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0035.0=cuε

002.00 =ε

d 
x 

ccucd ff γ67.0= ccucd ff γ67.0=

y= 0.8x

yds ff = yds ff =  

Strain Parabola-rectangle 
stress 

Equivalent-rectangle 
stress 

yds εε ≥

x-section 

AN.  

sA  

CHAPTER-3 
 

LIMIT STATE DESIGN FOR FLEXURE AND SERVICEABILITY LIMIT 
STATE 

 
3.1. Basic Assumptions: 
Assumption made for determining ultimate resistance of a member for flexure and axial force 

according to EBCS-2/95 are, 

1. A section which is plane before bending remains plane after bending. This implies strains 

across section are linearly varying. This is true for most section of flexural member except 

deep beam where shear deformation is significant. 

2. The reinforcement is subjected to the same variations in the strain as the adjacent concrete. 

This implies there is no slip between steel bars and the adjacent concrete. This is possible if 

adequate development length of bars and concrete cover are provided.    

3. Tensile strength of concrete is ignored. The reinforcement assumed to takes all the tension 

due to flexure. 

4. The maximum compressive stain in concrete when a section complete plastic deformation 

is taken to be 0035.0=cuε in bending (simple or compound) 002.0=cuε in axial 

compression 

5. The maximum tensile strain in the reinforcement is taken to 0.01. This limit assumed to 

limit crack-width with in tension zone of section to the acceptable limit.   

6. Either idealized parabola-rectangle stress distribution or equivalent rectangle stress 

distribution for concrete in compression zone given by code as shown below shall be used 

in derivation of design equation.  

The ultimate resistance of section may be determined using equilibrium of both internal and 

external forces based on the stress block obtained from the basic assumption. 
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D 

b 

d 
x 

s

yd
yds E

f
=≥εε  

Strain 

AS 

0035.0=cuε

X-section 

uM

cdf  cdf  

cC  xbfC cdc ..8.0=  

ydss fAT .=

uM  

sT  

xy 8.0=  

Parabola-rectangle 
Stress block 

Equivalent rectangle 
Stress block 

3.2. Design Equations for Singly Reinforced Rectangular Section:   
 
Consider a singly reinforced rectangular section subjected to a factored load moment, uM  as 

shown below. 

 
 
 
 
 

 
 
 
 
 
 
-Equilibrium of both internal and external forces, 

i) [ ] scH TCF =⇒=∑ 0  

  ydscd fAxbf ...8.0 =⇔  Let 
db

As

.
=ρ     --steel ratio of section 

  ydcd fdbxbf .....8.0 ρ=⇔   

Simplifying, depth of neutral axis obtained as,   

   d
f
f

x
cd

yd .
8.0
.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
     (1)   

ii) [ ] zTzCMM scu ..0 ==⇒=∑  Where ( )xdz 4.0−=       --lever arm  

-taking moment about sT : 

  zCM cu .=   

( ) ( )xdxbfM cdu 4.0...8.0 −=⇔  

Substituting x from Eq.(1), 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⇒ d

f
f

dd
f
f

bfM
cd

yd

cd

yd
cdu .

8.0
.4.0

..
8.0
.

..8.0
ρρ

 

Simplifying, ultimate moment of resistance of section is obtained as,   

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

cd

yd
ydu f

f
dbfM

2
.

1.... 2 ρ
ρ     (2) 

( )xdz 4.0−=  
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The same equation of ultimate moment of resistance of section can be obtained if moment center 

is taken at cC . 

-Defining the ultimate moment and relative steel-area using the following dimension-less 

parameters: 

  2.. dbf
M

cd

u=μ    --relative ultimate moment 

And  
cd

yd

f
f

.ρω =    --mechanical reinforcement ratio 

Then, neutral-axis depth obtained in Eq.(1) can be written as, 

  
8.0
. dx ω

=         (1a) 

Therefore, depth of equivalent stress-block is obtained as, 

  dxy .8.0 ω==    

Writing equation of moment of resistance of section in the form as shown below by rearranging 

Eq.(2), 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

cd

yd

cd

yd

cd

u

f
f

f
f

dbf
M

2
.

1.
.

.. 2

ρρ
     

Writing the above equation in terms of dimension less parameters,  

22
1.

2ωωωωμ −=⎟
⎠
⎞

⎜
⎝
⎛ −=⇒     (2a) 

Rearranging Eq.(2a),  0222 =+−⇒ μωω  

Solving for ω , 

  μω 211 −−=       (3) 

Therefore, area of tension steel required to resist the ultimate moment, uM is obtained by taking 

moment about cC as, 

  zTM su .=      

 zfAM ydsu ..=⇔  

Where  ( )xdz 4.0−=  substituting x from Eq.(1a) and ω from Eq.(3) 

  ( )μω 211.
2

.
2

1 −+=⎟
⎠
⎞

⎜
⎝
⎛ −=

ddz  
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Rearranging, the required area of tension steel is obtained by, 

  
zf

MA
yd

u
s .
=          (4) 

 
3.2.1. Balanced Singly Reinforced Section 
 

In balanced section, yielding of tension steel and crushing of concrete takes place at same time 

when the section complete plastic deformation. That is, the maximum compressive strain in 

concrete reaches the ultimate strain, 0035.0== cuc εε and the strain in tension steel is just 

yielded, sydyds Ef== εε . 

From strain distribution, using similarity of triangles, 

  
scu

cu

d
x

εε
ε
+

=  

Substituting bxx = & sydyds Ef== εε , the balanced neutral-axis depth is obtained as, 

  ( ) d
Ef

x
sydcu

cu
b .

+
=

ε
ε

       (5) 

Where   0035.0=cuε    --ultimate compressive strain of concrete  

Equating bx  with equation of neutral-axis depth obtained in Eq.(1) and Eq.(1a), the balanced 

reinforcement ratio and the balanced mechanical reinforcement ratio are obtained as, 

  ( ) yd

cd

sydcu

cu
b f

f
Ef

.8.0
+

=
ε

ερ        (6) 

And  ( )sydcu

cu
b Ef+
=

ε
εω 8.0

       (7) 

If bρρ < , the steel yields first at the load near collapse (a case of under-reinforced section and 

ductile-type failure). 

If bρρ > , crushing of concrete takes place first prior to yielding of tension steel at the load near 

collapse (a case of over-reinforced section and brittle-type failure). 

