnptions. 

1. Gas temperatures constant at 23°C during leakage. 

2. Ideal gas law is applicable. 

Properties: Table A.2, R = 518 J/kgK. 

State the Goal 

Find: Time (in seconds) for pressure to decrease from 500 kPa 
to 400 kPa. 

Generate Ideas and Make a Plan 

Select a CV that encloses whole tank. 

I. Apply continuity equation, Eq. (5.29). 

2. Analyze term by term. 

3. Solve equation for elapsed time. 

4. Calculate time. 

Take Action (Execute the Plan) 

I. Continuity equation 

d "" . "" . -d mcv + kJ n10 - kJ m, = 0 
t cs .,. 

2. Term-by-term analysis. 

• Rate of accumulation term. The mass in the control 
volume is the sum of the mass of the tank shell, Msbell• 

and the mass of methane in the tank, 

mcv = msh.u + pV 

where¥ is the internal volume of the tank, which is 
constant. The mass of the tank shell is constant, so 

dmcv dp 
- - =¥-

dt dt 

• There is no mass inflow: 

L';,, = o 
CB 

• Mass out flow rate is 

. pA L mo = 0.66 • rr;;y; 
c.< vRT 

Substituting terms into continuity equation 

dp pA 
¥ dt = - 0.66 VRf 

3. Equation for elapsed time: 

• Use ideal gas law for p, 

¥~(_E._) = - 0.66 _EA -
dt RT v'R'f 

• Because R and T arc constant, 

dp pAYRT 
- = -0.66 --

. dt ¥ 

• Next, separate variables 

dp AVliTdt 
- = - 0.66 --
p ¥ 

• Integrating equation and substituting limits for initial 
and final pressure 

1 = 1.52 \l In Pu 
AYRT Pt 

4. Elapsed time 

_ 1.52 (10m
3

) 500 -I 4 I 
t - ( ) "1 In - 8.6 X I 0 s _ 

(10- 7 m2) 518 - J - X 300 K 
400 

kg·K 

Re,·iew the Solution and the Process 

1. Discussion. The time corresponds to approximately one day. 

2. Knowledge. Because the ideal gas law is used, the pressure 
and temperature have to be in absolute values. 
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Continuity Equation for Flow in a Conduit 

A conduit is a pipe or duct or channel that is completely filled with a flowing fluid. Because 
·ow in conduits is common, it is useful to derive an equation that applies to this case. To begin 
the derivation, recognize that in a conduit (see Fig. 5.13), there is no place for mass to accurnu­
..ate, so Eq. (5.28) simplifies to 

f pV · dA = 0 (5.31) 
cs 

.{ass is crossing the control surface at sections 1 and 2, so Eq. (5.31 ) simplifies to 

I pVdA - I pVdA = 0 (5.32) 

section 2 ~t«Lion 1 

.: density is assumed to be constant across each section, Eq. (5.32) simplifies to 

P1A1 vi = P2A2 V2 

------

ci)--------
Control 
surface 

(5.33) 

-----• FIGURE 5.13 
I 

: Flow through a conduit. 
-++v2 

I 
I 
I 
I 

Eq. (5.33), which is called the pipe flow form of the continuity equation, is the final result. The 
::leaning of this equation is (rate of inflow of mass at section 1) = (rate of outflow of mass at 
..ection 2). 

There are other useful ways of writing the continuity equation. For example, Eq. (5.33) can 
.-.e written in several equivalent forms: 

tf density is asswned to be constant, then Eq. (5.34) reduces to 

Qz = 01 

(5.34) 

(5.35) 

(5.36) 

Eq. (5.34) is valid for both steady and unsteady incompressible flow in a pipe. If there 
&:e more than two ports and the accumulation term is zero, then Eq. (5.29) can be re­
:uced to 

(5.37) 
cs cs 

~ the flow is assumed to have constant density, Eq. (5.37) can be written in terms of 
.!.!Scharge: 

(5.38) 
cs cs 

.Ymmary Depending on the assumptions of the problem, there are many ways to write 
~e continuity equation. However, one can analyze any problem using the three equations 
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summarized in Table 5.5. Thus, we recommend starting with one of these three equations 
because this is simpler than remembering many different equations. 

II' CHECKPOINT PROBlEM 5.3 

Water and alcohol mix in a tank. Can the Water(! liter/second) 

continuity equation be used to show that 
the outlet flow rate is 2liters per second? - J---------,L~holmi• 

a. yes 

b. no 

- _ _____.! 
Alcohol (I liter/second) 

Example 5.8 shows how to apply continuity to flow in a pipe. 

EXAMPLE 5.8 

Applying the Continuity Equation to Flow in a Variable 
Area Pipe 

Problem Statement 

A 120 em pipe is in series with a 60 em pipe.lhe speed of the 
water in the 120 em pipe is 2 m/s. What is the water speed in 
the 60 em pipe? 

V-2mls~ 
w:___::u 

Define the Situation 

Water flows through a contraction in a pipe. 

CD 
V, =1.2 m 

State the Goal 

V2(m/s) ~ Mean velocity at section 2 

Generate Idea\ and Make a Plan 

Selection. Select the continuity equation because the problem 
variables are velocity and pipe diameter. 

Sketch. Select a fixed CV. Sketch this CV on the situation 
ctiagram. Label the inlet as section 1 and outlet as section 2. 

Analysis. Select the pipe flow form of continuity (i.e., Eq. 5.33) 
because the problem involves flow in a pipe. 

(a) 

Assume density is constant (this is standard practice for steady 
flow of a liquid). The continuity equation reduces to 

Validate. To validate Eq (b), notice that the primary 
ctimensions of each term are L3/T. Also, this equation makes 
physical sense because it can be interpreted as (inflow) = 
(outflow). 

Plan. Eq (b) contains the goal (V2) and all other variables 
are known. Thus, the plan is to substitute numbers into this 
equation. 

Take Action (Execute the Plan) 

ContiJmity Equation: 

(
1 2 m)2 

V2 = (2 m/s) - ·- =Is m/s I 
0.6m 
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Example 5.9 shows how the continuity equation can be applied together with the Bernoulli 
equation 

EXAMPLE 5.9 

Applying the Bernoulli and Continuity Equations to Flow 
through a Venturi 

Problem Statement 

Water with a density of 1000 kg/m3 Oows through a vertical 
venturimeter as shown. A pressure gage is connected across 
two taps in the pipe (station 1) and the throat (station 2). The 

area ratio A,hroa1/AP'P• is 0.5. The velocity in the pipe is 10 m/s. 
Find the pressure difference recorded by the pressure gage. 
Assume the flow has a uniform velocity distribution and that 
viscous effects are not important. 

I 

I 
I 

@-------- -~-~==~ 
z=O ----- __ _t __ _ 

VI 

CD----------r----

Define the Situation 

Water flows in venturimeter.Area ratio = 0.5. V1 = 10 m/s. 

Assumptions: 

I. Velocity distribution is uniform. 

2. Viscous effects are unimportant. 

Properties: p = 1000 kglm3
• 

State the Goal 

Find: Pressure difference measured by gage. 

5.5 Predicting Cavitation 

Generate Ideas and Make a Plan 

1. Because viscous effects are unimportant, apply the 
Bernoulli equation between stations 1 and 2. 

2. Combine the continuity equation (5.33) with the results 
of s tep L 

3. Find the pressure on the gage by applying the hydrostatic 
equation. 

Take Action (Execute the Plan) 

I. The Bernoulli equation 

Rewrite the equation in terms of piezometric pressure. 

p ( 2 2) P:, - Pz, = 
2 

Vz - VI 

= pV~ (Vi - 1) 
2 VT 

2. Continuity equation V2/V1 = A 1/A2 

pVr(Af ) 
p,, - p,, = - 2- A~ - I 

1000 kg/m3 

= X (10 m/s)2 X (22 
- l ) 

2 

= 150 kPa 

3. Apply the hydrostatic equation between the gage attachment 
point where the pressure is p,. and station I where the gage 
line is tapped into the pipe, 

Also Pz, = Pg, so 

t:.pg•g• = Pg, - P8, = P:, - p,, = [iio kPa] 

Designers can encounter a phenomenon, called cavitation, in which a liquid starts to boil due 
o low pressure. This situation is beneficial for some applications, but it is usually a problem 
that should be avoided by thoughtful design. Thus, this section describes cavitation and 
O:Jscusses how to design systems to minimize the possibility of harmful cavitation. 
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FIGURE 5.14 

Cavitation damage to o 
propeller. (Photo by 
Erik Axdohll 

Description of Cavitation 

Cavitation is when fluid pressure at a given point in a system drops to the vapor pressure and 
boiling occurs. 

EXAMPLE. Consider water flowing at lS°C in a piping system. If the pressure of the water 
drops to the vapor pressure, the water will boil, and engineers will say that the system is cavi­
tating. Because the vapor pressure of water at lS°C, which can be looked up in Appendix A.S, 
is p,. = 1.7 kPa abs, the condition required for cavitation is known. To avoid cavitation, the 
designer can configure the system so that pressures at all locations are above I. 7 kPa absolute. 

Cavitation can damage equipment and degrade performance. Boiling causes vapor bub­
bles to form, grow, and then collapse, producing shock waves, noise, and dynamic effects that 
lead to decreased equipment performance and, frequently, equipment failure. Cavitation dam­
age to a propeller (see Fig. S.I4) occurs because the spinning propeller creates low pressures 
near the tips of the blades where the velocity is high. Serious erosion produced by cavitation in 
a spillway tunnel of Hoover Dam is shown in Fig. S.lS. 

Cavitation degrades materials because of the high pressures associated with the collapse of 
vapor bubbles. Experimental studies reveal that very high intermittent pressure, as high as 
800 MPa (llS,OOO psi), develops in lhe vicinity of the bubbles when they collapse (1). There­
fore, if bubbles collapse close to boundaries such as pipe walls, pump impellers, valve casings, 
and dam slipway floors, they can cause considerable damage. Usually this damage occurs in 
the form of fatigue failure brought about by the action of millions of bubbles impacting (in 
effect, imploding) against the material surface over a long period of time, thus producing a 
material pitting in the zone of cavitation. 

In some applications, cavitation is beneficial. Cavitation is responsible for the effectiveness 
of ultrasonic cleaning. Supercavitating torpedoes have been developed in which a large bubble 
envelops the torpedo, significantly reducing the contact area with the water and leading to 
significantly faster speeds. Cavitation plays a medical role in shock wave lithotripsy for the 
destruction of kidney stones. 



The world's largest and most technically advanced water tunnel for studying cavitation is 
located in Memphis, Tennessee-the William P. Morgan Large Cavitation Tunnel. This facility 
s used to test large-scale models of submarine systems and full-scale torpedoes as well as 
applications in the maritime shipping industry. More detailed discussions of cavitation can be 
found in Brennen (2) and Young (3). 

Identifying Cavitation Sites 
To predict cavitation, engineers looks for locations with low pressures. For example, when 
water flows through a pipe restriction (Fig. 5.16), the velocity increases according to the conti­
nuity equation, and in turn, the pressure decreases as dictated by the Bernoulli equation. For 
low flow rates, there is a relatively small drop in pressure at the restriction, so the water remains 
~·ell above the vapor pressure, and boiling does not occur. However, as the flow rate increases, 
the pressure at the restriction becomes progressively lower until a flow rate is reached where 
~e pressure is equal to the vapor pressure as shown in Fig. 5.16. At this point, the liquid boils 
"o form bubbles, and cavitation ensues. The onset of cavitation can also be affected by the pres­
ence of contaminant gases, turbulence and by viscous effects. 

p 

======:=~~, Lo\\ no" ~ 
- _ ... ~ ,', rare ,. , : _ ::::::::::::::. 

High0~,',, ___ ;:/, 
rare \\ 1 \ ' T' Cavnarron ', .... _ --------

Vapor pressure ', __ .-"' 
~ - ----------------~------------

v 

FIGURE 5.15 

Cavitation damage to 
a hydroelectric power 
dam spillway tunnel. (U.S. 
Bureau of Reclamation) 

FIGURE 5.16 

Flow through pipe 
restriction: variation of 
pressure for three d ifferent 
flow rates. 
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FIGURE 5.17 

Formation of vapor 
bubbles in the process 
of cavitation. 
(a) Cavitation. 
(b) Cavitation-higher 
flow rate. 

The formation of vapor bubbles at the restriction in Fig. 5.16 is shown in Fig. 5.17a. The 
vapor bubbles form and then collapse as they move into a region of higher pressure and are 
swept downstream with the flow. When the flow velocity is increased further, the minimum 
pressure is still the local vapor pressure, but the zone of bubble formation is extended as shown 
in Fig. 5.17b. In this case, the entire vapor pocket may intermittently grow and collapse, pro­
ducing serious vibration problems. 

(a) 

Vapor pocket 

(b) 

Summary Cavitation, which is caused by boiling of liquids at low pressures, is usually problematic 
in an engineered system. Cavitation is most likely to occur at locations with low pressures such as 

• High elevation points. 

• Locations with high velocities. (e.g. constrictions in pipes, tips of propeller blades) 

• 1l1e suction (inlet) side of pumps. 

5.6 Summarizing Key Knowledge 

Characterizing Flow Rate (m and Q) 

• Volume flow rate, Q (m3/s) is defined by 

= (volume of fluid passing through a cross sectional area) 
Q . I f. mterva o tJ me in>tant 

in time 

• Volume flow rate is also called discharge. 

• Q can be calculated with four equations: 

Q = vA = m = I v dA = I v. dA 
p A A 

• Mass flow rate, m (kgls), is defined as 

I
. ~-¥ 

= rm ­
t.i-+0 ~ t 

m
. __ (mass of fluid passi.ng through. a cross sectional area) ~m 

=lim ­
mterval of trme instant llt-+0 ~t 

in limt: 

• m can be calculated with four equations: 

,.n = pA v = pQ = I P v dA = I P v · dA 
A A 



• Mean-velocity, V or V, is the value of velocity averaged over the section area at an instant 
in time. This concept is different than time-averaged velocity, which involves velocity 
averaged over time at a point in space. 

• Typical values of mean velocity: 

~ VI Vmax = 0.5 for laminar flow in a round pipe 

~ V/Vmax = 2/3 = 0.667 for laminar flow in a rectangular conduit 

~ V/V max = 0.79 to 0.86 for turbulent flow in a round pipe. 

• Problems solvable with the flow rate equations can be organized into three categories: 

~ Algebraic Equations. Problems in this category are solved by straightforward application 
of the equations (see Example 5.1). 

~ Dot Product. When the area is not aligned with the velocity vector, then apply the dot 
product (V · A) (see Example 5.2). 

~ Integration. When velocity is given as a function of position, one integrates velocity over 
area (see Example 5.3). 

The Control Volume Approach and Reynolds Transport Theorem 

• A system is what the engineer selects to analyze. Systems can be classified into two 
categories: the closed system and the control volume. 

~ A closed system is a given quantity of matter of fixed identity. Fixed identity means the 
closed system is always comprised of the same matter. Thus, mass cannot cross the 
boundary of a closed system. 

~ A cor1trol volume ( cv or CV) is a geometric region defined in space and enclosed by a 
control surface (cs orCS). 

~ The Reynolds transport theorem is a mathematical tool for converting an equation 
written for a closed system to an equation written for a control volume. 

The Continuity Equation 

• The law of conservation of mass for a control volume is called the continuity equation. 

• The physics of the continuity equation are 

( 
rate of ) ( rate of ) ( rate of ) 

accumulation of mass = inflow of mass - outflow of mass 

• The continuity equation can be applied at an instant in time, and the units are kg/s. 
Also, the continuity equation can be integrated and applied over a finite time interval 
(e.g., 5 minutes), in which case the units are kg. 

• Three useful forms of the continuity equation (see Table 5.5 on page 184) are 

~ The general equation (always applies) 

~ The simplified form (useful when there are well defined inlet and outlet ports) 

~ The pipe flow form (applies to flow in a pipe) 

Cavitation 

• Cavitation occurs in a flowing liquid when the pressure drops to the local vapor pressure 
of the liquid. 

• Vapor pressure is discussed in Chapter 2. Data for water are presented in Table A.5. 
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• Cavitation is usually undesirable because it can cause reduced performance Cavitation can 
cause erosion or pitting of solid materials, noise, vibrations, and structural failures. 

• Cavitation is most likely to occur in regions of high velocity, in inlet regions of centrifugal 
pumps, and at locations of high elevations. 

• To reduce the probability of cavitation, designers can specify that components that are 
susceptible to cavitation (e.g., values and centrifugal pumps) be situated at low elevations. 
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PROBLEMS 

TIVs Problem available in WileyPLUS at instructor's discretion. 

Characterizing Flow Rates (§5. 1) 

5.1 Consider filling the gasoline tank of an automobile at a 
gas station. (a) Estimate the discharge in gpm. (b) Using the 
same nozzle, estimate the time to put 50 gallons in the tank. 
(c) Estimate the cross-sectional area of the nozzle and calculate 
the velocity at the nozzle exit. 

5.2 The average flow rate (release) through Grand Coulee Dam 
is 110,000 ftl/s. The width of the river downstream of the dam is 
100 yards. Making a reasonable estimate of the river velocity, 
estimate the river depth. 

5.3 Taking a jar of known volume, fill with water from your 
household tap and measure the time to fill. Calculate the 
discharge from the tap. Estimate the cross-sectional area of the 
faucet outlet, and calculate the water velocity issuing from the tap. 
~ r . 5.4 PLus Another name •Or the volume flow rate equation could be: 

a. the discharge equation 

b. the mass flow rate equation 

c. either a or b 

5.5 A liquid flows through a pipe with a constant velocity. If a 
pipe twice the size is used with the same velocity, will the flow 
rate be (a) halved, (b) doubled, (c) quadrupled? Explain. 

5.6 frVs for flow of a gas in a pipe, which form of the 
continuity equation is more general? 

a. V1A1 = V2A2 

b. PtVIAt = P2V2A2 

c. both are equally applicable 

5.7 1a/s The discharge of water in a 35-cm-diameter pipe is 
0.06 m 3/s. What is the mean velocity? 

5.s 1i:Vs A pipe with a 18 in. diameter carries water having a 
velocity of 4 ft/s. What is the discharge in cubic feet per second 
and in gallons per minute ( I cfs equals 449 gpm)? 

3. Young, F. R. Cavitation. New York: McGraw-Hill, 1989. 

?o" Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

5.9 A pipe with a 2 m diameter carries water having a velocity of 
4 m/s. What is the discharge in cubic meters per second and in 
cubic feet per second? 

5.10 1t1J"s A pipe whose diameter is 6 em transports air with a 
temperature of 20°C and pressure of 180 kPa absolute at 19 m/s. 
Determine the mass flow rate. 

..-.:;:-.. 
5.11 PLUS Natural gas (methane) flows at 25 m/s through a 
pipe with a 0.84 m diameter. The temperature of the methane 
is I5°C, and the pressure is 160 kPa gage. Determine the mass 
flow rate. 

5.12 An aircraft engine test pipe is capable of providing a flow 
rate of 180 kgls at altitude conditions corresponding to an 
absolute pressure of 50 kPa and a temperature of -l8°C.1he 
velocity of air through the duct attached to the engine is 255 m/s. 
Calculate the diameter of the duct. 

5.13 A heating and air-conditioning engineer is designing a 
system to move 1000 m3 of air per hour at 100 kPa abs, and 30°C. 
The duct is rectangular with cross-sectional dimensions of 1 m 
by 20 em. What will be the air velocity in the duct? 

5.14 The hypothetical velocity distribution in a circular duct is 

V r 
- =1- ­
Vo R 

where r is the radial location in the duct, R is the duct radius, and 
V0 is the velocity on the axis. Find the ratio of the mean velocity 
to the velocity on the axis. 

PROBL~M 5.14 



5.15 Water flows in a two-dimensional channel of width Wand 
depth D as shown in the diagram. The hypothetical velocity 

profLle for the water is 

V(x,y) = v,( 1 - ~:)( 1 - ~:) 
·here V, is the velocity at the water surface midway between the 

.:hannel walls. The coordinate system is as shown; xis measured 
from the center plane of the channel andy downward from the 
;ater surface. Find the discharge in the channel in terms of V,, 

D, and W. 

PROBLl:..M 5.15 

5.16 W Water flows in a pipe that has a 4ft diameter and the 
llowing hypothetical velocity distribution: The velocity is 

"TJaximum at the centerline and decreases linearly with r to a 

:ninimum at the pipe wall. If Vmax = 15ft/sand Vmin = 12 ft/s, 
·bat is the discharge in cubic feet per second and in gallons per 

minute? 

:;.17 In Prob. 5.16, if V max = 8 m/s, Vmiu = 6 m/s, and D = 2m, 
mat is the discharge in cubic meters per second and the mean 

d ocity? 

5. 18 W Air enters thls square duct at section 1 with the 
~locity distribution as shown. Note that the velocity varies in the 
direction only (for a given value of y, the velocity is the same 

l:lr all values of z). 

a. What is the volume rate of flow? 

b. What is the mean velocity in the duct? 

c. What is the mass rate of flow if the mass density of the 

air is 1.2 kg/m3? 

(j) lOm/s 

End view Elevation view 

PROBLEM 5.1~ 

- 19 rflrs The velocity at section A-A is 15 ft/s, and the vertical 
.;.epth y at the same section is 4ft. If the width of the channel is 
' ft, what is the discharge in cubic feet per second? 
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PROfll EM 5.l<J 

5.20 Ms The rectangular channel shown is 1.2 m wide. What is 
the discharge in the channel? 

Vcrttcal depth ; I m 

PROrli.EM 5.20 

5.21 If the velocity in the channel of Prob. 5.20 is given as 
u = 8[exp(y) - 1] m/s and the channel width is 2m, what is 

the discharge in the channel and what is the mean velocity? 

5.22 ~s Water from a pipe is diverted into a weigh tank 
for exactly 20 min. 'lhe increased weight in the tank is 20 kN. 
What is the discharge in cubic meters per second? Assume 
T = 20°C. 

5.23 Water enters the lock of a ship canal tluough 180 ports, 
each port having a 2 ft by 2 ft cross section. The lock is 900 ft 
long and 105ft wide. The lock is designed so that the water 
surface in it will rise at a maximum rate of 6ft/min. For this 
condition, what will be the mean velocity in each port? 

5.24 '1ili'- An empirical equation for the velocity distribution 
in a horizontal, rectangular, open d1aJmel is given by u = u max (y!d )", 
where u is the velocity at a distance y feet above the floor of the 

channeL If the depth d of flow is 1.2 m, Umax = 3 rn/s, and n = 1/6, 
what is the discharge in cubic meters per second per meter of 
width of cha11nel? What is the mea11 velocity? 

5.25 lhe hypothetical water velocity in a V-shaped channel (see 

the accompanying figure) varies linearly with depth from zero at 
the bottom to maximum at the water surface. Determine the 
discharge if the maximum velocity is 6 ft/s. 

T~ 
1V 

PROBLl:.M 5.25 
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5.26 The velocity of flow in a circular pipe varies according to 
the equation VIV. = (I - rlra)", where V, is the centerline 
velocity, r0 is the pipe radius, and r is the radial distance from the 
centerline. The exponent n is general and is chosen to fit a given 
profile (n = I for laminar flow). Determine the mean velocity as 
a function of V. and n. 

5.27 Plot the velocity distribution across the pipe, and 
determine the discharge of a fluid flowing through a pipe 
I m in diameter that has a velocity distribution given by 
V = 12( l - r2/r~) m!s. Here r0 is the radius of the pipe, and 
r is the radial distance from the centerline. What is the mean 
velocity? 

5.28 Water flows through a 4.0-in.-diameter pipeline at 
75 Ibm/min. Calculate the mean velocity. Assume T = 60°F. 

5.29 fZJs Water flows through a IS em pipeline at 700 kg/min. 
Calculate the mean velocity in meters per second if T = 20°C. 

5.30 Water from a pipeline is diverted into a weigh tank for 
exactly IS min. The increased weight in the tank is 476Sibf. 
What is the average flow rate in gallons per minute and in cubic 
feet per second? Assume T = 60°F. 

5.31 A shell and tube heat exchanger consists of a one 
pipe inside another pipe as shown. The liquid flows in 
opposite directions in each pipe. If the speed of the liquid 
is the same in each pipe, what is the ratio of the outer pipe 
diameter to the inner pipe diameter if the discharge in each 
pipe is the same? 

©Jl_v=-v 
PROHLE~I 5.31 

5.32 Ms The cross section of a heat exchanger consists of three 
circular pipes inside a larger pipe. The internal diameter of the 
three smaller pipes is 2.5 em, and the pipe wall thickness is 
3 mm. The inside diameter of the larger pipe is 8 cm.lf the 
velocity of the fluid in region between the smaller pipes and 
larger pipe is I 0 m/s, what is the discharge in m3/s? 

PROBLEM 5.J2 

5.33 PNs The mean velocity of water in a 6-in. pipe is 8.5 ft/s. 
Determine the flow in slugs per second, gallons per minute, and 
cubic feet per second if T = 60°F. 

Lagrangian and Eulerian Approaches (§5.2) 

5.34 Read §4.2, §5.2 and the internet to find answers to the 
following questions. 

a. What does the Lagrangian approach mean? What are 
three real-world examples that illustrate the Lagrangian 
approach? (Use examples that are not in the text.) 

b. What does the Eulerian approach mean? What are three 
real-world examples that illustrate the Eulerian 
approach? (Use examples that are not in the text.) 

c. What are three important differences between the 
Eulerian and the Lagrangian approaches? 

d. Why use an Eulerian approach? What are the benefits? 

e. What is a field? How is a field related to the Eulerian 
approach? 

f. What are the shortcomings of describing a flow field 
usiJ1g the Lagrangian description? 

5.35 What is the difference between an intensive and extensive 
property? Give an example of each. 

--.., 
5.36 Pi. lis State whether each of the following quanti ties is 
extensive or intensive: 

a. mass 

b. volume 

c. density 

d. energy 

e. specific energy 

5.37 F'Ws What type of property do you get when you divide an 
extensive property by another extensive property-extensive or 
intensive? Hint: Consider density. 

The Control Volume Approach (§5.2) 

5.38 What is a control surface and a control volume? Can mass 
pass through a control surface? -5.39 PLu•s In Fig 5.11 on p. 181 of ~5.2, 

a. the CV is passing through the system. 

b. the system is passing through the CV. 

5.40 What is the purpose of the Reynolds transport theorem? 

5.41 Pds Gas flows into and out of the chamber as shown. Fur 
the conditions shown, which of the following statement(s) arc 
true of the application of the control volume equation to the 
continuity principle? 

a. Bsys = 0 

b. dB,.,.)dt = 0 

c. Lbp V· A = 0 

"' 



d. ~ f p d J,l = 0 
cv 

e. b = 0 

Control surface 

r ___ j ___ ~ 
I 
I 
I 
I 
I I 

Control volume 

(j)l J(D V2=5m/s 
V1= IOm/s ---=-1--1 2 
At = O.lOm2 ~ ~A2 =0.20m 

3 
Pt = 3.00 kg/mJ I L___j I p2 = 2.00 kg/m l ________ l 

PROBLEM 5..!1 

5.42 ~s The piston in the cylinder is moving up. Assume that 
the control volume is the volume inside the cylinder above the 
~iston (the control volume changes in size as the piston moves) . 
. \ gaseous mixture exists in the control volume. For the given 
conditions, indicate which of the following statements 
are true. 

a. ~ p V · A is equal to zero. 

df . b. - p d ¥1s equal to zero. 
dt 

cv 

c. 'Ihe mass density of the gas in the control volume is 
increasing with time. 

d. The temperature of the gas in the control volume is 
increasing with time. 

e. The flow inside the control volwne is unsteady. 

Control surface 

Cylinder 

Piston 

PROBLEM 5..12 

5.43 ~s For cases a and b shown in the figure, respond 
n the following questions and statements concerning the 
1pplication of the Reynolds transport theorem to the 
~ontinuity equation. 

a. What is the value of b? 

b. Determine the value of dB,y,ldt. 

c. Determine the value of ~ bp V · A. 
cs 

d. Determine the value of dldt f bpd¥. 
cv 
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Control Closed tank 
surface 

------...~--- ---, 
V= 12 ft /s I I 

A = 1.50 ft
2 

: Air : 
p = 2 slugs/ft3 

1 I 
I 
I 
I 

I I 
L-------' 

(a) 

Control 

V1 =I ft/, 
A 1 = 2 fi2 

Pt = 2 slugslft1 

PROBLEM 5.43 

Continuity Equation (Theory) (§5.3) 

(b) 

5.44 ;;:n;s The law of conservation of mass for a closed system 
requires that the mass of the system is 

a. constant 

b. zero 

Applying the Continuity Equation (§5.4) 

5.45 Ms part a only Consider the simplified form of the 
continuity equation, Eq. 5.29 on p. 183 of §5.3. An engineer is 
using this equation to find the Qc of a creek at the confluence 
with a large river because she has automatic electronic 
measurements of the river discharge upstream, ORu• and 
downstream, QRd• of the creek confluence. 

a. Which of the three terms on the left-hand side of Eq. 5.29 
will the engineer assume is zero? Why? 

b. Sketch the creek and the river and sketch the CV you 
would select to solve this problem. 

5.46 A pipe flows full with water. Is it possible for the volume 
flow rate into the pipe to be different than the flow rate out of the 
pipe? Explain. 

5.47 Air is pumped into one end of a tube at a certain mass flow 
rate. Is it necessary that the san1e mass flow rate of air comes out 
the other end of the tube? Explain. 

5.48 If an automobile tire develops a leak, how does the mass of 
air and density change inside the tire with time? Assuming the 
temperature remains constant, how is the change in density 
related to the tire pressure? 

5.49 ~s Two pipes are connected together in series. The 
diameter of one pipe is twice the diameter of the second pipe. 
With liquid flowing in the pipes, the velocity in the large pipe 
is 4 m/s. What is the velocity in the smaller pipe? 

5.50 Both pistons are moving to the left, but piston A has a 
speed twice as great as that of piston B. Then is the water level in 
the tank (a) rising, (b) not moving up or down, or (c) falling? 

Diameter = 3 in. 

PROBLEM 5.50 
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5.51 Two parallel disks of diameter Dare brought together, each 
with a normal speed of V. When their spacing ish, what is the 
radial component of convective acceleration at the section just 
inside the edge of the disk (section A) in terms of V, h, and D? 
Assume uniform velocity distribution across the section. 

r Section A 

c:::::::==========LJ 1 
r====:::::;====::::r lh 

v 
~--------0--------~ 

PROBLC~f 5 . .'1 I 

5.52 Ms Two strean1s discharge into a pipe as shown. The 
flows are incompressible. The volume flow rate of stream A into 
the pipe is given by Q~ = 0.04t ml/s and that of strean1 B by 
Q8 = 0.006 t? m3/s, where tis in seconds. The exit area of the 
pipe is 0.01 m2

• Find the velocity and acceleration of the flow at 
the exit at t = 1 s. 

PROBLEM 5.52 

5.53 Air discharges downward in the pipe and then outward 
between the parallel disks. Assuming negligible density change 
in the air, derive a formula for the acceleration of ai r at point A, 
which is a distance r from the center of the disks. Express the 
acceleration in terms of the constant air discharge Q, the radial 
distance r, and the disk spacing h. If D = 10 em, h = 0.6 em, and 
Q = 0.380 m3/s, what are the velocity in the pipe and the 
acceleration at point A where r = 20 em? 

--•A--

Elevation view Plan view 

PROBI E\1S 5.53. 5 "i-t 

5.54 AJI the conditions of Prob. 5.53 ar e the san1e except that 
h = 1 em and the discharge is given as Q = Q0 (t/t0), where 
Q0 == O.l m3/s and 10 == Is. For the additional conditions, what 
will be the acceleration at point A when t == 2 s and t == 3 s? 

~ 
5.55 GO A tank has a hole in the bottom with a cross-
sectional area of 0.0025 m2 and an inlet line on the side with a 
cross-sectional area of 0.0025 m2

, as shown. The cross-sectional 
area of the tank is 0.1 m2

• The velocity of the liquid flowing out 
the bottom hole is V = v'2gfi, where h is the height of the water 
surface in the tank above the outlet. At a certain time the surface 
level in the tank is 1 m and rising at the rate of 0.1 cm/s. The 
liquid is incompressible. Find the velocity of the liquid through 
the inlet. 

A=O.I m2 

1 
h=lm 

..00025~ u 
A = 0.0025 m2 tV=~ 

PROBLJ:.\1 '>55 

,-,._ 
5.56 PLUS A mechanical pump is used to pressurize a bicycle 
tire. The inflow to the pwnp is 0.8 cfm. The density of the air 
entering the pump is 0.075 lbmtfe. The inflated volume of a 
bicycle tire is 0.035 frl. The density of air in the inflated tire is 0.4 
lbmt fe. How many seconds does it take to pressurize the tire if 
there initially was no air in the tire? 

5.57 A 6-in.-diameter cylinder falls at a rate of 4 ft/s in an 
8-in.-diameter tube containing an incompressible liquid. What is 
the mean velocity of the liquid (with respect to the tube) in lhe 
space between the cylinder and the tube wall? 

PROBLEM 5.57 

5.58 ~s This circular tank of water is being filled from a pipe 
as shown. The velocity of flow of water from the pipe is 10 ft/s. 
What will be the rate of rise of the water surface in the tank? 

~o'-"'"'" L:==t V= 10ft/; 

f.-- 4 ft --1 
PROBLF\1 5.5S 



5.59 A sphere 8 inches in diameter falls at 4 ft/s downward 
axially through water in a 1-ft-diameter container. Find the 
upward speed of the water with respect to the container wall at 
the midsection of the sphere. 

5.60 f!Vs A rectangular air duct 20 em by 60 em carries a flow 
of 1.44m3/s. Detem1ine the velocity in the duct. If the duct 
tapers to 10 em by 40 em, what is the velocity in the latter 
section? Assume constant air density. 

5.61 1fV's A 30 em pipe divides into a 20 em branch and a 
18 em branch. If the total discharge is 0.40 m3/s and if the same 
mean velocity occurs in each branch, what is the discharge in 
each branch? 

5.62 The conditions are the same as in Prob. 5.61 except that the 
discharge in the 20 em branch is twice that in the 15 em branch. 
Vhat is the mean velocity in each branch? 

5.63 ftVs Water flows in a 10 in. pipe that is connected in series 
with a 6 in. pipe. If the rate of flow is 898 gpm (gallons per minute), 
what is the mean velocity in each pipe? 

5.64 What is the velocity of the flow of water in leg B of the tee 
.hown in the figure? 

A B 

~ 4 m diameter - V=? 

V = 6 m/s 
2m diameter 

4 mls 

PROBLEM 5.64 

5.65 ~s For a steady flow of gas in the conduit shown, what is 
:he mean velocity at section 2? 

Q) 
-----~---1-L_ 

1.2 m diameter 

----...---~ 
f p 1 = 2.0 kg 1m3 

vl - 15mls 

60 em diameter 

PROBLEM 5.65 

5.66 Two pipes, A and B, are connected to an open water tank. 
:he Water is entering the bottom of the tank from pipe A at 10 cfm. 
""be water level in the tank is rising at 1.0 in./ min, and the surface 
area of the tank is 80 If. Calculate the discharge in a second pipe, 
p~pe B, that is also connected to the bottom of the tank. Is the 
·low entering or leaving the tank from pipe B? 

5.67 Is the tank in the figure filling or emptying? At what rate is 
the water level rising or falling in the tank? 
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6 ft diameter 
3 in. diameter 

4 in. diameter ~ 

Water V = 4 ft /s 

i1 ~."" V= 7 fi ls r O an. <Ill 

PROBLEM 5.67 

5.68 ~Given: Flow velocities as shown in the figure and 
water surface elevation (as shown) all = 0 s. At the end of 22 s, 
will the water surface in the tank be rising or falling, and at what 
speed? 

Water 

12 in. diameter 6 in. diameter 

t \ 
2 Il ls 

PROBLEM 5.68 

5.69 ~A lake with no outlet is fed by a river with a constant 
flow of 1200 frl/s. Water evaporates from the surface at a constant 
rate of 13 ft 3/s per square mile surface area. The area varies with 
depth h (feet) as A (square miles) = 4.5 + 5.5h. What is the 
equilibrium depth of the lake? Below what river discharge will 
the lake dry up? 

5.70 A stationary nozzle discharges water against a plate moving 
toward the nozzle at half the jet velocity. When the discharge 
from the nozzle is 5 cfs, at what rate will the plate deflect water? 

5.71 An open tank has a constant inflow of 20 ft3/s. A LO-ft ­
diameter drain provides a variable outflow velocity V""' equal to 
V[2iJi'j ft/s. What is the equilibrium height h.q of the liquid in 
the tank? 

5.72 Assuming that complete mixing occurs between the two 
inflows before the mixture discharges from the pipe at C, find 
the mass rate of flow, the velocity, and the specific gravity of 
the mixture in the pipe at C. 
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Q= I cfs 
S= 0.85 

Closed tank 

I 

Diameter= 4 m. 

PROBI F\1 5.72 

c -
Diameter= 6 tn. 

Q =4 cfs 

5.73 ~s Oxygen and methane are mixed at 200 kPa absolute 

pressure and l00°C. lhe velocity of the gases into the mixer is 
5 m/s. The density of the gas leaving the mixer is 1.9 kg/rn3

• 

Determine the exit velocity of the gas mixture. 

Cll4 

A= I cm2 1_.~)...!•_..~> 

~ I - ')";") A = 3 cm2 
.././_..;) - I, i';']. '1, -A =3 cm2 

Oz 

PRORI F~15.73 

,_...... 
5.74 PLils A pipe with a series of holes as shown in the figure is 
used in many engineering systems to distribute gas into a system. 
The volume flow rate through each hole depends on the pressure 
difference across the hole and is given by 

(
2t:.p)ll2 

Q = 0.67 A0 -p-

where A0 is the area of the hole, t:.p is the pressure difference 
across the hole, and p is the density of the gas in the pipe. If the 

pipe is sufficiently large. the pressure will be uniform along the 
pipe. A distribution pipe for air at 20° C is 0.5 meters in diameter 

and 10m long. The gage pressure in the pipe is 100 Pa. The 
pressure outside the pipe is atmospheric at I bar. The hole 
diameter is 2.5 ern, and there are 50 holes per meter length 
of pipe. The pressure is constant in the pipe. Find the velocity 
of the air entering the pipe. 

10m 

0 0 0 0 0 0 0 t 
v 0 0 0 0 0 0 0 0 0.5m 

0 0 0 0 0 0 0 _l 
PROBLEM 5.74 

5.75 The globe valve shown in the figure is a very common 
device to control flow rate. The flow comes through the pipe at 
the left and then passes through a minimum area formed by the 

disc and valve seat. As the valve is dosed, the area for flow 
between the disc and valve is reduced. The flow area can be 
approximated by the annular region between the disc and the 

seat. The pressure drop across the valve can be estimated by 
application of the Bernoulli equation betw·een the upstream pipe 
and the opening between the disc and valve seat. Assume there is 
a I 0 gpm (gallons per minute) flow of water at 60°F througn the 
valve. The inside diameter of the upstream pipe is 1 inch. The 
distance across the opening from the disc to the seat is 1/Sth of 
an incn, and the diameter of the opening is 1/2 inch. What is the 
pressure drop across the valve in psid? 

Seat 

PROIH.Ei\1 5.75 

5.76 In the flow through an orifice shown in the diagram the 
flow goes through a minimum area downstream of the orifice. 

This is called the "vena contracta:· The ratio of the flow area at 
the vena contracta to the area of the orifice is 0.64. 

a. Derive an equation for the discharge through the orifice 
in the form Q = CA"(2t:.p/p)tll, where A0 is the area of 
the orifice, t:.p is the pressure difference between the 
upstream flow and the vena contracta, and p is the fluid 
density. Cis a dimensionless coefficient. 

b. Evaluate the discharge for water at 1000 kg/m1 and a 
pressure difference of 10 kPa for a 1.5 em orifice cen­

tered in a 2.5-cm ·diameter pipe. 

I'KOBJl~~~ 5.76 

~ J I 5. 77 PLus A compressor supplies gas to a I 0 m tank. The in et 
mass flow rate is given by rn = 0.5 p0 / p {kg /s), where pis the 

density in the tank and p0 is the initial density. Find the time it 
would take to increase the density in the tank by a factor of 2 if 

the initial density is 2 kg!m3
• Assume the density is uniform 

throughout the tank. 



- ,;, 

PROBLb'vl ">.77 

5.78 A slow leak develops in a tire (assume constant volume), in 
,1Jich it takes 3 hr for the pressure to decrease from 30 psig to 
:5 psi g. The air volume in the tire is 0.5 ft \and the temperature 
·t>mains constant at 60°F. The mass flow rate of air is given by 
'"' = 0.68 pAIVRT. Calculate tht! area of the hole in the tire. 
'.tmospheric pressure is 14 psia. 

; .79 Ws Oxygen leaks slowly through a small orifice in an 
"l)'gCD bottle. The volume of the bottJe is 0.1 m3

, and the 
:.;ameter of the orifice is 0.12 mm. The temperature in the tank 
cmains constant at l8°C, and the mass· flow rate is given by 
• = 0.68 pA I V RT. How long will it take the absolute pressure 

decrease from 10 to 5 MPa? 

; .80 How long will it take the water surface in the tank shown to 
--op from h = 3m to h =50 em? 

r--- 60 em diameter ~ 

h 

U .3 em d1aoneter 

V= ..J2ij; 

PROni.F\1 "> XO 

'.81 A cylindrical drum of water, lying on its side, is being 
-::1ptied through a 2 ir1.- diameter short pipe at the bottom of the 
~.The velocity of the water out of the pipe is V = v'2gh, 
'lere g is the acceleration due to gravity and fr is the height of 

'1---· - 4 n _£__j 
PROBLE,\1 5.81 
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the water surface above the outlet of the tank. The tank is 4 ft 
long and 2ft in diameter. Initially the tank is half full. Find the 
time for the tank to empty. 

5.82 ~Water is draining from a pressurized tank as shown in 
the figure. The exit velocity is given by 

V,= ~gh 
where pis the pressure in the tank, p is the water density, and h is 
the elevation of the water surface above the outlet. The depth of 
the water in the tank is 2m. The tank has a eross·sectional area 
of 1 m 2

, and the exit area of the pipe is I 0 cm2• The pressure in 
the tank is maintained at 10 kPa. Find the time required to empty 
the tank. Compare this value with the time required if the tank is 
not pressurized. 

PROBLI":\1 ;.32 

5.83 For the type of tank shown, tl1e tank diameter is given as 
D = d + C1 h, where d is the bottom diameter and C1 is a 
constant. Derive a formula for the lime of fall of liquid surface 
from II = fr0 to h = h in terms of di, d, h0, h, and C1. Solve fort if 
h0 = 1 m, h = 20 em, d = 20 em, C1 = 0.3, and d

1 
= 5 em. The 

velocity of water in the liquid jet exiting tl1e tank is V, = v'2jh. 

PROBI t'.\:1 5.83 
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5.84 Ms A spherical tank with a diameter of I rn is half filled 
with water. A port at the bottom of the tank is opened to drain 
the tank. The hole diameter is t em, and the velocity of the water 
draining from the hole is V, = v'2ifi, where his the elevation of 
the water surface above the hole. Find the time required for the 
tank to empty. 

PROflLE.\1 5.1:1-1 

5.85 A tank containing oil is to be pressurized to decrease the 
draining time. The tank, shown in the figure, is 2m in diameter 
and 6 m high. The oil is originally at a level of 5 m. The oil has a 
density of 880 kg/m3

• The outlet port has a diameter of 2 em, and 
the velocity at the outlet is given by 

v, = J2gh + 
2
: 

where p is the gage pressure in the tank, p is the density of the 
oil, and his the elevation of the surface above the hole. Assume 
during the emptying operation that the temperature of the air in 
the tank is constant.1l1e pressure will vary as 

(L - h0) 

P = (Po + Patm) (L _ h) - Patm 

where Lis the height of the tank, Patm is the atmospheric 
pressure, and the subscript 0 refers to the initiaJ conditions. The 
initial pressure in the tank is 300 kPa gage, and the atmospheric 
pressure is 100 kPa. 

PROBLE~I 5.85 

Applying the continuity equation to this problem, one finds 

dh = _ Ae J 2gh + 2p 
dt Ar p 

Integrate this equation to predict the depth of the oil with time 
for a period of one hour. 

5.86 Rocket Propulsion. To prepare for problems 5.87, 5.88, and 
5.89, use the Internet or other resources and define the following 
terms in the context of rocket propulsion: (a) solid fuel, (b) grain, 
and (c) surface regression. Also explain how a solid-fuel rocket 
engine works. 
~ 

5.87 PLUS An end-burning rocket motor has a chamber 
diameter of l 0 em and a nozzle exit diameter of 8 em. The 
density of the solid propellant is 1800 kg/m3

, and the propellant 
surface regresses at the rate of 1.5 cm/s. The gases crossing the 
nozzle exit plane have a pressure of I 0 k.Pa abs and a temperature 
of 2200°C. The gas constant of the exhaust gases is 415 )/kg K. 
Calculate the gas velocity at the nozzle exit plane. 

f 
!I em 

_j_ 

PROBLEM 5.87 

5.88 A cylindrical-port rocket motor has a grain design 
consisting of a cylindrical shape as shown. The curved internal 
surface and both ends bum. The solid propellant surface 
regresses uniformly all cm/s. The propellant density is 2000 kg/m3

• 

The inside diameter of the motor is 20 em. The propellant grain 
is 40 em long and has an inside diameter of 12 em. The diameter 
of the nozzle exit plane is 20 em. The gas velocity at the exit plane 
is 1800 m/s. Determine the gas density at tl1e exit plane. 

PROBI r\1 5.88 

5.89 The mass flow rate through a rocket nozzle (shown) is 
given by 

. p,A, 
m = 0.65 , rn;r; 

vRT, 

where p, and "fc are the pressure and temperature in the rocket 
chamber and R is the gas constant of tl1e gases in the chamber. 
1he propellant burning rate (surface regression rate) can be 
expressed as r = ap~. where a and n are two empirical constants. 
Show, by application of the continuity equation, that the chamber 
pressure can be expressed as 

= ( 
app )1/(1-n)(AR)l/(1 n) 

(RT,)"I:l(t -n)l 
p, 0.65 A, 



.,.·here Pp is the propellant density and Ag is the grain surface 
;:,urning area. If the operating chamber pressure of a rocket 
motor is 3.5 MPa and n = 0.3, how much will the chamber 
"ressure increase if a crack develops in the grain, increasing 
me burning area by 20%? 

PROl\L.hM 5.89 

3.90 The piston shown is moving up during the exhaust stroke 
; a four-cycle engine. Mass escapes through the exhaust port at 

i rate given by 

. p,A. 
m = 0.65 • rn.r 

vRT, 

here p, and T.: are the cylinder pressure and temperature, A. is 
:.1e valve opening area, and R is the gas constant of the exhaust 
~es. The bore of the cylinder is 10 em, and the piston is moving 
!Ipward at30 m/s. The distance between the piston and the head 

10 em. The valve opening area is 1 cm2
, the chamber pressure is 

300 kPa abs, the chamber temperature is 600°C, and the gas 
.:onstant is 350 }/kg K. Applying the continuity equation, 
Jetermine the rate at which the gas density is changing in the 
.:vlinder. Assume the density and pressure are uniform in the 
.:vlinder and the gas is ideal. 

PROBLEM 5.90 

:; 91 ftVs Gas is flowing from Location 1 to 2 in the pipe 
apansion shown. The inlet density, diameter and velocity are p1, 

.;:),, and V1 respectively. If D2 is 2D1 and V2 is half of V1, what is 
:!le magnitude of p2? 

a. P2 = 4 P1 

b. P2 = 2 PI 

c. P2 = '/2 PI 

d. Pz = P1 

".92 fClrs Air is flowing from a ventilation duct (cross section I) as 
'lawn, and is expanding to be released into a room at cross section 2. 
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The area at cross section 2,A2, is 3 times A1• Assume that the density 
is constant. The relation between Q1 and Q2 is: 

a. 02 = '/; 01 
b. Q2 = Ql 

c. Qz = 3 01 
d. Qz = 9 01 

5.93 Ws Water is flowing from Location I to 2 in this pipe 
expansion. D1 and V1 are known at the inlet. D2 and P2 are 
known at the outlet. What equation(s) do you need to solve for 
the inlet pressure P1? Neglect viscous effects. 

a. The continuity equation 

b. The continuity equation and the flow rate equation 

c. The continuity equation, the flow rate equation, and the 
Bernoulli equation 

d. There is insufficient information to solve the problem 

PROBLE:'viS 5.91, 5.92, 5.93 

5.94 The flow pattern through the pipe contraction is as shown, 
and the Q of water is 60 cfs. For d = 2 ft and D = 6 ft, what is the 
pressure at point B if the pressure at point Cis 3200 psf? 

c 

--r--- --.t:L==--., E d 

-+-l--~,....._200--L..l =.....,_s 
D ~--,-.P..---.. • 

--t-----1 <-=? 
PROBU.M 5.94 

5.95 Water flows through a rigid contraction section of circular 
pipe in which the outlet diameter is one-half tl1e inlet diameter. The 
velocity of the water at the inlet varies with time as V10 = (10 m/s) 
[1 - exp(- t/10)]. How will the velocity vary with time at the outlet? 

5.96 Ws The annular venturi meter is useful for metering 
flows in pipe systems for which upstream calming distances are 
limited. The annular venturimetcr consists of a cylindrical 
section mounted inside a pipe as shown. The pressure difference 
is measured between the upstream pipe and at the region 
adjacent to the cylindrical section. Air at standard conditions 
flows in the system. The pipe diameter is 6 in. The ratio of the 
cylindrical section diameter to the inside pipe diameter is 0.8. A 
pressure difference of 2 in of water is measured. Find the volume 
flow rate. Assume the flow is incompressible, in viscid, and steady 
and that the velocity is uniformly distributed across the pipe. 
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PROBU:.~I 5.% 

d 
t 

5.97 Venturi-type applicators are frequently used to spray liquid 
fertilizers. Water flowing through the venturi creates a 
subatmospheric pressure at the throat, which in turn causes the 
liquid fertilizer to Oow up the feed tube and mix with the water in 
the throat region. The venturi applicator shown uses water at 20°C 
to spray a liquid fertilizer with the same density. The venturi 
exhausts to the atmosphere, and the exit diameter is I em. The 
ratio of exit area to throat area (A)A 1) is 2. The flow rate of water 
through the venturi is 8 1./ m (liters/min). The bottom of the feed 
tube in the reservoir is 5 em below the liquid fertilizer surface and 
I 0 em below the centerline of the venturi. The pressure at the 
liquid fertilizer surface is atmospheric. The flow rate through the 
feed tube between the reservoir and venturi throat is 

Q,(L!min) = o.sv'irli 
where tlh is the drop in piezometric head (in meters) between 
the feed tube entrance and the venturi centerline. Find the flow 
rate of liquid fertilizer in the feed tube, Q1• Also find the 
concentration of liquid fertilizer in the mixture, [Q1/(Q1 + Qwll. 
at the end of the sprayer. 

v --·-·-------·--

PROBLE~I 5.97 

IOcm 

0 
! 

I em 

5.98 PWs Air with a density of 0.0644lbm/ft3 is flowing 
upward in the vertical duct, as shown. The velocity at the inlet 
(station 1) is 80 ft/s, and the area ratio between stations I and 2 
is 0.5 (A 2/ A 1 = 0.5). Two pressure taps, 10 ft apart, are 
connected to a manometer, as shown. The specific weight of the 
manometer liquid is 120 lbf/ft3• Find the deflection, tlh, of the 
manometer. 

Q)--

CD-

PROBI.J-.:vl 5.98 

5.99 An atomizer utilizes a constriction in an air duct as shown. 
Design an operable atomizer making your own assumptions 
regarding the air source. 

PRORI F\1 ;,.99 

5.100 iillfs A suction device is being designed based on the 
venturi principle to lift objects submerged in water. The operating 
water temperature is l5°C. The suction cup is located 1 m below 
the water surface, and the venturi throat is located 1 m above the 
water. The atmospheric pressure is 100 kPa. The ratio of the 
throat area to the exit area is 1/4, and the exit area is 0.001m1

. 

The area of the suction cup is 0.1 m2• 

a. Find the velocity of the water at the exit for maximum 
lift condition. 

b. Find the discharge through the system for maximum 
lift condition. 

c. Find the maximum load the suction cup can support. 

Walcr A = 10-3 rn2 

--v-1-----1.---
- -=T-' 

~-- --~ 
lm 

PROHLE;\.1 5. I 00 

5.101 Pds A design for a hovercraft is shown in the figure. 
A fan brings air at 60°F into a chamber, and the air is exhausted 
between lhe skirts and the ground. The pressure inside the 
chamber is responsible for the lift. The hovercraft is 15 ft long 
and 7ft wide. The weight of the craft including crew, fuel, and 
load is 2000 lbf. Assume that the pressure in the chamber is the 
stagnation pressure (zero velocity) and the pressure where the 
air exits around the skirt is atmospheric. Assume the air is 
incompressible, the flow is steady, and viscous effects are 
negligible. Find the airflow rate necessary to maintain the 
skirts at a height of 3 inches above the ground. 



PROBLE.\15.101 

~.102 Water is forced out of this cylinder by the piston. Tf the 
.. ton is driven at a speed of 6 ft/s, what will be the speed of 
ilux of the water from the nozzle if d = 2 in. and D = 4 in.? 
-~lecting friction and assuming irrotational flow, determine the 
rce F that will be required to drive the piston. The exit pressure 
atmospheric pressure. 

D 

PHOBLE:-.! .,.I 02 

- 103 Air flows through a constant-area heated pipe. At the 
-trance, the velocity is 10 m/s, the pressure is 100 kPa absolute, 
-d the temperature is 20°C. At the outlet, the pressure is 80 kPa 

.;{))Ute, and the temperature is 50°C. What is the velocity at the 
..det? Can the Bernoulli equation be used to relate the pressure 
J velocity changes? Explain. 

~icting Cavitation (§5.5) 

· 104 Sometimes driving your car on a hot day, you may 
- ounter a problem with the fuel pump called pump cavitation. 

'lal is happening to the gasoline? How does this affect the 
""<:ration of the pump? 

: 105 What is cavitation? Why does the tendency for cavitation 
.A liquid increase with increased temperatures? 

. 106 r7G"s The following questions have to do with cavitation. 

a. Is it more correct to say that cavitation has to do with 
(i) vacuum pressures, or (ii) vapor pressures? 

b. Ts cavitation more likely to occur on the low pressure 
(suction) side of a pump, or the high pressure (dis­
charge) side? Why? 

c. What does the word cavitation have to do with cavities, 
like the ones we get in our teeth? Is this aspect of cavita­
tion the (i) cause, or the (ii) result of the phenomenon? 

d. When water goes over a waterfall, and one can see lots 
of bubbles in the water, is that due to cavitation? Why, 
or why not? 

........... 
- 07 G'o • When gage A indicates a pressure of 130 k.Pa gage, then 

. tation just starts to occur in the venturi meter. If D = 50 em 
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and d = 10 em, what is the water discharge in the system for this 
condition of incipient cavitation? The atmospheric pressure is 
100 kPa gage, and the water temperature is l0°C. Neglect 
gravitational effects. 

d 

------------------------------------

PROBLI:.,\15.107 

5.108 A sphere L ft in diameter is moving horizontally at a depth 
of I 2 ft below a water surface where the water temperature is 
50°F. v max = 1.5 v •. where v. is the free stream velocity and 
occurs at the maximum sphere width. At what speed in still 
water will cavitation first occur? 

5.109 ~When the hydrofoil shown was tested, the minimum 
pressure on the surface of the foil was found to be 70 kPa absolute 
when the foil was submerged 1.80 m and towed at a speed of 
8 m/s. At the same depth, at what speed will cavitation first 
occur? Asswne irrotational flow for both cases and T = l0°C. 

5.110 For the hydrofoil of Prob. 5.109, at what speed will 
cavitation begin if the depth is increased to 3m? 

5.111 Ms When the hydrofoil shown was tested, the 
minimum pressure on the surface of the foil was found to 
be 2.5 psi vacuum when the foil was submerged 4 ft and towed 
at a speed of 25 ft/s. At the same depth, at what speed will 
cavitation first occur? Assume irrotational flow for both cases 
and T = 50°F. 

5.112 For the conditions ofProb. 5.11 L, at what speed will 
cavitation begin if the depth is increased to 10 ft? 

f d Water= 1o•c cso•F) 

'i7 

l~ 
-v 

PROBLE.W\ 5. 109,5. 110, 5.111, 5.1 1:! 

5.113 A sphere is moving in water at a depth where the absolute 
pressure is 18 psia. The maxirmun velocity on a sphere occurs 90° 
from the forward stagnation point and is 1.5 times the free­
stream velocity. The density of water is 62.4lbm/ft3

• Calculate the 
speed of the sphere at which cavitation will occur. T = 50°F. 

5.114 The minimum pressure on a cylinder moving horizontally 
in water (T = I0°C) at 5 m/s at a depth of 1m is 80 kPa absolute . 
At what velocity will cavitation begin? Atmospheric pressure is 
I 00 kPa absolute . 
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MOMENTUM 
EQUATION 

FIGURE 6.1 

Engineers design systems by using a small set of 
fundamental equations such as the momentum equation. 
(Photo courtesy of NASA.) 
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j Chapter Road Map I 
This chapter presents (a) the linear momentum 
equation and the (b) angular momentum equation. 
Both equations are derived from Newton's second 
law of motion. 

j Learning Objectives j 

STUDENTS WILL BE ABLE TO 

• Define a force, o body force, and a surface force. (§6. 1) 

• Explain Newton's second law (particle or system of 
particles). 1§6. 1) 

• Solve a vector equation with the VSM !Visual Solution 
Method) (§6. 1) 

• List the steps to derive the linear momentum equation. 
(§6.2) 

• Describe or calculate Ia) momentum flow and 
lb) momentum accumulation. 1§6.2) 

• Sketch a force diagram. Sketch a momentum diagram. 
1§6.3) 

• Describe the physics of the momentum equation and the 
meaning of the variables that appear in the equation. 
1§6.2, §6.3) 

• Describe the process for applying the momentum equation 
(§6.3) 

• Apply the linear momentum equation to problems involving 
jets, vanes, pipe bends, nozzles, and other stationary 
objects (§6.4) 

• Apply the linear momentum equations to moving objects 
such as carts and rockets. (§6.5) 

• Apply the angular momentum equation to analyze rotating 
machinery such as pumps and turbines. (§6.6) 
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6. 1 Understanding Newton's Second Law of Motion 

Because Newton's second law is the theoretical foundation of the momentum equation, this 
section reviews relevant concepts. 

Body and Surface Forces 

A force is an interaction between two bodies that can be idealized as a push or pull of one body 
on other body. A push/pull interaction is one that can cause acceleration. 

Newton's third law tells us that forces must involve the interaction of two bodies and that 
forces occur in pairs. The two forces are equal in magnitude, opposite in direction, and colin ear. 

EXAMPLE. To give examples of force, consider an airplane that is flying in a straight path at 
constant speed (Fig. 6.2). Select the airplane as the system for analysis. Idealize the airplane 
as a particle. Newton's first law (i.e., force equilibrium) tells us that the sum of forces must 
balance. There are four forces on the airplane. 

• The lift force is the net upward push of the air (body 1) on the airplane (body 2). 

• The weight is the pull of the earth (body I) on the airplane (body 2) through the action 
of gravity. 

• The drag force is the net resistive force of the air (body 1) on the airplane (body 2). 

• The thrust force is the net horizontal push of the air (body I) on the surfaces of the propeller 
(body 2). 

~otice that each of the four interactions just described can be classified as a force because: 
a) they involve a push or pull, and (b) they involve the interaction of two bodies of matter. 

Weight 

Forces can be classified into two categories: body force and surface force. A surface force 
also known as a contact force) is a force that requires physical contact or touching between the 

•wo interacting bodies. The lift force (Fig. 6.2) is a surface force because the air (body 1) must 
ouch the wing (body 2) to create the lift force. Similarly, the thrust and drag forces are surface 
forces. 

A body force is a force that can act without physical contact. For example, the weight force 
a body force because the airplane (body 1) does not need to touch the earth (body 2) for the 

.veight force to act. 
A body force acts on every particle within a system. In contrast, a surface force acts only 

,n the particles that are in physical contact with the other interacting body. For example, con­
ider a system comprised of a glass of water sitting on a table. The weight force is pulling on 

every particle within the system, and we represent this force as a vector that passes through the 

FIGURE 6.2 

When on 01rplo ne is flying 
in stra ight and level flight, 
the forces sum to zero. 
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FIGURE 6.3 

Forces can be classified 
as body forces or surface 
forces. 

center of gravity of the system. In contrast, the normal force on the bottom of the cup acts only 
on the particles of glass that are touching the table. 

Summary Forces can be classified in two categories: body forces and surface forces (see 
Fig. 6.3). Most forces are surface forces. 

Bod~ force : A force that does 
not require phy"cal contact 
between tbe mtcracung bodies 

e.g., 
Magnetic force 
Electric force 
Gravity force 

e.g., 
Pres,urc force 
Shear force 
Buoyant forco 
Ltfi force 
Drag force 
Surface tension forco 
TIIfUSt force 

Newton's Second Law of Motion 

e.g .• 
hictional force 
Tension 
Applied force 
Spnng force 
Suppon forco 

In words, Newtons' second law is: The sum of forces on a particle is proportional to the accelera­
tion, and the constant of proportionality is the mass of the particle. Notice that this law applies 
only to a particle. The second law asserts that acceleration and unbalanced forces are propor­
tional. This means, for example, that 

• If a particle is accelerating, then the sum of forces on the particle is nonzero. 

• If the sum of forces on a particle is nonzero, then the particle will be accelerating. 

Newton's second law can be written as an equation: 

(6.1) 

where the subscript "ext" is a reminder to sum only external forces. 

EXAMPlE. To illustrate the relationship between unbalanced forces and acceleration, con­
sider an airplane that is turning left while flying at a constant speed in a horizontal plane 
(Fig. 6.4a). Select the airplane as a system. Idealize the airplane as a particle. Because the 
airplane is traveling in a circular path at constant speed, the acceleration vector must point 
inward. Fig. 6.4b shows the vectors that appear in Newton's second law. For Newton's second 
law of motion to be satisfied, the sum of the force vectors (Fig. 6.4c) must be equal to the ma 
vector. 

The airplane example illustrates a method for visualizing and solving a vector equation 
called the .Yisual ~olution Method (VSM). This method was adapted from Hibbler (1). Tim 
method is presented in the next subsection. Checkpoint Problem 6. I gives you a chance to teS" 
your understanding of Newton's second law. 



FIGURE 6.4 

.:-n airplane flying with a steady speed an curved path tn a horizontal plane (a) Top view, (b) Front 
ew, (c) Sketch showing how the 2:F vectors balance the rna vector. 

I 

I 

I 

I 

Top View 

~ ~elemtton 
(normal to poth) 

(a) 

t!CHECKPOINT PROBLEM 6.1 

(h) 

A disk in a horizontal plane is rotating in a counterclock­
wise direction and the speed of rotation is decreasing. A 
penny stays in place on the disk due to friction. Which let­
ter (a to h) best represents the direction of acceleration of 
the penny? Which letter best represent~ the direction of 
the sum of forces vector? 

Sum of Forces 

) 
' JJ' 

v 
j 

Sum of forces 
(mu.'t equal ma.) 

(c) 

Solving a Vector Equation with the Visual Solution Method (VSM) 
The VSM is an approach for solving a vector equation that reveals the physics while also show­
ing visually how the equation can be solved. Thus, the VSM simplifies problem solving. The 
• 'SM has three steps. 

Step 1: Identify the vector equation in its general form. 

Step 2: Draw a diagram that shows the vectors that appear in the left side of the equation. 
Then, draw a second diagram that shows the vectors that appear on the right side of the 
equation. Add the equal sign between the diagrams. 

Step 3: From the diagrams, apply the general equation and simplify the results to create 
the reduced equation(s). The reduced equation(s) can be written as a vector equation or as 
one or more scaler equations. 

EXAMPLE. This example shows how to apply the VSM to the airplane problem (see Fig. 6.4). 

Step 1: The general equation is Newton's second law ( ~F)exr = rna. 

Step 2: The two diagrams separated by an equal sign are shown in Fig. 6.4b. 

Step 3: By looking at the diagrams, one can write the reduced equation using scalar equations: 

(x-direction) 

( y-direction) - W + Fhlt cos 6 = 0 

Alternatively. one can look at the diagrams and then write the reduced equation using a 
vector equation. 

FLU! (sin 6i + cos 6j) - Wj = (man)i 
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EXAMPLE . This example shows how to apply the VSM to a generic vector equation. 

Step 1. Suppose the general equation is 2:x = y2 - y1• 

Step 2. Suppose the vectors are known. Then, one can sketch the diagrams (Fig. 6.5). 

Step 3. By looking at the diagrams, write the reduced equations. To get the signs correct 
notice that the general equation shows that vector y1 is subtracted. 1he reduced equations 
are 

FIGURE 6.5 

(x-direction) 

(y-di recti on) 

x 2 + X3 - x4cos30° = rzcos30° - y1 

x1 + x4sin30° = - y2sin30o 

Vectors used lo illustrate how to solve o vector equation. 

Newton's Second Law (System of Particles) 

30° 

Newton's second Jaw (Eq. 6.1) applies to one particle. Because a flowing fluid involves man} 
particles, the next step is to modify the second law so that it applies to a system of particles. To 
begin the derivation, note that the mass of a particle must be constant. Then, modify Eq. (6.1 
to give 

( ~F) = d(mv) 
ext dt 

(6.2 

Where mv is the momentum of one particle. 
To extend Eq. (6.2) to multiple particles, apply Newton's second law to each particle, and 

then add the equations together. Internal forces, which are defined as forces between the 
particles of the system, cancel out, and the result is 

d N 

(~ F )ext= dt 1~ (m;v,) (6.3 

where m, v, is the momentum of the ith particle, and (LF)cxt are forces that are external to the 
system. Next, let 

N 

(Total momentum of the system)= M = ~ (m, v,) (6.4 
,- I 

Combine Eqs. (6.3) and {6.4). 

(6.5 

The subscript "closed system" reminds us that Eq. (6.5) is for a dosed system. 
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6.2 The Linear Momentum Equation: Theory 

This section shows how to derive the linear momentum equation and explains the physics. 

Derivation 

Start with Newton's second law for a system of particles (Eq. 6.5). Next, apply the Reynolds 
'Tansport theorem (Eq. 5.23) to the right side of the equation. The extensive property is mo­
mentum, and the corresponding intensive property is the momentum per unit mass which 
ends up being the velocity. Thus, Reynolds transport theorem gives 

dM I = dd I v p d¥ + f vp V . dA 
dt dosed system t cv cs 

(6.6) 

Combining Eqs. (6.5) and (6.6) gives the general form of the momentum equation. 

(6.7) 

.\~here (2F)cxr is the sum of external forces acting on the matter in the control volume, vis fluid 
velocity relative to an inertial reference frame, and Vis velocity relative to the control surface. 

Eq. (6.7) can be simplified. To begin, assume that each particle inside the CV has the same 
·elocity. Thus, the first term on the right side of Eq. (6.7) can be written as 

d I d [ f ] d (mcvvcv) - vpd¥ = - v pd¥ = ---
dt CV dt CV dt 

(6.8) 

'Jext, assume that velocity is uniformly distributed as it crosses the control surface. Then, the 
last term in Eq. (6.7) can be written as 

I vpV · dA = vf pV · dA = 2:movo- 2:m,v, 
(.~ cs (.~ cs 

(6.9) 

Combining Eqs. (6.7) to (6.9) gives the final result: 

( "' ) d(mcv vcv) "' . "' . £.-F en= - d + £.-movo- £.-m,v, 
t cs cs 

(6.10) 

where m cv is the mass of the matter that is inside the control volume. The subscripts o and i 
refer to the outlet and inlet ports, respectively. Eq. (6.1 O) is the simplified form of the momen­
tum equation. 

Physical Interpretation of the Momentum Equation 

The momentum equation asserts that the sum of forces is exactly balanced by the momentum 
terms; see Fig. 6.6. 

Momentum Flow (Physical Interpretation) 

To understand what momentum flow means, select a cylindrical fluid particle passing across a 
CS (see Fig. 6.7). Let the particle be long enough so that it travels across the CS during a time 
nterval Llt. Then, the particle's length is 

(
length) 

L = (length) = -.- (time) = (speed)(time) = vM 
tunc 
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FIGURE 6.6 

The conceptual mean ng 
of I he momentum equation. 

FIGURE 6.7 

A fluid particle passing 
across the conlrol surface 
during a t1me interval ill. 

FIGURE 6.8 

A fluid jel slriking 
a flat vane. 

\rr Foree 
\loml'ntum 

.\ccumulatinn 
\et \I omentum 

Flo" 

- Genoral cquanon 

- Stmphfied equation 

-Main ideas 

- Name' of terms 

/(Particle L _ •·ill 

,.-------+L-c__ H,....-volumc ~ ~¥ -!.M ~ 1illi'>.A -- 6 ~L] 
u._ _____ : lA~a- t. I 

I 

and the particle's volume is¥= (vM)M. The momentum of the particle is 

momentum of one particle = (mass)(velocity) = (p.l¥) v = (pv.:lt~A)v 
Next, add up the momentum of all particles that are crossing the control surface through a 
given face. 

momentum of all particles = L (pvM~A)v (6.11) 
cs 

Now, let the time interval .:lt and the area M approach zero and replace the sum with the 
integral. Eq. ( 6. 11) becomes 

(
momentum o_f all particlc.s crossing the cs) 

Interval of ttme instant in time 
L (pv)vdA 

Summary Momentum flow describes the rate at which the flowing fluid transports momen­
tum across the control surface. 

Momentum Flow (Calculations) 

When fluid crosses the control surface, it transports momentum across the CS. At section 1 

(Fig. 6.8), momentum is transporting into the CV. At section 2, momentum is transported out 
of the CV. 

,._ 8 mis 
,;, -2 ~g' -

v-R m 1s 
nr - 2 kg is 

\ ' 
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When the velocity is uniformly distributed across the CS, Eq. (6.10) indicates that the 

( 
magnitude of ) . 2 = mv = pAv 

momentum flow 

Thus, at section 1, the momentum flow has a magnitude of 

mv = (2 kg/s)(8 m /s) = 16 kg· m/s2 = 16 N 

(6.12) 

and the direction of vector is to the right. Similarly at section 2, the momentum flow has a 
magnitude of 16 newtons and a direction of 45° below horizontal. From Eq. (6.10), the net 
momentum flow term is: 

Summary For uniform velocity, momentum flow terms have a magnitude mv = pAv 2 and a 
d irection parallel to the velocity vector. The net momentum flow is calculated by subtracting 
the inlet momentum flow vector(s) from the outlet momentum flow vector(s). 

v CHECKPOINT PROBLEM 6.2 

Pressurized air forces water out of a tank. If the air pressure is 
increased so that the exit speed increases from V to 2V, what 
happens to the rate of momentum flow out the bottom of the 
tank? The rate 

a. Stays the same 

b. increases by lx 

c. Increases by 2x 

d. increases by 3x 

e. Increases by 4x 

( Increases by Bx 

Pressunzed mr 

v 

Momentum Accumulation (Physical Interpretation) 

To understand what accumulation means, consider a control volume around a nozzle (Fig. 6.9). 
Then, divide the control volume into many small volumes. Pick one of these small volumes, 
and note that the momentum inside this volume is (pSV)v. 

Water 

The momentum of maner mside thts >mall 
\Oiume ts gtven by: 

momentum = (ma."Xvelocity) 

- (pt.¥ X' l 

FIGURE 6.9 

Water flowing through 
a nozzle. 
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To find the total momentum inside the CV add up the momentum for all the small volumes 
that comprise the CV. Then, let !1¥ ~ 0, and use the fact that an integral is the sum of many 
small terms. 

(
Total momentum) "" ( ) "" J 

. 'd h CV = £.J p!:J.¥ v = £.J vptJ.¥ = vpd¥ 
InS! e t e L V 

(6.13) 

Taking the time derivative ofEq. (6.13) gives the final result: 

( 
Momentum ) i 

(

Rate of change of the) d 

I 
. = total momentum = - vpd¥ 

Accumu allon dt cv 
inside the CV 

(6.14) 

Summary Momentum accumulation describes the time rate of change of the momentum inside 
the CV. For most problems, the accumulation term is zero or negligible. To analyze the momentum 
accumulation term, one can ask two questions. Is the momentum of the matter inside the CV chang­
ing with time? Is this change significant? If the answers to both questions are yes, then the momen­
tum accumulation term should be analyzed. Otherwise, the accumulation term can be set to zero. 

Checkpoint Problem 6.3 gives you a chance to test your understanding of the momentum 
equation. 

t/ CHECKPOINT PROBLEM 6.3 

The sketch shows a liquid flowing through a stationary nozzle. 
Assume steady flow. Which statements are true? (select all that 
apply) 

a. The momentum accumulation is zero. 

b. The momentum accumulation is nonzero. 

c. The sum of forces is 1.ero. 

d. The sum of forces is nonzero. 

6.3 Linear Momentum Equation: Application 

Working Equations 

Table 6.1 summarizes the linear momentum equation. 

TABLE 6.1 Summary of the Linear Momentum Equation 

De~cription 

General Equation 

Simplified Equation 

Use this equation for most 
problems. Asswnptions: 
(a) all particles inside the 
CV have the same velocity, 
and (b) when flow crosses 
the CS, the velocity is 
uniformly distributed. 

(2: F) = !!._ ( vpd¥ + ( pv(V · dA) 
ul dt 1.:v Jcs 

Eq. (6.7) 

....... ~ . 
- .£.im,v1 

C$ 

Eq. (6.10) 

Terms 

(~F) ex~ = sum of external forces (N) 

t =time (s) 

v = velocity measured from the selected ref. frame (m/s) 
(must select a reference frame lhat is inertial) 

vcv =velocity ofCV from selected ref. frame (m/s) 

V = velocity measured from the control surface (m/s) 

p = density of fluid (kg/m3
) 

m,v =mass of the matter inside the control volume (kg) 

m., = mass flow rate out of t he control volume (kg/s) 

rn, = mass flow rate into the control volume (kg/s) 
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Force and Momentum Diagram 

The recommended method for applying the momentum equation, the VSM (visual solution 
method), is illustrated in the next example. 

EXAMPLE. This example explains how to apply the VSM for water flowing out a nozzle 
(Fig. 6.10a). The water enters at section 1 and jets out at section 2. 

L.T 

t 
\\Jtcr 

(a) 
Force diagram 

I 

/ 

I 

/ 

I 
I 

... ----.; 

f 

/ 

I 

\lomenlum diagram 

(b) 

(c) 

(d) 

(e) 

Step 1. Write the momentum equation (see Fig. 6.10b). Select a control volume that surrounds 
the nozzle. 

Step 2a. To represent the force terms, sketch a force diagram (Fig. 6.10c). A force diagram 
illustrates the forces that are acting on the matter that is inside the CV. A force diagram is 
similar to a free body diagram in terms of how it is drawn and how it looks. However, a free­
body diagram is an Lagrangian idea, whereas a force diagram is an Eulerian idea. This is why 
different names are used. 

To draw the force diagram, sketch the CV. then sketch the external forces acting on the CV. 
ln Fig. 6.10c, the weight vector, W, represents the weight of the water plus the weight of the 
nozzle material. The pressure vector, symbolized with p1A 1, represents the water in the pipe 
pushing the water through the nozzle. The force vector, symbolized with Fx and Fy, repre­
sents the force of the support that is holding the nozzle stationary. 

Step 2b. To represent the momentum terms, sketch a momentum diagram (Fig. 6.10c). This 
diagram shows the momentum terms from the right side of the momentum equation. The 
momentum outflow is represented with ri1v2 and momentum inflow is represented with n1V1. 

'Ihe momentum accumulation term is zero because the total momentum inside the CV is 
constant with time. 

Step 3. Using the diagrams, write the reduced equations (see Figs. 6.10d and 6.10e). 

FIGURE 6.10 
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FIGURE 6.11 

A classification scheme for 
problems that ore solvable 

by application of the 
momentum equation. 

FIGURE 6.12 

A problem involv1ng 
a fluid jet 

Summary The force diagram shows forces on the CV, and the momentum diagram shows the 
momentum terms. We recommend drawing these diagrams and using the VSM. 

A Process for Applying the Momentum Equation 
Step l. Selection. Select the linear momentum equation when the problem involves 
forces, accelerating fluid particles, and torque does not need to be considered. 

Step 2. Sketching. Select a CV so that control surfaces cut through where (a) you know infor­
mation or (b) you want information. Then, sketch a force diagram and a momentum diagram. 

Step 3. Analysis. Write scalar or vector equations by using the VSM. 

Step 4. Validation. Check that all forces are external force. Check the signs on vectors. 
Check the physics. For example, if accumulation is zero, then the sum of forces should 
balance the momentum flow out minus the momentum flow in. 

A Road Map for Problem Solving 
Fig. 6.11 shows a classification scheme for problems. Like a road map, the purpose of this 
diagram is to help navigate the terrain. The next two sections present the details of each category 
of problems. 

6.4 The Linear Momentum Equation 
for a Stationary Control Volume 

When a CV is stationary with respect to the earth, then the accumulation term is nearly always 
zero or negligible. Thus, the momentum equations simplifies to 

(sum offorces) = (rate of momentum out) - (rate of momentum in) 

Fluid Jets 
Problems in the category of fluid jet involve a free jet leaving a nozzle. However, analysis of 
the nozzle itself is not part of the problem. An example of a fluid jet problem is shown in 
Fig. 6.12. This problem shown involves a water cannon on a cart. The water leaves the nozzle 
with velocity V, and the goal is to find the tension in the cable. 

Can 
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Each category of problems has certain facts that make problem solving easier. These facts 
will be presented in the form of tips. Tips for fluid jet problems are 

• When a free jet crosses the control surface, the jet does not exert a force. Thus, do 
not draw a force on the force diagram. The reason is that lhe pressure in the jet is 
ambient pressure, so there is no net force. This can be proven by applying Euler's 
equation. 

• The momentum flow of the fluid jet is mv. 
Example 6.1 shows a problem in the "fluid jet" category. 

EXAMPLE 6.1 

Momentum Equation Applied to a Stationary Rocket 

Problem Statement 

The following sketch shows a 40 g rocket, of the type used 
for model rocketry, being fired on a test stand to evaluate 
thrust. The exhaust jet from the rocket motor has a diameter 
of d = 1 em, a speed of v = 450 m/s, and a density of 
p = 0.5 kglm3. Assume the pressure in the exhaust jet equals 
ambient pressure. Find the force F, acting on the support 
that holds the rocket stationary. 

! 
Define the Siluation 

A small rocket is fired on a test stand. 

Assumptions. Pressure is 0.0 kPa gage at the nozzle exit 
plane. 

State the Goal 

f~ (N) ~ Force that acts on the support 

Generate Ide~ and Make a Plan 

Selection. Select the momentum equation because fluid 
particles are accelerating due to pressures generated by 
combustion and because force is the goal. 

Sketching. Select a CV surrounding the rocket because the 
control surface cuts 

• through the support (where we want information), and 

• across the rocket nozzle (where information is known). 

Then, sketch a force diagram and a momentum diagram. 
Notice that the diagrams include an arrow to indicate the 
positive y-direction. This is important because the momentum 
equation is a vector equation. 

In the force diagram, the body force is the weight ( W). The 
force (F,) represents the downward push of the support on 
the rocket. There is no pressure force at the nozzle exit plane 
because pressure is atmospheric. 

Analysis. Apply the momentum equation in vertical direction 
by selecting terms off the diagrams. 

F, + W = mv0 (a) 
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In Eq. (a), the only unknown is F,. Thus, the plan is 

1. Calculate momentum flow: mv. = pA V. . 
2. Calculate weight. 

3. Solve for force F,. Then, apply Newton's th ird law. 

Take Action (Execute the Plan) 

I. Momentum flow. 

pAvl = (0.5 kg/ m3)('1T X 0.01 2 m2/4)(4502 m2/s2
) 

= 7.952 N 

2. Weight 

W = mg = (0.04 kg)(9.81 m/s2
) = 0.3924 N 

3. Force on the rocket (from Eq. (a)) 

F, = pAv~- W = (7.952 N) - (0.3924 N) = 7.56 N 

By Newton's third law, the force on the support is equal in 
magnitude to F, and opposite in direction. 

~= 7.56 N (upward}] 

Review 

I. Knowledge. Notice that forces acting on the rocket do not 
sum to zero. This is because the fluid is accelerating. 

2. Knowledge. For a rocket, the term mv is sometimes called a 
"thrust force:' For this example li-1v = 7.95 N (1.79lbf); this 
value is typical of a small motor used for model rocketry. 

3. Knowledge. Newton's third law tells us that forces always 
occur in pairs, equal in magnitude and opposite in 
direction. In the sketch below, F, and F, are equal in 
magnitude and opposite in direction. 

Example 6.2 gives another problem in the category of"fluid jet:' 

EXAMPLE 6.2 

Momentum Equation Applied to a Fluid Jet 

Problem Statement 

As shown in the sketch, concrete flows into a cart sitting 
on a scale. The stream of concrete has a density of p = 
I SO lbmtfe, an area of A = 1 ft2

, and a speed of v = 10 ft/s. 
AL the instant shown, the weight of the cart plus the 
concrete is 800 lbf. Determine the tension in the cable 
and the weight recorded by the scale. Assume steady 
flow. 

Concrete 

[ 

Define the Situation 

Concrete is flowing into a cart that is being weighed. 

\ 

W= 800 lhf (cuncrctc +cart) 

State the Goal 

T(lbf) • Tension in cable 
W,(lbf) .. Weight recorded by the scale 

Generate Ideas and Make a Plan 

Select the momentum equation. Then, select a CV and sketch 
this in the situation diagram. Next, sketch a force diagram and 
momentum diagram. 
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T_-lor...,-----r----: L. r/~-----~ 
[__ -- _j l_~j 

N 

Notice in the force diagram that the liquid jet does not exert a 
force at the control surface. This is because the pressure in the 
jet equals atmospheric pressure. 

To apply the momentum equation, use the force and 
momentum diagrams to visualize the vectors. 

2: F = m,.v,. - m,v1 

Take Action (Execute the Plan) 

l. Momentum equation (horizontal direction) 

7' = 1i1Vcos60° = pAv2 cos60° 

T ={ISO lbm/frl)( slu~: )c1 ft2)( 10 ft / s)2cos60° 
32.2 m 

= (ilijbf 1 

2. Momentum equation (vertical direction) 

Review 

N- W = 1i1vsin60° = pAv2 sin60° 

N = W + pAv 2sin60° 

= 800 lbf + 403lbf = j1200 lbf I 

221 

-Ti + (N- W)k = -rnv((cos60°) i - (sin60°)j) 

Next, write scalar equations 

I. Discussion. The weight recorded by the scale is larger than 
the weight of the cart because of the momentum carried by 
the fluid jet. 

- 'J' = -mvcos60° 

(N- W) = mvsin60° 

Now, the goals can be solved for. The plan is to: 

(a) 

(b) 

2. Discussion. The momentum accumulation term in this 
problem is nonzero. However, it was assumed to be small 
and was neglected. 

I. Calculate Tusing Eq. (a). 

2. Calculate N using Eq. (b). Then let Ws = - N. 

Vanes 
A vane is a structural component, typically thin, that is used to turn a fluid jet (Fig. 6.13). A 
vane is used to idealize many components of engineering interest. Examples include a blade in 
a turbine, a sail on a ship, and a thrust reverser on an aircraft engine. 

,., - { ___ _ 

To make solving of vane problems easier, we offer the following Tips. 

I 
I 

I 
I, I I. ',1 

J 

• Tip 1. Assume that v1 = v2 = v3. This assumption can be justified with the Bernoulli 
equation. In particular, assume inviscid flow and neglect elevation changes, and the 
Bernoulli equation can be used to prove that the velocity of the fluid jet is constant. 

FIGURE 6.13 

A fluid jet striking o flat 
vane. 
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• Tip 2. Let each momentum flow equal mv. For example, in Fig. 6.13, the momentum 
inflow is mlvl. The momentum outflows are m1v2 and m3v3. 

• Tip 3. If the vane is flat, as in Fig. 6.13, assume that the force to hold the vane 
stationary is normal to the vane because viscous stresses are small relative to pressure 
stresses. Thus, the load on the vane can assumed to be due to pressure, which acts 
normal to the vane. 

• Tip 4. When the jet is a free jet, as in Fig. 6.13, recognize that the jet does not cause a net 
force at the control surface because the pressure in the jet is atmospheric. Only pressures 
different than atmospheric cause a net force. 

EXAMPLE 6.3 

Momentum Equation Applied to a Vane 

Problem Statement 

A water jet (r = 1.94 slug/ft1) is deflected 60° by a stationary 
vane as shown in the figure. The incoming jet has a speed of 
I 00 fl/s and a diameter of 1 in. Find the force exerted by the jet 
on the vane. 

Define the Situation 

A water jet is deflected by a vane. 

-v- IOOft/s 
d = 1112 ft 
p - I. 94 slug/ft3 

Assumptions: 

• Jet velocity is constant: v1 = v2 = v. 

• Jet diameter is constant: d1 = d2 = d. 

• Neglect gravitational effects. 

State the Goal 

F1, 1 (N) .. Force of the fluid jet on the vane 

Generate Ideas and Make a Plan 

Select. Because force is a parameter and fluid particles 
accelerate as the jet turns, select the linear momentum 
equation. 

Sketch. Select a CV that cuts through support so that the 
force of the support can be found. Then, sketch a force 
diagran1 and a momentum diagram. 

y 

Lx 
,;,v -+--

~ . 

In the force and momentum diagrams, notice that 

• Pressure forces are zero because pressures in the water jet 
at the control surface are zero gage. 

• Each momentum flow is represented with mv. 

mv 

Analysis. To apply the momentum equation, use the force and 
momentum diagrams to write a vector equation. 

(-Fx) i + (-r~)j = mv(cos60°i- sin60°j)- mvi 

Now, write scalar equations 

-Fx = mv(cos60°- 1) 

- Fr = - mv(sin 60°) 

(a) 

(b) 
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Because there is enough information to solve Eqs. (a) and (b), 
the problem is cracked. The plan is 

1. Calculate mv. 

3. Linear momentum equation (y-direction) 

l"y = ntvsin60° 

2. Apply Eq. (a) to calculate Fx-

3. Apply Eq. (b) to calculate Fr 

= (105.8lbf)sin60° 

F1 = 91.8lbf 

4. Newton's third law 
4. Apply Newton's third law to find the force of the jet. 

Take Action (Execute the Plan) 

1. Momentum flow rate. 

The force of the jet on the vane (F,.,) is opposite in 
direction to the force required to hold the vane stationary 
(F). Therefore, 

mv = (pAv)v 
FJ•' = (53.0 lbf)i + (91.8 lbf)j 

Review = (1.94 slug/ft3)('TT X 0.04172 ft2)(100 ft/s) 2 

~ 105.8lbf 

2. Linear momentum equation (x-direction) 

Fx = mv(I - cos60°) 

1. Discussion. Notice that the problem goal was specified 
as a vector. Thus, the answer was given as a vector. 

= (105.8lbf)(l - cos60°) 

f x = 53.0 Jbf 

2. Skill. Notice how the common assumptions for a vane were 
applied in the "define the situation" portion. 

Nozzles 

Nozzles are flow devices used to accelerate a fluid stream by reducing the cross-sectional area 
of the flow (Fig. 6.14). Problems in this category involve analysis of the nozzle itself, not analy­
sis of the free jet 

~ - . ' Flow~ 

® ® 

To make solving of nozzle problems easier, we offer the following Tips. 

• Tip I. Let each momentum flow equal mv. For the nozzle in Fig. 6.14, the momentum 
inflow is mv A and the outflow is mvR. 

• Tip 2. Include a pressure force where the nozzle connects to a pipe. For the nozzle in 
Fig. 6.14, include a pressure force of magnitude pAAA on the force diagram. This pressure 
force, like all pressure forces, is compressive. 

• Tip 3. To find PA• apply the Bernoulli equation between A and B. 

• Tip 4. To relate v A and v11, apply the continuity equation. 

• Tip 5. When the CS cuts through a support structure (e.g., a pipe waU, a flange), represent 
the associated force on the force diagram. For the nozzle shown in Fig. 6.14, add a force FAx 

and FAy to the force diagram. 

FIGURE 6.14 

A flu1d jel ex1ling a nozzle. 
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EXAMPLE 6.4 

Momentum Equation Applied to a Nozzle 

Problem Statement 

The sketch shows air flowing through a nozzle. The inlet pressure 

is p1 = 105 kPa abs, and the air exhausts into the atmosphere, 
where the pressure is 101.3 kPa abs. The nozzle has an inlet 
diameter of 60 rnm and an exit dian1eter of 10 nm1, and the 
nozzle is connected to the supply pipe by flanges. Find the force 
required to hold the nozzle stationary. Assume the air has a 
constant density of 1.22 kg!m3

• Neglect the weight of the nozzle. 

Define the Situation 

Air flows through a nozzle 

CD 
I 
I 

Air - ----L---------------1--- --
1 
I 

p1 ~ 3. 7 kPa-gage 
D1 - 0.06 m 

Properties. p = 1.22 kg/m3
• 

Assumptions 

• Weight of nozzle is negligible. 

I 
I 
I 

p2 = 0.0 kPa-gagc 
D2 ~0.0l m 

• Steady flow, constant density flow, inviscid flow. 

State the Goals 

F(N) .. Force required to hold nozzle stationary 

Generate Ideas and Make a Plan 

Select. Because force is a parameter and fluid particles are 
accelerating in the nozzle, select the momentum equation. 

Sketch. Sketch a force and momentum diagram. 

FD 

~·:itv1 ~~1in•1 
CD~ 

MD 

Write the momentum equation (x-direction) 

F +PIAl = m(vz- v,) 

To solve for F, we need v2 and v1, which can be found using 
the Bernoulli equation. Thus, the plan is 

1. Derive an equation for v2 by applying the Bernoulli 
equation and the continuity equation. 

2. Calculate v2 and v1 . 

3. Calculate F by applying Eq. (a). 

Take Action (Execute the Plan) 

I. Bernoulli Equation (apply between 1 and 2) 

1 2 1 2 
PI+ 'YZI + 2PY1 = P2 + 'YZ2 + 2PV2 

Term-by-term analysis 

• z1 = z2 = 0 

• p1 = 3.7 kPa; p2 = 0.0 

The Bernoulli equation reduces to 

p1 + pvf/2 = pv~/2 

(a) 

Continuity Equation. Select a CV that cuts through sections 1 
and 2. Neglect the mass accumulation terms. Continuity 
simplifies to 

V1A1 = VzAz 

vld r = v2d~ 
Substitute into the Bernoulli equation and solve for v2: 

2. Calculate v2 and v1• 

2 X 3.7 X 1000 Pa 
..,.-----:----:------:-::- = 77.9 m/s 
(1.22 kg/m3)(1 - (10/60t) 

v1 = v2GJ 
= 77.9 m/s X (~Y = 2.16 rn/s 

3. Momentum equation 

F + p1A 1 = m(v2 - v1) 

F = pA1v1 (v2 - v1 )- P1A1 

= (1.22 kg/m3
)( ~ )co.06 m)2(2.16 m/s) 

X (77.9 - 2.16)(m/s) 

- 3.7 x lOOON/m2 x (~)(o.06m)Z 
= 0.564 N - 10.46 N = -9.90 N 



Because F is negative, the direction is opposite to the direction 
assw11ed on the force diagram. Thus, 

negative, then the force acts in a direction opposite the 
chosen direction. 

I Force to hold nozzle = 9.90 N( +-direction) I 
Review 

2. Knowledge. Pressures were changed to gage pressure in the 
"define the situation" operation because it is the pressures 
differences as compared to atmospheric pressure that cause 
net pressure forces. 

I. Knowledge. The direction initially assumed for the force on 
a force diagram is arbitrary. lf the answer for the force is 

Pipe Bends 
A pipe bend is a structural component that is used to turn through an angle (Fig. 6.15). A pipe 
bend is often connected to straight runs of pipe by flanges. A flange is round disk with a hole 
in the center that slides over a pipe and is often welded in place. Flanges are bolted together to 
connect sections of pipe. 

flolted flange \ 
(2 places) "'-. 

To make solving of nozzle problems easier, we offer the following Tips. 

• Tip 1. Let each momentum flow equal mv. For the bend in Fig. 6. 15, the momentum 
inflow iS mvA and the OUtflOW is mVn. 

• Tip 2. Include pressure forces where the CS cuts through a pipe. In Fig. 6.15, there is a 
pressure force at section A: tA = pAAA and at section B: F8 = p8 A8. As always, both 
pressure forces are compressive. 

• Tip 3. To relate PA and p8, it is most correct to apply the energy equation from Chapter 7 
and include head loss. An alternative is to assume that pressure is constant or to assume 
inviscid flow and apply the Bernoulli equation. 

• Tip 4. To relate vA and v8, apply the continuity equation. 

• Tip 5. When the CS cuts through a support structure (pipe wall, flange), include the loads 
caused by the support on the force diagram. 

FIGURE 6.15 

Pipe Bend 

EXAMPLE 6.5 

Momentum Equation Applied to a Pipe Bend 

is constant with a value of75 k.Pa gage. Find the force required 
to hold the bend in place. 

Problem Slatement 

A 1-m -diameter pipe bend shown in the diagram is carrying 
crude oil (S = 0.94) with a steady flow rate of2 m3/s. The bend 
has an angle of 30° and lies in a horizontal plane. The volume 
of oil in the bend is 1.2 m3

, and the empty weight of the bend 
is 4 kN. Assume the pressure along the centerline of the bend 
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Define the Situation 

Crude oil flows through a pipe bend. 

• Bend lies in a horizontal plane. 

• ¥ 0u = 1.2 m3 = volume of oil in bend. 

• W bend = 4000 N =empty weight of bend. 

• p = 75 kPa-gage = pressure along centerline. 

- ­Oil 
S= 0.94 
Q- 2 m'/s 

CD 

State the Goal 

D - Im 

l 

F(N) .. Force to hold the bend stationary. 

Generate Ideas and Make a Plan 

Select. Because force is a parameter and fluid particles 
accelerate in the pipe bend, select the momentum equation. 

Sketch. Select a CV that cuts through the support structure 
and through sections 1 and 2. Then, sketch the force and 
momentum diagrams. 

Analysis. Using the diagrams as guides, write the momentum 
equation in each direction: 

• x-direction 

Fx +PIAl - P2A2cos30° = rn v2 cos30°- mvl 

• y-direction 

• z-direction 

-F, - W rotal = 0 

{a) 

(b) 

{c) 

Review these equations and notice that there is enough infor­
mation to solve for the goals F .. , Fr , and F,. Thus, create a plan. 

1. Calculate the momentum flux mv. 
2. Calculate the pressure force pA. 

3. Solve Eq. (a) for F ... 

4. Solve Eq. (b) for Fr 

5. Solve Eq. (c) for F, . 

Take Action (Execute the Plan) 

I. Momentum Flow 

Example6.6 

• Apply the volume flow rate equation 

(2m3/s) 
v = QIA = 2 2) = 2.55 m / s 

(11' X 0.5 m 

• Next, calculate the momentum flow 

mv = pQv = (0.94 X 1000 kg/ m3)(2 m3/ s)(2.55 m/s) 

= 4.79kN 

2. Pressure Force 

pA = (75 kN / m2)(11' X 0.52 m2
) = 58.9 kN 

3. Momentum Equation (x-direction) 

Fx +PIAl - P2A2cos30° = mv2cos30° - mvl 
Fx = - pA(1 - cos30°) - mv(I - cos30°) 

= -(pA + mv)(l - cos 30°) 

= - (58.9 + 4.79)(kN)(1 - cos30°) 

= - 8.53 kN 

4. Momentum Equation (y-direction) 

Fy + p2A2sin30" = -mv2 sin30° 

Fy = - (pA + mv) sin 30° 

= -(58.9 + 4.79)(kN)(sin 30°) = - 31.8 kN 

Reaction force in z-direction. (The bend weight includes 
the oil plus the empty pipe). 

- F,- Wtotal = 0 

w = -y\l + 4 kN 

= (0.94 X 9.81 kN /m3)(1.2 m3
) + 4 kN = 1.5.1 kN 

Force to hold the bend 

IF= ( -8.53 kN)i + ( -31.8 kN)j + (15.1 kN)k I 

Variable Velocity Distribution 
This subsection shows how to solve a problem when the momentum flow is evaluated by inte­
gration. This case is illustrated by Example 6.6. 
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EXAMPLE 6.6 

Momentum Equation Applied with a Variable Velocity 
Distribution 

Problem Statement 

The drag force of a bullet-shaped device may be measured 
using a wind tunnel. 1he tunnel is round with a diameter 
of 1 m, the pressure at section I is 1.5 kPa gage, the 
pressure at section 2 is 1.0 kPa gage, and air density is 
1.0 kg/m3

• At the inlet, the velocity is uniform with a 
magnitude of 30 m/s. At the exit, the velocity varies 
linearly as shown in the sketch. Determine the drag 
force on the device and support vanes. Neglect viscous 
resistance at the wall, and assume pressure is uniform 
across sections l and 2. 

Define the Situation 

Data is supplied for wind tunnel test (see above). 
Assume. Steady flow. 

Air: p = 1.0 kg/m3
• 

State the Goal 

Find: Drag force (in newtons) on model 

Make a Plan 

I. Select a control volume that encloses the model. 

2. Sketch the force diagram. 

3. Sketch the momentum diagram. 

- X 

4. The downstream velocity profile is not uniformly 
distributed. Apply the integral form of the momentum 
equation, Eq. (6.7). 

5. Evaluate the sum of forces. 

6. Determine velocity profile at section 2 by application 
of continuity equation. 

7. Evaluate the momentum terms. 

8. Calculate drag force on model. 

Take Action (Execute the Plan) 

1. The control volume selected is shown. The control volume 
is stationary. 

FD MD 

2. The forces consist of the pressure forces and the force on 
the model support struts cut by the control surface. The 
drag force on the model is equal and opposite to the force 
on the support struts: Fo = F,t + F,2. 

3. There is inlet and outlet momentum flux. 

4. Integral form of momentum equation in x-dircction 

On cross section l, V · dA = - v xdA, and on cross 
section 2, V · dA = vxdA , so 

5. Evaluation of force terms. 

L Fx = PtA - pzA - (F,I + F,z) 

= PtA - PzA - Po 

6. Velocity profile at section 2. 

Velocity is linear in radius, so choose v2 = VtK(r/r0 ), where 
r0 is the tunnel radius and K is a proportionality factor to 
be determined. 

Qt = Qz 

AtVt = f Vz(r)dA = r ·vtK(rl ro)2'1Tr dr 
A1 0 

2 1 2 
'ITT0 Vt = 2'1TVtK 

3 
To 

3 
K =-

2 
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7. Evaluation of momentum terms 8. Drag force 

• Accumulation term for steady flow is :t Lpv,d¥ = 0 p,A - PzA - F0 = mv{~ - I) 
• Momentum at cross section I with v, = v1 is l ' 

Po= (p, - Pz)A - BpAvi 

Jpv;dA = pv~A = mv1 

I 
= ( 1r X 0.52 m2)( l.S - 1.0 )( l 03

) N I m2 

_.!_( ! kg/m3)(1r X 0.52 m2)(30 m/s)2 

8 
• Momentum at cross section 2 is 

F0 =13o4l{) 

6.5 Examples of the Linear Momentum 
Equation (Moving Obiects} 

This section describes how to apply the linear momentum equation to problems that involve 
moving objects such as carts in motion and rockets. When an object is moving, one lets 
the CV move with the object. As shown below (repeated from Fig. 6.11), problems that 
involve moving CVs classify into two categories: objects moving with constant velocity and 
objects that are accelerating. Both categories involve selection of a reference frame, which 
is the next topic. 

Reference Frame 

When an object is moving, it is necessary to specify a reference frame. A reference frame 
is a three-dimensional framework from which an observer takes measurements. For ex­
ample, Fig. 6.16 shows a rocket in flight For this situation, one possible reference frame is 
fixed to the earth. Another possible reference frame is fixed to the rocket. Observers in 
these two frames of reference would report different values of the rocket velocity VRockci 

and the velocity of the fluid jet \'iet· The ground-based reference frame is inertial. An in­
ertial reference frame is any reference frame that is stationary or moving with constant 
velocity with respect to the earth. Thus, an inertial reference frame is a nonaccelerating 
reference frame. Alternatively, a noninertial reference frame is any reference frame that 
is accelerating. 

Regarding the linear momentum equation as presented in this text, this equation is only 
valid for an inertial frame. Thus, when objects are moving, the engineer should specify an 
inertial reference frame. 



1Vkocm 
FIGURE 6.16 

~ 

\~ Reference frame 
1 fixed to accelerating rocket 
I (nonincnial) 
I 
I 
I 
\ 

\ 
\ 

\ 
\ 

--~ 

Analyzing a Moving Body (Constant Velocity) 

-------- Reference frame 
/ fixed to eanh 

(inertial) 

When an object is moving with constant velocity, then the reference frame can be placed on 
the moving object or fixed to the earth . However, most problems are simpler if the frame is 
fixed to the moving object. Example 6.7 shows how to solve a problem involving an object 
moving with constant velocity. 

EXAMPLE 6.7 

Momentum Equation Applied to a Moving CV 

Problem Statement 

A stationary nozzle produces a water jet with a speed of 
50 m/s and a cross-sectional area of 5 cm2

• The jet strikes a 
moving block and is deflected 90° relative to the block. The 
block is sliding with a constant speed of25 m/s on a surface 
with friction. The density of the water is 1000 kg/m3

. Find 
the frictional force F acting on the block. 

Define the Sintation 

A block slides at constant velocity due to a fluid jet. 

H,O. p o 101111 kglm' \ 

-vi<'= 50 m/s 
(from fixed R F) 

- v"""' = v0 = 25 m/s 
(from fixed RF) 

A~=5X I0-4 m2 ------L---------~-------------

State the Goal 

Ff(N) +o 1be frictional force on the block 

Solution Method I (Moving RF) 

When a body is moving at constant velocity, the easiest way to 
solve the problem is to put the RF on the moving body. This 
solution method is shown first. 
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Generate Ideas and Make a Plan 

Select the linear momentum equation because force is the 
goal and fluid particles accelerate as they interact with 
the block. 

Select a moving CV that surrounds the block because this CV 
involves known parameters (i.e., the two fluid jets) and the 
goal (frictional force). 

Because the CV is moving at a constant velocity, select a 
reference frame (RF) that is fixed to the moving block. This 
RF makes analysis of the problem simpler. 

Sketch the force and momentum diagrams and the RF. 

mv2 

@ ~,L ' 
X c!Jw ~ 

I I 
I I 

,;,v, _r_ ..... 
I 
I 

RF: fixed 
to block 

I I I I 
L--------1 L--------J 

F, t 
N 

To apply the momentum equation, use the force and 
momentum diagrams to visualize the vectors. The 
momentum equation in the x-direction is 

- F1 = -mv1 

In Eq. (a), the ma~s flow rate describes the rate at which 
mass is crossing the control surface. Because the CS is 
moving away from the fluid jet, the mass flow rate term 
becomes 

(a) 

(b) 

In Eq. (a), the velocity v1 is the velocity as measured from the 
selected reference frame. 1hus, 

Combining Eqs. (a), (b), and (c) gives 

Because, all variables on the right side of Eq. (d) arc known, 
we can find the problem goal. The plan is simple: plug 
numbers into Eq. (d). 

Take Action (Execute the Plan) 

F1 = pA J<:r ( v,., - VJ>tock)
2 

F1 = (1000 kg/ m2)(5 X 10 4 m2)(50 - 25Y(m/s)2 

I fr= 312N I 

(c) 

(d) 

Solution Method II (Fixed RF) 

Another way to solve this problem is to use a fixed reference 
frame. To implement this approach, sketch the force diagram, 
the momentum diagram, and the selected RF. 

Notice that mv2 shows a vertical and horizontal component. 
This is because an observer in the selected RF would see these 
velocity components. 

m\·2 

@e-,~ r- 1 
I I 
I I 
I I L ________ J 

z 

.Lx 
\__RF: fixed 

to ground 

From the diagrams, one can write the momentum equation in 
the x-direction: 

-Ff = mv2cos8- mv1 

F1 = m(v1 - v2 cos8) 

In the momentum equation, the mass flow rate is 
measured relative to the control surface. Thus, m is 
independent of the RF, and one can use Eq. (b), which 
is repeated below: 

rn = pA v = pAjel ( vjtt - Vbtock) 

In Eq. (e), the velocity v1 is the velocity as measured from 
the selected reference fran1e. Thus, 

To analyze v2, relate velocities by using a relative-velocity 
equation from a Dynamics Text: 

VJ<l = Vblock + Vjet/block 

where 

• v 2 = vj<t is the velocity of the jet at section 2 as measured 
from the fixed RF. 

(e) 

(f) 

(g) 

(h) 

• VJ>tock is the velocity of the moving block as measured from 
the fixed RF. 

• vJ.Vblock is the velocity of the jet at section as measured from 
a RF fixed to the moving block. 

Substitute numbers into Eq. (h) to give 

v2 = (25 m/s)i + (25 m!s)j (i) 

Thus 

v2cos8 = V2x = 25m/s = VJ>tnck (j) 



Substitute Eqs. (f), (g), and (j) into Eq. (e). 
Review the Solution and the Process 

Ff = { m}(v, - v2cos8) 

= { pA jet ( Vjct - VbJock) }( Vjct - Vblock) 

= pA)el ( VJel - v block)
2 

(k) 
I. Knowledge. When an object moves with constant velocity, 

select an RF fixed to the moving object because this is 
much easier than selecting an RF fixed to the earth. 

Eq. (k) is identical to Eq. (d). Thus, Solution Method I is 
equivalenllo Solution Method fl. 

2. Knowledge. Specifying the control volwne and the 
reference frame are independent decisions. 

Analyzing a Moving Body (Accelerating) 
This section presents an example of an accelerating object, namely the analysis of a rocket 
(Fig. 6.17). To begin, sketch a control volume around the rocket. Note that the reference frame 
cannot be fixed to the rocket because the rocket is accelerating. 

Assume the rocket is moving vertically upward with a speed v, measured with respect to 
the ground. Exhaust gases leave the engine nozzle (area A.) at a speed V., relative to the rocket 
nozzle with a gage pressure of p •. The goal is to obtain the equation of motion of the rocket. 

The control volume is drawn around and accelerates with the rocket. The force and mo­
mentum diagrams are shown in Fig. 6.18. There is a drag force of D and a weight of W acting 
downward. There is a pressure force of p.A. on the nozzle exit plane because the pressure 
in a supersonic jet is greater than ambient pressure. The summation of the forces in the 
z-direction is 

(6.15) 

j_ 

FD MD 

There is only one momentum flux out of the rocket nozzle, n'lV0 • The speed v0 must be refer­
enced to an inertial reference frame, which in this case is chosen as the ground. The speed of 
the exit gases with respect to the ground is 

V0 = (V, - v,) (6.16) 

because the rocket is moving upward with speed v, with respect to the ground, and the exit 
gases are moving downward at speed v. with respect to the rocket. 

FIGURE 6.17 

Vertical launch of rocket. 

FIGURE 6.18 

Force and momentum 
diagrams for rocket. 
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The momentum equation, in the z-direction is 

The velocity inside the control volume is the speed of the rocket, v,, so the accumulation term 
becomes 

Substituting the sum of the forces and momentum terms into the momentum equation gives 

p,A,- W - D = :t(m,v,)- m(V. - v,) 

Next, apply the product rule to the accumulation term. This gives 

dv, (dm, . ) . 
P A - W- D = m - + v - + m - mV 

t t r dt r dt e 

(6.17) 

(6.18) 

The continuity equation can now be used to eliminate the second term on the right. Applying 
the continuity equation to the control surface around the rocket leads to 

:Jcv pd¥ + 2: mo- 2: m, = 0 

Substituting Eq. (6.19) into Eq. (6.18) yields 

dm, . 
-+m= O 
dt 

dv, m V. + p,A, - W - D = m, dt 

(6.19) 

(6.20) 

The sum of the momentum outflow and the pressure force at the nozzle exit is identified as the 
thrust of the rocket 

so Eq. (6.20) simplifies to 

dv, 
m -= T - D - W 

r dt 

which is the equation used to predict and analyze rocket performance. 

(6.21) 

Integration of Eq. ( 6.21) leads to one of the fundamental equations for rocketry: the 
burnout velocity or the velocity achieved when all the fuel is burned. Neglecting the drag and 
weight, the equation of motion reduces to 

dv, 
T=m ­

r dt (6.22) 
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The instantaneous mass of the rocket is given by m, = m, - mt, where m, is the initial rocket 
mass and tis the time from ignjtion. Substituting the expression for mass into Eq. (6.22) and 
integrating with the initial condition vr(O) = 0 results in 

T mi 
vbo = -:-In -

m mr 
(6.23) 

where V [,o is the burnout velocity and mf is the final (or payload) mass. The ratio T/ m is known 
as the specific impulse, l 5p, and has units of velocity. 

6.6 The Angular Momentum Equation 

1his section presents the angular momentum equation, which is also called the moment-ol 
momentum equation. The angular momentum equation is very useful for situations that in­
volve torques. Examples include analyses of rotating machinery such as pumps, turbines, fans, 
and blowers. 

Derivation of the Equation 

Newton's second law of motion can be used to derive an equation for the rotational motion of 
a system of particles: 

(6.24) 

where M is a moment and Hsys is the total angular momentum of all mass forming the system. 
To convert Eq. (6.24) to an Eulerian equation, apply the Reynolds transport theorem, 

Eq. (5.23). The extensive property Bsys becomes the angular momentum of the system: 
Bsys = Hsys· The intensive property b becomes the angular momentum per unit mass. The 
angular momentum of an element is r X mv, and so b = r X v. Substituting for Bsys and bin 
Eq. (5.23) gives 

d(Hsys) d f f 
--=- (r X v)pd-¥ + (r X v)pV · dA 

dt dt cv cs 

(6.25) 

Combining Eqs. (6.24) and (6.25) gives the integral form of the moment-of-momentum 
equation: 

L M = :J ( r X v) p d-¥ + f ( r X v) p V · dA 
cv cs 

(6.26) 

where r is a position vector that extends from the moment center, V is flow velocity relative to 
the control surface, and v is flow velocity relative to the inertial reference frame selected. 

If the mass crosses the control surface through a series of inlet and outlet ports with uni­
formly distributed properties across each port, the moment-of-momentum equation becomes 

2: M = ~f (r X v)pd-¥ + 2: r0 X (m0v0 ) - 2: ri X (mivi) (6.27) 
dt cv cs cs 

The moment-of-momentum equation has the following physical interpretation: 

( 
sum of ) = (angular mom~ntum) + (angular momentum) _ (angula~ momentum) 

moments accumulatiOn outflow rnflow 
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Application 
The process for applying the angular momentum equation is similar to the process for applying 
the linear momentum equation. To illustrate this process, Example 6.8 shows how to apply the 
angular momentum equation to a pipe bend. 

EXAMPLE 6.8 

Applying the Angular Momentum Equation to Calculate 
the Moment on a Reducing Bend 

Problem Statement 

The reducing bend shown in the figure is supported on a 
horizontal axis through point A. Water (20°C) flows through 
the bend at 0.25 m 1/s. 1 he inlet pressure at cross section I is 
150 kPa gage, and the outlet presstue at section 2 is 59.3 kPa 
gage. A weight of 1420 N acts 20 em to the right of point A. Find 
the moment the support system must resist. The diameters of the 
inlet and outlet pipes are 30 em and 10 em, respectively. 

Define the Situation 

Water flows through a pipe bend. 
Assume steady flow. 
Water (Table A.S, 20°C,p = I atm): p = 998 kg/m3• 

0. 15m 

0.325 m 

H,O 
Q=0.25 m'/s 

D.=OJ m 

CD p1 = 150 kl'a gage 

I 
0.3m 

0 D,=O.tm 
p, = 593 kPa gage 

W=l420N 

State the Goal 

MA(N) ~Moment acting on the support structure 

Generate Ideas and Make a Plan 

Select the moment-of-momentum equation (Eq. 6 .27) 
because (a) torque is a parameter and (b) fluid particles are 
accelerating as they pass through the pipe bend. 

Select a control volume surrounding the reducing bend. '!he 
reason is that this CV cuts through point A (where we want 
to know the moment) and also cuts through sections 1 and 2 
where information is known. 

Sketch the force and momentum diagrams. Add dimensions 
to the sketches so that it is easier to evaluate cross products. 

Select point ''/\' to sum moments about. Because the flow is 
steady, the accumulation of momentum term is zero. Also, 
there is one inflow of angular momentum and one outflow. 
'!bus, the angular momentum equation (Eq. 6.27) simplifies to: 

2:MA = {r2 x (1i1v2)}- {r1 X (mv1)} (a) 

Sum moments in the z-direction 

L MA,z = ( p ,A1)(0.15 m) + ( p2A2)(0.475 m) 

+ M.4 - W(0.2 m) 

Next, analyze the momentum terms in Eq. (a). 

{rz X (nlVz)}- {r, X (mv, )}z = { -rzmv2}- h ntvJ} 

Substitute Eqs. (h) and (c) into Eq. (a) 

(b) 

(c) 

(p1A1)(0.1 5 m) + ( p2A2)(0.475 m) + MA- W(0.2 m) (d) 

= {- rzmv2}- {r11nv1} 

All the terms in Eq. (d) are known, soMA can be calculated. 
Thus, the plan is 

1. Calculate torques to due to pressure: r1p1A1 and r2p2A 2• 

2. Calculate momentum flow terms: r2mv2 + r11i1Y1• 

3. Calculate MA. 
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3. Moment exerted by support 
Take Action (Execute the Plan) 

I. Torques due to pressure 

r 1p 1A1 = (0.15 m)(150 X 1000 N / m2)(1r X 0.32/4 m2
) 

= 1590 N · m 

M,.. = -0.15p1A 1 - 0.475p2A 2 + 0.2W - n1(r2v2 + r1v1) 

= -(1590 N • m} - (498 N · m} 

r 2p2A2 = (0.475 m}(59.3 X 1000 N/m2}(1r X 0. 152/ 4 m 2
) 

= 498N · m 
2. Momentum flow terms 

+ (0.2 m X 1420 N} - ( 1813 N · m} 

M,.. = -3.62kN · m 

Thus, a moment of 3.62 kN · m acting in the clockwise, 
direction is needed to hold the bend stationary. 

m = pQ = (998 kg/m3)(0.25 m3 /s} 

= 250 kg/s 

Q 0.25 m3/s 

fBYNewton's third law, the moment acting on the suppojt 
~tructure is MA = 3.62 kN · m (coun lt:rclockwise). 

v1 =- = , = 3.54 m/s 
A1 1r X 0.15" m2 

Q 0.25 m3/s 
v2 = - = = 14.15 m/s 

A2 1T X 0.0752 m2 

m(rzV2 + T1V1} = (250 kg/s) 

X (0.475 X 14.15 + 0.15 X 3.54}(m2/s) 

= 1813 N • m 

Review the Solution and the Process 

Tip. Use the "right-hand-rule" to find the correct direction 
of moments. 

Example 6.9 illustrates how to apply the angular momentum equation to predict the power 
delivered by a turbine. This analysis can be applied to both power-producing machines (turbines) 
and power-absorbing machines (pumps and compressors).Additional information is presented in 
Chapter 14. 

EXAMPLE 6.9 

Applying the Angular Momentum Equation to Predict 
the Power Delivered by a Francis Turbine 

Problem Statement 

A Francis turbine is shown in the diagram. Water is directed 
by guide vanes into the rotating wheel (runner) of the turbine. 
The guide vanes have a 70° angle from the radial direction. 
1he water exits with only a radial component of velocity with 
respect to the environment. The outer diameter of the wheel is 
1 m, and the inner diameter is 0.5 m. The distance across the 
runner is 4 em. The discharge is 0.5 m3/s,and the rotational 
rate of the wheel is 1200 rpm. The water density is 1000 kglm3• 

Find the power (kW) produced by the turbine. 

lm 

Outlet 

Deline the Situation 

A Francis turbine generates power. 

2o•-...........0 

a>=1200 rpm 
= 125.7 rad/s 

State the Goal 

P(W) .. Power generated by the turbine 

Generate Ide~ and Make a Plan 

Q 0.5 m'ts 
p= 1000 kgtm' 

Because power is the goal, select the power equation. 

P= Tw 

where Tis torque acting on the turbine, and w is turbine 
angular speed. In Eq. (a), torque is wllmown, so it becomes 

the new goal. Torque can be found using the angular 
momentum equation. 

(a) 
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Sketch. To apply the angular momentum equation, select a 
control volume surrounding the turbine. Then, sketch a force 
and momentum diagram 

In Eq. (c), the velocity v1 can be calculated using the flow rate 
equation. Because velocity is not perpendicular to area, use 
the dot product. 

In the force diagram, the torque Tis the external torque 
from the generator. Because this torque opposes angular 
acceleration, its direction is counterclockwise. The flow is 
idealized by using one inlet momentum flow at section 1 
and one outlet momentum flow at section 2. 

Select point "0" to sum moments about. Because the 
flow is steady, the accumulation of momentum is zero. 
Thus, the angular momentum equation (Eq. 6.26) 
simplifies to: 

Apply Eq. (b) in the z-direction. Also, recognize that 
the flow at section 2 has no angular momentum. That is, 
{ r 2 x (mv2)} = 0. Thus, Eq. (b) simplifies to 

T = 0 - {-r1mv1cos20°} 

which can be written as: 

(b) 

(c) 

Q1 = V1 ·A1 

Q = v1A1 sin20° 

which can be rewritten as 
Q 

v, = 
A1sin20° 

Now, the number of equations equals the number of 
unknowns. Thus, the plan is to 

I. Calculate inlet velocity v1 using Eq. (d). 

2. Calculate mass flow rate using m = pQ. 

3. Calculate torque using Eq. (c). 

4. Calculate power using Eq. (a). 

Take Action (Execute the Plan) 

I . Volume flow rate equation: 

Q (0.5 m3/ s) 
v1 = - - = - - - - = 11.63 m/s 

A1sin20° 7r(l.Om)(0.04m)sin20° 

2. Mass flow rate equation: 

m = pQ = (1000 kg/ m3)(0.5 m3/s) = 500 kg/ s 

3. Angular momentum equation: 

T = r1ti-rv1cos20o 

= (0.5 m)(500 kg/ s)(11.63 m/s) cos20° 

= 2732 N · m 

4. Power equation: 

P = Tw = (2732 N · m)(l25.7 rad / s) 

I p = 343kW I 

6.7 Summarizing Key Knowledge 

Newton's Second Law of Motion 

• A force is a push or pull of one body on another. A push/pull is an interaction that can 
cause a body to accelerate. A force always requires the interaction of two bodies. 

• Forces can be classified into two categories: 

(d) 

~ Body forces. Forces in this category do not require that the interacting bodies be touching. 
Common body forces include weight, the magnetic force, and the electrostatic force. 

~ Surface forces. Forces in this category require that the two interacting bodies are 
touching. Most forces are surface forces. 

• Newton's second law ~F = ma applies to a fluid particle; other forms of this law are 
derived from this equation. 



• Newton's second law asserts that forces are related to accelerations: 

~ Thus, if 2:F > 0, the particle must accelerate. 

~ Thus, if a > 0, the sum of forces must be nonzero. 

Solving Vector Equations 

• A vector equation is one whose terms are vectors. 

• A vector equation can be written as one or more equivalent scalar equations. 

• The Visual Solution Method (VSM) is an approach for solving a vector equation that 
makes problem solving easier. The process for the VSM is 

~ Step 1: Identify the vector equation in its general form. 

~ Step 2: Sketch a diagram that shows the vectors on the left side of the equation. Sketch 
an equal sign. Sketch a diagram that shows the vectors on the right side of the equation. 

~ Step 3: From the diagrams, apply the general equation, write the final results, and 
simplify the results to create the reduced equation(s). 

The Linear Momentum Equation 

• The linear momentum equation is Newton's second law in a form that is useful for solving 
problems in fluid mechanics 

• To derive the momentum equation 

~ Begin with Newton's second law for a single particle. 

~ Derive Newton's second law for a system of particles. 

~ Apply the Reynolds transport theorem to give the final result. 

• Physical T nterpretation 

(
sum of) = ( momentu_m ) + (momentum) _ (mo~entum) 
forces accumulatiOn outflow mflow 

• The momentum accumulation term gives the rate at which the momentum inside the 
control volume is changing with time. 

• The momentum flow terms give the rate at which momentum is being transported across 
the control surfaces. 

The Angular Momentum Equation 

• The angular momentum equation is the rotational analog to the linear momentum 
equation. 

~ This equation is useful for problems involving torques (i.e., moments) 

~ 1his equation is commonly applied to rotating machinery such as pumps, fans, and 
turbines. 

• The physics of the angular momentum equation are 

( 
sum of ) = (angular mom~ntum) + (angular momentum) _ (angula~ momentwn) 

moments accumulation outflow mflow 

• To apply the angular momentum equation, use the same process as that used for the linear 
momentum equation. 
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PROBLEMS 

Ms Problem available in Wiley PLUS at instructor's discretion. 

Newton's Second Law of Motion (§6.1) 

6. 1 Identify the surface and body forces acting on a glider in 
flight. Also, sketch a free body diagram and explain how 
Newton's laws of motion apply. 

6.2 Newton's second law can be stated that the force is equal to 
the rate of change of momentum, F = d(mv)!dt. Taking the 
derivative by parts yields F = m(dv)!(dt) + v(dm)l(dt). This 
does not correspond to F = rna. What is the source of the 
discrepancy? 

The Linear Momentum Equation: Theory (§6.2) 

6.3 Ms Which are the following are correct with respect to the 
derivation of the momentum equation? (Select all that apply.) 

a. Reynold's transport theorem is applied to Pick's law. 

b. The extensive property is momentum. 

c. The intensive property is mass. 

d. 1 he velocity is assumed to be uniformly distributed 
across each inlet and outlet. 

e. The net momentum flow is the "ins" minus the "outs:· 

f. The net force is the sum of forces acting on the matter 
inside the CV 

The Linear Momentum Equation: Application (§6.3) 

6.4 ;;:-u.s When making a force diagram (FlJ) and its partner 
momentum diagram (MD) to set up the equations for a 
momentum equation problem (see Fig. 6.10 on p. 217 in §6.3), 
which of the following elements should be in the FD, and which 
should be in the MD? (Classify all below a~ either FD or MlJ.) 

a. Each mass stream with product trr0 V0 or product rn,v; 
crossing a control surface boundary. 

b. Reaction forces required to hold walls, vanes, or pipes in 
place. 

c. Weight of a solid body that contains or contacts the fluid. 

d. Weight of the fluid. 

e. Pressure force caused by a fluid flowing across a control 
surface boundary. 

Applying the Momentum Equation to Fluid Jets (§6.4) 

6.5 Give five examples of jets and how they are used in practice. 

6.6 Ms A "balloon rocket" is a balloon suspended from a taut 
wire by a hollow tube (drinking straw) and string. 1he nozzle is 

~c:fu" Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

formed of a 0.8-cm-diameter tube, and an air jet exits the nozzle 
with a speed of 45 m/s and a density of 1.2 kg/m3

• Find the force F 
needed to hold the balloon stationary. Neglect friction. 

6.7 ;D;s The balloon rocket is held in place by a force F. The 
pressure inside the balloon is 8 in-II20, the nozzle diameter is 
1.0 em, and the air density is 1.2 kglm 1. Find the exit velocity v 
and the force F. Neglect friction and assume tl1e air flow is 
inviscid and irrotational. 

PROm n1s 6.6, 6. ~ 

6.8 PNs For Example 6.2 in §6.4, the situation diagram shows 
concrete being "shot" at an angle into a cart that is tethered by a 
cable, and sitting on a scale. Determine whether the following 
two statements are "true" or "false:' 

a. Mass is being accumulated in the cart. 

b. Momentum is being accumulated in the cart. 

6.9 Ms A water jet of diameter 30 mm and speed v = 25m/sis 
filling a tank. The tank has a mass of25 kg and contains 25liters 
of water at the instant shown. The water temperature is l5°C. 
Find the force acting on the bottom of the tank and the force 
acting on the stop block. Neglect friction. 

v 

I 

\"' I 
PRORI.T'\1S 6.9, 6.10 

6.10 ifu"' A water jet of dian1etcr 2 inches and speed v = 60 ft/s 
is filli ng a tank. The tank has a mass of 25 Ibm and contains 
6 gallons of water at the instant shown. l11e water temperature 



is 70°F. Find the minimum coefficient of friction such that the 
force acting on the stop block is zero. 

6.11 A design contest features a submarine that will travel at a 
steady speed of Vsub = I m/s in IS°C water. The sub is powered 
by a water jet. This jet is created by drawing water from an inlet 
of diameter 2S mm, passing this water through a pump and then 
accelerating the water through a nozzle of diameter S mm to a 
speed of~.,. The hydrodynamic drag force (F0 ) can be 
calculated using 

F = C (pv;ub)A 
D D 

2 
p 

where the coefficient of drag is C0 = 0.3 and the projected area is 
Ap = 0.28 m2

. Specify an acceptable value of v,.1• 

PROBI ri\f 6. 11 

6.12 A horizontal water jet at 70°F impinges on a vertical­
perpendicular plate. The discharge is 2 cfs.lf the external force 
required to hold the plate in place is 200 lbf, what is the velocity 
of the water? 

6.13 m-s A horizontal water jet at 70°F issues from a circular 
orifice in a large tank. The jet strikes a vertical plate that is 
normal to the axis of the jet. A force of 600 lbf is needed to hold 
the plate in place against the action of the jet. If the pressure in 
the tank is 2S psig at point A, what is the diameter of the jet just 
downstream of the orifice? 

A 
• 

I 
v 

PROI3LEMS 6.12, 6.13 

t 

6. 14 ;{Js An engineer, who is designing a water toy, is 
making preliminary calculations. A user of the product will 
apply a force F1 that moves a piston (D = 80 mm) at a speed of 
VP"'"" = 300 mm/s. Water at 20°C jets out of a converging nozzle 
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of diameter d = 15 mm. To hold the toy stationary, the user 
applies a force F2 to the handle. Which force (F1 versus F2) is 
larger? Explain your answer using concepts of the momentum 
principle. Then calculate F1 and F2 • Neglect friction between the 
piston and the walls. 

d 

~~==-I~ f )¥'· J 

IG 
PROBLEM 6.14 

6. 15 A firehose on a boat is producing a 4-in.-diameter water jet 
with a speed of V = 60 mph. The boat is held stationary by a 
cable attached to a pier, and the water temperature is S0°F. 
Calculate the tension in the cable. 

6. 16 fl"Vs A boat is held stationary by a cable attached 
to a pier. A firehose directs a spray of S°C water at a speed of 
V = SO m/s. If the allowable load on the cable is 5 kN, calculate 
the mass flow rate of the water jet. What is the corresponding 
diameter of the water jet? 

'j7 

PROBLEMS 6.I S,6.1 6 

6.17 ~A group offriends regularly enjoys white-water 
rafting, and they bring piston water guns to shoot water from 
one raft to another. One summer they notice that when on placid 
slack water (no current), after just a few volleys at each other, 
they are drifting apart. They wonder whether the jet being 
ejected out of a piston gun has enough momentum to force the 
shooter and raft backward. To answer this question, 

a. Sketch a CV, an FIJ, and an MD for this system. 

b. Calculate the momentum flux (N) generated by ejecting 
water with a flow rate of I galls from a cross section 
of 1.5 in. 

6. 18 ~A tank of water ( l5°C} with a total weight of200 N 
(water plus the container) is suspended by a vertical cable. 
Pre~surized air drives a water jet (d = 12 mm) out the bottom 
of the tank such that the tension in the vertical cable is 10 N. 
If H = 42S mm, find the required air pressure in units of 
atmospheres (gage). Assume the flow of water is irrotational. 



Vert•cal cable 

Pressurited air 

PROBLI:.~1 6. 18 

6.19 Ms A jet of water ( 60°F) is discharging at a constant rate 
of 2.0 cfs from the upper tank.lf the jet diameter at section 1 is 
4 in., what forces wil.l be measured by scales A and B? Assume 
the empty tank weighs 300 lbf, the cross-sectional area of the 
tank is 4 ft 2, h = I ft, and H = 9ft. 

d 

8 

PROBLI:.~l 6.19 

6.20 A conveyor belt discharges gravel into a barge as shown at 
a rate of 50 yd3/min. If the gravel weighs 120 lbf/ft3, what is the 
tension in the hawser that secures the barge to the dock? 

Conveyor belt 

~:·T~=~~~l·~ 
PROBLE~I 6.20 

6.21 The semicircular nozzle sprays a sheet of liquid through 
180° of arc as shown. 'Lhe velocity is Vat the efflux section where 

the sheet thickness is I. Derive a formula for the external force F 
(in they-direction) required to hold the nozzle system in place. 
This force should be a function of p, V, r, and t. 

Section A-A 

X 

r 

lb 
f 

Elevation view 

PROBLE~f 6.21 

A .-Y 
6.22 The expansion section of a rocket nozzle is often conical in 
shape, and because the now diverges, the thrust derived from the 
nozzle is less than it would be if the exit velocity were everywhere 
parallel to the nozzle axis. By considering the flow through the 
spherical section suspended by the cone and assuming that the 
exit pressure is equal to the atmospheric pressure, show that the 
thrust is given by 

. (I + cosa) 
T= mV---­

c 2 

where r'n is the mass flow through the nozzle, V, is the exit 
velocity, and a is the nozzle half-angle. 

n~~~-_:.v, 
~~-------L --

A I 

I -------):: 

PROBLE\1 6.22 

Applying the Momentum Equation to Vanes (§6.4) 

6.23 ;JI•s Detem1ine the external reactions in the x- andy-directions 
needed to hold this fixed vane, which turns the oil jet (S = 0.9) in a 
horizontal plane. Here VI is 22 m/s, v2 = 21 m/s, and Q = 0.15 m3

/ S. 

r 
U1l (S ~ 0.90) 

l'ROBI.I .Vt~ 6 2.~. 6.2~ 



6.24 Solve Prob. 6.23 for V1 = 70 ft/s, V2 = 65 ft/s, and 
Q = 1.5 cfs. 

6.25 Qs 'lhis planar water jet (60°F) is deflected by a fixed 
vane. What are the x- andy-components of force per unit width 
needed to hold the vane stationary? Neglect gravity. 

1)()0 

0.2

1
ft 

--'4.:;..0.;c.ft...:;s ____ _ -
~------' 

0.1 ft 

PROBLEM 6.25 

6.26 ~sA water jet with a speed of 30ft/sand a mass flow rate 
of 35lbm/s is turned 30° by a fixed vane. Find the force of the 
water jet on the vane. Neglect gravity. 

PROBI.L\1 6.26 

Co 3 6.27 GO Water (p = 1000 kg/m ) strikes a block as shown and 
is deflected 30°. The flow rate of the water is 1.5 kg/s, and the inlet 
velocity is V = 10 m/s. The mass of the block is I kg. The 
coefficient of static friction between the block and the surface 
is 0.1 (friction force/normal force). If the force parallel to the 
surface exceeds the frictional fo rce, the block will move. 
Determine the force on the block and whether the block will 
move. Neglect the weight of the water. 

___ ' '~ ----------~~ 
PROBLI:M~ 6.27, 6.28 
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6.28 For the situation described in Prob. 6.27, find the 
maximum inlet velocity ( V) such that the block will not slip. 

6 .29 2-s Plate A is 50 em in diameter and has a sharp-edged 
ori~ce at its center. A water jet (at !0°C) strikes the plate 
concentrically with a speed of 90 m/s. What external force is 
needed to hold the plate in place if the jet issuing from the 
orifice also has a speed of 90 m/s? ·n1e diameters of the jets arc 
D - I 0 em and d = 3.5 em. 

/) 

I' - d 

PROBI EM 6.29 

6.30 A two-dimensional liquid jet impinges on a vertical wall. 
Assuming that the incoming jet speed is the same as the exiting 
jet speed ( V1 = V2), derive an expression for the force per unit 
width of jet exerted on the wall. What form do you think the 
upper liquid surface will take next to the wall? Sketch the shape 
you think it will take, and explain your reasons for drawing it 
that way. 

I"""'' 

PROBLEM 6.30 

6.31 Ms A cone that is held stable by a wire is free to move in 
the vertical direction and has a jet of water (at I 0°C) striking 
it from below. The cone weighs 30 N . The initial speed of the 
jet as it comes from the orifice is IS m/ s, and the initial jet 



diameter is 2 em. Find the height to which the cone will rise and 
remain stationary. Note: The wire is only for stability and should 
not enter into your calculations. 

Wire for 

h =? 

PROBLD-f 6 . .31 

6.32 A horizontal jet of water (at l0°C) that is 6 em in diameter 
and has a velocity of 20 m/s is deflected by the vane as shown. 
Tf the vane is moving at a rate of 7 mls in the x-direction, what 
components of force are exerted on the vane by the water in 
the x- andy-directions? Assume negligible friction between the 
water and the vane. 

v,. -
~-:-X 

PROBLEM 6.32 

~ 
6.33 PLUS A vane on this moving cart deflects a IS-em-
diameter water (p = 1000 kg/m3

) jet as shown. The initial 
speed of the water in the jet is 50 m/s, and the cart moves at a 
speed of 3 m/s. If the vane splits the jet so that half goes one 
way and half the other, what force is exerted on the vane by 
the water? 

6.34 Refer to the carl of Prob. 6.33. Tf the cart speed is 
constant at 5 ft/s, and if the initial jet speed is 60 ft/s, and jet 
diameter= 0.15 ft, what is the rolling resistance of the cart? 
(p = 62.41bm/ft 1) 

50 m /s 

!Scm 
diamelor 

Elevation view 

3m s 

-L 

Plan v1ew 

PROBLEM~ 6.33, 6.34 

6.35 fL"U's TI1e water (p = 1000 kg/m3
) in this jet has a speed 

of 60 m/s to the right and is deflected by a cone that is moving 
to the left with a speed of 5 m/s. The diameter of the jet is 

10 em. Determine the external horizontal force needed to move 
the cone. Assume negligible friction between the water and 
the vane. 

6 .36 TI1is two-dimensional water (at 50°F) jet is deflected by the 
two-dimensional vane, which is moving to the right with a speed 
of 60 ft/s. The initial jet is 0.30 ft thick (vertical dimension), and 
its speed is 100 ft/s. What power per foot of the jet (normal to 

the page) is transmitted to the vane? 

PROH1 .E~1S 6.35, 6.j6 

6.37 Ms Assume that the scoop shown, which is 20 em wide, 
is used as a braking device for studying deceleration effects, 
such as those on space vehicles. Tf the scoop is attached to a 
1000 kg sled that is initially traveling horizontally at the rate of 
100 m/s, what will be the initial deceleration of the sled? The 
£COOp dips into the water 8 em (d = 8 em). (T = l0°C.) 



PROBLEM 6.37 

6.38 This snowplow "cleans" a swath of snow that is 4 in. deep 
(d = 4 in.) and 2ft wide (B = 2 ft). The snow leaves the blade 
in the direction indicated in the sketches. Neglecting friction 
between the snow and the blade, estimate the power required 
for just the snow removal if the speed of the snowplow is 40 ft/s. 

Plan view 

PROBLEM 6.3R 

6.39 ~A finite span alrfoil can be regarded as a vane as 
shown in the figure. "The cross section of air affected is equal to 
the circle with the diameter of the wing span, b. The wing 
deflects the air by an angle a and produces a force normal to the 
free-stream velocity, the lift L, and in the free-stream direction, 
the drag D. The airspeed is unchanged. Calculate the lift and 
drag for a 30ft wing span in a 300 ft/s airstream at 14.7 psia 
and 60°F for flow deflection of2°. 

- ' ~ 
Side view 

PROBLEM 6.39 
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6.40 The "clam shell" thrust reverser sketched in the figure is 
often used to decelerate aircraft on landing. The sketch shows 
normal operation (a) and when deployed (b). The vanes are 
oriented 20° with respect to the vertical. The mass flow through 
the engine is 150 lbm/s, the inlet velocity is 300 ft/s, and the exit 
velocity is 1400 ft/s. Assume that when the thrust reverser is 
deployed, the exit velocity of the exhaust is unchanged. Assume 
the engine is stationary. Calculate the thrust under normal 
operation (lbf) and when the thrust reverser is deployed. 

Uo -
(a) 

(b) 

PROBLEM 6.40 

Applying the Momentum Equation to Nozzles (§6.4) 

6.41 Firehoses are fitted with special nozzles. Use the Internet 
or contact your local fire department to find information on 
operational conditions and typical hose and nozzle sizes used. 

6.42 flVs High-speed water jets are used for speciality cutting 
applications. The pressure in the chamber is approximately 
60,000 psig. Using the Bernoulli equation, estimate the water 
speed exiting the nozzle exhausting to atmospheric pressure. 
Neglect compressibility effects and assume a water temperature 
of 60°F. 

6.43 ms Water at 60°F flows through a nozzle that contracts 
from a diameter of 3 in. to 1 in. "fl1e pressure at section 1 is 
2500 psfg, and atmospheric pressure prevails at the exit of the jet. 
Calculate the speed of the flow at the nozzle exit and the force 
required to hold the nozzle stationary. Neglect weight. 

6.44 ~Water at 15°C flows through a nozzle that contracts 
from a diameter of 10 em to 2 em. The exit speed is v2 = 25 m/s, 
and atmospheric pressure prevails at the exit of the jet. Calculate 
the pressure at section 1 and the force required to hold the nozzle 
stationary. Neglect weight. 

~@-
CD 

PROBLEMS 6.43, 6.44 



244 CHAPTER 6 • MOMENTUM EQUATION 

6.45 Ms Water (at 50°f) flows through this nozzle at a rate 
of 20 cfs and discharges into the atmosphere. D 1 = 26 in., and 
D2 = 9 in. Determine the force required at the flange to 
hold the nozzle in place. Assume irrotational flow. Neglect 
gravitational forces. 

6.46 Solve Prob. 6.45 using the fo!Iowing values: Q = 0.30 m3/s, 
D 1 = 30 em, and D2 = I 0 em. (p = 1000 kg/m3

.) 

PRORI.E.\1S 6.45, 6..!6 

6.47 Pds This"double" nozzle discharges water {p = 62.41bm/ff) 
into the atmosphere at a rate of 16 cfs. If the nozzle is lying in a 
horizontal plane, what x-component of force acting through the 
flange bolts is required to hold the nozzle in place? Note: Assume 
irrotational flow, and assume the water speed in each jet to be the 
same. Jet A is 4 in. in diameter, jet B is 4.5 in. in diameter, and 
the pipe is 1 ft in diameter. 

6.48 This "double" nozzle discharges water (at l0°C) into the 
atmosphere at a rate of 0.65 m 3/s. If the nozzle is lying in a 
horizontal plane, what x-component of force acting through the 
flange bolts is required to hold the nozzle in place? Note: Assume 
irrotational flow, and assume the water speed in each jet to be the 
same. Jet A is 8 em in diameter, jet B is 9 em in diameter, and the 
pipe is 30 em in diameter. 

PROl\U· MS 6.47, 6.4/l 

6 .49 ;-(U-s A rocket-nozzle designer is concerned about the force 
required to hold the nozzle section on the body of a rocket. The 
nozzle section is shaped as shown in the figme. The pressure 
and velocity at the entrance to the nozzle are 1.5 MPa and 
100 m /s. The exit pressure and velocity are 80 kPa and 2000 m /s. 
The mass flow through the nozzle is 220 kgls. 1l1e atmospheric 
pressure is 100 kPa. The rocket is not accelerating. Calculate 
the force on the nozzle-chamber connection. Note: The given 
pressures are absolute. 

PROBII :'116.49 

6.50 A 15 em nozzle is bolted with six bolts to the flange of a 
30 em pipe. If water (p = I 000 kglm3

) discharges from the 
nozzle into the atmosphere, calculate the tension load in 
each bolt when the pressure in the pipe is 200 kPa. Assume 
irrotational flow. 

6.51 Water (p = 62.4lbm/ft3
) is discharged from the two­

dimensional slot shown at the rate of 8 cfs per foot of slot. 
Determine the pressure pat the gage and the water force per foot 
on the vertical end plates A and C. The slot and jet dimensions B 
and bare 8 in. and 4 in., respectively. 

6.52 Water (at l0°C} is discharged from the two-dimensional 
slot shown at the rate of 0.40 m3/s per meter of slot. Determine 
the pressure p at the gage and the water force per meter on the 
vertical end plates A and C. The slot and jet dimensions R and b 
are 20 em and 7 em, respectively. 

c Qp 
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PROl\l.b\IS 6.51. 6.52 

-

6.53 This spray head discharges water (p = 62.4 lbm/ft1
) at a 

rate of 4 ft3/s. Assuming irrotational flow and an efflux speed of 
65 ft/s in the free jet, determine what force acting through the 
bolts of the flange is needed to keep the spray head on the 6 in. 
pipe. Neglect gravitational forces. 

t 
PROBLEM 6.SJ 



6.54 Two circular water (p = 62.4 lbm/ fe) jets of 0.5 in. diameter 
(d = 0.5 in.) issue from this unusual nozzle. If the effiux speed is 
80.2 ft/s, what force is required at the flange to hold the nozzle in 
place? The pressure in the 4 in. pipe (D = 3.5 in.) is 50 psig. 

PRO HI I- \1 6.34 

6.55 Liquid (S = 1.2) enters the "black sphere" through a 2 in. 
pipe with velocity of 50 ft/s and a pressure of 60 psi g. It leaves the 
sphere through two jets as shown. The velocity in the vertical jet 
is 100 ft /s, and its diameter is 1 in. The other jet's diameter is also 
I in. What force through the 2 in. pipe wall is required in the 
x- andy-directions to hold the sphere in place? Assume the 
sphere plus the liquid inside it weighs 200 lbf. 

6.56 -;;- Liquid (S = 1.5) enters the "black sphere" through a 5 
em pipe with a velocity of 10 m/s and a pressure of 400 kPa. It 

leaves the sphere through two jets as shown. The velocity in the 
vertical jet is 30 m/s, and its diameter is 25 mm. The other jet's 
diameter is also 25 mm. What force through the 5 em pipe wall is 
required in the x- andy-directions to hold the sphere in place? 
Assume the sphere plus the liquid inside it weighs 600 N. 

"Black sphere" 

Jet 

PRORU .. \IS 6.55, 6.56 

Applying the Momentum Equation to Pipe Bends (§6.4) 

6.57 itU"s A hot gas stream enters a uniform-diameter return 
bend as shown. The entrance velocity is 100 ft/s, the gas 
density is 0.02lbm/tr, and the mass flow rate is 1 lbm/s. Water 
is sprayed into the duct to cool the gas down. The gas exits with 
a density of 0.06 lbm/ft3

. The mass flow of water into the gas is 
negligible. The pressures at the entrance and exit are the same 
and equal to the atmospheric pressure. Find the force required 
to hold the bend. 

100 t\ s -
-
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PROHLfM 6.57 

6.58 Assume that the gage pressure p is the same at sections 1 
and 2 in the horizontal bend shown in the figure. The fluid 
flowing in the bend has density p, discharge Q, and velocity V. 
The cross-sectional area of the pipe is A. Then the magnitude of 
the force (neglecting gravity) required at the flanges to hold the 
bend in place will be (a) pA, (b) pA + pQV, (c) 2pA + pQV, or 
(d) 2pA + 2pQV. 

6.59 ~s The pipe shown has a 180° vertical bend in it. The 

dian1eter Dis 1 ft, and the pressure at the center of the upper 
pipe is 15 psig. If the flow in the bend is 20 cfs, what external 
force will be required to hold the bend in place against the 
action of the water? The bend weighs 200 lbf, and the volume 
of the bend is 3 ft3

. Assume the Bernoulli equaliC'n applies. 
(p = 62.4 lbm/ft3

. ) 

6.60 The pipe shown has a 180° horizontal bend in it as shown, 
and Dis 20 em. The discharge of water (p = I 000 kglm3

) in the 
pipe and bend is 0.35 m3/s, and the pressure in the pipe and bend 
is 100 kPa gage.lf the bend volume is 0.10 m3, and the bend itself 

weighs 400 N, what force must be applied at the flanges to hold 
the bend in place? 

6.61 Set up the solution for Problem 6.60, and answer the 
following questions: 

a. Do the two pressure forces from the inlet and exit act 
in the same direction, or in opposite directions? 

b. for the data given, which term has the larger magnitude 
(in N), the pressure force term, or the net momentum 
flux term? 

