
ptg

ptg

OpenGL®

SUPERBIBLE
Fifth Edition

ptg

This page intentionally left blank

ptg

OpenGL®

SUPERBIBLE
Fifth Edition

Richard S. Wright, Jr.
Nicholas Haemel
Graham Sellers

Benjamin Lipchak

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Comprehensive Tutorial and Reference

ptg

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include elec-
tronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

OpenGL super bible : comprehensive tutorial and reference / Richard S.
Wright Jr. ...
[et al.]. — 5th ed.

p. cm.
ISBN 978-0-321-71261-5 (pbk. : alk. paper) 1. Computer graphics. 2.

OpenGL. I. Wright, Richard S., 1965- II. Wright, Richard S., 1965-
OpenGL super bible.

T385.W728 2010
006.6’6—dc22

2010014489

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publi-
cation is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For informa-
tion regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-32-171261-5
ISBN-10: 0-32-171261-7
Text printed in the United States on recycled paper at Edwards
Brothers in Ann Arbor, Michigan.
First printing July 2010

Editor-in-Chief:
Mark Taub

Acquisitions Editor:
Debra Williams Cauley

Development Editor:
Songlin Qiu

Managing Editor:
Kristy Hart

Project Editor:
Anne Goebel

Copy Editor:
Geneil Breeze

Indexer:
Brad Herriman

Proofreader:
Language Logistics,
LLC

Technical Reviewer:
Paul Martz

Publishing
Coordinator:
Kim Boedigheimer

Cover Designer:
Alan Clements

Senior Compositor:
Gloria Schurick

ptg

For my wife, LeeAnne,
For not killing me in my sleep

(when I deserved it).

To the memory of Richard S. Wright, Sr.
Thanks, Dad, for just letting me be a nerd.

—Richard S. Wright, Jr.

To my wife, Anna,
Who has put up with all my engineering nonsense and

given me undying love and support.

And to my parents for providing me with encouragement and more
LEGOs than I could get both arms around.

—Nicholas Haemel

For my wife, Chris, and my son, Jeremy.
I have everything I need in you.

—Graham Sellers

ptg

This page intentionally left blank

ptg

Contents at a Glance

Preface to the Fifth Edition. ..xxi

Preface to the Fourth Edition ..xxiii

Preface to the Third Edition...xxvi

Introduction . ..1

PART I Basic Concepts ...7

1 Introduction to 3D Graphics and OpenGL...9

2 Getting Started33

3 Basic Rendering . ..79

4 Basic Transformations: A Vector/Matrix Primer125

5 Basic Texturing. ..179

6 Thinking Outside the Box: Nonstock Shaders . ..229

7 More Advanced Texture Topics . ..289

PART II Intermediate to Advanced Ideas ..321

8 Buffer Objects: Storage Is Now in Your Hands323

9 Advanced Buffers: Beyond the Basics359

10 Fragment Operations: The End of the Pipeline391

11 Advanced Shader Usage411

12 Advanced Geometry Management . ..471

ptg

PART III Platform-Specific Notes ...539

13 OpenGL on Windows541

14 OpenGL on OS X569

15 OpenGL on Linux597

16 OpenGL ES on Mobile Devices619

Appendix A Further Reading ..653

Appendix B Glossary . ..655

Appendix C OpenGL Man Pages for (Core) OpenGL 3.3 ..661

Index..939

OpenGL SuperBibleviii

ptg

Table of Contents

Preface to the Fifth Edition. ..xxi

Preface to the Fourth Edition ..xxiii

Preface to the Third Edition...xxvi

Introduction . ..1

What’s New in This Edition. ..1
How This Book Is Organized . ..2

Part I: Basic Concepts ..2
Part II: Intermediate to Advanced Ideas..3
Part III: Platform-Specific Notes ..4

Conventions Used in This Book. ...4
About the Companion Web Site . ..5

PART I Basic Concepts7

1 Introduction to 3D Graphics and OpenGL. ...9

A Brief History of Computer Graphics9
Going Electric ..10
Going 3D ...11

3D Graphics Techniques and Terminology. ..14
Transformations and Projections ..14
Rasterization ..14
Shading ..16
Texture Mapping..16
Blending...17
Connecting the Dots ...18

Common Uses for 3D Graphics. ..18
Real-Time 3D ...18
Non-Real-Time 3D ...22
Shaders ...22

ptg

Basic 3D Programming Principles . ..23
Not a Toolbox ..23
Coordinate Systems ...24
Projections: Getting 3D to 2D...28

Summary ...30

2 Getting Started ...33

What Is OpenGL?33
Evolution of a Standard...34
Licensing and Conformance ...38
The Future of OpenGL ..38
Deprecated Functionality ..40

Using OpenGL . ..42
Our Supporting Cast..42
OpenGL API Specifics ..44
OpenGL Errors46
Identifying the Version..47
Getting a Clue with glHint..47
The OpenGL State Machine ..48

Setting Up Windows Projects49
Including Paths..50
Creating the Project...52
Adding Our Files . ..53

Setting Up Mac OS X Projects . ..55
Custom Build Settings ...55
Creating a New Project..56
Frameworks, Headers, and Libraries..59

Your First Triangle61
What to “Include” ...64
Starting GLUT . ..65
Coordinate System Basics ..67
Setting Things Up ..70
Getting Down to Business ...73

Putting a Little Life into It!. ...73
Special Keys..74
Refreshing the Display...75
Simple Automated Animation...76

Summary ...77

OpenGL SuperBiblex

ptg

3 Basic Rendering ..79

The Basic Graphics Pipeline. ..80
Client-Server ..81
Shaders82

Setting Up Your Coordinate System. ...84
Orthographic Projections ..85
Perspective Projections ..85

Using the Stock Shaders. ..86
Attributes ...87
Uniforms ..87

Connecting The Dots. ..89
Points and Lines ..90
Drawing Triangles in 3D..94
Individual Triangles95
A Simple Batch Container ...100
Unwanted Geometry ...101
Polygon Offset ...108
Cutting It Out with Scissors ..111

Blending . ..113
Combining Colors ...114
Changing the Blending Equation ...116
Antialiasing . ..117
Multisampling..121

Summary ...123

4 Basic Transformations: A Vector/Matrix Primer ..125

Is This the Dreaded Math Chapter?126
A Crash Course in 3D Graphics Math..126

Vectors, or Which Way Is Which? ..127
The Matrix130

Understanding Transformations. ...132
Eye Coordinates...132
Viewing Transformations ..133
Modeling Transformations ..134
The Modelview Duality ...135
Projection Transformations ...136
Viewport Transformations...137

Contents xi

ptg

The Modelview Matrix. ..138
Matrix Construction..138
Applying a Modelview Matrix...144

More Objects145
Using the Triangle Batch Class. ..146
Making a Sphere . ..146
Making a Torus . ..147
Making a Cylinder or a Cone. ..148
Making a Disk . ..150

Projection Matrix . ..150
Orthographic Projections ..151
Perspective Projection. ..153
The ModelviewProjection Matrix..155

The Transformation Pipeline . ..159
Using a Matrix Stack..159
Managing Your Pipeline ..161
Spicing It Up!165

Moving Around Using Cameras and Actors. ...167
An Actor Frame..168
Euler Angles: “Use the Frame, Luke!” ...169
Camera Management ..170
Adding More Actors...173
What About Lights?...175

Summary ...177

5 Basic Texturing..179

Raw Image Data . ..180
Pixel Packing..181
Pixmaps. ..183
Packed Pixel Formats ...185
Saving Pixels ..186
Reading Pixels ..188

Loading Textures. ...192
Using the Color Buffer ..193
Updating Textures. ..194
Texture Objects . ..195

Texture Application. ...196
Texture Coordinates ..196
Texture Parameters . ..199
Putting It All Together...202

OpenGL SuperBiblexii

ptg

Mipmapping. ..207
Mipmap Filtering ...209
Generating Mip Levels...210
Mipmaps in Action..210

Anisotropic Filtering ...221
Texture Compression ..223

Compressing Textures..224
Loading Compressed Textures...225
A Final Example. ...226

Summary ...227

6 Thinking Outside the Box, Nonstock Shaders229

GLSL 101230
Variables and Data Types...231
Storage Qualifiers. ...234
A Real Shader236
Compiling, Binding, and Linking ...240
Using the Shader..247
Provoking Vertex248

Shader Uniforms249
Finding Your Uniforms..249
Setting Scalars and Vector Uniforms...250
Setting Uniform Arrays..251
Setting Uniform Matrices ..252
The Flat Shader . ..252

Built-In Functions255
Trigonometry Functions ..256
Exponential Functions ..256
Geometric Functions257
Matrix Functions257
Vector Relational Functions ..258
Common Functions...259

Simulating Light262
Simple Diffuse Lighting...262
The Point Light Diffuse Shader ...264
The ADS Light Model . ..269
Phong Shading. ...273

Contents xiii

ptg

Accessing Textures . ..277
Just the Texels Please ...277
Light the Texels..279
Discarding Fragments . ..281
Cell Shading—Texels as Light ...284

Summary ...287

7 More Advanced Texture Topics ..289

Rectangle Textures . ..289
Loading a Rectangle Texture ...290
Using a Rectangle Texture ...291

Cube Maps . ..294
Loading Cube Maps...295
Making a Skybox297
Making a Reflection. ...299

Multitexture . ..301
Multiple Texture Coordinates ...301
A Multitextured Example . ..302

Point Sprites . ..304
Texturing Points...305
Point Sizes . ..306
Putting This All Together . ..307
Point Parameters. ..310
Shaped Points . ..311
Rotating Points . ..312

Texture Arrays314
Loading a 2D Texture Array ..314
Indexing the Texture Array ...316
Accessing Texture Arrays317

Texture Proxies..318
Summary320

PART II Intermediate to Advanced Ideas . ..321

8 Buffer Objects: Storage Is Now in Your Hands. ..323

Buffers324
Creating Your Very Own Buffers ...324
Filling Buffers. ...325
Pixel Buffer Objects326
Texture Buffer Objects334

OpenGL SuperBiblexiv

ptg

Framebuffer Objects, Going Beyond the Window.336
How to Use FBOs ...336
Renderbuffer Objects337
Draw Buffers . ..339
Framebuffer Completeness ..342
Copying Data in Framebuffers ..345
Putting It All Together—Using FBOs...346

Rendering to Textures ...351
Summary ...358

9 Advanced Buffers: Beyond the Basics . ..359

Getting at Your Data359
Mapping Buffers ..360
Copying Buffers ...361

Controlling the Destiny of Your Pixel Shaders;
Mapping Fragment Outputs ...361

New Formats for a New Hardware Generation . ..364
Floats—True Precision at Last!...364
Multisampling..380
Integers . ..385
sRGB. ...386
Texture Compression. ...387

Summary ...389

10 Fragment Operations: The End of the Pipeline ...391

Scissoring—Cutting Your Geometry Down To Size392
Multisampling. ...392

Sample Coverage..393
Sample Mask . ..394
Putting It All Together. ...394

Stencil Operations...399
Depth Testing. ..402

Depth Clamp ...402
Blending Everything Together..402

Blend Equation ..402
Blend Function ..403
Putting It All Together...404

Dithering ...406
Logic Ops ..407

Contents xv

ptg

Masking Output . ..408
Color ..408
Depth ...408
Stencil ..408
Usage..409

Summary ...409

11 Advanced Shader Usage411

Advanced Vertex Shaders. ..412
Physical Simulation in the Vertex Shader...412

Geometry Shaders419
The Pass-Through Geometry Shader...420
Using Geometry Shaders in an Application422
Discarding Geometry in the Geometry Shader426
Modifying Geometry in the Geometry Shader.................................429
Generating Geometry in the Geometry Shader................................430
Changing the Primitive Type in the Geometry Shader....................434
New Primitive Types Introduced by the Geometry Shader438

Advanced Fragment Shaders. ...441
Post-Processing in the Fragment Shader—Color Correction............442
Post-Processing in the Fragment Shader—Convolution.444
Generating Image Data in the Fragment Shader448
Discarding Work in the Fragment Shader.451
Controlling Depth Per Fragment . ..453

More Advanced Shader Functions. ..454
Interpolation and Storage Qualifiers...454
Other Advanced Built-In Functions ..458

Uniform Buffer Objects. ...460
Building Uniform Blocks ...461

Summary470

12 Advanced Geometry Management . ..471

Gathering Information about the OpenGL Pipeline—Queries.472
Preparing a Query..472
Issuing a Query ..473
Retrieving Query Results ...474
Using the Results of a Query...475
Getting OpenGL to Make Decisions for You478
Measuring Time Taken to Execute Commands480

OpenGL SuperBiblexvi

ptg

Storing Data in GPU Memory . ..483
Using Buffers to Store Vertex Data..484
Storing Vertex Indices in Buffers. ...489

Using Vertex Array Objects to Organize Your Buffers.490
Drawing a lot of Geometry Efficiently492

Combining Drawing Functions...492
Combining Geometry Using Primitive Restart494
Instanced Rendering. ..496
Getting Your Data Automatically. ..503

Storing Transformed Vertices—Transform Feedback.508
Transform Feedback...509
Turning Off Rasterization ..514
Counting Vertices Using Primitive Queries515
Using the Results of a Primitive Query ...516
Example Uses for Transform Feedback..517

Clipping and Determining What Should Be Drawn.528
Clip Distances—Defining Your Own Custom Clip Space.................528

Synchronizing When OpenGL Begins to Draw532
Summary537

PART III Platform-Specific Notes ..539

13 OpenGL on Windows..541

OpenGL Implementations on Windows . ..542
Microsoft’s OpenGL...542
Modern Graphics Drivers ..542
Extended OpenGL ...544
WGL Extensions ..545

Basic Windows Rendering ..547
GDI Device Contexts ...547
Pixel Formats548
The OpenGL Rendering Context ..556

Putting It All Together ..559
Creating the Window ..560

Full-Screen Rendering565
Double Buffering. ...567

Eliminating Visual Tearing ..567
Summary568

Contents xvii

ptg

14 OpenGL on OS X...569

The Four Faces of OpenGL on the Mac. ..569
OpenGL with Cocoa570

Creating a Cocoa Program ..571
Wiring It All Together. ..578
Double or Single Buffered?..580
SphereWorld . ..580

Full-Screen Rendering585
Going Full-Screen with Cocoa...586

CGL593
Sync Frame Rate...593
Increasing Fill Performance ...594
Multithreaded OpenGL ...595

Summary ...595

15 OpenGL on Linux . ..597

The Basics . ..597
Brief History...598
What Is X? ...598

Getting Started . ..598
Checking for OpenGL ...599
Setting Up Mesa. ...599
Setting Up Hardware Drivers. ...600
Setting Up GLUT and GLEW...600
Building OpenGL Apps..601

GLX—Interfacing with X Windows602
Displays and X Windows ..603
Config Management and Visuals ..603
Windows and Render Surfaces ..607
Extending OpenGL and GLX ..608
Context Management. ..609
Synchronization . ..612
GLX Queries. ...613
Putting It All Together. ...614

Summary ...617

OpenGL SuperBiblexviii

ptg

16 OpenGL ES on Mobile Devices619

OpenGL on a Diet. ...619
What’s the ES For? ...620
A Brief History620

Which Version Is Right for You? . ..622
ES 2.0..622

The ES Environment ...627
Application Design Considerations. ...627
Dealing with a Limited Environment ...628
Fixed-Point Math629

EGL: A New Windowing Environment . ..630
EGL Displays ..631
Creating a Window..632
Context Management..636
Presenting Buffers and Rendering Synchronization636
More EGL Stuff ..637

Negotiating Embedded Environments638
Popular Operating Systems. ..638
Vendor-Specific Extensions639
For the Home Gamer. ...639

Apple Handheld Platforms639
Setting Up An iPhone Project. ..640
Moving to the iPhone644

Summary ...652

Appendix A Further Reading ..653

Other Good OpenGL Books..653
3D Graphics Books. ..653
Web Sites654

Appendix B Glossary ..655

Appendix C OpenGL Man Pages for (Core) OpenGL 3.3 ..661

Index..939

Contents xix

ptg

This page intentionally left blank

ptg

xxi

Preface to the Fifth Edition

In nature, occasionally a forest becomes overgrown, and the forest ecosystem begins to
collapse a bit under its own weight. Lightning sometimes strikes and burns down the
forest, enabling a fresh new start, and a new blueprint from what was before emerges. The
fifth edition of this book has undergone just such a radical transformation. We have burnt
the fourth edition to the ground, and save for a few isolated patches, this entire book
represents new growth.

The same can be said for OpenGL. With OpenGL 3.0, the word deprecated was introduced
to the specification for the first time. Features and functionality were marked for removal,
and developers were urged to move forward. A leaner, meaner OpenGL was envisioned as
the baggage of the fixed pipeline was jettisoned. Things don’t always go as planned,
however. During the late 1990s OpenGL was besieged in what is sometimes now called the
API Wars, by Microsoft’s Direct 3D API. Ultimately developers, however, are in charge of
dominant APIs, and OpenGL refused to die. Instead it flourished and has become the
world standard for real-time 3D graphics rendering. Again developers seem to have
spoken, and despite the efforts of OpenGL’s own greatest champions on the ARB, the fixed
pipeline simply refuses to die off. Today, we have two flavors of OpenGL, the compatibility
profile and the core profile.

For this reason, it is entirely likely that the fourth edition of this book, which covers what
could now simply be called the classic OpenGL 2.1 fixed function profile, will remain in
demand for years to come. The fixed function pipeline has a tremendous amount of
legacy behind it, is very easy to program for, and is today fully hardware accelerated on a
modern graphics card. Many nonperformance minded and nongraphics specialists may
well prefer this programming model for some time to come. Only time will tell.

Meanwhile, we were faced with what to do for the fifth edition of this book. OpenGL is
being updated every 6 months or so, and we had two updates during the writing of this
book! Trying to cover the compatibility and the core profile simultaneously leads to a lot
of confusion. In addition, many of the newer more modern effects are only possible with
shaders. The fixed pipeline mode of graphics programming, while still useful to many,
seems more and more rudimentary with each passing year. So, moving forward, we
thought it best to focus this edition solely on the core profile. As far as I know, this will be
the first book on the market to do so. In teaching OpenGL at Full Sail University, I faced a
huge challenge trying to figure out how to teach OpenGL without the fixed pipeline. I, as
well as many others that I have observed, taught shader programming as an extension of
the fixed pipeline. How do you start to use OpenGL without several initially boring chap-
ters on shader programming? A number of tools allow you to write shaders in an IDE type
environment, and some have taken this as the initial approach. This has its uses, and I

ptg

have no criticism of this approach. My preference, however, is to have an actual program
that I can run that does something interesting. This is how I learned to program…then I
can send the program to my mom, girlfriend, buddy, boss, and so on, and show them how
clever I am. This is a powerful feedback mechanism when it comes to mastering new tech-
nologies. It’s how I learned, and it was the pattern of the first four (and best-selling)
editions of this book. It’s an approach I did not want to abandon for this edition either. I
hope you like the results of our efforts.

—Richard S. Wright, Jr.

OpenGL SuperBiblexxii

ptg

Preface to the Fourth Edition

My career has been built on a long history of making “stupid” choices and accidentally
being right. First, I went to Microsoft’s DOS, instead of the wildly popular CP/M. Later, I
recall, friends counseled me that Windows was dead, and too hard to program for, and
that OS/2 was the future (you couldn’t lose by sticking with IBM, they’d say).

Just got lucky, I guess.

There were a few other minor wrong turns that just happened to fortunately have me
pointed away from some other collapsing industry segment, but my next really big stupid
decision was writing the first edition of this book. I had already built a nice comfortable
career out of fixing SQL database problems and was making the transition to large-scale
enterprise IT solutions in the healthcare industry. A book on OpenGL? I had no idea what
I was doing. The first time I read the official OpenGL specification, I had to all but breathe
in a paper bag, my first co-author quit in disgust, and the whole project was very nearly
canceled before the book was half-finished.

As soon as the book came out, I had some meager credibility outside my normal field of
expertise. I was offered a job at Lockheed-Martin/Real3D doing “real” OpenGL work. My
then-current boss (God bless you, David, wherever you are!) tried really hard to talk me
out of throwing my career away. Everybody knows, he insisted, that whatever Microsoft
does is going to be the way the industry goes, and Microsoft’s Talisman graphics platform
was going to bury OpenGL into obscurity. Besides, there was only one other book on
OpenGL in existence; how big a thing could it possibly be?

Eleven years have passed, and as I finish yet the fourth edition of this book (and look at a
shelf full of OpenGL books), the number of people reading this who remember the short-
lived hype of Talisman would probably fit in the back of my minivan. An OpenGL engi-
neer I used to know at IBM had in her e-mail signature: “OpenGL. It’s everywhere. Do the
math.” This has never been truer than it is today.

OpenGL today is the industry-leading standard graphics API on nearly every conceivable
platform. This includes not only desktop Windows PCs and Macs, but also UNIX worksta-
tions, location-based entertainment systems, major game consoles (all but one), handheld
gaming devices, cell phones, and a myriad of other embedded systems such as avionic and
vehicle instrumentation.

Across platforms, OpenGL is the undisputed champion of 3D content creation applica-
tions, 3D games, visualization, simulation, scientific modeling, and even 2D image and
video editing. OpenGL’s widespread success can be attributed to its elegance and ease of
use, its power and flexibility, and the overwhelming support it has received from the

Preface to the Fourth Edition xxiii

ptg

OpenGL SuperBiblexxiv

developer and IHV communities. OpenGL can be extended as well, providing all the bene-
fits of an open standard, as well as giving vendors the ability to add their own proprietary
added value to implementations.

You have probably heard that programmable hardware is the future of 3D graphics
programming, and of graphics APIs. This is no longer true. Programmable hardware is no
longer in the future; it is here now, today, even on the lowest cost motherboard embedded
3D chipsets. It is not a fluke that this edition follows the last at the closest interval of the
series. The pace of evolving graphics technology is simply staggering, and this edition
brings you up-to-date on the now-latest OpenGL version 2.1.

We have reinforced the chapters on fixed-pipeline programming, which is not going away
anytime soon, and have affectionately deemed them “The Old Testament;” still relevant,
illustrative, and the foundation on which the “New Testament” of programmable hard-
ware is based. I find the analogy quite appropriate, and I would refute anyone who thinks
the fixed pipeline is completely dead and irrelevant. The rank and file of application devel-
opers (not necessarily cutting-edge game developers) would, I’m sure, agree.

That said, we have still trimmed some dead weight. Color Index mode is ignored as much
as possible, some old paletted rendering material from the Windows chapter has been
pruned, and we have eliminated all the old low-level assembly-style shader material to
make room for updated and expanded coverage of the high-level shading language (GLSL).
You’ll also find a whole new chapter on OpenGL on handheld systems, totally rewritten
Mac OS X and Linux chapters, and a really great new chapter on advanced buffer tech-
niques such as off-screen rendering and floating-point textures.

Another big change some readers will notice is that the OpenGL SuperBible has been
acquired and adopted into the Addison-Wesley Professional OpenGL series. I can’t begin to
express how grateful I am and how humbled I feel by this honor. I myself have worn out
the covers on at least one edition of every volume in this series.

One of the reasons, I think, for the longevity of this book has been the unique approach it
takes among OpenGL books. As much as possible, we look at things through the eyes of
someone who is excited by 3D graphics but knows very little about the topic. The purpose
of a tutorial is to get you started, not teach you everything you will ever need to know.
Every professional knows that you never reach this place. I do occasionally get some criti-
cism for glossing over things too much, or not explaining things according to the strictest
engineering accuracy. These almost never come from those for whom this book was
intended. We hope for a great many of you that this will be your first book on OpenGL
and 3D graphics. We hope for none of you that it will be your last.

Well, I did make one really “smart” decision about my career once. Once upon a time in
the early 1980s, I was a student looking at a computer in an electronics store. The sales-
man approached and began making his pitch. I told him I was just learning to program
and was considering an Amiga over his model. I was briskly informed that I needed to get

ptg

serious with a computer that the rest of the world was using. An Amiga, he told me, was
not good for anything but “making pretty pictures.” No one, he assured me, could make a
living making pretty pictures on his computer. Unfortunately, I listened to this “smart”
advice and regretted it for more than ten years. Thank God I finally got stupid.

As for making a living “making pretty pictures?” Do the math.

Oh, and my latest stupid decision? I’ve left Windows and switched to the Mac. Time will
tell if my luck holds out.

—Richard S. Wright, Jr.

Preface to the Fourth Edition xxv

ptg

xxvi

Preface to the Third Edition

I have a confession to make. The first time I ever heard of OpenGL was at the 1992 Win32
Developers Conference in San Francisco. Windows NT 3.1 was in early beta (or late alpha),
and many vendors were present, pledging their future support for this exciting new graph-
ics technology. Among them was a company called Silicon Graphics, Inc. (SGI). The SGI
representatives were showing off their graphics workstations and playing video demos of
special effects from some popular movies. Their primary purpose in this booth, however,
was to promote a new 3D graphics standard called OpenGL. It was based on SGI’s propri-
etary IRIS GL and was fresh out of the box as a graphics standard. Significantly, Microsoft
was pledging future support for OpenGL in Windows NT.

I had to wait until the beta release of NT 3.5 before I got my first personal taste of
OpenGL. Those first OpenGL-based screensavers only scratched the surface of what was
possible with this graphics API. Like many other people, I struggled through the Microsoft
help files and bought a copy of the OpenGL Programming Guide (now called simply “The
Red Book” by most). The Red Book was not a primer, however, and it assumed a lot of
knowledge that I just didn’t have.

Now for that confession I promised. How did I learn OpenGL? I learned it by writing a
book about it. That’s right, the first edition of the OpenGL SuperBible was me learning how
to do 3D graphics myself…with a deadline! Somehow I pulled it off, and in 1996 the first
edition of the book you are holding was born. Teaching myself OpenGL from scratch
enabled me somehow to better explain the API to others in a manner that a lot of people
seemed to like. The whole project was nearly canceled when Waite Group Press was
acquired by another publisher halfway through the publishing process. Mitchell Waite
stuck to his guns and insisted that OpenGL was going to be “the next big thing” in
computer graphics. Vindication arrived when an emergency reprint was required because
the first run of the book sold out before ever making it to the warehouse.

That was a long time ago, and in what seems like a galaxy far, far away….

Only three years later 3D accelerated graphics were a staple for even the most stripped-
down PCs. The “API Wars,” a political battle between Microsoft and SGI, had come and
gone; OpenGL was firmly established in the PC world; and 3D hardware acceleration was
as common as CD-ROMs and sound cards. I had even managed to turn my career more
toward an OpenGL orientation and had the privilege of contributing in some small ways
to the OpenGL specification for version 1.2 while working at Lockheed-Martin/Real3D.
The second edition of this book, released at the end of 1999, was significantly expanded
and corrected. We even made some modest initial attempts to ensure that all the sample
programs were more friendly in non-Windows platforms by using the GLUT framework.

ptg

Now, nearly five years later (eight since the first edition!), we bring you yet again another
edition, the third, of this book. OpenGL is now without question the premier cross-plat-
form real-time 3D graphics API. Excellent OpenGL stability and performance are available
on even the most stripped-down bargain PC today. OpenGL is also the standard for UNIX
and Linux operating systems, and Apple has made OpenGL a core fundamental technol-
ogy for the new Mac OS X operating system. OpenGL is even making inroads via a new
specification, OpenGL ES, into embedded and mobile spaces. Who would have thought
five years ago that we would see Quake running on a cell phone?

It is exciting that, today, even laptops have 3D acceleration, and OpenGL is truly every-
where and on every mainstream computing platform. Even more exciting, however, is the
continuing evolution of computer graphics hardware. Today, most graphics hardware is
programmable, and OpenGL even has its own shading language, which can produce stun-
ningly realistic graphics that were undreamed of on commodity hardware back in the last
century (I just had to squeeze that in someplace!).

With this third edition, I am pleased that we have added Benjamin Lipchak as a co-author.
Benj is primarily responsible for the chapters that deal with OpenGL shader programs; and
coming from the ARB groups responsible for this aspect of OpenGL, he is one of the most
qualified authors on this topic in the world.

We have also fully left behind the “Microsoft Specific” characteristics of the first edition
and have embraced a more multiplatform approach. All the programming examples in
this book have been tested on Windows, Mac OS X, and at least one version of Linux.
There is even one chapter apiece on these operating systems, with information about
using OpenGL with native applications.

—Richard S. Wright, Jr.

Preface to the Third Edition xxvii

ptg

Acknowledgments

Thanks to Nick and Graham for picking up so much weight of the book for this edition.
Thanks for debugging my code, finding stupid mistakes before the readers did, and gener-
ally for being smarter than me most of the time, but letting me take most of the credit
anyway. Thank you Debra Williams Cauley for believing in yet another edition of this
book, holding my hand, and not sending the enforcer to my house when I was
late…continually. Songlin, someday I will learn the difference between “your” and
“you’re” and “it’s” and “its.” Thank you for making it look like I did get past the eighth
grade and not making me feel like a fool along the way. Brian Collins and Chris “Xenon”
Hanson did a terrific job of looking over the early material too and caught more than a
few potentially embarrassing snafus. I am forever grateful. I owe you both a beer anytime
you’re in town.

Thanks to Full Sail University for letting me teach OpenGL for more than ten years now,
while still continuing my “day job”—especially Rob Catto for looking the other way more
than once and running interference when things get in my way on a regular basis. To my
very good friends and associates in the graphics department there, Wendy “Kitty” Jones,
Kent Ward, and Nick Bullock, thanks for all the support, emotional and physical, the occa-
sional Thai food, and sometimes just doing my job for me.

Special thanks to Software Bisque (Steve, Tom, Daniel, and Matt) for giving me something
“real” to do with OpenGL every day and providing me with possibly the coolest day (and
night) job anybody could ever ask for. I also have to thank my family, LeeAnne, Sara,
Stephen, and Alex. You’ve all put up with a lot of mood swings, rapidly changing priori-
ties, and an unpredictable work schedule, not to mention a good measure of motivation
when I really needed it.

Finally, thank you Apple for not making me wait to “install important updates, do not
shut off your computer” every single time I needed to reboot to change operating systems.
AMD/ATI thanks for the cool new toys you sent my way to help out too. I’m so glad to see
you guys doing all you can to support the OpenGL standard.

—Richard S. Wright, Jr.

OpenGL SuperBiblexxviii

ptg

Acknowledgments xxix

First, thanks, Richard, for including me on another great adventure in creating an OpenGL
publishing milestone. Without your dedication and commitment, computer graphics
students would not have the necessary tools to learn 3D graphics. It has been a pleasure
working with you over the years to help support 3D graphics and OpenGL specifically.
Thanks to Graham for helping me bring this edition into the OpenGL 3.3 stratosphere.
Your watchful eye has saved me much trouble and helped to keep this book true to its
theme. Thank you, Debra Williams Cauley, for easing us back into the publishing process
and guiding my unfamiliar hands through the finish line. Your patience is unequaled and
undeserved. And, Songlin, thanks for your watchful eye and for polishing my raw text.

This work could not be successful without all of the great feedback provided by so many.
A special thanks goes to Mark Young of AMD for meticulously reviewing all of my work
and providing excellent feedback without having any responsibility to do so. Brian Collins
and Chris Hanson, you both have been critical to making sure the material is top quality
and bug-free. Thanks for your timely feedback.

I also want to thank AMD and all of the great developers in the OpenGL group. You have
been incredibly supportive and helpful in making OpenGL 3.3 available on real hardware,
getting samples working, and making my job possible. Thanks to Mark Young, Mais
Alnasser, Ken Wang, Jaakko Konttinen, Murat Balci, Bird Zhang, Zhihong Wang, Frank Li,
Erick Zolnowski, Qun Lin, Jesse Zhou, Ethan Wei, Zhaohua Dong, and many others. You
all have done a tremendous job. A special thanks goes to the Khronos standards body
group and all participating companies who have worked hard to keep OpenGL current,
relevant, and competitive as the only true cross-platform 3D API.

And of course I couldn’t have completed this project without the support of my family
and friends. To my wife, Anna: You have put up with all of my techno-mumble-jumble all
these years while at the same time saving lives and making a difference in medicine in
your own right. Thanks for your patience and support; I could never be successful without
you.

—Nicholas Haemel

ptg

Thanks so much to my co-authors, Richard and Nick, and to our publishers for putting
faith in me to cut my authoring teeth on a chunk of a publication like this one. It has
been a privilege working with you on this project, and I hope that this is the first of many.
Thanks to Dave for saying “Sure, I like Graham.” Thanks, Debra, for pushing and prodding
me as needed (and it was often needed) to get me to deliver. Thanks to Songlin for teach-
ing me how to properly format a document. The feedback I received from our tech review-
ers Brian Collins and Chris “Xenon” Hanson was most helpful…and reassuring that I
hadn’t said anything silly.

I’d like to extend a warm thanks to my colleagues at AMD. In particular I’d like to thank
Mark Young, who read what I had written when it was in a very unrefined state, even
before it had gotten to the tech reviewers. Mark also put a massive amount of effort into
updating the OpenGL reference in the appendix of this book. That really goes above and
beyond—thanks! Cheers to Jaakko, Murat, and everyone else who offered suggestions and
help while I was concocting the examples for this book. I’ve really enjoyed our brain-
storms. Your input was extremely valuable and half of what I do just wouldn’t work if it
weren’t for you guys. Thanks to Bill and Nick (again) for helping me get involved in
Khronos and the ARB. Pierre, you’ve been a great mentor. Thanks to Suki for letting me
step well outside my job description and get my hands on pretty much anything I want.
You’ve provided an incredible opportunity for me, and I appreciate it.

Everyone who’s helped me along the way deserves thanks: My old colleagues at Epson; the
folks on the ARB—thanks for being so accepting of this guy who just showed up one day.
Many of these guys are my competitors, and I appreciate that we’ve been able to work
together on so many things.

Finally, I owe a huge thanks to my family. Chris, you’re amazing. You’ve given me so
much, and I love you. Jeremy, you’re awesome. Mum, Dad, thanks for making me! Barry
and Phyllis, thanks for making Chris!

—Graham Sellers

OpenGL SuperBiblexxx

ptg

About the Authors

Richard S. Wright Jr. has been using OpenGL for more than 15 years and has taught
OpenGL programming in the game design degree program at Full Sail University near
Orlando, Florida, for more than 10. Currently, Richard is a Senior Engineer at Software
Bisque, where he is the technical lead for Seeker, a 3D solar system simulator, and the
product manager for their full dome theater planetarium products.

Previously with Real 3D/Lockheed Martin, Richard was a regular OpenGL ARB attendee
and contributed to the OpenGL 1.2 specification and conformance tests back when
mammoths still walked the earth. Since then, Richard has worked in multidimensional
database visualization, game development, medical diagnostic visualization, and astro-
nomical space simulation on Windows, Linux, Mac OS X, and various handheld plat-
forms.

Richard first learned to program in the eighth grade in 1978 on a paper terminal. At age
16, his parents let him buy a computer with his grass-cutting money instead of a car, and
he sold his first computer program less than a year later (and it was a graphics program!).
When he graduated from high school, his first job was teaching programming and
computer literacy for a local consumer education company. He studied electrical engineer-
ing and computer science at the University of Louisville’s Speed Scientific School and
made it halfway through his senior year before his career got the best of him and took
him to Florida. A native of Louisville, Kentucky, he now lives in Lake Mary, Florida. When
not programming or dodging hurricanes, Richard is an avid amateur astronomer and
photography buff. Richard is also, proudly, a Mac.

Nicholas Haemel has been involved with OpenGL for more than 12 years, soon after its
wide acceptance. He graduated from the Milwaukee School of Engineering with a degree
in Computer Engineering and a love for embedded systems, computer hardware, and
making things work. Soon after graduation he put these skills to work for the 3D drivers
group at ATI, developing graphics drivers and working on new GPUs.

Nick is now a Member of the Technical Staff at Advanced Micro Devices (AMD) in the
OpenGL group and has been a key contributor to driver architecture, design, and develop-
ment. He has also led all key initiatives and projects for the Workstation OpenGL market.
Nick has contributed to the OpenGL Architecture Review Board, now part of The Khronos
Group, for the past four years and has participated in defining the OpenGL 3.0, 3.1, 3.2,
3.3, and 4.0 specifications as well as related extensions and GL Shading Language versions.
In addition to OpenGL, he has contributed to OpenGL ES, WebGL, and EGL working
groups.

xxxi

ptg

Nick’s graphics career began at age 9 when he first learned to program 2D graphics using
Logo Writer. After convincing his parents to purchase a state-of-the-art 286 IBM compati-
ble PC, it immediately became the central control unit for robotic arms and other
remotely programmable devices. Fast-forward 20 years, and the devices being controlled
are GPUs the size of a fingernail but with more than 2 billion transistors. Nick’s interests
also extend to business leadership and management, strengthened by a recent MBA from
the University of Wisconsin-Madison, where he now resides. When not working on accel-
erating the future of graphics hardware, Nick enjoys the outdoors as a competitive sailor,
mountaineer, ex-downhill ski racer, road biker, and photographer.

Graham Sellers is a classic geek. His family got their first computer (a BBC Model B) right
before his sixth birthday. After his mum and dad stayed up all night programming it to
play “Happy Birthday,” he was hooked and determined to figure out how it worked. Next
came basic programming and then assembly language. His first real exposure to graphics
was via “demos” in the early nineties, and then through Glide, and finally OpenGL in the
late nineties. He holds a master’s degree in Engineering from the University of
Southampton, England.

Currently, Graham is a manager on the OpenGL driver team at AMD. He represents AMD
at the ARB and has contributed to many extensions and to the core OpenGL Specification.
Prior to that, he was a team lead at Epson, implementing OpenGL-ES and OpenVG drivers
for embedded products. Graham holds several patents in the fields of computer graphics
and image processing. When he’s not working on OpenGL, he likes to disassemble and
reverse engineer old video game consoles (just to see how they work and what he can
make them do). Originally from England, Graham now lives in Orlando, Florida, with his
wife and son.

OpenGL SuperBiblexxxii

ptg

Introduction

Welcome to the fifth edition of the OpenGL SuperBible. For over a decade, we have striven
to provide the world’s best introduction to not only OpenGL, but 3D graphics program-
ming in general. This book is both a comprehensive reference and a tutorial that teaches
you how to use this powerful API to create stunning 3D visualizations, games, and other
graphics of all kinds. Starting with basic 3D terminology and concepts, we take you
through basic primitive assembly, transformations, lighting, and texturing, and eventually
bring you into the full power of the programmable graphics pipeline with the OpenGL
Shading Language.

Regardless of whether you are programming on Windows, Mac OS X, Linux, or a hand-
held gaming device, this book is a great place to start learning OpenGL and how to make
the most of it on your specific platform. The majority of the book is highly portable C++
code hosted by the GLUT or FreeGLUT toolkit. You also find OS-specific chapters that
show how to wire OpenGL into your native window systems. Throughout the book, we
try to make few assumptions about how much previous knowledge the reader has of 3D
graphics programming topics. This yields a tutorial that is accessible by both the begin-
ning programmer and the experienced programmer beginning OpenGL.

What’s New in This Edition
Readers of the previous editions will notice right away that this book is smaller. What
happened? In OpenGL 3.0, certain features were marked as deprecated, that is, they were
flagged as candidates for removal from future versions of OpenGL. Thus far, largely due to
developer pressure, nothing has been officially removed from OpenGL. Instead, currently
we have two flavors of OpenGL, the compatibility profile that contains all the latest func-
tionality plus the deprecated features, and the core profile, which contains none of the
deprecated functionality. Because the point of marking features as deprecated is to move
the standard forward, this edition does not cover any of the deprecated functionality, but
instead focuses only on the core profile. The core profile as of OpenGL 3.3 to be specific.

We kept the very popular reference material found at the end of the book; however, it has
been pruned also of any deprecated functions. This is a great place to start if you want to
make the most modern and forward-looking OpenGL programs possible. The chapters that
make up the tutorial section of the book are 95% or more all brand new material. We did
not want to take the approach of building on the deprecated OpenGL functionality, and
thus brand new material with a brand new approach was called for. This includes all of
the operating system specific chapters for this edition, which have been mostly totally
rewritten from the ground up as well.

ptg

The OpenGL ES chapter now specifically covers using OpenGL ES on the iPhone. This
includes the iPod Touch and the iPad, and some of the samples from earlier in the book
have been ported to these devices as well. This is a welcome addition as when the last
edition was written, there was no comparable mainstream OpenGL ES device that any
reader (with a Mac) could make use of so easily.

The GLTools library has been significantly enhanced with this edition. A collection of
stock shaders enables you to get started right away learning how to use shaders before
actually delving into writing shaders of your own. In addition, a collection of lightweight
C++ classes allows for management of your geometry batches and supports creating and
manipulating your own matrix stacks. Like the old GLU library, this library should be
thought of as a set of helper routines only, not a complete programming framework for
using OpenGL.

How This Book Is Organized
The OpenGL SuperBible is divided into three parts. Part I is the basic OpenGL/3D graphics
tutorial. Part II covers more advanced OpenGL programming topics, and Part III covers
some OS specific features that help you make the most of OpenGL on your chosen plat-
form. These three parts are followed by three appendices, which include pointers to other
good OpenGL references and tutorials, a short glossary, and a complete reference section
of the core profile.

Part I: Basic Concepts
You learn how to construct a program that uses OpenGL, how to set up your 3D-rendering
environment, and how to create basic objects and light and shade them. Then we delve
deeper into using OpenGL and introduce you to GLSL and how to create your own
shaders. These chapters are a good way to introduce yourself to 3D graphics programming
with OpenGL and provide the conceptual foundation on which the more advanced capa-
bilities later in the book are based.

Chapter 1—Introduction to 3D Graphics and OpenGL. This introductory chapter is for
newcomers to 3D graphics. It introduces fundamental concepts and some common vocab-
ulary.

Chapter 2—Getting Started. In this chapter, we provide you with a working knowledge of
what OpenGL is, where it came from, and where it is going. You write your first program
using OpenGL, find out what headers and libraries you need to use, learn how to set up
your environment, and discover how some common conventions can help you remember
OpenGL function calls. We also introduce the OpenGL state machine and error-handling
mechanism.

Chapter 3—Basic Rendering. Here, we present the building blocks of 3D graphics
programming. You basically find out how to tell a computer to create a three-dimensional
object with OpenGL using geometric primitives, use a shader, and set uniforms and

OpenGL SuperBible2

ptg

attributes. You also learn the basics of hidden surface removal, blending and antialiasing,
and different ways to query the OpenGL driver for implementation specifics.

Chapter 4—Basic Transformations: A Vector/Matrix Primer. Now that you’re creating
three-dimensional shapes in a virtual world, how do you move them around? How do you
move yourself around? These are the things you learn here. There is remarkably little
actual OpenGL in this chapter, but we cover concepts you really need to know before you
can move forward.

Chapter 5—Basic Texturing. Texture mapping is one of the most useful features of any
3D graphics toolkit. You learn how to wrap images onto polygons and how to load and
manage multiple textures at once.

Chapter 6—Thinking Outside the Box: Nonstock Shaders. Now that we have the basics
of the client side of OpenGL programming down, it’s time to devote some time to the
server side, how to write shaders with GLSL. This chapter provides a gentle introduction
with some useful examples that build on what you’ve learned using the stock shaders.

Chapter 7—More Advanced Texture Topics. Beyond basic texturing, in this chapter we
cover Cube Maps, 3D textures, and just using textures for data storage. We also cover
point sprites here and some other kinds of nonvisual texture applications.

Part II: Intermediate to Advanced Ideas
In the second part of the book, we go a bit more in-depth. This is where the really cool
stuff starts happening with OpenGL, and knowing how to make use of these more
advanced topics is what will separate you from the more casual 3D dabblers. Not only
will more visual effects be within your grasp, but many of these topics are performance-
oriented as well.

Chapter 8—Buffer Objects: Storage Is Now in Your Hands. OpenGL no longer supports
client-side storage of data. In this chapter, you learn the in and outs of the different kinds
of storage buffers used in OpenGL, including how to render into your own off-screen
frame buffers.

Chapter 9—Advanced Buffers: Beyond the Basics. Taking buffers up a notch, this
chapter shows you how to go the extra mile and some very useful, but not always typical,
buffer formats.

Chapter 10—Fragment Operations: The End of the Pipeline. There is still quite a bit of
processing that goes on once the fragment shader has turned loose of color, depth, and
other data. This chapter talks about some per-fragment operations, including the very
useful stencil test.

Chapter 11—Advanced Shader Usage. This chapter extends your shader programming to
include the optional middle stage of shader programming, the Geometry Shader. In addi-
tion, more advanced shader management and usage patterns such as uniform blocks are
covered.

Introduction 3

ptg

Chapter 12—Advanced Geometry Management. The final chapter covers advanced
methods and tricks for managing your geometry and rendering operations. Some useful
features of OpenGL are available to optimize processing of large amounts of geometry and
eliminating geometry that cannot be seen ahead of time. Finally, there are actually some
useful timing features that are now built-in to OpenGL.

Part III: Platform-Specific Notes
The third and last part of the book is less about OpenGL than about how different operat-
ing systems interface with and make use of OpenGL. Here we wander outside the “official”
OpenGL specification to see how OpenGL is supported and interfaced with on Windows,
Mac OS X, Linux, and handheld devices such as the iPhone using OpenGL ES 2.0.

Chapter 13—OpenGL on Windows. Here, you learn how to write real Windows programs
that use OpenGL. You learn about Microsoft’s “wiggle” functions that glue OpenGL
rendering code to Windows device contexts.

Chapter 14—OpenGL on OS X. In this chapter, you learn how to use OpenGL in native
Mac OS X applications. Sample programs show you how to start working, primarily with
Cocoa, using the Xcode development environment.

Chapter 15—OpenGL on Linux. This chapter discusses GLX, the OpenGL extension used
to support OpenGL applications through the X Window System on UNIX and Linux. You
learn how to create and manage OpenGL contexts as well as how to create OpenGL
drawing areas.

Chapter 16—OpenGL ES on Mobile Devices. This chapter is all about how OpenGL is
pared down to fit on handheld and embedded devices. We cover what’s gone, what’s new,
and how to get going even with an emulated environment. We even port one of our
desktop example programs to the iPhone.

Conventions Used in This Book
The following typographic conventions are used in this book:

• Code lines, commands, statements, variables, and any text you type or see on-screen
appear in a computer typeface.

• Italics highlight technical terms when they first appear in the text and are being
defined.

OpenGL SuperBible4

ptg

About the Companion Web Site
This is the second time this book has shipped without a CD-ROM. Welcome to the age of
the Internet! Instead, all our source code is available online at our support Web site:

www.starstonesoftware.com/OpenGL

Here you find the source code to all the sample programs in the book, as well as prebuilt
projects for Developers Studio (Windows) and Xcode (Mac OS X). For Linux users we have
makefiles for command-line building of the projects as well. We even plan to post a few
tutorials and some code updates, so check back from time to time, even after you’ve
downloaded all the source code.

Introduction 5

ptg

This page intentionally left blank

ptg

PART I

Basic Concepts

Contrary to what you may have heard, 3D graphics
programming with OpenGL (or any other 3D API for that
matter), is not all about the shaders. Quite a bit of work
must be done on the client side, be it with C, C++, C#,
JavaScript, and so on, to manage those shaders and to feed
them geometry, transformation matrices, and other miscel-
laneous goodies.

Part I of this book is really a tutorial—a 3D graphics
programming tutorial, from almost first principles, and of
course built on OpenGL, the industry standard for real-time
3D graphics rendering.

Shader programming is very exciting, but this book is not
intended to be a shader programming book. In fact,
knowing how to write great shaders gets you nowhere
without the knowledge of how to manage your scene; set up
your viewing, modeling, and projection matrices; load
textures…I think you get my point.

To get you going, we provide a small inventory of “stock
shaders” that perform the most common rendering tasks.
You might even find that for simple 3D rendering, these
shaders provide everything you need. It is unlikely, though,
that you’ll be satisfied with stopping there once you’ve
mastered the higher level ropes. We also provide you a GLSL
“QuickStart” before launching into Part II, “Intermediate to
Advanced Ideas,” so you won’t have to wait to start getting
creative on your own as you master the rest of the OpenGL
API.

You will find that the online world (as well as some other
fine books) is a rich repository of advanced, as well as
simple and clever shader code for a great many purposes.
Once you have a good working knowledge of how to make
best use of all those great shaders, you are going to want to
write some of your own. For that, we point you to some
excellent resources in Appendix A, “Further Reading.”

ptg

This page intentionally left blank

ptg

CHAPTER 1

Introduction to 3D Graphics
and OpenGL

by Richard S. Wright, Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

• A brief overview of the history of computer graphics

• How we make 3D graphics on a 2D screen

• About the basic 3D effects and terminology

• How a 3D coordinate system and the viewport works

• What vertices are and how we use them

• About the different kinds of 3D projections

This book is about OpenGL, a programming interface for creating real-time 3D graphics.
Before we begin talking about what OpenGL is and how it works, you should have at least
a high-level understanding of real-time 3D graphics in general. Perhaps you picked up this
book because you want to learn to use OpenGL, but you already have a good grasp of real-
time 3D principles. If so, great: Skip directly to Chapter 2, “Getting Started.” If you bought
this book because the pictures look cool and you want to learn how to do this on your
computer…you should probably start here.

A Brief History of Computer Graphics
The first computers consisted of rows and rows of switches and lights. Technicians and
engineers worked for hours, days, or even weeks to program these machines and read the
results of their calculations. Patterns of illuminated bulbs conveyed useful information to
the computer users, or some crude printout was provided. You might say that the first

ptg

10 CHAPTER 1 Introduction to 3D Graphics and OpenGL

form of computer graphics was a panel of blinking lights. (This idea is supported by stories
of early programmers writing programs that served no useful purpose other than creating
patterns of blinking and chasing lights!)

Times have changed. From those first “thinking machines,” as some called them, sprang
fully programmable devices that printed on rolls of paper using a mechanism similar to a
teletype machine. Data could be stored efficiently on magnetic tape, on disk, or even on
rows of hole-punched paper or stacks of paper-punch cards. The “hobby” of computer
graphics was born the day computers first started printing. Because each character in the
alphabet had a fixed size and shape, creative programmers in the 1970s took delight in
creating artistic patterns and images made up of nothing more than asterisks (*).

Going Electric
Paper as an output medium for computers is useful and persists today. Laser printers and
color inkjet printers have replaced crude ASCII art with crisp presentation quality and
photographic reproductions of artwork. Paper and ink, however, can be expensive to
replace on a regular basis, and using them consistently is wasteful of our natural resources,
especially because most of the time we don’t really need hard-copy output of calculations
or database queries.

The cathode ray tube (CRT) was a tremendously useful addition to the computer. The orig-
inal computer monitors, CRTs were initially just video terminals that displayed ASCII text
just like the first paper terminals—but CRTs were perfectly capable of drawing points and
lines as well as alphabetic characters. Soon, other symbols and graphics began to supple-
ment the character terminal. Programmers used computers and their monitors to create
graphics that supplemented textual or tabular output. The first algorithms for creating
lines and curves were developed and published; computer graphics became a science
rather than a pastime.

The first computer graphics displayed on these terminals were two-dimensional, or 2D.
These flat lines, circles, and polygons were used to create graphics for a variety of
purposes. Graphs and plots could display scientific or statistical data in a way that tables
and figures could not. More adventurous programmers even created simple arcade games
such as Lunar Lander and Pong using simple graphics consisting of little more than line
drawings that were refreshed (redrawn) several times a second.

The term real-time was first applied to computer graphics that were animated. A broader
use of the word in computer science simply means that the computer can process input as
fast as or faster than the input is being supplied. For example, talking on the phone is a
real-time activity in which humans participate. You speak, and the listener hears your
communication immediately and responds, allowing you to hear immediately and
respond again, and so on. In reality, there is some delay involved due to the electronics,
but the delay is usually imperceptible to those having the conversation. In contrast,
writing a letter or an e-mail is not a real-time activity.

ptg

Applying the term real-time to computer graphics means that the computer is producing
an animation or a sequence of images directly in response to some input, such as joystick
movement or keyboard strokes. Real-time computer graphics can display a wave form
being measured by electronic equipment, numerical readouts, or interactive games and
visual simulations.

Going 3D
The term three-dimensional, or 3D, means that an object being described or displayed has
three dimensions of measurement: width, height, and depth. An example of a two-dimen-
sional object is a piece of paper on your desk with a drawing or writing on it, having no
perceptible depth. A three-dimensional object is the can of soda next to it. The soft drink
can is round (width and depth) and tall (height). Depending on your perspective, you can
alter which side of the can is the width or height, but the fact remains that the can has
three dimensions. Figure 1.1 shows how we might measure the dimensions of the can and
piece of paper.

A Brief History of Computer Graphics 11
1

He
ig

ht

Width

He
ig

ht

Width
Dep

th

FIGURE 1.1 Measuring two- and three-dimensional objects.

For centuries, artists have known how to make a painting appear to have real depth. A
painting is inherently a two-dimensional object because it is nothing more than canvas
with paint applied. Similarly, 3D computer graphics are actually two-dimensional images
on a flat computer screen that provide an illusion of depth, or a third dimension.

The first computer graphics no doubt appeared similar to what’s shown in Figure 1.2,
where you can see a simple three-dimensional cube drawn with 12 line segments. What
makes the cube look three-dimensional is perspective, or the angles between the lines that
lend the illusion of depth.

ptg

CHAPTER 1 Introduction to 3D Graphics and OpenGL12

FIGURE 1.2 A simple wireframe 3D cube.

To truly see in 3D, you need to actually view an object with both eyes or supply each eye
with separate and unique images of the object. Look at Figure 1.3. Each eye receives a two-
dimensional image that is much like a temporary photograph displayed on each retina
(the back part of your eye). These two images are slightly different because they are
received at two different angles. (Your eyes are spaced apart on purpose!) The brain then
combines these slightly different images to produce a single, composite 3D picture in your
head.

FIGURE 1.3 How you see three dimensions.

ptg

In Figure 1.3, the angle between the images becomes smaller as the object goes farther
away. You can amplify this 3D effect by increasing the angle between the two images.
View-Master (those hand-held stereoscopic viewers you probably had as a kid) and 3D
movies capitalize on this effect by placing each of your eyes on a separate lens or by
providing color-filtered glasses that separate two superimposed images. These images are
usually overenhanced for dramatic or cinematic purposes. Of late this effect has become
more popular on the personal computer as well. Shutter glasses that work with your
graphics card and software switch between one eye and the other, with a changing
perspective displayed on-screen to each eye, thus giving a “true” stereo 3D experience.
Unfortunately, many people complain that this effect gives them headaches or makes
them dizzy!

A computer screen is one flat image on a flat surface, not two images from different
perspectives falling on each eye. As it turns out, most of what is considered to be 3D
computer graphics is actually an approximation of true 3D. This approximation is
achieved in the same way that artists have rendered drawings with apparent depth for
years, using the same tricks that nature provides for people with one eye.

You might have noticed at some time in your life that if you cover one eye, the world does
not suddenly fall flat. What happens when you cover one eye? You might think you are
still seeing in 3D, but try this experiment: Place a glass or some other object just out of
arm’s reach, off to your left side. (If it is close, this trick won’t work.) Cover your right eye
with your right hand and reach for the glass. (Maybe you should use an empty plastic
one!) Most people have a more difficult time estimating how much farther they need to
reach (if at all) before touching the glass. Now, uncover your right eye and reach for the
glass, and you can easily discern how far you need to lean to reach the glass. You now
know why people with one eye often have difficulty with distance perception.

Perspective alone is enough to create the appearance of three dimensions. Note the cube
shown previously in Figure 1.2. Even without coloring or shading, the cube still has the
appearance of a three-dimensional object. Stare at the cube for long enough, however, and
the front and back of the cube switch places. Your brain is confused by the lack of any
surface coloration in the drawing. There just isn’t enough information in this image for
your brain to be certain of what it perceives. The reason the world doesn’t suddenly look
flat when you cover one eye is that many of the 3D world’s effects are still present when
viewed two-dimensionally. The effects are just enough to trigger your brain’s ability to
discern depth. One clue is surface shading due to lighting, another is that nearby objects
appear larger than distant objects. This perspective effect is called foreshortening. This effect
and color changes, textures, shading, and variations of color intensities together add up to
our perception of a three-dimensional image.

A Brief History of Computer Graphics 13
1

ptg

3D Graphics Techniques and Terminology
With each chapter of this book there is one or more example programs that demonstrate
the programming techniques discussed. Although this chapter intentionally avoids
programming specific topics, it too has an example program intended to demonstrate the
techniques and the terminology that you need to be familiar with at a minimum to get
the most from this book. This chapter’s single example program is called BLOCK and you
can find it in the Chapter 1 folder of the example programs that accompany this book.

The process by which mathematical and image data is transformed into a 3D dimensional
image is called rendering. When used as a verb, it is the process that your computer goes
through to create the three dimensional image. Rendering is also used as a noun, simply
to refer to the final image produced. The word “rendering” is used a lot in this book. Now
let’s take a look at some of the other terms and processes that take place during rendering.

Transformations and Projections
Figure 1.4 shows the initial output of the BLOCK example program, which shows a line
drawing of a cube on a table or platform. By transforming, or moving the points around,
and drawing lines between them we can produce the illusion of a 3D world on a flat 2D
screen. The earliest flight simulators employed technology no more sophisticated than this.

CHAPTER 1 Introduction to 3D Graphics and OpenGL14

FIGURE 1.4 A simple wireframe cube and table.

The points themselves are called vertices (or vertex in the singular), and they are moved
around in space with a convenient mathematical construct called a transformation matrix
(we cover this in some detail in Chapter 4, “Basic Transformations: A Vector/Matrix
Primer”). Another matrix, a projection matrix takes care of the mathematics necessary to
turn our 3D coordinates into two-dimensional screen coordinates, where the final line
drawing actually takes place.

Rasterization
The actual drawing, or filling in of the pixels between each vertex to make the lines is
called rasterization. We can further clarify our 3D intent with transformed and rasterized
lines by employing hidden surface removal. Figure 1.5 shows the output of our BLOCK

ptg

program when you press the space for the first time. Although still using just points and
lines, the illusion of a block on a table becomes quite a bit more convincing.

3D Graphics Techniques and Terminology 15
1

FIGURE 1.5 Hiding the back sides of solid geometry enhances the 3D illusion.

Although drawing with lines, or wireframe rendering as it is often called, has its uses, most
of the time we render not with lines, but with solid triangles. Triangles and polygons are
also rasterized, or filled in just like lines are. The earliest graphics hardware could fill in
triangles using a solid color, but as shown in Figure 1.6, this does not enhance the 3D illu-
sion. Early games and simulation technology would make adjoining polygons different
solid colors, which would help, but fell short of a convincing simulation of reality.

FIGURE 1.6 Filling in geometry with solid colors is hardly effective.

ptg

Shading
In Figure 1.7 (press the space bar again if you are running the BLOCK sample program) we
show the effects of shading. By varying the color values across the surface (between
vertices), we can easily create the effect of a light shining on a red cube.

CHAPTER 1 Introduction to 3D Graphics and OpenGL16

FIGURE 1.7 Shading the surface creates the illusion of light.

Lighting and shading are very large areas of specialty in the field of 3D graphics, and there
are entire books written on this subject alone! Shaders (sounds very similar!) on the other
hand are individual programs that execute on the graphics hardware to process vertices
and perform rasterization tasks.

Texture Mapping
The next hardware advance was texture mapping. A texture is simply a picture that we map
to the surface of a triangle or polygon. As you can see in Figure 1.8, textures add a whole
new level of realism to our rendering.

ptg
FIGURE 1.8 A single texture is worth a thousand triangles!

Textures are fast and efficient on modern hardware, and a single texture can reproduce a
surface that might take thousands or even millions of triangles to represent otherwise.

Blending
Finally, in Figure 1.9 we show the effects of blending. Blending allows us to mix different
colors together. This reflection effect is done simply by drawing the cube upside down
first. Then we draw the floor blended over the top of it, followed by the right side up
cube. You really are seeing “through” the floor to the inverted cube below. Your brain just
says, “Oh… a reflection.” Blending is also how we make things look transparent. In fact,
what you are really seeing in Figure 1.9 is through the wooden floor.

3D Graphics Techniques and Terminology 17
1

ptg
FIGURE 1.9 Using blending to create a reflection effect.

Connecting the Dots
That is pretty much computer graphics in a nut shell. Solid 3D geometry is nothing more
than connecting the dots between vertices and then rasterizing the triangles to make
objects solid. Transformations, shading, texture, and blending: Any computer rendered
scene you see in a movie, video game, or scientific simulation is made up of nothing more
than various applications of these four things.

Common Uses for 3D Graphics
Three-dimensional graphics have many uses in modern computer applications.
Applications for real-time 3D graphics range from interactive games and simulations to
data visualization for scientific, medical, or business uses. Higher-end 3D graphics find
their way into movies and technical and educational publications as well.

Real-Time 3D
As defined earlier, real-time 3D graphics are animated and interactive with the user. One
of the earliest uses for real-time 3D graphics was in military flight simulators. Even today,
flight simulators are a popular diversion for the home enthusiast. Figure 1.10 shows a
screenshot from a popular flight simulator that uses OpenGL for 3D rendering
(www.x-plane.com).

CHAPTER 1 Introduction to 3D Graphics and OpenGL18

ptgFIGURE 1.10 An OpenGL-based flight simulator, courtesy of x-plane.com.

The applications for 3D graphics on the personal computer are almost limitless. Perhaps
the most common use today is for computer gaming. Hardly a title ships today that does
not require a 3D graphics card to play. Although 3D has always been popular for scientific
visualization and engineering applications, the explosion of cheap 3D hardware has
empowered these applications like never before. Business applications are also taking
advantage of the new availability of hardware to incorporate more and more complex
business graphics and database mining visualization techniques. Even the modern GUI is
being affected and has evolved to take advantage of 3D hardware capabilities. The
Macintosh OS X, for example, uses OpenGL to render all its windows and controls for a
powerful and eye-popping visual interface.

Figures 1.11 through 1.15 show some of the myriad applications of real-time 3D graphics
on the modern personal computer. All but one of these images were rendered real-time
using OpenGL.

Common Uses for 3D Graphics 19
1

ptg

FIGURE 1.11 3D graphics used for computer-aided design (CAD) (image courtesy of
Software Bisque).

CHAPTER 1 Introduction to 3D Graphics and OpenGL20

FIGURE 1.12 3D graphics used for architectural or civil planning (image courtesy of Real 3D,
Inc.).

ptg

FIGURE 1.13 3D graphics used for medical imaging applications (VolView by Kitware).

Common Uses for 3D Graphics 21
1

FIGURE 1.14 3D graphics used for scientific visualization (image courtesy of Software Bisque,
Inc.).

ptg

FIGURE 1.15 3D graphics used for entertainment (Descent 3 from Outrage Entertainment,
Inc.).

Non-Real-Time 3D
Some compromise is required for real-time 3D applications. Given more processing time,
you can generate higher quality 3D graphics. Typically, you design models and scenes, and
a ray tracer or scan-line renderer processes the definition to produce a high-quality 3D
image. The typical process is that some modeling application uses real-time 3D graphics to
interact with the artist to create the content. Then the frames are sent to another applica-
tion (the ray tracer or an offline renderer) or subroutine, which renders the image.
Rendering a single frame for a movie such as Toy Story or Shrek could take hours on a
very fast computer, for example. The process of rendering and saving many thousands
of frames generates an animated sequence for playback. Although the playback might
appear real-time, the content is not interactive, so it is not considered real-time, but rather
pre-rendered.

Shaders
The current state of the art in real-time computer graphics is programmable shading. Today’s
graphics cards are no longer dumb rendering chips, but highly programmable rendering
computers in their own right. Like the term CPU (central processing unit), the term GPU has
been coined, meaning graphics processing unit, referring to the programmable chips on
today’s graphics cards. These are highly parallelized and very, very fast. Just as important,
the programmer can reconfigure how the card works to achieve virtually any special effect
imaginable.

Every year, shader-based graphics hardware gains ground on tasks traditionally done by
the high-end ray tracing and software rendering tools mentioned previously. Figure 1.16

CHAPTER 1 Introduction to 3D Graphics and OpenGL22

ptg

shows an image of the earth in Software Bisque’s Seeker solar system simulator. This appli-
cation uses a custom OpenGL shader to generate a realistic and animated view of the earth
more than 60 times a second. This includes atmospheric effects, the sun’s reflection in the
water, and even the stars in the background. A color version of this figure is shown in
Color Plate 1 in the Color insert.

Basic 3D Programming Principles 23
1

FIGURE 1.16 Shaders allow for unprecedented real-time realism (image courtesy of Software
Bisque, Inc.).

Basic 3D Programming Principles
Now, you have a pretty good idea of the basics of real-time 3D. We’ve covered some termi-
nology and some sample applications on the personal computer. How do you actually
create these images on your computer? Well, that’s what the rest of this book is about! You
still need a little more introduction to the basics, which we present here.

Not a Toolbox
OpenGL is basically a low-level rendering API. You do not tell OpenGL to “Draw this
model over there”—you have to put together a model yourself by loading the triangles
and applying the necessary transformations as well as the proper textures, shaders, and if
necessary blending modes. This gives you a great deal of low-level control. The beauty of
using a low-level API such as OpenGL instead of a higher level toolkit is that you cannot
only reimplement many standard 3D rendering algorithms, you can invent your own and
even make new discoveries for shortcuts, performance tricks, and artistic visualization
techniques.

ptg

Coordinate Systems
Let’s consider now how we describe objects in three dimensions. Before you can specify an
object’s location and size, you need a frame of reference to measure and locate against.
When you draw lines or plot points on a simple flat computer screen, you specify a posi-
tion in terms of a row and column. For example, a standard VGA screen has 640 pixels
from left to right and 480 pixels from top to bottom. To specify a point in the middle of
the screen, you specify that a point should be plotted at (320,240)—that is, 320 pixels
from the left of the screen and 240 pixels down from the top of the screen.

In OpenGL, or almost any 3D API, when you create a window to draw in, you must also
specify the coordinate system you want to use and how to map the specified coordinates
into physical screen pixels. Let’s first see how this applies to two-dimensional drawing and
then extend the principle to three dimensions.

2D Cartesian Coordinates
The most common coordinate system for two-dimensional plotting is the Cartesian coor-
dinate system. Cartesian coordinates are specified by an x coordinate and a y coordinate.
The x coordinate is a measure of position in the horizontal direction, and y is a measure
of position in the vertical direction.

The origin of the Cartesian system is at x=0, y=0. Cartesian coordinates are written as coor-
dinate pairs in parentheses, with the x coordinate first and the y coordinate second, sepa-
rated by a comma. For example, the origin is written as (0,0). Figure 1.17 depicts the
Cartesian coordinate system in two dimensions. The x and y lines with tick marks are
called the axes and can extend from negative to positive infinity. This figure represents the
true Cartesian coordinate system pretty much as you used it in grade school. Today, differ-
ing window mapping modes can cause the coordinates you specify when drawing to be
interpreted differently. Later in the book, you’ll see how to map this true coordinate space
to window coordinates in different ways.

The x-axis and y-axis are perpendicular (intersecting at a right angle) and together define
the xy plane. A plane is, most simply put, a flat surface. In any coordinate system, two
axes (or two lines) that intersect at right angles define a plane. In a system with only two
axes, there is naturally only one plane to draw on.

CHAPTER 1 Introduction to 3D Graphics and OpenGL24

ptg

FIGURE 1.17 The Cartesian plane.

Coordinate Clipping
A window is measured physically in terms of pixels. Before you can start plotting points,
lines, and shapes in a window, you must tell OpenGL how to translate specified coordi-
nate pairs into screen coordinates. You do this by specifying the region of Cartesian space
that occupies the window; this region is known as the clipping region. In two-dimensional
space, the clipping region is the minimum and maximum x and y values that are inside
the window. Another way of looking at this is specifying the origin’s location in relation
to the window. Figure 1.18 shows two common clipping regions.

Basic 3D Programming Principles 25
1

+y

–y

+y

–y

–x +x+x–x –x

+–

Window
client
area

+–
50

150

100

(0,0)

–50

–75 +75

Window client

area

FIGURE 1.18 Two clipping regions.

ptg

In the first example, on the left of Figure 1.18, x coordinates in the window range left to
right from 0 to +150, and the y coordinates range bottom to top from 0 to +100. A point
in the middle of the screen would be represented as (75,50). The second example shows a
clipping area with x coordinates ranging left to right from –75 to +75 and y coordinates
ranging bottom to top from –50 to +50. In this example, a point in the middle of the
screen would be at the origin (0,0). It is also possible using OpenGL functions (or ordinary
Windows functions for GDI drawing) to turn the coordinate system upside down or flip it
right to left. In fact, the default mapping for Windows windows is for positive y to move
down from the top to bottom of the window. Although useful when drawing text from
top to bottom, this default mapping is not as convenient for drawing graphics.

Viewports: Mapping Drawing Coordinates to Window Coordinates
Rarely will your clipping area width and height exactly match the width and height of the
window in pixels. The coordinate system must therefore be mapped from logical Cartesian
coordinates to physical screen pixel coordinates. This mapping is specified by a setting
known as the viewport. The viewport is the region within the window’s client area that is
used for drawing the clipping area. The viewport simply maps the clipping area to a region
of the window. Usually, the viewport is defined as the entire window, but this is not
strictly necessary; for instance, you might want to draw only in the lower half of the
window.

Figure 1.19 shows a large window measuring 300x200 pixels with the viewport defined as
the entire client area. If the clipping area for this window were set to 0 to 150 along the x-
axis and 0 to 100 along the y-axis, the logical coordinates would be mapped to a larger
screen coordinate system in the viewing window. Each increment in the logical coordinate
system would be matched by two increments in the physical coordinate system (pixels) of
the window.

CHAPTER 1 Introduction to 3D Graphics and OpenGL26

FIGURE 1.19 A viewport defined as twice the size of the clipping area.

ptg

In contrast, Figure 1.20 shows a viewport that matches the clipping area. The viewing
window is still 300x200 pixels, however, and this causes the viewing area to occupy the
lower-left side of the window.

Basic 3D Programming Principles 27
1

FIGURE 1.20 A viewport defined as the same dimensions as the clipping area.

You can use viewports to shrink or enlarge the image inside the window and to display
only a portion of the clipping area by setting the viewport to be larger than the window’s
client area.

The Vertex—A Position in Space
In both 2D and 3D, when you draw an object, you actually compose it with several
smaller shapes called primitives. Primitives are one- or two-dimensional entities or surfaces
such as points, lines, and triangles that are assembled in 3D space to create 3D objects. For
example, a three-dimensional cube consists of six two-dimensional squares made of two
triangles each, each placed on a separate face. Each corner of the square (or of any primi-
tive) is called a vertex. These vertices are then specified to occupy a particular coordinate in
3D space. A vertex is nothing more than a coordinate in 2D or 3D space. Creating solid 3D
geometry is little more than a game of connect-the-dots! You learn about all the OpenGL
primitives and how to use them in Chapter 3, “Basic Rendering.”

3D Cartesian Coordinates
Now, we extend our two-dimensional coordinate system into the third dimension and add
a depth component. Figure 1.21 shows the Cartesian coordinate system with a new axis, z.
The z-axis is perpendicular to both the x- and y-axes. It represents a line drawn perpendic-
ularly from the center of the screen heading toward the viewer. (We have rotated our view
of the coordinate system from Figure 1.17 to the left with respect to the y-axis and down
and back with respect to the x-axis. If we hadn’t, the z-axis would come straight out at
you, and you wouldn’t see it.) Now, we specify a position in three-dimensional space with
three coordinates: x, y, and z. Figure 1.21 shows the point (–4,4,4) for clarification.

ptg

FIGURE 1.21 Cartesian coordinates in three dimensions.

Projections: Getting 3D to 2D
You’ve seen how to specify a position in 3D space using Cartesian coordinates. No matter
how we might convince your eye, however, pixels on a screen have only two dimensions.
How does OpenGL translate these Cartesian coordinates into two-dimensional coordinates
that can be plotted on a screen? The short answer is “trigonometry and simple matrix
manipulation.” Simple? Well, not really; we could actually go on for many pages explain-
ing this “simple” technique and lose most of our readers who didn’t take or don’t remem-
ber their linear algebra from college. You learn more about it in Chapter 4, and for a
deeper discussion, you can check out the references in Appendix A, “Further Reading”
Fortunately, you don’t need a deep understanding of the math to use OpenGL to create
graphics. You might, however, discover that the deeper your understanding goes, the more
powerful a tool OpenGL becomes!

The first concept you really need to understand is called projection. The 3D coordinates you
use to create geometry are flattened or projected onto a 2D surface (the window back-
ground). It’s like tracing the outlines of some object behind a piece of glass with a black
marker. When the object is gone or you move the glass, you can still see the outline of the
object with its angular edges. In Figure 1.22, a house in the background is traced onto a
flat piece of glass. By specifying the projection, you specify the viewing volume that you
want displayed in your window and how it should be transformed.

CHAPTER 1 Introduction to 3D Graphics and OpenGL28

+y

–y

+z

–z

+x

–x

(–4,4,4)

ptg

FIGURE 1.22 A 3D image projected onto a 2D surface.

Orthographic Projections
You are mostly concerned with two main types of projections in OpenGL. The first is
called an orthographic, or parallel, projection. You use this projection by specifying a square
or rectangular viewing volume. Anything outside this volume is not drawn. Furthermore,
all objects that have the same dimensions appear the same size, regardless of whether they
are far away or nearby. This type of projection (shown in Figure 1.23) is most often used
in architectural design, computer-aided design (CAD), or 2D graphs. Frequently, you also
use an orthographic projection to add text or 2D overlays on top of your 3D graphic
scenes.

Basic 3D Programming Principles 29
1

2D image

3D scene

FIGURE 1.23 The clipping volume for an orthographic projection.

You specify the viewing volume in an orthographic projection by specifying the far, near,
left, right, top, and bottom clipping planes. Objects and figures that you place within this
viewing volume are then projected (taking into account their orientation) to a 2D image
that appears on your screen.

ptg

Perspective Projections
The second and more common projection is the perspective projection. This projection adds
the effect that distant objects appear smaller than nearby objects. The viewing volume (see
Figure 1.24) is something like a pyramid with the top shaved off. The remaining shape is
called the frustum. Objects nearer to the front of the viewing volume appear close to their
original size, but objects near the back of the volume shrink as they are projected to the
front of the volume. This type of projection gives the most realism for simulation and 3D
animation.

CHAPTER 1 Introduction to 3D Graphics and OpenGL30

Far

Top

Left

Bottom
Near

Right

FIGURE 1.24 The clipping volume (frustum) for a perspective projection.

Summary
In this chapter, we introduced the basics of 3D graphics. You saw why you actually need
two images of an object from different angles to be able to perceive true three-dimensional
space. You also saw the illusion of depth created in a 2D drawing by means of perspective,
hidden line removal, coloring, shading, and other techniques. The Cartesian coordinate
system was introduced for 2D and 3D drawing, and you learned about two methods used
by OpenGL to project three-dimensional drawings onto a two-dimensional screen.

ptg

We purposely left out the details of how these effects are actually created by OpenGL. In
the chapters that follow, you find out how to employ these techniques and take
maximum advantage of OpenGL’s power. In the sample code distribution, you’ll find one
program for this chapter that demonstrates some of the 3D effects covered here. In this
program, Block, pressing the spacebar advances you from a wireframe cube to a fully lit
and textured block reflected in a glossy surface. You won’t understand the code at this
point, but it makes a powerful demonstration of what is to come. By the time you finish
this book, you will be able to revisit this example and improve on it yourself, or even be
able to write it from scratch.

Summary 31
1

ptg

This page intentionally left blank

ptg

CHAPTER 2

Getting Started

by Richard S. Wright, Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

• Where OpenGL came from and where it’s going

• How the extension mechanism works and why it’s important

• About the core profile and deprecated functionality

• How to detect OpenGL programming errors

• How to pass performance hints to OpenGL

• How to get a basic project up and going in Visual C++ or Xcode

• How to use GLUT for a basic program framework

Now that you have had an introduction to the basic terminology and the ideas behind 3D
graphics, it’s time to get down to business. Before using OpenGL, we need to talk about
what OpenGL is and what it is not so that you have an understanding of both the power
and the limits of this Application Programming Interface (API). This chapter is about the
“Big Picture” of how OpenGL operates and how to set up the rendering framework for
your 3D masterpieces.

What Is OpenGL?
OpenGL is strictly defined as “a software interface to graphics hardware.” In essence, it is a
3D graphics and modeling library that is highly portable and very fast. Using OpenGL,
you can create elegant and beautiful 3D graphics with exceptional visual quality. The
greatest advantage to using OpenGL is that it is orders of magnitude faster than a ray
tracer or software rendering engine. Initially, it used algorithms carefully developed and
optimized by Silicon Graphics, Inc. (SGI), an acknowledged world leader in computer

ptg

34 CHAPTER 2 Getting Started

graphics and animation. Over time, OpenGL has evolved as other vendors have
contributed their expertise and intellectual property to develop high-performance imple-
mentations of their own.

The OpenGL API itself is not a programming language like C or C++. It is more like the C
runtime library, which provides some prepackaged functionality. On the other hand, the
OpenGL specification includes GLSL, the OpenGL Shading Language, which actually is a
very C-like programming language. GLSL, however, does not control your application’s
flow and logic, but rather it is intended for rendering operations. At a high level, applica-
tion programs are not written in OpenGL, as much as they use OpenGL. There really is no
such thing as an “OpenGL program” (with the aforementioned exception of shader
programs) but rather a program the developer wrote that “happens” to use OpenGL as one
of its Application Programming Interfaces (APIs). You might use the C runtime library to
access a file or the Internet, and you might use OpenGL to create real-time 3D graphics.

OpenGL is intended for use with computer hardware that is designed and optimized
for the display and manipulation of 3D graphics. Software-only implementations of
OpenGL are also possible, and the older Microsoft implementations, and Mesa3D
(www.mesa3d.org) fall into this category. Apple also makes a software implementation
available on OS X as a fallback mechanism. With these software-only implementations,
rendering may not be performed as quickly, and some advanced special effects may not be
available at all. However, using a software implementation means that your program can
potentially run on a wider variety of computer systems that may not have a full-featured
3D accelerated graphics processor available.

OpenGL is used for various purposes, from CAD engineering and architectural applications
to modeling programs used to create computer-generated monsters and machines in
blockbuster movies. The introduction of an industry-standard 3D API to mass-market
operating systems such as Microsoft Windows and the Macintosh OS X has some exciting
repercussions. With hardware acceleration and fast PC microprocessors now common-
place, 3D graphics have become standard components of consumer and business applica-
tions, not only of games and scientific applications.

Evolution of a Standard
The forerunner of OpenGL was IRIS GL from Silicon Graphics. Originally a 2D graphics
library, it evolved into the 3D programming API for that company’s high-end IRIS graphics
workstations. These computers were more than just general-purpose computers; they had
specialized hardware optimized for the display of sophisticated graphics. The hardware
provided ultra-fast matrix transformations (a prerequisite for 3D graphics), hardware
support for depth buffering, and other features.

Sometimes, however, the evolution of technology is hampered by the need to support
legacy systems. IRIS GL had not been designed from the onset to have a vertex-style geom-
etry processing interface, and it became apparent that to move forward SGI needed to
make a clean break.

ptg

OpenGL is the result of SGI’s efforts to evolve and improve IRIS GL’s portability. The new
graphics API would offer the power of GL but would be an “open” standard, with input
from other graphics hardware vendors, and would allow for easier adaptability to other
hardware platforms and operating systems. OpenGL would be designed from the ground
up for 3D geometry processing.

The OpenGL ARB
An open standard is not really open if only one vendor controls it. SGI’s business at the
time was high-end computer graphics. Once you’re at the top, you find that the opportu-
nities for growth are somewhat limited. SGI realized that it would also be good for the
company to do something good for the industry to help grow the market for high-end
computer graphics hardware. A truly open standard embraced by a number of vendors
would make it easier for programmers to create applications and content that is available
for a wider variety of platforms. Software is what really sells computers, and if SGI wanted
to sell more computers, it needed more software that would run on its computers. Other
vendors realized this, too, and the OpenGL Architecture Review Board (ARB) was born.

Although SGI originally controlled licensing of the OpenGL API, the founding members of
the OpenGL ARB were SGI, Digital Equipment Corporation, IBM, Intel, and Microsoft. On
July 1, 1992, version 1.0 of the OpenGL specification was introduced. Over time, the ARB
grew to consist of many more members, many from the PC hardware community, and it
met four times a year to maintain and enhance the specification and to make plans to
promote the OpenGL standard.

Over time, SGI’s business fortunes declined for reasons well beyond the scope of this book.
In 2006, an essentially bankrupt SGI transferred control of the OpenGL standard from the
ARB to a new working group at The Khronos Group (www.khronos.org). The Khronos
Group is a member-funded industry consortium focused on the creation and maintenance
of open media standards. Most ARB members were already members of Khronos, and the
transition was essentially painless. Today, the Khronos Group continues to evolve and
promote OpenGL and its sibling API, OpenGL ES, which is covered in Chapter 16,
“OpenGL ES on Mobile Devices.”

OpenGL exists in two forms. The industry standard is codified in the OpenGL Specification.
The specification describes OpenGL in very complete and specific (the similarity in words
here is not an accident!) terms. The API is completely defined, as is the entire state
machine and how various features work and operate together. Hardware vendors such
as AMD, NVIDIA, Intel, or Apple then take this specification and implement it. This
implementation, then, is the embodiment of OpenGL in a form that software developers
and customers can use to generate real-time graphics. For example, a software driver and
a graphics card in your PC together make up an OpenGL implementation.

What Is OpenGL? 35
2

ptg

CHAPTER 2 Getting Started36

The OpenGL Extension Mechanism
With OpenGL being a “standard” API, you might think that hardware vendors are able to
compete only on the basis of performance and perhaps visual quality. However, the field
of 3D graphics is very competitive, and hardware vendors are constantly innovating, not
just in the areas of performance and quality, but in graphics methodologies and special
effects. OpenGL allows vendor innovation through its extension mechanism. This mecha-
nism works in two ways. First, vendors can add new functions to the OpenGL API that
developers can use. Second, new tokens or enumerants can be added that will be recog-
nized by existing OpenGL functions.

Making use of new enumerants or tokens is simply a matter of adding a vendor-supplied
header file to your project. Vendors must register their extensions with the OpenGL
Working Group (a subset of the Khronos Group), thus keeping one vendor from using a
value used by someone else. Conveniently, there is a standard header file glext.h that
includes these extensions.

Gone are the days when games would be recompiled for a specific graphics card. You have
already seen that you can check for a string identifying the vendor and version of the
OpenGL driver. Determining whether an extension is supported is a two-step process. First,
you ask OpenGL how many extensions are supported by the current implementation.

GLint nNumExtensions;

glGetIntegerv(GL_NUM_EXTENSIONS, &nNumExtensions);

Then you can get the name of a specific extension by calling glGetStringi, which
returns the name of an individual extension. For example, to check for the swap control
extension on Windows, you could loop through all the extensions, looking for the one
you want. Once found, you would get the function pointer for that function and call it
appropriately.

GLint nNum;

glGetIntegerv(GL_NUM_EXTENSIONS, &nNum);

for(GLint i = 0; i< nNum; i++)

if(strcmp(“WGL_EXT_swap_control”, (const char *)glGetStringi(GL_EXTENSIONS, i)) ==

0)

{

wglSwapIntervalEXT =

(PFNWGLSWAPINTERVALEXTPROC)wglGetProcAddress(“wglSwapIntervalEXT”);

if(wglSwapIntervalEXT != NULL)

wglSwapIntervalEXT(1);

}

ptg

A shortcut toolkit function is included in the GLTools library, which is discussed shortly:

int gltIsExtSupported(const char *extension);

This function returns 1 if the named extension is supported or 0 if it is not. The GLTools
library contains a whole set of helper and utility functions for use with OpenGL, and
many are used throughout this book. All the functions are prototyped in the file gltools.h.

This example also shows how to get a pointer to a new OpenGL function under Windows.
The windows function wglGetProcAddress returns a pointer to an OpenGL function
(extension) name. Getting a pointer to an extension varies from OS to OS; this topic is
dealt with in more detail in Part III of this book. Fortunately, 99% of the time you can just
use a shortcut library called GLEW as we have and you “auto-magically” get extension
function pointers for whatever functionality is supported by the driver.

Whose Extension Is This?
Using OpenGL extensions, you can provide code paths in your code to improve rendering
performance and visual quality or even add special effects that are supported only by a
particular vendor’s hardware. But who owns an extension? That is, which vendor created
and supports a given extension? You can usually tell just by looking at the extension
name. Each extension has a three-letter prefix that identifies the source of the extension.
Table 2.1 provides a sampling of extension identifiers.

TABLE 2.1 A Sampling of OpenGL Extension Prefixes

Prefix Vendor

SGI_ Silicon Graphics

ATI_ ATI Technologies

AMD_ Advanced Micro Devices

NV_ NVIDIA

IBM_ IBM

WGL_ Microsoft

EXT_ Cross-Vendor

ARB_ ARB Approved

It is not uncommon for one vendor to support another vendor’s extension. For example,
some NVIDIA extensions are widely popular and supported on ATI hardware. When this
happens, the competing vendor must follow the original vendor’s specification (details on
how the extension is supposed to work). Frequently, everyone agrees that the extension is
a good thing to have, and the extension has an EXT_ prefix to show that it is (supposed) to
be vendor-neutral and widely supported across implementations.

Finally, we also have ARB-approved extensions. The specification for these extensions has
been reviewed (and argued about) by the OpenGL ARB. These extensions usually signal
the final step before some new technique or function finds its way into the core OpenGL
specification.

What Is OpenGL? 37
2

ptg

Licensing and Conformance
An implementation of OpenGL is either a software library that creates three-dimensional
images in response to the OpenGL function calls or a driver for a hardware device (usually
a display card) that does the same. Hardware implementations are many times faster than
software implementations and are now standard even on the most inexpensive PCs.

A vendor who wants to create and market an OpenGL implementation must first license
OpenGL from The Khronos Group. They provide the licensee with a sample implementa-
tion (entirely in software) and a device driver kit if the licensee is a PC hardware vendor.
The vendor then uses this to create its own optimized implementation and can add value
with its own extensions. Competition among vendors typically is based on performance,
image quality, and driver stability.

In addition, the vendor’s implementation must pass the OpenGL conformance tests. These
tests are designed to ensure that an implementation is complete (it contains all the neces-
sary function calls) and produces 3D rendered output that is reasonably acceptable for a
given set of functions.

Software developers do not need to license OpenGL or pay any fees to make use of
OpenGL drivers. OpenGL is natively supported by most operating systems, and licensed
drivers are provided by the hardware vendors themselves.

The Future of OpenGL
Most companies recognize that competition is good for everyone in the long run and will
endorse, support, and even contribute to industry standards. The Architecture Review
Board under the Khronos Group today is strong, vibrant, and active. Lately, revisions to
the OpenGL specification have been rolling out at a rate greater than one per year, and as
of this writing, the latest version was OpenGL 3.3 & 4.0, both released at the 2010 Game
Developers Conference. For more than 15 years, literally millions of man years have been
invested in OpenGL technology, books, tutorials, sample code, and application programs
across every category. This momentum will carry OpenGL into the foreseeable future as
the API of choice for a wide range of applications and hardware platforms. All this also
makes OpenGL well positioned to take advantage of future 3D graphics innovations. With
the addition of the OpenGL shading language in version 2.0, OpenGL has shown its
continuing adaptability to meet the challenge of an evolving 3D graphics programming
pipeline. Finally, OpenGL is a specification that has shown that it can be applied to a wide
variety of programming paradigms. From C/C++ to Java and Visual Basic, even newer
languages such as C# are now being used to create PC games and applications using
OpenGL. OpenGL is here to stay.

OpenGL Versus Direct3D
Like political or religious affiliations, the choice of programming language or API is often
based somewhat on reason and somewhat on emotional considerations—“this is how I
was raised” or equivalently “this is the API I learned first and I’m most comfortable with

CHAPTER 2 Getting Started38

ptg

it.” This is of course the only logical reason anyone would choose Direct3D over
OpenGL…ahem.

If you are brand new to the world of 3D graphics programming, you may not be aware
that there is a perceived war between OpenGL and Direct3D, two competing standards.
This is unfortunate because they are both viable alternatives for anyone doing real-time
3D work, and they both do have their advantages. Unfairly, OpenGL is often compared to
DirectX. DirectX is a family of game technology APIs from Microsoft that includes
Direct3D, the 3D rendering API that Microsoft promotes for game programming. You
might like your hamburger better than my steak, but it is not fair to compare my steak to
an entire restaurant! In fact, most Windows games that use OpenGL also make use of the
other non-rendering components of DirectX to facilitate sound playback, joystick controls,
network play, and so on.

Direct3D is a proprietary standard owned by Microsoft and is used extensively on the
Windows platform for games, and variants of Direct3D are used on their XBox gaming
console platform and some Windows mobile devices. In the early days of Direct3D, the
API was very difficult to use, substantially lacking in features compared to OpenGL, and
suffered from some inherent software inefficiencies. Microsoft employed some question-
able tactics to help Direct3D become the “standard” for Windows game programming for
a few years that are somewhat unaffectionately called “The API Wars.” In the minds of
many, this war continues. To be fair to Microsoft, they have worked with hardware
vendors and software vendors for more than ten years now, and currently Direct3D is a
usable and well-documented API that is quite popular among game programmers inter-
ested solely in Microsoft platforms.

OpenGL, however, is still quite popular among Windows game developers and is the over-
whelming choice for software developers making nongame 3D applications such as the
vis-sim industry, content creation tools, scientific visualization, business graphics, and so
on. The “emotional” choice between OpenGL and Direct3D usually boils down to liking
or disliking Direct3D’s object-oriented COM (Component Object Model) methodology,
versus OpenGL’s state machine abstraction or just an inherent love or hate for Microsoft.
On the non-Microsoft platforms, such as the Mac OSX or iPhone, Linux (not just desktop,
the majority of handheld smart phone devices use a UNIX variant), or Sony and Nintendo
gaming devices, OpenGL or an OpenGL-like API is the de facto standard. When you look
at the entire 3D graphics industry as a whole, OpenGL has substantially more presence
than does Direct3D.

There are also a few of those “reasons” why you might choose OpenGL over Direct3D as
well. For one, OpenGL is cross-platform and portable, and OpenGL drivers exist for nearly
every 3D hardware device in existence. If you are interested in games, you should do some
market research; the Windows desktop is not the lion’s share of the gaming industry. The
second reason is that OpenGL is an open standard and benefits from the knowledge and
experience of all the leading 3D hardware vendors. These vendors must cooperate on
OpenGL to make it attractive and powerful for developers to use. Developers after all make

What Is OpenGL? 39
2

ptg

the software that people buy their hardware for. Because OpenGL is a “software interface
to graphics hardware,” having the hardware vendors involved in the evolution of the spec
is essential. This brings us to the last and possibly the “best” reason anyone might choose
OpenGL over Direct3D, the extension mechanism.

The extension mechanism allows hardware vendors to compete not just on performance
and image quality, but also on true technological innovation. Hardware vendors can add
features to their hardware and expose them via OpenGL anytime they want. They do not
have to have the ARB’s approval, they do not need Microsoft’s approval, and they do not
have to wait for the next version of OpenGL (or Direct3D) to be released. There is simply
no corollary in the Direct3D world. Microsoft decides what goes into the API and to some
extent (some would say unfairly) influences the hardware architecture by proxy. The latest,
greatest hardware features are always readily available via a vendor’s OpenGL driver and
the associated extensions. For example, when DirectX 10-capable hardware shipped,
Windows users had to use Windows Vista to gain access to games that made use of new
DirectX 10 features. However, all of that new functionality was also exposed in OpenGL
via the extension mechanism and was available for Windows XP users immediately if their
games used OpenGL and of course had the latest hardware and drivers. For many years
vendors such as NVIDIA or ATI (now AMD) would showcase their latest hardware innova-
tions with demos written in OpenGL; they simply had too. This alone perpetually keeps
OpenGL slightly ahead of Direct3D when it comes to access to the latest and greatest 3D
hardware innovations.

Deprecated Functionality
For more than a decade, the OpenGL standard evolved by adding new functionality to
each release. New functionality was typically vetted by the extension process whereby
features would be added as vendor-specific or joint-vendor extensions, they would be
refined and become ARB extensions, and finally they would be included in the core API
specification. No functionality was ever removed from OpenGL during this process. This
ensured 100% backward compatibility with older code, and as newer hardware became
available, existing applications would simply run faster. Developers could also easily gradu-
ally update their code to take advantage of newer rendering techniques or new perfor-
mance enhancing functionality as it was introduced without having to rewrite existing
and working code.

Realistically though, this process can only go on for so long. Over time GPU and computer
architectures have evolved significantly. Performance trade-offs and engineering compro-
mises that were made 15 years ago no longer apply today. As a result some of the OpenGL
API has become somewhat antiquated. Many vendors sought to reduce the size of the
OpenGL API for the first time ever by removing features and functionality that were
seldom used in modern code, or that performed significantly worse than newer tech-
niques. The ARB decided that OpenGL 3.0 would be the breaking point and for the first
time in OpenGL’s history some of the “dead weight” of the legacy OpenGL API would be
jettisoned from the API. Vendors could continue to support OpenGL 2.1 drivers for legacy

CHAPTER 2 Getting Started40

ptg

code, but newer applications targeted for OpenGL 3.0 or later would have to abandon
older API functions and conventions. It seemed like a good idea at the time….

OpenGL 3.0
There is an old saying about the best laid plans of mice and men: They don’t always go as
planed. The ARB is made up of graphics hardware vendors, and vendors have customers,
and customers must be kept happy. Many customers (software developers) saw the model
of relegating OpenGL 2.1 drivers to legacy status to mean one thing in reality. That was
that those drivers would quickly become a low priority for vendors and would not be as
well-maintained or updated for new hardware, and they would be forced to abandon
millions of dollars worth of investment in OpenGL. A compromise of sorts was reached,
and in OpenGL 3.0, no functionality was actually removed, but rather marked as depre-
cated. Deprecated functionality would still be in the driver, but it served as a notice to soft-
ware vendors that they should stop using some OpenGL features and migrate to newer
and more modern ways of doing things. OpenGL 3.1 we were told would see these
features removed… or so we thought.

OpenGL 3.x
OpenGL 3.1 saw a most spectacular feat of hair splitting. One that any oily politician
would recognize as truly masterful. Indeed, all deprecated OpenGL functionality was
removed from the core OpenGL specification. However, a new OpenGL extension
GL_ARB_compatibility was introduced. Many software developers who where looking
forward to a more streamlined API saw this extension simply as, “plus all the deprecated
OpenGL features we promised to remove but didn’t.” This meant that a hardware vendor
could produce an OpenGL 3.1 driver and at least optionally not include any deprecated
functionality. This, however, simply did not happen. One of the ARB members, NVIDIA,
has publicly stated that it will never remove any old functionality. While developers in
some application categories (notably games) have decried this move, objectively what else
was NVIDIA, or indeed any other hardware vendor, to do? Should a hardware company
ignore its customers and enforce a standard because the company thinks it is in its best
interests? We have seen this happen before. It rarely turns out well, and no one wants this
sort of ugliness in the OpenGL community.

OpenGL 3.2 refined this business slightly, doing away with the extension and instead
dividing OpenGL into a core profile and a compatibility profile. Core profile implementa-
tions would be smaller and contain none of the older deprecated functionality.
Conformance with the specification required the core functionality but left the compati-
bility profile as optional.

The reality is that deprecated OpenGL features are far too well understood by the vast
majority of developers using OpenGL today. Many may be slower than the newer methods,
but they are easier to use and very convenient. Any engineer knows that trade-offs are
often made between ease of use and implementation, maintainability, developer profi-
ciency, and of course performance. Performance is not always the overriding concern in
every application category. The compatibility profile is likely to be around for a long time.

What Is OpenGL? 41
2

ptg

Nothing But the Core
So, where does that leave us? The previous edition of this book covered OpenGL 2.1,
which is the classic OpenGL implementation with the fixed functionality pipeline that
allowed the optional use of shaders. The core profile is in its simplest abbreviated form,
“just shaders.” You must write a shader to do anything. There is no built-in lighting
model, no convenient matrix stacks, no simple texture application, and no easy-to-code
immediate mode for sending down vertex data. In fact, some of the geometric primitives
have even been eliminated. It is no wonder that developers in many quarters are in no
hurry to “modernize” their code. To make matters worse, most of the available tutorials
and books to date have focused on showing how to move from the fixed pipeline to the
shader only way of doing things. This of course means that the easiest path to mastery for
a new OpenGL programmer is to start with the fixed functionality and then transition to
shaders. This is simply not a productive way to promote the use of the new core profile of
OpenGL, and it is not an approach that we use in this book.

Using OpenGL
OpenGL is a procedural rather than a descriptive graphics API. Instead of describing the
scene and how it should appear, the programmer actually prescribes the steps necessary to
achieve a certain appearance or effect. These “steps” involve calls to the many OpenGL
commands. These commands are used to draw graphics primitives such as points, lines,
and triangles in three dimensions. In addition, OpenGL supports texture mapping, blend-
ing, transparency, animation, and many other special effects and capabilities. Exactly how
all of this takes place is covered in more detail in Chapter 3, “Basic Rendering.” This
chapter’s primary concern is how to get your OpenGL projects up and going.

OpenGL does not include any functions for window management, user interaction, or file
I/O. Each host environment (such as Mac OS X or Microsoft Windows) has its own func-
tions for this purpose and is responsible for implementing some means of handing over to
OpenGL the drawing control of a window. In addition there is no “OpenGL file format”
for models or virtual environments. Programmers construct these environments to suit
their own high-level needs and then carefully program them using the lower-level
OpenGL commands.

Our Supporting Cast
To be useful any computer program must consist of something other than rendering oper-
ations. There needs to be a means by which a user can interact with the program either
via keyboard, mouse, joystick, or some other input mechanism. In addition, windows
must be opened and maintained (on most, but not all operating systems), files found and
loaded, and so on. C and C++ are nice portable programming languages available on most
platforms today. Programming languages, however, make use of APIs to do a great deal of
work in the typical program. OpenGL is one example of an API and is a portable API that

CHAPTER 2 Getting Started42

ptg

is also available on most modern computer platforms. Interfacing with the operating
system’s means of interacting with the user or managing windows on-screen unfortunately
is most often done with nonportable OS-specific APIs.

GLUT
In the beginning, there was AUX, the OpenGL auxiliary library. The AUX library was
created to facilitate the learning and writing of OpenGL programs without the program-
mer being distracted by the minutiae of any particular environment, be it UNIX,
Windows, or whatever. You wouldn’t write “final” code when using AUX; it was more of a
preliminary staging ground for testing your ideas. A lack of basic GUI features limited the
library’s use for building useful applications.

AUX has since been replaced by the GLUT library for cross-platform programming exam-
ples and demonstrations. GLUT stands for OpenGL utility toolkit (not to be confused with
the standard GLU—OpenGL utility library). Mark Kilgard, while at SGI, wrote GLUT as a
more capable replacement for the AUX library and included some GUI features to at least
make sample programs more usable under X Windows. This replacement includes using
pop-up menus, managing other windows, and even providing joystick support. GLUT is
not public domain, but it is free and free to redistribute. GLUT is widely available on most
UNIX distributions (including Linux) and is natively supported by Mac OS X, where Apple
maintains and extends the library. On Windows, GLUT development has been discontin-
ued. Because GLUT was originally not licensed as open source, a new GLUT implementa-
tion, freeglut, has sprung up to take its place. All the Windows GLUT-based samples in this
book make use of the freeglut library, which is also available on the book’s official Web
site.

For most of this book, we use GLUT as our program framework. This decision serves two
purposes. The first is that it makes most of the book accessible to a wider audience. With a
little effort, experienced Windows, Linux, or Mac programmers should be able to set up
GLUT for their programming environments and follow most of the examples in this book.

The second point is that using GLUT eliminates the need to know and understand basic
GUI programming on any specific platform. Although we explain the general concepts, we
do not claim to write a book about GUI programming, but rather about OpenGL. Using
GLUT for the basic coverage of the API, we make life a bit easier for Windows/Mac/Linux
novices as well.

It’s unlikely that all the functionality of a commercial application will be embodied
entirely in the code used to draw in 3D. Although GLUT does have some limited GUI
functionality, it is very simple and abbreviated as far as GUI toolkits go. Thus you can’t
rely entirely on the GLUT library for everything. Nevertheless, the GLUT library excels in
its role for learning and demonstration exercises and hiding all the platform-specific
details of window creation and OpenGL context initialization. Even for an experienced
programmer, it is still easier to employ the GLUT library to iron out 3D graphics code
before integrating it into a complete application.

Using OpenGL 43
2

ptg

GLEW
As mentioned previously, the OpenGL API has grown primarily via the extension mecha-
nism. The extension mechanism can be used to obtain function pointers to any OpenGL
function that has been added to the core since OpenGL 1.0. An easy way to obtain full
access to the OpenGL 3.3 API is to make use of an extension loading library that automati-
cally initializes all of these new function pointers and includes the needed typedefs,
constants, and enumerated values for you. There are more than one of these extension
loading libraries to choose from, and one of the most well maintained open source
libraries is GLEW, or the OpenGL extension wrangler library. The use of this library to
initialize the full OpenGL functionality available via the driver couldn’t be much easier. A
single C source file and header file need to be added to your project, and a single initial-
ization function is called on program startup. The details of this are covered when we walk
through writing our first OpenGL program in just a few pages. To make things even
simpler, the GLEW library is prepackaged in the GLTools library. In fact, the GLTools
library actually depends on the GLEW library.

GLTools
Every craftsman has a toolbox full of his favorite tools. Programmers are no different.
There are useful and reusable functions that all 3D programmers need for just about any
OpenGL program they are going to write. GLTools began life in the third edition of this
book. Over time it has grown and provides a lot of shortcuts and handy tools, much like
the OpenGL utility library (GLU) used to. GLTools includes a 3D math library to manipu-
late matrices and vectors and relies on GLEW for full OpenGL 3.3 support of functions
that generate and render some simple 3D objects and manage your view frustum, camera,
and transformation matrices.

OpenGL API Specifics
OpenGL was designed by some clever people who had a lot of experience designing graph-
ics programming APIs. They applied some standard rules to the way functions were named
and variables were declared. The API is simple and clean, easy for vendors to extend, and
easy for programmers to remember. OpenGL tries to avoid as much policy as possible.
Policy refers to assumptions that the designers make about how programmers will use the
API. This keeps OpenGL flexible, powerful, and expressive. You can literally invent an
entirely new method of rendering a special effect or scene just by being clever with the
API and shading language.

This philosophy has contributed to the longevity and evolution of OpenGL. Still, as time
marches on, unanticipated advances in hardware capabilities and the creativity of develop-
ers and hardware vendors have taken their toll on OpenGL as it has progressed through
the years. Despite this, OpenGL’s basic API has shown surprising resilience to new unantic-
ipated features. The ability to compile ten-year-old source code with little to no changes is
a substantial advantage to many application developers, and OpenGL has managed for

CHAPTER 2 Getting Started44

ptg

years to add new features with as little impact on old code as possible. Now, with the core
profile, we have a new leaner and more modern OpenGL, and this process can start afresh.

Data Types
To make it easier to port OpenGL code from one platform to another, OpenGL defines its
own data types. These data types map to a specific minimal format on all platforms. The
various compilers and environments have their own rules for the size and memory layout
of various variable types, so by using the OpenGL defined variable types, you can insulate
your code from these types of changes in how variables will be represented. Table 2.2 lists
the OpenGL data types and their minimum sizes.

TABLE 2.2 OpenGL Variable Types’ Corresponding C Data Types

OpenGL Data Minimum Description
Type Bit Width

GLboolean 1 True or false boolean value

GLbyte 8 Signed 8-bit integer

GLubyte 8 Unsigned 8-bit integer

GLchar 8 String character

GLshort 16 Signed 16-bit integer

GLushort 16 Unsigned 16-bit integer

GLhalf 16 Half precision floating-point value

GLint 32 Signed 32-bit integer

GLuint 32 Unsigned 32-bit integer

GLsizei 32 Unsigned 32-bit integer

GLenum 32 Unsigned 32-bit integer

GLfloat 32 32-bit floating-point number

GLclampf 32 32-bit floating-point number in range [0, 1]

GLbitfield 32 32-bits

GLdouble 64 64-bit double precision number

GLclampd 64 64-bit double precision number in range [0, 1]

GLint64 64 Signed 64-bit integer

GLuint64 64 Unsigned 64-bit integer

GLsizeiptr native pointer size Unsigned integer

GLintptr native pointer Signed integer

GLsync native pointer Sync object handle

All data types start with a GL to denote OpenGL. Most are followed by a familiar sounding
C data type (byte, short, int, float, and so on), but you should note that these do not
necessarily correspond directly to C data types. The OpenGL specification requires that
these data types at a minimum have the storage listed in Table 2.2; however, although

Using OpenGL 45
2

ptg

values outside some of these ranges are possible, only values within the specified ranges
have valid meaning to the OpenGL implementation. Notice that some have a u first to
denote an unsigned data type, such as ubyte to denote an unsigned byte. For some uses, a
more descriptive name is given, such as size to denote a value of length or depth. For
example, GLsizei is an OpenGL variable denoting a size parameter that is represented by
an integer. The clamp designation is a hint that the value is expected to be “clamped” to
the range 0.0–1.0. The GLboolean variables are used to indicate true and false conditions;
GLenum, for enumerated variables; and GLbitfield, for variables that contain binary bit
fields, and so on.

Pointers and arrays are not given any special consideration. An array of ten GLshort vari-
ables is simply declared as

GLshort shorts[10];

and an array of ten pointers to GLdouble variables is declared with

GLdouble *doubles[10];

OpenGL Errors
In any project, you want to write robust and well-behaved programs that respond politely
to their users and have some amount of flexibility. Graphical programs that use OpenGL
are no exception, and if you want your programs to run smoothly, you need to account
for errors and unexpected circumstances. OpenGL provides a useful mechanism for you to
perform an occasional sanity check in your code. This capability can be important
because, from the code’s standpoint, it’s not really possible to tell whether the output was
the Space Station Freedom or the Space Station Melted Crayons!

Internally, OpenGL maintains a set of four error flags. Each flag represents a different type
of error. Whenever one of these errors occurs, the corresponding flag is set. To see whether
any of these flags is set, call glGetError:

GLenum glGetError(void);

The glGetError function returns one of the values listed in Table 2.3. If more than one of
these flags is set, glGetError still returns only one distinct value. This value is then
cleared, and when glGetError is called again it returns either another error flag or
GL_NO_ERROR. Usually, you want to call glGetError in a loop that continues checking for
error flags until the return value is GL_NO_ERROR.

CHAPTER 2 Getting Started46

ptg

TABLE 2.3 OpenGL Error Codes

Error Code Description

GL_INVALID_ENUM The enum argument is out of range.

GL_INVALID_VALUE The numeric argument is out of range.

GL_INVALID_OPERATION The operation is illegal in its current state.

GL_OUT_OF_MEMORY Not enough memory is left to execute the command.

GL_NO_ERROR No error has occurred.

You can take some peace of mind from the assurance that if an error is caused by an
invalid call to OpenGL, the command or function call is ignored. The only exceptions to
this are any OpenGL functions that take pointers to memory (that may cause a program
to crash if the pointer is invalid).

Identifying the Version
As mentioned previously, sometimes you want to take advantage of a known behavior in a
particular implementation. If you know for a fact that you are running on a particular
vendor’s graphics card, you may rely on some known performance characteristics to
enhance your program. You may also want to enforce some minimum version number for
a particular vendor’s drivers. What you need is a way to query OpenGL for the vendor and
version number of the rendering engine (the OpenGL driver). The GL library can return
version- and vendor-specific information about itself by calling glGetString:

const GLubyte *glGetString(GLenum name);

This function returns a static string describing the requested aspect of the GL library. The
valid parameter values are listed under glGetString in Appendix C, “OpenGL Man Pages
for (Core) OpenGL 3.3,” along with the aspect of the GL library they represent.

Getting a Clue with glHint
There is more than one way to skin a cat; so goes the old saying. The same is true with 3D
graphics algorithms. Often a trade-off must be made for the sake of performance, or
perhaps if visual fidelity is the most important issue, performance is less of a considera-
tion. Often an OpenGL implementation may contain two ways of performing a given
task—a fast way that compromises quality slightly and a slower way that improves visual
quality. The function glHint allows you to specify certain preferences of quality or speed
for different types of operations. The function is defined as follows:

void glHint(GLenum target, GLenum mode);

Using OpenGL 47
2

ptg

The target parameter allows you to specify types of behavior you want to modify. These
values, listed under glHint in Appendix C, include hints for texture compression quality,
antialiasing accuracy, and so on. The mode parameter tells OpenGL what you care most
about—faster render time and nicest output, for instance—or that you don’t care (the only
way to get back to the default behavior). Be warned, however, that implementations are
not required to honor calls into glHint; it’s the only function in OpenGL whose behavior
is intended to be entirely vendor-specific.

The OpenGL State Machine
Drawing 3D graphics is a complicated affair. In the chapters ahead, we cover many
OpenGL functions. For a given piece of geometry, many things can affect how it is drawn.
Is the object blended with the background? Are we performing front or back face culling?
What, if any, texture is currently bound? The list could go on and on.

We call this collection of variables the state of the pipeline. A state machine is an abstract
model of a collection of state variables, all of which can have various values or just be
turned on or off and so on. It simply is not practical to specify all the state variables
whenever we try to draw something in OpenGL. Instead, OpenGL employs a state model
or state machine to keep track of all these OpenGL state variables. When a state value is
set, it remains set until some other function changes it. Many states are simply on or off.
Depth testing for example (see Chapter 3) is either turned on or turned off. Geometry
drawn with depth testing turned on is checked to make sure it is in front of any objects
behind it before being rendered. Any geometry drawn after depth testing is turned back off
(a 2D overlay for example) is then drawn without the depth comparison.

To turn these types of state variables on and off, you use the following OpenGL function:

void glEnable(GLenum capability);

You turn the variable back off with the corresponding opposite function:

void glDisable(GLenum capability);

For the case of depth testing, for instance, you can turn it on by using the following:

glEnable(GL_DEPTH_TEST);

And you turn it back off with this function:

glDisable(GL_DEPTH_TEST);

CHAPTER 2 Getting Started48

ptg

If you want to test a state variable to see whether it is enabled, OpenGL again has a conve-
nient mechanism:

GLboolean glIsEnabled(GLenum capability);

Not all state variables, however, are simply on or off. Many of the OpenGL functions yet
to come set up values that “stick” until changed. You can query what these values are at
any time as well. A set of query functions allows you to query the values of Booleans, inte-
gers, floats, and double variables. These four functions are prototyped thus:

void glGetBooleanv(GLenum pname, GLboolean *params);

void glGetDoublev(GLenum pname, GLdouble *params);

void glGetFloatv(GLenum pname, GLfloat *params);

void glGetIntegerv(GLenum pname, GLint *params);

Each function returns a single value or a whole array of values, storing the results at the
address you supply. The various parameters are documented in the reference section in
Appendix C (there are a lot of them!). Most may not make much sense to you right away,
but as you progress through the book, you will begin to appreciate the power and simplic-
ity of the OpenGL state machine.

Setting Up Windows Projects
There are many options for building programs on Microsoft Windows. For this book, we
use Visual C++ 2008, Express Edition. This compiler is available from Microsoft for free
and can be downloaded from http://www.microsoft.com/exPress/. The projects created
with this edition of Visual Studio should also work with later versions of this development
environment.

As mentioned previously, all our projects in this book depend on GLEW, GLTools, and, on
Windows, the freeglut utility libraries. GLEW is “built-in” to GLTools because GLTools
requires GLEW in order to get to OpenGL 3.0 or later features. freeglut, however, is a
stand-alone library and may be used in conjunction with other OpenGL libraries or not at
all if you want to use the native system services (see Chapters 13 through 16). The first
order of business before starting your first new project, or rebuilding any of the projects
included with this book, is to add these libraries’ include folders to Visual Studio’s include
search path. You need to do this anytime you add a new SDK or library to your program-
ming repertoire. If you’ve never done this before, relax; it’s a piece of cake, and you only
have to do this once, not each time you set up a new project.

Setting Up Windows Projects 49
2

ptg

FIGURE 2.1 Adding a path to be searched for include files.

The list below this combo box shows all the folders that will be searched when you
include a header file in your source code. You need to add the include path for GLTools
and for freeglut. Do this by selecting the last empty line in the list. Click this line twice,
and it becomes an edit field with a browse button to the right as shown in Figure 2.2.

CHAPTER 2 Getting Started50

Including Paths
Open Visual C++ and from the main menu select Tools and then Options from the bottom
of the drop-down menu. The Options dialog is shown in Figure 2.1. Expand the Projects
and Solutions tree item and select VC++ Directories; then make sure Show Directories For
is set to Include Files.

ptg

FIGURE 2.2 Type or browse for the search path to be added.

Click the Browse button, and a file browser dialog is displayed. Navigate to the GLTools
include folder and select it as shown in Figure 2.3. Make sure you select the /include folder
and not the GL folder beneath it. Do the same for the freeglut library. Now, Visual C++ is
configured for finding the GLTools and the freeglut libraries. Time to build our first
project!

Setting Up Windows Projects 51
2

FIGURE 2.3 Selecting the include directories.

ptg

FIGURE 2.4 Creating a new console mode application.

CHAPTER 2 Getting Started52

Creating the Project
Open Visual C++ if you don’t still have it open, and from the main menu select File, New
Project. GLUT-based applications are Win32 console mode applications, so make the appro-
priate selections as shown in Figure 2.4, and click OK. On the following dialog prompt
shown in Figure 2.5, select Empty Project. This prevents Visual C++ from creating what it
considers a standard console-based project and allows us to create our own from scratch.

FIGURE 2.5 Make sure you start with an empty project.

ptg

Adding Our Files
Now it’s time to create our main source file. For this project, we create a C++ file called
triangle.cpp. Do this by selecting File, New, and select File again from the main menu.
Select a new C++ file as shown in Figure 2.6.

Setting Up Windows Projects 53
2

FIGURE 2.6 Adding a new C++ source file.

As you can see in Figure 2.7 the source file is unnamed (the comments were added manu-
ally). Save the file as Triangle.cpp. This still does not add the file to our project, however.
To do this, right-click the Source Files folder in the Solution Explorer window. Select Add,
Existing Item, and then navigate the file system until you’ve located the Triangle.cpp
source file.

We are almost there now. Finally, we need to add the GLTools and freeglut libraries to our
project. There is more than one way to add a library to our project, and we use the
simplest and easiest to verify visually. Right-click the project name and select Add, Existing
Item just like you did for the Triangle.cpp file. This time, however, navigate to the
/Freeglut-2.6.0/VisualStudio2008Static/Release folder and select freeglut_static.lib as shown
in Figure 2.8.

ptgFIGURE 2.7 Our empty unnamed source file.

CHAPTER 2 Getting Started54

FIGURE 2.8 Select the freeglut_static library and add it to the project.

ptg

Do the same for the GLTools library, which is located in the
/VisualStudio2008/GLTools/Release folder. Figure 2.9 shows our completed project all
ready for us to start our first OpenGL program!

Setting Up Mac OS X Projects 55
2

FIGURE 2.9 Our completed Visual C++ project.

Setting Up Mac OS X Projects
Xcode is the Integrated Development Environment (IDE) provided by Apple for develop-
ing Mac OS X applications. Xcode is free and can be found on your OS X installation DVD
or from the http://developer.apple.com Web site. Xcode projects have been set up for all
the example programs in this book. As mentioned previously, all the OpenGL examples in
this book use two utility libraries, GLUT and GLTools. The GLUT library ships as a stan-
dard framework on OS X, and Xcode knows how to use GLUT without any special settings
other than adding the framework to your project. GLTools, however, is a third-party library
(included with this book), and you need to configure Xcode to use this library for the
projects in this book or for your own fresh projects that you want to create based on this
library.

Custom Build Settings
At a minimum, you must tell Xcode where the GLTools headers are located for the projects
included with this book to compile (note, prebuilt 32/64-bit binaries for Snow Leopard are
also included in the Mac OS X source distribution). We do this by adding a custom setting

ptg

to the Xcode Source Trees preference setting. This dialog can be accessed from the
Xcode/Preferences menu and is shown in Figure 2.10. The setting that must be added is
GLTOOLS_INCLUDE, which is the path to the GLTools include files. Note that if you are
using a version of OS X earlier than 10.6, you will also have to rebuild this library yourself
or include the GLTools source files in all your projects. Settings can be added by clicking
the + button and typing directly into the table shown on the dialog. You can also drag a
folder from finder and drop it on this edit control. In this case, the SuperBible files are
located on the Desktop, but you may want to put them somewhere else as suits your own
organizational style. If you move these files, though, you need to update this path variable.

CHAPTER 2 Getting Started56

FIGURE 2.10 Adding a custom setting to Xcode.

Creating a New Project
This should be sufficient to get the included Xcode project files to work should you want
to build the samples yourself or make changes to them as part of your experimentation
while you learn. Let’s walk though creating a brand new project. The first step is to select
File, New Project from the main Xcode menu. This displays the dialog shown in Figure
2.11. On the right you see any recent projects you may have been working on, and in
Figure 2.11 you can see some things the author has worked on recently at the time of this
writing. On the left you see Create a New Xcode Project. Click that button to create your
first project.

ptg

FIGURE 2.11 Starting a new project with Xcode.

Next click the Cocoa Application icon from the list of Mac OS X project templates as
shown in Figure 2.12. Although we will be using C++, GLUT, the basic program frame-
work, is actually implemented using Cocoa, and this is the simplest way to start.

Setting Up Mac OS X Projects 57
2

FIGURE 2.12 Selecting a Cocoa Application.

ptg

In our example, we called our project “Triangle.” This is going to be our first example
program. On the left-hand side of our Xcode project window you see the Overview pane,
and we expanded some of the groups so that you can see the project’s structure. This is
shown in Figure 2.13.

CHAPTER 2 Getting Started58

FIGURE 2.13 Our fresh Cocoa application.

The Xcode project template is not ready for GLUT or OpenGL programming at this time.
We are going to remove the starter project code and start with our own simplified GLUT-
based program. For a more in-depth look at using OpenGL on the Mac, see Chapter 14,
“OpenGL on OS X.” For our GLUT-based project we need to delete the
TriangleAppDelegate.* files and the main.m file. You can highlight these files in Xcode by
clicking once on the filename and then pressing the Delete key. Go ahead and click the
Also Move to Trash button in the confirmation sheet to completely eliminate the files. You
can also delete the MainMenu.xib file under the Resources group. The final cleaned up
Xcode project is shown in Figure 2.14. Leave the Triangle_Prefix.pch file alone.

ptg

FIGURE 2.14 Our project with the default code removed.

Frameworks, Headers, and Libraries
Next we need to add the GLUT and OpenGL frameworks to our project. Right-click the
Frameworks folder group and select Add, Existing Framework. Select the GLUT and
OpenGL frameworks in the next dialog. The appearance of this dialog changes from time
to time, but regardless you should see a list of available frameworks. Click one to highlight
it and hold the command key down to click and select multiple frameworks. For our
project, we only need GLUT and OpenGL.

Finally, we need to add the GLTools library. GLTools is a static library instead of a frame-
work, and we need to add this in a different manner. There is more than one way to do
this, and I am quite sure some people are going to write in to tell me their way is better. If
you don’t know how to do this yet, then you will probably like my way better than yours!

First we must add the GLTools header path to our header search paths setting. Do this by
right-clicking the project name under Groups & Files and select Get Info. Make sure the
Configuration setting is set to All Configurations as shown in Figure 2.15. Scroll down to
the Search Paths grouping and click in the Header Search Paths field. Type in
$(GLTOOLS_INCLUDE). When you press Enter or change fields, it automatically expands
to the value we set for this variable previously.

Setting Up Mac OS X Projects 59
2

ptg

FIGURE 2.15 Adding the GLTools include path to the project.

Finally, we need to add the GLTools.a library file to the project. You can do this by drag-
ging the GLTools.a file (located in /XCode/GLTools folder in the book source code files)
and dropping it on the Frameworks folder in Xcode. You can also right-click Frameworks
and select Add, Existing Files and then navigate to and select the GLTools.a file manually.
Drag and drop is typically so much easier!

That’s all there is to getting your Xcode project ready to go. All we need to do now is add
a C++ source file and start coding! Right-click the Other Sources folder and select Add,
New File. This presents the dialog shown in Figure 2.16.

CHAPTER 2 Getting Started60

ptg
FIGURE 2.16 Adding a new C++ source file to our project.

Select C++ File as shown, and in the following dialog name and save your program file as
Triangle.cpp. Go ahead and uncheck the Also Create Triangle.h as we don’t need a header
for our main program file as we aren’t really creating a C++ class. To build a project in
Xcode press command-B, and to build and run your project press command-R. Of course,
so far we have no source code at all. Let’s get started with our first OpenGL program!

Your First Triangle
Now that we have laid the groundwork, it is finally time to start coding! Our first example
program simply draws a red triangle on a blue background. This may not seem very ambi-
tious at first, but it covers all the necessary steps and creates a complete demonstration
framework that we can use for the rest of the book. You get a tour of GLUT and use your
first GLTools helper functions and classes along the way. Figure 2.17 shows the output of
our Triangle program, and Listing 2.1 lists our first program in its entirety. We then dissect
it line by line.

Your First Triangle 61
2

ptg
FIGURE 2.17 The output of our first OpenGL program.

LISTING 2.1 Simply Draw a Triangle

// Triangle.cpp

// Our first OpenGL program that will just draw a triangle on the screen.

#include <GLTools.h> // OpenGL toolkit

#include <GLShaderManager.h> // Shader Manager Class

#ifdef __APPLE__

#include <glut/glut.h> // OS X version of GLUT

#else

#define FREEGLUT_STATIC

#include <GL/glut.h> // Windows FreeGlut equivalent

#endif

GLBatch triangleBatch;

GLShaderManager shaderManager;

///

CHAPTER 2 Getting Started62

ptg

// Window has changed size, or has just been created. In either case, we need

// to use the window dimensions to set the viewport and the projection matrix.

void ChangeSize(int w, int h)

{

glViewport(0, 0, w, h);

}

///

// This function does any needed initialization on the rendering context.

// This is the first opportunity to do any OpenGL related tasks.

void SetupRC()

{

// Blue background

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

shaderManager.InitializeStockShaders();

// Load up a triangle

GLfloat vVerts[] = { -0.5f, 0.0f, 0.0f,

0.5f, 0.0f, 0.0f,

0.0f, 0.5f, 0.0f };

triangleBatch.Begin(GL_TRIANGLES, 3);

triangleBatch.CopyVertexData3f(vVerts);

triangleBatch.End();

}

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

GLfloat vRed[] = { 1.0f, 0.0f, 0.0f, 1.0f };

shaderManager.UseStockShader(GLT_SHADER_IDENTITY, vRed);

triangleBatch.Draw();

// Perform the buffer swap to display the back buffer

glutSwapBuffers();

}

Your First Triangle 63
2

ptg

///

// Main entry point for GLUT based programs

int main(int argc, char* argv[])

{

gltSetWorkingDirectory(argv[0]);

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL);

glutInitWindowSize(800, 600);

glutCreateWindow(“Triangle”);

glutReshapeFunc(ChangeSize);

glutDisplayFunc(RenderScene);

GLenum err = glewInit();

if (GLEW_OK != err) {

fprintf(stderr, “GLEW Error: %s\n”, glewGetErrorString(err));

return 1;

}

SetupRC();

glutMainLoop();

return 0;

}

What to “Include”
To begin any C++ (or even just C) program, we need to include the headers that contain
the function and class definitions that we will use in our program. For our purposes, the
bare minimum will be the following headers.

#include <GLTools.h> // OpenGL toolkit

#include <GLShaderManager.h> // Shader Manager Class

#ifdef __APPLE__

#include <glut/glut.h> // OS X version of GLUT

#else

#define FREEGLUT_STATIC

#include <GL/glut.h> // Windows/Linux FreeGlut equivalent

#endif

CHAPTER 2 Getting Started64

ptg

The GLTools.h header contains the bulk of the GLTools C-like stand-alone functions, while
the GLTools C++ classes each have their own header file. GLShaderManager.h brings in the
GLTools shader manager class. You cannot render in OpenGL (core profile) without a
shader. The shader manager not only allows you to build and manage your own shaders, it
comes with a set of “stock shaders” that perform a few rudimentary and basic rendering
operations. We go into more detail about this in Chapter 3.

GLUT gets a different treatment depending on whether you are building on a Mac.
On Windows and Linux, we use the static library version of freeglut and thus need the
FREEGLUT_STATIC preprocessor macro defined ahead of it.

Starting GLUT
Next, we skip down to the last function in the listing, the entry point of all C programs,
which is where program execution actually starts:

//

// Main entry point for GLUT based programs

int main(int argc, char* argv[])

{

gltSetWorkingDirectory(argv[0]);

Console-mode C and C++ programs always start execution with the function main. If
you’re an experienced Windows nerd, you might wonder where WinMain is in this
example. It’s not there because we start with a console-mode application, so we don’t have
to start with window creation and a message loop. With Win32, you can create graphical
windows from console applications, just as you can create console windows from GUI
applications. These details are buried within the GLUT library. (Remember, the GLUT
library is designed to hide just these kinds of platform details.)

The GLTools function gltSetWorkingDirectory sets the current working directory. This is
actually not necessary on Windows, as the working directory is by default the same direc-
tory as the program executable. On Mac OS X, however, this function changes the current
working folder to be the /Resources folder inside the application bundle. A GLUT prefer-
ences setting does this automatically, but this method is safer and always works, even if
that setting is changed by another program. This comes in handy later when we want to
load texture files or model data.

Next, we do some standard GLUT-based setup. The first order of business is a call to
glutInit, which simply passes along the command-line parameters and initializes the
GLUT library.

glutInit(&argc, argv);

Your First Triangle 65
2

ptg

Next, we must tell the GLUT library what type of display mode to use when creating the
window:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL);

The flags here tell it to use a double-buffered window (GLUT_DOUBLE) and to use RGBA
color mode (GLUT_RGBA). A double-buffered window means the drawing commands are
actually executed on an off-screen buffer and then quickly swapped into view on the
window later. This method is often used to produce animation effects and is demonstrated
later in this chapter. The GLUT_DEPTH bit flag allocates a depth buffer as part of our display
so we can perform depth testing, and likewise GLUT_STENCIL makes sure we also have a
stencil buffer available. Both the depth and stencil tests are covered later.

Next, we tell GLUT how big to make the window and to go ahead and create the window,
with a caption that reads, “Triangle”:

glutInitWindowSize(800, 600);

glutCreateWindow(“Triangle”);

Internally GLUT runs a system native message loop, intercepts the appropriate messages,
and then calls callback functions you register for different events. This is somewhat
limited compared to using a real system-specific framework, but it greatly simplifies
getting a program up and running, and the minimal events are supported for a demo
framework. Here, we must set a callback function for when the window changes size so
that we can set up the viewport, and we register a function that will contain our OpenGL
rendering code.

glutReshapeFunc(ChangeSize);

glutDisplayFunc(RenderScene);

The ChangeSize and RenderScene functions are described in just a bit, but before we start
the main message loop running, there are still two things we need to take care of. The first
is to initialize the GLEW library. Recall the GLEW library initializes all the missing entry
points in our OpenGL driver to make sure we have the full OpenGL API available to us. A
call to glewInit does the trick, and we check to make sure nothing goes wrong with the
driver initialization before we try and do any rendering.

GLenum err = glewInit();

if (GLEW_OK != err) {

fprintf(stderr, “GLEW Error: %s\n”, glewGetErrorString(err));

return 1;

}

The final piece of preparation is the call SetupRC.

SetupRC();

CHAPTER 2 Getting Started66

ptg

This function has nothing to do with GLUT actually but is a convenient place to do any
OpenGL initialization we need performed before the actual rendering begins. The RC
stands for rendering context, which is the logical handle to a running OpenGL state
machine. A rendering context must be created before any OpenGL function will work, and
GLUT sets this up for us when we first create the window. The OS-specific chapters
(Chapters 13 through 16) delve into more detail about this. Throughout the book, this is
where we preload textures, set up geometry, shaders, and so on.

Finally, it’s time to start the main program loop and end the main function.

glutMainLoop();

return 0;

}

The glutMainLoop function never returns after it is called until the main window is closed
and needs to be called only once from an application. This function processes all the oper-
ating system-specific messages, keystrokes, and so on until you terminate the program. It
also makes sure those callback functions we registered earlier are called appropriately.

Coordinate System Basics
In nearly all windowing environments, the user can at any time change the size and
dimensions of the window. Even if you are writing a game that always runs in full-screen
mode, the window is still considered to change size at least once—when it is created.
When this happens, the window usually responds by redrawing its contents, taking into
consideration the window’s new dimensions. Sometimes, you might want to simply clip
the drawing for smaller windows or display the entire drawing at its original size in a
larger window. For our purposes, we usually want to scale the drawing to fit within the
window, regardless of the size of the drawing or window. Thus, a very small window
would have a complete but very small drawing, and a larger window would have a similar
but larger drawing.

In Chapter 1, “Introduction to 3D Graphics and OpenGL,” we discussed how the viewport
and viewing volume affect the coordinate range and scaling of 2D and 3D drawings in a
2D window on the computer screen. Now, we examine the setting of viewport and clip-
ping volume coordinates in OpenGL. Setting up your coordinate system is a bit of a
prerequisite to drawing objects and getting them on-screen where you want them!

Although our drawing is a 2D flat triangle, we are actually drawing in a 3D coordinate
space. For this chapter, we are going to use the default Cartesian coordinate system, which
stretches from -1 to +1 in the X, Y, and Z directions. X is the horizontal axis, Y is the verti-
cal axis, and positive Z comes out of the screen toward you. The coordinate (0, 0, 0) then
is in the center of the screen. In Chapter 4, “Basic Transformations: A Vector/Matrix
Primer,” we go into more detail about setting up alternative coordinate systems. For our
purposes, we draw the triangle in the xy plane at z = 0. Your perspective is along the posi-
tive z-axis to see the triangle at z = 0. If you’re feeling lost here, review this material in
Chapter 1.

Your First Triangle 67
2

ptg

Figure 2.18 shows how this basic Cartesian coordinate system looks. Many drawing and
graphics libraries use window coordinates (pixels) for drawing commands. Using a real
floating-point (and seemingly arbitrary) coordinate system for rendering is one of the
hardest things for many beginners to get used to. After you work through a few programs,
though, it quickly becomes second nature.

CHAPTER 2 Getting Started68

+x–x

–z

+z

–y

+y

FIGURE 2.18 Cartesian space.

Defining the Viewport
Because window size changes are detected and handled differently under various environ-
ments, the GLUT library provides the function glutReshapeFunc, which registers a callback
that the GLUT library calls whenever the window dimensions change. The function you
pass to glutReshapeFunc is prototyped like this:

void ChangeSize(GLsizei w, GLsizei h);

We chose ChangeSize as a descriptive name for this function, and we will use that name
for our future examples.

void ChangeSize(int w, int h)

{

glViewport(0, 0, w, h);

}

The ChangeSize function receives the new width and height whenever the window size
changes. We can use this information to modify the mapping of our desired coordinate
system to real screen coordinates, with the help of the OpenGL function glViewport. To

ptg

understand how the viewport definition is achieved, let’s look more carefully at the
ChangeSize function where it calls glViewport with the new width and height of the
window. The glViewport function is defined as

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

The x and y parameters specify the lower-left corner of the viewport within the window,
and the width and height parameters specify these dimensions in pixels. Usually, x and y
are both 0, but you can use viewports to render more than one drawing in different areas
of a window. The viewport defines the area within the window in actual screen coordi-
nates that OpenGL can use to draw in (see Figure 2.19). The current clipping volume/
coordinate system is then mapped to the new viewport. If you specify a viewport that is
smaller than the window coordinates, the rendering is scaled smaller, as you see in Figure
2.19.

Your First Triangle 69
2

glViewport(0,0,250,250)

– x

250 250

25
0

glViewport(0,0,125,125)

Viewport 1/2 size of windowWindow and viewport are same

– x

25
0 125

125

FIGURE 2.19 Viewport-to-window mapping.

Cartesian Coordinates to Pixels
OpenGL takes care of the mapping between Cartesian coordinates and window pixels
when it comes time to rasterize (actually draw) your geometry on-screen. One thing you
need to keep in mind is that changing the viewport does not change the underlying coor-
dinate system. Because we are using the default -1 to +1 mapping, changing the window
size for our triangle has some interesting results, which you can see in Figure 2.20.

ptg

FIGURE 2.20 Clipping volume (coordinate system) and viewport independence.

On the left you can see how the +/- 1 range is stretched more vertically than horizontally,
and on the right, you can see the opposite effect. We need to cover some more ground
before getting tangled up in how to change your coordinate system in response to window
size changes, and we do so very thoroughly in Chapter 4 as promised earlier.

Setting Things Up
Before starting the GLUT main loop in the main function, we called the SetupRC function.
This is where we do some one-time setup for our program. The first thing we did was set
the background color with this call:

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

This function sets the color used for clearing the window. The prototype for this
function is

void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);

GLclampf is defined as a float under most implementations of OpenGL. Each parameter
contains the weight of that color component in the final color desired. This function does
not clear the background right away, but rather sets the color that will be used when the
color buffer is cleared (possibly repeatedly) later.

CHAPTER 2 Getting Started70

ptg

RGB Color Space
In OpenGL, a single color is represented as a mixture of red, green, blue, and alpha (used
for transparency) components. The range for each component can vary from 0.0 to 1.0.
This is similar to the Windows specification of colors using the RGB macro to create a
COLORREF value. The difference is that in Windows each color component in a COLORREF
can range from 0 to 255, giving a total of 256x256x256—or more than 16 million colors.
With OpenGL, the values for each component can be any valid floating-point value
between 0 and 1, thus yielding a virtually infinite number of potential colors. Practically
speaking, color output is limited on most devices to 24 bits (16 million colors) total.

Naturally, OpenGL takes this color value and converts it internally to the nearest possible
exact match with the available video hardware. Table 2.4 lists some example colors and
their component values.

TABLE 2.4 Some Common Composite Colors

Composite Red Green Blue
Color Component Component Component

Black 0.0 0.0 0.0

Red 1.0 0.0 0.0

Green 0.0 1.0 0.0

Yellow 1.0 1.0 0.0

Blue 0.0 0.0 1.0

Magenta 1.0 0.0 1.0

Cyan 0.0 1.0 1.0

Dark gray 0.25 0.25 0.25

Light gray 0.75 0.75 0.75

Brown 0.60 0.40 0.12

Pumpkin orange 0.98 0.625 0.12

Pastel pink 0.98 0.04 0.7

Barney purple 0.60 0.40 0.70

White 1.0 1.0 1.0

The last argument to glClearColor is the alpha component, which is used for blending
and special effects such as transparency. Transparency refers to an object’s capability to
allow light to pass through it. Suppose you want to create a piece of red stained glass, and
a blue light happens to be shining behind it. The blue light affects the appearance of the
red in the glass (blue + red = purple). You can use the alpha component value to generate
a red color that is semitransparent so that it works like a sheet of glass—an object behind
it shows through. There is more to this type of effect than just using the alpha value, and
we demonstrate how this works in Chapter 3. Until then, you should leave the alpha
value as 1.

Your First Triangle 71
2

ptg

Stock Shaders
Nothing can be rendered in the OpenGL core profile without a shader. In Chapter 6,
“Thinking Outside the Box: Nonstock Shaders,” we talk about how to write your own
shaders, as well as how to compile and link them for use. Until then, we make use of a
number of simple stock shaders that are managed by the shader manager. We declared an
instance of the shader manager at the top of the source file like this:

GLShaderManager shaderManager;

We also go over these stock shaders and how to use them in Chapter 3. The shader
manager needs to compile and link its own shaders, though, so we must call the
InitializeStockShaders method as part of our OpenGL initialization.

shaderManager.InitializeStockShaders();

Specifying Vertices
The next thing we do is set up our triangle. In OpenGL a triangle is a type of “primitive,”
a basic 3D drawing element. We go into great detail about all seven of the different primi-
tives you can use in OpenGL in Chapter 3. For now, just know that a triangle primitive is
a list of vertices or points in space that make up a triangle. We specify the vertices by
putting them in a single floating-point array. This array, named vVerts, contains the x, y,
and z pair of all three vertices in Cartesian coordinates. Note how we made the z coordi-
nate zero for all three points.

// Load up a triangle

GLfloat vVerts[] = { -0.5f, 0.0f, 0.0f,

0.5f, 0.0f, 0.0f,

0.0f, 0.5f, 0.0f };

Submitting a batch of vertices for rending is covered in not one, but two chapters: Chapter
3, “Basic Rendering,” and in more lower level detail again in Chapter 12, “Advanced
Geometry Management.” A simple GLTool wrapper class encapsulates our batch of trian-
gles, and we declared an instance of this GLBatch class near the top of the source file.

GLBatch triangleBatch;

In our setup function, the following code builds a batch of triangles containing just three
vertices. We talk more about how this works in Chapter 3.

triangleBatch.Begin(GL_TRIANGLES, 3);

triangleBatch.CopyVertexData3f(vVerts);

triangleBatch.End();

CHAPTER 2 Getting Started72

ptg

Getting Down to Business
Finally, it’s time to actually do the rendering! Previously we set the clear color to blue;
now we need to execute a function to do the actual clearing:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

The glClear function clears a particular buffer or combination of buffers. A buffer is a
storage area for image information. The red, green, blue, and alpha components of a
drawing are usually collectively referred to as the color buffer or pixel buffer.

More than one kind of buffer (color, depth, and stencil) is available in OpenGL, and these
buffers are covered in more detail later in the book. In the preceding example, we use the
bitwise OR operator to simultaneously clear all three of these buffers. For the next few
chapters, all you really need to understand is that the color buffer is the place where the
displayed image is stored internally and that clearing the buffer with glClear removes the
last drawing from the window. You will also see the term framebuffer, which refers to all
these buffers collectively given that they work in tandem.

The next three lines of code are where the real action takes place and are the subject
of most of the entire next chapter! We set up an array of floating-point numbers to
represent the color red (with an alpha of 1.0), and pass this to a stock shader, the
GLT_SHADER_IDENTITY shader. This shader does nothing but render geometry on-screen
in the default Cartesian coordinate system, using the color specified.

GLfloat vRed[] = { 1.0f, 0.0f, 0.0f, 1.0f };

shaderManager.UseStockShader(GLT_SHADER_IDENTITY, vRed);

triangleBatch.Draw();

The GLBatch method Draw simply submits the geometry to the shader and ta-da!—red
triangle…well, almost. There is one last detail. When we set up our OpenGL window, we
specified that we wanted a double buffered rendering context. This means rendering
occurs on a back buffer and then is swapped to the front when we are done. This prevents
the viewer from seeing the scene being rendered, along with a likely flickering between
animation frames. Buffer swaps are done in a platform-specific manner, but GLUT has a
single function call that does this for you:

glutSwapBuffers();

Now, you may take a bow. You have rendered your first triangle with OpenGL.

Putting a Little Life into It!
We have now seen how to put GLUT to work doing the most important thing a graphical
demo framework can do, which is to render something on the screen. For a little extra
utility, we also want to have a way for the user to interact with a rendering, perhaps by
pressing the arrow keys. A little animation can liven up just about any graphics demo. The

Putting a Little Life into It! 73
2

ptg

example program Move does just this. It draws a square in the middle of the window
(actually, we use another one of those primitives, this time a GL_TRIANGLE_FAN), and in
response to the arrow keys it moves the square up and down or side to side. We leave it to
you to figure out which of those two types of movement the up and down arrow keys
achieve.

Special Keys
GLUT supports another callback function, called glutSpecialFunc. This function registers
a function that is called whenever a special key is pressed. In GLUT parlance, this is one of
the function keys or one of the directional keys (arrow keys, page up/down, and so on).
The following line is added to our main function to register the SpecialKeys callback
function for this purpose.

glutSpecialFunc(SpecialKeys);

The SpecialKeys function is defined like this:

void SpecialKeys(int key, int x, int y)

It receives a keycode for the key being pressed, and also the x and y location (in pixels) of
the mouse cursor in case that is also useful.

For the Move example program, we store the vertices in an array that is global to the
scope of the module so that we can modify the blocks position when the keys are pressed.
Listing 2.2 shows the complete code for the SpecialKeys function, where we also do colli-
sion detection with the edge of the window so that the block cannot be moved outside
the window. Notice we can easily update our batch positions by copying in the new vertex
data.

squareBatch.CopyVertexData3f(vVerts);

LISTING 2.2 Handling the Arrow Keys to Move Our Block Around on the Screen

// Respond to arrow keys by moving the camera frame of reference

void SpecialKeys(int key, int x, int y)

{

GLfloat stepSize = 0.025f;

GLfloat blockX = vVerts[0]; // Upper left X

GLfloat blockY = vVerts[7]; // Upper left Y

if(key == GLUT_KEY_UP)

blockY += stepSize;

CHAPTER 2 Getting Started74

ptg

if(key == GLUT_KEY_DOWN)

blockY -= stepSize;

if(key == GLUT_KEY_LEFT)

blockX -= stepSize;

if(key == GLUT_KEY_RIGHT)

blockX += stepSize;

// Collision detection

if(blockX < -1.0f) blockX = -1.0f;

if(blockX > (1.0f - blockSize * 2)) blockX = 1.0f - blockSize * 2;;

if(blockY < -1.0f + blockSize * 2) blockY = -1.0f + blockSize * 2;

if(blockY > 1.0f) blockY = 1.0f;

// Recalculate vertex positions

vVerts[0] = blockX;

vVerts[1] = blockY - blockSize*2;

vVerts[3] = blockX + blockSize*2;

vVerts[4] = blockY - blockSize*2;

vVerts[6] = blockX + blockSize*2;

vVerts[7] = blockY;

vVerts[9] = blockX;

vVerts[10] = blockY;

squareBatch.CopyVertexData3f(vVerts);

glutPostRedisplay();

}

Refreshing the Display
The last line of the SpecialKeys function tells GLUT that it needs to update the window
contents.

glutPostRedisplay();

GLUT by default updates the window by calling the RenderScene function when the
window is created and when the window either changes size or is in need of being
repainted. This happens anytime the window is minimized and restored, maximized,

Putting a Little Life into It! 75
2

ptg

covered and redisplayed, and so on. Calling glutPostRedisplay yourself is a way in which
you can let GLUT know that something has changed and it’s time to rerender the scene.
This comes in especially handy in the next section.

Simple Automated Animation
In the Move example program, when we pressed an arrow key, we updated the geometry
position and then called the glutPostRedisplay function to trigger a screen refresh. What
would happen if we put a glutPostRedisplay call at the end of the RenderScene function?
If you are thinking you’d get a program that continually repainted itself, you’d be right.
Don’t worry, this isn’t an infinite loop, though. The repaint message is actually a message
posted to an internal message loop, and other window events are also serviced between
screen refreshes. This means you can still look for keystrokes, mouse movement, window
size changes, and program termination.

Listing 2.3 shows a modified RenderScene function that builds on what we did in the
Move example program. Instead of using keystrokes to move the square, we made a func-
tion called BounceFunction that we call every time we render to update the square posi-
tion. It collides with the edges of the window and bounces around inside the window
frame. Note at the end, there is a call to glutPostRedisplay so that the window continu-
ally repaints itself.

LISTING 2.3 The Rendering Function for the Animated Bounce Example Program

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

GLfloat vRed[] = { 1.0f, 0.0f, 0.0f, 1.0f };

shaderManager.UseStockShader(GLT_SHADER_IDENTITY, vRed);

squareBatch.Draw();

// Flush drawing commands

glutSwapBuffers();

BounceFunction();

glutPostRedisplay(); // Redraw

}

CHAPTER 2 Getting Started76

ptg

Summary
We covered a lot of ground in this chapter. We introduced you to OpenGL, told you a
little bit about its history, introduced the OpenGL utility toolkit (GLUT), GLEW and
GLTools, and presented the fundamentals of writing a program that uses OpenGL. Using
GLUT, we showed you the easiest possible way to create a window and draw in it using
OpenGL commands. You learned to use the GLUT library to create windows that can be
resized, as well as create a simple animation. You were also introduced to the process of
using OpenGL for drawing—composing and selecting colors, clearing the screen, drawing
both a triangle and a rectangle, and setting the viewport within the window frame. We
discussed the various OpenGL data types and the headers required to build programs that
use OpenGL and walked you through setting up a project in either Visual Studio
(Windows) or Xcode (Mac OS X).

The OpenGL state machine underlies almost everything you do from here on out, and the
extension mechanism makes sure you can access all the OpenGL features supported by
your hardware driver, regardless of your development tool. You also learned how to check
for OpenGL errors along the way to make sure you aren’t making any illegal state changes
or rendering commands. With a little coding finally under your belt, you are ready to dive
into some other ideas you need to be familiar with before you move forward.

Summary 77
2

ptg

This page intentionally left blank

ptg

CHAPTER 3

Basic Rendering

by Richard S. Wright, Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

• About the basic OpenGL rendering architecture

• How to use the seven OpenGL geometric primitives

• How to use stock shaders

• How to use uniforms and attributes

• How to submit geometry with the GLBatch helper class

• How to perform depth testing and back face culling

• How to draw transparent or blended geometry

• How to draw antialiased points, lines, and polygons

ptg

80 CHAPTER 3 Basic Rendering

If you’ve ever had a chemistry class (and probably even if you haven’t), you know that all
matter consists of atoms and all atoms consist of only three things: protons, neutrons, and
electrons. All the materials and substances you have ever come into contact with—from
the petals of a rose to the sand on the beach—are just different arrangements of these
three fundamental building blocks. Although this explanation is a little oversimplified for
almost anyone beyond the third or fourth grade, it demonstrates a powerful principle:
With just a few simple building blocks, you can create highly complex and beautiful
structures.

The connection is fairly obvious. Objects and scenes that you create with OpenGL also
consist of smaller, simpler shapes, arranged and combined in various and unique ways.
This chapter explores these building blocks of 3D objects, called primitives, and the various
ways you can combine them on-screen. All primitives in OpenGL are one-, two-, or three-
dimensional objects, ranging from single points to lines and groups of triangles. In this
chapter, you learn everything you need to know to draw objects in three dimensions from
these simpler shapes.

The Basic Graphics Pipeline
A primitive in OpenGL is simply a collection of vertices, hooked together in a predefined
way. A single point for example is a primitive that requires exactly one vertex. Another
example is a triangle, a primitive made up of three vertices. Before we talk about the
different kinds of primitives, let’s take a look first at how a primitive is assembled out of
individual vertices. The basic rendering pipeline takes three vertices and turns them into a
triangle. It may also apply color, one or more textures, and move them about. This
pipeline is also programmable; you actually write two programs that are executed by the
graphics hardware to process the vertex data and fill in the pixels (we call them fragments
because actually there can be more than one fragment per pixel, but more on that later)
on-screen. To understand how this basic process works in OpenGL, let’s take a look at a
simplified version of the OpenGL rendering pipeline, shown here in Figure 3.1.

ptg

FIGURE 3.1 How to render a triangle.

Client-Server
First notice that we have divided the pipeline in half. On the top is the client side, and on
the bottom is the server. Basic client-server design is applied when the client side of the
pipeline is separated from the server side functionally. In OpenGL’s case, the client side is
code that lives in the main CPU’s memory and is executed within the application
program, or within the driver in main system memory. The driver assembles rendering
commands and data and sends to the server for execution. On a typical desktop computer,
the server is across some system bus and is in fact the hardware and memory on the
graphics card.

The Basic Graphics Pipeline 81
3

Application Code: C/C++, etc.

OpenGL API

Vertex Shader
void main() {

…
…

}

Client

Server

U
niform

s

V
ertex

P
ositions

U
niform

s

A
ttributes

(Ins)

Texture D
ata

Texture D
ata

O
uts

Ins

Fragment Shader
void main() {

…
…

}

Primitive
Assembly

ptg

CHAPTER 3 Basic Rendering82

Client and server also function asynchronously, meaning they are both independent
pieces of software or hardware, or both. To achieve maximum performance, you want both
sides to be busy as much as possible. The client is continually assembling blocks of data
and commands into buffers that are then sent to the server for execution. The server then
executes those buffers, while at the same time the client is getting ready to send the next
bit of data or information for rendering. If the server ever runs out of work while waiting
on the client, or if the client has to stop and wait for the server to become ready for more
commands or data, we call this a pipeline stall. Pipeline stalls are the bane of performance
programmers, and we really don’t want CPUs or GPUs standing around idle waiting for
work to do.

Shaders
The two biggest boxes in Figure 3.1 are for the vertex shader and the fragment shader. A
shader is a program written in GLSL (we get into GLSL programming in Chapter 6,
“Thinking Outside the Box: Nonstock Shaders”). GLSL looks a whole lot like C; in fact
these programs even start with the familiar main function. These shaders must be compiled
and linked together (again much like a C or C++ program) from source code before they
can be used. The final ready-to-use shader program is then made up of the vertex shader as
the first stage of processing and the fragment shader as the second stage of processing.
Note that we are taking a simplified approach here. There is actually something called a
geometry shader that can (optionally) fit between here, as well as all sorts of feedback
mechanisms for moving data back and forth. There are also some post fragment processing
features such as blending, stencil, and depth testing, which we also cover later.

The vertex shader processes incoming data from the client, applying transformations, or
doing other types of math to calculate lighting effects, displacement, color values, and so
on. To render a triangle with three vertices, the vertex shader is executed three times, once
for each vertex. On today’s hardware, there are multiple execution units running simulta-
neously, which means all three vertices are processed simultaneously. Graphics processors
today are massively parallel computers. Don’t be fooled by clock speed when comparing
them to CPUs. They are orders of magnitude faster at graphics operations.

Three vertices are now ready to be rasterized. The primitive assembly box in Figure 3.1 is
meant to show that the three vertices are then put together and the triangle is rasterized,
fragment by fragment. Each fragment is filled in by executing the fragment shader, which
outputs the final color value you will see on-screen. Again, today’s hardware is massively
parallel, and it is quite possible a hundred or more of these fragment programs could be
executing simultaneously.

Of course to get anything to happen, you must feed these shaders some data. There are
three ways in which you the programmer pass data to OpenGL shaders for rendering:
attributes, uniforms, and textures.

ptg

Attributes
An attribute is a data element that changes per vertex. In fact, the vertex position itself is
actually an attribute. Attributes can be floating-point, integer, or boolean data, and attrib-
utes are always stored internally as a four component vector, even if you don’t use all four
components. For example, a vertex position might be stored as an x, a y, and a z value.
That would be three out of the four components. Internally, OpenGL makes the fourth
component (W if you just have to know) a one. In fact, if you are drawing just in the xy
plane (and ignoring z), then the third component will be automatically made a zero, and
again the fourth will be made a one. To complete the pattern, if you send down only a
single floating-point value as an attribute, the second and third components are zero,
while the fourth is still made a one. This default behavior applies to any attribute you set
up, not just vertex positions, so be careful when you don’t use all four components avail-
able to you. Other things you might change per vertex besides the position in space are
texture coordinates, color values, and surface normals used for lighting calculations.
Attributes, however, can have any meaning you want in the vertex program; you are in
control.

Attributes are copied from a pointer to local client memory to a buffer that is stored (most
likely) on the graphics hardware. Attributes are only processed by the vertex shader and
have no meaning to the fragment shader. Also, to clarify that attributes change per vertex,
this does not mean they cannot have duplicate values, only that there is actually one
stored value per vertex. Usually, they are different of course, but it is possible you could
have a whole array of the same values. This would be very wasteful, however, and if you
needed a data element that was the same for all the attributes in a single batch, there is a
better way.

Uniforms
A uniform is a single value that is, well, uniform for the entire batch of attributes; that is,
it doesn’t change. You set the values of uniform variables usually just before you send the
command to render a primitive batch. Uniforms can be used for virtually an unlimited
number of uses. You could set a single color value that is applied to an entire surface. You
could set a time value that you change every time you render to do some type of vertex
animation (note the uniform changes once per batch, not once per vertex here). One of
the most common uses of uniforms is to set transformation matrices in the vertex shader
(this is almost the entire purpose of Chapter 4, “Basic Transformations: A Vector/Matrix
Primer”).

Like attributes, uniform values can be floating-point, integer, or boolean in nature, but
unlike attributes, you can have uniform variables in both the vertex and the fragment
shader. Uniforms can be scalar or vector types, and you can have matrix uniforms.
Technically, you can also have matrix attributes, where each column of the matrix takes
up one of those four component vector slots, but this is not often done. There are even
some special uniform setting functions we discuss in Chapter 5, “Basic Texturing,” that
deal with this.

The Basic Graphics Pipeline 83
3

ptg

Texture
A third type of data that you can pass to a shader is texture data. It is a bit early to try and
go into much detail about how textures are handled and passed to a shader, but you know
from Chapter 1, “Introduction to 3D Graphics and OpenGL,” basically what a texture is.
Texture values can be sampled and filtered from both the vertex and the fragment shader.
Fragment shaders typically sample a texture to apply image data across the surface of a
triangle. Texture data, however, is more useful than just to represent images. Most image
file formats store color components in unsigned byte values (8 bits per color channel), but
you can also have floating-point textures. This means potentially any large block of float-
ing-point data, such as a large lookup table of an expensive function, could be passed to a
shader in this way.

Outs
The fourth type of data shown in the diagram in Figure 3.1 are outs. An out variable is
declared as an output from one shader stage and declared as an in in the subsequent
shader stage. Outs can be passed simply from one stage to the next, or they may be inter-
polated in various ways. Client code has no access to these internal variables, but rather
they are declared in both the vertex and the fragment shader (and possibly the optional
geometry shader). The vertex shader assigns a value to the out variable, and the value is
constant, or can be interpolated between vertexes as the primitive is rasterized. The frag-
ment shader’s corresponding in variable of the same name receives this constant or inter-
polated value. In Chapter 6, we see how this works in more detail.

Setting Up Your Coordinate System
In Chapter 1, we introduced the two kinds of projections that we most often use in 3D
graphics (orthographic and perspective). These projections, or types of coordinate systems,
are really just a specially formed 4 x 4 transformation matrix. These and other types of
matrices are the topic of the next chapter, so we don’t want to get lost in the details too
soon here. Suffice it to say, you need a projection matrix of one of these types to render
geometry in the appropriate coordinate system. If you do not use one of these matrices,
you get a default orthographic projection where the axes range only from -1.0 to 1.0. Our
example programs in Chapter 2, “Getting Started,” made use of this coordinate system,
and this was useful given that all three of the sample programs were essentially 2D. For
this chapter, however, we want to begin to move on a bit.

The Math3d library that is part of GLTools contains functions that construct different
kinds of matrices for you, and you learn to use and apply them in Chapter 4. For this
chapter, we use the GLFrustum class as a container for our projection matrix.

CHAPTER 3 Basic Rendering84

ptg

Orthographic Projections
Typically, we use orthographic projections for 2D drawings, and we keep the z coordinate
at 0.0 for our geometry. The z-axis, however, can extend to any length we want. Figure 3.2
shows an example orthographic projection that stretches -100 to +100 in all three direc-
tions. This viewing volume as it is sometimes called will contain all of your geometry. If
you specify geometry outside the viewing volume, it is clipped, meaning it is literally cut
along the boundary of the viewing volume. In an orthographic projection everything that
falls within this space is displayed on-screen, and there is really no concept of a camera or
eye coordinate system. To set this up, we call the GLFrustum method, SetOrthographic.

GLFrustum::SetOrthographic(GLfloat xMin, GLfloat xMax, GLfloat yMin,

GLfloat yMax, GLfloat zMin, GLfloat zMax);

Setting Up Your Coordinate System 85
3

FIGURE 3.2 A Cartesian viewing volume measuring 200 x 200 x 200.

Perspective Projections
A perspective projection performs perspective division to shorten and shrink objects that
are farther away from the viewer. The width of the back of the viewing volume does not
have the same measurements as the front of the viewing volume after being projected to
the screen. Thus, an object of the same logical dimensions appears larger at the front of
the viewing volume than if it were drawn at the back of the viewing volume. Figure 3.3
shows an example of a geometric shape called a frustum. A frustum is a truncated section
of a pyramid viewed from the narrow end to the broad end, with the viewer back some
distance from the narrow end.

ptg

FIGURE 3.3 A perspective projection defined by a frustum.

The GLFrustum class constructs a frustum for you with the function SetPerspective.

GLFrustum::SetPerspective(float fFov, float fAspect, float fNear, float fFar);

The parameters are the field-of-view angle in the vertical direction, the aspect ratio of the
width to the height of your window, and the distances to the near and far clipping planes
(see Figure 3.4). You find the aspect ratio by dividing the width (w) by the height (h) of
the window or viewport.

CHAPTER 3 Basic Rendering86

Observer

Perspective viewing volume

near
0

far

Observer

near

fovy

h

w

far

FIGURE 3.4 The frustum as defined by the GLFrustum class’s SetPerspective method.

Using the Stock Shaders
In the OpenGL Core Profile, there is no built-in rendering pipeline; you must specify a
shader before you can submit geometry for rendering. This presents a bit of a chicken and
egg scenario (which came first, the chicken or the egg) when learning graphics program-
ming. The approach we think works best is to supply a set of stock shaders that you can use
for the first part of this book. These stock shaders are managed by the GLTools C++ class
GLShaderManager and provide a simple baseline of common rendering needs. Programmers
with simple needs may even find the stock shaders sufficient for all their anticipated tasks.
With time, however, it is unlikely that all but the most casual 3D programmer will be
happy being kept in this box, and thus near the end of the introductory section of this
book is Chapter 6.

ptg

The GLShaderManager must be initialized before use, and in all the sample programs you
find an instance of GLShaderManager near the top of the source file and a call to
InitializeStockShaders in SetupRC.

shaderManager.InitializeStockShaders();

Attributes
OpenGL supports up to 16 different generic attributes that can be set per vertex. These are
numbered 0 through 15 and can be associated with any specific variable in your vertex
shader (how to do this is covered in Chapter 6). The stock shaders all use a consistent vari-
able naming convention internally and the same attribute slot for each variable. These
attributes are listed in Table 3.1 and represent the most common basic attributes needed
for simple rendering needs. The attribute mechanism is quite flexible and can be used in
ways far beyond these few predefined values. You learn more about this in Chapter 6 and
Chapter 11, “Advanced Shader Usage.”

TABLE 3.1 GLShaderManager Predefined Attribute Identifiers

Identifier Description

GLT_ATTRIBUTE_VERTEX Three component (x, y, z) vertex position

GLT_ATTRIBUTE_COLOR Four component (r, g, b, a) color value

GLT_ATTRIBUTE_NORMAL Three components (x, y, z) surface normal

GLT_ATTRIBUTE_TEXTURE0 Primary two component (s, t) texture coordinate

GLT_ATTRIBUTE_TEXTURE1 Secondary two component (s, t) texture coordinate

Uniforms
To render geometry, you need to submit the attribute arrays for your object, but first you
must bind to the shader program you want to use and supply the program’s uniforms. The
GLShaderManager class takes care of this for you (for now). The function UseStockShader
selects one of the stock shaders and supplies the uniforms for that shader, all in one func-
tion call.

GLShaderManager::UseStockShader(GLenum shader, …);

The … signifies in C (or C++) that the function takes a variable number of parameters. In
the function itself, it pulls the appropriate arguments off the stack based on which shader
you selected, which are the uniforms that the particular shader requires. Each of the stock
shaders is discussed next. Although all of the uniforms may not make sense to you at this
point, they should by the time you finish the introductory section of this book. This is a
section you may want to bookmark, as you may find yourself referring back to this refer-
ence periodically.

Using the Stock Shaders 87
3

ptg

The Identity Shader
The identity shader simply draws geometry using the default Cartesian coordinate system
(-1.0 to 1.0 on all axes). A single color is applied to all fragments, and the geometry is
solid and unshaded. The only attribute used is GLT_ATTRIBUTE_VERTEX. The vColor
parameter contains the desired color.

GLShaderManager::UseStockShader(GLT_SHADER_IDENTITY, GLfloat vColor[4]);

The Flat Shader
This shader extends the identity shader by allowing a 4 x 4 transformation matrix to be
specified for geometry transformations. This is typically the premultiplied modelview
matrix and the projection matrix, often called the modelview projection matrix (this is
explained further in Chapter 4). The only attribute used is GLT_ATTRIBUTE_VERTEX.

GLShaderManager::UseStockShader(GLT_SHADER_FLAT, GLfloat mvp[16], GLfloat

vColor[4]);

The Shaded Shader
This shader’s only uniform is the transformation matrix that is to be applied to the geom-
etry. Both the GLT_ATTRIBUTE_VERTEX and the GLT_ATTRIBUTE_COLOR are used by the
shader. Color values are interpolated smoothly between vertices (smooth shading this is
called).

GLShaderManager::UseStockShader(GLT_SHADER_SHADED, GLfloat mvp[16]);

The Default Light Shader
This shader creates the illusion of a single diffuse light source located at the eye position.
Essentially, it makes things look shaded and lit. Uniforms needed are the modelview
matrix, the projection matrix, and the color value to use as the base color. Required
attributes are GLT_ATTRIBUTE_VERTEX and GLT_ATTRIBUTE_NORMAL. Most lighting shaders
require the normal matrix as a uniform. This shader derives the normal matrix from
the modelview matrix—convenient, but not terribly efficient. Bear that in mind for
performance-sensitive applications.

GLShaderManager::UseStockShader(GLT_SHADER_DEFAULT_LIGHT, GLfloat mvMatrix[16],

GLfloat pMatrix[16], GLfloat vColor[4]);

Point Light Shader
The point light shader is similar to the default light shader, but the light position may be
specified. This shader takes four uniforms, the modelview matrix, the projection matrix,
the light position in eye coordinates, and the base diffuse color of the object. Attributes
used are GLT_ATTRIBUTE_VERTEX and GLT_ATTRIBUTE_NORMAL.

CHAPTER 3 Basic Rendering88

ptg

GLShaderManager::UseStockShader(GLT_SHADER_POINT_LIGHT_DIFF, GLfloat mvMatrix[16],

GLfloat pMatrix[16], GLfloat vLightPos[3], GLfloat vColor[4]);

Texture Replace Shader
This shader transforms geometry by the given modelview projection matrix and uses the
texture bound to the texture unit specified in nTextureUnit. Fragment colors are taken
directly from the texture sample. Attributes used are GLT_ATTRIBUTE_VERTEX and
GLT_ATTRIBUTE_TEXTURE0.

GLShaderManager::UseStockShader(GLT_SHADER_TEXTURE_REPLACE,

GLfloat mvpMatrix[16], GLint nTextureUnit);

Texture Modulate Shader
This shader multiplies a base color by a texture from texture unit nTextureUnit. Attributes
used are GLT_ATTRIBUTE_VERTEX and GLT_ATTRIBUTE_TEXTURE0.

GLShaderManager::UseStockShader(GLT_SHADER_TEXTURE_MODULATE, GLfloat mvpMatrix[16],

GLfloat vColor, GLint nTextureUnit);

Textured Point Light Shader
This shader modulates (multiplies) a texture by a diffuse lighting calculation, given a
light’s position in eye space. Uniforms are the modelview matrix, projection matrix, the
light position in eye space, the base color of the geometry, and the texture unit to use.
Attributes used are GLT_ATTRIBUTE_VERTEX, GLT_ATTRIBUTE_NORMAL, and
GLT_ATTRIBUTE_TEXTURE0.

GLShaderManager::UseStockShader(GLT_SHADER_TEXTURE_POINT_LIGHT_DIFF,

GLfloat mvMatrix, GLfloat pMatrix[16], GLfloat vLightPos[3],

GLfloat vBaseColor[4], GLint nTextureUnit);

Connecting The Dots
When (and if) you first learned to draw any kind of 2D graphics on any computer system,
you probably started with pixels. A pixel is the smallest element on your computer
monitor, and on color systems that pixel can be any one of many available colors. This is
computer graphics at its simplest: Draw a point somewhere on the screen and make it a
specific color. Then build on this simple concept, using your favorite computer language
to produce lines, polygons, circles, and other shapes and graphics—perhaps even a GUI.

With OpenGL, however, drawing on the computer screen is fundamentally different.
You’re not concerned with physical screen coordinates and pixels, but rather positional
coordinates in your viewing volume. It is the job of your shader program and rasterization
hardware to get your points, lines, and triangles projected from your established 3D space
to the 2D image seen on your computer screen.

Connecting The Dots 89
3

ptg

Points and Lines
To start drawing solid geometry, we use seven geometric primitives defined by OpenGL.
Primitives are rendered in a single batch that contain all the vertices and associated attrib-
utes for a given primitive. Essentially, all the vertices in a given batch are assembled into
one of these primitives. Table 3.2 lists these seven primitives and briefly describes their
purpose.

TABLE 3.2 OpenGL Geometric Primitives

Primitive Description

GL_POINTS Each vertex is a single point on the screen.

GL_LINES Each pair of vertices defines a line segment.

GL_LINE_STRIP A line segment is drawn from the first vertex to each successive vertex.

GL_LINE_LOOP Same as GL_LINE_STRIP, but the last and first vertex are connected.

GL_TRIANGLES Every three vertices define a new triangle.

GL_TRIANGLE_STRIP Triangles share vertices along a strip.

GL_TRIANGLE_FAN Triangles fan out from an origin, sharing adjacent vertices.

The example program Primitives demonstrates rendering each one of these. Start the
program and press the space bar to progress from GL_POINTS to GL_TRIANGLE_STRIP. You
can also use the arrow keys to rotate the rendering on the x and y axes.

Points
Points are the simplest primitive. Each vertex specified is simply a single point on the
screen. By default, points are one pixel in size. You can change the default point size by
calling glPointSize.

void glPointSize(GLfloat size);

The glPointSize function takes a single parameter that specifies the approximate diameter
in pixels of the point drawn. Not all point sizes are supported, however, and you should
make sure the point size you specify is available. Use the following code to get the range
of point sizes and the smallest interval between them:

GLfloat sizes[2]; // Store supported point size range

GLfloat step; // Store supported point size increments

// Get supported point size range and step size

glGetFloatv(GL_POINT_SIZE_RANGE,sizes);

glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);

Here, the sizes array contains two elements that contain the smallest and largest valid
value for glPointsize. In addition, the variable step holds the smallest step size allowable
between the point sizes. The OpenGL specification requires only that one point size, 1.0,
be supported, but most implementations support a wide range of point sizes. For example,

CHAPTER 3 Basic Rendering90

ptg

you may find a range for point sizes from 0.5 to 256.0, with 0.125 the smallest step size.
Specifying a size out of range is not interpreted as an error. Instead, the largest or smallest
supported size is used, whichever is closest to the value specified.

By default, point size, unlike other geometry, is not affected by the perspective division.
That is, they do not become smaller when they are further from the viewpoint, and they
do not become larger as they move closer. Points are also always square pixels, even if you
use glPointSize to increase the size of the points. You just get bigger squares! To get
round points, you must draw them antialiased (coming up later in this chapter).

Another way to set the point size is to enable program point size mode.

glEnable(GL_PROGRAM_POINT_SIZE);

This mode allows you to set the point size programmatically in the vertex shader or the
geometry shader, both of which are beyond the scope of this chapter. For completeness,
the shader built-in variable is gl_PointSize, and in your shader source code, you’d simply
set it like this:

gl_PointSize = 5.0;

Figure 3.5 shows the initial output from the Primitives example program. The point size
was set to 4.0, and an array of vertices is used that is shaped roughly like the state of
Florida.

Connecting The Dots 91
3

FIGURE 3.5 A set of points along the coastline of Florida.

ptg

Lines
Next up the ladder from points are individual line segments. A line segment is drawn
between two vertices, so a batch of lines should consist of an even number of vertices, one
for each end of the line segment. If we use the same set of points used in the previous
figure to draw a series of lines, every two points along the Florida coast will form a new
line segment. This of course would leave gaps between each separated line segment as
shown in Figure 3.6.

CHAPTER 3 Basic Rendering92

FIGURE 3.6 Separated lines, each formed by two vertices.

Lines are by default one pixel in width. The only way to change a line’s width is with the
function glLineWidth.

void glLineWidth(GLfloat width);

ptg

FIGURE 3.7 A line strip simply connects the dots from start to finish.

Connecting The Dots 93
3

Line Strips
For a true connect-the-dots parallel, line strips draw line segments from one vertex to the
next continually. To make a continuous line around the state of Florida with separated
lines, each of the connecting vertices would have to be specified twice. Once as the end of
one line segment, and then sent down again as the beginning of the next line segment.
Moving all this extra data and transforming the same point twice is waste of bandwidth
and clock cycles on the GPU. Figure 3.7 shows the same set of points again, this time
drawn as a GL_LINE_STRIP.

ptg

Line Loops
A simple extension to line strips, a line loop draws an extra line segment from the end of
the batch back to the beginning. This provides a net savings of only one vertex but is
convenient when you are trying to close a loop or line-based figure. Figure 3.8 shows the
inevitable conclusion of our rendering of the outline of the state of Florida in the
Primitives example program.

CHAPTER 3 Basic Rendering94

FIGURE 3.8 Closing the final gap with a line loop.

Drawing Triangles in 3D
You’ve seen how to draw points and lines and even how to draw some enclosed polygons
with GL_LINE_LOOP. With just these primitives, you could easily draw any shape possible in
three dimensions. You could, for example, draw six squares and arrange them so they form
the sides of a cube.

ptg

You might have noticed, however, that any shapes you create with these primitives are not
filled with any color; after all, you are drawing only lines. In fact, arranging six squares
produces just a wireframe cube, not a solid cube. To draw a solid surface, you need more
than just points and lines; you need polygons. A polygon is a closed shape that may or
may not be filled with colors or texture data, and it is the basis for all solid-object compo-
sition in OpenGL.

Individual Triangles
The simplest solid polygon possible is the triangle, with only three sides. Rasterization
hardware just loves triangles, and so this is now the only type of polygon that OpenGL
supports. Every three vertices simply form a new triangle. Figure 3.9 shows two triangles
drawn with six vertices numbered V0 through V5.

Connecting The Dots 95
3

x

y

1

2

3 3

1 2

V2

V1

V0V5

V4

V3

FIGURE 3.9 Two triangles drawn using GL_TRIANGLES.

Figure 3.10 shows the next step of the Primitives example program. Here, we don’t draw
one triangle, but four triangles in the shape of a pyramid. The arrow keys allow you to
rotate the pyramid and look at it from different angles. There is no bottom on the
pyramid, so you can also look up inside it.

ptg
FIGURE 3.10 Triangles forming a four-sided pyramid.

Note that in our example here (and continuing forward), we have outlined the green
triangles with black lines. Because there is no shading or texture across the triangles, this
helps the individual triangles stand out. This black outline is not a natural behavior of
primitives. This was achieved by drawing the geometry solid and then drawing a black
wireframe version of the geometry right over the top of the solid. We show you how this
is done in more detail in the upcoming section on glPolygonOffset.

Winding
An important characteristic of any triangle is illustrated in Figure 3.9. Notice the arrows
on the lines that connect the vertices. When the first triangle is drawn, the lines are
drawn from V0 to V1, and then to V2, and finally back to V0 to close the triangle. This
path is in the order in which the vertices are specified, and for this example, that order is
clockwise from your point of view. The same directional characteristic is present for the
second triangle as well.

The combination of order and direction in which the vertices are specified is called
winding. The triangles in Figure 3.9 are said to have clockwise winding because they are
literally wound in the clockwise direction. If we reverse the positions of V4 and V5 on the
triangle on the left, we get counterclockwise winding. Figure 3.11 shows two triangles,
each with opposite windings.

CHAPTER 3 Basic Rendering96

ptg

FIGURE 3.11 Two triangles with different windings.

OpenGL, by default, considers polygons that have counterclockwise winding to be front
facing. This means that the triangle on the left in Figure 3.11 shows the front of the trian-
gle, and the one on the right shows the back of the triangle.

Why is this issue important? As you will soon see, you will often want to give the front
and back of a polygon different physical characteristics. You can hide the back of a trian-
gle altogether or give it a different color and reflective property. Texture images are also
reversed on the back sides of triangles. It’s important to keep the winding of all polygons
in a scene consistent, using front-facing polygons to draw the outside surface of any solid
objects. If you need to reverse the default behavior of OpenGL, you can do so by calling
the following function:

glFrontFace(GL_CW);

The GL_CW parameter tells OpenGL that clockwise-wound polygons are to be considered
front-facing. To change back to counterclockwise winding for the front face (this is the
default anyway), use GL_CCW.

Triangle Strips
For many surfaces and shapes, you need to draw several connected triangles. You can save
a lot of time by drawing a strip of connected triangles with the GL_TRIANGLE_STRIP primi-
tive. Figure 3.12 shows the progression of a strip of three triangles specified by a set of five
vertices numbered V0 through V4. Here, you see that the vertices are not necessarily
traversed in the same order in which they were specified. The reason for this is to preserve
the winding (counterclockwise) of each triangle. The pattern is V0, V1, V2; then V2, V1,
V3; then V2, V3, V4; and so on.

Connecting The Dots 97
3

ptg

FIGURE 3.12 The progression of a GL_TRIANGLE_STRIP.

There are two advantages to using a strip of triangles instead of specifying each triangle
separately. First, after specifying the first three vertices for the initial triangle, you need to
specify only a single point for each additional triangle. This saves a lot of program or data
storage space when you have many triangles to draw. The second advantage is mathemati-
cal performance and bandwidth savings. Fewer vertices means a faster transfer from your
computer’s memory to your graphics card and fewer times your vertex shader must be
executed. Figure 3.13 shows the next step in the Primitives example program. Here, a
triangle strip is drawn to create a circular band.

CHAPTER 3 Basic Rendering98

FIGURE 3.13 A circular band made of a triangle strip.

ptg

Triangle Fans
In addition to triangle strips, you can use GL_TRIANGLE_FAN to produce a group of connected
triangles that fan around a central point. Figure 3.14 shows a fan of three triangles produced
by specifying four vertices. The first vertex, V0, forms the origin of the fan. After the first
three vertices are used to draw the initial triangle, all subsequent vertices are used with the
origin (V0) and the vertex immediately preceding it (Vn–1) to form the next triangle.

Connecting The Dots 99
3V1

V2
V3

V0

1

2

3

V1

V2

V0

V3

V31 2
2

3

V1

V2

V4

V0

1

2

3

FIGURE 3.14 The progression of GL_TRIANGLE_FAN.

Figure 3.15 shows the final step of the Primitives example program. We’ve drawn six trian-
gles around the origin of the triangle fan, which we raised ever so slightly to give it a little
depth. Don’t forget you can use the arrow keys to rotate the figures around.

FIGURE 3.15 Final output of the Primitives example, GL_TRIANGLE_FAN.

ptg

A Simple Batch Container
The GLTools library contains a simple container class called GBatch. This class can contain
a single batch of any of the seven primitives listed in Table 3.2, and it knows how to
render the primitives when using any of the stock shaders supported by the
GLShaderManager. Using the GLBatch class is simple. First initialize the batch, telling the
class the type of primitive it represents, the number of vertices it will contain, and option-
ally, one or two sets of texture coordinates:

void GLBatch::Begin(GLenum primitive, GLuint nVerts, GLuint nTextureUnits = 0);

Then, at a minimum, copy in an array of three component (x, y, z) vertices.

void GLBatch::CopyVertexData3f(GLfloat *vVerts);

Optionally, you can also copy in surface normals, colors, and texture coordinates as well:

void GLBatch::CopyNormalDataf(GLfloat *vNorms);

void GLBatch::CopyColorData4f(GLfloat *vColors);

void GLBatch::CopyTexCoordData2f(GLfloat *vTexCoords, GLuint uiTextureLayer);

When you are finished, you can call End to signify you are done copying in data, and the
internal flags will be set so the class knows which attributes it contains.

void GLBatch::End(void);

You can actually copy new data in anytime you like, as long as you do not change the size
of the class, and once you call the End function, you cannot add new attributes (that is
you can’t decide now I also want surface normals too).

The actual underlying OpenGL mechanism for submitting attributes is actually far more
flexible than this. The GLBatch class, however, is simply a convenience class, much like
using GLUT is convenient so you don’t have to worry about OS specifics until you are
ready.

Let’s take a quick look at using the class to render a single triangle. In the Triangle
example from Chapter 2 (the simplest example we have), we declared an instance of the
GLBatch class near the top of the source file:

GLBatch triangleBatch;

Then in the SetupRC function, we set up the triangle with three vertices.

CHAPTER 3 Basic Rendering100

ptg

// Load up a triangle

GLfloat vVerts[] = { -0.5f, 0.0f, 0.0f,

0.5f, 0.0f, 0.0f,

0.0f, 0.5f, 0.0f };

triangleBatch.Begin(GL_TRIANGLES, 3);

triangleBatch.CopyVertexData3f(vVerts);

triangleBatch.End();

Finally, in the RenderScene function, we select the appropriate stock shader and call the
Draw function.

GLfloat vRed[] = { 1.0f, 0.0f, 0.0f, 1.0f };

shaderManager.UseStockShader(GLT_SHADER_IDENTITY, vRed);

triangleBatch.Draw();

While the GLBatch class provides a convenient mechanism for containing and submitting
geometry, it is not fully representative of the full breadth and power of OpenGL for geom-
etry management. Chapter 12, “Advanced Geometry Management,” goes into far more
detail on this topic. The reason we don’t cover this material earlier in the book is simply
because we want you to be able to start rendering as soon as possible. One of the best
ways to learn is by doing, and too much explanation before seeing anything on-screen can
be very frustrating, much less error prone.

Unwanted Geometry
By default, every point, line, or triangle you render is rasterized on-screen and in the
order in which you specify when you assemble the primitive batch. This can sometimes be
problematic. One problem that can occur is if you draw a solid object made up of many
triangles, the triangles drawn first can be drawn over by triangles drawn afterward. For
example, let’s say you have an object such as a torus (donut shaped object) made up of
many triangles. Some of those triangles are on the back side of the torus, and some on the
front sides. You can’t see the back sides—at least you aren’t supposed to see the backsides
(omitting for the moment the special case of transparent geometry). Depending on your
orientation, the order in which the triangles are drawn may simply make a mess of things.
Figure 3.16 shows the output of the sample program GeoTest (short for Geometry Test
Program) with the torus rotated slightly (use the arrow keys to see this yourself).

Connecting The Dots 101
3

ptg
FIGURE 3.16 An object with some of the far-side triangles drawn on top of near-side
triangles.

One potential solution to this problem would be to sort the triangles and render the ones
farther away first and then render the nearer triangles on top of them. This is called the
painters algorithm and is very inefficient in computer graphics for two reasons. One is that
you must write to every pixel twice wherever any geometry overlaps, and writing to
memory slows things down. The second is that sorting individual triangles would be
prohibitively expensive. There is a better way.

Front and Back Face Culling
One of the reasons OpenGL makes a distinction between the front and back sides of trian-
gles is for culling. Back face culling can significantly improve performance and corrects
problems like those shown in Figure 3.16. Right-click the GeoTest example program and
select the Toggle Cull Backface menu option. Figure 3.17 shows the output.

CHAPTER 3 Basic Rendering102

ptg
FIGURE 3.17 Correctly rendered object with the back sides of triangles eliminated.

This is very efficient, as a whole triangle is thrown away in the primitive assembly stage of
rendering, and no wasteful or inappropriate rasterization is performed. General face
culling is turned on like this:

glEnable(GL_CULL_FACE);

and turned back off with the counterpart:

glDisable(GL_CULL_FACE);

Note, we did not say whether to cull the front or back of anything. That is controlled by
another function, glCullFace.

void glCullFace(GLenum mode);

Valid values for the mode parameter are GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK. To
throw away the insides of opaque (nontransparent) geometry takes two lines of code then.

glCullFace(GL_BACK);

glEnable(GL_CULL_FACE);

Connecting The Dots 103
3

ptg

Culling away the front of solid geometry is also useful in some circumstances, for
example, showing a rendering of the insides of some figure. When rendering transparent
objects (blending is coming up soon), we often render an object twice, once with trans-
parency on, culling the front sides, and then again with the back sides turned off. This
layers the object with the back side rendered before the front side, a requirement for
rendering things transparently.

Depth Testing
Depth testing is another effective technique for hidden surface removal. The concept is
simple: When a pixel is drawn, it is assigned a value (called the z value) that denotes its
distance from the viewer’s perspective. Later, when another pixel needs to be drawn to
that screen location, the new pixel’s z value is compared to that of the pixel that is already
stored there. If the new pixel’s z value is higher, it is closer to the viewer and thus in front
of the previous pixel, so the previous pixel is obscured by the new pixel. If the new pixel’s
z value is lower, it must be behind the existing pixel and thus is not obscured. This
maneuver is accomplished internally by a depth buffer with storage for a depth value for
every pixel on the screen. Almost all the samples in this book use depth testing.

You should request a depth buffer when you set up your OpenGL window with GLUT. For
example, you can request a color and a depth buffer like this:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

To enable depth testing, simply call

glEnable(GL_DEPTH_TEST);

If you do not have a depth buffer, then enabling depth testing will just be ignored.

Depth testing further solves a performance issue when drawing multiple objects. Even
though back face culling can eliminate triangles on the back sides of an object, what
about having to separate overlapping objects? The painters algorithm, which we
mentioned previously, is so named after a technique used by painters. Simply paint the
background objects first and then paint the near objects over the top of them. This may
use a trivial amount of paint on the canvas (much less be useful for manual painting), but
for graphics hardware, this results in repeated writes to the same fragment location, each
of which has a performance overhead. Too much overwrite slows down the rasterization
process, and we call such renderings fill limited. The reverse of the painters algorithm actu-
ally speeds up fill performance. Draw the objects nearest you first, and then the objects
farther away. The depth test eliminates pixel writes that would fall under existing pixels,
saving a considerable amount of memory bandwidth.

CHAPTER 3 Basic Rendering104

ptg

FIGURE 3.18 Self-overlapping objects without depth testing can be problematic.

Right-click the window and select Toggle Depth Test from the pop-up menu. This simply
calls glEnable to turn on depth testing, and Figure 3.19 shows the correctly rendered
object.

Connecting The Dots 105
3

Sorting objects relative to the viewer’s position is not difficult, but what about an object
that overlaps itself? Back to our DepthTest sample program; we can orient the torus (again,
use the arrow keys for this) such that part of the torus overlaps a nearer portion that
happened to be rendered first. Figure 3.18 shows what this looks like.

ptg
FIGURE 3.19 Correct depth testing on the torus.

Polygon Modes
Polygons (triangles) don’t have to be solid. By default, polygons are drawn solid, but you
can change this behavior by specifying that polygons are to be drawn as outlines or just
points (only the vertices are plotted). The function glPolygonMode allows polygons to be
rendered as filled solids, as outlines, or as points only. In addition, you can apply this
rendering mode to both sides of the polygons or only to the front or back.

void glPolygonMode(GLenum face, GLenum mode);

Like in face culling, the face parameter can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.
The mode parameter can be GL_FILL (the default), GL_LINE, or GL_POINT. Figure 3.20
shows the output from GeoTest when you select Set Line Mode.

CHAPTER 3 Basic Rendering106

ptg
FIGURE 3.20 The torus in wireframe mode.

This wireframe rendering is accomplished simply by calling glPolygonMode to set the
fronts and backs of polygons to outline mode.

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

Drawing the torus as a point cloud is also easily accomplished. Selecting Set Point Mode
from the context menu in GeoTest causes the polygon mode to be set as follows:

glPolygonMode(GL_FRONT_AND_BACK, GL_POINT);

Figure 3.21 shows the torus with only the vertices drawn as points. In this case, we did
make the points a bit larger by calling glPointSize with an argument of 5.0.

Connecting The Dots 107
3

ptgFIGURE 3.21 The torus drawn as a point cloud.

Polygon Offset
While the depth buffer can have positive visual and performance effects, sometimes it just
gets a little in the way, and you might need to fib to it just a little bit. This happens when-
ever you intentionally want to draw two pieces of geometry in the same place. This might
sound odd, but consider two cases. At times, you may want to draw a large plane and then
draw a smaller shape over the plane but in the same physical location. This is called decal-
ing, and you might for example draw a star shape over a flat surface to make a design. In
this case, the depth values of the star will be the same or nearly the same as the values in
the depth buffer from drawing the original plane. This causes fragments to pass or fail the
depth test unpredictably and can leave nasty visual artifacts from what is commonly
called z-fighting.

Another case (and easier to demonstrate with our current examples), is when you want to
draw solid geometry but want to highlight the edges. In the example program Primitives,
presented earlier, triangles, triangle fans, and triangle strips were all drawn in green but
with black lines showing the individual triangles. This is not the default behavior, and we
had to take special care to make this happen. By default, simply drawing a triangle strip
would leave the ring looking like that shown in Figure 3.22.

To see the triangle edges, we would need to draw the strip using glPolygonMode as shown
in the previous section. The results of drawing thick black lines in wireframe mode just
creates the wireframe only as shown in Figure 3.23.

CHAPTER 3 Basic Rendering108

ptg
FIGURE 3.22 A triangle strip with no edges highlighted.

Connecting The Dots 109
3

FIGURE 3.23 A triangle strip but just the edges.

ptg

The problem is that if you draw the wireframe in the same location as the solid strips, you
get the aforementioned z-fighting problem. The solution you might think is to offset the
second draw in the z direction ever so slightly. This would do the trick, but you’d have to
be careful to make sure you moved in the z toward the camera only and enough to offset
the depth test but no so much that you’d see a gap between the geometry layers. There is
a better way.

The glPolygonOffset function shown here allows you to tweak the depth values of frag-
ments, thus offsetting the depth values but not the actual physical location in 3D space.

void glPolygonOffset(GLfloat factor, GLfloat units);

The total offset applied to fragments is given by this equation:

Depth Offset = (DZ X factor) + (r X units)

DZ is the change in depth values (the z) relative to the screen area of the polygon, and r is
the smallest value that produces a change in depth buffer values. There are no hard and
fast rules for foolproof values, and some experimentation may be required on your part.
Negative values bring the z closer to you, and positive values move them farther away. For
the Primitives example program, we used the value of -1.0 for both the factor and units
parameters.

In addition to using glPolygonOffset to set up your offset values, you must enable
polygon offset separately for filled geometry (GL_POLYGON_OFFSET_FILL), lines
(GL_POLYGON_OFFSET_LINE), and points (GL_POLYGON_OFFSET_POINT). Listing 3.1 shows a
function from the Primitives example program that renders a green batch of primitives
and then draws a black wireframe version over it. Note that we used thicker, antialiased
lines for the outlines for a better appearance. We talk more about antialiasing in the
upcoming section on blending.

LISTING 3.1 Function to Draw a Primitive Batch in Green, Followed by Black Wireframe
Version

void DrawWireFramedBatch(GLBatch* pBatch)

{

// Draw the batch solid green

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(), vGreen);

pBatch->Draw();

// Draw black outline

glPolygonOffset(-1.0f, -1.0f); // Shift depth values

glEnable(GL_POLYGON_OFFSET_LINE);

CHAPTER 3 Basic Rendering110

ptg

// Draw lines antialiased

glEnable(GL_LINE_SMOOTH);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

// Draw black wireframe version of geometry

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

glLineWidth(2.5f);

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(), vBlack);

pBatch->Draw();

// Put everything back the way we found it

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

glDisable(GL_POLYGON_OFFSET_LINE);

glLineWidth(1.0f);

glDisable(GL_BLEND);

glDisable(GL_LINE_SMOOTH);

}

Figure 3.24 shows how the two passes are finally superimposed.

Connecting The Dots 111
3

+ =

FIGURE 3.24 Our “assembled” rendering with both solid and wireframe drawings.

Cutting It Out with Scissors
Another way to improve rendering performance is to update only the portion of the
screen that has changed. You may also need to restrict OpenGL rendering to a smaller
rectangular region inside the window. OpenGL allows you to specify a scissor rectangle

ptg

within your window where rendering can take place. By default, the scissor rectangle is
the size of the window, and no scissor test takes place. You turn on the scissor test with
the ubiquitous glEnable function:

glEnable(GL_SCISSOR_TEST);

You can, of course, turn off the scissor test again with the corresponding glDisable func-
tion call. The rectangle within the window where rendering is performed, called the
scissor box, is specified in window coordinates (pixels) with the following function:

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height);

The x and y parameters specify the lower-left corner of the scissor box, with width and
height being the corresponding dimensions of the scissor box. Listing 3.2 shows the
rendering code for the sample program Scissor. This program clears the color buffer three
times, each time with a smaller scissor box specified before the clear. The result is a set of
overlapping colored rectangles, as shown in Figure 3.25.

LISTING 3.2 Using the Scissor Box to Render a Series of Rectangles

void RenderScene(void)

{

// Clear blue window

glClearColor(0.0f, 0.0f, 1.0f, 0.0f);

glClear(GL_COLOR_BUFFER_BIT);

// Now set scissor to smaller red sub region

glClearColor(1.0f, 0.0f, 0.0f, 0.0f);

glScissor(100, 100, 600, 400);

glEnable(GL_SCISSOR_TEST);

glClear(GL_COLOR_BUFFER_BIT);

// Finally, an even smaller green rectangle

glClearColor(0.0f, 1.0f, 0.0f, 0.0f);

glScissor(200, 200, 400, 200);

glClear(GL_COLOR_BUFFER_BIT);

// Turn scissor back off for next render

glDisable(GL_SCISSOR_TEST);

glutSwapBuffers();

}

CHAPTER 3 Basic Rendering112

ptg
FIGURE 3.25 Shrinking scissor boxes.

Blending
You already learned that OpenGL rendering places color values in the color buffer under
normal circumstances. You also learned that depth values for each fragment are also
placed in the depth buffer. When depth testing is turned off (disabled), new color values
simply overwrite any other values already present in the color buffer. When depth testing
is turned on (enabled), new color fragments replace an existing fragment only if they are
deemed closer to the near clipping plane than the values already there. Under normal
circumstances then, any drawing operation is either discarded entirely, or just completely
overwrites any old color values, depending on the result of the depth test. This oblitera-
tion of the underlying color values no longer happens the moment you turn on OpenGL
blending:

glEnable(GL_BLEND);

When blending is enabled, the incoming color is combined with the color value already
present in the color buffer. How these colors are combined leads to a great many and
varied special effects.

Blending 113
3

ptg

Combining Colors
First, we must introduce a more official terminology for the color values coming in and
already in the color buffer. The color value already stored in the color buffer is called the
destination color, and this color value contains the three individual red, green, and blue
components, and optionally a stored alpha value as well. A color value that is coming in
as a result of more rendering commands that may or may not interact with the destina-
tion color is called the source color. The source color also contains either three or four
color components (red, green, blue, and optionally alpha). Note that anytime you omit an
alpha value, OpenGL assumes it is 1.0.

How the source and destination colors are combined when blending is enabled is
controlled by the blending equation. By default, the blending equation looks like this:

Cf = (Cs * S) + (Cd * D)

Here, Cf is the final computed color, Cs is the source color, Cd is the destination color, and
S and D are the source and destination blending factors. These blending factors are set
with the following function:

glBlendFunc(GLenum S, GLenum D);

As you can see, S and D are enumerants and not physical values that you specify directly.
Table 3.3 lists the possible values for the blending function. The subscripts stand for
source, destination, and color (for blend color, to be discussed shortly). R, G, B, and A stand
for Red, Green, Blue, and Alpha, respectively.

TABLE 3.3 OpenGL Blending Factors

Alpha Blend
Function RGB Blend Factors Factor

GL_ZERO (0,0,0) 0

GL_ONE (1,1,1) 1

GL_SRC_COLOR (Rs,Gs,Bs) As

GL_ONE_MINUS_SRC_COLOR (1,1,1) – (Rs,Gs,Bs) 1 – As

GL_DST_COLOR (Rd,Gd,Bd) Ad

GL_ONE_MINUS_DST_COLOR (1,1,1) – (Rd,Gd,Bd) 1 – Ad

GL_SRC_ALPHA (As,As,As) As

GL_ONE_MINUS_SRC_ALPHA (1,1,1) – (As,As,As) 1 – As

GL_DST_ALPHA (Ad,Ad,Ad) Ad

GL_ONE_MINUS_DST_ALPHA (1,1,1) – (Ad,Ad,Ad) 1 – Ad

GL_CONSTANT_COLOR (Rc,Gc,Bc) Ac

GL_ONE_MINUS_CONSTANT_COLOR (1,1,1) – (Rc,Gc,Bc) 1 – Ac

GL_CONSTANT_ALPHA (Ac,Ac,Ac) Ac

GL_ONE_MINUS_CONSTANT_ALPHA (1,1,1) – (Ac,Ac,Ac) 1 – Ac

GL_SRC_ALPHA_SATURATE (f,f,f)* 1

* Where f = min(As, 1 – Ad).

