
 

Chapter 3 
  

HYDROSTATICS 

 
 INTRODUCTION:-  
 
Hydrostatics deals with the study of fluids at rest or moving with uniform velocity as a 
solid body, so that there is no relative motion between fluid elements (or layers). There is 
no shear stress in a fluid at rest. Hence, only normal pressure forces are present in 
hydrostatics. 
 
Engineering applications of hydrostatics principles include the study of forces acting on 
submerged bodies such as dam faces, gates & others and the analysis of stability of 
floating bodies.  
                                  OR in other word  
Fluid static’s is a branch of hydraulics that deals with fluids (water) at rest. The particles 
of fluid are at rest, there is no tangential or shear stress between the fluid particles. 
In hydrostatics, all forces act normally to the boundary surface and are independent of 
viscosity. The analysis made on hydrostatics is based on straightforward application of 
the mechanical principles of forces and moment and exact solution can be obtained 
without experimental evidence. 
As in solid mechanics we shall build our knowledge by first considering static’s followed 
by the more difficult problem of dynamics. Considering Newton’s second law, that is, 
d(mv)/dt = 0. This can be achieved either when the fluid velocity is constant or the very 
special case where the acceleration is constant everywhere in the flow. The first case is 
the case of fluid static’s (the branch of fluid mechanics, which is concerned with fluids at 
rest), while the latter is the special case of solid body acceleration. The overriding 
assumption necessary to achieve these two conditions is that there is no relative motion of 
adjacent fluid layers, and consequently the shear stresses are zero. Therefore, only normal 
or pressure forces are considered to be acting on the fluid surfaces. 

 
Fluid Pressure  
The pressure intensity or more simply the pressure on a surface is the pressure force per 

unit area expressed by the relation 
dA
dFP  but the force should be applied normal to the 

surface.  
 
 



 

Pressure at a point  
Consider a finite but small element (the small triangular prism) of liquid at rest, acted 
upon by the fluid around it. The values of average unit pressures on the three surfaces are 
P1, P2 and P3. In the Z direction the forces are equal and opposite and cancel each other.  
 
 
 
 
 
 
 
  
 
     
 
    
    
     
   
 
  

 
Fig.3.1 Definition sketch for normal stress at a point. 

 
Px and Py are the average pressure in the horizontal and vertical directions. 
 
For equilibrium condition, 
Fx= 0, 
                  PxdydZ- PdSdZcos  = 0  
                                            but ds cos =dy 
 PxdydZ –PdZdy = 0 
               Px=P 
Fy =0 
                   Pydxdz-Pdsdz sin -1/2dxdydz=0                   
                                                                                ds sin=dx 
                  Pydxdz-Pdxdz -1/2dxdydz=0 
                        Py-P -1/2dy=0 as compared to others dy is small so, 1/2dy is ignored. 

                 Py=P                  
            The pressure force can also be considered and it will be the same with others.      
                                     P=Pz=PX=Py 
 
As the triangular prism approaches a point, dy approaches zero as a limit and the average 
pressures become uniform or even “point pressures”. Then putting dy = 0 in equation, we 
obtain p1= p3 and hence p1 = p2 = p3. Therefore, the pressure is independent of its 
orientation. 
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3.1 Pressure Distribution PASCAL’s Law 
 
.  
The pressure variation throughout a fluid at rest can be obtained by again applying 
Newton’s second law to a differential element such as shown in Fig.3.2. Note that the 
pressures shown are all compressive. This, by convention, is defined as positive pressure, 
since tensile stresses in fluids are relatively rare. The pressure on the left hand face is 
taken as P. If the rate of change of pressure (or pressure gradient) in the x direction is 
p/x, then the total change in pressure between the left face and the right face is the rate 
of change of pressure times the distance between the two faces, or (p/x) dx. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.2 Definition sketch for pressure variation 
 
For fluid element at rest FX=0, Fy=0, Fz=0, the pressure force in the opposite vertical 
faces must be equal. 
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The preceding two equations show, respectively, that the pressure does not change in the 
x and y directions. Thus, the pressure is constant throughout a horizontal plane. 
 
With reference to Fig.3.2 the vertical direction will now be examined. 
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Similar to the foregoing procedure, if the pressure on the bottom face is taken as P, the 
pressure on the top face becomes p + (P/z) dz.  
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It has been shown that p is not a function of x or y. If it is further assumed that the 
pressure does not change with time, the relationship may be replaced by the total 
differential equation. 
 

  
dz
dp  

From the above equation the pressure variation is not a function of x and y. 
This equation can now be integrated to give the actual pressure variation in the vertical 
direction. The negative sign indicates that as z gets higher up ward, the pressure gets 
smaller. For incompressible fluids, (where  = constant) the above equation can be 
directly used. 
 
If the fluid can be assumed incompressible so that  = constant, this can be integrated to 
give  
  P + z = constant  
 
This expression defines what is often referred to as the hydrostatic pressure variation, in 
which the pressure increases linearly with decreasing elevation. The constant of 
integration can be absorbed by integrating between two elevations z1 and z2 with 
corresponding pressure P1 and P2, 
 
 
 
 
 
 
 
 
 
 
Fig.3.3. Pressure relative to the surface of a liquid 
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                     P2- P1  = -(z2  - z1) Showing pressure decreases linearly with an increase in 
elevation. 

