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CHAPTER 7 
 

FLOW THROUGH PIPES 
 

 Introduction 
 
Pipes were introduced in the earliest days of the practice of hydraulics. Their common place use today 
makes it of great importance that the laws governing the flow in them should be fully understood. 
 
Water is conveyed from its source, normally in pressure pipelines, to water treatment plants where it 
enters the distribution system & finally arrives at the consumer. In addition oil, gas, irrigation water, 
sewerage can be conveyed by pipeline system. 
 
Some loss of energy is inevitable in the flow of any real fluid. In the case of flow in a horizontal uniform 
pipeline, this is evidenced by the fall of pressure in the direction of flow. Predicting the energy loss per 
unit length is essential to efficient pipeline design. 
 
The prime concern in the analysis of real flows is to account for the effect of friction. The effect of 
friction is to decrease the pressure, causing a pressure ‘loss’ compared to the ideal, frictionless flow 
case. The loss will be divided into major losses (due to friction in fully developed flow in constant area 
portions of the system) & minor losses (due to flow through valves, elbow fittings & frictional effects in 
other non-constant –area portions of the system). 
 

 
 
Figure 4.1 Flow in the pipes (circular pipe) 
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hL = Head loss (major + minor) 
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7.1 Major Losses (Head loss in conduits of constant cross-section) 
 
Referring to Figure 5.1 and for equilibrium in steady flow, the summation of forces acting on any fluid 

element must be equal to zero, i.e. ,0F  
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 o - average shear stress (average shear force per unit area) at the conduit wall, is defined by: 

                          
P

oo dP
P 0

1  ……………..………………………… (4.2) 

     o - is the local shear stress1 acting over a small incremental portion dP of the wetted perimeter.  

                                     

 

0)(

0

12
21

12
21








A
PLzzpp

PL
L

zzALApAp

o

o







 

          
A

PLzpzp
o 



 2

2
1

1 …………………………………… (4.3) 

Form the above equations (4.1) and (4.3) 
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This equation is applicable to any shape of uniform cross-sections, regardless of whether the flow is 
laminar or turbulent. For smooth-walled conduits, where wall roughness may be neglected, it may be 

assumed that the average shear stress o  is a function of,, & some characteristic linear dimension, 

which will here be taken as  hydraulic radius R. Thus: 
 

 o = (, , , R) 

By dimensional analysis: 

 (Re)22 

 VVRV h

o 







  and let  (Re) = ½ Cf (dimensionless term) 

                                                   
1 The local shear stress varies from point to point around the perimeter of all conduits (irrespective of whether the wall is 
smooth or rough), except for the case of a circular pipe flowing full where the shear stress at the wall is the same at all points of 
the perimeter.  
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From equation (4.4):    
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(Applied for any shape of smooth walled conduits). 
 
For circular conduits (pipe) flowing full,  R= ¼ D, Therefore, 
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Where,                  Re84  fCf …………………………..…………… (4.8) 

 
Equation (4.7) is applicable for both smooth-walled and rough walled conduits. It is known as pipe –
friction equation, and commonly referred to as the Darcy-Weisbach equation. Friction factor, f, is 
dimensionless and is also some function of Reynolds number. The exact form of  Re and numerical 
values for Cf and f must be determined by experiments or other means. 
 
For laminar flow (Recall chapter three) 

          )min(
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Head loss:           
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Experimental Investigation on friction losses in Turbulent flow 
 
In fully developed turbulent flow, the pressure drop, p, due to friction in a horizontal constant area 

pipe depends upon the diameter, D, the pipe length, L, the pipe roughness,, the average velocity, V , 
the fluid density, ρ, and the fluid viscosity, .  
 
By dimensional analysis                ),,,,(  DVp   
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Blasius had concluded that there were two types of pipe friction in turbulent flow. The first is the 
smooth pipes where the viscosity effects predominate so that the friction factor is dependent solely on 
the Reynolds number (f= (Re). He deduced the following expression for the friction in smooth pipes: 
 

4 Re
316.0

f ………………………………………… (4.12) 

The second type was relevant to rough pipes where the viscosity & roughness effects influence the flow 
& the friction factor (f) is dependent both on the Reynolds number & a parameter of relative roughness 
(/D).L.F Moody prepared a chart for determining friction factor for rough pipes experimentally by 

plotting f versus Re curve for each value of
D


.  (See Moody Chart) 

The moody chart, the various flows it represents, may be divided into four zones: the laminar flow zone; 
a critical zone where values are uncertain because the flow might be either laminar or turbulent; a 
transition zone. Where f is a function of both Reynolds number and relative pipe roughness; and a zone 
of complete turbulence (fully rough pipe flow), where the value of f is independent of Reynolds number 
and depends solely upon the relative roughness. 
 