CHAPTER 3 Basic Rendering114

ptg

Remember that colors are represented by floating-point numbers, so adding them,
subtracting them, and even multiplying them are all perfectly valid operations. Table 3.3
may seem a bit bewildering, so let’s look at a common blending function combination:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

This function tells OpenGL to take the source (incoming) color and multiply the color
(the RGB values) by the alpha value. Add this to the result of multiplying the destination
color by one minus the alpha value from the source. Say, for example, that you have the
color Red (1.0f, 0.0f, 0.0f, 0.0f) already in the color buffer. This is the destination color, or
Cd. If something is drawn over this with the color blue and an alpha of 0.6 (0.0f, 0.0f, 1.0f,
0.6f), you would compute the final color as shown here:

Cd = destination color = (1.0f, 0.0f, 0.0f, 0.0f)

Cs = source color = (0.0f, 0.0f, 1.0f, 0.6f)

S = source alpha = 0.6

D = one minus source alpha = 1.0 – 0.6 = 0.4

Now, the equation

Cf = (Cs * S) + (Cd * D)

evaluates to

Cf = (Blue * 0.6) + (Red * 0.4)

The final color is a scaled combination of the original red value and the incoming blue
value. The higher the incoming alpha value, the more of the incoming color is added and
the less of the original color is retained.

This blending function is often used to achieve the effect of drawing a transparent object
in front of some other opaque object. This particular technique does require, however,
that you draw the background object or objects first and then draw the transparent object
blended over the top.

For example, in the Blending sample program, we use transparency to achieve the illusion
of a partially transparent red rectangle that we can move about on a white background.
Also in the window are a red, blue, green, and black rectangle. Using the cursor keys, you
can move the transparent rectangle around and over the other colors. The output of this
program is shown in Figure 2.26.

Blending 115
3

ptg
FIGURE 3.26 The movable red rectangle blending with the background colors.

This example is based on the Move example program from Chapter 2. In this case,
however, the background is white, and we also draw the four other colored blocks in fixed
locations. The red transparent block is drawn with blending turned on, and a red color
that has an alpha set to 0.5.

GLfloat vRed[] = { 1.0f, 0.0f, 0.0f, 0.5f };

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

shaderManager.UseStockShader(GLT_SHADER_IDENTITY, vRed);

squareBatch.Draw();

glDisable(GL_BLEND);

It is interesting to note that the white simply dilutes the red color, the black darkens it,
and blending red with red is simply…just still red.

Changing the Blending Equation
The blending equation we showed you earlier,

Cf = (Cs * S) + (Cd * D)

CHAPTER 3 Basic Rendering116

ptg

is the default blending equation. You can actually choose from five different blending
equations, each given in Table 3.4 and selected with the following function:

void glBlendEquation(GLenum mode);

TABLE 3.4 Available Blend Equation Modes

Mode Function

GL_FUNC_ADD (default) Cf = (Cs * S) + (Cd * D)

GL_FUNC_SUBTRACT Cf = (Cs * S) – (Cd * D)

GL_FUNC_REVERSE_SUBTRACT Cf = (Cd * D) – (Cs * S)

GL_MIN Cf = min(Cs, Cd)

GL_MAX Cf = max(Cs, Cd)

In addition to glBlendFunc, you have even more flexibility with this function:

void glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum

dstAlpha);

Whereas glBlendFunc specifies the blend functions for source and destination RGBA
values, glBlendFuncSeparate allows you to specify blending functions for the RGB and
alpha components separately.

Finally, as shown in Table 3.4, the GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR,
GL_CONSTANT_ALPHA, and GL_ONE_MINUS_CONSTANT_ALPHA values all allow a constant blend-
ing color to be introduced to the blending equation. This constant blending color is
initially black (0.0f, 0.0f, 0.0f, 0.0f), but it can be changed with this function:

void glBlendColor(GLclampf red, GLclampf green, Glclampf blue,

GLclampf alpha);

Antialiasing
Another use for OpenGL’s blending capabilities is antialiasing. Under most circumstances,
individual rendered fragments are mapped to individual pixels on a computer screen.
These pixels are square (or squarish), and usually you can spot the division between two
colors quite clearly. These jaggies, as they are often called, catch the eye’s attention and
can destroy the illusion that the image is natural. These jaggies are a dead giveaway that
the image is computer generated! For many rendering tasks, it is desirable to achieve as
much realism as possible, particularly in games, simulations, or artistic endeavors. Figure
3.27 shows the output for the sample program Smoother. In Figure 3.28, we zoomed in on
a line segment and some points to show the jagged edges.

Blending 117
3

ptg
FIGURE 3.27 Output from the program Smoother.

CHAPTER 3 Basic Rendering118

FIGURE 3.28 A closer look at some jaggies.

ptg

To get rid of the jagged edges between primitives, OpenGL uses blending to blend the
color of the fragment with the destination color of the pixel and its surrounding pixels. In
essence, pixel colors are smeared slightly to neighboring pixels along the edges of any
primitives.

Turning on antialiasing is simple. First, you must enable blending and set the blending
function to be the same as you used in the preceding section for transparency:

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

You also need to make sure the blend equation is set to GL_ADD, but because this is the
default and most common blending equation, we don’t show it here. After blending is
enabled and the proper blending function and equation are selected, you can choose to
antialias points, lines, and/or polygons (any solid primitive) by calling glEnable:

glEnable(GL_POINT_SMOOTH); // Smooth out points

glEnable(GL_LINE_SMOOTH); // Smooth out lines

glEnable(GL_POLYGON_SMOOTH); // Smooth out polygon edges

You should use GL_POLYGON_SMOOTH with care. You might expect to smooth out edges on
solid geometry, but there are other tedious rules to making this work. For example, geome-
try that overlaps requires a different blending mode, and you may need to sort your scene
from front to back. We won’t go into the details because this method of solid object
antialiasing has fallen out of common use and has largely been replaced by a superior
route to smoothing edges on 3D geometry called multisampling. This feature is discussed
in the next section. Without multisampling, you can still get this overlapping geometry
problem with antialiased lines that overlap. For wireframe rendering, for example, you can
usually get away with just disabling depth testing to avoid the depth artifacts at the line
intersections.

Listing 3.3 shows the code from the Smoother program that responds to a pop-up menu
that allows the user to switch between antialiased and nonantialiased rendering modes.
When this program is run with antialiasing enabled, the points and lines appear smoother
(fuzzier). In Figure 3.29, a zoomed-in section shows the same area as Figure 3.27, but now
with the jagged edges smoothed out.

Blending 119
3

ptg

LISTING 3.3 Switching Between Antialiased and Normal Rendering

///

// Reset flags as appropriate in response to menu selections

void ProcessMenu(int value)

{

switch(value)

{

case 1:

// Turn on antialiasing, and give hint to do the best

// job possible.

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glEnable(GL_BLEND);

glEnable(GL_POINT_SMOOTH);

glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);

glEnable(GL_LINE_SMOOTH);

glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);

glEnable(GL_POLYGON_SMOOTH);

glHint(GL_POLYGON_SMOOTH_HINT, GL_NICEST);

break;

case 2:

// Turn off blending and all smoothing

glDisable(GL_BLEND);

glDisable(GL_LINE_SMOOTH);

glDisable(GL_POINT_SMOOTH);

glDisable(GL_POLYGON_SMOOTH);

break;

default:

break;

}

// Trigger a redraw

glutPostRedisplay();

}

CHAPTER 3 Basic Rendering120

ptg

FIGURE 3.29 No more jaggies!

Note especially here the calls to the glHint function discussed in Chapter 2. There are
many algorithms and approaches to achieve antialiased primitives. Any specific OpenGL
implementation may choose any one of those approaches, and perhaps even support two!
You can ask OpenGL, if it does support multiple antialiasing algorithms, to choose one
that is very fast (GL_FASTEST) or the one with the most accuracy in appearance
(GL_NICEST).

Multisampling
One of the biggest advantages to antialiasing is that it smoothes out the edges of primi-
tives and can lend a more natural and realistic appearance to renderings. Point and line
smoothing is widely supported, but unfortunately polygon smoothing is not available on
all platforms. Even when GL_POLYGON_SMOOTH is available, it is not as convenient a means
of having your whole scene antialiased as you might think. Because it is based on the
blending operation, you would need to sort all your primitives from front to back! Yuck.

A more modern addition to OpenGL to address this shortcoming is multisampling. When
this feature is supported (it is an OpenGL 1.3 or later feature), an additional buffer is
added to the framebuffer that includes the color, depth, and stencil values. All primitives
are sampled multiple times per pixel, and the results are stored in this buffer. These
samples are resolved to a single value each time the pixel is updated, so from the program-
mer’s standpoint, it appears automatic and happens “behind the scenes.” Naturally, this
extra memory and processing that must take place are not without their performance

Blending 121
3

ptg

penalties, and some implementations may not support multisampling for multiple render-
ing contexts.

To get multisampling, you must first obtain a rendering context that has support for a
multisampled framebuffer. This varies from platform to platform, but GLUT exposes a
bitfield (GLUT_MULTISAMPLE) that allows you to request this until you reach the operating
system-specific chapters in Part III. For example, to request a multisampled, full-color,
double-buffered framebuffer with depth, you would call

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH | GLUT_MULTISAMPLE);

You can turn multisampling on and off using the glEnable/glDisable combination and
the GL_MULTISAMPLE token:

glEnable(GL_MULTISAMPLE);

or

glDisable(GL_MULTISAMPLE);

Another important note about multisampling is that when it is enabled, the point, line,
and polygon smoothing features via antialiasing are ignored if enabled. This means you
cannot use point and line smoothing at the same time as multisampling. On a given
OpenGL implementation, points and lines may look better with smoothing turned on
instead of multisampling. To accommodate this, you might turn off multisampling before
drawing points and lines and then turn on multisampling for other solid geometry. The
following pseudocode shows a rough outline of how to do this:

glDisable(GL_MULTISAMPLE);

glEnable(GL_POINT_SMOOTH);

// Draw some smooth points

// ...

glDisable(GL_POINT_SMOOTH);

glEnable(GL_MULTISAMPLE);

Of course if you do not have a multisampled buffer to begin with, OpenGL behaves as if
GL_MULTISAMPLE were disabled.

STATE SORTING

Turning different OpenGL features on and off changes the internal state of the driver. These state
changes can be costly in terms of rendering performance. Frequently, performance-sensitive
programmers go to great lengths to sort all the drawing commands so that geometry needing
the same state is drawn together. This state sorting is one of the more common techniques to
improve rendering speed in games.

CHAPTER 3 Basic Rendering122

ptg

The multisample buffers use the RGB values of fragments by default and do not include
the alpha component of the colors. You can change this by calling glEnable with one of
the following three values:

• GL_SAMPLE_ALPHA_TO_COVERAGE—Use the alpha value.

• GL_SAMPLE_ALPHA_TO_ONE—Set alpha to 1 and use it.

• GL_SAMPLE_COVERAGE—Use the value set with glSampleCoverage.

When GL_SAMPLE_COVERAGE is enabled, the glSampleCoverage function allows you to
specify a value that is ANDed (bitwise) with the fragment coverage value:

void glSampleCoverage(GLclampf value, GLboolean invert);

This fine-tuning of how the multisample operation works is not strictly specified by the
specification, and the exact results may vary from implementation to implementation.

Summary
We covered a lot of ground in this chapter. In fact if you are brand new to OpenGL or 3D
graphics programming in general, this may well be the most important foundational
chapter in the book. Beginning with an explanation of how today’s programmable hard-
ware renders with shaders, we covered how to set up your 3D coordinate space, organize
your vertices and other attributes into primitive batches, and render them with the appro-
priate shader and uniform values.

Front and back face winding and face culling are an important part of a great many graph-
ics rendering algorithms, as well as an important part of your performance tuning efforts.
You saw how depth testing is almost a prerequisite for most 3D scenes, and even how to
use it to speed up fill performance, or fib to it by adding a small offset to fragments you
need to be coincident with other geometry. A huge number of special effects and tech-
niques make use of blending, and this topic is revisited again in the next chapter where
we show a more dramatic use of blending to create a simple reflection effect. Finally, you
saw how antialiasing and multisampling can add a significant quality improvement to
computer-generated images.

We encourage you to experiment with what you have learned in this chapter. Use your
imagination and create some of your own 3D objects before moving on to the rest of the
book. You’ll then have some personal samples to work with and enhance as you learn and
explore new techniques throughout the book. In the next chapter, we are really going to
bring your objects to life!

Summary 123
3

ptg

This page intentionally left blank

ptg

CHAPTER 4

Basic Transformations:
A Vector/Matrix Primer

by Richard S. Wright, Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

• What a vector is, and why you should care

• What a matrix is, and why you should care more

• How we use matrices and vectors to move geometry around

• The OpenGL conventions of the modelview and projection matrices

• What a camera is, and how to apply its transformation

• How to transform a point lights position into eye coordinates

In Chapter 3, “Basic Rendering,” you learned how to draw points, lines, and triangles in
3D. To turn a collection of shapes into a coherent scene, you must arrange them in rela-
tion to one another and to the viewer. In this chapter, you start moving shapes and
objects around in your coordinate system. The ability to place and orient your objects in a
scene is a crucial tool for any 3D graphics programmer. As you will see, it is actually
convenient to describe your objects’ dimensions around the origin and then transform the
objects into the desired positions.

ptg

126 CHAPTER 4 Basic Transformations: A Vector/Matrix Primer

Is This the Dreaded Math Chapter?
In most books on 3D graphics programming, yes, this would be the dreaded math chapter.
However, you can relax; we take a more moderate approach to these principles than some
texts.

The keys to object and coordinate transformations are two matrix conventions used by
OpenGL programmers. To familiarize you with these matrices, this chapter strikes a
compromise between two extremes in computer graphics philosophy. On the one hand,
we could warn you, “Please review a textbook on linear algebra before reading this
chapter.” On the other hand, we could perpetuate the deceptive reassurance that you can
“learn to do 3D graphics without all those complex mathematical formulas.” But we don’t
agree with either camp.

In reality, you can get along just fine without understanding the finer mathematics of 3D
graphics, just as you can drive your car every day without having to know anything at all
about automotive mechanics and the internal combustion engine. But you had better
know enough about your car to realize that you need an oil change every so often, that
you have to fill the tank with gas regularly, and that you must change the tires when they
get bald. This knowledge makes you a responsible (and safe!) automobile owner. If you
want to be a responsible and capable OpenGL programmer, the same standards apply. You
need to understand at least the basics so you know what can be done and what tools best
suit the job. If you are a beginner, you will find that, with some practice, matrix math and
vectors will gradually make more and more sense, and you will develop a more intuitive
(and powerful) ability to make full use of the concepts we introduce in this chapter.

So even if you don’t already have the ability to multiply two matrices in your head, you
need to know what matrices are and that they are the means to OpenGL’s 3D magic. But
before you go dusting off that old linear algebra textbook (doesn’t everyone have one?),
have no fear: The GLTools library has a component called Math3d that contains a number
of useful 3D math routines and data types that are compatible with OpenGL. Although
you don’t have to do all your matrix and vector manipulation yourself, you still know
what they are and how to apply them. See—you can eat your cake and have it too!

A Crash Course in 3D Graphics Math
There are a good many books on the math behind 3D graphics, and a few of the better
ones that we have found are listed in Appendix A, “Further Reading.” We do not pretend
here that we are going to cover everything that is important for you to know. We are not
even going to try and cover everything you should know. In this chapter, we are just going
to cover what you really need to know. If you’re already a math wiz, you should skip
immediately to the section ahead on the modelview matrix. Not only do you already
know what we are about to cover, but most math fans will be somewhat offended that we
did not give sufficient space to their favorite feature of homogeneous coordinate spaces.

ptg

Imagine one of those reality TV shows where you must escape a virtual swamp filled with
crocodiles. How much 3D math do you really need to know to survive? That’s what the
next two sections are going to be about, 3D math survival skills. The crocodiles do not
care if you really know what a homogeneous coordinate space is or not.

Vectors, or Which Way Is Which?
We already covered the concept of a vertex and 3D Cartesian coordinates in Chapters 1,
“Introduction to 3D Graphics and OpenGL,” and Chapter 2, “Getting Started.” Basically, a
vertex is a position in XYZ coordinate space, and a given position in space is defined by
exactly one and only one unique XYZ triplet. An XYZ value, however, can also represent a
vector (in fact, for the mathematically pure in heart, a vertex is actually a vector
too…there, we threw you a bone). A vector is perhaps the single most important founda-
tional concept to understand when it comes to manipulating 3D geometry. Those three
values (X, Y, and Z) combined represent two important values: a direction and a magni-
tude.

Figure 4.1 shows a point in space (picked arbitrarily) and an arrow drawn from the origin
of the coordinate system to that point in space. The point can be thought of as a vertex
when you are stitching together triangles, but the arrow can be thought of as a vector. A
vector is first, simply a direction from the origin toward the point in space. We use vectors
all the time in OpenGL to represent directional quantities. For example, the x-axis is the
vector (1, 0, 0). Go positive one unit in the X direction, and zero in the Y and Z direction.
A vector is also how we point where we are going, for example, which way is the camera
pointing, or in which direction do we want to move to get away from that crocodile!

A Crash Course in 3D Graphics Math 127
4

Y

Z

X

(X, Y, Z)

FIGURE 4.1 A point in space is both a vertex and a vector.

ptg

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer128

The second quantity a vector can represent is the magnitude. The magnitude of a vector is
the length of the vector. For our X-axis vector (1, 0, 0), the length of the vector is one. A
vector with a length of one, we call a unit vector. If a vector is not a unit vector and we
want to scale it to make it one, we call that normalization. Normalizing a vector scales it
such that its length is one. Unit vectors are important when we only want to represent a
direction and not a magnitude. A magnitude can be important as well; for example, it can
tell us how far we need to move in a given direction—how far away I need to get from
that crocodile.

The math3d library has two data types that can represent a three- or four-component
vector: M3DVector3f can represent a three-component vector (X, Y, Z), and M3DVector4f
can represent a four component vector (X, Y, Z, W). The W coordinate is typically set to
1.0. The X, Y, and Z values are scaled by dividing by W, and dividing by 1.0 essentially
leaves the XYZ values alone. They are defined as arrays simply as follows:

typedef float M3DVector3f[3];

typedef float M3DVector4f[4];

Declaring a three-component vector is as simple as

M3DVector3f vVector;

Likewise you can declare and initialize a four-component vertex.

M3DVector4f vVertex = { 0.0f, 0.0f, 1.0f, 1.0f };

Now, an array of three-component vertices, such as for a triangle:

M3DVector3f vVerts[] = { -0.5f, 0.0f, 0.0f,

0.5f, 0.0f, 0.0f,

0.0f, 0.5f, 0.0f };

We need to be careful here not to gloss over that fourth W component too much. Most of
the time when you specify geometry with vertex positions, a three component vertex is all
you want to store and send to OpenGL. For many directional vectors, such as a surface
normal (used for lighting calculations), again, a three-component vector suffices. However,
we soon delve into the world of matrices, and to transform a 3D vertex, you must multi-
ply it by a 4 x 4 transformation matrix. The rules are you must multiply a four-component
vector by a 4 x 4 matrix; if you try and use a three-component vector with a 4 x 4
matrix…the crocodiles will eat you! More on what all this means soon. Essentially, if you
are going to do your own matrix operations on vectors, then you will probably want four-
component vectors in many cases.

ptg

Dot Product
Vectors can be added, subtracted, and scaled by simply adding, subtracting, or scaling
their individual XYZ components. An interesting and useful operation, however, that can
be applied only to two vectors is called the dot product.

The dot product between two (three-component) unit vectors returns a scalar (just one
value) that represents the angle between the two vectors. For this to work, the two vectors
must be unit length, and the value returned falls between -1.0 and +1.0. The number is
actually the cosine of the angle between the vectors. This operation is done extensively
between a surface normal vector and a vector pointing toward a light source in diffuse
lighting calculations. We even do this ourselves in shader code in Chapter 6, “Thinking
Outside the Box: Nonstock Shaders.” Figure 4.2 shows two vectors, V1 and V2, and how
the angle between them is represented.

A Crash Course in 3D Graphics Math 129
4

V1 V2

Angle

FIGURE 4.2 The dot product returns the angle between two vectors.

The math3d library again has some useful functions that use the dot product operation.
For starters, you can actually get the dot product itself between two vectors with the func-
tion m3dDotProduct3.

float m3dDotProduct3(const M3DVector3f u, const M3DVector3f v);

The actual dot product is a value between -1 and +1 that represents the cosine
of the angle between the two unit vectors. A slightly higher level function,
m3dGetAngleBetweenVectors3, actually returns this angle in radians.

float m3dGetAngleBetweenVectors3(const M3DVector3f u, const M3DVector3f v);

Cross Product
Another useful mathematical operation between two vectors is the cross product. The cross
product between two vectors is a third vector perpendicular to the plane defined by the
first two vectors. For the cross product to work, the two vectors don’t have to be unit
length either. Figure 4.3 shows two vectors, V1 and V2, and their cross product V3.

ptg

FIGURE 4.3 The cross product returns a third vector perpendicular to the other two.

Again, the math3d library has a function that takes the cross product of two vectors and
returns the resulting vector, m3dCrossProduct3.

void m3dCrossProduct3(M3DVector3f result, const M3DVector3f u,

const M3DVector3f v);

Unlike the dot product, the order of the vectors is important. In Figure 4.3, V3 is the result
of V2 cross V1. If you reversed the order of V1 and V2, the resulting vector V3 would
point in the opposite direction. Applications of the cross product are numerous, from
finding surface normals of triangles, to constructing transformation matrices.

The Matrix
The matrix is not just a Hollywood movie trilogy, but an exceptionally powerful mathe-
matical tool that greatly simplifies the process of solving one or more equations with vari-
ables that have complex relationships to each other. One common example of this, near
and dear to the hearts of graphics programmers, is coordinate transformations. For
example, if you have a point in space represented by x, y, and z coordinates, and you need
to know where that point is if you rotate it some number of degrees around some arbitrary
point and orientation, you would use a matrix. Why? Because the new x coordinate
depends not only on the old x coordinate and the other rotation parameters, but also on
what the y and z coordinates were as well. This kind of dependency between the variables
and solution is just the sort of problem that matrices excel at. For fans of the Matrix
movies who have a mathematical inclination, the term matrix is indeed an appropriate
title.

Mathematically, a matrix is nothing more than a set of numbers arranged in uniform rows
and columns—in programming terms, a two-dimensional array. A matrix doesn’t have to
be square, but each row or column must have the same number of elements as every other
row or column in the matrix. Figure 4.4 presents some examples of matrices. They don’t

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer130

V1

V3

V2

ptg

represent anything in particular but serve only to demonstrate matrix structure. Note that
it is also valid for a matrix to have a single column or row. A single row or column of
numbers would more simply be called a vector, as discussed previously. In fact, as you will
soon see, we can think of some matrices as a table of column vectors.

A Crash Course in 3D Graphics Math 131
4

1
2
3

1
2
3
4

4
5
6

7
8
9

0
1.5
2

42
0.877

14

FIGURE 4.4 Three examples of matrices.

Matrix and vector are two important terms that you see often in 3D graphics program-
ming literature. When dealing with these quantities, you also see the term scalar. A scalar
is just an ordinary single number used to represent magnitude or a specific quantity (you
know—a regular old, plain, simple number…like before you cared or had all this jargon
added to your vocabulary).

Matrices can be multiplied and added together, but they can also be multiplied by vectors
and scalar values. Multiplying a point (a vector) by a matrix (a transformation) yields a
new transformed point (a vector). Matrix transformations are actually not too difficult to
understand but can be intimidating at first. Because an understanding of matrix transfor-
mations is fundamental to many 3D tasks, you should still make an attempt to become
familiar with them. Fortunately, only a little understanding is enough to get you going
and doing some pretty incredible things with OpenGL. Over time, and with a little more
practice and study (see Appendix A), you will master this mathematical tool yourself.

In the meantime, like previously for vectors, you will find a number of useful matrix func-
tions and features available in the math3d library. The source code to this library is also
available in the files math3d.h and math3d.cpp in the GLTools source code folder. This 3D
math library greatly simplifies many tasks in this chapter and the ones to come. One
“useful” feature of this library is that it lacks incredibly clever and highly optimized code!
This makes the library highly portable and easy to understand. You’ll also find it has a
very OpenGL-like API.

In your 3D programming tasks with OpenGL, you will use two dimensions of matrix
almost exclusively; 3 x 3 and 4 x 4. The math3d library has matrix data types for these
dimensions as well:

typedef float M3DMatrix33f[9];

typedef float M3DMatrix44f[16];

ptg

Many matrix libraries define a two-dimensional matrix as a two-dimensional array in C.
The OpenGL convention bucks this trend and uses a one-dimensional array. The reason is
that OpenGL uses a matrix convention called Column-Major matrix ordering. We talk more
about this soon, however, talking about all the things you can do with a matrix mathe-
matically is just a bit too abstract for our tastes. Let’s explain first what we are trying to
accomplish and then show how the matrix makes it possible.

Understanding Transformations
If you think about it, most 3D graphics aren’t really 3D. We use 3D concepts and termi-
nology to describe what something looks like; then this 3D data is “squished” onto a 2D
computer screen. We call the process of squishing 3D data down into 2D data projection,
and we introduced both orthographic and perspective projections back in Chapter 1. We
refer to the projection whenever we want to describe the type of transformation (ortho-
graphic or perspective) that occurs during projection, but projection is only one of the
types of transformations that occur in OpenGL. Transformations also allow you to rotate
objects around; move them about; and even stretch, shrink, and warp them.

Three types of geometric transformations can occur between the time you specify your
vertices and the time they appear on the screen: viewing, modeling, and projection. In
this section, we examine the principles of each type of transformation, summarized in
Table 4.1.

TABLE 4.1 Summary of the OpenGL Transformation Terminology

Transformation Use

Viewing Specifies the location of the viewer or camera

Modeling Moves objects around the scene

Modelview Describes the duality of viewing and modeling transformations

Projection Sizes and reshapes the viewing volume

Viewport A pseudo-transformation that scales the final output to the window

Eye Coordinates
An important concept throughout this chapter is that of eye coordinates. Eye coordinates
are from the viewpoint of the observer, regardless of any transformations that may occur;
you can think of them as “absolute” screen coordinates. Thus, eye coordinates represent a
virtual fixed coordinate system that is used as a common frame of reference. All the trans-
formations discussed in this chapter are described in terms of their effects relative to the
eye coordinate system.

Figure 4.5 shows the eye coordinate system from two viewpoints. On the left (a), the eye
coordinates are represented as seen by the observer of the scene (that is, perpendicular to
the monitor). On the right (b), the eye coordinate system is rotated slightly so you can

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer132

ptg

better see the relation of the z-axis. Positive x and y are pointed right and up, respectively,
from the viewer’s perspective. Positive z travels away from the origin toward the user, and
negative z values travel farther away from the viewpoint into the screen.

Understanding Transformations 133
4

+x

–x

+y

–y

+z

–z

+x–x

+y

–y
Observer

(b)(a)

FIGURE 4.5 Two perspectives of eye coordinates.

When you draw in 3D with OpenGL, you use the Cartesian coordinate system. In the
absence of any transformations, the system in use is identical to the eye coordinate system
just described.

Viewing Transformations
The viewing transformation is the first to be applied to your scene. It is used to determine
the vantage point of the scene. By default, the point of observation in a perspective
projection is at the origin (0,0,0) looking down the negative z-axis (“into” the monitor
screen). This point of observation is moved relative to the eye coordinate system to
provide a specific vantage point. When the point of observation is located at the origin, as
in a perspective projection, objects drawn with positive z values are behind the observer.
In an orthographic projection, however, the viewer is assumed to be infinitely far away on
the positive z-axis and can see everything within the viewing volume.

The viewing transformation allows you to place the point of observation anywhere you
want and look in any direction. Determining the viewing transformation is like placing
and pointing a camera at the scene.

In the grand scheme of things, you must apply the viewing transformation before any
other modeling transformations. The reason is that it appears to move the current working
coordinate system in respect to the eye coordinate system. All subsequent transformations
then occur based on the newly modified coordinate system. Later, you see more easily
how this works, when we actually start looking at how to make these transformations.

ptg

Modeling Transformations
Modeling transformations are used to manipulate your model and the particular objects
within it. These transformations move objects into place, rotate them, and scale them.
Figure 4.6 illustrates three of the most common modeling transformations that you will
apply to your objects. Figure 4.6a shows translation, in which an object is moved along a
given axis. Figure 4.6b shows a rotation, in which an object is rotated about one of the
axes. Finally, Figure 4.6c shows the effects of scaling, where the dimensions of the object
are increased or decreased by a specified amount. Scaling can occur nonuniformly (the
various dimensions can be scaled by different amounts), so you can use scaling to stretch
and shrink objects.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer134

FIGURE 4.6 The modeling transformations.

The final appearance of your scene or object can depend greatly on the order in which the
modeling transformations are applied. This is particularly true of translation and rotation.
Figure 4.7a shows the progression of a square rotated first about the z-axis and then trans-
lated down the newly transformed x-axis. In Figure 4.7b, the same square is first translated

ptg

down the x-axis and then rotated around the z-axis. The difference in the final disposi-
tions of the square occurs because each transformation is performed with respect to the
last transformation performed. In Figure 4.7a, the square is rotated with respect to the
origin first. In 4.7b, after the square is translated, the rotation is performed around the
newly translated origin.

Understanding Transformations 135
4

θ

θ

Initial square Rotated around z-axis to
yield new x1 axis

Now translation along
x is along x1

(a)

(b)

x1
x1

y1 y1

xx x

y yy

Initial square Translate origin along x-axis Translated coordinate
system is now rotated

x1

x1

y1

y1

xx x

y yy

FIGURE 4.7 Modeling transformations: rotation/translation and translation/rotation.

The Modelview Duality
The viewing and modeling transformations are, in fact, the same in terms of their internal
effects as well as their effects on the final appearance of the scene. The distinction between
the two is made purely as a convenience for the programmer. There is no real difference
visually between moving an object backward and moving the reference system forward; as
shown in Figure 4.8, the net effect is the same. (You experience this effect firsthand when
you’re sitting in your car at an intersection and you see the car next to you roll forward; it
might seem to you that your own car is rolling backward.) The viewing transformation is
simply a modeling-like transformation that is applied to the entire scene, where objects in
your scene often each have their own individual model transformation, applied after the
viewing transformation. The term modelview indicates that these two transformations are
combined in the transformation pipeline into a single matrix—the modelview matrix.

ptg

FIGURE 4.8 Two ways of looking at the viewing transformation.

The viewing transformation, therefore, is essentially nothing but a modeling transforma-
tion that you apply to a virtual object (the viewer) before drawing objects. As you will
soon see, new transformations are repeatedly specified as you place more objects in the
scene. By convention, the initial transformation provides a reference from which all other
transformations are based.

Projection Transformations
The projection transformation is applied to your vertices after the modelview transforma-
tion. This projection actually defines the viewing volume and establishes clipping planes.
The clipping planes are plane equations in 3D space that OpenGL uses to determine
whether geometry can be seen by the viewer. More specifically, the projection transforma-
tion specifies how a finished scene (after all the modeling is done) is projected to the final
image on the screen. You learn more about two types of projections—orthographic and
perspective—later in this chapter.

In an orthographic, or parallel, projection, all the polygons are drawn on-screen with
exactly the relative dimensions specified. Lines and polygons are mapped directly to the
2D screen using parallel lines, which means no matter how far away something is, it is
still drawn the same size, just flattened against the screen. This type of projection is typi-
cally used for rendering two-dimensional images such as blueprints or two-dimensional
graphics such as text or on-screen menus.

A perspective projection shows scenes more as they appear in real life instead of as a blue-
print. The hallmark of perspective projections is foreshortening, which makes distant
objects appear smaller than nearby objects of the same size. Lines in 3D space that might
be parallel do not always appear parallel to the viewer. With a railroad track, for instance,
the rails are parallel, but using perspective projection, they appear to converge at some
distant point.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer136

Moving the observer

(a)

Moving the coordinate system

(b)

A A

ptg

The benefit of perspective projection is that you don’t have to figure out where lines
converge or how much smaller distant objects are. All you need to do is specify the scene
using the modelview transformations and then apply the perspective projection matrix.
Linear algebra works all the magic for you. Figure 4.9 compares orthographic and perspec-
tive projections on two different scenes.

Understanding Transformations 137
4

Everything same size

Objects shrink in
distance

FIGURE 4.9 A side-by-side example of an orthographic versus perspective projection.

Orthographic projections are used most often for 2D drawing purposes where you want
an exact correspondence between pixels and drawing units. You might use them for a
schematic layout, text, or perhaps a 2D graphing application. You also can use an ortho-
graphic projection for 3D renderings when the depth of the rendering has a very small
depth in comparison to the distance from the viewpoint. Perspective projections are
used for rendering scenes that contain wide-open spaces or objects that need to have the
foreshortening applied. For the most part, perspective projections are typical for 3D graph-
ics. In fact, looking at a 3D object with an orthographic projection can be somewhat
unsettling.

Viewport Transformations
When all is said and done, you end up with a two-dimensional projection of your scene
that will be mapped to a window somewhere on your screen. This mapping to physical
window coordinates is the last transformation that is done, and it is called the viewport
transformation. Usually, a one-to-one correspondence exists between the color buffer and
window pixels, but this is not always strictly the case. In some circumstances, the viewport
transformation remaps what are called “normalized” device coordinates to window coordi-
nates. Fortunately, this is something you don’t need to worry about, and the graphics
hardware does this for you.

ptg

The Modelview Matrix
The modelview matrix is a 4 x 4 matrix that represents the transformed coordinate system
you are using to place and orient your objects. The vertices you provide for your primi-
tives are used as a single-column matrix (a vector) and multiplied by the modelview
matrix to yield new transformed coordinates in relation to the eye coordinate system.

In Figure 4.10, a matrix containing data for a single vertex is multiplied by the modelview
matrix to yield new eye coordinates. The vertex data is actually four elements with an
extra value, w, that represents a scaling factor. This value is set by default to 1.0, and rarely
will you change it yourself.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer138

=
M

FIGURE 4.10 A matrix equation that applies the modelview transformation to a single vertex.

Multiplying a vertex by a matrix transforms it. How exactly does this work?

Matrix Construction
As mentioned previously, OpenGL represents a 4 x 4 matrix not as a two-dimensional
array of floating values, but as a single array of 16 floating-point values. This approach is
different from many math libraries, which do take the two-dimensional array approach.
For example, OpenGL prefers the first of these two examples:

GLfloat matrix[16]; // Nice OpenGL friendly matrix

GLfloat matrix[4][4]; // Popular, but not as efficient for OpenGL

OpenGL can use the second variation, but the first is a more efficient representation. The
reason for this becomes clear in a moment. These 16 elements represent the 4 x 4 matrix,
as shown in Figure 4.11. When the array elements traverse down the matrix columns one
by one, we call this column-major matrix ordering. In memory, the 4 x 4 approach of the
two-dimensional array (the second option in the preceding code) is laid out in a row-
major order. In math terms, the two orientations are the transpose of one another.

ptg

FIGURE 4.11 Column-major matrix ordering.

The real magic lies in the fact that these 16 values represent a particular position in space
and an orientation of the three axes with respect to the eye coordinate system (remember
that fixed, unchanging coordinate system we talked about earlier). Interpreting these
numbers is not hard at all. The four columns each represent a four-element vector. To keep
things simple for this book, we focus our attention on just the first three elements of the
vectors in the first three columns. The fourth column vector contains the x, y, and z
values of the transformed coordinate system’s origin.

The first three elements of the first three columns are just directional vectors that repre-
sent the orientation (vectors here are used to represent a direction) of the x-, y-, and z-axes
in space. For most purposes, these three vectors are always at 90° angles from each other
and are usually each of unit length (unless you are also applying a scale or shear). The
mathematical term for this (in case you want to impress your friends) is orthonormal
when the vectors are unit length, and orthogonal when they are not. Figure 4.12 shows
the 4 x 4 transformation matrix with the column vectors highlighted. Notice that the last
row of the matrix is all 0s with the exception of the very last element, which is 1.

The Modelview Matrix 139
4

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

Xx
Xy
Xz
0

Yx
Yy
Yz
0

Zx
Zy
Zz
0

Tx
Ty
Tz
1

X
ax

is
 d

ire
ct

io
n

Y
ax

is
 d

ire
ct

io
n

Z
ax

is
 d

ire
ct

io
n

Tr
an

sl
at

io
n/

lo
ca

tio
n

FIGURE 4.12 How a 4 x 4 matrix represents a position and orientation in 3D space.

The most amazing thing is that if you have a 4 x 4 matrix that contains the position and
orientation of a nonidentity coordinate system, and you multiply a vertex expressed in the
identity coordinate system (expressed as a column matrix or vector) by this matrix, the
result is a new vertex that has been transformed to the new coordinate system. This means

ptg

that any position in space and any desired orientation can be uniquely defined by a 4 x 4
matrix, and if you multiply all of an object’s vertices by this matrix, you transform the
entire object to the given location and orientation in space!

The Identity Matrix
There are a number of important types of transformation matrices you need to be familiar
with before we start trying to use them. The first is the identity matrix. Multiplying a
vertex by the identity matrix is equivalent to multiplying it by one; it does nothing to it.
As shown in Figure 4.13, the identity matrix contains all zeros except a series of ones that
traverse the matrix diagonally.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer140

 8 . 0
4 . 5

- 2 . 0
 1 . 0

 8 . 0
4 . 5

- 2 . 0
 1 . 0

1.0

0

0

0

0

1.0

0

0

0

0

1.0

0

0

0

0

1.0

=

FIGURE 4.13 Multiplying a vertex by the identity matrix yields the same vertex matrix.

Objects drawn using the identity matrix are untransformed; they are at the origin (last
column), and the x, y, and z axes are defined to be the same as those in eye coordinates.
You can make an identity matrix in OpenGL like this:

GLfloat m[] = { 1.0f, 0.0f, 0.0f, 0.0f, // X Column

0.0f, 1.0f, 0.0f, 0.0f, // Y Column

0.0f, 0.0f, 1.0f, 0.0f, // Z Column

0.0f, 0.0f, 0.0f, 1.0f }; // Translation

or using the math3d type M3DMatrix44f:

M3DMatrix44f m = { 1.0f, 0.0f, 0.0f, 0.0f, // X Column

0.0f, 1.0f, 0.0f, 0.0f, // Y Column

0.0f, 0.0f, 1.0f, 0.0f, // Z Column

0.0f, 0.0f, 0.0f, 1.0f }; // Translation

There is also a shortcut function in the math3d library, m3dLoadIdentity44, that initializes
an empty matrix with identity.

void m3dLoadIdentity44(M3DMatrix44f m);

If you recall, the very first stock (vertex) shader we used in the book was called the
identity shader. It did not transform your vertices at all, but drew them in the default
coordinate system with no matrix applied to the vertices at all. We could have multiplied
them all by the identity matrix, but that would have been a wasteful and pointless
operation.

ptg

Translations
A translation matrix simply translates your vertices along one or more of the three axes.
Figure 4.14 shows, for example, translating a cube up the y-axis ten units.

The Modelview Matrix 141
4

z

x

y

10

FIGURE 4.14 A cube translated ten units in the positive y direction.

The math3d library makes a translation matrix for you using the function
m3dTranslationMatrix44.

void m3dTranslationMatrix44(M3DMatrix44f m, float x, float y, float z);

Rotations
To rotate an object about one of the three coordinate axes, or indeed any arbitrary vector,
you have to devise a rotation matrix. Again, a math3d function comes to the rescue:

m3dRotationMatrix44(M3DMatrix44f m, float angle, float x, float y, float z);

Here, we perform a rotation around the vector specified by the x, y, and z arguments. The
angle of rotation is in the counterclockwise direction measured in radians and specified by
the argument angle. In the simplest of cases, the rotation is around only one of the coor-
dinate systems’ cardinal axes (x, y, or z).

You can also perform a rotation around an arbitrary axis by specifying x, y, and z values
for that vector. To see the axis of rotation, you can just draw a line from the origin to the
point represented by (x,y,z). The following code for example creates a rotation matrix that
rotates vertices 45 degrees around an arbitrary axis specified by (1,1,1), as illustrated in
Figure 4.15.

M3DMatrix44f m;

m3dRotationMatrix(m3dDegToRad(45.0), 1.0f, 1.0f, 1.0f);

ptg

FIGURE 4.15 A cube rotated about an arbitrary axis.

Notice in this example the use of the math3d macro m3dDegToRad. This macro converts
degrees to radians because unlike computers, most programmers prefer to think in terms
of degrees. The advantage to using the macro instead of an inline function (for you C++
purists we are sure to hear from) is that if the value is a hard-coded literal, the conversion
occurs at compile time, and there is no runtime penalty for converting between degrees
and radians.

Scaling
Our final transformation matrix is a scaling matrix. A scaling transform changes the size of
your object by expanding or contracting all the vertices along the three axes by the factors
specified. Creating a scaling matrix with the math3d library is similar to the method for
creating a translation or rotation matrix.

M3DMatrix44f m;

void m3dScaleMatrix44(M3DMatrix44f m, float xScale, float yScale, float zScale);

Scaling does not have to be uniform, and you can use it to both stretch and squeeze
objects along different directions. For example, a 10 x 10 x 10 cube could be scaled by two
in the x and z directions as shown in Figure 4.16.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer142

x

(1,1,1)

45

z

y

ptg

FIGURE 4.16 A nonuniform scaling of a cube.

Adding Transformations Together
Rarely will we want to perform just one of these types of transformations. Rather, we will
want to add them together. To place an object where we want it, we may need to translate
it to a given location and then rotate it to its desired orientation. Because a 4 x 4 transfor-
mation matrix contains both a position and an orientation, you might think one matrix
could contain both of these transformations. You’d be right!

Adding two transformations together is as simple as multiplying the two matrices
together. The resulting matrix contains the combined transformations, all in one neat
little package. The term add of course mathematically means addition, but we do not actu-
ally “add” the two matrices together; they are multiplied. To deal with this terminology
conflict, we usually use the term concatenate to mean when two transformations are
combined in this way. There is a trick to matrix multiplication that you need to be aware
of, though; the order of the operations matters. For example, multiplying a rotation
matrix by a translation matrix is not the same as multiplying a translation matrix by a
rotation matrix. This was discussed and demonstrated back in Figure 4.7.

The math3d library function m3dMatrixMultiply44 multiplies two matrices together for
you and returns the result:

void m3dMatrixMultiply44(M3DMatrix44f product,

const M3DMatrix44f a, const M3DMatrix44f b);

Let’s look at a concrete example of adding these transformations together now.

The Modelview Matrix 143
4

z

x

y

10

10

ptg

Applying a Modelview Matrix
In the Move example program in Chapter 2, we moved a red square around the window
in response to the arrow keys being pressed. We did this by brute force, updating the coor-
dinates of the triangle fan and then re-creating the primitive batch. The better way to do
this is to create the batch one time, usually centered around the origin, and then apply a
matrix, the modelview matrix in fact, to the vertices when we render the batch. In the
original program, we used the identity shader, which performed no transformations on
the vertices; it just passed them through and rendered them in the default Cartesian coor-
dinate system. Another stock shader, the flat shader, accepts a 4 x 4 transformation matrix
as one of its parameters.

GLShaderManager::UseStockShader(GLT_SHADER_FLAT, M3DMatrix44f m, GLfloat vColor[4]);

This shader multiples each vertex by the matrix m before rendering the primitive. In our
modified Move example program for this chapter, we keep track of the squares position
with two variables yPos and xPos. We can easily create a translation matrix now.

m3dTranslationMatrix44(mTranslationMatrix, xPos, yPos, 0.0f);

The translation matrix could then be sent to the shader before drawing the object like
thus:

shaderManager.UseStockShader(GLT_SHADER_FLAT, mTranslationMatrix, vRed);

squareBatch.Draw();

To make things more interesting (as well as demonstrate an important point), we also
make the square spin as we move it about. Spinning the square in the xy plane involves
rotating it around the z-axis. Listing 4.1 shows the entire RenderScene function from our
modified Move program.

LISTING 4.1 Code to Translate Then Rotate the Square On the Screen

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

GLfloat vRed[] = { 1.0f, 0.0f, 0.0f, 1.0f };

M3DMatrix44f mFinalTransform, mTranslationMatrix, mRotationMatrix;

// Just Translate
m3dTranslationMatrix44(mTranslationMatrix, xPos, yPos, 0.0f);

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer144

ptg

// Rotate 5 degrees every time we redraw

static float yRot = 0.0f;

yRot += 5.0f;

m3dRotationMatrix44(mRotationMatrix, m3dDegToRad(yRot), 0.0f, 0.0f, 1.0f);

m3dMatrixMultiply44(mFinalTransform, mTranslationMatrix, mRotationMatrix);

shaderManager.UseStockShader(GLT_SHADER_FLAT, mFinalTransform, vRed);

squareBatch.Draw();

// Perform the buffer swap

glutSwapBuffers();

}

Note how we created the translation matrix mTranslationMatrix and the rotation matrix
mRotationMatrix separately. Then we multiplied them together to create the final transfor-
mation matrix:

m3dMatrixMultiply44(mFinalTransform, mTranslationMatrix, mRotationMatrix);

The flat shader takes just one matrix argument, and it multiplies the vertices by that
matrix. This “modelview” matrix moves our square around on the screen by translating
the vertices within the default coordinate system, which if you recall goes from -1 to +1
on all three axes. This simple coordinate system, however, does not always meet our
needs, and it would be convenient to think of our objects in a much bigger coordinate
space. Perhaps then another matrix will allow us to scale any coordinate space we like
down to this -1 to +1 range. Indeed, this second type of matrix transformation is called
projection, and we talk about this shortly.

More Objects
Squares and triangles are going to be just a bit tedious very soon for the purposes of
demonstrations. Before going any further, let’s introduce some stock objects that are built
into the GLTools library. Recall the GLBatch class that serves the purpose of containing a
list of vertices and renders them as a specific type of primitive batch. A new class we intro-
duce here is the GLTriangleBatch class. This class is specifically intended to be just a
container of triangles. Each vertex can have a surface normal for lighting computations
and a texture coordinate. The exact internal implementation of the GLTriangleBatch class
uses techniques that aren’t discussed until Chapter 12, “Advanced Geometry
Management.” For now, suffice it to say they organize triangles in the most efficient
means available (indexed vertex arrays) and actually store the geometry on the graphics
card (using vertex buffer objects).

More Objects 145
4

ptg

Using the Triangle Batch Class
Building your own triangle batch object is a simple matter. The recipe is fairly simple.
First, you need to make an instance of the object.

GLTriangleBatch myCoolObject;

Then begin the mesh by telling the container the maximum number of vertices you plan
to use.

myCoolObject.BeginMesh(200); // 200 verts in my cool object.

Now add triangles to taste. The AddTriangle member function takes an array of three
vertices, an array of three normals, and an array of three texture coordinates.

void GLTriangleBatch::AddTriangle(M3DVector3f verts[3], M3DVector3f vNorms[3],

M3DVector2f vTexCoords[3])

Don’t worry about duplicate vertex data (you might be thinking strips or fans would be
more efficient). The GLTriangleBatch class searches for duplicates and optimizes your
batch every time you add a vertex. In fact, for very large batches, you may find this
executes increasingly slowly every time you add a new triangle.

When you are done adding triangles, call End.

myCoolObject.End();

Now, simply select your favorite stock shader and call the Draw function.

myCoolObject.Draw();

You can of course use these objects with your own shaders too, and we talk about the
convention you need to follow for this and the GLBatch class in Chapter 6.

The GLTools library contains a number of utility functions that fill a GLTriangleBatch
class with an object for you. The example program Objects cycles through these with a
press of the spacebar and renders them using the same wireframe technique we used in
Chapter 3’s Primitives example program. You can also use the arrow keys to rotate each
object around to examine them in more detail. Let’s take a look at each one in turn.

Making a Sphere
A fundamental shape used for many “handmade” objects is the simple sphere. The
gltMakeSphere function takes a reference to a triangle batch, the radius of the sphere, and
the number of slices and stacks of which to compose the sphere.

void gltMakeSphere(GLTriangleBatch& sphereBatch, GLfloat fRadius,

GLint iSlices, GLint iStacks);

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer146

ptg

Figure 4.17 shows the output from the Objects example program for the sphere. While the
radius of the sphere should be fairly obvious, the iSlices and iStacks parameters warrant
a little explanation. You can think of the sphere as a series of bands of triangles that go
around the sphere. The iStacks parameter is the number of these bands stacked from the
bottom of the sphere to the top. The iSlices parameter is the number of triangle pairs
that stretch around the sphere. Typically the number of slices is twice the number of
stacks for a nice symmetric sphere. Think about why—there are 360 degrees around a
sphere, but only 180 (half that) from the top to the bottom. Another thing to note is these
spheres are wrapped around the z-axis, thus +Z is at the top of the sphere, and –Z is at the
bottom.

More Objects 147
4

FIGURE 4.17 A sphere.

Making a Torus
Another interesting and useful object is the torus. A torus is a ring-shaped doughnut and is
shown in Figure 4.18. The GLTools function to create a torus is gltMakeTorus.

void gltMakeTorus(GLTriangleBatch& torusBatch, GLfloat majorRadius, GLfloat
minorRadius, GLint numMajor, GLint numMinor);

ptg

The majorRadius is the radius from the center to the outer edge of the torus, while the
minorRadius is the radius to the inner edge. The numMajor and numMinor parameters serve
a similar purpose to the iSlices and iStacks parameters for spheres; they are the
numbers of subdivisions along the major radius, and again along the inner minor radius.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer148

FIGURE 4.18 A torus.

Making a Cylinder or a Cone
A hollow cylinder is made with the function gltMakeCylinder.

void gltMakeCylinder(GLTriangleBatch& cylinderBatch, GLfloat baseRadius, GLfloat

topRadius, GLfloat fLength, GLint numSlices, GLint numStacks);

Cylinders grow up the positive z-axis from zero, and you can specify both the base and top
radius. Figure 4.19 shows a cylinder with two equal radii, and Figure 4.20 shows one with
one end set to zero. This essentially makes a cone, but you could just as easily make a
funnel shape as well. The numSlices parameter is the number of triangle pairs that circle
the z-axis, and the numStacks parameter is the number of rings stacked from the bottom to
the top of the cylinder.

ptg
FIGURE 4.19 A cylinder with two equal radii.

More Objects 149
4

FIGURE 4.20 A cylinder with one end’s radius set to zero…a cone.

ptg

Making a Disk
Our final surface is the disk. Disks are drawn with loops of triangle bands divided into
some number of slices. You can specify an inner radius for a washer type shape or leave it
zero to make the disk solid. The gltMakeDisk function, with a by now familiar looking API
does the work of filling a GLTriangleBatch with the disk shape, shown in Figure 4.21.

void gltMakeDisk(GLTriangleBatch& diskBatch, GLfloat innerRadius, GLfloat

outerRadius, GLint nSlices, GLint nStacks);

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer150

FIGURE 4.21 A disk with an inner and outer radius.

Now that we have some more interesting objects to draw, let’s get back to our discussion
of creating alternate coordinate systems, or projections for our 3D scenes.

Projection Matrix
The modelview matrix essentially moves your geometry around in eye coordinates. So far,
we’ve been using that default coordinate system that ranges from -1 to +1 on your screen
or window (and actually +/-1 in the Z direction, too). What if we want a different coordi-
nate system? Well, the truth is this small coordinate range is really the only one your
hardware works with. The trick to using a different coordinate system is to convert your
desired coordinate system down to this unit cube. We do this with another matrix: the
projection matrix.

ptg

The next two example programs Orthographic and Perspective, are not going to be
covered in detail from the standpoint of their source code. These examples help to high-
light the difference between an orthographic and a perspective projection. These interac-
tive samples make it much easier for you to see firsthand how the projection can distort
the appearance of an object. If possible, you should run these examples while reading the
next two sections.

Orthographic Projections
The orthographic projection that we have used for most of this book so far is square on all
sides. The logical width is equal at the front, back, top, bottom, left, and right sides. This
produces a parallel projection, which is useful for drawings of specific objects that do not
have any foreshortening when viewed from a distance. This is good for 2D graphics such
as text or architectural drawings for which you want to represent the exact dimensions
and measurements on-screen.

Figure 4.22 shows the output from the sample program Orthographic in this chapter’s
subdirectory in the source distribution. To produce this hollow, tubelike box, we used an
orthographic projection just as we did for all our previous examples. Figure 4.23 shows the
same box rotated more to the side so you can see how long it actually is.

Projection Matrix 151
4

FIGURE 4.22 A hollow square tube shown with an orthographic projection.

ptg
FIGURE 4.23 A side view showing the length of the square tube.

In Figure 4.24, you’re looking directly down the barrel of the tube. Because the tube does
not converge in the distance, this is not an entirely accurate view of how such a tube
appears in real life. To add some perspective, we must use a perspective projection.

Recall from Chapter 3 that we can create an orthographic projection matrix with the
math3d library or by using the GLFrustum class as shown here.

GLFrustum::SetOrthographic(GLfloat xMin, GLfloat xMax, GLfloat yMin, GLfloat yMax,

GLfloat zMin, GLfloat zMax);

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer152

ptg
FIGURE 4.24 Looking down the barrel of the tube.

Perspective Projection
If you recall, we already discussed the perspective projection back in Chapter 3. Figures 3.3
and 3.4 in that chapter show the geometry of our geometric shape called a frustum. A
frustum is a truncated section of a pyramid viewed from the narrow end to the broad end.
As a reminder from Chapter 3, we set up perspective projections using the GLFrustum class.

GLFrustum::SetPerspective(float fFov, float fAspect, float fNear, float fFar);

The parameters for the SetPerspective function are a field-of-view angle in the vertical
direction (in degrees), the aspect ratio of the width to height, and the distances to the
near and far clipping planes (refer to Figure 3.4). You find the aspect ratio by dividing the
width (w) by the height (h) of the window or viewport. The GLFrustum class constructs the
appropriate 4 x 4 projection matrix based on these parameters, which then becomes part
of our overall transformation pipeline.

Foreshortening adds realism to our earlier orthographic projections of the square tube (see
Figures 4.25, 4.26, and 4.27). The only substantial change we made was the switch to a
perspective projection.

Projection Matrix 153
4

ptgFIGURE 4.25 The square tube with a perspective projection.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer154

FIGURE 4.26 A side view with foreshortening.

ptgFIGURE 4.27 Looking down the barrel of the tube with perspective added.

The ModelviewProjection Matrix
Let’s take a look at how we might put all this together. The ModelviewProjection example
program draws a wireframe torus rotating in the middle of the screen. Figure 4.28 shows
one frame of the output of this program. We use an instance of the GLFrustum class called
viewFrustum to set up a perspective projection matrix for our rendering. The ChangeSize
function in Listing 4.2 shows how we set up our viewport and set our perspective matrix.

Projection Matrix 155
4

ptg
FIGURE 4.28 A spinning torus, transformed by the ModelviewProjection matrix.

LISTING 4.2 Matrix Operations for the ModelviewProjection Example Program

// Global view frustum class

GLFrustum viewFrustum;

. . .

// Set up the viewport and the projection matrix

void ChangeSize(int w, int h)

{

// Prevent a divide by zero

if(h == 0)

h = 1;

// Set Viewport to window dimensions

glViewport(0, 0, w, h);

viewFrustum.SetPerspective(35.0f, float(w)/float(h), 1.0f, 1000.0f);

}

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer156

ptg

// Called to draw scene

void RenderScene(void)

{

// Set up time based animation

static CStopWatch rotTimer;

float yRot = rotTimer.GetElapsedSeconds() * 60.0f;

// Clear the window and the depth buffer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Matrix Variables

M3DMatrix44f mTranslate, mRotate, mModelview, mModelViewProjection;

// Create a translation matrix to move the torus back and into sight

m3dTranslationMatrix44(mTranslate, 0.0f, 0.0f, -2.5f);

// Create a rotation matrix based on the current value of yRot

m3dRotationMatrix44(mRotate, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);

// Add the rotation to the translation, store the result in mModelView

m3dMatrixMultiply44(mModelview, mTranslate, mRotate);

// Add the modelview matrix to the projection matrix,

// the final matrix is the ModelViewProjection matrix.

m3dMatrixMultiply44(mModelViewProjection,

viewFrustum.GetProjectionMatrix(),mModelview);

// Pass this completed matrix to the shader, and render the torus

GLfloat vBlack[] = { 0.0f, 0.0f, 0.0f, 1.0f };

shaderManager.UseStockShader(GLT_SHADER_FLAT, mModelViewProjection, vBlack);

torusBatch.Draw();

// Swap buffers, and immediately refresh

glutSwapBuffers();

glutPostRedisplay();

}

In the RenderScene function, we create four 4 x 4 matrix variables. The mTranslate vari-
able holds the initial translation, where we move the torus back -2.5 units on the z-axis.

m3dTranslationMatrix44(mTranslate, 0.0f, 0.0f, -2.5f);

Projection Matrix 157
4

ptg

Then we create a rotation matrix and store it in mRotate.

m3dRotationMatrix44(mRotate, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);

Note how we made use of the CStopWatch class (a part of the GLTools library) to make our
rotation rate based on the amount of time that has passed. Essentially we are rotating at a
rate of 60 degrees per second. You should always base your animation rates on the passage
of time, rather than a purely frame-based approach. For example, it is tempting to make
animation code like this:

static GLfloat yRot = 0;

yRot += 1.0f;

m3dRotationMatrix44(mRotate, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);

Code like this rotates your object very slowly when the frame rate is low and very quickly
when the frame rate is high, so the programmer tends to tweak the number added to yRot
until the animation looks just right (Goldilocks programming!). However, the frame rate
varies on different machines, different driver revisions, and so on, yielding unpredictable
animation speeds on different machines. Time, however, flows constant, regardless of
frame rate. A higher frame rate should yield a smoother animation, not a faster animation.

Back to our task of transforming our torus—our next step is to add the translation and the
rotation together by performing a matrix multiply. Remember, the order of operations is
important, and here we first translate and then rotate the torus.

m3dMatrixMultiply44(mModelview, mTranslate, mRotate);

It should now be out in front of us and spinning in place, at least as far as the modelview
matrix is concerned. Remember though that we set up a perspective projection matrix for
our desired coordinate system. Now we need to reduce that coordinate system to the unit
cube range, which we do by multiplying the projection matrix by the modelview matrix.
Again, the order of operations is very important!

m3dMatrixMultiply44(mModelViewProjection, viewFrustum.GetProjectionMatrix(),

mModelview);

The resulting matrix mModelViewProjection contains the concatenated form of all of our
transformations and the projection to the screen. This is just simply magic! Don’t you just
want to crack one of those linear algebra books in Appendix A now?

The last step is to send our matrix to the flat shader and submit the torus attributes. The
flat shader does nothing more than just transform the vertices by the provided matrix (by
doing a vector to matrix multiply) and color the geometry solid using the color specified,
in this case black.

shaderManager.UseStockShader(GLT_SHADER_FLAT, mModelViewProjection, vBlack);

torusBatch.Draw();

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer158

ptg

The Transformation Pipeline
Now that you have an understanding of how the modelview matrix and the projection
matrix are used to get things where you want them on-screen, let’s take a look at the
transformation pipeline in its entirety. Figure 4.29 provides a flowchart of the process.
First, your vertex is treated as a 1 x 4 matrix in which the first three values are the x, y,
and z coordinates. The fourth number is a scaling factor that you can apply manually if
desired. This is the w coordinate, usually 1.0 by default, and you will seldom really modify
this value directly.

The Transformation Pipeline 159
4

x0

y0

z0

w0

xe

ye

ze

we

xc

yc

zc

wc

xc/wc

yc/wc

zc/wc

Modelview
matrix

Projection
matrix

Viewport
transformation

Perspective
division …

…

Original
vertex data

Transformed
eye coordinates

Window coordinates

Clip
coordinates

Normalized
device coordinates

FIGURE 4.29 The vertex transformation pipeline.

The vertex is then multiplied by the modelview matrix, which yields the transformed eye
coordinates. The eye coordinates are then multiplied by the projection matrix to yield clip
coordinates. Clip coordinates fit in that small unit +/-1.0 coordinate system we mentioned
previously. OpenGL effectively eliminates all data outside this clipping space. The clip
coordinates are then divided by the w coordinate to yield normalized device coordinates.
The w value may have been modified by the projection matrix or the modelview matrix,
depending on the transformations that occurred. The perspective divide happens for you
as a part of the primitive assembly process.

Finally, your coordinate triplet is mapped to a 2D plane by the viewport transformation.
This is also represented by a matrix, but not one that you specify or modify directly.
OpenGL sets it up internally depending on the values you specified to glViewport.

Using a Matrix Stack
Because matrix manipulation is such an important part of 3D graphics, almost every
programmer’s toolbox contains a set of functions or classes for creating and manipulating
them. In fact the math3d library contains a rich assortment of functions for this purpose.

ptg

Transformations are often applied in a hierarchical manner, with one or more objects
being drawn relative to one another. This would require a great deal of matrix construc-
tion and management by your client code to traverse a complex scene in 3D space.
Traditionally, a matrix stack has been employed to facilitate this, and the GLTools library
builds such as utility class on top of the math3d matrix functions. This class is called
GLMatrixStack. Readers familiar with the now deprecated OpenGL matrix stacks in the
compatibility profile will find this class familiar.

The constructor of the class allows you to specify the maximum depth of the stack, with
the default stack depth being 64. This matrix stack is also initialized to have the identity
matrix already on the stack.

GLMatrixStack::GLMatrixStack(int iStackDepth = 64);

You can load the identity matrix on the top matrix by calling LoadIdentity.

void GLMatrixStack::LoadIdentity(void);

Or you can load an arbitrary matrix on top of the stack.

void GLMatrixStack::LoadMatrix(const M3DMatrix44f m);

In addition you can multiply a matrix by the top of the matrix stack. The result of the
multiplication is then stored at the top of the stack.

void GLMatrixStack::MultMatrix(const M3DMatrix44f);

Finally, getting the top value off the matrix stack is simply done with GetMatrix, which
comes with two overloads suitable for use with the GLShaderManager or just getting a copy
of top matrix.

const M3DMatrix44f& GLMatrixStack::GetMatrix(void);

void GLMatrixStack::GetMatrix(M3DMatrix44f mMatrix);

Push and Pop
The real value of a matrix class is the ability to save the state by pushing it and then
restoring the state later by popping it. With the GLMatrixStack class, you can save the
current matrix value by pushing the matrix on the stack with the PushMatrix function.
This actually copies the current matrix value and places the new value at the top of the
stack. Likewise, PopMatrix removes the top matrix and restores the value underneath.
There are several overloads for each of these:

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer160

ptg

void GLMatrixStack::PushMatrix(void);

void PushMatrix(const M3DMatrix44f mMatrix);

void PushMatrix(GLFrame& frame);

void GLMatrixStack::PopMatrix(void);

In addition to pushing the current matrix on the stack, you can also push an arbitrary
matrix on the top of the stack via the M3DMatrix44f data type or the GLFrame class (more
on GLFrame soon).

Affine Transformations
The GLMatrixStack class also has built-in support for creating rotations, translating, and
scaling matrices. The appropriate functions are listed here.

void MatrixStack::Rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

void MatrixStack::Translate(GLfloat x, GLfloat y, GLfloat z);

void MatrixStack::Scale(GLfloat x, GLfloat y, GLfloat z);

These functions work similarly to their lower level math3d counterparts, with one excep-
tion. The Rotate function takes degrees instead of radians to more closely mimic the now
deprecated OpenGL function glRotate. All three of these functions create the appropriate
transformation matrix and then multiply it by the top of the matrix stack, essentially
adding the transformation to the current matrix (remember you add transformations by
multiplying the matrices).

Managing Your Pipeline
You can probably guess that having a matrix stack for both the modelview matrix and the
projection matrix carries a lot of advantages. Very often you will also need to retrieve both
of these matrices and multiply them to get the modelview projection matrix. Another
useful matrix is the normal matrix, which is used for lighting computations and is derived
from the modelview matrix. Another utility class, GLGeometryTransform keeps track of
these two matrix stacks for you and quickly retrieves the top of either matrix stack, the
modelview projection matrix, or the normal matrix.

Let’s take a look at how we use all these classes together in the example program
SphereWorld. SphereWorld will see several revisions in this chapter, and initially it just
displays a rotating torus in wireframe mode over a green gridded ground, as shown in
Figure 4.30.

The Transformation Pipeline 161
4

ptg
FIGURE 4.30 The beginnings of SphereWorld.

At the top of the SphereWorld source file, we declare an instance of GLMatrixStack for the
modelview matrix and the projection matrix. We use the GLFrustum class to construct our
projection matrix, and finally an instance of the GLGeometryTransform class to manage
our matrix stacks.

GLMatrixStack modelViewMatrix; // Modelview Matrix

GLMatrixStack projectionMatrix; // Projection Matrix

GLFrustum viewFrustum; // View Frustum

GLGeometryTransform transformPipeline; // Geometry Transform Pipeline

Listing 4.3 shows the ChangeSize and RenderScene functions from our initial
SphereWorld.

LISTING 4.3 Initial SphereWorld Transformations

///

// Screen changes size or is initialized

void ChangeSize(int nWidth, int nHeight)
{

glViewport(0, 0, nWidth, nHeight);

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer162

ptg

// Create the projection matrix, and load it on the projection matrix stack

viewFrustum.SetPerspective(35.0f, float(nWidth)/float(nHeight), 1.0f, 100.0f);

projectionMatrix.LoadMatrix(viewFrustum.GetProjectionMatrix());

// Set the transformation pipeline to use the two matrix stacks

transformPipeline.SetMatrixStacks(modelViewMatrix, projectionMatrix);

}

// Called to draw scene

void RenderScene(void)

{

// Color values

static GLfloat vFloorColor[] = { 0.0f, 1.0f, 0.0f, 1.0f};

static GLfloat vTorusColor[] = { 1.0f, 0.0f, 0.0f, 1.0f };

// Time Based animation

static CstopWatch rotTimer;

float yRot = rotTimer.GetElapsedSeconds() * 60.0f;

// Clear the color and depth buffers

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Save the current modelview matrix (the identity matrix)

modelViewMatrix.PushMatrix();

// Draw the ground

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(),

vFloorColor);

floorBatch.Draw();

// Draw the spinning Torus

modelViewMatrix.Translate(0.0f, 0.0f, -2.5f);

modelViewMatrix.Rotate(yRot, 0.0f, 1.0f, 0.0f);

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(),

vTorusColor);

torusBatch.Draw();

// Restore the previous modleview matrix (the identity matrix)

modelViewMatrix.PopMatrix();

The Transformation Pipeline 163
4

ptg

// Do the buffer Swap

glutSwapBuffers();

// Tell GLUT to do it again

glutPostRedisplay();

}

In the ChangeSize function, we set up our perspective projection. Because this is where we
get notified of the window’s dimensions (or if they change), this is a reasonable place to
put this code. The viewFrustum instance of the GLFrustum class sets up the projection
matrix for us, and then we load that into our projection matrix object projectionMatrix.

// Create the projection matrix, and load it on the projection matrix stack

viewFrustum.SetPerspective(35.0f, float(nWidth)/float(nHeight), 1.0f, 100.0f);

projectionMatrix.LoadMatrix(viewFrustum.GetProjectionMatrix());

The last thing we do here is initialize the GLGeometryTransform instance
transformPipeline by setting its internal pointers to our instances of the modelview
matrix stack and projection matrix stacks.

transformPipeline.SetMatrixStacks(modelViewMatrix, projectionMatrix);

We really could have done this in the SetupRC function as well, but resetting them when
the window changes size does no harm, and it keeps our matrix and pipeline setup all in
one place.

Next, in the RenderScene function, we begin rendering our geometry by first saving the
modelview matrix, which has been set to the identity matrix by default.

// Save the current modelview matrix (the identity matrix)

modelViewMatrix.PushMatrix();

This may seem pointless given that the next thing we do is draw the ground, which
doesn’t get transformed at all. It is good practice to save your matrix state at the beginning
of your rendering pass and then restore it at the end with a corresponding PopMatrix. This
way you do not have to reload the identity matrix every time you render, plus for organi-
zational purposes it’s going to come in handy very soon when we add the camera.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer164

ptg

Now, finally the code to move our torus into place. We begin by calling Translate to
apply a translation matrix to the top of the matrix stack. This moves the torus back away
from the origin (where we are) so that we can see it. This is followed by a rotation with
Rotate. The parameters to Rotate rotate the torus around the y-axis, and yRot is derived
from the amount of time that has passed since the last frame.

// Draw the spinning Torus

modelViewMatrix.Translate(0.0f, 0.0f, -2.5f);

modelViewMatrix.Rotate(yRot, 0.0f, 1.0f, 0.0f);

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(),

vTorusColor);

torusBatch.Draw();

The final matrix is then passed to the shader as a uniform, and the torus batch is submit-
ted to render the object. Rather than getting the current modelview matrix and the projec-
tion matrix and then multiplying them, we can now simply ask the transformPipeline
for the concatenated matrix. This makes our code much cleaner, less cluttered, and easier
to read. This transformation matrix is still at the top of our stack, so we remove it, restor-
ing identity by calling PopMatrix.

modelViewMatrix.PopMatrix();

Spicing It Up!
SphereWorld is pretty simple—one piece of fixed geometry (the floor) and a single object
being transformed (rotating). So far it looks like we’ve put in a lot of plumbing for very
little net benefit. Let’s add something else to SphereWorld and see how it fits into our new
transformation pipeline.

Figure 4.31 shows the output from SphereWorld2. In SphereWorld2, we add a blue sphere,
this time revolving around the torus. Let’s take a look at our changes, shown in Listing
4.4. For this listing we added line numbers to make it easier to discuss the flow of what’s
going on.

The Transformation Pipeline 165
4

ptg
FIGURE 4.31 Finally a sphere in SphereWorld2.

LISTING 4.4 Adding a Sphere to SphereWorld2

1 // Save the current modelview matrix (the identity matrix)

2 modelViewMatrix.PushMatrix();

3

4 // Draw the ground

5 shaderManager.UseStockShader(GLT_SHADER_FLAT,

6 transformPipeline.GetModelViewProjectionMatrix(),

7 vFloorColor);

8 floorBatch.Draw();

9

10 // Draw the spinning Torus

11 modelViewMatrix.Translate(0.0f, 0.0f, -2.5f);

12

13 // Save the Translation

14 modelViewMatrix.PushMatrix();

15
16 // Apply a rotation and draw the torus

17 modelViewMatrix.Rotate(yRot, 0.0f, 1.0f, 0.0f);

18 shaderManager.UseStockShader(GLT_SHADER_FLAT,

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer166

ptg

19 transformPipeline.GetModelViewProjectionMatrix(),

20 vTorusColor);

21 torusBatch.Draw();

22 modelViewMatrix.PopMatrix(); // “Erase” the Rotation from before

23

24 // Apply another rotation, followed by a translation, then draw the sphere

25 modelViewMatrix.Rotate(yRot * -2.0f, 0.0f, 1.0f, 0.0f);

26 modelViewMatrix.Translate(0.8f, 0.0f, 0.0f);

27 shaderManager.UseStockShader(GLT_SHADER_FLAT,

28 transformPipeline.GetModelViewProjectionMatrix(),

29 vSphereColor);

30 sphereBatch.Draw();

31

32 // Restore the previous modleview matrix (the identity matrix)

33 modelViewMatrix.PopMatrix();

For this example, we added a new PushMatrix at line 14, just after we perform the transla-
tion to move our scene back and away from us. We then continue as with the first
program by performing a rotation in line 17 and then finally rendering the torus. On line
22, we called PopMatrix. This restores the matrix that we saved on line 14; essentially as
far as the matrix stack is concerned, the rotate never took place now. If we were to render
the sphere using this matrix, it would be stationary in the middle of the spinning torus
because it would simply be translated back -2.5 on the z-axis. Try it!

For our purposes though, we applied our own different rotation, in the opposite direction
around the y-axis, and just for dramatic purposes, we doubled the speed. The rotation is
followed by a translation in line 26, which moves the sphere out on the x-axis. The net
effect is that the sphere is revolving around the torus. The last thing we do is restore iden-
tity to the top of the matrix stack with our last call to PopMatrix on line 33. Hopefully,
now you can begin to see how saving and restoring the transformation matrix can be very
useful. But wait…it gets better!

Moving Around Using Cameras and Actors
To represent a location and orientation of any object in your 3D scene, you can use a
single 4 x 4 matrix that represents its transform. Working with matrices directly, however,
can still be somewhat awkward, so programmers have always sought ways to represent a
position and orientation in space more succinctly. Fixed objects such as terrain (or the
floor in SphereWorld) are often untransformed, and their vertices usually specify exactly
where the geometry should be drawn in space. Objects that move about in the scene are
often called actors, paralleling the idea of actors on a stage.

Actors have their own transformations, and often other actors are transformed not only
with respect to the world coordinate system (eye coordinates), but also with respect to

Moving Around Using Cameras and Actors 167
4

ptg

other actors. Each actor with its own transformation is said to have its own frame of refer-
ence, or local object coordinate system. It is often useful to translate between local and
world coordinate systems and back again for many nonrendering-related geometric tests.

An Actor Frame
A simple and flexible way to represent a frame of reference is to use a data structure (or
class in C++) that contains a position in space, a vector that points forward, and a vector
that points upward. Using these quantities, you can uniquely identify a given position and
orientation in space. The following class from the GLTools library, GLFrame, makes use of
the math3d library and stores this information all in one place:

class GLFrame

{

protected:

M3DVector3f vLocation;

M3DVector3f vUp;

M3DVector3f vForward;

public:

. . .

};

Using a frame of reference such as this to represent an object’s position and orientation is
a powerful mechanism. To begin with, you can use this data directly to create a 4 x 4
transformation matrix. Referring back to Figure 4.12, the up vector becomes the y column
of the matrix, whereas the forward-looking vector becomes the z column vector, and the
position is the translation column vector. This leaves only the x column vector, and
because we know that all three axes are unit length and perpendicular to one another
(orthonormal), we can calculate the x column vector by performing the cross product of
the y and z vectors. Listing 4.5 shows the GLFrame method GetMatrix, which does exactly
that.

LISTING 4.5 Code to Derive a 4 x 4 Matrix from a Frame

///

// Derives a 4x4 transformation matrix from a frame of reference

void GLFrame::GetMatrix(M3DTMatrix44f mMatrix, bool bRotationOnly = false)

{

// Calculate the right side (x) vector, drop it right into the matrix

M3DVector3f vXAxis;

m3dCrossProduct(vXAxis, vUp, vForward);

// Set matrix column does not fill in the fourth value...

m3dSetMatrixColumn44(matrix, vXAxis, 0);

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer168

ptg

matrix[3] = 0.0f;

// Y Column

m3dSetMatrixColumn44(matrix, vUp, 1);

matrix[7] = 0.0f;

// Z Column

m3dSetMatrixColumn44(matrix, vForward, 2);

matrix[11] = 0.0f;

// Translation (already done)

if(bRotationOnly == true)

{

matrix[12] = 0.0f;

matrix[13] = 0.0f;

matrix[14] = 0.0f;

}

else

m3dSetMatrixColumn44(matrix, vOrigin, 3);

matrix[15] = 1.0f;

}

The GLMatrixStack class contains three overrides that even allow you to use the GLFrame
class instead of a full matrix.

void GLMatrixStack::LoadMatrix(GLFrame& frame);

void GLMatrixStack::MultMatrix(GLFrame& frame);

void GLMatrixStack::PushMatrix(GLFrame& frame);

Euler Angles: “Use the Frame, Luke!”
Some graphics programming books recommend an even simpler mechanism for storing an
object’s position and orientation: Euler angles. Euler angles require less space because you
essentially store an object’s position and then just three angles—representing a rotation
around the x-, y-, and z-axes—sometimes called yaw, pitch, and roll. A structure like this
might represent an airplane’s location and orientation:

struct EULER {

M3DVector3f vPosition;

GLfloat fRoll;

GLfloat fPitch;

GLfloat fYaw;

};

Moving Around Using Cameras and Actors 169
4

ptg

Euler angles are a bit slippery and are sometimes called “oily angles” by some in the indus-
try. The first problem is that a given position and orientation can be represented by more
than one set of Euler angles. Having multiple sets of angles can lead to problems as you
try to figure out how to smoothly move from one orientation to another. Occasionally, a
second problem called “gimbal lock” comes up; this problem makes it impossible to
achieve a rotation around one of the axes. Lastly, Euler angles make it more tedious to
calculate new coordinates for simply moving forward along your line of sight or trying to
figure out new Euler angles if you want to rotate around one of your own local axes.

Some literature today tries to solve the problems of Euler angles by using a mathematical
tool called quaternions. Quaternions, which can be difficult to understand, really don’t
solve any problems with Euler angles that you can’t solve on your own by just using the
frame of reference method covered previously. To be sure, quaternions are vastly superior
to Euler angles, but the argument of quaternions over frames is a bit less conclusive. We
already promised that this book would not get too heavy on the math, so we will not
debate the merits of each system here. But we should say that the Quaternion versus linear
algebra (matrix) debate is more than 100 years old and by far predates their application to
computer graphics!

Camera Management
There is really no such thing as a camera transformation in OpenGL. We use the camera as
a useful metaphor to help us manage our point of view in some sort of immersive 3D
environment. If we envision a camera as an object that has some position in space and
some given orientation, we find that our current frame of reference system can represent
both actors and our camera in a 3D environment.

To apply a camera transformation, we take the camera’s actor transform and flip it so that
moving the camera backward is equivalent to moving the whole world forward. Similarly,
turning to the left is equivalent to rotating the whole world to the right. To render a given
scene, we usually take the approach outlined in Figure 4.32.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer170

Save Identity Matrix

Apply camera transform

Draw stuff that doesn’t move

Draw moving stuff (Actors)

Save camera transform

Apply actor transform

Draw actor geometry

Restore camera transform

Restore identity matrix

Lo
op

Lo
op

FIGURE 4.32 Typical rendering loop for a 3D environment.

ptg

The GLFrame class contains a function that retrieves an appropriately conditioned camera
matrix:

void GetCameraMatrix(M3DMatrix44f m, bool bRotationOnly = false);

Here we added the flexibility that you can get the camera’s rotation transform only. The
C++ default parameter here allows you to ignore this unless you have some special need
for this feature. For example, a frequently employed technique for immersive environ-
ments is the sky box. A sky box is simply a big box with a picture of the sky on it. You
and your immediate surroundings are rendered inside this box. As you move around, the
sky and background should move (rotate only) as well, but you do not want to be able to
walk up to the edge of the sky. You would simply apply only the rotation component of
the camera transform to your sky box, while everything else in the world would be trans-
formed by the full camera transform.

Let’s add a camera to SphereWorld so you can get a better idea of how this works in
general. Listing 4.6 shows the important parts of SphereWorld2, which contains the ability
to move around via the arrow keys.

LISTING 4.6 Adding a Camera to SphereWorld2

GLFrame cameraFrame; // Global camera instance

// Respond to arrow keys by moving the camera frame of reference

void SpecialKeys(int key, int x, int y)

{

float linear = 0.1f;

float angular = float(m3dDegToRad(5.0f));

if(key == GLUT_KEY_UP)

cameraFrame.MoveForward(linear);

if(key == GLUT_KEY_DOWN)

cameraFrame.MoveForward(-linear);

if(key == GLUT_KEY_LEFT)

cameraFrame.RotateWorld(angular, 0.0f, 1.0f, 0.0f);

if(key == GLUT_KEY_RIGHT)

cameraFrame.RotateWorld(-angular, 0.0f, 1.0f, 0.0f);

}

// Called to draw scene

void RenderScene(void)

Moving Around Using Cameras and Actors 171
4

ptg

{

// Color values

static GLfloat vFloorColor[] = { 0.0f, 1.0f, 0.0f, 1.0f};

static GLfloat vTorusColor[] = { 1.0f, 0.0f, 0.0f, 1.0f };

static GLfloat vSphereColor[] = { 0.0f, 0.0f, 1.0f, 1.0f };

// Time Based animation

static CStopWatch rotTimer;

float yRot = rotTimer.GetElapsedSeconds() * 60.0f;

// Clear the color and depth buffers

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Save the current modelview matrix (the identity matrix)

modelViewMatrix.PushMatrix();

M3DMatrix44f mCamera;

cameraFrame.GetCameraMatrix(mCamera);

modelViewMatrix.PushMatrix(mCamera);

// Draw the ground

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(),

vFloorColor);

floorBatch.Draw();

// Draw the spinning Torus

modelViewMatrix.Translate(0.0f, 0.0f, -2.5f);

// Save the Translation

modelViewMatrix.PushMatrix();

// Apply a rotation and draw the torus

modelViewMatrix.Rotate(yRot, 0.0f, 1.0f, 0.0f);

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(),

vTorusColor);

torusBatch.Draw();

modelViewMatrix.PopMatrix(); // “Erase” the Rotation from before

// Apply another rotation, followed by a translation, then draw the sphere

modelViewMatrix.Rotate(yRot * -2.0f, 0.0f, 1.0f, 0.0f);

modelViewMatrix.Translate(0.8f, 0.0f, 0.0f);

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer172

ptg

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(),

vSphereColor);

sphereBatch.Draw();

// Restore the previous modleview matrix (the identity matrix)

modelViewMatrix.PopMatrix();

modelViewMatrix.PopMatrix();

// Do the buffer Swap

glutSwapBuffers();

// Tell GLUT to do it again

glutPostRedisplay();

}

The SpecialKeys function is called whenever one of the arrow keys is pressed. Member
functions of the GLFrame class are called on the camera object cameraFrame in response to
the up and down arrows (moving forward and backward) and the left and right arrows
(rotating side to side).

Adding More Actors
The GLFrame class makes a good camera class, but it’s also useful for actors. Often you have
a number of objects scattered around, and you manage each object’s position and orienta-
tion in space individually. The GLFrame class makes a fine container for these
locations/orientations. Let’s say for SphereWorld3, we want to add 50 random spheres
floating about. At last, it really will be “SphereWorld.”

Instead of one big listing, we walk you though the changes to add these spheres to our
world. For starters, we need a list of sphere positions.

#define NUM_SPHERES 50

GLFrame spheres[NUM_SPHERES];

Note, we don’t need 50 actual spheres. We just draw one sphere 50 times, each time at a
different location. In SetupRC, we initialize our spheres to have random locations in our
world.

// Randomly place the spheres

for(int i = 0; i < NUM_SPHERES; i++) {

GLfloat x = ((GLfloat)((rand() % 400) - 200) * 0.1f);

GLfloat z = ((GLfloat)((rand() % 400) - 200) * 0.1f);

spheres[i].SetOrigin(x, 0.0f, z);

}

Moving Around Using Cameras and Actors 173
4

ptg

For the y position, we set the spheres to be at 0.0. This makes them appear to float at eye
level. Finally, in the RenderScene function, this simple code renders all of the spheres in
their correct location.

floorBatch.Draw();

for(int i = 0; i < NUM_SPHERES; i++) {

modelViewMatrix.PushMatrix();

modelViewMatrix.MultMatrix(spheres[i]);

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(),

vSphereColor);

sphereBatch.Draw();

modelViewMatrix.PopMatrix();

}

We place this code after we draw the floor (shown previously), but it really could have
been anywhere, as long as it was after the camera transform was applied to the top of the
modelview matrix stack. Figure 4.33 shows the output of SphereWorld3.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer174

FIGURE 4.33 SphereWorld with a camera and sphere inhabitants.

ptg

What About Lights?
Transforming geometry is all well and good, but the last thing we should talk about before
finishing this chapter is transforming lights. For geometry transformations, we typically
set up our transformation matrices, pass them into the shaders, and let the hardware
transform all the vertices for us. For light sources, we typically do things a bit differently.
A light position needs to be converted to eye coordinates too, but the matrix passed in to
the shader transforms our geometry, not the light. A fixed light such as a point light does
not move—or does it? Remember with our camera analogy, the whole world actually
moves relative to the camera, and this includes our light sources.

Let’s make one more addition to SphereWorld. In SphereWorld4 we add a single point
light. So far, we have been rendering SphereWorld in wireframe mode. Figure 4.34 shows
what SphereWorld looks like when we take out the call to glPolygonMode in the SetupRC
function.

Moving Around Using Cameras and Actors 175
4

FIGURE 4.34 SphereWorld with no shading.

Transforming a fixed light position into eye coordinates is relatively simple, and you only
have to do it once per frame. Here’s how we do it in SphereWorld4.

// Transform the light position into eye coordinates

M3DVector4f vLightPos = { 0.0f, 10.0f, 5.0f, 1.0f };

M3DVector4f vLightEyePos;

m3dTransformVector4(vLightEyePos, vLightPos, mCamera);

ptg

The light position in world coordinates is stored in the vLightPos variable, which contains
the x, y, z, and w coordinate of the light position. You must have a w coordinate (and it
must be 1.0) because you cannot multiply only a three component vector by a 4 x 4
matrix. Using our previously acquired camera matrix mCamera, we transform the light posi-
tion using our math3d function m3dTransformVector4. We introduced the stock shaders
back in Chapter 3; now is your first chance to see the point light stock shader in action.
For example, to render one of the blue spheres, we use the appropriate shader and pass in
the uniforms like this:

shaderManager.UseStockShader(GLT_SHADER_POINT_LIGHT_DIFF,

transformPipeline.GetModelViewMatrix(),

transformPipeline.GetProjectionMatrix(),

vLightEyePos, vSphereColor);

Many lighting shaders also make use of a normal matrix. The normal matrix can be derived
from the modelview matrix with some effort, and this shader does so. This is not optimal
however, and when we get into writing our own shaders in Chapter 6, we talk more about
this. For now, this simple point shader does the trick, and you can see the output of our
final version of SphereWorld for this chapter in Figure 4.35.

CHAPTER 4 Basic Transformations: A Vector/Matrix Primer176

FIGURE 4.35 SphereWorld with a point light source.

ptg

Summary
In this chapter, you learned concepts crucial to using OpenGL for the creation of 3D
scenes. Even if you can’t juggle matrices in your head, you now know what matrices are
and how they are used to perform the various transformations. You also learned how to
manipulate the modelview and projection matrix stacks to place your objects in the scene
and determine how they are viewed on-screen. This chapter also introduced the powerful
concept of a frame of reference, and you saw how easy it is to manipulate frames and
convert them into transformations.

Finally, we began to make more use of the GLTools and math3d libraries that accompany
this book. These libraries are written entirely in portable C++ and provide you with a
handy toolkit of miscellaneous math and helper routines that can be used along with
OpenGL.

Surprisingly, we did not cover a single new OpenGL function call in this entire chapter.
Yes, this was the math chapter, and you might not have even noticed if you think math is
just about formulas and calculations. Vectors, matrices, and the application thereof are
absolutely crucial to being able to use OpenGL to render 3D objects and worlds. Even if
you use a different 3D math library, or even roll your own, you will still find yourself
following the patterns laid out in this chapter for manipulating your geometry and 3D
worlds. Now, go ahead and start making some!

Summary 177
4

ptg

This page intentionally left blank

ptg

CHAPTER 5

Basic Texturing

by Richard S. Wright, Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Load texture images glTexImage/glTexSubImage

Set texture mapping parameters glTexParameter

Manage multiple textures glGenTextures/glDeleteTextures/glBindTexture

Generate mipmaps glGenerateMipmap

Use anisotropic filtering glGetFloatv/glTexParameter

Load compressed textures glCompressedTexImage/glCompressedTexSubImage

Up until now, you have been rendering with points, lines, and triangles, and you’ve seen
how you can shade their surfaces by calculating color values and interpolating between
them to simulate lighting effects. This is all well and good, and there are a substantial
number of 3D application market segments where this is all that is required. A tremendous
shortcut to greater realism, however, is texture mapping. A texture is simply image data that
can be applied to a triangle in your scene, filling in the solid areas with filtered texels (the
texture-based equivalent of pixels). Figure 5.1 shows the dramatic effect a few texture files
can add to your 3D renderings.

ptg

180 CHAPTER 5 Basic Texturing

FIGURE 5.1 The stark contrast between textured and untextured geometry.

As you will come to see, however, in Chapter 7, “More Advanced Texture Topics,” textures
have come to mean a great deal more than just image data and are a key ingredient to
most modern 3D rendering algorithms.

Raw Image Data
In the beginning, there were bitmaps. And they were…good enough. The original elec-
tronic computer displays were monochrome (one color), typically green or amber, and
every pixel on the screen had one of two states: on or off. Computer graphics were simple
in the early days, and image data was represented by bitmaps—a series of ones and zeros
representing on and off pixel values. In a bitmap, each bit in a block of memory corre-
sponds to exactly one pixel’s state on the screen. Figure 5.2 shows an image of a horse
represented as a bitmap. Even though only two colors are used (black and white dots), the
representation of a horse is still apparent. Compare this image with the one in Figure 5.3,
which shows a grayscale image of the same horse. In this pixel rectangle (sometimes still
called pixmaps by the old timers), each pixel has one of 256 different intensities of gray.
The term bitmap is often applied to images that contain grayscale or full-color data. This
description is especially common on the Windows platform in relation to the poorly
named .BMP (bitmap) file extension. Many would argue that, strictly speaking, this is a
gross misapplication of the term. In this book, we never refer to pixel data as bitmaps.
Color Plate 2 shows these two images again, but along side a full color RGB version.

ptg

FIGURE 5.2 A real bitmapped image of a horse.

Raw Image Data 181
5

FIGURE 5.3 A pixmap (pixel rectangle) of a horse.

Pixel Packing
Image data is rarely packed tightly into memory. On many hardware platforms, each row
of an image should begin on some particular byte-aligned address for performance reasons.
Most compilers automatically put variables and buffers at an address alignment optimal

ptg

CHAPTER 5 Basic Texturing182

for that architecture. OpenGL, by default, assumes a 4-byte alignment, which is appropri-
ate for many systems in use today. Many programmers misjudge the amount of memory
required to store an image if they simply multiply the width by the height by the number
of bytes per pixel. For example, if you have an RGB image with three components (a red,
a green, and a blue), each of which is stored in one byte (8 bits per color channel, this is
actually quite typical), how much memory would you need for each row of the image if
the image was say 199 pixels wide?

You might think, well, simply 199 x 3 (one for each of the three color channels), which
would be 597 bytes per row of image data. You might be right. If you’re a good program-
mer, though, you really, really hate that word might! If your hardware’s native architecture
is for 4-byte alignment (which most are), then the image will have an extra three bytes
added to the end of each row of empty padding (making each row 600 bytes), just to
make the memory address of each row start on an address that is evenly divisible by 4.
Many times, however, this works out by itself, especially if you stick to power of two
textures (more on this later), but you should keep an eye on it because missing little
things like this has a tendency to catch you with a strange hard-to-find memory-related
bug somewhere down the road. Although this may seem like a waste of memory, this
arrangement allows most CPUs to more efficiently grab blocks of data.

Many uncompressed image file formats also follow this convention. The previously
mentioned Windows .BMP file format uses 4-byte alignment for its pixel data; however,
the Targa (.TGA) file format is 1-byte aligned…no wasted space. Why other than for
memory allocation purposes is this important to OpenGL? Because when you hand image
data to OpenGL or ask OpenGL for image data, it needs to know how you want your data
packed or unpacked in memory.

You can change how pixel data is stored and retrieved by using the following functions:

void glPixelStorei(GLenum pname, GLint param);

void glPixelStoref(GLenum pname, GLfloat param);

If you want to change to tightly packed pixel data, for example, you make the following
function call:

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

GL_UNPACK_ALIGNMENT specifies how OpenGL unpacks image data from data buffers.
Likewise, you can use GL_PACK_ALIGNMENT to tell OpenGL how to pack data being read
from pixel buffers and placed in a user-specified memory buffer. The complete list of pixel
storage modes available through this function is given in Table 5.1 and explained in more
detail in Appendix C, “OpenGL Man Pages for (Core) OpenGL 3.3.”

ptg

TABLE 5.1 glPixelStore Parameters

Parameter Name Type Initial Value

GL_PACK_SWAP_BYTES GLboolean GL_FALSE

GL_UNPACK_SWAP_BYTES GLboolean GL_FALSE

GL_PACK_LSB_FIRST GLboolean GL_FALSE

GL_UNPACK_LSB_FIRST GLboolean GL_FALSE

GL_PACK_ROW_LENGTH GLint 0

GL_UNPACK_ROW_LENGTH GLint 0

GL_PACK_SKIP_ROWS GLint 0

GL_UNPACK_SKIP_ROWS GLint 0

GL_PACK_SKIP_PIXELS GLint 0

GL_UNPACK_SKIP_PIXELS GLint 0

GL_PACK_ALIGNMENT GLint 4

GL_UNPACK_ALIGNMENT GLint 4

GL_PACK_IMAGE_HEIGHT GLint 0

GL_UNPACK_IMAGE_HEIGHT GLint 0

GL_PACK_SKIP_IMAGES GLint 0

GL_UNPACK_SKIP_IMAGES GLint 0

Pixmaps
Of more interest and somewhat greater utility on today’s full-color computer systems are
pixmaps. A pixmap is similar in memory layout to a bitmap; however, each pixel may be
represented by more than one bit of storage. Extra bits of storage for each pixel allow
either intensity (sometimes referred to as luminance values) or color component values to
be stored. You cannot draw a pixmap directly into the color buffer with the OpenGL core
profile, but you can read the contents of the color buffer directly as a pixmap using this
function:

void glReadPixels(GLint x, GLint y, GLSizei width, GLSizei height,

GLenum format, GLenum type, const void *pixels);

You specify the x and y in window coordinates of the lower-left corner of the rectangle to
read followed by width and height of the rectangle in pixels. If the color buffer stores data
differently than what you have requested, OpenGL takes care of the necessary conver-
sions. This capability can be very useful. The pointer to the image data, *pixels, must be
valid and must contain enough storage to contain the image data after conversion, or you
will likely get a nasty memory exception at runtime. Also be aware that if you specify
window coordinates that are out of bounds, you will get data only for the pixels within
the actual OpenGL frame buffer.

The fourth argument to glReadPixels is the format, which specifies the color layout of
the data elements pointed to by pixels and can be one of the constants listed in Table
5.2.

Raw Image Data 183
5

ptg

TABLE 5.2 OpenGL Pixel Formats

Constant Description

GL_RGB Colors are in red, green, blue order.

GL_RGBA Colors are in red, green, blue, alpha order.

GL_BGR Colors are in blue, green, red order.

GL_BGRA Colors are in blue, green, red, alpha order.

GL_RED Each pixel contains a single red component.

GL_GREEN Each pixel contains a single green component.

GL_BLUE Each pixel contains a single blue component.

GL_RG Each pixel contains a red followed by a blue component.

GL_RED_INTEGER Each pixel contains a red integer component.

GL_GREEN_INTEGER Each pixel contains a green integer component.

GL_BLUE_INTETER Each pixel contains a blue integer component.

GL_RG_INTEGER Each pixel contains a red followed by a green integer component.

GL_RGB_INTEGER Each pixel contains a red, green, and blue integer component, in

that order.

GL_RGBA_INTEGER Each pixel contains a red, green, blue, and alpha integer compo-

nent, in that order.

GL_BGR_INTEGER Each pixel contains a blue, green, and red integer component, in

that order.

GL_BGRA_INTEGER Each pixel contains a blue, green, red, and alpha integer compo-

nent, in that order.

GL_STENCIL_INDEX Each pixel contains a single stencil value.

GL_DEPTH_COMPONENT Each pixel contains a single depth value.

GL_DEPTH_STENCIL Each pixel contains a depth and a stencil value.

The last three formats, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, and GL_DEPTH_STENCIL,
are used for reading and writing directly to the stencil and depth buffers. The type para-
meter interprets the data pointed to by the *pixels parameter. It tells OpenGL what data
type within the buffer is used to store the color components. The recognized values are
specified in Table 5.3.

TABLE 5.3 Data Types for Pixel Data

Constant Description

GL_UNSIGNED_BYTE Each color component is an 8-bit unsigned

integer.

GL_BYTE Signed 8-bit integer.

GL_UNSIGNED_SHORT Unsigned 16-bit integer.

GL_SHORT Signed 16-bit integer.

GL_UNSIGNED_INT Unsigned 32-bit integer.

GL_INT Signed 32-bit integer.

GL_FLOAT Single-precision float.

CHAPTER 5 Basic Texturing184

ptg

Constant Description

GL_HALF_FLOAT Half-precision float.

GL_UNSIGNED_BYTE_3_2_2 Packed RGB values.

GL_UNSIGNED_BYTE_2_3_3_REV Packed RGB values.

GL_UNSIGNED_SHORT_5_6_5 Packed RGB values.

GL_UNSIGNED_SHORT_5_6_5_REV Packed RGB values.

GL_UNSIGNED_SHORT_4_4_4_4 Packed RGBA values.

GL_UNSIGNED_SHORT_4_4_4_4_REV Packed RGBA values.

GL_UNSIGNED_SHORT_5_5_5_1 Packed RGBA values.

GL_UNSIGNED_SHORT_1_5_5_5_REV Packed RGBA values.

GL_UNSIGNED_INT_8_8_8_8 Packed RGBA values.

GL_UNSIGNED_INT_8_8_8_8_REV Packed RGBA values.

GL_UNSIGNED_INT_10_10_10_2 Packed RGBA values.

GL_UNSIGNED_INT_2_10_10_10_REV Packed RGBA values.

GL_UNSIGNED_INT_24_8 Packed RGBA values.

GL_UNSIGNED_INT_10F_11F_11F_REV Packed RGBA values.

GL_FLOAT_32_UNSIGNED_INT_24_8_REV Packed RGBA values.

It is worth pointing out the glReadPixels copies data from your graphics hardware,
usually across the bus to system memory. When this is the case, your application will
block until the memory transfer has completed. In addition, if you specify a pixel layout
different from the native arrangement of your graphics hardware, there will be an addi-
tional performance penalty as the data is reformatted.

Packed Pixel Formats
The packed formats listed in Table 5.3 were introduced in OpenGL 1.2 (and later) as a
means of allowing image data to be stored in a more compressed form that matched a
range of color graphics hardware. Display hardware designs could save memory or operate
faster on a smaller set of packed pixel data. These packed pixel formats are still found on
some PC hardware and may continue to be useful for future hardware platforms.

The packed pixel formats compress color data into as few bits as possible, with the number
of bits per color channel shown in the constant. For example, the
GL_UNSIGNED_BYTE_3_3_2 format stores 3 bits of the first component, 3 bits of the second
component, and 2 bits of the third component. Remember, the specific components (red,
green, blue, and alpha) are still ordered according to the format parameter. The compo-
nents are ordered from the highest bits (most significant bit, or MSB) to the lowest (least
significant bit, or LSB). GL_UNSIGNED_BYTE_2_3_3_REV reverses this order and places the last
component in the top 2 bits, and so on. Figure 5.4 shows graphically the bitwise layout
for these two arrangements. All the other packed formats are interpreted in the same
manner.

Raw Image Data 185
5

ptg

FIGURE 5.4 Sample layout for two packed pixel formats.

These format and data type parameters are used for a number of other image- and texture-
related functions, and we will make reference to these tables again later. For our
glReadPixels function, by default, the read operation is performed on the back buffer for
double-buffered rendering contexts, and the front buffer for single-buffered rendering
contexts. You can change the source of these pixel operations by using this function:

void glReadBuffer(GLenum mode);

The mode parameter can be any one of GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT,
GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, or even GL_NONE.

Saving Pixels
We have covered enough now to do something useful with pixel data. The gltWriteTGA
function in the GLTools library reads color data from the front color buffer and saves it to
an image file in the Targa file format. Being able to save your current OpenGL rendering
to a standard image file format can come in handy. The complete listing for the
gltWriteTGA function is shown in Listing 5.1.

LISTING 5.1 The gltWriteTGA Function to Save the Screen as a Targa File

//

// Capture the current viewport and save it as a targa file.

// Be sure to call SwapBuffers for double buffered contexts or

// glFinish for single buffered contexts before calling this function.

// Returns 0 if an error occurs, or 1 on success.

GLint gltWriteTGA(const char *szFileName)

{

FILE *pFile; // File pointer

TGAHEADER tgaHeader; // TGA file header
unsigned long lImageSize; // Size in bytes of image

GLbyte *pBits = NULL; // Pointer to bits

GLint iViewport[4]; // Viewport in pixels

GLenum lastBuffer; // Storage for the current read buffer

CHAPTER 5 Basic Texturing186

UNSIGNED_BYTE_3_3_2

1st Component

7 6 5 4 3 2 1 0

2nd 3rd

UNSIGNED_BYTE_2_3_3_REV

1st Component

7 6 5 4 3 2 1 0

2nd3rd

ptg

// setting

// Get the viewport dimensions

glGetIntegerv(GL_VIEWPORT, iViewport);

// How big is the image going to be (targas are tightly packed)

lImageSize = iViewport[2] * 3 * iViewport[3];

// Allocate block. If this doesn’t work, go home

pBits = (GLbyte *)malloc(lImageSize);

if(pBits == NULL)

return 0;

// Read bits from color buffer

glPixelStorei(GL_PACK_ALIGNMENT, 1);

glPixelStorei(GL_PACK_ROW_LENGTH, 0);

glPixelStorei(GL_PACK_SKIP_ROWS, 0);

glPixelStorei(GL_PACK_SKIP_PIXELS, 0);

// Get the current read buffer setting and save it. Switch to

// the front buffer and do the read operation. Finally, restore

// the read buffer state

glGetIntegerv(GL_READ_BUFFER, &lastBuffer);

glReadBuffer(GL_FRONT);

glReadPixels(0, 0, iViewport[2], iViewport[3], GL_BGR,

GL_UNSIGNED_BYTE, pBits);

glReadBuffer(lastBuffer);

// Initialize the Targa header

tgaHeader.identsize = 0;

tgaHeader.colorMapType = 0;

tgaHeader.imageType = 2;

tgaHeader.colorMapStart = 0;

tgaHeader.colorMapLength = 0;

tgaHeader.colorMapBits = 0;

tgaHeader.xstart = 0;

tgaHeader.ystart = 0;

tgaHeader.width = iViewport[2];

tgaHeader.height = iViewport[3];

tgaHeader.bits = 24;

tgaHeader.descriptor = 0;

// Do byte swap for big vs little endian

#ifdef __APPLE__

Raw Image Data 187
5

ptg

LITTLE_ENDIAN_WORD(&tgaHeader.colorMapStart);

LITTLE_ENDIAN_WORD(&tgaHeader.colorMapLength);

LITTLE_ENDIAN_WORD(&tgaHeader.xstart);

LITTLE_ENDIAN_WORD(&tgaHeader.ystart);

LITTLE_ENDIAN_WORD(&tgaHeader.width);

LITTLE_ENDIAN_WORD(&tgaHeader.height);

#endif

// Attempt to open the file

pFile = fopen(szFileName, “wb”);

if(pFile == NULL)

{

free(pBits); // Free buffer and return error

return 0;

}

// Write the header

fwrite(&tgaHeader, sizeof(TGAHEADER), 1, pFile);

// Write the image data

fwrite(pBits, lImageSize, 1, pFile);

// Free temporary buffer and close the file

free(pBits);

fclose(pFile);

// Success!

return 1;

}

Reading Pixels
The Targa image format is a convenient and easy to use image format, and it supports
both simple color images and images with alpha. We will continue to use this format for
our texture work in this book, and now present the opposite function, which is to load a
Targa file from disk.

GLbyte *gltReadTGABits(const char *szFileName, GLint *iWidth, GLint *iHeight,

GLint *iComponents, GLenum *eFormat);

The first argument is the filename (with the path if necessary) of the Targa file to load.
The Targa image format is a well-supported and common image file format. Unlike JPEG
files, Targa files (usually) store an image in its uncompressed form. The gltReadTGABits

CHAPTER 5 Basic Texturing188

ptg

function opens the file and then reads in and parses the header to determine the width,
height, and data format of the file. The number of components can be one, three, or four
for luminance, RGB, or RGBA images, respectively. The final parameter is a pointer to a
GLenum that receives the corresponding OpenGL image format for the file. If the function
call is successful, it returns a newly allocated pointer (using malloc) to the image data read
directly from the file. If the file is not found, or some other error occurs, the function
returns NULL. The complete listing for the gltReadTGABits function is given in Listing 5.2.

LISTING 5.2 The Function to Load Targa Files for Use in OpenGL

//

// Allocate memory and load targa bits. Returns pointer to new buffer,

// height, and width of texture, and the OpenGL format of data.

// Call free() on buffer when finished!

// This only works on pretty vanilla targas... 8, 24, or 32 bit color

// only, no palettes, no RLE encoding.

GLbyte *gltReadTGABits(const char *szFileName, GLint *iWidth, GLint *iHeight,

GLint *iComponents, GLenum *eFormat)

{

FILE *pFile; // File pointer

TGAHEADER tgaHeader; // TGA file header

unsigned long lImageSize; // Size in bytes of image

short sDepth; // Pixel depth;

GLbyte *pBits = NULL; // Pointer to bits

// Default/Failed values

*iWidth = 0;

*iHeight = 0;

*eFormat = GL_RGB;

*iComponents = GL_RGB;

// Attempt to open the file

pFile = fopen(szFileName, “rb”);

if(pFile == NULL)

return NULL;

// Read in header (binary)

fread(&tgaHeader, 18/* sizeof(TGAHEADER)*/, 1, pFile);

// Do byte swap for big vs little endian

#ifdef __APPLE__

LITTLE_ENDIAN_WORD(&tgaHeader.colorMapStart);

LITTLE_ENDIAN_WORD(&tgaHeader.colorMapLength);

Raw Image Data 189
5

ptg

LITTLE_ENDIAN_WORD(&tgaHeader.xstart);

LITTLE_ENDIAN_WORD(&tgaHeader.ystart);

LITTLE_ENDIAN_WORD(&tgaHeader.width);

LITTLE_ENDIAN_WORD(&tgaHeader.height);

#endif

// Get width, height, and depth of texture

*iWidth = tgaHeader.width;

*iHeight = tgaHeader.height;

sDepth = tgaHeader.bits / 8;

// Put some validity checks here. Very simply, I only understand

// or care about 8, 24, or 32 bit targa’s.

if(tgaHeader.bits != 8 && tgaHeader.bits != 24 && tgaHeader.bits != 32)

return NULL;

// Calculate size of image buffer

lImageSize = tgaHeader.width * tgaHeader.height * sDepth;

// Allocate memory and check for success

pBits = (GLbyte*)malloc(lImageSize * sizeof(GLbyte));

if(pBits == NULL)

return NULL;

// Read in the bits

// Check for read error. This should catch RLE or other

// weird formats that I don’t want to recognize

if(fread(pBits, lImageSize, 1, pFile) != 1)

{

free(pBits);

return NULL;

}

// Set OpenGL format expected

switch(sDepth)

{

#ifndef OPENGL_ES

case 3: // Most likely case

*eFormat = GL_BGR;

*iComponents = GL_RGB;

break;

#endif

CHAPTER 5 Basic Texturing190

ptg

#ifdef WIN32

case 3: // Most likely case

*eFormat = GL_BGR;

*iComponents = GL_RGB;

break;

#endif

#ifdef linux

case 3: // Most likely case

*eFormat = GL_BGR;

*iComponents = GL_RGB;

break;

#endif

case 4:

*eFormat = GL_BGRA;

*iComponents = GL_RGBA;

break;

case 1:

*eFormat = GL_LUMINANCE;

*iComponents = GL_LUMINANCE;

break;

default: // RGB

// If on the iPhone, TGA’s are BGR, and the iPhone does not

// support BGR without alpha, but it does support RGB,

// so a simple swizzle of the red and blue bytes will suffice.

// For faster iPhone loads however, save your TGA’s with an Alpha!

#ifdef OPENGL_ES

for(int i = 0; i < lImageSize; i+=3)

{

GLbyte temp = pBits[i];

pBits[i] = pBits[i+2];

pBits[i+2] = temp;

}

#endif

break;

}

// Done with File

fclose(pFile);

// Return pointer to image data

return pBits;

}

Raw Image Data 191
5

ptg

You may notice that the number of components is not set to the integers 1, 3, or 4, but
GL_LUMINANCE8, GL_RGB8, and GL_RGBA8. OpenGL recognizes these special constants as a
request to maintain full image precision internally when it manipulates the image data.
For example, for performance reasons, some OpenGL implementations may down-sample
a 24-bit color image to 16 bits internally. This is especially common for texture loads on
some implementations in which the display output color resolution is only 16 bits, but a
higher bit depth image is loaded. These constants are requests to the implementation to
store and use the image data as supplied at their full 8-bit-per-channel color depth.

Loading Textures
The first necessary step in applying a texture map to geometry is to load the texture into
memory. Once loaded, the texture becomes part of the current texture state (more on this
later). Three OpenGL functions are most often used to load texture data from a memory
buffer (which is, for example, read from a disk file):

void glTexImage1D(GLenum target, GLint level, GLint internalformat,

GLsizei width, GLint border,

GLenum format, GLenum type, void *data);

void glTexImage2D(GLenum target, GLint level, GLint internalformat,

GLsizei width, GLsizei height, GLint border,

GLenum format, GLenum type, void *data);

void glTexImage3D(GLenum target, GLint level, GLint internalformat,

GLsizei width, GLsizei height, GLsizei depth, GLint border,

GLenum format, GLenum type, void *data);

These three rather lengthy functions tell OpenGL everything it needs to know about how
to interpret the texture data pointed to by the data parameter.

The first thing you should notice about these functions is that they are essentially three
flavors of the same root function, glTexImage. OpenGL supports one-, two-, and three-
dimensional texture maps and uses the corresponding function to load that texture and
make it current. OpenGL also supports cube map textures, but we are going to save those
for Chapter 7. You should also be aware that OpenGL copies the texture information from
data when you call one of these functions. This data copy can be quite expensive, and in
the section “Texture Objects,” coming up soon, we discuss some ways to help mitigate this
problem.

The target argument for these functions should be GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D, respectively. You may also specify proxy textures by specifying
GL_PROXY_TEXTURE_1D, GL_PROXY_TEXTURE_2D, or GL_PROXY_TEXTURE_3D and using the func-
tion glGetTexParameter to retrieve the results of the proxy query. Proxy textures as well as
some other interesting texture targets are covered in Chapter 7.

CHAPTER 5 Basic Texturing192

ptg

The level parameter specifies the mipmap level being loaded. Mipmaps are covered in an
upcoming section called “Mipmapping,” so for nonmipmapped textures (just your plain
old ordinary texture mapping), always set this to 0 (zero) for the moment.

Next, you have to specify the internalformat parameter of the texture data. This informa-
tion tells OpenGL how many color components you want stored per texel and possibly
the storage size of the components and/or whether you want the texture compressed.
Table 5.4 lists the most common values for this function. A complete listing is given in
Appendix C.

TABLE 5.4 Most Common Texture Internal Formats

Constant Meaning

GL_ALPHA Store the texels as alpha values

GL_LUMINANCE Store the texels as luminance values

GL_LUMINANCE_ALPHA Store the texels with both luminance and alpha values

GL_RGB Store the texels as red, green, and blue components

GL_RGBA Store the texels as red, green, blue, and alpha components

The width, height, and depth parameters (where appropriate) specify the dimensions of
the texture being loaded. It is important to note that prior to OpenGL 2.0, these dimen-
sions must be integer powers of 2 (1, 2, 4, 8, 16, 32, 64, and so on). There is no require-
ment that texture maps be square (all dimensions equal), but a texture loaded with
non-power of 2 dimensions on older OpenGL implementations will cause texturing to be
implicitly disabled. Even though OpenGL 2.0 (and later) allows non-power of 2 textures,
this is no guarantee that they will necessarily be fast on the underlying hardware. Many
performance-minded developers still avoid non-power of two textures for this reason.

The border parameter allows you to specify a border width for texture maps. Texture
borders allow you to extend the width, height, or depth of a texture map by an extra set
of texels along the borders. Texture borders play an important role in the discussion of
texture filtering to come. For the time being, always set this value to 0 (zero).

The last three parameters—format, type, and data—are identical to the corresponding
arguments when you used glReadPixels in the previous section. Valid values for format
are listed in Table 5.2, and valid values for type are listed in Table 5.3.

Using the Color Buffer
One- and two-dimensional textures may also be loaded using data from the color buffer.
You can read an image from the color buffer and use it as a new texture by using the
following two functions:

void glCopyTexImage1D(GLenum target, GLint level, GLenum internalformat,

GLint x, GLint y,

GLsizei width, GLint border);

Loading Textures 193
5

ptg

void glCopyTexImage2D(GLenum target, GLint level, GLenum internalformat,

GLint x, GLint y,

GLsizei width, GLsizei height, GLint border);

These functions operate similarly to glTexImage, but in this case, x and y specify the loca-
tion in the color buffer to begin reading the texture data. The source buffer is set using
glReadBuffer. Note that there is no glCopyTexImage3D; you can’t load volumetric data
from a 2D color buffer!

Updating Textures
Repeatedly loading new textures can become a performance bottleneck in time-sensitive
applications such as games or simulation applications. If a loaded texture map is no longer
needed, it may be replaced entirely or in part. Replacing a texture map can often be done
much more quickly than reloading a new texture directly with glTexImage. The function
you use to accomplish this is glTexSubImage, again in three variations:

void glTexSubImage1D(GLenum target, GLint level,

GLint xOffset,

GLsizei width,

GLenum format, GLenum type, const GLvoid *data);

void glTexSubImage2D(GLenum target, GLint level,

GLint xOffset, GLint yOffset,

GLsizei width, GLsizei height,

GLenum format, GLenum type, const GLvoid *data);

void glTexSubImage3D(GLenum target, GLint level,

GLint xOffset, GLint yOffset, GLint zOffset,

GLsizei width, GLsizei height, GLsizei depth,

GLenum format, GLenum type, const GLvoid *data);

Most of the arguments correspond exactly to the parameters used in glTexImage. The
xOffset, yOffset, and zOffset parameters specify the offsets into the existing texture map
to begin replacing texture data. The width, height, and depth values specify the dimen-
sions of the texture being “inserted” into the existing texture.

A final set of functions allows you to combine reading from the color buffer and inserting
or replacing part of a texture. These glCopyTexSubImage variations do just that:

void glCopyTexSubImage1D(GLenum target, GLint level,

GLint xoffset,

GLint x, GLint y,

GLsizei width);

CHAPTER 5 Basic Texturing194

ptg

void glCopyTexSubImage2D(GLenum target, GLint level,

GLint xoffset, GLint yoffset,

GLint x, GLint y,

GLsizei width, GLsizei height);

void glCopyTexSubImage3D(GLenum target, GLint level,

GLint xoffset, GLint yoffset, Glint zoffset,

GLint x, GLint y,

GLsizei width, GLsizei height);

You may have noticed that no glCopyTexImage3D function is listed here. The reason is that
the color buffer is 2D, and there simply is no corresponding way to use a 2D color image
as a source for a 3D texture. However, you can use glCopyTexSubImage3D to use the color
buffer data to set a plane of texels in a three-dimensional texture.

Texture Objects
So far, you have seen a couple of ways to load a texture and some methods of replacing a
texture. It has been many years since we’ve seen hardware that could only support a single
texture, and thus OpenGL has along the way evolved a means of managing multiple
textures and switching between them. The texture image itself is a part of what is called
the texture state. The texture state comprises the texture image itself and a set of texture
parameters that control how filtering and texture coordinates behave. The use of the
glTexParameter function to set these texture state parameters is covered shortly. First,
though, let’s take a look at how we would load up and manage several different textures.

Function calls such as glTexImage and glTexSubImage move a large amount of memory
around and possibly need to reformat the data to match some internal representation.
Switching between textures or reloading a different texture image could potentially be a
costly operation. Texture objects allow you to load up more than one texture state at a
time, including texture images, and switch between them very quickly. The texture state is
maintained by the currently bound texture object, which is identified by an unsigned
integer. You allocate a number of texture objects with the following function:

void glGenTextures(GLsizei n, GLuint *textures);

With this function, you specify the number of texture objects and a pointer to an array of
unsigned integers that will be populated with the texture object identifiers. You can think
of them as handles to different available texture states. To “bind” to one of these states,
you call this function:

void glBindTexture(GLenum target, GLuint texture);

Loading Textures 195
5

ptg

The target parameter needs to specify GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D,
and texture is the specific texture object to bind to. Hereafter, all texture loads and
texture parameter settings affect only the currently bound texture object. To delete texture
objects, you call the following function:

void glDeleteTextures(GLsizei n, GLuint *textures);

The arguments here have the same meaning as for glGenTextures. You do not need to
generate and delete all your texture objects at the same time. Multiple calls to
glGenTextures have very little overhead. Calling glDeleteTextures multiple times may
incur some delay, but only because you are deallocating possibly large amounts of texture
memory.

You can test texture object names (or handles) to see whether they are valid by using the
following function:

GLboolean glIsTexture(GLuint texture);

This function returns GL_TRUE if the integer is a previously allocated texture object name
or GL_FALSE if not.

Texture Application
Loading a texture is only the first step toward getting a texture applied to geometry. At a
minimum we must also supply texture coordinates and set up the texture coordinate wrap
modes and texture filter. Finally, we may choose to mipmap our textures to improve
texturing performance and/or visual quality. Of course in all of this, we are assuming our
shaders are doing the “right thing.” For this chapter, we stick to 2D texture examples and
use the stock shaders. In the next chapter, when we begin writing our own shaders, we see
how to apply textures from the level of the shaders. For now, we restrict ourselves to the
client side of texture mapping technique.

Texture Coordinates
In general, textures are mapped to geometry directly by specifying a texture coordinate for
each vertex. Texture coordinates are either specified as an attribute to the shader or calcu-
lated algorithmically. Texels in a texture map are addressed not as a memory location (as
you would for pixmaps), but as a more abstract (usually floating-point values) texture
coordinate. Typically, texture coordinates are specified as floating-point values that are in
the range 0.0 to 1.0. Texture coordinates are named s, t, r, and q (similar to vertex coordi-
nates x, y, z, and w), supporting from one- to three-dimensional texture coordinates, and
optionally a way to scale the coordinates.

CHAPTER 5 Basic Texturing196

ptg
FIGURE 5.5 How texture coordinates address texels.

Because there are no four-dimensional textures, you might ask what the q coordinate is
for. The q coordinate corresponds to the w geometric coordinate. This is a scaling factor
applied to the other texture coordinates; that is, the actual values used for the texture
coordinates are s/q, t/q, and r/q. By default, q is set to 1.0. While this may seem rather
arbitrary, it does come in handy for some advanced texture coordinate generation algo-
rithms, such as shadow mapping.

One texture coordinate is applied per texture (yes, there is a way to apply more than one
texture at a time!) for each vertex. OpenGL then stretches or shrinks the texture as neces-
sary to apply the texture to the geometry as mapped. (This stretching or shrinking is
applied using the current texture filter; we discuss this issue shortly as well.) Figure 5.6
shows an example of a two-dimensional texture being mapped to a square (perhaps a
triangle fan) piece of geometry. Note that the corners of the texture correspond to the
corners of the geometry.

Texture Application 197
5

(0,1,1) (1,1,1)

(1,0,1)

(1,0,0)(0,0,0)

(0,1,0)

Texture s coordinate

Te
xt

ur
e

t c
oo

rd
in

at
e

Texture r coordinate

(0.0) (0.5) (1.0)

Texture s coordinate

One dimensional
texture coordinate

Figure 5.5 shows one-, two-, and three-dimensional textures and the way the texture coor-
dinates are laid out with respect to their texels.

ptg

FIGURE 5.6 Applying a two-dimensional texture to a quad.

Rarely, however, do you have such a nice fit of a square texture mapped to a square piece
of geometry. To help you better understand texture coordinates, we provide another
example in Figure 5.7. This figure also shows a square texture map, but the geometry is a
triangle. Superimposed on the texture map are the texture coordinates of the locations in
the map being extended to the vertices of the triangle.

CHAPTER 5 Basic Texturing198

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,0) (1,0)

(0.5,1.0)

(0.5,1)

(0,0) (1,0)

FIGURE 5.7 Applying a portion of a texture map to a triangle.

ptg

Texture Parameters
More effort is involved in texture mapping than slapping an image on the side of a trian-
gle. Many parameters affect the rendering rules and behaviors of texture maps as they are
applied. These texture parameters are all set via variations on the function
glTexParameter:

void glTexParameterf(GLenum target, GLenum pname, GLfloat param);

void glTexParameteri(GLenum target, GLenum pname, GLint param);

void glTexParameterfv(GLenum target, GLenum pname, GLfloat *params);

void glTexParameteriv(GLenum target, GLenum pname, GLint *params);

The first argument, target, specifies which texture mode the parameter is to be applied to
and may be GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP, or
GL_TEXTURE_RECT (more on these last two in Chapter 7). The second argument, pname,
specifies which texture parameter is being set, and finally, the param or params argument
sets the value of the particular texture parameter.

Basic Filtering
There is almost never a one-to-one correspondence between texels in the texture map and
pixels on the screen. A careful programmer could achieve this result, but only by texturing
geometry that was carefully planned to appear on-screen such that the texels and pixels
lined up. (This is actually often done when OpenGL is used for image processing applica-
tions.) Consequently, texture images are always either stretched or shrunk as they are
applied to geometric surfaces. Because of the orientation of the geometry, a given texture
could even be stretched and shrunk at the same time across the surface of some object.

The process of calculating color fragments from a stretched or shrunken texture map is
called texture filtering. Using the texture parameter function, OpenGL allows you to set
both magnification and minification filters. The parameter names for these two filters are
GL_TEXTURE_MAG_FILTER and GL_TEXTURE_MIN_FILTER. For now, you can select from two
basic texture filters for them, GL_NEAREST and GL_LINEAR, which correspond to nearest
neighbor and linear filtering. Make sure you always choose one of these two filters for the
GL_TEXTURE_MIN_FILTER—the default filter setting does not work without mipmaps (see
the later section “Mipmapping”).

Nearest neighbor filtering is the simplest and fastest filtering method you can choose.
Texture coordinates are evaluated and plotted against a texture’s texels, and whichever
texel the coordinate falls in, that color is used for the fragment texture color. Nearest
neighbor filtering is characterized by large blocky pixels when the texture is stretched
especially large. An example is shown in Figure 5.8. You can set the texture filter (for
GL_TEXTURE_2D) for both the minification and the magnification filter by using these two
function calls:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

Texture Application 199
5

ptg
FIGURE 5.8 Nearest neighbor filtering up close.

Linear filtering requires more work than nearest neighbor but often is worth the extra
overhead. On today’s commodity hardware, the extra cost of linear filtering is negligible.
Linear filtering works by not taking the nearest texel to the texture coordinate, but by
applying the weighted average of the texels surrounding the texture coordinate (a linear
interpolation). For this interpolated fragment to match the texel color exactly, the texture
coordinate needs to fall directly in the center of the texel. Linear filtering is characterized
by “fuzzy” graphics when a texture is stretched. This fuzziness, however, often lends a
more realistic and less artificial look than the jagged blocks of the nearest neighbor filter-
ing mode. A contrasting example to Figure 5.8 is shown in Figure 5.9. You can set linear
filtering (for GL_TEXTURE_2D) simply enough by using the following lines:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

CHAPTER 5 Basic Texturing200

ptgFIGURE 5.9 Linear filtering up close. (Color Plate 3 in the Color insert shows nearest neigh-
bor and linear filtering side-by-side.)

Texture Wrap
Normally, you specify texture coordinates between 0.0 and 1.0 to map out the texels in a
texture map. If texture coordinates fall outside this range, OpenGL handles them accord-
ing to the current texture wrapping mode. You can set the wrap mode for each coordinate
individually by calling glTexParameteri with GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or
GL_TEXTURE_WRAP_R as the parameter name. The wrap mode can then be set to one of the
following values: GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, or GL_CLAMP_TO_BORDER.

The GL_REPEAT wrap mode simply causes the texture to repeat in the direction in which
the texture coordinate has exceeded 1.0. The texture repeats again for every integer texture
coordinate. This mode is useful for applying a small tiled texture to large geometric
surfaces. Well-done seamless textures can lend the appearance of a seemingly much larger
texture, but at the cost of a much smaller texture image. The other modes do not repeat,
but are “clamped”—thus their name.

Texture Application 201
5

ptg

If the only implication of the wrap mode is whether the texture repeats, you would need
only two wrap modes: repeat and clamp. However, the texture wrap mode also has a great
deal of influence on how texture filtering is done at the edges of the texture maps. For
GL_NEAREST filtering, there are no consequences to the wrap mode because the texture
coordinates are always snapped to some particular texel within the texture map. However,
the GL_LINEAR filter takes an average of the pixels surrounding the evaluated texture coor-
dinate, and this creates a problem for texels that lie along the edges of the texture map.

This problem is resolved quite neatly when the wrap mode is GL_REPEAT. The texel
samples are simply taken from the next row or column, which in repeat mode wraps back
around to the other side of the texture. This mode works perfectly for textures that wrap
around an object and meet on the other side (such as spheres).

The clamped texture wrap modes offer a number of options for the way texture edges are
handled. For GL_CLAMP, the needed texels are taken from the texture border or the
TEXTURE_BORDER_COLOR (set with glTexParameterfv). The GL_CLAMP_TO_EDGE wrap mode
forces texture coordinates out of range to be sampled along the last row or column of
valid texels. Finally, GL_CLAMP_TO_BORDER uses only border texels whenever the texture
coordinates fall outside the range 0.0 to 1.0. Border texels are loaded as an extra row and
column surrounding the base image, loaded along with the base texture map.

A typical application of the clamped modes occurs when you must texture a large area
that would require a single texture too large to fit into memory, or that may be loaded
into a single texture map. In this case, the area is chopped up into smaller “tiles” that are
then placed side-by-side. In such a case, not using a wrap mode such as GL_CLAMP_TO_EDGE
can sometimes cause visible filtering artifacts along the seams between tiles. Rarely, even
this is not sufficient, and you will have to resort to texture border texels.

Putting It All Together
We have gone over a lot of the features and requirements for texture mapping, but we’ve
yet to go over a concrete example program. Let’s take a look now at a complete example
program, Pyramid, that draws a pyramid and applies the texture, much like as shown in
Figures 5.6 and 5.7. Figure 5.10 shows the output of our first example program this
chapter.

CHAPTER 5 Basic Texturing202

ptg
FIGURE 5.10 Our textured pyramid.

Loading the Texture
Our first step is to load the texture stone.tga. We do this in the SetupRC function as shown
here:

glGenTextures(1, &textureID);

glBindTexture(GL_TEXTURE_2D, textureID);

LoadTGATexture(“stone.tga”, GL_LINEAR, GL_LINEAR, GL_CLAMP_TO_EDGE);

The variable textureID was declared at the top of the source file (pyramid.cpp) like this:

GLuint textureID;

The glGenTextures function allocates a single texture object and places it in this variable.
We use the textureID value to identify our single texture, and the call to glBindTexture
does our initial bind to this texture state. The glGenTextures function only reserves a
texture object ID; it is a lightweight function really. The new texture state is not actually
created and initialized until you call glBindTexture for the first time. Correspondingly, we
have used a ShutdownRC function that is called when the program is terminated that
deletes the texture object.

glDeleteTextures(1, &textureID);

Texture Application 203
5

ptg

The actual loading of the texture image and the setting of the texture state is done by the
function LoadTGATexture, which is prototyped as follows:

bool LoadTGATexture(const char *szFileName, GLenum minFilter, GLenum magFilter,

GLenum wrapMode);

This function takes the filename of the image file, the desired minification and magnifica-
tion filter, and the texture coordinate wrap mode. It completely sets up the texture state,
and because it is placed after the call to glBindTexture, it becomes a part of the texture
object identified by textureID. Listing 5.3 shows the LoadTGATexture function in its
entirety. Although not a part of GLTools, we use this function for several example
programs.

LISTING 5.3 Complete Texture Loading Function

// Load a TGA as a 2D Texture. Completely initialize the state

bool LoadTGATexture(const char *szFileName, GLenum minFilter,

GLenum magFilter, GLenum wrapMode)

{

GLbyte *pBits;

int nWidth, nHeight, nComponents;

GLenum eFormat;

// Read the texture bits

pBits = gltReadTGABits(szFileName, &nWidth, &nHeight, &nComponents, &eFormat);

if(pBits == NULL)

return false;

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapMode);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapMode);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilter);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glTexImage2D(GL_TEXTURE_2D, 0, nComponents, nWidth, nHeight, 0,

eFormat, GL_UNSIGNED_BYTE, pBits);

free(pBits);

if(minFilter == GL_LINEAR_MIPMAP_LINEAR ||

minFilter == GL_LINEAR_MIPMAP_NEAREST ||

minFilter == GL_NEAREST_MIPMAP_LINEAR ||

minFilter == GL_NEAREST_MIPMAP_NEAREST)

CHAPTER 5 Basic Texturing204

ptg

glGenerateMipmap(GL_TEXTURE_2D);

return true;

}

The one thing we haven’t discussed is the call to glGenerateMipmap and the mipmap
based filters. Mipmaps are coming up in a couple of sections, and we hold off on this until
we actually use this feature.

Specifying Texture Coordinates
After loading the texture in SetupRC, we call the function MakePyramid and pass an
instance of GLBatch called pyramidBatch.

MakePyramid(pyramidBatch);

This function manually constructs a pyramid out of individual triangles and places them
in the pyramidBatch container class. We are not going to list the entire function here, but
there is something interesting going on there that we need to talk about. Previously when
we used the GLBatch class, we used the CopyVertexData function to copy an entire array of
data into the batch at once. The GLBatch class also contains functions that allow you to
build a batch one vertex at a time. This looks suspiciously like the old and now deprecated
immediate mode of the OpenGL compatibility profile and is sure to raise some heckles. True
immediate mode is without a doubt the slowest means possible to assemble a vertex
batch, but it can be convenient and can simplify manual geometry construction. This
feature of the GLBatch class is not a true immediate mode emulation either, so if you are
familiar with immediate mode already, forget most of what you know; our implementa-
tion is simplified.

Let’s take a look at how we begin constructing the triangle batch.

pyramidBatch.Begin(GL_TRIANGLES, 18, 1);

This starts the batch, pretty much like we’ve started any GLBatch. Notice the last parame-
ter now is a 1. This means there is going to be one texture applied to this batch. We used
the C++ feature of default parameters, and if you leave this parameter off, it is automati-
cally set to zero. You can actually apply more than one texture at a time, and we cover
how this works in Chapter 7.

Now, see how we add the first two vertices of the triangles on the bottom of the pyramid.

// Bottom of pyramid

pyramidBatch.Normal3f(0.0f, -1.0f, 0.0f);

pyramidBatch.MultiTexCoord2f(0, 0.0f, 0.0f);

pyramidBatch.Vertex3f(-1.0f, -1.0f, -1.0f);

Texture Application 205
5

ptg

pyramidBatch.Normal3f(0.0f, -1.0f, 0.0f);

pyramidBatch.MultiTexCoord2f(0, 1.0f, 0.0f);

pyramidBatch.Vertex3f(1.0f, -1.0f, -1.0f);

The Normal3f method adds a surface normal to the batch. The MultiTexCoord2f adds a
texture coordinate, and finally, Vertex3f adds the vertex position. An important rule for
the GLBatch that does not apply to the old-style immediate mode is that if you specify
normals or texture coordinates for any vertex, you must do so for every vertex. This
removes some of the flexibility of the old style, but does make it run a bit faster. The
Normal3f and Vertex3f functions are pretty self-explanatory, but MultiTexCord2f has
three parameters, and the first is an integer:

void GLBatch::MultiTexCoord2f(GLuint texture, GLclampf s, GLclamp t);

There, aside from the texture coordinates, you specify the texture layer with texture.
Until we get to multitexture in Chapter 7, always set this to zero for the stock shaders.

For mathematically derived, or hand modeled geometry, this means of setting vertex data
can be convenient and can streamline code. Here, we show how we calculate the surface
normal for one of the sides of the pyramid, and then use it for all three vertices.

// Front of Pyramid

m3dFindNormal(n, vApex, vFrontLeft, vFrontRight);

pyramidBatch.Normal3fv(n);

pyramidBatch.MultiTexCoord2f(0, 0.5f, 1.0f);

pyramidBatch.Vertex3fv(vApex); // Apex

pyramidBatch.Normal3fv(n);

pyramidBatch.MultiTexCoord2f(0, 0.0f, 0.0f);

pyramidBatch.Vertex3fv(vFrontLeft); // Front left corner

pyramidBatch.Normal3fv(n);

pyramidBatch.MultiTexCoord2f(0, 1.0f, 0.0f);

pyramidBatch.Vertex3fv(vFrontRight); // Front right corner

Surface normals are directional vectors that say which way the face (or vertex) is facing.
This is a requirement of most lighting models. We go over this as an example shader in
the next chapter.

Remember, copying a large amount of data one element at a time is something akin to
filling a swimming pool one tea cup at a time. You should not do this in a performance-
sensitive situation. Often the startup costs are negligible, and this works out. If, however,
your geometry is dynamic and you are changing it frequently, this is probably the worst
way to move a large amount of geometry data around.

CHAPTER 5 Basic Texturing206

ptg

Finally, let’s see how we actually render the pyramid in our example program. Note how
we must again bind to our texture object textureID.

glBindTexture(GL_TEXTURE_2D, textureID);

shaderManager.UseStockShader(GLT_SHADER_TEXTURE_POINT_LIGHT_DIFF,

transformPipeline.GetModelViewMatrix(),

transformPipeline.GetProjectionMatrix(),

vLightPos, vWhite, 0);

pyramidBatch.Draw();

Strictly speaking, binding to the texture was not necessary because we only have one
texture in our project, and we had already bound to it when we loaded the texture. Rarely
will this be the case, however, so you are hereby reminded that you need to be bound to
the texture you want to use when you submit a geometry batch. The bind could have
actually also been placed after the shader. As long as it’s bound before the geometry is
submitted, that texture will be the one used.

For this example, we used a new stock shader too,
GLT_SHADER_TEXTURE_POINT_LIGHT_DIFF. This shader sets a point light in our scene, shades
the geometry using the specified color, in this case vWhite, and then multiples this by the
texture color. The result is our shaded, texture pyramid shown previously in Figure 5.10.

Mipmapping
Mipmapping is a powerful texturing technique that can improve both the rendering
performance and the visual quality of a scene. It does this by addressing two common
problems with standard texture mapping. The first is an effect called scintillation (aliasing
artifacts) that appears on the surface of objects rendered very small on-screen compared to
the relative size of the texture applied. Scintillation can be seen as a sort of sparkling that
occurs as the sampling area on a texture map moves disproportionately to its size on the
screen. The negative effects of scintillation are most noticeable when the camera or the
objects are in motion.

The second issue is more performance-related but is due to the same scenario that leads to
scintillation. That is, a large amount of texture memory must be loaded and processed
through filtering to display a small number of fragments on-screen. This causes texturing
performance to suffer greatly as the size of the texture increases.

The solution to both of these problems is to simply use a smaller texture map. However,
this solution then creates a new problem: When near the same object, it must be rendered
larger, and a small texture map will then be stretched to the point of creating a hopelessly
blurry or blocky textured object.

Mipmapping 207
5

ptg

The solution to both of these issues is mipmapping. Mipmapping gets its name from the
Latin phrase multum in parvo, which means “many things in a small place.” In essence,
you load not a single image into the texture state, but a whole series of images from
largest to smallest into a single “mipmapped” texture state. OpenGL then uses a new set of
filter modes to choose the best-fitting texture or textures for the given geometry. At the
cost of some extra memory (and possibly considerably more processing work), you can
eliminate scintillation and the texture memory processing overhead for distant objects
simultaneously, while maintaining higher resolution versions of the texture available
when needed.

A mipmapped texture consists of a series of texture images, each one half the size on each
axis or one-fourth the total number of pixels of the previous image. This scenario is shown
in Figure 5.11. Mipmap levels do not have to be square, but the halving of the dimensions
continues until the last image is 1 x 1 texel. When one of the dimensions reaches 1,
further divisions occur on the other dimension only. Using a square set of mipmaps
requires about one-third more memory than not using mipmaps.

CHAPTER 5 Basic Texturing208

....

FIGURE 5.11 A series of mipmapped images.

Mipmap levels are loaded with glTexImage. Now the level parameter comes into play
because it specifies which mip level the image data is for. The first level is 0, then 1, 2, and
so on. If mipmapping is not being used, only level 0 is ever loaded. By default, to use
mipmaps, all mip levels must be populated. You can, however, specifically set the base and
maximum levels to be used with the GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_LEVEL
texture parameters. For example, if you want to specify that only mip levels 0 through 4
need to be loaded, you call glTexParameteri twice as shown here:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 4);

Although GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_LEVEL control which mip levels are
loaded (potentially saving some memory), you can also specifically limit the range of
loaded mip levels to be used by using the parameters GL_TEXTURE_MIN_LOD and
GL_TEXTURE_MAX_LOD instead.

ptg

Mipmap Filtering
Mipmapping adds a new twist to the two basic texture filtering modes GL_NEAREST and
GL_LINEAR by giving four permutations for mipmapped filtering modes. They are listed in
Table 5.5.

TABLE 5.5 Texture Filters, Including Mipmapped Filters

Constant Description

GL_NEAREST Perform nearest neighbor filtering on the base mip level

GL_LINEAR Perform linear filtering on the base mip level

GL_NEAREST_MIPMAP_NEAREST Select the nearest mip level and perform nearest

neighbor filtering

GL_NEAREST_MIPMAP_LINEAR Perform a linear interpolation between mip levels and

perform nearest neighbor filtering

GL_LINEAR_MIPMAP_NEAREST Select the nearest mip level and perform linear filtering

GL_LINEAR_MIPMAP_LINEAR Perform a linear interpolation between mip levels and

perform linear filtering; also called trilinear mipmapping

Just loading the mip levels with glTexImage does not by itself enable mipmapping. If the
texture filter is set to GL_LINEAR or GL_NEAREST, only the base texture level is used, and any
mip levels loaded are ignored. You must specify one of the mipmapped filters listed for the
loaded mip levels to be used. The constants have the form GL_FILTER_MIPMAP_SELECTOR,
where FILTER specifies the texture filter to be used on the mip level selected. The SELECTOR
specifies how the mip level is selected; for example, GL_NEAREST selects the nearest match-
ing mip level. Using GL_LINEAR for the selector creates a linear interpolation between the
two nearest mip levels, which is again filtered by the chosen texture filter. Selecting one of
the mipmapped filtering modes without loading the mip levels results in an invalid
texture state. Don’t do this.

Which filter you select varies depending on the application and the performance require-
ments at hand. GL_NEAREST_MIPMAP_NEAREST, for example, gives very good performance
and low aliasing (scintillation) artifacts, but nearest neighbor filtering is often not visually
pleasing. GL_LINEAR_MIPMAP_NEAREST is often used to speed up games because a higher
quality linear filter is used, but a fast selection (nearest) is made between the different-
sized mip levels available.

Using nearest as the mipmap selector (as in both examples in the preceding paragraph),
however, can also leave an undesirable visual artifact. For oblique views, you can often see
the transition from one mip level to another across a surface. It can be seen as a distortion
line or a sharp transition from one level of detail to another. The GL_LINEAR_
MIPMAP_LINEAR and GL_NEAREST_MIPMAP_LINEAR filters perform an additional interpolation
between mip levels to eliminate this transition zone, but at the extra cost of substantially

Mipmapping 209
5

ptg

more processing overhead. The GL_LINEAR_MIPMAP_LINEAR filter is often referred to as
trilinear mipmapping and until recently was the gold standard (highest fidelity) of texture
filtering. More recently, anisotropic texture filtering (covered in the upcoming section,
“Anisotropic Filtering”) has become widely available on OpenGL hardware but even
further increases the cost (performance-wise) of texture mapping.

Generating Mip Levels
As mentioned previously, mipmapping requires approximately one-third more texture
memory than just loading the base texture image. It also requires that all the smaller
versions of the base texture image be available for loading. Sometimes this can be inconve-
nient because the lower resolution images may not necessarily be available to either the
programmer or the end user of your software. While having precomputed mip levels for
your textures yields the very best results, it is convenient and somewhat common to have
OpenGL generate the textures for you. You can generate all the mip levels for a texture
once you loaded level zero with the function glGenerateMipmap.

void glGenerateMipmap(GLenum target);

The target parameter can be GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D,
GL_TEXTURE_CUBE_MAP, GL_TEXTURE_1D_ARRAY, or GL_TEXTURE_2D_ARRAY (more on these
last three in Chapter 7). The quality of the filter used to create the smaller textures may
vary widely from implementation to implementation. In addition, generating mipmaps on
the fly is usually slower than actually loading prebuilt mipmaps, something to think about
in performance critical applications. For the very best visual quality (as well as for consis-
tency), you should load your own pregenerated mipmaps.

Mipmaps in Action
The example program Tunnel shows off all the topics discussed so far in this chapter and
demonstrates visually the different filtering and mipmap modes. This sample program
loads three textures at startup and then switches between them to render a tunnel. The
tunnel has a brick wall pattern with different materials on the floor and ceiling. The
output from Tunnel is shown in Figure 5.12.

CHAPTER 5 Basic Texturing210

ptg
FIGURE 5.12 A tunnel rendered with three textures and mipmapping. (Also shown in Color
Plate 4.)

The Tunnel program shows off mipmapping and the different mipmapped texture filtering
modes as well. Pressing the up- and down-arrow keys moves the point of view back and
forth in the tunnel, and the context menu (right-click menu) allows you to switch
between six different filtering modes to see how they affect the rendered image. The
complete source code is provided in Listing 5.4.

LISTING 5.4 Source Code for the Tunnel Sample Program

// Tunnel.cpp

// Demonstrates mipmapping and using texture objects

// OpenGL SuperBible

// Richard S. Wright Jr.

#include <GLTools.h>

#include <GLShaderManager.h>

#include <GLFrustum.h>

#include <GLBatch.h>

#include <GLFrame.h>

#include <GLMatrixStack.h>

#include <GLGeometryTransform.h>

Mipmapping 211
5

ptg

#ifdef __APPLE__

#include <glut/glut.h>

#else

#define FREEGLUT_STATIC

#include <gl/glut.h>

#endif

GLShaderManager shaderManager; // Shader Manager

GLMatrixStack modelViewMatrix; // Modelview Matrix

GLMatrixStack projectionMatrix; // Projection Matrix

GLFrustum viewFrustum; // View Frustum

GLGeometryTransform transformPipeline; // Geometry Transform Pipeline

GLBatch floorBatch;

GLBatch ceilingBatch;

GLBatch leftWallBatch;

GLBatch rightWallBatch;

GLfloat viewZ = -65.0f;

// Texture objects

#define TEXTURE_BRICK 0

#define TEXTURE_FLOOR 1

#define TEXTURE_CEILING 2

#define TEXTURE_COUNT 3

GLuint textures[TEXTURE_COUNT];

const char *szTextureFiles[TEXTURE_COUNT] = { “brick.tga”,

“floor.tga”, “ceiling.tga” };

///

// Change texture filter for each texture object

void ProcessMenu(int value)

{

GLint iLoop;

for(iLoop = 0; iLoop < TEXTURE_COUNT; iLoop++)

{

glBindTexture(GL_TEXTURE_2D, textures[iLoop]);

switch(value)

CHAPTER 5 Basic Texturing212

ptg

{

case 0:

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER, GL_NEAREST);

break;

case 1:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

break;

case 2:

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST);

break;

case 3:

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);

break;

case 4:

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);

break;

case 5:

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);

break;

}

}

// Trigger Redraw

glutPostRedisplay();

}

//

// This function does any needed initialization on the rendering

// context. Here it sets up and initializes the texture objects.

void SetupRC()

{

Mipmapping 213
5

ptg

GLbyte *pBytes;

GLint iWidth, iHeight, iComponents;

GLenum eFormat;

GLint iLoop;

// Black background

glClearColor(0.0f, 0.0f, 0.0f,1.0f);

shaderManager.InitializeStockShaders();

// Load textures

glGenTextures(TEXTURE_COUNT, textures);

for(iLoop = 0; iLoop < TEXTURE_COUNT; iLoop++)

{

// Bind to next texture object

glBindTexture(GL_TEXTURE_2D, textures[iLoop]);

// Load texture, set filter and wrap modes

pBytes = gltReadTGABits(szTextureFiles[iLoop],&iWidth, &iHeight,

&iComponents, &eFormat);

// Load texture, set filter and wrap modes

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexImage2D(GL_TEXTURE_2D, 0, iComponents, iWidth, iHeight,

0, eFormat, GL_UNSIGNED_BYTE, pBytes);

glGenerateMipmap(GL_TEXTURE_2D);

// Don’t need original texture data any more

free(pBytes);

}

// Build Geometry

GLfloat z;

floorBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);

for(z = 60.0f; z >= 0.0f; z -=10.0f)

{

floorBatch.MultiTexCoord2f(0, 0.0f, 0.0f);

floorBatch.Vertex3f(-10.0f, -10.0f, z);

floorBatch.MultiTexCoord2f(0, 1.0f, 0.0f);

floorBatch.Vertex3f(10.0f, -10.0f, z);

CHAPTER 5 Basic Texturing214

ptg

floorBatch.MultiTexCoord2f(0, 0.0f, 1.0f);

floorBatch.Vertex3f(-10.0f, -10.0f, z - 10.0f);

floorBatch.MultiTexCoord2f(0, 1.0f, 1.0f);

floorBatch.Vertex3f(10.0f, -10.0f, z - 10.0f);

}

floorBatch.End();

ceilingBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);

for(z = 60.0f; z >= 0.0f; z -=10.0f)

{

ceilingBatch.MultiTexCoord2f(0, 0.0f, 1.0f);

ceilingBatch.Vertex3f(-10.0f, 10.0f, z - 10.0f);

ceilingBatch.MultiTexCoord2f(0, 1.0f, 1.0f);

ceilingBatch.Vertex3f(10.0f, 10.0f, z - 10.0f);

ceilingBatch.MultiTexCoord2f(0, 0.0f, 0.0f);

ceilingBatch.Vertex3f(-10.0f, 10.0f, z);

ceilingBatch.MultiTexCoord2f(0, 1.0f, 0.0f);

ceilingBatch.Vertex3f(10.0f, 10.0f, z);

}

ceilingBatch.End();

leftWallBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);

for(z = 60.0f; z >= 0.0f; z -=10.0f)

{

leftWallBatch.MultiTexCoord2f(0, 0.0f, 0.0f);

leftWallBatch.Vertex3f(-10.0f, -10.0f, z);

leftWallBatch.MultiTexCoord2f(0, 0.0f, 1.0f);

leftWallBatch.Vertex3f(-10.0f, 10.0f, z);

leftWallBatch.MultiTexCoord2f(0, 1.0f, 0.0f);

leftWallBatch.Vertex3f(-10.0f, -10.0f, z - 10.0f);

leftWallBatch.MultiTexCoord2f(0, 1.0f, 1.0f);

leftWallBatch.Vertex3f(-10.0f, 10.0f, z - 10.0f);

}

leftWallBatch.End();

Mipmapping 215
5

ptg

rightWallBatch.Begin(GL_TRIANGLE_STRIP, 28, 1);

for(z = 60.0f; z >= 0.0f; z -=10.0f)

{

rightWallBatch.MultiTexCoord2f(0, 0.0f, 0.0f);

rightWallBatch.Vertex3f(10.0f, -10.0f, z);

rightWallBatch.MultiTexCoord2f(0, 0.0f, 1.0f);

rightWallBatch.Vertex3f(10.0f, 10.0f, z);

rightWallBatch.MultiTexCoord2f(0, 1.0f, 0.0f);

rightWallBatch.Vertex3f(10.0f, -10.0f, z - 10.0f);

rightWallBatch.MultiTexCoord2f(0, 1.0f, 1.0f);

rightWallBatch.Vertex3f(10.0f, 10.0f, z - 10.0f);

}

rightWallBatch.End();

}

///

// Shutdown the rendering context. Just deletes the

// texture objects

void ShutdownRC(void)

{

glDeleteTextures(TEXTURE_COUNT, textures);

}

///

// Respond to arrow keys, move the viewpoint back

// and forth

void SpecialKeys(int key, int x, int y)

{

if(key == GLUT_KEY_UP)

viewZ += 0.5f;

if(key == GLUT_KEY_DOWN)

viewZ -= 0.5f;

// Refresh the Window

glutPostRedisplay();

}

///

CHAPTER 5 Basic Texturing216

ptg

// Change viewing volume and viewport. Called when window is resized

void ChangeSize(int w, int h)

{

GLfloat fAspect;

// Prevent a divide by zero

if(h == 0)

h = 1;

// Set Viewport to window dimensions

glViewport(0, 0, w, h);

fAspect = (GLfloat)w/(GLfloat)h;

// Produce the perspective projection

viewFrustum.SetPerspective(80.0f,fAspect,1.0,120.0);

projectionMatrix.LoadMatrix(viewFrustum.GetProjectionMatrix());

transformPipeline.SetMatrixStacks(modelViewMatrix, projectionMatrix);

}

///

// Called to draw scene

void RenderScene(void)

{

// Clear the window with current clearing color

glClear(GL_COLOR_BUFFER_BIT);

modelViewMatrix.PushMatrix();

modelViewMatrix.Translate(0.0f, 0.0f, viewZ);

shaderManager.UseStockShader(GLT_SHADER_TEXTURE_REPLACE,

transformPipeline.GetModelViewProjectionMatrix(),

0);

glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_FLOOR]);

floorBatch.Draw();

glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_CEILING]);

ceilingBatch.Draw();

glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_BRICK]);

leftWallBatch.Draw();

Mipmapping 217
5

ptg

rightWallBatch.Draw();

modelViewMatrix.PopMatrix();

// Buffer swap

glutSwapBuffers();

}

//

// Program entry point

int main(int argc, char *argv[])

{

gltSetWorkingDirectory(argv[0]);

// Standard initialization stuff

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

glutInitWindowSize(800, 600);

glutCreateWindow(“Tunnel”);

glutReshapeFunc(ChangeSize);

glutSpecialFunc(SpecialKeys);

glutDisplayFunc(RenderScene);

// Add menu entries to change filter

glutCreateMenu(ProcessMenu);

glutAddMenuEntry(“GL_NEAREST”,0);

glutAddMenuEntry(“GL_LINEAR”,1);

glutAddMenuEntry(“GL_NEAREST_MIPMAP_NEAREST”,2);

glutAddMenuEntry(“GL_NEAREST_MIPMAP_LINEAR”, 3);

glutAddMenuEntry(“GL_LINEAR_MIPMAP_NEAREST”, 4);

glutAddMenuEntry(“GL_LINEAR_MIPMAP_LINEAR”, 5);

glutAttachMenu(GLUT_RIGHT_BUTTON);

GLenum err = glewInit();

if (GLEW_OK != err) {

fprintf(stderr, “GLEW Error: %s\n”, glewGetErrorString(err));

return 1;

}

// Startup, loop, shutdown

CHAPTER 5 Basic Texturing218

ptg

SetupRC();

glutMainLoop();

ShutdownRC();

return 0;

}

In this example, you first create identifiers for the three texture objects. The array
textures will contain three integers, which will be addressed by using the macros
TEXTURE_BRICK, TEXTURE_FLOOR, and TEXTURE_CEILING. For added flexibility, you also create
a macro that defines the maximum number of textures that will be loaded and an array of
character strings containing the names of the texture map files:

// Texture objects

#define TEXTURE_BRICK 0

#define TEXTURE_FLOOR 1

#define TEXTURE_CEILING 2

#define TEXTURE_COUNT 3

GLuint textures[TEXTURE_COUNT];

const char *szTextureFiles[TEXTURE_COUNT] =

{ “brick.tga”, “floor.tga”, “ceiling.tga” };

The texture objects are allocated in the SetupRC function:

glGenTextures(TEXTURE_COUNT, textures);

Then a simple loop binds to each texture object in turn and loads its texture state with the
texture image and texturing parameters:

for(iLoop = 0; iLoop < TEXTURE_COUNT; iLoop++)

{

// Bind to next texture object

glBindTexture(GL_TEXTURE_2D, textures[iLoop]);

// Load texture, set filter and wrap modes

// Load texture, set filter and wrap modes

pBytes = gltReadTGABits(szTextureFiles[iLoop],&iWidth, &iHeight,

&iComponents, &eFormat);

// Load texture, set filter and wrap modes

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

Mipmapping 219
5

ptg

glTexImage2D(GL_TEXTURE_2D, 0, iComponents, iWidth, iHeight,

0, eFormat, GL_UNSIGNED_BYTE, pBytes);

glGenerateMipmap(GL_TEXTURE_2D);

// Don’t need original texture data any more

free(pBytes);

}

With each of the three texture objects initialized, you can easily switch among them
during rendering to change textures:

glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_FLOOR]);

floorBatch.Draw();

glBindTexture(GL_TEXTURE_2D, textures[TEXTURE_CEILING]);

ceilingBatch.Draw();

...

...

Finally, when the program is terminated, you only need to delete the texture objects for
the final cleanup:

///

// Shut down the rendering context. Just deletes the

// texture objects

void ShutdownRC(void)

{

glDeleteTextures(TEXTURE_COUNT, textures);

}

Also note that when the mipmapped texture filter is set in the Tunnel sample program, it
is selected only for the minification filter:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);

This is typically the case because after OpenGL selects the largest available mip level, no
larger levels are available to select from. Essentially, this is to say that after a certain
threshold is passed, the largest available texture image is used, and there are no additional
mipmap levels to choose from.

CHAPTER 5 Basic Texturing220

ptg

Anisotropic Filtering
Anisotropic texture filtering is not a part of the core OpenGL specification, but it is a
widely supported extension that can dramatically improve the quality of texture filtering
operations. Earlier in this chapter, you learned about the two basic texture filters: nearest
neighbor (GL_NEAREST) and linear (GL_LINEAR). When a texture map is filtered, OpenGL
uses the texture coordinates to figure out where in the texture map a particular fragment
of geometry falls. The texels immediately around that position are then sampled using
either the GL_NEAREST or the GL_LINEAR filtering operations.

This process works perfectly when the geometry being textured is viewed directly perpen-
dicular to the viewpoint, as shown on the left in Figure 5.13. However, when the geometry
is viewed from an angle more oblique to the point of view, a regular sampling of the
surrounding texels results in the loss of some information in the texture (it looks blurry!).
A more realistic and accurate sample would be elongated along the direction of the plane
containing the texture. This result is shown on the right in Figure 5.13. Taking this
viewing angle into account for texture filtering is called anisotropic filtering.

Anisotropic Filtering 221
5

X

Isotropic sampling

X

Anisotropic sampling

FIGURE 5.13 Normal texture sampling versus anisotropic sampling.

You can apply anisotropic filtering to any of the basic or mipmapped texture filtering
modes; applying it requires three steps. First, you must determine whether the extension is
supported. You can do this by querying for the extension string
GL_EXT_texture_filter_anisotropic. You can use the GLTools function named
gltIsExtSupported for this task:

if(gltIsExtSupported(“GL_EXT_texture_filter_anisotropic”))

// Set Flag that extension is supported

After you determine that this extension is supported, you can find the maximum amount
of anisotropy supported. You can query for it using glGetFloatv and the parameter
GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:

GLfloat fLargest;

. . .

. . .

glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &fLargest);

ptg

The larger the amount of anisotropy applied, the more texels are sampled along the direc-
tion of greatest change (along the strongest point of view). A value of 1.0 represents
normal texture filtering (called isotropic filtering). Bear in mind that anisotropic filtering
is not free. The extra amount of work, including other texels, can sometimes result in
substantial performance penalties. On modern hardware, this feature is getting quite fast
and is becoming a standard feature of popular games, animation, and simulation
programs.

Finally, you set the amount of anisotropy you want applied using glTexParameter and the
constant GL_TEXTURE_MAX_ANISOTROPY_EXT. For example, using the preceding code, if you
want the maximum amount of anisotropy applied, you would call glTexParameterf as
shown here:

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, fLargest);

This modifier is applied per texture object just like the standard filtering parameters.

The sample program Anisotropic provides a striking example of anisotropic texture filter-
ing in action. This program displays a tunnel with walls, a floor, and ceiling geometry; it is
essentially a revved up version of the previous example program, Tunnel. The arrow keys
move your point of view (or the tunnel) back and forth along the tunnel interior. A right-
click of the mouse brings up a menu that allows you to select from the various texture
filters and turn on and off anisotropic filtering. Figure 5.12 shows the tunnel using trilin-
ear filtered mipmapping. Notice how blurred the patterns become in the distance, particu-
larly with the bricks.

Now compare Figure 5.12 with Figure 5.14, in which anisotropic filtering has been
enabled (Color Plate 4 in the color insert shows these figures side by side). The mortar
between the bricks is now clearly visible all the way to the end of the tunnel. In fact,
anisotropic filtering can also greatly reduce the visible mipmap transition patterns for the
GL_LINEAR_MIPMAP_NEAREST and GL_NEAREST_MIPMAP_NEAREST mipmapped filters.

CHAPTER 5 Basic Texturing222

ptg
FIGURE 5.14 Anisotropic tunnel sample with anisotropic filtering. (Also shown in Color
Plate 4.)

Texture Compression
Texture mapping can add incredible realism to any 3D rendered scene, with a minimal
cost in vertex processing. One drawback to using textures, however, is that they require a
lot of memory to store and process. Early attempts at texture compression were crudely
storing textures as JPG files and decompressing the textures when loaded before calling
glTexImage. These attempts saved disk space or reduced the amount of time required to
transmit the image over the network (such as the Internet) but did nothing to alleviate
the storage requirements of texture images loaded into graphics hardware memory.

Native support for texture compression was added to OpenGL with version 1.3. Earlier
versions of OpenGL may also support texture compression via extension functions of the
same name. You can test for this extension by using the GL_ARB_texture_compression
string.

Texture compression support in OpenGL hardware can go beyond simply allowing you to
load a compressed texture; in most implementations, the texture data stays compressed
even in the graphics hardware memory. This allows you to load more texture into less
memory and can significantly improve texturing performance due to fewer texture swaps
(moving textures around) and fewer memory accesses during texture filtering.

Texture Compression 223
5

ptg

Compressing Textures
Texture data does not have to be initially compressed to take advantage of OpenGL
support for compressed textures. You can request that OpenGL compress a texture image
when loaded by using one of the generic compression values in Table 5.6 for the
internalFormat parameter of any of the glTexImage functions.

TABLE 5.6 Generic Compressed Texture Formats

Compressed Format Base Internal Format

GL_COMPRESSED_RGB GL_RGB

GL_COMPRESSED_RGBA GL_RGBA

GL_COMPRESSED_SRGB GL_RGB

GL_COMPRESSED_SRGB_ALPHA GL_RGBA

GL_COMPRESSED_RED GL_RED

GL_COMPRESSED_RG GL_RG (Red Green)

In addition to these generic compression formats, a number of specific compression
formats were added to OpenGL 3.2—GL_COMPRESSED_SIGNED_RED_RGTC1,
GL_COMPRESSED_RG_RGTC2, and GL_COMPRESSED_SIGNED_RG-RGTC2. These are used for various
single and dual color channel compressed textures. Essentially, they replace the function-
ality of GL_LUMINANCE and GL_LUMINANCE_ALPHA from the compatibility profile.

Compressing images this way adds a bit of overhead to texture loads but can increase
texture performance due to the more efficient usage of texture memory. If, for some
reason, the texture cannot be compressed, OpenGL uses the base internal format listed
instead and loads the texture uncompressed.

When you attempt to load and compress a texture in this way, you can find out whether
the texture was successfully compressed by using glGetTexLevelParameteriv with
GL_TEXTURE_COMPRESSED as the parameter name:

GLint compFlag;

. . .

glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_COMPRESSED, &compFlag);

The glGetTexLevelParameteriv function accepts a number of new parameter names
pertaining to compressed textures. These parameters are listed in Table 5.7.

TABLE 5.7 Compressed Texture Parameters Retrieved with glGetTexLevelParameter

Parameter Returns

GL_TEXTURE_COMPRESSED The value 1 if the texture is compressed, 0 if not

GL_TEXTURE_COMPRESSED_IMAGE_SIZE The size in bytes of the compressed texture

GL_TEXTURE_INTERNAL_FORMAT The compression format used

CHAPTER 5 Basic Texturing224

ptg

Parameter Returns

GL_NUM_COMPRESSED_TEXTURE_FORMATS The number of supported compressed texture

formats

GL_COMPRESSED_TEXTURE_FORMATS An array of constant values corresponding to each

supported compressed texture format

GL_TEXTURE_COMPRESSION_HINT The value of the texture compression hint

(GL_NICEST/GL_FASTEST)

When textures are compressed using the values listed in Table 5.6, OpenGL chooses the
most appropriate texture compression format. You can use glHint to specify whether you
want OpenGL to choose based on the fastest or highest quality algorithm:

glHint(GL_TEXTURE_COMPRESSION_HINT, GL_FASTEST);

glHint(GL_TEXTURE_COMPRESSION_HINT, GL_NICEST);

glHint(GL_TEXTURE_COMPRESSION_HINT, GL_DONT_CARE);

The exact compression format varies from implementation to implementation. You can
obtain a count of compression formats and a list of the values by using
GL_NUM_COMPRESSED_TEXTURE_FORMATS and GL_COMPRESSED_TEXTURE_FORMATS. To check for
support for a specific set of compressed texture formats, you need to check for a specific
extension for those formats. For example, nearly all desktop implementations support the
GL_EXT_texture_compression_s3tc texture compression format. If this extension is
supported, the compressed texture formats listed in Table 5.8 are all supported, but only
for two-dimensional textures.

TABLE 5.8 Compression Formats for GL_EXT_texture_compression_s3tc

Format Description

GL_COMPRESSED_RGB_S3TC_DXT1 RGB data is compressed; alpha is always 1.0.

GL_COMPRESSED_RGBA_S3TC_DXT1 RGB data is compressed; alpha is either 1.0 or 0.0.

GL_COMPRESSED_RGBA_S3TC_DXT3 RGB data is compressed; alpha is stored as 4 bits.

GL_COMPRESSED_RGBA_S3TC_DXT5 RGB data is compressed; alpha is a weighted

average of 8-bit values.

Loading Compressed Textures
Using the functions in the preceding section, you can have OpenGL compress
textures in a natively supported format, retrieve the compressed data with the
glGetCompressedTexImage function (identical to the glGetTexImage function for uncom-
pressed textures), and save it to disk. On subsequent loads, the raw compressed data can
be used, resulting in substantially faster texture loads. Be advised, however, that some
vendors may cheat a little when it comes to texture loading to optimize texture storage
or filtering operations. This technique works only on fully conformant hardware
implementations.

Texture Compression 225
5

ptg

To load precompressed texture data, use one of the following functions:

void glCompressedTexImage1D(GLenum target, GLint level,

GLenum internalFormat,

GLsizei width,

GLint border, GLsizei imageSize, void *data);

void glCompressedTexImage2D(GLenum target, GLint level, GLenum internalFormat,

GLsizei width, GLsizei height,

GLint border, GLsizei imageSize, void *data);

void glCompressedTexImage3D(GLenum target, GLint level,

GLenum internalFormat,

GLsizei width, GLsizei height, GLsizei depth,

GLint border, Glsizei imageSize, GLvoid *data);

These functions are virtually identical to glTexImage. The only difference is that the
internalFormat parameter must specify a supported compressed texture image. If the
implementation supports the GL_EXT_texture_compression_s3tc extension, this would
be one of the values from Table 5.8. There is also a corresponding set of
glCompressedTexSubImage functions for updating a portion or all of an already-loaded
texture that mirrors the glTexSubImage functionality.

Texture compression is a popular texture feature. Smaller textures take up less storage,
transmit faster over networks, load faster off disk, copy faster to graphics memory, allow
for substantially more texture to be loaded onto hardware, and generally texture slightly
faster to boot! Don’t forget, though, as with so many things in life, there is no such
thing as a free lunch. Something may be lost in the compression. The GL_EXT_texture_
compression_s3tc method, for example, works by stripping color data out of each texel.
For some textures, this results in substantial image quality loss (particularly for textures
that contain smooth color gradients). Other times, textures with a great deal of detail and
variation are visually nearly identical to the original uncompressed version, with the color
shift almost unnoticed. The choice of texture compression method (or indeed no compres-
sion) can vary greatly depending on the nature of the underlying image.

A Final Example
Our final example program for this chapter is SphereWorld, a tour de force in the OpenGL
techniques we have covered so far. Shown in Figure 5.15, SphereWorld is populated by
floating spheres hovering over a reflective marble floor. The reflection effect is a simple
smoke and mirrors trick—render the world inverted first, then render the marble floor
over it, and blend with the background using a small alpha value. Then render the world
right side up, and presto—a simple reflection effect. You can also move around with the
arrow keys. The only real new thing in this example program is a small change to the

CHAPTER 5 Basic Texturing226

ptg

LoadTGA function, where we change the internal format parameter to be the generic
compressed texture format GL_COMPRESSED_RGB.

glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGB, nWidth, nHeight, 0,

eFormat, GL_UNSIGNED_BYTE, pBits);

Summary 227
5

FIGURE 5.15 SphereWorld, complete with reflective marble floor.

Summary
This chapter was essentially texture mapping 101—the first course and the fundamentals
you need to master before going on to the more intermediate and advanced techniques.
You are at this point equipped to start building interesting 3D scenes and applying texture
to your surfaces. We covered how to load a texture from image data, pass it to OpenGL,
and apply it to geometry with texture coordinates. You saw how to set the different image
filters and what they do, as well as how to use the hardware to generate mipmaps, and use
them to improve both the performance of your rendering and the visual quality. We also
covered a more advanced filter option, anisotropic filtering, and you saw via the tunnel
and anisotropic example programs the dramatic difference these settings make visually.
Finally, we covered texture compression, both how to compress a texture on the fly, as
well as how to load a precompressed texture directly.

ptg

Essentially, at this point we have covered everything that 3D graphics really is. We simply
transform points around, connect the dots with primitives, and fill in their interiors with
either computed color values, or texels sampled and filtered from an image file. Sometimes
we also blend the results together. Really, this is pretty much “it” when it comes to how to
compose and render just about any 3D scene you can imagine. For the rest of this book,
we are going to essentially take these same topics of the first few chapters and start
digging deeper and deeper. Get your shovel and proceed to Chapter 6, “Thinking Outside
the Box: Nonstock Shaders!”

CHAPTER 5 Basic Texturing228

ptg

CHAPTER 6

Thinking Outside the Box:
Nonstock Shaders

by Richard S. Wright, Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

• How to write your own shaders that work with GLBatch

• About the different GLSL variable types

• About GLSL’s built-in functions

• How to roll your own lighting shaders

• How to use one- and two-dimensional textures in GLSL

• How to chisel out individual fragments

In Chapter 3, “Basic Rendering,” you were first introduced to shaders and how to use
them. If you skipped it to get right into shader programming, you really need to review
that chapter first and make sure you understand how we use attributes and uniforms, and
how we pass them into a shader from our client-side code. In that chapter we focused our
attention entirely on the client side of things, and we used some prebuilt stock shaders
that performed some routine and typical rendering operations. In this chapter, we go a bit
deeper into the client side of things, but we are finally going to see how to write our own
shaders, the server side of using shaders: shader programming and the shading language.

ptg

230 CHAPTER 6 Thinking Outside the Box: Nonstock Shaders

GLSL 101
The OpenGL Shading Language (GLSL) is a C-like high-level language that is compiled and
linked by your OpenGL implementation and (usually) runs entirely on the graphics hard-
ware. Shader programs look a lot like C, they start with the main function as their entry
point, and you can write functions in GLSL that accept parameters and return values.
Figure 3.1 from Chapter 3 is repeated here as Figure 6.1 and shows our basic shader
architecture.

Application Code: C/C++, etc.

OpenGL API

Vertex Shader
void main() {

…
…

}

Client

Server

U
niform

s

V
ertex

P
ositions

U
niform

s

A
ttributes

(Ins)

Texture D
ata

Texture D
ata

O
uts

Ins

Fragment Shader
void main() {

…
…

}

Primitive
Assembly

FIGURE 6.1 Our basic shader architecture.

ptg

As shown here, we need at a minimum two shaders: a vertex shader and a fragment
shader. An optional third shader stage called a geometry shader is covered in more detail
in Chapter 11, “Advanced Shader Usage.” You submit data to the vertex shader in one of
three different ways: attributes, which is a per vertex data item; uniforms, which are
constant (thus uniform) for the entire batch of vertex data; and finally in Chapter 5, “Basic
Texturing,” you learned to load and use texture data as well. You can also set uniforms and
texture data for your fragment shader. It doesn’t make any sense to send vertex attributes
to the fragment shader, because the fragment shader is only concerned with filling in the
fragments (pixels basically) as the primitive is rasterized. Per vertex data, however, can be
passed on to the fragment shader by the vertex program. In this case, however, the data
may be constant (every fragment sees the same value), or the values may be interpolated
in different ways across the surface of the primitive.

Shader programs look a lot like C programs; they start with the function main and use the
same character set and commenting conventions and many of the same preprocessor
directives. A complete language specification can be found in the OpenGL Shading
Language Specification. Appendix A, “Further Reading,” has some Web pointers to help
you find this document as well as other good references and supplemental tutorials. For
our purposes, we are going to make what should be a safe assumption, which is that you
already are familiar with C/C++, and thus we focus on GLSL from a C/C++ programmer’s
perspective.

Variables and Data Types
A good place to start for learning GLSL is to discuss the data types available to you. There
are only four: integers (both signed and unsigned), floats (single precision only as of
OpenGL 3.3), and Booleans (bool). There are no pointers in GLSL, and there are no strings
or characters of any kind. Functions can return any of these data types but can also be
declared as void, but again, no void pointers allowed. The use of these data types in GLSL
mirrors their usage in C/C++.

bool bDone = false; // Boolean true or false

int iValue = 42; // Signed integer

uint uiValue = 3929u; // unsigned integer

float fValue = 42.0f; // Floating point value

Vector Types
An exciting and unique feature of GLSL (as compared to C/C++) is the availability of
vector data types. All four of the basic data types can be stored in two-, three-, or four-
dimensional vectors. The complete list of vector data types is listed in Table 6.1.

GLSL 101 231
6

ptg

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders232

TABLE 6.1 GLSL Vector Data Types

Types Description

vec2, vec3, vec4 2, 3, and 4 component floating-point vectors

ivec2, ivec3, ivec4 2, 3, and 4 component integer vectors

uvec2, uvec3, uvec4 2, 3, and 4 component unsigned integer vectors

bvec2, bvec3, bvec4 2, 3, and 4 component Boolean vectors

A vector data type can be declared just like any other kind of variable; for example, you
would declare a vertex position as a four-component floating-point vector like this:

vec4 vVertexPos;

You can also initialize a vector with a constructor:

vec4 vVertexPos = vec4(39.0f, 10.0f, 0.0f, 1.0f);

This should not be confused with C++ class constructors. GLSL vector data types are not
classes; they are their own built-in data type. Vectors can be assigned to one another,
added together, scaled by a scalar (nonvector type), and so on.

vVertexPos = vOldPos + vOffset;

vVertexPos = vNewPos;

vVertexPos += vec4(1.0f, 1.0f, 0.0f, 0.0f);

vVertexPos *= 5.0f;

Another unique feature to GLSL is how we can address individual elements of a vector. If
you are familiar with the union construct from C/C++, vectors are like unions on steroids.
We use the dot notation to address up to four vector elements, but we can use any of the
following three sets of identifiers: xyzw, rgba, or stpq. Typically we would use the xyzw set
of identifiers when referring to vertex type data.

vVertexPos.x = 3.0f;

vVertexPos.xy = vec2(3.0f, 5.0f);

vVertexPos.xyz = vNewPos.xyz;

Then rgba when doing color work.

vOutputColor.r = 1.0f;

vOutputColor.rgba = vec4(1.0f, 1.0f, 0.5f, 1.0f);

And finally, when working with texture coordinates, stpq.

vTexCoord.st = vec2(1.0f, 0.0f);

ptg

The choice of which set of identifiers you use is completely arbitrary as far as GLSL is
concerned; for example, you could easily do something like this:

vTexCoord.st = vVertex.st;

However, what you cannot do is mix the different groups within a single vector access,
such as this:

vTexCoord.st = vVertex.xt; // mixing of x and t is not allowed!

Vector data types also support swizzling. A swizzle is when you swap two or more vector
elements. For example, if you were converting color data from RGB ordering to BGR order-
ing, the following line of code would do the trick:

vNewColor.bgra = vOldColor.rgba;

Vector data types are not only native to GLSL, they are native to the hardware. They are
fast, and operations are performed on all the components at once. For example, the
following operation

vVertex.x = vOtherVertex.x + 5.0f;

vVertex.y = vOtherVertex.y + 4.0f;

vVertex.z = vOtherVertex.z + 1.0f;

would execute much faster if you instead use the native vector notation:

vVertex.xyz = vOtherVertex.xyz + vec3(5.0f, 4.0f, 1.0f);

Matrix Types
In addition to the vector data types, GLSL supports a number of matrix types. Unlike the
vector types, however, the matrix types are all floating-point only—sorry, no integer or
Boolean matrices, as these are not practically useful. Table 6.2 lists the supported matrix
types.

TABLE 6.2 GLSL Matrix Types

Type Description

mat2, mat2x2 2 columns and 2 rows

mat3, mat3x3 3 columns and 3 rows

mat4, mat4x4 4 columns and 4 rows

mat2x3 2 columns and 3 rows

mat2x4 2 columns and 4 rows

mat3x2 3 columns and 2 rows

mat3x4 3 columns and 4 rows

mat4x2 4 columns and 2 rows

mat4x3 4 columns and 3 rows

GLSL 101 233
6

ptg

A matrix is essentially an array of vectors in GLSL—column vectors, in fact (a review of
column major vector ordering from Chapter 4, “Basic Transformations: A Vector/Matrix
Primer,” may be in order here). For example, to set the last column of a 4 x 4 matrix, you
would write code similar to this:

mModelView[3] = vec4(0.0f, 0.0f, 0.0f, 1.0f);

Conversely, to retrieve the last column of a matrix:

vec4 vTranslation = mModelView[3];

Or even a finer grained query:

vec3 vTranslation = mModelView[3].xyz;

Matrices can be multiplied by vectors too; a common use of this is to transform a vertex
by the ModelViewProjection matrix, such as:

vec4 vVertex;

mat4 mvpMatrix;

…

…

vOutPos = mvpMatrix * vVertex;

Also, just like vectors, the matrix data types have their own constructors too. For example,
to hard code an inline 4 x 4 matrix, you can write code like this:

mat4 vTransform = mat4(1.0f, 0.0f, 0.0f, 0.0f,

0.0f, 1.0f, 0.0f, 0.0f,

0.0f, 0.0f, 1.0f, 0.0f,

0.0f, 0.0f, 0.0f, 1.0f);

In this case we made the transformation matrix the identity matrix. A quicker constructor
for matrices that fills in just the diagonal with a single value can also be used.

mat4 vTransform = mat4(1.0f);

Storage Qualifiers
Shader variable declarations may optionally have a storage qualifier specified. Qualifiers
are used to flag variables as input variables (in or uniform), output variables (out), or
constants (const). Input variables receive data either from the OpenGL client (attributes
submitted via C/C++) or from the previous shader stage (for example, variables passed
from the vertex shader to the fragment shader). Output variables are variables you write to
in any of the shader stages that you want to be seen by the subsequent shader stages, for
example, passing data from the vertex shader to the fragment shader or writing the final
fragment color by the fragment shader. Table 6.3 lists the primary variable qualifiers.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders234

ptg

TABLE 6.3 Variable Storage Qualifiers

Qualifier Description

<none> Just a normal local variable, no outside visibility or access.

const A compile-time constant, or a read-only parameter to a function.

in A variable passed in from a previous stage.

in centroid Passed in from a previous state, uses centroid interpolation.

out Passed out to the next processing stage or assigned a return value in a function.

out centroid Passed out to the next processing stage, uses centroid interpolation.

inout A read/write variable. Only valid for local function parameters.

uniform Value is passed in from client code and does not change across vertices.

One variable qualifier inout can only be used when declaring a parameter to a function.
Because GLSL does not support pointers (or references), this is the only way to pass a value
to a function and allow the function to modify and return the value of the same variable.
For example, this function declaration

int CalculateSometing(float fTime, float fStepSize, inout float fVariance);

would return an integer (perhaps a pass/fail flag), but also could modify the value of the
fVariance variable, and the calling code could read the new value back from the variable
as well. In C/C++, to allow modification of a parameter, you might well declare the func-
tion this way using a pointer:

int CalculateSomething(float fTime, float fStepSize, float* fVariance);

The centroid qualifier has no effect unless rendering is being done to a multisampled
buffer. In a single sampled buffer, interpolation is always performed from the center of a
pixel. With multisampling, when the centroid qualifier is used, the interpolated value is
selected so that it falls within the primitive and the pixel. See Chapter 9, “Advanced
Buffers: Beyond the Basics,” for more details about how multisampling works.

By default parameters are interpolated between shader stages in a perspective correct
manner. You can specify nonperspective interpolation with the noperspective keyword or
even no interpolation at all with the flat keyword. You can also optionally use the smooth
keyword to explicitly state the variable is smoothly interpolated in a perspective correct
manner, but that is already the default. Here are a few example declarations.

smooth out vec3 vSmoothValue;

flat out vec3 vFlatColor;

noperspective float vLinearlySmoothed;

GLSL 101 235
6

ptg

A Real Shader
Finally, let’s take a look at a real shader pair that does something useful. The
GLShaderManager class has a stock shader called the identity shader. This shader does not
transform geometry and draws a primitive with a single color. Perhaps that’s just a little
too simple. Let’s take it up a notch and show how we might also shade a primitive such as
a triangle by using different color values for each vertex. Listing 6.1 shows our vertex
shader, and Listing 6.2 shows our fragment shader.

LISTING 6.1 The ShadedIdentity Shader Vertex Program

// The ShadedIdentity Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

in vec4 vVertex; // Vertex position attribute

in vec4 vColor; // Vertex color attribute

out vec4 vVaryingColor; // Color value passed to fragment shader

void main(void)

{

vVaryingColor = vColor;// Simply copy the color value

gl_Position = vVertex; // Simply pass along the vertex position

}

LISTING 6.2 The ShadedIdentity Shader Fragment Program

// The ShadedIdentity Shader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

out vec4 vFragColor; // Fragment color to rasterize

in vec4 vVaryingColor; // Incoming color from vertex stage

void main(void)

{
vFragColor = vVaryingColor; // Interpolated color to fragment

}

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders236

ptg

GLSL Versions
The first uncommented line in each shader is the version specifier:

#version 330

This specifies that the minimum version of GLSL that this shader requires is 3.3. If the
OpenGL driver does not support at least GLSL version 3.3, then the shader will not
compile. OpenGL 3.2 introduced GLSL version 1.5, OpenGL 3.1 introduced version GLSL
1.4, and OpenGL 3.0 introduced GLSL version 1.3. Sound confusing? Right…you’re not
the only one, and with OpenGL 3.3, the ARB decided to keep the GLSL version number in
sync with the main OpenGL version for all future versions beginning with 3.3. In fact the
OpenGL 4.0 specification was released at the same time as version 3.3, and the shading
language for OpenGL 4.0 is also 4.0. Requiring 4.0 in a shader would look like this:

#version 400

If you examine the stock shaders in the GLTools source code, you find no such version
information. GLTools is intended to run with the compatibility profile and uses the older
shader conventions from GLSL 1.1. In fact GLTools runs fine with OpenGL drivers as old
as version 2.1. Remember GLTools is only meant to be a “helper” and as a starting place
for using OpenGL.

Attribute Declarations
Attributes are specified per vertex by your C/C++ client-side OpenGL code. In the vertex
shader, these are declared simply as in.

in vec4 vVertex;

in vec4 vColor;

Here we declared two inbound attributes, a four-component vertex position, and a four-
component vertex color value. The example program ShadedTriangle uses this shader
specifically, and we make use of the GLBatch class to set up three vertex positions and
three color values. How the GLBatch class communicates these values to the shader is
coming up in the section “Compiling, Binding, and Linking.” Remember as we discussed
in Chapter 3, with GLSL you can have a maximum of 16 attributes per vertex program.
Also, each attribute is always a four-component vector, even if you don’t use all four components.
For example, if you specified just a single float as an attribute, internally, it would still
take up the space of four floating-point values.

Something else to remember is that variables marked as in are read-only. It might seem
clever to reuse a variable name for some intermediate computations in a shader, but the
GLSL compiler in your driver will generate an error if you attempt this.

GLSL 101 237
6

ptg

Declaring the Output
Next we declared one output variable for our vertex program, again a four-component
floating-point vector.

out vec4 vVaryingColor;

This variable will be the color value specified for this vertex that is to be passed on to the
fragment shader. In fact, this variable must be declared as an in variable for the fragment
shader, or you receive a linker error when you attempt to compile and link the shaders
together.

When you declare a value as out in a vertex shader and as an in in the fragment shader,
the value of the variable that the fragment shader receives is an interpolated value. By
default, this is done in a perspective correct manner, and an additional qualifier, smooth,
may be specified before the variable to ensure this is done. You can also specify flat to
state that no interpolation should be done, or noperspective for a straight linear interpo-
lation between values. Some additional considerations are warranted when you use flat
that we discuss in the “Provoking Vertex” section later in this chapter.

Vertex Action
Finally, we get to the main body of our vertex program, which is executed once for each
vertex in our batch.

void main(void)

{

vVaryingColor = vColor;

gl_Position = vVertex;

}

This is pretty simple really. We assign the incoming color attribute to the outgoing inter-
polated value and assign the incoming vertex value directly to gl_Position with no trans-
formations. The variable gl_Position is a predefined built-in four-component vector that
contains the one required output of the vertex shader. The values going into gl_Position
are used by the geometry stage to assemble your primitive. Remember, since we are doing
no additional transformations, our vertex will map only to the Cartesian coordinate range
+/- 1.0 on all three axes.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders238

ptg

Fragging the Triangle
Now we turn our attention to the fragment program. When rendering a primitive, such as
a triangle, once the three vertices have been processed by the vertex program, they are
assembled into a triangle, and the triangle is rasterized by the hardware. The graphics
hardware figures out where the individual fragments belong on your screen (or, more
accurately in your color buffer) and executes an instance of your fragment program for
each and every fragment (just a pixel if you are not doing any multisampling) in the trian-
gle. The final output color for our fragment program is a four-component floating-point
vector that we declare like this:

out vec4 vFragColor;

If we have only one output from our fragment program, it is internally assigned as
“output zero.” This is the first output of the fragment shader, and it goes to the buffer
destination set by glDrawBuffers, which is by default GL_BACK, the back color buffer (for
double buffered contexts, that is!). Often the actual color buffer does not really contain
four floating-point components, and so the output values are mapped to the range of the
destination buffer. Most of the time, this may just be four unsigned byte components, for
example (0 through 255 for each component). We also could have output integer values
using ivec4, and they too would be mapped to the range of the color buffer. Outputting
more than just a color value is possible, as well as writing to multiple buffers at once, but
these topics are well beyond the scope of this introductory chapter.

Coming into our fragment shader is the smoothly interpolated color value, passed in by
the vertex program upstream. This is declared simply as an in variable:

in vec4 vVaryingColor;

Finally, the main body of the fragment shader is even more trivial than the vertex shader.
It simply assigns the smoothly interpolated color value directly to the fragment color.

void main(void)

{

vFragColor = vVaryingColor;

}

The final output showing this shader in action can be seen in Figure 6.2.

GLSL 101 239
6

ptg
FIGURE 6.2 Output from the ShadedTriangle program.

Compiling, Binding, and Linking
Now that we have seen a simple shader in action, we need to discuss how a shader is actu-
ally compiled and linked for use in OpenGL. Shader source code is handed off to the
driver, compiled, and finally linked much like you would any C/C++ program. In addition,
attribute names in your shader need to be bound to one of the 16 preallocated attribute
slots made available by GLSL. Along the way, we can check for errors and even receive
diagnostic information back from the driver about why our attempt to build the shader
failed.

The OpenGL API does not support any kind of file I/O operations. It is up to you the
programmer to obtain the source code for your shaders in whatever method works best for
you and your application. One of the simplest is to store the shaders in plain ASCII text
files. It is then a simple matter to load the text files from disk using typical file system
functions. In our examples we use this approach, and we adopt the convention that vertex
shaders have a file extension of .vp, and fragment shaders have a file extension of .fp. An
alternative is to store the text as character arrays hard coded in your C/C++ source code.
This is a bit tedious to edit, however, and while it makes your programs more self-
contained, it is cumbersome to modify the shaders or experiment with the source code.
You can of course also generate the shader source code algorithmically, or perhaps retrieve

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders240

ptg

it from a database, or an encrypted data file of some kind. These alternatives might appeal
to you for shipping an application, but for learning and just for development and debug-
ging purposes, nothing beats a plain old text file.

The GLTools function gltLoadShaderPairWithAttributes is a real heavy lifter for loading
and initializing shaders. The complete listing is shown in Listing 6.3, and going through
this function we cover all the necessary elements of loading a shader.

LISTING 6.3 The gltLoadShaderPairWithAttributes Function

///

// Load a pair of shaders, compile, and link together.

// Specify the complete source text for each shader. After

// the shader names, specify the number of attributes,

// followed by the index and attribute name of each attribute

GLuint gltLoadShaderPairWithAttributes(const char *szVertexProg,

const char *szFragmentProg, ...)

{

// Temporary Shader objects

GLuint hVertexShader;

GLuint hFragmentShader;

GLuint hReturn = 0;

GLint testVal;

// Create shader objects

hVertexShader = glCreateShader(GL_VERTEX_SHADER);

hFragmentShader = glCreateShader(GL_FRAGMENT_SHADER);

// Load them. If fail clean up and return null

// Vertex Program

if(gltLoadShaderFile(szVertexProg, hVertexShader) == false)

{

glDeleteShader(hVertexShader);

glDeleteShader(hFragmentShader);

cout << “The shader at “ << szVertexProg

<< “ could not be found.\n”;

return (GLuint)NULL;

}

// Fragment Program

if(gltLoadShaderFile(szFragmentProg, hFragmentShader) == false)

{

glDeleteShader(hVertexShader);

glDeleteShader(hFragmentShader);

GLSL 101 241
6

ptg

cout << “The shader at “ << szFragmentProg

<< “ could not be found.\n”;

return (GLuint)NULL;

}

// Compile them both

glCompileShader(hVertexShader);

glCompileShader(hFragmentShader);

// Check for errors in vertex shader

glGetShaderiv(hVertexShader, GL_COMPILE_STATUS, &testVal);

if(testVal == GL_FALSE)

{

char infoLog[1024];

glGetShaderInfoLog(hVertexShader, 1024, NULL, infoLog);

cout << “The shader at “ << szVertexProg

<< “ failed to compile with the following error:\n”

<< infoLog << “\n”;

glDeleteShader(hVertexShader);

glDeleteShader(hFragmentShader);

return (GLuint)NULL;

}

// Check for errors in fragment shader

glGetShaderiv(hFragmentShader, GL_COMPILE_STATUS, &testVal);

if(testVal == GL_FALSE)

{

char infoLog[1024];

glGetShaderInfoLog(hFragmentShader, 1024, NULL, infoLog);

cout << “The shader at “ << hFragmentShader

<< “ failed to compile with the following error:\n”

<< infoLog << “\n”;

glDeleteShader(hVertexShader);

glDeleteShader(hFragmentShader);

return (GLuint)NULL;

}

// Create the final program object, and attach the shaders

hReturn = glCreateProgram();

glAttachShader(hReturn, hVertexShader);

glAttachShader(hReturn, hFragmentShader);

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders242

ptg

// Now, we need to bind the attribute names to their specific locations

// List of attributes

va_list attributeList;

va_start(attributeList, szFragmentProg);

// Iterate over this argument list

char *szNextArg;

int iArgCount = va_arg(attributeList, int); // Number of attributes

for(int i = 0; i < iArgCount; i++)

{

int index = va_arg(attributeList, int);

szNextArg = va_arg(attributeList, char*);

glBindAttribLocation(hReturn, index, szNextArg);

}

va_end(attributeList);

// Attempt to link

glLinkProgram(hReturn);

// These are no longer needed

glDeleteShader(hVertexShader);

glDeleteShader(hFragmentShader);

// Make sure link worked too

glGetProgramiv(hReturn, GL_LINK_STATUS, &testVal);

if(testVal == GL_FALSE)

{

char infoLog[1024];

glGetProgramInfoLog(hReturn, 1024, NULL, infoLog);

cout << “The program “ << hReturn

<< “ failed to link with the following error:\n”

<< infoLog << “\n”;

glDeleteProgram(hReturn);

return (GLuint)NULL;

}

// All done, return our ready to use shader program

return hReturn;

}

GLSL 101 243
6

ptg

Specifying the Attributes
The function prototype takes the name of the vertex program file, the name of the frag-
ment program file, and then a variable number of parameters that specify the attributes.

GLuint gltLoadShaderPairWithAttributes(const char *szVertexProg,

const char *szFragmentProg, ...);

If you’ve never seen a function declaration that takes a variable argument list before, the …
at the end of the argument list may look like a typo. Other C examples that take a variable
argument list are functions such as printf or sprintf. For this function, however, the first
extra parameter is the number of attributes that your vertex program contains. This is
followed by a zero-based index for the first attribute, and the attribute name as a character
array. The attribute slot number and name are then repeated for as many times as neces-
sary. For example, to load a shader that has a vertex position and surface normal attrib-
utes, the call to gltLoadShaderPairWithAttributes might look something like this:

hShader = gltLoadShaderPairWithAttributes(“vertexProg.vp”,

“fragmentProg.fp”, 2, 0, “vVertexPos”, 1, “vNormal”);

The choice of 0 and 1 for the two attribute locations is arbitrary, as long as the values are
in the range 0 – 15. We might just as well have picked 7 and 13. The GLTools classes
GLBatch and GLTriangleBatch, however, use a consistent set of attribute locations, speci-
fied by the following typedef:

typedef enum GLT_SHADER_ATTRIBUTE { GLT_ATTRIBUTE_VERTEX = 0,

GLT_ATTRIBUTE_COLOR, GLT_ATTRIBUTE_NORMAL,

GLT_ATTRIBUTE_TEXTURE0, GLT_ATTRIBUTE_TEXTURE1,

GLT_ATTRIBUTE_TEXTURE2, GLT_ATTRIBUTE_TEXTURE3,

GLT_ATTRIBUTE_LAST};

As long as you use these attribute location identifiers, you can start using your own
shaders that work alongside the stock shaders supplied in the GLShaderManager class. It
also means we can continue using the GLBatch and GLTriangleBatch classes to submit
geometry until Chapter 12, “Advanced Geometry Management,” when we cover the
submission of vertex attributes in greater detail.

Setting the Source Code
The first order of business is to create two shader objects, one each for the vertex and frag-
ment shaders.

hVertexShader = glCreateShader(GL_VERTEX_SHADER);

hFragmentShader = glCreateShader(GL_FRAGMENT_SHADER);

We can then use these two shader IDs for loading the shader source code. We skip the friv-
olous details of the gltLoadShaderFile function, as most of what it does is simply load
the text of the shader from disk using the filename specified. Once this is accomplished,

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders244

ptg

however, the following code feeds the shader source code to the shader object. Note too
that we have to do this twice—once for the vertex shader and again for the fragment
shader.

GLchar *fsStringPtr[1];

fsStringPtr[0] = (GLchar *)szShaderSrc;

glShaderSource(shader, 1, (const GLchar **)fsStringPtr, NULL);

The szShaderSrc variable is a simple character pointer that points to the entire text of the
shader, and shader is the object ID of the shader object we are loading.

Compiling the Shaders
Compiling the shaders is a simple one-shot deal.

glCompileShader(hVertexShader);

glCompileShader(hFragmentShader);

Each OpenGL implementation has a built-in GLSL compiler that is provided by the hard-
ware vendor. The idea is that any given vendor would be most qualified to build compilers
for their own hardware. Of course just like with C/C++ code any number of things, such
as syntax errors, implementation bugs, and so on, can prevent your GLSL shader from
compiling. To check for failure, we use the glGetShader function with the
GL_COMPILE_STATUS token.

glGetShaderiv(hVertexShader, GL_COMPILE_STATUS, &testVal);

If the value of testVal on return is GL_FALSE, then the source code failed to compile. It
would be difficult indeed to write shaders if the only thing we could find out from our
implementation was a simple pass or fail for our efforts. On a compile fail, we can check
the shader info log with the glGetShaderInfoLog function to see what went wrong. In our
current example, we display the error message to the console, clean up our shader objects,
and return NULL.

if(testVal == GL_FALSE)

{

char infoLog[1024];

glGetShaderInfoLog(hVertexShader, 1024, NULL, infoLog);

cout << “The shader at “ << szVertexProg

<< “ failed to compile with the following error:\n”

<< infoLog << “\n”;

glDeleteShader(hVertexShader);

glDeleteShader(hFragmentShader);

return (GLuint)NULL;

}

GLSL 101 245
6

ptg

Getting Attached and Binding
Getting our GLSL source code to compile is half the battle, but before we can link them,
we must make a small detour. First, we have to create our final shader program object and
attach the vertex and fragment shaders to it.

hReturn = glCreateProgram();

glAttachShader(hReturn, hVertexShader);

glAttachShader(hReturn, hFragmentShader);

Now, our shader is ready to be linked. However, there is something important we must do
before linking the shader programs, and that is bind our attribute variable names to
specific numeric attribute locations. The function glBindAttribLocation performs this
task; its prototype is as follows:

void glBindAttribLocation(GLuint shaderProg, GLuint attribLocation,

const GLchar *szAttributeName);

It takes the identifier of the shader in question, the attribute location to be bound, and
the name of the attribute variable. For example, in the GLTools stock shaders, we adopted
the convention of always using the variable name vVertex for the vertex position attribute
and the value GLT_ATTRIBUTE_VERTEX (the value 0) for the attribute location. You can
duplicate this yourself easily enough.

glBindAttribLocation(hShader, GLT_ATTRIBUTE_VERTEX, “vVertex”);

The binding of attribute locations in this way must be done before linking. In our code
here, we iterate through the variable argument list and simply call this function repeatedly
for each attribute we need bound.