 
Since the pressure at the surface is atmospheric it can be taken to be zero gage pressure. 
So, the above expression will be P1 = (z2  - z1) But z2-z1=z and substituting, 
 
                                  P1 = z 
 
And the pressure is proportional to the depth below the free surface. In other words, the 
pressure at a point in a stationary liquid is the product of the depth of the point and the 
specific weight of the fluid. If a free surface does not exist, for example in a closed 
container completely filled with liquid, The above equation can be applied in reverse to 
determine the position of a line of zero pressure, provided that the actual pressure is 
known at some point in the container.  
When water fills a containing vessel, it automatically seeks a horizontal surface upon 
which the pressure is constant everywhere. In practice, the free surface of water in vessel 
is the surface that is not in contact with the cover of the vessel. Such a surface may be 
subjected to the atmospheric pressure (open vessel) or any other pressure that is exerted 
in the vessel (closed vessel).  
 
 
N.B: The pressure in a homogeneous, incompressible fluid at 
rest depends on the depth of the fluid relative to some 
reference plane, and it is not influenced by the size or 
shape of the container in which the fluid is held. 
 
 
3.2   Pressure measurement 
 
Absolute and gage pressures 
 
The pressure at a point within a fluid mass can be designated as either an absolute pressure 
or a gage pressure. 
In a region such as outer space, which is virtually void of gases, the pressure is essentially 
zero. Such a condition can be approached very nearly in a laboratory when a vacuum pump 
is used to evacuate a bottle. The pressure in a vacuum is called absolute zero, and all 
pressures referenced with respect to this zero pressure are termed absolute pressures.  
 
Many pressure-measuring devices measure not absolute pressure but only difference in 
pressure. For example, a Bourdon-tube gage indicates only the difference between the 
pressure in the fluid to which it is tapped and the pressure in the atmosphere. In this case, 
then, the reference pressure is actually the atmospheric pressure. This type of pressure 
reading is called gage pressure. For example, if a pressure of 50 kPa is measured with a 
gage referenced to the atmosphere and the atmospheric pressure is 100 kPa, then the 
pressure can be expressed as either p = 50 kPa gage     or   p = 150 kPa absolute.  
 



 

Whenever atmospheric pressure is used as a reference, the possibility exists that the 
pressure thus measured can be either positive or negative. Negative gage pressures are 
also termed as vacuum or suction pressures. Hence, if a gage tapped into a tank indicates 
a vacuum pressure of 31 kPa, this can also be stated as 70 kPa absolute, or -31 kPa gage, 
assuming that the atmospheric pressure is 101 kPa absolute. 
 
Water surface in contact with the earth’s atmosphere is subjected to the atmospheric 
pressure, which is approximately equal to a 10.33-m- high column at sea level. In still 
water, any element located below the water surface is subjected to a pressure greater than 
the atmospheric pressure. 
 
 

 
Fig.3.4. Graphical representation of gage and absolute pressure.  
 
Measurement of pressure  
 
Since pressure is a very important characteristic of a fluid field, it is not surprising that 
numerous devices and techniques are used in its measurement 
All the devices designed for measurement of the intensity of hydraulic pressure are based 
on either of the two fundamental principles of measurement of pressure: firstly by 
balancing  the column of liquid (whose pressure is to be found) by the same or another 
column of liquid and secondly by balancing the column of liquid by spring or dead 
weight. 
 
1.  Mercury Barometer  
 
The measurement of atmospheric pressure is usually accomplished with a mercury 
barometer, which in its simplest form, consists of a glass tube closed at one end with the 
open end immersed in a container of mercury as shown in Fig. The tube is initially filled 
with mercury (inverted with its open end up) and then turned upside down (open end down) 
with the open end in the container of mercury. The column of mercury will come to an 
equilibrium position where its weight plus the force due to the vapor pressure (which 



 

develops in the space above the column) balances the force due to the atmospheric 
pressure. Thus,  
  Patm  = h  + Pvapor 
Where:  is the specific weight of mercury. For most practical purposes the contribution 
of the vapor pressure can be neglected since it is extremely small at room temperatures 
(e.g. 0.173 Pa at 20oC).  
 

                                                                                       
 
 
Fig. 3.5 a) Mercury barometer                                       b) Piezometer tube 
 
2.  Manometry  
 
A standard technique for measuring pressure involves the use of liquid columns in 
vertical or inclined tubes containing one or more liquid of different specific gravities. 
Pressure measuring devices based on this technique are called manometers. In using a 
manometer, generally a known pressure (which may be atmospheric) is applied to one 
end of the manometer tube and the unknown pressure to be determined is applied to the 
other end.  In some cases, however, the difference between pressures at ends of the 
manometer tube is desired rather than the actual pressure at the either end. A manometer 
to determine this differential pressure is known as differential pressure manometer.  
The mercury barometer is an example of one type of manometer, but there are many 
other configurations possible, depending on the particular application. The common types 
of manometers include the piezometer tube, the U-tube manometer, micro- manometer 
and the inclined - tube manometer. 
 

i. Piezometer Tube  
 
The simplest type of manometer consists of a vertical tube, open at the top, and attached 
to the container in which the pressure is desired, as illustrated in Fig.3.5. Since 
manometers involve columns of fluids at rest, the fundamental equation describing their 
use is the Eq.   
                                              P = h + P0 
 

h 

Pvapor 

Patm 
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Which gives the pressure at any elevation within a homogeneous fluid in terms of a 
reference pressure p0 and the vertical distance h between p and p0? Remember that in 
fluid at rest pressure will increase as we move downward, and will decrease as we move 
upward. Application of this equation to the piezometer tube Fig.3.5 indicates that the 
pressure PA can be determined by a measurement of h1 through the relationship. 
 