There is no sharp line of demarcation between the transition zone and the zone of complete turbulence. 
The dashed line that separates the two zone was suggested by R. J. S. Pigott; the equation of this line is 

Re= )(
3500

D . On the other hand side of the equation of this line is corresponding to the curve and 

not the grid. 
 
The Colebrook has developed the formula: 
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A simplified form of this equation is provided with restriction placed on it: 
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 (For Rough pipes) 
 
 Head loss in pipes is given by: 
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    (For all pipes rough, smooth, laminar, & turbulent) 

 
7.2 Minor losses in the pipes 
Loss due to the local disturbances of the flow conduits such as changes in cross-section; bend, elbows, 
valves, joints, etc are called minor losses. In case of a very long pipe, these losses may be insignificant in 
comparison with the fluid friction in the length considered.  

Whenever, the velocity of a flowing stream is altered either in direction or in magnitude in turbulent 
flow, eddy currents are set up and a loss of energy in excess of the pipe friction in that same length is 
created2. Head losses in decelerating (i.e., diverging) flow is much larger than that in accelerating (i.e., 
converging) flow. 

The most common minor losses can be represented in one of two ways. It may be expressed as kv2/2g, 
where the loss coefficient k must be determined for each case. Or it may be expressed as an equivalent 
length of a straight pipe, usually in terms of the number of pipe diameters, N. Since,  
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22

22

  , it follows that Nfk  . 

i. Loss of head at entrance 

A poorly designed inlet to a pipe can cause an appreciable head loss. Referring to Figure 4.2 it may be 
seen that, a cross section with maximum velocity and minimum pressure at B. This minimum flow area is 
known as the vena contracta.  

 

             

It is seen that the loss of energy at entrance is distributed along the length AC, a distance of several 
diameters. The increased turbulence and vortex motion in this portion of the pipe cause the friction loss 
to be much greater than in a corresponding length where the flow is normal, as it is shown by the drop 
of the total-energy line. Of this total loss, a small portion hf would be due to the normal pipe friction (See 

figure 4.2). Hence, the difference between this and that total, or '
eh  is the true value of the extra loss 

caused at entrance. 

The loss of head at entrance may be expressed as  
                                                   
2 In laminar flow these losses are insignificant, because irregularities in the flow boundary create a minimal disturbance to the 
flow and separation is essentially nonexistent.  

Figure 4.2 Condition at 
entrance  
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Where V is the mean velocity in the pipe, and ek is the loss coefficient 

 

 
 
ii. Loss of head at submerged discharges: (leave of pipe), (hd’) 
 
When the fluid with a velocity V is discharged from the end of a pipe in to a large reservoir, (v = 0), the 
entire kinetic energy of the coming flow is dissipated. 
 

This may be shown by writing an energy equation between (a) and (b) in Figure 5.4 Taking the datum 
plane through (a) and recognizing that the pressure head of the fluid at (a) is y, its depth below the 

surface, gVyHa 20 2  and 00  yH c . Therefore,  

                              
g
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2
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iii. Loss due to contraction (hc) 
      a) Sudden contraction 

There is a marked drop in pressure due to increase in velocity and to the loss of energy in turbulence. 
The loss of head for sudden contraction may be represented by  

Figure 5.4 Entrance Loss Coefficients  
 

Figure 4.3 Entrance Loss Coefficients  
 

Figure 4.4 Submerged 
Discharge Loss 
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Table 4.1 Loss coefficients for sudden contraction 
 

1

2
D

D  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

KC 0.50 0.45 0.42 0.39 0.36 0.33 0.28 0.22 0.15 0.06 0.00 
 
 
 
b) Gradual contraction  
 
In order to reduces high losses, abrupt changes of cross section should be avoided. This is accomplished 
by changing from one diameter to the other by means of a smoothly curved transition or by employing 
the frustum of a cone. With a smoothly curved transition a loss coefficient kc as small as 0.05 is possible. 
For conical reducers, a minimum kc of about 0.10 is obtained, with a total cone angle of 20-400. Smaller 
or larger total cone angle results in higher values of kc. 
 