// Iterate over this argument list

char *szNextArg;

int iArgCount = va_arg(attributeList, int); // Number of attributes

for(int i = 0; i < iArgCount; i++)

{

int index = va_arg(attributeList, int);

szNextArg = va_arg(attributeList, char*);

glBindAttribLocation(hReturn, index, szNextArg);

}

va_end(attributeList);

Linking the Shaders
Finally, it’s time to link our shaders, after which we can also dispose of our vertex and
fragment shader objects.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders246

ptg

glLinkProgram(hReturn);

// These are no longer needed

glDeleteShader(hVertexShader);

glDeleteShader(hFragmentShader);

Just as with compiling, there are number of reasons linking could fail. For example, it will
fail if you declare an out variable in the vertex program but do not declare it in the frag-
ment program; or perhaps you do, but the two declarations are of different types. Thus
before returning we check for an error and display any diagnostic message just as we did
for the compilation step.

You now have an OpenGL GLSL shader that is 100% ready to go. We should also mention
now that you’ve created a shader program, that when you are done with it (perhaps on
program termination), you should delete it with the following function.

void glDeleteProgram(GLuint program);

Using the Shader
To use our GLSL shader, we must select it with the glUseProgram function as shown here:

glUseProgram(myShaderProgram);

This sets our shader as active, and all submitted geometry is now processed by our vertex
and fragment shader programs. Uniforms and textures should be set up before submitting
vertex attributes, and we show how this is done very soon. Submitting vertex attributes,
however, is a big topic—big enough to warrant its own chapter in fact—and this topic is
discussed in more detail in Chapter 12. For now, we allow the GLBatch and
GLTriangleBatch classes to manage our geometry for us.

In our first example program for this chapter, ShadedTriangle, we loaded our Triangle into
an instance of GLBatch called triangleBatch using the simplest (what we called the “iden-
tity”) coordinate system:

// Load up a triangle

GLfloat vVerts[] = { -0.5f, 0.0f, 0.0f,

0.5f, 0.0f, 0.0f,

0.0f, 0.5f, 0.0f };

GLfloat vColors [] = { 1.0f, 0.0f, 0.0f, 1.0f,

0.0f, 1.0f, 0.0f, 1.0f,

0.0f, 0.0f, 1.0f, 1.0f };

GLSL 101 247
6

ptg

triangleBatch.Begin(GL_TRIANGLES, 3);

triangleBatch.CopyVertexData3f(vVerts);

triangleBatch.CopyColorData4f(vColors);

triangleBatch.End();

myIdentityShader = gltLoadShaderPairWithAttributes(“ShadedIdentity.vp”,

“ShadedIdentity.fp”, 2, GLT_ATTRIBUTE_VERTEX, “vVertex”,

GLT_ATTRIBUTE_COLOR, “vColor”);

We also set different colors for each vertex, red, green, and blue, respectively. Finally we
loaded our shader pair using the gltLoadShaderPairWithAttributes function that we
have previously gone over. Note how we have two sets of attributes, vertex and color
values, matching the sets of data supplied to the GLBatch class.

Submitting the batch for rendering is now simply a matter of selecting our shader and
letting the GLBatch class submit our vertex attributes:

glUseProgram(myIdentityShader);

triangleBatch.Draw();

The final shaded triangle, the result of all this effort so far was shown in Figure 6.2.

Provoking Vertex
The ShadedTriangle example is a great demonstration of how smooth interpolation
between vertices takes place. With each vertex having a different color value, what you see
in the triangle shown in Figure 6.2 is essentially the color values for the plane in color
space represented by these three color coordinates. Cool, huh? We can, however, also set
variables passed from one shader stage to the next as flat. If you have a single value that
must be constant for an entire batch, it would be best to use a uniform as we discussed in
Chapter 3. Sometimes, however, it is useful to have a value that is unique over the entire
surface of a primitive such as our triangle but needs to change per triangle. Sending down
a large number of triangles, one triangle per batch for example when using uniforms,
would be very inefficient. This is where the flat storage qualifier comes in. In our
ShadedTriangle.vp shader, we declare our outgoing smoothly shaded color value in this
way:

out vec4 vVaryingColor;

If, however, we declared it to be flat (and don’t forget the corresponding in variable in
the fragment shader must be declared as flat too), such as shown next, the resulting
triangle is solid blue.

flat out vec4 vFlatColor;

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders248

ptg

When each vertex of a primitive has a different value for a flat shaded variable, only one
of the variables can be applied “flatly.” The default convention is to use the value specified
for the last vertex of the primitive, which in our case, blue was the color used for the last
of the three vertices in our triangle. This convention is called the provoking vertex, and it
can be changed from the last vertex to the first vertex with the following function:

void glProvokingVertex(GLenum provokeMode);

Valid values for provokeMode are GL_FIRST_VERTEX_CONVENTION and
GL_LAST_VERTEX_CONVENTIONS (the default).

The example program ProvokingVertex shows this in action. It is a slight modification of
the ShadedTriangle program in fact. Pressing the space bar switches the convention, and
the triangle switches back and forth from solid blue to solid red.

Shader Uniforms
While attributes are needed for per-vertex positions, surface normals, texture coordinates,
and so on, a uniform is how we pass data into a shader that stays the same—is uniform—
for the entire primitive batch. Probably the single most common uniform for a vertex
shader is the transformation matrix. Previously, we allowed the GLShaderManager class to
do this for us, with built-in support for the stock shaders and their needed uniforms. Now
that we are writing our own shaders, we need to be able to set our own uniforms, and not
just for matrix values; any shader variable can be specified as a uniform, and uniforms can
be in any of the three shader stages (even though we only talk about vertex and fragment
shaders in this chapter). Making a uniform is as simple as placing the keyword uniform at
the beginning of the variable declaration:

uniform float fTime;

uniform int iIndex;

uniform vec4 vColorValue;

uniform mat4 mvpMatrix;

Uniforms cannot be marked as in or out, they cannot be interpolated (although you can
copy them into interpolated variables) between shader stages, and they are always read-
only.

Finding Your Uniforms
After a shader has been compiled and linked, you must “find” the uniform location in the
shader. This is done with the function glGetUniformLocation.

GLint glGetUniformLocation(GLuint shaderID, const GLchar* varName);

Shader Uniforms 249
6

ptg

This function returns a signed integer that represents the location of the variable named
by varName in the shader specified by shaderID. For example, to get the location of a
uniform variable named ”vColorValue”, we would do something like this:

GLint iLocation = glGetUniformLocation(myShader, “vColorValue”);

Shader variable names are case-sensitive, and if the return value of glGetUniformLocation
is -1, it means the uniform name could not be located in the shader. You should bear in
mind that even if a shader compiles correctly, a uniform name may still “disappear” from
the shader if it is not used directly in the shader. You do not need to worry about uniform
variables being optimized away, but if you declare a uniform and then do not use it, the
compiler will toss it out.

Setting Scalars and Vector Uniforms
A single scalar or vector data type can be set with any of the following variations on the
glUniform function:

void glUniform1f(GLint location, GLfloat v0);

void glUniform2f(GLint location, Glfloat v0, GLfloat v1);

void glUniform3f(GLint location, GLfloat v0, GLfloat v1, GLfloat v2);

void glUniform4f(GLint location, GLfloat v0, GLfloat v1, GLfloat v2,

GLfloat v3);

void glUniform1i(GLint location, GLint v0);

void glUniform2i(GLint location, GLint v0, GLint v1);

void glUniform3i(GLint location, GLint v0, GLint v1, GLint v2);

void glUniform4i(GLint location, GLint v0, GLint v1, GLint v2, GLint v3);

For example, consider the following four variables declared in a shader.

uniform float fTime;

uniform int iIndex;

uniform vec4 vColorValue;

uniform bool bSomeFlag;

To find and set these values in the shader, your C/C++ code might look something like
this.

GLint locTime, locIndex, locColor, locFlag;

locTime = glGetUniformLocation(myShader, “fTime”);

locIndex = glGetUniformLocation(myShader, “iIndex”);

locColor = glGetUniformLocation(myShader, “vColorValue”);

locFlag = glGetUniformLocation(myShader, “bSomeFlag”);

…

…

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders250

ptg

glUseProgram(myShader);

glUniform1f(locTime, 45.2f);

glUniform1i(locIndex, 42);

glUniform4f(locColor, 1.0f, 0.0f, 0.0f, 1.0f);

glUniform1i(locFlag, GL_FALSE);

Note that we used an integer version of glUniform to pass in a bool value. Booleans can
also be passed in as floats, with 0.0 representing false, and 1.0 representing true.

Setting Uniform Arrays
The glUniform function also comes in flavors that take a pointer, potentially to an array of
values.

void glUniform1fv(GLint location, GLuint count, GLfloat* v);

void glUniform2fv(GLint location, GLuint count, Glfloat* v);

void glUniform3fv(GLint location, GLuint count, GLfloat* v);

void glUniform4fv(GLint location, GLuint count, GLfloat* v);

void glUniform1iv(GLint location, GLuint count, GLint* v);

void glUniform2iv(GLint location, GLuint count, GLint* v);

void glUniform3iv(GLint location, GLuint count, GLint* v);

void glUniform4iv(GLint location, GLuint count, GLint* v);

Here, the count value represents how many elements are in each array of x number of
components, where x is the number at the end of the function name. For example, if you
had a uniform with four components, such as one shown here:

uniform vec4 vColor;

In C/C++, you could represent this as an array of floats:

GLfloat vColor[4] = { 1.0f, 1.0f, 1.0f, 1.0f };

But this is a single array of four values, so passing it into the shader would look like this:

glUniform4fv(iColorLocation, 1, vColor);

On the other hand, if you had an array of color values in your shader,

uniform vec4 vColors[2];

Then in C++, you could represent the data and pass it in like this:

GLfloat vColors[2][4] = {{ 1.0f, 1.0f, 1.0f, 1.0f },

{ 1.0f, 0.0f, 0.0f, 1.0f }};

…

glUniform4fv(iColorLocation, 2, vColors);

Shader Uniforms 251
6

ptg

At its simplest, you can set a single floating-point uniform like this:

GLfloat fValue = 45.2f;

glUniform1fv(iLocation, 1, &fValue);

Setting Uniform Matrices
Finally, we see how to set a matrix uniform. Shader matrix data types only come in the
floating-point variety, and thus we have far less variation. The following functions load a
2 x 2, 3 x 3, and 4 x 4 matrix, respectively.

glUniformMatrix2fv(GLint location, GLuint count, GLboolean transpose,

const GLfloat *m);

glUniformMatrix3fv(GLint location, GLuint count, GLboolean transpose,

const GLfloat *m);

glUniformMatrix4fv(GLint location, GLuint count, GLboolean transpose,

const GLfloat *m);

The variable count represents the number of matrices stored at the pointer parameter m
(yes, you can have arrays of matrices!). The Boolean flag transpose is set to GL_TRUE if the
matrix is already stored in column major ordering (the way OpenGL prefers). Setting this
value to GL_FALSE causes the matrix to be transposed when it is copied into the shader.
This might be useful if you are using a matrix library that uses a row major matrix layout
instead (for example, Direct3D uses row major ordering).

The Flat Shader
Let’s look at an example shader now that makes use of some uniforms. In our stock shader
collection, we had a flat shader that did nothing but transform our geometry and set it to
a single color. The only vertex attributes used were the vertex positions, and it required
the use of two uniforms, a single transformation matrix, and a color value.

The example program FlatShader simply loads a spinning torus and sets the color to blue.
We render it in wireframe mode via the glPolygonMode function so we can see we really
do have 3D geometry. The majority of the OpenGL client code is fairly trivial by now, so
we do not list the entire program. The complete shaders, however, are shown in Listings
6.4 and 6.5.

LISTING 6.4 The Flat Shader Vertex Program

// Flat Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders252

ptg

// Transformation Matrix

uniform mat4 mvpMatrix;

// Incoming per vertex

in vec4 vVertex;

void main(void)

{

// This is pretty much it, transform the geometry

gl_Position = mvpMatrix * vVertex;

}

LISTING 6.5 The Flat Shader Fragment Program

// Flat Shader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 130

// Make geometry solid

uniform vec4 vColorValue;

// Output fragment color

out vec4 vFragColor;

void main(void)

{

gl_FragColor = vColorValue;

}

In the vertex program shown in Listing 6.4 we have a single uniform, our concatenated
transformation matrix.

uniform mat4 mvpMatrix;

The sole geometry processing performed by this shader is to transform the vertex by the
ModelviewProjection matrix. As you can see, multiplying a matrix data type by a vector
data type in GLSL is quite natural.

gl_Position = mvpMatrix * vVertex;

Shader Uniforms 253
6

ptg

In the fragment shader shown in Listing 6.5, we have again only a single uniform, a four-
component color value that will be applied to the rasterized fragments.

uniform vec4 vColorValue;

On the client side, the FlatShader example program loads these two shader files and
obtains indices to the two uniforms in the SetupRC function.

GLuint flatShader;

GLint locMP;

GLint locColor;

…

…

flatShader = gltLoadShaderPairWithAttributes(“FlatShader.vp”, “FlatShader.fp”,

1, GLT_ATTRIBUTE_VERTEX, “vVertex”);

locMVP = glGetUniformLocation(flatShader, “mvpMatrix”);

locColor = glGetUniformLocation(flatShader, “vColorValue”);

The RenderScene function is shown in Listing 6.6 in its entirety. It simply renders a rotat-
ing torus in place (remember we also set the polygon mode to GL_LINE). After selecting the
flat shader, the uniforms for the geometry color and transformation matrix are set before
calling the Draw function on the torus object. The final output is shown in Figure 6.3.

LISTING 6.6 Making Use of the New Flat Shader

// Called to draw scene

void RenderScene(void)

{

static CStopWatch rotTimer;

// Clear the window and the depth buffer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

modelViewMatrix.PushMatrix(viewFrame);

modelViewMatrix.Rotate(rotTimer.GetElapsedSeconds() * 10.0f,

0.0f, 1.0f, 0.0f);

GLfloat vColor[] = { 0.1f, 0.1f, 1.f, 1.0f };

glUseProgram(flatShader);

glUniform4fv(locColor, 1, vColor);

glUniformMatrix4fv(locMVP, 1, GL_FALSE,

transformPipeline.GetModelViewProjectionMatrix());

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders254

ptg

torusBatch.Draw();

modelViewMatrix.PopMatrix();

glutSwapBuffers();

glutPostRedisplay();

}

Built-In Functions 255
6

FIGURE 6.3 Output from the FlatShader program.

Built-In Functions
Nearly all high-level programming languages have a selection of standard functions that
come along for the ride. In C/C++, we have the standard C Runtime library, standard I/O
functions, and so on. GLSL also contains a number of useful built-in functions, mostly
that perform mathematical operations on either a single scalar value or on an entire vector
at once. Some of these are very general in nature, and some are selected because of their
applicability to typical graphics rendering algorithms. The functions listed in the following
tables are taken almost verbatim from the GLSL language specification.

ptg

Trigonometry Functions
Table 6.4 lists the trigonometry functions that are supported by GLSL. These functions are
defined for float, vec2, vec3, and vec4 data types. Here we denote the data type by
anyFloat, meaning any of these four floating-point data types.

TABLE 6.4 Trigonometric Functions

Function Description

anyFloat radians(anyFloat degrees) Converts degrees to radians

anyFloat degrees(anyFloat radians) Converts radians to degrees

anyFloat sin(anyFloat angle) Trigonometric sine

anyFloat cos(anyFloat angle) Trigonometric cosine

anyFloat tan(anyFloat angle) Trigonometric tangent

anyFloat asin(anyFloat x) Arc sine

anyFloat acos(anyFloat x) Arc cosine

anyFloat atan(anyFloat y, anyFloat x) Arc tangent of y / x

anyFloat atan(anyFloat y_over_x) Arc tangent of y_over_x

anyFloat sinh(anyFloat x) Hyperbolic sine

anyFloat cosh(anyFloat x) Hyperbolic cosine

anyFloat tanh(anyFloat x) Hyperbolic tangent

anyFloat asinh(anyFloat x) Arc hyperbolic sine

anyFloat acosh(anyFloat x) Arc hyperbolic cosine

anyFloat atanh(anyFloat x) Arc hyperbolic tangent

Exponential Functions
Like the trigonometric functions, the exponential functions work on the floating-point
data types (floats and floating-point vectors). The complete list of exponential functions is
given in Table 6.5.

TABLE 6.5 Exponential Functions

Function Description

anyFloat pow(anyFloat x, anyFloat y) x raised to the y power

anyFloat exp(anyFloat x) Natural exponent of x

anyFloat log(anyFloat x) The natural logarithm of x

anyFloat exp2(anyFloat x) 2 raised to the power of x

anyFloat log2(anyFloat angle) Base 2 logarithm of x

anyFloat sqrt(anyFloat x) Square root of x

anyFloat inversesqrt(anyFloat x) Inverse square root of x

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders256

ptg

Geometric Functions
A number of general purpose geometric functions are also included in GLSL. Some of
these functions have specific argument types (cross product for example); others accept
any of the floating-point vector types (vec2, vec3, and vec4), which we refer to here only
as vec. These functions are listed in Table 6.6.

TABLE 6.6 Geometric Functions

Function Description

float length(vec2/vec3/vec4 x) Returns the length of the vector x

float distance(vec p0, vec p1) Returns the distance between p0 and p1

float dot(vec x, vec y) Returns the dot product of x and y

vec3 cross(vec3 x, vec3 y) Returns the cross product of x and y

vec normalize(vec x) Returns a unit length vector in the same direction as x

vec faceforward(vec N, vec I, vec nRef) if dot(Nref, I) < 0 return N, else return –N

vec reflect(vec I, vec N) Returns reflection direction for incident vector I and

surface orientation N

vec refract(vec I, vec N, float eta) Returns refraction vector for incident vector I, surface

orientation N, and ratio of indices of refraction eta

Matrix Functions
Many matrix operations are done using the regular mathematical operators. Some useful
matrix functions, however, are listed in Table 6.7. Each of these functions is specific and
takes a specific argument data type, which is shown in the table.

TABLE 6.7 Matrix Functions

Function Description

mat matrixCompMult(mat x, mat y) Multiplies two matrices together component by component.

This is not the same as the linear algebraic matrix multiply.

mat2 outerProduct(vec2 c, vec2 r) Returns a matrix that is the outer product of the two vectors

specified.

mat3 outerProduct(vec3 c, vec3 r)

mat4 outerProduct(vec4 c, vec4 r)

mat2x3 outerProduct(vec3 c, vec2 r)

mat3x2 outerProduct(vec2 c, vec3 r)

mat2x4 outerProduct(vec4 c, vec2 r)

mat4x2 outerProduct(vec2 c, vec4 r)

mat3x4 outerProduct(vec4 c, vec3 r)

mat4x3 outerProduct(vec3 c, vec4 r)

Built-In Functions 257
6

ptg

TABLE 6.7 Matrix Functions continued

Function Description

mat2 transpose(mat2 m) Returns a matrix that is the transpose of the matrix specified.

mat3 transpose(mat3 m)

mat4 transpose(mat4 m)

mat2x3 transpose(mat3x2 m)

mat3x2 transpose(mat2x3 m)

mat2x4 transpose(mat4x2 m)

mat4x2 transpose(mat2x4 m)

mat3x4 transpose(mat4x3 m)

mat4x3 transpose(mat3x4 m)

float determinant(mat2 m) Returns the determinant of the matrix specified.

float determinant(mat3 m)

float determinant(mat4 m)

mat2 inverse(mat2 m) Returns a matrix that is the inverse of the matrix specified.

mat3 inverse(mat3 m)

mat4 inverse(mat4 m)

Vector Relational Functions
Scalar values can be compared using the standard equality operators (<, <=, >, >=, ++, !=).
For vector comparisons, the functions listed in Table 6.8 are provided. All of these func-
tions return a Boolean vector of the same number of dimensions as the arguments.

TABLE 6.8 Vector Relational Functions

Function Description

bvec lessThan(vec x, vec y) Returns component by component the result of x < y.

bvec lessThan(ivec x, ivec y)

bvec lessThan(uvec x, uvec y)

bvec lessThanEqual(vec x, vec y) Returns component by component the result of x <= y.

bvec lessThanEqual(ivec x, ivec y)

bvec lessThanEqual(uvec x, uvec y)

bvec greaterThan(vec x, vec y) Returns component by component the result of x > y.

bvec greaterThan(ivec x, ivec y)

bvec greaterThan(uvec x, uvec y)

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders258

ptg

Function Description

bvec greaterThanEqual(vec x, vec y) Returns component by component the result of x >= y.

bvec greaterThanEqual(ivec x, ivec y)

bvec greaterThanEqual(uvec x, uvec y)

bvec equal(vec x, vec y) Returns component by component the result of x == y.

bvec equal(ivec x, ivec y)

bvec equal(uvec x, uvec y)

bvec equal(bvec x, bvec y)

bvec notEqual(vec x, vec y) Returns component by component the result of x != y.

bvec notEqual(ivec x, ivec y)

bvec notEqual(uvec x, uvec y)

bvec notEqual(bvec x, bvec y)

bool any(bvec x) Returns true if any component of x is true.

bool all(bvec x) Returns true if all components of x are true.

bvec not(bvec x) Returns component wise complement of x.

Common Functions
Finally we present the list of general purpose functions. All of these functions work on
and return both scalar and vector data types (see Table 6.9).

TABLE 6.9 Common Functions

Function Description

anyFloat abs(anyFloat x) Returns the absolute value of x.

anyInt abs(anyInt x)

anyFloat sign(anyFloat x) Returns 1.0 or -1.0 depending on the sign of x.

anyInt sign(anyInt x)

anyFloat floor(anyFloat x) Returns the lowest whole number not larger than x.

anyFloat trunc(anyFloat x) Returns the nearest whole number not larger than the

absolute value of x.

anyFloat round(anyFloat x) Returns the value of the nearest integer to x. The

fraction 0.5 may round in either direction. (This is

implementation-dependent.)

anyFloat roundEven(anyFloat x) Returns the value of the nearest integer to x. The fraction

0.5 rounds to the nearest even integer.

anyFloat ceil(anyFloat x) Returns the value of the nearest integer greater than x.

anyFloat fract(anyFloat x) Returns the fractional part of x.

Built-In Functions 259
6

ptg

TABLE 6.9 Common Functions continued

Function Description

anyFloat mod(anyFloat x, float y) Returns the modulus of x mod y.

anyFloat mod(anyFloat x, anyFloat y)

anyFloat modf(anyFloat x, out anyFloat i) Returns the fractional part of x and sets i to be the

integer remainder.

anyFloat min(anyFloat x, anyFloat y) Returns the smaller of x and y.

anyFloat min(anyFloat x, float y)

anyInt min(anyInt x, anyInt y)

anyInt min(anyInt x, int y)

anyUInt min(anyUInt x, anyUInt y)

anyUint min(anyUInt x, uint y)

anyFloat max(anyFloat x, anyFloat y) Returns the larger of x and y.

anyFloat max(anyFloat x, float y)

anyInt max(anyInt x, anyInt y)

anyInt max(anyInt x, int y)

anyUInt max(anyUInt x, anyUInt y)

anyUint max(anyUInt x, uint y)

anyFloat clamp(anyFloat x, Returns x clamped to the range minVal to maxVal.

anyFloat minVal,

anyFloat maxVal)

anyFloat clamp(anyFloat x,

float minVal,

float maxVal);

anyInt clamp(anyInt x,

anyInt minVal,

anyInt maxVal)

anyInt clamp(anyInt x,

int minVal,

int maxVal)

anyUint clamp(anyUint x,

anyUint minVal,

anyUint maxVal);

anyUint clamp(anyUint x,

uint minVal,

uint maxVal)

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders260

ptg

Function Description

anyFloat mix(anyFloat x, Returns the linear blend of x and y, as a varies from 0 to 1

anyFloat y,

anyFloat a)

anyFloat mix(anyFloat x,

anyFloat y,

float a)

anyFloat mix(anyFloat x, Returns the components of x where a is false and the

anyFloat y, components of y where a is true.

anyBool a)

anyFloat step(anyFloat edge, anyFloat x) Returns 0.0 if x is less than edge, or 1.0 otherwise.

anyFloat step(float edge, anyFloat x)

anyFloat smoothstep(anyFloat edge0, Returns 0.0 if x <= edge0, and 1.0 if x >= edge1, and a

anyFloat edge1, smooth Hermite interpolation between 0.0 and

anyFloat x) 1.0 in between.

anyFloat smoothStep(float edge0,

float edge1,

anyFloat x)

anyBool isnan(anyFloat x) Returns true if x is Nan.

anyBool isinf(anyFloat x) Returns true if x is positive or negative infinity.

anyInt floatBitsToInt(anyFloat x) Converts floating-point values to integer values.

anyUint floatBitsToUint(anyFloat x)

anyFloat intBitsToFloat(anyInt x) Converts integers to floating-point values.

anyFloat uintBitsToFloat(anyUint x)

Built-In Functions 261
6

ptg

Simulating Light
We now have a pretty good foundation for using GLSL, and it’s time to start writing some
more sophisticated shaders. Simulating light is a foundational technique for computer
graphics and is not overly complex, so it makes for a great demonstration of shader
programming techniques. Simulating light, illumination, and material properties is itself a
topic worthy of an entire book, and in fact many such books do exist! Here we go over the
basics of computer lighting and use GLSL to implement them. It is on these following
simple methods that the more advanced techniques are based.

Simple Diffuse Lighting
The most common type of light applied to surfaces in 3D graphics is diffuse light. Diffuse
light is a directional light that is reflected off a surface with an intensity proportional to
the angle at which the light rays strike the surface. Thus, the object surface is brighter if
the light is pointed directly at the surface than if the light grazes the surface from a greater
angle. Essentially it is the diffuse lighting component of many lighting models that
produces the shading (or change in color) across a lit object’s surface.

To determine the intensity of the light at a given vertex, we need two vectors. The first is
the direction to the light source. Some lighting techniques supply only the vector pointing
to the light source; we call this directional light because all the vertices see the same vector
to the light source. This works well if the light source is very far (or infinitely far) away
from the objects being illuminated. Think sunlight falling on all the players on a football
field. The angle of the sunlight does not change significantly from one side of the field to
the other. On the other hand if the game is being played at night, then the effects of a
single overhead light might well be seen as the player or other objects move about on the
field. If the lighting code is supplied instead with the position of the light source, then we
must in our shader subtract the transformed (eye coordinates) position of the vertex from
the position of the light source to determine the vector to the light source.

Surface Normals
The second vector we need for diffuse lighting (and indeed as you will see, more than just
this) is the surface normal. A line from the vertex in the upward direction starts in some
imaginary plane (or your triangle) at a right angle. This line is called a normal vector. The
term normal vector might sound like something the Star Trek crew members toss around,
but it just means a line perpendicular to a real or imaginary surface. A vector is a line
pointed in some direction, and the word normal is just another way for eggheads to say
perpendicular (intersecting at a 90 degree angle). As if the word perpendicular weren’t bad
enough! Therefore, a normal vector is a line pointed in a direction that is at a 90 degree
angle to the front surface of your polygon. Figure 6.4 presents examples of 2D and 3D
normal vectors.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders262

ptg

FIGURE 6.4 A 2D and a 3D normal vector.

You might already be asking why we must specify a normal vector for each vertex. Why
can’t we just specify a single normal for a polygon and use it for each vertex? We can;
however, sometimes you don’t want each normal to be exactly perpendicular to the
surface of the polygon. You may have noticed that many surfaces are not flat! You can
approximate these surfaces with flat, polygonal sections, but you end up with a jagged or
multifaceted surface. You can create the illusion of smooth surfaces with flat polygons by
“tweaking” the surface normals such that they smooth out the surface. On a sphere for
example, each vertex’s surface normal is exactly perpendicular to the actual surface of the
sphere, not the individual triangles that are being used to render the sphere.

Vertex Lighting
Figure 6.5 shows these two vectors that we need for diffuse lighting. The intensity of the
light at the vertex is calculated by taking the vector dot product of the vector to the light
source and the surface normal. These two vectors need to be unit length as well, as the dot
product will return a value from +1.0 to -1.0. A dot product of 1.0 occurs when the surface
normal and the lighting vector are pointing the same direction, and a value of -1.0 is
returned when the two vectors are pointing in opposite directions. A dot product of 0.0 is
when the two vectors are at a 90 degree angle to one another. This value from +1.0 to -1.0
is actually the cosine of the angle between these two vectors. You can probably guess that
positive values mean the light is falling on the vertex, with the larger the value (closer to
1) the more intense the lighting effect, and the closer to zero (or less than zero) the weaker
the lighting effect.

Simulating Light 263
6

ptg

FIGURE 6.5 Basic vectors for diffuse lighting.

We can multiply the dot product value by a color value for the vertex and obtain a lit
color value based on the intensity of the light at that vertex. Smoothly shading these color
values between vertices is sometimes called vertex lighting, or Gouraud shading. In GLSL, the
dot product part is pretty easy, usually just something like this:

float intensity = dot(vSurfaceNormal, vLightDirection);

The Point Light Diffuse Shader
Let’s take a look at our next example program, DiffuseLight. This program demonstrates a
simple diffuse lighting shader on a blue sphere. It uses a point light source so you can also
see how we determine this in a shader. Of course using a directional light source would be
simpler since we’d already supply this vector, but we, as they say, leave that as an exercise
for the reader. Listing 6.7 shows the complete DiffuseLight.vp vertex shader.

LISTING 6.7 The Diffuse Light Vertex Shader

// Simple Diffuse lighting Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

// Incoming per vertex... position and normal

in vec4 vVertex;

in vec3 vNormal;

// Set per batch

uniform vec4 diffuseColor;

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders264

ptg

uniform vec3 vLightPosition;

uniform mat4 mvpMatrix;

uniform mat4 mvMatrix;

uniform mat3 normalMatrix;

// Color to fragment program

smooth out vec4 vVaryingColor;

void main(void)

{

// Get surface normal in eye coordinates

vec3 vEyeNormal = normalMatrix * vNormal;

// Get vertex position in eye coordinates

vec4 vPosition4 = mvMatrix * vVertex;

vec3 vPosition3 = vPosition4.xyz / vPosition4.w;

// Get vector to light source

vec3 vLightDir = normalize(vLightPosition - vPosition3);

// Dot product gives us diffuse intensity

float diff = max(0.0, dot(vEyeNormal, vLightDir));

// Multiply intensity by diffuse color, force alpha to 1.0

vVaryingColor.xyz = diff * diffuseColor.xyz;

vVaryingColor.a = 1.0;

// Let’s not forget to transform the geometry

gl_Position = mvpMatrix * vVertex;

}

Only two attributes are specified for our shader: the vertex position, vVertex, and the
surface normal, vNormal. In contrast, we need five uniforms for this shader:

uniform vec4 diffuseColor;

uniform vec3 vLightPosition;

uniform mat4 mvpMatrix;

uniform mat4 mvMatrix;

uniform mat3 normalMatrix;

Simulating Light 265
6

ptg

The diffuseColor contains the color of our sphere, vLightPosition is the light position
in eye coordinates, mpvMatrix is the ModelviewProjection matrix, and mvMatrix is the
Modelview matrix. You’ve seen these before when using the stock shaders (albeit on the
client side). What’s new is this 3 x 3 normalMatrix.

The surface normal is typically submitted as one of the vertex attributes. However, the
surface normal must be rotated so that its direction is in eye space. You can’t multiply it
by the Modelview matrix to do this either, as the Modelview matrix also contains a trans-
lation that when you do the math affects the direction of the vector too. Instead, we
usually pass in a normal matrix as a uniform, which consists of just the rotational compo-
nent of the Modelview matrix. Fortunately for us, the GLTransformationPipeline class
that we’ve already been using has a function, GetNormalMatrix, that returns this for us.
Getting the normal direction in eye coordinates is then a simple matrix multiply:

vec3 vEyeNormal = normalMatrix * vNormal;

Outside of the main function, we also declare a smoothly shaded color value,
vVaryingColor.

smooth out vec4 vVaryingColor;

Other than transforming the geometry, this is the only output of the vertex shader. The
fragment program is trivial and simply assigns this incoming value to the output fragment
color.

vFragColor = vVaryingColor;

Because we are passing in the light position instead of the vector to the light source, we
must transform the vertex position into eye coordinates and subtract it from the light
position.

vec4 vPosition4 = mvMatrix * vVertex;

vec3 vPosition3 = vPosition4.xyz / vPosition4.w;

// Get vector to light source

vec3 vLightDir = normalize(vLightPosition - vPosition3);

The eye coordinates of the vertex cannot be multiplied by a matrix that contains the
projection, thus the reason we must have the Modelview matrix separately for this shader.
It is here that that w coordinate rears its head. It is important that you perform this divi-
sion in case the transformation matrix contains any scaling quantities (refer back to
Chapter 4 to see why this is or isn’t important to you).

Vectors are just beautiful aren’t they? To get the vector to the light, we simply subtract
these two vectors and normalize the result. Now we can use the dot product to determine
the intensity of the light on this vertex. Note too how we used the GLSL function max to
restrict our intensity to a positive value between zero and one.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders266

ptg

float diff = max(0.0, dot(vEyeNormal, vLightDir));

The final part of our lighting computation is to multiply the surface color by the light
intensity. In this case, only the rgb components as we let the alpha go unmodified by
lighting.

vVaryingColor.rgb = diff * diffuseColor.rgb;

vVaryingColor.a = diffuseColor.a;

Listing 6.8 shows just the SetupRC and RenderScene functions from the DiffuseLight
example program.

LISTING 6.8 Setup and Rendering Code from the DiffuseLight Example

// This function does any needed initialization on the rendering

// context.

void SetupRC(void)

{

// Background

glClearColor(0.3f, 0.3f, 0.3f, 1.0f);

glEnable(GL_DEPTH_TEST);

glEnable(GL_CULL_FACE);

shaderManager.InitializeStockShaders();

viewFrame.MoveForward(4.0f);

// Make the sphere

gltMakeSphere(sphereBatch, 1.0f, 26, 13);

diffuseLightShader = gltLoadShaderPairWithAttributes(

“DiffuseLight.vp”, “DiffuseLight.fp”, 2,

GLT_ATTRIBUTE_VERTEX, “vVertex”,

GLT_ATTRIBUTE_NORMAL, “vNormal”);

locColor = glGetUniformLocation(diffuseLightShader, “diffuseColor”);

locLight = glGetUniformLocation(diffuseLightShader, “vLightPosition”);

locMVP = glGetUniformLocation(diffuseLightShader, “mvpMatrix”);

locMV = glGetUniformLocation(diffuseLightShader, “mvMatrix”);

locNM = glGetUniformLocation(diffuseLightShader, “normalMatrix”);

}

// Called to draw scene

void RenderScene(void)

Simulating Light 267
6

ptg

{

static CStopWatch rotTimer;

// Clear the window and the depth buffer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

modelViewMatrix.PushMatrix(viewFrame);

modelViewMatrix.Rotate(rotTimer.GetElapsedSeconds() * 10.0f,

0.0f, 1.0f, 0.0f);

GLfloat vEyeLight[] = { -100.0f, 100.0f, 100.0f };

GLfloat vDiffuseColor[] = { 0.0f, 0.0f, 1.0f, 1.0f };

glUseProgram(diffuseLightShader);

glUniform4fv(locColor, 1, vDiffuseColor);

glUniform3fv(locLight, 1, vEyeLight);

glUniformMatrix4fv(locMVP, 1, GL_FALSE,

transformPipeline.GetModelViewProjectionMatrix());

glUniformMatrix4fv(locMV, 1, GL_FALSE,

transformPipeline.GetModelViewMatrix());

glUniformMatrix3fv(locNM, 1, GL_FALSE,

transformPipeline.GetNormalMatrix());

sphereBatch.Draw();

modelViewMatrix.PopMatrix();

glutSwapBuffers();

glutPostRedisplay();

}

This is your first substantial use of a nonstock shader, and you can see that five separate
calls to the glUniform functions are required to set up this shader in the rendering func-
tion. A common mistake, especially among programmers used to the old fixed pipeline, is
to make further changes to one of the matrix stacks after setting the shader uniform but
before rendering the geometry. Remember, the glUniform functions do not copy a refer-
ence to the data into the shaders; they copy the actual data into the shaders. This also
presents an opportunity for eliminating a few function calls for uniform values that do
not change frequently. The final output of our diffusely shaded sphere is shown in
Figure 6.6.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders268

ptg
FIGURE 6.6 The DiffuseLight example program.

The ADS Light Model
One of the most common lighting models, especially to those familiar with the now
deprecated fixed function pipeline, is the ADS lighting model. ADS stands for Ambient,
Diffuse, and Specular. It works on a simple principle, which is that objects have three
material properties, which are the Ambient, Diffuse, and Specular reflectivity. These prop-
erties are assigned color values, with brighter colors representing a higher amount of
reflectivity. Light sources have these same three properties and are again assigned color
values that represent the brightness of the light. The final color value of a vertex is then
the sum of the lighting and material interactions of these three properties.

Ambient Light
Ambient light doesn’t come from any particular direction. It has an original source some-
where, but the rays of light have bounced around the room or scene and become direc-
tionless. Objects illuminated by ambient light are evenly lit on all surfaces in all
directions. You can think of ambient light as a global “brightening” factor applied per
light source. This lighting component really approximates scattered light in the environ-
ment that originates from the light source.

Simulating Light 269
6

ptg

To calculate the contribution an ambient light source makes to the final vertex color, the
ambient material property is scaled by the ambient light values (the two color values are
just multiplied), which yields the ambient color contribution. In GLSL shader speak, we
would write this like so:

uniform vec3 vAmbientMaterial;

uniform vec3 vAmbientLight;

vec3 vAmbientColor = vAmbientMaterial * vAmbientLight;

Diffuse Light
Diffuse light is the directional component of a light source and was the subject of our
previous example lighting shader. In the ADS lighting model, the diffuse material and
lighting values are multiplied together, as is done with the ambient components. However,
this value is then scaled by the dot product of the surface normal and lighting vector (the
diffuse intensity). Again, in shader speak, this might look something like this:

uniform vec3 vDiffuseMaterial;

uniform vec3 vDiffuseLight;

float fDotProduct = max(0.0, dot(vNormal, vLightDir));

vec3 vDiffuseColor = vDiffuseMaterial * vDiffuseLight * fDotProduct;

Note that we did not simply take the dot product of the two vectors, but also employed
the GLSL function max. The dot product can also be a negative number, and we really
can’t have negative lighting or color values. Anything less than zero needs to just be zero.

Specular Light
Like diffuse light, specular light is a highly directional property, but it interacts more
sharply with the surface and in a particular direction. A highly specular light (really a
material property in the real world) tends to cause a bright spot on the surface it shines
on, which is called the specular highlight. Because of its highly directional nature, it is
even possible that depending on a viewer’s position, the specular highlight may not even
be visible. A spotlight and the sun are good examples of sources that produce strong spec-
ular highlights, but of course they must be shining on an object that is “shiny.”

The color contribution to the specular material and lighting colors is scaled by a value that
requires a bit more computation than we’ve done so far. First we must find the vector that
is reflected by the surface normal and the inverted light vector. The dot product between
these two vectors is then raised to a “shininess” power. The higher the shininess number,
the smaller the resulting specular highlight turns out to be. Some shader skeleton code
that does this is shown here.

uniform vec3 vSpecularMaterial;

uniform vec3 vSpecularLight;

float shininess = 128.0;

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders270

ptg

vec3 vReflection = reflect(-vLightDir, vEyeNormal);

float EyeReflectionAngle = max(0.0, dot(vEyeNormal, vReflection);

fSpec = pow(EyeReflectionAngle, shininess);

vec3 vSpecularColor = vSpecularLight * vSpecularMaterial * fSpec;

The shininess parameter could easily like anything else be a uniform. Traditionally (from
the fixed pipeline days), the highest specular power is set to 128. Numbers greater than
this tend to have a diminishingly small effect.

The ADS Shader
The final color of the vertex, given our last three examples, then could be computed as
follows:

vVertexColor = vAmbientColor + vDiffuseColor + vSpecularColor;

The sample program ADSGouraud implements just such a shader. We have, however,
made a simplification. Instead of passing in separate material and lighting colors/intensi-
ties, we just pass in a single color value for each of the ambient, diffuse, and specular
materials. You could think of this as premultiplying the material property by the lighting
colors. Unless you are going to vary the material properties per vertex, this makes for an
easy optimization. The Gouraud part of the sample name is because we compute the light-
ing values per vertex and then use color space interpolation between vertices for the
shading. The complete listing of the vertex shader is given in Listing 6.9.

LISTING 6.9 The ADSGouraud Shader Vertex Program

// ADS Point lighting Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

// Incoming per vertex... position and normal

in vec4 vVertex;

in vec3 vNormal;

// Set per batch

uniform vec4 ambientColor;

uniform vec4 diffuseColor;

uniform vec4 specularColor;

uniform vec3 vLightPosition;

uniform mat4 mvpMatrix;

uniform mat4 mvMatrix;

Simulating Light 271
6

ptg

uniform mat3 normalMatrix;

// Color to fragment program

smooth out vec4 vVaryingColor;

void main(void)

{

// Get surface normal in eye coordinates

vec3 vEyeNormal = normalMatrix * vNormal;

// Get vertex position in eye coordinates

vec4 vPosition4 = mvMatrix * vVertex;

vec3 vPosition3 = vPosition4.xyz / vPosition4.w;

// Get vector to light source

vec3 vLightDir = normalize(vLightPosition - vPosition3);

// Dot product gives us diffuse intensity

float diff = max(0.0, dot(vEyeNormal, vLightDir));

// Multiply intensity by diffuse color, force alpha to 1.0

vVaryingColor = diff * diffuseColor;

// Add in ambient light

vVaryingColor += ambientColor;

// Specular Light

vec3 vReflection = normalize(reflect(-vLightDir, vEyeNormal));

float spec = max(0.0, dot(vEyeNormal, vReflection));

if(diff != 0) {

float fSpec = pow(spec, 128.0);

vVaryingColor.rgb += vec3(fSpec, fSpec, fSpec);

}

// Don’t forget to transform the geometry!

gl_Position = mvpMatrix * vVertex;

}

We won’t list the entire fragment shader, as all it does is assign the incoming
vVaryingColor to the fragment color.

vFragColor = vVaryingColor;

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders272

ptg

For a given triangle, there are only three vertices and many more fragments that fill out
the triangle. This makes vertex lighting and Gouraud shading very efficient, as all the
computations are done only once per vertex. Figure 6.7 shows the output of the
ADSGouraud example program.

Simulating Light 273
6

FIGURE 6.7 Per-vertex-based lighting (Gouraud shading).

Phong Shading
One of the drawbacks to Gouraud shading is clearly apparent in Figure 6.7. Note the star-
burst pattern of the specular highlight. On a still image, this might almost pass as an
intentional artistic effect. The running sample program, however, rotates the sphere and
shows a characteristic flashing that is a bit distracting and generally undesirable. This is
caused by the discontinuity between triangles because the color values are being interpo-
lated linearly through color space. The bright lines are actually the seams between individ-
ual triangles. One way to reduce this effect is to use more and more vertices in your
geometry. Another, and higher quality, method is called Phong shading. With Phong
shading, instead of interpolating the color values between vertices, we interpolate the
surface normals between vertices. Figure 6.8 shows the output from the ADSPhong sample
program (Figures 6.7 and 6.8 are shown side-by-side in Color Plate 5).

ptg
FIGURE 6.8 Per-pixel-based lighting (Phong shading).

The trade-off is of course we are now doing significantly more work in the fragment
program, which is going to be executed significantly more times than the vertex program.
The basic code is the same as for the ADSGouraud example program, but this time there is
some significant rearranging of the shader code. Listing 6.10 shows the new vertex
program.

LISTING 6.10 ADSPhong Vertex Shader

// ADS Point lighting Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

// Incoming per vertex... position and normal

in vec4 vVertex;

in vec3 vNormal;

uniform mat4 mvpMatrix;

uniform mat4 mvMatrix;

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders274

ptg

uniform mat3 normalMatrix;

uniform vec3 vLightPosition;

// Color to fragment program

smooth out vec3 vVaryingNormal;

smooth out vec3 vVaryingLightDir;

void main(void)

{

// Get surface normal in eye coordinates

vVaryingNormal = normalMatrix * vNormal;

// Get vertex position in eye coordinates

vec4 vPosition4 = mvMatrix * vVertex;

vec3 vPosition3 = vPosition4.xyz / vPosition4.w;

// Get vector to light source

vVaryingLightDir = normalize(vLightPosition - vPosition3);

// Don’t forget to transform the geometry!

gl_Position = mvpMatrix * vVertex;

}

All the lighting computations depend on the surface normal and light direction vector.
Instead of passing a computed color value one from each vertex, we pass these two
vectors:

smooth out vec3 vVaryingNormal;

smooth out vec3 vVaryingLightDir;

Now the fragment shader has significantly more work to do than before, and it is shown
in Listing 6.11.

LISTING 6.11 ADSPhone Fragment Shader

// ADS Point lighting Shader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

out vec4 vFragColor;

Simulating Light 275
6

ptg

uniform vec4 ambientColor;

uniform vec4 diffuseColor;

uniform vec4 specularColor;

in vec3 vVaryingNormal;

in vec3 vVaryingLightDir;

void main(void)

{

// Dot product gives us diffuse intensity

float diff = max(0.0, dot(normalize(vVaryingNormal),

normalize(vVaryingLightDir)));

// Multiply intensity by diffuse color, force alpha to 1.0

vFragColor = diff * diffuseColor;

// Add in ambient light

vFragColor += ambientColor;

// Specular Light

vec3 vReflection = normalize(reflect(-normalize(vVaryingLightDir),

normalize(vVaryingNormal)));

float spec = max(0.0, dot(normalize(vVaryingNormal), vReflection));

// If the diffuse light is zero, don’t even bother with the pow function

if(diff != 0) {

float fSpec = pow(spec, 128.0);

vFragColor.rgb += vec3(fSpec, fSpec, fSpec);

}

}

On today’s hardware higher quality rendering choices such as Phong shading are often
practical. The visual quality is dramatic, and performance is often only marginally
compromised. Still, on lower powered hardware (such as an embedded device) or in a
scene where many other already expensive choices have been made, Gouraud shading
may be the best choice. A general shader performance optimization rule is to move as
much processing out of the fragment shaders and into the vertex shader as possible. With
this example, you can see why.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders276

ptg

Accessing Textures
Accessing a texture map from a shader is very simple. Texture coordinates are passed to
your vertex shader as attributes. These attributes are usually smoothly interpolated
between vertices in the fragment shader. The fragment shader uses these interpolated
texture coordinates to sample the texture. The currently bound texture object is already set
up for mipmapping/nonmipmapping, the filtering mode, wrap mode, and so on. The
sampled filtered texture color comes back as an RGBA color value that you can write
directly to the fragment or combine with other color calculations. We get more in depth
with using textures in and out of GLSL in the next chapter. With this section we at least
get you going with the basics.

Just the Texels Please
The TexturedTriangle example program represents the simplest possible shader that uses
texture. Its goal is simple, draw a single triangle and put a texture on it. You can see where
we are going with this in Figure 6.9.

Accessing Textures 277
6

FIGURE 6.9 The Textured Triangle program.

On the client side, the C/C++ code to render the triangle is pretty trivial, and setting up a
triangle with texture coordinates is nothing we haven’t already done with the stock
shaders. The vertex program that receives our vertex attributes is shown in Listing 6.12.

ptg

LISTING 6.12 The TexturedTriangle Vertex Program

// The TexturedIdentity Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

in vec4 vVertex;

in vec2 vTexCoords;

smooth out vec2 vVaryingTexCoords;

void main(void)

{

vVaryingTexCoords = vTexCoords;

gl_Position = vVertex;

}

The key part of this short vertex program is the incoming vertex attribute vTexCoords that
contains the s and t texture coordinates for this vertex and the outgoing variable
vVaryingTexCoords. This is all that is required to get the texture coordinates to interpolate
across the surface of our triangle.

The fragment program, shown in Listing 6.13, is also short and contains something we
haven’t talked about yet.

LISTING 6.13 The TexturedTriangle Fragment Program

// The TexturedIdentity Shader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

uniform sampler2D colorMap;

out vec4 vFragColor;

in vec4 vVaryingTexCoords;

void main(void)

{

vFragColor = texture(colorMap, vVaryingTexCoords.st);

}

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders278

ptg

Up near the top, there is a new variable type, a sampler2D:

uniform sampler2D colorMap;

A sampler is actually just an integer (you use glUniform1i to set its value), and it repre-
sents the texture unit where the texture you will be sampling is bound. The 2D part of
sampler2D indicates that it is a 2D texture, and you can also have 1D, 3D, and other types
of samplers (which are all covered in the next chapter). For now, we always set this value
to zero to indicate texture unit 0. In Chapter 5 we covered texture objects as a means to
manage any number of different texture states, and we used the function glBindTexture
to select between the different texture objects. All these texture binds were actually
binding to the default texture unit, texture unit 0. There are actually many texture units,
and each can have its own texture object bound to it. Using more than one texture at a
time allows for a lot of very cool effects and is a powerful technique, and we jump into
that in the next chapter.

Setting the sampler uniform and rendering the triangle in the client code are pretty
straightforward.

glUseProgram(myTexturedIdentityShader);

glBindTexture(GL_TEXTURE_2D, textureID);

GLint iTextureUniform = glGetUniformLocation(myTexturedIdentityShader,

“colorMap”);

glUniform1i(iTextureUniform, 0);

triangleBatch.Draw();

In the shader, we call the texture mapping built-in function texture to sample our texture
using the interpolated texture coordinates and assign the color value directly to the frag-
ment color.

vFragColor = texture(colorMap, vVaryingTexCoords.st);

Light the Texels
Now that you know how to sample a texture, let’s do something a little more interesting
with those filtered texel values—for example, adding a texture to the ADSPhong shader.
With all of our lighting shaders, we essentially multiplied our base color values by the
intensity of the light, either per vertex, or per pixel. The modified ADSPhong shader,
which we call ADSTexture, samples the texture and then multiplies the texture color
values by the light intensity. The output of the example program LitTexture is shown in
Figure 6.10. Take careful note of the nice white specular highlight in the upper left-hand
corner of the sphere.

Accessing Textures 279
6

ptg
FIGURE 6.10 Combining light and texture in LitTexture.

This white specular highlight presents the one special consideration we must make when
lighting a textured surface. The sum of the ambient and diffuse light could potentially be
as bright as solid white, which in color space is all 1s. Multiplying a texture color by white
simply results in the original undimmed texel color values. This means there is no way to
multiply a texture color by a valid lighting value and get a white specular highlight to
show up…well, at least that’s the way it’s supposed to work.

The reality is that often the results of our lighting calculations, including the specular
highlight, spill a bit over 1.0 for each color channel. This means it is possible at least to
oversaturate the colors and get a white specular highlight. The correct approach, however,
is to multiply the sum of the ambient and diffuse light intensity by the texture color and
then add the specular light contribution afterward. Listing 6.14 shows how we modified
our ADSPhong fragment shader to do just this.

LISTING 6.14 The ADSTexture Fragment Program

// ADS Point lighting Shader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders280

ptg

out vec4 vFragColor;

uniform vec4 ambientColor;

uniform vec4 diffuseColor;

uniform vec4 specularColor;

uniform sampler2D colorMap;

smooth in vec3 vVaryingNormal;

smooth in vec3 vVaryingLightDir;

smooth in vec2 vTexCoords;

void main(void)

{

// Dot product gives us diffuse intensity

float diff = max(0.0, dot(normalize(vVaryingNormal),

normalize(vVaryingLightDir)));

// Multiply intensity by diffuse color, force alpha to 1.0

vFragColor = diff * diffuseColor;

// Add in ambient light

vFragColor += ambientColor;

// Modulate in the texture

vFragColor *= texture(colorMap, vTexCoords);

// Specular Light

vec3 vReflection = normalize(reflect(-normalize(vVaryingLightDir),

normalize(vVaryingNormal)));

float spec = max(0.0, dot(normalize(vVaryingNormal), vReflection));

if(diff != 0) {

float fSpec = pow(spec, 128.0);

vFragColor.rgb += vec3(fSpec, fSpec, fSpec);

}

}

Discarding Fragments
Fragment shaders have the option of aborting processing and simply not writing any frag-
ment color (or depth, or stencil for that matter) values. The statement discard simply
stops the fragment program in its tracks. A common use for this statement is to perform
an alpha test. Normal blending operations require a read from the color buffer, two multi-
plies (at least), a sum of colors, and then writing the value back to the color buffer. If the

Accessing Textures 281
6

ptg

alpha is zero, or very near zero, the fragments are essentially invisible. It’s a poor perfor-
mance choice to draw things that are invisible! Much less, this creates an invisible pattern
in the depth buffer, which can cause depth testing anomalies. An alpha test simply checks
for some threshold value and completely discards the fragment when the alpha falls below
that value. For example, to test for an alpha less than say 0.1, you might do something
like this:

if(vColorValue.a < 0.1f)

discard;

A cool and animated effect that makes use of this feature is an erosion shader. An erosion
shader makes geometry look like it is eroding away over time. With the discard state-
ment, you have per-pixel control over which fragments are drawn and which are not. The
example program Dissolve performs just such an effect. We start with a texture that has an
appropriate noise or cloud pattern. These are easy enough to make with most photo
editing software packages. For our example here, we used the one shown in Figure 6.11.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders282

FIGURE 6.11 A cloud texture we use for our erosion effect.

We set up a time-based uniform in our client code that cycles from 1.0 to 0.0 over a period
of 10 seconds. Our goal is to make our object (a green torus) “melt” over that 10 second
period. We do this by sampling the cloud texture and comparing one of the color compo-
nents to our countdown variable, discarding the fragment completely when the color
value is greater than the threshold. Listing 6.15 shows the complete source for this frag-
ment shader.

LISTING 6.15 The Dissolve Fragment Shader

// ADS Point lighting Shader with dissolve effect

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

out vec4 vFragColor;

ptg

uniform vec4 ambientColor;

uniform vec4 diffuseColor;

uniform vec4 specularColor;

uniform sampler2D cloudTexture;

uniform float dissolveFactor;

smooth in vec3 vVaryingNormal;

smooth in vec3 vVaryingLightDir;

smooth in vec2 vVaryingTexCoord;

void main(void)

{

vec4 vCloudSample = texture2D(cloudTexture, vVaryingTexCoord);

if(vCloudSample.r < dissolveFactor)

discard;

// Dot product gives us diffuse intensity

float diff = max(0.0, dot(normalize(vVaryingNormal),

normalize(vVaryingLightDir)));

// Multiply intensity by diffuse color, force alpha to 1.0

vFragColor = diff * diffuseColor;

// Add in ambient light

vFragColor += ambientColor;

// Specular Light

vec3 vReflection = normalize(reflect(-normalize(vVaryingLightDir),

normalize(vVaryingNormal)));

float spec = max(0.0, dot(normalize(vVaryingNormal), vReflection));

if(diff != 0) {

float fSpec = pow(spec, 128.0);

vFragColor.rgb += vec3(fSpec, fSpec, fSpec);

}

}

This is essentially again a modification of the ADSPhong light fragment program. The
dissolve effect is simply woven into this shader. First we need the uniforms for the texture
sampler and our countdown timer.

uniform sampler2D cloudTexture;

uniform float dissolveFactor;

Accessing Textures 283
6

ptg

Then we sample our texture and determine whether the red color value (chosen arbitrarily,
considering it’s a grayscale image) is below the countdown value; we discard the fragment
completely.

vec4 vCloudSample = texture(cloudTexture, vVaryingTexCoord);

if(vCloudSample.r < dissolveFactor)

discard;

Also note that we do this early in the fragment shader. There is no point in performing
the expensive per-pixel lighting computations if the fragment is not going to be drawn
anyway. The output (at least a single frame of the animation) of the sample program
Dissolve is shown in Figure 6.12.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders284

FIGURE 6.12 The output of the sample Dissolve program.

Cell Shading—Texels as Light
All of our examples of texture mapping, in this chapter and the last, have used 2D
textures. Two-dimensional textures are typically the simplest and easiest to understand.
Most people can quickly get the intuitive feel for putting a 2D picture on the side of a
piece of 2D or 3D geometry. Let’s take a look now at a one-dimensional texture mapping

ptg

example that is commonly used in computer games to render geometry that appears on-
screen like a cartoon. Toon shading, which is often referred to as cell shading, uses a one-
dimensional texture map as a lookup table to fill geometry with a solid color (using
GL_NEAREST) from the texture map.

The basic idea is to use the diffuse lighting intensity (the dot product between the eye
space surface normal and light directional vector) as the texture coordinate into a one-
dimensional texture that contains a gradually brightening color table. Figure 6.13 shows
one such texture, with four increasingly bright red texels (defined as RGB unsigned byte
color components).

Accessing Textures 285
6

FIGURE 6.13 A one-dimensional color lookup table.

Recall that the diffuse lighting dot product varies from 0.0 at no intensity to 1.0 at full
intensity. Conveniently, this maps nicely to a one-dimensional texture coordinate range.
Loading this one-dimensional texture is pretty straightforward as shown here:

glGenTextures(1, &texture);

glBindTexture(GL_TEXTURE_1D, texture);

GLubyte textureData[4][3] = { 32, 0, 0,

64, 0, 0,

128, 0, 0,

255, 0, 0};

glTexImage1D(GL_TEXTURE_1D, 0, GL_RGB, 4, 0, GL_RGB,

GL_UNSIGNED_BYTE, textureData);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

This code is from the example program ToonShader, which renders a spinning torus with
the toon shading effect applied. Although the GLTriangleBatch, which we use to create
the torus, supplies a set of two-dimensional texture coordinates, we ignore them in our
vertex program, which is shown in Listing 6.16.

ptg

LISTING 6.16 The Toon Vertex Shader

// Cell lighting Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

// Incoming per vertex... position and normal

in vec4 vVertex;

in vec3 vNormal;

smooth out float textureCoordinate;

uniform vec3 vLightPosition;

uniform mat4 mvpMatrix;

uniform mat4 mvMatrix;

uniform mat3 normalMatrix;

void main(void)

{

// Get surface normal in eye coordinates

vec3 vEyeNormal = normalMatrix * vNormal;

// Get vertex position in eye coordinates

vec4 vPosition4 = mvMatrix * vVertex;

vec3 vPosition3 = vPosition4.xyz / vPosition4.w;

// Get vector to light source

vec3 vLightDir = normalize(vLightPosition - vPosition3);

// Dot product gives us diffuse intensity

textureCoordinate = max(0.0, dot(vEyeNormal, vLightDir));

// Don’t forget to transform the geometry!

gl_Position = mvpMatrix * vVertex;

}

Other than the transformed geometry position, the only output of this shader is an inter-
polated texture coordinate textureCoordinate, which is represented as a single float. The
computation of the diffuse lighting component is virtually identical to the DiffuseLight
example.

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders286

ptg

The fragment program for our Toon shader simply samples our one-dimensional texture
and writes its value to the framebuffer fragment.

vFragColor = texture(colorTable, textureCoordinate);

The resulting output is shown in Figure 6.14. Both the red color ramp texture and the
toon shaded torus are also shown together in Color Plate 6.

Summary 287
6

FIGURE 6.14 Our toon shaded torus.

Summary
In this chapter, we broke free of the canned stock shaders that we used throughout the
first five chapters. For now, the GLBatch type classes in GLTools provide an easy way to
send down the most typical vertex attributes, and you saw how easy it is to hook your
own shader attributes up to those classes. We covered how similar GLSL is to C/C++ and
the catalog of built-in functions that can be used, as well as how to write your own. We
have gone over two lighting models and implemented them with a shader, discussed the
pros and cons of doing your expensive computations in the vertex or fragment shader,
and just touched on how to access texture data in your shaders.

ptg

Not only did we map 2D textures to geometry surfaces, but you saw how you can use
textures as “data,” by using it as a lookup value for eliminating geometry via the discard
statement, and as a one dimensional color table to implement cell shading.

We have only just scratched the surface of what can be done with GLSL in this chapter. In
the chapters that lie ahead, you learn more about GLSL and learn even more exciting
rendering techniques as we cover more of the OpenGL API and shading language. Why
wait though? You already know more than enough to start experimenting yourself, either
by modifying the shaders covered so far or dreaming up your own!

CHAPTER 6 Thinking Outside the Box: Nonstock Shaders288

ptg

CHAPTER 7

More Advanced Texture Topics

by Richard S. Wright, Jr. and Graham Sellers

WHAT YOU’LL LEARN IN THIS CHAPTER:

• How to use rectangle textures

• How to use a six-sided texture called a cube map

• How to apply more than one texture simultaneously

• How to create point sprites

• How to make more texture accessible to your shaders with texture arrays

• How to query the driver about texture support with proxies

In Chapter 5, “Basic Texturing,” you first learned the ropes of texture mapping with
OpenGL. Primarily we were concerned with the basics: loading a 2D image file, using
texture coordinates, the different wrap modes, and so on. Now it’s time to dig a little
deeper and expand on that knowledge base. You soon see that texture data can take on
the form of far more than just a 2D image file loaded from disk, and sometimes textures
don’t even contain visual data or a picture of any kind at all! Finally, you see how some-
times textures don’t even really exist, but are literally made up on the fly by the fragment
program.

Rectangle Textures
First, we continue to build upon our experience with using image files for texture, images
that we actually want to display in some way. Chapter 5 was mostly about 2D images
using the texture target GL_TEXTURE_2D, and we also showed how to use GL_TEXTURE_1D in
the previous chapter as a color lookup table for cell shading. For one-, two-, and three-
dimensional textures (remember GL_TEXTURE_3D, too), we typically mapped textures to
geometry with normalized texture coordinates that ranged from 0.0 to 1.0. We could stray

ptg

290 CHAPTER 7 More Advanced Texture Topics

outside that range and use the various texture coordinate wrapping modes to determine
whether the texture would repeat in different ways or be clamped down to the edges of
the texture image.

Another useful alternative to two-dimensional texture images is the texture target
GL_TEXTURE_RECTANGLE. This texture target mode works mostly like GL_TEXTURE_2D, with a
couple of exceptions. First, they cannot be mipmapped, which means you can only load
level zero with glTexImage2D. Second, the texture coordinates are not normalized, which
simply means rather than range from 0.0 to 1.0 across the image, the texture coordinates
actually address pixels. Texture coordinate (5, 19) is actually six pixels from the left, and
20 pixels up (remember, we programmers start counting at zero!) into the image.
Furthermore, texture coordinates cannot repeat, and they do not support texture compres-
sion.

This is convenient for many applications where OpenGL is used to process and present
image data rather than using textures for surface features of 3D models. Hardware support
for texture rectangles is also simpler than normal 2D texture mapping, making them fast
and efficient as well.

Loading a Rectangle Texture
Listing 7.1 shows the function to load a Targa file as a texture rectangle. This is similar to
the LoadTGATexture that we used previously for GL_TEXTURE_2D textures. The most notable
change is of course that all the texture functions now are using GL_TEXTURE_RECTANGLE as
their first parameter instead of GL_TEXTURE_2D. This change applies to any texture function
that works with rectangle textures. We also removed the code that checked for
mipmapped texture filters as they are no longer allowed; you must use either GL_NEAREST
or GL_LINEAR filter modes. We left the wrapMode parameter in place, but the GL_REPEAT and
GL_REPEAT_MIRRORED wrap modes are not supported with rectangle textures either.

LISTING 7.1 Loading a Rectangle Texture

bool LoadTGATextureRect(const char *szFileName, GLenum minFilter,

GLenum magFilter, GLenum wrapMode)

{

GLbyte *pBits;

int nWidth, nHeight, nComponents;

GLenum eFormat;

// Read the texture bits

pBits = gltReadTGABits(szFileName, &nWidth, &nHeight,

&nComponents, &eFormat);

if(pBits == NULL)

return false;

ptg

glTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_WRAP_S, wrapMode);

glTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_WRAP_T, wrapMode);

glTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_MIN_FILTER, minFilter);

glTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_MAG_FILTER, magFilter);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glTexImage2D(GL_TEXTURE_RECTANGLE, 0, nComponents, nWidth, nHeight, 0,

eFormat, GL_UNSIGNED_BYTE, pBits);

free(pBits);

return true;

}

Using a Rectangle Texture
Figure 7.1 shows an image of the OpenGL logo that we use for our first example program.
This is a Targa file with an alpha channel, and we are going to put it up on the screen in
front of our running example SphereWorld. This image is 300 pixels wide by 155 pixels
high.

Rectangle Textures 291
7

FIGURE 7.1 The OpenGL logo texture.

Loading this file as a rectangle texture looks much like loading our previous 2D texture
files. Note also the change to GL_TEXTURE_RECTANGLE in the glBindTexture function call.

glBindTexture(GL_TEXTURE_RECTANGLE, uiTextures[3]);

LoadTGATextureRect(“OpenGL-Logo.tga”, GL_NEAREST, GL_NEAREST,

GL_CLAMP_TO_EDGE);

Our goal for the example program TextureRect is to display the OpenGL logo on the
screen in the lower right-hand corner of the display. When drawing 2D in screen space, it
is common to create an orthographic projection matrix that matches the screen size. We
choose to make the coordinate system match the pixels on the screen, but put the origin
(0, 0) in the lower left-hand corner of the screen instead of the upper left-hand corner.
This keeps all our drawing coordinates in a nice neat first quadrant Cartesian system.
Setting up this projection matrix is shown in the following code:

ptg

CHAPTER 7 More Advanced Texture Topics292

M3DMatrix44f mScreenSpace;

m3dMakeOrthographicMatrix(mScreenSpace, 0.0f, 800.0f, 0.0f, 600.0f,

-1.0f, 1.0f);

We create the rectangle where we will display the OpenGL logo using the GLBatch class
and a triangle fan. Note how the texture coordinates specified range from 0.0 to the width
or height of the logo.

int x = 500;

int y = 155;

int width = 300;

int height = 155;

logoBatch.Begin(GL_TRIANGLE_FAN, 4, 1);

// Upper left hand corner

logoBatch.MultiTexCoord2f(0, 0.0f, height);

logoBatch.Vertex3f(x, y, 0.0);

// Lower left hand corner

logoBatch.MultiTexCoord2f(0, 0.0f, 0.0f);

logoBatch.Vertex3f(x, y - height, 0.0f);

// Lower right hand corner

logoBatch.MultiTexCoord2f(0, width, 0.0f);

logoBatch.Vertex3f(x + width, y - height, 0.0f);

// Upper right hand corner

logoBatch.MultiTexCoord2f(0, width, height);

logoBatch.Vertex3f(x + width, y, 0.0f);

logoBatch.End();

Now that we have a batch with vertices and texture coordinates, it’s time to render. First
we need a texture mapping shader that can use a rectangle texture. This again is a trivial
modification of just about any 2D texture shader, and we only need to change the sampler
from a sampler2D type to a samplerRect type. Listing 7.2 shows just the fragment shader
from this sample program.

ptg

LISTING 7.2 Fragment Shader for the TextureRect Example Program

// Rectangle Texture (replace) Shader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

out vec4 vFragColor;

uniform samplerRect rectangleImage;

smooth in vec2 vVaryingTexCoord;

void main(void)

{

vFragColor = texture(rectangleImage, vVaryingTexCoord);

}

Finally, we render the logo over the top of the normal SphereWorld output screen. To
accomplish this, we enable blending again and turn off depth testing. Otherwise, since we
are changing our coordinate system, we could easily end up with depth values from the
underlying 3D scene, preventing our 2D images from being rendered correctly.

// Turn blending on, and depth testing off

glEnable(GL_BLEND);

glDisable(GL_DEPTH_TEST);

glUseProgram(rectReplaceShader);

glUniform1i(locRectTexture, 0);

glUniformMatrix4fv(locRectMVP, 1, GL_FALSE, mScreenSpace);

glBindTexture(GL_TEXTURE_RECTANGLE, uiTextures[3]);

logoBatch.Draw();

// Restore no blending and depth test

glDisable(GL_BLEND);

glEnable(GL_DEPTH_TEST);

Rectangle Textures 293
7

ptg

FIGURE 7.2 Our final texture rectangle displayed over our 3D scene.

Cube Maps
A cube map is treated as a single texture object but it is made up of six square (yes, they
must be square!) 2D images that make up the six sides of a cube. Applications of cube
maps range from 3D light maps, reflections, and highly accurate environment maps.
Figure 7.3 shows the layout of six square images composing a cube map that we use for
the Cubemap sample program.

CHAPTER 7 More Advanced Texture Topics294

The final output of our work is shown in Figure 7.2 and is also shown in Color Plate 7.

ptg

FIGURE 7.3 The layout of six cube faces in the Cubemap sample program.

These six 2D tiles represent the view of the world from six different directions (negative
and positive X, Y, and Z). Essentially, a cube map is projected onto an object as if the cube
map were surrounding the object itself.

Loading Cube Maps
Cube maps add six new values that can be passed into glTexImage2D:

GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, and GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

These constants represent the direction in world coordinates of the cube face surrounding
the object being mapped. For example, to load the map for the positive X direction, you
might use a function that looks like this:

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA, iWidth, iHeight,

0, GL_RGBA, GL_UNSIGNED_BYTE,

pImage);

To take this example further, look at the following code segment from the Cubemap
sample program. Here, we store the name and identifiers of the six cube map faces in an
array and then use a loop to load all six images into a single texture object:

Cube Maps 295
7

ptg

const char *szCubeFaces[6] = { “pos_x.tga”, “neg_x.tga”, “pos_y.tga”,

“neg_y.tga”,”pos_z.tga”, “neg_z.tga” };

GLenum cube[6] = { GL_TEXTURE_CUBE_MAP_POSITIVE_X,

GL_TEXTURE_CUBE_MAP_NEGATIVE_X,

GL_TEXTURE_CUBE_MAP_POSITIVE_Y,

GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,

GL_TEXTURE_CUBE_MAP_POSITIVE_Z,

GL_TEXTURE_CUBE_MAP_NEGATIVE_Z };

. . .

. . .

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S,

GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T,

GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R,

GL_CLAMP_TO_EDGE);

GLbyte *pBytes;

GLint iWidth, iHeight, iComponents;

GLenum eFormat;

// Load Cube Map images

for(i = 0; i < 6; i++)

{

// Load this texture map

(GL_TEXTURE_CUBE_MAP, GL_GENERATE_MIPMAP, GL_TRUE);

pBytes = gltLoadTGABits(szCubeFaces[i], &iWidth, &iHeight,

&iComponents, &eFormat);

glTexImage2D(cube[i], 0, iComponents, iWidth, iHeight, 0, eFormat,

GL_UNSIGNED_BYTE, pBytes);

free(pBytes);

}

glGenerateMipmap(GL_TEXTURE_CUBE_MAP);

Texture coordinates for cube maps seem a little odd at first glance. Unlike a true 3D
texture, the S, T, and R texture coordinates represent a signed vector from the center of the
texture map. This vector intersects one of the six sides of the cube map. The texels around
this intersection point are then sampled to create the filtered color value from the texture.

CHAPTER 7 More Advanced Texture Topics296

ptg

Making a Skybox
The most common use of cube maps is to create an object that reflects its surroundings.
The six images used for the Cubemap sample program were provided courtesy of The
Game Creators, Ltd. (www.thegamecreators.com). This cube map is applied to a sphere,
creating the appearance of a mirrored surface. This same cube map is also applied to the
skybox, which creates the background being reflected.

A skybox is nothing more than a big box with a picture of the sky on it. Another way of
looking at it is as a picture of the sky on a big box! Simple enough. An effective skybox
contains six images that contain views from the center of your scene along the six direc-
tional axes. If this sounds just like a cube map, congratulations, you’re paying attention!
For our Cubemap sample program a large box is drawn around the scene, and the cube
map texture is applied to the six faces of the cube. The skybox is drawn using the GLTools
function gltMakeCube, which simply fills a GLBatch container with triangles that make up
a cube with the specified radius. In our case, we chose a cube that was 20 units in each
direction from the origin.

gltMakeCube(cubeBatch, 20.0f);

This function assigns 2D texture coordinates to the GLT_ATTRIBUTE_TEXTURE0 attribute slot
such that a 2D image is applied to each face of the cube. However, this does not suit our
needs for a cube map as we need 3D texture coordinates that represent a vector to where
on the cube map to sample texels. The GLBatch class only supports 2D texturing, so this
simply isn’t going to work out of the box. The solution is to write a custom vertex shader
that calculates the texture coordinates for us. In fact, this is simple given that each corner
of the cube in vertex space is also a vector to that location from the center of the cube. All
we have to do is normalize this vector, and we have a ready-made cube map texture coor-
dinate. The source code to the skybox shader vertex program is provided in Listing 7.3. Its
sole purpose is to transform the vertex positions by the modelviewprojection matrix, and
to derive a texture coordinate from the original vertex position.

LISTING 7.3 The Cube Mapped Vertex Shader

// Skybox Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

// Incoming per vertex... just the position

in vec4 vVertex;

uniform mat4 mvpMatrix; // Transormation matrix

Cube Maps 297
7

ptg

// Texture Coordinate to fragment program

varying vec3 vVaryingTexCoord;

void main(void)

{

// Pass on the texture coordinates

vVaryingTexCoord = normalize(vVertex.xyz);

// Don’t forget to transform the geometry!

gl_Position = mvpMatrix * vVertex;

}

The fragment program, which is provided in Listing 7.4, receives the three-component
texture coordinate and samples the cube map at that location. Note that for a cube map,
the sampler type is samplerCube.

LISTING 7.4 The Cube Mapped Fragment Shader

// Skybox Shader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

out vec4 vFragColor;

uniform samplerCube cubeMap;

varying vec3 vVaryingTexCoord;

void main(void)

{

vFragColor = texture(cubeMap, vVaryingTexCoord);

}

One final note about skyboxes is that when you use mipmapping with a cube map, you
can often get seams along the edges where two sides join. (This really also applies to any
application of cube maps.) OpenGL internally adjusts its own filtering rules to help elimi-
nate these seams when you enable GL_TEXTURE_CUBE_MAP_SEAMLESS, like so:

glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);

CHAPTER 7 More Advanced Texture Topics298

ptg

Making a Reflection
Texturing the skybox is straightforward. Creating the reflection is just a bit more involved.
To begin with we must create in our shader a reflection vector using the surface normal
and the vector to the vertex in eye coordinates. In addition, to provide a true reflection,
we also take the orientation of the camera into account. The camera’s rotation matrix is
extracted from the GLFrame class and inverted. This is then supplied to the shader as a
uniform along with the other transformation matrices where it is used to rotate the afore-
mentioned reflection vector, which is actually our cube mapped texture coordinates.
Without this rotation of the texture coordinates, the cube map will not correctly reflect
the surrounding skybox as the camera moves around in the scene.

Listing 7.5 provides the source for the Reflection.vp vertex shader. The corresponding frag-
ment shader is essentially the same code as for the skybox shader; it simply uses the inter-
polated cube mapped texture coordinates to sample the cube map and apply it to the
fragment.

LISTING 7.5 The Reflection Vertex Shader

// Reflection Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

// Incoming per vertex... position and normal

in vec4 vVertex;

in vec3 vNormal;

uniform mat4 mvpMatrix;

uniform mat4 mvMatrix;

uniform mat3 normalMatrix;

uniform mat4 mInverseCamera;

// Texture coordinate to fragment program

smooth out vec3 vVaryingTexCoord;

void main(void)

{

// Normal in Eye Space

vec3 vEyeNormal = normalMatrix * vNormal;

// Vertex position in Eye Space

vec4 vVert4 = mvMatrix * vVertex;

vec3 vEyeVertex = normalize(vVert4.xyz / vVert4.w);

Cube Maps 299
7

ptg

// Get reflected vector

vec4 vCoords = vec4(reflect(vEyeVertex, vEyeNormal), 1.0);

// Rotate by flipped camera

vCoords = mInverseCamera * vCoords;

vVaryingTexCoord.xyz = normalize(vCoords.xyz);

// Don’t forget to transform the geometry!

gl_Position = mvpMatrix * vVertex;

}

Figure 7.4 shows the output of the Cubemap sample program. Notice how the sky and
surrounding terrain are reflected correctly off the surface of the sphere. Moving the camera
around the sphere (by using the arrow keys) reveals the correct background and sky view
reflected accurately off the sphere as well.

CHAPTER 7 More Advanced Texture Topics300

FIGURE 7.4 Output from the Cubemap sample program. (This figure also appears as Color
Plate 8.)

ptg

Multitexture
Your previous exposure to texture mapping was to load a single texture into a texture
object. When you wanted to use that texture, you bound to the texture object of the
texture you wanted, and then set the single uniform sampler in the fragment program…to
zero. Why zero? Because zero was the index of the texture unit to which your texture was
bound. Modern OpenGL implementations support the capability to apply two or more
textures to geometry simultaneously by allowing you to bind separate texture objects to
each of some number of available texture units. You can query the implementation to see
how many texture units are available like this:

GLint iUnits;

glGetIntegerv(GL_MAX_TEXTURE_UNITS, &iUnits);

By default, the first texture unit is the active texture unit. All texture binding operations
affect the currently active texture unit. You can change the current texture unit by calling
glActiveTexture with the texture unit identifier as the argument. For example, to switch
to the second texture unit and bind to a specific texture, you would do something like the
following:

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_2D, textureID);

It is important to keep track of which texture unit is currently active when using multiple
textures in your rendering. These texture units are agnostic as to the dimensionality of the
textures as well; they could be 1-, 2-, or 3-dimensional textures or cube maps or texture
rectangles.

Multiple Texture Coordinates
Textures are applied to geometry by the interpolation of texture coordinates. There is
nothing preventing you from using one set of texture coordinates for any number of
texture units, or layers as they are sometimes called. You might also compute texture coor-
dinates like we did for the skybox in the previous example, or you might have separate
sets of texture coordinates for each texture; they are after all nothing more than one more
set of attributes for your batch. None of these scenarios are uncommon.

The GLBatch class by default does not provide any texture coordinates as an attribute
array. You can, however, specify up to four sets of texture coordinates when you call the
Begin function with the nTextureUnits parameter.

void GLBatch::Begin(GLenum primitive, GLuint nVerts,

GLuint nTextureUnits = 0);

Multitexture 301
7

ptg

Two functions are provided for supplying texture coordinates. The first is
CopyTexCoordData2f and is the fastest as it copies an entire set of texture coordinates all at
once.

void GLBatch::CopyTexCoordData2f(M3DVector2f *vTexCoords,

GLuint uiTextureLayer);

The second is when using the slower one-vertex-at-a-time immediate modelike interface.
Two options allow you to specify a two-dimensional texture coordinate, one at a time.

void GLBatch::MultiTexCoord2f(GLuint texture, GLclampf s, GLclampf t);

void GLBatch::MultiTexCoord2fv(GLuint texture, M3DVector2f vTexCoord);

A Multitextured Example
Multiple kinds of textures can be combined in an almost infinite variety of ways. A huge
number of techniques rely on using two or more textures at once in a shader. Again, we
refer you to Appendix A, “Further Reading,” for some resources on additional 3D tech-
niques. To demonstrate how easy it is to combine multiple textures, we build on our last
cube mapped example by adding a bit of tarnish to the mirrored ball in the center of the
scene. The tarnish texture, tarnish.tga, is shown in Figure 7.5.

CHAPTER 7 More Advanced Texture Topics302

FIGURE 7.5 The tarnish texture map.

We bind this two-dimensional texture to texture unit GL_TEXTURE1 and then multiply
the texture color from the tarnish texture by the color of the cube map texture. Where the
tarnish texture is dark, it darkens the reflection, and where it is light or nearly white, it
has little to no effect on the reflected texture. The resulting output of this effect is shown
in Figure 7.6.

ptg

FIGURE 7.6 Output from the Multitexture sample program. (This figure also appears as
Color Plate 9.)

The client side of this operation is fairly simple. Given that tarnishTexture is the texture
object containing the tarnish texture, and cubeTexture is the texture object name contain-
ing the cube map, the following binds these two textures, each to their own texture unit.

// Set textures to their texture units

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_2D, tarnishTexture);

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_CUBE_MAP, cubeTexture);

Recall previously that the sphere batch contained a set of two-dimensional texture coordi-
nates that went unused in the cube map example program. Now we modify our shader
code so that these texture coordinates are used for the tarnish texture, while we continue
to compute the cube map texture coordinates. Rather than relist the entire vertex
program, we just talk about the three lines of shader code added. First, we added the
attribute for the two-dimensional texture coordinates used by the tarnish texture.

in vec2 vTexCoords;

Multitexture 303
7

ptg

Then of course, we need these interpolated, so we set up a set of coordinates that can be
smoothly interpolated between vertices.

smooth out vec2 vTarnishCoords;

Finally, we simply assign the attributes to the interpolated variable.

vTarnishCoords = vTexCoords.st;

This is really nothing that you wouldn’t ordinarily do for normal texture mapping. The
bigger changes come in the fragment program, which is shown in its entirety in Listing
7.6.

LISTING 7.6 The Reflection Shader with Multitexture Support

// Reflection Shader with multitexture

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

out vec4 vFragColor;

uniform samplerCube cubeMap;

uniform sampler2D tarnishMap;

smooth in vec3 vVaryingTexCoord;

smooth in vec2 vTarnishCoords;

void main(void)

{

vFragColor = texture(cubeMap, vVaryingTexCoord.stp);

vFragColor *= texture(tarnishMap, vTarnishCoords);

}

Note that we now have two samplers, cubeMap, which is of type samplerCube, and
tarnishMap, which is of the type sampler2D. These two textures are sampled with their
respective texture coordinates, and the resulting filtered color values are simply multiplied
together, yielding the final fragment color.

Point Sprites
Point sprites are an exciting feature supported by OpenGL version 1.5 and later. Although
OpenGL has always supported texture mapped points, prior to version 1.5 this meant a

CHAPTER 7 More Advanced Texture Topics304

ptg

single texture coordinate applied to an entire point. Large textured points were simply
large versions of a single filtered texel. With point sprites (which are now the default point
rendering mode in OpenGL 3.0 and later), you can place a 2D textured image anywhere
on-screen by drawing a single 3D point.

Probably the most common application of point sprites is for particle systems. A large
number of particles moving on-screen can be represented as points to produce a number
of visual effects. However, representing these points as small overlapped 2D images can
produce dramatic streaming animated filaments. For example, Figure 7.7 shows a well-
known screen saver on the Macintosh powered by just such a particle effect.

Point Sprites 305
7

FIGURE 7.7 A particle effect in the flurry screen saver.

Before point sprites, achieving this type of effect was a matter of drawing a large number
of textured quads (or triangle fans) on-screen. This could be accomplished either by
performing a costly rotation to each individual face to make sure that it faced the camera,
or by drawing all particles in a 2D orthographic projection. Point sprites allow you to
render a perfectly aligned textured 2D square by sending down a single 3D vertex. At one-
quarter the bandwidth of sending down four vertices for a quad and no client-side matrix
monkey business to keep the 3D quad aligned with the camera, point sprites are a potent
and efficient feature of OpenGL.

Texturing Points
Point sprites are easy to use. On the client side, the only thing you have to do is simply
bind to a 2D texture (and don’t forget to set the appropriate uniform for the texture unit!),

ptg

as point sprites are now the default point rasterization mode, with the only exception
being when point smoothing is enabled. You cannot use point sprites and antialiased
points at the same time. In the fragment program, there is a built-in variable
gl_PointCoord, which is a two-component vector that interpolates the texture coordinates
across the point. Listing 7.7 shows the fragment shader for the PointSprites example
program.

LISTING 7.7 Texturing a Point Sprite in the Fragment Shader

// SpaceFlight Shader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

out vec4 vFragColor;

in vec4 vStarColor;

uniform sampler2D starImage;

void main(void)

{

vFragColor = texture(starImage, gl_PointCoord) * vStarColor;

}

So for a point sprite, you do not need to send down texture coordinates as an attribute.
Since a point is a single vertex, you wouldn’t have the ability to interpolate across the
points surface any other way. Of course there is nothing preventing you from providing a
texture coordinate anyway or deriving your own customized interpolation scheme.

Point Sizes
There are two ways to set a point size; the first is the glPointSize function.

void glPointSize(GLfloat size);

This function sets the diameter of the point in pixels for both aliased and antialiased
points. This function and how to determine the available point size ranges was covered in
Chapter 3, “Basic Rendering.” You can also set the point size programmatically in the
vertex shader. First you have to enable point size mode:

glEnable(GL_PROGRAM_POINT_SIZE);

CHAPTER 7 More Advanced Texture Topics306

ptg

Then in your vertex program, a built-in variable gl_PointSize can be set, which deter-
mines the final rasterized size of the point. A common use for this is to determine the size
of a point based on its distance. When you use the glPointSize function to set the size of
points, they are unaffected by the perspective divide, making all the points the same size
no matter how far away they are.

The following formula is often used to implement distance-based point size attenuation:

Point Sprites 307
7

2

1size
a b d c d

=
+ +

where d is the distance of the point from the eye and a, b, and c are configurable parame-
ters of a quadratic equation. You can store those in uniforms and update them with your
application, or if you have a particular set of parameters in mind, you might want to make
them constants in your vertex shader. For example, if you want a constant size, set a to a
nonzero value and b and c to zero. If a and c are zero and b is nonzero, then point size
will fall off linearly with distance. Likewise, if a and b are zero but c is nonzero, then point
size will fall off quadratically with distance.

Putting This All Together
Let’s now take a look at an example program that makes use of the point sprite features
discussed so far. The PointSprite example program creates an animated star field that
appears as if you were flying forward through it. This is accomplished by placing random
points out in front of your field of view and then passing a time value into the vertex
shader as a uniform. This time value is used to move the point positions so that over time
they move closer to you and then recycle when they get to the near clipping plane to the
back of the frustum. In addition, we scale the size of the stars so that they start off very
small but get larger as they get closer to your point of view. The result is a nice realistic
effect…all we need is some planetarium or space movie music!

Figure 7.8 shows our star texture map that is applied to the points. It is simply a Targa file
that we load in the same manner we loaded any other 2D texture so far. Points can also be
mipmapped, and because they can range from very small to very large, it’s probably a
good idea to do so.

FIGURE 7.8 The star texture map. (Also shown in Color Plate 10.)

We are not going to cover all of the details of setting up the star field effect, as it’s pretty
routine and you can check the source yourself if you want to see how we pick random
numbers. Of more importance is the actual rendering of code in the RenderScene function:

ptg

glClear(GL_COLOR_BUFFER_BIT);

// Turn on additive blending

glEnable(GL_BLEND);

glBlendFunc(GL_ONE, GL_ONE);

// Let the vertex program determine the point size

glEnable(GL_PROGRAM_POINT_SIZE);

// Bind to our shader, set uniforms

glUseProgram(starFieldShader);

glUniformMatrix4fv(locMVP, 1, GL_FALSE, viewFrustum.GetProjectionMatrix());

glUniform1i(locTexture, 0);

// fTime goes from 0.0 to 999.0 and recycles

float fTime = timer.GetElapsedSeconds() * 10.0f;

fTime = fmod(fTime, 999.0f);

glUniform1f(locTimeStamp, fTime);

// Draw the stars

starsBatch.Draw();

First you might notice we do not clear the depth buffer. That’s because we are going to use
additive blending to blend our stars with the background. Because the dark area of our
texture is black (zero in color space), we can get away with just adding the colors together
as we draw. Transparency with alpha would require that we depth sort our stars, and that
is an expense we certainly can do without. After turning on point size program mode, we
bind to our shader and set up the uniforms. Of interest here is that we have a timer,
which drives what will end up being the z position of our stars that recycles so that it just
counts 0 to 999. Listing 7.8 provides the source code to the vertex shader, which also has
some interesting features.

LISTING 7.8 Vertex Shader for the Star Field Effect

// SpaceFlight Shader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

// Incoming per vertex... position and normal

in vec4 vVertex;

in vec4 vColor;

CHAPTER 7 More Advanced Texture Topics308

ptg

uniform mat4 mvpMatrix;

uniform float timeStamp;

out vec4 vStarColor;

void main(void)

{

vec4 vNewVertex = vVertex;

vStarColor = vColor;

// Offset by running time, makes it move closer

vNewVertex.z += timeStamp;

// If out of range, adjust

if(vNewVertex.z > -1.0)

vNewVertex.z -= 999.0;

// Custom size adjustment

gl_PointSize = 30.0 + (vNewVertex.z / sqrt(-vNewVertex.z));

// If they are very small, fade them up

if(gl_PointSize < 4.0)

vStarColor = smoothstep(0.0, 4.0, gl_PointSize) * vStarColor;

// Don’t forget to transform the geometry!

gl_Position = mvpMatrix * vNewVertex;

}

The vertex z position is offset by the timestamp uniform. This is what causes the anima-
tion where the stars move closer to you. We need to check the position, and when they
get to the near clipping plane, we simply recycle their position back to the far clipping
plane. We used an inverse square root function to make the stars grow ever larger as they
get nearer and set the final size in the gl_PointSize variable. If the star sizes are too small,
you will get flickering sometimes, so we do one final check, and when a point size is less
than 4.0, we dim the color progressively so that it fades into view instead of just popping
up near the far clipping plane. The final output is shown in Figure 7.9.

Point Sprites 309
7

ptg
FIGURE 7.9 Flying through space with point sprites. (Also shown in Color Plate 10.)

Point Parameters
A couple of features of point sprites (and points in general actually) can be fine-tuned with
the function glPointParameter. Figure 7.10 shows the two possible locations of the origin
(0,0) of the texture applied to a point sprite.

CHAPTER 7 More Advanced Texture Topics310

GL_UPPER_LEFT GL_LOWER_LEFT

o

+Y

+X

(0,0)

(1,1)

P

o

+Y

+X

(0,0)

(1,1)

P

FIGURE 7.10 Two potential orientations of textures on a point sprite.

ptg

Setting the GL_POINT_SPRITE_COORD_ORIGIN parameter to GL_LOWER_LEFT places the origin
of the texture coordinate system at the lower-left corner of the point:

glPointParameteri(GL_POINT_SPRITE_COORD_ORIGIN, GL_LOWER_LEFT);

The default orientation for point sprites is GL_UPPER_LEFT.

Other nontexture-related point parameters can also be used to set the alpha such that
points can fade with alpha blending with distance from the eye point. See the
glPointParameter function entry in Appendix C, “OpenGL Man Pages for (Core) OpenGL
3.3,” for details of these other parameters.

Shaped Points
There is more you can do with point sprites besides apply a texture using gl_PointCoord
for texture coordinates. Another built-in variable is gl_FragCoord. As is true when any
other primitive is being rendered, gl_FragCoord contains the screen space coordinate of
the current fragment. The x and y components of this coordinate, therefore, vary across
the area of the point. However, the z and w components are constant because the point is
rendered as a flat plane, parallel to the near and far planes.

You can use gl_PointCoord to implement a number of things other than just texture coor-
dinates. For example, you can make nonsquare points by using the discard keyword in
your fragment shader to throw away fragments that lie outside your desired point shape.
The following fragment shader code produces round points:

vec2 p = gl_PointCoord * 2.0 – vec2(1.0);

if (dot(p, p) > 1.0)

discard;

Or perhaps an interesting flower shape:

vec2 temp = gl_PointCoord * 2.0 – vec2(1.0);

if (dot(temp, temp) > sin(atan(temp.y, temp.x) * 5.0))

discard;

These are simple code snippets that allow arbitrary shaped points to be rendered. Figure
7.11 shows a few more examples of interesting shapes that can be generated this way.

Point Sprites 311
7

ptg

FIGURE 7.11 Interesting point shapes generated analytically from gl_PointCoord.

Rotating Points
Because points in OpenGL are rendered as axis-aligned squares, rotating the point sprite
must be done by modifying the texture coordinates used to read the sprite’s texture. To do
this, simply create a 2D rotation matrix in the fragment shader and multiply it by
gl_PointCoord to rotate it around the z-axis. The angle of rotation could be passed from
the vertex or geometry shader to the fragment shader as an interpolated variable. The
value of the variable can, in turn, be calculated in the vertex or geometry shader or can be
supplied through a vertex attribute. Listing 7.9 shows a slightly more complex point sprite
fragment shader that allows the point to be rotated around its center.

LISTING 7.9 Naïve Rotated Point Sprite Fragment Shader

#version 330

uniform sampler2D sprite_texture;

CHAPTER 7 More Advanced Texture Topics312

ptg

in float angle;

out vec4 color;

void main(void)

{

const float sin_theta = sin(angle);

const float cos_theta = cos(angle);

const mat2 rotation_matrix = mat2(cos_theta, sin_theta,

-sin_theta, cos_theta);

const vec2 pt = gl_PointCoord – vec2(0.5);

color = texture(sprite_texture, rotation_matrix * pt + vec2(0.5));

}

This example allows you to generate rotated point sprites. However, of course, the value of
angle will not change from one fragment to another within the point sprite. That means
that the rotation matrix will also be constant for every fragment in the point. It is there-
fore much more efficient to calculate the rotation matrix in the vertex shader and pass it
as a mat2 varying to the fragment shader rather than calculating it at every fragment.
Here’s an updated vertex and fragment shader pair that allows you to draw rotated point
sprites. First, the vertex shader is shown in Listing 7.10.

LISTING 7.10 Rotated Point Sprite Vertex Shader

#version 330

uniform matrix mvp;

in vec4 position;

in float angle;

out mat2 rotation_matrix;

void main(void)

{

const float sin_theta = sin(angle);

const float cos_theta = cos(angle);

rotation_matrix = mat2(cos_theta, sin_theta,

-sin_theta, cos_theta);

gl_Position = mvp * position;

}

Point Sprites 313
7

ptg

And second, the fragment shader is shown in Listing 7.11.

LISTING 7.11 Rotated Point Sprite Fragment Shader

#version 330

uniform sampler2D sprite_texture;

in mat2 rotation_matrix;

out vec4 color;

void main(void)

{

const vec2 pt = gl_PointCoord – vec2(0.5);

color = texture(sprite_texture, rotation_matrix * pt + vec2(0.5));

}

As you can see, the potentially expensive sin and cos functions have been moved out of
the fragment shader and into the vertex shader. If the point size is large, this pair of
shaders performs much better than the earlier, brute force approach of calculating the
rotation matrix in the fragment shader.

Texture Arrays
Previously in this chapter we discussed the fact that several textures could be accessed at
once via the different texture units. This is extremely powerful and useful as your shader
can have access to several texture objects at once. We can actually take this a bit further
using a feature called texture arrays. With a texture array, you can load up several 2D
images into a single texture object. The concept of having more than one image in a
single texture is not new. This happens with mipmapping, as each mip level is a distinct
image, and with cube mapping, where each face of the cube map has its own image and
even its own set of mip levels. With texture arrays, however, you can have a whole array
of texture images bound to a single texture object and then index through them in the
shader, thus greatly increasing the amount of texture data available to your shaders.

Loading a 2D Texture Array
To demonstrate texture arrays, we revisit the Smoother sample program from Chapter 3. In
this program we drew a stylized 2D mountain range with lines, stars of various sizes, and a
white circle representing the moon. For the TextureArray sample program, we use our new
point sprite capabilities to spruce up the stars a bit and display an animated series of
moon images using a 2D texture array (there are actually 1D texture arrays too!). Twenty-
nine separate images of the moon are provided, numbered moon00.tga through

CHAPTER 7 More Advanced Texture Topics314

ptg

moon28.tga, which we load into a single texture object. We set a uniform that represents
the time passed, and every second we switch to the next moon image in our array. Over
30 seconds, you see an animation showing the moon’s monthly cycle.

Texture arrays add two new texture targets as valid parameters to most texture manage-
ment functions, GL_TEXTURE_1D_ARRAY and GL_TEXTURE_2D_ARRAY. For our array of two-
dimensional moon images, we create and bind to our texture object just like any other
texture, except we change the target parameter.

GLuint moonTexture;

. . .

. . .

glGenTextures(1, &moonTexture);

glBindTexture(GL_TEXTURE_2D_ARRAY, moonTexture);

The same goes for setting the texture parameters, the wrap modes and filters.

glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

So far just changing the texture target parameter is pretty intuitive. Actually loading the
texture data now takes a bit of a leap; for 2D texture arrays, we use the glTexImage3D func-
tion.

void glTexImage3D(GLenum target, GLint level, GLint internalformat,

GLsizei width, GLsizei height, GLsizei depth, GLint border,

GLenum format, GLenum type, void *data);

For the target parameter, we again use GL_TEXTURE_2D_ARRAY, and the depth parameter
represents the “slice” or array index of our 2D image. One of the nice things about using
this function is you can load an entire array of 2D images all in one shot. One of the
drawbacks about using this function is that it requires you to load an array of 2D images
all in one shot—this is not always that convenient, especially if you have, say, 29 separate
images of the moon to load.

There is a simple workaround for this, and it’s a feature of all the glTexImageXD functions
that we haven’t mentioned yet. If you put NULL in for the last parameter (thus there is no
texture data to copy), OpenGL reserves the texture memory for you but leaves it uninitial-
ized. Then you can use the glTexSubImageXD family of functions to update the texture
later (all of these functions were covered in Chapter 5). For our purposes, we need to
reserve twenty-nine 64 x 64 RGBA images, so our code looks like this:

glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA, 64, 64, 29, 0,

GL_BGRA, GL_UNSIGNED_BYTE, NULL);

Texture Arrays 315
7

ptg

Then we need to load up our other images one at a time. We set up a loop that creates the
filename for each file based on the loop index and use the glTexSubImage3D function to
load the image one slice at a time.

for(int i = 0; i < 29; i++) {

char cFile[32];

sprintf(cFile, “moon%02d.tga”, i);

GLbyte *pBits;

int nWidth, nHeight, nComponents;

GLenum eFormat;

// Read the texture bits

pBits = gltReadTGABits(cFile, &nWidth, &nHeight, &nComponents, &eFormat);

glTexSubImage3D(GL_TEXTURE_2D_ARRAY, 0, 0, 0, i, nWidth, nHeight,

1, GL_BGRA, GL_UNSIGNED_BYTE, pBits);

free(pBits);

}

Indexing the Texture Array
Now our texture array is loaded and ready to use. We bind to this texture object before
rendering the moon, and now we can access the entire array of moon images through a
single sampler. Of course, we need a way of communicating with the shader as to which
image to use. We set up a timer and cycle through as the seconds tick off. The following
code sets the appropriate uniform in our vertex shader before rendering the moon (which
is simply a triangle fan).

// fTime goes from 0.0 to 28.0 and recycles

float fTime = timer.GetElapsedSeconds();

fTime = fmod(fTime, 28.0f);

glUniform1f(locTimeStamp, fTime);

moonBatch.Draw();

In our vertex shader, we already have an attribute that receives the texture coordinates,
and we copy just the s and t coordinates to the vec3 variable vMoonCoords. The p texture
coordinate comes from the uniform that contains the time that has passed (don’t forget,
we cycle this from 0 to 28 in actuality). This third texture coordinate dimension value
comes into play in the fragment shader. The vertex shader is shown in Listing 7.12.

CHAPTER 7 More Advanced Texture Topics316

ptg

LISTING 7.12 Vertex Shader for the TextureArray Sample

// MoonShader

// Vertex Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

in vec4 vTexCoords;

uniform mat4 mvpMatrix;

uniform float fTime;

smooth out vec3 vMoonCoords;

void main(void)

{

vMoonCoords.st = vTexCoords.st;

vMoonCoords.p = fTime;

gl_Position = mvpMatrix * vVertex;

}

Accessing Texture Arrays
In the fragment shader (shown in Listing 7.13) we have a new type of sampler for a 2D
texture array, sampler2DArray. To sample this texture we use the function texture2DArray,
and we pass in a three-component texture coordinate. The first two components of this
texture coordinate, the s and t (see the variable vMoonCoords), are used as typical two-
dimensional texture coordinates. The third component, the p element, is actually an
integer index into the texture array. Recall we set this in the vertex program, and it is
going to vary from 0 to 28, one integer value every second. The result is an animated
image, changing its picture once per second.

LISTING 7.13 The Fragment Shader for the TextureArray Sample

// MoonShader

// Fragment Shader

// Richard S. Wright Jr.

// OpenGL SuperBible

#version 330

out vec4 vFragColor;

Texture Arrays 317
7

ptg

uniform sampler2DArray moonImage;

smooth in vec3 vMoonCoords;

void main(void)

{

vFragColor = texture2DArray(moonImage, vMoonCoords.stp);

}

The final output of the TextureArray sample program is shown in Figure 7.12.

CHAPTER 7 More Advanced Texture Topics318

FIGURE 7.12 An animated moon image using texture arrays.

Texture Proxies
Texture memory is an important and limited resource that developers need to pay close
attention to. Texture data comes in many different sizes and data types, and at times it’s
useful to be able to find out more about how textures are managed and stored by a specific
implementation, much less if you can even load a particular texture. Often we simply load
moderately sized textures, and if they show up on our screen during development, then

ptg

there is a high degree of confidence that they will also show up on your end user’s screen.
This is a bit like Russian roulette and a terrible programming practice for high quality
commercial software. One of the simplest tests you can do is find out the maximum
texture size the current implementation can support.

GLint maxSize;

glGetIntegerv(GL_MAX_TEXTURE_SIZE , &maxSize);

This gives you the lower bound on the largest width or height for a one- or two-dimen-
sional texture map (you can also use GL_MAX_3D_TEXTURE_SIZE and
GL_MAX_CUBE_MAP_TEXTURE_SIZE for those corresponding texture types). If maxSize comes
back as 2048, then a 2048 x 2048 2D texture should work. However, a 2048 x 4096 texture
size could also be supported, and the 2048 value merely indicates that 4096 x 4096 is not.

To find out whether a particular texture size and format are supported, we use a texture
proxy. A texture proxy is a “fake” or stand-in texture that takes up no memory (and don’t
even think about trying to apply it to any geometry!), but otherwise acts like a valid
attempt to load a texture. To create a texture proxy, we use the by now familiar
glTexImage2D function.

glTexImage2D(GL_PROXY_TEXTURE_2D, level, internalFormat,

width, height, border, format, type, NULL);

Texture proxies also work on the other texture targets GL_PROXY_TEXTURE_1D,
GL_PROXY_TEXTURE_3D, and GL_PROXY_TEXTURE_CUBE_MAP. Note that we passed in NULL for
the last parameter, which is typically used as the pointer to the texture data. Again,
texture proxies do not actually create a real texture. Once you’ve created the texture proxy,
you can query all of the texture values with glGetTexLevelParameter. If OpenGL refor-
matted the data internally, you can query the GL_TEXTURE_INTERNAL_FORMAT value for
example and see what the actual value would be. If the texture could not be loaded at all,
the queries from this function come back as zero. For example, to see if a 2048 x 4096
BGRA texture would indeed load, you’d create the proxy like this:

glTexImage2D(GL_PROXY_TEXTURE_2D, 0, GL_RGBA, 2048, 4096,

0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);

Then check to see if the corresponding height of 4096 was supported:

void glGetTexLevelParameter(GL_PROXY_TEXTURE_2D, 0,

GL_TEXTURE_HEIGHT, &height);

You can query all sorts of things about the currently loaded texture, be it a real texture or
a texture proxy. The complete list for this function is provided in Appendix C.

Texture Proxies 319
7

ptg

Summary
In this chapter, we continued our exploration of OpenGL texture technologies by intro-
ducing two new types of texture targets, rectangle textures and cube maps. Rectangle
textures are convenient and efficient, especially when you have imaging needs and are not
specifically texturing 3D models. Cube maps are a powerful means of creating three-
dimensional light maps or image-based reflections. Next we covered multitexture, a
bedrock technology for a great many special effects and techniques.

You saw how to apply a texture across the surface of a point and how useful this is for
creating dramatic particle systems. You also learned how to load a larger number of
textures into a single texture object with a texture array. Finally, we talked about texture
proxies and how you can easily query the OpenGL implementation about the internal
representation of texture data or even if a texture can be stored internally at all. Texture
mapping is a large topic within OpenGL, and at this point you should have a good grasp
of the basic principles upon which the even more advanced techniques are based.

CHAPTER 7 More Advanced Texture Topics320

ptg

PART II

Intermediate to
Advanced Ideas

It’s time to go a bit deeper. If you’ve been reading this book
in order, you’ve been getting not only an introduction to
OpenGL, but also an introduction to basic 3D graphics
programming principles. In fact, Part I, “Basic Concepts,” is
pretty much everything you need to know about how to
create real-time interactive 3D graphics. Coordinate systems,
vertex transformations, primitive assembly, texture
mapping, basic shader operation and programming—these
are the bedrock of 3D graphics effects in games, simulation,
visualization, and a myriad of consumer and commercial
applications.

In this part of the book, we begin to tackle some of the
more advanced features of the OpenGL API. Beyond the
basics, it’s time to discover how much more flexible and
powerful OpenGL can be when applied to more complex
rendering problems. Not everything to come is concerned
with simple rendering effects, however; a number of
OpenGL features are specifically geared toward performance.
While the API and manner have changed, the principles of
Part I have been the same for decades. In this part of the
book, we really begin to explore where the state of the art
and future of graphics hardware is taking us.

Enjoy the ride!

ptg

This page intentionally left blank

ptg

CHAPTER 8

Buffer Objects: Storage Is Now in
Your Hands

by Nicholas Haemel

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Create and use buffer objects glGenBuffers/glBindBuffer/glBufferData

Create, bind, and use framebuffer objects glGenFramebuffers/glBindFramebuffer

Create, bind, and use renderbuffer objects glGenRenderbuffers/glBindRenderbuffer

Use texture buffer objects glTexBuffer

Allocate storage for renderbuffers and attach glRenderbufferStorage/

to framebuffers glFramebufferRenderbuffer

Attach textures to framebuffer objects glFramebufferTexture2D

Set up multiple color outputs glDrawBuffers

Up until this point you have had a chance to learn about the basics of OpenGL, how to
specify geometry, what shaders are, how to use textures, and so on. Now it’s time to blow
the lid off of your applications and introduce faster and more flexible ways of rendering
and moving data around. You also learn about off-screen rendering and how to create and
control your own framebuffer.

Buffer objects are a powerful concept that allows your applications to quickly and easily
move data from one part of the rendering pipeline to another, from one object binding to
another. Your data has finally been freed from strongly typed objects! Not only can you
move data around as you see fit, but you can do so without the involvement of the CPU.

Framebuffer objects give you true control over your pixels. You no longer are relegated to
the limitations of the OS window your context is tied to. In fact, you can now render off-
screen to nearly as many buffers as you’d like. Not only that, but you can use whatever
size and format surfaces that best fit your needs. Now your fragment shaders have ultimate
control over which pixels go where.

ptg

324 CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands

Buffers
Instead of creating a hundred different objects of varying types and making developers
keep track of which is which, OpenGL 3.2 generalizes the use of most objects that hold
data. Now you can allocate as many buffers as you need and then decide how you want to
use them later. Buffers have many different uses. They can hold vertex data, pixel data,
texture data, inputs for shader execution, or the output of different shader stages.

Buffers are stored in GPU memory, which provides very fast and efficient access. Before
OpenGL had buffer objects, applications had limited options for storing data on the GPU.
Additionally, updates to data on the GPU often required reloading the whole object.
Moving data back and forth between system memory and GPU memory can be a slow
process.

First let’s look at the basics of dealing with buffer objects. Later, we cover more advanced
ways of accessing your data in buffer objects and how to use them for different purposes.

Creating Your Very Own Buffers
Creating a new buffer is simple. Just call glGenBuffers to create names for as many new
buffers as you need. The actual buffer object will be created at first use.

Gluint pixBuffObjs[1];

glGenBuffers(1, pixBuffObjs);

Once you have the name of your new buffer, you can bind that name to use the buffer.
There are many different binding points in OpenGL. Each binding point allows you to use
a buffer for a different purpose. You can think of each attachment or binding point as a
slot where only one object can be attached at a time. These binding points are listed in
Table 8.1. We explore how to use each of these bindings in more detail later on.

TABLE 8.1 Buffer Object Binding Points

Target Name Description

GL_ARRAY_BUFFER Array buffers store vertex attributes such as color, position, texture

coordinates, or other custom attributes.

GL_COPY_READ_BUFFER Buffer used as the data source for copies with

glCopyBufferSubData.

GL_COPY_WRITE_BUFFER Buffer used as the target for copies with glCopyBufferSubData.

GL_ELEMENT_ARRAY_BUFFER Index array buffer used for sourcing indices for glDrawElements,

glDrawRangeElements, and glDrawElementsInstanced.

GL_PIXEL_PACK_BUFFER Target buffer for pixel pack operations such as glReadPixels.

GL_PIXEL_UNPACK_BUFFER Source buffer for texture update functions such as glTexImage1D,

glTexImage2D, glTexImage3D, glTexSubImage1D,

glTexSubImage2D, and glTexSubImage3D.

ptg

Target Name Description

GL_TEXTURE_BUFFER Buffer accessible to shaders through texel fetches.

GL_TRANSFORM_FEEDBACK_BUFFER Buffer written to by a transform feedback vertex shader.

GL_UNIFORM_BUFFER Uniform values accessible to shaders.

To bind a buffer for use, you can call glBindBuffer with a target from Table 8.1 and the
name of the buffer. Next we bind our new buffer to the pixel pack buffer attachment point
so that we can use glReadPixels to copy pixel data into the buffer.

glBindBuffer(GL_PIXEL_PACK_BUFFER, pixBuffObjs[0]);

To unbind a buffer from an attachment, call glBindBuffer again with the same target and
use “0” for the buffer name. You can also just bind another valid buffer to the same target.
When you are finished with a buffer, it needs to be cleaned up, just as all other OpenGL
objects should be. Delete it by calling glDeleteBuffers. As a general practice, make sure
the buffer is not bound to any of the binding points before deleting.

glDeleteBuffers(1, pixBuffObjs);

Filling Buffers
Creating and deleting buffers is one thing. But how do you get valid data into a buffer to
use it? There are many ways to fill a buffer with data; some of the more complex ones are
covered in following chapters. To simply upload your data straight into a buffer of any
type you can use the glBufferData function.

glBindBuffer(GL_PIXEL_PACK_BUFFER, pixBuffObjs[0]);

glBufferData(GL_PIXEL_PACK_BUFFER, pixelDataSize, pixelData, GL_DYNAMIC_COPY);

glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

The buffer you want to use must be bound before calling glBufferData. Use the same
target for glBufferData as you used to bind the buffer for the first parameter. The second
parameter is the size of the data you are going to upload in bytes, and the third parameter
is the data to be uploaded. Note that this pointer can also be NULL if you want to allocate
a buffer of a specific size but do not need to fill it right away. The fourth parameter of
glBufferData is where you tell OpenGL how you intend to use the buffer.

Picking the right value for usage is a little trickier. The possible usage options are listed in
Table 8.2. The value of usage is really just a performance hint to help the OpenGL driver
allocate memory in the correct location. For instance, some memory may be easily accessi-
ble by the CPU and would be a good choice if your application needs to read from it
frequently. Other memory might be inaccessible for direct access by the CPU but can be
accessed quickly by the GPU. By telling the OpenGL driver what your plan is ahead of
time, your buffer can be allocated in a spot where it can serve you best.

Buffers 325
8

ptg

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands326

TABLE 8.2 Buffer Object Usage Models

Buffer Usage Description

GL_STREAM_DRAW Buffer contents will be set once by the application and used infrequently

for drawing.

GL_STREAM_READ Buffer contents will be set once as output from an OpenGL command

and used infrequently for drawing.

GL_STREAM_COPY Buffer contents will be set once as output from an OpenGL command

and used infrequently for drawing or copying to other images.

GL_STATIC_DRAW Buffer contents will be set once by the application and used frequently for

drawing or copying to other images.

GL_STATIC_READ Buffer contents will be set once as output from an OpenGL command

and queried many times by the application.

GL_STATIC_COPY Buffer contents will be set once as output from an OpenGL command

and used frequently for drawing or copying to other images.

GL_DYNAMIC_DRAW Buffer contents will be updated frequently by the application and used

frequently for drawing or copying to other images.

GL_DYNAMIC_READ Buffer contents will be updated frequently as output from OpenGL

commands and queried many times by the application.

GL_DYNAMIC_COPY Buffer contents will be updated frequently as output from OpenGL

commands and used frequently for drawing or copying to other images.

Using GL_DYNAMIC_DRAW is a safe value for general buffer usage or situations where you
aren’t sure what the buffer will be used for. You can always call glBufferData again, refill-
ing the buffer and possibly changing the usage hint. But if you do call glBufferData
again, any data originally in the buffer will be deleted. You can use glBufferSubData to
update a part of a preexisting buffer without invalidating the contents of the rest of the
buffer.

void glBufferSubData(GLenum target, intptr offset, sizeiptr size, const void *data);

Most of the parameters for glBufferSubData are the same as those for glBufferData. The
new offset parameter allows you to start updating the buffer at a location other than the
beginning. You also cannot change the usage of the buffer because memory has already
been allocated.

Pixel Buffer Objects
Many of the newest and most important advances in graphics involve new ways of doing
some of the same old operations but in much faster and more efficient ways. Pixel buffer
objects are similar to texture buffer objects in that they hold pixel/texel data. Just like all
buffer objects they live in GPU memory. You can access and fill pixel buffer objects, or
PBOs, in the same ways you would for any other buffer object type. In fact, the only time
a buffer object is really a PBO is when it is attached to a PBO buffer attachment.

ptg

The first PBO attachment point is GL_PIXEL_PACK_BUFFER. When a PBO is attached to this
target, any OpenGL operations that read pixels get their data from the PBO. These opera-
tions include glReadPixels, glGetTexImage, and glGetCompressedTexImage. Normally
these operations pull data out of a framebuffer or texture and read it back into client
memory. When a PBO is attached to the pack buffer, pixel data ends up in the PBO in
GPU memory instead of downloaded to the client.

The second PBO attachment point is GL_PIXEL_UNPACK_BUFFER. When a PBO is attached to
this target, any OpenGL operations that draw pixels put their data into an attached PBO.
Some of these operations are glTexImage*D, glTexSubImage*D, glCompressedTexImage*D,
and glCompressedTexSubImage*D. These operations put data into framebuffers and textures
from local CPU memory. But having a PBO bound as the unpack buffer directs the read
operations to be the PBO in GPU memory instead of memory on the CPU.

Why bother with these pixel buffer objects anyway? After all, you can get pixels to, from,
and around the GPU without them. For starters, any calls that read from or write to PBOs
or any buffer object are pipelined. That means the GPU doesn’t have to finish doing
everything else, initiate the data copy, wait for the copy to complete, and then continue.
Because buffer objects don’t have the same ordering issues, they can provide a huge
advantage when dealing with apps that have to frequently get to, modify, or update pixel
data. Some examples are

• Stream texture updates—In some cases, your application might need to update a
texture on every frame. Maybe you need to change it based on user input, or maybe
you want to stream video. PBOs allow your application to make changes to texture
data without necessarily having to download and then re-upload the whole surface.

• Rendering vertex data—Because buffer objects are generic data storage, an applica-
tion can easily use the same buffer for very different purposes. For instance, an appli-
cation can write vertex data out to a color buffer and then copy that data into a
PBO. Once complete, the buffer can be attached as a vertex buffer and used to draw
new geometry. This just shows how flexible OpenGL is; it allows you to “color” new
vertex data!

• Asynchronous calls to glReadPixels—Often applications want to grab pixels off the
screen, perform some manipulation, and then either save them or use them for
drawing again. Unfortunately, reading pixel data into CPU memory requires the GPU
to wrap up everything else it’s doing and then perform the copy before any other
work can begin or before the actual call can return. What if future draw calls are
dependent on the result of the read or of multiple reads? Using glReadPixels can
throw a real wrench into the works when trying to keep the GPU busy drawing all of
your 3D graphics! PBOs come to the rescue. Because the read operation is pipelined,
the call to glReadPixels can return immediately. You can even call multiple times
with different buffer targets to read different areas.

Buffers 327
8

ptg

Pixel buffer objects are a great container for temporarily storing pixel data locally on the
GPU, but remember they need to have storage allocated before they can be used. Just like
all other buffer objects, calling glBufferData allocates storage for a buffer and fills it with
your data. But you don’t necessarily have to provide data; passing in NULL for the data
pointer simply allocates the memory without filling it. If you don’t allocate storage for a
buffer before trying to fill it, OpenGL throws an error.

glBufferData(GL_PIXEL_PACK_BUFFER, pixelDataSize, pixelData, GL_DYNAMIC_COPY);

Pixel buffers are often used to hold 2D images coming from a render target, texture, or
other source. But buffer objects are one-dimensional by nature; they don’t have an intrin-
sic width or height. When allocating storage space for 2D images, you can just multiply
the width by the height by the size of a pixel. There is no additional padding necessary for
storing the pixel data, but your buffer can be larger than necessary for a given set of data.
In fact, if you plan to use the same PBO for multiple data sizes, you are much better off
sizing the PBO for the largest data set right away than resizing it frequently.

All calls to glBufferData are pipelined with the rest of your draw calls. That means the
OpenGL implementation won’t have to wait for all activities to stop before sending the
new data to the GPU. There are some times when this can be particularly important.
Think about all those times you have to wait a few minutes for your favorite games as a
new level loads. Part of that is uploading a whole bunch of new texture data. Or the small
hiccups as you enter a new room and texture data is updated. PBOs can help solve some of
these problems by providing the texture data when necessary and in a way that doesn’t
stall all other work.

Reading Pixel Data out of a Buffer
Once your drawing has reached the screen, you may need to get those pixels back again
before they’re gone forever. One reason might be to check on what was actually rendered
to help decide what needs to be rendered in future scenes. Another is to use pixels from
previous frames in effects applied to future frames. Whatever the reason, the glReadPixels
function is there to help. This function takes pixels from the specified location of the
currently enabled read buffer and copies them into local CPU memory.

void* data = (void*)malloc(pixelDataSize);

glReadBuffer(GL_BACK_LEFT);

glReadPixels(0, 0, GetWidth(), GetHeight(), GL_RGB, GL_UNSIGNED_BYTE, pixelData);

When you execute a read of pixel data into client memory, the entire pipeline often has to
be emptied to ensure all drawing that would affect the pixels you are about to read has
completed. This can have a major impact on your application’s performance. But the good
news is we can use buffer objects to overcome this performance issue. You can bind a
buffer object to the GL_PIXEL_PACK_BUFFER before you call glReadPixels and set the data
pointer in the glReadPixels call to null. This redirects the pixels into a buffer located on
the GPU and avoids the performance issues that copying to client memory can cause.

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands328

ptg

glReadBuffer(GL_BACK_LEFT);

glBindBuffer(GL_PIXEL_PACK_BUFFER, pixBuffObjs[0]);

glReadPixels(0, 0, GetWidth(), GetHeight(), GL_RGB, GL_UNSIGNED_BYTE, NULL);

We use both of these approaches in our first sample application, pix_bufs.

Using PBOs
Incorporating PBOs into your application can be simple but can have huge positive perfor-
mance impacts. The first sample program for this chapter does a few things, but most
importantly it demonstrates how effective PBOs really are.

Motion blur is an effect that helps to signal which objects in a scene are moving and how
fast they are going. You’ve probably seen these blurring effects in movies, television, or
video. When an object moves past the camera at a rate too fast for the shutter speed of a
single frame, the image is smeared across pixels of that frame and neighboring frames in
the direction of motion. The same effect occurs when the camera is moving quickly rela-
tive to an object or the entire scene. Think about taking a picture sideways out a car
window as a passenger while driving on the highway.

There are many complex ways to create such an effect in OpenGL. An application can
render multiple times to a buffer, slightly offsetting the fast moving objects and blending
the results together. Another option is to sample texel data for an object image multiple
times in the direction of movement and then blend the sample results together. There are
even more involved methods that use depth buffer data to apply a more dramatic blur to
objects closer to the camera.

For the pix_buffs sample application we use another simple approach that stores the
results of previous frames and blends them together with the current frame. To make a
visible motion blur, the program stores the last five frames. The program can use both the
old-fashioned way of copying data to the CPU and back as well as the faster PBO path.
First, in Listing 8.1 we initialize the textures and the PBOs necessary.

LISTING 8.1 Set Up PBO and Textures for pix_buffs Sample Program

// Create blur textures

glGenTextures(6, blurTextures);

// Allocate a pixel buffer to initialize textures and PBOs

pixelDataSize = GetWidth()*GetHeight()*3*sizeof(unsigned byte);

void* data = (void*)malloc(pixelDataSize);

memset(data, 0x00, pixelDataSize);

// Setup 6 texture units for blur effect

// Initialize texture data

for (int i=0; i<6;i++)

Buffers 329
8

ptg

{

glActiveTexture(GL_TEXTURE1+i);

glBindTexture(GL_TEXTURE_2D, blurTextures[i]);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, GetWidth(), GetHeight(), 0, GL_RGB,

GL_UNSIGNED_BYTE, data);

}

// Allocate space for copying pixels so we don’t call malloc on every draw

glGenBuffers(1, pixBuffObjs);

glBindBuffer(GL_PIXEL_PACK_BUFFER, pixBuffObjs[0]);

glBufferData(GL_PIXEL_PACK_BUFFER, pixelDataSize, pixelData, GL_DYNAMIC_COPY);

glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

When all resources are set up, the scene is rendered into the back buffer as if nothing
special was going on. Instead of just calling swap, the result is copied into a texture to be
used for the blur effect. For the traditional path, this happens by calling glReadPixels to
get the pixel data and then glTexImage2D to move the pixel data into a texture object. The
texture target for the data rotates between each of the six blur textures. If texture 3 was
used last time, texture 4 will be used next. That means texture 4 will contain data from
this frame, texture 3 from the last, texture 2 from two frames ago, and so on. The target
for the current frame wraps around again after the last texture has been used. The pixel
data for the last six frames is always ordered and available in this “texture ring buffer.”

The PBO path is slightly different. Instead of copying the data back to the CPU, the PBO is
bound to the GL_PIXEL_PACK_BUFFER, and when we call glReadPixels, the pixels are redi-
rected to the PBO instead of back to the CPU. Then that same buffer is unbound from the
GL_PIXEL_PACK_BUFFER attachment and bound to the GL_PIXEL_UNPACK_BUFFER. When
glTexImage2D is called next, the pixel data in the buffer is loaded into the texture, all
without ever leaving the GPU and remaining pipelined with other OpenGL commands.
You can see this process in Listing 8.2. Finally, the ring buffer is updated to point to the
next blur texture. You can press the P button while running the program to switch
between the two paths.

LISTING 8.2 After Scene Is Rendered, Copy the Result to the Most Recent Texture Object

if(bUsePBOPath)

{

// First bind the PBO as the pack buffer,

// then read the pixels directly to the PBO

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands330

ptg

glBindBuffer(GL_PIXEL_PACK_BUFFER, pixBuffObjs[0]);

glReadPixels(0, 0, GetWidth(), GetHeight(), GL_RGB,

GL_UNSIGNED_BYTE, NULL);

glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

// Next bind the PBO as the unpack buffer,

// then push the pixels straight into the texture

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixBuffObjs[0]);

// Setup texture unit for new blur, this gets imcremented every frame

glActiveTexture(GL_TEXTURE0+GetBlurTarget0());

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, GetWidth(), GetHeight(),

0, GL_RGB, GL_UNSIGNED_BYTE, NULL);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);

}

else

{

// Grab the screen pixels and copy into client memory

glReadPixels(0, 0, GetWidth(), GetHeight(), GL_RGB,

GL_UNSIGNED_BYTE, pixelData);

// Push pixels from client memory into texture

// Setup texture unit for new blur, this gets incremented every frame

glActiveTexture(GL_TEXTURE0+GetBlurTarget0());

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, GetWidth(), GetHeight(),

0, GL_RGB, GL_UNSIGNED_BYTE, pixelData);

}

// Draw full screen quad with blur shader and all blur textures

projectionMatrix.PushMatrix();

projectionMatrix.LoadIdentity();

projectionMatrix.LoadMatrix(orthoMatrix);

modelViewMatrix.PushMatrix();

modelViewMatrix.LoadIdentity();

glDisable(GL_DEPTH_TEST);

SetupBlurProg(); // Program that blurs all textures together

screenQuad.Draw();

glEnable(GL_DEPTH_TEST);

modelViewMatrix.PopMatrix();

projectionMatrix.PopMatrix();

// Move to the next blur texture for the next frame

AdvanceBlurTaget();

Buffers 331
8

ptg

To do the actual blur, the fragment shader samples from all six textures and averages the
results. The fragment shader only needs one set of texture coordinates given that all
textures are the same size and need to align with the other textures. Listing 8.3 shows the
shader code for performing all six texture samples. This shader is used to shade the screen
aligned quad setup by building an orthographic modelview projection matrix based on
the window width and height. The orthographic matrix creates a transform that maps
coordinates directly to screen space. For every unit you increase the x coordinate of geom-
etry, you move one more pixel to the right on the screen. Going up one unit in the y
direction equates to one pixel higher on the screen. The result is 2D rendering where the
coordinates of the geometry are also the pixel locations on the screen.

LISTING 8.3 Fragment Shader—blur.fs

// blur.fs

// outputs weighted, blended result of four textures

//

#version 150

in vec2 vTexCoord;

uniform sampler2D textureUnit0;

uniform sampler2D textureUnit1;

uniform sampler2D textureUnit2;

uniform sampler2D textureUnit3;

uniform sampler2D textureUnit4;

uniform sampler2D textureUnit5;

void main(void)

{

// 0 is the newest image and 5 is the oldest

vec4 blur0 = texture(textureUnit0, vTexCoord);

vec4 blur1 = texture(textureUnit1, vTexCoord);

vec4 blur2 = texture(textureUnit2, vTexCoord);

vec4 blur3 = texture(textureUnit3, vTexCoord);

vec4 blur4 = texture(textureUnit4, vTexCoord);

vec4 blur5 = texture(textureUnit5, vTexCoord);

vec4 summedBlur = blur0 + blur1 + blur2 +blur3 + blur4 + blur5;

gl_FragColor = summedBlur/6.0;

}

When you first start pix_buffs, the program will be using the client-side memory path to
load the blur textures. As the object moves from side-to-side, notice how the blur occurs
only on the axis of movement. You can see the effect in Figure 8.1, also shown in Color

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands332

ptg

Plate 11. Pressing P switches the PBO path on and off. The + and - keys on the number
pad speed up and slow down the movement of the object. As the speed changes, notice
how the amount of motion blur also changes.

Buffers 333
8

FIGURE 8.1 Motion blur of moving object.

The speed of the program is printed in the title bar. Notice the difference in performance
between the client copy and PBO copy speeds—it’s huge! On slower systems the PBO path
is almost six times faster than the client memory path. How would you like your programs
to run six times faster? Paying attention to how you move your data around can help do
exactly that. These huge performance gains are one reason why buffer objects are now an
important part of OpenGL programs.

When you switch to the PBO path, the amount of blur is reduced. That happens because
the sample program uses the last five frames to create the blended output no matter how
fast the program is running. When using PBOs, the last five frames are visually much
closer together (because the faster rendering permits a higher frame rate), creating less
blur. Take a look at Figure 8.2. You can try to change the program to create more blur for
the PBO path or change the program so the blur is the same regardless of the path chosen.
Another good exercise is to try different methods of applying motion blur or use weight-
ings when combining the frame textures.

ptg

FIGURE 8.2 Blur differences between GPU and client copies.

Texture Buffer Objects
You have seen how some buffer binding targets such as GL_PIXEL_PACK_BUFFER and
GL_COPY_READ_BUFFER are used for updating and fetching data from a buffer while it is on
the GPU. Other buffer bindings like GL_TEXTURE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER,
and GL_UNIFORM_BUFFER allow buffers to be used directly in the rendering pipeline. Some
of these binding points are explored in the following chapters, but now it’s time to see
how buffer objects can be used directly with textures.

A texture consists of two main components: texture sampling state and a data buffer
containing the texture values. Now you can attach a buffer object to the
GL_TEXTURE_BUFFER buffer binding point of a texture as well. You may ask, “Why bother
with another texture binding?” That’s a fair question! Texture buffers, also known as
texBOs or TBOs, allow you to do several things that traditional textures do not. First,
texture buffers can be filled directly with data from other rendering results such as trans-
form feedback, pixels read operations, or vertex data. This saves quite a bit of time since
your application can turn right around and fetch pixel data from a previous render call
directly in a shader.

Another feature of texBOs is relaxed size restrictions. Texture buffers are similar to a tradi-
tional one-dimensional texture but can be much larger. The maximum size prescribed by
the OpenGL specification for texture buffers is 64 times larger than 1D textures, but on
some implementations the size of texture buffers can be tens of thousands of times larger!

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands334

ptg

So what can you do with these texBOs? Well, for starters all sorts of shader math that was
previously difficult if not impossible. TexBOs provide shaders with access to large amounts
of data in many different formats and types, allowing shaders to operate on data in ways
usually reserved for CPUs. Texture buffers can be used to provide access to vertex arrays in
both fragment and vertex shaders. This can be useful when shaders need information
about neighboring geometry to make runtime decisions and calculations. But to do this,
you often need to also pass the size of your texBO into the shader as a uniform.

Texture buffers are born as normal buffers and become true texture buffers when bound to
a texture or to the GL_TEXTURE_BUFFER binding point.

glBindBuffer(GL_TEXTURE_BUFFER, texBO[0]);

glBufferData(GL_TEXTURE_BUFFER, sizeof(float)*count, fileData,

GL_STATIC_DRAW);

But texBOs must be bound to a texture unit before they can be truly useful. To bind a
texBO to a texture, call glTexBuffer but first make sure the texture you want to use is
bound:

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_BUFFER, texBOTexture);

glTexBuffer(GL_TEXTURE_BUFFER, GL_R32F, texBO[0]);

Although texture buffer objects look and operate much like normal textures, there are
some important differences. Texture buffers cannot be accessed by normal samplers in
shaders—i.e., sampler1D and sampler2D. Instead, you must use a new sampler called
samplerBuffer. Because the sampler type is different, the sample function used to get a
value from the texture buffer is also different. You can use texelFetch to read from a
texture buffer.

uniform samplerBuffer lumCurveSampler;

void main(void) {

. . .

int offset = int(vColor.r * (1024-1));

lumFactor.r = texelFetch(lumCurveSampler, offset).r;

}

When your shader looks up values in a texture buffer, it must use a nonnormalized
integer-based index. Traditional sample functions like texture accept coordinates from 0.0
to 1.0. But the texBO lookup function, texelFetch, takes an integer index from 0 to the
size of the buffer. If your texture lookup coordinates are already normalized, you can
convert to an index by multiplying by the size of the texBO minus one and casting the
result to an integer.

Buffers 335
8

ptg

Framebuffer Objects, Going Beyond the Window
When most people think of 3D rendering, the first thing that comes to mind is the screen
output of a 3D game or a computer aided design program. After all, seeing interactive 3D
output is what most users are looking for. But OpenGL allows you to do so much more
than simply render to a window or to the full screen. The surface of an OpenGL window
has long been referred to as “the framebuffer.” But now OpenGL encapsulates the state
required for drawing to a framebuffer into an object called a framebuffer object.

The default framebuffer object is the one associated with the OpenGL window you created
and is bound automatically when a new context is bound. You can create multiple frame-
buffer objects, also called FBOs, and render directly an FBO instead of the window. Using
this method of off-screen rendering allows your application to perform many different
sorts of rendering algorithms like shadow mapping, applying radiosity, reflections, post
processing, and many other effects. In addition, FBOs are not limited to the size of the
window and can contain multiple color buffers. You can even attach texture to an FBO,
which means you can directly render into a texture.

Even though framebuffers have the word “buffer” in them, they really are not buffers at
all. In fact, there is no real memory storage associated with a framebuffer object. Instead,
framebuffer objects are containers that can hold other objects that do have memory
storage and can be rendered to, such as textures or renderbuffers. In this way, framebuffer
objects tie together the state and surfaces needed to hold the rendering output of the
OpenGL pipeline.

How to Use FBOs
Creating and setting up a new FBO is pretty straightforward, but remember that an FBO is
just a container for image objects. So before we can render to an FBO, we have to add
images. Once an FBO has been created, set up, and bound, most OpenGL operations act
the same as if you were rendering to a window, but the output is stored in the images
attached to the FBO.

Creating New FBOs
To create FBOs, first generate FBO buffer names. You can generate any number of names
all at the same time:

GLuint fboName;

glGenFramebuffers(1, &fboName);

Then bind a new FBO to modify and use it:

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

Only one FBO can be bound for drawing, and only one FBO can be bound for reading at a
time. When binding a framebuffer, the first parameter of glBindFramebuffer can be either

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands336

ptg

GL_DRAW_FRAMEBUFFER or GL_READ_FRAMEBUFFER. This means you can use one framebuffer
for reading and a different one for drawing. We see an example in the first program of this
chapter. Binding the name 0 to either FBO target unbinds the current buffer and attaches
the default FBO again. Once the default FBO is reattached, reads and writes are tied to the
window’s framebuffer again.

Destroying FBOs
When finished using FBOs or when cleaning up on exit, delete FBOs:

glDeleteFramebuffers(1, &fboName);

Renderbuffer Objects
Now that we can interact with FBOs, we need something to put in them! Renderbuffer
objects, or RBOs, are an image surface explicitly designed for attaching to FBOs. A render-
buffer object can be a color, depth, stencil, or a combination depth/stencil surface. You
can pick whichever combination of RBOs you need for a given FBO. In fact, you can even
draw to many color buffers at one time!

Creating RBOs is just like creating FBOs and most other OpenGL objects:

glGenRenderbuffers(3, renderBufferNames);

Similar to FBOs, RBOs need to be bound before they can be changed. The only valid target
for binding a renderbuffer is GL_RENDERBUFFER:

glBindRenderbuffer(GL_RENDERBUFFER, renderBufferNames[0]);

Now that the RBO is bound, we need to allocate the memory that backs the RBO. RBOs
are created with no initial storage. Without storage we won’t have anything to render to.
First, decide what RBOs your application needs. Then pick appropriate formats that coin-
cide with the buffer usage. Most formats that are valid texture formats are also valid
renderbuffer formats. Additionally, you can create renderbuffer storage that contains a
stencil format. Textures can have a combined DEPTH_STENCIL format, but not just a stencil
format.

glBindRenderbuffer(GL_RENDERBUFFER, renderBufferNames[0]);

glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, screenWidth, screenHeight);

glBindRenderbuffer(GL_RENDERBUFFER, depthBufferName);

glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT32, screenWidth,

screenHeight);

In the preceding example, RBO storage is allocated at the size of the sample program’s
window. But renderbuffers do not have to be the size of the window. You can find the

Framebuffer Objects, Going Beyond the Window 337
8

ptg

maximum dimensions supported by your OpenGL implementation by calling
glGetIntegerv with the parameter GL_MAX_RENDERBUFFER_SIZE; your width and height
values must be smaller than this maximum. The only valid target for creating storage is
GL_RENDERBUFFER.

You can also create multisampled renderbuffer storage using a similar function called
glRenderbufferStorageMultisample, which takes an additional sample argument. The
great thing about this is you can do your own off-screen multisampling before any pixels
ever hit the screen!

Attaching RBOs
Once you have created all of the rendering surfaces for your FBO, it’s time to hook them
up. A framebuffer object has multiple attachment points for binding: a depth attachment,
a stencil attachment, and numerous color attachments. You can query
GL_MAX_COLOR_ATTACHMENTS with glGetIntegerv to find out how many color buffers can
be attached at once. In our example application we use a depth buffer and three color
buffers all at one time. Before attempting to attach a renderbuffer make sure the FBO is
bound.

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_RENDERBUFFER, depthBufferName);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

GL_RENDERBUFFER, renderBufferNames[0]);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT1,

GL_RENDERBUFFER, renderBufferNames[1]);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT2,

GL_RENDERBUFFER, renderBufferNames[2]);

The first parameter can be GL_DRAW_FRAMEBUFFER or GL_READ_FRAMEBUFFER and depends on
where you attached your FBO. Then specify the attachment point. The third parameter is
always GL_RENDERBUFFER, and the last parameter is the name of the renderbuffer to be
used.

If you call glFramebufferRenderbuffer with a name of 0, whatever buffer is attached to
the current FBO at the specified attachment point will be detached. A special attachment
point called GL_DEPTH_STENCIL_ATTACHMENT allows you to attach a single buffer to the
depth and stencil attachment points simultaneously. To use this, you have to create an
RBO with an internal GL_DEPTH_STENCIL format.

Before you get any crazy ideas, there is no way to change the attachments of the default
framebuffer. There is also no way to attach one of the surfaces of the default framebuffer
to a user-generated framebuffer.

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands338

ptg

RBO Sizing
Framebuffer objects are surprisingly flexible in what they let you hook up. You can attach
renderbuffers with different color formats to the same framebuffer. In fact, you can even
attach RBOs with different sizes to the same framebuffer. If your RBOs do have different
sizes, you will only be able to render into a rectangle the size of the smallest buffer. This
can be more useful than you might think. For instance, depth buffers can take up quite a
bit of space. If you have multiple FBOs or multiple buffers that need to do depth testing,
you can create one depth buffer and use it for all FBOs or rendering passes, provided you
clear the depth in between uses. All you have to do is make sure you allocate a depth
format RBO that is large enough to cover your biggest FBO configuration.

Draw Buffers
Now that you know how to attach a whole bunch of renderbuffers to a framebuffer, we’d
better make sure you can use them all at once! There are two important steps to gaining
access to your renderbuffers. The first is to make sure the fragment shader is set up prop-
erly, and the second is to make sure the output is being directed to the right place.

Shader Output
To get color output to multiple buffers, the shader has to be configured to write multiple
color outputs. Even better, the values written to each buffer can be different; otherwise,
what’s the point? One way of writing color outputs from a shader is to write to the built-
in output called gl_FragData[n]. You can’t use gl_FragData[n] and gl_FragColor in the
same shader though. The value of n is the output index for the shader. The entire listing
for the fragment shader of the first sample program is shown in Listing 8.4. Three color
outputs are used, and a different shading technique is used on each output.

LISTING 8.4 Fragment Shader for fbo_drawbuffers—multibuffer.fs

// multibuffer.fs

// outputs to 3 buffers: normal color, grayscale,

// and luminance adjusted color

#version 150

in vec4 vFragColor;

in vec2 vTexCoord;

uniform sampler2D textureUnit0;

uniform int bUseTexture;

uniform samplerBuffer lumCurveSampler;

void main(void) {

vec4 vColor;

vec4 lumFactor;

Framebuffer Objects, Going Beyond the Window 339
8

ptg

if (bUseTexture != 0)

vColor = texture(textureUnit0, vTexCoord);

else

vColor = vFragColor;

// Untouched output goes to first buffer

gl_FragData[0] = vColor;

// Grayscale to second buffer

float grey = dot(vColor.rgb, vec3(0.3, 0.59, 0.11));

gl_FragData[1] = vec4(grey, grey, grey, 1.0f);

// clamp input color to make sure it is between 0.0 and 1.0

vColor = clamp(vColor, 0.0f, 1.0f);

int offset = int(vColor.r * (1024 - 1));

lumFactor.r = texelFetch(lumCurveSampler, offset).r;

offset = int(vColor.g * (1024 - 1));

lumFactor.g = texelFetch(lumCurveSampler, offset).r;

offset = int(vColor.b * (1024 – 1));

lumFactor.b = texelFetch(lumCurveSampler, offset).r;

lumFactor.a = 1.0f;

gl_FragData[2] = lumFactor;

}

Buffer Mappings
Now that we know what outputs our shader will write, we need to tell OpenGL where we
want that output to go. We saw how multiple buffers can be bound to an FBO and how
shaders can write to different output indexes. OpenGL allows an application to map the
shader outputs to different FBO buffers by specifying the color attachment for each buffer.
The default behavior is for a single color output to be sent down to color attachment 0. If
you do not tell OpenGL what to do with your shader outputs, only the first output will be
routed through, even if you have multiple shader outputs and multiple color buffers
attached to your framebuffer object.

You can route shader outputs by making a call to glDrawBuffers. This overwrites all previ-
ous mappings, even if you specify fewer mappings than last time:

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands340

ptg

GLenum fboBuffs[] = { GL_COLOR_ATTACHMENT0,

GL_COLOR_ATTACHMENT1,

GL_COLOR_ATTACHMENT2 };

glDrawBuffers(3, fboBuffs);

The second parameter is a pointer to an array of GLenums specifying the color attachment
to route the shader output index value to. Figure 8.3 shows how shader outputs are
mapped to actual buffers. The index of the array passed into glDrawBuffers corresponds
to the index of the shader output. Most of the time you probably just want a one-to-one
mapping with the index of the shader output being the same as the color attachment
offset.

Framebuffer Objects, Going Beyond the Window 341
8

GL_COLOR_ATTACHMENT0

glDrawBuffers()

GL_COLOR_ATTACHMENT2

GL_NONE

GL_COLOR_ATTACHMENT1

GL_COLOR_ATTACHMENT4

Fragment Shader
Output

gl_FragData[0]

gl_FragData[1]

gl_FragData[2]

gl_FragData[3]

gl_FragData[4]

Framebuffer

•
•
•

GL_COLOR_ATTACHMENT0

GL_COLOR_ATTACHMENT1

GL_COLOR_ATTACHMENT2

GL_COLOR_ATTACHMENT3

GL_COLOR_ATTACHMENT4

FIGURE 8.3 Mapping shader outputs to actual buffers.

Again, make sure your FBO is bound before calling glDrawBuffers. If you use
glDrawBuffers while a user-created FBO is bound, the valid buffer targets are
GL_COLOR_ATTACHMENT0 through 1 – the maximum, or GL_NONE. But if the default FBO is
bound, you can use color buffer names associated with the window, most popularly
GL_BACK_LEFT. Note that regardless of the type of FBO being used, no value besides
GL_NONE can be used more than once in the array. If the default framebuffer is bound or
your shader program writes to gl_FragColor, all of the buffers you pass into
glDrawBuffers get the same color. Remember to set the draw buffers back after you are
finished using a FBO, or you’ll end up generating GL errors:

GLenum windowBuff [] = { GL_FRONT_LEFT };

glDrawBuffers(1, windowBuff);

ptg

Of course, there’s no reason you need to map the color output from gl_FragData[0] to
GL_COLOR_ATTACHMENT0. You can mix it up however you like, or set an entry in the draw
buffers list to GL_NONE if you don’t need one of the outputs from the fragment shader. In
the example mapping shown in Figure 8.3, the first shader output is routed to the first
FBO color buffer attachment while the second shader output is routed to the third color
buffer attachment. The third shader output is not routed to any buffer, and the fourth
color buffer receives no shader output. There is a limit to how many mappings can be set
with glDrawBuffers. You can find the maximum supported mappings by calling
glGetIntegerv with parameter GL_MAX_DRAW_BUFFERS.

Using glDrawBuffers to select the buffers your shader writes to has no effect on the read
buffer binding. You can set the read buffer by calling glReadBuffer with the same values
as those used for glDrawBuffers.

Framebuffer Completeness
Before we can finish up with framebuffer objects, there is one last important topic. Just
because you are happy with the way you set up your FBO doesn’t mean your OpenGL
implementation is ready to render. The only way to find out if your FBO is set up correctly
and in a way that the implementation can use it is to check for framebuffer completeness.
Framebuffer completeness is similar in concept to texture completeness. If a texture
doesn’t have all required mipmap levels specified with the right sizes, formats, and so on,
that texture is incomplete and can’t be used. There are two categories of completeness:
attachment completeness and whole framebuffer completeness.

Attachment Completeness
Each attachment point of an FBO must meet certain criteria to be considered complete. If
any attachment point is incomplete, the whole framebuffer will also be incomplete. Some
of the cases that cause an attachment to be incomplete are

• No image is associated with the attached object.

• Width or height of zero for attached image.

• A non-color renderable format is attached to a color attachment.

• A non-depth renderable format is attached to a depth attachment.

• A non-stencil renderable format is attached to a stencil attachment.

Whole Framebuffer Completeness
Not only does each attachment point have to be valid and meet certain criteria, but the
framebuffer object as a whole must also be complete. The default framebuffer, if one
exists, will always be complete. Common cases for the whole framebuffer being incom-
plete are

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands342

ptg

• No images are attached to the framebuffer.

• glDrawBuffers is mapped to an FBO attachment where no image is attached.

• The combination of internal formats is not supported.

Checking the Framebuffer
When you think you are finished setting up an FBO, you can check to see whether it is
complete by calling

GLenum fboStatus = glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER);

If glCheckFramebufferStatus returns GL_FRAMEBUFFER_COMPLETE, all is well, and you may
use the FBO. The return value of glCheckFramebufferStatus provides clues to what might
be wrong if the framebuffer is not complete. Table 8.3 describes all possible return condi-
tions and what they mean.

TABLE 8.3 Framebuffer Completeness Return Values

Return Value Description

GL_FRAMEBUFFER_UNDEFINED The current FBO binding is 0, but no default

framebuffer exists.

GL_FRAMEBUFFER_COMPLETE A user-defined FBO is bound and is complete.

OK to render.

GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT One of the buffers enabled for rendering is

incomplete.

GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT No buffers are attached to the FBO.

GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER One of the buffer attachments enabled for

rendering does not have a buffer attached.

GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER One of the buffer attachments enabled for

reading does not have a buffer attached.

GL_FRAMEBUFFER_UNSUPPORTED The combination of internal buffer formats is

not supported.

GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE The number of samples or the value for

TEXTURE_FIXED_SAMPLE_LOCATIONS for all

buffers does not match.

GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS Not all color attachments are layered textures

or bound to the same target.

Many of these return values are helpful when debugging an application but are less
useful after an application has shipped. Nonetheless, the first sample application checks to
make sure none of these conditions occurred. It pays to do this check in applications that
use FBOs, making sure your use case hasn’t hit some implementation dependent limita-
tion. An example of this might look like the following code:

Framebuffer Objects, Going Beyond the Window 343
8

ptg

GLenum fboStatus = glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER);

if(fboStatus != GL_FRAMEBUFFER_COMPLETE)

{

switch (fboStatus)

{

case GL_FRAMEBUFFER_UNDEFINED:

// Oops, no window exists?

break;

case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:

// Check the status of each attachment

break;

case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:

// Attach at least one buffer to the FBO

break;

case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER:

// Check that all attachments enabled via

// glDrawBuffers exist in FBO

case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER:

// Check that the buffer specified via

// glReadBuffer exists in FBO

break;

case GL_FRAMEBUFFER_UNSUPPORTED:

// Reconsider formats used for attached buffers

break;

case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE:

// Make sure the number of samples for each

// attachment is the same

break;

case GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS:

// Make sure the number of layers for each

// attachment is the same

break;

}

}

If you attempt to perform any command that reads from or writes to the framebuffer
while an incomplete FBO is bound, the command simply returns after throwing the error
GL_INVALID_FRAMEBUFFER_OPERATION, retrievable by calling glGetError.

Read Framebuffers Need to Be Complete Too!
In the previous examples, we test the FBO attached to the draw buffer binding point,
GL_DRAW_FRAMEBUFFER. But a framebuffer attached to GL_READ_FRAMEBUFFER also has to be
attachment complete and whole framebuffer complete for reads to work. Because only one

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands344

ptg

read buffer can be enabled at a time, making sure an FBO is complete for reading is a little
easier.

Copying Data in Framebuffers
Rendering to these off-screen framebuffers is fine and dandy, but ultimately you have to
do something useful with the result. Traditionally graphics APIs allowed an application to
read pixel or buffer data back to system memory and also provided ways to draw it back to
the screen. While these methods are functional, they required copying data from the GPU
into CPU memory and then turning right around and copying it back. Very inefficient!
We now have a way to quickly move pixel data from one spot to another using a blit
command. Blit is a term that refers to direct, efficient bit-level data/memory copies. There
are many theories of the origin of this term, but the most likely candidates are Bit-Level-
Image-Transfer or Block-Transfer. Whatever the etymology of blit may be, the action is the
same. Performing these copies is simple; the function looks like this:

void glBlitFramebuffer(GLint srcX0, Glint srcY0, GLint srcX1, Glint srcY1,

GLint dstX0, Glint dstY0, GLint dstX1, Glint dstY1,

GLbitfield mask, GLenum filter);

Even though this function has “blit” in the name, it does much more than a simple
bitwise copy. In fact, it’s more like an automated texturing operation. The source of the
copy is the read buffer specified by calling glReadBuffer, and the area copied is region
defined by the rectangle with corners at (srcX0, srcY0) and (srcX1, srcY1). Likewise, the
target of the copy is the current draw buffer specified by calling glDrawBuffer, and the
area copied to is region defined by the rectangle with corners at (dstX0, dstY0) and (dstX1,
dstY1). Because the rectangles for the source and destination do not have to be of equal
size, you can use this function to scale the pixels being copied. If you have set the read
and draw buffers to the same FBO and have bound the same FBO to the GL_DRAW_FRAME-
BUFFER and GL_READ_FRAMEBUFFER bindings, you can even copy data from one portion of a
buffer to another.

The mask argument can be any or all of GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_BIT, or
GL_COLOR_BUFFER_BIT. The filter can be either GL_LINEAR or GL_NEAREST but must be
GL_LINEAR if you are copying depth or stencil data. These filters behave the same as they
would for texturing. For our example we are only copying color data and can use a linear
filter.

GLint width = 800;

GLint height = 600;

GLenum fboBuffs[] = { GL_COLOR_ATTACHMENT0 };

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

glBindFramebuffer(GL_READ_FRAMEBUFFER, fboName);

glDrawBuffers(1, fboBuffs);

glReadBuffer(GL_COLOR_ATTACHMENT0);

Framebuffer Objects, Going Beyond the Window 345
8

ptg

glBlitFramebuffer(0, 0, width, height,

(width *0.8), (height*0.8), width, height,

GL_COLOR_BUFFER_BIT, GL_LINEAR);

Assume the width and height of the RBOs attached to the FBO bound in the preceding
code is 800 and 600. This code creates a copy of the whole buffer scaled down to 20% of
the total size and places it in the upper-right corner.

Putting It All Together—Using FBOs
Our second sample application brings together FBOs, RBOs, texBOs, framebuffer blitting,
and much more! The model is simple, but all rendering is done in one pass with one frag-
ment shader (refer to Listing 8.4). To capture all of this output, we use an FBO with a
depth buffer and three color buffers. These are set up in Listing 8.5.

LISTING 8.5 Creating and Setting Up an FBO with Four Attachments

// Create a new FBO

glGenFramebuffers(1,&fboName);

// Create depth renderbuffer

glGenRenderbuffers(1, &depthBufferName);

glBindRenderbuffer(GL_RENDERBUFFER, depthBufferName);

glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT32, screenWidth,

screenHeight);

// Create 3 color renderbuffers

glGenRenderbuffers(3, renderBufferNames);

glBindRenderbuffer(GL_RENDERBUFFER, renderBufferNames[0]);

glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, screenWidth, screenHeight);

glBindRenderbuffer(GL_RENDERBUFFER, renderBufferNames[1]);

glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, screenWidth, screenHeight);

glBindRenderbuffer(GL_RENDERBUFFER, renderBufferNames[2]);

glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, screenWidth, screenHeight);

// Attach all 4 renderbuffers to FBO

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_RENDERBUFFER, depthBufferName);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

GL_RENDERBUFFER, renderBufferNames[0]);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT1,

GL_RENDERBUFFER, renderBufferNames[1]);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT2,

GL_RENDERBUFFER, renderBufferNames[2]);

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands346

ptg

// Setup shader for processing

processProg = gltLoadShaderPairWithAttributes(“multibuffer.vs”,

“multibuffer.fs”, 3, GLT_ATTRIBUTE_VERTEX,

“vVertex”, GLT_ATTRIBUTE_NORMAL,

“vNormal”, GLT_ATTRIBUTE_TEXTURE0, “vTexCoord0”);

// Create 3 new buffer objects

glGenBuffers(3,texBO);

glGenTextures(1, &texBOTexture);

int count = 0;

float* fileData = 0;

// Load first texBO with a tangent-like curve, 1024 values

fileData = LoadFloatData(“LumTan.data”, &count);

if (count > 0)

{

glBindBuffer(GL_TEXTURE_BUFFER_ARB, texBO[0]);

glBufferData(GL_TEXTURE_BUFFER_ARB, sizeof(float)*count,

fileData, GL_STATIC_DRAW);

delete fileData;

}

// Load second texBO with a sine-like curve, 1024 values

fileData = LoadFloatData(“LumSin.data”, &count);

if (count > 0)

{

glBindBuffer(GL_TEXTURE_BUFFER_ARB, texBO[1]);

glBufferData(GL_TEXTURE_BUFFER_ARB, sizeof(float)*count,

fileData, GL_STATIC_DRAW);

delete fileData;

}

// Load third texBO with a linear curve, 1024 values

fileData = LoadFloatData(“LumLinear.data”, &count);

if (count > 0)

{

glBindBuffer(GL_TEXTURE_BUFFER_ARB, texBO[2]);

glBufferData(GL_TEXTURE_BUFFER_ARB, sizeof(float)*count,

fileData, GL_STATIC_DRAW);

delete fileData;

}

Framebuffer Objects, Going Beyond the Window 347
8

ptg

// Load the Tan ramp first

glBindBuffer(GL_TEXTURE_BUFFER_ARB, 0);

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_BUFFER_ARB, texBOTexture);

glTexBuffer(GL_TEXTURE_BUFFER_ARB, GL_R32F, texBO[0]);

glActiveTexture(GL_TEXTURE0);

// Reset framebuffer binding

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);

The first part of Listing 8.5 sets up and puts together the FBO and RBOs. Next we use the
GLTools library to create our shaders and program, all compiled and linked together. Then
we create three buffer objects and fill them with floating-point data from off-line files. The
data contained in the files are biased ramps. One has a sine bias, one a tangent bias, and
one is linear. These ramps are plotted against each other in Figure 8.4 for comparison.
After the texture buffers have been created and loaded, the default framebuffer object is
rebound again.

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands348

Sine

Tangent

Linear

0.
05

0.
09

0.
14

0.
19

0.
23

0.
28

0.
33

0.
37

0.
42

0.
47

0.
51

0.
56

0.
61

0.
66 0.
7

0.
75 0.
8

0.
84

0.
89

0.
94

0.
98

1

0.8

0.6

0.4

0.2

0

FIGURE 8.4 Comparison of bias curves for fbo_drawbuffers sample program.

The code shown in Listing 8.6 sets up all of the necessary shader state for OpenGL to use
the program, which renders to multiple render targets. The texture buffer object is already
loaded. But because the texture buffer object uses a texture unit to fetch values, the texture

ptg

buffer sampler, lumCurveSampler, must be set to the texture unit the texture buffer is
loaded on.

LISTING 8.6 Set Up OpenGL State for the Program

glUseProgram(processProg);

// Set Matrices for Vertex Program

glUniformMatrix4fv(glGetUniformLocation(processProg, “mvMatrix”),

1, GL_FALSE, transformPipeline.GetModelViewMatrix());

glUniformMatrix4fv(glGetUniformLocation(processProg, “pMatrix”),

1, GL_FALSE, transformPipeline.GetProjectionMatrix());

// Set the light position

glUniform3fv(glGetUniformLocation(processProg, “vLightPos”), 1, vLightPos);

// Set the vertex color for rendered pixels

glUniform4fv(glGetUniformLocation(processProg, “vColor”), 1, vColor);

// Set the texture unit for the texBO fetch

glUniform1i(glGetUniformLocation(processProg, “lumCurveSampler”), 1);

// If this geometry is textured, set the texture unit

if(textureUnit != -1)

{

glUniform1i(glGetUniformLocation(processProg, “bUseTexture”), 1);

glUniform1i(glGetUniformLocation(processProg, “textureUnit0”),

textureUnit);

}

else

{

glUniform1i(glGetUniformLocation(processProg, “bUseTexture”), 0);

}

The last interesting part of the sample program is to set the FBO, specify which buffers will
be drawn to, and then render the scene. In Listing 8.7, the app-created FBO is bound, and
the drawbuffers are set to the first three color attachments. Next the buffers are cleared,
the processing program is bound, and the scene is rendered. When rendering is complete,
the results are presented to the window through three calls to glBlitFramebuffer. The
read buffer is set to the appropriate FBO attachment for each. Notice how all three outputs
can be viewed simultaneously in Figure 8.5 and also in Color Plate 12.

Framebuffer Objects, Going Beyond the Window 349
8

ptg

LISTING 8.7 Perform Rendering to FBO, Copy to Screen

GLenum fboBuffs[] = { GL_COLOR_ATTACHMENT0,

GL_COLOR_ATTACHMENT1,

GL_COLOR_ATTACHMENT2 };

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

glDrawBuffers(3, fboBuffs);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

UseProcessProgram(vLightTransformed, vFloorColor, 0);

floorBatch.Draw();

DrawWorld(yRot);

// Direct drawing to the window

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);

glDrawBuffers(1, windowBuff);

glViewport(0, 0, GetWidth(), GetHeight());

// Source buffer reads from the framebuffer object

glBindFramebuffer(GL_READ_FRAMEBUFFER, fboName);

// Copy grayscale output to the left half of the screen

glReadBuffer(GL_COLOR_ATTACHMENT1);

glBlitFramebuffer(0, 0, GetWidth()/2, GetHeight(),

0, 0, GetWidth()/2, GetHeight(),

GL_COLOR_BUFFER_BIT, GL_NEAREST);

// Copy the luminance adjusted color to the right half of the screen

glReadBuffer(GL_COLOR_ATTACHMENT2);

glBlitFramebuffer(GetWidth()/2, 0, GetWidth(), GetHeight(),

GetWidth()/2, 0, GetWidth(), GetHeight(),

GL_COLOR_BUFFER_BIT, GL_NEAREST);

// Scale the unaltered image to the upper right of the screen

glReadBuffer(GL_COLOR_ATTACHMENT0);

glBlitFramebuffer(0, 0, GetWidth(), GetHeight(),

(int)(GetWidth() *(0.8)), (int)(GetHeight()*(0.8)),

GetWidth(), GetHeight(),

GL_COLOR_BUFFER_BIT, GL_LINEAR);

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands350

ptg

FIGURE 8.5 Multiple buffers drawn simultaneously.

Pressing the F3, F4, and F5 keys switches the luminance ramp applied to the right side of
the window. The processing shader takes the final color, scales the color values by the size
of the texture buffer objects, and then looks up new R, G, and B values before storing the
value in the their color output. You can try changing the data that generates these ramps,
adding your own ramps, or applying different factors to each of the color channels.
Pressing the F2 key switches between rendering multiple outputs to the FBO or rendering
straight to the screen.

Remember that the drawing surface size is dependent on the surfaces bound. In the case of
the fbo_drawbuffers sample program, the sizes of the renderbuffers are the same as the
window. So no matter where it’s rendering, the buffer sizes are the same. Even though it
isn’t necessary in this case, remember that you must also change the viewport size by
calling glViewport to draw into the entire buffer (and not overdraw either!)

Rendering to Textures
Well, we have come a long way from traditional window rendering. FBOs are a flexible
tool for off-screen rendering. However, RBOs definitely have their limitations. In fact, they
are really only useful when attached directly to an FBO. That means getting data out
requires a copy we would like to avoid. Fortunately you aren’t limited to using RBOs.
Instead, you can bind a texture directly to an FBO attachment. Because textures come in
many different flavors, there are three entry points to bind textures to a framebuffer
attachment:

Rendering to Textures 351
8

ptg

void glFramebufferTexture1D(GLenum target, GLenum attachment,

GLenum textarget, GLuint texture, GLint level);

void glFramebufferTexture2D(GLenum target, GLenum attachment,

GLenum textarget, GLuint texture, GLint level);

void glFramebufferTexture3D(GLenum target, GLenum attachment,

GLenum textarget, GLuint texture, GLint level,

GLint layer);

The target can be either GL_DRAW_FRAMEBUFFER or GL_READ_FRAMEBUFFER just as it is for
renderbuffers. Also similar to binding renderbuffers, the second argument specifies the
FBO attachment point and can be GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT, or any
of the GL_COLOR_ATTACHMENTn values. For most textures, the third argument is the corre-
sponding texture type, but for cube maps you have to pass in the target of the face. Next,
give the name of the texture and then the mipmap level of the texture to bind. For
glFramebufferTexture3D, you also must specify the layer of the 3D texture to use. One-
dimensional textures can only be bound via glFramebufferTexture1D, and
glFramebufferTexture3D can only be used for three-dimensional textures. Use
glFramebufferTexture2D for two-dimensional, rectangle, and cube map textures.

In our third sample program, fbo_textures, we use a texture attached to an FBO to create a
mirror effect for the scene. First, set up the FBO just as in the first sample program. But
this time the program attaches a texture to the FBO as in Listing 8.8.

LISTING 8.8 Set Up an FBO with Texture Attachments

// Create and bind an FBO

glGenFramebuffers(1,&fboName);

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

// Create depth renderbuffer

glGenRenderbuffers(1, &depthBufferName);

glBindRenderbuffer(GL_RENDERBUFFER, depthBufferName);

glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT32, 800, 800);

// Create the reflection texture

glGenTextures(1, &mirrorTexture);

glBindTexture(GL_TEXTURE_2D, mirrorTexture);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 800, 800, 0, GL_RGBA, GL_FLOAT,

NULL);

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands352

ptg

// Attach texture to first color attachment and the depth RBO

glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

GL_TEXTURE_2D, mirrorTexture, 0);

glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_RENDERBUFFER, depthBufferName);

All rendering to the new FBO is done the same way as with RBO color attachments.
However, there are a few things to watch out for. Because the texture now bound to the
FBO can also be used for rendering, it’s possible to create a rendering loop. A shader could
be fetching texels from a texture and then writing the final shaded result back to the
same texture, possibly overwriting the same locations. This would cause undefined results
and can be a problem that is very hard to track down. As a general rule, it is best to make
sure textures that are bound to an FBO and are being written to are also not bound to any
texture units.

The state of each texture bound to the FBO also affects FBO completeness. The size and
format of a texture image surface can change asynchronously while bound to an FBO
through calls such as glTexImage2D. If you make changes to a texture’s image surface
while it is a render target, you should make sure the framebuffer is still valid for rendering
by calling glCheckFramebufferStatus. You can bind any mipmap level of a texture by
specifying it when attaching the texture. If you are then planning on using mipmaps for
texturing, you want to generate the rest of the mip chain for the texture you just rendered
into. This doesn’t happen automatically, but you can call glGenerateMipmap with the
texture type you want updated. This updates all levels beyond the base level using the
contents of the base level.

There is no magic in this mirror effect; check out Figure 8.6 (also shown in Color Plate
13). But FBOs allow you to achieve a realistic reflection that is nearly impossible any other
way. You have used alpha blending and image inversion earlier in the book to imitate
reflections on marble floors. The alpha-inversion effect works okay when the reflection is
always at the same angle. But it breaks down at the edge of the marble floor, when angles
change, walking up a steep ramp perhaps. It also doesn’t play nice with obstacles that
should be blocking the reflection, maybe a box or stool. Additionally, using the alpha-
inversion method may also cause depth testing issues.

Rendering to Textures 353
8

ptgFIGURE 8.6 Using FBOs and textures to create accurate reflections.

Using an FBO, we first change our perspective to that of the mirror. This means the world
and all contents will be rendered from the position of the mirror. But which direction
should the mirror “look?” Straight out from the mirror surface? That would mean the
reflection wouldn’t change as the viewer moved relative to the mirror. How about back at
the viewer? Well that would mean you could always see your reflection no matter where
you stood, close but not correct. You can draw a vector from the viewer’s position to the
center of the mirror. The mirror should be looking in the direction of this vector reflected
over the perpendicular normal vector of the mirror surface. You can imagine yourself
standing behind the mirror looking in the direction of the reflection to see what the
mirror should show. Take a look at Figure 8.7 to get an idea of how this works. Remember
that the angle of incidence here is not the direction the viewer/camera is looking, but the
angle made by drawing a line between the position of the viewer and the center of the
mirror.

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands354

ptg
FIGURE 8.7 Finding the mirror viewing angle based on reflection.

Once you have the position of the mirror figured out and the angle of the mirror’s view
calculated, you can render the scene from the mirror’s position and perspective. Listing 8.9
shows how the scene is drawn as the mirror sees it. In the fbo_textures sample program,
we use a GLFrame object from the GLTools resources to generate the adjustment to the
modelview matrix based on the position, up vector, and view direction. Then, the
modelview matrix is inverted in the x direction to simulate the reflection—everything is
backward in a mirror. As a bonus the viewer, you, is drawn as a blue cone in the reflected
image to help visualize where the camera is.

LISTING 8.9 Drawing from the Mirror’s Perspective

// Set position of mirror frame (camera)

vMirrorPos[0] = 0.0;

vMirrorPos[1] = 0.1f;

vMirrorPos[2] = -6.0f; // view pos is actually behind mirror

mirrorFrame.SetOrigin(vMirrorPos);

// Calculate direction of mirror frame (camera)

// Because the position of the mirror is known relative to the origin

// find the direction vector by adding the mirror offset to the vector

// of the viewer-origin

vMirrorForward[0] = vCameraPos[0];

Rendering to Textures 355
8

Mirror Viewer

Normal
 Viewer

Mirror

ptg

vMirrorForward[1] = vCameraPos[1];

vMirrorForward[2] = (vCameraPos[2] + 5);

m3dNormalizeVector3(vMirrorForward);

mirrorFrame.SetForwardVector(vMirrorForward);

// first render from the mirror’s perspective

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

glDrawBuffers(1, fboBuffs);

glViewport(0, 0, mirrorTexWidth, mirrorTexHeight);

// Draw scene from the perspective of the mirror camera

modelViewMatrix.PushMatrix();

M3DMatrix44f mMirrorView;

mirrorFrame.GetCameraMatrix(mMirrorView);

modelViewMatrix.MultMatrix(mMirrorView);

// Flip the mirror camera horizontally for the reflection

modelViewMatrix.Scale(-1.0f, 1.0f, 1.0f);

glBindTexture(GL_TEXTURE_2D, textures[0]); // Marble

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

shaderManager.UseStockShader(GLT_SHADER_TEXTURE_MODULATE,

transformPipeline.GetModelViewProjectionMatrix(),

vWhite, 0);

floorBatch.Draw();

DrawWorld(yRot);

// Now draw a cylinder representing the viewer

M3DVector4f vLightTransformed;

modelViewMatrix.GetMatrix(mMirrorView);

m3dTransformVector4(vLightTransformed, vLightPos, mMirrorView);

modelViewMatrix.Translate(vCameraPos[0],vCameraPos[1]-0.8f,

vCameraPos[2]-1.0f);

modelViewMatrix.Rotate(-90.0f, 1.0f, 0.0f, 0.0f);

shaderManager.UseStockShader(GLT_SHADER_POINT_LIGHT_DIFF,

modelViewMatrix.GetMatrix(),

transformPipeline.GetProjectionMatrix(),

vLightTransformed, vBlue, 0);

cylinderBatch.Draw();

modelViewMatrix.PopMatrix();

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands356

ptg

Next the scene is drawn in Listing 8.10. The framebuffer, viewport, and drawbuffers are all
set back to the default for rendering to the window. Then the scene is drawn again, this
time from the perspective of the viewer/camera. Once finished, the mirror itself can finally
be drawn. Before applying the texture containing the mirror image, the sample program
figures out which side of the mirror the viewer is on. To avoid goofy reflections on the
back of the mirror, the program checks to see if the viewer is in front of or behind the
mirror. If the viewer is behind, the mirror is just drawn as black.

LISTING 8.10 Drawing the Rest of the Scene, Including the Mirror

// Reset FBO. Draw world again from the real cameras perspective

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);

glDrawBuffers(1, windowBuff);

glViewport(0, 0, screenWidth, screenHeight);

modelViewMatrix.PushMatrix();

M3DMatrix44f mCamera;

cameraFrame.GetCameraMatrix(mCamera);

modelViewMatrix.MultMatrix(mCamera);

glBindTexture(GL_TEXTURE_2D, textures[0]); // Marble

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

shaderManager.UseStockShader(GLT_SHADER_TEXTURE_MODULATE,

transformPipeline.GetModelViewProjectionMatrix(),

vWhite, 0);

floorBatch.Draw();

DrawWorld(yRot);

// Now draw the mirror surfaces

modelViewMatrix.PushMatrix();

modelViewMatrix.Translate(0.0f, -0.4f, -5.0f);

if(vCameraPos[2] > -5.0)

{

glBindTexture(GL_TEXTURE_2D, mirrorTexture); // Reflection

shaderManager.UseStockShader(GLT_SHADER_TEXTURE_REPLACE,

transformPipeline.GetModelViewProjectionMatrix(), 0);

}

else

{

// If the camera is behind the mirror, just draw black

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(), vBlack);

}

Rendering to Textures 357
8

ptg

mirrorBatch.Draw();

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(), vGrey);

mirrorBorderBatch.Draw();

modelViewMatrix.PopMatrix();

There are some limitations to this approach. For one, the entire scene has to be drawn
twice, which could be a performance issue if many objects were behind the mirror or out
of view. In Chapter 12, “Advanced Geometry Management,” you learn about occlusion
queries and how to draw only what will be seen. Another issue is that the viewer position
of the mirror in the sample program is taken from the center of the mirror to keep the
math fairly simple. This isn’t very realistic. One way to generate a more accurate reflection
might be to use the closest point on the mirror to the camera instead. As an exercise, you
can try to modify the application so that the mirror also rotates in the scene. In this case
you have to recalculate the angle of incidence based on both the position of the camera
relative to the mirror and the angle of the mirror to the camera.

Summary
This chapter brought some major changes in how you can manage memory and buffers in
OpenGL. Using pixel buffer objects, you can efficiently move data around the GPU and
pipeline data loads for things like texture updates. You can use texture buffer objects to
bind arbitrary data to a texture unit and then fetch that data in a shader.

Framebuffer objects teamed up with render buffer objects, and textures open a whole new
world of possibilities for off-screen rendering. Now nearly any pixel surface can be
attached and rendered to directly without affecting what happens in the window. You also
learned how to use shaders to draw to a large number of color surfaces simultaneously.

CHAPTER 8 Buffer Objects: Storage Is Now in Your Hands358

ptg

CHAPTER 9

Advanced Buffers:
Beyond the Basics

by Nicholas Haemel

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Use custom fragment shader output bindings glBindFragDataLocation/

glBindFragDataLocationIndexed

Update existing buffers glMapBuffer/glMapBufferRange/glUnmapBuffer

Load compressed textures glCompressedTexSubImage2D

Copy data between buffer objects glCopyBufferSubData

Render to multisample textures glRenderBufferStorageMultisample

Get locations of samples in multisample buffers glGetMultisamplefv

Render in full definition using floating-

point buffers and textures

By now framebuffer objects are old hat. We can use the flexibility provided by FBOs,
textures, and buffer objects to really push the OpenGL pipeline. So far most of our work
has been with traditional 8-bit color textures and renderbuffers. Even depth buffers
mapped all values to 24 or 32 bits of physical fixed-point range.

New data formats open a whole new world, allowing your application to store the actual
output of the fragment shader without loss of precision. The fun doesn’t stop there.
OpenGL also provides many ways of accessing and updating buffers on the GPU without
bringing rendering to a grinding halt.

Getting at Your Data
Most of this chapter focuses on all the new data formats and ways to use them. But before
we get to that, let’s build on what we learned in Chapter 8, “Buffer Objects: Storage Is
Now in Your Hands,” and cover a few important ways of accessing your buffers that will
help you to optimize your performance.

ptg

360 CHAPTER 9 Advanced Buffers: Beyond the Basics

Mapping Buffers
In the previous chapter, you uploaded buffer objects using glBufferData once to fill the
buffer. But what if you have to make changes or update the buffer after it has been loaded
on the GPU? Well that’s what glMapBuffer and glMapBufferRange are for. When you call
glMapBufferRange, OpenGL provides a pointer to memory that you can use to directly
read or update the data in a buffer. All you have to do is tell the implementation what you
are planning on doing with the data. You can choose to only read from the mapped buffer
in cases where the GPU has written to the buffer and you want to bring the results back to
the CPU. Or you can map the buffer for writing in which case your changes are reflected
on the buffer stored in GPU memory. The type of mapping you choose will have perfor-
mance implications; try to avoid mapping a buffer for writing when you only need to read
from it. Likewise, don’t map a buffer for reading if you are only going to write to it. Table
9.1 shows the possible bitfield values for mapping buffers.

TABLE 9.1 Map Buffer Access Types

Access Flags Usage

GL_MAP_READ_BIT Returned pointer may be used for reading the buffer.

GL_MAP_WRITE_BIT Returned pointer may be used for modifying the buffer.

GL_MAP_INVALIDATE_RANGE_BIT Signals that OpenGL can throw away the previous

contents of the mapped range. Data in the range is

undefined unless updated by the application.

GL_MAP_INVALIDATE_BUFFER_BIT Signals that OpenGL can throw away the previous

contents of the entire buffer. Data in the buffer is unde-

fined unless updated by the application.

GL_MAP_FLUSH_EXPLICIT_BIT Using this bit with GL_MAP_WRITE_BIT requires an

application to explicitly flush each range updated by

calling glFlushMappedBufferRange. If this bit is not

specified, the entire buffer will be flushed when

glUnmapBuffer is called.

GL_MAP_UNSYNCHRONIZED_BIT Tells OpenGL to aviod trying to sychronize any pending

GPU writes to this buffer before mapping.

When done updating the mapped buffer, call glUnmapBuffer to tell OpenGL you are
finished.

Glint accessFlags = GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |

GL_MAP_FLUSH_EXPLICIT_BIT;

Glint offset = 32* 100;

Glint length = 32*48;
GLvoid *bufferData = glMapBufferRange(GL_TEXTURE_BUFFER, offset, length, access-

Flags);

// Update buffer here

. . .

glUnmapBuffer(GL_TEXTURE_BUFFER);

ptg

If you set the GL_MAP_FLUSH_EXPLICIT_FLAG, you have to tell OpenGL which portions of
the buffer you want flushed, or which portions you updated by calling
glFlushMappedBufferRange before unmapping the buffer. You can call
glFlushMappedBufferRange as many times as you need for as many ranges as you updated:

GLvoid glFlushMappedBufferRange(GLenum target, intprt offset, sizeiptr length);

Use the same target the buffer is bound to. The offset and length parameters are used to
signal which portion of the buffer was changed.

You can also map an entire buffer by calling glMapBuffer instead of glMapBufferRange.

GLvoid *bufferData = glMapBuffer(GL_TEXTURE_BUFFER, accessFlags);

You use glMapBuffer and glMapBufferRange extensively in the rest of the book to load
and update data on the GPU.

Copying Buffers
Once your data has been sent to the GPU, it’s entirely possible you may want to share that
data between buffers or copy the results from one buffer into another. Thankfully,
OpenGL provides an easy to use way of doing that as well. glCopyBufferSubData lets you
specify which buffers are involved as well as the size and offsets to use.

glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, readStart, writeS-

tart, size);

The buffers you are copying to and from can be any buffers bound to any of the buffer
binding points listed in Table 8.1 back in Chapter 8. But since buffer binding points can
only have one buffer bound at a time, you couldn’t copy between two buffers both bound
to GL_TEXTURE_BUFFER, for example. The creators of OpenGL thought of this too!
Remember the GL_COPY_READ_BUFFER and GL_COPY_WRITE_BUFFER you first saw in Chapter
8 but haven’t used for anything yet? Well these binding points were added specifically for
you to copy data from one buffer to another. You can bind your read and write buffers to
these binding points without affecting any other buffer bindings. Then pick the offsets
into each buffer and specify the size.

Be sure that the ranges you are reading from and writing to remain within the size of the
buffers; otherwise your copy will fail. glCopyBufferSubData can be use for many clever
algorithms. One common use is for an application to create a second thread with an
OpenGL context used for loading data. In this case glCopyBufferSubData is quite handy
for updating geometry data in the primary context without major interruptions rendering.

Controlling the Destiny of Your Pixel Shaders; Mapping
Fragment Outputs
In Chapter 8 you learned how to hook up multiple buffer objects to a framebuffer and
render many different outputs from the same fragment shader. To do this, your shader

Controlling the Destiny of Your Pixel Shaders; Mapping Fragment Outputs 361
9

ptg

CHAPTER 9 Advanced Buffers: Beyond the Basics362

could write to the built-in shader outputs called gl_FragData[n] instead of gl_FragColor.
Although you can still compile a GLSL 1.50 shader using either of these outputs, both are
deprecated. That means future versions of OpenGL will remove them, and we are better
off using the “new and improved” way of writing shader color outputs.

Using built-in shader outputs is so 2006! One problem with the old way is that you can
write gl_FragData or gl_FragColor, but never both. Also, your fragment shader must
contain hard-coded indexes if it renders to multiple outputs. Additionally, how are you
supposed to keep track of and make logical sense of what is being written to
gl_FragData[7] across multiple shaders?

Instead of setting the value of a built-in color output index, you can define your own
shader outputs. For color outputs, declare your output as out vec4 in your fragment
shader. The outputs for the Chapter 8 draw buffers sample program have been rewritten to
use custom locations:

out vec4 oStraightColor;

out vec4 oGreyscale;

out vec4 oLumAdjColor;

Then before linking the program, tell OpenGL where you want to map the outputs by
using glBindFragDataLocation. Just specify which index each output maps to:

glBindFragDataLocation(processProg, 0, “oStraightColor”);

glBindFragDataLocation(processProg, 1, “oGreyscale”);

glBindFragDataLocation(processProg, 2, “oLumAdjColor”);

glLinkProgram(processProg);

You can also compile your shaders, link your program together, and then specify the loca-
tions of your outputs. Just remember to relink the program again before you use it so that
setting the output locations takes effect. Now your shader output is configured. Each color
is written to a unique index. Remember that you can’t assign an output to more than one
index. The entire listing for the fragment shader of the draw buffers sample program from
Chapter 8 is shown in Listing 9.1. Three color outputs are declared, and a different
shading technique is used for each output.

LISTING 9.1 Fragment Shader for fbo_drawbuffers, multibuffer_frag_location.fs

#version 150

// multibuffer_frag_location.fs

// outputs to 3 buffers: normal color, grayscale,

// and luminance adjusted color

in vec4 vFragColor;

in vec2 vTex;

ptg

uniform sampler2D textureUnit0;

uniform int bUseTexture;

uniform samplerBuffer lumCurveSampler;

out vec4 oStraightColor;

out vec4 oGrayscale;

out vec4 oLumAdjColor;

void main(void) {

vec4 vColor;

vec4 lumFactor;

if (bUseTexture != 0)

vColor = texture(textureUnit0, vTex);

else

vColor = vFragColor;

// Untouched output goes to first buffer

oStraightColor = vColor;

// Grayscale to second buffer

float grey = dot(vColor.rgb, vec3(0.3, 0.59, 0.11));

oGrayscale = vec4(gray, gray, gray, 1.0f);

// clamp input color to make sure it is between 0.0 and 1.0

vColor = clamp(vColor, 0.0f, 1.0f);

int offset = int(vColor.r * 1024);

oLumAdjColor.r = texelFetch(lumCurveSampler, offset).r;

offset = int(vColor.g * 1024);

oLumAdjColor.g = texelFetch(lumCurveSampler, offset).r;

offset = int(vColor.b * 1024);

oLumAdjColor.b = texelFetch(lumCurveSampler, offset).r;

oLumAdjColor.a = 1.0f;

}

There are many advantages to using glBindFragDataLocation. You can use logical names
for outputs in shaders that actually have a meaning. You can also use the same name in
multiple shaders and map that name to the appropriate logical buffer index at runtime.

We take a deeper look into how your application can use blending in Chapter 10,
“Fragment Operations: The End of the Pipeline.” Some blending equations in OpenGL 3.3

Controlling the Destiny of Your Pixel Shaders; Mapping Fragment Outputs 363
9

ptg

require a shader to output two different colors per fragment. You can use
glBindFragDataLocationIndexed to do this.

glBindFragDataLocationIndexed(program, colorNumber. index, outputName);

This function behaves similarly to glBindFragDataLocation. In OpenGL 3.3 there are two
possible index values for the index parameter. If you choose 0, the color will be used as
the first input color, just as if you had used glBindFragDataLocation. If you use 1, the
color will be used as the second input color for blending.

New Formats for a New Hardware Generation
One way OpenGL has progressed in the past few years is to add native support for a slew
of new data formats and data types. The writers of the OpenGL standard continue to bring
flexibility to 3D application development—first with completely customizable sections of
the graphics pipeline, next with flexible buffer usage, and now finally with flexible data
formats.

At first such an idea might seem trivial or unimportant. But anyone who has spent time
trying to express all of their color data in 8 bits can sympathize. Most data that enters the
OpenGL rendering pipeline has come from some other application or tool. Vertex and
texture data for most games come from artistic authoring tools such as Maya or 3DS Max.
CAD programs use complex engines to generate 3D surfaces based on user input and file
formats. Because vertex, texture, and related data can be large and complex, it can be
nearly impossible to convert all of this data from various sources to a small set of formats.
But conversion is usually unnecessary with OpenGL now that the most common and
many uncommon formats are supported natively.

Floats—True Precision at Last!
One of the most useful additions is floating-point formats. Although internally the
OpenGL pipeline usually works with floating-point data, the sources and targets have
often been fixed-point and of significantly less precision. As a result, many portions of the
pipeline used to clamp all values between 0 and 1 so they could be stored in a fixed-point
format in the end. While OpenGL 3.2 still allowed you to clamp the output of fragment
shaders, OpenGL 3.3 has removed clamping altogether.

The data type passed into a vertex shader is up to you but is typically declared as vec4, or
a vector of four floats. Similarly, you decide what outputs your vertex shader should write
when you declare variables as out or varying in a vertex shader. These outputs are then
rasterized across your geometry and passed into your fragment shader. You have complete
control of the type of data you decide to use for color throughout the whole pipeline,
although it’s most common to just use floats. You now have complete control over how
and in what format your data is in as it travels from vertex arrays all the way to the final
output.

CHAPTER 9 Advanced Buffers: Beyond the Basics364

ptg

This is great! Now instead of 256 values, you can color and shade using values from 1.18 *
10-38 all the way to 3.4 * 1038! (Negative colors just wouldn’t make sense.) But wait, if you
are drawing to a window that only has 8 bits per color, what happens? Unfortunately, the
output is clamped to the range of 0 to 1 and then mapped to a fixed point value. That’s
no fun! Until someone invents monitors or displays that can understand and display float-
ing-point data, you are still limited by the final output device.

But that doesn’t mean floating-point rendering isn’t useful. Quite the contrary! You can
still render to both textures and renderbuffers in full floating-point precision. Not only
that, but you have complete control over how floating-point data gets mapped to a fixed
output format. This can have a huge impact on the final result and is commonly referred
to High Dynamic Range, or HDR.

Using Floating-Point Formats
Upgrading your applications to use floating-point buffers is easier than you may think. In
fact, you don’t even have to call any new functions. Instead, there are two new tokens you
can use when creating buffers, GL_RGBA16F and GL_RGBA32F. These can be used when creat-
ing storage for RBOs (renderbuffer objects) or when allocating textures:

glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA16F, nWidth, nHeight);

glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA32F, nWidth, nHeight);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, texWidth, texHeight, 0, GL_RGBA,

GL_FLOAT, texels);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, texWidth, texHeight, 0, GL_RGBA,

GL_FLOAT, texels);

In addition to the more traditional RGBA formats, Table 9.2 lists other formats allowed for
creating floating-point renderbuffers. Textures are more open-minded and can be created
with far more formats, but only two of those are float formats. Remember what we said
earlier about OpenGL being flexible to allow many different applications to work easily?
Having so many floating-point formats available allows applications to often use the format
their data is stored in directly without first converting, which can be very time-consuming.

TABLE 9.2 Float Renderbuffer and Texture Formats

Renderbuffers Textures

GL_RGBA32F GL_RGBA32F

GL_RGBA16F GL_RGBA16F

GL_R11_G11 B10F GL_R11_G11 B10F

GL_RG32F GL_RG32F

GL_RG16F GL_RG16F

GL_R32F GL_R32F

GL_R16F GL_R16F

GL_RGB32F

GL_RGB16F

New Formats for a New Hardware Generation 365
9

ptg

HDR
Many modern game applications use floating-point rendering to generate all of the great
eye candy we now expect. The level of realism possible when generating lighting effects
such as light bloom, lens flare, light reflections, light refractions, crepuscular rays, and the
effects of participating media such as dust or clouds are often not possible without float-
ing-point buffers. HDR rendering to floating-point buffers can make the bright areas of a
scene really bright, keep shadow areas very dark, and still allow you to see detail in both.
After all, the human eye has an incredible ability to perceive very high contrast levels well
beyond the capabilities of today’s displays.

Instead of drawing a complex scene with a lot of geometry and lighting in our sample
programs to show how effective HDR can be, we use images already generated in HDR for
simplicity. The first sample program, hdr_imaging, loads HDR (floating-point) images
using a file format called OpenEXR. Industrial Light and Magic developed OpenEXR as a
tool to help store all of the image data necessary for high fidelity image processing. Think
of an OpenEXR image as a composite of multiple images captured by a camera at different
exposure levels. The low exposures capture detail in the bright areas of the scene while the
high exposures capture detail in the dark areas of the scene. Figure 9.1 (also shown in
Color Plate 14) shows three views of a scene with a tree in the foreground and a bright
field in the background. The left side rendered at a very low exposure and shows all of the
detail of the field even though it is very bright. The center image begins to show the fore-
ground, trunk, and the leaves of the closest tree. The right image really brings out the
detail of the ground in front of the tree and even lets you see inside the hollow base of the
tree! The three images show the incredible amount of detail and range that are stored in a
single image. OpenEXR comes with sample images we can use to demonstrate HDR
rendering.

CHAPTER 9 Advanced Buffers: Beyond the Basics366

FIGURE 9.1 Different views of an OpenEXR HDR image. Lowest exposure on left and highest
on right.

The only way possible to store so much detail in a single image is to use floating-point
data. Any scene you render in OpenGL, especially if it has very bright or dark areas, can
look more realistic when the true color output can be preserved instead of clamped
between 0.0 and 1.0, and then divided into only 256 possible values.

ptg

Using OpenEXR
Because OpenEXR is a custom data format, we can’t use ordinary file access methods for
reading and interpreting the data. Thankfully Industrial Light and Magic has provided the
libraries necessary to do all the heavy lifting for us. By including a few OpenEXR header
files and linking against the OpenEXR lib files, we can use the already built tools to load
images. OpenEXR treats all access to EXR files as “windows” or “views” of the data
contained in the file. In our application, first we create an RGBAInputFile object by
passing the constructor the name of the file we want to open. Next, we get the width and
height of the OpenEXR image by creating a Box2i object and filling it with the strongly
typed data returned from a call to dataWindow. Then the width and height are used to
create a 2D array of pixels containing RGBA data:

Array2D<Rgba> pixels;

Box2i dw = file.dataWindow();

texWidth = dw.max.x - dw.min.x + 1;

texHeight = dw.max.y - dw.min.y + 1;

pixels.resizeErase (texHeight, texWidth);

After the file is opened and we have a place to store the data, we have to tell the
RgbaInputFile object where we want to put the data by calling setFrameBuffer and then
read the actual data by calling readPixels:

file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * texWidth, 1, texWidth);

file.readPixels (dw.min.y, dw.max.y);

Now that we have the data, it’s time to load it into a texture. But first the data needs to be
in a layout that OpenGL understands. The data must be copied to an array of floats:

GLfloat* texels = (GLfloat*)malloc(texWidth * texHeight * 3 * sizeof(GLfloat));

GLfloat* pTex = texels;

// Copy OpenEXR into local buffer for loading into a texture

for (unsigned int v = 0; v < texHeight; v++)

{

for (unsigned int u = 0; u < texWidth; u++)

{

Imf::Rgba texel = pixels[texHeight - v - 1][u];

pTex[0] = texel.r;

pTex[1] = texel.g;

pTex[2] = texel.b;

pTex += 3;

}

}

New Formats for a New Hardware Generation 367
9

ptg

Then, finally load the array of floats into the designated texture object:

// Bind texture, load image, set tex state

glBindTexture(GL_TEXTURE_2D, textureName);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, texWidth, texHeight, 0, GL_RGB, GL_FLOAT,

texels);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

free(texels);

That’s it! Now the HDR image data is loaded into an OpenGL texture image and is ready
for use.

Tone Mapping
Now that you’ve seen some of the benefits of using floating-point rendering, how do you
use that data to generate a dynamic image that still has to be displayed using values from
0 to 255? Tone mapping is the action of mapping color data from one set of colors to
another or from one color space to another. Because we can’t directly display floating-
point data, it has to be tone mapped into a color space that can be displayed.

The first sample program, hdr_imaging, uses three approaches to map the high-definition
output to the low-definition screen. The first method, enabled by pressing the 1 key, is a
simple and naïve direct texturing of the floating-point texture to the screen. The
histogram in Figure 9.2 shows that most of the image data is between 0 and 1, but many
of the important highlights are well beyond 1.0. In fact, the highest luminance level for
this image is 9.16!

CHAPTER 9 Advanced Buffers: Beyond the Basics368

0.0 1.0 10.6

FIGURE 9.2 Histogram of levels for Tree.exr.

The result is that the image is clamped, and all of the bright areas look white.
Additionally, because the majority of the data is in the lower one-fourth of the range, or
between 0 and 63 when mapped directly to 8 bits, it all blends together to look black.
Figure 9.3 shows the result; the bright areas are practically white, and the dark areas are
nearly black.

ptg
FIGURE 9.3 Naïve approach to tone mapping; clamp between 0.0 and 1.0.

The second approach in the sample program is to vary the “exposure” of the image,
similar to how a camera can vary exposure to the environment. Enter this mode by press-
ing 2. Each exposure level provides a slightly different window into the texture data. Low
exposures show the detail in the very bright sections of the scene; high exposures allow
you to see detail in the dark areas but wash out the bright parts. This is similar to the
images in Figure 9.1 with the low exposure on the left and the high exposure on the right.
For our tone mapping pass, the hdr_imaging sample program reads from a floating-point
texture and writes to a framebuffer object with an 8-bit texture attached to the first render
target. This allows the conversion from HDR to LDR (Low Dynamic Range) to be on a
pixel by pixel basis, which reduces artifacts that occur when a texel is interpolated
between bright and dark areas. Once the LDR image has been generated, it is drawn
directly to the screen as a texture. Listing 9.2 shows the setup of the FBO and textures as
well as the rendering pass to do the conversion.

LISTING 9.2 Rendering HDR Content to an FBO and then to the Window

// Create and bind an FBO
glGenFramebuffers(1,&fboName);

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

New Formats for a New Hardware Generation 369
9

ptg

// Create the FBO texture

glGenTextures(1, fboTextures);

glBindTexture(GL_TEXTURE_2D, fboTextures[0]);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, hdrTexturesWidth[curHDRTex],

hdrTexturesHeight[curHDRTex], 0, GL_RGBA, GL_FLOAT, NULL);

glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

GL_TEXTURE_2D, fboTextures[0], 0);

. . .

// Setup HDR texture(s)

glActiveTexture(GL_TEXTURE0);

glGenTextures(1, hdrTextures);

glBindTexture(GL_TEXTURE_2D, hdrTextures[curHDRTex]);

// Load HDR image from EXR file

LoadOpenEXRImage(“Tree.exr”, hdrTextures[curHDRTex],

hdrTexturesWidth[curHDRTex], hdrTexturesHeight[curHDRTex]);

. . .