   PA  = 1h1 
 
Where, 1 is the specific weight of the liquid in the container. Note that since the tube is 
open at the top, the pressure Po can be set equal to zero (we are now using gage pressure), 
with the height h1 measured from the meniscus at the upper surface to point (1). Since 
point (1) and point A within the container are at the same elevation, PA =P1. 
 
Although the piezometer tube is a very simple and accurate pressure-measuring device, it 
has several disadvantages. It is only suitable if the pressure in the container is greater than 
atmospheric pressure (otherwise air would be sucked into the system), and the pressure to 
be measured must be relatively small so that required height of the column is reasonable. 
Also, the fluid in the container in which the pressure is to be measured must be a liquid 
rather than a gas. 
 

ii. U- Tube Manometer 
 
To overcome the difficulties noted previously, another type of manometer, which is 
widely used, consists of a tube formed into the shape of U as is shown in Fig.3.5. The 
fluid in the manometer is called the gage fluid. To measure larger pressure differences 
we can choose a manometer with higher density, and to measure smaller pressure 
differences with accuracy we can choose a manometer fluid which is having a density 
closer to the fluid density.  
To find the pressure pa in terms of the various column heights, we can use one of the two 
ways of manometer reading techniques:    

I) Surface of equal pressure(SEP) 
II) Step by step procedure(SS) 

a) Start at one end and write the pressure there 
b) Add the change in pressure there 

  + If next meniscus is lower. 
   - If next meniscus is higher 

c) Continue until the other end of the gage and equate the pressure  
       at that point 

 
Thus, for the U- tube manometer shown in Fig.3.5, using SS method we will start at point 
A and work around to the open end. The pressure at points A and (1) are the same, and as 
we move from point (1) to (2) the pressure will increase by 1h1. The pressure at point (2) 
is equal to the pressure at point (3), since the pressures at equal elevation in a continuous 
mass of fluid at rest must be the same. Note that we could not simply “jump across” from 
point (1) to a point at the same elevation in the right – hand tube since these would not be 
points within the same continuous mass of fluid. With the pressure at point (3) specified 



 

we now move to the open end where the pressure is zero. As we move vertically upward 
the pressure decreases by an amount 2h2. In equation form these various steps can be 
expressed as 
  PA + 1h1  - 2h2  = 0  
And therefore, the pressure PA can be written in terms of the column heights as  
  PA = 2h2  - 1h1 
A major advantage of the U- tube manometer lies in the fact that the gage fluid can be 
different from the fluid in the container in which the pressure is to be determined. For 
example, the fluid in A in Fig. 3.5b can be either a liquid or a gas. If A does contain a 
gas, the contribution of the gas column, 1h1, is almost always negligible so that PA   p2 
and in this instance the above Eq. becomes. 
                                          PA = 2h2 

Thus, for a given pressure the height, h2 is governed by the specific weight, 2, of the 
gage fluid used in the manometer. If the pressure PA is large, then a heavy gage fluid, 
such as mercury, can be used and a reasonable column height (not too long) can still be 
maintained. Alternatively, if the pressure PA is small, a lighter gage fluid, such as water, 
can be used so that a relatively large column height (which is easily read) can be 
achieved.  

                                                                                              
                                             
 
Fig.3.5 Simple U-tube and Differential U-tube manometer 
 
The U- tube manometer is also widely used to measure the difference in pressure 
between two containers or two points in a given system. Consider a manometer 
connected between container A and B as is shown in Fig.3.5. The difference in pressure 
between A and B can be found by again starting at one end of the system and working 
around to the other end. For example, at A the pressure is PA, which is equal to p1, and as 
we move to point (2) pressure increases by 1h1. The pressure at p2 is equal to p3, and as 
we move upward to from point (4) to (5) the pressure decreases by 3h3. Finally, P5 = PB, 
since they are at equal elevation. Thus,  
 
  PA + 1h1 - 3h3  = PB 
 
And the pressure difference is  
  PA - PB = 2h2  + 3h3 - 1h1 
When substituting in numbers, be sure to use a consistent system of units! 



 

iii) Differential U-tube 

Inverted U-tube manometer is used for measuring pressure differences in liquids. The 
space above the liquid in the manometer is filled with air which can be admitted or 
expelled through the tap on the top, in order to adjust the level of the liquid in the 
manometer. 
 