-- D 

- D 

PROBLHIS 6.5~, 659, 6.60, 6.61 
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6.62 Water (at 50°F) flows in the 90° horizontal bend at a rate of 
12 cfs and discharges into the atmosphere past the downstream 
flange. The pipe diameter is 1 ft. What force must be applied at 
the upstream flange to hold the bend in place? Assume that the 
volume of water downstream of the upstream flange is 4 ft3 and 
that the bend and pipe weigh 100 lbf. Assume the pressure at the 
inlet section is 4 psig. 

6.63 lfCl!s The gage pressure throughout the horizontal90° 
pipe bend is 300 kPa. If the pipe diameter is 1 m and the water 
(at l0°C) flow rate is 10 m3/s, what x-component of force must 
be applied to the bend to hold it in place against the water 
action? 

r 
- -x 

PROUI EMS fi.fi2, 6.fi3 

6.64 This 30° vertical bend in a pipe with a 2ft diameter carries 
water (p = 62.4 lbm/ft3

) at a rate of 31.4 cfs. If the pressure p1 is 
10 psi at the lower end of the bend, where the elevation is 100 ft, 
and p2 is 8.5 psi at the upper end, where the elevation is 103 ft, 
what will be the vertical component of force that must be exerted 
by the "anchor" on the bend to hold it in position? The bend 
itself weighs 300 lb, and the length Lis 4ft. 

Expansion joints to 
eliminate force transfer 
between pipe and 
bend 

Flow direction 

PROBLEM 6.64 

6.65 ~ This bend discharges water (p = 1000 kg/m3
) into 

the atmosphere. Determine the force components at the flange 
required to hold the bend in place. The bend lies in a horizontal 
plane. Assume viscous forces are negligible. The interior volume 
of the bend is 0.25 m3

, Dt = 60 em, D2 = 30 em, and V2 = 10 m/s. 
The mass of the bend material is 250 kg. 

r I 

1\6o• 
--~~ _ _\ __ 

I 
I 

- x 

p- 0 gage 

PROBLEM 6.65 

6.66 Ms This nozzle bends the flow from vertically upward to 
30° with the horizontal and discharges water ( 'Y = 62.4lbf/ ft3

) at 
a speed of V = 130 ft/s. The volume within the nozzle itself is 
1.8 ftl, and the weight of the nozzle is 100 lbf. For these conditions, 
what vertical force must be applied to the nozzle at the flange to 
hold it in place? 

Venical f 

Volume = 1.8 ft3 

A = t.o n2 

PROBLEM 6.66 

6.67 A pipe 1 ft in diameter bends through an angle of 135°. The 
velocity of flow of gasoline (S = 0.8) is 20 ft/s, and the pressure is 
10 psig in the bend. What external force is required to hold the 
bend against the action of the gasoline? Neglect the gravitational 
force. 

6.68 frVs A 6 in. horizontal pipe has a 180° bend in it. If the 
rate of flow of water (60°F) in the bend is 2 cfs and the pressure 
therein is 20 psig, what external force in the original direction of 
flow is required to hold the bend in place? 

6.69 A pipe 15 em in diameter bends through 135°. The velocity 
of flow of gasoline (S = 0.8) is 8 m/s, and the pressure is 100 kPa 
gage throughout the bend. Neglecting gravitational force, 
determine the external force required to hold the bend against 
the action of the gasoline. 

6.70 A horizontal reducing bend turns the flow of water 
(p = 1000 kg/m3

) through 60°. The inlet area is 0.001 m2
, and the 

outlet area is 0.0001 m2
• The water from the outlet discharges into 

the atmosphere with a velocity of 50 m/s. What horizontal force 
(parallel to the initial flow direction) acting through the metal of 
the bend at the inlet is required to hold tl1e bend in place? 



6.71 Water (at 10°C) flows in a duct as shown. The inlet water 

velocity is 10 m/s. The cross-sectional area of the duct is 0.1 m2
• 

Water is injected normal to the duct wall at the rate of 500 kg/s 
midway between stations 1 and 2. Neglect frictional forces on the 
duct wall. Calculate the pressure difference (p1 - p 2) between 
stations I and 2. 

(i) 0 r Venicnl 
"'-------~ 

IOm/s -

~ 
A-0.10m

2 It I 
500 kg/s 

PRORT f\1 6.~1 

-

6.72 Ms For this wye fitting, which lies in a horizontal plane, 
the cross-sectional areas at sections I, 2, and 3 are I ft2, 1 ft2, 

and 0.25 fe, respectively. At these same respective sections the 
pressures are 1000 psfg, 900 psfg, and 0 psfg, and the water 
discharges are 20 cfs to the right, 12 cfs to the right, and exits to 
atmosphere at 8 cfs. What x-component of force would have to 
be applied to the wyc to hold it in place? 

- r 

PROBLI:.:V! 6.72 

6.73 Water (p = 62.4lbm/ft3
) flows through a horiwntal bend 

and T section as shown. The mass flow rate entering at section 
a is 12lbm/s, and those exiting at sections band care 6lbm/s each. 
The pressure at section a is 5 psi g. The pressure at the two outlets is 
atmospheric. The cross-sectional areas of the pipes are the same: 5 in2

. 

Find the x-component of force necessary to restrain the section. 

6.74 Water (p = 1000 kg/ m 3
) flows through a horizontal bend 

and T section as shown. At section a the flow enters with a 
velocity of 6 m/s, and the pressure is 4.8 kPa. At both sections b 
and c the flow exits the device with a velocity of 3 m/s, and the 
pressure at these sections is atmospheric (p = 0). The cross­

sectional areas at a, b, and care all the same: 0.20 m2
• Find the 

x- andy-components of force necessary to restrain the section. 

PRORT FMS 6.73, 6.74 
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6.75 For this horizontal T through which water (p = 1000 kg!m3) 

is flowing, the following data arc given: Q1 = 0.25 m 3/s, 
Q2 = 0.10 m3/s, p 1 = 100 kPa,p2 = 70 kPa,p3 = 80 kPa, 
D 1 = I 5 em, D2 = 7 em, and D3 = 15 em. For these conditions, 
what external force in the x-y plane (through the bolts or other 
supporting devices) is needed to hold the Tin place? 

PROBLEM 6.75 

Applying Momentum Equation: Other Situations (§6.4) 
6.76 rc;- Firehoses can break windows. A 0.2-m diameter (D1) 

firehose is attached to a nozzle with a 0.1 m diameter (d2) outlet. 
The free jet from the nozzle is deflected by 90° when it hits the 
window as shown. Find the force the window must withstand 

due to the impact of the jet when water flows through the 
firehose at a rate of 0.15 m3/s. 

6.77 ~S A fireman is soaking a home that is dangerously close 
to a burning building. To prevent water damage to the inside of the 

neighboring home, he throttles down his flow rate so that it will 
not break windows. Assuming the typical window should be able 
to withstand a force up to 25 lbf, what is the largest volumetric 
flow rate he should allow (gal/min.), given an 8-inch diameter 
(D1) firehose discharging through a nozzle with 4-inch diameter 
(d2) outlet. 1be free jet from the nozzle is deflected by 90° when 
it hits the window as shown. 

l 
/ Window 

PROBLEMS 6.16, 6.77 
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6.78 For laminar flow in a pipe, wall shear stress (-r0) causes the 
velocity distribution to change from uniform to parabolic as 
shown. At the fully developed section (section 2), the velocity is 
distributed as follows: u = Umax ll - (r/ r0) 2]. Derive a formula for 
the force on the wall due to shear stress, FT. between 1 and 2 as a 
function of U (the mean velocity in the pipe), p,p1,p2, and D 
(the pipe diameter). 

ro 
PROBLb\16.78 

r 
- x 

-.;-:-... . 
6.79 PLUS The propeller on a swamp boat produces a slipstream 
3ft in diameter with a velocity relative to the boat of 100 ft/ s.If 
the air temperattrre is 80°F, what is the propulsive force when the 
boat is not moving and also when its forward speed is 30 ft!s? 
Hint: Assume that the pressure, except in the immediate vicinity 
of the propeller, is atmospheric. 

I'ROHL£:\.1 6.79 

6.80 Ms A wind turbine is operating in a 12 m/s wind that has 
a density of 1.2 kglm3

• The diameter of the turbine silhouette 
is 4 m. The constant-pressure (atmospheric) streamline has 
a diameter of 3 m upstream of the windmill and 4.5 m 
downstream. Assume that the velocity distributions are uniform 
and the air is incompressible. Determine the thrust on the wind 
turbine. 

PROBLEM 6.80 

6.81 Ms The figure illustrates the principle of the jet pump. 
Derive a formula for p2 - p 1 as a function of D

1
, ~· D0 , V0, and p. 

Assume that the fluid from the jet and the fluid initiaiiy flowing 
in the pipe are the same, and assume that they are completely 
mixed at section 2, so that the velocity is uniform across that 
section. Also asswne that the pressures are uniform across both 
sections I and 2. What is p2 - p1 if the fluid is water, A/ Ao = 1/3, 
~ = IS m/s, and V0 = 2 m/s? Neglect shear stress. 

,..., 

PROTli.E:Vf 6.111 

6.82 Jet-type pumps are sometimes used to circulate the flow in 
basins in which fish are being reared. The use of a jet-type pump 
eliminates the need for mechanical machinery that might be 
injurious to the fish. -nle accompanying figure shows the basic 
concept for this type of application. for this type of basin the jets 
would have to increase the water surface elevation by an amount 
equal to 6 V 2/2g, where Vis the average velocity in the basin 
(1 ft/s as shown in this example). Propose a basic design for a jet 
system that would make such a recirculating system work for a 
channel 8ft wide and 4 ft deep. That is, determine the speed, 
size, and number of jets. 

Noale and jet 

Rfl 

Plan view 

A 
_j 

Channel 

---L----~------L-_noor 

View A-A 
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6.83 An engineer is measuring the lift and drag on a wind 
turbine blade section mounted in a two-dimensional wind 
tunnel.l11e wind tunnel is 0.5 m high and 0.5 m deep (into the 
paper). The upstream wind velocity is uniform at 10 m/s, and the 
downstream velocity is 12 m/s and 8 m/s as shown. The vertical 
component of velocity is zero at both stations. 'I he test section is 
I m long. 'lhe engineer measures the pressure distribution in the 
tunnel along the upper and lower walls and finds 

p., = 100 - lOx - 20x( I - x)(Pa gage) 

P1 = 100 - lOx + 20x(J - x)(Pa gage) 

where xis the distance in meters measured from the beginning 
of the test section. The gas density is homogeneous throughout 
and equal to 1.2 kg/m3

• The lift and drag are the vectors indicated 
on the figure. The forces acting on the fluid are in the opposite 
direction to these vectors. Find the lift and drag forces acting 
on the wind turbine blade section. 



IOm/s-
f 
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_j 0.25m 
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1 0.2f m 
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PROBLEM 6.1!3 

6.84 PUS A torpedolike device is tested in a wind tunnel with 
an air density of 0.0026 slugs/ft3. The tunnel is 3ft in diameter, 
the upstream pressure is 0.24 psig, and the downstream 
pressure is 0.10 psig.lf the mean air velocity Vis 120 ft/s, 
what are the mass rate of flow and the maximum velocity at 
the downstream section at C? If the pressure is assumed to be 
uniform across the sections at A and C, what is the drag of the 
device and support vanes? Assume viscous resistance at the 
walls is negligible. 

PROBLeM 6.84 

6.85 A ramjet operates by taking in air at the inlet, providing 
fuel for combustion, and exhausting the hot air through the exit. 
The mass flow at the inlet and outlet of the ramjet is 60 kg/s (the 
mass flow rate of fuel is negligible). The inlet velocity is 225 m/s. 
The density of the gases at the exit is 0.25 kg/m ', and the exit area 
is 0.5 m2• Calculate the thrust delivered by the ramjet. The ramjet 
is not accelerating, and the flow within the ramjet is steady. 

v .. - I 
I 
I 
I 

Combustion zone 

\ I 
> ~ I 
> I 

> I 

> I 
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6.86 fL'Js A modern turbofan engine in a commercial jet 
take~ in air, part of which passes through the compressors, 
combustion chambers, and turbine, and the rest of which 
bypasses the compressor and is accelerated by the fans. The 
mass flow rate of bypass air to the mass flow rate through the 
compressor-combustor-turbine path is called the "bypass ratio.» 
The total flow rate of air entering a turbofan is 300 kg!s with a 
velocity of 300 m/s. The engine has a bypass ratio of 2.5. 
The bypass air exits at 600 m/s, whereas the air through the 
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compressor- combustor-turbine path exits at 1000 m/s. What is the 
thrust of the turbofan engine? Clearly show your control volume 
and application of momentum equation. 

Applying Momentum Equation to Moving CVs (§6.5) 

6.87 Using the Internet or some other source as reference, define 
in your own words the meaning of"inertial reference frame:' 

6.88 TI1e surface of the earth is not a true inertial reference 
frame because there is a centripetal acceleration due to the 
earth's rotation. The earth rotates once every 24 hours and has 
a diameter of 8000 miles. What is the centripetal acceleration 
on the surface of the earth, and how does it compare to the 
gravitational acceleration? 

6.89 A large tank of liquid is resting on a frictionless plane as 
shown. Explain in a qualitative way what will happen after the 
cap is removed from the short pipe. 

6. 90 ~s The open water tank shown is resting on a frictionless 
plane. The capped orifice on the side has a 4-cm diameter exit 
pipe that is located 3m below the surface of the water. Ignore all 
friction effects, and determine the force necessary to keep the 
tank from moving when the cap is removed. 

PROBLI:.~!S 6.89, 6.90 

6.91 Consider a tank of water (p = 1000 kg/m3
) in a container 

that rests on a sled. A high pressure is maintained by a 
compressor so that a jet of water leaving the tank horizontally 
from an orifice does so at a constant speed of 25 m/s relative to 
the tank. If there is 0.10 m3 of water in the tank at timet and the 
diameter of the jet is IS mm, what will be the acceleration of the 
sled at timet if the empty tank and compressor have a weight of 
350 N and the coefficient of friction between the sled and the ice 
is 0.05? 

6.92 ;(U-s A cart is moving along a railroad track at a constant 
velocity of 5 m/s as shown. Water (p = 1000 kg!m') issues from a 
nozzle at 10 rn/s and is deflected through 180° by a vane on the 
cart. The cross-sectional area of the nozzle is 0.002 m2

. Calculate 
the resistive force on the cart. 
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5 mls is valid for the water flow inside the rocket. Neglecting air 
==::o=::==~~--~ friction, calculate the maximum velocity it will attain. 

PROBLLM 6.92 

6.93 A water jet is used to accelerate a cart as shown. The 
discharge (Q) from the jet is 0.1 m 3/s, and the velocity of the 
jet('\.';) is 10 m/s. When the water hits the cart, it is deflected 
normally as shown. The mass of the cart (M) is 10 kg. The 
density of water (p) is 1000 kg/m 3.1l1ere is no resistance on the 
cart, and the initial velocity of the cart is zero. The mass of the 
water in the jet is much less than the mass of the cart. Derive 
an equation for the acceleration of the cart as a function of Q, p. 

~. M, and V;. Evaluate the acceleration of the cart when the 
velocity isS m/s. 

6.94 PWs A water jet strikes a cart as shown. After striking the 
cart, the water is deflected vertically with respect to the cart. The 
cart is initially at rest and is accelerated by the water jet. The 
mass in the water jet is much less than that of the cart. There is 
no resistance on the cart. The mass flow rate from the jet is 4S kgls. 
The mass of the cart is I 00 kg. Find the time required for the cart 
to achieve a speed one-half of the jet speed. 

PRORI.E~IS 6.93, 6.94 

6.95 It is common practice in rocket trajectory analyses to 
neglect the body-force term and drag, so the velocity at burnout 
is given by 

T Mo 
V00 =-In-

>-. Ml 

Assuming a thrust-to-mass-flow ratio of 3000 N · s/kg and a final 
mass of SO kg, calculate the initial mass needed to establish the 
rocket in an earth orbit at a velocity of 7200 m/s. 

6.96 A very popular toy on the market several years ago was the 
water rocket. Water (at 1 0°C) was loaded into a plastic rocket and 
pressurized with a hand pump. The rocket was released and 
would travel a considerable distance in the air. Assume that a 
water rocket has a mass of SO g and is charged with 100 g of 
water. The pressure inside the rocket is 100 kPa gage. The exit 
area is one-tenth of the chamber cross-sectional area. The inside 
diameter of the rocket is S em. Assume that Bernoulli's equation 

5cm 
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The Angular Momentum Equation (§6.6) 

6.97 ~s Water (p = I 000 kg/m3
) is discharged from the slot in 

the pipe as shown. If the resulting two-dimensional jet is 100 em 
long and 1S mm thick, and if the pressure at section A-A is 30 kPa, 
what is the reaction at section A-A? In this calculation, do not 
consider the weight of the pipe. 

Diameter- 8 em 

Diameter - 5 em 

~---- IOO cm----~ 

1-------- 130 em - -------1 

Elevation view 

r 
() 

l'lan view 
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6.98 Two small liquid-propellant rocket motors are mounted at 
the tips of a helicopter rotor to augment power under emergency 
conditions. The diameter of the helicopter rotor is 7 m, and it 
rotates at 1 rev/s. The air enters at the tip speed of the rotor, and 
exhaust gases exit at SOO m/s with respect to the rocket motor. 
The intake area of each motor is 20 cm2

, and the air density is 
1.2 kg/m3

. Calculate the power provided by the rocket motors. 
Neglect the mass rate of Aow of fuel in this calculation. 

v. v I 

t 
4 

~ 
0 0 
t ~ 
v, v, 
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6.99 Design a rotating lawn sprinkler to deliver 0.25 in. of 
water per hour over a circle of 50ft radius. Make the simplifying 
assumptions that the pressure to the sprinkler is 50 psig and 
that frictional effects involving the flow of water through the 
sprinkler flow passages are negligible (the Bernoulli equation 
is applicable). However, do not neglect the friction between 
the rotating element and the fixed base of the sprinkler. 

6.100 '?fils What is the force and moment reaction at section I? 
Water (at 50°f) is flowing in the system. Neglect gravitational 
forces. 

30° 

CD p~20psi 

1------ 36m. - - - --i 
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6.101 What is the reaction at section I? Water (p = 1000 kg/m3
) 

is flowing, and the axes of the two jets lie in a vertical plane. The 
pipe and nozzle system weighs 90 N. 

r ~60o .. , A-O.Oim
2 

CD p - 200 kPa ,, r V- 20 m/s 

I 
Pipe area {i-----------
- O.l0m2 Q __ ,, - T 

<L-----------~ A - 0.02 m2 

1------ 100 em ---- ..j I 20 m/; 
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6.102 A reducing pipe bend is held in place by a pedestal as 
shown. There are expansion joints at sections I and 2, so no force 

PROBLEMS 251 

is transmitted through the pipe past these sections. The pressure 
at section 1 is 20 psig, and the rate of flow of water (p = 62.4lbm/ftl) 
is 2 cfs. Find the force and moment that must be applied at 
section 3 to hold the bend stationary. Assume the flow is 
irrotational, and neglect the influence of gravity. 

6 in. diameter 

4 m. diameter 

PROR! EM 6. 102 

6.103 A centrifugal fan is used to pump air. The fan rotor is 1ft 
in diameter, and the blade spacing is 2 in. The air enters with no 
angular momentum and exits radially with respect to the fan 
rotor. The discharge is 1500 cfm. The rotor spins at 3600 rev/min. 
The air is at atmospheric pressure and a temperature of 60°F. 
Neglect the compressibility of the air. Calculate the power (hp) 
required to operate the fan. 

PROBLI:.~l 6.103 



THE ENERGY 
EQUATION 

Turbine 

FIGURE 7.1 

The energy equation can be applied to hydroelectric 
power generation In addition, the energy equation can be 
applied to thousands of other applications. It is one of the 
most useful equations in fluid mechanics. 
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J Chapter Road Map j 

This chapter describes how conservation of energy 
can be applied to a flowing fluid. The resulting 
equation is called the energy equation. 

J Learning Objectives I 
STUDENTS WILL BE ABLE TO 

• Explain the meaning of energy, work, and power. (§7.1) 

• Classify energy into categories. (§7.1) 

• Define a pump and a turbine. (§7.1) 

• Explain conservation of energy for a closed system 
and a CV. (§7.2) 

• List the steps to derive the energy equation. (§7.3) 

• Explain flow work and shah work. (§7.3) 

• Define head loss and the kinetic energy correction factor. 
(§7.3) 

• Describe the physics of the energy equation and the 
meaning of the variables that appear in the equation. 
Describe the process for applying the energy equation. 
Apply the energy equation. 1§7.3) 

• Apply the power equation. (§7.4) 

• Define mechanical efficiency and apply this concept. 
(§7.5) 

• Contrast the energy equation and the Bernoulli equation. 
(§7.6) 

• Calculate head loss for a sudden expansion. (§7.7) 

• Explain the conceptual foundahons of the energy grade 
line and hydraulic grade line. Sketch these lines. (§7.8) 



SECTION 7.1 ENERGY CONCEPTS 253 

7. 1 Energy Concepts 

The energy equation is built on foundational concepts that are introduced in this section. 

Energy 

Energy is the property of a system that characterizes the amount of work that this system can 
do on its environment. In simple terms, if matter (i.e., the system) can be used to lift a weight, 
then that matter has energy. 

Examples 

• Water behind a dam has energy because the water can be directed through a pipe (i.e., a 
penstock), then used to rotate a wheel (i.e., a water turbine) that lifts a weight. Of course 
this work can also rotate the shaft of an electrical generator, which is used to produce 
electrical power. 

• Wind has energy because the wind can pass across a set of blades (e.g., a windmill), rotate 
the blades, and lift a weight that is attached to a rotating shaft. 1his shaft can also do work 
to rotate the shaft of an electrical generator. 

• Gasoline has energy because it can be placed into a cylinder (e.g., a gas engine), burned 
and expanded to move a piston in a cylinder. This moving cylinder can then be connected 
to a mechanism that is used to lift a weight 

The SI unit of energy, the joule, is the energy associated with a force of one newton act ­
ing through a distance of one meter. For example, if a person with a weight of 700 newtons 
travels up a 10-meter flight of stairs, their gravitational potential energy has changed by 
1PE = (700 N)(lO m) = 700 N · m = 700 J. In traditional units, the unit of energy, the foot-pound­
force (lbf) is defined as energy associated with a force of 1.0 lbf moving through a distance of 1.0 foot 

Another way to define a unit of energy is describe the heating of water. A small calorie 
(cal) is the amount of energy required to increase the temperature of 1.0 gram of water by 1 °C. 
The unit conversion between small calories and joules is 1.0 cal = 4.187 J. The large calorie 
(Cal), is the amount of energy to raise 1.0 kg of water by l 0 C. Thus, 1.0 Cal = 4187 J. The large 
calorie is used in the United States to characterize the energy in food. Thus, a food item with 
100 calories has an energy content of0.4187 MJ. Energy in the traditional system is often mea­
sured using the British thermal unit (Btu). One Btu is the amount of energy required to raise 
the temperature of 1.0 Ibm of water by 1.0°F. 

Energy can be classified into categories. 

• Mechanical Energy. This is the energy associated with motion {i.e., kinetic energy) plus 
the energy associated with position in a field. Regarding position in a field, this refers to 
position in a gravitational field {i.e., gravitational potential energy) and to deflection of 
an elastic object such as a spring {i.e., spring potential energy). 

• Thermal Energy. This is energy associated with temperature changes and phase changes. 
For example, select a system comprised of 1 kg of ice {about 1liter). The energy to melt 
the ice is 334 kJ. The energy to raise the temperature of the liquid water from 0°C to I 00°C 
is 419 kJ. 

• Chemical Energy. This is the energy associated with chemical bonds between elements. 
For example, when methane (CH4 ) is burned, there is a chemical reaction that involves the 
breaking of the bonds in the methane and formation of new bonds to produce C02 and 
water. This chemical reaction releases heat, which is another way of saying the chemical 
energy is converted to thermal energy during combustion. 
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FIGURE 7.2 

(a) In a spray bottle, a 
piston pump does work 
on the fluid , thereby 
increasing the energy of 
the liquid (b) For a wind 
turb1ne, the air does work 
on the blade, thereby 
allowing the w ind turbine 
to be used to produce 
electrical power. 

• Electrical Energy. This is the energy associated with electrical change. For example, a 
charged capacitor contains the amount of electrical energy tl.E = l/2 CV2 where Cis 
capacitance and V is voltage. 

• Nuclear Energy. This is energy associated with the binding of the particles in the nucleus 
of an atom. For example, when the uranium atom divides into two other atoms during 
fission, energy is released. 

Work 

Work is done on a system when a force acts on the system over a distance. In the absence of 
completing effects, the effect of work is to increase the energy of the system. 

EXAMPLE. For the spray bottle in Fig. 7.2a, work is done when a finger acts through a 
distance as the trigger is displaced. Work is also done by the piston as it exerts a force on the 
liquid as the piston is displaced. The magnitude of work done W can be evaluated using. 

i
s, 

W= F·ds 
s, 

(7.1) 

where s is position, and F is force. The effect of this work is to increase the energy of the 
system in several ways: water is lifted through a elevation, thereby increasing its potential 
energy, and water is sprayed out the nozzle, thereby increasi ng its kinetic energy. 

Spray Rerum 

(b) 

(a) 

EXAMPLE. For the wind turbine in Fig 7.2b, work is done by air that exerts a force on the 
blades and causes the blades to rotate through a distance. 

Work has the same units as energy: joules or newton-meters in SI and ft -lbf in traditional 
units. 

Power 

Power, which expresses a rate of work or energy, is defined by 

quantity of work (or energy) . tl W . 
P = = hm -- = W 

interval oftime <\t->O tlt 
{7.2) 
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Equation (7.2) is defined at an instant in time because power can vary with time. To calculate 
power, engineers use several different equations. For rectilinear motion, such as a car or bicycle, 
the amount of work is the product of force and displacement 6. W = F!lx: Then, power can be 
found using 

F!lx 
P = lim--= FV 

At-+0 flt 

where Vis the velocity of the moving body. 

(7.3a) 

When a shaft is rotating (Fig. 7.2b), the amount of work is given by the product of torque 
and angular displacement 6. W = Ttl e. In this case, the power equation is 

T6.6 
P = lim -- = Tw 

Al-+0 flt 

where w is the angular speed. The SI units of angular speed are rad/s. 

(7.3b) 

Because power has units of energy per time, the SI unit is a joule/second, which is called 
a watt. Common units for power are the watt (W), horsepower (hp), and the ft-lbf/s. Some 
typical values of power: 

• A incandescent lightbulb can use 60 to 100 ]Is of energy. 

• A well-conditioned athlete can sustain a power output of about 300 ]Is for an hour. This is 
about four-tenths of a horsepower. The horsepower is the approximate power that a draft 
horse can supply. 

• A typical midsize car (2011 Toyota Camry) has a rated power of 126 kW (169 hp). 

• A large hydroelectric facility (i.e., Bonneville Dam on the Columbia River 40 miles east of 
Portland, Oregon) has a rated power of I 080 MW. 

Pumps and Turbines 

A turbine is a machine that is used to extract energy from a flowing fluid.* Examples of 
turbines include the horizontal-axis wind turbine shown in Fig. 7.2b, the gas turbine, the Kaplan 
turbine, the Francis turbine, and the Pelton wheel. 

A pump is a machine that is used to provide energy to a flowing fluid. Examples of pumps 
include the piston pump shown in Fig. 7.2a, the centrifugal pump, the diaphragm pump, and 
the gear pump. 

7.2 Conservation of Energy 

When James Prescott Joule died, his obituary in The Electrical Engineer (I) stated that 

Very few indeed who read this announcement will realize how great of a man has passed 
away; and yet it must be admitted by those most competent to judge that his name must be 
classed among the greatest original workers in science. 

Joule was a brewer who did science as a hobby, yet he formulated one of the most important 
scientific laws ever developed. However, Joule's theory of conservation of energy was so 

' The engine on a jet, which is called a gas turbine, is a notable exception. The jet engine adds energy to a flowing flu1d, 
thereby increasing the momentum of a fluid jet and producing thrust. 

255 
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FIGURE 7.3 

The law of conservation of 
energy for a closed system. 

controversial that he could not get a scientific journal to publish it. So his theory first ap­
peared in a local Manchester newspaper (2). What a fine example of persistence! Nowadays, 
Joule's ideas about work and energy are foundational to engineering. This section introduces 
Joule's theory. 

Joule's Theory of Energy Conservation 

Joule recognized that the energy of a closed system can be changed in only two ways. 

• Work. The energy of the system can be changed by work interactions at the boundary. 

• Heat Transfer. The energy of the system can change by heat transfer across the boundary. 
Heat transfer can be defined as the transfer of thermal energy from hot to cold by 
mechanisms of conduction, convection, and radiation. 

Joule's idea of energy conservation is illustrated in Fig. 7.3. The system is represented by 
the blue box. The scale on the left side of the figure represents the quantity of energy in the 
system. The arrows on the right side illustrate that energy can increase or decrease via work or 
heat transfer interactions. Note that energy is a property of a system, whereas work and heat 
transfer are interactions that occur on system boundaries. 

• - - - - -_;.-- Energy into the system 
; :_ If' ; (by work or by heat tmnsfer) 
I :.. I 

Amount of ene'b'Y '\l,.':. 1 

in the 'Y>lem 1 _ ___ .':":;- Energy out of the system 

(by " "'k or hy heat transfer) 

The work and energy balance proposed by Joule is captured with an equation called the first 
law of thermodynamics: 

.lE Q w 

{ 

increase in } { amount of energy } { amount of energy} 
energy stored = that entered system - that left system 

in the system by heat transfer due to work 

(7.4) 

Terms in Eq. (7.4) have units of joules, and the equation is applied during a time interval when 
the system undergoes a process to move from state l to state 2. To modify Eq. (7.4) so that it 
applies at an instant in time, take the derivative to give 

dE . · 
-= Q- w 
dt 

(7.5) 

Eq. (7.5) applies at an instant in time and has units of joules per second or watts. The work 
and time terms have sign conventions: 

• W and W are positive if work is done by the system on the surroundings. 

• Wand Ware negative if work is done by the surroundings on the system. 

• Q and Q are positive if heat (i.e., thermal energy) is transferred into the system. 

• Q and Q are negative if heat (i.e., thermal energy) is transferred out of the system. 
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vCHECKPOINT PROBLEM 7.1 

A battery is used to power a DC motor, which is then used to drive a centrifugal pump. For the 
indicated system, which statements are true? Circle all that apply. Assume steady state operation. 

a. W > O 

b. W < O 

c.Q > O 

d.Q <O 
dE 

e. -> 0 
dt 
dE 

f.dt < O 

Control Volume {Open System) 

t Water out 

Centrifugal 
pump 

Eq. (7.5) applies to a closed system. To extend it to a CV, apply the Reynolds transport theorem 
Eq. (5.23). Let the extensive property be energy (B,y, = E), and let b = e to obtain 

0 0 d f f Q - W = dt epd¥ + ep V • dA 
cv cs 

(7.6) 

where e is energy per mass in the fluid. Eq. (7.6) is the general form of conservation of energy 
for a control volume. However, most problems in fluid mechanics can be solved with a simpler 
form of this equation. This simpler equation will be derived in the next section. 

7.3 The Energy Equation 

This section shows how to simplify Eq. (7.6) to a form that is convenient for problems that 
occur in fluid mechanics. 

Select Eq. (7.6). Then, let e = ek + ep + u where ek is the kinetic energy per unit mass, ep is 
the gravitational potential energy per unit mass, and u is the internal energy* per unit mass. 

0 ° df f Q- W = dt (ek + ep + u)pd-¥ + (ek + ep + u)pV · dA 
cv cs 

(7.7) 

Next, lett 

kinetic energy of a fluid particle 
ek = = 

mass of this fluid particle 
(7.8) 

Similarly, let 

gravitational potential energy of a fluid particle mgz 
ep = mass of this fluid particle = --;;;- = gz (7.9) 

*By definition, internal energy contains all forms of energy that are not kinetic energy or gravitational potential energy. 
' It is assumed that the control surface is not accelerating. so V, which is referenced to the control surface, is also 
referenced to an inertial reference frame. 
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FIGURE 7.4 

Sketch for deriving 
flow work. 

where z is the elevation measured relative to a datum. When Eqs. (7.8) and (7.9) are substituted 
into Eq. (7.7), the result is 

Q - W = :ti (~2 

+ gz + u)pd¥+ i (~2 

+ gz + u)pv · dA (7.10) 
CV a 

Shaft and Flow Work 
To simplify the work term in Eq. (7.10), classify work into two categories: 

(work) = (flow work) + (shaft work) 

When the work is associated with a pressure force, then the work is called flow work. Alterna­
tively, shaft work is any work that is not associated with a pressure force. Shaft work is usually 
done through a shaft (from which the term originates) and is commonly associated with a 
pwnp or turbine. According to the sign convention for work, pump work is negative. Similarly, 
turbine work is positive. 1hus, 

. . . . . 
W ,haft = W turbincs - W pumps = W, - WP (7.11) 

To derive an equation for flow work, use the idea that work equals force times distance. 
Begin the derivation by defining a control volume situated inside a converging pipe (Fig. 7.4). 
At section 2, the fluid that is inside the control volume will push on the fluid that is outside the 
control volume. The magnitude of the pushing force is p2A2• During a time interval tlt, the 
displacement of the fluid at section 2 is tlx2 = V2tlt. Thus, the amount of work is 

Control surface 

----------, 

--
I 
I ____ .! ___ _ 

Convert the amount of work given by Eq. (7.12) into a rate of work: 

· . tl Wz (P2) . (Pz) w2 = hm A = PzAzVz = - (pA 2Vz) = m -
.:lt->0 ut p p 

(7.12) 

(7.13) 

This work is positive because the fluid inside the control volume is doing work on the environ­
ment. In a similar manner, the flow work at section 1 is negative and is given by 

· . (P1) W1 = - m p 

The net flow work for the situation pictured in Fig. 7.4 is 

· · · . (P2) . (P1) 
W flow = w2 + W I = m p - m p ' (7.14) 
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Equation (7 .14) can be generalized to a situation involving multiple streams of fluid passing 
across a control surface: 

· "' . (Pout) "' . (Pin) Wnow = L.J m out - - L.J m in -
outlets r inlets p 

(7.15) 

To develop a general equation for flow work, use integrals to account for velocity and pressure 
variations on the control surface. Also, use the dot product to account for flow direction. The 
general equation for flow work is 

Waow= L(~)pV·dA (7.16) 

In summary, the work term is the sum of flow work [Eq. (7.16)] and shaft work [Eq. (7.11)]: 

w = Wnow + w shaft = (L (~ )r v . dA) + Wshaft (7.17) 

Introduce the work term from Eq. (7.17) into Eq. (7.10) and let Wshaft = W, 

. . I p Q - W, - p p V · dA 
cs (7.18) 

In Eq. (7.18), combine the last term on the left side with the last term on the right side: 

Q- W, = :t I (~2 

+ gz + u )pdV + I (~
2 

+ gz + u + ~)pv · dA (7.19) 
cv cs 

Replace p/p + u by the specific enthalpy, h. The integral form of the energy principle is 

Q- W,= :tf (~2 

+gz+ u)pdV+ I (~
2 

+gz+h)pV ·dA (7.20) 
CV <.;S 

Kinetic Energy Correction Factor 

The next simplification is to extract the velocity terms out of the integrals on the right side of 
Eq. (7.20). This is done by introducing the kinetic energy correction factor. 

Figure 7.5 shows fluid that is pumped through a pipe. At sections I and 2, kinetic energy 
is transported across the control surface by the flowing fluid. To derive an equation for this 
kinetic energy, start with the mass flow rate equation. 

m = pA v = J P v dA 
A 

This integral can be conceptualized as adding up the mass of each fluid particle that is 
crossing the section area and then dividing by the time interval associated with this cross­
ing. To convert this integral to kinetic energy (KE), multiply the mass of each fluid particle 
by (V2/2). 

{ 

Rate ofKE } 
transported = 

across a section 
I (v

2
) I pV

3
dA pV - dA= --

A 2 A 2 
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FIGURE 7.5 

Flow carries kinetic energy 
into and out of a control 
volume. 

.. . . 

Control ' 
surface~: 

I 

t _______ , 

' I 

--zl(j~·k '""" 
transported 
across the cs 

The kinetic energy correction factor is defined as 

actual KE/time that crosses a section 
a ~ ----------------------------------------

KE/ time by assuming a uniform velocity distribution 

For a constant density fluid, this equation simplifies to 

I pV 3dA 

A 2 

v
3

J -- pdA 
2 A 

(7.21) 

For theoretical development, a is found by integrating the velocity profile using Eq. (7.2 1). 
This approach, illustrated in Example 7.1, is a lot of work. Thus in application, engineers com­
monly estimate a value of a. Some guidelines are listed here. 

EXAMPLE 7.1 

• For fully developed laminar flow in a pipe, the velocity distribution is parabolic. Use 
a ~ 2.0 because this is the correct value as shown by Example 7.1. 

• For fully developed turbulent flow in a pipe, a :, 1.05 because the velocity profile is 
plug! ike. Use a = 1.0 for this case. 

• For flow at the exit of a nozzle or converging section, use a = 1.0 because converging flow 
leads to a uniform velocity profile. This is why wind tunnels use converging sections. 

• For a uniform flow such as air flow in a wind tunnel or air flow incident on a wind 
turbine, use a = 1.0. 

Define the Situation 

Calculating the Kinetic Energy Correction Factor 
for laminar Flow 

There is laminar flow in a round pipe. 

Problem Statement 

The velocity distribution for laminar flow in a pipe is given 
by the equation 

where V max is the velocity in the center of the pipe, r0 

is the radius of the pipe, and r is the radial distance from 
the center. Find the kinetic-energy correction factor a. 

-Flow 

State tbe Goal 

a .. Find the kinetic-energy correction factor (no units) 



Generate Ideas and Make a Plan 

Because the goal is a, apply the definition given by 
Eq. (7.21). 

a= ±L(vt)JdA 
Eq. (a) has one known (A) and two unknowns (dA, V). To 
find dA use Fig. 5.3 (see page 175). 

dA = 2mdr 

To find V, apply the flow rate equation, 

- 1 J 1 rf~r. 
V = - V(r)dA = -

2 
V(r)2Tirdr 

A A 'ITTo r-o 
Now the problem is cracked. There are thr~e equations and 
three unknowns. The plan is: 

1. Find the mean velocity V using Eq. (c) 

2 . Plug V into Eq. (a) and integrate 

Take Action (Execute the Plan) 

1. Flow Rate Equation (find mean velocity) 

V =~[I'' Vmax(l - r:)2'1Trdr] 
Tiro o ro 

(a) 

(b) 

(c) 

= 
2~~, .. [r(l- :~)rdr] = 

2~~""[r(, _ ~;)dr] 
= 2V;..,.[(c _~)I'']= 2V,;, .. ['~ _ r~ ] = vm .. 12 

r 0 2 4r 0 0 r 0 2 4 

Last Steps of the Derivation 
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2. Definition of a 

1 [J(V(r))3 

] 1 [i'' ] a = A A V dA = Tir~ yJ 
0 

V(r)3 2m dr 

1 [I'•[ ( r2)]
3 

] = 2 3 Vmax 1- --z 2Tirdr 
'lTro( V max/2) 0 r o 

16 [I'"( r2)
3 

] = r& o I - rB rdr 

To evaluate the integral, make a change of variable by letting 
u = (I - r2/r~) . The integral becomes 

Review the Solution and the Process 

I. Knowledge. Laminar fully developed flow in a round pipe is 
called Poiseuille flow. Useful facts: 

• The velocity profile is parabolic. 

• The mean velocity is one-half of the maximum 

(centerline) velocity: v = vm .. 12. 

• The kinetic energy correction factor is a = 2. 

2. Knowledge. In practice, engineers commonly estimate a. 

The purpose of this example is to illustrate how to 
calculate a . 

Now that the KE correction factor is available, the derivation of the energy equation may be com­
pleted. Begin by applying Eq. (7.20) to the control volume shown in Fig. 7.5. Assume steady flow 
and that velocity is normal to the control surfaces. Then, Eq. (7.20) simplifies to: 

(7.22) 

Assume that piezometric head ply + z is constant across sections I and 2. * If temperature is also 
assumed constant across each section, then p/p + gz + u can be taken outside the integral to yield 

(7.23) 

*Euler 's equation can be used to show that pressure variation normal to rectilinear streamlines is hydrostatic. 
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FIGURE 7.6 

The energy balance for 
a CV when the energy 
equation is applied. 

W pump< -=-t---L !Vrurl>mos 
I I . 

. r) CV r--+ Enow 

Enow ------c.. . 
Energy into 
CV by flow 
and pumps 

£head loss 

Energy out of CV 
by flow, turbines, 
and head loss 

Next, factor out I p v dA = p VA = m from each term in Eq. (7.23). Because m does not ap­
pear as a factor of f(pV 3!2)dA, express f (pV3/2)dA as a(pV3/2)A, where a is the kinetic 
energy correction factor: 

. · PI v . P2 v2 . ( -2) ( -2) 
Q - W5 + p + gz1 + ui + a1-;f m = p + gz2 + U2 + a2 2 m (7.24) 

Divide through by m: 
-2 -2 

1 · · PI Vt Pz Vz 
-:-(Q- W,) +- + gz1 + ui + a 1- =- + gz2 + u2 + a 2- (7.25) 
m p 2 p 2 

Introduce Eq. (7.11 ) into Eq. (7.25}: 

Wp PI v~ w, P2 vi Uz - u l -.- + - + z1 + a 1- = -.- +- + z2 + a 2 - + -'----
mg "Y 2g mg 'Y 2g g 

Introduce pump head and turbine head: 

WP work/time done by pump on flow 
Pump head = h = - = ------.:......::..-~--

P mg weight/time of flowing fluid 

Q 
mg 

w, 
Turbine head = h, = . 

mg 

work/time done by flow on turbine 

weight/time of flowing fluid 

Equation (7.26) becomes: 

p, V~ Pz vi [ l Q ] - = ai- + zi + hp = - + a 2 - + z2 + h, + - (u2 - u1) - -.­
'Y 2g 'Y 2g g mg 

(7.26) 

(7.27) 

(7.28) 

Equation (7.28) is separated into terms that represent mechanical energy (nonbracketed 
terms) and terms that represent thermal energy (the bracketed term). This bracketed term is 
always positive because of the second law of thermodynamics. This term is called head loss and 
is represented by hL. Head loss is the conversion of useful mechanical energy to waste thermal 
energy through viscous action. Head loss is analogous to thermal energy (heat) that is pro­
duced by Coulomb friction. When the bracketed term is replaced by head loss hv Eq. {7.28) 
becomes the energy equation. 

(7.29) 

Physical Interpretation of the Energy Equation 

The energy equation describes an energy balance for a control volume (Fig. 7.6). The inflows 
of energy are balanced with the outflows of energy.* Regarding inflows, energy can be trans­
ported across the control surface by the flowing fluid or a pump can do work on the fluid and 
thereby add energy to the fluid. Regarding outflows, energy within the flow can be used to do 
work on a turbine, energy can be transported across the control surface by the flowing fluid, or 
mechanical energy can be converted to waste thermal heat via head loss. 

*The term "~0.," includes a work term, namely flow work. Remember that energy is a property of a system, whereas 
work and heat transfer are interactions that occur on system boundaries. Here, we are using the term "energy balance" 
to describe (energy terms) + (work terms)+ (heat transfer terms). 
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The energy balance can also be expressed using head: 

( 

press~re head ) (pump) ( press~re head ) (turbine) (head) 
velocity head + h d = veloctty head + h d + 

1 ea ea oss 
elevation head 1 elevation head 2 

Head can be thought of as the ratio of energy to weight for a fluid particle. Or, head can describe the 
energy per time that is passing across a section because head and power are related by P = mgh . 

.-I CHECKPOINT PROBLEM 7.2 

As shown, a pump moves water from a lower reservoir to a 

higher reservoir. The pipe has a constant diameter. Which state­
ments are true? (circle all that apply) 

a. Pressure head at I is zero. 

b. Pressure head at 2 is zero. 

c. Velocity head at 1 > velocity head at 2. 

d. Velocity head at 2 < velocity head at 1. 

e. Pump head is negative. 

f. Pump head is positive. 

g. Head loss is positive. 

h. Head loss is negative. 

Working Equations 

- Elevation = I 00 m 

Table 7.1 summarizes the energy equation, its variables, and the main assumptions. 

TABLE 7.1 Summary of the Energy Equation 

Description 

The energy equation has 
only one form. 

Major assumptions 

• Steady state; no energy 
accumulation in CV 

• CV has one inlet and 

one oudet 
• Constant density flow 
• All thermal energy 

terms (except for head 
loss) can be neglected. 

• Streamlines are 
straight and parallel at 
each section 

• 'Iemperature is constant 
across each section. 

Equation 

( 

-2 ) P2 V 2 
- + ex2 - + Zz + h, + lzL 
'Y 2g 

Eq. (7.29) 

Terms 

(

P V2 ) (ener~/weight transported) 
+ ex - + z = mto or out of cv 

'Y 2g 
by fluid flow 

pl-y = pressure head at cs (m ) 

v2 
ex - = velocity head at cs (m) 

2g 
(ex = kinetic energy (KE) correction factor at cs) 
(a -= 1.0 for turbulent flow) 
(a = 1.0 for nozzles) 
(ex = 2.0 for full-developed laminar flow in round pipe) 

z = elevation head at cs (m) 

hp = head added by a pump (m) 
h, = head removed by a turbine (m) 

hL = head loss (m) 
(to predict head loss, apply Eq. (10.45)) 
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The process for applying the energy equation is 

Step 1. Selection. Select the continuity equation when the problem involves pumps, tur­
bine, or head loss. Check to ensure that the assumptions used to derive the energy equa­
tion are satisfied. The assumptions are steady flow, one inlet port and one outlet port, 
constant density, and negligible thermal energy terms (except for head loss). 

Step 2. CV Selection. Select and label section 1 (inlet port) and section 2 (outlet port). Locate 
sections l and 2 where (a) you know information or (b) where you want information. By 
convention, engineers usually do not sketch a CV when applying the energy equation. 

Step 3. Analysis. Write the general form of the energy equation. Conduct a term-by-term 
analysis. Simplify the general equation to the reduced equation. 

Step 4. Validation. Check units. Check the physics: (head in via fluid flow and pump) = 

(head out via fluid flow, turbine, and head loss) 

EXAMPLE 7.2 

Applying the Energy Equation to Predict the Speed 
of Water in a Pipe Connected to a Reservoir 

Problem Statement 

A horizontal pipe carries cooling water at l0°C for a thermal 
power plant. lhe head loss in the pipe is 

0.02(L/D)V2 

hL = - ..:..___:._ 
2g 

where L is the length of the pipe from the reservoir to the 
point in question, Vis the mean velocity in the pipe, and Dis 
the diameter of the pipe.lfthe pipe diameter is 20 em and the 
rate of flow is 0.06 m1/s, what is the pressure in tl1e pipe at 
L = 2000 m. Assume a2 = l. 

1----.;i"~--i- Elevation - 100m 

Elevation -20m 
/ 

I 

Define the Situation 

Water flows in a system. 

L ~ 2000m 
I 

(!) I " r D - 0.2 m L vl 
so m I r h1.- o.oz"Dzg 

Darum ~=======:=:t:=:;==::;=--+ '--- --'' _j Q- 0.06 m
3
/s 

I--- L • 2000 m 

CD 

Assumptions: 
• ().2 = 1.0 

• Steady Flow 

Water (10°C, 1 atm., Table A.S): 'Y = 9810 N/m3 

Stale the Goal 

p2(kPa) +- Pressure at section 2 

Generate Ideas and Make a Plan 

Select the energy equation because (a) the situation involves 
water flowing through a pipe, and (b) the energy equation 
contains the goal (p2) . Locate section I at the surface and 
section 2 at the location where we want to know pressure. 
The plan is to: 

I. Write the general form of the energy equation (7.29) 

2. Analyze each term in the energy equation. 

3. Solve for p2• 

Take Action (Execute the Plan) 

I. Energy equation (general form) 

p, v: P2 vi 
+ a,- + z1 + hp =- + a2 - + z2 + h, + hL 

'Y 2g 'Y 2g 
2. Term-by-term analysis 

• p1 = 0 because the pressure at top of a reservoir is 
p.,, = 0 gage. 

• V1 "'- 0 because the level of the reservoir is constant or 
changing very slowly. 

• z1 = 100m; z2 = 20m. 

hp = h, = 0 because there are no pumps or turbines in 
the system. 

• Hnd V2 using the flow rate equation (5.3). 

Q 0.06 m3/ s 
V2 = - = ( )( )2 = 1.910 m/s A Tr/4 0.2 m 



• Head loss is 

0.02(L/ D) V 2 

hL = _ __.:..._..;__ 
2g 

= 37.2 m 

3. Combine steps 1 and 2. 

0.02(2000 m/ 0.2 m)(L910 m/s)2 

2(9.81 m/s2
) 

~z 

Pz V z 
(z1 - Zz) = - + az- + hL 

-y 2g 

p2 (1.910 m/s)2 

80 m = - + 1.0 ( 2) + 37.2 m 
-y 2 9.81 m/ s 

P2 
80 m = - + (0.186 m) + (37.2 m) 

-y 

p2 = -y(42.6 m) = (9810 N/ m3)(42.6 m) = 1418 k.Pa I 

7.4 The Power Equation 
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Review the Solution and the Process 

I. Skill. Notice that section 1 was set at the free surface 
because properties are known there. Section 2 was set 
where we want to find information. 

2. Knowledge. Regarding selection of an equation, we could 
have chosen the Bernoulli equation. However, it would 
have been a lousy choice because the Bernoulli equation 
assumes inviscid flow. 

• Key Idea: Select the Bernoulli equation if viscous effects 
can be neglected; select the energy equation if viscous 
effects are significant 

• Rule of Thumb: When fluid is flowing through a pipe that 
is more than about five diameters long, i.e., (LID > 5), 
viscous effects are significant. 

Depending on context, engineers use various equations for calculating power. This section 
shows how to calculate power associated with pumps and turbines. An equation for pump 
power follows from the definition of pump head given in Eq. (7 .27): 

wp = -yQhp = rrlghp (7.30a} 

Similarly, the power delivered from a flow to a turbine is 

(7.30b) 

Equations (7.30a) and (7.30b) can be generalized to give an equation for calculating power 
associated with a pump or turbine. 

P = mgh = -yQh (7.31) 

Equations for calculating power are summarized in Table 7.2. 
You can try out the equations in Table 7.2 in the next checkpoint problem. 

TABLE 7.2 Summary of the Power Equation 

Description 

Rectilinear motion of an object such as an airplane, 
a submarine, or a car 

Rotational motion such as a shaft driving a pump or 
an output shaft from a turbine 

Power supplied from a pump to a flowing fluid 

Power supplied from a flowing fluid to a turbine 

Equation 

P = FV 

P = Tw 

P = rr1gh = -vQh 

Terms 

(7.3a) P = power (W) 
F = force doing work (N) 
V = speed of object (m/s) 

(7.3b) T = torque (N · m) 

(7.31 ) 

w = angular speed (rad/s) 

m = mass flow rate through machine (kg/s) 
g = gravitational constant= 9.81 (m/s2

) 

h = head of pump or head of turbine (m) 
-y = specific weight (N/m3

) 

Q =volume flow rate (m3/s) 
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vCHECKPOINT PROBLEM 7.3 

The shaft on a centrifugal pump is spinning at a rate of 
3500 rpm. The pump discharge is 20 gpm, and the 
pump head is 40ft. What is the torque in the shaft of the 
pump in units of ft-lbf? [Assume that the mechanical 
efficiency of the pump is 100% }. 

t 

+-- Water, 20 gpm 

a. 0.0032 

b. 0.30 

c. 9.80 

d. 27.2 

EXAMPLE 7.3 

Applying the Energy Equation to Calculate the Power 
Required by a Pump 

Problem Statement 

A pipe 50 em in diameter carries water ( l 0°C} at a rate of 0.5 
m3/s. A pump in the pipe is used to move the water from an 
elevation of 30 m to 40 m. The pressure at section 1 is 70 kPa 
gage, and the pressure at section 2 is 350 kPa gage. What power 
in kilowatts and in horsepower must be supplied to the flow by 
the pump? Assume hL = 3 m of water and a 1 = a 2 = I. 

Define the Situation 

Water is being pumped through a system. 

Water 

z1 ~30m 
p 1 = 70 kPu gage 
a 1= 1.0 

CD 

Q- 0.5 mlfs 

\._Pipe 

z2 = 40 m 
p2 - 350 kPa gage 
a 2 -I.O 

D=O.Sm 
head loss in p1pe - 3 m 

Water (10°C, 1 atm., Table A.S): 'Y = 9810 N/m3 

State the Goal 

P(W and hp) .. Power the pump is supplying to the water in 
units of watts and horsepower. 

Generate Ideas and Make a Plan 

Because this problem involves water being pumped through a 
system, it is an energy equation problem. However, the goal is 

~ Centrifugal pump 
(adds 40ft of head) 

to find power, so the power equation will also be needed. The 
steps are 

I. Write the energy equation between section I and section 2. 

2. Analyze each term in the energy equation. 

3. Calculate the head of the pump hp. 

4. Find the power by applying the power equation (7.30a). 

Take Action (Execute the Plan) 

1. Energy equation (general form) 

P• 1/~ P2 vi 
+ a 1- + z1 + hp =- + a 2 - + z2 + h, + hL 

'Y 2g 'Y 2g 

2. Term-by-term analysis 

• Velocity head cancels because V1 = V2• 

• h, = 0 because there are no turbines in the system. 

• All other head terms are given. 

• Inserting terms into the general equation gives 

Pt P1 
- + Z1 + hp = - + z2 + hL 

'Y 'Y 

3. Pump head (from step 2) 

(
P2- P•) hp- - 'Y- + (z2 - z1) + h1 

(
(350,000 - 70,000) N/m2

) 
= 3 + (10m) + (3m) 

9810 N/ m 

= (28.S m) +( 10m)+ (3 m) = 41.5m 

Physics: The head provided by the pump (41.5 m) is 
balanced by the increase in pressure head (28.5 m) plus the 
increase in elevation head (10m) plus the head loss (3m). 

4. Power equation 

p = -yQhp 

= (9810 N/m3)(0.5 m3/s)(41.5 m) 

= j2o4kw l = (204kW)(o.~~6h~) = [2nii] 
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FIGURE 7.8 

The energy flow through 
a pump that is powered 
by on electric motor. 

FIGURE 7.9 

The energy flow associated 
with generating electrical 
power from a wind turbine. 

Similarly, the efficiency of the pump is 

Tlpump = (450 Jls)l(750 Jls) = 0.60 = 60% 

and the combined efficiency is 

Tlcombmcd = (450 Jls)l( lOOO ]Is)= 0.45 = 45% 

EXAMPLE. Suppose that wind incident on a wind turbine contains 1000 ]Is of energy as 
shown in Fig. 7.9. Because a wind turbine cannot extract all the energy and because oflosses, 
the work that the wind turbine does on its output shaft is 360 Jls. This power drives an electric 
generator, and the generator produces 324 Jls of electrical power, which is supplied to the 
power grid. Calculate the system efficiency and the efficiency of the components. 

The efficiency of the wind turbine is 

Tlwindturbine = (360 Jls)l(1000 ]Is) = 0.36 = 36% 

The efficiency of the electric generator is 

Tlr!cctricgenerator = (324 Jls)/(360 Jls) = 0.90 = 90% 

The combined efficiency is 

Tlcombined = (324 Jls)l(lOOO J/s) = 0.324 = 32.4% 

We can generalize the results of the last two examples to summarize the efficiency equa­
tions (Table 7.3). Example 7.4 shows how efficiency enters into a calculation of power. 

TABLE 7. 3 Summary of the Efficiency Equation 

Description Equation Terms 

Pump (7.33a) PP""'P = power that the pump supplies to 
the fluid (W) [Ppump = rnghp = 'YQhp] 

TJpump = efficiency of pump () 

P Wit = power that is supplied to the pump shaft (W) 

Turbine P wft = Tlrurbln• Pourbin• (7.33b}1 Pourbin• = power that the fluid supplies 
to a turbine (W) [Pturbm< = mgh, = 'YQit, I 

TJrurb!no = efficiency of turbine () 

P Wit = power that is supplied by the turbine shaft (W) 



EXAMPLE 7.4 

Applying the Energy Equation to Predict the Power 
Produced by a Turbine 

Problem Statement 

At the maximum rate of power generation, a small 
hydroelectric power plant takes a discharge of 14.1 m3/s 
through an elevation drop of 61 m. The head loss through the 
intakes, penstock, and outlet works is 1.5 m. The combined 
efficiency of the turbine and electrical generato r is 87%. 
What is the rate of power generation? 

Define the Situation 

A small hydroelectric plant is producing electrical power 

• Combined head loss: hL = 1.5 m 

• Combined efficiency (turbine/generator): 11 = 0.87 

• Water (10°C, 1 atm, Table A.5): -y = 98 10 N/m3 

State the Goal 

/Turbine/ 
{ generator 

....--'---, 

61 m 

Darum 

Poutpu1 from gcnenttor (MW) .. Power produced by generator 
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Generate Ideas and Make a Plan 

Because this problem involves a fluid system for producing 
power, select the energy equation. Because power is the goal, 
also select the power equation. The plan is 

1. Write the energy equation (7.29) between section 1 and 
section 2. 

2. Analyze each term in the energy equation. 

3. Solve for the head ofthe tu rbine h,. 

4. find the input power to the turbine using the power 
equation (7.30b). 

5. Find the output power from the generator by using the 
efficiency equation (7.33b ). 

Take Action (Execute the Plan) 

1. Energy equation (general form) 

2. Term-by-term analysis 

Velocity heads are negligible because V1 = 0 and V2 = 0. 

• Pressure heads are zero because p1 = p2 = 0 gage. 

• hp = 0 because there is no pump in the system. 

• Elevation head terms are given. 

3. Combine steps 1 and 2: 

h1 = (z1 - z2) - hL 

= (61 m) - (1.5 m) = 59.5 m 

Physics: Head supplied to the turbine (59.5 m) is equal to 
the net elevation change of the dam (61 m) minus the head 
loss ( 1.5 m). 

4. Power equation 

Plnpu1 w 1urbme = -yQh, = (9810N/ m3)(1 4.1 m3/s)(59.5m) 

= 8.23MW 

5. Efficiency equation 

P uulpulfromgenmlor = 11Pmpu1torurblnc = 0.87(8.23 MW) 

= [7.16MW/ 

Review the Solution and the Process 

1. Knowledge. Notice that sections I and 2 were located on the 
free surfaces. 1his is because information is known at these 
locations. 

2. Discussion. The maximum power that can be generated is a 
function of the elevation head and the flow rate. This 
maximum power is decreased by head loss and by energy 
losses in the turbine and the generato r. 
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7.6 Contrasting the Bernoulli Equation 
and the Energy Equation 

Although the Bernoulli equation (Eq. 4.2lb) and the energy equation (Eq. 7.29) have a similar 
form and several terms in common, they are not the same equation. This section explains the 
differences between these two equations. This information is important for conceptual under­
standing of these two important equations. 

The Bernoulli equation and the energy equation are derived in different ways. The Ber­
noulli equation was derived by applying Newton's second law to a particle and then integrating 
the resulting equation along a streamline. The energy equation was derived by starting with the 
first law of thermodynamics and then using the Reynolds transport theorem. Consequently, 
the Bernoulli equation involves only mechanical energy, whereas the energy equation includes 
both mechanical and thermal energy. 

The two equations have different methods of application. The Bernoulli equation is 
applied by selecting two points on a streamline and then equating terms at these points: 

Pt v? Pz v~ - + - + Zt = - + - + Zz 
'Y 2g 'Y 2g 

In addition, these two points can be anywhere in the flow field for the special case of irrota­
tional flow. The energy equation is applied by selecting an inlet section and an outlet section 
and then equating terms as they apply to a control volume located between the inlet and outlet: 

The two equations have different assumptions. The Bernoulli equation applies to steady, 
incompressible, and inviscid flow. The energy equation applies to steady, viscous, incompress­
ible flow in a pipe with additional energy being added through a pump or extracted through a 
turbine. 

Under special circumstances the energy equation can be reduced to the Bernoulli equa­
tion. lf the flow is inviscid, there is no head loss; that is, hL = 0. If the "pipe" is regarded as a 
small stream tube enclosing a streamline, then a = 1. There is no pump or turbine along a 
streamline, so hp = h1 = 0. In this case the energy equation is identical to the Bernoulli equa­
tion. Note that the energy equation cannot be derived by starting with the Bernoulli equation. 

Summary The energy equation is not the Bernoulli equation. However, both equations can be 
related to the law of conservation of energy. Thus, similar terms appear in each equation. 

7.7 Transitions 

The purpose of this section is to illustrate how the energy, momentum, and continuity equa­
tions can be used together to analyze (a} head loss for an abrupt expansion and (b) forces on 
transitions. 1hese results are useful for designing systems, especially those with large pipes 
such as the penstock in a dam. 

Abrupt Expansion 

An abrupt or sudden expansion in a pipe or duct is a change from a smaller section area to a 
larger section area as shown in Fig. 7.10. Notice that a confined jet of fluid from the smaller 
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_.- s 

pipe discharges into the larger pipe and creates a zone of separated flow. Because the stream­
lines in the jet are initially straight and parallel, the piezometric pressure distribution across 
the jet at section 1 will be uniform. 

To analyze the transition, apply the energy equation between sections 1 and 2: 

p, VT P2 Vf 
- + a, - + z1 = - + a 2 - + Z2 + hL 
-y 2g 'Y 2g 

Assume turbulent flow conditions so a 1 = a 2 ""' 1. The momentum equation is 

L F• = mV2 - mVt 

(7.34) 

~ext, let m = pA V and then identify the forces. Note that the shear force can be neglected 
because it is small relative to the pressure force. The momentum equation becomes 

or 

p,A2 - p2Az - -yA2L sin a = pVi A2 - pV~A 1 

Pt P2 Vi Vf A, 
--- - (z - z) =- - -­
'Y 'Y 2 I g g A 2 

(7.35) 

The continuity equation simplifies to 

(7.36) 

Combining Eqs. (7.34) to (7.36) gives an equation for the head loss hL caused by a sudden 
expansion: 

(7.37) 

If a pipe discharges fluid into a reservoir, then V2 = 0, and the head loss simplifies to 

v2 
hL =-

2g 

which is the velocity head in the pipe. This energy is dissipated by the viscous action of the 
fluid in the reservoir. 

............. 

FIGURE 7.10 

Flow through an abrupt 
expansion . 



Forces on Transitions 

To find forces on transitions in pipes, apply the momentum equation in combination with the 
energy equation, the flow rate equation, and the head loss equation. This approach is illustrated 
by Example 7.5. 

EXAMPLE 7.5 

Applying the Energy and Momentum Equations to Find 
Force on a Pipe Contraction 

Problem Statement 

A pipe 30 em in diameter carries water (I 0°C, 250 kPa) at a 
rate of 0.707 m3/s. The pipe contracts to a diameter of20 em. 
The head loss through the contraction is given by 

Vi 
h = 0. 1-

1. 2g 

where V2 is the velocity in the 20 em pipe. What horizontal 
force is required to hold the transition in place? Assume the 
kinetic energy correction factor is 1.0 at both the inlet 
and exit 

Define the Situation 

Water flows through a contraction. 

• a 1 = a 2 = 1.0 

• h1. = 0.1 ( V~/(2g)) 

D1 = 0.3 m D2=0.2 m 
p 1 = 250 kPa gage p2 = unknown 

Properties: Water (10°C, 1 atm., Table A.S): 
-y = 9810 N/ m3 

State the Goal 

Fx(N) .. Horizontal force acting on the contraction 

Generate Ideas and Make a Plan 

Because force is the goal, start with the momentum equation. 
To solve the momentum equation, we need p2• Find this with 
the energy equation. The step-by-step plan is 

1. Derive an equation for Fx by applying the momentum eqn. 

2. Derive an equation for p2 by applying the energy eqn. 

3. Calculate h 

4. Calculate F". 

Take Action (Execute the Plan) 

1. Momentum equation 

• Sketch a force diagram and a momentum diagram 

~ 
----+- : : ~ 
tirv1 ~ mV2 

• Write the x-direction momentum equation. 

p1A1 - PzA2 + Fx = mV2 - mV1 

• Rearrange to give 

2. Energy equation (from section I to section 2) 

• Leta 1 = a 2 = l ,z1 = z2,andhp = h, = 0 

• Eq. (7.29) simplifies to 

P vz p vz 
_2. + _2_ = 2 + .2 + hl 
"Y 2g "Y 2g 0 

• Rearrange to give 

3. Pressure at section 2. 

• Find velocities using the flow rate equation. 

V 
_ Q _ 0.707 m3/ s _ 

1--- - 10 m/s 
AI ('TT/4) X (0.3 m)2 

Q 0.707 m 3/ s 
V2 = - = = 22.5 m/s 

Az ('TT/4) X (0.2 m)2 

• Calculate head loss. 

0.1 v~ 0.1 x (22.5 m/s)2 

hL = -- = = 2.58 m 
2g 2 X (9.81 m/s2

) 



• Calculate pressure. 

P = P _ 'Y( v~ _ vf + h ) 
2 I 2g 2g L 

= 250 kPa - 9.81 kN/ m3 

( 
(22.5 m /s)2 (10 mls)2 

) 
X - + 2.58 m 

2(9.81 m /s2
) 2(9.81 m/s2

) 

= 21.6 kPa 
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4. Calculate Fx. 

Fx = pQ(V2- VI) + P2A2 - P1A1 

= (1000 kg/ m3)(0.707 m3/s)(22.5 - lO)(m / s) 

(
TI(0.2 m)2

) + (21,600 Pa) 
4 

- (250,000 Pa) 

X ( TI(O.: m?) 
= (8837 + 677- 17,670)N = -8.16kN 

I Fx = 8.16 kN acting to the left J 

This section introduces the hydraulic grade line (HGL) and the energy grade line (EGL), 
which are graphical representations that show head in a system. This visual approach pro­
vides insights and helps one locate and correct trouble spots in the system (usually points of 
low pressure). · 

The EGL, shown in Fig. 7.11, is a line that indicates the total head at each location in a 
system. The EGL is related to terms in the energy equation by 

EGL = + + = a - + - + z = (
velocity) (pressure) (elevation) V

2 
p (total) 

head head head 2g "{ head 
(7.38) 

Notice that total head, which characterizes the energy that is carried by a flowing fluid, is 
the sum of velocity head, the pressure head, and the elevation head. 

FIGURE 7.11 

EGL and HGL in a straight pipe. 

=z 

! 
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FIGURE 7.12 

Rise in EGL and HGL 
due to pump. 

FIGURE 7.13 

Drop in EGLand HGL 
due to turbine. 

The HGL, shown in Fig. 7.11, is a line that indicates the piezometric head at each location 
in a system: 

(
pressure) (elevation) p (piezometric) HGL = + =- + z = 

head head 'Y head 
(7.39) 

Because the HGL gives piezometric head, the HGL will be coincident with the liquid sur­
face in a piezometer as shown in Fig. 7.11. Similarly, the EGL will be coincident with the liquid 
surface in a stagnation tube. 

Tips for Drawing HGLs and EGLs 
I. In a lake or reservoir, the HGL and EGL will coincide with the liquid surface. Also, both 

the HGL and EGL will indicate piezometric head. 

2. A pump causes an abrupt rise in the EGL and HGL by adding energy to the flow. For 
example, see Fig. 7.12. 

3. For steady flow in a pipe of constant diameter and wall roughness, the slope (tlhLI IlL) of 
the EGLand the HGL will be constant. For example, see Fig. 7.11. 

----

Abrupt rise in 
EGL equal 

to hP 

----

EGL 

---\-- ----
hp \ 

HGL 

;]Pump-

4. Locate the HGL below the EGL by a distance of the velocity head (a V2/2g). 

5. Height of the EGL decreases in the flow direction unless a pump is present. 

6. A turbine causes an abrupt drop in the EGL and HGL by removing energy from the flow. 
For example, see Fig. 7. 13. 

!!GL and EGL 

h,. head given 
up to turbine 

Grndual expansion of conduit allows 
kinetic energy to be convened to p!1'ssure 
head with much smaller h1 at the outlet: ------1 

hence the HGL approaches tbe 1-.GL. 
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7. Power generated by a turbine can be increased by using a gradual expansion at the 
turbine outlet. As shown in Fig. 7.13, the expansion converts kinetic energy to pres­
sure. If the outlet to a reservoir is an abrupt expansion, as in Fig. 7.15, this kinetic 
energy is lost. 

8. When a pipe discharges into the atmosphere the HGL is coincident with the system be­
cause pl-y = 0 at these points. For example, in Figures 7. 14 and 7.16, the HGL in the liquid 
jet is drawn through the centerline of the jet. 

EGL 

I 
-'\-------~ 

' v2 HGL ' v2 _.- - increases because 
' lg 2g 

\ I dmmeter of condu!l d<:<:re~>. 
t causmg V to mcrease. --- ----~HGL 

..... 

9. When a flow passage changes diameter, the distance between the EGLand the HGL will 
change (see Fig. 7.14 and Fig. 7.15) because velocity changes. Tn addition, the slope on the 
EGL will change because the head loss per length will be larger in the conduit with the 
larger velocity (see Fig. 7.15). 

FIGURE 7.15 

Change in EGLand HGL due to change in diameter of pipe. 

HGLand EGL EGL 

HGL 

1,2 
Large 

2
g because 

'mailer p1pe here 

Steeper EGLand IIGL 
because greater hL 
per length of pipe 

lleJd loss 

10. If the HGL falls below the pipe, then pl-y is negative, indicating subatmospheric pressure 
(see Fig. 7 .16) and a potential location of cavitation. 

FIGURE 7.14 

Change in HGL and EGL 
due to flow through a 
nozzle. 
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FIGURE 7.16 

Subolmospheric pressure when pipe is above HGL 

HGL nnd C.GL 

y 

- .J ---1 __ _ -----

1 
v2 
2J1 

: = 0 

The recommended procedure for drawing an EGL and HGL is shown in Example 7.6. 
Notice how the tips from pp. 274-275 are applied. 

EXAMPLE 7.6 

Sketching the EGLand HGL for a Piping System 

Problem Statement 

A pump draws water (50°f ) from a reservoir, where the 
water-surface elevation is 520ft, and forces the water 
through a pipe 5000 ft long and 1 ft in diameter. This pipe 
then discharges the water into a reservoir with water-surface 
elevation of 620 ft. The flow rate is 7.85 cfs, and the head Joss 
in the pipe is given by 

h, = o.DI(~)(~;) 
Determine the head supplied by the pump, hp, and the power 
supplied to the flow, and draw the HGL and EGL for the 
system. Assume that the pipe is horizontal and is 510 ft in 
elevation. 

Define the Situation 

Water is pumped from a lower reservoir to a higher reservoir. 

• hL = 0.01 (~ )( ~;) 
• Water (50°F, 1 atm, Table A.S): 'Y = 62.4lbf/frl. 

Pump Q = 7.85 cf, 

Pipe, 0= I ft 

1--- L = SOOOfl-i 

State the Goals 

1. hp(ft) .. pump head 

2. P (hp) .. power supplied by the pump 

3. Draw the HGL and the EGL. 

Generate Ideas and Make a Plan 

Because pump head and power are goals, apply the energy 
equation and the power equation, respectively. The step-by-step 
plan is 

1. Locate section I and section 2 at top of the reservoirs (see 
sketch). Then, apply the energy equation (7.29). 

2. Calculate terms in the energy equation. 

3. Calculate power using the power equation (7.30a). 

4. Draw the HGL and EGL. 

Take Action (Execute the Plan) 

I. Energy equation (general form) 

• Velocity heads are negligible because V1 "" 0 and 

V2 "" o. 
Pressure heads are zero because p 1 = p2 = 0 gage. 

• h, = 0 because there are no turbines in the system . 

Interpretation: Head supplied by the pump provides the 
energy to lift the Ouid to a higher elevation plus the energy 
to overcome head loss. 
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2. Calculations. 

• Calculate V using the flow rate equation. 

• From Tip 2, sketch in a head rise of 178 ft corresponding 
to the pump. 

Q 7.85 refs 
V= - = ( )( c)l = 10ft/s A 'TT/4 l•t 

• Calculate head loss. 

• From Tip 3, sketch the EGL from the pump outlet to the 
reservoir surface. Use the fact that the head loss is 77.6 ft. 
Also, sketch EGL from the reservoir on the left to the 
pump inlet. Show a small head loss. 

h =Oo1(!:_)(V2
)=ool(5000ft)( (10ft/s)

2 

) 
L • D 2g . 1.0 ft 2 X (32.2 ft/s2) 

• From Tip 4, sketch the HGL below the EGL by a distance 
of V2 /2g ""' 1.6 ft. 

= 77.6 ft 

• Calculate hp. 

hp = (z2 - z1) + hL = ( 620 ft - 520ft) + 77.6 ft = JI78 ft J 

• From Tip 5, check the sketches to ensure that EGL and 
HGL are decreasing in the direction of flow (except at the 
pump). 

HGL (dashed black line) and EGL (solid blue line) 

3. Power 

. (62.4lbf)(7.85 fe) ( hp · 8 ) wP = -yQhp = w- - 8- (178 .fr) 550 .fr . lbf 

= [159h~ 
4. HGL and EGL 

• From Tip 1 on p. 274,locate the HGL and EGL along the 
reservoir surfaces. 

7. 9 Summarizing Key Knowledge 

Foundational Concepts 

• Energy is a property of a system that allows the system to do work on its surroundings. 
Energy can be classified into five categories: mechanical energy, thermal energy, chemical 
energy, electrical energy, and nuclear energy. 

• Mechanical work is done by a force that acts through a distance. A more general definition 
of work is that work is an interaction of a system with the surroundings in such a way that 
the sole effect on the surroundings could have been the lifting of a weight. 

• Power is the ratio of work to time or energy to time at an instant in time. Note the key 
difference between energy and power 

~ Energy (and work) describe an amount (e.g., how many joules). 

~ Power describes an amount/time or rate (e.g., how many joules/second or watts). 

• Machines can be classified into two categories: 

~ A pump is any machine that adds energy to a flowing fluid. 

~ A turbine is any machine that extracts energy from a flowing fluid. 

Conservation of Energy and Derivation of the Energy Equation 

• The law of conservation of energy asserts that work and energy balance. 

~ The balance for a closed system is (Energy changes of the system) = (Energy increases 
due to heat transfer) - (Energy decreases due to the system doing work). 

EGL v2 
2g 

,~ - -
H GL ••• ·l· · · ·"1---:.;t;:---1@ 
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~ The balance for a CV is (Energy changes in the CV) = (Energy increases in the CV due 
to heat transfer) - (Energy out of CV via work done on the surrounding) + (Energy 
transported into the CV by fluid flow) 

• Work can be classified into two categories 

~ Flow work is work that is done by the pressure force in a flowing fluid 

~ Shaft work is any work that is not flow work. 

The Energy Equation 

• The energy equation is the law of conservation of energy simplified so that it applies to 
common situations that occur in fluid mechanics. Some of the most important 
assumptions are steady state, one inflow and one outflow port to the CV, constant 
density, and all thermal energy terms (except for head loss) are neglected. 

• The energy equation describes an energy balance for a control volume (CV). 

(energy into CV) = (energy out of CV) 

(energy into CV by flow and pumps) = (energy out by flow, turbines, and head loss) 

• The energy equation, using math symbols, is 

(
Pt Vf ) (P2 V~ ) - +a1- +z1 +hp= - +a2 - +z2 + h,+hr 
'Y 2g 'Y 2g 

(

pressure head) (pressure head) b' d 

(
pump) (tur me) (hea ) veloc~ty head + head = veloc~ty head + head + loss 

elevatiOn head 1 elevatiOn head 2 

• Regarding head 

~ Head can be thought of as the ratio of energy to weight for a fluid particle. 

~ Head can also describe the energy per time that is passing across a section because head 
and power are related by p = mgh 

• Regarding head loss (hL) 

~ Head loss represents an irreversible conversion of mechanical energy to thermal energy 
through the action of viscosity. 

~ Head loss is always positive and is analogous to frictional heating. 

~ Head loss for a sudden expansion is given by 

• Regarding the kinetic energy correction factor a 

~ This factor accounts for the distribution of kinetic energy in a flowing fluid. It is defined 
as the ratio of (actual KE/time that crosses a surface) to (KE/time that would cross if the 
velocity was uniform). 

~ For most situations, engineers set a = 1. If the flow is known to be fully developed and 
laminar, then engineers use a = 2. In other cases, one can go back to the mathematical 
definition and calculate a value of a. 
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Power and Mechanical Efficiency 
• Mechanical efficiency is the ratio of (power output) to (power input) for a machine or 

system. 

• There are several equations that engineers use to calculate power. 

~ For translational motion such as a car or an airplane P = FV 

~ For rotational motion such as the shaft on a pump P = Tw 

~ For the pump, the power added to the flow is: P = -yQhp 

~ For a turbine, the power extracted from the flow is P = -yQh, 

The HGL and EGL 
• The hydraulic grade line (HGL) is a profile of the piezometric head, pl-y + z, along a pipe. 

• The energy grade line (EGL) is a profile of the total head, V2/2g +pl-y+ z, along a pipe. 

• If the hydraulic grade line falls below the elevation of a pipe, subatmospheric pressure 

exists in the pipe at that location, giving rise to the possibility of cavitation. 
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PROBLEMS 

;{?s Problem available in WileyPLUS at instructor's discretion. 

Energy Concepts (§7.1) 
7.1 ffi"s Fill in the blank. Show your work. 

a. 1000 J = Cal. 

b. ft-lbf = energy to lift a 10 N weight through an 
elevation difference of 125m. 

c. 12000 Btu = kWh. 

d. 32 ft-lbf/s = hp. 

e. [E] = [energy] = __ _ 

7.2 From the list below, select one topic that is interesting to 
you. Then, use references such as the Internet to research your 
topic and prepare one page of documentation that you could use 
to present your topic to your peers. 

a. Explain how hydroelectric power is produced. 

b. Explain how a Kaplan turbine works, how a Francis 
turbine works, and the differences between these two 
types of turbines. 

Gibbs, N.K., accessed on 1/23/11, http://www.bad.org.uk/ 
Portals/_Bad!History/Historical %20poster%2006. pdf 

3. Cengel, Y. A., and M.A. Boles. Thermodynamics: An 
Engineering Approach. New York: McGraw-Hill, 1998. 

4. Moran, M. )., and H. N . Shapiro. Fundamentals of Engineering 
Thermodynamics. New York: John Wiley, 1992. 

~ Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

c. Explain how a horizontal-axis wind turbine is used to 
produce electrical power. 

d. Explain how a steam turbine is used to produce electrical 
power. 

7.3 fLlts Using Section 7.1 and other resources, answer 
the following questions. Strive for depth, clarity, and accuracy. 
Also, strive for effective use of sketches, words, and 
equations. 

a. What are the common forms of energy? Which of these 
forms are relevant to fluid mechanics? 

b. What is work? Describe three example of work that are 
relevant to fluid mechanics. 

c. What are the most common units of power? 

d. List three significant dilferences between power and 
energy. 



7.4 Pds Apply the grid method to each situation. 

a. Calculate the energy in joules used by a 1 hp pump that is 
operating for 6 hours. Also, calculate the cost of electricity 
for this time period. Assume that electricity costs $0.15 per 
kW-hr. 

b. A motor is being to used to turn the shaft of a centrifugal 
pump. Apply Eq. (7.3b) on p. 255 of §7.2 to calculate the 
power in watts corresponding to a torque of 100 lbf-in 
and a rotation speed of 850 rpm. 

c. A turbine produces a power of 7500 ft-lbf/s. Calculate the 
power in hp and in watts. 

::-:-:--. 
7.5 PLUS Energy (select all that are correct): 

a. has same units as work 

b. has same units as power 

c. has same units work/time 

d. can have units of Joule 

e. can have units of Watt 

f. can have units of ft-lbf 

g. can have units of calories 

7.6 ;zu.s Power (select all that are correct) 

a. has same units as energy 

b. has same units as energy/time 

c. has same units as work/time 

d. can have units of Joule 

e. can have units of Watt 

f. can have units of horsepower 

g. can have units of ft-lbf 

7.7 Estimate the power required to spray water out of the spray 
bottle that is pictured in Fig. 7.2a on p. 254 of §7.2. Hint: Make 
appropriate assumptions about the number of sprays per unit 
time and the force exerted by the finger. 

"":". 
7.8 PLUS The sketch shows a common consumer product called 
the Water Pik. This device uses a motor to drive a piston pump 
that produces a jet of water (d = I mm, T = 10°C) with a speed 
of 27 m/s. Estimate the minimum electrical power in watts that is 
required by the device. Hints: (a) Assume that the power is used 

Water reservoir 

Motor and 
pump 

~ 
High-speed 
water jet 

only to produce the kinetic energy of the water in the jet; and 
(b) in a time interval M, the amount of mass that flows out the 
nozzle is tom, and the corresponding amount of kinetic energy 
is (6-m V2/2). 

7.9 An engineer is considering the development of a small wind 
turbine (D = 1.25 m) for home applications. The design wind 
speed is IS mph at T = 10°C and p = 0.9 bar. The efficiency of 
the turbine is 11 = 20%, meaning that 20% of the kinetic energy 
in the wind can be extracted. Estimate the power in watts that 
can be produced by the turbine. Hint: In a time interval6.t, the 
amount of mass that flows through the rotor is tom = mtot, and 
the corresponding amount of kinetic energy in this flow is 
(6.mV2/2). 

---Air----

PROBLnl 7.9 

Conservation of Energy (§7.2) 
~ 

7.10 PLUS The first law of thermodynamics for a closed system 
can be characterized in words as 

a. (change in energy in a system) = (thermal energy in) -
(work done on surroundings) 

b. (change in energy in a system) = (thermal energy out) -
(work done by surroundings) 

c. either of the above 
~ 

7.11 PLUS The application of Reynolds transport theorem to the 
first law of thermodynamics (select all that are correct) 

a. refers to the increase of energy stored in a closed system 

b. extends the applicability of the first law from a closed 
system to an open system (control volume) 

c. refers only to heat transfer, and not to work 

The Kinetic Energy Correction Factor (§7.3) 

7.12 ~s Using Section 7.3 and other resources, answer the 
questions below. Strive for depth, clarity, and accuracy while also 
combining sketches, words, and equations in ways that enhance 
the effectiveness of your communication. 

a. What is the kinetic-energy correction factor? Why do 
engineers use this term? 



b. What is the meaning of each variable (a, A, V, V) that 
appears in Eq. (7.21) on p. 260 of §7.3? 

c. What values of a are commonly used? 

7.13 For this hypothetical velocity distribution in a wide 
rectangular channel, evaluate the kinetic-energy correction 
factor a. 

sz 

PRORT Evt 7.13 

,.-.._ 
7.14 PLi.ts For these velocity distributions in a round pipe, 
indicate whether the kinetic-energy correction factor a is greater 

than, equal to, or less than unity. 

7.15 Calculate a for case (c). 

7. 16 Calculate u for case (d). 

I !I ~ 
(a) Unifonn (b) Parabolic 

6$?> ~ 
(c) Lmear (d) Lmear 
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7.17 An approximate equation for the velocity distribution in a 
pipe with turbulent flow is 

v (y)" 
Vmax = -;:;; 

where V mu is the centerline velocity, y is the distance from the 
wall of the pipe, r0 is the radius of the pipe, and 11 is an exponent 
that depends on the Reynolds number and varies between 1/6 
and 1/8 for most applications. Derive a formula for a as a 
function of 11. What is a if 11 = 1/7? 

7. 18 An approximate equation for the velocity distribution in a 
rectangular channel with turbulent flow is 

where ll.uax is the velocity at the surface,y is the distance from the 
floor of the channel, dis the depth of flow, and n is an exponent 

that varies from about 1/6 to 1/8 depending on the Reynolds 
number. Derive a formula for a as a function of n. What is the 

value of a for n = 1/7? 
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7.19 The following data were taken for turbulent flow in a 
circular pipe with a radius of 3.5 em. Evaluate the kinetic energy 

correction factor. The velocity at the pipe wall is zero. 

r(cm) \' (mf.,) y (em) V (m/s) 

0.0 32.5 2.8 22.03 
0.5 32.44 2.9 21.24 
1.0 32.27 3.0 20.49 
1.5 31.22 3.1 19.6 
2.0 2R.21 3.2 18.69 
2.25 26.51 3.25 18.16 
2.5 24.38 3.3 17.54 
2.6 23.7 3.35 17.02 
2.7 22.88 3.4 16.14 

The Energy Equation !§7.3) 

7.20 Using Section 7.3 and other resources, answer the 
questions below. Strive for depth, clarity, and accuracy. Also, 

strive for effective use of sketches, words, and equations. 

a. What is conceptual meaning of the first law of 
thermodynamics for a system? 

b. Wh3t is flow work? How is the equation for flow work 
(Eq. 7.16) on p. 259 of §7.3 derived? 

c. What is shaft work? How is shaft work different than 
flow work? 

7.21 Using Section 7.3 and other resources, 3nswer the 
questions below. Strive for depth, clarity, and accuracy. Also, 
strive for effective use of sketches, words, and equations. 

a. What is head? How is head related to energy? To power? 

b. What is head of a turbine? 

c. How is head of a pump related to power? To energy? 

d . What is head loss? 

7.22 Ms part (a) only Using Sections 7.3 and 7.7 and using 
other resources, answer the following questions. Strive for depth, 

clarity, and accuracy. Also, strive for effective use of sketches, 
words and equations. 

a. What are the five main terms in the energy equation (7.29) 
on p. 262 of §7.3? What does each term mean? 

b. How are terms in the energy equation related to energy? 
To power? 

c. What assumptions are required for using the energy 
equation (7.29) on p. 262 of §7.3? 

7.23 Using the energy equation (7.29 on p. 262 of §7.3), prove 
that fluid in a pipe will flow from a location with high piezometric 

head to a location with low piezometric head. Assume there are 
no pumps or turbines and that the pipe has a constant diameter. 

7.24 Ms Water flows at a steady rate in this vertical pipe. The 
pressure at A is 10 kPa, and at B it is 98.1 kPa. Then the flow in 
the pipe is (a) upward, (b) downward, or (c) no flow. (Hint: See 
problem 7.23.) 
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r 
10m 

l 
PROBLE:\1 ::-.2-t 

7.25 Determine the discharge in the pipe and the pressure at 
point B. Neglect head losses. Assume a = 1.0 al all locations. 

\7 
= T 

Water 1.5m 

l 
-. I- 40 em diameter 

3.5 Ill 

20 em d~amctcr nozzle 

PROBI.I:.\1 7.25 

7.26 ?fUos A pipe drains a tank as shown. If x = 14 ft,y =4 ft, 
and head losses are neglected, what is the pressure at point A 

and what is the velocity at the exit? Assume a = 1.0 at all 
locations. 

7.27 ;L'ifs A pipe drains a tank as shown. If x = 6 m, y = 4 m, 
and head losses are neglected, what is the pressure at point A 

and what is the velocity at the exit? Assume a = 1.0 at all 
locations. 

\7 

Water l 
X 

A- J 
r 

_l 
PROnJ L\fS 7.26. -.T 

7.28 for this system, the discharge of water is 3.5 ft3/s, x = 1.0 m, 
y = 1.5 m, z = 6.0 m , and the pipe diameter is 30 em. Assuming 
a head loss of 0.5 m , what is the pressure head at point 2 if the jet 
from the nozzle is 10 em in dian1eter? Assume u = 1.0 at all 
locations. 

-7.29 PLu•s For this diagran1 of an industrial pressure washer 
system,x = I ft,y = 3 ft,z = 10ft, Q = 3.5 fe/s, and the hose 
diameter is 4 in. Assuming a head loss of 1 ft is derived over th.e 

distance from point 2 to the jet, what is the pressure at point 2 if the 
jet from the nozzle is l-in in diameter? Assume a = 1.0 throughout. 

PROBI EMS 7.2!\, 7.29 

7.30 ~s For this refinery pipe, DA = 20 cm,D8 = 14 em, and 
L = 1 m.lf crude oil (S = 0.90) is flowing at a rate of 0.05 m 3/s, 
determine the difference in pressure between sections A and B. 
Neglect head losses. 

D8 8 

I. 
l z (verttcal) 
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7.31 ~Gasoline having a specific gravity of 0.8 is flowing 
in the pipe shown at a rate of 5 cfs. What is the pressure at 
section 2 when the pressure at section 1 is 18 psig and the 
head loss is 6 ft between the two sections? Assume a = 1.0 at 
all local ions. 

I Vertical 

0 
A2 - 0.20 n2 

!'ROBLE~! 7.31 

7.32 ~Water llows from a pressurized lank as shown. The 
pressure in the tank above the water surface is 100 kPa gage, 
and the water surface level is 8 m above the outlet. The water 
exit velocity is 10 m/s. The head loss in I he system varies as 
hL = KL V2/2g, where KL is the minor-loss coefficient. Find the 
value for K1• Assume a = 1.0 at all locations. 



7.33 ffi"s A reservoir with water is pressurized as shown. The 
pipe diameter is 1 in. The head loss in the system is given by 
hL = 5V2/2g.The height between the water surface and the pipe 
outlet is 10ft. A discharge of 0.10 ft3/s is needed. What must 
the pressure in the tank be to achieve such a flow rate? Assume 
a = 1.0 at all locations. 

7.34 In the figure shown, suppose that the reservoir is open to 
the atmosphere at the top. The valve is used to control the flow 
rate from the reservoir. The head loss across the valve is given as 
Jr1 = 4 V212g, where Vis the velocity in the pipe. 1he cross-sectional 
area of the pipe is 8 cm2

• The head loss due to friction in the pipe 
is negligible. 'lbe elevation of the water level in the reservoir 
above the pipe outlet is 9 m. Find the discharge in the pipe. 
Assume a = 1.0 at all locations. 

Air under 
pressure 

Water 

d 

Partly open valve 

PROBLEMS 7.32, 7.33, 7.34 

c--. 
7.35 PLUS A minor artery in the human arm, diameter D = 

3 mm, tapers gradually over a distance of 20 em to a diameter 
of d = 1.6 mm. The blood pressure at Dis 110 mm Hg, and 
at d is 85 mm Hg. What is the head loss (m) that occurs 
over this 20-cm distance if the blood (S = 1.06) is moving 
with a flowrate of 300 milliliters/min, and the arm is being 
held horizontally? Idealize the flow in the artery as steady, 
the fluid as Newtonian, and the walls of the artery 
as rigid. 

7.36 Ms As shown, a microchannel is being designed to 
transfer fluid in a MEMS (microelectrical mechanical system) 
application. The channel is 200 micrometers in diameter and 
is 5 em long. Ethyl alcohol is driven through the system at the 
rate of 0.1 microliters/s (f.LL/S) with a syringe pump, which is 
essentially a moving piston. The pressure at the exit of the 
channel is atmospheric. The flow is laminar, so a = 2. The 
head loss in the channel is given by 

32f.LLV 
h, = ---

-yD2 

where L is the channel length, D the diameter, V the mean 
velocity, fl. the viscosity of the fluid, and 'Y the specific weight of 
the fluid. Find the pressure in the syringe pump. The velocity 
head associated with the motion of the piston in the syringe 
pump is negligible. 
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I'RO.I:ILEM 7.36 

7.37 Firefighting equipment requires that the exit velocity of 
the firehose be 30m/sat an elevation of 45 m above the hydrant. 
The nozzle at the end of the hose has a contraction ratio of 4:1 
(A,/Ahose = 1/4). The head loss in the hose is 8V2/2g, where V 
is the velocity in the hose. What must the pressure be at the 
hydrant to meet this requirement? The pipe supplying the 
hydrant is much larger than the firehose. 

7.38 ~ The discharge in the siphon is 2.80 cfs, D = 8 in., 
L1 = 3 ft, and L2 = 3 ft. Determine the head loss between the 
reservoir surface and point C. Determine the pressure at point B 
if three-quarters of the head loss (as found above) occurs 
between the reservoir surface and point B. Assume a = 1.0 
at all locations. 

B 

I 
'·J 

1 
L2 

Water J c 

PROBLEM 7.3!l 

~ 
7.39 GO For this siphon the elevations at A, B, C, and D 
are 30 m, 32m, 27m, and 26m, respectively. The head loss 
between the inlet and point B is three-quarters of the velocity 
head, and the head loss in the pipe itself between point Band 
the end of the pipe is one-quarter of the velocity head. For these 
conditions, what is the discharge and what is the pressure at 
point B? The pipe diameter = 25 em. Assume a = 1.0 at all 
locations. 

7.40 ;cv-s For this system, point B is 10m above the bottom 
of the upper reservoir. The head loss from A to B is 1.1 V2/2g, 
and the pipe area is 8 X 10- 4 m 2

• Assume a constant 
discharge of 8 X 10-4 m3/ s. For these conditions, what 
will be the depth of water in the upper reservoir for which 
cavitation will begin at point B? Vapor pressure = l.23 kPa 
and atmospheric pressure = 100 kPa. Assume a = 1.0 at all 
locations. 
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.. \ 
Water 

r-2ooc 

8 

DIScharg~ ( ,ubmcrgcd) 
into lower re'~r\(llr 

PROBLEMS 7.39. 7.40 

7.41 1n this system,d = 6 in., D = 12 in .• ~1 = 6ft. and .iz2 = 12ft. 
The discharge of water in the system is 10 cfs. Is the machine a 
pump or a turbine? What are the pressures at points A and B? 
Neglect head losses. Assume a = 1.0 at all locations. 

Water 
r~ to•c 

Same 
elevation 

Maehme 

Ill, 

D 

! 

PROBI.DI 7.41 

d 

fl d 

! 

7.42 ~The pipe diameter Dis 30 em, dis 15 em, and the 
atmospheric pressure is 100 kPa. What is the maximum 
allowable discharge before cavitation occurs at the throat of 
the venturi meter if H = 5 m? Assume a = 1.0 at all locations. 

H 

1 Water 
r; 2o•c 

PROIH.Ei\1 7.42 

7.43 d6- In this system d = IS em, D = 35 em, and the head 
loss from the venturi meter to the end of the pipe is given by 
hL = 1.5 V2/2g, where Vis the velocity in the pipe. Neglecting all 
other head losses, determine what head H will first initiate cavitation 
if the atmospheric pressure is I 00 kPa absolute. What will be the 
discharge at incipient cavitation? Assume ex = 1.0 at all locations. 

II 

1 
Water 

T-20°C 

d 

'-------------~~ 
PRORLE:\1 7.43 

7.44 ~A pump is used to fill a tank 5 m in diameter from a 
river as shown. The water surface in the river is 2 m below the 
bottom of the tank. The pipe diameter is 5 em, and the head loss 
in the pipe is given by hr = 10 V2/2g, where Vis the mean 
velocity in the pipe. The flow in the pipe is turbulent, so a = 1. 

The head provided by the pump varies with discharge through 
the pump as hp = 20 - 4 X 104 Q2

, where the discharge is given 
in cubic meters per second (m3/s) and hp is in meters. How long 
will it take to fill the tank to a depth of 10m? 

5m 

PROBI L'vl 7.44 

7.45 A pump is used to transfer SAE-30 oil from tank A to tank 
Bas shown. The tanks have a diameter of 12m. The initial depth 
of the oil in tank A is 20m, and in tank B the depth is I m. The 
pump delivers a constant head of 60 m. The connecting pipe has 
a diameter of 20 em, and the head loss due to friction in the pipe 
is 20 V1/2g. Find the time required to transfer the oil from tank 
A to B; that is, the time required to fill tank B to 20m depth. 

TankA Tank B 

PROBLJ:.M 7. 1.> 

7.46 A pump is used to pressurize a tank to 300 kPa abs. The 
tank has a diameter of 2 m and a height of 4 m. The initial level 
of water in the tank is 1 m, and the pressure at the water surface 
is 0 kPa gage. The atmospheric pressure is 100 kPa. 1be pump 
operates with a constant head of 50 m. The water is drawn from 



a source that is 4 m below the tank bottom. The pipe connecting 
the source and the tank is 4 em in diameter and the head loss, 
including the expansion loss at the tank, is 10 V 2!2g. The flow is 
turbulent. 

Assume the compression of the air in the tank takes place 
isothermally, so the tank pressure is given by 

3 
Pr = 4 _ z/o 

where z, is the depth of fluid in the tank in meters. Write a 
computer program that will show how the pressure varies in 
the tank with time, and find the time to pressurize the tank to 
300 kPa abs. 

Pump 

4m 

PROBLE.'vt 7:16 

The Power Equation (§7.4) 

7.47 ft.Vs As shown, water at l5°C is flowing in a 15-cm-diameter 
by 60-m-long run of pipe that is situated horizontally. The mean 
velocity is 2 m/s, and the head loss is 2m. Determine the 
pressure drop and the required pumping power to overcome 
head loss in the pipe. 

-60m-- +---l 

CD 
PROBLEM 7.47 

7.48 ;{U-s The pump shown in the figure supplies energy to the 
flow such that the upstream pressure {12 in. pipe) is 5 psi and the 
downstream pressure (6 in. pipe) is 55 psi when the flow of water 
is 3.0 cfs. What horsepower is delivered by the pump to the flow? 
Assume a. = 1.0 at all locations. 

PROBLH.t 7A8 
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7.49 ;;-- A water discharge of 8m3/sis to flow through this 
horizontal pipe, which is 1 m in diameter. If the head loss is 
given as 7 V2/2g (Vis velocity in the pipe), how much power 
will have to be supplied to the flow by the pump to produce 
this discharge? Assume a. = 1.0 at all locations. 

B
-Elevation= 40 m 

Pump 1 m Water 

~~j======::6;;::!;:t;:===~j;=::: - Elevation - 20m 
! - Elevauon = 10m 

f.-- 300m --1--- 300m --l 
PROBLb\1 7..19 

7.50 An engineer is designing a subsonic wind tunnel. The test 
section is to have a cross-sectional area of 4 m2 and an airspeed 
of 60 m/s. The air density is 1.2 kg/m3

• The area of the tunnel 
exit is 10m2

• The head loss through the tunnel is given by 
hL = (0.025)( V}l2g), where V Tis the airspeed in the test section. 
Calculate the power needed to operate the wind tunnel. Hint: 
Assume negligible energy loss for the flow approaching the 
tunnel in region A, and assume atmospheric pressure at the 
outlet section of the tunnel. Assume ex = 1.0 at all locations. 

Test section 

PROBLEM 7.50 

7.51 ~s Neglecting head losses, determine what horsepower 
the pump must deliver to produce the flow as shown. Here the 
elevations at points A, B, C, and Dare 117ft, 154 ft,llO ft. and 
90ft. respectively. The nozzle area is 0.10 ft2

• 

7.52 .:DJs Neglecting head losses, determine what power the 
pump must deliver to produce the flow as shown. Here the 
elevations at points A, B. C, and D are 40 m, 65 m, 35 m, and 
30 m, respectively. The nozzle area is 25 cm2

• 

A 

Nozzle 

Water 

PRORI F~IS ;-51. :-.52 

8 
/ 
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7.53 Water (10°C) is flowing at a rate of 0.35 m3/s, and it is 
assumed that hL = 2 V2/2g from the reservoir to the gage, where 
Vis the velocity in the 30-cm pipe. What power must the pump 
supply? Assume a = 1.0 at all locations. 

p = IOOkPa 

Elevation - 10m -

1----,......-=:!!=:----1 - Elevation - 6 m 

Water 
T"' 10•c 

40 em diameter 

PltOBU:..\.1 7.53 

D= 30cm 

7.54 Ms In the pump test shown, the rate of flow is 6 cfs of oil 
(S = 0.88). Calculate the horsepower that the pump supplies 
to the oil if there is a differential reading of 46 in. of mercury 
in the U-tube manometer. Assume a = 1.0 at all locations. 

D-6in. 

PROBLEM 7.54 

7.55 ~If the discharge is 500 cfs, what power output may 
be expected from the turbine? Assume that the turbine 
efficiency is 90% and that the overall head loss is 1.5 V 212g, 

T 
30ft Turbine 

Water 

' ' + 
PROIH.F.\1 7.55 

where Vis the velocity in the 7 ft penstock Assume a = 1.0 
at all locations. 

7.56 MsA small-scale hydraulic power system is shown. The 
elevation difference between the reservoir water surface and 
the pond water surface downstream of the reservoir, H, is 24m. 
The velocity of the water exhausting into the pond is 7 m/s, and 
the discharge through the system is 4 m3/s. The head loss due to 
friction in the penstock (inlet pipe to turbine, under very high 
pressure) is negligible. Find the power produced by the turbine 
in kilowatts. 

PROBLE:>1 7.56 

Mechanical Efficiency (§7.5) 

7.57 ~sA fan produces a pressure rise of 6 mm of water to 
move air through a hair dryer. The mean velocity of the air at 
the exit is 10 m/s, and the exit diameter is 44 mm. Estimate the 
electrical power in watts that needs to be supplied to operate 
the fan. Assume that the fan/motor combination has an 
efficiency of 60%. 

PROBLL\1 7 5- (Photo by Donald Elger) 

7.58 An engineer is making an estimate for a home owner. 
This owner has a small stream (Q = 1.4 cfs, T = 40°F) that is 
located at an elevation H = 34 ft above the owner's residence. 
The owner is proposing to dam the stream, diverting the flow 
through a pipe (penstock). This flow will spin a hydraulic 
turbine, which in turn will drive a generator to produce 
electrical power. Estimate the maximum power in kilowatts 
that can be generated if there is no head loss and both the 
turbine and generator are 100% efficient. Also, estimate the 
power if the head loss is 5.5 ft, the turbine is 70% efficient, 
and the generator is 90% efficient. 



PROBLEi.\1 7.58 

7.59 ~s The pump shown draws water through an 8 in. 
suction pipe and discharges it through a 6 in. pipe in which the 
velocity is 12 ft/s. The 6 in. pipe discharges horizontally into air 
at C. To what height h above the water surface at A can the water 
be raised if 17 hp is used by the pump? The pump operates at 
60% efficiency and that the head loss in the pipe between A and 
Cis equal to 2 V~/2g. Assume ex = 1.0 throughout. 

7.60 Pds The pump shown draws water (20°C) through a 20 em 
suction pipe and discharges it through a 10 em pipe in which the 
velocity is 3 m/s. The 10 em pipe discharges horizontally into air 
at point C. To what height h above the water surface at A can the 
water be raised if 26 k W is delivered to the pump? Assume that 
the pump operates at 60% efficiency and that the head loss in the 
pipe between A and Cis equal to 2 V~/2g. Assume ex = 1.0 
throughout. 

c 

h 

'~ 
PROBLEMS 7.59, 7.60 

7.61 ~sA pumping system is to be designed to pump crude oil 
a distance of 1 mile in a 1 foot-diameter pipe at a rate of 3500 gpm. 
The pressures at the entrance and exit of the pipe are atmospheric, 
and the exit of the pipe is 200 feet higher than the entrance. The 
pressure loss in the system due to pipe friction is 60 psi. The specific 
weight of the oil is 53 lbf/frl. Find the power, in horsepower, 
required for the pump. 

Contrasting Bernoulli Eqn. to Energy Eqn. (§7.6) 

7.62 How is the energy equation {7.29) on p. 262 of §7.3 similar 
to the Bernoulli equation? How is it different? Give three 
important similarities and three important differences. 

PROBLEMS 287 

Transitions (§7.7) 

7.63 P~S What is the head loss at the outlet of the pipe that 
discharges water into the reservoir at a rate of I 0 cfs if the 
diameter of the pipe is 12 in.? 

-... 
7.64 PLu"s What is the head loss at the outlet of the pipe that 
discharges water into the reservoir at a rate ofO.S m3/s if the 
diameter of the pipe is 50 em? 

PROBLEMS 7.63, 7.64 

7.65 Ms A 7 em pipe carries water with a mean velocity of2 m/s. 
If this pipe abruptly expands to a 15 em pipe, what will be the 
head loss due to the abrupt expansion? 

7.66 A 6 in. pipe abruptly expands to a 12 in. size. If the 
discharge of water in the pipes is 5 cfs, what is the head loss due 
to abrupt expansion? 

7.67 Ms Water is draining from tank A to tank B. The elevation 
difference between the two tanks is 10m. The pipe connecting 
the two tanks has a sudden-expansion section as shown. The 
cross-sectional area of the pipe from A is 8 cm2

, and the area of 
the pipe into B is 25 cm2

• Assume the head loss in the system 
consists only of that due to the sudden-expansion section and 
the loss due to flow into tank B. Find the discharge between the 
two tanks. 

sz 

t:tJ A 
g_ 

B 

PROBLI:SI 7.67 

7.68 ~A 40 em pipe abruptly expands to a 60 em size. These 
pipes are horizontal, and the discharge of water from the smaller 
size to the larger is 1.0 m3/s. What horizontal force is required to 
hold the transition in place if the pressure in the 40 em pipe is 
70 kPa gage? Also, what is the head loss? Assume ex = 1.0 at all 
locations. 

7.69 ~Water ('y = 62.4lbf/ ft3
) flows through a horizontal 

constant diameter pipe with a cross-sectional area of 9 in2
• The 

velocity in the pipe is IS ft/s, and the water discharges to the 
atmosphere. The head loss between the pipe joint and the end of 
the pipe is 3 ft. Find the force on the joint to hold the pipe. The pipe 
is mounted on frictionless rollers. Assume ex = 1.0 at all locations. 

~ I ~ ---w~----7(.~)----------,(.T)----~ ~ 

PROBLJ::-1 7.69 
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7.70 This abrupt expansion is to be used to dissipate the 
high-energy flow of water in the 5 ft-diameter penstock. 
Assume a = 1.0 at all locations. 

a. What power (in horsepower) is lost through the 
expansion? 

b. If the pressure at section I is 5 psig. what is the 
pressure at section 2? 

c. What force is needed to hold the expansion in place? 

PRORI.Ei\1 7.70 

7.71 This rough aluminum pipe is 6 in. in diameter. It weighs 
1.5 lb per foot of length, and the length L is 50 ft. If the discharge 
of water is 6 cfs and the head loss due to friction from section 
1 to the end of the pipe is 10ft, what is the longitudinal force 
transmitted across section 1 through the pipe wall? 

PROBLE.\1 7.71 

7.72 Water flows in this bend at a rate of 5 m3/s, and the 
pressure at the inlet is 650 kPa.lf the head loss in the bend 
is 10m, what will the pressure be at the outlet of the bend? 
Also estimate the force of the anchor block on the bend 
in the x direction required to hold the bend in place. 
Assume a = 1.0 at all locations. 

- x 

Anchor 
block 

~~·~"'~'' 
Elevation view 

PRORI r\1~ -.-1. 7.73 

-7.73 PLu•s In a local water treatment plant, water flows in this 
bend at a rate of 7 m3/s, and the pressure at the inlet is 800 kPa. 
If the head loss in the bend is 13 m, what will the pressure be at 
the outlet of the bend? Also estimate the force of the anchor 
block on the bend in the x direction required to hold the bend 
in place. Assume a = 1.0 at all locations. 

7.74 Fluid flowing along a pipe of diameter D accelerates around 
a disk of diameter d as shown in the figure. The velocity far 
upstream of the disk is U, and the fluid density is p. Assuming 
incompressible flow and that the pressure downstream of the 
disk is the same as that at the plane of separation, develop an 
expression for the force required to hold the disk in place in 
terms of U. D, d, and p. Using the expression you developed, 
determine the force when U = 10 m/s, D = 5 em, d = 4 em, 
and p = 1.2 kg/m3

• Assume a = 1.0 at all locations. 

_-:GJ. ::=:::=r 
U d - :;>.., D === -_,_q 

PROBLE.\1 7.71 

EGLand HGL (§7.8) 

7.75 P'Ns port (b) only Using Section 7.8 and other resources, 
answer the following questions. Strive for depth, clarity, and 
accuracy while also combining sketches, words, and equations in 
ways that enhance the effectiveness of your communication. 

a. What are three important reasons that engineers use the 
HGL and the EGL? 

b. What factors influence the magnitude of the 
HGL? What factors influence the magnitude of 
the EGL? 

c. How are the EGL and HGL related to the piezometer? 
To the stagnation tube? 

d. How is the EGL related to the energy equation? 

e. How can you use an HGL or an EGL to determine the 
direction of flow? 

7.76 ;;?s The energy grade line for steady flow in a uniform­
diameter pipe is shown. Which of the following could be in the 
"black box"? (a) a pump, (b) a partially closed valve, (c) an abrupt 

PROBLL\1 7.,6 



expansion, or (d) a turbine. Choose all valid answer(s) and state 
your rationale. 

7.77 If the pipe shown has constant diameter, is this type of 
HGL possible? If so, under what additional conditions? If not, 
why not? 

___2-f----
p 

~ 
z 

1 Datum 

Pl\OBLEM 7.77 

7.78 !'frils For the system shown, 

a. What is the flow direction? 

b. What kind of machine is at A? 

c. Do you think both pipes, AB and CA, are the same 
diameter? 

d. Sketch in the EGL for the system. 

e. Is there a vacuum at any point or region of the pipes? 
If so, identify the location. 

HGL 

B 

A 

PROBLEM 7.78 

7.79 The HGL and the EGL are as shown for a certain flow 

system. 

a. Is flow from A toE or from E to A? 

b. Does it appear that a reservoir exists in the system? 

c. Does the pipe atE have a uniform or a variable 
diameter? 

d. Is there a pump in the system? 

e. Sketch the physical setup that could yield the conditions 
shown between C and D. 

f. Is anything else revealed by the sketch? 

-------............. ...... 

A 8 

', 
' ' 

EGL 

IIGL 

' ' ' ' ' \ 
\ 

c 

PROBLEM 7.79 
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EGLand I-IGL 

D 

E 

7.80 Sketch the HGL and the EGL for this conduit, which tapers 
uniformly from the left end to the right end. 

Water 

1 
Uni forml y tapered pipe 

I \7 

I 

PROBLEM 7.80 

7.81 ~s The HGL and the EGL for a pipeline are shown in the 

figure. 

a. Indicate which is the HGL and which is the EGL. 

b. Are all pipes the same size? If not, which is the smallest? 

c. Is there any region in the pipes where the pressure is 
below atmospheric pressure? If so, where? 

d. Where is the point of maximum pressure in the system? 

e. Where is the point of minimum pressure in the system? 

Air 

Water 

I 
I 
~ 

' ' ' ' ' ' ' ' ' ' A \ B 
L___;:::=:=======8· 

' ' "--------

PROBLEM 7.R I 
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f. What do you think is located at the end of the pipe at 
pointE? 

g. Is the pressure in the air in the tank above or below 
atmospheric pressure? 

h. What do you think is located at point B? 

7.82 ~Assume that the head loss in the pipe is given by 
hL = 0.0 14(L/ D)( V2/2g), where L is the length of pipe and Dis 
the pipe diameter. Assume a= 1.0 at all locations. 

a. Determine the discharge of water through this system. 

b. Draw the HGL and the EGL for the system. 

c. Locate the point of maximum pressure. 

d. Locate the point of minimum pressure. 

e. Calculate the maximum and minimum pressures in the 
system. 

Elevation = I 00 m 

30 crn-<liameter jet 

PROl:lLnt 7.82 

7.83 Sketch the HGL and the EGL for the reservoir and pipe of 
Example 7.2. 

7.84 The discharge of water through this turbine is 1000 cfs. 
What power is generated if the turbine efficiency is 85% and the 
total head loss is 4ft? H = 100ft. Also, carefully sketch the EGL 
andtheHGL. 

PROBI E:\1 7.84 

7.85 Water flows from the reservoir through a pipe and then 
discharges from a nozzle as shown. The head loss in the pipe 
itself is given as hL = 0.025(LID)(V2/2g), where Land Dare the 
length and diameter of the pipe and Vis the velocity in the pipe. 
What is the discharge of water? Also draw the HGL and EGL for 
the system. Assume a = 1.0 at all locations. 

1-=.1'\7~-l Elevation= 100ft 

Elevation -60ft 
Water 

Lr_-_· 60_.F_;===D=-r~l=ft======6=i"=· =di=am=e=te~· ~n": l_ 
t------- L = 1000 ft 

I'RORI.EM 7.85 

7.86 ;Jts Refer to Fig. 7.15 on p. 275 of §7.8. Assume that the 
head loss in the pipes is given by h1 = 0.02(L!D)(V2/2g), where 
Vis the mean velocity in the pipe, Dis the pipe diameter, and Lis 
the pipe length. The water surface elevations of the upper and 
lower reservoirs are 100m and 70 m, respectively.1he respective 
dimensions for upstream and downstream pipes are D. = 30 em, 
and L. = 200m, and Dd = IS em, and Ld = 100 m. Determine 
the discharge of water in the system. 

7.87 What horsepower must be supplied to the water to pump 
3.0 cfs at 68°F from the lower to the upper reservoir? Assume that 
the head loss in the pipes is given by hL = 0.018(LID)(V 2/2g), 

where Lis the length of the pipe in feet and Dis the pipe 
diameter in feet. Sketch the HGL and the EGL. 

Elevation - 140 ft 

Elevation = 90 ft 

PROBLEM 7.87 

7.88 Water flows from reservoir A to reservoir B. The water 
temperature in the system is l0°C, the pipe diameter D is I m, 
and the pipe length Lis 300m. If H = 16m, h = 2m, and the 
pipe head loss is given by hL = 0.01(L/D)(V2/2g), where Vis the 
velocity in the pipe, what will be the discharge in the pipe? ln 
your solution, include the head loss at the pipe outlet, and sketch 
the HGL and the EGL. What will be the pressure at point P 
halfway between the two reservoirs? Assume a = 1.0 at all 
locations. 

7.89 ~Water flows from reservoir A to reservoir Bin a desert 
retirement community. The water temperature in the system is 
I 00°F, the pipe diameter D is 4 ft, and the pipe length L is 200 ft. 
If H = 35ft, h = 10ft, and the pipe head loss is given by 
hL = O.Ol(L/D)(V2/2g), where Vis the velocity in the pipe, 
what will be the discharge in the pipe? In your solution, include 
the head loss at the pipe outlet. What will be the pressure at 
point P halfway between the two reservoirs? Assume a = 1.0 
at all locations. 
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PROni EMS 7.88, 7.89 

7.90 Water flows from the reservoir on the left to the reservoir 
on the right at a rate of 16 cfs. l11e formula for the head losses in 
the pipes is hL = 0.02(LID)(V2! 2g). What elevation in the left 
reservoir is required to produce this flow? Also carefully sketch 
the HGT. and the EGL for the system. Note: Assume the head-loss 
formula can be used for the smaller pipe as well as for the larger 
pipe. Asswne ex = 1.0 at all locations. 

h=l=~-1- ElevatiOn - ? 

D1 =I 128 ll 
A1- I tt2 

/)2 - 1.596 ft. 
A2 = 2 Jl2 

PROBI EM 7.90 

7.91 What power is required to pump water at a rate of 3 m3/s 
from the lower to the upper reservoir? Assume the pipe head loss 
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is given by hL = 0.018(LID)(V212g), where Lis the length of pipe, 
Dis the pipe diameter, and Vis the velocity in the pipe. "!he 
water temperature is l0°C, the water surface elevation in the 
lower reservoir is 150 m, and the surface elevation in the upper 
reservoir is 250m. The pump elevation is 100 m,L1 = 100m, 
L2 = 1000 m, D1 = 1 m, and D2 = 50 em. Assume the pump and 
motor efficiency is 74%. In your solution, include the head loss 
at the pipe outlet and sketcl1 the HGL and the EGL. Assume 
a = 1.0 at all locations. 

PROBLEM 7.91 

7.92 Refer to Fig. 7.16 on p. 276 of §7.8. Assume that the head 
loss in the pipe is given by h1 = 0.02(LID)(V2!2g), where Vis the 
mean velocity in the pipe, D is the pipe diameter, and L is the 
pipe length. The elevations of the reservoir water surface, the 
highest point in the pipe, and the pipe outlet are 250 m, 250 m, 
and 210 m, respectively. The pipe diameter is 30 em, and the pipe 
length is 200 m. Determine the water discharge in the pipe, and, 
assuming that the highest point in the pipe is halfway along the 
pipe, determine the pressure in the pipe at tl1at point. Assume 
a = 1.0 at all locations. 
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DIMENSIONAL 
ANALYSIS AND 
SIMILITUDE 

@apter Road Map I 
Because of the complexity of flows, designs are often 
based on experimental results, which are commonly 
done using scale models. The theoretical basis of 
experimental testing is called dimensional analysis, 
the topic of this chapter. This topic is also used to 
simplify analysis and to present results. 

~Learning Objectives l 
. , _· (J_,j,ty,: 

STUDENTS WILL BE ABLE TO 
FIGURE 8.1 

The photo shows a model of a formula racing cor that 
was built out of clay for testmg in o small wind tunnel. 
The purpose of the testing was to assess the drag 
characteristics. The work was done by Josh Hartung, 
while he was on undergraduate engineering student. 
(Photo courtesy of josh Hartung.) 

• Explain why dimensional analysis is needed. 1§8. 11 

• Explain or apply the Buckingham n theorem. 1§8.2) 

• Find -rr-groups using the step-by-step method. (§8.3) 

• Find 1r-groups using the exponent method. 1§8.3) 

• Define and describe common 1r·groups. (§8.4) . 

• Define a model and a prototype. (§8 .5) 
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• Explain what similitude means, mcluding geometric 
Similitude and dynamic similitude. Describe the criteria 
for acheiving similitude. (§8.5) 

8.1 Need for Dimensional Analysis 

Fluid mechanics is more heavily involved with experimental testing than other disciplines 
because the analytical tools currently available to solve the momentum and energy equations 
are not capable of providing accurate results. This is particularly evident in turbulent, separating 
flows. The solutions obtained by utilizing techniques from computational fluid dynamics with 
the largest computers available yield only fair approximations for turbulent flow problems­
hence the need for experimental evaluation and verification. 



For analyzing model studies and for correlating the results of experimental research, it is 
essential that researchers employ dimensionless groups. To appreciate the advantages of using 
dimensionless groups, consider the flow of water through the unusual orifice illustrated in Fig. 8.2. 
Actually, this is much like a nozzle used for flow metering except that the flow is in the opposite 
direction. An orifice operating in this flow condition will have a much different performance 
than one operating in the normal mode. However, it is not unlikely that a firm or city water 
department might have such a situation where the flow may occur the "right way" most of the 
time and the "wrong way" part of the time-hence the need for such knowledge. 

I t)__,JJ..) v, - dl P2 
P1 

j r1 ))) 

Because of size and expense it is not always feasible to carry out tests on a full-scale proto­
type. Thus engineers will test a subscale model and measure the pressure drop across the 
model. The test procedure may involve testing several orifices, each with a different throat 
diameter d0• For purposes of discussion, assume that three nozzles are to be tested. The 
Bernoulli equation, introduced in Chapter 4, suggests that the pressure drop will depend on 
flow velocity and fluid density. It may also depend on the fluid viscosity. 

The test program may be carried out with a range of velocities and possibly with fluids 
of different density (and viscosity). The pressure drop, p1 - p2 , is a function of the velocity V1, 

density p, and diameter d0• By carrying out numerous measurements at different values of V1 and 
p for the three different nozzles, the data could be plotted as shown in Fig. 8.3a for tests using 
water. In addition, further tests could be planned with different fluids at considerably more expense. 

do I d 

/!L:: 
'---------v, 

(a) 

• 
0 

X 

Diameter 
'-----'---'----'--- mtio, d0

1d1 

(b) 

The material introduced in this chapter leads to a much better approach. Through dimen­
sional analysis it can be shown that the pressure drop can be expressed as 

P1 - P2 =!(do pV,do) 
(p V2)/2 d1 ' 1-L 

(8.1) 

which means that dimensionless group for pressure, (p1 - p2)/(p V2/2), is a function of the 
dimensionless throat/pipe diameter ratio d0/d1 and the dimensionless group, (p V1 d0)/ J..L, which 
will be identified later as the Reynolds number. The purpose of the experimental program is to 

FIGURE 8.2 

Flow through inverted 
flow nozzle. 

FIGURE 8.3 

Relations for pressure, 
velocity, and diameter. 
(a) Using dimensional 
variables. (b) Using 
dimensionless groups. 
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establish the functional relationship. As will be shown later, if the Reynolds number is suffi­
ciently large, the results are independent of Reynolds number. Then 

(8.2) 

Thus for any specific orifice design (same d0/d1) the pressure drop, p 1 - p2, divided by p V~/2 
for the model is same for the prototype. Therefore the data collected from the model tests can 
be applied directly to the prototype. Only one test is needed for each orifice design. Conse­
quently only three tests are needed, as shown in Fig. 8.2b. The fewer tests result in considerable 
savings in effort and expense. 

The identification of dimensionless groups that provide correspondence between model 
and prototype data is carried out through dimensional analysis. 

8.2 Buckingham TI Theorem 

In 1915 Buckingham (1) showed that the number of independent dimensionless groups of 
variables (dimensionless parameters) needed to correlate the variables in a given process is 
equal to n - m, where n is the number of variables involved and m is the number of basic 
dimensions included in the variables. 

Buckingham referred to the dimensionless groups as ll, which is the reason the theorem 
is called the ll theorem. Henceforth dimensionless groups will be referred to as -rr-groups. If 
the equation describing a physical system has n dimensional variables and is expressed as 

then it can be rearranged and expressed in terms of (n - m) 'IT-groups as 

Thus if the drag force F of a fluid flowing past a sphere is known to be a function of the velocity V, 
mass density p, viscosity f.l, and diameter D, then five variables (F, V, p, f.l , and D) and three 
basic dimensions (L, M , and T) are involved.* By the Buckingham IT theorem there will be 
5 - 3 = 2 'IT-groups that can be used to correlate experimental results in the form 

1TJ = <.p( 1'1'2) 

t/ CHECKPOINT PROBLEM 8.1 

When a fluid flows in a round pipe, the shear stress on the walls of the pipe depends on the viscosity 
and density of the fluid, the mean velocity, the pipe diameter, and on the roughness of the pipe wall. 
The wall roughness is characterized by a variable that has units of meters that is called the sand rough­
ness height. How many 'If-groups are needed to correlate experimental data? 

a. I 

b.2 

c.3 

d.4 

e.S 
-v ~--~~~~~~ 

*Note that only three basic dimensions will be considered here. Temperature will not be included. 
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8.3 Dimensional Analysis 

Dimensional analysis is the process for applying 'TT-groups to analysis, experiment design, and 
the presentation of results. This section presents two methods for finding n-groups: 

The Step-by-Step Method 
Several methods may be used to carry out the process of finding the 'TT-groups, but the step-by­
step approach, very clearly presented by Ipsen (2), is one of the easiest and reveals much about 
the process. The process for the step-by-step method follows in Table 8.1. 

The final result can be expressed as a functional relationship of the form 

(8.3) 

The selection of the dependent and independent 'TT-groups depends on the application. Also 
the selection of variables used to eliminate dimensions is arbitrary. 

TABLE 8.1 The Step-by-Step Approach 

Action Taken during This Step 

Identify the significant dimensional variables and write out the primary dimensions 
of each. 

----+-
2 Apply the Buckingham ll theorem to find the number of 1r-groups. * 
3 Set up table with the number of rows equal to the number of dimensional 

variables and the number of columns equal to the number of basic dimensions 
plus one (m + 1). 

4 List all the dimensional variables in the first column with primary dimensions. 

5 Select a dimension to be eliminated, choose a variable with that dimension 
in the first column, and combine with remaining variables to eliminate the 
dimension. List combined variables in the second column with remaining 

----~mary dimensions. 

6 Select another dimension to be eliminated, choose from variables in the second 
column that have that dimension, and combine with the remaining variables. 
List the new combinations with remaining primary dimensions in the third 
column 

7 Repeat Step 6 until all dimensions are eliminated. The remaining dimensionless groups 
are the 1r-groups. List the 1r-groups in the last column 

•Note that, in rare instances, the number of 1r-groups may be one more than predicted by the Buckingham n 
theorem. This anomaly can occur because it is possible that two-dimensional categories can be eliminated when 
dividing (or multiplying) by a given variable. See Ipsen (2) for an example of this. 

Example 8.1 shows how to use the step-by-step method to find the 'TT-groups for a body 
falling in a vacuum. 

............... 
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EXAMPLE 8.1 

Finding 'Tf·Group for a Body Falling in a Vacuum 

Problem Statement 

There are three significant dimensional variables for a body 
falling in a vacuum (no viscous effects): the velocity V; the 
acceleration due to gravity, g; and the distance through which 
the body falls, h. Find the 'TT·groups using the step-by-step 
method. 

Define the Situation 

A body is falling in a vacuum, V = j(g, h). 

State the Goal 

Find the 1r-groups. 

Generate Jdea~ and Make a Plan 

Apply the step-by-step method in Table 8.1. 

Take Action (Execute the Plan) 

1. Significant variables and dimensions 

[V) =LIT 

[g) = L/T2 

[h] = L 

There are only two dimensions, L and T. 

2. From the Buckingham II theorem, there is only one 
(three variables-two dimensions) 'TT-group. 

3. Set up table with three rows (number of variables) and 
three (dimensions + 1) columns. 

4. List variables and primary dimensions in first column. 

Variable [] Variable [I 
.J Variable 

L v I v v - - -
T h T v'ifi 

L g 
g T2 h T2 

h L 

5. Select h to eliminate L. Divide g by h, enter in second 
column with dimension l / T2

• Divide Vby h, enter in 
second column with dimension 1/ T. 

[] 

0 

6. Selectg/h to eliminate T. Divide V/h by ViJh and enter in 
third column. 

As expected, there Is only one 'TT-group, 

v 
'TT =--

Vgii 

The final functional form of equation of the equation is 

v 
--=C 
Vgii 

Review the Solution and the Process 

1. Knowledge. From physics, one can show that C = 0. 
2. Knowledge. The proper relationship between V. h, 

and g was found with dimensionless analysis. If the 
value of C was not known, it could be determined 
from experiment. 

Example 8.2 illustrates the application of the step-by-step method for finding 1T-groups 
for a problem with five variables and three primary dimensions. 

EXAMPLE 8.2 

Finding 1f·Groups for Drag on a Sphere Using Step· 
by-Step Method 

Problem Matement 

The drag F0 of a sphere in a fluid flowing past the sphere is a 
function of the viscosity 1-L· the mass density p, the velocity of 
flow V, and the diameter of the sphere D. Use the step-by-step 
method to find the 1r-groups. 

Define the Situation 

The functional relationship is F0 = j(V, p, 1-L· D). 

State the Goal 

Find the 'TT-groups using the step-by-step method. 

Generate Ideas and Make a Plan 

Apply the step-by-step procedure from Table 8.1. 

Take Action (Execute the Plan) 

1. Dimensions of significant variables 

ML L M M 
F=Tl,V=T,p = L3' fl. = LT'D=L 

2. Number of 1r-groups, 5 - 3 = 2. 



3. Set up table with five rows and four colunms. 

4. Write variables and dimensions in first column. 

Variable [) 1 Variable [] Variable [] 

ML I Fo M Fo Fo 
f'u T2 D T2 pD1 T2 pV2D2 

0 
1 

L v v ..!. I v - -
T D T D T ----
M pDJ p 
LJ 

M 

--+ 
M M fL 1 fL 

fL LT 
f.l.D 

T pD2 T pVD 
0 

D L I 

5. Eliminate L using D and write new variable 
combinations with corresponding dimensions in 
the second column. 

6. Eliminate Musing pD3 and write new variable 
combinations with dimensions in the third column. 

7. Eliminate Tusing V/D and write new combinations 
in the fourth column. 

The final two TI-groups are 

and 

The functional equation can be written as 

Fo ( fL ) 
pV2D 2 = f pVD 

'The form of the "TT'-groups obtained will depend on the variables selected to eliminate 
dimensions. For example, if in Example 8.2, ~J-/pD 2 had been used to eliminate the time dimen­
sion, the two TI-groups would have been 

pFD 
"'T'; = - ,-

1-l" 
and 

The result is still valid but may not be convenient to use. The form of any "TT'-group can be 
altered by multiplying or dividing by another TI-group. Multiplying the 1T1 by the square of 
1T2 yields the original '11' 1 in Example 8.2. 

pFv ( 1-l- )z 
1-l-2 X pVD 

By so doing the two TI-groups would be the same as in Example 8.2. 

The Exponent Method 

An alternative method for finding the TI-groups is the exponent method. This method involves 
solving a set of algebraic equations to satisfy dimensional homogeneity. The process for the 
exponent method is listed in Table 8.2. 

TABLE 8.2 The Exponent Method 

Step Action Taken During This Step 

Identify the significant dimensional variables, y;, and write out the primary dimensions of each, [ y;]. 

2 Apply the Buckingham n theorem to find the number of TI-groups. 

3 Write out the product of the primary dimensions in the form 

[yJJ = [y2J" X [y3] b X ... X [y,.] k 

I where n is the number of dimensional variables and a, b, etc. are exponents. 
--1 
4 Find the algebraic equations for the exponents that satisfy dimensional homogeneity (same 

power for dimensions on each side of equation). 

5 Solve the equations for the exponents. 

6 Express the dimensional equation in the form y 1 = y~y~ ... y~ and identify the TI-groups. 
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Example 8.3 illustrates how to apply the exponent method to find the 1r-groups of the 
same problem addressed in Example 8.2. 

EXAMPLE 8.3 

Finding 'IT-Groups for Drag on a Sphere Using Exponent 
Method 

Problem Statement 

The drag of a sphere, Fn, in a flowing fluid is a function of 
the velocity V, the fluid density p, the fluid viscosity 11· and 
the sphere diameter D. Find the 'IT-groups using the exponent 
method. 

Define the Situation 

The functional equation is F0 = f(V, p, 11· D). 

State the Goal 

Find the 'IT-groups using the exponent method. 

Generate Ideas and Make a Plan 

Apply the process for the exponent method from 
Table 8.2. 

Take Action (Fxecute the Plan) 

I . Dimensions of significant variables are 

2. Number of 'IT-groups is 5 - 3 = 2. 

3. Form product with dimensions. 

~~=[~]"X [~r X[~]' X [L] d 

L•-3b-c+d Mb+c 

T•+c 

4. Dimensional homogeneity. Equate powers of dimensions 

on each side. 

L: a - 3b - c + d = l 

M: b + c = 1 

T: a+ c = 2 

5. Solve for exponents a, b, and c in terms of d. 

(i 
-3 
I 

0 

The value of the determinant is -1 so a unique solution is 
achievable. Solution is a = d, b = d - I, c = 2 - d 

6. Write dimensional equation with exponents. 

p = Vdpd- 1112-d Dd 

F = ~2 (p~DJ 
Fp = (pVD)J 
112 11 

There are two 'IT-groups: 

Fp pVD 
'TT1 = 2 and 'TT2 = -

11 11 
By dividing 'TT 1 by the square of 'TT2, the 'TT 1 group can be 
written as F1/(p V2 D 2

), so the functional form of the 
equation can be written as 

F (pVD) 
pVlD 2 = f -

11 

Review the Solution and the Procc&s 

Discussion. The functional relationship between the two 
'IT-groups can be obtained from experiments. 

Selection of Significant Variables 

All the foregoing procedures deal with straightforward situations. However, some problems do 
occur. 10 apply dimensional analysis one must first decide which variables are significant. 
If the problem is not sufficiently well understood to make a good choice of the significant 
variables, dimensional analysis seldom provides clarification. 

A serious shortcoming might be the omission of a significant variable. If this is done, one 
of the significant 1r-groups will likewise be missing. In this regard, it is often best to identify 
a list of variables that one regards as significant to a problem and to determine if only one 
dimensional category (such as M or Lor T) occurs. When this happens, it is likely that there 
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is an error in choice of significant variables because it is not possible to combine two variables 
to eliminate the lone dimension. Either the variable with the lone dimension should not have 
been included in the first place (it is not significant), or another variable should have been 
included. 

How does one know if a variable is significant for a given problem? Probably the truest 
answer is by experience. After working in the field of fluid mechanics for several years, one 
develops a feel for the significance of variables to certain kinds of applications. However, even 
the inexperienced engineer will appreciate the fact that free-surface effects have no signifi­
cance in closed-conduit flow; consequently, surface tension, cr, would not be included as a 
variable. In dosed-conduit flow, if the velocity is less than approximately one-third the speed 
of sound, compressibility effects are usually negligible. Such guidelines, which have been 
observed by previous experimenters, help the novice engineer develop confidence in her or his 
application of dimensional analysis and similitude. 

8.4 Common n-Groups 

The most common TI-groups can be found by applying dimensional analysis to the variables 
that might be significant in a general Jlow situation, The purpose of this section is to develop 
these common TI-groups and discuss their significance. 

Variables that have significance in a general flow field are the velocity V, the density p, the 
viscosity f.L, and the acceleration due to gravity g. In addition, if fluid compressibility were 
likely, then the bulk modulus of elasticity, Ev, should be included. If there is a liquid-gas inter­
face, the surface tension effects may also be significant. Finally the flow field will be affected by 
a general length, L, such as the width of a building or the diameter of a pipe. These variables 
will be regarded as the independent variables. 1he primary dimensions of the significant inde­
pendent variables are 

[V] =LIT [p] = M/rJ [J.L] =MILT 

[g] = LIT 2 !Ev] = M ILT2 fa] = M /T 2 [L) = L 

There are several other independent variables that could be identified for thermal effects, 
such as temperature, specific heat, and thermal conductivity. Inclusion of these variables is 
beyond the scope of this text. 

Products that result from a flowing fluid are pressure distributions ( p ), shear stress distri­
butions (T), and forces on surfaces and objects (F) in the flow field. These will be identified as 
the dependent variables. The primary dimensions of the dependent variables are 

[p] = M /LT 2 [T] = (~p] = M !LT2 [F] = (ML)IT 2 

There are other dependent variables not included here, but they will be encountered and intro­
duced for specific applications. 

Altogether there are 10 significant variables, which, by application of the Buckingham II 
theorem, means there are seven TI-groups. Utilizing either the step-by-step method or the 
exponent method yields 

p T F 

pVz pVz pV2L2 

pVL v pLV2 vz 
f.L YElP (}' gL 

The first three groups, the dependent 71'-groups, are identified by specific names. For 
these groups it is common practice to use the kinetic pressure, p V2/2, instead of p V 2

• In 
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most applications one is concerned with a pressure difference, so the pressure TI-group is 
expressed as 

C = P - Po 
p l 

- pVz 
2 

where Cp is called the pressure coefficient and Po is a reference pressure. The pressure coeffi­
cient was introduced earlier in Chapter 4 and Section 8.1. The TI-group associated with shear 
stress is called the shear-stress coefficient and defined as 

T 
CJ=--

1 ' 
2 

pV-

where the subscript f denotes "friction." The TI-group associated with force is referred to, here, 
as a force coefficient and defined as 

F 
Cr = ---

1 _ p y2L2 
2 

This coefficient will be used extensively in Chapter 11 for lift and drag forces on airfoils and 
hydrofoils. 

The independent TI-groups are named after earlier contributors to fluid mechanics. The 
TI-group VLp/JJ. is called the Reynolds number, after Osborne Reynolds, and designated by Re. 
The group Y/(VE;TP) is rewritten as (VIc) because YEviP is the speed of sound, c. This 
TI-group is called the Mach number and designated by M. The TI-group pLV2/a is called the 
Weber number and designated by We. The remaining TI-group is usually expressed as V/vg£ 
and identified as the Froude (rhymes with "food") number* and written as Fr. 

The general functional form for all the TI-groups is 

CP, cf, Cr = f(Re, M, We, Fr) (8.4) 

which means that either of the three dependenlTI-groups are functions of the four independent 
TI-groups; that is, the pressure coefficient, the shear-stress coefficient, or the force coefficient are 
functions of the Reynolds number, Mach number, Weber number, and Froude number. 

The TI-groups, their symbols, and their names are summarized in Table 8.3. Each indepen­
dent TI-group has an important physical interpretation as indicated by the ratio column. The 
Reynolds number can be viewed as the ratio of kinetic to viscous forces. The kinetic forces are 
the forces associated with fluid motion. The Bernoulli equation indicates that the pressure dif­
ference required to bring a moving fluid to rest is the kinetic pressure, p Y2/2, so the kinetic 
forces,t Fk> should be proportional to 

Fk ex p V 2L2 

The shear force due to viscous effects, Fv, is proportional to the shear stress and area 

Fv ex TA ex ,.e 
and the shear stress is proportional to 

dV JLV 
T ex JL-ex-

dy L 

·~ometimes the r:roude numher is written as Vf\/{:::;.-ygL)I-y and called tl1e densimetric Froude number. It has appli 
cation in studying the motion of fluids in which there is density stratiftcation, such as between saltwater and freshwater 
in <lll estuary or heated-water effluents associated with thermal power plants. 

·trraditionally the kinetic force has been identified as the "inertial" force. 



TABLE 8 .3 Common n -Groups 

I "'T-Group ~ymbol ~arne Ratio 

P - Po Cp Pressure coefficient Pressure differenece 

(p V2)/2 Kinetic pressure 

T I ' I ~ear-stress coefficie: Shear stress 
(p V2)/2 Kinetic pressure 

F CF Force coefficient Force 

(p V 2L 2)/2 Kinetic force 

pLV Re Reynolds number Kinetic force 

jJ. Viscous force 

v M Mach number Kinetic force 
c Compressive force 

pLV2 We Weber number Kinetic force 

CI Surface-tension force 

v Fr Froude number Kinetic force 

ViL Gravitational force 

so F. ex f.L VL. Taking the ratio of the kinetic to the viscous forces 

Fk pVL 
-ex--= Re 
F. f.L 

yields the Reynolds number. The magnitude of the Reynolds number provides important 
information about the flow. A low Reynolds number implies viscous effects are important; a 
high Reynolds number implies kinetic forces predominate. The Reynolds number is one of 
the most widely used 'IT-groups in fluid mechanics. It is also often written using kinematic 
viscosity, Re = p VL/f.L = VL/v. 

The ratios of the other independent 'IT-groups have similar significance. The Mach num­
ber is an indicator of how important compressibility effects are in a fluid flow. If the Mach 
number is small, then the kinetic force associated with the fluid motion does not cause a sig­
nificant density change, and the flow can be treated as incompressible (constant density). On 
the other hand, if the Mach number is large, there are often appreciable density changes that 
must be considered in model studies. 

The Weber number is an important parameter in liquid atomization. The surface ten­
sion of the liquid at the surface of a droplet is responsible for maintaining the droplet's 
shape. If a droplet is subjected to an air jet and there is a relative velocity between the drop­
let and the gas, kinetic forces due to this relative velocity cause the droplet to deform. If the 
Weber number is too large, the kinetic force overcomes the surface-tension force to the 
point that the droplet shatters into even smaller droplets. Thus a Weber-number criterion 
can be useful in predicting the droplet size to be expected in liquid atomization. The size of 
the droplets resulting from liquid atomization is a very significant parameter in gas-turbine 
and rocket combustion. 

The Froude number is unimportant when gravity causes only a hydrostatic pressure dis­
tribution, such as in a closed conduit. However, if the gravitational force influences the pattern 
of flow, such as in flow over a spillway or in the formation of waves created by a ship as it 
cruises over the sea, the Froude number is a most significant parameter. 
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FIGURE 8.4 

Ship-model test at lhe 
David Taylor Model Basin, 
Naval Surface Warfare 
Center, Corderock 
Division . [Naval Surface 
Warfare Center Corderock 
Division) 

8.5 Similitude 

Scope of Similitude 
Similitude is the theory and art of predicting prototype performance from model observa­
tions. Whenever it is necessary to perform tests on a model to obtain information that cannot 
be obtained by analytical means alone, the rules of similitude must be applied. The theory of 
similitude involves the application of 'IT-groups, such as the Reynolds number or the Froude 
number, to predict prototype performance from model tests. The art of similitude enters the 
problem when the engineer must make decisions about model design, model construction, 
performance of tests, or analysis of results that are not included in the basic theory. 

Present engineering practice makes use of model tests more frequently than most people 
realize. For example, whenever a new airplane is being designed, tests are made not only on the 
general scale model of the prototype airplane but also on various components of the plane. 
Numerous tests are made on individual wing sections as well as on the engine pods and tail 
sections. 

Models of automobiles and high-speed trains are also tested in wind tunnels to predict the 
drag and flow patterns for the prototype. Information derived from these model studies often 
indicates potential problems that can be corrected before the prototype is built, thereby saving 
considerable time and expense in development of the prototype. 

In civil engineering, model tests are always used to predict flow conditions for the spill­
ways of large dams. In addition, river models assist the engineer in the design of flood-control 
structures as well as in the analysis of sediment movement in the river. Marine engineers make 
extensive tests on model ship hulls to predict the drag of the ships. Much of this type of testing 
is done at the David Taylor Model Basin, Naval Surface Warfare Center, Carderock Division, 
near Washington, D.C. (see Fig. 8.4). Tests are also regularly performed on models of tall buildings 
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to help predict the wind loads on the buildings, the stability characteristics of the buildings, and 
the airflow patterns in their vicinity. The latter information is used by the architects to design 
walkways and passageways that are safer and more comfortable for pedestrians to use. 

Geometric Similitude 
Geometric similitude means that the model is an exact geometric replica of the prototype.* 
Consequently, if a 1:10 scale model is specified, all linear dimensions of the model must be 
1/ 10 of those of the prototype. In Fig. 8.5 if the model and prototype are geometrically similar, 
the following equalities hold: 

e, w, c, 
-=-=- =L 
fp Wp Cp r 

(8.5) 

Here e, w, and c are specific linear dimensions associated with the model and prototype, and 
Lr is the scale ratio between model and prototype. It follows that the ratio of corresponding 
areas between model and prototype will be the square of the length ratio: Ar = L ~ . The ratio 
of corresponding volumes will be given by J,l.mfJ,l.p = L~ . 

Dynamic Similitude 

(a) 

1+--1 ' --em -----il 
C wmll l- c0 

(b) 

Dynamic similitude means that the forces that act on corresponding masses in the model and 
prototype are in the same ratio (F,/Fp =constant) throughout the entire flow field. For exam­
ple, the ratio of the kinetic to viscous forces must be the same for the model and the prototype. 
Because the forces acting on the fluid elements control the motion of those elements, it follows 
that dynamic similarity will yield similarity of flow patterns. Consequently, the flow patterns for 
the model and the prototype will be the same if geometric similitude is satisfied and if the rela­
tive forces acting on the fluid are the same in the model as in the prototype. This latter condition 
requires that the appropriate 1T-groups introduced in Section 8.4 be the same for the model and 
prototype because these 1T-groups are indicators of relative forces within the fluid. 

A more physical interpretation of the force ratios can be illustrated by considering the flow 
over the spillway shown in Fig. 8.6a. Here corresponding masses of fluid in the model and pro­
totype are acted on by corresponding forces. These forces are the force of gravity Fg, the pressure 
force FP, and the viscous resistance force Fv. These forces add vectorially as shown in Fig. 8.6 to 
yield a resultant force FR, which will in turn produce an acceleration of the volume of fluid in 
accordance with Newton's second law of motion. Hence, because the force polygons in the 

•For most model studies this is a basic requirement. However, for certain types of problems, such as river models, 
distortion of the vertical scale is often necessary to obtain meaningful results. 

FIGURE 8.5 

Ia) Prototype. ib) Model. 
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FIGURE 8.6 

Model-prototype relations: 
prototype view (a) and 
model view (b). 

Prototype force polygon 

Fdp 
F,P 

FRp =Mpap\ 

/ 
F,, 

/ 

-
(a) 

Model force polygon 

(b) 

prototype and model are similar, the magnitudes of the forces in the prototype and model will 
be in the same ratio as the magnitude of the vectors representing mass times acceleration: 

or 

which reduces to 

But 

so 

mmam Fgm 
- -=-

PmL~,(Vml t111) 
PpL~(Vpltp) 

tm L1111Vm 
- = - -
tp Lp/ Vp 

v~ v~ 
= 

gm Lm gpLp 
(8.6) 



SECTION 8.6 MODEL STUDIES FOR FLOWS WITHOUT FREE-SURFACE EFFECTS 305 

Taking the square root of each side ofEq. (8.6) gives 

V, VP 

vg;;;r: vg;r; or (8.7) 

Thus the Froude number for the model must be equal to the Froude number for the prototype 
to have the same ratio of forces on the model and the prototype. 

Equating the ratio of the forces producing acceleration to the ratio of viscous forces, 

(8.8) 

where Fv :x: f.L VL leads to 

Rem= Rep 

The same analysis can be carried out for the Mach number and the Weber number. To sum­
marize, if the independent 'IT-groups for the model and prototype are equal, then the condition 
for dynamic similitude is satisfied. 

Referring back to Eq. (8.4) for the general functional relationship, 

CP, Ct , CF = f(Re, M, We, Fr) 

if the independent 1r-groups are the same for the model and the prototype, then dependent 
1r-groups must also be equal so 

c:p.m = Cp .p Cf,m = cf,p (8.9) 

To have complete similitude between the model and the prototype, it is necessary to have both 
geometric and dynamic similitude. 

