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CHAPTER 5 
 

  FLUID DYNAMICS  
 
5.1 Introduction 
 
In discussing about hydrostatics we were concerned with forces (pressure forces) which 
are acting an object for a liquid at rest and when we deal with kinematics of fluid flow 
phenomena related with space time variation (velocity and acceleration) with out 
considering the effect of force. But in dealing with dynamics of fluid flow, all forces that 
affect the phenomenon are considered. 
 
The dynamics of fluid motion deals with kinetics, which relates the kinematics with the 
forces responsible for causing the motion. This relation ship of fluid motion is established 
by the use of laws of nature. 

i) The principle of conservation of mass (the continuity relation ship) 
ii) Newton’s laws of motion 
iii) The 1st and second lows of thermodynamics 

 
5.2 Equations of motion 
 
The dynamic behavior of fluid motion is governed by a set of equations, known as 
equations of motion. These equations are obtained by using the Newton’s second low, 
which may be written as Fx=m.ax 
 

Where, Fx is the net force acting in the x-direction upon a fluid element of 
mass m producing an acceleration ax in the x-direction. 

 
The forces which may be present in fluid flow problems are gravity forces Fg, pressure 
force Fp, force due to viscosity Fv, force due to turbulence Ft, Surface tension Fs, and 
force due to compressibility of fluid Fc.  
 
Gravity forces (Fg.) is due to the weight of the fluid. Its component in flow direction 
results in acceleration. 
 
Pressure force (Fp): It is equal to the product of pressure intensity and cross sectional area 
of the flowing fluid. Acts normal to the surface under consideration and produces 
acceleration in the given direction. 
 
Viscous forces (Fv): - Exists in real fluids. It is the shearing resistance generated when 
there is relative motion between two layers of fluids. It acts opposite to the direction of 
motion, and retards flow. 
 
Surface tension (Fs): This force is important when the depth of flow is extremely small. 
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Force due to compressibility (Fc): for incompressible fluids, this becomes significant in 
problems of unsteady flow like water hammer. In most of flow problems Fs and Fc are 
neglected. 
 
Force due to turbulence (Ft): the continuous momentum transfer between layers in highly 
turbulent flow results in normal and shear stresses known as Reynolds's stress. 
 
If the changes for the change in forces are small the forces can be taken negligible. 
 
 max=(Fg)x+(Fp)x+(Fv)x+(Ft)x 
 
The presence of such a complex system of forces in real fluid flow problems makes the 
analysis very complicated. Therefore, mathematical analysis of problems is generally 
possible only if certain simplifying assumptions are made.  
 
5.2.1 Energy and Head 
 
A liquid in motion may possess three forms of energy. 
 
1. Potential energy /elevation /positional energy/ because of its elevation above datum 

level. If a weight w of liquid is at a height of z above datum  
       Potential energy   = Wz 
       Potential energy per unit weight   = z (meters)  = Potential head  
 
2.  Pressure energy:  When a fluid flows in a continuous stream under pressure it can do 

work. If the area of cross – section of the stream of fluid is a, then force due to 
pressure p on cross- section is Pa. 

 
     If a weight w of liquid passes the cross section. 
 
     Volume passing in cross section = W/ρg 

     Distance moved by liquid   = 
ga

W


 

     W  = F* S   = Pa pgPW
ga

W /


 

     Pressure energy per unit weight   = P/g   = pressure head. 
 
3.  Kinetic energy  
     If a mass of fluid (m) moves at some velocity (v),  
    Kinetic energy  = ½ mV2  = ½ W/g v2 

    Kinetic energy pr unit weight = 
g

v
2

2

   = kinetic head  

Total head = potential head + pressure head + velocity head = Z + 
g

VP
2

2



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Bernoulli’s theorem states that the total energy of each particle of a body of fluid is the 
same provided that no energy enters or leaves the system at any point. The division of 
this energy between potential, pressure and kinetic energy may vary, but the total remains 
constant. In symbols  
 

                                        Z+ tcons
g

VP tan
2

2




 

 
5.3 Bernoulli’s Equation 
 
Consider a cylindrical element of stream tube having cross-sectional area dA length ds 
unit weight  as shown in motion along a streamline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig: 5.1 Pressure and gravity forces on a cylindrical element along a streamline. 
 
