Operating System
Conce ptg

ABRAHAM SILBERSCHATZ * PETER BAER GALVIN ®* GREG GAGNE

OPERATING
avYsiti
CONCEPTS

TTTTTTTTTTTT

ABRAHAM SILBERSCHATZ

Yale University

PETER BAER GALVIN

Cambridge Computer and Starfish Storage

GREG GAGNE

Westminster College

TENTH EDITION

WILEY

Publisher Laurie Rosatone

Editorial Director Don Fowley
Development Editor Ryann Dannelly
Freelance Developmental Editor Chris Nelson/Factotum
Executive Marketing Manager Glenn Wilson

Senior Content Manage Valerie Zaborski

Senior Production Editor Ken Santor

Media Specialist Ashley Patterson
Editorial Assistant Anna Pham

Cover Designer Tom Nery

Cover art © methal89/Shutterstock

This book was set in Palatino by the author using LaTeX and printed and bound by LSC Kendallville.
The cover was printed by LSC Kendallville.

Copyright © 2018, 2013, 2012, 2008 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax
(978)750-4470. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030 (201)748-6011, fax (201)748-
6008, E-Mail: PERMREQ@WILEY.COM.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use
in their courses during the next academic year. These copies are licensed and may not be sold or
transferred to a third party. Upon completion of the review period, please return the evaluation copy to
Wiley. Return instructions and a free-of-charge return shipping label are available at
www.wiley.com/go/evalreturn. Outside of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Names: Silberschatz, Abraham, author. | Galvin, Peter B., author. | Gagne,
Greg, author.

Title: Operating system concepts / Abraham Silberschatz, Yale University,
Peter Baer Galvin, Pluribus Networks, Greg Gagne, Westminster College.

Description: 10th edition. | Hoboken, NJ : Wiley, [2018] | Includes
bibliographical references and index. |

Identifiers: LCCN 2017043464 (print) | LCCN 2017045986 (ebook) | ISBN
9781119320913 (enhanced ePub)

Subjects: LCSH: Operating systems (Computers)

Classification: LCC QA76.76.063 (ebook) | LCC QA76.76.063 S55825 2018 (print)
| DDC 005.4/3--dc23

LC record available at https://Iccn.loc.gov/2017043464

The inside back cover will contain printing identification and country of origin if omitted from this page. In
addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is
correct.

Enhanced ePub ISBN 978-1-119-32091-3

Printed in the United States of America

10987654321

To my children, Lemor, Sivan, and Aaron
and my Nicolette

Avi Silberschatz

To my wife, Carla,
and my children, Gwen, Owen, and Maddie

Peter Baer Galvin

To my wife, Pat,
and our sons, Tom and Jay

Greg Gagne

~reioce

Operating systems are an essential part of any computer system. Similarly, a
course on operating systems is an essential part of any computer science edu-
cation. This field is undergoing rapid change, as computers are now prevalent
in virtually every arena of day-to-day life—from embedded devices in auto-
mobiles through the most sophisticated planning tools for governments and
multinational firms. Yet the fundamental concepts remain fairly clear, and it is
on these that we base this book.

We wrote this book as a text for an introductory course in operating sys-
tems at the junior or senior undergraduate level or at the first-year graduate
level. We hope that practitioners will also find it useful. It provides a clear
description of the concepts that underlie operating systems. As prerequisites,
we assume that the reader is familiar with basic data structures, computer
organization, and a high-level language, such as C or Java. The hardware topics
required for an understanding of operating systems are covered in Chapter 1.
In that chapter, we also include an overview of the fundamental data structures
that are prevalent in most operating systems. For code examples, we use pre-
dominantly C, as well as a significant amount of Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are largely omitted. The bibliographical
notes at the end of each chapter contain pointers to research papers in which
results were first presented and proved, as well as references to recent material
for further reading. In place of proofs, figures and examples are used to suggest
why we should expect the result in question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in both open-source and commercial operating systems.
Our aim is to present these concepts and algorithms in a general setting that
is not tied to one particular operating system. However, we present a large
number of examples that pertain to the most popular and the most innovative
operating systems, including Linux, Microsoft Windows, Apple macOS (the
original name, OS X, was changed in 2016 to match the naming scheme of other
Apple products), and Solaris. We also include examples of both Android and
i0S, currently the two dominant mobile operating systems.

The organization of the text reflects our many years of teaching courses
on operating systems. Consideration was also given to the feedback provided

vii

viii

Preface

by the reviewers of the text, along with the many comments and suggestions
we received from readers of our previous editions and from our current and
former students. This Tenth Edition also reflects most of the curriculum guide-
lines in the operating-systems area in Computer Science Curricula 2013, the most
recent curriculum guidelines for undergraduate degree programs in computer
science published by the IEEE Computing Society and the Association for Com-
puting Machinery (ACM).

What’s New in This Edition

For the Tenth Edition, we focused on revisions and enhancements aimed at
lowering costs to the students, better engaging them in the learning process,
and providing increased support for instructors.

According to the publishing industry’s most trusted market research firm,
Outsell, 2015 represented a turning point in text usage: for the first time,
student preference for digital learning materials was higher than for print, and
the increase in preference for digital has been accelerating since.

While print remains important for many students as a pedagogical tool, the
Tenth Edition is being delivered in forms that emphasize support for learning
from digital materials. All forms we are providing dramatically reduce the cost
to students compared to the Ninth Edition. These forms are:

e Stand-alone e-text now with significan enhancements. The e-text format
for the Tenth Edition adds exercises with solutions at the ends of main
sections, hide/reveal definitions for key terms, and a number of animated
figures. It also includes additional “Practice Exercises” with solutions for
each chapter, extra exercises, programming problems and projects, “Fur-
ther Reading” sections, a complete glossary, and four appendices for legacy
operating systems.

¢ E-text with print companion bundle. For a nominal additional cost, the
e-text also is available with an abridged print companion that includes
a loose-leaf copy of the main chapter text, end-of-chapter “Practice Exer-
cises” (solutions available online), and “Further Reading” sections. Instruc-
tors may also order bound print companions for the bundled package by
contacting their Wiley account representative.

Although we highly encourage all instructors and students to take advantage
of the cost, content, and learning advantages of the e-text edition, it is possible
for instructors to work with their Wiley Account Manager to create a custom
print edition.

To explore these options further or to discuss other options, contact your
Wiley account manager (http://www.wiley.com/go/whosmyrep) or visit the
product information page for this text on wiley.com

Book Material

The book consists of 21 chapters and 4 appendices. Each chapter and appendix
contains the text, as well as the following enhancements:

Preface ix

® A set of practice exercises, including solutions
® A set of regular exercises

® A set of programming problems

® A set of programming projects

¢ A Further Reading section

® Pop-up definitions of important (blue) terms
* Aglossary of important terms

® Animations that describe specific key concepts

Ahard copy of the text is available in book stores and online. That version has
the same text chapters as the electronic version. It does not, however, include
the appendices, the regular exercises, the solutions to the practice exercises,
the programming problems, the programming projects, and some of the other
enhancements found in this ePub electronic book.

Content of This Book

The text is organized in ten major parts:

e Overview. Chapters 1 and 2 explain what operating systems are, what
they do, and how they are designed and constructed. These chapters dis-
cuss what the common features of an operating system are and what an
operating system does for the user. We include coverage of both tradi-
tional PC and server operating systems and operating systems for mobile
devices. The presentation is motivational and explanatory in nature. We
have avoided a discussion of how things are done internally in these chap-
ters. Therefore, they are suitable for individual readers or for students in
lower-level classes who want to learn what an operating system is without
getting into the details of the internal algorithms.

¢ Process management. Chapters 3 through 5 describe the process concept
and concurrency as the heart of modern operating systems. A process is
the unit of work in a system. Such a system consists of a collection of
concurrently executing processes, some executing operating-system code
and others executing user code. These chapters cover methods for process
scheduling and interprocess communication. Also included is a detailed
discussion of threads, as well as an examination of issues related to multi-
core systems and parallel programming.

¢ Process synchronization. Chapters 6 through 8 cover methods for process
synchronization and deadlock handling. Because we have increased the
coverage of process synchronization, we have divided the former Chapter
5 (Process Synchronization) into two separate chapters: Chapter 6, Syn-
chronization Tools, and Chapter 7, Synchronization Examples.

* Memory management. Chapters 9 and 10 deal with the management of
main memory during the execution of a process. To improve both the

X

Preface

utilization of the CPU and the speed of its response to its users, the com-
puter must keep several processes in memory. There are many different
memory-management schemes, reflecting various approaches to memory
management, and the effectiveness of a particular algorithm depends on
the situation.

Storage management. Chapters 11 and 12 describe how mass storage and
I/0 are handled in a modern computer system. The I/0O devices that attach
to a computer vary widely, and the operating system needs to provide a
wide range of functionality to applications to allow them to control all
aspects of these devices. We discuss system 1/0 in depth, including 1/0
system design, interfaces, and internal system structures and functions.
In many ways, I/0 devices are the slowest major components of the com-
puter. Because they represent a performance bottleneck, we also examine
performance issues associated with 1/0 devices.

File systems. Chapters 13 through 15 discuss how file systems are handled
in a modern computer system. File systems provide the mechanism for on-
line storage of and access to both data and programs. We describe the clas-
sic internal algorithms and structures of storage management and provide
a firm practical understanding of the algorithms used —their properties,
advantages, and disadvantages.

Security and protection. Chapters 16 and 17 discuss the mechanisms nec-
essary for the security and protection of computer systems. The processes
in an operating system must be protected from one another’s activities.
To provide such protection, we must ensure that only processes that have
gained proper authorization from the operating system can operate on
the files, memory, CPU, and other resources of the system. Protection is
a mechanism for controlling the access of programs, processes, or users
to computer-system resources. This mechanism must provide a means
of specifying the controls to be imposed, as well as a means of enforce-
ment. Security protects the integrity of the information stored in the system
(both data and code), as well as the physical resources of the system, from
unauthorized access, malicious destruction or alteration, and accidental
introduction of inconsistency.

Advanced topics. Chapters 18 and 19 discuss virtual machines and
networks/distributed systems. Chapter 18 provides an overview of
virtual machines and their relationship to contemporary operating
systems. Included is a general description of the hardware and software
techniques that make virtualization possible. Chapter 19 provides an
overview of computer networks and distributed systems, with a focus on
the Internet and TCP/IP.

Case studies. Chapter 20 and 21 present detailed case studies of two real
operating systems—Linux and Windows 10.

Appendices. Appendix A discusses several old influential operating sys-
tems that are no longer in use. Appendices B through D cover in great
detaisl three older operating systems— Windows 7, BSD, and Mach.

Preface xi
Programming Environments

The text provides several example programs written in C and Java. These
programs are intended to run in the following programming environments:

® POSIX. POSIX (which stands for Portable Operating System Interface) repre-
sents a set of standards implemented primarily for UNIX-based operat-
ing systems. Although Windows systems can also run certain POSIX pro-
grams, our coverage of POSIX focuses on Linux and UNIX systems. POSIX-
compliant systems must implement the POSIX core standard (POSIX.1);
Linux and macOS are examples of POSIX-compliant systems. POSIX also
defines several extensions to the standards, including real-time extensions
(POSIX.1b) and an extension for a threads library (POSIX.1c, better known
as Pthreads). We provide several programming examples written in C
illustrating the POSIX base API, as well as Pthreads and the extensions for
real-time programming. These example programs were tested on Linux 4.4
and macOS 10.11 systems using the gcc compiler.

® Java. Java is a widely used programming language with a rich API and
built-in language support for concurrent and parallel programming. Java
programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating-system and networking concepts
with Java programs tested using Version 1.8 of the Java Development Kit
(JDK).

* Windows systems. The primary programming environment for Windows
systems is the Windows API, which provides a comprehensive set of func-
tions for managing processes, threads, memory, and peripheral devices.
We supply a modest number of C programs illustrating the use of this APL
Programs were tested on a system running Windows 10.

We have chosen these three programming environments because we
believe that they best represent the two most popular operating-system
models—Linux/UNIX and Windows—along with the widely used Java
environment. Most programming examples are written in C, and we expect
readers to be comfortable with this language. Readers familiar with both the
C and Java languages should easily understand most programs provided in
this text.

In some instances—such as thread creation—we illustrate a specific con-
cept using all three programming environments, allowing the reader to con-
trast the three different libraries as they address the same task. In other situa-
tions, we may use just one of the APIs to demonstrate a concept. For example,
we illustrate shared memory using just the POSIX API; socket programming in
TCP/IP is highlighted using the Java APL

Linux Virtual Machine
To help students gain a better understanding of the Linux system, we pro-

vide a Linux virtual machine running the Ubuntu distribution with this text.
The virtual machine, which is available for download from the text website

xii

Preface

(http://www.os-book.com), also provides development environments includ-
ing the gcc and Java compilers. Most of the programming assignments in the
book can be completed using this virtual machine, with the exception of assign-
ments that require the Windows API. The virtual machine can be installed and
run on any host operating system that can run the VirtualBox virtualization
software, which currently includes Windows 10 Linux, and macOS.

The Tenth Edition

Aswe wrote this Tenth Edition of Operating System Concepts, we were guided by
the sustained growth in four fundamental areas that affect operating systems:

1. Mobile operating systems

2. Multicore systems

3. Virtualization

4. Nonvolatile memory secondary storage

To emphasize these topics, we have integrated relevant coverage throughout
this new edition. For example, we have greatly increased our coverage of the
Android and iOS mobile operating systems, as well as our coverage of the
ARMvS architecture that dominates mobile devices. We have also increased
our coverage of multicore systems, including increased coverage of APIs that
provide support for concurrency and parallelism. Nonvolatile memory devices
like SSDs are now treated as the equals of hard-disk drives in the chapters that
discuss 1/0, mass storage, and file systems.

Several of our readers have expressed support for an increase in Java
coverage, and we have provided additional Java examples throughout this
edition.

Additionally, we have rewritten material in almost every chapter by bring-
ing older material up to date and removing material that is no longer interest-
ing or relevant. We have reordered many chapters and have, in some instances,
moved sections from one chapter to another. We have also greatly revised
the artwork, creating several new figures as well as modifying many existing
figures.

Major Changes

The Tenth Edition update encompasses much more material than previous
updates, in terms of both content and new supporting material. Next, we
provide a brief outline of the major content changes in each chapter:

¢ Chapter 1: Introduction includes updated coverage of multicore systems,
as well as new coverage of NUMA systems and Hadoop clusters. Old
material has been updated, and new motivation has been added for the
study of operating systems.

¢ Chapter 2: Operating-System Structures provides a significantly revised
discussion of the design and implementation of operating systems. We
have updated our treatment of Android and iOS and have revised our

Preface xiii

coverage of the system boot process with a focus on GRUB for Linux
systems. New coverage of the Windows subsystem for Linux is included
as well. We have added new sections on linkers and loaders, and we now
discuss why applications are often operating-system specific. Finally, we
have added a discussion of the BCC debugging toolset.

Chapter 3: Processes simplifies the discussion of scheduling so that it
now includes only CPU scheduling issues. New coverage describes the
memory layout of a C program, the Android process hierarchy, Mach
message passing, and Android RPCs. We have also replaced coverage of
the traditional UNIX/Linux init process with coverage of systemd.

Chapter 4: Threads and Concurrency (previously Threads) increases the
coverage of support for concurrent and parallel programming at the API
and library level. We have revised the section on Java threads so that it
now includes futures and have updated the coverage of Apple’s Grand
Central Dispatch so that it now includes Swift. New sections discuss fork-
join parallelism using the fork-join framework in Java, as well as Intel
thread building blocks.

Chapter 5: CPU Scheduling (previously Chapter 6) revises the coverage of
multilevel queue and multicore processing scheduling. We have integrated
coverage of NUMA-aware scheduling issues throughout, including how
this scheduling affects load balancing. We also discuss related modifica-
tions to the Linux CFS scheduler. New coverage combines discussions of
round-robin and priority scheduling, heterogeneous multiprocessing, and
Windows 10 scheduling.

Chapter 6: Synchronization Tools (previously part of Chapter 5, Process
Synchronization) focuses on various tools for synchronizing processes.
Significant new coverage discusses architectural issues such as instruction
reordering and delayed writes to buffers. The chapter also introduces lock-
free algorithms using compare-and-swap (CAS) instructions. No specific
APIs are presented; rather, the chapter provides an introduction to race
conditions and general tools that can be used to prevent data races. Details
include new coverage of memory models, memory barriers, and liveness
issues.

Chapter 7: Synchronization Examples (previously part of Chapter 5,
Process Synchronization) introduces classical synchronization problems
and discusses specific API support for designing solutions that solve
these problems. The chapter includes new coverage of POSIX named and
unnamed semaphores, as well as condition variables. A new section on
Java synchronization is included as well.

Chapter 8: Deadlocks (previously Chapter 7) provides minor updates,
including a new section on livelock and a discussion of deadlock as an
example of a liveness hazard. The chapter includes new coverage of the
Linux lockdep and the BCC deadlock_detector tools, as well as coverage
of Java deadlock detection using thread dumps.

Chapter 9: Main Memory (previously Chapter 8) includes several revi-
sions that bring the chapter up to date with respect to memory manage-

xiv

Preface

ment on modern computer systems. We have added new coverage of the
ARMVS 64-bit architecture, updated the coverage of dynamic link libraries,
and changed swapping coverage so that it now focuses on swapping pages
rather than processes. We have also eliminated coverage of segmentation.

Chapter 10: Virtual Memory (previously Chapter 9) contains several revi-
sions, including updated coverage of memory allocation on NUMA systems
and global allocation using a free-frame list. New coverage includes com-
pressed memory, major/minor page faults, and memory management in
Linux and Windows 10.

Chapter 11: Mass-Storage Structure (previously Chapter 10) adds cover-
age of nonvolatile memory devices, such as flash and solid-state disks.
Hard-drive scheduling is simplified to show only currently used algo-
rithms. Also included are a new section on cloud storage, updated RAID
coverage, and a new discussion of object storage.

Chapter 12, I/O (previously Chapter 13) updates the coverage of
technologies and performance numbers, expands the coverage of
synchronous/asynchronous and blocking/nonblocking 1/0, and adds a
section on vectored I/0. It also expands coverage of power management
for mobile operating systems.

Chapter 13: File-System Interface (previously Chapter 11) has been
updated with information about current technologies. In particular, the
coverage of directory structures has been improved, and the coverage of
protection has been updated. The memory-mapped files section has been
expanded, and a Windows API example has been added to the discussion
of shared memory. The ordering of topics is refactored in Chapter 13 and
14.

Chapter 14: File-System Implementation (previously Chapter 12) has
been updated with coverage of current technologies. The chapter now
includes discussions of TRIM and the Apple File System. In addition, the
discussion of performance has been updated, and the coverage of journal-
ing has been expanded.

Chapter 15: File System Internals is new and contains updated informa-
tion from previous Chapters 11 and 12.

Chapter 16: Security (previously Chapter 15) now precedes the protec-
tion chapter. It includes revised and updated terms for current security
threats and solutions, including ransomware and remote access tools. The
principle of least privilege is emphasized. Coverage of code-injection vul-
nerabilities and attacks has been revised and now includes code samples.
Discussion of encryption technologies has been updated to focus on the
technologies currently used. Coverage of authentication (by passwords
and other methods) has been updated and expanded with helpful hints.
Additions include a discussion of address-space layout randomization and
a new summary of security defenses. The Windows 7 example has been
updated to Windows 10.

Chapter 17: Protection (previously Chapter 14) contains major changes.
The discussion of protection rings and layers has been updated and now

Preface XV

refers to the Bell-LaPadula model and explores the ARM model of Trust-
Zones and Secure Monitor Calls. Coverage of the need-to-know principle
has been expanded, as has coverage of mandatory access control. Subsec-
tions on Linux capabilities, Darwin entitlements, security integrity protec-
tion, system-call filtering, sandboxing, and code signing have been added.
Coverage of run-time-based enforcement in Java has also been added,
including the stack inspection technique.

Chapter 18: Virtual Machines (previously Chapter 16) includes added
details about hardware assistance technologies. Also expanded is the
topic of application containment, now including containers, zones, docker,
and Kubernetes. A new section discusses ongoing virtualization research,
including unikernels, library operating systems, partitioning hypervisors,
and separation hypervisors.

Chapter 19, Networks and Distributed Systems (previously Chapter 17)
has been substantially updated and now combines coverage of computer
networks and distributed systems. The material has been revised to bring
it up to date with respect to contemporary computer networks and dis-
tributed systems. The TCP/IP model receives added emphasis, and a dis-
cussion of cloud storage has been added. The section on network topolo-
gies has been removed. Coverage of name resolution has been expanded
and a Java example added. The chapter also includes new coverage of dis-
tributed file systems, including MapReduce on top of Google file system,
Hadoop, GPFS, and Lustre.

Chapter 20: The Linux System (previously Chapter 18) has been updated
to cover the Linux 4.i kernel.

Chapter 21: The Windows 10 System is a new chapter that covers the
internals of Windows 10.

Appendix A: Influentia Operating Systems has been updated to include
material from chapters that are no longer covered in the text.

Supporting Website

When you visit the website supporting this text at http://www.os-book.com,
you can download the following resources:

Linux virtual machine

C and Java source code

The complete set of figures and illustrations
FreeBSD, Mach, and Windows 7 case studies
Errata

Bibliography

Notes to Instructors

On the website for this text, we provide several sample syllabi that suggest var-
ious approaches for using the text in both introductory and advanced courses.

xvi

Preface

As a general rule, we encourage instructors to progress sequentially through
the chapters, as this strategy provides the most thorough study of operat-
ing systems. However, by using the sample syllabi, an instructor can select a
different ordering of chapters (or subsections of chapters).

In this edition, we have added many new written exercises and pro-
gramming problems and projects. Most of the new programming assignments
involve processes, threads, process scheduling, process synchronization, and
memory management. Some involve adding kernel modules to the Linux sys-
tem, which requires using either the Linux virtual machine that accompanies
this text or another suitable Linux distribution.

Solutions to written exercises and programming assignments are avail-
able to instructors who have adopted this text for their operating-system
class. To obtain these restricted supplements, contact your local John Wiley &
Sons sales representative. You can find your Wiley representative by going to
http://www.wiley.com/college and clicking “Who’s my rep?”