// first, draw to FBO at full FBO resolution

// Bind FBO with 8b attachment

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fboName);

glViewport(0, 0, hdrTexturesWidth[curHDRTex], hdrTexturesHeight[curHDRTex]);

glClear(GL_COLOR_BUFFER_BIT);

// Bind texture with HDR image

glBindTexture(GL_TEXTURE_2D, hdrTextures[curHDRTex]);

// Render pass, down-sample to 8b using selected program

projectionMatrix.LoadMatrix(fboOrthoMatrix);

SetupHDRProg();

fboQuad.Draw();

// Then draw the resulting image to the screen, maintain image proportions

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);

glViewport(0, 0, screenWidth, screenHeight);

glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

// Attach 8b texture with HDR image

glBindTexture(GL_TEXTURE_2D, fboTextures[0]);

CHAPTER 9 Advanced Buffers: Beyond the Basics370

ptg

// draw screen sized, proportional quad with 8b texture

projectionMatrix.LoadMatrix(orthoMatrix);

SetupStraightTexProg();

screenQuad.Draw();

The code in Listing 9.2 looks similar to other sample programs we have seen before. The
magic sauce is in the fragment shader that does the actual conversion. Listing 9.3 contains
the source of the fragment shader that performs the conversion based on exposure. You
can use the up and down keys to adjust the exposure once the program is in the variable
exposure mode. The range of exposures for this program goes from 0.01 to 20.0. Notice
how the level of detail in different locations in the image changes with the exposure level.

LISTING 9.3 hdr_exposure.fs Fragment Shader for HDR to LDR Conversion

#version 150

// hdr_exposure.fs

// Scale floating point texture to 0.0 - 1.0 based

// on the specified exposure

//

in vec2 vTexCoord;

uniform sampler2D textureUnit0;

uniform float exposure;

out vec4 oColor;

void main(void)

{

// fetch from HDR texture

vec4 vColor = texture(textureUnit0, vTexCoord);

// Apply the exposure to this texel

oColor = 1.0 - exp2(-vColor * exposure);

oColor.a = 1.0f;

}

The last tone mapping shader used in the first sample program performs dynamic adjust-
ments to the exposure level based on the relative brightness of different portions of the
scene. First, the shader needs to know the relative luminance of the area near the current
texel being tone mapped. The shader does this by sampling a 5 x 5 matrix with the
current texel in the center. All the surrounding samples are then weighted and added
together. The final summed color is converted to a luminance value. The sample program

New Formats for a New Hardware Generation 371
9

ptg

uses a lookup table to convert the luminance to an exposure. The exposure is then used to
convert the HDR texel to an LDR value. Listing 9.4 shows the adaptive HDR shader.

LISTING 9.4 hdr_adaptive Fragment Shader for Adaptive Exposure Levels in HDR to LDR
Conversion

#version 150

// hdr_adaptive.fs

//

//

in vec2 vTex;

uniform sampler2D textureUnit0;

uniform sampler1D textureUnit1;

uniform vec2 tc_offset[25];

out vec4 oColor;

void main(void)

{

vec4 hdrSample[25];

for (int i = 0; i < 25; i++)

{

// Perform 25 lookups around the current texel

hdrSample[i] = texture(textureUnit0, vTex.st + tc_offset[i]);

}

// Calculate weighted color of region

vec4 vColor = hdrSample[12];

vec4 kernelcolor = (

(1.0 * (hdrSample[0] + hdrSample[4] + hdrSample[20] + hdrSample[24])) +

(4.0 * (hdrSample[1] + hdrSample[3] + hdrSample[5] + hdrSample[9] +

hdrSample[15] + hdrSample[19] + hdrSample[21] + hdrSample[23])) +

(7.0 * (hdrSample[2] + hdrSample[10] + hdrSample[14] + hdrSample[22])) +

(16.0 * (hdrSample[6] + hdrSample[8] + hdrSample[16] + hdrSample[18])) +

(26.0 * (hdrSample[7] + hdrSample[11] + hdrSample[13] + hdrSample[17])) +

(41.0 * hdrSample[12])

) / 273.0;

// Calculate the luminance for the whole filter kernel

float kernelLuminance = dot(kernelcolor.rgb, vec3(0.3, 0.59, 0.11));

// look up the corresponding exposure

CHAPTER 9 Advanced Buffers: Beyond the Basics372

ptg

float exposure = texture(textureUnit1, kernelLuminance/2.0).r;

exposure = clamp(exposure, 0.02f, 20.0f);

// Apply the exposure to this texel

oColor = 1.0 - exp2(-vColor * exposure);

oColor.a = 1.0f;

}

When using one exposure for an image, you can adjust for the best results by taking the
range for the whole and using an average. Considerable detail is still lost with this
approach in the bright and dim areas. The lookup table used with the adaptive fragment
shader brings out the detail in both the bright and dim areas of the image; take a look at
Figure 9.4. The lookup table uses a logarithmic-like scale to map luminance values to
exposure levels. You can change this table to increase or decrease the range of exposures
used and the resulting amount of detail in different dynamic ranges.

New Formats for a New Hardware Generation 373
9

FIGURE 9.4 Adaptive tone mapping brings out detail in dark and light areas. (Also shown in
Color Plate 15.)

ptg

The filter kernel and lookup table approach used here is one of many. As an exercise, try
modifying the hdr_adaptive.fs fragment shader to calculate exposures programmatically.
You can also use lower mipmap levels of an HDR texture to find the luminance of a neigh-
borhood.

Great, so now you know how to image process an OpenEXR file, but what good is that in
a typical OpenGL program? Lots! The OpenEXR image is only a stand-in for any lit
OpenGL scene. Many OpenGL games and applications now render HDR scenes and other
content to floating-point buffers and then display the result to the scene. You can use the
same methods you just learned to render in HDR, generating much more realistic lighting
environments and showing the dynamic range and detail of each frame.

(e)Making Your Scene Bloom
HDR rendering doesn’t stop with floating-point buffers. In fact, that’s just the beginning.
All sorts of effects are made possible by the additional precision. Now that you’ve seen the
beginnings of what floating-point buffers can do, let’s throw in one more effect to add
more realism to directly lit scenes. Have you ever noticed how the sun or a bright light
can sometimes engulf tree branches or other objects between you and the light source?
That’s called light bloom. Figure 9.5 (also shown in Color Plate 16) shows how light
bloom can affect an indoor scene.

CHAPTER 9 Advanced Buffers: Beyond the Basics374

FIGURE 9.5 Left image shows detail in stained glass. Light bloom in the right image brighter
exposure obscures the stained glass.

Notice how you can see all the detail in the lower exposure of the left side of Figure 9.5.
The right side is a much higher exposure, and the grid in the stained glass is covered by
the light bloom. Even the wooden post on the bottom right looks smaller as it gets
covered by bloom. By adding bloom to a scene you can enhance the sense of brightness in
certain areas. We can simulate this bloom effect caused by bright light sources. Although
you could also perform this effect using 8-bit precision buffers, it’s much more effective
when used with floating-point buffers on an HDR scene.

The first step is to draw your scene in HDR. For the hdr_bloom sample program, an FBO is
set up with two float textures bound. The scene is rendered as normal to the first bound

ptg

texture. But the second bound texture gets only the bright areas of the field. To be effi-
cient, the hdr_bloom sample program fills both textures in one pass from one shader, see
Listing 9.5. The bright area data is used to generate the bloom effect. The bloom level used
is adjustable via a uniform. To filter for the bright areas, the cutoff is applied first to zero
out all fragments below the cutoff. Then the remaining fragments are scaled between 0.0
and 1.0 for brightness levels of 0.0 to 0.5; any values above 0.5 are clamped to one.

LISTING 9.5 tex_replace Fragment Shader; Output Bright Data to a Separate Buffer

#version 150

// tex_replace.fs

// outputs 1 color using texture replace

//

varying vec2 vTexCoord;

uniform sampler2D textureUnit0;

uniform vec4 vColor;

out vec4 oColor;

out vec4 oBright;

void main(void)

{

const float bloomLimit = 1.0;

oColor = vColor*texture(textureUnit0, vTexCoord);

oColor.a = 1.0;

vec3 brightColor = max(vColor.rgb - vec3(bloomLimit), vec3(0.0));

float bright = dot(brightColor, vec3(1.0));

bright = smoothstep(0.0, 0.5, bright);

oBright.rgb = mix(vec3(0.0), vColor.rgb, bright).rgb;

oBright.a = 1.0;

}

After that, the resulting brightness level, between 0.0 and 0.5, is mixed with the original
color. That means the result of the mix operation is a color between (0, 0, 0) and the origi-
nal color based on the value of the brightness. In the end, the bright pass buffer is filled
with values other than 0.0 only in the bright areas of the screen, stored in floating-point
format.

Now after the scene has been rendered, there is still some work to do to finish the bright
pass. The bright data must be blurred for the bloom effect to work. For this, we create
fourfloat textures with the first texture one-third the width and height of the screen and
each subsequent texture one-third the size of the previous. We render to the first texture

New Formats for a New Hardware Generation 375
9

ptg

by performing a Gaussian blur of the original image. The second texture is drawn to with
a Gaussian blur of the first texture and so on through all four textures. To apply the blur,
the sample program uses the shader in Listing 9.6, which applies a 5 x 5 convolution
kernel to the incoming texture, combining the results of the 24 closest texels to generate a
new value.

LISTING 9.6 Blur Fragment Shader; Apply a 5 x 5 Gaussian Blur Kernel to the Input Texture

#version 150

// blur.fs

// outputs 1 color using a gaussian blur of the input texture

//

in vec4 vFragColor;

in vec2 vTexCoords;

uniform sampler2D textureUnit0;

uniform vec2 tc_offset[25];

out vec4 oColor;

void main(void)

{

vec4 sample[25];

for (int i = 0; i < 25; i++)

{

sample[i] = texture(textureUnit0, vTexCoords.st + tc_offset[i]);

}

// 1 4 7 4 1

// 4 16 26 16 4

// 7 26 41 26 7 / 273

// 4 16 26 16 4

// 1 4 7 4 1

oColor = (

(1.0 * (sample[0] + sample[4] + sample[20] + sample[24])) +

(4.0 * (sample[1] + sample[3] + sample[5] + sample[9] +

sample[15] + sample[19] + sample[21] + sample[23])) +

(7.0 * (sample[2] + sample[10] + sample[14] + sample[22])) +

(16.0 * (sample[6] + sample[8] + sample[16] + sample[18])) +

(26.0 * (sample[7] + sample[11] + sample[13] + sample[17])) +

(41.0 * sample[12])

) / 273.0;

}

CHAPTER 9 Advanced Buffers: Beyond the Basics376

ptg

After the blurring passes are complete, the blur results are combined with the full color
texture of the scene to produce the final results. In Listing 9.7 you can see how the final
shader samples from five textures: the full color texture, the bright pass, and the four
progressively blurred versions of the bright pass. The bright pass and the blurred results
are added together to form the bloom effect, which is multiplied by a user-controlled
uniform. You can scale the bloom effect up with the right key on the keyboard and down
with the left cursor key. The final HDR color result is then put through exposure calcula-
tions, which you should be familiar with from the last sample program.

LISTING 9.7 hdr_exposure Fragment Shader; Add Bloom Effect to Scene

#version 150

// hdr_exposure.fs

// Apply blur effect from float blur textures

// Scale floating point scene texture to 0.0 - 1.0 based

// on the specified exposure

//

in vec2 vTexCoord;

uniform sampler2D origImage;

uniform sampler2D brightImage;

uniform sampler2D blur1;

uniform sampler2D blur2;

uniform sampler2D blur3;

uniform sampler2D blur4;

uniform float exposure;

uniform float bloomLevel;

out vec4 oColor;

out vec4 oBright;

void main(void)

{

// fetch from HDR & blur textures

vec4 vBaseImage = texture(origImage, vTexCoord);

vec4 vBrightPass = texture(brightImage, vTexCoord);

vec4 vBlurColor1 = texture(blur1, vTexCoord);

vec4 vBlurColor2 = texture(blur2, vTexCoord);

vec4 vBlurColor3 = texture(blur3, vTexCoord);

vec4 vBlurColor4 = texture(blur4, vTexCoord);

New Formats for a New Hardware Generation 377
9

ptg

vec4 vBloom = vBrightPass +

vBlurColor1 +

vBlurColor2 +

vBlurColor3 +

vBlurColor4;

vec4 vColor = vBaseImage + bloomLevel * vBloom;

// Apply the exposure to this texel

vColor = 1.0 - exp2(-vColor * exposure);

oColor = vColor;

oColor.a = 1.0f;

}

The exposure shader shown in Listing 9.7 is used to draw a screen-sized textured quad to
the window. That’s it! Dial up and down the bloom effect to your heart’s content. Figure
9.6 shows the hdr_bloom sample program with both low and high bloom levels. Try
changing the program to use a single mipmapped texture instead of a series of four blur
textures.

CHAPTER 9 Advanced Buffers: Beyond the Basics378

FIGURE 9.6 hdr_bloom program. Left side shows no bloom; right side has excessive bloom.
(Also shown in Color Plate 17.)

Floating-Point Depth Buffers
Not only can you use float formats for color data to, but you can also use them for depth
data as well! Typically depth buffers are 24 bits deep, giving you 16,777,216 possible depth
values usually scaled between 0.0 and 1.0. Quite frankly this seems like a lot! But the
bigger issue with a fixed data format used as a depth buffer is that each depth increment is
the same distance. You may have a bunch of geometry that all falls within the same depth
value because you are layering geometry or because you end up only using a small portion
of the total depth range. This can result in z-fighting, low differential precision, or other
nondeterministic behavior.

ptg

Floating-point depth buffers help solve some of these problems. Instead of being tied to
fixed increment, nearby geometry written to a floating-point depth buffer has a lot more
room to maneuver. Take a look at Figure 9.7 to see how this works out. This added preci-
sion can come in handy in many cases, especially when dealing with shadow volumes.
But as great as floating-point depth buffers are, it’s best not to use them everywhere. Float
depth buffers can take up more room than other fixed point formats and also may be
slower for the GPU to write to and read from. Fixed precision is usually sufficient for
many traditional uses.

New Formats for a New Hardware Generation 379
9

Extra precision where objects
actually are

x x+1 x+2… x+n

Fixed step. Objects snap to nearest step
and can end up with the same depth values

Floating Point

Fixed Point

FIGURE 9.7 Fixed depth buffer precision versus float depth buffers.

Even with floating-point depth buffers, it’s still possible to see z-fighting issues if your
geometry is packed too close together. But since floating-point depth buffers are not
limited to the 0.0 to 1.0 range, one way to help avoid z-fighting issues with floating-point
depth buffers is to spread your geometry out! Go beyond the typical 0.0-1.0 range and
make full use of your floating-point storage.

OpenGL provides a clip volume for rendering into. Geometry that falls outside the clip
volume is “clipped off” and not rasterized. For rendering to displayed windows, the clip
volume usually consists of the top, right, bottom, and left edges of the window. There is
also a near and far plane. If an object is too close or too far, it won’t be drawn. The far
plane can help prevent you from drawing geometry that might be so far away, it isn’t even
as big as a single pixel. But there are cases such as shadow volumes in which we are just
looking for all the depth data, no matter how close or far. To do this, you can disable
depth clamping by calling glDisable(GL_DEPTH_CLAMP), which bypasses any clipping to
the near and far clip planes. Depth clamping is disabled by default.

ptg

Multisampling
Sometimes one sample just isn’t enough! There are a plenty of cases where drawing a line
or a polygon at a slight angle to screen-space vertical or horizontal generates a jagged edge
as that edge is rasterized across only a handful of pixel rows or columns. Take the top of
the window in the hdr_bloom sample program, which can be seen in Figure 9.6. As the
top of the window is rasterized, the window starts in pixel row x, but as it continues to
extend it eventually snaps to row x+1. This effect known as aliasing is ugly, unrealistic,
and undesirable.

Multisampling generates several fragments with slightly different locations, called subpix-
els, for each pixel location. Before the buffer can be displayed, the subpixels have to be
“resolved.” Resolving a multisample buffer averages together all of the subpixels to deter-
mine the final pixel color. In the case of the lines shown in Figure 9.8, for each pixel on
the edge of the right line, some samples will land on the edge and some will not. Then
when all the subpixels are averaged together, the color of pixels on either side of the edge
show how much of the edge passes through those pixels. Instead of a raggedy, jaggedy
edge you get a nice smooth transition. In the same way pixels that are not near edges are
enhanced by multiple samples, the final color is much closer to reality than a single
sample could ever show.

CHAPTER 9 Advanced Buffers: Beyond the Basics380

FIGURE 9.8 Zoomed in view of line segments. Left—an aliased line; right—the same line
multisampled.

The subpixel locations are not regularly distributed. Instead, subpixel locations are pseudo-
randomly spread throughout the pixel region. This enhances the effect of multisampled
antialiasing. Figure 9.9 shows possible subpixel locations for 2x, 4x, and 8x antialiasing.
You can get the actual locations for each subpixel by calling glGetMultisamplefv. First,
call glGetIntegerv with the GL_SAMPLES enum to find out how many samples the current
framebuffer has.

// Get the location of each multisample sub-pixel

int sampleCount = 0;
glGetIntegerv(GL_SAMPLES, &sampleCount);

float positions[64]; // Enough for at least 32 samples

for(int i =0; i < sampleCount; i++)

ptg

{

glGetMultisamplefv(GL_SAMPLE_POSITION, i, &positions[i*2]);

}

New Formats for a New Hardware Generation 381
9

S7

S7
S6

S4
S3

S2

S1S0

8xMSAA

(0.5, 0.5)
X

S1

S7
S6

S0

S3

S2

4xMSAA

(0.5, 0.5)
X

S1

S0 2xMSAA

(0.5, 0.5)
X

FIGURE 9.9 Possible sample locations for 2x, 4x, and 8x multisample antialiasing.

OpenGL allows you to use several surfaces that support multiple samples. The first is the
window surface itself. You learn more about how to create a multisampled window in
Chapters 13, 14, and 15 where the details of the OS-specific window management are
discussed. Second are render buffers. You can use glRenderBufferStorageMultisample to
create storage for an RBO that is multisampled. Similarly, you can also create multisample
textures by using glTexImage2DMultisample and glTexImage3DMultisample.

glGenTextures(1, hdrTextures);

glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, hdrTextures[0]);

glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, 8, GL_RGB16F,

screenWidth, screenHeight, GL_FALSE);

The important part to notice here is the new texture target for MSAA textures. When you
bind an MSAA texture, you have to use GL_TEXTURE_2D_MULTISAMPLE instead of
GL_TEXTURE_2D. For multisample arrays, you can use the
GL_TEXTURE_2D_MULTISAMPLE_ARRAY target.

Now that you know how to make multisample surfaces, there are a few things you need to
know about accessing multisample textures in shaders. The old sampler2D won’t do the
trick. Instead declare a new sampler called sampler2DMS. Then in your fragment shader you
can use texelFetch() to fetch any given sample for a fragment. texelFetch() sample
functions require that you specify an integer fragment location instead of providing
texture coordinates between 0.0 and 1.0. GLSL has provided a function called
textureSize() to help you figure out the size of a multisampled texture in your shader.
With that, you can convert normalized texture coordinates to integer texture coordinates.

ptg

// fetch from HDR & blur textures

iTmp = textureSize(origImage);

tmp = floor(iTmp * vTex);

vec4 vBaseImage = texelFetch(origImage, ivec2(tmp), sampleNumber);

A resolve of a multisample buffer takes all the samples and creates one final output value.
A typical resolve function may just add all the colors of each sample together and then
divide by the number of samples. Being able to access each sample of a multisampled
texture allows you to create your own custom resolve functions instead of relying on the
default. This is especially useful in HDR rendering because we can apply tone mapping to
each subpixel and then perform a resolve operation instead of just averaging everything
together and losing all of the benefits of having multiple samples. In the hdr_msaa sample
program, we use a familiar setup to demonstrate the benefits of using multisample buffers.

First, we create the MSAA texture and bind it to the MSAA texture target. Then in Listing
9.8 we get the locations of each subpixel and use them to calculate the distance from the
center. That information is used to create weightings that will be applied to each subpixel
when we do our custom shader resolve in the fragment shader.

LISTING 9.8 Calculate Subpixel Distances, Program Texture Buffer Object

// Add up the distances to get the total used for calculating weights

for(int i=1; i<8; i++)

{

float totalWeight = 0.0f;

for(int j=0; j<=i; j++)

{

totalWeight += invertedSampleDistances[j];

}

// Invert to get the factor used for each sample,

// the sum of all sample weights is always 1.0

float perSampleFactor = 1 / totalWeight;

for(int j=0; j<=i; j++)

{

sampleWeights[i][j] = invertedSampleDistances[j] * perSampleFactor;

}

}

// Setup a texture buffer object for holding the sample weights

glGenBuffers(1, &sampleWeightBuf);

glBindBuffer(GL_TEXTURE_BUFFER_ARB, sampleWeightBuf);

glBufferData(GL_TEXTURE_BUFFER_ARB, sizeof(float)*8, sampleWeights,

GL_DYNAMIC_DRAW);

glBindBuffer(GL_TEXTURE_BUFFER_ARB, 0);

CHAPTER 9 Advanced Buffers: Beyond the Basics382

ptg

Then it’s time to set up program and object state. We can render the scene to the MSAA
FBO as if nothing was different. The GPU automatically generates all of the subpixels and
calls the fragment shader on each subpixel. Once the scene is complete in the FBO, the
program runs a resolve shader to tone map and resolve the multisample buffer for display
on the window. Because part of the scene is rendered in HDR, tone mapping is an impor-
tant step. In fact, if we didn’t do the resolve ourselves in the shader, the HDR values
would badly skew the hardware resolve. The result would be an image that looks even
more aliased than if you used a buffer with only one sample.

Listing 9.9 shows the resolve shader. Two different kinds of resolves are done. The first is a
simple average done by adding all the samples together and dividing by the number of
samples. This value is stored in vColor. The other resolve is done by multiplying each
sample by a weighting that is dependent on the sample location and is stored in
vWeightedColor. The user can decide which resolve will be displayed by pressing W for the
weighted resolve or Q for the straight average resolve.

LISTING 9.9 Perform MSAA Resolve and Tone Map Operations in hdr_exposure.fs

#version 150

// hdr_exposure.fs

// Scale floating point texture to 0.0 - 1.0 based

// on the specified exposure.

// Resolve multisample buffer based on input sample count

//

in vec2 vTexCoord;

uniform sampler2DMS origImage;

uniform samplerBuffer sampleWeightSampler;

uniform int sampleCount; // 0-based, 0=1sample, 1=2samples, etc

uniform int useWeightedResolve; // 0-false, 1-true

uniform float exposure;

out vec4 oColor;

// do all tone mapping in a separate function

vec4 toneMap(vec4 vHdrColor)

{

vec4 vLdrColor;

vLdrColor = 1.0 - exp2(-vHdrColor * exposure);

vLdrColor.a = 1.0f;

return vLdrColor;

}

New Formats for a New Hardware Generation 383
9

ptg

void main(void)

{

// Calculate integer texture coordinates

vec2 tmp = floor(textureSize(origImage) * vTexCoord);

// Find both the weighted and unweighted colors

vec4 vColor = vec4(0.0, 0.0, 0.0, 1.0);

vec4 vWeightedColor = vec4(0.0, 0.0, 0.0, 1.0);

for (int i = 0; i <= sampleCount; i++)

{

// Get the weight for this sample from the texBo, this changes

// based on the number of samples

float weight = texelFetchBuffer(sampleWeightSampler, i).r;

// tone-map the HDR texel before it is weighted

vec4 sample = toneMap(texelFetch(origImage, ivec2(tmp), i));

vWeightedColor += sample * weight;

vColor += sample;

}

// now, decide on the type of resolve to perform

oColor = vWeightedColor;

// if the user selected the unweighed resolve, output the

// equally weighted value

if (useWeightedResolve != 0)

{

oColor = vColor / (sampleCount+1);

}

oColor.a = 1.0f;

}

The number of samples used to perform the resolve is also configurable by the user. You
can use the number keys 1 through 8 to select the number of samples to use in the
resolve. Figure 9.10 (also shown in Color Plate 18) shows the difference between a single
sample and eight samples. Using multisample buffers can make a big difference in the
quality of your scenes.

CHAPTER 9 Advanced Buffers: Beyond the Basics384

ptg

FIGURE 9.10 Results of multisampling. Left image has one sample, right has eight.

Integers
GLSL once started out with many of its own data types that didn’t strictly conform to IEEE
standards for floats and other industry standards for other data types commonly used on
the CPU. But these days things have become much more standardized. Not only can you
use floating-point data in a shader and expect it to behave the same as on the CPU, but
other data types such as integer and unsigned integer are also available.

New texture formats also exist to feed your shaders’ hungry appetite. You can create
textures with a plethora of different integer formats, both signed and unsigned. They
range from one channel (R only) through all four channels (RGBA) and can contain preci-
sion ranging from 8 bits per channel through 32. There is a format for nearly every integer
texture need! In addition to textures, RBOs can also be created with integer formats. To
clear an integer-based buffer bound to a FBO, you can call glClearBufferiv for integer
buffers and glClearBufferuiv for unsigned integer buffers.

Why are integer and unsigned integer formats important? First, you can now send integers
via textures and uniforms to shaders that can be greater than 255. Shaders also allow you
to access the data in integer textures in a bitwise manner, allowing you to pack data any
way you want. Integer buffers and textures can be used for indexing or selection when
modifying geometry rendered in large quantities, such as a forest of trees. To access indi-
vidual texels of integer textures, you can use the texelFetch command in GLSL shaders.
This sample function takes an integer vector for specifying the location in a texture, so
you can be sure about which texel you get. You can also bind integer data to texture buffer
objects.

The most important reason for adding integer formats is they create a truly flexible and
parallel compute environment in shaders. You can load arbitrary texture data in float- or
integer-based formats and perform any computations you need such as physics, image

New Formats for a New Hardware Generation 385
9

ptg

processing, modeling, and pretty much anything math related that requires intensive
parallel processing. This General Purpose Computing, often called GPGPU, really opens
the door to the amount of work that can be done on the GPU in record time.

sRGB
Gone are the days when the RGB color space was enough. Now you can use Super-RGB!
Actually, it’s called sRGB, but it is much more powerful than the traditional RGB color
space we have grown accustomed to over the past 20 years. Even though RGB is the most
common color space for computer graphics, there are limitations on just how far it can go.
The sensitivity of the human eye is much higher than what can be represented in RGB.

The RGB color space uses values from 0 to 1, but applies a linear gamma ramp to the final
result. The sRGB color space also uses values from 0 to 1, but also uses a nonlinear gamma
ramp to expand the range of the colors that can be represented. Darker colors of the sRGB
spectrum use a gamma value near 2.2 for darker areas, but has an expanded gamma reach-
ing 2.4 for brighter areas. This means sRGB formats have a built-in expanded dynamic
range. sRGB was originally created for use in imaging and photo processing to help better
map and display colors in the typical viewing environments of offices and dim rooms.

When you use an sRGB texture in OpenGL, the sRGB format is converted to RGB when
the texture is sampled. But only the RGB components are converted; alpha is left as-is.
Each component is converted individually according to the following rules.

If the texel value is less than or equal to 0.04045, the implementation will convert using

Sample = Texel / 12.92

If the texel value greater than 0.04045, the sample is converted as

Sample = ((Texel + 0.055) / 1.055) 2.4

Renderbuffers also support storage formats that are sRGB; specifically the format
GL_SRGB8_ALPHA8 must be supported. That means you can bind RBOs and textures that
have an internal sRGB format to a framebuffer object and then render to it. Because we
just talked about how sRGB formats are not linear, you probably don’t want your writes to
sRGB FBOs to be linear either; that would defeat the whole purpose! The good news is
OpenGL can convert the linear color values your shader outputs into sRGB values auto-
matically when you call glEnable(GL_FRAMEBUFFER_SRGB). Remember, this only works for
color attachments that contain an sRGB surface. You can call
glGetFramebufferAttachmentParameteriv with the value
GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING to find out if the attached surface is sRGB.
sRGB surfaces return GL_SRGB while other surfaces return GL_LINEAR. This conversion
follows the equations listed in Table 9.3 for fragment colors (fc).

CHAPTER 9 Advanced Buffers: Beyond the Basics386

ptg

TABLE 9.3 Conversion Equations for Color Outputs to sRGB

Fragment Values Conversion Equation

fc <= 0.0 0.0

0.0 < fc < 0.0031308 12.92 * fc

0.0031308 < fc < 1.0 1.055 * fc 0.41666 – 0.055

fc > 1.0 1.0

Texture Compression
Continuing along the line of new formats that help make OpenGL both useful and flexi-
ble, texture compression can be helpful even when modern GPUs can have gigabytes of
memory available. Textures can take up an incredible amount of space! Some modern
games can easily use 1 Gigabyte of texture data in a given level. That’s a lot of data! Where
do you put it all? Textures are an important part to making rich, realistic, and impressive
scenes, but if you can’t load all of the data onto the GPU, your rendering will be slow if
not impossible. One way to deal with storing and using a large amount of texture data is
to compress the data.

OpenGL implementations support at least the compression schemes listed in Table 9.4,
one of which is RGTC (Red-Green Texture Compression). The RGTC format breaks a
texture image into 4 x 4 texel blocks compressing the individual channels within that
block using a series of codes. This compression mode works only for one and two channel
signed and unsigned textures. You don’t need to worry about the exact compression
scheme unless you are planning on writing a compressor. Just note that space savings
from using RGTC is 50%.

TABLE 9.4 Native OpenGL Texture Compression Formats

Formats Type

GL_COMPRESSED_RED Generic

GL_COMPRESSED_RG Generic

GL_COMPRESSED_RGB Generic

GL_COMPRESSED_RGBA Generic

GL_COMPRESSED_SRGB Generic

GL_COMPRESSED_SRGB_ALPHA Generic

GL_COMPRESSED_RED_RGTC1 RGTC

GL_COMPRESSED_SIGNED_RED_RGTC1 RGTC

GL_COMPRESSED_RG_RGTC1 RGTC

GL_COMPRESSED_SIGNED_RG_RGTC1 RGTC

New Formats for a New Hardware Generation 387
9

ptg

The first six formats listed in Table 9.4 are generic and allow the OpenGL driver to decide
what compression mechanism to use. This means your driver can use the format that best
meets current conditions. The catch is that it is implementation specific and not portable.
Your implementation may also support other compressed formats such as ETC1 and S3TC.
You should check for the availability of formats not required by OpenGL before attempt-
ing to use them. The best way to do this is to check for support of the related extension;
you learn more on this later in Chapters 13, 14, and 15.

Using Compression
You can ask OpenGL to compress a texture when you load it. All you have to do is request
that the internal format be one of the compressed formats. OpenGL takes your uncom-
pressed data and converts it as the texture image is loaded. There is no real difference in
how you use compressed textures and uncompressed textures. The GPU handles the
conversion when it samples from the texture. Many imaging tools used for creating
textures and other images allow you to save your data directly in a compressed format.

Once you have loaded a texture using a nongeneric compressed internal format, you can
get the compressed image back by calling glGetCompressedTexImage. Just pick the texture
target and mipmap level you are interested in. Because you may not know how the image
is compressed or what format is used, you should check the image size to make sure you
have enough room for the whole surface.

Glint imageSize = 0;

glGetTexParameteri(GL_TEXTURE_2D, TEXTURE_COMPRESSED_IMAGE_SIZE, &imageSize);

void *data = malloc(imageSize);

glGetCompressedTexImage(GL_TEXTURE_2D, 0, data);

To load compressed texture images, you can use one of the dedicated texture load func-
tions; glCompressedTexImage1D, glCompressedTexImage2D, and glCompressedTexImage3D.
Use these functions the same way you would for glTexImage1D, glTexImage2D, and so on.
You can also update compressed texture images with glCompressedTexSubImage1D,
glCompressedTexSubImage2D, or glCompressedTexSubImage3D.

Shared Exponent
Although shared exponent textures are not technically a compressed format in the truest
sense, they do allow you to use floating-point texture data while saving storage space.
Instead of storing an exponent for each of the R, G, and B values, shared exponent
formats use the same exponent value for the whole texel. The fractional and exponential
parts of each value are stored as integers and then assembled when the texture is sampled.
For the format GL_RGB9_E5, 9 bits are used to store each color and 5 bits are the common
exponent for all channels. This format packs three floating-point values into 32 bits; that’s
a savings of 67%! To make use of shared exponents, you can get the texture data directly
in this format from a content creation tool or write a converter that compresses your float
RGB values into a shared exponent format.

CHAPTER 9 Advanced Buffers: Beyond the Basics388

ptg

Summary
OpenGL goes well beyond basic framebuffer access you first saw in Chapter 8. In this
chapter you learned how logical names for your fragment shaders can be used and how
those names can be mapped to output indexes. Then you experienced the power of float-
ing-point buffers and how they can dramatically enhance the realism of your scenes.
Floating-point depth buffers also came into play providing additional precision, and
multisample buffers brought sample level access straight to the fragment shader.

We spent quite a bit of time looking at multisampled antialiasing and how you can use it
to improve the quality of your output. You learned how to access each sample of multi-
sample buffers directly in fragment shaders. You also got a taste of how integer textures
can be used to provide easy external indexing of what your shaders do and enable general
computation in shader units. Finally, we explored new ways of storing texture and buffer
data in sRGB, compressed, and shared exponent formats, which provide more realistic
color mapping and help save space.

Summary 389
9

ptg

This page intentionally left blank

ptg

CHAPTER 10

Fragment Operations:
The End of the Pipeline

by Nicholas Haemel

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Finely tune multisample rendering glSampleMask, glSampleCoverage

Create and use stencil patterns glStencilFuncSeparate, glStencilOpSeparate,

glClearStencil

Blend color and alpha outputs together glBlendFuncSeparate, glBlendOpSeparate,

glBlendColor

Use logic ops glLogicOp

Mask the final output glColorMask, glColorMaski, glDepthMask,

glStencilMask, glStencilMaskSeparate

After reading through the first nine chapters, you should be well-versed in using vertex
and fragment shaders to generate output based on your geometry. But what happens when
your fragment shader is finished? Where do all the fragments go? It just so happens there
are a few more steps these fragments must make before they can retire to a final resting
place in a buffer or window.

This chapter walks through the last steps in the OpenGL pipeline, the per-fragment opera-
tions. We start with the scissor test, which is the first stop along the way and follow a
virtual fragment through multisample operations, stencil testing, depth buffer testing,
blending, dithering, and logic ops. Figure 10.1 shows the path a fragment follows when all
stages are enabled.

ptg

392 CHAPTER 10 Fragment Operations: The End of the Pipeline

FIGURE 10.1 Per-pixel operations.

Scissoring—Cutting Your Geometry Down To Size
The first step in sending those fragments to their final resting place is to decide whether
they lie in a region that has been cut out of the renderable area. Scissoring is performed
on window coordinates. That means all incoming fragments have a window coordinate
between (0, 0) and (width, height) where width and height are the window dimen-
sions. Applications can define a scissor plane that cuts off portions of geometry. This is
done through a maximum and minimum x value as well as a maximum and minimum y
value. To set a scissor region, call glScissor:

void glScissor(GLint left, Glint bottom, sizei width, sizei height);

Scissoring must also be enabled by calling glEnable(GL_SCISSOR_TEST) for the scissor test
to work. If the window coordinates of the fragment fall within the region defined by the
scissor, the fragment will continue on down the pipeline. Otherwise it will be discarded.
Another way to express this operation is through two equations using the values you
passed into glScissor. If left <= x

w
< (left + width) and bottom <= y

w
< (bottom +

height), then the test passes. You learned about the scissor test back in Chapter 3, “Basic
Rendering.” Take a look back there for a refresher if scissor operations are a bit hazy.

Multisampling
After scissoring is performed, the next stop in the pixel pipeline is multisampling. You had
your first taste of multisampling back in Chapter 9, “Advanced Buffers: Beyond the
Basics.” Now let’s look into how you can control the specifics of multisampling.

Scissor Test Stencil Test
Multi-sample
Operations

Depth Buffer
Test

Incoming
Fragments

Logic
OperationsBlending Dithering

To framebuffer

ptg

Remember that the multisampling stage generates multiple subsamples for any given
pixel. This can be particularly helpful when a pixel happens to fall near the edge of a line
or polygon. The number of samples a buffer has is determined at allocation time. For
window surfaces, you have to specify the sample count when you choose a pixel format or
config. For framebuffers, you can select your sample count when creating the storage of
the textures and renderbuffers bound to the framebuffer. Note that the sample count for
all attachments of a framebuffer should be the same.

Back in Chapter 9 you also learned how to get each subpixel sample location within the
pixel by calling glGetMultisamplefv. Now let’s look at how you can control those subpix-
els. There are two stages you can control that affect how multisampling is handled: modi-
fying coverage values and masking off samples.

Sample Coverage
Coverage refers to how much area a subpixel “covers.” You can convert the alpha value of
a fragment directly to a coverage value to determine how many samples of the framebuffer
will be updated by the fragment. To do this, call glEnable(GL_SAMPLE_ALPHA_TO_
COVERAGE). The coverage value for a fragment is used to determine how many subsamples
will be written. For instance, a fragment with an alpha of 0.4 would generate a coverage
value of 40%. For an 8-sample MSAA buffer, three of that pixel’s samples would be
written to.

Because the alpha value was already used to decide how many subsamples should be
written, it wouldn’t make sense to then blend those subsamples with the same alpha
value. After all, using alpha-to-coverage is a way of doing blending. To help prevent these
subpixels from also being blended when blending is enabled, you can force the alpha
values for those samples to 1 by calling glEnable(GL_SAMPLE_ALPHA_TO_ONE).

Using alpha-to-coverage has several advantages over simple blending. When rendering to
a multisampled buffer, the alpha blend would normally be applied equally to the entire
pixel. With alpha-to-coverage, alpha masked edges are antialiased, producing a much more
natural and smooth result. This is particularly useful when drawing bushes, trees, or dense
foliage where parts of the brush are alpha transparent.

OpenGL also allows you to set the sample coverage manually by calling
glSampleCoverage. Manually applying a coverage value for a pixel occurs after the mask
for alpha-to-coverage is applied. For this step to take effect, sample coverage must be
enabled by calling glEnable(GL_SAMPLE_COVERAGE).

glSampleCoverage(clampf value, Boolean invert)

The coverage value passed into the value parameter can be between 0 and 1. The invert
parameter signals to OpenGL if the resulting mask should be inverted. For instance, if you
were drawing two overlapping trees, one with a coverage of 60% and the other with 40%,
you would want to invert one of the coverage values to make sure the same mask was not
used for both draw calls.

Multisampling 393
10

ptg

CHAPTER 10 Fragment Operations: The End of the Pipeline394

glSampleCoverage(0.5, GL_FALSE);

// Draw first geometry set

. . .

glSampleCoverage(0.5, GL_TRUE);

// Draw second geometry set

. . .

Sample Mask
The last configurable option in the multisample stage is the sample mask. This step allows
you to mask off specific samples using the glSampleMaski function. Unlike the earlier
stages, you can specify exactly which samples you want to turn off. Remember that the
alpha-to-coverage and sample coverage affect which samples are enabled before we get to
this stage. That means setting the sample mask to one in this stage does not guarantee
samples will be enabled.

glSampleMaski(GLuint maskNumber, GLbitfield mask);

The mask parameter is essentially a 32-bit bitwise mask of the pixel samples with bit 0
mapping to sample 0, bit 1 mapping to sample 1, and so on. You can use the maskNumber
to address bits beyond the first 32 bits with each incremental mask value representing
another 32 bits. You can query GL_MAX_SAMPLE_MASK_WORDS to find out how many masks
are supported. As of this writing, implementations only support one word, which makes
sense considering no implementations support more than 32 samples per pixel.

There is another way to modify the sample mask. You can write to the built-in output
gl_SampleMask[] array in a fragment shader to set the mask inside your shaders.

Putting It All Together
The sample program for this chapter, called oit, draws several semitransparent objects
shaped like a tinted glass wind chime. When several semitransparent surfaces are drawn in
OpenGL, simply blending them together produces the wrong result. Think about what
happens if you draw an object with alpha of 0.5 and then try to draw another object
behind it, also with an alpha of 0.5. If you leave depth testing enabled, the back object is
simply discarded as a result of failing the depth test. If depth testing is disabled, the back
object just draws over the front one and looks as if it is in front. We dig into blending in
more detail later in this chapter.

To overcome this blending shortcoming, we need to use order independent transparency,
or OIT. Most algorithms for correctly rendering transparent geometry involve sorting the
objects being rendered by depth and then rendering the farthest objects first. This can be
very complex and time-consuming. Even worse, in many situations there is no correct
sorting.

ptg

To deal with this, we store each rendering pass in a separate sample of a multisampled
framebuffer using sample masks. After the scene is rendered, the resolve operation
combines all samples for each pixel in the correct order. Let’s get started.

The first step is to draw all of the geometry to a multisampled framebuffer. Part of the
geometry is drawn in Listing 10.1. All nontransparent objects are masked to sample 0.
Each semitransparent object is rendered to a unique sample using the sample mask.

LISTING 10.1 Setting Up Sample Mask State

glSampleMaski(0, 0x01);

glEnable(GL_SAMPLE_MASK);

. . .

glBindTexture(GL_TEXTURE_2D, textures[1]);

shaderManager.UseStockShader(GLT_SHADER_TEXTURE_REPLACE,

transformPipeline.GetModelViewProjectionMatrix(), 0);

bckgrndCylBatch.Draw();

. . .

modelViewMatrix.Translate(0.0f, 0.8f, 0.0f);

modelViewMatrix.PushMatrix();

modelViewMatrix.Translate(-0.3f, 0.f, 0.0f);

modelViewMatrix.Scale(0.40, 0.8, 0.40);

modelViewMatrix.Rotate(50.0, 0.0, 10.0, 0.0);

glSampleMaski(0, 0x02);

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(), vLtYellow);

glass1Batch.Draw();

modelViewMatrix.PopMatrix();

modelViewMatrix.PushMatrix();

modelViewMatrix.Translate(0.4f, 0.0f, 0.0f);

modelViewMatrix.Scale(0.5, 0.8, 1.0);

modelViewMatrix.Rotate(-20.0, 0.0, 1.0, 0.0);

glSampleMaski(0, 0x04);

shaderManager.UseStockShader(GLT_SHADER_FLAT,

transformPipeline.GetModelViewProjectionMatrix(), vLtGreen);

glass2Batch.Draw();

modelViewMatrix.PopMatrix();

. . .

Once all surfaces are drawn to unique sample locations, they have to be combined. But
using an ordinary multisample resolve just won’t do! Instead we use the custom resolve

Multisampling 395
10

ptg

shader shown in Listing 10.2. The color and depth values for each sample are first fetched
into an array and then analyzed to determine the color of the fragment.

LISTING 10.2 Resolving Multiple Layers by Depth

#version 150

// oitResolve.fs

//

in vec2 vTexCoord;

uniform sampler2DMS origImage;

uniform sampler2DMS origDepth;

out vec4 oColor;

void main(void)

{

const int sampleCount = 8;

vec4 vColor[sampleCount];

float vDepth[sampleCount];

int vSurfOrder[sampleCount];

int i = 0;

// Calculate un-normalized texture coordinates

vec2 tmp = floor(textureSize(origDepth) * vTexCoord);

// First, get sample data and init the surface order

for (i = 0; i < sampleCount; i++)

{

vSurfOrder[i] = i;

vColor[i] = texelFetch(origImage, ivec2(tmp), i);

vDepth[i] = texelFetch(origDepth, ivec2(tmp), i).r;

}

// Sort depth values, largest to front and smallest to back

// Must run through array (size^2-size) times, or early-exit

// if any pass shows all samples to be in order

for (int j = 0; j < sampleCount; j++)

{

bool bFinished = true;

for (i = 0; i < (sampleCount-1); i++)

CHAPTER 10 Fragment Operations: The End of the Pipeline396

ptg

{

float temp1 = vDepth[vSurfOrder[i]];

float temp2 = vDepth[vSurfOrder[i+1]];

if (temp2 < temp1)

{

// swap values

int tempIndex = vSurfOrder[i];

vSurfOrder[i] = vSurfOrder[i+1];

vSurfOrder[i+1] = tempIndex;

bFinished = false;

}

}

if (bFinished)

j = 8; // Done. Early out!

}

// Now, sum all colors in order from front to back. Apply alpha.

bool bFoundFirstColor = false;

vec4 summedColor = vec4(0.0, 0.0, 0.0, 0.0);

for (i = (sampleCount-1); i >= 0; i—)

{

int surfIndex = vSurfOrder[i];

if(vColor[surfIndex].a > 0.001)

{

if (bFoundFirstColor == false)

{

// apply 100% of the first color

summedColor = vColor[surfIndex];

bFoundFirstColor = true;

}

else

{

// apply color with alpha

// same as using glBlendFunc(GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);

summedColor.rgb =

(summedColor.rgb * (1 - vColor[surfIndex].a)) +

(vColor[surfIndex].rgb * vColor[surfIndex].a);

}

}

Multisampling 397
10

ptg

}

oColor = summedColor;

oColor.a = 1.0f;

}

For transparency to work correctly, the color of each piece of geometry must be applied
from back to front. To do this, we need to figure out what geometry is overlapping other
geometry. That means the depth values have to be parsed and sorted. We store the result
of the sort in the vSurfOrder array for use in the next step. This array holds indexes that
point to the sample arrays. Index 0 points to the closest sample, index 1 to the next
closest, and so on. For locations where only one or two layers of geometry were drawn, all
other samples contain 0 for color and alpha. Figure 10.2 shows the result of the sort. On
the far left are all of the closest samples pointed to by vSurfOrder[0], second are the next
closest samples as indicated by vSurfOrder[1], and so on. Notice that sample 0 contains
mostly background because nothing is overlapping the background; therefore, the back-
ground is the closest, and only one sample in vSurfOrder is relevant. For this app, there
are only at most four overlapping pieces of geometry in any given region.

CHAPTER 10 Fragment Operations: The End of the Pipeline398

FIGURE 10.2 Samples sorted by depth. Closest samples on the left, farthest on the right.

Now that we know what order each sample is in, and therefore the order for each piece of
geometry, we can correctly apply the transparency of each. The whole process can be
carried out by running a single resolve shader on the multisample buffer containing the
transparency data. To perform the resolve, the shader simply looks up each sample in the
color array vColor according to the order specified in vSurfOrder. Each color is then
applied to the total color for each pixel. The new top layer color is multiplied by its alpha
and added to the existing summed color, which is multiplied by one minus the incoming
alpha.

This process, performed completely in hardware, builds up the transparent colors at each
pixel. The final result is shown in Figure 10.3 (also in Color Plate 19). It doesn’t matter
what order the translucent glasslike objects are rendered in; the final result will be blended
correctly. You can rotate the scene in the oit program by using the right and left arrow
keys on the keyboard. Notice how the objects closest to you always appear on top, even
though the order they are rendered in does not change.

ptg

FIGURE 10.3 Final result of order-independent depth.

A similar method could be done with separate color buffers attached to an FBO, but many
implementations are limited in the number of buffer attachments. Using multisample
buffers to do order-independent transparency provides easy buffer access and does not
intrude significantly into the normal rendering process. However, there are some limita-
tions to this approach. First, only a limited number of transparent or intersecting pieces of
geometry can be rendered. There are only so many samples in a multisample buffer. This
means complex transparent geometry that contains hundreds or thousands of possibly
overlapping objecs are out of reach for this method. Additionally, you couldn’t use a
multisample buffer for oit and also do multisampled rendering. But for simple oit situa-
tions, this approach works well and does not require geometry to be presorted.

Stencil Operations
The next step in the fragment pipeline is the stencil test. Think about the stencil test as
cutting out a shape in cardboard and then using that cutout to spray paint the shape on a
mural. The spray paint only hits the wall in places where the cardboard is cut out. If you
have a pixel format that supports a stencil buffer, you can similarly mask your draws to
the framebuffer. You can enable stenciling by calling glEnable(GL_STENCIL_TEST). Most
stencil buffers contain 8 bits, but some configurations may support fewer bits.

Your draw commands can have a direct effect on the stencil buffer, and the value of the
stencil buffer can have a direct effect on the pixels you draw. To control interactions with
the stencil buffer, OpenGL provides two commands: glStencilFuncSeparate and
glStencilOpSeparate. OpenGL lets you set both of these separately for front- and back-
facing geometry.

Stencil Operations 399
10

ptg

void glStencilFuncSeparate(GLenum face, GLenum func, GLint ref, Gluint mask);

void glStencilOpSeparate(GLenum face, GLenum sfail, GLenum dpfail, Glenum dppass);

First let’s look at glStencilFuncSeparate, which controls the conditions under which the
stencil test passes or fails. You can pass GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK for face,
signifying which geometry will be affected. The value of func can be any of the values in
Table 10.1. These describe under what conditions geometry will pass the stencil test. The
ref value is the reference used to compute the pass/fail result, and the mask lets you
control which bits of the reference and the buffer are compared.

TABLE 10.1 Stencil Functions

Functions Pass Condition

GL_NEVER Never pass test.

GL_ALWAYS Always pass test.

GL_LESS Reference value is less than buffer value.

GL_LEQUAL Reference value is less than or equal to buffer value.

GL_EQUAL Reference value is equal to buffer value.

GL_GEQUAL Reference value is greater than or equal to buffer value.

GL_GREATER Reference value is greater than buffer value.

GL_NOTEQUAL Reference value is not equal to buffer value.

The next step is to tell OpenGL what to do when the stencil test passes or fails by using
glStencilOpSeparate. This function takes four parameters with the first specifying which
faces will be affected. The next three parameters control what happens after the stencil
test is performed and can be any of the values in Table 10.2. The second parameter, sfail,
is the action taken if the stencil test fails. dpfail parameter specifies the action taken if
the depth buffer test fails, and the final parameter, dppass, specifies what happens if the
depth buffer test passes.

TABLE 10.2 Stencil Operations

Operation Result

GL_KEEP Do not modify the stencil buffer.

GL_ZERO Set stencil buffer value to 0.

GL_REPLACE Replace stencil value with reference value.

GL_INCR Increment stencil with saturation.

GL_DECR Decrement stencil with saturation.

GL_INVERT Bitwise invert stencil value.

GL_INCR_WRAP Increment stencil without saturation.

GL_DECR_WRAP Decrement stencil without saturation.

CHAPTER 10 Fragment Operations: The End of the Pipeline400

ptg

So how does this actually work out? Let’s look at a simple example of typical usage shown
in Listing 10.2. The first step is to clear the stencil buffer to 0 by setting the stencil clear
value through glClearStencil and then calling clear with the stencil buffer bit. Next a
window border is drawn that may contain details such as a player’s score and statistics.
Set up the stencil test to always pass with the reference value being 1 by calling
glStencilFuncSeparate. Then tell OpenGL to replace the value in the stencil buffer only
when the depth test passes by calling glStencilOpSeparate followed by rendering the
border geometry. This turns the border area pixels to 1 while the rest of the framebuffer
remains at 0.

Next, set up the stencil state so that the stencil test will only pass if the stencil buffer
value is 0 and then render the rest of the scene. This causes all pixels that would overwrite
the border we just drew to fail the stencil test and not be drawn to the framebuffer. Listing
10.3 shows an example of how stencil can be used.

LISTING 10.3 Example Stencil Buffer Usage, Stencil Border Decorations

// Clear stencil buffer to 0

glClearStencil(0);

glClear(GL_STENCIL_BUFFER_BIT);

// Setup Stencil state for border rendering

glStencilFuncSeparate(GL_FRONT, GL_ALWAYS, 1, 0xff);

glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_ZERO, GL_REPLACE);

// Render border decorations

. . .

// Now, border decoration pixels have a stencil value of 1

// All other pixels have a stencil value of 0.

// Setup Stencil state for regular rendering,

// fail if pixel would overwrite border

glStencilFuncSeparate(GL_FRONT_AND_BACK, GL_LESS, 1, 0xff);

glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_KEEP);

// Reder the rest of the scene, will not render over stenciled

// boarder content

. . .

There are also two other stencil functions: glStencilFunc and glStencilOp. These behave
the same way as glStencilFuncSeparate and glStencilOpSeparate with the face set to
GL_FRONT_AND_BACK.

Stencil Operations 401
10

ptg

Depth Testing
After stencil operations are complete, the hardware tests the depth value of a fragment
when depth testing is enabled. If depth writes are enabled and the fragment has passed
the depth test, the depth buffer is updated with the new depth value of the fragment. If
the depth test fails, the fragment is killed and does not pass to the other stages of frag-
ment operations. We have used depth buffers and depth testing throughout the entire
book. Their operation should be as familiar as waking up in the morning! As a refresher
you can take a peek back at Chapter 3.

Depth Clamp
There is one more useful piece of functionality related to depth testing called depth
clamping. Depth clamping is disabled by default but can be enabled by calling
glEnable(GL_DEPTH_CLAMP). If depth clamping is enabled, the incoming pixel’s depth
will be clamped to the near and far clip planes before the depth test is performed.

Depth clamping can be useful in preventing geometry from being clipped to the clip
volume. One applicable case is shadow volume rendering. When rendering shadow
volumes you want to preserve as much of the geometry along the z-axis as possible. To do
this you can enable depth clamping, which prevents data that is farther than the far clip
plane or nearer than the near clip plane from being cut off.

Blending Everything Together
Once a fragment passes depth testing, it is handed off to the blending stage. Blending
allows you to combine the incoming source color with the color already in the color
buffer or with other constants using one of the many supported blend equations. Blending
can only be done on fixed and floating-point formats. You can’t blend with integer
formats such as GL_RGB_16I or GL_RGB32I. Also if the buffer you are drawing to is fixed-
point, the incoming source colors will be clamped to 0.0-1.0 before any blending opera-
tions occur. Blending is controlled on a per-drawbuffer basis and is enabled by calling
glEnablei(GL_BLEND, bufferIndex). Just like using glDrawBuffers, the buffer index can
be GL_DRAW_BUFFER0, GL_DRAW_BUFFER1, and so on. If the default FBO is bound, blending is
performed on all enabled buffers.

Blend Equation
Blending is highly customizable. The first aspect to consider is how you want to combine
the pixel value (source) with the framebuffer color (destination). You can choose separate
operations for the RGB values and the alpha values if you use glBlendEquationSeperate
or use the same equation for both RGB and alpha if you use glBlendEquation. The blend
equations available are listed in Table 10.3. Blending is performed as if the source and
destination colors were floating-point.

glBlendEquation(GLenum mode);

glBlendEquationSeparate(GLenum modeRGB, GLenum modeAlpha);

CHAPTER 10 Fragment Operations: The End of the Pipeline402

ptg

TABLE 10.3 Blend Equations

Blend Equation RGB Alpha

GL_FUNC_ADD R = R
s
* S

r
+ R

d
* D

r
A = A

s
* S

a
+ A

d
*D

a

G = G
s
* S

g
+ G

d
* D

g

B = B
s
* S

b
+ B

d
* D

b

GL_FUNC_SUBTRACT R = R
s
* S

r
- R

d
* D

r
A = A

s
* S

a
- A

d
*D

a

G = G
s
* S

g
- G

d
* D

g

B = B
s
* S

b
- B

d
* D

b

GL_FUNC_REVERSE_SUBTRACT R = R
d

* D
r
- R

s
* S

r
A = A

d
*D

a
- A

s
* S

a

G = G
d

* D
g

- G
s
* S

g

B = B
d

* D
b

- B
s
* S

b

GL_MIN R = min(R
s
, R

d
) A = min(A

s
, A

d
)

G = min(G
s
, G

d
)

B = min(B
s
, B

d
)

GL_MAX R = max(R
s
, R

d
) A = max (A

s
, A

d
)

G = max (G
s
, G

d
)

B = max (B
s
, B

d
)

Blend Function
Now that you have chosen an equation to combine the source and destination colors;
you have to set the factors used in the blend equation. This can be done by calling
glBlendFunc or glBlendFuncSeparate with the factors you intend to use. Just like
glBlendEquation, you can either set separate functions for RGB and alpha or use one
command to set them both to the same value.

glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum

dstaAlpha);

glBlendFunc(GLenum src, GLenum dst);

The possible values for these calls can be found in Table 10.4. Note that functions that
require addition or subtraction perform these operations as vectors. Some also require a
constant value that can be set by calling glBlendColor:

glBlendColor(clampf red, clampf green, clampf blue, clampf alpha);

TABLE 10.4 Blend Functions

Blend Function RGB Alpha

GL_ZERO (0, 0, 0,) 0

GL_ONE (1, 1, 1) 1

GL_SRC_COLOR (R
s0
, G

s0
, B

s0
) A

s0

GL_ONE_MINUS_SRC_COLOR (1, 1, 1) - (R
s0
, G

s0
, B

s0
) 1 – A

s0

GL_DST_COLOR (R
d
, G

d
, B

d
) A

d

Blending Everything Together 403
10

ptg

TABLE 10.4 Blend Functions

Blend Function RGB Alpha

GL_ONE_MINUS_DST_COLOR (1, 1, 1) - (R
d
, G

d
, B

d
) 1 – A

d

GL_SRC_ALPHA (A
s0
, A

s0
, A

s0
) A

s0

GL_ONE_MINUS_SRC_ALPHA (1, 1, 1) - (A
s0
, A

s0
, A

s0
) 1 - A

s0

GL_DST_ALPHA (A
d0
, A

d0
, A

d0
) A

d0

GL_ONE_MINUS_DST_ALPHA (1, 1, 1) - (A
d0
, A

d0
, A

d0
) 1 – A

d0

GL_CONSTANT_COLOR (R
c
, G

c
, B

c
) A

c

GL_ONE_MINUS_CONSTANT_COLOR (1, 1, 1) - (R
c
, G

c
, B

c
) 1 – A

c

GL_CONSTANT_ALPHA (A
c
, A

c
, A

c
) A

c

GL_ONE_MINUS_CONSTANT_ALPHA (1, 1, 1) - (A
c
, A

c
, A

c
) 1 – A

c

GL_ALPHA_SATURATE (f, f, f) 1

f = min(A
s0
, 1 – A

d
)

GL_SRC1_COLOR (R
s1
, G

s1
, B

s1
) A

s1

GL_ONE_MINUS_SRC1_COLOR (1, 1, 1) - (R
s1
, G

s1
, B

s1
) 1 – A

s1

GL_SRC1_ALPHA (A
s1
, A

s1
, A

s1
) A

s1

GL_ONE_MINUS_SRC1_ALPHA (1, 1, 1) - (A
s1
, A

s1
, A

s1
) 1 - A

s1

You may have noticed that some of the factors in Table 10.4 use source 0 colors, and
others use source 1 colors. Your shaders can export more than one final color for a given
color attachment by setting up the outputs using glBindFragDataLocationIndexed. The
way to make use of two outputs is by blending the colors togther using appropriate blend
factors. You can find out how many dual output buffers are supported by querying the
value of GL_MAX_DUAL_SOURCE_DRAW_BUFFERS.

Putting It All Together
The oit sample program we looked at earlier is also outfitted to do simple blending as
well. Just press the B key on the keyboard to switch to blending mode. Each of the
glasslike pieces is drawn separately, blended with the background. You can choose between
a few preset blending modes by pressing the keyboard keys 1 through 7 to create several
different effects. Check out Figure 10.4 to see the result of using one of the most common
blend function sets, GL_SRC_ALPHA and GL_SRC_ONE_MINUS_ALPHA.

CHAPTER 10 Fragment Operations: The End of the Pipeline404

ptg

FIGURE 10.4 Blended transparent glass shares.

If the blending mode is selected, the program enables blend mode and then sets the
appropriate blend parameters (see Listing 10.4). OpenGL takes care of the rest, blending
each additional piece of geometry with the framebuffer as it is drawn. The last step is to
resolve the multisample FBO to display the final result on the screen.

LISTING 10.4 Example Stencil Buffer Usage, Stencil Border Decorations

// Setup blend state

glEnable(GL_BLEND);

switch (blendMode)

{

case 1:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

break;

case 2:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_DST_ALPHA);

break;

. . .

Notice how when using blending the rendering order matters, unlike with the order-inde-
pendent transparency example we saw earlier. Once you have given the stock program a
spin, try modifying the sample modes. You can set different blend functions and different
blend equations to see what result they have.

Blending Everything Together 405
10

ptg

Dithering
Great! Your pixel has almost gotten to the end of the pipeline. After blending, pixel data is
still represented as a set of floating-point numbers. But unless your framebuffer is a float-
ing-point buffer, the pixel data has to be converted before it can be stored. For instance,
most window-renderable formats only support 8 bits of color per channel. That means the
GPU has to convert the final color output before it can be stored.

This conversion can happen one of two ways depending on whether dithering is disabled
or enabled. First, the result can be simply mapped to the largest positive representable
color. For instance, if the R-value of a particular pixel is 0.3222 and the window format is
GL_RGB_8, the GPU could map this to either value 82 of 256 or 83 of 256. If dithering is
disabled, the GPU automatically chooses 83. You can force this behavior by calling
glDisable(GL_DITHER).

The second option is to dither the result. Dithering is enabled by default, but you can also
enable it by calling glEnable(GL_DITHER). What is dithering? It’s a way for the hardware
to blend the transition from one representable color to the next step. Instead of an abrupt
switch from one color level to another, a GPU can soften the boarder of the transition by
mixing the two colors together in areas where neither neighboring color can truly repre-
sent the color at that location. Take a look at Figure 10.5. The top half shows no dithering,
while the bottom demonstrates how dithering can blend color transitions. There are
several formulas to compute how dithering is done. But basically if the underlying color is
between 82 and 83 for an 8-bit color buffer, the percentage of each used is proportional to
how close the color is to 82 and 83. It is worth noting that the dithering algorithm is up
to each vendor. Some implementations may choose to simply step right to the next shade
when certain color buffer formats are used.

CHAPTER 10 Fragment Operations: The End of the Pipeline406

FIGURE 10.5 Dithering blends color transitions. Top half not blended. Bottom half noise
blended.

ptg

Dithering can be very handy. It can eliminate banding issues when your objects are gradu-
ally smooth-shaded. The best part is you don’t even have to worry about it. Dithering is
enabled by default and works to make your rendering more pleasing and natural.

Logic Ops
Once the pixel color is in the same format and bit depth as the framebuffer, there are two
more steps that can affect the final result. The first allows you to apply a logical operation
to the pixel color before it is passed on. When enabled, the effects of blending are ignored.
Logic operations do not affect floating-point buffers. You can enable logic ops by calling

glEnable(GL_COLOR_LOGIC_OP);

Logic operations use the values of the incoming pixel and the exiting framebuffer to
compute a final value. You can pick the operation that computes the final value. The
possible options are listed in Table 10.5. Pass your logic op of choice into glLogicOp:

glLogicOp(GLenum op);

TABLE 10.5 Logic Operations

Operation Result

GL_CLEAR Set all values to 0

GL_AND Source & Destination

GL_AND_REVERSE Source & ~Destination

GL_COPY Source

GL_AND_INVERTED ~(Source & Destination)

GL_NOOP Destination

GL_XOR Source ^ Destination

GL_OR Source | Destination

GL_NOR ~ (Source | Destination)

GL_EQUIV ~(Source ^ Destination)

GL_INVERT ~Destination

GL_OR_REVERSE Source | ~destination

GL_COPY_INVERTED ~Source

GL_OR_INVERTED ~Source | Destination

GL_NAND ~(Source & Destination)

GL_SET Set all values to 1

Logic ops are applied seperately to each color channel. Operations that combine source
and destination are performed bitwise on the color values. Logic ops are not commonly
used in today’s graphics applications but still remain part of OpenGL because the func-
tionality is still supported on common GPUs.

Logic Ops 407
10

ptg

Masking Output
One of the last modifications that can be made to a fragment before it is written is
masking. By now you recognize that three different types of data can be written by a frag-
ment shader: color, depth, and stencil data. Likewise, there are separate operations you
can use to mask the result of each.

Color
To mask color writes or prevent color writes from happening, you can use glColorMask
and glColorMaski. You don’t have to mask all color channels at once; you can choose to
mask the Red and Green channels while permitting writes to the Blue channel for
instance. You can pass in GL_TRUE for a channel to allow writes for that channel to occur,
or GL_FALSE to mask these writes off. The first function, glColorMask, allows you to mask
all buffers currently enabled for rendering while the second function, glColorMaski,
allows you to set the mask for a specific color buffer.

glColorMask(writeR, writeG, writeB);

glColorMaski(colorBufIndex, writeR, writeG, writeB);

Depth
Writes to the depth buffer can be masked in a similar way. glDepthMask also takes a
Boolean value that turns writes on if GL_TRUE and off if GL_FALSE.

glDepthMask(GL_FALSE);

Stencil
Stencil buffers can be masked too. You guessed it; the function you use for stencil buffers
is called glStencilMask. But unlike the other functions, you have more granular control
over what gets masked off. Instead of just setting a Boolean value, the stencil mask func-
tions take a bitfield. The least significant portion of this bitfield maps to the same number
of bits in the stencil buffer. If a mask bit is set to 1, the corresponding bit in the stencil
buffer can be updated. But if the mask bit is 0, the corresponding stencil bit will not be
written to.

GLuint mask = 0x0007;

glStencilMask(mask);

glStencilMaskSeparate(GL_BACK, mask);

In the preceding example, the first call to glStencilMask enables the lower three bits of
the stencil buffer for writing while leaving the rest disabled. The second call,
glStencilMaskSeparate, allows you to set separate masks for primitives that are front-
facing and back-facing.

CHAPTER 10 Fragment Operations: The End of the Pipeline408

ptg

Usage
Write masks can be useful for many operations. For instance, if you want to fill a shadow
volume with depth information, you can mask off all color writes because only the depth
information is important. Or if you want to draw a decal directly to screen space, you can
disable depth writes to prevent the depth data from being polluted. The key point about
masks is you can set them and immediately call your normal rendering paths, which may
set up necessary buffer state and output all color, depth, and stencil data you would
normally use without needing any knowledge of the mask state. You don’t have to alter
your shaders to not write some value, detach some set of buffers, or change the enabled
draw buffers. The rest of your rendering paths can be completely oblivious and still gener-
ate the right results.

Summary
In this chapter you learned about the end of the OpenGL pipeline. The first step is scissor-
ing. Next, you learned about how to fine-control multisampling to adjust sample coverage
or apply a sample mask. Then, stencil operations control which fragments are allowed to
continue down the pipeline. After that, the depth buffer comes into play, testing to see
whether a fragment falls behind already-rendered geometry. Next, the resulting fragment
is blended with the framebuffer based on user controlled functions and equations. Then,
the result is dithered to smooth color transitions. Last, the result can be masked to prevent
depth, stencil, and color operations from being applied where applicable.

You learned how to interact directly with individual samples of a multisample buffer with
the oit sample program. You used sample mask interfaces to blend semitransparent
objects correctly regardless of the order they were drawn in. The oit sample program also
demonstrated how blending works, demonstrating several common blend modes.

Summary 409
10

ptg

This page intentionally left blank

ptg

CHAPTER 11

Advanced Shader Usage

by Graham Sellers

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Features You’ll Use

Use a transform feedback buffer glBindBuffer

Store transformed vertices into a buffer glBeginTransformFeedback, glEndTransformFeedback

Use a geometry shader glCreateShader(GL_GEOMETRY_SHADER)

Create, bind, and use uniform blocks glGetUniformBlockIndex, glUniformBlockBinding

Use indexed binding points glBindBufferBase, glBindBufferRange

Control interpolation and storage Layout qualifiers

In this chapter, we cover some more advanced shader topics that will allow you to use
your programmable graphics hardware for more than simple polygon rendering. We
present a detailed example of using the GPU for physical simulation by recirculating data
through transform feedback. We introduce an entirely new shader stage—the geometry
shader, which can process entire primitives and even generate new primitives on the fly.
We also discuss using the fragment shader to perform advanced per-pixel operations,
including image processing and generating fractals.

Layout qualifiers are introduced, allowing you to control storage, interpolation, and other
parameters affecting inputs and outputs of shaders. We also introduce a method of throw-
ing work away in the fragment shader.

By the end of the chapter, the shaders you’ll be capable of writing will be so complex that
you might get sick of using shader uniforms! We introduce the uniform buffer object,
which allows you to share large blocks of uniforms between different program objects.

ptg

412 CHAPTER 11 Advanced Shader Usage

Advanced Vertex Shaders
Until now, the vertex shader has been used to transform vertices from object space into
world or view space. It has been viewed as a fairly simple one-in, one-out shader stage that
simply does geometric transformations. However, the vertex shader is very powerful—on
most modern hardware it has access to all of the resources that the fragment shader does.
It can be put to work on tasks that are not necessarily geometric in nature. Combined
with transform feedback (which is discussed in detail in Chapter 12, “Advanced Geometry
Management”), the vertex shader can circulate results around in a loop, iterating and
updating them on each pass. The data doesn’t need to be positions, and the results of the
vertex shader don’t necessarily need to be rendered directly. This section covers a few
examples of some nonobvious usages for vertex shaders.

Physical Simulation in the Vertex Shader
In this example, we build a physical simulation of a mesh of springs and masses. Each
vertex represents a weight, connected to up to four neighbors by elastic tethers. The
example iterates over the vertices, processing each one with a vertex shader. A number of
advanced features are used in this example. We use a texture buffer object (TBO) to hold
vertex position data in addition to a regular attribute array. The same buffer is bound to
both the TBO and the VBO associated with the position input to the vertex shader. This
allows us to arbitrarily access the current position of other vertices in the system. We also
use an integer vertex attribute to hold indices of neighboring vertices. Furthermore, we use
transform feedback to store the positions and velocities of each of the masses between
each iteration of the algorithm.

For each vertex, we need a position, velocity, and mass. We can pack the positions and
masses into one vertex array and pack the velocities into another. Each element of the
position array is actually a vec4, with x, y, and z being the three-dimensional coordinate
of the vertex, and w containing the weight of the vertex. The velocity array can simply be
an array of vec3. Additionally, we use an array of ivec4s to store information about the
springs connecting the weights together. There is one ivec4 for each vertex, and each of
the four components of the vector contains the index of the vertex that is connected to
the other end of the spring. We call this the connection vector. This means that we can
connect each mass to up to four other masses. To record that there is no connection, we
point the element of the connection back at the same vertex (see Figure 11.1).

ptgFIGURE 11.1 Connections of vertices in the spring mass system.

Consider vertex 12. It has associated with it an ivec4 connection vector containing <7, 13,
17, 11>—the indices of the vertices to which it is connected. Likewise, the connection
vector for vertex 13 contains <8, 14, 18, 12>. There is a bidirectional connection between
vertex 12 and 13. The vertices at the edges of the mesh don’t have all of their springs
attached. So vertex 14 has a connection vector containing <9, 14, 19, 13>. Notice that the
y component of the vector points back at vertex 14, indicating that there is no spring
there.

In addition to the indices of the vertices to which it is connected (using a self reference to
notate no connection), we define a special values to mean other things. The index -1 is
used to mean that the vertex is held in position. No matter what the forces acting on it,
its position won’t be updated. This allows us to fix the position of some of the vertices. If
the x component of the connection vector is -1, then the calculations for updating the
position and velocity of the vertex will be skipped.

At each vertex, our vertex shader runs and obtains its own position and connection vector
using regular vertex attributes. It then looks up the current positions of the vertices it’s
connected to by indexing into the TBO using the elements of the connection vector
(which is also a regular vertex attribute). For each connected vertex, it can calculate the
distance to it and thus the extension of the virtual spring between them. From this, it can
calculate the force exerted upon it by the spring, calculate the acceleration this produces

Advanced Vertex Shaders 413
11

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

ptg

CHAPTER 11 Advanced Shader Usage414

given the mass of the vertex, and produce a new position and velocity vector to use in the
next iteration. It sounds complex, but it’s not—it’s just Newtonian physics and Hooke’s
law.

Hooke’s law is

where F is the force exerted by the spring, k is the spring constant (how stiff the spring is),
and x is the extension of the spring. The spring’s extension is relative to its resting length.
For our system, we keep the rest length of the springs the same and store it in a uniform.
Any stretching of the spring produces a positive value of x, and any compression of the
spring produces a negative value of x. The instantaneous length of the spring is simply the
length of the vector from one of its ends to the other—exactly what we’ll calculate in the
vertex shader. We give the force a direction by multiplying the linear force F by the direc-
tion along the spring. We introduce the variable d, which is simply the normalized direc-
tion along the spring:

This gives us the force applied to the mass due to the extension or compression of the
spring. If we were to simply apply this force to the mass, the system would oscillate and,
due to numerical imprecision, would eventually become unstable. All real spring. systems
have some loss due to friction, and this can be modeled by including damping into the
force equation. The force due to damping is determined by the equation

where c represents the damping coefficient. Ideally, we would calculate the damping force
for each spring, but for this simple system, a single force based on the mass’s velocity will
do. Also we use the initial velocity at each time-step to approximate the continuous differ-
ential that would be required by this equation. In our shader, we initialize F by calculating
the damping force and then accumulate the force exerted by each spring on the mass.

Finally, we can apply gravity to the system by treating it as simply one more force acting
on each mass. Gravity is a constant force that generally acts in a downward direction. We
can just add that to the initial force acting on the mass:

vcxkdGFtotal
rr

−−=

vcFd
rr

−=

F dF=
rr

kxF −=

ptg

Once we have the total force, we can simply apply Newton’s laws. First, Newton’s second
law allows us to calculate the acceleration of the mass:

Here, F is the force we just calculated using gravity, the damping coefficient, and Hook’s
law; m is the mass of the vertex (stored in the w component of the position attribute); and
a is the resulting acceleration. Given the initial velocity (which we get from our other
attribute array), we can plug it into the following equations of motion to find out what
our final velocity will be and how far we moved in a fixed time:

where u is the initial velocity (read from our velocity attribute array), v is the final veloc-
ity, t is our time-step (supplied by the application), and s is the distance we’ve travelled.
Don’t forget, a, u, v, and s are all vectors. All that’s left to do is write the shaders and hook
them up to an application. Listing 11.1 shows what the vertex shader looks like.

LISTING 11.1 Spring Mass System Vertex Shader

#version 330

precision highp float;

// This input vector contains the vertex position in xyz, and the mass of

// the vertex in w

in vec4 position_mass;

// This is the current velocity of the vertex

in vec3 velocity;

// This is our connection vector

in ivec4 connection;

// This is a TBO that will be bound to the same buffer as the

// position_mass input attribute

uniform samplerBuffer tex_position_mass;

// The outputs of the vertex shader are the same as the inputs, just

// wrapped in an interface block

2

2

v u at
ats u

= +

= +

r r r

rr r

m
Fa

amF
r

r

rr

=

=

Advanced Vertex Shaders 415
11

ptg

out Vertex

{

vec4 position_mass;

vec3 velocity;

} vertex;

// A uniform to hold the timestep. The application can update this.

uniform float t;

// The global spring constant

uniform float k;

// The global damping constant

uniform float c;

// Gravity

const vec3 gravity = vec3(0.0, -0.03, 0.0);

// Resting length of the springs

uniform float rest_length;

// Model-view-projection matrix

uniform mat4 mvp;

void main(void)

{

vec3 p = position_mass.xyz; // p can be our position

float m = position_mass.w; // m is the mass of our vertex

vec3 u = velocity; // u is the initial velocity

vec3 F; // F is the force on the mass

vec3 v = u; // v is the final velocity

vec3 s = vec3(0.0); // s is the displacement in this step

// Check if this is a ‘fixed’ vertex

if (connection[0] != -1) {

// Initialize F using gravity and damping

F = gravity - c * u;

for (int i = 0; i < 4; i++) {

if (connection[i] != gl_VertexID) {

// q is the position of the other vertex

// We don’t care about the other vertex’s mass

vec3 q = texture(tex_position_mass, connection[i]).xyz;

vec3 d = q – p;

CHAPTER 11 Advanced Shader Usage416

ptg

float x = length(d);

F += -k * (1.0 – x) * normalize(d);

}

}

// Acceleration due to force

float a = F / m;

// Displacement

s = u * t + 0.5 * a * t * t;

// Final velocity

v = u + a * t;

}

// Write the outputs

vertex.position_mass = vec4(p + s, m);

vertex.velocity = v;

// Update gl_Position so we can render the points

gl_Position = mvp * vec4(p + s, 1.0);

}

That wasn’t so hard, was it? We also need to construct buffers to hold the position, veloc-
ity, and connection information. We need to double-buffer the position and velocity infor-
mation so that we can read from one set of buffers and write to the other on one pass, and
then swap the buffers around so that the data moves back and forth from one buffer to
the other. The connection information remains the same on each pass, so it’s going to be
constant. To do this, two pairs of VBOs and a pair of VAOs are used. The first VAO has one
set of position and velocity attributes attached to it, referring to the first pair of VBOs,
along with the common connection information. The other VAO has the other set of posi-
tion and velocity attributes attached referring to the second pair of VBOs and the same,
common connection information. In total, we need five VBOs—two buffers to hold posi-
tion, two buffers to hold velocity and one buffer containing the connection vectors.

In addition to the VBOs, we need two TBOs. We use each buffer as a position VBO and as
a TBO, simultaneously. This seems strange, but is perfectly legal in OpenGL—after all, we’re
just reading from the same buffer via two different methods. To set this up, we generate
two textures, bind them to the GL_BUFFER_TEXTURE binding point, and attach the buffers
to them using glTexBuffer, as explained earlier in this book. When we bind VAO A, we
also bind texture A. When we bind VAO B, we bind texture B. That way, the same data
appears in both the position vertex attribute and in the tex_position samplerBuffer
buffer texture.

The code to set this up isn’t particularly complex but is repetitive. A complete implemen-
tation can be found on this book’s Web site. The example application includes the code to

Advanced Vertex Shaders 417
11

ptg

create and initialize the buffers, perform double buffering, and visualize the results. The
application fixes a couple of the vertices in place so that the whole system doesn’t just fall
off the bottom of the screen. Once we have all of the buffers hooked up, we can simulate
a time-step in the system with a single call to glDrawArrays. Each node in the system is
represented by a single GL_POINT primitive. If we initialize the modelviewprojection
matrix (stored in the mvp uniform) and let the system run, we see a result that looks like
Figure 11.2.

CHAPTER 11 Advanced Shader Usage418

FIGURE 11.2 Simulation of points connected by springs.

The image in Figure 11.2 is not particularly interesting, but it does demonstrate that our
simulation is running correctly. To make the visual result more appealing, we can set the
point size to a larger value, and we can also issue a second, indexed draw using
glDrawElements and GL_LINES primitives to visualize the connections between nodes. Note
that the same vertex positions can be used as input to this second pass, but we need to
construct another buffer to use with the GL_ELEMENT_ARRAY binding that contains the
indices of the vertices at the end of each spring. This additional step is also performed by
the example program. Figure 11.3 shows the final result.

ptg
FIGURE 11.3 Visualizing springs in the Spring Mass System.

Of course, the physical simulation (and the vertex data produced by it) can be used
for anything. If you don’t want to draw the points on the screen, you can enable
GL_RASTERIZER_DISCARD as explained in the next chapter.

Geometry Shaders
The geometry shader is a new shader type that was first introduced in the form of an
extension to OpenGL and then made part of the OpenGL core specification as of OpenGL
3.2. What makes a geometry shader unique in contrast to the other shader types is that it
processes a whole primitive (triangle, line, or point) at once and can actually change the
amount of data in the OpenGL pipeline. A vertex shader processes one vertex at a time; it
cannot access any other vertex’s information and is strictly one-in, one-out. That is, it
cannot generate new vertices, and it cannot stop the vertex from being processed further
by OpenGL. Likewise, the fragment shader processes a single fragment at a time, cannot
access any data owned by another fragment, cannot create new fragments, and can only
destroy fragments by discarding them. On the other hand, a geometry shader has access to
all of the vertices in a primitive (up to six with the new primitive modes
GL_TRIANGLES_ADJACENCY and GL_TRIANGLE_STRIP_ADJACENCY), can change the type of a
primitive, and can even create and destroy primitives.

Geometry Shaders 419
11

ptg

The other difference between geometry shaders and vertex and fragment shaders is that
geometry shaders are an optional part of the OpenGL pipeline. It is perfectly legal to have
only a vertex and fragment shader linked into a program object, and this is, until now, the
only way you’ve used OpenGL. When no geometry shader is present, the OpenGL
pipeline operates as normal; the outputs from the vertex shader are interpolated across the
primitive being rendered and are fed directly to the fragment shader. When a geometry
shader is present, however, the outputs of the vertex shader become the inputs to the
geometry shader, and the outputs of the geometry shader are what are interpolated and
fed to the fragment shader. The geometry shader can further process the output of the
vertex shader, and if it is generating new primitives (this is called amplification) can apply
different transformations to each primitive as it creates them.

The Pass-Through Geometry Shader
Geometry shaders are written in GLSL, just like vertex and fragment shaders, and there’s
nothing magical about them. This will all be explained shortly, but Listing 11.2 shows a
simple geometry shader in its entirety.

LISTING 11.2 Source Code for a Simple Geometry Shader

#version 330

precision highp float;

layout (triangles) in;

layout (triangle_strip) out;

layout (max_vertices = 3) out;

void main(void)

{

int i;

for (i = 0; i < gl_in.length(); i++) {

gl_Position = gl_in[i].gl_Position;

EmitVertex();

}

EndPrimitive();

}

This is a very simple pass-through geometry shader, which sends its input to its output
without modifying it. It looks similar to a vertex shader, but there are a few extra differ-
ences to cover. Going over the shader a few lines at a time makes everything clear. The
first few lines simply set up the version number (330) and the precision of the shader just

CHAPTER 11 Advanced Shader Usage420

ptg

like in any vertex or fragment shader. The next couple of lines are the first geometry
shader-specific parts. They are shown again in Listing 11.3.

LISTING 11.3 Geometry Shader Layout Qualifiers

#version 330

precision highp float;

layout (triangles) in;

layout (triangle_strip) out;

layout (max_vertices = 3) out;

These set the input and output primitive modes using a layout qualifier. In this particular
shader we’re using triangles for the input, and triangle_strip for the output. Other
primitive types, along with the layout qualifier, are covered later. For the geometry
shader’s output, not only do we specify the primitive type, but the maximum number of
vertices expected to be generated by the shader (through the max_vertices qualifier). This
shader produces individual triangles (generated as very short triangle strips), so we speci-
fied three here.

Next is our main() function, which is again similar to what might be seen in vertex or
fragment shader. The shader contains a loop, and the loop runs a number of times deter-
mined by the length of the built-in array, gl_in. This is another geometry shader-specific
variable. Because the geometry shader has access to all of the vertices of the input primi-
tive, the input has to be declared as an array. All of the built-in variables that are written
by the vertex shader (such as gl_Position) are placed into a structure, and an array of
these structures is presented to the geometry shader in a variable called gl_in.

The. length of the gl_in[] array is determined by the input primitive mode and because
in this particular shader, triangles are the input primitive mode, the size of gl_in[] is
three. The inner loop is given again in Listing 11.4.

LISTING 11.4 Iterating over the Elements of gl_in[]

for (i = 0; i < gl_in.length(); i++) {

gl_Position = gl_in[i].gl_Position;

EmitVertex();

}

Inside our loop, we’re generating vertices by simply copying the elements of gl_in[] to
the geometry shader’s output. A geometry shader’s outputs are similar to the vertex
shader’s outputs. Here, we’re writing to gl_Position, just as we would in a vertex shader.
When we’re done setting up all of the new vertex’s attributes, we call EmitVertex(). This

Geometry Shaders 421
11

ptg

is a built-in function, specific to geometry shaders that tells the shader that we’re done
with our work for this vertex and that it should store all that information away and
prepare to start setting up the next vertex.

Finally, after the loop has finished executing, there’s a call to another special, geometry
shader-only function, EndPrimitive(). EndPrimitive() tells the shader that we’re done
producing vertices for the current primitive and to move on to the next one. We specified
triangle_strip as the output for our shader, and so if we continue to call EmitVertex()
more than three times, OpenGL continues adding triangles to the triangle strip. If we need
our geometry shader to generate separate, individual triangles or multiple, unconnected
triangle strips (remember, geometry shaders can create new or amplify geometry), we
could call EndPrimitive() between each one to mark their boundaries. If you don’t call
EndPrimitive() somewhere in your shader, the primitive is automatically ended when the
shader ends.

Using Geometry Shaders in an Application
Geometry shaders, like the other shader types, are created by calling the glCreateShader
function and using GL_GEOMETRY_SHADER as the shader type, as follows:

glCreateShader(GL_GEOMETRY_SHADER);

Once the shader has been created, it is used like any other shader object. You give
OpenGL your shader source code by calling glShaderSource, compile the shader
using the glCompileShader function, and attach it to a program object by calling the
glAttachShader function. Then the program is linked as normal using the glLinkProgram
function.

Now that you have a program object with a geometry shader linked into it, when you
draw geometry using a function like glDrawArrays, the vertex shader will run once per
vertex, the geometry shader will run once per primitive (point, line, or triangle), and the
fragment will run once per fragment. The primitive mode you use when sending geometry
to OpenGL must match the input primitive mode of the geometry shader. For example, if
the geometry shader’s input primitive mode is points, then you may only use GL_POINTS
when you call glDrawArrays. If the geometry shader’s input primitive mode is triangles,
then you may use GL_TRIANGLES, GL_TRIANGLE_STRIP, or GL_TRIANGLE_FAN in your
glDrawArrays call. A complete list of the geometry shader input primitive modes and the
allowed geometry types is given in Table 11.1.

TABLE 11.1 Allowed Draw Modes for Geometry Shader Input Modes

Geometry Shader Input Mode Allowed Draw Modes

points GL_POINTS

lines GL_LINES, GL_LINE_LOOP, GL_LINE_STRIP

triangles GL_TRIANGLES, GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP

lines_adjacency GL_LINES_ADJACENCY

triangles_adjacency GL_TRIANGLES_ADJACENCY

CHAPTER 11 Advanced Shader Usage422

ptg

The input primitive type is specified in the body of the geometry shader using a layout
qualifier. The general form of the input layout qualifier is

layout (primitive_type) in;

This specifies that primitive_type is the input primitive type that the geometry shader is
expected to handle, and primitive_type must be one of the supported primitive modes:
points, lines, triangles, lines_adjacency, or triangles_adjacency. The geometry
shader runs once per primitive. This means that it’ll run once per point for GL_POINTS;
once per line for GL_LINES, GL_LINE_STRIP, and GL_LINE_LOOP; and once per triangle for
GL_TRIANGLES, GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN. The inputs to the geometry
shader are presented in arrays containing all of the vertices making up the input primitive.
The predefined inputs are stored in a built-in array called gl_in[], which is an array of
structures and defined as shown in Listing 11.5.

LISTING 11.5 The Definition of gl_in[]

in gl_PerVertex

{

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

} gl_in[];

The members of this structure are the built-in variables that are written in the vertex
shader: gl_Position, gl_PointSize, and gl_ClipDistance[]. You should be very familiar
with gl_Position and gl_PointSize by now, and gl_ClipDistance is explained in
Chapter 12. These variables appear as global variables in the vertex shader, but their values
end up in the structure members when they appear in the geometry shader. Other vari-
ables written by the vertex shader also become arrays in the geometry shader. In the case
of individual varyings, outputs in the vertex shader are declared as normal, and the inputs
to the geometry shader have a similar declaration, except that they are arrays. Consider a
vertex shader that defines outputs as

out vec4 color;

out vec3 normal;

The corresponding input to the geometry shader would be

in vec4 color[];

in vec3 normal[];

Notice that both the color and normal varyings have become arrays in the geometry
shader. If you have a large amount of data to pass from the vertex to the geometry shader,

Geometry Shaders 423
11

ptg

it can be convenient to wrap per-vertex information passed from the vertex shader to the
geometry shader into an interface block. In this case, your vertex shader will have a defini-
tion like this:

out VertexData

{

vec4 color;

vec3 normal;

} vertex;

And the corresponding input to the geometry shader would look like this:

in VertexData

{

vec4 color;

vec3 normal;

// More per-vertex attributes can be inserted here

} vertex[];

With this declaration, you’ll be able to access the per-vertex data in the geometry shader
using vertex[n].color and so on. The length of the input arrays in the geometry shader
depends on the type of primitives that it will process. For example, points are formed from
a single vertex, and so the arrays will only contain a single element, whereas triangles are
formed from three vertices, and so the arrays will be three elements long. If you’re writing
a geometry shader that’s designed specifically to process a particular primitive type, you
can explicitly size your input arrays, which provides a small amount of additional
compile-time error checking. Otherwise, you can let your arrays be automatically sized by
the input primitive type layout qualifier. A complete mapping of the input primitive
modes and the resulting size of the input arrays is shown in Table 11.2.

TABLE 11.2 Sizes of Input Arrays to Geometry Shaders

Input Primitive Type Size of Input Arrays

points 1

lines 2

triangles 3

lines_adjacency 4

triangles_adjacency 6

You also need to specify the primitive type that will be generated by the geometry shader.
Again, this is determined using a layout qualifier, like so:

layout (primitive_type) out;

CHAPTER 11 Advanced Shader Usage424

ptg

This is similar to the input primitive type layout qualifier, the only difference being that
you are declaring the output of the shader using the out keyword. The allowable output
primitive types from the geometry shader are points, line_strip, and triangle_strip.
Notice that geometry shaders only support outputting the strip primitive types (not count-
ing points—obviously, there is no such thing as a point strip).

There is one final layout qualifier that must be used to configure the geometry shader.
Because a geometry shader is capable of producing a variable amount of data per vertex,
OpenGL must be told how much space to allocate for all that data by specifying the
maximum number of vertices that the geometry shader is expected to produce. To do this,
use the following layout qualifier:

layout (max_vertices = n) out;

This sets the maximum number of vertices that the geometry shader may produce to n.
Because OpenGL may allocate buffer space to store intermediate results for each vertex,
this should be the smallest number possible that still allows your application to run
correctly. For example, if you are planning to take points and produce one line at a time,
then you can safely set this to two. This gives the shader hardware the best opportunity to
run fast. If you are going to heavily tessellate the incoming geometry, you might want to
set this to a much higher number, although this may cost you some performance. The
upper limit on the number of vertices that a geometry shader can produce depends on
your OpenGL implementation. It is guaranteed to be at least 256, but the absolute
maximum can be found by calling glGetIntegerv with the
GL_MAX_GEOMETRY_OUTPUT_VERTICES parameter.

You can also declare more than one layout qualifier with a single statement by separating
them with a comma, like so:

layout (triangle_strip, max_vertices = n) out;

With these layout qualifiers, a boilerplate #version declaration, and an empty main()
function you should be able to produce a geometry shader that compiles and links but
does absolutely nothing. In fact, it will discard any geometry you send it, and nothing will
be drawn by your application. We need to introduce two important functions:
EmitVertex() and EndPrimitive(). If you don’t call these, nothing will be drawn.

EmitVertex tells the geometry shader that you’ve finished filling in all of the information
for this vertex. Setting up the vertex works much like the vertex shader. You need to write
into the built-in variable gl_Position. This sets the clip space coordinates of the vertex
that is produced by the geometry shader, just like in a vertex shader. Any other attributes
that you want to pass from the geometry shader to the fragment shader can be declared in
an interface block or as global variables in the geometry shader. Whenever you call
EmitVertex, the geometry shader stores the values currently in all of its output variables
and uses them to generate a new vertex. You can call EmitVertex as many times as you
like in a geometry shader, until you reach the limit you specified in your max_vertices

Geometry Shaders 425
11

ptg

layout qualifier. Each time, you put new values into your output variables to generate a
new vertex.

An important thing to note about EmitVertex is that it makes the values of any of your
output variables (such as gl_Position) undefined. So, for example, if you want to emit a
triangle with a single color, you need to write that color with every one of your vertices;
otherwise, you could end up with undefined results.

EmitPrimitive indicates that you have finished appending vertices to the end of the prim-
itive. Don’t forget, geometry shaders only support the strip primitive types (line_strip
and triangle_strip). If your output primitive type is triangle_strip and you call
EmitVertex more than three times, the geometry shader will produce multiple triangles in
a strip. Likewise, if your output primitive type is line_strip and you call EmitVertex
more than twice, you’ll get multiple lines. In the geometry shader, EndPrimitive refers to
the strip. This means that if you want to draw individual lines or triangles, you have to
call EndPrimitive after every two or three vertices. You can also draw multiple strips by
calling EmitVertex many times between multiple calls to EndPrimitive.

One final thing to note about calling EmitVertex and EndPrimitive in the geometry
shader is that if you haven’t produced enough vertices to produce a single primitive (for
example, you’re generating triangle_strips and you call EndPrimitive after two
vertices), nothing is produced for that primitive, and the vertices you’ve already produced
are simply thrown away.

Discarding Geometry in the Geometry Shader
The geometry shader in your program runs once per primitive. What you do with that
primitive is entirely up to you. The two functions EmitVertex and EndPrimitive allow you
to programmatically append new vertices to your triangle or line strip and to start new
strips. You can call them as many times as you want (until you reach the maximum
defined by your implementation). You’re also allowed to not call them at all. This allows
you to clip geometry away and discard primitives. If your geometry shader runs and you
never call EmitVertex for that particular primitive, nothing will be drawn. To illustrate
this, we can implement a custom backface culling routine that culls geometry as if it were
viewed from an arbitrary point in space.

First, we set up our shader version and precision and declare our geometry shader to
accept triangles and to produce triangle strips. Backface culling doesn’t really make a lot of
sense for lines or points. We also define a uniform that will hold our custom viewpoint in
world space. This is shown in Listing 11.6.

LISTING 11.6 Configuring the Custom Culling Geometry Shader

#version 330

precision highp float;

CHAPTER 11 Advanced Shader Usage426

ptg

// Input is triangles, output is triangle strip. Because we’re going to do a

// 1 in 1 out shader producing a single triangle output for each one input,

// max_vertices can be 3 here.

layout (triangles) in;

layout (triangle_strip, max_vertices=3) out;

// Uniform variable that will hold our custom viewpoint

uniform vec3 viewpoint;

Now inside our main() function, we need to find the face normal for the triangle. This is
simply the cross products of any two vectors in the plane of the triangle—we can use the
triangle edges for this. Listing 11.7 shows how this is done.

LISTING 11.7 Finding a Face Normal in a Geometry Shader

// Calculate two vectors in the plane of the input triangle

vec3 ab = gl_in[1].gl_Position.xyz - gl_in[0].gl_Position.xyz;

vec3 ac = gl_in[2].gl_Position.xyz - gl_in[0].gl_Position.xyz;

vec3 normal = normalize(cross(ab, ac));

Now that we have the normal, we can determine whether it faces toward or away from
our user-defined viewpoint. To do this, we need to transform the normal into the same
coordinate space as the viewpoint, which is world space. Assuming we have the
modelview matrix in a uniform, simply multiply the normal by this matrix. To be more
accurate, we should multiply the vector by the inverse of the transpose of the upper left
three-by-three submatrix of the modelview matrix. This is known as the normal matrix,
and you’re free to implement this and put it in its own uniform if you like. However, if
your modelview matrix only contains translation, uniform scale (no shear), and rotation,
you can use it directly. Don’t forget, the normal is a three-element vector, and the
modelview matrix is a four-by-four matrix. We need to extend the normal to a four-
element vector before we can multiply the two. We can then take the dot product of the
resulting vector with the vector from the viewpoint to any point on the triangle.

If the sign of the dot product is negative, that means that the normal is facing away from
the viewer and the triangle should be culled. If it is positive, the triangle’s normal is point-
ing toward the viewer, and we should pass the triangle on. The code to transform the face
normal, perform the dot product, and test the sign of the result is shown in Listing 11.8.

LISTING 11.8 Conditionally Emitting Geometry in a Geometry Shader

// Calculate the transformed face normal and the view direction vector

vec3 transformed_normal = (vec4(normal, 0.0) * modelview_matrix).xyz;

vec3 vt = normalize(gl_in[0].gl_Position.xyz – viewpoint);

Geometry Shaders 427
11

ptg

// Take the dot product of the normal with the view direction

float d = dot(vt, normal);

// Emit a primitive only if the sign of the dot product is positive

if (d > 0.0) {

for (int i = 0; i < 3; i++) {

gl_Position = gl_in[i].gl_Position;

EmitVertex();

}

EndPrimitive();

}

In Listing 11.8, if the dot product is positive, we copy the input vertices to the output of
the geometry shader and call EmitVertex for each one. If the dot product is negative, we
simply don’t do anything at all. This results in the incoming triangle being discarded alto-
gether and nothing being drawn.

In this particular example, we are generating at most one triangle output for each triangle
input to the geometry shader. Although the output of the geometry shader is a triangle
strip, our strips only contain a single triangle. Therefore, there doesn’t strictly need be a
call to EndPrimitive. We just leave it there for completeness.

Figure 11.4 shows a selection of screenshots of a program including this shader.

CHAPTER 11 Advanced Shader Usage428

11.4 (a) 11.4 (b) 11.4 (c)

FIGURE 11.4 Geometry culled from different viewpoints.

In each screenshot of Figure 11.4 (a, b, c), the virtual viewer has been moved to different
positions. As you can see, different parts of the model have been culled away by the
geometry shader. It’s not expected that this example is particularly useful, but it does
demonstrate the ability for a geometry shader to perform geometry culling based on
application-defined criteria.

ptg

Modifying Geometry in the Geometry Shader
The previous example either discarded geometry or passed it through unmodified. It is
also possible to modify vertices as they pass through the geometry shader to create new,
derived shapes. Even though your geometry shader is passing vertices on one-to-one (that
is, no amplification or culling is taking place), this still allows you to do things that would
otherwise not be possible with a vertex shader alone. If the input geometry is in the form
of triangle strips or fans, for example, the resulting geometry will have shared vertices and
shared edges. Using the vertex shader to move shared vertices will move all of the trian-
gles that share that vertex. It is not possible, then, to separate two triangles that share an
edge in the original geometry using the vertex shader alone. However, this is trivial using
the geometry shader.

Consider a geometry shader that accepts triangles and produces triangle_strips. The
input to a geometry shader that accepts triangles is individual triangles, regardless of
whether they originated from a glDrawArrays or a glDrawElements function call, or
whether the primitive type was GL_TRIANGLES, GL_TRIANGLE_STRIP, or GL_TRIANGLE_FAN.
Unless the geometry shader outputs more than three vertices, the result is independent,
unconnected triangles.

In this next example, we “explode” a model by pushing all of the triangles out along their
face normals. It doesn’t matter whether the original model is drawn with individual trian-
gles or with triangle strips or fans. As with the previous example, the input is triangles, the
output is triangle_strip, and the maximum number of vertices produced by the geome-
try shader is three because we’re not amplifying or decimating geometry. The setup code
for this is shown in Listing 11.9.

LISTING 11.9 Setting Up the “Explode” Geometry Shader

#version 330

precision highp float;

// Input is triangles, output is triangle strip. Because we’re going to do a

// 1 in 1 out shader producing a single triangle output for each one input,

// max_vertices can be 3 here.

layout (triangles) in;

layout (triangle_strip, max_vertices=3) out;

To project the triangle outward, we need to calculate the face normal of each triangle.
Again, to do this we can take the cross product of two vectors in the plane of the
triangle—two edges of the triangle. For this, we can reuse the code from Listing 11.7.

Geometry Shaders 429
11

ptg

Now that we have the triangle’s face normal, we can project vertices along that normal by
an application controlled amount. That amount can be stored in a uniform (we call it
explode_factor) and updated by the application. This simple code is shown in Listing
11.10.

LISTING 11.10 Pushing a Face Out Along Its Normal

for (int i = 0; i < 3; i++) {

gl_Position = gl_in[i].gl_Position + vec4(explode_factor * normal, 0.0);

}

The result of running this geometry shader on a model is shown in Figure 11.5. The model
has been deconstructed, and the individual triangles have become visible.

CHAPTER 11 Advanced Shader Usage430

FIGURE 11.5 Exploding a model using the geometry shader.

Generating Geometry in the Geometry Shader
Just as you are not required to call EmitVertex or EndPrimitive at all if you don’t want to
produce any output from the geometry shader, it is also possible to call EmitVertex and
EndPrimitive as many times as you need to produce new geometry. That is, until you

ptg

reach the maximum number of output vertices that you declared at the start of your
geometry shader. This functionality can be used for things like making multiple copies of
the input or breaking the input into smaller pieces. This is the subject of the next
example. The input to our shader is a cube centered around the origin. Each face of the
cube is made from a pair of triangles, with a shared edge along the diagonal of the cube
face. We tessellate incoming triangles by producing new vertices half way along the diago-
nal and then moving all of the resulting vertices so that they are equidistant from the
origin. This transforms our cube into a rough sphere.

Because the geometry shader operates in object space (remember, the cube’s vertices are
centered around the origin), we need to do no coordinate transforms in the vertex shader
and instead, do the transforms in the geometry shader after we’ve generated the new
vertices. To do this, we need a simple, pass-through vertex shader. The code in Listing
11.11 shows a very simple pass-through vertex shader.

LISTING 11.11 A Simple Pass-Through Vertex Shader

#version 330

precision highp float;

in vec4 position;

void main(void)

{

gl_Position = position;

}

This shader only passes the vertex position to the geometry shader. If you have other
attributes associated with the vertices such as texture coordinates or normals, you need to
pass them through the vertex shader to the geometry shader as well.

As in the previous example, we accept triangles as input to the geometry shader and
produce a triangle strip. We break the strip after every triangle so that we can produce
separate, independent triangles. In this example, we produce two output triangles for
every input triangle. We need to declare our maximum output vertex count as six—two
triangles times three vertices. We also need to declare a uniform matrix to store the
modelview transformation matrix in the geometry shader because we do that transform
after generating vertices. Listing 11.12 shows this code.

LISTING 11.12 Setting Up the “Tessellator” Geometry Shader

#version 330

precision highp float;

Geometry Shaders 431
11

ptg

layout (triangles) in;

layout (triangle_strip, max_vertices=6) out;

// A uniform to store the model-view-projection matrix

uniform mat4 mvp;

To ensure we know which edge is the diagonal, we use indices in our program and
glDrawElements to draw the cube. This allows us to always make the first vertex the apex
of the triangle and the edge between the second and third triangles the diagonal of the
cube face. For each generated triangle, we can use the same first vertex as the incoming
triangle. Then for the two triangles that we produce, we can use the generated vertex and
one of the other incoming vertices.

First, let’s normalize the incoming vertex coordinates, which makes them all equidistant
from the origin because the length of the vector from the origin to any vertex will be one.
This isn’t necessary if the original cube’s vertex coordinates are already normalized, but
this allows the cube to have unit side length—something that is common for stock geome-
try. We also multiply the resulting vertex coordinates by the modelviewprojection matrix
here. This is shown in Listing 11.13.

LISTING 11.13 Setting Up the “Tessellator” Geometry Shader

// Push the incoming vertices onto the surface of a sphere of radius 1

vec3 a = normalize(gl_in[0].gl_Position.xyz);

vec3 b = normalize(gl_in[1].gl_Position.xyz);

vec3 c = normalize(gl_in[2].gl_Position.xyz);

// Generate the new vertex midway between b and c. Note that normalizing the

// the vertex means that we don’t need to divide by two to get the mean.

vec3 d = normalize(b + c);

// Now transform the generated vertices into world space

a = a * mvp;

b = b * mvp;

c = c * mvp;

d = d * mvp;

Now, a is the apex of the triangle, and d is the generated vertex. The edge bc is the diago-
nal of the cube’s face and the edge that we will break in half. The two triangles that we
will output will be abd and adc. To produce the two output triangles, we need to set up
the vertices, call EmitVertex for each one, and then call EndPrimitive between each trian-
gle to restart the triangle strips. Listing 11.14 shows this.

CHAPTER 11 Advanced Shader Usage432

ptg

LISTING 11.14 Emitting the Tessellated Vertices

// Produce first triangle abd

gl_Position = a;

EmitVertex();

gl_Position = b;

EmitVertex();

gl_Position = d;

EmitVertex();

EndPrimitive();

// Produce second triangle adc

gl_Position = a;

EmitVertex();

gl_Position = d;

EmitVertex();

gl_Position = c;

EmitVertex();

EndPrimitive();

In this example, we produce two independent triangles for each of the incoming triangles.
However, the triangles actually share the edge ad, and by outputting the vertices in
the right order, they can be represented by a triangle strip, which is exactly what the
geometry shader is designed to output. Our new triangle generation code looks like
Listing 11.15.

LISTING 11.15 Tessellating Using a Triangle Strip

gl_Position = b;

EmitVertex();

gl_Position = d;

EmitVertex();

gl_Position = a;

EmitVertex();

gl_Position = c;

EmitVertex();

EndPrimitive();

Notice that we only call EmitVertex four times instead of six, and we eliminated a call to
EndPrimitive. We can reduce our max_vertices for this geometry shader to four, and this
may make the program run faster. Even though we doubled the number of triangles that
the program renders, by using a short strip, we only increase the number of vertices to
process by one-third.

Figure 11.6 shows a screenshot of our simple geometry shader-based tessellation program.

Geometry Shaders 433
11

ptg

FIGURE 11.6 Basic tessellation using the geometry shader.

It should be noted that using the geometry shader for heavy tessellation may not produce
the most optimal performance. If something more complex than that shown in this
example is desired, it’s best to use one of the OpenGL extensions that expose hardware
tessellation. A full explanation of those extensions is beyond the scope of this book.

Changing the Primitive Type in the Geometry Shader
So far, all of the geometry shader examples we’ve gone through have taken triangles as
input and produced triangle strips as output. This doesn’t change the geometry type.
However, geometry shaders can input and output different types of geometry. For
example, you can transform points into triangles or triangles into points. In this next
example, we’re going to change the geometry type from triangles to lines. For each vertex
input to the shader, we take the vertex normal and represent it as a line. We also take the
face normal and represent that as another line. This allows us to visualize the model’s
normals—both at each vertex and for each face. Note, though, that if you want to draw
the normals over top of the original model, you need to draw everything twice—once
with the geometry shader to visualize the normals and once without the geometry shader
to show the model. You can’t output a mix of two different primitives from a single geom-
etry shader.

CHAPTER 11 Advanced Shader Usage434

ptg

For our geometry shader, in addition to the members of the gl_in structure, we need the
per-vertex normal, and that will have to be passed through the vertex shader. An updated
version of the pass-through vertex shader from Listing 11.11 is given in Listing 11.16.

LISTING 11.16 A Pass-Through Vertex Shader That Includes Normals

#version 330

precision highp float;

in vec4 position;

in vec3 normal;

out Vertex

{

vec3 normal;

} vertex;

void main(void)

{

gl_Position = position;

vertex.normal = normal;

}

This passes the position attribute straight through to the gl_Position built-in variable
and places the normal into an output block.

The setup code for the geometry shader is shown in Listing 11.17. In this example we
accept triangles and produce line strips, each of a single line. Because we output a separate
line for each normal we visualize, we produce two vertices for each vertex consumed, plus
two more for the face normal. Therefore, the maximum number of vertices that we output
per input triangle is eight. To match the Vertex output block that we declared in the
vertex shader, we also need to declare a corresponding input interface block in the geome-
try shader. As we’re going to do the object space to world space transformation in the
geometry shader, we declare a mat4 uniform called mvp to represent the modelviewprojec-
tion matrix. This is necessary so that we can keep the vertex’s position in the same coordi-
nate system as its normal until we produce the new vertices representing the line.

LISTING 11.17 Setting Up the “Normal Visualizer” Geometry Shader

#version 330

precision highp float;

layout (triangles) in;

layout (line_strip) out;

Geometry Shaders 435
11

ptg

layout (max_vertices = 8) out;

in Vertex

{

vec3 normal;

} vertex[];

// Uniform to hold the model-view-projection matrix

uniform mat4 mvp;

// Uniform to store the length of the visualized normals

uniform float normal_length;

Each input vertex is transformed into its final position and emitted from the geometry
shader, and then a second vertex is produced by displacing the input vertex along its
normal and transforming that into its final position as well. This makes the length of all
of our normals one but allows any scaling encoded in our modelviewprojection matrix to
be applied to them along with the model. We multiply the normals by the application
supplied uniform normal_length, allowing them to be scaled to match the model. Our
inner loop is shown in Listing 11.18.

LISTING 11.18 Producing Lines from Normals in the Geometry Shader

for (int i = 0; i < gl_in.length(); i++) {

gl_Position = mvp * gl_in[i].gl_Position;

EmitVertex();

gl_Position = mvp * vec4(gl_in[i].gl_Position.xyz +

vertex[i].normal * normal_length, 1.0);

EmitVertex();

EndPrimitive();

}

This generates a short line segment at each vertex pointing in the direction of the normal.
Now, we need to produce the face normal. To do this, we need to pick a suitable place
from which to draw the normal, and we need to calculate the face normal itself in the
geometry shader along which to draw the line.

As in the earlier example given in Listing 11.7, we use a cross product of two of the trian-
gle’s edges to find the face normal. To pick a starting point for the line, we choose the
centroid of the triangle, which is simply the average of the coordinates of the input
vertices. Listing 11.19 shows the shader code.

CHAPTER 11 Advanced Shader Usage436

ptg

LISTING 11.19 Drawing a Face Normal in the Geometry Shader

vec4 centroid = (gl_in[0].gl_Position +

gl_in[1].gl_Position +

gl_in[2].gl_Position) / 3.0;

vec3 face_normal = normalize(cross(gl_in[1].gl_Position.xyz –

gl_in[0].gl_Position.xyz,

gl_in[2].gl_Position.xyz –

gl_in[0].gl_Position.xyz));

gl_Position = centroid * mvp;

EmitVertex();

gl_Position = (centroid + vec4(face_normal * normal_length, 0.0)) * mvp;

EmitVertex();

EndPrimitive();

Now when we render a model, we get the image shown in Figure 11.7.

Geometry Shaders 437
11

FIGURE 11.7 Displaying the normals of a model using a geometry shader.

ptg

New Primitive Types Introduced by the Geometry Shader
Four new primitive types were introduced with geometry shaders, GL_LINES_ADJACENCY,
GL_LINE_STRIP_ADJACENCY, GL_TRIANGLES_ADJACENCY, and GL_TRIANGLE_STRIP_ADJACENCY.
These primitive types are really only useful when rendering with a geometry shader active.
When the new adjacency primitive types are used, for each line or triangle passed into the
geometry shader, it not only has access to the vertices defining that primitive, but it also
has access to the vertices of the primitive that is next to the one it’s processing.

When you render using GL_LINES_ADJACENCY, each line segment consumes four vertices
from the enabled attribute arrays. The two center vertices make up the line; the first and
last vertices are considered the adjacent vertices. The inputs to the geometry shader are
therefore four-element arrays. In fact, because the input and output types of the geometry
shader do not have to be related, GL_LINES_ADJACENCY can be seen as a way of sending
generalized four-vertex primitives to the geometry shader. The geometry shader is free to
transform them into whatever it pleases. For example, your geometry shader could convert
each set of four vertices into a triangle strip made up of two triangles. This allows you to
render quads using the GL_LINES_ADJACENCY primitive. It should be noted, though, that if
you draw using GL_LINES_ADJACENCY when no geometry shader is active, regular lines will
be drawn using the two innermost vertices of each set of four vertices. The two outermost
vertices will be discarded, and the vertex shader will not run on them at all.

Using GL_LINE_STRIP_ADJACENCY produces a similar effect. The difference is that the entire
strip is considered to be a primitive, with one additional vertex on each end. If you send
eight vertices to OpenGL using GL_LINES_ADJACENCY, the geometry shader will run twice,
whereas if you send the same vertices using GL_LINE_STRIP_ADJACENCY, the geometry
shader will run five times. Figure 11.8 should make things clear. The eight vertices in the
top row are sent to OpenGL with the GL_LINES_ADJACENCY primitive mode. The geometry
shader runs twice on four vertices each time—ABCD and EFGH. In the second row, the
same eight vertices are sent to OpenGL using the GL_LINESTRIP_ADJACENCY primitive
mode. This time, the geometry shader runs five times—ABCD, BCDE, and so on until
EFGH. In each case, the solid arrows are the lines that would be rendered if no geometry
shader were present.

CHAPTER 11 Advanced Shader Usage438

A B
1

C D E F
2

G H

A B
1 2 3 4

C D E F
5

G H

FIGURE 11.8 Lines produced using GL_LINES_ADJACENCY and GL_LINE_STRIP_ADJACENCY.

ptg

The GL_TRIANGLES_ADJACENCY primitive mode works similarly to the GL_LINES_ADJACENCY
mode. A triangle is sent to the geometry shader for each set of six vertices in the enabled
attribute arrays. The first, third, and fifth vertices are considered to make up the real
triangle, and the second, fourth, and sixth vertices are considered to be in-between the
triangle’s vertices. This means that the inputs to the geometry shader are six element
arrays. As before, because the you can do anything you want to the vertices using the
geometry shader; GL_TRIANGLES_ADJACENCY is a good way to get arbitrary six-vertex primi-
tives into the geometry shader. Figure 11.9 shows this.

Geometry Shaders 439
11

H

L

K

I

G

2

B

F

E

C

A

1

JD

FIGURE 11.9 Triangles produced using GL_TRIANGLES_ADJACENCY.

The final, and perhaps most complex (or alternatively the most difficult to understand), of
these primitive types is GL_TRIANGLE_STRIP_ADJACENCY. This primitive represents a triangle
strip with every other vertex (the first, third, fifth, seventh, ninth, and so on) forming the
strip. The vertices in-between are the adjacent vertices. Figure 11.10 demonstrates the prin-
ciple. In the figure, the vertices A through P represent 16 vertices sent to OpenGL. A trian-
gle strip is generated from every other vertex (A, C, E, G, I, and so on), and the vertices
that come between them (B, D, F, H, J, and so on) are the adjacent vertices.

There are special cases for the triangles that come at the start and end of the strip, but
once the strip is started, the vertices fall into a regular pattern that is more clearly seen in
Figure 11.11.

ptg

FIGURE 11.10 Triangles produced using GL_TRIANGLE_STRIP_ADJACENCY.

CHAPTER 11 Advanced Shader Usage440

2 4 6

1 3 5

F J N

B C G K O

A E I M P

D H L

F J N

CB OG K

A M PE I

LD H

FIGURE 11.11 Ordering of vertices for GL_TRIANGLE_STRIP_ADJACENCY.

ptg

The rules for the ordering of GL_TRIANGLE_STRIP_ADJACENCY are spelled out clearly in the
OpenGL Specification—in particular, the special cases are noted there. You are encouraged
to read that section of the specification if you want to work with this primitive type.

Advanced Fragment Shaders
The fragment shader is a powerful stage in the OpenGL pipeline. Graphics hardware typi-
cally has the greatest memory bandwidth when reading from textures and writing to the
framebuffer. However, you’re not limited to processing visual data in the fragment shader.
If you have a data-intensive operation, the fragment shader is probably the best place to
perform it. So far, you have used the fragment shader to simulate materials and surfaces
using techniques such as texturing, normal mapping, and so on. The fragment shader runs
on every fragment generated by a primitive. However, it is possible to use the fragment
shader to do more than just simulate the surface of the objects you are rendering.

In this section, we cover some more advanced uses of the fragment shader. For most of
these examples, we use a single pair of triangles covering the whole screen as the input
geometry. This is often called a full-screen quad because it is a quadrangle that covers the
entire screen. First, we go over using the fragment shader to apply post-processing effects
such as blur and color correction and enhancement. Later, we show that entire scenes can
be generated using only the fragment shader.

For the next few examples, we use the same, simple pass-through vertex shader. All this
does is pass the input coordinate to the output position and also copy it into a texture
coordinate so that the fragment shader can have access to it. The code is given in
Listing 11.20.

LISTING 11.20 Full-Screen Quad Pass-Through Vertex Shader

#version 330

precision highp float;

in vec2 position;

out Fragment

{

vec2 tex_coord;

} fragment;

void main(void)

{

gl_Position = vec4(position, 0.5, 1.0);

// This produces a texture coordinate that ranges from

// (-1.0, -1.0) to (1.0, 1.0)

fragment.tex_coord = position;

Advanced Fragment Shaders 441
11

ptg

// Alternatively, we can make our texture coordinate range from

// (0.0, 0.0) to (1.0, 1.0) by using this line of code:

// fragment.tex_coord = position * 0.5 + vec2(0.5, 0.5);

}

The input to the shader is a single vec2 attribute, position, which is fed from the coordi-
nates representing the corners of our quad, as shown in Listing 11.21.

LISTING 11.21 Full-Screen Quad Geometry

const GLfloat quad_coords[] =

{

-1.0f, -1.0f,

1.0f, -1.0f,

-1.0f, 1.0f,

1.0f, 1.0f

};

Using these coordinates and drawing them as a GL_TRIANGLE_STRIP, a quad can be
rendered covering the entire viewport with a single call to glDrawArrays. The
fragment.tex_coord output from the vertex shader can range either from (-1.0, -1.0) to
(1.0, 1.0) or from (0.0, 0.0) to (1.0, 1.0) depending on which lines are uncommented, as
explained in the shader’s comments. Some of these examples require the -1.0 to 1.0
variant, and some require the 0.0 to 1.0 variant.

Post-Processing in the Fragment Shader—Color Correction
For this example, we assume that you have an input image in a texture. This can be a
pregenerated image, or it can be the result of rendering your scene into a texture attached
to a Frame Buffer Object (FBO). To learn more about FBOs and rendering to textures, refer
to Chapter 8, “Buffer Objects: Storage Is Now in Your Hands.” In this example, we read a
single texel from the texture, apply a transformation to the color stored in it, and output
that from the fragment shader for display to the user. When we sample from the input
texture, we need the texture coordinate to range from (0.0, 0.0) to (1.0, 1.0), so we need to
enable that variant of the pass-through vertex shader.

To apply color correction, we transform each fragment using a matrix. By placing this
matrix in a uniform, the application can update the matrix at runtime to produce differ-
ent effects. The code to set up our fragment shader is given in Listing 11.22.

CHAPTER 11 Advanced Shader Usage442

ptg

LISTING 11.22 Setting Up the Color Correction Fragment Shader

#version 330

precision highp float;

// This is the interface block that is used to pass the texture coordinates

// from the dummy vertex shader.

in Fragment

{

vec2 texcoord;

} fragment;

// This uniform contains the matrix used to do the color correction

uniform mat4 color_matrix;

// The sampler that represents our input image

uniform sampler2D tex_input_image;

// The final color

out vec4 final_color;

Now that we have the inputs to the fragment shader set up, we can go on with the color
correction shader. Each output fragment is generated directly from one texel in the source
image. We can apply a generalized projective transformation in the input color by using a
transformation matrix. The color stored in the input texture is in RGB format. We need to
expand this to a homogeneous vector, just like OpenGL positions, by setting the alpha
channel 1.0. Then we can multiply it by our transformation matrix and divide through
by the w coordinate. The body of our shader is really very simple—only the few lines of
code in Listing 11.23.

LISTING 11.23 The Main Body of the Color Correction Fragment Shader

void main(void)

{

// Read the input color from the texture and convert it to a

// homogeneous vector

vec4 input_color = vec4(texture(tex_input_image,

fragment.tex_coord).rgb, 1.0);

// Transform it using our color conversion matrix

vec4 transformed_color = color_matrix * input_color;

// This allows us to produce a ‘perspective’ transform on

// the final color.

final_color = transformed_color / transformed_color.a;

}

Advanced Fragment Shaders 443
11

ptg

Using this shader, we can take an image and transform it to another color space, modify
the brightness, or adjust the color balance of the image. Figure 11.12 gives a few examples
of matrices that you can use to apply interesting effects to images.

CHAPTER 11 Advanced Shader Usage444

Sepia Tone

0.5

0.4

0.3

0.0

0.4

0.3

0.3

0.0

0.2

0.2

0.2

0.0

0.0

0.0

0.0

1.0

Swap Red and Green

0.0

1.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0

1.0

Grayscale

0.3

0.3

0.3

0.0

0.6

0.6

0.6

0.0

0.1

0.1

0.1

0.0

0.0

0.0

0.0

1.0

FIGURE 11.12 Example color processing matrices.

These are fairly simple matrices, and so it is easy to see how they work. The sepia tone
matrix essentially averages all of the color channels together, applying a slight bias toward
the red channel to give the resulting image the brownish color typical of sepia images. The
grayscale matrix takes a weighted average of the input colors—because each of the rows in
the matrix is the same, each color channel in the output image is equal to each other.
However, the input green channel is weighted slightly higher than the others because the
human eye is slightly more sensitive to green than other colors. The matrix mimics our
visual system. The red-green swap matrix is simply made of ones and zeros. The result is
that the weight of the green channel for the red output is zero, and the weight of the red
input for the green output is zero.

Post-Processing in the Fragment Shader—Convolution
In the color correction example, each output fragment was produced from a single input
texel. In this example, we can expand the input to the shader to multiple input texels.
This allows us to combine the data from multiple texels and implement filtering opera-
tions. We can implement convolution with a separable kernel using two passes over the
image. A separable kernel is one that can be split into horizontal and vertical vector
components that, when their outer product is taken, produce a two-dimensional kernel
matrix. An example of this is a Gaussian filter, which can be used to produce smooth blur-
ring effects.

Again, this example uses a full-screen quad as the input geometry and uses the variant
of the pass-through vertex shader that produces texture coordinates between (0.0, 0.0)
and (1.0, 1.0). To store the filter coefficients, we use a TBO. TBOs were introduced in
Chapter 8. To step through the input image, we supply a uniform, tc_scale, which speci-
fies how far to displace the input texture coordinates for each coefficient. This essentially
allows us to scale our filter kernel relative to the input image. By setting either its x or y
component to zero, we can step through the image vertically or horizontally, respectively.

ptg

We can also step in an arbitrary direction through the input image by setting both x and y
coordinates to nonzero terms. As long as the vectors used in each pass are orthogonal, the
filter will still be separable. The input declarations to the convolution fragment shader are
given in Listing 11.24.

LISTING 11.24 Inputs to the Convolution Fragment Shader

#version 330

precision highp float;

// Input interface block from vertex shader

in Fragment

{

vec2 tex_coord;

} fragment;

// The sampler that represents our input image

uniform sampler2D tex_input_image;

// The TBO that holds our filter coefficients

uniform samplerBuffer tbo_coefficient;

// Uniform to scale integers to texture coordinates

uniform vec2 tc_scale;

// The final output color

out vec4 output_color;

The size of the filter can be determined from the size of the TBO, which can be found by
calling the textureSize function on it. This means that we don’t need to explicitly tell
the shader how big the filter is, and we can even use a non-square filter by using different
sized TBOs on the horizontal and vertical passes. The filter is centered around the output
fragment. If we do not center the filter around the output fragment, each pass will shift
the image horizontally or vertically. To perform the filtering, we loop over the texels in
the input image, weighting each one by a sample from the TBO.

The body of the shader ends up being pretty simple and is shown in Listing 11.25.

LISTING 11.25 Separable Convolution Fragment Shader

int filter_size = textureSize(tbo_coefficient);

vec2 color = vec4(0.0);

vec2 tc_offset;

float coefficient;

Advanced Fragment Shaders 445
11

ptg

for (int i = 0; i < filter_size; i++) {

coefficient = texelFetch(tbo_vertical_coefficient, i).r;

tc_offset = float(i – filter_size / 2) * tc_scale;

color += coefficient * texture(tex_input_image,

fragment.tex_coord + tc_offset);

}

output_color = color;

The host application for this shader is also fairly simple. The whole implementation is
included in the source code available from the book’s Web site. The application performs
two passes over the image. The first uses the input image as a texture and renders to a
texture attached to an FBO. The second pass uses the texture previously written in the
first pass as an input and renders to the framebuffer.

Given the input image of Figure 11.13, the result of convolution with a Gaussian filter is
shown in Figure 11.14.

CHAPTER 11 Advanced Shader Usage446

FIGURE 11.13 Input to the convolution example.

ptgFIGURE 11.14 Result of applying Gaussian blur to an image.

This image has been produced by using the filter kernel in Table 11.3. Note that the kernel
weights all add up to one. If they did not, it would cause the output image to become
brighter or darker than the input image. Also this kernel is symmetric (a property of the
Gaussian kernel). If it were not, then the output image would be shifted horizontally or
vertically relative to the input.

TABLE 11.3 Filter Weights for Gaussian Blur Example

0.015625 0.09375 0.234375 0.3125 0.234375 0.09375 0.015625

Another example of a separable filter is the Sobel edge detector. Figure 11.15 shows what
Figure 11.13 looks like after the Sobel edge detector has been applied to it.

Advanced Fragment Shaders 447
11

ptgFIGURE 11.15 Result of applying a Sobel edge detector to an image.

The weights for the Sobel operator are given in Table 11.4. Note that the Sobel filter is
separated into two different kernels, one for each pass. Also each pass of the Sobel opera-
tor detects edges running either horizontally or vertically, and it detects image gradient,
which means that we need to take the magnitude of the result to visualize the result. The
example application does this.

TABLE 11.4 Separated Filter Weights for Sobel Edge Detection

Pass 1 1.0 2.0 1.0

Pass 2 1.0 0.0 -1.0

Generating Image Data in the Fragment Shader
In the first two examples of using a fragment shader to perform post-processing, we
started with a prerendered image that was either a texture supplied by the application or
the result of rendering with OpenGL into a texture. In this next example, we render a Julia
set, creating image data from nothing but the texture coordinates. Julia sets are related to

CHAPTER 11 Advanced Shader Usage448

ptg

the Mandelbrot set—the iconic bulblike fractal. The Mandelbrot image is generated by iter-
ating the formula

until the magnitude of z exceeds a threshold and calculating the number of iterations. If
the magnitude of z never exceeds the threshold within the allowed number of iterations,
that point is determined to be inside the Mandelbrot set and is colored with some default
color. If the magnitude of z exceeds the threshold within the allowed number of itera-
tions, then the point is outside the set. A common visualization of the Mandelbrot set
colors the point using a function of the iteration count at the time the point was deter-
mined to be outside the set. The primary difference between the Mandelbrot set and the
Julia set is the initial conditions for z and c.

When rendering the Mandelbrot set, z is set to 0+0i, and c set to the coordinate of the
point at which the iterations are to be performed. When rendering the Julia set, z is set to
the coordinate of the point at which iterations are performed, and c is set to an applica-
tion-specified constant. Thus, while there is only one Mandelbrot set, there are infinitely
many Julia sets—one for every possible value of c. Because of this, the Julia set can be
controlled parametrically and even animated. Just as in the previous examples, we invoke
this shader at every fragment by drawing a full-screen quad.

Let’s set up the fragment shader with an input block containing just the texture coordi-
nates. We also need a uniform to hold the value of c. To apply interesting colors to the
resulting Julia image, we use a one-dimensional texture with a color gradient in it. When
we’ve iterated a point that escapes from the set, we color the output fragment by indexing
into this texture using the iteration count. Finally, we also define a uniform containing
the maximum number of iterations we want to perform. This allows the application to
balance performance against the level of detail in the resulting image. Listing 11.26 shows
the setup for our Julia renderer’s fragment shader.

LISTING 11.26 Setting Up the Julia Set Renderer

#version 330

precision highp float;

in Fragment

{

vec2 tex_coord;

} fragment;

// Here’s our value of c

uniform vec2 c;

2
1n nz z c−= +

Advanced Fragment Shaders 449
11

ptg

// This is the color gradient texture

uniform sampler1D tex_gradient;

// This is the maximum iterations we’ll perform before we consider

// the point to be outside the set

uniform int max_iterations;

// The output color for this fragment

out vec4 output_color;

Now that we have the inputs to our shader, we are ready to start rendering the Julia set.
The value of c is taken from the uniform supplied by the application. The initial value of z
is taken from the incoming texture coordinates supplied by the vertex shader. Our itera-
tion loop is shown in Listing 11.27.

LISTING 11.27 Inner Loop of the Julia Renderer

int iterations = 0;

vec2 z = fragment.tex_coords;

const float threshold_squared = 4.0;

while (iterations < max_iterations && dot(z, z) < threshold_squared)

{

vec2 z_squared;

z_squared.x = z.x * z.x - z.y * z.y;

z_squared.y = 2.0 * z.x * z.y;

z = z_squared + c;

iterations++;

}

The loop terminates under one of two conditions—either we reach the maximum number
of iterations allowed (iterations = max_iterations) or the magnitude of z passes our
threshold. Note that in this shader, we compare the squared magnitude of z (found using
the dot function) to the square of the threshold (the threshold_squared uniform). The
two operations are equivalent, but this way avoids a square root in the shader, improving
performance. If, at the end of the loop, iterations is equal to max_iterations, we know
we ran out of iterations and the point is inside the set—we color it black. Otherwise, our
point left the set before we ran out of iterations, and we can color the point accordingly.
To do this, we can just figure out what fraction of the total allowed iterations we used up
and use that to look up into the gradient texture. Listing 11.28 shows what the code looks
like.

CHAPTER 11 Advanced Shader Usage450

ptg

LISTING 11.28 Using a Gradient Texture to Color the Julia Set

if (iterations == max_iterations) {

output_color = vec4(0.0, 0.0, 0.0, 0.0);

} else {

output_color = texture(tex_gradient,

float(iterations) / float(max_iterations));

}

Now all that’s left is to supply the gradient texture and set an appropriate value of c. For
our application, we update c on each frame. By keeping track of the number of frames
we’ve rendered, this allows us to animate the fractal. Figure 11.16 shows a few frames of
the Julia animation produced by the program. (See Color Plate 20 in the color insert for
another example.)

Advanced Fragment Shaders 451
11

FIGURE 11.16 A few frames from the Julia set animation.

Discarding Work in the Fragment Shader
The fragment shader is a powerful tool to help you calculate the color of the pixels that
are rendered. The shapes that you’re rendering are determined by the geometry that’s
rendered. If you want to draw something with a detailed shape, you need to send more
geometry to OpenGL. You can use alpha blending to make geometry that’s partially trans-
parent, but so far, you haven’t been able to control shapes with the fragment shader. If
your fragment shader determines that something is fully transparent, OpenGL still writes
to the depth and stencil buffers, even if it optimizes away writes to the color buffer.

ptg

It is possible for the fragment shader to tell OpenGL to throw away the pixel that’s being
rendered all together. This is accomplished using the discard keyword. If the fragment
shader executes the discard keyword, the results of the shader are thrown away, and no
output buffers are written, including the depth, stencil, or color buffer attachments. The
example in Listing 11.29 shows how to implement alpha testing in the fragment shader,
which allows it to cut holes in the output geometry.

LISTING 11.29 Simple Alpha-Testing Fragment Shader

#version 330

precision highp float;

uniform sampler2D my_texture;

in Fragment

{

vec2 texture_coord;

} fragment;

out vec4 color_out;

void main(void)

{

vec4 color = texture(my_texture, fragment.texture_coord);

if (color.a < 0.1)

discard;

color_out = color;

}

In this example, if the alpha value stored in a texture is less than a certain threshold (0.1
in this case), the discard keyword is executed, and the result of the fragment shader is not
written to any of the attached buffers. If the alpha value is greater or equal to the thresh-
old, the shader continues as normal, and the resulting color is written. Don’t forget, alpha
blending is performed by an additional stage after the fragment shader. All the shader has
to do is write the color (including its alpha component) to an output variable, and the
fixed-function blending stage takes care of the calculations required to mix it into the
framebuffer.

The fragment shader can execute the discard keyword for any reason it chooses. In addi-
tion to basing this on a property of a texture, it could generate the condition analytically
from some input varyings. If you use a texture as the determining factor, the level of detail
in the resulting image is dependent on the resolution of the texture. If the decision is
made analytically, the detail in the resulting image is dependent only on the precision of
the fragment shader. For example, we could modify our Julia set renderer here to execute

CHAPTER 11 Advanced Shader Usage452

ptg

the discard keyword if the fragment is determined to be inside the set, as shown by the
code fragment in Listing 11.30.

LISTING 11.30 Modifying the Julia Renderer with the discard Keyword

if (iterations == max_iterations)

discard;

output_color = texture(tex_gradient,

float(iterations) / float(max_iterations));

Now, when we render the fractal, it will have a hole in it where the pixels are inside the
set and only be colored when the pixels have left the set. As we zoom in to the Julia set
(or increase the resolution of the display), the edge of the hole becomes more and more
detailed—a classic property of fractals. We can draw the Julia set over top of some previ-
ously rendered geometry, and that will be seen through the hole.

Controlling Depth Per Fragment
In addition to the output variables you define for your fragment shader, the special built-
in variable gl_FragDepth is available for writing an updated depth value to. If the frag-
ment shader doesn’t write to this variable, the interpolated depth generated by OpenGL is
used as the fragment’s depth value. Your fragment shader can either calculate an entirely
new value for gl_FragDepth, or it can use the value gl_FragCoord.z to control the depth
value. This new value is subsequently used by OpenGL both for the depth test and as the
value written to the depth buffer.

You can use this functionality to slightly perturb the values in the depth buffer and create
physically bumpy surfaces. When additional geometry is rendered and subsequently depth
tested, it will be tested against these perturbed values. Some care should be taken when
using this feature, though. If the fragment shader does not write to the gl_FragDepth vari-
able, OpenGL knows, before the fragment shader runs, what the final value of depth will be.
Therefore, one very common optimization that most modern graphics hardware makes is
to perform the depth test before running the fragment shader. If the fragment fails the
depth test, OpenGL will not run the fragment shader at all. However, if the shader does
write to gl_FragDepth, OpenGL cannot know whether the fragment will pass the depth
test or not until after the fragment shader has run. Therefore, it must always run the frag-
ment shader and perform the depth test after the shader runs. This can drastically reduce
performance. For best performance, only write gl_FragDepth in your fragment shader if
it is absolutely necessary for the correct functioning of the algorithm you’re trying to
implement.

Advanced Fragment Shaders 453
11

ptg

More Advanced Shader Functions
You’ve now learned about a number of interesting things that can be done with shaders in
OpenGL. There are some further advanced features that require cooperation between
shader stages or don’t fit into any specific shader stage. We cover a number of those here.

Interpolation and Storage Qualifiers
You already read about storage qualifiers in earlier chapters. You saw how to use the flat
storage qualifier to turn off interpolation and ask OpenGL to perform flat shading across
your primitive. There are a couple more storage qualifiers that control interpolation that
you can use for advanced rendering. They are the centroid and noperspective qualifiers,
and we quickly go over each here.

Centroid Sampling
The centroid storage qualifier controls where in a pixel OpenGL interpolates the inputs to
the fragment shader to. It only applies to situations where you’re rendering to a multisam-
pled surface, which has been introduced earlier. You specify the centroid storage qualifier
just like any other storage qualifier. To create a varying that has the centroid storage qual-
ifier, first, in the vertex (or geometry) shader, declare the output varying with the
centroid keyword:

centroid out vec2 tex_coord;

And then in the fragment shader, declare the same input varying with the centroid
keyword:

centroid in vec2 tex_coord;

Now the tex_coord varying is defined to use the centroid storage qualifier. If you have a
single-sampled draw buffer, this makes no difference, and the varyings that reach the frag-
ment shader are interpolated to the pixel’s center. Where centroid sampling becomes
useful is when you are rendering to a multisampled draw buffer. According to the OpenGL
specification, when centroid sampling is not specified (the default), fragment shader vary-
ings will be interpolated to “the pixel’s center, or anywhere within the pixel, or to one of the
pixel’s samples”—which basically means anywhere within the pixel. When you’re in the
middle of a large triangle, this doesn’t really matter. Where it becomes important is when
you’re shading a pixel that lies right on the edge of the triangle—where an edge of the
triangle cuts through the pixel. Figure 11.17 shows an example of how OpenGL might
sample from a triangle.

CHAPTER 11 Advanced Shader Usage454

ptg

11.17 (a) 11.17 (b)

FIGURE 11.17 Partially covered multisampled pixels.

Take a look at Figure 11.17 (a). It shows the edge of a triangle passing through several
pixels. The solid dots represent samples that are covered by the triangle, and the clear dots
represent those that are not. OpenGL has chosen to interpolate the varyings to the sample
closest to the pixel’s center. Those samples are indicated by an arrow.

For the pixels in the upper left, this is fine—they are entirely uncovered and the fragment
shader will not run for those pixels. Likewise, the pixels in the lower right are fully
covered. The fragment shader will run, but it doesn’t really matter which sample it runs
for. The pixels along the edge of the triangle, however, present a problem. Because
OpenGL has chosen the sample closest to the pixel center as its interpolation point, your
varyings could actually be interpolated to a point that lies outside the triangle! Those
samples are marked with an X. Imagine what would happen if you used the varying, say,
to sample from a texture. If the texture was aligned such that its edge was supposed to
match the edge of the triangle, the texture coordinates would lie outside the texture. At
best, you would get a slightly incorrect image. At worst, it would produce noticeable arti-
facts.

If we declare our varyings with the centroid storage qualifier, the OpenGL specification
says that, “the value must be interpolated to a point that lies in both the pixel and in the primi-
tive being rendered, or to one of the pixel’s samples that falls within the primitive.” That means
that OpenGL chooses, for each pixel, a sample that is certainly within the triangle to
which to interpolate all varyings. You are safe to use the varyings in the fragment shader
for any purpose, and you know that they are valid and do not refer to a point outside the
triangle.

More Advanced Shader Functions 455
11

ptg

Now look at Figure 11.17 (b). OpenGL has still chosen to interpolate varyings to the
samples closest to the pixel centers for fully covered pixels. However, for those pixels that
are partially covered, it has instead chosen another sample that lies within the triangle
(marked with larger arrows). This means that the inputs presented to the fragment shader
are valid and refer to points that are inside the triangle. You can use them for sampling
from a texture or use them in a function whose result is only defined within a certain
range and know that you will get meaningful results.

You may be wondering if using the centroid storage qualifier guarantees that you’re going
to get valid results in your fragment shader and not using it may mean that the varyings
are outside the primitive why not turn on centroid sampling all the time? Well, there are
some drawbacks to using centroid sampling. The most significant is that OpenGL can
provide the gradients (or differentials) of inputs to the fragment shader. Implementations
may differ, but most use discrete differentials, taking deltas between the same varyings
from adjacent pixels. This works well when the varyings are interpolated to the same posi-
tion within each pixel. In this case, it doesn’t matter which sample position is chosen; the
samples will always be exactly one pixel apart. However, when centroid sampling is
enabled for an input, the values for adjacent pixels may actually be interpolated to differ-
ent positions within those pixels. That means that the samples are not exactly one pixel
apart, and the discrete differentials presented to the fragment shader could be inaccurate.
If accurate gradients are required in the fragment shader, it is probably best not to use
centroid sampling.

Using Centroid Sampling to Perform Edge Detection
An interesting use case for centroid sampling is hardware accelerated edge detection. You
just learned that using the centroid storage qualifier ensures that your varyings are inter-
polated to a point that definitely lies within the primitive being rendered. To do this,
OpenGL chooses a sample that it knows lies inside the triangle at which to evaluate those
varyings, and that sample may be different from the one that it would have chosen if the
pixel was fully covered or the one that it would choose if the centroid storage qualifier
was not used. You can use this knowledge to your advantage.

To extract edge information from this, declare two varyings, one with and one without the
centroid storage qualifier, and assign the same value to each of them in the vertex shader.
It doesn’t matter what the values are, so long as they are different for each vertex. The x
and y components of the transformed vertex position are probably a good choice because
you know that it will be different for each vertex of any triangle that is actually visible.

out vec2 maybe_outside;

gives us our noncentroid varying that may be interpolated to a point outside the triangle,
and

centroid out vec2 certainly_inside;

gives us our centroid sampled varying that we know is inside the triangle.

CHAPTER 11 Advanced Shader Usage456

ptg

Inside the fragment shader, we can compare the values of the two varyings. If the pixel is
entirely covered by the triangle, OpenGL uses the same value for both varyings. However,
if the pixel is only partially covered by the triangle, OpenGL uses its normal choice of
sample for maybe_outside and picks a sample that is certain to be inside the triangle for
certainly_inside. This could be a different sample than was chosen for maybe_outside,
and that means that the two varyings may have different values. Now you can compare
them to determine that you are on the edge of a primitive:

bool may_be_on_edge = any(maybe_outside != certainly_inside);

This method is not foolproof. Even if a pixel is on the edge of a triangle, it is possible that
it covers OpenGL’s original sample of choice, and therefore you still get the same values
for maybe_outside and certainly_inside. However, this marks most edge pixels.

To use this information, you can write the value to a texture attached to the framebuffer
and subsequently use that texture for further processing later. Another option is to draw
only to the stencil buffer. Set your stencil reference to one, disable stencil testing, and set
your stencil operation to GL_REPLACE. When you encounter an edge, let the fragment
shader continue running. When you encounter a pixel that’s not on an edge, use the
discard keyword in your shader to prevent the pixel from being written to the stencil
buffer. The result is that your stencil buffer contains ones wherever there was an edge in
the scene and a zero wherever there was no edge. Later, you can render a full-screen quad
with an expensive fragment shader that only runs for pixels that represent the edges of
geometry by enabling the stencil test, setting the stencil function to GL_EQUAL, and leaving
the reference value at one. The shader can implement one of the image processing opera-
tions described earlier. For example, applying Gaussian blur using a convolution operation
(as demonstrated earlier in this chapter) can smooth the edges of polygons in the scene,
allowing the application to perform its own antialiasing.

Interpolating without Perspective Correction
As you have learned, OpenGL interpolates the values of varyings across the face of primi-
tives, such as triangles, and presents a new value to each invocation of the fragment
shader. By default, the interpolation is linear in the space of the triangle. That means that
if you were to look at the triangle flat on, the steps that the varyings take across its surface
would be equal. However, OpenGL performs interpolation in screen space as it steps from
pixel to pixel. Very rarely is a triangle seen directly face on, and so perspective foreshort-
ening means that the step in each varying from pixel to pixel is not constant—that is,
they are not linear in screen space. OpenGL corrects for this by using perspective-correct
interpolation. To do this, it interpolates values that are linear in screen space and uses
those to derive the actual values of the varyings at each pixel.

Consider a texture coordinate, uv, that is to be interpolated across a triangle. Neither u nor
v is linear in screen space. However (due to some math that is beyond the scope of this

More Advanced Shader Functions 457
11

ptg

section), u / w and v / w are linear in screen space, as is 1 / w (the fourth component of
the fragment’s coordinate). So, what OpenGL actually interpolates is

At each pixel, it reciprocates 1 / w to find w and then multiplies u / w and v / w by w to
find u and v. This provides perspective-correct values of the interpolants to each instance
of the fragment shader.

Normally, this is what you want. However, there may be times when you don’t want this.
If you actually want interpolation to be carried out in screen space regardless of the orien-
tation of the primitive, you can use the noperspective storage qualifier, like this:

noperspective out vec2 texcoord;

in the vertex shader, and

noperspective in vec2 texcoord;

in the fragment shader, for example. The results of using perspective correct and screen-
space linear (noperspective) rendering are shown in Figure 11.18 (a) and (b), respectively.

u
w , vw , and 1

w

CHAPTER 11 Advanced Shader Usage458

FIGURE 11.18 Contrasting perspective-correct and linear interpolation.

Figure 11.18 (a) shows perspective-correct interpolation applied to a pair of triangles as its
angle to the viewer changes. Meanwhile, Figure 11.18 (b) shows how the noperspective
storage qualifier has affected the interpolation of texture coordinates. As the pair of trian-
gles moves to a more and more oblique angle relative to the viewer, the texture becomes
more and more skewed.

Other Advanced Built-In Functions
The GL Shading Language (GLSL) is closely modeled on the C language. Language
constructs such as for, while, and do loops are virtually identical in definition to C, as are

11.18 (a)

11.18 (b)

ptg

conditional constructs such as if-else statements, switch statements, and the ? operator.
Many of the standard math functions that are in the C standard library are also available
in GLSL, including trigonometric functions such as sin, cos, and tan; other math func-
tions such as abs, floor, and ceil; exponentials such as pow, exp, and log; and built-in
operators such as +, -, and ==. If you have experience with C or other C-like languages,
many of these functions will be familiar to you. However, as GLSL is designed to operate
on graphics primitives, there are several built-in functions that operate on vector and
matrix types that often have optimal implementations in hardware. For the most part,
these functions are available to any shader stage.

In addition to the standard math functions, GLSL provides utility functions such as clamp
(which clamps a value to a range between two further values), mix (which performs linear
interpolation), and step and smoothstep (which create transitions between two values
based on their input). Also, bit-casting between floating-point and integer values can be
performed using the intBitsToFloat and floatBitsToInt functions and their unsigned
variants.

GLSL vector functions include dot and cross, which, as their names suggest, perform a
dot product and a cross product, respectively. Additionally, the outerProduct function is
available to retrieve the outer product of two vectors. The distance and length functions
produce the distance between two points, and the length, or magnitude, of a vector,
respectively. A vector can be normalized using the normalize function. Pushing complex-
ity further, the reflect and refract functions provide built-in, potentially optimized
implementations of reflection and reflection equations commonly used in lighting and
path tracing algorithms.

The more advanced matrix-related functions include transpose, determinant, and
inverse, which operate as their names suggest. Furthermore, the function matrixCompMult
performs a componentwise multiplication between two matrices. This function is neces-
sary because the behavior of the default multiplication operator (*) when applied to matri-
ces is to perform a matrix-matrix multiply.

Because the relational operators (for example, >, !=, and <=) are defined to produce a
single, scalar Boolean result, vector versions of these comparison operators are provided as
built-in functions that return Boolean vectors. These include lessThan, notEqual, and
lessThanEqual, for example. To perform set operations on the resulting Boolean vectors,
the functions any (which returns true if any element of its argument is true) and all
(which returns true if all of the elements of its argument are true) are provided.
Boolean vectors are not accepted as the expression of an if statement, so you need to use
either any or all to convert the vector to a scalar before you can use it in a conditional
statement.

More Advanced Shader Functions 459
11

ptg

Uniform Buffer Objects
By now, the shaders you’re writing have become complex. Some of them require a lot of
constant data, and the way you’ve passed this to the shader is to use uniforms. If you have
a lot of shaders in an application, you need to set up the uniforms for every one of those
shaders, which means a lot of calls to the various glUniform functions. You also need to
keep track of which uniforms change. Some change for every object, some change once
per frame, while others may only require initializing once for the whole application. This
means that you either need to update different sets of uniforms in different places in your
application, making it more complex to maintain, or update all the uniforms all the time,
costing performance.

To alleviate the cost of all the glUniform calls, to make updating a large set of uniforms
simpler, and to be able to easily share a set of uniforms between different programs,
OpenGL allows you to combine a group of uniforms into a uniform block and store the
whole block in a buffer object. The buffer object is just like any other that you may have
used before. You can quickly set the whole group of uniforms by either changing your
buffer binding or overwriting the content of a bound buffer. You can also leave the buffer
bound while you change programs, and the new program will see the current set of
uniform values. This functionality is called the uniform buffer object, or UBO. In fact, the
uniforms you’ve used up until now live in the default block. Any uniform declared at the
global scope in a shader ends up in the default uniform block. You can’t keep the default
block in a uniform buffer object; you need to create one or more named uniform blocks.

To declare a set of uniforms to be stored in a buffer object, you need to use a named
uniform block in your shader. This looks a lot like an interface block, but it uses the
uniform keyword instead. Listing 11.31 shows what the code looks like in a shader.

LISTING 11.31 Example Uniform Block Declaration

uniform TransformBlock

{

float scale; // Global scale to apply to everything

vec3 translation; // Translation in X, Y and Z

float rotation[3]; // Rotation around X, Y and Z axes

mat4 projection_matrix; // A generalized projection matrix to apply

// after scale and rotate

} transform;

This code declares a uniform block whose name is TransformBlock. It also declares a single
instance of the block called transform. Inside the shader, you can refer to the members of
the block using its instance name, transform. However, to set up the data in the buffer
object that you’ll use to back the block, you need to know the location of a member of the
block, and for that, you need the block name, TransformBlock. If you wanted to have
multiple instances of block, each with its own buffer, you could make transform an array.

CHAPTER 11 Advanced Shader Usage460

ptg

The members of the block will have the same locations within each block, but there will
now be several instances of the block that you can refer to in the shader. Querying the
location of members within a block is important when you want to fill the block with
data, which is explained in the following section.

Building Uniform Blocks
Data accessed in the shader via named uniform blocks can be stored in buffer objects. In
general, it is the application’s job to fill the buffer objects with data using functions like
glBufferData or glMapBuffer. The question is, then, what is the data in the buffer
supposed to look like? There are actually two possibilities here, and whichever one you
choose is a trade-off. The first is to let OpenGL decide where it would like the data. This
produces the most efficient shaders, but it means that your application needs to figure out
where to put the data so that OpenGL can read it. This can be pretty inconvenient, so the
second method is to use a standard, agreed upon layout for the data. This means that your
application can just copy data into the buffers and assume specific locations for members
within the block—you can even store the data on disk ahead of time and simply read it
straight into a buffer that’s been mapped using glMapBuffer. While this layout is standard
across all graphics hardware and drivers, it is unlikely to be optimal for any of them. This
is because some empty space is left between the various members of the block, making the
buffer larger than it needs to be. You probably trade some performance for this conve-
nience. We cover both methods here and leave it to you to decide what’s best for your
application.

The first layout for data stored in uniform buffers is the shared layout. This is the default
layout and is what you get if you don’t explicitly ask OpenGL for something else. With
the shared layout, the data in the buffer is laid out however OpenGL decides is best for
runtime performance and access from the shader. This often allows greater performance to
be achieved by the shaders, but requires more work from the application. The reason this
is called the shared layout is that while OpenGL has arranged the data within the buffer,
that arrangement will be the same between multiple programs and shaders sharing the
same declaration of the uniform block. For example, the shader compiler still reserves
space for members of the uniform block, even if they are not used by the shader. This
allows you to use the same buffer object with any program. To use the shared layout, the
application must determine the locations within the buffer object of the members of the
uniform block.

Each member of a uniform block has an index that is used to refer to it to find its size and
location within the block. To get the index of a member of a uniform block, call

void glGetUniformIndices(GLuint program, GLsizei uniformCount, const GLchar **

uniformNames, GLuint * uniformIndices);

This seems fairly complex, but it’s really not. This function allows you to get the indices of
a large set of uniforms—perhaps even all of the uniforms in a program with a single call to

Uniform Buffer Objects 461
11

ptg

OpenGL, even if they’re members of different blocks. It takes a count of the number of
uniforms you’d like the indices for (uniformCount) and an array of uniform names
(uniformNames) and puts their indices in an array for you (uniformIndices). Listing 11.32
contains an example of how you would retrieve the indices of the members of
TransformBlock, which we declared earlier.

LISTING 11.32 Retrieving the Indices of Uniform Block Members

const GLchar * uniformNames[4] =

{

“TransformBlock.scale”,

“TransformBlock.translation”,

“TransformBlock.rotation”,

“TransformBlock.projection_matrix”

};

GLuint uniformIndices[4];

glGetUniformIndices(program, 4, uniformNames, uniformIndices);

After this code has run, you have the indices of the three members of the uniform block
in the uniformIndices array. Now that you have the indices, you can use them to find the
locations of the block members within the buffer. To do this, call

void glGetActiveUniformsiv(GLuint program, GLsizei uniformCount, const GLuint *

uniformIndices, GLenum pname, GLint * params);

This function can give you a lot of information about specific uniform block members.
The information that we’re interested in is the offset of the member within the buffer, the
array stride (for TransformBlock.rotation), and the matrix stride (for
TransformBlock.projection_matrix). These values tell us where to put data within the
buffer so that it can be seen in the shader. We can retrieve these from OpenGL by setting
pname to GL_UNIFORM_OFFSET, GL_UNIFORM_ARRAY_STRIDE, and GL_UNIFORM_MATRIX_STRIDE,
respectively. Listing 11.33 shows what the code looks like.

LISTING 11.33 Retrieving the Information about Uniform Block Members

GLint uniformOffsets[4];

GLint arrayStrides[4];

GLint matrixStrides[4];

glGetActiveUniformsiv(program, 4, uniformIndices,

GL_UNIFORM_OFFSET, uniformOffsets);

glGetActiveUniformsiv(program, 4, uniformIndices,

GL_UNIFORM_ARRAY_STRIDE, arrayStrides);

glGetActiveUniformsiv(program, 4, uniformIndices,

GL_UNIFORM_MATRIX_STRIDE, matrixStrides);

CHAPTER 11 Advanced Shader Usage462

ptg

Once the code in Listing 11.33 has run, uniformOffsets contains the offsets of the
members of the TransformBlock block, arrayStrides contains the strides of the array
members (only rotation, for now), and matrixStrides contains the strides of the matrix
members (only projection_matrix).

The other information that you can find out about uniform block members includes the
data type of the uniform, the size in bytes that it consumes in memory, and layout infor-
mation related to arrays and matrices within the block. You need some of that informa-
tion to initialize a buffer object with more complex types, although the size and types of
the members should be known to you already if you wrote the shaders. The other
accepted values for pname and what you get back are listed in Table 11.5.

TABLE 11.5 Uniform Parameter Queries via glGetActiveUniformsiv

Value of pname What You Get Back

GL_UNIFORM_TYPE The data type of the uniform as a GLenum.

GL_UNIFORM_SIZE The size of arrays, in units of whatever GL_UNIFORM_TYPE gives

you. If the uniform is not an array, this will always be one.

GL_UNIFORM_NAME_LENGTH The length, in characters of the names of the uniforms.

GL_UNIFORM_BLOCK_INDEX The index of the block that the uniform is a member of.

GL_UNIFORM_OFFSET The offset of the uniform within the block (or more accurately, the

buffer that backs the block).

GL_UNIFORM_ARRAY_STRIDE The number of bytes between consecutive elements of an array. If

the uniform is not an array, this will be zero.

GL_UNIFORM_MATRIX_STRIDE The number of bytes between the first element of each column of

a column-major matrix or row of a row-major matrix. If the

uniform is not a matrix, this will be zero.

GL_UNIFORM_IS_ROW_MAJOR Each element of the output array will either be one if the uniform

is a row major matrix, or zero if it is a column major matrix or not

a matrix at all.

If the type of the uniform you’re interested in is a simple type such as int, float, bool, or
even vectors of these types (vec4 and so on), all you need is its offset. Once you know the
location of the uniform within the buffer, you can either pass the offset to
glBufferSubData to load the data at the appropriate location, or you can use the offset
directly in your code to assemble the buffer in memory. We demonstrate the latter option
here because it reinforces the idea that the uniforms are stored in memory, just like
textures or vertex information. It also means fewer calls to OpenGL, which can sometimes
lead to higher performance. For these examples, we assemble the data in the application’s
memory and then load it into a buffer using glBufferData. You could alternatively use
glMapBuffer to get a pointer to the buffer’s memory and assemble the data directly into that.

Let’s start by setting the simplest uniform in the TransformBlock block, scale. This
uniform is a single float whose location is stored in the first element of our
uniformIndices array. Listing 11.34 shows how to set the value of the single float.

Uniform Buffer Objects 463
11

ptg

LISTING 11.34 Setting a Single float in a Uniform Block

// Allocate some memory for our buffer (don’t forget to free it later)

unsigned char * buffer = (unsigned char *)malloc(4096);

// We know that TransformBlock.scale is at uniformOffsets[0] bytes into the

// block, so we can offset our buffer pointer by that store the scale there.

*((float *)(buffer + uniformOffsets[0])) = 3.0f;

Next, we can initialize data for TransformBlock.translation. This is a vec3, which means
it consists of three floating-point values packed tightly together in memory. To update
this, all we need to do is find the location of the first element of the vector and store three
consecutive floats in memory starting there. This is shown in Listing 11.35.

LISTING 11.35 Retrieving the Indices of Uniform Block Members

// Put three consecutive GLfloat values in memory to update a vec3

*((float *)(buffer + uniformOffsets[1])) = 1.0f;

*((float *)(buffer + uniformOffsets[1] + sizeof(GLfloat))) = 2.0f;

*((float *)(buffer + uniformOffsets[1] + 2 * sizeof(GLfloat))) = 3.0f;

Now, we tackle the array rotation. We could have also used a vec3 here, but for the
purposes of this example, we use a three-element array to demonstrate the use of the
GL_UNIFORM_ARRAY_STRIDE parameter. When the shared layout is used, arrays are defined
as a sequence of elements separated by an implementation-defined stride in bytes. This
means that we have to place the data at locations in the buffer defined both by
GL_UNIFORM_OFFSET and GL_UNIFORM_ARRAY_STRIDE, as in the code snippet of Listing 11.36.

LISTING 11.36 Specifying the Data for an Array in a Uniform Block

// TransformBlock.rotations[0] is at uniformOffsets[1] bytes into the buffer.

// Each element of the array is at a multiple of arrayStrides[1] bytes

// past that

const GLfloat rotations[] = { 30.0f, 40.0f, 60.0f };

unsigned int offset = uniformOffsets[2];

for (int n = 0; n < 3; n++) {

*((float *)(buffer + offset)) = rotations[n];

offset += arrayStrides[2];

}

Finally, we set up the data for TransformBlock.projection_matrix. Matrices in uniform
blocks behave much like arrays of vectors. For column major matrices (which is the
default), each column of the matrix is treated like a vector, the length of which is the

CHAPTER 11 Advanced Shader Usage464

ptg

height of the matrix. Likewise, row major matrices are treated like an array of vectors
where each row is an element in that array. Just like normal arrays, the starting offset for
each column (or row) in the matrix is determined by an implementation defined quantity.
This can be queried through the GL_UNIFORM_MATRIX_STRIDE parameter to
glGetActiveUniformsiv. Each column of the matrix can be initialized using similar code
to that which was used to initialize the vec3 TransformBlock.translation. This setup
code is given in Listing 11.37.

LISTING 11.37 Setting Up a Matrix in a Uniform Block

// The first column of TransformBlock.projection_matrix is at

// uniformOffsets[2] bytes into the buffer. The columns are

// spaced matrixStride[2] bytes apart and are essentially vec4s

// This is the source matrix – remember, it’s column major so

const GLfloat matrix[] =

{

1.0f, 2.0f, 3.0f, 4.0f,

9.0f, 8.0f, 7.0f, 6.0f,

2.0f, 4.0f, 6.0f, 8.0f,

1.0f, 3.0f, 5.0f, 7.0f

};

for (int i = 0; i < 4; i++)

{

GLuint offset = uniformOffsets[2] + matrixStride[2] * i;

for (j = 0; j < 4; j++) {

*((float *)(buffer + offset)) = matrix[i * 4 + j];

offset += sizeof(GLfloat);

}

}

This method of querying offsets and strides works for any of the layouts. With the shared
layout, it is the only option. However, it’s somewhat inconvenient, and as you can see,
you need quite a lot of code to lay out your data in the buffer in the correct way. As an
alternative, you can use the standard layout. This allows you to determine where in the
buffer data should be placed based on a set of rules that specify the size and alignments
for the various data types supported by OpenGL. These rules are common across all
OpenGL implementations, and so you don’t need to query anything to use it (although,
should you query offsets and strides, the results will be correct).

To tell OpenGL that you want to use the standard layout, you need to declare the uniform
block with a layout qualifier. A redeclaration of our TransformBlock with the standard
layout qualifier, std140, is shown in Listing 11.38.

Uniform Buffer Objects 465
11

ptg

LISTING 11.38 Retrieving the Indices of Uniform Block Members

layout(std140) uniform TransformBlock

{

float scale; // Global scale to apply to everything

vec3 translation; // Translation in X, Y and Z

float rotation[3]; // Rotation around X, Y and Z axes

mat4 projection_matrix; // A generalized projection matrix to

// apply after scale and rotate

} transform;

Once a uniform block has been declared to use the standard, or std140, layout, each
member of the block consumes a predefined amount of space in the buffer and begins at
an offset that is predictable by following a set of rules. A summary of the rules is as
follows:

Any type consuming N bytes in a buffer begins on an N byte boundary within that buffer.
That means that standard GLSL types such as int, float, and bool (which are all defined
to be 32-bit or four-byte quantities) begin on multiples of four bytes. A vector of these
types of length two always begins on a 2N byte boundary. For example, that means a vec2,
which is eight bytes long in memory, always starts on an eight-byte boundary. Three- and
four-element vectors always start on a 4N byte boundary; so vec3 and vec4 types start on
16-byte boundaries. Each member of an array of scalar or vector types (ints or vec3s, for
example) always start boundaries defined by these same rules, but rounded up to the
alignment of a vec4. In particular, this means that arrays of anything but vec4 (and Nx4
matrices) won’t be tightly packed, but instead there will be a gap between each of the
elements. Matrices are essentially treated like short arrays of vectors, and arrays of matrices
are treated like very long arrays of vectors. Finally, structures and arrays of structures have
additional packing requirements; the whole structure starts on the boundary required by
its largest member, rounded up to the size of a vec4.

Particular attention must be paid to the difference between the std140 layout and the
packing rules that are often followed by your compiler of choice. In particular, an array in
a uniform block is not necessarily tightly packed. This means that you can’t create, for
example, an array of floats in a uniform block and simply copy data from a C array of
floats into it because the data from the C array will be packed, and the data in the
uniform block won’t be.

This all sounds complex, but it is logical and well-defined, and allows a large range of
graphics hardware to implement uniform buffer objects efficiently. Returning to our
TransformBlock example, we can figure out the offsets of the members of the block within
the buffer using these rules. Listing 11.39 shows an example of a uniform block declara-
tion along with the offsets of its members.

CHAPTER 11 Advanced Shader Usage466

ptg

LISTING 11.39 Example Uniform Block with Offsets

layout(std140) uniform TransformBlock

{

// Member base alignment offset aligned offset

float scale; // 4 0 0

vec3 translation; // 16 4 16

float rotation[3]; // 16 28 32 (rotation[0])

// 48 (rotation[1])

// 64 (rotation[2])

mat4 projection_matrix; // 16 80 80 (column 0)

// 96 (column 1)

// 112 (column 2)

// 128 (column 3)

} transform;

There is a complete example of the alignments of various types in the original
ARB_uniform_buffer_object extension specification.

Now that you have filled your buffer, you can bind it to a uniform block in your program.
Before you can do this, you need to retrieve the index of the uniform block. Each uniform
block in a program has a compiler-assigned index. There is fixed maximum number of
uniform blocks that can be used by a single program, and a maximum number that can
be used in any given shader stage. You can find these limits by calling glGetIntegerv
with the GL_MAX_UNIFORM_BUFFERS parameter (for the total per program) and either
GL_MAX_VERTEX_UNIFORM_BUFFERS, GL_MAX_GEOMETRY_UNIFORM_BUFFERS, or GL_MAX_
FRAGMENT_UNIFORM_BUFFERS for the vertex, geometry, and fragment shader limits, respec-
tively. To find the index of a uniform block in a program, call

GLuint glGetUniformBlockIndex(GLuint program, const GLchar * uniformBlockName);

This returns the index of the named uniform block. In our example uniform block decla-
ration here, uniformBlockName would be “TransformBlock”. There is a set of buffer
binding points to which you can bind a buffer to provide data for the uniform blocks. It is
essentially a two-step process to bind a buffer to a uniform block. Uniform blocks are
assigned binding points, and then buffers can be bound to those binding points, matching
buffers with uniform blocks. This way, different programs can be switched in and out
without changing buffer bindings, and the fixed set of uniforms will automatically be seen
by the new program. Contrast this to the values of the uniforms in the default block,
which are per-program state. Even if two programs contain uniforms with the same
names, their values must be set for each program and will change when the active
program is changed.

Uniform Buffer Objects 467
11

ptg

To assign a binding point to a uniform buffer, call

void glUniformBlockBinding(GLuint program, GLuint uniformBlockIndex, GLuint

uniformBlockBinding);

where program is the program where the uniform block you’re changing lives.
uniformBlockIndex is the index of the uniform block you’re assigning a binding point to.
You just retrieved that by calling glGetUniformBlockIndex. uniformBlockBinding is the
index of the uniform block binding point. An implementation of OpenGL supports a fixed
maximum number of binding points, and you can find out what that limit is by calling
glGetIntegerv with the GL_MAX_UNIFORM_BUFFER_BINDINGS parameter.

Once you’ve assigned binding points to the uniform blocks in your program, you can bind
buffers to those same binding points to make the data in the buffers appear in the
uniform blocks. To do this, call

glBindBufferBase(GL_UNIFORM_BUFFER, index, buffer);

Here, GL_UNIFORM_BUFFER tells OpenGL that we’re binding a buffer to one of the uniform
buffer binding points, index is the index of the binding point and should match what you
specified in uniformBlockBinding in your call to glUniformBlockBinding. buffer is the
buffer object that you want to attach. It’s important to note that index is not the index of
the uniform block (uniformBlockIndex in glUniformBlockBinding), but the index of the
uniform buffer binding point. This is a common mistake to make and is easy to miss.

This mixing and matching of binding points with uniform block indices is illustrated in
Figure 11.19.

CHAPTER 11 Advanced Shader Usage468

FIGURE 11.19 Binding buffers and uniform blocks to binding points.

In Figure 11.19, there is a program with three uniform blocks (Harry, Bob, and Susan) and
three buffer objects (A, B, and C). Harry is assigned to binding point 1, and buffer C is
bound to binding point 1, so Harry’s data comes from buffer C. Likewise, Bob is assigned

ptg

to binding point 3, to which buffer A is bound, and so Bob’s data comes from buffer A.
Finally, Susan is assigned to binding point 0 and buffer B is bound to binding point 0, so
Susan’s data comes from buffer B. Notice that binding point 2 is not used. That doesn’t
matter. There could be a buffer bound there, but the program doesn’t use it.

The code to set this up is simple and is given in Listing 11.40.

LISTING 11.40 Specifying Bindings for Uniform Blocks

// Get the indices of the uniform blocks using glGetUniformBlockIndex

GLuint harry_index = glGetUniformBlockIndex(program, “Harry”);

GLuint bob_index = glGetUniformBlockIndex(program, “Bob”);

GLuint susan_index = glGetUniformBlockIndex(program, “Susan”);

// Assign buffer bindings to uniform blocks, using their indices

glUniformBlockBinding(program, harry_index, 1);

glUniformBlockBinding(program, bob_index, 3);

glUniformBlockBinding(program, susan_index, 0);

// Bind buffers to the binding points

// Binding 0, buffer B, Susan’s data

glBindBufferBase(GL_UNIFORM_BUFFER, 0, buffer_b);

// Binding 1, buffer C, Harry’s data

glBindBufferBase(GL_UNIFORM_BUFFER, 1, buffer_c);

// Note that we skipped binding 2

// Binding 3, buffer A, Bob’s data

glBindBufferBase(GL_UNIFORM_BUFFER, 3, buffer_a);

A common use for uniform blocks is to separate steady state from transient state. By
setting up the bindings for all your programs using a standard convention, you can leave
buffers bound when you change the program. For example, if you have some relatively
fixed state—say the projection matrix, the size of the viewport, and a few other things that
change once a frame or less often—you can leave that information in a buffer bound to
binding point zero. Then, if you set the binding for the fixed state to zero for all programs,
whenever you switch program objects using glUseProgram, the uniforms will be sitting
there in the buffer, ready to use.

Now let’s say that you have a fragment shader that simulates some material (cloth or
metal, for example); you could put the parameters for the material into another buffer. In
your program that shades that material, bind the uniform block containing the material
parameters to binding point 1. Each object would maintain a buffer object containing the
parameters of its surface. As you render each object, it uses the common material shader
and simply binds its parameter buffer to buffer binding point 1.

Uniform Buffer Objects 469
11

ptg

Summary
In this chapter you learned some more advanced shader techniques to use in your
OpenGL programs. Many of the topics covered here allow you to write more efficient
applications, produce shorter shaders, or implement advanced rendering techniques. You
saw that it is possible to use the vertex shader to do more than simply transform vertices
into their final positions. A whole new shader stage—the geometry shader—was intro-
duced and you learned how to use it to create, destroy, and modify geometric primitives.
You even saw that is possible to change the type of the geometry as it passes through the
OpenGL pipeline. The fragment shader can be used for more than simply shading pixels
on the surface of a model. You can use it to apply post-processing effects to a prerendered
image or even produce the entire picture in a the fragment shader.

A number of the more advanced features of the GLSL language were introduced, which
you can use to implement interesting effects and algorithms in your shaders. You learned
that it is possible to store the values of your uniforms in buffer objects and to leave those
buffer objects bound while you switch programs. This greatly reduces the amount of work
you need to do to keep often-used uniform values up to date between programs.

CHAPTER 11 Advanced Shader Usage470

ptg

CHAPTER 12

Advanced Geometry Management

by Graham Sellers

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Features You’ll Use

Manage data in your own vertex buffers glVertexAttribPointer

Draw lots of geometry glMultiDrawArrays, glPrimitiveRestartIndex,

glDrawArraysInstanced, glVertexAttribDivisor

Store the results of vertex and geometry shaders glBeginTransformFeedback,

glEndTransformFeedback

Get information about the work OpenGL does glGenQueries, glBeginQuery, glEndQuery,

glGetQueryiv

Synchronize two or more OpenGL contexts glFenceSync, glWaitSync, glClientWaitSync

Control how OpenGL clips geometry gl_ClipDistance[], GL_DEPTH_CLAMP

In this chapter, we go over some of the more advanced features of OpenGL related to
geometry management. This includes figuring out what got rendered and getting informa-
tion back from OpenGL about the amount of geometry it processed. A way of storing the
intermediate results of rendering for later is covered, and we talk about how to synchro-
nize two OpenGL contexts so that one context can consume data produced by the other.
We see how to manage our own geometry data in the graphics card’s memory and how to
control the way that OpenGL processes batch primitives like triangle fans and line strips.
We also see how to make an OpenGL application that offloads rendering large amounts of
geometry to the graphics card.

Many of these techniques are designed to improve performance and maximize the amount
of work that gets done by your GPU. Some, however, enable you to use the GPU for new
and interesting techniques that otherwise wouldn’t be possible.

ptg

472 CHAPTER 12 Advanced Geometry Management

Gathering Information about the OpenGL Pipeline—
Queries
You’d like to ask OpenGL if it drew anything as a result of the functions you called. This
seems like a strange question. You just called a long sequence of OpenGL functions; you
sent a lot of geometry to the OpenGL pipeline, so surely something was drawn. Well
remember, even geometry that would lie within the bounds of the screen may not actually
change any pixels. There are a number of reasons for this, including triangles being
discarded due to back-face culling or fragments failing the depth test or being discarded by
the fragment shader. It can be useful to know if any pixels made it to the screen or even to
know exactly how many made it. As an example, consider a game where there are many
characters or objects on the screen. Your game engine may need to know if your player
can see some other object, such as an enemy, bonus item, or another player. It is certainly
possible to construct a complex line of sight test based on the games geometry assets. But,
it’s much simpler just to ask the GPU if it actually drew any part of the object in question.

The way to ask the GPU this question is through the occlusion query. The name is some-
what misleading as it’s really more of a visibility query. The answer is zero, or false, if there
are no pixels drawn and nonzero, or true, if there are some pixels drawn. So the question
is really “is this visible?” rather than “is this occluded?” Perhaps it should have been called
a visibility query. In any case, a query is an OpenGL object representing a question. There
are several types of query objects representing all kinds of different questions, and an
occlusion query represents the question, “Did you draw anything?”

Preparing a Query
Remember way back to your early days in school. The teacher wanted you to raise your
hand before asking a question. This was almost like reserving your place in line for asking
the question—the teacher didn’t know yet what your question was going to be, but she
knew that you had something to ask. OpenGL is similar. Before we can ask a question, we
have to reserve a spot so that OpenGL knows that the question is coming. Questions in
OpenGL are represented by query objects, and much like any other object in OpenGL,
query objects must be reserved, or generated. To do this, call glGenQueries, passing it the
number of queries you want to reserve and the address of a variable (or array) where you
would like the names of the query objects to be placed:

void glGenQueries(GLsizei n, GLuint *ids);

The function reserves some query objects for you and gives you their names so that you
can refer to them later. You can generate as many query objects you need in one go:

GLuint one_query;
GLuint ten_queries[10];

glGenQueries(1, &one_query);

glGenQueries(10, ten_queries);

ptg

In this example, the first call to glGenQueries generates a single query object and returns
its name in the variable one_query. The second call to glGenQueries generates ten query
objects and returns ten names in the array ten_queries. In total, 11 query objects have
been created, and OpenGL has reserved 11 unique names to represent them. It is very
unlikely, but still possible that OpenGL will not be able to create a query for you, and in
this case it returns zero as the name of the query. A well-written application always checks
that glGenQueries returns a nonzero value for the name of each requested query object. If
there is a failure, OpenGL keeps track of the reason, and you can find that out by calling
glGetError.

Each query object reserves a small but measurable amount of resources from OpenGL.
These resources must be returned to OpenGL because if they are not, OpenGL may run
out of space for queries and fail to generate more for the application later. To return the
resources to OpenGL, call glDeleteQueries:

void glDeleteQueries(GLsizei n, const GLuint *ids);

This works similarly to glGenQueries—it takes the number of query objects to delete and
the address of a variable or array holding their names:

glDeleteQueries(10, ten_queries);

glDeleteQueries(1, &one_query);

After the queries are deleted, they are essentially gone for good. The names of the queries
can’t be used again unless they are given back to you by another call to glGenQueries.

Issuing a Query
Once you’ve reserved your spot using glGenQueries, you can ask a question. OpenGL
doesn’t automatically keep track of the number of pixels it has drawn. It has to count, and
it must be told when to start counting. To do this, use glBeginQuery. The glBeginQuery
function takes two parameters: The first is the question you’d like to ask, and the second is
the name of the query object that you reserved earlier:

glBeginQuery(GL_SAMPLES_PASSED, one_query);

GL_SAMPLES_PASSED represents the question you’re asking, “How many samples passed the
depth test?” Here, OpenGL counts samples because you might be rendering to a multisam-
pled display format, and in that case, there could be more than one sample per pixel. In
the case of a normal, single-sampled format, there is one sample per pixel and therefore a
one-to-one mapping of samples to pixels. Every time a sample makes it past the depth test
(meaning that hadn’t previously been discarded by the fragment shader), OpenGL counts
one. It adds up all the samples from all the rendering it is doing and stores the answer in
part of the space reserved for the query object.

Gathering Information about the OpenGL Pipeline—Queries 473
12

ptg

CHAPTER 12 Advanced Geometry Management474

Now OpenGL is counting samples (or pixels); you can render as normal, and OpenGL
keeps track of all the pixels generated as a result. Anything that you render is counted
toward the total. When you want OpenGL to add up everything rendered since you told it
to start counting, you tell it to stop by calling glEndQuery:

glEndQuery(GL_SAMPLES_PASSED);

This tells OpenGL to stop counting samples that have passed the depth test and made it
through the fragment shader without being discarded. All the pixels generated by all the
drawing commands between the call to glBeginQuery and glEndQuery are added up.

Retrieving Query Results
Now that the pixels produced by your drawing commands have been counted, you need
to retrieve them from OpenGL. This is accomplished by calling

glGetQueryObjectuiv(the_query, GL_QUERY_RESULT, &result);

This instructs OpenGL to place the count associated with the query object into your vari-
able. If no pixels were produced as a result of the drawing commands between the last call
to glBeginQuery and glEndQuery for the query object, result will be zero. If anything
actually made it to the screen, result will contain the number of pixels written. By
rendering an object between a call to glBeginQuery and glEndQuery and then checking if
result is zero or not, you can determine whether the object is visible.

Because OpenGL operates as a pipeline, it may have many drawing commands queued up
back-to-back waiting to be processed. It could be the case that not all of the drawing
commands issued before the last call to glEndQuery have finished producing pixels. In
fact, some may not have even started to be executed. In that case, glGetQueryObjectuiv
causes OpenGL to wait until everything between glBeginQuery and glEndQuery has been
rendered, and it is ready to return an accurate count. If you’re planning to use a query
object as a performance optimization, this is certainly not what you want. All these short
delays could add up and eventually slow down your application! The good news is that it’s
possible to ask OpenGL if it’s finished rendering anything that might affect the result of
the query and therefore has a result available for you. To do this, call

glGetQueryObjectuiv(the_query, GL_QUERY_RESULT_AVAILABLE, &result);

If the result of the query object is not immediately available and trying to retrieve it
would cause your application to have to wait for OpenGL to finish what it is working on,
result becomes GL_FALSE. If OpenGL is ready and has your answer, result becomes
GL_TRUE. This means that retrieving the result from OpenGL will not cause any delays.
Now you can do useful work while you wait for OpenGL to be ready to give you your
pixel count, or you can make decisions based on whether the result is available to you. For
example, if you would have skipped rendering something had result been zero, you
could choose to just go ahead and render it anyway rather than waiting for the result of
the query.

ptg

Using the Results of a Query
Now that you have this information, what will you do with it? A very common use for
occlusion queries is to optimize an application’s performance by avoiding unnecessary
work. Consider an object that has a very detailed appearance. The object has many trian-
gles and possibly a complex fragment shader with a lot of texture lookups and intensive
math operations. Perhaps there are many vertex attributes and textures, and there’s a lot
of work for the application to do just to get ready to draw the object. The object is very
expensive to render. It’s also possible that the object may never end up being visible in the
scene. Perhaps it’s covered by something else. Perhaps it’s off the screen altogether. It
would be good to know this up front and just not draw it at all if it’s never going to be
seen by the user anyway.

Occlusion queries are a good way to do this. Take your complex, expensive object and
produce a much lower fidelity version of it. Usually, a simple bounding box will do. Start
an occlusion query, render the bounding box, and then end the occlusion query and
retrieve the result. If no part of the object’s bounding box produces any pixels, then the
more detailed version of the object will not be visible, and it doesn’t need to be sent to
OpenGL.

Of course, you probably don’t actually want the bounding box to be visible in the final
scene. There are a number of ways you can make sure that OpenGL doesn’t actually draw
the bounding box. The easiest way is probably to use glColorMask to turn off writes to the
color buffer by passing GL_FALSE for all parameters.

Listing 12.1 shows a simple example of how to use glGetQueryObjectuiv to get retrieve
the result from a query object.

LISTING 12.1 Getting the Result from a Query Object

glBeginQuery(GL_SAMPLES_PASSED, the_query);

RenderSimplifiedObject(object);

glEndQuery(GL_SAMPLES_PASSED);

glGetQueryObjectuiv(the_query, GL_QUERY_RESULT, &the_result);

if (the_result != 0)

RenderRealObject(object);

RenderSimplifiedObject is a function that renders the low-fidelity version of the object
and RenderRealObject renders the object with all of its detail. Now, RenderRealObject
only gets called if at least one pixel is produced by RenderSimplifiedObject. Remember
that the call to glGetQueryObjectuiv causes your application to have to wait if the result
of the query is not ready yet. This is likely if the rendering done by
RenderSimplifiedObject is simple—which is the point of this example. If all you want to
know is whether it’s safe to skip rendering something, you can find out if the query result
is available and render the more complex object if the result is either unavailable (i.e., the

Gathering Information about the OpenGL Pipeline—Queries 475
12

ptg

object may be visible or hidden), or if the object result is available and nonzero (i.e., the
object is certainly visible). Listing 12.2 demonstrates how you might determine whether a
query object result is ready before you ask for the actual count, allowing you to make deci-
sions based on both the availability and the value of a query result.

LISTING 12.2 Figuring Out If Occlusion Query Results Are Ready

glBeginQuery(GL_SAMPLES_PASSED, the_query);

RenderSimplifiedObject(object);

glEndQuery(GL_SAMPLES_PASSED);

glGetQueryObjectuiv(the_query, GL_QUERY_RESULT_AVAILABLE, &the_result);

if (the_result != 0)

glGetQueryObjectuiv(the_query, GL_QUERY_RESULT, &the_result);

else

the_result = 1;

if (the_result != 0)

RenderRealObject(object);

In this new example, we determine whether the result is available and if so, retrieve it
from OpenGL. If it’s not available, we put a count of one into the result so that the
complex version of the object will be rendered.

It is possible to have multiple occlusion queries active at the same time. Using multiple
query objects is another way for the application to avoid having to wait for OpenGL.
OpenGL can only count and add up results into one query object at a time, but it can
manage several query objects and perform many queries back-to-back. We can expand our
example to render multiple objects with multiple occlusion queries. If we had an array of
ten objects to render, each with a simplified representation, we might rewrite the example
provided as follows in Listing 12.3.

LISTING 12.3 Simple, Application Side Conditional Rendering

int n;

for (n = 0; n < 10; n++) {

glBeginQuery(GL_SAMPLES_PASSSED, ten_queries[n]);

RenderSimplifiedObject(&object[n]);

glEndQuery(GL_SAMPLES_PASSED);

}

for (n = 0; n < 10; n++) {

glGetQueryObjectuiv(ten_queries[n], GL_QUERY_RESULT, &the_result);

if (the_result != 0)

RenderRealObject(&object[n]);

}

CHAPTER 12 Advanced Geometry Management476

ptg

As discussed earlier, OpenGL is modeled as a pipeline and can have many things going on
at the same time. If you draw something simple, like a bounding box, it’s likely that it
hasn’t reached the end of the pipeline and been rendered by the time you need the result
of your query. This means that when you call glGetQueryObjectuiv, your application may
have to wait a while for OpenGL to finish working on your bounding box before it can
give you the answer and you can act on it.

In our next example, we render ten bounding boxes before we ask for the result of the first
query. This means that OpenGL’s pipeline can be filled, and it can have a lot of work to do
and is therefore much more likely to have finished working on the first bounding box
before we ask for the result of the first query. In short, the more time we give OpenGL to
finish working on what we’ve asked it for, the more likely it is that it’ll have the result of
your query and the less likely it is that your application will have to wait for results. Some
complex applications take this to the extreme and use the results of queries from the
previous frame to make decisions about the new frame.

Finally, putting both techniques together into a single example, we have the code in
Listing 12.4.

LISTING 12.4 Rendering When Query Results Aren’t Available

int n;

for (n = 0; n < 10; n++) {

glBeginQuery(GL_SAMPLES_PASSSED, ten_queries[n]);

RenderSimplifiedObject(&object[n]);

glEndQuery(GL_SAMPLES_PASSED);

}

for (n = 0; n < 10; n++) {

glGetQueryObjectuiv(ten_queries[n],

GL_QUERY_RESULT_AVAILABLE,

&the_result);

if (the_result != 0)

glGetQueryObjectuiv(ten_queries[n],

GL_QUERY_RESULT,

&the_result);

else

the_result = 1;

if (the_result != 0)

RenderRealObject(&object[n]);

}

Because the amount of work sent to OpenGL by RenderRealObject is much greater than
by RenderSimplifiedObject, by the time we ask for the result of the second, third, fourth,
and additional query objects, more and more work has been sent into the OpenGL

Gathering Information about the OpenGL Pipeline—Queries 477
12

ptg

pipeline, and it becomes more likely that our query results are ready. Within reason, the
more complex our scene, and the more query objects we use, the more likely we are to see
positive a performance impact.

If you don’t care about the actual value of the query result, as in the preceding example
where we just care whether it’s zero or not, there is an additional query type that you can
use that may produce answers more quickly for you, depending on the graphics hardware
and drivers that you’re using. Instead of using the GL_SAMPLES_PASSED query, you can use
the special GL_ANY_SAMPLES_PASSED query. The result of this query is strictly Boolean. That
is, it’s either true or false, zero or nonzero. The reason that this may go faster on some
hardware is that as soon as the first pixel is rendered, OpenGL knows that the result of the
query is true. Therefore, it can stop counting pixels. It can also return the answer to you as
soon as it figures this out, even if it isn’t done rendering the geometry sent inside the
occlusion query. If your OpenGL implementation supports it, you can directly substitute
GL_ANY_SAMPLES_PASSED for GL_SAMPLES_PASSED in algorithms like the one here, and you
may see a performance increase in your application.

Getting OpenGL to Make Decisions for You
The preceding examples show how to ask OpenGL to count pixels and how to get the
result back from OpenGL into your application so that it can make decisions about what
to do next. However, the application doesn’t really care about the actual value of the
result. It’s only using it to decide whether to send more work to OpenGL or to make other
changes to the way it might render things. The results have to be sent back from OpenGL
to the application, perhaps over a CPU bus or even a network connection when you’re
using a remote rendering system, just so the application can decide whether to send more
commands to OpenGL. This causes latency and can hurt performance, sometimes
outweighing any potential benefits to using the queries in the first place.

What would be much better is if we could send all the rendering commands to OpenGL
and tell it to obey them only if the result of a query object says it should. This is called
predication, and fortunately, it is possible through a technique called conditional rendering.
Conditional rendering allows you to wrap up a sequence of OpenGL function calls and
send them to OpenGL with a query object and a message that says “ignore all of this if the
result stored in the query object is zero.” To mark the start of this sequence of calls, use

glBeginConditionalRender(the_query, GL_QUERY_WAIT);

and to mark the end of the sequence, use

glEndConditionalRender();

Everything that is called between glBeginConditionalRender and
glEndConditionalRender is ignored if the result of the query object (the same value that
you could have retrieved using glGetQueryObjectuiv) is zero. This means that the actual

CHAPTER 12 Advanced Geometry Management478

ptg

result of the query doesn’t have to be sent back to your application. The graphics hard-
ware can make the decision as to whether to render for you. To modify the previous
example to use conditional rendering, we could use the code in Listing 12.5.

LISTING 12.5 Basic Conditional Rendering Example

// Ask OpenGL to count the samples rendered between the start and end of

// the occlusion query

glBeginQuery(GL_SAMPLES_PASSED, the_query);

RenderSimplifiedObject(object);

glEndQuery(GL_SAMPLES_PASSED);

// Only obey the next few commands if the occlusion query says something

// was rendered

glBeginConditionalRender(the_query, GL_QUERY_WAIT);

RenderRealObject(object);

glEndConditionalRender();

The two functions, RenderSimplifiedObject and RenderRealObject, are functions within
our hypothetical example application that render simplified (perhaps just the bounding
box, for example) and more complex versions of the object, respectively.

Notice now that we never call glGetQueryResultuiv, and we never read any information
(such as the result of the query object) back from OpenGL. This can be especially advanta-
geous for remote rendering where the results would have to make a trip across a network
before reaching your application.

The astute reader will have noticed the GL_QUERY_WAIT parameter passed to
glBeginConditionalRender. You may be wondering what that’s for if the application
doesn’t have to wait for results to be ready any more. As mentioned earlier, OpenGL oper-
ates as a pipeline and may not have finished dealing with RenderSimplifiedObject before
glBeginConditionalRender is called or before the first drawing function is called from
RenderRealObject. In this case, OpenGL can either wait for everything called from
RenderSimplifiedObject to reach the end of the pipeline before deciding whether to obey
the commands sent by the application, or it can go ahead and start working on
RenderRealObject if the results aren’t ready in time. To tell OpenGL not to wait and to
just go ahead and start rendering if the results aren’t available, call

glBeginConditionalRender(the_query, GL_QUERY_NO_WAIT);

This tells OpenGL, “If the results of the query aren’t available yet, don’t wait for them; just
go ahead and render anyway.” This is of greatest use when occlusion queries are being
used to improve performance. Waiting for the results of occlusion queries can use up any
time gained by using them in the first place. Thus, using the GL_QUERY_NO_WAIT flag essen-
tially allows the occlusion query to be used as an optimization if the results are ready in
time and to behave as if they aren’t used at all if the results aren’t ready. The use of

Gathering Information about the OpenGL Pipeline—Queries 479
12

ptg

GL_QUERY_NO_WAIT is similar to using GL_QUERY_RESULT_AVAILABLE in the preceding exam-
ples. Don’t forget, though, if you use GL_QUERY_NO_WAIT, the actual geometry rendered is
going to depend on whether the commands contributing to the query object have
finished executing. This could depend on the performance of the machine your applica-
tion is running on and can therefore vary from run to run. You should be sure that the
result of your program is not dependent on the second set of geometry being rendered
(unless this is what you want). If it is, your program might end up producing different
output on a faster system than on a slower system.

Of course, it is also possible to use multiple query objects with conditional rendering, and
so a final, combined example using all of the techniques in this section is given in Listing
12.6.

LISTING 12.6 A More Complete Conditional Rendering Example

// Render simplified versions of 10 objects, each with its own occlusion

// query

int n;

for (n = 0; n < 10; n++) {

glBeginQuery(GL_SAMPLES_PASSSED, ten_queries[n]);

RenderSimplifiedObject(&object[n]);

glEndQuery(GL_SAMPLES_PASSED);

}

// Render the more complex versions of the objects, skipping them

// if the occlusion query results are available and zero

for (n = 0; n < 10; n++) {

glBeginConditionalRender(ten_queries[n], GL_QUERY_NO_WAIT);

RenderRealObject(&object[n]);

glEndConditionalRender();

}

In this example, simplified versions of ten objects are rendered first, each with its own
occlusion query. Once the simplified versions of the objects have been rendered, the more
complex versions of the objects are conditionally rendered based on the results of those
occlusion queries. If the simplified versions of the objects are not visible, the more
complex versions are skipped, potentially improving performance.

Measuring Time Taken to Execute Commands
One further query type that you can use to judge how long rendering is taking is the timer
query. Timer queries are used by passing the GL_TIME_ELAPSED query type as the target
parameter of glBeginQuery and glEndQuery. When you call glGetQueryObjectuiv to get
the result from the query object, the value is the number of nanoseconds that elapsed
between the call to glBeginQuery and glEndQuery. This is actually the amount of time it

CHAPTER 12 Advanced Geometry Management480

ptg

took OpenGL to process all the commands between the glBeginQuery and glEndQuery
commands. You can use this, for example, to figure out what the most expensive part of
your scene is. Consider the code shown in Listing 12.7.

LISTING 12.7 Timing Operations Using Timer Queries

// Declare our variables

GLuint queries[3]; // Three query objects that we’ll use

GLuint world_time; // Time taken to draw the world

GLuint objects_time; // Time taken to draw objects in the world

GLuint HUD_time; // Time to draw the HUD and other UI elements

// Create three query objects

glGenQueries(3, queries);

// Start the first query

glBeginQuery(GL_TIME_ELAPSED, queries[0]);

// Render the world

RenderWorld();

// Stop the first query and start the second...

// Note, we’re not reading the value from the query yet

glEndQuery(GL_TIME_ELAPSED);

glBeginQuery(GL_TIME_ELAPSED, queries[1]);

// Render the objects in the world

RenderObjects();

// Stop the second query and start the third

glEndQuery(GL_TIME_ELAPSED);

glBeginQuery(GL_TIME_ELAPSED, queries[2]);

// Render the HUD

RenderHUD();

// Stop the last query

glEndQuery(GL_TIME_ELAPSED);

// Now, we can retrieve the results from the three queries. By the

// time we get here, hopefully RenderWorld() has made it through the

// OpenGL pipeline and the result is ready.

glGetQueryObjectuiv(queries[0], GL_QUERY_RESULT, &world_time);

glGetQueryObjectuiv(queries[1], GL_QUERY_RESULT, &objects_time);

glGetQueryObjectuiv(queries[2], GL_QUERY_RESULT, &HUD_time);

// Done. world_time, objects_time and hud_time contain the values we want.

// Clean up after ourselves.

glDeleteQueries(3, queries);

After this code is executed, world_time, objects_time, and HUD_time will contain the
number of nanoseconds it took to render the world, all the objects in the world, and the

Gathering Information about the OpenGL Pipeline—Queries 481
12

ptg

heads-up display (HUD), respectively. You can use this to determine what fraction of the
graphics hardware’s time is taken up rendering each of the elements of your scene. This is
useful for profiling your code during development—you can figure out what the most
expensive parts of your application are, and so know from this where to spend optimiza-
tion effort. You can also use it during runtime to alter the behavior of your application to
try to get the best possible performance out of the graphics subsystem. For example, you
could increase or reduce the number of objects in the scene depending on the relative
value of objects_time. You could also dynamically switch between more or less complex
shaders for elements of the scene based on the power of the graphics hardware.

If you just want to know how much time passes, according to OpenGL, between two
actions that your program takes, you can use glQueryCounter, whose prototype is

void glQueryCounter(GLuint id, GLenum target);

You need to set id to GL_TIMESTAMP and target to the name of a query object that you’ve
created earlier. This function puts the query straight into the OpenGL pipeline, and when
that query reaches the end of the pipeline, OpenGL records its view of the current time
into the query object. The time zero is not really defined—it just indicates some unspeci-
fied time in the past. To use this effectively, your application needs to take deltas between
multiple time stamps. To implement the previous example using glQueryCounter, we
could write code as shown in Listing 12.8.

LISTING 12.8 Timing Operations Using glQueryCounter

// Declare our variables

GLuint queries[4]; // Now we need four query objects

GLuint start_time; // The start time of the application

GLuint world_time; // Time taken to draw the world

GLuint objects_time; // Time taken to draw objects in the world

GLuint HUD_time; // Time to draw the HUD and other UI elements

// Create four query objects

glGenQueries(4, queries);

// Get the start time

glQueryCounter(GL_TIMESTAMP, queries[0]);

// Render the world

RenderWorld();

// Get the time after RenderWorld is done

glQueryCounter(GL_TIMESTAMP, queries[1]);

// Render the objects in the world

RenderObjects();

// Get the time after RenderObjects is done

glQueryCounter(GL_TIMESTAMP, queries[2]);

CHAPTER 12 Advanced Geometry Management482

ptg

// Render the HUD

RenderHUD();

// Get the time after everything is done

glQueryCounter(GL_TIMESTAMP, queries[3]);

// Get the result from the three queries, and subtract them to find deltas

glGetQueryObjectuiv(queries[0], GL_QUERY_RESULT, &start_time);

glGetQueryObjectuiv(queries[1], GL_QUERY_RESULT, &world_time);

glGetQueryObjectuiv(queries[2], GL_QUERY_RESULT, &objects_time);

glGetQueryObjectuiv(queries[3], GL_QUERY_RESULT, &HUD_time);

HUD_time -= objects_time;

objects_time -= world_time;

world_time -= start_time;

// Done. world_time, objects_time and hud_time contain the values we want.