Capillarity due to surface tension at the various fluid interfaces in the manometer is 
usually not considered, since for a simple U –tube with a meniscus in each leg, the 
capillary effects cancel (assuming the surface tension and tube diameters are the same at 
each meniscus), or we can make the capillary rise negligible by using relatively large 
bore tubes (with diameters of about 0.5 in, or larger). Two common gage fluids are water 
and mercury. Both give a well –defined meniscus, a very important characteristic for a 
gage fluid, and their properties are well known. Of course, the gage fluid must be 
immiscible with respect to the other fluids in contact with it. For highly accurate 
measurements, special attention should be given to temperature since the various specific 
weights of the fluids in the manometer well vary with temperature. 
 
 iv)  Inclined – tube Manometer  
 
To measure small pressure changes, a manometer of the type shown in Fig. 3.6 is 
frequently used. One leg of the manometer is inclined at an angle, and the differential 
reading 2 is measured along the inclined tube. The difference in pressure PA – PB can be 
expressed as  
 
                BA PhhP  3322211 sin    
            Or                                113322 sin hhpp BA     
 
Where it is to be noted that the pressure difference between points (1) and (2) is due to 
the vertical distance between the points, which can be expressed as 2 sin. Thus, for 
relatively small angles the differential reading along the inclined tube can be made large 
even for small pressure differences. The inclined- tube manometer is often used to 
measure small differences in gas pressures so that if pipes A and B contain a gas then  
 
   sin22 BA pp  
             Or  

                       
 sin2

2
BA pp 

  

 
Where the contributions of the gas columns h1 and h3 have been neglected. The above 
Equation shows that the differential reading 2 (for a given pressure difference) of the 
inclined –tube manometer can be increased over that obtained with a conventional U-tube 
manometer by the factor 1/sin. Recall that sin   0 as   0. 
 



 

 
 
                                  Fig.3.6 Inclined Tube manometer  
Example 1 
A closed tank is partly filled with water and connected to the manometer containing 
mercury (S = 13.6) as shown in the figure below. A gauge is connected to the tank at a 
depth of 4 m below the water surface.  
If the manometer reading is 20 cm, determine the gauge reading in N/ m2. What will be 
the gauge reading when expressed as head of water in m? 

 
Solution  

 
Therefore, the gauge reading is 12556.8 N/m2 

When expressed as head of water, the gauge reading will be 

 



 

Example 2 
A manometer is mounted in a city water supply main pipe to monitor the water pressure 
in the pipe as shown below. Determine the water pressure in the pipe. 

 
 
 
Solution 

 
 
Example 3 
Calculate the pressure difference between points A and B in the differential manometer 
shown in Figure below.  
 

 



 

Solution 

 
 

 



 

3. Mechanical and Electronic pressure measuring devices  
 
Although manometers are widely used, they are not well suited for measuring very high 
pressures, or pressures that are changing rapidly with time. In addition, they require the 
measurement of one or more column heights, which although not particularly difficult, 
can be time consuming. To overcome some of these problems numerous other types of 
pressure –measuring instruments have been developed. Most of these make use of the 
idea that when a pressure acts on an elastic structure the structure will deform, and this 
deformation can be related to the magnitude of the pressure. Probably the most familiar 
device of this kind is the Bourdon pressure gage, which is shown in Fig.3.7. 
 
The essential mechanical element in this gage is the hollow, elastic curved tube (Bourdon 
tube) which is connected to the pressure source as shown in Fig. As the pressure within 
the tube increases the tube tends to straighten, and although the deformation is small, it 
can be translated into the motion of a pointer on a dial as illustrated. Since it is the 
difference in pressure between the outside of the tube (atmospheric pressure) and the 
inside of the tube that causes the movement of the tube, the indicated pressure is gage 
pressure. The Bourdon gage must be calibrated so that the dial reading can directly 
indicate the pressure in suitable units. A zero reading on the gage indicates that the 
measured pressure is equal to the local atmospheric pressure. This type of gage can be 
used to measure a negative gage pressure (vacuum) as well positive pressure.  
 
 

               
 
 
 
Figure 3.7 Bourdon Gauge 
 

Manometers-advantages and limitations 
 
The manometer in its various forms is an extremely useful type of pressure measuring 
instrument, but suffers from a number of limitations. 
While it can be adapted to measure very small pressure differences, it cannot be used 
conveniently for large pressure differences - although it is possible to connect a number 
of manometers in series and to use mercury as the manometric fluid to improve the range. 



 

     (Limitation)  
A manometer does not have to be calibrated against any standard; the pressure difference 
can be calculated from first principles. (Advantage)  
Some liquids are unsuitable for use because they do not form well-defined menisci. 
Surface tension can also cause errors due to capillary rise; this can be avoided if the 
diameters of the tubes are sufficiently large - preferably not less than 15 mm diameter.          
(Limitation)  
A major disadvantage of the manometer is its slow response, which makes it unsuitable 
for measuring fluctuating pressures. (Limitation)  
It is essential that the pipes connecting the manometer to the pipe or vessel containing the 
liquid under pressure should be filled with this liquid and there should be no air bubbles 
in the liquid. (Important point to be kept in mind) 

  
 3.3 Hydrostatic pressure on plane and curved surfaces 

 
When a surface is submerged in a fluid, forces develop on the surface due to the fluid. 
The determination of these forces is important in the design of storage tanks, ships, dams, 
and other hydraulic structures. For fluid at rest we know that the force must be 
perpendicular to the surface since there are no shearing stresses present. We also know 
that the pressure will vary linearly with depth if the fluid is incompressible. 
 