Notes to Students

We encourage you to take advantage of the practice exercises that appear at the
end of each chapter. We also encourage you to read through the study guide,
which was prepared by one of our students. Finally, for students who are unfa-
miliar with UNIX and Linux systems, we recommend that you download and
install the Linux virtual machine that we include on the supporting website.
Not only will this provide you with a new computing experience, but the open-
source nature of Linux will allow you to easily examine the inner details of this
popular operating system. We wish you the very best of luck in your study of
operating systems!

Contacting Us

We have endeavored to eliminate typos, bugs, and the like from the text. But,
as in new releases of software, bugs almost surely remain. An up-to-date errata
list is accessible from the book’s website. We would be grateful if you would
notify us of any errors or omissions in the book that are not on the current list
of errata.

We would be glad to receive suggestions on improvements to the book.
We also welcome any contributions to the book website that could be of use
to other readers, such as programming exercises, project suggestions, on-line
labs and tutorials, and teaching tips. E-mail should be addressed to os-book-
authors@cs.yale.edu.

Acknowledgments

Many people have helped us with this Tenth Edition, as well as with the
previous nine editions from which it is derived.

Preface xvii

Tenth Edition

e Rick Farrow provided expert advice as a technical editor.

¢ Jonathan Levin helped out with coverage of mobile systems, protection,
and security.

¢ Alex Ionescu updated the previous Windows 7 chapter to provide Chapter
21: Windows 10.

¢ Sarah Diesburg revised Chapter 19: Networks and Distributed Systems.
¢ Brendan Gregg provided guidance on the BCC toolset.

¢ Richard Stallman (RMS) supplied feedback on the description of free and
open-source software.

® Robert Love provided updates to Chapter 20: The Linux System.

¢ Michael Shapiro helped with storage and I/0 technology details.

¢ Richard West provided insight on areas of virtualization research.

¢ Clay Breshears helped with coverage of Intel thread-building blocks.

e Gerry Howser gave feedback on motivating the study of operating systems
and also tried out new material in his class.

¢ Judi Paige helped with generating figures and presentation of slides.
¢ Jay Gagne and Audra Rissmeyer prepared new artwork for this edition.
® Owen Galvin provided technical editing for Chapter 11 and Chapter 12.

® Mark Wogahn has made sure that the software to produce this book (ITEX
and fonts) works properly.

¢ Ranjan Kumar Meher rewrote some of the KIgX software used in the pro-
duction of this new text.

Previous Editions

¢ First three editions. This book is derived from the previous editions, the
tirst three of which were coauthored by James Peterson.

® General contributions. Others who helped us with previous editions
include Hamid Arabnia, Rida Bazzi, Randy Bentson, David Black, Joseph
Boykin, Jeff Brumfield, Gael Buckley, Roy Campbell, P. C. Capon, John
Carpenter, Gil Carrick, Thomas Casavant, Bart Childs, Ajoy Kumar Datta,
Joe Deck, Sudarshan K. Dhall, Thomas Doeppner, Caleb Drake, M. Rasit
Eskicioglu, Hans Flack, Robert Fowler, G. Scott Graham, Richard Guy,
Max Hailperin, Rebecca Hartman, Wayne Hathaway, Christopher Haynes,
Don Heller, Bruce Hillyer, Mark Holliday, Dean Hougen, Michael Huang,
Ahmed Kamel, Morty Kewstel, Richard Kieburtz, Carol Kroll, Morty
Kwestel, Thomas LeBlanc, John Leggett, Jerrold Leichter, Ted Leung, Gary
Lippman, Carolyn Miller, Michael Molloy, Euripides Montagne, Yoichi

Muraoka, Jim M. Ng, Banu Ozden, Ed Posnak, Boris Putanec, Charles

xviii

Preface

Qualline, John Quarterman, Mike Reiter, Gustavo Rodriguez-Rivera,
Carolyn J. C. Schauble, Thomas P. Skinner, Yannis Smaragdakis, Jesse

St.

Laurent, John Stankovic, Adam Stauffer, Steven Stepanek, John

Sterling, Hal Stern, Louis Stevens, Pete Thomas, David Umbaugh, Steve
Vinoski, Tommy Wagner, Larry L. Wear, John Werth, James M. Westall, J.
S. Weston, and Yang Xiang

e Specifi Contributions

o

[¢]

o

Robert Love updated both Chapter 20 and the Linux coverage through-
out the text, as well as answering many of our Android-related ques-
tions.

Appendix B was written by Dave Probert and was derived from Chap-
ter 22 of the Eighth Edition of Operating System Concepts.

Jonathan Katz contributed to Chapter 16. Richard West provided input
into Chapter 18. Salahuddin Khan updated Section 16.7 to provide new
coverage of Windows 7 security.

Parts of Chapter 19 were derived from a paper by Levy and Silberschatz
[1990].

Chapter 20 was derived from an unpublished manuscript by Stephen
Tweedie.

Cliff Martin helped with updating the UNIX appendix to cover FreeBSD.

Some of the exercises and accompanying solutions were supplied by
Arvind Krishnamurthy.

Andrew DeNicola prepared the student study guide that is available on
our website. Some of the slides were prepared by Marilyn Turnamian.

Mike Shapiro, Bryan Cantrill, and Jim Mauro answered several Solaris-
related questions, and Bryan Cantrill from Sun Microsystems helped
with the ZFS coverage. Josh Dees and Rob Reynolds contributed cover-
age of Microsoft’s NET.

Owen Galvin helped copy-edit Chapter 18 edition.

Book Production

The Executive Editor was Don Fowley. The Senior Production Editor was Ken

Santor.

The Freelance Developmental Editor was Chris Nelson. The Assistant

Developmental Editor was Ryann Dannelly. The cover designer was Tom Nery.
The copyeditor was Beverly Peavler. The freelance proofreader was Katrina
Avery. The freelance indexer was WordCo, Inc. The Aptara LaTex team con-
sisted of Neeraj Saxena and Lav kush.

Personal Notes

Avi would like to acknowledge Valerie for her love, patience, and support

during

the revision of this book.

Preface xix

Peter would like to thank his wife Carla and his children, Gwen, Owen,
and Maddie.

Greg would like to acknowledge the continued support of his family: his
wife Pat and sons Thomas and Jay.

Abraham Silberschatz, New Haven, CT
Peter Baer Galvin, Boston, MA
Greg Gagne, Salt Lake City, UT

Conrenis

PART ONE B OVERVIEW
Chapter1 Introduction

1.1 What Operating Systems Do 4 1.8 Distributed Systems 35

1.2 Computer-System Organization 7 1.9 Kernel Data Structures 36

1.3 Computer-System Architecture 15 1.10 Computing Environments 40
1.4 Operating-System Operations 21 1.11 Free and Open-Source Operating
1.5 Resource Management 27 Systems 46

1.6 Security and Protection 33 Practice Exercises 53

1.7 Virtualization 34 Further Reading 54

Chapter2 Operating-System Structures

2.1 Operating-System Services 55 2.7 Operating-System Design and
2.2 User and Operating-System Implementation 79

Interface 58 2.8 Operating-System Structure 81
2.3 System Calls 62 2.9 Building and Booting an Operating
2.4 System Services 74 System 92
2.5 Linkers and Loaders 75 2.10 Operating-System Debugging 95
2.6 Why Applications Are 2.11 Summary 100

Operating-System Specific 77 Practice Exercises 101

Further Reading 101

PART TWO HE PROCESS MANAGEMENT
Chapter 3 Processes

3.1 Process Concept 106 3.7 Examples of IPC Systems 132
3.2 Process Scheduling 110 3.8 Communication in Client—

3.3 Operations on Processes 116 Server Systems 145

3.4 Interprocess Communication 123 3.9 Summary 153

3.5 IPC in Shared-Memory Systems 125 Practice Exercises 154

3.6 IPC in Message-Passing Systems 127 Further Reading 156

xxi

xxii Contents

Chapter4 Threads & Concurrency

4.1 Overview 160 4.6 Threading Issues 188

4.2 Multicore Programming 162 4.7 Operating-System Examples 194
4.3 Multithreading Models 166 4.8 Summary 196

4.4 Thread Libraries 168 Practice Exercises 197

4.5 Implicit Threading 176 Further Reading 198

Chapter 5 CPU Scheduling

5.1 Basic Concepts 200 5.7 Operating-System Examples 234
5.2 Scheduling Criteria 204 5.8 Algorithm Evaluation 244

5.3 Scheduling Algorithms 205 5.9 Summary 250

5.4 Thread Scheduling 217 Practice Exercises 251

5.5 Multi-Processor Scheduling 220 Further Reading 254

5.6 Real-Time CPU Scheduling 227

PART THREE E PROCESS SYNCHRONIZATION

Chapter 6 Synchronization Tools

6.1 Background 257 6.7 Monitors 276

6.2 The Critical-Section Problem 260 6.8 Liveness 283

6.3 Peterson’s Solution 262 6.9 Evaluation 284

6.4 Hardware Support for 6.10 Summary 286
Synchronization 265 Practice Exercises 287

6.5 Mutex Locks 270 Further Reading 288

6.6 Semaphores 272

Chapter 7 Synchronization Examples

7.1 Classic Problems of 7.5 Alternative Approaches 311
Synchronization 289 7.6 Summary 314

7.2 Synchronization within the Kernel 295 Practice Exercises 314

7.3 POSIX Synchronization 299 Further Reading 315

7.4 Synchronization in Java 303

Chapter 8 Deadlocks

8.1 System Model 318 8.6 Deadlock Avoidance 330

8.2 Deadlock in Multithreaded 8.7 Deadlock Detection 337
Applications 319 8.8 Recovery from Deadlock 341

8.3 Deadlock Characterization 321 8.9 Summary 343

8.4 Methods for Handling Deadlocks 326 Practice Exercises 344

8.5 Deadlock Prevention 327 Further Reading 346

Contents xxiii

PART FOUR B MEMORY MANAGEMENT

Chapter 9 Main Memory

9.1 Background 349 9.6 Example: Intel 32- and 64-bit

9.2 Contiguous Memory Allocation 356 Architectures 379

9.3 Paging 360 9.7 Example: ARMvS8 Architecture 383
9.4 Structure of the Page Table 371 9.8 Summary 384

9.5 Swapping 376 Practice Exercises 385

Further Reading 387

Chapter 10 Virtual Memory

10.1 Background 389 10.8 Allocating Kernel Memory 426
10.2 Demand Paging 392 10.9 Other Considerations 430

10.3 Copy-on-Write 399 10.10 Operating-System Examples 436
10.4 Page Replacement 401 10.11 Summary 440

10.5 Allocation of Frames 413 Practice Exercises 441

10.6 Thrashing 419 Further Reading 444

10.7 Memory Compression 425

PART FIVE B STORAGE MANAGEMENT

Chapter 11 Mass-Storage Structure

11.1 Overview of Mass-Storage 11.6 Swap-Space Management 467
Structure 449 11.7 Storage Attachment 469

11.2 HDD Scheduling 457 11.8 RAID Structure 473

11.3 NVM Scheduling 461 11.9 Summary 485

11.4 Error Detection and Correction 462 Practice Exercises 486

11.5 Storage Device Management 463 Further Reading 487

Chapter 12 1/O Systems

12.1 Overview 489 12.6 STREAMS 519

12.2 I/O Hardware 490 12.7 Performance 521

12.3 Application I/O Interface 500 12.8 Summary 524

12.4 Kernel I/O Subsystem 508 Practice Exercises 525
12.5 Transforming I/O Requests to Further Reading 526

Hardware Operations 516

XXiv

Contents

PART SIX B FILE SYSTEM

Chapter 13 File-System Interface

13.1 File Concept 529

13.2 Access Methods 539
13.3 Directory Structure 541
13.4 Protection 550

13.5 Memory-Mapped Files 555
13.6 Summary 560
Practice Exercises 560
Further Reading 561

Chapter 14 File-System Implementation

14.1 File-System Structure 564

14.2 File-System Operations 566
14.3 Directory Implementation 568
14.4 Allocation Methods 570

14.5 Free-Space Management 578
14.6 Efficiency and Performance 582

14.7 Recovery 586
14.8 Example: The WAFL File System 589
149 Summary 593

Practice Exercises 594

Further Reading 594

Chapter 15 File-System Internals

15.1 File Systems 597

15.2 File-System Mounting 598
15.3 Partitions and Mounting 601
15.4 File Sharing 602

15.5 Virtual File Systems 603
15.6 Remote File Systems 605

15.7 Consistency Semantics 608
15.8 NFS 610
15.9 Summary 615
Practice Exercises 616
Further Reading 617

PART SEVEN W SECURITY AND PROTECTION

Chapter 16 Security

16.1 The Security Problem 621

16.2 Program Threats 625

16.3 System and Network Threats 634
16.4 Cryptography as a Security Tool 637
16.5 User Authentication 648

Chapter 17 Protection

17.1 Goals of Protection 667

17.2 Principles of Protection 668

17.3 Protection Rings 669

17.4 Domain of Protection 671

17.5 Access Matrix 675

17.6 Implementation of the Access
Matrix 679

17.7 Revocation of Access Rights 682

17.8 Role-Based Access Control 683

16.6 Implementing Security Defenses 653
16.7 An Example: Windows 10 662
16.8 Summary 664

Further Reading 665

17.9 Mandatory Access Control
(MAC) 684
17.10 Capability-Based Systems 685
17.11 Other Protection Improvement
Methods 687
17.12 Language-Based Protection 690
17.13 Summary 696
Further Reading 697

Contents XXV

PART EIGHT W ADVANCED TOPICS

Chapter 18 Virtual Machines

18.1 Overview 701 18.6 Virtualization and Operating-System
18.2 History 703 Components 719
18.3 Benefits and Features 704 18.7 Examples 726
18.4 Building Blocks 707 18.8 Virtualization Research 728
18.5 Types of VMs and Their 18.9 Summary 729
Implementations 713 Further Reading 730

Chapter 19 Networks and Distributed Systems

19.1 Advantages of Distributed 19.6 Distributed File Systems 757
Systems 733 19.7 DFS Naming and Transparency 761
19.2 Network Structure 735 19.8 Remote File Access 764
19.3 Communication Structure 738 19.9 Final Thoughts on Distributed File
19.4 Network and Distributed Operating Systems 767
Systems 749 19.10 Summary 768
19.5 Design Issues in Distributed Practice Exercises 769
Systems 753 Further Reading 770

PART NINE B CASE STUDIES

Chapter 20 The Linux System

20.1 Linux History 775 20.8 Input and Output 810

20.2 Design Principles 780 20.9 Interprocess Communication 812
20.3 Kernel Modules 783 20.10 Network Structure 813

20.4 Process Management 786 20.11 Security 816

20.5 Scheduling 790 20.12 Summary 818

20.6 Memory Management 795 Practice Exercises 819

20.7 File Systems 803 Further Reading 819

Chapter 21 Windows 10

21.1 History 821 21.5 File System 875
21.2 Design Principles 826 21.6 Networking 880
21.3 System Components 838 21.7 Programmer Interface 884
21.4 Terminal Services and Fast User 21.8 Summary 895
Switching 874 Practice Exercises 896

Further Reading 897

XXVi

Contents

PART TEN B APPENDICES

Chapter A Influentia Operating Systems

A.1 Feature Migration 1
A.2 Early Systems 2
A3 Atlas 9

A4 XDS-940 10

A5 THE 11

A.6 RC4000 11

A7 CTSS 12

A.8 MULTICS 13

A9 IBM OS/360 13

Chapter B Windows 7

B.1 History 1

B.2 Design Principles 3

B.3 System Components 10

B.4 Terminal Services and Fast User
Switching 34

B.5 File System 35

Chapter C BSD UNIX

C.1 UNIX History 1

C.2 Design Principles 6

C.3 Programmer Interface 8

C.4 User Interface 15

C.5 Process Management 18

C.6 Memory Management 22

Chapter D The Mach System

D.1 History of the Mach System 1
D.2 Design Principles 3

D.3 System Components 4

D.4 Process Management 7

D.5 Interprocess Communication 13

Credits 963
Index 965

A.10 TOPS-20 15

A.11 CP/Mand MS/DOS 15

A.12 Macintosh Operating System and
Windows 16

A.13 Mach 16

A.14 Capability-based Systems—Hydra and
CAP 18

A.15 Other Systems 20
Further Reading 21

B.6 Networking 41
B.7 Programmer Interface 46
B.8 Summary 55
Practice Exercises 55
Further Reading 56

C.7 File System 25
C.8 I/O System 33
C.9 Interprocess Communication 36
C.10 Summary 41
Further Reading 42

D.6 Memory Management 18
D.7 Programmer Interface 23
D.8 Summary 24

Further Reading 25

Part One

Overview

An operating system acts as an intermediary between the user of a com-
puter and the computer hardware. The purpose of an operating system
is to provide an environment in which a user can execute programs in a
convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardware must provide appropriate mechanisms to ensure the
correct operation of the computer system and to prevent programs from
interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task, and it is important that the goals of the system be
well defined before the design begins.

Because an operating system is large and complex, it must be cre-
ated piece by piece. Each of these pieces should be a well-delineated
portion of the system, with carefully defined inputs, outputs, and func-
tions.

sAfER
B

ITroatCTIon S}\

An operating system is software that manages a computer’s hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how they vary in accomplishing these tasks in a wide
variety of computing environments. Operating systems are everywhere, from
cars and home appliances that include “Internet of Things” devices, to smart
phones, personal computers, enterprise computers, and cloud computing envi-
ronments.

In order to explore the role of an operating system in a modern computing
environment, it is important first to understand the organization and architec-
ture of computer hardware. This includes the CPU, memory, and 1/0 devices,
as well as storage. A fundamental responsibility of an operating system is to
allocate these resources to programs.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter,
we provide a general overview of the major components of a contemporary
computer system as well as the functions provided by the operating system.
Additionally, we cover several topics to help set the stage for the remainder of
the text: data structures used in operating systems, computing environments,
and open-source and free operating systems.

CHAPTER OBJECTIVES

e Describe the general organization of a computer system and the role of
interrupts.

Describe the components in a modern multiprocessor computer system.

lllustrate the transition from user mode to kernel mode.

e Discuss how operating systems are used in various computing environ-
ments.

Provide examples of free and open-source operating systems.

1.1

Chapter1 Introduction
What Operating Systems Do

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into four
components: the hardware, the operating system, the application programs,
and a user (Figure 1.1).

The hardware—the central processing unit (CPU), the memory, and the
input/output (I/0) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers—define the ways in which these resources are
used to solve users’ computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for
the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function
by itself. It simply provides an environment within which other programs can
do useful work.

To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user’s view of the computer varies according to the interface being used.
Many computer users sit with a laptop or in front of a PC consisting of a
monitor, keyboard, and mouse. Such a system is designed for one user to
monopolize its resources. The goal is to maximize the work (or play) that the
user is performing. In this case, the operating system is designed mostly for
ease of use, with some attention paid to performance and security and none
paid to resource utilization—how various hardware and software resources
are shared.

user

!

application programs
(compilers, web browsers, development kits, etc.)

! ! !

operating system

! ! !

computer hardware
(CPU, memory, I/0 devices, etc.)

Figure 1.1 Abstract view of the components of a computer system.

1.1 What Operating Systems Do 5

Increasingly, many users interact with mobile devices such as smartphones
and tablets—devices that are replacing desktop and laptop computer systems
for some users. These devices are typically connected to networks through
cellular or other wireless technologies. The user interface for mobile computers
generally features a touch screen, where the user interacts with the system by
pressing and swiping fingers across the screen rather than using a physical
keyboard and mouse. Many mobile devices also allow users to interact through
a voice recognition interface, such as Apple’s Siri.

Some computers have little or no user view. For example, embedded com-
puters in home devices and automobiles may have numeric keypads and may
turn indicator lights on or off to show status, but they and their operating sys-
tems and applications are designed primarily to run without user intervention.

1.1.2 System View

From the computer’s point of view, the operating system is the program most
intimately involved with the hardware. In this context, we can view an oper-
ating system as a resource allocator. A computer system has many resources
that may be required to solve a problem: CPU time, memory space, storage
space, I/0 devices, and so on. The operating system acts as the manager of these
resources. Facing numerous and possibly conflicting requests for resources, the
operating system must decide how to allocate them to specific programs and
users so that it can operate the computer system efficiently and fairly.

A slightly different view of an operating system emphasizes the need to
control the various I/O devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of 1/0 devices.

1.1.3 Defining Operating Systems

By now, you can probably see that the term operating system covers many
roles and functions. That is the case, at least in part, because of the myriad
designs and uses of computers. Computers are present within toasters, cars,
ships, spacecraft, homes, and businesses. They are the basis for game machines,
cable TV tuners, and industrial control systems.

To explain this diversity, we can turn to the history of computers. Although
computers have a relatively short history, they have evolved rapidly. Comput-
ing started as an experiment to determine what could be done and quickly
moved to fixed-purpose systems for military uses, such as code breaking and
trajectory plotting, and governmental uses, such as census calculation. Those
early computers evolved into general-purpose, multifunction mainframes, and
that’s when operating systems were born. In the 1960s, Moore’s Law predicted
that the number of transistors on an integrated circuit would double every 18
months, and that prediction has held true. Computers gained in functionality
and shrank in size, leading to a vast number of uses and a vast number and
variety of operating systems. (See Appendix A for more details on the history
of operating systems.)

How, then, can we define what an operating system is? In general, we have
no completely adequate definition of an operating system. Operating systems

Chapter1 Introduction

exist because they offer a reasonable way to solve the problem of creating
a usable computing system. The fundamental goal of computer systems is
to execute programs and to make solving user problems easier. Computer
hardware is constructed toward this goal. Since bare hardware alone is not
particularly easy to use, application programs are developed. These programs
require certain common operations, such as those controlling the 1/0 devices.
The common functions of controlling and allocating resources are then brought
together into one piece of software: the operating system.

In addition, we have no universally accepted definition of what is part of
the operating system. A simple viewpoint is that it includes everything a ven-
dor ships when you order “the operating system.” The features included, how-
ever, vary greatly across systems. Some systems take up less than a megabyte
of space and lack even a full-screen editor, whereas others require gigabytes
of space and are based entirely on graphical windowing systems. A more com-
mon definition, and the one that we usually follow, is that the operating system
is the one program running at all times on the computer—usually called the
kernel. Along with the kernel, there are two other types of programs: system
programs, which are associated with the operating system but are not neces-
sarily part of the kernel, and application programs, which include all programs
not associated with the operation of the system.