 
The normal forces on the side faces are in equilibrium and as the fluid is assumed non-
viscous, there is no shear stress. The velocity varies along the streamline and there is 
acceleration. It is necessary to take into account force due to acceleration when 
considering the longitudinal balance of force. 
 
 
But in the ease of steady flow the velocity doesn’t vary at a point so that local 

acceleration will be zero 





 

 0

t
v  but for velocity variation with position convective 

acceleration will be different from zero 





 


 0
s
vV . The forces tending to accelerate the 

fluid mass are pressure force on the two ends of the element, 
 
 

][ smaFs   Summation of force in the arbitrary‘s’ direction. 

 

 

dAdS
dS
dPP ])([   

PdA 
 

dS 

Z 

Bernoulli’s assumptions:  

 The flow is Steady an 
incompressible type of flow, 

 Frictionless and non viscous flow,  
 No shaft work - no pump or 

turbines on the streamline, 
 No transfer of heat - either added 

or removed.  
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    dAdpdAds
ds
dppPdA 






            

 
Weight in the direction of motion 

        gdAdz
ds
dzgdsdAgdsdA   cos                        

      
Applying Newton’s 2nd Law of motion F=ma     
                                       

  
ds
dvdAVdsdzdAgdPdA     V

s
v

t
vaas s 







                                    

EquationEulerensionalOneVdvgdzdp
dim0


 

It can be applied for both compressible and incompressible flow. 
 

                                  0 dv
g
Vdzdp


 

For the case of an incompressible fluid  may be treated as constant, the integration gives 
 

tCons
g

dVVdzdp tan    

tCons
g

VZP tan
2

2




[Bernoulli’s Equation] 

Under special conditions the assumption underlying Bernoulli’s equations can be waived. 
 

1. When streamlines originate from a reservoir,  
2. For unsteady flow with gradually changing conditions (E.g. Emptying a reservoir) 

the equation may be applied without appreciable error, 
3. It may be used for real fluids, by modifying the result experimentally. 

 
The Bernoulli equation is the basis for the solution of a wide range of hydraulics 
problems. For two points along a streamline, the Bernoulli equation may be expressed in 
the form of  
                      y1+p1/+v1

2/2g = y2+p2/+v2
2/2g 

 
5.3.1 Bernoulli’s Equation for real fluid 
 

The Bernoulli’s equation expressed by 
g

vZp
2

2




 is determined for an incompressible 

ideal fluid without taking in to account the effects of some other forces as viscous, etc. 
In case of real fluid these forces should be introduced so that the equation needs some 
modification. A real fluid does possess viscosity and consequently it offers resistance to 
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flow. In order to overcome this viscous resistance and other resistances due to surface 
roughness and turbulence, some part of the total energy of the flow is lost. [Energy is 
neither created nor destroyed but may be changed to heat energy increasing temp of the 
fluid] 
 
The increase in temperature of the fluid causes an increase in the internal energy. The 
increase in internal energy and the heat transfer from the fluid represent a loss of useful 
energy. The total loss per unit mass of fluid is (u2-u1-q). 

Energy loss per unit weight in over coming resistance 
g

quuhl


 12 (head loss)  

The total energy of flow decreases in the flow direction, and consequently the energy line 
has a down ward slope. 
 

 
 
The modified Bernoulli’s equation for up stream 
section (1) and downstream section (2) 
 

lhZp
g

VZP
g

V
 2

2
2

2
1

1
2

1

22 
 

 hl=head loss between the two sections. 
 
 
 
 
 

Fig. 5.2   
 
 
 
 
 
 
 
 
 
 
                                               
 
 
 
 
  Fig.5.3 Energy & hydraulic grade lines 
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
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5.3.2 Energy correction factor 
 
The analysis of flow problems is usually based on the one-dimensional approach. The 
entire flow is considered to be taking through stream tube with average velocity V at 
center of each cross-section. The velocity distribution at any x-section in real fluid flow is 
non uniform, on account of the boundary resistance and consequently the kinetic energy 
per unit weight given by V2/2g doesn’t represent the kinetic energy across the section. 
 
In order to compensate for the discrepancy a coefficient known as energy correction 
factor denoted by  is used. The multiplication of  with V2/2g yields the kinetic energy 
actually passing a section. 
For the figure given, 
 
 
 
 
 
 
 
  Fig.5.4. Velocity distribution in a pipe flow. 
 