To ensure ductility, in practice the maximum amount of tension steel is fairly below the amount 

corresponding to the balanced-one. 
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ACI:318 code recommend: maximum reinforcement ratio ensuring ductility as 

bρρ 75.0max = . For seismic load resisting member, the same code recommends, bρρ 5.0max = . 

Based on ACI recommendation ( bρρ 75.0max = ), maximum design constants of singly 

reinforced section are obtained as shown in table below. 

 

Table: Maximum design constants of singly reinforced section (ACI-code)  

 
 
 
 
 
 
 
 
EBCS:2/95 recommend: the maximum amount of tension steel used to ensure ductility is based 

on limiting the neutral-axis depth at, 

 dx 448.0max =   --for no redistribution of elastic moments 

 dx 368.0max =   --for 10% redistribution of elastic moments 

 dx 288.0max =   --for 20% redistribution of elastic moments 

 dx 208.0max =   --for 30% redistribution of elastic moments 

Based on EBCS-2/95 recommendation, maximum design constants of singly reinforced section 

are obtained as shown in table below. 

 

Table:  Maximum design constants of singly reinforced section (EBCS-2/95 code) 

  

 

 

 

 

 

 

 
 

 

Steel Grade maxω  maxμ  

S-300 MPa  
S-400 MPa  
S-460 MPa  

0.437 
0.401 
0.382 

0.341 
0.320 
0.309 

% Redistribution of 

elastic moments 

 

maxω  

 

maxμ  

0% 

10% 

20% 

30% 

0.3584 

0.2944 

0.2304 

0.1664 

0.294 

0.251 

0.204 

0.152 
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Better approach as follows: 

In accordance with LSD method, at ULS of collapse:-  

• εc approaches εcu = 0.0035 

• The reinforcing steel shall yield first (
s

yd
dy E

f
=ε ) 

  ⇒ Ductility is ensured by means of under reinforcement.  

• At balanced failure simultaneous failure of the two materials (Concrete & Steel) 

occurs. 

Let x b be the depth to the NA at balanced failure. From the strain relation, 

 
yd

b

cu

b xdx
εε
−

=      ⇒              
ydcu

cu
b

dx
εε

ε
+

=
*

                

       
• If x < x b ⇒  Steel yields first 

• If x > x b ⇒  Crushing of concrete takes place first.  

         Σ FH = 0    ⇒      Ts = CC   ⇒   As fyd = 0.8 xb b fcd 

Substituting for xb and simplifying,
yd

cd

ydcu

cu
b f

f**8.0
εε
ερ

+
=  

(a steel ratio for balanced case) 

However, for ductility purpose the steel ratio ρ may range b/n 0.75 ρb to 0.9 ρb, and in  

some cases as low as 0.5 ρ b in ACI code, but in EBCS-2 ductility is ensured by keeping 

 kx max = 0.448 for 0% redistribution or even less for redistribution > 0% . 

 

Rewriting the force equilibrium 

byfcd = As fyd     ⇒  b * 0.8x fcd  =  ρbd  fyd 

     ,
*8.0

*
m

f
f

d
xk

cd

yd
x ρ

ρ
===   Where 

cd

yd

f
f

m
*8.0

=  

                     Σ Mc = 0 ⇒  Md = As fyd (d - 0.4x) 

Substituting the value of x and simplifying 

                                   Md = 0.8 bd2 fcd kx (1-0.4 kx) 
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l  

When the above equation is solved for kx,     

max
2

2
2

11
45.0 x

d
x k

cbd
Mcck ≤

⎭
⎬
⎫

⎩
⎨
⎧

−−=    

                     Where   c1 = 2.5/m, c2 = 0.32m2fcd, m=fyd/(0.8fcd)   kx max = 0.448 for 0% 

redistribution. 

The section capacity for single reinforcement case may be computed from Σ Mt = 0, 
when kx < kx max 
                       ⇒   Mu = 0.8bx fcd (d-0.4x)                  x = kx max d  

                          = 0.8bd2 fcd kx max (1 -0.4 kx max)  

                

3.2.2. Inelastic Redistribution of Moments in Continuous-beams and 

Frames 

 

When statically indeterminate beam is loaded beyond the working loads, plastic hinges forms at 

the location of maximum bending moment. On further loading the beam, the maximum moment 

do not increase beyond the ultimate moment capacity of section of beam, however, rotation at 

plastic hinges keep on increasing until the ultimate rotation capacity is reached. A redistribution 

of moment takes place with the changes in the moment elsewhere in the beam as if a real hinges 

are existing. With further increase of additional plastic hinge, redistribution moments continue 

until a collapse mechanism is produced. 

Plastic analysis can be applied in analysis of steel structures. However, its use for analysis of 

reinforced concrete structures is limited. A limited redistribution of moments obtained from 

elastic analysis of indeterminate structures is permitted by most codes if members are designed 

under-reinforced section provided equilibrium is maintained under each combination of ultimate 

loads.  

For illustration of plastic analysis of structure, consider a fixed-beam, which is statically 

indeterminate, subjected to increasing uniform load shown below.  

 
                                                       w  
 
 
 
 
Let the beam subjected to the load '' pw  that cause the plastic hinges at the ends when the 

maximum moment at supports equal to the ultimate resistance of beam section. But, with the 
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l  

( )cdydydu
p

n ffdbfM
lw

M 2.1...
12

. 2
2

ρρ −===  12
. 2lwp  

24
. 2lw

M p
p =  

Plastic hinge 
uM  uM  

12
. 2lw

MM p
un ==  

12
. 2lwp  

12
.

8
.

24
. 222 lwlwlw

MM pp
up =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+==  

uM  uM  Collapse Mechanism 

uM  

)(−  )(−
)(+  

)(+  
)(−  )(−

formation of plastic hinges, the beam is still able to support additional load without complete 

collapse. After formation of plastic hinges at supports, the beam behaves as if simply supported.  

 
                                          pw  
 
 
 
 
 
 
      
 
 

On further loading, the moment at center of span increases proportionally with the change of 

loading.  Additional load wΔ  is slowly applied until it causes the beam to transform into a 

collapse mechanism with the formation of one or more hinges at the middle. 

 
                                  www pu Δ+=  
 
 
 
 
 
 
 
 
 
 

At collapse, mid-span moment equal to the ultimate resistance of beam section, 

 
12

.
8
.