In many situations it may not be possible nor necessary to have all the independent 
1r-groups the same for the model and the prototype to carry out useful model studies. For the 
flow of a liquid in a horizontal pipe, for example, in which the fluid completely fills the pipe (no 
free surface), there would be no surface tension effects, so the Weber number would be inap­
propriate. Compressibility effects would not be important, so the Mach number would not be 
needed. In addition, gravity would not be responsible for the flow, so the Froude number 
would not have to be considered. The only significant 'IT-group would be the Reynolds number; 
thus dynamic similitude would be achieved by matching the Reynolds number between the 
model and the prototype. 

On the other hand if a model test were to be done for the flow over a spillway, the Froude 
number would be a significant 'IT-group because gravity is responsible for the motion of the 
fluid. Also, the action of viscous stresses due to the spillway surface could possibly affect the 
flow pattern, so the Reynolds number may be a significant 'IT-group. In this situation, dynamic 
similitude may require that both the Froude number and the Reynolds number be the same for 
the model and prototype. 

The choice of significant 'IT-groups for dynamic similitude and their actual use in predict­
ing prototype performance are considered in the next two sections. 

8.6 Model Studies for Flows without Free-Surface Effects 

Free-surface effects are absent in the flow of liquids or gases in closed conduits, including con­
trol devices such as valves, or in the flow about bodies (e.g., aircraft) that travel through air or 
are deeply submerged in a liquid such as water (submarines). Free-surface effects arc also 
absent where a structure such as a building is stationary and wind flows past it. In all these 
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EXAMPLE 8.4 

cases, given relatively low Mach numbers, the Reynolds-number criterion is the most sig­
nificant for dynamic similarity. That is, the Reynolds number for the model must equal the 
Reynolds number for the prototype. 

Example 8.4 illustrates the application of Reynolds-number similitude for the flow over 
a blimp. 

Generate Ideas and Make a Plan 

Reynolds-Number Similitude The only 'lT-group that is appropriate is the Reynolds number 
(there are no compressibility effects, free-surface effects, or 
gravitation effects). Thus equating the model and prototype 
Reynolds number satisfies dynamic similitude. 

Problem Statemen t 

The drag characteristics of a blimp 5 m in diameter and 
60 m long are to be studied in a wind tunneL If the speed of 
the blimp through still air is 10 m/s, and if a 1/10 scale model 
is to be tested, what airspeed in the wind tunnel is needed 

I. Equate the Reynolds number of the model and the 
prototype. 

2. Calculate model speed. 
for dynamically similar conditions? Assume the same air 
pressure and temperature for both model and prototype. Take Action (Execute the Plan) 

I. Reynolds-number similitude Define the Situation 

A l/10 scale model blimp is being testing in a wind tunnel. 
Prototype speed is I 0 m/s. 

Rem= Rep 

VmLm VPLP 
Assumptions: Same air pressure and temperature for model 
and prototype, therefore v,. = vP. 11m lip 

State the Goal 
2. Model velocity 

Find the air speed (rn/ s) in the wind tunnel for dynamic 
similitude. 

vm = vp Lp Vm = 10 m / s X 10 X I = 1100 m/s I 
L,. vP 

Example 8.4 shows that the airspeed in the wind tunnel must be 100 m/s for true Reynolds­
number similitude. This speed is quite large, and in fact Mach-number effects may start to 
become important at such a speed. However, it will be shown in Section 8.8 that it is not always 
necessary to operate models at true Reynolds-number similitude to obtain useful results. 

If the engineer feels that it is essential to maintain Reynolds-number similitude, then only 
a few alternatives are available. One way to produce high Reynolds numbers at nominal 
airspeeds is to increase the density of the air. A NASA wind tunnel at the Ames Research Center 
at Moffett Field in California is one such facility. Tt has a 12-ft-diameter test section, it can be 
pressurized up to 90 psia (620 kPa) , it can be operated to yield a Reynolds number per foot up 
to 1.2 X 107

, and the maximum Mach number at which a model can be tested in this wind 
tunnel is 0.6. The airflow in this wind tunnel is produced by a single-stage, 20-blade axial-flow 
fan, which is powered by a 15,000-horsepower, variable-speed, synchronous electric motor (3). 
Several problems are peculiar to a pressurized tunnel. First, a shell (essentially a pressurized 
bottle) must surround the entire tunnel and its components, adding to the cost of the tunnel. 
Second, it takes a long time to pressurize the tunnel in preparation for operation, increasing 
the time from the start to the finish of runs. In this regard it should be noted that the original 
pressurized wind tunnel at the Ames Research Center was built in 1946; however, because of 
extensive use, the tunnel's pressure shell began to deteriorate, so a new facility (the one previ­
ously described) was built and put in operation in 1995. Improvements over the old facility 
include a better data collection system, very low turbulence, and capability of depressurizing 
only the test section instead of the entire 620,000 ft3 wind tunnel circuit when installing and 
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removing models. The original pressurized wind tunnel was used to test most models of 
U.S. commercial aircraft over the past half-century, including the Boeing 737, 757, and 767; 
Lockheed L-1011; and McDonnell Douglas DC-9 and DC-10. 

The Boeing 777 was tested in the low-speed, pressurized 5 m-by-5 m tunnel in Farnbor­
ough, England. This tunnel, operated by the Defence Evaluation and Research Agency (DERA) 
of Great Britain, can operate at three atmospheres with Mach numbers up to 0.2. Approxi­
mately 15,000 hours of total testing time was required for the Boeing 777 ( 4). 

Another method of obtaining high Reynolds numbers is to build a tunnel in which the test 
medium (gas) is at a very low temperature, thus producing a relatively high-density-low­
viscosity fluid. NASA has built such a tunnel and operates it at the Langley Research Center. 
This tunnel, called the National Transonic Facility, can be pressurized up to 9 atmospheres. The 
test medium is nitrogen, which is cooled by injecting liquid nitrogen into the system. In this 
wind tunnel it is possible to reach Reynolds numbers of 108 based on a model size of0.25 m (5). 
Because of its sophisticated design, its initial cost was approximately $100,000,000 (6), and its 
operating expenses are high. 

Another modern approach in wind-tunnel technology is the development of magnetic or 
electrostatic suspension of models. The use of the magnetic suspension with model airplanes 
has been studied (6), and the electrostatic suspension for the study of single-particle aerody­
namics has been reported (7). 

The use of wind tunnels for aircraft design has grown significantly as the size and sophis­
tication of aircraft have increased. For example, in the 1930s the DC-3 and B-17 each had 
about 100 hours of wind-tunnel tests at a rate of $100 per hour of run time. By contrast the 
F-15 fighter required about 20,000 hours of tests at a cost of $20,000 per hour ( 6). The latter test 
time is even more staggering when one realizes that a much greater volume of data per hour at 
higher accuracy is obtained from the modern wind tunnels because of the high-speed data 
acquisition made possible by computers. 

Example 8.5 illustrates the use of Reynolds-number sirnilih1de to design a test for a valve. 

EXAMPLE 8.5 

Reynolds-Number Similitude of a Valve 

Problem Statement 

The valve shown is the type used in the control of water in 
large conduits. Model tests are to be done, using water as the 
fluid, to determine how the valve will operate under wide­
open conditions. The prototype size is 6 ft in diameter at the 
inlet. What flow rate is required for the model if the prototype 
flow is 700 cfs? Assume that the temperature for model and 
prototype is 60°F and that the model inlet diameter is I ft. 

Define the Situations 

A 1/6 scale model of a valve will be tested in a water tunnel. 
Prototype flow rate is 700 cfs. 

Assumptions: 

1. No compressibility, free surface or gravitational effects. 

2. Temperature of water in model and prototype is the same. 
Therefore kinematic viscosity for model and prototype are 
equal. 

State the Goal 

Find the flow rate through the model in cfs. 

Generate Ideas and Make a Plan 

Dynamic similitude is obtained by equating the model and 
prototype Reynolds number. The model/prototype area ratio 
is the square of the scale ratio. 

l. Equate Reynolds number of model and prototype. 

2. Calculate the velocity ratio. 

3. Calculate the discharge ratio using model/prototype area ratio. 
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Take Action (Execute the Plan) 

I. Reynolds-number similitude 

Rem= Rep 

V'"L"' VPLP 

2. Velocity ratio 

3. Discharge 

Om_ Vm Am_ Lp(Lm)
2 

_ Lm 
0p VP Ap Lm Lp Lp 

Om = 700 cfs X ~ = 1117 cfs I 
Review the Solution and the Process 

Discussion. This discharge is very large and serves 
to emphasize that very few model studies are made 
that completely satisfy the Reynolds-number criterion. 
This subject will be discussed further in the next 

Since v1, = vm, sections. 

V,. Lp 

VP Lm 

8.7 Model-Prototype Performance 

Geometric (scale model) and dynamic (same 'IT-groups) similitude mean that the dependent 

'IT-groups are the same for both the model and the prototype. For this reason, measurements 

made with the model can be applied directly to the prototype. Such correspondence is illus­
trated in this section. 

Example 8.6 shows how the pressure difference measured in a model test can be used to 
find the pressure difference between the corresponding two points on the prototype. 

EXAMPLE 8.6 

Application of Pressure Coefficient 

Problem Statement 

A 1/10 scale model of a blimp is tested in a wind tunnel 
under dynamically similar conditions. The speed of the 
blimp through still air is 10 m!s. A 17.8 kPa pressure 
difference is measured between two points on the model. 
What will be the pressure difference between the two 
corresponding points on the prototype? The temperature and 
pressure in the wind tunnel is the same as the prototype. 

Define the Situation 

A 1/10 scale of a blimp is tested in a wind tunnel under 
dynamically similar conditions. A pressure difference of 
17.8 kPa is measured on the model. 

Properties: Pressure and temperature are the same for wind 
tunnel test and prototype, so vm = Vp· 

State the Goal 

Find the corresponding pressure difference (Pa) on 
prototype. 

Generate Ideas and Make a Plan 

Eq. (8.4) reduces to 

CP = f(Re) 

I. Equate the Reynolds numbers to find the velocity ratio. 

2. Equate the coefficient of pressure to find the pressure 
difference. 
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Take Action (Fxecutc the Plan) 

1. Reynolds-number similitude 

Rem= Rep 

v,"L'" VpLp 
=--

v,. Vp 

v P Lm 

vm Lp 

2. Pressure coefficient correspondence 

t.p,. t.pp 
---=---

10 
Pressure difference on prototype 

dpm 17.8 kPa [l7s Pal t.p = - = = }78 Pa 
p 100 100 

Example 8.7 illustrates calculating the fluid dynamic force on a prototype blimp from 
wind tunnel data using similitude. 

EXAMPLE 8.7 

Drag Force from Wind Tunnel Testing 

Problem Statement 

A 1/ 10 scale of a blimp is tested in a wind tunnel 
under dynamically similar conditions. If the drag force 
on the model bUmp is measured to be 1530 N, what 
corresponding force could be expected on the prototype? 
The air pressure and temperature are the same for both 
model and prototype. 

Define the Situation 

A 1/10 scale model of blimp is tested in a wind tunnel, and a 
drag force of 1530 N is measured. 

Properties: Pressure and temperature are the same, vm = vp · 

State the Goal 

Find the drag force (in newtons) on the prototype. 

Generate Ideas and Make a Plan 

Reynolds number is the only significant 'TT-group, so Eq. (8.4) 
reduces to CF = j(Re). 

1. Find velocity ratio by equating Reynolds numbers. 

2. Find the force by equating the force coefficients. 

Take Action (F.xccute the Plan) 

1. Reynolds-number similitude 

Re, =Rep 

VmLm = VPLP 

Vm Vp 

VP V'" 1 
-=-=-v., Lp 10 

2. Force coefficient correspondence 

Fp V~ L~ L~ L~ 
- = -- = -- = ! 
F,. V!, L!, L~ L~ 

Therefore 
Fp = 1530N 

Review the Solution and the Process 

Discussion. The result that the model force is the same as 
the prototype force is interesting. When Reynolds-number 
similitude is used, and the fluid properties are the same, the 
forces on the model will always be the same as the forces on 
the prototype. 

8.8 Approximate Similitude at High Reynolds Numbers 

The primary justification for model tests is that it is more economical to get answers needed for 
engineering design by such tests than by any other means. However, as revealed by Examples 8.3, 
8.4, and 8.6, Reynolds-number similitude requires expensive model tests (high-pressure 
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FIGURE 8.7 

CP for a venturi meter as 
a function of the Reynolds 
numbers. 

facilities, large test sections, or using different fluids). This section shows that approximate 
similitude is achievable even though high Reynolds numbers cannot be reached in model tests. 

Consider the size and power required for wind-tunnel tests of the blimp in Example 8.4. 
The wind tunnel would probably require a section at least 2 m by 2 m to accommodate the 
model blimp. With a 100 m/s airspeed in the tunnel, the power required for producing con­
tinuously a stream of air of this size and velocity is in the order of 4 MW. Such a test is not 
prohibitive, but it is very expensive. It is also conceivable that the 100 m/s airspeed would 
introduce Mach-number effects not encountered with the prototype, thus generating concern 
over the validity of the model data. Furthermore, a force of 1530 N is generally larger than that 
usually associated with model tests. Therefore, especially in the study of problems involving 
non-free-surface flows, it is desirable to perform model tests in such a way that large magni­
tudes of forces or pressures are not encountered. 

For many cases, it is possible to obtain all the needed information from abbreviated tests. 
Often the Reynolds-number effect (relative viscous effect) either becomes insignificant at high 
Reynolds numbers or becomes independent of the Reynolds number. The point where testing 
can be stopped often can be detected by inspection of a graph of the pressure coefficient Cp versus 
the Reynolds number Re. Such a graph for a venturi meter in a pipe is shown in Fig. 8.7. In this 
meter, llp is the pressure difference between the points shown, and V is the velocity in the 
restricted section of the venturi meter. Here it is seen that viscous forces affect the value of Cp 
below a Reynolds number of approximately 50,000. However, for higher Reynolds numbers, Cp 
is virtually constant. Physically this means that at low Reynolds numbers (relatively high viscous 
forces), a significant part of the change in pressure comes from viscous resistance, and the remain­
der comes from the acceleration (change in kinetic energy) of the fluid as it passes through the 
venturi meter. However, with high Reynolds numbers (resulting from either small viscosity or a 
large product of V, D, and p), the viscous resistance is negligible compared with the force required 
to accelerate the fluid. Because the ratio of llp to the kinetic pressure does not change (constant Cp) 
for high Reynolds numbers, there is no need to carry out tests at higher Reynolds numbers. This 
is true in general, so long as the flow pattern does not change with the Reynolds number. 
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In a practical sense, whoever is in charge of the model test will try to predict from previous 
works approximately what maximum Reynolds number will be needed to reach the point of insig­
nificant Reynolds-number effect and then will design the model accordingly. After a series of tests 
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has been made on the model, Cp versus Re will be plotted to see whether the range of constant CP 
has indeed been reached. If so, then no more data are needed to predict the prototype perfor­
mance. However, if Cp has not reached a constant value, the test program has to be expanded or 
results extrapolated. Thus the results of some model tests can be used to predict prototype perfor­
mance, even though the Reynolds numbers are not the same for the model and the prototype. This 
is especially valid for angular-shaped bodies, such as model buildings, tested in wind tunnels. 

In addition, the results of model testing can be combined with analytic results. Computa­
tional fluid dynamics (CFD) may predict the change in performance with Reynolds number 
but may not be reliable to predict the performance level. In this case, the model testing would 
be used to establish the level and of performance, and the trends predicted by CFD would be 
used to extrapolate the results to other conditions. 

Example 8.8 is an illustration on the approximate similitude at high Reynolds number for 
flow through a constriction. 

I 

EXAMPLE 8.8 

Measuring Head loss in a Nozzle in Reverse Flow 

Problem Statement 

Tests are to be performed to determine the head loss in a 
nozzle under a reverse-flow situation. The prototype operates 
with water at 50°F and with a nominal reverse-flow velocity of 
5 ft/s. The diameter of the prototype is 3 ft. The tests are done 
in a 1/12 scale model facility with water at 60°F. A head loss 
(pressure drop) of I psid is measured with a velocity of20 ft/s. 
What will be the head loss in the actual nozzle? 

.3_ 1 t) )_;)_;}..) 
d , P2 

P1 

I T1 )))) 

Define the Situation 

A 1/12 scale model tests for head loss in a reverse-flow nozzle. A 
pressure difference of 1 psid is measured with model at 20 ft/s. 

Properties: Table F.5.: Water at 50°F, p = I .94 slugs/ft3
, 

v = 1.41 X 10- 5 ft 2!s; water at 60°F, p = 1.94 slugs/frl, 
v = 1.22 x 10- 5 ft 2/s 

State the Goal 

Find the pressure drop (psid) for the prototype nozzle. 

Generate Ideas and Make a Plan 

The only significant 'IT-group is the Reynolds number, so 
Eq. (8.4) reduces to Cp = f(Re). Dynamic similitude 

achieved if Rem= Rep , then Cp,m = Cp.p· From Fig. 8.7, 
if Rem, Rep > 103

, then Cp,m = Cp,p · 

1. Calculate Reynolds number for model and prototype. 

2. Check if both exceed I 03
• If not, model tests need to be 

reevaluated. 

3. Calculate pressure coefficient. 

4. Evaluate pressure drop in prototype. 

Take Action (Execute the Plan) 

1. Reynolds numbers 

Re = VD = 20ft/ s X (3/ 12ft) = 
4
.IO X 105 

m v 1.22 X 10 5 ft2/ s 

R 5 ft / s X 3ft = 1.06 X 106 
ep = 1.41 X 10- 5 ft2/s 

2. Both Reynolds numbers exceed 101
• Therefore Cp. m = Cp.p· 

The test is valid. 

3. Pressure coefficient from model tests 

llp c = -p,m 1 
-pV2 
2 

1 = 0.371 
- X 1.94 slug/ ft1 X (20 ftls)2 

2 

4. Pressure drop in prototype 

I 
llpp = 0.371 X zpV2 = 0.371 X 0.5 X 1.94 slug/ ft3 X (5 ft /s)2 

= 9.o lbftftl = 1 o.o625 psid 1 

Re' ie\\ the Solution and the Process 

1. Knowledge. Because the Reynolds numbers are so much 
greater than 103

• the equation for pressure drop is valid 
over a wide range of velocities. 

2. Discussion. This example justifies the independence of 
Reynolds number referred to in Section 8.1. 
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In some situations viscous and compressibility effects may both be important, but it is not 
possible to have dynamic similitude with both 'IT-groups. Which 'IT-group is chosen for simili­
tude depends a great deal on what information the engineer is seeking. If the engineer is inter­
ested in the viscous motion of fluid near a wall in shock-free supersonic flow, then the Reynolds 
number should be selected as the significant 'IT-group. However, if the shock wave pattern over 
a body is of interest, then the Mach number should be selected for similitude. A useful rule of 
thumb is that compressibility effects are unimportant forM < 0.3. 

Example 8.9 shows the difficulty in having Reynolds-number similitude and avoiding 
Mach-number effects in wind tunnel tests of an automobile. 

EXAMPLE 8.9 

Model Tests for Drag Force on an Automobile 

Problem Statement 

A 1/ 10 scale of an automobile is tested in a wind tunnel 
with air at atmospheric pressure and 20°C. The automobile 
is 4 m long and travels at a velocity of 100 km/hr in air at 
the same conditions. What should the wind-tunnel speed 
be such that the measured drag can be related to the drag of 
the prototype? Experience shows that the dependent 'IT-groups 
are independent of Reynolds numbers for values exceeding lOs. 
The speed of sound is 1235 krn/hr. 

Define the Situation 

A 1/ 10 scale model of a 4 m-long automobile moving at 
100 krn/hr is tested in wind tunnel. 

Properties: Air (20°C), Table A.3, 
p = 1.2 kg/m3

, v = 1.51 X 10-5 N · s/m2 

State the Goal 

Find the wind tunnel speed to achieve similitude. 

Generate Ideas and Make a Plan 

Mach number of the prototype is about 0.08 (100/1235), so 
Mach-number effects are unimportant Dynamic similitude is 
achieved with Reynolds numbers, Re, = Rep . With dynamic 
similitude, CF., = CF. P. and model measurements can be 
applied to prototype. 

1. Determine the model speed for dynamic similitude. 

2. Evaluate the model speed. If it is not feasible, continue to 
next step. 

3. Calculate the prototype Reynolds number. If 
Rep > lOs, then Re, ~ lOs, for CF., = CF. p· 

4. Find the speed for which Re, ~ 105
. 

l'ake Action (Execute the Plan) 

l. Velocity from Reynolds-number similitude 

V, Lp 
-=-= 10 
vP L, 

V, = 10 X 100 krn/hr = 1000 krn/hr 

2. With this velocity, M = 1000/1235 = 0.81. This is too high 
for model tests because it would introduce unwanted 
compressibility effects. 

3. Reynolds number of prototype 

VLp 100 krn/ hr X 0.278 (m/ s)(km/hr) X 4 m 
Re = -- = --------'-~.;_--'---

P 1.1- 1.51 X 10- 5 m2/s 

= 7.4 X 106 

Therefore CF.'" = CF.p• if Re'" ~ 105
• 

4. Wind tunnel speed 

v, 
5 

1.51 X 10- 5 m 2/ s 
V, ~ Re, - = 10 X-- ----

L, 0.4m 

~ [ 3.8 m / s] 

Review the Solution and the Process 

Discussion. The wind-tunnel speed must exceed 3.8 m/s. From 
a practical point of view, the speed will be chosen to provide 
sufficiently large forces for reliable and accurate measurements. 

8. 9 Free-Surface Model Studies 

Spillway Models 
The flow over a spillway is a classic case of a free-surface flow. The major influence, besides the 
spillway geometry itself, on the flow of water over a spillway is the action of gravity. Hence the 
Froude-number similarity criterion is used for such model studies. It can be appreciated for 
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large spillways with depths of water on the order of 3 m or 4 m and velocitie1> on the order of 
10 m/s or more, that the Reynolds number is very large. At high values of the Reynolds num­
ber, the relative viscous forces are often independent of the Reynolds number, as noted in the 
foregoing section (Sec. 8.8). However, if the reduced-scale model is made too small, the vis­
cous forces as well as the surface-tension forces would have a larger relative effect on the flow 
in the model than in the prototype. 1l1erefore, in practice, spillway models are made large 
enough so that the viscous effects have about the same relative effect in the model as in the 
prototype (i.e., the viscous effects are nearly independent of the Reynolds number). Then the 
Froude number is the significant 'TT-group. Most model spillways are made at least 1 m high, 
and for precise studies, such as calibration of individual spillway bays, it is not uncommon to 
design and construct model spillway sections that are 2 m or 3 m high. Figures 8.8 and 8.9 
show a comprehensive model and spillway model f(>r Hell's Canyon Dam in Tdaho. 

FIGURE 8.8 

Comprehensive model for 
Hell's Canyon Dam. Tests 

were made at the Albrook 
Hydraulic Laboratory, 
Washington Stale 
University. (Photo courtesy 
of Albrook Hydraulic 
Laboratory, Washington 
Stale University) 

FIGURE 8.9 

Spillway model for Hell's 
Canyon Dam. Tests were 
mode at the Albrook 

Hydraulic laboratory, 
Washington Stale 
University. (Photo courtesy 
of Albrook Hydraulic 

Laboratory, Washington 
State University) 
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Example 8.10 is an application ofFroude-number similitude in modeling discharge over 
a spillway. 

EXAMPLE 8.10 

Modeling Flood Discharge Over a Spillway 

Problem Statement 

A l/49 scale model of a proposed dam is used to predict 
prototype flow conditions. If the design flood discharge over 
the spillway is 15,000 m3/s, what water flow rate should be 
established in the model to simulate this flow? If a velocity 
of 1.2 m/s is measured at a point in the model, what is the 
velocity at a corresponding point in the prototype? 

Define the Situation 

A 1/49 scale model of spillway will be tested. 
Prototype discharge is 15,000 m3/s. 

State the Goal 

Find: 

1. Flow rate over model. 

2. Velocity on prototype at point where velocity is 1.2 m/s on 
model. 

Generate Ideas and Make a Plan 

Gravity is responsible for the flow, so the significant 'IT-group 
is the Froude number. For dynamic similitude, Frm = Frp. 

1. Calculate velocity ratio from Froude-number similitude. 

2. Calculate discharge ratio using scale ratio and calculate 
model discharge. 

Ship Model Tests 

3. Use velocity ratio from step 1 to find velocity at point on 
prototype. 

Take Action (Execute the Plan) 

1. Froude-number similitude 

Frm = Frp 

vm vp 
vg:r:. = vg;ip 

The acceleration due to gravity is the same, so 

2. Discharge ratio 

Om = Am V~ = L~ (L:. _ (Lm)5
'
2 

QP Ap vP r;Y L; LP 

Discharge for model 

Q = Q - = 15000 - X-- = 0.89~ ( 
1 )stz mJ 1 fD.8S 

'" p 49 ' S 16,800 '----~-_.J 

3. Velocity on prototype 

~= (I; 
Vm \jL;, 
VP = \149 X 1.2 m/s = [ 8.4 m/s ] 

The largest facility for ship testing in the United States is the David Taylor Model Basin, Naval 
Surface Warfare Center, Carderock Division, near Washington, D.C. Two of the core facilities 
are the towing basins and the rotating arm facility. In the rotating arm facility, models are sus­
pended from the end of a rotating arm in a larger circular basin. Forces and moments can 
be measured on ship models up to 9 m in length at steady-state speeds as high as 15.4 m/s 
(30 knots). In the high-speed towing basin, models 1.2 m to 6.1 m can be towed at speeds up 
to 16.5 m/s (32 knots). 

The aim of the ship model testing is to determine the resistance that the propulsion system 
of the ship must overcome. This resistance is the sum of the wave resistance and the surface 
resistance of the hull. The wave resistance is a free-surface, or Froude-number, phenomenon, 
and the hull resistance is a viscous, or Reynolds-number, phenomenon. Because both wave 
and viscous effects contribute significantly to the overall resistance, it wouJd appear that both 
the Froude and Reynolds criteria should be used. However, it is impossible to satisfy both if the 
model liquid is water (the only practical test liquid), because the Reynolds-number similitude 
dictates a higher velocity for the model than for the prototype f equal to Vp(Lp/Lm)j , whereas 



the Froude-number similitude dictates a lower velocity for the model [equal to Vp{"YI:Iyrz:;;)]. 
To circumvent such a dilemma, the procedure is to model for the phenomenon that is the most 
difficult to predkt analytically and to account for the other resistance by analytical means. 
Because the wave resistance is the most difficult problem, the model is operated according to 
the Froude-number sin1ilitude, and the hull resistance is accounted for analytically. 

To illustrate how the test results and the analytical solutions for surface resistance are 
merged to yield design data, the following necessary sequential steps are indicated. 

1. Make model tests according to Froude-number similitude, and the total model resistance 
is measured. This total model resistance will be equal to the wave resistance plus the sur­
face resistance of the hull of the model. 

2. Estimate the surface resistance of the model by analytical calculations. 

3. Subtract the surface resistance calculated in step 2 from the total model resistance of 
step 1 to yield the wave resistance of the model. 

4. Using the Froude-number similitude, scale the wave resistance of the model up to yield 
the wave resistance of the prototype. 

5. Estimate the surface resistance of the hull of the prototype by analytical means. 

6. The sum of the wave resistance of the prototype from step 4 and the surface resistance of 
the prototype from step 5 yields the total prototype resistance, or drag. 

8.10 Summarizing Key Knowledge 

Rationale and Description of Dimensional Analysis 

• Dimensional analysis involves combining dimensional variables to form dimensionless 
groups. These groups, called 'IT-groups, can be regarded as the scaling parameters for 
fluid flow. Dimensional analysis is applied to analysis, experiment design, and to the 
presentation of results. 

• The Buckingham II theorem states that the number of independent 'IT-groups is n - m, 
where n is the number of dimensional variables and m is the number of basic dimensions 
included in the variables. 

Rationale and Description of Dimensional Analysis 

• The 'IT-groups can be found by either the step-by-step method or the exponent method. 

~ In the step-by-step method each dimension is removed by successively using a 
dimensional variable until the 'IT-groups are obtained. 

~ In the exponent method, each variable is raised to a power, they are multiplied together, 
and three simultaneous algebraic equations formulated for dimensional homogeneity, 
are solved to yield the 'IT-groups. 

Common 1r-groups 

• Four common independent 'IT-groups are 

pVL 
Reynolds number Re = 

fl. 

pV2L 
Weber number We = -­

a 

v 
Mach number M = -

c 

v 
Froude number Fr = ~ c. 

vgL 



316 CHAPTER 8 • DIMENSIONAl ANALYSIS AND SIMILITUDE 

REFERENCES 
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Pressure coefficient, L~ = ( ') 
pV- / 2 

'T 
Shear stress coefficient, c1 = ( ') 

pV· /2 
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pV-L /2 
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PROBLEMS 

P'Ns Problem available in WileyPLUS at instructor's discretion. 

Dimensional Analysis (§8.2) 

8.1 Find the primary dimensions of density p, viscosity f.L, and 
pressure p. 

8.2 According to the Buckingham 11 theorem, if there arc six 
dimensional variables and three primary dimensions, how many 
dimensionless variables will there be? 

6. Baab, D. D., and W. R. Corliss. Wind Tunnels of NASA. 
Washington, DC: U.S. Govt. Printing Office, 1981. 

7. Kale, S., et al. "An Experimental Study of Single-Particle 
Aerodynamics:' Proc. of First Nat. Congress on Fluid Dynamics, 
Cincinnati, Ohio, July 1988. 

~Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

8.3 Explain what is meant by dimensional homogeneity. 

8.4 PNs Determine which of the following equations are 
dimensionally homogeneous: 

a. Q = ~ CL V2g H ' 2 

where Q is discharge, Cis a pure number, Lis length,g is 
acceleration due to gravity, and H is head. 



b. V = 1.49 RuJ s"z 
n 

where Vis velocity, n is length to the one-sixth power, R is 
length, and Sis slope. 

L V2 

c. h,= j--
D 2g 

where h1is head loss,fis a dimensionless resistance coefficient, L 
1s length, Dis diameter, Vis velocity, and g is acceleration due to 
gravity. 

0.074 BxpV2 

d. D= -
0
---

Re ·2 2 

where Dis drag force, Re is Vx/v, B is width, xis length, p is mass 
density, v is the kinematic viscosity, and Vis velocity. 

8.5 Determine the dimensions of the following variables and 
combinations of variables in terms of primary dimensions. 

a. T (torque) 

b. p V 2/2, where Vis velocity and pis mass density 

c. vT7P, where ,. is shear stress 

d. QIND3
, where Q is discharge, Dis diameter, and N is 

angular speed of a pump 

8.6 It takes a certain length of time for the liquid level in a tank 
of diameter D to drop from position h1 to position lz2 as the tank 
is being drained through an orifice of diameter d at the bottom. 
Determine the 1T-groups that apply to this problem. Assume that 
the liquid is nonviscous. Express your answer in the functional 
form. 

" r D 
It, 

l I 
-I" I- hz 

1 r 
_.!_ 

PROBLE:\.1ll.6 

8.7 The maximum rise of a liquid in a small capillary tube is a 
function of the diameter of the tube, the surface tension, and the 
specific weight of the liquid. What are the significant 1T-groups 
for the problem? 

8.8 For very low velocities it is known that the drag force Fa 
of a small sphere is a function solely of the velocity V of flow 
past the sphere, the diameter d of the sphere, and the viscosity 
jJ. of the fluid. Determine then-groups involving these 
\'ariables. 

8.9 Observations show that the side thrust F, for a rough 
spinning ball in a fluid is a function of the ball diameter D, the 
free-s tream velocity V0 , the density p, the viscosity 1-lo the 

PROBLEMS 317 

roughness height k,, and the angular velocity of spin w. 
Determine the dimensionless parameter(s) that would be used 
to correlate the experimental results of a study involving the 
variables noted above. Express your answer in the functional 
form 

--
PROBLb\1 8.9 

8.10 Consider steady viscous flow through a small horizontal 
tube. For this type of flow, the pressure gradient along the tube, 
1p!J.. l should be a function of the viscosity !J., the mean velocity 
V, and the diameter D. By dimensional analysis, derive a 
functional relationship relating these variables. 

8.11 A flow-metering device, called a vortex meter, consists of a 
square element mounted inside a pipe. Vortices are generated by 
the element, which gives rise to an oscillatory pressure measured 
on the leeward side of the element. The fluctuation frequency is 
related to the flow velocity. The discharge in the pipe is a 
fw1ction of the frequency of the oscillating pressure w, the pipe 
diameter D, the size of the element I, the density p, and the 
viscosity IJ.. Thus 

Q = f( w, D, I, p, j.i) 

Find the 1T-groups in the form 

Q 
woJ = f(1T,, 1Tz) 

8.12 It is known that the pressure developed by a centrifugal 
pump, t:..p, is a function of the diameter D of the impeller, the 
speed of rotation n, the discharge Q, and the fluid density p. By 
dimensional analysis, determine the 1T-groups relating these 
variables. 

8.13 The force on a satellite in the earth's upper atmosphere 
depends on the mean path of the molecules 'A (a length), the 
density p, the diameter of the body D, and the molecular speed c: 
F = j('A, p, D, c). Find the nondimensional form of this equation. 

8.14 A general study is to be made of the height of rise of liquid 
in a capillary tube as a function of time after the start of a test. 
Other significant variables include surface tension, mass density, 
specific weight, viscosity, and diameter of the tube. Determine 
the dimensionless parameters that apply to the problem. Express 
your answer in the functional form 
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8.15 An engineer is using an experiment to characterize the 
power P consumed by a fan (see photo) to be used in an 
electronics cooling application. Power depends on four variables: 
P = j(p, D, Q, n), where pis the density of air, Dis the diameter 
of the fan impeller, Q is the flow rate produced by the fan, and n 
is the rotation rate of the fan. Find the relevant 71'-groups and 
suggest a way to plot the data. 

PROBI.f.M 8. I 5 (Photo by Donald Elger) 

8.16 By dimensional analysis, determine the 71'-groups for the 
change in pressure that occurs when water or oil flows through a 
horizontal pipe with an abrupt contraction as shown. Express 
your answer in the functional form 

D 

l!i.pd4 
--2 = f(7Tt, 71'2) 
pQ 
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d 

--

8.17 A solid particle falls through a viscous fluid. The falling 
velocity V, is believed to be a function of the fluid density PJ, the 
particle density Pp• the fluid viscosity fl., the particle diameter D, 
and the acceleration due to gravity g: 

By dimensional analysis, develop the 71'-groups for this problem. 
Express your answer in the form 

v 
• r:--n = f (7rt, 71'2) 
vgD 

8.18 An experimental test program is being set up to calibrate a 
new flow meter. The flow meter is to measure the mass flow rate 

of liquid flowing through a pipe. Tt is assumed that the mass flow 
rate is a function of the following variables: 

m=f(l!i.p,D,f!.,p) 

where l!i.p is the pressure difference across the meter, D is the 
pipe diameter, fl. is the liquid viscosity, and p is the liquid density. 
Using dimensional analysis, find the 71'-groups. Express your 
answer in the form 

m 
--=== = f(7T) 
~ 

8.19 A torpedo-like device is being designed to travel j ust below 
the water surface. Which dimensionless numbers in Section 8.4 
would be significant in this problem? Give a rationale for your 
answer. 

8 .20 Experiments are to be done on the drag forces on an 
oscillating fin in a water tunnel. It is assumed that the drag 
force F0 , is a function of the liquid density p, the fluid 
velocity V, the surface area of the finS, and the frequency 
of oscillation w: 

Fv = f (p, V, S, w) 

By dimensional analysis, find the dimensionless parameters for 
this problem. Express your answer in the form 

Fv 
- =f(7T ) 
pV2S 

8.21 Flow situations in biofluid mechanics involve the flow 
through tubes that change in size with time (such as blood 
vessels) or are supplied by an oscillatory source. The volume flow 
rate Q in tbe tube will be a function of the frequency w, the tube 
diameter D, the fluid density p, viscosity f.L, and the pressure 
gradient (l!i.p)I(I!J.l). Find the 71'-groups for this situation in the 
form 

Q 
l = f (7rt, 71'2) 

wD· 

8.22 The rise velocity Vb of a bubble with diameter Din a liquid 
of density p1 and viscosity fl. depends on the acceleration due to 
gravity,g, and the density difference between the bubble and the 
fluid, p1 - Pb· Find the 71'-groups in the form 

v,, 
• r:--n = f( 71'1> 71'2) 
vgD 

8.23 The discharge of a centrifugal pump is a function of the 
rotational speed of the pump N, the diameter of the impeller D, 
the head across the pump hp, the viscosity of the fluid f.L, the 
density of the fluid p, and the acceleration due to gravity g. The 
functional relationship is 

Q = f(N, D, hp, fl., p,g) 

By dimensional analysis, find the dimensionless parameters. 
Express your answer in the form 

Q 
ND1 = f(7rt, 71'2, 7l'J) 



8.24 Drag tests show that the drag of a square plate placed 
normal to the free-stream velocity is a function of the velocity V, 
the density p, the plate dimensions B, the viscosity f.!., the 
free-stream turbulence root mean square velocity Unns, and the 
turbulence length scale Lx· Here Unns and Lx are in ft/s and ft, 
respectively. By dimensional analysis, develop the 'IT-groups that 
could be used to correlate the experimental results. Express your 
answer in the functional form 

Fo 
-2-2 =/('ITt, 'IT2• 'IT)) 
pV B 

PROBLEM 8.24 

8.25 Using Wikipedia, read about the Womersley number (ex) 
and answer the following questions. 

a. Is ex dimensionless? How do you know? Show that all the 
terms in fact cancel out. 

b. Like other independent 'IT-groups, ex is the ratio of two 
forces. Of what two forces is it the ratio? 

c. What does the velocity profile in a blood vessel look like 
for ex s: 1? For ex 2:: I 0? 

d. What is the aorta, and where in the human body is it 
located? What is a typical value for ex in the aorta? What 
might you conclude about the velocity profile there? 

8.26 ,iDJ-s The Womersley number (ex) is a 'IT-group given by the 
ratio of [pulsatile transient force] /[viscous force]. Biomedical 
engineers have applied this to characterize flow in blood vessels. 
The Womersley number is given by: 

ex= rtf 
where r = blood vessel radius, and w = frequency, typically the 
heart rate. just as does Re, ex has different practical implications 
in critical ranges. In the range a a s: I, a parabolic (laminar) 
velocity distribution has time to develop in a tube during each 
heartbeat cycle. When a 2:: 10, the velocity profile is relatively 
flat (called plug flow) in the blood vessel. For a human research 
subject, assume the heart rate is 70 beats/s, the radius of the 
aorta is 17 mm, the density of blood is 1060 kglm3

, and the 
radius of a capillary is 7 J.l.m. "!he viscosity of blood is normally 
3 X 10-3 Pa · s. 

a. Find a for the aorta of this subject. 

b. Find a for the capillary of this subject. 

c. Does either the aorta or the capillary have an ex that would 
predict plug flow? Does either have an a indicating a 
parabolic velocity distribution? 
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Common -rr·Groups 1§8.4) 
8.27 hlls For each item below, which 'IT-group (Re, We, M, 
or Fr) would best match the given description? 

a. (Kinetic force)/(Surface-tension force) 

b. (Kinetic force) /(Viscous force) 

c. (Kinetic force) /( Gravitational force) 

d. (Kinetic force)/(Compressive force) 

e. Used for modeling water flowing over a spillway on 
a dam 

f. Used for designing laser jet printers 

g. Used for analyzing the drag on a car in a wind tunnel 

h. Used to analyze the flight of supersonic jets 

Similitude 1§8.5) 
8.28 What is meant by geometric similitude? 

8.29 Many automobile companies advertise products with low 
drag for improved performance. Gather all the information you 
can find on wind-tunnel testing of automobiles, and summarize 
your findings in a concise, informative manner on two pages 
or less. 

8.30 One of the shortcomings of mounting a model of an 
automobile in a wind tunnel and measuring drag is that the 
effect of the road is not included. Give some thought as to your 
impressions of what the effect of the road may be on automobile 
drag and your reasoning. Also list some variables that may 
influence the effect of the ground on automobile drag. 

8.31 One of the largest wind tunnels in the United States is the 
NASA facility in Moffat Field, California. Look up information 
on this facility (size, test section velocity, etc.) and summarize 
your findings in a concise, informative manner. 

8.32 The hydrodynamic drag on a sailboat is very important to 
the performance of the craft, especially in competitive races such 
as the America's Cup. Investigate on the Internet or other sources 
the extent and types of simulations that have been carried out on 
high-performance sailboats. 

8.33 Ms The drag on a submarine moving below the free 
surface is to be determined by a test on a 1/18 scale model 
in a water tunnel. The velocity of the prototype in seawater 
(p = 1015 kglm3

, v = 1.4 X 10- 6 m2/s) is 3 m/s. 'lhe test is done 
in pure water at 20°C. Determine the speed of the water in the 
water tunnel for dynamic similitude and the ratio of the drag 
force on the model to the drag force on the prototype. 

8.34 ~s Water with a kinematic viscosity of 10- 6 m2/s flows 
through a 4 em pipe. What would the velocity of water have 
to be for the water flow to be dynamically similar to oil 
(v = 10 5 m2/s) flowing through the same pipe at a velocity 
o£0.5 m/s? 

8.35 Ms Oil with a kinematic viscosity of 4 X 10- 6 m2/s flows 
through a smooth pipe 12 em in diameter at 2.3 m/s. What 
velocity should water have at 20°C in a smooth pipe 5 em in 
diameter to be dynamically similar? 
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8.36 Ms A large venturi meter is calibrated by means 
of a 1/ 10 scale model using the prototype liquid. What is the 
discharge ratio Qm!QP for dynamic similarity? If a pressure 
difference of 400 kPa is measured across ports in the model for 
a given discharge, what pressure difference will occur between 
similar ports in the prototype for dynamically similar 
conditions? 

8.37 Ms A 1/5 scale model of an experimental deep sea 
submersible that will operate at great depths is to be tested to 
determine its drag characteristic by towing it behind a 
submarine. For true similitude, what should be the towing speed 
relative to the speed of the prototype? 

8.38 ms A spherical balloon that is to be used in air at 60°F 
and atmospheric presssure is tested by towing a I /12 scale model 
in a lake. The model is 1.4 ft in diameter, and a drag of 37lbf is 
measured when the model is being towed in deep water at 5 ft/s. 
What drag (in pounds force and newtons) can be expected for 
the prototype in air under dynamically similar conditions? 
Assume that the water temperature is 60°F. 
~ 

8.39 PLUS An engineer needs a value of lift force for an 
airplane that has a coefficient of lift (Cd of 0.4. The 1r-group 
is defined as 

Ft 
CL = 2--

pV2S 

where FL is the lift force, p is the density of an1bient air, Vis the 
speed of the air relative to the airplane, and S is the area of the 
wings from a top view. Estimate the lift force in newtons for a 
speed of 80 m/s, an air density of 1.1 kg/m3

, and a wing area 
(planform area) of 15m2

. 

PROBLE~f 8.39 (© Daniel Karlsson/Stocktrek 
Images, Inc.) 

8.40 Ms An airplane travels in air (p = 100 kPa, T = 10°C) 
at 150 m/s. lf a 1/8 scale model of the plane is tested in a wind 
tunnel at 25°C, what must the density of the air in the tunnel 
be so that both the Reynolds-number and the Mach-number 
criteria are satisfied? The speed of sound varies with the square 
root of the absolute temperature. (Note: The dynamic viscosity 
is independent of pressure.) 

8.41 The Airbus A380-300 has a wing span of 79.8 m. The 
cruise altitude is 10,000 min a standard atmosphere. Assume 
you are designing a wind tunnel to operate with air at 20°C. The 

span of the scale model A380 in the wind twmel is 1 m. Assume 
Mach-number correspondence between model and prototype. 
Both the speed of sound and the dynamic viscosity vary 
linearly with the square root of the absolute temperature. What 
would the pressure of the air in the wind tunnel have to be to 
have Reynolds-number similitude? Use the properties for a 
standard atmosphere in Chapter 3 to find properties at 
10,000 m altitude. 

8.42 jJ;s The Boeing 787-3 Drearnliner has a wing span of 52 
m.lt flies at a cruise Mach number of 0.85, which corresponds to 
a velocity of945 km/hr at an altitude of 10,000 m. You are going 
to estimate the drag on the prototype by measuring the drag on a 
1 m wing span scale model in a wind tunnel with air where the 
speed of sound is 340m/sand the density is 0.98 kg/m3

• What is 
the ratio of the force on the prototype to the force on the model? 
Only Mach-number similitude is considered. Use the properties 
of the standard atmosphere in Chapter 3 to evaluate the density 
of air for the prototype. 

8.43 ~Flow in a given pipe is to be tested with air and then 
with water. Assume that the velocities (VA and Vw) are such that 
the flow with air is dynamically similar to the flow with water. 
Then for this condition, the magnitude of the ratio of the 
velocities, VA/V w. will be (a) less than unity, (b) equal to unity, 
or (c) greater than unity. 

8.44 Ms A smooth pipe designed to carry crude oil (D = 47 in., 
p = 1.75 slugs/fe, and 1!- = 4 X 10 4 Ibf-s/ ft 2

) is to be modeled 
with a smooth pipe 4 in. in diameter carrying water (T = 60°F). 
If the mean velocity in the prototype is 2 ft/s, what should be the 
mean velocity of water in the model to ensure dynamically 
similar conditions? 

8.45 ~A student is competing in a contest to design a 
radio-controlled blimp. The drag force acting on the blimp 
depends on the Reynolds number, Re = (p VD)/IJ-, where Vis the 
speed of the blimp, Dis the maximum diameter, pis the density 
of air, and ~is the viscosity of air. This blimp has a coefficient of 
drag ( CfJ) of 0.3. This 1r-group is defined as 

Fo 
Co= 2 pV2Ap 

where F0 is the drag force p is the density of ambient air, Vis the 
speed of the blimp, and Ap = 1TD2/4 is the maximun1 section area 
of the blimp from a front view. Calculate the Reynolds number, 
the drag force in newtons, and the power in watts required to 
move the blimp through the air. Blimp speed is 800 mm/s, and 
the maximum diameter is 475 mm. Assume that ambient air is 
at 20°C. 

v -
PROBI.H.I 8..!5 



8.46 ftlrs Colonization of the moon will require an improved 
understanding of fluid flow under reduced gravitational forces. 
The gravitational force on the moon is 1/5 that on the surface 
of the earth. An engineer is designing a model experiment 
for flow in a conduit on the moon. The important scaling 
parameters are the Froude number and the Reynolds number. 
The model will he full scale.1be kinematic viscosity of the 
fluid to be used on the moon is 0.5 X 10-5 m2/s. What should 
be the kinematic viscosity of the fluid to be used for 
the model on earth? 

8.47 A drying tower at an industrial site is 10m in diameter. The 
air inside the tower has a kinematic viscosity of 4 X 10-5 m2/s 
and enters at 12 m/s. A 1/15 scale model of this tower is 
fabricated to operate with water that has a kinematic viscosity 
of I o-6 m2/s. What should the entry velocity of the water be to 
achieve Reynolds-number scaling? 

8.48 :Ms A flow meter to be used in a 40 em pipeline 
carrying oil (v = 10- 5 rn1/s, p = 860 kg/m1

) is to be calibrated 
by means of a model (1/9 scale) carrying water (T = 20°C and 
standard atmospheric pressure). Tf the model is operated with 
a velocity of 1.6 rn/s, find the velocity for the prototype based 
on Reynolds-number scaling. For the given conditions, if the 
pressure difference in the model was measured as 3.0 kPa, what 
pressure difference would you expect for the discharge meter in 
the oil pipeline? 

8.49 Water at l0°C flowing through a rough pipe 10 em in 
diameter is to be simulated by air (20°C) flowing through the 
same pipe. If the velocity of the water is 1.5 m/s, what will the air 
velocity have to be to achieve dynamic similarity? Assume the 
absolute air pressure in the pipe to be ISO kPa. If the pressure 
difference between two sections of the pipe during air flow was 
measured as 780 Pa, what pressure difference occurs between 
these two sections when water is flowing under dynamically 
similar conditions? 

8.50 ~ Tite "noisemaker" B is towed behind the mine­
sweeper A to set off enemy acoustic mines such as that shown 
at C. The drag force of the "noisemaker" is to be studied in a 
water tunnel at a 1/5 scale (the model is 1/5 the size of the full 
scale). If the full-scale towing speed is 5 rn/s, what should 
be the water velocity in the water tunnel for the two tests to be 
exactly similar? What will be the prototype drag force if the 
model drag force is found to be 2400 N? Assume that seawater 
at the same temperature is used in both the fulJ-scale and the 
model tests. 

B 
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-8.51 P'Lu•s An experiment is being designed to measure 
aerodynamic forces on a building. The model is a 1/500 scale 
replica of the prototype. The wind velocity on the prototype is 
47 ft/s, and the density is 0.0024 slugs/ft3

• The maxirnwn velocity 
in the wind tunnel is 300 ft/s. 1he viscosity of the air flowing for 
the model and the prototype is the same. Find the density needed 
in the wind tunnel for dynamic similarity. A force of 50 lbf is 
measured on the model. What will the force be on the prototype? 

8.52 A 60 em valve is designed for control of flow in a petroleum 
pipeline. A 1/3 scale model of the full -size valve is to be tested 
with water in the laboratory. If the prototype flow rate is to be 
0.5 m3/s, what flow rate should be established in the laboratory 
test for dynamic similitude to be established? Also, if the pressure 
coefficient Cp in the model is found to be 1.07, what will be the 
corresponding Cp in the fuU-sc.ale valve? The relevant fluid properties 
for tile petroleum areS = 0.82 and 1.1. = 3 X 10- 3 N · s/m1

. The 
viscosity of water is 10 3 N · slm2

. 

8.53 Ws The moment acting on a submarine rudder is 
studied by a 1/40 scale model. If the test is made in a water 
tunnel and if the moment measured on the model is 2 N · m 
when the freshwater speed in the tunnel is 6.6 m/s, what are the 
corresponding moment and speed for the prototype? Assume the 
prototype operates in sea water. Assume T = l0°C for both the 
freshwater and the seawater. 

8.54 ftVs A model hydrofoil is tested in a water tunnel. For a 
given angle of attack, the lift of the hydrofoil is measured to be 25 kN 
when the water velocity is ISm/s in the tunnel. If the prototype 
hydrofoil is to be twice the size of the model, what lift force 
would be expected for the prototype for dynamically similar 
conditions? Assume a water temperature of 20°C for both 
model and prototype. 

8.55 A 1/10 scale model of an automobile is tested in a 
pressurized wind tunnel. The test is to simulate the automobile 
traveling at I 00 km/h in air at atmospheric pressure and 25°C. 
The wind tunnel operates with air at 25°C. At what pressure in the 
test section must the tunnel operate to have the same Mach and 
Reynolds numbers? The speed of sound in air at 25°C is 345 m/s. 

8.56 If the tunnel in Pro b. 8.55 were to operate at atmospheric 
pressure and 25°C, what speed would be needed to achieve the 
same Reynolds number for the prototype? At this speed, would 
you conclude that Mach-number effects were important? 

8.57 ~s Experimental studies have shown that the condition 
for breakup of a droplet in a gas stream is 

We / Re112 = 0.5 

where Re is the Reynolds number and We is the Weber number 
based on the droplet diameter. What diameter water droplet 
would break up in a 12 m/s airstream at 20°C and standard 
atmospheric pressure? The surface tension of water is 0.041 N/m. 

8.58 Water is sprayed from a nozzle at 30 m/s into air at 
atmospheric pressure and 20°C. Estimate the size of the droplets 
produced if the Weber number for breakup is 6.0 based on the 
droplet dianteter. 
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8.59 Determine the relationship between the kinematic viscosity 
ratio vm/vp and the scale ratio if both the Reynolds-number 
and the Froude-number criteria are to be satisfied in a given 
model test. 

8.60 1]'o A hydraulic model, 1/20 scale, is built to simulate 
the flow conditions of a spillway of a dam. For a particular 
run, the waves downstream were observed to be 8 em high. 
How high would be similar waves on the full -scale dam 
operating under the same conditions? If the wave period 
in the model is 2 s, what would the wave period in the 
prototype be? 

8.61 The scale ratio between a model dam and its prototype is 
1/25. In the model test, the velocity of flow near the crest of the 
spillway was measured to be 2.5 m/s. What is the corresponding 
prototype velocity? If the model discharge is 0.10 m3/s, what is 
the prototype discharge? 

8.62 'frVs A seaplane model is built at a 1/6 scale. To 
simulate takeoff conditions at 117 km/h, what should be 
the corresponding model speed to achieve Froude-number 
scaling? 

8.63 If the scale ratio between a model spillway and its 
prototype is 1/36, what velocity and discharge ratio will 
prevail between model and prototype? lf the prototype 
discharge is 3000 m3/s, what is the model discharge? 

8.64 The depth and velocity at a point in a river are measured to 
be 20ft and IS ft/s, respectively. If a 1/64 scale model of this river 
is constructed and the model is operated under dynamically 
similar conditions to simulate the free-surface conditions, then 
what velocity and depth can be expected in the model at the 
corresponding point? 

8.65 1rU's A 1/40 scale model of a spillway is tested in a 
laboratory. If the model velocity and discharge are 3.2 ft/s and 
3.53 cfs, respectively, what are the corresponding values for the 
prototype? 

8.66 Flow around a bridge pier is studied using a model at 1/12 
scale. When the velocity in the model is 0.9 m/s, the standing 
wave at the pier nose is observed to be 2.5 em in height. What are 
the corresponding values of velocity and wave height in the 
prototype? 

8.67 A 1/25 scale model of a spillway is tested. The discharge in 
the model is 0.1 m3/s. To what prototype discharge does this 
correspond? If it takes 1 min for a particle to float from one point 
to another in the model, how long would it take a similar particle 
to traverse the corresponding path in the prototype? 

8.68 ffi"s A tidal estuary is to be modeled at 1/600 scale. In 
the actual estuary, the maximum water velocity is expected to 
be 3.6 m/s, and the tidal period is approximately 12.5 h. What 
corresponding velocity and period would be observed in the 
model? 

8.69 1ills The maximum wave force on a 1/36 model seawall 
was found to be 80 N. For a corresponding wave in the full-scale 
wall, what full -scale force would you expect? Assume freshwater 

is used in the model study. Assume T = 10°C for both model and 
prototype water. 

8.70 fRls A model of a spillway is to be built at l/80 scale. If the 
prototype has a discharge of 800 m3/s, what must be the water 
discharge in the model to ensure dynamic similarity? The total 
force on part of the model is found to be 51 N. To what prototype 
force does this correspond? 

8.71 ms A newly designed dam is to be modeled in the 
laboratory. The prime objective of the general model study 
is to determine the adequacy of the spillway design and to 
observe the water velocities, elevations, and pressures at 
critical points of the structure. The reach of the river to be 
modeled is 1200 m long, the width of the dam (also the 
maximum width of the reservoir upstream) is to be 300 m, 
and the maximum flood discharge to be modeled is 5000 m3/ s. 
The maximum laboratory discharge is limited to 0.90 m3/s, 
and the floor space available for the model construction is 
50 m long and 20m wide. Determine the largest feasible 
scale ratio (model/prototype) for such a study. 

8. 72 A ship model4 ft long is tested in a towing tank at a speed 
that will produce waves that are dynamically similar to those 
observed around the prototype. The test speed is 5 ft/s. What 
should the prototype speed be, given that the prototype length is 
100ft? Assume both the model and the prototype are to operate 
in freshwater. 

8.73 PTlls 'lbe wave resistance of a model of a ship at 1/25 scale is 
2 lbf at a model speed of 5 ft/s. What are the corresponding 
velocity and wave resistance of the prototype? 

8.74 A 1/20 scale model building that is rectangular in plan view 
and is three times as high as it is wide is tested in a wind tunnel. 
If the drag of the model in the wind tunnel is measured to be 
200 N for a wind speed of 20 m/s, then the prototype building in 
a 40 m/s wind (san1e temperature) should have a drag of about 
(a) 40 kN, (b) 80 kN, (c) 230 kN, or (d) 320 kN. 

8.75 'frt-s A model of a high-rise office building at 1/550 
scale is tested in a wind tunnel to estimate the pressures and 
forces on the full-scale structure. The wind-tunnel air speed 
is 20 m/s at 20°C and atmospheric pressure, and the full-scale 
structure is expected to withstand winds of 200 km/h (10°C). If 
the extreme values of the pressure coefficient are found to be 1.0, 
-2.7, and - 0.8 on the wi ndward wall, side wall, and leeward 
wall of the model, respectively, what corresponding pressures 
could be expected to act on the prototype? If the lateral wind 
force (wind force on building normal to wind direction) was 
measured as 20 N in the model, what lateral force might be 
expected in the prototype in the 200 km/h wind? 

8.76 Experiments were carried out in a water tunnel and a wind 
tunnel to measure the drag force on an object. The water tunnel 
was operated with freshwater at 20°C, and the wind tunnel was 
operated at 20°C and atmospheric pressure. Three models were 
used with dimensions of 5 em, 8 em, and 15 em. The drag force 
on each model was measured at different velocities. The 
following data were obtained. 



Data for the water tunnel 

Model Size, em Velocity, m/s 

5 

5 

5 

8 

8 

8 

I J.o 
--·-+-

! 4.0 

_j_- ~0 
-- ~- 1.0 

1 4.o 

1 8.o 

Data for the wind tunnel 

l 

Model Size, em Velocity, m/s 

8 I 10 

--~:-t-
40 

80 

10 

15 T 40 I 

15 80 

1.52 

4.52 

Force, N 

0.025 

0.21 

0.64 

0.06 
---
0.59 

1.82 

The drag force is a function of the density, viscosity, velocity, and 
model size, 

Po = f(p, j..l., V, D) 

Using dimensional analysis, express this equation using 
'IT-groups and then write a computer program or use a spread­
sheet to reduce the data. Plot the data using the dimensionless 
parameters. 
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8. 77 Experiments are performed to measure the pressure drop in a 
pipe with water at 20°C and crude oil at the same temperature. Data 
are gathered with pipes of two diameters, 5 em and I 0 em. The 

following data were obtained for pressure drop per unit length. 

For water 

I Pipe Diameter, Velocity, Pressure Drop, ,I 
em m/s N/m3 

'1 

5 1 210 
---- ---!--

5 2 730 -
5 5 3750 - ·-
10 1 86 

--- ---- -

10 2 320 -
10 5 1650 

For crude oil 

Pipe Diameter, Velocity, 
c.m m/s 

5 I 310 

5 2 
-~--

1040 

5 5 .j_ ___ 5300 

10 I 130 __ ...._ 

10 2 450 
+ -

10 5 2210 

The pressure drop per unit length is assumed to be a function of 
the pipe diameter, liquid density and viscosity, and the velocity, 

t.p L = f(p, j.L, V, D) 

Perform a dimensional analysis to obtain the 'IT-groups and then 
write a computer program or use a spreadsheet to reduce the 
data. Plot the results using the dimensionless parameters. 



PREDICTING 
SHEAR FORCE 

FIGURE 9.1 

When engineers design sailboats for racing, they consider 
the drag force on the hull. This drag force is caused by 
the pressure and shear stress distributions Thrs chapter 
is concerned with the shear stress and the shear force. 
(Foucros G./Stocklmoge/Getty Images.) 
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J Chapter Road Map I 
~ -----

This chapter describes how to predict shear stress 
and shear force on a flat surface. The emphasis is on 
the theory because this theory provides the foundation 
for more advanced study in fluid mechanics. 

J Learning c)bj;ctive~ 

STUDENTS WILL BE ABLE TO 

• Describe Couette flow. Show how to derive and apply the 
working equations. (§9. 1) 

• Describe Hele-Show flow. Show how to derrve and apply 
the working equations. (§9 1) 

• Sketch the development of the boundary layer on o flat 
plate. Lobel and explain the main features. (§9.2) 

• Define the local shear stress coefficient. Cf, and the 
average shear stress coefficient, C,. (§9.3) 

• Define or calculate Re, and Ret. (§9.3) 

• For the laminar boundary, calculate the boundary Ioyer 
thickness. the shear stress, and the shear force using 
suitable correlations. (§9.3) 

• Describe the transition Reynolds number. (§9.4) 

• Describe or apply the power low equation for the turbulent 
boundary Ioyer (§9.5) 

• Sketch o turbulent boundary Ioyer. Lobel and describe the 
three zones of flow. (§9.5) 

• For the turbulent boundary layer, calculate the boundary 
Ioyer thickness, the shear stress, and the shear fotce using 
suitable correlations (§9.5) 
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9. 1 Uniform Laminar Flow 

In this section, Newton's second law of motion is used to derive a differential equation that 
governs a 1-D, steady, viscous flow. Then, the equation is solved for two classic problems: Couette 
flow (see Section 2.6) and Hele-Shaw flow (fully developed laminar flow between two parallel 
plates). The rationale for this section is to introduce fundamentals that are useful for analyzing 
viscous flows. 

The equation derived in this section is a special case of the Navier-Stokes equation. The 
Navier-Stokes equation is probably the single most important equation in fluid mechanics. 

The Equation of Motion for Steady and Uniform Laminar Flow 

Consider a CV (Fig. 9.2), which is aligned with the flow direction s. The streamlines are 
inclined at an angle e with respect to the horizontal plane. The control volume has dimensions 
Lls X Lly X unity; that is, the control volume has a unit length into the page. By application of 
the momentum equation, the sum of the forces acting in the s-direction is equal to the net 
outflow of momentum from the control volume. The flow is uniform, so the outflow of 
momentum is equal to the inflow and the momentum equation reduces to 

(9.1) 

FIGURE 9.2 

Control volume for analysis of uniform flow with parallel streamlines. --s r 

w 

There are three forces acting on the matter in the control volume: the forces due to pres­
sure, shear stress, and gravity. The net pressure force is 

( 
dp ) dp pLly- p + -Lls Lly = - -LlsLly 
ds ds 

The net force due to shear stress is 
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FIGURE 9.3 

Flow generated by a 
moving plate (Couelle 
flow). 

The component of gravitational force is pgL\sL\y sin 8. However, sin 8 can be related to the rate 
at which the elevation, z, decreases with increasing sand is given by -dz!ds. Thus the gravita­
tional force becomes 

dz 
pgllsl\ysin6 = --yL\yL\s ds 

Summing the forces and dividing by volume (L\sl\y) results in 

dT d 
- = - (p + -yz) 
dy ds 

(9.2) 

where it is noted that the gradient of the shear stress is equal to the gradient in piezometric pres­
sure in the flow direction. The shear stress is equal to j..L du!dy, so the basic equation becomes 

d2u I d - = --(p + -yz) 
d/ j..L ds 

(9.3) 

where j..L is constant. Eq. (9.3) is the Navier-Stokes equation applied to a uniform and steady 
flow. The general form of this equation is introduced in Chapter 16. This equation is now 
applied to the two flow configurations. 

V'CHECKPOINT PROBLEM 9.1 

The sketch identifies terms that appear in the Navier-Stokes equation. @ = 

a. What are the secondary dimensions of each term? Primary ~ 
dimensions? 

b. What does Term A mean? 
Term A 

c. What does Term B mean? 

d(p + -yz) 
ds 

TermB 

d. What does this equation mean holistically? That is, what is the physical interpretation? 

Flow Produced by a Moving Plate (Couette Flow) 
Consider the flow between the two plates shown in Fig. 9.3. The lower plate is fixed, and the 
upper plate is moving with a speed U. The plates are separated by a distance L. In this problem 
there is no pressure gradient in the flow direction (dp!ds = 0), and the streamlines are in the 
horizontal direction (dz!ds = 0), so Eq. (9.3) reduces to 

The two boundary conditions are 

d2u 
- =0 
dy2 

u = 0 at y = 0 

u = U at y = L 



Integrating this equation twice gives 

u = c11 + C2 

Applying the boundary conditions results in 

y 
u = -u 

L 
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(9.4) 

which shows that the velocity profile is linear between the two plates. The shear stress is con ­
stant and equal to 

du U 
T= f..L-= f.L-

dy L 
(9.5) 

This flow is known as a Couette flow after a French scientist , M. Couette, who did pioneering 
work on the flow between parallel plates and rotating cylinders. It has application in the design 
of lubrication systems. 

Example 9.1 illustrates the application of Couette flow in calculating shear stress. 

EXAMPLE 9.1 

Shear Stress in Couette Flow 

Problem Statement 

SAE 30 lubricating oil at T = 38°C flows between two 
parallel plates, one fixed and the other moving at 1.0 m/s. 
Plates are spaced 0.3 mm apart. What is the shear stress on 
the plates? 

Define the Situation 

SAE 30 lubricating oil is flowing between parallel plates 

Properties: From Table A.4, f.L = 1.0 X 10-1 N · s/m2 

------------------- -
State the Goal 

Find: Shear stress (in N/m2
) on top plate. 

Generate Ideas and Make a Plan 

Calculate shear stress using Eq. (9.5). 

Take Action (Execute the Plan) 

du U 
T = f.L - = f.L-

dy L 

= (1.0 X 10- 1 N · s/m2)(1.0 m/s)/(3 X 10- 4 m) 

T = 1333 N/m2 1 

Review the Solution and the Process 

327 

I 
------r-:;"-=--------, - I m/s 

0.3mrn ~ 
Knowledge. Because the velocity gradient is constant, the shear 
stress is constant throughout the flow. Thus, the magnitude of 
the shear stress is the same for the bottom plate as the top plate. 

Flow Between Stationary Parallel Plates (Hele-Shaw Flow} 

Consider the two parallel plates separated by a distance B in Fig. 9.4. In this case, the flow 
velocity is zero at the surface of both plates, so the boundary conditions for Eq. (9.3) are 

u = 0 at y = 0 

u = 0 at y = B 

Because the flow is uniform (i.e., there is no change in velocity in the streamwise direction), u 
is a function of y only. Therefore, d 2u!dl in Eq. (9.3), as well as the gradient in piezometric 
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FIGURE 9.4 

Uniform flow between 
two stationary plates 
(Hele-Show flow). 

.. 
' ., .. .... ·" 
' 

pressure, must also be equal to a constant in the streamwise direction. Integrating Eq. (9.3) 
twice gives 

l d 
u =- -d (p + -yz) + C1y + C2 

2J.L s 

To satisfy the boundary condition at y = 0, set C2 = 0. Applying the boundary condition at 
y = B requires that C1 be 

B d 
Ct = ---d (p + -yz) 

2J.L s 

so the final equation for the velocity is 

1 d 1 d(p + -yz) 
u = ---(p + -yz)(By -/)=-- (By- y 2

) (9.6) 
2J.L ds 2J.L ds 

which is a parabolic profile with the maximum velocity occurring on the centerline between 
the plates, as shown in Fig. 9.3. The maximum velocity is 

(9.7a) 

or in terms of piezometric head 

u = -(B2

-y) dh 
max 8J.L ds (9.7b) 

The fluid always flows in the direction of decreasing piezometric pressure or piezometric head, 
so dh!ds is negative, giving a positive value for Umax· 

The discharge per unit width, q, is obtained by integrating the velocity over the distance 
between the plates: 

iB ( BJ ) d (B3
-y) dh q = u dy = - - -(p + -yz) = - - -

0 
l2J.L ds l2J.L ds 

(9.8) 

The average velocity is 

q ( B
2

) d 2 
V = B = - 12J.L ds(p + -yz) = )Umax (9.9) 
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Note that tlow is the result of a change of the piezometric head, not just a change of p or z alone. 
Experiments reveal that if the Reynolds number (VB! v) is less than 1000, the flow is laminar. 
For a Reynolds number greater than I 000, the flow may be turbulent, and the equations devel­
oped in this section are invalid. 

The flow between parallel plates is often called Hele-Shaw flow. It has application in flow 
visualization studies and in microchannel flows. 

A significant difference between Couette flow and Hele-Shaw flow is that the motion of a 
plate is responsible for Couette flow, whereas a gradient in piezometric pressure provides the 
force to move a Hele-Shaw flow. 

Example 9.2 illustrates how to calculate the pressure gradient required for flow between 
two parallel plates. 

EXAMPLE 9.2 

Pressure Gradient for Flow Between Parallel Plates 

Problem Statement 

Oil having a specific gravity of 0.8 and a viscosity of 2 X 10- 2 

N · s!m2 flows downward between two vertical smooth plates 
spaced 10 mm apart. If the discharge per meter of width is 
0.01 m 2/s, what is the pressure gradient dp!ds for this flow? 

Define the Situation 

Oil flows downward between two vertical smooth plates 
spaced 10 mm apart. The discharge per meter of width 
is 0.01 (m21s). 

l ! 

State the Goal 

Find: Pressure gradient dplds (in Palm) for this flow. 

Properties: S = 0.8, 1-l = 2 X 10 2 N · slm2
• 

Generate Ideas and Make a Plan 

1. Check to see if the flow is laminar using VB/v < 1000. If it 
is laminar, continue. 

2. Calculate piezometric head gradient using Eq. (9.8). 

3. Subtract elevation gradient to obtain the pressure 
gradient. 

Take Action (Execute the Plan) 

1. Check for laminar flow 

VB VBp qp 
Re =-=--=-

v 1-l 1-l 

(0.01 m21s) X 800 kg/ m3 

..:..__ __ ..:..___---=--=--- = 400 
0.02 N · slm2 

VBiv < 1000. Flow is laminar, equations apply. 

2. Kinematic viscosity: 

2 X 10 2 N · slm 2 

v = j.L/p = = 2.5 X 10 5 m2/s 
0.8 X 1000 kglm3 

Piezometric head gradient is 

dh 12!-l 12v 
ds = - B3'Y q = - B3g q 

dh 12 X 2.5 X 10-s m2/s 
2 -d = - ( )3 1 2 X 0.01 m Is = -0.306 

s O.Dl m X 9.81 m Is 

3. Plates are oriented vertically, s is positive downward, so 
dz!ds = -1. Thus 

or 

dh d (p) dz 
ds = ds :Y + ds 

i_(f_) = dh - dz = -0.306 + 1 = 0.694 
ds 'Y ds ds 

ds = (0.8 X 9810 Nlm3
) X 0.694 = ls4SO Nlm2 per meter I 

Review the Solution and the Process 

Note that the pressure increases in the downward direction, 
which means that the pressure, in part, supports the weight of 
the fluid. 



FIGURE 9.5 

Development of boundary 
layer a nd shear stress 
along a thin, flat pla te. 
(a l Flow pattern above 

a nd below the plate. 
(b) Shear-stress d istribution 
on either side of pla te 

9.2 Qualitative Description of the Boundary Layer 

The purpose of this section is to provide a qualitative description of the boundary layer, which 
is the region adjacent to a surface over which the velocity changes from the free-stream value 
(with respect to the object) to zero at the surface. This region, which is generally very thin, 
occurs because of the viscosity of the fluid. The velocity gradient at the surface is responsible 
for the viscous shear stress and shear force. 

The boundary-layer development for flow past a thin plate oriented parallel to the flow 
direction shown in Fig. 9.5a. The thickness of the boundary layer, 8, is defined as the distance 
from the surface where the velocity is 99% of the free-stream velocity. The actual thickness of 
a boundary layer may be 2% to 3% of the plate length, so the boundary-layer thickness shown 
in Fig. 9.5a is exaggerated at least by a factor of five to show details of the flow field. Fluid passes 
over the top and underneath the plate, so two boundary layers are depicted (one above and one 
below the plate). For convenience, the surface is assumed to be stationary, and the free-stream 
fluid is moving at a velocity U0. 

Laminar 
Thin flat boundary layer 

plate :!.-- -1----_ 
-- --------(i 
------

(8) 

- x 

(b) 

Turbulent 
boundary layer 

------------\- ~ ~ ·-

Critical I ransition 
poilll pomt 

The development and growth of the boundary layer occurs because of the "no-slip" condi­
tion at the surface; that is, the fluid velocity at the surface must be zero. As the fluid particles 
next to the plate pass close to the leading edge of the plate, a retarding force (from the shear 
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stress) begins to act on the particles to slow them down. As these particles progress farther 
downstream, they continue to be subjected to shear stress from the plate, so they continue to 
decelerate. In addition, these particles (because of their lower velocity) retard other particles 
adjacent to them but farther out from the plate. Thus the boundary layer becomes thicker, or 
"grows:' in the downstream direction. The broken line in Fig. 9.5a identifies the outer limit of 
the boundary layer. As the boundary layer becomes thicker, the velocity gradient at the wall 
becomes smaller and the local shear stress is reduced. 

The initial section of the boundary layer is the laminar boundary layer. In this region 
the flow is smooth and steady. Thickening of the laminar boundary layer continues smoothly 
in the downstream direction until a point is reached where the boundary layer becomes 
unstable. Beyond this point, the critical point, small disturbances in the flow will grow and 
spread, leading to turbulence. The boundary becomes fully turbulent at the transition 
point. The region between the critical point and the transition point is called the transition 
region. 

In most problems of practical interest, the extent of the laminar boundary layer is small 
and contributes little to the total drag force on a body. Still it is important for flow of very vis­
cous liquids and for flow problems with small length scales. 

The turbulent boundary layer is characterized by intense cross-stream mixing as turbulent 
eddies transport high-velocity fluid from the boundary layer edge to the region close to the 
wall. This cross-stream mixing gives rise to a high effective viscosity, which can be three orders 
of magnitude higher than the actual viscosity of the fluid itself. The effective viscosity, due to 
turbulent mixing is not a property of the fluid but rather a property of the flow, namely, the 
mixing process. Because of this intense mixing, the velocity profile is much "fuller" than the 
laminar-flow velocity profile as shown in Fig. 9.5a. This situation leads to an increased velocity 
gradient at the surface and a larger shear stress. 

The shear-stress distribution along the plate is shown in Fig. 9.4b. It is easy to visualize that 
the shear stress must be relatively large near the leading edge of the plate where the velocity 
gradient is steep, and that it becomes progressively smaller as the boundary layer thickens in 
the downstream direction. At the point where the boundary layer becomes turbulent, the shear 
stress at the boundary increases because the velocity profile changes producing a steeper gradient 
at the surface. 

These qualitative aspects of the boundary layer serve as a foundation for the quantitative 
relations presented in the next section. 

9.3 Laminar Boundary Layer 

This section summari:tes the equations for the velocity profile and shear stress in a laminar 
boundary layer and describes how to calculate shear stress and shear forces on a surface. This 
information can be used to estimate drag forces on surfaces in low Reynolds-number flows. 

Boundary-layer Equations 

In 1904 Prandtl (1) first stated the essence of the boundary-layer hypothesis, which is that 
viscous effects are concentrated in a thin layer of fluid (the boundary layer) next to solid 
boundaries. Along with his discussion of the qualitative aspects of the boundary layer, he also 
simplified the general equations of motion of a fluid (Navier-Stokes equations) for application 
to the boundary layer. 

ln 1908, Blasius, one of Prandtl's students, obtained a solution for the flow in a laminar 
boundary layer (2) on a flat plate with a constant free-s tream velocity. One of Blasius's key 

331 
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FIGURE 9.6 

Velocity distribution tn 
laminar boundary Ioyer. 
[After Blasius 121.] 

. . 

assumptions was that the shape of the nondimensional velocity distribution did not vary from 
section to section along the plate. That is, he assumed that a plot of the relative velocity, u!U0, 

versus the relative distance from the boundary, y/o, would be the same at each section. With 
this assumption and with Prandtl's equations of motion for boundary layers, Blasius obtained 
a numerical solution for the relative velocity distribution, shown in Fig. 9.6. * In this plot, xis 
the distance from the leading edge of the plate, and Rex is the Reynolds number based on the 
free-stream velocity and the length along the plate (Rex = U0x!v). In Fig. 9.6 the outer limit of 
the boundary layer (u/U0 = 0.99) occurs at approximately yRe;121x = 5. Because y = 8 at this 
point, the following relationship is derived for the boundary-layer thickness in lan1inar flow on 
a flat plate: 

0 
- Re l/2 = 5 
X x 

II 

The Blasius solution also showed that 

or 8=~ 
Re ~12 

d(u/U0) I 
1/2 = 0.332 

d[(ylx)Rex ] y=o 

(9.10) 

which can be used to find the shear stress at the surface. The velocity gradient at the boundary 
becomes 

du I = 0.332 Uo Re~2 
dy y = O X 

du I U~12 -d = 0.3321/21/2 
Y y =O X V 

(9. 11) 

*Experimental evidence indicates that the Blasius solution is valid except very near the leading edge of the plate. In 
the vicinity of the leading edge, an error results because of certain simplifying assumptions. However, the discrepanq 
is not significant for most engineering problems. 
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Equation (9.11) shows that the velocity gradient (and shear stress) decreases with increasing 
distance x along the plate. 

Shear Stress 

The shear stress at the boundary is obtained from 

To = fA. du I = 0.3321J. Uo Re~12 
dy y=O X 

(9.12) 

Equation (9.12) is used to obtain the local shear stress at any given section (any given value of x) 
for the laminar boundary layer. 

Example 9.3 illustrates the application of the laminar boundary layer equations for calcu­
lating boundary layer thickness and shear stress. 

Shear Force 

Consider one side of a flat plate with width B and length L. Because the shear stress at the 
boundary, T 0, varies along the plate, it is necessary to integrate this stress over the entire surface 
to obtain the total shear force, F,. 

EXAMPLE 9.3 

Laminar Boundary-Layer Thickness and Shear Stress 

Problem Statement 

Crude oil at 70°F (v = 10- 4 ft!/s, S = 0.86) with a free-stream 
velocity of I ft/s flows past a thin, flat plate that is 4 ft. wide and 
6 ft. long in a direction parallel to the flow. The flow is laminar. 
Determine and plot the boundary-layer thickness and the 
shear stress distribution along the plate. 

Define the Situation 

Crude oil flows past a thin, flat plate. Free-stream velocity 
is I ft/s. 

- Jft.·s 

]· 

6ft 

Oil. v = 10-4 ft!/s, S = 0.86 

Assumptions: 

1. Plate is smooth, flat with sharp leading edge. 

2. Boundary layer is laminar. 

(9.13) 

State the Goal 

Surface shear stress, T0, as function of x. 
Boundary-layer thickness, 8, as function of x. 

Generate Ideas and Make a Plan 

1. Calculate boundary-layer thickness with Eq. (9.10). 

2. Calculate shear-stress distribution with Eq. (9.12). 

3. Summarize results using a table and a plot. 

Take Action (Execute the Plan) 

I. Reynolds-number variation with distance 

U0 x 1 X x 
Re = - = - - = 104x 

X V }Q 4 

Boundary-layer thickness 

Sx Sx 8 = -- = --- = 5 X l0-2xii2 ft 
Re!'2 102 xl/2 . 

2. Shear-stress distribution t 
I ;"j.' } 

Uo I/2 •' To= 0.332 !1- - Rex ~' 

11- = pv = 1.9: slugs/ft3 X 0.86 X 10- 4 ft 2, . . 

= 1.67 X I0-4 lbf-s/ft 2 

1 5.54 X 10- 3 

To= 0.332 (1.67 X l0-4) -(102x 112) = 
112 

psf 
X X · 
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3. Summary (make a plot and build a table). TABLE 9.1 Results: 8 and To for Different Values of x 

X= 0.1 ft .\" = 1.0 ft t =2ft X= 4ft X= 6ft 
1.8 

1.6 

c 1.4 
"' 

-== 1.2 
8 
X 

1.0 
... 
-.;- 0.8 
!! v 0.6 .g 

c.o 0.4 

0.2 

0.0 

' I I x11z 0.316 1.00 -- 1.414 2.00 2.45 

\ Boundary-layer T0, psf 0.018 0.0055 0.0037 0.0028 0.0023 

0 

1
1 

thickness 
8,ft 0.016 0.050 0.071 0.10 0.122 I 

I 
I .. 
' ' .. , , r Surface shear stress 

--- ..... --.. ---·-- ... 

2 4 6 7 

Distance, ft 

8, in 0.190 0.600 0.848 1.200 1.470 

Review the Solution and the Procc\~ 

1. Notice that the boundary-layer thickness increases with 
distance. At the end of the plate 8/x = 0.02, or the 
boundary-layer thickness is 2% of the distance from 
leading edge. 

2. Notice also that shear stress decreases with distance from 
leading edge of the plate. 

Substituting in Eq. (9.12) for To and integrating gives 

IL UoU6'2xll2 
F, = 0.3328~ 112 dx 

O XV 

U6'2 L 112 
= 0.664B~U0 112 v 

(9.14) 

= 0.664B~J..U0 Re~2 

where ReL is the Reynolds number based on the approach velocity and the length of the plate. 

Shear-Stress Coefficients 

It is convenient to express the shear stress at the boundary, T0, and the total shearing force F, in 
terms of 1r-groups involving the ldnetic pressure of the free stream, p U~/2. The local shear­
stress coefficient, c1, is defined as 

To 
CJ = pUJ/2 

(9.151 

Substituting Eq. (9.12) into Eq. (9.15) gives c1 as a function of Reynolds number based on the 
distance from the leading edge. 

0.664 
c ---
1 - Re112 

X 

where 
Ux 

Re =­
x v 

The total shearing force, as given by Eq. (9.13), can also be expressed as a 1r-group 

F, c- ---=---
!- (pU~/2)A 

(9.16) 

(9.17) 



where A is the plate area. This 'IT-group is called the average shear-stress coefficient. Substitut­
ing Eq. (9.14) into Eq. (9.17) gives Ct 

1.33 c--
1- Rel12 where 

UL 
ReL =­

v 
(9.18) 

Example 9.4 shows how to calculate the total shear force for a laminar boundary layer on 
a flat plate. 

EXAMPLE 9.4 

Resistance Calculation for Laminar Boundary Layer 
on a Flat Plate 

Problem Statement 

Crude oil at 70°F ( v = 10-4 lfts, S = 0.86.) with a free-stream 
velocity of 1 ft/s flows past a thin, flat plate that is 4 ft wide and 
6 ft long in a direction parallel to the flow. The flow is laminar. 
Determine the resistance on one side of the plate. 

Define the Situation 

Crude oil flows past a thin, flat plate. Free-stream velocity 
is 1 ft/s. 

Properties: For oil, v = 10- 4 ft2/s, S = 0.86. 

Assumptions: Flow is laminar. 

-lft/s 

6ft 

9.4 Boundary Loyer Transition 

l· 

State the Goal 

Find: Shear force (in lbf) on one side of plate. 

Generate Ideas and Make a Plan 

1. Calculate the Reynolds number based on plate length. 

2. Evaluate C1using Eq. (9.18). 

3. Calculate the shear force using Eq. (9.17). 

Take Action (Execute the Plan) 

1. Reynolds number. 

Ret = U0 L = I ft/s X 6ft = 6 X 104 
v 10-4 ft 2/s 

2. Value for Ct 
1.33 1.33 

c, = ---uz = ( 4)1/2 = 0.0054 
ReL 6 X 10 

3. Shear force. 

C1BLpU~ F = -'----
' 2 

= 0.0054 X 4 ft X 6 ft X 0.86 
12 (ft/s)2 

X 1.94 slugs/ft3 X -
2
- =I 0.108lbf l 

Transition is the zone where the laminar boundary layer changes into a turbulent boundary 
layer as shown in Fig. 9.5a. As the laminar boundary layer continues to grow, the viscous 
stresses are less capable of damping disturbances in the flow. A point is then reached where 
disturbances occurring in the flow are amplified, leading to turbulence. The critical point 
occurs at a Reynolds number of about 105 (Recr == 105

) based on the distance from the leading 
edge. Vortices created near the wall grow and mutually interact, ultimately leading to a fully 
turbulent boundary layer at the transition point, which nominally occurs at a Reynolds num­
ber of 3 X 106 (Retr == 3 X 106

). For purposes of simplicity in this text, it will be assumed that 
the boundary layer changes from laminar to turbulent flow at a Reynolds number 500,000. The 
details of the transition region can be found in White (3). 

Transition to a turbulent boundary layer can be influenced by several other flow condi­
tions, such as free-stream turbulence, pressure gradient, wall roughness, wall heating, and wall 
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FIGURE 9.7 

Sketch of zones in turbulent 
boundary Ioyer. 

cooling. With appropriate roughness elements at the leading edge, the boundary layer can 
become turbulent at the very beginning of the plate. In this case it is said that the boundary 
layer is "tripped" at the leading edge. 

V'CHECKPOINT PROBLEM 9.2 

Suppose the roof of an automobile is idealized as a flat plate. Given the data in the figure, what is the 
speed V of the car in mph? Assume T = 20°C and p = 1 atm. 

a. 12.6 

b. 14.1 

c. 16.9 

d. 28.1 

e. 34.7 

9.5 Turbulent Boundary Layer 

Understanding the mechanics of the turbulent boundary layer is important because in the 
majority of practical problems, the turbulent boundary layer is primarily responsible for shear 
force. In this section the velocity distribution in the turbulent boundary layer on a flat plate 
oriented parallel to the flow is presented. The correlations for boundary-layer thickness and 
shear stress are also included. 

Velocity Distribution 

The velocity distribution in the turbulent boundary layer is more complicated than the lami­
nar boundary layer. The turbulent boundary has three zones of flow that require different 
equations for the velocity distribution in each zone, as opposed to the single relationship of 
the laminar boundary layer. Figure 9.7 shows a portion of a turbulent boundary layer in 
which the three different zones of flow are identified. The zone adjacent to the wall is the vis­
cous sublayer; the zone immediately above the viscous sublayer is the logarithmic region; and 

Turbulent velocity 
defect Ia-.. 

Logarithmic distribution 

Viscous sublayer 
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finally, beyond that region is the velocity defect region. Each of these velocity zones will be 
discussed separately. 

Viscous Sublayer The zone immediately adjacent to the wall is a layer of fluid that is essen­
tially laminar because the presence of the wall dampens the cross-stream mixing and turbulent 
fluctuations. This very thin layer is called the viscous sublayer. 1his thin layer behaves as a 
Couette flow introduced in Section 9.1. In the viscous sublayer, T is virtually constant and 
equal to the shear stress at the wall, T0. Thus du!dy = Toff..L, which on integration yields 

ToY 
u =-

f..L 

Dividing the numerator and denominator by p gives 

Tu/P 
u =-y 

f..L /p 

u YTJP 
- -=--y vTJP v 

(9.19) 

(9.20) 

1hc combination of variables v'TJP has the dimensions of velocity and recurs again and again 
in derivations involving boundary-layer theory. It has been given the special name shear 
velocity. 'I he shear velocity (which is also sometimes called friction velocity) is symbolized as u . 
Thus, by definition, 

f: u = 
p 

(9.21) 

Now, substituting u. for VTJP in Eq. (9.20), yields the nondimensional velocity distribution 
in the viscous sublayer: 

u y 
-= --
u. v!u. 

(9.22) 

Experimental results show that the limit of viscous sublayer occurs when yu./v is approxi­
mately 5. Consequently, the thickness of the viscous sub layer, identified by 8', is given as 

8, = 5v 
u. 

(9.23) 

The thickness of the viscous sublayer is very small (typically less than one-tenth the thickness 
of a dime). The thickness of the viscous sublayer increases as the wall shear stress decreases in 
the downstream direction. 

The Logarithmic Velocity Distribution The flow zone outside the viscous sublayer is turbu­
lent; therefore, a completely different type of flow is involved. The mixing action of turbulence 
causes small fluid masses to be swept back and forth in a direction transverse to the mean flow 
direction. A small mass of fluid swept from a low-velocity zone next to the viscous sublayer 
into a higher-velocity zone farther out in the stream has a retarding effect on the higher-velocity 
stream. Similarly, a small mass of fluid that originates farther out in the boundary layer in a 
high-velocity flow zone and is swept into a region of low velocity has the effect of accelerating 
the lower-velocity fluid. Although the process just described is primarily a momentum ex­
change phenomenon, it has the same effect as applying a shear stress to the fluid; thus in tur­
bulent flow these "stresses" are termed apparent shear stresses, or Reynolds stresses after the 
British scientist-engineer who first did extensive research in turbulent flow in the late 1800s. 

337 
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FIGURE 9.8 

Velocity fluctuations 
in turbulent flow. 

The mixing action of turbulence causes the velocities at a given point in a flow to fluctuate 
with time. If one places a velocity-sensing device, such as a hot-wire anemometer, in a turbu­
lent flow, one can measure a fluctuating velocity, as illustrated in Fig. 9.8. It is convenient to 
think of the velocity as composed of two parts: a mean value, u, plus a fluctuating part, u'. The 
fluctuating part of the velocity is responsible for the mixing action and the momentum 
exchange, which manifests itself as an apparent shear stress as noted previously. In fact, the 
apparent shear stress is related to the fluctuating part of the velocity by 

z:. · g rrrTIVIn:r""TT-r..;: 

"ij 
> 
J> 

~ 
3 
c 
" ] 

Tapp = -pu 'v' (9.24) 

ii 

Time 

where u' and v' refer to the x andy components of the velocity fluctuations, respectively, 
and the bar over these terms denotes the product of u' v' averaged over a period 
of time.* The expression for apparent shear st ress is not very useful in this form, so 
Prandtl developed a theory to relate the apparent shear stress to the temporal mean velocity 
distribution. 

The theory developed by Prandtl is analogous to the idea of molecular transport creating 
shear stress presented in Chapter 2.ln the turbulent boundary layer, the principal flow is paral­
lel to the boundary. However, because of turbulent eddies, there are fluctuating components 
transverse to the principal flow direction. These fluctuating velocity components are associ­
ated with small masses of fluid, as shown in Fig. 9.8, that move across the boundary layer. As 
the mass moves from the lower-velocity region to the higher-velocity region, it tends to retain 
its original velocity. The difference in velocity between the surrounding fluid and the trans­
ported mass is identified as the fluctuating velocity component u', For the mass shown in 
fig. 9.8, u' would be negative and approximated byt 

u' = edu 
dy 

where du!dy is the mean velocity gradient and e is the distance the small fluid mass travels in 
the transverse direction. Prandtl identified this distance as the "mixing length:' PrandLI as­
sumed that the magnitude of the transverse fluctuating velocity component is proportional to 
the magnitude of the fluctuating component in the principal flow direction: I v' I == I u 'I, 
which seems to be a reasonable assumption because both components arise from the same set 

+Equation (9.24) can be derived by considering the momenrum exchange that results when the transverse component 
of turbulent flow passe5 through an area p<~raUet to the x-z plane. Or, by including the fl uctuating velocity components 
in the Navier-Stokes equations, one can obtain the apparent shear stress terms, one of which is Eq. (9.24). Details of 
Lhese derivation~ appear in Chapter 18 of Schlichting (4). 
1for convenience, the bar used to denote time-averaged velocity is deleted. 
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of eddies. Also, it should be noted that a positive v' will be associated with a negative u', so the 
product u' v' will be negative. Thus the apparent shear stress can be expressed as 

( du)
2 

'Tapp = - pu'v' = pez dy (9.25) 

A more general form ofEq. (9.25) is 

_ 2 1duldu 
'Tapp - pe dy dy 

which ensures that the sign for the apparent shear stress is correct. 
The theory leading to Eq. (9.25) is called Prandtl's mixing-length theory and is used 

extensively in analyses involving turbulent flow.* Prandtl also made the important and 
clever assumption that the mixing length is proportional to the distance from the wall 
( e = Ky) for the region close to the wall. If one considers the velocity distribution in a 
boundary layer where du!dy is positive, as is shown in Fig. 9.9, and substitutes KY fore, then 
Eq. (9.25) reduces to 

(-Jr-------------L----------.~ 

··t 7 1---------r-----+1' 

Fluid mas' 

r-(iru-·b-·ru_~ __ s•t-•o_n~)---=~~---------------------------,~ x 
-u 

For the zone of flow near the boundary, it is assumed that the shear stress is uniform and 
approximately equal to the shear stress at the wall. Thus the foregoing equation becomes 

Taking the square root of each side of Eq. (9.26) and rearranging yields 

VTJP dy 
du = --­

K y 

Integrating the above equation and substituting u. for VTJP gives 

u 1 - = - lny + C 
u. K 

(9.26) 

(9.27) 

*Prandtl published an account of his mixing-length concept in 1925. G. I. Taylor (5) published a similar concept in 
1915, but the idea has been traditionally attributed to Prandtl. 

~ •. 0. . . . . . . . 

FIGURE 9.9 

Concepl of mixing length. 
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FIGURE 9.10 

Velocity distributton in a 
turbulent boundary layer. 

Experiments on smooth boundaries indicate that the constant of integration C can be given in 
terms of u., v, and a pure number as 

1 v 
C = 5.56- -In-

K U• 

When this expression for Cis substituted into Eq. (9.27), the result is 

u 1 yu. 
-=-In-+ 5.56 
U• K V 

(9.28) 

1n Eq. (9.28), K has sometimes been called the universal turbulence constant, or Karman's constant. 
Experiments show that this constant is approximately 0.41 (3) for the turbulent wne next to the 
viscous sublayer. Introducing this value forK into Eq. (9.28) gives the logarithmic velocity distribution 

u yu. 
- = 2.44ln - + 5.56 
u. v 

(9.29) 

Obviously the region where this model is valid is limited because the mixing length cannot 
continuously increase to the boundary layer edge. 1his distribution is valid for values of yu./v 
ranging from approximately 30 to 500. 

The region between the viscous sublayer and the logarithmic velocity distribution is the 
buffer zone. There is no equation for the velocity distribution in this zone, although various 
empirical expressions have been developed (6). However, it is common practice to extrapolate 
the velocity profile for the viscous sub layer to larger values of yu./v and the logarithmic velocity 
profile to smaller values of yu./v until the velocity profiles intersect as shown in Fig. 9.10. 

~ 
" "" c 
" .8 
E 
0 

<!:: 

8 c 
" 1li 
-5 

" ~ 
;:; 

! 
il:. 

1000 

100 

11.84 
10 

5 

Range of experimental data 

..!!.. = 2.44 In -""• + 5.56 
"• v 

u 
u. 

Loganthmic 
velocity 

distribution 

~ 
Buffer 
zone 

+ Viscous 
sublayer 

Velocity 
defect 
law 
applies 

Law of 
the wall 

~ ~------------~----~------~~--------~--~--~ 
0 10 20 30 

fJ; (rclanvc velocity) 



SECTION 9.5 TURBULENT BOUNDARY LAYER 341 

The intersection occurs at yu.!v = 11.84 and is regarded as the demarcation between the viscous 
sublayer and the logarithmic profile. The "nominal" thickness of the viscous sub layer is 

v 
8:V = 11.84 -

u. 
(9.30) 

The combination of the viscous and logarithmic velocity profile for the range of yu./v 
from 0 to approximately 500 is called the law of the wall. 

Making a semilogarithmic plot of the velocity distribution in a turbulent boundary layer, 
as shown in Fig. 9.10, makes it straightforward to identify the velocity distribution in the viscous 
sublayer and in the region where the logarithmic equation applies. However, the logarithmic 
nature of this plot accentuates the nondimensional distance yu./v near the wall. A better per­
spective of the relative extent of the regions is obtained by plotting the graph on a linear scale, 
as shown in Fig. 9.11. From this plot one notes that the laminar sublayer and buffer zone are a 
very small part of the thickness of the turbulent boundary layer. 

700 

600 

500 

400 

yu. 
I ' 

300 
u 
u. Logarithmic 

velocity 
<tistribution 

200 

100 

0 

Velocity Defect Region For y/8 > 0.15 and yu./v > 500 the velocity profile corresponding 
to the law of the wall becomes increasingly inadequate to match experimental data, so a 
third zone, called the velocity defect region, is identified. The velocity in this region is repre­
sented by the velocity defect law, which for a flat plate with zero pressure gradient is simply 
expressed as 

~=!(~) u. 8 
(9.31) 

and the correlation with experimental data is plotted in Fig. 9.12. At the edge of the boundary 
layer y = 8 and (U0 - u)!u. = 0, sou = U0, or the free-stream velocity. This law applies to 
rough as well as smooth surfaces. However, the functional relationship has to be modified for 
flows with free-stream pressure gradients. 

FIGURE 9.11 

Velocily distribution in o 
turbulent boundory loyer­
lineor scoles. 
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FIGURE 9.12 

Velocity defect law 
for boundary layers 
on flat plate (zero 
pressure gradient). 
[Aher Rouse (6) ] 
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As shown in Fig. 9.9, the demarcation between the law of the wall and the velocity defect re­
gions is somewhat arbitrary, so there is considerable overlap between the two regions. The three 
zones of the turbulent boundary layer and their range of applicability are summarized in Table 9.2. 

TABLE 9.2 Zones for Turbulent Boundary layer on Flat Plate 

Zone Velocity Distribution 

Viscous Sub layer u yu. 

u. v 

Logarithmic Velocity Distribution u yu. 
- = 2.44ln - + 5.56 
u. v 

Velocity Defect Law U0 - u = !(~) 
I u. B 
I 

Range 

yu. 
0 < - < 11.84 

v 

yu. 
11.84 :S - < 500 

v 

500 :S yu. , ~ > 0.15 
v s 

Power-Law Formula for Velocity Distribution Analyses have shown that for a wide range of 
Reynolds numbers (105 < Re < 10\ the velocity profile in the turbulent boundary layer on a 
flat plate is approximated reasonably by the power-law equation 

~0 = (~)"7 (9.32) 

Comparisons with experimental results show that this formula conforms to those results 
very closely over about 90% of the boundary layer (0.1 < y/8 < 1 ). Obviously it is not valid at 
the surface because (du)!(dy) i y:o ~ co, which implies infinite surface shear stress. For the 
inner 10% of the boundary layer, one must resort to equations for the law of the wall (see 
Fig. 9.10) to obtain a more precise prediction of velocity. Because Eq. (9.32) is valid over 
the major portion of the boundary layer, it is used to advantage in deriving the overall thickness 
of the boundary layer as well as other relations for the turbulent boundary layer. 
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Example 9.5 illustrates the application of various equations to calculate the velocity in the 
turbulent boundary layer. 

EXAMPLE 9.5 

Turbulent Boundary-Layer Properties 

Problem Statement 

Water {60°F) flows with a velocity of20 ftls past a flat plate. 
The plate is oriented parallel to the flow. At a particular section 
downstream of the leading edge of the plate, the boundary layer 
is turbulent, the shear stress on the plate is 0.896lbf/ft2, and the 
boundary-layer thickness is 0.0880 ft. Find the velocity of the 
water at a distance of 0.0088 ft from the plate as determined by 

a. The logarithmic velocity distribution 

b. The velocity defect law 

c. The power-law formula 

Also, what is the nominal thickness of the viscous sublayer? 

Define the Situation 

Water flows past a flat plate oriented parallel to the flow. At a 
point downstream of the leading edge of the plate, shear stress 
on the plate is 0.896lbf/ tr, and boundary layer thickness is 
0.0880 ft. 

u.-20 ft/s 

S= 0.088 

Properties: 

From Table A.5, p = 1.94 slugs/fe, v = 1.22 X 10-5 tr/s. 

State the Goal 

1. V(ftls) .. Velocity at y = 0.0088 ft using: 

a. Logarithmic velocity distribution 

b. Velocity defect law 

c. Power-law formula 

2. Calculate the nominal thickness of the viscous sublayer 

Generate Ideas and Make a Plan 

1. Calculate shear velocity, u., from Eq. (9.21). 

2. Calculate u using Eq. (9.29) for logarithmic profile. 

3. Calculate y/'& and find (U0 - u)/u. from Fig. 9.12. 

4. Calculate u from (U0 - u)/u. for velocity defect law. 

5. Calculate u from Eq. (9.32) for power law. 

6. Calculate'&/; from Eq. (9.30). 

Take Action (Execute the Plan) 

1. Shear velocity 

u. = (To/p)l/2 

= [(0.896lbf/ft2)/(1.94 slugs/ft3) ) 112 = 0.680 ft/s 

2. Logarithmic velocity distribution 

yu./v = (0.0088 ft)(0.680 ft/s)/(1.22 X 10-5 ft 2/s) = 490 

u/u. = 2.44ln(yu./v) + 5.56 

= 2.44 X ln (490} + 5.56 = 20.7 

u = 20.7 X 0.680 ft/s = 114.1 ft/s I 
3. Nondimensional distance 

yl'& = 0.0088 ft/0.088 ft = 0.10 

From Fig. 9.12 

U0 - u 
--=8.2 

u. 

4. Velocity from defect law 

u = U0 - 8.2u. 

= 20 ft/s - (8.2)(0.68) ft/s 

= [i4A ft/s 

5. Power-law formula 

u/Uo = (yl'&)lt7 

u = (U0}(0.10}117 

= (20 ft /s)(0.7197) 

= 14:£§] 

6. Nominal sublayer thickness 

'&:., = 11.84v/u. = (11.84)(1.22 X 10-5 ft2/s)/(0.68 ft/s) 

= 2.12 X 10-4 ft= ,2.54 X 10 3 in] 

Review the Solution and the Process 

Notice that the velocity obtained using logarithmic 
distribution and defect law are nearly the same, which 
indicates that the point is in the overlap region. 
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Boundary-Layer Thickness and Shear-Stress Correlations 

Unlike the laminar boundary layer, there is no analytically derived equation for the thickness 
of the turbulent boundary layer. There is a way to obtain an equation by using momentum 
principles and empirical data for the local shear stress and by assuming the 1/7 power velocity 
profile (3). The result is 

(9.33} 

where xis the distance from the leading edge of the plate and Rex is U0 x/v. 
Many empirical expressions have been proposed for the local shear-stress distribution for 

the turbulent boundary layer on a flat plate. One of the simplest correlations is 

To 0.027 c ------
f - pUJ/2 - Re~7 

and the corresponding average shear-stress coefficient is 

0.032 
C=-­
f Re ~7 

(9.34a) 

(9.34b} 

where ReL is the Reynolds number of the plate based on the length of the plate in the stream­
wise direction. 

Even though the variation of c1 with Reynolds number given by Eq. (9.34a) provides a 
reasonably good fit with experimental data for Reynolds numbers less than 107

, it tends to 
underpredict the skin friction at higher Reynolds numbers. Several correlations have been 
proposed in the literature; see the review by Schlichting (4). A correlation proposed by White (3) 
that fits the data for turbulent Reynolds numbers up to 1010 is 

(9.35) 

The corresponding average shear-stress coefficient is 

0.523 
C! = -ln-:-2 (-0.-06_R_e-L) (9.36} 

These are the correlations for shear-stress coefficients recommended here. 
The boundary layer on a flat plate is composed of both a laminar and turbulent part. 

The purpose here is to develop a correlation valid for the combined boundary layer. As 
noted in Section 9.3, the boundary layer on a flat plate consists first of a laminar boundary 
layer that grows in thickness, develops instability, and becomes turbulent. A turbulent 
boundary layer develops over the remainder of the plate. As discussed earlier in Section 9.4, 
the transition from a laminar to turbulent boundary layer is not immediate but takes 
place over a transition length. However for the purposes of analysis here it is assumed that 
transition occurs at a point corresponding to a transition Reynolds number, Re1" of about 
500,000. 

The idea here is to take the turbulent shear force for length L, F,, rurb(L), assuming the 
boundary layer is turbulent from the leading edge, subtract the portion up to the transition 
point, F,, turb(L1,) and replace it with the laminar shear force up to the transition point 
F,,1.m(Ltr). Thus the composite shear force on the plate is 

F, = Fs,turb(L) - f s,turb(Lrr) + Fs,lam(Lrr) 
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Substituting in Eq. (9.18} for laminar flow and Eq. (9.36} for turbulent flow over a plate of 
width B gives 

( 
o.523 o.s23 1.33 ) u ij 

F, = 2 BL - 2 BL1, + ----u2 BL 1, p-
In (0.06ReL) In (0.06Re1,) Re 1, 2 

(9.37) 

where Re1, is the Reynolds number at the transition, ReL js the Reynolds number at the end of 
the plate, and L1, is the distance from the leading edge of the plate to the transition zone. 

Expressing the resistance force in terms of the average shear-stress coefficient, c1 = 

F,I(BLp UJ/2), gives 

0.523 L1, ( 1.33 0.523 ) cf = 2( ) + - ----u2 - ----=2_( ___ ) 
In 0.06ReL L Re 1, ln 0.06Re 1, 

Here L1,1 L = Re1/ ReL. Therefore, 

0.523 Reu- ( 1.33 0.523 ) cf = 2 + -- ----u2 - ___,2----
ln (0.06Re1.) ReL Re u- In (0.06Re 1,) 

Finally, for Re1, = 500,000, the equation for average shear-stress coefficient becomes 

c - 0.523 
1 - ln2(0.06ReL) 

1520 

Re1. 
(9.38) 

The variation of c1 with Reynolds number is shown by the solid line in Fig. 9.13. llis 
curve corresponds to a boundary layer that begins as a laminar boundary layer and then 
changes to a turbulent boundary layer after the transition Reynolds number. This is the normal 
condition for a flat-plate boundary layer. Table 9.3 summarizes the equations for boundary­
layer thickness, and for local shear-stress and average shear-stress coefficients for the boundary 
layer on a flat plate. 

0.01 ....--------------------------.., 

0.008 

0.007 

0.006 

c- 0.032 
1 Ret' 

...J 0.005 Turbulent c 

" ~ g 
" 

0.004 

c- 1.33 
f- Re,''l 

Laminar 

0.001 l-------'--------1-----__1- -----'------...J 
IQS 

Roynolds number. L0 /., • 

Example 9.6 shows the calculation of shear force due to a boundary layer on a flat plate. 

FIGURE 9.13 

Average shear·stress 
coeff icients. 
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TABLE 9.3 Summary of Equations for Boundary Layer on a Flat Plate 

Boundary-Layer Thickness, 5 

Laminar Flow 
Re, Re-1. < S X 105 

B=~ 

Turbulent Flow 
Rex, Re1 2: 5 X 10 

Re 112 

------~ X 

0.16x 
B= -­

Re~7 

Local Shear-Stress Coefficient, c1 0.664 
' J = Re 112 

X 

0.455 
c- ----=----
!- 1n2 (0.06Rex) 

-------4----------------~r---- ----
Average Shear-Stress Coefficient, c1 C __ 1_.3_3 C _ ___ 0.523 _ 1520 

(mixed boundary layer) 'f - ReL12 'f - ln2(0.06ReL) Re1_ 

Average Shear-Stress Coefficient, C1 0.032 
cJ = ----;n (tripped boundary layer) ReL 

EXAMPLE 9.6 

Calculating Shear Force on a Flat Plate 

Problem Statement 

Assume that air 20°C and normal atmospheric pressure flows 
over a smooth, flat plate with a velocity of 30 m/ s. The initial 
boundary layer is laminar and then becomes turbulent at a 
transitional Reynolds number of 5 X 105

• The plate is 3 m long 
and 1 m wide. What will be the average resistance coefficient 
cf for the plate? Also, what is the total shearing resistance of 
one side of the plate, and what will be the resistance due to the 
turbulent part and the laminar part of the boundary layer? 

Define the Situation 

Air flows past a flat plate 

Assumptions: The leading edge of the plate is sharp, and the 
boundary is not tripped on the leading edge. 

Properties: From Table A.3, 

p = 1.2 kg/ m3
, v = 1.51 X 10- 5 m 2/s. 

State the Goal 

1. Average shear-stress coefficient, c1, for the plate 

2. Total shear force (in newtons) on one side of plate 

3. Shear force (in newtons) due to laminar part 

4. Shear force (in newtons) due to turbulent part 

Generate Ideas and Make a Plan 

1. Calculate the Reynolds number based on plate length, Re~.. 

2. Calculate c1 using Eq. (9.38). 

3. Calculate the shear force on one side of plate using 
F, = (l/2)pU~ C1BL. 

4. Using value for transition Reynolds number, find transition 
point. 

5. Use Eq. (9.18) to find average shear-stress coefficient for 
laminar portion. 

6. Calculate shear force for laminar portion. 

7. Subtract laminar portion from total shear force. 

Take Action (Execute the Plan) 

1. Reynolds number based on plate length 

ReL = 30 m/s X 3 m = 5.96 X 106 
1.51 X 10- 5 m2/s 

2. Average shear-stress coefficient 

0.523 1520 ~ c1 = 2 ( ) -- = [o.o~ 
In 0.06ReL ReL 

3. Total shear force 

F, = C1BLp( U~/2) 

(30m/s)2 ~ 
= 0.00294 X 1m X 3m X 1.2 kg/m3 X = ~ 

4. Transition point 

Ux" = 500,000 
v 

2 

500,000 X 1.51 X 10- 5 O 
Xrr = = .252m 

30 

5. Laminar average shear-stress coefficient 

1.33 c1 = in = o.oo188 
Re" 

6. Laminar shear force 

(30 m/s)2 

Fs,lam = 0.00188 X I m X 0.252 m X 1.2 kg/m3 X 
2 

= j0.256N l 

7. Turbulent shear force 

Fs,turb = 4.76 N- 0.26 N =@.soN J 
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lf the boundary layer is "tripped" by some roughness or leading-edge disturbance (such as 
a wire across the leading edge), the boundary layer is turbulent from the leading edge. This is 
shown by the dashed line in Fig. 9.13. For this condition the boundary layer thickness, local 
shear-stress coefficient, and average shear-stress coefficient are fit reasonably well by Eqs. (9.33), 
(9.34a), and (9.34b). 

0.027 
c - -­! - Rei/7 

X 

0.032 c --­
f - Re117 

(9.39) 

which are valid up to a Reynolds number of 107
. For Reynolds numbers beyond 107

, the aver­
age shear-stress coefficient given by Eq. (9.36) can be used. It is of interest to note that marine 
engineers incorporate tripping mechanisms for the boundary layer on ship models to produce 
a boundary layer that can be predicted more precisely than a combination oflaminar and tur­
bulent boundary layers. 

Example 9.7 illustrates calculating shear force with a tripped boundary layer. 

EXAMPLE 9.7 

Shear Force with a Tripped Boundary Layer 

Problem Statement 

Air at 20°C flows past a smooth, thin plate with a free-stream 
velocity of 20 m/s. Plate is 3 m wide and 6 m long in the 
direction of flow, and boundary layer is tripped at the leading 
edge. 

Define the Situation 

Air flows past a smooth, thin plate. Boundary layer is tripped 
at leading edge. 

£ "Trippmg .. Wll1: 

2~ 4 
6m 

Properties: From Table A.3, 

p = 1.2 kg/m3
, f.l. = 1.8l X 10 5 N • s/m2

. 

Slate the Goal 

Find: Total shear force (in newtons) on both sides of plate. 

Generate Ideas and Make a Plan 

1. Calculate the Reynolds number based on plate length. 

2. Find average shear-stress coefficient from Eq. (9.39). 

3. Calculate shear force for both sides of plate. 

Take Action (.Execute the Pla n) 

1. Reynolds number 

pUL 1.2 X 20 X 6 
Re = - - = = 7.96 X 106 

L f.l. 1.81 X 10 5 

Reynolds number is less than 107
. 

2. Average shear-stress coefficient 

0.032 
Cr = Ret 

0.032 = = 0.0033 
(7.96 X 106

)
117 

3. Shear force 

= 0.0033 X 3m X 6 m X 1.2 kg/m3 X (20 m/s? 

=@.s ti] 

Even though the equations in this chapter have been developed for flat plates, they are use­
ful for engineering estimates for some surfaces that are not truly flat plates. For example, the 
skin friction drag of the submerged part of the hull of a ship can be estimated with Eq. (9.38). 

9.6 Pressure Gradient Effects on Boundary layers 

In the preceding sections the features of a boundary layer on a flat plate where the external 
pressure gradient is zero have been presented. The boundary layer begins as laminar, goes 
through transition, and becomes turbulent with a "fuller" velocity profile and an increase in 
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FIGURE 9.14 

Surface pressure 
d istribution on a irfoi l 
section. 

local shear stress. The purpose of this section is to present some features of the boundary layer 
over a curved surface where the external pressure gradient is not zero. 

The flow over an airfoil section is shown in Fig. 9.14. The variation in static pressure with 
distance, s, along the surface is also shown on the figure. The point corresponding to s = 0 is 
the forward stagnation point where the pressure is equal to the stagnation pressure. The pres­
sure then decreases toward a minimum value at the midsection. This minimum pressure 
corresponds to the location of maximum speed as predicted by the Bernoulli equation. The 
pressure then rises again as the flow decelerates toward the trailing edge. When the pressure 
decreases with increasing distance (dp!ds < 0), the pressure gradient is referred to as a favor­
able pressure gradient as introduced in Chapter 4. This means that the direction of the force 
due to the pressure gradient is in the flow direction. In other words, the effect of the pressure 
gradient is to accelerate the flow. This is the condition between the forward stagnation point 
and the point of minimum pressure. A rise in pressure with distance (dp!ds > 0) is called an 
adverse pressure gradient and occurs between the point of minimum pressure and the trailing 
edge. The pressure force due to the adverse pressure gradient acts in the direction opposite to 
the flow direction and tends to decelerate the flow. 

-
p 

Favomhle 

1-<-P"'_s_·su_re_g_r._ad_ie_nt___...,t,~~~~- Adverse 

pressure gr.u.lient 

Direction of prossure force -
·I 

The external pressure gradient effects the properties of the boundary layer. Compared to 
a flat plate, the laminar boundary layer in a favorable pressure gradient grows more slowly and 
is more stable. This means that the boundary-layer thickness is less and the local shear stress is 
increased. Also the transition region is moved downstream, so the boundary layer becomes 
turbulent somewhat later. Of course, free-stream turbulence and surface roughness will still 
promote the early transition to a fully turbulent boundary layer. 

The effect of external pressure gradient on the boundary layer is most pronounced for the 
adverse pressure gradient. The development of the velocity profiles for the laminar and turbu­
lent boundary layers in an adverse pressure gradient are shown in Fig. 9.15. The retarding force 
associated with the adverse pressure gradient decelerates the flow, especially near the surface, 
where the velocities are the lowest. Ultimately there is a reversal of flow at the wall, which gives 
rise to a recirculatory pattern and the formation of an eddy. This phenomenon is called boundary­
layer separation. The point of separation is defined where the velocity gradient au/i:ly 
becomes zero as indicated on the figure. The separation point for the turbulent boundary layer 
occurs farther downstream because the velocity profile is much fuller (higher velocities persist 
closer to the wall) than the laminar profile, and it takes longer for the adverse pressure gradient 
to decelerate the flow. Thus the turbulent boundary layer is less affected by the adverse pressure 
gradient. 
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(a) 

- Direction of pressure force 

(b) s w ~ ~1J! 
Separation point J 

Even though shear stresses on a body in a flow may not contribute significantly to the total 
drag force, the effect of boundary-layer separation can be very important. When boundary­
layer separation takes place on airfoils at a high angle of attack, "stall" occurs, which means the 
airfoil loses its capability to provide lift. A photograph illustrating boundary-layer separation 
on an airfoil section is shown in Fig. 4.26. Boundary-layer separation on a cylinder was dis­
cussed and illustrated in Section 4.8. Understanding and controlling boundary-layer separa­
tion is important in the design of fluid dynamic shapes for maximum performance. 

9.7 Summarizing Key Knowledge 

Uniform laminar Flow 

• The variation in velocity for a planar, viscous, steady flow with parallel streamlines is 
governed by the equation 

d 2u 1 d - = - -(p + -yz) 
d/ iJ..ds 

where the distance y is normal to the streamlines and the distances is along the streamlines. 

• In this chapter, this equation is used to analyze two flow configurations: 

• Couette flow (flow generated by a moving plate) 

• Hele-Shaw flow (flow between stationary parallel plates). 

Boundary layer 
• The boundary layer is the region where the viscous stresses are responsible for the velocity 

change between the wall and the free stream. 

• The boundary-layer thickness is the distance from the wall to the location where the 
velocity is 99% of the free-stream velocity. 

• The laminar boundary layer is characterized by smooth (nonturbulent) flow where the 
momentum transfer between fluid layers occurs because of viscosity. 

• As the boundary layer thickness grows, the laminar boundary layer becomes unstable, and 
a turbulent boundary layer ensues. 

......... 

FIGURE 9.1 S 

Velocity distribution and 
streamlines for boundary 
layer separation. 
Ia) Laminar boundary layer. 
!b) Turbulent boundary 
Ioyer. 
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• The transition point for a boundary layer on a flat plate occurs at a nominal Reynolds 
number of 5 X 105 based on the free stream velocity and the distance from the leading edge. 

• The turbulent boundary layer is characterized by an unsteady flow where the momentum 
exchange between fluid layers occurs because of the mixing of fluid elements normal to 
the direction of fluid motion. This effect, known as the Reynolds stress, significantly 
enhances the momentum exchange and leads to a much higher "effective" shear stress. 

Predicting Shear Stress and Shear Force 

• The local shear-stress coefficient is defined as 

'To 
Cj = -~--2 

2PUo 

where To is the wall shear stress and U0 is the free-stream velocity. 

• The value for the local shear-stress coefficient on a flat plate depends on the Reynolds 
number based on the distance from the leading edge. 

• The average shear-stress coefficient is 

F, 
C=--
i t PU6A 

where F, is the force due to shear-stress, or shear force, on a surface with area A. 

• The value for the average shear-stress coefficient for a flat plate depends on the nature of 
the boundary layer as related to the Reynolds number based on the length of the plate in 
the flow direction. 

• The laminar boundary layer near the leading edge and the subsequent turbulent boundary 
layer contribute to the average shear stress on a flat plate. 

• Through leading-edge roughness or other flow disturbance, the boundary layer can be 
"tripped" at the plate's leading edge, effecting a turbulent boundary layer over the entire plate. 

Effects of Pressure Gradient 

• The boundary layer for flow over a curved body is subjected to an external pressure 
gradient. 

• A favorable pressure gradient produces a force in the flow direction and tends to keep the 
boundary layer stable. 

• An adverse pressure gradient decelerates the flow and can lead to boundary layer 
separation. 
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PROBLEMS 

frifs Problem available in Wiley PLUS at instructor's discretion. 

Uniform Laminar Flow (§9. 1) 

9.1 Ms In which case is the flow caused by a pressure gradient? 

a. Couette flow 

b. Hele-Shaw flow 

9.2 The velocity distribution in a Couette flow is linear if the 
viscosity is constant. If the moving plate is heated and the 
viscosity of the liquid is decreased near the hot plate, how will 

the velocity distribution change? Give a qualitative description 
and the rationale for your argument. 

9.3 Consider the flow of various fluids between two parallel plates. 

a. Assume the fluid is a liquid, its viscosity is constant along 
the flow direction, and the pressure gradient is linear 
with distance. How would the pressure gradient differ if 
the viscosity of the fluid decreased (due to temperature 
rise) along the flow direction. The density is unchanged. 
Give a qualitative description of pressure distribution and 
provide rationale for your answer. 

b. Assume the fluid is a gas flowing between two parallel 

plates. If there were an increase in temperature due to 
heat transfer along the flow direction, the gas density 
would decrease. Assume the viscosity is unaffected. How 
will the velocity and pressure distribution change from 
the case with constant density? Sketch the pressure 
distribution and give the rationale for your result. 

c:-. 
9.4 PLuS The cube shown weighing 110 N and measuring 39 em 
on a side is allowed to slide down an inclined surface on which 
there is a film of oil having a viscosity of J o-z N · s/m2

. What is 
the velocity of the block if the oil has a thickness of 0.11 mm? 

PROIILF..\1 9.-l 

9.5 Ms A board 3 ft by 3 ft that weighs 40 lbf slides down an 
inclined ramp with a velocity of 0.5 fps. The board is separated 
from the ran1p by a layer of oil 0.02 in. thick. Neglecting the 
edge effects of the board, calculate the approximate dynamic 

viscosity f.L of the oil. 

9.6 A board 1 m by 1 m that weighs 30 N slides down an 
inclined ramp with a velocity of 17 cm/s. The board is separated 

from the ramp by a layer of oil 0.8 mm thick. Neglecting the 
edge effects of the board, calculate the approximate dynamic 

viscosity f.L of the oil. 

PROBL~M~ __ .. 35 ~ 

~ Guided Online (GO) Problem, available in Wiley PLUS at 
instructor's discretion. 

PROni.EMS 9.5, 9.6 

9.7 7UJ's Uniform, steady flow is occurring between horizontal 

parallel plates as shown. 

a. The flow is Hele-Shaw; therefore, what is causing the fluid 

to move? 

b. Where is the maximum velocity located? 

c. Where is the maximum shear stress located? 

d. Where is the minimum shear stress located? 

-:IE-
PROBLI:.,'vl. 9.7 

9.8 Uniform, steady flow is occurring between horizontal 

parallel plates as shown. 

a. In a few words, tell what other condition must be present 
to cause the odd velocity distribution. 

b. Where is the minimum shear stress located? 

9.9 ~s Under certain conditions (pressure decreasing in the 
x-direction, the upper plate fixed, and the lower plate moving 
to the right in the positive x-direction), the laminar velocity 
distribution will be as shown. For such conditions, indicate 
whether each of the following statements is true or false. 

a. The shear stress midway between the plates is zero. 

b. The minimum shear stress in the liquid occurs next to 
the moving plate. 

c. The shear stress is greatest where the velocity is the 
greatest. 

d . The minimum shear stress occurs where the velocity is 
the greatest. 

-X 

PROBLE.\I.S 9.!!, 9.9 
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9.10 WO A flat plate is pulled to the right at a speed of 30 cm/s. 
Oil with a viscosity of 4 N · s/ m2 fills the space between the plate 
and the solid boundary. The plate is 1 m long (L = 1 m) by 30 em 
wide, and the spacing between the plate and boundary is 2.0 mm. 

a. Express the velocity mathematically in terms of the 
coordinate system shown. 

b. By mathematical means, determine whether this flow is 
rotational or irrotational. 

c. Determine whether continuity is satisfied, using the 
differential form of the continuity equation. 

d. Calculate the force required to produce this plate motion. 

PROHLEM 9.10 

9.11 Ws The velocity distribution that is shown represents 
lan1inar flow. Indicate which of the following statements are true. 

a. The velocity gradient at the boundary is infinitely large. 

b. The maximum shear stress in the liquid occurs midway 
between the walls. 

c. The maximum shear stress in the liquid occurs next to 
the boundary. 

d. The flow is irrotational. 

e. '01e flow is rotational. 

Moving plate 

PROBLEJ\19.11 

9.12 The upper plate shown is moving to the right with a 
velocity V, and the lower plate is free to move laterally under 
the action of the viscous forces applied to it. For steady-state 
conditions, derive an equation for the velocity of the lower plate. 
Assume that the area of oil contact is the same for the upper 
plate, each side of the lower plate, and the fixed boundary. 

v 

Upper plate 

Oil : ~1 s -0.9 

Lower plate 

Oil: J.lz s = 0.9 

PROBLEM 9.12 

9.13 Ms A circular horizontal disk with a 27 em diameter 
has a clearance of 3.0 mm from a horizontal plate. What torque 
is required to rotate the disk about its center at an angular 
speed of 31 rad/s when the clearance space contains oil 
(11 = 8 N · s/ m2)? 

9.14 hlls A plate 2 mm thick and 1 m wide.(normal to the 
page) is pulled between the walls shown in the figure at a speed 
of 0.40 m/s. Note that the space that is not occupied by the plate 
is filled with glycerine at a temperature of 20°C. Also, the plate 
is positioned midway between the walls. Sketch the velocity 
distribution of the glycerine at section A-A. Neglecting the 
weight of the plate, estin1ate the force required to pull the 
plate at the speed given. 

6mm 

Plate 

Walls 

A- -A 

PRORLEM 9.1<1 

9.15 Ms A bearing uses SAE 30 oil with a viscosity of 
0.1 N · s!m 2

• The bearing is 30 mm in diameter, and the gap 
between the shaft and the casing is 1 mm.The bearing has a 
length of 1 em. The shaft turns at w = 200 rad/s. Assuming 
that the flow between the shaft and the casing is a Couctte 
flow, find the torque required to turn the bearing. 

PROI:ILI:.M 9.15 

9.16 An important application of viscous flow is found in 
lubrication theory. Consider a shaft that turns inside a stationary 
cylinder, with a lubricating fluid in the annular region. By 
considering a system consisting of an annulus of fluid of radius r 
and width ~r. and realizing that under steady-state operation the 
net torque on this ring is zero, show that d(r2T)Idr = 0, where 
T is the viscous shear stress. For a flow that has a tangential 
component of velocity only, the shear stress is related to the 



velocity by T = !J..rd(VIr)!dr. Show that the torque per unit 
length acting on the inner cylinder is given by T = 4'TTIJ..Wril 
( I - r;t r~). where w is the angular velocity of the shaft. 

llr 

PROBLE;\1 9.16 

9.17 Using the equation developed in Prob. 9.16, find the power 
necessary to rotate a 2 em shaft at 60 rad/s if the inside diameter 
of the casing is 2.2 em, the bearing is 3 em long, and SAE 30 oil 
at 38°C is the lubricating fluid. 

9.18 The analysis developed in Prob. 9.16 applies to a device 
used to measure the viscosity of a fluid. By applying a known 
torque to the inner cylinder and measuring the angular velocity 
achieved, one can calculate the viscosity of the fluid. Assume 
you have a 4 em inner cylinder and a 4.5 em outer cylinder. "I he 
cylinders are 10 em long. When a force of 0.6 N is applied to 
the tangent of the inner cylinder, it rotates at 20 rpm. Calculate 
the viscosity of the fluid. 

9.19 j[U-s Two horizontal parallel plates are spaced 0.015 ft apart. 
The pressure decreases at a rate of 25 psf/ft in the horizontal 
x-direction in the fluid between the plates. What is the maximum 
fluid velocity in the x direction? The fluid has a dynamic viscosity 
of l0- 3 lbf-s/ft2 and a specific gravity of 0.80. 

9.20 A viscous fluid fills the space between these two plates, and 
the pressures at A and B are ISO psf and 100 psf, respectively. 
The fluid is not accelerating. If the specific weight of the fluid is 
100 lbf/ftl, then one must conclude that (a) flow is downward, 
(b) flow is upward, or (c) there is no flow. 

!'ROBLE;\! 9.20 

9.21 Glycerine at 20°C flows downward between two vertical 
parallel plates separated by a distance of 0.4 em. The ends are 
open, so there is no pressure gradient. Calculate the discharge 
per unit width, q, in m2/s. 
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9.22 Ms Two vertical parallel plates arc spaced 0.01 ft apart. 
If the pressure decreases at a rate of 60 psf/ft in the vertical 
z-direction in the fluid between the plates, what is the maximum 
fluid velocity in the z-direction? The fluid has a viscosity of 
l0- 3 lbf-s/ft2 and a specific gravity of 0.80. 

9.23 ~Two parallel plates are spaced 0.09 in. apart, and motor 
oil (SAE 30) with a temperatme of 1 00°F flows at a rate of 0.009 cfs 
per foot of width between the plates. What is the pressure gradient 
in the direction of flow if the plates are inclined at 60° with the 
horizontal and if the flow is downward between the plates? 

9.24 ;c;- Glycerin at 20°C flows downward in the annular region 
between two cylinders. The internal diameter of the outer 
cylinder is 3 em, and the external diameter of the inner cylinder is 
2.8 em. The pressure is constant along the flow direction. The flow 
is laminar. Calculate the discharge. (Hint: The flow between the 
two cylinders can be treated as the flow between two flat plates.) 

28 nun 

H 

! ! 

I· ·I 30 mm 

!'ROB! L\1 9.2 t 

9.25 'ft:i1s One type of bearing that can be used to support very 
large structures is shown in the accompanying figure. Here fluid 
under pressure is forced from the bearing midpoint (slot A) 
to the exterior zone B. Thus a pressure distribution occurs as 
shown. For this bearing, which is 43 em wide, what discharge 
of oil from slot A per meter of length of bearing is required? 
Assume a 190 kN load per meter of bearing length with a 
clearance space I between the floor and the bearing surface of 
1.5 mm. Assume an oil viscosity of 0.20 N · s/m2• How much 
oil per hour would have to be pumped per meter of bearing 
length for the given conditions? 

F 

! 

\&/. 
·~· 

PROBLl:.M 925 
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9.26 Often in liquid lubrication applications there is a 
heat generated that is transferred across the lubricating 
layer. Consider a Couette flow with one wall at a higher 
temperature than the other. The temperature gradient 
across the flow affects the fluid viscosity according to the 
relationship. 

where f.l-o is the viscosity at y = 0 and L is the distance between 
the walls. Incorporate this expression into the Couette flow 
equation, integrate and express the shear stress in the fom1 

Uf.l-o 
-r = c-­

L 

where Cis a constant and U is the velocity of the moving wall. 
Analyze your answer. Should the shear stress be greater or less 
than that with uniform viscosity? 

9.27 Gases form good insulating layers. Consider an application 
in which there is a Couette flow with the moving plate at a higher 
temperature than the fixed plate. The viscosity varies between the 
plates as 

( 
y)112 

f.l- = f.l-o 1 + 0.1 L 

where f.l-o is the viscosity at y = 0 and L is the distance 
between the plates. incorporate this expression into the 
Couette flow equation, integrate and express the shear 

stress in the form 

Uf.l,o 
-r= c-­

L 

where Cis a constant and U is the velocity of the moving plate. 
Analyze your answer. Should the shear stress be greater or less 

than that with uniform viscosity? 

9.28 ~An engineer is designing a very thin, horizontal 
channel for cooling electronic circuitry. The channel is 2 em 
wide and 5 em long. The distance between the plates is 
0.2 mm. The average velocity is 5 cm/s. The fluid used has a 
viscosity of 1.2 cp and a density of 800 kg/ m3

• Assuming no 
change in viscosity or density, find the pressure drop in the 
channel and the power required to move the flow through 

the channel. 

9.29 Consider the channel designed for electronic cooling in 
Prob. 9.28. Because of the heating, the viscosity will change 
through the channel. Assume the viscosity varies as 

where J.l-o is the viscosity at s = 0 and L is the length of the 
channel. Find the percentage change of the pressure drop 
due to viscosity variation. 

PROBLEMS 9.28, 9.29 

Describing the Boundary layer {§9 .2) 
9.30 a. Explain in your own words what is meant by "boundary 
layer." b. Define "boundary layer thickness:' 

9.3 1 m-s Which of the following are features of a laminar 
boundary layer? (Select all that are correct.) 

a. Flow is smooth. 

b. The boundary layer thickness increases in the down­
stream direction. 

c. A decreasing boundary layer thickness correlates with 
decreased shear stress. 

d. An increasing boundary layer thickness correlates with 
decreased shear stress. 

laminar Boundary layer (§9.3) 

9.32 Assume the wall adjacent to a liquid lan1inar boundary is 
heated and the viscosity of the fluid is lower near the wall and 
increases the free-stream value at the edge of the bow1dary layer. 
How would this variation in viscosity affect the boundary-layer 
thickness and local shear stress? Give the rationale for your answers. 

9.33 ~A thin plate 6 ft long and 3 ft wide is submerged and 
held stationary in a stream of water (T = 60°F) that has a velocity 
of 5 ft/ s. What is the thickness of the boundary layer on the plate 
for Rex = 500,000 (assume the boundary layer is still laminar), 
and at what distance downstream of the leading edge does this 
Reynolds number occur? What is the shear stress on the plate at 

this point? 

9.34 What is the ratio of the boundary-layer thickness on a 

smooth, flat plate to the distance from the leading edge just 
before transition to turbulent flow? 

9.35 ;;vs A model airplane has a wing span of 3.1 ft and a 
chord (leading edge-trailing edge distance) of 5 in. The model 
flies in air at 60°F and atmospheric pressure. The wing can be 
regarded as a flat plate so far as drag is concerned. (a) At what 
speed will a turbulent boundary layer start to develop on the 
wing? (b) What will be the total drag force on the wing just 
before turbulence appears? 

9.36 Oil (f.l, = 10- 2 N · s/ m2
; p = 900 kg/m3

) flows past a plate 
in a tangential direction so that a boundary layer develops. 

If the velocity of approach is 4 m/s, then at a section 30 em 
downstream of the leading edge the ratio of -r5 (shear stress at 

the edge of the boundary layer) to -r0 (shear stress at the plate 
surface) is approximately (a) 0, (b) 0.24, (c) 2.4, or (d) 24. 



9.37 A liquid (p = 1000 kg/m3
; 1.L = 2 X 10-2 N · s/m2

; v = 
2 X 10-5 m2/s) flows tangentially past a flat plate. If the approach 
velocity is 2 m/s, what is the liquid velocity I m downstream 
from the leading edge of the plate, at 0.8 mm away from 
the plate? 

9.38 The plate of Prob. 9.37 has a total length of 3m (parallel to 
the flow direction), and it is 1 m wide. What is the skin friction 
drag (shear force) on one side of the plate? 

9.39 Oil (v = 10-4 m2/s) flows tangentially past a thin plate. 
If the free-stream velocity is 5 m/s, what is the velocity l m 
downstream from the leading edge and 3 mm away from 
the plate? 

9.40 ffu"s Oil (v = 10- 4 m 2/s; S = 0.9) flows past a plate in a 
tangential direction so that a boundary layer develops. If the 
velocity of approach is 0.85 m/s, what is the oil velocity 1.6 m 
downstream from the leading edge, 10 em away from the plate? 

9.41 A thin plate 0.7 m long and 1.5 m wide is submerged and 
held stationary in a stream of water (T = l0°C) that has a 
velocity of 1.5 m/s. What is the thickness of the boundary layer 
on the plate for Rex = 500,000 (assume the boundary layer is still 
laminar), and at what distance downstream of the leading edge 
does this Reynolds number occur? What is the shear stress on 
the plate on this point? 

9.42 "fLVs A flat plate 1.5 m long and 1.0 m wide is towed in 
water at 20°C in the direction of its length at a speed of IS cm/s. 

Determine the resistance of the plate and the boundary layer 
thickness at its aft end. 

9.43 Transition from a laminar to a turbulent boundary layer 
occurs between the Reynolds numbers of Rex = 105 and Rex = 

3 X I 06
. The thickness of the turbulent boundary layer based on 

the distance from the leading edge is 8 = 0.16x/(Rex) 117• Find the 
ratio of the thickness of the laminar boundary layer at the 
beginning of transition to the thickness of the turbulent 
boundary layer at the end of transition. 

Turbulent Boundary Layer (§9.5) 

9.44 Ails Classify each of the following features into one of two 
categories: laminar boundary layer (L), or turbulent boundary 
layer (T). 

a. Flow is smooth 

b. Three difterently shaped velocity distributions in 3 zones 

c. Velocity profile that follows a power law 

d. Velocity profile that is a function of v'Re 
e. Logarithmic velocity distribution 

f. Thickness is inversely related to the 7th root of Re 

g. Thickness is inversely related to \IRe 
h. Velocity defect region 

i. Mixing action causes locally unsteady velocities 

j. Shear stress is a function of a natural log 

k. Shear stress is a function of v'Re 
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9.45 Assume that a turbulent gas boundary layer was adjacent to 
a cool wall and the viscosity in the wall region was reduced. How 
may this affect the features of the boundary layer? Give some 
rationale for your answers. 

9.46 rr:u-s An element for sensing local shear stress is 
positioned in a flat plate 1 meter from the leading edge. The 
element simply consists of a small plate, 1 em X 1 ern, mounted 
flush with the wall, and the shear force is measured on the plate. 
The fluid flowing by the plate is air with a free-stream velocity of 
V = 30 m/s, a density of 1.2 kg/ m\ and a kinematic viscosity of 
1.5 X 10 5 m 2/s. The boundary layer is tripped at the leading 
edge. What is the magnitude of the force due to shear stress 
acting on the element? 

25 m/s -
lcm-+j Q 

Diem 
t 

Trippmg 
Plan view 

wire 
\ Fs 

......._ t::Id 
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PROBLEM 9.46 

9.47 For the conditions of Pro b. 9.46, what is the shearing 
resistance on one side of the plate for the part of the plate that 

has a Reynolds number, Re .. , less than 500,000? What is the ratio 
of the laminar shearing force to the total shearing force on the 

plate? 

9.48 ~An airplane wing of 2m chord length (leading edge to 
trailing edge distance) and 11 m span flies at 200 km/hr in air at 
30°C. Assume that the resistance of the wing surfaces is like that 
of a flat plate. 

a. What is the friction drag on the wing? 

b. What power is required to overcome this? 

c. How much of the chord is laminar? 

d . What will be the change in drag if a turbulent boundary 
layer is tripped at the leading edge? 

9.49 iffVs A turbulent boundary layer exists in the flow of water 
at 20°C over a flat plate. The local shear stress measured at the 

surface of the plate is 0.2 N/m 2
• What is the velocity at a point 

0.52 em from the plate surface? 

9 .50 A liquid flows tangentially past a flat plate. The fluid 
properties are l.l = 10 5 N · s/m2 and p = 1.5 kg/m3

. Find the 

skin friction drag on the plate per unit width if the plate is 2.5 m 
long and the approach velocity is 16 m/s. Also, what is the 
velocity gradient at a point that is I m downstream of the 
leading edge and just next to the plate (y = 0)? 

9.51 For the hypothetical boundary layer on the flat plate 

shown, what is the shear-stress on the plate at the downstream 
end (point A)? Here p = 1.2 kg/ m3 and l.l = 1.8 X 10-5 N · s/m2

• 
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9.52 Assume that the velocity profile in a boundary layer is 
replaced by a step profile, as shown in the figure, where the velocity 
is zero adjacent to the surface and equal to the free-stream velocity 
( U) at a distance greater than 8. from the surface. Assume also 
that the density is uniform and equal to the free-stream density 
(p,,). The distance 8. (displacement thickness) is so chosen that 
the mass flux corresponding to the step profile is equal to the 
mass flux through the actual boundary layer. Derive an integral 
expression for the displacement thickness as a function of u, U,y, 
and 8. 

9.53 Because of the reduction of velocity associated with the 
boundary layer, the streamlines outside the boundary layer are 
shifted away from the boundary. This an1ount of displacement of 
the streamlines is defined as the displacement thickness & •. Using 
the expression developed in Prob. 9.52, evaluate the displacement 
thickness of the boundary layer at the downstream edge of the 
plate (point A) in Prob. 9.51 . 

Free-~tream 

velocuy ~ 40 m, > 

/ 

--­
................. --- ------

1--------30 em--------! 

A 

PROBLEMS 9.51, 9.53 

9.54 Use the expression developed in Prob. 9.52 to find the ratio 
of the displacement thickness to the boundary layer thickness for 
the turbulent boundary layer profile given by 

u = (!'._) 1/7 
Uo & 

1-----u---+~ 

Actual profile 

I 
:.,.-- Step profile 

I 
I 
I ------ -r 

0• 

PROBLE~l 9.52 

9.55 Ms What is the ratio of the skin friction drag of a 
plate 30m long and 5 m wide to that of a plate 10m long and 
5 m wide if both plates are towed lengthwise through water 
(T = 20°C) at 10 m/s? 

9.56 Pds Estimate the power required to pull the sign shown 
if it is towed at 41 m/s and if it is assun1ed that the sign has the 
same resistance characteristics as a flat plate. Assume standard 
atmospheric pressure and a temperature of l0°C. 

PROBI.I::\.1 9.56 

9.57 ~A thin plastic panel (3 mm thick) is lowered from a 
ship to a construction site on the ocean floor. The plastic panel 
weighs 300 N in air and is lowered at a rate of 3 m/s. Assuming 
that the panel remains vertically oriented, calculate the tension in 
the cable. 

PRO!H.FM 957 

9.58 The plate shown in the figure is weighted at the bottom so 
it will fall stably and steadily in a liquid. The weight of the plate 
in air is 23.5 N, and the plate has a volun1e of 0.002 m3

• Estimate 
its falling speed in freshwater at 20°C. The boundary layer is 
normal; that is, it is not tripped at the leading edge. 

In this problem, the final falling speed (terminal velocity) 
occurs when the weight is equal to the sum of the skin friction 
and buoyancy. 

I , w = B + F, = ...,¥ + 2 c1pu~s 

Hints: Find the final falling speed. This problem requires an itera­
tive solution. 

l 
2m 

'------'J l--1 m --J 
Side view 

PROBLE'v1 9.5R 
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9.59 P'Cu"s A turbulent boundary layer develops from the leading 
edge of a flat plate with water at 20°C flowing tangentially past 
the plate with a free-stream velocity of 7.7 m!s. Determine the 
thickness of the viscous sub layer, 8', at a distance 7.8 m downstream 

from the leading edge. 

9.60 A model airplane descends in a vertical dive through air at 
standard conditions (1 atmosphere and 20°C). The majority of 
the drag is due to skin friction on the wing (like that on a flat 

plate). The wing has a span of 1m (tip to tip) and a chord length 
(leading edge to trailing edge distance) of 10 em. The leading 
edge is rough, so the turbulent boundary layer is "tripped:' The 
model weighs 3 N . Determine the speed (in meters per second) 
at which the model will fall. 

9.61 fr'i!s A flat plate is oriented parallel to a 24 m/s airflow 
at 20°C and atmospheric pressure. The plate is L = 3 m in 
the flow direction and 0.5 m wide. On one side of the plate, 
the boundary layer is tripped at the leading edge, and on the 

other side there is no tripping device. Find the total drag force 
on the plate. 

/Trip strip 

--~u ~L~~---------------~~ 
f------- I m ------~ 

PROBLEM 9.61 

9.62 An engineer is designing a horizontal, rectangular conduit 
that will be part of a system that allows fish to bypass a dam. 
Inside the conduit, a flow of water at 40°F will be divided into 
two streams by a flat, rectangular metal plate. Calculate the 
viscous drag force on this plate, assuming boundary-layer flow 
with free-stream velocity of 10ft/sand plate dimensions of 

L = 6 ft and W = 4.0 ft. 

Water ---- ~----------L----------~ 

PROBLEM 9.62 

9.63 A model is being developed for the entrance region 
between two flat plates. As shown in the figure, it is asswned 
that the region is approximated by a turbulent bow1dary layer 

originating at the leading edge. The system is designed such that 
the plates end where the boundary layers merge. The spacing 
between the plates is 4 mm, and the entrance velocity is 10 m/s. 
The fluid is water at 20°C. Roughness at the leading edge trips 

the boundary layers. Find the length L where the boundary 
layers merge, and find the force per unit depth (into the paper) 
due to shear stress on both plates. 

PROBLEMS 357 
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PROBLEM 9.63 

9.64 An outboard racing boat "planes" at 70 mph over water at 
60°F. The part of the hull in contact with the water has an average 
width of 3 ft and a length of 8 ft. Estimate the power required to 
overcome its shear force. 

9.65 A motor boat pulls a long, smooth, water-soaked log (0.5 m 
in diameter and 50 m long) at a speed of 1.7 m/s. Assuming total 
submergence, estimate the force required to overcome the shear 

force of the log. Assume a water temperature of 1 0°C and that the 
boundary layer is tripped at the front of the log. 

9.66 1fU-s High-speed passenger trains are streamlined to reduce 
shear force. The cross section of a passenger car of one such train 
is shown. For a train 81 m long, (a) estimate the shear force for a 
speed of 81.1 km/hr and (b) for one of 204 km/hr. What power 
is required for just the shear force at these speeds? These two 
power calculations will be answers (c) and (d) respectively. 
Assume T = 10°C and that the boundary layer is tripped at the 
front of the train. 

PROBLEM 9.66 

9.67 Consider the boundary layer next to the smooth hull of a 
ship. The ship is cruising at a speed of 45 ft/s in 60°F freshwater. 
Assuming that the boundary layer on the ship hull develops the 

same as on a flat plate, determine 

a. The thickness of the boundary layer at a distance 
x = 100ft downstrean1 from the bow. 

b. The velocity of the water at a point in the boundary 
layer at x = 100 ft and y/8 = 0.50. 

c. The shear stress, T0 , adjacent to the hull at x = 100ft. 

9.68 A wind tUfUlel operates by drawing air through a 
contraction, passing this air through a test section, and then 
exhausting the air using a large axial fan. Experimental data are 
recorded in the test section, which is typically a rectangular 
section of duct that is made of clear plastic (usually acrylic). In 
the test section, the velocity should have a very uniform 
distribution; thus, it is important that the boundary layer be 
very thin at the end of the test section. For the pictured wind 
tunnel, the test section is square with a dimension of W = 457 mm 



on each side and a length of L = 914 mm. Find the ratio of 
maximum boundary-layer thickness to test section width 
[S(x = L)I"W] for two cases: minimum operating velocity 
(1 m/s) and maximum operating velocity (70 m/s). Assume 
air properties at I atm and 20°C. 

PROT\ LeN! 9.68 (Photo by Donald Elger) 

9.69 A ship 600ft long steams at a rate of25 ft/s through still 
freshwater (T = 50°F). If the submerged area of the ship is 
50,000 ft2

, what is the skin friction drag of this ship? 

9.70 A river barge has the dimensions shown. It draws 2ft of 
water when empty. Estimate the skin friction drag of the barge 
when it is being towed at a speed of 10 ft/s through still 
freshwater at 60°F. 