  1. Forces on plane surface 
 
The distributed forces resulting from the action of fluid on a finite area can be      
conveniently replaced by resultant force. The magnitude of resultant force and its line of 
action (pressure center) are determined by integration, by formula and by using the 
concept of the pressure prism. 

i. Horizontal surfaces 
 
A plane surface in a horizontal position in a fluid at rest is subjected to a constant 
pressure. 
 
                                      The magnitude of the force acting on one side of the surface is 
                        
 
       PdA=PdA=PA  
 
 
 
 
 

The elemental forces PdA acting on A are all parallel. The summation of all elements 
yields the magnitude of   the resultant force. Its direction is normal to the surface. 
 
 To find line of action of the resultant, the moment of resultant is equated to the 

moment of the distributed system about any axis (y-axis). 

A A 
x  



 

 
  i.e. PAx1=A x PdA 
                                                                x1 is the distance from the  y axis  to the resultant. 
  

 x1=  
A

xdAx
A
1          p-is constant. 

 x is the distance to the centroid of the area. 
Hence, for a horizontal area subjected to static fluid pressure, the resultant passes through 
the centroid of the area.                
 
 ii. Inclined surfaces                            
 
A plane surface which is inclined to the water surface may be subjected to hydrostatic 
pressure. For a plane inclined  0 from the horizontal, the intersection of the plane of area 
and the free surface is taken as the x-axis. The y-axis is taken in the plane of the area with 
origin 0 at the free surface. Thus, the x-y plane portrays the arbitrary inclined area. We 
wish to determine the magnitude, direction and line of the action of the resultant force 
acting on one side of this area due to the liquid in contact with the area.  
For an element area   A at y distance from the origin, the magnitude of the force F 
acting on it is            
                    F = P A = hA = y sin  A   
Since all such elemental forces are parallel, the integral over the area yields the 
magnitude of force, F, acting on one side of the area. 
     
   F= APAhAYydAPdA G .sinsin     
      =hc.A 
 

Fig. 
        hc=yc.sin 

hpandhY G  sin  ; The pressure at the centroid of the area. 



 

Hence, the force exerted on one side of a plane area submerged in a liquid is the product 
of the area and the pressure at its centroid. 
The point on the plane surface where this resultant force acts is known as the center of 
pressure. Considering the plane surface as free body we see that the distributed forces 
can be replaced by a single resultant force at the pressure center with out altering any 
reactions or moments in the system. 
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A
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Let xp and yp be distances measured from the y-axis and x-axis to the pressure 
center respectively, then 
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This shows that center of pressure is below the center of gravity (or centroid). 
 
      Where Ig-is the moment of inertia of the plane with respect to its own centroid.  
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  The pressure prism 
                             
The pressure prism is an approach, which is developed for determining the resultant 
hydrostatic force and line of action of the force on a plane surface. It is a prismatic 



 

volume with its base the given surface area and with altitude at any point of the base 
given by p=h. Where h is the vertical distance to the free surface.  
 

 
                 
                    Fig. Pressure prism 
 
Force acting on the element area A is: 
                F=h A= , which is an element of volume of the pressure prism. 
After integrating, F=, the volume of the pressure prism equals the magnitude of the 
resultant force acting on one side of the surface. The center of pressure is given by 

                        xp = 





dx.1  and   





 dyy p .1 . 

 This shows that the resultant force passes through the centroid of the pressure prism.   
 
Therefore; the pressure force is the volume of the prism in magnitude acting at the 
centroid of the prism normal to the surface. 
2. Forces on curved surfaces 
 
When the elemental forces pA vary in direction, as in the case of a curved surface, they 
must be added as vector quantities that is, their components in three mutually 
perpendicular directions are added as scalars and then the three components are added 
vector ally. With two horizontal components at right angle and with vertical component- 
all easily computed for a curved surface the resultant can be determined. The lines of 
action of the components also are readily determined. 
 
 



 

Horizontal component of Forces on a curved surface 
 
The horizontal component of pressure force on a curved surface is equal to the pressure 
force exerted on a vertical projection of the cured surface. The vertical plane of the 
projection is normal to the direction of the component.   
 
Thus, the magnitude and the line of action of the horizontal component of force on a 
curved surface can be determined by using the relations developed for plane surface.  
 
Vertical component of force on a curved surface 
 
The vertical component of pressure force on a curved surface is equal to the weight of 
liquid vertically above the curved surface and extending up to the free surface and acts 
through the center of gravity of the fluid mass within the volume.  

 
 
   Fig. Forces on curved surface 
 
3.4 Tensile stress in a pipe and spherical shell 
 
A circular pipe under the action of an internal pressure is in tension around its periphery. 
Assuming that no longitudinal stress occurs, the walls are in tension, as shown in Fig. 
below. 
 
 
 
 
 
 
 
 
 
 
Fig. Internal forces on walls of a pipe. A section of pipe of unit length is considered  

T2 T1 

1 unit 
T1 

T2 T2 

T1 

y 
FH 



 

The bursting of a pipe can be thought of as a tendency for the top half to separate from 
the bottom half. The only force acting against this tendency is the hoop tension (T) of the 
pipe walls then the bursting pressure force must exactly equal the hoop tension. 
 