The kinetic energy per unit time passing through on elemental area dA is ½ (dAu)u2 
 u-velocity at that point 
Total kinetic energy passing the section 
 dAu

A

3
2
1  And the actual kinetic energy passed on average velocity V passing the 

section is equal to AV 3

2
1
  

From the two equation 

 dA
v
u

A

31
 






  

Kinetic energy correction factor  is a measure of viscous resistance generated in a given 
flow, the effect of which is reflected uniform nature of velocity distribution. For a given 
pipe, it can be shown that its magnitude is a function of the type of flow and its turbulent 
characteristics. 
 
Laminar flow is purely a viscous flow; the value of  is maximum and equals 2.0. But in 
case of fully developed turbulent flow in pipes,  is independent of Reynolds number and 
may be considered to have almost constant value (1.01 to 1.15) depending on surface 
roughness and Reynolds number. Lower value is appreciable for velocity rough surface 
and high Reynolds number. 

                           hZp
g

VZp
g

V
 2

2
2

2
21

1
2

1
1 22 




  

For an identical velocity distribution at two sections, 1=2,and if accuracy is not 
required in non uniform velocity distribution  =1. 

Velocity 
distribution 

Real liquid 
flow 

Ideal liquid 
flow 

Vavg 

dA 
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5.3.3 Practical Applications of Bernoulli’s Equation  
 
Bernoulli’s equation is applicable in all problems of incompressible fluid flow where 
energy considerations are involved. And it is practically applied for flow measurement 
using the following measuring devices. 
 
1. Venturimeter (tube) (G.B Venturi (1746 –1822) Italian Eng) 
 
It is a device used for measuring rate of flow in a pipeline and it consists of three 
components: 
 

i) A converging entrance cone of angle of about 200 . 
ii) A cylindrical portion of short length called the “throat” 
iii) A diverging section known as diffuser, of cone angle 50 to 70 to ensure a 

minimum loss of energy, but where this is unimportant the angle may be as 
large as 140.  

 
The entrance tube and exit tube diameter are the same as that of the pipe line in to which 
it is inserted and the length of throat is equal to the throat diameter.  

 

 
 

             Fig.5.5 Horizontal Venturimeter 
Assuming that the fluid is ideal (So that energy is not dissipated in overcoming frictional 
resistance) and that the velocities V1 and V2 at the inlet and throat respectively, are 
uniformly distributed over the cross section (so that the energy correction factor  is 1). 
Applying Bernoulli’s equation between points (1) and (2) on a central stream line and 
assuming no frictional resistance, 
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2
2

2
2

1
1

2
1

22
ZP

g
VZP

g
V




  

For an incompressible fluid, continuity of flow at section 1 and 2 is, 
 

Q   = A1 V1   = A2V2    

1
2

1
2 V

A
AV   ……(a) 

         If A1 > A2 ,  V1 < V2 i.e. KE at section 2 (throat) > KE at section 1(the entrance)  
                              P at throat < P at entrance  
 
 For a horizontal Venturi meter, 
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
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The theoretical discharge can be converted to actual discharge by multiplying 
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The differential pressure is evaluated from manometry, and for figure.5.5 
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)1(

)(

21

21






s
sxPP

sPxysxsyssP

m

m




  

For vertical or inclined Venturi meter, the actual discharge can be computed similarly. 
 
2. Pitot tube (Total head tube)   / (Henri Pitot)     

 
Pitot tube is a device used for measuring velocity of flow at any point in a pipe or a 
channel. In its elementary form a Pitot tube consists of an L-shaped tube with open ends. 
Its may be aligned in open channel or pipe flow measurement as indicated below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the measurement is made on an open channel flow the surface will be exposed to the 
air and there is no static head from the surface, and if measurement is made on pipe flow 
there will be static head at A. 

  
          Fig.5.6 Simple Pitot tube in pipe flow and open channel flow. 
 
Applying Bernoulli’s equation to point A in the undisturbed flow region and the 
stagnation point B we have  

Stagnation pressure  
 
For a figure below it has been seen that the central streamline terminates 
at B the entrance to the Pitot tube. This is on account of the inability of the 
streamline to take a sudden turn. The fluid flowing along the central 
streamline, therefore, stops moving as it reaches the point B. Hence the 
velocity of flow at this point is zero. This point is known as stagnation 
point. 
 