Side voew 

I---40ft ----1 
End view 

PROBLEJ\.1 9 -o 
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9.71 PLUs A supertanker has length, breadth, and draught (fully 
loaded) dimensions of 325m, 48 m, and 19m, respectively. 
In open seas the tanker normally operates at a speed of 18 kt 
(1 kt = 0.515 m/s). For these conditions, and assuming that 
flat-plate boundary-layer conditions are approximated, estimate 
the skin friction drag of such a ship steaming in l0°C water. 
What power is required to overcome the skin friction drag? 
What is the boundary-layer thickness at 300m from the bow? 

9.72 A model test is needed to predict the wave drag on a ship. 
The ship is 500 ft long and operates at 30 ft/s in seawater at 
1 0°C. The wetted area of the prototype is 25,000 ft2• The model! 
prototype scale ratio is 1/ 100. Modeling is done in freshwater 
at 60°F to match the Froude number. The viscous drag can be 
calculated by assuming a flat plate with the wetted area of the 
model and a length corresponding to the length of the model. 
A total drag of 0.1 lbf is measured in model tests. Calculate the 
wave drag on the actual ship. 

9.73 A ship is designed so that it is 250m long, its beam 
measures 30m, and its draft is 12 m.1he surface area of the ship 
below the water line is 8800 m2

• A 1/40 scale model of the ship is 
tested and is found to have a total drag of 26.0 N when towed at a 
speed of 1.45 m/s. Using the methods outlined in Section 8.9, 
answer the following questions, assuming that model tests are 
made in freshwater (20°C) and that prototype conditions are 
seawater (I 0°C). 

a. To what speed in the prototype does the 1.45 m/s 
correspond? 

b. Wbat are the model skin friction drag and wave drag? 

c. What would the ship drag be in saltwater corresponding 
to the model test conditions in freshwater? 

9.74 A hydroplane 3m long skims across a very calm lake 
(T = 20°C) at a speed of 15 m/s. For this condition, what will be 
the minimum shear stress along the smooth bottom? 

9.75 Estimate the power required to overcome the shear force of 
a water skier if he or she is towed at 30 mph and each ski is 4 ft 
by 6 in. Assume the water temperature is 60°F. 

9.76 If the wetted area of an 80 m ship is 1500 m2
, approximately 

how great is the surface drag when the sh ip is traveling at a speed 
of 15 m/s. What is the thickness of the boundary layer at the 
stern? Assume seawater at T = 10°C. 



FLOW IN 
CONDUITS 

FIGURE 10.1 

The Alaskan pipeline, a significant accomplishment of the 
engineering profession, transports oil 1286 km across 
rhe stole of Alaska. The pipe diameter is 1.2 m, and 
44 pumps are used to drive the flow. This chapter presents 
information for designing systems involving pipes, pumps, 
and turbines.(© Eastcott/Momatiuk/The Image Works.) 

... ~···· J Chapter Road Map I 
This chapter explains how to analyze flow in con· 
duits. The primary tool, the energy equation, was 
presented in Chapter 7. This chapter expands on this 
knowledge by describing how to calculate head loss. 
In addition, this chapter explains how to design pumps 1 

into systems and how to analyze a network of pipes. 

>·l Learning Objectives I 
STUDENTS WILL BE ABLE TO 

• Define a conduit. Classify o flow as laminar or turbulent. 
Define or calculate the Reynolds number. (§ 10. l) 

• Describe developing flow and fully developed flow. Classify 
a flow into these categories. (§ l 0. l) 

• Specify a pipe size using the NPS standard.(§ 10.2) 

• Describe total head loss, pipe head loss, and component 
head loss. (§10.3) 

• Define the friction factor f. List the steps to derive the 
Darcy-Weisboch equation. (§ 1 0.3) 

• Describe the physics of the Dorcy-Weisboch equation and 
the meaning of the variables that appear in the equation. 
Apply this equation.(§ 10.3) 

• Calculate h1or Jfor laminar flow.(§ 1 0.5) 

• Describe the main features of the Moody diagram. 
Calculate jfor turbulent flow using the Moody diagram or 
the Swamee-Jain correlation. (§ 1 0.6) 

• Solve turbulent flow problems when the equations cannot 
be solved by algebra alone. (§ 10.7) 

• Define the minor loss coefficient. Describe and apply 
the combined head loss equation. (§ 1 0.8) 

• Define hydraulic diameter and hydraulic radius and solve 
relevant problems. (§ 1 0.9) 

• Solve problems that involve pumps and pipe networks. (§ 10. 1 0) 

359 
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FIGURE 10.2 

Reynolds' experiment. 
(a) Apparatus. 
(b) Laminar flow of dye 
in tube. 
(c) Turbulent flow of dye 
in tube. 
(d) Eddies in turbulent flow. 

A conduit is any pipe, tube, or duct that is completely filled with a flowing fluid. Examples 
include a pipeline transporting liquefied natural gas, a microchannel transporting hydrogen in 
a fuel cell, and a duct transporting air for heating of a building. A pipe that is partially filled 
with a flowing fluid, for example a drainage pipe, is classified as an open-channel flow and is 
analyzed using ideas from Chapter 15. 

10.1 Classifying Flow 

This section describes how to classify flow in a conduit by considering (a) whether the flow is 
laminar or turbulent, and (b) whether the flow is developing or fully developed. Classifying 
flow is essential for selecting the proper equation for calculating head loss. 

Laminar Flow and Turbulent Flow 

Flow in a conduit is classified as being either laminar or turbulent, depending on the magni­
tude of the Reynolds number. The original research involved visualizing flow in a glass tube as 
shown in Fig. 10.2a. Reynolds (1) in the 1880s injected dye into the center of the tube and 
observed the following: 

• When the velocity was low, the streak of dye flowed down the tube with little expansion, as 
shown in Fig. 10.2b. However, if the water in the tank was disturbed, the streak would shift 
about in the tube. 

• If velocity was increased, at some point in the tube, the dye would all at once mix with the 
water as shown in Fig. 10.2c. 

• When the dye exhibited rapid mixing (Fig. 10.2c), illumination with an electric spark 
revealed eddies in the mixed fluid as shown in Fig. 10.2d. 

The flow regimes shown in Fig. 10.2 are laminar flow (Fig. 10.2b) and turbulent flow (Figs. 
I 0.2c and 10.2d). Reynolds showed that the onset of turbulence was related to a 'TT-group that 
is now called the Reynolds number (Re = p VD/JJ.) in honor of Reynolds' pioneering work. 

The Reynolds number is often written as Re0 , where the subscript "D" denotes that diam­
eter is used in the formula. This subscript is called a length sea/e. Indicating the length scale for 
Reynolds number is good practice because muliple values are used. For example, Chapter 9 
introduced Rex and Rer. 

Glass tube 

(a) 

(b) 

(c) 

) 
(d) 
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Reynolds number can be calculated with four different equations. These equations are 
equivalent because one can start with one formula and derive the others. The formulas are 

VD pVD 4Q 4m 
Ren = - = -- = -- = --

v J-L TrDv TrDJ-L 
(1 0.1) 

Reynolds discovered that if the fluid in the upstream reservoir was not completely still or 
if the pipe had some vibrations, then the change from laminar to turbulent flow occurred at 
Ren - 2100. However, if conditions were ideal, it was possible to reach a much higher Reynolds 
number before the flow became turbulent. Reynolds also found that, when going from high 
velocity to low velocity, the change back to laminar flow occurred at Ren - 2000. Based on 
Reynolds' experiments, engineers use guidelines to establish whether or not flow in a conduit 
will be laminar or turbulent. The guidelines used in this text are as follows: 

Rev::; 2000 

2000 ::; Rev ::; 3000 

Re0 2: 3000 

laminar flow 

unpredictable 

turbulent flow 

(10.2) 

In Eq. (10.2), the middle range (2000 ::; Rev ::; 3000) corresponds to a type of flow that is 
unpredictable because it can change back and forth between laminar and turbulent states. Recog­
nize that precise values of Reynolds number versus flow regime do not exist. Thus, the guidelines 
given in Eq. ( 10.2) are approximate, and other references may give different values. For example, 
some references use Rev = 2300 as the criteria for turbulence. 

Developing Flow and Fully Developed Flow 
Flow in a conduit is classified as either developing flow or fully developed flow. For example, 
consider laminar fluid entering a pipe from a reservoir as shown in Fig. 10.3. As the fluid 
moves down the pipe, the velocity profile changes in the streamwise direction as viscous effects 
cause the plug-type profile to gradually change into a parabolic profile. This region of changing 
velocity profile is called developing flow. After the parabolic distribution is achieved, the flow 
profile remains unchanged in the streamwise direction, and flow is called fully developed 
flow. 

-
~--------- !, --------------~ 

-s 

1-:------ Developing flow -------------+ - ----------­

~ \\.,11 'hc.tr '''"" " 
changmg. dlJC 1o 1hc 
c.:h.mgc: m \d(ll'll) 

prof•le us lxmndnry 

/ la~cr gro\\s 

Distance (s) 

Fully developed 

flow 

""- \\,111 shear stre" is 

constant bc~ausc 

\doc it) profik " 

/constant "llh >. 

.................... .... 

FIGURE 10 .3 

In developing flow, 
the wall shear stress 
is changing. In fully 
developed flow, the wall 
shear stress is conslanl. 



362 CHAPTER 10 • FLOW IN CONDUITS 

EXAMPLE 10. 1 

The distance required for flow to develop is called the entq; or entrance length (L,). In 
the entry length, the wall shear stress is decreasing in the streamwise (i.e. s) direction. For 
laminar flow, the wall shear-stress distribution is shown in Fig. I 0.3. Near the pipe entrance, 
the radial velocity gradient (change in velocity with distance from the wall) is high, so the 
shear stress is large. As the velocity profile progresses to a parabolic shape, the velocity gra­
dient and the wall shear stress decrease until a constant value is achieved. The entry length is 
defined as the distance at which the shear stress reaches 2% of the fully developed value. 
Correlations for entry length are 

L, - = 0.05 Re0 D 

L. 
-=50 
D 

(laminar flow: Ren :5 2000) (10.3a) 

(turbulent flow: Re0 ~ 3000) (10.3b) 

Eq. (10.3) is valid for flow entering a circular pipe from a reservoir under quiescent condi­
tions. Other upstream components such as valves, elbows, and pumps produce complex flow 
fields that require different lengths to achieve fully developing flow. 

In summary, flow in a conduit is classified into four categories: laminar developing, lami­
nar fully developed, turbulent developing, or turbulent fully developed. The key to classifica­
tion is to calculate the Reynolds number as shown by Example I 0.1. 

State the Goal 

Classifying Flow in Conduits • Determine whether each flow is laminar or turbulent. 

Problem Statement 

Consider fluid flowing in a round tube of length I m and 
diameter 5 mm. Classify the flow as laminar or turbulent and 
calculate the entrance length for (a) air (50°C} with a speed 
of 12m/s and (b) water (15°C} with a mass flow rate 

of m = 8 g/s. 

Define the Situation 

Fluid is flowing in a round tube (two cases given). 

1------ /.• I.Om -------i 

~ ---------------------
(a) Air. 50"C. v- 12 m/s '--o-0.005 m 

(b) Water, 15"C, nr = 0.008 kg/s 

Properties: 

1. Air (50°C), Table A.3, v = 1.79 X 10-s m2/s 

2. Water (15°C}, Table A.S, 1-1. = 1.14 X 10 3 N · s/m2 

Assumptions: 

I. The pipe is connected to a reservoir. 

2. The entrance is smooth and tapered. 

• Calculate the entrance length (in meters) for each case. 

Generate Ideas and Make a Plan 

• Calculate the Reynolds number using Eq. {10.1). 

• Establish whether the flow is laminar or turbulent using 
Eq. (10.2). 

• Calculate the entrance length using Eq. ( 10.3). 

Take Action (Execute the Plan) 

a. Air 

VD ( 12 m/s)(O.OOS m) 
Re0 = - = 

9 5 21 = 3350 
v 1.7 X 10 m s 

Because Re0 > 3000, the I flow is turbulent. I 
L, = SOD = 50(0.005 m) =I 0.25 m I 

b. Water 

4m 4{0.008 kg/s) 
Reo=--= 

'ITDIJ. '1T(O.OOS m)(l.1 4 X 10 3 N • s/m2
) 

= 1787 

Because Re0 < 2000, the ltiow is laminar. I 
L, = O.OSRenD = 0.05(1787){0.005 m) = [o~ 



-~~q_IQ.~ .] 9·}. PlfE _H~~p LOSS 363 

10.2 Specifying Pipe Sizes 

This section describes how to specify pipes using the Nominal Pipe Size (NPS) standard. This 
information is useful for specifying a size of pipe that is available commercially. 

Standard Sizes for Pipes (NPS) 
One of the most common standards for pipe sizes is called the Nominal Pipe Size (NPS) sys­
tem. The terms used in the NPS system are introduced in Fig. 10.4. The ID (pronounced "eye 
dee") indicates the inner pipe diameter, and the OD ("oh dee") indicates the outer pipe diam­
eter. As shown in Table 10.1, an NPS pipe is specified using two values: a nominal pipe size 
(NPS) and a schedule. The nominal pipe size determines the outside diameter or OD. For 
example, pipes with a nominal size of 2 inches have an OD of 2.375 inches. Once the nominal 
size reaches 14 inches, the nominal size and the OD are equal. That is, a pipe with a nominal 
size of 24 inches will have an OD of 24 in. 

Pipe schedule is related to the thickness of the wall. The original meaning of schedule was 
the ability of a pipe to withstand pressure, thus pipe schedule correlates with wall thickness. 
Each nominal pipe size has many possible schedules that range from schedule 5 to schedule 
160. The data in Table 10.1 show representative ODs and schedules; more pipe sizes are speci­
fied in engineering handbooks and on the Internet. 

TABLE 10.1 Nominal Pipe Sizes 

r-;ps (in) 

1/2 

2 

4 

8 

14 

24 24.000 

1 

I 

10.3 Pipe Head Loss 

Schedule 

40 
80 

40 
80 

40 
80 

40 
80 

40 

80 

10 
40 

80 
120 

10 

40 

80 
120 

Wall1hickne's (in) ID (in) 

0.109 
0.147 

0.133 
0.1 79 

0.154 
0.218 

0.237 

0.337 

0.322 

0.500 

0.250 

0.437 

0.750 
1.093 

0.250 

0.687 

1.218 
1.812 

I 0.622 
I 0.546 

t- 1.049 
0.957 

2.067 
1.939 

4.026 
3.826 ----

t 

---+ 

7.981 

7.625 

13.500 

13.126 

12.500 
11.814 

23.500 
22.626 

21.564 

20.376 

This section presents the Darcy-Weisbach equation, which is used for calculating head loss in 
a straight run of pipe. This equation is one of the most useful equations in fluid mechanics. 

FIGURE 10.4 

Section view of o pipe . 

A larg~r schcduk mdtcales 

tiHeker \\a\\, \ ''hctlul~ 

411 ptpe ha' 1hkkor \\Jib than 

,, 'chcdule 10 ptp~ 

CH> iOutsid.: dtrunotcr) 
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FIGURE 10.5 

lniliol situation for lhe 
derivation of the Dorcy­
Weisboch equation. 

Combined (Total) Head loss 

Pipe head loss is one type of head loss; the other type is called component head loss. All head 
loss is classified using these two categories: 

(Total head loss) = (Pipe head loss) + (Component head loss) (10.4) 

Component head los1> is associated with flow through devices such as valves, bends, and tees. 
Pipe head loss is associated with fully developed flow in conduits, and it is caused by shear 
stresses that act on the flowing fluid. Note that pipe head loss is sometimes called major head 
loss, and component head loss is sometimes called minor head loss. Pipe head loss is predicted 
with the Darcy-Weisbach equation. 

Derivation of the Darcy-Weisbach Equation 
To derive the Darcy-Weisbach equation, start with the situation shown in Fig. 10.5. Assume 
fully developed and steady flow in a round tube of constant diameter D. Situate a cylindrical 
control volume of diameter D and length ilL inside the pipe. Define a coordinate system with 
an axial coordinate in the streamwise direction (s direction) and a radial coordinate in the 
r direction. 

Apply the momentum equation to the control volume shown in Fig. 1 0.5. 

2: F = ~ J vpd \l + f vp V · dA 
cv cs 

(Net forces) = (Momentum accumulation rate) + (Net efflux of momentum) 

Flow --------
(a) 

C" 
s direct ton 

::d 
~~z 

sin a= I'>: 
ill 

(b) 

(10.5) 

Select the streamwise direction and analyze each of the three terms in Eq. (10.5). The net 
efflux of momentum is zero because the velocity distribution at section 2 is identical to the 
velocity distribution at section l. The momentum accumulation term is also zero because the 
flow is steady. Thus, Eq. (10.5) simplifies to IF= 0. Forces are shown in Fig. 10.6. Summing of 
forces in the streamwise direction gives 

Fpressure + Fshear + fwcighl = 0 

(p,- Pz)('lrt) -To('ITDLlL)- 'Y[('IT~
2

)LlL]sino = 0 (10.6) 



SECTION 10.3 PIPE HEAD LOSS 

Figure IO.Sb shows that sin a= (!lllt:..L). Equation (10.6) becomes 

4!:..L'T0 
(pi + 'YZ1) - (p2 + 'YZz) = v- (10.7) 

Next, apply the energy equation to the control volume shown in Fig. 10.5. Recognize that 
hp = hi = 0, V1 = V2 , and a 1 = a 2• Thus, the energy equation reduces to 

Pt Pz - + Z1 = - + Zz + hL 
'Y 'Y (10.8) 

(pi + 'YZt) - (p2 + 'YZ z) = 'YhL 

Combine Eqs. (10.7) and (10.8) and replace t:..L by L. Also, introduce a new symbol h1to repre­
sent head loss in pipe. 

h = (head loss) = 4L'T0 

f in a pipe Dy 
(10.9) 

Rearrange the right side of Eq. (I 0.9). 

(10.10) 

Define a new 'IT-group called the friction factor fthat gives the ratio of wall shear stress ('To) to 
kinetic pressure (p V2/2): 

. ( 4 · 'To) shear stress acting at the wall 

j = (p V2/2) = kinetic pressure 
(1 0.11) 

In the technical literature, the friction factor is identified by several different labels that are 
synonymous: friction factor, Darcy friction factor, Darcy-Weisbach friction factor, and the resis­
tance coefficient. There is also another coefficient called the Fanning friction factor, often used by 
chemical engineers, which is related to the Darcy-Weisbach friction factor by a factor of 4. 

/Darcy = 4/fanning 

This text uses only the Darcy-Weisbach friction factor. Combining Eqs. (10.10) and (10.11) 
gives the Darcy-Weisbach equation: 

(10.12) 

To use the Darcy-Weisbach equation, the flow should be fully developed and steady. The 
Darcy-Weisbach equation is used for either laminar flow or turbulent flow and for either round 
pipes or nonround conduits such as a rectangular duct. 

FIGURE 10.6 

Force diagram. 

365 
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FIGURE 10.7 

For fully developed flow 
in o pipe, the pressure 
distribution on an area 
normal to streamlines is 
hydrostatic. 

vCHECKPOINT PROBLEM 10.1 

The figure shows flow through two pipes. Case 1 has half the flow of 
Case 2. Both cases involve the same length of pipe, the same friction 
factor, and the same diameter. What is the ratio of head loss for Case 1 
to head loss for Case 2? 

a.l:4 

b.l :2 

c. head loss is the same 

d. 2:1 

e. 4:1 

-~--flow ~ Q 
Case I 

- Flow "37 
Case2 

The Darcy-Weisbach equation shows that head loss depends on the friction factor, the 
pipe length-to-diameter ratio, and the mean velocity squared. The key to using the Darcy­
Weisbach equation is calculating a value of the friction factor f This topic is addressed in the 
next sections of Lhis text. 

1 0.4 Stress Distributions in Pipe Flow 

This section derives equations for the stress distributions on a plane that is oriented normal to 
stream lines. These equations, which apply to both laminar and turbulent flow, provide insights 
about the nature of the flow. Also, these equations are used for subsequent derivations. 

In pipe flow the pressure acting on a plane that is normal to the direction of flow is hydro­
static. This means that the pressure distribution varies linearly as shown in Fig. 10.7. The reason 
that the pressure distribution is hydrostatic can be explained with Euler's equation (see p.l30). 

Hydrostatic pressure distribution 

to streamlines 

------Flow 

To derive an equation for the shear-stress variation, consider flow of a Newtonian fluid in 
a round tube that is inclined at an angle o: with respect to the horizontal as shown in Fig. I 0.8. 
Assume that the flow is fully developed, steady, and laminar. Define a cylindrical control vol­
ume of length t..L and radius r. 

Apply the momentum equation in the s direction. The net momentum effiux is zero 
because the flow is fully developed; that is, the velocity distribution at the inlet is the same as 
the velocity distribution at the exit. The momentum accumulation is also zero because the flow 
is steady. The momentum equation simplifies to force equilibrium. 

(10.13) 
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-----Flow 

~ ~-­r------ \) 
p\ --

Radius r0 '-'-----

\ r direction 

\.__-- s dtrecllon 

Analyze each term in Eq. ( 10.13) using the force diagram shown in Fig. 10.9: 

pA - (p + : b.L )A - Wsin a - T(2m)b.L = 0 (10.14) 

:llfo.t.)"t .... .... ( dp ) 
~-- \ -- p+-;;;t:.L A 

~~--~;::;:). 
w 

Force diagram 

Let W = -yA~L. and let sin a= b.zlb.L as shown in Fig. 10.5b. Next, divide Eq. (10.14) by A~L: 

T = .!:.[_!!_(p + -yz)] (10.15) 
2 ds 

Equation ( 1 0.15) shows that the shear-stress distribution varies linearly with r as shown in 
Fig. 10.1 0. Notice that the shear stress is zero at the centerline, it reaches a maximum value of 
To at the wall, and the variation is linear in between. This linear shear stress variation applies to 
both laminar and turbulent flow. 

Maximum shear stress (r 0 ) 

occurs at the wall 

1 0.5 Laminar Flow in a Round Tube 

This section describes laminar flow and derives relevant equations. Laminar flow is important 
for flow in small conduits called microchannels, for lubrication flow, and for analyzing other 
flows in which viscous forces are dominant. Also, knowledge of laminar flow provides a foun­
dation for the study of advanced topics. 

Laminar flow is a flow regime in which fluid motion is smooth, the flow occurs in layers 
(laminae), and the mixing between layers occurs by molecular diffusion, a process that is much 

FIGURE 10.8 

Sketch for derivation of an 
equation for shear stress. 

FIGURE 10.9 

Force diagram 
corresponding to the 
control volume defined 
in Fig. 10.8. 

FIGURE 10.1 0 

In fully developed flow 
(laminar or turbulent), the 
shear·stress d istribution on 
an area that is normal to 
streamlines is linear. 
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slower than turbulent mixing. According to Eq. (10.2), laminar flow occurs when Re0 ~ 2000. 
Laminar flow in a round tube is called Poiseuille flow or Hagen-Poiscuille flow in honor of 
researchers who studied low-speed flows in the 1840s. 

Velocity Profile 
To derive an equation for the velocity profile in laminar flow, begin by relating stress to rate-of­
strain using the viscosity equation: 

dV 
'T = J..L-

dy 

where y is the distance from the pipe wall. Change variables by letting y = r0 - r, where r0 is 
pipe radius and r is the radial coordinate. Next, use the chain rule of calculus: 

(10.16) 

Substitute Eq. (10.16) into Eq. (10.15). 

(2J..L)(dV) d - - - = -(p + -yz) 
r dr ds 

(1 0.17) 

In Eq. (1 0.17), the left side of the equation is a function of radius r, and the right side is a 
function of axial locations. This can be true if and only if each side of Eq. ( l 0.17) is equal to a 
constant. Thus, 

d (6.(p + -yz)) (-y6.h) 
constant = ds (p + -yz) = AL = AL (10.18) 

where 6.h is the change in piezometric head over a length 6.L of conduit. Combine Eqs. ( l 0.17) 
and (10.18): 

dV = -(..!._)(-y6.h) 
dr 2J..L 6.L 

(10.19) 

Integrate Eq. (10.19): 

( r
2 )(-y6.h) 

V = - 4J..L 6.L + C (10.20) 

To evaluate the constant of integration C in Eq. (10.20), apply the no-slip condition, which 
states that the velocity of the fluid at the wall is zero. Thus, 

V(r = r0) = 0 

Solve for C and substitute the result into Eq. (10.20): 

V = r~ - r
2 

[-!!_(p + -yz)] = -('~ - ,2)(-yJ.h) 
4J..L ~ 4J..L 6.L 

(10.21) 

The maximum velocity occurs at r = r0: 

V = -( r6 )(-yAh) 
max 4J..L AL 

(10.22) 



Combine Eqs. (10.21) and (10.22): 

(r
2 -r2)(-yAh) ( (r)2) 

V(r) = - ~ IlL = Vmax I - -;:;; (10.23) 

Equation (10.23) shows that velocity varies as radius squared (V- r2
), meaning that the veloc­

ity distribution in laminar flow is parabolic as plotted in Fig. 10.11. 

Discharge and Mean Velocity V 
To derive an equation for discharge Q, introduce the velocity profile from Eq. (10.23) into the 
flow rate equation. 

Q =I VdA 

i'•(r5- r2)(-ytlh) 
= - - (2m dr) 

0 
4J.L A.L 

(10.24) 

Integrate Eq. (10.24): 

Q = -(~)(-yAh) (r
2 

- r5)2 1'' = -(Trr~)(-ytlh) 
4J.L IlL 2 0 8f.L A.L 

(10.25) 

To derive an equation for mean velocity, apply Q = VA and use Eq. (l 0.25). 

v = -(;!)('Y:t) (10.26) 

Comparing Eqs. (10.26) and (10.22) reveals that V = Vmax/2. Next, substitute D/2 for r0 in 
Eq. (10.26). The final result is an equation for mean velocity in a round tube. 

v = -c~:x'Y:t) = V;ax (10.27) 

Head Loss and Friction Factor f 
To derive an equation for head loss in a round tube, assume fully developed flow in the pipe 
shown in Fig. 10.12. Apply the energy equation from section 1 to 2 and simplify to give 

(10.28) 

Let hL = h1and then Eq. (10.28) becomes 

FIGURE 10.11 

The velocity profile in 
Poiseuille flow is parabolic. 

FIGURE 1 0. 12 

Flow in a pipe. 

(~ + z,) = (~ + z2) + hf (10.29) //' 
Flow 
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Expand Eq. (10.27). 

Reorganize Eq. (10.30) and replace tlL with L. 

(
Pt + z) = (P2 + z) + 321J.. VL 
l I l 2 lD2 

Comparing Eqs. (10.29) and (10.31) gives an equation for head loss in a pipe. 

h _ 321J..LV 
f - lDz 

(10.30) 

(10.31) 

(10.32) 

Key assumptions on Eq. {10.32) are (a) laminar flow, (b) fully developed flow, (c) sleady flow, 
and (d) Newtonian fluid. 

Equation (10.32) shows Lhat head loss in laminar flow varies linearly with velocity. Also, 
head loss is influenced by viscosity, pipe length, specific weight, and pipe diameter squared. 

Ib derive an equation for the friction factor f, combine Eq. {10.32) with the Darcy-Weisbach 
equation ( 10.12). 

(10.33) 

(10.34) 

Equation ( 10.34) shows that the friction factor for laminar flow depends only on Reynolds 
number. Example 10.2 illustrates how to calculate head loss. 

EXAMPLE 10.2 

Head loss for Laminar Flow 

Problem Statement 

Oil (S = 0.85) with a kinematic viscosity of 6 X 10 4 m2/s 
flows in a 15 em diameter pipe at a rate of 0.020 m3/s. What is 
the head loss for a 100 m length of pipe? 

Define the Situation 

• Oil is flowing in a pipe at a flow rate of Q = 0.02 m3/s. 

• Pipe diameter is D = 0.15 m. 

Assumptions: Fully developed, steady flow 

Properties: Oil: S = 0.85, v = 6 X 10 4 m 2/s 

State the Goal 

Calculate head loss (in meters) for a pipe length of 
lOOm. 

Generate Ideas and Make a Plan 

I. Calculate the mean velocity using the flow rate 
equation. 

2. Calculate the Reynolds number using Eq. (10.1). 

3. Check whether the flow is laminar or turbulent using 
Eq. (10.2). 

4. Calculate head loss using Eq. (10.32). 

Take Action (Execute the Plan) 

1. Mean velocity 

2. Reynolds number 

0.020 m3/s 
- - ---:-- = 1.13 m/s 
'TT((0.15 m?/4) 

VD (1.13 m /s)(O.l5 m) 
Re0 = - = = 283 

v 6 x 10- 4 m2/s 
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3. Because Re0 < 2000, the flow is laminar. 
Review the Solution and the Process 

4. Head loss (laminar flow). 

321J.LV 32pvLV 32vLV 
h ----

Knowledge. An alternative way to calculate head loss for laminar 

flow is to usc the Darcy-Weisbach equation (10.12) as follows: 
!- -yD2 - pgDz gDz 

32(6 X l0-4 m2/s)( l00 m)(l.13 m/s) 

(9.81 m/s2}(0.15 m)2 

= J.--9-.8-3-m'j 

64 64 f = - = - = 0.226 
Re0 283 

h = t(~)(V2) = 0.226( 100m)( (1.13 m /s) )z 
1 D 2g 0.15 m 2 X 9.81 m/s2 

= 9.83 m 

1 0.6 Turbulent Flow and the Moody Diagram 

This section describes the characteristics of turbulent flow, presents equations for calculating 
the friction factor f, and presents a famous graph called the Moody diagram. This information 
is important because most flows in conduits are turbulent. 

Qualitative Description of Turbulent Flow 

Turbulent flow is a flow regime in which the movement of fluid particles is chaotic, eddying, 
and unsteady, with significant movement of particles in directions transverse to the flow direc­
tion. Because of the chaotic motion of fluid particles, turbulent flow produces high levels of 
mixing and has a velocity profile that is more uniform or flatter than the corresponding lami ­
nar velocity profile. According to Eq. ( 1 0.2), turbulent flow occurs when Re ~ 3000. 

Engineers and scientists model turbulent flow by using an empirical approach. This is 
because the complex nature of turbulent flow has prevented researchers from establishing a 
mathematical solution of general utility. Still, the empirical information has been used success­
fully and extensively in system design. Over the years, researchers have proposed many equations 
for shear stress and head loss in turbulent pipe flow. The empirical equations that have proven to 
be the most reliable and accurate for engineering use are presented in the next section. 

Equations for the Velocity Distribution 

The time-average velocity distribution is often described using an equation called the power­
law formula. 

(10.35) 

where U 111ax is velocity in the center of the pipe, r0 is the pipe radius, and m is an empirically 
determined variable that depends on Re as shown in Table 10.2. Notice in Table 10.2 that the 
velocity in the center of the pipe is typically about 20% higher than the mean velocity V. 
Although Eq. (10.35) provides an accurate representation of the velocity profile, it does not 
predict an accurate value of wall shear stress. 

An alternative approach to Eq. (10.35) is to use the turbulent boundary-layer equations 
presented in Chapter 9. The most significant of these equations, called the logarithmic velocity 
distribution, is given by Eq. (9.29) and repeated here: 

u(r) = 2.44ln u.(ro - r) + 5.56 
u. v 

(10.36) 

where u., the shear velocity, is given by u. = y;r;!p. 
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FIGURE 1 0. 13 

Resistance coefficient F 

versus Reynolds number 
for sand-roughened pipe. 
[Alter Nikurodse (4)]. 

TABLE 10.2 Exponents for Power-law Equation and Ratio of Mean to Maximum 
Velocity 

Re 4 X 1(1 2.3 X 104 

m I I - -
6.0 6.6 

... 
UmaxfV 1.26 1.24 

Source: Schlichting (2). 

Equations for the Friction Factor, f 

t 
7.0 

1.22 

I 

8.8 

1.18 

I 

10.0 

1.16 

To derive an equation for fin turbulent flow, substitute the log law in Eq. ( 1 0.36) into the defi­
nition of mean velocity given by Eq. (5.10): 

v = ~ = ('!T~ij) r ·u(r)2mdr = (1T1r6) r0u.[ 2.44ln u.(rov- r) + 5.56 ]2mdr 

After integration, algebra, and tweaking the constants to better fit experimental data, the result is 

1 VJ = 2.0log 10 (ReVj) - 0.8 (10.37) 

Equation (10.37), first derived by Prandtl in 1935, gives the friction factor for turbulent flow in 
tubes that have smooth walls. The details of the derivation of Eq. {10.37) arc presented by 
White (21). To determine the influence of roughness on the walls, Nikuradse (4), one of 
Prandtl's graduate students, glued uniform-sized grains of sand to the inner walls of a tube and 
then measured pressure drops and flow rates. 

Nikuradse's data, Fig. 1 0.13, shows the friction factor f plotted as function of Reynolds 
number for various sizes of sand grains. To characterize the size of sand grains, Nikuradse used 

0.100 

0.090 

0.080 

0.070 

0.060 

0.050 

....., 
0.040 

E 
" ·u 
E 
8 u 0.030 

" u 
" fi 

0.025 

<:! 0.020 

0.015 

0.010 

0.009 

0.008 
103 

k/ D 
D 0.033 
• 0.016 
0 0.008 
• 0.004 

"'0.002 

Smooth wall tube 
F.q. (10.37) 

10~ 
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a variable called the sand roughness height with the symbol k5• The 'IT-group, k,l D, is given the 
name relative roughness. 

In laminar flow, the data in Fig. 10.13 show that wall roughness does not influence f In 
particular, notice how the data corresponding to various values of k5/ D collapse into a single 
blue line that is labeled "laminar flow:' 

In turbulent flow, the data in Fig. 10.13 show that wall roughness has a major impact on f 
When k5/D = 0.033, then values of fare about 0.04.As the relative roughness drops to 0.002, values 
off decrease by a factor of about 3. Eventually wall roughness does not matter, and the value off 
can be predicted by assuming that the tube has a smooth wall. This latter case corresponds to the 
blue curve in Fig. 10.13 that is labeled "smooth wall tube." The effects of roughness are summa­
rized by White (5) and presented in Table 10.3. These regions are also labeled in Fig.10.13. 

TABLE 10.3 Effects of Wall Roughness 

'1}-pe of Flow 

Laminar Flow Re0 < 2000 

Turbulent Flow, Smooth Tube 
Re0 > 3000 

Transitional Turbulent Flow 
Ren > 3000 

Fully Rough Turbulent Flow 
Re0 > 3000 

Moody Diagram 

Parameter Ranges 

NA 

(~)Re0 < 10 

10 < (~)RetJ < 1000 

(~)Re0 > 1000 

Influence of Parameters onf 

f depends on Reynolds number 
f is independent of waU roughness (k,ID) 

f depends on Reynolds number 
f is independent of wall roughness (k,l D) 

f depends on Reynolds number 
f depends on wall roughness (k,! D) 

fis independent of Reynolds number 
J depends on wall roughness (k,!D) 

Colebrook (6) advanced Nikuradse's work by acquiring data for commercial pipes and then 
developing an empirical equation, called the Colebrook-White formula, for the friction factor. 
Moody (3) used the Colebrook-White formula to generate a design chart similar to that shown 
in Fig. 10.14. This chart is now known as the Moody diagram for commercial pipes. 

In the Moody diagram, Fig. 10.14, the variable k, denotes the equivalent sand roughness. 
That is, a pipe that has the same resistance characteristics at high Re values as a sand-roughened 
pipe is said to have a roughness equivalent to that of the sand-roughened pipe. Table 10.4 gives the 
equivalent sand roughness for various kinds of pipes. This table can be used to calculate the relative 
roughness for a given pipe diameter, which, in tum, is used in Fig. 10.14, to find the friction factor. 

In the Moody diagram, Fig. 10.14, the abscissa is the Reynolds number Re, and the ordinate is 
the resistance coefficient f Each blue curve is for a constant relative roughness k,l D, and the values 
of k,l D are given on the right at the end of each curve. To find J, given Re and k,l D, one goes to the 
right to find the correct relative roughness curve. Then one looks at the bottom of the chart to find 
the given value of Re and, with this value of Re, moves vertically upward until the given k,ID curve 
is reached. Finally, from this point one moves horizontally to the left scale to read the value off 1f 
the curve for the given value of k,ID is not plotted in Fig. 10.14, then one simply finds the proper 
position on the graph by interpolation between the ksfD curves that bracket the given k,ID. 

To provide a more convenient solution to some types of problems, the top of the Moody 
diagram presents a scale based on the parameter Ref112

• This parameter is useful when hfand 
k,ID are known but the velocity V is not. Using the Darcy-Weisbach equation given in 
Eq. (l 0.12) and the definition of Reynolds number, one can show that 

D312 
Ref 112 = -(2gh1!L)112 (10.38) 

v 
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TABLE 10.4 Equivalent Sand-Grain Roughness, (k5), for Various Pipe Materials 

Boundary Material k .. Millimeter:. k,, Im-hl's 

Glass, plastic Smooth ~ Smooth ---
Copper or brass tubing 0.0015 6 X 10- 5 

Wrought iron, steel 0.046 0.002 
----+----- ~ 

Asphalted cast iron 0.12 

t 
0.005 

Galvanized iron 0.15 0.006 

Cast iron 0.26 0.010 

Concrete 
-t 

0.3 to 3.0 0.012- 0.12 ----- ~ --+--
Riveted steel 

t 
0.9- 9 0.035-0.35 _..._ 

Rubber pipe (straight) 0.025 0.001 

ln the Moody diagram, Fig. I 0.14, curves of constant Re jl12 are plotted using heavy black lines 
that slant from the left to right. For example, when Re P'2 = I 05 and k.f D :;:: 0.004, then 
f = 0.029. When using computers to carry out pipe-flow calculations, it is much more conve­
nient to have an equation for the friction factor as a function of Reynolds number and relative 
roughness. By using the Colebrook-White formula, Swamee and Jain (7) developed an explicit 
equation for friction factor, namely 

f = [ ( k, 5.74)]
2 

log lO 3.7D + Re~j9 

0.25 
(10.39) 

It is reported that this equation predicts friction factors that differ by less than 3% from those 
on the Moody diagram for 4 X 101 < Re0 < 108 and 10- 5 < k..ID < 2 X 10- 2

. 

vCHECKPOINT PROBLEM 10.2 

Water (l5°C) flows in a 100m length of cast iron pipe. The pipe inside diameter is 0.15 m, and the 
mean velocity is 0.6 m/s. 

a. What is the value of Reynolds number? 

b. What is the value of k,! D ? 

c. What is the value ofjfrom the Moody diagram? 

d. What is the value off from the Swamce-Jain correlation? 

c. What is the value of head loss? 

10.7 Strategy for Solving Problems 

Analyzing flow in conduits can be challenging because the equations often cannot be solved 
with algebra. Thus, this section presents a strategy. 

Conduit problems are solved with the energy equation together with equations for head-loss. 
Thus, the next checkpoint problem allows you to test your understanding of the energy equation. 
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FIGURE 1 0.1 5 

A strategy for solving 
condui t flow problems. 

tiCHECKPOINT PROBLEM 10.3 

The sketch shows an idealization of a garden hose 
of diameter D and length L connected to a pipe 
bib at a residence. Assume that the supply pres­
sure Ps upstream of the valve is constant. Assume 
that the faucet valve has no head loss because it 
is fully open. Thus, the only head loss is in the 
garden hose. 

.. / Valve (fully open) 

/ ( Diameter (D) 

l_------~~~~L~~~f( 
House 

a. Derive an equation for the mean velocity V of the water in terms of the friction factor and other 
relevant variables. 

b. How much will V change if Lis doubled? Assume f remains constant. 

Fig.lO.lS provides a strategy for problem solving. When flow is laminar, solutions are straight­
forward because liead loss is linear with velocity V and the equations are simple enough to 
solve with algebra. When flow is turbulent, head loss is nonlinear with V and the equations are 
too complex to solve with algebra. Thus for turbulent flow, engineers use computer solutions 
or the traditional approach. 

Algebra. Solve the 
equations using algebm. 

Modem Approach. Solve 
the equations u.slng a 

computer program that 
can solve coupled, 

nonlinear equations. 

Traditional. Classify the 
problem into case I, ca."e 2, 
or case 3. Apply methods 
!hal can be implemented 

without a computer. 

To solve a turbulent flow problem using the traditional approach, one classifies the prob-
lems into three cases: 

Case 1 is when the goal is to find the head loss, given the pipe length, pipe diameter, and flow 
rate. This problem is straightforward because it can be solved using algebra; see Example 10.3. 

Case 2 is when the goal is to find the flow rate, given the head loss (or pressure drop), the 
pipe length, and the pipe diameter. This problem usually requires an iterative approach. 
See Examples 10.4 and 10.5. 

Case 3 is when the goal is to find the pipe diameter, given the flow rate, length of pipe, and head 
loss (or pressure drop). This problem usually requires an iterative approach; see Example 10.6. 

There are several approaches that sometimes eliminate the need for an iterative approach. 
For case 2, an iterative approach can sometimes be avoided by using an explicit equation 
developed by Swamee and Jain (7): 

5/2 , ~ ( ks 1.78 V ) Q = -2.22 D vghf!Llog -- + 
312

, ~ 
3.7 D D v gh1!L 

{10.40) 

Using Eq. (10.40) is equivalent to using the top of the Moody diagram, which presents a scale 
for Re j 112• For case 3, one can sometimes use an explicit equation developed by Swamee and 
Jain (7) and modified by Streeter and Wylie (8): 

[ (
LQ2)4.75 ( L )s.2]o.04 

D = 0.66 k:·
25 

ghf + vQ
94 

ghf (10.41) 

Example 10.3 shows an example of a case 1 problem. 
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EXAMPLE 10.3 

Head Loss in a Pipe (Case 1) 

Problem Statement 

Water (T = 20°C) flows at a rate of0.05 m3/s in a 20 em asphalted 
cast-iron pipe. What is the head loss per kilometer of pipe? 

Define the Situation 

Water is flowing in a pipe. 

1------ L- 1000 m 

------u....b------~~--------~3 Water, 2o•c 
Q- 0.05 m3/.v '-_ D = 0.2 m 

Asphaltcd, cast-iron 

Assumptions: Fully developed flow 

Properties: Water (20°C), Table A.S: v = 1 X 10 6 m2/s 

State the Goal 

Calculate the head loss (in meters) for L = 1000 m. 

Generate Ideas and Make a Plan 

Because this is a case I problem (head loss is the goal), the 
solution is straightforward. 

I. Calculate the mean velocity using the flow rate equation. 

2. Calculate the Reynolds number using Eq. ( I 0. 1 ). 

3. Calculate the relative roughness and then look up f on the 
Moody diagram. 

4. Find head loss by applying the Darcy-Weisbach equation (1 0.1 ). 

Take Action (Execute the Plan) 

1. Mean velocity 

Q 0.05 m3/s 
V = - = = 1.59 m/s 

A ('TT/4)(0.02 m)2 

2. Reynolds number 

_ VD _ (1.59 m/s)(0.20 m) _ 
5 Re0 - - - -3.18 X l0 

v 10- 6 m2/s 

3. Resistance coefficient 

• Equivalent sand roughness (Table 10.4): 

k, = 0.12mm 

• Relative roughness: 

k,!D = (0.000 12 m)/(0.2 m) = 0.0006 

• Look up f on the Moody diagram for Re = 3.18 X 105 

and k,ID = 0.0006: 

f= 0.019 

4. Darcy-Weisbach equation 

(L)(V2
) (lOOOm)( 1.59

2
m

2
/s

2
) h = - - = 0019 -

f f D 2g · 0.20 m 2(9.81 m/s2) 

=112.2 m I 

Example I 0.4 shows an example of a case 2 problem. Notice that the solution involves applica­
tion of the scale on the top of the Moody diagram, thereby avoiding an iterative solution. 

EXAMPLE 1 0.4 

Flow Rate in a Pipe {Case 2) 

Problem Statement 

The head loss per kilometer of 20 em asphalted cast-iron pipe 
is I 2.2 m. What is the flow rate of water through the pipe? 

Define the Situation 

This is the same situation as Example 10.3 except that the head 
loss is now specified and the discharge is unknown. 

State tlte Goal 

Calculate the discharge (m3/s) in the pipe. 
-------------------

Generate Ideas and Make a Plan 

This is a case 2 problem because flow rate is the goal. However, 
a direct (i.e., noniterative) solution is possible because head 
loss is specified. The strategy will be to use the horizontal scale 
on the top of the Moody diagram. 

1. Calculate the parameter on the top of the Moody diagram. 

2. Using the Moody diagram, find the friction factor f 
3. Calculate mean velocity using the Darcy-Weisbach 

equation (10.12). 

4. Find discharge using the flow rate equation. 

Take Action (Execute the Plan) 

1. Compute the parameter D112'./2gh1!Liv. 

'./2gh11L 
/Y12 = (0.20 m?12 

v 

[2(9.81 m/s2
)( 12.2 m/1000 m)) 112 

X-'----..::.__ _ _ ___:_:__ 

1.0 X 10- 6 m2/s 

= 4.38 X 104 

2. Determine resistance coefficient. 

• Relative roughness: 
k,!D = (0.00012 m )/(0.2 m) = 0.0006 

• Look up f on the Moody diagram for 

D312 V2g h rl Ll v = 4.4 X I 04 and k,l D = 0.0006: 

J= 0.019 
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3. Find V using the Darcy-Weisbach equation. 

h, = !(fj)(~;) 
l2.2m = O.Ot9(l000m)( V

2 

) 
0.20 m 2{9.81 m/s2) 

V = 1.59 m/s 

4. Use flow rate equation to find discharge. 

Q = VA = {1.59 m/s)('IT/4){0.2 m)2 = J 0.05 m3/s J 

Review the Solution and the Process 

Validation. The calculated now rate matches the value from 
Example 10.3. This is expected because the data are the same. 

When case 2 problems require iteration, several methods can be used to find a solution. One 
of the easiest ways is a method called "successive substitution;' which is illustrated in 
Example 1 0.5. 

EXAMPLE 10.5 

Flow Rate in a Pipe (Case 2) 

Problem Statement 

Water (T = 20°C) flows from a tank through a 50 em diameter 
steel pipe. Determine the discharge of water. 

- Eleva! ion= 60 m 

Water D- 50 em Steel p1pe (D 40 m El 

L.-_ __ rr--..-:--1~~~ 
1------ 100m -----1 

Define the Situation 

Water is draining from a tank through a steel pipe. 

Assumptions: 

• Flow is fully developed. 

• Include only the head loss in the pipe. 

Properties: 

• Water (20°C), Table A.S: v = I X 10-6 m2/s. 

• Steel pipe, Table 10.4, equivalent sand roughness: 
k, = 0.046 mrn. Relative roughness (k,ID) is 9.2 X 10- 5. 

State the Goal 

Find: Discharge (m3/s) for the system. 

Generate Ideas and Make a Plan 

This is a case 2 problem because flow rate is the goal. An 
iterative solution is used because Vis unknown, so there is no 
direct way to usc the Moody diagram. 

l. Apply the energy equation from section 1 to section 2. 

2. First trial. Guess a value off and then solve for V. 

3. Second trial Using V from the first trial, calculate a new 
value off 

4. Convergence. If the value of f is constant within a few 
percent between trials, then stop. Otherwise, continue 
with more iterations. 

5. Calculate flow rate using the flow rate equation. 

Take Action (Execute the Plan) 

I . Energy equation (reservoir surface to outlet) 

or 

p, v? P2 vi 
+ - + z1 = - + - + z2 + hL 

'Y 2g 'Y 2g 

v2 L v2 
0 + 0 + 60 = 0 + ~ + 40 + j-~ 

2g D 2g 

V = ( 2g X 20 )"
2 

1 + 200f 

2. First trial (iteration 1) 

• Guess a value off= 0.020. 

• Use Eq. (a) to calculate V = 8.86 m/s. 

• Usc V = 8.86 m/s to calculate Re = 4.43 X 106
. 

• Use Re = 4.43 X 106 and k,ID = 9.2 X 10- 5 on the 
Moody diagram to find thatf= 0.012. 

• Use Eq. (a) with f = 0.012 to calculate V = 10.7 m/s. 

3. Second trial (iteration 2) 

• Use V = I 0.7 m/s to calculate Re0 = 5.35 X 106
. 

• Use Re0 = 5.35 X 106 and k,ID = 9.2 X 10- 5 on the 
Moody diagram to find thatf= 0.012. 

(a) 

4. Convergence. The value off= 0.012 is unchanged between 
the first and second trials. Therefore, there is no need for 
more iterations. 

5. Flow rate 

Q = VA = {10.7 m/s) X (11'/4} X (0.50)2 m2 = 2.10 m3/s 
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In a case 3 problem, derive an equation for diameter D and then use the method of successive 
substitution to find a solution.lterative approaches, as illustrated in Example 1 0.6, can employ 
a spreadsheet program to perform the calculations. 

EXAMPLE 10.6 

Finding Pipe Diameter (Case 3) 

Problem Statement 

What size of asphalted cast-iron pipe is required to carry water 
(60°F) at a discharge of 3 cfs and with a head loss of 4ft per 
1000 ft of pipe? 

Define t11e Situation 

Water is flowing in a asphalted cast-iron pipe. Q = 3 ft3/s. 

Assumptions: Fully developed flow 

Properties: 

• Water (60°F), Table A.5: v = 1.22 X 10 5 ff/s 

• Asphalted cast-iron pipe, Table I 0.4, equivalent sand 
roughness: k, = 0.005 in. 

State the Goal 

Calculate the pipe diameter (in ft) so that head loss is 4 ft per 
1000 ft of pipe length. 

Generate Ideas and Make a Plan 

Because this is a case 3 problem (pipe diameter is the goal), 
use an iterative approach. 

1. Derive an equation for pipe diameter by using the 
Darcy-Weisbach equation. 

2. For iteration 1, guess f. solve for pipe diameter, and then 
recalculate f 

3. To complete the problem, build a table in a spreadsheet 
program. 

Take Action (Execute the Solution) 

I. Develop an equation to use for iteration. 

10.8 Combined Head Loss 

• Darcy-Weisbach equation 

(L)(V2) (L)(Q2/A2) jLQ2 
hf = f D 2g = f D 2g = 2g(7r/4)2D 5 

Solve for pipe dian1eter 

jLQ2 
Ds = - - -

0.7852(2ghf) 
(a) 

2. Iteration I 

Guessf= O.Dl5. 

• Solve for diameter using Eq. (a): 

5 
o.o15( tooo ft )(3 retsY 

5 D = = 0 852ft 
0.7852(64.4 ft/s2)(4 ft) · 

D = 0.968 ft 

Find parameters needed for calculating/: 

Q 3 ft3/s 
V =A= (TI/4)(0.9682 ft2) = 4.08 ft/s 

VD (4.08 ft/s)(0.968 ft) 
Re = - = = 3.26 X 105 

v 1.22 x 10- 5 ft2/s 

k,!D = 0.005/(0.97 X 12) = 0.00043 

Calculate fusing Eq. ( 10.39): f = 0.0178. 

3. In the table below, the first row contains the values from 
iteration 1. The value off= 0.0178 from iteration 1 is used 
for the initial value for iteration 2. Notice how the solution 
has converged by iteration 2. 

2 

3 

4 

D \' 

(ft) (ft/s) 

4.08 3.26£+05 4.3E- 04 0.0178 

0.0178 1.002 3.81 3.15E+05 4.2E-04 0.0178 
+-- t 

0.0178 1.001 3.81 3.15E+05 4.2E-04 0.01 78 

'o:ol7s , 1.001 
1 

3.81 , 3.15E+os , 4.2E-04 G.o178 

Specify a pipe with a 12-inch inside diameter. 

Previous sections have described how to calculate head loss in pipes. This section completes 
the story by describing how to calculate head loss ill components. This knowledge is essential 
for modelirlg and design of systems. 
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FIGURE 10.16 

Flow through a generic 
component. 

Flow 

The Minor Loss Coefficient, K 
When fluid flows through a component such as a partially open value or a bend in a pipe, vis­
cous effects cause the flowing fluid to lose mechanical energy. For example, Fig. 10.16 shows 
flow through a "generic component:' At section 2, the head of the flow will be less than at sec­
tion 1. To characterize component head loss, engineers use a 'IT-group called the minor loss 
coefficient K 

(10.42) 

where tlh is the drop in piezometric head that is caused by a component, tlpz is the drop in 
pizeometric pressure, and Vis mean velocity. As shown in Eq. (10.42), the minor loss coeffi­
cient has two useful interpretations: 

drop in piezometric head across component pressure drop due to component 
K = --~~------------------~----

velocity head kinetic pressure 

Thus, the head loss across a single component or transition is hL = K( V2/(2g)), where K is the 
minor loss coefficient for that component or transition. 

Most values of K are found by experiment. For example, consider the setup shown 
in Fig. 10.17. To find K, flow rate is measured and mean velocity is calculated using 
V = (QIA). Pressure and elevation measurements are used to calculate the change in piezo­
metric head. 

(10.43) 

Then, values of V and tlh are used in Eq. (10.42) to calculate K. The next section presents 
typical data for K. 

FIGURE 10.17 

Flow at a sharp-edged 
inlet. 

Data for the Minor Loss Coefficient This section presents K data and relates these 
data to flow separation and wall shear stress. This information is useful for system 
modeling. 

Pipe inlet. Near the entrance to a pipe when the entrance is rounded, flow is devel­
oping as shown in Fig. 10.3 and the wall shear stress is higher than that found in fully 
developed flow. Alternatively, if the pipe inlet is abrupt, or sharp-edged, as in Fig. 10.17, 
separation occurs just downstream of the entrance. Hence the streamlines converge and 
then diverge with consequent turbulence and relatively high head loss. The loss coefficient 
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for the abrupt inlet is K, = 0.5. This value is found in Table 10.5 using the row labeled 
"Pipe entrance" and the criteria of rid= 0.0. Other values of head loss are summarized in 
Table 10.5. 

TABLE 10.5 Loss Coefficients for Various Transitions and Fittings 

Description Sketch 

Pipe entrance 

Contraction 

---t --Expansion 

hL = K~Vf/2g 

90° miter bend 

90° smooth bend 

Threaded pipe fittings Globe valve-wide open 
Angle valve-wide open 
Gate valve- wide open 
Gate valve-half open 
Return bend 
Tee 

Straight-through flow 
Side-outlet flow 

1 90° elbow 
45° elbow 

'\.dditional Data 

rid 
0.0 
0. 1 

>0.2 

D2/D1 
0.00 
0.20 

0.40 
0.60 

O.RO 
0.90 

o,ml 
0.00 
0.20 

0.40 
0.60 
0.80 

Without 
vanes 

With vanes 

rid 
I 
2 
4 
6 

8 
10 

Kc 
A= 60° 

0.08 
O.OR 
0.07 
0.06 

0.06 
0.06 

0.30 
0.25 
0.15 
0.10 

Kb = 0.35 
0.19 
0.16 
0.21 
0.28 
0.32 

t --

K 

K, 
0.50 
0.1 2 
0.03 

K<-
6 = 180° 

0.50 
0.49 

0.42 
0.27 
0.20 
0. 10 

KE 
A= 180° 

1.00 
0.87 

0.70 
0.41 

0.15 

K. = 10.0 
K. = 5.0 
K. = 0.2 
K. = 5.6 
Kb = 2.2 

K, = 0.4 
K, = 1.8 
Kb = 0.9 

Kb = 0.4 

Source 

(10 ) 

(9) 

(IS) 

(IS) 

(16) and (9) 

---
1 (15) 

'Reprinted by permission of the American Society of Heating, Refriger~ting and Air ConcLuomng Engineer,, Atlanta, Georgia. from the 1981 ASH RAE Handbook-Fuudamentals. 
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FIGURE 1 0 . 18 

Flow pattern in on elbow. 

Separation zone 

Flow in an elbow. In an elbow (90° smooth bend), considerable head loss is produced by 
secondary flows and by separation that occurs near the inside of the bend and downstream of 
the midsection as shown in Fig. 1 0.18. 

The loss coefficient for an elbow at high Reynolds numbers depends primarily on the 
shape of the elbow. For a very short-radius elbow, the loss coefficient is quite high. For larger­
radius elbows, the coefficient decreases until a minimum value is found at an rid value of about 4 
(see Table 10.5). However, for still larger values of rid, an increase in loss coefficient occurs 
because the elbow itself is significantly longer. 

Other components. The loss coefficients for a number of other fittings and flow transi­
tions are given in Table 10.5. This table is representative of engineering practice. For more ex­
tensive tables, see references (10- 15). 

In Table I 0.5, the K was found by experiment, so one must be careful to ensure that 
Reynolds number values in the application correspond to the Reynolds number values used 
to acquire the data. 

Combined Head Loss Equation 
The total head loss is given by Eq. ( 10.4), which is repeated here: 

{Total head loss} = {Pipe head loss} + {Component head loss} (10.44} 

To develop an equation for the combined head loss, substitute Eqs. (10.12) and (10.42) in 
Eq. (10.44): 

(10.45) 

Equation ( 10.45) is called the combined head loss equation. To apply this equation, follow the 
same approaches that were used for solving pipe problems. That is, classify the flow as case 1, 
2, or 3 and apply the usual equations: the energy, Darcy-Weisbach, and flow rate equations. 
Example 10.7 illustrates this approach for a case 1 problem. 
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EXAMPLE 10.7 

Pipe System with Combined Head Loss 

Problem Statement 

Tf oil (v = 4 X 10 5 m2/s; S = 0.9) flows from the upper to the 
lower reservoir at a rate of 0.028 mJ/s in the 15 em smooth 
pipe, what is the elevation of the oil surface in the upper 
reservoir? 

Elevation =? 

~?---l Elevation 
= 130 m 

Define the Situation 

Oil is flowing from a upper reservoir to a lower reservoir. 

Properties: 

• Oil: v = 4 X 10 5 m2/s, S = 0.9 

• Minor head loss coefficients, Table 10.5: entrance = K, = 0.5; 
bend= Kb = 0.19; outlet = K~ = 1.0 

State the Goal 

Calculate the elevation (in meters) of the free surface of the 
upper reservoir. 

Generate Ideas and Make a Plan 

This is a case l problem because flow rate and pipe dimensions 
are known. Thus, the solution is straightforward. 

1. Apply the energy equation from 1 to 2. 

2. Apply the combined head loss equation (10.45). 

3. Develop an equation for z1 by combining results from 
steps I and 2. 

4. Calculate the resistance coefficient f 
5. Solve for z1 using the equation from step 3. 

Take Action (Execute the Plan) 

1. Energy equation and term-by-term analysis 

P1 Vf P2 V~ 
+ o: 1- + z1 + hp = - + o:2 - + z2 + h, + hL 

l ~ l ~ 
0 + 0 + ~ + 0 = 0 + 0+ ~+ 0 + ~ 

z1 = z2 + hL 

Interpretation: Change in elevation head is balanced by the 
total head loss. 
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2. Combined head loss equation 

L V 2 V 2 

ht= 'LJ--+ L K-
P'I"'' D 2g compc.>n<nl> 2g 

L V
2 

( V
2 

V
2 

V
2

) h1 =j--+ 2K,,- + K,-+ K~; -
D 2g 2g 2g 2g 

= ~ (f L + 2Kb + K, + K~;) 
2g D 

3. Combine eqs. (1) and (2). 

v
2

( L ) z1 = z2 + J- + 2Kb + K, + K~ 
2g D 

4. Resistance coefficient 

Flow rate equation 

Q (0.028 m3/s) 
V = - = ( )( )' = 1.58 m/s A -rr/4 0.15 m-

• Reynolds number 

VD 1.58 m/s(O. l5 m) 
Reo = - = 5 2 = 5.93 X 103 

v 4 X 10 m Is 

Thus, flow is turbulent. 
• Swamee-Jain equation (10.39) 

0.25 0.25 

f = -[ ( k, 5.74)]2 = [ (. 5.74 )]2 = 0.036 
logw 3.7D + Reo.Y log,o\0 + 5930o.9 

5. Calculate z1 using the equation from step (3): 

(1.58 m/s)2 

zl = (130m) + 2(9.81)m/s2 

( 
(1971n) ) 

0.036-( - ) + 2(0.19) + 0.5 + 1.0 
0.15 m 

~= J36m l 

Re\ iew the Solution and the Proces~ 

I. Discussion. Not ice the difference is the magnitude of the 
pipe head loss versus the magnitude of the component 
head loss: 

L (197 m) 
Pipe head loss - '2. f- = 0.036 ( ) - 47.2 

D 0.15m 

Component head loss - 'IK = 2(0.19) + 0.5 + 1.0 = 1.88 

Thus pipe losses ;;;> component losses for this problem. 

2. Skill. When pipe head loss is dominant, make simple 
estimates of K because these estimates will not impact the 
prediction very much. 
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1 0. 9 Non round Conduits 

Previous sections have considered round pipes. This section extends this information by 
describing how to account for conduits that are square, triangular, or any other nonround 
shape. This information is important for applications such as sizing ventilation ducts in build­
ings and for modeling flow in open channels. 

When a conduit is noncircular, then engineers modify the Darcy-Weisbach equation, 
Eq. (10.12), to use hydraulic diameter Dh in place of diameter. 

(10.46) 

Equation ( l 0.46) is derived using the same approach as Eq. (l 0.12), and the hydraulic diameter 
that emerges from this derivation is 

4 X cross-section area 
Dh = - ------­

wetted perimeter 
(10.47) 

where the "wetted perimeter" is that portion of the perimeter that is physically touching the 
fluid. The wetted perimeter of a rectangular duct of dimension L X w is 2L + 2w. Thus, the 
hydraulic diameter of this duct is: 

4 X Lw 2Lw 
D = ---

h - 2L + 2w L + w 

Using Eq. (10.47), the hydraulic diameter of a round pipe is the pipe's diameter D. When 
Eq. (l 0.46) is used to calculate head loss, the resistance coefficient f is found using a Reynolds 
number based on hydraulic diameter. Use of hydraulic diameter is an approximation. Accord­
ing to White (20), this approximation introduces an uncertainty of 40% for laminar flow and 
15% for turbulent flow. 

f- (~) ::!::: 40% (laminar flow) 
Rev, 

0.25 ( ) 
f = [ ( k ) ] 2 ± 15% turbulent flow 

I 
s 5.74 

og --+ 10 3 7D R 0
·
9 

• 11 eo. 

(10.48) 

ln addition to hydraulic diameter, engineers also use hydraulic radius, which is defined as 

section area D11 
R~= ------

' wetted perimeter 4 
(10.49) 

Notice that the ratio of R11 to D11 is 1/4 instead of 1/2. Although this ratio is not logical, it is the 
convention used in the literature and is useful to remember. Chapter 15, which focuses on 
open-channel flow, will present examples of hydraulic radius. 

Summary. To model flow in a nonround conduit, the approaches of the previous sections 
are followed with the only difference being the use of hydraulic diameter in place of diameter. 
This is illustrated by Example 10.8. 
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Pressure Drop in an HVAC Duct 

Problem Statement 

Air (T = 20°C and p = I 0 I kPa absolute) Aows at a rate of 
2.S m 1/s in a horizontal, commercial steel, HVAC duct. (Note 
that HVAC is an acronym for heating, ventilating, and air 
conditioning.) What is the pressure drop in inches of water 
per SO m of duct? 

Define the Situation 

Air is flowing through a duct. 

Assumptions: 

• Fully developed flow, meaning that V1 = V2• Thus, the 
velocity head terms in the energy equation cancel out. 

• No sources of component head loss. 

Properties: 

• Air (20°C, I atm, Table A.2:) p = 1.2 kglm3, 

v = 1S.1 X 10- 6 m2/s 

• Steel pipe, Table 10.4: k, = 0.046 mm 

State the Goal 

Find: Pressure drop (inch H20) in a length of SO m. 

Generate Ideas and Make a Plan 

This is a case 1 problem because flow rate and duct dimensions 
are known. Thus, the solution is straightforward. 

1 0. 1 0 Pumps and Systems of Pipes 

1. Derive an equation for pressure drop by using the energy 
equation. 

2. Calculate parameters needed to find head loss. 

3. Calculate head loss by using the Darcy-Weisbach equation 
(10.12). 

4. Calculate pressure drop D.p by combining steps 1, 2, 
and 3. 

Take Action (Execute the Plan) 

l. Energy equation (after term-by-term analysis) 

P1 - Pz = pghL 

2. Intermediate calculations 

• Flow rate equation 

Q 2.S m 3/s 
V = - = = 13.9 m /s 

A (0.3 m )(0.6 m) 

• Hydraulic diameter 

4 X section area 
D1 = -

' wetted perimeter 

4(0.3 m)(0.6 m) 
= 0.4m 

(2 X 0.3 m ) + (2 X 0.6 m ) 

• Reynolds number 

VDh (13.9 m /s)(0.4 m) 
Re = - = = 368,000 

v (IS. I X 10 6 m2/s) 

Thus, flow is turbulent. 
• Relative roughness 

k, /Dh = (0.000046 m)/(0.4 m) = O.OOOilS 

• Resistance coefficient (Moody diagram): f = O.QIS 

3. Darcy- Weisbach equation 

ht= t(~J(~;) = o.oisG.~:){z~~:~:;~:J 
= 18.6 m 

4. Pressure drop (from step 1) 

p1 - p2 = pghL = ( 1.2 kg/ m3)(9.81 m /s2)(l8.6 m) = 220 Pa 

jp 1 - p2 = 0.883 inch H20j 

This section explains how to model flow in a network of pipes and how to incorporate perfor­
mance data for a centrifugal pump. These topics are important because pumps and pipe net­
works are common. 
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FIGURE 1 0.19 

A centrifugal pump drives 
flow with a rotating 
impel lor. 

FIGURE 10.20 

(o) Pump and pipe 
combination. 
(b) Pump and system 
curves. 

Modeling a Centrifugal Pump 
As shown in Fig. 1 0.19, a centrifugal pump is a machine that uses a rotating set of blades situ­
ated within a housing to add energy to a flowing fluid. The amount of energy that is added is 
represented by the head of the pump hp, and the rate at which work is done on the flowing fluid 
is p = rnghp. 

To model a pump in a system, engineers commonly use a graphical solution involving the 
energy equation and a pump curve. To illustrate this approach, consider flow of water in the 
system of Fig. 10.20a. The energy equation applied from the reservoir water surface to the 
outlet stream is 

P1 Vi P2 V~ V2 fL V2 

- +- + z1 + h = +- + z2 + .L KL- + .L --
'Y 2g P 'Y 2g 2g D 2g 

For a system with one size of pipe, this simplifies to 

(10.50) 

Hence, for any given discharge, a certain head hp must be supplied to maintain that flow. Thus, 
construct a head-versus-discharge curve, as shown in Fig. 1 0.20b. Such a curve is called the 
system curve. Now, a given centrifugal pump has a head-versus-discharge curve that is char­
acteristic of that pump. This curve, called a pump curve, can be acquired from a pump manu­
facturer, or it can be measured. A typical pump curve is shown in Fig. 1 0.20b. 

Figure 10.20b reveals that, as the discharge increases in a pipe, the head required for flow 
also increases. However, the head that is produced by the pump decreases as the discharge 
increases. Consequently, the two curves intersect, and the operating point is at the point of 
intersection-that point where the head produced by the pump is just the amount needed to 
overcome the head loss in the pipe. 

To incorporate performance data for a pump, use the energy equation to derive a system 
curve. Then acquire a pump curve from a manufacturer or other source and plot the two 
curves together. The point of intersection shows where the pump will operate. This process is 
illustrated in Example 10.9. 

40 

20 

QL--~-~----~--~-~---L---~__J 

0.10 0.20 0.30 

Discharge. rn3 is 

(a) (b) 
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EXAMPLE 1 0. 9 

Finding a System Operating Point 

Define the Situation 

• The system diagram is sketched below. 

• The pump curve is given in Fig. 10.20b. 

• The friction factor is f = 0.0 15. 

State the Goal 

Calculate the discharge (m3/s) in the system. 

Generate Ideas and Make a Plan 

1. Develop an equation for the system curve by applying the 
energy equation. 

2. Plot the given pump curve and the system curve on the 
same graph. 

3. Find discharge Q by finding the intersection of the system 
and pump curve. 
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Take Action (Execute the Plan) 

Energy equation 

Pt Vr P2 V~ "" - + - + z1 + h = - + - + z2 + £J hL 
g 2g p g 2g 

0 + 0 + 200 + hp = 0 + 0 + 230 + (fL + K, + Kb + KE) v
2 

D 2g 

Here K, = 0.5, Kb = 0.35, and Ke = 1.0. Hence 

Q2 [0.015(1000) ] 
hp = 30 + --2 + 0.5 + 0.35 + 1 

2gA 0.40 

= 30 + Q
2 

(39.3) 
2 X 9.81 X [('IT/4) X 0.42F 

=30m+ l27Q2 m 

Now make a table of Q versus hp (see below) to give values to 
produce a system curve that will be plotted with the pump 
curve. When the system curve is plotted on the same graph as 
the pump curve, it is seen (Fig. l0.20b) that the operating 

condition occurs at iQ = 0.27 m3/s. j 

El~vation - 230 m 

1-----:::--------- L- IOOOm--------::-. __ __) 

Pump D ~ 40cm,j- 0.015 

Q(m3/s) hp = (30m + 127Q2
) m 

0 30 

0.1 31.3 

0.2 35.1 

0.3 41.4 

Pipes in Parallel 
Consider a pipe that branches into two parallel pipes and then rejoins, as shown in Fig. I 0.21. 
A problem involving this configuration might be to determine the division of flow in each 
pipe, given the total flow rate. 

FIGURE 1 0.21 

Flow in parollel pipes. 
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No matter which pipe is involved, the pressure difference between the two junction points 
is the same. Also, the elevation difference between the two junction points is the same. Because 
h1 = (Pl'l + z1) - (p2!-y + z2), it follows that hL between the two junction points is the same 
in both of the pipes of the parallel pipe system. Thus, 

Then 

If / 1 and h are known, the division of flow can be easily determined. However, some trial-and­
error analysis may be required if / 1 and f2 are in the range where they are functions of the 
Reynolds number. 

Pipe Networks 
The most common pipe networks are the water distribution systems for municipalities. These 
systems have one or more sources (discharges of water into the system) and numerous loads: 
one for each household and commercial establishment. For purposes of simplification, the 
loads are usually lumped throughout the system. Figure 10.22 shows a simplified distribution 
system with two sources and seven loads. 

FIGURE 1 0.22 

Pipe network 

The engineer is often engaged to design the original system or to recommend an eco­
nomical expansion to the network. An expansion may involve additional housing or commer­
cial developments, or it may be to handle increased loads within the existing area. 

In the design of such a system, the engineer will have to estimate the future loads for the 
system and will need to have sources (wells or direct pumping from streams or lakes) to satisfy 
the loads. Also, the layout of the pipe network must be made (usually parallel to streets), and 
pipe sizes will have to be determined. The object of the design is to arrive at a network of pipes 
that will deliver the design flow at the design pressure for minimum cost. The cost will include 
first costs (materials and construction) as well as maintenance and operating costs. TI1e design 
process usually involves a number of iterations on pipe sizes and layouts before the optimum 
design (minimum cost) is achieved. 

So far as the fluid mechanics of the problem arc concerned, the engineer must determine 
pressures throughout the network for various conditions- that is, for various combinations of 



pipe sizes, sources, and loads. The solution of a problem for a given layout and a given set of 
sources and loads requires that two conditions be satisfied: 

I. The continuity equation must be satisfied. That is, the flow into a junction of the network 
must equal the flow out of the junction. This must be satisfied for all junctions. 

2. The head loss between any two junctions must be the same regardless of the path in the 
series of pipes taken to get from one junction point to the other. This requirement results 
because pressure must be continuous throughout the network (pressure cannot have two 
values at a given point). 1his condition leads to the conclusion that the algebraic sum of 
head losses around a given loop must be equal to zero. Here the sign (positive or negative) 
for the head loss in a given pipe is given by the sense of the flow with respect to the loop, 
that is, whether the flow has a clockwise or counterclockwise direction. 

At one time, these solutions were made by trial-and-error hand computation, but com­
puters have made the older methods obsolete. Even with these advances, however, the engi­
neer charged with the design or analysis of such a system must understand the basic fluid 
mechanics of the system to be able to interpret the results properly and to make good engi ­
neering decisions based on the results. Therefore, an understanding of the original method of 
solution by Hardy Cross ( 17) may help you to gain this basic insight. 'Ihe Hardy Cross method 
is as follows. 

'lhe engineer first distributes the flow throughout the network so that loads at various 
nodes are satisfied. In the process of distributing the flow through the pipes of the network, the 
engineer must be certain that continuity is satisfied at all junctions (flow into a junction equals 
flow out of the junction), thus satisfying requirement 1. The first guess at the flow distribution 
obviously will not satisfy requirement 2 regarding head loss; therefore, corrections are applied. 
For each loop of the network, a discharge correction is applied to yield a zero net head loss 
around the loop. For example, consider the isolated loop in Fig. I 0.23. In this loop, the loss of 
head in the clockwise direction will be given by 

""h = h +h 

FIGURE 10.23 

A typical loop of a pipe 
network. 

- A 

.L.J 1.~ 1.,, LIJ(. 

(10.51) - D - C -
--~~--~--~+-~ 

The loss of head for the loop in the counterclockwise direction is 

""h = "" kQ" LJ Lu .L,.; (( 
cc 

For a solution, the clockwise and counterclockwise head losses have to be equal, or 

2: hL, = 2: hL,. 

2: kQ~ = 2: kQ':c 

(10.52) 

As noted, the first guess for flow in the network will undoubtedly be in error; therefore, a 
correction in discharge, !lQ, will have to be applied to satisfy the head loss requirement. If the 
clockwise head loss is greater than the counterclockwise head loss, tlQ will have to be applied 
in the counterclockwise direction. That is, subtract tlQ from the clockwise flows and add it to 
the counterclockwise flows: 

(10.53) 

Expand the summation on either side of Eq. (10.53) and include only two terms of the 
expansion: 

! t 
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Solve for 6.Q: 

(10.54) 

Thus if 6.Q as computed from Eq. (I 0.54) is positive, the correction is applied in a coun­
terclockwise sense (add 6.Q to counterclockwise flows and subtract it from clockwise 
flows). 

A different 6.Q is computed for each loop of the network and applied to the pipes. Some 
pipes will have two 6.Qs applied because they will be common to two loops. The first set of 
corrections usually will not yield the final desired result because the solution is approached 
only by successive approximations. Thus the corrections are applied successively until the cor­
rections are negligible. Experience has shown that for most loop configurations, applying 6.Q 
as computed by Eq. (10.54) produces too large a correction. Fewer trials are required to solve 
for Qs if approximately 0.6 of the computed 6.Q is used. 

More information on methods of solution of pipe networks is available in references (18) 
and (19). A search of the Internet under "pipe networks" yields information on software avail ­
able from various sources. 

EXAMPLE 1 0. 1 0 

Discharge in a Piping Network 

Problem Statement 

A simple pipe network with water flow consists of three 
valves and a junction as shown in the figure. The piezometric 
head at points l and 2 is I ft and reduces to zero at point 4. 
There is a wide-open globe valve in line A, a gate valve half 
open in line B, and a wide-open angle valve in line C. The 
pipe diameter in all lines is 2 inches. Find the flow rate in 
each line. Assume that the head loss in each line is due only 
to the valves. 

Define the Situation 

Water flows through a network of pipes. 
• hi = h2 = 1 ft. 

• h4 = 0 ft. 

• Pipe diameter (all pipes) is 2/12 ft. 

Assumptions: Head loss is due to valves only. 

Stale the Goal 

Find the flow rate (in cfs) in each pipe. 

Generate Ideas and Make a Plan 

1. Let hL, 1__,3 = h/..2 ->J· 

2. Let hu .... 4 = 1 ft. 

3. Solve equations using the Hardy Cross approach. 

Take Action (Execute the Plan) 

The piezometric heads at points I and 2 are equal, so 

hL, l __,l + hL, 3...,2 = 0 

The head loss between points 2 and 4 is I ft. so 

hL, 2-+3 + hL, 3-+4 = Q 

Continuity must be satisfied at point 3, so 

QA + QR = Qc 

The head loss through a va.lve is given by 
y 2 

ht = Kv -
2g 

= Kv2.(!i)
2 

2g A 

where Kv is the loss coefficient For a 2-inch pipe, the head 
loss becomes 

ht = 32.6K.Q2 

where hL is in feel and Q is in cfs . 

The head loss equation between points I and 2 expressed in 
term of discharge is 

32.6KAQ~ - 32.6KsQij = 0 

or 



where KA is the loss coefllcient for the wide-open globe valve 
(KA = 10) and K8 is the loss coefficient for the half-open gate 
valve (K8 = 5.6). The head loss equation between points 2 
and 4 is 

32.6K8 Q~ + 32.6KcQl: = 1 

or 

K8Q~ + KcQ~ = 0.0307 

where Kc.; is the loss coefficient for the wide-open angle valve 
(Kc = 5). The two head loss equations and the continuity 
equation comprise three equations for~. Q8, and Qc. 
However, the equations are nonlinear and require linearization 
and solution by iteration (Hardy Cross approach). The 
discharge is written as 

Q = Qo + !1Q 

where Q0 is the starting value and /1Q is the change. Then 

Q2 
• QJ + 2Qof1Q 

where the (6Q)2 term is neglected. The equations in terms of 
6Q become 

2KAQo,A6QA - 2Ko0o,o f1Qo = KoQJ,n - KAQf,,A 

2Kc 0o.c f1Qc - 2K8 Qo.BI1Q8 = 0.0307- K8 Q5.8 - K c Q% ,c 

6~ + 6Qn = 6Qc 

which can be expressed in matrix form as 

-2K8 Qu 

2Ko0o.B 
1 

1 0. 11 Key Knowledge 

Classifying Flow in Conduits 
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The procedure begins by selecting values for Oo.A• Q0,8, and 
Oo.c- Assume Oo.A = Oo,B and Oo,c = 2Qo.A· Then from the 
head loss equation from points 2 to 4 

KBQl.n + Kc Qf,.c = 0.0307 

(Kn + 4Kc)Q 5, 8 = 0.0307 

(5.6 + 4 X 5)Q5.8 = 0.0307 

Oo. B = 0.0346 

and Oo.A = 0.0346 and Oo.c = 0.0693. These values are 
substituted into the matrix equation to solve for the /1Q's. 
The discharges are corrected by Q8ew = Q31

d + 6Q and 
substituted into the matrix equation again to yield new 6Q's. 
The iterations are continued until sufficient accuracy is 
obtained. The accuracy is judged by how close the column 
matrix on the right approaches zero. A table with the results 
of iterations for this example is shown here. 

Iteration 

Initial 1 2 3 

QA 0.0346 0.0328 0.0305 0.0293 0.0287 

On 0.0346 0.0393 0.0384 0.0394 0.0384 

Oc 0.0693 0.0721 0.0689 0.0687 0.0671 

Review the Solution and tbc Process 

Knowledge. This solution technique is called the Ncwton­
Raphson method. This method is useful for nonlinear systems 
of algebraic equations. It can be implemented easily on a 
computer. The solution procedure for more complex systems 
is the same. 

• A conduit is any pipe, tube, or duct that is filled with a flowing fluid. 

• Flow in a conduit is characterized using the Reynolds number based on pipe diameter. 
This 'TT-group is given by several equivalent formulas 

VD pVD 4Q 4m 
Re0 =- = - - = -- = --

v f.L 1rDv 'TTDf.L 

• To classify a flow as laminar or turbulent, calculate the Reynolds number 

Re0 :5 2000 

Re0 ~ 3000 

laminar flow 

turbulent flow 
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• Flow in a conduit can be developing or fully developed 

~ Developing flow occurs near an entrance or after the flow is disrupted (i.e., downstream 
of a valve, a bend, an orifice). Developing flow means that the velocity profile and wall 
shear stress are changing with axial location. 

~ Fully developed flow occurs in straight runs of pipe that are long enough to allow the 
flow to develop. Fully developed flow means that the velocity profile and the shear stress 
are constant with axial location x. In fully developed flow, the flow is uniform, and the 
pressure gradient (dp!dx) is constant. 

• To classify a flow at a pipe inlet as developing or fully developed, calculate the entrance 
length (L,). At any axial location greater than L,, the flow will be fully developed. The 
equations for entrance length are 

L, 
- = 0.05Re0 D 

(laminar flow: Re0 :5 2000) 

L, =50 
D 

(turbulent flow: Re0 ;:: 3000) 

• To describe commercial pipe in the NPS system, specify a nominal diameter in inches 
and a schedule number. The schedule number characterizes the wall thickness. Actual 
dimensions need to be looked up. 

Head loss (Pipe Head loss) 
• The sum of head losses in a piping system is called total head loss. Sources of head loss 

classify into two categories: 

~ Pipe Head Loss. Head loss in straight runs of pipe with fully developed flow 

~ Component Head Loss. Head loss in components and transitions such as valves, elbows, 
and bends 

• To characterize pipe head loss, engineers use a 1r-group called the friction factor. The 
friction factor f gives the ratio of wall shear stress (4-r0) to kinetic pressure (p V 2!2). 

• Pipe head loss has two symbols that are used: h1 or h/' To predict pipe head loss, apply the 
Darcy-Weisbach equation (DWE) 

L V2 

hL = hf= j -­
D 2g 

1here are three methods for using the DWE: 
~ Method 1 (laminar flow). Apply the OWE in this form 

h _ 32JJ.LV 
I - "/Dz 

~ Method 2 (laminar or turbulent flow). Apply the OWE and use a formula for f 

f= 64 
Re 

f~ [ ( k~
25 

574 ) ]' 
log10 3.7D + Re~9 

Laminar flow 

Turbulent flow 

~ Method 3 (laminar or turbulent flow). Apply the OWE; and look up f on the Moody 
diagram. 



• The roughness of a pipe wall sometimes affects the friction factor 

~ Laminar Flow. The roughness does not matter; the friction factor Jis independent of roughness. 

~ Turbulent Flow. The roughness is characterized by looking up an equivalent sand 
roughness height k, and then finding/ as a function of Reynolds number and ksfD. 
When the flow is fully turbulent, thenfis independent of Reynolds number. 

Head Loss (Component Head Loss) 

• To characterize the head loss in a component, engineers use a "IT-group called the minor 
loss coefficient, K, which gives the ratio of head loss to velocity head. Values of K, which 
come from experimental studies, are tabulated in engineering references. Each component 
has a specific value of K, which is looked up. The head loss for a component is 

v2 
h1. = Kcomponcnt Zg 

• The total head loss in a pipe is given by 

Overall (total) head loss = 2: (Pipe head losses) + 2: (Component head losses) 

L y 2 y 2 
h~. = ""ZJ-- + L K -

pipes D 2g cumpon<nl> 2g 

Additional Useful Results 
• Noncircular conduits can be analyzed using the hydraulic diameter D11 or the hydraulic 

radius (R11). To analyze a noncircular conduit, apply the same equations that arc used for 
round conduits and replace D with D11 in the formulas. The equations for Dh and R, are 

4 X section area 
D11 = 4R11 = . 

wetted penmcter 

• To find the operating point of a centrifugal pump in a system, the traditional approach is 
a graphical solution. One plots a system curve that is derived using the energy equation, 
and one plots the head versus flow rate curve of the centrifugal pump.lhe intersection of 
these two curves gives the operating point of the system. 

• The analysis of pipe networks is based on the continuity equation being satisfied at each 
junction and the head loss between any two junctions being independent of pipe path between 
the two junctions. A series of equations based on these principles are solved iteratively to 
obtain the flow rate in each pipe and the pressure at each junction in the network. 
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PROBLEMS 

ffi"s Problem available in Wileyl'LUS at instructor's discretion. 

Notes on Pipe Diameter for Chapter 10 Problems 

When a pipe diameter is given using the label "NPS" or "nominal;' 
find the dimensions using Table 10.1 on p. 363 of§ 10.2. Otherwise, 
assume the specified diameter is an inside diameter (ID). 

Classifying Flow (§ 10.1) 
~ 0 j 10.1 PLUS Kerosene (20 C) flows at a rate of0.02 m Is in a 

17.7-cm-diameter pipe. Would you expect the flow to be laminar 
or turbulent? Calculate the entrance length. 

10.2 PWS A compressor draws 0.3 m 'Is of ambient air (20°C) 
in from the outside through a round duct that is 10m long and 
150 mm in diameter. Determine the entrance length and establish 
whether the flow is laminar or turbulent. 

I 0.3 Design a lab demo for lan1inar flow. Specify the diameter 
and length for a tube that carries SAE 10W-30 oil at 38°C so that 
the system demonstrates laminar flow, and fu lly developed flow, 
with a discharge of Q = 0.1 Lis. 

Darcy-Weisboch Equation (§ 1 0.3) 

I 0.4 Using *I 0.3 and other resources, answer the following 
questions. Strive for depth, clarity, and accuracy while also 
combining sketches, words, and equations in ways that enhance 
the effectiveness of your communication. 

a. What is pipe head loss? How is pipe head loss related to 
total head loss? 

b. What is the friction factor f? How is f related to wall 
shear stress? 

c. What assumptions need to be satisfied to apply the 
Darcy-Weisbach equation? 

15. Streeter, V. L. (ed.) Handbook of Fluid Dynamics. New York: 
McGraw-Hill, 1961. 

16. Beij, K. H. "Pressure Losses for Fluid Flow in 90% Pipe 
Bends." f. Res. Nat. Bur. Std., 21 {1938). Information cited in 
Streeter (20). 

17. Cross, Hardy. "Analysis of Flow in Networks of 
Conduits or Conductors:' Univ.lllinois Bull., 286 
(November 1936). 

18. Hoag, Lyle N., and Gerald Weinberg. "Pipeline Network 
Analysis by Digital Computers." f. Am. Water Works Assoc., 
49 (1957). 

19. Jeppson, Roland W. Analysis of flow in Pipe Networks. Ann 
Arbor, Ml: Ann Arbor Science Publishers, 1976. 

20. White, F. M. Fluid Mechanics, 5th Ed. New York: 
McGraw-Hill, 2003. 

a;- Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

10.5 Ms For each case that follows. apply the Darcy-Weisbach 
equation from Eq. (10.12) in§ 10.3 to calculate the head loss in a 
pipe. Apply the grid method to carry and cancel units. 

a. Water flows at a rate of 20 gpm and a mean velocity of 
180 ftlmin in a pipe of length 200 feet. For a resistance 
coefficient off= 0.02, find the head loss in feet. 

b. The head loss in a section of PVC pipe is 0.8 m, the 
resistance coefficient isf = 0.012, the length is 15m, 
and the flow rate is 1 cfs. Find the pipe diameter in 
meters. 

10.6 ;(U-s As shown, air (20°C) is flowing from a large tank, 
through a horizontal pipe, and then discharging to ambient. 
The pipe length is L = 50 m, and the pipe is schedule 40 PVC 
with a nominal diameter of 1 inch. The mean velocity in the pipe 
is 10 mls. and f = O.Ql5. Determine the pressure (in Pa) that 
needs to be maintained in the tank. 

)
~'-t_--j 

~·----------------------~~:::: 
@ 

0 

PROBLEM 10.6 

10.7 Ms Water {15°C) flows through a garden hose (ID = 22 mm 
with a mean velocity of 2 mls. Find the pressure drop for a 
section of hose that is 20 meters long and situated horizontally. 
Assume thatf= 0.012. 



10.8 7o' As shown, water (15°C) is flowing from a tank 
through a tube and then discharging to ambient. The tube has 
an ID of 8 mm and a length of L = 6 m, and the resistance 
coefficient is f = 0.0 15. l11e water level is H = 3 m. rind the 
exit velocity in m/s. Find the discharge in Lis. Sketch the 
HGL and the EGL. Assume that the only head loss occurs 
in the tube. 

PROBLF..\1 10.8 

10.9 Ms Water flows in the pipe shown, and the manometer 
deflects 90 em. What isffor the pipe if V = 3 m/s? 

IJ - 5 em 

PROBLEM 10.9 

laminar Flow in Pipes (§ 1 0.5) 

10.10 Using §10.5 and other resources, answer the questions 
that follow. Strive for depth, clarity, and accuracy while also 
combining sketches, words, and equations in ways that enhance 
the effectiveness of your communication. 

a. What are the main characteristics of laminar flow? 

b. \Vhat is the meaning of each variable that appears in 
Eq. (10.27) in §10.5? 

c. In Eq. (10.33) of§ 10.5, what is the meaning of 111? 

10.11 ~A fluid (J..l. = 10 2 N · s/m2
; p = 800 kg/m1

) flows 
with a mean velocity of 4 em/~ in a 10 em smooth pipe. 

a. What is the value of Reynolds number? 

b. What is the magnitude of the maximum velocity in the 
pipe? 

c. What is the magnitude of the friction factor f? 

d. What is the shear stress at the wall? 

e. What is the shear stress at a radial distance of 25 mm 
from the center of the pipe? 
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--10.12 P·Lu"s Water (15°C) flows in a horizontal schedule 40 pipe 
that has a nominal diameter of0.5 in. 'lhe Reynolds number is 
Re = I 000. Work in SI units. 

a. What is mass flow rate? 

b. What is the magnitude of the friction factor f? 

c. What is the head loss per meter of pipe length? 

d. What is the pres~ure drop per meter of pipe length? 

10.13 How of a liquid in a smooth 2.5 em pipe yields a head loss 
of 2 m per meter of pipe length when the mean velocity is 0.5 m/s. 
Calculate fand the Reynolds number. Prove that doubling the 
flow rate will double the head loss. Assume fully developed flow. 

10.14 Ms As shown, a round tube of diameter 0.5 mm and 
length 750 mm is connected to plenum. A fan produces a 
negative gage pressure of -1.5 inch H20 in the plenum and 
draws air (20°C) into the microchannel. What is the mean 
velocity of air in the microchannel? Assume that the only 
head loss is in tl1e tube. 

Micmchannel 
diameter D 

Fan 

PROBLEM 10. 1-! 

10. 15 Liquid ('y = 10 kN/m3
) is flowing in a pipe at a steady 

rate, but the direction of flow is unknown. Is the liquid moving 
upward or moving downward in the pipe? If the pipe diameter is 
8 mm and the liquid viscosity i~ 3.0 X 10 3 N · s/mz, what is the 
magnitude of the mean velocity in the pipe? 

Clevation ~ I 0 m - -- - - I' = II 0 kPa gage 

EteYalion = 0 m - ---- - p; 200 kPa gage 

PROBI.F.\110.15 

10.16 P7U"s Oil (S = 0.97, J..l. = 10 z lhf-s/ ft2) is pumped through 
a nominal! in., schedule 80 pipe at the rate of 0.004 cfs. What is 
ilie head loss per I 00 ft of level pipe? 

10.17 P'Ws A liquid (p = 1000 kg/m 1; J..l. = 10 1 N · s/2 mz; 
v = 10 1 m2/s) flows uniformly with a mean velocity of 1.5 m/s 
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in a pipe with a diameter of I 00 mm. Show that the flow is 
laminar. A I so, find the friction factor f and the head loss per 
meter of pipe length. 

10.18 'f;J'o Kerosene (S = 0.80 and T = 68°F) flows from 
the tank shown and through the 1/4 in.-diameter (JD) tube. 
Determine the mean velocity in the tube and the discharge. 
Assume the only head loss is in the tube. 

1, J in. dmmeter 
0.5 fi 

'------ 10 fi --------1 

PROBLI::~IIO. I R 

10.19 Ms Oil (S = 0.94; f.L = 0.048 N · s/m2
) is pumped 

through a horizontalS em pipe. Mean velocity is 0.5 m/s. What 
is the pressure drop per 10 m of pipe? 

10.20 ?Z\:rs As shown, SAE IOW-30 oil is pumped through an 
8 m length of 1-cm-diameter drawn tubing at a discharge of 
7.85 X 10-4 m3/s. The pipe is horizon tal, and the pressures at 
points I and 2 are equal. Find the power necessary to operate the 
pump, assuming the pump has an efficiency of 100%. Properties 
of SAE lOW-30 oil: kinematic viscosity = 7.6 X 10- 5 m2/s; 
specific weight = 8630 N/m ~. 

!em 

CD !f\ 0 
-~'-----<. Pumpj-

Xm--

PROBLE\f 10.20 

10.21 ,ilU-s Oil (S = 0.80; f.L = I o-2 lbf-s/ft2
; v = 0.0057 ft2/s) 

flows downward in the pipe, which is 0.10 ft i11 diameter and has 
a slope of 30° with the horizontal. Mean velocity is 3 ft/s.What is 
the pressure gradient (dplds) along the pipe? 

PROBLEM 10.21 

10.22 ftVs !J1 the pipe system shown, for a given discharge, the 
ratio of the head loss in a given length of the 1 m pipe to the head 
loss in the same length of the 2m pipe is (a) 2, (b) 4, (c) 16, or (d) 32. 

10.23 Glycerine (T = 68°F) flows in a pipe with a 6-in. diameter 
at a mean velocity of 1.5 ft/s.ls the flow laminar or turbulent? 
Plot the velocity distribution across the flow section, in 0.5-in. 
increments of radius. 

200m~ 

r=;-oJ I r f / 01 I Water 

( 
l,;~ 

T "' 
PROBLE;\.-1 10.22 

10.24 Ms Glycerine (T - 20°C) flows through a funnel a~ 
shown. Calculate the mean velocity of the glycerine exiting the 
tube. Assume the only head loss is due to friction in the tube. 

t~' 
PROBLE.\1 10.24 

10.25 What nominal size of steel pipe should be used to 
carry 0.2 cfs of castor oil at 90°F a distance of 0.5 mi with an 
allowable pressure drop of I 0 psi (J.L = 0.085 lbf-s/ ft2)? 
Assume S = 0.85. 

10.26 -;;;;-Velocity measurements are made in a 30-cm pipe. 
The velocity at the center is found to be 1.5 m/s, and the velocity 
distribution is observed to be parabolic. If the pressure drop is 
found to be 1.9 kPa per 100m of pipe, what is the kinematic 
viscosity v of the fluid? Assume that the fluid's specific gravity 
is 0.80. 

10.27 -;;;;-. The velocity of oil (S = 0.8) through the S-cm 
smooth pipe is 1.2 m/s. Here L = 12 m, z 1 = 1 m, z2 = 2m, and 
the manometer deflection is 10 em. Determine the flow direction, 
the resistance coefficient f, whether the flow is laminar or 
turbulent, and the viscosity of the oil. 

10.28 The velocity of oil (S = 0.8) through the 2 in. smooth pipe 
is 5 ft/s. Here l. = 30ft, z1 = 2 ft, z2 = 4ft. and the manometer 
deflection is 4 in. Determine the flow direction, the resistance 
coefficient f. whether the flow is laminar or turbulent, and the 
viscosity of the oil. 

PROBLEMS I 0.27, 10.28 



10.29 Glycerine at 20°C flows at 0.6 m/s in the 2-cm commercial 
steel pipe. Two piezometers are used as shown to measure the 
piezometric head. The distance along the pipe between the 
standpipes is l m. The inclination of the pipe is 20°. What is the 
height difference !J.h between the glycerine in the two 
standpipes? 

2cm 

L-
\ 
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10.30 rUts Water is pumped through a heat exchanger consisting 
of tubes 6 mm in diameter and 6 m long. The velocity in each 
tube is 12 cm/s. The water temperature increases from 20°C at 
the entrance to 30°C at the exit. Calculate the pressure difference 
across the heat exchanger, neglecting entrance losses but accounting 
for the effect of temperature change by using properties at 
average temperatures. 

1--------5m --------1 

~====================~L 

~==================~-~ 

PROBLEM I 0.30 

Turbulent Flow in Pipes (§ 1 0.6) 

10.3 1 Pds Use Figure 10.14, Table 10.3, and Table 10.4 (in §10.6) 
to assess the following statements as True or False: 

a. 1f k,!D is 0.05 or larger, and the flow is turbulent, the 
value of fis not dependent on Re0 . 

b. For smooth pipes and turbulent flow.j depends on 
k,ID and not Rei!. 

c. For laminar tlow,fis always given by J = 64/Re0 . 

d. lfRe0 = 2 X 107 and k,ID = 0.00005, thenf = 0.012. 

e. If Re0 = 1000 and the pipe is smooth.j =0.04. 

f. '!he sand roughness height k, for wrought iron is 
0.002 mm. 

10.32 P~S Water (70°F) flows through a nominal 4-in., 
schedule 40, PVC pipe at the rate of 1 cfs. What is the resistance 
coefficient/? Use the Swamee-jain Eq. (10.39) in §10.6. 
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10.33 PLUS Water at 20°C flows through a 2-cm ID smooth 
brass tube at a rate of 0.003 m3/s. What isjfor this flow? Use the 
Swamee-Jain Eq. (10.39) in §10.6. 

10.34 Water (10°C) flows through a 25-cm smooth pipe at a rate 
of 0.05 m3/s. What is the resistance coefficient f? 

10.35 Pds What isjforthe flow of water at I0°C through a 10-cm 
cast-iron pipe with a mean velocity of 4 m/s? 

10.36 ;;;;-A fluid (J.L = 10 z N · s/mz; p = 800 kg!m1
) flows 

with a mean velocity of 500 mm/s in a 100-mm-diameter smooth 
pipe. Answer the following questions relating to the given flow 
conditions. 

a. What is the magnitude of the maximum velocity in the pipe? 

b. What is the magnitude of the resistance coefficient f? 

c. What is the shear velocity? 

d. What is the shear stress at a radial distance of 25 mm 
from the center of the pipe? 

e. If the discharge is doubled, will the head loss per length 
of pipe also be doubled? 

10.37 Ms Water (20°C) flows in a 16-cm cast-iron pipe al a 
rate of 0.1 m3/s. For these conditions, determine or estimate the 
following: 

a. Reynolds number 

b. friction factor j(use Swamee-Jain Eq. (10.39) in§ 10.6.) 

c. Shear stress at the wall,,. 0 

10.38 In a 4-in. uncoated cast-iron pipe, 0.02 cfs of water llows 
at 60°F. Determine /from Fig. 10.14. 

--.., 
10.39 PLU"s Determine the head loss in 900ft of a concrete 
pipe with a 6 in. d iameter (k, = 0.0002 ft) carrying 3.0 cfs of 
fluid. The properties of the fluid are v = 3.33 X I 0-3 ftlts and 
p = 1.5 slug!ft 1. 

10.40 Pds Points A and B arel.S k.I11 apart along a 15-cm new 
steel pipe (k, = 4.6 X 10 5 m). Point B is 20m higher than A. 
With a flow from A to B of 0.03 m3/s of crude oil (S = 0.82) at 
10°C (J.L = 10 2N · s/m2

), what pressure must be maintained at 
A if the pressure at B is to be 300 kPa? 

10.41 A pipe can be used to measure the viscosity of a fluid. A 
liquid flows in a 1.5-cm smooth pipe I m long with an average 
velocity of 4 m/s. A head loss of 50 em is measured. Estimate the 
kinematic viscosity. 

10.42 ~For a 40-cm pipe, the resistance coefficientfwas 
found to be 0.06 when the mean velocity was 3m/sand the 
kinematic viscosity was 10-5 m2/s.lf the velocity were doubled, 
would you expect the head Joss per meter of length of pipe to 
double, triple, or quadruple? 

10.43 ~Water (50°F) flows with a speed of 5 ft/s through 
a horizontal run of PVC pipe. The length of the pipe is 1 00 ft, 
and the pipe is schedule 40 with a nominal diameter of 2.5 
inches. Calculate (a) the pressure drop in psi, (b) the head loss 
in feet, and (c) the power in horsepower needed to overcome 
the head Joss. 
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I 0.44 Water ( I 0°C) flows with a speed of 2 m/s through a 
horizontal run of PVC pipe. The length of the pipe is 50 m, and 
the pipe is schedule 40 with a nominal diameter of 2.5 inches. 
Calculate (a) the pressure drop in kilopascals, (b) the head loss 
in meters, and (c) the power in watts needed to overcome the 
head loss. 

10.45 ;{U-s Air flows in a 3-cm smooth tube at a rate of 0.015 m3/s. 
If T = 20°C and p = J I 0 kPa absolute, what is the pressure drop 
per meter of length of tube? 

10.46 Points A and B arc 3 mi apart along a 24-in. new cast- iron 
pipe carrying water (T = 50°F). Point A is 30 ft higher than B. 
The pressure at B is 20 psi greater than that at A. Determine the 
direction and rate of flow. 

10.47 Ms Air flows in a l-in. smooth tube at a rate of 30 cfm. 
If T = 80°F and p - IS psia, what is the pressure drop per foot 
of length of tube? 

10.48 Ms Water is pumped through a vertical!O-cm new steel 
pipe to an elevated tank on the roof of a building. The pressure 
on the discharge side of the pump is 1.6 MPa. What pressure can 
be expected at a point in the pipe 110 m above the pump when 
the now is 0.02 m 1/s? Assume T = 20°C. 

10.49 ~The house located on a hill as shown is flooded 
by a broken waterline. The frantic owners siphon water out 
of the basement window and down the hill in the backyard, 
with one hose, of length L, and thus an elevation difference 
of h to drive the siphon. Water drains from the siphon, but 
too slowly for the desperate home owners. They reason that 
with a larger head difference, they can generate more flow. 
So they get another hose, same length as the first, and 
connect the 2 hoses for total length 2L. The backyard has a 
constant slope, so that a hose length of 2L correlates to a 
head difference of 2h. 

a. Assume no head loss, and calculate whether the flow 
rate doubles when the hose length is doubled from 
Case 1 (length Land height h) to Case 2 (length 2L 
and height 2h). 

b. Assume hL = 0.025(LID)(V2/2g), and calculate the 
flow rate for Cases I and 2, where D = I in., L = 
50 ft., and h = 20ft. How much of an improvement 
in flow rate is accomplished in Case 2 as compared to 
Case I? 

c. Both the husband and wife of this couple took fluid 
mechanics in college. They review with new apprecia­
tion the energy equation and the form of the head loss 
term and realize that they should use a larger diameter 
hose. Calculate the flow rate for Case 3, where L = 
50 ft., h = 20 ft, and D = 2 in. Use the same expression 
for h1. as in part (b). How much of an improvement 
in flow rate is accomplished in Case 3 as compared to 
Case 1 in part (b)? 

10.50 A train travels through a tunnel as shown. The train and 
tunnel are circular in cross section. Clearance is small, causing all 
air (60°F) to be pushed from the front of the train and discharged 

PRORU:~I 10.19 

from the tunnel. The tunnel is 10ft in diameter and is concrete. 
The train speed is 50 fps. Assume the concrete is very rough 
(k, = 0.05 ft). 

a. Determine the change in pressure between the front 
and rear of the train that is due to pipe friction effects. 

b. Sketch the energy and hydraulic grade lines for the 
train position shown. 

c. What power is required to produce the air flow in the 
tunnel? 

Atmospheno Atmospheric 
pressure pressure 

I:L----TL-....7cl---,~,-50 tt_s ----~ 

1:
--- 2500 tl ----.) 

~----------- 5000 ll ----- -----+i 
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10.51 Water (60°F) is pumped from a reservoir to a large, 
pressurized tank as shown. The steel pipe is 4 in. in diameter and 
300ft long. The discharge is I cfs. The initial water levels in the 
tanks arc the same, but the pressure in tank B is 10 psig, and 
tank A is open to the atmosphere. The pump efficiency is 90%. 
Find the power necessary to operate the pump for the given 
conditions. 

A 

Q 

PROBL.t.~l I 0.51 



Solving Turbulent Flow Problems I§ 1 0.7) 
10.52 Ms Using the information at the beginning of §10.7, 
classify each problem given below as case 1, case 2, or case 3. For 
each of your choices, state your rationale. 

a. Problem I 0.51 

b. Problem 10.54 

c. Problem 10.57 

10.53 A plastic siphon hose with D = 1.2 em and L = 5.5 m is 
used to drain water (15°C) out a tank. Calculate the velocity in 
the tube for the two situations given below. Use H = 3 m and 
II = I m. 

a. Asswne the llernoulli equation applies (neglect all 
head loss). 

b. Assume the component head loss is zero, and the pipe 
head loss is nonzero. 

10.54 ~ A plastic siphon hose of length 7 m is used to drain 
water (15°C) out of a tank. For a flow rate of 1.5 L/s, what hose 
diameter is needed? Use H = 5 m and h = 0.5 m. Assume all 
head loss occurs in the tube. 

H 

l 
Water 

(I'= I5°C) 

t 

Stphon hose 
diameter D 
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10.55 ;(U-5 As shown, water (70°F) is draining from a tank 
through a galvanized iron pipe. The pipe length is L = 10ft, the 
tank depth isH = 4ft, and the pipe is l-in. NPS schedule 40. 
Calculate the velocity in the pipe and the flow rate. Neglect 
component head loss. 

10.56 As shown, water ( I5°C) is draining from a tank through a 
galvanized iron pipe. The pipe length is L = 2m, the tank depth 
is H = I m, and the pipe is a 0.5 inch NPS schedule 40. Calculate 
the velocity in the pipe. Neglect component head loss. 

l'ipe of dtameter D 

L 

_L 
PRO!:ILEMS 10.55, 10.56 
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10.57 Air (40°C, l atm) will be transported in a straight 
horizontal copper tube over a distance of 150m at a rate of 
0.1 m~/s. If the pressure drop in the tube should not exceed 
6 in H20, what is the minimum pipe diameter? 

10.58 W" A fluid with v = 10 ° m2/s and p = 800 kg/m 3 flows 
through the 8-cm galvanized iron pipe. Estimate the flow rate 
for the conditions shown in the figure. 

p = 150kPa 

Ptpe has a 
•lope of 1110 

p -1 20 kPa 

~-------------JOm ------------~.1 
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10.59 Determine the diameter of commercial steel pipe 
required to convey 300 cfs of water at 60°F with a head loss of 
I ft per I 000 ft of pipe. Assume pipes are available in the even 
sizes when the diameters are expressed in inches (that is, I 0 in., 
12 in., etc.). 

10.60 A pipeline is to be designed to carry crude oi l (S = 0.93, 
v = w-; m2/s) with a discharge of 0.10 m3/s and a head loss per 
kilometer of 50 m. What diameter of steel pipe is needed? What 
power output from a pump is required to maintain this flow? 
Available pipe diameters are 20, 22, and 24 em. 

Combined Head loss in Systems I§ 1 0.8) 

10.61 ;rru-s Use Table 10.5 (on p. 381 in §I 0.8) to select loss 
coefficients, K, for the following transitions and fittings. 

a. A threaded pipe 90° elbow 

b. A 90° smooth bend with rid = 2 

c. A pipe entrance with rid of 0.3 

d. An abrupt contraction, with 8 = 180°, and D2/ D1 = 0.60 

e. A gate valve, wide open 

10.62 ~s The sketch shows a test of an electrostatic air filter. 
The pressure drop for the filter is 3 inches of water when the 
airspeed is 10 m/s. What is the minor loss coefficient for the 
filter? Assume air properties at 20°C. 

Elcctro,talic fi lter 
/ 

_____. 
Air- v -

-
PROBLEM I 0.62 
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10.63 Pds If the flow of 0.10 m3 Is of water is to be maintained in 
the system shown, what power must be added to the water by the 
pump? The pipe is made of steel and is 15 em in diameter. 

Elevation - 13 m \7 
-

\7 Elevation = I 0 rn -
Water 

r-1o•c 
·~ --. I ·· r __1::::::L 

I--- 40 m 40 m ------J 
PROBLL\.1 10.63 

10.64 Water will be siphoned through a 3/16-in.-diameter, 
50-in.-long Tygon tube from a jug on an upside-down 
wastebasket into a graduated cylinder as shown. The initial level 
of the water in the jug is 21 in. above the tabletop. The graduated 
cylinder is a 500 mL cylinder, and the water surface in the 
cylinder is 12 in. above the tabletop when the cylinder is full. The 
bottom of the cylinder is l/2 in. above the table. The inside 
diameter of the jug is 7 in. Calculate the time it will take to fill 
the cylinder from an initial depth of 2 in. of water in the cylinder. 

21 in l 

PROBLE.\.1 10.64 

10.65 Water flows from a tank through a 2.6-m length of 
galvanized iron pipe 26 mm in diameter. At the end of the pipe 
is an angle valve that is wide open. The tank is 2 m in diameter. 
Calculate the time required for the level in the tank to change 
from 10m to 2m. Hint: Develop an equation for dh!dt where h 
is the level and t if time. Then solve this equation numerically. 

zo•c 
l 

lOrn 

l---2.6m­

PROBII:M 10.65 

Angle valve 

10.66 Ms A tank and piping system is shown. The galvanized 
pipe diameter is 1.5 em, and the total length of pipe is I 0 m. The 
two 90° elbows are threaded fittings. The vertical distance from 
the water surface to the pipe outlet is 5 m. The velocity of the water 
in the tank is negligible. Find (a) the exit velocity of the water and 
(b) the height (h) the water jet would rise on exiting the pipe. The 
water temperature is 20°C. 

E=-----~1 

Watc'-r-r -~J 
lOrn 
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10.67 A pump is used to fill a tank from a reservoir as shown. The 
head provided by the pw11p is given by hp = h0(1- (Q 2/Q~ .. )) 
where hu is 50 meters, Q is the discharge through the pump, and 
Q., .. is 2 m3/s. Assume f = 0.018 and the pipe diameter is 90 em. 
Initially the water level in the tank is the same as the level in the 
reservoir. The cross-sectional area of the tank is 100m2

• How long 
will it take to fill the tank to a height, h, of 40 m? 

Pump 

PROm 1.\.1 10.67 

10.68 ~A water turbine is connected to a reservoir as 
shown. The flow rate in this system is 5 cfs. What power can be 
delivered by the turbine if its efficiency is 80%? Assume a 
temperature of 70°F. 

Steel p1pe I d- 12 in 

...___----'!~~ 
L t.-Jooon =.J 
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1 
100ft 

l 

10.69 Ms What power must the pump supply to the system to 
pump the oil from the lower reservoir to the upper reservoir at a 
rate of 0.20 m3/s? Sketch the HGL and the EGL for the system. 



p- 940 kgim3 

,.- w-5 m2/s 

1-=!_~----1- Elevation = I 00 m 

Oil 

Elevation= 112 m 

PROfli.EM 10.69 

10.70 ?a" A cast-iron pipe 1.0 ft in diameter and 200ft long 
joins two water (60°F) reservoirs. The upper reservoir has a 
water-surface elevation of ISO ft, and the lower on has a 
water-surface elevation of 40ft. The pipe exits from the side of 
the upper reservoir at an elevation of 120ft and enters the lower 
reservoir at an elevation of 30ft. There are two wide-open gate 
valves in the pipe. (a) List all sources of h1 and the quantitative 
factors associated with each. (b) Draw the EGLand the HGL for 
the system, and (c) determine the discharge in the pipe. 

10.71 ~An engineer is making an estimate of hydroelectric 
power for a home owner. This owner has a small stream (Q = 2 cf~, 
T = 40 °F) that is located at an elevation H = 34 ti above the 
owner's residence. The owner is proposing to divert the stream 
and operate a water turbine connected to an electric generator to 
supply electrical power to the residence. The maximum 
acceptable head loss in the penstock (a penstock is a conduit that 
supplies a turbine) is 3 ft. The penstock has a length of 87ft. If 
the penstock is going to be fabricated from commercial-grade, 
plastic pipe, find the minimum diameter that can be used. 
.:-Jeglect component head losses. Assume that pipes are available 
in even sizes-that is, 2 in., 4 in., 6 in., etc. 

10.72 The water-surface elevation in a reservoir is 150ft. A 
straight pipe 100ft long and 6 in. in diameter conveys water from 
the reservoir to an open drain. The pipe entrance (it is abrupt) 
is at elevation 100 fl, and the pipe outlet is at elevation 60ft. At 
the outlet the water discharges freely into the air. The water 
temperature is 50°F. If the pipe is asphalted cast iron, what will 
be the discharge rate in the pipe? Consider all head losses. Also 
draw the HGL and the EGL for this system. 
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10.73 'fFcVs A heat exchanger is being designed as a component 
of a geothermal power system in which heat is transferred from 
the geothermal brine to a "clean" fluid in a closed-loop power 
cycle. The heat exchanger, a shell-and-tube type, consists of 100 
galvanized-iron tubes 2 em in diameter and 5 m long, as shown. 
The temperature of the fluid is 200°C, the density is 860 kglm3, 

and the viscosity is 1.35 X 10 1 N · s/m2• The total mass flow rate 
through tl1e exchanger is 50 kg/s. 

a . Calculate the power required to operate the heat 
exchanger, neglecting entrance and outlet losses. 

b. After continued use, 2 mm of scale develops on the 
inside surfaces of the tubes. This scale has an equivalent 
roughness of 0.5 mm. Calculate the power required 
under these conditions. 

f----- Sm 'I 2cm 

Side ,;cw 
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10.74 The heat exchanger shown consists of 10m of drawn 
tubing 2 em in diameter with 19 return bends."Ihe flow rate is 
3 X 10 4 m3/s. Water enters at 20°C and exits at 80°C. The 
elevation difference between the entrance and the exit is 0.8 m. 
Calculate the pump power required to operate the heat 
exchanger if the pressure at I equals the pressure at 2. Use the 
viscosity corresponding to the average temperature in the heat 
exchanger. 

MO em 

Pump 

PROBLEM 10.74 

10.7s 1JJ"s A heat exchanger consists of a closed system with a 
series of parallel tubes connected by 180° elbows as shown in the 
figure. There are a total of 14 return elbows. 'lhe pipe diameter is 
2 em, and the total pipe length is lO m. The head loss coefficient 
for each return elbow is 2.2. The tube is copper. Water with an 
average temperature of 40°C flows through the system with a 
mean velocity of8 m/s. Find the power required to operate the 
pump if the pump is 85% efficient. 
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I 0. 76 A heat exchanger consists of IS m of copper tubing with 
an internal diameter of 15 mm. There are 14 return elbows in the 

system with a loss coefficient of 2.2 for each elbow. The pump in 
the system has a pump curve given by 

where hpn is head provided by the pump at zero discharge and Omax 
is 10-~ m3/s. Water at 40°( flows through the system. Find the 
system operating point for values of frp0 of 2 m, 10m, and 20 m. 

Pump 

QJ-.-.----~ 

PROBLEMS 10.75, 10.76 

10.77 ~s Gasoline (T = 50°F) is pumped from the gas tank of 
an automobile to the carburetor through a 1/4-in. fuel line of 
drawn tubing 10ft long. '1he line has five 90° smooth bends 
with an rid of 6. The gasoline discharges through a 1/32-in. jet 
in the carburetor to a pressure of 14 psia. The pressure in the 
tank is 14.7 psia. 'lbe pump is 80% efficient. What power must 
be supplied to the pump if the automobile is consuming fuel at 
the rate of 0.12 gpm? Obtain gasoline properties from Figs. A.2 
andA.3. 

Carburelor 

Pump 

114 in lme (II>) 
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10.78 Find the loss coefficient K.of the partially closed valve 
that is required to reduce the discharge to 50% of the flow with 
the valve wide open as shown. 

10.79 The pressure at a water main is 350 kPa gage. What size 
of pipe is needed to carry water from the main at a rate of 
0.025 m3/s to a factory that is 160m from the main? Assume 
that galvanized-steel pipe is to be used and that the pressure 
required at the factory is 70 kPa gage at a point 8 m above the 
main connection. 

10.80 'lhe 12-cm galvanized-steel pipe shown is 800 m long and 
discharges water into the atmosphere. The pipeline has an open 
globe valve and four threaded elbows; h1 =3m and h2 = 15m. 
What is the discharge, and what is the pressure at A, the 
midpoint of the line? 

Water 
T-lOOC 
{50°F) 

I 0 em diameter steel ptpe 

Waler 
r ~ 10•c 
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Globe valve 

PROBLE~t I 0.80 

Threaded 
ell>o\\s 

l 
7m 

..._ ....... __ ' 

10.81 rcu-s Water is pumped at a rate of 25 m 3/s from the 
reservoir and out through the pipe, which has a diameter of 

1.50 m. What power must be supplied to the water to effect 
this discharge? 

D-1.5m 
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Elevaloun ~ 140 m 

- Eleva! ion- 135m 

10.82 Both pipes in the system shown have an eqttivalent 
sand roughness k, of 0.10 mm and a flow rate of 0.1 m3/s, with 
D 1 = 12 em, L1 = 60 m, D2 = 24 em, and L2 = 120m. Determine 
the difference in the water-surface elevation between the two 
reservoirs. 

PROBLEM 10-lU 



10.83 Liquid discharges from a tank through the piping system 
shown. There is a venturi section at A and a sudden contraction at 
B. The liquid discharges to the atmosphere. Sketch the energy 
and hydraulic gradelines. Where might cavitation occur? 

PROBLEM 10.83 

10.84 The steel pipe shown carries water from the main pipe A 
to the reservoir and is 2 in. in diameter and 240ft long. What 
must be the pressure in pipe A to provide allow of SO gpm? 

Elevation - 90 ft ~-~---! 

Water 
T=SO"F 

l------1~ 

90° bends (threaded) 

A }----------" 
2 in galvanized pipe 

Elevation = 20 ft 
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10.85 If the water surface elevation in reservoir B is 110m, what 
must be the water surface elevation in reservoir A if a flow of 
0.03 m3/s is to occur in the cast-iron pipe? Draw the HGL and 
the EGL, including relative slopes and changes in slope. 

~="=-----1 Elevation=? 

Water A 
T, l0°C 

Cast-iron pipe 
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Nonround Conduits (§10.9) 

10.86 ffu-s Air at 60°F and atmospheric pressure flows in a 
horizontal duct with a cross section corresponding to an 
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equilateral triangle (all sides equal). The duct is I 00 ft long, 
and the dimension of a side is 6 in. The duct is constructed of 
galvanized iron (k, = 0.0005 ft).The mean velocity in the duct 
is I 2 ft/s. What is the pressure drop over the 100ft length? 

lOOft -----..; 

PROBLEM 10.86 

10.87 1dfs A cold-air duct 100 em by 15 em in cross section 
is 100m long and made of galvanized iron. Tilis duct is to carry 
air at a rate of 6m3/sat a temperature of l5°C and atmospheric 
pressure. What is the power loss in the duct? 

10.88 fcVs Air (20°C) flows with a speed of 10 m/s through a 
horizontal rectangular air-conditioning duct. The duct is 20m long 
and has a cross section of 4 by I 0 in. (I 02 by 254 mm). Calculate 
(a) the pressure drop in inches of water and (b) the power in watts 
needed to overcome head loss. Assume the roughness of the duct is 
k, = 0.004 mm. Neglect component head losses. 

10.89 An air-conditioning system is designed to have a duct 
with a rectangular cross section 1 ft by 2 ft, as shown. During 
construction, a truck driver backed into the duct and made it a 
trapezoidal section, as shown. The contractor, behind schedule, 
installed it anyway. For the same pressure drop along the pipe, 
what will be the ratio of the velocity in the trapezoidal duct to 
that i.n the rectangular duct? Assume the Darcy-Weisbach 
resistance coefficient is the same for both ducts. 

Before After 

PROBLEM 10.ll9 

Modeling Pumps in Systems (§ 10.1 0) 

10.90 What power must be supplied by the pump to the flow if 
water (T = 20°C) is pumped through the 300-mm steel pipe 
from the lower tank to the upper one at a rate of0.4 m 3/s? 

~---------lOO m--------~ 

PROBLEM 10.90 
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10.91 If the pump for Fig. I 0.20b is installed in the system of 
Prob. 10.90, what will be the rate of discharge of water from the 
lower tank to the upper one? 

10.92 A pump that has the characteristic curve shown in the 
accompanying graph is to be installed as shown. What will be 
the discharge of water in the system? 

10.93 If the liquid of Prob. 10.92 is a superliquid (zero head loss 
occurs with the flow of this liquid), then what will be the 
pumping rate, assuming that the pump curve is the same? 

riel- I 

1.-50 ft 
D -IOin 
!- 0.020 

Llel'al•on- 15 ft 
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PROBLEMS 10.92,10.93 

Pipes in Parallel and in Networks (§ 10. 1 0) 

10.94 Ms A pipe system consists of a gate valve, wide open 
(K. = 0.2), in line A and a globe valve, wide open (K. = 10), in 
line B. 1he cross-sectional area of pipe A is half of the cross-sectional 
area of pipe B. The head loss due to the junction, elbows, and pipe 
friction are negligible compared with the head loss through the 
valves. Find the ratio of the discharge in line B to that in line A. 

10.95 A flow is divided into two branches as shown. A gate 
valve, half open, is installed in line A, and a globe valve, fully 
open, is installed in line B. The head loss due to friction in each 
branch is negligible compared with the head loss across the 
valves. Find the ratio of the velocity in line A to that in line B 
(include elbow losses for threaded pipe fittings). 

l'ROIH f.MS 10.94, 10.95 

~ 
10.96 PLUS In the parallel system shown, pipe 1 is 1200 m long 
and is 50 em in diameter. Pipe 2 is 1500 m long and 35 em in 

diameter. Assume fis the same in both pipes. What is the 
division of the flow of water at 10°( if the flow rate will be 
1.2 m3/s? 

10.97 Pipes 1 and 2 are the same kind (cast- iron pipe), but pipe 
2 is three times as long as pipe I. They are the same diameter 
(1 ft). If the discharge of water in pipe 2 is 1 cfs, then what will 
be the discharge in pipe I? Assume the same value of f in both 
pipes. 

0 -

- )_ 
A 8 

PROBLEMS I 0 93, 10.97 

10.98 Water flows from left to right in this parallel pipe system. 
The pipe having the greatest velocity is (a) pipe A, (b) pipe B, or 
(c) pipe C. 

L-6000tl,/J-18in 
Pipe A 

f= 0.012 

Pipe n 

- L = 2000 fl. D- 6 m -r- o.o2o 
Pipc C 

L - 5000 ft. D = 12 in 

(= 0.015 

PROTITF:\1 10.98 

10.99 Two pipes are connected in parallel. One pipe is twice the 
diameter of the other and four times as long. Assume that fin the 
larger pipe is 0.010 and fin the smaller one is 0.012. Determine 
the ratio of the discharges in the two pipes. 

I 0.100 ftVs With a total flow of 14 cfs, determine the division 
of flow and the head loss from A to B. 

-L-6000ft 
f>~ IX 111 

f=0.0 18 

-
A L-2000tl B 

D=12m 
j- 0.018 

PROHI FM !0.100 

10.101 ~s T he pipes shown in the system are all concrete. 
With a flow of 25 cfs of water, find the head loss and the 
division of flow in the pipes from A to B. Assume f = 0.030 
for all pipes. 



L- 3000 ft 
f)- 14 in 

L ~ 3000 ft 
D - l6in 

PROBU:.,\1 10.101 

10.102 A parallel pipe system is set up as shown. Flow 
occurs from A to B. To augment the Oow, a pump having the 
characteristics shown in fig. 1 0.20b is installed at point C.:. for 
a total discharge of 0.60 nr1/s, what will be the division of flow 
between the pipes and what will be the head loss between A and B? 
Assume commercial steel pipe. 

c 
-

L- 2000m 
D-0.50m 

A B 

L-6()()(}m 
J) ~ 0.50 rn 

-
PROBI.EI\1 I 0.102 

10.103 For the given source and loads shown, how will the flow 
be distributed in the simple network, and what will be the 
pressures at the load points if the pressure at the source is 60 psi? 
Assume horizontal pipes and .f = 0.0 12 for all pipes. 

PROBLE~S 405 

15 cf':. 24in,l000fl B l2m.l000ft C 10 cfs 

0::: a:: 
0 

§ 0 
~ 

.~ :! 
"" ~ 

fJ llm.lOOOO E 5 cfs 

PROBLE\110.103 

10.104 Frequently in the design of pump systems, a bypass line 
will be installed in parallel to the pwnp so that some of the fluid 
can recirculate as shown. The bypass valve then controls the flow 
rate in the system. Assume that the head-versus-discharge curve 
for the pump is given by hp = 100 - 100Q, where hp is in meters 
and Q is in m3/s. The bypass line is 10 em in diameter. Assume 
the only head loss is that due to the valve, which has a head-loss 
coefficient of 0.2. The discharge leaving the system is 0.2 m3/s. 
Find the discharge through the pump and bypass line. 

Valve 

Pump 

PROBI 1\1 10.104 



FIGURE 11.1 

DRAG AND LIFT 

J Chapter Rood Mo~ I 
Previous chapters have described the hydrostatic 
force on a panel, the buoyant force on a submerged 
object, and the shear force on a flat plate. This 
chapter expands this list by introducing the lift and 
drag forces. 

fi;orning Objective~ 

STUDENTS WILL BE ABLE TO 

• Define lih and drag Explain how lih and drag are related 
to shear stress and pressure distributions ( § 1 1 . 1 ) 

Thrs photo shows the USA Olymprc pursuit teom being 
tested so that aerodynamic drag can be reduced This 
wind tunnel is located at the General Motors Tech Center in 
Warren, Michigan. (Andy Sacks/Photodisc/Getty Images) 

• Define form drag. Define friction drag (§ 11.1) 

• For flow over a circular cyl inder, describe the three drag 
regimes and the drag crisis.(§ 11.2) 

• Define the coefficient of drag and find C,J values. Calculate 
the drag force. I§ 11 2, § 1 1.3) 

406 

• Describe how to calculate the power required to overcome 
drag. Solve relevant problems. (§ 11 3) 

• Explain how to calculate terminal velocity. Solve relevant 
problems. (§ l 1.4) 

• Describe vortex shedding (§ 1 l 5) 

• Explain what streamlining meons. (§ 11 .6) 

• Define ci rculation and describe the circulation theory of lift. 
(§ 11.8) 

• Define the coefficient of lilt and calculate the lift force (§ 11.8] 

• Calculate the lilt and drag on on orrfoil (§ 11.9) 

When a body moves through a stationary fluid or when a fluid flows past a body, the 
fluid exerts a resultant force. The component of this resultant force that is parallel to the free­
st ream velocity is called the drag force. Similarly, the lift force is the component of the resul­
tant force that is perpendicular to the free stream. For example, as air flows over a kite, it 



creates a resultant force that can be resolved in lift and drag components as shown in 
Fig. 11.2. By definition, lift and drag forces arc limited to those forces produced by a flowing 
fluid. 

,, 
r Lift tOn:~ is th~.~ componl·nt or 

II' force pcrpcnJicu1ar to the fn.·c..~ ''rl'all' 

\-- - Fo 

hcc stream 

(a) 

'- Drag t\)I"Cc.." I~ the." complmCnl ur 

t~m.:~ parallel tl.'"~ th~ fret" '\ITL\Im 

(b) 

11. 1 Relating Lift and Drag to Stress Distributions 

1his section explains how lift and drag forces are related to stress distributions. This section 
also introduces the concepts of form and friction drag. 1bcsc ideas are fundamental to under­
standing lift and drag. 

Integrating a Stress Distribution to Yield Force 

Lift and drag forces are related to the stress distribution on a body through integration. ror 
example, consider the stress acting on the airfoil shown in Fig. 11.3. As shown, there is a pres­
sure distribution and a shear-stress distribution. To relate stress to force, select a differential 
area as shown in Fig. 11.4. The magnitude of the pressure force is dFP = p dA, and the magni­
tude of the viscous force is dF., = TdA. * The differential lift force is normal to the free-stream 
direction 

dF1 = - pdAsinS- TdAcose 

and the differential drag is parallel to the free-stream direction 

dFv = - p dA cos e + T dA sin fl 

Integration over the surface of the airfoil gives lift force (FL) and drag force (fv): 

FL= J (-psin8-Tcos8)dA (11.1) 

Fv= J( - pcos8 + Tsin8)dA (11.2) 

Equations (11.1) and (11.2) show that the lift and drag forces are related to the stress distribu­
tions through integration. 

*The sign convention on T is such that a clockwise sense ofT dA on the >urface of the foil signifies a positive sign 
forT. 

FIGURE 11.2 

(a) A kile. [Photo by 
Donald Elger] 
(b) Forces acling on the 
kite due to lhe air flowing 
over the kite. 
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FIGURE 11.3 

Pressure and shear stress 

acting on an airfoil. 

FIGURE 11.4 

Pressure and viscous farces 
acting on a differential 
element of area 

Negative gage pressure (vacuum) 

F u -

---

-p dAcos 0 

Form Drag and Friction Drag 

Notice that Eq. (11.2) can be written as the sum of two integrals. 

Fo = I ( - p cos tl )dA + I (T sin e)dA 
(11.3) 

'------.r------

for~ drag friction drag 

Form drag is the portion of the total drag fo rce that is associated with the pressure distribu­
tion. Friction drag is the portion of the total drag force that is associated with the viscous 
shear-stress distribution. The drag force on any body is the sum of form drag and friction drag. 
In words, Eq. (11.3) can be written as 

(total drag force) = (form drag) + (friction drag) (11.4) 

11.2 Calculating Drag Force 

This section introduces the drag force equation, the coefficient of drag, and presents data for 
two-dimensional bodies. This information is used to calculate drag force on objects. 
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Drag Force Equation 

The drag force Fv on a body is found by using the drag force equation: 

(pVJ) 
Fv = CvA -

2
- (11.5) 

where Cn is called the coefficient of drag, A is a reference area of the body, p is the fluid density, 
and V0 is the free-stream velocity measured relative to the body. 

The reference area A depends on the type of body. One common reference area, called 
projected area and given the symbol Ap, is the silhouetted area that would be seen by a per­
son looking at the body from the direction of flow. For example, the projected area of a plate 
normal to the flow is he, and the projected area of a cylinder with its axis normal to the flow 
is de. Other geometries use different reference areas; for example, the reference area for an 
airplane wing is the plan form area, which is the area observed when the wing is viewed from 
above. 

The coefficient of drag C0 is a parameter that characterizes the drag force associated with 
a given body shape. For example, an airplane might have C0 = 0.03, and a baseball might have 
Cv = 0.4. The coefficient of drag is a 'IT-group that is defined by 

Fn (drag force) 
Cv = 2 

A~~..c(P V 0 /2) (reference area) (kinetic pressure) 
(11.6) 

Values of the coefficient of drag Cn are usually found by experiment. For example, drag 
force F0 can be measured using a force balance in a wind tunnel. Then C0 can be calculated 
using Eq. {11.6). For this calculation, speed of the air in the wind tunnel V0 can be measured 
using a Pitot-static tube or similar device, and air density can be calculated by applying the 
ideal gas law using measured values of temperature and pressure. 

Equation (11.5) shows that drag force is related to four variables. Drag is related to the 
shape of an object because shape is characterized by the value of C0 . Drag is related to the size 
of the object because size is characterized by the reference area. Drag is related to the density 
of ambient fluid. Finally, drag is related to the speed of the fluid squared. This means that if the 
wind velocity doubles and C0 is constant, then the wind load on a building goes up by a factor 
of four. 

t/ CHECKPOINT PROBLEM 11. 1 

Consider a car that is traveling in a straight line at constant speed. 

Case A: The car speed is 40 km/h. There is no wind. 
Case B: The car speed is 80 km/h. There is no wind. 
Case C: The car speed is 65 krn/h. There is a 15 km/h steady headwind. 

The coefficient of drag is the same in all three cases. 

Which statement(s) are true? (Select all that apply). 

a. (Drag in Case B) = 2(Drag in Case A). 

b. (Drag in Case B) = 4(Drag in Case A). 

c. (Drag in Case B) = 8(Drag in Case A). 

d. (Drag in Case C) < (Drag in Case B). 

e. (Drag in Case C) > (Drag in Case B). 

f. (Drag in Case C) = (Drag in Case B). 
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FIGURE 11.5 

Coefficient of drag versus 
Reynolds number for 
two-dimensional bodies. 
[Data sources· Bullivant 
11]. DeFoe 121. Goe!t and 
Bullivant 131. jacobs 141. 
jones 151. and Lindsey 16).] 

Coefficient of Drag (Two-Dimensional Bodies) 

This section presents C0 data and describes how C0 varies with the Reynolds number for 
objects that can be classified as two dimensional. A two-dimensional body is a body with a 
uniform section area and a flow pattern that is independent of lhe ends of the body. Examples 
of two-dimensional bodies are shown in Fig. 11.5. In the aerodynamics literature, C0 values for 
two-dimensional bodies are called sectional drag coefficients. Two-dimensional bodies can 
be visualized as objects that are infinitely long in the direction normal to the flow. 
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The sectional drag coefficient can be used to estimate C0 for real objects. For example, C0 

for a cylinder with a length to diameter ratio of 20 (e.g., LID~ 20) approaches the sectional 
drag coefficient because the end effects have an insignificant contribution to the total drag 
force. Alternatively, the sectional drag coefficient would be inaccurate for a cylinder with a 
small L/ D ratio (e.g., LID = I) because the end effects would be important. 

As shown in Fig. ll.S, the Reynolds number sometimes, but not always, influences the 
sectional drag coefficient. The value of C0 for the flat plate and square rod are independent of 
Re. The sharp edges of these bodies produce flow separation, and the drag force is due to the 
pressure distribution (form drag) and not on the shear-stress distribution (friction drag, which 
depends on Re). Alternatively, C0 for the cylinder and the streamlined strut show strong Re 
dependence because both form and friction drag are significant. 

To calculate drag force on an object, find a suitable coefficient of drag, and then apply the 
drag force equation. This approach is illustrated by Example 11.1. 
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EXAMPLE 11 . 1 

Drag Force on o Cylinder 

Problem Statement 

A vertical cylinder that is 30 m high and 30 em in diameter is 
being used to support a television transmitting antenna. Find 
the drag force acting on the cylinder and the bending moment 
at its base. The wind speed is 35 m/s, the air pressure is l atm, 
and temperature is 20°C. 

Cylinder, D - 0.3 m 

@ 
r-20°C 
p ~ I.Oatm 

v0 - 35 m ls 

Define the Situation 

Wind is blowing across a tall cylinder. 

Assumptions: 

• Wind speed is steady. 

• Effects associated with the ends of the cylinder are negligible 
because U D = 100. 

• Neglect drag force on the antenna because the frontal area is 
much less than the frontal area of the cylinder. 

• The line of action of the drag force is at an elevation of 15 m. 

Properties: Air (20°C}, Table A.S: p = 1.2 kg/m3
, and 

l.l. = 1.81 X 10- 5 N · s/m2 

Discussion of C0 for a Circular Cylinder 

SECTION 1 1 . 2 CALCULATING DRAG FORCE 411 . . . ... ...... . ........... . 

State the Goals 

Calculate 

Drag force (in N) on the cylinder 

• Bending moment (in N · m) at the base of the cylinder 

Generate Idea~ and Make a Plan 

1. Calculate the Reynolds number. 

2. Find coefficient of drag using Fig. 11.5 

3. Calculate drag force using Eq. ( 11.5 ). 

4. Calculate bending moment using M = F0 • L/2. 

Take Action (Execute the Plan) 

1. Reynolds number 

V0 Dp 35 m/s X 0.30 m X 1.20 kg/m3 

Re0 = -- = = 7.0 X 105 

l.l. 1.81 X 10- 5 N · s/m2 

2. From Fig. 11.5, the coefficient of drag is C/) = 0.20. 

3. Drag force 

, C0AppV~ 
fv = ---'-2--

(0.2)(30 m)(0.3 m)(1.20 kg/m3)(352 m2/ s2
) 

2 

=[il23 til 
4. Moment at the base 

M =FoG) = (1323 N)e2o m) = 119,800 N . m I 

Drag Regimes The coefficient of drag C0 , as shown in Fig. 11.4, can be described in terms of 
three regimes. 

Regime I (Re < 103 
). In lhis regime, C0 depends on both form drag and friction drag. As 

shown, C0 decreases with increasing Re. 
Regime II (103 < Re < 105).ln this regime, C0 has a nearly constant value. The reason is 

that form drag, which is associated with the pressure distribution, is the dominant cause of drag. 
Over this range of Reynolds numbers, the flow pattern around the cylinder remains virtually 
unchanged, thereby producing very similar pressure distributions. This characteristic, the con­
stancy of C0 at high values of Re, is representative of most bodies that have angular form . 

Regime III (105 < Re < 5 X 105
). In this regime, Cn decreases by about 80%, a remarkable 

change! This change occurs because the boundary layer on the circular cylinder changes. For 
Reynolds numbers less than lOs, the boundary layer is laminar, and separation occurs about 
midway between the upstream side and downstream side of the cylinder (Fig. 11.6). Hence the 
entire downstream half of the cylinder is exposed to a relatively low pressure, which in turn 
produces a relatively high value for C0 . When the Reynolds number is increased to about lOs, 
the boundary layer becomes turbulent, which causes higher-velocity fluid to be mixed into the 
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FIGURE 11.8 

Effects of roughness on C0 
for o cylinder. [After Miller 
et ol. (7).] 

FIGURE 11.6 

Flow pattern around o cyl inder 
for 103 < Re < 105. 

High-pressure 1one Low-pre>surc zone 

FIGURE 11 .7 

Flow pattern around o cylinder 
for Re > 5 X 105. 

region close to the wall of the cylinder. As a consequence of the presence of this high-velocity, 
high-momentum fluid in the boundary layer, the flow proceeds farther downstream along the 
surface of the cylinder against the adverse pressure before separation occurs (Fig. 11.7). This 
change in separation produces a much smaller zone of low pressure and the lower value of C0 . 

Surface Roughness 

Surface roughness has a major influence on drag. For example, if the surface of the cylinder is 
slightly roughened upstream of the midsection, the boundary layer will be forced to become turbu­
lent at lower Reynolds numbers than those for a smooth cylinder surface. The same trend can also 
be produced by creating abnormal turbulence in the approach flow. The effects of roughness are 
shown in Fig. 11.8 for cylinders tl1at were roughened with sand grains of size k. A small to medium 
size of roughness (10 3 <kid < 10- 2

) on a cylinder triggers an early onset of reduction ofC~rHow­
ever, when the relative roughness is quite large (10 2 < kid), the characteristic dip in Cv is absent. 
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11.3 Drag of Axisymmetric and 3-D Bodies 

Section 11.2 described drag for two-dimensional bodies. Drag on other body shapes is pre­
sented in this section. This section also describes power and rolling resistance. 

Drag Data 

An object is classified as an axisymmetric body when the flow direction is parallel to an axis 
of symmetry of the body and the resulting flow is also symmetric about its axis. Examples of 
axisymmetric bodies include a sphere, a bullet, and a javelin. When flow is not aligned with 
an axis of symmetry, the flow field is three dimensional (3D), and the body is classified as a 
three-dimensional or 3-D body. Examples of 3-D bodies include a tree, a building, and an 
automobile. 

The principles that apply to t\vo-dimensional flow over a body also apply to axisymmetric 
flows. For example, at very low values of the Reynolds number, the coefficient of drag is given 
by exact equations relating C0 and Re. At high values of Re, the coefficient of drag becomes 
constant for angular bodies, whereas rather abrupt changes in Cn occur for rounded bodies. 
All these characteristics can be seen in Fig. 11.9, where Cn is plotted against Re for several 
axisymmetric bodies. 
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FIGURE 11.9 

Coefficient of drag versus 
Reynolds number for 
axisymmetric bodies. 
[Data sources: Abbott (9), 
Brevoart and Joyner ( 1 0), 
Freeman ( 1 1). and Rouse 
(12).] 
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The drag coefficient of a sphere is of special interest because many applications involve the 
drag of spherical or near-spherical objects, such as particles and droplets. Also, the drag of a sphere 
is often used as a standard of comparison for other shapes. For Reynolds numbers less than 0.5, the 
flow around the sphere is laminar and amenable to analytical solutions. An exact solution by 
Stokes yielded the following equation, which is called Stokes's equation, for the drag of a sphere: 

(11.7) 

Note that the drag for this laminar flow condition varies directly with the first power of V0. This 
is characteristic of all laminar flow processes. For completely turbulent flow, the drag is a func­
tion of the velocity to the second power. When the drag force given by Eq. (11 .7) is substituted 
into Eq. (11.6), the result is the drag coefficient corresponding to Stokes's equation: 

24 
Cn=­

Re 
(11.8) 

Thus for flow past a sphere, when Re :s 0.5, one may use the direct relation for Cv given in 
Eq. (11.8). 

Several correlations for the drag coefficient of a sphere are available (13 ). One such cor­
relation has been proposed by Clift and Gauvin (14): 

24 0£07 0.42 
Cv = -(1 + 0.15Re ·"" ) + ----

Re 1 + 4.25 X 104 Re u 6 (11.9) 

which deviates from the standard drag curve* by -4% to 6% for Reynolds numbers up to 3 X 105
• 

Note that as the Reynolds number approaches zero, this correlation reduces to the equation for 
Stokes flow. 

V'CHECKPOINT PROBLEM 11.2 

Suppose you are estimating C0 for an American football 
oriented so that its long axis is into the wind. You have available 
Fig. 11.9. Which choice would you make? 

r would idealize the football 

a. As a sphere 

b. As a streamlined body 

c. As one of the other bodies on the figure. 

(Stockbyte/Getty Images) 

Do you think that a spinning football (about its long axis) has a different value of drag than a nons­
pinning football? 

d. Yes, the spinning football wiU have lower drag. 

e. Yes, the spinning football has higher drag. 

f. No, the spinning football has the same drag as a nonspinning football. 

Values for Cn for other axisymmetric and 3-D bodies at high Reynolds numbers 
(Re > 104

) are given in Table 11.1. Extensive data on the drag of various shapes is avai lable 
in Hoerner (15). 

To find the drag force on an object, find or estimate the coefficient of drag and then apply 
the drag force equation. This approach is illustrated by Example 11.2. 

• The standard drag curve represents the best fit of the cumulative data that have been obtained for drag coefficient of 
a sphere. 
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TABLE 11.1 Approximate C0 Values for Various Bodies 

Type of Body Length Ratio Re C-

1 _ ,,, -) 
") 

lT 
h 1...--------,1 
T ~t---1 

,. .. -.. "'' 

D , 

0 

c -' 
) 

(J _.) 

D 
D 

0 
<J 

l"\ ' , 
.) } 

Rectangular plate 1/b = 1 > 101 1.18 
1/b = 5 > 10 1 1.20 
1/b = 10 > 104 1.30 
1/b = 20 > 104 1.50 
1/b = "X > 104 1.98 

Circular cylinder with 
axis parallel to flow 

1/d = 0 (disk) > 104 1.17 
1/d = 0.5 
1/d = 1 
1/d = 2 
1/d = 4 

/Jd = 8 

Square rod oc 

- - +-
Square rod 

Triangular cylinder 00 

I 
- -J...--

Semicircular shell 1 oc 

I 
L 

Semicircular shell I oc 

Hemispherical shell 

Hemispherical shell 

Cube 

Cube 

Cone- 60° vertex 

Parachute 

I +----
I 
I 
I 
t 
I 

> 104 1.15 
> 104 0.90 
> 104 0.85 
> 104 0.87 
> 104 0.99 

I > 104 : 

-t- > 10' i 1.50 

- ' > 10' t--1.39 

2.00 

> 104 2.30 

t 

r 
l 

- 0.39 

~ I 1.40 

I 1.10 
~ 
I 0.81 

0.49 

1.20 

Sources: Brevoort and Joyner (10), Lind'<y (6), Morrison ( 16), Roberson ct a!. (17), Rouse (12), and Scher and Gale ( 18). 
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I 

EXAMPLE 1 1. 2 

Drag on a Sphere 

Problem Statement 

Generate Ideas and Make a Plan 

I. Calculate the Reynolds number. 

2. Find the coefficient of drag using fig. 11.9. 

3. Calculate drag force using Eq. (11.5). 
What is the drag of a 12-mm sphere that drops at a rate of 
8 cm/s in oil (IJ. = 10- 1 N · s/m2

, S = 0.85)? Take Action (Execute the Plan) 

1. Reynolds number Define the Situation 

A sphere (d = 0.012 m) is falling in oil. 

Speed of the sphere is V = 0.08 m/s. 

Vdp (0.08 m /s)(0.012 m )(850 kg/m') 
Re = - = = 8.16 

1-L 10- 1 N · s/m2 

Assumptions: Sphere is moving at a steady speed (terminal 
velocity). 

2. Coefficient of drag (from Fig. 11.9) is C0 = 5.3. 

3. Drag force 

Properties: 
CvAppV5 

Oil: IJ. = 10-1 N • s/m 2
, S = 0.85, p = 850 kg!m3 

Fv = 2 

(5.3)(TI/4) (0.0122 m2
) (850 kg/ m 3

) (0.08 m/s)2 

State the Goal 
Fv= --

2 

Find: Drag force (in newtons) on the sphere. = ~.63 X 10- 3 Nj 

Power and Rolling Resistance 

Before reading this section, you can try out your knowledge with the Checkpoint Problem. The 
knowledge you need has been previously covered in this text. 

tl' CHECKPOINT PROBLEM 11.3 

Consider a bicycle racer that is traveling in a straight line at constant speed. 

Case A: The speed is 20 km/h. There is no wind. 
Case B: The speed is 40 km/h. There is no wind. 

For both cases, C0 is the same, and rolling resistance is negligible. 

Which statement is true? 

a. (Power in Case B) = (Power in Case A). 

b. (Power in Case B) = 2(Power in Case A). 

c. (Power in Case B) = 4(Power in Case A). 

d. (Power in Case B) = 8(Power in Case A). 