Total bursting pressure   = P* 2r * 1 
                P = pressure at the centre line 
                r = the internal pipe radius  
 
For high pressures the pressure centre can be taken at the pipe centre; then T1 = T2  
 
 T  = Pr 

For wall thickness t, the tensile stress in the pipe wall, = 
t
pr

t
T

  

 
For larger variations in pressure b/n top and bottom of pipe, the location of pressure 
centre y is computed. 
 
 [FH = 0}     T1+ T2 =FH =2pr 
            [ M @T2 ]   2rT1 -2pry = 0 (Neglecting  the vertical component) 
 
   T1 = py   T2 = p (2r-y) 
 
Thin spherical shell subjected to an internal pressure  
  Fluid force    FH   = Pr2 (considering half of the sphere) 
  Resisting force = stress in the wall * cut wall area =  * 2 r *t 
Neglecting the weight 
  = Pr/2t 

 
3.5 Relative Equilibrium  
 
Translation and Rotation of fluid masses 
 
A general class of problems involving fluid motion in which there are no shearing 
stresses occur when a mass of fluid undergoes rigid body motion. For example, if a 
container of fluid accelerates along a straight path, the fluid will move as a rigid mass 
(after the initial sloshing motion has died out) with each particle having the same 
acceleration. Since there is no deformation, there will be no shearing stresses and 
similarly if a fluid is contained in a tank that rotates about a fixed axis, the fluid will 
simply rotate with the tank as a rigid body. In both cases there is no relative motion 
between particles; hence no shear stress occurs in the fluid. This condition of fluid is 
called relative equilibrium. Generally there is no motion between the fluid and the 
containing vessel, however, there is an additional force acting to cause the acceleration. 
 
Specific results for these two cases (rigid body uniform motion and rigid body rotation) 
are developed in the following two sections. Although problems relating to fluids having 
rigid body motion are not strictly speaking, “fluid static” problems, they are induced in 



 

this chapter because as we will see the analysis and resulting pressure relationships are 
similar to those for fluid at rest. (Laws of fluid static’s can still be applied by modifying 
to allow for effects of acceleration.)        
 
i. Uniform linear acceleration  
 
Consider a small rectangular element of fluid of size x, y and z as shown in the figure 
below, z being measured perpendicular to the paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. Linear acceleration of a liquid with a free surface  
 
The pressure on the left face of the elemental fluid  
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For equilibrium in the x –direction  
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Similarly in the y direction  
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Along a free surface the pressure is constant, so that for the accelerating mass shown in 
the figure the free surface will be inclined if ax  0. In addition, all lines of constant 
pressure will be parallel to the free surface. 
For the special circumstance in which ax = 0, ay  0, which corresponds to the mass of 
fluid accelerating in the vertical direction, equation (***) indicates that the fluid surface 
will be horizontal. However, from Eq (**) we see that the pressure distribution is not 

hydrostatics, but is given by the equation )(1 ga
g
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p

y
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For fluids of constant density this equation shows that the pressure will vary linearly with 
depth but the variation is due to the combined effects of gravity and the externally 
induced acceleration,  (g +ay) rather than simply the specific weight g.  
Note: 
         Pressure along the bottom of a liquid filled tank which is resting i.e accelerating 

upward will be increased over that which exists when the tank is at rest (or moving 
with a constant velocity). 

         For a freely falling fluid mass (ay = -g) the pressure gradients in all the three 
coordinate directions are zero which means that if the pressure surrounding the 
mass is zero the pressure throught will be zero.  

  
ii. Vortex flow 
The flow of a fluid along a curved path or the flow of a rotating mass of fluid is known as 
vortex flow. The vortex flow is of two types namely: forced vortex flow and free vortex 
flow. 
Forced vortex flow:  
It is defined as that type of vortex flow, in which some external torque is required to 
rotate the fluid mass. The fluid mass in this type of flow rotates at constant angular 
velocity, . The tangential velocity of any fluid particle is given by 
=  r  
Where r = radius of fluid particle from the axis of rotation. 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
                    Cylinder stationary                                              Cylinder is rotating  
Fig. Forced vortex flow 
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Hence angular velocity  is given by 

tcons
r

tan


    

Examples of forced vortex are: 
1. A vertical cylinder containing liquid which is rotated about its central axis with a 

constant angular velocity , as shown in figure above. 
2. Flow of liquid inside the impeller of a centrifugal pump. 
3. Flow of water through the runner of a turbine. 

 
Free vortex flow  
Type of flow when no external torque is required to rotate the fluid mass is called free 
vortex flow. Thus the liquid incase of free vortex is rotating due to the rotation which is 
imparted to the fluid previously. Examples of the free vortex flow are: 

1. Flow of a liquid through a hole provided at the bottom of a container. 
2. Flow of liquid around a circular bend in a pipe. 
3. Flow of fluid in a centrifugal pump casing. 

Free vortex flow will be treated in the coming chapter. 
 