// Clean up after ourselves.

glDeleteQueries(4, queries);

As you can see, the code in this example is not that much different from that in Listing
12.7 shown earlier. You need to create four query objects instead of three, and you need to
subtract out the results at the end to find time deltas. However, you don’t need to call
glBeginQuery and glEndQuery in pairs, which means that there are less calls to OpenGL,
in total.

Storing Data in GPU Memory
So far, all geometry you’ve been using (vertices, colors, normals, and other vertex attribute
data) has been managed by the GLTools library. When you’ve called functions like
GLBatch::CopyVertexData or GLBatch::CopyNormalData, the pointer you’ve specified is a
real pointer to an area of memory containing vertex coordinates, colors, normals, and
other data you’d like to render. If each time you called glDrawArrays, glDrawElements, or
some other OpenGL function that required vertex data, the information was taken from
the application’s memory, on a high performance system with a local GPU, this would
mean that the data would be transferred from the application’s memory (attached to the
CPU) across the bus connecting the CPU to the GPU (usually PCI-Express) to the GPU’s
local memory so that it can work it. This would take so much time that it would slow
down the application significantly. On a remote system, the data might be transferred
across a network connection to the server for rendering. This can be devastating for
performance.

When the GPU accesses memory that is local to it (physically attached to the video card,
for example), it is often several times, perhaps even orders of magnitude faster than access-
ing the same data stored in system memory. In the case of a remote rendering system,
accessing local GPU memory can literally be tens of thousands of times faster than
sending the data across a network connection. If the data to be rendered is more or less

Storing Data in GPU Memory 483
12

ptg

the same every frame, or if many copies of the same data will be rendered in a single
frame, it is advantageous to copy the data to the GPU’s local memory once and then reuse
that copy over and over again.

To allow this to happen, the various classes in GLTools manage buffers in the GPU’s local
memory and hide the complexities of this from you. In fact, though, it’s not particularly
difficult to manage these buffers yourself. You will need to do this eventually as you start
to write more complex applications that require data other than simple position, color,
and normal vectors.

In this section, you learn how to ensure that vertex data and other information required
by the GPU is available and is stored in its memory. To do this, you use buffer objects
containing the data that is supplied by your application. You learn how to manage these
objects, how to tell OpenGL what you intend to use them for, and how to best keep your
data in GPU memory.

Using Buffers to Store Vertex Data
In OpenGL, it is possible to store vertex attribute data such as positions, colors, or
anything else needed by the vertex shader in a buffer object. Buffer objects are OpenGL
objects that represent storage for data and have already been introduced earlier in this
book. Here, we use an OpenGL buffer as a vertex buffer object (VBO). A VBO is a buffer
object that represents storage for vertex data. Data can be placed in these buffers with
hints that tell OpenGL how you plan to use it, and OpenGL can then use those hints to
decide what it will do with that data. If the data is to be used more than once or twice,
OpenGL will more than likely copy it into the fast memory attached to the graphics card.

Because a nontrivial application may require several VBOs and many vertex attributes, a
special container object called a vertex array object (VAO) is available to OpenGL to manage
all of this state. VAOs are discussed in more detail in the next section. However, because
there is no default VAO, you need to create and bind one before you can use any of the
code in this section. Some code like the following should be sufficient:

glGenVertexArrays(1, &vao);

glBindVertexArray(vao);

This creates and binds a single VAO. This can stay bound for the duration of your applica-
tion, and you’ll be in a position to use and manipulate vertex buffers. To create one or
more buffer objects, call

glGenBuffers(1, &one_buffer);

or

glGenBuffers(10, ten_buffers);

CHAPTER 12 Advanced Geometry Management484

ptg

To store vertex data into or retrieve vertex data from a buffer, it must be bound to the
GL_ARRAY_BUFFER binding. To do this, call

glBindBuffer(GL_ARRAY_BUFFER, one_buffer);

Once bound, you can use many of the functions requiring a buffer binding as a parameter
to manipulate the buffer object. Examples of these functions are glBufferData,
glBufferSubData, glMapBuffer, and glCopyBuffer.

When glVertexAttribPointer is called, the value of the attribute pointer is not inter-
preted as a real, physical pointer to data in memory. The pointer is actually interpreted as
an offset into the buffer object that is bound to the GL_ARRAY_BUFFER binding at the time
of the call. Also, a record of the currently bound buffer is made in the current VAO and
used for that attribute. That is, not only does glVertexAttribPointer tell OpenGL the
offset into the buffer that a vertex attribute’s data can be found, but it also tells OpenGL
which buffer contains the data.

It is therefore possible to use multiple buffers—one for each attribute—simultaneously by
calling glBindBuffer followed by glVertexAttribPointer for each attribute. It is also
possible to store several different attributes in a single buffer by interleaving them. To do
this, call glVertexArrayPointer with the stride parameter set to the distance (in bytes)
between attributes of the same type. Finally, because each vertex attribute has its own set
of parameters, including offset, stride, and buffer binding, it is possible to use a combina-
tion of interleaved and separate buffers. For example, a single model could have positions
and normals interleaved in one buffer and texture coordinates in a second separate buffer.
This would allow different textures to be used with different texture coordinates on the
same model by changing only the buffer binding for the texture coordinate vertex
attribute.

The following example, shown in Listing 12.9 creates a single buffer, binds it to the
GL_ARRAY_BUFFER binding, places some data in it, and then sets a vertex attribute pointer
to refer to that buffer. There is one large chunk of data placed into the buffer (the data
array), and it occupies the whole buffer.

LISTING 12.9 Allocating and Initializing a Single VBO

// This variable will hold the name of our buffer.

GLuint my_buffer;

// This array contains the data that we’ll initialize the buffer with.

// Often, the data is actually stored in a file rather than a raw C

// array.

static const GLfloat data[] = { 1.0f, 2.0f, 3.0f, 4.0f, ... };

// Create a buffer.

glGenBuffers(1, &my_buffer);

// A well behaved application would check that buffer creation

Storing Data in GPU Memory 485
12

ptg

// succeeded here. We’re just going to bind it and hope for the best.

glBindBuffer(GL_ARRAY_BUFFER, my_buffer);

// There is no storage space allocated for the buffer until we put

// some data into it. This copies the contents of the ‘data’ array

// into the buffer.

glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW);

// Now, we set the vertex attribute pointer. The location is zero (we

// somehow know this), the size is 4 (the attribute in the vertex

// shader is declared as vec4), we have floating point data that is

// not normalized. Stride is zero because the data in this case is

// tightly packed. Finally, notice that we’re passing zero as the

// pointer to the data. This is legal because it will be interpreted as

// an offset into ‘my_buffer’,

// and the data really does start at offset zero.

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, (const GLvoid *)0);

The next example in Listing 12.10 creates a single buffer, places data at different locations
within it, and then sets several vertex attribute pointers to the offsets of that data. This is a
demonstration of using one buffer to hold several separate attributes, but keeping all of
the data for each attribute together.

LISTING 12.10 Using a Single VBO to Hold Multiple Vertex Attributes

// This is the new data we’re going to use:

static const GLfloat positions[] = { /* many floating point vec4s */ };

static const GLfloat colors[] = { /* more floating point vec4s */ };

static const GLfloat normals[] = { /* a bunch of floating point vec3s */ };

// Assume we’ve created and bound a buffer as in the previous example

// Now, we’re going to allocate space for data by specifying a size,

// but NULL as a pointer to the data.

glBufferData(GL_ARRAY_BUFFER,

sizeof(positions) + sizeof(colors) + sizeof(normals),

NULL, GL_STATIC_DRAW);

// We can now copy the individual arrays into this one big buffer:

glBufferSubData(GL_ARRAY_BUFFER, 0,

sizeof(positions), positions);

glBufferSubData(GL_ARRAY_BUFFER, sizeof(positions),

sizeof(colors), colors);

glBufferSubData(GL_ARRAY_BUFFER, sizeof(positions) + sizeof(colors),

sizeof(normals), normals);

// Now the buffer contains the data for three attributes in three big

// chunks, one after another we can set the vertex attribute pointers to

// the offsets of that data within the buffer.

CHAPTER 12 Advanced Geometry Management486

ptg

// Positions first:

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0,

(const GLvoid *)0);

// Then colors:

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 0,

(const GLvoid *)sizeof(positions));

// Then normals:

glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0,

(const GLvoid *)(sizeof(positions) + sizeof(colors)));

In the final example given in Listing 12.11, a single buffer is used to hold interleaved
attribute data. The data is declared as a C structure and copied directly into the buffer. The
stride parameter of glVertexAttribPointer is used to tell OpenGL how many bytes apart
the attributes are in memory. This is an example of interleaved attributes. All of the attrib-
utes for a single vertex end up right next to each other in the buffer.

LISTING 12.11 Using a Single VBO to Hold Interleaved Attributes

// The VERTEX structure contains the position, color and normal for a

// single vertex packed together in memory

struct VERTEX_t

{

vec4 position;

vec4 color;

vec3 normal;

};

typedef struct VERTEX_t VERTEX;

// Assume there is some external array of vertex data

extern VERTEX vertices[];

// Now, we can upload all of the vertex data into one, large buffer

glBufferData(GL_ARRAY_BUFFER, vertex_count * sizeof(VERTEX),

vertices, GL_STATIC_DRAW);

// Each vertex attribute is now sourced from the same buffer. The

// stride parameter is the distance, in bytes, between one vertex and the

// next – i.e. sizeof(VERTEX) and the location of the data within the

// buffer is simply the offset of the element within the structure.

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, sizeof(VERTEX),

(const GLvoid *)OFFSETOF(VERTEX, position));

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof(VERTEX),

(const GLvoid *)OFFSETOF(VERTEX, color));

glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, sizeof(VERTEX),

(const GLvoid *)OFFSETOF(VERTEX, normal));

Storing Data in GPU Memory 487
12

ptg

The resulting layouts of the data in the buffers are shown in Figure 12.1. In (a), the data is
simply copied into the buffer and appears in the GPU’s memory as it would have in the
application’s memory. In (b), several arrays of attributes are placed into the buffer back to
back. Finally, in (c), the individual attributes for each vertex are interleaved together.

CHAPTER 12 Advanced Geometry Management488

data[0..3]

data[4..7]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

data[…]

vertex[0].position

vertex[0].color

vertex[0].normal

vertex[0].position

vertex[0].color

vertex[0].normal

vertex[0].position

vertex[0].color

positions[0..3]

positions[4..7]

positions[…]

normals[…]

normals[…]

normals[…]

vertex[…].position

vertex[…].color

vertex[…].normal

vertex[…].position

vertex[…].color

vertex[…].normal

vertex[…].position

vertex[…].color

vertex[…].normal

positions[…]

colors[0..3]

colors[4..7]

colors[…]

colors[…]

normals[0..2]

normals[3..5]

normals[…]

(a) (b) (c)

FIGURE 12.1 Layout of data in buffers using packed, multiple, and interleaved buffers.

Unlike some other OpenGL objects, there is no default buffer object. This means that
before you can call glVertexAttribPointer, you must create a vertex buffer object and
bind it. The buffer object named zero is reserved by OpenGL to mean “no buffer.” Thus, to
unbind a buffer without specifying a new buffer to use in its place, simply bind the name
zero to the GL_ARRAY_BUFFER binding:

glBindBuffer(GL_ARRAY_BUFFER, 0);

If the data is changed regularly by the application, it may seem useful to keep data in the
application’s memory space. However, it is still necessary to use a VBO for this because
OpenGL does not support reading data directly from system memory. If you specify the
GL_STREAM_DRAW usage mode when calling glBufferData, OpenGL knows that the data is
likely to be used only once and the behavior, and performance of the application should
be the same as if you had kept data in the application’s memory. In any case, even if you
were able to keep data in the application’s memory, it is very likely that your OpenGL

ptg

drivers would perform a similar operation internally and end up copying the data to a
staging area in the GPU’s memory before using it.

Storing Vertex Indices in Buffers
So far we have discussed only the GL_ARRAY_BUFFER binding. Another related buffer
binding is the GL_ELEMENT_ARRAY_BUFFER binding. The element array buffer is a buffer that
stores the indices of vertices and is used by functions such as glDrawElements and
glDrawRangeElements. There is no equivalent to glVertexAttribPointer for the
GL_ELEMENT_ARRAY_BUFFER binding. That is, there is no glElementPointer function, for
example. You can use the GL_ELEMENT_ARRAY_BUFFER binding just like any other binding
for the purposes of allocating it or putting data into it (using glBufferData or
glBufferSubData, for example). Let’s take a look at the function prototype of
glDrawElements:

void glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *

indices);

The last parameter, indices, is the offset of the first index within the element array buffer.
Remember that when glVertexAttribPointer is called, the last parameter, pointer, is
interpreted as an offset into the buffer that is bound to the GL_ARRAY_BUFFER binding. The
same is true with the indices parameter of glDrawElements and the buffer bound to the
GL_ELEMENT_ARRAY_BUFFER binding. If a nonzero buffer is bound to the
GL_ELEMENT_ARRAY_BUFFER binding when glDrawElements is called, indices is interpreted
as an offset into that buffer, and the indices of the vertices to be drawn are fetched from
that buffer.

If no buffer is bound to the GL_ELEMENT_ARRAY_BUFFER binding, glDrawElements won’t do
anything. Without an element buffer, there is no storage for the indices of the vertices to
be drawn. Just as OpenGL does not support reading vertex attribute data from the applica-
tion’s memory, it cannot read vertex indices either. Thus, you must have a buffer bound to
the GL_ELEMENT_ARRAY_BUFFER binding point in order to use the glDrawElements function.

There is also a more advanced version of glDrawElements that allows you to use the same
indices but different vertex data for each call. The glDrawElementsBaseVertex function
allows you to specify an offset that will be added to every vertex index before it is used to
read data from the vertex buffers. Its prototype is

void glDrawElementsBaseVertex(GLenum mode, GLsizei count, GLenum type, GLvoid

*indices, GLint basevertex);

Consider a complex model that uses several vertex buffers—say, one for position data, one
for normals, two or three for texture coordinates, and maybe a few more for other data
that might be needed to render it. If the model is animated, you’ll need several frames,
each with its own complete set of this data. In each frame, the positions move, the
normals change, but the indices of the vertices would stay the same. You have a few

Storing Data in GPU Memory 489
12

ptg

options here. You could use a separate set of VBOs for each frame. This would require
quite a bit of setup, but would be an acceptable solution. You could use a separate VAO
(which is discussed in more detail in the following section) for each frame of the object,
which would store all the bindings. Another alternative is to store all of the data in a
single, large buffer, with each frame packed one after another. That would require you to
call glVertexAttribPointer a bunch of times for each frame. Again, you could store that
information in a separate VAO for each frame.

The glDrawElementsBaseVertex function is an alternative that allows you to simply
specify the offset into the buffers that the indices in the element buffer are relative to.
Thus, if you have a model with 1000 vertices, say, then the first frame starts at offset 0,
the second frame starts at offset 1000, the third at 2000, and so on. Passing the offset to
the glDrawElementsBaseVertex command is a much simpler operation (from OpenGL’s
point of view) than rebinding VBOs or VAOs, or processing several calls to
glVertexAttribPointer. In fact, for every variant of glDrawElements, there is an
equivalent version that takes a basevertex parameter: glDrawElementsBaseVertex,
glDrawRangeElementsBaseVertex, glDrawElementsInstancedBaseVertex, and
glMultiDrawElementsBaseVertex. They are explained in some detail in the OpenGL
specification.

Using Vertex Array Objects to Organize Your Buffers
You just read about vertex buffer objects. Each vertex attribute has an offset within a
buffer and a set of other state such as data type and stride. Each one also has an associated
buffer, which can be different for each attribute. Calling glVertexAttribPointer sets all of
this state, including the buffer binding for the attribute. If you have a fairly complex scene
with several objects in it and each object keeps its vertex data in its own VBO, then that is
a reasonable amount of state per object. If the application is well-written, drawing one of
these object may end up as simple as a single call to a function like glDrawElements or
glDrawArrays.

Even if the layout of data is the same between objects (it probably will be for many appli-
cations) and the offsets of the data are the same (maybe all data starts at offset zero, for
example), it is still necessary to call glVertexAttribPointer for every vertex attribute. For
an object that has, say, eight vertex attributes, this means at least one call to glBindBuffer
(possibly up to eight if all the vertex attributes are in separate buffer objects), and eight
calls to glVertexAttribPointer. If you’re using indexed vertices, you also need to bind
your GL_ELEMENT_ARRAY_BUFFER. All this to prepare for a single call to glDrawElements.
This is a lot of state to set, a lot of error checking that the driver has to do, and a lot of
information that the application has to look after.

To help organize all this information, OpenGL provides an object called a vertex array
object (VAO). A VAO is a container that packages together all of the state that can be set
by glVertexAttribPointer and a few other functions. When using a VAO, all state speci-
fied through a call to glVertexAttribPointer is stored in the current VAO. There is no

CHAPTER 12 Advanced Geometry Management490

ptg

default VAO in OpenGL. This means that before you can even specify your vertex point-
ers, you need to create and bind a VAO. For simple applications, it may be sufficient to
create a single VAO, bind it, and leave it bound for the lifetime of the application (as we
did when we introduced VBOs earlier). However, an application can create as many VAOs
as it needs and use them to manage all of the array state. When it’s time to draw using a
particular set of vertex attributes, simply bind the VAO containing that set of state and
start drawing. This allows each object in a scene to manage its own vertex buffers by creat-
ing a VAO to maintain its state and binding it before drawing. That way, the object won’t
upset the vertex array state of any other object in the scene.

To create one or more VAOs, call

void glGenVertexArrays(GLsizei n, GLuint *arrays);

Like most other OpenGL objects, VAOs are referred to by name represented as unsigned
integers. The glGenVertexArrays function creates n vertex arrays and places their names in
the array arrays. If glGenVertexArrays fails to allocate a VAO for some reason, it returns
zero for its name. A well-written application should always check for this condition before
trying to use the result. Like buffer objects, the VAO name zero is reserved by OpenGL to
mean “no VAO.” Again, when no VAO is bound, glVertexAttribPointer will not work
and will generate an error if you call it. To delete VAOs, call

void glDeleteVertexArrays(GLsizei n, GLuint *arrays);

This function deletes the n VAOs whose names are in arrays. It is important for your
application to clean up after itself. If arrays has an element containing the name zero,
that will be ignored. This means that you can safely pass an array previously written to by
glGenVertexArrays to glDeleteVertexArrays without worrying whether some of the
names might be zero (due to an error during the execution of glGenVertexArrays, for
example). To start using a VAO, call

void glBindVertexArray(GLuint array);

This makes array the current VAO. When a new VAO is bound for the first time, it
contains all of the default state that would be present in a freshly created context. From
now on, any time you call a function that accesses the vertex array state, it will access the
state contained in the currently bound VAO. This includes functions that set state, such as
glVertexAttribPointer; functions that implicitly use that state, such as glDrawArrays or
glDrawElements; and functions that explicitly read vertex array state, such as
glGetIntegerv.

Now that we have a VAO, we can set as much state on it as we like. We can call
glVertexAttribPointer as many times as we need and the state will be stored in the VAO.
If we call glBindBuffer followed by glVertexAttribPointer, the buffer binding will also
be stored in the VAO. Note, though, that while the buffer binding associated with the
vertex attribute is stored in the VAO, binding a new VAO does not change the current

Using Vertex Array Objects to Organize Your Buffers 491
12

ptg

buffer bindings. That is, the actual state of the currently bound buffers is not stored in the
VAO. To return to the example at the start of this section—the object with many vertex
attributes, each with different state and buffer bindings—we can improve the performance
of this greatly using VAOs.

Instead of calling glBindBuffer and glVertexAttribPointer many times right before
drawing the object, we can do it at initialization time. When it is created, the object can
generate a VAO, bind it using glBindVertexArray, and set all of its vertex array state as if
it were about to render itself. After initialization, return OpenGL to having no VAO bound
by calling

glBindVertexArray(0);

Now, when the object is about to be rendered, call glBindVertexArray again with the
object’s VAO, and then call the rendering functions such as glDrawArrays. Thus, rendering
a complete object that has many vertex attributes, all stored in a collection of VBOs with
different parameters, can be as simple as two function calls—glBindVertexArray and
glDrawElements, for example. This is also beneficial for layered libraries, scene graph
managers, and middleware that might want to render without disturbing the current
OpenGL state. If the normal behavior of the environment is to have no VAO bound, then
each object binds its own VAO, renders itself, and then binds VAO zero, resetting every-
thing.

Drawing a lot of Geometry Efficiently
So far, you have seen how to send blocks of data to OpenGL to render using functions
such as glDrawArrays. It’s possible to send huge numbers of vertices—millions if neces-
sary—to OpenGL using a single call to this function. However, this is only of any use
when the geometry is nicely arranged in a large contiguous block. In any nontrivial appli-
cation, there will be many different, unrelated objects. There is likely to be a world or
some kind of background, and each of these may require several calls to one of the
drawing functions. It is not unusual to see a complex application making thousands or
even hundreds of thousands of calls to the various drawing functions that OpenGL
provides in every frame. In this section, we go over a number of methods that you can use
to draw a lot of independent pieces of geometry with very few calls to OpenGL.

Combining Drawing Functions
If you have a lot of geometry to send to OpenGL in a single application, it’s likely that
you will have one preferred method of drawing. This might be to use glDrawArrays or
glDrawElements, for example. If you were to pack all of the vertex data for all of your
objects into a single buffer, it would be reasonable to have a loop in your code that looks
something like this:

CHAPTER 12 Advanced Geometry Management492

ptg

for (int i = 0; i < num_objects; i++) {

glDrawArrays(GL_TRIANGLES,

object[n]->first_vertex,

object[n]->vertex_count);

}

This might produce a lot of calls into OpenGL, and each one carries some overhead. If you
have a large number of objects in your scene, and each has a relatively small number of
triangles, the cost of each of these calls to glDrawArrays will start to add up and could
negatively affect the performance of your application. A couple of functions that might
help in this case are

void glMultiDrawArrays(GLenum mode, GLint *first, GLsizei *count, GLsizei

primcount);

and

void glMultiDrawElements(GLenum mode, GLsizei *count, GLenum type, GLvoid **indices,

GLsizei primcount);

These two functions operate similarly to the previous code. Each behaves as if its non-
Multi versions had been called primcount times. For glMultiDrawArrays, first and count
are arrays. Also, for glMultiDrawElements, count and indices are arrays. This allows
OpenGL to perform all of its setup once, check that all the parameters are correct once,
and if the driver supports it, send a single command to the graphics hardware. This can
allow a lot of the overhead associated with calling OpenGL functions to be amortized
across the number of function calls the glMultiDraw function replaces.

By rewriting this example, we can see that only one function call to glMultiDrawArrays
can be used to replace the many (potentially thousands) calls to glDrawArrays. This new
version is shown in Listing 12.12. Although there is more code, there are fewer calls to
OpenGL, which often translates to better performance.

LISTING 12.12 Simple Example of glMultiDrawArrays

// These arrays are assumed to be sized large enough to hold enough data to

// represent all of the objects in the scene

GLint first[];

GLsizei count[];

// Build our lists of first vertex and vertex count

for (int i = 0; i < num_objects; i++) {

first[i] = object[n]->first_vertex;

count[i] = object[n]->vertex_count;

Drawing a lot of Geometry Efficiently 493
12

ptg

}

// Now make a single call to glDrawArrays

glMultiDrawArrays(GL_TRIANGLES, first, count, num_objects);

If the list of objects doesn’t change (or doesn’t change very often), you can build the
first and count arrays up front, removing the for-loop from the example entirely. For
example, if you have a simple game with enemies and bonus items in a level, you may
only need to update the first and count arrays when one of the enemies dies or a bonus
item is collected by the player.

Combining Geometry Using Primitive Restart
There are many tools out there that “stripify” geometry. The idea of these tools is that by
taking “triangle soup,” which means a large collection of unconnected triangles, and
attempting to merge it into a set of triangle strips, performance can be improved. This
works because individual triangles each take three vertices to represent, but a triangle strip
reduces this to a single vertex per triangle (not counting the first triangle in the strip). By
converting the geometry from triangle soup to triangle strips, there is less geometry data
to process, and the system should run faster. If the tool does a good job and produces a
small number of long strips containing many triangles each, this generally works well.
There has been a lot of research into this type of algorithm, and a new method’s success is
measured by passing some well-known models through the new “stripifier” and compar-
ing the number and average length of the strips generated by the tool to that produced by
current cutting-edge stripifiers.

Despite all of this research, the reality is that a soup can be rendered with a single call to
glDrawArrays or glDrawElements, but unless the functionality that is about to be intro-
duced is used, a set of strips needs to be rendered with separate calls to OpenGL. This
means that there is likely to be a lot more function calls in a program that uses stripified
geometry, and if the stripping application hasn’t done a decent job or if the model just
doesn’t lend well to stripification, this can eat any performance gains seen by using strips
in the first place. Even functions like glMultiDrawArrays and glMultiDrawElements don’t
always help because the graphics hardware may not implement these functions directly,
and so OpenGL essentially has to convert them to multiple calls to glDrawArrays inter-
nally anyway.

A feature that is almost universally supported by recent graphics hardware and is part of
OpenGL is primitive restart. Primitive restart applies to the GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_LINE_STRIP, and GL_LINE_LOOP geometry types. It is a method of
informing OpenGL when one strip (or fan or loop) has ended and that another should be

CHAPTER 12 Advanced Geometry Management494

ptg

started. To indicate the position in the geometry where one strip ends and the next starts,
a special marker is placed as a reserved value in the element array. As OpenGL either
fetches vertex indices from the element array or generates them internally, in the case of
nonindexed draw commands like glDrawArrays, it checks for this special index value and
whenever it comes across it, it ends the current strip and starts a new one with the next
vertex. This mode is disabled by default but can be enabled by calling

glEnable(GL_PRIMITIVE_RESTART);

and disabled again by calling

glDisable(GL_PRIMITIVE_RESTART);

When primitive restart mode is enabled, OpenGL watches for the special index value as it
fetches or generates them and when it comes across it, stops the current strip and starts a
new one. To set the index that OpenGL should watch for, call

glPrimitiveRestartIndex(index);

OpenGL watches for the value specified by index and uses that as the primitive restart
marker. Because the marker is a vertex index, primitive restart is best used with indexed
drawing functions such as glDrawElements. You can still use primitive restart with
glDrawArrays, for example. In this case, OpenGL may eventually generate the restart
index internally, and when it does, it restarts the primitive. For example, if you set the
restart index to ten and then draw 20 vertices using the GL_TRIANGLE_STRIP mode, you get
two separate strips.

The default value of the primitive restart index is zero. Because that’s almost certainly the
index of a real vertex that will be contained in the model, it’s a good idea to set the restart
index to a new value whenever you’re using primitive restart mode. A good value to use is
0xFFFFFFFF because you can be almost certain that it will not be used as a valid index of a
vertex. Many stripping tools have an option to either create separate strips or to create a
single strip with the restart index in it. The stripping tool may use a predefined index or
output the index it used when creating the stripped version of the model (for example,
one greater than the number of vertices in the model). You need to know this and set it
using the glPrimitiveRestartIndex function to use the output of the tool in your appli-
cation.

The primitive restart feature is illustrated in Figure 12.2.

Drawing a lot of Geometry Efficiently 495
12

ptg

FIGURE 12.2 Triangle strips generated with primitive restart disabled and enabled.

In Figure 12.2, a triangle strip is pictured with the vertices marked with their indices. In
(a), the strip is made up of 17 vertices, which produces a total of 15 triangles in a single,
connected strip. By enabling primitive restart mode and setting the primitive restart index
to 8, vertex 8 is recognized by OpenGL as the special restart marker, and the triangle strip
is terminated at vertex 7. This is shown in (b). The actual position of vertex 8 is ignored
because this is not seen by OpenGL as the index of a real vertex. The next vertex
processed (vertex 9) becomes the start of a new triangle strip. So while 17 vertices are still
sent to OpenGL, the result is that two separate triangle strips of 8 vertices and 6 triangles
each are drawn.

Instanced Rendering
There will probably be times when you want to draw the same object many times.
Imagine a fleet of starships, or a field of grass. There could be thousands of copies of what
are essentially identical sets of geometry, modified only slightly from instance to instance.
A simple application might just loop over all of the individual blades of grass in a field
and render them separately, calling glDrawArrays once for each blade and perhaps updat-
ing a set of shader uniforms on each iteration. Supposing each blade of grass were made
up of a strip of four triangles, the code might look something like Listing 12.13.

LISTING 12.13 Drawing the Same Geometry Many Times

glBindVertexArray(grass_vao);

for (int n = 0; n < number_of_blades_of_grass; n++) {

SetupGrassBladeParameters();

glDrawArrays(GL_TRIANGLE_STRIP, 0, 6);

}

How many blades of grass are there in a field? What is the value of
number_of_blades_of_grass? It could be thousands, maybe millions. Each blade of grass is
likely to take up a very small area on the screen, and the number of vertices representing

CHAPTER 12 Advanced Geometry Management496

0 2 4 6 8 10 12 14 16

1 3 5 7 9 11 13 15

0 2 4 6 8 10 12 14 16

1 3 5 7 9 11 13 15

(a)

(b)

ptg

the blade is also very small. Your graphics card doesn’t really have a lot of work to do to
render a single blade of grass, and the system is likely to spend most of its time sending
commands to OpenGL rather than actually drawing anything. OpenGL addresses this
through instanced rendering, which is a way to ask it to draw many copies of the same
geometry.

Instanced rendering is a method provided by OpenGL to specify that you want to draw
many copies of the same geometry with a single function call. This functionality is
accessed through instanced rendering functions, such as

void glDrawArraysInstanced(GLenum mode, GLint first, GLsizei count, GLsizei

primcount);

and

void glDrawElementsInstanced(GLenum mode, GLsizei count, GLenum type, const void *

indices, GLsizei primcount);

These two functions behave much like glDrawArrays and glDrawElements, except that
they tell OpenGL to render primcount copies of the geometry. The first parameters of each
(mode, first, and count for glDrawArraysInstanced, and mode, count, type, and indices
for glDrawElementsInstanced) take the same meaning as in the regular, noninstanced
versions of the functions. When you call one of these functions, OpenGL makes any
preparations it needs to draw your geometry (such as copying vertex data to the graphics
card’s memory, for example) only once and then renders the same vertices many times.

If all that these functions did were send many copies of the same vertices to OpenGL as if
glDrawArrays or glDrawElements had been called in a tight loop, they wouldn’t be very
useful. One of the things that makes instanced rendering usable and very powerful is a
special, built-in variable in GLSL named gl_InstanceID. The gl_InstanceID variable
appears in GLSL as if it were an integer uniform. When the first copy of the vertices is sent
to OpenGL, gl_InstanceID will be zero. It will then be incremented once for each copy of
the geometry and will eventually reach primcount - 1. Because gl_InstanceID is an
integer, there is a practical upper limit of a couple of billion instances that you can render
in one call to glDrawArraysInstanced or glDrawElementsInstanced, but that should be
enough for the vast majority of applications. If you need to render more than two billion
copies of your geometry, your application will probably run very slowly anyway, and you
won’t see a significant performance penalty for breaking your rendering into blocks of, say
one billion vertices.

The glDrawArraysInstanced function essentially operates as if the code in Listing 12.14
were executed.

Drawing a lot of Geometry Efficiently 497
12

ptg

LISTING 12.14 Pseudo-code Illustrating the Behavior of glDrawArraysInstanced

// Loop over all of the instances (i.e. primcount)

for (int n = 0; n < primcount; n++) {

// Set the gl_InstanceID uniform – here gl_InstanceID is a C variable

// holding the location of the ‘virtual’ gl_InstanceID uniform.

glUniform1i(gl_InstanceID, n);

// Now, when we call glDrawArrays, the gl_InstanceID variable in the

// shader will contain the index of the instance that’s being rendered.

glDrawArrays(mode, first, count);

}

Likewise, the glDrawElementsInstanced function operates similarly to the code in Listing
12.15.

LISTING 12.15 Pseudo-code Illustrating the Behavior of glDrawElementsInstanced

for (int n = 0; n < primcount; n++) {

// Set the value of gl_InstanceID

glUniform1i(gl_InstanceID, n);

// Make a normal call to glDrawElements

glDrawElements(mode, count, type, indices);

}

Of course, gl_InstanceID is not a real uniform, and you can’t get a location for it by
calling glGetUniformLocation. The value of gl_InstanceID is managed by OpenGL and is
very likely generated in hardware, meaning that it’s essentially free to use in terms of
performance. The power of instanced rendering comes from imaginative use of this vari-
able, along with instanced arrays, which are explained in a moment.

The value of gl_InstanceID can be used directly as a parameter to a shader function or
to index into data such as textures or uniform arrays. To return to our example of the field
of grass, let’s figure out what we’re going to do with gl_InstanceID to make our field not
just be thousands of identical blades of grass growing out of a single point. Each of our
grass blades is made out of a little triangle strip with four triangles in it, a total of just six
vertices. It could be tricky to get them to all look different. However, with some shader
magic, we can make each blade of grass look sufficiently different so as to produce an
interesting output. We won’t go over the shader code here (there’s plenty of advanced
shader examples in the last chapter), but we walk through a few ideas of how you can use
gl_InstanceID to add variation to your scenes.

First, we need each blade of grass to have a different position; otherwise, they’ll all be
drawn on top of each other. Let’s arrange the blades of grass more or less evenly. If the
number of blades of grass we’re going to render is a power of two, we can use half the bits

CHAPTER 12 Advanced Geometry Management498

ptg

of gl_InstanceID to represent the x coordinate of the a blade, and the y coordinate to
represent the z coordinate (our ground lies in the x-z plane, with y being altitude). For this
example, we render 2^20, or a little over a million blades of grass (actually 1,048,576
blades, but who’s counting?). By using the ten least significant bits (bits 9 through 0) as
the x coordinate and the ten most significant bits (19 through 10) as the z coordinate,
we have a uniform grid of grass blades. Let’s take a look at Figure 12.3 to see what we have
so far.

Drawing a lot of Geometry Efficiently 499
12

FIGURE 12.3 First attempt at an instanced field of grass.

Our uniform grid of grass probably looks a little plain, as if a particularly attentive
groundskeeper hand-planted each blade. What we really need to do is displace each blade
of grass by some random amount within its grid square. That’ll make the field look a little
less uniform. A simple way of generating random numbers is to multiply a seed value by a
large number and take a subset bits of the resulting product and use it as the input to a
function. We’re not aiming for a perfect distribution here, so this simple generator should
do. Usually, with this type of algorithm, you’d reuse the seed value as input to the next
iteration of the random number generator. In this case, though, we can just use
gl_InstanceID directly as we’re really generating the next few numbers after
gl_InstanceID in a pseudo-random sequence. By iterating over our pseudo-random func-
tion only a couple of times, we can get a reasonably random distribution. Because we need
to displace in both x and z, we generate two successive random numbers from

ptg

gl_InstanceID and use them to displace the blade of grass within the plane. Look at
Figure 12.4 to see what we get now.

CHAPTER 12 Advanced Geometry Management500

FIGURE 12.4 Slightly perturbed blades of grass.

At this point, our field of grass is distributed evenly with random perturbations in position
for each blade of grass. All the grass blades look the same, though. (Actually, we used the
same random number generator to assign a slightly different color to each blade of grass
just so that they’d show up in the figures.) We can apply some variation over the field to
make each blade look slightly different. This is something that we’d probably want to have
control over, so we use a texture to hold information about blades of grass.

You have an x and a z coordinate for each blade of grass that was calculated by generating
a grid coordinate directly from gl_InstanceID and then generating a random number and
displacing the blade within the x-z plane. That coordinate pair can be used as a coordinate
to look up a texel within a 2D texture, and you can put whatever you want in it. Let’s
control the length of the grass using the texture. We can put a length parameter in the
texture (let’s use the red channel) and multiply the y coordinate of each vertex of the grass
geometry by that to make longer or shorter grass. A value of zero in the texture would
produce very short (or nonexistent) grass, and a value of one would produce grass of some
maximum length. Now you can design a texture where each texel represents the length of
the grass in a region of your field. Why not draw a few crop circles? The texture can be
sampled with GL_LINEAR sampling, and you can even use mipmapping.

ptg

Now, the grass is evenly distributed over the field, and you have control of the length of
the grass in different areas. However, the grass blades are still just scaled copies of each
other. Perhaps we can introduce some more variation. Next, we rotate each blade of grass
around its axis according to another parameter from the texture. We use the green
channel of the texture to store the angle through which the grass blade should be rotated
around the y-axis, with zero representing no rotation and one representing a full 360
degrees. We’ve still only done one texture fetch in our vertex shader, and still the only
input to the shader is gl_InstanceID. Things are starting to come together. Take a look at
Figure 12.5.

Drawing a lot of Geometry Efficiently 501
12

Figure 12.5 Control over the length and orientation of our grass.

Our field is still looking a little bland. The grass just sticks straight up and doesn’t move.
Real grass sways in the wind and gets flattened when things roll over it. We need the grass
to bend, and we’d like to have control over that. Why not use another channel from the
parameter texture (the blue channel) to control a bend factor? We can use that as another
angle and rotate the grass around the x-axis before we apply the rotation in the green
channel. This allows us to make the grass bend over based on the parameter in the
texture. Use zero to represent no bending (the grass stands straight up) and one to repre-
sent fully flattened grass. Normally, the grass will sway gently, and so the parameter will
have a low value. When the grass gets flattened, the value can be much higher.

ptg

Finally, we can control the color of the grass. It seems logical to just store the color of the
grass in a large texture. This might be a good idea if you want to draw a sports field with
lines, markings, or advertising on it for example, but it’s fairly wasteful if the grass is all
varying shades of green. Instead, let’s make a palette for our grass in a 1D texture and use
the final channel within our parameter texture (the alpha channel) to store the index into
that palette. The palette can start with an anemic looking dead-grass yellow at one end
and a lush, deep green at the other end. Now we read the alpha channel from the para-
meter texture along with all the other parameters and use it to index into the 1D texture—
a dependent texture fetch. Our final field is shown in Figure 12.6. (See also Color Plate 21
in the color insert.)

CHAPTER 12 Advanced Geometry Management502

FIGURE 12.6 The final field of grass.

Now, our final field has a million blades of grass, evenly distributed, with application
control over length, “flatness,” direction of bend, or sway and color. Remember, the only
input to the shader that differentiates one blade of grass from another is gl_InstanceID,
the total amount of geometry sent to OpenGL is six vertices, and the total amount of code
required to draw all the grass in the field is a single call to glDrawArraysInstanced.

The parameter texture can be read using linear texturing to provide smooth transitions
between regions of grass and can be a fairly low resolution. If you want to make your grass
wave in the wind or get trampled as hoards of armies march across it, you can animate the
texture by updating it every frame or two and uploading a new version of it before you

ptg

render the grass. Also because the gl_InstanceID is used to generate random numbers,
adding an offset to it before passing it to the random number generator allows a different
but predetermined chunk of “random” grass to be generated with the same shader.

Getting Your Data Automatically
When you call glDrawArraysInstanced or glDrawElementsInstanced, the built-in variable
gl_InstanceID will be available in your shaders to tell you which instance you’re working
on, and it will increment by one for each new instance of the geometry that you’re
rendering. It’s actually available even when you’re not using one of the instanced drawing
functions—it’ll just be zero in those cases. This means that you can use the same shaders
for instanced and noninstanced rendering.

You can use gl_InstanceID to index into arrays that are the same length as the number of
instances that you’re rendering. For example, you can use it to look up texels in a texture
or to index into a uniform array. Really, what you’d be doing though is treating the array
as if it were an “instanced attribute.” That is, a new value of the attribute is read for each
instance you’re rendering. OpenGL can feed this data to your shader automatically using a
feature called instanced arrays. To use instanced arrays, declare an input to your shader as
normal. The input attribute will have an index that you would use in calls to functions
like glVertexAttribPointer. Normally, the vertex attributes would be read per vertex and
a new value would be fed to the shader. However, to make OpenGL read attributes from
the arrays once per instance, you can call

void glVertexAttribDivisor(GLuint index, GLuint divisor);

Pass the index of the attribute to the function in index and set divisor to the number of
instances you’d like to pass between each new value being read from the array. If divisor
is zero, then the array becomes a regular vertex attribute array with a new value read per
vertex. If divisor is nonzero, however, then new data is read from the array once every
few instances. For example, if you set divisor to one, you’ll get a new value from the
array for each instance. If you set divisor to two, you’ll get a new value for every second
instance, and so on. You can mix and match the divisors, setting different values for each
attribute.

An example of using this functionality would be when you want to draw a set of objects
with different colors. Consider the simple vertex shader in Listing 12.16.

LISTING 12.16 Simple Vertex Shader with Per-Vertex Color

#version 150

precision highp float;

in vec4 position;

Drawing a lot of Geometry Efficiently 503
12

ptg

in vec4 color;

out Fragment

{

vec4 color;

} fragment;

uniform mat4 mvp;

void main(void)

{

gl_Position = mvp * position;

fragment.color = color;

}

Normally, the attribute color would be read once per vertex, and so every vertex would
end up having a different color. The application would have to supply an array of colors
with as many elements as there were vertices in the model. Also it wouldn’t be possible
for every instance of the object to have a different color because the shader doesn’t know
anything about instancing. We can make color an instanced array if we call

glVertexAttribDivisor(index_of_color, 1);

where index_of_color is the index of the slot to which the color attribute has been
bound.

Now, a new value of color will be fetched from the vertex array once per instance. Every
vertex within any particular instance will receive the same value for color, and the result
will be that each instance of the object will be rendered in a different color. The size of the
vertex array holding the data for color only needs to be as long as the number of indices
we want to render. If we increase the value of the divisor, new data will be read from the
array with less and less frequency. If the divisor is two, a new value of color will be
presented every second instance; if the divisor is three, color will be updated every third
instance; and so on.

If we render geometry using this simple shader, each instance will be drawn on top of the
others. We need to modify the position of each instance so that we can see each one. We
can use another instanced array for this. Listing 12.17 shows a simple modification to the
vertex shader in Listing 12.16.

CHAPTER 12 Advanced Geometry Management504

ptg

LISTING 12.17 Simple Instanced Vertex Shader

#version 150

precision highp float;

in vec4 position;

in vec4 instance_color;

in vec4 instance_position;

out Fragment

{

vec4 color;

} fragment;

uniform mat4 mvp;

void main(void)

{

gl_Position = mvp * (position + instance_position);

fragment.color = instance_color;

}

Now, we have a per-instance position as well as a per-vertex position. We can add these
together in the vertex shader before multiplying with the model-view-projection matrix.
We can set the instance_position input attribute to an instanced array by calling

glVertexAttribDivisor(index_of_instance_position, 1);

Again, index_of_instance_position is the index of the location to which the
instance_position attribute has been bound. Any type of input attribute can be made
instanced using glVertexAttribDivisor. This example is simple and only uses a transla-
tion (the value held in instance_position). A more advanced application could use
matrix vertex attributes or pack some transformation matrices into uniforms and pass
matrix weights in instanced arrays. The application can use this to render an army of
soldiers, each with a different pose, or a fleet of spaceships all flying in different direc-
tions.

Now let’s hook this simple shader up to a real program. First, we load our shaders and set
the attribute positions like normal before linking the program as shown in Listing 12.18.

Drawing a lot of Geometry Efficiently 505
12

ptg

LISTING 12.18 Setting Up Instanced Attributes

instancingProg = gltLoadShaderPair(“instancing.vs”, “instancing.fs”);

glBindAttribLocation(instancingProg, 0, “position”);

glBindAttribLocation(instancingProg, 1, “instance_color”);

glBindAttribLocation(instancingProg, 2, “instance_position”);

glLinkProgram(instancingProg);

In Listing 12.19, we declare some data and load it into a vertex buffer (attached to a vertex
array object).

LISTING 12.19 Getting Ready for Instanced Rendering

static const GLfloat square_vertices[] =

{

-1.0f, -1.0f, 0.0f, 1.0f,

1.0f, -1.0f, 0.0f, 1.0f,

1.0f, 1.0f, 0.0f, 1.0f,

-1.0f, 1.0f, 0.0f, 1.0f

};

static const GLfloat instance_colors[] =

{

1.0f, 0.0f, 0.0f, 1.0f,

0.0f, 1.0f, 0.0f, 1.0f,

0.0f, 0.0f, 1.0f, 1.0f,

1.0f, 1.0f, 0.0f, 1.0f

};

static const GLfloat instance_positions[] =

{

-2.0f, -2.0f, 0.0f, 0.0f,

2.0f, -2.0f, 0.0f, 0.0f,

2.0f, 2.0f, 0.0f, 0.0f,

-2.0f, 2.0f, 0.0f, 0.0f

};

GLuint offset = 0;

glGenVertexArrays(1, &square_vao);

glGenBuffers(1, &square_vbo);

glBindVertexArray(square_vao);

glBindBuffer(GL_ARRAY_BUFFER, square_vbo);

glBufferData(GL_ARRAY_BUFFER,

CHAPTER 12 Advanced Geometry Management506

ptg

sizeof(square_vertices) +

sizeof(instance_colors) +

sizeof(instance_positions), NULL, GL_STATIC_DRAW);

glBufferSubData(GL_ARRAY_BUFFER, offset,

sizeof(square_vertices),

square_vertices);

offset += sizeof(square_vertices);

glBufferSubData(GL_ARRAY_BUFFER, offset,

sizeof(instance_colors), instance_colors);

offset += sizeof(instance_colors);

glBufferSubData(GL_ARRAY_BUFFER, offset,

sizeof(instance_positions), instance_positions);

offset += sizeof(instance_positions);

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0);

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 0,

(GLvoid *)sizeof(square_vertices));

glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, 0,

(GLvoid *)(sizeof(square_vertices) +

sizeof(instance_colors)));

glEnableVertexAttribArray(0);

glEnableVertexAttribArray(1);

glEnableVertexAttribArray(2);

Now all that remains is to set the vertex attrib divisors for the instance_color and
instance_position attribute arrays:

glVertexAttribDivisor(1, 1);

glVertexAttribDivisor(2, 1);

Now we draw four instances of the geometry we put into our vertex buffer. Each instance
consists of four vertices, each with its own position. The same vertex in each instance has
the same position. However, all of the vertices in a single instance see the same value of
instance_color and instance_position, and a new value of each is presented at each
instance. Our rendering loop looks like this:

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

glClear(GL_COLOR_BUFFER_BIT);

glUseProgram(instancingProg);

glBindVertexArray(square_vao);

glDrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, 4);

Drawing a lot of Geometry Efficiently 507
12

ptg

What we get is shown in Figure 12.7.

CHAPTER 12 Advanced Geometry Management508

FIGURE 12.7 Result of instanced rendering.

In Figure 12.7, you can see that four squares have been rendered. Each is at a different
position, and each has a different color. This can be extended to thousands or even
millions of instances, and modern graphics hardware should be able to handle this
without any issue.

Storing Transformed Vertices—Transform Feedback
In OpenGL, it is possible to save the results of the vertex or geometry shader into a buffer
object. This is a feature known as transform feedback. When transform feedback is used, a
specified set of attributes output from the vertex shader or geometry shader are written
into a buffer. When no geometry shader is present (remember, geometry shaders are
optional), the data comes from the vertex shader. When a geometry shader is present, the
vertices generated by the geometry shader are recorded. The buffers used for capturing the
output of vertex and geometry shaders are known as transform feedback buffers. Once data
has been placed into a buffer using transform feedback, it can be read back using a func-
tion like glGetBufferSubData or by mapping it into the application’s address space using
glMapBuffer and reading from it directly. It can also be used as the source of data for
subsequent drawing commands.

ptg

Transform Feedback
Transform feedback is a special mode of OpenGL that allows the results of a vertex or
geometry shader to be saved into a buffer. Once the information is present in the buffer, it
can be used as a source of vertex data for more drawing commands. Any attribute output
from the vertex or geometry shader can be stored into the buffers. However, you can’t
simultaneously record the output of the vertex shader and the geometry shader. If a geom-
etry shader is active, only the output of the geometry shader is accessible. If you need the
raw data from the vertex shader, you need to pass it through the geometry shader unmod-
ified. The position of transform feedback is illustrated in Figure 12.8.

Storing Transformed Vertices—Transform Feedback 509
12

FIGURE 12.8 Schematic of the OpenGL pipeline, including transform feedback.

As you can see, transform feedback buffers sit between the output of the geometry shading
and vertex assembly stages. As the geometry shader is an optional stage, if it is not
present, the data actually comes from the vertex shader—this is denoted by dotted lines.
Although the diagram shows transform feedback buffers feeding the vertex assembly stage,
this is only to illustrate the feedback loop that is created (hence the term, transform feed-
back). While OpenGL will allow you to bind the same buffer as a transform feedback buffer
and as a vertex buffer simultaneously, the results will not be defined if you do this, and
you almost certainly won’t get what you wanted.

The set of vertex attributes, or varyings, to be recorded during transform feedback mode is
specified using

void glTransformFeedbackVaryings(GLuint program, GLsizei count, const GLchar **

varyings, GLenum bufferMode);

ptg

The first parameter to glTransformFeedbackVaryings is the name of a program object. The
transform feedback varying state is maintained per program object. This means that differ-
ent programs can record different sets of vertex attributes, even if the same vertex or
geometry shaders are used in them. The second parameter is the number of varyings to
record and is also the length of the array whose address is given in the third parameter.
This third parameter is simply an array of C-style strings giving the names of the varyings
to record. These are the names of the out variables in the vertex or geometry shader.
Finally, the last parameter specifies the mode in which the varyings are to be recorded.
This must be either GL_SEPARATE_ATTRIBS or GL_INTERLEAVED_ATTRIBS. If bufferMode is
GL_INTERLEAVED_ATTRIBS, the varyings are recorded into a single buffer, one after another.
If bufferMode is GL_SEPARATE_ATTRIBS, each of the varyings is recorded into its own buffer.

Consider the following piece of vertex shader code, which declares the output varyings:

out vec4 vs_position_out;

out vec4 vs_color_out;

out vec3 vs_normal_out;

out vec3 vs_binormal_out;

out vec3 vs_tangent_out;

To specify that the varyings vs_position_out, vs_color_out, and so on should be written
into a single interleaved transform feedback buffer, the following C code could be used in
your application:

static const char * varying_names[] =

{

“vs_position_out”,

“vs_color_out”,

“vs_normal_out”,

“vs_binormal_out”,

“vs_tangent_out”

};

glTransformFeedbackVaryings(program, 5, varying_names,

GL_INTERLEAVED_ATTRIBS);

Not all of the outputs from your vertex (or geometry) shader need to be stored into the
transform feedback buffer. It is possible to save a subset of the vertex shader outputs to the
transform feedback buffer and send more to the fragment shader for interpolation.
Likewise, it is also possible to save some outputs from the vertex shader into a transform
feedback buffer that are not used by the fragment shader. Because of this, outputs from
the vertex shader that may have been considered inactive (because they’re not used by the
fragment shader) may become active due to their being stored in a transform feedback
buffer. Therefore, after specifying a new set of transform feedback varyings by calling
glTransformFeedbackVaryings, it is necessary to link the program object using

glLinkProgram(program);

CHAPTER 12 Advanced Geometry Management510

ptg

Once the transform feedback varyings have been specified and the program has been
linked, it may be used as normal. Before actually capturing anything, you need to bind a
buffer object as the transform feedback buffer. When you have specified the transform
feedback mode as GL_INTERLEAVED_ATTRIBS, all of the stored vertex attributes are written
one after another into a single buffer. To specify this buffer, call

glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, buffer);

Here, GL_TRANSFORM_FEEDBACK_BUFFER tells OpenGL that we want to bind a buffer to be
used to store the results of the vertex or geometry shader to the
GL_TRANSFORM_FEEDBACK_BUFFER binding point. The second parameter is the name of the
buffer object that we previously created with a call to glGenBuffers.

Before any data can be written to a buffer, space must be allocated in the buffer for it. To
allocate space without specifying data, call

glBufferData(GL_TRANSFORM_FEEDBACK_BUFFER, size, NULL, GL_DYNAMIC_COPY);

The first parameter is the buffer to allocate space for. You can use any buffer binding you
like just for the purpose of binding a buffer and allocating space for it. However, OpenGL
might make assumptions about what the buffer is going to be used for based on the first
binding point it is bound to, and so, especially if this is a new buffer, the
GL_TRANSFORM_FEEDBACK_BUFFER binding point is a good choice. The size parameter speci-
fies how much space you want to allocate in bytes. This is up to your application’s needs,
but if, during transform feedback, too much data is generated to fit into the buffer, the
excess will be thrown away. NULL tells OpenGL that no data is being given that you only
want to allocate space for later. The last parameter, usage, gives OpenGL a hint as to what
you plan to do with the buffer.

There are many possible values for usage, but GL_DYNAMIC_COPY is probably a good choice
for a transform feedback buffer. The DYNAMIC part tells OpenGL that the data is likely to
change often but will likely be used a few times between each update. The COPY part says
that you plan to update the data in the buffer through OpenGL functionality (such as
transform feedback) and then hand that data back to OpenGL for use in another opera-
tion (such as drawing). More information about buffer usage is available in Chapter 8,
“Buffer Objects: Storage Is Now in Your Hands.”

To specify which buffer the transform feedback data will be written to, you need to bind a
buffer to one of the indexed transform feedback binding points. There are actually multi-
ple GL_TRANSFORM_FEEDBACK_BUFFER binding points for this purpose, which are conceptu-
ally separate, but related to the general binding GL_TRANSFORM_FEEDBACK_BUFFER binding
point. A schematic of this is shown in Figure 12.9.

Storing Transformed Vertices—Transform Feedback 511
12

ptg

FIGURE 12.9 Relationship of transform feedback binding points.

To bind a buffer to any of the indexed binding points, call

glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, index, buffer);

As before, GL_TRANSFORM_FEEDBACK_BUFFER tells OpenGL that we’re binding a buffer object
to store the results of transform feedback, and the last parameter, buffer, is the name of
the buffer object we want to bind. The extra parameter, index, is the index of the
GL_TRANSFORM_FEEDBACK_BUFFER binding point. An important thing to note is that there is
no way to directly address any of the extra binding points provided by glBindBufferBase
through functions like glBufferData or glCopyBuffer. However, when you call
glBindBufferBase, it actually binds the buffer to the indexed binding point and to the
generic binding point. Therefore, you can use the extra binding points to allocate space in
the buffer if you access the general binding point right after calling glBindBufferBase.

A slightly more advanced version of glBindBufferBase is glBindBufferRange, whose
prototype is

void glBindBufferRange(GLenum target, GLuint index, GLuint buffer, GLintptr offset,

GLsizeiptr size);

The glBindBufferRange function allows you to bind a section of a buffer to an indexed
binding point, whereas glBindBuffer and glBindBufferBase can only bind the whole
buffer at once. The first three parameters (target, index, and buffer) have the same
meanings as in glBindBufferBase. The offset and size parameters are used to specify the
start and length of the section of the buffer that you’d like to bind, respectively. You can

CHAPTER 12 Advanced Geometry Management512

GL_TRANSFORM_FEEDBACK_BUFFER
General Binding Point

GL_TRANSFORM_FEEDBACK_BUFFER
Binding Point 0

GL_TRANSFORM_FEEDBACK_BUFFER
Binding Point 1

GL_TRANSFORM_FEEDBACK_BUFFER
Binding Point 2

GL_TRANSFORM_FEEDBACK_BUFFER
Binding Point 3

ptg

bind different sections of the same buffer to several different indexed binding points
simultaneously. This enables you to use transform feedback in GL_SEPARATE_ATTRIBS mode
to write each attribute of the output vertices into separate sections of a single buffer. If
your application packs all attributes into a single vertex buffer and uses
glVertexAttribPointer to specify nonzero offsets into the buffer, this allows you to make
the output of transform feedback match the input of your vertex shader.

If you specified that all of the attributes should be recorded into a single transform feed-
back buffer by using the GL_INTERLEAVED_ATTRIBS parameter to
glTransformFeedbackVaryings, the data will be written into the buffer bound to the first
GL_TRANSFORM_FEEDBACK_BUFFER binding point (that with index zero). However, if you
specified that the mode for transform feedback is GL_SEPARATE_ATTRIBS, each output from
the vertex shader will be recorded into its own separate buffer (or section of a buffer, if
you used glBindBufferRange). In this case, you need to bind multiple buffers or buffer
sections as transform feedback buffers. The index parameter must be between zero and
one less than the maximum number of varyings that can be recorded into separate buffers
using transform feedback mode. This limit depends on your graphics hardware and drivers
and can be found by calling glGetIntegerv with the GL_MAX_TRANSFORM_FEEDBACK_
SEPARATE_ATTRIBS parameter. This limit is also applied to the count parameter to
glTransformFeedbackVaryings.

There is no upper limit on the number of separate varyings that can be written to trans-
form feedback buffers in GL_INTERLEAVED_ATTRIBS mode, but there is a maximum number
of components that can be written into a buffer. For example, it is possible to write more
vec3s than vec4s into a buffer using transform feedback. Again, this limit depends on
your graphics hardware and can be found using glGetIntegerv with the GL_MAX_
TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS parameter.

It is not possible to write one set of output varyings interleaved into one buffer while
writing another set of attributes into another buffer. When transform feedback is active,
the output varyings are either all stored, interleaved into one buffer, or stored packed into
several different buffers or sections of buffers. Therefore, if you plan to use transform feed-
back to generate vertex data for subsequent passes, you need to consider this when you
plan your input vertex layout. The vertex shader is generally a little more flexible in the
way that it is able to read vertex data than in the way data can be written through trans-
form feedback.

Once the buffers that are to receive the results of the transform feedback have been
bound, transform feedback mode is activated by calling

void glBeginTransformFeedback(GLenum primitiveMode);

Now whenever vertices pass through a vertex or geometry shader, output varyings from
the later shader will be written to the transform feedback buffers. The parameter to the
function, primitiveMode, tells OpenGL what types of geometry to expect. The acceptable
parameters are GL_POINTS, GL_LINES, or GL_TRIANGLES. When you call glDrawArrays or

Storing Transformed Vertices—Transform Feedback 513
12

ptg

another OpenGL drawing function, the basic geometric type must match what you have
specified as the transform feedback primitive mode, or you must have a geometry shader
that outputs the appropriate primitive type. For example, if primitiveMode is
GL_TRIANGLES, you must call glDrawArrays with GL_TRIANGLES, GL_TRIANGLE_STRIP, or
GL_TRIANGLE_FAN, or you must have a geometry shader that produces GL_TRIANGLE_STRIP
primitives. The mapping of transform feedback primitive mode to draw types is shown in
Table 12.1.

TABLE 12.1 Values for primitiveMode

Value of PrimitiveMode Allowed Draw Types

GL_POINTS GL_POINTS

GL_LINES GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP

GL_TRIANGLES GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN

Vertices are recorded into the transform feedback buffers until transform feedback mode is
exited or until the space allocated for the transform feedback buffers is exhausted. To exit
transform feedback mode, call

glEndTransformFeedback();

All rendering that occurs between a call to glBeginTransformFeedback and
glEndTransformFeedback results in data being written into the currently bound transform
feedback buffers. Each time glBeginTransformFeedback is called, OpenGL starts writing
data at the beginning of the buffers bound for transform feedback, overwriting what
might be there already. Some care should be taken while transform feedback is active as
changing transform feedback state between calls to glBeginTransformFeedback and
glEndTransformFeedback is not allowed. For example, it’s not possible to change the trans-
form feedback buffer bindings or to resize or reallocate any of the transform feedback
buffers while transform feedback mode is active.

Turning Off Rasterization
So far, you have seen that transform feedback is a mechanism to save the intermediate
results of vertex or geometry shaders while OpenGL is rendering. But, what if you don’t
want to actually draw anything? What if you only want to use transform feedback on its
own without changing the contents of the screen? This is the kind of thing you may want
to do if you’re using the vertex shader for computation other than geometry processing
(physical simulation, for example). It is possible to use transform feedback for this purpose
by turning off rasterization. This means that the vertex and geometry shaders will still run
so that transform feedback will work, but the OpenGL pipeline will be chopped off after
that and the fragment shader will not run at all. This is therefore more efficient than
simply making a fragment shader that discards everything, or turning off color writes with
glColorMask, for example. To turn off rasterization, you actually need tell to OpenGL that
it should discard all rasterization by calling

CHAPTER 12 Advanced Geometry Management514

ptg

glEnable(GL_RASTERIZER_DISCARD);

To turn rasterization back on, simply call

glDisable(GL_RASTERIZER_DISCARD);

When GL_RASTERIZER_DISCARD is enabled, anything produced by the vertex or geometry
shader (if present) does not create any fragments, and the fragment shader never runs. If
you turn off rasterization and do not use transform feedback mode, the OpenGL pipeline
is essentially turned off.

Counting Vertices Using Primitive Queries
When a vertex shader but no geometry shader is present, the output from the vertex
shader is recorded, and the number of vertices stored into the transform feedback is the
same as the number of vertices sent to OpenGL unless the available space in any of the
transform feedback buffers is exhausted. If a geometry shader is present, that shader may
create or discard vertices and so the number of vertices written to the transform feedback
buffer may be different than the number of vertices sent to OpenGL. OpenGL can keep
track of the number of vertices written to the transform feedback buffers through query
objects. The application can then use this information to draw the resulting data or to
know how much to read back from the transform feedback buffer, should it want to keep
the data.

Query objects were introduced earlier in this chapter in the context of occlusion queries. It
was stated that there are many questions that can be asked of OpenGL. Both the number
of primitives generated and the number of primitives actually written to the transform
feedback buffers are available as queries.

As before, to generate a query object, call

glGenQueries(1, &one_query);

or to generate a number of query objects, call

glGenQueries(10, ten_queries);

Now that you have created your query objects, you can ask OpenGL to start counting
primitives as it produces them by beginning a GL_PRIMITIVES_GENERATED or GL_
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN query by beginning the query of the
appropriate type. To start either query, call

glBeginQuery(GL_PRIMITIVES_GENERATED, one_query);

or

glBeginQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, one_query);

Storing Transformed Vertices—Transform Feedback 515
12

ptg

After a call to glBeginQuery with either GL_PRIMITIVES_GENERATED or GL_TRANSFORM_
FEEDBACK_PRIMTIVES_WRITTEN, OpenGL keeps track of how many primitives were
produced by the vertex or geometry shader, or how many were actually written into the
transform feedback buffers until the query is ended using

glEndQuery(GL_PRIMITIVES_GENERATED);

or

glEndQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN);

The results of the query can be read by calling glGetQueryObjectuiv with the
GL_QUERY_RESULT parameter and the name of the query object. As with other OpenGL
queries, the result might not be available immediately because of the pipelined nature of
OpenGL. To find out if the results are available, call glGetQueryObjectuiv with the
GL_QUERY_RESULT_AVAILABLE parameter. See the “Gathering Information about the
OpenGL Pipeline—Queries” section earlier in this chapter for more information about
query objects.

There are a couple of subtle differences between the GL_PRIMITIVES_GENERATED and
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN queries. The first is that the
GL_PRIMITIVES_GENERATED query counts the number of primitives emitted by the
geometry shader, but the GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN query only counts
primitives that were successfully written into the transform feedback buffers. The primitive
count generated by the geometry shader may be more or less than the number of primi-
tives sent to OpenGL, depending on what it does. Normally, the results of these two
queries would be the same, but if not enough space is available in the transform feedback
buffers, GL_PRIMITIVES_GENERATED will keep counting, but GL_TRANSFORM_FEEDBACK_
PRIMITIVES_WRITTEN will stop.

You can check whether all of the primitives produced by your application were captured
into the transform feedback buffer by running one of each query simultaneously and
comparing the results. If they are equal, then all the primitives were successfully written. If
they differ, the buffers you used for transform feedback were probably too small.

The second difference is that GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN is only mean-
ingful when transform feedback is active. That is why it has TRANSFORM_FEEDBACK in its
name but GL_PRIMITIVES_GENERATED does not. If you run a GL_TRANSFORM_FEEDBACK_
PRIMITIVES_WRITTEN query when transform feedback is not active, the result will be zero.
However, the GL_PRIMITIVES_GENERATED query can be used at any time and will produce a
meaningful count of the number of primitives produced by OpenGL. You can use this to
find out how many vertices your geometry shader produced or discarded.

Using the Results of a Primitive Query
Now you have the results of your vertex or geometry shader stored in a buffer. You also
know how much data is in that buffer by using a query object. Now it’s time to use those

CHAPTER 12 Advanced Geometry Management516

ptg

results in further rendering. Remember that the results of the vertex or geometry shader
are placed into a buffer using transform feedback. The only thing making the buffer a
transform feedback buffer is that it’s bound to one of the GL_TRANSFORM_FEEDBACK_BUFFER
binding points. However, buffers in OpenGL are generic chunks of data and can be used
for other purposes.

Generally, after running a rendering pass that produces data into a transform feedback
buffer, you bind the buffer object to the GL_ARRAY_BUFFER binding point so that it can be
used as a vertex buffer. If you are using a geometry shader that might produce an
unknown amount of data, you need to use a GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN
query to figure out how many vertices to render on the second pass. Listing 12.20 shows
an example of what such code might look like.

LISTING 12.20 Drawing Data Written to a Transform Feedback Buffer

// We have two buffers, buffer1 and buffer2. First, we’ll bind buffer1 as the

// source of data for the draw operation (GL_ARRAY_BUFFER), and buffer2 as

// the destination for transform feedback (GL_TRANSFORM_FEEDBACK_BUFFER).

glBindBuffer(GL_ARRAY_BUFFER, buffer1);

glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFFER, buffer2);

// Now, we need to start a query to count how many vertices get written to

// the transform feedback buffer

glBeginQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, q);

// Ok, start transform feedback...

glBeginTransformFeedback(GL_POINTS);

// Draw something to get data into the transform feedback buffer

DrawSomePoints();

// Done with transform feedback

glEndTransformFeedback();

// End the query and get the result back

glEndQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN);

glGetQueryObjectuiv(q, GL_QUERY_RESULT, &vertices_to_render);

// Now we bind buffer2 (which has just been used as a transform

// feedback buffer) as a vertex buffer and render some more points

// from it.

glBindBuffer(GL_ARRAY_BUFFER, buffer2);

glDrawArrays(GL_POINTS, 0, vertices_to_render);

Example Uses for Transform Feedback
Here are a couple of examples of how you might use data stored in a transform feedback
buffer. Remember, though, OpenGL is very flexible, and there are a myriad of other poten-
tial applications for transform feedback.

Storing Transformed Vertices—Transform Feedback 517
12

ptg

Storing Intermediate Results
The first example usage for transform feedback is the storage of intermediate results. You
already read about instanced rendering. Consider an algorithm that performs a set of oper-
ations per instance and then requires the results of those operations per vertex. Now
imagine that you want to render many copies of the object using instanced rendering. You
could set up a vertex shader that uses as its input a few instanced arrays and a few regular,
per-vertex attributes. All of those per-instance calculations would have to be performed for
every copy of the object, even though they produce identical results each time.

Instead of writing one, large vertex shader that does all of the calculations in a single pass,
it is possible to break this kind of algorithm into two passes. Write a first vertex shader
that calculates the common per-instance results and writes them as a set of output vary-
ings into a transform feedback buffer. This shader can now be run once, per instance.
Next, write a second vertex shader that performs the rest of the calculations (those that
will be different for each copy of the object) and combines them with the intermediate
results from the first vertex shader by reading the per-instance attributes using an
instanced array.

Now that you have your pair of shaders, you can run the first shader once for each
instance (using a regular glDrawArrays command) and then use the second to actually
render each copy of the object. The first shader (the per-instance one) should be run with
rasterization off (using the GL_RASTERIZER_DISCARD enable discussed earlier). This produces
the intermediate results in the transform feedback buffer without actually rendering
anything. Now, turn rasterization back on and render all of the individual copies of the
object using the second shader and a call to one of the instanced rendering functions such
as glDrawArarysInstanced.

Iterative or Recursive Algorithms
Many algorithms are recursive, recirculating results from one step to another. Physical
simulations are a prime example of this type of algorithm, and transform feedback is an
ideal way to produce data that is reused in subsequent passes. Because transform feedback
writes data into buffers in a format that allows those buffers to be subsequently bound as
vertex buffers, no conversion or copying is required between passes over the data. All that
is required is a simple double-buffering scheme.

A good example of a recirculating algorithm is a particle system simulation. At each step
in the simulation, each particle has a position and a velocity that must be updated. It may
also have some fixed parameters such as mass, color, or any number of other attributes. To
produce a simple particle system using transform feedback, each particle can be repre-
sented as a vertex and its attributes stored in vertex buffers. A vertex shader can be
constructed that calculates an updated position and velocity for the particles in the
system. The particle parameters that don’t change between iterations of the particle
system can be stored in one vertex buffer, best allocated using the GL_STATIC_DRAW usage
mode. The parameters that change between allocations should be double-buffered. One
buffer is used as a vertex buffer and the source of parameters for rendering the particle

CHAPTER 12 Advanced Geometry Management518

ptg

system. The second buffer is bound as a transform feedback buffer and updated parameters
written into it by the vertex shader. Between each iteration, the two buffers are swapped.

When the particle system is rendered, a time-step is passed to the vertex shader to indicate
how much time has passed since the last update. The vertex shader calculates the approxi-
mate force on the particle due to its mass (gravity), input velocity (wind resistance), and
any other factors important to the application; integrates the particle’s velocity over the
appropriate time-step; and produces a new position and velocity.

To simply render the particles as points, send the particles to OpenGL using a command
such as glDrawArrays with GL_POINTS as the primitive type. You may want to only update
the particle positions using transform feedback but draw something more complex at each
particle (a ball, or spaceship, for example). You can do this by enabling
GL_RASTERIZER_DISCARD to turn off rasterization during the update phase and then use the
position data as an input to a second pass that turns the points into more complex sets of
geometry for rendering on the screen.

An In-Depth Example of Transform Feedback—Flocking
Let’s combine these two examples into one and create an implementation of a flocking
algorithm. Flocking algorithms show emergent behavior within a large group by updating
the properties of individual members independently of all others. This kind of behavior is
regularly seen in nature, and examples are swarms of bees, flocks of birds, and schools of
fish apparently moving in unison even though the members of the group don’t communi-
cate directly. The decisions made by an individual are based solely on its perception of the
other members of the group. However, no collaboration is made between members over
the outcome of any particular decision. This means that each group member’s new proper-
ties can be calculated in parallel—ideal for a GPU implementation.

To demonstrate both of the ideas outlined previously (storing intermediate results and iter-
ative algorithms), we implement the flocking algorithm with a pair of vertex shaders. We
represent each member of the flock as a single vertex. Each vertex has a position and a
velocity updated by the first vertex shader. The result is written to a buffer using transform
feedback. That buffer is then bound as a vertex buffer and used as an instanced input to
the second shader. Each member of the flock is an instance in the second draw. The
second vertex shader is responsible for transforming a mesh (perhaps a model of a bird)
into the position and orientation calculated in the first vertex shader. The algorithm then
iterates, starting again with the first vertex shader, reusing the positions and velocities
calculated in the previous pass. No data leaves the graphics card’s memory, and the CPU is
not involved in any calculations.

The data structures we need in this example are a set of VAOs to represent the vertex array
state for each pass and a set of VBOs to hold the positions and velocities of the members
within the flock and the vertex data for the model we use to represent them. The flock
positions and velocities need to be double-buffered because we can’t read and write the
same buffer at the same time using transform feedback. Also because each member of the

Storing Transformed Vertices—Transform Feedback 519
12

ptg

flock (vertex) needs to have access to the current position and velocity of all the other
members of the flock, we bind the position and velocity buffers to a pair of texture buffer
objects (TBOs) simultaneously. That way, the vertex shader can read arbitrarily from the
TBO to access the properties of other vertices. TBOs were introduced in Chapter 8.

Figure 12.10 illustrates the passes that the algorithm makes.

CHAPTER 12 Advanced Geometry Management520

VERTEX
ASSEMBLY

TRANSFORM
FEEDBACK

UPDATE
VERTEX
SHADER

flock_positions1

flock_velocities1

flock_positions2

update_vao2

update_vao1

flock_velocities2

TEXTURESTEXTURESTEXTURES

VERTEX
ASSEMBLY

RASTERIZE
RENDER
VERTEX
SHADER

flock_geometry

flock_geometry

flock_positions2

update_vao2

update_vao1

flock_velocities2

flock_velocities1

flock_positions1

VERTEX
ASSEMBLY

TRANSFORM
FEEDBACK

UPDATE
VERTEX
SHADER

flock_positions1

flock_velocities1

flock_positions2

update_vao2

update_vao1

flock_velocities2

TEXTURESTEXTURESTEXTURES

VERTEX
ASSEMBLY

RASTERIZE
RENDER
VERTEX
SHADER

flock_geometry

flock_geometry

flock_positions2

update_vao2

update_vao1

flock_velocities2

flock_velocities1

flock_positions1

(a) (b)

(c) (d)

FIGURE 12.10 Stages in the iterative flocking algorithm.

ptg

In (a), we perform the update for an even frame. The first position and velocity buffers are
bound as input to the vertex shader, and the second position and velocity buffers are
bound as transform feedback buffers. Notice that we also use the first set of position and
velocity buffers as backing for textures (actually TBOs) that are used by the vertex shader.
Next we render, in (b), using the same set of buffers as inputs as in the update pass. We
use the same buffers as input in both the update and render passes so that the render pass
has no dependency on the update pass. That means that OpenGL may be able to start
working on the render pass before the update pass has finished. The position and velocity
buffers are now instanced, and the additional geometry buffer is used to provide vertex
position data.

In (c), we move to the next frame. The buffers have been exchanged—the second set of
buffers is now the input to the vertex shader, and the first set is written using transform
feedback. Finally, in (d), we render the odd frames. The second set of buffers is used as
input to the vertex shader. Notice, though, that the flock_geometry buffer is a member of
both render_vao1 and render_vao2 because the same data is used in both passes, and so
we don’t need two copies of it.

The code to set all that up is shown in Listing 12.21. It isn’t particularly complex, but
there is a fair amount of repetition, making it long. The listing contains the bulk of the
initialization, with some parts omitted for brevity (those parts are indicated by *** in the
comments).

LISTING 12.21 Initializing Data Structures for the Flocking Example

// Create the four VAOs – update_vao1, update_vao2, render_vao1 and render

// vao2. Yes, we could use an array, but for the purposes of this example,

// this is more explicit

glGenVertexArrays(1, &update_vao1);

// *** Create update_vao2, render_vao1 and render_vao2 the same way

// Create the buffer objects. We’ll bind and initialize them in a moment

glGenBuffers(1, &flock_positions1);

// *** Create flock_positions2, flock_velocities1, flock_velocities2 and

// flock_geometry the same way

// Set up the VAOs and buffers – first update_vao1

glBindVertexArray(update_vao1);

glBindBuffer(GL_ARRAY_BUFFER, flock_positions1);

// *** Put some initial positions in flock_positions1 here

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, NULL);

glEnableVertexAttribArray(0);

glBindBuffer(GL_ARRAY_BUFFER, flock_velocities1);

// *** Initialize flock_velocities1 with zeroes

Storing Transformed Vertices—Transform Feedback 521
12

ptg

// (glBufferData(... NULL), glMapBuffer, memset, for example))

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);

glEnableVertexAttribArray(1);

// Next, update_vao2

// *** This is pretty much the same as update_vao1, except we don’t need

// *** initial data for flock_positions2 or flock_velocities2 because

// *** they’ll be written on the first pass. We do need to allocate them

// *** using glBufferData(... NULL), though

// Now the render VAOs – render_vao1 first

// We bind the same flock_positions1 and flock_positions2 buffers to this

// VAO, but this time they’re instanced arrays. We also bind flock_geometry

// as a regular vertex array

glBindVertexArray(render_vao1);

glBindBuffer(GL_ARRAY_BUFFER, flock_positions1);

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, NULL);

glEnableVertexAttribArray(0);

glVertexAttribDivisor(0, 1);

glBindBuffer(GL_ARRAY_BUFFER, flock_velocities1);

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);

glEnableVertexAttribArray(1);

glVertexAttribDivisor(1, 1);

glBindBuffer(GL_ARRAY_BUFFER, flock_geometry);

glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, NULL);

glEnableVertexAttribArray(2);

// Set up render_vao2

// *** This looks just like the setup for render_vao1, except we’re using

// *** flock_positions2, and flock_velocities2. Note, though, that we’d

// *** still bind flock_geometry because that doesn’t change from iteration

// *** to iteration.

// Finally, set up the TBOs

glGenTextures(1, &position_texture1);

glBindTexture(GL_TEXTURE_BUFFER, position_texture1);

glBindBuffer(GL_TEXTURE_BUFFER, flock_positions1);

// *** Create a buffer texture for each of flock_velocities1, flock_position2,

// *** and flock_velocities2 in the same way

Once we have our buffers set up, we need to compile our shaders and link them together
in a program. Before the program is linked, we need to bind the attributes in the vertex
shader to the appropriate locations so that they match the vertex arrays that we set up.

CHAPTER 12 Advanced Geometry Management522

ptg

We also need to tell OpenGL which varyings we’re planning on writing to the transform
feedback buffers. Listing 12.22 shows how the vertex attributes and transform feedback
varyings are initialized.

LISTING 12.22 Initializing Attributes and Transform Feedback for the Flocking Example

// *** Assume we’ve created our vertex and fragment shaders, compiled them

// *** and attached them to our program object.

// First, we’ll set up the attributes in the update program

glBindAttribLocation(update_program, 0, “position”);

glBindAttribLocation(update_program, 1, “velocity”);

// Now the rendering program. The first two attributes are actually the

// same as those written by the update_program. The third is the position

// of the vertices in the geometry

glBindAttribLocation(render_program, 0, “instance_position”);

glBindAttribLocation(render_program, 1, “instance_velocity”);

glBindAttribLocation(render_program, 2, “geometry_position”);

// Now we set up the transform feedback varyings:

static const char * tf_varyings[] = { “position_out”, “velocity_out” };

glTransformFeedbackVaryings(update_program, 2, tf_varyings,

GL_SEPARATE_ATTRIBS);

// Now, everything’s set up so we can go ahead and link our program objects

glLinkProgram(update_program);

glLinkProgram(render_program);

Now we need a rendering loop to update our flock positions and draw the members of the
flock. It’s actually pretty simple, now that we have our data encapsulated in VAOs. The
rendering loop is shown in Listing 12.23.

LISTING 12.23 The Rendering Loop for the Flocking Example

// Make the update program current

glUseProgram(update_program);

// We use one set of buffers as shader inputs, and another as transform

// feedback buffers to hold the shader outputs. On alternating frames,

// we’ll swap the two around

if (frame_index & 1) {

glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, position_buffer1);

glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 1, velocity_buffer1);

glBindVertexArray(update_vao2);

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_BUFFER, position_texture2);

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_BUFFER, velocity_texture2);

Storing Transformed Vertices—Transform Feedback 523
12

ptg

} else {

// *** This is the same again, only using position_buffer2, and velocity

// *** buffer2 as transform feedback buffers, and update_vao1, position

// *** texture1 and velocity_texture1 as shader inputs

}

// Turn off rasterization (enable rasterizer discard)

glEnable(GL_RASTERIZER_DISCARD);

// Start transform feedback – record updated positions

glBeginTransformFeedback(GL_POINTS);

// Draw arrays – one point for each member of the flock

glDrawArrays(GL_POINTS, 0, flock_size);

// Done with transform feedback

glEndTransformFeedback(GL_POINTS);

// Ok, now we’ll draw everything. Need to turn rasterization back on.

glDisable(GL_RASTERIZER_DISCARD);

// Use the rendering program

glUseProgram(render_program);

if (frame_index & 1) {

glBindVertexArray(render_vao2);

} else {

glBindVertexArray(render_vao1);

}

// Do an instanced draw – each member is an instance. The data updated

// by the ‘update_program’ on the last frame is now an instanced array

// in the render_program

glDrawArraysInstanced(GL_TRIANGLES, 0, 50, flock_size);

frame_index++;

That’s pretty much the interesting part of the program side. Let’s take a look at the shader
side of things. The flocking algorithm works by applying a set of rules for each member of
the flock to decide which direction to travel in. Each rule considers the current properties
of the flock member and the properties of the other members of the flock as perceived by
the individual being updated. Most of the rules require access to the other member’s posi-
tion and velocity data, so update_program uses a pair of TBOs to read from the buffers
containing that information. Listing 12.24 shows the start of the update vertex shader.

LISTING 12.24 Initializing Attributes and Transform Feedback for the Flocking Example

#version 150

precision highp float;

// These are the input attributes

CHAPTER 12 Advanced Geometry Management524

ptg

in vec3 position;

in vec3 velocity;

// These get written to transform feedback buffers

out vec3 position_out;

out vec3 velocity_out;

// These are the TBOs that are mapped to the same buffers as position

// and velocity

uniform samplerBuffer tex_position;

uniform samplerBuffer tex_velocity;

// The number of members in the flock

uniform int flock_size;

// Parameters for the simulation

uniform Parameters

{

// *** Put all the simulation parameters here

};

The main body of the program is simple. We simply read the position and velocity of the
other members of the flock, apply each rule in turn, sum up the resulting vector, and
output an updated position and velocity. Code to do this is given in Listing 12.25.

LISTING 12.25 Main Body of the Flocking Update Vertex Shader

void main(void)

{

vec3 other_position;

vec3 other_velocity;

vec3 accelleration = vec3(0.0);

int i;

for (i = 0; i < flock_size; i++) {

other_position = texelFetch(tex_position, i).xyz;

other_velocity = texelFetch(tex_velocity, i).xyz;

accelleraton += rule1(position, velocity,

other_position, other_velocity);

accelleraton += rule2(position, velocity,

other_position, other_velocity);

// *** And so on... we can apply as many rules as we want.

// *** Three or four is is enough to produce a convincing

Storing Transformed Vertices—Transform Feedback 525
12

ptg

// *** simulation

}

position_out = position + velocity;

velocity_out = velocity + acceleration / float(flock_size);

}

Now we have to define our rules. The rules we use are as follows:

• Members try not to hit each other. They need to stay at least a short distance from
each other.

• Members try to fly in the same direction as those around them.

• Members try to keep with the rest of the flock. They will fly toward the center of the
flock.

Listing 12.26 contains the shader code for the first rule. If we’re closer to another member
than we’re supposed to be, we simply move away from that member:

LISTING 12.26 The First Rule of Flocking

vec3 rule1(vec3 my_position, vec3 my_velocity,

vec3 their_position, vec3 their_velocity)

{

vec3 d = my_position – their_position;

if (dot(d, d) < parameters.closest_allowed_position)

return d * parameters.rule1_weight;

return vec3(0.0);

}

Here’s the shader code for the second rule (see Listing 12.27). It returns a change in veloc-
ity weighted by the inverse square of the distance from to other member.

LISTING 12.27 The Second Rule of Flocking

vec3 rule2(vec3 my_position, vec3 my_velocity,

vec3 their_position, vec3 their_velocity)

{

vec3 dv = (their_velocity – my_velocity);

return parameters.rule2_weight *

dv / (dot(my_position, their_position) + 1.0);

}

CHAPTER 12 Advanced Geometry Management526

ptg

Putting all this together along with any other rules we want to implement completes the
update part of the program. Now we need to produce the second vertex shader—the one
responsible for rendering the flock. This uses the position and velocity data as instanced
arrays and transforms a fixed set of vertices into position based on the position and veloc-
ity of the individual member. Listing 12.28 shows the inputs to the shader.

LISTING 12.28 Declarations of Inputs to the Flocking Rendering Vertex Shader

#version 150

precision highp float;

// These are the instanced arrays

in vec3 instance_position;

in vec3 instance_velocity;

// The regular geometry array

in vec3 position;

The body of our shader (given in Listing 12.29) simply transforms the mesh represented
by position into the correct orientation and location for the particular instance.

LISTING 12.29 Flocking Vertex Shader Body

void main(void)

{

// rotate_to_match is a function that rotates a point

// (position) around the origin to match a direction vector

// (instance_velocity)

vec3 local_position = rotate_to_match(position, instance_velocity);

gl_Position = mvp * vec4(instance_position + local_position, 1.0);

}

That’s it! We’re not going to cover rotate_to_match here; it’s beyond the scope of this
example. You can find a complete implementation, along with the rest of the code for this
example on the book’s Web site. Of course, the final rendering vertex shader may need to
be more complex if you want to render something more interesting than plain, white
blobs. It also needs to include some additional logic to try to keep the flock members
upright (and to stop them from spinning around their axes). Also, we’re not covering the
fragment shader here because it’s not related to either instancing or transform feedback.

Storing Transformed Vertices—Transform Feedback 527
12

ptg

Clipping and Determining What Should Be Drawn
When you send geometry to OpenGL, it is transformed by your vertex and geometry
shaders from the incoming (object) coordinate space into the clip coordinate space. This is
where OpenGL performs clipping to determine which vertices lie within the viewport and
which lie outside the viewport.

To do this, OpenGL divides 3D space into six half spaces defined by the bounds of the
clipping volume. The half spaces are defined by what are known as the left, right, top,
bottom, near, and far clip planes. As each vertex passes through the clipping stage,
OpenGL calculates a signed distance of that vertex to each of the planes. The absolute
value of the distance is not important—only its sign. If the signed distance to the plane is
positive, the vertex lies on the inside of the plane (the side that would be visible if you
were to stand in the middle of the view volume and look toward the plane). If the
distance is negative, the vertex lies on the outside of the plane. If the distance value is
exactly zero, then the vertex lies exactly on the plane. Now, OpenGL can tell very quickly
whether a vertex lies inside or outside the view volume by simply examining the signs of
the six distances to the six planes and by combining the results from several vertices can
determine whether larger chunks of geometry are visible.

If all of the vertices of a single triangle lie on the outside of any single plane—that is, the
distance from all of the triangle’s vertices to the same plane are negative—then that trian-
gle is known to be entirely outside the view volume and can be trivially discarded.
Similarly, if none of the distances from any of a triangle’s vertices to any plane is negative,
then the triangle is entirely contained within the view volume and is therefore visible.
Only when a triangle straddles one of the planes does further work need to be done. This
case means that the triangle will be partially visible. Different implementations of OpenGL
handle these cases in different ways. Some may break the triangle down into several
smaller triangles using a clipping algorithm such as Sutherland-Hodgman. Others may
simply rasterize the whole triangle and use brute force to discard fragments that end up
outside the viewport.

These six planes make up an oblong shape in clip space, which appears as a box in the
greater 3D space. When this is transformed to window coordinates, it may undergo a
perspective transformation and become a frustum. This is what is referred to as the view
frustum.

Clip Distances—Defining Your Own Custom Clip Space
In addition to the six distances to the six standard clip planes making up the view
frustum, a set of additional distances is available to the application that can be written
inside the vertex or geometry shader. The clip distances are available for writing in the
vertex shader through the built-in variable gl_ClipDistance[], which is an array of float-
ing-point values. The number of clip distances supported depends on your implementa-
tion of OpenGL. These distances are interpreted exactly as the built-in clip distances. If a

CHAPTER 12 Advanced Geometry Management528

ptg

shader writer wants to use user-defined clip distances, they should be enabled by the
application by calling

glEnable(GL_CLIP_DISTANCE0 + n);

Here, n is the index of the clip distance to enable. The tokens GL_CLIP_DISTANCES1,
GL_CLIP_DISTANCES2, and so on up to GL_CLIP_DISTANCES5 are usually defined in standard
OpenGL header files. However, the maximum value of n is implementation defined and
can be found by calling glGetIntegerv with the token GL_MAX_CLIP_DISTANCES. You can
disable the user-defined clip distance by calling glDisable with the same token. If the
user-defined clip distance at a particular index is not enabled, the value written to
gl_Clip_Distance[] at that index is ignored.

As with the built-in clipping planes, the sign of the distance written into the
gl_Clip_Distance[] array is used to determine whether a vertex is inside or outside the
user-defined clipping volume. If the signs of all the distances for every vertex of a single
triangle are negative, the triangle is clipped. If it is determined that the triangle may be
partially visible, then the clip distances are linearly interpolated across the triangle and the
visibility determination is made at each pixel. Thus, the rendered result will be a linear
approximation to the per-vertex distance function evaluated by the vertex shader. This
allows a vertex shader to clip geometry against an arbitrary set of planes (the distance of a
point to a plane can be found with a simple dot product).

The gl_Clip_Distance[] array is also available as an input to the fragment shader.
Fragments that would have a negative value in any element of gl_Clip_Distance[] are
clipped away and never reach the fragment shader. However, any fragment that only has
positive values in gl_Clip_Distance[]passes through the fragment shader, and this value
can then be read and used by the shader for any purpose. One example use of this func-
tionality is to fade the fragment by reducing its alpha value based as its clip distance
approaches zero. This allows a large primitive clipped against a plane by the vertex shader
to fade smoothly or be antialiased by the fragment shader, rather than generating a hard
clipped edge.

It is important to note that if all of the vertices making up a single primitive (point, line,
or triangle) are clipped against the same plane, then the whole primitive is eliminated.
This seems to make sense and behaves as expected for regular polygon meshes. However,
when using points and lines, you need to be careful. With points, you can render a point
with a single vertex that covers multiple pixels by setting the gl_PointSize parameter to a
value greater than 1.0. When gl_PointSize is large, a big point is rendered around the
vertex. This means that if you have a large point that is moving slowly toward and even-
tually off the edge of the screen, it will suddenly disappear when the center of the point
exits the view volume and the vertex representing that point is clipped. Likewise, OpenGL
can render wide lines. If a line is drawn whose vertices are both outside one of the clip-
ping planes but would otherwise be visible, nothing will be drawn. This can produce
strange popping artifacts if you’re not careful.

Clipping and Determining What Should Be Drawn 529
12

ptg

The left, right, top, and bottom planes all correspond to real-world things—the limits of
your field of view. In reality, your field of view isn’t a perfect rectangle. It’s more of an oval
shape with fuzzy edges. In practice, though, a hard limit is defined by the bounds of the
viewport—the edges of your monitor, for example. Likewise, the near plane roughly corre-
sponds to your own eye plane. Anything behind the near plane is really behind you, and
thus you shouldn’t be able to see it, but there isn’t really anything directly equivalent to it
in the real world. What about the far plane? There just is no real-world equivalent to the
far plane at all. Light travels an infinite distance unless it hits something. You can see the
stars in the sky just as clearly as this book. So why do we need a far plane at all?

OpenGL represents the depth of each fragment as a finite number, scaled between zero
and one. A fragment with a depth of zero is intersecting the near plane (and would be
jabbing you in the eye if it were real), and a fragment with a depth of one is at the farthest
representable depth but not infinitely far away. To eliminate the far plane and draw
things at any arbitrary distance, we would need to store arbitrarily large numbers in the
depth buffer—something that’s not really possible. To get around this, OpenGL has the
option to turn off clipping against the near and far planes and instead clamp the gener-
ated depth values to the range zero to one. This means that any geometry that protrudes
behind the near plane or past the far plane will essentially be projected onto that plane.

To enable depth clamping (and simultaneously turn off clipping against the near and far
planes), call

glEnable(GL_DEPTH_CLAMP);

and to disable depth clamping, call

glDisable(GL_DEPTH_CLAMP);

Of course, this only affects OpenGL’s built-in near and far plane clipping calculations. You
can still use a user-defined clip distance in your vertex shader to simulate a depth plane
that would actually have a depth value greater than one if you need to.

Figure 12.11 illustrates the effect of enabling depth clamping and drawing a primitive that
intersects the near plane.

CHAPTER 12 Advanced Geometry Management530

ptg

FIGURE 12.11 Effect of depth clamping on a primitive that intersects the near plane.

It is simpler to demonstrate this in two dimensions, so in Figure 12.11 (a), a the view
frustum is displayed as if we are looking straight down on it. The dark line represents the
primitive that would have been clipped against the near plane, and the dotted line repre-
sents the portion of the primitive that was clipped away. When depth clamping is
enabled, rather than clipping the primitive, the depth values that would have been gener-
ated outside the range zero to one are clamped into that range, effectively projecting the
primitive onto the near plane (or the far plane, if the primitive would have clipped that).
Figure 12.11 (b) shows this projection. What actually gets rendered is shown in Figure
12.11 (c). The dark line represents the values that eventually get written into the depth
buffer. Figure 12.12 shows how this translates to a real application.

Clipping and Determining What Should Be Drawn 531
12

(a) (b)

(c)

ptg

FIGURE 12.12 The visual appearance of a clipped object with and without depth clamping.

In Figure 12.12 (left), the geometry has become so close to the viewer that it is partially
clipped against the near plane. As a result, the portions of the polygons that would have
been behind the near plane are simply not drawn, and so they leave a large hole in the
model. You can see right through to the other side of the model, and the image is quite
visibly incorrect. In Figure 12.12 (right), depth clamping has been enabled. As you can see,
the geometry that was lost in (left) is back and fills the hole in the object. The values in
the depth buffer aren’t technically correct, but this hasn’t translated to visual anomalies,
and the produced picture looks better than that in (left).

Synchronizing When OpenGL Begins to Draw
In an advanced application, OpenGL’s order of operation and the pipeline nature of the
system may be important. Examples of such applications are those with multiple contexts
and multiple threads, or those sharing data between OpenGL and other APIs such as
OpenCL. In some cases, it may be necessary to determine whether commands sent to
OpenGL have finished yet and whether the results of those commands are ready. OpenGL
includes two commands to force it to start working on commands or to finish working on
commands that have been issued so far. These are

glFlush();

and

glFinish();

There are subtle differences between the two. The first, glFlush, ensures that any
commands issued so far are at least placed into the start of the OpenGL pipeline and that
they will eventually be executed. glFinish, on the other hand actually ensures that all
commands issued have been fully executed and that the OpenGL pipeline is empty. The

CHAPTER 12 Advanced Geometry Management532

ptg

problem is that glFlush doesn’t tell you anything about the execution status of the
commands issued—only that they will eventually be executed, and while glFinish does
ensure that all of your OpenGL commands have been processed, it will empty the
OpenGL pipeline, causing a bubble and reducing performance, sometimes drastically.

Sometimes it may be necessary to know whether OpenGL has finished executing
commands up to some point. This is especially useful when you are sharing data between
two contexts or between OpenGL and OpenCL, for example. This type of synchronization
is managed by what are known as sync objects. Like any other OpenGL object, they must
be created before they are used and destroyed when they are no longer needed. Sync
objects have two possible states: signaled and unsignaled. They start out in the unsignaled
state, and when some particular event occurs, they move to the signaled state. The event
that triggers their transition from unsignaled to signaled depends on their type. The type
of sync object we are interested in is called a fence sync, and one can be created by calling

GLsync glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

The first parameter is a token specifying the event we’re going to wait for. In this case,
GL_SYNC_GPU_COMMANDS_COMPLETE says that we want the GPU to have processed all
commands in the pipeline before setting the state of the sync object to signaled. The
second parameter is a flags field and is zero here because no flags are relevant for this type
of sync object. The glFenceSync function returns a new GLsync object. As soon as the
fence sync is created, it enters (in the unsignaled state) the OpenGL pipeline and is
processed along with all the other commands without stalling OpenGL or consuming
significant resources. When it reaches the end of the pipeline, it is “executed” like any
other command, and this sets its state to signaled. Because of the in-order nature of
OpenGL, this tells us that any OpenGL commands issued before the call to glFenceSync
have completed, even though commands issued after the glFenceSync may not have
reached the end of the pipeline yet.

Once the sync object has been created (and has therefore entered the OpenGL pipeline),
we can query its state to find out if it’s reached the end of the pipeline yet, and we can ask
OpenGL to wait for it to become signaled before returning to the application.

To determine whether the sync object has become signaled yet, call

glGetSynciv(sync, GL_SYNC_STATUS, sizeof(GLint), NULL, &result);

When glGetSynciv returns, result (which is a GLint) will contain GL_SIGNALED if the sync
object was in the signaled state and GL_UNSIGNALED otherwise. This allows the application
to poll the state of the sync object and use this information to potentially do some useful
work while the GPU is busy with previous commands. For example, consider the code in
Listing 12.30.

Synchronizing When OpenGL Begins to Draw 533
12

ptg

LISTING 12.30 Working While Waiting for a Sync Object

GLint result = GL_UNSIGNALED;

glGetSynciv(sync, GL_SYNC_STATUS, sizeof(GLint), NULL, &result);

while (result != GL_SIGNALED) {

DoSomeUsefulWork();

glGetSynciv(sync, GL_SYNC_STATUS, sizeof(GLint), NULL, &result);

}

This code loops, doing a small amount of useful work on each iteration until the sync
object becomes signaled. If the application were to create a sync object at the start of each
frame, the application could wait for the sync object from two frames ago and do a vari-
able amount of work depending on how long it takes the GPU to process the commands
for that frame. This allows an application to balance the amount of work done by the CPU
(such as the number of sound effects to mix together or the number of iterations of a
physics simulation to run, for example) with the speed of the GPU.

To actually cause OpenGL to wait for a sync object to become signaled (and therefore, for
the commands in the pipeline before the sync to complete), there are two functions that
you can use:

glClientWaitSync(sync, GL_SYNC_FLUSH_COMMANDS_BIT, timeout);

or

glWaitSync(sync, 0, GL_TIMEOUT_IGNORED);

The first parameter to both functions is the name of the sync object that was returned by
glFenceSync. The second and third parameters to the two functions have the same names
but must be set differently.

For glClientWaitSync, the second parameter is a bitfield specifying additional behavior of
the function. The GL_SYNC_FLUSH_COMMANDS_BIT tells glClientWaitSync to ensure that the
sync object has entered the OpenGL pipeline before beginning to wait for it to become
signaled. Without this bit, there is a possibility that OpenGL could watch for a sync object
that hasn’t been sent down the pipeline yet, and the application could end up waiting
forever and hang. It’s a good idea to set this bit unless you have a really good reason not
to. The third parameter is a timeout value in nanoseconds to wait. If the sync object
doesn’t become signaled within this time, glClientWaitSync returns a status code to indi-
cate so. glClientWaitSync won’t return until either the sync object becomes signaled or a
timeout occurs.

There are four possible status codes that might be returned by glClientWaitSync. They are
summarized in Table 12.2.

CHAPTER 12 Advanced Geometry Management534

ptg

TABLE 12.2 Possible Return Values for glClientWaitSync

Status Returned by glClientWaitSync Meaning

GL_ALREADY_SIGNALED The sync object was already signaled when

glClientWaitSync was called and so the function returned

immediately.

GL_TIMEOUT_EXPIRED The timeout specified in the timeout parameter expired,

meaning that the sync object never became signaled in the

allowed time.

GL_CONDITION_SATISFIED The sync object became signaled within the allowed

timeout period (but was not already signaled when

glClientWaitSync was called).

GL_WAIT_FAILED An error occurred (such as sync not being a valid sync

object), and the user should check the result of

glGetError() to get more information.

There are a couple of things to note about the timeout value. First, while the unit of
measurement is nanoseconds, there is no accuracy requirement in OpenGL. If you specify
that you want to wait for one nanosecond, OpenGL could round this up to the next
millisecond or more. Second, if you specify a timeout value of zero, glClientWaitSync will
return GL_ALREADY_SIGNALED if the sync object was in a signaled state at the time of the
call and GL_TIMEOUT_EXPIRED otherwise. It will never return GL_CONDITION_SATISFIED.

For glWaitSync, the behavior is slightly different. The application won’t actually wait for
the sync object to become signaled, only the GPU will. Therefore, glWaitSync will return
to the application immediately. This makes the second and third parameters somewhat
irrelevant. Because the application doesn’t wait for the function to return, there is no
danger of hanging, and so the GL_SYNC_FLUSH_COMMANDS_BIT is not needed and would
actually cause an error if specified. Also, the timeout will actually be implementation
dependent and so the special timeout value GL_TIMEOUT_IGNORED is specified to make
this clear. If you’re interested, you can find out what the timeout value used by your
implementation is by calling glGetInteger64v with the GL_MAX_SERVER_WAIT_TIMEOUT
parameter.

You might be wondering, “What is the point of asking the GPU to wait for a sync object
to reach the end of the pipeline?” After all, the sync object will become signaled when it
reaches the end of the pipeline, and so if you wait for it to reach the end of the pipeline,
it will of course be signaled. Therefore, won’t glWaitSync just do nothing? This would be
true if we only considered simple applications that only use a single OpenGL context and
that don’t use other APIs. However, the power of sync objects is harnessed when using
multiple OpenGL contexts. Sync objects can be shared between OpenGL contexts and
between compatible APIs such as OpenCL. That is, a sync object created by a call to
glFenceSync on one context can be waited for by a call to glWaitSync (or
glClientWaitSync) on another context.

Synchronizing When OpenGL Begins to Draw 535
12

ptg

Consider this. You can ask one OpenGL context to hold off rendering something until
another context has finished doing something. This allows synchronization between two
contexts. You can have an application with two threads and two contexts (or more, if you
want). If you create a sync object in each context, and then in each context you wait for
the sync objects from the other contexts using either glClientWaitSync, you know that
when all of the functions have returned, all of those contexts are synchronized with each
other. Together with thread synchronization primitives provided by your OS (such as
semaphores), you can keep rendering to multiple windows in sync.

An example of this type of usage is when a buffer is shared between two contexts. The first
context is writing to the buffer using transform feedback, while the second context wants
to draw the results of the transform feedback. The first context would draw using trans-
form feedback mode. After calling glEndTransformFeedback, it immediately calls
glFenceSync. Now, the application makes the second context current and calls glWaitSync
to wait for the sync object to become signaled. It can then issue more commands to
OpenGL (on the new context), and those are queued up by the drivers, ready to execute.
Only when the GPU has finished recording data into the transform feedback buffers with
the first context does it start to work on the commands using that data in the second
context.

There are also extensions and other functionality in APIs like OpenCL that allow asyn-
chronous writes to buffers. You can use glWaitSync to ask a GPU to wait until the data in
a buffer is valid by creating a sync object on the context that generates the data and then
waiting for that sync object to become signaled on the context that’s going to consume
the data.

Sync objects only ever go from the unsignaled to the signaled state. There is no mecha-
nism to put a sync object back into the unsignaled state, even manually. This is because a
manual flip of a sync object can cause race conditions and possibly hang the application.
Consider the situation where a sync object is created, reaches the end of the pipeline and
becomes signaled, and then the application set it back to unsignaled. If another thread
tried to wait for that sync object but didn’t start waiting until after the application had
already set the sync object back to the unsignaled state, it would wait forever. Each sync
object therefore represents a one-shot event, and every time a synchronization is required,
a new sync object must be created by calling glFenceSync. Although it is always important
to clean up after yourself by deleting objects when you’re done with them, this is particu-
larly important with sync objects because you might be creating many new ones every
frame. To delete a sync object, call

glDeleteSync(sync);

CHAPTER 12 Advanced Geometry Management536

ptg

This deletes the sync object. This may not occur immediately; any thread that is watching
for the sync object to become signaled will still wait for its respective timeouts, and the
object will actually be deleted once nobody’s watching it any more. Thus, it is perfectly
legal to call glWaitSync followed by glDeleteSync even though the sync object is still in
the OpenGL pipeline.

Summary
In this chapter, you learned how to manage large amounts of vertex and other data,
control how OpenGL accesses that data, and get information about what OpenGL did
with it. You saw how to store the data produced by one pass of your algorithm and reuse
it in another pass. You have the tools to synchronize multiple contexts so that data
produced by one can be consumed by another. You read about methods of drawing many
copies of a single set of geometry, and you learned how to provide data to OpenGL to use
on each of those copies. You also know how to time the operation of the OpenGL
pipeline, allowing you to make informed decisions about the rendering your application
does to improve performance.

Summary 537
12

ptg

This page intentionally left blank

ptg

PART III

Platform-Specific Notes

Now, about that word “portable.” Although OpenGL itself
remains purely a platform-independent abstraction of
graphics hardware, there is always the need to interface
OpenGL with native operating systems and windowing
systems. On each platform, there are families of nonportable
binding functions that glue OpenGL to the native window
or display system. In addition, there are always platform-
specific notes and characteristics that these implementations
have. This part of the book is about those interfaces and
characteristics.

The four most popular platforms for OpenGL today are
undoubtedly Windows, Mac OS X, UNIX, and the myriad of
handheld systems utilizing a subset of OpenGL called
OpenGL ES. In this part you find specific chapters that take
you through the peculiarities and strengths of using
OpenGL on these platforms. OpenGL is by far the most
popular 3D graphics API today, used in nearly every applica-
tion category, on nearly every platform where 3D hardware
can be found.

OpenGL. It’s everywhere. Do the math.

ptg

This page intentionally left blank

ptg

CHAPTER 13

OpenGL on Windows

by Nicholas Haemel

WHAT YOU’LL LEARN IN THIS CHAPTER

How To Functions You’ll Use

Request and select an wglChoosePixelFormatARB/

OpenGL pixel format SetPixelFormat

Create and use OpenGL wglCreateContextAttribsARB/

rendering contexts wglDeleteContext/

wglMakeCurrent

Use double buffering SwapBuffers

in Windows

As you have seen, OpenGL is a powerful API. Its low-level nature leaves all of the control
in the hands of application developers. Additionally, the core OpenGL code is portable
across many different platforms and operating systems. Because every operating system
has a different means of window management, each operating system has a different layer
to help applications interface with OpenGL. This helps the driver implementation under-
stand what types of buffers, color formats, and other characteristics should be used for any
specific instance.

On Microsoft Windows desktop operating systems (netbooks, laptops, desktops, servers,
and so on) a set of functions specifically tied to the Windows API is used, called WGL
(Windows-GL). WGL functions have the prefix wgl in front of functions symbolizing that
these functions are for interfaces between Windows and OpenGL. They are also sometimes
referred to as wiggle functions because of their prefix. From here on in we use real wgl
functions to directly interface with Windows and the OpenGL drivers instead of using the
GLUT library. GLUT is great for getting simple apps up and running but comes at the cost
of reduced control and flexibility.

ptg

542 CHAPTER 13 OpenGL on Windows

In this chapter you learn how to use wgl to probe a system’s capabilities, create and
manage windows, as well as handle applicable system messages. The concepts of this
chapter are introduced gradually, as we build a model OpenGL program that provides a
framework for Windows-specific OpenGL support. Up until now this book has not
required prior knowledge or experience with 3D graphics or OpenGL. But for this chapter
we assume you have at least an entry-level knowledge of Windows programming.
Otherwise, we would have wound up writing a book twice the size of this one. We would
have spent more time on the details of writing programs for Windows and less on
OpenGL programming. Many good books and resources exist that explain the details of
writing Windows applications.

OpenGL Implementations on Windows
OpenGL first became natively available for the Win32 platform with the release of
Windows NT version 3.5. Later, it was released as an add-on for Windows 95 and then
began shipping as part of the Windows 95 operating system with the OSR2 release.
OpenGL is now a native API on any full Windows platform (Windows XP, Vista, Win 7,
Server 2003, Server 2008, and so on), with its functions exported through the
opengl32.dll library. Many different levels of OpenGL hardware are available for
Windows platforms, from chipsets with part of OpenGL done in software, to entry level
video cards, to screaming fast workstation class cards. You should be aware that your
application may be running on any one of these platforms.

Microsoft’s OpenGL
Microsoft currently ships a generic software implementation of OpenGL as the default
version with its operating systems. If no 3D hardware exists on a system or if the appropri-
ate hardware drivers have not been installed, the Microsoft version of the OpenGL imple-
mentation is the one you will get. Microsoft has not contributed to OpenGL in many
years. The version of OpenGL supported on most Microsoft operating systems is 1.0 or 1.1.
This is not sufficient for most modern 3D applications. In addition, a software implemen-
tation is often not fast enough to support any meaningful graphics. For this reason, many
OpenGL applications will check the supported version of OpenGL and decide to not run if
a newer version of the OpenGL specification is not supported.

Modern Graphics Drivers
The Installable Client Driver (ICD) was the original hardware driver interface provided for
Windows NT. The ICD must implement the entire OpenGL pipeline using a combination
of software and the specific hardware for which it was written. Creating an ICD from
scratch is a considerable amount of work for a vendor to undertake.

ICDs drop in and work with Microsoft’s OpenGL implementation. Applications linked to
opengl32.dll are automatically passed through by Microsoft to an installed ICD driver for
OpenGL calls. Because a common interface exists, drivers and applications do not have to

ptg

be recompiled to take advantage of OpenGL hardware on a system, even if it changes. The
ICD is actually a part of the display driver and does not affect the existing opengl32.dll
system DLL. This driver model provides the vendor with the most opportunities to opti-
mize its driver and hardware combination.

All major hardware vendors currently use the ICD model. If a given piece of hardware
does not support some part of OpenGL natively, the ICD must implement the missing
functionality. In this way, all ICD drivers should support the entire feature set for the
version(s) of OpenGL exported by that driver.

Because the opengl32.dll portion of the OpenGL call stack belongs to the operating
system, applications and drivers have to use the library that ships with a given operating
system. Because the Microsoft software implementation only supports either OpenGL 1.0
or 1.1, the entrypoints for the opengl32.dll also only support the same versions of
OpenGL. This has created a dilemma as OpenGL has grown, evolved, and added new
functionality. We have come a long way in the last 18 years since OpenGL 1.1 was
released.

Because a display driver cannot modify the opengl32.dll to add new features for the
current version, OpenGL needed a way to allow applications to access parts that were not
exposed by the opengl32.dll. This is done through the extension mechanism and an
interface that allows applications to get the entrypoint address for any supported inter-
faces. Not only does this work for the newer versions of OpenGL, but this mechanism can
be used by hardware vendors to extend the feature set of OpenGL as we see in a few pages.

OpenGL on Vista and Windows 7
OpenGL on Vista and Windows 7 works in much the same way as on earlier operating
systems. The operating system still has a version of the opengl32.dll, and applications
call OpenGL functions much the same way. But on these newer operating systems,
desktop compositing is used to create the final image a user sees. On previous operating
systems each window rendered into the desktop pixels it owned. But on Vista and Win7,
each window renders into a surface that is handed off a new component of the operating
system called the Desktop Window Manager, or DWM.

Each window surface is “presented” to the DWM, which directly interfaces with the graph-
ics kernel driver. DWM takes all the windows from each running 2D and 3D application
and uses the GPU to combine them together with desktop components to create a final
image that the user sees. This new mechanism separates the render surfaces for each
window and allows the operating system to take advantage of advanced GPU capabilities
to provide cool blending and 3D effects.

The version of opengl32.dll on Vista and Win7 still only supports OpenGL 1.1. However,
Microsoft has implemented an OpenGL to D3D emulator that supports OpenGL version
1.4. This implementation looks like an ICD, but only shows up if a real ICD is not
installed. As of the initial release of Vista, there is no way to turn this implementation on

OpenGL Implementations on Windows 543
13

ptg

CHAPTER 13 OpenGL on Windows544

manually. Only a few games (selected by Microsoft) are “tricked” into seeing this imple-
mentation. Vista, like XP, does not ship with ICD drivers on the distribution media. Once
a user downloads a new display driver from a vendor’s Web site, however, she will get a
true ICD-based driver and full OpenGL support in both windowed and full-screen games.

Extended OpenGL
Before we get into the intricacies of using wgl, let’s look at how to extend the core func-
tionality of OpenGL and wgl. Because the core opengl32.dll only exposes a minimum set
of entrypoints, you need to know how to get at the newer functions to really make use of
wgl and OpenGL. You learn two ways of dealing with extensions: using the interfaces
directly and letting the GLEW library do some of the lifting for you.

An extension is any addition to a core version of OpenGL. Extensions are listed in the
OpenGL extension registry on the OpenGL Web site. These extensions are written as
difference specifications. That means the text of the extensions describes how the core
OpenGL specification must be changed if the extension is supported.

There are three major classifications of extensions: vendor, EXT, and ARB. Vendor exten-
sions are written and implemented on one vendor’s hardware. Initials representing the
specific vendor are usually part of the extension name—”AMD” for Advanced Micro
Devices or “NV” for NVIDIA. It is possible that more than one vendor might support a
specific vendor extension, especially if it becomes widely accepted. EXT extensions are
written together by two or more vendors. They often start their lives as a vendor-specific
extensions. ARB extensions are an official part of OpenGL because they are approved by
the OpenGL governing body, the Architecture Review Board (ARB). These extensions are
often supported by all major hardware vendors and also start as vendor or EXT extensions.

This extension process may sound confusing at first. Hundreds of extensions currently are
available! But new versions of OpenGL are often constructed from extensions program-
mers have found useful. In this way each extension gets its time in the sun. The ones that
shine can be promoted to core; the ones that are less useful are not considered. This
“natural selection” process helps to ensure only the most useful and important new
features make it into a core version of OpenGL.

Using Extensions
Back in Chapter 2, “Getting Started,” you learned how to find out about what extensions
are available on a given system. Extensions can have many different effects on OpenGL
functionality. They can simply remove some restrictions currently in place. They can
introduce new enumerants that can be used for things such as setting state. They can also
add entirely new functions to the API. The only cases that require special attention are
those where your application has to use new entrypoints.

On the Windows platform, you do not have direct access to the OpenGL driver. The
OpenGL function calls in OpenGL 3.2 that were part of OpenGL 1.1 are routed through

ptg

the opengl32.dll library. Because this DLL understands only OpenGL 1.1 entrypoints
(function names), OpenGL drivers provide a way for you to get pointers to all of the
newer OpenGL functions supported directly by the driver. The Windows OpenGL imple-
mentation has a function named wglGetProcAddress that allows you to retrieve a pointer
to an OpenGL function supported by the driver:

PROC wglGetProcAddress(LPSTR lpszProc);

This function takes the name of an OpenGL function or extension function and returns a
function pointer that you can use to call that function directly. For this to work, you must
know the full function prototype for the function so you can create a pointer to it and
subsequently call the function.

The number of extensions is large, especially when you add in the newer OpenGL core
functionality and vendor-specific extensions. Complete coverage of all OpenGL extensions
would require an entire book in itself (if not an encyclopedia!). When you have some
time, take a look at the extension registry; a link is provided in Appendix A, “Further
Reading.”

Fortunately, the following two header files give you programmatic access to most OpenGL
extensions:

#include <wglext.h>

#include <glext.h>

These files can be found at the OpenGL extension registry Web site, but they are also
maintained by most graphics card vendors (see their developer support Web sites). For the
samples shown in this book, we use the GLEW versions, which are included in
\src\GLTools\include\GL\. The wglext.h header contains a number of extensions that
are Windows-specific, and the glext.h header contains both standard OpenGL extensions
and many vendor-specific OpenGL extensions.

WGL Extensions
Several Windows-specific WGL extensions are also available. You access the WGL
extension entrypoints in the same manner as the OpenGL extensions—using the
wglGetProcAddress function. There is, however, an important exception. Typically,
among the many WGL extensions, only two are advertised by using
glGetString(GL_EXTENSIONS). One is the swap interval extension (which allows you
to synchronize buffer swaps with the vertical retrace), and the other is the WGL_ARB_
extensions_string extension. This extension provides yet another entrypoint that is
used exclusively to query for the WGL extensions. The ARB extensions string function is
prototyped as follows:

const char *wglGetExtensionsStringARB(HDC hdc);

OpenGL Implementations on Windows 545
13

ptg

This function retrieves the list of WGL extensions in the same manner you previously
would have used glGetString. Using the wglext.h header file, you can retrieve a pointer
to this function like this:

PFNWGLGETEXTENSIONSSTRINGARBPROC *wglGetExtensionsStringARB;

wglGetExtensionsStringARB = (PFNWGLGETEXTENSIONSSTRINGARBPROC)

wglGetProcAddress(“wglGetExtensionsStringARB”);

glGetString returns the WGL_ARB_extensions_string identifier, but often developers skip
this check and simply look for the entrypoint, as shown in the preceding code fragment.
This approach usually works with most OpenGL extensions, but you should realize that
this is, strictly speaking, “coloring outside the lines.” Some vendors export extensions on
an “experimental” basis, and these extensions may not be officially supported, or the
functions may not function properly if you skip the extension string check. Also, more
than one extension may use the same function or functions. Testing only for function
availability provides no information on the availability or the reliability of the specific
extension or extensions that are supported.

GLEW It All Together!
Most normal developers would grow weary fairly quickly of always having to query for
new function pointers at the beginning of the program. There is a faster way, and in fact,
we used this shortcut for all the samples in this book so far. The GLEW (GL Extension
Wrangler) library is included in the \GLTools directory with the source distribution for
the book. Automatically gaining access to all the function pointers supported by the driver
is a simple matter of adding glew.c to your project and glew.h to the top of your header
list. Then call glewInit() when your application starts up before any OpenGL calls are
made. All the function pointers for extensions and core features beyond OpenGL 1.1 will
be set up automatically. If the function fails, it returns an error, and the extension pointers
may not be initialized.

GLenum err = glewInit();

if (GLEW_OK != err)

{

/* Problem: glewInit failed, something is seriously wrong. */

fprintf(stderr, “Error: %s\n”, glewGetErrorString(err));

}

Using GLEW removes the need to perform any specialized initialization to gain access to
all the OpenGL functionality available by a particular driver on Windows. This does not,
however, remove the need to check for which version of OpenGL is currently supported
by the driver. If an entrypoint does not exist in the driver, then the function pointer for
that entrypoint will be NULL, and calling the function will crash your program. This may
not be a big deal on your local system, but you wouldn’t want to ship your program to a
friend or customer and have it crash because their system used older hardware. Although

CHAPTER 13 OpenGL on Windows546

ptg

we are using GLEW for this book and the related sample programs, other tools provide
similar extension loading support.

Basic Windows Rendering
Now it’s time to get back to setting up your application using wgl. The commonly used
GLUT library provides only one window, and OpenGL function calls always produced
output in that window. (Where else would they go?) Your own real-world Windows appli-
cations, however, will often have more than one window. In fact, dialog boxes, controls,
and even menus are actually all windows at a fundamental level; having a useful program
that contains only one window is nearly impossible (well, okay, maybe games are an
important exception!). Also GLUT requires the use of the control function
glutMainLoop(). This works fine for simple applications but doesn’t work with libraries or
any time your code doesn’t control the main event loop. Let’s look at more flexible ways
of managing windows and contexts.

GDI Device Contexts
There are many methods for drawing into a window on a Microsoft operating system. The
oldest and most widely supported is the Windows GDI (Graphics Device Interface). GDI
has since been updated with the release of GDI+. GDI is strictly a 2D drawing interface
and was widely hardware accelerated before Windows Vista. While GDI is still available on
Vista and Win7, it is no longer hardware accelerated in the same way. The preferred high-
level drawing technology is based on the .NET framework and is called the Windows
Presentation Foundation (WPF). WPF is also available via a download for Windows XP.
Over the years some minor 2D API variations have come and gone, as well as many incar-
nations of Direct3D. On Vista, the new low-level rendering interface is called Windows
Graphics Foundation (WGF) and is essentially just Direct3D 10.

The one native rendering API common to all versions of Windows (even Windows Mobile)
is GDI. This is fortunate because GDI is how we initialize OpenGL and interact with
OpenGL on all versions of Windows (except Windows Mobile, where OpenGL is not
natively supported by Microsoft). On Vista and Win7, GDI is no longer hardware acceler-
ated, but this is irrelevant because we will never (at least when using OpenGL) actually use
GDI for any drawing operations anyway.

When using GDI, each window has a device context that actually receives the graphics
output, and each GDI function takes a device context as an argument to indicate which
window you want the function to affect. You can have multiple device contexts, but only
one for each window.

Before you jump to the conclusion that OpenGL should work in a similar way, remember
that GDI is Windows-specific. OpenGL was designed to be completely portable across
environments and hardware platforms (and it didn’t start on Windows anyway!). Adding a
device context parameter to OpenGL functions would render your OpenGL code useless in
any environment other than Windows.

Basic Windows Rendering 547
13

ptg

OpenGL does have a context identifier, however, and it is called the rendering context. The
OpenGL rendering context has many similarities to the GDI device context because it is
the rendering context that remembers current colors, state settings, and so on, much like
the device context holds onto the current brush or pen color for Windows.

Pixel Formats
The Windows concept of the device context is limited for 3D graphics because it was
designed for 2D graphics applications. In Windows, you request a device context identifier
for a given window. The nature of the device context depends on the nature of the device.
If your desktop is set to 16-bit color, the device context Windows gives you knows about
and understands 16-bit color only. You cannot tell Windows, for example, that one
window is to be a 16-bit color window and another is to be a 32-bit color window. You,
the programmer, have no control over the intrinsic characteristics of a windows device
context.

Any window or device that will be rendering 3D graphics has far more characteristics to it
than simply color depth. Up until now, GLUT has taken care of these details for you.
When you initialized GLUT, you told it what buffers you needed (double or single color
buffer, depth buffer, stencil, and alpha).

Before OpenGL can render into a window, you must first configure that window according
to your rendering needs. Will the rendering be single or double buffered? Do you need a
depth buffer? How about stencil or destination alpha? What version of OpenGL do you
need? After you set these parameters for a window, you cannot change them later. To
switch from a window with only a depth and color buffer to a window with only a stencil
and color buffer, you have to destroy the first window and re-create a new window with
the characteristics you need.

OpenGL on Windows uses pixel formats to encapsulate all of this information into
grouped capabilities. You need to find a pixel format that has the characteristics and capa-
bilities that match the needs of your application. This pixel format is then used to create
an OpenGL rendering context. There are two ways to go about looking for a pixel format.
The first method is the more preferred and capable mechanism exposed by OpenGL
directly. The second method uses the original Windows interfaces, which have been
around for as long as OpenGL has been supported on Windows.

Finding a Pixel Format the New Way
The pixel format for a window is identified by a one-based integer index number. An
implementation exports a number of pixel formats from which to choose. The Windows
interfaces for OpenGL have not grown along with OpenGL. As a result, features were
added to OpenGL that could not be accessed using traditional Windows functions.
Thankfully, OpenGL added a way to get at these new features. The new mechanisms also
provide advanced search capabilities to save you time in finding the right pixel format for
your application.

CHAPTER 13 OpenGL on Windows548

ptg

Now it’s time to use our first and maybe the most important wgl extension. The
WGL_ARB_pixel_format extension provides a mechanism that allows you to check for and
select pixel format features that go beyond what Windows provides access to. For example,
you can use this extension to find a pixel format that supports multisampled rendering.

This extension defines a long list of attributes that can be associated with a context, listed
in Table 13.1. The function wglChoosePixelFormatARB is used to find pixel formats that
match your requirements:

BOOL wglChoosePixelFormatARB(HDC hdc, const int *piAttribIList,

const float *pfAttribFList, UINT nMaxFormats,

const int *piFormats, UINT *nNumFormats);

It’s important to notice the “ARB” suffix on this function. wglChoosePixelFormatARB is
not the same as wglChoosePixelFormat. You should always use wglChoosePixelFormatARB.
Also note that an OpenGL context must be created before you can set up this extension
and call wglChoosePixelFormatARB. To do this, you can create a dummy context that gets
deleted as soon as you find the pixel format you need.

There are a lot of attributes to handle here. The first argument, hdc, is the device context
of the window that the pixel format will be used for. The second and third arguments are
used to specify the attributes you are searching for. Both arguments are lists of attribute
and value pairs. piAttribIList is a list of integer values, and pfAttribIList is a list of
float values. Some attributes are better defined as floats than integers. Both are null termi-
nated. To use these attributes, create an array of one type and then set the first index to
the value of the first attribute you’d like to specify. Set the second index to the minimum
value you require. Repeat for the second attribute in the third index and so on. Once you
have added all attributes, add a null to the end of the array. Some attributes require an
exact match such as WGL_DRAW_TO_WINDOW_ARB and WGL_SWAP_METHOD. Some attributes you
specify are only a minimum such as WGL_COLOR_BITS_ARB and WGL_ALPHA_BITS_ARB.

You have to allocate a second array to hold the results of the search. Then pass the size of
the results array into nMaxFormats and pass a pointer to the integer array into piFormats.
The actual number of formats that were written into the results array is passed back in the
nNumFormats argument. Normally this is also the number of formats found, but if your
array is too small and nNumFormats is the same as nMaxFormats, the driver found more
matching formats than fit into your results array. If you don’t specify an attribute in
piAttribIList or pfAttribIList, the function ignores it when looking for matches; no
default is used. If you pass in null for piAttribIList and pfAttribIList, you get all
supported formats back.

The results returned by wglChoosePixelFormatARB in the piFormats attribute are sorted
with the “best” matching formats at the start of the list. The “best” match is defined by
the implementation and is device-dependent. It is usually advantageous to pick formats
that the implementation thinks are the best match as long as they meet the requirements
of your application.

Basic Windows Rendering 549
13

ptg

Some attributes are required on most queries for the resulting pixel formats to be useful.
Most programs should request the WGL_SUPPORT_OPENGL_ARB, WGL_DRAW_TO_WINDOW_ARB,
and WGL_ACCELERATION_ARB attributes. These attributes are described in more detail in the
next section. All this information may seem confusing, but finding a pixel format is easier
than it may seem. Listing 13.1 gives an example of how to choose a pixel format.

LISTING 13.1 Finding a Pixel Format to Match Your Needs

int nPixCount = 0;

// Specify the important attributes we care about

int pixAttribs[] = {

WGL_SUPPORT_OPENGL_ARB, 1, // Must support OGL rendering

WGL_DRAW_TO_WINDOW_ARB, 1, // pf that can run a window

WGL_RED_BITS_ARB, 8, // 8 bits of red precision in window

WGL_GREEN_BITS_ARB, 8, // 8 bits of green precision in window

WGL_BLUE_BITS_ARB, 8, // 8 bits of blue precision in window

WGL_DEPTH_BITS_ARB, 16, // 16 bits of depth precision for window

WGL_ACCELERATION_ARB,

WGL_FULL_ACCELERATION_ARB, // must be HW accelerated

WGL_PIXEL_TYPE_ARB,

WGL_TYPE_RGBA_ARB, // pf should be RGBA type

0}; // NULL termination

// Ask OpenGL to find the most relevant format matching our attribs

// Only get one format back.

wglChoosePixelFormatARB(g_hDC, &pixAttribs[0], NULL, 1, &nPixelFormat,

(UINT*)&nPixCount);

if(nPixelFormat == -1)

{

// Couldn’t find a format, perhaps no 3D HW or drivers are installed

g_hDC = 0;

g_hDC = 0;

bRetVal = false;

printf(“!!! An error occurred trying to find a pixel format with the requested

attribs.\n”);

}

Pixel Format Attributes
Once your application has chosen a pixel format, or while walking through the entire list
yourself, you can get information on any particular attribute of a pixel format by using
the wglGetPixelFormatAttribivARB and wglGetPixelFormatAttribfvARB functions:

CHAPTER 13 OpenGL on Windows550

ptg

BOOL wglGetPixelFormatAttribivARB(HDC hdc, int iPixelFormat,

int iLayerPlane, UINT nAttributes,

const int *piAttributes, int *piValues);

BOOL wglGetPixelFormatAttribfvARB(HDC hdc, int iPixelFormat,

int iLayerPlane, UINT nAttributes,

const int *piAttributes, float *pfValues);

These two variations of the same function allow you to query the properties of a particular
pixel format index and retrieve an array containing the attribute data for that pixel
format. The first argument, hdc, is the device context of the window that the pixel format
will be used for, followed by the pixel format index. The iLayerPlane argument specifies
which layer plane to query (0 on Vista, Win7, and implementations that do not support
layer planes). Next, nAttributes specifies how many attributes you are querying for this
pixel format, and the array piAttributes contains the list of attribute names to be
queried. The attributes that can be specified are listed in Table 13.1. The final argument is
an array that will be filled with the corresponding pixel format attributes.

TABLE 13.1 Pixel Format Attributes

Constant Description

WGL_NUMBER_PIXEL_FORMATS_ARB The number of pixel formats for this device.

WGL_DRAW_TO_WINDOW_ARB Nonzero if the pixel format can be used with a

window.

WGL_DRAW_TO_BITMAP_ARB Nonzero if the pixel format can be used with a

memory Device Independent Bitmap (DIB).

WGL_DEPTH_BITS_ARB The number of bits in the depth buffer.

WGL_STENCIL_BITS_ARB The number of bits in the stencil buffer.

WGL_ACCELERATION_ARB One of the values in Table 13.2 that specifies

which, if any, hardware driver is used.

WGL_NEED_PALETTE_ARB Nonzero if a palette is required.

WGL_NEED_SYSTEM_PALETTE_ARB Nonzero if the hardware supports one palette

only in 256-color mode.

WGL_SWAP_LAYER_BUFFERS_ARB Nonzero if the hardware supports swapping

layer planes.

WGL_SWAP_METHOD_ARB The method by which the buffer swap is

accomplished for double-buffered pixel

formats. It is one of the values listed in

Table 13.3.

WGL_NUMBER_OVERLAYS_ARB The number of overlay planes.

WGL_NUMBER_UNDERLAYS_ARB The number of underlay planes.

WGL_SAMPLES_ARB The number of multisample samples per pixel.

Default is 1.

WGL_TRANSPARENT_ARB Nonzero if transparency is supported.

WGL_TRANSPARENT_RED_VALUE_ARB Transparent red color.

Basic Windows Rendering 551
13

ptg

TABLE 13.1 Pixel Format Attributes continued

Constant Description

WGL_TRANSPARENT_GREEN_VALUE_ARB Transparent green color.

WGL_TRANSPARENT_BLUE_VALUE_ARB Transparent blue color.

WGL_TRANSPARENT_ALPHA_VALUE_ARB Transparent alpha color.

WGL_SHARE_DEPTH_ARB Nonzero if layer planes share a depth buffer

with the main plane.

WGL_SHARE_STENCIL_ARB Nonzero if layer planes share a stencil buffer

with the main plane.

WGL_SHARE_ACCUM_ARB Nonzero if layer planes share an accumulation

buffer with the main plane.

WGL_SUPPORT_GDI_ARB Nonzero if GDI rendering is supported (front

buffer only).

WGL_SUPPORT_OPENGL_ARB Nonzero if OpenGL is supported.

WGL_DOUBLE_BUFFER_ARB Nonzero if double buffered.

WGL_STEREO_ARB Nonzero if left and right buffers are supported.

WGL_PIXEL_TYPE_ARB WGL_TYPE_RGBA_ARB for RGBA color modes;

WGL_TYPE_COLORINDEX_ARB for color index

mode.

WGL_COLOR_BITS_ARB Number of bit planes in the color buffer.

WGL_RED_BITS_ARB Number of red bit planes in the color buffer.

WGL_RED_SHIFT_ARB Shift count for red bit planes.

WGL_GREEN_BITS_ARB Number of green bit planes in the color buffer.

WGL_GREEN_SHIFT_ARB Shift count for green bit planes.

WGL_BLUE_BITS_ARB Number of blue bit planes in the color buffer.

WGL_BLUE_SHIFT_ARB Shift count for blue bit planes.

WGL_ALPHA_BITS_ARB Number of alpha bit planes in the color buffer.

WGL_ALPHA_SHIFT_ARB Shift count for alpha bit planes.

TABLE 13.2 Acceleration Flags for WGL_ACCELERATION_ARB

Constant Description

WGL_NO_ACCELERATION_ARB Software rendering, no acceleration.

WGL_GENERIC_ACCELERATION_ARB Acceleration via an MCD driver.

WGL_FULL_ACCELERATION_ARB Acceleration via an ICD driver.

TABLE 13.3 Buffer Swap Values for WGL_SWAP_METHOD_ARB

Constant Description

WGL_SWAP_EXCHANGE_ARB Swapping exchanges the front and back buffers.

WGL_SWAP_COPY_ARB The back buffer is copied to the front buffer.

WGL_SWAP_UNDEFINED_ARB The back buffer is copied to the front buffer, but the

back buffer contents remain undefined after the

buffer swap.

CHAPTER 13 OpenGL on Windows552

ptg

There is, however, a catch-22 to these and all other OpenGL extensions. You must have a
valid OpenGL rendering context before you can call either glGetString or
wglGetProcAddress of most OpenGL functions. This means that you must first create a
temporary window, set a pixel format (we can actually cheat and just specify pixel format
1, which will be the first hardware accelerated format), and then obtain a pointer to one
of the wglGetPixelFormatAttribARB functions. A convenient place to do this might be the
splash screen or perhaps an initial options dialog box that is presented to the user. You
should not, however, try to use the Windows desktop because your application does not
own it!

The following simple example queries for a single attribute—the number of pixel formats
supported—so that you know how many you may need to look at:

int attrib[] = { WGL_NUMBER_PIXEL_FORMATS_ARB };

int nResults[1] = {0};

int pixFmt = 1;

wglGetPixelFormatAttribivARB (hDC, pixFmt, 0, 1, attrib, nResults);

// nResults[0] now contains the number of exported pixelformats

For a more detailed example showing how to look for a specific pixel format (including a
multisampled pixel format), see the sphere_world_redux sample program coming up next.

It’s also important to understand that all entrypoints you get for OpenGL are only valid
for the current OpenGL context. If you delete a context and create another, you should fill
in the entrypoints again. It is possible that the entrypoints are different between contexts,
especially if you create contexts that support different versions of OpenGL or might be on
different monitors driven by multiple graphics cards.

Finding a Pixel Format the Old Way
Windows also exposes several functions that can be used for finding an OpenGL pixel
format. But these methods are limited and do not expose all formats or all attributes. We
show you how to use these for completeness. If you are writing a new OpenGL app, you
are better off using the method we just described. Many newer OpenGL features such as
multisample buffers are not accessible through the old pixel format selection methods.

The 3D characteristics of the window are set one time, usually just after window creation.
The collective name for these settings is the pixel format. Windows provides a structure
named PIXELFORMATDESCRIPTOR that describes the pixel format. This structure is defined as
follows:

typedef struct tagPIXELFORMATDESCRIPTOR {

WORD nSize; // Size of this structure

WORD nVersion; // Version of structure (should be 1)

DWORD dwFlags; // Pixel buffer properties

Basic Windows Rendering 553
13

ptg

BYTE iPixelType; // Type of pixel data (RGBA or Color Index)

BYTE cColorBits; // Number of color bit planes in color buffer

BYTE cRedBits; // How many bits for red

BYTE cRedShift; // Shift count for red bits

BYTE cGreenBits; // How many bits for green

BYTE cGreenShift; // Shift count for green bits

BYTE cBlueBits; // How many bits for blue

BYTE cBlueShift; // Shift count for blue

BYTE cAlphaBits; // How many bits for destination alpha

BYTE cAlphaShift; // Shift count for destination alpha

BYTE cAccumBits; // How many bits for accumulation buffer

BYTE cAccumRedBits; // How many red bits for accumulation buffer

BYTE cAccumGreenBits; // How many green bits for accumulation buffer

BYTE cAccumBlueBits; // How many blue bits for accumulation buffer

BYTE cAccumAlphaBits; // How many alpha bits for accumulation buffer

BYTE cDepthBits; // How many bits for depth buffer

BYTE cStencilBits; // How many bits for stencil buffer

BYTE cAuxBuffers; // How many auxiliary buffers

BYTE iLayerType; // Obsolete - ignored

BYTE bReserved; // Number of overlay and underlay planes

DWORD dwLayerMask; // Obsolete - ignored

DWORD dwVisibleMask; // Transparent color of underlay plane

DWORD dwDamageMask; // Obsolete - ignored

} PIXELFORMATDESCRIPTOR;

For a given OpenGL device (hardware or software), the values of these members are not
arbitrary. Only a limited number of pixel formats is available for a specific window. Pixel
formats are said to be exported by the OpenGL driver or software renderer. On old soft-
ware implementations, applications used to use ChoosePixelFormat to get a pixel format
from Microsoft. This was done by filling in a PIXELFORMATDESCRIPTOR and calling
ChoosePixelFormat. Although this call still works, you are much better off using
wglChoosePixelFormatARB, which is implemented by the OpenGL driver itself.
wglChoosePixelFormatARB can return formats that the Microsoft interface cannot. But
ChoosePixelFormat is shown here in case you run across it in older apps.

PIXELFORMATDESCRIPTOR pfd;

// Fill in pfd here

int nPf = ChoosePixelFormat(g_hdc, &pfd);

Enumerating Pixel Formats
You many have noticed in Table 13.1 that one of the possible values that can be queried
by wglGetPixelFormatAttribivARB and wglGetPixelFormatAttribfvARB is
WGL_NUMBER_PIXEL_FORMATS_ARB. You can make an initial call to

CHAPTER 13 OpenGL on Windows554

ptg

wglGetPixelFormatAttribivARB to get the total number of formats and then use that
information to step throught the entire list and query the information you care about for
each pixel format available:

GLint pfAttribCount[]= { WGL_NUMBER_PIXEL_FORMATS_ARB

};

GLint pfAttribList[] = { WGL_DRAW_TO_WINDOW_ARB,

WGL_ACCELERATION_ARB,

WGL_SUPPORT_OPENGL_ARB,

WGL_DOUBLE_BUFFER_ARB,

WGL_DEPTH_BITS_ARB,

WGL_STENCIL_BITS_ARB,

WGL_RED_BITS_ARB,

WGL_GREEN_BITS_ARB,

WGL_BLUE_BITS_ARB,

WGL_ALPHA_BITS_ARB

};

int nPixelFormatCount = 0;

wglGetPixelFormatAttribivARB(g_hDC, 1, 0, 1, pfAttribCount,

&nPixelFormatCount);

for (int i=0; i<nPixelFormatCount; i++)

{

GLint results[10];

printf(“Pixel format %d details:\n”, nPixelFormatCount);

wglGetPixelFormatAttribivARB(g_hDC, i, 0, 10, pfAttribList, results);

printf(“ Draw to Window = %d:\n”, results[0]);

printf(“ HW Accelerated = %d:\n”, results[1]);

printf(“ Supports OpenGL = %d:\n”, results[2]);

printf(“ Double Buffered = %d:\n”, results[3]);

printf(“ Depth Bits = %d:\n”, results[4]);

printf(“ Stencil Bits = %d:\n”, results[5]);

printf(“ Red Bits = %d:\n”, results[6]);

printf(“ Green Bits = %d:\n”, results[7]);

printf(“ Blue Bits = %d:\n”, results[8]);

printf(“ Alpha Bits = %d:\n”, results[9]);

}

This code prints a list of pixel formats, but you could use the same method to choose your
own pixel format if you didn’t want to use the more automated method provided by
wglChoosePixelFormatARB.

Basic Windows Rendering 555
13

ptg

Selecting and Setting a Pixel Format
After you have found a pixel format with wglChoosePixelFormatARB and
wglGetPixelFormatAttribARB, it’s time to tell the Windows and the OpenGL driver which
format you want to use. To do that, you use the SetPixelFormat function:

int nPixelFormat;

. . .

static PIXELFORMATDESCRIPTOR pfd;

// Set the pixel format for the device context

SetPixelFormat(hDC, nPixelFormat, &pfd);

The original contents of the PIXELFORMATDESCRIPTOR do not affect the functioning of the
SetPixelFormat function. Pass in the window device context handle in the hDC parameter
and your chosen pixel format in the nPixelFormat parameter. SetPixelFormat can only be
called once. To change the pixel format, your window will have to be destroyed and re-
created.

The OpenGL Rendering Context
A typical Windows application can consist of many windows. You can even set a pixel
format for each one (using that windows device context) if you want! When you call an
OpenGL command, how does the driver know which window to send its output to? In the
previous chapters, we used the GLUT framework, which provided a single window to
display OpenGL output. Recall that with normal Windows GDI-based drawing, each
window has its own device context.

To accomplish the portability of the core OpenGL functions, each environment must
implement some means of specifying a current rendering window before executing any
OpenGL commands. Just as the Windows GDI functions use the window’s device contexts,
the OpenGL environment is embodied in what is known as the rendering context. The
rendering context remembers OpenGL settings and state.

Many different versions of OpenGL have been released in the last 15 years. Some are not
backward-compatible with others. For this reason you can pick the specific version of
OpenGL your application will use. If OpenGL did not allow you to do this, your applica-
tion could stop working when a new version of OpenGL was released that was not
compatible with the one you designed your application for. You create an OpenGL render-
ing context by calling the wglCreateContextAttribsARB function, another extension:

HGLRC wglCreateContextAttribsARB(HDC hDC, HGLRC hShareContext, const int

*attribList);

The data type of an OpenGL rendering context is HGLRC. If everything succeeds, the new
context handle is returned. OpenGL can share objects (textures, FBOs, vertex arrays, and
so on) between contexts. If you want to share objects between two or more contexts, pass

CHAPTER 13 OpenGL on Windows556

ptg

in the context handle of an already created context in the hShareContext parameter. If
you pass NULL to the new context, no other existing contexts will share data with the
new context.

The attribList parameter is a value-pair list of attributes you can request in a new
context. First specify the attribute name in the array followed by the value for the
attribute. The attributes WGL_CONTEXT_MAJOR_VERSION_ARB and
WGL_CONTEXT_MINOR_VERSION_ARB are used to explicitly ask for a specific context version of
OpenGL. If your application was written for OpenGL 3.3, you would pass in 3 as the
major version and 3 as the minor version. Similarly, if your application was older and you
needed an OpenGL 3.0 context, you could ask for that. However, OpenGL drivers are
allowed to return any version that is 100% backward-compatible with the version you
requested. If you do not specify a version of OpenGL or if you ask for version 1.0, the
driver will probably create an OpenGL 3.1 context. The exact behavior differs between
vendors. The best idea is to ask for a specific OpenGL version. For new applications you
create, request OpenGL 3.3 or later.

You can only create a context up to the version supported by your OpenGL driver. You
can find out what the newest supported version is by calling glGetString with the
GL_VERSION enum:

ubyte *verString = glGetString(GL_VERSION);

Or the version can also be queried through the glGetIntegerv command, which returns
the version as integer components:

int majorVer, minorVer;

glGetIntegerv(GL_MAJOR_VERSION, &majorVer);

glGetIntegerv(GL_MINOR_VERSION, &minorVer);

There are several other types of attributes you can request through the attrib_list. The
attribute WGL_CONTEXT_PROFILE_MASK_ARB is followed by a bitfield containing either
WGL_CONTEXT_CORE_PROFILE_BIT_ARB or WGL_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB.
Only one bit can be used at a time. Setting the WGL_CONTEXT_CORE_PROFILE_BIT_ARB bit
causes the driver to return a context containing only core functionality, no deprecated
OpenGL functionality. Using this bit is a good way to prepare an application for the next
revision of OpenGL where deprecated functionality may be removed. Setting the
WGL_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB bit asks the driver to create a context that
is backward-compatible with all older versions of OpenGL. In other words, no deprecated
functionality will be removed. A context created with this bit may run slower than a core
profile context because of the additional state and functionality that needs to be tracked.

The WGL_CONTEXT_FLAGS_ARB attribute can be used to set other flags for context creation.
The only supported flag is WGL_CONTEXT_DEBUG_BIT. Specifying this bit creates a context
with additional debugging information available for applications under development.
What information and how it can be accessed is vendor-specific.

Basic Windows Rendering 557
13

ptg

If any of the attributes you have specified are not supported by the OpenGL driver on
your system, wglCreateContextAttribsARB returns null, and an error is generated. The
error WGL_ERROR_INVALID_VERSION_ARB is thrown if the combination of minor and major
version attributes with the forward-compatible context bit is not a valid OpenGL version.
If any of the bits specified for WGL_CONTEXT_PROFILE_MASK_ARB are not supported, the error
WGL_ERROR_INVALID_PROFILE_ARB is thrown.

Debug Contexts
Using a debug context can be helpful in determining where your application is coming off
its rails. At the time of this writing, the only vendor supporting debug contexts is AMD
through an extension called GL_AMD_debug_context, which defines how the additional
debug information can be accessed by developers.

A callback function is provided that allows an application to set an interrupt or breakpoint
and find out immediately when an error has occurred. The extension also allows an appli-
cation to select specific error types to be monitored and supports multiple severity levels.

For more information on how to use the GL_AMD_debug_context extension, you can check
out the extension specification, which is also in the OpenGL extension registry.

Using Contexts
A rendering context is created that is compatible with the window for which it was
created. You can have more than one rendering context in your application—for instance,
two windows that are using different drawing modes, perspectives, and so on. However,
for OpenGL commands to know which window they are operating on, only one rendering
context can be active at any one time per thread. When a rendering context is made
active, it is said to be current.

When made current, a rendering context is also associated with a device context and thus
with a particular window. Now, OpenGL knows which window to direct rendering into.
You can even move an OpenGL rendering context from window to window, but each
window must have the same pixel format. To make a rendering context current and asso-
ciate it with a particular window, you call the wglMakeCurrent function. This function
takes two parameters, the device context of the window and the OpenGL rendering
context:

void wglMakeCurrent(g_hDC, g_hRC);

To detach a rendering context, you can call wglMakeCurrent again with the hDC and null as
the hRC. If you are finished rendering or are exiting your application, you should delete
the OpenGL context to free any remaining resources. Once a context is no longer current,
you can use the wglDeleteContext to destroy the OpenGL context:

bool wglDeleteContext(g_hRC);

CHAPTER 13 OpenGL on Windows558

ptg

One important thing to remember is that you can only have one context current in a
thread at a time. You can, however, have two different contexts current at the same time
in different threads. You can even share objects between multiple contexts. When you
create your second context, pass in the handle of the first context in the second call to
wglCreateContextAttribsARB.

GLint attribs[] = {WGL_CONTEXT_MAJOR_VERSION_ARB, 3,

WGL_CONTEXT_MINOR_VERSION_ARB, 3,

0 };

HGLRC oglRC1 = wglCreateContextAttribsARB(g_hDC, 0, attribs);

HGLRC oglRC2 = wglCreateContextAttribsARB(g_hDC, oglRC1, attribs);

Contexts—The Way It Used To Be
An application can also create OpenGL contexts using wglCreateContext. This older func-
tion does not allow you to specify exactly what parameters you want. In fact, it is hard to
know what OpenGL version you’ll get back. For this reason it is much better for your
applications to use wglCreateContextAttribsARB. However, many older applications may
still use the older version:

HGLRC wglCreateContext(g_hDC);

Putting It All Together
We covered a lot of ground over the past several pages. We described each piece of the
puzzle individually, but now let’s look at all the pieces put together. In addition to seeing
all the OpenGL-related code, we should examine some of the minimum requirements for
any Windows program to support OpenGL. Our sample programs for this section are
block_redux and sphere_world_redux. Block_redux should look somewhat familiar because
it is also the first GLUT-based sample program from Chapter 1, “Introduction to 3D
Graphics and OpenGL,” while sphere_world_redux showed up in Chapter 5, “Basic
Texturing.” Now these programs are full-fledged Windows programs written with nothing
but C++ and the Win32 API. Figure 13.1 shows the output of the sphere_world_redux,
which now uses a multisampled window.

Putting It All Together 559
13

ptg
FIGURE 13.1 Output from the sphere_world_redux, this time multisampled.

Creating the Window
The starting place for any low-level Windows-based GUI program is the main function. We
do all the window setup in a second function called SetupWindow. Listing 13.2 shows
excerpts from the SetupWindow and main functions for the first sample.

LISTING 13.2 The WinMain Function of the GLRECT Sample Program

///
//////////////////
// Setup the actual window and related state.

// Create the window, find a pixel format, create the OpenGL context

bool SetupWindow(int nWidth, int nHeight)

{

// Initialize

…

TCHAR szWindowName[50] = TEXT(“GLRECT Redux”);

TCHAR szClassName[50] = TEXT(“OGL_CLASS”);

CHAPTER 13 OpenGL on Windows560

ptg

// setup window class

g_windClass.lpszClassName = szClassName; // Set the name of the Class

g_windClass.lpfnWndProc = (WNDPROC)WndProc;

g_windClass.hInstance = g_hInstance; // Use this for the module handle

// Pick the default mouse cursor

g_windClass.hCursor = LoadCursor(NULL, IDC_ARROW);

// Pick the default windows icons

g_windClass.hIcon = LoadIcon(NULL, IDI_WINLOGO);

g_windClass.hbrBackground = NULL; // No Background

g_windClass.lpszMenuName = NULL; // No menu for this window

// set styles for this class, specifically to catch

// window redraws, unique DC, and resize

g_windClass.style = CS_HREDRAW | CS_OWNDC | CS_VREDRAW;

g_windClass.cbClsExtra = 0; // Extra class memory

g_windClass.cbWndExtra = 0; // Extra window memory

// Register the newly defined class

if(!RegisterClass(&g_windClass))

bRetVal = false;

dwExtStyle = WS_EX_APPWINDOW | WS_EX_WINDOWEDGE;

dwWindStyle = WS_OVERLAPPEDWINDOW;

ShowCursor(TRUE);

// Setup window width and height

g_windowRect.left = nWindowX;

g_windowRect.right = nWindowX + nWidth;

g_windowRect.top = nWindowY;

g_windowRect.bottom = nWindowY + nHeight;

AdjustWindowRectEx(&g_windowRect, dwWindStyle, FALSE, dwExtStyle);

int nWindowWidth = g_windowRect.right - g_windowRect.left;

int nWindowHeight = g_windowRect.bottom - g_windowRect.top;

// Create window

g_hWnd = CreateWindowEx(dwExtStyle, // Extended style

szClassName, // class name

szWindowName, // window name

dwWindStyle |

WS_CLIPSIBLINGS |

WS_CLIPCHILDREN,// window stlye

Putting It All Together 561
13

ptg

nWindowX, // window position, x

nWindowY, // window position, y

nWindowWidth, // height

nWindowHeight, // width

NULL, // Parent window

NULL, // menu

g_hInstance, // instance

NULL); // pass this to WM_CREATE

// now that we have a window, setup the pixel format descriptor

g_hDC = GetDC(g_hWnd);

// Set a dummy pixel format so that we can get access to wgl functions

SetPixelFormat(g_hDC, 1,&pfd);

// Create OGL context and make it current

g_hRC = wglCreateContext(g_hDC);

wglMakeCurrent(g_hDC, g_hRC);

if (g_hDC == 0 ||

g_hRC == 0)

{

bRetVal = false;

printf(“!!! An error occured creating an OpenGL window.\n”);

}

// Setup GLEW which loads OGL function pointers

GLenum err = glewInit();

if (GLEW_OK != err)

{

/* Problem: glewInit failed, something is seriously wrong. */

bRetVal = false;

printf(“Error: %s\n”, glewGetErrorString(err));

}

const GLubyte *oglVersion = glGetString(GL_VERSION);

printf(“This system supports OpenGL Version %s.\n”, oglVersion);

// Now that extensions are setup,

// delete window and start over picking a real format.

wglMakeCurrent(NULL, NULL);

wglDeleteContext(g_hRC);

ReleaseDC(g_hWnd, g_hDC);

DestroyWindow(g_hWnd);

CHAPTER 13 OpenGL on Windows562

ptg

// Create the window again

...

int nPixCount = 0;

// Specify the important attributes we care about

int pixAttribs[] = {

WGL_SUPPORT_OPENGL_ARB, 1, // Must support OGL rendering

WGL_DRAW_TO_WINDOW_ARB, 1, // pf that can run a window

WGL_ACCELERATION_ARB, 1, // must be HW accelerated

WGL_COLOR_BITS_ARB, 24, // 8 bits of each R, G and B

WGL_DEPTH_BITS_ARB, 16, // 16 bits of depth precision for window

WGL_DOUBLE_BUFFER_ARB, GL_TRUE, // Double buffered context

WGL_SAMPLE_BUFFERS_ARB, GL_TRUE, // MSAA on

WGL_SAMPLES_ARB, 8, // 8x MSAA

WGL_PIXEL_TYPE_ARB, WGL_TYPE_RGBA_ARB, // pf should be RGBA type

0 }; // NULL termination

// Ask OpenGL to find the most relevant format matching our attribs

// Only get one format back.

wglChoosePixelFormatARB(g_hDC, &pixAttribs[0], NULL, 1,

&nPixelFormat, (UINT*)&nPixCount);

if(nPixelFormat != -1)

{

// Got a format, now set it as the current one

SetPixelFormat(g_hDC, nPixelFormat, &pfd);

GLint attribs[] = {WGL_CONTEXT_MAJOR_VERSION_ARB, 3,

WGL_CONTEXT_MINOR_VERSION_ARB, 3,

0 };

g_hRC = wglCreateContextAttribsARB(g_hDC, 0, attribs);

if (g_hRC == NULL)

{

// Handle Error . . .

}

wglMakeCurrent(g_hDC, g_hRC);

}

ShowWindow(g_hWnd, SW_SHOW);

SetForegroundWindow(g_hWnd);

SetFocus(g_hWnd);

g_ContinueRendering = true;

return bRetVal;

}

Putting It All Together 563
13

ptg

///

// Main program function, called on startup

// First setup the window and OGL state, then enter rendering loop

int main(int argc, char* argv[])

{

gltSetWorkingDirectory(argv[0]);

if(SetupWindow(800, 600))

{

SetupRC();

ChangeSize(800, 600);

while (g_ContinueRendering)

{

mainLoop();

Sleep(0);

}

}

KillWindow();

return 0;

}

This listing pretty much contains your standard window setup code. Note that we include
CS_OWNDC for the window style. Specifying this flag causes Windows to allocate a DC (device
context) specifically for your window. You need a device context for both GDI rendering
and for OpenGL double-buffered page flipping. The device context is what you can use to
refer to your specific window.

First, You Need a Device Context
Before you can draw anything in a window with GDI, you first need a Windows device
context. You need it whether you’re doing OpenGL, GDI, or even DirectX programming.
Any drawing or painting operation in Windows (even if you’re drawing on a bitmap in
memory) requires a device context that identifies the specific object being drawn on. You
retrieve the device context to a window with a simple function call:

HDC hDC = GetDC(hWnd);

The hDC variable is your handle to the device context of the window identified by the
window handle hWnd. You use the device context for all GDI functions that draw in the
window. You also need the device context for creating an OpenGL rendering context,
making it current, and performing the buffer swap. You tell Windows that you don’t need
the device context for the window any longer with another simple function call, using the
same two values:

ReleaseDC(hWnd ,hDC);

CHAPTER 13 OpenGL on Windows564

ptg

Initializing the Rendering Context
The first thing you do when the window is being created is retrieve the device context
(remember, you hang on to it) and set the pixel format:

// Store the device context

g_hDC = GetDC(g_hWnd);

// Dummy pfd

PIXELFORMATDESCRIPTOR pfd;

// Set the pixel format

SetPixelFormat(g_hDC, nPixelFormat, &pfd);

Then you create the OpenGL rendering context and make it current:

// Create the rendering context and make it current

GLint attribs[] = { WGL_CONTEXT_MAJOR_VERSION_ARB, 3,

WGL_CONTEXT_MINOR_VERSION_ARB, 3, 0 };

g_hRC = wglCreateContextAttribsARB(g_hDC, 0, attribs);

wglMakeCurrent(hDC, hRC);

Shutting Down the Rendering Context
When the window procedure receives the WM_DESTROY message or once you decide you are
done, the OpenGL rendering context must be deleted. Before you delete the rendering
context with the wglDeleteContext function, you must first call wglMakeCurrent again,
but this time with NULL as the parameter for the OpenGL rendering context:

// Deselect the current rendering context and delete it

wglMakeCurrent(g_hDC, NULL);

wglDeleteContext(g_hRC);

Before deleting the rendering context, you should delete any display lists, texture objects,
or other OpenGL-allocated memory. Well-written programs are careful to clean up all
objects and memory they allocate. Failure to clean up objects tied to a context may result
in memory leaks or other side effects.

Full-Screen Rendering
Windowed OpenGL apps are great, but it’s hard to create an immersive game if your app
isn’t in full-screen! One of the most common developer questions is “How do I do full-
screen rendering with OpenGL?” The truth is, if you’ve read this chapter, you already
know how to do full-screen rendering with OpenGL—it’s just like rendering into any other
window! The real question is “How do I create a window that takes up the entire screen
and has no borders?” Once you do this, rendering into this window is no different from
rendering into any other window in any other sample in this book.

Full-Screen Rendering 565
13

ptg

Even though this issue isn’t strictly related to OpenGL, it is of enough interest to a wide
number of our readers that we give this topic some coverage here. Creating a full-screen
window is almost as simple as creating a regular window the size of the screen and starting
at (0,0). We also use a different window style because we have no need for a title bar or
border because none of that is visible. The code in Listing 13.3 does just that.

LISTING 13.3 Setting Up a Full-Screen Window

if(bUseFS)

{

// Prepare for a mode set to the requested resolution

DEVMODE dm;

memset(&dm,0,sizeof(dm));

dm.dmSize=sizeof(dm);

dm.dmPelsWidth = nWidth;

dm.dmPelsHeight = nHeight;

dm.dmBitsPerPel = 32;

dm.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

long error = ChangeDisplaySettings(&dm, CDS_FULLSCREEN);

if (error != DISP_CHANGE_SUCCESSFUL)

{

// Oops, something went wrong, let the user know.

if (MessageBox(NULL, “Could not set fullscreen mode.\n”

“Your video card may not support the requested mode.\n”

“Use windowed mode instead?”, g_szAppName,

MB_YESNO|MB_ICONEXCLAMATION)==IDYES)

{

g_InFullScreen = false;

dwExtStyle = WS_EX_APPWINDOW | WS_EX_WINDOWEDGE;

dwWindStyle = WS_OVERLAPPEDWINDOW;

}

else

{

MessageBox(NULL, “Program will exit.”,

“ERROR”, MB_OK|MB_ICONSTOP);

return false;

}

}

else

{

// Mode set passed, setup the styles for fullscreen

CHAPTER 13 OpenGL on Windows566

ptg

g_InFullScreen = true;

dwExtStyle = WS_EX_APPWINDOW;

dwWindStyle = WS_POPUP;

ShowCursor(FALSE);

}

}

AdjustWindowRectEx(&g_windowRect, dwWindStyle, FALSE, dwExtStyle);

// Create the window again

. . .

Double Buffering
The sphere_world_redux sample program requests a double buffered pixel format by speci-
fying WGL_DOUBLE_BUFFER_ARB the in the list of attributes when searching for a pixel
format using wglChoosePixelFormatARB. By this time you have seen many sample
programs that are double buffered. But let’s revisit briefly given that this is relevant to how
we allocate the pixel format and how the program is controlled. When a double buffered
pixel format is used, two surfaces the size of the window are allocated. One acts as the
front buffer and the other as the back buffer. You can draw to them by calling
glDrawBuffers with GL_FRONT or GL_BACK as you saw in Chapter 8, “Buffer Objects: Storage
Is Now in Your Hands,” and Chapter 9, “Advanced Buffers: Beyond the Basics.”

Why would you want to do that? Double buffering allows OpenGL to draw your entire
scene to the back buffer without any intermediate results showing up on the screen. This
can provide a smoother and more visually pleasing experience for your users.

But how do users see anything if you are always rendering to a buffer that is not visible?
Easy, just tell OpenGL when you are done drawing and the buffers need to be swapped.
This is done simply by calling SwapBuffers with the device handle of the window. Once
this call is made, the back buffer will be displayed, and our program will have a new back
buffer to work with.

// Do the buffer swap

SwapBuffers(g_hDC);

Eliminating Visual Tearing
If your application is able to draw quickly and call SwapBuffers at a faster rate than the
refresh rate of the monitor, an ugly effect called tearing can occur. If your application calls
SawBuffers before the previous frame is finished being scanned out, someone using your
application will see part of one frame and part of the next.

Double Buffering 567
13

ptg

The widely supported extension WGL_EXT_swap_control comes to the rescue! You can tell
OpenGL how many video frames, or V-Syncs, are allowed to happen at minimum between
swap calls. Just use the following function to set the interval:

Bool wglSwapIntervalEXT(GLint interval);

If you pass in 0 for interval, the calls to SwapBuffers are unrestricted just as they are
without this extension. But if you pass 1 for interval, only one SwapBuffers call is allowed
to return for every vertical refresh of the monitor (every video frame). This is exactly what
you want to eliminate tearing! All of the additional CPU time can be used for other things
while your app waits for the swap to complete.

You can also pass larger intervals to wglSwapIntervalEXT to wait more frames between
swaps, but this can cause considerable stutter in your applications. Also many drivers may
not support larger intervals than one and will quietly clamp the interval back to 1.

Summary
This chapter introduced you to using OpenGL on the Windows platform. You read about
the different driver models and implementations available for Windows and what to
watch. You also learned how to search for, enumerate, and select a pixel format to get the
kind of hardware-accelerated or software rendering support you want. You’ve now seen
the basic framework for a Win32 program that replaces the GLUT framework, so you can
write true native Win32 and Win64 application code. We also showed you how to create a
full-screen window for games or simulation-type applications.

Finally, we offered in the source code a program to help you get started with Windows in
the form of block_redux, and a further extended full-screen and multisampled version of
SphereWorld in the sphere_world_redux program. These programs demonstrate how to use
a number of Windows-specific features and WGL extensions if they are available.

CHAPTER 13 OpenGL on Windows568

ptg

CHAPTER 14

OpenGL on OS X

by Richard S. Wright, Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

• Use Cocoa and Interface Builder to make an OpenGL view

• Create an optimized full-screen OpenGL window

• Eliminate onscreen visual tearing

• Optimize fill performance

• Enable the multicore version of OpenGL

OpenGL is the native and preferred 3D rendering API on the Mac OS X platform. In fact,
OpenGL is used at the lowest levels of the operating system for the desktop, GUI, and Mac
OS X’s own 2D graphics APIs and compositing engine (Quartz). The importance of
OpenGL on the Mac platform cannot be overstated. With its favored status in the eyes of
Apple (somewhat analogous to Direct3D’s status with Microsoft), it enjoys significant
support and investment by Apple in continual tuning and extension to the API.

Remember, this chapter is not about OS X programming, but about using OpenGL on OS
X. The sections following assume some prior Mac programming experience. You can prob-
ably still get things up and going, but the material offers less insight into how to develop
on OS X than it does on how to use OpenGL in that environment.

The Four Faces of OpenGL on the Mac
There are four supported programming interfaces to OpenGL on the Mac, each with its
own personality, history, and uses. Which one you use will vary greatly depending on how
you prefer to create applications on the Mac and your specific rendering needs. You
encounter all four of these technologies as you traverse the OS X programming landscape,
but not all of them are still relevant today. Table 14.1 lists these four interfaces.

ptg

570 CHAPTER 14 OpenGL on OS X

TABLE 14.1 OpenGL Interface Technologies in OS X

Name Description

GLUT Provides a complete framework for simple rendering-based applications.

This interface is layered on top of NSOpenGL.

AGL Provides the OpenGL interface to developers using Carbon as their

framework.

NSOpenGL Provides the OpenGL interface for developers using the Cocoa object-

oriented framework for their applications.

CGL The lowest-level OpenGL interface, available to all application technologies.

Both the AGL and NSOpenGL interfaces are layered on top of CGL.

We use these interfaces to do the setup for OpenGL in a window or on a display device.
After that is out of the way, OpenGL is just OpenGL! We covered how to set up a GLUT-
based program with Xcode in Chapter 2, “Getting Started,” and all of the sample programs
from the preceding chapters have been GLUT-based, thus no further discussion of how to
use GLUT is warranted here. GLUT is a good choice for quick and easy demonstration
programs or even very simplistic apps that have little to no user interface needs. The AGL
interface is still supported (and by supported, we really only mean “it still works”), even
on the newest incarnation of OS X, version 10.6 (Snow Leopard). However AGL is a
Carbon only API, and AGL along with Carbon have been deprecated and are considered
legacy APIs. Carbon has not been carried forward to the 64-bit era of OS X’s evolution
either, and thus we do not cover AGL in this edition. CGL is the lowest-level OpenGL
interface available on the Mac and can be called directly from any OpenGL program.
However, the use of CGL with Snow Leopard has become less of a necessity for full-screen
high-performance rendering due to advancements in the OS architecture, which we see
later this chapter. Our primary focus then for this chapter is Cocoa-based OpenGL
programming because this is by and large the primary means by which you will structure
your application framework and OpenGL initialization.

OpenGL with Cocoa
Many programming languages are available to developers on Mac OS X. One very popular
language on the Mac (but not quite so popular elsewhere) is Objective-C. To the uniniti-
ated, Objective-C may appear as a strange blend of C and C++ with some completely new
syntax thrown in. But Objective-C is also the foundation of a very popular application
development technology called Cocoa.

Cocoa is best described as both a collection of application framework classes and a visual
programming paradigm. Developers do quite a bit of work in Interface Builder, designing
user interfaces, assigning properties, and even making connections between events.
Objective-C classes are subclassed from controls or are created from scratch to add
application functionality. Fortunately, OpenGL is a first-class citizen in this development
environment.

ptg

Creating a Cocoa Program
A Cocoa-based program can be created using the New Project Assistant in Xcode. We did
this in Chapter 2, when we created our first GLUT-based OpenGL program using Xcode.
This time, however, we do not replace the generated project with GLUT-based code. Figure
14.1 shows our newly created CocoaGL project after we added the OpenGL framework (do
not add the GLUT framework this time either!).

OpenGL with Cocoa 571
15

FIGURE 14.1 The initial CocoaGL project.

Adding an OpenGL View
Cocoa applications store resources and GUI layouts in a XIB file (a compiled version of the
old NIB, which for historic reasons stands for NEXTSTEP Interface Builder). Double-click
the MainMenu.xib file under the Resources folder. This starts Interface Builder and opens
the main XIB for editing. You should see a screen similar to that shown in Figure 14.2,
with the main window already open.

ptg

CHAPTER 14 OpenGL on OS X572

FIGURE 14.2 Interface Builder—ready to go!

In the library palette, use the tabs at the top to select Classes and then scroll down until
you see NSOpenGLView. Click and drag an NSOpenGLView to the main window and resize it
to fill most of the main window. You can also resize the main window to taste. You can see
in Figure 14.3 that we now have an NSOpenGLView ready to go in the center of the window.

FIGURE 14.3 A very basic interface window.

ptg

Creating a Custom OpenGL Class
The next task is to create a custom class derived from NSOpenGLView and associate it with
the OpenGL view in the window. Click the Classes tab in the library window, scroll down
to the NSOpenGLView entry, and right-click it as shown in Figure 14.4. Then select New
Subclass.

OpenGL with Cocoa 573
15

FIGURE 14.4 Subclassing the NSOpenGLView class.

In the pop-up window that is presented, name your subclass. In this case, we can go with
the default MyOpenGLView. It is very important that you check the Generate Source Files
box, as shown in Figure 14.5.

ptg

FIGURE 14.5 Generating the derived class.

The next pop-up asks for the name of the file to put your derived class in. This is shown
in Figure 14.6. Make sure you check the Create ‘.h’ File box, if it isn’t already.

CHAPTER 14 OpenGL on OS X574

FIGURE 14.6 Actually adding the file to the project.

Finally, Interface Builder asks whether you want to add this class to your project as shown
in Figure 14.7. Check the box next to the project name and then click the Add button.
Now that you have a real Cocoa OpenGL view class, it’s time to start putting things
together.

FIGURE 14.7 Actually adding the file to the project.

ptg

Wiring It Together
There are still two more things we need to do in Interface Builder before we can start
writing code. The first is we need to set our NSOpenGLView window to be connected to our
custom MyOpenGLView class. Select the NSOpenGLView window in Interface Builder and from
the Tools menu, select Inspector. The Inspector window is shown in Figure 14.8 with the
Identity tab selected. In the class combo box, change NSOpenGLView to MyOpenGLView.

OpenGL with Cocoa 575
15

FIGURE 14.8 Connecting the custom MyOpenGLView class.

ptg

FIGURE 14.9 Turn off the One Shot memory attribute.

CHAPTER 14 OpenGL on OS X576

The second is to change the parent window so that it does not use One Shot memory. This
flag is on by default, and it tells the parent window that it is okay to delete the subwin-
dow objects when it is minimized to the dock or hidden. With an OpenGL window, this
would have the unfortunate side effect of breaking the link between the view and the
OpenGL context, which would prevent further rendering operations from being displayed.
Figure 14.9 shows the One Shot box unchecked in the Attributes tab. Click the caption of
the main window to get to it.

ptg

FIGURE 14.10 The OpenGL View Attributes window.

Here you can select things like the bit depth and format of the color, depth, and stencil
buffer. You can also configure an accumulation buffer, but this feature is deprecated in the
core profile, and its use is discouraged (and for good reason no longer covered in this
book). You can also select a multisampled color buffer, stereo (left and right buffers), and
even force a fallback software renderer instead of using OpenGL hardware.

OpenGL with Cocoa 577
15

Setting OpenGL View Properties
Interface Builder also gives you access to all the framebuffers’ properties in an
NSOpenGLView control. Click the control itself and then select the Attributes tab of the
inspector window. You see a myriad of options shown in Figure 14.10.

ptg

Wiring It All Together
Back in the Xcode project window, you see the MyOpenGLView header and implementation
files. These contain the stubbed definition of the MyOpenGLView class, derived from
NSOpenGLView. Interface Builder has already wired this class to our OpenGL view in the
main window, and we now only need to add the class framework and OpenGL rendering
code.

The edited header file for the new class is trivial and simply contains a member pointer to
an NSTimer that will be used for animation:

#import <Cocoa/Cocoa.h>

@interface MyOpenGLView : NSOpenGLView {

NSTimer *pTimer;

}

@end

In the implementation file, we add an idle function and implement four essential top-
level OpenGL tasks that every OpenGL program needs: prepareGL for OpenGL initializa-
tion, clearGLContext for OpenGL cleanup, reshape for calculating the viewport and
window bounds, and finally drawRect where we perform our rendering tasks. The entire
source for our minimal OpenGL framework is given in Listing 14.1.

LISTING 14.1 A Skeleton OpenGL View Class

#import “MyOpenGLView.h”

@implementation MyOpenGLView

- (void)idle:(NSTimer *)pTimer

{

[self drawRect:[self bounds]];

}

- (void) prepareOpenGL

{

pTimer = [NSTimer timerWithTimeInterval:(1.0/60.0) target:self

selector:@selector(idle:) userInfo:nil repeats:YES];

[[NSRunLoop currentRunLoop]addTimer:pTimer forMode:
NSDefaultRunLoopMode];

glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

CHAPTER 14 OpenGL on OS X578

ptg

}

- (void) clearGLContext

{

// Do any OpenGL Cleanup

}

- (void) reshape

{

NSRect rect = [self bounds];

glViewport(0, 0, rect.size.width, rect.size.height);

}

- (void) drawRect:(NSRect)dirtyRect

{

glClear(GL_COLOR_BUFFER_BIT);

glFlush();

}

@end

The output for CocoaGL is shown in Figure 14.11. As you can see it’s nothing but an
empty blue window, but now we have a complete framework to build on for our next
example.

OpenGL with Cocoa 579
15

FIGURE 14.11 OpenGL in a Cocoa view.

ptg

Double or Single Buffered?
At this point, the astute reader may be imagining the sound of screeching tires on pave-
ment. Was that a glFlush you saw in Listing 14.1 instead of some sort of buffer swap call?
Indeed it was, and this brings us to an interesting subtlety of OpenGL on Mac OS X (as
well as a nice segue into the next section).

On Mac OS X, the entire desktop is actually OpenGL accelerated. Anytime you are render-
ing with OpenGL, you are always rendering to an off-screen buffer. A buffer swap does
nothing but signal the OS that your rendering is ready to be composited with the rest of
the desktop. You can think of the desktop compositing engine as your front buffer. Thus,
in windowed OpenGL applications (this applies to both Cocoa and the now deprecated
Carbon), all OpenGL windows are really single buffered. Depending on how you look at it,
it would also be okay to say that all OpenGL windows are really double buffered, with the
desktop composite being the front buffer. Pick whichever one helps you sleep best at
night! In fact, if you were to execute a glDrawBuffer(GL_FRONT), the drivers on the Mac
actually would fall into a triple-buffered mode! In reality, all OpenGL windows on the Mac
should be treated as single buffered. The buffer swap calls are really just doing a glFlush,
unless you are working with a full-screen context. For this reason (and many others—the
least of which is that you are bypassing the driver’s own good sense as to when to flush)
you should avoid glFlush in Cocoa views until you have completed all of your OpenGL
rendering.

SphereWorld
To fill out our previous example, we port the SphereWorld example from Chapter 5, “Basic
Texturing,” from the GLUT framework to the Cocoa framework we just constructed. We
begin by creating a new Xcode project and following all of the same steps as we did for
CocoaGL, with the exception that we call the custom view class SphereWorldView. Next,
we copy the SphereWorld.cpp file and the three texture files to the folder with our new
project. Add SphereWorld.cpp to the project and add the three texture files to the
/Resources folder in Xcode.

GLTools and Objective-C++
For this example we use our C++ library GLTools again. We can add GLTools the same way
we did for our previous GLUT-based examples, and this was covered step-by-step in
Chapter 2, so we do not rehash that here. However, what we do need to do here that is
new is allow our C++ code to work with Objective-C. As it turns out…you can’t. The solu-
tion is surprisingly simple: We change our project to use Objective-C++ instead! All you
have to do is rename the .m files to .mm, and they become Objective-C++ files, and you
can use your C++ classes within them just as if they were C++ files themselves. As a bonus,
all the Cocoa Objective-C classes work just the same as well. Figure 14.12 shows our Xcode
project with these changes so far. Now it’s time to clean up the SphereWorld.cpp file and
place the appropriate functions calls in the Cocoa class.

CHAPTER 14 OpenGL on OS X580

ptgFIGURE 14.12 Our Objective-C++ and GLTools-based project.

Pruning SphereWorld
If we remove the GLUT framework code from SphereWorld.cpp, we are left with four func-
tions that need to be called from our Cocoa framework: SetupRC, ShutdownRC, ChangeSize,
and RenderScene. You can probably guess where they go. Removing GLUT turns out to be
trivial. First, remove the GLUT headers from the top of the source file.

#ifdef __APPLE__

#include <glut/glut.h>

#else

#define FREEGLUT_STATIC

#include <gl/glut.h>

#endif

Next, at the end of the RenderScene function, we perform a buffer swap and trigger a
refresh. We don’t need the buffer swap any longer as the Cocoa framework takes care of
that and has a timer that takes care of periodic refreshes. Removing these two lines nearly
completes the job.

// Do the buffer Swap

glutSwapBuffers();

// Do it again

glutPostRedisplay();

OpenGL with Cocoa 581
15

ptg

The final bit of pruning is to remove the main function in its entirety and delete the
SpecialKeys callback, as we no longer are receiving keyboard input through GLUT.

Wiring It In
Calling a function in a C++ module from an Objective-C++ module is no different than
normal C++ cross module programming. Listing 14.2 shows our SphereWorldView imple-
mentation with the appropriate functions from SphereWorld declared and called where
needed in the framework. We have also added the Cocoa message keyDown to catch
keystrokes and the acceptFirstResponder method so that keystrokes will be handled by
the OpenGL window. This allows us to move the camera in the same manner as we did in
the GLUT-based version.

LISTING 14.2 The Cocoa-Based SphereWorld

#include <GLTools.h>

#include <GLFrame.h>

#import “SphereWorldView.h”

void ChangeSize(int nWidth, int nHeight);

void RenderScene(void);

void ShutdownRC(void);

void SetupRC(void);

extern GLFrame cameraFrame; // Camera frame

@implementation SphereWorldView

- (void)idle:(NSTimer *)pTimer

{

[self drawRect:[self bounds]];

}

- (BOOL)acceptsFirstResponder

{

[[self window] makeFirstResponder:self];

return YES;

}

- (void)keyDown:(NSEvent*)event

{

float linear = 0.1f;

float angular = float(m3dDegToRad(5.0f));

int key = (int)[[event characters] characterAtIndex:0];

CHAPTER 14 OpenGL on OS X582

ptg

switch(key)

{

case NSUpArrowFunctionKey:

cameraFrame.MoveForward(linear);

break;

case NSDownArrowFunctionKey:

cameraFrame.MoveForward(-linear);

break;

case NSLeftArrowFunctionKey:

cameraFrame.RotateWorld(angular, 0.0f, 1.0f, 0.0f);

break;

case NSRightArrowFunctionKey:

cameraFrame.RotateWorld(-angular, 0.0f, 1.0f, 0.0f);

break;

}

}

- (void) prepareOpenGL

{

pTimer = [NSTimer timerWithTimeInterval:(1.0/60.0) target:self

selector:@selector(idle:) userInfo:nil

repeats:YES];

[[NSRunLoop currentRunLoop]addTimer:pTimer forMode: NSDefaultRunLoopMode];

SetupRC();

}

- (void) clearGLContext

{

ShutdownRC();

}

- (void) reshape

{

NSRect rect = [self bounds];

ChangeSize(rect.size.width, rect.size.height);

}

- (void) drawRect:(NSRect)dirtyRect

{

RenderScene();

OpenGL with Cocoa 583
15

ptg

glFlush();

}

@end

Finding the Texture Files
Like in our GLUT-based samples, we put the texture files for SphereWorld in the Resources
group in Xcode. Again, we must reset the current working directory so that our file func-
tions can find them. In our GLUT samples, we put this in the main function. For Cocoa,
we also put this in the main function. The entire main.mm file is shown here:

#include <GLTools.h>

#import <Cocoa/Cocoa.h>

int main(int argc, char *argv[])

{

gltSetWorkingDirectory(argv[0]);

return NSApplicationMain(argc, (const char **) argv);

}

We needed to add the GLTools.h header file at the top of the file, and then the call to the
by now familiar gltSetWorkingDirectory function takes care of the rest.

GLEW Versus Cocoa
There is one last thing we need to take care of. SphereWorld makes use of GLTools, but
GLTools makes use of the GLEW library, which brings in additional OpenGL functions and
extensions. There is a funny requirement about using GLEW, which is that the GLEW
header files must be included before the actual system OpenGL header, gl.h. With our
GLUT-based programs, this was never an issue, as GLTools brought in all the headers as
needed. When we added SphereWorld.cpp to this project, again we had no problem. But
as soon as we add GLTools to an .mm file…we get compiler errors. If you trace the errors
down into the headers, you’ll find that they are caused because glew.h was included after
gl.h. Search as you may, you will not find out where this is occurring by inspection of the
source code of the project.

As it turns out, Cocoa itself is including the OpenGL headers. Remember, OpenGL is used
everywhere on the Mac. There is a file in the Xcode project called SphereWorld_Prefix.pch
that is the “prefix header.” It’s a precompiled header that automatically gets added to all
the Objective-C/C++ modules. What we need to do is sneak our glew.h header file into
that file. Not hard to do—it’s only four lines long, and that’s with our change!

CHAPTER 14 OpenGL on OS X584

ptg

#ifdef __OBJC__

#include <gl/glew.h>

#import <Cocoa/Cocoa.h>

#endif

Finally, we can get a clean build, and we have a real full- (well, mostly full) featured
Cocoa-based OpenGL program. Figure 14.13 shows our final masterpiece.

Full-Screen Rendering 585
15

FIGURE 14.13 SphereWorld in a Cocoa-based application.

Full-Screen Rendering
Many OpenGL applications need to render to the entire screen, rather than live within the
confines of a window. This would include many games, media players, kiosk-hosted appli-
cations, and other specialized types of applications. One way to accomplish this is to
simply make a large window that is the size of the entire display. Prior to OS X 10.6 (Snow
Leopard), this was not the most optimal approach, and it was necessary to use the CGL
functions to “capture” the display for full-screen rendering to get the best results.

With Snow Leopard, these APIs are still supported but are no longer necessary, and in fact
the screen capturing technique is discouraged by Apple. When rendering to a full-screen
window, you set a special context flag, and OS X automatically tries to optimize the
rendering output in the manner that the old screen capturing technique did. However, by
not capturing the display, critical UI messages or other windows are also allowed to pop

ptg

up over the full-screen window. Capturing the display by modern standards is a bit heavy
handed. There is even a simple way now to render into a smaller back buffer to improve
fill performance without having to change the display resolution. Let’s start by creating a
full-screen version of SphereWorld, SphereWorldFS.

Going Full-Screen with Cocoa
To begin our new version of SphereWorld, we again start with a brand new Xcode Cocoa
project, which we call SphereWorldFS. Like in the previous example, we add the OpenGL
framework, add the GLTools library, rename our .m files to .mm, and copy over the
SphereWorldView Cocoa class and the SphereWorld.cpp rendering code along with the
texture files that we add to the /Resources folder of the project. This time, however, we are
not going to touch Interface Builder. Instead we are going to create and manage our
window manually. The application delegate in a Cocoa-based program has a method
called applicationDidFinishLaunching that is called as soon as your application has
successfully launched. In our new project, this is located in the file
SphereWorldFSAppDelegate.mm.

Selecting a Pixel Format
Before OpenGL can be initialized for a window, you must first select an appropriate pixel
format. A pixel format describes the hardware buffer configuration for 3D rendering—
things like the depth of the color buffer, the size of the stencil buffer, and whether the
buffer is on-screen (the default) or off-screen. The pixel format is described by the Cocoa
data type NSOpenGLPixelFormat.

To select an appropriate pixel format for your needs, you first construct an array of integer
attributes. For example, the following array requests a double-buffered pixel format with
red, green, blue, and alpha components in the destination buffer, a 16-bit depth buffer,
and you want an accelerated pixel format, not the software OpenGL renderer. You may get
other attributes as well, but you are essentially saying these are all you really care about:

NSOpenGLPixelFormatAttribute attrs[] = {

// Set up our other criteria

NSOpenGLPFAColorSize, 32,

NSOpenGLPFADepthSize, 16,

NSOpenGLPFADoubleBuffer,

NSOpenGLPFAAccelerated,

0

};

Note that you must terminate the array with 0 or nil. Next, you allocate the pixel format
using this array of attributes. If the pixel format cannot be created, the allocation routine
returns nil, and you should do something appropriate because as far as your OpenGL
rendering is concerned, it’s game over.

CHAPTER 14 OpenGL on OS X586

ptg

NSOpenGLPixelFormat* pixelFormat = [[NSOpenGLPixelFormat alloc]

initWithAttributes:attrs];

if(pixelFormat == nil)

NSLog(@”No valid matching OpenGL Pixel Format found”);

Most attributes are either a Boolean flag or contain an integer value. The Boolean flags set
the attribute by simply being present, for example, NSOpenGLPFADoubleBuffer in the
preceding example. An integer flag on the other hand, such as NSOpenGLPFADepthSize, is
expected to be followed by an integer value that specifies the number of bits desired for
the depth buffer. The available attributes and their meanings are listed in Table 14.2.

TABLE 14.2 Cocoa Pixel Format Attributes

Attribute Meaning

NSOpenGLPFAAllRenderers Boolean: Allow all available renderers.

NSOpenGLPFADoubleBuffer Boolean: Must be double buffered.

NSOpenGLPFAStereo Boolean: Must be stereo.

NSOpenGLPFAAuxBuffers Integer: Number of auxiliary buffers.

NSOpenGLPFAColorSize Integer: Depth in bits of the color buffer (default

matches the screen).

NSOpenGLPFAAlphaSize Integer: Depth in bits for alpha in the color buffer.

NSOpenGLPFADepthSize Integer: Depth in bits for the depth buffer.

NSOpenGLPFAStencilSize Integer: Depth in bits for the stencil buffer.

NSOpenGLPFAAccumSize Integer: Depth in bits for the accumulation buffer

(deprecated in OpenGL 3.x).

NSOpenGLPFAMinimumPolicy Boolean: Only buffers greater than or equal to the

depths specified are considered.

NSOpenGLPFAMaximumPolicy Boolean: Use the largest depth values available of any

buffers requested.

NSOpenGLPFAOffScreen Boolean: Use only renderers that can render off-screen.

NSOpenGLPFAFullScreen Boolean: Use only renderers that can render to a full-

screen context. This flag implies the

NSOpenGLPFASingleRenderer flag.

NSOpenGLPFASampleBuffers Integer: Number of multisample buffers.

NSOpenGLPFASamples Integer: Number of samples per multisample buffer.

NSOpenGLPFAAuxDepthStencil Standalone: Each auxiliary buffer has its own depth

stencil.

NSOpenGLPFAColorFloat Boolean: Select a floating-point color buffer.

NSOpenGLPFAMultisample Boolean: Prefer multisampling.

NSOpenGLPFASupersample Boolean: Prefer supersampling.

NSOpenGLPFASampleAlpha Boolean: Update multisample alpha values.

NSOpenGLPFARendererID Integer: Use a specific renderer identified by the integer

specified.

NSOpenGLPFASingleRenderer Boolean: Force a single renderer on a single monitor.

Full-Screen Rendering 587
15

ptg

TABLE 14.2 Cocoa Pixel Format Attributes continued

Attribute Meaning

NSOpenGLPFANoRecovery Boolean: Forces continued rendering on a single context

when resources have run out. Not generally useful.

NSOpenGLPFAAccelerated Boolean: Only select a hardware accelerated renderer.

NSOpenGLPFAClosestPolicy Boolean: Select the color buffer closest to the one speci-

fied.

NSOpenGLPFARobust Boolean: Select only renderers that do not have failure

modes due to lack of resources. Not generally useful.

NSOpenGLPFABackingStore Boolean: Select only a renderer with a back buffer equal

in size to the front buffer. Additionally, guarantees the

back buffer’s contents remain intact after the

flushBuffer call.

NSOpenGLPFAMPSafe Boolean: Select a multiprocessor safe renderer.

NSOpenGLPFAWindow Boolean: Select only a renderer that can render to a

window.

NSOpenGLPFAMultiScreen Boolean: Select only a renderer capable of driving multi-

ple screens.

NSOpenGLPFACompliant Boolean: Use only OpenGL-compliant renderers.

NSOpenGLPFAScreenMask Integer: A bit mask of supported physical screens.

NSOpenGLPFAPixelBuffer Boolean: Allow rendering to a pixel buffer.

NSOpenGLPFARemotePixelBuffer Boolean: Allow rendering to an offline pixel buffer.

NSOpenGLPFAAllowOffLineRenderers Boolean: Allow offline renderers.

NSOpenGLPFAAcceleratedCompute Boolean: Select only renderers that also support OpenGL.

NSOpenGLPFAVirtualScreenCount Integer: The number of virtual screens required.

The Full-Screen App Core
Now let’s take a look at what is essentially the main program body for the full-screen
version of SphereWorld. Listing 14.3 shows the entire applicationDidFinishLaunching
implementation.

LISTING 14.3 Creating and Managing Our Full-Screen Window

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

NSOpenGLPixelFormatAttribute attrs[] = {

NSOpenGLPFAFullScreen, 1,// Full Screen context flag

// Which screen do we want to appear on (you must do this for

// full screen contexts)

NSOpenGLPFAScreenMask,

CGDisplayIDToOpenGLDisplayMask(kCGDirectMainDisplay),

CHAPTER 14 OpenGL on OS X588

ptg

// Set up our other criteria

NSOpenGLPFAColorSize, 24,

NSOpenGLPFADepthSize, 16,

NSOpenGLPFADoubleBuffer,

NSOpenGLPFAAccelerated,

0

};

NSOpenGLPixelFormat* pixelFormat =

[[NSOpenGLPixelFormat alloc] initWithAttributes:attrs];

if(pixelFormat == nil)

NSLog(@”No valid matching OpenGL Pixel Format found”);

NSRect mainDisplayRect = [[NSScreen mainScreen] frame];

NSWindow *pMainWindow =

[[NSWindow alloc] initWithContentRect: mainDisplayRect

styleMask:NSBorderlessWindowMask

backing:NSBackingStoreBuffered defer:YES];

[pMainWindow setLevel:NSMainMenuWindowLevel+1];

[pMainWindow setOpaque:YES];

[pMainWindow setHidesOnDeactivate:YES];

NSRect viewRect = NSMakeRect(0.0, 0.0,

mainDisplayRect.size.width, mainDisplayRect.size.height);

SphereWorldView *fullScreenView =

[[SphereWorldView alloc] initWithFrame:viewRect

pixelFormat: [pixelFormat autorelease]];

[pMainWindow setContentView: fullScreenView];

[pMainWindow makeKeyAndOrderFront:self];

// Hide the cursor

CGDisplayHideCursor (kCGDirectMainDisplay);

bool bQuit = false;

while(!bQuit) {

// Check for and process input events.

NSEvent *event;

event = [NSApp nextEventMatchingMask:NSAnyEventMask

untilDate:[NSDate distantPast]

Full-Screen Rendering 589
15

ptg

inMode:NSDefaultRunLoopMode dequeue:YES];

if(event != nil)

switch ([event type]) {

case NSKeyDown:

[fullScreenView keyDown:event];

if((int)[[event characters]

characterAtIndex:0] == 27) // ESC Exits

bQuit = true;

break;

case NSKeyUp:

[fullScreenView keyUp:event];

break;

default:

break;

}

[fullScreenView drawRect:viewRect];

}

// Show the cursor again

CGDisplayShowCursor(kCGDirectMainDisplay);

// Terminate the application

[NSApp terminate:self];

}

The first order of business is to create a full-screen pixel format. Note the use of the flag
NSOpenGLPFAFullScreen and the accompanying NSOpenGLPFAScreenMask. You must use
these two flags together to get a valid pixel format for a full-screen context and get the full
benefit of Snow Leopard’s ability to optimize the rendering for full-screen windows.

Second, we create a main window that is the size of the current desktop. Here we use the
NSBorderlessWindowMask to eliminate the caption, minimize buttons, and so on.

NSRect mainDisplayRect = [[NSScreen mainScreen] frame];

NSWindow *pMainWindow =

[[NSWindow alloc] initWithContentRect: mainDisplayRect

styleMask:NSBorderlessWindowMask

backing:NSBackingStoreBuffered defer:YES];

CHAPTER 14 OpenGL on OS X590

ptg

A couple of other settings also come in useful for a true full-screen experience. We set the
window level to be above the menu bar, make sure the window is not transparent, and set
the setHideOnDeactivate flag. This hides the window whenever you switch away from the
window and then automatically restores the full-screen status when you reactivate the
application.

[pMainWindow setLevel:NSMainMenuWindowLevel+1];

[pMainWindow setOpaque:YES];

[pMainWindow setHidesOnDeactivate:YES];

Next we create the actual OpenGL-based view based on our previously constructed
SphereWorldView class. This view is assigned to the main window, which is then activated
and displayed. Although Interface Builder gives us some control over the pixel format, the
option to create your NSOpenGLView classes with the initWithFrame method gives you the
ultimate control and flexibility.

NSRect viewRect = NSMakeRect(0.0, 0.0,

mainDisplayRect.size.width, mainDisplayRect.size.height);

SphereWorldView *fullScreenView =

[[SphereWorldView alloc] initWithFrame:viewRect

pixelFormat: [pixelFormat autorelease]];

[pMainWindow setContentView: fullScreenView];

[pMainWindow makeKeyAndOrderFront:self];

Once we have created the full-screen window, we usually do not need to display the
mouse cursor. The Core GL (CGL) method CGDisplayHideCursor hides the cursor for us
until either the application terminates or we call the corresponding CGDisplayShowCursor.

CGDisplayHideCursor(kCGDirectMainDisplay);

For a full-screen window, we need to process the Cocoa event loop ourselves. The NSApp
method nextEventMatchingMask retrieves the latest event and removes it from the event
queue. In the case of an NSKeyDown event, we forward it to the SphereWorldView class,
which checks for arrow keys to facilitate camera movement. We also check here for the
escape key, which if pressed changes the value of bQuit to true, terminating the event
loop and finally terminating the application.

[NSApp terminate:self];

View Class Changes
There is one additional change we need to make to the SphereWorldView class when using
our own pixel format in full-screen mode. At the end of the drawRect method, we replace
glFlush with a call to flushBuffer on the OpenGL context:

[[self openGLContext]flushBuffer];

Full-Screen Rendering 591
15

ptg

This performs the equivalent of a buffer swap for our double-buffered renderer. Because we
are no longer in “windowed” mode, just flushing the command buffer is not enough; we
also need the buffer swap, which now is actually taking place.

Given that we have gone full-screen, we’ve also thrown in a few other goodies. For one,
we ported the GLString class from one of the Apple OpenGL demos (Apple’s own CocoGL
demo) to use only the new OpenGL core profile and the stock shaders in GLTools. We use
this in the SphereWorldView class to calculate and display the frame rate of our new full-
screen SphereWorld, which is running unrestrained as fast as it can. Figure 14.14 shows
our SphereWorld running at 199 frames per second.

CHAPTER 14 OpenGL on OS X592

FIGURE 14.14 SphereWorld with fps display.

Finally, we also modified our keyboard handling of movement to smooth things out.
Instead of moving the camera when a key is pressed, we set a flag for each movement key
to true when the key is pressed and to false when the key is released. In the render func-
tion, we then move based on the state of those flags. This keeps movement smooth and
less jerky as a result of the latency inherent in keyboard messages. Compare the navigation
between SphereWorldFS and the original SphereWorld in a window yourself!

ptg

CGL
As we have already stated, Core GL, or CGL as it is usually referred to, is the lowest-level
support for OpenGL on Mac OS X. It can be used with any of the other OpenGL technolo-
gies listed in Table 14.1, and we can use a few interesting functions for our SphereWorldFS
example as well. We cover here just a few quick and easy but useful recipes for using CGL
in our Cocoa-based application. There may be Cocoa equivalents to some of these, but the
CGL version will also work with your GLUT-based OpenGL programs or even a higher
level third-party C++ framework you might choose to use. You can also use CGL exclu-
sively to create a full-screen context and render to it as needed, but as we’ve just shown,
this is no longer necessary with Snow Leopard.