When power is involved in a problem, the power equation from Chapter 7 is applied. For ex­
ample, consider a car moving at a steady speed on a level road. Because the car is not accelerat­
ing, the horizontal forces are balanced as shown in Fig. 11.10. Force equilibrium gives 

Forive = F o rag + FRolling re.•istance 

The driving force (Forivc) is the frictional force between the driving wheels and the road. 
The drag force is the resistance of the air on the car. The rolling resistance is the frictional force 
that occurs when an object such as a ball or tire rolls. It is related to the deformation and types 
of the materials that are in contact. For example, a rubber tire on asphalt will have a larger roll­
ing resistance than a steel train wheel on a steel rail. The rolling resistance is calculated using 

fRulling resislance = F, = C,N (11.1 0) 

where C, is the coefficient of rolling resistance and N is the normal force. 
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-F Rolhng ~istam:e 

FIGURE 11.10 

Horizontal forces acting 
on car that is moving at 
a steady speed. 

1he power required to move the car shown in Fig. ll.lO at a constant speed is given by Eq. (7.2a) 

P = FV = foriveY\.ar = (forag + fRollingresistancc)Yc.r (11.11) 

Thus, when power is involved in a problem, apply the equation P = FV while concurrently us­
ing a free-body diagram to determine the appropriate force. This approach is illustrated in 
Example 11.3. 

EXAMPLE 11.3 

Speed of a Bicycle Rider 

Problem Statement 

A bicyclist of mass 70 kg supplies 300 watts of power while 
riding into a 3 m/s headwind. The frontal area of the cyclist and 
bicycle together is 3.9 If = 0.362 m2

, the drag coefficient is 0.88, 
and the coefficient of rolling resistance is 0.(Xl7. Determine the 
speed V., of the cyclist. Express your answer in mph and in m/s. 

Define the Situation 

Cyclist 
m ~70 kg 

P-300 W 
c0 ~ 0.88 

A ~0.362 m2 

---

A bicycle rider is cycling into a headwind of magnitude 
V.., = 3 m/s. 

Assumptions: 

I. The path is level, with no hills. 

2. Mechanical losses in the bike gear train are zero. 

Properties: Air (20°C, I atm), Table A.2: p = 1.2 kglm3 

State the Goal 

Find the speed (m/s and mph) of the rider. 

Generate Ideas and Make a Plan 

I. Relate bike speed ( lfc) to power using Eq. (11.11 ). 

2. Calculate rolling resistance. 

3. Develop an equation for drag force using Eq. (11.5). 

4. Combine steps I to 3. 

5. Solve for V,. 

Take Action (Execute the Plan) 

1. Power equation 

• The power from the bike rider is being used to overcome 
drag and rolling resistance. Thus, 

P = (Fn + F,)Vc 

2. Rolling resistance 

F, = C,N = C,mg = 0.007(70 kg)(9.81 m/s2
) = 4.81 N 

3. Drag force 

• V0 = speed of the air relative to the bike rider 

V0 = Vc + 3 m/s 

• Drag force 

_ (pV~) _ 0.88(0.362 m2)(1.2 kg/ m3
) F

0 
- CnA -- - _____ __;____..:...,__ 

2 2 

x (v, + 3 m /s)Z 

= 0.1911 (V, + 3 m /s)2 

4. Combine results: 

P = (FLJ + F,)V, 

300 W = (0.19ll (V, + 3? + 4.81)V, 

5. Because the equation is cubic, usc 
a spreadsheet program as shown. 
In this spreadsheet, let V, vary and 
then search for the value of V, that 
causes the right side of the 
equation to equa1300. The 
result is 

Vc = 19.12 m/s = 20.4 mph I 

v. 
(m/s) 

0 

5 
8 

9 

9. 1 

9. 11 

9.12 

9.13 

RHS 
(W) 

0.0 

R5.2 

223.5 
291.0 

298.4 

299.1 

299.9 

300,6 
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11.4 Terminal Velocity 

Another common application of the drag force equation is finding the steady-state speed of a 
body that is falling through a fluid. When a body is dropped, it accelerates under the action of 
gravity. As the speed of the falling body increases, the drag increases until the upward force 
(drag) equals the net downward force (weight minus buoyant force). Once the forces are 
balanced, the body moves at a constant speed called the terminal velocity, which is identified 
as the maximum velocity attained by a falling body. 

To find terminal velocity, balance the forces acting on the object, and then solve the result­
ing equation. T n general this process is iterative, as illustrated by Example 11.4. 

EXAMPLE 11.4 

Terminal Velocity of a Sphere in Water 

Problem Statement 

A 20 mm plastic sphere (S = 1.3) is dropped in water. 
Determine its terminal velocity. Assume T = 20°C. 

Define the Situation 

A smooth sphere (D = 0.02 m, S = 1.3) is falling in water. 

Properties: Water (20°C}, Table A.S, v = 1 X 10 6 m2/s, 
p = 998 kg/m\ and-y = 9790 N/m3 

State the Goal 

Find the terminal velocity (m/s) of the sphere. 

Generate Ideas and Make a Plan 

This problem requires an iterative solution because the 
terminal velocity equation is implicit. The plan steps are 

1. Apply force equilibrium. 

2. Develop an equation for terminal velocity. 

3. To solve the terminal velocity equation, set up a procedure 
for iteration. 

4. To implement the iterative solution, build a table in a 
spreadsheet program. 

Take Action (Execute the Plan) 

1. Force equilibrium 

• Sketch a free-body diagram. 

• Apply force equilibrium (vertical direction): 

F orag + Fnuoyancy = W 

2. Terminal velocity equation 

• Analyze terms in the equilibrium equation: 

(pV~) C0 A -
2
- + "fwV = y,¥ 

c (1rd2)(P v~) + (1rd3
) = (ndj) 

D 4 2 Yw 6 'Ys 6 

• Solve for V0 

Vo = [(-y,- 'Yw)(4 /3)d]ll2 

CvPw 

= [(12.7 - 9.79)(10~N/m1)(4/3)(0.02m)]''z 
C0 X 998 kg/ m 1 

(
0.0778)'' 2 0.279 

V0 = c;;- = Clj2 m /s 

3. Iteration 1 

• Initial guess: V0 = 1.0 m/s 

• Calculate Re: 

Vd (LO m /s)(0.02 m) 
Re = - = = 20000 

v 1 X l0- 6 m2/s 

• Calculate C0 using Eq. (11.9): 

c = ~(1 + 0.15(20000°·687
)) 

O 20000 

0.42 
+ = 0.456 

1 + 4.25 x 104(zoooorl.l6 

• Find new value of V0 (use equation from step 2): 

(
0.0778)''2 0.279 

V0 = -- = --- = 0.413 m/s 
C0 0.456°5 
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4. Iterative solution 

• As shown, use a spreadsheet program to build a table. The 
first row shows the results of iteration 1. 

• The terminal velocity from iteration 1 
V0 = 0.413 m/s is used as the initial velocity for 
iteration 2. 

llcration II Initial V0 
(m/s) 

1 1.000 

2 0.413 

3 0.438 

4 0.436 

5 0.436 

6 0.436 

Re Cn New V0 

(m/s) 

20000 0 .456 0.413 

8264 0.406 0.438 

R752 0.409 0.436 

8721 0.409 0.436 

8723 0.409 0.436 

8722 0.409 0.436 

• The iteration process is repeated until the terminal 
velocity reaches a constant value of V0 = 0.44 m/s. 
Notice that convergence is reached in two 
iterations. I V0 = 0.44 m/s J 

11.5 Vortex Shedding 

This section introduces vortex shedding, which is important for two reasons: It can be used 
to enhance heat transfer and mixing, and it can cause unwanted vibrations and failures of 
structures. 

Flow past a bluff body generally produces a series of vortices that are shed alternatively 
from each side, thereby producing a series of alternating vortices in the wake. This phenome­
non is call vortex shedding. Vortex shedding for a cylinder occurs for Re ~ 50 and gives the 
flow pattern sketched in Fig. 11.11. In this figure, a vortex is in the process of formation near 
the top of the cylinder. Below and to the right of the first vortex is another vortex, which was 
formed and shed a short time before. Thus the flow process in the wake of a cylinder involves 
the formation and shedding of vortices alternately from one side and then the other. This alter­
nate formation and shedding of vortices creates a cyclic change in pressure with consequent 
periodicity in side thrust on the cylinder. Vortex shedding was the primary cause of failure of 
the Tacoma Narrows suspension bridge in the state of Washington in 1940. 

Experiments reveal that the frequency of shedding can be represented by plotting 
Strouhal number (St) as a function of Reynolds number. The Strouhal number is a 1T-group 
defined as 

nd 
St = -

Vo 
{11.12) 

where n is the frequency of shedding of vortices from one side of the cylinder, in Hz, d is the 
diameter of the cylinder, and V0 is the free-stream velocity. The Strouhal number for vortex 
shedding from a circular cylinder is given in Fig. 11.12. Other cylindrical and two-dimensional 
bodies also shed vortices. Consequently, the engineer should always be alert to vibration prob­
lems when designing structures that are exposed to wind or water flow. 

FIGURE 11 . 11 

Formation of a vortex 
behind a cylinder. 
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FIGURE 11. 12 

Strouhal number versus 
Reynolds number for flow 
past a circular cylinder. 
[Aher jones (51 and 
Roshko (81] 

EXAMPLE 11.5 

r 
0.40 

0.30 

-/ 
0.20 

Vrfl 
Rc ~ ­

v 

Spread( f data 

~ 

~ 
t 

11.6 Reducing Drag by Streamlining 

!'"'"" 

107 

An engineer can design a body shape to minimize the drag force. This process is called stream­
lining and is often focused on reducing form drag. The reason for focusing on form drag is that 
drag on most bluff objects (e.g., a cylindrical body at Re > 1000) is predominantly due to the 
pressure variation associated with flow separation. In this case, streamlining involves modifying 
the body shape to reduce or eliminate separation. The impacts of streamlining can be dramatic. 
For example, Fig. 11.5 shows that C0 for the streamlined shape is about 1/6 of Cv for the circular 
cylinder when Re = 5 X 105

• 

While streamlining reduces form drag, frict ion drag is typically increased. This is because 
there is more surface area on a streamlined body as compared to a nonstreamlined body. Con­
sequently, when a body is streamlined the optimum condition results when the sum of form 
drag and friction drag is minimum. 

Strearnlining to produce minimum drag at high Reynolds numbers will probably not pro­
duce minimum drag at very low Reynolds numbers. For example, at Re < 1, the majority of the 
drag of a cylinder is friction drag. Hence, if the cylinder is streamlined, the friction drag will 
likely be magnified, and C0 will increase. 

Another advantage of streamlining at high Reynolds numbers is that vortex shedding is elimi­
nated. Example 11.5 shows how to estimate the impact of streamlining by using a ratio of C0 values. 

Assumptions: 

Comparing Drag on Bluff and Streamlined Shapes 
1. The cylinder and the streamlined body have the same 

projected area. 

Problem Statement 

Compare the drag of the cylinder of Example 11.1 with the 
drag of the streamlined shape shown in Fig. 11.5. Assume that 
both shapes have the same projected area. 

Define the Situation 

The cylinder from Example 11 .1 is being compared to a 
streamlined shape. 

2. Both objects are two-dimensional bodies (neglect end 
effects). 

State the Goal 

Find the ratio of drag force on the streamlined body to drag 
force on the cylinder. 
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Generate Ideas and Make a Plan 
3. Drag force ratio (derived from Eq. 11.5) is 

1. Retrieve Re and C0 from Example 11.1. F0 (strearnlined shape) C0 (streamlined shape) 

2. Find the coefficient of drag for the streamlined shape using 
Fig. 11.5 

F0 (cylinder) C0 (cylinder) 

3. CalcuJatc the ratio of drag forces using Eq. (11.5). 

Take ·\clion (Execute the Plan) 
F0 (strearnlined shape) 0.034 ~ 

= =~ F0 (cylinder) 0.2 
l. From Example 11.1, Rc = 7 X 10' and C0 (cylinder) = 

0.2. Review the Results and the Process 

2. Using this Re and Fig. 11 .5 gives C0 (streamlined shape) = 
0.034. 

Discussion. The streamlining provided nearly a sixfold 
reduction in drag! 

11.7 Drag in Compressible Flow 

So far, this chapter has described drag for flows with constant density. TI1is section describes 
drag when the density of a gas is changing due to pressure variations. These types of flow are 
called compressible flows. This information is important for modeling of projectiles such as bul­
lets and rockets. 

In steady flow, the influence of compressibility depends on the ratio of fluid velocity to the 
speed of sound. This ratio is a 'IT-group called the Mach number. 

The variation of drag coefficient with Mach number for three axisymmetric bodies is shown 
in fig. 11.13.ln each case, the drag coefficient increases only slightly with the Mach number at 
low Mach numbers and then increases sharply as transonic flow (M == 1) is approached. Note 
that the rapid increase in drag coefficient occurs at a higher Mach number (closer to unity) if the 
body is slender with a pointed nose. The drag coefficient reaches a maximum at a Mach number 
somewhat larger than unity and then decreases as the Mach number is further increased. 

2.0 

-/ 

Square-ended cylinder 
v 1.5 

Vo I r--+(0-------::. 
1--" ./ / 

/ 
0.5 

0 
0. 1 

~0 Sphere '-..... 

v0 Projectile )~ r---_ -+<=l 
I I 

0.2 0.3 0.4 0.5 0.6 0.8 1.0 2.0 3.0 4.0 5.0 6.0 8.0 

r 
Mach number. M-~ .. 

The slight increase in drag coefficient with low Mach numbers is attributed to an increase 
in form drag due to compressibility effects on the pressure distribution. However, as the flow 
velocity is increased, the maximum velocity on the body finally becomes sonic. The Mach 
number of the free-stream flow at which sonic flow first appears on the body is called the 
critical Mach number. Further increases in flow velocity result in local regions of supersonic 

FIGURE 11 • 1 3 

Drag chorocterislics 
of projectile, sphere, 
and cylinder wilh 
compressibility effects. 
[After Rouse ( 12)] 
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FIGURE 11. 14 

Contour plot of the drag 
coefficient of the sphere 
versus Reynolds and Mach 
numbers. 

flow (M > 1), which lead to wave drag due to shock wave formation and an appreciable 
increase in drag coefficient. 

The critical Mach number for a sphere is approximately 0.6. Note in Fig. 11.13 that the 
drag coefficient begins to rise sharply at about this Mach number. The critical Mach number 
for the pointed body is larger, and correspondingly, the rise in drag coefficient occurs at a Mach 
number closer to unity. 

The drag coefficient data for the sphere shown in Fig. 11.13 are for a Reynolds number of the 
order of 104

• The data for the sphere shown in Fig. 11.9, on the other hand, are for very low Mach 
numbers. The question then arises about the general variation of the drag coefficient of a sphere with 
both Mach nwnber and Reynolds number. Information of this nature is often needed to predict the 
trajectory of a body through the upper atmosphere or to model the motion of a nanoparticlc. ' 

A contour plot of the drag coefficient of a sphere versus both Reynolds and Mach numbers 
based on available data (19) is shown in Fig. 11.14. Notice the Cv-versus-Re curve from 
Fig. 11.9 in theM = 0 plane. Correspondingly, notice the Cv-versus-M curve from Fig. 11.13 in 
theRe = 104 plane. At low Reynolds numbers Cn decreases with an increasing Mach number, 
whereas at high Reynolds numbers the opposite trend is observed. Using this figure, the engi­
neer can determine the drag coefficient of a sphere at any combination of Re and M. Of course, 
corresponding Cv contour plots can be generated for any body, provided the data are available. 

M 

11.8 Theory of Lift 

This section introduces circulation, the basic cause of lift, as well as the coefficient of lift. 

Circulation 
Circulation, a characteristic of a flow field, gives a measure of the average rate of rotation of 
fluid particles that are situated in an area that is bounded by a closed curve. Circulation is 
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defined by the path integral as shown in Fig. 11.15. Along any differential segment of the path, 
the velocity can be resolved into components that are tangent and normal to the path. Signify 
the tangential component of velocity as VL· Integrate VL dL around the curve; the resulting 
quantity is called circulation, which is represented by the Greek letter f (capital gamma). Hence 

r = .f vL di. n 1.131 

Sign convention dictates that in applying Eq. ( I1.13 ), one uses tangential velocity vectors that 
have a counterclock-wise sense around the curve as negative and take those that have a clock­
wise direction as having a positive contribution.* For example, consider finding the circulation 
for an irrotational vortex. The tangential velocity at any radius is C/r, where a positive C means 
a clockwise rotation. Therefore, if circulation is evaluated about a curve with radius r. the dif­
ferential circulation is 

(11.14) 

Integrate this around the entire circle: 

r = r.,.cde = 21rC 
0 

(11.15) 

One way to induce circulation physically is to rotate a cylinder about its axis. Fig. ll.l6a 
shows the flow pattern produced by such action. The velocity of the fluid next to the surface of 
the cylinder is equal to the velocity of the cylinder surface itself because of the no-slip condi­
tion that must prevail between the fluid and solid. At some distance from the cylinder, however, 
the velocity decreases with r, much like it does for the irrotational vortex. The next 
section shows how circulation produces lift. 

Combination of Circulation and Uniform Flow around a Cylinder 

Superpose the velocity field produced for uniform flow around a cylinder, Fig. 11.16b, onto a 
velocity field with circulation around a cylinder, Fig. 1l.l6a. Observe that the velocity is rein­
forced on the top side of the cylinder and reduced on the other side (Fig. 11.16c). Also observe 
that the stagnation points have both moved toward the low-velocity side of the cylinder. Con­
sistent with the Bernoulli equation (assuming irrotational flow throughout), the pressure on 
the high-velocity side is lower than the pressure on the low-velocity side. Hence a pressure 

*The sign convention is the opposite of that for the mathematical defimtion of a lme mtegral. 

FIGURE 11.1 S 

Concept of circulation. 
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FIGURE 11.16 

Ideal now around 
a cylinder. 
lol Circulation. 
lbl Uniform flow. 
lcl Combination of 
circulation and uniform 
flow. 

(a) 

----

~ ·-­--------/· "'~--

(b) 

---Reduced >elocny, h1gh pres.ure -------(c) ......____ 

differential exists that causes a side thrust, or lift, on the cylinder. According to ideal flow the­
ory, the lift per unit length of an infinitely long cylinder is given by F1./f = p V0r, where FL is 
the lift on the segment of length e. For this ideal irrotational flow there is no drag on the cylin­
der. For the real-flow case, separation and viscous stresses do produce drag, and the same vis­
cous effects will reduce the lift somewhat. Even so, the lift is significant when t1ow occurs 
past a rotating body or when a body is translating and rotating through a fluid. Hence the rca­
son for the "curve" on a pitched baseball or the "drop" on a Ping-Pong ball is a fore spin. This 
phenomenon of lift produced by rotation of a solid body is called the \fagnus effect after a 
nineteenth-century German scientist who made early studies of the lift on rotating bodies. 
A paper by Mehta (28} offers an interesting account of the motion of rotating sports balls. 

Coefficients oflift and drag for the rotating cylinder with end plates are shown in Fig. 11.17. 
In this figure, the parameter rw!V0 is the ratio of cylinder surface speed to the free-stream 
velocity, where r is the radius of the cylinder and w is the angular speed in radians per second. 
The corresponding curves for the rotating sphere are given in Fig. 11.18. 

Coefficient of Lift 
The coefficient of lift is a parameter that characterizes the lift that is associated with a body. 
For example, a wing at a high angle of attack will have a high coefficient of lift, and a wing that 
has a zero angle of attack will have a low or zero coefficient of lift. The coefficient of lift is 
defined using a 1r-group: 

lift force c = FL 
L- A(pV~/2) (reference area)( dynamic pressure) 

To calculate lift force, engineers use the lift equation: 

where the reference area for a rotating cylinder or sphere is the projected area Ap. 

111.16) 

111.17) 



FIGURE 11.17 

Coefficients of lift and drag for a rotating 
cylinder. [After Rouse (12).] 
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EXAMPLE 11.6 

Lift on a Rotaling Sphere 

Problem Statement 

A Ping-Pong ball is moving at 10m/sin air and is spinning 
at I 00 revolutions per second in the clockwise direction. The 
diameter of the ball is 3 em. Calculate the lift and drag force 
and indicate the direction of the lift (up or down). The density 
of air is 1.2 kglm3

. 

Define the Situation 

A Ping-Pong ball is moving horizontally and rotating. 

Properties: Air: p = 1.2 kg/m3 

State the Goal 

Find 

I. Drag force (in newtons) on the ball 

2. Lift force (in newtons) on the ball 

3. The direction of lift (up or down?) 

10 m/s 
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FIGURE 11. 18 

Coefficients of lift and drag for a rotating 
sphere. [After Barkla et al. (20). Reprinted with 
the permission of Cambridge University Press .] 
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Generate Ideas and Make a Plan 

I. Calculate the value of rw/ V0• 

6 

2. Use the value of rw/ V0 to look up the coefficients of lift and 
dragon Fig.11.7. 

3. Calculate lift force using Eq. (11.8). 

4. Calculate drag force using Eq. {11.5). 

Take Action (Execute the Plan) 

The rotation rate in rad/s is 

w = (100 rev/s)(21r rad/rev) = 628 rad/ s 

The rotational parameter is 

wr (628 rad/s)(O.oiS m) 
- = = 0.942 
V0 10 m/s 

From Fig. 11.18, the lift coefficient is approximately 0.26, and 
the drag coefficient is 0.64. The lift force is 

1 2 
FL = 

2 
pV0 CLAp 

I 'll" 
= -(1.2 kg/m3)(10 m / s)2(0.26) -(0.03 m )2 

2 4 

= luo x 10 2 N I 
I The lift force is downward. I The drag force is 

1 
Fv = 2p V~CvAp 

= 127.1 X 10- 3 N I 
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FIGURE 11. 19 

Patterns of flow around 
on airfoil. 
(a) Ideal flow­
no circulation. 
(b) Real flow-circulation. 

11.9 Lift and Drag on Airfoils 

This section presents information on how to calculate lift and drag on winglike objects. Some 
typical applications include calculating lhe takeoff weight of an airplane, determining the size 
of wings needed, and estimating power requirements to overcome drag force. 

Lift of an Airfoil 
An airfoil is a body designed to produce lift from the movement of fluid around it. Specifi­
cally, lift is a result of circulation in the flow produced by the airfoil. To see this, consider 
flow of an ideal flow (nonviscous and incompressible) past an airfoil as shown in Fig. ll.l9a. 
Here, as for irrotational flow past a cylinder, the lift and drag are zero. There is a stagnation 
point on the bottom side near the leading edge, and another on the top side near the trail ­
ing edge of the foil. In lhe real flow {viscous fluid) case, the flow pattern around the up­
stream half of the foil is plausible. However, the flow pattern in the region of the trailing 
edge, as shown in Fig. 11 .19a, cannot occur. A stagnation point on the upper side of the foil 
indicates that fluid must flow from the lower side around the trailing edge and then toward 
the stagnation point. Such a flow pattern implies an infinite acceleration of the fluid parti­
cles as they turn the corner around the trailing edge of the wing. This is a physical impos­
sibility, and as we have seen in previous sections of the text, separation occurs at the sharp 
edge. As a consequence of the separation, the downstream stagnation point moves to the 
trailing edge. Flow from both the top and bottom sides of the airfoil in the vicinity of the trail­
ing edge then leaves the airfoil smoothly and essentially parallel to these surfaces at the 
trailing edge (Fig. ll.l9b ). 

Stagnation point 

Stagnation point 

(a) 

Stagna! ton point 

(b) 

To bring theory into line with the physically observed phenomenon, it was hypothesized 
that a circulation around the airfoil must be induced in just the right amount so that the 
downstream stagnation point is moved all the way back to the trailing edge of the airfoil, thus 
allowing the flow to leave the airfoil smoothly at the trailing edge. This is called the Kutta 
condition {21}, named after a pioneer in aerodynamic theory. When analyses are made with 
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this simple assumption concerning the magnitude of the circulation, very good agreement 
occurs between theory and experiment for the flow pattern and the pressure distribution, as 
well as for the lift on a two-dimensional airfoil section (no end effects). Ideal flow theory then 
shows that the magnitude of the circulation required to maintain the rear stagnation point at the 
trailing edge (the Kutta condition) of a symmetric airfoil with a small angle of attack is given by 

(11.18) 

where r is the circulation, cis the chord length of the airfoil, and a is the angle of attack of the 
chord of the airfoil with the free-stream direction (see Fig. 11.20 for a definition sketch). 

t==--'~ 
r~~ 

Chord 

Like that for the cylinder, the lift per unit length for an infinitely long wing is 

TI1e plan form area for the length segment e is f c. Hence the lift on segment £ is 

FL = p V~1rcfa 

For an airfoil the coefficient of lift is 

FL c - --
L- SrV6/2 

{11.19) 

(11.20) 

where the reference areaS is the plan form area of the wing-that is, the area seen from the plan 
view. On combining Eqs. (11.18) and (11.19) and identifying S as the area associated with length 
segment e. one finds that CL for irrotational flow past a two-dimensional airfoil is given by 

(11.21) 

Equations (ll.l9) and ( 11 .21) are the theoretical lift equations for an infinitely long airfoil 
at a small angle of attack. Flow separation near the leading edge of the airfoil produces devia­
tions (high drag and low lift) from the ideal flow predictions at high angles of attack. Hence 
experimental wind-tunnel tests are always made to evaluate the performance of a given type of 
airfoil section. For example, the experimentally determined values of lift coefficient versus a 
for two NACA airfoils are shown in Fig. 11.21. Note in this figure that the coefficient of lift 
increases with the angle of attack, a, to a maximum value and then decreases with further 
increase in o:. This condition, where CL starts to decrease with a further increase in a, is called 
stall. Stall occurs because of the onset of separation over the top of the airfoil, which changes 
the pressure distribution so that it not only decreases lift but also increases drag. Data for many 
other airfoil sections are given by Abbott and Von Doenhoff (22). 

Airfoils of Finite Length-Effect on Drag and Lift 

1he drag of a two-dimensional foil at a low angle of attack (no end effects) is primarily viscous 
drag. However, wings of finite length also have an added drag and a reduced lift associated with 

FIGURE 11.20 

Defini tion sketch for 
an airfoil section. 
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FIGURE 11.21 

Values of C1 for two 
NACA airfoil sections 
[Afler Abbott and Van 
Doenhoff (22).] 

FIGURE 11.22 

Formation of tip vortices. 

c L 

2.00 ,------.----r---,------,------, 

0 10 15 20 

Angle vf .mac~ . a. degrees 

vortices generated at the wing tips. These vortices occur because the high pressure below the 
wing and the low pressure on top cause fluid to circulate around the end of the wing from 
the high-pressure zone to the low-pressure zone, as shown in Fig. 11.22. This induced flow 
has the effect of adding a downward component of velocity, w, to the approach velocity V0. 

Hence, the "effective" free-stream velocity is now at an angle (<I> = w/ V0) to the direction of the 
original free-stream velocity, and the resultant force is tilted back as shown in fig. 1 1.23. Thu:. 
the effective lift is smaller than the lift for the infinitely long wing because the effective angle of 
incidence is smaller. This resultant force has a component parallel to V0 that is called the in­
duced drag and is given by FL<f>· Prandtl (23) showed that the induced velocity w for an elliptical 
spanwise lift distribution is given by the following equation: 

2FL 
w = 

'I'Tp Vub 2 
(11.22) 

where b is the total length (or span) of the finite wing. Hence 

Ci 52 pV~ ----
'IT b2 2 

(11.23) 

From Eq. (1 1.23) it can be easily shown that the coefficient of induced drag, Cv, is given by 

c~ ci 
Cv, = '1'T(b2/S) 'ITA (11.24) 

Low-pressure region 

lllgh·pre"urc region 
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Induced drag, F n,- Fr ~ 

Resultant force. F, 

which happens to represent the minimum induced drag for any wing planform. Here the ratio 
b2!S is called the aspect ratio A of the wing, and Sis the planform area of the wing. Thus, for a 
given wing section (constant CL and constant chord c), longer wings (larger aspect ratios) have 
smaller induced-drag coefficients. The induced drag is a significant portion of the total drag of an 
airplane at low velocities and must be given careful consideration in airplane design. Aircraft 
(such as gliders) and even birds (such as the albatross and gull) that are required to be airborne 
for long periods of time with minimum energy expenditure are noted for their long, slender 
wings. Such a wing is more efficient because the induced drag is small. To illustrate the effect of 
finite span, look at Fig. 11.24, which shows C1. and C0 versus <x for wings with several aspect ratios. 

-4 0 4 12 16 

Angle of attack. a. degrees 

FIGURE 11.23 

Definition sketch for 
induced-drag relations. 

FIGURE 11.24 

Coefficients of lift and drag 
for three wings with aspect 
ratios of 3, 5, and 7 . 
[After Prandtl (23).] 



The total drag of a rectangular wing is computed by 

bcpV~ 
Fn = (Cvo + Cv;)-

2
- (11.25) 

where C00 is the coefficient of form drag of the wing section and CD, is the coefficient of 
induced drag. 

EXAMPLE 11.7 

Wing Area for an Airplane 

Problem Statement 

An airplane with a weight of I 0,000 lbf is flying at 600 ft/s at 
36,000 ft, where the pressure is 3.3 psia and the temperature 
is - 67°F. The lift coefficient is 0.2. The span of the wing is 
54 ft. Calculate the wing area (in ft2

) and the minimum 
induced drag. 

Define the Situation 

An airplane (W = 10,000 lbf) is traveling at V0 = 600 ft /s. 

Coefficient of lift is CL = 0.2. 

Wing span is b = 54 ft. 

Properties: Atmosphere (36,000 ft): T = -67°F, 
p = 3.3 psia 

State the Goal 

Calculate the required wing area (in ftl). 

Find the minimum value of induced drag (in N). 

Generate Ideas and Make a Plan 

1. Apply the idea gas law to calculate density of air. 

2. Apply force equilibrium to derive an equation for the 
required wing area. 

3. Calculate the coefficient of induced drag with 
Eq. ( 11.24). 

4. Calculate the drag using Eq. (11.25) with C00 = 0. 

Take Action (Execute the Plan) 

I. Ideal gas law 

p 
p=­

RT 

(3.31bf/in2)(144 in2/ft2
) 

---'----
(1716 ft-lbf/slug-•R)( -67 + 460•R) 

= 0.000705 slug/ ftJ 

2. Force equilibrium 

so 

2 X I 0,000 lbf 
----

(0.000705 slug/ft1}{6002 ftl/s2}(0.2) 

= 1394 ftl j 

3. Coefficient of induced drag 

cr 0.22 

Co, = 1T(~2) = 1TG::) = 0.00172 

4. The induced drag is 

I 2 
D, = 2pV0 C0 ,S 

= .!. (0.000705 slug/frl)(600 ft/s)2(0.00172}(394 ftl) 
2 

= is6.o lbf I 

A graph showing CL and C0 versus a is given in Fig. 11.25. Note in this graph that C0 is 
separated into the induced-drag coefficient C0 , and the form drag coefficient C00. 
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for a w ing with on aspect 
ratio of 5. [After Prandtl 
(23).) 

/ v CD, 

I / 
0.40 O.OR 

~~ ~ ----
0.20 

0 
-4 0 4 

--___ .... --
.,.. .. 

!.- ..... ... ....... 0.04 

Coo 
I 0 

12 16 

Angle of at1ack, a. degrees 

EXAMPLE 11.8 

Takeoff Characteristics of an Airplane 

Problem Statement 

A light plane (weight= 10 kN) has a wingspan of 10m and 
a chord length of 1.5 m. If the lift characteristics of the wing 
are like those given in Fig. 11.24, what must be the angle 
of attack for a takeoff speed of 140 km/h? What is the stall 
speed? Assume two passengers at 800 N each and standard 
atmospheric conditions. 

Define the Situation 

• An airplane (W = 10 kN) with two passengers W = 1.6 kN 
is taking off. 

• Wing span is b = 10m, and chord length is c = 1.5 m. 

• Lift coefficient information is given by Fig. 11.24. 

• Takeoff speed is V0 = 140 ian/h. 

Assumptions: 

I. Ground effects can be neglected. 

2. Standard atmospheric conditions prevail. 

Properties: Air: p = 1.2 kg/m3 

State the Goal 

Find 

I. Angle of attack (in degrees) 

2. Stall speed ( in km/h) 

Generate Ideas and Make a Plan 

1. Find the lift by applying force equilibrium. 

2. Calculate the coefficient of lift using Eq. (11.20). 

3. Find the angle of attack a from Fig. 11.24. 

4. Read the maximwn angle of attack from Fig. 11.24, and 
then calculate the corresponding stall speed using the li ft 
force equation (11.17). 

Take Action (Execute the Plan) 

l. Force equilibrium (y direction), so lift = weight= 11.6 .kN. 

2. Coefficient of lift 

F, c --­
L- SpV~/2 

11 ,600 N 

(15 m2)( 1.2 kg/ m3
)[( 140,000/3600)2m2/s2

] / 2 

= 0.852 
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3. The aspect ratio is 

b 10 
A=-= - = 6.67 

c 1.5 

4. From Fig. 11.24, the angle of attack is 

Applying the lift force equation gives 

(pV~) FL = C,A -2-

11,600 = 1.18( 15)C~2}v".nf 
Vsta~~ = 33.om/s = 119krn/h I 

~ ~ 

From Fig. I I .24, stall will occur when 

c1 = us 
Re,·iew the Solution and the Process 

Discussion. Notice that the stall speed (119 km/h) is less than 
the takeoff speed (140 krn/h). 

11. 1 0 Lift and Drag on Road Vehicles 

Early in the development of cars, aerodynamic drag was a minor factor in performance be­
cause normal highway speeds were quite low. Thus in the 1920s, coefficients of drag for cars 
were around 0.80. As highway speeds increased and the science of metal forming became more 
advanced, cars took on a less angular shape, so that by the 1940s drag coefficients were 0.70 and 
lower. In the 1970s the average Cn for U.S. cars was approximately 0.55. In the early 1980s the 
average Cn for American cars dropped to 0.45, and currently auto manufacturers are giving 
even more attention to reducing drag in designing their cars. All major U.S., Japanese, and 
European automobile companies now have models with C0 s of about 0.33, and some compa­
nies even report Cv5 as low as 0.29 on new models. European manufacturers were the leaders 
in streamlining cars because European gasoline prices (including tax) have been, for a number 
of years, about three times those in the United States. Table 11 .2 shows the Cv for a 1932 Fiat 
and for other more contemporary car models. 

Great strides have been made in reducing the drag coefficients for passenger cars. How­
ever, significant future progress will be very hard to achieve. One of the most streamlined cars 
was the "Bluebird;' which set a world land-speed record in 1938. Its C0 was 0.16. The mini­
mum C0 of well-streamlined racing cars is about 0.20. Thus, lowering the Cn for passenger 
cars below 0.30 will require exceptional design and workmanship. For example, the underside 
of most cars is aerodynamically very rough (axles, wheels, muffler, fuel tank, shock absorbers, 
and so on). One way to smooth the underside is to add a panel to the bottom of the car. But 
then clearance may become a problem, and adequate dissipation of heat from the muffler may 
be hard to achieve. Other basic features of the automobile that contribute to drag but are not 
very amenable to drag-reduction modifications are interior airflow systems for engi ne cool­
ing, wheels, exterior features such as rearview mirrors and antennas, and other surface pro­
trusions. The reader is directed to two books on road-vehicle aerodynamics, {24) and (25), 
which address all aspects of the drag and lift of road vehicles in considerably more detail than 
is possible here. 

To produce low-drag vehicles, the basic teardrop shape is an idealized starting point. This 
shape can be altered to accommodate the necessary functional features of the vehicle. For 
example, the rear end of the teardrop shape must be lopped off to yield an overall vehicle length 
that will be manageable in traffic and will fit in our garages. Also, the shape should be wider than 
its height. Wind-tunnel tests are always helpful in producing the most efficient design. One such 
test was done on a 3/8 scale model of a typical notchback sedan. Wind-tunnel test results for 



TABLE 11.2 Coefficients of Drag for Cars 

Make and Model 

1932 Fiat Balillo 

Volkswagen "Bug" 

Plymouth Voyager 

Toyota Paseo 

Dodge Intrepid 

Ford Taurus 

Mercedes-Benz £320 

Profile 

! o:fJd 
-+ ~ 

I ~ 

- - ~ 

.. -

---+ 

~ 
---,.--

Ford Probe V (concept car) 

1 ~ 
1~ -GM Sunraycer (experimental 

solar vehicle) 

0.60 

0.46 

0.36 

0.31 

0.31 

0.30 

0.29 

0.14 

0.12 

such a sedan are shown in Fig. 11.26. Here the centerline pressure distribution (distribution 
of Cp) for the conventional sedan is shown by a solid line, and that for a sedan with a 68 mm 
rear-deck lip is shown by a dashed line. Clearly the rear-deck lip causes the pressure on the 
rear of the car to increase ( Cp is less negative), thereby reducing the drag on the car itself. It 
also decreases the lift, thereby improving traction. Of course, the lip itself produces some 
drag, and these tests show that the optimum lip height for greatest overall drag reduction is 
about 20 mm. 

Research and development programs to reduce the drag of automobiles continue. As an 
entry in the PNGV (Partnership for a New Generation of Vehicles), General Motors (26) has 
exhibited a vehicle with a drag coefficient as low as 0.163, which is approximately one-half that 
of the typical midsize sedan. These automobiles will have a rear engine to eliminate the exhaust 
system underneath the vehicle and allow a flat underbody. Cooling air for the engine is drawn 
in through inlets on the rear fenders and exhausted out the rear, reducing the drag due to the 
wake. The protruding rearvicw mirrors are also removed to reduce the drag. The cumulative 
effect of these design modifications is a sizable reduction in aerodynamic drag. 
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FIGURE 11.26 

Effect of rear-deck lip on 
model surface. Pressure 
coefficients ore plotted 
normal to the surface. 
[Aher Schenkell25). 
Reprinted with permission 
from SAE Paper 
No 770389 ©1977 
Society of Automotive 
Engineers, Inc.] 

FIGURE 11.27 

Racing car with 
negative-liN devices. 

EXAMPLE 11.9 

l.O j 
0.5 

0 

c P scale 

The drag of trucks can be reduced by installing vanes near the corners of the truck body 
to deflect the flow of air more sharply around the corner, thereby reducing the degree of sepa· 
ration. This in turn creates a higher pressure on the rear surfaces of the truck, which reduces 
the drag of the truck. 

One of the desired features in racing cars is the generation of negative lift to improve the 
stability and traction at high speeds. One idea (27) is to generate negative gage pressure under­
neath the car by installing a ground-effect pod. This is an airfoil section mounted across the 
bottom of the car that produces a venturi effect in the channel between the airfoil section and 
the road surface. The design of ground-effect vehicles involves optimizing design parameters 
to avoid separation and possible increase in drag. Another scheme to generate negative lift is 
the use of vanes as shown in Fig. 11.27. Sometimes "gurneys" are mounted on these vanes to 
reduce separation effects. Gurneys are small ribs mounted on the upper surface of the vanes 
near the trailing edge to induce local separation, reduce the separation on the lower surface of 
the vane, and increase the magnitude of the negative lift. As the speed of racing cars continues 
to increase, automobile aerodynamics will play an ever-increasing role in traction, stability, and 
control. 

Define the Situation 

Calculating Negative Lift on a Race Car • A racing car experiences downward lift from a rear­
mounted vane. 

Problem Statement 

The rear vane installed on the racing car of Fig. 11.27 is at an 
angle of attack of s• and has characteristics like those given in 
Fig. 11.24. Estimate the downward thrust (negative lift) and 
drag from the vane that is 1.5 m long and has a chord length 
of 250 mm. Assume the racing car travels at a speed of 
270 km/h on a track where normal atmospheric pressure 
and a temperature of 30°C prevail. 

• Vane overall length is e = 1.5 m, and chord length is 
c = 0.25 m. 

• Car speed is V0 = 270 km/h = 75 m/s. 

Properties: Air: p = 1.17 kglm3 



State the Goal 

Find 

• Downward lift force from vane (in newtons) 

• Drag force from vane (in newtons) 

Generate Ideas and Make a Plan 

I. Find the coefficient of lift CL and the coefficient of drag C0 

from Fig. 11.24. 

2. Calculate the downward force using the lift force 
equation (l 1.17) 

3. Calculate the drag using the drag force equation (11.5). 

Take Action (Execute the Plan) 

1. The aspect ratio is 

e L5 
A= - = - = 6 

c 0.25 

11. 11 Summarizing Key Knowledge 

Relating Lift and Drag to Stress Distributions 

• When a body moves relative to a fluid 

From Fig. I 1.24, the lift and drag coefficients are 

CL = 0.93 and C0 = 0.070 

2. Lift force equation 

FL = C,A(p~~) 
FL = 0.93 X 1.5 X 0.25 X 1.17 X (75)2/2 

= 11148 N I 
3. Drag force equation 

(pV~) (Co) • Fv = CvA -2- = CL Fr 

F0 = (0.070/0.93) X 1148 

= 186.4 N I 

~ The drag force is the component of force that is parallel to the free-stream. 

~ The lift force is the component of force that is perpendicular to the free stream. 

• The lift and drag forces are caused by the stress distributions (pressure and shear stress) 
acting on the body. Tntegrating the stress distributions over area gives the lift and drag forces. 

• The drag force has two parts: 

~ Form drag is due to pressure stresses acting on the body. 

~ Friction drag (also called skin friction) is due to shear stresses acting on the body. 

Calculating and Understanding the Drag Force 

• Drag force depends on four factors: shape of the body, size, fluid density, and fluid speed 
squared. These four factors are related through the drag force equation 

(pV~) Fv = CllA -2-

• The coefficient of drag ( C0 ), which characterizes the shape of a body, is a TI-group defined by. 

F0 (drag force) 
Co= --- --'----

ARer(P V512) (reference area)(kinetic pressure) 

• (Cn) is typically found by experiment and tabulated in engineering references. Objects are 
classified into three categories: (a) 2-D bodies, (b) axisymmetric bodies, and (c) 3-D bodies. 
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• (Cn) for a sphere can be found from charts and equations: 

~ Stokes flow (Reynolds numbers < 0.5) 

24 
Cn= ­

Re 

~ Clift and Gauvin correlation (Re < 3 X 105) 

24 0 687) 0.42 Cn = -(1 + 0.15Re · + - ------,--
Re 1 + 4.25 X 104 Re- u 6 

• Drag of bluff bodies and streamlined bodies differs. 

~ A bluff body is a body with flow separation when the Reynolds number is high enough. 
When flow separation occurs, the drag is mostly form drag. 

~ A streamlined body does not have separated flow. Consequently, the drag force is mostly 
friction drag. 

• (Cv) for cylinders and spheres drops dramatically at Reynolds numbers near 105 because 
the boundary layer changes from laminar to turbulent, moving the separation point 
downstream, reducing the wake region, and decreasing the form drag. This effect is called 
the drag crisis. 

Rolling Resistance and Power 
• To calculate the power to move a body such as a car or an airplane at a steady speed 

through a fluid, the usual approach is 

~ Step 1. Draw a free body diagram. 

~ Step 2. Apply the power equation in the form P = FV, where F, the force in the direction 
of motion, is evaluated from the free body diagram. 

• The rolling resistance is the frictional force that occurs when an object such as a ball or 
tire rolls. The rolling resistance is calculated using 

fRolling resistance = F, = C,N (11.26) 

where C, is the coefficient of rolling resistance and N is the normal force. 

Finding Terminal Velocity 

• Terminal velocity is the steady-state speed of a body that is falling through a fluid. 

• When a body has reached terminal velocity, the forces are balanced. 'These forces typically 
are weight, drag, and buoyancy. 

• To find terminal velocity, sum the forces in the direction of motion and solve the resulting 
equation. The solution process often needs to be done using iteration (traditional method) 
or using a computer program (modern method). 

Vortex Shedding, Streamlining, Compressible Flow 

• Vortex shedding can cause beneficial effects (better mixing, better heat transfer) and 
detrimental effects (unwanted structural vibrations, noise, etc.). 

~ Vortex shedding is when cylinders and bluff bodies in a cross-flow produce vortices that 
are released alternately from each side of the body. 

~ The frequency of vortex shedding depends on a 1r-group called the Strouhal number. 
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• Streamlining involves designing a body to minimize the drag force. Usually, streamlining 
involves designing to reduce or minimize flow separation for a bluff body. 

• In high-speed air flows, compressibility effects increase the drag. 

The Lift Force 
• The lift force on a body depends on four factors: shape, size, density of the flowing fluid, 

and speed squared. The working equation is. 

(pVB) 
FL = CLA -2-

• The coefficient of lift (C1) is a 'IT-group defined by 

FL (drag force) 
CL = 2 

AR.r(P V0!2) (reference area)(kinetic pressure) 

• Circulation Theory of Lift. The lift on an airfoil is due to the circulation produced by the 
airfoil on the surrounding fluid. This circulatory motion causes a change in the 
momentum of the fluid and a lift on the airfoil. 

• The lift coefficient for a symmetric two-dimensional wing (no tip effect) is 

CL = 2'1Ta 

where a is the angle of attack (expressed in radians) and the reference area is the product of 
the chord and a unit length of wing. 

• As the angle of attack increases, the flow separates, the airfoil stalls, and the lift coefficient 
decreases. 

• A wing of finite span produces trailing vortices that reduce the angle of attack and 
produce an induced drag. 

• The drag coefficient corresponding to the minimum induced drag is 

Cf Cf 
Co;= 'TT(b2/S) 'TTA 

where b is the wing span and Sis the plan form area of the wing. 
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Relating Pressure Distribution and C0 (§ 11. 1) 

11.1 f'"JJ-s A hypothetical pressure coefficient variation over a 
long (length normal to the page) plate is shown. What is the 
coefficient of drag for the plate in this orientation and with the 
given pressure distribution? Assume that the reference area is 
the surface area (one side) of the plate. 

-
---
-
-

PROBLEJ'vi 11.1 

11.2 1tlJos Flow is occurring past the square rod. The pressure 
coefficient values are as shown. From which direction do you 
think the flow is coming? (a) SW direction, (b) SE direction, 
(c) NW direction, or (d) NE direction. 
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of Fluid Mechanics, 17, p. 151 (March 1985). 

~Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 
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N 

s 
PROBU:M 11.2 

E 

11.3 The hypothetical pressure distribution on a rod of triangular 
(equilateral) cross section is shown, where flow is from left to 
right. That is, Cp is maximum and equal to + 1.0 at the leading 
edge and decreases linearly to zero at the trailing edges. The 
pressure coefficient on the downstream face is constant with a 
value of - 0.5. Neglecting skin friction drag, find CD for the rod. 

PRORU.M I 1.3 



-11.4 PLU"s The pressure distribution on a rod having a triangular 
(equilateral) cross section is shown, where flow is from left to 
right. What is C0 for the rod? 

11.5 ~s Fill in the blanks for the following two statements: 

A. is associated with the viscous shear-stress 
distribution. 

a. Form drag 

b. Friction drag 

B. _____ is associated with the pressure distribution 

a. Form drag 

b. Friction drag. 

Calculating Drag Force (§ 11.2) 

11.6 ,Z'u!s The coefficient of drag for a body (select all that 
apply): 

a. is dimensionless 

b. is usually determined by experiment 

c. depends on thrust 

d. depends on the body's shape 

e. requires an updraft 

11.7 ;ti;s Apply the grid method to each situation that 
follows. 

a. Use Eq. ( 11.5} on p. 409 in § 11.2, to predict the drag force 
in newtons for an automobile that is traveling at V = 60 mph 
on a smnmer day. Assume that the frontal area is 2m2

, and 
the coefficient of drag is C0 = 0.4. 

b. Apply Eq. ( 11.5) on p. 409 in § 11.2, to predict the speed 
in mph of a bicycle rider that is subject to a drag force of 
5lbf on a summer's day. Assume the frontal area of the 
rider is A = 0.5 m2

, and the coefficient of drag is C0 = 0.3. 

11.8 Using the first two sections in this chapter and using other 
resources, amwer the questions that follow. Strive for depth, 
clarity, and accuracy. Also, strive for effective use of sketches, 
words, and equations. 

a. What arc the four most important factors that influence 
the drag force? 

b. How are stress and drag related? 

c. What is form drag? What is friction drag? 
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11.9 Use information in§ 11.2 and 11.3 to find the coefficient of 
drag for each case described here. 

a. A sphere is falling through water, Re = 10,000. 

b. Air is blowing normal to a very long circular cylinder, 
andRe = 7,000. 

c. Wind is blowing normal to a billboard that is 20 ft wide 
by 10ft high. 

11.10 Estimate the wind force on a billboard 12ft high and 36ft 
\vide when a 60 mph wind (T = 60°F) is blowing normal to it. 

11.11 If Stokes's law is considered valid below a Reynolds 
number of 0.5, what is the largest raindrop that will fall in 
accordance with Stokes's Jaw? 

11.12 Determine the drag of a 2 ft X 4ft sheet of plywood held 
at a right angle to a stream of air (60°F, 1 atm) having a velocity 
of35 mph. 

11.13 Pds Estimate the drag of a thin square plate (3 m by 4 m) 
when it is towed through water (10°C). Assume a Lowing speed 
of about 5 m/s. 

a. The plate is oriented for minimum drag. 

b. The plate is oriented for maximum drag. 

11.14 A cooling tower, used for cooling recirculating water in a 
modern steam power plant, is 350ft high and 200ft average 
diameter. Estimate the drag on the cooling tower in a 150 mph 
wind (T = 60°F). 

PROBU\1 11.14 

11.15 Estimate the ~vind force that would act on you if you were 
standing on top of a tower in a 30 m/s (115 ft/s) wind on a day 
when the temperature was 20°C (68°F) and the atmospheric 
pressure was 96 kPa (14 psia). 

11.16 ~As shown, wind is blowing on a 55-gallon drum. 
Estimate the wind speed needed to tip the drum over. Work in S1 
units. The mass of the drum is 48 Ibm, the diameter is 22.5 in., 
and the height is 34.5 in. 

r-D~ 
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11.17 What drag is produced when a disk 0.75 m in diameter is 
submerged in water at l0°C and towed behind a boat at a speed 
of 4 m/s? Assume orientation of the disk so that maximum drag 
is produced. 

11.18 HVs A circular billboard having a diameter of 7 m is 
mounted so as to be freely exposed to the wind. Estimate the 
total force exerted on the structure by a wind that has a direction 
normal to the structure and a speed of 50 m/s. Assume T = l0°C 
and p = 101 kPa absolute. 

11.19 Consider a large rock situated at the bottom of a river and 
acted on by a strong current. Estimate a typical speed of the 
current that will cause the rock to move downstream along the 
bottom of the river. List and justify all your major assumptions. 
Shown all calculations and work in SI units. 

11.20 Compute the overturning moment exerted by a 35 m/s 
wind on a smokestack that has a diameter of 2.5 m and a height 
of 75 m. Assume that the air temperature is 20°C and that Pais 
99 kPa absolute. 

11.21 iiTVs What is the moment at the bottom of a flagpole 20 m 
high and 8 em in diameter in a 37.5 m/s wind? The atmospheric 
pressure is 100 kPa, and the temperature is 20°C. 

11.22 frJs A cylindrical anchor (vertical axis) made of concrete 
('Y = 15 kN/m3

) is reeled in at a rate of 1.0 m/s by a man in a 
boat. If the anchor is 30 em in diameter and 30 em long, what 
tension must be applied to the rope to pull it up at this rate? 
Neglect the weight of the rope. 

11.23 'W'- A Ping-Pong ball of mass 2.6 g and diameter 
38 mm is supported by an air jet. The air is at a temperature of 
18°C and a pressure of27 in-Hg. What is the minimum speed 
of the air jet? 

Nozzle 

t 
Air 

PROBLI::~l 11.23 

11.24 Estimate the moment at ground level on a signpost 
supporting a sign measuring 3 m by 2 m if the wind is normal to 
the surface and has a speed of 35 m/s and the center of the sign is 
4 m above the ground. Neglect the wind load on the post itself. 
Assume T = I 0°C and p = l atm. 

c-. 
11 .25 PLUS Windstorms sometimes blow empty boxcars off 
their tracks. The dimensions of one type of boxcar are shown. 
What minimum wind velocity normal to the side of the car 
would be required to blow the car over? 

t 
3.2 m 

(10.5 ft) 

0.91 m (3ft) 
===~~~======~~~~~ 

Track gage- 1.44 m (4 ft, 8 in) 

PROBLEM 11.25 

11.26 A semiautomatic popcorn popper is shown. After the 
unpopped corn is placed in screen S, the fan F blows air past the 
heating coils C and then past the popcorn. When the corn pops, 
its projected area increases; thus it is blown up and into a 
container. Unpopped corn has a mass of about 0.15 g per kernel 
and an average diameter of approximately 6 mm. When the corn 
pops, its average diameter is about 18 mm. Within what range 
of airspeeds in the chamber will the device operate properly? 

I t ' 
CC> 

I t ! 
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11.27 Hoerner (15) presents data that show that fluttering flags 
of moderate-weight fabric have a drag coefficient (based on the 
flag area) of about 0.14. Thus the total drag is about 14 times the 
skin friction drag alone. Design a flagpole that is 100ft high and 
is to fly an American flag 6ft high. Make your own assumptions 
regarding other required data. 

Power, Energy, and Rolling Resistance (§ 11.2) 

11.28 ~ How much power is required to move a spherical-shaped 
submarine of diameter 1.5 m through seawater at a speed 
of 10 knots? Assume the submarine is fully submerged. 

11.29 A blimp flies at 30 ft/s at an altitude where the specific 
weight of the air is 0.07 lbf/ft3 and the kinematic viscosity is 
l.3 X I 0-4 fr2!s. The blimp has a length-to-diameter ratio of 
5 and has a drag coefficient corresponding to the streamlined body 
in Fig. 11.9 (on p. 413 in § 1l.3 ). The diameter of the blimp is 80 ft. 
What is the power required to propel the blimp at this speed? 

11.30 iiTVs Estimate the energy in joules and kcal (food 
calories) that a runner supplies to overcome aerodynamic drag 
during a I 0 km race. The runner runs a 6:30 pace (i.e., each mile 
takes 6 minutes and 30 seconds). The product of frontal area and 
coefficient of drag is C0 A = 8 fe. (One "food calorie" is 
equivalent to 4186 J.) Assume an air density of 1.22 kg/m3

• 



11.31 m-s A cylindrical rod of diameter d and length L is 
rotated in still air about its midpoint in a horizontal plane. 
Assume the drag force at each section of the rod can be 
calculated assuming a two-dimensional flow with an oncoming 
velocity equal to the relative velocity component normal to the 
rod. Assume C1J is constant along the rod. 

a.. Derive an expression for the average power needed to 
rotate the rod. 

b. Calculate the power for w = 50 rad/s, d = 2 em, 
L = 1.5 m, p = 1.2 kg/m3

, and C0 = 1.2. 

PROBIFM 1131 

--.. 
11.32 P L u•s Estimate the additional power (in hp) required for 
the truck when it is carrying the rectangular sign at a speed of 
30 m/s over that required when it is traveling at the same speed 
but is not carrying the sign. 

PROBI E;\1 11.32 

11.33 Estimate the added power (in hp) required for the car 
when the cartop carrier is used and the car is driven at I 00 km/h 
in a 25 km/h headwind over that required when the carrier is not 
used in the same conditions. 

PROBLE~1 11.33 

11.34 ~s The resistance to motion of an automobile consists 
of rolling resistance and aerodynamic drag. The weight of an 
automobile is 3000 lbf, and it has a frontal area of 20 ftl. The drag 
coefficient is 0.30, and the coefficient of rolling friction is 0.02. 
Determine the percentage savings in gas mileage that one 
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achieves when one drives at 55 mph instead of 65 mph on a level 
road. Assume an air temperature of 60°F. 

11.35 Klrs A car coasts down a very long hill. The weight of the 
car is 2000 lbf, and the slope of the grade is 6%. The rolling 
friction coefficient is 0.0 I. The frontal area of the car is 18 ft2, and 
the drag coefficient is 0.29. The density of the air is 0.002 slugs /ft3. 
Find the maximum coasting speed of the car in mph. 

11.36 fNs An automobile with a mass of 1000 kg is driven up a 
hill where the slope is 3° (5.2% grade). The automobile is moving 
at 30 m/s. The coefficient of rolling friction is 0.02, the drag 
coefficient is 0.'1, and the cross-sectional area is 4 m2

. Find the 
power (in kW) needed for this condition. The air density is 
1.2 kglm3

• 

ll.371flrs A bicyclist is coasting down a hill with a slope of 4° 
into a headwind (measured with respect to the ground) of7 m/s. 
The mass of the cyclist and bicycle is 80 kg, and the coefficient 
of rolling friction is 0.02. The drag coefficient is 0.5, and the 
projected area is 0.5 m2

• The air density is 1.2 kglm3. Find the 
speed of the bicycle in meters per second. 

I 1.38 Ms A bicyclist is capable of delivering 275 W of power 
to the wheels. How fast can the bicyclist travel in a 3 m/s headwind 
if his or her projected area is 0.5 m 2

, the drag coefficient is 0.3, 
and the air density is 1.2 kglm3? Assume the rolling resistance 
is negligible. 

11.39 flifs Assume that the horsepower of the engine in the 
originall932 Fiat Ballilo (see Table 11.2 on p. 433 of§ 11 .1 0) 
was 40 bhp (brake horsepower) and that the maximum speed at 
sea level was 60 mph. Also assume that the projected area of the 
automobile is 30 ftl. Assume that the automobile is now fitted 
with a modern 220 bhp motor with a weight equal to the weight 
of the original motor; thus the rolling resistance is unchanged. 
What is the maximun1 speed of the "souped-up" Balillo at sea level? 

11.40 One way to reduce the drag of a blunt object is to install 
vanes to suppress the amount of separation. Such a procedure 
was used on model trucks in a wind-tunnel study by Kirsch and 
Bettes. For tests on a van-type truck, they noted that without 
vanes the C0 was 0.78. However, when vanes were installed 
around the top and side leading edges of the truck body (see the 
figure) , a 25% reduction in C0 was achieved. For a truck with a 
projected area of ll.36 m2

, what reduction in drag force will be 
effected by installation of the vanes when the truck travels at 
100 km/h? Assume standard atmospheric pressure and a 
temperature of 20°C. 

Vam:~ 

PROBLEM 11.40 
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11.41 For the truck of Prob. 11.40, assume that the total resistance 
is given by R = F0 + C, where Fn is the air drag and Cis the 
resistance due to bearing friction. If Cis constant at 350 N for the 
given truck, what fuel-savings percentage will be effected by the 
installation of the vanes when the truck travels at 100 km/h? 

Terminal Velocity (§ 11.4) 

11.42 Suppose you are designing an object to fall through 
seawater with a terminal velocity of exactly 1 m/s. What variables 
will have the most influence on the terminal velocity? List these 
variables and justify your decisions. 

11.43 ftVs As shown, a 35-cm-diameter emergency medicine 
parachute supporting a mass of 20 g is falling through air (20°C). 
Assume a coefficient of drag of C0 = 2.2, and estimate the 
terminal velocity V0• Use a projected area of (-rriY)/4. 

PROBLEM 11.43 

11.44 Consider a small air bubble (approximately 4 mm 
diameter) rising in a very tall column of liquid. Will the bubble 
accelerate or decelerate as it moves upward in the liquid? Will the 
drag of the bubble be largely skin friction or form drag? Explain. 

11.45 ~Determine the terminal velocity in water (T = 10°C) 
of a 8-cm baU that weighs 15 N in air. 

11.46 frits This cube is weighted so that it will fall with one 
edge down as shown. The cube weighs 22.2 N in air. What will 
be its terminal velocity in water? 

PROBLEM 11.46 

11.47 lfiVs A spherical rock weighs 30 N in air and 5 N in water. 
Estimate its terminal velocity as it falls in water (20°C). 

11.48 A spherical balloon 2 m in diameter that is used for 
meteorological observations is filled with helium at standard 
conditions. The empty weight of the balloon is 3 N. What velocity 
of ascent will it attain under st;mdard atmospheric conditions? 

11.49 A sphere 2 em in diameter rises in oil at a velocity of 
1.5 cm/s. What is the specific weight of the sphere if the oil 
density is 900 kglm3 and the dynamic viscosity is 0.096 N · s/m1? 

11.50 ms Estimate the terminal velocity of a 1.5-mm plastic 
sphere in oil. The oil has a specific gravity of 0.95 and a kinematic 
viscosity of 10 4 m2/s. The plastic has a specific gravity of 1.07. 
The volume of a sphere is given by -rrrY/ 6. 

11.51 To A 120-lbf (534 N) skydiver is free-falling at an altitude 
of 6500 ft ( 1980 m). Estimate the terminal velocity in mph for 
minimum and maximum drag conditions. At maximum drag 
conditions, the product of frontal area and coefficient of drag is 
C0 A = 8 tr (0.743 m2

). At mininmm drag conditions, C0 A = 1 if 
(0.0929 m2

). Assume the pressure and temperature at sea level are 
14.7 psia (101 kPa) and 60°F (IS0C). To calculate air properties, 
use the lapse rate for the U.S. standard atmosphere (see Chapter 3). 

+w 
PROBLEM 11.51 

11.52 What is the terminal velocity of a 0.5-cm hailstone in air 
that has an atmospheric pressure of96 kPa absolute and a 
temperature of 0°C? Assume that the hailstone has a specific 
weight of 6 kN/m3• 

11.53 ~sA drag chute is used to decelerate an airplane after 
touchdown. The chute has a diameter of 12 ft and is deployed 
when the aircraft is moving at 200 ft/ s. The mass of the aircraft 
is 20,000 Ibm, and the density of the air is 0.075 lbm/ft3• Find the 
initial deceleration of the aircraft due to the chute. 

11.54 A paratrooper and parachute weigh 900 N. What rate of 
descent will they have if the parachute is 7 m in diameter and the 
air has a density of 1.20 kg/m3? 

11.55 If a balloon weighs 0.10 N (empty) and is inflated with 
heliwn to a diameter of 60 em, what will be its terminal velocity 
in air (standard atmospheric conditions)? The helium is at 
standard conditions. 

11.56 A 2-cm plastic ball with a specific gravity of 1.2 is released 
from rest in water at 20°C. Find the time and distance needed to 
achieve 99% of the terminal velocity. Write out the equation of 
motion by equating the mass times acceleration to the buoyant 
force, weight, and drag force and solve by developing a computer 
program or using available software. Use Eq. (11.9) on p.414 in ~11.3, 

for the drag coefficient. [Hint: The equation of motion can be 
expressed in the form 

dv = - (CoRe) l8f.L v + Ph - Pw 
dt 24 Pbd 2 Pb g 

where Pb is the density of the ball and Pw is the density of the 
water. This form avoids the problem of the drag coefficient 
approaching infinity when the velocity approaches zero because 
C0 Re/24 approaches unity as the Reynolds number approaches 
zero. An "if-statement" is needed to avoid a singularity in 
Eq. (II. 9) when the Reynolds number is zero.] 



Theory of Lift (§ 11.8) 

11.57 From the following list, select one topic that is interesting 
to you. Then, use references such as the internet to research your 
topic and prepare one page of written documentation that you 
could use to present your topic to your peers. 

a. Explain how an airplane works. 

b. Describe the aerodynamics of a flying bird. 

c. Explain how a propeller produces thrust. 

d. Explain how a kite flies. 

11.58 Apply the grid method to each situation that follows. 

a. Usc Eq. ( 11.17), on p. 424 in § 11.8, to predict the lift 
force in newtons for a spinning baseball. Use a coefficient 
of lift of CL = 1.2. 1 he speed of the baseball is 90 mph. 
Calculate area using A = -rrr2

, where the radius of a 
baseball is ,. = 1.45 in. Assume a hot summer day. 

b. Use Eq. (11.17), on p. 424 in § 11.8, to predict the size 
of wing in mm2 needed for a model aircraft that has a 
mass of 570 g. Wing size is specified by giving the wing 
area (A) as viewed by an observer looking down on the 
wing. Assume the airplane is traveling at 80 mph on a hot 
summer day. Use a coefficient of lift of CL = 1.2. Assume 
straight and level flight so lift force balances weight. 

11.59 Using§ 11.8 and other resources, answer the following 
questions. Strive for depth, clarity, and accuracy. Also, use 
effective sketches, words, and equations. 

a. What is circulation? Why is it important? 

b. What is lift force? 

c. What variables influence the magnitude of the lift force? 

11.60 rrvs 1he baseball is thrown from west to cast with a spin 
about its vertical axis as shown. Under these conditions it will 
"break" toward the (a) north, (b) south, or (c) neither. 

l'lan VICW 

PROm I'M 11.60 

11.61 Analyses of pitched baseballs indicate that CL of a rotating 
baseball is approximately three times that shown in Fig. 11.18 

(on p. 425 in §11.8). This greater CL is due to the added 
circulation caused by the seams of the ball. What is the lift of a 
ball pitched at a speed of 85 mph and with a spin rate of 35 rps? 
Also, how much will the ball be deflected from its original path 
by the time it gets to the plate as a result of the lift force? Note: 
lbe mound-to-plate distance is 60 ft, the weight of the baseball is 
5 oz, and the circumference is 9 in. Assume standard atmospheric 
conditions, and assume that the axis of rotation is vertical. 

Lift and Drag on Airfoils (§ 11. 9) 

11.62 As shown, a glider traveling at a constant velocity will 
move along a straight glide path that has an angle 6 with respect 
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to the horiwntal. The angle 6, also called the glide ratio, is given 
by 6 = (C0 /CL). Use basic principles to prove the preceding 

statement. 

·-------1~ 
-------

PROBI.L\.1 11.62 

11.63 frlfs A sphere of diameter 100 mm, rotating at a rate 
of 286 rpm, is situated in a stream of water (l5°C) that has a 

velocity of 1.5 m/s. Determine the lift force (in newtons) on the 
rotating sphere. 

11.64 An airplane wing having the characteristics shown in 
fig. 11.24 (on p. 429 in ~ 11.9) is to be designed to lift 1800 lbf 

when the airplane is cruising at 200 ft/s with an angle of attack 
of 3°. If the chord length is to be 3.5 ft, what span of wing is 

required? Assume p = 0.0024 slugs/ftl. 

11.65 A boat of the hydrofoil type has a lifting vane with an 
aspect ratio of 4 that has the characteristics shown in Fig. 11.24 
(on. p. 429 in § 11.9). 1f the angle of attack is 4° and the weight of 
the boat is 5 tons, what foil dimensions are needed to support the 
boat at a velocity of 60 fps? 

11.66 One wing (wing A) is identical (same cross section) to 

another wing (wing B) except that wing B is twice as long as 
wing A. 'Ihcn for a given wind speed past both wings and with 
the same angle of attack, one would expect the total lift of 
wing B to be (a) the same as that of wing A, (b) less than that 
of wing A, (c) double that of wing A, or (d) more than double 
that of wing A. 

11.67 What happens to the value of the induced drag coefficient 
for an aircraft that increases speed in level flight? (a) it increases, 
(b) it decreases, (c) it does not change. 

11.68 Ms The total drag coefficient for an airplane wing 
is C0 = C00 + Cf 1-rr A, where C00 is the form drag coefficient, 
CL is the lift coefficient and A is the aspect ratio of the wing. The 
power is given by P = F0 V = l/2 CoP V 3S. For level flight the lift 
is equal to the weight, so W/S = l/2pCL V2

, where W/S is called 
the "wing loading:• Find an expression for V for which the power 
is a minimum in terms ofVMmPow<r = f(p, 1\, W/S,Coo). and find 
the V for minimum power when p = 1 kg!m3

, 1\ - 10, W/S = 
600 N/m2

, and C0 = 0.02. 

11.69 The airstream affected by the wing of an airplane can be 
considered to be a cylinder (stream tube) with a diameter equal 
to the wingspan, b. Far downstream from the wing, the tube is 
deflected through an angle 6 from the original direction. Apply 
the momentum equation to the stream tube between sections 1 
and 2 and find the lift of the wing as a function of b, p, V, and e. 
Relating the lift to the lift coefficient, find ll as a function of b, 
CL, and wing area, S. Using the relation for induced drag, 
FL>r = F1.612, show that Cm = Cl!-rrA, where A is the wing 

aspect ratio. 
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PROBLEM 11.69 

11.70 The landing speed of an airplane is 8 m/s faster than its 
stalling speed. The lift coefficient at landing speed is 1.2, and the 
maximum lift coefficient (stall condition) is 1.4. Calculate both 
the landing speed and the stalling speed. 

11.71 An airplane has a rectangular-planform wing that has 
an elliptical spanwise lift distribution. The airplane has a mass 
of 1000 kg, a wing area of 16m2

, and a wingspan of 10m, 
and it is flying at 50 m/s at 3000 m altitude in a standard 
atmosphere. If the form drag coefficient is 0.0 I, calculate the 
total drag on the wing and the power (P = F0 V) necessary to 
overcome the drag. 

11.72 The figure shows the relative pressure distribution for a 
Gottingen 387-FB lifting vane ( 19) when the angle of attack is 8°. 
If such a vane with a 20-cm chord were used as a hydrofoil at a 
depth of 70 em, at what speed in l0°C freshwater would 

2.0 

-1.0 

+0.5 

+ 1.0 

c 

cp for upper "de 
ofhfling vane 

1------ 20 em - ----1 

(~ for lower side 
of lifting vane 
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cavitation begin? Also, estimate the lift per w1it of length of foil 
at this speed. 

11.73 Consider the distribution of Cp as given for the wing 
section in Prob. 11.72. For this distribution of CP, the lift 
coefficient CL will fall within which range of values: 
(a) 0 < CL < 1.0; (b) 1.01 < Ct.< 2.0; (c) 2.01 < cl < 3.0; or 
(d) 3.0 <Ct.? 

11.74 The total drag coefficient for a wing with an elliptical lift 
distribution is C0 = C00 + Clt 11' A, where A is the aspect ratio. 
Derive an expression for CL that corresponds to mininmm C0 /CL 
(maximum CL/CD) and the corresponding C1./C(). 

11.75 ifrV's A glider at 800 m altitude has a mass of 180 kg and 
a wing area of20 m2

• The glide angle is 1.7°, and the air density 
is 1.2 kg/m3

. If the lift coefficient of the glider is 0.83, how many 
minutes will it take to reach sea level on a calm day? 

11.76 The wing loading on an airplane is defined as the aircraft 
weight divided by the wing area. An airplane with a wing loading 
of 2000 N/m 2 has the aerodynamic characteristics given by 
Fig. 11.25 (on p. 431 in § 11.9). Under cruise conditions the lift 
coefficient is 0.3. If the wing area is 10 m2

, find the drag force. 

11.77 An ultralight airplane has a wing with an aspect ratio of 5 
and with lift and drag coefficients corresponding to Fig. 11.24 
(on p. 429 in §11.9). The planform area of the wing is 200 tr. 
The weight of the airplane and pilot is 400 lbf. The airplane flies 
at 50ft/sin air with a density of 0.002 slugs/ft3• Find the angle of 
attack and the drag force on the wing. 

11 .78 Your objective is to design a human-powered aircraft 
using the characteristics of the wing in Fig. 11.24 (on p. 429 in 
§ 11.9). The pilot weighs 130 pounds and is capable of outputting 
1/2 horsepower (225 ft-lbf/s) of continuous power. The aircraft 
without the wing has a weight of 40 lbf, and the wing can be 
designed with a weight of0.12lbf per square foot of wing area. 
The drag consists of the drag of the structure plus the drag of the 
wing. The drag coefficient of the structure, CIXJ is 0.05, so that the 
total drag on the craft will be 

F0 = (Cv, + C0)~pV~S 
where C0 is the drag coefficient from Fig. 11.24 (on p. 429 in 
§11.9). The power required is equal to F0 V0 • The air density is 
0.00238 slugs/frl. Assess whether the airfoil is adequate, and if it 
is, find the optimum design (wing area and aspect ratio). 



COMPRESSIBLE 
FLOW 

FIGURE 12.1 

The de Laval nozzle is used to accelerate a gas to 
supersonic speeds. This nozzle is used in turbines, rocket 
engines, and supersonic jet engines. 

This particular nozzle was designed by Andrew Donelick 
under the guidance of Dr. John Crepeau, Professor of 
'v\echonicol Engineering at the University of Idaho. The 
nozzle was built by Russ Porter, also at the University of 
1doho. !Photo by Donald Elger.) 

.. :·· .. j Chapter Road Map j 

The compressibility effects in gas flows become 
significant when the Mach number exceeds 0.3. The 
performance of high-speed aircraft, the flow in rocket 
nozzles, and the reentry mechanics of spacecraft 
require inclusion of compressible flow effects. This 
chapter introduces topics in compressible flow. 

[L;arning Objectives j 

STUDENTS WILL BE ABLE TO 

• Describe the propagation of a sound wove (§ 12. 11 
• Explain the significance of the Mach number.(§ 12.1) 
• Calculate the speed of sound and Mach number. (§ 12.1) 

• Describe how pressure and temperature vary for flow along 
a streamline in compress1ble flow. (§ 12.2) 

• Describe a normal shock wove. (§ 12.3) 
• Calculate property change across a normal shock wave. 

(§ 12.3) 

• In a de Laval nozzle, describe how flow properties vary. 
Also, calculate the moss flow rote and Mach number. 
(§ 12 4). 

12. 1 Wave Propagation in Compressible Fluids 

Wave propagation in a fluid is the mechanism through which the presence of boundaries is 
communicated to the flowing fluid. In a liquid the propagation speed of the pressure wave 
is much higher than the flow velocities, so the flow has adequate time to adjust to a change 
in boundary shape. Gas flows, on the other hand, can achieve speeds that are comparable to 
and even exceed the speed at which pressure disturbances are propagated. In this situation, 
with compressible fluids, the propagation speed is an important parameter and must be 
incorporated into the flow analysis. In this section it will be shown how the speed of an 

445 
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FIGURE 12.2 

Section view of o sound 
wove. 

p-tlp ~ 
!J.V- c 

P" ilp p 

FIGURE 12.3 

Flow relative to the sound 
wove. 

infinitesimal pressure disturbance can be evaluated and what its significance is to the flow 
of a compressible fluid. 

Speed of Sound 
Everyone has had the experience during a thunderstorm of seeing lightning flash and hearing 
the accompanying thunder an instant later. Obviously, the sound was produced by the light­
ning, so the sound wave must have traveled at a finite speed. If the air were totally incompress­
ible (if that were possible), the sound of thunder and the lightening flash would be simultane­
ous, because all disturbances propagate at infinite speed through incompressible media.* It is 
analogous to striking one end of a bar of incompressible material and recording instanta­
neously the response at the other end. Actually, all materials are compressible to some degree 
and propagate disturbances at finite speeds. 

The speed of sound is defined as the rate at which an infinitesimal disturbance (pressure 
pulse) propagates in a medium with respect to the frame of reference of that medium. Actual 
sound waves, comprised of pressure disturbances of finite amplitude, such that the ear can 
detect them, travel only slightly faster than the "speed of sound:' 

To derive an equation for the speed of sound, consider a small section of a pressure wave 
as it propagates at velocity c through a medium, as depicted in Fig. 12.2. As the wave travels 
through the gas at pressure p and density p, it produces infinitesimal changes of t:..p, t:..p, and t:.. V. 
These changes must be related through the laws of conservation of mass and momentum. Se­
lect a control surface around the wave and let the control volun1e travel with the wave. The 
velocities, pressures, and densities relative to the control volume (which is assumed to be very 
thin) are shown in Fig.l2.3. Conservation of mass in a steady flow requires that the net mass 
flux across the control surface be zero. Thus 

-peA + (p + t:..p)(c- t:..V)A = 0 (12.1) 

where A is the cross-sectional area of the control volume. Neglecting products of higher­
order terms (t:..pt:.. V) and dividing by the area reduces the conservation-of-mass equation to 

- pt:..V + ct:.. p = 0 (12.2] 

The momentum equation for a nonaccelerating steady flow, 

'f' L F = mo vo - m VI p+ !J.p 1 I p 
I I 
I I 

_ 1 1 - c applied to the control volume containing the pressure wave gives 
c-!J.V : : 

pup l ~P (p + t:..p)A - pA = (-c)( - pAc) + ( - c + t:.. V)pAc 
Control volume 

(12.3) 

(12.41 

where the direction to the right is defined as positive. The momentum equation reduces to 

t:..p = pet:. V (12.51 

Substituting the expression fort:.. Vobtained from Eq. (12.2) into Eq. (12.5) gives 

2 t:..p 
c =-

~p 
(12.6) 

• Actually, the thunder would be heard before the lightning was seen, because light also travels at a finite, though very 
high, speed! However, this would violate one of the basic tenets of relativity theory. No medium can be completely 
incompressible and propagate disturbance~ exceeding the speed of light. 
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which shows how the speed of propagation is related to the pressure and density change across 
the wave. It is immediately obvious from this equation that if the flow were ideally incompress­
ible, ~p = 0, the propagation speed would be infinite, which confirms the argument presented 
earlier. 

Equation (12.6) provides an expression for the speed of a general pressure wave. The 
sound wave is a special type of pressure wave. By definition, a sound wave produces only 
infinitesimal changes in pressure and density, so it can be regarded as a reversible process. 
There is also negligibly small heat transfer, so one can assume the process is adiabatic. A 
reversible, adiabatic process is an isentropic process; thus the resulting expression for the 
speed of sound is 

(12.7) 

This equation is valid for the speed of sound in any substance. However, for many substances 
the relationship between p and p at constant entropy is not very well known. 

To reiterate, the speed of sound is the speed at which an infinitesimal pressure disturbance 
travels through a fluid. Waves of finite strength (finite pressure change across the wave) travel 
faster than sound waves. Sound speed is the minimum speed at which a pressure wave can 
propagate through a fluid. 

For an isentropic process in an ideal gas, the following relationship exists between pres­
sure and density ( 1) 

p 
k = constant 
p 

(1 2.8) 

where k is the ratio of specific heats; that is, the ratio of specific heat at constant pressure to that 
at constant volume. 

(12.9) 

The values of k for some commonly used gases are given in Table A.2. Taking the derivative of 
Eq. (12.8) to obtain aptap[s results in 

However, from the ideal gas law, 

so the speed of sound is given by 

ap j = kp 
ap s P 

c = VfRf 

(12.10) 

(12.11) 

Thus the speed of sound in an ideal gas varies with the square root of the tempera­
ture. Using this equation to predict sound speeds in real gases at standard conditions 
gives results very near the measured values. Of course, if the state of the gas is far re­
moved from ideal conditions (high pressures, low temperatures), then using Eq. (12.11) 
is nol valid. 
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Example 12.1 illustrates the calculation of sound speed for a given temperature. 

EXAMPLE 12.1 Generate Ideas and Make a Plan 

Speed of Sound Calculation Apply the speed of sound equation, Eq. (12.11), with T = 288 K. 

Define the Situation 

Air is at l5°C. 

Assume: Air is an ideal gas. 

fake Action (f.xecute the Plan) 

c = v'kRT 
c = [(1.4)(287 J/kg K)(288 K )] 112 = j340 m/s 1 

Air: Table A.2: R = 287 J/kg K, and k = 1.4 
Review the Solution and Lhe Process 

State the Goal 

Calculate the speed of sound. 

Knowledge. The absolute temperature must always be used in 
speed of sound equation. 

FIGURE 12.4 

Propagation of a sound 
wove by on airfoil. 

It is possible to demonstrate, in a very simple way, the significance of sound in a com­
pressible flow. Consider the airfoil traveling at speed V in Fig. 12.4. As this airfoil travels 
through the fluid, the pressure disturbance generated by the airfoil's motion propagates as 
a wave at sonic speed ahead of the airfoil. These pressure disturbances travel a consider­
able distance ahead of the airfoil before being attenuated by the viscosity of the fluid, and 
they "warn" the upstream fluid that the airfoil is coming. In turn, the fluid particles begin 
to move apart in such a way that there is a smooth flow over the airfoil by the time it 
arrives. If a pressure disturbance created by the airfoil is essentially attenuated in time LH 
then the fluid at a distance ~t(c - V) ahead is alerted to prepare for the airfoil's impend­
ing arrival. 

\ \ 
,A \ 

c '~ Wave front 

What happens as the speed of the airfoil is increased? Obviously, the relative velocity c- \' 
is reduced, and the upstream fluid has less time to prepare for the airfoil's arrival. The flow field 
is modified by smaller streamline curvatures, and the form drag on the airfoil is increased. If 
the airfoil speed increases to the speed of sound or greater, the fluid has no warning whatso­
ever that the airfoil is coming and cannot prepare for its arrival. Nature, at this point, resolves 
the problem by creating a shock wave that stands off the leading edge, as shown in Fig. 12.5. fu 
the fluid passes through the shock wave near the leading edge, it is decelerated to a speed less 
than sonic speed and therefore has time to divide and flow around the airfoil. Shock waves will 
be treated in more detail in Section 12.3. 
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Another approach to appreciating the significance of sound propagation in a compress­
ible fluid is to consider a point source of sound moving in a quiescent fluid, as shown in 
Fig. 12.6. The sound source is moving at a speed less than the local sound speed in Fig. l2.6a 
and faster than the local sound speed in Fig. l2.6b. At time t :;::: 0 a sound pulse is generated 
and propagates radially outward at the local speed of sound. At time t 1 the sound source has 
moved a distance Yt1, and the circle representing the sound wave emitted at t = 0 has a radius 
of ct1• The sound source emits a new sound wave at t1 that propagates radially outward. At 
time t2 the sound source has moved to Vt2, and the sound waves have moved outward as 
shown. 

When the sound source moves at a speed less than the speed of sound, the sound waves 
form a family of nonintersecting eccentric circles, as shown in Fig. 12.6a. For an observer sta­
tioned at A the frequency of the sound pulses would appear higher than the emitted frequency 
because the sound source is moving toward the observer. In fact, the observer at A will detect 
a frequency of 

f:;::: fo/(1 - VIc) 

where fo is the emitting frequency of the moving sound source. This change in frequency is 
known as the Doppler effect. 

When the sound source moves faster than the local sound speed, the sound waves inter­
sect and form the locus of a cone with a half-angle of 

6 = sin- 1(c/V) 

The observer at A will not detect the sound source until it has passed. In fact, only an observer 
within the cone is aware of the moving sound source. 

(a) V<c (b)V >c 

FIGURE 12.5 

Standing shock wove 
in front of on airfoil. 

FIGURE 12.6 

Sound field generated by 
o moving point source of 
sound. 
(o) Speed of sound source 
less than local sound 
source. 
(b) Speed of sound source 
greater than local sound 
force. 
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EXAMPLE 12.2 

In view of the physical arguments given, it is apparent that an important parameter relat­
ing to sound propagation and compressibility effects is the ratio VIc. This parameter, already 
introduced in Chapter l , was first proposed by Ernst Mach, an Austrian scientist, and bears his 
name. The Mach number is defined as 

M = 
v 
c 

(12.12) 

The conical wave surface depicted in Fig. 12.6b is known as a Mach wave and the conical half­
angle as the Mach angle. 

v CHECKPOINT PROBLEM 12.1 

Consider two airplanes, A and B, flying at identical speeds. Airplane B is at a higher altitude where 
the atmospheric pressure and temperature are lower. Which statement is correct? 

a. (Mach number of plane A) > (Mach number of plane B) 

b. (Mach number of plane A) < (Mach number of plane B) 

c. (Mach number of plane A) = (Mach number of plane B) 

Besides the qualitative argument presented for the Mach number, it is also recalled from 
Chapter 8 that the Mach number is the ratio of the inertial to elastic forces acting on the fluid. 
If the Mach number is small, the inertial forces are ineffective in compressing the fluid, and the 
fluid can be regarded as incompressible. 

Compressible flows are characterized by their Mach number regimes as follows: 

M < 1 

M = 1 

M > l 

subsonic flow 

transonic flow 

supersonic flow 

Flows with Mach numbers exceeding 5 are sometimes referred to as hypersonic. Airplanes 
designed to travel near sonic sp eeds and faster are equipped with Mach meters because of the 
significance of the Mach number with respect to aircraft performance. 

Evaluation of the Mach number of an airplane flying at altitude is demonstrated in 
Example I 2.2. 

State the Goal 

Calculating the Mach Number of an Aircraft Calculate the Mach number of the aircraft. 

Problem Statement 

An F-16 fighter is flying at an altitude of 13 km with a speed 
of 470 m/s. Assume a U.S. standard atmosphere, and calculate 
the Mach number of the aircraft. 

Define the Situation 

A fighter jet is flying at 470 m/s at an altitude of 13 km. 

Assumptions: The temperature variation is described by 
the U.S. standard atmosphere. 

Properties: From Table A.2: Rw = 287 J/kg K, and k = 1.4. 

Generate Ideas and Make a Plan 

I. Find the temperature at 13 km using Eq. (3.16). 

2. Calculate the speed of sound. 

3. Calculate the Mach number. 

Take Action (Execute the Plan) 

1. Temperature at 13 km 

T = T0 - az 

T = 296 - 5.87 K/km X 13 km = 220 K 
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2. Speed of sound 
Review the Solution and the Process 

c = v'kRT = Yl.4 X 287 X 220 = 297 m/s 

3. Mach number 
Discussion. The aircraft is flying at supersonic speed. 

M = ~ = 470 m/s = r}5sl 
c 297 m /s L..:.:::J 

12.2 Mach Number Relationships 

In this section it will be shown how fluid properties vary the Mach number in compressible 
flows. Consider a control volume bounded by two streamlines in a steady compressible flow, as 
shown in fig.l2.7. Applying the energy equation, to this control volume, gives 

(12.13) 

The elevation terms (z1 and z2) can usually be neglected for gaseous flows. If the flow is adia­
batic (Q = 0), the energy equation reduces to 

. ( v~) . ( v~) m1 h1 + 2 = mz hz + 2 

From the principle of continuity, the mass flow rate is constant, m1 = m2, so 

v~ V 2 

h, +- = hz + _ 2 
2 2 

Because positions l and 2 are arbitrary points on the same streamline, one can say that 

vz 
h + - = constant along a streamline in an adiabatic flow 

2 

(12.14) 

(12.15) 

(12.16) 

The constant in this expression is called the total enthalpy, h,. It is the enthalpy that would 
arise if the flow velocity were brought to zero in an adiabatic process. Thus the energy equation 
along a streamline under adiabatic conditions is 

vz 
h +-= h 2 I 

(12.17) 

If h, is the same for all streamlines, the flow is homenergic. 

FIGURE 12.7 

Control volume enclosed 
by streamlines. 
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EXAMPLE 12.3 

It is instructive at this point to compare Eq. ( 12.17) with the Bernoulli equation. 
Expressing the specific enthalpy as the sum of the specific internal energy and p/p, Eq. (12.17) 
becomes 

P v2 
u + - + - = constant 

p 2 

If the fluid is incompressible and there is no heat transfer, the specific internal energy is 
constant and the equation reduces to the Bernoulli equation (excluding the pressure change 
due to elevation change). 

Temperature 

The enthalpy of an ideal gas can be written as 

h = cpT (12.18) 

where cP is the specific heat at constant pressure. Substituting this relation into Eq. (12.17) and 
dividing by cp T, results in 

v2 Tt 
+--=-

2cpT T 
(12.19) 

where T1 is the tota1 temperature. From thermodynamics (1) it is known for an ideal gas that 

Cp- c.= R (12.20) 

or 
R kR 

k-1=-=-
c. Cp 

Therefore 
kR 

c =--
p k- 1 

(12.21) 

Substituting this expression for cP back into Eq. (12.19) and realizing that kRT is the speed of 
sound squared results in the total temperature equation 

( 
k- 1 ) T1 = T 1 +-

2
-M2 (12.22) 

1be temperature Tis called the static temperature-the temperature that would be reg­
istered by a thermometer moving with the flowing fluid. Total temperature is analogous to 
total enthalpy in that it is the temperature that would arise if the velocity were brought to zero 
adiabatically. If the flow is adiabatic, the total temperature is constant along a streamline. If 
not, the total temperature varies according to the amount of thermal energy transferred. 

Example 12.3 illustrates the evaluation of the total temperature on an aircraft's surface. 

temperature. Estimate the surface temperature, taking 
k = 1.4. 

Total Temperature Calculation 

Problem Statement 

An aircraft is flying at M = 1.6 at an altitude where 
the atmospheric temperature is - 50°C. The temperature 
on the aircraft's surface is approximately the total 

Define the Situation 

An aircraft is flying at M = 1.6. The static temperature is 50°C. 

State the Goal 

Calculate the total temperature. 



Generate Ideas and Make a Plan 

This problem can be visualized as the aircraft being stationary 
and an airstream with a static temperature of-50°C flowing 
past the aircraft at a Mach number of 1.6. 

I. Convert the local static temperature to degrees K. 

2. Use total temperature equation, Eq. (12.22). 
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Take Action (f.xecute the Plan) 

I. Static temperature in absolute temperature units 

T = 273 - 50 = 223 K 

2. Total temperature 

T, = 223[1 + 0.2{1.6)2
] = [337Kor64°C J 

If the flow is isentropic, thermodynamics shows that the foUowing relationship for pressure 
and temperature of an ideal gas between two points on a streamline is valid {1): 

PI __ ( r 1 )kt(k 1) 

P2 T2 
(12.23) 

Isentropic flow means that there is no heat transfer, so the total temperature is constant along 
the streamline. Therefore 

T, = r{ 1 + k ~ 1 M~) = T2 ( 1 + k ~ l M~) (12.24) 

Solving for the ratio T1/T2 and substituting into Eq. ( 12.23) shows that the pressure variation 
with the Mach number is given by 

~ = { l + [(k - l )/2 ]Mi }kt(k-1) 
P2 1 + [(k- I) /2] Mi 

(12.25) 

l I _ ' 

In the ideal gas law used to derive Eq. {12.23)~ absolute pressures must always be used in caf-
culations with these equations. 

The total pressure in a compressible flow is given by 

p, = p(l + k ~ 1 M2r(k I) (12.26) 

which is the pressure that would result if the flow were decelerated to zero speed reversibly and 
adiabatically. Unlike total temperature, total pressure may not be constant along streamlines in 
adiabatic flows. For example, it will be shown that flow through a shock wave, although adiabatic, 
is not reversible and, therefore, not isentropic. The total pressure variation along a streamline in 
an adiabatic flow can be obtained by substituting Eqs. (12.26) and {12.24) into Eq. {12.25) to give 

~ = ~{I + [(k- 1)/2] Mf }k/(k I)= PI (T2)kl(k-1) (12.27} 

p,, P2 I + f(k- 1)/2 ]M~ P2 T1 

Unless the flow is also reversible and Eq. {12.23) is applicable, the total pressures at points 1 and 
2 will not be equal. However, if the flow is isentropic, total pressure is constant along streamlines. 

Density 

Analogous to the total pressure, the total density in a compressible flow is given by 

( 
k - 1 )ll(k I) 

p, = p 1 + -2-M2 (12.28) 

where p is the local or static density. If the flow is isentropic, then p1 is a constant along streamlines, 
and Eq. {12.28) can be used to determine the variation of gas density with the Mach number. 
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EXAMPLE 12.4 

In literature dealing with compressible flows, one often finds reference to "stagnation" con­
ditions-that is, "stagnation temperature" and "stagnation pressure:' By definition, stagnation 
refers to the conditions that exist at a point in the flow where the velocity is zero, regardless of whether 
or not the zero velocity has been achieved by an adiabatic, or reversible, process. For example, if one 
were to insert a Pi tot -static tube into a compressible flow, strictly speaking one would measure stag­
nation pressure, not total pressure, because the deceleration of the flow would not be reversible. In 
practice, however, the difference between stagnation and total pressure is insignificant. 

Kinetic Pressure 
The kinetic pressure, q = p V2/2, is often used, as seen in Chapter 11 , to calculate aerodynamic 
forces with the use of appropriate coefficients. It can also be related to the Mach number. Using 
the ideal gas law to replace p gives 

1 pV2 

q= --
2 RT 

Then using the equation for the speed of sound, Eq. (12.11), results in 

k 
q = - pM2 

2 

where p must always be an absolute pressure because it derives from the ideal gas law. 

(12.29) 

(12.30) 

The use of the equation for kinetic pressure to evaluate the drag force is shown in 
Example 12.4. 

Generate Ideas and Make a Plan 

Calculating the Drag Force on a Sphere The drag force on a sphere is F0 = qC0 A. 

Problem Statement 

The drag coefficient for a sphere at a Mach number of 0.7 is 
0.95. Determine the drag force on a sphere 10 mm in diameter 
in air if p = 101 kPa. 

Define the Situation 

A sphere is moving at a Mach number of 0.7 in air. 

Properties: From Table A.2, k,1, = 1.4. 

State the Goal 

Find the drag force (in newtons) on the sphere. 

1. Calculate the kinetic pressure q from Eq. (12.30). 

2. Calculate the drag force. 

Take Action (Execute the Plan) 

1. Kinetic pressure 

q = ~ pM 2 = ~ (101 kPa}(0.7)2 = 34.6 kPa 
2 2 

2. Drag force: 

F0 = C0q(~)D2 = 0.95(34.6 x 1 03~2)(~)<0.0 1 m)
2 

= 12.58 N I 

The Bernoulli equation is not valid for compressible flows. Consider what would happen 
if one decided to measure the Mach number of a high-speed air flow with a Pitot-static tube, 
assuming that the Bernoulli equation was valid. Assume a total pressure of 180 kPa and a static 
pressure of 100 kPa were measured. By the Bernoulli equation, the kinetic pressure is equal to 
the difference between the total and static pressures, so 

1 
zpV2 = p,- p 

Solving for the Mach number, 

or 
k 
-pM2 = p,- p 
2 
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and substituting in the measured values, one obtains 

M = 1.07 

The correct approach is to relate the total and static pressures in a compressible flow using 
Eq. (12.26). Solving that equation for the Mach number gives 

(12.31) 

and substituting in the measured values yields 

M = 0.96 

Thus applying the Bernoulli equation would have led one to say that the flow was supersonic, 
whereas the flow was actually subsonic. In the limit of low velocities (p1/ p ~ 1 ), Eq. (12.31) 
reduces to the expression derived using the Bernoulli equation, which is indeed valid for very 
low (M <{ 1) Mach numbers. 

It is instructive to see how the pressure coefficient at the stagnation (total pressure) condi­
tion varies with Mach number. The pressure coefficient is defined by 

Using Eq. (12.30) for the kinetic pressure enables one to express Cp as a function of the Mach 
number and the ratio of specific heats. 

C = - 1 + --M2 - 1 
2 [( k- 1 ) k/(k - 1} J 

P kM2 2 

The variation of Cp with Mach number is shown in Fig. 12.8. At a Mach number of zero, the 
pressure coefficient is unity, which corresponds to incompressible flow. The pressure coeffi­
cient begins to depart significantly from unity at a number of about 0.3. From this observation 
it is inferred that compressibility effects in the flow field are unimportant for Mach numbers 
less than 0.3. 

... ,~ 
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Mach number, M 

12.3 Normal Shock Waves 

Normal shock waves are wave fronts normal to the flow across which a supersonic flow is 
decelerated to a subsonic flow with an attendant increase in static temperature, pressure, and 
'density. The purpose of this section is to develop relations for property changes across normal 
shock waves. 

FIGURE 12.8 

Variation of the pressure 
coefficient with Mach 
number. 
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FIGURE 12.9 

Control volume enclosing 
a normal shock wove. 

Change in Flow Properties across a Normal Shock Wave 

The most straightforward way to analyze a normal shock wave is to draw a control surface 
around the wave, as shown in Fig. 12.9, and write down the continuity, momentum, and 
energy equations. 

I 
I 

vl--L. 
I 

P1 I 

Pi I 
T1 I 

I 
l_ 

- -1 

I 
I -r-v2 
I 
1 P2 
I P2 
I T2 

~ ContrOl volume 

The net mass flux into the control volume is zero because the flow is steady. Therefore 

(12.32) 

where A is the cross-sectional area of the control volume. Equating the net pressure forces 
acting on the control surface to the net efflux of momentum from the control volume gives 

PI VIA(- VI + V2) = (pi - P2)A 

The energy equation can be expressed simply as 

T,, = T1, 

(12.33) 

(12.34/ 

because the temperature gradients on the control surface are assumed negligible, and thus heat 
transfer is neglected (adiabatic). 

Using the equation for the speed of sound, Eq. ( 12.11), and the ideal gas law, the continu­
ity equation can be rewritten to include the Mach number as follows: 

P1 .~ P2 .~ -M1 vkRT1 = -M2 vkRT2 RTI RT2 
(12.35) 

The Mach number can be introduced into the momentum equation in the following way: 

P2 v~ - P1 vf = P1 - P2 

PI 2 P2 2 P1 + -v~ = P2 + - v2 (12.36, 
RT1 RT2 

P1(1 + kMi) = P2(1 + kMD 

Rearranging Eq. ( 12.36) for the static-pressure ratio across the shock wave results in 

p2 (1 + kMT) 

P1 (1 + kMD 
(12.37) 

As will be shown later, the Mach number of a normal shock wave is always greater than unit) 
upstream and less than unity downstream, so the static pressure always increases across a 
shock wave. 

Rewriting the energy equation in terms of the temperature and Mach number, as done in 
Eq. (12.22), by utilizing the fact that T1/T11 = 1, yields the static temperature ratio across the 
shock wave. 

T2 {1 + f(k- l )/2]Mi} 

Tl {1 + f(k- l )/2J MU 
(12.38' 
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Substituting Eqs. (12.37) and (12.38) into Eq. (12.35) gives the following relationship for the 
Mach numbers upstream and downstream of a normal shock wave: 

__ M---'-t--:- (1 + _k_-_ 1 M2)tt2- M2 (1 + _k_-_ 1 M2) tt2 
1 + kMi 2 I - 1 + kM~ 2 2 (12.39) 

Solving this equation for M2 as a function of M 1, results in two solutions. One solution is trivial, 
M1 = M2 which corresponds to no shock wave in the control volume. The other solution gives 
the Mach number downstream of the shock wave: 

2 
(k- 1)Mi + 2 

M - - ------,----'----
2- 2kMf - (k- 1) (12.40) 

Note: Because of the symmetry ofEq. (12.39),one can also use Eq. (12.40) to solve for M1 given 
M2 by simply interchanging the subscripts on the Mach numbers. 

Setting M1 = 1 in Eq. (12.40) results in M2 also being equal to unity. Equations (12.38) and 
(12.39) also show that there would be no pressure or temperature increase across such a wave. 
In fact, the wave corresponding to M 1 = 1 is the sound wave across which, by definition, pres­
sure and temperature changes are infinitesimal. Thus the sound wave represents a degenerate 
normal shock wave. 

Example 12.5 demonstrates how to calculate properties downstream of a normal shock 
wave given the upstream Mach number. 

EXAMPLE 12.5 

Property Changes across a Normal Shock Wave 

Problem Statement 

A normal shock wave occurs in air flowing at a Mach nwnber of 
1.6. The static pressure and temperature of the air upstream of the 
shock wave are 100 kPa absolute and l5°C. Determine the Mach 
number, pressure, and temperature downstream of the shock wave. 

Define the Situation 

The Mach number upstream of a normal shock wave in air is 1.6. 

p1 ~ 100 kPa abs P2 
T1 - l5°C T2 

Properties: From Table A.2, k = 1.4. 

Stale the Goal 

Calculate the downstream Mach number, pressure, and 
temperature. 

Generate Ideas and Make a Plan 

l. Use Eq. (12.40) to calculate M2• 

2. Use Eq. (12.3 7) to calculate p2• 

Convert upstream temperature to degrees Kelvin and use 
Eq. (12.38) to find T2. 

Take Action (Execute the Plan) 

l. Downstream Mach number 

M2 = (k - 1)M~ + 2 = (0.4)(1.6)2 + 2 = 0 447 
2 2kM~ - (k - l) {2.8){1.6)2 

- 0.4 . 

M2 =I 0.668 1 

2. Downstream pressure 

(
1 + kM f) 

Pz = p, 1 + kM~ 

[ 
1 + (1.4)(1.6)2 

] 
= {100 kPa) ( )( )2 = 1282 kPa, absolute I 

I + 1.4 0.668 

3. Downstream temperature 

{ 
1 + [(k- l)/2]Mi } 

T- T 2
-

1 
I + [(k - l) / 2]M i 

[ 
1 + (0.2)(2.56) ] 

= (288 K) ( )( ) = 1400 K or 127°C I 
1 + 0.2 0.447 

Review the Solution and the Process 

Knowledge. Note that absolute values for the pressure and 
temperature have to be used in the equations for property 
changes across shock waves. 
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The changes in flow properties across a shock wave are presented in Table A.l for a gas, 
such as air, for which k = 1.4. 

A shock wave is an adiabatic process in which no shaft work is done. Thus for ideal gases the 
total temperature (and total enthalpy) is unchanged across the wave. The total pressure, however, 
does change across a shock wave. The total pressure upstream of the wave in Example 12.5 is 

- ( k - l 2) k/(k- I) 
p,, - p1 I + -

2
-M 1 

= 100kPa[1 + (0.2)(1.62
)]

35 = 425kPa 

The total pressure downstream of the same wave is 

( 
k _ I )kt(k-1) 

p,, = p2 1 +-2-M~ 
= 282 kPa[1 + (0.2)(0.6682

)]
3
·
5 = 380 kPa 

Thus the total pressure decreases through the wave, which occurs because the flow through the 
shock wave is not an isentropic process. Total pressure remains constant along streamlines 
only in isentropic flow. Values for the ratio of total pressure across a normal shock wave are 
also provided in Table A. I. 

Existence of Shock Waves Only in Supersonic Flows 
Refer back to Eq. (12.40), which gives the Mach number downstream of a normal shock wave. 
If one were to substitute a value forM 1 less than unity, it is easy to see that a value for M 2 would 
be larger than unity. For example, if M1 = 0.5 in air, then 

2 (o.4) (o.5? + 2 
Mz = 2 

(2.8) (0.5) - 0.4 

M 2 = 2.65 

Is it possible to have a shock wave in a subsonic flow across which the Mach number becomes 
supersonic? In this case the total pressure would also increase across the wave; that is, 

p,, 
-> I 
p, , 

The only way to determine whether such a solution is possible is to invoke the second law 
of thermodynamics, which states that for any process the entropy of the universe must remain 
unchanged or increase. 

(12.41) 

Because the shock wave is an adiabatic process, there is no change in the entropy of the sur­
roundings; thus the entropy of the system must remain unchanged or increase. 

Assys :=::: 0 {12.42) 

The entropy change of an ideal gas between pressures p1 and p2 and temperatures T1 and T2 is 
given by ( 1) 

(12.43) 

Using the relationship between cP and R, Eq. (12.21 ), one can express the entropy change as 

_ [p1 (T2) kt(k-J)] 
As1 ..... 2 - Rln - -

P2 rl 
(12.44) 
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Note that the quantity in the square brackets is simply the total pressure ratio as given by 
Eq. ( 12.27). Therefore the entropy change across a shock wave can be rewritten as 

A Pt , 
us= R ln -

Pr, 
(12.45) 

A shock wave across which the Mach number changes from subsonic to supersonic would give 
rise to a total pressure ratio less than unity and a corresponding decrease in entropy, 

llssys < 0 

which violates the second law of thermodynamics. Therefore shock waves can exist only in 
supersonic flow. 

The total pressure ratio approaches unity for M1 ~ 1, which conforms with the definition 
that sound waves are isentropic (In l = 0). Example 12.6 demonstrates the increase in entropy 
across a normal shock wave. 

EXAMPLE 12.6 

Entropy Increase across Shock Wove 

Problem Statement 

A normal shock wave occurs in air flowing at a Mach number 
of 1.5. Find the change in entropy across the wave. 

Define the Situation 

A normal shock wave in air with upstream Mach number 
of 1.5. 

Properties: From Table A.2, R.;, = 287 J/ kg K, 
and k = 1.4. 

State the Goal 

Find ~e change in entropy (in J/kg K) across the wave. 

Generate Ideas and Make a Plan 

l. Calculate downstream Mach number using Eq. (12.40) . 

2. Calculate pressure ratio across wave using Eq. (12.37). 

3. Calculate temperature across the wave using 
Eq. (12.38). 

4. Calculate entropy change using Eq. (12.44). 

Take Action (Execute the Plan) 

l. Downstream Mach number 

M2 = (k - l )Mi + 2 = (0.4)(1.5)2 + 2 = 
0 492 2 2kMf - (k- 1) (2.8)(1.5? - 0.4 . 

M2 = 0.701 

2. Pressure ratio 

Pz ( 1 + kM~) [ t + (1.4)(1.5)
2 

] 

p; = I + kM~ = 1 + (1.4)(0.701? = 
2
.4

6 

3. Temperature ratio 

T2 = {1 + [(k - 1)/2]M i } 
T1 1 + [(k- 1 )/2]M~ 

[ 
1 + (0.2)(2.25) ] 

= I + (0.2)(0.492) = 1.3
2 

4. Entropy change 

.6.s = Rln - -[ (
p1)(T2)kl(k-I)] 
Pz T1 

= 287(J/ kg K) ln [(z_~6)(1.32)35] 
= 120.5 J / kg K I 

More examples of shock waves will be given in the next section. This section is concluded 
by qualitatively discussing other features of shock waves. 

Besides the normal shock waves studied here, there are oblique shock waves that are 
inclined with respect to the flow direction. Look once again at the shock wave structure in 
front of a blunt body, as depicted qualitatively in Fig. 12.10. The portion of the shock wave 
immediately in front of the body behaves like a normal shock wave. As the shock wave 
bends in the free-stream direction, oblique shock waves result. The same relationships 
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FIGURE 12.10 

Shock wove structure 
in front of a blunt body. 

FIGURE 12.11 

Duct with variable area. 

Machw~ 

Obl•<~•t, 
"~'"""' ~ 

derived earlier for the normal shock waves are valid for the velocity components normal to 
oblique waves. The oblique shock waves continue to bend in the downstream direction 
until the Mach number of the velocity component normal to the wave is unity. Then the 
oblique shock has degenerated into a so-called Mach wave across which changes in flow 
properties are infinitesimal. 

The familiar sonic booms are the result of weak oblique shock waves that reach ground 
level. One can appreciate the damage that would ensue from stronger oblique shock waves if 
aircraft were permitted to travel at supersonic speeds near ground level. 

12.4 Isentropic Compressible Flow 
Through a Duct with Varying Area 

With the flow of incompressible fluids through a venturi configuration, as the flow approaches 
the throat (smallest area), the velocity increases and the pressure decreases; then as the area 
again increases, the velocity decreases. The same velocity-area relationship is not always found 
for compressible flows. The purpose of this section is to show the dependence of flow proper­
ties on changes in cross-sectional area with compressible flow in variable area ducts. 

Dependence of the Mach Number on Area Variation 

Consider the duct of varying area shown in Fig. 12.1l.lt is assumed that the flow is isentropic 
and that the flow properties at each section are uniform. This type of analysis, in which the flow 
properties are assumed to be uniform at each section yet in which the cross-sectional area is 
allowed to vary (nonuniform), is classified as "quasi one-dimensional:' 

-x 
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The mass flow through the duct is given by 

m = pAV (12.46) 

where A is the duct's cross-sectional area. Because the mass flow is constant along the duct, 

dm d(pAV) 
-= =0 
dx dx 

(12.47) 

which can be written as* 

1 dp I dA 1 dV 
-- + - -+-- =0 
p dx A dx V dx 

(12.48) 

The flow is assumed to be inviscid, so Euler's equation is valid. For steady flow 

dV dp 
pV- + -= 0 

dx dx 

Making use of Eq. (12.7), which relates dp!dp to the speed of sound in an isentropic flow, gives 

- V dV 1 dp 
(12.49) 

c2 dx p dx 

Using this relationship to eliminate p in Eq. (12.48) results in 

1 dV 1 dA - - = - :---
v dx M2

- 1 A dx 
(12.50a) 

which can be written in an alternate form as 

dV V - = - ---=---
dA A M2 - 1 

(12.50b) 

This equation, although simple, leads to the following important, far-reaching conclusions. 

Subsonic Flow 

For subsonic flow, M2 
- 1 is negative so dV!dA < 0, which means that a decreasing area leads 

to an increasing velocity, and correspondingly, an increasing area leads to a decreasing velocity. 
This velocity area relationship parallels the trend for incompressible flows. 

Supersonic Flow 

For supersonic flow, M2 
- 1 is positive so dV!dA > 0, which means that a decreasing area leads 

to a decreasing velocity, and an increasing area leads to an increasing velocity. Thus the velocity 
at the minimum area of a duct with supersonic compressible flow is a minimum. This is the 
principle underlying the operation of diffusers on jet engines for supersonic aircraft, as shown 
in Fig. 12.12. The purpose of the diffuser is to decelerate the flow so that there is sufficient time 
for combustion in the chamber. Then the diverging nozzle accelerates the flow again to achieve 
a larger kinetic energy of the exhaust gases and an increased engine thrust. 

*This step can easily be seen by first taking the logarithm of Eq. ( 12.46): 

ln{pAV) = lnp + InA + ln V 

and then taking the derivative of each term: 

d I dp 1 dA 1 dV 
- [ln{pAV)J = 0 = -- + - - + - ­
dx pdx A dx Vdx 
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FIGURE 12. 1 2 

Engine for supersonic 
oircroh. 

FIGURE 12. 13 

Duct contours for which 
dA!dx is zero . 

:~ 7 : 
M > 1 I "-T-,---------r-1 I 
- : Diffuser I Combustor I Nozzle 7 

!/1 ~~ ~ 
~ <0 ~ > 0 
b • 

!!! <o 1!: >o • • 

Transonic Flow (M :::::: 1) 

Stations along a duct corresponding to dA/dx = 0 represent either a local minimum or a local 
maximum in the duct's cross-sectional area, as illustrated in Fig. 12.13. If at these stations the 
flow were either subsonic (M < 1) or supersonic (M > 1), then by Eq. (12.50a) dV/dx = 0, so 
the flow velocity would have either a maximum or a minimum value. In particular, if the flow 
were supersonic through the duct of Fig. 12.13a, then the velocity would be a minimum at the 
throat; if subsonic, a maximum. 

Now, what happens if the Mach number is unity? Equation ( 12.50a) states that if the Mach 
number is unity and dA/dx is not equal to zero, the velocity gradient dV/dx is infinite­
a physically impossible situation. Therefore, dAI dx must be zero where the Mach number is 
unity for a finite, physically reasonable velocity gradient to exist.* 

To 
I 

~ 
I 

-I 
I 

~ 
I 
I 

~ ~x0 - o 

(a) 

xo 
I 
I 

~ 
I 

-I 
I 

~ 
I 

dAI - o 
d.t x0 

(b) 

The argument can be taken one step further here to show that sonic flow can occur only at a 
minimum area. Consider Fig. 12.13a. If the flow is initially subsonic, the converging duct acceler­
ates the flow toward a sonic velocity. If the flow is initially supersonic, the converging duct deceler­
ates the flow toward a sonic velocity. Using this same reasoning, one can prove that sonic flow is 
impossible in the duct depicted in Fig. 12.13b. If the flow is initially supersonic, the diverging duct 
increases the Mach number even more. If the flow is initially subsonic, the diverging duct 
decreases the Mach number; thus sonic flow cannot be achieved at a maximum area. Hence the 
Mach number in a duct of varying cross-sectional area can be unity only at a local area minimum 
(throat). This does not imply, however, that the Mach number must always be unity at a local area 
minimum. 

*Actually, the velocity gradient is indeterminate because the numerator and denominator are both zero. It can be 
shown by application of L'HOpital's rule, however, that the velocity gradient is finite. 
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de Laval Nozzle 
The de Laval nozzle is a duct of varying area that produces supersonic flow. The nozzle is 
named after its inventor, de Laval ( 1845-1913 ), a Swedish engineer. According to the foregoing 
discussion, the nozzle must consist of a converging section to accelerate the subsonic flow, a 
throat section for transonic flow, and a diverging section to further accelerate the supersonic 
flow. Thus the shape of the de Laval nozzle is as shown in Fig. 12.14. 

One very important application of the de Laval nozzle is the supersonic wind tunnel, 
which has been an indispensable tool in the development of supersonic aircraft. Basically, the 
supersonic wind tunnel, as illustrated in Fig. 12.1 5, consists of a high-pressure source of gas, a 
de Laval nozzle to produce supersonic flow, and a test section. The high-pressure source may 
be from a large pressure tank, which is connected to the de Laval nozzle through a regulator 
valve to maintain a constant upstream pressure, or from a pumping system that provides a 
continuous high-pressure supply of gas. 

FIGURE 12. 14 

de Laval nozzle. 

FIGURE 12. 1 5 

Wind tunnel. 

High­
pressure 

gas 

The equations relating to the compressible flow through a de Laval nozzle have already 
been developed. Because the mass flow rate is the same at every cross section, 

p VA = constant 

and the constant is usually evaluated corresponding to those conditions that exist when the 
Mach number is unity. Thus 

pVA = p.V. A. (12.51 ) 

where the asterisk signifies conditions wherein the Mach number is equal to unity. Rearrang­
ing Eq. (12.51) gives 

A p. V. 
- =--
A . pV 

However, the velocity is the product of the Mach number and the local speed of sound. 
Therefore 

A P• M.VfifT. 
A. = p MVkiff (12.52) 

By definition M. = I, so 

A _ P• (T•)"2 
1 -- -- -

A. p T M 
(12.53) 

Test section 
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EXAMPLE 12.7 

Because the flow in a de Laval nozzle is assumed to be isentropic, the total temperature and 
total pressure (and total density) are constant throughout the nozzle. From Eq. (12.28), 

P• = {1 + [(k- 1)/2]M2} tl(k-t) 

p (k + 1)/ 2 

and from Eq. (12.24) 

T. 1 + [(k- 1)/2]M2 

T (k + 1)/ 2 

Substituting these expressions into Eq. (12.53) yields the following relationship for area ratio 
as a function of Mach number in a variable area duct: 

~ = __!_ { 1 + [(k - 1)/2] M 2} (k+ t)l2(k-t) 

A. M (k+ 1)/2 
(12.54) 

This equation is valid, of course, for all Mach numbers-subsonic, transonic, and supersonic. 
The area ratio A/A. is the ratio of the area at the station where the Mach number isM to the 
area where M is equal to unity. Many supersonic wind tunnels are designed to maintain the 
same test-section area and to vary the Mach number by varying the throat area. 

Example 12.7 illustrates the use of the Mach-number-area ratio expression to size the test 
section of a supersonic wind tunnel. 

.Example 12.7 demonstrates that it is a straightforward task to calculate the area ratio given 
the Mach number and ratio of specific heats. However, in practice, one usually knows the area 
ratio and wishes to determine the Mach number. It is not possible to solve Eq. (12.54) for the 
Mach number as an explicit function of the area ratio. For this reason, compressible-flow tables 
have been developed that allow one to obtain the Mach number easily given the area ratio (as 
shown in Table A.1). 

State the Goal 

Finding the Test Section Size in a Supersonic Wind Tunnel Find the cross-sectional area (in cm2
) of the test section. 

Problem Statement 

Suppose a supersonic wind tunnel is being designed to operate 
with air at a Mach number of 3. If the throat area is 10 cm2

, 

what must the cross-sectional area of the test section be? 

Define the Situation 

Design of supersonic wind tunnel with air for Mach number 3 
in test section. 

Properties: From Table A.2, k air = 1.4. 

I 
I 
I 

M=3 I 
--+-+ 

I 
I 
I 
I 

Generate Ideas and Make a Plan 

1. Use Eq. (12.54), which gives area ratio with respect to the 
throat section. 

2. Calculate area of test section. 

Take Action (Execute the Plan) 

1. Area ratio 

~ = _!_{1 + [(k- 1)/2] M 2} (k+I)I2(k - t) 

A. M (k + 1)/2 

= ~r~ + (0.2)32J) = 4.23 
3 1.2 

2. C ross-sectional area of test section 

A = 4.23 X 10 cm2 = ~2.3 cm21 



Consider again Table A.l. This table has been developed for a gas, such as air, for which 
k = 1.4. The symbols that head each column are defined at the beginning of the table. Tables 
for both subsonic and supersonic flow are provided. Example 12.8 shows how to use the tables 
to find flow properties at a given area ratio. 

EXAMPLE 12.8 

Flow Properties in a Supersonic Wind Tunnel 

Problem Statement 

The test section of a supersonic wind tunnel using air 
has an area ratio of 10. The absolute total pressure and 
temperature are 4 MPa and 350 K. Find the Mach number, 
pressure, temperature and velocity at the test section. 

Define the Situation 

Situation. A supersonic wind tunnel has an area ratio of 10 at 
the test section. 

p,~ 4 MPa abs 

r, - Jso K 

A/A,-10 
I 
I 
I 
I 
~ :M 

I 
I 

Properties: From Table A.2, k.1, = 1.4, R.1, = 287 J/kg K. 

State the Goal 

Find the Mach number, pressure, temperature, and velocity at 
the test section. 

Generate Ideas and Make a Plan 

1. Usc Table A.1 and interpolate to find the Mach number at 
test section. 

2. Use Table A. I to find the pressure and temperature ratios at 
test sectjon. 

3. Evaluate the pressure and temperature in test section. 

Mass Flow Rate through a de Laval Nozzle 

4. Calculate the speed of sound using Eq. ( 12.11 ). 

5. Find the velocity using V = MC. 

Take Action (Execute the Plan) 

I. From Table A.l 

M 

3.5 

AlA 

6.79 

4.0 10.72 

Interpolating between the two points gives IM = 3.91 1 at 
AlA.= 10.0. 

2. Interpolation using Table A.l to find the pressure and 
temperature ratios: 

.f_ = 0.00743 
p, 

3. In the test section 

and 
T 
- = 0.246 
T, 

p = 0.00743 X 4 MPa = 129.7 kPa I 
T = 0.246 X 350 K = I 86 K I 

4. Speed of sound 

c = Vklft = Y l.4 X 287 X 86 = 186 m/s 

5. Velocity 

V=3.91 X 186m/s=l 727m /s l 

Review the Solution and the Proces~ 

Knowledge. Low temperatures can cause problems. Notice that 
the temperature of rur in the test section is only 86 K, or - 187"C. 
At tills temperature, the water vapor in the rur can condense out, 
creating fog in the tunnel and compromising tunnel utility. 

An important consideration in the design of a supersonic wind tunnel is size. A large wind 
tunnel requires a large mass flow rate, which, in turn, requires a large pumping system for a 
continuous-flow tunnel or a large tank for sufficient run time in an intermittent tunnel. The 
purpose of this section is to develop an equation for the mass flow rate. 

The easiest station at which to calculate the mass flow rate is the throat because there the 
Mach number is unity. 

tn = P• A. V. = p.A. VfRT. 



466 CHAPTER 1 2 • . ~g~PRES?IBLE FLOW 

It is more convenient, however, to express the mass flow in terms of total conditions. The local 
density and static temperature at sonic velocity are related to the total density and temperature by 

T. ( 2 ) 
T

1 
= k + l 

P• = (-2 -)1/(k I) 
Pt k + I 

which, when substituted into the foregoing equation, give 

( 

2 )(k+ 1)/2(k I) 

rn = p,VfRT;A . k + l (12.55) 

Usually, the total pressure and temperature are known. Using the ideal gas law to eliminate p1, 

yields the expression for critical mass flow rate 

m = -'-k l /2 --P A ( 2 ){kt i)i2(k-l ) 

v'RT, k + 1 

For gases with a ratio of specific heats of 1.4, 

For gases with k = 1.67, 

. p,A. 
m = 0.685 • rn;r 

vRT, 

. p,A. 
m = 0.727. r;,;r 

vRT, 

(12.56) 

(1 2.57) 

(12.581 

Example 12.9 illustrates how to calculate mass flow rate in a supersonic wind tunnel given 
the conditions in the test section. 

EXAMPLE 12.9 

Moss Flow Rote in Supersonic Wind Tunnel 

Problem Statement 

A supersonic wind tunnel with a square test section 15 em 
by 15 em is being designed to operate at a Mach number of 
3 using air. The static temperature and pressure in the test 
section are -20°C and SO kPa abs, respectively. Calculate the 
mass flow rate. 

Define the Situation 

A Mach-3 supersonic wind twmel has a 15 em by IS em test 
section. 

A - 15cm • l5 cm 

p= 50 kPa abs 
T --20 °C 

I 
I 
I 

--+-
1 M 
I 
I 

Properties: From Table A.2, k.,. = 1.4 and R.,. = 287 J/kg K. 

State the Goal 

Calculate the mass flow rate (kgls) in tunnel 

Generate Ideas and Make a Plan 

I. Use Eq. (J 2.54) to find area ratio and calculate throat 
area. 

2. Use Eq. (12.22) to find total temperature. 

3. Use Eq. ( 12.26) to find total pressure. 

4. Use Eq. (12.56) to find the mass flow rate. 

Take Action (.Execute the Plan) 

1. A rea ratio 

~ = _!_{I + [(k- l )/2]M 7} (k ... l)/7(k I) 

A. M (k + I )/ 2 

= .!_ [.!.....:_ 0.2 X 32]3 = 4.23 
3 1.2 

Throat area 

225 cm2 

A. = - - = 53.2 cm7 = 0.00532 m2 

4.23 
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2. Total temperature 

T, = r( 1 + k ~ 1 
M2

) = 253 K (2.8) = 708 K 

3. Total pressure 

( 
k - 1 )k/(k- 1) 

p, = p I+ -
2

- M 2 = (50 kPa)(36.7) 

= 1840 kPa = 1.84 MPa 

4. Mass flow rate 

. p,A. 
m = 0.685--

VR'f, 
= 114.9 kg/s l 

(0.685) [ 1.840(106 N/m2
)] (0.00532 m2

) 

[(287 J/ kg K)(708 K)] 112 

Classification of Nozzle Flow by Exit Conditions 

Review the Solution and the Process 

1. Discussion. An alternate way to solve this problem is to 
calculate the density in the test section using the ideal 
gas law, calculate the speed of sound with the speed of 
sound equation, find the air speed using the Mach 
number, and finally determine the mass flow rate with 
m = pVA. 

2. Discussion. A pump capable of moving air at this rate 
against a 1.8 MPa pressure would require over 6000 kW 
of power input. Such a system would be large and costly 
to build and to operate. 

Nozzles are classified by the conditions at the nozzle exit. Consider the de Laval nozzle de­
picted in Fig. 12.16 with the corresponding pressure and Mach-number distributions plotted 
beneath it. The pressure at the nozzle entrance is very near the total pressure because the Mach 
number is small. As the area decreases toward the throat, the Mach number increases and the 
pressure decreases. The static-to-total-pressure ratio at the throat, where conditions are sonic, 
is called the critical pressure ratio. It has a value of 

which for air with k = 1.4 is 

P• = (-2 -)kl(k-I ) 

p, k + 1 

P• = 0.528 
p, 

It is called a critical pressure ratio because to achieve sonic flow with air in a nozzle, it is 
necessary that the exit pressure be equal to or less than 0.528 times the total pressure. The 
pressure continues to decrease until it reaches the exit pressure corresponding to the nozzle­
exit area ratio. Similarly, the Mach number monotonically increases with distance down the 
nozzle. 

- -

X 

FIGURE 12. 16 

Distribution of static 
pressure and Mach number 
in a de Laval nozzle. 
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FIGURE 1 2. 1 7 

Conditions at a nozzle 
exit. (a) Expansion waves. 
(b) Oblique shock waves. 
(cl Normal shock wave. 

EXAMPLE 12. 1 0 

The nature of the exit flow from the nozzle depends on the difference between the exit pres­
sure, p,, and the back pressure (the pressure to which the nozzle exhausts). If the exit pressure is 
higher than the back pressure, an expansion wave exists at the nozzle exit, as shown in Fig. 12.17a. 
These waves, which will not be studied here, effect a turning and further acceleration of the flow 
to achieve the back pressure. As one watches the exhaust of a rocket motor as it rises through the 
ever-decreasing pressure of higher altitudes, one can see the plume fan out as the flow turns more 
in response to the lower back pressure. A nozzle for which the exit pressure is larger than the back 
pressure is called an underexpanded nozzle because the flow could have expanded further. 

If the exit pressure is less than the back pressure, shock waves occur. If the exit pressure is 
only slightly less than the back pressure, then pressure equalization can be obtained by oblique 
shock waves at the nozzle exit, as shown in Fig. 12.17b. 

If, however, the difference between back pressure and exit pressure is larger than can be 
accommodated by oblique shock waves, a normal shock wave will occur in the nozzle, as 
shown in Fig. 12.17 c. A pressure jump occurs across the normal shock wave. The flow becomes 
subsonic and decelerates in the remaining portion of the diverging section in such a way that 
the exit pressure is equal to the back pressure. As the back pressure is further increased, the 
shock wave moves toward the throat region until, finally, there is no region of supersonic flow. 
A nozzle in which the exit pressure corresponding to the exit area ratio of the nozzle is less 
than the back pressure is called an overexpanded nozzle. Any flow that exits from a duct (or 
pipe) subsonically must always exit at the local back pressure. 

p 

X 

(a) 

p 

X 

~ 
r----1{ 

Oblique shock waves 

(b) 

p 

X 

Normal shock wave 

(c) 

A nozzle with supersonic flow in which the exit pressure is equal to the back pressure is 
ideally expanded. 

The assessment of the nozzle exit conditions is provided by Example 12.10. 

AIA. • 4 

Finding a Nozzle Exit Condition 

Problem Statement 

The total pressure in a nozzle with an area ratio (A/A.) of 
4 is 1.3 MPa. Air is flowing through the nozzle. If the back 
pressure is 100 kPa, is the nozzle overexpanded, ideally 
expanded, or underexpanded? 

Define the Situation 

Air flows through a nozzle with exit area ratio of 4. 

p, = 1.3 MPa abs 

Pb = 100 kPa abs 

State the Goal 

Determine the state of the exit condition (ideally expanded, 
overexpanded, or underexpanded). 
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Generate Ideas and Make a Plan 

I. Interpolate Table A.l to find Mach number corresponding 
to exit area ratio. 

2. Calculate exit pressure using Eq. (12.26). 

3. Compare exit pressure with back pressure to determine exit 
condition. 

Take Action (Execute the Plan) 

1. Interpolation for Mach number from Table A.1. 

M 4 ,\ 

2.90 3.850 

3.00 4.235 

M = 2.94 at A/A. = 4.0. 

2. Exit pressure 

( 
k - 1 )kl(k - 1) 

1 + --M2 

2 

p, 
p, 

1300kPa kP 
P = = 38 7 a 

' (1 + 0.2 X 2.942} 3·5 • • 

3. Because p, < Pb• the nozzle is overexpanded. 

Review the Solution and the Process 

Knowledge. Because the nozzle is overexpanded, there will be 
a shock wave structure inside the nozzle to achieve pressure 
equilibration at the nozzle exit. 

Example 12.11 illustrates how to calculate the static pressure at the exit of a de Laval 
nozzle with overexpanded flow. 

I EXAMPLE 12. 11 

A Shock Wave in de Laval Nozzle 

Problem Statement 

The de Laval nozzle shown in the figure has an expansion ratio 
of 4 (exit area/throat area). Air flows through the nozzle, and a 
normal shock wave occurs where the area ratio is 2. 1he total 
pressure upstream of the shock is I MPa. Determine the static 
pressure at the exit. 

Define the Situation 

Air flows in de Laval nozzle with an exit area ratio (A,/ A.) of 
4 and normal shock at AI A. = 2. 

I 
I 
I 
I 

: p1 • 1 MPaabs 
I 
I 
I 

Virtual 

Properties: k,1, = 1.4. 

"tate the Goal 

Calculate the static pressure (in kPa) at exit. 

Generate Ideas and Make a Plan 

This problem will require the identification of a "virtual nozzle" 
shown in the sketch. The virtual nozzle is an expanding nozzle 
with subsonic flow and with a Mach number equal to the 
downstream Mach number behind the normal shock wave. 

1. From Table A.l, interpolate to find the Mach number for 
A/A.= 2. 

2. Using the same table, find the Mach number downstream 
of shock and total pressure ratio across shock. 

3. Calculate total pressure downstream of shock wave. 

4. Treat the problem as flow in virtual subsonic nozzle with Mach 
number equal to the Mach number behind the wave with new 
total pressure. Calculate exit area ratio of virtl.1al nozzle. 

5 . Use subsonic flow table to find subsonic Mach number at exit. 

6. Use total pressure equation to calculate static pressure at exit. 

Take 1\ction (Execute the Plan) 

l. From interpolation of the supersonic-flow part of Table A.l, 

at A /A = 2, and M = 2.2. 

2. From the same entry in the table, 

M2 = 0.547 

p,, = 0.6281 
p,, 
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3. Total pressure downstream of the shock wave 

p,, = 0.6281 X 1 MPa = 6.28 kPa 

4. From the subsonic part of Table A.!, 

6. From subsonic part of Table A.1, 

at AI A. = 2.52, M = 0.24 

Exit pressure from Eq. (12.26) 

at M = 0.547, and A/A •• = 1.26. 

5. Exit area ratio of virtual nozzle 
- = 1 + -- M 2 
p, ( k- 1 )k/(k-1 ) 

p. 2 

A. A. A, 
X-X­

A. A, A •• 

= 4 X I X 1.26 = 2.52 
2 

628 kPa k 
P• = = 1603 pa l 

[I + (0.2)(0.24)2 f 5 

where A, is cross-sectional area at the shock wave. 

FIGURE 1 2. 18 

Truncated nozzle. 

P=P,F\_ 
---!---+ p - p, 

- r I 
___1._. Pb 

Mass Flow through a Truncated Nozzle 

The truncated nozzle is a de Laval nozzle cut off at the throat, as shown in Fig. 12.18. The 
nozzle exits to a back pressure Pb· This type of nozzle is important to engineers because of its 
frequent use as a flow-metering device for compressible flows. The purpose of this section is to 
develop an equation for mass flow through a truncated nozzle. 

To calculate the mass flow, one must first determine whether the flow at the exit is sonic 
or subsonic. Of course, the flow at the exit could never be supersonic because the nozzle area 
does not diverge. First calculate the value of the critical pressure ratio: 

P• = ( - 2 - )kt(k-ll 

Pr k + 1 
r-T ul ===-+-

i which, for air, is 0.528. Then evaluate the ratio of back pressure to total pressure, pb/p1, and 
compare it with the critical pressure ratio: 

I. If Pblp1 $ p lp1, the exit pressure is higher than or equal to the back pressure, so the exit flow 
must be sonic. Pressure equilibration is achieved after exit by a series of expansion waves. 
The mass flow is calculated using Eq. (12.56), where A. is the area at the truncated station. 

2. If pblp1 > p./p1, the flow exits subsonically. In this case the exit pressure is equal to the back 
pressure. One must first determine the Mach number at the exit by using Eq. (12.31): 

_ ~ 2 [(Pr)(k-I)tk ] M - - - - -1 
• k - 1 Pb 

Then, using this value for Mach number, one calculates the static temperature and speed of 
sound at the exit: 

T, 
T = ---~-~~ 

e {l + [(k -l)/2)M:} 

c.= -v7Jff; 
The gas density at the nozzle exit is determined by using the ideal gas law with the exit tem­
perature and back pressure: 

Finally, the mass flow is given by 

m = p, A, M, c, 

where A, is the area at the truncated section. 



Example 12.12 shows how to calculate mass flow in a truncated nozzle. 

EXAMPLE 12.12 

Mass Flow in Truncated Nozzle 

Problem Statement 

Air exhausts through a truncated nozzle 3 em in diameter 
from a reservoir at a pressure of 160 kPa and a temperature 
of 80°C. Calculate the mass flow rate if the back pressure is 
IOOkPa. 

Define the Situation 

Air flows through 3-cm-diameter truncated nozzle. 

p ~ 160 kPn abs 
T= so •c 

Properties: From Table A.2, kw = 1.4. 

State the Goal 

Ph-IOO kPn 

Calculate the mass flow rate (in kg/s) through the 
nozzle. 

Generate Ideas and Make a Plan 

I. Determine exit condition by comparing exit pressure 
with back pressure. If pblp, < p./p,, exit flow is sonic. 
If Pblp, > p.lp,, exit flow is subsonic. 

2. Calculate mass flow according to exit condition. 

Take Action (Execute the Plan) 

1. Ratio of exit pressure to total pressure 

fb lp, = 100/160 = 0.625 

Because 0.625 is larger than the critical pressure ratio for 
air (0.528), the flow at the nozzle exit must be subsonic. 

2. Mach number at exit From total pressure equation, Eq. (12.26), 

2 _ 2 [(P•)(k-1)/l ] 
M - - - -1 

• k - 1 Pb 

M, = 0.85 

Static temperature at exit. From total temperature equation, 
Eq. (12.22), 

T, 
T = = 308 K 

• {l + [(k - l )/2)M;} 

Static density at exit. From ideal gas law, 

Pb 100 X 103 N/ m2 
3 

p, = RT, = (287 Jlkg K)(309 K) = 1.13 kg/ m 

Speed of sound at the exit from speed-of-sound equation, 
Eq. (12. 11 ), 

' • = v'kii'J. = [( 1.4)(287 J/ kg K)(309 K)112 

= 352 m /s 

Mass flow rate. 

m = p,A,M,c. 

m = ( 1.13 kg/m3)(1T/4)(0.032 m2)(0.85)(352 m/s) 

= @i3i§!i) 

Review the Solution and the Process 

Had pblp, been less than 0.528, then Eq. ( 12.56) would have 
been used to calculate the mass flow rate. 

Further information and other topic areas in compressible flow can be found in other 
sources, such as Anderson {2) and Shapiro (3). 

12.5 Summarizing Key Knowledge 

Speed of Sound and Compressible Flow 
• The speed of sound is the speed at which an infinitesimal pressure disturbance travels 

through a fluid. 

• The speed of sound in an ideal gas is 

c = Vkift 

where k is the ratio of specific heats, R is the gas constant, and Tis the absolute temperature. 
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• The Mach number is defined as 

v 
M= ­

c 

• Compressible flows are classified as 

M < 1 

M = 1 

M >1 

subsonic 

transonic 

supersonic 

• ln general, if the Mach number is less than 0.3, a steady flow can be regarded as incompressible. 

Property Variations along a Streamline 

• For an adiabatic flow (no heat transfer), the temperature varies along a streamline according to 

( 
k 1 ) - ) 

T = T, 1 + -
2
-M2 

where T,, the total temperature, is the temperature attained if the flow is decelerated to zero 
velocity. 

• If the flow is isentropic, the pressure varies along a streamline as 

( 
k _ 1 ) ki(k - I) 

p = p, 1 + --M 2 

2 

where p, is the total pressure, the pressure achieved if the flow is decelerated to zero velocity 
isentropically. 

The Normal Shock Wave 

• A normal shock wave is a narrow region where a supersonic flow is decelerated to a 
subsonic flow with an attendant rise in pressure, temperature, and density. The total 
temperature does not change through a shock wave, but the total pressure decreases. 
The shock wave is a non isentropic process and can only occur in supersonic flows. 

The de Laval Nozzle 

• A de Laval nozzle is a duct with a converging and expanding area that is used to accelerate 
a compressible fluid to supersonic speeds. Sonic flow can occur only at the nozzle throat 
(minimum area). 

• The ratio of the area at a location in the nozzle to the throat area, A/A., is a function of the 
local Mach number and the ratio of specific heats. 

• The flow rate through a de Laval nozzle is given by 

. p,A. 
m = 0.685 ~ ln'i' 

vRT, 

• A de Laval nozzle is classified by comparing the pressure at the exit,p,, for supersonic flow 
in the nozzle with the back (ambient) pressure, Pb· 

p,lpb > I underexpanded 

PtiPh = 1 ideally expanded 

overexpanded 
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• Shock waves occur in overexpanded nozzles, yielding a subsonic flow at the exit. 

• A truncated nozzle is a de Laval nozzle terminated at the throat. The truncated nozzle is 
typically used for mass flow measurement. 
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PROBLEMS 

fCUos Problem available in Wiley PLUS at instructor's discretion. 

Speed of Sound and Mach Number (§ 12. 1) 
12.1 Gs The speed of sound in an ideal gas ___ . (Select 
all that are correct): 

a. depends on v'T where Tis absolute temperature 

b. depends on v'T where Tis temperature in °C 

c. depends on Vk. where k = cplc., a ratio of specific heats 
for a given gas 

12.2 ~Make these calculations about the speed of sound in air. 

a. The speed of sound in air is 340 m/s. What is this speed 
in miles per hour? 

b. If it takes 4 seconds between seeing lightning and 
hearing the thunder, how far away (miles) is the storm 
(T = 50°F)? 

12.3 ~s The Mach number . (Select all that are 
correct). 

a. is the ratio V/c, where c = specific heat 

b. is the ratio VIc, where c =the speed of sound 

c. depends on the velocity, V, of the moving body relative 
to the fluid flow 

d. has a magnitude of M < 1 for subsonic flow 

e. has a magnitude of M > 1 for supersonic flow 

12.4 Find from available sources the Mach number at which 
modern-day airliners fly at altitude. Discuss whether it is possible 
to have regions of supersonic flow on the aircraft. 

12.5 From available sources, find the orbital velocity of a satellite 
circling the earth. If the satellite entered the earth's atmosphere at 
this speed and the air temperature were - 60°C, what would the 
Mach number be? Classify the flow. 

12.6 ifL\rs How fast (in meters per second) will a sound wave 
travel in methane at - 5°C? 

12.7 .flVs Calculate the speed of sound in helium at 45°C. 

12.8 Calculate the speed of sound in hydrogen at 38°F. 

3. Shapiro, A. H. The Dynamics and Thermodynamics 
of Compressible Fluid Flow. New York: Ronald Press, 
1953. 

~Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

12.9 fNs How much faster will a sound wave propagate in 
helium than in nitrogen if the temperature of both gases is 20°C? 

12.10 Determine what the equation for the speed of sound in an 
ideal gas would be if the sound wave were an isothermal process. 

12. 11 The relationship between pressure and density for the 
propagation of a sound wave through a fluid is 

P - Po = E.ln (p/po) 

where Po and p0 are the reference pressure and density (constants) 
and E. is the bulk modulus of elasticity. Determine the equation for 
the speed of a sound wave in terms of E. and p. Calculate the sound 
speed for water with p = 1000 kglm3 and E.= 2.20 GN/m2

. 

12.12 ffi"s A supersonic aircraft is flying at Mach 1.6 through 
air at 30°C. What temperature could be expected on exposed 
aircraft surfaces? 

12.13 ifrVs What is the temperature on the nose of a supersonic 
fighter flying at Mach 3 through air at -20°C? 

12.14 ~A high-performance aircraft is flying at a Mach 
number of 1.8 at an altitude of 10,000 m, where the temperature 
is - 44°C and the pressure is 30.5 kPa. 

a. How fast is the aircraft traveling in kilometers per hour? 

b. The total temperature is an estimate of surface tem­
perature on the aircraft. What is the total temperature 
under these conditions? 

c. If the aircraft slows down, at what speed (kilometers 
per hour) will the Mach number be unity? 

12.15 ~An airplane travels at 850 km/h at sea level where the 
temperature is l0°C. How fast would the airplane be flying at 
the same Mach number at an altitude where the temperature 
was -50°C? 

12.16 ~An airplane flies at a Mach number of0.95 at a 10,000-m 
altitude, where the static temperature is - 44°C and the pressure 
is 30 kPa absolute. The lift coefficient of the wing is 0.05. Determine 
the wing loading (lift force/wing area). 
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Mach-Number Relationships (§ 12.2) 

12.17 Early passenger aircraft used to fly at a cruising speed of 
250 mph at 15,000-ft altitude. Did the designers of these aircraft 
have to be concerned about compressible flow effects? Explain. 

12.18 A total heat tube inserted in the flow of a compressible 
fluid measures the stagnation pressure. Explain the difference 
between the total and stagnation pressure. 

12.19 An object is immersed in an airflow with a static pressure 
of 200 kPa absolute, a static temperature of 20°C, and a velocity 
of 250 m/s. What are the pressure and temperature at the 
stagnation point? 

12.20 An airflow at M = 0.85 passes through a conduit with a 
cross-sectional area of 60 cm2

. The total absolute pressure is 
360 kPa, and the total temperature is l0°C. Calculate the mass 
flow rate through the conduit. 

12.21 'iiTlfs Oxygen flows from a reservoir in which the 
temperature is 200°C and the pressure is 300 kPa absolute. 
Assuming isentropic flow, calculate the velocity, pressure, 
and temperature when the Mach number is 0.9. 

12.22 1fits One problem in creating high-Mach-number flows 
is condensation of the oxygen component in the air when the 
temperature reaches 50 K. If the temperature of the reservoir 
is 300 K and the flow is isentropic, at what Mach number will 
condensation of oxygen occur? 

12.23 ~Hydrogen flows from a reservoir where the 
temperature is 20°C and the pressure is 500 kPa absolute to a 
duct 2 em in diameter where the velocity is 250 m/s. Assuming 
isentropic flow, calculate the temperature, pressure, Mach 
number, and mass flow rate at the 2 em section. 

12.24 16fs The total pressure in a Mach-2.5 wind tunnel 
operating with air is 547 kPa absolute. A sphere 3 em in diameter, 
positioned in the wind tunnel, has a drag coefficient of 0.95. 
Calculate the drag of the sphere. 

12.25 Using Eq. (12.26) on p. 453 in §12.2, develop an expression 
for the pressure coefficient at stagnation conditions-that is, 
Cp = (p, - p)/[(l/2)p V2]-in terms of Mach number and 
ratio of specific heats, Cp = f (k, M). Evaluate Cp at M = 0, 2, and 
4 fork = 1.4. What would its value be for incompressible flow? 

12.26 For low velocities, the total pressure is only slightly larger 
than the static pressure. Thus one can write p,lp = 1 + E, where 
E is a small positive number ( E ~ 1). Using this approximation, show 
that as E -jo 0 (M -jo 0), Eq. (12.31) on p.455 in § 12.2 reduces to 

M = [2(p,/~ _ l)r2 
Normal Shock Waves (§ 12.3) 

12.27 1?lfs Which of the following statements are true? 

a. Shock waves only occur in supersonic flows. 

b. The static pressure increases across a normal shock wave. 

c. The Mach number downstream of a normal shock 
wave can be supersonic. 

12.28 Can normal shock waves occur in subsonic flows? Explain 
your answer. 

12.29 'fitVs A normal shock wave exists in a 500 m/s stream of 
nitrogen having a static temperature of - 50°C and a static 
pressure of 70 kPa. Calculate the Mach number, pressure, and 
temperature downstream of the wave and the entropy increase 
across the wave. 

12.30 ~A normal shock wave exists in a Mach 3 stream of 
air having a static temperature and pressure of 35°F and 30 psia. 
Calculate the Mach number, pressure, and temperature 
downstream of the shock wave. 

12.31 A Pitot-static tube is used to measure the Mach number 
on a supersonic aircraft. The tube, because of its bluntness, 
creates a normal shock wave as shown. The absolute total 
pressure downstream of the shock wave (p,,) is 150 kPa.' The 
static pressure of the free stream ahead of the shock wave (p 1) 

is 40 kPa and is sensed by the static pressure tap on the probe. 
Determine the Mach number (M1) graphically. 

~PI 

~-----
Pr2 

PROBLEM 12.31 

12.32 PTJs A shock wave occurs in a methane stream in which 
the Mach number is 3, the static pressure is 89 kPa absolute, and 
the static temperature is 20°C. Determine the downstream Mach 
number, static pressure, static temperature, and density. 

12.33 The Mach number downstream of a shock wave in helium 
is 0.85, and the static temperature is II 0°C. Calculate the velocity 
upstream of the wave. 

12.34 Show that the lowest Mach number possible downstream 
of a normal shock wave is 

and that the largest density ratio possible is 

P2 k + 1 

Pt k- I 

What are the limiting values of M2 and p2/ p1 for air? 

12.35 Show that the Mach number downstream of a weak wave 
(M = 1) is approximated by 

M~ =2 -M~ 

[Hint: Let M~ = 1 + e, where E ~ 1, and expand Eq. (12.40) on 
p. 457 in § 12.3 in terms of e.] Compare values for M2 obtained 
using this equation with values for M 2 from Table A. I for M1 = I, 
1.05, 1.1, and 1.2. 



Mass Flow in Truncated Nozzle (§ 12.4) 

12.36 What is meant by "back pressure"? 

12.37 Develop a computer program for calculating the mass 
flow in a truncated nozzle. The input to the program would be 
total pressure, total temperature, back pressure, ratio of specific 
heats, gas constant, and nozzle diameter. Run the program and 
compare the results with Example 12.12 in§ 12.4. Run the 
program for back pressures of 80, 90, 110, 120, and 130 kPa and 
make a table for the variation of mass flow rate with back 
pressure. What trends do you observe? 

This program will be useful for Probs. 12.38, 12.39, 12.41. 
and 12.42. 