Equation of forced vortex flow 
Uniform rotation about a vertical axis 

 
Consider a small element of fluid to move in a circular path about an axis with radius r, 
and angular velocity . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. Rigid body rotation 
 
For constant angular velocity , the particle will have an acceleration of 2r directed 
radically inward.  
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These results show that for this type of rigid body rotation, the pressure is a function of 
two variables r and y, and therefore the differential pressure is  
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For r=0, y=0, P=C=P0 
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Consider two points 1 and 2in the fluid as shown above. Integrating the above equation 
for point 1 and 2 we get, 
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If the points 1 and 2 lie on the free surface of the liquid, then p1=p2 and hence the above 
equation becomes 
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If the point 1 lies on the axis of rotation, then the above equation becomes 
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Let y2-y1 = y, then 

     y = 
g
r

2

2
2

2
 

Thus y varies with the square of r. Hence the equation is an equation of parabola. This 
means the free surface of the liquid is a paraboloid. 
Note: Volume of paraboloid of revolution is half of the volume of the circumscribing 
cylinder. 
 
3.5 Buoyancy and stability of floating bodies  
 
1. Buoyant force (Resultant fluid force in a body) 
 
      The buoyant force on a submerged body is the difference between the vertical 
components of pressure force on its underside and the vertical component of pressure 
force on its upper side. The buoyant force always acts vertically upward. There can be no 
horizontal component of the resultant because the projection of the submerged body or 
submerged portion of the floating body on a vertical plane is always zero.  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Fig 3.13 Buoyant force on a submerged body 
 
 Assume a vertical cylindrical element of cross- sectional area dA. As dA is small, the 
pressure on the exposed ends of the cylinder may be taken as p1 and p2. 
Since p2> p1, there will be an upward force (p2 –p1) dA acting on the cylindrical element. 
 
       dFB = (p2 – p1 ) dA = (h2-h1) dA = dv     
 
Where dv = volume of the prism  
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The entire body may be considered to be made up of small cylindrical elements, then 
integrating over the complete body gives  
 

    VdvdvdFF
vv

BB     

 is assumed constant through out the volume.                                                                                
V= Volume of the body 
 
The basic principle of buoyancy and flotation was fist discovered and stated by 
Archimedes over 2200 years ago. Archimedes principle states that the up thrust or the 
buoyancy on a body immersed in a fluid is equal to the weight, of the fluid displaced. The 
up thrust will act through the center of gravity of the displaced fluid, which is called the 
center of buoyancy. 
 
By applying Archimedes’s principle, volumes of irregular solids can be found by 
determining the apparent loss of weight when a body is wholly immerse in a liquid of 
known specific gravity. Specific gravities of liquids can be determined by observing the 
depth of flotation of a hydrometer. Further applications include problems of general 
flotation and of naval architectural design.  
 
To find the line of action of the buoyant force, moments are taken about a convenient 
axis 0.  
            dvxxV .                    x The distance from the axis to the line of action. 

            
v

dvx
v

x .1    (Centroid of the displaced volume of fluid) i.e. B.  

 
A body immersed in two different fluids  

Up thrust on body = weight of fluid displaced by the body (Archimedes principle.) 

If the body is immersed so that part of its volume V1 is immersed in a fluid of density 1 
and the rest of its volume V2 in another immiscible fluid of mass density 2,  
Up thrust on upper part, R1 = 1gV1 
acting through G1, the centroid of V1, 
Up thrust on lower part,R2 = 2gV2 
acting through G2, the centroid of V2, 
Total up thrust = 1gV1 + 2gV2. 
The positions of G1 and G2 are not necessarily on the same vertical line, and the centre of 
buoyancy of the whole body is, therefore, not bound to pass through the centroid of the 
whole body.               



 

 

Hydrometers 
Precise measurement of the specific weight of a liquid is done by utilising the principle of 
buoyancy. The device used for this, the hydrometer, is a glass bulb that is weighted on 
one end to make the hydrometer float in a vertical position and has a stem of constant 
diameter extending from the other end. The hydrometer is so designed that only the stem 
end extends above the liquid surface. Therefore, appreciable vertical movement of the 
hydrometer is required to change the buoyant force or displaced volume of the device. 
Because the buoyant force (equal to the weight of the hydrometer) must be constant, the 
hydrometer will float deeper or shallower depending on the specific weight of the liquid. 
Consequently graduation on the stem, corresponding to different depths of submergence 
of the hydrometer, can be made to indicate directly the specific weight or specific gravity 
of the liquid being measured. Consider the following figure 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.14 Hydrometer in water and in liquid of specific gravity  
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In the distilled water, the hydrometer floats in equilibrium when V0 = W 
In which V0 is the volume submerged,  is the specific weight of water, and W is the 
weight of the hydrometer. The position of the liquid surface is marked as 1.0 on the stem 
to indicate unit specific gravity S. When the hydrometer is floated in another liquid, the 
equation of equilibrium becomes 
(Vo-V)S = W in which V = ah. Solving for h with the above equations gives 
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One common use of hydrometers is in checking the state of charge of a car battery. When 
a battery is fully charged the specific gravity of the acid in it is about 1.28, and during 
discharge this specific gravity falls. The instrument used to check the state of charge is 
called a battery tester and it consists of a small hydrometer inside a glass container. 
 
 
Floating in salt water and in fresh water 
 
Exercise: People find that it is easier to float in salt water than in fresh water. Explain 

If an egg is placed in a tall vessel and water is added, the egg remains on the 
bottom, but if salt is added and the water is stirred, the egg rises and floats. 
Why?  

 
3.5.2. Stability of submerged and floating bodies.  
 
         3 – Possible conditions of equilibrium of solid body. 
 