The matter of what constitutes an operating system became increasingly
important as personal computers became more widespread and operating sys-
tems grew increasingly sophisticated. In 1998, the United States Department of
Justice filed suit against Microsoft, in essence claiming that Microsoft included
too much functionality in its operating systems and thus prevented application
vendors from competing. (For example, a web browser was an integral part of
Microsoft’s operating systems.) As a result, Microsoft was found guilty of using
its operating-system monopoly to limit competition.

Today, however, if we look at operating systems for mobile devices, we
see that once again the number of features constituting the operating system
is increasing. Mobile operating systems often include not only a core kernel
but also middleware—a set of software frameworks that provide additional
services to application developers. For example, each of the two most promi-
nent mobile operating systems— Apple’s iOS and Google’s Android —features

WHY STUDY OPERATING SYSTEMS?

Although there are many practitioners of computer science, only a small per-
centage of them will be involved in the creation or modification of an operat-
ing system. Why, then, study operating systems and how they work? Simply
because, as almost all code runs on top of an operating system, knowledge
of how operating systems work is crucial to proper, efficient, effective, and
secure programming. Understanding the fundamentals of operating systems,
how they drive computer hardware, and what they provide to applications is
not only essential to those who program them but also highly useful to those
who write programs on them and use them.

1.2

1.2 Computer-System Organization 7

a core kernel along with middleware that supports databases, multimedia, and
graphics (to name only a few).

In summary, for our purposes, the operating system includes the always-
running kernel, middleware frameworks that ease application development
and provide features, and system programs that aid in managing the system
while it is running. Most of this text is concerned with the kernel of general-
purpose operating systems, but other components are discussed as needed to
fully explain operating system design and operation.

Computer-System Organization

A modern general-purpose computer system consists of one or more CPUs and
anumber of device controllers connected through a common bus that provides
access between components and shared memory (Figure 1.2). Each device
controller is in charge of a specific type of device (for example, a disk drive,
audio device, or graphics display). Depending on the controller, more than one
device may be attached. For instance, one system USB port can connect to a
USB hub, to which several devices can connect. A device controller maintains
some local buffer storage and a set of special-purpose registers. The device
controller is responsible for moving the data between the peripheral devices
that it controls and its local buffer storage.

Typically, operating systems have a device driver for each device con-
troller. This device driver understands the device controller and provides the
rest of the operating system with a uniform interface to the device. The CPU and
the device controllers can execute in parallel, competing for memory cycles. To
ensure orderly access to the shared memory, a memory controller synchronizes
access to the memory.

In the following subsections, we describe some basics of how such a system
operates, focusing on three key aspects of the system. We start with interrupts,
which alert the CPU to events that require attention. We then discuss storage
structure and I/0 structure.

mouse keyboard printer monitor

ésé é d on-line |:

CPU el USB controller el
controller adapter
system bus
memory

Figure 1.2 A typical PC computer system.

Chapter1 Introduction

1.2.1 Interrupts

Consider a typical computer operation: a program performing 1/0. To start an
1/0 operation, the device driver loads the appropriate registers in the device
controller. The device controller, in turn, examines the contents of these reg-
isters to determine what action to take (such as “read a character from the
keyboard”). The controller starts the transfer of data from the device to its local
buffer. Once the transfer of data is complete, the device controller informs the
device driver that it has finished its operation. The device driver then gives
control to other parts of the operating system, possibly returning the data or a
pointer to the data if the operation was a read. For other operations, the device
driver returns status information such as “write completed successfully” or
“device busy”. But how does the controller inform the device driver that it has
finished its operation? This is accomplished via an interrupt.

1.2.1.1 Overview

Hardware may trigger an interrupt at any time by sending a signal to the
CPU, usually by way of the system bus. (There may be many buses within
a computer system, but the system bus is the main communications path
between the major components.) Interrupts are used for many other purposes
as well and are a key part of how operating systems and hardware interact.

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A timeline of this operation is shown in Figure 1.3.
To run the animation assicated with this figure please click here.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.
The straightforward method for managing this transfer would be to invoke
a generic routine to examine the interrupt information. The routine, in turn,

CPU user program

VO interrupt processing

o idie
device
transfarring L
= FHIENES = = | 3|5
5] sle |z 5] z (2|2
: HHE 3 El8 (8
i 3918
g (& z|3

Figure 1.3 Interrupt timeline for a single program doing output.

1.2 Computer-System Organization 9

would call the interrupt-specific handler. However, interrupts must be handled
quickly, as they occur very frequently. A table of pointers to interrupt routines
can be used instead to provide the necessary speed. The interrupt routine
is called indirectly through the table, with no intermediate routine needed.
Generally, the table of pointers is stored in low memory (the first hundred or so
locations). These locations hold the addresses of the interrupt service routines
for the various devices. This array, or interrupt vector, of addresses is then
indexed by a unique number, given with the interrupt request, to provide the
address of the interrupt service routine for the interrupting device. Operating
systems as different as Windows and UNIX dispatch interrupts in this manner.

The interrupt architecture must also save the state information of whatever
was interrupted, so that it can restore this information after servicing the
interrupt. If the interrupt routine needs to modify the processor state—for
instance, by modifying register values—it must explicitly save the current state
and then restore that state before returning. After the interrupt is serviced, the
saved return address is loaded into the program counter, and the interrupted
computation resumes as though the interrupt had not occurred.

1.2.1.2 Implementation

The basic interrupt mechanism works as follows. The CPU hardware has a
wire called the interrupt-request line that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on
the interrupt-request line, it reads the interrupt number and jumps to the
interrupt-handler routine by using that interrupt number as an index into
the interrupt vector. It then starts execution at the address associated with
that index. The interrupt handler saves any state it will be changing during
its operation, determines the cause of the interrupt, performs the necessary
processing, performs a state restore, and executes a return_from_interrupt
instruction to return the CPU to the execution state prior to the interrupt. We
say that the device controller raises an interrupt by asserting a signal on the
interrupt request line, the CPU catches the interrupt and dispatches it to the
interrupt handler, and the handler clears the interrupt by servicing the device.
Figure 1.4 summarizes the interrupt-driven 1/0 cycle.

The basic interrupt mechanism just described enables the CPU to respond to
an asynchronous event, as when a device controller becomes ready for service.
In a modern operating system, however, we need more sophisticated interrupt-
handling features.

1. We need the ability to defer interrupt handling during critical processing.

2. We need an efficient way to dispatch to the proper interrupt handler for
a device.

3. We need multilevel interrupts, so that the operating system can distin-
guish between high- and low-priority interrupts and can respond with
the appropriate degree of urgency.

In modern computer hardware, these three features are provided by the CPU
and the interrupt-controller hardware.

10

Chapter1 Introduction

CPU I/O controller
1

device driver initiates /O \
initiates 1/0

T

CPU executing checks for
interrupts between instructions
1

3
1
1
A\
CPU receiving interrupt, 4 input ready, output
transfers control to complete, or error
interrupt handler generates interrupt signal

interrupt handler
processes data,
returns from interrupt

CPU resumes
processing of
interrupted task

Figure 1.4 Interrupt-driven 1/O cycle.

Most CPUs have two interrupt request lines. One is the nonmaskable
interrupt, which is reserved for events such as unrecoverable memory errors.
The second interrupt line is maskable: it can be turned off by the CPU before
the execution of critical instruction sequences that must not be interrupted. The
maskable interrupt is used by device controllers to request service.

Recall that the purpose of a vectored interrupt mechanism is to reduce the
need for a single interrupt handler to search all possible sources of interrupts
to determine which one needs service. In practice, however, computers have
more devices (and, hence, interrupt handlers) than they have address elements
in the interrupt vector. A common way to solve this problem is to use interrupt
chaining, in which each element in the interrupt vector points to the head of
a list of interrupt handlers. When an interrupt is raised, the handlers on the
corresponding list are called one by one, until one is found that can service
the request. This structure is a compromise between the overhead of a huge
interrupt table and the inefficiency of dispatching to a single interrupt handler.

Figure 1.5 illustrates the design of the interrupt vector for Intel processors.
The events from 0 to 31, which are nonmaskable, are used to signal various
error conditions. The events from 32 to 255, which are maskable, are used for
purposes such as device-generated interrupts.

The interrupt mechanism also implements a system of interrupt priority
levels. These levels enable the CPU to defer the handling of low-priority inter-

1.2 Computer-System Organization 11

vector number description
0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check
19-31 (Intel reserved, do not use)
32-255 maskable interrupts

Figure 1.5 Intel processor event-vector table.

rupts without masking all interrupts and makes it possible for a high-priority
interrupt to preempt the execution of a low-priority interrupt.

In summary, interrupts are used throughout modern operating systems to
handle asynchronous events (and for other purposes we will discuss through-
out the text). Device controllers and hardware faults raise interrupts. To enable
the most urgent work to be done first, modern computers use a system of
interrupt priorities. Because interrupts are used so heavily for time-sensitive
processing, efficient interrupt handling is required for good system perfor-
mance.

1.2.2 Storage Structure

The CPU can load instructions only from memory, so any programs must
first be loaded into memory to run. General-purpose computers run most
of their programs from rewritable memory, called main memory (also called
random-access memory, or RAM). Main memory commonly is implemented in
a semiconductor technology called dynamic random-access memory (DRAM).

Computers use other forms of memory as well. For example, the first pro-
gram to run on computer power-on is a bootstrap program, which then loads
the operating system. Since RAM is volatile—Iloses its content when power
is turned off or otherwise lost—we cannot trust it to hold the bootstrap pro-
gram. Instead, for this and some other purposes, the computer uses electri-
cally erasable programmable read-only memory (EEPROM) and other forms of
firmwar —storage that is infrequently written to and is nonvolatile. EEPROM

12

Chapter1 Introduction

STORAGE DEFINITIONS AND NOTATION

The basic unit of computer storage is the bit. A bit can contain one of two
values, 0 and 1. All other storage in a computer is based on collections of bits.
Given enough bits, it is amazing how many things a computer can represent:
numbers, letters, images, movies, sounds, documents, and programs, to name
a few. A byte is 8 bits, and on most computers it is the smallest convenient
chunk of storage. For example, most computers don’t have an instruction to
move a bit but do have one to move a byte. A less common term is word,
which is a given computer architecture’s native unit of data. A word is made
up of one or more bytes. For example, a computer that has 64-bit registers and
64-bit memory addressing typically has 64-bit (8-byte) words. A computer
executes many operations in its native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally
measured and manipulated in bytes and collections of bytes. A kilobyte, or
KB, is 1,024 bytes; a megabyte, or MB, is 1,0242 bytes; a gigabyte, or GB, is
1,0243 bytes; a terabyte, or TB, is 1,024% bytes; and a petabyte, or PB, is 1,024°
bytes. Computer manufacturers often round off these numbers and say that
a megabyte is 1 million bytes and a gigabyte is 1 billion bytes. Networking
measurements are an exception to this general rule; they are given in bits
(because networks move data a bit at a time).

can be changed but cannot be changed frequently. In addition, it is low speed,
and so it contains mostly static programs and data that aren’t frequently used.
For example, the iPhone uses EEPROM to store serial numbers and hardware
information about the device.

All forms of memory provide an array of bytes. Each byte has its own
address. Interaction is achieved through a sequence of load or store instruc-
tions to specific memory addresses. The load instruction moves a byte or word
from main memory to an internal register within the CPU, whereas the store
instruction moves the content of a register to main memory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
for execution from the location stored in the program counter.

A typical instruction—execution cycle, as executed on a system with a von
Neumann architecture, first fetches an instruction from memory and stores
that instruction in the instruction register. The instruction is then decoded
and may cause operands to be fetched from memory and stored in some
internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses. It does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other
means) or what they are for (instructions or data). Accordingly, we can ignore
how a memory address is generated by a program. We are interested only in
the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory per-
manently. This arrangement usually is not possible on most systems for two
reasons:

1.2 Computer-System Organization 13

1. Main memory is usually too small to store all needed programs and data
permanently.

2. Main memory, as mentioned, is volatile—it loses its contents when power
is turned off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension of
main memory. The main requirement for secondary storage is that it be able to
hold large quantities of data permanently.

The most common secondary-storage devices are hard-disk drives (HDDs)
and nonvolatile memory (NVM) devices, which provide storage for both
programs and data. Most programs (system and application) are stored in
secondary storage until they are loaded into memory. Many programs then use
secondary storage as both the source and the destination of their processing.
Secondary storage is also much slower than main memory. Hence, the proper
management of secondary storage is of central importance to a computer sys-
tem, as we discuss in Chapter 11.

In a larger sense, however, the storage structure that we have described
—consisting of registers, main memory, and secondary storage—is only one
of many possible storage system designs. Other possible components include
cache memory, CD-ROM or blu-ray, magnetic tapes, and so on. Those that are
slow enough and large enough that they are used only for special purposes
—to store backup copies of material stored on other devices, for example—
are called tertiary storage. Each storage system provides the basic functions
of storing a datum and holding that datum until it is retrieved at a later time.
The main differences among the various storage systems lie in speed, size, and
volatility.

The wide variety of storage systems can be organized in a hierarchy (Figure
1.6) according to storage capacity and access time. As a general rule, there is a

storage capacity access time
A ﬁ A
_ registers
9] iy 1 b
= L h v g | primary @
€ ‘ cache storage £
«n H Il
volatile i v
storage ‘ main memory
---------------------- f---J-======================n------
nonvolatile I v
storage ‘ nonvolatile memory L secondary
2 I | storage
i v
hard-disk drives
£ 1
| Vv
optical disk N
] [
) I I tertiary 2
s - 8
= i Vv storage v
magnetic tapes
Y Y

Figure 1.6 Storage-device hierarchy.

14

Chapter1 Introduction

trade-off between size and speed, with smaller and faster memory closer to the
CPU. As shown in the figure, in addition to differing in speed and capacity, the
various storage systems are either volatile or nonvolatile. Volatile storage, as
mentioned earlier, loses its contents when the power to the device is removed,
so data must be written to nonvolatile storage for safekeeping.

The top four levels of memory in the figure are constructed using semi-
conductor memory, which consists of semiconductor-based electronic circuits.
NVM devices, at the fourth level, have several variants but in general are faster
than hard disks. The most common form of NVM device is flash memory, which
is popular in mobile devices such as smartphones and tablets. Increasingly,
flash memory is being used for long-term storage on laptops, desktops, and
servers as well.

Since storage plays an important role in operating-system structure, we
will refer to it frequently in the text. In general, we will use the following
terminology:

¢ Volatile storage will be referred to simply as memory. If we need to empha-
size a particular type of storage device (for example, a register),we will do
so explicitly.

* Nonvolatile storage retains its contents when power is lost. It will be
referred to as NVS. The vast majority of the time we spend on NVS will
be on secondary storage. This type of storage can be classified into two
distinct types:

© Mechanical. A few examples of such storage systems are HDDs, optical
disks, holographic storage, and magnetic tape. If we need to emphasize
a particular type of mechanical storage device (for example, magnetic
tape), we will do so explicitly.

o Electrical. A few examples of such storage systems are flash memory,
FRAM, NRAM, and SSD. Electrical storage will be referred to as NVM. If
we need to emphasize a particular type of electrical storage device (for
example, SSD), we will do so explicitly.

Mechanical storage is generally larger and less expensive per byte than
electrical storage. Conversely, electrical storage is typically costly, smaller,
and faster than mechanical storage.

The design of a complete storage system must balance all the factors just
discussed: it must use only as much expensive memory as necessary while
providing as much inexpensive, nonvolatile storage as possible. Caches can
be installed to improve performance where a large disparity in access time or
transfer rate exists between two components.

1.2.3 1/0 Structure

A large portion of operating system code is dedicated to managing 1/0, both
because of its importance to the reliability and performance of a system and
because of the varying nature of the devices.

Recall from the beginning of this section that a general-purpose computer
system consists of multiple devices, all of which exchange data via a common

1.3

1.3 Computer-System Architecture 15

t<— instruction execution —|
cycle .)
instructions

thread of execution and
data

ayoed

t«— data movement ——|

=

Blep — >

1dnuisyul

memory

Figure 1.7 How a modern computer system works.

bus. The form of interrupt-driven I/O described in Section 1.2.1 is fine for
moving small amounts of data but can produce high overhead when used for
bulk data movement such as NVS 1/0. To solve this problem, direct memory
access (DMA) is used. After setting up buffers, pointers, and counters for the
1/0 device, the device controller transfers an entire block of data directly to
or from the device and main memory, with no intervention by the CPU. Only
one interrupt is generated per block, to tell the device driver that the operation
has completed, rather than the one interrupt per byte generated for low-speed
devices. While the device controller is performing these operations, the CPU is
available to accomplish other work.

Some high-end systems use switch rather than bus architecture. On these
systems, multiple components can talk to other components concurrently,
rather than competing for cycles on a shared bus. In this case, DMA is even
more effective. Figure 1.7 shows the interplay of all components of a computer
system.

Computer-System Architecture

In Section 1.2, we introduced the general structure of a typical computer sys-
tem. A computer system can be organized in a number of different ways,
which we can categorize roughly according to the number of general-purpose
processors used.

1.3.1 Single-Processor Systems

Many years ago, most computer systems used a single processor containing
one CPU with a single processing core. The core is the component that exe-
cutes instructions and registers for storing data locally. The one main CPU with
its core is capable of executing a general-purpose instruction set, including
instructions from processes. These systems have other special-purpose proces-

16

Chapter1 Introduction

sors as well. They may come in the form of device-specific processors, such as
disk, keyboard, and graphics controllers.

All of these special-purpose processors run a limited instruction set and
do not run processes. Sometimes, they are managed by the operating system,
in that the operating system sends them information about their next task and
monitors their status. For example, a disk-controller microprocessor receives
a sequence of requests from the main CPU core and implements its own disk
queue and scheduling algorithm. This arrangement relieves the main CPU of
the overhead of disk scheduling. PCs contain a microprocessor in the keyboard
to convert the keystrokes into codes to be sent to the CPU. In other systems or
circumstances, special-purpose processors are low-level components built into
the hardware. The operating system cannot communicate with these proces-
sors; they do their jobs autonomously. The use of special-purpose microproces-
sors is common and does not turn a single-processor system into a multiproces-
sor. If there is only one general-purpose CPU with a single processing core, then
the system is a single-processor system. According to this definition, however,
very few contemporary computer systems are single-processor systems.

1.3.2 Multiprocessor Systems

On modern computers, from mobile devices to servers, multiprocessor sys-
tems now dominate the landscape of computing. Traditionally, such systems
have two (or more) processors, each with a single-core CPU. The proces-
sors share the computer bus and sometimes the clock, memory, and periph-
eral devices. The primary advantage of multiprocessor systems is increased
throughput. That is, by increasing the number of processors, we expect to get
more work done in less time. The speed-up ratio with N processors is not N,
however; it is less than N. When multiple processors cooperate on a task, a cer-
tain amount of overhead is incurred in keeping all the parts working correctly.
This overhead, plus contention for shared resources, lowers the expected gain
from additional processors.

The most common multiprocessor systems use symmetric multiprocess-
ing (SMP), in which each peer CPU processor performs all tasks, including
operating-system functions and user processes. Figure 1.8 illustrates a typical
SMP architecture with two processors, each with its own CPU. Notice that each
CPU processor has its own set of registers, as well as a private—or local —
cache. However, all processors share physical memory over the system bus.

The benefit of this model is that many processes can run simultaneously
—N processes can run if there are N CPUs—without causing performance
to deteriorate significantly. However, since the CPUs are separate, one may
be sitting idle while another is overloaded, resulting in inefficiencies. These
inefficiencies can be avoided if the processors share certain data structures. A
multiprocessor system of this form will allow processes and resources—such
as memory—to be shared dynamically among the various processors and can
lower the workload variance among the processors. Such a system must be
written carefully, as we shall see in Chapter 5 and Chapter 6.

The definition of multiprocessor has evolved over time and now includes
multicore systems, in which multiple computing cores reside on a single chip.
Multicore systems can be more efficient than multiple chips with single cores
because on-chip communication is faster than between-chip communication.

1.3 Computer-System Architecture 17

processor, processar;
CPUq CPU,
registers registers
cache cache
main memory

Figure 1.8 Symmetric multiprocessing architecture.

In addition, one chip with multiple cores uses significantly less power than
multiple single-core chips, an important issue for mobile devices as well as
laptops.

In Figure 1.9, we show a dual-core design with two cores on the same pro-
cessor chip. In this design, each core has its own register set, as well as its own
local cache, often known as a level 1, or L1, cache. Notice, too, that a level 2 (L2)
cache is local to the chip but is shared by the two processing cores. Most archi-
tectures adopt this approach, combining local and shared caches, where local,
lower-level caches are generally smaller and faster than higher-level shared

processary
CPU coreg ’ CPU core;
registers registers
L1 cache L1 cache
L2 cache
main memory

Figure 1.9 A dual-core design with two cores on the same chip.

18

Chapter1 Introduction

DEFINITIONS OF COMPUTER SYSTEM COMPONENTS

¢ CPU—The hardware that executes instructions.

® Processor—A physical chip that contains one or more CPUs.

® Core—The basic computation unit of the CPU.

¢ Multicore—Including multiple computing cores on the same CPU.

® Multiprocessor—Including multiple processors.

Although virtually all systems are now multicore, we use the general term
CPU when referring to a single computational unit of a computer system and
core as well as multicore when specifically referring to one or more cores on
a CPU.

caches. Aside from architectural considerations, such as cache, memory, and
bus contention, a multicore processor with N cores appears to the operating sys-
tem as N standard CPUs. This characteristic puts pressure on operating-system
designers—and application programmers—to make efficient use of these pro-
cessing cores, an issue we pursue in Chapter 4. Virtually all modern operating
systems—including Windows, macOS, and Linux, as well as Android and iOS
mobile systems—support multicore SMP systems.

