COTM4221

ESHETU TS.

JANUARY 2020

Chapter Four

RESOURCE SCHEDULING

Introduction

- ✓ CPM/PERT ignore resource utilization and availability
- ✓ Schedules need to be evaluated in terms of both time and resources.
- **Time and resource constraints:**
- ✓ Time constraint: A project must be finished by a certain time
- ✓ Resource constraint: A project must be finished without exceeding some specific level of resource usage

Categories of Resources

I. Material

II. Labor

- i. Salaried staff
- ii. Hourly workers

III. Equipment

IV. Money

Influence of resources on schedule

- ✓ Duration of activities are dependent on the usage of resources and their availability.
- ✓ Resources are a significant component of the project cost
- Proper scheduling of resources will have positive impact on the time as well as cost of the project.
- ✓ Improper scheduling resources will result in cost and time overruns

Resource Allocation/Loading:

✓ Is the assignment of the required resources to each activity.

Result in Bar Chart

Assume that 1 manpower resource is required per day for each activity.

✓ Each activity is loaded with one manpower resource based on early start.

✓ Total resource requirement

Resource Over Allocation

- ✓ Resource over allocation occurs when we allocate a specific resource to activities more than the maximum available amount.
- ✓ In the above example, if we consider that there is maximum availability of only one manpower resource on any given day, there is overallocation between day 6 and 9.

✓ From the histogram we can understand that the resources allotted on day 6,7,8 & 9 are more than the available limit.

Resource leveling is performed when :

- ✓ There is an over allocation of resource on specific days.
- ✓ There is fluctuations in day-to-day resource use throughout the project.
- ✓ It attempts to make the daily use of a certain resource as uniform as possible and with in the resource limit.
- ✓ It is usually done by shifting or splitting noncritical activities within their available float.
- ✓ If shifting noncritical activities doesn't solve the problem specially in over allocations, we can shift or split critical activities.

Note: In general, materials do not need to be leveled.

Heuristic:

✓ An approach, such as a rule of thumb, that yields a good solution that may or may not be optimal.

Optimization:

 ✓ An approach, such as linear programming, that yields the one best solution. (Not all projects can be optimized).

Heuristic Method

- ✓ Take the CPM/PERT schedule as a baseline
- ✓ They sequentially step through the schedule trying to move resource requirements around to levelized them
- ✓ Resources are moved around based on one or more priority rules
- ✓ Sort : the process of arranging activities in a list to certain specific order/priority.
- **Common Priority Rules:**
 - $\checkmark\,$ As soon as possible
 - ✓ As late as possible
 - ✓ Most resources first

- ✓ Most critical followers
- ✓ Most successors
- ✓ Arbitrary , etc...

✓ Early start allocation

✓ Early start allocation

Soln....

- ✓ Both in ES and LS based allocations; there exist an over allocation.
- ✓ In order to level the resource requirement we should either shift Act. B or C so that one should begin after the other one ends.
- ✓ Therefore, move ES of Act. C to day 12. This will affect the ES of Act. D and the total project duration.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Α	1	1	1	1	1													
В												1	1	1	1			
С						1	1	1	1	1	1							
D																1	1	1
Σ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Consider the following project in which the resource requirement for trucks for each activity is shown in the following Table:

Activity	IPA	Duration	Trucks
А		2	2
В	А	3	1
С	В	4	6
D	В	4	4
Е	В	2	4
F	С	2	2
G	F	3	2
Н	Е	3	1
I.	D,G,H	1	1

Assume ten trucks are available for the project. Prepare an activity schedule which satisfies the resources constraints.

Network Analysis:

Critical Activities: A-B-C-F-G-I

Bar chart based on ES allocation:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	2	2													
В			1	1	1										
С						6	6	6	6						
D						4	4	4	4						
E						4	4								
F										2	2				
G												2	2	2	
Н								1	1	1					
I															1
Σ	2	2	1	1	1	14	14	11	11	3	2	2	2	2	1

Critical Activities Non Critical Activities Total Float

BEFORE LEVELING

Resource Limit Over Allocation

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	2	2													
В			1	1	1										
С						6	6	6	6						
D											4	4	4	4	
Е						4	4								
F										2	2				
G												2	2	2	
Н								1	1	1					
I															1
Σ	2	2	1	1	1	10	10	7	7	3	6	6	6	6	1

AFTER LEVELING

Resource Limit

Thank You !