24
. 222 lwlwlw

M pp
u =

Δ
+=  

Equating negative and positive collapse moment, additional load that causes collapse mechanism 

in terms of the load '' pw  that causes the plastic hinges at the ends is, 

 3pww =Δ    And,  collapse load in terms of '' pw    

 ppppu wwwwww
3
43 =+=Δ+=  

These shows, the beam may carry a load of pw34 with redistribution. The ultimate moment in 

terms of ultimate load is: 
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12

. 2lw
M p

u =      Substituting up ww
4
3

=  

( )
16
.

12
.43 22 lwlwM uu

u ==→  

If elastic analysis is made using the ultimate load '' uw , the maximum moment at support is 

12. 2lwu . The percentage reduction in bending is: 

 %25100
12.

16.12.
2

22

=
− x
lw

lwlw

u

uu  

Plastic analysis of continuous beams and frames also can be done using virtual work method. 

Assume any reasonable collapse mechanism, equating internal work done by ultimate moments at 

plastic hinges with external work done by collapse load on deflecting collapsed span of 

continuous beam and frame, the location of plastic hinges and the minimum collapse load can be 

determined. 

 

According to EBCS-2/95, elastic moments of continuous beams and frames are redistributed 

using the following reduction coefficient, δ 

1) For continuous beams and rigid jointed braced frames with span/effective depth ratio not 

greater than 20, 

⎟
⎠
⎞

⎜
⎝
⎛+=

d
x25.144.0δ   Where x—is calculated at ultimate limit state 

Based on the above equation, the limiting maximum neutral axis depth ratio used for 

proportioning of sections of continuous beams and rigid jointed braced frames are obtained as 

follow: 

 For 30% redistribution of elastic moment, 208.0=dx   

 For 20% redistribution of elastic moment, 288.0=dx   

 For 10% redistribution of elastic moment, 368.0=dx   

 For no reduction of elastic moment, 448.0=dx   

2) For other continuous beams and rigid braced frames 

   75.0≥δ  

3) For sway frames with slenderness ratio l of columns less than 25 

  90.0≥δ  
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Examples on Design of Singly Reinforced Beams using Limit State Design Method 
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Assignment-1: 
 

Question No. 4 

Question No. 6 

Question No. 8 
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Exercise-1 
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b  

d  

ydε  AS 

cuε  

1
sA  

1d  

maxxxx b ==  
1

sε  

≡ +  

cdf cdf

uM 1M 2M  

maxmax xy =

)( 1dd −  

sC

cC
cC  

ydss fAT .= yds fAT .11 =  
yds fAT .22 =

a) x-section b) Strain 
c) stresses, doubly  
reinforced section, uM  

d) Stresses, balanced 
    section, 1M  

e) stresses, excess tension- 
steel plus comp. steel, 2M  

3.3. Doubly Reinforced Rectangular Section    
 
Consider a doubly reinforced rectangular section subjected to an ultimate moment, uM as shown 

below. Design equations are derived by dividing the section into two parts: Balanced singly 

reinforced section and excess tension steel plus compression steel. It is assumed that both tension 

and compression steels are yielded. The excess tension steel and compression steel are 

proportioned in such a way that the neutral axis is maintained at balanced position. 

                                                                                                                             ydss fAC .1=                               
 
 
 
 
 
 
 
  
   
      
 
 

Let  1M --moment capacity of balanced singly reinforced section 

 2M --moment resistance provided by excess tension steel plus compression steel 

Thus, the total ultimate moment of resistance of doubly reinforced section is the sum of the two 

parts: moment capacity of balanced singly reinforced section, 1M  and ultimate moment resisted 

by excess tension steel plus compressive steel, 2M .  

i.e            ( )21 MMMu +=   

Moment capacity of balanced singly reinforced section, 

  2
max1 ... dbfM cdμ=  

And, the corresponding area of tension steel balancing 1M is, 

  
min

1
1 . zf

MA
yd

s =  

Where  ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=−=

2
1.4.0 max

maxmin
ωdxdz  

Excess moment to be resisted by excess tension steel plus compression steel is,  

( )12 MMM u −=      
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Equating excess moment with the couple made by internal forces in excess tension steel and 

compression steel as shown in Fig.(e), area of excess tension steel and compression steel are 

obtained as (if compression steel yielding) 

  ( )1
2

2 . ddf
MA

yd
s −
=   And,   ( )1

21

. ddf
MA

yd
s −
=  

Therefore, the total area of tension steel required by doubly reinforced section, 

  21 sss AAA +=  

To check yielding of compression steel, referring to stain diagram in Fig.(b), the strain in 

compression steel is determined and compared with the yield strain of a given steel as obtained 

below.    ( )11
max

scu

cu

d
x

εε
ε
−

=  

 
( )

max

1
max1 .

x
dx

cus
−

=⇒ εε  

Where  0035.0=cuε  

  ( ) 8.0.8.0 maxmaxmax dyx ω==  

If compression steel is yielding, 

  
s

yd
yds E

f
=≥ εε 1   &  yds ff =1  (as assumed) 

Or, if compression steel is not yielding, 

   
s

yd
yds E

f
=< εε 1   &  ydsss fEf <= 11 . ε   

Then, area of compression steel is re-determined using, 

  ( ) ( )11
2

11
21

... ddE
M

ddf
MA

sss
s −

=
−

=
ε

 

 

Another Similar approach: 
Assume that As & As1 are stressed to fyd. 

                                     Mu = Muc+ Musc 

Where Muc is the BM carried by the concrete and partial area of tensile steal. 

                                   ⇒   Muc = 0.8bd2 fcd k1 (1-0.4 k1) 
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In which k1 = kx max, the maximum steel ratio corresponding to single reinforcement 

section in case of design and  

                   max
1

1 x
ss k

bd
AAk ≤

−
=  for the case of analysis.                          

Musc is the BM carried by compressive steel and the corresponding tensile steel. 

                     Musc = As1 fyd (d-dc’) 

The yielding of the compressive steel may be checked from the strain relation as  

                   ydcu
c

sc x
dx εεε ≥

−
= *'  
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Examples on Design of Doubly Reinforced Beams using Limit State Design Method 
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3.4. Flanged Section (T- or L-section) under Flexure  
 

The general discussion with respect to flanged section, effective width of flange in working stress 

method holds for strength limit state method as well. In treating flanged section using strength 

limit state method, it is convenient to adopt the same equivalent rectangle stress-block that is used 

for rectangular cross section.   

i) If depth of equivalent rectangle stress-block, '' y  is equal to or less than the flanged thickness, 

'' fh  (i.e fhy≤ ), a flanged section may be treated as a rectangular section of width equal to an 

effective width of flange, '' eb  provided the flange of section is on compression side when the 

section subjected a moment. 