Adding additional CPUs to a multiprocessor system will increase comput-
ing power; however, as suggested earlier, the concept does not scale very well,
and once we add too many CPUs, contention for the system bus becomes a
bottleneck and performance begins to degrade. An alternative approach is
instead to provide each CPU (or group of CPUs) with its own local memory
that is accessed via a small, fast local bus. The CPUs are connected by a shared
system interconnect, so that all CPUs share one physical address space. This
approach—known as non-uniform memory access, or NUMA—is illustrated
in Figure 1.10. The advantage is that, when a CPU accesses its local memory,
not only is it fast, but there is also no contention over the system interconnect.
Thus, NUMA systems can scale more effectively as more processors are added.

A potential drawback with a NUMA system is increased latency when a CPU
must access remote memory across the system interconnect, creating a possible
performance penalty. In other words, for example, CPU, cannot access the local
memory of CPU; as quickly as it can access its own local memory, slowing down
performance. Operating systems can minimize this NUMA penalty through
careful CPU scheduling and memory management, as discussed in Section 5.5.2
and Section 10.5.4. Because NUMA systems can scale to accommodate a large
number of processors, they are becoming increasingly popular on servers as
well as high-performance computing systems.

Finally, blade servers are systems in which multiple processor boards, I/0
boards, and networking boards are placed in the same chassis. The differ-
ence between these and traditional multiprocessor systems is that each blade-
processor board boots independently and runs its own operating system. Some
blade-server boards are multiprocessor as well, which blurs the lines between

1.3 Computer-System Architecture 19

memory,, memory,
| |
CPU, | Interconnect CPU,
(o TV SO CPU,
[[
memory, memory

Figure 1.10 NUMA multiprocessing architecture.

types of computers. In essence, these servers consist of multiple independent
multiprocessor systems.

1.3.3 Clustered Systems

Another type of multiprocessor system is a clustered system, which gath-
ers together multiple CPUs. Clustered systems differ from the multiprocessor
systems described in Section 1.3.2 in that they are composed of two or more
individual systems—or nodes—joined together; each node is typically a mul-
ticore system. Such systems are considered loosely coupled. We should note
that the definition of clustered is not concrete; many commercial and open-
source packages wrestle to define what a clustered system is and why one
form is better than another. The generally accepted definition is that clustered
computers share storage and are closely linked via a local-area network LAN
(as described in Chapter 19) or a faster interconnect, such as InfiniBand.

Clustering is usually used to provide high-availability service—that is,
service that will continue even if one or more systems in the cluster fail.
Generally, we obtain high availability by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of the others (over the network). If the monitored machine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.

High availability provides increased reliability, which is crucial in many
applications. The ability to continue providing service proportional to the level
of surviving hardware is called graceful degradation. Some systems go beyond
graceful degradation and are called fault tolerant, because they can suffer a
failure of any single component and still continue operation. Fault tolerance
requires a mechanism to allow the failure to be detected, diagnosed, and, if
possible, corrected.

Clustering can be structured asymmetrically or symmetrically. In asym-
metric clustering, one machine is in hot-standby mode while the other is run-
ning the applications. The hot-standby host machine does nothing but monitor
the active server. If that server fails, the hot-standby host becomes the active

20 Chapter 1 Introduction

PC MOTHERBOARD

Consider the desktop PC motherboard with a processor socket shown below:

== .. |processor socket
L :f_

v | /

. PCl bus slots |

Ny

Various I/O and power
_connectors

This board is a fully functioning computer, once its slots are populated.
It consists of a processor socket containing a CPU, DRAM sockets, PCle bus
slots, and I/O connectors of various types. Even the lowest-cost general-
purpose CPU contains multiple cores. Some motherboards contain multiple
processor sockets. More advanced computers allow more than one system
board, creating NUMA systems.

server. In symmetric clustering, two or more hosts are running applications
and are monitoring each other. This structure is obviously more efficient, as it
uses all of the available hardware. However, it does require that more than one
application be available to run.

Since a cluster consists of several computer systems connected via a net-
work, clusters can also be used to provide high-performance computing envi-
ronments. Such systems can supply significantly greater computational power
than single-processor or even SMP systems because they can run an application
concurrently on all computers in the cluster. The application must have been
written specifically to take advantage of the cluster, however. This involves a
technique known as parallelization, which divides a program into separate
components that run in parallel on individual cores in a computer or comput-
ers in a cluster. Typically, these applications are designed so that once each
computing node in the cluster has solved its portion of the problem, the results
from all the nodes are combined into a final solution.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Chapter 19). Parallel clusters allow
multiple hosts to access the same data on shared storage. Because most oper-

1.4

1.4 Operating-System Operations 21

interconnect interconnect
computer computer computer

storage-area
network
v

Figure 1.11 General structure of a clustered system.

ating systems lack support for simultaneous data access by multiple hosts,
parallel clusters usually require the use of special versions of software and
special releases of applications. For example, Oracle Real Application Cluster
is a version of Oracle’s database that has been designed to run on a parallel
cluster. Each machine runs Oracle, and a layer of software tracks access to the
shared disk. Each machine has full access to all data in the database. To provide
this shared access, the system must also supply access control and locking to
ensure that no conflicting operations occur. This function, commonly known
as a distributed lock manager (DLM), is included in some cluster technology.

Cluster technology is changing rapidly. Some cluster products support
thousands of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these improvements are made possible by storage-area
networks (SANs), as described in Section 11.7.4, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. In a database cluster, dozens of hosts can share the same database, greatly
increasing performance and reliability. Figure 1.11 depicts the general structure
of a clustered system.

Operating-System Operations

Now that we have discussed basic information about computer-system organi-
zation and architecture, we are ready to talk about operating systems. An oper-
ating system provides the environment within which programs are executed.
Internally, operating systems vary greatly, since they are organized along many
different lines. There are, however, many commonalities, which we consider in
this section.

For a computer to start running—for instance, when it is powered up
or rebooted —it needs to have an initial program to run. As noted earlier,
this initial program, or bootstrap program, tends to be simple. Typically, it is
stored within the computer hardware in firmware. It initializes all aspects of
the system, from CPU registers to device controllers to memory contents. The
bootstrap program must know how to load the operating system and how to

22

Chapter1 Introduction

HADOOP

Hadoop is an open-source software framework that is used for distributed
processing of large data sets (known as big data) in a clustered system con-
taining simple, low-cost hardware components. Hadoop is designed to scale
from a single system to a cluster containing thousands of computing nodes.
Tasks are assigned to a node in the cluster, and Hadoop arranges communica-
tion between nodes to manage parallel computations to process and coalesce
results. Hadoop also detects and manages failures in nodes, providing an
efficient and highly reliable distributed computing service.
Hadoop is organized around the following three components:

1. Adistributed file system that manages data and files across distributed com-
puting nodes.

2. The YARN (“Yet Another Resource Negotiator”) framework, which manages
resources within the cluster as well as scheduling tasks on nodes in the
cluster.

3. The MapReduce system, which allows parallel processing of data across
nodes in the cluster.

Hadoop is designed to run on Linux systems, and Hadoop applications
can be written using several programming languages, including scripting
languages such as PHP, Perl, and Python. Java is a popular choice for
developing Hadoop applications, as Hadoop has several Java libraries that
support MapReduce. More information on MapReduce and Hadoop can
be found at https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
and https://hadoop.apache.org

start executing that system. To accomplish this goal, the bootstrap program
must locate the operating-system kernel and load it into memory.

Once the kernel is loaded and executing, it can start providing services to
the system and its users. Some services are provided outside of the kernel by
system programs that are loaded into memory at boot time to become system
daemons, which run the entire time the kernel is running. On Linux, the first
system program is “systemd,” and it starts many other daemons. Once this
phase is complete, the system is fully booted, and the system waits for some
event to occur.

If there are no processes to execute, no I/O devices to service, and no users
to whom to respond, an operating system will sit quietly, waiting for something
to happen. Events are almost always signaled by the occurrence of an interrupt.
In Section 1.2.1 we described hardware interrupts. Another form of interrupt is
a trap (or an exception), which is a software-generated interrupt caused either
by an error (for example, division by zero or invalid memory access) or by
a specific request from a user program that an operating-system service be
performed by executing a special operation called a system call.

1.4 Operating-System Operations 23

1.4.1 Multiprogramming and Multitasking

One of the most important aspects of operating systems is the ability to run
multiple programs, as a single program cannot, in general, keep either the CPU
or the I/0 devices busy at all times. Furthermore, users typically want to run
more than one program at a time as well. Multiprogramming increases CPU
utilization, as well as keeping users satisfied, by organizing programs so that
the CPU always has one to execute. In a multiprogrammed system, a program
in execution is termed a process.

The idea is as follows: The operating system keeps several processes in
memory simultaneously (Figure 1.12). The operating system picks and begins
to execute one of these processes. Eventually, the process may have to wait for
some task, such as an 1/O operation, to complete. In a non-multiprogrammed
system, the CPU would sit idle. In a multiprogrammed system, the operating
system simply switches to, and executes, another process. When that process
needs to wait, the CPU switches to another process, and so on. Eventually, the
tirst process finishes waiting and gets the CPU back. As long as at least one
process needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If she has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy:.)

Multitasking is a logical extension of multiprogramming. In multitasking
systems, the CPU executes multiple processes by switching among them, but
the switches occur frequently, providing the user with a fast response time.
Consider that when a process executes, it typically executes for only a short
time before it either finishes or needs to perform 1/0. I/0 may be interactive;
that is, output goes to a display for the user, and input comes from a user
keyboard, mouse, or touch screen. Since interactive I/0 typically runs at “peo-
ple speeds,” it may take a long time to complete. Input, for example, may be

max
operating system
process 1
process 2
process 3
process 4
0

Figure 1.12 Memory layout for a multiprogramming system.

24

Chapter1 Introduction

bounded by the user’s typing speed; seven characters per second is fast for
people but incredibly slow for computers. Rather than let the CPU sit idle as
this interactive input takes place, the operating system will rapidly switch the
CPU to another process.

Having several processes in memory at the same time requires some form
of memory management, which we cover in Chapter 9 and Chapter 10. In
addition, if several processes are ready to run at the same time, the system must
choose which process will run next. Making this decision is CPU scheduling,
which is discussed in Chapter 5. Finally, running multiple processes concur-
rently requires that their ability to affect one another be limited in all phases of
the operating system, including process scheduling, disk storage, and memory
management. We discuss these considerations throughout the text.

In a multitasking system, the operating system must ensure reasonable
response time. A common method for doing so is virtual memory, a tech-
nique that allows the execution of a process that is not completely in memory
(Chapter 10). The main advantage of this scheme is that it enables users to
run programs that are larger than actual physical memory. Further, it abstracts
main memory into a large, uniform array of storage, separating logical mem-
ory as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Multiprogramming and multitasking systems must also provide a file sys-
tem (Chapter 13, Chapter 14, and Chapter 15). The file system resides on a
secondary storage; hence, storage management must be provided (Chapter 11).
In addition, a system must protect resources from inappropriate use (Chapter
17). To ensure orderly execution, the system must also provide mechanisms for
process synchronization and communication (Chapter 6 and Chapter 7), and it
may ensure that processes do not get stuck in a deadlock, forever waiting for
one another (Chapter 8).

1.4.2 Dual-Mode and Multimode Operation

Since the operating system and its users share the hardware and software
resources of the computer system, a properly designed operating system must
ensure that an incorrect (or malicious) program cannot cause other programs
—or the operating system itself—to execute incorrectly. In order to ensure
the proper execution of the system, we must be able to distinguish between
the execution of operating-system code and user-defined code. The approach
taken by most computer systems is to provide hardware support that allows
differentiation among various modes of execution.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer
to indicate the current mode: kernel (0) or user (1). With the mode bit, we can
distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is
executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a
system call), the system must transition from user to kernel mode to fulfill

1.4 Operating-System Operations 25

user process
user mode
user process executing H calls system call l I return from system call (mode bit = 1)
\ /
\ VA
\ L
K | trap return
SIie mode bit = 0 mode bit = 1
3 kernel mode
execute system call (mode bit = 0)

Figure 1.13 Transition from user to kernel mode.

the request. This is shown in Figure 1.13. As we shall see, this architectural
enhancement is useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this protection by designating some of the machine instructions
that may cause harm as privileged instructions. The hardware allows privi-
leged instructions to be executed only in kernel mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to kernel mode is an example of a privileged
instruction. Some other examples include I/0 control, timer management, and
interrupt management. Many additional privileged instructions are discussed
throughout the text.

The concept of modes can be extended beyond two modes. For example,
Intel processors have four separate protection rings, where ring 0 is kernel
mode and ring 3 is user mode. (Although rings 1 and 2 could be used for vari-
ous operating-system services, in practice they are rarely used.) ARMv8 systems
have seven modes. CPUs that support virtualization (Section 18.1) frequently
have a separate mode to indicate when the virtual machine manager (VMM) is
in control of the system. In this mode, the VMM has more privileges than user
processes but fewer than the kernel. It needs that level of privilege so it can
create and manage virtual machines, changing the CPU state to do so.

We can now better understand the life cycle of instruction execution in a
computer system. Initial control resides in the operating system, where instruc-
tions are executed in kernel mode. When control is given to a user applica-
tion, the mode is set to user mode. Eventually, control is switched back to
the operating system via an interrupt, a trap, or a system call. Most contem-
porary operating systems—such as Microsoft Windows, Unix, and Linux—

26

Chapter1 Introduction

take advantage of this dual-mode feature and provide greater protection for
the operating system.

System calls provide the means for a user program to ask the operating
system to perform tasks reserved for the operating system on the user pro-
gram’s behalf. A system call is invoked in a variety of ways, depending on
the functionality provided by the underlying processor. In all forms, it is the
method used by a process to request action by the operating system. A system
call usually takes the form of a trap to a specific location in the interrupt vector.
This trap can be executed by a generic trap instruction, although some systems
have a specific syscall instruction to invoke a system call.

When a system call is executed, it is typically treated by the hardware as
a software interrupt. Control passes through the interrupt vector to a service
routine in the operating system, and the mode bit is set to kernel mode. The
system-call service routine is a part of the operating system. The kernel exam-
ines the interrupting instruction to determine what system call has occurred;
a parameter indicates what type of service the user program is requesting.
Additional information needed for the request may be passed in registers, on
the stack, or in memory (with pointers to the memory locations passed in reg-
isters). The kernel verifies that the parameters are correct and legal, executes
the request, and returns control to the instruction following the system call. We
describe system calls more fully in Section 2.3.

Once hardware protection is in place, it detects errors that violate modes.
These errors are normally handled by the operating system. If a user program
fails in some way—such as by making an attempt either to execute an illegal
instruction or to access memory that is not in the user’s address space—then
the hardware traps to the operating system. The trap transfers control through
the interrupt vector to the operating system, just as an interrupt does. When
a program error occurs, the operating system must terminate the program
abnormally. This situation is handled by the same code as a user-requested
abnormal termination. An appropriate error message is given, and the memory
of the program may be dumped. The memory dump is usually written to a file
so that the user or programmer can examine it and perhaps correct it and restart
the program.

1.4.3 Timer

We must ensure that the operating system maintains control over the CPU.
We cannot allow a user program to get stuck in an infinite loop or to fail
to call system services and never return control to the operating system. To
accomplish this goal, we can use a timer. A timer can be set to interrupt
the computer after a specified period. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second). A
variable timer is generally implemented by a fixed-rate clock and a counter.
The operating system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures that
the timer is set to interrupt. If the timer interrupts, control transfers automati-
cally to the operating system, which may treat the interrupt as a fatal error or

1.5

1.5 Resource Management 27

LINUX TIMERS

On Linux systems, the kernel configuration parameter HZ specifies the fre-
quency of timer interrupts. An HZ value of 250 means that the timer generates
250 interrupts per second, or one interrupt every 4 milliseconds. The value
of HZ depends upon how the kernel is configured, as well the machine type
and architecture on which it is running. A related kernel variableis jiffies,
which represent the number of timer interrupts that have occurred since the
system was booted. A programming project in Chapter 2 further explores
timing in the Linux kernel.

may give the program more time. Clearly, instructions that modify the content
of the timer are privileged.

Resource Management

Aswehave seen, an operating system is a resource manager. The system’s CPU,
memory space, file-storage space, and I/0O devices are among the resources that
the operating system must manage.

1.5.1 Process Management

A program can do nothing unless its instructions are executed by a CPU. A
program in execution, as mentioned, is a process. A program such as a compiler
is a process, and a word-processing program being run by an individual user
on a PC is a process. Similarly, a social media app on a mobile device is a
process. For now, you can consider a process to be an instance of a program in
execution, but later you will see that the concept is more general. As described
in Chapter 3, it is possible to provide system calls that allow processes to create
subprocesses to execute concurrently.

A process needs certain resources—including CPU time, memory, files, and
1/0 devices—to accomplish its task. These resources are typically allocated to
the process while it is running. In addition to the various physical and logical
resources that a process obtains when it is created, various initialization data
(input) may be passed along. For example, consider a process running a web
browser whose function is to display the contents of a web page on a screen.
The process will be given the URL as an input and will execute the appropriate
instructions and system calls to obtain and display the desired information on
the screen. When the process terminates, the operating system will reclaim any
reusable resources.

We emphasize that a program by itself is not a process. A program is a
passive entity, like the contents of a file stored on disk, whereas a process is an
active entity. A single-threaded process has one program counter specifying
the next instruction to execute. (Threads are covered in Chapter 4.) The exe-
cution of such a process must be sequential. The CPU executes one instruction
of the process after another, until the process completes. Further, at any time,
one instruction at most is executed on behalf of the process. Thus, although

28

Chapter1 Introduction

two processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has
multiple program counters, each pointing to the next instruction to execute
for a given thread.

A process is the unit of work in a system. A system consists of a collec-
tion of processes, some of which are operating-system processes (those that
execute system code) and the rest of which are user processes (those that exe-
cute user code). All these processes can potentially execute concurrently —by
multiplexing on a single CPU core—or in parallel across multiple CPU cores.

The operating system is responsible for the following activities in connec-
tion with process management:

¢ Creating and deleting both user and system processes

Scheduling processes and threads on the CPUs

Suspending and resuming processes

Providing mechanisms for process synchronization

Providing mechanisms for process communication
We discuss process-management techniques in Chapter 3 through Chapter 7.

1.5.2 Memory Management

As discussed in Section 1.2.2, the main memory is central to the operation of a
modern computer system. Main memory is a large array of bytes, ranging in
size from hundreds of thousands to billions. Each byte has its own address.
Main memory is a repository of quickly accessible data shared by the CPU
and 1/0 devices. The CPU reads instructions from main memory during the
instruction-fetch cycle and both reads and writes data from main memory
during the data-fetch cycle (on a von Neumann architecture). As noted earlier,
the main memory is generally the only large storage device that the CPU is able
to address and access directly. For example, for the CPU to process data from
disk, those data must first be transferred to main memory by CPU-generated
1/0 calls. In the same way, instructions must be in memory for the CPU to
execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer’s
response to its users, general-purpose computers must keep several programs
in memory, creating a need for memory management. Many different memory-
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithm depends on the situation. In selecting a
memory-management scheme for a specific system, we must take into account
many factors—especially the hardware design of the system. Each algorithm
requires its own hardware support.

1.5 Resource Management 29

The operating system is responsible for the following activities in connec-
tion with memory management:

e Keeping track of which parts of memory are currently being used and
which process is using them

e Allocating and deallocating memory space as needed

¢ Deciding which processes (or parts of processes) and data to move into
and out of memory

Memory-management techniques are discussed in Chapter 9 and Chapter 10.

1.5.3 File-System Management

To make the computer system convenient for users, the operating system
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the fil . The operating system maps files onto physical media and
accesses these files via the storage devices.

File management is one of the most visible components of an operating
system. Computers can store information on several different types of physi-
cal media. Secondary storage is the most common, but tertiary storage is also
possible. Each of these media has its own characteristics and physical orga-
nization. Most are controlled by a device, such as a disk drive, that also has
its own unique characteristics. These properties include access speed, capacity,
data-transfer rate, and access method (sequential or random).

A file is a collection of related information defined by its creator. Com-
monly, files represent programs (both source and object forms) and data. Data
files may be numeric, alphabetic, alphanumeric, or binary. Files may be free-
form (for example, text files), or they may be formatted rigidly (for example,
fixed fields such as an mp3 music file). Clearly, the concept of a file is an
extremely general one.

The operating system implements the abstract concept of a file by manag-
ing mass storage media and the devices that control them. In addition, files are
normally organized into directories to make them easier to use. Finally, when
multiple users have access to files, it may be desirable to control which user
may access a file and how that user may access it (for example, read, write,
append).

The operating system is responsible for the following activities in connec-
tion with file management:

¢ Creating and deleting files

¢ Creating and deleting directories to organize files

® Supporting primitives for manipulating files and directories
® Mapping files onto mass storage

¢ Backing up files on stable (nonvolatile) storage media

30

Chapter1 Introduction

File-management techniques are discussed in Chapter 13, Chapter 14, and
Chapter 15.

1.5.4 Mass-Storage Management

Aswehave already seen, the computer system must provide secondary storage
to back up main memory. Most modern computer systems use HDDs and NVM
devices as the principal on-line storage media for both programs and data.
Most programs—including compilers, web browsers, word processors, and
games—are stored on these devices until loaded into memory. The programs
then use the devices as both the source and the destination of their processing.
Hence, the proper management of secondary storage is of central importance
to a computer system. The operating system is responsible for the following
activities in connection with secondary storage management:

¢ Mounting and unmounting
¢ Free-space management

e Storage allocation

¢ Disk scheduling

e Partitioning

e Protection

Because secondary storage is used frequently and extensively, it must be used
efficiently. The entire speed of operation of a computer may hinge on the speeds
of the secondary storage subsystem and the algorithms that manipulate that
subsystem.

At the same time, there are many uses for storage that is slower and lower
in cost (and sometimes higher in capacity) than secondary storage. Backups
of disk data, storage of seldom-used data, and long-term archival storage are
some examples. Magnetic tape drives and their tapes and CD DVD and Blu-ray
drives and platters are typical tertiary storage devices.

Tertiary storage is not crucial to system performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application programs. Some of the functions
that operating systems can provide include mounting and unmounting media
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary storage and tertiary storage management are
discussed in Chapter 11.

1.5.5 Cache Management

Caching is an important principle of computer systems. Here’s how it works.
Information is normally kept in some storage system (such as main memory).
As it is used, it is copied into a faster storage system—the cache—on a tem-
porary basis. When we need a particular piece of information, we first check
whether it is in the cache. If it is, we use the information directly from the cache.