12.38 fL1l"s The truncated nozzle shown in the figure is used to 
meter the mass flow of air in a pipe. The area of the nozzle is 3 cm2

• 

The total pressure and total temperature measured upstream of 
the nozzle in the pipe are 300 kPa absolute and 20°C. The 
pressure downstream of the nozzle (back pressure) is 90 kPa 
absolute. Calculate the mass flow rate. 

12.39 7o- The truncated nozzle shown in the figure is used to 
monitor the mass flow rate of methane. The area of the nozzle 
is 3 cm2, and the area of the pipe is 12 cm2

• The upstream total 
pressure and total temperature are 150 kPa absolute and 30°C. 
The back pressure is 100 kPa. 

a. Calculate the mass flow rate of methane. 

b. Calculate the mass flow rate assuming the Bernoulli 
equation is valid, with the density being the density of 
the gas at the nozzle ex.it. 

PROfiLEM~ 12. 38, 12 .. 39 

12.40 A trw1cated nozzle with an exit area of 8 cm2 is used to 
measure a mass flow of air of 0.40 kg/s. The static temperature 
of the air at the exit is 0°C, and the back pressure is 100 kPa. 
Determine the total pressure. 

12.41 ~sA truncated nozzle with a I 0 cm2 ex.it area is supplied 
from a helium reservoir in which the absolute pressure is first 
130 kPa and then 350 kPa. The temperature in the reservoir is 
28°C, and the back pressure is 100 kPa. Calculate the mass flow 
rate of helium for the two reservoir pressures. 

12.42 ~A sampling probe is used to draw gas samples from 
a gas stream for analysis. In sampling, it is important that the 
velocity entering the probe equal the velocity of the gas stream 
(isokinetic condition). Consider the sampling probe shown, which 
has a truncated nozzle inside it to control the mass flow rate. The 
probe has an inlet diameter of 4 mm and a truncated nozzle 
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diameter of 2 mm. The probe is in a hot-air stream with a static 
temperature of 600°C, a static pressure of I 00 kPa absolute, and a 
velocity of 60 m/s. Calculate the pressure required in the probe 
(back pressure) to maintain the isokinetic sampling condition. 

___--;; t 
""'='Jl r u~60m s 

4mm 

I 
2mm 

T= 600°C 

/11 p= IOOkPa 

~ IP 
PROJ:\LI-.M 12.42 

12.43 Truncated nozzles are often used for flow-metering 
devices. Asswne that you have to design a truncated nozzle, or a 
series of truncated nozzles, to measure the performance of an air 
compressor. The compressor is rated at 100 scfm (standard cubic 
feet per minute) at 120 psig. (A standard cubic foot is the volume 
the air would occupy at atmospheric conditions.) A performance 
curve fo r the compressor would be a plot of flow rate versus 
supply pressure. Explain how you would carry out the test 
program. 

Flow in de Laval Nozzles (§ 12.4) 

12.44 Sketch how the Mach number and velocity vary through a 
de Laval nozzle from the entrance to the ex.it. How is the velocity 
variation different from a venturi configuration? 

12.45 When a de Laval nozzle has expansion ratio of 4, what 
does that mean? 

12.46 Develop a computer program that requires the Mach 
number and ratio of specific heats as input and prints out the 
area ratio, the ratio of static to total pressure, the ratio of static to 
total temperature, the ratio of density to total density, and the 
ratio of pressure before and after a shock wave. Run the program 
for a Mach number of 2 and a ratio of specific heats of 1.4, and 
compare with results in Table A.l. Then run the program for the 
same Mach number with ratios of specific heats of 1.3 (carbon 
dioxide) and 1.67 (helium). 

This program will be useful for Probs. 12.48, 12.49, 12.52, 
12.56, 12.57, 12.59, and 12.60. 

12.47 Develop a computer progran1 that, given the area ratio, 
ratio of specific heats, and flow condition (subsonic or 
supersonic) as input, provides the Mach number. This will 
require some numerical root-finding scheme. Run the program 
for an area ratio of 5 and ratio of specific heats of 1.4. Compare 
the results with those in Table A.l. Then run the program for the 
same area ratio but with the ratios of specific heats of 1.67 
(helium) and 1.31 (methane). 

This progran1 will be useful for Probs. 12.50, 12.51, and 
12.54- 12.60. 
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12.48 fi:U's A wind tunnel using air is designed to have a Mach 
number of 3, a static pressure of 1.5 psia, and a static temperature 
of - I 0°F in the test section. Determine the area ratio of the 
nozzle required and the reservoir conditions that must be 
maintained if air is to be used. 

12.49 A de Laval nozzle is to be designed to operate 
supersonically and expand ideally to an absolute pressure 
of 25 kPa. If the stagnation pressure in the nozzle is 1 MPa, 
calculate the nozzle area ratio required. Determine the nozzle 
throat area for a mass flow of 10 kg/sand a stagnation 
temperature of 550 K. Assume that the gas is nitrogen. 

12.50 hVs A rocket nozzle with an area ratio of 4 is operating 
at a total absolute pressure of 1.3 MPa and exhausting to an 

atmosphere with an absolute pressure of 30 kPa. Determine 
whether the nozzle is overexpanded, underexpanded, or ideally 

expanded. Assume k = 1.4. 

12.51 Repeat Prob. 12.50 for a nozzle with the same area ratio 
but with a ratio of specific heats of 1.2. Classify the nozzle flow. 

12.52 A de Laval nozzle with an exit area ratio of 1.688 exhausts 

air from a large reservoir into ambient conditions at p = 100 kPa. 

a. Show that the reservoir pressure must be 782.5 kPa to 
achieve ideally expanded exit conditions at M = 2. 

b. What are the static temperature and pressure at the 
throat if the reservoir temperature is 17°C with the 
pressure as in (a)? 

c. If the reservoir pressure were lowered to 700 kPa, what 
would be the exit condition (overexpanded, ideally ex­
panded, underexpanded, subsonic flow in entire nozzle)? 

d. What reservoir pressure would cause a normal shock 
to form at the exit? 

12.53 Determine the Mach number and area ratio at which the 
dynamic pressure is maximized in a de Laval nozzle with air. 
[Hint: Express q in terms of p and M, and use Eq. ( 12.26) on p. 453 
in §12.2 for p. Differentiate with respect toM and equate to zero.] 

12.54 A rocket motor operates at an altitude where the 
atmospheric pressure is 30 kPa. The expansion ratio of the nozzle 
is 4 (exit area/ throat area). The chamber pressure of the motor 
(total pressure) is 1.2 MPa, and the chamber temperature (total 

temperature) is 3000°C. The ratio of the specific heats of the 
exhaust gas is 1.2, and the gas constant is 400 }/kg K. The throat 
area of the rocket nozzle is 100 cm2

• 

a . Determine the Mach number, density, pressure, and 
velocity at the nozzle exit. 

b. Determine the mass flow rate. 

c. Calculate the thrust of the rocket using 

T = mV, + (p, - Po)A, 

d. What would the chamber pressure of the rocket have 

to be to have an ideally expanded nozzle? Calculate the 
rocket thrust under this condition. 

12.55 A rocket motor is being designed to operate at sea level, 
where the pressure is 100 kPa absolute. The chamber pressure 
(total pressure) is 2.0 MPa, and the chamber temperature (total 

temperature} is 3300 K. The throat area of the nozzle is 10 cm2
• 

The ratio of the specific heats (k) of the exhaust gas is 1.2, and the 
gas constant is 400 J/kg K. 

a. Determine the nozzle expansion ratio that is required 
to achieve an ideally expanded nozzle, and determine 
the nozzle thrust under these conditions (see Prob. 12.53 
for the thrust equation). 

b. Determine the thrust that would be obtained if the 
expansion ratio were reduced by 10% to achieve an 
underexpanded nozzle. 

12.56 Air flows through a de Laval nozzle with an expansion 
ratio of 4. The total pressure of the air entering the nozzle is 
200 kPa, and the back pressure is 100 kPa. Determine the area 
ratio at which the shock wave occurs in the expansion section 
of the nozzle. (Hint: This problem can be solved graphically by 
calculating the exit pressure corresponding to different shock 
wave locations and finding the location where the exit pressure 
is equal to the back pressure.) 

12.57 A rocket nozzle has the configuration shown. The diameter 
of the throat is 4 ern, and the exit diameter is 8 em. The half-angle 
of the expansion cone is 15°. Gases with a specific heat ratio of 
1.2 flow into the nozzle with a total pressure of250 kPa. The back 
pressure is 100 kPa First, using an iterative or graphical method, 
determine the area ratio at which the shock occurs. Then determine 

the shock wave's distance from the throat in centimeters. 

PROBLEM 12.57 

12.58 A normal shock wave occurs in a nozzle at an area ratio 
of 5. Determine the entropy increase if the gas is hydrogen. 

12.59 ~Consider airflow in the variable-area channel shown 
in the figure. Determine the Mach number, static pressure, and 
stagnation pressure at station 3. Assume isentropic flow except 
for normal shock waves. 

Shock 
wave 

A1 = 100cm2 

M1 -2.1 
p1 = 65 kPa 

PROBLEM 12.59 



12.60 Determine the back pressure necessary for the shock wave 
to position itself as shown in the figure. The fluid is air. 

CD 

M1 = 0.3 
A1 = 200 cm2 

p1 = 400 kPa 

s 

Shock wave 

A,- 120 cml 

PROBU \I 12.ti0 

12.61 Design a supersonic wind tunnel that achieves a Mach 
number of 1.5 in a test section 5 em by 5 em. The tunnel is to be 
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attached to a vacuum tank as shown in the figure. After the tank 
is evacuated, the valve is opened and atmospheric air is drawn 
through the tunnel into the tank. The tunnel should operate for 
30 seconds before the pressure rises to the point in the tank that 
supersonic flow is no longer achievable. Do a preliminary design 
of this system including details such as nozzle dimensions, 
configuration, and tank size. 

Test section 

PRORI.b\1 12.61 



FIGURE 13.1 

FLOW 
MEASUREMENTS 

j Chapter Road Map I 
Measurement techniques o re important because fluid 
mechanics relies heavily on experiments. Thus, this 
chapter describes ways to measure flow rate, pressure 
and velocity. Also, this chapter describes how to 
estimate the uncertainty of a measurement. 

; ... j Learning Objectives j 

STUDENTS WILL BE AB LE TO 

• Describe common instruments for measuring velocity and 
pressure. (§ 1 3 1) 

A laminar flow element, pictured above, is used to measure 
volume flow rate. This apparatus rs being used to measure 

the flow rote versus pressure rise characteristics of fans for 
electronics cooling (Photo by Donald Elger.) 

• Calculate flow rote by integrating velocity distribution data 
(§ 13.2) 

• Describe common instruments for measuring discharge 
(volume flow rote). (§ 13.2) 

• Calculate flow rote for on obstruction flowmeter (i.e , an 
orifice, venturi , flow nozzle). (§ 13.2) 
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• Calculate flow rote for o rectangular or trrongular werr. 
(§ 13 2) 

• Describe the methods and instruments that ore used in 
compressible flow. (§ 13.3) 

• Quantify the accuracy rn o measurement by using 
the uncertainty equation (§ 13.4) 

13. 1 Measuring Velocity and Pressure 

Stagnation (Pitot) Tube 

The stagnation tube, also called the Pitot tube, is shown in Fig. l3.2a. A Pitot tube measures 
stagnation pressure with an open tube that is aligned parallel with the velocity direction and 
then senses pressure in the tube using a pressure gage or transducer. 



FIGURE 13.2 

Section view of 
(a) Pitot tube, (b) Static tube, 
(c) the Pitot-static tube. 

(a) 

(b) 

(c) 

SECTION 13 1 MEASURING VELOCITY AND PRESSURE 

FIGURE 13.3 

Viscous effects on CP. [After Hurd, Chesky, and Shapiro ( l ). 
Used with Permission from ASME .] 
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When the stagnation tube was introduced in Chapter 4, viscous effects were not dis­
cussed. Viscous effects are notable because they can influence the accuracy of a measurement. 
The effects of viscosity, from reference (1), are shown in Fig. 13.3. This shows the pressure 
coefficient CP plotted as a function of the Reynolds number. Viscous effects are important 
when CP > 1.0. This guideline can be used to establish a Reynolds number range. 

In Fig. 13.3 it is seen that when the Reynolds number for the circular stagnation tube is 
greater than 60, the error in measured velocity is less than I%. For boundary-layer measure­
ments a stagnation tube with a flattened end can be used. By flattening the end of the tube, the 
velocity measurement can be taken nearer the boundary than if a circular tube were used. For 
these flattened tubes, the pressure coefficient remains near unity for a Reynolds number as low 
as 30. See reference (15) for more information on flattened-end stagnation tubes. 

Static Tube 
A static tube, as shown in Fig. 13.2b, is an instrument for measuring static pressure. Static 
pressure is the pressure in a fluid that is stationary or in a fluid that is flowing. When the fluid 
is flowing, the static pressure must be measured in a way that does not disturb the pressure. 
Thus, in the design of the static tube, as shown in Fig. 13.4, the placement of the holes along 
the probe is critical because the rounded nose on the tube causes some decrease of pressure 
along the tube, and the downstream stem causes an increase in pressure in front of it. Hence 
the location for sensing the static pressure must be at the point where these two effects cancel 
each other. Experiments reveal that the optimum location is at a point approximately six diam­
eters downstream of the front of the tube and eight diameters upstream from the stem. 

479 
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FIGURE 13.4 

Static tube. 

FIGURE 13.5 

Various types of yow 
meters. 
(a) Cylindrical-tube yow 
meter. 
(b) Two-tube yow meter. 
(c) Three-dimensional yow 
meter. 

* SecrionA-A 
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Pitot-Static Tube 

The Pitot-static tube, Fig. 13.2c, measures velocity by using concentric tubes to measure static 
pressure and dynamic pressure. Application of the Pi tot -static tube is presented in Chapter 4. 

Yaw Meters 

A yaw meter, Fig. 13.5, is an instrument for measuring velocity by using multiple pressure 
ports to determine the magnitude and direction of fluid velocity. The first two yaw meters in 
Fig. 13.5 can be used for two-dimensional flow, where flow direction in only one plane needs 
to be found. The third yaw meter in Fig. 13.5 is used for determining flow direction in three 
dimensions. In all these devices, the tube is turned until the pressure on syn1metrically opposite 
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openings is equal. This pressure is sensed by a differential pressure gage or manometer con­
nected to the openings in the yaw meter. The flow direction is sensed when a null reading is 
indicated on the differential gage. The velocity magnitude is found by using equations that 
depend on the type of yaw meter that is used. 

The Vane or Propeller Anemometer 

The term anemometer originally meant an instrument that was used to measure the velocity 
of the wind. However, anemometer now means an instrument that is used to measure fluid 
velocity because anemometers are used in water, air, nitrogen, blood, and many other fluids. 
See (18) for an overview of the many types of anemometers. 

The vane anemometer (Fig. 13.6a) and the propeller anemometer (Fig. 13.6b) measure 
velocity by using vanes typical of a fan or propeller, respectively. These blades rotate with a 
speed of rotation that depends on the wind speed. Typically, an electronic circuit converts the 
rotational speed into a velocity reading. On some older instruments the rotor drives a low­
friction gear train that, in turn, drives a pointer that indicates feet on a dial. Thus if the ane­
mometer is held in an airstream for 1 min and the pointer indicates a 300-ft change on the 
scale, the average airspeed is 300 ft/min. 

(a) (b) 

Cup Anemometer 

FIGURE 13.6 

(a) Vane anemometer, 
(b) Propeller anemometer. 

FIGURE 13.7 

Instead of using vanes, the cup anemometer, in Fig. 13.7, is a device that uses the drag on cup- Cup anemometer. 

shaped objects to spin a rotor around a central axis. Because the rotational speed of the rotor 
is related to drag force, the frequency of rotation is related to the fluid velocity by appropriate 
calibration data. A typical rotor comprises three to five hemispherical or conical cups. In addi­
tion to applications in air, engineers use a cup anemometer to measure the velocity in streams 
and rivers. 

Hot-Wire and Hot-Film Anemometers 

The hot-wire anemometer (HWA), Fig. 13.8, is an instrument for measuring velocity by sensing 
the heat transfer from a heated wire. As velocity increases, more energy is needed to keep the wire 
hot, and the corresponding changes in electrical characteristics can be used to determine the 
velocity of the fluid that is passing by the wire. 
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FIGURE 13.8 

Probe for hot-wire 
anemometer (enlarged). 

~~ §~~Ff I Heatedwire k ~.ED~\E=::::==--1 
Wire suppons 

The HWA has advantages over other instruments. The HWA is well suited for measuring 
velocity fluctuations that occur in turbulent flow, whereas instruments such as the Pitot-static 
tube are only suitable for measuring velocity that either is steady or changes slowly with time. 
The sensing element of the HWA is quite small, allowing the HWA to be used in locations 
such as the boundary layer, where the velocity is varying in a region that is small in size. Many 
other instruments are too large for recording velocity in a region that is geometrically small. 
Another advantage of the HWA is that it is sensitive to low-velocity flows, a characteristic 
lacking in the Pitot tube and other instruments. The main disadvantages of the HWA are its 
delicate nature (the sensor wire is easily broken), its relatively high cost, and its need for an 
experienced user. 

The basic principle of the hot-wire anemometer is described as follows: A wire of very 
small diameter-the sensing element of the hot-wire anemometer-is welded to supports as 
shown in Fig. 13.8. In operation the wire either is heated by a fixed flow of electric current (the 
constant-current anemometer) or is maintained at a constant temperature by adjusting the 
current (the constant-temperature anemometer). 

A flow of fluid past the hot wire causes the wire to cool because of convective heat transfer. 
In the constant-current anemometer, the cooling of the wire causes its resistance to change, 
and a corresponding voltage change occurs across the wire. Because the rate of cooling is a 
function of the speed of flow past the heated wire, the voltage across the wire is correlated with 
the flow velocity. The more popular type of anemometer, the constant-temperature anemom­
eter, operates by varying the current in such a manner as to keep the resistance (and tempera­
ture) constant. The flow of current is correlated with the speed of the flow: the higher the 
speed, the greater the current needed to maintain a constant temperature. Typically, the wires 
are 1 mm to 2 mm in length and heated to 150°C. The wires may be 10 1-Lm or less in diameter; 
the time response improves with the smaller wire. The lag of the wire's response to a change in 
velocity (thermal inertia) can be compensated for more easily, using modern electronic cir­
cuitry, in constant-temperature anemometers than in constant-current anemometers. The sig­
nal from the hot wire is processed electronically to give the desired information, such as mean 
velocity or the root-mean-square of the velocity fluctuation. 

To illustrate the versatility of these instruments, note that the hot-wire anemometer can 
measure accurately gas flow velocities from 30 cm/s to 150 m/s; it can measure fluctuating 
velocities with frequencies up to 100,000 Hz, and it has been used satisfactorily for both gases 
and liquids. 

The single hot wire mounted normal to the mean flow direction measures the fluctuating 
component of velocity in the mean flow direction. Other probe configurations and electronic 
circuitry can be used to measure other components of velocity. 

For velocity measurements in liquids or dusty gases, where wire breakage is a problem, the 
hot-film anemometer is more suitable. This anemometer consists of a thin conducting metal 
film (less than 0.1 IJ.m thick) mounted on a ceramic support, which may be 50 IJ.m in diameter. 
The hot film operates in the same fashion as the hot wire. Recently, the split film has been 
introduced. It consists of two semicylindrical films mounted on the same cylindrical support 
and electrically insulated from each other. The split film provides both speed and directional 
information. 

For more detailed information on the hot-wire and hot-film anemometers, see King and 
Brater (2) and Lomas (3). 
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t/ CHECKPOINT PROBLEM 13.1 

Suppose you were interested in measuring the velocity at various points in a small creek. 
(a) What are the advantages of using a stagnation tube? Disadvantages? (b) What are the advantages 
of using a HWA? Disadvantages? (c) Which instrument would you recommend? Why? 

Laser-Doppler Anemometer 

The laser-Doppler anemometer (LDA) is an instrument for measuring velocity by using the 
Doppler shift that occurs when a particle in a flow scatters light from crossed laser beams. 
Advantages of the LDA are (a) the flow field is not disturbed by the presence of a probe, and 
(b) it provides excellent spatial resolution. Disadvantages of the LDA include cost, complexity, 
the need for a transparent fluid, and requirement for particle seeding. , 

There are several different configurations for the LDA. The dual-beam mode, Fig. 13.9, 
splits a laser beam into two parallel beams and then uses a converging lens to cause the two 
beams to cross. The point where beams cross is called the measuring volume, which might best 
be described as an ellipsoid that is typically 0.3 mm in diameter and 2 mm long, illustrating the 
excellent spatial resolution achievable. The interference of the two beams generates a series of 
light and dark fringes in the measuring volume perpendicular to the plane of the two beams. 
As a particle passes through the fringe pattern, light is scattered, and a portion of the scattered 
light passes through the collecting lens toward the photodetector. A typical signal obtained 
from the photodetector is shown in the figure. 

fl ow 

Focusmg lens Cotlectong lens 
Pinhole 

Laser 

Output signal 

It can be shown from optics theory that the spacing between the fringes is given by 

'A 
llx= --

2 sin <I> 
(13.1) 

where 'A is the wavelength of the laser beam and <1> is the half-angle between the crossing beams. By 
suitable electronic circuitry, the frequency of the signal (j) is measured, so the velocity is given by 

llx V 
U = - =--

llt 2 sin <1> 
(13.2) 

The operation of the laser-Doppler anemometer depends on the presence of particles to 
scatter the light. These particles need to move at the same velocity as the fluid. Thus the parti­
cles need to be small relative to the size of flow patterns, and they need to have a density near 
that of the ambient fluid. In liquid flows, impurities of the fluid can serve as scattering centers. 

FIGURE 13.9 

Dual-beam loser-Doppler 
anemometer. 
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FIGURE 13.10 

Combined time-streak 

markers (hydrogen 
bubbles); flow is from lek 
to right. [Aker Kline (5) 
Courtesy of Education 
Development Center, Inc. , 
Waltham, MA.] 

In water flows, adding a few drops of milk is common. In gaseous flows, it is common to "seed" 
the flow with small particles. Smoke is often used for this seeding. 

Laser-Doppler anemometers that provide two or three velocity components of a particle 
traveling through the measuring volume are now available. This is accomplished by using 
laser-beam pairs of different colors (wavelengths). The measuring volumes for each color are 
positioned at the same physical location but oriented differently to measure a different compo­
nent. The signal-processing system can discriminate the signals from each color and thereby 
provide component velocities. 

Another recent technological advance in laser-Doppler anemometry is the use of fiber 
optics. The fiber optics transmit the laser beams from the laser to a probe that contains optical 
elements to cross the beams and generate a measuring volume. Thus measurements at different 
locations can be made by moving the probe and without moving the laser. For more applica­
tions of the laser-Doppler technique see Durst (4). 

Marker Methods 
The marker method for determining velocity involves particles that are placed in the stream. By 
analyzing the motion of these particles, one can deduce the velocity of the flow itself. Of course, this 
requires that the markers follow virtually the same path as the surrounding fluid elements. It means, 
then, that the marker must have nearly the same density as the fluid or that it must be so small that 
its motion relative to the fluid is negligible. Thus for water flow it is common to use colored droplets 
from a liquid mixture that has nearly the same density as the water. For example, Macagno ( 6) used 
a mixture of n-butyl phthalate and xylene with a bit of white paint to yield a mixture that had the 
same density as water and could be photographed effectively. Solid particles, such as plastic beads, 
that have densities near that of the liquid being studied can also be used as markers. 

Hydrogen bubbles have also been used for markers in water flow. Here an electrode placed 
in flowing water causes small bubbles to be formed and swept downstream, thus revealing the 
motion of the fluid. The wire must be very small so that the resulting bubbles do not have a 
significant rise velocity with respect to the water. By pulsing the current through the electrode, 
it is possible to add a time frame to the visualization technique, thus making it a useful tool 
for velocity measurements. Figure 13.10 shows patches of tiny hydrogen bubbles that were 
released with a pulsing action from noninsulated segments of a wire located to the left of the 
picture. Flow is from left to right, and the necked-down section of the flow passage has higher 
water velocity. Therefore, the patches are longer in that region. Next to the wails the patches of 
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bubbles are shorter, indicating less distance traveled per unit of time. Other details concerning 
the marker methods of flow visualization are described by Macagno (6). 

A relatively new marker method is particle image velocimetry (PIV), which provides a mea­
surement of the velocity field. In PIV; the marker or seeding particles may be minuscule spheres 
of aluminum, glass, or polystyrene. Or they may be oil droplets, oxygen bubbles (liquids only), or 
smoke particles (gases only). The seeding particles are illuminated to produce a photographic 
record of their motion. In particular, a sheet of light passing through a cross section of the flow is 
pulsed on twice, and the scattered light from the particles is recorded by a camera. The first pulse 
of light records the position of each particle at tin1e t, and the second pulse of light records the 
position at timet + llt. Thus, the displacement tlr of each particle is recorded on the photograph. 
Dividing tlr by M yields the velocity of each particle. Because PIV uses a sheet of light, the 
method provides a simultaneous measurement of velocity at locations throughout a cross section 
of the flow. Hence, PIV is identified as a whole-field technique. Other velocity measurements, the 
LDA method, for example, are limited to measurements at one location. 

PIV measurement of the velocity field for flow over a backward-facing step is shown in 
Fig. 13.11. This experiment was carried out in water using 15-J.Lm-diameter, silver-coated hol­
low spheres as seeding particles. Notice that the PIV method provided data over the cross 
section of the flow. Although the data shown in Fig. 13.11 are qualitative, numerical values of 
the velocity at each location are also available. 

The PIV method is typically performed using digital hardware and computers. For ex­
ample, images may be recorded with a digital camera. Each resulting digital image is evaluated 
with software that calculates the velocity at points throughout the image. This evaluation pro­
ceeds by dividing the image into small subareas called "interrogation areas:· Within a given 
interrogation area, the displacement vector (tlr) of each particle is found by using statistical 
techniques (auto- and cross-correlation). After processing, the PIV data are typically available 
on a computer screen. Additional information on PI V systems is provided by Raffel eta!. (7}. 

Smoke is often used as a marker in flow measurement. One technique is to suspend a 
wire vertically across the flow field and allow oil to flow down the wire. 1he oil tends to 
accumulate in droplets along the wire. Applying a voltage to the wire vaporizes the oil, cre­
ating streaks from the droplets. Figure 13.12 is an example of a flow pattern revealed by 
such a method. Smoke generators that provide smoke by heating oils are also commercially 

FIGURE 13. 11 

Velocity vectors from PIV 
measurements. (Courtesy 
of TSI Incorporated and 
Florida State University) 
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FIGURE 13. 12 

Flow pattern produced by 
a model truck in a wind 
tunnel. [Photo by Stephen 
Lyda] 

FIGURE 13.13 

Dividing a rectangular 
conduit into subareas for 
approximating discharge. 

Measure velocity at 
center of each subarea 
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available. It is also possible to position a thin sheet of laser light through the smoke field 
to obtain an improved spatial definition of the flow field indicated by the smoke. Another 
technique is to introduce titanium tetrachloride (TiC1 4) in a dried-air flow, which reacts 
with the water vapor in the ambient air to produce micron -sized titanium oxide particles, 
which serve as tracers. 

13.2 Measuring Flow Rate (Discharge) 

Measuring flow rate is important in research, design, and testing and in many commercial 
applications. 

Direct Measurement of Volume or Weight 

For liquids, a simple and accurate method is to collect a sample of the flowing fluid over a given 
period of time t::..t. Then the sample is weighed, and the average weight rate of flow is 6. WI t::..t, 
where t::.. W is the weight of the sample. The volume of a sample can also be measured (usually 
in a calibrated tank), and from this the average volume rate of flow is calculated as t::..V-1 t::.. t, 
where 6.¥ is the volume of the sample. This method has several disadvantages: It cannot be 
used for an unsteady flow, and it is not always possible to collect a sample. 

Integrating a Measured Velocity Distribution 

Flow rate can be found by measuring a velocity distribution and then integrating using the 
volume flow rate equation: 

Q =I VdA 
A 

For example, one can divide a rectangular conduit into subareas and then measure velocity at 
the center of each subarea as shown in Fig. 13.13. Then flow rate is determined by 

Q =I VdA = ± V;(t::..A); 
A r~l 

(13.3) 

where N is the number of subareas. When the flow area occurs in a round pipe, then the sub­
area is a ring as shown by Example L3.1. 



EXAMPLE 13.1 

Calculating Flow Rate from Velocity Data 

Problem Statement 

The data given in the table are for a velocity traverse of air flow 
in a pipe 100 em in diameter. What is the volume rate of flow 
in cubic meters per second? 

r(cm) V(m/s) 

0.00 50.0 

5.00 49.5 

10.00 49.0 ---
15.00 48.0 

20.00 46.5 

25.00 45.0 

30.00 43.0 

35.00 40.5 

40.00 37.5 

45.00 34.0 

47.50 25.0 

50.00 0.0 

Define the Situation 

Air is flowing in a round pipe (D = 1.0 m). 

Velocity in m/s is known as a function of radius (see table). 

Assumptions: The velocity distribution is symmetric around 
the centerline of the pipe. 

State the Goal 

Calculate the volume flow rate (m3/s) in the pipe. 

Generate Ideas and Make a Plan 

1. Develop an equation for a round pipe by applying 
Eq. (13.3). 

2. Find discharge by using a spreadsheet program. 

Calibrated Orifice Meter 

Take Action (Execute the Plan) @At=(27Tr,)6r, 
The flow rate is given by 

llr; 
N 

Q = ~~ V1(LlA)1 

The area LlA, is shown in the sketch 
above. Visualize this area as a strip oflength 21rr, and width 
Llr,. Then .lA1 "" (2'TT'r1)dr,. The flow rate equation becomes 

N N 

Q = L V,(LlA), = L V1(21Tr1)dr1 
r-1 j .;... t 

To perform the sum, use a spreadsheet as shown. To see how 
the table is set up, consider the row i = 2. The area is 

aA2 = (2m2)Llr2 = {2'11'(0.05 m))(O.OS m) = 0.0157 m2 

which is given in the sixth column. The last column gives 

V2(dA)2 = (49.5m/s)(O.Ol57m2
) = 0.778m3/s 

r, V; 2•1t•r, 61'; M; VtM1 
i (em) (rws) (m) (m) (m2) (m31s) 

I 0.0 50.0 0.0000 0.0250 0.0000 0.000 

2 5.0 49.5 0.3142 0.0500 0.0157 0.778 

3 10.0 49.0 0.6283 0.0500 0.0314 1.539 

4 15.0 48.0 0.9425 0.0500 0.0471 2.262 

5 20.0 46.5 1.2566 0.0500 0.0628 2.922 

6 25.0 45.0 1.5708 0.0500 0.0785 3.534 

7 30.0 43.0 1.8850 0.0500 0.0942 4.053 

8 35.0 40.5 2.1991 0.0500 0.1100 4.453 

9 40.0 37.5 2.51 33 0.0500 0.1257 4.712 

10 45.0 34.0 2.8274 0.0375 0.1060 3.605 

II 47.5 25.0 2.9845 0.0250 0.0746 1.865 

12 50.0 0.0 3.1416 0.0125 0.0393 0.000 

SUM=> 0.50 0.79 29.72 

Discharge is found by summing the last column. As shown 

_ 12 _j m3 1 
Q- L V,(LlA), -, 29.7-

• - I S 

To check the validity of the calculation, sum the column labeled 
dr1 and check to ensure that this value equals the radius of the 
pipe. As shown, this sum is 0.5 m. Similarly, the pipe area of 

A = 'TI'r2 = 1T(0.5 m)2 = 0.785 m2 

should be produced by summing the column labeled LlA,. As 
shown, this is the case. 

An orifice meter is an instrument for measuring flow rate by using a carefully designed plate 
with a round opening and situating this device in a pipe, as shown in Fig. 13.14. Flow rate is 
found by measuring the pressure drop across the orifice and then using an equation to calcu­
late the appropriate flow rate. One common application of the orifice meter is metering of 
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FIGURE 13.14 

Flow through a sharp­
edged pipe orifice. 

natural gas in pipelines. Because large quantities of natural gas are measured and the associ­
ated costs are high, accuracy is very important. This section describes the main ideas associ­
ated with orifice meters. Details about using orifice meters are presented in standards such as 
reference (10). 

Flow through a sharp-edged orifice is shown in Fig. 13.14. Note that the streamlines con­
tinue to converge a short distance downstream of the plane of the orifice. Hence the minimum­
flow area is actually smaller than the area of the orifice. To relate the minimum-flow area, often 
called the contracted area of the jet, or vena contracta, to the area of the orifice A0 , one uses 
the contraction coefficient, which is defined as 

Then, for a circular orifice, 

Aj = C,A0 

A­c = _!_ 
c Ao 

c = (-rrl 4)dJ = ('1)2 
c (-rrl 4)d2 d 

Because dj and d2 are identical, C, = (d21df At low values of the Reynolds munber, C, is a 
function of the Reynolds number. However, at high values of the Reynolds number, C, is only 
a function of the geometry of the orifice. For diD ratios less than 0.3, C, has a value of 
approximately 0.62. However, as dl D is increased to 0.8, C, increases to a value of 0. 72. 

To derive the orifice equation, consider the situation shown in Fig. 13.14. Apply the 
Bernoulli equation between section 1 and section 2: 

P v2 P v2 
___!_ + ___I_ + z = __2 + ___2 + z 
"{ 2g I "{ 2g 2 

V1 is eliminated by means of the continuity equation V1A 1 = V2A2• Then solving for V2 gives 

V = { 2g [( p1h + z1) - (p2I'Y + z2) l } 112 

2 l - (A 2IA 1/ 

However,A2 = C, A0 and h = pi"{+ z, so Eq. (13.4a) reduces to 

2g(hi - h2) 

l - C~A~IAT 

(13.4a) 

(13.4b) 
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Our primary objective is to obtain an expression for discharge in terms of h1, h2, and the geo­
metric characteristics of the orifice. The discharge is given by V2A 2• Hence, multiply both sides 
of Eq. ( 13.4b) by A2 = C,A 0 , to give the desired result: 

CcAo " I 
Q = v v 2g(hl - h2) 

1 - c:A~!Ai 
(13.5) 

Equation ( 13.5) is the discharge equation for the flow of an incompressible inviscid fluid through 
an orifice. However, it is valid only at relatively high Reynolds numbers. For low and moderate 
values of the Reynolds number, viscous effects are significant, and an additional coefficient 
called the coefficient of velocity, Cv, must be applied to the discharge equation to relate the ideal 
to the actual flow.* Thus for viscous flow through an orifice, we have the following discharge 
equation: 

The product CvC, is called the discharge coefficient, Cd, and the combination CvC,I 
(1 - C~A~!Ai) 112 is called the flow coefficient, K. Thus, Q = KA0 Y2g(h1 - h2) ,where 

K = cd 
Vt - c:A~IA~ 

(13.6) 

1f t:.h is defined as h1 - h2, then the final form of the orifice equation reduces to 

Q = KAovzgKh (13.7a) 

If a differential pressure transducer is connected across the orifice, it will sense a piezo­
metric pressure change that is equivalent to -yt:.h, so the orifice equation becomes 

Q=KA ~ O\jlp (13.7b) 

Experimentally determined values of K as a function of diD and Reynolds number based on 
orifice size are given in Fig. 13.15. If Q is given, Red is equal to 4Q/7r dv. Then K is obtained from 
Fig. 13.15 (using the vertical lines and the bottom scale), and t:.h is computed from Eq. (13.7a), 
or t:.p. can be computed from Eq. (13.7b). However, one is often confronted with the problem 
of determining the discharge Q when a certain value of t:.h or a certain value of t:.p. is given. 
When Q is to be determined, there is no direct way to obtain K by entering Fig. 13.15 with Re, 
because Re is a function of the flow rate, which is still unknown. Hence another scale, which 
does not involve Q, is constructed on the graph of Fig. 13.15. The variables for this scale are 
obtained in the following manner: Because Red= 4Qhr dv and Q = K(1Td 2/4)~, write 
Red in terms of t:.h: 

or 

d 
Red=K-~ 

v 

• At low Reynolds numbers the coefficient of velocity may be quite small; however, at Reynolds numbers above 105, 

C, typically has a value close to 0.98. See Lienhard (8) for Cv analyses. 
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FIGURE 1 3. 1 5 

Flow coefficient K and Red/K versus the Reynolds number for orifices, nozzles. 
and venturi meters. [Aher Tuve and Sprenkle (9) and ASME ( 1 0). Permission to use 
Tuve granted by Instrumentation & Control Systems magazine, formerly Instruments 
magazine.] 
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Thus the slanted dashed lines and the top scale are used in Fig. 13. 15 when tl.h is known and 
the flow rate is to be determined. If a certain value of tl.p is given, one can apply Fig. 13.15 by 
using tl.p.fp in place of gtl.h in the parameter at the top of Fig. 13. 15. 

The literature on orifice flow contains numerous discussions concerning the optimum 
placement of pressure taps on both the upstream side and the downstream side of an orifice. 
The data given in Fig. 13.15 are for "corner taps:' That is, on the upstream side the pressure 
readings were taken immediately upstream of the orifice plate (at the corner of the orifice plate 
and the pipe wall) , and the downstream tap was at a similar downstream location. However, 
pressure data from flange taps (1 in. upstream and 1 in. downstream) and from the taps shown 
in Fig. 13.14 all yield virtually the same values forK-the differences are no greater than the 
deviations involved in reading Fig. 13.15. For more precise values of K with specific types of 
taps, see the ASME report on fluid meters (10). 



Head Loss for Orifices 
Some head loss occurs between the upstream side of the orifice and the vena contracta. However, 
this head loss is very small compared with the head loss that occurs downstream of the vena 
contracta. This downstream portion of the head loss is like that for an abrupt expansion. 
Neglecting all head loss except that due to the expansion of the flow, gives 

(13.8) 

where V2 is the velocity at the vena contracta and V1 is the velocity in the pipe. It can be 
shown that the ratio of this expansion loss, hL, to the change in head across the orifice, Llh, is 
given as 

v2 
hL VI 

- =---
Llh V2 + 

1 
VI 

(13.9) 

Table 13.1 shows how the ratio increases with increasing values of V2/V1• It is obvious that an 
orifice is very inefficient from the standpoint of energy conservation. Examples 13.2 and 13.3 

illustrate how to make calculations when orifice meters are used. 

TABLE 13.1 Relative Head Loss for Orifices 

v21 vl ~ 1 1 : 2 : 4 I 6 ~ 8 1 o 
hLI t.h ~ I 0 I 0.33 0.60 I 0.71 0.78 0.82 

I I 

EXAMPLE 13.3 State the Goal 

• Calculate discharge (in m3/s) in pipe. Applying an Orifice Meter to Measure the Flow 
Rate of Water 

• Calculate head loss (in meters) produced by the orifice. 

Problem Statement 

A IS-em orifice is located in a horizontal 24-cm water pipe, 
and a water-mercury manometer is connected to either side 
of the orifice. When the deflection on the manometer is 
25 em, what is the discharge in the system, and what head loss 
is produced by the orifice? Assume the water temperature 
is 20°C. 

Define the Situation 

Water flows through an orifice (d = 0.15 m) in a pipe 
(D = 0.24 m). A mercury-water manometer is used to 
measure pressure drop. 

Properties: 

• Water (20°C), Table A.5: v = 1 X I0- 6 m2/s. 

• Mercury (20°C), Table A.4: S = 13.6. 

- -
4 

1!.1 - 25 em 
_l 

Generate Ideas and Make a Plan 

1. Calculate Ah = h1 - h2 using the manometer equation. 

2. Find the flow coefficient K using Fig. 13.15. 
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3. Find discharge Q using Eq. (13.7a). 

4. Calculate the coefficient of contraction C, using 
Eq. (13.6). 

5. Solve for the velocity V2 at the vena contracta. 

6 . Calculate head loss using Eq. ( 13.8). 

Take Action (Execute the Plan) 

1. Change in piezometric head 

• Apply manometer equation from I to 2. 

Pt + "(..,(/ + t.l) - 'YHg.il - -y,.,l = P2 

• Solve for t.h. 

Ah = Pt - P2 = t.l 'YH8 - 'Yw = t.r("YHs _ 1) 
'Yw 'Yw 'Yw 

t.h = (0.25m)( !3.6- 1) = 3.15mofwater 

2. Flow coefficient 

• Calculate (Rcd/K). 

Rea dV2gAii 0.15 mY2(9.81 m/s2)(3.15 m) 
-= 
K v 1.0 X 10- 6 m 2/s 

= 1.2 X 106 

• From Fig.13.15 with diD= 0.625,K = 0.66 (interpolated). 

EXAMPLE 13.4 

Applying an Orifice Meter 

Problem Statement 

An air-water manometer is connected to either side of an 
8-in. orifice in a 12-in. water pipe. If the maximum flow rate 
is 2 cfs, what is the deflection on the manometer? The water 
temperature is 60°F. 

Define the Situation 

• Water flows (Q = 2 cfs) through an orifice (d = 8 in.) in a 
pipe (D = 2 in.) 

• An air-water manometer is used to measure pressure drop. 

Air 

Deflection ~AI 

3. Discharge 

Q = 0.66A0 V2gAii 

= 0.66~d2Y2(9.81 m/s2)(3.15 m) 
4 

= 0.66 (0.785)(0.152 m 2)(7.86 m/s) = J 0.092 m3/s I 
4. Coefficient of contraction C, 

Ca 
K = ---;===:=::::=== 

Y1 - C~A~/A~ 

Let K = 0.66. The ratio (A0 /A1)
2 = (0.625)4 = 0.1526 

and Ca = c.c,. Assuming c. = 0.98 (see the footnote 
on page 489) and solving for C,, gives C, = 0.633. 

5. Velocity at the vena contracta 

V2 = QI(C, A.) 

(0.092 m3/ s)/[(0.633)('1T/ 4)(0.152 m2
)] = 8.23 m/s 

Vt = Q/Aptpe 

(0.092 m3/s)/[( 'TT/4)(0.242m2)] = 2.03 m/s 

6. Head loss 

ht = (V2 - V1)
212g = (8.23 - 2.03)2/(2 X 9.81) 

= J 1.96m I 

Properties: Water (60°F), Table A.5: v = 1.22 X 10- s ftl/s. 

State the Goal 

Calculate the deflection (in ft) of water in the manometer. 

Generate Ideas and Make a Plan 

1. Calculate Reynolds number. 

2. Find the flow coefficient K from Fig. 13.15. 

3. Solve forM by using Eq. (13.7a). 

4. Solve for .i/ by using the manometer equation. 

Take Action (Execute the Plan) 

1. Reynolds number. 

4Q (4)(2 fets) ~ ~· 
Re = - = = 3 I X 10 

'ITdv '1T((8/ 12) ft)(l.22 X 10-s ft2/s) . 

2. Flow coefficient. 

• Use Fig. 13.15. Interpolate ford! D = 8/ 12 = 0.667 to 
find K = 0.68. 
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3. Change in piezometric head 4. Manometer deflection 

• From Q = KA0 V2gifh. solve for !:J.h: • The deflection is related to !:J.h by 

Q2 4 
!:J.h = -- = = 1 1 ft 

2gK2A~ 64.4(0.682)[((7r)/4)(81l2? F . 
!:J.h = !:J.{'fw ~"'"Yai r) 

• Because -y,. ~ "Yaw 6.1 = !:J.h = 1.1 ft. [ r !:J._/_=_ 1-.1-ft--,
1 

The sharp-edged orifice can also be used to measure the mass flow rate of gases. The dis­
charge equation [Eq. ( 13. 7b)] is multiplied by the upstream gas density and an empirical factor 
to account for compressibility effects (10). The resulting equation is 

m = YA. K Y 2p1(pi - P2) (13.10) 

where K, the flow coefficient, is found using Fig. 13.15 and Y is the compressibility factor given 
by the empirical equation 

Y = 1- {i('- ~~ )[ 0.41 + o.3s(~~Y]} (13.11) 

In this case both the pressure difference across the orifice and the absolute pressure of the 
gas are needed. One must remember when using the equation for the compressibility factor 
that the absolute pressure must be used. 

I EXAMPLE 13.5 

Applying on OriRce Meter to Measure the Flow Rote 
of Natural Gas 

Problem Statement 

The mass flow rate of natural gas is to be measured using a 
sharp-edged orifice. The upstream pressure of the gas is 101 kPa 
absolute, and the pressure difference across the orifice is I 0 kPa. 
The upstream temperature of the methane is I 5°C. The pipe 
diameter is 10 em, and the orifice diameter is 7 em. What is the 
mass flow rate? 

Define the Situation 

• Natural gas (methane) is flowing through a sharp-edged 
orifice. 

• Pipe diameter is D = 0.1 m. Orifice diameter is d = 0.07 m. 

• Pressure difference across orifice is 10 kPa. 

Properties: Natural gas ( l5°C, 1 atm), Table A.2: 

p = 0.678 kg/ m3
, v = 1.59 X 10-5 m2/s, K = 1.31. 

State the Goal 

Find the mass flow rate (in kg/s). 

Generate Ideas (Make a Plan) 

1. Find the flow coefficient K from Fig. 13.1 5. 

2. Calculate the compressibility factor Y using Eq. (13.11). 

3. Calculate the mass flow rate using Eq. (13.10). 

Take Action (Execute the Plan) 

1. Flow coefficient 

• Calculate (Red/ K): 

Rea d f¥.P 0.07 ~04 
- =- 2- = 2 -- = 7 56 X 105 

K v PI 1.59 (10- 5) 0.678 . 

• Using Fig. 13.15, K = 0.7. 

2. Compressibility factor 

Y = 1 - { 
1 

(I - _2!_)(0.41 + 0.35 X 0.7 4
) } = 0.962 

1.31 101 

3. Mass flow rate of methane 

m = YA. Kvlpl(Pl - P2) 

= o.962( ~o.o72}o.7)V2(0.67B)( 104) 
= 1 o.3o2 kg/s 1 
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FIGURE 13. 16 

Typical venturi meter. 

The foregoing examples involved the determination of either Q or Llh for a given size of 
orifice. Another type of problem is determination of the diameter of the orifice for a given 
Q and Llh. For this type of problem a trial-and-error procedure is required. Because one knows 
the approximate value of K, that is guessed first. Then the diameter is solved for, after which a 
better value of K can be determined, and so on. 

Venturi Meter 

The venturi meter, Fig. 13.16, is an instrument for measuring flow rate by using measure­
ments of pressure across a converging-diverging flow passage. The main advantage of the 
venturi meter as compared to the orifice meter is that the head loss for a venturi meter is 
much smaller. The lower head loss results from streamlining the flow passage, as shown in 
Fig. 13.16. Such streamlining eliminates any jet contraction beyond the smallest flow 
section. Consequently, the coefficient of contraction has a value of unity, and the venturi 
equation is 

(13.12) 

(13.13) 

where A, is the throat area and Llh is the difference in piezometric head between the venturi 
entrance (pipe) and the throat. Note that the venturi equation is the same as the orifice equa­
tion. However, K for the venturi meter approaches unity at high values of the Reynolds number 
and small diD ratios. This trend can be seen in Fig. 13.15, where values of K for the venturi 
meter are plotted along with similar data for the orifice. 

Pressure-sensing holes 

-

Flow Nozzles 
The flow nozzle, Fig. 13.17, is an instrument for measuring flow rate by using the pressure 
drop across a nozzle that is typically placed inside a conduit. Similar to an orifice meter, de­
sign and application of the flow nozzle is described by engineering standards (10). As com­
pared to an orifice meter, the flow nozzle is better in flows that cause wear (e.g. , particle-laden 
flow). The reason is that erosion of an orifice will produce more change in the pressure-drop 
versus flow-rate relationship. Both the flow nozzle and orifice meter will produce about the 
same overall head loss. 



EXAMPLE 13.6 

Applying a Venturi Meter to Measure the Flow 
Rate of Water 

Problem Statement 

The pressure difference between the taps of a horizontal 
venturi meter carrying water is 35 k.Pa. If d = 20 em and 
D = 40 em, what is the discharge of water at 10°C? 

Define the Situation 

Water flows through a horizontal venturi meter. 

Pipe diameter is D = 0.40 m. Venturi throat diameter is 
d = 0.2 m. 

Properties: Water (l0°C), Table A.5: v = 1.31 X 10- 6 m2/ s, 
and-y= 9810 N/m3 

State the Goal 

Find the discharge (m3/s). 

Electromagnetic Flowmeter 

Generate Ideas and Make a Plan 

l. Compute t:.h = h1 - h2• 

FIGURE 13. 17 

Typical flow nozzle. 

2. Find the flow coefficient K from Fig. 13.15. 

3. Find discharge Q using Eq. ( 13.7a). 

Take Action (Execute the Plan) 

1. Change in piezometric head 

t:.p t:.p 35,000 N/ m2 

t:.h = - + t:.z = - + 0 = = 3.57 m of water 
-y -y 9810 N/m 3 

2. Flow coefficient 

Calculate (Red/ K): 

Red dVfiiiTi 0.20Y 2(9.81 )(3.57) 
- = = = 1.28 x 1 o~ 
K v 1.31(10- 6) 

From Fig. 13.15, find that K = 1.02. 

3. Discharge 

Q = 1.02A2 V2giiTi 

= l.02(0.785)(0.202)Y2(9.81}(3.57) = I 0.268 m3/ s I 

All the tlowmeters described so far require that some sort of obstruction be placed in the flow. 
The obstruction may be the rotor of a vane anemometer or the reduced cross-section of an 
orifice or venturi meter. A meter that neither obstructs the flow nor requires pressure taps, 
which are subject to clogging, is the electromagnetic flowmeter. Its basic principle is that a 
conductor that moves in a magnetic field produces an electromotive force. Hence liquids having 
a degree of conductivity generate a voltage between the electrodes, as in Fig.l3.18, and this volt­
age is proportional to the velocity of flow in the conduit. It is interesting to note that the basic 
principle of the electromagnetic flowmeter was investigated by Faraday in 1832. However, 
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FIGURE 13.18 

Electromagnetic flowmeter. 

Electrically tnsulatcd pipe 

Electrodes 

practical application of the principle was not made until approximately a century later, when it 
was used to measure blood flow. Recently, with the need for a meter to measure the flow of 
liquid metal in nuclear reactors and with the advent of sophisticated electronic signal detec­
tion, this type of meter has found extensive commercial use. 

The main advantages of the electromagnetic flowmeter are that the output signal varies 
linearly with the flow rate and that the meter causes no resistance to the flow. The major disad­
vantages are its high cost and its unsuitability for measuring gas flow. 

For a summary of the theory and application of the electromagnetic flowmeter, the reader 
is referred to Shercliff (11). This reference also includes a comprehensive bibliography on the 
subject. 

Ultrasonic Flowmeter 

Another form of nonintrusive flowmeter that is used in diverse applications ranging from blood 
flow measurement to open-channel flow is the ultrasonic flowmeter. Basically, there are two 
different modes of operation for ultrasonic flowmeters. One mode involves measuring the differ­
ence in travel time for a sound wave traveling upstream and downstream between two measuring 
stations. The difference in travel time is proportional to flow velocity. The second mode of opera­
tion is based on the Doppler effect. When an ultrasonic beam is projected into an inhomoge­
neous fluid, some acoustic energy is scattered back to the transmitter at a different frequency 
(Doppler shift). The measured frequency difference is related directly to the flow velocity. 

Turbine Flowmeter 

The turbine flowmeter consists of a wheel with a set of curved vanes (blades) mounted inside 
a duct. The volume rate of flow through the meter is related to the rotational speed of the 
wheel. This rotational rate is generally measured by a blade passing an electromagnetic pickup 
mounted in the casing. The meter must be calibrated for the given flow conditions. The turbine 
meter is versatile in that il can be used for either liquids or gases. It has an accuracy of better 
than 1% over a wide range of flow rates, and it operates with small head loss. The turbine flow­
meter is used extensively in monitoring flow rates in fuel-supply systems. 

Vortex Flowmeter 

The vortex flowmeter, shown in Fig. 13.19, measures flow rate by relating vortex shedding 
frequency to flow rate. The vortices are shed from a sensor tube that is situated in the center 



FIGURE 1 3.19 

Vortex flowmeter. 
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FIGURE 13.20 

Rotameter. 
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of a pipe. These vortices cause vibrations, which are sensed by piezoelectric crystals that are 
located inside the sensor tube, and are converted to an electronic signal that is directly 
proportional to flow rate. This vortex meter gives accurate and repeatable measurements with 
no moving parts. However, the corresponding head loss is comparable to that from other 
obstruction-type meters. 

Rotameter 

The rotameter, Fig. 13.20, is an instrument for measuring flow rate by sensing the position 
of an active element (weight) that is situated in a tapered tube. The equilibrium position of 
the weight is related to the flow rate. Because the velocity is lower at the top of the tube 
(greater flow section there) than at the bottom, the rotor seeks a neutral position where the 
drag on it just balances its weight. Thus the rotor "rides" higher or lower in the tube depend­
ing on the rate of flow. The weight is designed so that it spins, thus it stays in the center of the 
tube. A calibrated scale on the side of the tube indicates the rate of flow. Although venturi 
and orifice meters have better accuracy (approximately 1% of full scale) than the rotameter 
(approximately 5% of full scale), the rotameter offers other advantages, such as ease of use 
and low cost. 

Rectangular Weir 

A weir, shown in Fig. 13.21, is an instrument for determining flow rate in liquids by measuring 
the height of water relative to an obstruction in an open channel. The discharge over the weir 
is a function of the weir geometry and of the head on the weir. Consider flow over the weir in 
a rectangular channel, shown in Fig. 13.21. The head H on the weir is defined as the vertical 
distance between the weir crest and the liquid surface taken far enough upstream of the weir 
to avoid local free-surface curvature (see Fig. 13.21). 
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FIGURE 13.21 FIGURE 13.22 

Definition sketch for sharp-crested weir. 
(a) Plan view. 

Theoretical velocity distribution over a weir. 

CD (b) Elevation view. 

V= ,figh 

L 
dh 

(b) 

The discharge equation for the weir is derived by integrating V dA = VL dh over the total 
head on the weir. Here L is the length of the weir and Vis the velocity at any given distance h 
below the free surface. Neglecting streamline curvature and assuming negligible velocity of 
approach upstream of the weir, one obtains an expression for V by writing the Bernoulli equa­
tion between a point upstream of the weir and a point in the plane of the weir (see Fig. 13.22). 
Assuming the pressure in the plane of the weir is atmospheric, this equation is 

PI vz 
- + H = (H - h) + -
~ 2g 

(13.14) 

Here the reference elevation is the elevation of the crest of the weir, and the reference pressure 
is atmospheric pressure. Therefore p1 = 0, and Eq. (13.14) reduces to 

v = V2ih 
Then dQ = V2gh Ldh, and the discharge equation becomes 

Q = r(Viih Ldh 
0 

2 = -LVigH312 
3 

(13.15) 

In the case of actual flow over a weir, the streamlines converge downstream of the plape of 
the weir, and viscous effects are not entirely absent. Consequently, a discharge coefficient Cd 
must be applied to the basic expression on the right-hand side of Eq. (13.15) to bring the the­
ory in line with the actual flow rate. Thus the rectangular weir equation is 

2 
Q = -CdVigLH312 

3 

= KVigLH312 
(13.16) 
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-
-

(a) 

---
(b) 

For low-viscosity liquids, the flow coefficient K is primarily a function of the relative head on 
the weir, HIP. An empirically determined equation for K adapted from Kindsvater and 
Carter (I 2) is 

H 
K = 0.40 + 0.05 p (13.17) 

This is valid up to an HIP value of 10 as long as the weir is well ventilated so that atmospheric 
pressure prevails on both the top and the bottom of the weir nappe. 

When the rectangular weir does not extend the entire distance across the channel, as in 
Fig. 13.23, additional end contractions occur. Therefore, K will be smaller than for the weir 
without end contractions. The reader is referred to King (13) for additional information on 
flow coefficients for weirs. 

EXAMPLE 13.7 

Applying a Rectangular Weir to Measure 
the Flow Rote of Water 

State the Goal 

Find the discharge (m3/s). 

Generate Ideas and Make a Plan 

FIGURE 13.23 

Rectangular weir with 
end contractions. 
(a) Plan view. 
(b) Elevation view. 

Problem Statement 1. Calculate the flow coefficient K using Eq. (13.17). 
The head on a rectangular weir that is 60 em high in a 
rectangular channel that is 1.3 m wide is measured to be 
21 em. What is the discharge of water over the weir? 

Define the Situation 

• Water flows over a rectangular weir. 

• The weir has a height of P = 0.6 m and a width of 
L = 1.3 m. 

• Head on the weir isH = 0.21 m. 

2. Calculate flow rate using the rectangular weir equation ( 13.16). 

Take Action (Execute the Plan) 

I. Flow coefficient 

K = 0.40 + o.os H = o.4o + o.os(21
) = 0.417 

p 60 
2. Discharge 

Q = KVfgLH 312 = 0.417v'2(9.8T}(l.3)(0.2e12) 

=(@ mji) 
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FIGURE 13.24 

Definition sketch for the 
triangular weir. 

EXAMPLE 13.8 

Triangular Weir 

A definition sketch for the triangular weir is shown in Fig. I 3.24. The primary advantage of the 
triangular weir is that it has a higher degree of accuracy over a much wider range of flow Lhan does 
the rectangular weir because the average width of the flow section increases as the head increases. 

The discharge equation for the triangular weir is derived in the same manner as that for 
the rectangular weir. The differential discharge dQ = V dA = VL dh is integrated over the total 
head on the weir to give 

which integrates to 

However, a coefficient of discharge must still be used with the basic equation. Hence 

Q = ~Cdv'2g tan(~)H512 
15 2 

(13.18) 

Experimental results with water flow over weirs with e = 60° and H > 2 em indicate that Cd 
has a value of 0.58. Hence the triangular weir equation with these limitations is 

Q = 0.1 79V2g H 512 (13.19) 

State the Goal 

Flow Rate for a Triangular Weir Calculate the discharge (m3/s). 

Problem Statement 

The head on a 60° triangular weir is measured to be 43 em. 
What is the flow of water over the weir? 

Define the Situation 

• Water flows over a 60° triangular weir. 

• Head on the weir isH = 0.43 m. 

Generate Ideas and Make a Plan 

Apply the triangular weir equation (13.19). 

Take Action (Execute the Plan) 

Q = 0.179vTgH 512 = 0.179 X Y2 X 9.81 X (0.43)512 

= [0.096 m3tsl 
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More details about flow-measuring devices for incompressible flow can be found in 
references (14) and (15). 

13.3 Measurement in Compressible Flow 

This section describes how to measure velocity, pressure, and flow rate in compressible flows. 
Because fluid density is changing in these flows, the Bernoulli equation is invalid. Thus, 
compressible flow theory from Chapter 12 will be applied to develop valid measurement 
techniques. 

Pressure Measurements 

Static-pressure measurements can be made using the conventional static-pressure taps of a 
probe. However, if the boundary layer is disturbed by the presence of a shock wave in the vicin­
ity of the pressure tap, the reading may not give the correct static pressure. The effect of the 
shock wave on the boundary layer is smaller if the boundary layer is turbulent. Therefore an 
effort is sometimes made to trip the boundary layer and ensure a turbulent boundary layer in 
the region of the pressure tap. 

The stagnation pressure can be measured with a stagnation tube aligned with the local 
velocity vector. If the flow is supersonic, however, a shock wave forms around the tip of the 
probe, as shown in Fig. 13.25, and the stagnation pressure measured is that downstream of the 
shock wave and not that of the free stream. The stagnation pressure in the free stream can be 
calculated using the normal shock relationships, provided the free-stream Mach number is 
known. See Chapter 12 for more details about normal shock waves. 

Mach Number and Velocity Measurements 

A Pitot-static tube can be used to measure Mach numbers in compressible flows. Taking the 
measured stagnation pressure as the total pressure, one can calculate the Mach number in 
subsonic flows from the total -to-static-pressure ratio according to Eq. ( 12.31): 

It is interesting to note here that one must measure the stagnation and static pressures sepa­
rately to determine the pressure ratio, whereas one needs only the pressure difference to calcu­
late the velocity of a flow. 

If the flow is supersonic, then the indicated stagnation pressure is the pressure behind the 
shock wave standing off the tip of the tube. By taking this pressure as the total pressure down­
stream of a normal shock wave and the measured static pressure as the static pressure up­
stream of the shock wave, one can determine the Mach number of the free stream (M1) from 
the static-to-total-pressure ratio (p1/p12) according to the expression 

Pl {t2kt(k + l)JMr - t(k- l) l (k + L)l} 1
'<k I) 

= 
P t2 {[(k + 1) / 2lMW'(k-l) 

(13.20) 

which is called the Rayleigh supersonic Pitot formula. Note, however, that M1 is an implicit 
function of the pressure ratio and must be determined graphically or by some numerical 
procedure. Many normal-shock tables, such as those in reference (16), have p1/p12 tabulated 
versus M1, which enables one to find M1 quite easily by interpolation. 

FIGURE 13.25 

Stagnation tube in 
supersonic flow. 

M > I -
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FIGURE 13.26 

Venturi meter. 

Once the Mach number is determined, more information is needed to evaluate the velocity­
namely, the local speed of sound. This can be done by inserting a probe into the flow to 
measure total temperature and then calculating the static temperature using Eq. (12.22): 

Tr 
T = -----'-----

1 + [(k- 1)/2]Mi 

The local speed of sound is then determined by Eq. (12.11): 

c = Vfift 

and the velocity is calculated from 

The hot-wire anemometer can also be used to measure velocity in compressible flows, 
provided it is calibrated to account for Mach-number effects. 

Mass Flow Measurement 

Measuring the flow rate of a compressible fluid using a truncated nozzle was discussed in some 
detail in Chapter 12. Basically, the flow nozzle is a truncated nozzle located in a pipe, so the 
equations developed in Chapter 12 can be used to determine the flow rate through the flow 
nozzle. Strictly speaking, the flow rate so calculated should be multiplied by the discharge coef­
ficient. For the high Reynolds numbers characteristic of compressible flows, however, the dis­
charge coefficient can be taken as unity. If the flow at the throat of the flow nozzle is sonic (i.e., 
Mach number at the throat is 1.0), it is conceivable that the complex flow field existing down­
stream of the nozzle will make the reading from the downstream pressure tap difficult to inter­
pret. That is, there can be no assurance that the measured pressure is the true back pressure. In 
such a case, it is advisable to use a venturi meter because the pressure is measured directly at 
the throat. 

The mass flow rate of a compressible fluid through a venturi meter can easily be analyzed 
using the equations developed in Chapter 12. Consider the venturi meter shown in Fig. 13.26. 
Writing the energy equation, Eq. (12.15), for the flow of an ideal gas between stations 1 and 2 
gives 

V i kRT1 V~ kRT2 -+-- = - +--
2 k-1 2 k-l 

By conservation of mass, the velocity V1 can be expressed as 

P2A2 V2 
VI= ---

PtA! 

(13.21) 
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Substituting this result into Eq. ( 13.21), using the ideal-gas law to eliminate temperature, and 
solving for v2 gives 

{13.22) 

Assuming that the flow is isentropic, 

;~ = (::J 
the equation for the velocity at the throat can be rewritten as 

V = { [2kl(k - l)J(p1/p 1)[1- (p21p1) (k-l)tk] } 1
'
2 

2 
1- (p2/pi)21k(Dz/Di)4 

(13.23) 

The mass flow is obtained by multiplying V2 by p2A2• This analysis, however, has been based on 
a one-dimensional flow, and two-dimensional effects can be accounted for by the discharge 
coefficient Cc~. The final result is 

. . ' (P2) l/k { [2k/(k - I )]PlPd 1 - (P21 Pl)(k- l)/k I} 112 
m = Cdp2A2 V2 = CdA 2 - - ( uk )4 (13.24) 

Pi 1 - P21pi) (D2/DI 

'I his equation is valid for all flow conditions, subsonic or supersonic, provided no shock waves 
occur between station 1 and station 2. It is good design practice to avoid supersonic flows in 
the venturi meter to prevent the formation of shock waves and the attendant total pressure 
losses. Also, the discharge coefficient can generally be taken as unity if no shock waves occur 
between I and 2. 

EXAMPLE 13.9 

Applying the Venturi Meter to Find the Flow Rate 
of a Compressible Flow 

Problem Statement 

Calculate the mass flow rate of air (inlet static temperature = 
27°C) flowing through a venturi meter. The venturi throat is 
I em in diameter (D2), and the pipe is 3 em in diameter (D1). 

Upstream static pressure is 150 kPa, and throat pressure is 
100 kPa. 

Define the Situation 

• Air flows through a venturi meter. (sec sketch on next page) 

• Pipe diameter is D = 0.03 m. Venturi throat diameter is 
d = 0.01 m. 

• Upstream conditions: Static temperature is 27"C; static 

State the Goal 

Calculate the mass flow rate (in kg/s) . 

Generate Ideas and Make a Plan 

1. Calculate density of air in the pipe (upstream) using the 
ideal gas law. 

2. Calculate mass flow rate using Eq. (13.24). 

Take Action (Execute the Plan) 

I. Ideal gas law 

=~= 150 X 10
3
N/m

2 
= l 74 k m3 

PI RT1 (287 J/ kg K)(300 K) . g/ 

2. Mass flow rate 

( 
1 )o.7I4 m = I X 0.785 X 10- 4 m2 

-
1.5 

503 

pressure is 150 kPa. 

• Pressure in throat = 100 kPa. 

Properties: Air (27"C), Table A.2: k = 1.4, and 
R = 287 ]/kg · K. 

X { 7 X 150 X 103N/m2 
X 1.74 kg/ m3 1J - (1/ 1.5)0286 1 }112 

[1- (1/ L5t 43 (1/3)4
] 

= 
1
0.0264 kg!s] 
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FIGURE 13.27 

Schlieren system. 

---Static temp - 27°C --
D1 - 3 em 

p1 = 150 kl'a 

Shock Wave Visualization 

Static prossun! gage 

When studying supersonic flow in a wind tunnel, it is important to be able to locate and identify 
the shock wave pattern. Unfortunately, shock waves cannot be seen with the naked eye, so the 
application of some type of optical technique is necessary. There are three techniques by which 
shock waves can be seen: the shadowgraph, the interferometer, and the schlieren system. Each 
technique has its special application related to the type of information on density variation that 
is desired. The schlieren technique, however, finds frequent use in shock wave visualization. 

An illustration of the essential features of the schlieren system is given in Fig. 13.27. Light 
from the sources is collimated by lens L1 to produce a parallel light beam. The light then passes 
through a second lens L2 and produces an image of the source at plane f A third lens L3 focuses 
the image on the display screen. A sharp edge, usually called the knife edge, is positioned at 
plane f so as to block out a portion of the light. 

If a shock wave occurs in the test section, the light is refracted by the density change across 
the wave. As illustrated by the dashed line in Fig. 13.27, the refracted ray escapes the blocking 
effect of the knife edge, and the shock wave appears as a lighter region on the screen. Of course, 
if the beam is refracted in the other direction, the knife edge blocks out more light, and the 
shock wave appears as a darker region. The contrast can be increased by intercepting more 
light with the knife edge. 

Interferometry 

Shock 
wave 

TI1e interferometer allows one to map contours of constant density and to measure the density 
changes in the flow field. The underlying principle is the phase shift of a light beam on passing 
through media of different densities. The system now employed almost universally is the 
Mach-Zender interferometer, shown in Fig. 13.28. Light from a common source is split into 
two beams as it passes through the first half-silvered mirror. One beam passes through the test 
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Reference 
section 

Half~silvered 

mirror:;, 

Screen 

section, the other through the reference section. The two beams are then recombined and 
projected onto a screen or photographic plate. If the density in the test section and that in the 
reference section are the same, there is no phase shift between the two beams, and the screen 
is uniformly bright. However, a change of density in the test section changes the light speed of 
the test section beam, and a phase shift is generated between the two beams. Upon recombina­
tion of the beams, this phase shift gives rise to a series of dark and light bands on the screen. 
Each band represents a uniform-density contour, and the change in density across each band 
can be determined for a given system. 

13.4 Accuracy of Measurements 

When a parameter is measured, it is important to assess the accuracy of the measurement. The 
resulting analysis, called an uncertainty analysis, provides an estin1ate of the upper and lower 
bounds of the parameter. For example, if Q is a measured value of discharge, uncertainty anal­
ysis provides an estimate of the uncertainty UQ in this measurement. The measurement would 
then be reported as Q ± UQ. 

Commonly, a parameter of interest is not directly measured but is calculated from 
other variables. For example, discharge for an orifice meter is calculated using Eq. (13.7a). 
Such an equation is called a data reduction equation. Consider a data reduction equation of 
the form 

X = f(y,, Y2> 0 0 0 , y,) 

where xis the parameter of interest and y1 through y, are the independent variables. Then, the 
uncertainty in x, which is written as Ux, is given by 

ux = [(~u )2 + (~u )2 + ... + (~u )2Jo.s ay, r. ay
2 

y, ay, r. (13.25) 

where Uy, is the uncertainty in variable y,. Equation ( 13.25), known as the uncertainty equa­
tion, is very useful for quantifying the accuracy of an experimental measurement, and 
for planning experiments. Additional information about uncertainty analysis is provided by 
Coleman and Steele (17). 

FIGURE 13.28 

Schematic diagram 
of a Moch-Zender 
interferometer. 
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EXAMPLE 13. 1 0 

Applying the Uncertainty Equation to an Orifice Meter 

Problem Statement 

For the orifice meter described in Example 13.2, estimate 
the uncertainty of the calculated discharge. Assume that 
uncertainty in K is 0.03, the uncertainty in diameter is 
0.15 mrn, and the uncertainty in measured head is 10 mrn Hg. 

Define the Situation 

• Water flows through an orifice (d = 0.15 m) in a pipe 
(D = 0.24 m). 

• A mercury-water manometer is used to measure pressure 
drop. 

Stale the Goal 

Find the uncertainty (in m3/s) for the calculated discharge Q. 

Generate Ideas and Make a Plan 

1. Identify the data reduction equation (DRE). 

2. Within the ORE, identify each variable that contributes to 
uncertainty. 

3. Develop an equation for uncertainty by applying Eq. (13.25). 

4. Calculate uncertainty by using the equation developed in 
step 3. 

- CD 

4 
M~25cm 

j_ 

Take Action (Execute the Plan) 

1. The data reduction equation is the orifice equation, 
Eq. (13.7a). 

Q = K(7rd2/4)v'2gllli 

2. Variables that cause uncertainty are K, d, g, and h. Neglect 
the influence of g. 

3. Derive an equation for the uncertainty 

Evaluate each partial derivative and then divide both sides 

of this equation by~: 

4. Substitute values from Example 13.2: 

( 
UQ)

2 
= (0.03)

2 
+ (2 x 0.15)

2 
+ ( 10 )

2 

Q 0.66 150 2 X 250 

(~QJ = (20.7 X 10- 4
) + (0.04 X 10-4

) + (4 X 10 4
) 

U0 = 0.0497 Q = 0.0497 X (0.092 m3/ s) 

= 0.0046 m3/s 

Thus 

[Q""" = (0.092 ::!: 0.046) mg 
Review the Solution and the Process 

The primary source of uncertainty in the discharge is due to 
UK. The term uh has a small effect, and ud has a negligible 
effect. 

13.5 Summarizing Key Knowledge 

Measuring Velocity and Pressure 

• Instruments for velocity measurement include the stagnation tube, Pitot-static tube, yaw 
meter, vane and cup anemometers, hot-wire and hot-film anemometers, laser-Doppler 
anemometer, and particle image velocimeter. 

• Instruments for pressure measurement include the static tube, piezometer, differential 
manometer, Bourdon-tube gage, and several types of pressure transducers. 



Measuring Flow Rate (Discharge) 

• To measure flow rate, one can use several direct methods 

~ Measure volume (or weight) and divide by time. 

~ Measure velocities at points on a cross section and integrate using Q = J VdA. 

• Common instruments for flow measurement include the orifice meter, flow nozzle, venturi 
meter, electromagnetic flow meter, ultrasonic flow meter, turbine flow meter, vortex flow 
meter, rotameter, and weir. 

• Flow rate or discharge for a flowmeter that uses a restricted opening (i.e., an orifice, flow 
nozzle, or venturi) is calculated using 

Q = KAo V2gMi = KA0 V2Ap,/p 

where K is a flow coefficient that depends on Reynolds number and the type of flowmeter, 
Ao is the area of the opening, llh is the change in piezometric head across the flowmeter, 
and llpz is drop in piezometric pressure across the flowmeter. 

• Discharge for a rectangular weir of length L is given by 

Q = KVZg LH312 

where K is the flow coefficient that depends on HIP. The term His the height of the water 
above the crest of the weir, as measured upstream of the weir, and Pis the height of the weir. 

• Discharge for a 60° triangular weir with H > 2 em is given by 

Q = 0.179v'2g H 512 

Measurements in Compressible Flow 

• When flow is compressible, instruments such as the stagnation tube, hot-wire 
anemometer, Pitot tube, and flow nozzle may be used. However, equations correlating 
velocity and discharge need to be altered to account for the effects of compressibility. 

• To observe shock waves in compressible flow, a schlieren technique or an interferometer 
may be used. 

Uncertainty Analysis 

• Uncertainty analysis provides a way to quantify the accuracy of a measurement. When a 
parameter of interest x is evaluated using an equation of the form x = f (y1, Y2· ... , y n), 
where y1 through Yn are the independent variables, the uncertainty in xis given by 

Ux =[(ax U )z + (ilx U )2 + ... + (~u )2]o.s 
ay1 

1
' iJy2 

1' ayn 1
" 

where U
1

, is the uncertainty in variable y;. 'This equation, known as the uncertainty equa­
tion, is very useful for estimating uncertainty and for planning experiments. 
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PROBLEMS 

(;;.Vs Problem available in WileyPLUS at instructor's discretion. 

Velocity and Pressure Measurements (§ 13.1) 

13.1 List five different instruments or approaches that engineers 

use to measure fluid velocity, and five more that arc used to 
measure pressure. For each instrument or approach, list two 
advantages and two disadvantages, using this text or sources on 
the internet. 

Flow Velocity: Stagnation Tubes (§ 13. 1) 

13.2 Consider measuring the speed of an automobile by 
building a stagnation tube from a drinking straw and then 
using this device with a water-filled U-tube manometer. 

a. Make a sketch that illustrates how you would propose 
making this measurement. 

b. Determine the lowest velocity that could be measured. 
Assume that the lower limit is based on the resolution 
of the manometer. 

13.3 Without exceeding an error of 2.5%, what is the mininmm 
air velocity that can be obtained using a 1 mm circular 
stagnation tube if the formula 

v = V2t:.p.,,8/p = V2gh,.ag 

is used for computing the velocity? Assume standard 
atmospheric conditions. 

13.4 Without exceeding an error of I%, what is the minimum 
water velocity that can be obtained using a 1.5-mm circu lar 
stagnation tube if the formula 

v = Vit:.p.,.giP = V2gh,t•g 

11. Shere! iff,). A. Electromagnetic Flow-Measurement. New York: 
Cambridge University Press, 1962. 

12. Kindsvater, Carl E., and R. W. Carter. "Discharge 
Characteristics of Rectangular Thin-Plate Weirs." Trans. Am. Soc. 
Civil Eng., 124 (1959), 772-822. 

13. King, L. V. Phil. Trans. Roy. Soc. London, Ser. A, 14 (1914), 214. 

14. Miller, R. W Flow Measurement Engineering Handbook. 
New York: McGraw-Hill, 1983. 

IS. Scott, R. W W,ed. Developments in Flow Measurement-]. 
Englewood Cliffs, NJ: Applied Science, 1982. 

16. NACA. "Equations, Tables, and Charts for Compressible 
Flow."TR 11 35 (1953). 

17. Coleman, Hugh W., and W. Glenn Steele, Experimentation 
and Uncertainty Analysis for Engineers. New York: Wiley, 1989. 

18. Wikipedia contributors, "Anemometer; Wildpedia, 
The Free Encyclopedia, http://en.wikipedia.org/w/index. 
php?title= Anemometer&oldid= 156121777 (accessed 
September 8, 2007). 

~Guided Online (GO) Problem, available in Wiley PLUS at 
instructor's discretion. 

is used for computing the velocity? Assume the water 
temperature is 20°C. 

13.5 ;(Js A stagnation tube 2 mm in diameter is used to 
measure the velocity in a stream of air as shown. What is the air 
velocity if the deflection on the air-water manometer is 1.0 mm? 
Air temperature = 10°C, and p = I atm. 

13.6 Ms If the velocity in an airstream (p. = 98 kPa; T = l0°C) 
is 24 m/s, what deflection will be produced in an air-water 
manometer if the stagnation tube is 2 mm in diameter? 

r---===~ 
• Stagnation tube 

PROHLE.\IS I\ ; I Hi 

l 
1 

Deflect ton 

13.7 What would be the error in velocity determination if one 
used a CP value of 1.00 for a circular stagnation tube instead of the 
true value? Assume the measurement is made with a stagnation 
tube 2 mm in diameter that is measuring air (T = 25°C,p = 1 atm) 

velocity for which the stagnation pressure reading is 5.00 Pa. 



13.8 db- A velocity-measuring probe used frequently for 
measuring smokestack gas velocities is shown. The probe consists 
of two tubes bent away from and toward the flow direction and 
cut off on a plane normal to tl1e flow direction, as shown. Assume 
the pressure coefficient is 1.0 at A and -0.4 at B. 1he probe is 
inserted in a stack where the temperature is 300°C and the 
pressure is 100 k!'a absolute. The gas constant of the stack gases 
is 410 J/kg K. The probe is connected to a water manometer, and 
a 1.0 em dellection is measured. Calculate the stack gas velocity. 

l 
PROBLI:.~! U.S 

Flow Velocity: loser-Doppler Anemometers (§ 13. 1) 

13.9 On the internet, locate technically sound resources relevant 
to the LOA. Skim these resources, and then 

a. Write down five findings that are relevant to engineering 
practice and interesting to you. 

b. Write down two questions about LDAs that are 
interesting and insightful. 

13.10 ;7Js A laser-Doppler anemometer (LDA) system is being 
used to measure the velocity of air in a tube. The laser is an 
argon-ion laser with a wavelength of 4880 angstroms. The angle 
between the laser beams is 20°. The time interval is determined 
by measuring the time between five spikes, as shown, on the 
signal from the photodetector. The time interval between the 
five spikes is 12 microseconds. Find the velocity. 

I 
I 
I 
I 
I 
I I 

~ 
PROBLF\1 13.10 

Volume Flow Rate or Discharge (§ 13.2) 

13.11 ;;u-s Classify the following devices as to whether they are 
used to measure velocity (V), pressure (P), or discharge (Q). 

a. hot-wire anemometer 

b. venturi meter 

c. differential manometer 

d. orifice meter 

e. stagnation tube 

f. rotameter 

PROBLEMS 509 

g. ultrasonic flow meter 

h. Bourdon-tube gage 

i. weir 

j. laser-Doppler anemometer 

13.12 List five different instruments or approaches tllat 
engineer~ use to measure flow rate (discharge). For each 
instrument or approach, list two advantages and two 
disadvantages. 

13.13 P7;;-s Water from a pipe is diverted into a tank for 3 min. 
If the weight of diverted water is measured to be 8 kN, what is 
the discharge in cubic meters per second? Assume the water 
temperature is 20°C. 

13.14 ;("lfs Water from a test apparatus is diverted into a 
calibrated volumetric tank for 6 min. If the volume of diverted 
water is measured to be 67 m', what is the discharge in cubic 
meters per second, gallons per minute, and cubic feet per 
second? 

13.15 A velocity traverse in a 24-cm oil pipe yields the data in 
the table. What are the discharge, mean velocity, and ratio of 
maximum to mean velocity? Does the flow appear to be laminar 
or turbulent? 

8.6 8 4.9 _ ___, 
2 8.4 9 3.8 

3 8.2 10 2.5 

4 7.7 10.5 1.9 

5 11.0 1.4 

6 t 1.5 0.7 

13.16 A velocity traverse inside a 16-in.-ci.rcular air duct yields 
the data in the table. What is the rate of flow in cubic feet per 
second and cubic feet per minute? What is the ratio of V mu to 
V m<an? Does it appear that the flow is laminar or turbulent? If 
p = 14.3 psia and T = 70°F, what is the mass flow rate? 

y* v (If!~) t•* l' (ft' s) 

0.0 0 2.0 110 

0.1 72 3.0 117 

0.2 79 4.0 122 

0.4 88 5.0 126 

0.6 93 6.0 129 

1.0 100 7.0 132 
t---

1.5 106 8.0 135 

*Distance from pipe wall, in. 
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13. 17 The asymmetry of the flow in stacks means that flow 
velocity must be measured at several locations on the cross-flow 
plane. Consider the cross section of the cylindrical stack shown. 
The two access holes through which probes can be inserted arc 
separated by 90°. Velocities can be measured at the five points 
shown (five-point method). 

a. Determine the ratio r ml D such that the areas of 
the five measuring segments are equal. 

b. Determine the ratio riD (probe location) that 
corresponds to the centroid of the segment. 

c. The data in the table are taken for a stack 2 m in 
diameter in which the gas temperature is 300°C, the 
pressure is 110 kPa absolute, and the gas constant is 
400 }/kg K. The data represent the deflection on a water 
manometer connected to a Pilot-static tube located at 
the measuring stations. Calculate the mass flow rate. 

Station ~Jr (em) 

1.2 
-+-

2 1.1 

3 
t 

1.1 

4 0.9 

5 1.05 

PRORU· .. \113.17 

13.18 Repeat Prob. 13.17 for the case in which three access holes 
are separated by 60° and seven measuring points are used. "lhe 
diameter of the stack is 1.5 m, the gas temperature is 250°C, the 
pressure is 115 kPa absolute, and the gas constant is 420 }/kg K. 

1 
.11r (mrn} I 

l 8.2 

2 8.6 

3 8.2 

4 8.9 

5 8.0 

6 8.5 

7 8.4 

The data in the following table represent the deflection of a water 
manometer connected to a Pitot-static tube at the measuring 
stations. Calculate the mass flow rate. 

13.19 ' lheory and experimental verification indicate that the 
mean velocity along a vertical line in a wide stream is closely 
approximated by the velocity at 0.6 depth. If the indicated 
velocities at 0.6 depth in a river cross section arc measured, 
what is the discharge in the river? 

E I 
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b 
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Discharge: Orifice Meters (§ 13.2) 

13.20 On the Internet, locate quality knowledge resources 
relevant to orifice meters. Skim these resources, and then 

a. Write down five fu1dings that are relevant to 

engineering practice and interesting to you. 

b. Write down two questions that are interesting, 
insightful, and relevant to orifice meters. 

13.21 P~·s For the jet and orifice shown, determine Cv• C,, 
and Cd. 

\7 
- rM ( 

2m 

L 
I '10m 

---: 

v V~na con 

f>--d ~Bc 

tracta 

m 

d: lO.Ocm --1 1-
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13.22 A fluid jet d ischarging from a 4-cm orifice has a dian1eter 
of 3.7 em at its vena contracta. What is the coefficient of 
contraction? 

13.23 Figure 13.14 on p. 488 of§ 13.2 is of a sharp-edged orifice. 
Note that the metal surface immediately downstream of the 
leading edge makes an acute angle with the metal of the 
upstream face of the orifice. Do you think the orifice would 
operate the same (have the same flow coefficient, K ) if that angle 
were 90°? Explain how you carne to your conclusion. 



13.24 New orifices such as that shown in Fig. 13.14 on p.488 of 
§13.2 will have definite flow coefficients as given in Fig. J 3.15 on 
p. 490 of~ 13.2. With age, however, physical changes could occur 
to the orifice. Explain what changes these might he and how (if at 
all) these physical changes might affect the flow coefficients. 

13.25 ~A 6-in. orifice is placed in a I 0-in. pipe, and a 
mercury manometer is connected to either side of the orifice. If 
the flow rate of water (60°F) through this orifice is 4.5 cfs, what 
will be the manometer deflection? 

13.26 Determine the discharge of water through this 7-in. 
orifice that is installed in a 12-in. pipe. Assume T = 60°F and 
v = 1.22 X 10-s ft2/s. 

I.Oft 

Mercury 

PRORII .\! 13.26 

13.27 The flow coefficient values for orifices given in 
Fig. 13.15 on p. 490 of §13.2 were obtained by testing orifices in 
relatively smooth pipes. If an orifice were used in a pipe that 
was very rough, do you think you would get a valid indication 
of discharge by using the flow coefficient of Fig. 13.15? Justify 
your conclusion. 

13.28 Determine the discharge of water (T = 60°F) through the 
orifice shown if h = 4 ft, D = 6 in., and d = 3 in. 

Water -

l 
h 

1 

d 

T 
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13.29 ~'I he l 0-cm orifice in the horizontal30-cm pipe shown 
is the same size as the orifice in the vertical pipe. The manometers 
are mercury-water manometers, and water (T = 20°C} is flowing 
in the system. The gages are Bourdon-tube gages. 
The flow, at a rate of 0.1 m3/s, is to the right in the horizontal 
pipe and therefore downward in the vertical pipe. Is top as 
indicated by gages A and B the same as top as indicated by 
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gages D and E? Determine their values. Is the deflection on 
manometer C the same as the deflection on manometer F? 
Determine the deflections. 

A 8 

30 em -
Water 

Mercury 

c 

Water 

Mercury 

F 
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13.30 A 15-cm plate orifice at the end of a 30-cm pipe is 
enlarged to 20 em. With the same pressure drop across the orifice 
(approximately 50 kPa), what will be the percentage of increase 
in discharge? 

13.31 P-;:Js If water (20°C} is flowing through this 4.3-cm 
orifice, estimate the rate of flow. Assume flow coefficient 
K = 0.6. 

[ Ven1cal 

,J 

.! 
) 

! 
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13.32 A pressure transducer is connected across an orifice as 
shown. The pressure at the upstream pressure tap is p1, and the 
pressure at the downstream tap is p2• The pressure at the transducer 
connected to the upstream tap is Pr, 1 and to the downstream 
pressure tap,pr,2. Show that the difference in piezometric pressure 
defined as (p1 + -yz1) - (p1 + ·yz2) is equal to the pressure 
difference across the transducer,pT, 1 - Pr,2-
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13.33 Water (T = 50°F) is pumped at a rate of 20 cfs 
through the system shown in the figure. What differential 
pressure will occur across the orifice? What power must the 
pump supply to the flow for the given conditions? Also, draw 
the HGL and the EGL for the system. Assume f = O.DlS for 
the pipe. 

Differentml-pressure gage 

f------- 300ft - - -----1 

PROBI.I.~l 13.33 

13.34 ~Determine the size of orifice required in a 15-cm 
pipe to measure 0.03 m3/s of water with a deflection of 1 mona 
mercury-water manometer. 

13.35 What is the discharge of gasoline (S = 0.68) in a 12-cm 
horizontal pipe if the differential pressure across a 6-cm orifice 
in the pipe is 50 kPa? 

13.36 What size orifice is required to produce a change in 
head of 6 m for a discharge of 2 m3/s of water in a pipe 1 m 
in diameter? 

13.37 An orifice is to be designed to have a change in pressure 
of 48 kPa across it (measured with a differential-pressure 
transducer) for a discharge of 4.0 m3/s of water in a pipe 1.2 m 
in diameter. What diameter should the orifice have to yield the 
desired results? 

13.38 Semicircular orifices such as the one shown are 
sometimes used to measure the flow rate of liquids that 
also transport sediments. The opening at the bottom of the 
pipe allows free passage of the sediment. Derive a formula 
for Q as a function of t:..p, D, and other relevant variables 
associated with the problem. Then, using that formula and 
guessing any unknown data, estimate the water discharge 
through such an orifice when up is read as 80 kPa and flow 
is in a 30-cm pipe. 

Differential-pressure gage 

r _:)- ./ -

e-: '"::;:;::"' 
View A-A =========;========= 

L, 
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Discharge: Venturi Meters (§ 13.2) 

13.39 What is the main advantage of a venturi meter versus an 
orifice meter? The main disadvantage? 

13.40 Water flows through a venturi meter that has a 40-cm 
throat. The venturi meter is in a 70-cm pipe. What deflection will 
occur on a mercury-water manometer connected between the 
upstream and throat sections if the discharge is 0.75 m3/s? 
Assume T = 20°C. 

13.41 P-;:-;;S What is the throat diameter required for a venturi 
meter in a 61 -cm horizontal pipe carrying water with a discharge 
of 0.76 m 3/s if the differential pressure between the throat and 
the upstream section is to be limited to 200 kPa at this discharge? 
For a first iteration, assume K = 1.02. 

13.42 Estimate the rate of flow of water through the venturi 
meter shown. 

A1r (y = 0.20 lhf fi3) 

1 
48 in 

l 
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13.43 ;J;s When no flow occurs through the venturi meter, the 
indicator on the differential-pressure gage is straight up and 
indicates a t:..p of zero. When 5 cfs of water flows to the right, the 
differential-pressure gage indicates tip = + 10 psi. If the flow is 
now reversed and 5 cfs flow to the left through the venturi meter, 
in which range would .1p fall? (a) j,p < - 10 psi, (b) -10 psi 
< tip < 0, (c) 0 < j,p < 10 psi, or( d) tip = 10 psi? 



-Gl-----
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13.44 I'Ns The pressure differential across this venturi meter is 
92 kPa. What is the discharge of water (T = 20°C) through it? 
[Hint: The value of flow coefficient you calculate should be 
K = 1.02) 

-
0=2.00 m 

PROBLEM 13.44 

13.45 Engineers are calibrating a poorly designed venturi 
meter for the flow of petroleum by relating the pressure 
difference between taps 1 and 2 to the discharge. By applying 
the Bernoulli equation and assuming a quasi-one-dimensional 
flow (velocity uniform across every cross section), the 
engineers find that 

On= Az[2(pl- Pz)lp] 05 [1- (d/D)4
] -

0 5 

where D and dare the duct diameters at stations 1 and 2. 
However, they realize that the flow is not quasi-one-dimensional 
and that the pressure at tap 2 is not equal to the average pressure in 
the throat because of streamline curvature. Thus the engineers 
introduce a correction factor K into the foregoing equation 
to yield 

Q = KQo 

Use your knowledge of pressure variation across curved stream­
lines to decide whether K is larger or smaller than unity, and 
support your conclusion by presenting a rational argument. 

P!{QBLHI IHS 
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13.46 The differential-pressure gage on the venturi meter shown 
reads 5.4 psi, h = 25 in., d = 7 in., and D = 12 in. What is the 
discharge of water in the system? Assume T = 50°F. 

13.47 The differential-pressure gage on the venturi meter reads 
40 kPa, d = 20 em, D = 40 em, and h = 75 em. What is the 
discharge of gasoline (S = 0.69; 1.1.. = 3 X 10 4 N · s/m2

) in the 
system? 

! 
0 

d 

! 
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13.48 A flow nozzle has a throat diameter of 2 em and a beta 
ratio (d! D) of 0.5. Water flows through the nozzle, creating a 
pressure difference across the nozzle of 8 kPa. The viscosity of 
the water is I o-6 m2/s, and the density is I 000 kg/m3

• Find the 
discharge. 

13.49 Water flows through an annular venturi consisting of a 
body of revolution mounted inside a pipe. The pressure is 
measured at the minimum area and upstream of the body. The 
pipe is 5 em in diameter, and the body of revolution is 2.5 em 
in diameter. A head difference of I m is measured across the 
pressure taps. Find the discharge in cubic meters per second. -r ..______,_ L__ 

Scm- ~ 
1 
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Other Discharge Measurement Techniques (§ 13.2) 

13.50 What is the head loss in terms of V ~!2g for the flow 
nozzle shown? 

f Ci ,--- ..) - / 

v 
_')_/ 

D ~ d- l /) --l 
3 

Cf 2> } ) 

l'ROIH.E.\1 13.50 
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13.51 ,i(U-5 A vortex flowmeter is used to measure the discharge 
in a duct 5 em in diameter. The diameter of the shedding element 
is I em. The Strouhal number based on the shedding frequency 
from one side of the element is 0.2. A signal frequency of 50 Hz 
is measured by a pressure transducer mounted downstream of 
the element. What is the discharge in the duct? 

13.52 A rotameter operates by aerodynamic suspension of a 
weight in a tapered tube. The scale on the side of the rotameter 
is calibrated in scfm of air-that is, cubic feet per minute at 
standard conditions (p = 1 atm and T = 68°F). By considering 
the balance of weight and aerodynamic force on the weight 
inside the tube, determine how the readings would be corrected 
for nonstandard conditions. ln other words, how would the 
actual cubic feet per minute be calculated from the reading on 
the scale, given the pressure, temperature, and gas constant of 
the gas entering the rotameter? 

Weight 

PROBI f\f 13.52 

13.53 ;;;-- A rotameter is used to measure the flow rate of a gas 
with a density of 1.0 kglm3.1he scale on the rotameter indicates 
5 liters/s. However, the rotameter is calibrated for a gas with a 
density of 1.2 kg/m3

. What is the actual flow rate of the gas (in 
liters per second)? 

13.54 Ultrasonic flowmeters are used to measure velocity in 
systems where it is important to not disrupt the flow, such as for 
blood velocity. One mode of operation of ultrasonic flowmeters is 
to measure the travel times between two stations for a sound wave 
traveling upstream and then downstream with the flow. The 
downstream propagation speed with respect to the measuring 
stations is c + V, where c is the sound speed and Vis the flow 
velocity. Correspondingly, the upstream propagation speed is c - V. 

a. Derive an expression for the flow velocity in terms of 
the distance between the two stations, L; the difference 
in travel times, 6.t; and the sound speed. 

b. The sound speed is typically much larger than V (c » V). 
With this approximation, express V in terms of L, c, 
and 6.t. 

c. A 10-ms time difference is measured for waves traveling 
20m in a gas where the speed of sound is 300 m/s. 
Calculate the flow velocity. 

Weirs(§ 13.2) 

13.55 On the Internet, locate technically reliable resources about 
weirs to answer the following questions. 

a. What are five important considerations for using weirs? 

b. What variables influence flow rate through a rectangu­
larweir? 

13.56 ;(U-s Water flows over a rectangular weir that is 2m wide 
and 30 em high. If the head on the weir is 10 em, what is the 
discharge in cubic meters per second? 

13.57 Ms The head on a 60° triangular weir is 25 em. What is 
the discharge over the weir in cubic meters per second? 

13.58 ;;(U-s Water flows over two rectangular weirs. Weir A is 5 ft 
long in a channellO ft wide; weir B is 5 ft long in a channelS ft 
wide. Both weirs are 2 ft high. If the head on both weirs is 1.00 ft, then 
one can conclude that (a)~ = QR, (b)~ > Qa, or (c)~ < Qa. 

L 

r----sft-----1 
" r I 

Weir A 

10ft 

l 
WeirO 2ft 

1--sft _.J r 
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l 
2ft 

-' r 

13.59 ;;:Js A 1-ft-high rectangular weir (weir I) is installed in 
a 2-ft-wide rectangular channel, and the head on the weir is 
observed for a discharge of 10 cfs. Then the 1-ft weir is replaced 
by a 2-ft-high rectangular weir (weir 2), and the head on the 
weir is observed for a discharge of 10 cfs. The ratio H 1/H2 

should be (a) equal to 1.00, (b) less than 1.00, or (c) greater 
than 1.00. 

13.60 Ms A 3-m-long rectangular weir is to be constructed in 
a 3-m-wide rectangular channel, as shown (a). The maximum 
flow in the channel will be 4 m3/s. What should be the height P 
of the weir to yield a depth of water of 2 m in the channel 
upstream of the weir? 

13.61 Consider the rectangular weir described in Prob. 13.60. 
When the head is doubled, the discharge is (a) doubled, (b) less 
than doubled, or (c) more than doubled. 

13.62 A basin is 50 ft long, 2 ft wide, and 4 ft deep. A 
sharp-crested rectangular weir is located at one end of the 
basin, and it spans the width of the basin (the weir is 2 ft long). 
The crest of the weir is 2 ft above the bottom of the basin. At a 
given instant water in the basin is 3 ft deep; thus water is 
flowing over the weir and out of the basin. Estimate the time it 
will take for the water in the basin to go from the 3 ft depth to 
a depth of 2 ft 2 in. 

13.63 Water at 50°F is piped from a reservoir to a channel like 
that shown. The pipe from the reservoir to the channel is a 4-in. 
steel pipe 100 ft in total length. There are two 90° bends, r/ D = I, 
in the line, and the entrance and exit are sharp edged. The weir 
is 2 ft long. The elevation of the water surface in the reservoir is 



100 ft, and the elevation of the bottom of the channel is 70 ft. 
The crest of the weir is 3 ft above the bottom of the channel. For 
steady flow conditions determine the water surface elevation in 
the channel and the discharge in the system. 

(a) Rectangular weir 
(end view) 

(b) Elevacion view 

PROHLEN15 13.60, 13.61, 13.62, 13.63 

13.64 At one end of a rectangular tank I m wide is a sharp­
crested rectangular weir I m high. In the bottom of the tank is a 
10-cm sharp-edged orifice. If 0.10 m3/s of water flows into the 
tank and leaves the tank both through the orifice and over the 
weir, what depth will the water in the tank attain? 

13.65 What is the water discharge over a rectangular weir 3 ft 
high and 10ft long in a rectangular channel I 0 ft wide if the head 
on the weir is 1.5 ft? 

13.66 ~A reservoir is supplied with water at 60°F by a pipe 
with a venturi meter as shown. The water leaves the reservoir 
through a triangular weir with an included angle of 60°. The flow 
coefficient of the venturi is unity, the area of the venturi throat is 
12 in.2

, and the measured tlp is 10 psi. find the head, H, of the 
triangular weir. 

PROIH E.\1 13.66 

13.67 At a particular instant water flows into the tank shown 
through pipes A and B, and it flows out of the tank over the 
rectangular weir at C. The tank width and weir length 
(dimensions normal to page) are 2ft. Then, for the given 
conditions, is the water level in the tank rising or falling? 

1ft 

Diameter = I ft l. 
~ 2ft 

A 

4 ftls ~ n;,.~•-6i• 
8 
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13.68 Water flows from the first reservoir to the second over 
a rectangular weir with a width-to-head ratio of 3. The height P 
of the weir is twice the head. The water from the second 
reservoir flows over a 60° triangular weir to a third reservoir. 
The discharge across both weirs is the same. Find the ratio 
of the head on the rectangular weir to the head on the 
triangular weir. 

13.69 Given the initial conditions of Pro b. 13.68, tell, 
qualitatively and quantitatively, what will happen if the 
flow entering the first reservoir is increased 50%. 

PROBLE.\1S 13.613, l.l.69 

13.70 lhe head on a 60° triangular weir is 1.8 ft. What is the 
discharge of water over the weir? 

13.71 An engineer is designing a triangular weir for measuring 
the flow rate of a stream of water that has a discharge of 6 cfm. 
The weir has an included angle of 45° and a coefficient of 
discharge of 0.6. Find the head on the weir. 

13.72 A pump is used to deliver water at l0°C from a well 
to a tank. The bottom of the tank is 2m above the water 
surface in the weU. The pipe is commercial steel 2.5 m long 
with a diameter of 5 em. The pump develops a head of 20 m. 
A triangular weir with an included angle of 60° is located in 
a wall of the tank with the bottom of the weir 1 m above the 
tank floor. Find the level of the water in the tank above 
the floor of the tank. 

PROBLE:-.1 13.12 
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Measurements in Compressible Flow (§ 13.3) 

13.73 ~A Pitol-static tube is used to measure the Mach 
number in a compressible subsonic flow of air. The stagnation 
pressure is 140 kPa, and the static pressure is I 00 kPa. The total 
temperature of the flow is 300 K. Determine the Mach number 
and the flow velocity. 

13.74 Use the normal shock wave relationships developed in 
Chapter 12 to derive the Rayleigh supersonic Pilot formula. 

13.75 The static and stagnation pressures measured by a 
Pi tot-static tube in a supersonic air flow are 54 kPa and 200 kPa, 
respectively. The total temperature is 350 K. Determine the Mach 
number and the velocity of the free stream. 

13.76 A venturi meter is used to measure the flow of helium 
in a pipe. The pipe is 1 em in diameter, and the throat 
diameter is 0.5 em. The measured upstream and throat 
pressures are 120 kPa and 80 kPa, respect ively. The static 
temperature of the helium in the pipe is l7°C. Determine 
the mass flow rate. 

13.77 Hydrogen at atmospheric pressure and l 5°C flows 
through a sharp-edged orifice with a beta ratio, diD, of 
0.5 in a 2-cm pipe. The pipe is horizontal, and the pressure 
change across the orifice is I kPa. The flow coefficient is 0.62. 

Find the mass flow (in kilograms per second) through the 
orifice. 

13.78 A hole 0.2 in. in diameter is accidentally punctured in a 
line carrying natural gas (methane). The pressure in the pipe is 
50 psig, and the atmospheric pressure is 14 psia. The temperature 
in the line is 70°f. What is the rate at which the methane leaks 
through the hole (in lbm/s)? The hole can be treated as a 
truncated nozzle. 

Uncertainty Analysis (§ 13.4) 

13.79 Consider the stagnation tube of Pro b. 13.5. Tf the 
uncertainty in the manometer measurement is 0.1 mm, calculate 
the velocity and the uncertainty in the velocity. Assume that 
CP = 1.00, p.,, = 1.25 kglm\ and the only uncertainty is due 
to the manometer measurement. 

13.80 Consider the orifice meter in Prob. 13.26. Calculate 
the flow rate and the uncertainty in the flow rate. Assume the 
following values of uncertainty: 0.03 in flow coefficient, 0.05 in. 
in orifice dian1eter, and 0.5 in. in height of mercury. 

13.81 Consider the weir in Prob. 13.65. Calculate the discharge 
and the uncertainty in the discharge. Assume the uncertainty in 
K is 5%, in His 3 in., and in L is I in. 



TURBOMACHINERY 

FIGURE 14.1 

This figure shows the impeller from the blower inside o 
vacuum cleaner. This impeller rotates inside a housing. 
This rotational motion creates a suction pressure that draws 
air into the center hole The air rs flung outward by the 
spmning blades of the rmpeller. 

This impeller was "liberated" from the vacuum cleaner by 
Joson Stirpe, while he was an engineering student. Jason 
used this impeller with a DC motor and a homemade 
housing to fabricate a blower for a design that he was 
creating. Being resourceful is at the heart of technology 
innovation. (Photo by Donald Elger.) 

· @apter Road Map I 
Machines to move fluids or to extract power from 
moving fluids have been designed since the beginning 
of recorded history. Fluid machines ore everywhere. 
They are the essential components of the automobiles 
we drive, the supply systems for the water we drink, the 
power generation plants for the electricity we use, and 
the air-conditioning and heating systems that provide 
the comfort we enjoy. Thus, this chapter introduces the 
concepts underlying various types of machines. 

j Learning Objectives I 
STUDENTS WILL BE ABLE TO 

• Describe the factors that influence the thrust and efficiency 
of a propeller. I§ 14. 1) 

• Calculate the thrust and efficiency of a propeller. I§ 14 1) 

• Describe axial flow and radial flow pumps.!§ 14.2, 14.3) 

• Define the head coefficient and the discharge coefficient. 
I§ 14.2) 

• Sketch a pump performance curve and describe the 
relevant orr-groups that appear.!§ 14.2, 14.3) 

• Explain how specific speed is used to select an appropriate 
type of pump for an application. I§ 14.4) 

• Describe an impulse turbine and a reaction turbine. I§ 14.8) 

• Describe the maximum power that can be produced by a 
wind turbine. I§ 14.8) 

Fluid machines are separated into two broad categories: positive-displacement machines 
and turbomachines. Positive-displacement machines operate by forcing fluid into or out of a 
chamber. Examples include the bicycle tire pump, the gear pump, the peristaltic pump, and the 
human heart. Turbomachines involve the flow of fluid through rotating blades or rotors that 
remove or add energy to the fluid. Examples include propellers, fans, water pumps, windmills, 
and compressors. 

517 
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Axial-flow turbomachines operate with the flow entering and leaving the machine in the 
direction that is parallel to the axis of rotation of blades. A radial-flow machine can have Lhe 
flow either entering or leaving the machine in the radial direction that is normal to the axis of 
rotation. 

Table I 4. I provides a classification for turbomachinery. Power-absorbing machines 
require power to increase head (or pressure). A power-producing machine provides shaft 
power at the expense of head (or pressure} loss. Pumps are associated with liquids, whereas 
fans (blowers) and compressors are associated with gases. Both gases and liquids produce power 
through turbines. Oftentin1es the gas turbine refers to an engine that has both a compressor and 
turbine and produces power. 

TABLE 14.1 Categories of Turbomachinery 

Power Absorbing 

Axial machines Axial pumps 
Axial fans 
PropeUcrs 
Axial compressors 

Radial machines Centrifugal pump 
Centrifugal fan 
Centrifugal compressor 

14. 1 Propellers 

Power Producing 

Axial turbine (Kaplan) 
Wind turbine 
Gas turbine 

Impulse turbine (Pelton wheel) 
Reaction turbine (Francis turbine) 

A propeller is a fan that converts rotational motion into thrust. The design of a propeller is 
based on the fundamental principles of airfoil theory. For example, consider a section of the 
propeller in Fig. 14.2, and notice the analogy between the lifting vane and the propeller. This 
propeller is rotating at an angular speed w, and the speed of advance of the airplane and 
propeller is V0 . Focusing on an elemental section of the propeller, Fig. 14.2c, it is noted that 
the given section has a velocity with components V0 and V1• Here V1 is tangential velocity, 
Vr = rw, resulting from the rotation of the propeller. Reversing and adding the velocity vectors 
V0 and V1 yield the velocity of the air relative to the particular propeller section (Fig. l4.2d). 

The angle e is given by 

8 = arctan(~) 114.1) 

For a given forward speed and rotational rate, this angle is a minimum at the propeller tip 
(r = r0) and increases toward the hub as the radius decreases. The angle f3 is known as the 
pitch angle. The local angle of attack of the elemental section is 

a=f3 - 6 (14.2) 

The propeller can be analyzed as a series of elemental sections (of width dr) producing lift and 
drag, which provide the propeller thrust and create resistive torque. This torque multiplied by 
the rotational speed is the power input to the propeller. 

The propeller is designed to produce thrust, and because the greatest contribution to 
thrust comes from the lift force Fv the goal is to maximize lift and minimize drag, FD. For 



A 

l 

J 
A 

{J) -

(b) 

(a ) 

t V0 (velocny of 
advance) 

(c) 

a given shape of propeller section, the optimum angle of attack can be determined from 
data such as are given in Fig. 11 .24. Because the angle 8 increases with decreasing radius, 
the local pitch angle has to change to achieve the optimum angle of attack. This is done by 
twisting the blade. 

A dimensional analysis can be performed to determine the 'Tf-groups that characterize the 
performance of a propeller. For a given propeller shape and pitch distribution, the thrust of a 
propeller T, will depend on the propeller diameter D, the rotational speed n, the forward speed V0, 

the fluid density p, and the fluid viscosity IJ.. 

T = f (D, w, V0, p, 1-l) (14.3) 

Performing a dimensional analysis results in 

(14.4) 

lt is conventional practice to express the rotational rate, n, as revolutions per second (rps). The 
'Tf-group on the left is called the thrust coefficient, 

(14.5) 

The first 'Tf-group on the right is the advance ratio. The second group is a Reynolds number 
based on the tip speed and diameter of the propeller. For most applications, the Reynolds 

FIGURE 14.2 

Propeller motion 
Ia) Airplane mot1on 
lb) View A-A 
lc) View B-B. 
ld) Velocity relative to 
blade element 
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FIGURE 14.3 

Dimensionless performance 
curves for a typ1col 
propeller; D = 2.90 m, 
n = 1400 rpm [After 
Weick (l ).] 

number is high, and experience shows that the thrust coefficient is unaffected by the Reynolds 
number, so 

(14.6) 

The angle e at the propeller tip is related to the advance ratio by 

( 
V0

) ( 1 V0 ) f) = arctan - = arctan - -
wr0 'IT nD 

(14.7) 

As the advance ratio increases and 9 increases, the local angle of attack at the blade element 
decreases, the lift increases, and the thrust coefficient goes down. This trend is illustrated in 
Fig. 14.3, which shows the dimensionless performance curves for a typical propeller. Ulti­
mately, an advance ratio is reached where the thrust coefficient goes to zero. 

Performing a dimensional analysis for the power, P, shows 

The 'IT-group on the left is the power coefficient, 

p 
Cp= -­

pn3Ds 

(14.8) 

(14.9) 

As with the thrust coefficient, the power coefficient is not significantly influenced by the Reynolds 
number at high Reynolds numbers, so Cp reduces to a function of the advance ratio only 

(14.10) 
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The functional relationship between Cp and V0/nD for an actual propeller is also shown in 
Fig. 14.3. Even though the thrust coefficient approaches zero for a given advance ratio, the 
power coefficient shows little decrease because it still takes power to overcome the torque on 
the propeller blade. 

The curves for Cr and Cp are evaluated from performance characteristics of a given pro­
peller operating at different values of V0 as shown in Fig. 14.4. Although the data for the curves 
are obtained for a given propeller, the values for Cr and Cp, as a function of advance ratio, can 
be applied to geometrically similar propellers of different sizes and angular speeds.* Example I 4.1 

illustrates such an application. 

40 2000 

30 1500 

~ 

c 
::: 0 

-"' ! 
" 20 1000 = 
~ 

! 0 ... 

]() 500 

N~ 1400rpm 
n =23.3 rps 
D ~ 2.90m 

0 0 
0 10 15 20 25 

v0, m/s 

EXAMPLE 14. 1 

FIGURE 14.4 

Power and thrust of a 
propeller 2.90 min 
diameter at a rotational 
speed of 1400 rpm. 
[After Weick 12).] 

Propeller Application N= 1200 rpm 

Problem Statement 

A propeller having the characteristics shown in Fig. 14.3 is 
to be used to drive a swamp boat. If the propeller is to have a 
diameter of2 m and a rotational speed of N = 1200 rpm, 
what should be the thrust starting from rest? If the boat 
resistance (air and water) is given by the empirical equation 
F0 = 0.003p V~/2, where V0 is the boat speed in meters per 
second, Fv is the drag, and p is the mass density of the water, 
what will be the maximum speed of the boat and what power 
will be required to drive the propeller? Assume Pair= 1.20 kglm3 

and Pwater = 1000 kg/m3
. 

--Fn ~o.003pV512 

Define the Situation 

A propeller is being used to drive a swamp boat. 

Properties: p = 1.2 kg!m3
, p.., = 1000 kg!m3

• 

*The speed of sound was not included in the dimensional analysis. However, the propeller performance is reduced 
because the Mach number based on the propeller tip speed leads to shock waves and other compressible-flow effecls. 
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State the Goals 

• Calculate thrust (in N) starting from rest. 

• Find maximum speed (in m/s) of swamp boat. 

• Calculate power required (in kW) to operate 
propeller. 

Generate Ideas and Make a Plan 

1. From Fig. 14.3, find thrust coefficient for zero advance ratio. 

2. Calculate thrust using Eq. (14.5). 

3. To calculate maximum speed, plot propeller thrust versus 
boat speed and on same graph plot resistance of swamp 
boat versus boat speed. The maximum speed is where the 
curves intersect. 

4. The maximum power will be when the boat speed is zero, so 
use Eq. (14.9) with Cpfor zero advance ratio from Fig. 14.3. 

Take Action (Execute the Plan) 

1. From Fig. 14.3, Cr = 0.048 for VofnD = 0. 

2. Thrust 

Fr = Cr p. DV = 0.048(1.20 kg/ m3)(2 m)4(20 rps)2 

=[369 N] 
3. Table of thrust versus speed of swamp boat 

! 
Fr= Fu -

VII V0!nlJ c Crpol)·lt11 0.003p. l'~/2 

5 m/s 0.125 0.040 307N 37.5N 

IOm/s 0.250 0.027 207 N 150 N 
r-

15 m/s 0.375 0.01 2 90 N 337N 

Graph of propeller thrust and swamp boat drag versus 
speed 

500 

i g 400 

"-
0 

Joo 
1 
~ 200 

.... ~ 
100 

10 15 

V0 in m /s 

Curves intersect at V0 = 11 m/s. Hence maximum speed of 
swamp boat is 11 m/s. 

4. At VofnD = 0, Cp = 0.014. 

P = 0.014(1.20 kg/ m3)(2 m)5(20 rps)3 

= 4300 m · N/s = 14.30 kW I 

Review the Solution and the Process 

Discussion. In an actual application. The starting rotational 
rate of propeller need not be 1200 rpm but can be a lower 
value. After the boat is gain ing speed the rotational rate can be 
increased to achieve maJcimum speed. 

The efficiency of a propeller is defined as the ratio of the power output- that is, thrust 
times velocity of advance- to the power input. Hence the efficiency YJ is given as 

or 

FrVo ., = - - = p 
C ypD4 n 2 V0 

CppD5n 3 

(14.11) 

The variation of efficiency with advance ratio for a typical propeller is also shown in Fig. 14.3. 
The efficiency can be calculated directly from Cr and Cp performance curves. Note at low 
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advance ratios, the efficiency increases with advance ratio and then reaches a maximum value 
before the decreasing thrust coefficient causes the efficiency to drop toward zero. The maxi­
mum efficiency represents the best operating point for fuel efficiency. 

Many propeller systems are designed to have variable pitch; that is, pitch angles can be 
changed during propeller operation. Different efficiency curves corresponding to varying 
pitch angles are shown in Fig. 14.5. The envelope for the maximum efficiency is also shown in 
the figure. During operation of the aircraft, the pitch angle can be controlled to achieve maxi­
mum efficiency corresponding to the propeller rpm and forward speed. 

Envelope of maximum 
emciency \_ 

..... . ..,...- . -- ...... 
"-'-,t ........... 

,.../ I ' I/; j\_) I ' 

I ncrcasing pitch 

Advance ratio 

The best source for propeller performance information is from propeller manufactur­
ers. There are many speciality manufacturers for everything from marine to aircraft 
applications. 

14.2 Axiai-F.Iow Pumps 

The axial flow pump acts much like a propeller enclosed in a housing as shown in Fig. 14.6. The 
rotating element, the impeller, causes a pressure change between the upstream and downstream 
sections of the pump. In practical applications, axial-flow machines are best suited to deliver rela­
tively low heads and high flow rates. Hence pumps used for dewatering lowlands, such as those 
behind dikes, are almost always of the axial-flow type. Water turbines in low-head dams (less than 
30m) where the flow rate and power production are large are also generally of the axial type. 

I 
6Pblnwer 

1 
1 

Pdo\\1lstream 

f 
PuJ><Iream 

- --------- - --------

................... 

FIGURE 14.5 

Effic1ency curves for 
variable-pitch propeller . 

FIGURE 14.6 

Axial-flow blower 
in a duct. 
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... .. 
FIGURE 14.7 

Dimensionless performance 
curves for a typical 
axial-flow pump. [Aher 
Steponoff (3).) 

Head and Discharge Coefficients for Pumps 
The thrust coefficient is defined as Fr/pD4n2 for use with propellers, and if the same variables 
are applied to flow in an axial pump, the thrust can be expressed as Fr = t:J.pA = -yt:J.HA or 

-yt:J.HA 'lT -y6.HD2 
'lT gt:J.H 

Cr=--=- =---
pD4n2 4 pD4n2 4 D2n 2 (14.12) 

A new parameter, called the head coefficient Cu. is defined using the variables of Eq. (I 4.12), as 

(14.13) 

which is a '11'-group that relates head delivered to fan diameter and rotational speed. 
The independent '11'-group relating to propeller operation is V0/nD; however, multiplying 

the numerator and denominator by the diameter squared gives V0D2/nD3, and V0 D2 is propor­
tional to the discharge, Q. Thus the '11'-group for pump similarity studies is Q/nD3 and is iden­
tified as the discharge coefficient CQ· The power coefficient used for pumps is the same as the 
power coefficient used for propellers. Summarizing, the '11'-groups used in the similarity analy­
ses of pumps are 

(14.14) 

(14.15) 

(14.16) 

where CHand Cp are functions of CQ for a given type of pump. 
Figure 14.7 is a set of curves of CHand Cp versus CQ for a typical axial-flow pump. Also 

plotted on this graph is the efficiency of the pump as a function of Co- The dimensional curves 

.. 
5.00 100 

4.00 80 

3.00 
c 

60 ~ u::: " a. 

"' ~ " " " v"" " "(; 

2.00 40 1::; 
t.l.l 



SECTION 14.2 AXIAL-FLOW PUMPS 525 

FIGURE 14.8 

Performance curves for a lypical axial-flow pump. [Aher Stepanoff (3).] 
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(head and power versus Q for a constant speed of rotation) from which Fig.l4.7 was developed 
are shown in Fig. 14.8. Because curves like those shown in Fig. 14.7 or Fig. 14.8 characterize 
pump performance, they are often called characteristic curves or performance curves.1hese 
curves are obtained by experiment. 

There can be a problem with overload when operating axial-flow pumps. As seen in 
Fig. 14.7, when the pump flow is throttled below maximum -efficiency conditions, the required 
power increases with decreasing flow, thus leading to the possibility of overloading at low-flow 
conditions. for very large installations, special operating procedures are followed to avoid 
such overloading. For instance, the valve in the bypass from the pump discharge back to the 
pump inlet can be adjusted to maintain a constant flow through the pump. However, for small­
scale applications, it is often desirable to have complete flexibility in flow control without the 
complexity of special operating procedures. 

Performance curves are used to predict prototype operation from model tests or the effect 
of changing the speed of the pump. Example 14.2 shows how to use pump curves to calculate 
discharge and power. 

EXAMPLE 14.2 Define the Situation 

Discharge and Power for Axial-Flow Pump This problem involves an axial flow pump with water. 

Define the Situation 

For the pump represented by Figs. 14.7 and 14.8, what 
discharge of water in cubic meters per second will occur 
when the pump is operating against a 2-m head and at a 
speed of 600 rpm? What power in kilowatts is required for 
these conditions? 

N=600rpm 

Axial-flow pump 

Properties: Assume p = 1000 kglm3
• 

tJ.H -2 m 
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State the Goal 

o Calculate discharge (in m3/s). 

o Calculate power (in kW). 

Generate Ideas and Make a Plan 

l. Calculate C11• 

2. From Fig. 14.7 find C0 and Cp. 

3. Use C0 to calculate discharge. 

4. Use Cp to calculate power. 

Take Action (Execute the Plan) 

1. Rotational rate is (600 rev/min)/(60 s/min) = 10 rps. 
D = 35.6cm. 

2. From Fig. 14.7, C0 = 0.40 and Cr = 0.72. 

3. Discharge is 

Q = C0 nD3 

Q = 0.40(10 s- 1)(0.356 m)3 =I 0.180 m3/s I 
4. Power is 

P = 0.72pD5n1 

= 0.72( 103 kg/ m3)(0.356 m)5 (10 s •r 
= 4.12 km · N/ s = 4.12 kJ/s = 14.12 kW I 

Example 14.3 illustrates how to calculate head and power for an axial-flow pump. 

EXAMPLE 14.3 

Head and Power for Axial-Flow Pump 

Problem Statement 

If a 30-cm axial-flow ptm1p having the characteristics shown 
in Fig. 14.7 is operated at a speed of 800 rpm, what head ilH 
will be developed when the water-pumping rate is 0.127 m3/s? 
What power is required for this operation? 

Define the Situation 

lhis problem involves a 30-cm axial flow pump with water. 

N=800 rrm l:J.H='! 
Axial-flow pump 

Properties. Water, p = 103 kglm3
• 

State the Goals 

• Calculate H = head (in meters) developed. 

o Calculate power (in kW) required. 

Generate Ideas and Make a Plan 

1. Calculate the discharge coefficient, Ccr 

P-? 

2. From Fig. 14.7, read CH, and Cp. 

3. Usc Eq. ( 14.14) to calculate head produced. 

4. Use Eq. (14.15) to calculate power required. 

Take Action (Execute the Plan) 

I. Discharge coefficient is 

Q = 0.127 m3/s 

800 
n = 6Q = 13.3 rps 

D = 30 cm 

0.127 m3/s c = - = 0.354 
Q (13.3s 1)(0.30m)3 

2. From Fig. 14.7, CH = 1.70 and Cp = 0.80. 

3. Head produced is 

4. Power required is 

P = CppD~n 3 

= 0.80(103 kg/ m3)(0.30 m)5(13.3 s- 1
)

3 = ~ k~ 
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Fan Laws 

The fan laws are used extensively by designers and practitioners involved with axial fans and 
blowers. 'lhe fan laws are equations that provide the discharge, pressure rise, and power 
requirements for a fan that operates at different speeds. The laws are based on the discharge, 
head, and power coefficients being the same at any other state as at the reference state, o; 

namely, CQ = CQm = CHu• and Cp = Cp0 . Because the size and design of fan is unchanged, the 
discharge at speed n is 

(14.17a) 

and the pressure rise is 

(14.17b) 

and finally the power required is 

(14.17c) 

These fan laws cannot be applied between fans of different size and design. Of course, the fan 
laws do not provide exact values because of design considerations and manufacturing toler­
ances, but they are very useful in estimating fan performance. 

14.3 Radial-Flow Machines 

Radial-flow machines are characterized by the radial flow of the fluid through the machine. Radial­
flow pumps and fans are better suited for larger heads at lower flow rates than axial machines. 

Centrifugal Pumps 

A sketch of the centrifugal pump is shown in Fig. 14.9. Fluid from the inlet pipe enters the 
pump through the eye of the impeller and then travels outward between the vanes of the im­
peller to its edge, where the fluid enters the casing of the pump and is then conducted to the 
discharge pipe. The principle of the radial-flow pump is different from that of the axial-flow 

A 

Casing I 

View A-A 
A 

FIGURE 14.9 

Centrifugal pump. 
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FIGURE 14. 10 

Performance curves for 
a typical centrifugal 
pump; D = 37.1 em. 
[After Daugherty and 
Franzini (4). Used with 
the permission of the 
McGraw-Hill Companies.] 

FIGURE 14.11 

Dimensionless performance 
curves for a typical 
centrifuga l pump, from 
data given in Fig. 14 9 
[After Daugherty and 
Franzini (4).] 
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pump in that the change in pressure results in large part from rotary action (pressure increases 
outward like that in the rotating tank in Section 4.4 produced by the rotating impeller). 
Additional pressure increase is produced in the radial-flow pump when the high velocity of the 
flow leaving the impeller is reduced in the expanding section of the casing. 

Although the basic designs are different for radial - and axial-flow pumps, it can be shown 
that the same similarity parameters (C0, Cp, and CH) apply for both types. Thus the methods 
that have already been discussed for relating size, speed, and discharge in axial-flow machines 
also apply to radial-flow machines. 

1he major practical difference between axial- and radial -flow pumps so far as the user is 
concerned is the difference in the performance characteristics of the two designs. The dimen­
sional performance curves for a typical radial-flow pump operating at a constant speed of rota­
tion are shown in Fig. 14.10. The corresponding dimensionless performance curves for the 
same pump are shown in Fig. 14.11 . Note that the power required at shutoff fl ow is less than 

5 1.00 

4 Efficieocy, 11 
0.75 

>. 
<..> 
c:: 

" ·;:; 

0.50 E 
"' ., 
c:: 

2 '"' J-

0.25 

o ~~--~--~--~--~--~--~~o 
0 0.04 0.08 0.12 0.16 

CQ 



SECTION 14 3 RADIAL-FLOW MACHINES 529 

that required for flow at maximum efficiency. Normally, the motor used to drive the pump is 
chosen for conditions corresponding to maximum pump efficiency. Hence the flow can be 
throttled between the limits of shutoff condition and normal operating conditions with no 
chance of overloading the pump motor. In this Iauer case, a radial-flow pump offers a distinct 
advantage over axial-flow pumps. 

Radial-flow pumps are manufactured in sizes from l hp or less and heads of 50 or 60ft to 
thousands of horsepower and heads of several hundred feet. Figure 14.12 shows a cutaway 
view of a single-suction, single-stage, horizontal-shaft radial pump. Fluid enters in the direc­
tion of the rotating shaft and is accelerated outward by the rotating impeller. There are many 
other configurations designed for specific applications. 

Example 14.4 shows how to find the speed and discharge for a centrifugal pump needed 
to provide a given head. 

FIGURE 14. 1 2 

Cutaway view of a 

single-suction, single-stage, 
horizontal-shaft radial 
pump Pump inlet, outlet, 
and impeller shown on 
photograph. (Copyright 
Sulzer Pumps) 

EXAMPLE 14.4 

Speed and Discharge of Centrifugal Pump 

at maximum efficiency under a head of 76 m. At what speed 
should the pump be operated, and what will the discharge be 
for these conditions? 

Problem Statement Define the Situation 

A pump that has the characteristics given in Fig. 14.10 
when operated at 2133.5 rpm is to be used to pump water 

A centrifugal pump operated at 2133.5 rpm pumps water to 
head of 76 m at maximum efficiency. 
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Assumptions: Assume pump is the same size as that 
corresponding to Fig. 14.10 and water properties are the 
same. 

State the Goal 

I. Find the operational speed of pump (rpm). 

2. Calculate discharge (m3/ s). 

Generate Ideas and Make a Plan 

The Cu. Cp, CQ> and T] are the same for any pump with 
the same characteristics operating at maximum efficiency. 
Thus 

(CH)N = (CH)21335rpm 

where N represents the unknown speed. Also 
(CQ)v = (CQhmsrpm· 

1. Calculate speed using same head coefficient. 

2. Calculate discharge using same discharge 
coefficient. 

fake Action (F.xecute the Plan) 

I. Speed calculation: From Fig. 14.1 0, at maximum efficiency 
llH= 90 m. 

76m 90m 

N 2 2133.52 rpm2 

N= 2133.5 X (
76

)
112 

= 11960rpm l 
90 . 

2. Discharge calculation: From Fig. 14.1 0, at maximum 
efficiency Q = 0.255 m3/s. 

Ql960 1960 
-- = -- = 0.919 
QmJ.s 2133.5 

Ql960 = 10.234 m3/sl 

Example 14.5 shows how to scale up data for a specific centrifugal pump to predict 
performance. 

EXAMPLE 14.5 

Head, Discharge, and Power of a Centrifugal Pump 

Problem Statement 

The pump having the characteristics shown in Figs. 14.10 
and 14.11 is a model of a pump that was actually used in one 
of the pumping plants of the Colorado River Aqueduct [see 
Daugherty and franzini (4)]. For a prototype that is 5.33 times 
larger than the model and operates at a speed of 400 rpm, what 
head, discharge, and power are to be expected at maximum 
efficiency? 

Define the Situation 

A prototype pump is 5.33 times larger than the corresponding 
model. The prototype operates at 400 rpm. 

Assumptions: Pumping water with p = 103 kglm3
• 

State the Goal 

Find (at maximum efficiency) 

l. Head (in meters) 

2. Discharge (in m3/s) 

3. Power (in kW) 

Generate Ideas and Make a Plan 

l. Find C0, CH, and Cpat maximum efficiency from Fig. 14.1 1. 

2. Evaluate speed in rps and calculate new diameter. 

3. Use Eqs. (14.14) through (14.16) to calculate head, 
discharge, and power. 

rake Action (Execute the Plan) 

I. From Fig. 14.11 at maximum efficiency, CQ = 0.12, 
Cu = 5.2 and Cp = 0.69. 

2. Speed in rps: n = (400/60) rps = 6.67 rps 
D = 0.371 X 5.33 = 1.98 m. 

3. Pump performance 

• Head 

• Discharge 

Q = C0nD1 = 0.12(6.67 s 1)(1.98 m)3 = 16.21 m3/s I 
• Power 

P = CppD5n3 = 0.69 (( 103 kg)/m3)(1.98 m)5 (6.67 s-1
)

3 

= j623okw l 
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14.4 Specific Speed 

From the discussion in the preceding sections it was pointed out that axial-flow pumps are best 
suited for high discharge and low head, whereas radial machines perform better for low dis­
charge and high head. A tool for selecting the best pump is the value of a 'IT-group called the 
specific speed, n •. The specific speed is obtained by combining both CHand CQ in such a manner 
that the diameter Dis eliminated: 

C~2 (Q/nDl)l/2 nQ112 

ns = Clf4 = [~HI(Dlnllg)]3t4 g314fl.H3t4 

Thus specific speed relates different types of pumps without reference to their sizes. 
As shown in Fig. 14.13, when efficiencies of different types of pumps are plotted against n., it 

is seen that certain types of pumps have higher efficiencies for certain ranges of n5• For low 
specific speeds, the radial-flow pump is more efficient, whereas high specific speeds favor axial­
flow machines. Tn the range between the completely axial-flow machine and the completely 
radial-flow machine, there is a gradual change in impeller shape to accommodate the particu­
lar flow conditions with maximum efficiency. 1he boundaries between axial, mixed, and radial 
machines are somewhat vague, but the value of the specific speed provides some guidance on 
which machine would be most suitable. The final choice would depend on which pumps were 
commercially available as well as their purchase price, operating cost, and reliability. 

It should be noted that the specific speed traditionally used for pumps in the United States 
is defined as N5 = NQ112/W 314 . Here the speed Nisin revolutions per minute, Q is in gallons 

rpmvgpm 
N--- -' n11,. 

FIGURE 14. 13 
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EXAMPLE 14.6 

per minute, and 6.H is in feet. This form is not dimensionless. Therefore its values are much 
larger than those found for n, (the conversion factor is 17,200). Most texts and references 
published before the introduction of the SI system of units use this traditional definition for 
specific speed. 

Example 14.6 illustrates the use of specific speed to select a pump type. 

Using SpeciRc Speed to Select a Pump 

fake Action (Execute the Plan) 

I. Rotational rate in rps 

Problem Statement 
llOO 

n = - - = 18.33 rps 
60 

What type of pump should be used to pump water at the rate 
of 10 cfs and under a head of 600ft? Assume N = 1100 rpm. Specific speed 

nVQ 
Define the Situation n = 

, (gaH}3'4 

A pump will be pumping water at 10 cfs for a head of 600ft. 18.33 rps X (10 cfs)112 

= = 0 035 
(32.2 ft / s2 X 600 ft)314 • State the Goal 

Find the best type of pump for this application. 2. From Fig. 14.13, a radial-flow pump is the best 
choice. 

Generate Ideas and Make a Plan 

l. Calculate specific speed. 

2. Use Fig. 14.13 to select pump type. 

14.5 Suction Limitations of Pumps 

The pressure at the suction side of a pump is most important because of the possibility that 
cavitation may occur. As water flows past the impeller blades of a pump, local high-velocity 
flow zones produce low relative pressures (Bernoulli effect), and if these pressures reach the 
vapor pressure of the liquid, then cavitation will occur. For a given type of pump operating at 
a given speed and a given discharge, there will be certain pressure at the suction side of the 
pump below which cavitation will occur. Pump manufacturers in their testing procedures 
always determine this limiting pressure and include it with their pump performance curves. 

More specifically, the pressure that is significant is the difference in pressure between the 
suction side of the pump and the vapor pressure of the liquid being pumped. Actually, in prac­
tice, engineers express this difference in terms of pressure head, called the net positive suction 
head, which is abbreviated NPSH. To calculate NPSH for a pump that is delivering a given 
discharge, one first applies the energy equation from the reservoir from which water is being 
pumped to the section of the intake pipe at the suction side of the pump. Then one subtracts 
the vapor pressure head of the water to determine NPSH. 

In Fig. 14.14, points I and 2 are the points between which the energy equation would be 
written to evaluate NPSH. 

A more general parameter for indicating susceptibility to cavitation is specific speed However, 
instead of using head produced (ilH), one uses NPSH for the variable to the 3/4 power. This is 

nQ112 
n = -:-:------
" g314(NPSH)314 
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FIGURE 14.14 

Locations used to evaluate 
NPSH for a pump. 

Here n55 is called the suction specific speed. The more traditional suction specific speed used in 
the United States is Nss = NQ112/(NPSH)314

, where N is in rpm, Q is in gallons per 
minute (gpm), and NPSH is in feet. Analyses of data from pump tests show that the value of 
the suction specific speed is a good indicator of whether cavitation may be expected. For ex­
ample, the Hydraulic Institute (5) indicates that the critical value of Nss is 8500. The reader 
is directed to manufacturer's data or the Hydraulic Institute for more details about critical 

NPSH or Nss. 
An analysis to find NPSH for a pump system is illustrated in Example 14.7. 

EXAMPLE 14.7 

Calculating Net Positive Suction Head 

Problem Statement 

In Fig. 14.14 the pump delivers 2 cfs flow of 80°F water, and 
the intake pipe diameter is 8 in. The pump intake is located 
6ft above the water surface level in the reservoir. The pump 
operates at 1750 rpm. What are the net positive suction 
head and the traditional suction specific speed for these 
conditions? 

Define the Siluation 

A pump delivers 2 cfs flow of 80°F water. 

Assumptions: 

1. Entrance loss coefficient = 0.10. 

2. Bend loss coefficient = 0.20. 

Properties: Table A.S, (Water at 80°F) -y = 62.2lbf/ftl, 

and P vap = 0.506 psi. 

State the Goal 

• Calculate the positive suction head (NPSH ). 

• Calculate the traditional suction specific speed (N11). 

Generate Ideas and Make a Plan 

The net positive suction head is the clitference between 
pressure at pump inlet and the vapor pressure. 

1. Determine the atmospheric pressure in head of water for 
reservoir surface. 

2. Determine velocity in 8-in. pipe. 

3. Apply the energy equation between the reservoir and pump 
entrance. 

4. Calculate NPSH . 

5. Calculate Nss with Nss = (NQ112)/(NPSH)314. 

Take Aclion (Execute the Plan) 

1. Pressure head at reservoir 

p1 14.7lbf/in2 X 144 (in2/ ft 2
) 

- = =34ft 
'Y 62.2lbf/ft3 

2. Velocity in pipe 

V _g_ 2cfs _ 
2 - A - (( . ) )2 - 5.73 ft/s 

1T X 4 m /12 

3. Energy equation between points 1 and 2: 

P1 v? P2 v~ "" -+- +z =-+ -+z + ~h "{ 2g I "{ 2g 2 L 

• Input values 

• Head loss 

V1 = 0, z1 = 0, z2 = 6 

y2 
L hL = (0.1 + 0.2)......!. 

2g 

• Head at pump entrance 

P2 Pt V~ 
- = - - z2 - - (1 + 0.3) 
'Y 'Y 2g 

5.732 

= 34 - 6 - 1.3 X = 27.3 ft 
2 X 32.2 
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4. Vapor pressure in feet of head 
Review the Solution and the Process 

0.506 X 144/62.2 = 1.17 ft. 1. Discussion. For a typical single-stage centrifugal pump with 
an intake diameter of 8 in. and pumping 2 cfs, the critical 
NPSH is normally about I 0 ft; therefore, the pump of this 
example is operating weU within the safe range with respect 
to cavitation susceptibility. 

Net positive suction head 

NPSH = 27.3 - 1.17 = 26.1 ft 

5. Traditional suction specific speed 

Q = 2 cfs = 898 gpm 2. Discussion.1his value of N., is much below the critical limit 
of 8500; therefore, it is in a safe operating range so far as 
cavitation is concerned. N, = (1750)(898)112/(26.1)314 = !4540 I 

A typical pump performance curve for a centrifugal pump that would be supplied by a 
pump manufacturer is shown in Fig. 14.15. The solid lines labeled from 5 in. to 7 in. represent 
different impeller sizes that can be accommodated by the pump housing. These curves give the 
head delivered as a function of discharge. The dashed lines represent the power required by the 
pump for a given head and discharge. Lines of constant efficiency are also shown. Obviously, 
when selecting an impeller, one would like to have the operating point as close as possible to 
the point of maximum efficiency. The NPSH value gives the minimum head (absolute head) at 
the pump intake for which the pump will operate without cavitation. 

FIGURE 14. 1 5 

Centrifugal pump performance curve. [After McQuiston and Porker (6). Used with permission of John Wiley 
and Sons.] 
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14.6 Viscous Effects 

In the foregoing sections, similarity parameters were developed to predict prototype results 
from model tests, neglecting viscous effects. The latter assumption is not necessarily valid, 
especially if the model is quite small. To minimize the viscous effects in modeling pumps, the 
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Hydraulic Institute standards (5) recommend that the size of the model be such that the model 
impeller is not less than 30 em in diameter. These same standards state that "the model should 
have complete geometric similarity with the prototype, not only in the pump proper, but also 
in the intake and discharge conduits:' 

Even with complete geometric similarity, one can expect the model to be less efficient than 
the prototype. An empirical formula proposed by Moody (7) is used for estimating prototype 
efficiencies of radial- and mixed-flow pumps and turbines from model efficiencies. That for­
mula is 

1 - el = (_p_)l /5 
l- e D 1 

(14.18) 

Here e1 is the efficiency of the model and e is the efficiency of the prototype. 
Example 14.8 shows how to estimate the efficiency due to viscous effects. 

EXAMPLE 14.8 

Calculating Viscous Effects on Pump Efficiency 

Problem Statement 

A model having an impeller diameter of 45 em is tested and found 
to have an efficiency of 85%.1£ a geometrically similar prototype 
has an impeller diameter of 1.80 m, estimate its efficiency when 
it is operating under conditions that are dynamically similar to 
those in the model test ( CQ,IlXXI<I = CQ,protoi)'P<). 

Define the Situation 

A pump with a 45-cm diameter impeller has 85% efficiency. 

Assumptions: The efficiency differences are due to viscous 
effects. 

14.7 Centrifugal Compressors 

State the Goal 

Find the efficiency of a pump with a 1.6-m impeller. 

Generate Ideas and \fake a Plan 

Use Eq. (14.18) to determine viscous effects. 

Take Action (Execute the Plan) 

Efficiency 

1-el 0.15 
e = 1 - ( )115 = 1 - - = I - 0.11 = 0.89 

D/D1 1.32 

or 

Centrifugal compressors are similar in design lo centrifugal pumps. Because the density of the 
air or gases used is much less than the density of a liquid, the compressor must rotate at much 
higher speeds than the pump to effect a sizable pressure increase. If the compression process 
were isentropic and the gases ideal, the power necessary to compress the gas from p1 to p 2 

would be 

(14.19) 

where Q1 is the volume flow rate into the compressor and k is the ratio of specific heats. The 
power calculated using Eq. (14.19) is referred to as the theoretical adiabatic power. The 
efficiency of a compressor with no water cooling is defined as the ratio of the theoreti­
cal adiabatic power to the actual power required at the shaft. Ordinarily the efficiency 
improves with higher inlet-volume flow rates, increasing from a typical value of 0.60 
at 0.6 m 3/s to 0.74 at 40 m 3/s. Higher efficiencies are obtainable with more expensive design 
refinements. 

535 
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Example 14.9 shows how to calculate shaft power required to operate a compressor. 

EXAMPLE 14.9 State the Goal 

Calculating Shaft Power for a Centrifugal Compressor Pshar1(kW) .. Required shaft power (in kW). 

Problem Statement Generate Ideas and Make a Plan 

Determine the shaft power required to operate a compressor 
that compresses air at the rate of 1 m3/s from 100 kPa to 

I. Use Eq. (14.19) to calculate theoretical power. 

2. Divide theoretical power by efficiency to find shaft 
(required) power. 200 kPa. The efficiency of the compressor is 65%. 

Define the Situation 

The inlet flow rate to a compressor is 1.0 m3/s. The pressure 
change is from 100 kPa to 200 kPa. 

Take Action (Execute the Plan) 

1. Theoretical power 

k [(p2 ) (k- tJik ] 

From Table A.2, k = 1.4. 

Ptheo = k - 1 Q. Pt p; - 1 

= (3.5)(1 m3/s)(l05 N/m2)[(2)02~ - 1] 

= 0.767 X 105 N · m/s = 76.7 kW 

2. Shaft power 

76.7 V] Phr.= -kW = JISkW 5
• 0.65 

Cooling is necessary for high-pressure compressors because of the high gas temperatures 
resulting from the compression process. Cooling can be achieved through the use of water 
jackets or intercoolers that cool the gases between stages. The efficiency of water-cooled com­
pressors is based on the power required to compress ideal gases isothermally, or 

(14.20) 

which is usually called the theoretical isothermal power. The efficiencies of water-cooled 
compressors are generally lower than those of noncooled compressors. If a compressor is 
cooled by water jackets, its efficiency characteristically ranges between 55% and 60%. The use 
of intercoolers results in efficiencies from 60% to 65%. 

Application to Fluid Systems 
The selection of a pump, fan, or compressor for a specific application depends on the desired 
flow rate. This process requires the acquisition or generation of a system curve for the flow 
system of interest and a performance curve for the fluid machine. The intersection of these two 
curves provides the operating point as discussed in Chapter 10. 

For example, consider using the centrifugal pump with the characteristics shown in Fig.l4.15 
to pump water at 60°F from a wall into a tank as shown in Fig. 14.16. A pumping capacity of at 
least 80 gpm is required. Two hundred feet of standard schedule-40 2-inch galvanized iron 
pipe are to be used. There is a check valve in the system as well as an open gate valve. There is 
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FIGURE 14. 16 FIGURE 14. 17 

System for pumping water from o well into a tonk. System and pump performance curves for pumping application. 
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a 20-ft elevation between the well and the top of the fluid in the tank. Applying the energy 
equation, the head required by the pump is 

v2(fL h = Az +-- + 
P 2g D 

where KL represents the head loss coefficients for the entrance, check valve, gate valve, and 
sudden-expansion loss entering the tank. Using representative values for the loss coefficients 
and evaluating the friction factor from the Moody diagram in Chapter 10 leads to 

hp = 20 + 0.00305 Q2 

where Q is the flow rate in gpm. This is the system curve. 
The result of plotting the system curve on the pump performance curves is shown in 

Fig. 14.17. The locations where the lines cross are the operating points. One notes that a dis­
charge of just over 80 gpm is achieved with the 6.5 in. impeller. Also, referring back to Fig. 14.15, 
the efficiency at this point is about 62%. To ensure that the design requirements are satisfied, 
the engineer may select the larger impeller, which has an operating point of 95 gpm. If the 
pump is to be used in continuous operation and the efficiency is important to operating costs, 
the engineer may choose to consider another pump that would have a higher efficiency at the 
operation point. An engineer experienced in the design of pump systems would be very famil­
iar with the trade-offs for economy and performance and could make a design decision relatively 
quickly. 

1n some systems it may be advantageous to use two pumps in series or in parallel. If two 
pumps are used in series, the performance curve is the sum of the pump heads of the two 
machines at the same flow rate, as shown in Fig. l4.18a. This configuration would be desirable 
for a flow system with a steep system curve, as shown in the figure. If two pumps are connected 
in parallel, the performance curve is obtained by adding the flow rates of the two pumps at the 
same pump heads, as shown in Fig. 14.18b. This configuration would be advisable for flow 
systems with shallow system curves, as shown in the figure. The concepts presented here for 
pumps also apply to fans and compressors. 

100 120 140 
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FIGURE 14.1 8 

Pump performance curves 
for pumps connected in 
series (a) and in parallel (b) 
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14.8 Turbines 
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One pump 
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Two pumps 
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A turbine is defined as a machine that extracts energy from a moving fluid. Much of the 
basic theory and most similarity parameters used for pumps also apply to turbines. How­
ever, there are some differences in physical features and terminology. The details of the flow 
through the impellers of radial-flow machines have not yet been considered. These topics 
will now be addressed. 

The two main categories of hydraulic machines are the impulse and reaction tur­
bines. In a reaction turbine, the water flow is used to rotate a turbine wheel or runner 
through the action of vanes or blades attached to the wheel. When the blades are oriented 
like a propeller, the flow is axial and the machine is called a Kaplan turbine. When the 
vanes are oriented like an impeller in a centrifugal pump, the flow is radial, and the ma­
chine is called a Francis turbine. Jn an impulse turbine, the water accelerates through a 
nozzle and impinges on vanes attached to the rim of the wheel. This machine is called a 
Pelton wheel. 

Impulse Turbine 

ln the impulse turbine a jet of fluid issuing from a nozzle impinges on vanes of the turbine 
wheel, or runner, thus producing power as the runner rotates (see Fig. 14.19). Figure 14.20 
shows a runner for the Henry Borden hydroelectric plant in Brazil. The primary feature of the 
impulse turbine with respect to fluid mechanics is the power production as the jet is deflected 
by the moving vanes. When the momentum equation is applied to this deflected jet, it can be 
shown [see Daugherty and Franzini (4)] for idealized conditions that the maximum power 
will be developed when the vane speed is one-half of the initial jet speed. Under such condi­
tions the exiting jet speed will be zero-all the kinetic energy of the jet will have been 
expended in driving the vane. Thus if one applies the energy equation, between the in­
coming jet and the exiting fluid (assuming negligible head loss and negligible kinetic 
energy at exit), it is found that the head given up to the turbine is h1 = (Vjl2g), and the power 
thus developed is 

(14.21) 



FIGURE 14.19 

Impulse turbine. 