All CGL functions we are interested in require the current CGL context as one of the para-
meters. In any OpenGL application, you can retrieve the current CGL context by calling
CGLGetCurrentContext.

CGLContextObj CGLGetCurrentContext(void);

Sync Frame Rate
In our previous example program SphereWorldFS, our event loop ran and rendered at full
speed as many frames per second as possible. This is useful when doing performance
testing of your rendering or processing code, as the frames per second is a simple metric of
just how fast your code can execute. In a shipping application, there are two drawbacks to
this, however. First, in addition to excessive use of the GPU, you are also taking up all the
cycles on one of your CPU cores (at least!). If you consider that your display refreshes typi-
cally 60 times per second, there is no real need or purpose to displaying more than 60
frames per second. That excess GPU power could be used to generate more sophisticated
rendering effects, or the CPU power could be used to improve other application processing
performance or perhaps add more detail or features to the application or game.

Second, because the display only refreshes so many times per second, rendering more
frames per second than the display can show causes tearing. Tearing occurs when the
buffer swap occurs at any point other than the vertical retrace of the screen. Essentially,
you get two different frames displayed on-screen at the same time. The old frame occupies
the area of the display above the current display refresh position, and the bottom of the
screen is then filled with the new buffer contents. This is especially jarring when the view
is moving horizontally in the scene. Figure 14.15 shows a typical tearing example, where
the display briefly shows two different frames.

CGL 593
15

ptgFIGURE 14.15 Tearing caused by an unsynced buffer swap. (This figure also appears as Color
Plate 23.)

In a double-buffered application, such as our previous full-screen example, the swap inter-
val sets the number of vertical retraces that should occur before the buffer swap occurs.
Setting this value to one forces no more than one frame per vertical retrace, while setting
it to two allows two vertical retraces between buffer swaps. For example, if the swap inter-
val was set to one, and the display refresh rate was 60 (about typical), you would get no
more than 60 fps. For a swap interval of two, you’d get a maximum of 30 fps, and so on.
You set the swap interval with the CGL function CGLSetParameter.

GLint sync = 1;

CGLSetParameter (CGLGetCurrentContext(), kCGLCPSwapInterval, &sync);

Note, this does not “fix” the frame rate to equal the refresh of the monitor. If your render-
ing, or CPU code for that matter, takes an excessive amount of time, you may get less than
the full refresh rate of your monitor. What you still gain, however, is that the buffer swaps
only occur between refreshes, thus eliminating the tearing issue.

Increasing Fill Performance
Fill performance refers to the performance overhead in rendering that specifically relates
to the time spent writing data to pixels in the frame buffer. One easy way to improve fill
performance is to simply render to a smaller window, or in the case of the full-screen

CHAPTER 14 OpenGL on OS X594

ptg

application such as a game, to change the screen resolution to a smaller value. Before
Snow Leopard, it was not uncommon for a full-screen OpenGL game, for example, to
change the screen resolution before running, capture the display, and so on. Now that we
no longer need the display capturing solution, we can make use of CGL’s ability to change
the size of the back buffer instead of changing the screen resolution. Changing the back
buffer to be smaller than the front buffer has the added fill performance benefit, without
the need for a display mode change. The contents of the back buffer are then automati-
cally stretched to fill the entire display when the buffer swap occurs.

To set the back surface size, we set the CGL parameter kCGLCPSurfaceBackingSize to the
integer dimensions that we want. In addition, we must enable the
kCGLCESurfaceBackingSize feature with CGLEnable. The following code shows how you
would do this for a desired new size of newWidth x newHeight.

GLint dim[2] = {newWidth, newHeight};

CGLSetParameter(CGLGetCurrentContext(), kCGLCPSurfaceBackingSize, dim);

CGLEnable(CGLGetCurrentContext(), kCGLCESurfaceBackingSize);

Multithreaded OpenGL
The OpenGL driver does a significant amount of processing of your rendering data before
it eventually shows up on the hardware for rendering. On OS X 10.5 or later, you can
enable a multithreaded OpenGL core that offloads some of these tasks to another thread.
On a multicore system, this can have a positive performance impact. You can enable this
feature by calling CGLEnable on the kCGLCEMPEngine flag.

CGLEnable(CGLGetCurrentContext(), kCGLCEMPEngine);

This does not always improve performance, and in fact sometimes can reduce perfor-
mance! If your OpenGL code is not hampered by CPU processing, this may have little to
no effect on your rendering performance, for example. For another, if your rendering code
calls a lot of functions that produce pipeline stalls (glGetFloatv, glGetIntegerv,
glReadPixels, etc.), these too can interfere with this potential optimization.

Summary
In this chapter we covered how to build native OS X applications that use OpenGL with
Interface Builder and Cocoa. While GLUT has its uses, here we covered how to create an
OpenGL-capable Mac application using the native application frameworks in Objective-C.
We also showed how new technology in the latest version of OS X, 10.6 (Snow Leopard),
makes high-performance full-screen applications easier to build than ever. Finally we took
a look at some simple tricks we can pull with the Mac’s lowest-level OpenGL interface,
CGL.

Summary 595
15

ptg

OpenGL is a core foundational technology for the Macintosh. A basic understanding of
OpenGL and how applications can natively interact with it is an essential skill for any Mac
OS X developer. This chapter only scratched the surface of a potentially deep and complex
topic. We purposely stayed in the shallow end of the pool, as it were, so that you can get
going quickly and experiment as much as possible with OpenGL on this wonderful plat-
form. In Appendix A, “Further Reading,” you find some additional great coverage of this
exciting topic.

CHAPTER 14 OpenGL on OS X596

ptg

CHAPTER 15

OpenGL on Linux

by Nicholas Haemel

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Manage Visuals glXChooseVisual, glXChooseFBConfig

Create GLX windows glXCreateWindow

Manage OpenGL drawing contexts glXCreateContextAttribsARB,

glXDestroyContext,

glXMakeCurrent

Create OpenGL windows glXCreateWindow

Do double-buffered drawing glXSwapBuffers

One great thing about OpenGL is that it’s supported on so many different platforms. We
looked at how to use OpenGL on Windows and on Macs. Now let’s dig into 3D rendering
on one of the most popular open source platforms—Linux.

In this chapter we look at how Linux supports OpenGL, how to pick a specific version of
OpenGL, what interfaces are available for developers, and how to set up an application.
We also touch on GLUT, context management, and how to allocate, render to, and deal
with windows on X Windows.

The Basics
OpenGL has been the go-to API for 3D rendering on various versions of Linux, UNIX, and
similar platforms for nearly as long as 3D rendering has been possible. Linux offers several
ways to do OpenGL. Most major graphics hardware provides some form of acceleration.
Mesa3D, a software implementation that does not depend on hardware, can also be
installed on most X Server configurations.

ptg

598 CHAPTER 15 OpenGL on Linux

Brief History
In the late 1980s Silicon Graphics (SGI) introduced a proprietary API for 2D and 3D graph-
ics on its workstations called IRIS GL (Integrated Raster Imaging System Graphics
Language). In 1992 SGI revised the specification and published it as an open industry
standard called OpenGL. In 1993 Brian Paul started a project to create a software-only
implementation of OpenGL called Mesa3D, opening the door to wider support of 3D
rendering not tied to a specific hardware vendor.

Most computer systems available today contain some sort of 3D acceleration. Modern 3D
hardware vendors provide support for the latest versions of OpenGL. Currently both
ATI/AMD and NVIDIA provide OpenGL drivers that support OpenGL 3.3. The most recent
version of Mesa at the time of publication (7.7) supports OpenGL 2.1.

What Is X?
The X Window System is a graphical user interface that provides a more intuitive environ-
ment for users than a command prompt, similar to Microsoft Windows and Mac OS. X
Window sessions are not restricted to use on local systems. For instance, you can start an
X Server session from your computer that accesses a supercomputer halfway across the
country. This allows you to use the remote computer as if you were sitting right in front of
it. In X Window terminology, the computer providing the user display services is called
the X Window Server, and the computer running the actual application is referred to as
the client. This may be counter to the common roles known as server and client.

We run our Linux OpenGL applications inside X Windows. Most Linux distributions use
the XFree86 implementation of the X Windows System. Many different desktop managers
are available, such as KDE and Gnome, which run atop the basic X Window software and
provide user interaction for moving and resizing windows, launching programs, and other
basic operations.

Getting Started
You need several components set up for your OpenGL applications to compile and run.
First and most obviously you need a Linux system. Different Linux distributions such as
OpenSUSE, Fedora, and Ubuntu are available for free download.

Next, it is highly recommended you have a modern graphics card or system with a graph-
ics chip that supports current versions of OpenGL. It is also important that recent drivers
be available and installed. Although it is possible to run a software implementation of
OpenGL, these software implementations may not support all features of OpenGL and are
considerably slower.

You also need the header files and libraries for OpenGL and GLX. These are necessary for
compiling your own applications.

ptg

Checking for OpenGL
Let’s take a quick look at how you can make sure OpenGL is supported on your system.
Without that, the rest of this chapter is pretty meaningless. Try running the glxinfo
command as shown here:

glxinfo |grep rendering

You should get one of two responses:

direct rendering: Yes

direct rendering: No

If the answer is yes, good news! You have hardware support for 3D rendering. If no, then
you may not have hardware that supports OpenGL, or you may not have drivers installed
for OpenGL. If hardware support is not available, try running the following:

glxinfo |grep “OpenGL vendor”

glxinfo |grep “OpenGL version”

This prints out the currently installed OpenGL driver information. Remember to be careful
about capitalization! If you do not have hardware drivers but do have Mesa installed, the
information for the Mesa driver will be displayed. You will also get the current version of
OpenGL your Mesa implementation supports.

If the glxinfo command fails or no vendor/version information is available, your Linux
distribution is not set up for rendering with OpenGL. You have several options. First, you
can install Mesa. Or you could install a video card that supports 3D rendering and has
driver support for Linux.

Most Linux distributions use one of several package managers (based on RPM or deb files)
to manage installed software. If your Linux system does not have OpenGL itself, OpenGL
hardware drivers, or the OpenGL development headers/libraries installed, you may need to
utilize your package manager to obtain and install them. Additional components like
Mesa3D, GLUT, and GLEW may also be available as packages in your distribution permit-
ting easy installation. However, package-distributed versions of these tools may be
outdated compared to those available by direct download from the project’s Web site.

Setting Up Mesa
The latest version of Mesa can be downloaded from the Mesa3D Web site; a link is
provided in Appendix A, “Further Reading.” From there you can get the download link for
SourceForge. Once downloaded, unpack the files (example shown for Mesa 7.7):

gunzip MesaLib-7.7.tar.gz

tar xf MesaLib-7.7.tar

Getting Started 599
15

ptg

CHAPTER 15 OpenGL on Linux600

Next, you need to compile the source that you just unpacked. Go to the directory that was
just created from the tar package and run the following:

make linux-x86

It takes a while to build the Mesa software for your system. After the build has finished, a
number of libraries will have been created. Now you need to install the libraries and
headers to allow the operating system and build environment to find them when neces-
sary. To do the install, run the following command:

make install

The library and include locations are usually located in the following directories:

Libraries: /usr/X11R6/lib

Includes: /usr/include/

You have now finished the Mesa install. If you have more questions about the Mesa setup
or install, visit the Mesa3D Web site.

Setting Up Hardware Drivers
If you have modern graphics hardware, you want to make sure you have drivers installed
and that they are up to date. Driver support for Linux differs by hardware vendor. Both
AMD and NVIDIA provide a proprietary driver package that can be downloaded from their
Web sites. The install process is usually simple, just a matter of running the downloaded
package and following the prompts. Specific installation instructions can be found on
manufacturer Web sites.

Some hardware vendors may also provide an open source version of their display drivers.
Although it is often nice to have the source for the driver build, these drivers are often
slower, updated less frequently, and have fewer features or more limitations than their
proprietary counterparts. It’s worth noting that some distros may have drivers prepack-
aged. These can be outdated, and it is often easiest to simply not install the packaged
versions and install the newest vendor drivers instead.

Setting Up GLUT and GLEW
GLUT was covered earlier in this book. It is basically a useful set of functions that help
make interfacing with OpenGL and the system much more user-friendly, taking care of
many of the unsightly details. OpenGL code written with GLUT is also platform-agnostic,
making the code very portable. The version used with this book is freeglut, which is more
up to date than the original version of GLUT.

GLUT and freeglut are available for download and install on Linux as well as other
operating systems. This helps to make any applications that use GLUT very portable given
that the code can be compiled on Windows, Mac, and Linux. It is also a good way to get

ptg

applications up and running quickly because no window management is required. GLUT
does not allow for direct interface with the X Server. This means some things that can be
done directly communicating with the OS or the X Server are more difficult or impossible
when using GLUT.

The GLEW (GL extension wrangler) library has also been used earlier in the book. GLEW
provides a set of tools that help load extensions in OpenGL. Like GLUT, GLEW is available
for many different operating systems and platforms. By using GLEW, applications can
focus on 3D rendering and worry less about making applications work across different
platforms.

Installing GLUT
GLUT may not be already installed on your system. If that’s the case, it can be easily
downloaded. Then go to the GLUT directory and perform the following commands:

./mkmkfiles.imake

make

make install

The first command creates the make files you use to compile the code. The make files are
custom made for each system because different resources may be located in different
places on each system. The second command actually compiles the code. And the third
installs the result.

To use GLUT in your applications you need to add the GLUT library to your link
command:

-lglut

Mesa3D also supplies a version of GLUT that can be downloaded and installed.

Installing GLEW
GLEW is pretty straightforward and is contained in two headers and a single source file.
These are included in the \GLTools directory with the source distribution for the book.
Automatically gaining access to all the function pointers supported by the driver is a
simple matter of adding glew.c to your project, and glew.h to the top of your header list.
Then call glewInit() when your application starts up before any OpenGL calls are made.
All the function pointers for extensions and core features beyond OpenGL 1.1 will be set
up automatically. If the glewInit function fails, it returns an error, and the extension
pointers may not be initialized.

Building OpenGL Apps
Now that we’ve gone through all that setup and our system is prepped for running and
compiling OpenGL programs, let’s take a look at how to build these programs. If you have
spent time working with Linux, you are probably already familiar with creating makefiles.
If so, skip ahead.

Getting Started 601
15

ptg

Makefiles are used on Linux systems to compile and link source code, creating an
executable file. Makefiles hold instructions for the compiler and linker, telling them where
to find files and what to do with them. A sample makefile follows. It can be modified and
expanded to accommodate your own projects.

LIBDIRS = -L/usr/X11R6/lib -L/usr/X11R6/lib64 -L/usr/local/lib

INCDIRS = -I/usr/include -L/usr/local/include

CC = gcc

CFLAGS = $(COMPILERFLAGS) -g $(INCDIRS)

LIBS = -lX11 -lXi -lXmu -lglut -lGL -lGLU -lm

example : example.o

$(CC) $(CFLAGS) -o example $(LIBDIRS) example.c $(LIBS)

clean:

rm -f *.o

The first line creates a variable that contains the link parameters for libraries to be
included. The one used here looks in both the standard lib directory for X11 as well as the
version for 64-bit specific libraries.

The second line lists the include paths the compiler should use when trying to find header
files. CC = gcc selects the compiler to use. The next line specifies the compile flags to use
with this instance. Then LIBS = selects all the libraries that need to be linked into our
program.

Finally we compile and link the single source file specified for this example, called
example.c. The last line cleans up intermediate objects that were created during the
process. This example can be used while substituting your file in the script. Other files can
also be compiled together as well. Many resources and tutorials are on the Web; two good
makefile primers are listed in Appendix A to help you get started.

GLX—Interfacing with X Windows
On X Windows a common interface called GLX exists for allowing applications that use
OpenGL to communicate with X Windows. This interface is similar to WGL on Windows
and AGL on Mac. There are many different versions of GLX; version 1.4 is the most
recent. GLX 1.4 is similar to GLX version 1.3 but includes a few minor changes. GLX 1.2 is
much older and is missing much of the functionality of the newer versions. For this
reason, GLX 1.4 is used for our applications.

To find out more information about your installation of GLX, you can use the glxinfo
command again. Try the following:

glxinfo |grep “glx vendor”

glxinfo |grep “glx version”

CHAPTER 15 OpenGL on Linux602

ptg

This displays the GLX information for both server and client components of X Windows.
The effective version you can use is the older of the server and client versions. So if your
client reports 1.4 and your server reports 1.3, then you can only use version GLX 1.3. If
your client or server driver does not support GLX 1.4, you can try updating your display
driver as described earlier.

From inside a program you can also call glXQueryVersion to get the GLX version:

Bool glXQueryVersion(Display * dpy, int *major, int *minor);

This call would look like

int majorVer, minorVer;

glXQueryVersion(dpy, majorVer, minorVer);

Displays and X Windows
Before we get too far into using GLX, there are a few prerequisites for understanding how
GLX works on Linux. An OpenGL application runs inside a window on the X Server. I
mentioned earlier that X Windows supports client and server components running on
separate systems, essentially allowing you to run your desktop from somewhere else.
Additionally, an X Server can have multiple displays active or even multiple graphics
cards.

Before we can create a window, we need to find out what display the OpenGL application
will be executing on. The display helps the X Server understand where we are rendering.
Use the XOpenDisplay() function to get the current display.

Display *dpy = XOpenDisplay(getenv(“DISPLAY”));

This gives us a pointer to the display object for the default display. We can use this later to
tell the X Server where we are. After our application is done, it also needs to close the
display using the XCloseDisplay() function. This tells the X Server that we are finished,
and it can close the connection.

XCloseDisplay(Display * display);

Config Management and Visuals
Before we can create a window or an OpenGL rendering context, we need to know what
sort of traits are required. Configs on Linux are similar to configs on OpenGL ES or pixel
formats on Windows. A config is an enumerated set of attributes supported by X Windows
or the OpenGL/GLX driver. An implementation often supports many combinations of
window and rendering attributes, and therefore a large number of configs. Because there
are so many factors all tied into configs, they can be tricky to handle.

GLX—Interfacing with X Windows 603
15

ptg

For starters, you can use the glXGetFBConfigs interface to get information on all of the
configs supported.

GLXFBConfig *glXGetFBConfigs(Display * dpy, int screen, int *nelements);

Use the display handle that you got from calling XOpenDisplay. For our purposes we can
use the default screen for the screen parameter. When the call returns, nelements tells you
how many configs were returned.

There’s more to each config than its index. Each config has a unique set of attributes that
represent the functionality of that config. These attributes and their descriptions are listed
in Table 15.1.

TABLE 15.1 GLX Config Attribute List

Attribute Description

GLX_BUFFER SIZE Total number of bits of the color buffer.

GLX_RED_SIZE Number of bits in red channel of color buffer.

GLX_GREEN_SIZE Number of bits in green channel of color buffer.

GLX_BLUE_SIZE Number of bits in blue channel of color buffer.

GLX_ALPHA_SIZE Number of bits in alpha channel of color buffer.

GLX_DEPTH_SIZE Number of bits in depth buffer.

GLX_STENCIL_SIZE Number of bits in stencil buffer.

GLX_CONFIG_CAVEAT Set to one of the following caveats: GLX_NONE,

GLX_SLOW_CONFIG, or

GLX_NON_CONFORMANT_CONFIG. These can warn of

potential issues for this config. A slow config may

be software emulated because it exceeds HW

limits. A nonconformant config will not pass the

conformance test.

GLX_X_RENDERABLE Is set to GLX_TRUE if the X Server can render to

this surface.

GLX_VISUAL_ID The XID of the related Visual.

GLX_X_VISUAL_TYPE Type of a X visual if config supports window

rendering (associated visual exists).

GLX_DRAWABLE_TYPE Valid surface targets supported. May be any or all

of GLX_WINDOW_BIT, GLX_PIXMAP_BIT, or

GLX_PBUFFER_BIT.

GLX_RENDER_TYPE Bitfield indicating the types of contexts that can

be bound. May be GLX_RGBA_BIT or

GLX_COLOR_INDEX_BIT.

GLX_FBCONFIG_ID The XID for the GLXFBConfig.

GLX_LEVEL The frame buffer level.

GLX_DOUBLEBUFFER Is GLX_TRUE if color buffers are double buffered.

CHAPTER 15 OpenGL on Linux604

ptg

Attribute Description

GLX_STEREO Is GLX_TRUE if color buffers support stereo render-

ing.

GLX_SAMPLE_BUFFERS Number of multisample buffers. Must be 0 or 1.

GLX_SAMPLES Number of samples per pixel for multisample

buffers. Will be 0 if GLX_SAMPLE_BUFFERS is 0.

GLX_TRANSPARENT_TYPE Indicates support of transparency. Value may be

GLX_NONE, GLX_TRANSPARENT_RGB, or GLX_

TRANSPARENT_INDEX. If transparency is supported,

a transparent pixel is drawn when the pixel’s

components are all equal to the respective trans-

parent RGB values.

GLX_TRANSPARENT_RED_VALUE Red value a framebuffer pixel must have to be

transparent.

GLX_TRANSPARENT_GREEN_VALUE Green value a framebuffer pixel must have to be

transparent.

GLX_TRANSPARENT_BLUE_VALUE Blue value a framebuffer pixel must have to be

transparent.

GLX_TRANSPARENT_ALPHA_VALUE Alpha value a framebuffer pixel must have to be

transparent.

GLX_TRANSPARENT_INDEX_VALUE Index value a framebuffer pixel must have to be

transparent. For color index configs only.

GLX_AUX_BUFFERS The number of supported auxiliary buffers.

GLX_ACCUM_RED_SIZE Number of bits in red channel of the auxiliary

buffer.

GLX_ACCUM_GREEN_SIZE Number of bits in green channel of the auxiliary

buffer.

GLX_ACCUM_BLUE_SIZE Number of bits in blue channel of the auxiliary

buffer.

GLX_ACCUM_ALPHA_SIZE Number of bits in alpha channel of the auxiliary

buffer.

You can query any configs to find the value of each of these attributes by using the
glXGetFBConfigAttrib command.

int glXGetFBConfigAttrib(Display * dpy, GLXFBConfig config,

int attribute, int *value);

Set the config parameter to the config number you are interested in querying and the
attribute parameter to the attribute you would like to query. The result is returned in the
value parameter. If the glXGetFBConfigAttrib call fails, it may return the error
GLX_BAD_ATTRIBUTE if the attribute you are requesting doesn’t exist.

GLX—Interfacing with X Windows 605
15

ptg

GLX also provides a method for getting a subset of configs that meet a set of criteria. This
can help narrow down the total set to just those that you care about, making it much
easier to find a config that works for your application. For instance, if you have an appli-
cation for rendering into a window, the config you select needs to support rendering to a
window.

GLXFBConfig *glXChooseFBConfig(Display * dpy, int screen,

const int *attrib_list, int *nelements);

Pass in the screen that you are interested in as the screen parameter and specify the
elements that are required for a config match. This is done with a NULL terminated list of
parameter and value pairs. These attributes are the same config attributes listed in Table
15.1.

attrib_list = {attribute1, attribute_value1,

attribute2, attribute_value2,

attribute3, attribute_value3,

0};

Similar to glXGetFBConfigs, the number of configs that match the attribute list is returned
in nelements. A pointer to a list of matching configs is returned by the function.
Remember to use XFree to clean up the memory that was returned by the
glXChooseFBConfig call. All configs returned will match the minimum criteria you set in
the attrib list.

There are a few key attributes that you may want to pay attention to when creating a
config. For instance GLX_X_RENDERABLE should be GLX_TRUE so that you can use OpenGL to
perform rendering, GLX_DRAWABLE_TYPE needs to include GLX_WINDOW_BIT if you are render-
ing to a window, GLX_RENDER_TYPE should be GLX_RGBA_BIT, and GLX_CONFIG_CAVEAT
should be set to GLX_NONE or at the very least not have the GLX_SLOW_CONFIG bit set. After
that you may also want to make sure the color, depth, and stencil channels meet
minimum requirements. The pBuffer, accumulation, and transparency values are less
commonly used.

For attributes you don’t specify, the glXChooseFBConfigs command uses default values
implicitly. These are listed in the GLX specification. The sort mechanism automatically
sorts the list of returned configs using an attribute priority. The order for the highest prior-
ity attributes is GLX_CONFIG_CAVEAT, the color buffer bit depths, GLX_BUFFER_SIZE, and
then GLX_DOUBLEBUFFER.

If a config has the GLX_WINDOW_BIT set for the GLX_DRAWABLE_TYPE attribute, the config will
have an associated X visual. The visual can be queried using the following command:

XVisualInfo *glXGetVisualFromFBConfig(Display * dpy, GLXFBConfig config);

CHAPTER 15 OpenGL on Linux606

ptg

NULL is returned if there isn’t an associated X visual. Don’t forget to free the returned
memory with XFree.

PBuffers are not discussed because this functionality is deprecated and may not be
supported by hardware vendors. There are much more flexible ways to achieve off-screen
rendering, or rendering without a window. Pixmaps fall into the same category. Instead,
framebuffer objects replace this functionality. Also color index mode is not covered here.
It also has been deprecated and is not supported on most PC-based implementations.

Windows and Render Surfaces
Now that we’re through the messy stuff, let’s create a window. We can do this by calling
the X Server function XCreateWindow. The result is a handle for the new X Window. The
function needs a parent window, but you can also use the main X Window for this, and
you should already be familiar with the Display parameter here. You also need to tell X
how big of a window you would like and where to put it using the x,y position and the
width/height parameters.

Also tell the X Server what kind of a window you want with the window class. This can be
one of three values: InputOnly, InputOutput, or CopyFromParent. An InputOnly window
cannot be used as a source or destination for graphics requests, and the CopyFromParent
value inherits the value that the parent window was created with, so InputOutput is most
useful. The attributes and valuemask fields let you tell X what types of characteristics the
window should have. The attributes field holds the values, and the valuemask tells X
which values it should pay attention to. To get more information on attributes refer to the
X Server documentation. The full function declaration looks like this:

Window XCreateWindow(Display * dpy, Window parent, int x, int y,

unsigned int width, unsigned int height,

unsigned int border_width, int depth,

unsigned int class, Visual *visual,

unsigned_long valuemask,

XSetWindowAttributes *attributes);

After choosing good values for creating your window and calling XCreateWindow, the
handle to the new window is returned. This window handle can then be used to create a
corresponding GLX window. When creating the GLX window, the configs you use must be
compatible with the visual you created the X Window with. Use the glXCreateWindow
command to create a new on-screen OpenGL rendering area associated with your newly
created X Window.

GLXWindow glXCreateWindow(Display * dpy, GLXFBConfig config,

Window win, const int *attrib_list);

GLX—Interfacing with X Windows 607
15

ptg

By now you are already familiar with the Display parameter. You can use the config you
selected in the section using glXGetFBConfigs or glXChooseFBConfig. The Window handle
is the same handle returned from XCreateWindow. The attrib_list currently does not
support any parameters and is for future expansion, so you should pass in NULL.

glXCreateWindow throws an error and fails if the config is not compatible with the
window visual, if the config doesn’t support window rendering, if the window parameter
is invalid, if a GLXFBConfig has already been associated with the window, if the
GLXFBConfig is invalid, or if there was a general failure creating the GLX window. Also
remember that glXCreateWindow is only supported in GLX 1.3 or later. It does not work on
older versions. Remember we checked the GLX versions earlier by running glxinfo |grep
“glx version” in a terminal.

Once you are done rendering, you also have to clean up the windows you created. To
destroy the GLX window, call glXDestroyWindow with the GLX window handle returned
when you called glXCreateWindow.

glXDestroyWindow(Display * dpy, GLXWindow window);

Finally, destroy the X Window you originally created. You can use the similarly named
XDestroyWindow command and pass back the X Window handle.

XDestroyWindow(Display * dpy, Window win);

GLX Strings
You can query various GLX strings to get more information on what your system can do.
One of the most important strings is the extension string. This is a list of all the exten-
sions the current implementation of GLX supports. To get the extension string, use

const char *glXQueryExtensionsString(Display *dpy, int screen);

The returned string, or character array, is a list of extension names separated by spaces.
The array is terminated by the value 0.

You can also call glXGetClientString or glXQueryServerString to find out information
about the client library or the server, respectively. Pass one of the following enums for the
name argument: GLX_VENDOR, GLX_VERSION, or GLX_EXTENSIONS.

const char *glXGetClientString(Display *dpy, int name);

const char *glXQueryServerString(Display *dpy, int screen, int name);

Extending OpenGL and GLX
Before going any further, let’s look at how GLX can be extended without creating a whole
new version of GLX. Vendors can write new extensions for GLX and OpenGL to add new
functionality for applications to use. This allows applications to use features that are either

CHAPTER 15 OpenGL on Linux608

ptg

vendor-specific or are available before they can become part of the core specification. You
just learned how to get the list of GLX extensions by calling glXQueryExtensionString. In
Chapter 2, “Getting Started,” you also learned how to get a list of all OpenGL extensions.
The descriptions of new extensions can be found in the OpenGL extension repository on
the Web. Once you know what extensions are available and what they do, you may have
to get new entrypoints to use them. GLX provides the glXGetProcAddress to look up
function addresses for extensions.

void (*glXGetProcAddress(const ubyte *procname))();

Context Management
A context is a set of OpenGL state that is associated with a handle. A context must be
bound to a drawable (such as a window) for state to be set or for rendering to occur.
Multiple contexts can be created, but only one can be bound to a drawable at a time. At
least one context must be created for your app to be able to render.

Creating Contexts
One way you can create a new context is with the glXCreateNewContext command.

GLXContext glXCreateNewContext(Display * dpy, GLXFBConfig config,

int render_type, GLXContext share_list, bool direct);

When successful, this function returns a context handle that you can use when telling
GLX which context you want to use when rendering. The config that you use to create
this context needs to be compatible with the render surface you intend to draw on. For
common cases it is easiest to use the same config that was used to create the GLX window.

The render_type parameter accepts GLX_RGBA_TYPE or GLX_COLOR_INDEX_TYPE.
GLX_RGBA_TYPE should be used because we are not using color index mode. Most imple-
mentations no longer support color index mode. Normally you should also pass NULL in
the share_list parameter. However, if you have multiple contexts for an app and want to
share GL objects such as textures, VBOs, FBOs, and so on, you can pass the first context
handle in when creating the second. This causes both contexts to use the same name-
space. Specifying TRUE for the direct parameter requests a direct hardware context for a
local X Server connection; FALSE may create a context that renders through the X Server.

If creation fails, the function returns NULL; otherwise, it initializes the context to default
OpenGL state. The function throws an error if you pass an invalid handle as the
share_list parameter, if the config is invalid, or if the system is out of resources.

The OpenGL version of the context created will be up to OpenGL 3.1 if your implementa-
tion supports that version or any newer context version if it is 100% backward-compatible
with OpenGL 3.1. Because you can’t be sure what version of the OpenGL context you are
going to get when calling glXCreateNewContext, this is not the preferred method. Instead
use the newer version, glXCreateContextAttribsARB.

GLX—Interfacing with X Windows 609
15

ptg

Before using glXCreateContextAttribsARB, you should check that the extension string
GLX_ARB_create_context_profile is in the list of GLX extensions. Then, you need to get
the function pointer for this extension. After that, you are all set to use the preferred way
of creating contexts.

GLint attribs[] = {

GLX_CONTEXT_MAJOR_VERSION_ARB, 3,

GLX_CONTEXT_MINOR_VERSION_ARB, 3,

0 };

rcx->ctx = glXCreateContextAttribsARB(rcx->dpy, fbConfigs[0], 0,

True, attribs);

glXMakeCurrent(rcx->dpy, rcx->win, rcx->ctx);

The new method, glXCreateContextAttribsARB, takes an additional parameter and allows
you to select exactly the context you want.

GLXContext glXCreateContextAttribsARB(Display * dpy, GLXFBConfig config,

int render_type, GLXContext share_list, bool direct,

const int *attrib_list);

The attrib_list parameter is a value-pair list of attributes you can request in a new
context. First specify the attribute name in the array followed by the value for the
attribute. The attributes GLX_CONTEXT_MAJOR_VERSION_ARB and
GLX_CONTEXT_MINOR_VERSION_ARB are used to explicitly ask for a specific context version of
OpenGL. If your application was written for OpenGL 3.3, you would pass in 3 as the
major version and 3 as the minor version. Similarly, if your application was older and you
needed an OpenGL 3.0 context, you could ask for that. However, OpenGL drivers are
allowed to return any version that is 100% backward-compatible with the version you
requested. If you do not specify a version of OpenGL or if you ask for version 1.0, the
driver will probably create an OpenGL 3.1 context. The exact behavior differs between
vendors. The best idea is to ask for a specific OpenGL version.

You can only create a context up to the version supported by your OpenGL driver. You
can find out what the newest supported version is by calling glGetString with the
GL_VERSION enum:

ubyte *verString = glGetString(GL_VERSION);

Or the version can also be queried through the glGetIntegerv command, which returns
the version as integer components:

int majorVer, minorVer;

glGetIntegerv(GL_MAJOR_VERSION, &majorVer);

glGetIntegerv(GL_MINOR_VERSION, &minorVer);

CHAPTER 15 OpenGL on Linux610

ptg

There are several other types of attributes you can request through the attrib_list. The
attribute GLX_CONTEXT_PROFILE_MASK_ARB is followed by a bitfield containing either
GLX_CONTEXT_CORE_PROFILE_BIT_ARB or GLX_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB.
Only one can be used at a time. Setting the GLX_CONTEXT_CORE_PROFILE_BIT_ARB bit causes
the driver to return a context containing only core functionality, no deprecated OpenGL
functionality. Using this bit is a good way to prepare an application for the next revision
of OpenGL where deprecated functionality may be removed. Setting the
GLX_CONTEXT_COMPATIBILITY_PROFILE_BIT_ARB bit asks the driver to create a context that
is backward compatible with all older versions of OpenGL. In other words, no deprecated
functionality is removed. A context created with this bit may run slower than a core
profile context because of the additional state and functionality that needs to be tracked.

The GLX_CONTEXT_FLAGS_ARB attribute can be used to set other flags for context creation.
The only supported flag is GLX_CONTEXT_DEBUG_BIT. Specifying this bit creates a context
with additional debugging information available for applications under development.
What information and how it can be accessed is vendor-specific.

If any of the attributes you have specified are not supported by the OpenGL driver on
your system, errors will be generated. The error GLXBadMatch is thrown if the combination
of minor and major version attributes with the forward-compatible context bit is not a
valid OpenGL version. If any of the bits specified for GLX_CONTEXT_PROFILE_MASK_ARB are
not supported, the error GLXBadProfileARB is thrown.

When finished with a context, it is important to destroy the context so the implementa-
tion can free all related resources. Use the glXDestroyContext command to destroy
contexts.

glXDestroyContext(Display * dpy, GLXContext ctx);

If the context is currently bound to any thread, the context will not be destroyed until it
is no longer current. The function throws an error if you pass an invalid context handle.

One other handy feature provided by GLX is the ability to copy data from one context to
another with glXCopyContext. Pass in the source and destination context handles as well
as a mask to specify the pieces of OpenGL state that you would like to copy. These are the
same enums that may be passed into glPushAttrib/glPopAttrib. To copy everything you
can pass GL_ALL_ATTRIB_BITS. Client-side state will not be copied.

glXCopyContext(Display * dpy, GLXContext source, GLXContext dest, unsigned long

mask);

In GLX, a direct context is one that supports direct rendering to a local X Server. To find
out if an existing context is a direct context you can call glXIsDirect. This returns true if
the context is a direct rendering context.

glXIsDirect(Display * dpy, GLXContext ctx);

GLX—Interfacing with X Windows 611
15

ptg

Debug Contexts
Using a debug context can be helpful in determining where your application is coming off
its rails. At the time of this writing, the only vendor supporting debug contexts is AMD
through an extension called GL_AMD_debug_context, which defines how the additional
debug information can be accessed by developers.

A callback function is provided that allows an application to set an interrupt or breakpoint
and find out immediately when an error has occurred. The extension also allows an appli-
cation to select specific error types to be monitored and supports multiple severity levels.

For more information on how to use the GL_AMD_debug_context extension, you can check
out the extension specification, which is also in the OpenGL extension registry.

Using Contexts
To use a context you have created, you can call glXMakeContextCurrent.

glXMakeContextCurrent(Display * dpy, GLXDrawable draw, GLXDrawable read,

GLXContext ctx);

For most cases you should specify the same drawable for read and draw for a context. This
means that the same context will be used for both read and draw operations. If a different
context was bound before you made this call, it will be flushed and marked as no longer
current. If the context you pass is not valid or either drawable is not valid, the function
throws an error. It also throws an error if the context’s config is not compatible with the
config used to create the drawables. Contexts can be released from a thread by passing
None in the read and draw drawable parameters and NULL as the context. Without passing
None for the drawables, GLX throws an error.

Synchronization
GLX has several synchronization commands that are similar to those on other OSes.

void glXWaitGL(void);

Making a call to glXWaitGL guarantees that all GL rendering will finish for a window
before other native rendering occurring after the call to glXWaitGL is allowed to proceed.
This allows an app to ensure that all rendering happens in the correct order and that
rendering is not incorrectly overlapped or overwritten.

On some implementations, a call to glXWaitGL may return immediately with no rendering
visible. An implementation may wait for other rendering to be initiated before completing
earlier rendering.

void glXWaitX(void);

CHAPTER 15 OpenGL on Linux612

ptg

Likewise, a call to glXWaitX ensures that all native rendering made before the call to
glXWaitX completes before any OpenGL rendering after the call is allowed to happen.

void glXSwapBuffers(Display *dpy, GLXDrawable draw);

When using a double buffered config, a call to glXSwapBuffers presents the contents of
the back buffer to the window. The call also performs an implicit glFlush before the swap
occurs. In addition, the contents of the new back buffer are undefined. You should not
assume after a call to glXSwapBuffers the new back buffer will have the same contents as
the old back buffer, the old contents of the front buffer, or any other defined content to
maintain portability between vendors. GLX throws an error if the drawable or display are
invalid, or if the window is no longer valid.

GLX Queries
GLX allows you to query certain attributes of a context as well. Use the glXQueryContext
command to query GLX_FBCONFIG_ID, GLX_RENDER_TYPE, or GLX_SCREEN attributes associ-
ated with the context.

int glXQueryContext(Display * dpy, GLXContext ctx, int attribute, int *value);

There are a few other context-related commands in GLX; these are mostly self-descriptive.
glXGetCurrentReadDrawable returns the current read drawable handle:

GLXDrawable glXGetCurrentReadDrawable(void);

In addition, the current context, drawable, and display can be queried with the following
functions:

GLXContext glXGetCurrentContext(void);

GLXDrawable glXGetCurrentDrawable(void);

GLXDrawable glXGetCurrentReadDrawable(void);

Display glXGetCurrentDisplay(void);

There are a few less-common components of GLX we haven’t covered yet. For complete-
ness, let’s take a quick look at them. You can query certain state from the current drawable
with the function glXQueryDrawable. Pass the drawable that you are interested in as well
as the attribute you are interested in: GLX_WIDTH, GLX_HEIGHT, GLX_PRESERVED_CONTENTS,
GLX_LARGEST_PBUFFER, or GLX_FBCONFIG_ID. The result is returned in the value field.

void glXQueryDrawable(Display *dpy, GLXDrawable draw, int attribute, unsigned int *value);

There also is a set of functions for creating, dealing with, and deleting pixmaps and
pBuffers. These are not covered here because we are not using and do not recommend you
use pixmaps or pBuffers.

GLX—Interfacing with X Windows 613
15

ptg

Putting It All Together
Now, for the fun part! Let’s put all this GLX stuff together and create applications that use
GLX for window creation and maintenance instead of GLUT. GLUT is great for creating
quick, simple apps but does not allow for very granular control over the GLX environ-
ment. This chapter has two sample programs. Block is the same program you saw from
Chapter 1, “Introduction to 3D Graphics and OpenGL,” but this time uses GLX instead of
GLUT. GLXBasics is an app written from scratch that uses GLX and also demonstrates
handling of GLX callbacks, including how to interpret the mouse position. The first step is
to open a connection to the X Server.

rcx->dpy = XOpenDisplay(NULL);

Then, let’s check the supported GLX version to make sure that the functionality we use
later is supported.

glXQueryVersion(rcx->dpy, &nMajorVer, &nMinorVer);

printf(“Supported GLX version - %d.%d\n”, nMajorVer, nMinorVer);

if(nMajorVer == 1 && nMinorVer < 3)

{

printf(“ERROR: GLX 1.3 or greater is necessary\n”);

XCloseDisplay(rcx->dpy);

exit(0);

}

Now that we know we are good to go, look for a config that meets our requirements. We
aren’t very picky here considering this app doesn’t have any complex interactions with
the framebuffer.

GLXFBConfig *fbConfigs;

int numConfigs = 0;

static int fbAttribs[] = {

GLX_RENDER_TYPE, GLX_RGBA_BIT,

GLX_X_RENDERABLE, True,

GLX_DRAWABLE_TYPE, GLX_WINDOW_BIT,

GLX_DOUBLEBUFFER, True,

GLX_RED_SIZE, 8,

GLX_BLUE_SIZE, 8,

GLX_GREEN_SIZE, 8,

0 };

// Get a new fb config that meets our attrib requirements
fbConfigs = glXChooseFBConfig(rcx->dpy, DefaultScreen(rcx->dpy),

fbAttribs, &numConfigs);

CHAPTER 15 OpenGL on Linux614

ptg

We also need a visual to create the X Window. Once we have a config, we can get the
corresponding visual from it:

XVisualInfo *visualInfo;

visualInfo = glXGetVisualFromFBConfig(rcx->dpy, fbConfigs[0]);

After we have a visual, we can use it to create a new X Window. Before calling into
XCreateWindow, we have to figure out what things we want the window to do. Pick the
events that are of interest and add them to the event mask. Do the same with the window
mask. Set the border size and gravity we want. We also have to create a color map for the
window to use. While we are at it, map the window to the display.

winAttribs.event_mask = ExposureMask | VisibilityChangeMask |

KeyPressMask | PointerMotionMask |

StructureNotifyMask ;

winAttribs.border_pixel = 0;

winAttribs.bit_gravity = StaticGravity;

winAttribs.colormap = XCreateColormap(rcx->dpy,

RootWindow(rcx->dpy, visualInfo->screen),

visualInfo->visual, AllocNone);

winmask = CWBorderPixel | CWBitGravity | CWEventMask| CWColormap;

rcx->win = XCreateWindow(rcx->dpy, DefaultRootWindow(rcx->dpy), 20, 20,

rcx->nWinWidth, rcx->nWinHeight, 0,

visualInfo->depth, InputOutput,

visualInfo->visual, winmask, &winAttribs);

XMapWindow(rcx->dpy, rcx->win);

Great! We have a window! A few steps still need to be completed before we can render.
First let’s create a context and make it the current context. Remember, to create the
context we need the config that corresponds with the visual used to create the window.

// Also create a new GL context for rendering

GLint attribs[] = {

GLX_CONTEXT_MAJOR_VERSION_ARB, 3,

GLX_CONTEXT_MINOR_VERSION_ARB, 3,

0 };

rcx->ctx = glXCreateContextAttribsARB(rcx->dpy, fbConfigs[0], 0,

True, attribs);

glXMakeCurrent(rcx->dpy, rcx->win, rcx->ctx);

GLX—Interfacing with X Windows 615
15

ptg

Once a context is bound, we can make GL calls. First set the viewport:

glViewport(0, 0, rcx->nWinWidth, rcx->nWinHeight);

Next, clear the color buffer and prepare to render:

glClearColor(0.0f, 1.0f, 1.0f, 1.0f);

glClear(GL_COLOR_BUFFER_BIT);

This little demo application shown in Figure 15.1 just draws two eyeballs that do their
best to follow your mouse pointer around the window. Some math is done to figure out
where to put the eyeballs, where the mouse pointer is, and where the eyeballs should be
looking. You can take a look at the rest of the GLXBasics sample program to see how all
this works together. Only the important GLX snippets are listed here because this chapter
is not introducing new OpenGL functionality.

CHAPTER 15 OpenGL on Linux616

FIGURE 15.1 Here’s looking at you!

Now OpenGL setup is complete, and we can concentrate on rendering something. When
the window changes or user input such as the pointer position moves are received, the
contents of the window are redrawn. Afterward glXSwapBuffers is called.

// Flush drawing commands

glXSwapBuffers(rcx->dpy, rcx->win);

Before the app closes, some cleanup needs to be done. Remember when we started the
application, a connection to the X Server was opened, an X Window was created, and a
context was created and bound. Now before we quit, all of the resources we allocated have
to be cleaned up. Note that the context should be unbound before it is destroyed.

glXMakeCurrent(rcx->dpy, None, NULL);

glXDestroyContext(rcx->dpy, rcx->ctx);
rcx->ctx = NULL;

XDestroyWindow(rcx->dpy, rcx->win);

ptg

rcx->win = (Window)NULL;

XCloseDisplay(rcx->dpy);

rcx->dpy = 0;

Summary
OpenGL is an important part of Linux because it is the only commonly supported hard-
ware 3D API available. Although we have seen how GLUT can be used with Linux, direct
use of GLX is necessary for defining buffer resources, window management, and other
Linux-specific interfaces with OpenGL.

Even though GLUT can be used to handle window management on Linux, GLX 1.4 and
related extensions allow greater control for an application to choose a specific version of
OpenGL when creating new contexts. GLX provides methods to synchronize rendering
with the OS, similar to WGL and AGL interfaces. You learned how to search for configs
that meet your rendering needs. You also learned how to create a context supporting a
specific version of OpenGL. Finally, you saw how to clean up GLX state after your applica-
tion is finished.

Summary 617
15

ptg

This page intentionally left blank

ptg

CHAPTER 16

OpenGL ES on Mobile Devices

by Nicholas Haemel and Richard S. Wright, Jr.

WHAT YOU’LL LEARN IN THIS CHAPTER:

How To Functions You’ll Use

Choose configs eglGetConfig/eglChooseConfig/eglGetConfigAttrib

Create EGL windows eglCreateWindowSurface

Manage EGL contexts eglCreateContext/eglDestroyContext/eglMakeCurrent

Post buffers to the window and eglSwapBuffers/eglSwapInterval/eglWaitGL

synchronize

This chapter is a peek into the world of OpenGL ES rendering. This set of APIs is intended
for use in embedded environments where traditionally resources are much more limited.
OpenGL ES dares to go where other rendering APIs can only dream of.

There is a lot of ground to cover, but we go over many of the basics. There are several
versions of OpenGL ES in existence, but we focus on the newest and most relevant,
OpenGL ES 2.0. We also cover the windowing interfaces designed for use with OpenGL ES
and touch on some issues specific to dealing with embedded environments. Last, but not
least, we learn how to develop applications using OpenGL ES 2.0 for the iPhone and iPad.

OpenGL on a Diet
You will find that OpenGL ES is similar to regular OpenGL. This isn’t accidental; the
OpenGL ES specifications were developed from different versions of OpenGL. As you have
seen up until now, OpenGL provides a great interface for 3D rendering. It is very flexible
and can be used in many applications, from gaming to full-blown CAD workstations to
medical imaging.

ptg

620 CHAPTER 16 OpenGL ES on Mobile Devices

What’s the ES For?
Over time, the OpenGL API has been expanded to support new features. This has caused
older versions of the OpenGL application programming interface to become bloated,
providing many different methods of doing the same thing. Take, for instance, drawing a
single point. In older versions of OpenGL this could be accomplished through immediate
mode, which used glBegin/glEnd with the vertex information defined in between or
through display lists that captured and replayed immediate mode commands. You could
also use glDrawArrays with points prespecified in arrays or through vertex buffer objects.

The simple action of drawing a point can be done four different ways, each having differ-
ent advantages. Although it is nice to have many choices when implementing your own
application, all of this flexibility has produced a very large API. This in turn requires a very
large and complex driver to support it. In addition, special hardware is often required to
make each path efficient and fast. At the time that the OpenGL ES 2.0 specification was
written, the current OpenGL APIs were just too big. OpenGL ES 2.0 fixed that by only
including a subset of the most common and useful portions of OpenGL 2.1. Recent
versions of OpenGL have drastically reduced the functionality overlap, but these revisions
include features and functionality that most OpenGL ES hardware can only dream about!
OpenGL ES 2.0 provides the perfect balance between flexibility and usability for embed-
ded environments.

A Brief History
As hardware costs have come down and more functionality fits into smaller areas on semi-
conductors, user interfaces have become more and more complex for embedded devices. A
common example is the automobile. In the 1980s the first visual feedback from car
computers was provided in the form of single- and multiline text. These interfaces
provided warnings about seatbelt usage, current gas mileage, and so on. After that, two-
dimensional displays became prevalent. These often used bitmap-like rendering to present
2D graphics. Most recently, 3D-capable systems have been integrated to help support GPS
navigation and other graphics-intensive features. A similar technological history exists for
aeronautical instrumentation and cell phones.

Early embedded 3D interfaces were often proprietary and tied closely to the specific hard-
ware features. This was often the case because the supported feature set was small and
varied greatly from device to device. But as each vendor’s 3D engine increased in complex-
ity it became time-consuming and challenging to port applications between devices and
vendors. The only solution was a standard interface. With this in mind, a consortium was
formed to help define an interface that would be flexible and portable, yet tailored to
embedded environments and conscious of their limitations. This standards body would be
called the Khronos Group.

ptg

Khronos
The Khronos Group was originally founded in 2000 by members of the OpenGL ARB, the
OpenGL governing body. Many capable graphics APIs existed for the PC space, but the
goal of Khronos was to help define interfaces that were more applicable to devices beyond
the personal computer. The first embedded API it developed was OpenGL ES.

Khronos consists of many industry leaders in both hardware and software. Some of the
current members are AMD, Texas Instruments, ARM, Intel, NVIDIA, Nokia, and
Qualcomm. The complete list is long and distinguished. You can visit the Khronos Web site
for more information (www.khronos.org).

Version Development
The first version of OpenGL ES released, cleverly called ES 1.0, was an attempt to drasti-
cally reduce the API footprint of a full-featured PC API. This release used the OpenGL 1.3
specification as a basis. Although very capable, OpenGL ES 1.0 removed many of the less
frequently used or very complex portions of the full OpenGL specification. Just like its big
brother, OpenGL ES 1.0 defines a fixed functionality pipe for vertex transform and frag-
ment processing.

OpenGL ES SC 1.0 is a separate specification based on OpenGL ES 1.0 and was designed
for execution environments with extreme reliability requirements. These applications are
considered “Safety Critical,” hence the SC designator. Typical applications are in avionics,
automobile, and military environments. In these areas 3D applications are often used for
instrumentation, mapping, and representing terrain.

ES 1.1 was completed soon after the first specification was released. Although similar to
OpenGL ES 1.0, the 1.1 specification is written from the OpenGL 1.5 specification. In
addition, a more advanced texture path, buffer objects, and a draw texture interface were
added. All in all, the ES 1.1 release was similar to ES 1.0 but added a few new interesting
features.

ES 2.0 was a complete break from the pack. It is not backward-compatible with the ES 1.x
versions. The biggest difference is that the fixed functionality portions of the pipeline
have been removed. Instead, programmable shaders are used to perform the vertex
and fragment processing steps. The ES 2.0 specification is based on the OpenGL 2.0
specification.

To fully support programmable shaders, ES 2.0 employs the OpenGL ES Shading Language.
This is a high-level shading language that is similar to the OpenGL Shading Language that
is paired with OpenGL 2.0+. The reason ES 2.0 is such a large improvement is that all the
fixed functionality no longer encumbers the API. This means applications can implement
and use only the methods they need in their own shaders.

So, to recap, the OpenGL ES versions currently defined and the OpenGL version they were
based on are listed in Table 16.1.

OpenGL on a Diet 621
16

ptg

CHAPTER 16 OpenGL ES on Mobile Devices622

TABLE 16.1 Base OpenGL versions for ES

OpenGL ES OpenGL

ES 1.0 GL 1.3

ES 1.1 GL 1.5

ES 2.0 GL 2.0

ES SC 1.0 GL 1.3

Which Version Is Right for You?
Often hardware is created with a specific API in mind. These platforms usually support
only a single accelerated version of ES. It is sometimes helpful to think of the different
versions of ES as profiles that represent the functionality of the underlying hardware.

For traditional GL, typically new hardware is designed to support the latest version avail-
able. ES is a little different. The type of features targeted for new hardware are chosen
based on several factors; targeted production cost, typical uses, and system support are a
few. That said, semiconductor technology has come a long way in the last five years; it’s
now feasible to make a very small, cost effective, and efficient chips. Many common
smartphones such as the Apple iPhone use OpenGL ES. Rather than introduce you to the
old versions of ES, which are on their way out, this chapter focuses on OpenGL ES 2.0.

To get the most out of this chapter, you should be comfortable with most of the OpenGL
feature set. This chapter is more about showing you what the major differences are
between regular OpenGL and OpenGL ES and less about describing each feature again in
detail.

ES 2.0
OpenGL ES 2.0 and OpenGL 3.3 are surprisingly similar. Both have slimmed-down inter-
faces that have removed old cruft. However, OpenGL 3.3 has added many new features
not yet available on embedded hardware. Transform feedback, multisampling, geometry
shaders, float buffers, and many other newer additions to OpenGL were not even around
when ES 2.0 was born. In fact, a big step for OpenGL ES 2.0 when it was first defined was
to support floating-point data types in commands. Previously, floating-point data needed
to be emulated using fixed-point types. Floats can take up a lot of space!

Vertex Processing and Coloring
Vertex buffer objects, or the client-side vertex arrays, must be used for vertex specification.
Vertex buffer objects can be mapped just as OpenGL 3.3 allows. Specify vertex attributes
by using glVertexAttribPointer.

glVertexAttribPointer(GLuint index, GLuint size, GLenum type,

GLboolean normalized, sizei stride, const void *ptr);

ptg

To draw geometry, you can use glDrawArrays and glDrawElements. However, the more
specialized commands in OpenGL 3.3, glMultiDrawElements, glDrawRangeElements, and
so on, are not available in OpenGL ES 2.0.

Shaders
OpenGL ES 2.0 uses programmable shaders in much the same way as OpenGL 3.3.
However, the only two supported shader stages are vertex and fragment processing.
OpenGL ES 2.0 uses a shading language similar to the GLSL language specification, called
the OpenGL ES Shading Language. This version has changes that are specific to embedded
environments and the hardware they contain.

Although a built-in compiler is convenient for applications, including the compiler in the
OpenGL driver can be large (several megabytes), and the compile process can be very CPU-
intensive. These requirements do not work well with smaller handheld embedded systems,
which have much more stringent limitations for both memory and processing power.
While OpenGL ES has kept the mechanisms that allow you to compile shaders at runtime,
it has also added the ability to compile shaders offline and then load the compiled result
at runtime. Neither method individually is required, but an OpenGL ES 2.0 implementa-
tion must support at least one.

Many of the original OpenGL 2.0 shader and program functions are still part of ES. The
same semantics of program and shader management are still in play. The first step in
using the programmable pipeline is to create the necessary shader and program objects.
This is done with the following commands:

GLuint glCreateShader(GLenum type);

GLuint glCreateProgram(void);

After that, shader objects can be attached to program objects:

glAttachShader(GLuint program, GLuint shader);

If your implementation supports OES_shader_source, you can pass your shader strings in
directly and then compile them at runtime using the familiar functions we already saw
with OpenGL 3.3:

glShaderSource(GLuint shader, sizei count, const char **string,

const int *length);

glCompileShader(GLuint shader);

Likewise, if your implementation supports OES_shader_binary, your shader source can be
compiled offline using implementation-specific methods. Refer to your device’s SDK for
more info on these. Then instead of passing source code in at runtime, you can just give
OpenGL ES the shader binary you got from the offline compile. A single binary can be
loaded for a fragment-vertex pair if they were compiled together offline.

Which Version Is Right for You? 623
16

ptg

glShaderBinaryOES(GLint n, GLuint *shaders, GLenum binaryformat,

const void *binary, GLint length);

One or both of these methods must be supported. Check your device documentation to
see which option works best for your embedded device. Once your shaders are loaded and
compiled, bind the attribute channels to the attribute names used in your shaders:

glBindAttribLocation(GLuint program, GLuint index, const char *name);

The program can then be linked. If the shader binary interface is supported, the shader
binaries for the compiled shaders need to be loaded before the link method is called.

glLinkProgram(GLuint program);

After the program has been successfully linked, you can set it as the currently executing
program by calling glUseProgram. Also, at this point uniforms can be set as needed. Most
of the normal OpenGL 3.3 attribute and uniform interfaces are supported. However, the
transpose bit for setting uniform matrices must be GL_FALSE. This feature is not essential
to the functioning of the programmable pipeline. Trying to draw without a valid program
bound generates undefined results. Also uniform blocks are not part of OpenGL ES 2.0, so
you have to use individual uniforms.

glUseProgram(GLuint program);

glUniform{1234}{if}(GLint location, T values);

glUniform{1234}{if}v(GLint location, sizei count, T value);

glUniformMatrix{234}fv(GLint location, sizei count,

GLboolean transpose, T value);

The shader language paired with OpenGL ES 2.0 is pretty similar to OpenGL 3.3 (GLSL
1.50). In fact you can often get started with your ES shaders by developing them on a PC
or Mac and then transferring them over to ES once things work as you expect.

Rasterization
Handling of points is slightly different in OpenGL ES 2.0. Only aliased points are
supported. Vertex shaders are responsible for outputting point size; there is no other way
for point size to be specified through the API. GL_COORD_REPLACE can be used to generate
point texture coordinates from 0 to 1 for s and t coordinates. Also the point coordinate
origin is set to GL_UPPER_LEFT and cannot be changed. Point parameters are also not
available.

Antialiased lines are not supported. OpenGL ES 2.0 does not have polygon smooth,
polygon antialiasing, or multiple polygon modes.

CHAPTER 16 OpenGL ES on Mobile Devices624

ptg

Texturing
With OpenGL ES 2.0, 2D textures and cubemaps are supported. Depth textures, rectangle
textures, and array textures are not supported, and 3D textures remain optional. Non-
power-of-two textures are valid only for 2D textures when mipmapping is not in use and
the texture wrap mode is set to clamp to edge. Textures do not have to be a power of two.
OpenGL ES 2.0 also does not have sampler objects.

Framebuffers
Similar to full OpenGL 3.3, OpenGL ES 2.0 also supports framebuffer and renderbuffer
objects. Applications can create and bind their own framebuffer objects. There are some
limitations. Only one color buffer can be attached at a time, but you can still use depth
and stencil buffers. You are also allowed to bind textures to framebuffer attachments.

Fragment Operations
There are also a few changes to the per-fragment operations allowed in ES 2.0. It is
required that there be at least one config available that supports both a depth buffer and a
stencil buffer. This guarantees that an application depending on the use of depth informa-
tion and stencil compares will function on any implementation that supports OpenGL ES
2.0.

A few things have also been removed relative to the OpenGL 3.3 spec. First, the alpha test
stage has been removed given that an application can implement this stage in a fragment
shader. The glLogicOp interface is no longer supported. Occlusion queries are also not part
of OpenGL ES.

Blending works as it does in OpenGL 3.3, but the scope is more limited. Blending cannot
be set differently for each render target, and dual source blending is not supported.

State
OpenGL ES 2.0 state can be queried in the same way as OpenGL 3.3 state. You can use
glGetBooleanv, glGetIntegerv, and glGetFloatv to query most state. Other specific
queries such as glGetBufferParameteriv and glIsTexture are also available.

Core Additions
OpenGL ES supports extensions similar to how OpenGL 3.3 does. Although these exten-
sions are not required and may not be supported on all implementations, they may be
useful on platforms where they are supported.

• Half-float vertex format—OES_vertex_half_float—With this optional exten-
sion it is possible to specify vertex data with 16-bit floating-point values. When this
is done, the required storage for vertex data can be significantly reduced from the
size of larger data types. Also, the smaller data type can have a positive effect on the
efficiency of the vertex transform portions of the pipeline. Use of half-floats for data
like colors often does not have any adverse effects, especially for limited display
color depth.

Which Version Is Right for You? 625
16

ptg

• Floating-point textures—Two new optional extensions, OES_texture_half_float
and OES_texture_float, define new texture formats using floating-point compo-
nents. The OES_texture_float uses a 32-bit floating format, whereas
OES_texture_half_float uses a 16-bit format. Both extensions support GL_NEAREST
magnification as well as GL_NEAREST and GL_NEAREST_MIPMAP_NEAREST minification
filters. To use the other minification and magnification filters defined in OpenGL ES,
the support of OES_texture_half_float_linear and OES_texture_float_linear
extension is required.

• Unsigned integer element indices—OES_element_index_uint—Element index
use in OpenGL ES is inherently limited by the maximum size of the index data
types. The use of unsigned bytes and unsigned shorts allows for only 256 or 65,536
elements to be used. This optional extension allows for the use of element indexing
with unsigned integers, extending the maximum reference index to beyond what
current hardware could store.

• Mapping buffers—OES_mapbuffer—For vertex buffer object support in previous
OpenGL ES versions, the capability to specify and use anything other than a static
buffer was removed. When this optional extension is available, use of the tokens
GL_STREAM_DRAW, GL_STREAM_COPY, GL_STREAM_READ, GL_STATIC_READ,
GL_DYNAMIC_COPY, and GL_DYNAMIC_READ are valid, as well as the glMapBuffer and
glUnmapBuffer entrypoints. This permits applications to map and edit existing
VBOs.

• 3D textures—OES_texture_3D—Generally, most ES applications do not require
support for 3D textures. This extension was kept as optional to allow implementa-
tions to decide whether support could be accelerated and would be useful on an
individual basis. Also texture wrap modes and mipmapping are supported for 3D
textures that have power-of-two dimensions. Non-power-of-two 3D textures only
support GL_CLAMP_TO_EDGE for mipmapping and texture wrap.

• High-precision floats and integers in fragment shaders—OES_fragment_

precision_high—This optional extension allows for support of the high-precision
qualifier for integers and floats defined in fragment shaders.

• Ericsson compressed texture format—OES_compressed_ETC1_RGB8_texture—
The need for compressed texture support in OpenGL ES has long been understood,
but format specification and implementation have been left to each individual
implementer. This optional extension formalizes one of these formats for use on
multiple platforms.

To load a compressed texture using the ETC_RGB8 format, call glCompressedTexImage2D
with an internal format of GL_ETC1_RGB8_OES. This format defines a scheme by which each
4x4 texel block is grouped. A base color is then derived, and modifiers for each texel are
selected from a table. The modifiers are then added to the base color and clamped to
0–255 to determine the final texel color. The full OES_compressed_ETC1_RGB8_texture
description has more details on this process.

CHAPTER 16 OpenGL ES on Mobile Devices626

ptg

The ES Environment
Now that we have seen what the spec allows applications to do, we are almost ready to
take a peek at an example. Figure 16.1 shows an example of OpenGL ES running in a
game on a cell phone. This figure is also shown in Color Plate 22. But before that, there
are a few issues unique to embedded systems that you should keep in mind while working
with OpenGL ES and targeting embedded environments.

The ES Environment 627
16

FIGURE 16.1 OpenGL ES rendering on a cell phone.

Application Design Considerations
For first-timers to the embedded world, things are a bit different here than when working
on a PC. The ES world spans a wide variety of hardware profiles. The most capable of these
might be multicore systems with extensive dedicated graphics resources, such as the Sony
PlayStation 3. Alternatively, and probably more often, you may be developing for or
porting to an entry-level cell phone with a 50MHz processor and 16MB of storage.

On limited systems, special attention must be paid to instruction count because every
cycle counts if you are looking to maintain reasonable performance. Certain operations
can be very slow. An example might be finding the sine of an angle. Instead of calling
sin() in a math library, it would be much faster to do a lookup in a precalculated table if a
close approximation would do the job. In general, the types of calculations and algorithms
that might be part of a PC application should be updated for use in an embedded system.
One example might be physics calculations, which are often very expensive. These can
usually be simplified and approximated for use on embedded systems like cell phones.

ptg

On older systems it’s also important to be aware of native floating-point support. Many of
these systems do not have the capability to perform floating-point operations directly.
This means all floating-point operations will be emulated in software. These operations are
generally very slow and should be avoided at all costs.

Dealing with a Limited Environment
Not only can the environment be limiting when working on embedded systems, but the
graphics processing power itself is unlikely to be on par with the bleeding edge of PC
graphics. These restrictions force you to pay special attention to resources when you’re
looking to optimize the performance of your app, or just to get it to load and run at all!

It may be helpful to create a budget for storage space. In this way you can break up into
pieces the maximum graphics/system memory available for each memory-intensive cate-
gory. This helps to provide a perspective on how much data each unique piece of your app
can use and when you are starting to run low.

One of the most obvious areas is texturing. Large detailed textures can help make for rich
and detailed environments on PC-targeted applications. This is great for user experience,
but textures can be a huge resource hog in most embedded systems. Many of the older
platforms may not have full hardware support for texturing. These situations can cause
large performance drops when many fragments are textured, especially if each piece of
overlapping geometry is textured and drawn in the wrong order.

In addition to core hardware texturing performance, texture sizes can also be a major limi-
tation. Both 3D and cube map textures can quickly add up to a large memory footprint,
which is why 3D textures are optional for ES 2.0. Usually when the amount of graphics
and system memory is limited, the screen size is also small. This means that a much
smaller texture can be used with similar visual results. Also it may be worth avoiding
multitexture because it requires multiple texture passes as well as more texture memory.

Vertex storage can also impact memory, similar to textures. In addition to setting a cap for
the total memory used for vertices, it may also be helpful to decide which parts of a scene
are important and divide up the vertex allotment along those lines.

One trick to keeping rendering smooth while many objects are on the screen is to change
the vertex counts for objects relative to their distance from the viewer. This is a level-of-
detail approach to geometry management. For instance, if you want to generate a forest
scene, three different models of trees could be used. One level would have a very small
vertex count and would be used to render the farthest of the trees. A medium vertex count
could be used for trees of intermediate distance, and a larger count would be used on the
closest. This would allow many trees to be rendered much quicker than if they were all at
a high detail level. Because the least detailed trees are the farthest away, and may also be
partially occluded, it is unlikely the lower detail would be noticed. But there may be
significant savings in vertex processing as a result.

CHAPTER 16 OpenGL ES on Mobile Devices628

ptg

Fixed-Point Math
You may ask yourself, “What is fixed-point math and why should I care?” The truth is that
you may not care if your hardware supports floating-point numbers and the version of
OpenGL ES you are using does as well. But many platforms do not natively support float-
ing point. Floating-point calculations in CPU emulation are very slow and should be
avoided. In those instances, a representation of a floating-point number can be used to
communicate nonwhole numbers. We are definitely not going to turn this into a math
class! But instead a few basic things about fixed-point math are covered to give you an
idea of what’s involved. If you need to know more, many great resources are available that
go to great lengths in discussing fixed-point math.

First, let’s review how floating-point numbers work. There are basically two components to
a floating-point number: The mantissa describes the fractional value, and the exponent is
the scale or power. In this way large numbers are represented with the same number of
significant digits as small numbers. They are related by m * 2e where m is the mantissa and
e is the exponent.

Fixed-point representation is different. It looks more like a normal integer. The bits are
divided into two parts, with one part being the integer portion and the other part being
the fractional. The position between the integer and fractional components is the “imagi-
nary point.” There also may be a sign bit. Putting these pieces together, a fixed-point
format of s15.16 means that there is 1 sign bit, 15 bits represent the integer, and 16 bits
represent the fraction. This is the format used natively by OpenGL ES to represent fixed-
point numbers.

Addition of two fixed-point numbers is simple. Because a fixed-point number is basically
an integer with an arbitrary “point,” the two numbers can be added together with a
common scalar addition operation. The same is true for subtraction. There is one require-
ment for performing these operations. The fixed-point numbers must be in the same
format. If they are not, one must be converted to the format of the other first. So to add
or subtract a number with format s23.8 and one with s15.16, one format must be chosen
and both numbers converted to that format.

Multiplication and division are a bit more complex. When two fixed-point numbers are
multiplied together, the imaginary point of the result is the sum of that in the two
operands. For instance, if you were multiplying two numbers with formats of s23.8
together, the result would be in the format of s15.16. So it is often helpful to first convert
the operands into a format that allows for a reasonably accurate result format. You proba-
bly don’t want to multiply two s15.16 formats together if they are greater than 1.0—the
result format would have no integer portion! Division is similar, except the size of the frac-
tional component of the second number is subtracted from the first.

When using fixed-point numbers, you have to be especially careful about overflow issues.
With normal floating point, when the fractional component would overflow, the expo-
nent portion is modified to preserve accuracy and prevent the overflow. This is not the

The ES Environment 629
16

ptg

case for fixed-point. To avoid overflowing fixed-point numbers when performing opera-
tions that might cause problems, the format can be altered. The numbers can be converted
to a format that has a larger integer component and then converted back before calling
into OpenGL ES. With multiplication, similar issues result in precision loss of the frac-
tional component when the result is converted back to one of the operand formats. There
are also math packages available to help you convert to and from fixed-point formats, as
well as perform math functions. This is probably the easiest way to handle fixed-point
math if you need to use it for an entire application.

That’s it! Now you have an idea how to do basic math operations using fixed-point
formats. This will help get you started if you find yourself stuck having to use fixed-point
values when working with embedded systems. There are many great references for learn-
ing more about fixed-point math. One is Essential Mathematics for Games and Interactive
Applications by James Van Verth and Lars Bishop (Elsevier, Inc., 2004).

EGL: A New Windowing Environment
You have already heard about GLX, AGL, and WGL. These are the OpenGL-related system
interfaces for OSes like Linux, Apple’s Mac OS, and Microsoft Windows. These interfaces
are necessary to do the setup and management for system-side resources that OpenGL
uses. The EGL implementation often is also provided by the graphics hardware vendor.
Unlike the other windowing interfaces, EGL is not OS-specific. It’s an interface that’s
designed to run under Windows, Linux, or embedded OSes such as Brew and Symbian. A
block diagram of how EGL and OpenGL ES fit into an embedded system is shown in
Figure 16.2.

EGL has its own native types just like OpenGL does. EGLBoolean has two values that are
named similarly to their OpenGL counterparts: EGL_TRUE and EGL_FALSE. EGL also defines
the type EGLint. This is an integer that is sized the same as the native platform integer
type. The most current version of EGL as of this writing is EGL 1.4.

CHAPTER 16 OpenGL ES on Mobile Devices630

3D Application

OS EGL OpenGL ES

System
Hardware

Graphic Processor

FIGURE 16.2 A typical embedded system diagram.

ptg

EGL Displays
Most EGL entrypoints take a parameter called EGLDisplay. This is a reference to the
rendering target where drawing can take place. It might be easiest to think of this as corre-
sponding to a physical monitor. The first step in setting up EGL is to get the default
display. This can be done through the following function:

EGLDisplay eglGetDisplay(NativeDisplayType display_id);

The native display ID that is taken as a parameter is dependent on the system. For
instance, if you were working with an EGL implementation on Windows, the display_id
parameter you pass would be the device context. You can also pass EGL_DEFAULT_DISPLAY
if you don’t have the display ID and just want to render on the default device. If
EGL_NO_DISPLAY is returned, an error occurred.

Now that you have a display handle, you can use it to initialize EGL. If you try to use
other EGL interfaces without initializing EGL first, you get an EGL_NOT_INITIALIZED error.

EGLBoolean eglInitialize(EGLDisplay dpy, EGLint *major, EGLint *minor);

The other two parameters returned are the major and minor EGL version numbers. By
calling the initialize command, you tell EGL you are getting ready to do rendering, which
allows it to allocate and set up any necessary resources.

EGL also exposes an interface called eglBindAPI. This allows an application to select from
different rendering APIs, such as OpenGL ES and OpenVG. Only one context can be
current for each API per thread. Use this interface to tell EGL which interface it should use
for subsequent calls to eglMakeCurrent in a thread. Pass in one of EGL_OPENGL_ES_API,
EGL_OPENVG_API, or EGL_OPENGL_API to signify the correct API. The call fails if an invalid
enum is passed in. Open VG is a different open API supporting vector graphics commonly
found in embedded systems.

EGLBoolean eglBindAPI(EGLenum api);

EGL also provides a method to query the current API, eglQueryAPI. This interface returns
one of the three EGLenums previously listed: EGL_OPENGL_ES_API, EGL_OPENVG_API, or
EGL_OPENGL_API.

EGLenum eglQueryAPI(void);

On exit of your application, or after you are done rendering, a call must be made to EGL
again to clean up all allocated resources. After this call is made, further references to EGL
resources with the current display will be invalid until eglInitialize is called on it again.

EGLBoolean eglTerminate(EGLDisplay dpy);

EGL: A New Windowing Environment 631
16

ptg

Also on exit and when finished rendering from a thread, call eglReleaseThread. This
allows EGL to release any resources it has allocated in that thread. If a context is still
bound, eglReleaseThread releases it as well. It is still valid to make EGL calls after calling
eglReleaseThread, but that causes EGL to reallocate any state it just released.

EGLBoolean eglReleaseThread(EGLDisplay dpy);

Creating a Window
As on most platforms, creating a window to render in can be a complex task. Windows are
created in the native operating system. Later we look at how to tell EGL about native
windows. Thankfully the process is similar enough to that for Windows and Linux.

Display Configs
An EGL config is analogous to a pixel format on Windows or visuals on Linux. Each
config represents a group of attributes or properties for a set of render surfaces. In this case
the render surface is a window on a display. It is typical for an implementation to support
multiple configs. Each config is identified by a unique number. Different constants are
defined that correlate to attributes of a config. They are defined in Table 16.2.

TABLE 16.2 EGL Config Attribute List

Attribute Description

EGL_BUFFER SIZE Total depth in bits of color buffer.

EGL_RED_SIZE Number of bits in red channel of color buffer.

EGL_GREEN_SIZE Number of bits in green channel of color buffer.

EGL_BLUE_SIZE Number of bits in blue channel of color buffer.

EGL_ALPHA_SIZE Number of bits in alpha channel of color buffer.

EGL_DEPTH_SIZE Number of bits in depth buffer.

EGL_LUMINANCE_SIZE Number of bits of luminance in the color buffer

EGL_STENCIL_SIZE Number of bits in stencil buffer.

EGL_BIND_TO_TEXTURE_RGB True if config is bindable to RGB textures.

EGL_BIND_TO_TEXTURE_RGBA True if config is bindable to RGBA textures.

EGL_CONFIG_CAVEAT Set to one of the following caveats: EGL_NONE,

EGL_SLOW_CONFIG, or EGL_NON_CONFORMANT_CONFIG. These

can warn of potential issues for this config. A slow config

may be software emulated because it exceeds hardware

limits. A nonconformant config will not pass the confor-

mance test.

EGL_CONFIG_ID Unique identifier for this config.

EGL_LEVEL Framebuffer level.

EGL_NATIVE_RENDERABLE Is set to EGL_TRUE if native APIs can render to this surface.

EGL_NATIVE_VISUAL_ID May represent the ID of the native visual if the config

supports a window; otherwise, is 0.

CHAPTER 16 OpenGL ES on Mobile Devices632

ptg

Attribute Description

EGL_NATIVE_VISUAL_TYPE Type of a native visual if config supports window rendering.

EGL_RENDERABLE_TYPE Native type of visual. May be EGL_OPENGL_ES_BIT or

EGL_OPENVG_BIT

EGL_SURFACE_TYPE Valid surface targets supported. May be any or all of

EGL_WINDOW_BIT, EGL_PIXMAP_BIT, or EGL_PBUFFER_BIT.

EGL_COLOR_BUFFER_TYPE Type of color buffer.

May be EGL_RGB_BUFFER or EGL_LUMINANCE_BUFFER.

EGL_MIN_SWAP_INTERVAL Smallest value that can be accepted by eglSwapInterval.

Smaller values will be clamped to this minimum.

EGL_MAX_SWAP_INTERVAL Largest value that can be accepted by eglSwapInterval.

Larger values will be clamped to this maximum.

EGL_SAMPLE_BUFFERS Number of multisample buffers supported. Must be 0 or 1.

EGL_SAMPLES Number of samples per pixel for multisample buffers. Will

be 0 if EGL_SAMPLE_BUFFERS is 0.

EGL_ALPHA_MASK_SIZE Number of bits of alpha mask.

EGL_TRANSPARENT_TYPE Indicates support of transparency. Value may be EGL_NONE

or EGL_TRANSPARENT_RGB. If transparency is supported, a

transparent pixel is drawn when the pixel’s components are

all equal to the respective transparent RGB values.

EGL_TRANSPARENT_RED_VALUE Red value a framebuffer pixel must have to be transparent.

EGL_TRANSPARENT_GREEN_VALUE Green value a framebuffer pixel must have to be

transparent.

EGL_TRANSPARENT_BLUE_VALUE Blue value a framebuffer pixel must have to be transparent.

It is necessary to choose a config before creating a render surface. But with all the possible
combinations of attributes, the process may seem difficult. EGL provides several tools to
help you decide which config best supports your needs. If you have an idea of the kind of
options you need for a window, you can use the eglChooseConfig interface to let EGL
choose the best config for your requirements.

EGLBoolean eglChooseConfig(EGLDisplay dpy, const EGLint *attrib_list,

EGLConfig *configs,EGLint config_size,

EGLint *num_configs);

First decide how many matches you are willing to look through. Then allocate memory to
hold the returned config handles. The matching config handles will be returned through
the configs pointer. The number of configs will be returned through the num_config
pointer. Next comes the tricky part. You have to decide which parameters are important to
you in a functional config. Then, you create a list of each attribute followed by the corre-
sponding value. For simple applications, some important attributes might be the bit
depths of the color and depth buffers, and the surface type. The list must be terminated
with EGL_NONE. An example of an attribute list is shown here:

EGL: A New Windowing Environment 633
16

ptg

EGLint attributes[] = {EGL_BUFFER_SIZE, 24,

EGL_RED_SIZE, 6,

EGL_GREEN_SIZE, 6,

EGL_BLUE_SIZE, 6,

EGL_DEPTH_SIZE, 12,

EGL_SURFACE_TYPE, EGL_WINDOW_BIT,

EGL_NONE};

For attributes that are not specified in the array, the default values are used. During the
search for a matching config, some of the attributes you list are required to make an exact
match, whereas others are not. Table 16.3 lists the default values and the compare method
for each attribute.

TABLE 16.3 EGL Config Attribute List

Compare
Attribute Operator Default

EGL_BUFFER SIZE Minimum 0

EGL_RED_SIZE Minimum 0

EGL_GREEN_SIZE Minimum 0

EGL_BLUE_SIZE Minimum 0

EGL_ALPHA_SIZE Minimum 0

EGL_DEPTH_SIZE Minimum 0

EGL_LUMINANCE_SIZE Minimum 0

EGL_STENCIL_SIZE Minimum 0

EGL_BIND_TO_TEXTURE_RGB Equal EGL_DONT_CARE

EGL_BIND_TO_TEXTURE_RGBA Equal EGL_DONT_CARE

EGL_CONFIG_CAVEAT Equal EGL_DONT_CARE

EGL_CONFIG_ID Equal EGL_DONT_CARE

EGL_LEVEL Equal 0

EGL_NATIVE_RENDERABLE Equal EGL_DONT_CARE

EGL_NATIVE_VISUAL_TYPE Equal EGL_DONT_CARE

EGL_RENDERABLE_TYPE Mask EGL_OPENGL_ES_BIT

EGL_SURFACE_TYPE Equal EGL_WINDOW_BIT

EGL_COLOR_BUFFER_TYPE Equal EGL_RGB_BUFFER

EGL_MIN_SWAP_INTERVAL Equal EGL_DONT_CARE

EGL_MAX_SWAP_INTERVAL Equal EGL_DONT_CARE

EGL_SAMPLE_BUFFERS Minimum 0

EGL_SAMPLES Minimum 0

EGL_ALPHA_MASK_SIZE Minimum 0

EGL_TRANSPARENT_TYPE Equal EGL_NONE

EGL_TRANSPARENT_RED_VALUE Equal EGL_DONT_CARE

EGL_TRANSPARENT_GREEN_VALUE Equal EGL_DONT_CARE

EGL_TRANSPARENT_BLUE_VALUE Equal EGL_DONT_CARE

CHAPTER 16 OpenGL ES on Mobile Devices634

ptg

EGL uses a set of rules to sort the matching results before they are returned to you.
Basically, the caveat field is matched first, followed by the color buffer channel depths,
then the total buffer size, and next the sample buffer information. So the config that is
the best match should be first. After you receive the matching configs, you can peruse the
results to find the best option for you. The first one will often be sufficient.

To analyze the attributes for each config, you can use eglGetConfigAttrib. This allows
you to query the attributes for a config, one at a time:

EGLBoolean eglGetConfigAttrib(EGLDisplay dpy, EGLConfig config,

EGLint attribute, EGLint *value);

If you prefer a more “hands-on” approach to choosing a config, a more direct method for
accessing supported configs is also provided. You can use eglGetConfigs to get all the
configs supported by EGL:

EGLBoolean eglGetConfigs(EGLDisplay dpy, EGLConfig *configs,

EGLint config_size, EGLint *num_configs);

This function is very similar to eglChooseConfig except that it returns a list that is not
dependent on some search criteria. The number of configs returned is either the
maximum available or the number passed in by config_size, whichever is smaller. Here
also a buffer needs to be preallocated based on the expected number of formats. After you
have the list, it is up to you to pick the best option, examining each with
eglGetConfigAttrib. It is unlikely that multiple different platforms will have the same
configs or list configs in the same order. So it is important to properly select a config
instead of blindly using the config handle.

Creating Rendering Surfaces
Now that we know how to pick a config that will support our needs, it’s time to look at
creating an actual render surface. The focus will be window surfaces, although it is also
possible to create nondisplayable surfaces such as pBuffers and pixmaps. The first step is to
create a native window that has the same attributes as those in the config you chose. Then
you can use the window handle to create a window surface. The window handle type is
related to the platform or OS you are using. In this way the same interface supports many
different OSes without having to define a new method for each.

EGLSurface eglCreateWindowSurface(EGLDisplay dpy, EGLConfig config,

NativeWindowType win, EGLint *attrib_list);

The handle for the on-screen surface is returned if the call succeeds. The attrib_list
parameter is intended to specify window attributes, but currently none is defined. After
you are done rendering, you have to destroy your surface using the eglDestroySurface
function:

EGLBoolean eglDestroySurface(EGLDisplay dpy, EGLSurface surface);

EGL: A New Windowing Environment 635
16

ptg

After a window render surface has been created and the hardware resources have been
configured, you are almost ready to go!

Context Management
The last step is to create a render context to use. The rendering context is a set of state
used for rendering. Creation of at least one context must be supported on all hardware.

EGLContext eglCreateContext(EGLDisplay dpy, EGLConfig config,

EGLContext share_context, const EGLint *attrib_list);

To create a context, call the eglCreateContext function with the display handle you have
been using all along. Also pass in the config used to create the render surface. The config
used to create the context must be compatible with the config used to create the window.
The share_context parameter is used to share objects like textures and shaders between
contexts. Pass in the context you want to share with. Normally you pass EGL_NO_CONTEXT
here given that sharing is not necessary. The context handle is passed back if the context
was successfully created; otherwise, EGL_NO_CONTEXT is returned.

Now that you have a rendering surface and a context, you’re ready to go! The last thing to
do is to tell EGL which context you want to consider since it can use multiple contexts for
rendering. Use eglMakeCurrent to set a context as current. You can use the surface you
just created as both the read and the draw surfaces.

EGLBoolean eglMakeCurrent(EGLDisplay dpy, EGLSurface draw,

EGLSurface read, EGLContext ctx);

You get an error if the draw or read surfaces are invalid or if they are not compatible with
the context. To release a bound context, you can call eglMakeCurrent with
EGL_NO_CONTEXT as the context. You must use EGL_NO_SURFACE as the read and write
surfaces when releasing a context. To delete a context you are finished with, call
eglDestroyContext:

EGLBoolean eglDestroyContex(EGLDisplay dpy, EGLContext ctx);

Presenting Buffers and Rendering Synchronization
For rendering, there are certain EGL functions you may need to help keep things running
smoothly. The first is eglSwapBuffers. This interface allows you to present a color buffer
to a window. Just pass in the window surface you would like to post to:

EGLBoolean eglSwapBuffers(EGLDisplay dpy, EGLSurface surface);

Just because eglSwapBuffers is called doesn’t mean it’s the best time to actually post the
buffer to the monitor. It’s possible that the display is in the middle of displaying a frame
when eglSwapBuffers is called. This case causes an artifact called tearing that looks like

CHAPTER 16 OpenGL ES on Mobile Devices636

ptg

the frame is slightly skewed on a horizontal line. EGL provides a way to decide if it should
wait until the current display update is complete before posting the swapped buffer to the
display:

EGLBoolean eglSwapInterval(EGLDisplay dpy, EGLint interval);

By setting the swap interval to 0, you are telling EGL to not synchronize swaps and that
an eglSwapBuffers call should be posted immediately. The default value is 1, which
means each swap is synchronized with the next post to the display. The interval is
clamped to the values of EGL_MIN_SWAP_INTERVAL and EGL_MAX_SWAP_INTERVAL.

If you plan to render to your window using other APIs besides OpenGL ES/EGL, there are
some things you can do to ensure that rendering is posted in the right order:

EGLBoolean eglWaitGL(void);

EGLBoolean eglWaitNative(EGLint engine);

Use eglWaitGL to prevent other API rendering from operating on a window surface before
OpenGL ES rendering completes. Use eglWaitNative to prevent OpenGL ES from execut-
ing before native API rendering completes. The engine parameter can be defined in EGL
extensions specific to an implementation, but EGL_CORE_NATIVE_ENGINE can also be used
and will refer to the most common native rendering engine besides OpenGL ES. This is
implementation/system specific.

More EGL Stuff
We have covered the most important and commonly used EGL interfaces. There are a few
more EGL functions left to talk about that are more peripheral to the common execution
path.

EGL Errors
EGL provides a method for getting EGL-specific errors that may be thrown during EGL
execution. Most functions return EGL_TRUE or EGL_FALSE to indicate whether they were
successful, but in the event of a failure, a Boolean provides very little information on what
went wrong. In this case, eglGetError may be called to get more information:

EGLint eglGetError();

The last thrown error is returned. This will be one of the following self-explanatory errors:
EGL_SUCCESS, EGL_NOT_INITIALIZED, EGL_BAD_ACCESS, EGL_BAD_ALLOC, EGL_BAD_ATTRIBUTE,
EGL_BAD_CONTEXT, EGL_BAD_CONFIG, EGL_BAD_CURRENT_SURFACE, EGL_BAD_DISPLAY,
EGL_BAD_SURFACE, EGL_BAD_MATCH, EGL_BAD_PARAMETER, EGL_BAD_NATIVE_PIXMAP,
EGL_BAD_NATIVE_WINDOW, or EGL_CONTEXT_LOST.

EGL: A New Windowing Environment 637
16

ptg

Getting EGL Strings
A few EGL state strings may be of interest. These include the EGL version string and exten-
sion string. To get these, use the eglQueryString interface with the EGL_VERSION and
EGL_EXTENSIONS enums:

const char *eglQueryString(EGLDisplay dpy, EGLint name);

Extending EGL
Like OpenGL, EGL provides support for various extensions. These are often extensions
specific to the current platform and can provide for extended functionality beyond that of
the core specification. To find out what extensions are available on your system, you can
use the eglQueryString function previously discussed. To get more information on
specific extensions, you can visit the Khronos Web site listed in the reference section. Some
of these extensions may require additional entrypoints. To get the entrypoint address for
these extensions, pass the name of the new entrypoint into the following function:

void (*eglGetProcAddress(const char *procname))();

Use of this entrypoint is similar to wglGetProcAddress. A NULL return means the entry-
point does not exist. But just because a non-NULL address is returned does not mean the
function is actually supported. The related extensions must exist in the EGL extension
string or the OpenGL ES extension string. It is important to ensure that you have a valid
function pointer (non-NULL) returned from calling eglGetProcAddress.

Negotiating Embedded Environments
After examining how OpenGL ES and EGL work on an embedded system, it’s time to look
closer at the environment of an embedded system and how it affects an OpenGL ES appli-
cation. The environment plays an important role in how you approach creating ES appli-
cations.

Popular Operating Systems
Because OpenGL ES is not limited to certain platforms as many 3D APIs are, a wide variety
of OSes can be used. This decision is often already made for you because most embedded
systems are designed for use with certain OSes and certain OSes are intended for use on
specific hardware.

Brew and Symbian are common cell phone operating systems. But one of the fastest
growing environments is the iPhone OS, running on the iPhone, iPod Touch, and the
iPad. In fact, just about anyone with a Mac can create an app for the iPhone OS and
submit to the Apple App Store. We take a look at how to go about creating an app for the
iPhone in a few short pages.

CHAPTER 16 OpenGL ES on Mobile Devices638

ptg

Vendor-Specific Extensions
Each OpenGL ES vendor often has a set of extensions that are specific to its hardware and
implementation. These often extend the number and types of formats available. Because
these extensions are useful only for limited sets of hardware, they are not discussed here.

For the Home Gamer
For those of us not lucky enough to be working on a hardware emulator or hardware
itself, there are other options if you still want to try your hand at OpenGL ES. Several
OpenGL ES implementations are available that execute on a full-scale operating system.
These are also great for doing initial development.

AMD provides an emulator that allows you to do just that. A link to the emulator is
provided in the reference section at the end of the book. You can use this emulator to get
started writing OpenGL ES 2.0 applications right on your desktop computer. The emulator
includes a sample program you can start with. You can use the simple sample program as a
basis for building your own OpenGL ES 2.0 applications. The emulator even has a control
panel that allows you to replicate the constraints for an embedded environment.

If you have an Intel-based Mac, Apple’s iPhone SDK is also available for free. Apple’s
iPhone, iPod Touch, and new iPad are all OpenGL ES-based devices. Even without a
device, the SDK and Xcode tools work with a software emulator that allows you to do
development without a hardware device.

Apple Handheld Platforms
Apple has not one, but three handheld platforms that use OpenGL ES 2.0: the iPhone, the
iPod Touch, and most recently the iPad. The iPhone is one of the most popular smart-
phones ever made and has a 320 x 480 touch screen interface. The first two generations of
the iPhone supported OpenGL ES 1.1, while the third and later generations allow either
OpenGL ES 1.1 or 2.0 applications. Because we are only concerned with the latest and
most relevant edition, we restrict our discussion to OpenGL ES 2.0 on the iPhone. What
about the iPod Touch? I’m sure Apple’s marketing czar would object, but essentially as far
as OpenGL programming goes, iPod Touch is simply an iPhone without the phone part.
The iPad on the other hand, could be thought of as the “Large Print Edition” of the iPod
Touch: more real estate. It does have a different graphics processor under the hood too,
but thankfully OpenGL hides that sort of thing from us. To make things simple, we are
not going to bother saying iPhone/iPod Touch/iPad all over the place. We’ll just say
iPhone, and you should know that the other devices are essentially the same as far as
OpenGL ES programming is concerned.

So, let’s go through an example, shall we?

Apple Handheld Platforms 639
16

ptg

FIGURE 16.3 Xcode welcome screen.

Setting Up An iPhone Project
The very first thing you need to do is acquire the iPhone SDK from Apple’s developer rela-
tions Web site, http://developer.apple.com. Launching Xcode presents the familiar
welcome screen shown in Figure 16.3.

If you’ve been working on other projects recently, you’ll see them listed to the right under
Recent Projects. Click the Create a New Xcode Project button to open the project wizard
screen. On the New Project screen, shown in Figure 16.4, select Application under the
iPhoneOS group (see, there is no iPod Touch or iPad OS group; they are all the same
thing). You see various application templates in the upper pane, one of which is the
OpenGL ES Application. Click to highlight this and click Choose in the lower right-hand
corner of the window.

The next screen asks you to choose a location and to name your new project. Select
SphereWorld—yes, we are going to bring SphereWorld back from Chapter 5 and port it to
the iPhone. Once your project is created, you should see a screen similar to that shown in
Figure 16.5.

CHAPTER 16 OpenGL ES on Mobile Devices640

ptg

Apple Handheld Platforms 641
16

FIGURE 16.4 The Xcode New Project screen.

Here we expanded all the groups so you can see all the files and frameworks that make up
your project. Also make sure you’ve selected or changed the combo box in the upper left
to be one of the Simulator options and not one of the Device options. Getting your app
on the device and configuring your hardware certificate is well beyond the scope of this
book! In Appendix A, “Further Reading,” we list a couple of our favorite iPhone program-
ming books. As is typical for Xcode, just press Command-R to compile, link, and launch
your program in the simulator. The default OpenGL ES application is just a bouncing
shaded triangle strip. The simulator is shown with Xcode running on the desktop in
Figure 16.6.

ptg

FIGURE 16.5 The freshly created SphereWorld project.

CHAPTER 16 OpenGL ES on Mobile Devices642

FIGURE 16.6 Your iPhone OpenGL ES development environment.

ptg

Using C++ on the iPhone
The native iPhone programming environment uses the Objective C programming
language. There is a good bit of passion and sometimes vitriol about this, as the majority
of non-Mac programmers in the world would much rather use C++. In fact, a good
number of Mac programmers would rather use C++ as it turns out. Other than making use
of Apple’s frameworks, however, there is no reason why anyone cannot use C++ for other
portions of their code, and in fact, we are going to make use of Objective C as little as
possible in moving our SphereWorld example to the iPhone.

Objective C is essentially C with objects. These objects, however, do not act like C++
objects, and incorporating C++ into Objective C does not work as well as incorporating C
code into Objective C. There is a simple and almost trivial solution to this: Rename all the
Objective C files from *.m to *.mm. Now, you are essentially using “Objective C++,” and
you can incorporate C++ code with ease in the project, create and use C++ classes in
Objective C code, and call C++ methods from Objective C modules.

The next step then is to rename all the .m source files in your project to .mm. Why?
Because GLTools is a C++ library, and it works just fine on the iPhone. Right-click each file
in the Groups & Files pane and select Rename. This turns the filename into an edit
control, and you can add an extra “m” to the filename and press Enter. Repeat this for all
the .m files in your project. You can rebuild the project after you’ve done this for a sanity
check.

Using GLTools on the iPhone
The GLTools library works on the iPhone and has some #defines here and there to account
for platform differences. Most notably, the shaders are tweaked slightly to account for
some differences in the shading language, but they function identically. From the API
level, GLTools looks and works exactly the same on the iPhone as it does on the desktop.
You can use it in C++ modules that you call from the Objective C framework of the
iPhone, or you can code it right in place in an Objective C file.

Instead of having multiple versions of the GLTools library for the different iPhone SDK
versions, simulator, device, and so on we simply add the GLTools source code to our
project. Right-click the project name under Groups & Files and select Add, New Group
from the pop-up menu. Name the group GLTools. Next, right-click the newly formed
GLTools group and select Add, Existing Files. Using the file dialog sheet that is presented,
navigate to the GLTools source code directory (Src/GLTools/src) and select all the source
code files except glew.c. We will not use GLEW on the iPhone; this is only for desktop
development, and the OpenGL ES 2.0 code in GLTools does not need it. Once you’ve
added the GLTools files, your Xcode project should appear similar to Figure 16.7.

Apple Handheld Platforms 643
16

ptg

FIGURE 16.7 Your project with the GLTools source code added.

Before you can compile your code, however, you still need to tell Xcode where the
GLTools headers are. This procedure is identical to that shown in Chapter 2, “Getting
Started,” when setting up Xcode projects for the desktop OS X, and we won’t repeat it
here. At this time, you should do a build just for a sanity check. If all is well, you have a
functioning OpenGL ES framework running on the iPhone simulator (or device if you
have a hardware certificate), with the GLTools library already wired in. You are about to
see how easy it is to move your desktop OpenGL code to the iPhone.

Moving to the iPhone
Moving our GLUT-based example from Chapter 5, “Basic Texturing,” is going to be fairly
straightforward. In fact, we start by copying the SphereWorld.cpp file from Chapter 5
directly to our project directory and adding it to our project. Also copy the three texture
files, Marble.tga, Moonlike.tga, and Marslike.tga. Add the three texture files to the project’s
Resources-iPhone folder and the SphereWorld.cpp file to the project in the group Other
Sources.

Now, SphereWorld.cpp is our entire GLUT-based program, and we do not need or want
GLUT in our iPhone program. Essentially, we just need to tweak the headers at the top of

CHAPTER 16 OpenGL ES on Mobile Devices644

ptg

the source file and prune out any GLUT-specific code. Near the top right, after most of the
headers, you see the GLUT include files:

#ifdef __APPLE__

#include <glut/glut.h>

#else

#define FREEGLUT_STATIC

#include <gl/glut.h>

#endif

Just delete this entire block. No GLUT. All of the module variables declared here will
simply be global to this module, and we are going to call the same functions that we regis-
tered with GLUT as callback functions in the Objective C framework. The next offending
line is in the SetupRC function where we initialize GLEW. We don’t need GLEW either, so
you can delete this line of code as well:

// Make sure OpenGL entry points are set

glewInit();

At the bottom of RenderScene, we call GLUT functions to perform the buffer swap and
trigger a refresh. Neither of these is necessary, as the Objective C framework takes care of
presenting our rendering and sets up an animation timer by default that triggers screen
refreshes at a maximum of 60fps. Next, remove these lines:

// Do the buffer Swap

glutSwapBuffers();

// Do it again

glutPostRedisplay();

The next bit of pruning is even easier; just completely delete the SpecialKeys and main
functions. The main function serves no purpose now that this source file just contains
functions and data accessed by the real main program. SpecialKeys, however, did serve a
useful purpose that we still want for our iPhone version of SphereWorld. It allowed us to
use the arrow keys to move around in SphereWorld, and we have to replace this function-
ality using the Cocoa Touch API.

At this point, your project should compile and run without problem. Unfortunately, it is
still the bouncing shaded rectangle shown in Figure 16.6.

Wiring It In
Your very first C or C++ class or book should have taught you how to call a function
declared in another module. You simply declare the functions or classes that are in
another module in the module from which you want to call them. This is most typically

Apple Handheld Platforms 645
16

ptg

done with a header file. In the case of SphereWorld, there are just four functions we need
to call from SphereWorld.cpp, and their declarations are as follows:

void ChangeSize(int nWidth, int nHeight);

void SetupRC(void);

void ShutdownRC(void);

void RenderScene(void);

We just place this code at the top of the ES2Renderer.mm file. Objective C as we’ve said
before will have no problem calling these functions declared in the .cpp file. Now the
question is, where to place these four functions, and how do we get rid of that bouncing
square.

The iPhone SDK supports using OpenGL ES 1.1 or OpenGL ES 2.0. By default, the sample
programs use OpenGL ES 2.0, which is what we want anyway. You can even decide at
runtime, which may be useful if you want to target a much wider audience, but of course
it requires that you have two complete sets of rendering code. For the OpenGL ES 2.0
path, all the action happens in ES2Renderer.mm, and so this is where we hook in our
OpenGL code.

On the iPhone, all OpenGL ES rendering is done to a framebuffer object. The init method
in this module performs the initialization of the framebuffer object, and we put our call to
SetupRC here, right after the framebuffer object initialization.

. . .

. . .

glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);

glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

GL_RENDERBUFFER, colorRenderbuffer);

}

// Call into our SphereWorld to do its initialization

SetupRC();

return self;

}

The next method you encounter is render. Render contains an assortment of OpenGL ES
rendering calls and some framebuffer management calls that we need to not mess with.
Listing 16.1 provides the function in its entirety.

LISTING 16.1 Our Newly Slimmed-Down Render Method

- (void)render

{

CHAPTER 16 OpenGL ES on Mobile Devices646

ptg

// Replace the implementation of this method to do your own custom drawing

// Okay, thanks I will!

// This application only creates a single context which is already

// set current at this point.

// This call is redundant, but needed if dealing with multiple contexts.

[EAGLContext setCurrentContext:context];

// This application only creates a single default framebuffer

// which is already bound at this point.

// This call is redundant, but needed if dealing with multiple framebuffers.

glBindFramebuffer(GL_FRAMEBUFFER, defaultFramebuffer);

// Draw —- Call our SphereWorld rendering routine!

RenderScene();

// This application only creates a single color renderbuffer

/// which is already bound at this point.

// This call is redundant, but needed if dealing with multiple renderbuffers.

glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);

[context presentRenderbuffer:GL_RENDERBUFFER];

}

Almost done! The resizeFromLayer method is called at least once with the size of the
framebuffer. We make use of the class variables backingWidth and backingHeight and call
our ChangeSize function from SphereWorld.cpp here.

ChangeSize(backingWidth, backingHeight);

Finally, our forth callback function ShutdownRC is placed at the beginning of the dealloc
method.

- (void)dealloc

{

ShutdownRC();

// Tear down GL

. . .

At last, we should see SphereWorld on the iPhone, right? Not quite. If you run the
program now you see a blank screen. There is one last thing we have to do, which is to
tell our application where to look for its texture files.

Apple Handheld Platforms 647
16

ptg

Texture Considerations
There are two things we need to do to get our texture code from Chapter 5 to work on the
iPhone. The first is we need to set the working directory to be the same location as the
application bundle. When we added the texture files to the Resources-iPhone group in
Xcode, we told Xcode to bundle these files unmodified and place them on the iPhone in
the same directory as the application bundle. When we try to load the textures, we pass in
the filename of the texture, but we need to make sure the current working folder (this
applies because we are using the standard C runtime function fopen to access the file) is
the same as the application bundle’s. We had the same problem on the desktop Mac OS X
too, and we called the function gltSetWorkingDirectory in the main function of our
GLUT program. We simply need to do the same thing but this time in the module
main.mm. Listing 16.2 shows the entire main.mm module. It’s pretty sparse; we only added
the GLTools header and the call to gltSetWorkingDirectory.

LISTING 16.2 The Modified Main Function

#import <UIKit/UIKit.h>

#include <GLTools.h>

int main(int argc, char *argv[]) {

gltSetWorkingDirectory(*argv);

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int retVal = UIApplicationMain(argc, argv, nil, nil);

[pool release];

return retVal;

}

The second thing is already done for you but bears mentioning. OpenGL ES does not
support the GL_BGR texture image format, which .TGA files use. GLTools takes this into
account and swaps the colors around for you when you load a .TGA on the iPhone.
Otherwise, your reddish textures in this sample would look blue. OpenGL ES also does not
support the generic texture compression attribute, so in the LoadTGA function, we need to
use the nComponents value returned from gltReadTGABits.

glTexImage2D(GL_TEXTURE_2D, 0, nComponents, nWidth, nHeight, 0,

eFormat, GL_UNSIGNED_BYTE, pBits);

We are nearly there. Figure 16.8 shows both our progress and our last remaining hurdle.
The artifact you see on the torus is due to the fact that we do not have a depth
buffer…yet.

CHAPTER 16 OpenGL ES on Mobile Devices648

ptg
FIGURE 16.8 Almost there, lacking only a depth buffer.

Adding a Depth Buffer
The iPhone SDK does not give you a depth buffer by default when you create an OpenGL
ES project. There used to be a #define you could turn on that could trigger the code to
give you a depth buffer, but for some reason Apple removed that from newer SDKs.
Creating and attaching your own depth buffer is simple enough, however (see Chapter 9,
“Advanced Buffers: Beyond the Basics,” for details on how this works). Listing 16.3 shows
our complete resizeFromLayer function, which is where we create our complete frame-
buffer object.

LISTING 16.3 Attaching a Depth Buffer to Our Framebuffer Object

- (BOOL)resizeFromLayer:(CAEAGLLayer *)layer

{

// Allocate color buffer backing based on the current layer size

glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);

[context renderbufferStorage:GL_RENDERBUFFER fromDrawable:layer];

glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_WIDTH,

&backingWidth);

Apple Handheld Platforms 649
16

ptg

glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_HEIGHT,

&backingHeight);

glGenRenderbuffers(1, &depthRenderbuffer);

glBindRenderbuffer(GL_RENDERBUFFER, depthRenderbuffer);

glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16,

backingWidth, backingHeight);

glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_RENDERBUFFER, depthRenderbuffer);

if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)

{

NSLog(@”Failed to make complete framebuffer object %x”,

glCheckFramebufferStatus(GL_FRAMEBUFFER));

return NO;

}

ChangeSize(backingWidth, backingHeight);

return YES;

}

Success at last!

Landscape Mode
Many iPhone apps can detect when your phone turns on its side. We are not going to
discuss this because it requires a lot more non-OpenGL plumbing than we have any busi-
ness getting into, and it’s not trivial to add to the stock OpenGL ES template. Again, we
refer you to Appendix A to fulfill your curiosity. We are not trying to be an iPhone tutorial
here as much as just show how OpenGL works on this platform. That said, how exactly
would we render in landscape mode? In fact, a good many OpenGL ES games work in
landscape mode only, and we could just simply force SphereWorld to run in Landscape
mode and be happy with it couldn’t we? Indeed, have a look at Listing 16.4, which
contains a simple change in the ChangeSize function that does exactly this.

LISTING 16.4 Rotating Our Point of View

void ChangeSize(int nWidth, int nHeight)

{

glViewport(0, 0, nWidth, nHeight);

transformPipeline.SetMatrixStacks(modelViewMatrix, projectionMatrix);

viewFrustum.SetPerspective(60.0f, float(nWidth)/float(nHeight), 1.0f, 100.0f);

CHAPTER 16 OpenGL ES on Mobile Devices650

ptg

projectionMatrix.LoadMatrix(viewFrustum.GetProjectionMatrix());

projectionMatrix.Rotate(-90.0f, 0.0f, 0.0f, 1.0f);

modelViewMatrix.LoadIdentity();

}

All we really need to do is rotate the projection matrix by 90 degrees. One other tweak was
to increase the field of view to 60 degrees so that we can see more of the world at once.
This gives a pretty pleasing landscape view of SphereWorld that can be seen in Figure 16.9.

Apple Handheld Platforms 651
16

FIGURE 16.9 SphereWorld in landscape mode on the iPhone.

Touch Me!
Finally we come to our last missing feature of SphereWorld—the ability to move around.
There are a number of ways to do this, and some games use the accelerometer for a
visceral feel to game navigation. A simpler interface is the Touch API. The Touch API is
very simple to use and is something akin to detecting mouse movements on the screen.
The touch messages are routed to the view (a descendent of UIView), so we have to step
outside the OpenGL ES-specific framework to the EAGLView.mm file where the EAGLView
class is defined. Listing 16.5 shows the message added to this class to receive touch move-
ment notifications. The message contains both the new touch location, as well as the last
touch location, making detecting movement in the x and y direction trivial.

LISTING 16.5 Using the Touch Messages for Camera Movement

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

CGPoint ptNow = [[touches anyObject] locationInView:self];

CGPoint ptLast = [[touches anyObject] previousLocationInView:self];

float deltaX = ptNow.x - ptLast.x;

ptg

float deltaY = ptNow.y - ptLast.y;

cameraFrame.MoveForward(deltaX * 0.05f);

cameraFrame.RotateLocalY(m3dDegToRad(deltaY * 0.25f));

}

Here we simply moved the camera forward with up and down swipes and rotate the
camera left and right with side-to-side swipes. The amount to scale the movement was
chosen purely on aesthetic considerations. Of course, the camera frame is declared in
SphereWorld.cpp, so we must share it with EAGLView.mm by declaring it at the top of the
file.

#include <GLFrame.h>

extern GLFrame cameraFrame; // Camera frame

Summary
We covered a lot of ground in this chapter. OpenGL ES 2.0, loosely based on OpenGL 2.0,
is a much simpler and slimmed-down version of OpenGL for use in embedded environ-
ments. The types of hardware that run OpenGL ES 2.0 are very diverse. We also were
introduced to EGL and how it can be used to do window management with OpenGL ES.
In addition, we went over some of the differences in working with an embedded environ-
ment and where to find emulators to develop for OpenGL ES 2.0. Finally, we demon-
strated how easily modern desktop OpenGL code can be adapted to an OpenGL ES
environment, such as the iPhone. OpenGL truly is the ultimate cross platform 3D API.

CHAPTER 16 OpenGL ES on Mobile Devices652

ptg

APPENDIX A

Further Reading

Real-time 3D graphics and OpenGL are popular topics. More information is available and
more techniques are in practice than can ever be published in a single book. You might
find the following resources helpful as you further your knowledge and experience.

Other Good OpenGL Books
Advanced Graphics Programming Using OpenGL. Tom McReynolds and David Blythe. The
Morgan Kaufmann Series in Computer Graphics, 2005.

Interactive Computer Graphics: A Top-Down Approach with OpenGL, 4th Edition. Edward
Angel. Addison-Wesley, 2005.

More OpenGL Game Programming. Dave Astle, Editor. Thomson Course Technology, 2006.

OpenGL ES 2.0 Programming Guide. Aaftab Munshi, Dan Ginsburg, and Dave Shreiner.
Addison-Wesley, 2008.

OpenGL Programming Guide, 7th Edition: The Official Guide to Learning OpenGL, Version 3.0
and 3.1. Dave Shreiner, The Khronos OpenGL ARB Working Group. Addison-Wesley, 2009.

OpenGL Shading Language, 3rd Edition. Randi J. Rost and Bill Licea-Kane. Addison-Wesley,
2009.

OpenGL Programming on Mac OS X: Architecture, Performance, and Integration. Robert P.
Kuehne and J. D. Sullivan. Addison-Wesley, 2007.

OpenGL Programming for the X Window System. Mark J. Kilgard. Addison-Wesley, 1996.

3D Graphics Books
3D Computer Graphics, 3rd Edition. Alan Watt. Addison-Wesley, 1999.

3D Math Primer for Graphics and Game Development. Fletcher Dunn and Ian Parbery.
Wordware Publishing, 2002.

Advanced Animation and Rendering Techniques: Theory and Practice. Alan Watt and Mark Watt
(contributor). Addison-Wesley, 1992.

Essential Mathematics for Games and Interactive Applications. James Van Verth and Lars
Bishop. The Morgan Kaufmann Series in Interactive 3d Technology, 2004.

ptg

654 APPENDIX A Further Reading

Introduction to Computer Graphics. James D. Foley, Andries van Dam, Steven K. Feiner, John
F. Hughes, and Richard L. Phillips. Addison-Wesley, 1993.

Mathematics for 3D Game Programming & Computer Graphics, 2nd Edition. Eric Lengyel.
Charles River Media, 2003.

Open Geometry: OpenGL + Advanced Geometry. Georg Glaeser and Hellmuth Stachel.
Springer-Verlag, 1999.

Shader X 4: Advanced Rendering Techniques. Wolfgang Engel, Editor. Charles River Media,
2006.

Texturing & Modeling: A Procedural Approach, 3rd Edition. David S. Ebert, F. Kenton
Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. The Morgan Kaufmann Series
in Computer Graphics, 2003.

Web Sites
• The OpenGL SuperBible Web site: www.starstonesoftware.com/opengl

• The official OpenGL Web site: www.opengl.org

• The OpenGL SDK (lots of tutorials and tools): www.opengl.org/sdk/

The preceding three Web sites are the gateways to OpenGL information on the Web, and
of course, the official source of information for all things OpenGL and SuperBible related.
The following sites also pertain to information covered in this book and offer vendor-
specific OpenGL support, tutorials, demos, and news.

• The Khronos Group OpenGL ES home page: www.khronos.org/opengles/

• The OpenGL Extension Registry: www.opengl.org/registry/

• AMD/ATI’s developer home page: www.ati.amd.com/developer/

• NVIDIA’s developer home page: developer.nvidia.com/

• The Mesa 3D OpenGL “work-a-like”: www.mesa3d.org

• GLView OpenGL Extension Viewer: www.realtech-vr.com/glview

ptg

APPENDIX B

Glossary

Aliasing Technically, the loss of signal information in an image reproduced at some
finite resolution. It is most often characterized by the appearance of sharp jagged edges
along points, lines, or polygons due to the nature of having a limited number of fixed-
sized pixels.

Alpha A fourth color value added to provide a degree of transparency to the color of an
object. An alpha value of 0.0 means complete transparency; 1.0 denotes no transparency
(opaque).

Ambient light Light in a scene that doesn’t come from any specific point source or
direction. Ambient light illuminates all surfaces evenly and on all sides.

Antialiasing A rendering method used to smooth lines and curves and polygon edges.
This technique averages the color of pixels adjacent to the line. It has the visual effect of
softening the transition from the pixels on the line and those adjacent to the line, thus
providing a smoother appearance.

ARB The Architecture Review Board. The committee body consisting of 3D graphics
hardware vendors, previously charged with maintaining the OpenGL Specification. This
function has since been assumed by the Khronos Group.

Aspect ratio The ratio of the width of a window to the height of the window.
Specifically, the width of the window in pixels divided by the height of the window in
pixels.

Bézier curve A curve whose shape is defined by control points near the curve rather
than by the precise set of points that define the curve itself.

Bitplane An array of bits mapped directly to screen pixels.

Buffer An area of memory used to store image information. This can be color, depth, or
blending information. The red, green, blue, and alpha buffers are often collectively
referred to as the color buffers.

Cartesian A coordinate system based on three directional axes placed at a 90° orienta-
tion to one another. These coordinates are labeled x, y, and z.

ptg

656 APPENDIX B Glossary

Clip coordinates The 2D geometric coordinates that result from the modelview and
projection transformation.

Clipping The elimination of a portion of a single primitive or group of primitives. The
points that would be rendered outside the clipping region or volume are not drawn. The
clipping volume is generally specified by the projection matrix. Clipped primitives are
reconstructed such that the edges of the primitive do not lay outside the clipping region.

Convex A reference to the shape of a polygon. A convex polygon has no indentations,
and no straight line can be drawn through the polygon that intersects it more than twice
(once entering, once leaving).

Culling The elimination of graphics primitives that would not be seen if rendered.
Backface culling eliminates the front or back face of a primitive so that the face isn’t
drawn. Frustum culling eliminates whole objects that would fall outside the viewing
frustum.

Destination color The stored color at a particular location in the color buffer. This
terminology is usually used when describing blending operations to distinguish between
the color already present in the color buffer and the color coming into the color buffer
(source color).

Dithering A method used to simulate a wider range of color depth by placing different-
colored pixels together in patterns that give the illusion of shading between the two
colors.

Double buffered A drawing technique used by OpenGL. The image to be displayed is
assembled in memory and then placed on the screen in a single update operation, rather
than built primitive by primitive on the screen. Double buffering is a much faster and
smoother update operation and can produce animations.

Extruded The process of taking a 2D image or shape and adding a third dimension
uniformly across the surface. This process can transform 2D fonts into 3D lettering.

Eye coordinates The coordinate system based on the position of the viewer. The
viewer’s position is placed along the positive z-axis, looking down the negative z-axis.

Frustum A pyramid-shaped viewing volume that creates a perspective view. (Near objects
are large; far objects are small.)

GLSL Acronym for the OpenGL Shading Language, a high-level C-Like shading
language.

GLUT library The OpenGL utility library. A window system independent utility library
useful for creating sample programs and simple 3D rendering programs that are indepen-
dent of the operating system and windowing system. Typically used to provide portability
between Windows, X-Window, Linux, and so on.

ptg

Immediate mode A graphics rendering mode in which commands and functions are
sent individually and have an immediate effect on the state of the rendering engine.

Implementation A software or hardware based device that performs OpenGL rendering
operations.

Khronos Group An industry consortium that now manages the maintenance and
promotion of the OpenGL specification.

Literal A value, not a variable name. A specific string or numeric constant embedded
directly in source code.

Matrix A 2D array of numbers. Matrices can be operated on mathematically and are
used to perform coordinate transformations.

Mipmapping A technique that uses multiple levels of detail for a texture. This technique
selects from among the different sizes of an image available, or possibly combines the two
nearest sized matches to produce the final fragments used for texturing.

Modelview matrix The OpenGL matrix that transforms primitives to eye coordinates
from object coordinates.

Normal A directional vector that points perpendicularly to a plane or surface. When
used, normals must be specified for each vertex in a primitive.

Normalize The reduction of a normal to a unit normal. A unit normal is a vector that
has a length of exactly 1.0.

Orthographic A drawing mode in which no perspective or foreshortening takes place.
Also called parallel projection. The lengths and dimensions of all primitives are undis-
torted regardless of orientation or distance from the viewer.

Perspective A drawing mode in which objects farther from the viewer appear smaller
than nearby objects.

Pixel Condensed from the words picture element. This is the smallest visual division avail-
able on the computer screen. Pixels are arranged in rows and columns and are individually
set to the appropriate color to render any given image.

Pixmap A two-dimensional array of color values that comprise a color image. Pixmaps
are so called because each picture element corresponds to a pixel on the screen.

Polygon A 2D shape drawn with any number of sides (must be at least three sides).

Primitive A 2D polygonal shape defined by OpenGL. All objects and scenes are
composed of various combinations of primitives.

Projection The transformation of lines, points, and polygons from eye coordinates to
clipping coordinates on the screen.

Quadrilateral A polygon with exactly four sides.

Glossary 657
B

ptg

Rasterize The process of converting projected primitives and bitmaps into pixel frag-
ments in the framebuffer.

Retained Mode A style of 3D programming where an object’s representation is held in
memory by the programming library.

Render The conversion of primitives in object coordinates to an image in the frame-
buffer. The rendering pipeline is the process by which OpenGL commands and statements
become pixels on the screen.

Scintillation A sparkling or flashing effect produced on objects when a nonmipmapped
texture map is applied to a polygon that is significantly smaller than the size of the
texture being applied.

Shader A small program that is executed by the graphics hardware, often in parallel, to
operate on individual vertices or pixels.

Source color The color of the incoming fragment, as opposed to the color already
present in the color buffer (destination color). This terminology is usually used when
describing how the source and destination colors are combined during a blending opera-
tion.

Specification The design document that specifies OpenGL operation and fully describes
how an implementation must work.

Spline A general term used to describe any curve created by placing control points near
the curve, which have a pulling effect on the curve’s shape. This is similar to the reaction
of a piece of flexible material when pressure is applied at various points along its length.

Stipple A binary bit pattern used to mask out pixel generation in the framebuffer. This is
similar to a monochrome bitmap, but one-dimensional patterns are used for lines and
two-dimensional patterns are used for polygons.

Tessellation The process of breaking down a complex polygon or analytic surface into a
mesh of convex polygons. This process can also be applied to separate a complex curve
into a series of less complex lines.

Texel Similar to pixel (picture element), a texel is a texture element. A texel represents a
color from a texture that is applied to a pixel fragment in the framebuffer.

Texture An image pattern of colors applied to the surface of a primitive.

Texture mapping The process of applying a texture image to a surface. The surface does
not have to be planar (flat). Texture mapping is often used to wrap an image around a
curved object or to produce patterned surfaces such as wood or marble.

Transformation The manipulation of a coordinate system. This can include rotation,
translation, scaling (both uniform and nonuniform), and perspective division.

APPENDIX B Glossary658

ptg

Translucence A degree of transparency of an object. In OpenGL, this is represented by
an alpha value ranging from 1.0 (opaque) to 0.0 (transparent).

Vector A directional quantity usually represented by X, Y, and Z components.

Vertex A single point in space. Except when used for point and line primitives, it also
defines the point at which two edges of a polygon meet.

Viewing volume The area in 3D space that can be viewed in the window. Objects and
points outside the viewing volume are clipped (cannot be seen).

Viewport The area within a window that is used to display an OpenGL image. Usually,
this encompasses the entire client area. Stretched viewports can produce enlarged or
shrunken output within the physical window.

Wireframe The representation of a solid object by a mesh of lines rather than solid
shaded polygons. Wireframe models are usually rendered faster and can be used to view
both the front and back of an object at the same time.

Glossary 659
B

ptg

This page intentionally left blank

ptg

APPENDIX C

OpenGL Man Pages for (Core)
OpenGL 3.3

glActiveTexture

select active texture unit

C Specification

void glActiveTexture(GLenum texture);

Parameters

texture
Specifies which texture unit to make active. The number of texture units is implementa-
tion dependent, but must be at least two. texture must be one of GL_TEXTUREi, where
i ranges from 0 (GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1). The initial value is
GL_TEXTURE0.

Description

glActiveTexture selects which texture unit subsequent texture state calls will affect. The
number of texture units an implementation supports is implementation dependent, but must be at
least 48.

Errors

GL_INVALID_ENUM is generated if texture is not one of GL_TEXTUREi, where i ranges from 0
to (GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1).

Associated Gets

glGet with argument GL_ACTIVE_TEXTURE, or GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.

See Also

glGenTextures, glBindTexture, glCompressedTexImage1D,
glCompressedTexImage2D, glCompressedTexImage3D, glCompressedTexSubImage1D,
glCompressedTexSubImage2D, glCompressedTexSubImage3D, glCopyTexImage1D,
glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, glDeleteTextures glIsTexture, glTexImage1D, glTexImage2D,
glTexImage2DMultisample, glTexImage3D, glTexImage3DMultisample,
glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter.

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

ptg

662

glAttachShader

Attaches a shader object to a program object

C Specification

void glAttachShader(GLuint program,
GLuint shader);

Parameters

program
Specifies the program object to which a shader object will be attached.

shader
Specifies the shader object that is to be attached.

Description

In order to create a complete shader program, there must be a way to specify the list of things
that will be linked together. Program objects provide this mechanism. Shaders that are to be linked
together in a program object must first be attached to that program object. glAttachShader attaches
the shader object specified by shader to the program object specified by program. This indicates that
shader will be included in link operations that will be performed on program.

All operations that can be performed on a shader object are valid whether or not the shader
object is attached to a program object. It is permissible to attach a shader object to a program object
before source code has been loaded into the shader object or before the shader object has been
compiled. It is permissible to attach multiple shader objects of the same type because each may
contain a portion of the complete shader. It is also permissible to attach a shader object to more than
one program object. If a shader object is deleted while it is attached to a program object, it will be
flagged for deletion, and deletion will not occur until glDetachShader is called to detach it from all
program objects to which it is attached.

Errors

GL_INVALID_VALUE is generated if either program or shader is not a value generated by
OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_OPERATION is generated if shader is already attached to program.

Associated Gets

glGetAttachedShaders with the handle of a valid program object
glGetShaderInfoLog
glGetShaderSource
glIsProgram
glIsShader

See Also

glCompileShader, glCreateShader, glDeleteShader, glDetachShader,
glLinkProgram, glShaderSource

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

ptg

glBeginConditionalRender 663
C

glBeginConditionalRender

start conditional rendering

C Specification

void glBeginConditionalRender(GLuint id,
GLenum mode);

Parameters

id
Specifies the name of an occlusion query object whose results are used to determine if
the rendering commands are discarded.

mode
Specifies how glBeginConditionalRender interprets the results of the occlusion query.

C Specification

void glEndConditionalRender(void);

Description

Conditional rendering is started using glBeginConditionalRender and ended using
glEndConditionalRender. During conditional rendering, all vertex array commands, as well as
glClear and glClearBuffer have no effect if the (GL_SAMPLES_PASSED) result of the query object id is
zero, or if the (GL_ANY_SAMPLES_PASSED) result is GL_FALSE. The results of commands setting the
current vertex state, such as glVertexAttrib are undefined. If the (GL_SAMPLES_PASSED) result is non-
zero or if the (GL_ANY_SAMPLES_PASSED) result is GL_TRUE, such commands are not discarded. The
id parameter to glBeginConditionalRender must be the name of a query object previously
returned from a call to glGenQueries. mode specifies how the results of the query object are to be
interpreted. If mode is GL_QUERY_WAIT, the GL waits for the results of the query to be available and
then uses the results to determine if subsequent rendering commands are discarded. If mode is
GL_QUERY_NO_WAIT, the GL may choose to unconditionally execute the subsequent rendering
commands without waiting for the query to complete.

If mode is GL_QUERY_BY_REGION_WAIT, the GL will also wait for occlusion query results and
discard rendering commands if the result of the occlusion query is zero. If the query result is non-
zero, subsequent rendering commands are executed, but the GL may discard the results of the
commands for any region of the framebuffer that did not contribute to the sample count in the speci-
fied occlusion query. Any such discarding is done in an implementation-dependent manner, but the
rendering command results may not be discarded for any samples that contributed to the occlusion
query sample count. If mode is GL_QUERY_BY_REGION_NO_WAIT, the GL operates as in
GL_QUERY_BY_REGION_WAIT, but may choose to unconditionally execute the subsequent rendering
commands without waiting for the query to complete.

Notes

glBeginConditionalRender and glEndConditionalRender are available only if the GL
version is 3.0 or greater.

The GL_ANY_SAMPLES_PASSED query result is available only if the GL version is 3.3 or greater.

ptg

664

Errors

GL_INVALID_VALUE is generated if id is not the name of an existing query object.
GL_INVALID_ENUM is generated if mode is not one of the accepted tokens.
GL_INVALID_OPERATION is generated if glBeginConditionalRender is called while condi-

tional rendering is active, or if glEndConditionalRender is called while conditional rendering is
inactive.

GL_INVALID_OPERATION is generated if id is the name of a query object with a target other
than GL_SAMPLES_PASSED or GL_ANY_SAMPLES_PASSED.

GL_INVALID_OPERATION is generated if id is the name of a query currently in progress.

See Also

glGenQueries, glDeleteQueries, glBeginQuery

Copyright

Copyright © 2009 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBeginQuery

delimit the boundaries of a query object

C Specification

void glBeginQuery(GLenum target,
GLuint id);

Parameters

target
Specifies the target type of query object established between glBeginQuery and the
subsequent glEndQuery. The symbolic constant must be one of GL_SAMPLES_PASSED,
GL_ANY_SAMPLES_PASSED, GL_PRIMITIVES_GENERATED, GL_TRANSFORM_
FEEDBACK_PRIMITIVES_WRITTEN, or GL_TIME_ELAPSED.

id
Specifies the name of a query object.

C Specification

void glEndQuery(GLenum target);

Parameters

target
Specifies the target type of query object to be concluded. The symbolic constant must be
one of GL_SAMPLES_PASSED, GL_ANY_SAMPLES_PASSED, GL_PRIMITIVES_GENERATED,
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or GL_TIME_ELAPSED.

Description

glBeginQuery and glEndQuery delimit the boundaries of a query object. query must be a name
previously returned from a call to glGenQueries. If a query object with name id does not yet exist it is
created with the type determined by target. target must be one of GL_SAMPLES_PASSED,
GL_ANY_SAMPLES_PASSED, GL_PRIMITIVES_GENERATED, GL_TRANSFORM_FEEDBACK_PRIMITIVES_
WRITTEN, or GL_TIME_ELAPSED. The behavior of the query object depends on its type and is as follows.

ptg

glBeginQuery 665
C

If target is GL_SAMPLES_PASSED, target must be an unused name, or the name of an existing
occlusion query object. When glBeginQuery is executed, the query object’s samples-passed counter
is reset to 0. Subsequent rendering will increment the counter for every sample that passes the depth
test. If the value of GL_SAMPLE_BUFFERS is 0, then the samples-passed count is incremented by 1 for
each fragment. If the value of GL_SAMPLE_BUFFERS is 1, then the samples-passed count is incre-
mented by the number of samples whose coverage bit is set. However, implementations, at their
discretion may instead increase the samples-passed count by the value of GL_SAMPLES if any sample
in the fragment is covered. When glEndQuery is executed, the samples-passed counter is assigned to
the query object’s result value. This value can be queried by calling glGetQueryObject with pname
GL_QUERY_RESULT.

If target is GL_ANY_SAMPLES_PASSED, target must be an unused name, or the name of an
existing boolean occlusion query object. When glBeginQuery is executed, the query object’s
samples-passed flag is reset to GL_FALSE. Subsequent rendering causes the flag to be set to GL_TRUE if
any sample passes the depth test. When glEndQuery is executed, the samples-passed flag is assigned
to the query object’s result value. This value can be queried by calling glGetQueryObject with pname
GL_QUERY_RESULT.

If target is GL_PRIMITIVES_GENERATED, target must be an unused name, or the name of an
existing primitive query object previously bound to the GL_PRIMITIVES_GENERATED query binding.
When glBeginQuery is executed, the query object’s primitives-generated counter is reset to 0.
Subsequent rendering will increment the counter once for every vertex that is emitted from the geom-
etry shader, or from the vertex shader if no geometry shader is present. When glEndQuery is
executed, the primitives-generated counter is assigned to the query object’s result value. This value
can be queried by calling glGetQueryObject with pname GL_QUERY_RESULT.

If target is GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, target must be an unused
name, or the name of an existing primitive query object previously bound to the
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN query binding. When glBeginQuery is
executed, the query object’s primitives-written counter is reset to 0. Subsequent rendering will incre-
ment the counter once for every vertex that is written into the bound transform feedback buffer(s). If
transform feedback mode is not activated between the call to glBeginQuery and glEndQuery, the
counter will not be incremented. When glEndQuery is executed, the primitives-written counter is
assigned to the query object’s result value. This value can be queried by calling glGetQueryObject
with pname GL_QUERY_RESULT.

If target is GL_TIME_ELAPSED, target must be an unused name, or the name of an existing
timer query object previously bound to the GL_TIME_ELAPSED query binding. When glBeginQuery
is executed, the query object’s time counter is reset to 0. When glEndQuery is executed, the elapsed
server time that has passed since the call to glBeginQuery is written into the query object’s time
counter. This value can be queried by calling glGetQueryObject with pname GL_QUERY_RESULT.

Querying the GL_QUERY_RESULT implicitly flushes the GL pipeline until the rendering delimited
by the query object has completed and the result is available. GL_QUERY_RESULT_AVAILABLE can be
queried to determine if the result is immediately available or if the rendering is not yet complete.

Notes

If the query target’s count exceeds the maximum value representable in the number of available
bits, as reported by glGetQueryiv with target set to the appropriate query target and pname
GL_QUERY_COUNTER_BITS, the count becomes undefined.

An implementation may support 0 bits in its counter, in which case query results are always
undefined and essentially useless.

When GL_SAMPLE_BUFFERS is 0, the samples-passed counter of an occlusion query will incre-
ment once for each fragment that passes the depth test. When GL_SAMPLE_BUFFERS is 1, an imple-
mentation may either increment the samples-passed counter individually for each sample of a
fragment that passes the depth test, or it may choose to increment the counter for all samples of a
fragment if any one of them passes the depth test.

ptg

666

The query targets GL_ANY_SAMPLES_PASSED, and GL_TIME_ELAPSED are availale only if the GL
version is 3.3 or higher.

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted tokens.
GL_INVALID_OPERATION is generated if glBeginQuery is executed while a query object of the

same target is already active.
GL_INVALID_OPERATION is generated if glEndQuery is executed when a query object of the same

target is not active.
GL_INVALID_OPERATION is generated if id is 0.
GL_INVALID_OPERATION is generated if id is the name of an already active query object.
GL_INVALID_OPERATION is generated if id refers to an existing query object whose type does

not does not match target.

See Also

glDeleteQueries, glGenQueries, glGetQueryiv, glGetQueryObject, glIsQuery

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBeginTransformFeedback

start transform feedback operation

C Specification

void glBeginTransformFeedback(GLenum primitiveMode);

Parameters

primitiveMode
Specify the output type of the primitives that will be recorded into the buffer objects that
are bound for transform feedback.

C Specification

void glEndTransformFeedback(void);

Description

Transform feedback mode captures the values of varying variables written by the vertex shader
(or, if active, the geometry shader). Transform feedback is said to be active after a call to
glBeginTransformFeedback until a subsequent call to glEndTransformFeedback. Transform feed-
back commands must be paired.

If no geometry shader is present, while transform feedback is active the mode parameter to
glDrawArrays must match those specified in the following table:

If a geometry shader is present, the output primitive type from the geometry shader must match
those provided in the following table:

ptg

glBeginTransformFeedback 667
C

Transform Feedback primitiveMode Allowed Geometry Shader Output Primitive
Type

GL_POINTS points

GL_LINES line_strip

GL_TRIANGLES triangle_strip

Notes

Geometry shaders, and the GL_TRIANGLES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY,
GL_LINES_ADJACENCY and GL_LINE_STRIP_ADJACENCY primtive modes are available only if the GL
version is 3.2 or greater.

Errors

GL_INVALID_OPERATION is generated if glBeginTransformFeedback is executed while trans-
form feedback is active.

GL_INVALID_OPERATION is generated if glEndTransformFeedback is executed while transform
feedback is not active.

GL_INVALID_OPERATION is generated by glDrawArrays if no geometry shader is present, trans-
form feedback is active and mode is not one of the allowed modes.

GL_INVALID_OPERATION is generated by glDrawArrays if a geometry shader is present, transform
feedback is active and the output primitive type of the geometry shader does not match the transform
feedback primitiveMode.

GL_INVALID_OPERATION is generated by glEndTransformFeedback if any binding point used
in transform feedback mode does not have a buffer object bound.

GL_INVALID_OPERATION is generated by glEndTransformFeedback if no binding points would
be used, either because no program object is active or because the active program object has specified
no varying variables to record.

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

Transform Feedback primitiveMode Allowed Render Primitive modes

GL_POINTS GL_POINTS

GL_LINES GL_LINES, GL_LINE_LOOP, GL_LINE_STRIP,

GL_LINES_ADJACENCY, GL_LINE_STRIP_ADJACENCY

GL_TRIANGLES GL_TRIANGLES, GL_TRIANGLE_STRIP,

GL_TRIANGLE_FAN, GL_TRIANGLES_ADJACENCY,

GL_TRIANGLE_STRIP_ADJACENCY

ptg

668

glBindAttribLocation

Associates a generic vertex attribute index with a named attribute variable

C Specification

void glBindAttribLocation(GLuint program,
GLuint index,
const GLchar *name);

Parameters

program
Specifies the handle of the program object in which the association is to be made.

index
Specifies the index of the generic vertex attribute to be bound.

name
Specifies a null terminated string containing the name of the vertex shader attribute vari-
able to which index is to be bound.

Description

glBindAttribLocation is used to associate a user-defined attribute variable in the program
object specified by program with a generic vertex attribute index. The name of the user-defined
attribute variable is passed as a null terminated string in name. The generic vertex attribute index to
be bound to this variable is specified by index. When program is made part of current state, values
provided via the generic vertex attribute index will modify the value of the user-defined attribute
variable specified by name.

If name refers to a matrix attribute variable, index refers to the first column of the matrix. Other
matrix columns are then automatically bound to locations index+1 for a matrix of type mat2;
index+1 and index+2 for a matrix of type mat3; and index+1, index+2, and index+3 for a matrix
of type mat4.

This command makes it possible for vertex shaders to use descriptive names for attribute variables
rather than generic variables that are numbered from 0 to GL_MAX_VERTEX_ATTRIBS -1. The values
sent to each generic attribute index are part of current state. If a different program object is made
current by calling glUseProgram, the generic vertex attributes are tracked in such a way that the same
values will be observed by attributes in the new program object that are also bound to index.

Attribute variable name-to-generic attribute index bindings for a program object can be explicitly
assigned at any time by calling glBindAttribLocation. Attribute bindings do not go into effect
until glLinkProgram is called. After a program object has been linked successfully, the index values for
generic attributes remain fixed (and their values can be queried) until the next link command occurs.

Any attribute binding that occurs after the program object has been linked will not take effect
until the next time the program object is linked.

Notes

glBindAttribLocation can be called before any vertex shader objects are bound to the speci-
fied program object. It is also permissible to bind a generic attribute index to an attribute variable
name that is never used in a vertex shader.

If name was bound previously, that information is lost. Thus you cannot bind one user-defined
attribute variable to multiple indices, but you can bind multiple user-defined attribute variables to the
same index.

Applications are allowed to bind more than one user-defined attribute variable to the same
generic vertex attribute index. This is called aliasing, and it is allowed only if just one of the aliased
attributes is active in the executable program, or if no path through the shader consumes more than

ptg

glBindBuffer 669
C

one attribute of a set of attributes aliased to the same location. The compiler and linker are allowed to
assume that no aliasing is done and are free to employ optimizations that work only in the absence of
aliasing. OpenGL implementations are not required to do error checking to detect aliasing.

Active attributes that are not explicitly bound will be bound by the linker when glLinkProgram is
called. The locations assigned can be queried by calling glGetAttribLocation.

OpenGL copies the name string when glBindAttribLocation is called, so an application may
free its copy of the name string immediately after the function returns.

Generic attribute locations may be specified in the shader source text using a location layout
qualifier. In this case, the location of the attribute specified in the shader’s source takes precedence
and may be queried by calling glGetAttribLocation.

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_OPERATION is generated if name starts with the reserved prefix “gl_”.
GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS
glGetActiveAttrib with argument program
glGetAttribLocation with arguments program and name
glIsProgram

See Also

glDisableVertexAttribArray, glEnableVertexAttribArray, glUseProgram,
glVertexAttrib, glVertexAttribPointer

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBindBuffer

bind a named buffer object

C Specification

void glBindBuffer(GLenum target,
GLuint buffer);

Parameters

target
Specifies the target to which the buffer object is bound. The symbolic constant must be
GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER,
GL_TEXTURE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

buffer
Specifies the name of a buffer object.

ptg

670

Description

glBindBuffer binds a buffer object to the specified buffer binding point. Calling glBindBuffer
with target set to one of the accepted symbolic constants and buffer set to the name of a buffer
object binds that buffer object name to the target. If no buffer object with name buffer exists, one is
created with that name. When a buffer object is bound to a target, the previous binding for that
target is automatically broken.

Buffer object names are unsigned integers. The value zero is reserved, but there is no default
buffer object for each buffer object target. Instead, buffer set to zero effectively unbinds any buffer
object previously bound, and restores client memory usage for that buffer object target (if supported
for that target). Buffer object names and the corresponding buffer object contents are local to the
shared object space of the current GL rendering context; two rendering contexts share buffer object
names only if they explicitly enable sharing between contexts through the appropriate GL windows
interfaces functions.

glGenBuffers must be used to generate a set of unused buffer object names.
The state of a buffer object immediately after it is first bound is an unmapped zero-sized memory

buffer with GL_READ_WRITE access and GL_STATIC_DRAW usage.
While a non-zero buffer object name is bound, GL operations on the target to which it is bound

affect the bound buffer object, and queries of the target to which it is bound return state from the
bound buffer object. While a buffer object name zero is bound, as in the initial state, attempts to
modify or query state on the target to which it is bound generates an GL_INVALID_OPERATION error.

When a non-zero buffer object is bound to the GL_ARRAY_BUFFER target, the vertex array pointer
parameter is interpreted as an offset within the buffer object measured in basic machine units.

While a non-zero buffer object is bound to the GL_ELEMENT_ARRAY_BUFFER target, the indices
parameter of glDrawElements, glDrawElementsInstanced, glDrawElementsBaseVertex,
glDrawRangeElements, glDrawRangeElementsBaseVertex, glMultiDrawElements, or
glMultiDrawElementsBaseVertex is interpreted as an offset within the buffer object measured in basic
machine units.

While a non-zero buffer object is bound to the GL_PIXEL_PACK_BUFFER target, the following
commands are affected: glGetCompressedTexImage, glGetTexImage, and glReadPixels. The pointer
parameter is interpreted as an offset within the buffer object measured in basic machine units.

While a non-zero buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target, the following
commands are affected: glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage2D,
glCompressedTexSubImage3D, glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, and glTexSubImage3D. The pointer parameter is interpreted as an offset within the
buffer object measured in basic machine units.

The buffer targets GL_COPY_READ_BUFFER and GL_COPY_WRITE_BUFFER are provided to allow
glCopyBufferSubData to be used without disturbing the state of other bindings. However,
glCopyBufferSubData may be used with any pair of buffer binding points.

The GL_TRANSFORM_FEEDBACK_BUFFER buffer binding point may be passed to glBindBuffer,
but will not directly affect transform feedback state. Instead, the indexed GL_TRANSFORM_
FEEDBACK_BUFFER bindings must be used through a call to glBindBufferBase or glBindBufferRange.
This will affect the generic GL_TRANSFORM_FEEDABCK_BUFFER binding.

Likewise, the GL_UNIFORM_BUFFER buffer binding point may be used, but does not directly
affect uniform buffer state. glBindBufferBase or glBindBufferRange must be used to bind a buffer to an
indexed uniform buffer binding point.

A buffer object binding created with glBindBuffer remains active until a different buffer object
name is bound to the same target, or until the bound buffer object is deleted with glDeleteBuffers.

ptg

glBindBufferBase 671
C

Once created, a named buffer object may be re-bound to any target as often as needed. However,
the GL implementation may make choices about how to optimize the storage of a buffer object based
on its initial binding target.

Notes

The GL_COPY_READ_BUFFER, GL_UNIFORM_BUFFER and GL_TEXTURE_BUFFER targets are
available only if the GL version is 3.1 or greater.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_VALUE is generated if buffer is not a name previously returned from a call to

glGenBuffers.

Associated Gets

glGet with argument GL_ARRAY_BUFFER_BINDING
glGet with argument GL_COPY_READ_BUFFER_BINDING
glGet with argument GL_COPY_WRITE_BUFFER_BINDING
glGet with argument GL_ELEMENT_ARRAY_BUFFER_BINDING
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGet with argument GL_TRANSFORM_FEEDBACK_BUFFER_BINDING
glGet with argument GL_UNIFORM_BUFFER_BINDING

See Also

glGenBuffers, glBindBufferBase, glBindBufferRange, glMapBuffer,
glUnmapBuffer, glDeleteBuffers, glGet, glIsBuffer

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBindBufferBase

bind a buffer object to an indexed buffer target

C Specification

void glBindBufferBase(GLenum target,
GLuint index,
GLuint buffer);

Parameters

target
Specify the target of the bind operation. target must be either GL_TRANSFORM_
FEEDBACK_BUFFER or GL_UNIFORM_BUFFER.

index
Specify the index of the binding point within the array specified by target.

buffer
The name of a buffer object to bind to the specified binding point.

ptg

672

Description

glBindBufferBase binds the buffer object buffer to the binding point at index index of the
array of targets specified by target. Each target represents an indexed array of buffer binding
points, as well as a single general binding point that can be used by other buffer manipulation func-
tions such as glBindBuffer or glMapBuffer. In addition to binding buffer to the indexed buffer
binding target, glBindBufferBase also binds buffer to the generic buffer binding point specified
by target.

Notes

glBindBufferBase is available only if the GL version is 3.0 or greater.
Calling glBindBufferBase is equivalent to calling glBindBufferRange with offset zero and

size equal to the size of the buffer.

Errors

GL_INVALID_ENUM is generated if target is not GL_TRANSFORM_FEEDBACK_BUFFER or
GL_UNIFORM_BUFFER.

GL_INVALID_VALUE is generated if index is greater than or equal to the number of target-
specific indexed binding points.

See Also

glGenBuffers, glDeleteBuffers, glBindBuffer, glBindBufferRange, glMapBuffer,
glUnmapBuffer.

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBindBufferRange

bind a range within a buffer object to an indexed buffer target

C Specification

void glBindBufferRange(GLenum target,
GLuint index,
GLuint buffer,
GLintptr offset,
GLsizeiptrsize);

Parameters

target
Specify the target of the bind operation. target must be either GL_TRANSFORM_
FEEDBACK_BUFFER or GL_UNIFORM_BUFFER.

index
Specify the index of the binding point within the array specified by target.

buffer
The name of a buffer object to bind to the specified binding point.

offset
The starting offset in basic machine units into the buffer object buffer.

size
The amount of data in machine units that can be read from the buffet object while used
as an indexed target.

ptg

glBindFragDataLocation 673
C

Description

glBindBufferRange binds a range the buffer object buffer represented by offset and size to
the binding point at index index of the array of targets specified by target. Each target represents
an indexed array of buffer binding points, as well as a single general binding point that can be used
by other buffer manipulation functions such as glBindBuffer or glMapBuffer. In addition to binding a
range of buffer to the indexed buffer binding target, glBindBufferBase also binds the range to the
generic buffer binding point specified by target.

offset specifies the offset in basic machine units into the buffer object buffer and size speci-
fies the amount of data that can be read from the buffer object while used as an indexed target.

Errors

GL_INVALID_ENUM is generated if target is not GL_TRANSFORM_FEEDBACK_BUFFER or
GL_UNIFORM_BUFFER.

GL_INVALID_VALUE is generated if index is greater than or equal to the number of target-
specific indexed binding points.

GL_INVALID_VALUE is generated if size is less than or equal to zero, or if offset + size is
greater than the value of GL_BUFFER_SIZE.

Additional errors may be generated if offset violates any target-specific alignmemt restrictions.

See Also

glGenBuffers, glDeleteBuffers, glBindBuffer, glBindBufferBase, glMapBuffer,
glUnmapBuffer.

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBindFragDataLocation

bind a user-defined varying out variable to a fragment shader color number

C Specification

void glBindFragDataLocation(GLuint program,
GLuint colorNumber,
const char * name);

Parameters

program
The name of the program containing varying out variable whose binding to modify

colorNumber
The color number to bind the user-defined varying out variable to

name
The name of the user-defined varying out variable whose binding to modify

Description

glBindFragDataLocation explicitly specifies the binding of the user-defined varying out vari-
able name to fragment shader color number colorNumber for program program. If name was bound
previously, its assigned binding is replaced with colorNumber. name must be a null-terminated string.
colorNumber must be less than GL_MAX_DRAW_BUFFERS.

ptg

674

The bindings specified by glBindFragDataLocation have no effect until program is next
linked. Bindings may be specified at any time after program has been created. Specifically, they may
be specified before shader objects are attached to the program. Therefore, any name may be specified
in name, including a name that is never used as a varying out variable in any fragment shader object.
Names beginning with gl_ are reserved by the GL.

In addition to the errors generated by glBindFragDataLocation, the program program will fail
to link if:

The number of active outputs is greater than the value GL_MAX_DRAW_BUFFERS.
More than one varying out variable is bound to the same color number.

Notes

Varying out variables may have indexed locations assigned explicitly in the shader text using a
location layout qualifier. If a shader statically assigns a location to a varying out variable in the
shader text, that location is used and any location assigned with glBindFragDataLocation is ignored.

Errors

GL_INVALID_VALUE is generated if colorNumber is greater than or equal to
GL_MAX_DRAW_BUFFERS.

GL_INVALID_OPERATION is generated if name starts with the reserved gl_ prefix.
GL_INVALID_OPERATION is generated if program is not the name of a program object.

Associated Gets

glGetFragDataLocation with a valid program object and the the name of a user-defined varying
out variable

See Also

glCreateProgram, glGetFragDataLocation

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glBindFragDataLocationIndexed

bind a user-defined varying out variable to a fragment shader color number and index

C Specification

void glBindFragDataLocationIndexed(GLuint program,
GLuint colorNumber,
GLuint index,
const char * name);

Parameters

program
The name of the program containing varying out variable whose binding to modify

colorNumber
The color number to bind the user-defined varying out variable to

index
The index of the color input to bind the user-defined varying out variable to

name
The name of the user-defined varying out variable whose binding to modify

ptg

glBindFramebuffer 675
C

Description

glBindFragDataLocationIndexed specifies that the varying out variable name in program
should be bound to fragment color colorNumber when the program is next linked. index may be
zero or one to specify that the color be used as either the first or second color input to the blend
equation, respectively.

The bindings specified by glBindFragDataLocationIndexed have no effect until program is
next linked. Bindings may be specified at any time after program has been created. Specifically, they
may be specified before shader objects are attached to the program. Therefore, any name may be spec-
ified in name, including a name that is never used as a varying out variable in any fragment shader
object. Names beginning with gl_ are reserved by the GL.

If name was bound previously, its assigned binding is replaced with colorNumber and index.
name must be a null-terminated string. index must be less than or equal to one, and colorNumber
must be less than the value of GL_MAX_DRAW_BUFFERS if index is zero, and less than the value of
GL_MAX_DUAL_SOURCE_DRAW_BUFFERS if index is greater than or equal to one.

In addition to the errors generated by glBindFragDataLocationIndexed, the program
program will fail to link if:

The number of active outputs is greater than the value GL_MAX_DRAW_BUFFERS.
More than one varying out variable is bound to the same color number.

Notes

Varying out variables may have locations assigned explicitly in the shader text using a location
layout qualifier. If a shader statically assigns a location to a varying out variable in the shader text,
that location is used and any location assigned with glBindFragDataLocation is ignored.

Errors

GL_INVALID_VALUE is generated if colorNumber is greater than or equal to
GL_MAX_DRAW_BUFFERS.

GL_INVALID_VALUE is generated if colorNumber is greater than or equal to
GL_MAX_DUAL_SOURCE_DRAW_BUFERS and index is greater than or equal to one.

GL_INVALID_VALUE is generated if index is greater than one.
GL_INVALID_OPERATION is generated if name starts with the reserved gl_ prefix.
GL_INVALID_OPERATION is generated if program is not the name of a program object.

Associated Gets

glGetFragDataLocation with a valid program object and the the name of a user-defined varying
out variable

glGetFragDataIndex with a valid program object and the the name of a user-defined varying out
variable

See Also

glCreateProgram, glLinkProgram glGetFragDataLocation, glGetFragDataIndex
glBindFragDataLocation

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

ptg

676

glBindFramebuffer

bind a framebuffer to a framebuffer target

C Specification

void glBindFramebuffer(GLenum target,
GLuint framebuffer);

Parameters

target
Specifies the framebuffer target of the binding operation.

framebuffer
Specifies the name of the framebuffer object to bind.

Description

glBindFramebuffer binds the framebuffer object with name framebuffer to the framebuffer
target specified by target. target must be either GL_DRAW_FRAMEBUFFER, GL_READ_
FRAMEBUFFER or GL_FRAMEBUFFER. If a framebuffer object is bound to GL_DRAW_FRAMEBUFFER
or GL_READ_FRAMEBUFFER, it becomes the target for rendering or readback operations, respectively,
until it is deleted or another framebuffer is bound to the corresponding bind point. Calling
glBindFramebuffer with target set to GL_FRAMEBUFFER binds framebuffer to both the read
and draw framebuffer targets. framebuffer is the name of a framebuffer object previously returned
from a call to glGenFramebuffers, or zero to break the existing binding of a framebuffer object to
target.

Errors

GL_INVALID_ENUM is generated if target is not GL_DRAW_FRAMEBUFFER, GL_READ_FRAME-
BUFFER or GL_FRAMEBUFFER.

GL_INVALID_OPERATION is generated if framebuffer is not zero or the name of a framebuffer
previously returned from a call to glGenFramebuffers.

See Also

glGenFramebuffers, glDeleteFramebuffers, glFramebufferRenderbuffer,
glFramebufferTexture, glFramebufferTexture1D, glFramebufferTexture2D,
glFramebufferTexture3D, glFramebufferTextureFace, glFramebufferTextureLayer,
glIsFramebuffer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBindRenderbuffer

bind a renderbuffer to a renderbuffer target

C Specification

void glBindRenderbuffer(GLenum target,
GLuint renderbuffer);

ptg

glBindSampler 677
C

Parameters

target
Specifies the renderbuffer target of the binding operation. target must be
GL_RENDERBUFFER.

renderbuffer
Specifies the name of the renderbuffer object to bind.

Description

glBindRenderbuffer binds the renderbuffer object with name renderbuffer to the render-
buffer target specified by target. target must be GL_RENDERBUFFER. renderbuffer is the name
of a renderbuffer object previously returned from a call to glGenRenderbuffers, or zero to break the
existing binding of a renderbuffer object to target.

Errors

GL_INVALID_ENUM is generated if target is not GL_RENDERBUFFER.
GL_INVALID_OPERATION is generated if renderbuffer is not zero or the name of a renderbuffer

previously returned from a call to glGenRenderbuffers.

See Also

glGenRenderbuffers, glDeleteRenderbuffers, glRenderbufferStorage,
glRenderbufferStorageMultisample, glIsRenderbuffer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBindSampler

bind a named sampler to a texturing target

C Specification

void glBindSampler(GLuint unit,
GLuint texture);

Parameters

unit
Specifies the index of the texture unit to which the sampler is bound.

sampler
Specifies the name of a sampler.

Description

glBindSampler binds sampler to the texture unit at index unit. sampler must be zero or the
name of a sampler object previously returned from a call to glGenSamplers. unit must be less than
the value of GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.

When a sampler object is bound to a texture unit, its state supersedes that of the texture object
bound to that texture unit. If the sampler name zero is bound to a texture unit, the currently bound
texture’s sampler state becomes active. A single sampler object may be bound to multiple texture
units simultaneously.

ptg

678

Notes

glBindSampler is available only if the GL version is 3.3 or higher.

Errors

GL_INVALID_VALUE is generated if unit is greater than or equal to the value of
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.

GL_INVALID_OPERATION is generated if sampler is not zero or a name previously returned from
a call to glGenSamplers, or if such a name has been deleted by a call to glDeleteSamplers.

Associated Gets

glGet with argument GL_SAMPLER_BINDING

See Also

glGenSamplers, glDeleteSamplers, glGet, glSamplerParameter,
glGetSamplerParameter, glGenTextures, glBindTexture, glDeleteTextures

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBindTexture

bind a named texture to a texturing target

C Specification

void glBindTexture(GLenum target,
GLuint texture);

Parameters

target
Specifies the target to which the texture is bound. Must be either GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_1D_ARRAY,
GL_TEXTURE_2D_ARRAY, GL_TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_MAP,
GL_TEXTURE_2D_MULTISAMPLE or GL_TEXTURE_2D_MULTISAMPLE_ARRAY.

texture
Specifies the name of a texture.

Description

glBindTexture lets you create or use a named texture. Calling glBindTexture with target set
to GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_1D_ARRAY,
GL_TEXTURE_2D_ARRAY, GL_TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_MAP,
GL_TEXTURE_2D_MULTISAMPLE or GL_TEXTURE_2D_MULTISAMPLE_ARRAY and texture set to
the name of the new texture binds the texture name to the target. When a texture is bound to a
target, the previous binding for that target is automatically broken.

Texture names are unsigned integers. The value zero is reserved to represent the default texture
for each texture target. Texture names and the corresponding texture contents are local to the shared
object space of the current GL rendering context; two rendering contexts share texture names only if
they explicitly enable sharing between contexts through the appropriate GL windows interfaces
functions.

ptg

glBindVertexArray 679
C

You must use glGenTextures to generate a set of new texture names.
When a texture is first bound, it assumes the specified target: A texture first bound to

GL_TEXTURE_1D becomes one-dimensional texture, a texture first bound to GL_TEXTURE_2D
becomes two-dimensional texture, a texture first bound to GL_TEXTURE_3D becomes three-dimen-
sional texture, a texture first bound to GL_TEXTURE_1D_ARRAY becomes one-dimensional array
texture, a texture first bound to GL_TEXTURE_2D_ARRAY becomes two-dimensional arary texture, a
texture first bound to GL_TEXTURE_RECTANGLE becomes rectangle texture, a, texture first bound to
GL_TEXTURE_CUBE_MAP becomes a cube-mapped texture, a texture first bound to
GL_TEXTURE_2D_MULTISAMPLE becomes a two-dimensional multisampled texture, and a texture
first bound to GL_TEXTURE_2D_MULTISAMPLE_ARRAY becomes a two-dimensional multisampled
array texture. The state of a one-dimensional texture immediately after it is first bound is equivalent to
the state of the default GL_TEXTURE_1D at GL initialization, and similarly for the other texture types.

While a texture is bound, GL operations on the target to which it is bound affect the bound
texture, and queries of the target to which it is bound return state from the bound texture. In effect,
the texture targets become aliases for the textures currently bound to them, and the texture name
zero refers to the default textures that were bound to them at initialization.

A texture binding created with glBindTexture remains active until a different texture is bound
to the same target, or until the bound texture is deleted with glDeleteTextures.

Once created, a named texture may be re-bound to its same original target as often as needed. It is
usually much faster to use glBindTexture to bind an existing named texture to one of the texture
targets than it is to reload the texture image using glTexImage1D, glTexImage2D, glTexImage3D or
another similar function.

Notes

The GL_TEXTURE_2D_MULTISAMPLE and GL_TEXTURE_2D_MULTISAMPLE_ARRAY targets are
available only if the GL version is 3.2 or higher.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_VALUE is generated if target is not a name returned from a previous call to

glGenTextures.
GL_INVALID_OPERATION is generated if texture was previously created with a target that

doesn’t match that of target.

Associated Gets

glGet with argument GL_TEXTURE_BINDING_1D, GL_TEXTURE_BINDING_2D,
GL_TEXTURE_BINDING_3D, GL_TEXTURE_BINDING_1D_ARRAY,
GL_TEXTURE_BINDING_2D_ARRAY, GL_TEXTURE_BINDING_RECTANGLE,
GL_TEXTURE_BINDING_2D_MULTISAMPLE, or GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY.

See Also

glDeleteTextures, glGenTextures, glGet, glGetTexParameter, glIsTexture,
glTexImage1D, glTexImage2D, glTexImage2DMultisample, glTexImage3D,
glTexImage3DMultisample, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

ptg

680

glBindVertexArray

bind a vertex array object

C Specification

void glBindVertexArray(GLuint array);

Parameters

array
Specifies the name of the vertex array to bind.

Description

glBindVertexArray binds the vertex array object with name array. array is the name of a
vertex array object previously returned from a call to glGenVertexArrays, or zero to break the existing
vertex array object binding.

If no vertex array object with name array exists, one is created when array is first bound. If the
bind is successful no change is made to the state of the vertex array object, and any previous vertex
array object binding is broken.

Errors

GL_INVALID_OPERATION is generated if array is not zero or the name of a vertex array object
previously returned from a call to glGenVertexArrays.

See Also

glGenVertexArrays, glDeleteVertexArrays glVertexAttribPointer
glEnableVertexAttribArray

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBlendColor

set the blend color

C Specification

void glBlendColor(GLclampf red,
GLclampf green,
GLclampf blue,
GLclampf alpha);

Parameters

red
green
blue
alpha

specify the components of GL_BLEND_COLOR

ptg

glBlendEquation 681
C

Description

The GL_BLEND_COLOR may be used to calculate the source and destination blending factors. The
color components are clamped to the range before being stored. See glBlendFunc for a complete
description of the blending operations. Initially the GL_BLEND_COLOR is set to (0, 0, 0, 0).

Associated Gets

glGet with an argument of GL_BLEND_COLOR

See Also

glBlendEquation, glBlendFunc, glGetString

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glBlendEquation

specify the equation used for both the RGB blend equation and the Alpha blend equation

C Specification

void glBlendEquation(GLenum mode);

Parameters

mode
specifies how source and destination colors are combined. It must be GL_FUNC_ADD,
GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX.

Description

The blend equations determine how a new pixel (the ’’source’’ color) is combined with a pixel
already in the framebuffer (the ’’destination’’ color). This function sets both the RGB blend equation
and the alpha blend equation to a single equation.

These equations use the source and destination blend factors specified by either glBlendFunc or
glBlendFuncSeparate. See glBlendFunc or glBlendFuncSeparate for a description of the various blend
factors.

[0,1]

Mode RGB Components Alpha Component

GL_FUNC_ADD

Br = BssB + BddB

Gr = GssG + GddG

Rr = RssR + RddR Ar = AssA + AddA

GL_FUNC_SUBTRACT

Br = BssB - BddB

Gr = GssG - GddG

Rr = RssR - RddR Ar = AssA - AddA

GL_FUNC_REVERSE_SUBTRACT

Br = BddB - BssB

Gr = GddG - GssG

Rr = RddR - RssR Ar = AddA - AssA

ptg

682

In the equations that follow, source and destination color components are referred to as
and , respectively. The resulting color is referred to as . The

source and destination blend factors are denoted and , respectively. For
these equations all color components are understood to have values in the range .

The results of these equations are clamped to the range .
The GL_MIN and GL_MAX equations are useful for applications that analyze image data (image

thresholding against a constant color, for example). The GL_FUNC_ADD equation is useful for
antialiasing and transparency, among other things.

Initially, both the RGB blend equation and the alpha blend equation are set to GL_FUNC_ADD.

Notes

The GL_MIN, and GL_MAX equations do not use the source or destination factors, only the
source and destination colors.

Errors

GL_INVALID_ENUM is generated if mode is not one of GL_FUNC_ADD, GL_FUNC_SUBTRACT,
GL_FUNC_REVERSE_SUBTRACT, GL_MAX, or GL_MIN.

Associated Gets

glGet with an argument of GL_BLEND_EQUATION_RGB
glGet with an argument of GL_BLEND_EQUATION_ALPHA

See Also

glBlendColor, glBlendFunc glBlendFuncSeparate

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glBlendEquationSeparate

set the RGB blend equation and the alpha blend equation separately

[0,1]
[0,1]

(dR,dG,dB,dA)(sR,sG,sB,sA)
(Rr,Gr,Br,Ar)(Rd,Gd,Bd,Ad)(Rs,Gs,Bs,As)

Mode RGB Components Alpha Component

GL_MIN

Br = min(Bs, Bd)

Gr = min(Gs, Gd)

Rr = min(Rs, Rd) Ar = min(As, Ad)

GL_MAX

Br = max(Bs, Bd)

Gr = max(Gs, Gd)

Rr = max(Rs, Rd) Ar = max(As, Ad)

ptg

glBlendEquationSeparate 683
C

C Specification

void glBlendEquationSeparate(GLenum modeRGB,
GLenum modeAlpha);

Parameters

modeRGB
specifies the RGB blend equation, how the red, green, and blue components of the
source and destination colors are combined. It must be GL_FUNC_ADD,
GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX.

modeAlpha
specifies the alpha blend equation, how the alpha component of the source and destina-
tion colors are combined. It must be GL_FUNC_ADD, GL_FUNC_SUBTRACT,
GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX.

Description

The blend equations determines how a new pixel (the ’’source’’ color) is combined with a pixel
already in the framebuffer (the ’’destination’’ color). This function specifies one blend equation for
the RGB-color components and one blend equation for the alpha component.

The blend equations use the source and destination blend factors specified by either glBlendFunc
or glBlendFuncSeparate. See glBlendFunc or glBlendFuncSeparate for a description of the various
blend factors.

Mode RGB Components Alpha Component

GL_FUNC_ADD

Br = BssB + BddB

Gr = GssG + GddG

Rr = RssR + RddR Ar = AssA + AddA

GL_FUNC_SUBTRACT

Br = BssB - BddB

Gr = GssG - GddG

Rr = RssR - RddR Ar = AssA - AddA

GL_FUNC_REVERSE_SUBTRACT

Br = BddB - BssB

Gr = GddG - GssG

Rr = RddR - RssR Ar = AddA - AssA

GL_MIN

Br = min(Bs, Bd)

Gr = min(Gs, Gd)

Rr = min(Rs, Rd) Ar = min(As, Ad)

GL_MAX

Br = max(Bs, Bd)

Gr = max(Gs, Gd)

Rr = max(Rs, Rd) Ar = max(As, Ad)

ptg

In the equations that follow, source and destination color components are referred to as
and , respectively. The resulting color is referred to as . The

source and destination blend factors are denoted and , respectively. For
these equations all color components are understood to have values in the range .

The results of these equations are clamped to the range .
The GL_MIN and GL_MAX equations are useful for applications that analyze image data (image

thresholding against a constant color, for example). The GL_FUNC_ADD equation is useful for
antialiasing and transparency, among other things.

Initially, both the RGB blend equation and the alpha blend equation are set to GL_FUNC_ADD.

Notes

The GL_MIN, and GL_MAX equations do not use the source or destination factors, only the
source and destination colors.

Errors

GL_INVALID_ENUM is generated if either modeRGB or modeAlpha is not one of GL_FUNC_ADD,
GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MAX, or GL_MIN.

Associated Gets

glGet with an argument of GL_BLEND_EQUATION_RGB
glGet with an argument of GL_BLEND_EQUATION_ALPHA

See Also

glGetString, glBlendColor, glBlendFunc, glBlendFuncSeparate

Copyright

Copyright © 2006 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBlendFunc

specify pixel arithmetic

C Specification

void glBlendFunc(GLenum sfactor,
GLenum dfactor);

Parameters

sfactor
Specifies how the red, green, blue, and alpha source blending factors are computed. The
initial value is GL_ONE.

dfactor
Specifies how the red, green, blue, and alpha destination blending factors are computed.
The following symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA. GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, and
GL_ONE_MINUS_CONSTANT_ALPHA. The initial value is GL_ZERO.

[0,1]
[0,1]

(dR,dG,dB,dA)(sR,sG,sB,sA)
(Rr,Gr,Br,Ar)(Rd,Gd,Bd,Ad)(Rs,Gs,Bs,As)

684

ptg

glBlendFunc 685
C

Description

Pixels can be drawn using a function that blends the incoming (source) RGBA values with the
RGBA values that are already in the frame buffer (the destination values). Blending is initially
disabled. Use glEnable and glDisable with argument GL_BLEND to enable and disable blending.

glBlendFunc defines the operation of blending when it is enabled. sfactor specifies which
method is used to scale the source color components. dfactor specifies which method is used to
scale the destination color components. Both parameters must be one of the following symbolic
constants: GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR,
GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA, GL_SRC_ALPHA_SATURATE,
GL_SRC1_COLOR, GL_ONE_MINUS_SRC1_COLOR, GL_SRC1_ALPHA, and
GL_ONE_MINUS_SRC1_ALPHA. The possible methods are described in the following table. Each
method defines four scale factors, one each for red, green, blue, and alpha. In the table and in subse-
quent equations, first source, second source and destination color components are referred to as

, and , respectively. The color specified by
glBlendColor is referred to as . They are understood to have integer values between 0 and

, where(kR,kG,kB,kA)
(Rc,Gc,Bc,Ac)

(Rd,Gd,Bd,Ad)(Rs1,Gs1,Bs1,As1)(Rs0,Gs0,Bs0,As0)

Parameter (fR, fG, fB, fA)

GL_ZERO (0,0,0,0)

GL_ONE (1,1,1,1)

GL_SRC_COLOR aRs0
kR

,
Gs0

kG
,
Bs0
kB

,
As0
kA
b

GL_ONE_MINUS_SRC_COLOR
(1,1,1,1) - aRs0

kR
,
Gs0

kG
,
Bs0
kB

,
As0
kA
b

GL_DST_COLOR aRd
kR

,
Gd

kG
,
Bd
kB

,
Ad
kA
b

GL_ONE_MINUS_DST_COLOR
(1,1,1,1) - aRd

kR
,
Gd

kG
,
Bd
kB

,
Ad
kA
b

GL_SRC_ALPHA aAs0
kA

,
As0
kA

,
As0
kA

,
As0
kA
b

GL_ONE_MINUS_SRC_ALPHA
(1,1,1,1) - aAs0

kA
,
As0
kA

,
As0
kA

,
As0
kA
b

GL_DST_ALPHA aAd
kA

,
Ad
kA

,
Ad
kA

,
Ad
kA
b

GL_ONE_MINUS_DST_ALPHA
(1,1,1,1) - aAd

kA
,
Ad
kA

,
Ad
kA

,
Ad
kA
b

GL_CONSTANT_COLOR (Rc,Gc,Bc,Ac)

ptg

and is the number of red, green, blue, and alpha bitplanes.
Source and destination scale factors are referred to as and . The scale

factors described in the table, denoted , represent either source or destination factors. All
scale factors have range .

In the table,

To determine the blended RGBA values of a pixel, the system uses the following equations:

Despite the apparent precision of the above equations, blending arithmetic is not exactly speci-
fied, because blending operates with imprecise integer color values. However, a blend factor that
should be equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0
reduces its multiplicand to 0. For example, when sfactor is GL_SRC_ALPHA, dfactor is
GL_ONE_MINUS_SRC_ALPHA, and is equal to , the equations reduce to simple replacement:

Examples

Transparency is best implemented using blend function (GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this trans-
parency calculation does not require the presence of alpha bitplanes in the frame buffer.

Blend function (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) is also useful for rendering
antialiased points and lines in arbitrary order.

Polygon antialiasing is optimized using blend function (GL_SRC_ALPHA_SATURATE, GL_ONE)
with polygons sorted from nearest to farthest. (See the glEnable, glDisable reference page and the
GL_POLYGON_SMOOTH argument for information on polygon antialiasing.) Destination alpha
bitplanes, which must be present for this blend function to operate correctly, store the accumulated
coverage.

Ad = AsBd = BsGd = GsRd = Rs

kAAs

Ad = m in(kA,AssA + AddA)
Bd = m in(kB,BssB + BddB)Gd = m in(kG,GssG + GddG)Rd = m in(kR,RssR + RddR)

i =
m in(As,kA - Ad)

kA

[0,1]
(fR,fG,fB,fA)

(dR,dG,dB,dA)(sR,sG,sB,sA)
(m R,m G ,m B,m A)

k c = 2m c - 1

686

Parameter (fR, fG, fB, fA)

GL_ONE_MINUS_CONSTANT_COLOR (1,1,1,1) - (Rc,Gc,Bc,Ac)

GL_CONSTANT_ALPHA (Ac,Ac,Ac,Ac)

GL_ONE_MINUS_CONSTANT_ALPHA (1,1,1,1) - (Ac,Ac,Ac,Ac)

GL_SRC_ALPHA_SATURATE (i,i,i,1)

GL_SRC1_COLOR aRs1
kR

,
Gs1

kG
,
Bs1
kB

,
As1
kA
b

GL_ONE_MINUS_SRC1_COLOR
(1,1,1,1) - aRs1

kR
,
Gs1

kG
,
Bs1
kB

,
As1
kA
b

GL_SRC1_ALPHA aAs1
kA

,
As1
kA

,
As1
kA

,
As1
kA
b

GL_ONE_MINUS_SRC1_ALPHA
(1,1,1,1) - aAs1

kA
,
As1
kA

,
As1
kA

,
As1
kA
b

ptg

glBlendFuncSeparate 687
C

Notes

Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0 (), repre-
senting complete opacity, to 0.0 (0), representing complete transparency.

When more than one color buffer is enabled for drawing, the GL performs blending separately for
each enabled buffer, using the contents of that buffer for destination color. (See glDrawBuffer.)

When dual source blending is enabled (i.e., one of the blend factors requiring the second color
input is used), the maximum number of enabled draw buffers is given by
GL_MAX_DUAL_SOURCE_DRAW_BUFFERS, which may be lower than GL_MAX_DRAW_BUFFERS.

Errors

GL_INVALID_ENUM is generated if either sfactor or dfactor is not an accepted value.

Associated Gets

glGet with argument GL_BLEND_SRC
glGet with argument GL_BLEND_DST
glIsEnabled with argument GL_BLEND

See Also

glBlendColor, glBlendEquation, glBlendFuncSeparate, glClear, glDrawBuffer,
glEnable, glLogicOp, glStencilFunc

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glBlendFuncSeparate

specify pixel arithmetic for RGB and alpha components separately

C Specification

void glBlendFuncSeparate(GLenum srcRGB,
GLenum dstRGB,
GLenum srcAlpha,
GLenum dstAlpha);

Parameters

srcRGB
Specifies how the red, green, and blue blending factors are computed. The initial value is
GL_ONE.

dstRGB
Specifies how the red, green, and blue destination blending factors are computed. The
initial value is GL_ZERO.

srcAlpha
Specified how the alpha source blending factor is computed. The initial value is GL_ONE.

dstAlpha
Specified how the alpha destination blending factor is computed. The initial value is
GL_ZERO.

KA

ptg

Description

Pixels can be drawn using a function that blends the incoming (source) RGBA values with the
RGBA values that are already in the frame buffer (the destination values). Blending is initially
disabled. Use glEnable and glDisable with argument GL_BLEND to enable and disable blending.

glBlendFuncSeparate defines the operation of blending when it is enabled. srcRGB specifies
which method is used to scale the source RGB-color components. dstRGB specifies which method is
used to scale the destination RGB-color components. Likewise, srcAlpha specifies which method is
used to scale the source alpha color component, and dstAlpha specifies which method is used to
scale the destination alpha component. The possible methods are described in the following table.
Each method defines four scale factors, one each for red, green, blue, and alpha.

In the table and in subsequent equations, first source, second source and destination color
components are referred to as , , and , respectively. The
color specified by glBlendColor is referred to as . They are understood to have integer(Rc,Gc,Bc,Ac)

(Rd,Gd,Bd,Ad)(Rs1,Gs1,Bs1,As1)(Rs0,Gs0,Bs0,As0)

688

Parameter RGB Factor Alpha Factor

GL_ZERO (0,0,0) 0

GL_ONE (1,1,1) 1

GL_SRC_COLOR aRs0
kR

,
Gs0

kG
,
Bs0
kB
b As0

kA

GL_ONE_MINUS_SRC_COLOR
(1,1,1,1) - aRs0

kR
,
Gs0

kG
,
Bs0
kB
b 1 -

As0
kA

GL_DST_COLOR aRd
kR

,
Gd

kG
,
Bd
kB
b Ad

kA

GL_ONE_MINUS_DST_COLOR
(1,1,1) - aRd

kR
,
Gd

kG
,
Bd
kB
b 1 -

Ad
kA

GL_SRC_ALPHA aAs0
kA

,
As0
kA

,
As0
kA
b As0

kA

GL_ONE_MINUS_SRC_ALPHA
(1,1,1) - aAs0

kA
,
As0
kA

,
As0
kA
b 1 -

As0
kA

GL_DST_ALPHA aAd
kA

,
Ad
kA

,
Ad
kA
b Ad

kA

GL_ONE_MINUS_DST_ALPHA
(1,1,1) - aAd

kA
,
Ad
kA

,
Ad
kA
b 1 -

Ad
kA

GL_CONSTANT_COLOR (Rc,Gc,Bc) Ac

GL_ONE_MINUS_CONSTANT_COLOR (1,1,1) - (Rc,Gc,Bc) 1 - Ac

GL_CONSTANT_ALPHA (Ac,Ac,Ac) Ac

ptg

glBlendFuncSeparate 689
C

values between 0 and , where

and is the number of red, green, blue, and alpha bitplanes.
Source and destination scale factors are referred to as and . All scale

factors have range .
In the table,

To determine the blended RGBA values of a pixel, the system uses the following equations:

Despite the apparent precision of the above equations, blending arithmetic is not exactly speci-
fied, because blending operates with imprecise integer color values. However, a blend factor that
should be equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0
reduces its multiplicand to 0. For example, when srcRGB is GL_SRC_ALPHA, dstRGB is
GL_ONE_MINUS_SRC_ALPHA, and is equal to , the equations reduce to simple replacement:

Notes

Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0 (), repre-
senting complete opacity, to 0.0 (0), representing complete transparency.

When more than one color buffer is enabled for drawing, the GL performs blending separately for
each enabled buffer, using the contents of that buffer for destination color. (See glDrawBuffer.)

When dual source blending is enabled (i.e., one of the blend factors requiring the second color
input is used), the maximum number of enabled draw buffers is given by
GL_MAX_DUAL_SOURCE_DRAW_BUFFERS, which may be lower than GL_MAX_DRAW_BUFFERS.

Errors

GL_INVALID_ENUM is generated if either srcRGB or dstRGB is not an accepted value.

Associated Gets

glGet with argument GL_BLEND_SRC_RGB
glGet with argument GL_BLEND_SRC_ALPHA

KA

Ad = AsBd = BsGd = GsRd = Rs

kAAs

Ad = m in(kA,AssA + AddA)
Bd = m in(kB,BssB + BddB)Gd = m in(kG,GssG + GddG)Rd = m in(kR,RssR + RddR)

i = m in(As,1 - Ad)

[0,1]
(dR,dG,dB,dA)(sR,sG,sB,sA)

(m R,m G ,m B,m A)
k c = 2m c - 1

(kR,kG,kB,kA)

Parameter RGB Factor Alpha Factor

GL_ONE_MINUS_CONSTANT_ALPHA (1,1,1) - (Ac,Ac,Ac) 1 - Ac

GL_SRC_ALPHA_SATURATE (i,i,i) 1

GL_SRC1_COLOR aRs1
kR

,
Gs1

kG
,
Bs1
kB
b As1

kA

GL_ONE_MINUS_SRC_COLOR
(1,1,1,1) - aRs1

kR
,
Gs1

kG
,
Bs1
kB
b 1 -

As1
kA

GL_SRC1_ALPHA aAs1
kA

,
As1
kA

,
As1
kA
b As1

kA

GL_ONE_MINUS_SRC_ALPHA
(1,1,1) - aAs1

kA
,
As1
kA

,
As1
kA
b 1 -

As1
kA

ptg

glGet with argument GL_BLEND_DST_RGB
glGet with argument GL_BLEND_DST_ALPHA
glIsEnabled with argument GL_BLEND

See Also

glBlendColor, glBlendFunc, glBlendEquation, glClear, glDrawBuffer, glEnable,
glLogicOp, glStencilFunc

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glBlitFramebuffer

bind a vertex array object

C Specification

void glBlitFramebuffer(GLint srcX0,
GLint srcY0,
GLint srcX1,
GLint srcY1,
GLint dstX0,
GLint dstY0,
GLint dstX1,
GLint dstY1,
GLbitfield mask,
GLenum filter);

Parameters

srcX0
srcY0
srcX1
srcY1

Specify the bounds of the source rectangle within the read buffer of the read framebuffer.
dstX0
dstY0
dstX1
dstY1

Specify the bounds of the destination rectangle within the write buffer of the write
framebuffer.

mask
The bitwise OR of the flags indicating which buffers are to be copied. The allowed flags
are GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT and GL_STENCIL_BUFFER_BIT.

filter
Specifies the interpolation to be applied if the image is stretched. Must be GL_NEAREST
or GL_LINEAR.

Description

glBlitFramebuffer transfers a rectangle of pixel values from one region of the read framebuffer
to another region in the draw framebuffer. mask is the bitwise OR of a number of values indicating
which buffers are to be copied. The values are GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, and

690

ptg

glBufferData 691
C

GL_STENCIL_BUFFER_BIT. The pixels corresponding to these buffers are copied from the source
rectangle bounded by the locations (srcX0; srcY0) and (srcX1; srcY1) to the destination rectangle
bounded by the locations (dstX0; dstY0) and (dstX1; dstY1). The lower bounds of the rectangle are
inclusive, while the upper bounds are exclusive.

The actual region taken from the read framebuffer is limited to the intersection of the source
buffers being transferred, which may include the color buffer selected by the read buffer, the depth
buffer, and/or the stencil buffer depending on mask. The actual region written to the draw frame-
buffer is limited to the intersection of the destination buffers being written, which may include multi-
ple draw buffers, the depth buffer, and/or the stencil buffer depending on mask. Whether or not the
source or destination regions are altered due to these limits, the scaling and offset applied to pixels
being transferred is performed as though no such limits were present.

If the sizes of the source and destination rectangles are not equal, filter specifies the interpola-
tion method that will be applied to resize the source image, and must be GL_NEAREST or GL_LINEAR.
GL_LINEAR is only a valid interpolation method for the color buffer. If filter is not GL_NEAREST
and mask includes GL_DEPTH_BUFFER_BIT or GL_STENCIL_BUFFER_BIT, no data is transferred and a
GL_INVALID_OPERATION error is generated.

If filter is GL_LINEAR and the source rectangle would require sampling outside the bounds of
the source framebuffer, values are read as if the GL_CLAMP_TO_EDGE texture wrapping mode were
applied.

When the color buffer is transferred, values are taken from the read buffer of the read framebuffer
and written to each of the draw buffers of the draw framebuffer.

If the source and destination rectangles overlap or are the same, and the read and draw buffers are
the same, the result of the operation is undefined.

Notes

glBindVertexArray is available only if the GL version is 3.0 or greater.

Errors

GL_INVALID_OPERATION is generated if mask contains any of the GL_DEPTH_BUFFER_BIT or
GL_STENCIL_BUFFER_BIT and filter is not GL_NEAREST.

GL_INVALID_OPERATION is generated if mask contains GL_COLOR_BUFFER_BIT and any of the
following conditions hold:

The read buffer contains fixed-point or floating-point values and any draw buffer
contains neither fixed-point nor floating-point values.
The read buffer contains unsigned integer values and any draw buffer does not contain
unsigned integer values.
The read buffer contains signed integer values and any draw buffer does not contain
signed integer values.

GL_INVALID_OPERATION is generated if mask contains GL_DEPTH_BUFFER_BIT or
GL_DEPTH_BUFFER_BIT and the source and destination depth and stencil formats do not match.

GL_INVALID_OPERATION is generated if filter is GL_LINEAR and the read buffer contains
integer data.

GL_INVALID_OPERATION is generated if the value of GL_SAMPLES for the read and draw buffers
is not identical.

GL_INVALID_OPERATION is generated if GL_SAMPLE_BUFFERS for both read and draw buffers
greater than zero and the dimensions of the source and destination rectangles is not identical.

GL_INVALID_FRAMEBUFFER_OPERATION is generated if the objects bound to GL_DRAW_
FRAMEBUFFER_BINDING or GL_READ_FRAMEBUFFER_BINDING are not framebuffer complete.

See Also

glReadPixels glCheckFramebufferStatus, glGenFramebuffers glBindFramebuffer
glDeleteFramebuffers

ptg

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBufferData

creates and initializes a buffer object’s data store

C Specification

void glBufferData(GLenum target,
GLsizeiptr size,
const GLvoid * data,
GLenum usage);

Parameters

target
Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_TEXTURE_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

size
Specifies the size in bytes of the buffer object’s new data store.

data
Specifies a pointer to data that will be copied into the data store for initialization, or
NULL if no data is to be copied.

usage
Specifies the expected usage pattern of the data store. The symbolic constant must be
GL_STREAM_DRAW, GL_STREAM_READ, GL_STREAM_COPY, GL_STATIC_DRAW,
GL_STATIC_READ, GL_STATIC_COPY, GL_DYNAMIC_DRAW, GL_DYNAMIC_READ, or
GL_DYNAMIC_COPY.

Description

glBufferData creates a new data store for the buffer object currently bound to target. Any pre-
existing data store is deleted. The new data store is created with the specified size in bytes and
usage. If data is not NULL, the data store is initialized with data from this pointer. In its initial state,
the new data store is not mapped, it has a NULL mapped pointer, and its mapped access is
GL_READ_WRITE.

usage is a hint to the GL implementation as to how a buffer object’s data store will be accessed.
This enables the GL implementation to make more intelligent decisions that may significantly impact
buffer object performance. It does not, however, constrain the actual usage of the data store. usage
can be broken down into two parts: first, the frequency of access (modification and usage), and
second, the nature of that access. The frequency of access may be one of these:

STREAM
The data store contents will be modified once and used at most a few times.

STATIC
The data store contents will be modified once and used many times.

DYNAMIC
The data store contents will be modified repeatedly and used many times.

692

ptg

glBufferSubData 693
C

The nature of access may be one of these:
DRAW

The data store contents are modified by the application, and used as the source for GL
drawing and image specification commands.

READ
The data store contents are modified by reading data from the GL, and used to return
that data when queried by the application.

COPY
The data store contents are modified by reading data from the GL, and used as the source
for GL drawing and image specification commands.

Notes

If data is NULL, a data store of the specified size is still created, but its contents remain uninitial-
ized and thus undefined.

Clients must align data elements consistent with the requirements of the client platform, with an
additional base-level requirement that an offset within a buffer to a datum comprising .

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted buffer targets.
GL_INVALID_ENUM is generated if usage is not GL_STREAM_DRAW, GL_STREAM_READ,

GL_STREAM_COPY, GL_STATIC_DRAW, GL_STATIC_READ, GL_STATIC_COPY, GL_DYNAMIC_DRAW,
GL_DYNAMIC_READ, or GL_DYNAMIC_COPY.

GL_INVALID_VALUE is generated if size is negative.
GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_OUT_OF_MEMORY is generated if the GL is unable to create a data store with the specified size.

Associated Gets

glGetBufferSubData
glGetBufferParameter with argument GL_BUFFER_SIZE or GL_BUFFER_USAGE

See Also

glBindBuffer, glBufferSubData, glMapBuffer, glUnmapBuffer

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glBufferSubData

updates a subset of a buffer object’s data store

C Specification

void glBufferSubData(GLenum target,
GLintptr offset,
GLsizeiptr size,
const GLvoid * data);

NN

ptg

Parameters

target
Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_TEXTURE_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

offset
Specifies the offset into the buffer object’s data store where data replacement will begin,
measured in bytes.

size
Specifies the size in bytes of the data store region being replaced.

data
Specifies a pointer to the new data that will be copied into the data store.

Description

glBufferSubData redefines some or all of the data store for the buffer object currently bound to
target. Data starting at byte offset offset and extending for size bytes is copied to the data store
from the memory pointed to by data. An error is thrown if offset and size together define a range
beyond the bounds of the buffer object’s data store.

Notes

When replacing the entire data store, consider using glBufferSubData rather than completely
recreating the data store with glBufferData. This avoids the cost of reallocating the data store.

Consider using multiple buffer objects to avoid stalling the rendering pipeline during data store
updates. If any rendering in the pipeline makes reference to data in the buffer object being updated
by glBufferSubData, especially from the specific region being updated, that rendering must drain
from the pipeline before the data store can be updated.

Clients must align data elements consistent with the requirements of the client platform, with an
additional base-level requirement that an offset within a buffer to a datum comprising .

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted buffer targets.
GL_INVALID_VALUE is generated if offset or size is negative, or if together they define a

region of memory that extends beyond the buffer object’s allocated data store.
GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_INVALID_OPERATION is generated if the buffer object being updated is mapped.

Associated Gets

glGetBufferSubData

See Also

glBindBuffer, glBufferData, glMapBuffer, glUnmapBuffer

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glCheckFramebufferStatus

check the completeness status of a framebuffer

NN

694

ptg

glClampColor 695
C

C Specification

GLenum glCheckFramebufferStatus(GLenum target);

Parameters

target
Specify the target of the framebuffer completeness check.

Description

glCheckFramebufferStatus queries the completeness status of the framebuffer object currently
bound to target. target must be GL_DRAW_FRAMEBUFFER, GL_READ_FRAMEBUFFER or
GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent to GL_DRAW_FRAMEBUFFER.

The return value is GL_FRAMEBUFFER_COMPLETE if the framebuffer bound to target is
complete. Otherwise, the return value is determined as follows:

GL_FRAMEBUFFER_UNDEFINED is returned if target is the default framebuffer, but the
default framebuffer does not exist.
GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT is returned if any of the framebuffer
attachment points are framebuffer incomplete.
GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT is returned if the framebuffer
does not have at least one image attached to it.
GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER is returned if the value of GL_
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE for any color attachment
point(s) named by GL_DRAWBUFFERi.
GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER is returned if GL_READ_BUFFER is not
GL_NONE and the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is
GL_NONE for the color attachment point named by GL_READ_BUFFER.
GL_FRAMEBUFFER_UNSUPPORTED is returned if the combination of internal formats of
the attached images violates an implementation-dependent set of restrictions.
GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE is returned if the value of
GL_RENDERBUFFER_SAMPLES is not the same for all attached renderbuffers; if the value
of GL_TEXTURE_SAMPLES is the not same for all attached textures; or, if the attached
images are a mix of renderbuffers and textures, the value of
GL_RENDERBUFFER_SAMPLES does not match the value of GL_TEXTURE_SAMPLES.
GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE is also returned if the value of
GL_TEXTURE_FIXED_SAMPLE_LOCATIONS is not the same for all attached textures; or,
if the attached images are a mix of renderbuffers and textures, the value of
GL_TEXTURE_FIXED_SAMPLE_LOCATIONS is not GL_TRUE for all attached textures.
GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS is returned if any framebuffer attach-
ment is layered, and any populated attachment is not layered, or if all populated color
attachments are not from textures of the same target.

Additionally, if an error occurs, zero is returned.

Errors

GL_INVALID_ENUM is generated if target is not GL_DRAW_FRAMEBUFFER, GL_READ_
FRAMEBUFFER or GL_FRAMEBUFFER.

See Also

glGenFramebuffers, glDeleteFramebuffers glBindFramebuffer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

ptg

glClampColor

specify whether data read via glReadPixels should be clamped

C Specification

void glClampColor(GLenum target,
GLenum clamp);

Parameters

target
Target for color clamping. target must be GL_CLAMP_READ_COLOR.

clamp
Specifies whether to apply color clamping. clamp must be GL_TRUE or GL_FALSE.

Description

glClampColor controls color clamping that is performed during glReadPixels. target must be
GL_CLAMP_READ_COLOR. If clamp is GL_TRUE, read color clamping is enabled; if clamp is
GL_FALSE, read color clamping is disabled. If clamp is GL_FIXED_ONLY, read color clamping is
enabled only if the selected read buffer has fixed point components and disabled otherwise.

Errors

GL_INVALID_ENUM is generated if target is not GL_CLAMP_READ_COLOR.
GL_INVALID_ENUM is generated if clamp is not GL_TRUE or GL_FALSE.

Associated Gets

glGet with argument GL_CLAMP_READ_COLOR.

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glClear

clear buffers to preset values

C Specification

void glClear(GLbitfield mask);

Parameters

mask
Bitwise OR of masks that indicate the buffers to be cleared. The three masks are
GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, and GL_STENCIL_BUFFER_BIT.

Description

glClear sets the bitplane area of the window to values previously selected by glClearColor,
glClearDepth, and glClearStencil. Multiple color buffers can be cleared simultaneously by select-
ing more than one buffer at a time using glDrawBuffer.

696

ptg

glClearBuffer 697
C

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect the operation
of glClear. The scissor box bounds the cleared region. Alpha function, blend function, logical opera-
tion, stenciling, texture mapping, and depth-buffering are ignored by glClear.

glClear takes a single argument that is the bitwise OR of several values indicating which buffer
is to be cleared.

The values are as follows:
GL_COLOR_BUFFER_BIT

Indicates the buffers currently enabled for color writing.
GL_DEPTH_BUFFER_BIT

Indicates the depth buffer.
GL_STENCIL_BUFFER_BIT

Indicates the stencil buffer.
The value to which each buffer is cleared depends on the setting of the clear value for that buffer.

Notes

If a buffer is not present, then a glClear directed at that buffer has no effect.

Errors

GL_INVALID_VALUE is generated if any bit other than the three defined bits is set in mask.

Associated Gets

glGet with argument GL_DEPTH_CLEAR_VALUE
glGet with argument GL_COLOR_CLEAR_VALUE
glGet with argument GL_STENCIL_CLEAR_VALUE

See Also

glClearColor, glClearDepth, glClearStencil, glColorMask, glDepthMask,
glDrawBuffer, glScissor, glStencilMask

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glClearBuffer

clear individual buffers of the currently bound draw framebuffer

C Specification

void glClearBufferiv(GLenum buffer,
GLint drawBuffer,
const GLint * value);

void glClearBufferuiv(GLenum buffer,
GLint drawBuffer,
const GLuint * value);

void glClearBufferfv(GLenum buffer,
GLint drawBuffer,
const GLfloat * value);

void glClearBufferfi(GLenum buffer,
GLint drawBuffer,
GLfloat depth,
GLint stencil);

ptg

Parameters

buffer
Specify the buffer to clear.

drawBuffer
Specify a particular draw buffer to clear.

value
For color buffers, a pointer to a four-element vector specifying R, G, B and A values to
clear the buffer to. For depth buffers, a pointer to a single depth value to clear the buffer
to. For stencil buffers, a pointer to a single stencil value to clear the buffer to.

depth
The value to clear a depth render buffer to.

stencil
The value to clear a stencil render buffer to.

Description

glClearBuffer* clears the specified buffer to the specified value(s). If buffer is GL_COLOR, a
particular draw buffer GL_DRAWBUFFERi is specified by passing i as drawBuffer. In this case,
value points to a four-element vector specifying the R, G, B and A color to clear that draw buffer to.
If buffer is one of GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, or GL_FRONT_AND_BACK, identify-
ing multiple buffers, each selected buffer is cleared to the same value. Clamping and conversion for
fixed-point color buffers are performed in the same fashion as glClearColor.

If buffer is GL_DEPTH, drawBuffer must be zero, and value points to a single value to clear
the depth buffer to. Only glClearBufferfv should be used to clear depth buffers. Clamping and
conversion for fixed-point depth buffers are performed in the same fashion as glClearDepth.

If buffer is GL_STENCIL, drawBuffer must be zero, and value points to a single value to clear
the stencil buffer to. Only glClearBufferiv should be used to clear stencil buffers. Masing and type
conversion are performed in the same fashion as glClearStencil.

glClearBufferfi may be used to clear the depth and stencil buffers. buffer must be
GL_DEPTH_STENCIL and drawBuffer must be zero. depth and stencil are the depth and stencil
values, respectively.

The result of glClearBuffer is undefined if no conversion between the type of value and the
buffer being cleared is defined. However, this is not an error.

Errors

GL_INVALID_ENUM is generated by glClearBufferif, glClearBufferfv and
glClearBufferuiv if buffer is not GL_COLOR, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT,
GL_FRONT_AND_BACK, GL_DEPTH or GL_STENCIL.

GL_INVALID_ENUM is generated by glClearBufferfi if buffer is not GL_DEPTH_STENCIL.
GL_INVALID_VALUE is generated if buffer is GL_COLOR, GL_FRONT, GL_BACK, GL_LEFT,

GL_RIGHT, or GL_FRONT_AND_BACK and drawBuffer is greater than or equal to
GL_MAX_DRAW_BUFFERS.