1.5 Resource Management 31

Level 1 2 3 4 5
Name registers cache main memory solid-state disk | magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000-50,000 5,000,000
Bandwidth (MB/sec) |20,000-100,000 |5,000-10,000 | 1,000-5,000 500 20-150
Managed by compiler hardware operating system | operating system |operating system
Backed by cache main memory | disk disk disk or tape

Figure 1.14 Characteristics of various types of storage.

If it is not, we use the information from the source, putting a copy in the cache
under the assumption that we will need it again soon.

In addition, internal programmable registers provide a high-speed cache
for main memory. The programmer (or compiler) implements the register-
allocation and register-replacement algorithms to decide which information to
keep in registers and which to keep in main memory.

Other caches are implemented totally in hardware. For instance, most
systems have an instruction cache to hold the instructions expected to be
executed next. Without this cache, the CPU would have to wait several cycles
while an instruction was fetched from main memory. For similar reasons, most
systems have one or more high-speed data caches in the memory hierarchy. We
are not concerned with these hardware-only caches in this text, since they are
outside the control of the operating system.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement policy
canresultin greatly increased performance, as you can see by examining Figure
1.14. Replacement algorithms for software-controlled caches are discussed in
Chapter 10.

The movement of information between levels of a storage hierarchy may be
either explicit or implicit, depending on the hardware design and the control-
ling operating-system software. For instance, data transfer from cache to CPU
and registers is usually a hardware function, with no operating-system inter-
vention. In contrast, transfer of data from disk to memory is usually controlled
by the operating system.

In a hierarchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that is
to be incremented by 1 is located in file B, and file B resides on hard disk.
The increment operation proceeds by first issuing an I/O operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the hard disk, in main memory, in the cache, and in an
internal register (see Figure 1.15). Once the increment takes place in the internal
register, the value of A differs in the various storage systems. The value of A

32

Chapter1 Introduction

magnetic main hardware
disk j’ memory j’ cache j’ register

Figure 1.15 Migration of integer A from disk to register.

becomes the same only after the new value of A is written from the internal
register back to the hard disk.

In a computing environment where only one process executes at a time,
this arrangement poses no difficulties, since an access to integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and forth among various pro-
cesses, extreme care must be taken to ensure that, if several processes wish to
access A, then each of these processes will obtain the most recently updated
value of A.

The situation becomes more complicated in a multiprocessor environment
where, in addition to maintaining internal registers, each of the CPUs also
contains a local cache (refer back to Figure 1.8). In such an environment, a copy
of A may exist simultaneously in several caches. Since the various CPUs can
all execute in parallel, we must make sure that an update to the value of A
in one cache is immediately reflected in all other caches where A resides. This
situation is called cache coherency, and it is usually a hardware issue (handled
below the operating-system level).

In a distributed environment, the situation becomes even more complex.
In this environment, several copies (or replicas) of the same file can be kept on
different computers. Since the various replicas may be accessed and updated
concurrently, some distributed systems ensure that, when a replica is updated
in one place, all other replicas are brought up to date as soon as possible. There
are various ways to achieve this guarantee, as we discuss in Chapter 19.

1.5.6 1/0 System Management

One of the purposes of an operating system is to hide the peculiarities of
specific hardware devices from the user. For example, in UNIX, the peculiarities
of I/0 devices are hidden from the bulk of the operating system itself by the
1/0 subsystem. The I/O subsystem consists of several components:

¢ A memory-management component that includes buffering, caching, and
spooling

e A general device-driver interface

¢ Dirivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
it is assigned.

We discussed earlier in this chapter how interrupt handlers and device
drivers are used in the construction of efficient I/O subsystems. In Chapter 12,
we discuss how the I/0 subsystem interfaces to the other system components,
manages devices, transfers data, and detects I/O completion.

1.6

1.6 Security and Protection 33
Security and Protection

If a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza-
tion from the operating system. For example, memory-addressing hardware
ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CPU without eventually
relinquishing control. Device-control registers are not accessible to users, so the
integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes
or users to the resources defined by a computer system. This mechanism must
provide means to specify the controls to be imposed and to enforce the controls.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that is
malfunctioning. Furthermore, an unprotected resource cannot defend against
use (or misuse) by an unauthorized or incompetent user. A protection-oriented
system provides a means to distinguish between authorized and unauthorized
usage, as we discuss in Chapter 17.

A system can have adequate protection but still be prone to failure and
allow inappropriate access. Consider a user whose authentication information
(her means of identifying herself to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working. It is
the job of security to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of-
service attacks (which use all of a system’s resources and so keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is considered an operating-
system function on some systems, while other systems leave it to policy or
additional software. Due to the alarming rise in security incidents, operating-
system security features are a fast-growing area of research and implementa-
tion. We discuss security in Chapter 16.

Protection and security require the system to be able to distinguish among
all its users. Most operating systems maintain a list of user names and asso-
ciated user identifier (user IDs). In Windows parlance, this is a security ID
(SID). These numerical IDs are unique, one per user. When a user logs in to
the system, the authentication stage determines the appropriate user ID for the
user. That user ID is associated with all of the user’s processes and threads.
When an ID needs to be readable by a user, it is translated back to the user
name via the user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of a file on a UNIX system may be
allowed to issue all operations on that file, whereas a selected set of users may
be allowed only to read the file. To accomplish this, we need to define a group
name and the set of users belonging to that group. Group functionality can
be implemented as a system-wide list of group names and group identifier .
A user can be in one or more groups, depending on operating-system design

34

1.7

Chapter1 Introduction

decisions. The user’s group IDs are also included in every associated process
and thread.

In the course of normal system use, the user ID and group ID for a user
are sufficient. However, a user sometimes needs to escalate privileges to gain
extra permissions for an activity. The user may need access to a device that is
restricted, for example. Operating systems provide various methods to allow
privilege escalation. On UNIX, for instance, the setuid attribute on a program
causes that program to run with the user ID of the owner of the file, rather than
the current user’s ID. The process runs with this effective UID until it turns off
the extra privileges or terminates.

Virtualization

Virtualization is a technology that allows us to abstract the hardware of a sin-
gle computer (the CPU, memory, disk drives, network interface cards, and so
forth) into several different execution environments, thereby creating the illu-
sion that each separate environment is running on its own private computer.
These environments can be viewed as different individual operating systems
(for example, Windows and UNIX) that may be running at the same time and
may interact with each other. A user of a virtual machine can switch among
the various operating systems in the same way a user can switch among the
various processes running concurrently in a single operating system.

Virtualization allows operating systems to run as applications within other
operating systems. At first blush, there seems to be little reason for such func-
tionality. But the virtualization industry is vast and growing, which is a testa-
ment to its utility and importance.

Broadly speaking, virtualization software is one member of a class that also
includes emulation. Emulation, which involves simulating computer hard-
ware in software, is typically used when the source CPU type is different from
the target CPU type. For example, when Apple switched from the IBM Power
CPU to the Intel x86 CPU for its desktop and laptop computers, it included an
emulation facility called “Rosetta,” which allowed applications compiled for
the IBM CPU to run on the Intel CPU. That same concept can be extended to allow
an entire operating system written for one platform to run on another. Emula-
tion comes at a heavy price, however. Every machine-level instruction that runs
natively on the source system must be translated to the equivalent function
on the target system, frequently resulting in several target instructions. If the
source and target CPUs have similar performance levels, the emulated code
may run much more slowly than the native code.

With virtualization, in contrast, an operating system that is natively com-
piled for a particular CPU architecture runs within another operating system
also native to that CPU. Virtualization first came about on IBM mainframes as
a method for multiple users to run tasks concurrently. Running multiple vir-
tual machines allowed (and still allows) many users to run tasks on a system
designed for a single user. Later, in response to problems with running multiple
Microsoft Windows applications on the Intel x86 CPU, VMware created a new
virtualization technology in the form of an application that ran on Windows.
That application ran one or more guest copies of Windows or other native
x86 operating systems, each running its own applications. (See Figure 1.16.)

1.8

1.8 Distributed Systems 35

processes
processes
processes processes
u - pr;?;erlgcr;mg kernel kernel kernel
kernel VM1 VM2 VM3
virtual machine
manager
hardware hardware
(a) (b)

Figure 1.16 A computer running (a) a single operating system and (b) three virtual
machines.

Windows was the host operating system, and the VMware application was the
virtual machine manager (VMM). The VMM runs the guest operating systems,
manages their resource use, and protects each guest from the others.

Even though modern operating systems are fully capable of running multi-
ple applications reliably, the use of virtualization continues to grow. On laptops
and desktops, a VMM allows the user to install multiple operating systems for
exploration or to run applications written for operating systems other than the
native host. For example, an Apple laptop running macOS on the x86 CPU can
run a Windows 10 guest to allow execution of Windows applications. Com-
panies writing software for multiple operating systems can use virtualization
to run all of those operating systems on a single physical server for develop-
ment, testing, and debugging. Within data centers, virtualization has become a
common method of executing and managing computing environments. VMMs
like VMware ESXand Citrix XenServer no longer run on host operating systems
but rather are the host operating systems, providing services and resource
management to virtual machine processes.

With this text, we provide a Linux virtual machine that allows you to
run Linux—as well as the development tools we provide—on your personal
system regardless of your host operating system. Full details of the features
and implementation of virtualization can be found in Chapter 18.

Distributed Systems

A distributed system is a collection of physically separate, possibly heteroge-
neous computer systems that are networked to provide users with access to
the various resources that the system maintains. Access to a shared resource
increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface’s device driver.

36

1.9

Chapter1 Introduction

Others make users specifically invoke network functions. Generally, systems
contain a mix of the two modes—for example FTP and NFS. The protocols
that create a distributed system can greatly affect that system’s utility and
popularity.

A network, in the simplest terms, is a communication path between two or
more systems. Distributed systems depend on networking for their functional-
ity. Networks vary by the protocols used, the distances between nodes, and the
transport media. TCP/IP is the most common network protocol, and it provides
the fundamental architecture of the Internet. Most operating systems support
TCP/1P, including all general-purpose ones. Some systems support proprietary
protocols to suit their needs. For an operating system, it is necessary only that
a network protocol have an interface device—a network adapter, for example
—with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.

Networks are characterized based on the distances between their nodes.
A local-area network (LAN) connects computers within a room, a building,
or a campus. A wide-area network (WAN) usually links buildings, cities, or
countries. A global company may have a WAN to connect its offices worldwide,
for example. These networks may run one protocol or several protocols. The
continuing advent of new technologies brings about new forms of networks.
For example, a metropolitan-area network (MAN) could link buildings within
a city. BlueTooth and 802.11 devices use wireless technology to communicate
over a distance of several feet, in essence creating a personal-area network
(PAN) between a phone and a headset or a smartphone and a desktop computer.

The media to carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance
and reliability.

Some operating systems have taken the concept of networks and dis-
tributed systems further than the notion of providing network connectivity.
A network operating system is an operating system that provides features
such as file sharing across the network, along with a communication scheme
that allows different processes on different computers to exchange messages.
A computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system provides a less autonomous environment. The different computers
communicate closely enough to provide the illusion that only a single operat-
ing system controls the network. We cover computer networks and distributed
systems in Chapter 19.

Kernel Data Structures

We turn next to a topic central to operating-system implementation: the way
data are structured in the system. In this section, we briefly describe several
fundamental data structures used extensively in operating systems. Readers

1.9 Kernel Data Structures 37

data data data null

A R N A O I
Lt Lt L& L1

Figure 1.17 Singly linked list.

who require further details on these structures, as well as others, should consult
the bibliography at the end of the chapter.

1.9.1 Lists, Stacks, and Queues

An array is a simple data structure in which each element can be accessed
directly. For example, main memory is constructed as an array. If the data item
being stored is larger than one byte, then multiple bytes can be allocated to the
item, and the item is addressed as “item number X item size.” But what about
storing an item whose size may vary? And what about removing an item if the
relative positions of the remaining items must be preserved? In such situations,
arrays give way to other data structures.

After arrays, lists are perhaps the most fundamental data structures in com-
puter science. Whereas each item in an array can be accessed directly, the items
in a list must be accessed in a particular order. That is, a list represents a collec-
tion of data values as a sequence. The most common method for implementing
this structure is a linked list, in which items are linked to one another. Linked
lists are of several types:

¢ In a singly linked list, each item points to its successor, as illustrated in
Figure 1.17.

® Inadoubly linked list, a given item can refer either to its predecessor or to
its successor, as illustrated in Figure 1.18.

e In a circularly linked list, the last element in the list refers to the first
element, rather than to null, as illustrated in Figure 1.19.

Linked lists accommodate items of varying sizes and allow easy insertion
and deletion of items. One potential disadvantage of using a list is that per-
formance for retrieving a specified item in a list of size 7 is linear—O(n), as it
requires potentially traversing all elements in the worst case. Lists are some-
times used directly by kernel algorithms. Frequently, though, they are used for
constructing more powerful data structures, such as stacks and queues.

A stack is a sequentially ordered data structure that uses the last in, first
out (LIFO) principle for adding and removing items, meaning that the last item

v | ! | v |
data null data data data null

| | II | | II | | Il I

Figure 1.18 Doubly linked list.

38

Chapter1 Introduction

' |

data data data data

A T N A I L
Lt L1t Lt L

Figure 1.19 Circularly linked list.

placed onto a stack is the first item removed. The operations for inserting and
removing items from a stack are known as push and pop, respectively. An
operating system often uses a stack when invoking function calls. Parameters,
local variables, and the return address are pushed onto the stack when a
function is called; returning from the function call pops those items off the
stack.

A queue, in contrast, is a sequentially ordered data structure that uses the
first in, first out (FIFO) principle: items are removed from a queue in the order
in which they were inserted. There are many everyday examples of queues,
including shoppers waiting in a checkout line at a store and cars waiting in line
at a traffic signal. Queues are also quite common in operating systems—jobs
that are sent to a printer are typically printed in the order in which they were
submitted, for example. As we shall see in Chapter 5, tasks that are waiting to
be run on an available CPU are often organized in queues.

1.9.2 Trees

Atree is a data structure that can be used to represent data hierarchically. Data
values in a tree structure are linked through parent—child relationships. In a
general tree, a parent may have an unlimited number of children. In a binary
tree, a parent may have at most two children, which we term the left child
and the right child. A binary search tree additionally requires an ordering
between the parent’s two children in which left_child <= right_child. Figure 1.20
provides an example of a binary search tree. When we search for an item in a
binary search tree, the worst-case performance is O(n) (consider how this can
occur). To remedy this situation, we can use an algorithm to create a balanced
binary search tree. Here, a tree containing n items has at most Ig 7 levels, thus
ensuring worst-case performance of O(lg n). We shall see in Section 5.7.1 that
Linux uses a balanced binary search tree (known as a red-black tree) as part
its CPU-scheduling algorithm.

1.9.3 Hash Functions and Maps

A hash function takes data as its input, performs a numeric operation on the
data, and returns a numeric value. This numeric value can then be used as
an index into a table (typically an array) to quickly retrieve the data. Whereas
searching for a data item through a list of size n can require up to O(n) compar-
isons, using a hash function for retrieving data from a table can be as good as
O(1), depending on implementation details. Because of this performance, hash
functions are used extensively in operating systems.

One potential difficulty with hash functions is that two unique inputs
can result in the same output value—that is, they can link to the same table

1.9 Kernel Data Structures 39

Figure 1.20 Binary search tree.

location. We can accommodate this hash collision by having a linked list at the
table location that contains all of the items with the same hash value. Of course,
the more collisions there are, the less efficient the hash function is.

One use of a hash function is to implement a hash map, which associates
(or maps) [key:value] pairs using a hash function. Once the mapping is estab-
lished, we can apply the hash function to the key to obtain the value from the
hash map (Figure 1.21). For example, suppose that a user name is mapped to
a password. Password authentication then proceeds as follows: a user enters
her user name and password. The hash function is applied to the user name,
which is then used to retrieve the password. The retrieved password is then
compared with the password entered by the user for authentication.

1.9.4 Bitmaps

Abitmap is a string of n binary digits that can be used to represent the status of
n items. For example, suppose we have several resources, and the availability
of each resource is indicated by the value of a binary digit: 0 means that the
resource is available, while 1 indicates that it is unavailable (or vice versa). The

hash_function(key)

hash map

value

Figure 1.21 Hash map.

40

1.10

Chapter1 Introduction

LINUX KERNEL DATA STRUCTURES

The data structures used in the Linux kernel are available in the kernel source
code. The include file <linux/list.h> provides details of the linked-list
data structure used throughout the kernel. A queue in Linux is known as a
kfifo, and its implementation can be found in the kfifo. c file in the kernel
directory of the source code. Linux also provides a balanced binary search tree
implementation using red-black trees. Details can be found in the include file
<linux/rbtree.h>.

value of the i" position in the bitmap is associated with the i resource. As an
example, consider the bitmap shown below:

001011101

Resources 2, 4, 5, 6, and 8 are unavailable; resources 0, 1, 3, and 7 are available.

The power of bitmaps becomes apparent when we consider their space
efficiency. If we were to use an eight-bit Boolean value instead of a single bit,
the resulting data structure would be eight times larger. Thus, bitmaps are
commonly used when there is a need to represent the availability of a large
number of resources. Disk drives provide a nice illustration. A medium-sized
disk drive might be divided into several thousand individual units, called disk
blocks. A bitmap can be used to indicate the availability of each disk block.

In summary, data structures are pervasive in operating system implemen-
tations. Thus, we will see the structures discussed here, along with others,
throughout this text as we explore kernel algorithms and their implementa-
tions.

Computing Environments

So far, we have briefly described several aspects of computer systems and the
operating systems that manage them. We turn now to a discussion of how
operating systems are used in a variety of computing environments.

1.10.1 Traditional Computing

As computing has matured, the lines separating many of the traditional com-
puting environments have blurred. Consider the “typical office environment.”
Just a few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print services. Remote access was awkward,
and portability was achieved by use of laptop computers.

Today, web technologies and increasing WAN bandwidth are stretching the
boundaries of traditional computing. Companies establish portals, which pro-
vide web accessibility to their internal servers. Network computers (or thin
clients)—which are essentially terminals that understand web-based comput-
ing—are used in place of traditional workstations where more security or
easier maintenance is desired. Mobile computers can synchronize with PCs
to allow very portable use of company information. Mobile devices can also

110 Computing Environments 41

connect to wireless networks and cellular data networks to use the company’s
web portal (as well as the myriad other web resources).

At home, most users once had a single computer with a slow modem con-
nection to the office, the Internet, or both. Today, network-connection speeds
once available only at great cost are relatively inexpensive in many places,
giving home users more access to more data. These fast data connections are
allowing home computers to serve up web pages and to run networks that
include printers, client PCs, and servers. Many homes use firewall to pro-
tect their networks from security breaches. Firewalls limit the communications
between devices on a network.

In the latter half of the 20th century, computing resources were relatively
scarce. (Before that, they were nonexistent!) For a period of time, systems were
either batch or interactive. Batch systems processed jobs in bulk, with prede-
termined input from files or other data sources. Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple
users shared time on these systems. These time-sharing systems used a timer
and scheduling algorithms to cycle processes rapidly through the CPU, giving
each user a share of the resources.

Traditional time-sharing systems are rare today. The same scheduling tech-
nique is still in use on desktop computers, laptops, servers, and even mobile
computers, but frequently all the processes are owned by the same user (or a
single user and the operating system). User processes, and system processes
that provide services to the user, are managed so that each frequently gets a
slice of computer time. Consider the windows created while a user is working
on a PC, for example, and the fact that they may be performing different tasks
at the same time. Even a web browser can be composed of multiple processes,
one for each website currently being visited, with time sharing applied to each
web browser process.

1.10.2 Mobile Computing

Mobile computing refers to computing on handheld smartphones and tablet
computers. These devices share the distinguishing physical features of being
portable and lightweight. Historically, compared with desktop and laptop
computers, mobile systems gave up screen size, memory capacity, and overall
functionality in return for handheld mobile access to services such as e-mail
and web browsing. Over the past few years, however, features on mobile
devices have become so rich that the distinction in functionality between, say,
a consumer laptop and a tablet computer may be difficult to discern. In fact,
we might argue that the features of a contemporary mobile device allow it to
provide functionality that is either unavailable or impractical on a desktop or
laptop computer.

Today, mobile systems are used not only for e-mail and web browsing but
also for playing music and video, reading digital books, taking photos, and
recording and editing high-definition video. Accordingly, tremendous growth
continues in the wide range of applications that run on such devices. Many
developers are now designing applications that take advantage of the unique
features of mobile devices, such as global positioning system (GPS) chips,
accelerometers, and gyroscopes. An embedded GPS chip allows a mobile device
to use satellites to determine its precise location on Earth. That functionality is

42

Chapter1 Introduction

especially useful in designing applications that provide navigation—for exam-
ple, telling users which way to walk or drive or perhaps directing them to
nearby services, such as restaurants. An accelerometer allows a mobile device
to detect its orientation with respect to the ground and to detect certain other
forces, such as tilting and shaking. In several computer games that employ
accelerometers, players interface with the system not by using a mouse or a
keyboard but rather by tilting, rotating, and shaking the mobile device! Perhaps
more a practical use of these features is found in augmented-reality appli-
cations, which overlay information on a display of the current environment.
It is difficult to imagine how equivalent applications could be developed on
traditional laptop or desktop computer systems.

To provide access to on-line services, mobile devices typically use either
IEEE standard 802.11 wireless or cellular data networks. The memory capacity
and processing speed of mobile devices, however, are more limited than those
of PCs. Whereas a smartphone or tablet may have 256 GB in storage, it is not
uncommon to find 8 TB in storage on a desktop computer. Similarly, because
power consumption is such a concern, mobile devices often use processors that
are smaller, are slower, and offer fewer processing cores than processors found
on traditional desktop and laptop computers.

Two operating systems currently dominate mobile computing: Apple iOS
and Google Android. iOS was designed to run on Apple iPhone and iPad
mobile devices. Android powers smartphones and tablet computers available
from many manufacturers. We examine these two mobile operating systems in
further detail in Chapter 2.

1.10.3 Client-Server Computing

Contemporary network architecture features arrangements in which server
systems satisfy requests generated by client systems. This form of specialized
distributed system, called a client—server system, has the general structure
depicted in Figure 1.22.