For trial purpose initially, it can be assumed the stress block is with-in the flange (or assume 

flanged section rectangular with width equal to effective width of flange). 

-calculate relative ultimate moment and relative mechanical steel ratio of assumed rectangular 

section using, 

  2.. dbf
M

ecd

u=μ   

And  μω 211 −−=  

-then, compute depth of equivalent rectangle stress-block for assumed section and compare 

with thickness of the flange of the section, 

  dy .ω=    

-If fhy ≤ , the section is designed as rectangular section with width equal to effective width of 

flange, '' eb . Therefore, area of tension steel required by the section for such case is given by 

  
zf

MA
yd

u
s .
=    

Where  ( )μ211
2

−+=
dz  

ii) If the depth of equivalent rectangle stress-block of assumed rectangular section is greater than 

thickness of the flange of the section (i.e fhy > ), a flanged section is treated as T-beam 

section provided the flange of section is on compression side when the section subjected a 
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cdf
cuε  

yds εε ≥  

eb  

wb  

fh  

d  
x  

sA  sfA swA  

y

≡ +  fz

cC  

sT  

x-section Strain Stresses 
Over-hanging 

portion 
Web portion 

extending into flange 

moment. To derive design equation of T-beam, it is convenient to divide the compression area 

of T-beam section into two parts as shown below: 

a) the over-hanging portion of the compressive flange 

b) the web portion extending into the compressive flange 

 
 
 
 
 
 
 
 
 

 
 
Let  sfA --area of tension steel balancing over-hanging portion of the flange  

 swA --area of tension steel balancing web portion extending into the flange 

The total ultimate moment of resistance of T-beam section is obtained by taking moment of the 

internal compressive forces about the center of tension steel; and it is given as the sum of 

moments produced by over-hanging portion of the flange and the web portion extending into the 

flange.  i.e uwufu MMM +=  

-The moment produced by over-hanging portion of the flange is obtained as 

  fcdfweuf zfhbbM ...)( −=  

Where  ( )2ff hdz −=  

Then, the corresponding area of tension steel balancing the over-hanging portion of the flange is 

obtained as 
ydf

uf
sf fz

M
A

.
=  

-The moment produced by the web portion extending into the flange is obtained by subtracting 

moment of over-hanging portion from the total ultimate moment of T-beam. 

i.e  )( ufuuw MMM −=  

To determine the corresponding area of tension steel balancing web potion extending into the 

flange, the web portion is treated as rectangular section with width equal to the width of the 

web, wb . Therefore, calculate the relative ultimate moment the web portion using 



 
 

99

  2.. dbf
M

wcd

uw
w =μ  

Then, the required area of tension steel balancing web potion is obtained as 

  
wyd

uw
sw zf

MA
.

=   

Where  ( )ww
dz μ211.
2

−+=  

Therefore, the total area of tension steel is obtained as 

  swsfs AAA +=  

Check flanged section for single reinforcement using maxμμ ≤w . If the flanged section requires 

compression reinforcement ( maxμμ >w ), area of compressive steel and excess tension steel 

required by web portion is obtained using (if compression steel is yielding) 

  
( )

( )1
1

2
1

. ddf
MMAA

yd

uw
ss −

−
==   

and, area of tension steel balancing web portion is re-determined using  

  
min. zf

MA
yd

uw
sw =    

Where  2
max1 ... dbfM wcdμ=  & ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −=−=

2
1.4.0 max

maxmin
ωdxdz  

iii) If the flange of the section is on the tension side when subjected to a moment, flanged section 

is designed as if it were a rectangular section with width equal to the width of the web, wb .   

 

Another similar approach: 

 

Reinforced concrete floors or roofs are monolithic and hence, a part of the slab will act 

with the upper part of the beam to resist longitudinal compression.  The resulting beam 

cross-section is, then, T-shaped (inverted L), rather than rectangular with the slab 

forming the beam flange where as part of the beam projecting below the slab forms the 

web or stem. 
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The T-sections provide a large concrete cross-sectional area of the flange to resist the 

compressive force.  Hence, T-sections are very advantageous in simply supported spans 

to resist large positive bending moment, where as the inverted T-sections have the added 

advantage in cantilever beam to resist negative moment. 

 

As the longitudinal compressive stress varies across the flange width of same level, it is 

convenient in design to make use of an effective flange width (may be smaller than the 

actual width) which is considered to be uniformly stressed. 

Effective flange width (according to EBCS 2, 1995) 

For interior beams ⇒  T-sections 

                         
⎪⎩

⎪
⎨
⎧ +

≤
spacingbeamCC

lb
b

e
w

e

/
5   

For edge beams    ⇒   inverted L- sections 

                         
⎪⎩

⎪
⎨
⎧

+

+
≤

beamadjacenttocedisclearthehalfb

l
b

b
w

e
w

e

tan
10  

Where le – is the effective span length & bw is the width of the web. 

There are three distribution type of flexural behavior of T-sections. 

 When the T-section is subjected to BM, and tension is produced on the flange 

portion, it is treated as a rectangular section with b = bw. 

 When the T-section is subjected to +ve bending moment and the equivalent 

compressive stress block lies within the flange as shown below (y < hf), the section 

can be analysed as rectangular with effective width be. 

b 

D 
hf 

be

Fig. 3.3.1 
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− This case is a case of under reinforced condition or large flange thickness, which 

can be confirmed first by computing ρ (with b = be, ρ = As/(bed)) using relation 

established for rectangular beams and evaluate the NA depth, x = ρmd. Compare y 

= 0.8x with hf. 

 

 

 

 

 

 

 

 When y > hf, the section acts as T-beam and hence analysis accounting the T-

geometry becomes essential which is shown in the figure below. 

 

 

 

 

Cross-section Design and Analysis 

 

Design 

- Assuming b = be compute    
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−=
2

211
4

5.0
cdb

M
cck

e

d
x    and x = kx d 

i)  If y = 0.8x < hf, section is rectangular as assumed.  

bw

y

bw

xhf

d

d'

be εc

εs

Cc

Ts

0.8x

f cd 

Cross section                                    Strain                       Stress 
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                      ⇒  As = db
m
k

e
x  

ii) If y > hf    ⇒  T beam analysis is required. 