Applying the Bernoulli’s equation at points A and B, we obtain 
PB=PO=PA+VA

2/2. The pressure at the stagnation point is known as 
stagnation pressure composed of static pressure PA and dynamic pressure 
VA

2/2. 



10 
 

       

  hPPceghPPgVgPPV

PP
g

V

P
g

VP

ZP
g

VZP
g

V

AOAO
A

AO
A

AOA

AAO

A
AA

O
OO



























sin2)(22

2

2

22

2

2

2

22

 

A perfect Pitot tube should obey this equation exactly, but all actual instruments must be 
calibrated and a correction factor applied to make allowance for the small effects of nose 
shape and other characteristics.  
 
Practically it is difficult to read h from a free surface. To overcome this difficulty, the 
static tube and the Pitot tube may combine in one instrument (differential U-tube). 
 
For finding the velocity at any point in a pipe by Pitot tube, the following arrangements 
are adopted.  
 

1. Pitot tube along with a vertical piezometer tube as shown in Fig.5.7. 
2. Pitot tube connected with piezometer tube as shown in Fig.5.8 
3. Pitot tube and vertical piezometer tube connected with a differential U-tube 

manometer as shown in Fig.5.9 
4. Pitot static tube, which consists of two circular concentric tubes one inside the 

other with some annular space in between as shown in Fig.5.10. The outlets of 
these two tubes are connected to the differential manometer where the difference 
of pressure head is measured by knowing the difference of the levels of the 
manometer liquid hm. 

 
 
 
 
  
  
 
 
 

  

 
                   
Fig.5.7                                                                                     Fig.5.8                                                                      
. 
 

Pitot 
Tube  

Piezometer 
Tube  

h  
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                           Fig.5.9                                                         Fig.5.10 
 

      The Pitot tube measures the velocity of only a filament of liquid, and hence it can be used 
for exploring the velocity distribution across the pipe cross-section. If, however, it is 
desired to measure the total flow of fluid through the pipe, the velocity must be measured 
at various distances from the walls and the results integrated. The total flow rate can be 
calculated from a single reading only if the velocity distribution across the cross-section 
is already known. 

The static tube measures the static pressure, since there is no velocity component 
perpendicular to its opening and the impact tube measures both the static pressure and 
impact pressure (due to kinetic energy). Impact tube head =pressure head + velocity head. 

3. Orifices  
 
An orifice is an opening (usually circular) in the wall of a tank or in a plate normal to the 
axis of a pipe, the plate being either at the end of the pipe or in some intermediate 
location and used for measuring rate of flow out of a reservoir (tank) or through a pipe. 
 
a. Orifice flow in pipes, Orifice meter or orifice plate  

The Venturi meter described earlier is a reliable flow-measuring device. Furthermore, it 
causes little pressure loss. For these reasons it is widely used, particularly for large-
volume liquid and gas flows. However, this meter is relatively complex to construct and 
hence expensive. Especially for small pipelines, its cost seems prohibitive, so simpler 
devices such as orifice meters are used. 

 

Fig.5.11 Orifice meter  
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The orifice meter consists of a flat orifice plate with a circular hole drilled in it. There is a 
pressure tap upstream from the orifice plate and another just downstream.  

 
 

Fig.5.12 Orifice plate in a pipe 
 

Applying the Bernoulli equation between at 1 (upstream of plate) and 2 (at the orifice) 
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The theoretical discharge Q will therefore be, 
 

               Q   = A1V1    =A1 
 

2
21

12

)/(1
2*

AAp
pp


  

 
The actual discharge will be less than the theoretical since the effective flow area near P2 
tapping will be less than A2, the fluid forming a neck or vena contracta. In addition there 
will be some loss of energy between 1 and 2. 
 
The actual discharge can be determined by determining coefficient of discharge. 
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b. Flow through a reservoir opening (orifice flow) 
 
For a reservoir at water level h above orifice opening shown in the following figure. 
The reservoir is assumed to be very large as compared to size of the opening, so that 
the velocities of all points in the reservoir are negligibly small. 