A nozzle at the end of a pipe line is a special case of gradual contraction. The head loss through a nozzle 
at the end of a pipeline is given by equation (5.17), where kc is the nozzle loss coefficient whose value 
commonly ranges from 0.04 to 0.20 and vj is the jet velocity. The head loss through a nozzle cannot be 
regarded as a minor loss because the jet velocity head is usually quite large. 
 
 
 
 
 
 
 

Figure 4.5 Loss due to 
sudden contraction 
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iv. Loss due to Expansion (he) 
 

a) Sudden Expansion 
 

Both the figures in Figure 5.6, drawn to scale from test measurements for the same diameter ratios and 
the same velocities, and show that the loss due to sudden expansion is greater than the loss due to a 
corresponding contraction. This is so because of the inherent instability of flow in an expansion where 
the diverging paths of the flow tend to encourage the formation of eddies within the flow. Moreover, 
separation of the flow from the wall of the conduit induces pockets of eddying turbulence outside the 
flow region. In converging flow, there is a dampening effect on eddy formation, and the conversion from 
pressure energy to kinetic energy is quite efficient.  

After the flow enters expanded pipe, there is excessive turbulence and formation of eddies which causes 
loss of energy. The loss due to sudden enlargement in a pipe line system can be calculated with the 
application of energy and momentum equations by neglecting the small shear force exerted on the walls 
of between sections 1 and 2 (figure5.6) for steady incompressible turbulent flow.   
 

                                                                          
 
  
 
Rate of momentum between section (1) & (2) 
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Figure 4.6 Loss due to sudden enlargement 
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And noting that from continuity equation A1V1 = A2V2 and that  
                   A1V2

1 = (A1V1) V1 = (A2V2)V1 
 
Substituting in the above equation  
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b) Gradual Expansion 
  
To minimize the loss accompanying a reduction in velocity a diffuser may be used. Diffuser is a curved 
outline, or it may be a frustum of cone. In figure (5.8) the head loss will be some function of the angle of 
divergence and also of the ratio of two areas, the length of the diffuser being determined by these two 
variables.  
 

                                      

                          Figure 4.7 Loss due to gradual enlargement  

 

In flow through a diffuser, the total loss may be considered as made up of two components. One is the 
ordinary pipe-friction loss, which may be represented by  

                                  dL
g

V
D
fh e 2

.
2

 . 

In order to integrate, it is necessary to express the variables f, D, and V as functions of L. For our present 
purpose, it is sufficient, however, merely to note that the friction loss increases with the length of the 
cone. Hence, for given values of D1 and D2, the larger the angle of the cone, the less its length and the 
less the pipe friction.  

The other is turbulence loss due to divergence. Turbulence loss increase with the degree of divergence, if 
the rate of divergence is great enough then there may be a separation at the wall and eddies flowing 
backward along the walls. 

 The total loss for gradual expansion pipe is the sum of these two losses, marked 'k . It has been seen 

that the loss due to a sudden enlargement is very nearly represented by   gVV 22
21  . The loss due to a 

gradual enlargement is expressed as  
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. 
Where K’ loss coefficient which is a function of cone angle 
 
Table 4.2 Loss coefficients for gradual expansion 
K’ 0.4 0.6 0.95 1.1 1.18 1.09 1.0 1.0 
 200 300 400 500 600 900 1200 180 

 
v. Loss in pipe fittings 

The loss of head in pipefittings is expressed as  
g

Vkh ff 2

2

  where v is the velocity in a pipe of the 

nominal size of the fitting. Typical values are given below. 
Table 4.3 Values of “Kf” based on the type of fittings. 
 
Table 4.3 values of fk  loss for pipe fittings 

Fitting K 
Globe valve, wide open 
Angle valve, wide open 
Close –return bend 
T-through side outlet 
Short-radius elbow 
Medium radius elbow  
Long   radius  elbow 
Gate valve, wide open 
Half open 
Pump foot value 
Standard branch flow 

10 
5 
2.2 
1.8 
0.9 
0.75 
0.60 
0.19 
2.06 
5.60 
1.80 

 
 
 
vi. Losses in bend & Elbow 
 
In flow around a bend or elbow, because of centrifugal effects, there is an increase in pressure along the 
outer wall and a decrease in pressure along the inner wall. Most of the loss of head in a sharp bend may 
be eliminated by the use of a vaned elbow. The vane tends to impede the formation of the secondary 
flow that would otherwise occur.   
 
The head loss produced by a bend or elbow is: 

                      
g

Vkh bb 2
.

2

 ………………………….(4.19i) 
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kb - depends on the ratio of curvature  r to pipe diameter D. 