FIGURE 14.20 

A 

r 

L 
A 

Turbine runner 

Vanes (buckets) 

View A-A 

Grinding of a bucket on a Pelton wheel turbine located at Voith 
Hydro's Sao Paulo Plant. (By courtesy of Voith Hydro) 
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FIGURE 14.21 

Control-volume approach 

for the impulse turbine 
using the angular­
momentum principle 
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where Q is the discharge of the incoming jet, -y is the specific weight of jet fluid, and h1 = VJ!2g, 
or the velocity head of the jet. Thus Eq. (14.21) reduces to 

v2 
J P= pQ-

2 
(14.22) 

To obtain the torque on the turbine shaft, the angular-momentum equation is applied to a 
control volume, as shown in Fig. 14.21. For steady flow 

,LM = 2:ro X (m0v0 ) - _Lr; X (m; v;) 
cs cs 

Generally it is assumed that the exiting fluid has negligible angular momentum. The moment 
acting on the system is the torque Tacting on the shaft. Thus the angular-momentum equation 
reduces to 

T = -mrv. 
) 

The mass flow rate across the control surface is pQ so the torque is 

T = - pQVjr 

(14.23) 

The minus sign indicates that the torque applied to the system (to keep it rotating at constant 
angular velocity) is in the clockwise direction. However, the torque applied by the system to 
the shaft is in the counterclockwise direction, which is the direction of wheel rotation, so 

T = pQ\Ijr 

The power developed by the turbine is Tw, or 

P = pQVjrw 

(14.24) 

(14.25) 

Furthermore, if the velocity of the turbine vanes is {1/2) \.j for maximum power, as noted 
earlier, then P = pQVj/2, which is the same as Eq. (14.22). 

The calculation of torque for an impulse turbine is illustrated in Example 14.1 0. 



EXAMPLE 14. 1 0 

Analyzing an Impulse Turbine 

Problem Statement 

What power in kilowatts can be developed by the impulse 
turbine shown if the turbine efficiency is 85%? Assume that the 
resistance coefficient f of the penstock is O.QJ 5 and the head 
loss in the nozzle itself is negligible. What will be the angular 
speed of the wheel, assuming ideal conditions ("J = 2 Vbucket), 
and what torque will be exerted on the turbine shaft? 

Define the Situation 

This problem involves an impulse turbine with an efficiency 

of85%. 

Assumptions: 

1. There is no entrance loss. 

2. Head loss in nozzle is negligible. 

3. Water density is 1000 kg/m3
. 

State the Goal 

Find: 

Elevation ~ 16 70 m 

• Power (kW) developed by turbine 

• Angular speed (rpm) of wheel for maximum 

efficiency 

• Torque (kN · m) on turbine shaft 

Generate Ideas and Make a Plan 

1. Apply energy equation, to find nozzle velocity. 

2. Use Eq. (14.22) for power. 

3. For maximum efficiency, wr = ( Vj/2). 

4. Calculate torque from P = Tw. 

Take Action (Execute the Plan) 

1. Energy equation 

Pt Vf Pi VJ 
- + - + Zt = - + - + Z + hL 
'Y 2g 'Y 2g '} 

.~E<;!!9N 14 .. 8 .~Y.~~.I!'J~~ ... 541 

• Values in energy equation 

p , = O,z1 = 1670m, V1 = O,pi = O,z1 = 1000m 

• Penstock-supply pipe velocity ratio 

VIAl (0.18 m)
2 

V penstock = A--- = Vi -- = 0.0324 Vi 
penstock 1 m 

• Head loss 

- j.!:_ 1 2 
hr - D 2g V pen>t<><.k 

0 0 v2 v2 
. IS X 6000 ( )2 J i 

= 0.0324 - = 0.094 -
1 2g 2g 

• Jet velocity 
v2 

z1 - z2 = 1.094~ 
2g 

(
2 X 9.81 m/ s2 

X 670 m)112 

VI = ~,094 = 109.6 m /s 

2. Gross power 

Vj -yA1VJ 
P=Q-y-= --

2g 2g 

981 0( 1T/ 4)(0.18)2
( 109.6)3 

_ _:__ :...:__..:,_:__..:..._ = 16,750 kW 
2 X 9.81 

Power delivered 

P = 16,750 X efficiency = Q4,~ 
3. Angular speed of wheel 

I 
Vbucket = 2 (109.6 m / s) = 54.8 m/s 

rw = 54.8 m/ s 

54.8 m / s 
w = = 36.5 rad/ s 

1.5 m 

Wheel speed 

I rev ~;p;;] N = (36.5 rad/s)--(60 s/ min) = 349 rpm 
21T rad 

4. Torque 

power 14,240kW ~ J 
T = --= = 1390 kN · m 

w 36.5 rad/s 
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FIGURE 14.22 

Schematic view of a 
reaction-turbine installation. 
(a) Elevation view. (b) Plan 
view, section AA 

Reaction Turbine 

In contrast to the impulse turbine, where a jet under atmospheric pressure impinges on only 
one or two vanes at a time, flow in a reaction turbine is under pressure and reacts on all vanes 
of the impeller turbine simultaneously. Also, this flow completely fills the chamber in which 
the impeller is located (see Fig. 14.22). There is a drop in pressure from the outer radius of the 
impeller, r1, to the inner radius, r2. This is another point of difference with the impulse turbine, 
in which the pressure is the same for the entering and exiting flows. The original form of the 
reaction turbine, first extensively tested by J. B. Francis, had a completely radial-flow impeller 
(Fig. 14.23). That is, the flow passing through the impeller had velocity components only in a 
plane normal to the axis of the runner. However, more recent impeller designs, such as the 
mixed-flow and axial-flow types, are still called reaction turbines. 

Torque and Power Relations for the Reaction Turbine 

As for the impulse turbine, the angular-momentum equation is used to develop formulas for the 
torque and power for the reaction turbine. The segment of turbine runner shown in Fig. 14.23 
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depicts the flow conditions that occur for the entire runner. The guide vanes outside the runner 
itself cause the fluid to have a tangential component of velocity around the entire circumference 
of the runner. Thus the fluid has an initial amount of angular momentum with respect to the 
turbine axis when it approaches the turbine runner. As the fluid passes through the passages of 
the runner, the runner vanes effect a change in the magnitude and direction of its velocity. Thus 
the angular momentum of the fluid is changed, which produces a torque on the runner. This 
torque drives the runner, which, in turn, generates power. 

To quantify the preceding, let V1 and a 1 represent the incoming velocity and the angle of 
the velocity vector with respect to a tangent to the runner, respectively. Similar terms at the 
inner-runner radius are V2 and a 2• Applying the angular-momentum equation for steady flow, 
Eq. (6.27), to the control volume shown in Fig. 14.23 yields 

T = m( - r2 V2cos <Xz)- m( -rl VI cos a l ) 
(14.26) 

TI1e power from this turbine will be Tw, or 

P = pQw (r1 V1 cos a 1 - r2 V2 cos a 2) (14.27) 

Equation (14.27) shows that the power production is a function of the directions of the flow 
velocities entering and leaving the impeller- that is, a 1 and a 2• 

Tt is interesting to note that even though the pressure varies within the flow in a reaction 
turbine, it does not enter into the expressions derived using the angular-momentum equation. 
The reason it does not appear is that the chosen outer and inner control surfaces are concentric 
with the axis about which the moments and angular momentum are evaluated. The pressure 
forces acting on these surfaces all pass through the given axis; therefore they do not produce 
moments about the given axis. 

FIGURE 14.23 

Velocity diagrams for 
the impeller for a Francis 
turbine. 
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EXAMPLE 14. 11 

Vane Angles 
It should be apparent that the head loss in a turbine will be less if the flow enters the runner 
with a direction tangent to the runner vanes than if the flow approaches the vane with an 
angle of attack. In the latter case, separation will occur with consequent head loss. Thus 
vanes of an impeller designed for a given speed and discharge and with fixed guide vanes 
will have a particular optimum blade angle [3 1• However, if the discharge is changed from the 
condition of the original design, the guide vanes and impeller vane angles will not "match" 
the new flow condition. Most turbines for hydroelectric installations are made with movable 
guide vanes on the inlet side to effect a better match at all flows. Thus a 1 is increased or de­
creased automatically through governor action to accommodate fluctuating power demands 
on the turbine. 

To relate the incoming-flow angle a 1 and the vane angle [3 1> first assume that the flow 
entering the impeller is tangent to the blades at the periphery of the impeller. Likewise, the 
flow leaving the stationary guide vane is assumed to be tangent to the guide vane. To develop the 
desired equations, consider both the radial and the tangential components of velocity at the outer 
periphery of the wheel (r = r1). It is easy to compute the radial velocity, given Q and the 
geometry of the wheel, by the continuity equation: 

!14.28) 

where B is the height of the turbine blades. The tangential (tangent to the outer surface of the 
runner) velocity of the incoming flow is 

(14.29) 

However, this tangential velocity is equal to the tangential component of the relative velocity 
in the runner, V,, cot [31, plus the velocity of the runner itself, wr1• Thus the tangential velocity, 
when viewed with respect to the runner motion, is 

V,, = r1w + V,, cot [31 

Now, eliminating V1, between Eqs. (14.29) and (14.30) results in 

V,, cot a 1 = r1w + V,, cot [3 1 

Equation (14.31) can be rearranged to yield 

(
r 1w ) a 1 = arccot - + cot [3 1 v,, 

(14.30) 

(14.31) 

!14.32) 

Example 14.11 illustrates how to calculate the inlet blade angle to avoid separation. 

Define the Situation 

Analyzing a Francis Turbine A Francis turbine is operating with an angular speed of 
600 rpm and a discharge of 4.0 m3/s. 

Problem Statement 

A Francis turbine is to be operated at a speed of 600 rpm 
and with a discharge of 4.0 m3/s. If r1 = 0.60 m, ~1 = 110°, 
and the blade height B is 10 em, what should be the guide 
vane angle a 1 for a nonseparating flow condition at the 
runner entrance? 

State the Goal 

Find the inlet guide vane angle, a 1• 

Generate Ideas and Make a Plan 

Use Eq. (14.32) for inlet guide angle. 



Take Action (Execute the Plan) 

Radial velocity at inlet 

(
r 1w ) u 1 = arccot - + cot 131 v,, 

r1w = 0.6 X 600 rpm X 271" rad/rev X l/60 min/s 

= 37.7 m/s 

Specific Speed for Turbines 
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Inlet guide vane angle 

Q 4.00 m3/s 
V, = - - = - - = 10.61 m/s 

1 27rr1B 271" X 0.6 m X 0.10 rn 

cot !31 = col (II 0°) = -0.364 

(
37.7 ) ~ <Xt = arccol - - 0.364 = 17.4° 
10.61 

Because of the attention focused on the production of power by turbines, the specific speed for 
turbines is defined in terms of power: 

It should also be noted that large water turbines are innately more efficient than pumps. 
The reason for this is that as the fluid leaves the impeller of a pump, it decelerates appre­
ciably over a relatively short distance. Also, because guide vanes are generally not used in 
the flow passages with pumps, large local velocity gradients develop, which in turn cause 
intense mixing and turbulence, thereby producing large head losses. In most turbine in­
stallations, the flow that exits the turbine runner is gradually reduced in velocity through 
a gradually expanding draft tube, thus producing a much smoother flow situation and less 
head loss than for the pump. For additional details of hydropower turbines, see Daugherty 
and Franzini (4). 

Gas Turbines 
The conventional gas turbine consists of a compressor that pressurizes the air entering the 
turbine and delivers it to a combustion chamber. The high-temperature, high-pressure gases 
resulting from combustion in the combustion chamber expand through a turbine, which both 
drives the compressor and delivers power. The theoretical efficiency (power delivered/rate of 
energy input) of a gas turbine depends on the pressure ratio between the combustion chamber 
and the intake; the higher the pressure ratio, the higher the efficiency. The reader is directed to 
Cohen et al. (8) for more detail. 

Wind Turbines 
Wind energy is discussed frequently as an alternative energy source. The application of 
wind turbines* as potential sources for power becomes more attractive as utility power 
rates increase and the concern over greenhouse gases grows. In many European countries, 
especially northern Europe, the wind turbine is playing an ever-increasing role in power 
generation. 

In essence, the wind turbine is just a reverse application of the process of introducing 
energy into an airstream to derive a propulsive force. The wind turbine extracts energy from 

*The phrase "wind turbine" is used to convey the idea of conversion of wind to electrical energy. A windmiU converts 
wind energy to mechanical energy. 
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the wind to produce power. There is one significant difference, however. The theoretical upper 
limit of efficiency of a propeller supplying energy to an airstream is 100%; that is, it is theo­
retically possible, neglecting viscous and other effects, to convert all the energy supplied to a 
propeller into energy of the airstream. This is not the case for a wind turbine. 

A sketch of a horizontal-axis wind turbine is shown in Fig. 14.24. The wind blows along 
the axis of the turbine. The area of the circle traced oul by the rotating blades is the capture 
area. The power associated with the wind passing through the capture area is 

v2 v3 
P= pQ2= pA2 (14.33) 

where pis the air density and Vis the wind speed. In an analysis attributed to Glauert/Betz (9), the 
theoretical maximum power attainable from a wind turbine is 16/27 or 59.3% of this power or 

_ 16 (I 3 ) 
Pmax -

27 
2pV A (14.34) 

Other factors, such as swirl of the airstream and viscous effects, further reduce the power 
achievable from a wind turbine. 

FIGURE 14.24 

Horizontal-axis wind lurbine showing 
capture area. 
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Caprurc area 

FIGURE 14.25 

Typ1cal wind turbine power curve. 
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The power output of any wind turbine is related to the wind speed through the wind­
turbine power curve. A typical curve is shown in Fig. 14.25. This curve can usually be obtained 
from the manufacturer. The wind turbine is inoperative below the cut-in speed. After cut-in, 
the power increases with wind speed reaching a maximum value, which is the rated power 
output for the turbine. Engineering design and safety constraints impose an upper limit on the 
rotational velocity and establish the cutout speed. A braking system is used to prevent opera­
tion of the wind turbine beyond this velocity. 

The conventional horizontal-axis wind turbine has been the focus of most research and 
design. Considerable effort has also been devoted to assessment of the Savonius rotor and the 
Darrieus turbine, both of which are vertical-axis turbines, as shown in Fig. 14.26. The Savonius 
rotor consists of two curved blades forming an S-shaped passage for the air flow. The Darrieus 
turbine consists of two or three airfoils attached to a vertical shaft; the unit resembles an egg 
beater. The advantage of vertical-axis turbines is that their operation is independent of wind 
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FIGURE 14.26 

Wind turbine 
configurations. 
(o) Sovonrus turbine 
(b) Dorrieus turbine. 

(a) Savonius rotor (b) Darrieus rolor 

direction. 1he Darrieus wind turbine is considered superior in performance but has a disad­
vantage in that it is not self-starting. Frequently, a Savonius rotor is mounted on the axis of a 
Darrieus turbine to provide the starting torque. 

For more information on wind turbines and wind turbine systems, refer to Wind Energy 
Explained (I 0). 

EXAMPLE 14.12 

Calculating the Capture Area of a Wind Turbine 

Problem Statement 

Calculate the minimum capture area necessary for a windmill 
that has to operate five 100-watt bulbs if the wind velocity is 
20 km/h and the air density is 1.2 kg/m3

• 

Define the Situation 

A wind turbine needs to produce produces of 500 watts. 

State the Goal 

Find the minimum capture area of the windmill. 

Generate Ideas and Make a Plan 

Use equation for maximum power of windmill. 

14.9 Summarizing Key Knowledge 

The Propeller 
• The thrust of a propeller is calculated using 

Fr = Crpn2D4 

Take Action (Execute the Plan) 

Capture area for maximum power 

Wind velocity in m/s 

54 1 
A = P -­

"'"" 16 p V3 

20 X 1000 
20 km/ h = 

3600 
= 5.56 m/s 

Minimum capture area 

54 1 
A = 500 W X - X ------,------o 

16 1.2 kg/m3 X (5.56 m ls? 

= 1.-8.-18-m--,2 1 

Review the Solution and the Process 

Discussion. This are-a corresponds to a windmill diameter of 
3.23 m, or about 10.6 ft . 

where p is the fluid density, n is the rotational rate of the propeller, and D is the propeller 
diameter. The thrust coefficient Cr is a function of the advance ratio V0/nD. 
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• The efficiency of a propeller is the ratio of the power delivered by the propeller to the 
power provided to the propeller. 

Pumps 
• Pumps can be axial flow or radial flow 

FrVo 
T) =-­

p 

~ An axial-flow pump consists of an impeller, much like a propeller, mounted in a 
housing. 

~ In a radial-flow pump, fluid enters near the eye of the impeller, passes through the 
vanes, and exits at the edge of the vanes. 

• The head provided by a pump is quantified by the head coefficient, CH, defined as 

where ilH is the head across the pump. 

• The head coefficient is a function of the discharge coefficient, which is 

where Q is the discharge. 

Q 
Co= ­

niY 

• Pump performance curves show head delivered, power required, and efficiency as a 
function of discharge. 

• The specific speed of a pump can be used to select an appropriate type of pump for a given 
application. 

~ Axial-flow pumps are best suited for high-discharge, low-head applications. 

~ Radial-flow pumps are best suited for low-discharge, high-head applications. 

Water Turbines 
• Turbines convert the energy associated with a moving fluid to shaft work. 

• Turbines are classified into two categories. 

~ The impulse turbine consists of a liquid jet impinging on vanes of a turbine wheel or 
runner. 

~ A reaction turbine consists of a series of rotating vanes immersed in a flowing fluid. The 
pressure on the vanes provides the torque for the power. 

Wind Turbines 
• Wind turbines are classified based on the axis of the rotor 

~ The rotor of a turbine can revolve around a horizontal axis. Most commercial wind 
turbines use this design. 

~ The rotor of a turbine can revolve around a vertical axis. Two types of turbine in this 
category are the Darrieus turbine and the Savonius turbine. 
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• The maximum power derivable from a wind turbine is 

16(1 3 ) Pmax = - - pVoA 
27 2 

where A is the capture area of the wind turbine (projected area from direction of wind) and 
V0 is the wind speed. 
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PROBLEMS 
liC" 
PLU"s Problem available in WileyPLUS at instructor's discretion. 

Propellers (§ 14. 1) 

14.1 Explain why the thrust of a fixed-pitch propeller decreases 
with increasing forward speed. 

14.2 What limits the rotational speed of a propeller? 

14.3 il\/s What thrust is obtained from a propeller 3m in 
diameter that has the characteristics given in Fig. 14.3 on p. 520 of 
§ 14.1 when the propeller is operated at an angular speed of II 00 
rpm and an advance velocity of zero? Assume p = 1.05 kg/m3

• 

14.4 Ms What thrust is obtained from a propeller 3 m in dian1eter 
that has the characteristics given in Fig. 14.3 on p. 520 of§ 14.1 when 
the propeller is operated at an angular speed of 1400 rpm and an 
advance velocity of 80 km/h? What power is required to operate the 
propeller under these conditions? Assume p = 1.05 kglm3

• 

14.5 A propeller 8ft in diameter has the characteristics shown in 
Fig. 14.3 on p. 520 of §14.1. What thrust is produced by the 
propeller when it is operating at an angular speed of 1200 rpm 
and a forward speed of 30 mph? What power input is required 
under these operating conditions? If the forward speed is 
reduced to zero, what is the thrust? Assume p = 0.0024 slugstfe. 

14.6 Ms A propeller 8 ft in diameter, like the one for which 
characteristics are given in Fig. 14.3, on p. 520 of§ 14. I, is to be 
used on a swamp boat and is to operate at maximum efficiency 
when cruising. If the cruising speed is to be 30 mph, what should 
the angular speed of the propeller be? Assume p = 0.0024 slugs/ft3

. 

6. McQuiston, F. C., and J.D. Parker. Heating, Ventilating and Air 
Conditioning. New York: John Wiley, 1994. 

7. Moody, L. F. "Hydraulic Machinery." In Handbook of Applied 
Hydraulics, ed. C. V. Davis. New York: McGraw-Hill, 1942. 

8. Cohen, I I., G. F. C. Rogers, and H. I. H. Saravanamuttoo. Gas 
Turbine Theory. New York: John Wiley, 1972. 

9. Glauert, H. "Airplane Propellers." Aerodynamic Theory, vol. IV. ed. 
W. F. Durand. New York: Dover, 1963. 

10. Manwell, J. F., J. G. McGowan, and A. L. Rogers. 
Wind Energy Explained: Theory, Design and Application. 
Chichester, UK: john Wiley, 2002. 

~Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

14.7 For the propeller and conditions described in Prob. 14.6, 
determine the thrust and the power input. 

14.8 rc;- A propeller is being selected for an airplane that will 
cruise at 2000 m altitude, where the pressure is 60 kPa absolute 
and the temperature is l0°C. The mass of the airplane is 
1200 kg, and the planform area of the wing is 10m2

• The 
lift-to-drag ratio is 30: I. The lift coefficient is 0.4. The engine 
speed at cruise conditions is 3000 rpm. The propeller is to 
operate at maximum efficiency, which corresponds to a thrust 
coefficient of 0.025. Calculate the diameter of the propeller and 
the speed of the aircraft. 

--.. 
14.9 I'Lu"s If the tip speed of a propeller is to be kept below 0.8c, 
where c is the speed of sound, what is the maximum allowable 
angular speed of propellers having diameters of 2 m ( 6.56 ft), 
3m (9.84 ft) , and 4 m (13.12 ft)? Take the speed of sound as 
335 m /s (1099 ft/s). 

14.10 A propeller 2m in diameter, Like the one for which 
characteristics are given in Fig. 14.3, on p. 520 of§ 14.1, is to be 
used on a swamp boat and is to operate at maximum efficiency 
when cruising. If the cruising speed is to be 40 km/h, what 
should the angular speed of the propeller be? 

14.11 For the propeller and conditions described in 
Prob. 14.10, determine the thrust and the power input. 
Assume p = 1.2 kg/m 3

. 
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14.12 ~sA propeller 2m in diameter and like the one for 
which characteristics arc given in Fig. 14.3 on p. 520 of§ 14.1 is 
used on a swamp boat. If the angular speed is 1000 rpm and if 
the boat and passengers have a combined mass of 300 kg, 
estimate the initial acceleration of the boat when starting from 
rest. Assume p = 1.1 kglm'. 

Axial Flow Pumps and Fans (§14.2) 

14.13 Answer the following questions about axial-flow pumps. 

a. Axial-flow pumps are best suited for what conditions 
of head produced and discharge? 

b. For an axial-flow pump, how does the head produced 
by the pump and the power required to operate a 
pump vary with flow rate through the pump? 

14.14 'f&s If a pump having the characteristics shown in 
Fig. 14.7 on p. 524 of §14.2 has a diameter of 40 em and is 
operated at a speed of 1000 rpm, what will be the discharge when 
the head is 3m? 

14.15 The pump used in the system shown has the characteristics 
given in Fig. 14.8 on p. 525 of§ 14.2. What discharge will occur 
under the conditions shown, and what power is required? 

14.16 If the conditions are the same as in Prob. 14.15 except that 
the speed is increased to 900 rpm, what discharge will occur, and 
what power is required for the operation? 

Dinmerer - 35.6 em 

Water 

PROBL.E:.MS 1·1.15, 14.16 

14.17 For a pump having the characteristics given in Fig. 14.7 
or 14.8 of§ 14.2, what water discharge and head will be produced 
at maximum efficiency if the pump diameter is 20 in. and the 
angular speed is II 00 rpm? What power is required under these 
conditions? 

14.18 ~A pump has the characteristics given by Fig. 14.7 on 
p. 524 of§ 14.2. What discharge and head will be produced at 
maximwn efficiency if the pump size is 50 em and the angular 
speed is 45 rps? What power is required when pumping water at 
10°C under these conditions? 

14.19 For a pump having the characteristics of Fig. 14.7 on p. 524 
of~ 14.2, plot the head-discharge curve if the pwnp is 14 in. in 
diameter and is operated at a speed of 1000 rpm. 

14.20 For a pump having the characteristics of Fig. 14.7 on p. 524 
of§ 14.2, plot the head-discharge curve if the pump diameter is 
60 em and the speed is 690 rpm. 

14.21 An axial-flow blower is used for a wind tunnel that 
has a test section measuring 60 em by 60 em and is capable 
of airspeeds up to 40 m/ s. If the blower is to operate at 
maximum efficiency at the highest speed and if the rotational 
speed of the blower is 2000 rpm at this condition, what are the 
diameter of the blower and the power required? Assume that 
the blower has the characteristics shown in Fig. 14.7 on p. 524 
of§ 14.2. Assume p = 1.2 kg/m3

• 

14.22 fl"G-s An axial-flow blower is used to air-condition an 
office building that has a volume of I O' m3

• It is decided that 
the air at 60°F in the building must be completely changed 
every IS min. Assume that the blower operates at 600 rpm at 
maximum efficiency and has the characteristics shown in Fig. 14.7 
on p. 524 of §14.2. Calculate the diameter and power 
requirements for two blowers operating in parallel. 

14.23 An axial fan 2m in diameter is used in a wind tunnel as 
shown (test section 1.2 m in diameter; test section velocity of 
60 m/s). The rotational speed of the fan is 1800 rpm. Assume the 
density of the air is constant at 1.2 kglm3

. '!here are negligible 
losses in the tunnel. The performance curve of the fan is identical 
to that shown in Fig. 14.7 on p. 524 of§ 14.2. Calculate the power 
needed to operate the fan. 

- U= 60 m/s 

PRORI EM 14.23 

Radial Flow Pumps (§ l1l.3) 

14.24 The radial flow pump is best suited for what condition~ of 
head produced and discharge? 

14.25 A pump is used to pwnp water out of a reservoir. What 
limits the depth for which the pump can draw water? 

14.26 If a pump having the characteristics given in Fig. 14.10 on 
p. 528 of§ 14.3 is doubled in size but halved in speed, what will 
be the head and discharge at maximum efficiency? 

14.27 A pump having the characteristics given in fig. 14.10 
on p. 528 of§ 14.3 pumps water at 20°C from a reservoir at an 
elevation of 366 m to a reservoir at an elevation of 450 m 
through a 36-cm steel pipe. If the pipe is 61 0 m long, what will be 
the discharge through the pipe? 

14.28 ?o"' If a pwnp having the characteristics given in Fig. 14.1" 
or 14.11 (both in§ 14.3) is operated at a speed of 1600 rpm, wha: 
will be the discharge when the head is 135 ft? 

14.29 If a pump having the performance curve shown is 
operated at a speed of 1600 rpm, what will be the maximum 
possible head developed? 
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14.30 If a pump having the characteristics given in Fig.l4. 10 on 
p. 528 of§ 14.3 is operated at a speed of 30 rps, what will be the 
shutoff head? 

14.31 If a pump having the characteristics given in Fig. 14.11 on 
p. 528 of~ I 4.3 is 40 em in diameter and is operated at a speed of 
25 rps, what will be the discharge when the head is 50 m? 

14.32 Ws A centrifugal pump 20 em in diameter is used to 
pump kerosene at a speed of 5000 rpm. Assume that the pump 
has the characteristics shown in Fig. 14.1 I on p. 528 of §14.3. 
Calculate the flow rate, the pressure rise across the pump, and the 
power required if the pump operates at maximum efficiency. 

Pump Selection (§ 14.4) 

14.33 Answer the following questions regarding pump sizing 
and selection. 

a. What is the difference between a system curve and a 
pump curve? Explain. 

b. The operating point for a pump system is established 
by what condition? 

14.34 The value of the specific speed suggests the type of pump 
to be used for a given application. A high specific speed suggests 
the use of what kind of pump? 

14.35 Purs The pump curve for a given pump is represented by 

hp.pump = 20 [I - C~oYJ 
where hp.pump is the head provided by the pump in feet and Q is 
the discharge in gpm. The system curve for a pumping application is 

hp.•r• = 5 + 0.002Q2 

where hp.sys is the head in feet required to operate the system 
and Q is the discharge in gpm. Find the operating point (Q) for 
(a) one pump, (b) two identical pumps connected in series. and 
(c) two identical pumps connected in parallel. 

14.36 What is the suction specific speed for the pump that is 
operating under the conditions given in Prob. 14.15? Is this 
a safe operation with respect to susceptibility to cavitation? 
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14.37 What type of pwnp should be used to pump water at a 
rate of 10 cfs and under a head of 30ft? Assume N = 1500 rpm. 

14.38 For the most efficient operation, what type of pump 
should be used to pump water at a rate of 0.10 m3/s and under a 
head of 30 m? Assume n = 25 rps . 

14.39 What type of pump should be used to pump water at a rate 
of 0.40 m3/s and under a head of 70 m? Assume N = 1100 rpm. 

14.40 An axial-flow pump is to be used to lift water against a 
head (friction and static) of 15ft. If the discharge is to be 
4000 gpm, what maximum speed in revolutions per minute 
is allowed if the suction head is 5 ft? 

14.41 A pump is needed to pump water at a rate of 0.2 m3/s 
from the lower to the upper reservoir shown in the figure. What 
type of pump would be best for this operation if the impeller 
speed is to be 600 rpm? Assume f = 0.02 and K, = 0.5. 

Elevation 18 m 

IOOcm 

J>ROnT n.r I·HI 

14.42 Plot the five performance curves from Fig. 14.15 on p. 534 
of* I 4.5 for the different impeller diameters in terms of the head 
and discharge coefficients. Use impeller diameter for D. 

Compressors (§ 14.7) 

14.43 ;[U-s The pressure rise associated with gases in a 
compressor causes the gas temperature to increase as well.'lhe 
ratio of final temperature to initial temperature is less than the 
ratio of final pressure to initial pressure. Will the final density be 
(a) less or (b) greater than the initial density? -14.44 PLils Methane flowing at the rate of I kg!s is to be 
compressed by a noncooled centrifugal compressor from 
100 kPa to 165 kPa. The temperature ofthe methane entering 
the compressor is 27°C. The efficiency of the compressor is 70%. 
Calculate the shaft power necessary to run the compressor. 

14.45 A 36 kW (shaft output) motor is available to run a 
noncooled compressor for carbon dioxide. The pressure is to 
be increased from 100 kPa to ISO kPa.lf the compressor is 60% 
efficient, calculate the volume flow rate into the compressor. ..-.... 
14.46 P l u"s A water-cooled centrifugal compressor is used to 
compress air from 100 kPa to 600 kPa at the rate of2 kg/s. 
The temperature of the inlet air is I5°C. The efficiency of the 
compressor is 50%. Calculate the necessary shaft power. 

Impulse Turbines (§ 14.8) 

14.47 An impulse turbine will produce no power if the velocity 
of the jet striking the bucket is the same as the bucket velocity. 
Explain. 
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14.48 1fu'-A penstock 1 min diameter and 10 km long carries 
water at I 0°C from a reservoir to an impulse turbine. if the 
turbine is 85% efficient, what power can be produced by the 
system if the upstream reservoir elevation is 650 m above 
the turbine jet and the jet diameter is 16.0 em? Assume that 

J = 0.016 and neglect head losses in the nozzle. What should the 
diameter of the turbine wheel be if it is to have an angular speed 
of 360 rpm? Assume ideal conditions for the bucket design 

[ Vbucket = (1/2)\lj]. 

14.49 Consider an idealized bucket on an impulse turbine 
that turns the water through 180°. Prove that the bucket 
speed should be one-half the incoming jet speed for a 
maximum power production. (Hint: Set up the momentum 
equation to solve for the force on the bucket in terms of Vj 
and vbuckct; then the power will be given by this force times 
Vbucket· You can use your mathematical talent to complete 
the problem.) 

14.50 Consider a single jet of water striking the buckets of the 
impulse wheel as shown. Assume ideal conditions for power 
generation [ vbuckct = (1/2) \j and the jet is turned through 180° 
of arc]. With the foregoing conditions, solve for the jet force on 
the bucket and then solve for the power developed. Note that this 
power is not the same as that given by Eq. (14.24)! Study the 
figure to resolve the discrepancy. 

PROBLEM 14.50 

Reaction Turbines (§ 14.8) 

14.5 1 Answer the following questions about reaction turbines. 

a. How does a reaction turbine differ from a centrifugal 
pump? 

b. What is meant by the "runner" in a reaction turbine? 

14.52 For a given Francis turbine, ~ 1 = 60°, ~2 = 90°, r1 = 5 m, 
r2 = 3m, and B = 1m. The discharge is 126 m3/s, and the 
rotational speed is 60 rpm. Assume T = l0°C. 

a. What should a 1 be for a nonseparating flow condition 
at the entrance to the runner? 

b. What is the maximum attainable power with the 
conditions noted? 

c. If you were to redesign the turbine blades of the 
runner, what changes would you suggest to increase 
the power production if the discharge and overall 

dimensions are to be kept the same? 

14.53 ~s To produce a discharge of3.3 m3/s, a Francis 
turbine will be operated at a speed of 60 rpm, r1 = 1.5 m, 
r2 = 1.20 m, B = 33 em, ~ 1 = 85°, and ~2 = 165°. What should 
(a) a 1 be for nonseparating flow to occur through the runner? 
What (b) power and (c) torque should result with this operation? 
Assume T = 1 0°C. 

14.54 A Francis turbine is to be operated at a speed of 120 rpm 
and with a discharge of200 m3/s. If r 1 = 3m, B = 0.90 m, and 
~ 1 = 45°, what should o: 1 be for nonseparating flow at the 
runner inlet? 

14.55 Shown is a preliminary layout for a proposed small 
hydroelectric project. The initial design calls for a discharge of 
8 cfs through the penstock and turbine. Assume 80% turbine 
efficiency. For this setup, what power output could be expected 
from the power plant? Draw the HGL and EGL for the system. 

PROBLeM 14.55 

Wind Turbines (§ 14.8) 

Peruaock 
(steel ptpe 12 in. 

tn dmmeler) 

14.56 What determines the minimum and maximum wind 
speeds at which a wind turbine can operate? 

14.57 Using the Internet and other resources, identify at 
least four types of wind turbines. For each type, describe its 
distinguishing characteristics and its relative advantages and 

disadvantages. 

14.58 Ms Calculate the minimum capture area necessary for a 
wind turbine that will be required to power the 2 kW demands 
of an energy-efficient home. Assume a wind velocity of 10 mph 

and an air density of 1.2 kg/m3
• 

14.59 Ms Calculate the maximum power derivable from a 
conventional horizontal-axis wind turbine with a propeller 2.3 m 
in diameter in a 47 km/h wind with density 1.2 kglm3

• 



14.60 A wind farm consists of 20 Darrieus turbines, each 
15m high. The total output from the turbines is to be 2 MW in 
a wind of 20 m/s and an air density of 1.2 kg/m3. The Darrieus 
turbine shown has the shape of an arc of a circle. Find the 
minimum width, W, of the turbine needed to provide this 
power output. 

!'ROBLE~! 14.60 

14.61 ~A windmill is connected directly to a mechanical 
pump that is to pump water from a welllO ft deep as shown. 
The windmill is a conventional horizontal -axis type with a 
fan diameter of 10 ft. 'I he efficiency of the mechanical pump 
is 80%. The density of the air is 0.07 lbm/ft3 . Assume the 
windmill delivers the maximum power available. There is 
20 ft of 2-inch galvanized pipe in the system. What would 
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the discharge of the pump be (in gallons per minute) for a 
30 mph wind? (1 cfm = 7.48 gpm) 

• 

PROBLEM 14.61 



FLOW IN OPEN 
CHANNELS 

FIGURE 15.1 

Aerial view of the California Aqueduct at the southwest end 
of the Tehachapi Mountains. !Macduff Everton/The Image 
Bank/Getty Images). 

554 

1 Chapter Road Map j 

The flow of water in open channels con be observed 
in aqueducts, rivers, flumes, irrigation ditches, and 
other contexts. Although these contexts are quite 
different, a small set of concepts and a few equations 
generalize to most applications of open channel flow. 
These ideas are introduced in this chapter . 

.... j Learning Objectives I 
STUDENTS WILL BE ABLE TO 

• Deline an open channel. Define uniform flow and 
nonuniform flow. I§ 15 1) 

• Define the Froude number, the hydraulic radius, and the 
Reynolds number. List the criteria for laminar and turbulent 
flow.l§15.1) 

• For steady flow, explain the physics of the energy 
equation and also explain the corresponding HGL and 
EGL. I§ 15.2) 

• For uniform flow, calculate flow rote with the 
(a) Darcy-Weisboch approach, (b) Chezy equation, 
and (c) Manning equation. (§ 15.3) 

• Deline and explain the best hydraulic section . I§ 15.3) 

• Describe and compare rapidly varied flow and gradually 
varied flow (§ 15.4) 

• Describe critical depth, specific energy, supercritical flow, 
and subcritical flow. (§ 15.5) 

• Describe a hydraulic jump. Perform calculations (§ 15.6) 

• Describe the factors used to classify surface profiles that 
occur in gradually varied flow. ( § 15 .7) 
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An open channel is one in which a liquid flows with a free surface. A free surface means that 
the liquid surface is exposed to the atmosphere. Examples of open channels are natural creeks 
and rivers, artificial channels such as irrigation ditches and canals, and pipelines or sewers 
flowing less than full. Jn most cases, water or wastewater is the flowing liquid. 

15. 1 Description of Open-Channel Flow 

Flow in an open channel is described as uniform or nonuniform, as distinguished in Fig. 15.2. As 
defined in Chapter 4, uniform flow means that the velocity is constant along a streamline, which 
in open-channel flow means that depth and cross section are constant along the length of a chan­
nel. The depth for uniform-flow conditions is called normal depth and is designated by Yn· 
For nonuniform flow, the velocity changes from section to section along the channel, thus one 
observes changes in depth. The velocity change may be due to a change in channel configuration, 
such as a bend, change in cross-sectional shape, or change in channel slope. For example, 
Fig. 15.2 shows steady flow over a spillway of constant width, where the water must flow progres­
sively faster as it goes over the brink of the spillway (from A to B), caused by the suddenly steeper 
slope. The faster velocity requires a smaller depth, in accordance with conservation of mass (con­
tinuity). From reach B to C, the flow is uniform because the velocity, and thus depth, are constant. 
After reach C the abrupt flattening of channel slope requires the velocity to suddenly, and turbu­
lently, slow down. Tims there is a deeper depth downstream of C than in reach B to C. 

c 

The most complicated open-channel flow is unsteady nonuniform flow. An example of 
this is a breaking wave on a sloping beach. Theory and analysis of unsteady nonuniform flow 
are reserved for more advanced courses. 

Dimensional Analysis in Open-Channel Flow 
Open-channel flow results from gravity moving water from higher to lower elevations and is 
impeded by friction forces caused by the roughness of the channel. Thus the functional equa­
tion Q = f(!J-, p, V, L) and dimensional analysis leads to two important 1T-groups: the Froude 
number and the Reynolds number. The Froude number squared is the ratio of kinetic force to 
gravity force: 

Fr2 = kinetic force = pL
2 
V

2 
V2 

gravity force -yL3 L 'YI p 
(15.1) 

v 
Fr= - -

Vgf 
(15.2) 

The Froude number is important if the gravitational force influences the direction of flow, 
such as in flow over a spillway, or the formation of surface waves. However, it is unimportant 
when gravity causes only a hydrostatic pressure distribution, such as in a closed conduit. 

FIGURE 15.2 

Distinguishing uniform 
and nonuniform flow. This 
example shows steady 
flow over a spillway, such 
as the emergency overflow 
channel of a dam. 
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FIGURE 15.3 

Open-channel relations. 

The use of Reynolds number for determining whether the flow in open channels will be 
laminar or turbulent depends on the hydraulic radius, given by 

A 
Rh = p (15.3) 

where A is the cross-sectional area of flow and P is the wetted perimeter. The characteristic 
length Rh is analogous to diameter Din pipe flow. Recall that for pipe flow (Chapter 10), if the 
Reynolds number (VDp/ f.L = VD/v) is less than 2000, the flow will be laminar, and if it is 
greater than about 3000, one can expect the flow to be turbulent. The Reynolds number crite­
rion for open-channel flow would be 2000 if one replaced D in the Reynolds number by 4Rh, 
where R11 is the hydraulic radius. For this definition of Reynolds number, laminar flow would 
occur in open channels if V( 4Rh)lv < 2000. 

However, the standard convention in open-channel flow analysis is to define the Reynolds 
number as 

VRh 
Re =­

v 
(15.4) 

Therefore, in open channels, if the Reynolds number is less than 500, the flow is laminar, and 
if Re is greater than about 750, one can expect to have turbulent flow. A brief analysis of this 
turbulent criterion (see Example 15.1) wiU show that water flow in channels will usually be 
turbulent unless the velocity and/or the depth is very small. 

It should be noted that for rectangular channels (see Fig. 15.3), the hydraulic radius is 

A By 
Rh = p = B + Zy (15.5) 

For a wide and shallow channel, B >> y and Eq. (15.5) reduces to Rh ~ y which means that the 
hydraulic radius approaches the depth of the channel. 

Sid< view 

~------8------~ 

r 
)' 

.____ ____ __.j_ 

1-ond voew 

v CHECKPOINT PROBLEM 15.1 

What is the hydraulic radius for this channel? 

a. -rrR /{4 + 2-rr} 

b. -rrR /(2 + -rr) 
c.R/4 

d. R/2 

e. R 
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Most open-channel flow problems involve turbulent flow. If one calculates the conditions 
needed to maintain laminar flow, as in Example 15.1, one sees that laminar flow is uncommon. 

EXAMPLE 15.1 

Calculating Reynolds Number and Classifying Flow 
for a Rectangular Open Channel 

Problem Statement 

Water (60 °F) flows in a 10-ft-wide rectangular channel at 
a depth of 6ft. What is the Reynolds number if the mean 
velocity is 0.1 ft/s? With this velocity, at what maximum 
depth can one be assured of having laminar flow? 

Define the Situation 

Water flows in a rectangular channel. 

B = 1 0 ft. y = 6 ft. V = 0.1 ft/ s. 

Properties: 

Water (60 °F, 1 atm, Table A.5): v = 1.22 X 10- 5 ft2/s. 

State the Goal 

1. Re .. Reynolds number 

2. Ym(ft) • Maximum depth for laminar flow 

Generate Ideas and Make a Plan 

To find Re, apply Eq. (15.4). To find Ym• apply the criteria that 
laminar flow occurs for Re < 500. The plan is: 

1. Calculate hydraulic radius using Eq. (15.5). 

2. Calculate Reynolds number using Eq. (15.4). 

3. Let Re = 500, solve for Rh• and then solve for Ym· 

Take Action (Execute the Plan) 

1. Hydraulic radius 

By (10 ft)(6 ft) 
Rh = B + 2y = (10ft) + 2(6 ft) = 2·727 ft 

2. Reynolds number 

VR h (0.1 ft/ s)(2.727 ft) ~ 
Re = - = = 22400 

v (1.22 x w-5 fills ) 

3. Laminar Flow Criteria (Re < 500). 

Re = VRhlv = (0.10 ft/s)Rh /( 1.22 X 10- 5 ft2/ s) = 500 

Rh = (500)(1.22 X 10- 5 ft2 /s)/(0.10 ft /s) = 0.061 ft 

For a rectangular channel, 

Rh = (By)I(B + 2y) 

(By)I(B + 2y) = (lOy)/(10 + 2y) = 0.061 ft 

Ym = I 0.062 ft I 

Review the Solution and the Process 

1. Knowledge. Velocity or depth must be very small to yield 
laminar flow of water in an open channel. 

2. Knowledge. Depth and hydraulic radius are virtually the 
same when depth is very small relative to width. 

15.2 Energy Equation for Steady Open-Channel Flow 

To derive the energy equation for flow in an open channel, begin with Eq. (7.29) and let the 
pump head and turbine head equal zero: hp = h1 = 0. Equation (7.29) becomes 

Use Fig. 15.4 to show that 

Pt - + Zt = Yt + S0Ax 
"Y 

(15.6) 

and 

where S0 is the slope of the channel bottom, andy is the depth of flow. Assume the flow in the 
channel is turbulent, so et 1 = et2 = 1.0. Equation (15.6) becomes 

vf v~ 
Yt + - + SoAx = Y2 + - + hL (15.7) 

2g 2g 
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FIGURE 15.4 

Definition sketch for flow 
in open channels. 

EXAMPLE 15.2 

EGL 

- ../ 
----~·~----------------------~ 

HGL 1'1l-------- t a1 - ___ h
1 

, 

2g ---- l a vz-
---7-~2g --- .... 
~--~- 'i7 

---
In addition to the foregoing assumptions, Eq. (15.7) also requires that the channel have a 
uniform cross section, and the flow be steady. 

15.3 Steady Uniform Flow 

Uniform flow requires that velocity be constant in the flow direction, so the shape of the chan­
nel and the depth of fluid is the same from section to section. Consideration of the foregoing 
slope equations shows that for uniform flow, the slope of the HGL will be the same as the chan­
nel slope because the velocity and depth are the same in both sections. The HGL, and thus the 
slope of the water surface, is controlled by head loss. If one restates the Darcy-Weisbach equa­
tion introduced in Chapter 10 with D replaced by 4Rh, the head loss is 

fL V2 ht f V 2 

ht = 4Rh 2g or L 4Rh 2g (15.8) 

From Fig. 15.4, S0 = [slope of EGL], which is a function of the head loss, so S0 = (hjlL), yield­
ing the following equation for velocity: 

~ 
V = \j yxh~o (15.9) 

To solve Eq. (15.9) for velocity, the friction factor f can be found from the Moody diagram 
(Fig. 10.14) and can then be used to solve iteratively for the velocity for a given uniform-flow 
condition. This is demonstrated in Example 15.2. 

Define the Situation 

Applying the Darcy-Weisbach Equation to Find the Flow 
Rate in a Rectangular Open Channel 

• Water flows in a rectangular channel. 

• B= 10ft,y =6ft,S0 =0.0016. 

Assumptions. Uniform flow 

Properties. 

Problem Statement 

Estimate the discharge of water that a concrete channcllO ft 
wide can carry if the depth of flow is 6 ft. and the slope of the 
channel is 0.0016. 

• Water (60 °F, 1 atm, Table A.S): v = 1.22 X 10- 5 ft2/s 

• Concrete (Table 10.4): k, '""' 0.005 ft 



State the Goal 

Q(fe/ s) • Discharge in the channel 

Generate Ideas and Make a Plan 

Because the goal is Q, apply the flow rate equation 

Q= VA 

To find V in Eq. (a), apply Eq. (15.9): 

~ 
V = \tJJ<h~O 

To find R11 in Eq. {b), apply Eq. (15.5). 

By (10 ft)(6 ft) 

Rh = B + 2y = (10ft) + 2(6 ft) = 2'727 ft 

{a) 

{b) 

{c) 

To find fin Eq. (b), use an iterative approach with the Moody 
diagram. This is a Case 2 problem from Chapter 10. The plan is: 

I. Calculate relative roughness. Then, guess a value off 

2. Calculate V using Eq. (b). 

3. Calculate Reynolds number, then look up f on the Moody 
diagram and compare to the guess in step 1. If needed, go 
back to step 2. 

4. Calculate Q using Eq. (a). 

Take Action (Execute the Plan) 

1. Calculate relative roughness. 

k, 0.005 ft 0.005 ft - = = = 0.00046 
4Rh 4(60 ft2/22 ft) 4(2.73 ft) 

Rock-Bedded Channels 
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Use value of k,/4R1, = 0.00046 as a guide to estimate 
J= 0.016. 

2. Calculate V based on guess off 

V= 
8(32.2 ft/ s2)(2.73 ft)(0.0016) 

0.016 

= \h0.6 ft2 /s2 = 8.39 ft/s 

3. Calculate a new value ofjbased on Vfrom step 2. 

4Rh 8.39 ft/s (l0.9 ft) 
Re = V - = ( 5 ft2 ) = 7.62 X 106 

v 1.2 10- Is 

Using this new value of Re and k,I4Rh = 0.00046, read f as 
0.016. This value off is the same as the previous estimate. 
Thus, we conclude that 

V = 8.39 ft/s 

4. Flow rate equation 

Q = VA = 8.39 ft /s(60 ft2
) = 1503 cfs I 

Review the Solution and the Process 

1. Notice. The approach to solving this problem parallels the 
approach presented in Chapter 10 for solving problems that 
involve flow in conduits. 

2. Knowledge. Hydraulic diameter is four times the hydraulic 
radius. lhis is why the relative roughness formula in step 1 
is k,I(4Rh)-

For rock-bedded channels such as those in some natural streams or unlined canals, the larger 
rocks produce most of the resistance to flow, and essentially none of this resistance is due to 
viscous effects. Thus, the friction factor is independent of the Reynolds number. This is analo­
gous to the fully rough region of the Moody diagram for pipe flow. For a rock-bedded channel, 
Limerinos ( 1) has shown that the resistance coefficient f can be given in terms of the size of 
rock in the stream bed as 

(15.10) 

where d84 is a measure of the rock size.* 

*Most river-worn rocks are somewhat elliptical in shape. Limerinos ( 1) showed that the intermediate dimension ds4 

correlates best withf The d3• refers to the size of rock (intermediate dimension) for which 84% of the rocks in the 
random sample are smaller than the dR4 size. Details for choosing the sample are given by Wolman (3). 
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EXAMPLE 15.3 Generate Ideas and Make a PlaJI 

Resistance Coefficient for Boulders 1. Since the channel is wide, approximate R" as the depth of 
the channel. 

Problem Statement 

Determine the value of the resistance coefficient, f. for a 
natural rock-bedded channel that is 100ft wide and has an 
average depth of 4.3 ft. The d84 size of boulders in the stream 
bed is 0.72 ft. 

2. Use Eq. ( 15.1 O) to find f on the basis of the d84 boulder 
size. 

Take Action (F.xecute the Plan) 

1. Rh is 4.3 ft. 

Define the Situation 2. Evaluate f 

A natural channel is lined with boulders. f = 
1 

= (QB"O] 
Stale the Goal 

Find the friction factor,f 

[ 1.2 + 2.03 log(o~:2) r 

The Chezy Equation 

Leaders in open-channel research have recommended the use of the methods already pre­
sented {involving the Reynolds number and relative roughness k,) for channel design (2). 
However, many engineers continue to use two traditional methods, the Chezy equation and 
the Manning equation. 

As noted earlier, the depth in uniform flow, called normal depth, Yn• is constant. Conse­
quently, hjl Lis the slope S0 of the channel, and Eq. (15.8) can be written as 

R1,So = Lv2 

Bg 

or 

v = cVR;;So 

where 

Because Q = VA, the discharge in a channel is given by 

Q = CAVR;;fo 

(15.11) 

!15.12) 

(15.13) 

This equation is known as the Chezy equation after a French engineer of that name. For prac­
tical application, the coefficient C must be determined. One way to determine Cis by knowing 
an acceptable value of the friction factor f and using Eq. (15.12). 

The Manning Equation 

The second, and more common, way to determine C in the SI system of units is given as: 

R l t6 
c = _h_ (15.14) 

n 

where n is a resistance coefficient called Manning's n, which has different values for different 
types of boundary roughness. When this expression for Cis inserted into Eq. (15.13), the result 
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is a common form of the discharge equation for uniform flow in open channels for SI units, 
referred to as the Manning equation: 

(15.15) 

Table 15.1 gives values of n for various lypes of boundary surfaces. The major limitation 
of this approach is that the viscous or relative-roughness effects are not present in the design 
formula. Hence, application outside the range of normal-sized channels carrying water is not 
recommended. 

Manning Equation-Traditional System of Units 

The form of the Manning equation depends on the system of units because Manning's 
equation is not dimensionally homogeneous. In Eq. (15.15), notice that the primary di­
mensions on the left side of Lhe equation are L3/ Tand the primary dimensions on the right 
side are L 813• 

To convert the Manning equation from SI to traditional units, one must apply a factor 
equal to 1.49 if the same value of n is used in the two systems. Thus in the traditional system 
the discharge equation using Manning's n is 

TABLE 15.1 Typical Values of Roughness Coefficient, Manning's n 

Cement plaster 
Untreated gunitc 
Wood, planed 
Wood, unplaned 

Concrete, troweled 
Concrete, wood forms, unfinished 
Rubble in cement 
Asphalt, sm ooth 
Asphalt, rough 
Corrugated metal 

Unlined Canals 

Earth, straight and uniform 

Earth, winding and weedy banks 
Cut in rock, straight and uniform 

----------

Cut in rock,j~gged and irregular __ J_ __ 

-·------t-Gravel beds, straight 
Gravel beds plus large boulders I 
Earth , straight, with some grass 

E h . d. . I art , wm mg, no vegetatiOn 

Natural Channels 

Earth, winding, weedy banks 
Earth, very weedy and overgrown 

0.011 
0.016 
0.012 
0.013 
0.012 
0.015 

0.020 
0.013 
0.016 
0.024 

0.023 
0.035 
0.030 

0.045 

0.025 
0.040 
0.026 
0.030 
0.050 
0.080 

(15.16) 

. . 
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In Example 15.4, a value for Man ning's n is calculated from known information about a 

channel and compared to tabulated values for n in Table 15.1. 

EXAMPLE 15.4 

Apply the Chezy Equation to ~nd Manning's Value of n 
for Flow in a Channel 

Problem Statement 

If a channel with boulders has a slope of 0.0030, is 100 ft wide, 
has an average depth of 4.3 ft , and is known to have a friction 
factor of 0.130, what is the discharge in the channel, and what 
is the numerical value of Manning's n for this channel? 

Define the Situation 

Water flows in an channel with boulders 

S0 = 0.003, B = 100 ft ,y = 4.3 ft,f = 0.13 

Assumptions. Rh ""' y = 4.3 ft (because the channel is wide). 

State the Goal 

1. Q(cfs) +- Discharge in the channel 

2. n +- Manning's n 

Generate Ideas and Make a Plan 

To find Q, apply the flow rate equation 

Q = VA 

To find V in Eq. (a), apply Eq. ( 15.9): 

V=~ 
To find n, apply Eq. (15.16): 

Q = 1.49 AR~Js~z 
n 

(a) 

(b) 

(c) 

Because Eqs. (a) to (c) form a set of three equations with three 
unknowns, they can be solved. The plan is: 

L. Calculate Vusing Eq. (b). 

2. Calculate Q using Eq. (a). 

3. Calculate n using Eq. (c). 

Take Action (Execute the Plan) 

I. Velocity 

v=[ 
{8)(32.2 ft /s

2
)] [ ] Y( 4.3 ft) (0.0030) = 5.06 ft/s 

0.130 

2. Flow Rate Equation 

Q =VA= (5.06ft/s)(l00 X 4.3ft2) =~SocfS] 
3. Manning's n (traditional units). 

n = 1.
49 AR~13SA12 
Q 

n = ( 1.
49 

)(100 X 4.3 ff){4.3 ft)213 (0.003)112 

2176fets 

n =I 0.0426 1 

Review the Solution and the Process 

1. Validation. This calculated value of n is wilhin the range of 
typical values in Table 15.1 under the category of" Unlined 
Canals, Cut in rock:' 

2. Notice. For uniform flow,fin the Darcy-Weisbach 
equation can be related to Manning's n (as shown by this 
example). 

In Example 15.5 the Chezy equation for traditional units is used to compute discharge. 

EXAMPLE 15.5 

Discharge Using Chezy Equation 

Problem Statement 

Using the Chezy equation with Manning's n, compute the 
discharge in a concrete channel 10ft wide if the depth of flow 
is 6ft and the slope of the channel is 0.0016. 

Define the Situation 

Water flows in a concrete channel. Width = I 0 ft. 
Depth =6ft. Slope = 0.0016. 

Properties: n = 0.015 for concrete channel (Table 15.1). 

State the Goal 

Find the discharge, Q. 
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Generate Idea~ and Make a Plan 
60 

Rh = - = 2.73 ft and R~3 = 1.95 
22 

Use the Chezy equation for traditional units, Eq. (15.16). 
S~12 = 0.04 and A = 60 ft2 

Take Action (Execute the Plan) 
Q = 1.

49 
(60}(1.96}(0.04} = ~fs 1 

O.DlS 

The two results (Examples 15.5 and 15.5) are within expected engineering accuracy for 
this type of problem. For a more complete discussion of the historical development of Man­
ning's equation and the choice of n values for use in design or analysis, refer to Yen (4) and 
Chow (5). 

Best Hydraulic Section for Uniform Flow 
The best hydraulic section is the channel geometry that gives the maximum discharge for a 
given cross sectional area. Maximum discharge occurs when a geometry has the minimum 
wetted perimeter. Therefore, it yields the least viscous energy loss for a given area. Consider the 
quantity AR~13 in Manning's equation given in Eqs. (15.15 and 15.16), which is referred to as 
the section factor. Because Rh = AI P, the section factor relating to uniform flow is given by 
A(A! P)213• Thus, for a channel of given resistance and slope, the discharge will increase with 
increasing cross-sectional area but decrease with increasing wetted perimeter P. For a given 
area, A, and a given shape of channel-for example, rectangular cross section- there will be a 
certain ratio of depth to width (y/B) for which the section factor will be maximum. This ratio 
is the best hydraulic section. 

Example 15.6 shows that the best hydraulic section for a rectangular channel occurs 
when y = tB. It can be shown that the best hydraulic section for a trapezoidal channel is half 
a hexagon as shown; for the circular section, it is the half circle with depth equal to radius; 
and for the triangular section, it is a triangle with a vertex of 90° (Fig. 15.5). Of all the various 
shapes, the half circle has the best hydraulic section because it has the smallest perimeter for 
a given area. 

The best hydraulic section can be relevant to the cost of the channel. For example, if a 
trapezoidal channel were to be excavated and if the water surface were to be at adjacent ground 
level, the minimum amount of excavation (and excavation cost) would result if the channel of 
best hydraulic section were used. 

v CHECKPOINT PROBLEM 15.2 

Consider uniform flow of water in two channels. Both have 
the same slope, the same wall roughness, and the same section 
area. 

Which statement is true? 

a . QA = QB 

b.~ < Os 
C. QA > QB 

2y 

(a) 

Section has a 
regular hexagon 
shape 

L 

(b) 

FIGURE 15.5 

Best hydraulic sections 
for different geometries. 

Ll 
8 

L 

8 
L 
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EXAMPLE 15.6 

Finding the Best Hydraulic Section for a Rectangular Channel 

Take Action (Execute the Plan) 

I . Relate A and P in terms of y. 

Problem Statement A 

Determine the best hydraulic section for a rectangular channel 
with depth y and width B. 2a. Minimize P. 

p = - + 2y 
y 

Define the Situation 
dP -A 
-=- + 2=0 

Water flows in a rectangular channel Depth = y. Width = B. 
dy y2 

A 
-=2 y2 State the Goal 

Find the best hydraulic section (relate Band y). 2b. Express result in terms of y and B. 

Generate Ideas and Make a Plan 
A= By, so 

or ly = iB I 1. Set A = By and P = B + 2y so that both are a function of y. 
By 
-=2 
I 

2. Let A be constant, and minimjze P. 

• Differentiate P with respect to y and set the derivative 
equal to zero. 

Review the Solution and the Process 

Knowledge. The best hydraulic section for a rectangular 
channel occurs when the depth is one-half the width of the 
channel, see Fig. 15.5. 

• Express the result of minimizing Pas a relation between 
yand B. 

FIGURE 15.6 

Culver! under a highway 
embankment. 

Uniform Flow in Culverts and Sewers 

Sewers are conduits that carry sewage (liquid domestic, commercial, or industrial waste) from 
households, businesses, and factories to sewage disposal sites. These conduits are often circular 
in cross section, but elliptical and rectangular conduits are also used. The volume rate of sew­
age varies throughout the day and season, but of course sewers are designed to carry the max­
imum design discharge flowing full or nearly full . At discharges less than the maximum, the 
sewers will operate as open channels. 

Sewage usually consists of about 99% water and 1% solid waste. Because most sewage is so 
dilute, it is assumed that it has the same physical properties as water for purposes of discharge 
computations. However, if the velocity in the sewer is too small, the solid particles may settle 
out and cause blockage of the flow. Therefore, sewers are usually designed to have a minimum 
velocity of about 2 ft/s (0.60 m/s) at times when the sewer is flowing full. This condition is met 
by choosing a slope on the sewer line to achieve the desired velocity. 

A culvert is a conduit placed under a fill such as a highway embankment. It is used to 
convey stream-flow from the uphill side of the fill to the downhill side. Figure 15.6 shows the 

Roadway 
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essential features of a culvert. A culvert should be able to convey runoff from a design storm 
without overtopping the fill and without erosion of the fill at either the upstream or down­
stream end of the culvert The design storm, for example, might be the maximum storm that 
could be expected to occur once in 50 years at the particular site. 

The flow in a culvert is a function of many variables, including cross-sectional shape 
(circular or rectangular), slope, length. roughness, entrance design, and exit design. Flow in a 
culvert may occur as an open channel throughout its length, it may occur as a completely full 
pipe, or it may occur as a combination of both. The complete design and analysis of culverts are 
beyond the scope of this text; therefore, only simple examples are included here (Examples 15.7 
and 15.8). For more extensive treatment of culverts, please refer to Chow (5), Henderson (6), 
and American Concrete Pipe Assoc. (7). 

EXAMPLE 15.7 

Sizing a Round Concrete Sewer Line 

Problem Statement 

A sewer line is to be constructed of concrete pipe to be 
laid on a slope of 0.006. If n = 0.013 and if the design 
discharge is 110 cfs, what size pipe (commercially available) 
should be selected for a full-flow condition? What will be 
the mean velocity in the sewer pipe for these conditions? 
(It should be noted that concrete pipe is readily available in 
commercial sizes of 8-in., 10-in., and 12-in. diameter and 
then in 3-in. increments up to 36-in. diameter. From 36-in. 
diameter up to 144 in. the sizes are available in 
6-in. increments.) 

Define the Situation 

Sewer line, S0 = 0.006, Q (design) = 110 cfs. 

Assumptions: Can only use a standard pipe size. 

State the Goal 

Find: Pipe diameter large enough to carry design discharge 
and that allows V 2:: 2ft/sat full -flow condition. 

Generate Ideas and Make a Plan 

I. Use Chezy equation for traditional units, Eq. (15.16). 

2. Solve for AR213
• 

3. For pipe flowing full , relate A and P to diameter 

through R". 

4. Solve for diameter, and usc the next commercial size 
larger. 

5. Check that velocity for full flow is greater than 2 ft/s. 

Take Action (fxecute the Plan) 

1. Chezy equation for traditional units is 

Q = 110ft3/ s 

n = 0.013 

S0 = 0.006 (assume atmospheric pressure in the pipe) 

2. Solve for AR213
• Note that w1its of AR213 are ft813 because 

A is in ft2 and Rh is in ft213. 

213 _ (llO ft3/ s)(0.013) _ 813 AR - _(_)_( )112 - 12.39 ft 
1.49 0.006 

3. Relate A and P to diameter by relating to Rh· 

R = ~ and R213 = (A)213 

" p h p 

Asn 
AR213 = - = 12 39 ft813 

h p 213 0 

For a pipe flowing full, A= 'll'lY/4 and P = 'll'D, or 

(-rrd/4)5/3 
----::'::---- = 12.39 ft813 

(-rrD)213 

4. Solving for diameter yields D = 3.98 ft = 47.8 in. Use the 
next commercial size larger, which is I D = 48 in. I 

7l'D2 
A = - = 50.3 ft2 (for pipe flowing full) 

4 

5. Verify that velocity of full flow is greater than 2 ft/s. 

Q ( llO ftl/s) r::~ 
V = A = (50.3 ft2) = j2}9ft/s I 

Example 15.8 demonstrates the calculation of necessary slope given all sources of head 
loss and a required discharge. 



I 

EXAMPLE 15.8 

Culvert Design 

Problem Statement 

A S4-in.-diameter culvert laid under a highway embankment 
has a length of 200 ft and a slope of 0.0 1. This was designed to 
pass a SO-year flood flow of22S cfs under full-flow conditions 
(see figure). For these conditions, what head His required? 
When the discharge is only SO cfs, what will be the uniform 
flow depth in the culvert? Assume n = 0.012. 

Define the Situation 

Situation: Culvert has been designed to carry 22S cfs with 
given dimensions. 

Assumptions: Uniform flow, so that pipe head loss h1can be 
related to S0• 

State the Goal 

Find: 

l. The height H required between the two free surfaces when 
flowing full. 

2. The uniform flow depth in the culvert when Q = SO cfs. 

Generate Ideas and \fake a Plan 

I. Usc energy equation between the two end sections, 
accounting for head loss. 

2. Document all sources of head loss. 

3. Find pipe head loss h1using Eq. (1S.17} and the fact that 

hi 
So=-. 

L 

4. Use continuity equation to find V, the uniform flow 
velocity, needed to calculate head loss. 

5. Solve for H. 

6. Solve for depth of flow, for Q = SO cfs. using Eq. (I S. l6) 
and pipe geometry relations for pipe flowing partly full. 

Take Action (Execute the Plan) 

1. Energy equation 

P1 vf Pz Vi "" - + + z1 = - + - + z2 + ~ IJL 
g 2g g 2g 

Let points 1 and 2 be at the upstream and downstream 
water surfaces, respectively. 

Thus, (p1 = p2 = 0 gage and V1 = V2 = 0) 

Also, (z1 - z2 = H) 

Therefore, (H = ~ ht) 

2. Head losses occur at culvert entrance and exit, as well as 
over the length of pipe. 

II = pipe head loss + entrance head loss + exit head loss 

vz 
H = -(K, + K£) + pipe head loss 

2g 

K. = O.SO (from Table 10.5) 

K£ = 1.00 (from Table 10.5) 

3. Pipe head loss is 

Q l.49 213 1/2 = --ARh So 
n 

Q = 22S ft3/s 

7TDz 
A = = IS 90 ft 2 

4 . 

A 7rD2/4 D 
Rh = - = -- = = 1.12S ft 

p TID 4 

R~3 = (l.l2Sft)213 = I.0817fe0 

ht 
So= 

L 

149 ( ht )1/2 
22S = _. - (1S.90 ft2)(1.0817 ft213) -

0.012 200 

hi= 2.22 ft 

4. Continuity equation yields 

5. Solve for H. 

Q 22Sft3/s 
V= - = =14.1Sft/s 

A 1S.90 fr2 

14.1S2 

H = - - (O.SO + 1.0) + 2.22 
64.4 

H = 4.66 ft + 2.22ft = 16.88 ft I 
6. Depth of flow for Q = SO cfs is 

SO = 1.
49 

AR213(0.01 )112 

0.012 h 
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Values of A and Rh will depend on geometry of partly full 
pipe, as shown: 

Area A if angle 0 is given in degrees 

A = [(TI~
2

)C!~.)]- (iJ(sul9cosO) 

Wetted perimeter will be P = TID('TT/180°), so 

R,, = i = ( 7)[ 1 - G~e~;;~.~) J 
Substituting these relations for A and Rh into the discharge 
equation and solving for 6 yields e = 70°. Therefore, y is 

D D (54in) 1.: ~ y = 2- 2cosO = -
2

- (1- 0.342) = L 1 7.8i~ 

15.4 Steady Nonuniform Flow 

As stated in the beginning of this chapter, and shown in Fig. 15.2, all open-channel flows are clas­
sified as either uniform or nonuniform. Recall that uniform flow has constant velocity along a 
streamline and thus has constant depth for a constant cross section. In steady nonuniform flow, 
the depth and velocity change over distance (but not with time). for all such cases, the energy 
equation as generally introduced in Section 15.2 is invoked to compare two cross sections. How­
ever, for analysis of nonuniform flow, it is useful to distinguish whether the depth and velocity 
change occurs over a short distance, referred to as rapidlv varied flo\\, or over a long reach of 
the channel, referred to as graduall} varied flow (Fig. 15.7). The head loss term is different for 
these two cases. For rapidly varied flow, one can neglect the resistance of the channel walls and 
bottom because it occurs over a short distance. For gradually varied flow, because of the long 
distances involved, the surface resistance is a significant variable in the energy balance. 

15.5 Rapidly Varied Flow 

Rapidly varied flow is analyzed with the energy equation presented previously for open ­
channel flow, Eq. (15.7), with the additional assumptions that the channel bottom is horizontal 
(50 = 0) and the head loss is zero (hL = 0). Therefore, Eq. ( 15.7) becomes 

Vi v~ 
Y1 +- = Yz + -

2g 2g 

Specific Energy 

The sum of the deplh of flow and the velocity head is defined as the specific energy: 

v2 
E = y + -

2g 

(15.17) 

(15.18) 

Note that specific energy has dimensions [L]; that is, it is an energy head. Equation (15.17) 
states that the specific energy at section 1 is equal to the specific energy at section 2, or £ 1 = E2• 

The continuity equation between sections 1 and 2 is 

(15.19) 

FIGURE 15.7 

Classifying nonuniform 
flow. 
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FIGURE 15.8 

Relation between depth 
and specific energy. 

FIGURE 15.9 

..J 

Altemate depths 

-E 

Therefore, Eq. ( 15.17) can be expressed as 

Q2 Q2 

YI + 2gAf = Y2 + 2gAi (15.20} 

Because A1 and A2 are functions of the depths y1 and y2, respectively, the magnitude of the 
specific energy at section 1 or 2 is solely a function of the depth at each section. If, for a given 
channel and given discharge, one plots depth versus specific energy, a relationship such as that 
shown in Fig. 15.8 is obtained. By studying Fig. 15.8 for a given value of specific energy, one 
can see that the depth may be either large or small. This means that for the small depth, the 
bulk of the energy of flow is in the form of kinetic energy-that is, Q2!(2gA2

) ~ y-whereas for 
a larger depth, most of the energy is in the form of potential energy. Flow under a sluice gate 
(Fig. 15.9) is an example of flow in which two depths occur for a given value of specific energy. 
The large depth and low kinetic energy occur upstream of the gate; the low depth and large 
kinetic energy occur downstream. The depths as used here are called alternate depths. That is, 
for a given value of E, the large depth is alternate to the low depth, or vice versa. Returning to 
the flow under the sluice gate, one finds that if the same rate of flow is maintained, but the gate 
is set with a larger opening, as in Fig. 15.9b, the upstream depth will drop, and the downstream 
depth will rise. This results in different alternate depths and a smaller value of specific energy 
than before. This is consistent with the diagram in Fig. 15.8. 

Flow under a sluice gate. (a) Smaller gate opening. (b) Larger gate opening. 

-'ii'----- - ------

Subcritical flow -

(a) 

EGL 
_/. 

EGL _____ \_ ________ _ 
\1 

Subcritical flow -
(b) 

Supercritical flow 
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Finally, it can be seen in Fig. 15.8 that a point will be reached where the specific energy is 
minimum and only a single depth occurs. At this point, the flow is termed critical. Thus one 
definition of critical flow is the flow that occurs when the specific energy is minimum for a 
given discharge. The flow for which the depth is less than critical (velocity is greater than 
critical) is termed supercritical flow, and the flow for which the depth is greater than critical 
(velocity is less than critical) is termed subcritical flow. Therefore, subcritical flow occurs 
upstream and supercritical flow occurs downstream of the sluice gate in Fig. 15.9. Subcritical 
flows corresponds to a Froude number less than one (Fr < 1 ), and supercritical flow corre­
sponds to (Fr > 1). Some engineers refer to subcritical and supercritical flow as tranquil and 
rapid flow, respectively. Other aspects of critical flow are shown in the next section. 

Characteristics of Critical Flow 

Critical flow occurs when the specific energy is minimum for a given discharge. The depth 
for this condition may be determined by solving for dE!dy from E = y + Q212gA2 and setting 
dE/dy equal to zero: 

dE Q2 dA 
-= 1 - -· -
dy gA3 dy 

(15.21) 

However, dA = T dy, where T is the width of the channel at the water surface, as shown in 
Fig. 15.10. Then Eq. (15.21), with dE/dy = 0, will reduce to 

or 

If the hydraulic depth, D. is defined as 

Q2Tc 
-- = 1 
gA: 

A 
D =­

T 

then Eq. (15.23) will yield a critical hydraulic depth D<> given by 

Q2 y 2 
D =- = -

c gA; g 

Dividing Eq. (15.25) by Dr and taking the square root yields 

v 
1=--

ViDc 

(15.22) 

(15.23) 

(15.24) 

(15.25) 

(15.26) 

Note: VI ViDe is the Froude number. Therefore, it has been shown that the Froude number is 
equal to unity when critical flow prevails. 

FIGURE 15.1 0 

Open-channel relolions. 
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EXAMPLE 15.9 

If a channel is of rectangular cross section, then AIT is the actual depth, and Q2
/ A 2 = q2/f , 

so the condition for critical depth (Eq. 15.23) for a rectangular channel becomes 

= (q2)1/3 
y, g (15.27) 

where q is the discharge per unit width of channel. 

Generate Ideas and Make a Plan 

Calculating Critical Depth in a Channel 1. For critical flow, Eq. (15.22) must apply. 

Problem Statement 
2. Relate this channel geometry to width T and area A in 

Eq. (15.22). 
Determine the critical depth in this trapezoidal channel for a 
discharge of 500 cfs. The width of the channel bottom is 

3. By iteration (choosey and compute A3!T), find y that 
will yield A3/T equal to 7764 tr. This y will be critical 
depthy,. B = 20ft, and the sides slope upward at an angle of 45°. 

Take Action (Execute the Plan) 

1. Apply Eq. (15.22) or Eq. (15.23). 

Q2T, Qz A~ 
--=lor-=-
gA~ g T, 

I-- 8 = 20 ft -----...J 2. For Q = 500 cfs, 

Define the Situation 

A~ 5002 

-= -= 7764ff 
T, 32.2 

Water flows in a trapezoidal channel with known geometry. For this channel, A = y(B + y) and T = B + 2y. 
3. Iterate to find Yc-

State the Goal 

Calculate the critical depth. 
Yc = 12.57 ft I 

Critical flow may also be examined in terms of how the discharge in a channel varies with 
depth for a given specific energy. For example, consider flow in a rectangular channel where 

Q2 
E=y+--

2gA2 

or 

E= +~ 
y 2g/B2 

If one considers a unit width of the channel and lets q = Q/B, then the foregoing equation 
becomes 

q2 
E=y+-

2gl 

If one determines how q varies with y for a constant value of specific energy, one sees that 
critical flow occurs when the discharge is maximum (see Fig. 15.11 ). 
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E - constant 

Originally, the term critical flow probably related to the unstable character of the flow for 
this condition. Referring to Fig. 15.8, one can see that only a slight change in specmc energy will 
cause the depth to increase or decrease a significant amount; this is a very unstable condition. In 
fact, observations of critical flow in open channels show that the water surface consists of a series 
of standing waves. Because of the unstable nature of the depth in critical flow, designing canals so 
that normal depth is either well above or well below critical depth is usually best. The flow in canals 
and rivers is usually subcritical; however, the flow in steep chutes or over spillways is supercritical. 

In this section, various characteristics of critical flow have been explored. The main ones 
can be summarized as follows: 

1. Critical flow occurs when specific energy is minimum for a given discharge (Fig. 15.8). 

2. Critical flow occurs when the discharge is maximum for a given specific energy. 

3. Critical flow occurs when 

4. Critical flow occurs when Fr = 1. Subcritical flow occurs when Fr < l. Supercritical flow 
occurs when Fr > 1. 

5. For rectangular channels, critical depth is given as Yc = (q2/g) 113
• 

Common Occurrence of Critical Flow 

Critical flow occurs when a liquid passes over a broad-crested weir (Fig. 15.12). The principle of 
the broad-crested weir is illustrated by first considering a closed sluice gate that prevents water 
from being discharged from the reservoir, as shown in Fig. 15.12a. If the gate is opened a small 
amount (gate position a' -a'), the flow upstream of the gate will be subcritical, and the flow down­
stream will be supercritical (as in the condition shown in Fig.l5.9). As the gate is opened further, 
a point is finally reached where the depths immediately upstream and downstream of the gate are 
the same. This is the critical condition. At this gate opening and beyond, the gate has no influence 
on the flow; this is the condition shown in Fig. 15.12b, the broad-crested weir. If the depth of flow 
over the weir is measured, the rate of flow can easily be computed from Eq. (15.27): 

q =~ 
or 

Q=LViY: (15.28) 

where L is the length of the weir crest normal to the flow direction. 

FIGURE 1 5.11 

Variation of q and y with 
constant specific energy. 
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FIGURE 1 5.12 

Flow over a brood­
crested weir. 
(a) Depth of flow controlled 
by sluice gate. 
(b) Depth of flow is 
controlled by weir, 
and is y,. 

u' 

(a) 

Wa1er ;urface w1th 
panly open gale -J;)-----

-
EGL 

_____ \_ __ 
H 

(b) 

Weir crest 

crested 
weir 

Because y,/2 = (V;I2g), from Eq. (15.25), it can be shown that y, = (2/3£), where E is the 
total head above the crest (H + V~pproachl2g); hence Eq. (15.28) can be rewritten as 

(
2)3/2 

Q = L Vg 3 E 3t2 

or 

Q = 0.385L yzg£~12 (15.29) 

For high weirs, the upstream velocity of approach is almost zero. Hence Eq. (15.29) can be 
expressed as 

O rheor = 0.385L V2g H 312 (15.30) 

If the height P of the broad-crested weir is relatively small, then the velocity of approach may be 
significant, and the discharge produced will be greater than that given by Eq. ( 15.30). Also, head 
loss will have some effect. To account for these effects, a discharge coefficient C is defined as 

C = Q / Qtheor (15.31) 

Then 

Q = 0.385CL v'2gH312 (15.32) 

where Q is the actual discharge over the weir. An analysis of experimental data by Raju (15) 
shows that Cvaries with H/(H + P) as shown in Fig. 15.13. The curve in Fig.15.13 is for a weir 
with a vertical upstream face and a sharp corner at the intersection of the upstream face and 
the weir crest. If the upstream face is sloping at a 45° angle, the discharge coefficient should be 
increased 10% over that given in Fig. l5.13. Rounding of the upstream corner will also produce 
a coefficient of discharge as much as 3% greater. 

Equation (15.32) reveals a definite relationship for Q as a function of the head, H. 
This type of discharge-measuring device is in the broad class of discharge meters called 

FIGURE 15.13 1.05 

Discharge coefficient for 
a brood-crested weir for 1.00 

0.1 <H/L<O.B. 
c 0.95 

0.90 

0.85 
0 

/ 

--vv 
0.2 0.4 

H 
H+P 

0.6 

I 

I 

0.8 1.0 
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critical-flow flumes. Another very common critical-flow flume is the venturi flume, which 
was developed and calibrated by Parshall (8). Figure 15.14 shows the essential features of the 
venturi flume. The discharge equation for the venturi flume is in the same form as Eq. (15.32), 
the only difference being that the experimentally determined coefficient C will have a different 
value from the C for the broad-crested weir. For more details on the venturi flume, you may 
refer to Roberson et al. (9), Parshall (8), and Chow (5). The venturi flume is especially useful 
for discharge measurement in irrigation systems because little head loss is required for its use, 
and sediment is easily flushed through if the water happens to be silty. 

I 
Channel wtdth 

[_ -
Cre't Throat section 

(b) Pronle 

The depth also passes through a critical stage in channel flow where the slope changes from 
a mild one to a steep one. A mild slope is defined as a slope for which the normal depth y, is 
greater than Yc Likewise, a steep slope is one for which Yn < y,. This condition is shown in 
Fig. 15.15. Note that Yc is the same for both slopes in the figure because y, is a function of the 
discharge only. However, normal depth (uniform-flow depth) for the mild upstream channel is 
greater than critical, whereas the normal depth for the steep downstream channel is less than 
critical; hence it is obvious that the depth must pass through a critical stage. Experiments show 
that critical depth occurs a very short distance upstream of the intersection of the two channels. 

Another place where critical depth occurs is upstream of a free overfall at the end of a chan­
nel with a mild slope Fig. 15.16. Critical depth will occur at a distance of 3y, to 4yc upstream of 

EGL _\r _ __ ___________________ _ 

--------h---r----------- --
Yr 

~>·~+_, _------~--~->~~~,~ 
~-- 3or4yr ------1 

FIGURE 1 5.14 

Flow through a venturi 
flume. 

FIGURE 1 5.1 5 

Critical depth al a break 
in grade. 

FIGURE 1 5. 16 

Critical depth at a free 
overfoll. 
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FIGURE 1 5.1 7 

Change in depth with 
change in bottom elevation 
of a rectangular channel. 

the brink. Such occurrences of critical depth (at a break in grade or at a brink) are useful in 
computing surface profiles because they provide a point for starting surface-profile calculations.* 

Channel Transitions 

Whenever a channel's cross-sectional configuration (shape or dimension) changes along its 
length, the change is termed a transition. Concepts previously presented are used to show how 
the flow depth changes when the floor of a rectangular channel is increased in elevation or 
when the width of the channel is decreased. In these developments negligible energy losses are 
assumed. First, the case where the floor of the channel is raised (an upstep) is considered. Later 
in this section, configurations of transitions used for subcritical flow from a rectangular to a 
trapezoidal channel are presented. 

Consider the rectangular channel shown in Fig. 15.17, where the floor rises an amount d z. 
To help in evaluating depth changes, one can use a diagram of specific energy versus depth, 
which is similar to Fig. 15.8. This diagram is applied both at the section upstream of the transition 
and at the section just downstream of the transition. Because the discharge, Q, is the same at both 
sections, the same diagram is valid at both sections. As noted in Fig. 15.17, the depth of flow at 
section 1 can be either large (subcritical) or small (supercritical) if the specific energy E1 is greater 
than that required for critical flow. It can also be seen in Fig. 15.17 that when the upstream flow 
is subcritical, a decrease in depth occurs in the region of the elevated channel bottom. This occurs 
because the specific energy at this section, E2, is less than that at section I by the amount dz. 
Therefore, the specific-energy diagran1 indicates that y2 will be less than Yt- ln a similar manner 
it can be seen that when the upstream flow is supercritical, the depth as well as the actual water­
surface elevation increases from section I to section 2. A further note should be made about the 
effect on flow depth of a change in bottom-surface elevation.lf the channel bottom at section 2 is 
at an elevation greater than that just sufficient to establish critical flow at section 2, then there is 
not enough head at section 1 to cause flow to occur over the rise under steady-flow conditions. 
Instead, the water level upstream will rise until it is just sufficient to reestablish steady flow. 

(j) 

y 1 (subcritical) y2 (sutx:ntical) -

When the channel bottom is kept at the same elevation but the channel is decreased in 
width, then the discharge per unit of width between sections 1 and 2 increases, but the specific 
energy E remains constant. Thus when utilizing the diagram of q versus depth for the given 
specific energy E, one notes that the depth in the restricted section increases if the upstream 
flow is supercritical and decreases if it is subcritical (see Fig. 15.18). 

*The procedure for making these computations start~ on p. 588 (water-surface profiles). 
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- -
Plan view 

Water 
Water surt\tce for subcritical flow surtacc for 

I-'II-I 1--- ql ------1 
F.lcvation Vle\!o 

The foregoing paragraphs describe gross effects for the simplest transitions. In practice, it 
is more common to find transitions between a channel of one shape (rectangular cross section, 
for example) and a channel having a different cross section (trapezoidal, for example). A very 
simple transition between two such channels consists of two straight vertical walls joining the 
two channels, as shown by half section in Fig. 15.19. 

This type of transition can work, but it will produce excessive head loss because of the abrupt 
change in cross section and the ensuing separation that will occur. To reduce the head losses, a 
more gradual type of transition is used. Figure 15.20 is a half section of a transition similar to that 
of Fig. 15.19, but with the angle e much greater lhan 90°. This is called a wedge transition. 

The warped-wall transition shown in Fig. 15.21 will yield even smoother flow than 
either of the other two, and it will thus have less head loss. In the practical design and analysis 
of transitions, engineers usually use the complete energy equation, including the kinetic 
energy factors a 1 and o: 2 as well as a head loss term hv to define velocity and water-surface 

Rectangular channel Transttion "all TrapetottLll channel 

FIGURE 1 5.18 

Change rn depth with 
change in channel width. 

FIGURE 1 5.19 

Simplest rype of transition 
between a rectangular 
channel and a trapezoidal 
channel. 

FIGURE 1 5.20 

Half section of a wedge 
transi tion. 

FIGURE 15.21 

Half section of a warped­
wall transition. 
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FIGURE 15.22 

Sol itary wove 
(exaggerated vertical 
scale). 
(a) Unsteady flow. 
ib) Steady flow. 

elevation through the transition. Analyses of transitions utilizing the one-dimensional form 
of the energy equation are applicable only if the flow is subcritical. If the flow is supercritical, 
then a much more involved analysis is required. For more details on the design and analysis of 
transitions, you are referred to Hinds (10), Chow (5), U.S. Bureau of Reclamation (1 1), and 
Rouse (12). 

Wave Celerity 

Wave celerity is the velocity at which an infinitesimally small wave travels relative to the veloc­
ity of the fluid. It can be used to characterize the velocity of waves in the ocean or propagation 
of a flood wave following a dam failure. A derivation of wave celerity, c, follows. 

Consider a small solitary wave moving with velocity c in a calm body of liquid of 
small depth (Fig. l5.22a). Because the velocity in the liquid changes with time, this is a 
condition of unsteady flow. However, if one referred all velocities to a reference frame 
moving with the wave, the shape of the wave would be fixed, and the flow would be steady. 
Then the flow is amenable to analysis with the Bernoulli equation. The steady-Oow condi­
tion is shown in Fig. 15.22b. When the Bernoulli equation is written between a point on 
the surface of the undisturbed fluid and a point at the wave crest, the following equation 
results: 

c2 v2 
(15.33) -+ y= + y + ~y 

2g 2g 

c -

\1 
-

)' 

(a) 

\1 \1 
- -

v -(' ...,£.. ....--

(b) 

In Eq. (15.33), Vis the velocity of the liquid in the section where the crest of the wave is 
located. From the continuity equation, cy = V(y + lly). Hence 

cy 
V =---

y + ily 

and 

(15.34) 
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When Eq. (15.34} is substituted into Eq. (15.33), it yields 

c2 c2y2 

2g + y = 2g[y2 + 2y~y + (~y) 2 ] + y + fly 
(15.35) 

Solving Eq. (15.35) for c after discarding terms with (!:iy)2
, assuming an infinitesimally small 

wave, yields the \\ave celerity equation 

c = ViY (15.36) 

It has thus been shown that the speed of a small solitary wave is equal to the square root of the 
product of the depth and g. 

15.6 Hydraulic Jump 

Occurrence of the Hydraulic Jump 

An interesting and important case of rapidly varied flow is the hydraulic jump. A hydraulic 
jump occurs when the flow is supercritical in an upstream section of a channel and is then 
forced to become subcritical in a downstream section (the change in depth can be forced by 
a sill in the downstream part of the channel or just by the prevailing depth in the stream 
further downstream}, resulting in an abrupt increase in depth, and considerable energy loss. 
Hydraulic jumps (Fig. 15.23) are often considered in the design of open channels and spill­
ways of dams. If a channel is designed to carry water at supercritical velocities, the designer 
must be certain that the flow will not become subcritical prematurely. If it did, overtopping 
of the channel walls would undoubtedly occur, with consequent failure of the structure. 
Because the energy loss in the hydraulic jump is initially not known, the energy equation is 
not a suitable tool for analysis of the velocity-depth relationships. Because there is a signifi· 
cant difference in hydrostatic head on both sides of the equation causing opposing pressure 
forces, the momentum equation can be applied to the problem, as developed in the following 
sections. 

EGL -------r------ r 
I .................. ...... ..... ....... h,. v22 

v2 -- I / 2g 
~ ----~-~---
2g ""'l!F" 

Derivation of Depth Relationships in Hydraulic Jumps 

Consider flow as shown in Fig. 15.23. Here it is assumed that uniform flow occurs both 
upstream and downstream of the jump and that the resistance of the channel bottom over the 
relatively short distance L is negligible. The derivation is for a horizontal channel, but 
experiments show that the results of the derivation will apply to all channels of moderate slope 

. . . .. 

FIGURE 15.23 

Definition sketch for 
the hydraulic jump. 
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FIGURE 1 5.24 

Control-volume analysis 
for the hydraulic jump. 

EXAMPLE 15.10 

Hydrostauc 
pressure at 
section (!) 

Control surface 

~------------~---------, 
I V I 
I ~ 
I 
I 
I 
I 
I 
I 

I 
v. 
-~---------------------' 

Hydrostatic 
pressure at 
section Q) 

(50 < 0.02). The derivation is started by applying the momentum equation in the x-direction 
to the control volume shown in Fig. 15.24: 

or 

2:Fx = m2V2 - m1V1 

The forces are the hydrostatic forces on each end of the system; thus the following is obtained: 

p,A, - P2A2 = pY2A2 V2 - pV,A, v, 

(15.37) 

In Eq. (15.37), p1 and p2 are the pressures at the centroids of the respective areas A1 and A2• 

A representative problem (e.g., Example 15.10) is to determine the downstream depth y2 

given the discharge and upstream depth. The left-hand side of Eq. (15.37) would be known 
because V. A, and pare all functions of y and Q, and the right-hand side is a function of y2; 

therefore,y2 can be determined. 

State the Goal 

Calculating Downstream Depth for a Hydraulic Jump 1. Downstream depth and velocity 

Problem Statement 

Water flows in a trapewidal channel at a rate of 300 cfs. The 
channel has a bottom width of I 0 ft and side slopes of I vertical 
to 1 horizontal. If a hydraulic jump is forced to occur where the 
upstream depth is 1.0 ft, what will be the downstream depth 
and velocity? What are the values of Fr1 and Fr2? 

Define the Situation 

A hydraulic jump is forced in a trapezoidal channel. 

Properties: Water (50°F), Table A.S: 

'Y = 62.4lbf/ff, and p = 1.94 slugs/If. 

2. Values of Fr1 and Fr2 

Generate Ideas and Make a Plan 

1. Find cross section, velocity, and hydraulic depth in the 
upstream section. 

2. Find pressure in the upstream section to use for left-hand 
side ofEq. (15.37). 

3. Use channel geometry information to solve for y2 in 
right-hand side of Eq. (15.37). 

4. Use Eq. (15.2) to solve for the Froude number at both 
sections. 

Take Action (Fxecute the Plan) 

1. By inspection, for the upstream section, the cross-sectional 
flow area is 11 ft2

• 

Therefore, the mean velocity is Vt = QIA 1 = 27.3 ft/s. 

The hydraulic depth is D1 = A / T1 = 11 ftl/12 ft = 0.9167 ft. 



2. The location of the centroid (ji) of the area A 1 can be 
obtained by taking moments of the subareas about the 
water surface (see example sketch). 

A 1y1 = A1A X 0.333 ft + A 18 X 0.500 ft + A1c X 0.333 ft 

(11 fe)y1 = (0.333 ft)(0.500 ft 2 X 2) + (0.50 ft)(lO.OO ft2
) 

y = 0.485 ft 

Pressure p1 = 62.4lbf/ft3 X 0.485 ft = 30.26lbf/[t2. 
Therefore, 

30.26 X 11 + 1.94 X 300 X 27.3 = p2A2 + pQV2 

3. Using right-hand side of Eq. ( 15.37), solve for h 

p2A2 + pQV2 = 16,221 Ibf 

pQZ 
'Y)izA2 + - = 16,221 

Az 

_ 2: A;y; B~/2 + y~/3 
Yz=-- = 

Az Az 
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Using B = 10ft, Q = 300 ft 2/s, and material properties 
assumed earlier, 

Yz = 15.75 ft I 
4. Froude numbers at both sections are 

V1 27.3 ft /s ~ 
Fr1 = -- = = L5jgj 

Vgi5; V32.2 ft/s2 x 0.9167 ft 

Q 300 
Vz = Az = 57.5 + 5.75z = 3.31 ft/s 

Az 90.56 
D2 = - = -- = 4.21 ft 

T2 21.5 

v 3.31 J Fr2 = - - = = 0.284 Vif5 V32.2 X 4.21 

If one writes Eq. ( 15.3 7) for a unit width of a rectangular channel where p1 = -yy1 I 2, p2 = -yy2/2, 
Q = q,AI = Yt• and A2 = yz, this will yield 

yt y~ 
'Y - + pqV1 = -y - + pqV2 (15.38a) 

2 2 

but q = Vy, so Eq. (15.38a) can be rewritten as 

The preceding equation can be further manipulated to yield 

2Vf = (Yz)
2 
+ Yz 

KYt Yt Yt 

(15.38b) 

(15.39) 

The term on the left-hand side ofEq. (15.39) will be recognized as twice Frf. Hence Eq. (15.39) 
is written as 

( Yz)z + Yz - 2Frf = 0 
Yt Yt 

(15.40) 

By use of the quadratic formula, it is easy to solve for y2/y1 in terms of the upstream Froude 
number. This yields an equation for depth ratio across a hydraulic jump: 

Y2 1 y 
- = -( 1 + 8Fd - 1) 
Yt 2 

(15.41) 

or 

Y2 = ~1 CV 1 + 8Fd - 1) (15.42) 
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EXAMPLE 15.11 

The other solution of Eq. (15.40) gives a negative downstream depth, which is not physi­
cally possible. Hence the downstream depth is expressed in terms of the upstream depth 
and the upstream Froude number. In Eqs. (15.41) and (15.42), the depths y1 and y2 are said 
to be conjugate or sequent (both terms are in common use) to each other, in contrast to 
the alternate depths obtained from the energy equation. Numerous experiments show that 
the relation represented by Eqs. (15.41) and (15.42) is valid over a wide range of Froude 
numbers. 

Although no theory has been developed to predict the length of a hydraulic jump, experi­
ments [see Chow (5)] show that the relative length of the jump, Lly2, is approximately 6 for Fr1 

ranging from 4 to 18. 

Head Loss in a Hydraulic Jump 
In addition to determining the geometric characteristics of the hydraulic jump, it is often desir­
able to determine the head loss produced by it. This is obtained by comparing the specific en­
ergy before the jump to that after the jump, the head loss being the difference between the two 
specific energies. It can be shown that the head loss for a jump in a rectangular channel is 

(15.43) 

For more information on the hydraulic jump, see Chow (5). The following example shows that 
Eq. (15.43) yields a magnitude that equals the difference between the specific energies at the 
two ends of the hydraulic jump. 

Generate Ideas and Make a Plan 

Calculating Head Loss in a Hydraulic Jump 1. To calculate hL using Eq. (15.43), one calculates y2 from the 
depth ratio equation (Eq. 15.42). This requires Fr1• 

Problem Statement 

Water flows in a rectangular channel at a depth of 30 em with 
a velocity of 16 m/ s, as shown in the sketch that follows. If a 
downstream sill (not shown) forces a hydraulic jump, what 
will be the depth and velocity downstream of the jump? What 
head loss is produced by the jump? 

30 em v- 16 m/s 

Define the Situation 

A hydraulic jump is occurring in a rectangular 
channel. 

Stale the Goal 

• Calculate downstream depth and velocity. 

• Calculate head loss produced by the jump. 

-

2. Check validity of head loss by comparing to £1 - £2. 

fake Action (Execute the Plan) 

1. Calculate Fr 1, y2, V2, and hL from Eqs. (Eq. 15.42) 
and {15.43). 

v 16 
Fr1 = -- = = 9.33 

v'gy;" \19.81 (o.3o) 

y2 = o.:o [\h + 8(9.33)2 - I) = b .8lii] 

Vz = !!... = (16 m/ s}(0.30 m} = [1.26 m / s I 
y2 3.81 m 

(3.81 - 0.30}3 

hL = 4(0.30)(3.81) = 1
9.46 m I 

2. Compare the head loss to £ 1 - £2. 

hL = (o.3o + 
162 

) - (3.81 + 1.
262 

) = 9.46 m 
2 X 9.81 2 X 9.81 

The value is the same, so [Validity of hL equation is verifi-ed] 
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Use of Hydraulic Jump on Downstream End of Dam Spillway 
Previously it was shown that the transition from supercritical to subcritica] flow produces a 
hydraulic jump, and that the relative height of the jump (y2/y1) is a function of Fr1• Because 
flow over the spillway of a dam invariably results in supercritical flow at the lower end of the 
spillway, and because flow in the channel downstream of a spillway is usually subcritical, it is 
obvious that a hydraulic jump must form near the base of the spillway (see Fig. 15.25). The 
downstream portion of the spillway, called the spillway apron, must be designed so that the 
hydraulic jump always forms on the concrete structure itself. If the hydraulic jump were 
allowed to form beyond the concrete structure, as in Fig. 15.26, severe erosion of the founda­
tion material as a result of the high-velocity supercritical flow could undermine the dam and 
cause its complete failure. One way to solve this problem might be to incorporate a long, slop­
ing apron into the design of the spillway, as shown in Fig. 15.27. A design like this would work 

l'oss.blc undennmmg ol 
dam due to severe erosion 

111 thts region 

-

FIGURE 15.25 

Spillway of dam and 
hydraulic jump. 

FIGURE 1 5.26 

Hydraulic jump occurring 
downstream of spillway 
apron. 

FIGURE 1 5.27 

Long sloping apron. 
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FIGURE 1 5.28 

Spillway with sti lling basin 
Type Ill as recommended 
by the USBR ( 13) 

very satisfactorily from the hydraulics point of view. For all combinations of Fr1 and water­
surface elevation in the downstream channel, the jump would always form on the sloping 
apron. However, its main drawback is cost of construction. Construction costs will be reduced 
as the length, L, of the stilling basin is reduced. Much research has been devoted to the design 
of stilling basins that will operate properly for all upstream and downstream conditions and 
yet be relatively short to reduce construction cost. Research by the U.S. Bureau of Reclamation 
(13) has resulted in sets of standard designs that can be used. These designs include sills, baffle 
piers, and chute blocks, as shown in Fig. 15.28. 

Nah.Jrally Occurring Hydraulic Jumps 
Hydraulic jumps can occur naturally in creeks and rivers, providing spectacular standing 
waves, called rollers. Kayakers and white-water rafters must exercise considerable skill when 
navigating hydraulic jumps because the significant energy loss that occurs over a short dis­
tance can be dangerous, potentially engulfing the boat in turbulence. A special case of hydraulic 
jump, referred to as a submerged hydraulic jump, can be deadly to white-water enthusiasts 
because it is not easy to see. A submerged hydraulic jump occurs when the downstream depth 
predicted by conservation of momentum is exceeded by the tailwater elevation, and the jump 
cannot move upstream in response to this disequilibrium because of a buried obstacle [see 
Valle and Pasternak ( 14)]. Thus, the visual markers of a hydraulic jump, particularly the rolling 
waves depicted in Figs. 15.23 and 15.24, are hidden. 

A surge, or tidal bore, is a moving hydraulic jump that may occur for a high tide entering a 
bay or river mouth. Tides are generally low enough that the waves they produce are smooth and 
nondestructive. However, in some parts of the world the tides are so high that their entry into shal­
low bays or mouths of rivers causes a surge to form. Surges may be very hazardous to small boats. 
The same analytical methods used for the jump can be used to solve for the speed of the surge. 

15.7 Gradually Varied Flow 

For gradually varied flow, channel resistance is a significant factor in the flow process. TI1ere­
fore, the energy equation is invoked by comparing S0 and s,. 

Basic Differential Equation for Gradually Varied Flow 

There are a number of cases of open-channel flow in which the change in water-surface profile 
is so gradual that it is possible to integrate the relevant differential equation from one section 
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to another to obtain the desired change in depth. This may be either an analytical integration 
or, more commonly, a numerical integration. in Section 15.2, the energy equation was written 
between two sections of a channel !lx distance apart. Because the only head loss here is the 
channel resistance, the h1 is given by tlhf, and Eq. (15.7) becomes 

Vy Vi 
Y1 + - + So !lx = Y2 + - + tlhf {15.44) 

2g 2g 

The friction slope Sf is defined as the slope of the EGL, or tlhf ! tlx. Thus tlh1 = Sftlx, and 
defining fly = y2 - y1, then 

(15.45) 

Therefore, Eq. (15.44) becomes 

Dividing through by tlx and taking the limit as !lx approaches zero gives us 

dy + !!_(V2

) - S - S (15.46) 
dx dx 2g - 0 1 

The second term is rewritten as [d( V2/2g)!dy] dy!dx, so that Eq. (15.46) simplifies to 

dy S0 - Sf 

dx l + d(V212g) l dy 
115

·
471 

To put Eq. (15.47) in a more usable form, the denominator is expressed in terms of the froude 
number. This is accomplished by observing that 

After differentiating the right side of Eq. ( 15.48), the equation becomes 

!!_(V2
) _ -2Q2 

dy 2g - 2gA 3 

d.A 

dy 

But dA!dy = T (top width), and A/ T = D (hydraulic depth); therefore, 

d (v2) - Q2 
dy 2g = gA2D 

or 

~(~;) = -Fr2 

Hence, when the expression for d(V2/2g) ldy is substituted into Eq. (15.47), the result is 

dy So - sf 
dx 1 - Fr2 

(15.48) 

(15.49) 

This is the general differential equation for gradually varied flow. It is used to describe the 
various types of water-surface profiles that occur in open channels. Note that, in the derivation 

583 
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of the equation, S0 and s1 were taken as positive when the channel and energy grade lines, 
respectively, were sloping downward in the direction of flow. Also note that y is measured from 
the bottom of the channel. Therefore, dy!dx = 0 if the slope of the water surface is equal to the 
slope of the channel bottom, and dy!dx is positive if the slope of the water surface is less than 
the channel slope. 

Introduction to Water-Surface Profiles 

Tn the design of projects involving the flow in channels (rivers or irrigation canals, for example), 
the engineer must often estimate the water-surface profile (elevation of the water surface 
along the channel) for a given discharge. For example, when a dam is being designed for a river 
project, the water-surface profile in the river upstream must be defined so that the project 
planners will know how much land to acquire to accommodate the upstream pool. The first 
step in defining a water-surface profile is to locate a point or points along the channel where 
the depth can be computed for a given discharge. For example, at a change in slope from mild 
to steep, critical depth will occur just upstream of the break in grade (see Fig. 15.32). At that 
point one can solve for y, with Eq. (15.25) or (15.27). Also, for flow over the spillway of a dam, 
there will be a discharge equation for the spillway from which one can calculate the water­
surface elevation in the reservoir at the face of the dam. Such points where there is a unique 
relationship between discharge and water-surface elevation are called controls. Once the 
water-surface elevations at these controls are determined, then the water-surface profile can 
be extended upstream or downstream from the control points to define the water-surface pro­
file for the entire channel. The completion of the profile is done by numerical integration. 
However, before this integration is performed, it is usually helpful for the engineer to sketch in 
the profiles. To assist in the process of sketching the possible profiles, the engineer can refer to 
different categories of profiles (water-surface profiles have unique characteristics depending 
on the relationship between normal depth, critical depth, and the actual depth of flow in the 
channel). This initial sketching of the profiles helps the engineer to scope the problem and to 
obtain a solution, or solutions, in a minimum amount of time. 'lhe next section describes the 
various types of water-surface profiles. 

Types of Water-Surface Profiles 

There are 12 different types of water-surface profiles for gradually varied How in channels, and 
these are shown schematically in fig. 15.29. Each profile is identified by a letter and number 
designator. For example, the first water-surface profile in Fig. 15.29 is identified as an M1 pro­
file. The letter indicates the type of slope of the channel-that is, whether the slope is mild (M), 
critical (C), steep (S), horizontal (H), or adverse (A). The slope is defined as mild if the uniform 
flow depth,y11, is greater than the critical flow depth,y,. Conversely, if Yn is less than Yo the chan­
nel would be termed steep. Or if Yn = y,, this would be a channel with critical slope. The desig­
nation M, S, or C is determined by computing y, andy, for the given channel for a given dis­
charge. Equations (15.11) through (15.15) are used to compute y,, and Eq. (15.27) is used to 
compute y,. Figure 15.30 shows the relationship between J11 andy, for the H, M, S, C, and A 
designations. As the name implies, a horizontal slope is one where the channel actually has a 
zero slope, and an adverse slope is one where the slope of the channel is upward in the direc­
tion of flow. Normal depth does not exist for these two cases (for example, water cannot flow at 
uniform depth in either a horizontal channel or one with adverse slope); therefore, they are 
given the special designations H and A, respectively. 
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FIGURE 1 5.29 

Classification of water-surface profiles of gradually varied flow. 
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The number designator for the type of profile relates to the position of the actual water 
surface in relation to the position of the water surface for uniform and critical flow in the 
channel. If the actual water surface is above that for uniform and critical flow (y > Yni y > yc), 
then that condition is given a 1 designation; if the actual water surface is between those for 
uniform and critical flow, then it is given a 2 designation; and if the actual water surface lies 

FIGURE 1 5.30 

Letter designators as a function of the relationship between Yn and Yc· 
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FIGURE 15.31 

Number designator as a 
function of the location of 
the actual water surface in 
relation to Yn and y,. 

surface 
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below those for uniform and critical flow, then it is given a 3 designation. Figure 15.31 depicts 
these conditions for mild and steep slopes. 

Figure 15.32 shows how different water-surface profiles can develop in certain field situa­
tions. More specifically, if one considers in detail the flow downstream of the sluice gate 
(see Fig. 15.33), one can see that the discharge and slope are such that the normal depth is 
greater than the critical depth; therefore the slope is termed mild. The actual depth of flow 
shown in Fig. 15.33 is Jess than both y, and Yn- Hence a type 3 water-surface profile exists. The 
complete classification of the profile in Fig. 15.33, therefore, is a mild type 3 profile, or simply 
an M3 profile. Using these designations, one would categorize the profile upstream of the 
sluice gate as type Ml. 

FIGURE 15.32 

Water-surface profiles associated with flow behind a dam, flow 
under a sluice gate, and flow in a channel with a change in 
grade. 
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~ FIGURE 15.33 

__ ____ ____ [ ______________ _ 

Yn --r M3 surface profile 

Yc 

I 

Water-surface profile, 
M3 type 

EXAMPLE 15.12 

Classification of Water-Surface Profiles 

2. Select a letter designator to describe the steepness of the 
slopes, which can also be characterized by the relative size 
of Yn and Yc (see Fig. 15.30). 

Problem Statement 

Classify the water-surface profile for the flow downstream of the 
sluice gate in Fig. 15.9 if the slope is horizontal, and that for the 
flow immediately downstream of the break in grade in Fig. 15.15. 

Define the Situation 

Nonuniform flow is occurring in a channel. 

State the Goal 

Find the water-surface profile classification for the two 
different flow situations. 

Generate Ideas and ~lake a Plan 

I. Select a number designator based on the location of the 
actual water surface relative to Yn andy, (see Fig. 15.31). 

Take Action (Execute the Plan) 

For Fig. 15.9 

1. The actual depth is less than critical; thus the profile is 
type 3. 

2. The channel is horizontal; hence the profile is designated 

[ typeH:£] 

For Fig. 15.15 

1. The actual depth is greater than normal but less than 
critical, so the profile is type 2. 

2. The uniform-flow depth (normal depth y.) is less 
than the critical depth; hence the slope is steep. 
Therefore the water-surface profile is 
designated 1 type S2. , 

With the previous introduction to the classification of water-surface profiles, one can refer 
to Eq. ( 15.49) to describe the shapes of the profiles. Again, for example, if one considers the M3 
profile, it is known that Fr > 1 because the flow is supercritical (y < y,), and that Sf> S0 because 
the velocity is greater than normal velocity. Hence a head Joss greater than that for normal flow 
must exist. Inserting these relative values into Eq. (15.49) reveals that both the numerator and 
the denominator are negative. Thus dyldx must be positive (the depth increases in the direction 
of flow), and as critical depth is approached, the Froude number approaches unity. Hence the 
denominator of Eq. (15.49) approaches zero. Therefore, as the depth approaches critical depth, 
dyl dx ~ oo. What actually occurs in cases where the critical depth is approached in supercriti­
cal flow is that a hydraulic jump forms and a discontinuity in profile is thereby produced. 

Certain general features of profiles, as shown in Fig. 15.29, are evident. First, as the depth 
becomes very great, the velocity of flow approaches zero. Hence Fr ~ 0 and Sf~ 0 and dyldx 
approaches S0 because dyldx = (S0 - Sf)(1 - Fr2

). In other words, the depth increases at the same 
rate at which the channel bottom drops away from the horizontal. Thus the water surface 
approaches the horizontal. The profiles that show this tendency are types Ml, Sl, and Cl. 
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EXAMPLE 1 5. 13 

A physical example of the Ml type is the water-surface profile upstream of a dam, as shown 
in Fig. 15.32. The second general feature of several of the profiles is that those that approach 
normal depth do so asymptotically. This is shown in the S2, S3, Ml. and M2 profiles. Also note in 
Fig. 15.29 that profiles that approach critical depth are shown by dashed lines. This is done be­
cause near critical depth either discontinuities develop (hydraulic jump). or the streamlines are 
very curved (such as near a brink). These profiles cannot be accurately predicted by Eq. (15.49) 
because this equation is based on one-dimensional flow, which, in these regions, is invalid. 

Quantitative Evaluation of the Water-Surface Profile 

In practice, most water-surface profiles are generated by numerical integration, that is, by 
dividing the channel into short reaches and carrying the computation for water-surface eleva­
tion from one end of the reach to the other. For one method, called the direct step method, the 
depth and velocity are known at a given section of the channel (one end of the reach), and one 
arbitrarily chooses the depth at the other end of the reach. Then the length of the reach is 
solved for. The applicable equation for quantitative evaluation of the water-surface profile is the 
energy equation written for a finite reach of channel, Llx: 

Vi v~ 
y1 + - + S0 Llx = Y2 +- + StLlx 

2g 2g 

or 

ilx(Sf - So) = (Y1 + ~1)- (Y2 + ~;) 
or 

(yl + V~/2g) - (y2 + VV 2g) (yl - Y2) + (V? - VDI2g 
Llx = = ~-....:.__'--------'------'----=-

~-~ ~-~ 
(15.50) 

The procedure for evaluation of a profile starts by ascertaining which type applies to the 
given reach of channel (using the methods of the preceding subsection). Then, starting from a 
known depth, one computes a finite value of Llx for an arbitrarily chosen change in depth. The 
process of computing Llx. step by step, up (negative Llx) or down (positive Llx) the channel is 
repeated until the full reach of channel has been covered. Usually small changes of y are taken, 
so that the friction slope is approximated by the following equation: 

ht JV2 s1 = ~ =- (15.51! 
u x BgR11 

Here V is the mean velocity in the reach, and R11 is the mean hydraulic radius. That is. 
V = (V1 + V2)/2, and R~o = (R111 + R112)/2. It is obvious that a numerical approach of this type 
is ideally suited for solution by computer. 

Classification and Numerical Analysis of a Water-Surface 
Profile 

shown in the following sketch. What is the classification of 
the water-surface profile? Quantitatively evaluate the profile 
downstream of the gate and determine whether it will 
extend all the way to the abrupt drop 80 m downstream. 
Make the simplifying assumptions that the resistance 

Problem Statement 

Water discharges from under a sluice gate into a horizontal 
rectangular channel at a rate of 1 m3/s per meter of width, as 

factor fis equal to 0.02 and that the hydraulic radius R~o is 
equal to the depth y. 



'V 
q- I m3/s 

lOcm 

Define the Situation 

Water discharges underneath a sluice gate. 

Assumptions: 

1. Resistance factor fis equal to 0.02. 

2. Hydraulic radius Rh is equal to the depth y. 

State the Goal 

• Classify of the downstream profile. 

• Determine if increasing slope will prevail all the way 
to a point of interest 80 m downstream. 

Generate Ideas and Make a Plan 

I. Determine the letter designation of channel using Fig. 15.30. 

2. For flow leaving sluice gate, determine critical depth Yo and 
compare to actual depth of flow. Use this information to 
refine the classification. 

3. Solve for depth versus distance using Eqs. (15.50) and (15.51). 

TABLE 15.2 Solution To Example 15.13 

Velocity; I ,, 
Meait 

al . Velocity 
Section I in Reach, .. 
V;mls : (V, + .l,2)/2 r· ·ir2 

I 

I (at gate) 0.1 l 10 100 
I ... - - 8.57 73.4 

f -
2 0.14 7. 14 ... 51.0 

I -
6.35 40.3 

' 3 0.18 5.56 

~ 
... 30.9 

... 5.05 25.5 
--~ - -

4 0.22 4.54 ... 20.6 ... --
4.19 17.6 

5 0.26 3.85 I ... 14.8 

3.59 12.9 - -
6 0.30 3.33 ' ... 11.1 

---~- .. --
3.13 9.8 -- ~ 

7 0.34 2.94 ... 8.6 1 

e 
u 
,.:: 
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Take Action (Execute the Plan) 

1. Channel is horizontal, so letter designation is H. 

2. Determine critical depth y, using Eq. (15.27). 

y, = (q2/g)l tJ = [(12m4/s2)/(9.81 m/s2)] l/J 

=§?m l 

Thus, the depth of flow from sluice gate is less than the 
critical depth. Therefore the water-surface profile is 
classified as 

§e@ 
3. To determine depth versus distance along the channel, 

apply Eqs. (15.50) and (15.51) using the numerical 
approach given in Table 15.2. Then, plot the results as 
shown. From the plot, conclude that the 

~le extends to the abrupt drop.] 
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15.8 Summarizing Key Knowledge 

Describing Open Channel Flow 

• An open channel is one in which a liquid flows with a free surface. 

• Steady open-channel flow is classified as either 

• Uniform (velocity is constant for all points on each streamline) or 

• Nonuniform (velocity is varying for points along a specific streamline) 

Steady and Uniform Flow 

• The head loss corresponds to the potential energy change associated with the slope of the 
channel. 

• The discharge is given by the Manning equation: 

1 
Q = - ART13S0

112 

n ' 

where A is the flow area, S0 is the slope of the channel, and n is the resistance coefficient 
(Manning's n), which has been tabulated for different surfaces. 

Nonuniform Flow 

• Nonuniform flow in open channels is characterized as either rapidly varied flow or 
gradually varied flow. In rapidly varied flow the channel resistance is negligible, and flow 
changes (depth and velocity changes) occur over relatively short distances. 

• The significant 1T-group is the Froude number 

v 
fr=vgv; 

where D, is the hydraulic depth, Al T. When the Froude number is equal to unity, the flow is 
criticaL 

• Subcritical flow occurs when the Froude number is less than unity, and supercritical when 
the Froude number is greater than unity. 

Hydraulic Jump 

• A hydraulic jump usually occurs when the flow along the channel changes from 
supercritical to subcritical. 

• The governing equation for hydraulic jump in a horizontal, rectangular channel is 

y,, ~-
Y2 = 2( v 1 + 8Fd - 1) 

• The corresponding head loss in the hydraulic jump is 

h 
_ (y2 - Y1)3 

1 -
. 4y,y2 

• When the flow along the channel changes from subcritical to supercritical flow, the head 
loss is assumed to be negligible, and the depth and velocity relationship is governed by the 
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change in elevation of the channel bottom and the specific energy, y + V 2 /2g. Typical cases 
of this type of flow are 

I. Flow under a sluice gate 

2. An upstep in the channel bottom 

3. Reduction in width of the channel 

Gradually Varied Flow 

• For gradually varied flow the governing differential equation is 

dy _ S0 - Sf 

dx- l - Fr2 

When this equation is integrated along the length of the channel, the depth y is determined 
as a function of distance x along the channel. This yields the water surface profile for the 
reach of the channel. 
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ms Problem available in WileyPLUS at instructor's discretion. 

Describing Open-Channel Flow (§ 15.1) 

15.1 Why is the Reynolds number for onset of turbulence given 
by Re > 2000 in fully flowing pipes and Re > 500 in partly 
nowing pipes and other open channels? 
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To" Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

15.2 A rectangular open channel has a base oflength 2b, and the 
water is flowing with a depth of b. 

a. Sketch this channel. 

b. What is the hydraulic radius of this channel? 
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15.3 ffi"s Two channels have the same cross-sectional area, but 
different geometry, as shown. 

a. Which channel has the largest wetted perimeter? 

b. Which channel has more contact between water and 
channel wall? 

c. Which channel will have more energy loss to friction? 

Uniform Open-Channel Flow (§ 15.3) 

15.4 ~s Consider uniform flow of water in the two channels 
shown. They both have the same slope, the same wall roughness, 
and the same cross-sectional area. Then one can conclude that 
(a) QA = QB, (b) Q.\ < QB, Or (c) QA > QB· 

r["il 
sn 
_L 

~Joft-..J 

f----11 
LJ:_~r 

A 

1- 7.07 ft ---..J 
B 
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15.5 ~s This wood flume has a slope o£0.0019. What will be 
the discharge of water in it for a depth of 1 m? The wood is 
planed. 

PROBLEM 15.5 

15.6 Estimate the discharge in a rock-bedded stream 
(d81 = 30 em) that has an average depth of 1.8 m, a slope of 
0.0037, and a width of 52 m. Assume k, = dR4• 

15.7 Estimate the discharge of water (T = I0°C} that flows 
1.5 m deep in a long rectangular concrete channel that is 3m 
wide and is on a slope of 0.00 I. 

15.8 A rectangular concrete channel is 14ft wide and has 
uniform water flow. If the channel drops 6 ft in a length of 
8000 ft, what is the discharge? Assume T = 60°F. The depth of 
flow is 4ft. 

15.9 Consider channels of rectangular cross section carrying 
I 00 cfs of water flow. The channels have a slope of 0.001. 
Determine the cross-sectional areas required for widths of 2 ft, 
4ft, 6ft, 8ft, 10ft, and IS ft. Plot A versus y/ b, and see how the 
results compare with the accepted result for the best hydraulic 
section. 

15.10 A concrete sewer pipe 2.5 ft in dian1eter is laid so it has a 
drop in elevation of 1.0 ft per 800 ft of length. If sewage (assume 
the properties are the same as those of water) flows at a depth of 
1.25 ft in the pipe, what will be the discharge? 

15.11 Determine the discharge in a 5-ft-diameter concrete 
sewer pipe on a slope of 0.00 I that is carrying water at a depth 
of 4 ft. 

15. 12 Water flows at a depth of 8 ft in the trapezoidal, concrete­
lined channel shown. If the channel slope is I ft in 1500 ft, what 
is the average velocity, and what is the discharge? 

"~ w.. ;::~3/ 
r- s~F 2 

!-toft~ 
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15.13 What will be the depth of flow in a trapezoidal concrete­
lined channel that has a water discharge of 1000 cfs? 1he channel 
has a slope of 1 ft in 500 ft. The bottom width of the channel is 
10 ft, and the side slopes are 1 vertical to 1 horizontal. 

15.14 ~s What discharge of water will occur in a trapezoidal 
channel that has a bottom width of 19 ft and side slopes of 
I vertical to 1 horizontal if the slope of the channel is 2ft/mile 
and the depth is 5 ft? The channel is lined with troweled 
concrete. 

15.15 A rectangular concrete channel4 m wide on a slope of 
0.004 is designed to carry a water (T = l0°C) discharge of 
25 m3/s. Estimate the uniform flow depth for these conditions. 
The channel has a rectangular cross section. 

15.16 A rectangular troweled concrete channelS ft wide 
with a slope of 10ft in 3000 ft is designed for a discharge of 
400 cfs. For a water temperature of 40°F, estimate the depth 
of flow. 

15.17 A concrete-lined trapezoidal channel having a bottom 
width of 10 ft and side slopes of I vertical to 2 horizontal is 
designed to carry a flow of 3000 cfs. If the slope of the channel 
is 0.00 I, what will be the depth of flow in the channel? 

15.18 ;;?-Design a canal having a trapezoidal cross section 
to carry a design discharge of irrigation water of 900 cfs. The 
slope of the canal is to be 0.002. The canal is to be lined with 
concrete, and it is to have the best hydraulic section for the 
design flow. 

Nonuniform Open·Channel Flow (§ 15.5) 

15.19 How arc head loss and slope related for nonuniform flow, 
as compared to uniform flow? 

15.20 Is critical flow a desirable or undesirable flow condition? 
Why? 



15.21 ~s Critical flow __ . (Select all of the following that 
are correct.) 

a. occurs when specific energy is a minimum for a given 
discharge. 

b. occurs when the discharge is maximum for a given 
specific energy. 

c. occurs when Fr < 1. 

d. occurs when Fr = I . 

15.22 hVs Water flows at a depth of 8 in. with a velocity of 
35 ft/s in a rectangular channel. (a) Is the flow subcritical or 
supercritical? (b) What is the alternate depth? 

15.23 ms The water discharge in a rectangular channell6 ft 
wide is 900 cfs. If the depth of water is 3 ft, is the flow subcritical 
or supercritical? 

15.24 ffi's The discharge in a rectangular channell8 ft wide is 420 
cfs. If the water velocity is 9 ft/s, is the flow subcritical or supercritical? 

15.25 ~Water flows at a rate of 8m3/sin a rectangular channel 
2 m wide. Determine the Froude number and the type of flow 
(subcritical, critical, or supercritical) for depths of 30 em, 1.0 m, 
and 2.0 m. What is the critical depth? 

15.26 For a rectangular channel3 m wide and discharge of 12m3
, 

what is the alternate depth to the 30 em depth? What is the specific 
energy for these conditions? 

15.27 Water flows at the critical depth with a velocity of 10 m/s. 

What is the depth of flow? 

15.28 rrtfs Water flows uniformly at a rate of 320 cfs in a 
rectangular channel that is 12 ft wide and has a bottom slope of 
O.OOS.If n is 0.014, is the flow subcritical or supercritical? 

15.29 0o The discharge in a trapezoidal channel is 10 m3/s. 
The bottom width of the channel is 3.0 m, and the side slopes are 
1 vertical to 1 horizontal. If the depth of flow is 1.0 m, is the flow 
supercritical or subcritical? 

15.30 For the channel of Pro b. 15.29, determine the critical 
depth for a discharge of 20 m3/s. 

15.31 A rectangular channel is 6 m wide, and the discharge of 
water in it is 18 m3/s. Plot depth versus specific energy for these 
conditions. Let specific energy range from Emin toE = 7 m. What 
are the alternate and sequent depths to the 30-cm depth? 

~ I h lth 15.32 GO A long rectangu arc anne at is 8 m wide and has 
a mild slope ends in a free outfall. If the water depth at the brink 
is 0.55 m, what is the discharge in the channel? 

15.33 A rectangular channel that is IS ft wide and has a mild 
slope ends in a free outfall. If the water depth at the brink is 
1.20 ft, what is the discharge in the channel? 

15.34 A horizontal rectangular channell4 ft wide carries a 
discharge of water of 500 cfs. If the channel ends with a free 
outfall, what is the depth at the brink? 

15.35 What discharge of water will occur over a 3-ft-high, broad­
crested weir that is 10ft long if the head on the weir is 1.8 ft? 
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15.36 What discharge of water will occur over a 2-m-high, 
broad-crested weir that is 5 m long if the head on the weir is 
60 em? 

15.37 The crest of a high, broad-crested weir has an elevation of 
100 m. If the weir is 10 m long and the discharge of water over 
the weir is 25 m3/s, what is the water-surface elevation in the 
reservoir upstream? 

15.38 The crest of a high, broad-crested weir has an elevation of 
300 ft. If the weir is 40ft long and the discharge of water over the 
weir is 1200 cfs, what is the water-surface elevation in the 
reservoir upstream? 

15.39 Water flows with a velocity of 3m/sand at a depth of 3m 
in a rectangular channel. What is the change in depth and in 
water-surface elevation produced by a gradual upward change in 
bottom elevation ( upstep) of 30 em? What would be the depth 
and elevation changes if there were a gradual downstep of 30 em? 
What is the maximwn size of upstep that could exist before 
upstream depth changes would result? 

15.40 Water flows with a velocity of 2 m/s and at a depth of 3 m 
in a rectangular channel. What is the change in depth and in 
water-surface elevation produced by a gradual upward change in 
bottom elevation (upstep) of 60 em? What would be the depth 
and elevation changes if there were a gradual downstep of 15 em? 
What is the maximum size of upstep that could exist before 
upstream depth changes would result? 

15.41 Assuming no energy loss, what is the maximum value of 
~z that will permit the unit flow rate of 6 m 2/s to pass over the 
hump without increasing the upstream depth? Sketch carefully 
the water-surface shape from section l to section 2. On the 
sketch give values for ~z. the depth, and the amount of rise or 
fall in the water surface from section 1 to section 2. 

(j) 

-:::=:::=:::=-=-:::::-::::::>::::-:1=:: 
3m 

q ~ 6 m2is 1 
PROBLEM 15.41 

0 

15.42 Water flows with a velocity of 3 m/s in a rectangular 
channel 3 m wide at a depth of 3 m. What is the change in 
depth and in water-surface elevation produced when a gradual 
contraction in the charmel to a width of 2.6 m takes place? 
Determine the greatest contraction allowable without altering 
the specified upstream conditions. 

15.43 Because of the increased size of ships, the phenomenon 
called "ship squat" has produced serious problems in harbors 
where the draft of vessels approaches the depth of the ship 
channel. When a ship steams up a channel, the resulting flow 
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situation is analogous to open-channel flow in which a 
constricting flow section exists (the ship reduces the cross­
sectional area of the channel). The problem may be analyzed 
by referencing the water velocity to the ship and applying the 
energy equation. Thus, at the section of the channel where the 
ship is located, the relative water velocity in the channel will be 
greatest, and the water level in the channel will be reduced as 
dictated by the energy equation. Consequently, the ship itself 
will be at a lower elevation than if it were stationary; this 
lowering is referred to as "ship squat." Estimate the squat of the 
fully loaded supertanker Bellamya when it is steaming at 5 kt 
(1 kt = 0.515 m/s) in a channel that is 35m deep and 200m 
wide. The draft of the Bel/amya when fully loaded is 29 m. Its 
width and length are 63 m and 414 m, respectively. 

15.44 A rectangular channel that is I 0 ft wide is very smooth 
except for a small reach that is roughened with angle irons 
attached to the bottom. Water flows in the channel at a rate of 
200 cfs and at a depth of 1.0 ft upstream of the rough section. 
Assume frictionless flow except over the roughened part, where 
the total drag of all roughness (all of the angle irons) is assumed 
to be 2000 lbf. Determine the depth downstream of the 
roughness for the assumed conditions. 

_ __._ ___ ----- Rough section 

...J...J...J...J...J...J...J...J...J 

----·~ 
l.OOft-+ ~ ? 
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15.45 Water flows from a reservoir into a steep rectangular 
channel that is 4 m wide. The reservoir water surface is 3 m 
above the channel bottom at the channel entrance. What 
djscharge will occur in the channel? 

15.46 A small wave is produced in a pond that is 6 in. deep. 
What is the speed of the wave in the pond? 

15.47 'iG!s A small wave in a pool of water having constant 
depth travels at a speed of 1.5 m/s. How deep is the water? 

15.48 As waves in the ocean approach a sloping beach, they 
curve so that they are nearly parallel to the beach when they 
finally break (see accompanying figure). Explain why the waves 
curve like this. Hint: With a sloping beach, where is the water 
most shallow? 

" Dec " p-~waves ~ , 

~,.,;~~ 
Slmltow· ~ ~ waterwav~ ~ 

Beach 

Aerial view of waves 

PRORI.F\1 15.48 

Hydraulic Jumps (§ 15.6) 

15.49 ~s For a hydraulic jump, . (Select all of the 
following that are correct.) 

a. the flow changes from subcritical to supercritical. 

b. the flow changes from supercritical to subcritical. 

c. significant energy is lost. 

d . the height of the water abruptly increases from the 
upstream to the downstream cross-section. 

e. the downstream and upstream depth arc related 
quantitatively in terms of the upstream Fr. 

f. the energy equation is a better tool for analysis than the 
momentum equation. 

15.50 The baffled ramp shown is used as an energy dissipator in 
a two-dimensional open channel. For a discharge of 18 cfs per 
foot of width, calculate the head lost, the power dissipated, and 
the horizontal component of force exerted by the ramp on the 
water. 

-
l 
2ft-
! 
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15.51 ffi"s The spillway shown has a discharge of2.9 m3/s per 
meter of width occurring over it. What depth y2 will exist 
downstream of the hydraulic jump? Assume negligible energy 
loss over the spillway. 

\1 

\1 
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15.52 ~The flow of water downstream from a sluice gate in a 
horiwntal channel has a depth of 32 em and a flow rate of 5.2 m3/s 
per meter of width. The sluice gate is 2 m wide. 

a. Could a hydraulic jump be caused to form downstream 
of this section? 

b. lf so, what would be the depth downstream of the jump? 

15.53 It is known that the discharge per unit width is 65 cfs/ ft 
and that the height (H) of the hydraulic jump is 14ft. What is the 
depthy1? 
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15.54 Water flows in a channel at a depth of 40 em and with a 
velocity of 8 m/s. An obstruction causes a hydraulic jump to be 
formed. What is the depth of flow downstream of the jump? 

15.55 Water flows in a trapezoidal channel at a depth of 40 em 
and with a velocity of 10 m/s. An obstruction causes a hydraulic 
jump to be formed. What is the depth of flow downstream of the 
jump? The bottom width of the channel is 5 m, and the side 
slopes are 1 vertical to I horizontal. 

15.56 riifs A hydraulic jump occurs in a wide rectangular 
channel. If the depths upstream and downstream are 0.50 ft and lOft, 
respectively, what is the discharge per foot of width of channel? 

15.57 The 20-ft-wide rectangular channel shown has three 
different reaches. S0,1 = 0.01; 50,2 = 0.0004; S0,3 = 0.00317; 
Q = 500 cfs; n1 = 0.015; normal depth for reach 2 is 5.4 ft and 
that for reach 3 is 2.7 ft. Determine the critical depth and normal 
depth for reach 1 (use Manning's equation from§ I 5.3). Then 
classify the flow in each reach (supcrcritical, subcritical, critical), 
and determine whether a hydraulic jump could occur. Jn which 
rcach(es) might it occur if it does occur? 

Elevation - 1274 ft :: :;,:::D. 
-Elevation- 1272 ft 

Elevation~ 1270 fi 

Reach I Reach 2 
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15.58 Water flows from under the sluice gate as shown and 
continues on to a free overfall (also shown). Upstream from 
the over fall the flow soon reaches a normal depth of 1.1 m. The 
profile immediately downstream of the sluice gate is as it would 
be if there were no influence from the part nearer the overfall. 
Will a hydraulic jump form for these conditions? If so, locate its 
position. If not, sketch the full profile and label each part. Draw 
the energy grade line for the system. 

\1 

20 m · 20 m 20 m · 20 m 
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15.59 Pds Water is flowing as shown under the sluice gate in a 
horizontal rectangular channel that is 5 ft wide. The depths of y0 

and y1 are 65 ft and 1 ft, respectively. What will be the horsepower 
lost in the hydraulic jump? 

\1 

[I I \1 

-~ 
~ 

T 

~ -
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15.60 Water flows uniformly at a depth Yt = 32 em in the 
concrete channel shown, which is 8 m wide. Estimate the height 
of the hydraulic jump that will form when a sill is installed to 
force it to form. Assume Manning's n value is n = 0.0 12. 

15.61 For the derivation of Eq. (15.28) on p. 571 of§ 15.5 it is 
assumed that the bottom shearing force is negligible. For water 
flowing uniformly at a depth y1 = 40 em in the concrete channel 
shown, which is 10m wide, a sill is installed to force a hydraulic 
jump to form. Estimate the magnitude of the shearing force F, 
associated with the hydraulic jump and then determine F,/ FH, 
where FH is the net hydrostatic force on the hydraulic jump. 
Assume Manning's n value is n = 0.012. 

\1 

y r-/') i " __ I /~ j n_ 
f ' - ~~~_J 

Slope- 0.040 
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15.62 The normal depth in the channel downstream of the sluice 
gate shown is I m. What type of water-surface profile occurs 
downstream of the sluice gate? Also, estimate the shear stress on the 
smooth bottom at a distance 0.5 m downstream of the sluice gate. 

\1 

5.55 m 
I 

Water 
r=zo•c 

Surface profile 
40 em type=? 

V- IOm/s \_-~ 
V t I ------
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15.63 Ws Water flows at a rate of 100 fe/s in a rectangular 
channel10 ft wide. The normal depth in that channel is 2ft. The 
actual depth of flow in the channel is 4 ft. The water-surface profile 
in the channel for these conditions would be classified as (a) Sl, 
(b) S2, (c) Ml, or (d) M2. 

15.64 ~s The water-surface profile labeled with a question 
mark is (a) M2, (b) S2, (c) H2,or (d) A2. 

PROTlT.EM 15.64 

15.65 The partial water-surface profile shown is for a 
rectangular channel that is 3 m wide and has water flowing in it 
at a rate of 5 m3/s. Sketch in the missing part of the water-surface 
profile and identify the type(s). 

• ~-~-- Horizontal j_ 1.6m 

I 
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15.66 A very long lO-ft-wide concrete rectangular channel with 

a slope of 0.0001 ends with a free overfall. The discharge in the 
channel is 120 cfs. One mile upstream the flow is uniform. What 
kind (classification) of water surface occurs upstream of the 
brink? 

15.67 The horizontal rectangular channel downstream of the 
sluice gate is 10 ft wide, and the water discharge therein is I 08 cfs. 
The water-surface profile was computed by the direct step method. 
If a 2-ft-high sharp-crested weir is installed at the end of the 
channel, do you think a hydraulic jump would develop in the 
channel? Tf so, approximately where would it be located? Justify 
your answers by appropriate calculations. Label any water­
surface profiles that can be classified. 

'V 

0.66 ft 1.10 ft 

0.40 ft 'V -- -
}.-----125ft 125ft ___ _., 
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15.68 The discharge per foot of width in this rectangular 
channel is 20 cfs. The normal depths for parts I and 3 are 0.5 ft 
and 1.00 ft, respectively. The slope for part 2 is 0.001 (sloping 

upward in the direction of flow). Sketch all possible water-surface 
profiles for flow in this channel, and label each part with its 
classification. 

2 3 
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15.69 Water flows from under a sluice gate into a horizontal 
rectangular channel at a rate of 3 m3/s per meter of width. 1he 
channel is concrete, and the initial depth is 20 em. Apply 
Eq. ( I 5.42) on p. 579 of§ I 5.6 to construct the water-surface 
profile up to a depth of 60 em. In your solution, compute reaches 

for adjacent pairs of depths given in the following sequence: 
d = 20 em, 30 em, 40 em, 50 em, and 60 em. Assume that f is 
constant with a value of 0.02. Plot your results. 

15.70 A horizontal rectangular concrete channel terminates in a 
free outfall. The chan,nel is 4 m wide and carries a discharge of 
water of 12 m3/ s. What is the water depth 300m upstream from 
the outfall? 

15.71 Consider the hydraulic jump shown for the long 
horizontal rectangular channel. What kind of water-surface 
profile (classification) is located upstream of the jump? What 
kind of water-surface profile is located downstream of the jump? 
If baffle blocks are put on the bottom of the channel in the 
vicinity of A to increase the bottom resistance, what changes arc 
likely to occur given the same gate opening? Explai11 and/or 

sketch the changes. 

'V 
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15.72 The steep rectangular concrete spillway shown is 4 m wide 
and 500 m long. It conveys water from a reservoir and delivers it 
to a free outfall. The channel entrance is rounded and smooth 
(negligible head loss at the entrance). If the water-surface 
elevation in the reservoir is 2 m above the channel bottom, 

what will the discharge in the channel be? 

'V 
'V 
~ ;-.,.. 

Reservoir ( -~~-- - 500 m ~- C 
) ------
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15.73 The concrete rectangular channel shown is 3.5 m wide 
and has a bottom slope of 0.00 1. The channel entrance is 
rounded and smooth (negligible head loss at the entrance), and 
the reservoir water surface is 2.5 m above the bed of the channel 
at the entrance. 

a. Estimate the discharge in it if the channel is 3000 m 
long. 

b. Tell how you would solve for the discharge in it if the 
channel were only 100m long. 

~ v 
- - = __j -~------.. r 
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15.74 A dam 50 m high backs up water in a river valley as 
shown. During flood flow, the discharge per meter of width, q, is 
equal to 10 m 3/s. Making the simplifying assumptions that R = y 
and f = 0.030, determine the water-surface profile upstream 
from the dam to a depth of 6 m. In your numerical calculation, 
let the first increment of depth change bey,; use increments of 
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depth change of I 0 m until a depth of I 0 m is reached; and then 
use 2 m increments until the desired limit is reached. 

'V 
"'S"" 

y q = 10m3's 

S0 ~ 0 .0004,[~ 0.030 
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15.75 Water flows at a steady rate of 12 cfs per foot of wid~h 
(q = 12 cfs) in the wide rectangular concrete channel shown. 
Determine the water-surface profile from section 1 to section 2. 

(j) q - 12 cf</ft 

~ - 7 
Slope • 0.04 

Rectangular weir ") _1 
- 3 ft 
----.._~~ I 

PROni E.\1 15.75 
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M·ODELING OF 
FLUID DYNAMICS 
PROBLEMS 

FIGURE 16.1 

The Eagle X-TS and the workers at the assembly plant 
where the plane was built. The Eagle X-TS was designed 
by John Roncz using CFD. Roncz, a world-class designer, 
IS responsible for some portion of 50 aircraft designs. Two 
of Roncz's designs ore on display of the Notional Air and 
Space Museum in the United Stoles. (Photo courtesy of 
John Roncz.) 

Roncz describes how he learned fluid mechanics 

"The main advantage I hove is that I've never token 
o single course in aeronautical engineering. . As a 

result, I've had to figure 11 all out myself You understand 
things better that way.· ( 1 ) 

598 

... j Chapter Road Map I 
This chapter describes modeling and introduces two 
methods that are useful for modeling: 

• Partial Differential Equations (PDEs). This method 
involves formulating the governing scientific laws 
as partial differential equations. 

• Computational Fluid Dynamics (CFD). This method 
involves approximating the partial differential 
equations with algebraic equations and then using 
a computer algorithm to solve these equations . 

... j Learning Objectives j 

STUDENTS WILL BE ABLE TO 

• Describe how engmeers build models. (§ 16.1) 

• Explain how engineers apply PDEs. Explain these topics: 
velocity field , Taylor series, invariant notation, mathematical 
operators, the material derivative, and the acceleration 
field. (§ 16.2) 

• List the steps to derive the continuity equation .(§ 16.3) 

• List and describe the various forms of the continuity 
equation. (§ 16.3) 

• List the steps to derive the Navier-Stokes equation. (§ 16.4) 

• Describe CFD. Describe how engineers select a CFD code. 
(§ 16.5) 

• Describe how CFD codes work. Explain these topics: grid, 
time step, boundary condition validation, verification, and 
turbulence models (§ 16.5) 
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Paths cannot be taught, they can only be taken.- Traditional Zen saying 

In the first chapter of this book, we invited students to take the first steps of their journey in 
learning fluid mechanics. In this last chapter, we present new material and suggest a path for 
moving forward. 

16. 1 Models in Fluid Mechanics 

Engineers create models of systems because this process saves money and results in better 
designs. Modeling involve analyses, experiments, and computer simulations. These topics are 
introduced in this section. 

The Concept of a Model 
In engineering, there is something real, for example, a dam and associated power plant, and 
there is an idealization (i.e., a model) of this real thing. A model, according to Wang (2) is a tool 
to represent a simplified version of reality. Ford (3) suggests that the model is a substitute for a 
real system. Some examples of models include 

• A road map is a model because a map represents a complex array of roads. 

• Architects' drawings are models because they represent buildings that will be built. 

• A table of contents is a model because the table of contents represents the subject matter 
of a book. 

Some examples of models relevant to fluid mechanics: 

• The ideal gas law is a model because it is an idealized (simplified) description of how the 
variables of density, pressure, and temperature are related. 

• A collection of equations can be a model. For example, the energy equation together with 
the Darcy-Weisbach equation and suitable minor loss coefficients can be used to predict 
the flow rate for water through a siphon. Using the equations is a substitute for building a 
system and then correlating experimental data. 

• A small-scale car that is used in a wind tunnel to estimate drag acting on a full-scale car is 
a model. 

To advance the discussion of modeling, we next describe an engineering project. 

Example of an Engineering Project. The slow sand filter (Fig. 16.2) is a widely used technol­
ogy for producing clean drinking water. Water enters the filter at the top, and naturally occur­
ring organisms that live in the topmost layer of the filter remove the biological contaminants. 
This topmost layer, called the schmutzdecke, is found in the top few millimeters of the sand 
layer. The sand and gravel below the schmutzdecke collects dirt and clay particles. 

Several years ago students from the University of Idaho designed a slow sand filter for ap­
plications in Kenya. Because slow sand filters do not require chemicals or electricity, this tech­
nology is especially suitable to applications in the developing world. 

The team choose to develop various models of the slow sand filter. The model-building 
process is described in the next subsections. 

Summary. A model is an idealization or simplified version of reality. Models are valuable 
when they help engineers and other professionals reach goals in an economical way. 
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FIGURE 16.2 

The slow sand filter. 

FIGURE 16.3 

The model in the context 
of engineering problem 
solving. 

Raw water in 

Schmutzdeckc 
(active biological layer) 

Sand 

Safe drinking 
water out 

How to Build a Model of a System 
The reason for building a model is to solve a problem (Fig. 16.3). The process of model build­
ing, according to Montgomery et al. ( 4), involves identifying relevant variables, determining 
the relationships between these variables, and then testing the model to ensure that it is accu­
rate {i.e., does the model faithfully capture what happens in reality?). As shown, the process of 
model building is iterative. 

2b. Determine 
how variables 

are related 

Model building 
occurs in steps 
2a to 2c. 

Example. To build a model of a slow sand filter {Fig. 16.2), the modeling process involves the 
following steps. 

• Step 2a. Identify the variables Determine which variables characterize performance. 
Then, classify the variables into two groups. 

~ Performance variables characterize how well the product performs. Examples of these 
variables include the flow rate through the filter, the clarity of the water that leaves the 
filter, and the time period between maintenance for filter cleaning. Performance 
variables are dependent variables, meaning that they depend on the values of the design 
variables. 

~ Design variables are the factors that engineers can select. Examples of these variables 
are depth of water on top of the filter, the thickness of the sand layer, and the 
distribution of sand and gravel sizes. 
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• Step 2b. Determine how the variables are related. The purpose of this step is to identify 
cause and effect. For example, if one changes the size of the sand particles, does this make 
the filter perform better or worse? Why? There are two approaches for determining how 
the variables are related (4). 

~ Mechanistic. Mechanistic models are based on scientific knowledge of the 
phenomena. for example, Darcy's Law describes flow of fluids through a porous 
medium such as sand and gravel, and the equation itself tells us the relationship 
among the variables. 

~ Empirical. Empirical models involve relating the variables by using curve fits of 
experimental data. For example, experiments and correlation could be used to 
determine the time it takes for the schmutzdecke to develop. 

• Step 2c. Test the model for accuracy. The result of step 2a is an ability to predict the 
relationship between design variables (e.g., dimensions, particle sizes) and performance 
variables (e.g., water quality or flow rate). The purpose of step 2c is to check to see how 
accurate the predictions are. Much of this time, this step is done by comparing 
experimental data with predictions. 

• Iterate back to step 2a. In practice, modeling building is iterative. Iteration involves repeating 
a process with the aim of reaching a desired goal. Each repetition of the process is called an 
iteration, and the results of one iteration are used as the starting point for the next iteration. 
Iterations are ended when the model has enough accuracy for the purposes of the engineers. 

Example of Iteration {Slow Sand Filter). To build a model of a slow sand filter, one might start 
out with a model comprised of a few equations and a simple, bench-top experiment. The model 
would be highly simplified, and the purpose of the first iteration would be to gain experience with 
modeling and measuring the flow of water through sand. In subsequent iterations, the analytical and 
experimental models would be developed and continually compared. After analytical models had 
been developed, the team might create a CFD model to perform parametric studies on the design. 

After the model has been validated through the iterative process, the next steps are to apply 
the model to solve the problem (step 3 ofFig.l6.3) and to communicate the solution (step 4). 

Summary. Models are built in an iterative process that involves identifying the variables, clas­
sifying these variables into performance variables and design variables, and determining how 
the variables are related. Last the model is validated to see if model predictions are accurate 
enough for the needs of the problem. The most important aspect of model building is to start 
simple and then use sequential iterations to improve accuracy. Model building was introduced 
in Chapter 1. When models are based on scientific laws and equations, then the Wales-Woods 
approaches describes how experts build math models. 

Three Methods for Model Building 
Model building involves three methods. 

Analytical Fluid Dynamics (AFD) involves knowledge and equations that are commonly 
found in engineering textbooks and references. 

Experimental Fluid Dynamics (EFD) involves experiments to gather information about 
variables. EFD is often used to validate calculations, to validate computer solutions, and to 
determine performance characteristics of systems that are not easily modeled using calcu­
lations or computers. 

Computational Fluid Dynamics (CFD) involves computer solutions of the governing 
partial differential equations. That is, engineers run a computer program to understand 
how the variables interact. 

............ 
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In real-world applications, model building usually involves an integrated and iterative combi­
nation of the preceding approaches. For example, model building efforts for the slow sand filter 
might include the following: 

• Darcy's Law (AFD). To predict the rate at which water flows through the sand and gravel, 
one can apply Darcy's law, which describes flow through a porous medium. This is an 
example of AFD because it involves a known equation. 

• Measuring Permeability (EFD). To apply Darcy's law, one must estimate the value of the 
permeability of sand layers. (Permeability is a property of a porous medium that 
characterizes how easily water flows through the material for a given pressure drop). To 
determine permeability, the engineer would set up an experiment and measure the value 
for various types of sand and gravel. 