 
Fig. 5.13 Small orifice in the side of a large reservoir 

 
Applying Bernoulli’s equation neglecting losses between A and B (taking the datum level 
at the center of the orifice). 

0 + 0 + h   = 00
2

2


g

V  

                  V = gh2 (Theoretical velocity).  

Theoretical discharge, Qt=Ao gh2  
 
Hydraulic Coefficients for flow through orifices  
 

1) Coefficient of contraction, Cc   = 
orificeofArea

contractavenaatAreaofjet     

                                 A0  = orificeofArea (Area of jet at C) 

2) Coefficient of velocity, Cv = 
velocitylTheoretica

ctavenacontraatvelocityActual  

3) Coefficient of discharge, Cd   = 
edischlTheoretica

edischActual
arg

arg  

 
                              Actual velocity Va = Cv gh2  
    
As shown in the figure, the paths of the particles of the liquid converge on the orifice so 
that the area of the issuing jet is less than the area of the orifice. In the plane of the orifice 
the particles have a component of velocity towards the center so that at C the pressure is 
greater than atmospheric pressure. It is only at B a little outside the orifice that the paths 
of the particles become parallel. The section through B is called the venacontracta. 
Area of vena contracta       AB= CcA0 

3 
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Therefore 
                    Actual discharge Qa  = Actual area * Actual velocity 
             = CcA0 Cv gh2  
 
It is customary to combine the two coefficients into a discharge coefficient Cd. 
(Cd  = Cv Cc) 
 Qa  = Cd A0 gh2  
 
Determination of hydraulic coefficients of orifice. 
 
Determination of Cd 
 
By measuring area A0, the head h and the discharge Qa (by gravimetric or volumetric 
means), Cd is obtained using the above equation. Determination of either Cv or Cc then 
permits determination of the other by the equation Cd = Cv Cc.  
 
Determination of Cc and Cv  
 

1) Trajectory method  
 

The equation for the trajectory may be obtained by applying Newton’s equation of 
uniformly accelerated motion to a particle of the liquid passing from the nozzle to point 
P, whose coordinates are (x,y) in time t. Then x= Vxot and z= Vzot-1/2gt2. Evaluating t 
from the first equation and substituting in the second gives 

2
2

00

0

2
x

V
gx

V
Vz

xx

z   

If the jet is initially horizontal, as in the flow from a vertical orifice, Vx0=V0 
and Vz0=0, the above equation is reduced in to; 

V0=
z

gx
2

 

       Then Cv   = 
zh

x
ghgz

x
gH

V
V
V

t 42/22
00   

 
   2) Pitot tube method  
 
Pitot tube can be set at the vena contracta so that actual velocity Va is determined.  
 
   3) Calipers method  
 
The diameter of the jet at the vena contracta can be approximately measured using an 
outside caliper. But this method is not precise and is less satisfactory than other methods. 
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Types of orifice  
  
 The following figure shows common types of orifice with their coefficient of discharge. 

 
Fig.5.14  Types of orifice 

 
The orifices are classified based on of their size, shape, nature of discharge and shape of 
the upstream edge. 
 

1.Depending upon their size: small orifice and large orifice. If the head of liquid from 
the center of the orifice is more than five times the depth of the orifice, the orifice is 
called small orifice. If it less than five times it is known as large orifice. 

2.Depending upon shape: as circular, triangular, rectangular and trapezoidal. 
3.Depending upon shape of edge: as sharp edged and round or bell mouthed orifice. 

(Fig.5.14) 
4.Depending up on the nature of discharge: as free discharging & drowned or 

submerged orifice. The submerged orifices are further classified as fully submerged 
and partially submerged orifice. 

 
3. Unsteady orifice flow from reservoirs  
 
The volume discharged from the orifice in time t is Qt, which must just equal the 
reduction in volume in the reservoir in the same time increment. AR (-y), in which AR is 
the surface area of the reservoir at level y above the orifice.  
 
 
 
   
 
 
  
 
Fig 5.15 Un steady flow from reservoir 
 
 

y 

y 
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Equating the two expressions 
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4.Weirs 
 
Open channel flow may be measured by a weir on obstruction in the channel that causes 
the liquid to back up behind it and flow over it or through it. There may be sharp crested 
or broad crested based on their length along the channel section. 
 
a) Rectangular weir 
 
The following figure shows rectangular notch of crest length (L) and working under a 
head H. 