        As = ASf + Asw = 
ydf

uf

fZ
M

*
 + ρwbwd    in which, 

            Muf = (be-bw) hf fcd zf 

           
2

f
f

h
dZ −=  

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−==
2

211
45.0

cdb
M

cc
mm

k

w

uww
wρ   

                     Muw = Mu - Muf 

 

iii) When the flange is on the tension side, then the cross- section is designed as if it 

were  rectangular with b = bw 

Analysis:                              
db

A

e

s

*
=ρ ,    X = ρmd 

i) If y = 0.8X<= hf  ⇒ the section is analyzed as rectangular with b = be. 

  Mu = 0.8bed2fcd ρm (1-0.4 ρm) 

ii) If y = 0.8X< hf  ⇒ the section is analyzed as T-beam. 

           Muf = (be-bw) hf fcd zf   ,         ASf = 
ydf

uf

fZ
M

*
    , Asw = As - ASf   

ρw = 
db

A

w

sw

*
                    Muw = 0.8bwd2fcd ρwm(1-0.4ρwm) 

                                        Mu = Muf +Muw 
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Examples on Design of T-Section Beams using Limit State Design Method 
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Assignment-2: 
 

Question No. 2 

Question No. 3 

Question No. 5 
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Alternative method using design tables (singly reinforced Sections) 

 

1-USING DESIGN TABLES 

 

Derivation 

 Md = 0.8bd2fcd ρm(1-0.4 ρm) 

 )4.01(8.02 mmf
bd
M

cd
d ρρ −=  

          Let )4.01(8.02 mmf
bd
Mk cd

d
m ρρ −==              

         ∑Mc = 0  
)4.01(

1*
)4.0(

d
xfd

M
xdf

MA
yd

d

yd

d
s

−
=

−
=⇒  

                    Let  
d

MkA

d
xf

k ds
s

yd

s
*

)4.01(

1
=⇒

−
=  

 

From table 1a there are different Km values and the max. Value of Km for different 

moment redistribution is given and represented by Km*. 

 If Km ≤ Km*, the section is singly reinforced. 

 If Km>Km*, it is doubly reinforced. 

 

STEPS: 
a) For Singly Reinforced Sections 

1. Evaluate 
d

b
M

k

d

m =  

2. Enter the general design Table No.1a using km and concrete grade. 

3. Read ks from the same Table corresponding to steel grade and km. 

4. Evaluate
d

MkA ds
s

*
=   
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b) For Doubly Reinforced Sections 

1. This is so, when Km>Km*(is the value of Km shown shaded in general design 

table 1a , corresponding to the concrete grade) 

2. compute Km/Km* 

3. Read Ks & Ks* corresponding to Km/Km* & the steel grade from general 

design table 1a 

4. Assume dc, (d2) & read ρ (correction factor) from the same table corresponding 

to Km/Km* & dc’/d. 

5. Read ρ’ corresponding to dc’/d ,then 

                         As = KsMd ρ/d                   As’ = Ks’Md ρ’/d        

 

Note: -   In all cases 

- Md is in KN-m 

- b    “    “  m 

- d    “    “  m 

2- USING DESIGN CHARTS 

 Compute 2,
,

bdf
sMu

cd
su =γ  & Kx, max = 0.8(δ-0.44), where δ=1, 0.9, 0.8 & 

0.7 for 0%, 10%, 20% & 30% moment redistribution. 

 Compare su ,γ  or Kx with the corresponding values of *,suγ  Kx,max 

Where: *,suγ  = 0.143, 0.205, 0.252 & 0.295 for 30%, 20%, 10%, and 0% 

respectively. 

 If  su ,γ  ≤ *,suγ  then the section is singly reinforced and As1: 

                                     As1 = 
fyd
Nsd

zf
sMsd

yd

+
,  

 If su ,γ > *,suγ ,then the section is doubly reinforced and As1 ,As2: 

                       As2 =  
22 )(

*,,

sdd
sMusMsd

σ−
−  - area of compression reinforcement,  

              Where: Mu, s* = *,suγ fcd bd2 & *,suγ  is the value given above. 

                           2sσ  - is actual compressive stress on compression steel & is Es*εsc 
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                        As1 =  
yd

sd

syd f
N

dd
sMusMsd

Zf
sMu

+
−
−

+
22 )(

*,,*,
σ

  -area of tensile reinforcement 

 Using su ,γ  read Z/d, X/d etc & compute As1 and As2.  
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Cover to Reinforcements 

 

 The concrete cover is the distance between the outermost surface of reinforcement 

(usually stirrups) and the nearest concrete surface. 

 The thickness of cover required depends both upon the exposure conditions and 

on the concrete quality. 

 To transmit bond forces safely, and to ensure adequate compaction, the concrete 

cover should never be less than: 

(a) φ or φn  (≤ 40mm), or 

(b) (φ + 5mm) or (φn + 5mm) if dg > 32mm 

    Where   φ  = the diameter of the bar. 

                  φn = the equivalent diameter for a bundle. 

                  dg = the largest nominal aggregate size. 

Minimum cover 

Type of exposure Mild Moderate Sever 

Min. cover (mm) 15 25 50 

 

Durability and control of crack width is related with finishing and provision of adequate 

cover to reinforcement.  Nominal cover for structural elements located in the interior of 

the building with dry environment and mild condition is 15 mm, example slab; humid 

environment with moderate exposure is 25 mm, example beam; severe environment is 

50 mm, example footing. 

 

Spacing of Reinforcements 

 The clear horizontal and vertical distance between bars shall be at least equal to 

the largest of the following values. 

(a) 20 mm 

(b) The diameter of the largest bar or effective diameter of the bundle 

(c) The maximum size of the aggregate dg plus 5mm. 
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 Where bars are positioned in separate horizontal layers, the bars in each layer 

should be located vertically above each other and the space between the resulting 

columns of the bars should permit the passage of an internal vibrator. 

 

Effective Span Length 

 The effective span of a simply supported member shall be taken as the lower of 

the following two values: 

(a) The distance between the center lines of supports. 

(b) The clear distance between the faces of supports plus the effective depth. 

 The effective span of a continuous element shall normally be taken as the distance 

between the center lines of the supports. 

 For a cantilever, the effective span is taken to be its length, measured from. 