Server systems can be broadly categorized as compute servers and file
servers:

¢ The compute-server system provides an interface to which a client can
send a request to perform an action (for example, read data). In response,
the server executes the action and sends the results to the client. A server

client
desktop
client
laptop
client
smartphone

Figure 1.22 General structure of a client—server system.

110 Computing Environments 43

running a database that responds to client requests for data is an example
of such a system.

¢ The file-serve system provides a file-system interface where clients can
create, update, read, and delete files. An example of such a system is a
web server that delivers files to clients running web browsers. The actual
contents of the files can vary greatly, ranging from traditional web pages
to rich multimedia content such as high-definition video.

1.10.4 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
model. In this model, clients and servers are not distinguished from one
another. Instead, all nodes within the system are considered peers, and each
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client—server systems. In a client—server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to—and requesting services from—other nodes in the network. Determining
what services are available is accomplished in one of two general ways:

® When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first
contacts this centralized lookup service to determine which node provides
the service. The remainder of the communication takes place between the
client and the service provider.

® An alternative scheme uses no centralized lookup service. Instead, a peer
acting as a client must discover what node provides a desired service by
broadcasting a request for the service to all other nodes in the network.
The node (or nodes) providing that service responds to the peer making
the request. To support this approach, a discovery protocol must be pro-
vided that allows peers to discover services provided by other peers in the
network. Figure 1.23 illustrates such a scenario.

Peer-to-peer networks gained widespread popularity in the late 1990s with
several file-sharing services, such as Napster and Gnutella, that enabled peers
to exchange files with one another. The Napster system used an approach simi-
lar to the first type described above: a centralized server maintained an index of
all files stored on peer nodes in the Napster network, and the actual exchange
of files took place between the peer nodes. The Gnutella system used a tech-
nique similar to the second type: a client broadcast file requests to other nodes
in the system, and nodes that could service the request responded directly to
the client. Peer-to-peer networks can be used to exchange copyrighted mate-
rials (music, for example) anonymously, and there are laws governing the
distribution of copyrighted material. Notably, Napster ran into legal trouble
for copyright infringement, and its services were shut down in 2001. For this
reason, the future of exchanging files remains uncertain.

44

Chapter1 Introduction

Figure 1.23 Peer-to-peer system with no centralized service.

Skype is another example of peer-to-peer computing. It allows clients to
make voice calls and video calls and to send text messages over the Internet
using a technology known as voice over IP (VoIP). Skype uses a hybrid peer-
to-peer approach. It includes a centralized login server, but it also incorporates
decentralized peers and allows two peers to communicate.

1.10.5 Cloud Computing

Cloud computing is a type of computing that delivers computing, storage,
and even applications as a service across a network. In some ways, it’s a
logical extension of virtualization, because it uses virtualization as a base for
its functionality. For example, the Amazon Elastic Compute Cloud (ec2) facility
has thousands of servers, millions of virtual machines, and petabytes of storage
available for use by anyone on the Internet. Users pay per month based on
how much of those resources they use. There are actually many types of cloud
computing, including the following;:

e Public cloud—a cloud available via the Internet to anyone willing to pay
for the services

e Private cloud—a cloud run by a company for that company’s own use

® Hybrid cloud—a cloud that includes both public and private cloud com-
ponents

e Software as a service (SaaS)—one or more applications (such as word
processors or spreadsheets) available via the Internet

¢ Platform as a service (PaaS)—a software stack ready for application use
via the Internet (for example, a database server)

¢ Infrastructure as a service (IaaS)—servers or storage available over the
Internet (for example, storage available for making backup copies of pro-
duction data)

110 Computing Environments 45

Internet
~
> customer

~
N

*s requests
\\
N
. cloud
firewall customer
interface
T
| load balancer | ' cloud
1 management
~_commands
:
1
I I I [v
. . |
VlrtLIa| wrtqal storage cloud
machines| |machines managment
services

servers servers

Figure 1.24 Cloud computing.

These cloud-computing types are not discrete, as a cloud computing environ-
ment may provide a combination of several types. For example, an organiza-
tion may provide both SaaS and Iaa$S as publicly available services.

Certainly, there are traditional operating systems within many of the types
of cloud infrastructure. Beyond those are the VMMs that manage the virtual
machines in which the user processes run. At a higher level, the VMMs them-
selves are managed by cloud management tools, such as VMware vCloud
Director and the open-source Eucalyptus toolset. These tools manage the
resources within a given cloud and provide interfaces to the cloud components,
making a good argument for considering them a new type of operating system.

Figure 1.24 illustrates a public cloud providing IaaS. Notice that both the
cloud services and the cloud user interface are protected by a firewall.

1.10.6 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robots to optical drives and microwave ovens. They tend to have very specific
tasks. The systems they run on are usually primitive, and so the operating
systems provide limited features. Usually, they have little or no user interface,
preferring to spend their time monitoring and managing hardware devices,
such as automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems—such as Linux—with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Yet others are hardware devices

46

1.11

Chapter1 Introduction

with application-specific integrated circuits (ASICs) that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as elements of networks and the web, is
sure to increase as well. Even now, entire houses can be computerized, so thata
central computer—either a general-purpose computer or an embedded system
—can control heating and lighting, alarm systems, and even coffee makers.
Web access can enable a home owner to tell the house to heat up before she
arrives home. Someday;, the refrigerator will be able to notify the grocery store
when it notices the milk is gone.

Embedded systems almost always run real-time operating systems. Areal-
time system is used when rigid time requirements have been placed on the
operation of a processor or the flow of data; thus, it is often used as a control
device in a dedicated application. Sensors bring data to the computer. The com-
puter must analyze the data and possibly adjust controls to modify the sensor
inputs. Systems that control scientific experiments, medical imaging systems,
industrial control systems, and certain display systems are real-time systems.
Some automobile-engine fuel-injection systems, home-appliance controllers,
and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
must be done within the defined constraints, or the system will fail. For
instance, it would not do for a robot arm to be instructed to halt after it had
smashed into the car it was building. A real-time system functions correctly
only if it returns the correct result within its time constraints. Contrast this sys-
tem with a traditional laptop system where it is desirable (but not mandatory)
to respond quickly.

In Chapter 5, we consider the scheduling facility needed to implement real-
time functionality in an operating system, and in Chapter 20 we describe the
real-time components of Linux.

Free and Open-Source Operating Systems

The study of operating systems has been made easier by the avail-
ability of a vast number of free software and open-source releases.
Both free operating systems and open-source operating systems
are available in source-code format rather than as compiled binary
code. Note, though, that free software and open-source software are
two different ideas championed by different groups of people (see
http://gnu.org/philosophy/open-source-misses-the-point.html/ for a
discussion on the topic). Free software (sometimes referred to as free/libre
software) not only makes source code available but also is licensed to allow
no-cost use, redistribution, and modification. Open-source software does
not necessarily offer such licensing. Thus, although all free software is open
source, some open-source software is not “free.” GNU/Linux is the most
famous open-source operating system, with some distributions free and
others open source only (http://www.gnu.org/distros/). Microsoft Windows
is a well-known example of the opposite closed-source approach. Windows
is proprietary software—Microsoft owns it, restricts its use, and carefully
protects its source code. Apple’s macOS operating system comprises a hybrid

1.11 Free and Open-Source Operating Systems 47

approach. It contains an open-source kernel named Darwin but includes
proprietary, closed-source components as well.

Starting with the source code allows the programmer to produce binary
code that can be executed on a system. Doing the opposite—reverse engi-
neering the source code from the binaries—is quite a lot of work, and useful
items such as comments are never recovered. Learning operating systems by
examining the source code has other benefits as well. With the source code
in hand, a student can modify the operating system and then compile and
run the code to try out those changes, which is an excellent learning tool.
This text includes projects that involve modifying operating-system source
code, while also describing algorithms at a high level to be sure all important
operating-system topics are covered. Throughout the text, we provide pointers
to examples of open-source code for deeper study.

There are many benefits to open-source operating systems, including a
community of interested (and usually unpaid) programmers who contribute to
the code by helping to write it, debug it, analyze it, provide support, and sug-
gest changes. Arguably, open-source code is more secure than closed-source
code because many more eyes are viewing the code. Certainly, open-source
code has bugs, but open-source advocates argue that bugs tend to be found
and fixed faster owing to the number of people using and viewing the code.
Companies that earn revenue from selling their programs often hesitate to
open-source their code, but Red Hat and a myriad of other companies are doing
just that and showing that commercial companies benefit, rather than suffer,
when they open-source their code. Revenue can be generated through support
contracts and the sale of hardware on which the software runs, for example.

1.11.1 History

In the early days of modern computing (that is, the 1950s), software generally
came with source code. The original hackers (computer enthusiasts) at MIT’s
Tech Model Railroad Club left their programs in drawers for others to work on.
“Homebrew” user groups exchanged code during their meetings. Company-
specific user groups, such as Digital Equipment Corporation’s DECUS, accepted
contributions of source-code programs, collected them onto tapes, and dis-
tributed the tapes to interested members. In 1970, Digital’s operating systems
were distributed as source code with no restrictions or copyright notice.

Computer and software companies eventually sought to limit the use of
their software to authorized computers and paying customers. Releasing only
the binary files compiled from the source code, rather than the source code
itself, helped them to achieve this goal, as well as protecting their code and their
ideas from their competitors. Although the Homebrew user groups of the 1970s
exchanged code during their meetings, the operating systems for hobbyist
machines (such as CPM) were proprietary. By 1980, proprietary software was
the usual case.

1.11.2 Free Operating Systems

To counter the move to limit software use and redistribution, Richard Stallman
in 1984 started developing a free, UNIX-compatible operating system called
GNU(which is a recursive acronym for “GNU’s Not Unix!”). To Stallman, “free”
refers to freedom of use, not price. The free-software movement does not object

48

Chapter1 Introduction

to trading a copy for an amount of money but holds that users are entitled to
four certain freedoms: (1) to freely run the program, (2) to study and change
the source code, and to give or sell copies either (3) with or (4) without changes.
In 1985, Stallman published the GNU Manifesto, which argues that all software
should be free. He also formed the Free Software Foundation (FSF) with the
goal of encouraging the use and development of free software.

The FSF uses the copyrights on its programs to implement “copyleft,” a
form of licensing invented by Stallman. Copylefting a work gives anyone that
possesses a copy of the work the four essential freedoms that make the work
free, with the condition that redistribution must preserve these freedoms. The
GNU General Public License (GPL) is a common license under which free
software is released. Fundamentally, the GPL requires that the source code be
distributed with any binaries and that all copies (including modified versions)
be released under the same GPL license. The Creative Commons “Attribution
Sharealike” license is also a copyleft license; “sharealike” is another way of
stating the idea of copyleft.

1.11.3 GNU/Linux

As an example of a free and open-source operating system, consider
GNU/Linux. By 1991, the GNU operating system was nearly complete. The
GNU Project had developed compilers, editors, utilities, libraries, and games
— whatever parts it could not find elsewhere. However, the GNU kernel never
became ready for prime time. In 1991, a student in Finland, Linus Torvalds,
released a rudimentary UNIX-like kernel using the GNU compilers and tools
and invited contributions worldwide. The advent of the Internet meant that
anyone interested could download the source code, modify it, and submit
changes to Torvalds. Releasing updates once a week allowed this so-called
“Linux” operating system to grow rapidly, enhanced by several thousand
programmers. In 1991, Linux was not free software, as its license permitted
only noncommercial redistribution. In 1992, however, Torvalds rereleased
Linux under the GPL, making it free software (and also, to use a term coined
later, “open source”).

The resulting GNU/Linux operating system (with the kernel properly
called Linux but the full operating system including GNU tools called
GNU/Linux) has spawned hundreds of unique distributions, or custom
builds, of the system. Major distributions include Red Hat, SUSE, Fedora,
Debian, Slackware, and Ubuntu. Distributions vary in function, utility,
installed applications, hardware support, user interface, and purpose. For
example, Red Hat Enterprise Linux is geared to large commercial use.
PCLinuxOS is a live CD—an operating system that can be booted and run
from a CD-ROM without being installed on a system’s boot disk. A variant of
PCLinuxOS—called PCLinuxOS Supergamer DVD—is a live DVD that includes
graphics drivers and games. A gamer can run it on any compatible system
simply by booting from the DVD. When the gamer is finished, a reboot of the
system resets it to its installed operating system.

You can run Linux on a Windows (or other) system using the following
simple, free approach:

1.11 Free and Open-Source Operating Systems 49
1. Download the free Virtualbox VMM tool from
https://www.virtualbox.org/

and install it on your system.

2. Choose to install an operating system from scratch, based on an
installation image like a CD, or choose pre-built operating-system images
that can be installed and run more quickly from a site like

http://virtualboxes.org/images/

These images are preinstalled with operating systems and applications
and include many flavors of GNU/Linux.

3. Boot the virtual machine within Virtualbox.

An alternative to using Virtualbox is to use the free program Qemu
(http://wiki.gemu.org/Download/), which includes the gemu-img command
for converting Virtualbox images to Qemu images to easily import them.
With this text, we provide a virtual machine image of GNU/Linux running
the Ubuntu release. This image contains the GNU/Linux source code as well as
tools for software development. We cover examples involving the GNU/Linux
image throughout this text, as well as in a detailed case study in Chapter 20.

1.11.4 BSD UNIX

BSD UNIX has a longer and more complicated history than Linux. It started in
1978 as a derivative of AT&T’s UNIX. Releases from the University of California
at Berkeley (UCB) came in source and binary form, but they were not open
source because a license from AT&T was required. BSD UNIX’s development was
slowed by a lawsuit by AT&T, but eventually a fully functional, open-source
version, 4.4BSD-lite, was released in 1994.

Just as with Linux, there are many distributions of BSD UNIX, including
FreeBSD, NetBSD, OpenBSD, and DragonflyBSD. To explore the source code
of FreeBSD, simply download the virtual machine image of the version of
interest and boot it within Virtualbox, as described above for Linux. The
source code comes with the distribution and is stored in /usr/src/. The
kernel source code is in /usr/src/sys. For example, to examine the vir-
tual memory implementation code in the FreeBSD kernel, see the files in
/usr/src/sys/vm. Alternatively, you can simply view the source code online
at https://svnweb.freebsd.org.

As with many open-source projects, this source code is contained in
and controlled by a version control system—in this case, “subversion”
(https://subversion.apache.org/source-code). Version control systems allow
a user to “pull” an entire source code tree to his computer and “push” any
changes back into the repository for others to then pull. These systems also
provide other features, including an entire history of each file and a conflict
resolution feature in case the same file is changed concurrently. Another

50

Chapter1 Introduction

version control system is git, which is used for GNU/Linux, as well as other
programs (http://www.git-scm.com).

Darwin, the core kernel component of macOS, is based on BSD
UNIX and is open-sourced as well. That source code is available from
http://www.opensource.apple.com/. Every macOS release has its open-source
components posted at that site. The name of the package that contains the
kernel begins with “xnu.” Apple also provides extensive developer tools,
documentation, and support at http://developer.apple.com.

THE STUDY OF OPERATING SYSTEMS

There has never been a more interesting time to study operating systems,
and it has never been easier. The open-source movement has overtaken oper-
ating systems, causing many of them to be made available in both source and
binary (executable) format. The list of operating systems available in both
formats includes Linux, BSD UNIX, Solaris, and part of macOS. The availabil-
ity of source code allows us to study operating systems from the inside out.
Questions that we could once answer only by looking at documentation or
the behavior of an operating system we can now answer by examining the
code itself.

Operating systems that are no longer commercially viable have been
open-sourced as well, enabling us to study how systems operated in a
time of fewer CPU, memory, and storage resources. An extensive but
incomplete list of open-source operating-system projects is available from
http://dmoz.org/Computers/Software/Operating_Systems/Open_Source/.

In addition, the rise of virtualization as a mainstream (and frequently free)
computer function makes it possible to run many operating systems on top
of one core system. For example, VMware (http://www.vmware.com) pro-
vides a free “player” for Windows on which hundreds of free “virtual appli-
ances” can run. Virtualbox (http://www.virtualbox.com) provides a free,
open-source virtual machine manager on many operating systems. Using
such tools, students can try out hundreds of operating systems without ded-
icated hardware.

In some cases, simulators of specific hardware are also available, allow-
ing the operating system to run on “native” hardware, all within the con-
fines of a modern computer and modern operating system. For example,
a DECSYSTEM-20 simulator running on macOS can boot TOPS-20, load the
source tapes, and modify and compile a new TOPS-20 kernel. An interested
student can search the Internet to find the original papers that describe the
operating system, as well as the original manuals.

The advent of open-source operating systems has also made it easier to
make the move from student to operating-system developer. With some
knowledge, some effort, and an Internet connection, a student can even create
a new operating-system distribution. Not so many years ago, it was difficult
or impossible to get access to source code. Now, such access is limited only
by how much interest, time, and disk space a student has.

1.12 Summary 51

1.11.5 Solaris

Solaris is the commercial UNIX-based operating system of Sun Microsystems.
Originally, Sun’s SunOS operating system was based on BSD UNIX. Sun moved
to AT&T’s System V UNIX as its base in 1991. In 2005, Sun open-sourced most
of the Solaris code as the OpenSolaris project. The purchase of Sun by Oracle
in 2009, however, left the state of this project unclear.

Several groups interested in using OpenSolaris have expanded its features,
and their working set is Project Illumos, which has expanded from the Open-
Solaris base to include more features and to be the basis for several products.
[llumos is available at http://wiki.ilumos.org.

1.11.6 Open-Source Systems as Learning Tools

The free-software movement is driving legions of programmers to create
thousands of open-source projects, including operating systems. Sites like
http://freshmeat.net/ and http://distrowatch.com/ provide portals to many of
these projects. As we stated earlier, open-source projects enable students to
use source code as a learning tool. They can modify programs and test them,
help find and fix bugs, and otherwise explore mature, full-featured operating
systems, compilers, tools, user interfaces, and other types of programs. The
availability of source code for historic projects, such as Multics, can help stu-
dents to understand those projects and to build knowledge that will help in the
implementation of new projects.

Another advantage of working with open-source operating systems is their
diversity. GNU/Linux and BSD UNIX are both open-source operating systems,
for instance, but each has its own goals, utility, licensing, and purpose. Some-
times, licenses are not mutually exclusive and cross-pollination occurs, allow-
ing rapid improvements in operating-system projects. For example, several
major components of OpenSolaris have been ported to BSD UNIX. The advan-
tages of free software and open sourcing are likely to increase the number
and quality of open-source projects, leading to an increase in the number of
individuals and companies that use these projects.

1.12 Summary

® An operating system is software that manages the computer hardware, as
well as providing an environment for application programs to run.

¢ Interrupts are a key way in which hardware interacts with the operating
system. A hardware device triggers an interrupt by sending a signal to the
CPU to alert the CPU that some event requires attention. The interrupt is
managed by the interrupt handler.

e For a computer to do its job of executing programs, the programs must be
in main memory, which is the only large storage area that the processor
can access directly.

¢ The main memory is usually a volatile storage device that loses its contents
when power is turned off or lost.

52

Chapter1 Introduction

Nonvolatile storage is an extension of main memory and is capable of
holding large quantities of data permanently.

The most common nonvolatile storage device is a hard disk, which can
provide storage of both programs and data.

The wide variety of storage systems in a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,
but they are fast. As we move down the hierarchy, the cost per bit generally
decreases, whereas the access time generally increases.

Modern computer architectures are multiprocessor systems in which each
CPU contains several computing cores.

To best utilize the CPU, modern operating systems employ multiprogram-
ming, which allows several jobs to be in memory at the same time, thus
ensuring that the CPU always has a job to execute.

Multitasking is an extension of multiprogramming wherein CPU schedul-
ing algorithms rapidly switch between processes, providing users with a
fast response time.

To prevent user programs from interfering with the proper operation of
the system, the system hardware has two modes: user mode and kernel
mode.

Various instructions are privileged and can be executed only in kernel
mode. Examples include the instruction to switch to kernel mode, 1/0
control, timer management, and interrupt management.

A process is the fundamental unit of work in an operating system. Pro-
cess management includes creating and deleting processes and providing
mechanisms for processes to communicate and synchronize with each
other.

An operating system manages memory by keeping track of what parts of
memory are being used and by whom. It is also responsible for dynami-
cally allocating and freeing memory space.

Storage space is managed by the operating system; this includes providing
file systems for representing files and directories and managing space on
mass-storage devices.

Operating systems provide mechanisms for protecting and securing the
operating system and users. Protection measures control the access of
processes or users to the resources made available by the computer system.

Virtualization involves abstracting a computer’s hardware into several
different execution environments.

Data structures that are used in an operating system include lists, stacks,
queues, trees, and maps.

Computing takes place in a variety of environments, including traditional
computing, mobile computing, client—server systems, peer-to-peer sys-
tems, cloud computing, and real-time embedded systems.

Practice

1.1
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

Practice Exercises 53

Free and open-source operating systems are available in source-code for-
mat. Free software is licensed to allow no-cost use, redistribution, and
modification. GNU/Linux, FreeBSD, and Solaris are examples of popular
open-source systems.

Exercises

What are the three main purposes of an operating system?

We have stressed the need for an operating system to make efficient use
of the computing hardware. When is it appropriate for the operating
system to forsake this principle and to “waste” resources? Why is such
a system not really wasteful?

What is the main difficulty that a programmer must overcome in writing
an operating system for a real-time environment?

Keeping in mind the various definitions of operating system, consider
whether the operating system should include applications such as web
browsers and mail programs. Argue both that it should and that it
should not, and support your answers.

How does the distinction between kernel mode and user mode function
as a rudimentary form of protection (security)?

Which of the following instructions should be privileged?
a. Setvalue of timer.
b. Read the clock.
c. Clear memory.
d. Issue a trap instruction.
e. Turn off interrupts.
f. Modify entries in device-status table.

g. Switch from user to kernel mode.
h. Access 1/0 device.

Some early computers protected the operating system by placing it in
a memory partition that could not be modified by either the user job or
the operating system itself. Describe two difficulties that you think could
arise with such a scheme.

Some CPUs provide for more than two modes of operation. What are two
possible uses of these multiple modes?

Timers could be used to compute the current time. Provide a short
description of how this could be accomplished.

Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the

54

Chapter1 Introduction
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

1.11 Distinguish between the client—server and peer-to-peer models of dis-
tributed systems.

Further Reading

Many general textbooks cover operating systems, including [Stallings (2017)]
and [Tanenbaum (2014)]. [Hennessy and Patterson (2012)] provide coverage of
1/0 systems and buses and of system architecture in general. [Kurose and Ross
(2017)] provides a general overview of computer networks.

[Russinovich etal. (2017)] give an overview of Microsoft Windows and cov-
ers considerable technical detail about the system internals and components.
[McDougall and Mauro (2007)] cover the internals of the Solaris operating
system. The macOS and iOS internals are discussed in [Levin (2013)]. [Levin
(2015)] covers the internals of Android. [Love (2010)] provides an overview of
the Linux operating system and great detail about data structures used in the
Linux kernel. The Free Software Foundation has published its philosophy at
http://www.gnu.org/philosophy/free-software-for-freedom.html.

Bibliography

[Hennessy and Patterson (2012)] . Hennessy and D. Patterson, Computer Archi-
tecture: A Quantitative Approach, Fifth Edition, Morgan Kaufmann (2012).

[Kurose and Ross (2017)] J. Kurose and K. Ross, Computer Networking—A Top—
Down Approach, Seventh Edition, Addison-Wesley (2017).

[Levin (2013)]]. Levin, Mac OS X and iOS Internals to the Apple’s Core, Wiley
(2013).

[Levin (2015)]]. Levin, Android Internals—A Confectioner’s Cookbook. Volume I
(2015).

[Love (2010)] R. Love, Linux Kernel Development, Third Edition, Developer’s
Library (2010).

[McDougall and Mauro (2007)] R. McDougall and J. Mauro, Solaris Internals,
Second Edition, Prentice Hall (2007).

[Russinovich et al. (2017)] M. Russinovich, D. A. Solomon, and A. Ionescu, Win-
dows Internals—Part 1, Seventh Edition, Microsoft Press (2017).

[Stallings (2017)] ~ W. Stallings, Operating Systems, Internals and Design Principles
(9th Edition) Ninth Edition, Prentice Hall (2017).

[Tanenbaum (2014)] A. S. Tanenbaum, Modern Operating Systems, Prentice Hall
(2014).

Chapter 1 Exercises

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

How do clustered systems differ from multiprocessor systems? What is
required for two machines belonging to a cluster to cooperate to provide
a highly available service?

Consider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages
of each.

What is the purpose of interrupts? How does an interrupt differ from a
trap? Can traps be generated intentionally by a user program? If so, for
what purpose?

Explain how the Linux kernel variables HZ and jiffies can be used to
determine the number of seconds the system has been running since it
was booted.

Direct memory access is used for high-speed 1/0 devices in order to
avoid increasing the CPU’s execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are com-
plete?

c. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms of
interference are caused.

Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is
not possible.

Many SMP systems have different levels of caches; one level is local to
each processing core, and another level is shared among all processing
cores. Why are caching systems designed this way?

Rank the following storage systems from slowest to fastest:

a. Hard-disk drives

b. Registers

c. Optical disk

d. Main memory

e. Nonvolatile memory
f. Magnetic tapes

g. Cache

EX-1

EX-2

Exercises

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

Consider an SMP system similar to the one shown in Figure 1.8. Illustrate
with an example how data residing in memory could in fact have a
different value in each of the local caches.

Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems
b. Multiprocessor systems

c. Distributed systems

Describe a mechanism for enforcing memory protection in order to
prevent a program from modifying the memory associated with other
programs.

Which network configuration—LAN or WAN—would best suit the fol-
lowing environments?

a. A campus student union
b. Several campus locations across a statewide university system

c. Aneighborhood

Describe some of the challenges of designing operating systems for
mobile devices compared with designing operating systems for tradi-
tional PCs.

What are some advantages of peer-to-peer systems over client—server
systems?

Describe some distributed applications that would be appropriate for a
peer-to-peer system.

Identify several advantages and several disadvantages of open-source
operating systems. Identify the types of people who would find each
aspect to be an advantage or a disadvantage.

Goerarirg - ~ cHAPPER
Sysrenm 3 \?E

Sirucires S/Eg’

2.1

An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating system
is a major task. It is important that the goals of the system be well defined
before the design begins. These goals form the basis for choices among various
algorithms and strategies.

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore all three aspects of operating
systems, showing the viewpoints of users, programmers, and operating system
designers. We consider what services an operating system provides, how they
are provided, how they are debugged, and what the various methodologies
are for designing such systems. Finally, we describe how operating systems
are created and how a computer starts its operating system.

CHAPTER OBJECTIVES

e |dentify services provided by an operating system.
e |llustrate how system calls are used to provide operating system services.

e Compare and contrast monolithic, layered, microkernel, modular, and
hybrid strategies for designing operating systems.

e |llustrate the process for booting an operating system.
* Apply tools for monitoring operating system performance.
¢ Design and implement kernel modules for interacting with a Linux kernel.

Operating-System Services

An operating system provides an environment for the execution of programs.
It makes certain services available to programs and to the users of those pro-
grams. The specific services provided, of course, differ from one operating

55

56

Chapter 2 Operating-System Structures

user and other system programs

GUI touch screen command line

user interfaces

system calls

program 110 file — resource
communication

. . . accounting
execution operations systems allocation

protection
and
security

error
detection

services

operating system

hardware

Figure 2.1 A view of operating system services.

system to another, but we can identify common classes. Figure 2.1 shows one
view of the various operating-system services and how they interrelate. Note
that these services also make the programming task easier for the programmer.

One set of operating system services provides functions that are helpful to
the user.

¢ User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. Most commonly, a graphical user
interface (GUI) is used. Here, the interface is a window system with a
mouse that serves as a pointing device to direct 1/0, choose from menus,
and make selections and a keyboard to enter text. Mobile systems such
as phones and tablets provide a touch-screen interface, enabling users to
slide their fingers across the screen or press buttons on the screen to select
choices. Another option is a command-line interface (CLI), which uses text
commands and a method for entering them (say, a keyboard for typing
in commands in a specific format with specific options). Some systems
provide two or all three of these variations.

¢ Program execution. The system must be able to load a program into mem-
ory and to run that program. The program must be able to end its execu-
tion, either normally or abnormally (indicating error).

® 1/O operations. A running program may require I/O, which may involve a
file or an I/0 device. For specific devices, special functions may be desired
(such as reading from a network interface or writing to a file system). For
efficiency and protection, users usually cannot control I/0O devices directly.
Therefore, the operating system must provide a means to do 1/0.

¢ File-system manipulation. The file system is of particular interest. Obvi-
ously, programs need to read and write files and directories. They also need
to create and delete them by name, search for a given file, and list file infor-
mation. Finally, some operating systems include permissions management
to allow or deny access to files or directories based on file ownership. Many
operating systems provide a variety of file systems, sometimes to allow

2.1 Operating-System Services 57

personal choice and sometimes to provide specific features or performance
characteristics.

¢ Communications. There are many circumstances in which one process
needs to exchange information with another process. Such communication
may occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a network. Communications may be implemented via
shared memory, in which two or more processes read and write to a shared
section of memory, or message passing, in which packets of information in
predefined formats are moved between processes by the operating system.

¢ Error detection. The operating system needs to be detecting and correcting
errors constantly. Errors may occur in the CPU and memory hardware (such
as a memory error or a power failure), in I/0 devices (such as a parity error
on disk, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow or an attempt to
access an illegal memory location). For each type of error, the operating
system should take the appropriate action to ensure correct and consistent
computing. Sometimes, it has no choice but to halt the system. At other
times, it might terminate an error-causing process or return an error code
to a process for the process to detect and possibly correct.

Another set of operating-system functions exists not for helping the user
but rather for ensuring the efficient operation of the system itself. Systems
with multiple processes can gain efficiency by sharing the computer resources
among the different processes.

® Resource allocation. When there are multiple processes running at the
same time, resources must be allocated to each of them. The operating
system manages many different types of resources. Some (such as CPU
cycles, main memory, and file storage) may have special allocation code,
whereas others (such as I/O devices) may have much more general request
and release code. For instance, in determining how best to use the CPU,
operating systems have CPU-scheduling routines that take into account
the speed of the CPU, the process that must be executed, the number of
processing cores on the CPU, and other factors. There may also be routines
to allocate printers, USB storage drives, and other peripheral devices.

* Logging. We want to keep track of which programs use how much and
what kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for system administrators
who wish to reconfigure the system to improve computing services.

e Protection and security. The owners of information stored in a multiuser
or networked computer system may want to control use of that informa-
tion. When several separate processes execute concurrently, it should not
be possible for one process to interfere with the others or with the oper-
ating system itself. Protection involves ensuring that all access to system
resources is controlled. Security of the system from outsiders is also impor-
tant. Such security starts with requiring each user to authenticate himself

58

2.2

Chapter 2 Operating-System Structures

or herself to the system, usually by means of a password, to gain access
to system resources. It extends to defending external 1/0 devices, includ-
ing network adapters, from invalid access attempts and recording all such
connections for detection of break-ins. If a system is to be protected and
secure, precautions must be instituted throughout it. A chain is only as
strong as its weakest link.

User and Operating-System Interface

We mentioned earlier that there are several ways for users to interface with
the operating system. Here, we discuss three fundamental approaches. One
provides a command-line interface, or command interpreter, that allows users
to directly enter commands to be performed by the operating system. The other
two allow users to interface with the operating system via a graphical user
interface, or GUIL

2.2.1 Command Interpreters

Most operating systems, including Linux, UNIX, and Windows, treat the com-
mand interpreter as a special program that is running when a process is ini-
tiated or when a user first logs on (on interactive systems). On systems with
multiple command interpreters to choose from, the interpreters are known as
shells. For example, on UNIX and Linux systems, a user may choose among sev-
eral different shells, including the C shell, Bourne-Again shell, Korn shell, and
others. Third-party shells and free user-written shells are also available. Most
shells provide similar functionality, and a user’s choice of which shell to use
is generally based on personal preference. Figure 2.2 shows the Bourne-Again
(or bash) shell command interpreter being used on macOS.

The main function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level manipu-
late files: create, delete, list, print, copy, execute, and so on. The various shells
available on UNIX systems operate in this way. These commands can be imple-
mented in two general ways.

In one approach, the command interpreter itself contains the code to exe-
cute the command. For example, a command to delete a file may cause the
command interpreter to jump to a section of its code that sets up the parameters
and makes the appropriate system call. In this case, the number of commands
that can be given determines the size of the command interpreter, since each
command requires its own implementing code.

An alternative approach—used by UNIX, among other operating systems
—implements most commands through system programs. In this case, the
command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete a file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with
the parameter file.txt. The logic associated with the rm command would be

2.2 User and Operating-System Interface 59

ene 1. root@r6181-d5-us01:~ (ssh)

* rooct@r6181-db-u.. @ 81 X ssh 3- H2 X root@r6181-d5-us0t. 3

Figure 2.2 The bash shell command interpreter in macOS.

defined completely by the code in the file rm. In this way, programmers can
add new commands to the system easily by creating new files with the proper
program logic. The command-interpreter program, which can be small, does
not have to be changed for new commands to be added.

2.2.2 Graphical User Interface

A second strategy for interfacing with the operating system is through a user-
friendly graphical user interface, or GUI. Here, rather than entering commands
directly via a command-line interface, users employ a mouse-based window-
and-menu system characterized by a desktop metaphor. The user moves the
mouse to position its pointer on images, or icons, on the screen (the desktop)
that represent programes, files, directories, and system functions. Depending
on the mouse pointer’s location, clicking a button on the mouse can invoke a
program, select a file or directory—known as a folder—or pull down a menu
that contains commands.

Graphical user interfaces first appeared due in part to research taking
place in the early 1970s at Xerox PARC research facility. The first GUI appeared
on the Xerox Alto computer in 1973. However, graphical interfaces became
more widespread with the advent of Apple Macintosh computers in the 1980s.
The user interface for the Macintosh operating system has undergone various
changes over the years, the most significant being the adoption of the Aqua
interface that appeared with macOS. Microsoft’s first version of Windows—
Version 1.0—was based on the addition of a GUI interface to the MS-DOS
operating system. Later versions of Windows have made significant changes in
the appearance of the GUI along with several enhancements in its functionality.

60

Chapter 2 Operating-System Structures

Traditionally, UNIX systems have been dominated by command-line inter-
faces. Various GUI interfaces are available, however, with significant develop-
ment in GUI designs from various open-source projects, such as K Desktop
Environment (or KDE) and the GNOME desktop by the GNU project. Both the
KDE and GNOME desktops run on Linux and various UNIX systems and are
available under open-source licenses, which means their source code is readily
available for reading and for modification under specific license terms.

2.2.3 Touch-Screen Interface

Because a either a command-line interface or a mouse-and-keyboard system is
impractical for most mobile systems, smartphones and handheld tablet com-
puters typically use a touch-screen interface. Here, users interact by making
gestures on the touch screen—for example, pressing and swiping fingers
across the screen. Although earlier smartphones included a physical keyboard,
most smartphones and tablets now simulate a keyboard on the touch screen.
Figure 2.3 illustrates the touch screen of the Apple iPhone. Both the iPad and
the iPhone use the Springboard touch-screen interface.

2.2.4 Choice of Interface

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. System administrators who manage computers
and power users who have deep knowledge of a system frequently use the

Phong

Figure 2.3 The iPhone touch screen.

2.2 User and Operating-System Interface 61

command-line interface. For them, it is more efficient, giving them faster access
to the activities they need to perform. Indeed, on some systems, only a subset
of system functions is available via the GUI, leaving the less common tasks
to those who are command-line knowledgeable. Further, command-line inter-
faces usually make repetitive tasks easier, in part because they have their own
programmability. For example, if a frequent task requires a set of command-
line steps, those steps can be recorded into a file, and that file can be run
just like a program. The program is not compiled into executable code but
rather is interpreted by the command-line interface. These shell scripts are
very common on systems that are command-line oriented, such as UNIX and
Linux.

In contrast, most Windows users are happy to use the Windows GUI envi-
ronment and almost never use the shell interface. Recent versions of the Win-
dows operating system provide both a standard GUI for desktop and tradi-
tional laptops and a touch screen for tablets. The various changes undergone
by the Macintosh operating systems also provide a nice study in contrast. His-
torically, Mac OS has not provided a command-line interface, always requiring
its users to interface with the operating system using its GUIL. However, with the
release of macOS (which is in part implemented using a UNIX kernel), the oper-
ating system now provides both an Aqua GUI and a command-line interface.
Figure 2.4 is a screenshot of the macOS GUL

Although there are apps that provide a command-line interface for iOS
and Android mobile systems, they are rarely used. Instead, almost all users
of mobile systems interact with their devices using the touch-screen interface.

The user interface can vary from system to system and even from user
to user within a system; however, it typically is substantially removed from
the actual system structure. The design of a useful and intuitive user interface
is therefore not a direct function of the operating system. In this book, we
concentrate on the fundamental problems of providing adequate service to

Figure 2.4 The macOS GUI.

62

2.3

Chapter 2 Operating-System Structures

user programs. From the point of view of the operating system, we do not
distinguish between user programs and system programs.

System Calls

System calls provide an interface to the services made available by an operat-
ing system. These calls are generally available as functions written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly) may have to be written using assembly-language
instructions.

2.3.1 Example

Before we discuss how an operating system makes system calls available, let’s
first use an example to illustrate how system calls are used: writing a simple
program to read data from one file and copy them to another file. The first
input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is to pass the names of the two
files as part of the command —for example, the UNIX cp command:

cp in.txt out.txt

This command copies the input file in.txt to the output file out . txt. A sec-
ond approach is for the program to ask the user for the names. In an interactive
system, this approach will require a sequence of system calls, first to write
a prompting message on the screen and then to read from the keyboard the
characters that define the two files. On mouse-based and icon-based systems,
a menu of file names is usually displayed in a window. The user can then use
the mouse to select the source name, and a window can be opened for the
destination name to be specified. This sequence requires many I/O system calls.

Once the two file names have been obtained, the program must open the
input file and create and open the output file. Each of these operations requires
another system call. Possible error conditions for each system call must be
handled. For example, when the program tries to open the input file, it may
find that there is no file of that name or that the file is protected against access.
In these cases, the program should output an error message (another sequence
of system calls) and then terminate abnormally (another system call). If the
input file exists, then we must create a new output file. We may find that there
is already an output file with the same name. This situation may cause the
program to abort (a system call), or we may delete the existing file (another
system call) and create a new one (yet another system call). Another option, in
an interactive system, is to ask the user (via a sequence of system calls to output
the prompting message and to read the response from the terminal) whether
to replace the existing file or to abort the program.

When both files are set up, we enter a loop that reads from the input
file (a system call) and writes to the output file (another system call). Each
read and write must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been

2.3 System Calls 63

\4

source file destination file

\

Example System-Call Sequence

Acquire input file name

Write prompt to screen

Accept input
Acquire output file name

Write prompt to screen

Accept input
Open the input file

if file doesn't exist, abort
Create output file

if file exists, abort
Loop

Read from input file

Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

o

/

Figure 2.5 Example of how system calls are used.

reached or that there was a hardware failure in the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (for example, no more available disk space).

Finally, after the entire file is copied, the program may close both files
(two system calls), write a message to the console or window (more system
calls), and finally terminate normally (the final system call). This system-call
sequence is shown in Figure 2.5.

2.3.2 Application Programming Interface

As you can see, even simple programs may make heavy use of the operat-
ing system. Frequently, systems execute thousands of system calls per second.
Most programmers never see this level of detail, however. Typically, applica-
tion developers design programs according to an application programming
interface (API). The APIspecifies a set of functions that are available to an appli-
cation programmer, including the parameters that are passed to each function
and the return values the programmer can expect. Three of the most common
APIs available to application programmers are the Windows API for Windows
systems, the POSIX API for POSIX-based systems (which include virtually all
versions of UNIX, Linux, and macOS), and the Java API for programs that run
on the Java virtual machine. A programmer accesses an API via a library of code
provided by the operating system. In the case of UNIX and Linux for programs
written in the Clanguage, the library is called libc. Note that—unless specified
—the system-call names used throughout this text are generic examples. Each
operating system has its own name for each system call.

Behind the scenes, the functions that make up an API typically invoke the
actual system calls on behalf of the application programmer. For example, the
Windows function CreateProcess () (which, unsurprisingly, is used to create

64 Chapter 2 Operating-System Structures

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read () function that is avail-
able in UNIX and Linux systems. The API for this function is obtained from
the man page by invoking the command

man read

on the command line. A description of this APT appears below:

#include <unistd.h>

ssize t read(int fd, void *buf, size t count)
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize_t and size_t data types (among other
things). The parameters passed to read () are as follows:

¢ int fd—the file descriptor to be read
¢ void *buf—a buffer into which the data will be read

® size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

a new process) actually invokes the NTCreateProcess () system call in the
Windows kernel.

Why would an application programmer prefer programming according to
an API rather than invoking actual system calls? There are several reasons for
doing so. One benefit concerns program portability. An application program-
mer designing a program using an API can expect her program to compile and
run on any system that supports the same API (although, in reality, architectural
differences often make this more difficult than it may appear). Furthermore,
actual system calls can often be more detailed and difficult to work with than
the APIavailable to an application programmer. Nevertheless, there often exists
a strong correlation between a function in the API and its associated system call
within the kernel. In fact, many of the POSIX and Windows APIs are similar to
the native system calls provided by the UNIX, Linux, and Windows operating
systems.

Another important factor in handling system calls is the run-time envi-
ronment (RTE)—the full suite of software needed to execute applications writ-
ten in a given programming language, including its compilers or interpreters
as well as other software, such as libraries and loaders. The RTE provides a

2.3 System Calls 65

user application

open()
user
mode
system call interface
kernel
mode A
| 5 | - open()
° Implementation
i » of open()

system call
return

Figure 2.6 The handling of a user application invoking the open () system call.

system-call interface that serves as the link to system calls made available
by the operating system. The system-call interface intercepts function calls in
the API and invokes the necessary system calls within the operating system.
Typically, a number is associated with each system call, and the system-call
interface maintains a table indexed according to these numbers. The system-
call interface then invokes the intended system call in the operating-system
kernel and returns the status of the system call.

The caller need know nothing about how the system call is implemented
or what it does during execution. Rather, the caller need only obey the APT and
understand what the operating system will do as a result of the execution of
that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the API and are managed by the RTE. The
relationship among an AP, the system-call interface, and the operating system
is shown in Figure 2.6, which illustrates how the operating system handles a
user application invoking the open () system call.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and
length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating sys-
tem. The simplest approach is to pass the parameters in registers. In some
cases, however, there may be more parameters than registers. In these cases,
the parameters are generally stored in a block, or table, in memory, and the
address of the block is passed as a parameter in a register (Figure 2.7). Linux
uses a combination of these approaches. If there are five or fewer parameters,

66 Chapter 2 Operating-System Structures

register
X: parameters
for call
™ use parameters code for
load address X gl e system
system call 13 - > oall 13

user program

operating system

Figure 2.7 Passing of parameters as a table.

registers are used. If there are more than five parameters, the block method is
used. Parameters also can be placed, or pushed, onto a stack by the program
and popped off the stack by the operating system. Some operating systems
prefer the block or stack method because those approaches do not limit the
number or length of parameters being passed.

2.3.3 Types of System Calls

System calls can be grouped roughly into six major categories: process control,
fil management, device management, information maintenance, communi-
cations, and protection. Below, we briefly discuss the types of system calls that
may be provided by an operating system. Most of these system calls support,
or are supported by, concepts and functions that are discussed in later chap-
ters. Figure 2.8 summarizes the types of system calls normally provided by an
operating system. As mentioned, in this text, we normally refer to the system
calls by generic names. Throughout the text, however, we provide examples
of the actual counterparts to the system calls for UNIX, Linux, and Windows
systems.