GL_INVALID_VALUE is generated if buffer is GL_DEPTH, GL_STENCIL or GL_DEPTH_STENCIL
and drawBuffer is not zero.

See Also

glClearColor, glClearDepth, glClearStencil, glClear

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

698

ptg

glClearDepth 699
C

glClearColor

specify clear values for the color buffers

C Specification

void glClearColor(GLclampf red,
GLclampf green,
GLclampf blue,
GLclampf alpha);

Parameters

red
green
blue
alpha

Specify the red, green, blue, and alpha values used when the color buffers are cleared.
The initial values are all 0.

Description

glClearColor specifies the red, green, blue, and alpha values used by glClear to clear the color
buffers. Values specified by glClearColor are clamped to the range .

Associated Gets

glGet with argument GL_COLOR_CLEAR_VALUE

See Also

glClear

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glClearDepth

specify the clear value for the depth buffer

C Specification

void glClearDepth(GLclampd depth);

Parameters

depth
Specifies the depth value used when the depth buffer is cleared. The initial value is 1.

Description

glClearDepth specifies the depth value used by glClear to clear the depth buffer. Values specified
by glClearDepth are clamped to the range .

Associated Gets

glGet with argument GL_DEPTH_CLEAR_VALUE

[0,1]

[0,1]

ptg

See Also

glClear

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glClearStencil

specify the clear value for the stencil buffer

C Specification

void glClearStencil(GLint s);

Parameters

s
Specifies the index used when the stencil buffer is cleared. The initial value is 0.

Description

glClearStencil specifies the index used by glClear to clear the stencil buffer. s is masked with
, where is the number of bits in the stencil buffer.

Associated Gets

glGet with argument GL_STENCIL_CLEAR_VALUE
glGet with argument GL_STENCIL_BITS

See Also

glClear, glStencilFunc, glStencilFuncSeparate, glStencilMask,
glStencilMaskSeparate, glStencilOp, glStencilOpSeparate

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glClientWaitSync

block and wait for a sync object to become signaled

C Specification

GLenum glClientWaitSync(GLsync sync,
GLbitfield flags,
GLuint64 timeout);

Parameters

sync
The sync object whose status to wait on.

flags
A bitfield controlling the command flushing behavior. flags may be
GL_SYNC_FLUSH_COMMANDS_BIT.

timeout
The timeout, specified in nanoseconds, for which the implementation should wait for
sync to become signaled.

m2m - 1

700

ptg

glColorMask 701
C

Description

glClientWaitSync causes the client to block and wait for the sync object specified by sync to
become signaled. If sync is signaled when glClientWaitSync is called, glClientWaitSync returns
immediately, otherwise it will block and wait for up to timeout nanoseconds for sync to become
signaled.

The return value is one of four status values:
GL_ALREADY_SIGNALED indicates that sync was signaled at the time that
glClientWaitSync was called.
GL_TIMEOUT_EXPIRED indicates that at least timeout nanoseconds passed and sync
did not become signaled.
GL_CONDITION_SATISFIED indicates that sync was signaled before the timeout
expired.
GL_WAIT_FAILED indicates that an error occurred. Additionally, an OpenGL error will
be generated.

Notes

glClientWaitSync is available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_VALUE is generated if sync is not the name of an existing sync object.
GL_INVALID_VALUE is generated if flags contains any unsupported flag.

See Also

glFenceSync, glIsSync glWaitSync

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glColorMask

enable and disable writing of frame buffer color components

C Specification

void glColorMask(GLboolean red,
GLboolean green,
GLboolean blue,
GLboolean alpha);

Parameters

red
green
blue
alpha

Specify whether red, green, blue, and alpha can or cannot be written into the frame
buffer. The initial values are all GL_TRUE, indicating that the color components can be
written.

ptg

Description

glColorMask specifies whether the individual color components in the frame buffer can or
cannot be written. If red is GL_FALSE, for example, no change is made to the red component of any
pixel in any of the color buffers, regardless of the drawing operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are either
enabled or disabled for entire color components.

Associated Gets

glGet with argument GL_COLOR_WRITEMASK

See Also

glClear, glDepthMask, glStencilMask

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glCompileShader

Compiles a shader object

C Specification

void glCompileShader(GLuint shader);

Parameters

shader
Specifies the shader object to be compiled.

Description

glCompileShader compiles the source code strings that have been stored in the shader object
specified by shader.

The compilation status will be stored as part of the shader object’s state. This value will be set to
GL_TRUE if the shader was compiled without errors and is ready for use, and GL_FALSE otherwise. It
can be queried by calling glGetShader with arguments shader and GL_COMPILE_STATUS.

Compilation of a shader can fail for a number of reasons as specified by the OpenGL Shading
Language Specification. Whether or not the compilation was successful, information about the compi-
lation can be obtained from the shader object’s information log by calling glGetShaderInfoLog.

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader is not a shader object.

Associated Gets

glGetShaderInfoLog with argument shader
glGetShader with arguments shader and GL_COMPILE_STATUS
glIsShader

702

ptg

glCompressedTexImage1D 703
C

See Also

glCreateShader, glLinkProgram, glShaderSource

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glCompressedTexImage1D

specify a one-dimensional texture image in a compressed format

C Specification

void glCompressedTexImage1D(GLenum target,
GLint level,
GLenum internalformat,
GLsizei width,
GLint border,
GLsizei imageSize,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_1D or GL_PROXY_TEXTURE_1D.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalformat
Specifies the format of the compressed image data stored at address data.

width
Specifies the width of the texture image. All implementations support texture images that
are at least 64 texels wide. The height of the 1D texture image is 1.

border
This value must be 0.

imageSize
Specifies the number of unsigned bytes of image data starting at the address specified
by data.

data
Specifies a pointer to the compressed image data in memory.

Description

Texturing allows elements of an image array to be read by shaders.
glCompressedTexImage1D loads a previously defined, and retrieved, compressed one-dimen-

sional texture image if target is GL_TEXTURE_1D (see glTexImage1D).
If target is GL_PROXY_TEXTURE_1D, no data is read from data, but all of the texture image

state is recalculated, checked for consistency, and checked against the implementation’s capabilities. If
the implementation cannot handle a texture of the requested texture size, it sets all of the image state
to 0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an
image array level greater than or equal to 1.

ptg

internalformat must be an extension-specified compressed-texture format. When a texture is
loaded with glTexImage1D using a generic compressed texture format (e.g., GL_COMPRESSED_RGB)
the GL selects from one of its extensions supporting compressed textures. In order to load the
compressed texture image using glCompressedTexImage1D, query the compressed texture image’s
size and format using glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

Errors

GL_INVALID_ENUM is generated if internalformat is not a supported specific compressed
internal formats, or is one of the generic compressed internal formats: GL_COMPRESSED_RED,
GL_COMPRESSED_RG, GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA. GL_COMPRESSED_SRGB,
or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_VALUE is generated if border is not 0.
GL_INVALID_OPERATION is generated if parameter combinations are not supported by the

specific compressed internal format as specified in the specific texture compression extension.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets

glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_NUM_COMPRESSED_TEXTURE_FORMATS
glGet with argument GL_COMPRESSED_TEXTURE_FORMATS
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE

See Also

glActiveTexture, glCompressedTexImage2D, glCompressedTexImage3D,
glCompressedTexSubImage1D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, glPixelStore, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

704

ptg

glCompressedTexImage2D 705
C

glCompressedTexImage2D

specify a two-dimensional texture image in a compressed format

C Specification

void glCompressedTexImage2D(GLenum target,
GLint level,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLint border
GLsizei imageSize,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_2D, GL_PROXY_TEXTURE_2D,
GL_TEXTURE_1D_ARRAY, GL_PROXY_TEXTURE_1D_ARRAY,
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalformat
Specifies the format of the compressed image data stored at address data.

width
Specifies the width of the texture image. All implementations support 2D texture images that
are at least 64 texels wide and cube-mapped texture images that are at least 16 texels wide.

height
Specifies the height of the texture image. All implementations support 2D texture images
that are at least 64 texels high and cube-mapped texture images that are at least 16
texels high.

border
This value must be 0.

imageSize
Specifies the number of unsigned bytes of image data starting at the address specified
by data.

data
Specifies a pointer to the compressed image data in memory.

Description

Texturing allows elements of an image array to be read by shaders.
glCompressedTexImage2D loads a previously defined, and retrieved, compressed two-dimen-

sional texture image if target is GL_TEXTURE_2D, or one of the cube map faces such as
GL_TEXTURE_CUBE_MAP_POSITIVE_X. (see glTexImage2D).

If target is GL_TEXTURE_1D_ARRAY, data is treated as an array of compressed 1D textures.

ptg

If target is GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_1D_ARRAY or
GL_PROXY_CUBE_MAP, no data is read from data, but all of the texture image state is recalculated,
checked for consistency, and checked against the implementation’s capabilities. If the implementation
cannot handle a texture of the requested texture size, it sets all of the image state to 0, but does not
generate an error (see glGetError). To query for an entire mipmap array, use an image array level
greater than or equal to 1.

internalformat must be a known compressed image format (such as GL_RGTC) or an exten-
sion-specified compressed-texture format. When a texture is loaded with glTexImage2D using a
generic compressed texture format (e.g., GL_COMPRESSED_RGB), the GL selects from one of its exten-
sions supporting compressed textures. In order to load the compressed texture image using
glCompressedTexImage2D, query the compressed texture image’s size and format using
glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

Errors

GL_INVALID_ENUM is generated if internalformat is not one of the generic compressed inter-
nal formats: GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SRGB, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_VALUE is generated if border is not 0.
GL_INVALID_OPERATION is generated if parameter combinations are not supported by the

specific compressed internal format as specified in the specific texture compression extension.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets

glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexImage3D,
glCompressedTexSubImage1D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glCopyTexImage1D, glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D,
glPixelStore, glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D,
glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

706

ptg

glCompressedTexImage3D 707
C

glCompressedTexImage3D

specify a three-dimensional texture image in a compressed format

C Specification

void glCompressedTexImage3D(GLenum target,
GLint level,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLint border,
GLsizei imageSize,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_3D, GL_PROXY_TEXTURE_3D,
GL_TEXTURE_2D_ARRAY or GL_PROXY_TEXTURE_2D_ARRAY.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalformat
Specifies the format of the compressed image data stored at address data.

width
Specifies the width of the texture image. All implementations support 3D texture images
that are at least 16 texels wide.

height
Specifies the height of the texture image. All implementations support 3D texture images
that are at least 16 texels high.

depth
Specifies the depth of the texture image. All implementations support 3D texture images
that are at least 16 texels deep.

border
This value must be 0.

imageSize
Specifies the number of unsigned bytes of image data starting at the address specified
by data.

data
Specifies a pointer to the compressed image data in memory.

Description

Texturing allows elements of an image array to be read by shaders.
glCompressedTexImage3D loads a previously defined, and retrieved, compressed three-dimen-

sional texture image if target is GL_TEXTURE_3D (see glTexImage3D).
If target is GL_TEXTURE_2D_ARRAY, data is treated as an array of compressed 2D textures.
If target is GL_PROXY_TEXTURE_3D or GL_PROXY_TEXTURE_2D_ARRAY, no data is read from

data, but all of the texture image state is recalculated, checked for consistency, and checked against
the implementation’s capabilities. If the implementation cannot handle a texture of the requested
texture size, it sets all of the image state to 0, but does not generate an error (see glGetError). To query
for an entire mipmap array, use an image array level greater than or equal to 1.

ptg

internalformat must be a known compressed image format (such as GL_RGTC) or an exten-
sion-specified compressed-texture format. When a texture is loaded with glTexImage2D using a
generic compressed texture format (e.g., GL_COMPRESSED_RGB), the GL selects from one of its exten-
sions supporting compressed textures. In order to load the compressed texture image using
glCompressedTexImage3D, query the compressed texture image’s size and format using
glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

Errors

GL_INVALID_ENUM is generated if internalformat is not one of the generic compressed inter-
nal formats: GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SRGB, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_VALUE is generated if border is not 0.
GL_INVALID_OPERATION is generated if parameter combinations are not supported by the

specific compressed internal format as specified in the specific texture compression extension.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the

GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets

glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexSubImage1D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glCopyTexImage1D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, glPixelStore, glTexImage1D, glTexImage2D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

708

ptg

glCompressedTexSubImage1D 709
C

glCompressedTexSubImage1D

specify a one-dimensional texture subimage in a compressed format

C Specification

void glCompressedTexSubImage1D(GLenum target,
GLint level,
GLint xoffset,
GLsizei width,
GLenum format,
GLsizei imageSize,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_1D.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset
Specifies a texel offset in the x direction within the texture array.

width
Specifies the width of the texture subimage.

format
Specifies the format of the compressed image data stored at address data.

imageSize
Specifies the number of unsigned bytes of image data starting at the address specified
by data.

data
Specifies a pointer to the compressed image data in memory.

Description

Texturing allows elements of an image array to be read by shaders.
glCompressedTexSubImage1D redefines a contiguous subregion of an existing one-dimensional

texture image. The texels referenced by data replace the portion of the existing texture array with x
indices xoffset and , inclusive. This region may not include any texels outside
the range of the texture array as it was originally specified. It is not an error to specify a subtexture
with width of 0, but such a specification has no effect.

internalformat must be a known compressed image format (such as GL_RGTC) or an exten-
sion-specified compressed-texture format. The format of the compressed texture image is selected by
the GL implementation that compressed it (see glTexImage1D), and should be queried at the time the
texture was compressed with glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see glBindBuffer)
while a texture image is specified, data is treated as a byte offset into the buffer object’s data store.

Errors

GL_INVALID_ENUM is generated if internalformat is not one of the generic compressed inter-
nal formats: GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA. GL_COMPRESSED_SRGB, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

xoffset + width - 1

ptg

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets

glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexImage3D, glCompressedTexSubImage2D, glCompressedTexSubImage3D,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, glPixelStore, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glCompressedTexSubImage2D

specify a two-dimensional texture subimage in a compressed format

C Specification

void glCompressedTexSubImage2D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLsizei width,
GLsizei height,
GLenum format,
GLsizei imageSize,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_
POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

710

ptg

glCompressedTexSubImage2D 711
C

xoffset
Specifies a texel offset in the x direction within the texture array.

yoffset
Specifies a texel offset in the y direction within the texture array.

width
Specifies the width of the texture subimage.

height
Specifies the height of the texture subimage.

format
Specifies the format of the compressed image data stored at address data.

imageSize
Specifies the number of unsigned bytes of image data starting at the address specified
by data.

data
Specifies a pointer to the compressed image data in memory.

Description

Texturing allows elements of an image array to be read by shaders.
glCompressedTexSubImage2D redefines a contiguous subregion of an existing two-dimensional

texture image. The texels referenced by data replace the portion of the existing texture array with x
indices xoffset and , and the y indices yoffset and , inclu-
sive. This region may not include any texels outside the range of the texture array as it was originally
specified. It is not an error to specify a subtexture with width of 0, but such a specification has no
effect.

internalformat must be a known compressed image format (such as GL_RGTC) or an exten-
sion-specified compressed-texture format. The format of the compressed texture image is selected by
the GL implementation that compressed it (see glTexImage2D) and should be queried at the time the
texture was compressed with glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

Errors

GL_INVALID_ENUM is generated if internalformat is of the generic compressed internal
formats: GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SRGB, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets

glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE

yoffset + height - 1xoffset + width - 1

ptg

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage3D,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, glPixelStore, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glCompressedTexSubImage3D

specify a three-dimensional texture subimage in a compressed format

C Specification

void glCompressedTexSubImage3D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLsizei width,
GLsizei height,
GLsizei depth,
GLenum format,
GLsizei imageSize,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_3D.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset
Specifies a texel offset in the x direction within the texture array.

yoffset
Specifies a texel offset in the y direction within the texture array.

width
Specifies the width of the texture subimage.

height
Specifies the height of the texture subimage.

depth
Specifies the depth of the texture subimage.

format
Specifies the format of the compressed image data stored at address data.

imageSize
Specifies the number of unsigned bytes of image data starting at the address specified
by data.

data
Specifies a pointer to the compressed image data in memory.

712

ptg

glCopyBufferSubData 713
C

Description

Texturing allows elements of an image array to be read by shaders.
glCompressedTexSubImage3D redefines a contiguous subregion of an existing three-dimen-

sional texture image. The texels referenced by data replace the portion of the existing texture array
with x indices xoffset and , and the y indices yoffset and ,
and the z indices zoffset and , inclusive. This region may not include any texels
outside the range of the texture array as it was originally specified. It is not an error to specify a
subtexture with width of 0, but such a specification has no effect.

internalformat must be a known compressed image format (such as GL_RGTC) or an exten-
sion-specified compressed-texture format. The format of the compressed texture image is selected by
the GL implementation that compressed it (see glTexImage3D) and should be queried at the time the
texture was compressed with glGetTexLevelParameter.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

Errors

GL_INVALID_ENUM is generated if internalformat is one of the generic compressed internal
formats: GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA, GL_COMPRESSED_SRGB, or GL_COMPRESSED_SRGB_ALPHA.

GL_INVALID_VALUE is generated if imageSize is not consistent with the format, dimensions,
and contents of the specified compressed image data.

GL_INVALID_OPERATION is generated if parameter combinations are not supported by the
specific compressed internal format as specified in the specific texture compression extension.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

Undefined results, including abnormal program termination, are generated if data is not encoded
in a manner consistent with the extension specification defining the internal compression format.

Associated Gets

glGetCompressedTexImage
glGet with argument GL_TEXTURE_COMPRESSED
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING
glGetTexLevelParameter with arguments GL_TEXTURE_INTERNAL_FORMAT and

GL_TEXTURE_COMPRESSED_IMAGE_SIZE

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage2D,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D,
glCopyTexSubImage3D, glPixelStore, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

zoffset + depth - 1
yoffset + height - 1xoffset + weight - 1

ptg

glCopyBufferSubData

copy part of the data store of a buffer object to the data store of another buffer object

C Specification

void glCopyBufferSubData(GLenum readtarget,
GLenum writetarget,
GLintptr readoffset,
GLintptr writeoffset,
GLsizeiptr size);

Parameters

readtarget
Specifies the target from whose data store data should be read.

writetarget
Specifies the target to whose data store data should be written.

readoffset
Specifies the offset, in basic machine units, within the data store of readtarget from
which data should be read.

writeoffset
Specifies the offset, in basic machine units, within the data store of writetarget to
which data should be written.

size
Specifies the size, in basic machine units, of the data to be copied from readtarget to
writetarget.

Description

glCopyBufferSubData copies part of the data store attached to readtarget to the data store
attached to writetarget. The number of basic machine units indicated by size is copied from the
source, at offset readoffset to the destination at writeoffset, also in basic machine units.

readtarget and writetarget must be GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER,
GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER,
GL_PIXEL_UNPACK_BUFFER, GL_TEXTURE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER or
GL_UNIFORM_BUFFER. Any of these targets may be used, although the targets
GL_COPY_READ_BUFFER and GL_COPY_WRITE_BUFFER are provided specifically to allow copies
between buffers without disturbing other GL state.

readoffset, writeoffset and size must all be greater than or equal to zero. Furthermore,
readoffset + size must not exceeed the size of the buffer object bound to readtarget, and
readoffset + size must not exceeed the size of the buffer bound to writetarget. If the same
buffer object is bound to both readtarget and writetarget, then the ranges specified by
readoffset, writeoffset and size must not overlap.

Notes

glCopyBufferSubData is available only if the GL version is 3.1 or greater.

Errors

GL_INVALID_VALUE is generated if any of readoffset, writeoffset or size is negative, if
readoffset + size exceeds the size of the buffer object bound to readtarget or if writeoffset +
size exceeds the size of the buffer object bound to writetarget.

GL_INVALID_VALUE is generated if the same buffer object is bound to both readtarget and
writetarget and the ranges [readoffset, readoffset + size) and [writeoffset, writeoffset
+ size) overlap.

714

ptg

glCopyTexImage1D 715
C

GL_INVALID_OPERATION is generated if zero is bound to readtarget or writetarget.
GL_INVALID_OPERATION is generated if the buffer object bound to either readtarget or

writetarget is mapped.

See Also

glGenBuffers, glBindBuffer, glBufferData, glBufferSubData,
glGetBufferSubData

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glCopyTexImage1D

copy pixels into a 1D texture image

C Specification

void glCopyTexImage1D(GLenum target,
GLint level,
GLenum internalformat,
GLint x,
GLint y,
GLsizei width,
GLint border);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_1D.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalformat
Specifies the internal format of the texture. Must be one of the following symbolic
constants: GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA. GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGB_ALPHA.
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24,
GL_DEPTH_COMPONENT32, GL_RED, GL_RG, GL_RGB, GL_R3_G3_B2, GL_RGB4,
GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2,
GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, GL_RGBA16,
GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

x
y

Specify the window coordinates of the left corner of the row of pixels to be copied.
width

Specifies the width of the texture image. Must be 0 or for some integer .
The height of the texture image is 1.

border
Specifies the width of the border. Must be either 0 or 1.

Description

glCopyTexImage1D defines a one-dimensional texture image with pixels from the current
GL_READ_BUFFER.

n2n + 2(border)

ptg

The screen-aligned pixel row with left corner at and with a length of
defines the texture array at the mipmap level specified by level. internalformat specifies the
internal format of the texture array.

The pixels in the row are processed exactly as if glReadPixels had been called, but the process
stops just before final conversion. At this point all pixel component values are clamped to the range

and then converted to the texture’s internal format for storage in the texel array.
Pixel ordering is such that lower screen coordinates correspond to lower texture coordinates.
If any of the pixels within the specified row of the current GL_READ_BUFFER are outside the

window associated with the current rendering context, then the values obtained for those pixels are
undefined.

glCopyTexImage1D defines a one-dimensional texture image with pixels from the current
GL_READ_BUFFER.

When internalformat is one of the sRGB types, the GL does not automatically convert the
source pixels to the sRGB color space. In this case, the glPixelMap function can be used to accom-
plish the conversion.

Notes

1, 2, 3, and 4 are not accepted values for internalformat.
An image with 0 width indicates a NULL texture.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than , where is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if internalformat is not an allowable value.
GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 +

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width

cannot be represented as for some integer value of n.
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_OPERATION is generated if internalformat is GL_DEPTH_COMPONENT,

GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32 and there
is no depth buffer.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

See Also

glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D, glPixelStore,
glTexImage1D, glTexImage2D, glTexSubImage1D, glTexSubImage2D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glCopyTexImage2D

copy pixels into a 2D texture image

2n + 2(border)

m axlog2m ax

x
[0,1]

width + 2(border)(x,y)

716

ptg

glCopyTexImage2D 717
C

C Specification

void glCopyTexImage2D(GLenum target,
GLint level,
GLenum internalformat,
GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLint border);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_
POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalformat
Specifies the internal format of the texture. Must be one of the following symbolic
constants: GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB,
GL_COMPRESSED_RGBA. GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGB_ALPHA.
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24,
GL_DEPTH_COMPONENT32, GL_RED, GL_RG, GL_RGB, GL_R3_G3_B2, GL_RGB4,
GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2,
GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, GL_RGBA12, GL_RGBA16,
GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or GL_SRGB8_ALPHA8.

x
y

Specify the window coordinates of the lower left corner of the rectangular region of
pixels to be copied.

width
Specifies the width of the texture image. Must be 0 or for some integer .

height
Specifies the height of the texture image. Must be 0 or for some integer .

border
Specifies the width of the border. Must be either 0 or 1.

Description

glCopyTexImage2D defines a two-dimensional texture image, or cube-map texture image with
pixels from the current GL_READ_BUFFER.

The screen-aligned pixel rectangle with lower left corner at (x, y) and with a width of
and a height of defines the texture array at the mipmap level spec-

ified by level. internalformat specifies the internal format of the texture array.
The pixels in the rectangle are processed exactly as if glReadPixels had been called, but the process

stops just before final conversion. At this point all pixel component values are clamped to the range
and then converted to the texture’s internal format for storage in the texel array.

Pixel ordering is such that lower and screen coordinates correspond to lower and texture
coordinates.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the
window associated with the current rendering context, then the values obtained for those pixels are
undefined.

tsyx
[0,1]

height + 2(border)width + 2(border)

m2m + 2(border)

n2n + 2(border)

ptg

When internalformat is one of the sRGB types, the GL does not automatically convert the
source pixels to the sRGB color space. In this case, the glPixelMap function can be used to accom-
plish the conversion.

Notes

1, 2, 3, and 4 are not accepted values for internalformat.
An image with height or width of 0 indicates a NULL texture.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D,
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than , where is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 +

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width

or depth cannot be represented as for some integer .
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_VALUE is generated if internalformat is not an accepted format.
GL_INVALID_OPERATION is generated if internalformat is GL_DEPTH_COMPONENT,

GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32 and there
is no depth buffer.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D or GL_TEXTURE_CUBE_MAP

See Also

glCopyTexImage1D, glCopyTexSubImage1D, glCopyTexSubImage2D, glPixelStore,
glTexImage1D, glTexImage2D, glTexSubImage1D, glTexSubImage2D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glCopyTexSubImage1D

copy a one-dimensional texture subimage

C Specification

void glCopyTexSubImage1D(GLenum target,
GLint level,
GLint xoffset,
GLint x,
GLint y,
GLsizei width);

k2k + 2(border)

m axlog2m ax

718

ptg

glCopyTexSubImage2D 719
C

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_1D.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset
Specifies the texel offset within the texture array.

x
y

Specify the window coordinates of the left corner of the row of pixels to be copied.
width

Specifies the width of the texture subimage.

Description

glCopyTexSubImage1D replaces a portion of a one-dimensional texture image with pixels from
the current GL_READ_BUFFER (rather than from main memory, as is the case for glTexSubImage1D).

The screen-aligned pixel row with left corner at (x,\ y), and with length width replaces the portion
of the texture array with x indices xoffset through , inclusive. The destination in
the texture array may not include any texels outside the texture array as it was originally specified.

The pixels in the row are processed exactly as if glReadPixels had been called, but the process
stops just before final conversion. At this point, all pixel component values are clamped to the range

and then converted to the texture’s internal format for storage in the texel array.
It is not an error to specify a subtexture with zero width, but such a specification has no effect. If any

of the pixels within the specified row of the current GL_READ_BUFFER are outside the read window
associated with the current rendering context, then the values obtained for those pixels are undefined.

No change is made to the internalformat, width, or border parameters of the specified
texture array or to texel values outside the specified subregion.

Notes

The glPixelStore mode affects texture images.

Errors

GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_1D.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage1D or glCopyTexImage1D operation.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if , where max is the returned value of

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if , or , where is the

GL_TEXTURE_WIDTH and is the GL_TEXTURE_BORDER of the texture image being modified. Note
that includes twice the border width.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

See Also

glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage2D, glCopyTexSubImage3D,
glPixelStore, glReadBuffer, glTexImage1D, glTexImage2D, glTexImage3D,
glTexParameter, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D

w
b

w(xoffset + width) 7 (w - b)xoffset 6 -b

level 7 log2(m ax)

[0,1]

xoffset + width - 1

ptg

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glCopyTexSubImage2D

copy a two-dimensional texture subimage

C Specification

void glCopyTexSubImage2D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint x,
GLint y,
GLsizei width,
GLsizei height);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_
POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset
Specifies a texel offset in the x direction within the texture array.

yoffset
Specifies a texel offset in the y direction within the texture array.

x
y

Specify the window coordinates of the lower left corner of the rectangular region of
pixels to be copied.

width
Specifies the width of the texture subimage.

height
Specifies the height of the texture subimage.

Description

glCopyTexSubImage2D replaces a rectangular portion of a two-dimensional texture image or
cube-map texture image with pixels from the current GL_READ_BUFFER (rather than from main
memory, as is the case for glTexSubImage2D).

The screen-aligned pixel rectangle with lower left corner at and with width width and
height height replaces the portion of the texture array with x indices xoffset through

, inclusive, and y indices yoffset through , inclusive, at the
mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glReadPixels had been called, but the process
stops just before final conversion. At this point, all pixel component values are clamped to the range

and then converted to the texture’s internal format for storage in the texel array.
The destination rectangle in the texture array may not include any texels outside the texture array

as it was originally specified. It is not an error to specify a subtexture with zero width or height, but
such a specification has no effect.

[0,1]

yoffset + height - 1xoffset + width - 1

(x,y)

720

ptg

glCopyTexSubImage3D 721
C

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the
read window associated with the current rendering context, then the values obtained for those pixels
are undefined.

No change is made to the internalformat, width, height, or border parameters of the speci-
fied texture array or to texel values outside the specified subregion.

Notes

glPixelStore modes affect texture images.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D,
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
glTexImage2D or glCopyTexImage2D operation.

GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if , where is the returned value of

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if , , , or

, where is the GL_TEXTURE_WIDTH, is the GL_TEXTURE_HEIGHT,
and is the GL_TEXTURE_BORDER of the texture image being modified. Note that and include
twice the border width.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D

See Also

glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage3D, glPixelStore, glReadBuffer, glTexImage1D, glTexImage2D,
glTexImage3D, glTexParameter, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glCopyTexSubImage3D

copy a three-dimensional texture subimage

C Specification

void glCopyTexSubImage3D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLint x,
GLint y,
GLsizei width,
GLsizei height);

hwb
hw(yoffset + height) 7 (h - b)

yoffset 6 -b(xoffset + width) 7 (w - b)xoffset 6 -b

m axlevel 7 log2(m ax)

ptg

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_3D

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset
Specifies a texel offset in the x direction within the texture array.

yoffset
Specifies a texel offset in the y direction within the texture array.

zoffset
Specifies a texel offset in the z direction within the texture array.

x
y

Specify the window coordinates of the lower left corner of the rectangular region of
pixels to be copied.

width
Specifies the width of the texture subimage.

height
Specifies the height of the texture subimage.

Description

glCopyTexSubImage3D replaces a rectangular portion of a three-dimensional texture image with
pixels from the current GL_READ_BUFFER (rather than from main memory, as is the case for
glTexSubImage3D).

The screen-aligned pixel rectangle with lower left corner at (x, y) and with width width and
height height replaces the portion of the texture array with x indices xoffset through

, inclusive, and y indices yoffset through , inclusive, at z
index zoffset and at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glReadPixels had been called, but the process
stops just before final conversion. At this point, all pixel component values are clamped to the range

and then converted to the texture’s internal format for storage in the texel array.
The destination rectangle in the texture array may not include any texels outside the texture array

as it was originally specified. It is not an error to specify a subtexture with zero width or height, but
such a specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the
read window associated with the current rendering context, then the values obtained for those pixels
are undefined.

No change is made to the internalformat, width, height, depth, or border parameters of
the specified texture array or to texel values outside the specified subregion.

Notes

glPixelStore modes affect texture images.

Errors

GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_3D.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage3D operation.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if , where is the returned value of

GL_MAX_3D_TEXTURE_SIZE.
m axlevel 7 log2(m ax)

[0,1]

yoffset + height - 1xoffset + width - 1

722

ptg

glCreateProgram 723
C

GL_INVALID_VALUE is generated if , , ,
, , or , where is the

GL_TEXTURE_WIDTH, is the GL_TEXTURE_HEIGHT, is the GL_TEXTURE_DEPTH, and is the
GL_TEXTURE_BORDER of the texture image being modified. Note that , , and include twice the
border width.

Associated Gets

glGetTexImage
glIsEnabled with argument GL_TEXTURE_3D

See Also

glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glPixelStore, glReadBuffer, glTexImage1D, glTexImage2D,
glTexImage3D, glTexParameter, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glCreateProgram

Creates a program object

C Specification

GLuint glCreateProgram(void);

Description

glCreateProgram creates an empty program object and returns a non-zero value by which it can
be referenced. A program object is an object to which shader objects can be attached. This provides a
mechanism to specify the shader objects that will be linked to create a program. It also provides a
means for checking the compatibility of the shaders that will be used to create a program (for
instance, checking the compatibility between a vertex shader and a fragment shader). When no
longer needed as part of a program object, shader objects can be detached.

One or more executables are created in a program object by successfully attaching shader objects
to it with glAttachShader, successfully compiling the shader objects with glCompileShader, and
successfully linking the program object with glLinkProgram. These executables are made part of
current state when glUseProgram is called. Program objects can be deleted by calling glDeleteProgram.
The memory associated with the program object will be deleted when it is no longer part of current
rendering state for any context.

Notes

Like buffer and texture objects, the name space for program objects may be shared across a set of
contexts, as long as the server sides of the contexts share the same address space. If the name space is
shared across contexts, any attached objects and the data associated with those attached objects are
shared as well.

Applications are responsible for providing the synchronization across API calls when objects are
accessed from different execution threads.

Errors

This function returns 0 if an error occurs creating the program object.

dhw
bdh

w(zoffset + 1) 7 (d - b)zoffset 6 -b(yoffset + height) 7 (h - b)
yoffset 6 -b(xoffset + width) 7 (w - b)xoffset 6 -b

ptg

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with a valid program object and the index of an active attribute variable
glGetActiveUniform with a valid program object and the index of an active uniform variable
glGetAttachedShaders with a valid program object
glGetAttribLocation with a valid program object and the name of an attribute variable
glGetProgram with a valid program object and the parameter to be queried
glGetProgramInfoLog with a valid program object
glGetUniform with a valid program object and the location of a uniform variable
glGetUniformLocation with a valid program object and the name of a uniform variable
glIsProgram

See Also

glAttachShader, glBindAttribLocation, glCreateShader, glDeleteProgram,
glDetachShader, glLinkProgram, glUniform, glUseProgram, glValidateProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glCreateShader

Creates a shader object

C Specification

GLuint glCreateShader(GLenum shaderType);

Parameters

shaderType
Specifies the type of shader to be created. Must be one of GL_VERTEX_SHADER,
GL_GEOMETRY_SHADER or GL_FRAGMENT_SHADER.

Description

glCreateShader creates an empty shader object and returns a non-zero value by which it can be
referenced. A shader object is used to maintain the source code strings that define a shader.
shaderType indicates the type of shader to be created. Three types of shaders are supported. A shader
of type GL_VERTEX_SHADER is a shader that is intended to run on the programmable vertex proces-
sor. A shader of type GL_GEOMETRY_SHADER is a shader that is intended to run on the programma-
ble geometry processor. A shader of type GL_FRAGMENT_SHADER is a shader that is intended to run
on the programmable fragment processor.

When created, a shader object’s GL_SHADER_TYPE parameter is set to either
GL_VERTEX_SHADER, GL_GEOMETRY_SHADER or GL_FRAGMENT_SHADER, depending on the value
of shaderType.

Notes

Like buffer and texture objects, the name space for shader objects may be shared across a set of
contexts, as long as the server sides of the contexts share the same address space. If the name space is
shared across contexts, any attached objects and the data associated with those attached objects are
shared as well.

Applications are responsible for providing the synchronization across API calls when objects are
accessed from different execution threads.

724

ptg

glCullFace 725
C

Errors

This function returns 0 if an error occurs creating the shader object.
GL_INVALID_ENUM is generated if shaderType is not an accepted value.

Associated Gets

glGetShader with a valid shader object and the parameter to be queried
glGetShaderInfoLog with a valid shader object
glGetShaderSource with a valid shader object
glIsShader

See Also

glAttachShader, glCompileShader, glDeleteShader, glDetachShader,
glShaderSource

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glCullFace

specify whether front- or back-facing facets can be culled

C Specification

void glCullFace(GLenum mode);

Parameters

mode
Specifies whether front- or back-facing facets are candidates for culling. Symbolic
constants GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK are accepted. The initial
value is GL_BACK.

Description

glCullFace specifies whether front- or back-facing facets are culled (as specified by mode) when
facet culling is enabled. Facet culling is initially disabled. To enable and disable facet culling, call the
glEnable and glDisable commands with the argument GL_CULL_FACE. Facets include triangles,
quadrilaterals, polygons, and rectangles.

glFrontFace specifies which of the clockwise and counterclockwise facets are front-facing and
back-facing. See glFrontFace.

Notes

If mode is GL_FRONT_AND_BACK, no facets are drawn, but other primitives such as points and
lines are drawn.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

Associated Gets

glIsEnabled with argument GL_CULL_FACE
glGet with argument GL_CULL_FACE_MODE

ptg

See Also

glEnable, glFrontFace

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glDeleteBuffers

delete named buffer objects

C Specification

void glDeleteBuffers(GLsizei n,
const GLuint * buffers);

Parameters

n
Specifies the number of buffer objects to be deleted.

buffers
Specifies an array of buffer objects to be deleted.

Description

glDeleteBuffers deletes n buffer objects named by the elements of the array buffers. After a
buffer object is deleted, it has no contents, and its name is free for reuse (for example by
glGenBuffers). If a buffer object that is currently bound is deleted, the binding reverts to 0 (the
absence of any buffer object).

glDeleteBuffers silently ignores 0’s and names that do not correspond to existing buffer
objects.

Errors

GL_INVALID_VALUE is generated if n is negative.

Associated Gets

glIsBuffer

See Also

glBindBuffer, glGenBuffers, glGet

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDeleteFramebuffers

delete framebuffer objects

C Specification

void glDeleteFramebuffers(GLsizei n,
GLuint *framebuffers);

726

ptg

glDeleteProgram 727
C

Parameters

n
Specifies the number of framebuffer objects to be deleted.

framebuffers
A pointer to an array containing n framebuffer objects to be deleted.

Description

glDeleteFramebuffers deletes the n framebuffer objects whose names are stored in the array
addressed by framebuffers. The name zero is reserved by the GL and is silently ignored, should it
occur in framebuffers, as are other unused names. Once a framebuffer object is deleted, its name is
again unused and it has no attachments. If a framebuffer that is currently bound to one or more of
the targets GL_DRAW_FRAMEBUFFER or GL_READ_FRAMEBUFFER is deleted, it is as though
glBindFramebuffer had been executed with the corresponding target and framebuffer zero.

Errors

GL_INVALID_VALUE is generated if n is negative.

See Also

glGenFramebuffers, glBindFramebuffer, glCheckFramebufferStatus

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDeleteProgram

Deletes a program object

C Specification

void glDeleteProgram(GLuint program);

Parameters

program
Specifies the program object to be deleted.

Description

glDeleteProgram frees the memory and invalidates the name associated with the program
object specified by program. This command effectively undoes the effects of a call to
glCreateProgram.

If a program object is in use as part of current rendering state, it will be flagged for deletion, but it
will not be deleted until it is no longer part of current state for any rendering context. If a program
object to be deleted has shader objects attached to it, those shader objects will be automatically
detached but not deleted unless they have already been flagged for deletion by a previous call to
glDeleteShader. A value of 0 for program will be silently ignored.

To determine whether a program object has been flagged for deletion, call glGetProgram with
arguments program and GL_DELETE_STATUS.

ptg

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.

Associated Gets

glGet with argument GL_CURRENT_PROGRAM
glGetProgram with arguments program and GL_DELETE_STATUS
glIsProgram

See Also

glCreateShader, glDetachShader, glUseProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDeleteQueries

delete named query objects

C Specification

void glDeleteQueries(GLsizei n,
const GLuint * ids);

Parameters

n
Specifies the number of query objects to be deleted.

ids
Specifies an array of query objects to be deleted.

Description

glDeleteQueries deletes n query objects named by the elements of the array ids. After a query
object is deleted, it has no contents, and its name is free for reuse (for example by glGenQueries).

glDeleteQueries silently ignores 0’s and names that do not correspond to existing query
objects.

Errors

GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glDeleteQueries is executed between the execution of

glBeginQuery and the corresponding execution of glEndQuery.

Associated Gets

glIsQuery

See Also

glBeginQuery, glEndQuery, glGenQueries, glGetQueryiv, glGetQueryObject

728

ptg

glDeleteRenderbuffers 729
C

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glDeleteRenderbuffers

delete renderbuffer objects

C Specification

void glDeleteRenderbuffers(GLsizei n,
GLuint *renderbuffers);

Parameters

n
Specifies the number of renderbuffer objects to be deleted.

renderbuffers
A pointer to an array containing n renderbuffer objects to be deleted.

Description

glDeleteRenderbuffers deletes the n renderbuffer objects whose names are stored in the array
addressed by renderbuffers. The name zero is reserved by the GL and is silently ignored, should it
occur in renderbuffers, as are other unused names. Once a renderbuffer object is deleted, its name
is again unused and it has no contents. If a renderbuffer that is currently bound to the target
GL_RENDERBUFFER is deleted, it is as though glBindRenderbuffer had been executed with a target
of GL_RENDERBUFFER and a name of zero.

If a renderbuffer object is attached to one or more attachment points in the currently bound
framebuffer, then it as if glFramebufferRenderbuffer had been called, with a renderbuffer of zero for
each attachment point to which this image was attached in the currently bound framebuffer. In other
words, this renderbuffer object is first detached from all attachment points in the currently bound
framebuffer. Note that the renderbuffer image is specifically not detached from any non-bound
framebuffers.

Errors

GL_INVALID_VALUE is generated if n is negative.

See Also

glGenRenderbuffers, glFramebufferRenderbuffer, glRenderbufferStorage,
glRenderbufferStorageMultisample

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glDeleteSamplers

delete named sampler objects

C Specification

void glDeleteSamplers(GLsizei n,
const GLuint * ids);

ptg

Parameters

n
Specifies the number of sampler objects to be deleted.

ids
Specifies an array of sampler objects to be deleted.

Description

glDeleteSamplers deletes n sampler objects named by the elements of the array ids. After a
sampler object is deleted, its name is again unused. If a sampler object that is currently bound to a
sampler unit is deleted, it is as though glBindSampler is called with unit set to the unit the sampler
is bound to and sampler zero. Unused names in samplers are silently ignored, as is the reserved
name zero.

Notes

glDeleteSamplers is available only if the GL version is 3.3 or higher.

Errors

GL_INVALID_VALUE is generated if n is negative.

Associated Gets

glIsSampler

See Also

glGenSamplers, glBindSampler, glDeleteSamplers, glIsSampler

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDeleteShader

Deletes a shader object

C Specification

void glDeleteShader(GLuint shader);

Parameters

shader
Specifies the shader object to be deleted.

Description

glDeleteShader frees the memory and invalidates the name associated with the shader object
specified by shader. This command effectively undoes the effects of a call to glCreateShader.

If a shader object to be deleted is attached to a program object, it will be flagged for deletion, but
it will not be deleted until it is no longer attached to any program object, for any rendering context
(i.e., it must be detached from wherever it was attached before it will be deleted). A value of 0 for
shader will be silently ignored.

730

ptg

glDeleteSync 731
C

To determine whether an object has been flagged for deletion, call glGetShader with arguments
shader and GL_DELETE_STATUS.

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.

Associated Gets

glGetAttachedShaders with the program object to be queried
glGetShader with arguments shader and GL_DELETE_STATUS
glIsShader

See Also

glCreateProgram, glCreateShader, glDetachShader, glUseProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDeleteSync

delete a sync object

C Specification

void glDeleteSync(GLsync sync);

Parameters

sync
The sync object to be deleted.

Description

glDeleteSync deletes the sync object specified by sync. If the fence command corresponding to
the specified sync object has completed, or if no glWaitSync or glClientWaitSync commands are
blocking on sync, the object is deleted immediately. Otherwise, sync is flagged for deletion and will
be deleted when it is no longer associated with any fence command and is no longer blocking any
glWaitSync or glClientWaitSync command. In either case, after glDeleteSync returns, the name
sync is invalid and can no longer be used to refer to the sync object.

glDeleteSync will silently ignore a sync value of zero.

Notes

glSync is only supported if the GL version is 3.2 or greater, or if the ARB_sync extension is
supported.

Errors

GL_INVALID_VALUE is generated if sync is neither zero or the name of a sync object.

ptg

See Also

glFenceSync, glWaitSync, glClientWaitSync

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDeleteTextures

delete named textures

C Specification

void glDeleteTextures(GLsizei n,
const GLuint * textures);

Parameters

n
Specifies the number of textures to be deleted.

textures
Specifies an array of textures to be deleted.

Description

glDeleteTextures deletes n textures named by the elements of the array textures. After a
texture is deleted, it has no contents or dimensionality, and its name is free for reuse (for example by
glGenTextures). If a texture that is currently bound is deleted, the binding reverts to 0 (the default
texture).

glDeleteTextures silently ignores 0’s and names that do not correspond to existing textures.

Errors

GL_INVALID_VALUE is generated if n is negative.

Associated Gets

glIsTexture

See Also

glBindTexture, glCopyTexImage1D, glCopyTexImage2D, glGenTextures, glGet,
glGetTexParameter, glTexImage1D, glTexImage2D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glDeleteVertexArrays

delete vertex array objects

C Specification

void glDeleteVertexArrays(GLsizei n,
const GLuint * arrays);

732

ptg

glDepthFunc 733
C

Parameters

n
Specifies the number of vertex array objects to be deleted.

arrays
Specifies the address of an array containing the n names of the objects to be deleted.

Description

glDeleteVertexArrays deletes n vertex array objects whose names are stored in the array
addressed by arrays. Once a vertex array object is deleted it has no contents and its name is again
unused. If a vertex array object that is currently bound is deleted, the binding for that object reverts
to zero and the default vertex array becomes current. Unused names in arrays are silently ignored, as
is the value zero.

Errors

GL_INVALID_VALUE is generated if n is negative.

See Also

glGenVertexArrays, glIsVertexArray, glBindVertexArray

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDepthFunc

specify the value used for depth buffer comparisons

C Specification

void glDepthFunc(GLenum func);

Parameters

func
Specifies the depth comparison function. Symbolic constants GL_NEVER, GL_LESS,
GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS
are accepted. The initial value is GL_LESS.

Description

glDepthFunc specifies the function used to compare each incoming pixel depth value with the
depth value present in the depth buffer. The comparison is performed only if depth testing is enabled.
(See glEnable and glDisable of GL_DEPTH_TEST.)

func specifies the conditions under which the pixel will be drawn. The comparison functions are
as follows:

GL_NEVER
Never passes.

GL_LESS
Passes if the incoming depth value is less than the stored depth value.

GL_EQUAL
Passes if the incoming depth value is equal to the stored depth value.

ptg

GL_LEQUAL
Passes if the incoming depth value is less than or equal to the stored depth value.

GL_GREATER
Passes if the incoming depth value is greater than the stored depth value.

GL_NOTEQUAL
Passes if the incoming depth value is not equal to the stored depth value.

GL_GEQUAL
Passes if the incoming depth value is greater than or equal to the stored depth value.

GL_ALWAYS
Always passes.

The initial value of func is GL_LESS. Initially, depth testing is disabled. If depth testing is disabled
or if no depth buffer exists, it is as if the depth test always passes.

Notes

Even if the depth buffer exists and the depth mask is non-zero, the depth buffer is not updated if
the depth test is disabled. In order to unconditionally write to the depth buffer, the depth test should
be enabled and set to GL_ALWAYS.

Errors

GL_INVALID_ENUM is generated if func is not an accepted value.

Associated Gets

glGet with argument GL_DEPTH_FUNC
glIsEnabled with argument GL_DEPTH_TEST

See Also

glDepthRange, glEnable, glPolygonOffset

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glDepthMask

enable or disable writing into the depth buffer

C Specification

void glDepthMask(GLboolean flag);

Parameters

flag
Specifies whether the depth buffer is enabled for writing. If flag is GL_FALSE, depth
buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is
enabled.

Description

glDepthMask specifies whether the depth buffer is enabled for writing. If flag is GL_FALSE,
depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is enabled.

734

ptg

glDepthRange 735
C

Associated Gets

glGet with argument GL_DEPTH_WRITEMASK

See Also

glColorMask, glDepthFunc, glDepthRange, glStencilMask

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glDepthRange

specify mapping of depth values from normalized device coordinates to window coordinates

C Specification

void glDepthRange(GLclampd nearVal,
GLclampd farVal);

Parameters

nearVal
Specifies the mapping of the near clipping plane to window coordinates. The initial
value is 0.

farVal
Specifies the mapping of the far clipping plane to window coordinates. The initial
value is 1.

Description

After clipping and division by w, depth coordinates range from to 1, corresponding to the near
and far clipping planes. glDepthRange specifies a linear mapping of the normalized depth coordi-
nates in this range to window depth coordinates. Regardless of the actual depth buffer implementa-
tion, window coordinate depth values are treated as though they range from 0 through 1 (like color
components). Thus, the values accepted by glDepthRange are both clamped to this range before they
are accepted.

The setting of (0,1) maps the near plane to 0 and the far plane to 1. With this mapping, the depth
buffer range is fully utilized.

Notes

It is not necessary that nearVal be less than farVal. Reverse mappings such as , and
are acceptable.

Associated Gets

glGet with argument GL_DEPTH_RANGE

See Also

glDepthFunc, glPolygonOffset, glViewport

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

farVal = 0
nearVal = 1

-1

ptg

glDetachShader

Detaches a shader object from a program object to which it is attached

C Specification

void glDetachShader(GLuint program,
GLuint shader);

Parameters

program
Specifies the program object from which to detach the shader object.

shader
Specifies the shader object to be detached.

Description

glDetachShader detaches the shader object specified by shader from the program object speci-
fied by program. This command can be used to undo the effect of the command glAttachShader.

If shader has already been flagged for deletion by a call to glDeleteShader and it is not attached
to any other program object, it will be deleted after it has been detached.

Errors

GL_INVALID_VALUE is generated if either program or shader is a value that was not generated
by OpenGL.

GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_OPERATION is generated if shader is not attached to program.

Associated Gets

glGetAttachedShaders with the handle of a valid program object
glGetShader with arguments shader and GL_DELETE_STATUS
glIsProgram
glIsShader

See Also

glAttachShader

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDrawArrays

render primitives from array data

C Specification

void glDrawArrays(GLenum mode,
GLint first,
GLsizei count);

736

ptg

glDrawArrays 737
C

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_LINE_STRIP_ADJACENCY,
GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_TRIANGLE_STRIP_ADJACENCY and GL_TRIANGLES_ADJACENCY are accepted.

first
Specifies the starting index in the enabled arrays.

count
Specifies the number of indices to be rendered.

Description

glDrawArrays specifies multiple geometric primitives with very few subroutine calls. Instead of
calling a GL procedure to pass each individual vertex, normal, texture coordinate, edge flag, or color,
you can prespecify separate arrays of vertices, normals, and colors and use them to construct a
sequence of primitives with a single call to glDrawArrays.

When glDrawArrays is called, it uses count sequential elements from each enabled array to
construct a sequence of geometric primitives, beginning with element first. mode specifies what
kind of primitives are constructed and how the array elements construct those primitives.

Vertex attributes that are modified by glDrawArrays have an unspecified value after
glDrawArrays returns. Attributes that aren’t modified remain well defined.

Notes

GL_LINE_STRIP_ADJACENCY, GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY and
GL_TRIANGLES_ADJACENCY are available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count is negative.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array and the buffer object’s data store is currently mapped.
GL_INVALID_OPERATION is generated if a geometry shader is active and mode is incompatible

with the input primitive type of the geometry shader in the currently installed program object.

See Also

glDrawArraysInstanced, glDrawElements, glDrawRangeElements.

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glDrawArraysInstanced

draw multiple instances of a range of elements

C Specification

void glDrawArraysInstanced(GLenum mode,
GLint first,
GLsizei count,
GLsizei primcount);

ptg

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_TRIANGLES, GL_LINES_ADJACENCY, GL_LINE_STRIP_ADJACENCY, GL_
TRIANGLES_ADJACENCY andGL_TRIANGLE_STRIP_ADJACENCY are accepted.

first
Specifies the starting index in the enabled arrays.

count
Specifies the number of indices to be rendered.

primcount
Specifies the number of instances of the specified range of indices to be rendered.

Description

glDrawArraysInstanced behaves identically to glDrawArrays except that primcount instances
of the range of elements are executed and the value of the internal counter instanceID advances for
each iteration. instanceID is an internal 32-bit integer counter that may be read by a vertex shader
as gl_InstanceID.

glDrawArraysInstanced has the same effect as:

<![CDATA[if (mode or count is invalid)

generate appropriate error

else {

for (int i = 0; i < primcount ; i++) {

instanceID = i;

glDrawArrays(mode, first, count);

}

instanceID = 0;

}]]>

Notes

glDrawArraysInstanced is available only if the GL version is 3.1 or greater.
GL_LINE_STRIP_ADJACENCY, GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY and

GL_TRIANGLES_ADJACENCY are available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if mode is not one of the accepted values.
GL_INVALID_OPERATION is generated if a geometry shader is active and mode is incompatible

with the input primitive type of the geometry shader in the currently installed program object.
GL_INVALID_VALUE is generated if count or primcount are negative.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array and the buffer object’s data store is currently mapped.

See Also

glDrawArrays, glDrawElementsInstanced

738

ptg

glDrawBuffer 739
C

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glDrawBuffer

specify which color buffers are to be drawn into

C Specification

void glDrawBuffer(GLenum mode);

Parameters

mode
Specifies up to four color buffers to be drawn into. Symbolic constants GL_NONE,
GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT,
GL_BACK, GL_LEFT, GL_RIGHT, and GL_FRONT_AND_BACK are accepted. The initial
value is GL_FRONT for single-buffered contexts, and GL_BACK for double-buffered
contexts.

Description

When colors are written to the frame buffer, they are written into the color buffers specified by
glDrawBuffer. The specifications are as follows:

GL_NONE
No color buffers are written.

GL_FRONT_LEFT
Only the front left color buffer is written.

GL_FRONT_RIGHT
Only the front right color buffer is written.

GL_BACK_LEFT
Only the back left color buffer is written.

GL_BACK_RIGHT
Only the back right color buffer is written.

GL_FRONT
Only the front left and front right color buffers are written. If there is no front right color
buffer, only the front left color buffer is written.

GL_BACK
Only the back left and back right color buffers are written. If there is no back right color
buffer, only the back left color buffer is written.

GL_LEFT
Only the front left and back left color buffers are written. If there is no back left color
buffer, only the front left color buffer is written.

GL_RIGHT
Only the front right and back right color buffers are written. If there is no back right
color buffer, only the front right color buffer is written.

GL_FRONT_AND_BACK
All the front and back color buffers (front left, front right, back left, back right) are
written. If there are no back color buffers, only the front left and front right color buffers
are written. If there are no right color buffers, only the front left and back left color
buffers are written. If there are no right or back color buffers, only the front left color
buffer is written.

ptg

If more than one color buffer is selected for drawing, then blending or logical operations are
computed and applied independently for each color buffer and can produce different results in each
buffer.

Monoscopic contexts include only left buffers, and stereoscopic contexts include both left and
right buffers. Likewise, single-buffered contexts include only front buffers, and double-buffered
contexts include both front and back buffers. The context is selected at GL initialization.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_OPERATION is generated if none of the buffers indicated by mode exists.

Associated Gets

glGet with argument GL_DRAW_BUFFER

See Also

glBlendFunc, glColorMask, glDrawBuffers, glLogicOp, glReadBuffer

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glDrawBuffers

Specifies a list of color buffers to be drawn into

C Specification

void glDrawBuffers(GLsizei n,
const GLenum * bufs);

Parameters

n
Specifies the number of buffers in bufs.

bufs
Points to an array of symbolic constants specifying the buffers into which fragment
colors or data values will be written.

Description

glDrawBuffers defines an array of buffers into which outputs from the fragment shader data
will be written. If a fragment shader writes a value to one or more user defined output variables, then
the value of each variable will be written into the buffer specified at a location within bufs corre-
sponding to the location assigned to that user defined output. The draw buffer used for user defined
outputs assigned to locations greater than or equal to n is implicitly set to GL_NONE and any data
written to such an output is discarded.

The symbolic constants contained in bufs may be any of the following:
GL_NONE

The fragment shader output value is not written into any color buffer.
GL_FRONT_LEFT

The fragment shader output value is written into the front left color buffer.
GL_FRONT_RIGHT

The fragment shader output value is written into the front right color buffer.

740

ptg

glDrawBuffers 741
C

GL_BACK_LEFT
The fragment shader output value is written into the back left color buffer.

GL_BACK_RIGHT
The fragment shader output value is written into the back right color buffer.

GL_COLOR_ATTACHMENTn
The fragment shader output value is written into the nth color attachment of the current
framebuffer. n may range from 0 to the value of GL_MAX_COLOR_ATTACHMENTS.

Except for GL_NONE, the preceding symbolic constants may not appear more than once in bufs.
The maximum number of draw buffers supported is implementation dependent and can be queried
by calling glGet with the argument GL_MAX_DRAW_BUFFERS.

Notes

The symbolic constants GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, and GL_FRONT_AND_BACK
are not allowed in the bufs array since they may refer to multiple buffers.

If a fragment shader does not write to a user defined output variable, the values of the fragment
colors following shader execution are undefined. For each fragment generated in this situation, a
different value may be written into each of the buffers specified by bufs.

Errors

GL_INVALID_ENUM is generated if one of the values in bufs is not an accepted value.
GL_INVALID_ENUM is generated if the GL is bound to the default framebuffer and one or more

of the values in bufs is one of the GL_COLOR_ATTACHMENTn tokens.
GL_INVALID_ENUM is generated if the GL is bound to a framebuffer object and one or more of

the values in bufs is anything other than GL_NONE or one of the GL_COLOR_ATTACHMENTSn
tokens.

GL_INVALID_ENUM is generated if n is less than 0.
GL_INVALID_OPERATION is generated if a symbolic constant other than GL_NONE appears more

than once in bufs.
GL_INVALID_OPERATION is generated if any of the entries in bufs (other than GL_NONE) indi-

cates a color buffer that does not exist in the current GL context.
GL_INVALID_VALUE is generated if n is greater than GL_MAX_DRAW_BUFFERS.

Associated Gets

glGet with argument GL_MAX_DRAW_BUFFERS
glGet with argument GL_DRAW_BUFFERi where i indicates the number of the draw buffer whose

value is to be queried

See Also

glBlendFunc, glColorMask, glDrawBuffers, glLogicOp, glReadBuffer

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

ptg

glDrawElements

render primitives from array data

C Specification

void glDrawElements(GLenum mode,
GLsizei count,
GLenum type,
const GLvoid * indices);

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_LINE_STRIP_ADJACENCY,
GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_TRIANGLE_STRIP_ADJACENCY and GL_TRIANGLES_ADJACENCY are accepted.

count
Specifies the number of elements to be rendered.

type
Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices
Specifies a pointer to the location where the indices are stored.

Description

glDrawElements specifies multiple geometric primitives with very few subroutine calls. Instead
of calling a GL function to pass each individual vertex, normal, texture coordinate, edge flag, or color,
you can prespecify separate arrays of vertices, normals, and so on, and use them to construct a
sequence of primitives with a single call to glDrawElements.

When glDrawElements is called, it uses count sequential elements from an enabled array, start-
ing at indices to construct a sequence of geometric primitives. mode specifies what kind of primi-
tives are constructed and how the array elements construct these primitives. If more than one array is
enabled, each is used.

Vertex attributes that are modified by glDrawElements have an unspecified value after
glDrawElements returns. Attributes that aren’t modified maintain their previous values.

Notes

GL_LINE_STRIP_ADJACENCY, GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY and
GL_TRIANGLES_ADJACENCY are available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count is negative.
GL_INVALID_OPERATION is generated if a geometry shader is active and mode is incompatible

with the input primitive type of the geometry shader in the currently installed program object.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.

See Also

glDrawArrays, glDrawElementsInstanced, glDrawElementsBaseVertex,
glDrawRangeElements

742

ptg

glDrawElementsBaseVertex 743
C

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glDrawElementsBaseVertex

render primitives from array data with a per-element offset

C Specification

void glDrawElementsBaseVertex(GLenum mode,
GLsizei count,
GLenum type,
GLvoid * indices,
GLint basevertex);

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
and GL_TRIANGLES are accepted.

count
Specifies the number of elements to be rendered.

type
Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices
Specifies a pointer to the location where the indices are stored.

basevertex
Specifies a constant that should be added to each element of indices when choosing
elements from the enabled vertex arrays.

Description

glDrawElementsBaseVertex behaves identically to glDrawElements except that the ith
element transferred by the corresponding draw call will be taken from element indices[i] +
basevertex of each enabled array. If the resulting value is larger than the maximum value repre-
sentable by type, it is as if the calculation were upconverted to 32-bit unsigned integers (with wrap-
ping on overflow conditions). The operation is undefined if the sum would be negative.

Notes

glDrawElementsBaseVertex is only supported if the GL version is 3.2 or greater, or if the
ARB_draw_elements_base_vertex extension is supported.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count is negative.
GL_INVALID_OPERATION is generated if a geometry shader is active and mode is incompatible

with the input primitive type of the geometry shader in the currently installed program object.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.

ptg

See Also

glDrawElements, glDrawRangeElements, glDrawRangeElementsBaseVertex,
glDrawElementsInstanced, glDrawElementsInstancedBaseVertex

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glDrawElementsInstanced

draw multiple instances of a set of elements

C Specification

void glDrawElementsInstanced(GLenum mode,
GLsizei count,
GLenum type,
const void * indices,
GLsizei primcount);

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_LINE_STRIP_ADJACENCY,
GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_TRIANGLE_STRIP_ADJACENCY and GL_TRIANGLES_ADJACENCY are accepted.

count
Specifies the number of elements to be rendered.

type
Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices
Specifies a pointer to the location where the indices are stored.

primcount
Specifies the number of instances of the specified range of indices to be rendered.

Description

glDrawElementsInstanced behaves identically to glDrawElements except that primcount
instances of the set of elements are executed and the value of the internal counter instanceID
advances for each iteration. instanceID is an internal 32-bit integer counter that may be read by a
vertex shader as gl_InstanceID.

glDrawElementsInstanced has the same effect as:

<![CDATA[if (mode, count, or type is invalid)

generate appropriate error

else {

for (int i = 0; i < primcount ; i++) {
instanceID = i;

glDrawElements(mode, count, type, indices);

}

instanceID = 0;

}]]>

744

ptg

glDrawElementsInstancedBaseVertex 745
C

Notes

glDrawElementsInstanced is available only if the GL version is 3.1 or greater.
GL_LINE_STRIP_ADJACENCY, GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY and

GL_TRIANGLES_ADJACENCY are available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if mode is not one of GL_POINTS, GL_LINE_STRIP,
GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, or GL_TRIANGLES.

GL_INVALID_VALUE is generated if count or primcount are negative.
GL_INVALID_OPERATION is generated if a geometry shader is active and mode is incompatible

with the input primitive type of the geometry shader in the currently installed program object.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array and the buffer object’s data store is currently mapped.

See Also

glDrawElements, glDrawArraysInstanced

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glDrawElementsInstancedBaseVertex

render multiple instances of a set of primitives from array data with a per-element offset

C Specification

void glDrawElementsInstancedBaseVertex(GLenum mode,
GLsizei count,
GLenum type,
GLvoid * indices,
GLsizei primcount,
GLint basevertex);

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
and GL_TRIANGLES are accepted.

count
Specifies the number of elements to be rendered.

type
Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices
Specifies a pointer to the location where the indices are stored.

primcount
Specifies the number of instances of the indexed geometry that should be drawn.

basevertex
Specifies a constant that should be added to each element of indices when choosing
elements from the enabled vertex arrays.

ptg

Description

glDrawElementsInstancedBaseVertex behaves identically to glDrawElementsInstanced except
that the ith element transferred by the corresponding draw call will be taken from element
indices[i] + basevertex of each enabled array. If the resulting value is larger than the maximum
value representable by type, it is as if the calculation were upconverted to 32-bit unsigned integers
(with wrapping on overflow conditions). The operation is undefined if the sum would be negative.

Notes

glDrawElementsInstancedBaseVertex is only supported if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count or primcount is negative.
GL_INVALID_OPERATION is generated if a geometry shader is active and mode is incompatible

with the input primitive type of the geometry shader in the currently installed program object.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.

See Also

glDrawElements, glDrawRangeElements, glDrawRangeElementsBaseVertex,
glDrawElementsInstanced, glDrawElementsInstancedBaseVertex

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glDrawRangeElements

render primitives from array data

C Specification

void glDrawRangeElements(GLenum mode,
GLuint start,
GLuint end,
GLsizei count,
GLenum type,
const GLvoid * indices);

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_LINE_STRIP_ADJACENCY,
GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_TRIANGLE_STRIP_ADJACENCY and GL_TRIANGLES_ADJACENCY are accepted.

start
Specifies the minimum array index contained in indices.

end
Specifies the maximum array index contained in indices.

count
Specifies the number of elements to be rendered.

type
Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

746

ptg

glDrawRangeElements 747
C

indices
Specifies a pointer to the location where the indices are stored.

Description

glDrawRangeElements is a restricted form of glDrawElements. mode, start, end, and count
match the corresponding arguments to glDrawElements, with the additional constraint that all values
in the arrays count must lie between start and end, inclusive.

Implementations denote recommended maximum amounts of vertex and index data, which may
be queried by calling glGet with argument GL_MAX_ELEMENTS_VERTICES and
GL_MAX_ELEMENTS_INDICES. If is greater than the value of
GL_MAX_ELEMENTS_VERTICES, or if count is greater than the value of
GL_MAX_ELEMENTS_INDICES, then the call may operate at reduced performance. There is no
requirement that all vertices in the range be referenced. However, the implementation may
partially process unused vertices, reducing performance from what could be achieved with an optimal
index set.

When glDrawRangeElements is called, it uses count sequential elements from an enabled array,
starting at start to construct a sequence of geometric primitives. mode specifies what kind of primi-
tives are constructed, and how the array elements construct these primitives. If more than one array is
enabled, each is used.

Vertex attributes that are modified by glDrawRangeElements have an unspecified value after
glDrawRangeElements returns. Attributes that aren’t modified maintain their previous values.

Notes

GL_LINE_STRIP_ADJACENCY, GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY and
GL_TRIANGLES_ADJACENCY are available only if the GL version is 3.2 or greater.

Errors

It is an error for indices to lie outside the range , but implementations may not check
for this situation. Such indices cause implementation-dependent behavior.

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count is negative.
GL_INVALID_VALUE is generated if .
GL_INVALID_OPERATION is generated if a geometry shader is active and mode is incompatible

with the input primitive type of the geometry shader in the currently installed program object.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.

Associated Gets

glGet with argument GL_MAX_ELEMENTS_VERTICES
glGet with argument GL_MAX_ELEMENTS_INDICES

See Also

glDrawArrays, glDrawElements, glDrawElementsBaseVertex

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

end 6 start

[start,end]

[start,end]

end - start + 1

ptg

glDrawRangeElementsBaseVertex

render primitives from array data with a per-element offset

C Specification

void glDrawRangeElementsBaseVertex(GLenum mode,
GLuint start,
GLuint end,
GLsizei count,
GLenum type,
GLvoid * indices,
GLint basevertex);

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
and GL_TRIANGLES are accepted.

start
Specifies the minimum array index contained in indices.

end
Specifies the maximum array index contained in indices.

count
Specifies the number of elements to be rendered.

type
Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices
Specifies a pointer to the location where the indices are stored.

basevertex
Specifies a constant that should be added to each element of indices when choosing
elements from the enabled vertex arrays.

Description

glDrawRangeElementsBaseVertex is a restricted form of glDrawElementsBaseVertex. mode,
start, end, count and basevertex match the corresponding arguments to
glDrawElementsBaseVertex, with the additional constraint that all values in the array indices must
lie between start and end, inclusive, prior to adding basevertex. Index values lying outside the
range [start, end] are treated in the same way as glDrawElementsBaseVertex. The ith element trans-
ferred by the corresponding draw call will be taken from element indices[i] + basevertex of each
enabled array. If the resulting value is larger than the maximum value representable by type, it is as if
the calculation were upconverted to 32-bit unsigned integers (with wrapping on overflow conditions).
The operation is undefined if the sum would be negative.

Notes

glDrawRangeElementsBaseVertex is only supported if the GL version is 3.2 or greater, or if the
ARB_draw_elements_base_vertex extension is supported.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if count is negative.

748

ptg

glEnable 749
C

GL_INVALID_VALUE is generated if end < start.
GL_INVALID_OPERATION is generated if a geometry shader is active and mode is incompatible

with the input primitive type of the geometry shader in the currently installed program object.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.

See Also

glDrawElements, glDrawElementsBaseVertex, glDrawRangeElements,
glDrawElementsInstanced, glDrawElementsInstancedBaseVertex

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glEnable

enable or disable server-side GL capabilities

C Specification

void glEnable(GLenum cap);

Parameters

cap
Specifies a symbolic constant indicating a GL capability.

C Specification

void glDisable(GLenum cap);

Parameters

cap
Specifies a symbolic constant indicating a GL capability.

C Specification

void glEnablei(GLenum cap,
GLuint index);

Parameters

cap
Specifies a symbolic constant indicating a GL capability.

index
Specifies the index of the swtich to enable.

C Specification

void glDisablei(GLenum cap,
GLuint index);

Parameters

cap
Specifies a symbolic constant indicating a GL capability.

index
Specifies the index of the swtich to disable.

ptg

Description

glEnable and glDisable enable and disable various capabilities. Use glIsEnabled or glGet to deter-
mine the current setting of any capability. The initial value for each capability with the exception of
GL_DITHER and GL_MULTISAMPLE is GL_FALSE. The initial value for GL_DITHER and GL_
MULTISAMPLE is GL_TRUE.

Both glEnable and glDisable take a single argument, cap, which can assume one of the follow-
ing values:

Some of the GL’s capabilities are indicated. glEnablei and glDisablei enable and disable
indexed capabilities.

GL_BLEND
If enabled, blend the computed fragment color values with the values in the color
buffers. See glBlendFunc.

GL_CLIP_DISTANCEi
If enabled, clip geometry against user-defined half space i.

GL_COLOR_LOGIC_OP
If enabled, apply the currently selected logical operation to the computed fragment color
and color buffer values. See glLogicOp.

GL_CULL_FACE
If enabled, cull polygons based on their winding in window coordinates. See glCullFace.

GL_DEPTH_TEST
If enabled, do depth comparisons and update the depth buffer. Note that even if the
depth buffer exists and the depth mask is non-zero, the depth buffer is not updated if the
depth test is disabled. See glDepthFunc and glDepthRange.

GL_DITHER
If enabled, dither color components or indices before they are written to the color buffer.

GL_LINE_SMOOTH
If enabled, draw lines with correct filtering. Otherwise, draw aliased lines. See
glLineWidth.

GL_MULTISAMPLE
If enabled, use multiple fragment samples in computing the final color of a pixel. See
glSampleCoverage.

GL_POLYGON_OFFSET_FILL
If enabled, and if the polygon is rendered in GL_FILL mode, an offset is added to depth
values of a polygon’s fragments before the depth comparison is performed. See
glPolygonOffset.

GL_POLYGON_OFFSET_LINE
If enabled, and if the polygon is rendered in GL_LINE mode, an offset is added to depth
values of a polygon’s fragments before the depth comparison is performed. See
glPolygonOffset.

GL_POLYGON_OFFSET_POINT
If enabled, an offset is added to depth values of a polygon’s fragments before the depth
comparison is performed, if the polygon is rendered in GL_POINT mode. See
glPolygonOffset.

GL_POLYGON_SMOOTH
If enabled, draw polygons with proper filtering. Otherwise, draw aliased polygons. For
correct antialiased polygons, an alpha buffer is needed and the polygons must be sorted
front to back.

GL_PRIMITIVE_RESTART
Enables primitive restarting. If enabled, any one of the draw commands which transfers a
set of generic attribute array elements to the GL will restart the primitive when the index
of the vertex is equal to the primitive restart index. See glPrimitiveRestartIndex.

750

ptg

glEnable 751
C

GL_SAMPLE_ALPHA_TO_COVERAGE
If enabled, compute a temporary coverage value where each bit is determined by the
alpha value at the corresponding sample location. The temporary coverage value is then
ANDed with the fragment coverage value.

GL_SAMPLE_ALPHA_TO_ONE
If enabled, each sample alpha value is replaced by the maximum representable alpha value.

GL_SAMPLE_COVERAGE
If enabled, the fragment’s coverage is ANDed with the temporary coverage value. If
GL_SAMPLE_COVERAGE_INVERT is set to GL_TRUE, invert the coverage value. See
glSampleCoverage.

GL_SCISSOR_TEST
If enabled, discard fragments that are outside the scissor rectangle. See glScissor.

GL_STENCIL_TEST
If enabled, do stencil testing and update the stencil buffer. See glStencilFunc and
glStencilOp.

GL_TEXTURE_CUBE_MAP_SEAMLESS
If enabled, modifies the way sampling is performed on cube map textures. See the spec
for more information.

GL_PROGRAM_POINT_SIZE
If enabled and a vertex or geometry shader is active, then the derived point size is taken
from the (potentially clipped) shader built in gl_PointSize and clamped to the implemen-
tation-dependent point size range.

Errors

GL_INVALID_ENUM is generated if cap is not one of the values listed previously.
GL_INVALID_VALUE is generated by glEnablei and glDisablei if index is greater than or

equal to the number of indexed capabilities for cap.

Notes

GL_PRIMITIVE_RESTART is available only if the GL version is 3.1 or greater.
GL_TEXTURE_CUBE_MAP_SEAMLESS is available only if the GL version is 3.2 or greater.
Any token accepted by glEnable or glDisable is also accepted by glEnablei and

glDisablei, but if the capability is not indexed, the maximum value that index may take is zero.
In general, passing an indexed capability to glEnable or glDisable will enable or disable that

capability for all indices, resepectively.

Associated Gets

glIsEnabled
glGet

See Also

glActiveTexture, glBlendFunc, glCullFace, glDepthFunc, glDepthRange,
glGet, glIsEnabled, glLineWidth, glLogicOp, glPointSize, glPolygonMode,
glPolygonOffset, glSampleCoverage, glScissor, glStencilFunc, glStencilOp,
glTexImage1D, glTexImage2D, glTexImage3D

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. Copyright © 2010 Khronos Group. This document
is licensed under the SGI Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

ptg

glEnableVertexAttribArray

Enable or disable a generic vertex attribute array

C Specification

void glEnableVertexAttribArray(GLuint index);
void glDisableVertexAttribArray(GLuint index);

Parameters

index
Specifies the index of the generic vertex attribute to be enabled or disabled.

Description

glEnableVertexAttribArray enables the generic vertex attribute array specified by index.
glDisableVertexAttribArray disables the generic vertex attribute array specified by index. By
default, all client-side capabilities are disabled, including all generic vertex attribute arrays. If enabled,
the values in the generic vertex attribute array will be accessed and used for rendering when calls are
made to vertex array commands such as glDrawArrays, glDrawElements, glDrawRangeElements,
glMultiDrawElements, or glMultiDrawArrays.

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_ENABLED
glGetVertexAttribPointerv with arguments index and GL_VERTEX_ATTRIB_ARRAY_POINTER

See Also

glBindAttribLocation, glDrawArrays, glDrawElements, glDrawRangeElements,
glMultiDrawElements, glVertexAttrib, glVertexAttribPointer

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glFenceSync

create a new sync object and insert it into the GL command stream

C Specification

GLsync glFenceSync(GLenum condition,
GLbitfield flags);

Parameters

condition
Specifies the condition that must be met to set the sync object’s state to signaled.
condition must be GL_SYNC_GPU_COMMANDS_COMPLETE.

752

ptg

glFinish 753
C

flags
Specifies a bitwise combination of flags controlling the behavior of the sync object. No flags are

presently defined for this operation and flags must be zero.*

Description

glFenceSync creates a new fence sync object, inserts a fence command into the GL command
stream and associates it with that sync object, and returns a non-zero name corresponding to the sync
object.

When the specified condition of the sync object is satisfied by the fence command, the sync
object is signaled by the GL, causing any glWaitSync, glClientWaitSync commands blocking in sync
to unblock. No other state is affected by glFenceSync or by the execution of the associated fence
command.

condition must be GL_SYNC_GPU_COMMANDS_COMPLETE. This condition is satisfied by
completion of the fence command corresponding to the sync object and all preceding commands in
the same command stream. The sync object will not be signaled until all effects from these
commands on GL client and server state and the framebuffer are fully realized. Note that completion
of the fence command occurs once the state of the corresponding sync object has been changed, but
commands waiting on that sync object may not be unblocked until after the fence command
completes.

Notes

glFenceSync is only supported if the GL version is 3.2 or greater, or if the ARB_sync extension is
supported.

Errors

GL_INVALID_ENUM is generated if condition is not GL_SYNC_GPU_COMMANDS_COMPLETE.
GL_INVALID_VALUE is generated if flags is not zero.
Additionally, if glFenceSync fails, it will return zero.

See Also

glDeleteSync, glGetSync, glWaitSync, glClientWaitSync

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glFinish

block until all GL execution is complete

C Specification

void glFinish(void);

Description

glFinish does not return until the effects of all previously called GL commands are complete.
Such effects include all changes to GL state, all changes to connection state, and all changes to the
frame buffer contents.

* flags is a placeholder for anticipated future extensions of fence sync object capabilities.

ptg

Notes

glFinish requires a round trip to the server.

See Also

glFlush

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glFlush

force execution of GL commands in finite time

C Specification

void glFlush(void);

Description

Different GL implementations buffer commands in several different locations, including network
buffers and the graphics accelerator itself. glFlush empties all of these buffers, causing all issued
commands to be executed as quickly as they are accepted by the actual rendering engine. Though this
execution may not be completed in any particular time period, it does complete in finite time.

Because any GL program might be executed over a network, or on an accelerator that buffers
commands, all programs should call glFlush whenever they count on having all of their previously
issued commands completed. For example, call glFlush before waiting for user input that depends
on the generated image.

Notes

glFlush can return at any time. It does not wait until the execution of all previously issued GL
commands is complete.

See Also

glFinish

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glFlushMappedBufferRange

indicate modifications to a range of a mapped buffer

C Specification

GLsync glFlushMappedBufferRange(GLenum target,
GLintptr offset,
GLsizeiptr length);

754

ptg

glFlushMappedBufferRange 755
C

Parameters

target
Specifies the target of the flush operation. target must be GL_ARRAY_BUFFER,
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_TEXTURE_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

offset
Specifies the start of the buffer subrange, in basic machine units.

length
Specifies the length of the buffer subrange, in basic machine units.

Description

glFlushMappedBufferRange indicates that modifications have been made to a range of a
mapped buffer. The buffer must previously have been mapped with the GL_MAP_FLUSH_EXPLICIT
flag. offset and length indicate the modified subrange of the mapping, in basic units. The specified
subrange to flush is relative to the start of the currently mapped range of the buffer.
glFlushMappedBufferRange may be called multiple times to indicate distinct subranges of the
mapping which require flushing.

Errors

GL_INVALID_VALUE is generated if offset or length is negative, or if offset + length exceeds
the size of the mapping.

GL_INVALID_OPERATION is generated if zero is bound to target.
GL_INVALID_OPERATION is generated if the buffer bound to target is not mapped, or is

mapped without the GL_MAP_FLUSH_EXPLICIT flag.

See Also

glMapBufferRange, glMapBuffer, glUnmapBuffer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glFramebufferRenderbuffer

attach a renderbuffer as a logical buffer to the currently bound framebuffer object

C Specification

GLsync glFramebufferRenderbuffer(GLenum target,
GLenum attachment,
GLenum renderbuffertarget,
GLuint renderbuffer);

Parameters

target
Specifies the framebuffer target. target must be GL_DRAW_FRAMEBUFFER,
GL_READ_FRAMEBUFFER, or GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent to
GL_DRAW_FRAMEBUFFER.

attachment
Specifies the attachment point of the framebuffer.

ptg

renderbuffertarget
Specifies the renderbuffer target and must be GL_RENDERBUFFER.

renderbuffer
Specifies the name of an existing renderbuffer object of type renderbuffertarget to
attach.

Description

glFramebufferRenderbuffer attaches a renderbuffer as one of the logical buffers of the
currently bound framebuffer object. renderbuffer is the name of the renderbuffer object to attach
and must be either zero, or the name of an existing renderbuffer object of type
renderbuffertarget. If renderbuffer is not zero and if glFramebufferRenderbuffer is
successful, then the renderbuffer name renderbuffer will be used as the logical buffer identified by
attachment of the framebuffer currently bound to target.

The value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point
is set to GL_RENDERBUFFER and the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is
set to renderbuffer. All other state values of the attachment point specified by attachment are set
to their default values. No change is made to the state of the renderbuuffer object and any previous
attachment to the attachment logical buffer of the framebuffer target is broken.

Calling glFramebufferRenderbuffer with the renderbuffer name zero will detach the image, if
any, identified by attachment, in the framebuffer currently bound to target. All state values of the
attachment point specified by attachment in the object bound to target are set to their default values.

Setting attachment to the value GL_DEPTH_STENCIL_ATTACHMENT is a special case causing
both the depth and stencil attachments of the framebuffer object to be set to renderbuffer, which
should have the base internal format GL_DEPTH_STENCIL.

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted tokens.
GL_INVALID_ENUM is generated if renderbuffertarget is not GL_RENDERBUFFER.
GL_INVALID_OPERATION is generated if zero is bound to target.

See Also

glGenFramebuffers, glBindFramebuffer, glGenRenderbuffers,
glFramebufferTexture, glFramebufferTexture1D, glFramebufferTexture2D,
glFramebufferTexture3D

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glFramebufferTexture

attach a level of a texture object as a logical buffer to the currently bound framebuffer object

C Specification

void glFramebufferTexture(GLenum target,
GLenum attachment,
GLuint texture,
GLint level);

void glFramebufferTexture1D(GLenum target,
GLenum attachment,
GLuint texture,
GLint level);

756

ptg

glFramebufferTexture 757
C

void glFramebufferTexture2D(GLenum target,
GLenum attachment,
GLuint texture,
GLint level);

void glFramebufferTexture3D(GLenum target,
GLenum attachment,
GLuint texture,
GLint level,
GLint layer);

Parameters

target
Specifies the framebuffer target. target must be GL_DRAW_FRAMEBUFFER,
GL_READ_FRAMEBUFFER, or GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent to
GL_DRAW_FRAMEBUFFER.

attachment
Specifies the attachment point of the framebuffer. attachment must be
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT or
GL_DEPTH_STENCIL_ATTACHMMENT.

texture
Specifies the texture object to attach to the framebuffer attachment point named by
attachment.

level
Specifies the mipmap level of texture to attach.

Description

glFramebufferTexture, glFramebufferTexture1D, glFramebufferTexture2D, and
glFramebufferTexture attach a selected mipmap level or image of a texture object as one of the
logical buffers of the framebuffer object currently bound to target. target must be
GL_DRAW_FRAMEBUFFER, GL_READ_FRAMEBUFFER, or GL_FRAMEBUFFER. GL_FRAMEBUFFER is
equivalent to GL_DRAW_FRAMEBUFFER.

attachment specifies the logical attachment of the framebuffer and must be
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT or
GL_DEPTH_STENCIL_ATTACHMMENT. i in GL_COLOR_ATTACHMENTi may range from zero to the
value of GL_MAX_COLOR_ATTACHMENTS - 1. Attaching a level of a texture to
GL_DEPTH_STENCIL_ATTACHMENT is equivalent to attaching that level to both the
GL_DEPTH_ATTACHMENT and the GL_STENCIL_ATTACHMENT attachment points simultaneously.

If texture is non-zero, the specified level of the texture object named texture is attached to
the framebfufer attachment point named by attachment. For glFramebufferTexture1D,
glFramebufferTexture2D, and glFramebufferTexture3D, texture must be zero or the name of
an existing texture with a target of textarget, or texture must be the name of an existing cube-
map texture and textarget must be one of GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

If textarget is GL_TEXTURE_RECTANGLE, GL_TEXTURE_2D_MULTISAMPLE, or
GL_TEXTURE_2D_MULTISAMPLE_ARRAY, then level must be zero. If textarget is
GL_TEXTURE_3D, then level must be greater than or equal to zero and less than or equal to log2 of
the value of GL_MAX_3D_TEXTURE_SIZE. If textarget is one of GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, then level must be greater than or equal to zero and less
than or equal to log2 of the value of GL_MAX_CUBE_MAP_TEXTURE_SIZE. For all other values of

ptg

textarget, level must be greater than or equal to zero and no larger than log2 of the value of
GL_MAX_TEXTURE_SIZE.

layer specifies the layer of a 2-dimensional image within a 3-dimensional texture.
For glFramebufferTexture1D, if texture is not zero, then textarget must be

GL_TEXTURE_1D. For glFramebufferTexture2D, if texture is not zero, textarget must be one
of GL_TEXTURE_2D, GL_TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_TEXTURE_2D_MULTISAMPLE. For
glFramebufferTexture3D, if texture is not zero, then textarget must be GL_TEXTURE_3D.

Notes

glFramebufferTexture is available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted tokens.
GL_INVALID_ENUM is generated if renderbuffertarget is not GL_RENDERBUFFER.
GL_INVALID_OPERATION is generated if zero is bound to target.

See Also

glGenFramebuffers, glBindFramebuffer, glGenRenderbuffers,
glFramebufferTexture, glFramebufferTexture1D, glFramebufferTexture2D,
glFramebufferTexture3D

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glFramebufferTextureFace

attach a face of a cube map texture as a logical buffer to the currently bound framebuffer

C Specification

void glFramebufferTextureFace(GLenum target,
GLenum attachment,
GLuint texture,
GLint level,
GLenum face);

Parameters

target
Specifies the framebuffer target. target must be GL_DRAW_FRAMEBUFFER,
GL_READ_FRAMEBUFFER, or GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent to
GL_DRAW_FRAMEBUFFER.

attachment
Specifies the attachment point of the framebuffer. attachment must be
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT or
GL_DEPTH_STENCIL_ATTACHMMENT.

texture
Specifies the texture object to attach to the framebuffer attachment point named by
attachment. texture must be the name of an existing cube-map texture.

758

ptg

glFramebufferTextureLayer 759
C

level
Specifies the mipmap level of texture to attach.

face
Specifies the face of texture to attach.

Description

glFramebufferTextureFace operates like glFramebufferTexture, except that only a single face
of a cube map texture, given by face, is attached to the attachment point. face must be
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z. texture must
either be zero, or the name of an existing cube map texture.

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted tokens.
GL_INVALID_ENUM is generated if attachment is not one of the accepted tokens.
GL_INVALID_ENUM is generated if face is not one of the accepted tokens.
GL_INVALID_OPERATION is generated if zero is bound to target.
GL_INVALID_OPERATION is generated if texture is not zero or the name of an existing cube

map texture.

See Also

glGenFramebuffers, glBindFramebuffer, glGenRenderbuffers,
glFramebufferTexture, glFramebufferTextureLayer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glFramebufferTextureLayer

attach a face of a cube map texture as a logical buffer to the currently bound framebuffer

C Specification

void glFramebufferTextureLayer(GLenum target,
GLenum attachment,
GLuint texture,
GLint level,
GLint layer);

Parameters

target
Specifies the framebuffer target. target must be GL_DRAW_FRAMEBUFFER,
GL_READ_FRAMEBUFFER, or GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent to
GL_DRAW_FRAMEBUFFER.

attachment
Specifies the attachment point of the framebuffer. attachment must be
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT or
GL_DEPTH_STENCIL_ATTACHMMENT.

texture
Specifies the texture object to attach to the framebuffer attachment point named by
attachment.

ptg

level
Specifies the mipmap level of texture to attach.

layer
Specifies the level of texture to attach.

Description

glFramebufferTextureLevel operates like glFramebufferTexture, except that only a single layer
of the texture level, given by layer, is attached to the attachment point. If texture is not zero,
layer must be greater than or equal to zero. texture must either be zero or the name of an existing
three-dimensional two-dimensional array texture.

Notes

glFramebufferTextureLayer is available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted tokens.
GL_INVALID_ENUM is generated if attachment is not one of the accepted tokens.
GL_INVALID_VALUE is generated if texture is not zero or the name of an existing texture object.
GL_INVALID_VALUE is generated if texture is not zero and layer is negative.
GL_INVALID_OPERATION is generated if zero is bound to target.
GL_INVALID_OPERATION is generated if texture is not zero or the name of an existing cube

map texture.

See Also

glGenFramebuffers, glBindFramebuffer, glGenRenderbuffers,
glFramebufferTexture, glFramebufferTextureFace

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glFrontFace

define front- and back-facing polygons

C Specification

void glFrontFace(GLenum mode);

Parameters

mode
Specifies the orientation of front-facing polygons. GL_CW and GL_CCW are accepted.
The initial value is GL_CCW.

Description

In a scene composed entirely of opaque closed surfaces, back-facing polygons are never visible.
Eliminating these invisible polygons has the obvious benefit of speeding up the rendering of the
image. To enable and disable elimination of back-facing polygons, call glEnable and glDisable with
argument GL_CULL_FACE.

760

ptg

glGenBuffers 761
C

The projection of a polygon to window coordinates is said to have clockwise winding if an imagi-
nary object following the path from its first vertex, its second vertex, and so on, to its last vertex, and
finally back to its first vertex, moves in a clockwise direction about the interior of the polygon. The
polygon’s winding is said to be counterclockwise if the imaginary object following the same path
moves in a counterclockwise direction about the interior of the polygon. glFrontFace specifies
whether polygons with clockwise winding in window coordinates, or counterclockwise winding in
window coordinates, are taken to be front-facing. Passing GL_CCW to mode selects counterclockwise
polygons as front-facing; GL_CW selects clockwise polygons as front-facing. By default, counterclock-
wise polygons are taken to be front-facing.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

Associated Gets

glGet with argument GL_FRONT_FACE

See Also

glCullFace.

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glGenBuffers

generate buffer object names

C Specification

void glGenBuffers(GLsizei n,
GLuint * buffers);

Parameters

n
Specifies the number of buffer object names to be generated.

buffers
Specifies an array in which the generated buffer object names are stored.

Description

glGenBuffers returns n buffer object names in buffers. There is no guarantee that the names
form a contiguous set of integers; however, it is guaranteed that none of the returned names was in
use immediately before the call to glGenBuffers.

Buffer object names returned by a call to glGenBuffers are not returned by subsequent calls,
unless they are first deleted with glDeleteBuffers.

No buffer objects are associated with the returned buffer object names until they are first bound
by calling glBindBuffer.

Errors

GL_INVALID_VALUE is generated if n is negative.

Associated Gets

glIsBuffer

ptg

See Also

glBindBuffer, glDeleteBuffers, glGet

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGenerateMipmap

generate mipmaps for a specified texture target

C Specification

void glGenerateMipmap(GLenum target);

Parameters

target
Specifies the target to which the texture whose mimaps to generate is bound. target
must be GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D,
GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY or GL_TEXTURE_CUBE_MAP.

Description

glGenerateMipmap generates mipmaps for the texture attached to target of the active texture
unit. For cube map textures, a GL_INVALID_OPERATION error is generated if the texture attached to
target is not cube complete.

Mipmap generation replaces texel array levels through with arrays derived from the
array, regardless of their previous contents. All other mipmap arrays, including the

array, are left unchanged by this computation.
The internal formats of the derived mipmap arrays all match those of the array. The

contents of the derived arrays are computed by repeated, filtered reduction of the array. For
one- and two-dimensional texture arrays, each layer is filtered independently.

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted texture targets.
GL_INVALID_OPERATION is generated if target is GL_TEXTURE_CUBE_MAP and the texture

bound to the GL_TEXTURE_CUBE_MAP target of the active texture unit is not cube complete.

See Also

glTexImage2D, glBindTexture, glGenTextures

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGenFramebuffers

generate framebuffer object names

C Specification

void glGenFramebuffers(GLsizei n,
GLuint *ids);

levelbase

l evelbase

levelbaselevelbase

qlevelbase + 1

762

ptg

glGenFramebuffers 763
C

Parameters

n
Specifies the number of framebuffer object names to generate.

ids
Specifies an array in which the generated framebuffer object names are stored.

Description

glGenFramebuffers returns n framebuffer object names in ids. There is no guarantee that the
names form a contiguous set of integers; however, it is guaranteed that none of the returned names
was in use immediately before the call to glGenFramebuffers.

Framebuffer object names returned by a call to glGenFramebuffers are not returned by subse-
quent calls, unless they are first deleted with glDeleteFramebuffers.

The names returned in ids are marked as used, for the purposes of glGenFramebuffers only,
but they acquire state and type only when they are first bound.

Errors

GL_INVALID_VALUE is generated if n is negative.

See Also

glBindFramebuffer, glDeleteFramebuffers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGenQueries

generate query object names

C Specification

void glGenQueries(GLsizei n,
GLuint * ids);

Parameters

n
Specifies the number of query object names to be generated.

ids
Specifies an array in which the generated query object names are stored.

Description

glGenQueries returns n query object names in ids. There is no guarantee that the names form a
contiguous set of integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to glGenQueries.

Query object names returned by a call to glGenQueries are not returned by subsequent calls,
unless they are first deleted with glDeleteQueries.

No query objects are associated with the returned query object names until they are first used by
calling glBeginQuery.

ptg

Errors

GL_INVALID_VALUE is generated if n is negative.
GL_INVALID_OPERATION is generated if glGenQueries is executed between the execution of

glBeginQuery and the corresponding execution of glEndQuery.

Associated Gets

glIsQuery

See Also

glBeginQuery, glDeleteQueries, glEndQuery

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGenRenderbuffers

generate renderbuffer object names

C Specification

void glGenRenderbuffers(GLsizei n,
GLuint *renderbuffers);

Parameters

n
Specifies the number of renderbuffer object names to generate.

renderbuffers
Specifies an array in which the generated renderbuffer object names are stored.

Description

glGenRenderbuffers returns n renderbuffer object names in renderbuffers. There is no guar-
antee that the names form a contiguous set of integers; however, it is guaranteed that none of the
returned names was in use immediately before the call to glGenRenderbuffers.

Renderbuffer object names returned by a call to glGenRenderbuffers are not returned by subse-
quent calls, unless they are first deleted with glDeleteRenderbuffers.

The names returned in renderbuffers are marked as used, for the purposes of
glGenRenderbuffers only, but they acquire state and type only when they are first bound.

Errors

GL_INVALID_VALUE is generated if n is negative.

See Also

glFramebufferRenderbuffer, glDeleteRenderbuffers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

764

ptg

glGenSamplers 765
C

glGenSamplers

generate sampler object names

C Specification

void glGenSamplers(GLsizei n,
GLuint *samplers);

Parameters

n
Specifies the number of sampler object names to generate.

samplers
Specifies an array in which the generated sampler object names are stored.

Description

glGenSamplers returns n sampler object names in samplers. There is no guarantee that the
names form a contiguous set of integers; however, it is guaranteed that none of the returned names
was in use immediately before the call to glGenSamplers.

Sampler object names returned by a call to glGenSamplers are not returned by subsequent calls,
unless they are first deleted with glDeleteSamplers.

The names returned in samplers are marked as used, for the purposes of glGenSamplers only,
but they acquire state and type only when they are first bound.

Notes

glGenSamplers is available only if the GL version is 3.3 or higher.

Errors

GL_INVALID_VALUE is generated if n is negative.

See Also

glBindSampler, glIsSampler, glDeleteSamplers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGenTextures

generate texture names

C Specification

void glGenTextures(GLsizei n,
GLuint * textures);

Parameters

n
Specifies the number of texture names to be generated.

textures
Specifies an array in which the generated texture names are stored.

ptg

Description

glGenTextures returns n texture names in textures. There is no guarantee that the names
form a contiguous set of integers; however, it is guaranteed that none of the returned names was in
use immediately before the call to glGenTextures.

The generated textures have no dimensionality; they assume the dimensionality of the texture
target to which they are first bound (see glBindTexture).

Texture names returned by a call to glGenTextures are not returned by subsequent calls, unless
they are first deleted with glDeleteTextures.

Errors

GL_INVALID_VALUE is generated if n is negative.

Associated Gets

glIsTexture

See Also

glBindTexture, glCopyTexImage1D, glCopyTexImage2D, glDeleteTextures, glGet,
glGetTexParameter, glTexImage1D, glTexImage2D, glTexImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glGenVertexArrays

generate vertex array object names

C Specification

void glGenVertexArrays(GLsizei n,
GLuint *arrays);

Parameters

n
Specifies the number of vertex array object names to generate.

arrays
Specifies an array in which the generated vertex array object names are stored.

Description

glGenVertexArrays returns n vertex array object names in arrays. There is no guarantee that
the names form a contiguous set of integers; however, it is guaranteed that none of the returned
names was in use immediately before the call to glGenVertexArrays.

Vertex array object names returned by a call to glGenVertexArrays are not returned by subse-
quent calls, unless they are first deleted with glDeleteVertexArrays.

The names returned in arrays are marked as used, for the purposes of glGenVertexArrays
only, but they acquire state and type only when they are first bound.

Errors

GL_INVALID_VALUE is generated if n is negative.

See Also

glBindVertexArray, glDeleteVertexArrays

766

ptg

glGet 767
C

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGet

return the value or values of a selected parameter

C Specification

void glGetBooleanv(GLenum pname,
GLboolean * params);

C Specification

void glGetDoublev(GLenum pname,
GLdouble * params);

C Specification

void glGetFloatv(GLenum pname,
GLfloat * params);

C Specification

void glGetIntegerv(GLenum pname,
GLint * params);

C Specification

void glGetInteger64v(GLenum pname,
GLint64 * params);

Parameters

pname
Specifies the parameter value to be returned. The symbolic constants in the list below are
accepted.

params
Returns the value or values of the specified parameter.

C Specification

void glGetBooleani_v(GLenum pname,
GLuint index,
GLboolean * data);

C Specification

void glGetIntegeri_v(GLenum pname,
GLuint index,
GLint * data);

C Specification

void glGetInteger64i_v(GLenum pname,
GLuint index,
GLint64 * data);

ptg

Parameters

pname
Specifies the parameter value to be returned. The symbolic constants in the list below are
accepted.

index
Specifies the index of the particular element being queried.

data
Returns the value or values of the specified parameter.

Description

These four commands return values for simple state variables in GL. pname is a symbolic constant
indicating the state variable to be returned, and params is a pointer to an array of the indicated type
in which to place the returned data.

Type conversion is performed if params has a different type than the state variable value being
requested. If glGetBooleanv is called, a floating-point (or integer) value is converted to GL_FALSE if
and only if it is 0.0 (or 0). Otherwise, it is converted to GL_TRUE. If glGetIntegerv is called,
boolean values are returned as GL_TRUE or GL_FALSE, and most floating-point values are rounded to
the nearest integer value. Floating-point colors and normals, however, are returned with a linear
mapping that maps 1.0 to the most positive representable integer value and to the most nega-
tive representable integer value. If glGetFloatv or glGetDoublev is called, boolean values are
returned as GL_TRUE or GL_FALSE, and integer values are converted to floating-point values.

The following symbolic constants are accepted by pname:
GL_ACTIVE_TEXTURE

params returns a single value indicating the active multitexture unit. The initial value is
GL_TEXTURE0. See glActiveTexture.

GL_ALIASED_LINE_WIDTH_RANGE
params returns a pair of values indicating the range of widths supported for aliased lines.
See glLineWidth.

GL_SMOOTH_LINE_WIDTH_RANGE
params returns a pair of values indicating the range of widths supported for smooth
(antialiased) lines. See glLineWidth.

GL_SMOOTH_LINE_WIDTH_GRANULARITY
params returns a single value indicating the level of quantization applied to smooth line
width parameters.

GL_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the
target GL_ARRAY_BUFFER. If no buffer object is bound to this target, 0 is returned. The
initial value is 0. See glBindBuffer.

GL_BLEND
params returns a single boolean value indicating whether blending is enabled. The initial
value is GL_FALSE. See glBlendFunc.

GL_BLEND_COLOR
params returns four values—the red, green, blue, and alpha values—which are the
components of the blend color. See glBlendColor.

GL_BLEND_DST_ALPHA
params returns one value, the symbolic constant identifying the alpha destination blend
function. The initial value is GL_ZERO. See glBlendFunc and glBlendFuncSeparate.

GL_BLEND_DST_RGB
params returns one value, the symbolic constant identifying the RGB destination blend
function. The initial value is GL_ZERO. See glBlendFunc and glBlendFuncSeparate.

-1.0

768

ptg

glGet 769
C

GL_BLEND_EQUATION_RGB
params returns one value, a symbolic constant indicating whether the RGB blend equa-
tion is GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN
or GL_MAX. See glBlendEquationSeparate.

GL_BLEND_EQUATION_ALPHA
params returns one value, a symbolic constant indicating whether the Alpha blend equa-
tion is GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN
or GL_MAX. See glBlendEquationSeparate.

GL_BLEND_SRC_ALPHA
params returns one value, the symbolic constant identifying the alpha source blend
function. The initial value is GL_ONE. See glBlendFunc and glBlendFuncSeparate.

GL_BLEND_SRC_RGB
params returns one value, the symbolic constant identifying the RGB source blend func-
tion. The initial value is GL_ONE. See glBlendFunc and glBlendFuncSeparate.

GL_COLOR_CLEAR_VALUE
params returns four values: the red, green, blue, and alpha values used to clear the color
buffers. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and

returns the most negative representable integer value. The initial value is (0, 0, 0,
0). See glClearColor.

GL_COLOR_LOGIC_OP
params returns a single boolean value indicating whether a fragment’s RGBA color values
are merged into the framebuffer using a logical operation. The initial value is GL_FALSE.
See glLogicOp.

GL_COLOR_WRITEMASK
params returns four boolean values: the red, green, blue, and alpha write enables for the
color buffers. The initial value is (GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE). See
glColorMask.

GL_COMPRESSED_TEXTURE_FORMATS
params returns a list of symbolic constants of length
GL_NUM_COMPRESSED_TEXTURE_FORMATS indicating which compressed texture
formats are available. See glCompressedTexImage2D.

GL_CULL_FACE
params returns a single boolean value indicating whether polygon culling is enabled.
The initial value is GL_FALSE. See glCullFace.

GL_CURRENT_PROGRAM
params returns one value, the name of the program object that is currently active, or 0 if
no program object is active. See glUseProgram.

GL_DEPTH_CLEAR_VALUE
params returns one value, the value that is used to clear the depth buffer. Integer values,
if requested, are linearly mapped from the internal floating-point representation such
that 1.0 returns the most positive representable integer value, and returns the most
negative representable integer value. The initial value is 1. See glClearDepth.

GL_DEPTH_FUNC
params returns one value, the symbolic constant that indicates the depth comparison
function. The initial value is GL_LESS. See glDepthFunc.

GL_DEPTH_RANGE
params returns two values: the near and far mapping limits for the depth buffer. Integer
values, if requested, are linearly mapped from the internal floating-point representation
such that 1.0 returns the most positive representable integer value, and returns the
most negative representable integer value. The initial value is (0, 1). See glDepthRange.

GL_DEPTH_TEST
params returns a single boolean value indicating whether depth testing of fragments is
enabled. The initial value is GL_FALSE. See glDepthFunc and glDepthRange.

-1.0

-1.0

-1.0

ptg

GL_DEPTH_WRITEMASK
params returns a single boolean value indicating if the depth buffer is enabled for
writing. The initial value is GL_TRUE. See glDepthMask.

GL_DITHER
params returns a single boolean value indicating whether dithering of fragment colors
and indices is enabled. The initial value is GL_TRUE.

GL_DOUBLEBUFFER
params returns a single boolean value indicating whether double buffering is supported.

GL_DRAW_BUFFER
params returns one value, a symbolic constant indicating which buffers are being drawn
to. See glDrawBuffer. The initial value is GL_BACK if there are back buffers, otherwise it
is GL_FRONT.

GL_DRAW_BUFFERi
params returns one value, a symbolic constant indicating which buffers are being drawn
to by the corresponding output color. See glDrawBuffers. The initial value of
GL_DRAW_BUFFER0 is GL_BACK if there are back buffers, otherwise it is GL_FRONT. The
initial values of draw buffers for all other output colors is GL_NONE.

GL_DRAW_FRAMEBUFFER_BINDING
params returns one value, the name of the framebuffer object currently bound to the
GL_DRAW_FRAMEBUFFER target. If the default framebuffer is bound, this value will be
zero. The initial value is zero. See glBindFramebuffer.

GL_READ_FRAMEBUFFER_BINDING
params returns one value, the name of the framebuffer object currently bound to the
GL_READ_FRAMEBUFFER target. If the default framebuffer is bound, this value will be
zero. The initial value is zero. See glBindFramebuffer.

GL_ELEMENT_ARRAY_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the
target GL_ELEMENT_ARRAY_BUFFER. If no buffer object is bound to this target, 0 is
returned. The initial value is 0. See glBindBuffer.

GL_RENDERBUFFER_BINDING
params returns a single value, the name of the renderbuffer object currently bound to
the target GL_RENDERBUFFER. If no renderbuffer object is bound to this target, 0 is
returned. The initial value is 0. See glBindRenderbuffer.

GL_FRAGMENT_SHADER_DERIVATIVE_HINT
params returns one value, a symbolic constant indicating the mode of the derivative
accuracy hint for fragment shaders. The initial value is GL_DONT_CARE. See glHint.

GL_LINE_SMOOTH
params returns a single boolean value indicating whether antialiasing of lines is enabled.
The initial value is GL_FALSE. See glLineWidth.

GL_LINE_SMOOTH_HINT
params returns one value, a symbolic constant indicating the mode of the line antialias-
ing hint. The initial value is GL_DONT_CARE. See glHint.

GL_LINE_WIDTH
params returns one value, the line width as specified with glLineWidth. The initial
value is 1.

GL_LINE_WIDTH_GRANULARITY
params returns one value, the width difference between adjacent supported widths for
antialiased lines. See glLineWidth.

GL_LINE_WIDTH_RANGE
params returns two values: the smallest and largest supported widths for antialiased
lines. See glLineWidth.

770

ptg

glGet 771
C

GL_LOGIC_OP_MODE
params returns one value, a symbolic constant indicating the selected logic operation
mode. The initial value is GL_COPY. See glLogicOp.

GL_MAX_3D_TEXTURE_SIZE
params returns one value, a rough estimate of the largest 3D texture that the GL can
handle. The value must be at least 64. Use GL_PROXY_TEXTURE_3D to determine if a
texture is too large. See glTexImage3D.

GL_MAX_CLIP_DISTANCES
params returns one value, the maximum number of application-defined clipping
distances. The value must be at least 8.

GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS
params returns one value, the number of words for fragment shader uniform variables in
all uniform blocks (including default). The value must be at least 1. See glUniform.

GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS
params returns one value, the maximum supported texture image units that can be used
to access texture maps from the vertex shader and the fragment processor combined. If
both the vertex shader and the fragment processing stage access the same texture image
unit, then that counts as using two texture image units against this limit. The value must
be at least 48. See glActiveTexture.

GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS
params returns one value, the number of words for vertex shader uniform variables in all
uniform blocks (including default). The value must be at least 1. See glUniform.

GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS
params returns one value, the number of words for geometry shader uniform variables in
all uniform blocks (including default). The value must be at least 1. See glUniform.

GL_MAX_VARYING_COMPONENTS
params returns one value, the number components for varying variables, which must be
at least 60.

GL_MAX_COMBINED_UNIFORM_BLOCKS
params returns one value, the maximum number of uniform blocks per program. The
value must be at least 36. See glUniformBlockBinding.

GL_MAX_CUBE_MAP_TEXTURE_SIZE
params returns one value. The value gives a rough estimate of the largest cube-map
texture that the GL can handle. The value must be at least 1024. Use
GL_PROXY_TEXTURE_CUBE_MAP to determine if a texture is too large. See
glTexImage2D.

GL_MAX_DRAW_BUFFERS
params returns one value, the maximum number of simultaneous outputs that may be
written in a fragment shader. The value must be at least 8. See glDrawBuffers.

GL_MAX_DUALSOURCE_DRAW_BUFFERS
params returns one value, the maximum number of active draw buffers when using
dual-source blending. The value must be at least 1. See glBlendFunc and
glBlendFuncSeparate.

GL_MAX_ELEMENTS_INDICES
params returns one value, the recommended maximum number of vertex array indices.
See glDrawRangeElements.

GL_MAX_ELEMENTS_VERTICES
params returns one value, the recommended maximum number of vertex array vertices.
See glDrawRangeElements.

ptg

GL_MAX_FRAGMENT_UNIFORM_COMPONENTS
params returns one value, the maximum number of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a fragment shader. The
value must be at least 1024. See glUniform.

GL_MAX_FRAGMENT_UNIFORM_BLOCKS
params returns one value, the maximum number of uniform blocks per fragment shader.
The value must be at least 12. See glUniformBlockBinding.

GL_MAX_FRAGMENT_INPUT_COMPONENTS
params returns one value, the maximum number of components of the inputs read by
the fragment shader, which must be at least 128.

GL_MIN_PROGRAM_TEXEL_OFFSET
params returns one value, the minimum texel offset allowed in a texture lookup, which
must be at most -8.

GL_MAX_PROGRAM_TEXEL_OFFSET
params returns one value, the maximum texel offset allowed in a texture lookup, which
must be at least 7.

GL_MAX_RECTANGLE_TEXTURE_SIZE
params returns one value. The value gives a rough estimate of the largest rectangular
texture that the GL can handle. The value must be at least 1024. Use
GL_PROXY_RECTANGLE_TEXTURE to determine if a texture is too large. See
glTexImage2D.

GL_MAX_TEXTURE_IMAGE_UNITS
params returns one value, the maximum supported texture image units that can be used
to access texture maps from the fragment shader. The value must be at least 16. See
glActiveTexture.

GL_MAX_TEXTURE_LOD_BIAS
params returns one value, the maximum, absolute value of the texture level-of-detail
bias. The value must be at least 2.0.

GL_MAX_TEXTURE_SIZE
params returns one value. The value gives a rough estimate of the largest texture that the
GL can handle. The value must be at least 1024. Use a proxy texture target such as
GL_PROXY_TEXTURE_1D or GL_PROXY_TEXTURE_2D to determine if a texture is too
large. See glTexImage1D and glTexImage2D.

GL_MAX_RENDERBUFFER_SIZE
params returns one value. The value indicates the maximum supported size for render-
buffers. See glFramebufferRenderbuffer.

GL_MAX_ARRAY_TEXTURE_LAYERS
params returns one value. The value indicates the maximum number of layers allowed
in an array texture, and must be at least 256. See glTexImage2D.

GL_MAX_TEXTURE_BUFFER_SIZE
params returns one value. The value gives the maximum number of texels allowed in
the texel array of a texture buffer object. Value must be at least 65536.

GL_MAX_UNIFORM_BLOCK_SIZE
params returns one value, the maximum size in basic machine units of a uniform block.
The value must be at least 16384. See glUniformBlockBinding.

GL_MAX_VARYING_FLOATS
params returns one value, the maximum number of interpolators available for process-
ing varying variables used by vertex and fragment shaders. This value represents the
number of individual floating-point values that can be interpolated; varying variables
declared as vectors, matrices, and arrays will all consume multiple interpolators. The
value must be at least 32.

772

ptg

glGet 773
C

GL_MAX_VERTEX_ATTRIBS
params returns one value, the maximum number of 4-component generic vertex attrib-
utes accessible to a vertex shader. The value must be at least 16. See glVertexAttrib.

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS
params returns one value, the maximum supported texture image units that can be used
to access texture maps from the vertex shader. The value may be at least 16. See
glActiveTexture.

GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS
params returns one value, the maximum supported texture image units that can be used
to access texture maps from the geometry shader. The value must be at least 16. See
glActiveTexture.

GL_MAX_VERTEX_UNIFORM_COMPONENTS
params returns one value, the maximum number of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a vertex shader. The value
must be at least 1024. See glUniform.

GL_MAX_VERTEX_OUTPUT_COMPONENTS
params returns one value, the maximum number of components of output written by a
vertex shader, which must be at least 64.

GL_MAX_GEOMETRY_UNIFORM_COMPONENTS
params returns one value, the maximum number of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a geometry shader. The
value must be at least 1024. See glUniform.

GL_MAX_SAMPLE_MASK_WORDS
params returns one value, the maximum number of sample mask words.

GL_MAX_COLOR_TEXTURE_SAMPLES
params returns one value, the maximum number of samples in a color multisample
texture.

GL_MAX_DEPTH_TEXTURE_SAMPLES
params returns one value, the maximum number of samples in a multisample depth or
depth-stencil texture.

GL_MAX_DEPTH_TEXTURE_SAMPLES
params returns one value, the maximum number of samples in a multisample depth or
depth-stencil texture.

GL_MAX_INTEGER_SAMPLES
params returns one value, the maximum number of samples supported in integer format
multisample buffers.

GL_MAX_SERVER_WAIT_TIMEOUT
params returns one value, the maximum glWaitSync timeout interval.

GL_MAX_UNIFORM_BUFFER_BINDINGS
params returns one value, the maximum number of uniform buffer binding points on
the context, which must be at least 36.

GL_MAX_UNIFORM_BLOCK_SIZE
params returns one value, the maximum size in basic machine units of a uniform block,
which must be at least 16384.

GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
params returns one value, the minimum required alignment for uniform buffer sizes and
offsets.

GL_MAX_VERTEX_UNIFORM_BLOCKS
params returns one value, the maximum number of uniform blocks per vertex shader.
The value must be at least 12. See glUniformBlockBinding.

ptg

GL_MAX_GEOMETRY_UNIFORM_BLOCKS
params returns one value, the maximum number of uniform blocks per geometry
shader. The value must be at least 12. See glUniformBlockBinding.

GL_MAX_GEOMETRY_INPUT_COMPONENTS
params returns one value, the maximum number of components of inputs read by a
geometry shader, which must be at least 64.

GL_MAX_GEOMETRY_OUTPUT_COMPONENTS
params returns one value, the maximum number of components of outputs written by a
geometry shader, which must be at least 128.

GL_MAX_VIEWPORT_DIMS
params returns two values: the maximum supported width and height of the viewport.
These must be at least as large as the visible dimensions of the display being rendered to.
See glViewport.

GL_NUM_COMPRESSED_TEXTURE_FORMATS
params returns a single integer value indicating the number of available compressed
texture formats. The minimum value is 4. See glCompressedTexImage2D.

GL_PACK_ALIGNMENT
params returns one value, the byte alignment used for writing pixel data to memory.
The initial value is 4. See glPixelStore.

GL_PACK_IMAGE_HEIGHT
params returns one value, the image height used for writing pixel data to memory. The
initial value is 0. See glPixelStore.

GL_PACK_LSB_FIRST
params returns a single boolean value indicating whether single-bit pixels being written
to memory are written first to the least significant bit of each unsigned byte. The initial
value is GL_FALSE. See glPixelStore.

GL_PACK_ROW_LENGTH
params returns one value, the row length used for writing pixel data to memory. The
initial value is 0. See glPixelStore.

GL_PACK_SKIP_IMAGES
params returns one value, the number of pixel images skipped before the first pixel is
written into memory. The initial value is 0. See glPixelStore.

GL_PACK_SKIP_PIXELS
params returns one value, the number of pixel locations skipped before the first pixel is
written into memory. The initial value is 0. See glPixelStore.

GL_PACK_SKIP_ROWS
params returns one value, the number of rows of pixel locations skipped before the first
pixel is written into memory. The initial value is 0. See glPixelStore.

GL_PACK_SWAP_BYTES
params returns a single boolean value indicating whether the bytes of two-byte and four-
byte pixel indices and components are swapped before being written to memory. The
initial value is GL_FALSE. See glPixelStore.

GL_PIXEL_PACK_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the
target GL_PIXEL_PACK_BUFFER. If no buffer object is bound to this target, 0 is returned.
The initial value is 0. See glBindBuffer.

GL_PIXEL_UNPACK_BUFFER_BINDING
params returns a single value, the name of the buffer object currently bound to the
target GL_PIXEL_UNPACK_BUFFER. If no buffer object is bound to this target, 0 is
returned. The initial value is 0. See glBindBuffer.

774

ptg

glGet 775
C

GL_POINT_FADE_THRESHOLD_SIZE
params returns one value, the point size threshold for determining the point size. See
glPointParameter.

GL_PRIMITIVE_RESTART_INDEX
params returns one value, the current primitive restart index. The initial value is 0. See
glPrimitiveRestartIndex.

GL_PROVOKING_VERTEX
params returns one value, the currently selected provoking vertex convention. The
initial value is GL_LAST_VERTEX_CONVENTION. See glProvokingVertex.

GL_POINT_SIZE
params returns one value, the point size as specified by glPointSize. The initial value is 1.

GL_POINT_SIZE_GRANULARITY
params returns one value, the size difference between adjacent supported sizes for
antialiased points. See glPointSize.

GL_POINT_SIZE_RANGE
params returns two values: the smallest and largest supported sizes for antialiased points.
The smallest size must be at most 1, and the largest size must be at least 1. See
glPointSize.

GL_POLYGON_OFFSET_FACTOR
params returns one value, the scaling factor used to determine the variable offset that is
added to the depth value of each fragment generated when a polygon is rasterized. The
initial value is 0. See glPolygonOffset.

GL_POLYGON_OFFSET_UNITS
params returns one value. This value is multiplied by an implementation-specific value
and then added to the depth value of each fragment generated when a polygon is raster-
ized. The initial value is 0. See glPolygonOffset.

GL_POLYGON_OFFSET_FILL
params returns a single boolean value indicating whether polygon offset is enabled for
polygons in fill mode. The initial value is GL_FALSE. See glPolygonOffset.

GL_POLYGON_OFFSET_LINE
params returns a single boolean value indicating whether polygon offset is enabled for
polygons in line mode. The initial value is GL_FALSE. See glPolygonOffset.

GL_POLYGON_OFFSET_POINT
params returns a single boolean value indicating whether polygon offset is enabled for
polygons in point mode. The initial value is GL_FALSE. See glPolygonOffset.

GL_POLYGON_SMOOTH
params returns a single boolean value indicating whether antialiasing of polygons is
enabled. The initial value is GL_FALSE. See glPolygonMode.

GL_POLYGON_SMOOTH_HINT
params returns one value, a symbolic constant indicating the mode of the polygon
antialiasing hint. The initial value is GL_DONT_CARE. See glHint.

GL_READ_BUFFER
params returns one value, a symbolic constant indicating which color buffer is selected
for reading. The initial value is GL_BACK if there is a back buffer, otherwise it is
GL_FRONT. See glReadPixels.

GL_SAMPLE_BUFFERS
params returns a single integer value indicating the number of sample buffers associated
with the framebuffer. See glSampleCoverage.

GL_SAMPLE_COVERAGE_VALUE
params returns a single positive floating-point value indicating the current sample cover-
age value. See glSampleCoverage.

ptg

GL_SAMPLE_COVERAGE_INVERT
params returns a single boolean value indicating if the temporary coverage value should
be inverted. See glSampleCoverage.

GL_SAMPLER_BINDING
params returns a single value, the name of the sampler object currently bound to the
active texture unit. The initial value is 0. See glBindSampler.

GL_SAMPLES
params returns a single integer value indicating the coverage mask size. See
glSampleCoverage.

GL_SCISSOR_BOX
params returns four values: the and window coordinates of the scissor box, followed
by its width and height. Initially the and window coordinates are both 0 and the
width and height are set to the size of the window. See glScissor.

GL_SCISSOR_TEST
params returns a single boolean value indicating whether scissoring is enabled. The
initial value is GL_FALSE. See glScissor.

GL_STENCIL_BACK_FAIL
params returns one value, a symbolic constant indicating what action is taken for back-
facing polygons when the stencil test fails. The initial value is GL_KEEP. See
glStencilOpSeparate.

GL_STENCIL_BACK_FUNC
params returns one value, a symbolic constant indicating what function is used for back-
facing polygons to compare the stencil reference value with the stencil buffer value. The
initial value is GL_ALWAYS. See glStencilFuncSeparate.

GL_STENCIL_BACK_PASS_DEPTH_FAIL
params returns one value, a symbolic constant indicating what action is taken for back-
facing polygons when the stencil test passes, but the depth test fails. The initial value is
GL_KEEP. See glStencilOpSeparate.

GL_STENCIL_BACK_PASS_DEPTH_PASS
params returns one value, a symbolic constant indicating what action is taken for back-
facing polygons when the stencil test passes and the depth test passes. The initial value is
GL_KEEP. See glStencilOpSeparate.

GL_STENCIL_BACK_REF
params returns one value, the reference value that is compared with the contents of the
stencil buffer for back-facing polygons. The initial value is 0. See glStencilFuncSeparate.

GL_STENCIL_BACK_VALUE_MASK
params returns one value, the mask that is used for back-facing polygons to mask both
the stencil reference value and the stencil buffer value before they are compared. The
initial value is all 1’s. See glStencilFuncSeparate.

GL_STENCIL_BACK_WRITEMASK
params returns one value, the mask that controls writing of the stencil bitplanes for
back-facing polygons. The initial value is all 1’s. See glStencilMaskSeparate.

GL_STENCIL_CLEAR_VALUE
params returns one value, the index to which the stencil bitplanes are cleared. The
initial value is 0. See glClearStencil.

GL_STENCIL_FAIL
params returns one value, a symbolic constant indicating what action is taken when the
stencil test fails. The initial value is GL_KEEP. See glStencilOp. This stencil state only
affects non-polygons and front-facing polygons. Back-facing polygons use separate stencil
state. See glStencilOpSeparate.

yx
yx

776

ptg

glGet 777
C

GL_STENCIL_FUNC
params returns one value, a symbolic constant indicating what function is used to
compare the stencil reference value with the stencil buffer value. The initial value is
GL_ALWAYS. See glStencilFunc. This stencil state only affects non-polygons and front-
facing polygons. Back-facing polygons use separate stencil state. See
glStencilFuncSeparate.

GL_STENCIL_PASS_DEPTH_FAIL
params returns one value, a symbolic constant indicating what action is taken when the
stencil test passes, but the depth test fails. The initial value is GL_KEEP. See glStencilOp.
This stencil state only affects non-polygons and front-facing polygons. Back-facing poly-
gons use separate stencil state. See glStencilOpSeparate.

GL_STENCIL_PASS_DEPTH_PASS
params returns one value, a symbolic constant indicating what action is taken when the
stencil test passes and the depth test passes. The initial value is GL_KEEP. See glStencilOp.
This stencil state only affects non-polygons and front-facing polygons. Back-facing poly-
gons use separate stencil state. See glStencilOpSeparate.

GL_STENCIL_REF
params returns one value, the reference value that is compared with the contents of the
stencil buffer. The initial value is 0. See glStencilFunc. This stencil state only affects non-
polygons and front-facing polygons. Back-facing polygons use separate stencil state. See
glStencilFuncSeparate.

GL_STENCIL_TEST
params returns a single boolean value indicating whether stencil testing of fragments is
enabled. The initial value is GL_FALSE. See glStencilFunc and glStencilOp.

GL_STENCIL_VALUE_MASK
params returns one value, the mask that is used to mask both the stencil reference value
and the stencil buffer value before they are compared. The initial value is all 1’s. See
glStencilFunc. This stencil state only affects non-polygons and front-facing polygons.
Back-facing polygons use separate stencil state. See glStencilFuncSeparate.

GL_STENCIL_WRITEMASK
params returns one value, the mask that controls writing of the stencil bitplanes. The
initial value is all 1’s. See glStencilMask. This stencil state only affects non-polygons and
front-facing polygons. Back-facing polygons use separate stencil state. See
glStencilMaskSeparate.

GL_STEREO
params returns a single boolean value indicating whether stereo buffers (left and right)
are supported.

GL_SUBPIXEL_BITS
params returns one value, an estimate of the number of bits of subpixel resolution that
are used to position rasterized geometry in window coordinates. The value must be at
least 4.

GL_TEXTURE_BINDING_1D
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_1D. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_1D_ARRAY
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_1D_ARRAY. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_2D
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_2D. The initial value is 0. See glBindTexture.

ptg

GL_TEXTURE_BINDING_2D_ARRAY
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_2D_ARRAY. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_2D_MULTISAMPLE
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_2D_MULTISAMPLE. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_2D_MULTISAMPLE_ARRAY. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_3D
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_3D. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_BUFFER
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_BUFFER. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_CUBE_MAP
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_CUBE_MAP. The initial value is 0. See glBindTexture.

GL_TEXTURE_BINDING_RECTANGLE
params returns a single value, the name of the texture currently bound to the target
GL_TEXTURE_RECTANGLE. The initial value is 0. See glBindTexture.

GL_TEXTURE_COMPRESSION_HINT
params returns a single value indicating the mode of the texture compression hint. The
initial value is GL_DONT_CARE.

GL_TEXTURE_BUFFER_BINDING
params returns a single value, the name of the texture buffer object currently bound.
The initial value is 0. See glBindBuffer.

GL_TIMESTAMP
params returns a single value, the 64-bit value of the current GL time. See
glQueryCounter.

GL_TRANSFORM_FEEDBACK_BUFFER_BINDING
When used with non-indexed variants of glGet (such as glGetIntegerv), params
returns a single value, the name of the buffer object currently bound to the target
GL_TRANSFORM_FEEDBACK_BUFFER. If no buffer object is bound to this target, 0 is
returned. When used with indexed variants of glGet (such as glGetIntegeri_v),
params returns a single value, the name of the buffer object bound to the indexed trans-
form feedback attribute stream. The initial value is 0 for all targets. See glBindBuffer,
glBindBufferBase, and glBindBufferRange.

GL_TRANSFORM_FEEDBACK_BUFFER_START
When used with indexed variants of glGet (such as glGetInteger64i_v), params
returns a single value, the start offset of the binding range for each transform feedback
attribute stream. The initial value is 0 for all streams. See glBindBufferRange.

GL_TRANSFORM_FEEDBACK_BUFFER_SIZE
When used with indexed variants of glGet (such as glGetInteger64i_v), params
returns a single value, the size of the binding range for each transform feedback attribute
stream. The initial value is 0 for all streams. See glBindBufferRange.

GL_UNIFORM_BUFFER_BINDING
When used with non-indexed variants of glGet (such as glGetIntegerv), params
returns a single value, the name of the buffer object currently bound to the target
GL_UNIFORM_BUFFER. If no buffer object is bound to this target, 0 is returned. When
used with indexed variants of glGet (such as glGetIntegeri_v), params returns a
single value, the name of the buffer object bound to the indexed uniform buffer binding
point. The initial value is 0 for all targets. See glBindBuffer, glBindBufferBase, and
glBindBufferRange.

778

ptg

glGet 779
C

GL_UNIFORM_BUFFER_START
When used with indexed variants of glGet (such as glGetInteger64i_v), params
returns a single value, the start offset of the binding range for each indexed uniform
buffer binding. The initial value is 0 for all bindings. See glBindBufferRange.

GL_UNIFORM_BUFFER_SIZE
When used with indexed variants of glGet (such as glGetInteger64i_v), params
returns a single value, the size of the binding range for each indexed uniform buffer
binding. The initial value is 0 for all bindings. See glBindBufferRange.

GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
params returns a single value, the minimum required alignment for uniform buffer sizes
and offset. The initial value is 1. See glUniformBlockBinding.

GL_UNPACK_ALIGNMENT
params returns one value, the byte alignment used for reading pixel data from memory.
The initial value is 4. See glPixelStore.

GL_UNPACK_IMAGE_HEIGHT
params returns one value, the image height used for reading pixel data from memory.
The initial is 0. See glPixelStore.

GL_UNPACK_LSB_FIRST
params returns a single boolean value indicating whether single-bit pixels being read
from memory are read first from the least significant bit of each unsigned byte. The
initial value is GL_FALSE. See glPixelStore.

GL_UNPACK_ROW_LENGTH
params returns one value, the row length used for reading pixel data from memory. The
initial value is 0. See glPixelStore.

GL_UNPACK_SKIP_IMAGES
params returns one value, the number of pixel images skipped before the first pixel is
read from memory. The initial value is 0. See glPixelStore.

GL_UNPACK_SKIP_PIXELS
params returns one value, the number of pixel locations skipped before the first pixel is
read from memory. The initial value is 0. See glPixelStore.

GL_UNPACK_SKIP_ROWS
params returns one value, the number of rows of pixel locations skipped before the first
pixel is read from memory. The initial value is 0. See glPixelStore.

GL_UNPACK_SWAP_BYTES
params returns a single boolean value indicating whether the bytes of two-byte and four-
byte pixel indices and components are swapped after being read from memory. The
initial value is GL_FALSE. See glPixelStore.

GL_NUM_EXTENSIONS
params returns one value, the number of extensions supported by the GL implementa-
tion for the current context. See glGetString.

GL_MAJOR_VERSION
params returns one value, the major version number of the OpenGL API supported by
the current context.

GL_MINOR_VERSION
params returns one value, the minor version number of the OpenGL API supported by
the current context.

GL_CONTEXT_FLAGS
params returns one value, the flags with which the context was created (such as debug-
ging functionality).

GL_VERTEX_PROGRAM_POINT_SIZE
params returns a single boolean value indicating whether vertex program point size mode
is enabled. If enabled, and a vertex shader is active, then the point size is taken from the
shader built-in gl_PointSize. If disabled, and a vertex shader is active, then the point
size is taken from the point state as specified by glPointSize. The initial value is GL_FALSE.

ptg

GL_VIEWPORT
params returns four values: the and window coordinates of the viewport, followed by
its width and height. Initially the and window coordinates are both set to 0, and the
width and height are set to the width and height of the window into which the GL will
do its rendering. See glViewport.

Many of the boolean parameters can also be queried more easily using glIsEnabled.

Notes

The following parameters return the associated value for the active texture unit:
GL_TEXTURE_1D, GL_TEXTURE_BINDING_1D, GL_TEXTURE_2D, GL_TEXTURE_BINDING_2D,
GL_TEXTURE_3D and GL_TEXTURE_BINDING_3D.

GL_MAX_RECTANGLE_TEXTURE_SIZE, GL_MAX_TEXTURE_BUFFER_SIZE,
GL_UNIFORM_BUFFER_BINDING, GL_TEXTURE_BUFFER_BINDING,
GL_MAX_VERTEX_UNIFORM_BLOCKS, GL_MAX_FRAGMENT_UNIFORM_BLOCKS,
GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS,
GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS
GL_MAX_COMBINED_UNIFORM_BLOCKS, GL_MAX_UNIFORM_BLOCK_SIZE, and
GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT are available only if the GL version is 3.1 or greater.

GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS,
GL_MAX_GEOMETRY_UNIFORM_BLOCKS, GL_MAX_GEOMETRY_INPUT_COMPONENTS,
GL_MAX_GEOMETRY_OUTPUT_COMPONENTS, GL_MAX_GEOMETRY_OUTPUT_VERTICES,
GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS and
GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS are available only if the GL version is 3.2 or greater.

glGetInteger64v and glGetInteger64i_v are available only if the GL version is 3.2 or greater.
GL_MAX_DUALSOURCE_DRAW_BUFFERS, GL_SAMPLER_BINDING, and GL_TIMESTAMP are

available only if the GL version is 3.3 or greater.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_VALUE is generated on any of glGetBooleani_v, glGetIntegeri_v, or

glGetInteger64i_v if index is outside of the valid range for the indexed state target.

See Also

glGetActiveUniform, glGetAttachedShaders, glGetAttribLocation,
glGetBufferParameter, glGetBufferPointerv, glGetBufferSubData,
glGetCompressedTexImage, glGetError, glGetProgram, glGetProgramInfoLog,
glGetQueryiv, glGetQueryObject, glGetShader, glGetShaderInfoLog,
glGetShaderSource, glGetString, glGetTexImage, glGetTexLevelParameter,
glGetTexParameter, glGetUniform, glGetUniformLocation, glGetVertexAttrib,
glGetVertexAttribPointerv, glIsEnabled

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glGetActiveAttrib

Returns information about an active attribute variable for the specified program object

C Specification

void glGetActiveAttrib(GLuint program,
GLuint index,
GLsizei bufSize,

yx
yx

780

ptg

glGetActiveAttrib 781
C

GLsizei * length,
GLint * size,
GLenum * type,
GLchar * name);

Parameters

program
Specifies the program object to be queried.

index
Specifies the index of the attribute variable to be queried.

bufSize
Specifies the maximum number of characters OpenGL is allowed to write in the character
buffer indicated by name.

length
Returns the number of characters actually written by OpenGL in the string indicated by
name (excluding the null terminator) if a value other than NULL is passed.

size
Returns the size of the attribute variable.

type
Returns the data type of the attribute variable.

name
Returns a null terminated string containing the name of the attribute variable.

Description

glGetActiveAttrib returns information about an active attribute variable in the program object
specified by program. The number of active attributes can be obtained by calling glGetProgram with
the value GL_ACTIVE_ATTRIBUTES. A value of 0 for index selects the first active attribute variable.
Permissible values for index range from 0 to the number of active attribute variables minus 1.

A vertex shader may use either built-in attribute variables, user-defined attribute variables, or
both. Built-in attribute variables have a prefix of “gl_” and reference conventional OpenGL vertex
attributes (e.g., gl_Vertex, gl_Normal, etc., see the OpenGL Shading Language specification for a
complete list.) User-defined attribute variables have arbitrary names and obtain their values through
numbered generic vertex attributes. An attribute variable (either built-in or user-defined) is considered
active if it is determined during the link operation that it may be accessed during program execution.
Therefore, program should have previously been the target of a call to glLinkProgram, but it is not
necessary for it to have been linked successfully.

The size of the character buffer required to store the longest attribute variable name in program
can be obtained by calling glGetProgram with the value GL_ACTIVE_ATTRIBUTE_MAX_LENGTH. This
value should be used to allocate a buffer of sufficient size to store the returned attribute name. The size
of this character buffer is passed in bufSize, and a pointer to this character buffer is passed in name.

glGetActiveAttrib returns the name of the attribute variable indicated by index, storing it in
the character buffer specified by name. The string returned will be null terminated. The actual number
of characters written into this buffer is returned in length, and this count does not include the null
termination character. If the length of the returned string is not required, a value of NULL can be
passed in the length argument.

The type argument will return a pointer to the attribute variable’s data type. The symbolic
constants GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_VEC4, GL_FLOAT_MAT2,
GL_FLOAT_MAT3, GL_FLOAT_MAT4, GL_FLOAT_MAT2x3, GL_FLOAT_MAT2x4, GL_FLOAT_MAT3x2,
GL_FLOAT_MAT3x4, GL_FLOAT_MAT4x2, GL_FLOAT_MAT4x3, GL_INT, GL_INT_VEC2,
GL_INT_VEC3, GL_INT_VEC4, GL_UNSIGNED_INT_VEC, GL_UNSIGNED_INT_VEC2,
GL_UNSIGNED_INT_VEC3, or GL_UNSIGNED_INT_VEC4 may be returned. The size argument will
return the size of the attribute, in units of the type returned in type.

ptg

The list of active attribute variables may include both built-in attribute variables (which begin
with the prefix “gl_”) as well as user-defined attribute variable names.

This function will return as much information as it can about the specified active attribute vari-
able. If no information is available, length will be 0, and name will be an empty string. This situation
could occur if this function is called after a link operation that failed. If an error occurs, the return
values length, size, type, and name will be unmodified.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_VALUE is generated if index is greater than or equal to the number of active

attribute variables in program.
GL_INVALID_VALUE is generated if bufSize is less than 0.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS.
glGetProgram with argument GL_ACTIVE_ATTRIBUTES or

GL_ACTIVE_ATTRIBUTE_MAX_LENGTH.
glIsProgram

See Also

glBindAttribLocation, glLinkProgram, glVertexAttrib, glVertexAttribPointer

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. Copyright © 2010 Khronos Group. This material may be
distributed subject to the terms and conditions set forth in the Open Publication License, v 1.0, 8
June 1999. http://opencontent.org/openpub/.

glGetActiveUniform

Returns information about an active uniform variable for the specified program object

C Specification

void glGetActiveUniform(GLuint program,
GLuint index,
GLsizei bufSize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name);

Parameters

program
Specifies the program object to be queried.

index
Specifies the index of the uniform variable to be queried.

bufSize
Specifies the maximum number of characters OpenGL is allowed to write in the character
buffer indicated by name.

782

ptg

glGetActiveUniform 783
C

length
Returns the number of characters actually written by OpenGL in the string indicated by
name (excluding the null terminator) if a value other than NULL is passed.

size
Returns the size of the uniform variable.

type
Returns the data type of the uniform variable.

name
Returns a null terminated string containing the name of the uniform variable.

Description

glGetActiveUniform returns information about an active uniform variable in the program
object specified by program. The number of active uniform variables can be obtained by calling
glGetProgram with the value GL_ACTIVE_UNIFORMS. A value of 0 for index selects the first active
uniform variable. Permissible values for index range from 0 to the number of active uniform vari-
ables minus 1.

Shaders may use either built-in uniform variables, user-defined uniform variables, or both. Built-in
uniform variables have a prefix of “gl_” and reference existing OpenGL state or values derived from
such state (e.g., gl_DepthRangeParameters, see the OpenGL Shading Language specification for a
complete list.) User-defined uniform variables have arbitrary names and obtain their values from the
application through calls to glUniform. A uniform variable (either built-in or user-defined) is consid-
ered active if it is determined during the link operation that it may be accessed during program execu-
tion. Therefore, program should have previously been the target of a call to glLinkProgram, but it is
not necessary for it to have been linked successfully.

The size of the character buffer required to store the longest uniform variable name in program
can be obtained by calling glGetProgram with the value GL_ACTIVE_UNIFORM_MAX_LENGTH. This
value should be used to allocate a buffer of sufficient size to store the returned uniform variable
name. The size of this character buffer is passed in bufSize, and a pointer to this character buffer is
passed in name.

glGetActiveUniform returns the name of the uniform variable indicated by index, storing it in
the character buffer specified by name. The string returned will be null terminated. The actual number
of characters written into this buffer is returned in length, and this count does not include the null
termination character. If the length of the returned string is not required, a value of NULL can be
passed in the length argument.

The type argument will return a pointer to the uniform variable’s data type. The symbolic
constants returned for uniform types are shown in the table below.

If one or more elements of an array are active, the name of the array is returned in name, the type
is returned in type, and the size parameter returns the highest array element index used, plus one,
as determined by the compiler and/or linker. Only one active uniform variable will be reported for a
uniform array.

Uniform variables that are declared as structures or arrays of structures will not be returned
directly by this function. Instead, each of these uniform variables will be reduced to its fundamental
components containing the “.” and “[]” operators such that each of the names is valid as an argu-
ment to glGetUniformLocation. Each of these reduced uniform variables is counted as one active
uniform variable and is assigned an index. A valid name cannot be a structure, an array of structures,
or a subcomponent of a vector or matrix.

Returned Symbolic Contant Shader Uniform Type

GL_FLOAT float

GL_FLOAT_VEC2 vec2

ptg

784

Returned Symbolic Contant Shader Uniform Type

GL_FLOAT_VEC3 vec3

GL_FLOAT_VEC4 vec4

GL_INT int

GL_INT_VEC2 ivec2

GL_INT_VEC3 ivec3

GL_INT_VEC4 ivec4

GL_UNSIGNED_INT unsigned int

GL_UNSIGNED_INT_VEC2 uvec2

GL_UNSIGNED_INT_VEC3 uvec3

GL_UNSIGNED_INT_VEC4 uvec4

GL_BOOL bool

GL_BOOL_VEC2 bvec2

GL_BOOL_VEC3 bvec3

GL_BOOL_VEC4 bvec4

GL_FLOAT_MAT2 mat2

GL_FLOAT_MAT3 mat3

GL_FLOAT_MAT4 mat4

GL_FLOAT_MAT2x3 mat2x3

GL_FLOAT_MAT2x4 mat2x4

GL_FLOAT_MAT3x2 mat3x2

GL_FLOAT_MAT3x4 mat3x4

GL_FLOAT_MAT4x2 mat4x2

GL_FLOAT_MAT4x3 mat4x3

GL_SAMPLER_1D sampler1D

GL_SAMPLER_2D sampler2D

GL_SAMPLER_3D sampler3D

GL_SAMPLER_CUBE samplerCube

GL_SAMPLER_1D_SHADOW sampler1DShadow

GL_SAMPLER_2D_SHADOW sampler2DShadow

ptg

glGetActiveUniform 785
C

Returned Symbolic Contant Shader Uniform Type

GL_SAMPLER_1D_ARRAY sampler1DArray

GL_SAMPLER_2D_ARRAY sampler2DArray

GL_SAMPLER_1D_ARRAY_SHADOW sampler1DArrayShadow

GL_SAMPLER_2D_ARRAY_SHADOW sampler2DArrayShadow

GL_SAMPLER_2D_MULTISAMPLE sampler2DMS

GL_SAMPLER_2D_MULTISAMPLE_ARRAY sampler2DMSArray

GL_SAMPLER_CUBE_SHADOW samplerCubeShadow

GL_SAMPLER_BUFFER samplerBuffer

GL_SAMPLER_2D_RECT sampler2DRect

GL_SAMPLER_2D_RECT_SHADOW sampler2DRectShadow

GL_INT_SAMPLER_1D isampler1D

GL_INT_SAMPLER_2D isampler2D

GL_INT_SAMPLER_3D isampler3D

GL_INT_SAMPLER_CUBE isamplerCube

GL_INT_SAMPLER_1D_ARRAY isampler1DArray

GL_INT_SAMPLER_2D_ARRAY isampler2DArray

GL_INT_SAMPLER_2D_MULTISAMPLE isampler2DMS

GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY isampler2DMSArray

GL_INT_SAMPLER_BUFFER isamplerBuffer

GL_INT_SAMPLER_2D_RECT isampler2DRect

GL_UNSIGNED_INT_SAMPLER_1D usampler1D

GL_UNSIGNED_INT_SAMPLER_2D usampler2D

GL_UNSIGNED_INT_SAMPLER_3D usampler3D

GL_UNSIGNED_INT_SAMPLER_CUBE usamplerCube

GL_UNSIGNED_INT_SAMPLER_1D_ARRAY usampler2DArray

GL_UNSIGNED_INT_SAMPLER_2D_ARRAY usampler2DArray

GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE usampler2DMS

GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_

ARRAY

usampler2DMSArray

ptg

786

The size of the uniform variable will be returned in size. Uniform variables other than arrays will
have a size of 1. Structures and arrays of structures will be reduced as described earlier, such that each
of the names returned will be a data type in the earlier list. If this reduction results in an array, the
size returned will be as described for uniform arrays; otherwise, the size returned will be 1.

The list of active uniform variables may include both built-in uniform variables (which begin with
the prefix “gl_”) as well as user-defined uniform variable names.

This function will return as much information as it can about the specified active uniform vari-
able. If no information is available, length will be 0, and name will be an empty string. This situation
could occur if this function is called after a link operation that failed. If an error occurs, the return
values length, size, type, and name will be unmodified.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_VALUE is generated if index is greater than or equal to the number of active

uniform variables in program.
GL_INVALID_VALUE is generated if bufSize is less than 0.

Associated Gets

glGet with argument GL_MAX_VERTEX_UNIFORM_COMPONENTS,
GL_MAX_GEOMETRY_UNIFORM_COMPONENTS, GL_MAX_FRAGMENT_UNIFORM_COMPONENTS,
or GL_MAX_COMBINED_UNIFORM_COMPONENTS.

glGetProgram with argument GL_ACTIVE_UNIFORMS or GL_ACTIVE_UNIFORM_MAX_LENGTH.
glIsProgram

See Also

glGetUniform, glGetUniformLocation, glLinkProgram, glUniform, glUseProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. Copyright © 2010 Khronos Group This material may be
distributed subject to the terms and conditions set forth in the Open Publication License, v 1.0, 8
June 1999. http://opencontent.org/openpub/.

glGetActiveUniformBlock

query information about an active uniform block

C Specification

void glGetActiveUniformBlockiv(GLuint program,
GLuint uniformBlockIndex,
GLenum pname,
GLint params);

Returned Symbolic Contant Shader Uniform Type

GL_UNSIGNED_INT_SAMPLER_BUFFER usamplerBuffer

GL_UNSIGNED_INT_SAMPLER_2D_RECT usampler2DRect

ptg

glGetActiveUniformBlock 787
C

Parameters

program
Specifies the name of a program containing the uniform block.

uniformBlockIndex
Specifies the index of the uniform block within program.

pname
Specifies the name of the parameter to query.

params
Specifies the address of a variable to receive the result of the query.

Description

glGetActiveUniformBlockiv retrieves information about an active uniform block within
program.

program must be the name of a program object for which the command glLinkProgram must
have been called in the past, although it is not required that glLinkProgram must have succeeded. The
link could have failed because the number of active uniforms exceeded the limit.

uniformBlockIndex is an active uniform block index of program, and must be less than the
value of GL_ACTIVE_UNIFORM_BLOCKS.

Upon success, the uniform block parameter(s) specified by pname are returned in params. If an
error occurs, nothing will be written to params.

If pname is GL_UNIFORM_BLOCK_BINDING, then the index of the uniform buffer binding point
last selected by the uniform block specified by uniformBlockIndex for program is returned. If no
uniform block has been previously specified, zero is returned.

If pname is GL_UNIFORM_BLOCK_DATA_SIZE, then the implementation-dependent minimum
total buffer object size, in basic machine units, required to hold all active uniforms in the uniform
block identified by uniformBlockIndex is returned. It is neither guaranteed nor expected that a
given implementation will arrange uniform values as tightly packed in a buffer object. The exception
to this is the std140 uniform block layout, which guarantees specific packing behavior and does
not require the application to query for offsets and strides. In this case the minimum size may still be
queried, even though it is determined in advance based only on the uniform block declaration.

If pname is GL_UNIFORM_BLOCK_NAME_LENGTH, then the total length (including the nul
terminator) of the name of the uniform block identified by uniformBlockIndex is returned.

If pname is GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, then the number of active uniforms in
the uniform block identified by uniformBlockIndex is returned.

If pname is GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the active uniform
indices for the uniform block identified by uniformBlockIndex is returned. The number of elements
that will be written to params is the value of GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS for
uniformBlockIndex.

If pname is GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER,
GL_UNIFORM_BLOCK_REFERENCED_BY_GEOMETRY_SHADER, or GL_UNIFORM_BLOCK_
REFERENCED_BY_FRAGMENT_SHADER, then a boolean value indicating whether the uniform block
identified by uniformBlockIndex is referenced by the vertex, geometry, or fragment programming
stages of program, respectively, is returned.

Errors

GL_INVALID_VALUE is generated if uniformBlockIndex is greater than or equal to the value of
GL_ACTIVE_UNIFORM_BLOCKS or is not the index of an active uniform block in program.

GL_INVALID_ENUM is generated if pname is not one of the accepted tokens.
GL_INVALID_OPERATION is generated if program is not the name of a program object for which

glLinkProgram has been called in the past.

ptg

788

Notes

glGetActiveUniformBlockiv is available only if the GL version is 3.1 or greater.

See Also

glGetActiveUniformBlockName, glGetUniformBlockIndex, glLinkProgram

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetActiveUniformBlockName

retrieve the name of an active uniform block

C Specification

void glGetActiveUniformBlockName(GLuint program,
GLuint uniformBlockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *uniformBlockName);

Parameters

program
Specifies the name of a program containing the uniform block.

uniformBlockIndex
Specifies the index of the uniform block within program.

bufSize
Specifies the size of the buffer addressed by uniformBlockName.

length
Specifies the address of a variable to receive the number of characters that were written
to uniformBlockName.

uniformBlockName
Specifies the address of an array of characters to receive the name of the uniform block at
uniformBlockIndex.

Description

glGetActiveUniformBlockName retrieves the name of the active uniform block at
uniformBlockIndex within program.

program must be the name of a program object for which the command glLinkProgram must
have been called in the past, although it is not required that glLinkProgram must have succeeded. The
link could have failed because the number of active uniforms exceeded the limit.

uniformBlockIndex is an active uniform block index of program, and must be less than the
value of GL_ACTIVE_UNIFORM_BLOCKS.

Upon success, the name of the uniform block identified by unifomBlockIndex is returned into
uniformBlockName. The name is nul-terminated. The actual number of characters written into
uniformBlockName, excluding the nul terminator, is returned in length. If length is NULL, no
length is returned.

bufSize contains the maximum number of characters (including the nul terminator) that will be
written into uniformBlockName.

If an error occurs, nothing will be written to uniformBlockName or length.

ptg

glGetActiveUniformName 789
C

Errors

GL_INVALID_OPERATION is generated if program is not the name of a program object for which
glLinkProgram has been called in the past.

GL_INVALID_VALUE is generated if uniformBlockIndex is greater than or equal to the value of
GL_ACTIVE_UNIFORM_BLOCKS or is not the index of an active uniform block in program.

Notes

glGetActiveUniformBlockName is available only if the GL version is 3.1 or greater.

See Also

glGetActiveUniformBlock, glGetUniformBlockIndex

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetActiveUniformName

query the name of an active uniform

C Specification

void glGetActiveUniformName(GLuint program,
GLuint uniformIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *uniformName);

Parameters

program
Specifies the program containing the active uniform index uniformIndex.

uniformIndex
Specifies the index of the active uniform whose name to query.

bufSize
Specifies the size of the buffer, in units of GLchar, of the buffer whose address is speci-
fied in uniformName.

length
Specifies the address of a variable that will receive the number of characters that were or
would have been written to the buffer addressed by uniformName.

uniformName
Specifies the address of a buffer into which the GL will place the name of the active
uniform at uniformIndex within program.

Description

glGetActiveUniformName returns the name of the active uniform at uniformIndex within
program. If uniformName is not NULL, up to bufSize characters (including a nul-terminator) will be
written into the array whose address is specified by uniformName. If length is not NULL, the number
of characters that were (or would have been) written into uniformName (not including the nul-termi-
nator) will be placed in the variable whose address is specified in length. If length is NULL, no
length is returned. The length of the longest uniform name in program is given by the value of
GL_ACTIVE_UNIFORM_MAX_LENGTH, which can be queried with glGetProgram.

ptg

790

If glGetActiveUniformName is not successful, nothing is written to length or uniformName.
program must be the name of a program for which the command glLinkProgram has been issued

in the past. It is not necessary for program to have been linked successfully. The link could have
failed because the number of active uniforms exceeded the limit.

uniformIndex must be an active uniform index of the program program, in the range zero to
GL_ACTIVE_UNIFORMS - 1. The value of GL_ACTIVE_UNIFORMS can be queried with glGetProgram.

Errors

GL_INVALID_VALUE is generated if uniformIndex is greater than or equal to the value of
GL_ACTIVE_UNIFORMS.

GL_INVALID_VALUE is generated if bufSize is negative.
GL_INVALID_VALUE is generated if program is not the name of a program object for which

glLinkProgram has been issued.

See Also

glGetActiveUniform, glGetUniformIndices, glGetProgram, glLinkProgram

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetAttachedShaders

Returns the handles of the shader objects attached to a program object

C Specification

void glGetAttachedShaders(GLuint program,
GLsizei maxCount,
GLsizei * count,
GLuint * shaders);

Parameters

program
Specifies the program object to be queried.

maxCount
Specifies the size of the array for storing the returned object names.

count
Returns the number of names actually returned in objects.

shaders
Specifies an array that is used to return the names of attached shader objects.

Description

glGetAttachedShaders returns the names of the shader objects attached to program. The
names of shader objects that are attached to program will be returned in shaders. The actual
number of shader names written into shaders is returned in count. If no shader objects are
attached to program, count is set to 0. The maximum number of shader names that may be returned
in shaders is specified by maxCount.

If the number of names actually returned is not required (for instance, if it has just been obtained
by calling glGetProgram), a value of NULL may be passed for count. If no shader objects are attached
to program, a value of 0 will be returned in count. The actual number of attached shaders can be
obtained by calling glGetProgram with the value GL_ATTACHED_SHADERS.

ptg

glGetAttribLocation 791
C

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_VALUE is generated if maxCount is less than 0.

Associated Gets

glGetProgram with argument GL_ATTACHED_SHADERS
glIsProgram

See Also

glAttachShader, glDetachShader.

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetAttribLocation

Returns the location of an attribute variable

C Specification

GLint glGetAttribLocation(GLuint program,
const GLchar * name);

Parameters

program
Specifies the program object to be queried.

name
Points to a null terminated string containing the name of the attribute variable whose
location is to be queried.

Description

glGetAttribLocation queries the previously linked program object specified by program for
the attribute variable specified by name and returns the index of the generic vertex attribute that is
bound to that attribute variable. If name is a matrix attribute variable, the index of the first column of
the matrix is returned. If the named attribute variable is not an active attribute in the specified
program object or if name starts with the reserved prefix “gl_”, a value of -1 is returned.

The association between an attribute variable name and a generic attribute index can be specified
at any time by calling glBindAttribLocation. Attribute bindings do not go into effect until
glLinkProgram is called. After a program object has been linked successfully, the index values for
attribute variables remain fixed until the next link command occurs. The attribute values can only be
queried after a link if the link was successful. glGetAttribLocation returns the binding that actu-
ally went into effect the last time glLinkProgram was called for the specified program object. Attribute
bindings that have been specified since the last link operation are not returned by
glGetAttribLocation.

ptg

792

Errors

GL_INVALID_OPERATION is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program has not been successfully linked.

Associated Gets

glGetActiveAttrib with argument program and the index of an active attribute
glIsProgram

See Also

glBindAttribLocation, glLinkProgram, glVertexAttrib, glVertexAttribPointer

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetBufferParameteriv

return parameters of a buffer object

C Specification

void glGetBufferParameteriv(GLenum target,
GLenum value,
GLint * data);

Parameters

target
Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_TEXTURE_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

value
Specifies the symbolic name of a buffer object parameter. Accepted values are
GL_BUFFER_ACCESS, GL_BUFFER_MAPPED, GL_BUFFER_SIZE, or GL_BUFFER_USAGE.

data
Returns the requested parameter.

Description

glGetBufferParameteriv returns in data a selected parameter of the buffer object specified by
target.

value names a specific buffer object parameter, as follows:
GL_BUFFER_ACCESS

params returns the access policy set while mapping the buffer object. The initial value is
GL_READ_WRITE.

GL_BUFFER_MAPPED
params returns a flag indicating whether the buffer object is currently mapped. The
initial value is GL_FALSE.

GL_BUFFER_SIZE
params returns the size of the buffer object, measured in bytes. The initial value is 0.

ptg

glGetBufferPointerv 793
C

GL_BUFFER_USAGE
params returns the buffer object’s usage pattern. The initial value is GL_STATIC_DRAW.

Notes

If an error is generated, no change is made to the contents of data.

Errors

GL_INVALID_ENUM is generated if target or value is not an accepted value.
GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.

See Also

glBindBuffer, glBufferData, glMapBuffer, glUnmapBuffer

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetBufferPointerv

return the pointer to a mapped buffer object’s data store

C Specification

void glGetBufferPointerv(GLenum target,
GLenum pname,
GLvoid ** params);

Parameters

target
Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_TEXTURE_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

pname
Specifies the pointer to be returned. The symbolic constant must be
GL_BUFFER_MAP_POINTER.

params
Returns the pointer value specified by pname.

Description

glGetBufferPointerv returns pointer information. pname is a symbolic constant indicating the
pointer to be returned, which must be GL_BUFFER_MAP_POINTER, the pointer to which the buffer
object’s data store is mapped. If the data store is not currently mapped, NULL is returned. params is a
pointer to a location in which to place the returned pointer value.

Notes

If an error is generated, no change is made to the contents of params.
The initial value for the pointer is NULL.

ptg

794

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.
GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.

See Also

glBindBuffer, glMapBuffer

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetBufferSubData

returns a subset of a buffer object’s data store

C Specification

void glGetBufferSubData(GLenum target,
GLintptr offset,
GLsizeiptr size,
GLvoid * data);

Parameters

target
Specifies the target buffer object. The symbolic constant must be GL_ARRAY_BUFFER,
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_TEXTURE_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

offset
Specifies the offset into the buffer object’s data store from which data will be returned,
measured in bytes.

size
Specifies the size in bytes of the data store region being returned.

data
Specifies a pointer to the location where buffer object data is returned.

Description

glGetBufferSubData returns some or all of the data from the buffer object currently bound to
target. Data starting at byte offset offset and extending for size bytes is copied from the data
store to the memory pointed to by data. An error is thrown if the buffer object is currently mapped,
or if offset and size together define a range beyond the bounds of the buffer object’s data store.

Notes

If an error is generated, no change is made to the contents of data.

ptg

glGetCompressedTexImage 795
C

Errors

GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, or GL_PIXEL_UNPACK_BUFFER.

GL_INVALID_VALUE is generated if offset or size is negative, or if together they define a
region of memory that extends beyond the buffer object’s allocated data store.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_INVALID_OPERATION is generated if the buffer object being queried is mapped.

See Also

glBindBuffer, glBufferData, glBufferSubData, glMapBuffer, glUnmapBuffer

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetCompressedTexImage

return a compressed texture image

C Specification

void glGetCompressedTexImage(GLenum target,
GLint lod,
GLvoid * img);

Parameters

target
Specifies which texture is to be obtained. GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, and
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z are accepted.

lod
Specifies the level-of-detail number of the desired image. Level 0 is the base image level.
Level is the th mipmap reduction image.

img
Returns the compressed texture image.

Description

glGetCompressedTexImage returns the compressed texture image associated with target and
lod into img. img should be an array of GL_TEXTURE_COMPRESSED_IMAGE_SIZE bytes. target
specifies whether the desired texture image was one specified by glTexImage1D (GL_TEXTURE_1D),
glTexImage2D (GL_TEXTURE_2D or any of GL_TEXTURE_CUBE_MAP_*), or glTexImage3D
(GL_TEXTURE_3D). lod specifies the level-of-detail number of the desired image.

nn

ptg

796

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a texture image is requested, img is treated as a byte offset into the buffer object’s
data store.

To minimize errors, first verify that the texture is compressed by calling glGetTexLevelParameter
with argument GL_TEXTURE_COMPRESSED. If the texture is compressed, then determine the amount
of memory required to store the compressed texture by calling glGetTexLevelParameter with argument
GL_TEXTURE_COMPRESSED_IMAGE_SIZE. Finally, retrieve the internal format of the texture by
calling glGetTexLevelParameter with argument GL_TEXTURE_INTERNAL_FORMAT. To store the
texture for later use, associate the internal format and size with the retrieved texture image. These
data can be used by the respective texture or subtexture loading routine used for loading target
textures.

Errors

GL_INVALID_VALUE is generated if lod is less than zero or greater than the maximum number of
LODs permitted by the implementation.

GL_INVALID_OPERATION is generated if glGetCompressedTexImage is used to retrieve a
texture that is in an uncompressed internal format.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

Associated Gets

glGetTexLevelParameter with argument GL_TEXTURE_COMPRESSED
glGetTexLevelParameter with argument GL_TEXTURE_COMPRESSED_IMAGE_SIZE
glGetTexLevelParameter with argument GL_TEXTURE_INTERNAL_FORMAT
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage2D,
glCompressedTexSubImage3D, glReadPixels, glTexImage1D, glTexImage2D,
glTexImage3D, glTexParameter, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glGetError

return error information

C Specification

GLenum glGetError(void);

ptg

glGetFragDataIndex 797
C

Description

glGetError returns the value of the error flag. Each detectable error is assigned a numeric code
and symbolic name. When an error occurs, the error flag is set to the appropriate error code value. No
other errors are recorded until glGetError is called, the error code is returned, and the flag is reset to
GL_NO_ERROR. If a call to glGetError returns GL_NO_ERROR, there has been no detectable error
since the last call to glGetError, or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any single error flag
has recorded an error, the value of that flag is returned and that flag is reset to GL_NO_ERROR when
glGetError is called. If more than one flag has recorded an error, glGetError returns and clears an
arbitrary error flag value. Thus, glGetError should always be called in a loop, until it returns
GL_NO_ERROR, if all error flags are to be reset.

Initially, all error flags are set to GL_NO_ERROR.
The following errors are currently defined:
GL_NO_ERROR

No error has been recorded. The value of this symbolic constant is guaranteed to be 0.
GL_INVALID_ENUM

An unacceptable value is specified for an enumerated argument. The offending command
is ignored and has no other side effect than to set the error flag.

GL_INVALID_VALUE
A numeric argument is out of range. The offending command is ignored and has no
other side effect than to set the error flag.

GL_INVALID_OPERATION
The specified operation is not allowed in the current state. The offending command is
ignored and has no other side effect than to set the error flag.

GL_INVALID_FRAMEBUFFER_OPERATION
The framebuffer object is not complete. The offending command is ignored and has no
other side effect than to set the error flag.

GL_OUT_OF_MEMORY
There is not enough memory left to execute the command. The state of the GL is unde-
fined, except for the state of the error flags, after this error is recorded.

When an error flag is set, results of a GL operation are undefined only if GL_OUT_OF_MEMORY
has occurred. In all other cases, the command generating the error is ignored and has no effect on the
GL state or frame buffer contents. If the generating command returns a value, it returns 0. If
glGetError itself generates an error, it returns 0.

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glGetFragDataIndex

query the bindings of color indices to user-defined varying out variables

C Specification

GLint glGetFragDataIndex(GLuint program,
const char * name);

ptg

798

Parameters

program
The name of the program containing varying out variable whose binding to query

name
The name of the user-defined varying out variable whose index to query

Description

glGetFragDataIndex returns the index of the fragment color to which the variable name was
bound when the program object program was last linked. If name is not a varying out variable of
program, or if an error occurs, -1 will be returned.

Notes

glGetFragDataIndex is available only if the GL version is 3.3 or greater.

Errors

GL_INVALID_OPERATION is generated if program is not the name of a program object.

See Also

glCreateProgram, glBindFragDataLocation, glBindFragDataLocationIndexed,
glGetFragDataLocation

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetFragDataLocation

query the bindings of color numbers to user-defined varying out variables

C Specification

GLint glGetFragDataLocation(GLuint program,
const char * name);

Parameters

program
The name of the program containing varying out variable whose binding to query

name
The name of the user-defined varying out variable whose binding to query

Description

glGetFragDataLocation retrieves the assigned color number binding for the user-defined
varying out variable name for program program. program must have previously been linked. name
must be a null-terminated string. If name is not the name of an active user-defined varying out frag-
ment shader variable within program, -1 will be returned.

ptg

glGetFramebufferAttachmentParameteriv 799
C

Errors

GL_INVALID_OPERATION is generated if program is not the name of a program object.

See Also

glCreateProgram, glBindFragDataLocation

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetFramebufferAttachmentParameteriv

retrieve information about attachments of a bound framebuffer object

C Specification

void glGetFramebufferAttachmentParameter(GLenum target,
GLenum attachment,
GLenum pname,
GLint *params);

Parameters

target
Specifies the target of the query operation.

attachment
Specifies the attachment within target

pname
Specifies the parameter of attachment to query.

params
Specifies the address of a variable receive the value of pname for attachment.

Description

glGetFramebufferAttachmentParameter returns information about attachments of a bound
framebuffer object. target specifies the framebuffer binding point and must be GL_DRAW_
FRAMEBUFFER, GL_READ_FRAMEBUFFER or GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent to
GL_DRAW_FRAMEBUFFER.

If the default framebuffer is bound to target then attachment must be one of GL_FRONT_LEFT,
GL_FRONT_RIGHT, GL_BACK_LEFT, or GL_BACK_RIGHT, identifying a color buffer, GL_DEPTH, iden-
tifying the depth buffer, or GL_STENCIL, identifying the stencil buffer.

If a framebuffer object is bound, then attachment must be one of GL_COLOR_ATTACHMENTi,
GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT, or GL_DEPTH_STENCIL_ATTACHMENT. i
in GL_COLOR_ATTACHMENTi must be in the range zero to the value of GL_MAX_COLOR_
ATTACHMENTS - 1.

If attachment is GL_DEPTH_STENCIL_ATTACHMENT and different objects are bound to the
depth and stencil attachment points of target the query will fail. If the same object is bound to both
attachment points, information about that object will be returned.

ptg

800

Upon successful return from glGetFramebufferAttachmentParameteriv, if pname is
GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then params will contain one of GL_NONE,
GL_FRAMEBUFFER_DEFAULT, GL_TEXTURE, or GL_RENDERBUFFER, identifying the type of object
which contains the attached image. Other values accepted for pname depend on the type of object, as
described below.

If the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE, no framebuffer is
bound to target. In this case querying pname GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME
will return zero, and all other queries will generate an error.

If the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is not GL_NONE, these queries
apply to all other framebuffer types:

If pname is GL_FRAMEBUFFER_ATTACHMENT_RED_SIZE, GL_FRAMEBUFFER_ATTACHMENT_
GREEN_SIZE, GL_FRAMEBUFFER_ATTACHMENT_BLUE_SIZE, GL_FRAMEBUFFER_
ATTACHMENT_ALPHA_SIZE, GL_FRAMEBUFFER_ATTACHMENT_DEPTH_SIZE, or
GL_FRAMEBUFFER_ATTACHMENT_STENCIL_SIZE, then params will contain the number
of bits in the corresponding red, green, blue, alpha, depth, or stencil component of the
specified attachment. Zero is returned if the requested component is not present in
attachment.
If pname is GL_FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE, params will contain
the format of components of the specified attachment, one of GL_FLOAT, GL_INT,
GL_UNSIGNED_INT, GL_SIGNED_NORMALIZED, or GL_UNSIGNED_NORMALIZED for float-
ing-point, signed integer, unsigned integer, signed normalized fixed-point, or unsigned
normalized fixed-point components respectively. Only color buffers may have integer
components.
If pname is GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, param will contain
the encoding of components of the specified attachment, one of GL_LINEAR or GL_SRGB
for linear or sRGB-encoded components, respectively. Only color buffer components may
be sRGB-encoded; such components are treated as described in sections 4.1.7 and 4.1.8.
For the default framebuffer, color encoding is determined by the implementation. For
framebuffer objects, components are sRGB-encoded if the internal format of a color
attachment is one of the color-renderable SRGB formats.

If the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_RENDERBUFFER, then:
If pname is GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will contain the
name of the renderbuffer object which contains the attached image.

If the value of GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_TEXTURE, then:
If pname is GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will contain
the name of the texture object which contains the attached image.
If pname is GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL, then params will
contain the mipmap level of the texture object which contains the attached image.
If pname is GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE and the
texture object named GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a cube map
texture, then params will contain the cube map face of the cubemap texture object
which contains the attached image. Otherwise params will contain the value zero.
If pname is GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER and the texture object
named GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a layer of a three-dimen-
sional texture or a one-or two-dimensional array texture, then params will contain the
number of the texture layer which contains the attached image. Otherwise params will
contain the value zero.

ptg

glGetMultisamplefv 801
C

If pname is GL_FRAMEBUFFER_ATTACHMENT_LAYERED, then params will contain
GL_TRUE if an entire level of a three-dimesional texture, cube map texture, or one-or
two-dimensional array texture is attached. Otherwise, params will contain GL_FALSE.

Any combinations of framebuffer type and pname not described above will generate an error.

Errors

GL_INVALID_ENUM is generated if target is not one of the accepted tokens.
GL_INVALID_ENUM is generated if pname is not valid for the value of

GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.
GL_INVALID_OPERATION is generated if attachment is not the accepted values for target.
GL_INVALID_OPERATION is generated if attachment is GL_DEPTH_STENCIL_ATTACHMENT

and different objects are bound to the depth and stencil attachment points of target.
GL_INVALID_OPERATION is generated if the value of

GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is GL_NONE and pname is not
GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME.

See Also

glGenFramebuffers, glBindFramebuffer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetMultisamplefv

retrieve the location of a sample

C Specification

void glGetMultisamplefv(GLenum pname,
GLuint index,
GLfloat *val);

Parameters

pname
Specifies the sample parameter name. pname must be GL_SAMPLE_POSITION.

index
Specifies the index of the sample whose position to query.

val
Specifies the address of an array to receive the position of the sample.

Description

glGetMultisamplefv queries the location of a given sample. pname specifies the sample para-
meter to retrieve and must be GL_SAMPLE_POSITION. index corresponds to the sample for which
the location should be returned. The sample location is returned as two floating-point values in
val[0] and val[1], each between 0 and 1, corresponding to the x and y locations respectively in
the GL pixel space of that sample. (0.5, 0.5) this corresponds to the pixel center. index must be
between zero and the value of GL_SAMPLES - 1.

ptg

802

If the multisample mode does not have fixed sample locations, the returned values may only
reflect the locations of samples within some pixels.

Errors

GL_INVALID_ENUM is generated if pname is not one GL_SAMPLE_POSITION.
GL_INVALID_VALUE is generated if index is greater than or equal to the value of GL_SAMPLES.

See Also

glGenFramebuffers, glBindFramebuffer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetProgramiv

Returns a parameter from a program object

C Specification

void glGetProgramiv(GLuint program,
GLenum pname,
GLint *params);

Parameters

program
Specifies the program object to be queried.

pname
Specifies the object parameter. Accepted symbolic names are GL_DELETE_STATUS,
GL_LINK_STATUS, GL_VALIDATE_STATUS, GL_INFO_LOG_LENGTH,
GL_ATTACHED_SHADERS, GL_ACTIVE_ATTRIBUTES,
GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, GL_ACTIVE_UNIFORMS,
GL_ACTIVE_UNIFORM_BLOCKS, GL_ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH,
GL_ACTIVE_UNIFORM_MAX_LENGTH, GL_TRANSFORM_FEEDBACK_BUFFER_MODE,
GL_TRANSFORM_FEEDBACK_VARYINGS,
GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH,
GL_GEOMETRY_VERTICES_OUT, GL_GEOMETRY_INPUT_TYPE, and
GL_GEOMETRY_OUTPUT_TYPE.

params
Returns the requested object parameter.

Description

glGetProgram returns in params the value of a parameter for a specific program object. The
following parameters are defined:

GL_DELETE_STATUS
params returns GL_TRUE if program is currently flagged for deletion, and GL_FALSE
otherwise.

GL_LINK_STATUS
params returns GL_TRUE if the last link operation on program was successful, and
GL_FALSE otherwise.

ptg

glGetProgramiv 803
C

GL_VALIDATE_STATUS
params returns GL_TRUE or if the last validation operation on program was successful,
and GL_FALSE otherwise.

GL_INFO_LOG_LENGTH
params returns the number of characters in the information log for program including
the null termination character (i.e., the size of the character buffer required to store the
information log). If program has no information log, a value of 0 is returned.

GL_ATTACHED_SHADERS
params returns the number of shader objects attached to program.

GL_ACTIVE_ATTRIBUTES
params returns the number of active attribute variables for program.

GL_ACTIVE_ATTRIBUTE_MAX_LENGTH
params returns the length of the longest active attribute name for program, including
the null termination character (i.e., the size of the character buffer required to store the
longest attribute name). If no active attributes exist, 0 is returned.

GL_ACTIVE_UNIFORMS
params returns the number of active uniform variables for program.

GL_ACTIVE_UNIFORM_MAX_LENGTH
params returns the length of the longest active uniform variable name for program,
including the null termination character (i.e., the size of the character buffer required to
store the longest uniform variable name). If no active uniform variables exist, 0 is
returned.

GL_TRANSFORM_FEEDBACK_BUFFER_MODE
params returns a symbolic constant indicating the buffer mode used when transform
feedback is active. This may be GL_SEPARATE_ATTRIBS or GL_INTERLEAVED_ATTRIBS.

GL_TRANSFORM_FEEDBACK_VARYINGS
params returns the number of varying variables to capture in transform feedback mode
for the program.

GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH
params returns the length of the longest variable name to be used for transform feed-
back, including the null-terminator.

GL_GEOMETRY_VERTICES_OUT
params returns the maximum number of vertices that the geometry shader in program
will output.

GL_GEOMETRY_INPUT_TYPE
params returns a symbolic constant indicating the primitive type accepted as input to
the geometry shader contained in program.

GL_GEOMETRY_OUTPUT_TYPE
params returns a symbolic constant indicating the primitive type that will be output by
the geometry shader contained in program.

Notes

GL_ACTIVE_UNIFORM_BLOCKS and GL_ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH are
available only if the GL version 3.1 or greater.

GL_GEOMETRY_VERTICES_OUT, GL_GEOMETRY_INPUT_TYPE and
GL_GEOMETRY_OUTPUT_TYPE are accepted only if the GL version is 3.2 or greater.

If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program does not refer to a program object.

ptg

804

GL_INVALID_OPERATION is generated if pname is GL_GEOMETRY_VERTICES_OUT, GL_
GEOMETRY_INPUT_TYPE, or GL_GEOMETRY_OUTPUT_TYPE, and program does not contain a
geometry shader.

GL_INVALID_ENUM is generated if pname is not an accepted value.

Associated Gets

glGetActiveAttrib with argument program
glGetActiveUniform with argument program
glGetAttachedShaders with argument program
glGetProgramInfoLog with argument program
glIsProgram

See Also

glAttachShader, glCreateProgram, glDeleteProgram, glGetShader,
glLinkProgram, glValidateProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. Copyright © 2010 Khronos Group. This material may be
distributed subject to the terms and conditions set forth in the Open Publication License, v 1.0, 8
June 1999. http://opencontent.org/openpub/.

glGetProgramInfoLog

Returns the information log for a program object

C Specification

void glGetProgramInfoLog(GLuint program,
GLsizei maxLength,
GLsizei *length,
GLchar *infoLog)

Parameters

program
Specifies the program object whose information log is to be queried.

maxLength
Specifies the size of the character buffer for storing the returned information log.

length
Returns the length of the string returned in infoLog (excluding the null terminator).

infoLog
Specifies an array of characters that is used to return the information log.

Description

glGetProgramInfoLog returns the information log for the specified program object. The infor-
mation log for a program object is modified when the program object is linked or validated. The
string that is returned will be null terminated.

glGetProgramInfoLog returns in infoLog as much of the information log as it can, up to a
maximum of maxLength characters. The number of characters actually returned, excluding the null
termination character, is specified by length. If the length of the returned string is not required, a
value of NULL can be passed in the length argument. The size of the buffer required to store the
returned information log can be obtained by calling glGetProgram with the value
GL_INFO_LOG_LENGTH.

ptg

glGetProgramInfoLog 805
C

The information log for a program object is either an empty string, or a string containing infor-
mation about the last link operation, or a string containing information about the last validation
operation. It may contain diagnostic messages, warning messages, and other information. When a
program object is created, its information log will be a string of length 0.

Notes

The information log for a program object is the OpenGL implementer’s primary mechanism for
conveying information about linking and validating. Therefore, the information log can be helpful to
application developers during the development process, even when these operations are successful.
Application developers should not expect different OpenGL implementations to produce identical
information logs.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_VALUE is generated if maxLength is less than 0.

Associated Gets

glGetProgram with argument GL_INFO_LOG_LENGTH
glIsProgram

See Also

glCompileShader, glGetShaderInfoLog, glLinkProgram, glValidateProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetQueryiv

return parameters of a query object target

C Specification

void glGetQueryiv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target
Specifies a query object target. Must be GL_SAMPLES_PASSED,
GL_ANY_SAMPLES_PASSED, GL_PRIMITIVES_GENERATED, GL_TRANSFORM_
FEEDBACK_PRIMITIVES_WRITTEN, GL_TIME_ELAPSED, or GL_TIMESTAMP.

pname
Specifies the symbolic name of a query object target parameter. Accepted values are
GL_CURRENT_QUERY or GL_QUERY_COUNTER_BITS.

params
Returns the requested data.

ptg

806

Description

glGetQueryiv returns in params a selected parameter of the query object target specified by
target.

pname names a specific query object target parameter. When pname is GL_CURRENT_QUERY, the
name of the currently active query for target, or zero if no query is active, will be placed in params.
If pname is GL_QUERY_COUNTER_BITS, the implementation-dependent number of bits used to hold
the result of queries for target is returned in params.

Notes

If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.

See Also

glGetQueryObject, glIsQuery

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetQueryObject

return parameters of a query object

C Specification

void glGetQueryObjectiv(GLuint id,
GLenum pname,
GLint * params);

void glGetQueryObjectuiv(GLuint id,
GLenum pname,
GLuint * params);

void glGetQueryObjecti64v(GLuint id,
GLenum pname,
GLint64 * params);

void glGetQueryObjectui64v(GLuint id,
GLenum pname,
GLuint64 * params);

Parameters

id
Specifies the name of a query object.

pname
Specifies the symbolic name of a query object parameter. Accepted values are
GL_QUERY_RESULT or GL_QUERY_RESULT_AVAILABLE.

params
Returns the requested data.

ptg

glGetRenderbufferParameteriv 807
C

Description

glGetQueryObject returns in params a selected parameter of the query object specified by id.
pname names a specific query object parameter. pname can be as follows:
GL_QUERY_RESULT

params returns the value of the query object’s passed samples counter. The initial
value is 0.

GL_QUERY_RESULT_AVAILABLE
params returns whether the passed samples counter is immediately available. If a delay
would occur waiting for the query result, GL_FALSE is returned. Otherwise, GL_TRUE is
returned, which also indicates that the results of all previous queries are available as well.

Notes

If an error is generated, no change is made to the contents of params.
glGetQueryObject implicitly flushes the GL pipeline so that any incomplete rendering delim-

ited by the occlusion query completes in finite time.
If multiple queries are issued using the same query object id before calling glGetQueryObject,

the results of the most recent query will be returned. In this case, when issuing a new query, the
results of the previous query are discarded.

glGetQueryObjecti64v and glGetQueryObjectui64v are available only if the GL version is
3.3 or greater.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_OPERATION is generated if id is not the name of a query object.
GL_INVALID_OPERATION is generated if id is the name of a currently active query object.

See Also

glBeginQuery, glEndQuery, glGetQueryiv, glIsQuery, glQueryCounter

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetRenderbufferParameteriv

retrieve information about a bound renderbuffer object

C Specification

void glGetRenderbufferParameteriv(GLenum target,
GLenum pname,
GLint *params);

Parameters

target
Specifies the target of the query operation. target must be GL_RENDERBUFFER.

pname
Specifies the parameter whose value to retrieve from the renderbuffer bound to target.

params
Specifies the address of an array to receive the value of the queried parameter.

ptg

808

Description

glGetRenderbufferParameteriv retrieves information about a bound renderbuffer object.
target specifies the target of the query operation and must be GL_RENDERBUFFER. pname specifies
the parameter whose value to query and must be one of GL_RENDERBUFFER_WIDTH, GL_
RENDERBUFFER_HEIGHT, GL_RENDERBUFFER_INTERNAL_FORMAT, GL_RENDERBUFFER_RED_SIZE,
GL_RENDERBUFFER_GREEN_SIZE, GL_RENDERBUFFER_BLUE_SIZE,
GL_RENDERBUFFER_ALPHA_SIZE, GL_RENDERBUFFER_DEPTH_SIZE,
GL_RENDERBUFFER_DEPTH_SIZE, GL_RENDERBUFFER_STENCIL_SIZE, or
GL_RENDERBUFFER_SAMPLES.

Upon a successful return from glGetRenderbufferParameteriv, if pname is GL_
RENDERBUFFER_WIDTH, GL_RENDERBUFFER_HEIGHT, GL_RENDERBUFFER_INTERNAL_FORMAT, or
GL_RENDERBUFFER_SAMPLES, then params will contain the width in pixels, the height in pixels, the
internal format, or the number of samples, respectively, of the image of the renderbuffer currently
bound to target.

If pname is GL_RENDERBUFFER_RED_SIZE, GL_RENDERBUFFER_GREEN_SIZE, GL_RENDER-
BUFFER_BLUE_SIZE, GL_RENDERBUFFER_ALPHA_SIZE, GL_RENDERBUFFER_DEPTH_SIZE, or
GL_RENDERBUFFER_STENCIL_SIZE, then params will contain the actual resolutions (not the resolu-
tions specified when the image array was defined) for the red, green, blue, alpha depth, or stencil
components, respectively, of the image of the renderbuffer currently bound to target.

Errors

GL_INVALID_ENUM is generated if pname is not one of the accepted tokens.

See Also

glGenRenderbuffers, glFramebufferRenderbuffer, glBindRenderbuffer,
glRenderbufferStorage, glRenderbufferStorageMultisample

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetSamplerParameter

return sampler parameter values

C Specification

void glGetSamplerParameterfv(GLuint sampler,
GLenum pname,
GLfloat * params);

void glGetSamplerParameteriv(GLuint sampler,
GLenum pname,
GLint * params);

Parameters

sampler
Specifies name of the sampler object from which to retrieve parameters.

pname
Specifies the symbolic name of a sampler parameter. GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,
GL_TEXTURE_LOD_BIAS, GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T,

ptg

glGetSamplerParameter 809
C

GL_TEXTURE_WRAP_R, GL_TEXTURE_BORDER_COLOR,
GL_TEXTURE_COMPARE_MODE, and GL_TEXTURE_COMPARE_FUNC are accepted.

params
Returns the sampler parameters.

Description

glGetSamplerParameter returns in params the value or values of the sampler parameter speci-
fied as pname. sampler defines the target sampler, and must be the name of an existing sampler
object, returned from a previous call to glGenSamplers. pname accepts the same symbols as
glSamplerParameter, with the same interpretations:

GL_TEXTURE_MAG_FILTER
Returns the single-valued texture magnification filter, a symbolic constant. The initial
value is GL_LINEAR.

GL_TEXTURE_MIN_FILTER
Returns the single-valued texture minification filter, a symbolic constant. The initial
value is GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MIN_LOD
Returns the single-valued texture minimum level-of-detail value. The initial value is .

GL_TEXTURE_MAX_LOD
Returns the single-valued texture maximum level-of-detail value. The initial value is 1000.

GL_TEXTURE_WRAP_S
Returns the single-valued wrapping function for texture coordinate , a symbolic
constant. The initial value is GL_REPEAT.

GL_TEXTURE_WRAP_T
Returns the single-valued wrapping function for texture coordinate , a symbolic
constant. The initial value is GL_REPEAT.

GL_TEXTURE_WRAP_R
Returns the single-valued wrapping function for texture coordinate , a symbolic
constant. The initial value is GL_REPEAT.

GL_TEXTURE_BORDER_COLOR
Returns four integer or floating-point numbers that comprise the RGBA color of the
texture border. Floating-point values are returned in the range . Integer values are
returned as a linear mapping of the internal floating-point representation such that 1.0
maps to the most positive representable integer and maps to the most negative
representable integer. The initial value is (0, 0, 0, 0).

GL_TEXTURE_COMPARE_MODE
Returns a single-valued texture comparison mode, a symbolic constant. The initial value
is GL_NONE. See glSamplerParameter.

GL_TEXTURE_COMPARE_FUNC
Returns a single-valued texture comparison function, a symbolic constant. The initial
value is GL_LEQUAL. See glSamplerParameter.

Notes

If an error is generated, no change is made to the contents of params.
glGetSamplerParameter is available only if the GL version is 3.3 or higher.

Errors

GL_INVALID_VALUE is generated if sampler is not the name of a sampler object returned from a
previous call to glGenSamplers.

GL_INVALID_ENUM is generated if pname is not an accepted value.

-1.0

[0,1]

r

t

s

-1000

ptg

810

See Also

glSamplerParameter, glGenSamplers, glDeleteSamplers, glSamplerParameter

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetShaderiv

Returns a parameter from a shader object

C Specification

void glGetShaderiv(GLuint shader,
GLenum pname,
GLint *params);

Parameters

shader
Specifies the shader object to be queried.

pname
Specifies the object parameter. Accepted symbolic names are GL_SHADER_TYPE,
GL_DELETE_STATUS, GL_COMPILE_STATUS, GL_INFO_LOG_LENGTH,
GL_SHADER_SOURCE_LENGTH.

params
Returns the requested object parameter.

Description

glGetShader returns in params the value of a parameter for a specific shader object. The follow-
ing parameters are defined:

GL_SHADER_TYPE
params returns GL_VERTEX_SHADER if shader is a vertex shader object, GL_
GEOMETRY_SHADER if shader is a geometry shader object, and
GL_FRAGMENT_SHADER if shader is a fragment shader object.

GL_DELETE_STATUS
params returns GL_TRUE if shader is currently flagged for deletion, and GL_FALSE
otherwise.

GL_COMPILE_STATUS
params returns GL_TRUE if the last compile operation on shader was successful, and
GL_FALSE otherwise.

GL_INFO_LOG_LENGTH
params returns the number of characters in the information log for shader including
the null termination character (i.e., the size of the character buffer required to store the
information log). If shader has no information log, a value of 0 is returned.

GL_SHADER_SOURCE_LENGTH
params returns the length of the concatenation of the source strings that make up the
shader source for the shader, including the null termination character. (i.e., the size of the
character buffer required to store the shader source). If no source code exists, 0 is returned.

Notes

If an error is generated, no change is made to the contents of params.

ptg

glGetShaderInfoLog 811
C

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader does not refer to a shader object.
GL_INVALID_ENUM is generated if pname is not an accepted value.

Associated Gets

glGetShaderInfoLog with argument shader
glGetShaderSource with argument shader
glIsShader

See Also

glCompileShader, glCreateShader, glDeleteShader, glGetProgram,
glShaderSource

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetShaderInfoLog

Returns the information log for a shader object

C Specification

void glGetShaderInfoLog(GLuint shader,
GLsizei maxLength,
GLsizei *length,
GLchar *infoLog);

Parameters

shader
Specifies the shader object whose information log is to be queried.

maxLength
Specifies the size of the character buffer for storing the returned information log.

length
Returns the length of the string returned in infoLog (excluding the null terminator).

infoLog
Specifies an array of characters that is used to return the information log.

Description

glGetShaderInfoLog returns the information log for the specified shader object. The informa-
tion log for a shader object is modified when the shader is compiled. The string that is returned will
be null terminated.

glGetShaderInfoLog returns in infoLog as much of the information log as it can, up to a
maximum of maxLength characters. The number of characters actually returned, excluding the null
termination character, is specified by length. If the length of the returned string is not required, a
value of NULL can be passed in the length argument. The size of the buffer required to store the
returned information log can be obtained by calling glGetShader with the value
GL_INFO_LOG_LENGTH.

The information log for a shader object is a string that may contain diagnostic messages, warning
messages, and other information about the last compile operation. When a shader object is created,
its information log will be a string of length 0.

ptg

812

Notes

The information log for a shader object is the OpenGL implementer’s primary mechanism for
conveying information about the compilation process. Therefore, the information log can be helpful
to application developers during the development process, even when compilation is successful.
Application developers should not expect different OpenGL implementations to produce identical
information logs.

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_VALUE is generated if maxLength is less than 0.

Associated Gets

glGetShader with argument GL_INFO_LOG_LENGTH
glIsShader

See Also

glCompileShader, glGetProgramInfoLog, glLinkProgram, glValidateProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetShaderSource

Returns the source code string from a shader object

C Specification

void glGetShaderSource(GLuint shader,
GLsizei bufSize,
GLsizei * length,
GLchar * source);

Parameters

shader
Specifies the shader object to be queried.

bufSize
Specifies the size of the character buffer for storing the returned source code string.

length
Returns the length of the string returned in source (excluding the null terminator).

source
Specifies an array of characters that is used to return the source code string.

Description

glGetShaderSource returns the concatenation of the source code strings from the shader object
specified by shader. The source code strings for a shader object are the result of a previous call to
glShaderSource. The string returned by the function will be null terminated.

glGetShaderSource returns in source as much of the source code string as it can, up to a
maximum of bufSize characters. The number of characters actually returned, excluding the null
termination character, is specified by length. If the length of the returned string is not required, a

ptg

glGetString 813
C

value of NULL can be passed in the length argument. The size of the buffer required to store the
returned source code string can be obtained by calling glGetShader with the value
GL_SHADER_SOURCE_LENGTH.

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_VALUE is generated if bufSize is less than 0.

Associated Gets

glGetShader with argument GL_SHADER_SOURCE_LENGTH
glIsShader

See Also

glCreateShader, glShaderSource

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetString

return a string describing the current GL connection

C Specification

const GLubyte* glGetString (GLenum name);

C Specification

const GLubyte* glGetStringi (GLenum name,
GLuint index);

Parameters

name
Specifies a symbolic constant, one of GL_VENDOR, GL_RENDERER, GL_VERSION, or
GL_SHADING_LANGUAGE_VERSION. Additionally, glGetStringi accepts the
GL_EXTENSIONS token.

index
For glGetStringi, specifies the index of the string to return.

Description

glGetString returns a pointer to a static string describing some aspect of the current GL connec-
tion. name can be one of the following:

GL_VENDOR
Returns the company responsible for this GL implementation. This name does not
change from release to release.

GL_RENDERER
Returns the name of the renderer. This name is typically specific to a particular configu-
ration of a hardware platform. It does not change from release to release.

ptg

814

GL_VERSION
Returns a version or release number.

GL_SHADING_LANGUAGE_VERSION
Returns a version or release number for the shading language.

glGetStringi returns a pointer to a static string indexed by index. name can be one of the following:
GL_EXTENSIONS

For glGetStringi only, returns the extension string supported by the implementation
at index.

Strings GL_VENDOR and GL_RENDERER together uniquely specify a platform. They do not
change from release to release and should be used by platform-recognition algorithms.

The GL_VERSION and GL_SHADING_LANGUAGE_VERSION strings begin with a version number.
The version number uses one of these forms:

major_number.minor_number major_number.minor_number.release_number
Vendor-specific information may follow the version number. Its format depends on the imple-

mentation, but a space always separates the version number and the vendor-specific information.
All strings are null-terminated.

Notes

If an error is generated, glGetString returns 0.
The client and server may support different versions. glGetString always returns a compatible

version number. The release number always describes the server.

Errors

GL_INVALID_ENUM is generated if name is not an accepted value.
GL_INVALID_VALUE is generated by glGetStringi if index is outside the valid range for

indexed state name.

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. Copyright © 2010 Khronos Group. This document
is licensed under the SGI Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glGetSynciv

query the properties of a sync object

C Specification

void glGetSynciv(GLsync sync,
GLenum pname,
GLsizei bufSize,
GLsizei *length,
GLint *values);

Parameters

sync
Specifies the sync object whose properties to query.

pname
Specifies the parameter whose value to retrieve from the sync object specified in sync.

bufSize
Specifies the size of the buffer whose address is given in values.

length
Specifies the address of a variable to receive the number of integers placed in values.

values
Specifies the address of an array to receive the values of the queried parameter.

ptg

glGetSynciv 815
C

Description

glGetSynciv retrieves properties of a sync object. sync specifies the name of the sync object
whose properties to retrieve.

On success, glGetSynciv replaces up to bufSize integers in values with the corresponding
property values of the object being queried. The actual number of integers replaced is returned in the
variable whose address is specified in length. If length is NULL, no length is returned.

If pname is GL_OBJECT_TYPE, a single value representing the specific type of the sync object is
placed in values. The only type supported is GL_SYNC_FENCE.

If pname is GL_SYNC_STATUS, a single value representing the status of the sync object
(GL_SIGNALED or GL_UNSIGNALED) is placed in values.

If pname is GL_SYNC_CONDITION, a single value representing the condition of the sync object is
placed in values. The only condition supported is GL_SYNC_GPU_COMMANDS_COMPLETE.

If pname is GL_SYNC_FLAGS, a single value representing the flags with which the sync object was
created is placed in values. No flags are currently supported*.

If an error occurs, nothing will be written to values or length.

Errors

GL_INVALID_VALUE is generated if sync is not the name of a sync object.
GL_INVALID_ENUM is generated if pname is not one of the accepted tokens.

See Also

glFenceSync, glWaitSync, glClientWaitSync

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetTexImage

return a texture image

C Specification

void glGetTexImage(GLenum target,
GLint level,
GLenum format,
GLenum type,
GLvoid * img);

Parameters

target
Specifies which texture is to be obtained. GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY,
GL_TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, and
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z are accepted.

* flags is expected to be used in future extensions to the sync objects.

ptg

816

level
Specifies the level-of-detail number of the desired image. Level 0 is the base image level.
Level is the th mipmap reduction image.

format
Specifies a pixel format for the returned data. The supported formats are
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_DEPTH_STENCIL, GL_RED,
GL_GREEN, GL_BLUE, GL_RG, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA,
GL_RED_INTEGER, GL_GREEN_INTEGER, GL_BLUE_INTEGER, GL_RG_INTEGER,
GL_RGB_INTEGER, GL_RGBA_INTEGER, GL_BGR_INTEGER, GL_BGRA_INTEGER.

type
Specifies a pixel type for the returned data. The supported types are
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_HALF_FLOAT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2,
GL_UNSIGNED_INT_2_10_10_10_REV, GL_UNSIGNED_INT_24_8,
GL_UNSIGNED_INT_10F_11F_11F_REV, GL_UNSIGNED_INT_5_9_9_9_REV, and
GL_FLOAT_32_UNSIGNED_INT_24_8_REV.

img
Returns the texture image. Should be a pointer to an array of the type specified by type.

Description

glGetTexImage returns a texture image into img. target specifies whether the desired texture
image is one specified by glTexImage1D (GL_TEXTURE_1D), glTexImage2D (GL_TEXTURE_1D_ARRAY,
GL_TEXTURE_RECTANGLE, GL_TEXTURE_2D or any of GL_TEXTURE_CUBE_MAP_*), or
glTexImage3D (GL_TEXTURE_2D_ARRAY, GL_TEXTURE_3D). level specifies the level-of-detail
number of the desired image. format and type specify the format and type of the desired image
array. See the reference page for glTexImage1D for a description of the acceptable values for the
format and type parameters, respectively.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a texture image is requested, img is treated as a byte offset into the buffer object’s
data store.