(a) The face of the supports, for an isolated, fixed ended cantilever. 

(b) The center line of the support for a cantilever which forms the end of a 

continuous beam. 

 

Deflection limits are assumed to be satisfied when the minimum effective depth for 
a particular member is  

                            
a

eLykf
d

β
∗⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+≥

400

*6.0
4.0  

where fyk is equal to character strength of reinforcement, Le is the effective span (the 
shorter span in case of two way slab), is constant, a function of restraints given 
below). 
 
 
 

Table – values of aβ  

Member Simple End span Interior span cantilever 
Beams 20 24 28 10 
Slabs: 
Span ratio 2:1 

 
25 

 
30 

 
35 

 
12 

Span ratio 1:1 35 40 45 10 
       * For intermediate values – interpolation. 
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Preliminary Sizing of Beam Sections 

Ideal values of span effective depth ratios, recommended in the ISE manual for the 

preliminary sizing of reinforced concrete beams are given in table below. 

Support 

conditions 
Cantilever Simple Support Continuous End spans 

ISE manual 6 12 15 13.5 

 
                              
 

3.6. One-way RC Slabs  

 
A reinforced concrete slab is a broad, flat plate, usually horizontal, with top and bottom 

surfaces parallel or nearly so. It is used to provide flat surfaces mainly for roofs and 

floors of buildings, parking lots, air fields, roadways …etc. It may be supported by 

reinforced concrete beams (and is poured monolithically with such beams), by masonry 

or reinforced concrete walls, by structural steel members, directly by columns, or 

continuously by the ground. 

 

Classification: - Beam supported slabs may be classified as:- 

1. One-way slabs – main reinforcement in each element runs in one direction only. 

(Ly/Lx >2). There are two types- one way solid slabs and one way ribbed slabs. 

2. Two – way slabs – main reinforcement runs in both direction where ratio of long to 

short span is less than two.  (Ly/Lx < 2) 

Others include flat slabs, flat plates, two way ribbed or grid slabs etc. 

 

 

 

 

Solid slab Ribbed slab 
Beams 

Joists
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3.6.1. Analysis of one-way solid slabs 

 

They are considered as rectangular beams of comparatively large ratio of width to depth 

and ratio of longer span to width (short span) is greater than two. 

 

 

 

 

 

 

When  Ll / Ls  >  2, about 90% or more of the total load is carried by the short span, i.e., 

bending takes place in the direction of the shorter span. 

 

The analysis is than carried out by assuming a beam of unit width with a depth equal to 

the thickness of the slab and span equal to the distance between supports (in the short 

direction). The strip may be analyzed in the same way as singly reinforced rectangular 

sections. 

 Load per unit area on the slab would be the load per unit length on this imaginary 

beam of unit width. 

 As the loads being transmitted to the supporting beams, all reinforcement shall be 

placed at right angles to these beams. However some additional bars may be placed 

in the other direction to carry temperature and shrinkage stresses. 

 

Generally the design consists of selecting a slab thickness for deflection requirement and 

flexural design is carried out by considering the slab as series of rectangular beams side 

by side 

 

Remark:-  

 The ratio of steel in a slab can be determined by dividing the sectional area of one bar 

by the area of concrete between two successive bars, the latter area being the product of 

the depth to the center of the bars and the distance between them, center to center. 

1m width

Ll 

Ls
Supporting beams / walls 
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 Unless condition warrant some change, cover to reinforcement is 15 mm. 

 The following minimum slab thicknesses shall be adopted in design: 

a) 60mm for slabs not exposed to concentrated loads (eg. Inaccessible roofs). 

b) 80mm for slabs exposed mainly to distributed loads. 

c) 100mm for slabs exposed to light moving concentrated loads (eg. slabs accessible 

to light moving vehicles). 

d) 120mm for slabs exposed to heavy dynamic moving loads (eg. slabs accessible to 

heavy vehicles). 

e) 150mm for slabs on point supports (eg. flat slabs). 

 Flexural reinforcements should fulfill the following minimum criteria: 

a) The ratio of the secondary reinforcement to the main reinforcement shall be at least 

equal to 0.2. 

b) The geometrical ratio of main reinforcement in a slab shall not be less than:      

    MPainfwhere
f yk

yk

5.0
min =ρ   

c) The spacing between main bars for slabs shall not exceed the smaller of 2h or 

350mm. 

d) The spacing between secondary bars (in a direction ⊥ to the main bars) shall not 

exceed 400mm. 

 

3.6.2.   Analysis and Design of one way Ribbed Slab 

In one way ribbed slab, the supporting beams called joists or ribs are closely spaced. The 

ribbed floor is formed using temporary or permanent shuttering (formwork) while the 

hollow block floor is generally constructed with blocks made of clay tile or with concrete 

containing a light weight aggregate.  This type of floor is economical for buildings where 

there are long spans and light or moderate live loads such as in hospitals and apartment 

buildings. 
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General Requirements: 

 
Minimum slab thickness 

To ensure adequate stiffness against bending and torsion and to allow ribbed slabs to be 

treated as solid slabs for the purpose of analysis, EBCS-2 recommends that the following 

restrictions on size are satisfied: 

 Ribs shall not be less than 70mm in width; and shall have a depth, excluding any 

topping of not more than 4 times the minimum width of the rib. The rib spacing shall 

not exceed 1.0m 

 Thickness of topping shall not be less than 50mm, nor less than 101  the clear distance 

between ribs. In the case of ribbed slabs incorporating permanent blocks, the lower 

limit of 50mm may be reduced to 40mm.  

 

 

 

 

 

 

 

 
 
 
 
 
Minimum Reinforcement 
 
 The topping shall be provided with a reinforcement mesh providing in each direction a 

cross-sectional area not less than 0.001 of the section of the slab. 

 The breadth of ribs may be governed by shear strength requirements. The method 

proposed in the ISE manual for the estimation of rib breadths limits the shear stress in 

the rib to 0.6 N/mm2 for concretes with characteristic cylinder strength of 25 N/mm2 or 

more. The required breadth is given by:      

                                               b = 
d

V
6.0

 [ ]mm  

bc

dw 

dfbw 

Rib Spacing 

Clear 
distance 

Fig. Ribbed slab  
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Where V is the maximum shear force in Newton’s on the rib considered as simply 

supported and d is the effective depth in millimeters. For characteristic cylinder 

strengths less than 25 MPa, the breadth should be increased in proportion. 