 

                      Figure 4.8 secondary flows in bend 

                        Figure 4.9 Vaned elbow 

                                         
 
Solution of single-pipe flow problems 

The fundamental fluid mechanics associated with frictional loss of energy in single pipe flow, caused by 
both the wall roughness of the pipes and by pipe fittings that disturb the flow (minor losses).  

It is generally conceded that for pipes of length greater than 1000 diameters, the error incurred by 
neglecting minor losses is less than that inherent in selecting a value for the friction 
factor  HWCornf ,, .  

When minor losses are negligible, as they often are, pipe flow problems may be solved by the methods, 
which are available are Hazen-Williams equation, the Manning equation or the Darcy-Weisbach 
equation. The Darcy-Weisbach equation is to be preferred, since it will provide greater accuracy because 
its application utilizes the basic parameters that influence pipe friction, namely, Reynolds Number Re 
and the relative roughness  D . To get good results with the Hazen-Williams and Manning’s 
equations, the user must selected proper values for CHW and n, respectively.  

The total head losses between two points is the sum of the pipe friction loss plus the minor losses, or 

  'hhh LfL ………………………………………………………………………………………………………… (4.20) 

Where Lh = total head loss Lfh = major head loss  'h = total minor losses 
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In problem where f is given, equation (4.18) still has only one unknown, namely, Lh or V or Q or D. In 
most cases, this equation is explicit in the unknown, and so it is easy to solve. However, for sizing 
problems, the resulting equation in D is of the fifth degree, requiring trial and error or an equation 
solver.  

The universal turbulent flow equation for use in an equation solver, including minor losses, eliminating 

Lfh and equation (4.19) with the help of equation (4.7) and  (4.11), and by replacing V by  24 DQ  . 

Expressing minor losses  'h in terms of gkV 22 , 
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An important reminder when using these equations is to use Reynolds equation to check the Reynolds 
number and confirm that the flow is turbulent. If Re < 2000 the flow is laminar and the problem must 
instead be solved with equation (4.16). 
 
7.3 Pipeline system 

7.3.1 Pipes in Series 
 
When two pipes of different sizes or roughness are so connected that the fluid flows through one pipe& 
then through the other, they are said to be connected in series. A typical series pipe problem, in which 
head H may be wanted for a given discharge or the discharge wanted for a given H, is illustrated in figure 
4.12 and the continuity equations establish the following two simple relations that must be satisfied. 
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Figure 4.12 Pipes Connected in Series 

Applying the energy equation from A to B, including all losses, gives: 
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7.3.2 Equivalent pipes  
 
Series pipes can be solved by the method of equivalent lengths. Two pipe systems are said to be 
equivalent when the same head loss produces the same discharge in both systems. From Equation (5.7) 
 

2

2
1

5
1

1
11

8
g

Q
D
Lfhf


  For a second pipe hf2 =   

g
Q

D
Lf

2

2
2

5
2

22 8


 

 
For two pipes to be equivalent,  
                  hf1 = hf2,    Q1 = Q2  
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7.3.4 Pipes in Parallel  
  
A combination of two or more pipes connected as in figure 4.13 so that the flow is divided among the 
pipes and then is joined again, is a parallel – pipe system. In  series pipe system the same fluid flows 
through all the pipes and the head losses are cumulative, but in parallel pipe – system the head losses 
are the same in each of the lines the discharge are cumulative. 
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Fig 4.13 Parallel Pipes system  

hf1 = hf2 = hf3 =  




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 B

B
A

A ZPZP
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Q = Q1 + Q2 + Q3  
 
Two types of problems occur: 

1) If the head loss b/n A & B is given, Q is determined.  
2) If the total flow Q is given, then the head loss & distribution of flow are determined.  
 

Size of pipes, properties, and roughness are assumed to be known. Since this type of problem is more 
complex, as neither the head loss nor the discharge for any one pipe is known. The procedure is:  

1) Assume discharge Q’1 through pipe 1, 
2) Solve for h’f1, using assumed discharge, 
3) Using h’f1, find Q’

2 & Q’
3  

4) With the three discharges for a common head loss, now assume that the given Q is split up 
among the pipes in the same proportion as Q’

1, Q’
2 & Q’

3, Thus,  
 

               Q1 = Q
Q
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5) Check the correctness of these discharges by computing hf1, hf2, & hf3 for the computed Q1 , Q2 