• Computational Model (CFD). A commercially available CFD computer model for 
groundwater flow could be applied to perform parametric studies on the slow sand filter 
so that the engineers could examine many different design variations. 

• Experiments (EFD). One could use experiments to measure how long it takes for the 
schmutzdecke layer to grow. 

Summary. In fluid mechanics, there are three approaches to model building: analytical fluid 
mechanics, experimental fluid mechanics, and computational fluid mechanics. Most models 
involve two or three of these approaches working synergistically. 

Assessing the Value of a Model 
Ford (3) asserts that a model is useful when it helps one learn something about the sys­
tem that the model represents. So, a road map is useful when it helps one more easily 
navigate an unfamiliar location. Architects' drawings are useful when they help a builder 
understand what materials need to be purchased and how the architect intends a house 
to look. 

The value of a model is related to the benefits and the costs (i.e., resources required to 
produce the model). One way to assess value is to use a ratio of benefits to costs: 

(
Value of) (Benefits provided by the model) 

a model - (Resources required to implement the model) 

To assess value, some questions that engineers might ask are 

• Benefits 

~ Will the model lead to a design that works better? 

~ Will the model help the team complete the project faster? 

~ Will the model lead to a final design that is lower cost to build? To operate? 

~ Will the model help the team understand the interactions of the variables? 

~ Can the model be used for future projects? 

~ Would the model be beneficial to other engineers who are designing similar systems? 

• Resources, Costs, and Risks 

~ What is the risk of failure? Can a model that works be developed? 

~ How accurate will the model be? What accuracy is needed? 

~ How much engineering time will the model take to build? 

~ Does software need to be purchased? Experiments built? Other costs? 
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As shown in Fig. 16.4, the three modeling approaches provide different types of information 
and have varying levels of cost (time and resources). 

• Algebraic equations. Applying equations found in textbooks provides estimates (low level 
of details). Costs are low because estimates usually require a pencil, a paper and a calculator 
and take about one hour. 

• PDEs. Finding a existing solution to the governing PDEs provides rich details about the 
flow. Costs are modest because one has to search the literature, learn the details of the 
solution, and apply the solution. However, there are only a few solutions in the literature 
and so this approach is only sometimes useful. 

• CFD. Developing a CFD solution provides a wealth of details. The costs can be high 
because one has to obtain a code, learn the code, set up the model, and validate the model. 

• Experiment. Designing and conducting an experiment provides data from the physical 
world, which is often used to assess the validity of math-based solutions. Costs for an 
experiment can range from very low to very high, depending on the scope and nature of 
the experiment. 

CFD 

Cost (time and resources) 

Summary. Three useful methods for model building are analysis, experiment, and computation. 
Often, these three methods are used in combination using a iterative strategy that involves 
starting with simple models and then refining these models. There are multiple trade-offs in 
model building that involve cost, benefits, solution accuracy, and solution detail. 

16.2 Foundations for learning Partial 
Differential Equations (PDEs) 

This section presents information on 

• Why learning PDEs is useful 

• Some mathematical foundations for learning PDEs 

Rationale for Learning PDEs 

PDEs represent the scientific laws that govern flowing fluids. Solving these equations gives 
numerical values for the pressure field, the velocity field, or other fields. From these fields, 

FIGURE 16.4 

Information provided by a 
modeling opprooch versus 
the cost of the modeling 
approach. 
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engineers can calculate nearly anything of engineering interest such as drag force, head loss, 
and power requirements. 

Thus, solving the PDEs is the ultimate solution technique. But there is a catch! In practice, 
the PDEs have nonlinear terms that prevent direct mathematical solutions, except in a limited 
number of special cases. These special cases were solved many years ago, and today's engineers 
do not solve problems by directly solving the PDEs. Nevertheless, there are two benefits to 
learning PDEs. 

Understanding Existing Solutions (Benefit# 1). The literature has many existing solutions of 
the PDEs. These solutions classify into two categories: 

• Exact Solutions. An exact solution involves a physical situation in which the equations of 
motion reduce to equations that can be solved. There are about 100 such solutions in 
existence. Examples include Poiseuille flow and Couette flow. 

• Idealized Solutions. An idealized solution involves a physical situation where 
assumptions are made that allow the governing equations to be simplified and solved 
mathematically. Two examples of idealized solution are 

~ Potential Flow. When an external flow around a body is assumed to be inviscid 
(i.e., frictionless) and irrotational (i.e., the fluid particles are not rotating), the 
equations reduce to equations that can be solved analytically. This situation is called 
potential flow. 

~ Laminar Boundary Layer Flow. When laminar viscous flow near a wall is simplified by 
making the boundary layer assumptions, the equations can be solved. The resulting 
solution, called the Blasius solution, describes flow in the laminar boundary layer. 

Engineers use existing solutions to gain understanding of more complex problems. For ex­
ample, a bicycle rider was severely injured in a collision caused by a bus that passed too close 
to him. When a large vehicle passes closely by a cyclist, this causes side forces on the cyclist. To 
gain insight into these side forces, an engineer used the solution for potential flow around an 
elliptical body to predict the magnitude and direction of the side force. 

A second example involves modeling blood flow in the human abdominal aorta. Some­
times the aorta loses its structural integrity and bulges out to form an aneurysm. If an aneu­
rysm ruptures, death is common. Thus, the researchers wanted to understand the forces ex­
erted by the flow on the aneurysm walls. Two existing solutions were used to gain insight into 
this problem: the Poiseuille solution for steady laminar flow in round tube and Womersley 
solution for oscillatory laminar flow in a round tube. 

Understanding and Validating CFD (Benefit #2). Because CFD codes solve PDEs, the first 
step in learning CFD is to learn about the PDEs. 

Existing solutions are used to validate CFD codes. For example, when a CFD model of 
blood flow in an aneurysm was developed, the code was validated in part by modeling an exist­
ing analytical solution (i.e., the Womersley solution) and then checking to make sure that the 
CFD solution matched the analytical solution. 

Summary. Three reasons for learning PDEs are to (a) be able to understand and apply exist­
ing solutions that are found in the literature, (b) to understand the equations that are being 
solved by CFD codes, and (c) to validate CFD codes by ensuring that the CFD code can cor­
rectly predict the results given by a known classical solution. 

The remainder of this section introduces mathematics that are useful in the development 
ofPDEs. 

1 
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Velocity Field: Cartesian Coordinates 

The solution of the equations of motion are fields such as the pressure field, the density field, the FIGURE 16.5 

temperature field, and the velocity field. Thus, understanding fields is important. This section Cartesian coordinates. 
introduces the velocity field. 

In the Cartesian coordinate system, a point in space is identified by specifying coordinates )(= 
(x, y, z; Fig. 16.5). The associated unit vectors are i in x-direction, j in y-direction, and kin , / Locatcba poin~fm 

space y spec• y111g 
z-direction. Notice that the coordinate system is right-handed, which means that the cross product · • (x. y. z) 

of i and j is the k unit vector: 
• 

i X j=k 

The velocity field is given by 

V = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k (16.1) 

where u = u(x, y, z, t) is the x-direction component of the velocity vector, and v and w have 
similar meanings. The independent variables are position (x, y, z) and time (t). 

The next two examples show how to reduce the general form of the velocity field so that it 
applies to a specific situation. Notice the process steps. 

EXAMPLE Consider steady flow in a plane (Fig. 16.6). Reduce the general equation for the 
velocity field so that is applies to this situation. 

Ideas/ Action. 

I . Write the general equation for the velocity field. 

V = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k 

2. Analyze the dependent variables. Because the flow is planar, w = 0. Thus, the dependent 
variables reduce to u and v. 

3. Analyze the independent variables. Because the flow is planar, z is not parameter. Because 
the flow is steady, time is not a parameter. Thus, the independent variables are (x, y), and 
the velocity field reduces to V = u(x,y)i + v(x, y)j. 

Veloctty at a pomt 
IS represented with 
velocity components (11, ••) 
V ~ ui + vj 

EXAMPLE. Consider steady flow entering a channel (Fig. 16.7) formed by plates that 
extend to :too in the z-direction. Such plates are called infinite plates. Reduce the general 
equation for the velocity field so that it applies to this situation. 

Ideas/ Action 

1. Write the general equation for the velocity field. 

V = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k 

FIGURE 16.6 

Example of velocity 
components for planar 
flow. 
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FIGURE 16.7 

Flow belween infinite 
plates. 

FIGURE 16.8 

Coordinates and unit 
vectors in cylindrical 
coordinate system. 

~ ~~'''''" 

t Urufonn veloc•ty d•stribution at x = 0 

2. Analyze the dependent variables. Let w = 0 because there is no flow in the z-direction. 

3. Analyze the independent variables. Because the flow is planar, the velocity does not vary 
with z. Because the flow is steady, the velocity does not vary this time. Thus, the reduced 
equation for the velocity field is 

V = u(x, y)i + v(x, y)j 

This equation means that both u and v will be nonzero and both u and v will vary with x andy. 
The reason is that flow in the entrance to the channel is developing (see Chapter 10). Once 
the flow is fully developed, then the velocity field will reduce to the form . 

V = u(y)i 

Summary: The general form of the velocity field in Cartesian coordinates is given by 
Eq. (16.1). To reduce this equation so it applies to a given situation, analyze the independent 
and the dependent variables and eliminate terms that are not relevant or are zero. 

Velocity Field: Cylindrical Coordinates 
Because cylindrical coordinates are widely used in application, this system is introduced 
next. 

In cylindrical coordinates (Fig. 16.8), a point in space is described by specifying coordi­
nates (r, e, z). The radius r is measured from the origin, the azimuth angle e is measured coun­
terclockwise from the x axis, and the height z is measured from the x-y plane. 

Point m space 

u, 

X 

The velocity field in general form is 

V = v,(r, e, Z, t)u, + Va(r, e, Z, t)ua + v.(r, e, Z, t)Uz (16.2) 
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EXAMPLE. Fig. 16.9 shows ideal flow over a circular cylinder. Reduce the general form of 
the velocity field so that it applies to this situation. 

Ideas/ Action 

Represent the velocity vector at a point of interest, (see Fig. 16.9). 

• Step 1. Sketch an x- andy-coordinate axis. 

• Step 2. Sketch a radius vector of length r. 

• Step 3. Sketch unit vectors u, and u0. 

• Step 4. Represent the velocity vector with components v, and v9. 

Next, do a term-by-analysis of Eq. (16.2). Eliminate z and v, because the flow is planar. Eliminate 
t because the flow is steady. Eq. (16.2) reduces to: 

v = v,(r, e)u, + ve(r, e) 

For flow in a plane (e.g., Fig. 16.9), the z-direction is not needed, and one uses only the rand e 
coordinates. This two-dimensional coordinate system is called polar coordinates. 

Summary: When cylindrical coordinates are used, the general form of the velocity field is 
given by Eq. (16.2). For the flow in a plane, the coordinates can be simplified to a 2-D flow, and 
the coordinates are called polar coordinates. 

Taylor Series 

Engineers learn Taylor series because Taylor series are used to 

• Derive both ordinary and partial differential equations 

• Convert differential equations into algebraic equations that can be solved using a 
computer algorithm by a CFD program 

A Taylor series is a series expansion of a function about a point. The general formula for the 
function f (x) expanded around the point x = a is 

f (x) = J(a) + (df) (x ~a) + (d2~) (x - ,a? +... (16.3) 
dx a 1. dx a 2. 

For example, when the function is j(x) = e', Eq. (16.3) becomes: 

[ 
(x - a)2 (x - a)1 

] 
ex = ea I + (x- a) + 

2 
+ 

6 
+ ... (16.4) 

Kojima et al. (5) suggest that a Taylor series is an imitation of an equation, just as equations are 
imitations of the physical world (See Fig. 16.10). 

FIGURE 16.9 

Using polar coord inates 
to represent the velocity 
vector at a point. The 
pictured Row is ideal 
flow (i.e., inviscid and 
irrotational) over a circular 
cylrnder. 
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FIGURE 16. 10 

Data (observations) ore 
idealized with equations. 
Then, equations ore 
idealized with a Taylor 
series. 

are 
tmilated I «IUatiom 

are 
tmirated ­

\\itb 

I a~ lor 
\eriec; 

Taylor series are commonly truncated. This means that higher order terms are neglected. For 
example, consider the following Taylor series: 

Taylor senes approximation 
~ (The acronym H.O."L stands for = H1gher Order Term)) 

I 
f(x) = - - = 1 + x + x2 + x 3 

.J.. x4 + ... (H.O.T.) 
1 - X 

When x = 0.1, Eq. {16.5) gives 

Functton 
Ta)·lor senes approXJIDatton 

(16.5) 

1 (16.6) 
f(x) = -- = 1.111 Ll ... = 1 + 0.1 + 0.01 + 0.001 + 0.0001 ... + ... (H.O.T.) 

1 - 0.1 

The effects of neglecting higher order terms are: 

• When two terms are kept, the result is 1.1. 

• When three terms are kept, the result is 1.11. 

• When four terms are kept, the result is 1.111. 

For engineering purposes it is sometimes useful to modify Eq. (16.3) by changing the indepen­
dent variables. Change x to x + ~x and let a = x. The result is 

(df) (.h) (d 2f) ( ~x)2 

f(x + d x) = f(x) + - -
1 

+ - 2 -
1
- + ... ( H.O.T.) 

dx " 1. dx x 2. 
(16.7) 

In fluid mechanics, one uses the Taylor series for a function of several variables. The 
general form of Taylor series for a function of two variables f(x, y) expanded about point 
(a, b) is 

f(x,y) = f(a, b)+ (a f) (x ~a) +(a f) (y - b) 
ax a,b l. a y a, I> 1! (16.8) 

+ ( ii
2f) (x - a)

2 + ( a2J ) 2(x - a)(y - b) + ( a2f) (y - b)
2 

+ ... 
ax2 

a,b 2! ax a y a,b 2! a l a,b 2! 

To modify Eq. ( 16.8) so it is more useful for fluid mechanics, let x = x + dx, y = y, a = x, and 
b = y. 

(af) .lx (iJ2f) (d x)
2 (a3f) (~x) 3 

f(x + ~x.y) = f(x ,y) + - - + 2 - + - 1 -- + ... (16.9) 
ax x,y 1! ax x,y 2! ax x.y 3! 

Next, introduce the variables used in fluid mechanics: 

(af) ~x (a 2f) (~x)2 f (x + d x, y, z, t) = f(x, y, z, t) + - -
1 

+ -
2 

-
1
- + ... H.O.T. (16.10) 

ax x,y.z,l 1. ax x,y,z,r 2. 

Summary. In fluid mechanics, engineers commonly expand functions into a Taylor series, 
which is a series expansion of about a point. Often higher order terms (H.O.T.) are neglected. 
A useful form of the Taylor series for fluid mechanics is Eq. (16.10). 



Mathematical Notation (Invariant Notation and Operators) 

In addition to Cartesian, cylindrical, and polar coordinates, engineers use other systems such 
as spherical coordinates, toroidal coordinates, and generalized curvilinear coordinates. Be­
cause there is a large amount of detail, engineers sometimes write equations in ways that apply 
to any coordinate system. Invariant notation is a mathematical notation that applies (i.e., 
generalizes) to any coordinate system. 

To introduce invariant notation, consider the gradient of the pressure field (Table 16.1). 
As shown, the gradient can be written several ways. Also, the mathematical notation can be 
classified into two categories. 

• Coordinate specific notation. Terms in equations are written so that they apply to a specific 
coordinate system. For example, Table 16.1 shows Cartesian and cylindrical coordinates. 

• Invariant notation. Terms are written so that they apply to any coordinate system; that is, 
they generalize. 

TABLE 16.1 Alternative Ways to Write the Gradient of the Pressure Field 

Category 

Coordinate-specific 
notation 

Invariant notation 

Description 

Cartesian coordinates 

Cylindrical coordinates 

Del notation 

Gibbs notation 

Jndicial notation 

(Einstein summation convention) 

Table 16.1 shows three types of invariant notation. 

Mathematical Form 

ap . + ap . + ap k -· - } ax ay i)z 

ap 1 ap ap 
U + - u + - u . 

iJr r r i:J6 A dZ • 

\'p 

grad(p) 

iJp . 
- ora,p 
ax, 

• De/notation is represented by the nabla symbol \7. Del notation is the most common 
approach used in engineering. 

• Gibbs notation uses words to represent operators, for example grad to represent the 
gradient. Gibbs notation is common in mathematics. 

• Indicia/ notation is a shorthand approach that is common in both engineering and physics. 

Mathematical Operators 

In mathematics, collections of terms called operators are given names because they appear 
commonly in the equations of mathematical physics. In the equations of fluid mechanics, 
some of the common operators are 

• Gradient: for example, the gradient of the pressure field or the gradient of the velocity field 

• Divergence: for example, the divergence of the velocity field 

• Curl: for example, the curl of the velocity field 

• LaPlacian: for example, the LaPlacian of the velocity field 

• Material derivative: for example, the time derivative of the temperature field 
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FIGURE 16. 11 

A fluid particle moving 
from a reg1on of cooler 
temperatures to a region of 
higher temperatures 

FIGURE 16.12 

As a fluid particle is 
transported by a flowing 
fluid, its location changes 
as shown in th is figure. 

. ... ... ······ 

Each operator has a physical interpretation, and in the next section, we show how to develop a 
physical interpretation by going through the derivation of the partial differential equation. For 
a tho rough introduction to operators, we recommend Schey's book (6). 

Summary. A variety of mathematical notations are used. The notations can be classified 
into invariant and coordinate specific categories. The path that we recommend is to learn 
each notation (over time) and recognize that the various notations are just different ways to 
express the same ideas. 

The Material Derivative 
This subsection introduces an operator called the material derivative. This operator has mul­
tiple names in the literature including the (a) substantial derivative, (b) Lagrangian derivative, 
and (c) derivative following the particle. Whenever you hear any of these labels, recognize Lhat 
all are naming the material derivative. 

The best way to understand the material derivative is to go through the steps of the deriva­
tion, which we do next. We select temperature for the derivation because temperature is easy 
to visualize. 

The purpose of the derivation is to develop an expression for the time rate of change of the 
temperature of a fluid particle. 

Step 1. Select a fluid particle. Visualize a fluid particle in a flow that has temperature 
variations (Fig. 16.11). Notice that as the given fluid particle moves, its temperature will 
rise because it is being transported from a cooler region to a warmer region. 

Step 2. Apply the definition of the derivative. The time rate of change of temperature T 
of the fluid particle is given by the ordinary derivative. 

dT . T(t + !.lt) - T(t) 
-= hm 
dt xt-->0 f.lt 

(16.11) 

As shown in Fig. 16.12, at time t, the particle is at location (x, y, z). 

~;,~~,,,,. 
/\ ~. pamcle ts at location 

A ... • .. -.. <- ·- (x + .lx, y + ~y. z + llz) 

Atttme 1. the particle 
is at locatiOn (x. y. :) 

Thus, the particle's temperature at timet is given by T = T(x,y, z, t) . Similarly, the particle's 
temperature at time t + M is T = T(x + !.lx, y + !.ly, z + !.lz, t + !.lt). Substituting into 
Eq. (16.11) gives 

dT = lim T(x + d x,y + !.ly, z + !.lz, t + M )- T(x,y, z, t) (
6

.
121 

dt ~t->0 !.lt 



Step 3. Apply Taylor's series. Expand the numerator in a Taylor's series and neglect higher 
order terms. 

(aT) llx (aT) Ay (aT) Az (aT) At 
dT ax l! + ay l! + az l! + at 1! 
- = lim -------=------------dt ..\ t-+o At 

_ lim (aT) llx +(aT) Ay +(aT) Az +(aT) M 
.l~-+o ax M ay At az M at M 

Step 4. Apply the definition of speed. 

Ax lly 
u = lim - , v = lim - , 

~t-+o At ~t-+o ll t 

llz w= lim­
ll.t-+o At 

(16.13) 

(16.14) 

Step 5. Combine equations. Insert Eq. (16.14) into Eq. (16. 13) to give the final result. 

dT =(aT)+ u(aT) + v(aT) + w(aT) 116•15) dt at ax ay az 
Step 6. Interpret the result. The left side of the equation is the desired result: the time 
derivative of a property of a particle. The right side describes the mathematical mechanics for 
doing the derivative when a field is used. That is, this equation describes how to do the math 
to obtain a time derivative when an Eulerian description is being used. To summarize: 

dT 
dt -..,... 

time derivati\'~ of 

the tempel'3ture of 
a fluid part1cle 

mathematics needed to do the denvallve when a 
field (I.e., an Eulenan approach) is bemg u~ 

(16.16) 

Step 7. Generalize the results. Eq. (16.16) was derived for a specific scalar field (i.e., the 
temperature field). However, it could have been derived for any scalar field. Thus, let j 
represent a generic scalar field. 

Similarly, Eq. (16.16) could have been derived using any coordinate system. Thus, one can 
replace the spatial derivatives with an invariant notation. The generalization ofEq. (16.16) is 

df 
dt ....... 

timt derivative 
of the property J 
of a fluid particle 

mathematics needed to do the derivative when 

a field (i.e .• an Eulerian approach) is being used 

(16.17) 

Note that many engineering references write the material derivative using capital letters 

(
material derivative is) ~ Dj 
represented using Dt 

In cylindrical coordinates, the material derivative is 

dJ of aJ vo of of -= - +v-+-- +v­
dt at r ar r ae z az 

(16.18} 

(16.19) 

Summary. The material derivative represents the time rate of change of a property of a fluid 
particle. As shown in Eq. (16.17), the partial derivative terms (right side) described the me­
chanics needed to find the derivative. The material derivative can be written in Cartesian coor­
dinates (16.16), cylindrical coordinates (16.19), or in an invariant notation (16.17). 
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The Acceleration Field 
The acceleration field describes the acceleration of each fluid particle: 

(
acceleration at a) _ (thacce6le~adtion ~f1 ) _ (mfatherial derivative) 

. . fi ld - e ut partie e - o t e 
potnt tn a e 

at this location velocity field 

(16.20) 

Therefore, introduce the material derivative to describe the acceleration field. 

dV 
a =-

dt 
(16.21) 

To represent Eq. (16.21) in Cartesian coordinates, insert the velocity field from Eq. (16.1). 

d du dv dw 
a = dt(ui + vj + wk) = dti + dtj + dtk (16.22) 

Because du!dt is the material derivative of a scalar field, this term can be evaluated using 
Eq. (16.16). When this is done for each term on the right side of Eq. (16.22), the acceleration 
in Cartesian coordinates is given by 

(
acceleration ) dV 
of a fluid particle = a = dt = 

When acceleration is derived in cylindrical coordinates, the result is 

dv, vij 

a ~ [ ::J= -~-:• + _:,_,v_a 

dvz 
dt 

av, av, Ve dV, dV, vij 
-+v-+--+v-- -
at r ar r ae t az r 

ave ave Ve dVa dVe V, Vo 
- + v-+ --+ v -+--
at r ar r ae z az r 

av, dVz Ve dVz av, - + v,- + -- + v,­
at ar r ae az 

(16.23) 

(16.24) 

Summary. The acceleration field is given by the material derivative of the velocity field. This 
can be written in Cartesian coordinates (16.23) or cylindrical coordinates (16.24). 

16.3 The Continuity Equation 

The continuity equation, according to Frank White (7), is one of five partial differential equa­
tions that are needed to model a flowing fluid. The set of five equations is 

• The continuity equation. This is the law of conservation of mass applied to a fluid and 
expressed as a partial differential equation. 

• The momentum equation. This is Newton's second law of motion applied to fluid. This 
equation is mostly commonly developed for a Newtonian fluid, and the equation is called 
the Navier-Stokes equation. 



• The energy equation. This is the law of conservation of energy applied to a fluid. 

• Equations of state (two equations). An equation of state describes how thermodynamic 
variables are related. For example, an equation of state for density describes how density 
varies with temperature and pressure. 

The continuity equation is described in this section, the Navier-Stokes equation is described 
in the next section. The other three equations are described in the books by White (7, 8). 

In practice, there are multiple ways to write the continuity equation as a partial differential 
equation. This can be quite confusing when learning. Thus, the main purpose of this section is to 

• Introduce various forms of the continuity equation 

• Introduce the language and ideas for understanding how and why engineers use these 
different forms. 

Derivation Using a Control Volume (Conservation Form) 

This section introduces one of the ways to derive the continuity equation. 

Step 1. Select a Control Volume (CV). Select a CV (Fig.l6.13) centered around the point 
(x, y, z). Assume that the CV is stationary and nondeforming. 

/ Stationary CV situated 
L_ aroundpoint (x.y,z) 

r- '> 
/ / f 

rC.-r : tL:·. 
l __ \ / 

Location (x, y, z) 

Let the CV have dimensions (~x, ~y, ~z), where each dimension is infinitesimal in size. 
Infinitesimal means that dimensions are approaching zero in the sense of the limit in cal­
culus (e.g., limit ~x~O). 

Step 2. Apply Conservation of Mass. Apply conservation of mass to the CV. The physics are 

(rate of accumulation of mass) + (net outflow of mass) = (zero) 

These physics can represented by this equation: 

dmcv . 
dt + mnct = 0 

Step 3: Analyze the Accumulation. The accumulation term is 

dm,v = a(mass in cv) = rJ(p¥) = (ap).v= (ap)~x ~ ~z 
dt at at at at Y 

(16.25) 

(16.26) 

(16.27) 

Eq. ( 16.2 7) uses a partial derivative because the control volume is fixed in place, which 
means that the variables x, y and z have fixed values. The volume term was pulled out of 
the derivative because the volume of the CV is constant with time. 

Step 4.Analyze the Outflow To analyze mnet > consider flow through the x-faces (Fig. 16.14) 
of the CV. An x-face is defined to as a face of the cube that is perpendicular to the x -axis. As 
shown, there is outflow through the positive x-face and inflow through the negative x-face. 

FIGURE 16. 13 

A stationary, 
nondeforming, inlinttestmol 
CV that is situa ted at point 
(x,y , z) in a moving fluid . 
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FIGURE 16. 14 

Inflow and oulflow of moss 
through the x ·faces of the 
control volume 

Inflow //r--;>1 
ofmass r----, _ l . 
_,I~ 

I I ) Outflm, 
L __ _ j/ ofma." 

The mass flow rates through the x-faces are 

m positive = (pAu)x+ .lxt2 = (pu)x .lxt2 (~y..lz) 
x-fac. 

mnegauv~ = (pAu)x .lxi2 = (pu)x .lx '2 (.ly.lz) 
x-face 

The net flow rate through the x-faces is 
0 0 0 
mn~t = mpositive - mncgahve 

x-facr x-face 

= (( pu),,- .lx/2- ((pu)x-.lxl2))(~y..l z) 

Simplify Eqo (16029) by expanding the derivatives in a Taylor series to give 

a(fJU) 
mnet = --(..lx ..ly~ z) 

x·face ax 

Repeat the process used to derive Eqo (16030) for the y-face to give 

a(pv) 
mnet = --( . .lx..ly~ z) 

y-face ay 

Repeat the process used to derive Eqo (16030) for the z-face to give 

a(pw) 
mnet = --(~x~y~z) 

z-face az 

(16.28) 

(16.29) 

(16.30) 

(16.31) 

(16.32) 

To sum the mass flow rates through all faces, add up the terms in Eqs. (16.30) to 
(16032)0 

m = (a(pu) + a( pv) + a(pw))(~x~y~ z) 
net ax ay az 

(16.33) 

Step 5. Combine Results. Insert terms from Eqs. (16027) and (16.33) into Eq. (16026): 

(
ap) (a(pu) a(pv) a(pw)) -;- ( .l x~y~z) + -. - + -- + - - (~x~y~ z) = 0 at ax ay az 

Divide through by the volume of the CV to give the final result: 

ap a(pu) a(pv) a(pw) 
-+--+--+ - -= 0 
<Jt ax ay az 

Step 6. Interpret the Physics The meaning of Eq. (16.35) is 

Clp 

Dt ......... 
rate of a<.:cwnulation of mass 
in • dllferrntial CV d1V1ded hy 
the volume of the CV 
(kg!s per m3

) 

+ 
a(pu) a(av) a(pw) 
--+--+-- =0 

ax ay az 

net rate of mass flow 
out of the CV divitkd by the 
volume of the CV 
(kgls per m' ) 

(16.34) 

(16.35) 

(16.36) 
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Note the dimensions and units of the terms that appear in the continuity equation: 

(mass/time) kg/s 
= 

(volume) 
(16.37) 

Derivation Using a Fluid Particle (The Nonconservation Form) 

The literature uses two forms of the continuity equation: 

• Conservation Form. The conservation form, developed in the last subsection, is derived 
by starting with a differential control volume and applying conservation of mass to this 
CV. This is an Eulerian approach. 

• Nonconservation Form. The nonconservation form, developed in this subsection, is 
derived by starting with a differential fluid particle and applying conservation of mass to 
this particle. This is a Lagrangian approach. 

Next, we derive the nonconservation form of the continuity equation. 

Step I. Select a Fluid Particle. Select a fluid particle (Fig. 16.15) centered around a point 
(x,y, z) in space. Because a particle moves with a flowing fluid, this particle is at this loca­
tion only at a specific instant in time. 

-
}-v 

X 

r-~.v-l T ..- Fluid panicle centered 
.l: around pomt (x. y, :) 
1_ at timer 

I 

(.r.y,:) 

Step 2. Apply Conservation of Mass. By definition, the mass of the particle must stay 
constant with time. To say this mathematically: 

d(mass) d[(density)(volume)] d(pV) 
dt = dt = ----;;t = 0 (16.38) 

Step 3. Apply the Product Rule. Eq. (16.38) becomes 

d¥ dp 
p- +¥-= 0 

dt dt 
(16.39) 

Step 4. Analyze the Change in Volume Term. The change in volume term describes how 
the volume of the fluid particle changes with time. To analyze this term, apply the defini­
tion of the derivative: 

d¥ . :V(t + Llt) - :V(t) 
-= lun 
dt .:l'-;::;'0 Ll t 

(16.40) 

In Eq. {16.40), the volume at timet is 

:V(t) = Llxflyflz (16.41) 

and the volume at time t + Llt is 

V(t + M) = (fl x + Llx')(fly + Lly')(Llz + Llz') (16.42) 

FIGURE 16. 1 5 

Flu1d particle (infinitesimal 
in size) located at paint 
(x,y,z) ira flowing fluid. 
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where each term of the form Ax' represents a change in the length of the side of the par­
ticle. Next, multiply out the terms on the right side of Eq. (16.42) and neglect higher order 
terms (H.O.T.). The equation becomes 

-V(t +At)= AxAyAz + Ax'AyAz + AxAy'Az + AxAyAz' (16.43) 

Next, combine Eqs. (16.41) and (16.43) and apply Taylor's series: 

-V(t + At)- -V(t) = e: Ax)AyAzAt +Ax(:; Ay)AzAt + AxAye: Az)At (16.44) 

Then, substitute Eq. {16.44) into (16.40) to give 

dV (au av aw) (au av aw) - = - + - + - AxAyAz = - + - + - V 
dt ax ay az ax ay az (16.45) 

Step 5. Combine Results. Substitute Eq. ( 16.45) into Eq. {16.39), divide each term by the 
volume of the particle, and rearrange to give 

dp (au av aw) -+ p -+-+- =0 
dt ax ay az (16.46) 

Step 6. Interpret the Physics. The derivation of Eq. (16.46), reveals two main ideas: 

• A change in the density of a fluid particle occurs if, and only if, the volume of the fluid 
particle is changing with time. 

• The volume change of a fluid particle is represented mathematicaJJy by the bracketed 
variables in the second term of Eq. {16.46). 

Note that the conservation form (Eq. (16.35)) and the nonconservation form (Eq. {16.46)) 
are equivalent mathematically because one can start with one of these equations and 
derive the other. 

Summary. Derivation of the conservation and the nonconservation forms of the continuity 
equation gives equations that are equivalent mathematically. However, these equations have 
different physical interpretations. 

Cylindrical Coordinates 

The continuity equation can also be derived in cylindrical coordinates; see Pritchard (9). The 
result (conservation form) is 

ap 

at ........ 
rate of accumulation of ma5s 
tn a dllferential CV divided by 
the volume of the CV 

(kg/sperm') 

+ 
1 a(rpv,) 1 a(pva) a(pvz) 
---+---+--= 0 
r ar r il6 az 

net rate of mass flow 
out of the CV dtvided by the 
volume of the CV 

(kg!s per m') 

(16.47) 

One can also derive the continuity equation in spherical coordinates and in other coordinate 
systems. 

Invariant Notation 

This subsection shows how to modify the continuity equation to an invariant form. The ''del" 
operator is defined as: 

il a a 
'il = i - + j - + k -ax ay az (16.48) 
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Thus, start with the continuity equation in Cartesian components and introduce the del 
operator using the dot product. 

ap a(pu) a(pv) a(pw) 
- + --+--+-- =0 at ax ay az 

ap ( a a a) - + i - + j - + k- · ((pu)i + (pv)j + (pw) k) = 0 at ax ay az 
ap 
- + V · (pV) = 0 at 

(16.49) 

The last line in Eq. (16.49) is the continuity equation in an invariant form. The physics are 

ap 
+ V • (pV) = 0 ...._____,_.__. 

Net Outflow of Mass 

(16.50) at 
.......... 

Accumlanon 

The term V · (pV) is the divergence. Eq. {16.50) can also be written with the Gibbs notation. 

ap 

at .......... 
Accumlation 

+ div (pV) = 0 
~ 

Ntt Outflow of Moss 

(16.51) 

A useful aspect of invariant notion is that it provides a way to describe the physics of a 
math operator. Example: the physics of the divergence operator can be established from 
Eq. ( 16.50): 

(

net rate of outflow of mass ) 

from a differential CV centered 

about point (x, y, z) 
div (pV) = V . (pV) = (volume of the CV) 

(16.52) 

The physics of the divergence operator can also be found another way. Step 1 is to write 
Eq. (16.46) in this form: 

dp 
dt + p( V · V) = 0 

dp 
dt + pdiv(V) = 0 

(16.53) 

Step 2 is to go back through the derivation of Eq. ( 16.46). This will reveal that 

(time rate of change of the volume of a fluid particle) 
V · V = div (V) = (16.54) 

(volume of the fluid particle) 

Summary. The continuity equation can be written in an invariant form . This approach pro­
vides a method for developing a physical interpretation of the divergence operator. As shown, 
the divergence operator has two different physical interpretations. 

Continuity for Incompressible (Constant Density) Flow 

Because it is common to assume a constant value of density, the continuity equation is often 
written for the case of constant density. This is usually called incompressible flow. 
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When density is constant, the continuity equation written in Cartesian coordinates (Eq. (16.36) 
or Eq. (16.46)) reduces to: 

au av aw 
-+ -+-=0 ax ay az (16.55) 

Similarly, the continuity equation for cylindrical coordinates (Eq. (16.47)) reduces to: 

1 a(rv,) 1 ave av. 
---+--+ -=0 
r ar r ae az (16.56) 

When density is constant, Eq. (16.51) reduces to: 

V • V = div(V) = 0 (16.57) 

Summary. When flow is modeled as incompressible, the continuity equation reduces to V · V = 
div(V) = 0, which means that the divergence of the velocity field is zero. This equation can also 
be written in Cartesian coordinates (Eq. 16.55) and cylindrical coordinates (Eq. 16.56). 

Summary of the Mathematical Forms of the Continuity Equation 

Table 16.2lists some of the ways to write the continuity equation as a PDE. Recognize that the 
math simply reflects alternative ways to describe the physics. 

TABLE 16.2 Alternative Ways to Write the Continuity Equation as a PDE 

General 
equation 

Description 

Cartesian coordinates 
r (conservation form) 

Cartesian coordinates 
(nonconservation form) 

Cylindrical coordinates 
(conservation form) 

Invariant 
(conservation form) 

!---

Invariant 
(nonconservation form) 

~quation 

ap a(pu) a( pv) a(pw) 
- + -- + -- + -- =0 
at ax iJy az 

dp + p(au + av + aw) = 0 
dt iJx ay az 

ap ( ap ap ap) (au av aw) + u- + v- + w - + p - + - + - = 0 
at ax ay az ax ay az 

iJp I a(rpv,) l a(pve) a(pv,) 
- + ---+---+-- =0 

j at ar r aa az 
ap 
at + v · (pV) = o 

dp 
dt + p(V · V) = 0 

-----1---
Invariant form v · V = div(V) = 0 

au av aw 
- +-+-=0 
ax ay az 

Incompressible Cartesian coordinates 

flow equation ----.l----
1 a(rv,) 1 ave av, 
---+-- + -= 0 
r ar r aa az 

Cylindrical coordinates 

As shown in the next example, the continuity equation can be applied in two steps. 

• Step 1. Selection. From Table 16.2, select an applicable form of the continuity equation. 

• Step 2. Reduction. Eliminate the variables in the continuity equation that are equal to 
zero or are negligible. 
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EXAMPLE. Consider developing laminar flow in a round pipe (Fig. 16.16). At the entrance 
to the pipe, the velocity profile is uniform. As the flow proceeds down the pipe, the velocity 
profile becomes fully developed. Assume the flow is steady and constant density. Reduce the 
general equation for the continuity equation so that it applies to this situation. 

Action 

Developing fl ow 

Uniform velocity 
profile 

----t; 

Fully developed fl ow 

Step 1. Selection. Because the flow is constant density and the geometry is a round pipe, 
select the incompressible flow form of continuity in cylindrical coordinates (Eq. 16.56). 

I a(rv,} 1 iJv0 avz 
---+ - +- =0 
r iJr r aa az 

Step 2. Reduction. Assume that the flow is symmetric about the z axis. Thus, Jet v6 = 0. The 
continuity equation reduces to 

} iJ(rv,) dVz 
- --+- = 0 
r ar az 

Review. One could solve this equation to give the velocity field for developing flow in a 
round pipe. Because this equation has two unknown variables (v, and v,), one would also 
need to solve the Navier-Stokes equation. 

16.4 The Navier-Stokes Equation 

The Navier-Stokes equation is widely used in both theory and in application. Thus, this section 
introduces this equation. 

The Navier-Stokes equation represents Newton's second law of motion as applied to viscous 
flow of a Newtonian fluid. In this text, we assume incompressible flow and constant viscosity. 
In the literature, one can find more general derivations. 

Derivation 

Similar to the continuity equations, there are multiple ways to derive the Navier-Stokes equa­
tion. This section shows how to derive the equation by starting with a fluid particle and apply­
ing Newton's second law. Thus, the result will be the nonconservation form of the equation. 
Because the derivation is complex, we omit some of the technical details; to access these de­
tails, we recommend the text Viscous Fluid Flow (8). 

Step 1. Select a Fluid Particle. Select a fluid particle in a flowing fluid (Fig. 16.17). Let the 
particle have the shape of a cube. Assume the dimensions are infinitesimal and that the 
particle is at the position (x, y, z) at the instant shown. 

FIGURE 16. 16 

Developing laminar flow in 
a round pipe. 
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FIGURE 16.17 

A Auid particle s1tuoted 
in a flowing fluid. 

FIGURE 16.18 

The pressure forces on the 
x·foces of a fluid particle. 

Step 2. Apply Newton's Second Law. 

(sum of forces on a fluid particle) = (mass)(acceleration) 

dV LF =rna = m-
dt 

(16.58) 

Regarding the forces, the two categories are body forces and surfaces forces. The only pos­
sible surface forces are the pressure force and the shear force. Assume that the only body 
force is the weight W. Eq. (16.58) becomes 

(weight) + (pressure force) + (shear force) = (density)(volurne)(acceleration) 

dV 
W + FP + F, = p:Vdt (16.59) 

The weight is given by 

W = (mass)(gravity vector) = p:Vg 

Insert Eq. {16.60) into Eq. (16.59) to give 

dV 
p:Vg + FP + F, = p-¥ ­

dt 

(16.60) 

(16.61) 

Step 3. Analyze the Pressure Force. To begin, consider the forces on the x-faces of the 
particle (Fig. 16.18). 

The net force due to pressure on the x-faces is: 

Fpressure = -((pA)x+ ~x/2- (pA)x-.1xl2)i = - (Px+ .lx/2- Px .lx/2)(.£ly.6.z)i (16.62) 
x-fac« 

Simplify Eq. (16.62) by applying a Taylor series expansion (twice) and neglecting higher 
order terms to give 

ap . 
Fprmure = - ( .6.x .6.y .6.z) l 

x-faces ax 
(16.63) 

Repeat this process for the y- and z-faces, and combine results to give 

(
ap ap ap ) 

Fpressure = - - (.6.x.6.y£lz)i + -(£lx.6.y.6.z)j + - (.6.x.6.y£lz)k 
d~ ~ ~ ~ 

(16.64) 
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Simplify Eq. (16.64) and then introduce vector notation to give 

(
ap. ilp. ap ) 

Fpressure = - - 1 + - J + - k (.!lx.!ly.!lz) = -'ilp(.!lx.!ly.!lz) 
ax ay az 

(16.65) 

Physics of the Gradient. Eq. (16.65) reveals a physical interpretation of the gradient: 

( 

d. f h ) (net pressure force) gra 1ent o t e fl 'd . 1 on a ut partlc e 
pressure field = .......:.......: __ ___:_ __ .......:_ 

. (volume of the particle) 
at a pomt 

(16.66) 

Step 4. Analyze the Shear Force. The shear force is the net force on the fluid particle due 
to shear stresses. Shear stress is caused by viscous effects and is represented mathemati­
cally as shown in Fig. 16.19. This figure shows that each face of the fluid particle has three 
stress components. For example the positive x-face has three stress components, which 
are r xx• 1"xy• and Txz· The double subscript notation describes the direction of the stress 
component and the face on which the component acts. For example, 

• r xx is the shear stress on the x-face in the x-direction. 

• r xy is the shear stress on the x-face in they-direction. 

• rxz is the shear stress on the x-face in the z-direction. 

Shear stress is a type of mathematical entity called a second order tensor. A tensor is analo­
gous to but more general than a vector. Examples: A zeroth order tensor is a scalar, a first 
order tensor is a vector. A second order tensor has magnitude, direction, and orientation 
(where orientation describes which face the stress acts on). 

y 

X 

To find the net shear force on the particle, each stress component is be multiplied by 
area, and the forces are added. Then, a Taylor series expansion is applied and the result 
is that 

[ 

f x,shear l 

F shear = f y, shear = 
f z,shcar 

(16.67) 

FIGURE 16.19 

Shear stresses that oct on a 
fluid portde. 
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Eq. (16.67) can be written in invariant notation as 

F shear = (\' • T).ll = (div(T)).ll (16.68) 

where the terms on the right side represent the divergence of the stress tensor times the 
volume of the fluid particle. 

Eq. (16.68) reveals the physics of the divergence when it operates on the stress tensor. 
Note that this is the third physical interpretation of the divergence operator in this chapter. 
This is because the physics of a mathematical operator depend on the context in which the 
operator is used. 

(
net shear force ) 

(
divergence of ) _ on a fluid particle 

the stress tensor (volume of the particle) 

(16.69) 

Step 6. Combine Terms. Substitute the shear force Eq. (16.68) and the pressure force 
Eq. (16.65), into Newton's second law of motion Eq. (16.61). Then, divide by the volume 
of the fluid particle to give 

dV 
PTt = pg - Vp + v . Tij (16.70) 

Eq. ( 16. 70) is the differential form of the linear momentum equation without any assump­
tion about the nature of the fluid. The next step involves modifying this equation so that 
it applies to a Newtonian fluid. 

Step 7. Assume a Newtonian Fluid. Stokes in 1845 figured out a way to write the stress 
tensor in terms of the rate-of-strain tensor of the flowing fluid. The details are omitted here. 
After Stokes's results are introduced, assume constant density and viscosity. Eq. (16.70) 
becomes 

dV 
p- = pg- 'Vp + IJ.'V 2V 

dt 
(16.71) 

Where 'V2V is a mathematical operator that is called the Laplacian of the velocity field. Eq. 
(16.71) is the final result, the Navier-Stokes equation. 

Step 8. Interpret the Physics The physics of the Navier-Stokes equation are 

dV 
p dt pg + - 'V p + 1-L 'V 2 v 

"'---v---' - '----v----' "'---v---' 

(

mass of the part!de tlmts ) (wetghl ) ( net pressure force ) (net shear force ) 
acceleration of the particle of the particle on the particle on the part1cle 
divided by the volume of the particle divided by its volume divided by its volume diVIded by tt• volum< 

(16.72) 

Note the dimensions and units: 

force N kg 
dimensions = 

1 
- - - ---

vo ume m3 - m2 • s2 
(16.73) 

Cartesian and Cylindrical Coordinates 

To write Eq. (16.72) in Cartesian coordinates, find a suitable reference (e.g., the Internet, an 
advanced fluids text, an engineering handbook) and look up the material derivative (dV!dt), 
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the gradient, and the Laplacian operator in Cartesian coordinates. After substitution, the 
Navier-Stokes equation (constant properties) for Cartesian coordinates is 

(
au au au au) ap (a2u a2u a2u) p - + u- + v- + w- = PKx - - + 1-L - + - + -at ax ay az ax ax2 ay az2 

(
ilv av av av) ap (a2

v a2v a2v) p - + u- + v- + w - = pg - - + 1-1. - + - + -at ax ay az Y ay ax2 al az2 (16.74) 

The Navicr-Stokes equation cannot be solved in general because of the nonlinear terms. An 
example of a nonlinear term is 

au 
u ­

ax 
This term is nonlinear because a dependent variable (u) is multiplied by its first derivative 
(ou/ox). In general, nonlinear terms in differential equations involve functions of the depen­
dent variables. 

The Navier-Stokes equation (constant properties) for cylindrical coordinates is 

(
dV, av, Va av, av, V~) ap (1 a ( av,) 1 a2v, d

2Vr V, 2 dVo) 
r p -+ v -+ - -+ v--- =pg --+ ~-~. -- r- +--+------at r ar r ae z az r r ar r ar ar r2 ae2 az2 r2 r 2 ae 

(
ave ava Va avo ava V,Va) 1 iJp ( 1 a ( ava) 1 a2vo a2va Va 2 (iva) 

fl· p -+ v-+--+v - +- = pu ---+ ~-~. - - r- +--+---+--at r ar r ae z dZ r 68 r iJ8 r ar ar r 2 a82 az2 r 2 r 2 (J8 

(
avz av, Ve avz av,) ap ( 1 a ( av,) } d2Vz a2vz) " ' P -+v-+--+ v- = pg - - + j..t. -- r- +--+­-. at r ar r ae z az z az r ar ar r 2 ae2 az2 

Summary. The Navier-Stokes equation represents Newton's second law of motion applied to 
the viscous flow of a Newtonian fluid. The Navier-Stokes equation has nonlinear terms that 
prevent an exact mathematical solution for most problems. 

v CHECKPOINT PROBLEMS 

Regarding the Navier-Stokes equation (Eq. 16.74), which statements are true? 

a. The terms on the right side are linear. 

b. The equation is invariant. 

c. The equation applies to all fluids (all liquids and all gases). 

16.5 Computational Fluid Dynamics (CFD} 

Computational fluid dynamics (CFD) is a method for obtaining approximate solutions to 
problems in fluid mechanics and heat transfer by using numerical solutions of the governing 
PDEs. This section describes 

• Why CFD is valuable 

• How CFD is used in practice 

• What CDF programs are and how they work 

(16.75) 
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Why CFD Is Valuable 
CFD gives engineers a modeling tool that greatly extends their abilities. For example, there is 
not a straightforward way to develop and solve equations that will predict the pressure field 
and streamline patterns for flow around a building. One might use an experimental approach, 
but this has issues such as matching the Reynolds number and the difficulty in doing parametric 
studies. 

Thus, CFD provides a way to simulate physical phenomena that are impossible for analysis 
and difficult for experiments. Some examples where CFD is a useful modeling tool include 

• Complex systems (e.g., the ink-jet printer, the human heart, mixing tanks) 

• Full-scale simulations (e.g., ships, airplanes, dams) 

• Environmental effects (e.g., hurricanes, weather, pollution dispersion) 

• Hazards (e.g., explosions, radiation dispersion) 

• Physics (e.g., planetary boundary layer, stellar evolution) 

CFD is also useful for studying the effects of design perturbations. For example, to design a 
propeller, one could systemically vary design variables such as the blade profile, blade pitch, and 
rotation speed and see the effect on performance variables such as efficiency, thrust, and power. 

CFD is used in many industries and fields of study: aerospace, automotive, biomedical, 
chemical processing, HVAC, hydraulics, hydrology, marine, oil and gas, and power generation. 

Summary. CFD is valuable to the engineer because: 

• CFD provides a method for modeling complex problems that cannot effectively be 
modeled with analytical or experimental fluid mechanics. 

• CFD provides a way to consider design perturbations on complex problems such as 
propeller design and the design of spillways. 

• CFD is widely used in industry. 

CFD Codes in Professional Practice 
A code is engineering lingo for a computer program. In professional practice and most 
research projects, engineers can 

• Option I. Write their own code. This is rarely done. 

• Option 2. Apply a code that has been developed by others. This is the most common 
practice because code development requires years of effort. 

This subsection describes three commonly used codes and provides suggestions about select­
ing a code. 

Ground Water Modeling. MOD FLOW {10) is a computer program for analyzing groundwa­
ter flow. This code has been under development since the early 1980s. MODFLOW is consid­
ered the de facto standard for simulation of ground flows. The program is well validated and is 
considered as legally defensible in U.S. courts. 

MODFLOW is available in noncommerical (i.e., free) versions. However, the licensing 
is limited to government and academic entities. For commercial use, implementations of 
MODFLOW cost from $1,000 to $7,000 USD (10). 

Internal Combustion Engine Modeling. The KIVA codes ( 11, 12) were originally developed 
in 1985 by Los Alamos National Laboratory to simulate the processes taking place inside an 
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internal combustion engine. The KIVA programs have become the most widely used CFD 
(computational fluid dynamics) programs for multidimensional combustion modeling. KIVA 
can be applied to understand combustion chemistry processes, such as autoignition of fuels, 
and to optimize diesel engines for high efficiency and low emissions. Hence, KIVA has been 
used by engine manufacturers to improve the performance of engines. 

Modeling of Flows with Free Surfaces. In 1963, Tony Hirt of the Los Alamos National 
Laboratory pioneered a computational method called the volume of fluid (VOF) approach that 
is useful for tracking and locating a free surface or a fluid- fluid interface. Thus, the VOF 
method is useful for modeling flows such as flow from a reservoir or the flow of metal into a 
mold. Dr. Hirt left Los Alamos and founded a company called Flow Science that now markets 
a code called FLOW-3D. 

Some examples of the capabilities of FLOW-3D, according to the company's Web site (13), 
include 

• Modeling of a coffer dam and spillway of a hydroelectric power plant 

• Design of a canoe chute for passage around a low head dam 

• Modeling of the molding of foamed polyurethane resin, which can expand in volume by 
more than 30 times during molding 

The examples of Flow-3D, KIVA, and MOD FlOW suggest some common ideas: 

CFD programs can be very useful for applications. The three codes just described provide 
technologies for modeling (a) groundwater flow, (b) internal combustion engines and (c) open 
channel flows. There are other codes available that allow one to model other applications. Thus, 
CFD is a powerful technology for modeling problems that involve fluids. 

Select a CFD code to match your problem. CFD codes are developed to solve specific types 
of problems. FLOW-3D is for open channel flow, whereas KJVA is for internal-combustion 
engines and MODFLOW is for modeling groundwater flow. Thus, make sure that the CFD 
code is well suited for the type of problem you want to solve. 

Use an Existing Code. In the three examples, the codes have been under development since 
the 1980s or earlier. Many years of work have gone into these codes. Thus, it is cost effective to 
take advantage of this legacy instead of writing a code from scratch. 

Features of CFD Programs 

This subsection describes the vocabulary and ideas that used by most CFD programs. 

Approximation of PDEs. CFD codes apply mathematical methods to develop approximate 
solutions to the governing PDEs. Approximate solutions (estimates) can be close to reality or 
far away from reality, depending on the details of how the estimate is made. The accuracy of 
the estimate is determined in part by how the code was developed. However, most of the ac­
curacy is based on decisions made by the user of the code. 

There are many ways to develop approximate solutions of partial differential equations. 
Three common approaches are called the finite difference method, the finite element method, 
and the finite volume method. 

When a partial differential equation is approximated, the result is a set of many algebraic 
equations that are solved at points in space. These points in space are defined using a grid. 



626 CHAPTER 16 • MODELING OF FLUID DYNAMICS PROBLEMS . .. . ........ ..... ... . .. . 

FIGURE 16.20 

A grid used to model 
subsonic flow post o 
circular cylinder at o 
Reynolds number of 
10,000 From NASA (14) 

Grid Generation. A grid (Fig. 16.20) is a set of points in space at which a code solves for values 
of velocity and other variables of interest. The grid is set up by the user. There are two trade-offs: 

• Accuracy. If the grid is closely spaced, which is called a fine grid, then the solution is 
generally more accurate. In the grid shown in Fig. 16.20, notice how the user set a fine 
grid near the wall of the cylinder. 

• Computational Time. If the grid is coarse (grid lines are widely spaced), then the amount 
of time for the code to run deceases. Decreasing the computer run time is important 
because CFD codes can take a long time (i.e., days) to run one simulation. 

>-

-0.5 
X 

Grid generation capability is set up by the code developers, and the grid generation itself is 
done by the user. Wyman {15) describes three approaches available for grid generation. 

• Structured Grid Methods. With this method, the grid is laid out in a regular repeating 
pattern called a block (Fig. 16.20). Details (fine grid, coarse grid, etc.) are specified by the 
user. The advantage of a structured grid is that the user can set up the grid to maximize 
accuracy while achieving acceptable run time. A drawback of a structured grid is that it 
can take significant time for the user to input the parameters needed to create the grid. 
Also, a structured grid requires user expertise for proper layout. 

• Unstructured Grid Methods. An unstructured grid is based on a computer algorithm 
that selects an arbitrary collection of elements to fill the solution domain. Because the 
elements lack a pattern, the grid is called unstructured. An unstructured grid method is 
well suited for novices because the grid can be set up easily and quickly and does not 
require much user expertise. The drawbacks are that the grid may not be good as a 
structured grid in terms of accuracy and solution time. 

• Hybrid Grid Methods. Hybrid grid methods are designed to take advantage of the 
positive aspects of both structured and unstructured grids. Hybrid grids use a structured 
grid in local regions while using an unstructured grid in the bulk of the domain. 

Time Steps. Because PDEs are being solved by CFD codes, the approximation methods 
involve solving for variables at specific instances in time. The interval between each solution 
time is called a time step. 



Accuracy versus Solution Time. In general, if one selects a fine grid and small time steps, the 
CFD solution is more accurate. However, fine resolution of space and time drive up the re­
quired solution time for the computer. This might seem like a nonissue with today's fast com­
puters, but CFD programs can require days or weeks of solution time. Thus, there is a trade-off 
between accuracy of a solution versus the time that the computer needs for calculations. 

Boundary Conditions and Initial Conditions. Solving PDEs, which includes using CFD pro­
grams to develop approximate solutions to PDEs, involves the specification of boundary con­
ditions and initial conditions. 

• Specifying a boundary condition involves giving numerical values for the dependent 
variables on the physical boundaries that describe that spatial region in which the 
differential equations are to be solved. Examples: 

• When flow enters a boundary, the user might specify a known value of velocity at each 
point. This is known as a velocity boundary condition. 

• When flow enters a boundary, the user might specify a known value of pressure at each 
point. This is known as a pressure boundary condition. 

• Specifying an initial condition involves giving numerical values for the dependent 
variables at all spatial points at the starting time of the solutions. Nearly always, this 
starting time is time equals zero. 

Turbulence !Direct Numerical Simulation). Because most flows of engineering interest in­
volve turbulent flow, CFD codes have methods for analyzing turbulent flow. The most accurate 
approach, which is called direct numerical simulation (DNS}, involves setting the grid and 
time steps fine enough to resolve the features of the turbulent flow. As a result Hussan (16) as­
serts that a DNS solution is very accurate but is also "unrealistic for 99.9% of CFD problems 
because it is computationally unrealistic." This is because the required computer time is too 
large for today's computers. Thus, DNS is not used for most problems. 

Turbulence Modeling. Turbulence modeling involves the prediction of effects of turbulence 
by applying simplified equations. These equations are simpler that the full time-dependent 
Navier-Stokes equations. CFD Online (www.cfd-online.com) describes twenty-seven turbu­
lence models and is a good source for details. 

One of the most widely used turbulence models is called the k-epsilon model or k-F. 
model. This model uses one equation for the turbulent kinetic energy (k) and another equa­
tion for the rate of dissipation of the turbulent energy (e). These equations are used together 
with the Reynolds-averaged Navier-Stokes (RANS) equations. The RANS equations are de­
veloped by starting with the equations of motion and then taking the time average. According 
to Hussan (16), the k-e method can be very accurate, but it is not suitable for transient flows 
because the averaging process wipes out most of the important characteristics of a time-dependent 
solution. The main advantage of the k-e model is that it is computationally efficient. 

Another widely used turbulence model is called large eddy simulation (LES). Large eddy 
simulation is a compromise between DNS and k-e. LES uses enough detail to resolve the large­
scale structures of the turbulence but uses the k-e equations to resolve the small scales. The LES 
method allows one to solve problems that are not well modeled with the k-e model by using an 
approach that is more computationally efficient than DNS. 

Solver. A solver is the computer algorithm that solves the algebraic equations used by the 
CFD code. The outputs of the solver are the values of the velocity, pressure, and other relevant 
fields. 
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Post Processing. After the solver has generated a solution, the code uses this solution to 
calculate other parameters of interest. This process is called post processing, and the soft­
ware that does this work is called the post processor. Some common functions of a post 
processor: 

• Calculate derivative variables such as vorticity or shear stress 

• Calculate integral variables such as pressure force, shear force, lift, drag, coefficient of lift, 
and coefficient of drag 

• Calculate turbulent quantities such as Reynolds stresses and energy spectra 

• Develop plots and other visual representations of data; for example 

~ Plots showing time history; for example, time history of forces or wave heights 

~ 2-D contour plots of variables such as pressure, velocity, or vorticity 

~ 2-D velocity vector plots 

~ 3-D iso-surface plots of parameters such as pressure or vorticity 

~ Plots showing streamlines, pathlines, or streaklines 

~ Animations of the flow 

Verification and Validation 
Engineers are very interested in assessing the trustworthiness of solutions. To this end, the 
CFD community has adopted methods for assessing correctness. 

Validation examines the degree to which CFD predictions agree with real-world observa­
tions. A common validation strategy is to systematically compare CFD predictions to experi­
mental data or to solutions to well-known problems, called benchmark solutions. 

Verification examines the degree to which the numerical methods used by the code result 
in accurate answers. Verification can involve varying the spacing in the grid and ensuring that 
the predicted results are not dependent on the grid spacing. Similarly, verification can involve 
varying the time step to ensure that results are time step independent. 

16.6 Examples of CFD 

This section presents three examples showing how professionals apply and think about CFD. 

Flow through a Spillway 
Problem Definition. This study by Li et al. (18) involved the Canton Dam (see Fig. 16.21), 
which is located on the North Canadian River in Oklahoma. When the dam was built in 1948, 
the design was based on maximum flowrate (during a flood) of about 10,000 m3/s. Since this 
time, improved hydrology data have suggested that the dam should be able to pass a peak flood 
discharge of 17,700 m3/s. Thus, a new auxiliary spillway was proposed, and the study presents 
an analysis of the proposed spillway. 

Methods. A commercial CFD code, Fluent, was used to solve the time-dependent Reynolds­
averaged Navier-Stokes (RANS) equations. The turbulence model was a k-e model with wall 
functions. The CFD code was used to develop a tentative design. This design was then built 
in a 1:54 scale physical model, and the experimental data was used to validate the CFD 
code. 
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FIGURE 16.21 

The Canton Dam showing the proposed new auxiliary spillway. 

Results. Li et a!. stated, 

"The physical model results were compared to the CFD model results, and found to be in 
good agreement. Ihe CFD model was thus validated, which in turn validated the method­
ology used and the results of all the CFD runs, not just the one configuration constructed 
and tested in the physical model. Averaged water surface elevation at the control plane 
for the favorable geometry design is stilll.OB m higher than the allowed maximum pool 
elevation. Since the CFD model runs gave insight into how each geometry modification 
affected flow patterns and water surface elevations, further modifications to lower the 
reservoir water surface can be undertaken with confidence directly in the physical model. 
This study shows a successful application of a CFD model in the design process of an aux­
iliary spillway. The encouraging result gives hydraulic engineers and CFD modelers more 
information on integrating numerical model and physical model to the process of design 
of hydraulic structures:· 

In this quote, several useful ideas to notice: 

• The engineers concluded that the CFD model was trustworthy. 

• The engineers suggest that integrating CFD and experimental modeling is a viable 
approach for the design of hydraulic structures. 

Drag on a Cyclist 
Problem Definition. Bicycle racers and coaches want to understand how to reduce aerodynamic 
drag (see Fig. 16.22) because 90% or more of the resistive forces on the cyclist is due to this drag. 

(a) (b) (c) 

FIGURE 16.22 

Cyclist Positions: (a) upright 
position, (b) dropped 
posi tion, and (c) time-trail 
posi tion. 
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However, past CFD studies have issues with how the turbulence models were set up and with 
the degree of validation with experiment. Thus, the purposes of Defraeye et al. (14) study 
were to 

• Evaluate the use of CFD for the analysis of aerodynamic drag of different cycling positions 

• Examine and improve some of the limitations of previous CFD modeling studies for sport 
applications 

Methods. Experimental method involved wind-tunnel experiments to gather pressure data at 
30 spatial locations and to provide data on the coefficient of drag. This drag data was measured 
as the product of coefficient of drag (C0 ) and frontal area (A) because accurately measuring 
frontal area is challenging. 

The CFD simulation used both the Reynolds-averaged Navier-Stokes (RANS) approach 
and large eddy simulation (LES). 

Results. The results (see Table 16.3) show that the CFD and experimental results differ by 
about 11% for RANS and about 7% for LES. The authors state that this is considered to be a 
close agreement in CFD studies. The authors report a fair agreement for the predicted surface 
pressures, especially with LES. Despite the higher accuracy of LES, the authors suggest that the 
higher computational cost make RANS more attractive for practical use. 

The authors conclude that CFD is a valuable tool for evaluating the drag corresponding 
to different cyclist positions and for investigating the influence of small adjustments in the 
cyclist's position. A strong advantage of CFD is that detailed flow field information is obtained, 
which cannot easily be obtained from wind-tunnel tests. These details provides insights about 
the drag force and guidance for position improvements. 

TABLE 16.3 Predicted Drag for Cyclists from 
Defraeye et al. ( 14) 

Cyclist Position Turbulence Comparison with 
(see Fig. 16.22) Model AC" experiment (%)a 

Upright I RANS 0.219 13 
-r LES 0.219 13 t 

Dropped RANS 0.179 7 
r .....----

LES 0.172 3 

Time Trial RANS 0.150 12 

LES 0.142 6 

"The comparison with experiment is calculated using this formula: 

{AC0 predicted from CFD) - (AC0 measured from experiment) 

{AC0 measured from experiment) 

Predicting Wind Loads on a Telescope Structure 

Problem. Because the ne>..'t generation of optical telescopes are large, wind loading on the struc­
ture becomes more significant. Thus, Mamou et al. (19) conducted a study to investigate the 
wind-loading on the prototype Canadian/United States Very Large Optical Telescope (VLOT) 



SECTION 16.7 A PATH FOR MOVING FORWARD 

structure. The study was done during the first phase of design to assess wind loads, vortex 
shedding, and cavity resonances caused by wind blowing over the opening of the telescope. 
The structure (Fig. 16.23) is 51 m in diameter, with a 24-meter-diameter opening through 
which the telescope views the sky. The purpose of the study was to assess the capability of a 
CFD model. 

FIGURE 16.23 

The Very Large Optical 
Telescope Structure. 

Methods. The code was a fully unsteady Lattice-Boltzmann CFD program. Wind tunnel data 
were used to validate the code. 

Results. The authors noted that cavity resonance due to flow over the opening and vortex 
shedding from the spherical structure were observed in the wind tunnel experiments and the 
CFD computations. The CFD code predicted three simultaneously excited cavity modes that 
were identical to those measured. 

16.7 A Path for Moving Forward 

Because some students want to learn more fluid mechanics, this section gives ideas for moving 
forward. 

Study at the Graduate level 

Some useful graduate courses include partial differential equations, continuum mechanics, 
numerical methods, fluid mechanics, and computational fluid mechanics. While taking classes, 
some useful ways to expand one's horizons are to 

• Read the research literature 

• Read technical books 

• Read on the Internet (for example, see the online CFD community at http:/ /www.cfd -online.corn!) 

learn via Application (Jump into the Swimming Pool) 

Some ideas for application include 

• Find a CFD code and learn to run this code. 

• Do projects for companies. 

• Get involved in research. Take the lead role in writing a research paper. 

For students who become involved in research, consider going to conferences and presenting 
your work. Submit your papers for publication. Sometimes work will get criticized, but peer 
reviews are an opportunity for learning. 

63 1 
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At research meetings, get to know the members of the community. Most people who at­
tend research meeting have passion for their technical work, and many enjoy helping new 
people who are becoming engaged in the discipline . 

Follow John Roncz's Advice 

As John Roncz states (see beginning of chapter) jump in and figure out things yourself. This is 
really the key to learning anything. 

16.8 Summarizing Key Knowledge 

Models 

• A model is an idealization or simplified version of reality. Models are valuable when they 
help us reach our goals in an economical way. 

• The process of model building is an iterative process. The steps are 

~ Identify the variables. 

~ Classify the variables into performance variables (dependent variables) and design 
variables (independent variables). 

~ Determine how to relate the variables. When variables can be related by applying 
engineering equations, apply the Wales-Woods model. When variables can be related by 
correlating experimental data, apply regression analysis and other methods from statistics. 

~ Validate to determine if model predictions are accurate enough. 

• In fluid mechanics, there are three approaches to model building: analytical fluid 
mechanics, experimental fluid mechanics, and computational fluid mechanics. Most 
models involve two or three of these approaches working synergistically. 

• Model building is best done by starting with simple models and then evolving these 
models through an iterative process. Multiple trade-otfs in model building involve 
resources, benefits, solution accuracy, and solution detail. 

Foundations for Learning Partial Differential Equations (PDEs) 

• The PDEs that govern flowing fluids can be solved for only a few special cases because 
nonlinear terms preclude a general solution. Problems that can be solved are called exact 
solutions. These exact solutions were discovered many years ago. 

• Two reasons for learning PDEs are 

~ To understand and apply existing solutions (found in the literature) 

~ To understand the equations that are being solved by CFD codes 

• The solution of the PDEs are fields. The general form of a field is exemplified by the 
velocity field. The velocity field is 

I Cartesian V = u(x,y, z, t) i + v(x,y, z, t)j + w(x,y, z, t)k 

~ylindrical V = v,(r, 6, z, t) u, + v6(r, 6, z, t) u9 + v,(r, 6, z, t) Uz 

• Notice that the velocity field involves 

~ Independent variables. The independent variables are the three position variables and time. 

~ Dependent variables. The dependent variables are the three velocity components. 
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• Taylor series are commonly applied in fluid mechanics for developing derivations and for 
developing CFD programs. A useful form of the Taylor series is 

(
a f) ~x ( a

2f) ( ~x)2 

f (x + ~x, y, z, t) = f(x, y, z, t) + - - + ----:2 -- + ... H.O.T. 
ax x,y, z,t 1! ax- x,y,z,t 2! 

where H.O.T. stands for"Higher Order Terms:' For a small change (i.e., ~xis small), higher 
order terms are often neglected. 

• PDEs are written in two ways. 

~ Coordinate specific form. Terms apply to a specific coordinate system. This approach is 
useful for specific applications. 

~ Invariant form. Terms apply to any coordinate system; that is, they generalize. This 
approach is useful for writing (e.g., thesis, research paper) and presentations because 
the equations are compact, and they illustrate the physics. 

• Invariant notation is a mathematical notation that applies (i.e., generalizes) to multiple 
coordinate systems. Three common forms of invariant notation are 

~ Del notation uses the nabla symbol V. 

~ Gibbs notation uses words (e.g., grad, div, curl) to represent operators. 

~ Indicia[ notation uses subscripted letters to represent vector components and summations. 

• An operator is a named collection of mathematical terms. Common operators in fluid 
mechanics equations are 

~ Gradient: for example the gradient of the pressure field 

~ Divergence: for example, the divergence of the velocity field 

~ Curl: for example, the curl of the velocity field 

~ LaPlacian: for example, the LaPlacian of the velocity field 

~ Material Derivative: for example, the time derivative of the temperature field 

• Each operator has one or more physical interpretations. These interpretations can be 
developed by working through the derivations of the PDEs. 

• The material derivative 

~ Has multiple names in the literature (e.g., substantial derivative, Lagrangian derivative, 
and derivative following the particle) 

~ Represents the time rate of change of a property of a fluid particle 

~ In symbols is 

dj 

dt ...... 
time derivative 

of property J of 
a Auid particle 

= (!~) + V • V J = (!~) + V · grad (J) 

mathematics needed to do the derivative when 
a field (i.e., an Eulerian approach) is being used 

• Acceleration, defined at a point in space, means the acceleration of the fluid particle at this 
point at the given instant in time. Acceleration in Cartesian coordinates is 

(
acceleration ) dV 
of a fluid particle = a = dt = 
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The Continuity Equation 

• Any problem involving a flowing fluid can, in principle, be solved by solving a coupled set 
of five partial differential equations comprised of the continuity equation, the momentum 
equation, the energy equation, and two equations of state. 

• The conservation form of the continuity equation is derived by applying the law of 
conservation of mass to a differential control volume. The resulting equation, in Cartesian 
coordinates, is 

ap 

at ....... 
rate of accumulation of mass 
in a d1fferential CV d1v1ded by 

the volume of the CV 
(kg/s per m') 

+ 
a(pu) a(pv) a(pw) 
--+--+ - - = 0 ax ay az 

net rate of mass flow 
out of the CV div1ded by the 
volume of the CV 
(kg/s per m1

) 

• The continuity equation can be expressed using two forms. 

~ The conservation form is derived by starting with a differential control volume and 
applying conservation of mass to this CV. 

~ The nonconservation form is derived by starting with a differential fluid particle and 
applying conservation of mass to this particle. 

~ The conservation and nonconservation forms are mathematically equivalent because 
one can start with one form of the equation and derive the other form. 

• The non conservation form of the continuity equation in Cartesian coordinates is 

• Derivation of the continuity equation provides two interpretations of the divergence 
operator. 

from a differential CV centered 
(

net rate of outflow of mass ) 

about point (x, y, z) 
div(pV) = V . (pV) = (volume of the CV) 

(time rate of change of the volume of a fluid particle) 
V · V = div(V) = - ------- - --- - - ­

(volume of the fluid particle) 

• When density is constant, the flow is called incompressible, and the continuity equation 
can be written as: 

Invariant form 

Cartesian coordinates 

The Navier-Stokes Equation 

V • V = div(V) = 0 l 
ilu av aw 
-+-+ -=0 
ilx ay i)z 

• The Navier-Stokes equation is derived by applying Newton's second law of motion to a 
viscous flow while also assuming that the fluid is Newtonian. 
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• In invariant form, the Navier-Stokes equation for an incompressible flow with constant 
density and viscosity is. 

dV 
p- = pg + -Vp + !J.V 2 V 

dt ...,.., '-v---' '-----v----' 
'-----v----' 

(

mass of the particle times ) (weight ) (net pressure force ) (net shear force ) 
acceleration of the particle of the particle on the particle on the particle 
divided by the volume of the particle divided by its volume divided by its volume divided by its volume 

• Derivation of the Navier-Stokes equation reveals the physics of operators. 

~ The gradient of the pressure field describes the net pressure force on a fluid particle 
divided by the volume of the particle. 

~ The divergence of the shear stress tensor describes the net viscous force on a fluid 
particle divided by the volume of the particle. 

• Nonlinear terms (see Fig. 16.24) appear in the acceleration term of the Navier-Stokes equation. 

Computational Fluid Dynamics (CFD) 

• Computational fluid dynamics (CFD) is a method for solving fluid mechanics problems by 
developing approximate solutions to the governing PDEs. Benefits of learning CFD include 

~ CFD can be applied to model complex problems that cannot be modeled effectively 
with experiment or analysis 

~ CFD provides a way to vary design parameters and learn what happens to the 
performance of the system under study. 

~ CFD is widely used in industry. 

• Regarding CFD codes 

~ Engineers typically apply an existing code rather than writing their own code because 
many exceUent codes are available, and the process of developing a code takes years of 
effort. 

~ Engineers select codes that fit the type of problem that they are trying to solve (e.g., for 
modeling groundwater, engineers might select MOD FLOW; for modeling an internal 
combustion engine, engineers might select KIVA). 

• CFD codes have an associated language. 

~ A grid is a set of points in space at which a code solves for values of velocity and other 
variables of interest. 

~ A time step is the interval between each solution time. 

~ Boundary conditions are specified values of the dependent variables (e.g., pressure, 
velocity) on the physical boundaries of the problem. 

~ Specifying an initial condition involves giving numerical values for the dependent 
variables at all spatial points at the starting time of the solution. 

~ A solver is a label for the computer algorithm that solves the algebraic equations that 
approximate the PDEs that are being solved by the CFD code. 

~ A post processor is a computer algorithm that uses the solution from the solver to 
generate plots and calculate parameters such as drag force and shear stress. 

~ Validation assesses the degree to which CFD predictions agree with experimental data. 

~ Verification examines the degree to which the numerical methods used by the code 
result in accurate answers. 

FIGURE 16.24 

Nonlinear terms in the 
Navier-Stokes equation 
contain the product of 
velocity and its derivative. 

au 
~ax 

velocity ~derivative of velocity 
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. 
• Three common approaches to modeling turbulent flow are: 

~ Direct numerical simulation (DNS) involves setting the grid and time steps fine enough 

to resolve the features of the turbulent flow. DNS is unrealistic for most flows because 

the required computational time is too large. 

~ Large eddy simulation (LES) involves direct simulation of the large-scale eddies in the 

turbulence and approximate simulation of the smaller eddies. 

~ The k-epsilon model (k-e model) models turbulence by introducing two extra equations. 

As compared to DNS and LES, the k-e model is computationally efficient. 
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PROBLEMS 

Gs Problem available in WileyPLUS at instructor's discretion. 

Models in Fluid Mechanics (§ 16. 1) 

16.1 Which of the following could be considered a model? 
Why? (select all that apply). 

a. The ideal-gas law 

b. A set of instructions for using a pitot-static tube to 
measure velocity 

c. An airplane built from a kit 

d. A computer program to predict the force on a pipe bend 

12. "KIVA (software)-Wi.kipedia, the free encyclopedia." 
Downloaded on 1/3/12 from http://en.wikipedia.org/wiki/ 
KIVA_(software) 

13. "Computational Fluid Dynamics Software I FLOW-3D from Flow 
Science,CFD:'Downloaded on 1/3/12 from http://www.flow3dcom/ 

14. "Test Cases:' Downloaded on 1/4/12 from http://cfl3d.larc. 
nasa.gov/Cfl3dv6/cfl3dv6_testcases.html#cylinder 
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Generation:' Downloaded on I /14/12 from http://www.cfdreview. 
com/ article.pl?sid =0 1/04/28/2131215 

16. http://piv.tamu.edu/CFD/ les.htm, downloaded on 2/14/12. 
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~Guided Online (GO) Problem, available in WileyPLUS at 
instructor's discretion. 

16.2 Apply the modeling building process to the Balloon 
Payload problem described here. 

a. What are the relevant variables? 

b. How are the variables related? What are the relevant 
equations? How can you apply these equations to develop 
a single algebraic equation to solve for your goal? 

c. What is a simple and low-cost way to test your math 
model using experimental data? 



THE BALLOON PAYLOAD PROBLEM 

Your team is designing a helium-filled balloon that will 
travel to at least 80,000 feet elevation in the atmosphere. 
The balloon will transport a payload comprised of a cam­
era and a data acquisition system. Right now, you choose 
to solve a simpler problem, which is to develop a model 
that predicts the weight on the earth's surface (at your loca­
tion) such that a helium-filled balloon is neutrally buoyant. 
This simpler problem can be easily tested with an experi­
ment in your classroom. 

16.3 Apply the modeling building process to the Rocket Problem 
described here. 

a. What are the relevant variables? 

b. How are the variables related? What are the relevant 
equations? 

c. What is a simple and low-cost way to test your math 
model using experimental data? 

THE ROCKET PROBLEM 

Your team is designing a two-stage, solid-fuel rocket that is 
intended to travel to 15,000 feet and take photos from this 
elevation. Right now, you choose to solve a simpler prob· 
!em, which is to develop a model that predicts the height 
that a small, low-cost rocket will fly because a small rocket 
can be purchased from manufacturers such as Estes® or 
Pitsco®, and it is relatively easy to measure elevation for 
such a rocket. 

Foundations for Learning PDEs (§ 16.2) 

16.4 Why do you think that engineers make the effort to 
learn partial differential equations? What are the benefits 
to them? 

I 
16.5 Consider the function f(x) = ~~.Show how to find the 

1 - X 

Taylor series expansion for the function fix) about the point x = 0. 
Evaluate the numerical value of the Taylor series for x = 0.1 
using 5 terms. 

16.6 Consider the functionj(x) = ln(x). Show how to find the 
Taylor series expansion for the function j(x) about the point x = a. 
Then, find the numerical value for x = 1.5 and six terms of the 
Taylor series expansion. 

16.7 Consider a flat horizontal plate that is infinite in size in 
both dimensions. Above the plate is a fluid of viscosity f.L. The 
plate is at rest. Then, at time equals zero seconds, the plate is set 
in motion to the right with a constant velocity V acting to the 

PROBLEMS 637 

right. Consider the velocity field in the fluid above the plate and 
simplify the general form of the velocity field by answering the 
following questions. 

a. Which velocity components (u, v, w) are zero? Which 
are nonzero? Why? 

b. Which spatial variables (x,y,z) are parameters? 
Which can be ignored? Why? 

c. Is time a parameter? Or, can time be ignored? 
Why? 

d. What is the reduced equation that represents the 
velocity field? 

Flat plate (infinite in extent) 
(set in motion at 1 - 0) 

PROBLEM 16.7 

The Continuity Equation (§ 16.3) 

16.8 Compare and contrast the integral-form of the 
continuity equation (Eq. 5.28), p. 183, §5.3 with the PDE form 
of the continuity equation (Eq. 16.36) p. 6l4, § 16.3. Address 
the following questions. 

a. Are the units and dimensions the same? Or different? 

b. How do the physics compare? What is the same? What 
is different? 

c. How do the derivations compare? What is the same? 
What is different? 

d. When would you want to apply the integral-form of 
the continuity equation (Chapter 5)? When would you 
want to apply the PDE-form of the continuity equation 
(Chapter 16)? 

16.9 Start with the conservation form of the continuity 
equation in Cartesian coordinates and derive the non conservation 
form. 

16.10 Start with the nonconservation form of the continuity 
equation in Cartesian coordinates and derive the conservation 
form. 

16.11 Consider water draining out of round hole in the bottom 
of a round tank. Assume constant density and also assume that 
the water does not swirl. Then, 

a. Select the general form of the continuity equation that 
best applies to this problem. 

b. Show how to simplify the general equation from 
part (a) to develop the reduced form. 
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Deriving the Navier-Stokes Equation (§ 16.4) 

16.12 P7ifs Answer each question that follows. 

a. Is Eq. (16.72) p. 622, § 16.3 in conservation form or 
nonconservation form? Why? 

b. Is Eq. (16.72) p. 622, § 16.3 in invariant form or 
coordinate specific form? Why? 

16.13 PUs What are the physics of the gradient of the pressure 
field? What are the units? What are the dimensions? 

16.14 What are the physics of the divergence of the shear stress 
tensor? What are the units? What are the dimensions.? 

16.15 Compare the Navier-Stokcs equation to Euler's equation. 

a. What are the two important similarities? 

b. What are two important differences? 

16.16 Stress, as introduced in the derivation of the Navier­
Stokes equation, is a second-order tensor. Using the Internet, 
find some articles on tensors and answer the following 
questions: 

a. Why do people use tensors? What are the benefits? 

b. What does tensor mean? How is a tensor defined? 

c. What are five examples of tensors as they are applied in 
engineering and physics? 

Computational Fluid Dynamics (§ 16.5) 

16.17 If someone asked you, Why are CFD codes useful for 
engineers? how would you answer? List your top three reasons in 
priority order. 

16.18 Would you prefer to write your own CFD programs, or 
would you prefer to use codes that have been written by others? 
Discuss the advantages and disadvantages of each approach. 

16.19 Using the Internet, find one example of a publicly 
available CFD program (either a commercial or noncommercial 
code) and describe the code so that others can understand the 
code. Address the following questions in your response. 

a. V\'hat is the history of the code? When was the code 
developed? By whom? 

b. What is the main purpose of the code? What type of 
flow is the code well suited for? 

c. How much does the code cost? 

d. What training and resources are available to help you 
learn the code? 

16.20 Briefly explain the meaning of each of the following 
ideas. 

a. Grid 

b. Time Step 

c. Solution time for a CFD program versus the accuracy 

d. Boundary condition 

e. Initial condition 

16.21 Briefly explain the meaning of each of the following 
ideas. 

a. DNS 

b. k-epsilon method 

c. LES 

16.22 Briefly explain the meaning of each of the following 
ideas. 

a. Post processor 

b. Verification 

c. Validation 
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TABLE A. 1 Compressible Flow Tables for an Ideal Gas with k = 1.4 

M or M 1 = local number or Mach number upstream of a normal shock wave; pip, = ratio of static 
pressure to total pressure; p/p, = ratio of static density to total density; TIT, = ratio of static 
temperature to total temperature; A/ A. = ratio of local cross-sectional area of an isentropic stream 
tube to cross-sectional area at the point where M = I; M2 = Mach number downstream of a normal 
shock wave;p21p1 =static pressure ratio across a normal shock wave; T2/T1 =static pressure ratio 
across a normal shock wave; Pr/Pr, = total pressure ratio across normal shock wave. 
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TABLE A. 1 Compressible Flow Tables for an Ideal Gas with k = 1.4 (Continued) 
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0.8615 1.430 1.109 0.9953 

0.8549 1.458 1.115 0.9946 
-t------

0.8485 1.485 1.122 0.9937 
-f----

0.8422 1.513 1.128 0.9928 
~-- -

0.8360 1.541 + 1.134 0.9918 

0.8300 1.570 1.141 0.9907 
-4- -~---

0.8241 1.598 1.147 0.9896 

o.8183 L_ 1:~;; l__ u53 _t o.9884 

0.8126 1~ 1.159 t 0.9871 I 

0.7860 1.805 1.191 0.9794 j 

0.7618 1.960 _[- 1.223- ---i---0-.9-697 1 
0.7397 2.120 1.255 0.95~ 
0.7196 2.286 1.287 0.9448 

n 7011 2.458 f_' l.320 1 0.927~- J 
0.6841 2.636 1.354 l 0.9132 J 
~.6684 2.820 1.388 0.8952 

J -~6540 3.010 1.423 1 
I o.64o5 3.2o5 1.458 t 

0.6281 

L o.616s 

1 o.6os7 

3.406 1.495 

3.61~ 1.532 

3.826 1.569 

(Continued) 
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TABLE A. 1 Compressible Flow Tables for on Ideal Gos with k = 1.41Continued) 

Supersonic Flow 

pip, p/p rrr, 

1.90 

1.95 

2.00 

1 o.l492 l o.257o ~807 
r o.1381 1 o.2432~68o 

0.124 0.2300 l____<J._~56 
~094 L 0.2058 ~13 

---
2.10 

2.20 0.9352- lt 0.1841 0.5081 
- -1--- - -----

2.30 0.799T1 0.1646 0.4859 

2.so o.585r1 0.1317 0.4444 

t\1.<\. 

t 
1.555 

1.619 
I 1.688 
t- ---

1.837 

2.005 

2.193 

2.637 

0.5956 

0.5862 

0.5774 

~ ~1~ 
0.5471 

0.5344 

0.5130 

Norma] Shock Wave 

p,Jp,, 

4.045 1.608 I 0.7674 

4.270 1.647 0.7442 

4.500 1.688 0.7209 

4.978 ,--1.770 ~0.6742-
5.480 1.857 0.6281 
----l - -r----

6.005 1.947 0.5833 

7.125 2.138 0.4990 
- -- ---- ---~--

2.60 

2.70 

0.501T 1 0.1179 

0.4295 11 0.1056 

2.80 0.3685 I 

2.90 0.3165-1 

3.00 0.2722-1 

3.50 0.1311 I 
_.;... 

4.00 0.6586- 2 

0.946r1 

0.8489- 1 

o.762r 1 

0.452r 1 

0.2766- 1 

4.50 0.3455- 2 0.1745- 1 

- - -
5.00 0.1890- 2 0.1134- 1 

5.50 0.1075 2 0.7578- 2 

6.oo 0.6334- 2 T 0.5194 2 

6.50 0.3855- 2 0.3643- 2 

----- ---r--
~·~~ ~2416-3 0.2609-

2 

~1554-3 0.1904- 2 

8.00 0.1024- 3 0.1414-2 

8.50 0.6898- 4 

- - -+--
9.00 0.4739-4 

9.50 0.3314-4 

10.00 0.2356- 4 

•x-" means x · 10-". 

0.1066-2 

0.8150- 3 

0.6313- 3 

0.4948-J 

0.4252 

0.4068 

2.896 0.5039 

3.183 l 0.4956 

0.3894 3.500 
+ 

o.3729 _J_ 3_.8_50_+-

0.3571+..235 
0.2899 6.790 

0.2381 10.72 

o.198o 1 16.56 
+----

0.1667 1 25.oo 

0.1418 r 36.87 

0.4882 

0.4814 

0.4752 

0.4512 

0.4350 

0.4236 

0.4152 

0.4090 

0.1220 1 53.18 0.4042 

7.720 

8.338 

8.980 

9.645 

10.330 

2.238 0.4601 

2.343 0.4236 

2.451 

2.563 

2.679 

0.3895 

0.3577 

0.3283 

14.130 3.315 0.2129 

I s:soo-r- ~47--r---0. 1388 
23.460 4.875 0.9170-l 

29.000 

35.130 

41.830 

+---

5.800 0.6172- 1 

6.822 0.4236- 1 

7.941 0.2965-1 

0.1058 75.13 0.4004 49.130 9.156 0.2115- 1 

0.9259 I 10~ t 0.3974- -r---- 5-7.000 10.47 0.1535 I 

+-
0.8163 - 1 141.8 0.3949 65.460 11.88 o.1nr 1 

-~-

0.7246 I 190.1 

0.647T1 251.1 

0.5814-l I 327.2 

0.5249- 1 421.1 

-~ -
0.3929 74.500 13.39 0.8488- 2 

+ 
0.3912 84.130 

-~ ---l--- - -+--
1 0.3898 94.330 16.69 

--+ 
0.3886 105.100 

- - -+ 
0.3876 I 116.500 

0.6449- 2 

0.4964- 2 

0.3866- 2 

0.3045- 2 0.4762- 1 535.9 

Source: Abridged with permission from R. E. Bolz and G. L. Tuve, 7he Handbook of Tables for Applied Engineering Sciences, CRC Press, Inc., 
Cleveland, 1973. Copyright © 1973 by lhe Chemical Rubber Co., CRC Press, Inc. 
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Temperature, °C FIGURE A.2 
0 20 Absolute viscosities of 

4 certain gases and liquids 
3 [Adapted from Fluid 

2 Mechanics, 5th ed. , by 
V. L. Streeter. Copyright © 

2 I x 10-l 1971 , McGraw-Hill Book 
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FIGURE A.3 

Kinematic viscosities of 
certain gases and liquids. 
The goses ore at standard 
pressure. [Adapted from 
Fluid Mechanics, 5th ed ., 
by V. L. Slreeter. Copyright 
© 1971 , McGraw-Hill 
Book Company, New 
York. Used with permission 
of the McGraw-Hill Book 
Company.] 
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TABLE A.2 Physical Properties of Gases [1' = l5°C (59°F), p = 1 atm] 

R 'i· 
Gns J 

Kinematic Constant 
Viscosity JlkgK k= 

Cp 

m~/~ (ftJ/s) (ft 1bf/slug-"'R) c, 

1.46 X 10 5 287 1004 1.40 
(1.58 X 10 4

) (1716) (0.240) 
........ t -Carbon dioxide 1.115 7.84 X 10- 6 189 841 1.30 222 

(0.0036) (8.18 X 10- 5) (1130) 
t 

(0.201) ___j__ (400) 

Helium 0.169 1.14 x 10- 4 2077 I 5187 1.66 79.4 
(0.00033) (1.22 X 10- 1) (12,419) (1.24) I 

- t-
(143) 

Hydrogen 0.0851 1.01 X 10-4 4127 14,223 1.41 96.7 
(0.000 17) (1.09 X 10- 3) (24,677) (3.40) {174) 

Methane (natmal gas) 0.678 1.59 X 10- 5 518 I 2208 r - 1.31 

~ 
198 I 

(0.0013) (1.72 X 10 4
) (3098) I (0.528) I (356) _J_ 

Nitrogen 1.18 1.45 X 10-5 297 
-i-

1041 1.40 107 
(0.0023) < 1.56 x 10- 4

) ( 1776) (0.249) 

I 
(192) 

Oxygen 1.35 1.50 X 10 5 260 916 1.40 
(0.0026) ( 1.61 X 10- 4) (1555) (0.219) 

Source: V. L. Streeter (ed.), Hm1dbook of Fluid Dynamics, McGraw-Hill Book Company, New York, 1961; also R. E. Bolz and G. L. Thve, Ha11dbook of 
Tables for Applied Engineering Science, CRC Press, Inc. Cleveland, 1973; and Handbook of Chemistry and Physics, Chemical Rubber Company, 1951. 
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TABLE A.3 Mechanical Properties of Air at Standard Atmospheric Pressure 

Temperature 

10°C 

20°C 

30°C 

40°C 

50°C 

60°C 

70°C 

80°C 

90°C 

100°C 

120°C 

140°C 

160°C 

180°C 

200°C 

0°F 

20°F 

40°F 

60°F 

80°F 

100°F 

120°F 

150°F 

200°F 

300°F 

400°F 

I 

+ 
- T -
-t---

1 -r--
1 

1 
..j. -

I 

-t-

+ 

I 

I 
t 

Density 

kg!m3 

1.40 

1.34 

1.29 

1.25 

1.20 

1.17 

1.13 

1.09 

Specific Weight Dynamic Viscosity 

N · s/m2 

13.70 1.61 X 10- 5 I -, 
--t----1_3_.2_0 ___ ,__ __ l_.6_7_X_ I0-

5 -+ 
12.70 1.72 X 10 5 

~ 

12.20 1.76 X I o-s __ ..___ 

+-___ 11.80 1.81 X 10-s 

11.40 1.86 X 10 5 

+--

ll.lO + 1.91 X 10 

L95 x 10-' 

Kinematic Viscosity 

m2/s 

1.16 X 10-s 

1.24 X 10 5 

1.33 X 10- 5 

1.41 X 10- 5 

1.51 X 10 5 

L60 x 10-' 

1.69 X 10-> 

1.79 X 10-s 
-~- .,_ 

10.70 

10.40 

10.10 

t - ----
1.06 

1.03 

1.00 

0.97 

0.95 

0.90 

0.85 

0.81 

0.78 

0.75 

slugs/ft3 

0.00269 

0.00257 

0.00247 

0.00237 

0.00228 

0.00220 

0.00213 

0.00202 

0.00187 

0.00162 

0.00143 

-----+-~-

+ 

t- -

I 
t 

t -

9.81 

9.54 

9.28 

8.82 

8.38 

7.99 

7.65 

7.32 

lbf/ft3 

0.0866 

0.0828 

0.0794 

0.0764 

0.0735 

0.0709 

0.0685 

0.0651 

0.0601 

0.0522 

0.0462 

+ -

--+- -

2.00 X 10-5 

2.04 X 10-5 

2.09 X 10-5 

2.13 X 10 5 

1.89 X 10 5 

1.99 X 10 5 

2.09 X 10- 5 

2.19XI0-5 

2.17 X 10-s 2.29 X 10 5 

---
2.26 X 10-5 2.51 X 10-s 

2.34 X 10-5 

2.42 X 10- 5 

2.50 X 10-s 

2.57 X 10 5 

lbf-s/ff 

3.39 X 10 7 

3.51 X 10-

3.63 x 10- 7 

3.74 X 10 7 

3.85 X 10- 7 

3.96 X 10-7 

4.07 X 10 7 

4.23 X 10-7 

4.48 X 10 7 

4.96 x w-• 
5.40 X 10-7 

i 

I 
I 

I 
t 
~ 

2.74 X 10- 5 

2.97 X 10-s 

3.20 X 10-s 

3.44 X 10-5 

ff!s 

1.26 X 10- 4 

1.37 X 10-4 

1.47 X 10 4 

1.58 X 10- 4 

1.69 X 10- 4 

1.80 X 10- 4 

1.91 X 10- 4 

2.09 X 10- 4 

2.40 X 10- 4 

3.05 X 10-4 

3.77 X 10 •I 

Sv~;rce: Reprinted with permission from R. E. Bol~ and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc., Cleveland, 1973. 

Copyright© 1973 by The Chemical Rubber Co., CRC Press, Inc. 
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TABLE A.4 Approximate Physical Properties of Common Liquids at Atmospheric Pressure 

Demity Specific Dynamic Kinematic 
Liquid and kgtm' Specific Weight Viscosity Viscosity 
Temperature ( slugs/ft3 ) Gravity ~/m~ (lbf/ft1

) N · sJml (lbf-s/tr) m2/s (ft!/s) 

Ethyl alcohot0 >< 31 799 0.79 7,850 1.2 X 10- 3 1.5 X 10 6 2.2 X t0-2 

20"C (68°F) (!.55) (50.0) I (2.5 X 10-5) (1.6 X 10 5) ( 1.5 X 10- 1
) 

- -~ ~ 

Carbon tctrachloride131 1,590 1.59 15,600 9.6 X 10 1 6.0 X 10- :- 2.6 X 10 ! 

20°C (68°F) (3.09) (99.5) I (2.0 X 10 5) (6.5 X 10- 6) (1.8 X 10 3
) ... + t 

Glyccrine1' 1 1,260 1.26 I 12,300 1.41 1.12 X 10- 1 6.3 X 10 2 

20°C (68°P) (2.45) I (78.5) (2.95 X 10 2
) ( 1.22 X 10-2

) (4.3 X 10 3
) 

Kerosene<1 )(l) 814 0.81 I 8,010 1.9 X 10- 1 2.37 X 10- 6 2.9 X 10- 2 

20°C (68°F) ( 1.58) 

I 
(51) (4.0 X 10- 5

) (2.55 x to-") (2.0 X 10 3) .... 
Mercury01131 13,550 13.55 133,000 1.5 X 10- 3 1.2 X 10- 4.8 X 10 1 

20°C (68°F) I (26.3) (847) (3.1 x w-5) { 1.3 X 10- 6
) (3.3 X 10 !) 

~ 

T 

r 
Sea water 10°C 1,026 

I 
1.03 10,070 I 

1.4 X 10- 3 1.4 x w-6 

at 3.3% salinity (1.99) (64.1) I (2.9 X 10 5) (I.SX 10- 5
) - ·- ---

Oils-38°C (100°F) 870 0.87 8,530 I 3.6 X 10- 2 4.1 X 10 5 

SAE 10W<1l (1.69) 

t 
(54.4) (7.5 x w-4) (4.4 X 10- 4) 

~ 

SAE 10W-30<4
> 880 I 0.88 8,630 6.7 X 10 1 7.6 X 10 5 

( 1.71) I 

f 

(55.1) (l.4X 10- 3) (8.2 X 10 1
) 

t ~ 

SAE 3014
> 880 0.88 8,630 1.0 X 10 1 1.1 X 10-4 

( 1.71) (55.1) (2.1 X 10-3) (1.2 X 10 3) 

*Liquid-air surface tem.ion values. 
Sot;rce: (I) V. L. Streeter, Handbook of Fluid Dynamics, McGraw-Hill, New York, 1961; (2) V. L. Streeter, Fluid Mechattics, 4th cd., McGraw-IIill, New 
York, 1966; (3) A. A. Newman, Glycerol, CRC Press, Cleveland, 1968; (4) R. E. Bot~ and G. L. Tuve, HatJdbook of Tables fur Applied Engineerilzg Sciet~ces. 
CRC Press, Cleveland, 1973. 
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TABLE A.S Approximate Physical Properties of Water* at Atmospheric Pressure 

Uynamit Kinematic 
l'emperature Density Specific Weight Vi~cosity Viscosity Vapor Pressure 

kglmJ N/m3 N · s/m1 m2/s N/m1 abs ..,. 
0°C 1000 9810 1.79 X 10- 3 1.79 X 10- 6 611 

t ~ ~ 

S°C --1- 1000 9810 LSI X 10 ' t 1.s1 x w-6 872 
~ -l0°C 

~ - 1000 9810 1.31 x w-~ - 1.31 x w-6 1,230 

lS°C 999 9800 1.14 X 10-3 1.14 X 10 6 1,700 - -
20°C 998 9790 1.00 x w-3 1.00 X 10- 6 2,340 

+ 

t 2S°C 997 9781 8.91 X 10- 4 8.94 x w-7 3, 170 

30°C 996 9771 7.97 x w-4 I 8.oo x w-7 4,2SO 
.- --;- L t 

3S°C 994 t 97S1 7.20 X 10 4 7.24 X 10 7 I S,630 
---+-- + t 

40°C 992 t- 9732 I 6.S3 X 10 4 6.S8 X 10 7 7,380 
~ ~ 

50°C 988 I 9693 5.47 x w- 4 5.53 X 10-' 12,300 
---1- ---+-

60°C - _L_ 983 I 9643 4.66 X 10-4 4.74 x w-7 20,000 

70°C 978 r 9S94 4.04 X 10 4 4.13 X 10 31,200 

t t ----+--
80°C 972 I 953S 3.54 X 10-4 3.64 x w-7 47,400 

I .. 
90°C 965 -t 

9467 3. 15X 10- 4 3.26 x w-7 70,100 
- r-- -+-

100°C 

~ 
9S8 9398 2.82 X 10- 4 2.94 X 10 101,300 

slugs/ft3 lbf/ftl ft2/s psia _... 

40°F I 1.94 62.43 3.23 X 10 5 1.66 X 10 5 0.122 
--+-- -- .... -+ 

50°F 1.94 62.40 2.73 X 10- 5 1.41 x w-s 0.178 
+ 

... __ 
60°F 1.94 62.37 2.36 X 10-s 1.22 X 10_, 0.256 

- +- - _ .... 
70°F 1.94 62.30 2.05X i~ 1.06 X 10 5 0.363 

+ .. 
80°F 1.93 62.22 1.80 X 10 5 0.930 X 10 5 0.506 

100°F 1.93 62.00 1.42 X 10-5 ~ 0.739 X 10-5 --r-
0.949 .. - f 

l20°F 1.92 61.72 1.17X 10 5 0.609 X 10 5 I 1.69 
t- ---t 

140°F 1.91 61.38 0.981 X 10 5 0.514 X l0 5 2.89 
~ --,.. -+- + 

160°F 

I 
1.90 61.00 0.838 X 10- 5 0.442 X 10-5 4.74 - - --+ 

180°F 1.88 60.58 0.726 X 10- 5 0.38S X 10- 5 7.51 
--r- t 

200°F -+- - 1.87 I 60.12 0.637 X 10- 5 

I 0.341 X 10- 5 11.53 

212°F 1.86 
-~ 

59.83 0.593 X 10 5 I 0.319 X 10 5 14.70 

*Notes: Dulk modulus E, of water is approximately 2.2 GPa (3.2 X I 05 psi). 
Source: Reprinted with permission from R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc., Cleveland, 1973. 
Copyright © 1973 by The Chemical Rubber Co., CRC Press, Inc. 
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TABLE A.6 Nomenclature 

Dimensions Dimensions Description 

A L2 Area I Fv ML/T 2 Drag force 

A, Lz Jet area I FL MLIT2 Lift force 

Ao Lz Orifice area r- Fs ML!T2 Surface resistance 

A. Lz Nozzle area at M = 1 f friction factor 
~ 

a, a UT2 Acceleration G Giga, multiple = 109 

+ 
b Intensive property 

+-
g L/Tz Acceleration due to gravity 

B L Linear measure 
-4-

H L Head 
-

B Extensive property h L Height 
---
b L Linear measure; wing span h L Piezometric head 

------+ 
Cc Coefficient of contraction h L2/T 20 Specific enthalpy ---- + - --~ 
CD Coefficient of drag ! -~! L Head loss in pipe 

cd Coefficient of discharge I hL L Head loss 

c, Average shear stress coefficient ~-H L Head supplied by pump 

CF Force coefficient I h, L Head given up to turbine 

CH Head coefficient I L4 Area moment of inertia, centroidal 

CL Coefficient of lift Unit vector in x direction 

Cp Power coefficient j Unit vector in y direction 

cp Pressure coefficient k Unit vector in z direction 

CQ Discharge coefficient K Minor loss coefficient --- -
Cr Thrust coefficient k Ratio of specific heats 

c. Coefficient of velocity k, 
-+-----

L Equivalent sand roughness 

c LIT Speed of sound L L Linear measure 
~ 

Cj Local shear stress coefficient I L Linear measure 

l --- ----
Cp L2/T 28 Specific heat at constant pressure e L Linear measure --
Cv Lz/TziJ Specific heat at constant volume M Mach number 

-t- ----
CP Center of pressure M ML2/T2 Moment 

~ 

cs Control surface I .M. M/mol Molar mass - -
CV Control volume m M Mass 

D L Diameter m MIT Mass flow rate 

D L Hydraulic depth N T' Rotational speed 

Dh L Hydraulic diameter N, L314/T312 Specific speed 

d L Diameter N, LJI4/ T JI2 Suction specific speed 

d L Depth n Manning's roughness coefficient 

E ML2/T 2 Energy n r -• Rotational speed --- -- -
E L Specific energy n, 

--+-
Specific speed 

E. MILT 2 Elasticity, bulk 11" Suction specific speed 
+ 

e L2/1·2 Energy per unit mass 
+ 

p M/LT 2 Pressure 

Fr Froude number ... t::..p M/LT2 Change in pressure 

F,F MUT2 force p ML2/T3 Power 

(Continued) 
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TABLE A.6 Nomenclature (Continued) 

I S} rnbol Dimensions Description 

P• 
p, 

p,. 

Pz 

Q 

Q 

q 

q 

Rh 

R 

R 

Re 

r 

s 
St 

So 

s 

S,S.G. 

s 

T 

T 

T, 

T. 

u 

u 

u. 

u' 

u., 

u, 

u, 

no 

v 

v 

M/LT2 

M/LT2 

MILT2 

M/LT2 

L3/T 

MLz;y z 

L2/T 

MILT2 

L 

MLIT2 

r,z;erz 

L 

[} 

L 

ML2/T2 

a 
6 

0 

T 

LIT 

LIT 

Lz/Tz 

LIT 

LIT 

LIT 

LIT 

Pressure at M = 1 

Total pressure 

Vapor pressure 

Piezometric pressure 

Discharge, volumetric flow rate 

Heat transferred 

Discharge per unit width 

Kinetic pressure 

Hydraulic radius 

Reaction or resultant force 

Gas constant 

Reynolds number 

Linear measure in radial direction 

Plan form area 

Strouhal number 

Channel slope 

Specific entropy 

Specific gravity 

Linear measure 

Torque 
--------

Temperature 

Total temperature 

t 

Temperature at M = I 1 
Time 

Free-stream velocity ----

Velocity component, x direction 

Internal energy per unit of mass 

Shear velocity 

Velocity fluctuation in x direction 

Unit vector, normal direction 

Unit vector, tangential direction 

Unit vector, radial direction 

I:Jnit vector, azmuthal direction 

Unit vector, axial direction 

Velocity -=---­
Free-stream velocity 

Volume 

Area-averaged velocity 

Velocity component,y direction 

+ 
+ 

Symbol Dimensions Description 

v' 

w 
w 
We 

w 

LIT 

ML2/T2 

MLIT2 

Velocity fluctuation in y direction 

Work 

Weight 

Weber number 

LIT Velocity component, z direction 
----------------------

X 

y 

y, 

Yn 

z 

[ Un~rmeuure 

L 

L 

L 

L 

L 

Linear measure 

Critical depth 

Normal depth 

Elevation 

Change in elevation 

Greek Letters 

Cl 

Cl 

Cl 

Cl 

8' 

8' N 

TJ 

e 
K 

A 

T 

v 

p 

Angular measure 

Lapse rate 

Kinetic energy correction factor ------------

L 

L 

L 

Angle of attack 

Angular measure 

Circulation 

Specific weight 

Increment 

Boundary layer thickness 

Laminar sublayer thickness 

Nom. laminar sublayer thickness 

Efficiency 

Angular measure 

Turbulence constant ---------------

------------

Aspect ratio of a wing 

Dynamic viscosity 

Shear stress 

Kinematic viscosity 

Dimensionless group 

M/L3 Mass density 
--------------------

p. 

p, 

w 

M/L3 Density at M = I 

M/ e Total density 

T- 1 Rate of rotation 

Tl 

T-1 
------

M/T2 

Angular speed 

Vorticity 

Surface tension 























INDEX 
A 
Abrupt/sudden expan>ton, 270- 271 
Absolute pressure, 51 , 62 
Absolute viscosity, 35 
Acceleration 

calculating. when velocity field is 
specified, 127 

centripetal, 126 
convective and location, 126- 127 
defined, 123 
field, 612 
mathematical description of, 124-126 
moving objects and, 231-233 
physical interpretation of, 124 

Accumulation 
mass,183 
momentum, 215-216 

Adhesion, 47-50 
Adiabatic process, 447,451 
Advance ratio, 519-520 
Adverse pressure gradient, 148-149 
Airfoils 

drag and lift on, 426- 432 
sound propagation, 448- 449 

Airplanes 
drag and lift on, 426-432 
Mach number for, calculating, 450-451 
total temperature calculation, 452-453 
wind tunnel applications, 306- 307 

Alternate depths, 568 
Analytical fluid dynamics (AFD), 601 
Anemometers 

cup,481 
hot-wire or hot-film, 481-482 
laser-Doppler, 483-484 
vane or propeller,481 

Angular momentum equation, 233-236 
Apparent shear stresses, 337 
Apron, 581 
Archimedes' principle, 87 
Area-averaged velocity, 171 
Atmospheric variations, pressure, 69- 71 
Attached flow, 122, 123 
Automobiles 

drag and lift on, 312, 432-435 
model tests for drag force on, 312 

Avogadro's law,13 
Axial-flow pumps, 523-527 
Axisynm1etric bodies, drag and, 413-417 

8 
Barometers, 72 
Bernoulli equation (math) 

invisc.:id flow, 135 
inviscid and irrotational flow, 147 

Bernoulli equation (physics) 
compared with the energy equation, 270 
continuity equation and, 191 
derivation of, 132-133, 270 
examples, 136- 138 
head form,133 
irrotational form, 146- 147 
physical interpretation-energy is conserved, 133-134 
physical interpretation-velocity and pressure vary, 134-135 
pressure form, 133 
summary of, 135 

Best hydraulic section, 563- 564 
Blasius, H., 331 - 332 
Body force, 209-210 
Boundary, 28, 29 
Boundary conditions, 627 
Boundary layer 

defined,330 
development and growth of, 330-331 
pressure gradient effects, 347-349 
separation, 348- 349 
transition, 335- 336 
tripped, 336 

Boundary layer, laminar 
equations, 331-333 
resistance calculation for, on a flat plate, 335 
shear force, 333-334 
shear stress, 333 
shear-stress coefficients, 334-335 
summary of equations, 346 
thickness, 332, 333-334 

Boundary layer, turbulent 
applications, 343 
logarithmic velocity distribution, 337-341 
mixing-length theory, 338- 339 
power-law equation, 342 
shear-stress coefficients, 344-346 
thickness, 344- 346 
summary of equations, 346 
summary of zones, 342 
tripped, 336, 347 
velocity defect law/region, 341 - 342 
velocity distribution, 336-343 
viscous sublayer, 337 
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Bourdon-tube gages, 72-73 
Boyle's law, 13 
Buckingham 1T theorem, 294 
Bulk modulus of elasticity, 32-33, 54 
Buoyancy, center of, 89 
Buoyant forces 

c 

calculating, 85- 88 
equations, 86-87 

Calculations. See Wales-Woods Model (WWM) 
Capillary action, 48-50 
Capture area, 546, 547 
Cartesian components, 117 
Cartesian coordinates, 605-606, 622- 623 
Cavitation 

benefits of, 192 
defined,192 
degradation from, 192 
sites, identifying, 193-193 
Tunnel, William P. Morgan, 193 

Center of buoyancy, 89 
Center of pressu~e ( CP), 78, 80- 81 
Centrifugal compressors, 535-538 
Centrifugal pumps, 386- 387,527-530 
Centripetal acceleration, 126 
Characteristic curves, 525 
Charles's law, 13 
Chemical energy, 253 
Chezy equation, 560, 562- 563 
Circulation 

combined with uniform flow, 423- 424 
defined,422-423 

Closed system (control mass) 
conservation of energy and, 256- 257 
description of, 176- 177, 178 

Coefficients 
discharge, 489, 524 
of drag, 409, 410 
flow,489 
force, 300,301 
head,524 
of lift, 424-425 
minor loss, 380-382 
power, 520 
pressure, 147,300,301,308-309 
roughness, 561 
shear stress, 300, 301 
shear stress, laminar boundary layer, 334-335 
shear stress, turbulent boundary layer, 344- 346 
thrust, 519, 520 
of velocity, 489 

Cohesive force, 46 
Colebrook-White formula, 373 
Combined head loss, 364,379-383 
Comhined head loss equation, 382 

Component head loss, 364, 379-383 
Compressible flows/fluids 

density, 453-454 
drag and, 421-422 
isentropic, through a duct with varying area, 460-471 
kinetic, 454- 455 
Mach number relationships, 451- 455 
measuring, 501-505 
normal shock waves, 455-460 
speed of sound, 446-450 
temperature, 452- 453 
wave propagation, 445-451 

Compressors, centrifugal, 535- 538 
Computational fluid dynamics (CFD), 311,601,623 

computer programs (codes), 624-625 
examples of, 628- 631 
features of, 625- 628 
importance of, 624 
validation and verification, 628 

Conduit, defined, 360 
Conduits, flow in 

centrifugal pumps, 386-387 
classifying, 362 
developing versus fully developed, 361-362 
entry or entrance length, 362 
flow problems, strategies for solving, 375-379 
laminar flow in round tubes, 367- 371 
laminar versus turbulent, 360-361 
nonround, 384-385 
parallel pipes, 387-388 
pipe head loss, 363- 366 
pipe networks, 388-391 
pipe sizes, specify ing, 363 
stress distributions in pipe flow, 366-367 
turbulent flow, 371-375 

Conjugate depth, 580 
Conservation of energy, 255-257 
Conservation of mass. See Continuity equation 
Consistent units, 8-9 
Constant 

density, 32-34,617-618 
primary dimensions of a, 22 
universal gas, 13 
velocity, 229-231 
volume versus pressure, 51 

Continuity equation (math) 
differential equation form, 618 
algebraic form, 184 

Continuity equation (physics) 
applications, 184-191 
Bernoulli equation and, 191 

constant density, 617-618 
cylindrical coordinates, 616 
derivation, 182-183,613-616 
description of, 612-619 
invariant notation, 616-617 



physical interpretation of, 183-184 
pipe flow form, I 89-191 
summary of, 184, 6 I 8-619 
units,l8-t 

Continuum a~~umption, 5- 6 
Control ma~s (clo\ed system), 176- 177, 178 
Controls, 584 
Control surface (CS) 

defined, !--
transport across, I 79- I RO 

Control volume approach 
closed system (control rna~~). 176- I 77, 178 
open sy~tem (control volume),l77-178 
properties, mtensive and extensive, I 78- I 79 
Reynolds transport theorem, 180-182 
transport acro:;s control surface, 179-180 

Control volume (CV) (open system) 
conservation of energy and, 257 
description of, 177-178 
linear momentum equation for stationary, 

218- 228 
Convective acceleration, 126 
Conversion ratios, 10 
Couette, M., 327 
Couette flow, 40-42, 326-327 
Critical depth, s-o 
Critical flow, 569 s-4 
Critical-flow flumes, 573 
Critical mass flow rate, 466 
Critical pressure ratio, 467 
Cross, H., 389 
Culverts, uniform flow in, 56-t- 567 
Cup anemometers, 481 
Curved surfaces, calculating forces on, 83-85 
Curves, characteristic or performance, 525 
Cyclist, drag on a, 629-630 
Cylinders, drag on, 41 1-412 
Cylindrical coordinates, 606-607, 616, 623 

D 
Dam spillways, hydraulic jumps on, 581-582 
Darcy-Weisbach equation (OWE), 364- 366, 558- 559 
Deforming CV, 177 
de Laval nozzles 

flow in, 463-464 
mass flow rate, 465-467,470-471,502-503 
nozzle flow classification by exit conditions, 467- 470 
shock waves in, 469- 470 
l runcated, 4 70-4 71 

Density 
of common liquids, 31 
constant versus variable, 32-34 
description of fluid, 30-3 I, 53 
total, 453-454 
units for, 30 

Depth, conjugate versus sequent, 580 
Depth ratio, 579 
Derivatives, 21 
Design storm, 565 
Developing flow, 361-362 
Din1ensional analysis 

approx:imate, at high Reynolds numbers, 
309 312 

Buckingham 'IT theorem, 294 
common 'IT groups, 299-301 
defined, 295 
exponent method, 297-298 
flows without free-surface effects, 305- 308 
free-surface model studies, 312-315 
model-prototype performance, 308-309 
need for, 292-294 
open-channel flow,555-556 
similitude, 302-305 
step-by-step method, 295-297 
variables, selection of significant, 298-299 

Dimensional homogeneity (DH), 19-22 
Dtmensionality, flow,121 
Dimensionless groups, 20 
Dimensions 

defined, 7 
organizing, 9 
primary, 7-8,21- 22 
relationship between units and, 8 
secondary, 7 

Direct numerical simulation (DNS), 627 
Direct step method, 588 
Discharge coefficient, 489, 524 
Discharge (volume) flow rate, 170- 173, 174, 369 

measuring, 486-500 
in a pipe network, 390-391 

Distributed force, 35 
Dividing streamline, 112- I 13 
Doppler effect, 449 
Draft tube, 545 
Drag curve, standard, 414 
Drag force 

airfoil, 426- 432 
automobile, 312, 432- 435 
axisymmetric bodies and, 413- 417 
calculating, 408-412 
coefficient of, 409, 410 
compressible flows and, 421-422 
on a cyclist, 629- 630 
cylinder, 4 11 - 412 
defincd,406-407 
equation, 409 
induced, 428 
on a sphere, 416 
on a sphere, calculating, 454 
on a sphere using exponent method, 298 
on a sphere using step-by-step method, 296-297 
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Drag force (continued) 
streamlining to reduce, 420-421 
stress distribution and, 407- 408 
surface roughness, 412 
three-dimensional bodies and, 413-417 
two-dimensional bodies and, 410 

Dynamic similitude, 303- 305 
Dynamic viscosity, 35 

E 
Efficiency 

equation, 267 
mechanical, 267-269 
thermal, 267 

Efflux, 183 
Elasticity, bulk modulus of, 32- 33, 54 
Electrical energy, 254 
Electromagnetic flowmeters, 495-496 
Elevation changes, calculating pressure changes associated with, 

65-71 
Empirical equations, 13 
Energy 

categories of, 253- 254 
concepts, basic, 253-255 
conservation of, 255-257 
defined,253 
specific, 567- 569 
units, 253 

Energy equation (math), 263 
Energy equation (physics) 

applications, 264-269 
compared with the Bernoulli equation, 270 
derivation of, 257-258, 261-262 
flow and shaft work, 258- 259 
kinetic energy correction factor, 259-261 
physical interpretation of, 262-263 
for steady open-channel flow, 557-558 
summary of, 263- 264 

Energy grade line (EGL), 273- 277 
Engineering fluid mechanics, defined, 2-3 
Engineers, role of, 2 
Enthalpy, 51 

total, 451 
Entry or entrance length, 362 
Equations 

See also name of 
Bernoulli,l32-138, 270 
buoyant force, 86- 87 
continuity, 182-191 
empirical, 13 
energy, 257-269 
Euler's, 127-132 
flow rate, 170-171, 173, 174 
hydrostatic (differential), 65- 69 
hydrostatic (algebraic), 66-67 

ideal gas law, 14- 15 
manometer, 76 
momentum, 208-236 
panel, 81 
power, 265- 267 
of state, 613 
Sutherland's, 44 
vector, 211-212 
viscosity, 35, 39-42 

Equivalent sand roughness, 373, 375 
Ericsson, A., 15 
Eulerian approach, 116-117 
Euler's equation 

calculation, 130-132 
derivation of, 127-129 
physical interpretation of, 129-130 
pressure variation, due to changing speed of 

particle, 129 
pressure variation, normal to curved streamlines, 130 
pressure variation, normal to rectilinear streamlines, 

129-130 
Expansion, abrupt/sudden, 270- 271 
Experimental fluid dynamics (EFD), 601 
Exponent method, 297-298 
Extensive properties, 178-179 

F 
Fan laws, 527 
Fanning friction factor, 365 
Favorable pressure gradient, 148- 149, 348 
Feynman, R., 3 
Field, 115-116 
Fixed CV, 177 
Fixed identity, 6 
Floating bodies, 89- 92 
Flow 

See also Conduits, flow in; Open channels, flow in 
coefficient, 489 
critical, 569-574 
critical mass, 466 
gradually varied, 567, 582-589 
nonuniform, 118, 555, 567 
nozzles, 494-495 
rapid,569 
rapidly varied, 567- 577 
subcritical, 569 
supercritical, 569 
tranquil, 569 
uniform, 118, 555 
uniform laminar, 325-329 
without free-surface effects, model studies for, 305- 308 
work, 258- 259 

Flowing fluids 
acceleration, 123-127 
circular cylinders and, 147- 149 



dimensionality, 121 
describing, 117-123, 153- 154 
Eulerian and Lagrangian approaches,ll6- 117 
how engineers describe, 43-44, 153-154 
inviscid, 122 
laminar, 119-121 
pathlines, streaklines, and streamlines,l12-114 
regions, 122 
rotational motion, 142-146 
separation, 122- 123 
steady and unsteady,119 
turbulent, 119-121 
uniform and nonuniform, 118 
velocity, 114-117 
viscous, 122 

Flowing gases, thermal energy in, 51-52 
Flow measurements. See Measuring; Measuring devices 
Flowmeters 

electromagnetic, 495-496 
turbine, 496 
ultrasomc, 496 
vortex, 496-497 

Flow rate 
critical mass, 466 
differential areas for determining, 175-176 
equations,1-0-171, 173,174 
example problems, 174- 176 
mass, 1-3, 174, 465-467 
measuring, 486-500 
units, 170, 173 
volume (discharge), 170- 173, 174 

Flow Science, 625 
fLOW-3D, 625 
Fluid in a solid body rotation, 150 
fluid jets, 218-221 
Fluid mechanics, defined, 3 
Fluid particle, 6 
Fluid properties 

bulk modul~ oi elasticity, 32-33, 54 
density, 30-31,53 
finding, 34 
kinemat ic ,;.;co,;ity, 38, 54 
specific gra,ity, 32,53 
specific we1ght. 31, 53 
summary of, 53-54 
surface tension, 45-50, 54 
vapor pressure, 50-51.54 
viscosity, 35-45. 54 

Fluids 
See also Flowing tlwrls 
constant versus vanabJe den,ity, 32-34 
nature of, 3-4 
Newtonian versus non-Ke\\1oruan, 44-45 

Force (forces) 
body,209-210 
buoyant, calculating, 85--

coefficient, 300, 30 I 
cohesive, 46 
on curved surfaces, calculating, 83-85 
defined,209 
diagram, 217-218 
distributed, 35 
on plane surfaces (panels), calculating, 77-83 
shear, 35-36,324-350 
summary of, 210 
surface, 209 
transitions and, 272-273 

Force equilibrium 
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to calculate pressure rise inside a water droplet, 47 
to calculate sewing needle size supported by surface tension, 

49-50 
hydraulic jack and, 64-65 

Form drag, 408 
Francis turbines, 235-236,538,544-545 
Free surface, defined, 555 
Free-surface effects, model studies for flows without, 305-308 
Free-surface model studies, 312-315,625 
Friction drag, 408 
Friction factor, 365 

laminar flow, 369-370 
Moody diagram, 374 
turbulent flow, 372-373,374 

Friction velocity, 337 
Froude number, 300, 30 I, 555 
Fully developed flow, 361-362 

G 
Gage pressure, 62 
Gases 

attributes of, 4 
defined, 4 

Gas turbines, 545 
Geometric similitude, 303 
Gradually varied flow, 567, 582-589 
Grid generation, 626 
Grid method, 9-J 0, 11 , 12 
Grow1d-effect pod, 434 
Ground water modeling, 624 

H 
Hagen-Poiseuille flow, 368 
Hardy Cross method, 389 
Head 

coefficient, 524 
defined,134 
total, 273 

Head loss 
component/combined,364, 379-383 
defined, 262 
flow problems, strategies for solving, 375-379 
in hydraulic jumps, 580 
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Head loss (continued) 
laminar flow and, 369- 371 
in a nozzle in reverse flow, 311-312 
for orifices, 491, 493 
pipe, 363-366 

Heat transfer, 256 
Hele-Shaw flow, 327-329 
Hirt, T., 625 
Homenergic flows, 451 
Hot-wire or hot-film anemometers, 481-482 
HVAC duct, pressure drop in, 385 
Hydraulic depth, 569 
T lydraulic diameter, 384 
Hydraulic grade line (HGL), 273-277 
Hydraulic jumps 

dam spillways and, 581 - 582 
depth relationships, 577- 579 
head loss in, 580 
naturally occurring, 582 
occurrences of, 577 
in rectangular channels, 579-580 

Hydraulic machines, 63- 65 
Hydraulic radius, 384, 556 
Hydrometers, 87 
Hydrophillic, 48 
Hydrophobic, 48 
Hydrostatic equation, 66- 67 
Hydrostatic differential equation, 65-69 
Hydrostatic equilibrium 

See also Pressure 
defined,6I 

Hydrostatic force 
on curved surface, 84 
due to concrete, 82 
to open an elliptical gate, 82-83 

Hydrostatic force (panel) equations, 80-81 
Hydrostatic pressure distribution, 78-79 
Hypersonic flows, 450 

Ideal fluid, 148 
Ideal gas law (IGL) 

applying, to predict weight, 16-17 
development of, 13-14 
dimensional homogeneity application, 20 
equations, 14- 15 
validity of, 14 

Idealized models, 5-6 
Ideally expanded nozzles, 468 
Immersed bodies, 89 
Impulse turbines, 538-541 
Incompressible, 33 
Induced drag, 428 
Induction, 13 
Inertial reference frames, 228- 229 

Infinitesimal particle, 6 
Inflow, 183 
Initial conditions, 627 
Integrals, 21 
Intensive properties, 178-179 
Interferometers, 504-505 
Internal combustion engine modeling, 624-625 
International System of Units (SI), 8, 9 
Invariant notation, 609,616- 617 
Tnviscid flow, 122 
Irrotational flow, 143, 146- 147 
Isentropic process 

J 

compressible fluids through a duct with varying 
area, 460- 47I 

defined,447 

Joule, J. P., 255- 257 

K 
Kaplan turbines, 538 
Karman's constant, 340 
k-epsilon model, 627 
Kinematic viscosity, 38, 54 
Kinetic energy correction factor, 259- 261 
Kinetic pressure, 139, 454- 455 
KIVA, 624-625 
Kutta condition, 426-427 

L 
Lagrangian approach, 116-1 17 
Laminar boundary layer. See Boundary layer, laminar 
Laminar flow 

Couette, 326-327 
defined, 367-368 
description of, 119-121,360- 361 
discharge and mean velocity, 369 
head loss and friction factor, 369-371 
Hele-Shaw, 327-329 
kinetic energy correction factor, 260-261 
in round tubes, 367- 371 
uniform, 325-329 
velocity profile, 368-369 

Large eddy simulation (LES), 627 
Laser-Doppler anemometers (LDAs), 483-484 
Law of the wall, 341 
Learning, defined, 3 
Length scale, 360 
Lift force 

airfoil, 426-432 
automobile, 432-435 
circulation, 422-423 
circulation combined with uniform flow, 423-424 
coefficient, 424-425 
defined,406- 407 
equation, 424 



on rotating sphere, 425 
stress distribution and, 407- 408 

Limit concept, 5 
Linear momentum equation 

applications, 216-218 
applications for moving objects, 228-233 
for stationary control volume, 218-228 
swnmary of, 216 
theory, 213- 216 

Liquids 
attributes of, 4 
defined,4 

Location acceleration, 126 
Logarithmic velocity distribution, 337- 341 
Los Alamos National Laboratory, 624-625 

M 
Mach,E.,450 
Mach angle, 450 
Mach number, 300,301 

for airplanes, calculating, 450-451 
area variation and, 460-461 
critical, 421 - 422 
defined,450 
relationships and compressible flows, 451-455 
velocity measurements and, 501- 502 

Mach wave, 450 
Mach-lender interferometers, 504-505 
Macroscopic viewpoint, 5 
Magnus effect, 424 
Manning equation, 560-563 
Manning's 11, 560- 562 
Manometer equations, 76 
Manometers, 73- 75 
Marker methods, 484-486 
Mass balance equation, 184 
Mass density. See Density 
Mass flow rate, 173, 174 

critical, 466 
de Laval nozzles and, 465-467, 470-471, 502-503 
equation, 174 

Material derivative, 610-611 
Math, defined, 2 
Matter, viewpoints of, 5-6 
Mean velocity, 17 1- 172, 369 
Measuring 

accuracy of, 505-506 
in compressible flow, 501-505 
flow rate, 486-500 
marker methods, 484-486 
pressure, 72-77, 139-J42,478-486 
shock wave visualization, 504 
velocity, 139-142,478- 486,501- 502 

Measuring devices 
anemometers, cup, 481 

anemometers, hot-wire or hot-film, 481-482 
anemometers, laser-Doppler, 483-484 
anemometers, vane or propeller, 481 
flowmcters, electromagnetic, 495-496 
flowmeters, turbine, 496 
llowmeters, ultrasonic, 496 
llowmeters, vortex, 496-497 
flow nozzles, 494-495 
interferometers, 504-505 
orifice meters, 487-490, 491 - 493 
Pitot-static tube, 140-142,480 
rotan1eters, 497 
stagnation (Pitot) tube, 478-479 
static tube, 479-481 
venturi meters, 494,495, 503- 504 
weirs, rectangular, 497-499 
weirs, triangular, 500-501 
yaw meters, 480-481 

Mechanical advantage, 63 
Mechanical efficiency, 267-269 
Mechanical energy, 253 
Mechanics, defined, 3 
Metacenter, 90 
Metacentric height, 90 
Microscopic viewpoint, 5 
Mild slope, 573 
Minor loss coefficient, 380-382 
Mixing-length theory, 338-339 
Models (modeling) 

assessing the value of, 602- 603 
computational fluid dynamics, 601,623-631 
continuity equation, 612-619 
defined, 599 
methods for building, 601-602 
Navier-Stokes equation, 612,619-623 
partial differential equations, 603-612 
process, 599-603 

Model testing 
applications, 302-303 
approximate similitude at high Reynolds 

numbers, 309-312 
dynamic similitude, 303-305 
for flows without free-surface effects, 

305- 308 
free-surface, 312-315 
geometric similitude, 303 
model-prototype performance, 308-309 
ship, 302,314-315 
spillway, 312-314 

MODFLOW, 624, 625 
Mole, 13 
Moment-of-momentum equation, 233-236 
Momentum 

accumulation, 215-216 
diagram, 217,218 
flow,213-215 
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Momentum equation (math) 
linear moment urn, 216 
angular momentum, 233 

Momentum equation (physics) 
angular, 233-236 
linear, applications, 216- 218, 228-233 
linear, for stationary control volume, 218- 228 
linear, theory, 213-216 
Newton's law of motion, 209-212 
nozzles and, 224-225 
visual solution method, 211-212,217-218 

Moody diagram, 373, 375 
Moving objects 

accelerating, 231-233 
constant velocity, 229-231 
linear momentum equations and, 228-233 
reference frames, 228- 229 

Multidimensional flow, 121 

N 
Nardi, A.,l5 
National Research Council, 2 
Navier-Stokes equation, 325, 326,612 

Cartesian and cylindrical coordinates, 622-623 
derivation, 619- 622 

Net positive suction head (NPSH), 532-534 
Newtonian versus non-Newtonian fluids, 44- 45 
Newton's Law of Motion, 209-212, 325 
Newton's Law of Viscosity, 35 
Nominal Pipe Size (NPS), 363 
Non inertial reference frames, 228-229 
Non-Newtonian fluids, 45 
Nonround conduits, 384-385 
Nonuniform flow, 118,555,567 
Normal depth, 555, 560 
Normal shock waves 

defined,455 
in de Laval nozzles, 469-470 
property changes across, 456-458 
in supersonic flows, 458-460 

No-slip condition, 37-38,330 
Nozzles 

See also de Laval nozzles 
applications, 223 
flow classification by exit conditions, 467-470 
ideally expanded, 468 
momentum equation and, 224-225 
overexpanded, 468 
underexpanded, 468 

Nuclear energy, 254 

0 
One-dimensional flow, 121 
Open channels, defined, 555 

Open channels, flow in 
best hydraulic section, 563-564 
Chezy equation, 560, 562- 563 
critical flow, 569-574 
description of, 555- 557 
dimensional analysis, 555-556 
energy equation for steady, 557-558 
gradually varied, 567,582- 589 
hydraulic jump, 577-582 
Manning equation, 560-563 
rapidly varied, 567-577 
Reynolds number, 556, 557 
rock-bedded channels, 559-560 
steady nonuniform, 567 
steady uniform, 558-567 
transitions, 574- 576 
wave celerity, 576-577 

Open system (control volume), 177-178 
Orifice meters, 487-490, 491-493 
Orifices, head loss for, 491 , 493 
Outflow, 183 
Overexpanded nozzles, 468 

p 
Panel (hydrostatic force) equations, 81 
Panels, calculating forces on, 77- 83 
Parallel pipes, 387-388 
Parallel plates 

Couette flow, 326-327 
Hele-Shaw flow, 327- 329 
pressure gradient between, 329 

Partial differential equations (PDEs) 
acceleration field, 612 
approximation of, 625 
Cartesian coordinates, 605-606 
cylindrical coordinates, 606-607 
material derivative, 610-611 
notation, invariant, 609 
operators, 609- 610 
reasons for learning, 603- 604 
Taylor series, 607-608 

Particle image velocimetry (PIV), 485 
Pascal's principle, 63-64 
Pathlines, 112- 114 
Pelton wheel, 538 
Performance curves, 525 
Phase diagrams, 50 
1T-groups, 20 

common, 299-301 
exponent method, 297- 298 
step-by-step method, 295-297 
use of term, 294 

1T theorem, Buckingham, 294 
Piezometer, 73 
Piezometric head, 66,67 



Piezometric pressure, 66, 67 
Pipes 

bends, 225-226 
expansion, abrupt/sudden, 270-271 
flow form, continuity equation and, I 89- 191 
forces on, 272-273 
head loss, 363-366, 375-379 
networks, 388-391 
parallel, 387-388 
sizes, specifying, 363 
stress distributions in pipe flow, 366- 367 

Pitch angle, 518 
Pi tot (stagnation tube), 139- 140, 478- 479 
Pitot-static tube, 140-142,480 
Plane surfaces, calculating forces on, 77- 83 
Poiseuille flow, 39-40, 368 
Post processor, 628 
Pounds-mass, 11 - 12 
Power 

coefficient, 520 
defined, 254-255 
equation, 265-267 
resistance, 416 417 

Power-law equation, 342,371, 372 
Prandtl, L., 331-332, 338-339, 372,428 
Pressure 

absolute, 5 1, 62 
atmospheric variations, 69-71 
center of, 78, 80-81 
changes associated with elevation changes, 

calculating, 65- 71 
coefficient, 14 7, 300, 30 l, 308- 309 
defined, 61-65 
distribution, 77, 148-149 
forces, calculating buoyant, 85- 88 
forces on curved surfaces, calculating, 83-85 
forces on plane surfaces (panels), calculating, 77-1!3 
gage, 62 
hydraulic machines, 63- 65 
hydrostatic differential equation, 65-69 
hydrostatic pressure distribution, 78- 79 
kinetic, 139, 454-455 
measuring, 72-77, 139-142, 478- 486 
piezometric, 66, 67 
static, 139 
stratosphere, 70, 71 
tap, 139 
total, 453 
transducers, 76-77 
troposphere, 69, 70 
uniform pressure distribution, 78 
units, 61 - 62 
vacuum, 62 

Pressure field 
circular cvlinders and, 147-149 
rotating flow and, 149-1 52 

Pressure gradient 
between parallel plates, 329 
effects on boundary layers, 347-349 
favorable and adverse, 148-149, 348 

Pressure ratio, critical, 467 
Pressure variation. See Euler's equation 
Primary dimensions, 7-8, 21- 22 
Process 

defined, 3 
system, 29 

Projected area, 409 
Propeller anemometers, 481 
Propellers, 518- 523 
Properties 

See also Fluid properties 
defined, 29 
intensive and extensive, 178-1 79 

Pump curve, 386 
Pump head, 262 
Pwnps 

R 

axial-flow, 523-527 
centrifugal, 386-387,527- 530 
curves, characteristic or performance, 525 
defined and types of, 255 
discharge coefficient, 524 
head coefficient, 524 
mechanical efficiency, 267- 269 
power equation, 265-267 
suction limitations of, 532-534 

Radial-flow machines, 527-530 
Rapid flow, 569 
Rapidly varied flow, 567- 577 
Rate of shear strain, 36- 37 
Reaction turbines, 538, 542-543 
Reference frames, 228-229 
Relative roughness, 373 
Resistance, power and rolling, 416- 41 7 
Resistance coefficient, 365, 560 
Reynolds, 0., 300, 360 
Reynolds-averaged Navier-Stokes (RANS) 

equations, 627 
Reynolds number, 300, 301 

approximate similitude at high, 309-31 2 
conduit flow type and, 360- 361 
length scale, 360 
open-channel flow and, 556, 557 
similitude for flow over a blimp, 306 
similitude for a valve, 307-308 

Reynolds stresses, 337 
Reynolds transport theorem, 176, 180-182 
Rock-bedded channels, 559-560 
Rolling resistance, 416-417 
Rotametcrs, 497 

INDEX 669 
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Rotational motion, 142-146 
pressure field for, 149-152 

Roughness 
coefficient, 561 
drag and surface, 412 
equivalent sand, 373,375 
relative, 3 73 
sand roughness height, 373 
type of flow and effects of wall, 373 

Runner, 538 

s 
Sand roughness 

equivalent, 373,375 
height,373 

Saturation pressure, 50 
Saturation temperature, 50 
Schlieren system, 504 
Science, defined, 2 
Secondary dimensions, 7 
Sectional drag coefficients, 410 
Sequent depth, 580 
Sewers, uniform flow in, 564-567 
Shaftwork,258-259 
Shear force 

calculating, on a flat plate, 346 
defined,35- 36 
laminar boundary layer and, 333-334 
predicting, 324-350 
tripped boundary layer, 34 7 

Shear strain, 36-37 
Shear stress 

apparent, 337 
coefficients, 300, 30 I 
coefficients, laminar boundary layer, 334-335 
coefficients, turbulent boundary layer, 

344-346 
Couette flow and, 327 
defined, 35- 36 
distributions in pipe flow, 366- 367 
predicting, 324-350 
Reynolds, 337 
thickness, laminar boundary layer, 333-334 
thickness, turbulent boundary layer, 344-346 
viscosity equations used to calculate, 39-40 

Shear velocity, 337 
Ship model testing, 302,314-315 
Shock waves 

oblique, 459-460 
visualization, 504 

Shock waves, normal 
dcfined,455 
in de Laval nozzles, 469-4 70 
property changes across, 456-458 
in supersonic flows, 458-460 

Similitude 
approximate, at high Reynolds numbers, 309- 312 
defined, 302 
dynamic, 303-305 
flows without free-surface effects, 305-308 
free-surface model studies, 312-315 
geometric, 303 
model-prototype performance, 308-309 
scope ot: 302-303 

SI system, 8 
Slugs, 11-12 
Sluice gate, 568 
Solid mechanics, defined, 3 
Solids, attributes of, 4 
Solver, 627 
Sonic booms, 460 
Sound 

Doppler effect, 449 
speed of, 446- 450 

Specific energy, 567-569 
Specific gravity, 32,53 
Specific heat, 51 
Specific heat ratio, 51 
Specific speed, 531-532 
Specific weight, 31, 53 
Speed of sound, 446- 450 
Spheres, drag force and 

calculating, 416, 454 
using exponent method, 298 
using step-by-step method, 296-297 

Spheres, lift on rotating, 425 
Spillways 

hydraulic jumps on darn, 581-582 
models, 312-314,628-629 

Stability of immersed and floating bodies, 
calculating, 88-92 

Stager, R. , 15 
Stagnation 

point, 113 
tube (Pitot), 139- 140,478-479 
use of term, 454 

Stall,427 
State, system, 29, 30 
Static pressure, 139 

ratio,456 
Static tt:mperature, 452 

ratio,456 
Static tube, 479- 481 
Steady flow, 119 

energy equation for steady open-channel flow, 
557-558 

nonuniform, 567 
uniform, 558-567 

Steep slope, 573 
Step-by-step method, 295-297 
Strain, shear, 36-37 



Stratosphere 
defined, 70 
pressure variation in lower, 71 

Streaklines, 112- 114 
Streamlines, 112- 114 

to reduce drag, 420-421 
Stress 

See also Shear stress 
distribution~ and drag and lift, 407-408 
distributions in pipe flow, 366-367 
Reynolds, 337 

Strouhal number, 419-420 
Subcritical flow, 569 
Submerged hydraulic jumps, 582 
Subsonic flow, 461 
Supercritical flow, 569 
Supersonic flows 

de Laval nozzles, 463-465 
diffusers, 461-462 
shock waves in, 458-460 

Supersonic wind tunnels. See Wind tunnels, supersonic 
Surface force, 209 
Surface roughness, drag and, 412 
Surface tension 

adhesion and capillary action, 47-50 
description of, 45-50 
examples of, 45,47 
summary of, 54 

Surge hydraulic jumps, 582 
Surroundings, 28, 29 
Sutherland's equal ion, 44 
System 

T 

curve, 386 
defined,28 
examples of, 29 
process, 29 
properties, 29 
state, 29, 30 

Taylor series, 607-608 
Technology, defined, 2 
Temperature 

effects, viscosity, 42-44 
saturation, 50 
static, 452 
total, 452- 453 

Terminal velocity, 418-419 
Theoretical adiabatic power, 535 
1l1eoretical isothermal power, 536 
Thermal efficiency, 267 
Thermal energy 

defined,253 
in flowing gases, 51- 52 

Thinking operations, 17- 18 

'lhree-dimensional bodies, drag and, 413-417 
Thrust coefficient, 519,520 
Tidal bore, 582 
Time-averaged velocity, 171 
Time steps, 626 
Total density, 453-454 
Total enthalpy, 451 
Total head tube, 139- 140 
Total pressure, 453 
Total temperature, 452-453 
Traditional unit system, 8, 9 
Tranquil flow, 569 
Transition(s) 

abrupt/sudden expansions and, 270- 271 
boundary layer, 335-336 
defined, 335, 574 
forces on, 272-273 
open channel, 574-576 
warped-wall, 575 
wedge,575 

Transonic flow, 462 
Transport 

across control surface, 179- 180 
Reynolds transport theorem, 176, 180-182 

Tripped boundary layer, 336, 347 
Troposphere 

defined,69- 70 
pressure variation in, 70 

Truncated nozzles, 470-471 
Turbine flowmeters, 496 
Turbine head, 262 
'l\1rbines 

defined,255,538 
francis, 235-236, 538, 544- 545 
gas, 545 
impulse, 538-541 
Kaplan,538 
mechanical efficiency, 267-269 
reaction, 538, 542- 543 
specific speed for, 545 
types of, 255 
vane angles, 544-545 
wind, 545- 547 

T urbomachinery 
categories of, 518 
compressors, centrifugal, 535- 538 
propellers, 518-523 
pumps, axial-flow, 523-527 
pumps, centrifugal, 527-530 
pumps, suction limitations of, 532-534 
radial-flow machines, 527-530 
specific speed, 531-532 
turbines, 538-547 
viscou~ effects, 534- 535 

Turbulence modeling, 627 
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Turbulent boundary layer. See Boundary layer, turbulent 
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Turbulent flow 
defined,119-121,360-361,371 
friction factor, 372-373,374 
Moody diagram, 373, 375 
velocity distribution, 371-372 

Two-dimensional bodies, drag and, 410 

u 
Ultrasonic flowmeters, 496 
Uncertainty analysis, 505-506 
Underexpanded nozzles, 468 
Understanding, defined, 3 
Uniform flow 

best hydraulic section, 563-564 
in culverts and sewers, 564-567 
defined,l18,555 
steady, 558-567 

Uniform laminar flow, 325-329 
Uniform pressure distribution, 78 
U.S. Standard Atmosphere, 69 
Units 

carrying and canceling, 9-12 
consistent, 8-9 
defined, 8 
grid method, 9- 10, 11 , 12 
organizing, 9 
pounds-mass and slugs, 11-12 
relationship between dimensions and, 8 
systems, 8, 9 
unity conversion ratios, 10 

Unity conversion ratios, 10 
Universal gas constant, 13 
Universal turbulence constant, 340 
Unsteady flow, 1 I 9 

v 
Vacuum pressure, 62 
Validation, 628 
Vane anemometers, 481 
Vanes, 221-223 

angles, 544-545 
Vapor pressure, 50-51, 54 
Variable density, 32-34 
Vector equation, 211-212 
Velocity 

Cartesian components, 117 
coefficient of, 489 
constant, and moving bodies, 229-231 
defect law/region, 341-342 
defined, 114 
Eulerian and Lagrangian approaches, 116-117 
field, 11 5-116 
flowing fluids and, 114- 117 

friction, 337 
gradient, 36,37 
mean, 171-172,369 
measuring, 139-142, 478-486,501 -502 
profile, 37 
profile in laminar flow, 368-369 
shear, 337 
terminal,418-419 
time-averaged, 120 

Velocity distribution 
logarithmic, 337-341 
measuring, 486 
power-law equation, 342,371,372 
turbulent boundary layer, 336-343 
turbulent flow, 371-372 
variable, 226-228 

Vena contracta, 480 
Venturi flumes, 573 
Venturi meters, 494,495, 503-504 
Venturi nozzles, 138 
Verification, 628 
Viscous effects, 534-535 
Viscosity 

absolute versus dynamic, 35 
defined, 35 
equation,35,39-42 
finding values of, 38 
kinematic, 38, 54 
Newton's law of, 35 
no-slip condition, 37-38 
shear force and stress, 35-36 
shear strain, 36-37 
summary of, 54 
temperature effects, 42-44 
velocity profile, 37 

Viscous flow, 122 
pressure distribution for, 149 

Viscous sublayer, 337 
Visual solution method (VSM), 211-212, 

217-218 
Volume (discharge) flow rate, 170- 173,174 
Volume of fluid (VOF), 625 
Volume flow rate equation, 174 
Vortex flowmeters, 496-497 
Vortex shedding, 122-123,419- 420 
Vorticity, 145 

w 
Wales, C., 15 
Wales-Woods Model (WWM) 

applications, 15- I 7, 18-19 
rationale and development of, 15 
structure of, 17-18 

Warped-wall transitions, 575 



Water hammer, 455 
Water-surface profiles 

defined,584 
evaluation of, 588-5ll9 
types of, 584-588 

Wave celerity, 576 577 
Wave celerity equation, 577 
Wave propagation, in compressible fluids, 

445-451 
Weber number, 300, 301 
Wedge transitions, 575 
Weirs 

rectangular, 497-499 
triangular, 500-501 

Wind loads on a telescope structure, predicting, 
630-631 
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Wind tunnels 
applications, 302- 303, 306- 307, 309 
momentum equation and finding drag force, 227-228 

Wind tunnels, supersonic 
de Laval nozzles and, 463-465 
flow properties in, 465 
mass flow rate in, 466-467 
test section size in, 464 

Wind turbines, 545-547 
Woods, D., 15 
Work 

defincd,254 
flow and shaft, 258-259 

y 
Yaw meters, 480-481 
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