 If the rib spacing exceeds 1.0m, the topping shall be designed as a slab resting on ribs, 

considering load concentrations, if any. 

 The function of the flanges with the web shall be checked for longitudinal shear. 

 The ultimate limit state in longitudinal shear is governed either by the effect of inclined 

flange compression (acting parallel to its middle plane) or by tension in the transverse 

reinforcement. 

 The longitudinal shear per unit length vsd, which may be obtained as a function of the 

applied transverse shear Vsd : 

(a) For flange in compression : 

                    vsd = 
z

V
b
bb sd

e

we
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

  

(b) For flange in tension. 

                    vsd = 
z

V
A

AA sd

s

sws
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

  

Where: Vsd – applied transverse shear. 

   Vsd - longitudinal shear per unit length 

              be – effective width of a T-section. 

              z - Internal lever arm. 

             As – area of the longitudinal steel in the effective flanges outside the projection of            

                     Web into the slab. 

             Asw – area of the longitudinal steel inside the slab within the projection of the  

                       web into the slab. 

 Resistance to longitudinal shear. 

(a) Resistance to inclined compression per unit length vRd1 

                            vRd1 = 0.25 fcd hf 

      Where : hf = total thickness of the flange. 

(b) Resistance to diagonal tension per unit length vRd2 
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                            vRd2 = 0.50 fctd hf + 
f

ydsf

s
fA

 

     Where : Asf = area of transverse reinforcement per unit length , perpendicular to              

                            the web-flange interface. 

 If, at the section with M = Mmax , the flange is subjected  to a tensile force, the concrete 

contribution 0.50 fctd hf  ( in the above equation) should be neglected. 

 

 

 Because joists are closely spaced, thickness of slab (topping), 

  
⎪⎩

⎪
⎨
⎧

≥
joistsbetweencedisclear

mm
D

tan
10
1

40
  

 Unless calculation requires for rib spacing larger than 1m, toppings or slabs are 

provided with mesh reinforcement of 0.001 bD in both directions for temperature and 

shrinkage problem. 

 Unless calculation requires, min reinforcement to be provided for joists includes two 

bars, where one is bent near the support and the other straight. 

 Rib  with  bw  >  70mm, and overall depth  Dj < 4 bw, joist + tslab 

 Rib spacing is generally less than 1m. 

 In case of ribbed spacing larger than 1m, the topping (slab) need to be design as if 

supported on ribs.  (i.e. As one way solid slab between the ribs). 

Fd,max

sf hf

Asf 

M = Mmax

Fd,max

av (shear span)

M = 0 
Figure Forces on ribbed slab 
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 If the span of the ribs exceeds 6m, transverse ribs may be provided, as the thickness of 

the topping will be larger. 

 The girder supporting the joist may be rectangular or T-beam with the flange thickness 

equal to the floor thickness. 

 

Procedure of Design of a floor system of ribbed Slab 

 

1. Thickness of toppings and ribs assumed based on min requirement. 

2. Loads may be computed on the basis of center line of the spacing of joists. 

3.      The joists are analyzed as regular continuous T-beams supported by girders. 

4. Shear reinforcement shall not be provided in the narrow web of joist thus a check 

for the  section capacity against shear is carried out. The shear capacity may be 

approximated as: 1.1 Vc  of regular rectangular sections. 

5. Determine flexural reinforcement and consider min provision in the final solution. 

6. Provide the topping or slab with reinforcement as per temp and shrinkage 

requirement. 

7. Design the girder as a beam. 
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Examples on Design of One Way slabs and Continuous Beams using Limit State 

Design Method 
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3.7. Serviceability limits states of deflection and crack width 

 

It is important that member performance in normal   service be satisfactory, when loads 

are those actually expected to act i.e. when load factors are 1.0. This is not guaranteed 

simply by providing adequate strengths. Service load deflections under full load may be 

excessively large or long-term deflections due to sustained loads may cause damage 

.Tension cracks in beams may be wide enough to be visually disturbing  or may even   

permit serious corrosion of reinforcing bars. These and other questions such as vibration 

or fatigue, require consideration  

Serviceability studies are carried out based on elastic theory, with stresses in both 

concrete and steel assumed to be proportional to strain. The concrete on the tension side 

of the neutral axis may be assumed uncracked, partially cracked, or fully cracked 

depending on the loads and material strengths. 

Reinforced concrete members carrying lateral loads respond to these loads by bending. 

The moment curvature relationship for a segment of the simply supported reinforced 

concrete member of fig.3.7.1 (a) is illustrated in fig.3.7.1 (c). It can be seen that the 

segment remains uncracked and has a large stiffness EIu, , until the moment reaches the 

cracking moment, Mcr, (Point A) .When this happens, the member cracks and the 

stiffness at the cracked section reduces to EIc. 

As the load (and hence the moment) is increased further, more cracks occur and existing 

cracks increase in  size .Eventually ,the reinforcement yields at the point of maximum 

moment corresponding to point C on the diagram. Above this point the member displays 

large increases in deflection for small increases in moment .The service load range is 

between the origin and point C on the diagram and it is in this range that deflections are 

checked   and stresses calculated.           

Consider a point B within the service load range. This curvature represents the 

instantaneous (short term) curvature under an applied moment, M. If the moment is 

sustained, however, the curvature increases with time to point D owing to the creep of the 

concrete.  The curvature at this point is known as the long term or sustained curvature. As 
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deflection results, from curvature, there are both instantaneous and sustained deflections 

which must be considered in the design of members with bending. 

 

 

 

 

 

 

 

 

 c) Moment/ curvature plot for 

segment of part (b)                

    Fig.3.7.1 Moment / Curvature 

relationship for beam segment 

 3.7.1.   Deflections  

The deflections which result from bending must be limited such that they do not 

adversely affect the function and appearance of the member or the entire structure.  

a) Limits on Deflections  

The final deflection (including the effects of temperature, creep and shrinkage) of all 

horizontal members shall not, in general, exceed the value. 

               
200
Le

=δ  Where:  Le effective span 

For roof or floor construction supporting or attached to nonstructural elements (e.g. 

partitions and finishes) likely to be damaged by large deflections, that part of the 

deflection which occurs after the attachment of the non-structural elements shall not 

exceed the value . 

                     mmLe 20
350

≤=δ  

 b) Calculation of Deflections  

Effect of creep and shrinkage strains on the curvature, and there by on the deflection shall 

be considered.  