2.3.3.1 Process Control

A running program needs to be able to halt its execution either normally
(end()) or abnormally (abort()). If a system call is made to terminate the
currently running program abnormally, or if the program runs into a problem
and causes an error trap, a dump of memory is sometimes taken and an
error message generated. The dump is written to a special log file on disk
and may be examined by a debugger—a system program designed to aid
the programmer in finding and correcting errors, or bugs—to determine the
cause of the problem. Under either normal or abnormal circumstances, the
operating system must transfer control to the invoking command interpreter.
The command interpreter then reads the next command. In an interactive
system, the command interpreter simply continues with the next command;
it is assumed that the user will issue an appropriate command to respond to

2.3 System Calls

67

Process control
© create process, terminate process
o load, execute
o get process attributes, set process attributes
° wait event, signal event
° allocate and free memory

File management
o create file, delete file

°© open, close
° read, write, reposition
o get file attributes, set file attributes

Device management
°o request device, release device

o read, write, reposition
o get device attributes, set device attributes
o logically attach or detach devices

Information maintenance
o get time or date, set time or date

o get system data, set system data
o get process, file, or device attributes
o set process, file, or device attributes

Communications
o create, delete communication connection

° send, receive messages
o transfer status information
o attach or detach remote devices

Protection
o get file permissions

o set file permissions

Figure 2.8 Types of system calls.

Chapter 2 Operating-System Structures

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

The following illustrates various equivalent system calls for Windows and

UNIX operating systems.
Windows Unix
Process CreateProcess () fork()
control ExitProcess() exit ()
WaitForSingleObject () wait ()
File CreateFile() open ()
management ReadFile() read ()
WriteFile() write()
CloseHandle () close()
Device SetConsoleMode () ioctl()
management ReadConsole() read ()
WriteConsole () write()
Information GetCurrentProcessID() getpid O
maintenance SetTimer () alarm()
Sleep() sleep()
Communications CreatePipe() pipe O
CreateFileMapping() shm_open ()
MapViewOfFile () mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

any error. In a GUI system, a pop-up window might alert the user to the error
and ask for guidance. Some systems may allow for special recovery actions in
case an error occurs. If the program discovers an error in its input and wants
to terminate abnormally, it may also want to define an error level. More severe
errors can be indicated by a higher-level error parameter. It is then possible to
combine normal and abnormal termination by defining a normal termination
as an error at level 0. The command interpreter or a following program can use
this error level to determine the next action automatically.

A process executing one program may want to load() and execute()
another program. This feature allows the command interpreter to execute a
program as directed by, for example, a user command or the click of a mouse.
An interesting question is where to return control when the loaded program
terminates. This question is related to whether the existing program is lost,
saved, or allowed to continue execution concurrently with the new program.

If control returns to the existing program when the new program termi-
nates, we must save the memory image of the existing program; thus, we have

2.3 System Calls 69

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf () statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system—in this
instance, the write () system call. The C library takes the value returned by
write() and passes it back to the user program:

#include <stdio.h>
int main()

{

—printf ("Greetings"); |«

return O;

}

user
mode

\ 4

standard C library
kernel
mode

write()

write()
system call

effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new process to be
multiprogrammed. Often, there is a system call specifically for this purpose
(create_process()).

If we create a new process, or perhaps even a set of processes, we should
be able to control its execution. This control requires the ability to determine
and reset the attributes of a process, including the process’s priority, its max-
imum allowable execution time, and so on (get_process_attributes() and
set_process_attributes()). We may also want to terminate a process that
we created (terminate_process())if we find that it is incorrect or is no longer
needed.

Having created new processes, we may need to wait for them to finish
their execution. We may want to wait for a certain amount of time to pass
(wait_time()). More probably, we will want to wait for a specific event to
occur (wait_event ()). The processes should then signal when that event has
occurred (signal_event()).

Quite often, two or more processes may share data. To ensure the integrity
of the data being shared, operating systems often provide system calls allowing

70

Chapter 2 Operating-System Structures

free memory

free memory o

program
(sketch)

boot loader boot loader

(a) (b)

Figure 2.9 Arduino execution. (a) At system startup. (b) Running a sketch.

a process to lock shared data. Then, no other process can access the data until
the lock is released. Typically, such system calls include acquire_lock () and
release_lock(). System calls of these types, dealing with the coordination of
concurrent processes, are discussed in great detail in Chapter 6 and Chapter 7.

There are so many facets of and variations in process control that we
next use two examples—one involving a single-tasking system and the other
a multitasking system—to clarify these concepts. The Arduino is a simple
hardware platform consisting of a microcontroller along with input sensors
that respond to a variety of events, such as changes to light, temperature, and
barometric pressure, to just name a few. To write a program for the Arduino, we
first write the program on a PC and then upload the compiled program (known
as a sketch) from the PC to the Arduino’s flash memory via a USB connection.
The standard Arduino platform does not provide an operating system; instead,
a small piece of software known as a boot loader loads the sketch into a specific
region in the Arduino’s memory (Figure 2.9). Once the sketch has been loaded,
it begins running, waiting for the events that it is programmed to respond to.
For example, if the Arduino’s temperature sensor detects that the temperature
has exceeded a certain threshold, the sketch may have the Arduino start the
motor for a fan. An Arduino is considered a single-tasking system, as only
one sketch can be present in memory at a time; if another sketch is loaded,
it replaces the existing sketch. Furthermore, the Arduino provides no user
interface beyond hardware input sensors.

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking
system. When a user logs on to the system, the shell of the user’s choice is
run, awaiting commands and running programs the user requests. However,
since FreeBSD is a multitasking system, the command interpreter may continue
running while another program is executed (Figure 2.10). To start a new pro-
cess, the shell executes a fork() system call. Then, the selected program is
loaded into memory via an exec () system call, and the program is executed.
Depending on how the command was issued, the shell then either waits for the
process to finish or runs the process “in the background.” In the latter case, the
shell immediately waits for another command to be entered. When a process is
running in the background, it cannot receive input directly from the keyboard,
because the shell is using this resource. I/0 is therefore done through files or
through a GUI interface. Meanwhile, the user is free to ask the shell to run
other programs, to monitor the progress of the running process, to change that
program’s priority, and so on. When the process is done, it executes an exit ()

2.3 System Calls 71

high
memory kernel
free memory
process C
interpreter
process B
low process D
memory

Figure 2.10 FreeBSD running multiple programs.

system call to terminate, returning to the invoking process a status code of 0 or
a nonzero error code. This status or error code is then available to the shell or
other programs. Processes are discussed in Chapter 3 with a program example
using the fork () and exec () system calls.

2.3.3.2 File Management

The file system is discussed in more detail in Chapter 13 through Chapter 15.
Here, we identify several common system calls dealing with files.

We first need to be able to create () and delete () files. Either system call
requires the name of the file and perhaps some of the file’s attributes. Once
the file is created, we need to open() it and to use it. We may also read (),
write(), or reposition() (rewind or skip to the end of the file, for example).
Finally, we need to close () the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to set them if necessary. File attributes include the file
name, file type, protection codes, accounting information, and so on. At least
two system calls, get_file_attributes() and set_file_attributes(), are
required for this function. Some operating systems provide many more calls,
such as calls for file move() and copy (). Others might provide an API that
performs those operations using code and other system calls, and others might
provide system programs to perform the tasks. If the system programs are
callable by other programs, then each can be considered an API by other system
programs.

2.3.3.3 Device Management

A process may need several resources to execute—main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted, and
control can be returned to the user process. Otherwise, the process will have to
wait until sufficient resources are available.

72

Chapter 2 Operating-System Structures

The various resources controlled by the operating system can be thought
of as devices. Some of these devices are physical devices (for example, disk
drives), while others can be thought of as abstract or virtual devices (for
example, files). A system with multiple users may require us to first request ()
a device, to ensure exclusive use of it. After we are finished with the device, we
release() it. These functions are similar to the open() and close() system
calls for files. Other operating systems allow unmanaged access to devices. The
hazard then is the potential for device contention and perhaps deadlock, which
are described in Chapter 8.

Once the device has been requested (and allocated to us), we can read (),
write (), and (possibly) reposition() the device, just as we can with files. In
fact, the similarity between I/0 devices and files is so great that many operating
systems, including UNIX, merge the two into a combined file—device structure.
In this case, a set of system calls is used on both files and devices. Sometimes,
I/0 devices are identified by special file names, directory placement, or file
attributes.

The user interface can also make files and devices appear to be similar, even
though the underlying system calls are dissimilar. This is another example of
the many design decisions that go into building an operating system and user
interface.

2.3.3.4 Information Maintenance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most sys-
tems have a system call to return the current time () and date (). Other system
calls may return information about the system, such as the version number of
the operating system, the amount of free memory or disk space, and so on.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump () memory. This provision is useful for
debugging. The program strace, which is available on Linux systems, lists
each system call as it is executed. Even microprocessors provide a CPU mode,
known as single step, in which a trap is executed by the CPU after every
instruction. The trap is usually caught by a debugger.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set
of locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program
counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

In addition, the operating system keeps information about all its processes,
and system calls are used to access this information. Generally, calls are also
used to get and set the process information (get_process_attributes () and
set_process_attributes()). In Section 3.1.3, we discuss what information is
normally kept.

2.3.3.5 Communication

There are two common models of interprocess communication: the message-
passing model and the shared-memory model. In the message-passing model,
the communicating processes exchange messages with one another to trans-

2.3 System Calls 73

fer information. Messages can be exchanged between the processes either
directly or indirectly through a common mailbox. Before communication can
take place, a connection must be opened. The name of the other communica-
tor must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer in
a network has a host name by which it is commonly known. A host also has a
network identifier, such as an IP address. Similarly, each process has a process
name, and this name is translated into an identifier by which the operating
system can refer to the process. The get_hostid() and get_processid()
system calls do this translation. The identifiers are then passed to the general-
purpose open () and close() calls provided by the file system or to specific
open_connection() and close _connection() system calls, depending on
the system’s model of communication. The recipient process usually must give
its permission for communication to take place with an accept_connection()
call. Most processes that will be receiving connections are special-purpose dae-
mons, which are system programs provided for that purpose. They execute a
wait for connection() call and are awakened when a connection is made.
The source of the communication, known as the client, and the receiving dae-
mon, known as a server, then exchange messages by using read message ()
and write_message () system calls. The close_connection() call terminates
the communication.

In the shared-memory model, processes use shared memory_create()
and shared memory _attach() system calls to create and gain access to regions
of memory owned by other processes. Recall that, normally, the operating
system tries to prevent one process from accessing another process’s memory.
Shared memory requires that two or more processes agree to remove this
restriction. They can then exchange information by reading and writing data
in the shared areas. The form of the data is determined by the processes and
is not under the operating system’s control. The processes are also responsible
for ensuring that they are not writing to the same location simultaneously. Such
mechanisms are discussed in Chapter 6. In Chapter 4, we look at a variation of
the process scheme—threads—in which some memory is shared by default.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. It is also eas-
ier to implement than is shared memory for intercomputer communication.
Shared memory allows maximum speed and convenience of communication,
since it can be done at memory transfer speeds when it takes place within a
computer. Problems exist, however, in the areas of protection and synchroniza-
tion between the processes sharing memory.

2.3.3.6 Protection

Protection provides a mechanism for controlling access to the resources pro-
vided by a computer system. Historically, protection was a concern only on
multiprogrammed computer systems with several users. However, with the
advent of networking and the Internet, all computer systems, from servers to
mobile handheld devices, must be concerned with protection.

Typically, system calls providing protection include set_permission()
and get permission(), which manipulate the permission settings of

74

2.4

Chapter 2 Operating-System Structures

resources such as files and disks. The allow user () and deny user () system
calls specify whether particular users can—or cannot—be allowed access
to certain resources. We cover protection in Chapter 17 and the much larger
issue of security—which involves using protection against external threats—
in Chapter 16.

System Services

Another aspect of a modern system is its collection of system services. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest level
is hardware. Next is the operating system, then the system services, and finally
the application programs. System services, also known as system utilities,
provide a convenient environment for program development and execution.
Some of them are simply user interfaces to system calls. Others are consider-
ably more complex. They can be divided into these categories:

¢ File management. These programs create, delete, copy, rename, print, list,
and generally access and manipulate files and directories.

¢ Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro-
grams format and print the output to the terminal or other output devices
or files or display it in a window of the GUI. Some systems also support a
registry, which is used to store and retrieve configuration information.

¢ File modificatio .Several text editors may be available to create and mod-
ify the content of files stored on disk or other storage devices. There may
also be special commands to search contents of files or perform transfor-
mations of the text.

¢ Programming-language support. Compilers, assemblers, debuggers, and
interpreters for common programming languages (such as C, C++, Java,
and Python) are often provided with the operating system or available as
a separate download.

¢ Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

¢ Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
allow users to send messages to one another’s screens, to browse web
pages, to send e-mail messages, to log in remotely, or to transfer files from
one machine to another.

¢ Background services. All general-purpose systems have methods for
launching certain system-program processes at boot time. Some of these
processes terminate after completing their tasks, while others continue to

2.5

2.5 Linkers and Loaders 75

run until the system is halted. Constantly running system-program pro-
cesses are known as services, subsystems, or daemons. One example is
the network daemon discussed in Section 2.3.3.5. In that example, a sys-
tem needed a service to listen for network connections in order to connect
those requests to the correct processes. Other examples include process
schedulers that start processes according to a specified schedule, system
error monitoring services, and print servers. Typical systems have dozens
of daemons. In addition, operating systems that run important activities in
user context rather than in kernel context may use daemons to run these
activities.

Along with system programs, most operating systems are supplied with
programs that are useful in solving common problems or performing common
operations. Such application programs include web browsers, word proces-
sors and text formatters, spreadsheets, database systems, compilers, plotting
and statistical-analysis packages, and games.

The view of the operating system seen by most users is defined by the
application and system programs, rather than by the actual system calls. Con-
sider a user’s PC. When a user’s computer is running the macOS operating
system, the user might see the GUI, featuring a mouse-and-windows interface.
Alternatively, or even in one of the windows, the user might have a command-
line UNIX shell. Both use the same set of system calls, but the system calls look
different and act in different ways. Further confusing the user view, consider
the user dual-booting from macOS into Windows. Now the same user on the
same hardware has two entirely different interfaces and two sets of applica-
tions using the same physical resources. On the same hardware, then, a user
can be exposed to multiple user interfaces sequentially or concurrently.

Linkers and Loaders

Usually, a program resides on disk as a binary executable file—for example,
a.out or prog.exe. To run on a CPU, the program must be brought into mem-
ory and placed in the context of a process. In this section, we describe the steps
in this procedure, from compiling a program to placing it in memory, where it
becomes eligible to run on an available CPU core. The steps are highlighted in
Figure 2.11.

Source files are compiled into object files that are designed to be loaded
into any physical memory location, a format known as an relocatable object
fil . Next, the linker combines these relocatable object files into a single binary
executable file. During the linking phase, other object files or libraries may be
included as well, such as the standard C or math library (specified with the flag
-1m).

Aloader is used to load the binary executable file into memory, where it is
eligible to run on a CPU core. An activity associated with linking and loading
is relocation, which assigns final addresses to the program parts and adjusts
code and data in the program to match those addresses so that, for example, the
code can call library functions and access its variables as it executes. In Figure
2.11, we see that to run the loader, all that is necessary is to enter the name of the
executable file on the command line. When a program name is entered on the

76

Chapter 2 Operating-System Structures

main.c
program
¢ ¢ generates
object main.o
other file
object
files - ¢
”A gcc -o main main.o -1m
i i generates
executable main
file
mas
dynamically
linked ¢
libraries /. _
A

program
in memory

Figure 2.11 The role of the linker and loader.

command line on UNIX systems—for example, . /main—the shell first creates
a new process to run the program using the fork () system call. The shell then
invokes the loader with the exec() system call, passing exec() the name of
the executable file. The loader then loads the specified program into memory
using the address space of the newly created process. (When a GUI interface is
used, double-clicking on the icon associated with the executable file invokes
the loader using a similar mechanism.)

The process described thus far assumes that all libraries are linked into
the executable file and loaded into memory. In reality, most systems allow
a program to dynamically link libraries as the program is loaded. Windows,
for instance, supports dynamically linked libraries (DLLs). The benefit of this
approach is that it avoids linking and loading libraries that may end up not
being used into an executable file. Instead, the library is conditionally linked
and is loaded if it is required during program run time. For example, in Figure
2.11, the math library is not linked into the executable file main. Rather, the
linker inserts relocation information that allows it to be dynamically linked
and loaded as the program is loaded. We shall see in Chapter 9 that it is
possible for multiple processes to share dynamically linked libraries, resulting
in a significant savings in memory use.

Object files and executable files typically have standard formats that
include the compiled machine code and a symbol table containing metadata
about functions and variables that are referenced in the program. For UNIX
and Linux systems, this standard format is known as ELF (for Executable
and Linkable Format). There are separate ELF formats for relocatable and

2.6

2.6 Why Applications Are Operating-System Specifi 77

ELF FORMAT

Linux provides various commands to identify and evaluate ELF files. For
example, the file command determines a file type. If main.o is an object
file, and main is an executable file, the command

file main.o
will report that main. o is an ELF relocatable file, while the command
file main

will report that main is an ELF executable. ELF files are divided into a number
of sections and can be evaluated using the readelf command.

executable files. One piece of information in the ELF file for executable files is
the program’s entry point, which contains the address of the first instruction
to be executed when the program runs. Windows systems use the Portable
Executable (PE) format, and macOS uses the Mach-O format.

Why Applications Are Operating-System Specific

Fundamentally, applications compiled on one operating system are not exe-
cutable on other operating systems. If they were, the world would be a better
place, and our choice of what operating system to use would depend on utility
and features rather than which applications were available.

Based on our earlier discussion, we can now see part of the problem—each
operating system provides a unique set of system calls. System calls are part of
the set of services provided by operating systems for use by applications. Even
if system calls were somehow uniform, other barriers would make it difficult
for us to execute application programs on different operating systems. But if
you have used multiple operating systems, you may have used some of the
same applications on them. How is that possible?

An application can be made available to run on multiple operating systems
in one of three ways:

1. The application can be written in an interpreted language (such as Python
or Ruby) that has an interpreter available for multiple operating systems.
The interpreter reads each line of the source program, executes equivalent
instructions on the native instruction set, and calls native operating sys-
tem calls. Performance suffers relative to that for native applications, and
the interpreter provides only a subset of each operating system’s features,
possibly limiting the feature sets of the associated applications.

2. The application can be written in a language that includes a virtual
machine containing the running application. The virtual machine is part
of the language’s full RTE. One example of this method is Java. Java has an
RTE that includes a loader, byte-code verifier, and other components that
load the Java application into the Java virtual machine. This RTE has been

78

Chapter 2 Operating-System Structures

ported, or developed, for many operating systems, from mainframes to
smartphones, and in theory any Java app can run within the RTE wherever
it is available. Systems of this kind have disadvantages similar to those
of interpreters, discussed above.

3. The application developer can use a standard language or API in which
the compiler generates binaries in a machine- and operating-system-
specific language. The application must be ported to each operating sys-
tem on which it will run. This porting can be quite time consuming and
must be done for each new version of the application, with subsequent
testing and debugging. Perhaps the best-known example is the POSIX
API and its set of standards for maintaining source-code compatibility
between different variants of UNIX-like operating systems.

In theory, these three approaches seemingly provide simple solutions for
developing applications that can run across different operating systems. How-
ever, the general lack of application mobility has several causes, all of which
still make developing cross-platform applications a challenging task. At the
application level, the libraries provided with the operating system contain APIs
to provide features like GUI interfaces, and an application designed to call one
set of APIs (say, those available from iOS on the Apple iPhone) will not work on
an operating system that does not provide those APIs (such as Android). Other
challenges exist at lower levels in the system, including the following.

¢ Each operating system has a binary format for applications that dictates
the layout of the header, instructions, and variables. Those components
need to be at certain locations in specified structures within an executable
file so the operating system can open the file and load the application for
proper execution.

® CPUs have varying instruction sets, and only applications containing the
appropriate instructions can execute correctly.

¢ Operating systems provide system calls that allow applications to request
various activities, such as creating files and opening network connec-
tions. Those system calls vary among operating systems in many respects,
including the specific operands and operand ordering used, how an appli-
cation invokes the system calls, their numbering and number, their mean-
ings, and their return of results.

There are some approaches that have helped address, though not com-
pletely solve, these architectural differences. For example, Linux—and almost
every UNIX system—has adopted the ELF format for binary executable files.
Although ELF provides a common standard across Linux and UNIX systems,
the ELF format is not tied to any specific computer architecture, so it does not
guarantee that an executable file will run across different hardware platforms.

APIs, as mentioned above, specify certain functions at the application level.
At the architecture level, an application binary interface (ABI) is used to define
how different components of binary code can interface for a given operating
system on a given architecture. An ABI specifies low-level details, including
address width, methods of passing parameters to system calls, the organization

2.7

2.7 Operating-System Design and Implementation 79

of the run-time stack, the binary format of system libraries, and the size of data
types, just to name a few. Typically, an ABI is specified for a given architecture
(for example, there is an ABI for the ARMv8 processor). Thus, an ABI is the
architecture-level equivalent of an API If a binary executable file has been
compiled and linked according to a particular ABI, it should be able to run on
different systems that support that ABI. However, because a particular ABI is
defined for a certain operating system running on a given architecture, ABIs do
little to provide cross-platform compatibility.

In sum, all of these differences mean that unless an interpreter, RTE, or
binary executable file is written for and compiled on a specific operating system
on a specific CPU type (such as Intel x86 or ARMvS), the application will fail to
run. Imagine the amount of work that is required for a program such as the
Firefox browser to run on Windows, macOS, various Linux releases, i0S, and
Android, sometimes on various CPU architectures.

Operating-System Design and Implementation

In this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.7.1 Design Goals

The first problem in designing a system is to define goals and specifications. At
the highest level, the design of the system will be affected by the choice of hard-
ware and the type of system: traditional desktop/laptop, mobile, distributed,
or real time.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and system goals.

Users want certain obvious properties in a system. The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by the developers who must
design, create, maintain, and operate the system. The system should be easy to
design, implement, and maintain; and it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problem of defining the require-
ments for an operating system. The wide range of systems in existence shows
that different requirements can result in a large variety of solutions for different
environments. For example, the requirements for Wind River VxWorks, a real-
time operating system for embedded systems, must have been substantially
different from those for Windows Server, a large multiaccess operating system
designed for enterprise applications.

Specifying and designing an operating system is a highly creative task.
Although no textbook can tell you how to do it, general principles have been

80

Chapter 2 Operating-System Structures

developed in the field of software engineering, and we turn now to a discus-
sion of some of these principles.

2.7.2 Mechanisms and Policies

One important principle is the separation of policy from mechanism. M