& Q3  
 
             → Q –Q1 – Q2 – Q3 = 0 
 

7.3.5 Branching pipes  
 
Let us consider three pipes connected to three reservoirs as in fig. below & connected together or 
branching at the common junction point J. We shall assume that all the pipes are sufficiently long 
that minor losses & velocity heads may be neglected. The continuity & energy eqn. require that 
the flow entering the junction equal the flow leaving it& that the pressure head at J (with open 
piezometer tube water at elevation P) be common to all pipes.  
There being no pumps, the elevation of p must lie b/n the surfaces of reservoirs A& C. If p is 
level with the surface of reservoir B then water must flow in to B & Q1 = Q2 + Q3  
If P is below the surface of reservoir B then the flow must be out of B & Q1 +Q2 = Q3  
So for the situation of the following fig, we have the following governing conditions:  

1) Q1 = Q2  + Q3  
2) Elevation of p is common to all.  

a. Length, diameter, &friction factors are required. 
b. The flow is steady & minor lorses reglected  
c. Three basic cgns to salue there problems are:- 

i. Continuity sgn 
ii. Bmoulli’s egn 

iii. Dorcy- weis bach egn 
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 Totasl rate of in flow at junction  = total rate of out flow (continuity egn)  
 
  Pipe 1                                       Pipe 2                                                    Pipe 3 
 
D1,  L1,   V1,  Q1 h+1             D2, L2, V2, Q2, h+2                          D3, L3,  V3,   Q3, h+3 
Elevation , Z1 , Riser ,A         Z2,  Riser, B Z3,    Riserv. C 
 
Junction of elevation 
    
    Zj, pressure head  rpj  = total herd at junction =  )( rpjZj   
 Applying Bernoulli’s egn b/n the jun  citron point & each of reservoirs  
 

 
 Z1 = ( rpj + Zj) + hf1  - -  -  -    -  -  -  -  --  -- -----------------    (*)     (1) 

=>    
    Z2+h +2  =  ( rpj + Zj )  -------------------------- (**)    (2) 

 
     Z3 = h+3 = ( rpj + Zj ) --------------------------- (***)    (3) 
 

=>    If the head of  reseruoir Ais grater than head at junction the flow is in to the junction 
from A & out of the junction  to B&C 

 
=> Q1 = Q2 + Q3 --------------------------   *       (4) 

   2
14

Du   V1  =  2
24

Du    V2    +        
4
u   2

3D   V3 -------------       (5) 

     => 2
1D  V1  =  2

2D  V2  V2   +  2
3D  *  V3  -------------     (6) 

 
 Then one three types of problem fouling of  branching pies :-  
Case 1:  Given all pipes data (L, D, E, Z1 & Z2 Q1 or Q2, find Z3 ? 
 

=> soin : first  1hf  can be calculated directly ( h+1 =  
1

1
1 D

Lf     gv 21
2 ) 

      Then ( rpj + Zj )  pizomutnc hard at junction can be determine 
 From egn ( 2 ) h +2 & Q2  can be determined  
  Q3 can be detrained from egn (4)  continuity eng  
 Then from eng (3) h+3 and  finally Z3 (can be determined) 

Case 2: Given au pipe data, the surface elevation of two reservoirs (A& C) and the flow to or fro    
the second, find Z3 and Q1 Q3? 

 From egn (1) & iii)  (h+1 + h+3 ) = ( Z1- Z3) (h+1 + h=3) is known & also (Q1-Q3 ) or  
(Q3 – Q1) is known. 

 Assume frail values of  h+1 & h+3 & from these compute the discharge Q1+Q3 & 
compare with (Q1-Q3) 

 Repeat the procedure until the two uues are equal. 
 From they,  pizometric  head at  junction can be determined  
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 From h +2 & ( rpj Zj )  Z2 can be determined. 
 

Case:3 cloven au pipe lengths & diameters & the elevation of all the three reservoirs , find Q1 Q2, 
Q3, 

 
 In this case the direction of the flow is not known clearly. 
 Assam the elevation of B (z2) is equal to the piezometric head (Zp) & ( je an flow in pipe 2) 
 From Zp the head losses h+1 & h+3 determined, and tlen Q1 & Q3 can be obtained  
 If Q1 > Q3, then Zp must be increased to satisfy continuity egn at J, causing water to flow into 

reservoir B, and are will hale Q1= Q2+Q3 
  If Q1<Q3, then Zp mast be lowered, causing water to flow out of reservoir B, & we will have 

Q1+ Q2 = Q3 
 
 
 
 