1. Stable equilibrium – A small displacement from the equilibrium produces a 
righting moment tending to restore the body to the equilibrium position. 

2. Unstable equilibrium – A small displacement produces an over turning moment 
tending to displace the body further from its equilibrium position 

3. Neutral equilibrium - The body remains at rest in any position to which it may be 
displaced. No couple.   

 
 

 
Fig. 3.14 Conditions of equilibrium 
 

1. Submerged body  



 

 
  
 
 
   
 
 B>G G>B G=B 
 
 
 
Stable equilibrium (+ve stability)   Unstable equilibrium (-ve stability)       Neutral 
equilibrium (0 stability)          
 
For a submerged body, the centre of buoyancy remains constant. If an object is fully 
submerged, whether it is a balloon in air or a submarine in water, it must be designed 
that the centre of buoyancy lies some distance above the centre of gravity. 
Exercise  
Explain with example why the centre of buoyancy and the centre of gravity are 
located at different points for a fully submerged object. 

 
2. Floating body  

 
The following figure shows a solid body floating in equilibrium (weight acts through G & 
the buoyancy through B). Both act in the same straight line. When the body is displaced 
from its equilibrium, weight continues to act at G. The volume of liquid displaced 
remains constant but the shape of this volume will change and the position of its G and B 
will move relative to the body. 
 
The point at which the line of action of the buoyant force for the displaced position cuts 
the original vertical through the center of gravity of the body G is called metacenter, 
designated M stable equilibrium. Metacentric height is the distance GM.  
 
 
 

 
 
Fig.3.16 Stable equilibrium a)                                                                                 b) 
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The displaced fluid is rectangular in section (fig. a) but it is triangular in fig.b and the 
center of buoyancy moves to B1. As a result F8 and W are not in the same straight line 
producing a turning moment WX that is a righting moment.  

 
Fig.3.17 Unstable equilibrium   a) b) 
 
 
Comparing the above figures, it can be seen that:  
 

1. If M lies above G a righting moment is produced, GM is regarded as positive, and 
equilibrium is stable. 

2. If M lies below G an overturning moment is produced, GM is regarded as 
negative, and equilibrium is unstable. 

3. If M and G coincide the body is in neutral equilibrium. 
 
Evaluation of Metacentric height            
                                                                                                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.18 x –section and plan in upright position  
 
Consider a non –prismatic floating object, such as a ship. Assume an outside force is 
applied causing the body to tilt through a small angle . The relative position of the G 
remains unchanged but B shifts from B to B’. The volume of fluid displaced is of course 
unchanged and in effect a wedge shaped volume of water represented by aoa’ has shifted 
across the central axis to bob’. These wedges represent a gain in the buoyant force on the 
right side and a corresponding loss in buoyancy on the left side of c-d.  
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The buoyant force FB acting through B’ may be considered as the resultant of the original 
buoyant force through B and the gain & loss of buoyant force. 
 
Taking moment about B, we have  
 
 *sin* BB FMBF    (Moment of resultant =  moment of 
components.) 
 
Consider an element of area dA in plan at a distance x, from O. The buoyant force acting 
on this element is  x  dA.                         << Small tan   sin     
  
                                                                       
  FB   =  * volume   =  x  dA 
 
Then FB = xdA     (integrated half of the water line) 
 
Moment of this force about O 
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If the integration is performed over the entire area 
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     V = volume of water displaced by the vessel. 
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If the G is below B, then GB
V
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V
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Attend the laboratory session for experimental determination of the metacentric height. 
 
Time of oscillation 
 
Consider a floating body, which is tilted through an angle by an overturning couple as 
shown below. Let the overturning couple is suddenly removed. The body will start 
oscillating. Thus, the body will be in a state of oscillation as if suspended at the meta- 
center M. This is similar to a case of a pendulum. The only force acting on the body is 
due to the restoring couple due to the weight w of the body force of buoyancy FB. 
 
 
 
 
 
 
 
 
 
 
                Fig. Tilted floating body 
 
 
Restoring couple = W GM sin 

Angular acceleration of the body, = 2

2

dt
d   

Negative  sign has been introduced as the restoring couple tries to decrease the angle . 

Torque due to inertia = IY-Y ( 2

2

dt
d  ) 

But IY-Y = (W/g) K2 
Where W=weight of body, K=radius of gyration about Y-Y 

Inertia torque = - (W/g) K2 ( 2

2

dt
d  ) 

Equating the above equations 

W GM sin = - (W/g) K2 ( 2
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d  ) or GM sin = - (K2/) ( 2
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For small angle , sin  = 
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This is second-degree differential equation, the solution is 
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Where C1 and C2 are constants of integration. 
The values of C1 and C2 are obtained from boundary conditions, which are  

i) at t=0, =0 
ii) at t=(T/2), =0 

Where T=time of one complete oscillation 
Substituting the first boundary condition, C2=0 

Substituting the second boundary condition, we get 0=
2

* g Msin 21
T

K
C  

But C1 cannot be equal to zero and so the other alternative is  

g GM
 2

2
* g GM

sin0
2

* g GMsin

2

2

2

KTorT
K

T
K









 

 This gives the time period of oscillation or rolling of a floating body. 
 