P part(b)

a) deflected shape
M

M

M

R

b) Curvature of segment of beam
Curvature (K)=1/R

N.A

Mcr

B

C

slope EIc
D

Instantaneous Sustained Curvature(K)

slope EIu

A

M
om

en
t(M

)

Yield point of reinforcement 
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Immediate deflections shall be computed by the usual elastic methods as the sum of the 

two parts iδ and iiδ  given by Eqs. 1 and 2, but not more than maxδ   given by eqs. 3 

     
ccm

cr
i IE

M
L2βδ =                                                                ------      (1) 

    
)(75.0

2

XdZAE
MM

L
ss

crk
ii −

−
= βδ                                  ---------------    (2) 

   
)(

2
max XdZAE

M
L

ss

k

−
= βδ                            ----------------------      (3) 

  SfM ctkcr 70.1=                                ------------------------------------ (4) 

iδ = deflection due to the theoretical cracking moment (Mcr) acting on the uncracked 

transformed section  

                iiδ =deflection due to the balance of the applied moment over and above the 

cracking value and acting on a section with an equivalent stiffness of 75% of the 

cracked value.     maxδ  = deflection of fully cracked section  

                               As = area of the tension reinforcement 

Ecm = short term elastic modulus (secant modulus) of the concrete   

                       Ecm = 9.5 3
1

)8( +ckf      fck-mpa,   Ecm-Gpa 

Grade of 

concrete 

C15 C20 C25 C30 C40 C50 C60 

Ecm 26 27 29 32 35 37 39 

 

Es-modulus of elasticity of steel,   Iu-moment of inertia of the uncraked transformed 

section  

Mk-Maximum applied, moment at mid span due to sustained characteristic loads; for 

cantilevers it is the moment at the face of the support 

S- Section modulus,      d-effective depth of the section, 

X-neutral axis depth at the section of max. moment, 

Z-internal lever arm at the section of max moment. 
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β -deflection coefficient depending on the loading and support conditions. 

(e.g β =5/48 for simply supported span subjected to uniformly distributed load) 

Note: The value of X & Z may be determined for the service load condition using a 

modular ratio of 10, or for the ultimate load condition. 

Long term deflection of flexural members shall be obtained by multiplying the immediate 

deflection caused by the sustained load considered, by the factor, 

      (2-1.2As’/As) ≥0.6---------------                                                        (5) 

Where: As’-area of compression reinforcement,     As-area of tension reinforcement. 

3.7.2. Limits on cracking 

Flexural cracks are inevitably formed in reinforced concrete members. For structures in 

aggressive environments, corrosion is a problem and stringent limits are imposed on the 

width of cracks that are allowed to develop. Environment in the interior of the building is 

usually non-sever, corrosion does not generally pose a problem and limits on crack 

widths will be governed by their appearance. 

 a) Crack Formation 

• The max. tensile stresses in the concrete are calculated under the action of 

design loads appropriate to a serviceability limit state and on the basis of the 

geometrical properties of the transformed uncracked concrete X-section. 

•     The calculated stresses shall not exceed the following values: 

             a) Flexure,  ( ctkct f70.1=δ  )                b) direct(axial)  tension ( ctkct f=δ ) 

•     Minimum  flexural reinforcement in beams for the control of cracking is 

given by: 

      
ykf
6.0

min =ρ  

b) Crack widths 

Crack widths are calculated using the quasi permanent service load combination. 

Specifically crack widths can be assumed not to exceed the limiting values if the limits 

on the bar spacing or bar diameter (Table 1) are satisfied, and if min. areas of 

reinforcement, also specified are provided. 
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Table 1 Maximum size and spacing of high bond bars for control of cracking. 

Steel stress* Max. bar spacing (mm) Max. bar diameter(mm) 

160 

200 

240 

280 

320 

360 

400 

450 

300 

250 

200 

150 

100 

50 

- 

- 

32 

25 

20 

16 

12 

10 

8 

6 

 *steel stresses are determined using quasi –permanent loads. 

Table 2 Characteristic crack widths for concrete Members 

Type of 

exposure 

Dry environment: 

Interior of buildings 

of normal 

habitation or office 

 

 

 

 

 

(mild) 

Humid environment: 

Interior 

components(e.g. 

laundries), exterior 

components; 

components in non-

aggressive soil and 

/or water 

 

(Moderate) 

Sea water and/or 

aggressive chemicals 

environments completely 

or partially submergeed in 

seawater ,components in 

saturated salt air 

,aggressive industrial 

atmospheres 

(sever) 

Characteristic 

crack 

width,wk(mm) 

0.4 0.2 

 

0.1 

 

In specific cases where a crack width Calculation is considered necessary 

Wk= smrms εβ     Where: wk=characteristic crack width,       rms =average final crack 

width 

smε =mean strain in the tension steel allowing for tension stiffening and time 

dependent effects 
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β =coefficient relating the average crack width to the design value 

7.1=β  for sections in bending under applied loads. 

The mean strain is simply the strain in the steel adjusted by the distribution factor, ξ  

s

s
sm E

f
ξε = , Where: fs-stress in the tension reinforcement, Es-elastic modulus 

of steel       )(1 21
s

sr

f
f

ββξ −=  

  1β =coefficient which accounts for the bond properties of the reinforcement 

1β =1.0 for high bond bars (normally used or deformed) and 0.5 for plain bars 

2β = coefficient which accounts for the duration of loading or of repeated loading   

2β =1.0 for single short term loading & 0.5 for sustained loading or repeated loading 

 fs= stress in tension steel assuming a cracked section 

 fsr= stress in tension steel assuming a cracked section due to loading which causes initial 

cracking 

The average final crack spacing in (mm) is calculated using the equation 

Srm = 50 + 0.25
r

KK
ρ
φ

21 - 152 - 

Where: 1k = coefficient which accounts for the bond properties of the      

reinforcement: k1=0.8 for high bond bars:k1=1.6 for plain  bars. 

              K2= coefficient which takes account of the form of strain distribution 

for bending it is 0.5 

             =φ bar diameter,           rρ = effective reinforcement ratio As/Ac,eff. 

 Where: Ac,eff= effective tension area of he concrete , as illustrated below 
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Fig.3.7.2.  Effective tension area of concrete 

and (h-x)/3 
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Exercise-2 
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