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Chapter Eight

Loss Compression Algorithms

Introduction
As discussed in Chapter 7, the compression ratio for image data using lossless

compression techniques (e.g., Huffman Coding, Arithmetic Coding, LZW) is

low when the image histogram is relatively flat. For image compression in

multimedia applications, where a higher compression ratio is required, lossy

methods are usually adopted. In lossy compression, the compressed image is

usually not the same as the original image but is meant to form a close

approximation to the original image perceptually. To quantitatively describe

how close the approximation is to the original data, some form of distortion

measure is required.

Distortion Measures
A distortion measure is a mathematical quantity that specifies how close an

approximation is to its original, using some distortion criteria. When looking at

compressed data, it is natural to think of the distortion in terms of the numerical

difference between the original data and the reconstructed data. However, when

the data to be compressed is an image, such a measure may not yield the

intended result.

For example, if the reconstructed image is the same as original image except

that it is shifted to the right by one vertical scan line, an average human

observer would have a hard time distinguishing it from the original and would

therefore conclude that the distortion is small. However, when the calculation

is carried out numerically, we find a large distortion, because of the large

changes in individual pixels of the reconstructed image. The problem is that we

need a measure of perceptual distortion, not a more naive numerical approach.
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The rate distortion theory
Lossy compression always involves a tradeoff between rate and distortion. Rate

is the average number of bits required to represent each source symbol. Within

this framework, the tradeoff between rate and distortion is represented in the

form of a rate-distortion function R(D).

Intuitively, for a given source and a given distortion measure, if D is a tolerable

amount of distortion, R(D) specifies the lowest rate at which the source data

can be encoded while keeping the distortion bounded above by D. It is easy to

see that when D = 0, we have a lossless compression of the source. The

rate-distortion function

Fig. 8.1 Typical rate-distortion function

is meant to describe a fundamental limit for the performance of a coding

algorithm and so can be used to evaluate the performance of different

algorithms

Figure 8.1 shows a typical rate-distortion function. Notice that the minimum

possible rate at D = 0, no loss, is the entropy of the source data. The distortion

corresponding to a rate R(D) ⇒ 0 is the maximum amount of distortion

incurred when “nothing” is coded
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Quantization
Quantization in some form is the heart of any lossy scheme. Without

quantization, we would indeed be losing little information. Here, we embark on

a more detailed discussion of quantization than in chapter 6

The source we are interested in compressing may contain a large number of

distinct output values (or even infinite, if analog). To efficiently represent the

source output, we have to reduce the number of distinct values to a much

smaller set, via quantization

Uniform Scalar Quantization

A uniform scalar quantizer partitions the domain of input values into equally

spaced intervals, except possibly at the two outer intervals. The endpoints of

partition intervals are called the quantizer's decision boundaries.

Nonuniform Scalar Quantization

If the input source is not uniformly distributed, a uniform quantizer may be

inefficient. Increasing the number of decision levels within the region where

the source is densely distributed can effectively lower granular distortion. In

addition, without having to increase the total number of decision levels, we can

enlarge the region in which the source is sparsely distributed. Such nonuniform

quantizers thus have nonuniformly defined decision boundaries

Vector Quantization*

One of the fundamental ideas in Sharmon's original work on inf0l1llation

theory is that any compression system performs better if it operates on vectors

or groups of samples rather than on individual symbols or samples. We can

form vectors of input samples by concatenating a number of consecutive

samples into a single vector. For example, an input vector might be a segment

of a speech sample, a group of consecutive pixels in an image, or a chunk of

data in any other format.



Ambo University

Multimedia System Compiled by Shemsu S 4

Transform Coding
From basic principles of information theory, we know that coding vectors is

more efficient than coding scalars (see chapter 7). To cany out such an

intention, we need to group blocks of consecutive samples from the source

input into vectors

Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT), a widely used transform coding

technique, is able to perform decorrelation of the input signal in a

data-independent manner. Because of this, it has gained tremendous popularity.

Karhunen-Loeve Transform*

The Karhunen-Loeve Transfonn (KLT) is a reversible linear transform that

exploits the statistical properties of the vector representation. Its primary

property is that it optimally decorrelates the input. To do so, it fits an

n-dimensional ellipsoid around the (mean-subtracted) data. The main ellipsoid

axis is the major direction of change in the data
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