 
Fig. 5.16 Rectangular notch                
 
By Torricelli’s theorem the velocity of a particle discharged at any level h is gh2  and 
will therefore vary from top to bottom of notch. Considering a horizontal strip at depth h 
and of thickness h. 
Discharge through strip = gh2  * Lh 

Total discharge 2/3

0

2/1 2
3
22 HgLdhgLQ

H

ht    

This is the theoretical discharge through a rectangular notch. 
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The value of Q given by the above equation is too high because no account has been 
taken of energy lost and also because, as shown below there will be a substantial 
reduction in the width and depth of the notch cross section because of the curved path 
lines of the liquid. 

 
                              Fig 5.17 Effect of vena contracta in rectangular weir 

Therefore, Actual discharge = 2/32
3
2 HgLCd  

From experiment Cd=0.62 , Q = 1.831LH3/2 

 
b) Triangular weir (V-notch) 

 
 
Fig. 5.18 Triangular weir 
 
Since the velocity of flow through the notch varies from top to bottom, consider a strip of 
thickness h at a depth h below the surface. If the velocity of approach is small: 
  
Head producing flow =h 
Velocity through strip = V = gh2  
If width of strip = b, Area of strip = bh 
Discharge through strip = Q = V bh 
The width b depends on h and is given by     b= 2(H-h) tan 
 

Thus          

hhHhg

hhHxhgQ





)(tan22

*tan)(2)2(

2/32/1

2/1





 

 
Integrating between the limits h = 0 and h=H 
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2/5

0

2/52/3

0

2/32/1

tan2
15
8

5
2

3
2tan22

)(tan22

Hg

hHhg

dhhHhgQ

H

H













 

 

 

 
This is the theoretical discharge 

Actual discharge = Cd*Q =Cd
2/5tan2

15
8 Hg    

From experiment Cd = 0.58, Qa = 1.37 tan H5/2,  
   For 900 V-notch, Qa = 1.37 H5/2 
 

5.4 .Impulse_ momentum theorem 
 
It is often important to determine the force produced on a solid body by fluid flowing 
steadily over it. For example, the force on a pipe bend caused by the fluid flowing 
through it; the force exerted by jet of fluid striking against a solid surface; thrust on a 
propeller. All these forces are hydrodynamic forces and they are associated with a 
change in the momentum of the fluid. 
 
The magnitude of such a force is determined by Newton’s second law of motion, by 
modifying the law to suit particularly to the steady flow of a fluid called the steady flow 
momentum equation. Only the forces acting at the boundaries of this space concern us, 
and use of momentum equation doesn’t require the knowledge of the flow pattern in 
detail. Moreover, the fluid may be compressible or incompressible and the flow with or 
without friction.  
 
Consider a stream tube shown below with the following assumptions 
 

 The c/s of stream tube is sufficiently small so that the velocity may 
be considered uniformly distributed  

 The flow is steady i.e. the stream tube remains stationary with respect to the fixed 
coordinate axis. 

 
 
Fig Stream tube 
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 Newton’s second law  
      F   = m * a 

      F = m 
dt
dv  

      F * dt = m * dv  
 
 Momentum principle expresses that the rate of change of momentum is equal to 

the net force acting on the fluid mass.   
 
Momentum of fluid entering section 1 –1 in a time t in the x –direction  
   =  * dQ * t * V1(x) 
 
Momentum leaving section 2- 2 in time t 
 
       =  * dQ * t * v2 (x) 
From momentum principle  
 

    dFx   = 
t

xvxvtdQP


 )]()([ 12   

 
   dFx  = dQ [v2 (x) – v1 (x)]  
   dFx  = net force exerted on the fluid in the x –direction. 
 
The total force in the x –direction is given by 
 

           

 

 





A A

A AA

xvdAvxvdAv

xvdQxvdQdFxFx

)()()()( 

)()( 

111222

12





 

 
Assuming the fluid is incompressible  
 
 Fx   =  V2 A2 (V2 (x)  - PV1A1 V1 (x) 
 
 Fx  =  Q [V2(x) – V1(x)] 
 
Similar equations for y and z directions may be written  
 
   Fy  = Q [V2(y) – V1(y)] 
 
    Fz  = Q [V2(z) – V1(z)] 
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Applications of momentum equations  
1) The force caused by a jet striking a surface  
A. Impact on a flat surface            

 
i) Stationary plate  A  = area of jet  
                                    V2  = velocity of jet  
                                      = mass density 

 
                     
Fx   = Q (v2 (x) – v1(x)) 
       = Q (0 – v1)  momentum normal to the plate is destroyed. 
Fx   = - A V2 (force in the jet) 
Force exerted on plate = AV2 

ii) Moving plate  
      Initial velocity of jet v1x = v1 
      Find vel of jet = velocity of   = v2 x = U plate  
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The velocity with which jet strikes the plate  = V – U 
 
Mass of fluid striking plate/sec   = A (V – U)  = Q 
Force on plate   = A (V –U) (V –U)  
                          =A (V –U)2 

 
iii) Stationary inclined plate  

 
 
Fig. A jet hitting an inclined plate 
                v1 (x)   = v cos (90 -)  = v sin   
                v2 (x) = 0 
 
Mass striking stationary plate   = AV  
 
Normal force on the plate = AV (V sin) = AV2 sin  
 
Since the plate surface is smooth, there can be no force exerted by the plate on the fluid 
jet in the tangential direction. 
 
 Ft  = Q1V  - Q2 V – PQ V Cos   = 0  
        Q1 – Q2 – Q Cos = 0 (*)  
 
Continuity equation    Q  = Q1  + Q2    Q2 = Q – Q1 
 
Substitute in (*)                                        Q1  = Q- Q2 
 
      Q1 – Q + Q1 – Q Cos  = 0                
      2Q1  - Q (1+ Cos) = 0                       Q – Q2 – Q2 – Q Cos  = 0 
     Q1  = Q/2  (1 + Cos)                          Q (1 - Cos) – 2 Q2  = 0  
     Q2   = Q/2 (1- Cos )  
For a vertical plate,   = 900 
     Q1   = Q/2   = Q2 
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iv) Moving inclined plate  
 

 
Fig. A jet hitting a moving inclined plate 
 
V1 (x)  = v sin  
V2 (x)  = U sin  
 
Mass striking the moving plate per second   = Q  = A (v- u) 
Normal force on the plate   = A (V- U)  (V sin- U sin) 
                                            = A (V –U)2 sin  
 
Work done by this force  = Fx * U =   unF *sin  
 
V) Series of flat plates  
The force exerted by the impact of jet can be fruitfully utilized if the flat plates are 
mounted on the periphery of a wheel as shown below. The force exerted by the jet causes 
the rotation of the wheel. The flat plates thus occupy the bottom most position according 
to their turn.  
 

 
Fig Flat plates mounted a wheel  
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The number and location of the plates is so arranged that no portion of jet goes waste 
without doing work on the plate. 
 
Initial velocity of jet = V  
Final velocity = velocity of plate  = U 
Fluid mass striking the plate per second   = Q  = AV 
Force exerted on the plate by jet   = AV  (V – U) 
 
Work done per second    = Force * distance moved per second  
                                        = AV (V –U) *U 
 
KE of jet per second  = ½ (AV) V2 
 

Efficiency of jet   = 22

)(2
2/1

)(
v

uuv
VAV

uuvAV
jetofKE

plateondoneWork 






      

 
B. Force on curved vane  
 
Consider a symmetrical curved vane having smooth surface. The jet strikes at the center 
and after impact it is deflected equally along the vane surface. 
 

 
Fig. A jet hitting a curved vane 
 
Min    = AV * V = AV2 

Mout = -   cos
2

cos,
2

vAvVAv
  

          = - AV2 Cos 
 
Force exerted by curved vane on the jet 
 
Fx   = Mout – Min  
       =  - AV2 Cos - AV2  = - AV2 (1+cos) 
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Force on curve vane by jet = AV2 (1+cos) 
 
For  = 900 – Flat plate at right angle to jet   F = AV2 
For  = 00 - semi –circular plate   F = 2 AV2 
 
Curved vane moving in translation  
 
Mass of fluid striking the vane = A (v- u) 
   
Min   = A (v-u)2  
Mout  = - A (v –u)2 Cos 
 
Force exerted by jet on the vane = Fx   = A (v –u)2 (1+ Cos) 
 
Work done by jet = Fx U 
 
KE of jet /sec = ½ (AV) V2 
 

Efficiency, 
jetofKE

jetbyworkdone
           

 

    
3

2)cos1(2
v

uuv 



  

 
 
Curved vane mounted on a wheel  
 
Let the wheel rotate with a tangential velocity U and a jet moving with velocity v strikes 
the wheel. 
 
Fluid mass striking the wheel per second = PAV 
 
   Min   = AV (v –u) (Before impact)  
 
 
   Mout   = AV (v –u) Cos (After impact)  
 
Force exerted by jet on the van = Min – Mout  
 
                F = AV (v – u) (1+ Cos) 
 
W = F * U 

KE = ½ AV2     2

)cos1()(2
v

uvu 



   
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2.  Force exerted on a reducing pipe bend. 
As a general case a reducer bend has been selected which changes the magnitude and   
direction of velocity.  
     For simplicity assume the bend is in a horizontal plane. 
 

 
Let Fx and Fy be the components of the force exerted on the fluid by the pipe bend. 
 
Then momentum equation in the x –direction can be written as  
          1 A1 - 2 A2 cos - Fx = Q (V1 – V2 cost)  
Momentum equation may be expressed as  
              P1 A1 - P2 A2 - Rz   = pQ (V2 -V1) 
As the discharge is to the atmosphere, P2 = 0, and thus  
                  Rz   =P1A1   - pQ(V2 -V1) 
Further simple cases where the momentum equation may be profitably applied include 
the determination of the force acting on a pipeline at a contraction and that on a sluice.   

kNxxRz 21.11000/)65.230(5.8
10
64

4
6.44 0

2




 

Change in velocity and direction  
 
A reducing bend with deviation in the vertical plane is shown in Fig.below. Due to the 
hydrostatic and dynamic pressures a force is exerted by the fluid on the bend which has to 
be resisted by a thrust block or other suitable means. This force could be evaluated by 
plotting the stream lines and thus determining the pressure distribution. However, by a 
simple application of the momentum equation, and quite independently of any energy 
losses associated with turbulent eddying (real fluid), we obtain. 
 
           P1 A1 - P2A2  cos  - Rz = pQ(vz cos - v1)  
            And for the z direction  
 
                 Rz  - W - DoAo sin   = pQv, sin  
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where W is the weight of fluid between the reference sections.  
 
 From these equations Rz and Rz  may be determined and hence the resultant R  =   
 

       22
zz RRR   

 
It is to be noted that the momentum equation gives no information concerning the 
location of the resultant, which necessitates an analysis involving forces and moments.  
Applications of Momentum Equations  
 
The momentum equation finds an application in many hydraulic problems. Generally, it 
is employed in conjunction with the continuity equation, and often additionally with the 
Bernoulli equation. Problems which involve a marked change in flow velocity or 
direction are particularly appropriate. The analysis of the hydraulic jump and the 
determination of the force exerted by a jet of water impinging on a  
 
The correction factor  is obtained by integrating the momentum of the elemental stream 
rubes over the entire section and dividing by the momentum based on the mean velocity.  
 
Thus, rotating vane are both in this category and are dealt with in later chapters. Our 
present consideration will be limited to two simple cases. When applying the equation to 
a real fluid it is important to remember that there are longitudinal frictional stresses 
present which can only be neglected when the distance between the reference sections is 
relatively short.   
 
Change in velocity  
A nozzle, attached to a pipeline, and discharging to the atmosphere provides a good 
example of a rapid change in velocity. The fluid exerts a force on the nozzle and in 
accordance with Newton's third law there is a similar force, of opposite sign, exerted by 
the nozzle on the fluid. This is the force which the tension bolts must be designated to 
withstand. The force could be evaluated by an analysis of the pressures acting on the 
surface of the nozzle but this procedure would, to say the least, be extremely tedious. By 
contrast, a simple application of the momentum equation between upstream and 
downstream reference sections will yield a direct solution. In Fig 4.16 the component 
forces are the hydrostatic forces P1A1 and P2A2 and the force R1 exerted by the nozzle on 
the fluid. The rate of change of momentum is  Q (V2 - V1) so that the momentum 
equation may be expressed as:  
                         Fx = P1A1 - Q(V2 - V1)                        