To understand the operation of glGetTexImage, consider the selected internal four-component
texture image to be an RGBA color buffer the size of the image. The semantics of glGetTexImage are
then identical to those of glReadPixels, with the exception that no pixel transfer operations are
performed, when called with the same format and type, with x and y set to 0, width set to the
width of the texture image and height set to 1 for 1D images, or to the height of the texture image
for 2D images.

If the selected texture image does not contain four components, the following mappings are
applied. Single-component textures are treated as RGBA buffers with red set to the single-component
value, green set to 0, blue set to 0, and alpha set to 1. Two-component textures are treated as RGBA
buffers with red set to the value of component zero, alpha set to the value of component one, and
green and blue set to 0. Finally, three-component textures are treated as RGBA buffers with red set to
component zero, green set to component one, blue set to component two, and alpha set to 1.

To determine the required size of img, use glGetTexLevelParameter to determine the dimensions
of the internal texture image, then scale the required number of pixels by the storage required for
each pixel, based on format and type. Be sure to take the pixel storage parameters into account,
especially GL_PACK_ALIGNMENT.

nn

ptg

glGetTexImage 817
C

Notes

If an error is generated, no change is made to the contents of img.
glGetTexImage returns the texture image for the active texture unit.

Errors

GL_INVALID_ENUM is generated if target, format, or type is not an accepted value.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than , where is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_OPERATION is returned if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
or GL_UNSIGNED_INT_10F_11F_11F_REV and format is not GL_RGB.

GL_INVALID_OPERATION is returned if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2,
GL_UNSIGNED_INT_2_10_10_10_REV, or GL_UNSIGNED_INT_5_9_9_9_REV and format is neither
GL_RGBA or GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and img is not evenly divisible into the number of bytes needed to
store in memory a datum indicated by type.

Associated Gets

glGetTexLevelParameter with argument GL_TEXTURE_WIDTH
glGetTexLevelParameter with argument GL_TEXTURE_HEIGHT
glGetTexLevelParameter with argument GL_TEXTURE_INTERNAL_FORMAT
glGet with arguments GL_PACK_ALIGNMENT and others
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glActiveTexture, glReadPixels, glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. Copyright © 2010 Khronos Group. This document
is licensed under the SGI Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glGetTexLevelParameter

return texture parameter values for a specific level of detail

C Specification

void glGetTexLevelParameterfv(GLenum target,
GLint level,
GLenum pname,
GLfloat * params);

m axlog2(m ax)

ptg

818

void glGetTexLevelParameteriv(GLenum target,
GLint level,
GLenum pname,
GLint * params);

Parameters

target
Specifies the symbolic name of the target texture, one of GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_1D_ARRAY,
GL_TEXTURE_2D_ARRAY, GL_TEXTURE_RECTANGLE, GL_TEXTURE_2D_MULTISAMPLE,
GL_TEXTURE_2D_MULTISAMPLE_ARRAY, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, GL_PROXY_TEXTURE_1D,
GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_3D, GL_PROXY_TEXTURE_1D_ARRAY,
GL_PROXY_TEXTURE_2D_ARRAY, GL_PROXY_TEXTURE_RECTANGLE,
GL_PROXY_TEXTURE_2D_MULTISAMPLE,
GL_PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY, GL_PROXY_TEXTURE_CUBE_MAP, or
GL_TEXTURE_BUFFER.

level
Specifies the level-of-detail number of the desired image. Level 0 is the base image level.
Level is the th mipmap reduction image.

pname
Specifies the symbolic name of a texture parameter. GL_TEXTURE_WIDTH,
GL_TEXTURE_HEIGHT, GL_TEXTURE_DEPTH, GL_TEXTURE_INTERNAL_FORMAT,
GL_TEXTURE_BORDER, GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE, GL_TEXTURE_DEPTH_SIZE,
GL_TEXTURE_COMPRESSED, and GL_TEXTURE_COMPRESSED_IMAGE_SIZE are
accepted.

params
Returns the requested data.

Description

glGetTexLevelParameter returns in params texture parameter values for a specific level-of-
detail value, specified as level. target defines the target texture, either GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, GL_PROXY_TEXTURE_1D, GL_PROXY_TEXTURE_2D,
GL_PROXY_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_
NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
GL_PROXY_TEXTURE_CUBE_MAP.

GL_MAX_TEXTURE_SIZE, and GL_MAX_3D_TEXTURE_SIZE are not really descriptive enough. It
has to report the largest square texture image that can be accommodated with mipmaps and borders,
but a long skinny texture, or a texture without mipmaps and borders, may easily fit in texture
memory. The proxy targets allow the user to more accurately query whether the GL can accommodate
a texture of a given configuration. If the texture cannot be accommodated, the texture state variables,
which may be queried with glGetTexLevelParameter, are set to 0. If the texture can be accommo-
dated, the texture state values will be set as they would be set for a non-proxy target.

pname specifies the texture parameter whose value or values will be returned.
The accepted parameter names are as follows:
GL_TEXTURE_WIDTH

params returns a single value, the width of the texture image. This value includes the
border of the texture image. The initial value is 0.

nn

ptg

glGetTexLevelParameter 819
C

GL_TEXTURE_HEIGHT
params returns a single value, the height of the texture image. This value includes the
border of the texture image. The initial value is 0.

GL_TEXTURE_DEPTH
params returns a single value, the depth of the texture image. This value includes the
border of the texture image. The initial value is 0.

GL_TEXTURE_INTERNAL_FORMAT
params returns a single value, the internal format of the texture image.

GL_TEXTURE_RED_TYPE,
GL_TEXTURE_GREEN_TYPE,
GL_TEXTURE_BLUE_TYPE,
GL_TEXTURE_ALPHA_TYPE,
GL_TEXTURE_DEPTH_TYPE

The data type used to store the component. The types GL_NONE, GL_SIGNED_
NORMALIZED, GL_UNSIGNED_NORMALIZED, GL_FLOAT, GL_INT, and
GL_UNSIGNED_INT may be returned to indicate signed normalized fixed-point,
unsigned normalized fixed-point, floating-point, integer unnormalized, and unsigned
integer unnormalized components, respectively.

GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE,
GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_DEPTH_SIZE

The internal storage resolution of an individual component. The resolution chosen by
the GL will be a close match for the resolution requested by the user with the compo-
nent argument of glTexImage1D, glTexImage2D, glTexImage3D, glCopyTexImage1D, and
glCopyTexImage2D. The initial value is 0.

GL_TEXTURE_COMPRESSED
params returns a single boolean value indicating if the texture image is stored in a
compressed internal format. The initial value is GL_FALSE.

GL_TEXTURE_COMPRESSED_IMAGE_SIZE
params returns a single integer value, the number of unsigned bytes of the compressed
texture image that would be returned from glGetCompressedTexImage.

Notes

If an error is generated, no change is made to the contents of params.
glGetTexLevelParameter returns the texture level parameters for the active texture unit.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than max, where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if target is GL_TEXTURE_BUFFER and level is not zero.
GL_INVALID_OPERATION is generated if GL_TEXTURE_COMPRESSED_IMAGE_SIZE is queried on

texture images with an uncompressed internal format or on proxy targets.

See Also

glActiveTexture, glGetTexParameter, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D,
glTexParameter

log2

ptg

820

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. Copyright © 2010 Khronos Group. This document
is licensed under the SGI Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glGetTexParameter

return texture parameter values

C Specification

void glGetTexParameterfv(GLenum target,
GLenum pname,
GLfloat * params);

void glGetTexParameteriv(GLenum target,
GLenum pname,
GLint * params);

Parameters

target
Specifies the symbolic name of the target texture. GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_3D,
GL_TEXTURE_RECTANGLE, and GL_TEXTURE_CUBE_MAP are accepted.

pname
Specifies the symbolic name of a texture parameter. GL_TEXTURE_BASE_LEVEL,
GL_TEXTURE_BORDER_COLOR, GL_TEXTURE_COMPARE_MODE,
GL_TEXTURE_COMPARE_FUNC, GL_TEXTURE_LOD_BIAS, GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MAX_LOD, GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MIN_LOD, GL_TEXTURE_SWIZZLE_R, GL_TEXTURE_SWIZZLE_G,
GL_TEXTURE_SWIZZLE_B, GL_TEXTURE_SWIZZLE_A, GL_TEXTURE_SWIZZLE_RGBA,
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, and GL_TEXTURE_WRAP_R are
accepted.

params
Returns the texture parameters.

Description

glGetTexParameter returns in params the value or values of the texture parameter specified as
pname. target defines the target texture. GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D,
GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_RECTANGLE, and
GL_TEXTURE_CUBE_MAP specify one-, two-, or three-dimensional, one-dimensional array, two-
dimensional array, rectangle or cube-mapped texturing, respectively. pname accepts the same symbols
as glTexParameter, with the same interpretations:

GL_TEXTURE_MAG_FILTER
Returns the single-valued texture magnification filter, a symbolic constant. The initial
value is GL_LINEAR.

GL_TEXTURE_MIN_FILTER
Returns the single-valued texture minification filter, a symbolic constant. The initial
value is GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MIN_LOD
Returns the single-valued texture minimum level-of-detail value. The initial value is .

GL_TEXTURE_MAX_LOD
Returns the single-valued texture maximum level-of-detail value. The initial value is 1000.

-1000

ptg

glGetTexParameter 821
C

GL_TEXTURE_BASE_LEVEL
Returns the single-valued base texture mipmap level. The initial value is 0.

GL_TEXTURE_MAX_LEVEL
Returns the single-valued maximum texture mipmap array level. The initial value is 1000.

GL_TEXTURE_SWIZZLE_R
Returns the red component swizzle. The initial value is GL_RED.

GL_TEXTURE_SWIZZLE_G
Returns the green component swizzle. The initial value is GL_GREEN.

GL_TEXTURE_SWIZZLE_B
Returns the blue component swizzle. The initial value is GL_BLUE.

GL_TEXTURE_SWIZZLE_A
Returns the alpha component swizzle. The initial value is GL_ALPHA.

GL_TEXTURE_SWIZZLE_RGBA
Returns the component swizzle for all channels in a single query.

GL_TEXTURE_WRAP_S
Returns the single-valued wrapping function for texture coordinate , a symbolic
constant. The initial value is GL_REPEAT.

GL_TEXTURE_WRAP_T
Returns the single-valued wrapping function for texture coordinate , a symbolic
constant. The initial value is GL_REPEAT.

GL_TEXTURE_WRAP_R
Returns the single-valued wrapping function for texture coordinate , a symbolic
constant. The initial value is GL_REPEAT.

GL_TEXTURE_BORDER_COLOR
Returns four integer or floating-point numbers that comprise the RGBA color of the
texture border. Floating-point values are returned in the range . Integer values are
returned as a linear mapping of the internal floating-point representation such that 1.0
maps to the most positive representable integer and maps to the most negative
representable integer. The initial value is (0, 0, 0, 0).

GL_TEXTURE_COMPARE_MODE
Returns a single-valued texture comparison mode, a symbolic constant. The initial value
is GL_NONE. See glTexParameter.

GL_TEXTURE_COMPARE_FUNC
Returns a single-valued texture comparison function, a symbolic constant. The initial
value is GL_LEQUAL. See glTexParameter.

Notes

If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.

See Also

glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. Copyright © 2010 Khronos Group. This document
is licensed under the SGI Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

-1.0

[0,1]

r

t

s

ptg

822

glGetTransformFeedbackVarying

retrieve information about varying variables selected for transform feedback

C Specification

void glGetTransformFeedbackVarying(GLuint program,
GLuint index,
GLsizei bufSize,
GLsizei * length,
GLsizei size,
GLenum * type, char * name);

Parameters

program
The name of the target program object.

index
The index of the varying variable whose information to retrieve.

bufSize
The maximum number of characters, including the null terminator, that may be written
into name.

length
The address of a variable which will receive the number of characters written into name,
excluding the null-terminator. If length is NULL no length is returned.

size
The address of a variable that will receive the size of the varying.

type
The address of a variable that will recieve the type of the varying.

name
The address of a buffer into which will be written the name of the varying.

Description

Information about the set of varying variables in a linked program that will be captured during
transform feedback may be retrieved by calling glGetTransformFeedbackVarying.
glGetTransformFeedbackVarying provides information about the varying variable selected by
index. An index of 0 selects the first varying variable specified in the varyings array passed to
glTransformFeedbackVaryings, and an index of GL_TRANSFORM_FEEDBACK_VARYINGS-1 selects the
last such variable.

The name of the selected varying is returned as a null-terminated string in name. The actual
number of characters written into name, excluding the null terminator, is returned in length. If
length is NULL, no length is returned. The maximum number of characters that may be written into
name, including the null terminator, is specified by bufSize.

The length of the longest varying name in program is given by
GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, which can be queried with glGetProgram.

For the selected varying variable, its type is returned into type. The size of the varying is returned
into size. The value in size is in units of the type returned in type. The type returned can be any
of the scalar, vector, or matrix attribute types returned by glGetActiveAttrib. If an error occurred, the
return parameters length, size, type and name will be unmodified. This command will return as
much information about the varying variables as possible. If no information is available, length will
be set to zero and name will be an empty string. This situation could arise if
glGetTransformFeedbackVarying is called after a failed link.

ptg

glGetUniform 823
C

Errors

GL_INVALID_VALUE is generated if program is not the name of a program object.
GL_INVALID_VALUE is generated if index is greater or equal to the value of

GL_TRANSFORM_FEEDBACK_VARYINGS.
GL_INVALID_OPERATION is generated program has not been linked.

Associated Gets

glGetProgram with argument GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH.

See Also

glBeginTransformFeedback, glEndTransformFeedback,
glTransformFeedbackVaryings, glGetProgram

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetUniform

Returns the value of a uniform variable

C Specification

void glGetUniformfv(GLuint program,
GLint location,
GLfloat * params);

void glGetUniformiv(GLuint program,
GLint location,
GLint * params);

Parameters

program
Specifies the program object to be queried.

location
Specifies the location of the uniform variable to be queried.

params
Returns the value of the specified uniform variable.

Description

glGetUniform returns in params the value(s) of the specified uniform variable. The type of the
uniform variable specified by location determines the number of values returned. If the uniform
variable is defined in the shader as a boolean, int, or float, a single value will be returned. If it is
defined as a vec2, ivec2, or bvec2, two values will be returned. If it is defined as a vec3, ivec3, or
bvec3, three values will be returned, and so on. To query values stored in uniform variables declared
as arrays, call glGetUniform for each element of the array. To query values stored in uniform vari-
ables declared as structures, call glGetUniform for each field in the structure. The values for uniform
variables declared as a matrix will be returned in column major order.

The locations assigned to uniform variables are not known until the program object is linked.
After linking has occurred, the command glGetUniformLocation can be used to obtain the location of
a uniform variable. This location value can then be passed to glGetUniform in order to query the
current value of the uniform variable. After a program object has been linked successfully, the index
values for uniform variables remain fixed until the next link command occurs. The uniform variable
values can only be queried after a link if the link was successful.

ptg

824

Notes

If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program has not been successfully linked.
GL_INVALID_OPERATION is generated if location does not correspond to a valid uniform vari-

able location for the specified program object.

Associated Gets

glGetActiveUniform with arguments program and the index of an active uniform variable
glGetProgram with arguments program and GL_ACTIVE_UNIFORMS or

GL_ACTIVE_UNIFORM_MAX_LENGTH
glGetUniformLocation with arguments program and the name of a uniform variable
glIsProgram

See Also

glCreateProgram, glLinkProgram, glUniform

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetUniformBlockIndex

retrieve the index of a named uniform block

C Specification

GLuint glGetUniformBlockIndex(GLuint program,
const GLchar *uniformBlockName);

Parameters

program
Specifies the name of a program containing the uniform block.

uniformBlockName
Specifies the address an array of characters to containing the name of the uniform block
whose index to retrieve.

Description

glGetUniformBlockIndex retrieves the index of a uniform block within program.
program must be the name of a program object for which the command glLinkProgram must

have been called in the past, although it is not required that glLinkProgram must have succeeded. The
link could have failed because the number of active uniforms exceeded the limit.

uniformBlockName must contain a nul-terminated string specifying the name of the uniform block.
glGetUniformBlockIndex returns the uniform block index for the uniform block named

uniformBlockName of program. If uniformBlockName does not identify an active uniform block of
program, glGetUniformBlockIndex returns the special identifier, GL_INVALID_INDEX. Indices of
the active uniform blocks of a program are assigned in consecutive order, beginning with zero.

ptg

glGetUniformIndices 825
C

Errors

GL_INVALID_OPERATION is generated if program is not the name of a program object for which
glLinkProgram has been called in the past.

Notes

glGetUniformBlockIndex is available only if the GL version is 3.1 or greater.

See Also

glGetActiveUniformBlockName, glGetActiveUniformBlock, glLinkProgram

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetUniformIndices

retrieve the index of a named uniform block

C Specification

GLuint glGetUniformIndices(GLuint program,
GLsizei uniformCount,
const GLchar **uniformNames,
GLuint *uniformIndices);

Parameters

program
Specifies the name of a program containing uniforms whose indices to query.

uniformCount
Specifies the number of uniforms whose indices to query.

uniformNames
Specifies the address of an array of pointers to buffers containing the names of the
queried uniforms.

uniformIndices
Specifies the address of an array that will receive the indices of the uniforms.

Description

glGetUniformIndices retrieves the indices of a number of uniforms within program.
program must be the name of a program object for which the command glLinkProgram must

have been called in the past, although it is not required that glLinkProgram must have succeeded. The
link could have failed because the number of active uniforms exceeded the limit.

uniformCount indicates both the number of elements in the array of names uniformNames and
the number of indices that may be written to uniformIndices.

uniformNames contains a list of uniformCount name strings identifying the uniform names to
be queried for indices. For each name string in uniformNames, the index assigned to the active
uniform of that name will be written to the corresponding element of uniformIndices. If a string in
uniformNames is not the name of an active uniform, the special value GL_INVALID_INDEX will be
written to the corresponding element of uniformIndices.

If an error occurs, nothing is written to uniformIndices.

ptg

826

Errors

GL_INVALID_OPERATION is generated if program is not the name of a program object for which
glLinkProgram has been called in the past.

Notes

glGetUniformIndices is available only if the GL version is 3.1 or greater.

See Also

glGetActiveUniform, glGetActiveUniformName, glLinkProgram

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glGetUniformLocation

Returns the location of a uniform variable

C Specification

GLint glGetUniformLocation(GLuint program,
const GLchar * name);

Parameters

program
Specifies the program object to be queried.

name
Points to a null terminated string containing the name of the uniform variable whose
location is to be queried.

Description

glGetUniformLocation returns an integer that represents the location of a specific uniform
variable within a program object. name must be a null terminated string that contains no white space.
name must be an active uniform variable name in program that is not a structure, an array of struc-
tures, or a subcomponent of a vector or a matrix. This function returns -1 if name does not corre-
spond to an active uniform variable in program or if name starts with the reserved prefix “gl_”.

Uniform variables that are structures or arrays of structures may be queried by calling
glGetUniformLocation for each field within the structure. The array element operator “[]” and the
structure field operator “.” may be used in name in order to select elements within an array or fields
within a structure. The result of using these operators is not allowed to be another structure, an array
of structures, or a subcomponent of a vector or a matrix. Except if the last part of name indicates a
uniform variable array, the location of the first element of an array can be retrieved by using the
name of the array, or by using the name appended by “[0]”.

The actual locations assigned to uniform variables are not known until the program object is
linked successfully. After linking has occurred, the command glGetUniformLocation can be used to
obtain the location of a uniform variable. This location value can then be passed to glUniform to set
the value of the uniform variable or to glGetUniform in order to query the current value of the
uniform variable. After a program object has been linked successfully, the index values for uniform
variables remain fixed until the next link command occurs. Uniform variable locations and values can
only be queried after a link if the link was successful.

ptg

glGetVertexAttrib 827
C

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program has not been successfully linked.

Associated Gets

glGetActiveUniform with arguments program and the index of an active uniform variable
glGetProgram with arguments program and GL_ACTIVE_UNIFORMS or

GL_ACTIVE_UNIFORM_MAX_LENGTH
glGetUniform with arguments program and the name of a uniform variable
glIsProgram

See Also

glLinkProgram, glUniform

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glGetVertexAttrib

Return a generic vertex attribute parameter

C Specification

void glGetVertexAttribdv(GLuint index,
GLenum pname,
GLdouble * params);

void glGetVertexAttribfv(GLuint index,
GLenum pname,
GLfloat * params);

void glGetVertexAttribiv(GLuint index,
GLenum pname,
GLint * params);

void glGetVertexAttribIiv(GLuint index,
GLenum pname,
GLint * params);

void glGetVertexAttribIuiv(GLuint index,
GLenum pname,
GLuint * params);

Parameters

index
Specifies the generic vertex attribute parameter to be queried.

pname
Specifies the symbolic name of the vertex attribute parameter to be queried. Accepted
values are GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING,
GL_VERTEX_ATTRIB_ARRAY_ENABLED, GL_VERTEX_ATTRIB_ARRAY_SIZE,
GL_VERTEX_ATTRIB_ARRAY_STRIDE, GL_VERTEX_ATTRIB_ARRAY_TYPE,
GL_VERTEX_ATTRIB_ARRAY_NORMALIZED, GL_VERTEX_ATTRIB_ARRAY_INTEGER,
GL_VERTEX_ATTRIB_ARRAY_DIVISOR, or GL_CURRENT_VERTEX_ATTRIB.

params
Returns the requested data.

ptg

828

Description

glGetVertexAttrib returns in params the value of a generic vertex attribute parameter. The
generic vertex attribute to be queried is specified by index, and the parameter to be queried is speci-
fied by pname.

The accepted parameter names are as follows:
GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING

params returns a single value, the name of the buffer object currently bound to the
binding point corresponding to generic vertex attribute array index. If no buffer object
is bound, 0 is returned. The initial value is 0.

GL_VERTEX_ATTRIB_ARRAY_ENABLED
params returns a single value that is non-zero (true) if the vertex attribute array for
index is enabled and 0 (false) if it is disabled. The initial value is GL_FALSE.

GL_VERTEX_ATTRIB_ARRAY_SIZE
params returns a single value, the size of the vertex attribute array for index. The size is
the number of values for each element of the vertex attribute array, and it will be 1, 2, 3,
or 4. The initial value is 4.

GL_VERTEX_ATTRIB_ARRAY_STRIDE
params returns a single value, the array stride for (number of bytes between successive
elements in) the vertex attribute array for index. A value of 0 indicates that the array
elements are stored sequentially in memory. The initial value is 0.

GL_VERTEX_ATTRIB_ARRAY_TYPE
params returns a single value, a symbolic constant indicating the array type for the
vertex attribute array for index. Possible values are GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, and
GL_DOUBLE. The initial value is GL_FLOAT.

GL_VERTEX_ATTRIB_ARRAY_NORMALIZED
params returns a single value that is non-zero (true) if fixed-point data types for the
vertex attribute array indicated by index are normalized when they are converted to
floating point, and 0 (false) otherwise. The initial value is GL_FALSE.

GL_VERTEX_ATTRIB_ARRAY_INTEGER
params returns a single value that is non-zero (true) if fixed-point data types for the
vertex attribute array indicated by index have integer data types, and 0 (false) otherwise.
The initial value is 0 (GL_FALSE).

GL_VERTEX_ATTRIB_ARRAY_DIVISOR
params returns a single value that is the frequency divisor used for instanced rendering.
See glVertexAttribDivisor. The initial value is 0.

GL_CURRENT_VERTEX_ATTRIB
params returns four values that represent the current value for the generic vertex
attribute specified by index. Generic vertex attribute 0 is unique in that it has no current
state, so an error will be generated if index is 0. The initial value for all other generic
vertex attributes is (0,0,0,1).

All of the parameters except GL_CURRENT_VERTEX_ATTRIB represent state stored in the
currently bound vertex array object.

Notes

If an error is generated, no change is made to the contents of params.

Errors

GL_INVALID_OPERATION is generated if pname is not GL_CURRENT_VERTEX_ATTRIB and there
is no currently bound vertex array object.

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_OPERATION is generated if index is 0 and pname is

ptg

glGetVertexAttribPointerv 829
C

GL_CURRENT_VERTEX_ATTRIB.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS
glGetVertexAttribPointerv with arguments index and GL_VERTEX_ATTRIB_ARRAY_POINTER

See Also

glBindAttribLocation, glBindBuffer, glDisableVertexAttribArray,
glEnableVertexAttribArray, glVertexAttrib, glVertexAttribDivisor,
glVertexAttribPointer

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. Copyright © 2010 Khronos Group. This material may be
distributed subject to the terms and conditions set forth in the Open Publication License, v 1.0, 8
June 1999. http://opencontent.org/openpub/.

glGetVertexAttribPointerv

return the address of the specified generic vertex attribute pointer

C Specification

void glGetVertexAttribPointerv(GLuint index,
GLenum pname,
GLvoid ** pointer);

Parameters

index
Specifies the generic vertex attribute parameter to be returned.

pname
Specifies the symbolic name of the generic vertex attribute parameter to be returned.
Must be GL_VERTEX_ATTRIB_ARRAY_POINTER.

pointer
Returns the pointer value.

Description

glGetVertexAttribPointerv returns pointer information. index is the generic vertex attribute
to be queried, pname is a symbolic constant indicating the pointer to be returned, and params is a
pointer to a location in which to place the returned data.

The pointer returned is a byte offset into the data store of the buffer object that was bound to
the GL_ARRAY_BUFFER target (see glBindBuffer) when the desired pointer was previously specified.

Notes

The state returned is retrieved from the currently bound vertex array object.
The initial value for each pointer is 0.

Errors

GL_INVALID_OPERATION is generated if no vertex array object is currently bound.
GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_ENUM is generated if pname is not an accepted value.

ptg

830

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS

See Also

glGetVertexAttrib, glVertexAttribPointer

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. Copyright © 2010 Khronos Group. This material may be
distributed subject to the terms and conditions set forth in the Open Publication License, v 1.0, 8
June 1999. http://opencontent.org/openpub/.

glHint

specify implementation-specific hints

C Specification

void glHint(GLenum target,
GLenum mode);

Parameters

target
Specifies a symbolic constant indicating the behavior to be controlled.
GL_LINE_SMOOTH_HINT, GL_POLYGON_SMOOTH_HINT, GL_TEXTURE_COMPRESSION_
HINT, and GL_FRAGMENT_SHADER_DERIVATIVE_HINT are accepted.

mode
Specifies a symbolic constant indicating the desired behavior. GL_FASTEST, GL_NICEST,
and GL_DONT_CARE are accepted.

Description

Certain aspects of GL behavior, when there is room for interpretation, can be controlled with
hints. A hint is specified with two arguments. target is a symbolic constant indicating the behavior
to be controlled, and mode is another symbolic constant indicating the desired behavior. The initial
value for each target is GL_DONT_CARE. mode can be one of the following:

GL_FASTEST
The most efficient option should be chosen.

GL_NICEST
The most correct, or highest quality, option should be chosen.

GL_DONT_CARE
No preference.

Though the implementation aspects that can be hinted are well defined, the interpretation of the
hints depends on the implementation. The hint aspects that can be specified with target, along
with suggested semantics, are as follows:

GL_FRAGMENT_SHADER_DERIVATIVE_HINT
Indicates the accuracy of the derivative calculation for the GL shading language fragment
processing built-in functions: dFdx, dFdy, and fwidth.

GL_LINE_SMOOTH_HINT
Indicates the sampling quality of antialiased lines. If a larger filter function is applied,
hinting GL_NICEST can result in more pixel fragments being generated during rasterization.

ptg

glIsBuffer 831
C

GL_POLYGON_SMOOTH_HINT
Indicates the sampling quality of antialiased polygons. Hinting GL_NICEST can result in
more pixel fragments being generated during rasterization, if a larger filter function is
applied.

GL_TEXTURE_COMPRESSION_HINT
Indicates the quality and performance of the compressing texture images. Hinting
GL_FASTEST indicates that texture images should be compressed as quickly as possible,
while GL_NICEST indicates that texture images should be compressed with as little image
quality loss as possible. GL_NICEST should be selected if the texture is to be retrieved by
glGetCompressedTexImage for reuse.

Notes

The interpretation of hints depends on the implementation. Some implementations ignore
glHint settings.

Errors

GL_INVALID_ENUM is generated if either target or mode is not an accepted value.

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glIsBuffer

determine if a name corresponds to a buffer object

C Specification

GLboolean glIsBuffer(GLuint buffer);

Parameters

buffer
Specifies a value that may be the name of a buffer object.

Description

glIsBuffer returns GL_TRUE if buffer is currently the name of a buffer object. If buffer is
zero, or is a non-zero value that is not currently the name of a buffer object, or if an error occurs,
glIsBuffer returns GL_FALSE.

A name returned by glGenBuffers, but not yet associated with a buffer object by calling
glBindBuffer, is not the name of a buffer object.

See Also

glBindBuffer, glDeleteBuffers, glGenBuffers, glGet

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

ptg

832

glIsEnabled

test whether a capability is enabled

C Specification

GLboolean glIsEnabled(GLenum cap);

Parameters

cap
Specifies a symbolic constant indicating a GL capability.

Description

glIsEnabled returns GL_TRUE if cap is an enabled capability and returns GL_FALSE otherwise.
Initially all capabilities except GL_DITHER are disabled; GL_DITHER is initially enabled.

The following capabilities are accepted for cap:

Notes

If an error is generated, glIsEnabled returns GL_FALSE.

Errors

GL_INVALID_ENUM is generated if cap is not an accepted value.

See Also

glEnable, glGet

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

Constant See

GL_BLEND glBlendFunc, glLogicOp

GL_CLIP_DISTANCEi glEnable

GL_COLOR_LOGIC_OP glLogicOp

GL_CULL_FACE glCullFace

GL_DEPTH_CLAMP glEnable

GL_DEPTH_TEST glDepthFunc, glDepthRange

GL_DITHER glEnable

GL_FRAMEBUFFER_SRGB glEnable

GL_LINE_SMOOTH glLineWidth

GL_MULTISAMPLE glSampleCoverage

ptg

glIsFramebuffer 833
C

glIsFramebuffer

determine if a name corresponds to a framebuffer object

C Specification

GLboolean glIsFramebuffer(GLuint framebuffer);

Parameters

framebuffer
Specifies a value that may be the name of a framebuffer object.

Description

glIsFramebuffer returns GL_TRUE if framebuffer is currently the name of a framebuffer
object. If framebuffer is zero, or if framebuffer is not the name of a framebuffer object, or if an error
occurs, glIsFramebuffer returns GL_FALSE. If framebuffer is a name returned by
glGenFramebuffers, by that has not yet been bound through a call to glBindFramebuffer, then the
name is not a framebuffer object and glIsFramebuffer returns GL_FALSE.

See Also

glGenFramebuffers, glBindFramebuffer, glDeleteFramebuffers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

Constant See

GL_POLYGON_SMOOTH glPolygonMode

GL_POLYGON_OFFSET_FILL glPolygonOffset

GL_POLYGON_OFFSET_LINE glPolygonOffset

GL_POLYGON_OFFSET_POINT glPolygonOffset

GL_PROGRAM_POINT_SIZE glEnable

GL_PRIMITIVE_RESTART glEnable, glPrimitiveRestartIndex

GL_SAMPLE_ALPHA_TO_COVERAGE glSampleCoverage

GL_SAMPLE_ALPHA_TO_ONE glSampleCoverage

GL_SAMPLE_COVERAGE glSampleCoverage

GL_SAMPLE_MASK glEnable

GL_SCISSOR_TEST glScissor

GL_STENCIL_TEST glStencilFunc, glStencilOp

GL_TEXTURE_CUBEMAP_SEAMLESS glEnable

ptg

834

glIsProgram

Determines if a name corresponds to a program object

C Specification

GLboolean glIsProgram(GLuint program);

Parameters

program
Specifies a potential program object.

Description

glIsProgram returns GL_TRUE if program is the name of a program object previously created
with glCreateProgram and not yet deleted with glDeleteProgram. If program is zero or a non-zero
value that is not the name of a program object, or if an error occurs, glIsProgram returns GL_FALSE.

Notes

No error is generated if program is not a valid program object name.
A program object marked for deletion with glDeleteProgram but still in use as part of current

rendering state is still considered a program object and glIsProgram will return GL_TRUE.

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with arguments program and the index of an active attribute variable
glGetActiveUniform with arguments program and the index of an active uniform variable
glGetAttachedShaders with argument program
glGetAttribLocation with arguments program and the name of an attribute variable
glGetProgram with arguments program and the parameter to be queried
glGetProgramInfoLog with argument program
glGetUniform with arguments program and the location of a uniform variable
glGetUniformLocation with arguments program and the name of a uniform variable

See Also

glAttachShader, glBindAttribLocation, glCreateProgram, glDeleteProgram,
glDetachShader, glLinkProgram, glUniform, glUseProgram, glValidateProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glIsQuery

determine if a name corresponds to a query object

C Specification

GLboolean glIsQuery(GLuint id);

ptg

glIsQuery 835
C

Parameters

id
Specifies a value that may be the name of a query object.

Description

glIsQuery returns GL_TRUE if id is currently the name of a query object. If id is zero, or is a
non-zero value that is not currently the name of a query object, or if an error occurs, glIsQuery
returns GL_FALSE.

A name returned by glGenQueries, but not yet associated with a query object by calling
glBeginQuery, is not the name of a query object.

See Also

glBeginQuery, glDeleteQueries, glEndQuery, glGenQueries

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glIsRenderbuffer

determine if a name corresponds to a renderbuffer object

C Specification

GLboolean glIsRenderbuffer(GLuint renderbuffer);

Parameters

renderbuffer
Specifies a value that may be the name of a renderbuffer object.

Description

glIsRenderbuffer returns GL_TRUE if renderbuffer is currently the name of a renderbuffer
object. If renderbuffer is zero, or if renderbuffer is not the name of a renderbuffer object, or if
an error occurs, glIsRenderbuffer returns GL_FALSE. If renderbuffer is a name returned by
glGenRenderbuffers, but that has not yet been bound through a call to glBindRenderbuffer or
glFramebufferRenderbuffer, then the name is not a renderbuffer object and glIsRenderbuffer
returns GL_FALSE.

See Also

glGenRenderbuffers, glBindRenderbuffer, glFramebufferRenderbuffer,
glDeleteRenderbuffers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

ptg

836

glIsSampler

determine if a name corresponds to a sampler object

C Specification

GLboolean glIsSampler(GLuint id);

Parameters

id
Specifies a value that may be the name of a sampler object.

Description

glIsSampler returns GL_TRUE if id is currently the name of a sampler object. If id is zero, or is
a non-zero value that is not currently the name of a sampler object, or if an error occurs,
glIsSampler returns GL_FALSE.

A name returned by glGenSamplers, is the name of a sampler object.

Notes

glIsSampler is available only if the GL version is 3.3 or higher.

See Also

glGenSamplers, glBindSampler, glDeleteSamplers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glIsShader

Determines if a name corresponds to a shader object

C Specification

GLboolean glIsShader(GLuint shader);

Parameters

shader
Specifies a potential shader object.

Description

glIsShader returns GL_TRUE if shader is the name of a shader object previously created with
glCreateShader and not yet deleted with glDeleteShader. If shader is zero or a non-zero value that is
not the name of a shader object, or if an error occurs, glIsShader returns GL_FALSE.

Notes

No error is generated if shader is not a valid shader object name.
A shader object marked for deletion with glDeleteShader but still attached to a program object is

still considered a shader object and glIsShader will return GL_TRUE.

ptg

glIsSync 837
C

Associated Gets

glGetAttachedShaders with a valid program object
glGetShader with arguments shader and a parameter to be queried
glGetShaderInfoLog with argument object
glGetShaderSource with argument object

See Also

glAttachShader, glCompileShader, glCreateShader, glDeleteShader,
glDetachShader, glLinkProgram, glShaderSource

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glIsSync

determine if a name corresponds to a sync object

C Specification

GLboolean glIsSync(GLsync sync);

Parameters

sync
Specifies a value that may be the name of a sync object.

Description

glIsSync returns GL_TRUE if sync is currently the name of a sync object. If sync is not the
name of a sync object, or if an error occurs, glIsSync returns GL_FALSE. Note that zero is not the
name of a sync object.

Notes

glIsSync is available only if the GL version is 3.2 or greater.

See Also

glFenceSync, glWaitSync, glClientWaitSync, glDeleteSync

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glIsTexture

determine if a name corresponds to a texture

C Specification

GLboolean glIsTexture(GLuint texture);

ptg

838

Parameters

texture
Specifies a value that may be the name of a texture.

Description

glIsTexture returns GL_TRUE if texture is currently the name of a texture. If texture is zero,
or is a non-zero value that is not currently the name of a texture, or if an error occurs, glIsTexture
returns GL_FALSE.

A name returned by glGenTextures, but not yet associated with a texture by calling glBindTexture,
is not the name of a texture.

See Also

glBindTexture, glCopyTexImage1D, glCopyTexImage2D, glDeleteTextures,
glGenTextures, glGet, glGetTexParameter, glTexImage1D, glTexImage2D,
glTexImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glIsVertexArray

determine if a name corresponds to a vertex array object

C Specification

GLboolean glIsVertexArray(GLuint array);

Parameters

array
Specifies a value that may be the name of a vertex array object.

Description

glIsVertexArray returns GL_TRUE if array is currently the name of a renderbuffer object. If
renderbuffer is zero, or if array is not the name of a renderbuffer object, or if an error occurs,
glIsVertexArray returns GL_FALSE. If array is a name returned by glGenVertexArrays, but that
has not yet been bound through a call to glBindVertexArray, then the name is not a vertex array
object and glIsVertexArray returns GL_FALSE.

See Also

glGenVertexArrays, glBindVertexArray, glDeleteVertexArrays

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

ptg

glLineWidth 839
C

glLineWidth

specify the width of rasterized lines

C Specification

void glLineWidth(GLfloat width);

Parameters

width
Specifies the width of rasterized lines. The initial value is 1.

Description

glLineWidth specifies the rasterized width of both aliased and antialiased lines. Using a line
width other than 1 has different effects, depending on whether line antialiasing is enabled. To enable
and disable line antialiasing, call glEnable and glDisable with argument GL_LINE_SMOOTH. Line
antialiasing is initially disabled.

If line antialiasing is disabled, the actual width is determined by rounding the supplied width to
the nearest integer. (If the rounding results in the value 0, it is as if the line width were 1.) If

, i pixels are filled in each column that is rasterized, where i is the rounded value of
width. Otherwise, i pixels are filled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that inter-
sects the region lying within the rectangle having width equal to the current line width, length equal
to the actual length of the line, and centered on the mathematical line segment. The coverage value
for each fragment is the window coordinate area of the intersection of the rectangular region with the
corresponding pixel square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is
requested, the nearest supported width is used. Only width 1 is guaranteed to be supported; others
depend on the implementation. Likewise, there is a range for aliased line widths as well. To query the
range of supported widths and the size difference between supported widths within the range, call
glGet with arguments GL_ALIASED_LINE_WIDTH_RANGE, GL_SMOOTH_LINE_WIDTH_RANGE, and
GL_SMOOTH_LINE_WIDTH_GRANULARITY.

Notes

The line width specified by glLineWidth is always returned when GL_LINE_WIDTH is queried.
Clamping and rounding for aliased and antialiased lines have no effect on the specified value.

Nonantialiased line width may be clamped to an implementation-dependent maximum. Call
glGet with GL_ALIASED_LINE_WIDTH_RANGE to determine the maximum width.

In OpenGL 1.2, the tokens GL_LINE_WIDTH_RANGE and GL_LINE_WIDTH_GRANULARITY were
replaced by GL_ALIASED_LINE_WIDTH_RANGE, GL_SMOOTH_LINE_WIDTH_RANGE, and
GL_SMOOTH_LINE_WIDTH_GRANULARITY. The old names are retained for backward compatibility,
but should not be used in new code.

Errors

GL_INVALID_VALUE is generated if width is less than or equal to 0.

|¢x |7 =|¢y|

ptg

840

Associated Gets

glGet with argument GL_LINE_WIDTH
glGet with argument GL_ALIASED_LINE_WIDTH_RANGE
glGet with argument GL_SMOOTH_LINE_WIDTH_RANGE
glGet with argument GL_SMOOTH_LINE_WIDTH_GRANULARITY
glIsEnabled with argument GL_LINE_SMOOTH

See Also

glEnable

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glLinkProgram

Links a program object

C Specification

void glLinkProgram(GLuint program);

Parameters

program
Specifies the handle of the program object to be linked.

Description

glLinkProgram links the program object specified by program. If any shader objects of type
GL_VERTEX_SHADER are attached to program, they will be used to create an executable that will run
on the programmable vertex processor. If any shader objects of type GL_GEOMETRY_SHADER are
attached to program, they will be used to create an executable that will run on the programmable
geometry processor. If any shader objects of type GL_FRAGMENT_SHADER are attached to program,
they will be used to create an executable that will run on the programmable fragment processor.

The status of the link operation will be stored as part of the program object’s state. This value will
be set to GL_TRUE if the program object was linked without errors and is ready for use, and GL_FALSE
otherwise. It can be queried by calling glGetProgram with arguments program and GL_LINK_STATUS.

As a result of a successful link operation, all active user-defined uniform variables belonging to
program will be initialized to 0, and each of the program object’s active uniform variables will be
assigned a location that can be queried by calling glGetUniformLocation. Also, any active user-
defined attribute variables that have not been bound to a generic vertex attribute index will be bound
to one at this time.

Linking of a program object can fail for a number of reasons as specified in the OpenGL Shading
Language Specification. The following lists some of the conditions that will cause a link error.

The number of active attribute variables supported by the implementation has been
exceeded.
The storage limit for uniform variables has been exceeded.
The number of active uniform variables supported by the implementation has been
exceeded.
The main function is missing for the vertex, geometry or fragment shader.

ptg

glLinkProgram 841
C

A varying variable actually used in the fragment shader is not declared in the same
way (or is not declared at all) in the vertex shader, or geometry shader present.
A reference to a function or variable name is unresolved.
A shared global is declared with two different types or two different initial values.
One or more of the attached shader objects has not been successfully compiled.
Binding a generic attribute matrix caused some rows of the matrix to fall outside the
allowed maximum of GL_MAX_VERTEX_ATTRIBS.
Not enough contiguous vertex attribute slots could be found to bind attribute matrices.
The program object contains objects to form a fragment shader but does not contain
objects to form a vertex shader.
The program object contains objects to form a geometry shader but does not contain
objects to form a vertex shader.
The program object contains objects to form a geometry shader and the input primitive
type, output primitive type, or maximum output vertex count is not specified in any
compiled geometry shader object.
The program object contains objects to form a geometry shader and the input primitive
type, output primitive type, or maximum output vertex count is specified differently in
multiple geometry shader objects.
The number of active outputs in the fragment shader is greater than the value of
GL_MAX_DRAW_BUFFERS.
The program has an active output assigned to a location greater than or equal to the
value of GL_MAX_DUAL_SOURCE_DRAW_BUFFERS and has an active output assigned an
index greater than or equal to one.
More than one varying out variable is bound to the same number and index.
The explicit binding assigments do not leave enough space for the linker to automatically
assign a location for a varying out array, which requires multiple contiguous locations.
The count specified by glTransformFeedbackVaryings is non-zero, but the program object
has no vertex or geometry shader.
Any variable name specified to glTransformFeedbackVaryings in the varyings array is
not declared as an output in the vertex shader (or the geometry shader, if active).
Any two entries in the varyings array given glTransformFeedbackVaryings specify the
same varying variable.
The total number of components to capture in any transform feedback varying variable is
greater than the constant GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS
and the buffer mode is SEPARATE_ATTRIBS.

When a program object has been successfully linked, the program object can be made part of
current state by calling glUseProgram. Whether or not the link operation was successful, the program
object’s information log will be overwritten. The information log can be retrieved by calling
glGetProgramInfoLog.

glLinkProgram will also install the generated executables as part of the current rendering state if
the link operation was successful and the specified program object is already currently in use as a
result of a previous call to glUseProgram. If the program object currently in use is relinked unsuccess-
fully, its link status will be set to GL_FALSE, but the executables and associated state will remain part
of the current state until a subsequent call to glUseProgram removes it from use. After it is removed
from use, it cannot be made part of current state until it has been successfully relinked.

If program contains shader objects of type GL_VERTEX_SHADER, and optionally of type
GL_GEOMETRY_SHADER, but does not contain shader objects of type GL_FRAGMENT_SHADER, the
vertex shader executable will be installed on the programmable vertex processor, the geometry shader
executable, if present, will be installed on the programmable geometry processor, but no executable
will be installed on the fragment processor. The results of rasterizing primitives with such a program
will be undefined.

ptg

842

The program object’s information log is updated and the program is generated at the time of the
link operation. After the link operation, applications are free to modify attached shader objects,
compile attached shader objects, detach shader objects, delete shader objects, and attach additional
shader objects. None of these operations affects the information log or the program that is part of the
program object.

Notes

If the link operation is unsuccessful, any information about a previous link operation on program
is lost (i.e., a failed link does not restore the old state of program). Certain information can still be
retrieved from program even after an unsuccessful link operation. See for instance glGetActiveAttrib
and glGetActiveUniform.

Errors

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program is the currently active program object and

transform feedback mode is active.

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with argument program and the index of an active attribute variable
glGetActiveUniform with argument program and the index of an active uniform variable
glGetAttachedShaders with argument program
glGetAttribLocation with argument program and an attribute variable name
glGetProgram with arguments program and GL_LINK_STATUS
glGetProgramInfoLog with argument program
glGetUniform with argument program and a uniform variable location
glGetUniformLocation with argument program and a uniform variable name
glIsProgram

See Also

glAttachShader, glBindAttribLocation, glCompileShader, glCreateProgram,
glDeleteProgram, glDetachShader, glUniform, glUseProgram, glValidateProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. Copyright © 2010 Khronos Group. This material may be
distributed subject to the terms and conditions set forth in the Open Publication License, v 1.0, 8
June 1999. http://opencontent.org/openpub/.

glLogicOp

specify a logical pixel operation for rendering

C Specification

void glLogicOp(GLenum opcode);

ptg

glLogicOp 843
C

Parameters

opcode
Specifies a symbolic constant that selects a logical operation. The following symbols are
accepted: GL_CLEAR, GL_SET, GL_COPY, GL_COPY_INVERTED, GL_NOOP, GL_INVERT,
GL_AND, GL_NAND, GL_OR, GL_NOR, GL_XOR, GL_EQUIV, GL_AND_REVERSE,
GL_AND_INVERTED, GL_OR_REVERSE, and GL_OR_INVERTED. The initial value is
GL_COPY.

Description

glLogicOp specifies a logical operation that, when enabled, is applied between the incoming
RGBA color and the RGBA color at the corresponding location in the frame buffer. To enable or
disable the logical operation, call glEnable and glDisable using the symbolic constant
GL_COLOR_LOGIC_OP. The initial value is disabled.

opcode is a symbolic constant chosen from the list above. In the explanation of the logical opera-
tions, s represents the incoming color and d represents the color in the frame buffer. Standard C-
language operators are used. As these bitwise operators suggest, the logical operation is applied
independently to each bit pair of the source and destination colors.

Notes

When more than one RGBA color buffer is enabled for drawing, logical operations are performed
separately for each enabled buffer, using for the destination value the contents of that buffer (see
glDrawBuffer).

Logic operations have no effect on floating point draw buffers. However, if
GL_COLOR_LOGIC_OP is enabled, blending is still disabled in this case.

Opcode Resulting Operation

GL_CLEAR 0

GL_SET 1

GL_COPY s

GL_COPY_INVERTED ~s

GL_NOOP d

GL_INVERT ~d

GL_AND s & d

GL_NAND ~(s & d)

GL_OR s | d

GL_NOR ~(s | d)

GL_XOR s ^ d

GL_EQUIV ~(s ^ d)

GL_AND_REVERSE s & ~d

ptg

844

Errors

GL_INVALID_ENUM is generated if opcode is not an accepted value.

Associated Gets

glGet with argument GL_LOGIC_OP_MODE.
glIsEnabled with argument GL_COLOR_LOGIC_OP.

See Also

glBlendFunc, glDrawBuffer, glEnable, glStencilOp

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glMapBuffer

map a buffer object’s data store

C Specification

void * glMapBuffer(GLenum target,
GLenum access);

Parameters

target
Specifies the target buffer object being mapped. The symbolic constant must be
GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER,
GL_TEXTURE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

access
Specifies the access policy, indicating whether it will be possible to read from, write to, or
both read from and write to the buffer object’s mapped data store. The symbolic constant
must be GL_READ_ONLY, GL_WRITE_ONLY, or GL_READ_WRITE.

C Specification

GLboolean glUnmapBuffer GLenum target

Parameters

target
Specifies the target buffer object being unmapped. The symbolic constant must be
GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER,
GL_TEXTURE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

Opcode Resulting Operation

GL_AND_INVERTED ~s & d

GL_OR_REVERSE s | ~d

GL_OR_INVERTED ~s | d

ptg

glMapBuffer 845
C

Description

glMapBuffer maps to the client’s address space the entire data store of the buffer object
currently bound to target. The data can then be directly read and/or written relative to the returned
pointer, depending on the specified access policy. If the GL is unable to map the buffer object’s data
store, glMapBuffer generates an error and returns NULL. This may occur for system-specific reasons,
such as low virtual memory availability.

If a mapped data store is accessed in a way inconsistent with the specified access policy, no error
is generated, but performance may be negatively impacted and system errors, including program
termination, may result. Unlike the usage parameter of glBufferData, access is not a hint, and
does in fact constrain the usage of the mapped data store on some GL implementations. In order to
achieve the highest performance available, a buffer object’s data store should be used in ways consis-
tent with both its specified usage and access parameters.

A mapped data store must be unmapped with glUnmapBuffer before its buffer object is used.
Otherwise an error will be generated by any GL command that attempts to dereference the buffer
object’s data store. When a data store is unmapped, the pointer to its data store becomes invalid.
glUnmapBuffer returns GL_TRUE unless the data store contents have become corrupt during the
time the data store was mapped. This can occur for system-specific reasons that affect the availability
of graphics memory, such as screen mode changes. In such situations, GL_FALSE is returned and the
data store contents are undefined. An application must detect this rare condition and reinitialize the
data store.

A buffer object’s mapped data store is automatically unmapped when the buffer object is deleted
or its data store is recreated with glBufferData.

Notes

If an error is generated, glMapBuffer returns NULL, and glUnmapBuffer returns GL_FALSE.
Parameter values passed to GL commands may not be sourced from the returned pointer. No error

will be generated, but results will be undefined and will likely vary across GL implementations.

Errors

GL_INVALID_ENUM is generated if target is not GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER,
GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER,
GL_PIXEL_UNPACK_BUFFER, GL_TEXTURE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or
GL_UNIFORM_BUFFER.

GL_INVALID_ENUM is generated if access is not GL_READ_ONLY, GL_WRITE_ONLY, or
GL_READ_WRITE.

GL_OUT_OF_MEMORY is generated when glMapBuffer is executed if the GL is unable to map
the buffer object’s data store. This may occur for a variety of system-specific reasons, such as the
absence of sufficient remaining virtual memory.

GL_INVALID_OPERATION is generated if the reserved buffer object name 0 is bound to target.
GL_INVALID_OPERATION is generated if glMapBuffer is executed for a buffer object whose data

store is already mapped.
GL_INVALID_OPERATION is generated if glUnmapBuffer is executed for a buffer object whose

data store is not currently mapped.

Associated Gets

glGetBufferPointerv with argument GL_BUFFER_MAP_POINTER
glGetBufferParameter with argument GL_BUFFER_MAPPED, GL_BUFFER_ACCESS, or

GL_BUFFER_USAGE

See Also

glBindBuffer, glBindBufferBase, glBindBufferRange, glBufferData,
glBufferSubData, glDeleteBuffers

ptg

846

Copyright

Copyright © 2005 Addison-Wesley. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glMapBufferRange

map a section of a buffer object’s data store

C Specification

void *glMapBufferRange(GLenum target,
GLintptr offset,
GLsizeiptr length,
GLbitfield access);

Parameters

target
Specifies a binding to which the target buffer is bound.

offset
Specifies a the starting offset within the buffer of the range to be mapped.

length
Specifies a length of the range to be mapped.

access
Specifies a combination of access flags indicating the desired access to the range.

Description

glMapBufferRange maps all or part of the data store of a buffer object into the client’s address
space. target specifies the target to which the buffer is bound and must be one of
GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER,
GL_TEXTURE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER. offset and
length indicate the range of data in the buffer object htat is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping. These flags are
described below.

If no error occurs, a pointer to the beginning of the mapped range is returned once all pending
operations on that buffer have completed, and may be used to modify and/or query the correspond-
ing range of the buffer, according to the following flag bits set in access:

GL_MAP_READ_BIT indicates that the returned pointer may be used to read buffer object
data. No GL error is generated if the pointer is used to query a mapping which excludes
this flag, but the result is undefined and system errors (possibly including program termi-
nation) may occur.
GL_MAP_WRITE_BIT indicates that the returned pointer may be used to modify buffer
object data. No GL error is generated if the pointer is used to modify a mapping which
excludes this flag, but the result is undefined and system errors (possibly including
program termination) may occur.

Furthermore, the following optional flag bits in access may be used to modify the mapping:
GL_MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the specified
range may be discarded. Data within this range are undefined with the exception of
subsequently written data. No GL error is generated if sub- sequent GL operations access
unwritten data, but the result is undefined and system errors (possibly including program
termination) may occur. This flag may not be used in combination with
GL_MAP_READ_BIT.

ptg

glMapBufferRange 847
C

GL_MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the entire
buffer may be discarded. Data within the entire buffer are undefined with the exception
of subsequently written data. No GL error is generated if subsequent GL operations access
unwritten data, but the result is undefined and system errors (possibly including program
termination) may occur. This flag may not be used in combination with
GL_MAP_READ_BIT.
GL_MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges of the
mapping may be modified. When this flag is set, modifications to each subrange must be
explicitly flushed by calling glFlushMappedBufferRange. No GL error is set if a subrange
of the mapping is modified and not flushed, but data within the corresponding subrange
of the buffer are undefined. This flag may only be used in conjunction with
GL_MAP_WRITE_BIT. When this option is selected, flushing is strictly limited to regions
that are explicitly indicated with calls to glFlushMappedBufferRange prior to unmap; if
this option is not selected glUnmapBuffer will automatically flush the entire mapped
range when called.
GL_MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to synchro-
nize pending operations on the buffer prior to returning from glMapBufferRange. No
GL error is generated if pending operations which source or modify the buffer overlap
the mapped region, but the result of such previous and any subsequent operations is
undefined.

If an error occurs, glMapBufferRange returns a NULL pointer.

Errors

GL_INVALID_VALUE is generated if either of offset or length is negative, or if offset +
length is greater than the value of GL_BUFFER_SIZE.

GL_INVALID_VALUE is generated if access has any bits set other than those defined above.
GL_INVALID_OPERATION is generated for any of the following conditions:

The buffer is already in a mapped state.
Neither GL_MAP_READ_BIT or GL_MAP_WRITE_BIT is set.
GL_MAP_READ_BIT is set and any of GL_MAP_INVALIDATE_RANGE_BIT,
GL_MAP_INVALIDATE_BUFFER_BIT, or GL_MAP_UNSYNCHRONIZED_BIT is set.
GL_MAP_FLUSH_EXPLICIT_BIT is set and GL_MAP_WRITE_BIT is not set.

GL_OUT_OF_MEMORY is generated if glMapBufferRange fails because memory for the mapping
could not be obtained.

See Also

glMapBuffer, glFlushMappedBufferRange, glBindBuffer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glMultiDrawArrays

render multiple sets of primitives from array data

C Specification

void glMultiDrawArrays(GLenum mode,
GLint * first,
GLsizei * count,
GLsizei primcount);

ptg

848

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_LINE_STRIP_ADJACENCY,
GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_TRIANGLE_STRIP_ADJACENCY, and GL_TRIANGLES_ADJACENCY are accepted.

first
Points to an array of starting indices in the enabled arrays.

count
Points to an array of the number of indices to be rendered.

primcount
Specifies the size of the first and count

Description

glMultiDrawArrays specifies multiple sets of geometric primitives with very few subroutine
calls. Instead of calling a GL procedure to pass each individual vertex, normal, texture coordinate,
edge flag, or color, you can prespecify separate arrays of vertices, normals, and colors and use them to
construct a sequence of primitives with a single call to glMultiDrawArrays.

glMultiDrawArrays behaves identically to glDrawArrays except that primcount separate ranges
of elements are specified instead.

When glMultiDrawArrays is called, it uses count sequential elements from each enabled array
to construct a sequence of geometric primitives, beginning with element first. mode specifies what
kind of primitives are constructed, and how the array elements construct those primitives.

Vertex attributes that are modified by glMultiDrawArrays have an unspecified value after
glMultiDrawArrays returns. Attributes that aren’t modified remain well defined.

Notes

GL_LINE_STRIP_ADJACENCY, GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY, and
GL_TRIANGLES_ADJACENCY are available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if primcount is negative.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array and the buffer object’s data store is currently mapped.

See Also

glDrawElements, glDrawRangeElements

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glMultiDrawElements

render multiple sets of primitives by specifying indices of array data elements

ptg

glMultiDrawElements 849
C

C Specification

void glMultiDrawElements(GLenum mode,
const GLsizei * count,
GLenum type, const
GLvoid ** indices,
GLsizei primcount);

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_LINE_STRIP_ADJACENCY,
GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_TRIANGLE_STRIP_ADJACENCY, and GL_TRIANGLES_ADJACENCY are accepted.

count
Points to an array of the elements counts.

type
Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices
Specifies a pointer to the location where the indices are stored.

primcount
Specifies the size of the count array.

Description

glMultiDrawElements specifies multiple sets of geometric primitives with very few subroutine
calls. Instead of calling a GL function to pass each individual vertex, normal, texture coordinate, edge
flag, or color, you can prespecify separate arrays of vertices, normals, and so on, and use them to
construct a sequence of primitives with a single call to glMultiDrawElements.

glMultiDrawElements is identical in operation to glDrawElements except that primcount sepa-
rate lists of elements are specified.

Vertex attributes that are modified by glMultiDrawElements have an unspecified value after
glMultiDrawElements returns. Attributes that aren’t modified maintain their previous values.

Notes

GL_LINE_STRIP_ADJACENCY, GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY, and
GL_TRIANGLES_ADJACENCY are available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if primcount is negative.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.

See Also

glDrawArrays, glDrawRangeElements

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

ptg

850

glMultiDrawElementsBaseVertex

render multiple sets of primitives by specifying indices of array data elements and an index to
apply to each index

C Specification

void glMultiDrawElementsBaseVertex(GLenum mode,
const GLsizei *count,
GLenum type,
const GLvoid **indices,
GLsizei primcount,
GLint *basevertex);

Parameters

mode
Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_LINE_STRIP_ADJACENCY,
GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_TRIANGLE_STRIP_ADJACENCY, and GL_TRIANGLES_ADJACENCY are accepted.

count
Points to an array of the elements counts.

type
Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices
Specifies a pointer to the location where the indices are stored.

primcount
Specifies the size of the count array.

basevertex
Specifies a pointer to the location where the base vertices are stored.

Description

glMultiDrawElementsBaseVertex behaves identically to glDrawElementsBaseVertex, except
that primcount separate lists of elements are specifried instead.

It has the same effect as:

for (int i = 0; i < primcount; i++)

if (count[i] > 0)

glDrawElementsBaseVertex(mode,

count[i],

type,

indices[i],

basevertex[i]);

Notes

glMultiDrawElementsBaseVertex is available only if the GL version is 3.1 or greater.
GL_LINE_STRIP_ADJACENCY, GL_LINES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY, and

GL_TRIANGLES_ADJACENCY are available only if the GL version is 3.2 or greater.

ptg

glMultiTexCoord 851
C

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.
GL_INVALID_VALUE is generated if primcount is negative.
GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an enabled

array or the element array and the buffer object’s data store is currently mapped.

See Also

glMultiDrawElements, glDrawElementsBaseVertex, glDrawArrays,
glVertexAttribPointer

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glMultiTexCoord

set the current texture coordinates

C Specification

void glMultiTexCoord1s GLenum target GLshort s
void glMultiTexCoord1i GLenum target GLint s
void glMultiTexCoord1f GLenum target GLfloat s
void glMultiTexCoord1d GLenum target GLdouble s
void glMultiTexCoord2s GLenum target GLshort s GLshort t
void glMultiTexCoord2i GLenum target GLint s GLint t
void glMultiTexCoord2f GLenum target GLfloat s GLfloat t
void glMultiTexCoord2d GLenum target GLdouble s GLdouble t
void glMultiTexCoord3s GLenum target GLshort s GLshort t GLshort r
void glMultiTexCoord3i GLenum target GLint s GLint t GLint r
void glMultiTexCoord3f GLenum target GLfloat s GLfloat t GLfloat r
void glMultiTexCoord3d GLenum target GLdouble s GLdouble t GLdouble r
void glMultiTexCoord4s GLenum target GLshort s GLshort t GLshort r GLshort q
void glMultiTexCoord4i GLenum target GLint s GLint t GLint r GLint q
void glMultiTexCoord4f GLenum target GLfloat s GLfloat t GLfloat r GLfloat q
void glMultiTexCoord4d GLenum target GLdouble s GLdouble t GLdouble r GLdouble q

Parameters

target
Specifies the texture unit whose coordinates should be modified. The number of texture
units is implementation dependent, but must be at least two. Symbolic constant must be
one of GL_TEXTURE , where i ranges from 0 to GL_MAX_TEXTURE_COORDS - 1, which
is an implementation-dependent value.

s
t
r
q

Specify s, t, r, and q texture coordinates for target texture unit. Not all parameters are
present in all forms of the command.

i

ptg

852

C Specification

void glMultiTexCoord1sv GLenum target const GLshort * v
void glMultiTexCoord1iv GLenum target const GLint * v
void glMultiTexCoord1fv GLenum target const GLfloat * v
void glMultiTexCoord1dv GLenum target const GLdouble * v
void glMultiTexCoord2sv GLenum target const GLshort * v
void glMultiTexCoord2iv GLenum target const GLint * v
void glMultiTexCoord2fv GLenum target const GLfloat * v
void glMultiTexCoord2dv GLenum target const GLdouble * v
void glMultiTexCoord3sv GLenum target const GLshort * v
void glMultiTexCoord3iv GLenum target const GLint * v
void glMultiTexCoord3fv GLenum target const GLfloat * v
void glMultiTexCoord3dv GLenum target const GLdouble * v
void glMultiTexCoord4sv GLenum target const GLshort * v
void glMultiTexCoord4iv GLenum target const GLint * v
void glMultiTexCoord4fv GLenum target const GLfloat * v
void glMultiTexCoord4dv GLenum target const GLdouble * v

Parameters

target
Specifies the texture unit whose coordinates should be modified. The number of texture
units is implementation dependent, but must be at least two. Symbolic constant must be
one of GL_TEXTURE , where i ranges from 0 to GL_MAX_TEXTURE_COORDS - 1, which
is an implementation-dependent value.

v
Specifies a pointer to an array of one, two, three, or four elements, which in turn specify
the , , , and texture coordinates.

Description

glMultiTexCoord specifies texture coordinates in one, two, three, or four dimensions.
glMultiTexCoord1 sets the current texture coordinates to ; a call to glMultiTexCoord2
sets them to . Similarly, glMultiTexCoord3 specifies the texture coordinates as ,
and glMultiTexCoord4 defines all four components explicitly as .

The current texture coordinates are part of the data that is associated with each vertex and with
the current raster position. Initially, the values for are .

Notes

The current texture coordinates can be updated at any time.
It is always the case that GL_TEXTURE = GL_TEXTURE0 + .

Associated Gets

glGet with argument GL_CURRENT_TEXTURE_COORDS with appropriate texture unit selected.
glGet with argument GL_MAX_TEXTURE_COORDS

See Also

glActiveTexture, glTexCoord, glVertex

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

ii

(0,0,0,1)(s,t,r,q)

(s,t,r,q)
(s,t,r,1)(s,t,0,1)

(s,0,0,1)

qrts

i

ptg

glPixelStore 853
C

glPixelStore

set pixel storage modes

C Specification

void glPixelStoref(GLenum pname,
GLfloat param);

void glPixelStorei(GLenum pname,
GLint param);

Parameters

pname
Specifies the symbolic name of the parameter to be set. Six values affect the packing of
pixel data into memory: GL_PACK_SWAP_BYTES, GL_PACK_LSB_FIRST,
GL_PACK_ROW_LENGTH, GL_PACK_IMAGE_HEIGHT, GL_PACK_SKIP_PIXELS,
GL_PACK_SKIP_ROWS, GL_PACK_SKIP_IMAGES, and GL_PACK_ALIGNMENT. Six more
affect the unpacking of pixel data from memory: GL_UNPACK_SWAP_BYTES,
GL_UNPACK_LSB_FIRST, GL_UNPACK_ROW_LENGTH, GL_UNPACK_IMAGE_HEIGHT,
GL_UNPACK_SKIP_PIXELS, GL_UNPACK_SKIP_ROWS, GL_UNPACK_SKIP_IMAGES, and
GL_UNPACK_ALIGNMENT.

param
Specifies the value that pname is set to.

Description

glPixelStore sets pixel storage modes that affect the operation of subsequent glReadPixels as
well as the unpacking of texture patterns (see glTexImage1D, glTexImage2D, glTexImage3D,
glTexSubImage1D, glTexSubImage2D, glTexSubImage3D).

pname is a symbolic constant indicating the parameter to be set, and param is the new value. Six
of the twelve storage parameters affect how pixel data is returned to client memory. They are as
follows:

GL_PACK_SWAP_BYTES
If true, byte ordering for multibyte color components, depth components, or stencil
indices is reversed. That is, if a four-byte component consists of bytes , , , , it is
stored in memory as , , , if GL_PACK_SWAP_BYTES is true.
GL_PACK_SWAP_BYTES has no effect on the memory order of components within a
pixel, only on the order of bytes within components or indices. For example, the three
components of a GL_RGB format pixel are always stored with red first, green second, and
blue third, regardless of the value of GL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise,
the first bit in each byte is the most significant one.

GL_PACK_ROW_LENGTH
If greater than 0, GL_PACK_ROW_LENGTH defines the number of pixels in a row. If the
first pixel of a row is placed at location in memory, then the location of the first pixel
of the next row is obtained by skipping

components or indices, where is the number of components or indices in a pixel, is
the number of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than 0, the width

ln

k = d nl s 7 = a

a

s
2 snl
a
2 s 6 a

p

b0b1b2b3

b3b2b1b0

ptg

854

argument to the pixel routine otherwise), is the value of GL_PACK_ALIGNMENT, and
is the size, in bytes, of a single component (if , then it is as if). In the case of
1-bit values, the location of the next row is obtained by skipping

components or indices.
The word component in this description refers to the nonindex values red, green, blue,
alpha, and depth. Storage format GL_RGB, for example, has three components per pixel:
first red, then green, and finally blue.

GL_PACK_IMAGE_HEIGHT
If greater than 0, GL_PACK_IMAGE_HEIGHT defines the number of pixels in an image
three-dimensional texture volume, where ``image’’ is defined by all pixels sharing the
same third dimension index. If the first pixel of a row is placed at location in memory,
then the location of the first pixel of the next row is obtained by skipping

components or indices, where is the number of components or indices in a pixel, is
the number of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than 0, the
argument to glTexImage3D otherwise), is the number of rows in a pixel image
(GL_PACK_IMAGE_HEIGHT if it is greater than 0, the argument to the
glTexImage3D routine otherwise), is the value of GL_PACK_ALIGNMENT, and is the
size, in bytes, of a single component (if , then it is as if).
The word component in this description refers to the nonindex values red, green, blue,
alpha, and depth. Storage format GL_RGB, for example, has three components per pixel:
first red, then green, and finally blue.

GL_PACK_SKIP_PIXELS, GL_PACK_SKIP_ROWS, and GL_PACK_SKIP_IMAGES
These values are provided as a convenience to the programmer; they provide no func-
tionality that cannot be duplicated simply by incrementing the pointer passed to
glReadPixels. Setting GL_PACK_SKIP_PIXELS to is equivalent to incrementing the
pointer by components or indices, where is the number of components or indices in
each pixel. Setting GL_PACK_SKIP_ROWS to is equivalent to incrementing the pointer
by components or indices, where is the number of components or indices per row,
as just computed in the GL_PACK_ROW_LENGTH section. Setting
GL_PACK_SKIP_IMAGES to is equivalent to incrementing the pointer by , where is
the number of components or indices per image, as computed in the
GL_PACK_IMAGE_HEIGHT section.

GL_PACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The
allowable values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4
(word-alignment), and 8 (rows start on double-word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from client memory.
These values are significant for glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, and glTexSubImage3D

pkpk

mjm
j
nin

i

a = sa 6 s
sa

height
h

width
ln

k = d nlh s 7 = a

a

s
2 snlh

a
2 s 6 a

p

k = 8a 2 nl
8a
2

a = sa 6 s
sa

ptg

glPixelStore 855
C

They are as follows:
GL_UNPACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components, or stencil
indices is reversed. That is, if a four-byte component consists of bytes , , , , it is
taken from memory as , , , if GL_UNPACK_SWAP_BYTES is true.
GL_UNPACK_SWAP_BYTES has no effect on the memory order of components within a
pixel, only on the order of bytes within components or indices. For example, the three
components of a GL_RGB format pixel are always stored with red first, green second, and
blue third, regardless of the value of GL_UNPACK_SWAP_BYTES.

GL_UNPACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise,
the first bit in each byte is the most significant one.

GL_UNPACK_ROW_LENGTH
If greater than 0, GL_UNPACK_ROW_LENGTH defines the number of pixels in a row. If
the first pixel of a row is placed at location in memory, then the location of the first
pixel of the next row is obtained by skipping

components or indices, where is the number of components or indices in a pixel, is
the number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is greater than 0, the

argument to the pixel routine otherwise), is the value of GL_UNPACK_
ALIGNMENT, and is the size, in bytes, of a single component (if , then it is as if

). In the case of 1-bit values, the location of the next row is obtained by skipping

components or indices.
The word component in this description refers to the nonindex values red, green, blue,
alpha, and depth. Storage format GL_RGB, for example, has three components per pixel:
first red, then green, and finally blue.

GL_UNPACK_IMAGE_HEIGHT
If greater than 0, GL_UNPACK_IMAGE_HEIGHT defines the number of pixels in an
image of a three-dimensional texture volume. Where ``image’’ is defined by all pixel
sharing the same third dimension index. If the first pixel of a row is placed at location
in memory, then the location of the first pixel of the next row is obtained by skipping

components or indices, where is the number of components or indices in a pixel, is
the number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is greater than 0, the

argument to glTexImage3D otherwise), is the number of rows in an image
(GL_UNPACK_IMAGE_HEIGHT if it is greater than 0, the argument to
glTexImage3D otherwise), is the value of GL_UNPACK_ALIGNMENT, and is the size,
in bytes, of a single component (if , then it is as if).
The word component in this description refers to the nonindex values red, green, blue,
alpha, and depth. Storage format GL_RGB, for example, has three components per pixel:
first red, then green, and finally blue.

a = sa 6 s
sa

height
hwidth

ln

k = d nlh s 7 = a

a

s
2 snlh

a
2 s 6 a

p

k = 8a 2 nl
8a
2a = s

a 6 ss
awidth

ln

k = d nl s 7 = a

a

s
2 snl
a
2 s 6 a

p

b0b1b2b3

b3b2b1b0

ptg

856

GL_UNPACK_SKIP_PIXELS and GL_UNPACK_SKIP_ROWS
These values are provided as a convenience to the programmer; they provide no func-
tionality that cannot be duplicated by incrementing the pointer passed to glTexImage1D,
glTexImage2D, glTexSubImage1D or glTexSubImage2D. Setting
GL_UNPACK_SKIP_PIXELS to is equivalent to incrementing the pointer by compo-
nents or indices, where is the number of components or indices in each pixel. Setting
GL_UNPACK_SKIP_ROWS to is equivalent to incrementing the pointer by compo-
nents or indices, where is the number of components or indices per row, as just
computed in the GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The
allowable values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4
(word-alignment), and 8 (rows start on double-word boundaries).

The following table gives the type, initial value, and range of valid values for each storage parame-
ter that can be set with glPixelStore.

glPixelStoref can be used to set any pixel store parameter. If the parameter type is boolean,
then if param is 0, the parameter is false; otherwise it is set to true. If pname is a integer type parame-
ter, param is rounded to the nearest integer.

Likewise, glPixelStorei can also be used to set any of the pixel store parameters. Boolean para-
meters are set to false if param is 0 and true otherwise.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.
GL_INVALID_VALUE is generated if a negative row length, pixel skip, or row skip value is speci-

fied, or if alignment is specified as other than 1, 2, 4, or 8.

Associated Gets

glGet with argument GL_PACK_SWAP_BYTES

k
jkj

n
ini

pname Type Initial Value Valid Range

GL_PACK_SWAP_BYTES boolean false true or false

GL_PACK_LSB_FIRST boolean false true or false

GL_PACK_ROW_LENGTH integer 0 [0, q)

GL_PACK_IMAGE_HEIGHT integer 0 [0, q)

GL_PACK_SKIP_ROWS integer 0 [0, q)

GL_PACK_SKIP_PIXELS integer 0 [0, q)

GL_PACK_SKIP_IMAGES integer 0 [0, q)

GL_PACK_ALIGNMENT integer 4 1, 2, 4, or 8

GL_UNPACK_SWAP_BYTES boolean false true or false

GL_UNPACK_LSB_FIRST boolean false true or false

GL_UNPACK_ROW_LENGTH integer 0 [0, q)

ptg

glPixelStore 857
C

glGet with argument GL_PACK_LSB_FIRST
glGet with argument GL_PACK_ROW_LENGTH
glGet with argument GL_PACK_IMAGE_HEIGHT
glGet with argument GL_PACK_SKIP_ROWS
glGet with argument GL_PACK_SKIP_PIXELS
glGet with argument GL_PACK_SKIP_IMAGES
glGet with argument GL_PACK_ALIGNMENT
glGet with argument GL_UNPACK_SWAP_BYTES
glGet with argument GL_UNPACK_LSB_FIRST
glGet with argument GL_UNPACK_ROW_LENGTH
glGet with argument GL_UNPACK_IMAGE_HEIGHT
glGet with argument GL_UNPACK_SKIP_ROWS
glGet with argument GL_UNPACK_SKIP_PIXELS
glGet with argument GL_UNPACK_SKIP_IMAGES
glGet with argument GL_UNPACK_ALIGNMENT

See Also

glReadPixels, glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glPointParameter

specify point parameters

C Specification

void glPointParameterf(GLenum pname,
GLfloat param);

void glPointParameteri(GLenum pname,
GLint param);

pname Type Initial Value Valid Range

GL_UNPACK_IMAGE_HEIGHT integer 0 [0, q)

GL_UNPACK_SKIP_ROWS integer 0 [0, q)

GL_UNPACK_SKIP_PIXELS integer 0 [0, q)

GL_UNPACK_SKIP_IMAGES integer 0 [0, q)

GL_UNPACK_ALIGNMENT integer 4 1, 2, 4, or 8

ptg

858

Parameters

pname
Specifies a single-valued point parameter. GL_POINT_FADE_THRESHOLD_SIZE and
GL_POINT_SPRITE_COORD_ORIGIN are accepted.

param
Specifies the value that pname will be set to.

C Specification

void glPointParameterfv(GLenum pname,
const GLfloat * params);

void glPointParameteriv(GLenum pname,
const GLint * params);

Parameters

pname
Specifies a point parameter. GL_POINT_FADE_THRESHOLD_SIZE and
GL_POINT_SPRITE_COORD_ORIGIN are accepted.

params
Specifies the value to be assigned to pname.

Description

The following values are accepted for pname:
GL_POINT_FADE_THRESHOLD_SIZE

params is a single floating-point value that specifies the threshold value to which point
sizes are clamped if they exceed the specified value. The default value is 1.0.

GL_POINT_SPRITE_COORD_ORIGIN
params is a single enum specifying the point sprite texture coordinate origin, either
GL_LOWER_LEFT or GL_UPPER_LEFT. The default value is GL_UPPER_LEFT.

Errors

GL_INVALID_VALUE is generated if the value specified for GL_POINT_FADE_THRESHOLD_SIZE is
less than zero.

GL_INVALID_ENUM is generated If the value specified for GL_POINT_SPRITE_COORD_ORIGIN is
not GL_LOWER_LEFT or GL_UPPER_LEFT.

Associated Gets

glGet with argument GL_POINT_FADE_THRESHOLD_SIZE
glGet with argument GL_POINT_SPRITE_COORD_ORIGIN

See Also

glPointSize

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. Copyright © 2010 Khronos Group. This document
is licensed under the SGI Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

ptg

glPointSize 859
C

glPointSize

specify the diameter of rasterized points

C Specification

void glPointSize(GLfloat size);

Parameters

size
Specifies the diameter of rasterized points. The initial value is 1.

Description

glPointSize specifies the rasterized diameter of points. If point size mode is disabled (see
glEnable with parameter GL_PROGRAM_POINT_SIZE), this value will be used to rasterize points.
Otherwise, the value written to the shading language built-in variable gl_PointSize will be used.

Notes

The point size specified by glPointSize is always returned when GL_POINT_SIZE is queried.
Clamping and rounding for points have no effect on the specified value.

Errors

GL_INVALID_VALUE is generated if size is less than or equal to 0.

Associated Gets

glGet with argument GL_POINT_SIZE_RANGE
glGet with argument GL_POINT_SIZE_GRANULARITY
glGet with argument GL_POINT_SIZE
glGet with argument GL_POINT_SIZE_MIN
glGet with argument GL_POINT_SIZE_MAX
glGet with argument GL_POINT_FADE_THRESHOLD_SIZE
glIsEnabled with argument GL_PROGRAM_POINT_SIZE

See Also

glEnable, glPointParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glPolygonMode

select a polygon rasterization mode

C Specification

void glPolygonMode(GLenum face,
GLenum mode);

ptg

860

Parameters

face
Specifies the polygons that mode applies to. Must be GL_FRONT_AND_BACK for front-
and back-facing polygons.

mode
Specifies how polygons will be rasterized. Accepted values are GL_POINT, GL_LINE, and
GL_FILL. The initial value is GL_FILL for both front- and back-facing polygons.

Description

glPolygonMode controls the interpretation of polygons for rasterization. face describes which
polygons mode applies to: both front- and back-facing polygons (GL_FRONT_AND_BACK). The
polygon mode affects only the final rasterization of polygons. In particular, a polygon’s vertices are lit
and the polygon is clipped and possibly culled before these modes are applied.

Three modes are defined and can be specified in mode:
GL_POINT

Polygon vertices that are marked as the start of a boundary edge are drawn as points.
Point attributes such as GL_POINT_SIZE and GL_POINT_SMOOTH control the rasteriza-
tion of the points. Polygon rasterization attributes other than GL_POLYGON_MODE
have no effect.

GL_LINE
Boundary edges of the polygon are drawn as line segments. Line attributes such as
GL_LINE_WIDTH and GL_LINE_SMOOTH control the rasterization of the lines. Polygon
rasterization attributes other than GL_POLYGON_MODE have no effect.

GL_FILL
The interior of the polygon is filled. Polygon attributes such as GL_POLYGON_SMOOTH
control the rasterization of the polygon.

Examples

To draw a surface with outlined polygons, call

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

Notes

Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are generated
internally by the GL when it decomposes triangle stips and fans.

Errors

GL_INVALID_ENUM is generated if either face or mode is not an accepted value.

Associated Gets

glGet with argument GL_POLYGON_MODE

See Also

glLineWidth, glPointSize

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

ptg

glPolygonOffset 861
C

glPolygonOffset

set the scale and units used to calculate depth values

C Specification

void glPolygonOffset(GLfloat factor,
GLfloat units);

Parameters

factor
Specifies a scale factor that is used to create a variable depth offset for each polygon. The
initial value is 0.

units
Is multiplied by an implementation-specific value to create a constant depth offset. The
initial value is 0.

Description

When GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT is enabled, each fragment’s depth value will be offset after it is inter-
polated from the depth values of the appropriate vertices. The value of the offset is

, where is a measurement of the change in depth relative to the screen area
of the polygon, and is the smallest value that is guaranteed to produce a resolvable offset for a given
implementation. The offset is added before the depth test is performed and before the value is written
into the depth buffer.

glPolygonOffset is useful for rendering hidden-line images, for applying decals to surfaces, and
for rendering solids with highlighted edges.

Notes

glPolygonOffset has no effect on depth coordinates placed in the feedback buffer.
glPolygonOffset has no effect on selection.

Errors

Associated Gets

glIsEnabled with argument GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT.

glGet with argument GL_POLYGON_OFFSET_FACTOR or GL_POLYGON_OFFSET_UNITS.

See Also

glDepthFunc, glEnable, glGet, glIsEnabled

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

r
DZfactor * DZ + r * units

ptg

862

glPrimitiveRestartIndex

specify the primitive restart index

C Specification

void glPrimitiveRestartIndex(GLuint index);

Parameters

index
Specifies the value to be interpreted as the primitive restart index.

Description

glPrimitiveRestartIndex specifies a vertex array element that is treated specially when primi-
tive restarting is enabled. This is known as the primitive restart index.

When one of the Draw* commands transfers a set of generic attribute array elements to the GL, if
the index within the vertex arrays corresponding to that set is equal to the primitive restart index,
then the GL does not process those elements as a vertex. Instead, it is as if the drawing command
ended with the immediately preceding transfer, and another drawing command is immediately
started with the same parameters, but only transferring the immediately following element through
the end of the originally specified elements.

When either glDrawElementsBaseVertex, glDrawElementsInstancedBaseVertex or
glMultiDrawElementsBaseVertex is used, the primitive restart comparison occurs before the basevertex
offset is added to the array index.

Notes

glPrimitiveRestartIndex is available only if the GL version is 3.1 or greater.

See Also

glDrawArrays, glDrawElements, glDrawElementsBaseVertex,
glDrawElementsInstancedBaseVertex

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glProvokingVertex

specifiy the vertex to be used as the source of data for flat shaded varyings

C Specification

void glProvokingVertex(GLenum provokeMode);

Parameters

provokeMode
Specifies the vertex to be used as the source of data for flat shaded varyings.

ptg

glProvokingVertex 863
C

Description

Flatshading a vertex shader varying output means to assign all vetices of the primitive the same
value for that output. The vertex from which these values is derived is known as the provoking
vertex and glProvokingVertex specifies which vertex is to be used as the source of data for flat
shaded varyings.

provokeMode must be either GL_FIRST_VERTEX_CONVENTION or GL_LAST_VERTEX_
CONVENTION, and controls the selection of the vertex whose values are assigned to flatshaded
varying outputs. The interpretation of these values for the supported primitive types is:

If a vertex or geometry shader is active, user-defined varying outputs may be flatshaded by using
the flat qualifier when declaring the output.

Notes

glProvokingVertex is available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_ENUM is generated if provokeMode is not an accepted value.

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

Primitive Type of Polygon i First Vertex Convention Last Vertex Convention

point i i

independent line 2i - 1 2i

line loop i i + 1, if i < n

1, if i = n

line strip i i + 1

independent triangle 3i - 2 3i

triangle strip i i + 2

triangle fan i + 1 i + 2

line adjacency 4i - 2 4i - 1

line strip adjacency i + 1 i + 2

triangle adjacency 6i - 5 6i - 1

triangle strip adjacency 2i - 1 2i + 3

ptg

864

glQueryCounter

record the GL time into a query object after all previous commands have reached the GL server
but have not yet necessarily executed.

C Specification

void glQueryCounter(GLuint id,
GLenum target);

Parameters

id
Specify the name of a query object into which to record the GL time.

target
Specify the counter to query. target must be GL_TIMESTAMP.

Description

glQueryCounter causes the GL to record the current time into the query object named id.
target must be GL_TIMESTAMP. The time is recorded after all previous commands on the GL client
and server state and the framebuffer have been fully realized. When the time is recorded, the query
result for that object is marked available. glQueryCounter timer queries can be used within a
glBeginQuery / glEndQuery block where the target is GL_TIME_ELAPSED and it does not affect the
result of that query object.

Notes

glQueryCounter is available only if the GL version is 3.3 or higher.

Errors

GL_INVALID_OPERATION is generated if id is the name of a query object that is already in use
within a glBeginQuery / glEndQuery block.

GL_INVALID_VALUE is generated if id is not the name of a query object returned from a previous
call to glGenQueries.

GL_INVALID_ENUM is generated if target is not GL_TIMESTAMP.

See Also

glGenQueries, glBeginQuery, glEndQuery, glDeleteQueries, glGetQueryObject,
glGetQueryiv, glGet

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glReadBuffer

select a color buffer source for pixels

C Specification

void glReadBuffer(GLenum mode);

ptg

glReadPixels 865
C

Parameters

mode
Specifies a color buffer. Accepted values are GL_FRONT_LEFT, GL_FRONT_RIGHT,
GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT, and GL_RIGHT.

Description

glReadBuffer specifies a color buffer as the source for subsequent glReadPixels,
glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D, glCopyTexSubImage2D, and
glCopyTexSubImage3D commands. mode accepts one of twelve or more predefined values. In a fully
configured system, GL_FRONT, GL_LEFT, and GL_FRONT_LEFT all name the front left buffer,
GL_FRONT_RIGHT and GL_RIGHT name the front right buffer, and GL_BACK_LEFT and GL_BACK
name the back left buffer.

Nonstereo double-buffered configurations have only a front left and a back left buffer. Single-
buffered configurations have a front left and a front right buffer if stereo, and only a front left buffer
if nonstereo. It is an error to specify a nonexistent buffer to glReadBuffer.

mode is initially GL_FRONT in single-buffered configurations and GL_BACK in double-buffered
configurations.

Errors

GL_INVALID_ENUM is generated if mode is not one of the twelve (or more) accepted values.
GL_INVALID_OPERATION is generated if mode specifies a buffer that does not exist.

Associated Gets

glGet with argument GL_READ_BUFFER

See Also

glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glDrawBuffer, glReadPixels

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glReadPixels

read a block of pixels from the frame buffer

C Specification

void glReadPixels(GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
GLvoid * data);

Parameters

x
y

Specify the window coordinates of the first pixel that is read from the frame buffer. This
location is the lower left corner of a rectangular block of pixels.

ptg

866

width
height

Specify the dimensions of the pixel rectangle. width and height of one correspond to a
single pixel.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_DEPTH_STENCIL, GL_RED,
GL_GREEN, GL_BLUE, GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type
Specifies the data type of the pixel data. Must be one of GL_UNSIGNED_BYTE, GL_BYTE,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_HALF_FLOAT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, GL_UNSIGNED_INT_2_10_10_10_REV,
GL_UNSIGNED_INT_24_8, GL_UNSIGNED_INT_10F_11F_11F_REV,
GL_UNSIGNED_INT_5_9_9_9_REV, or GL_FLOAT_32_UNSIGNED_INT_24_8_REV.

data
Returns the pixel data.

Description

glReadPixels returns pixel data from the frame buffer, starting with the pixel whose lower left
corner is at location (x, y), into client memory starting at location data. Several parameters control
the processing of the pixel data before it is placed into client memory. These parameters are set with
glPixelStore. This reference page describes the effects on glReadPixels of most, but not all of the
parameters specified by these three commands.

If a non-zero named buffer object is bound to the GL_PIXEL_PACK_BUFFER target (see
glBindBuffer) while a block of pixels is requested, data is treated as a byte offset into the buffer
object’s data store rather than a pointer to client memory.

glReadPixels returns values from each pixel with lower left corner at for
and . This pixel is said to be the th pixel in the th row. Pixels are

returned in row order from the lowest to the highest row, left to right in each row.
format specifies the format for the returned pixel values; accepted values are:
GL_STENCIL_INDEX

Stencil values are read from the stencil buffer. Each index is converted to fixed point,
shifted left or right depending on the value and sign of GL_INDEX_SHIFT, and added to
GL_INDEX_OFFSET. If GL_MAP_STENCIL is GL_TRUE, indices are replaced by their
mappings in the table GL_PIXEL_MAP_S_TO_S.

GL_DEPTH_COMPONENT
Depth values are read from the depth buffer. Each component is converted to floating
point such that the minimum depth value maps to 0 and the maximum value maps to 1.
Each component is then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS,
and finally clamped to the range .

GL_DEPTH_STENCIL
Values are taken from both the depth and stencil buffers. The type parameter must be
GL_UNSIGNED_INT_24_8 or GL_FLOAT_32_UNSIGNED_INT_24_8_REV.

GL_RED
GL_GREEN
GL_BLUE

[0,1]

ji0 6 = j6 height0 6 = i 6 width
(x + i,y + j)

ptg

glReadPixels 867
C

GL_RGB
GL_BGR
GL_RGBA
GL_BGRA
Finally, the indices or components are converted to the proper format, as specified by type. If

format is GL_STENCIL_INDEX and type is not GL_FLOAT, each index is masked with the mask
value given in the following table. If type is GL_FLOAT, then each integer index is converted to
single-precision floating-point format.

If format is GL_RED, GL_GREEN, GL_BLUE, GL_RGB, GL_BGR, GL_RGBA, or GL_BGRA and type
is not GL_FLOAT, each component is multiplied by the multiplier shown in the following table. If
type is GL_FLOAT, then each component is passed as is (or converted to the client’s single-precision
floating-point format if it is different from the one used by the GL).

Return values are placed in memory as follows. If format is GL_STENCIL_INDEX,
GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, or GL_BLUE, a single value is returned and the data
for the th pixel in the th row is placed in location . GL_RGB and GL_BGR return three(j)w idth + iji

type Index Mask Component Conversion

GL_UNSIGNED_BYTE 28 - 1 A28 - 1Bc
GL_BYTE 27 - 1 A28 - 1Bc - 1

2

GL_UNSIGNED_SHORT 216 - 1 A216 - 1Bc
GL_SHORT 215 - 1 A216 - 1Bc - 1

2

GL_UNSIGNED_INT 232 - 1 A232 - 1Bc
GL_INT 231 - 1 A232 - 1Bc - 1

2

GL_HALF_FLOAT none c

GL_FLOAT none c

GL_UNSIGNED_BYTE_3_3_2 2N - 1 A2N - 1Bc
GL_UNSIGNED_BYTE_2_3_3_REV 2N - 1 A2N - 1Bc
GL_UNSIGNED_SHORT_5_6_5 2N - 1 A2N - 1Bc
GL_UNSIGNED_SHORT_5_6_5_REV 2N - 1 A2N - 1Bc
GL_UNSIGNED_SHORT_4_4_4_4 2N - 1 A2N - 1Bc
GL_UNSIGNED_SHORT_4_4_4_4_REV 2N - 1 A2N - 1Bc

ptg

868

values, GL_RGBA and GL_BGRA return four values for each pixel, with all values corresponding to a
single pixel occupying contiguous space in data. Storage parameters set by glPixelStore, such as
GL_PACK_LSB_FIRST and GL_PACK_SWAP_BYTES, affect the way that data is written into memory.
See glPixelStore for a description.

Notes

Values for pixels that lie outside the window connected to the current GL context are undefined.
If an error is generated, no change is made to the contents of data.

Errors

GL_INVALID_ENUM is generated if format or type is not an accepted value.
GL_INVALID_VALUE is generated if either width or height is negative.
GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil

buffer.
GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and there is no

depth buffer.
GL_INVALID_OPERATION is generated if format is GL_DEPTH_STENCIL and there is no depth

buffer or if there is no stencil buffer.
GL_INVALID_ENUM is generated if format is GL_DEPTH_STENCIL and type is not

GL_UNSIGNED_INT_24_8 or GL_FLOAT_32_UNSIGNED_INT_24_8_REV.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

type Index Mask Component Conversion

GL_UNSIGNED_SHORT_5_5_5_1 2N - 1 A2N - 1Bc
GL_UNSIGNED_SHORT_1_5_5_5_REV 2N - 1 A2N - 1Bc
GL_UNSIGNED_INT_8_8_8_8 2N - 1 A2N - 1Bc
GL_UNSIGNED_INT_8_8_8_8_REV 2N - 1 A2N - 1Bc
GL_UNSIGNED_INT_10_10_10_2 2N - 1 A2N - 1Bc
GL_UNSIGNED_INT_2_10_10_10_REV 2N - 1 A2N - 1Bc
GL_UNSIGNED_INT_24_8 2N - 1 A2N - 1Bc
GL_UNSIGNED_INT_10F_11F_11F_REV — Special

GL_UNSIGNED_INT_5_9_9_9_REV — Special

GL_FLOAT_32_UNSIGNED_INT_24_8_REV none (Depth Only)c

ptg

glRenderbufferStorage 869
C

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and the data would be packed to the buffer object such that the
memory writes required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_PACK_BUFFER target and data is not evenly divisible into the number of bytes needed to
store in memory a datum indicated by type.

GL_INVALID_OPERATION is generated if GL_READ_FRAMEBUFFER_BINDING is non-zero, the
read framebuffer is complete, and the value of GL_SAMPLE_BUFFERS for the read framebuffer is
greater than zero.

Associated Gets

glGet with argument GL_INDEX_MODE
glGet with argument GL_PIXEL_PACK_BUFFER_BINDING

See Also

glPixelStore, glReadBuffer

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glRenderbufferStorage

establish data storage, format and dimensions of a renderbuffer object’s image

C Specification

void glRenderbufferStorage(GLenum target,
GLenum internalformat,
GLsizei width,
GLsizei height);

Parameters

target
Specifies a binding to which the target of the allocation and must be GL_RENDERBUFFER.

internalformat
Specifies the internal format to use for the renderbuffer object’s image.

width
Specifies the width of the renderbuffer, in pixels.

height
Specifies the height of the renderbuffer, in pixels.

Description

glRenderbufferStorage is equivalent to calling glRenderbufferStorageMultisample with the
samples set to zero.

ptg

870

The target of the operation, specified by target must be GL_RENDERBUFFER. internalformat
specifies the internal format to be used for the renderbuffer object’s storage and must be a color-
renderable, depth-renderable, or stencil-renderable format. width and height are the dimensions, in
pixels, of the renderbuffer. Both width and height must be less than or equal to the value of
GL_MAX_RENDERBUFFER_SIZE.

Upon success, glRenderbufferStorage deletes any existing data store for the renderbuffer
image and the contents of the data store after calling glRenderbufferStorage are undefined.

Errors

GL_INVALID_ENUM is generated if target is not GL_RENDERBUFFER.
GL_INVALID_VALUE is generated if either of width or height is negative, or greater than the

value of GL_MAX_RENDERBUFFER_SIZE.
GL_INVALID_ENUM is generated if internalformat is not a color-renderable, depth-renderable,

or stencil-renderable format.
GL_OUT_OF_MEMORY is generated if the GL is unable to create a data store of the requested size.

See Also

glGenRenderbuffers, glBindRenderbuffer, glRenderbufferStorageMultisample,
glFramebufferRenderbuffer, glDeleteRenderbuffers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glRenderbufferStorageMultisample

establish data storage, format, dimensions and sample count of a renderbuffer object’s image

C Specification

void glRenderbufferStorageMultisample(GLenum target,
GLsizei samples,
GLenum internalformat,
GLsizei width,
GLsizei height);

Parameters

target
Specifies a binding to which the target of the allocation and must be GL_RENDERBUFFER.

samples
Specifies the number of samples to be used for the renderbuffer object’s storage.

internalformat
Specifies the internal format to use for the renderbuffer object’s image.

width
Specifies the width of the renderbuffer, in pixels.

height
Specifies the height of the renderbuffer, in pixels.

Description

glRenderbufferStorageMultisample establishes the data storage, format, dimensions and
number of samples of a renderbuffer object’s image.

ptg

glSampleCoverage 871
C

The target of the operation, specified by target must be GL_RENDERBUFFER. internalformat
specifies the internal format to be used for the renderbuffer object’s storage and must be a color-
renderable, depth-renderable, or stencil-renderable format. width and height are the dimensions, in
pixels, of the renderbuffer. Both width and height must be less than or equal to the value of
GL_MAX_RENDERBUFFER_SIZE. samples specifies the number of samples to be used for the render-
buffer object’s image, and must be less than or equal to the value of GL_MAX_SAMPLES. If
internalformat is a signed or unsigned integer format then samples must be less than or equal to
the value of GL_MAX_INTEGER_SAMPLES.

Upon success, glRenderbufferStorageMultisample deletes any existing data store for the
renderbuffer image and the contents of the data store after calling
glRenderbufferStorageMultisample are undefined.

Errors

GL_INVALID_ENUM is generated if target is not GL_RENDERBUFFER.
GL_INVALID_VALUE is generated if samples is greater than GL_MAX_SAMPLES.
GL_INVALID_ENUM is generated if internalformat is not a color-renderable, depth-renderable,

or stencil-renderable format.
GL_INVALID_OPERATION is generated if internalformat is a signed or unsigned integer format

and samples is greater than the value of GL_MAX_INTEGER_SAMPLES
GL_INVALID_VALUE is generated if either of width or height is negative, or greater than the

value of GL_MAX_RENDERBUFFER_SIZE.
GL_OUT_OF_MEMORY is generated if the GL is unable to create a data store of the requested size.

See Also

glGenRenderbuffers, glBindRenderbuffer, glRenderbufferStorage,
glFramebufferRenderbuffer, glDeleteRenderbuffers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glSampleCoverage

specify multisample coverage parameters

C Specification

void glSampleCoverage(GLclampf value,
GLboolean invert);

Parameters

value
Specify a single floating-point sample coverage value. The value is clamped to the range

. The initial value is 1.0.
invert

Specify a single boolean value representing if the coverage masks should be inverted.
GL_TRUE and GL_FALSE are accepted. The initial value is GL_FALSE.

Description

Multisampling samples a pixel multiple times at various implementation-dependent subpixel loca-
tions to generate antialiasing effects. Multisampling transparently antialiases points, lines, polygons,
and images if it is enabled.

[0,1]

ptg

872

value is used in constructing a temporary mask used in determining which samples will be used
in resolving the final fragment color. This mask is bitwise-anded with the coverage mask generated
from the multisampling computation. If the invert flag is set, the temporary mask is inverted (all
bits flipped) and then the bitwise-and is computed.

If an implementation does not have any multisample buffers available, or multisampling is
disabled, rasterization occurs with only a single sample computing a pixel’s final RGB color.

Provided an implementation supports multisample buffers, and multisampling is enabled, then a
pixel’s final color is generated by combining several samples per pixel. Each sample contains color,
depth, and stencil information, allowing those operations to be performed on each sample.

Associated Gets

glGet with argument GL_SAMPLE_COVERAGE_VALUE
glGet with argument GL_SAMPLE_COVERAGE_INVERT
glIsEnabled with argument GL_MULTISAMPLE
glIsEnabled with argument GL_SAMPLE_ALPHA_TO_COVERAGE
glIsEnabled with argument GL_SAMPLE_ALPHA_TO_ONE
glIsEnabled with argument GL_SAMPLE_COVERAGE

See Also

glEnable

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glSampleMaski

set the value of a sub-word of the sample mask

C Specification

void glSampleMaski(GLuint maskNumber,
GLbitfield mask);

Parameters

maskNumber
Specifies which 32-bit sub-word of the sample mask to update.

mask
Specifies the new value of the mask sub-word.

Description

glSampleMaski sets one 32-bit sub-word of the multi-word sample mask,
GL_SAMPLE_MASK_VALUE.

maskIndex specifies which 32-bit sub-word of the sample mask to update, and mask specifies the
new value to use for that sub-word. maskIndex must be less than the value of
GL_MAX_SAMPLE_MASK_WORDS. Bit B of mask word M corresponds to sample 32 x M + B.

Notes

glSampleMaski is available only if the GL version is 3.2 or greater, or if the
ARB_texture_multisample extension is supported.

ptg

glSamplerParameter 873
C

Errors

GL_INVALID_VALUE is generated if maskIndex is greater than or equal to the value of
GL_MAX_SAMPLE_MASK_WORDS.

See Also

glGenRenderbuffers, glBindRenderbuffer, glRenderbufferStorageMultisample,
glFramebufferRenderbuffer, glDeleteRenderbuffers

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glSamplerParameter

set sampler parameters

C Specification

void glSamplerParameterf(GLuint sampler,
GLenum pname,
GLfloat param);

void glSamplerParameteri(GLuint sampler,
GLenum pname,
GLint param);

Parameters

sampler
Specifies the sampler object whose parameter to modify.

pname
Specifies the symbolic name of a single-valued texture parameter. pname can be one of
the following: GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R,
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_TEXTURE_MIN_LOD,
GL_TEXTURE_MAX_LOD, GL_TEXTURE_LOD_BIAS GL_TEXTURE_COMPARE_MODE, or
GL_TEXTURE_COMPARE_FUNC.

param
Specifies the value of pname.

C Specification

void glSamplerParameterfv GLuint sampler GLenum pname const GLfloat * params
void glSamplerParameteriv GLuint sampler GLenum pname const GLint * params

Parameters

sampler
Specifies the sampler object whose parameter to modify.

pname
Specifies the symbolic name of a texture parameter. pname can be one of the following:
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R,
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_BORDER_COLOR, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,
GL_TEXTURE_LOD_BIAS GL_TEXTURE_COMPARE_MODE, or
GL_TEXTURE_COMPARE_FUNC.

params
Specifies a pointer to an array where the value or values of pname are stored.

ptg

874

Description

glSamplerParameter assigns the value or values in params to the sampler parameter specified as
pname. sampler specifies the sampler object to be modified, and must be the name of a sampler
object previously returned from a call to glGenSamplers. The following symbols are accepted in pname:

GL_TEXTURE_MIN_FILTER
The texture minifying function is used whenever the pixel being textured maps to an
area greater than one texture element. There are six defined minifying functions. Two of
them use the nearest one or nearest four texture elements to compute the texture value.
The other four use mipmaps.
A mipmap is an ordered set of arrays representing the same image at progressively lower
resolutions. If the texture has dimensions , there are mipmaps.
The first mipmap is the original texture, with dimensions . Each subsequent
mipmap has dimensions , where are the dimensions of the previous
mipmap, until either or . At that point, subsequent mipmaps have dimension

or until the final mipmap, which has dimension . To define the
mipmaps, call glTexImage1D, glTexImage2D, glTexImage3D, glCopyTexImage1D, or
glCopyTexImage2D with the level argument indicating the order of the mipmaps. Level
0 is the original texture; level is the final mipmap.
params supplies a function for minifying the texture as one of the following:

GL_NEAREST
Returns the value of the texture element that is nearest (in Manhattan distance) to the
center of the pixel being textured.

GL_LINEAR
Returns the weighted average of the four texture elements that are closest to the center of
the pixel being textured. These can include border texture elements, depending on the
values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_NEAREST_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured and
uses the GL_NEAREST criterion (the texture element nearest to the center of the pixel) to
produce a texture value.

GL_LINEAR_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured and
uses the GL_LINEAR criterion (a weighted average of the four texture elements that are
closest to the center of the pixel) to produce a texture value.

GL_NEAREST_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being textured
and uses the GL_NEAREST criterion (the texture element nearest to the center of the
pixel) to produce a texture value from each mipmap. The final texture value is a
weighted average of those two values.

GL_LINEAR_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being textured
and uses the GL_LINEAR criterion (a weighted average of the four texture elements that
are closest to the center of the pixel) to produce a texture value from each mipmap. The
final texture value is a weighted average of those two values.

As more texture elements are sampled in the minification process, fewer aliasing artifacts will be
apparent. While the GL_NEAREST and GL_LINEAR minification functions can be faster than the other
four, they sample only one of four texture elements to determine the texture value of the pixel being
rendered and can produce moire patterns or ragged transitions. The initial value of
GL_TEXTURE_MIN_FILTER is GL_NEAREST_MIPMAP_LINEAR.

1 * 1m ax(n,m)

1 * 12k-1 * 11 * 2l-1
l = 0k = 0

2k * 2l2k-1 * 2l-1
2n * 2m

m ax (n,m) + 12n * 2m

ptg

glSamplerParameter 875
C

GL_TEXTURE_MAG_FILTER
The texture magnification function is used when the pixel being textured maps to an
area less than or equal to one texture element. It sets the texture magnification function
to either GL_NEAREST or GL_LINEAR (see below). GL_NEAREST is generally faster than
GL_LINEAR, but it can produce textured images with sharper edges because the transi-
tion between texture elements is not as smooth. The initial value of
GL_TEXTURE_MAG_FILTER is GL_LINEAR.

GL_NEAREST
Returns the value of the texture element that is nearest (in Manhattan distance) to the
center of the pixel being textured.

GL_LINEAR
Returns the weighted average of the four texture elements that are closest to the center of
the pixel being textured. These can include border texture elements, depending on the
values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_TEXTURE_MIN_LOD
Sets the minimum level-of-detail parameter. This floating-point value limits the selection
of highest resolution mipmap (lowest mipmap level). The initial value is -1000.

GL_TEXTURE_MAX_LOD
Sets the maximum level-of-detail parameter. This floating-point value limits the selection
of the lowest resolution mipmap (highest mipmap level). The initial value is 1000.

GL_TEXTURE_WRAP_S

Sets the wrap parameter for texture coordinate to either GL_CLAMP_TO_EDGE,

GL_MIRRORED_REPEAT, or GL_REPEAT. GL_CLAMP_TO_BORDER causes the coordi-

nate to be clamped to the range , where is the size of the texture in the

direction of clamping.GL_CLAMP_TO_EDGE causes coordinates to be clamped to the

range , where is the size of the texture in the direction of clamping.

GL_REPEAT causes the integer part of the coordinate to be ignored; the GL uses only

the fractional part, thereby creating a repeating pattern. GL_MIRRORED_REPEAT causes

the coordinate to be set to the fractional part of the texture coordinate if the integer

part of is even; if the integer part of is odd, then the texture coordinate is set to

, where represents the fractional part of . Initially,

GL_TEXTURE_WRAP_S is set to GL_REPEAT.

GL_TEXTURE_WRAP_T
Sets the wrap parameter for texture coordinate to either GL_CLAMP_TO_EDGE,
GL_MIRRORED_REPEAT, or GL_REPEAT. See the discussion under GL_TEXTURE_WRAP_S.
Initially, GL_TEXTURE_WRAP_T is set to GL_REPEAT.

GL_TEXTURE_WRAP_R
Sets the wrap parameter for texture coordinate to either GL_CLAMP_TO_EDGE,
GL_MIRRORED_REPEAT, or GL_REPEAT. See the discussion under GL_TEXTURE_WRAP_S.
Initially, GL_TEXTURE_WRAP_R is set to GL_REPEAT.

GL_TEXTURE_BORDER_COLOR
Sets a border color. params contains four values that comprise the RGBA color of the
texture border. Integer color components are interpreted linearly such that the most posi-
tive integer maps to 1.0, and the most negative integer maps to -1.0. The values are
clamped to the range [0,1] when they are specified. Initially, the border color is (0, 0, 0, 0).

r

t

sfrac(s)1 - frac(s)

sss

s

s

Nc1
2
,1-

1

2
d

s

Nc -1
2
, +

1

2
d

s

s

ptg

876

GL_TEXTURE_COMPARE_MODE
Specifies the texture comparison mode for currently bound textures. That is, a texture
whose internal format is GL_DEPTH_COMPONENT_*; see glTexImage2D) Permissible
values are:

GL_COMPARE_REF_TO_TEXTURE
Specifies that the interpolated and clamped texture coordinate should be compared to
the value in the currently bound texture. See the discussion of
GL_TEXTURE_COMPARE_FUNC for details of how the comparison is evaluated. The
result of the comparison is assigned to the red channel.

GL_NONE
Specifies that the red channel should be assigned the appropriate value from the
currently bound texture.

GL_TEXTURE_COMPARE_FUNC
Specifies the comparison operator used when GL_TEXTURE_COMPARE_MODE is set to
GL_COMPARE_REF_TO_TEXTURE. Permissible values are:
where is the current interpolated texture coordinate, and is the texture value
sampled from the currently bound texture. is assigned to .

Notes

glSamplerParameter is available only if the GL version is 3.3 or higher.

Errors

GL_INVALID_VALUE is generated if sampler is not the name of a sampler object previously
returned from a call to glGenSamplers.

GL_INVALID_ENUM is generated if params should have a defined constant value (based on the
value of pname) and does not.

Rtresult
Dtr

r

Texture Comparison Function Computed result

GL_LEQUAL

result = c 1.0 r 6 = Dt

0.0 r 7 Dt

GL_GEQUAL

result = c 1.0 r 7 = Dt

0.0 r 6 Dt

GL_LESS

result = c 1.0 r 6 Dt

0.0 r 7 = Dt

GL_GREATER

result = c 1.0 r 7 Dt

0.0 r 6 = Dt

ptg

glScissor 877
C

Associated Gets

glGetSamplerParameter

See Also

glGenSamplers, glBindSampler, glDeleteSamplers, glIsSampler, glBindTexture

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glScissor

define the scissor box

C Specification

void glScissor(GLint x,
GLint y,
GLsizei width,
GLsizei height);

Parameters

x
y

Specify the lower left corner of the scissor box. Initially (0, 0).
width
height

Specify the width and height of the scissor box. When a GL context is first attached to a
window, width and height are set to the dimensions of that window.

Description

glScissor defines a rectangle, called the scissor box, in window coordinates. The first two argu-
ments, x and y, specify the lower left corner of the box. width and height specify the width and
height of the box.

Texture Comparison Function Computed result

GL_EQUAL

result = c 1.0 r = Dt

0.0 r Z Dt

GL_NOTEQUAL

result = c 1.0 r Z Dt

0.0 r = Dt

GL_ALWAYS result = 1.0

GL_NEVER result = 0.0

ptg

878

To enable and disable the scissor test, call glEnable and glDisable with argument
GL_SCISSOR_TEST. The test is initially disabled. While the test is enabled, only pixels that lie within
the scissor box can be modified by drawing commands. Window coordinates have integer values at
the shared corners of frame buffer pixels. glScissor(0,0,1,1) allows modification of only the
lower left pixel in the window, and glScissor(0,0,0,0) doesn’t allow modification of any pixels
in the window.

When the scissor test is disabled, it is as though the scissor box includes the entire window.

Errors

GL_INVALID_VALUE is generated if either width or height is negative.

Associated Gets

glGet with argument GL_SCISSOR_BOX
glIsEnabled with argument GL_SCISSOR_TEST

See Also

glEnable, glViewport

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glShaderSource

Replaces the source code in a shader object

C Specification

void glShaderSource(GLuint shader,
GLsizei count,
const GLchar **string,
const GLint *length);

Parameters

shader
Specifies the handle of the shader object whose source code is to be replaced.

count
Specifies the number of elements in the string and length arrays.

string
Specifies an array of pointers to strings containing the source code to be loaded into the
shader.

length
Specifies an array of string lengths.

Description

glShaderSource sets the source code in shader to the source code in the array of strings speci-
fied by string. Any source code previously stored in the shader object is completely replaced. The
number of strings in the array is specified by count. If length is NULL, each string is assumed to be
null terminated. If length is a value other than NULL, it points to an array containing a string length
for each of the corresponding elements of string. Each element in the length array may contain
the length of the corresponding string (the null character is not counted as part of the string length)
or a value less than 0 to indicate that the string is null terminated. The source code strings are not
scanned or parsed at this time; they are simply copied into the specified shader object.

ptg

glStencilFunc 879
C

Notes

OpenGL copies the shader source code strings when glShaderSource is called, so an application
may free its copy of the source code strings immediately after the function returns.

Errors

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL.
GL_INVALID_OPERATION is generated if shader is not a shader object.
GL_INVALID_VALUE is generated if count is less than 0.

Associated Gets

glGetShader with arguments shader and GL_SHADER_SOURCE_LENGTH
glGetShaderSource with argument shader
glIsShader

See Also

glCompileShader, glCreateShader, glDeleteShader

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glStencilFunc

set front and back function and reference value for stencil testing

C Specification

void glStencilFunc(GLenum func,
GLint ref,
GLuint mask);

Parameters

func
Specifies the test function. Eight symbolic constants are valid: GL_NEVER, GL_LESS,
GL_LEQUAL, GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and
GL_ALWAYS. The initial value is GL_ALWAYS.

ref
Specifies the reference value for the stencil test. ref is clamped to the range ,
where is the number of bitplanes in the stencil buffer. The initial value is 0.

mask
Specifies a mask that is ANDed with both the reference value and the stored stencil value
when the test is done. The initial value is all 1’s.

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. Stencil planes
are first drawn into using GL drawing primitives, then geometry and images are rendered using the
stencil planes to mask out portions of the screen. Stenciling is typically used in multipass rendering
algorithms to achieve special effects, such as decals, outlining, and constructive solid geometry
rendering.

n
[0,2n - 1]

ptg

880

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between
the reference value and the value in the stencil buffer. To enable and disable the test, call glEnable
and glDisable with argument GL_STENCIL_TEST. To specify actions based on the outcome of the
stencil test, call glStencilOp or glStencilOpSeparate.

There can be two separate sets of func, ref, and mask parameters; one affects back-facing poly-
gons, and the other affects front-facing polygons as well as other non-polygon primitives.
glStencilFunc sets both front and back stencil state to the same values. Use glStencilFuncSeparate to
set front and back stencil state to different values.

func is a symbolic constant that determines the stencil comparison function. It accepts one of
eight values, shown in the following list. ref is an integer reference value that is used in the stencil
comparison. It is clamped to the range , where is the number of bitplanes in the stencil
buffer. mask is bitwise ANDed with both the reference value and the stored stencil value, with the
ANDed values participating in the comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the following
list shows the effect of each comparison function that can be specified by func. Only if the compari-
son succeeds is the pixel passed through to the next stage in the rasterization process (see
glStencilOp). All tests treat stencil values as unsigned integers in the range , where is
the number of bitplanes in the stencil buffer.

The following values are accepted by func:
GL_NEVER

Always fails.
GL_LESS

Passes if (ref & mask) < (stencil & mask).
GL_LEQUAL

Passes if (ref & mask) <= (stencil & mask).
GL_GREATER

Passes if (ref & mask) > (stencil & mask).
GL_GEQUAL

Passes if (ref & mask) >= (stencil & mask).
GL_EQUAL

Passes if (ref & mask) = (stencil & mask).
GL_NOTEQUAL

Passes if (ref & mask) != (stencil & mask).
GL_ALWAYS

Always passes.

Notes

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur
and it is as if the stencil test always passes.

glStencilFunc is the same as calling glStencilFuncSeparate with face set to
GL_FRONT_AND_BACK.

Errors

GL_INVALID_ENUM is generated if func is not one of the eight accepted values.

Associated Gets

glGet with argument GL_STENCIL_FUNC, GL_STENCIL_VALUE_MASK, GL_STENCIL_REF,
GL_STENCIL_BACK_FUNC, GL_STENCIL_BACK_VALUE_MASK, GL_STENCIL_BACK_REF, or
GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

n[0,2n - 1]

n[0,2n - 1]

ptg

glStencilFuncSeparate 881
C

See Also

glBlendFunc, glDepthFunc, glEnable, glLogicOp, glStencilFuncSeparate,
glStencilMask, glStencilMaskSeparate, glStencilOp, glStencilOpSeparate

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glStencilFuncSeparate

set front and/or back function and reference value for stencil testing

C Specification

void glStencilFuncSeparate(GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Parameters

face
Specifies whether front and/or back stencil state is updated. Three symbolic constants are
valid: GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.

func
Specifies the test function. Eight symbolic constants are valid: GL_NEVER, GL_LESS,
GL_LEQUAL, GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and
GL_ALWAYS. The initial value is GL_ALWAYS.

ref
Specifies the reference value for the stencil test. ref is clamped to the range ,
where is the number of bitplanes in the stencil buffer. The initial value is 0.

mask
Specifies a mask that is ANDed with both the reference value and the stored stencil value
when the test is done. The initial value is all 1’s.

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into
the stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algo-
rithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between
the reference value and the value in the stencil buffer. To enable and disable the test, call glEnable
and glDisable with argument GL_STENCIL_TEST. To specify actions based on the outcome of the
stencil test, call glStencilOp or glStencilOpSeparate.

There can be two separate sets of func, ref, and mask parameters; one affects back-facing poly-
gons, and the other affects front-facing polygons as well as other non-polygon primitives.
glStencilFunc sets both front and back stencil state to the same values, as if glStencilFuncSeparate
were called with face set to GL_FRONT_AND_BACK.

func is a symbolic constant that determines the stencil comparison function. It accepts one of
eight values, shown in the following list. ref is an integer reference value that is used in the stencil
comparison. It is clamped to the range , where is the number of bitplanes in the stencil
buffer. mask is bitwise ANDed with both the reference value and the stored stencil value, with the
ANDed values participating in the comparison.

n[0,2n - 1]

n
[0,2n - 1]

ptg

882

If stencil represents the value stored in the corresponding stencil buffer location, the following
list shows the effect of each comparison function that can be specified by func. Only if the compari-
son succeeds is the pixel passed through to the next stage in the rasterization process (see
glStencilOp). All tests treat stencil values as unsigned integers in the range , where is
the number of bitplanes in the stencil buffer.

The following values are accepted by func:
GL_NEVER

Always fails.
GL_LESS

Passes if (ref & mask) < (stencil & mask).
GL_LEQUAL

Passes if (ref & mask) <= (stencil & mask).
GL_GREATER

Passes if (ref & mask) > (stencil & mask).
GL_GEQUAL

Passes if (ref & mask) >= (stencil & mask).
GL_EQUAL

Passes if (ref & mask) = (stencil & mask).
GL_NOTEQUAL

Passes if (ref & mask) != (stencil & mask).
GL_ALWAYS

Always passes.

Notes

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur
and it is as if the stencil test always passes.

Errors

GL_INVALID_ENUM is generated if func is not one of the eight accepted values.

Associated Gets

glGet with argument GL_STENCIL_FUNC, GL_STENCIL_VALUE_MASK, GL_STENCIL_REF,
GL_STENCIL_BACK_FUNC, GL_STENCIL_BACK_VALUE_MASK, GL_STENCIL_BACK_REF, or
GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

See Also

glBlendFunc, glDepthFunc, glEnable, glLogicOp, glStencilFunc, glStencilMask,
glStencilMaskSeparate, glStencilOp, glStencilOpSeparate

Copyright

Copyright © 2006 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

n[0,2n - 1]

ptg

glStencilMask 883
C

glStencilMask

control the front and back writing of individual bits in the stencil planes

C Specification

void glStencilMask(GLuint mask);

Parameters

mask
Specifies a bit mask to enable and disable writing of individual bits in the stencil planes.
Initially, the mask is all 1’s.

Description

glStencilMask controls the writing of individual bits in the stencil planes. The least significant
bits of mask, where is the number of bits in the stencil buffer, specify a mask. Where a 1 appears

in the mask, it’s possible to write to the corresponding bit in the stencil buffer. Where a 0 appears, the
corresponding bit is write-protected. Initially, all bits are enabled for writing.

There can be two separate mask writemasks; one affects back-facing polygons, and the other
affects front-facing polygons as well as other non-polygon primitives. glStencilMask sets both front
and back stencil writemasks to the same values. Use glStencilMaskSeparate to set front and back
stencil writemasks to different values.

Notes

glStencilMask is the same as calling glStencilMaskSeparate with face set to
GL_FRONT_AND_BACK.

Associated Gets

glGet with argument GL_STENCIL_WRITEMASK, GL_STENCIL_BACK_WRITEMASK, or
GL_STENCIL_BITS

See Also

glColorMask, glDepthMask, glStencilFunc, glStencilFuncSeparate,
glStencilMaskSeparate, glStencilOp, glStencilOpSeparate

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glStencilMaskSeparate

control the front and/or back writing of individual bits in the stencil planes

C Specification

void glStencilMaskSeparate(GLenum face,
GLuint mask);

nn

ptg

884

Parameters

face
Specifies whether the front and/or back stencil writemask is updated. Three symbolic
constants are valid: GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.

mask
Specifies a bit mask to enable and disable writing of individual bits in the stencil planes.
Initially, the mask is all 1’s.

Description

glStencilMaskSeparate controls the writing of individual bits in the stencil planes. The least
significant bits of mask, where is the number of bits in the stencil buffer, specify a mask. Where a
1 appears in the mask, it’s possible to write to the corresponding bit in the stencil buffer. Where a 0
appears, the corresponding bit is write-protected. Initially, all bits are enabled for writing.

There can be two separate mask writemasks; one affects back-facing polygons, and the other
affects front-facing polygons as well as other non-polygon primitives. glStencilMask sets both front
and back stencil writemasks to the same values, as if glStencilMaskSeparate were called with face set
to GL_FRONT_AND_BACK.

Errors

GL_INVALID_ENUM is generated if face is not one of the accepted tokens.

Associated Gets

glGet with argument GL_STENCIL_WRITEMASK, GL_STENCIL_BACK_WRITEMASK, or
GL_STENCIL_BITS

See Also

glColorMask, glDepthMask, glStencilFunc, glStencilFuncSeparate,
glStencilMask, glStencilOp, glStencilOpSeparate

Copyright

Copyright © 2006 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glStencilOp

set front and back stencil test actions

C Specification

void glStencilOp(GLenum sfail,
GLenum dpfail,
GLenum dppass);

Parameters

sfail
Specifies the action to take when the stencil test fails. Eight symbolic constants are
accepted: GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_INCR_WRAP, GL_DECR,
GL_DECR_WRAP, and GL_INVERT. The initial value is GL_KEEP.

dpfail
Specifies the stencil action when the stencil test passes, but the depth test fails. dpfail
accepts the same symbolic constants as sfail. The initial value is GL_KEEP.

nn

ptg

glStencilOp 885
C

dppass
Specifies the stencil action when both the stencil test and the depth test pass, or when
the stencil test passes and either there is no depth buffer or depth testing is not enabled.
dppass accepts the same symbolic constants as sfail. The initial value is GL_KEEP.

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into
the stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algo-
rithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between
the value in the stencil buffer and a reference value. To enable and disable the test, call glEnable and
glDisable with argument GL_STENCIL_TEST; to control it, call glStencilFunc or glStencilFuncSeparate.

There can be two separate sets of sfail, dpfail, and dppass parameters; one affects back-facing
polygons, and the other affects front-facing polygons as well as other non-polygon primitives.
glStencilOp sets both front and back stencil state to the same values. Use glStencilOpSeparate to set
front and back stencil state to different values.

glStencilOp takes three arguments that indicate what happens to the stored stencil value while
stenciling is enabled. If the stencil test fails, no change is made to the pixel’s color or depth buffers,
and sfail specifies what happens to the stencil buffer contents. The following eight actions are
possible.

GL_KEEP
Keeps the current value.

GL_ZERO
Sets the stencil buffer value to 0.

GL_REPLACE
Sets the stencil buffer value to ref, as specified by glStencilFunc.

GL_INCR
Increments the current stencil buffer value. Clamps to the maximum representable
unsigned value.

GL_INCR_WRAP
Increments the current stencil buffer value. Wraps stencil buffer value to zero when
incrementing the maximum representable unsigned value.

GL_DECR
Decrements the current stencil buffer value. Clamps to 0.

GL_DECR_WRAP
Decrements the current stencil buffer value. Wraps stencil buffer value to the maximum
representable unsigned value when decrementing a stencil buffer value of zero.

GL_INVERT
Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decremented, values
are clamped to 0 and , where is the value returned by querying GL_STENCIL_BITS.

The other two arguments to glStencilOp specify stencil buffer actions that depend on whether
subsequent depth buffer tests succeed (dppass) or fail (dpfail) (see glDepthFunc). The actions are
specified using the same eight symbolic constants as sfail. Note that dpfail is ignored when there
is no depth buffer, or when the depth buffer is not enabled. In these cases, sfail and dppass specify
stencil action when the stencil test fails and passes, respectively.

2n - 12n - 1

ptg

886

Notes

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur
and it is as if the stencil tests always pass, regardless of any call to glStencilOp.

glStencilOp is the same as calling glStencilOpSeparate with face set to GL_FRONT_AND_BACK.

Errors

GL_INVALID_ENUM is generated if sfail, dpfail, or dppass is any value other than the
defined constant values.

Associated Gets

glGet with argument GL_STENCIL_FAIL, GL_STENCIL_PASS_DEPTH_PASS,
GL_STENCIL_PASS_DEPTH_FAIL, GL_STENCIL_BACK_FAIL, GL_STENCIL_BACK_PASS_DEPTH_PASS,
GL_STENCIL_BACK_PASS_DEPTH_FAIL, or GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

See Also

glBlendFunc, glDepthFunc, glEnable, glLogicOp, glStencilFunc,
glStencilFuncSeparate, glStencilMask, glStencilMaskSeparate,
glStencilOpSeparate

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glStencilOpSeparate

set front and/or back stencil test actions

C Specification

void glStencilOpSeparate(GLenum face,
GLenum sfail,
GLenum dpfail,
GLenum dppass);

Parameters

face
Specifies whether front and/or back stencil state is updated. Three symbolic constants are
valid: GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK.

sfail
Specifies the action to take when the stencil test fails. Eight symbolic constants are
accepted: GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_INCR_WRAP, GL_DECR,
GL_DECR_WRAP, and GL_INVERT. The initial value is GL_KEEP.

dpfail
Specifies the stencil action when the stencil test passes, but the depth test fails. dpfail
accepts the same symbolic constants as sfail. The initial value is GL_KEEP.

dppass
Specifies the stencil action when both the stencil test and the depth test pass, or when
the stencil test passes and either there is no depth buffer or depth testing is not enabled.
dppass accepts the same symbolic constants as sfail. The initial value is GL_KEEP.

ptg

glStencilOpSeparate 887
C

Description

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into
the stencil planes using GL drawing primitives, then render geometry and images, using the stencil
planes to mask out portions of the screen. Stenciling is typically used in multipass rendering algo-
rithms to achieve special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between
the value in the stencil buffer and a reference value. To enable and disable the test, call glEnable and
glDisable with argument GL_STENCIL_TEST; to control it, call glStencilFunc or glStencilFuncSeparate.

There can be two separate sets of sfail, dpfail, and dppass parameters; one affects back-facing
polygons, and the other affects front-facing polygons as well as other non-polygon primitives.
glStencilOp sets both front and back stencil state to the same values, as if glStencilOpSeparate were
called with face set to GL_FRONT_AND_BACK.

glStencilOpSeparate takes three arguments that indicate what happens to the stored stencil
value while stenciling is enabled. If the stencil test fails, no change is made to the pixel’s color or
depth buffers, and sfail specifies what happens to the stencil buffer contents. The following eight
actions are possible.

GL_KEEP
Keeps the current value.

GL_ZERO
Sets the stencil buffer value to 0.

GL_REPLACE
Sets the stencil buffer value to ref, as specified by glStencilFunc.

GL_INCR
Increments the current stencil buffer value. Clamps to the maximum representable
unsigned value.

GL_INCR_WRAP
Increments the current stencil buffer value. Wraps stencil buffer value to zero when
incrementing the maximum representable unsigned value.

GL_DECR
Decrements the current stencil buffer value. Clamps to 0.

GL_DECR_WRAP
Decrements the current stencil buffer value. Wraps stencil buffer value to the maximum
representable unsigned value when decrementing a stencil buffer value of zero.

GL_INVERT
Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decremented, values
are clamped to 0 and , where is the value returned by querying GL_STENCIL_BITS.

The other two arguments to glStencilOpSeparate specify stencil buffer actions that depend on
whether subsequent depth buffer tests succeed (dppass) or fail (dpfail) (see glDepthFunc). The
actions are specified using the same eight symbolic constants as sfail. Note that dpfail is ignored
when there is no depth buffer, or when the depth buffer is not enabled. In these cases, sfail and
dppass specify stencil action when the stencil test fails and passes, respectively.

Notes

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur
and it is as if the stencil test always passes.

n2n - 1

ptg

888

Errors

GL_INVALID_ENUM is generated if face is any value other than GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

GL_INVALID_ENUM is generated if sfail, dpfail, or dppass is any value other than the eight
defined constant values.

Associated Gets

glGet with argument GL_STENCIL_FAIL, GL_STENCIL_PASS_DEPTH_PASS,
GL_STENCIL_PASS_DEPTH_FAIL, GL_STENCIL_BACK_FAIL, GL_STENCIL_BACK_PASS_DEPTH_PASS,
GL_STENCIL_BACK_PASS_DEPTH_FAIL, or GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST

See Also

glBlendFunc, glDepthFunc, glEnable, glLogicOp, glStencilFunc,
glStencilFuncSeparate, glStencilMask, glStencilMaskSeparate, glStencilOp

Copyright

Copyright © 2006 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glTexBuffer

attach the storage for a buffer object to the active buffer texture

C Specification

void glTexBuffer(GLenum target,
GLenum internalFormat,
Gluint buffer);

Parameters

target
Specifies the target of the operation and must be GL_TEXTURE_BUFFER.

internalFormat
Specifies the internal format of the data in the store belonging to buffer.

buffer
Specifies the name of the buffer object whose storage to attach to the active buffer
texture.

Description

glTexBuffer attaches the storage for the buffer object named buffer to the active buffer
texture, and specifies the internal format for the texel array found in the attached buffer object. If
buffer is zero, any buffer object attached to the buffer texture is detached and no new buffer object
is attached. If buffer is non-zero, it must be the name of an existing buffer object. target must be
GL_TEXTURE_BUFFER. internalformat specifies the storage format, and must be one of the follow-
ing sized internal formats:

ptg

glTexBuffer 889
C

When a buffer object is attached to a buffer texture, the buffer object’s data store is taken as the
texture’s texel array. The number of texels in the buffer texture’s texel array is given by

where buffer_size is the size of the buffer object, in basic machine units and components and
base type are the element count and base data type for elements, as specified in the table above. The
number of texels in the texel array is then clamped to the implementation-dependent limit
GL_MAX_TEXTURE_BUFFER_SIZE. When a buffer texture is accessed in a shader, the results of a texel
fetch are undefined if the specified texel coordinate is negative, or greater than or equal to the
clamped number of texels in the texel array.

buffer size

com ponents A
'
 � size of(base̊ type)

Component

Sized
Internal
Format

Base Type ComponentsNorm 0 1 2 3

GL_R8 ubyte 1 YES R 0 0 1

GL_R16 ushort 1 YES R 0 0 1

GL_R16F half 1 NO R 0 0 1

GL_R32F float 1 NO R 0 0 1

GL_R8I byte 1 NO R 0 0 1

GL_R16I short 1 NO R 0 0 1

GL_R32I int 1 NO R 0 0 1

GL_R8UI ubyte 1 NO R 0 0 1

GL_R16UI ushort 1 NO R 0 0 1

GL_R32UI uint 1 NO R 0 0 1

GL_RG8 ubyte 2 YES R G 0 1

GL_RG16 ushort 2 YES R G 0 1

GL_RG16F half 2 NO R G 0 1

GL_RG32F float 2 YES R G 0 1

GL_RG8I byte 2 NO R G 0 1

GL_RG16I short 2 NO R G 0 1

GL_RG32I int 2 NO R G 0 1

GL_RG8UI ubyte 2 NO R G 0 1

GL_RG16UI ushort 2 NO R G 0 1

GL_RG32UI uint 2 NO R G 0 1

GL_RGBA8 uint 4 YES R G B A

GL_RGBA16 short 4 YES R G B A

ptg

890

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_BUFFER.
GL_INVALID_ENUM is generated if internalFormat is not one of the accepted tokens.
GL_INVALID_OPERATION is generated if buffer is not zero or the name of an existing buffer object.

Notes

glTexBuffer is available only if the GL version is 3.1 or greater.

Associated Gets

glGet with argument GL_MAX_TEXTURE_BUFFER_SIZE
glGet with argument GL_TEXTURE_BINDING_BUFFER
glGetTexLevelParameter with argument GL_TEXTURE_BUFFER_DATA_STORE_BINDING

See Also

glGenBuffers, glBindBuffer, glBufferData, glDeleteBuffers, glGenTextures,
glBindTexture, glDeleteTextures

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glTexImage1D

specify a one-dimensional texture image

C Specification

void glTexImage1D(GLenum target,
GLint level,
GLint internalFormat,
GLsizei width,
GLint border,
GLenum format,
GLenum type,
const GLvoid * data);

Component

GL_RGBA16F half 4 NO R G B A

GL_RGBA32F float 4 NO R G B A

GL_RGBA8I byte 4 NO R G B A

GL_RGBA16I short 4 NO R G B A

GL_RGBA32I int 4 NO R G B A

GL_RGBA8UI ubyte 4 NO R G B A

GL_RGBA16UI ushort 4 NO R G B A

GL_RGBA32UI uint 4 NO R G B A

ptg

glTexImage1D 891
C

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_1D or GL_PROXY_TEXTURE_1D.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalFormat
Specifies the number of color components in the texture. Must be one of the following
symbolic constants: GL_COMPRESSED_RED, GL_COMPRESSED_RG,
GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA, GL_COMPRESSED_SRGB,
GL_COMPRESSED_SRGB_ALPHA, GL_DEPTH_COMPONENT, GL_DEPTH_COMPO-
NENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32, GL_R3_G3_B2,
GL_RED, GL_RG, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or
GL_SRGB8_ALPHA8.

width
Specifies the width of the texture image. All implementations support texture images that
are at least 1024 texels wide. The height of the 1D texture image is 1.

border
This value must be 0.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_RED, GL_RG, GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type
Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data
Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable one-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_1D.

Texture images are defined with glTexImage1D. The arguments describe the parameters of the
texture image, such as width, width of the border, level-of-detail number (see glTexParameter), and
the internal resolution and format used to store the image. The last three arguments describe how the
image is represented in memory.

If target is GL_PROXY_TEXTURE_1D, no data is read from data, but all of the texture image
state is recalculated, checked for consistency, and checked against the implementation’s capabilities. If
the implementation cannot handle a texture of the requested texture size, it sets all of the image state
to 0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an
image array level greater than or equal to 1.

ptg

892

If target is GL_TEXTURE_1D, data is read from data as a sequence of signed or unsigned bytes,
shorts, or longs, or single-precision floating-point values, depending on type. These values are
grouped into sets of one, two, three, or four values, depending on format, to form elements. Each
data byte is treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST
(see glPixelStore).

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

The first element corresponds to the left end of the texture array. Subsequent elements progress
left-to-right through the remaining texels in the texture array. The final element corresponds to the
right end of the texture array.

format determines the composition of each element in data. It can assume one of these
symbolic values:

GL_RED
Each element is a single red component. The GL converts it to floating point and assem-
bles it into an RGBA element by attaching 0 for green and blue, and 1 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0,1].

GL_RG
Each element is a single red/green double The GL converts it to floating point and assem-
bles it into an RGBA element by attaching 0 for blue, and 1 for alpha. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1].

GL_RGB
GL_BGR

Each element is an RGB triple. The GL converts it to floating point and assembles it into
an RGBA element by attaching 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the
range [0,1].

GL_RGBA
GL_BGRA

Each element contains all four components. Each component is multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0,1].

GL_DEPTH_COMPONENT
Each element is a single depth value. The GL converts it to floating point, multiplies by
the signed scale factor GL_DEPTH_SCALE, adds the signed bias GL_DEPTH_BIAS, and
clamps to the range [0,1].

If an application wants to store the texture at a certain resolution or in a certain format, it can
request the resolution and format with internalFormat. The GL will choose an internal representa-
tion that closely approximates that requested by internalFormat, but it may not match exactly.
(The representations specified by GL_RED, GL_RG, GL_RGB and GL_RGBA must match exactly.)

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA,
the GL will replace the internal format with the symbolic constant for a specific internal format and
compress the texture before storage. If no corresponding internal format is available, or the GL cannot
compress that image for any reason, the internal format is instead replaced with a corresponding base
internal format.

ptg

glTexImage1D 893
C

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or
GL_SRGB8_ALPHA8, the texture is treated as if the red, green, or blue components are encoded in the
sRGB color space. Any alpha component is left unchanged. The conversion from the sRGB encoded
component to a linear component is:

Assume is the sRGB component in the range [0,1].
Use the GL_PROXY_TEXTURE_1D target to try out a resolution and format. The implementation

will update and recompute its best match for the requested storage resolution and format. To then
query this state, call glGetTexLevelParameter. If the texture cannot be accommodated, texture state is
set to 0.

A one-component texture image uses only the red component of the RGBA color from data. A
two-component image uses the R and A values. A three-component image uses the R, G, and B values.
A four-component image uses all of the RGBA components.

Image-based shadowing can be enabled by comparing texture r coordinates to depth texture
values to generate a boolean result. See glTexParameter for details on texture comparison.

Notes

glPixelStore modes affect texture images.
data may be a null pointer. In this case texture memory is allocated to accommodate a texture of

width width. You can then download subtextures to initialize the texture memory. The image is
undefined if the program tries to apply an uninitialized portion of the texture image to a primitive.

glTexImage1D specifies the one-dimensional texture for the current texture unit, specified with
glActiveTexture.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D or GL_PROXY_TEXTURE_1D.
GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants

other than GL_STENCIL_INDEX are accepted.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than , where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if internalFormat is not one of the accepted resolution and

format symbolic constants.
GL_INVALID_VALUE is generated if width is less than 0 or greater than GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width

cannot be represented as for some integer value of n.
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

2n + 2(border)

log2(m ax)

cs

cl = d cs

12.92
if cs … 0.04045

a cs + 0.055

1.055
b2.4

if cs 7 0.04045

clcs

ptg

894

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and
internalFormat is not GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if internalFormat is GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32, and
format is not GL_DEPTH_COMPONENT.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

Associated Gets

glGetTexImage
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexSubImage1D,
glCopyTexImage1D, glCopyTexSubImage1D, glGetCompressedTexImage, glPixelStore,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D,
glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glTexImage2D

specify a two-dimensional texture image

C Specification

void glTexImage2D(GLenum target,
GLint level,
GLint internalFormat,
GLsizei width,
GLsizei height,
GLint border,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_2D, GL_PROXY_TEXTURE_2D,
GL_TEXTURE_1D_ARRAY, GL_PROXY_TEXTURE_1D_ARRAY, GL_TEXTURE_RECTANGLE,
GL_PROXY_TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or GL_PROXY_TEXTURE_CUBE_MAP.

ptg

glTexImage2D 895
C

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image. If target is GL_TEXTURE_RECTANGLE or
GL_PROXY_TEXTURE_RECTANGLE, level must be 0.

internalFormat
Specifies the number of color components in the texture. Must be one of the following
symbolic constants: GL_COMPRESSED_RED, GL_COMPRESSED_RG,
GL_COMPRESSED_RGB, GL_COMPRESSED_RGBA, GL_COMPRESSED_SRGB,
GL_COMPRESSED_SRGB_ALPHA, GL_DEPTH_COMPONENT, GL_DEPTH_
COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32,
GL_R3_G3_B2, GL_RED, GL_RG, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,
GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or
GL_SRGB8_ALPHA8.

width
Specifies the width of the texture image. All implementations support texture images that
are at least 1024 texels wide.

height
Specifies the height of the texture image, or the number of layers in a texture array, in
the case of the GL_TEXTURE_1D_ARRAY and GL_PROXY_TEXTURE_1D_ARRAY targets.
All implementations support 2D texture images that are at least 1024 texels high, and
texture arrays that are at least 256 layers deep.

border
This value must be 0.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_RED, GL_RG, GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type
Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data
Specifies a pointer to the image data in memory.

Description

Texturing allows elements of an image array to be read by shaders.
To define texture images, call glTexImage2D. The arguments describe the parameters of the

texture image, such as height, width, width of the border, level-of-detail number (see glTexParameter),
and number of color components provided. The last three arguments describe how the image is repre-
sented in memory.

If target is GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_1D_ARRAY,
GL_PROXY_TEXTURE_CUBE_MAP, or GL_PROXY_TEXTURE_RECTANGLE, no data is read from data,
but all of the texture image state is recalculated, checked for consistency, and checked against the
implementation’s capabilities. If the implementation cannot handle a texture of the requested texture
size, it sets all of the image state to 0, but does not generate an error (see glGetError). To query for an
entire mipmap array, use an image array level greater than or equal to 1.

ptg

896

If target is GL_TEXTURE_2D, GL_TEXTURE_RECTANGLE or one of the
GL_TEXTURE_CUBE_MAP targets, data is read from data as a sequence of signed or unsigned bytes,
shorts, or longs, or single-precision floating-point values, depending on type. These values are
grouped into sets of one, two, three, or four values, depending on format, to form elements. Each
data byte is treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST
(see glPixelStore).

If target is GL_TEXTURE_1D_ARRAY, data is interpreted as an array of one-dimensional images.
If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see

glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

The first element corresponds to the lower left corner of the texture image. Subsequent elements
progress left-to-right through the remaining texels in the lowest row of the texture image, and then in
successively higher rows of the texture image. The final element corresponds to the upper right corner
of the texture image.

format determines the composition of each element in data. It can assume one of these
symbolic values:

GL_RED
Each element is a single red component. The GL converts it to floating point and assem-
bles it into an RGBA element by attaching 0 for green and blue, and 1 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0,1].

GL_RG
Each element is a red/green double. The GL converts it to floating point and assembles it
into an RGBA element by attaching 0 for blue, and 1 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,
and clamped to the range [0,1].

GL_RGB
GL_BGR

Each element is an RGB triple. The GL converts it to floating point and assembles it into
an RGBA element by attaching 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the
range [0,1].

GL_RGBA
GL_BGRA

Each element contains all four components. Each component is multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0,1].

GL_DEPTH_COMPONENT
Each element is a single depth value. The GL converts it to floating point, multiplies by
the signed scale factor GL_DEPTH_SCALE, adds the signed bias GL_DEPTH_BIAS, and
clamps to the range [0,1].

GL_DEPTH_STENCIL
Each element is a pair of depth and stencil values. The depth component of the pair is
interpreted as in GL_DEPTH_COMPONENT. The stencil component is interpreted based
on specified the depth + stencil internal format.

If an application wants to store the texture at a certain resolution or in a certain format, it can
request the resolution and format with internalFormat. The GL will choose an internal representa-
tion that closely approximates that requested by internalFormat, but it may not match exactly.
(The representations specified by GL_RED, GL_RG, GL_RGB, and GL_RGBA must match exactly.)

ptg

glTexImage2D 897
C

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA,
the GL will replace the internal format with the symbolic constant for a specific internal format and
compress the texture before storage. If no corresponding internal format is available, or the GL can
not compress that image for any reason, the internal format is instead replaced with a corresponding
base internal format.

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or
GL_SRGB8_ALPHA8, the texture is treated as if the red, green, or blue components are encoded in the
sRGB color space. Any alpha component is left unchanged. The conversion from the sRGB encoded
component to a linear component is:

Assume is the sRGB component in the range [0,1].
Use the GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_1D_ARRAY,

GL_PROXY_TEXTURE_RECTANGLE, or GL_PROXY_TEXTURE_CUBE_MAP target to try out a resolu-
tion and format. The implementation will update and recompute its best match for the requested
storage resolution and format. To then query this state, call glGetTexLevelParameter. If the texture
cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from
data. A two-component image uses the R and G values. A three-component image uses the R, G, and
B values. A four-component image uses all of the RGBA components.

Image-based shadowing can be enabled by comparing texture r coordinates to depth texture
values to generate a boolean result. See glTexParameter for details on texture comparison.

Notes

The glPixelStore mode affects texture images.
data may be a null pointer. In this case, texture memory is allocated to accommodate a texture of

width width and height height. You can then download subtextures to initialize this texture
memory. The image is undefined if the user tries to apply an uninitialized portion of the texture
image to a primitive.

glTexImage2D specifies the two-dimensional texture for the current texture unit, specified with
glActiveTexture.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D, GL_TEXTURE_1D_ARRAY,
GL_TEXTURE_RECTANGLE, GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_1D_ARRAY,
GL_PROXY_TEXTURE_RECTANGLE, GL_PROXY_TEXTURE_CUBE_MAP,
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_ENUM is generated if target is one of the six cube map 2D image targets and the
width and height parameters are not equal.

GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_VALUE is generated if width is less than 0 or greater than GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if target is not GL_TEXTURE_1D_ARRAY or

GL_PROXY_TEXTURE_1D_ARRAY and height is less than 0 or greater than GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if target is GL_TEXTURE_1D_ARRAY or

GL_PROXY_TEXTURE_1D_ARRAY and height is less than 0 or greater than
GL_MAX_ARRAY_TEXTURE_LAYERS.

cs

cl = d cs

12.92
if cs … 0.04045

a cs + 0.055

1.055
b2.4

if cs 7 0.04045

clcs

ptg

898

GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than , where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if internalFormat is not one of the accepted resolution and

format symbolic constants.
GL_INVALID_VALUE is generated if width or height is less than 0 or greater than

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width

or height cannot be represented as for some integer value of k.
GL_INVALID_VALUE is generated if border is not 0.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
or GL_UNSIGNED_INT_10F_11F_11F_REV, and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2,
GL_UNSIGNED_INT_2_10_10_10_REV, or GL_UNSIGNED_INT_5_9_9_9_REV, and format is neither
GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if target is not GL_TEXTURE_2D,
GL_PROXY_TEXTURE_2D, GL_TEXTURE_RECTANGLE, or GL_PROXY_TEXTURE_RECTANGLE, and
internalFormat is GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16, GL_DEPTH_
COMPONENT24, or GL_DEPTH_COMPONENT32F.

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and
internalFormat is not GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32F.

GL_INVALID_OPERATION is generated if internalFormat is GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32F, and
format is not GL_DEPTH_COMPONENT.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

GL_INVALID_VALUE is generated if target is GL_TEXTURE_RECTANGLE or
GL_PROXY_TEXTURE_RECTANGLE and level is not 0.

Associated Gets

glGetTexImage
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glPixelStore, glTexImage1D,
glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

2k + 2(border)

log2(m ax)

ptg

glTexImage2DMultisample 899
C

glTexImage2DMultisample

establish the data storage, format, dimensions, and number of samples of a multisample
texture’s image

C Specification

void glTexImage2DMultisample(GLenum target,
GLsizei samples,
GLint internalformat,
GLsizei width,
GLsizei height,
GLboolean fixedsamplelocations);

Parameters

target
Specifies the target of the operation. target must be GL_TEXTURE_2D_
MULTISAMPLE_ARRAY or GL_PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY.

samples
The number of samples in the multisample texture’s image.

internalformat
The internal format to be used to store the multisample texture’s image.
internalformat must specify a color-renderable, depth-renderable, or stencil-
renderable format.

width
The width of the multisample texture’s image, in texels.

height
The height of the multisample texture’s image, in texels.

fixedsamplelocations
Specifies whether the image will use identical sample locations and the same number of
samples for all texels in the image, and the sample locations will not depend on the
internal format or size of the image.

Description

glTexImage2DMultisample establishes the data storage, format, dimensions and number of
samples of a multisample texture’s image.

target must be GL_TEXTURE_2D_MULTISAMPLE or GL_PROXY_TEXTURE_2D_MULTISAMPLE.
width and height are the dimensions in texels of the texture, and must be in the range zero to
GL_MAX_TEXTURE_SIZE - 1. samples specifies the number of samples in the image and must be in
the range zero to GL_MAX_SAMPLES - 1.

internalformat must be a color-renderable, depth-renderable, or stencil-renderable format.
If fixedsamplelocations is GL_TRUE, the image will use identical sample locations and the

same number of samples for all texels in the image, and the sample locations will not depend on the
internal format or size of the image.

When a multisample texture is accessed in a shader, the access takes one vector of integers
describing which texel to fetch and an integer corresponding to the sample numbers describing which
sample within the texel to fetch. No standard sampling instructions are allowed on the multisample
texture targets.

Notes

glTexImage2DMultisample is available only if the GL version is 3.2 or greater.

ptg

900

Errors

GL_INVALID_OPERATION is generated if internalformat is a depth- or stencil-renderable
format and samples is greater than the value of GL_MAX_DEPTH_TEXTURE_SAMPLES.

GL_INVALID_OPERATION is generated if internalformat is a color-renderable format and
samples is greater than the value of GL_MAX_COLOR_TEXTURE_SAMPLES.

GL_INVALID_OPERATION is generated if internalformat is a signed or unsigned integer format
and samples is greater than the value of GL_MAX_INTEGER_SAMPLES.

GL_INVALID_VALUE is generated if either width or height negative or is greater than
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if samples is greater than GL_MAX_SAMPLES.

See Also

glTexImage3D, glTexImage2DMultisample

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glTexImage3D

specify a three-dimensional texture image

C Specification

void glTexImage3D(GLenum target,
GLint level,
GLint internalFormat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLint border,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be one of GL_TEXTURE_3D, GL_PROXY_TEXTURE_3D,
GL_TEXTURE_2D_ARRAY or GL_PROXY_TEXTURE_2D_ARRAY.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level is the
mipmap reduction image.

internalFormat
Specifies the number of color components in the texture. Must be one of the following
symbolic constants: GL_RGBA32F, GL_RGBA32I, GL_RGBA32UI, GL_RGBA16,
GL_RGBA16F, GL_RGBA16I, GL_RGBA16UI, GL_RGBA8, GL_RGBA8UI,
GL_SRGB8_ALPHA8, GL_RGB10_A2, GL_RGBA10_A2UI, GL_R11_G11_B10F, GL_RG32F,
GL_RG32I, GL_RG32UI, GL_RG16, GL_RG16F, GL_RGB16I, GL_RGB16UI, GL_RG8,
GL_RG8I, GL_RG8UI, GL_R23F, GL_R32I, GL_R32UI, GL_R16F, GL_R16I, GL_R16UI,
GL_R8, GL_R8I, GL_R8UI, GL_RGBA16_UNORM, GL_RGBA8_SNORM, GL_RGB32F,
GL_RGB32I, GL_RGB32UI, GL_RGB16_SNORM, GL_RGB16F, GL_RGB16I, GL_RGB16UI,
GL_RGB16, GL_RGB8_SNORM, GL_RGB8, GL_RGB8I, GL_RGB8UI, GL_SRGB8,
GL_RGB9_E5, GL_RG16_SNORM, GL_RG8_SNORM, GL_COMPRESSED_RG_RGTC2,

nthn

ptg

glTexImage3D 901
C

GL_COMPRESSED_SIGNED_RG_RGTC2, GL_R16_SNORM, GL_R8_SNORM,
GL_COMPRESSED_RED_RGTC1, GL_COMPRESSED_SIGNED_RED_RGTC1,
GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT24, GL_DEPTH_
COMPONENT16, GL_DEPTH32F_STENCIL8, GL_DEPTH24_STENCIL8.

width
Specifies the width of the texture image. All implementations support 3D texture images
that are at least 16 texels wide.

height
Specifies the height of the texture image. All implementations support 3D texture images
that are at least 256 texels high.

depth
Specifies the depth of the texture image, or the number of layers in a texture array. All
implementations support 3D texture images that are at least 256 texels deep, and texture
arrays that are at least 256 layers deep.

border
This value must be 0.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_RED, GL_RG, GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type
Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data
Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_3D.

To define texture images, call glTexImage3D. The arguments describe the parameters of the
texture image, such as height, width, depth, width of the border, level-of-detail number (see
glTexParameter), and number of color components provided. The last three arguments describe how
the image is represented in memory.

If target is GL_PROXY_TEXTURE_3D, no data is read from data, but all of the texture image
state is recalculated, checked for consistency, and checked against the implementation’s capabilities. If
the implementation cannot handle a texture of the requested texture size, it sets all of the image state
to 0, but does not generate an error (see glGetError). To query for an entire mipmap array, use an
image array level greater than or equal to 1.

If target is GL_TEXTURE_3D, data is read from data as a sequence of signed or unsigned bytes,
shorts, or longs, or single-precision floating-point values, depending on type. These values are
grouped into sets of one, two, three, or four values, depending on format, to form elements. Each
data byte is treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST
(see glPixelStore).

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

ptg

902

The first element corresponds to the lower left corner of the texture image. Subsequent elements
progress left-to-right through the remaining texels in the lowest row of the texture image, and then in
successively higher rows of the texture image. The final element corresponds to the upper right corner
of the texture image.

format determines the composition of each element in data. It can assume one of these
symbolic values:

GL_RED
Each element is a single red component. The GL converts it to floating point and assem-
bles it into an RGBA element by attaching 0 for green and blue, and 1 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the
signed bias GL_c_BIAS, and clamped to the range [0,1].

GL_RG
Each element is a red and green pair. The GL converts each to floating point and assem-
bles it into an RGBA element by attaching 0 for blue, and 1 for alpha. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1].

GL_RGB
GL_BGR

Each element is an RGB triple. The GL converts it to floating point and assembles it into
an RGBA element by attaching 1 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the
range [0,1].

GL_RGBA
GL_BGRA

Each element contains all four components. Each component is multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0,1].

If an application wants to store the texture at a certain resolution or in a certain format, it can
request the resolution and format with internalFormat. The GL will choose an internal representa-
tion that closely approximates that requested by internalFormat, but it may not match exactly.
(The representations specified by GL_RED, GL_RG, GL_RGB, and GL_RGBA must match exactly.)

If the internalFormat parameter is one of the generic compressed formats,
GL_COMPRESSED_RED, GL_COMPRESSED_RG, GL_COMPRESSED_RGB, or GL_COMPRESSED_RGBA,
the GL will replace the internal format with the symbolic constant for a specific internal format and
compress the texture before storage. If no corresponding internal format is available, or the GL can
not compress that image for any reason, the internal format is instead replaced with a corresponding
base internal format.

If the internalFormat parameter is GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, or
GL_SRGB8_ALPHA8, the texture is treated as if the red, green, blue, or luminance components are
encoded in the sRGB color space. Any alpha component is left unchanged. The conversion from the
sRGB encoded component to a linear component is:

Assume is the sRGB component in the range [0,1].
Use the GL_PROXY_TEXTURE_3D target to try out a resolution and format. The implementation

will update and recompute its best match for the requested storage resolution and format. To then
query this state, call glGetTexLevelParameter. If the texture cannot be accommodated, texture state is
set to 0.

cs

cl = d cs
12.92

if̊ cs … 0.04045

acs + 0.055

1.055
b2.4 if̊ cs 7 0.04045

clcs

ptg

glTexImage3D 903
C

A one-component texture image uses only the red component of the RGBA color extracted from
data. A two-component image uses the R and A values. A three-component image uses the R, G, and
B values. A four-component image uses all of the RGBA components.

Notes

The glPixelStore mode affects texture images.
data may be a null pointer. In this case texture memory is allocated to accommodate a texture of

width width, height height, and depth depth. You can then download subtextures to initialize this
texture memory. The image is undefined if the user tries to apply an uninitialized portion of the
texture image to a primitive.

glTexImage3D specifies the three-dimensional texture for the current texture unit, specified with
glActiveTexture.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D or GL_PROXY_TEXTURE_3D.
GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants

other than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than , where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if internalFormat is not one of the accepted resolution and

format symbolic constants.
GL_INVALID_VALUE is generated if width, height, or depth is less than 0 or greater than

GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the width,

height, or depth cannot be represented as for some integer value of k.
GL_INVALID_VALUE is generated if border is not 0 or 1.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if format or internalFormat is GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, or GL_DEPTH_COMPONENT32.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

Associated Gets

glGetTexImage
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

2k + 2(border)

log2(m ax)

ptg

904

See Also

glActiveTexture, glCompressedTexImage1D, glCompressedTexImage2D,
glCompressedTexImage3D, glCompressedTexSubImage1D, glCompressedTexSubImage2D,
glCompressedTexSubImage3D, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D,
glGetCompressedTexImage, glPixelStore, glTexImage1D, glTexImage2D,
glTexSubImage1D, glTexSubImage2D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glTexImage3DMultisample

establish the data storage, format, dimensions, and number of samples of a multisample
texture’s image

C Specification

void glTexImage3DMultisample(GLenum target,
GLsizei samples,
GLint internalformat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLboolean fixedsamplelocations);

Parameters

target
Specifies the target of the operation. target must be GL_TEXTURE_2D_MULTISAMPLE_
ARRAY or GL_PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY.

samples
The number of samples in the multisample texture’s image.

internalformat
The internal format to be used to store the multisample texture’s image.
internalformat must specify a color-renderable, depth-renderable, or stencil-
renderable format.

width
The width of the multisample texture’s image, in texels.

height
The height of the multisample texture’s image, in texels.

fixedsamplelocations
Specifies whether the image will use identical sample locations and the same number of
samples for all texels in the image, and the sample locations will not depend on the
internal format or size of the image.

Description

glTexImage3DMultisample establishes the data storage, format, dimensions and number of
samples of a multisample texture’s image.

target must be GL_TEXTURE_2D_MULTISAMPLE_ARRAY or GL_PROXY_TEXTURE_2D_MULTI-
SAMPLE_ARRAY. width and height are the dimensions in texels of the texture, and must be in the

ptg

glTexParameter 905
C

range zero to GL_MAX_TEXTURE_SIZE - 1. depth is the number of array slices in the array texture’s
image. samples specifies the number of samples in the image and must be in the range zero to
GL_MAX_SAMPLES - 1.

internalformat must be a color-renderable, depth-renderable, or stencil-renderable format.
If fixedsamplelocations is GL_TRUE, the image will use identical sample locations and the

same number of samples for all texels in the image, and the sample locations will not depend on the
internal format or size of the image.

When a multisample texture is accessed in a shader, the access takes one vector of integers
describing which texel to fetch and an integer corresponding to the sample numbers describing which
sample within the texel to fetch. No standard sampling instructions are allowed on the multisample
texture targets.

Notes

glTexImage2DMultisample is available only if the GL version is 3.2 or greater.

Errors

GL_INVALID_OPERATION is generated if internalformat is a depth- or stencil-renderable
format and samples is greater than the value of GL_MAX_DEPTH_TEXTURE_SAMPLES.

GL_INVALID_OPERATION is generated if internalformat is a color-renderable format and
samples is greater than the value of GL_MAX_COLOR_TEXTURE_SAMPLES.

GL_INVALID_OPERATION is generated if internalformat is a signed or unsigned integer format
and samples is greater than the value of GL_MAX_INTEGER_SAMPLES.

GL_INVALID_VALUE is generated if either width or height negative or is greater than
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if depth is negative or is greater than
GL_MAX_ARRAY_TEXTURE_LAYERS.

GL_INVALID_VALUE is generated if samples is greater than GL_MAX_SAMPLES.

See Also

glTexImage3D, glTexImage2DMultisample

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glTexParameter

set texture parameters

C Specification

void glTexParameterf(GLenum target,
GLenum pname,
GLfloat param);

void glTexParameteri(GLenum target,
GLenum pname,
GLint param);

Parameters

target
Specifies the target texture, which must be either GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY,
GL_TEXTURE_RECTANGLE, or GL_TEXTURE_CUBE_MAP.

ptg

906

pname
Specifies the symbolic name of a single-valued texture parameter. pname can be one of
the following: GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_COMPARE_FUNC,
GL_TEXTURE_COMPARE_MODE, GL_TEXTURE_LOD_BIAS, GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MAG_FILTER, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,
GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_SWIZZLE_R, GL_TEXTURE_SWIZZLE_G,
GL_TEXTURE_SWIZZLE_B, GL_TEXTURE_SWIZZLE_A, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, or GL_TEXTURE_WRAP_R.

param
Specifies the value of pname.

C Specification

void glTexParameterfv GLenum target GLenum pname const GLfloat * params
void glTexParameteriv GLenum target GLenum pname const GLint * params
void glTexParameterIiv GLenum target GLenum pname const GLint * params
void glTexParameterIuiv GLenum target GLenum pname const GLuint * params

Parameters

target
Specifies the target texture, which must be either GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY,
GL_TEXTURE_RECTANGLE, or GL_TEXTURE_CUBE_MAP.

pname
Specifies the symbolic name of a texture parameter. pname can be one of the following:
GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_BORDER_COLOR,
GL_TEXTURE_COMPARE_FUNC, GL_TEXTURE_COMPARE_MODE,
GL_TEXTURE_LOD_BIAS, GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD, GL_TEXTURE_MAX_LEVEL,
GL_TEXTURE_SWIZZLE_R, GL_TEXTURE_SWIZZLE_G, GL_TEXTURE_SWIZZLE_B,
GL_TEXTURE_SWIZZLE_A, GL_TEXTURE_SWIZZLE_RGBA, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, or GL_TEXTURE_WRAP_R.

params
Specifies a pointer to an array where the value or values of pname are stored.

Description

glTexParameter assigns the value or values in params to the texture parameter specified as
pname. target defines the target texture, either GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_RECTANGLE, or
GL_TEXTURE_3D. The following symbols are accepted in pname:

GL_TEXTURE_BASE_LEVEL
Specifies the index of the lowest defined mipmap level. This is an integer value. The
initial value is 0.

GL_TEXTURE_BORDER_COLOR
The data in params specifies four values that define the border values that should be
used for border texels. If a texel is sampled from the border of the texture, the values of
GL_TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the texture’s
internal format and substituted for the non-existent texel data. If the texture contains
depth components, the first component of GL_TEXTURE_BORDER_COLOR is interpreted
as a depth value. The initial value is .()

ptg

glTexParameter 907
C

If the values for GL_TEXTURE_BORDER_COLOR are specified with glTexParameterIiv
or glTexParameterIuiv, the values are stored unmodified with an internal data type of
integer. If specified with glTexParameteriv, they are converted to floating point with

the following equation: . If specified with glTexParameterfv, they are stored

unmodified as floating-point values.

GL_TEXTURE_COMPARE_FUNC
Specifies the comparison operator used when GL_TEXTURE_COMPARE_MODE is set to
GL_COMPARE_REF_TO_TEXTURE. Permissible values are:
where is the current interpolated texture coordinate, and is the depth texture value
sampled from the currently bound depth texture. is assigned to the the red
channel.

GL_TEXTURE_COMPARE_MODE
Specifies the texture comparison mode for currently bound depth textures. That is, a
texture whose internal format is GL_DEPTH_COMPONENT_*; see glTexImage2D)
Permissible values are:
GL_COMPARE_REF_TO_TEXTURE

Specifies that the interpolated and clamped texture coordinate should be compared
to the value in the currently bound depth texture. See the discussion of
GL_TEXTURE_COMPARE_FUNC for details of how the comparison is evaluated. The
result of the comparison is assigned to the red channel.

GL_NONE
Specifies that the red channel should be assigned the appropriate value from the
currently bound depth texture.

r

result
Dtr

f =
2c + 1

2b - 1

Texture Comparison Function Computed result

GL_LEQUAL

result = c 1.0 r6 =Dt

0.0 r 7 Dt

GL_GEQUAL

result = c 1.0 r 7 = Dt

0.0 r 7 Dt

GL_LESS

result = c 1.0 r 6 Dt

0.0 r 7 = Dt

GL_GREATER

result = c 1.0 r 7 Dt

0.0 r 6 = Dt

ptg

908

GL_TEXTURE_LOD_BIAS
params specifies a fixed bias value that is to be added to the level-of-detail parameter for
the texture before texture sampling. The specified value is added to the shader-supplied
bias value (if any) and subsequently clamped into the implementation-defined range

, where is the value of the implementation defined constant
GL_MAX_TEXTURE_LOD_BIAS. The initial value is 0.0.

GL_TEXTURE_MIN_FILTER
The texture minifying function is used whenever the level-of-detail function used when
sampling from the texture determines that the texture should be minified. There are six
defined minifying functions. Two of them use either the nearest texture elements or a
weighted average of multiple texture elements to compute the texture value. The other
four use mipmaps.
A mipmap is an ordered set of arrays representing the same image at progressively lower
resolutions. If the texture has dimensions , there are mipmaps.
The first mipmap is the original texture, with dimensions . Each subsequent
mipmap has dimensions , where are the dimensions of the previous
mipmap, until either or . At that point, subsequent mipmaps have dimension

or until the final mipmap, which has dimension . To define the
mipmaps, call glTexImage1D, glTexImage2D, glTexImage3D, glCopyTexImage1D, or
glCopyTexImage2D with the level argument indicating the order of the mipmaps. Level
0 is the original texture; level is the final mipmap.
params supplies a function for minifying the texture as one of the following:
GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan distance) to
the specified texture coordinates.

GL_LINEAR
Returns the weighted average of the four texture elements that are closest to the speci-
fied texture coordinates. These can include items wrapped or repeated from other
parts of a texture, depending on the values of GL_TEXTURE_WRAP_S and
GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_NEAREST_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured
and uses the GL_NEAREST criterion (the texture element closest to the specified
texture coordinates) to produce a texture value.

1 * 1m ax(n,m)

1 * 12k-1 * 11 * 2l-1
l = 0k = 0

2k * 2l2k-1 * 2l-1
2n * 2m

m ax(n,m) + 12n * 2m

biasm ax[biasm ax,biasm ax]

Texture Comparison Function Computed result

GL_EQUAL

result = c 1.0 r = Dt

0.0 r Z Dt

GL_NOTEQUAL

result = c 1.0 r Z Dt

0.0 r = Dt

GL_ALWAYS result = 1.0

GL_NEVER result = 0.0

ptg

glTexParameter 909
C

GL_LINEAR_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured
and uses the GL_LINEAR criterion (a weighted average of the four texture elements
that are closest to the specified texture coordinates) to produce a texture value.

GL_NEAREST_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being
textured and uses the GL_NEAREST criterion (the texture element closest to the speci-
fied texture coordinates) to produce a texture value from each mipmap. The final
texture value is a weighted average of those two values.

GL_LINEAR_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being
textured and uses the GL_LINEAR criterion (a weighted average of the texture
elements that are closest to the specified texture coordinates) to produce a texture
value from each mipmap. The final texture value is a weighted average of those two
values.

As more texture elements are sampled in the minification process, fewer aliasing artifacts
will be apparent. While the GL_NEAREST and GL_LINEAR minification functions can be
faster than the other four, they sample only one or multiple texture elements to deter-
mine the texture value of the pixel being rendered and can produce more patterns or
ragged transitions. The initial value of GL_TEXTURE_MIN_FILTER is
GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MAG_FILTER
The texture magnification function is used whenever the level-of-detail function used
when sampling from the texture determines that the texture should be magified. It sets
the texture magnification function to either GL_NEAREST or GL_LINEAR (see below).
GL_NEAREST is generally faster than GL_LINEAR, but it can produce textured images
with sharper edges because the transition between texture elements is not as smooth.
The initial value of GL_TEXTURE_MAG_FILTER is GL_LINEAR.
GL_NEAREST

Returns the value of the texture element that is nearest (in Manhattan distance) to
the specified texture coordinates.

GL_LINEAR
Returns the weighted average of the texture elements that are closest to the specified
texture coordinates. These can include items wrapped or repeated from other parts of
a texture, depending on the values of GL_TEXTURE_WRAP_S and
GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_TEXTURE_MIN_LOD
Sets the minimum level-of-detail parameter. This floating-point value limits the selection
of highest resolution mipmap (lowest mipmap level). The initial value is -1000.

GL_TEXTURE_MAX_LOD
Sets the maximum level-of-detail parameter. This floating-point value limits the selection
of the lowest resolution mipmap (highest mipmap level). The initial value is 1000.

GL_TEXTURE_MAX_LEVEL
Sets the index of the highest defined mipmap level. This is an integer value. The initial
value is 1000.

GL_TEXTURE_SWIZZLE_R
Sets the swizzle that will be applied to the component of a texel before it is returned to
the shader. Valid values for param are GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_ZERO and GL_ONE. If GL_TEXTURE_SWIZZLE_R is GL_RED, the value for will be
taken from the first channel of the fetched texel. If GL_TEXTURE_SWIZZLE_R is
GL_GREEN, the value for will be taken from the second channel of the fetched texel. Ifr

r

r

ptg

910

GL_TEXTURE_SWIZZLE_R is GL_BLUE, the value for will be taken from the third
channel of the fetched texel. If GL_TEXTURE_SWIZZLE_R is GL_ALPHA, the value for
will be taken from the fourth channel of the fetched texel. If GL_TEXTURE_SWIZZLE_R
is GL_ZERO, the value for will be subtituted with . If GL_TEXTURE_SWIZZLE_R is
GL_ONE, the value for will be subtituted with . The initial value is GL_RED.

GL_TEXTURE_SWIZZLE_G
Sets the swizzle that will be applied to the component of a texel before it is returned to
the shader. Valid values for param and their effects are similar to those of
GL_TEXTURE_SWIZZLE_R. The initial value is GL_GREEN.

GL_TEXTURE_SWIZZLE_B
Sets the swizzle that will be applied to the component of a texel before it is returned to
the shader. Valid values for param and their effects are similar to those of
GL_TEXTURE_SWIZZLE_R. The initial value is GL_BLUE.

GL_TEXTURE_SWIZZLE_A
Sets the swizzle that will be applied to the component of a texel before it is returned to
the shader. Valid values for param and their effects are similar to those of
GL_TEXTURE_SWIZZLE_R. The initial value is GL_ALPHA.

GL_TEXTURE_SWIZZLE_RGBA
Sets the swizzles that will be applied to the , , , and components of a texel before
they are returned to the shader. Valid values for params and their effects are similar to
those of GL_TEXTURE_SWIZZLE_R, except that all channels are specified simultaneously.
Setting the value of GL_TEXTURE_SWIZZLE_RGBA is equivalent (assuming no errors are
generated) to setting the parameters of each of GL_TEXTURE_SWIZZLE_R,
GL_TEXTURE_SWIZZLE_G, GL_TEXTURE_SWIZZLE_B, and GL_TEXTURE_SWIZZLE_A
successively.

GL_TEXTURE_WRAP_S
Sets the wrap parameter for texture coordinate to either GL_CLAMP_TO_EDGE,
GL_CLAMP_TO_BORDER, GL_MIRRORED_REPEAT, or GL_REPEAT.

GL_CLAMP_TO_EDGE causes coordinates to be clamped to the range , where

is the size of the texture in the direction of clamping. GL_CLAMP_TO_BORDER evalu-
ates coordinates in a similar manner to GL_CLAMP_TO_EDGE. However, in cases where
clamping would have occurred in GL_CLAMP_TO_EDGE mode, the fetched texel data is
substituted with the values specified by GL_TEXTURE_BORDER_COLOR. GL_REPEAT
causes the integer part of the coordinate to be ignored; the GL uses only the fractional
part, thereby creating a repeating pattern. GL_MIRRORED_REPEAT causes the coordi-
nate to be set to the fractional part of the texture coordinate if the integer part of is
even; if the integer part of is odd, then the texture coordinate is set to ,
where represents the fractional part of . Initially, GL_TEXTURE_WRAP_S is set to
GL_REPEAT.

GL_TEXTURE_WRAP_T
Sets the wrap parameter for texture coordinate to either GL_CLAMP_TO_EDGE,
GL_CLAMP_TO_BORDER, GL_MIRRORED_REPEAT, or GL_REPEAT. See the discussion
under GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set to GL_REPEAT.

GL_TEXTURE_WRAP_R
Sets the wrap parameter for texture coordinate to either GL_CLAMP_TO_EDGE,
GL_CLAMP_TO_BORDER, GL_MIRRORED_REPEAT, or GL_REPEAT. See the discussion
under GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_R is set to GL_REPEAT.

r

t

sfrac(s)
1 - frac(s)ss

s
s

s

s
N

c1
2
,1 -

1

2
ds

s

abgr

a

b

g

1.0r
0.0r

r
r

ptg

glTexParameter 911
C

Notes

Suppose that a program attempts to sample from a texture and has set GL_TEXTURE_MIN_FILTER
to one of the functions that requires a mipmap. If either the dimensions of the texture images
currently defined (with previous calls to glTexImage1D, glTexImage2D, glTexImage3D,
glCopyTexImage1D, or glCopyTexImage2D) do not follow the proper sequence for mipmaps
(described above), or there are fewer texture images defined than are needed, or the set of texture
images have differing numbers of texture components, then the texture is considered incomplete.

Linear filtering accesses the four nearest texture elements only in 2D textures. In 1D textures,
linear filtering accesses the two nearest texture elements. In 3D textures, linear filtering accesses the
eight nearest texture elements.

glTexParameter specifies the texture parameters for the active texture unit, specified by calling
glActiveTexture.

Errors

GL_INVALID_ENUM is generated if target or pname is not one of the accepted defined values.
GL_INVALID_ENUM is generated if params should have a defined constant value (based on the

value of pname) and does not.

Associated Gets

glGetTexParameter
glGetTexLevelParameter

See Also

glActiveTexture, glBindTexture, glCopyTexImage1D, glCopyTexImage2D,
glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3D, glPixelStore,
glSamplerParameter, glTexImage1D, glTexImage2D, glTexImage3D, glTexSubImage1D,
glTexSubImage2D, glTexSubImage3D

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glTexSubImage1D

specify a one-dimensional texture subimage

C Specification

void glTexSubImage1D(GLenum target,
GLint level,
GLint xoffset,
GLsizei width,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_1D.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

ptg

912

xoffset
Specifies a texel offset in the x direction within the texture array.

width
Specifies the width of the texture subimage.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_RED, GL_RG, GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type
Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data
Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable or disable one-dimensional texturing, call glEnable and glDisable with
argument GL_TEXTURE_1D.

glTexSubImage1D redefines a contiguous subregion of an existing one-dimensional texture
image. The texels referenced by data replace the portion of the existing texture array with x indices
xoffset and , inclusive. This region may not include any texels outside the range
of the texture array as it was originally specified. It is not an error to specify a subtexture with width
of 0, but such a specification has no effect.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

Notes

glPixelStore modes affect texture images.
glTexSubImage1D specifies a one-dimensional subtexture for the current texture unit, specified

with glActiveTexture.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_ENUM is generated if format is not an accepted format constant.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than max, where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if , or if , where is the

GL_TEXTURE_WIDTH, and is the width of the GL_TEXTURE_BORDER of the texture image being
modified. Note that includes twice the border width.

GL_INVALID_VALUE is generated if width is less than 0.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage1D operation.

w
b

w(xoffset + width) 7 (w - b)xoffset 6 -b

log2

xoffset + width - 1

ptg

glTexSubImage1D 913
C

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

Associated Gets

glGetTexImage
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glPixelStore, glTexImage1D,
glTexImage2D, glTexImage3D, glTexParameter, glTexSubImage2D, glTexSubImage3D

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glTexSubImage2D

specify a two-dimensional texture subimage

C Specification

void glTexSubImage2D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
const GLvoid * data);

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_
POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

ptg

914

xoffset
Specifies a texel offset in the x direction within the texture array.

yoffset
Specifies a texel offset in the y direction within the texture array.

width
Specifies the width of the texture subimage.

height
Specifies the height of the texture subimage.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_RED, GL_RG, GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type
Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data
Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_2D.

glTexSubImage2D redefines a contiguous subregion of an existing two-dimensional texture
image. The texels referenced by data replace the portion of the existing texture array with x indices
xoffset and , inclusive, and y indices yoffset and , inclusive.
This region may not include any texels outside the range of the texture array as it was originally spec-
ified. It is not an error to specify a subtexture with zero width or height, but such a specification has
no effect.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

Notes

glPixelStore modes affect texture images.
glTexSubImage2D specifies a two-dimensional subtexture for the current texture unit, specified

with glActiveTexture.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D,
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.

GL_INVALID_ENUM is generated if format is not an accepted format constant.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than max, where max is the

returned value of GL_MAX_TEXTURE_SIZE.
log2

yoffset + height - 1xoffset + width - 1

ptg

glTexSubImage2D 915
C

GL_INVALID_VALUE is generated if , , , or
, where is the GL_TEXTURE_WIDTH, is the GL_TEXTURE_HEIGHT,

and is the border width of the texture image being modified. Note that and include twice the
border width.

GL_INVALID_VALUE is generated if width or height is less than 0.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage2D operation.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

Associated Gets

glGetTexImage
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glPixelStore, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage3D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glTexSubImage3D

specify a three-dimensional texture subimage

C Specification

void glTexSubImage3D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLsizei width,
GLsizei height,
GLsizei depth,
GLenum format,
GLenum type,
const GLvoid * data);

hwb
hw(yoffset + height) 7 (h - b)

yoffset 6 -b(xoffset + width) 7 (w - b)xoffset 6 -b

ptg

916

Parameters

target
Specifies the target texture. Must be GL_TEXTURE_3D.

level
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

xoffset
Specifies a texel offset in the x direction within the texture array.

yoffset
Specifies a texel offset in the y direction within the texture array.

zoffset
Specifies a texel offset in the z direction within the texture array.

width
Specifies the width of the texture subimage.

height
Specifies the height of the texture subimage.

depth
Specifies the depth of the texture subimage.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_RED, GL_RG, GL_RGB, GL_BGR, GL_RGBA, and GL_BGRA.

type
Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

data
Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which
texturing is enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable
with argument GL_TEXTURE_3D.

glTexSubImage3D redefines a contiguous subregion of an existing three-dimensional texture
image. The texels referenced by data replace the portion of the existing texture array with x indices
xoffset and , inclusive, y indices yoffset and , inclusive, and
z indices zoffset and , inclusive. This region may not include any texels outside
the range of the texture array as it was originally specified. It is not an error to specify a subtexture
with zero width, height, or depth but such a specification has no effect.

If a non-zero named buffer object is bound to the GL_PIXEL_UNPACK_BUFFER target (see
glBindBuffer) while a texture image is specified, data is treated as a byte offset into the buffer object’s
data store.

zoffset + depth - 1
yoffset + height - 1xoffset + width - 1

ptg

glTexSubImage3D 917
C

Notes

The glPixelStore modes affect texture images.
glTexSubImage3D specifies a three-dimensional subtexture for the current texture unit, specified

with glActiveTexture.

Errors

GL_INVALID_ENUM is generated if /target is not GL_TEXTURE_3D.
GL_INVALID_ENUM is generated if format is not an accepted format constant.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_VALUE is generated if level is less than 0.
GL_INVALID_VALUE may be generated if level is greater than max, where max is the

returned value of GL_MAX_TEXTURE_SIZE.
GL_INVALID_VALUE is generated if , , , or

, or , or , where is the
GL_TEXTURE_WIDTH, is the GL_TEXTURE_HEIGHT, is the GL_TEXTURE_DEPTH and is the
border width of the texture image being modified. Note that , , and include twice the border width.

GL_INVALID_VALUE is generated if width, height, or depth is less than 0.
GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage3D operation.
GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5, or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GL_INVALID_OPERATION is generated if type is one of GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the buffer object’s data store is currently mapped.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and the data would be unpacked from the buffer object such that
the memory reads required would exceed the data store size.

GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to the
GL_PIXEL_UNPACK_BUFFER target and data is not evenly divisible into the number of bytes needed
to store in memory a datum indicated by type.

Associated Gets

glGetTexImage
glGet with argument GL_PIXEL_UNPACK_BUFFER_BINDING

See Also

glActiveTexture, glCopyTexImage1D, glCopyTexImage2D, glCopyTexSubImage1D,
glCopyTexSubImage2D, glCopyTexSubImage3D, glPixelStore, glTexImage1D,
glTexImage2D, glTexImage3D, glTexSubImage1D, glTexSubImage2D, glTexParameter

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

dhw
bdh

w(zoffset + depth) 7 (d - b)zoffset 6 -b(yoffset + height) 7 (h - b)
yoffset 6 -b(xoffset + width) 7 (w - b)xoffset 6 -b

log2

ptg

glTransformFeedbackVaryings

specify values to record in transform feedback buffers

C Specification

void glTransformFeedbackVaryings(GLuintprogram,
GLsizeicount,
const char **varyings,
GLenumbufferMode);

Parameters

program
The name of the target program object.

count
The number of varying variables used for transform feedback.

varyings
An array of count zero-terminated strings specifying the names of the varying variables
to use for transform feedback.

bufferMode
Identifies the mode used to capture the varying variables when transform feedback is
active. bufferMode must be GL_INTERLEAVED_ATTRIBS or GL_SEPARATE_ATTRIBS.

Description

The names of the vertex or geometry shader outputs to be recorded in transform feedback mode
are specified using glTransformFeedbackVaryings. When a geometry shader is active, transform
feedback records the values of selected geometry shader output variables from the emitted vertices.
Otherwise, the values of the selected vertex shader outputs are recorded.

The state set by glTranformFeedbackVaryings is stored and takes effect next time
glLinkProgram is called on program. When glLinkProgram is called, program is linked so that the
values of the specified varying variables for the vertices of each primitive generated by the GL are
written to a single buffer object if bufferMode is GL_INTERLEAVED_ATTRIBS or multiple buffer
objects if bufferMode is GL_SEPARATE_ATTRIBS.

In addition to the errors generated by glTransformFeedbackVaryings, the program program
will fail to link if:

The count specified by glTransformFeedbackVaryings is non-zero, but the program
object has no vertex or geometry shader.
Any variable name specified in the varyings array is not declared as an output in the
vertex shader (or the geometry shader, if active).
Any two entries in the varyings array specify the same varying variable.
The total number of components to capture in any varying variable in varyings is
greater than the constant GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS
and the buffer mode is GL_SEPARATE_ATTRIBS.
The total number of components to capture is greater than the constant
GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer mode
is GL_INTERLEAVED_ATTRIBS.

Notes

glGetTransformFeedbackVarying is available only if the GL version is 3.0 or greater.

918

ptg

Errors

GL_INVALID_VALUE is generated if program is not the name of a program object.
GL_INVALID_VALUE is generated if bufferMode is GL_SEPARATE_ATTRIBS and count is greater

than the implementation-dependent limit GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

Associated Gets

glGetTransformFeedbackVarying

See Also

glBeginTransformFeedback, glEndTransformFeedback,
glGetTransformFeedbackVarying

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glUniform

Specify the value of a uniform variable for the current program object

C Specification

void glUniform1f(GLint location,
GLfloat v0);

void glUniform2f(GLint location,
GLfloat v0,
GLfloat v1);

void glUniform3f(GLint location,
GLfloat v0,
GLfloat v1,
GLfloat v2);

void glUniform4f(GLint location,
GLfloat v0,
GLfloat v1,
GLfloat v2,
GLfloat v3);

void glUniform1i(GLint location,
GLint v0);

void glUniform2i(GLint location,
GLint v0,
GLint v1);

void glUniform3i(GLint location,
GLint v0,
GLint v1,
GLint v2);

void glUniform4i(GLint location,
GLint v0,
GLint v1,
GLint v2,
GLint v3);

glUniform 919
C

ptg

920

void glUniform1ui(GLint location,
GLuint v0);

void glUniform2ui(GLint location,
GLint v0,
GLuint v1);

void glUniform3ui(GLint location,
GLint v0,
GLint v1,
GLuint v2);

void glUniform4ui(GLint location,
GLint v0,
GLint v1,
GLint v2,
GLuint v3);

Parameters

location
Specifies the location of the uniform variable to be modified.

v0, v1, v2, v3
Specifies the new values to be used for the specified uniform variable.

C Specification

void glUniform1fv(GLint location,
GLsizei count,
const GLfloat * value);

void glUniform2fv(GLint location,
GLsizei count,
const GLfloat * value);

void glUniform3fv(GLint location,
GLsizei count,
const GLfloat * value);

void glUniform4fv(GLint location,
GLsizei count,
const GLfloat * value);

void glUniform1iv(GLint location,
GLsizei count,
const GLint * value);

void glUniform2iv(GLint location,
GLsizei count,
const GLint * value);

void glUniform3iv(GLint location,
GLsizei count,
const GLint * value);

void glUniform4iv(GLint location,
GLsizei count,
const GLint * value);

void glUniform1uiv(GLint location,
GLsizei count,
const GLuint * value);

void glUniform2uiv(GLint location,
GLsizei count,
const GLuint * value);

ptg

glUniform 921
C

void glUniform3uiv(GLint location,
GLsizei count,
const GLuint * value);

void glUniform4uiv(GLint location,
GLsizei count,
const GLuint * value);

Parameters

location
Specifies the location of the uniform value to be modified.

count
Specifies the number of elements that are to be modified. This should be 1 if the targeted
uniform variable is not an array, and 1 or more if it is an array.

value
Specifies a pointer to an array of count values that will be used to update the specified
uniform variable.

C Specification

void glUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix2x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

void glUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * value);

ptg

Parameters

location
Specifies the location of the uniform value to be modified.

count
Specifies the number of matrices that are to be modified. This should be 1 if the targeted
uniform variable is not an array of matrices, and 1 or more if it is an array of matrices.

transpose
Specifies whether to transpose the matrix as the values are loaded into the uniform
variable.

value
Specifies a pointer to an array of count values that will be used to update the specified
uniform variable.

Description

glUniform modifies the value of a uniform variable or a uniform variable array. The location of
the uniform variable to be modified is specified by location, which should be a value returned by
glGetUniformLocation. glUniform operates on the program object that was made part of current
state by calling glUseProgram.

The commands glUniform{1|2|3|4}{f|i|ui} are used to change the value of the uniform
variable specified by location using the values passed as arguments. The number specified in the
command should match the number of components in the data type of the specified uniform variable
(e.g., 1 for float, int, unsigned int, bool; 2 for vec2, ivec2, uvec2, bvec2, etc.). The suffix f
indicates that floating-point values are being passed; the suffix i indicates that integer values are
being passed; the suffix ui indicates that unsigned integer values are being passed, and this type
should also match the data type of the specified uniform variable. The i variants of this function
should be used to provide values for uniform variables defined as int, ivec2, ivec3, ivec4, or
arrays of these. The ui variants of this function should be used to provide values for uniform vari-
ables defined as unsigned int, uvec2, uvec3, uvec4, or arrays of these. The f variants should be
used to provide values for uniform variables of type float, vec2, vec3, vec4, or arrays of these.
Either the i, ui or f variants may be used to provide values for uniform variables of type bool,
bvec2, bvec3, bvec4, or arrays of these. The uniform variable will be set to false if the input value
is 0 or 0.0f, and it will be set to true otherwise.

All active uniform variables defined in a program object are initialized to 0 when the program
object is linked successfully. They retain the values assigned to them by a call to glUniform until the
next successful link operation occurs on the program object, when they are once again initialized to 0.

The commands glUniform{1|2|3|4}{f|i|ui}v can be used to modify a single uniform vari-
able or a uniform variable array. These commands pass a count and a pointer to the values to be
loaded into a uniform variable or a uniform variable array. A count of 1 should be used if modifying
the value of a single uniform variable, and a count of 1 or greater can be used to modify an entire
array or part of an array. When loading n elements starting at an arbitrary position m in a uniform
variable array, elements m + n - 1 in the array will be replaced with the new values. If m + n - 1 is larger
than the size of the uniform variable array, values for all array elements beyond the end of the array
will be ignored. The number specified in the name of the command indicates the number of compo-
nents for each element in value, and it should match the number of components in the data type of
the specified uniform variable (e.g., 1 for float, int, bool; 2 for vec2, ivec2, bvec2, etc.). The data type
specified in the name of the command must match the data type for the specified uniform variable as
described previously for glUniform{1|2|3|4}{f|i|ui}.

For uniform variable arrays, each element of the array is considered to be of the type indicated in
the name of the command (e.g., glUniform3f or glUniform3fv can be used to load a uniform vari-
able array of type vec3). The number of elements of the uniform variable array to be modified is speci-
fied by count

922

ptg

The commands glUniformMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv are used to modify
a matrix or an array of matrices. The numbers in the command name are interpreted as the dimen-
sionality of the matrix. The number 2 indicates a 2 × 2 matrix (i.e., 4 values), the number 3 indicates
a 3 × 3 matrix (i.e., 9 values), and the number 4 indicates a 4 × 4 matrix (i.e., 16 values). Non-square
matrix dimensionality is explicit, with the first number representing the number of columns and the
second number representing the number of rows. For example, 2x4 indicates a 2 × 4 matrix with 2
columns and 4 rows (i.e., 8 values). If transpose is GL_FALSE, each matrix is assumed to be supplied
in column major order. If transpose is GL_TRUE, each matrix is assumed to be supplied in row
major order. The count argument indicates the number of matrices to be passed. A count of 1 should
be used if modifying the value of a single matrix, and a count greater than 1 can be used to modify
an array of matrices.

Notes

glUniform1i and glUniform1iv are the only two functions that may be used to load uniform
variables defined as sampler types. Loading samplers with any other function will result in a
GL_INVALID_OPERATION error.

If count is greater than 1 and the indicated uniform variable is not an array, a
GL_INVALID_OPERATION error is generated and the specified uniform variable will remain
unchanged.

Other than the preceding exceptions, if the type and size of the uniform variable as defined in the
shader do not match the type and size specified in the name of the command used to load its value, a
GL_INVALID_OPERATION error will be generated and the specified uniform variable will remain
unchanged.

If location is a value other than -1 and it does not represent a valid uniform variable location in
the current program object, an error will be generated, and no changes will be made to the uniform
variable storage of the current program object. If location is equal to -1, the data passed in will be
silently ignored and the specified uniform variable will not be changed.

Errors

GL_INVALID_OPERATION is generated if there is no current program object.
GL_INVALID_OPERATION is generated if the size of the uniform variable declared in the shader

does not match the size indicated by the glUniform command.
GL_INVALID_OPERATION is generated if one of the signed or unsigned integer variants of this

function is used to load a uniform variable of type float, vec2, vec3, vec4, or an array of these, or
if one of the floating-point variants of this function is used to load a uniform variable of type int,
ivec2, ivec3, ivec4, unsigned int, uvec2, uvec3, uvec4, or an array of these.

GL_INVALID_OPERATION is generated if one of the signed integer variants of this function is
used to load a uniform variable of type unsigned int, uvec2, uvec3, uvec4, or an array of these.

GL_INVALID_OPERATION is generated if one of the unsigned integer variants of this function is
used to load a uniform variable of type int, ivec2, ivec3, ivec4, or an array of these.

GL_INVALID_OPERATION is generated if location is an invalid uniform location for the current
program object and location is not equal to -1.

GL_INVALID_VALUE is generated if count is less than 0.
GL_INVALID_OPERATION is generated if count is greater than 1 and the indicated uniform vari-

able is not an array variable.
GL_INVALID_OPERATION is generated if a sampler is loaded using a command other than

glUniform1i and glUniform1iv.

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveUniform with the handle of a program object and the index of an active uniform

variable

glUniform 923
C

ptg

924

glGetUniform with the handle of a program object and the location of a uniform variable
glGetUniformLocation with the handle of a program object and the name of a uniform variable

See Also

glLinkProgram, glUseProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. Copyright © 2010 Khronos Group. This material may be
distributed subject to the terms and conditions set forth in the Open Publication License, v 1.0, 8
June 1999. http://opencontent.org/openpub/.

glUniformBlockBinding

assign a binding point to an active uniform block

C Specification

void glUniformBlockBinding(GLuint program,
GLuint uniformBlockIndex,
GLuint uniformBlockBinding);

Parameters

program
The name of a program object containing the active uniform block whose binding to
assign.

uniformBlockIndex
The index of the active uniform block within program whose binding to assign.

uniformBlockBinding
Specifies the binding point to which to bind the uniform block with index
uniformBlockIndex within program.

Description

Binding points for active uniform blocks are assigned using glUniformBlockBinding. Each of a
program’s active uniform blocks has a corresponding uniform buffer binding point. program is the
name of a program object for which the command glLinkProgram has been issued in the past.

If successful, glUniformBlockBinding specifies that program will use the data store of the
buffer object bound to the binding point uniformBlockBinding to extract the values of the
uniforms in the uniform block identified by uniformBlockIndex.

When a program object is linked or re-linked, the uniform buffer object binding point assigned to
each of its active uniform blocks is reset to zero.

Errors

GL_INVALID_VALUE is generated if uniformBlockIndex is not an active uniform block index of
program.

GL_INVALID_VALUE is generated if uniformBlockBinding is greater than or equal to the value
of GL_MAX_UNIFORM_BUFFER_BINDINGS.

GL_INVALID_VALUE is generated program is not the name of a program object generated by
the GL.

Notes

glUniformBlockBinding is available only if the GL version is 3.1 or greater.

ptg

glUseProgram 925
C

Associated Gets

glGetActiveUniformBlock with argument GL_UNIFORM_BLOCK_BINDING

See Also

glLinkProgram, glBindBufferBase, glBindBufferRange, glGetActiveUniformBlock

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

glUseProgram

Installs a program object as part of current rendering state

C Specification

void glUseProgram(GLuint program);

Parameters

program
Specifies the handle of the program object whose executables are to be used as part of
current rendering state.

Description

glUseProgram installs the program object specified by program as part of current rendering
state. One or more executables are created in a program object by successfully attaching shader
objects to it with glAttachShader, successfully compiling the shader objects with glCompileShader,
and successfully linking the program object with glLinkProgram.

A program object will contain an executable that will run on the vertex processor if it contains
one or more shader objects of type GL_VERTEX_SHADER that have been successfully compiled and
linked. A program object will contain an executable that will run on the geometry processor if it
contains one or more shader objects of type GL_GEOMETRY_SHADER that have been successfully
compiled and linked. Similarly, a program object will contain an executable that will run on the frag-
ment processor if it contains one or more shader objects of type GL_FRAGMENT_SHADER that have
been successfully compiled and linked.

While a program object is in use, applications are free to modify attached shader objects, compile
attached shader objects, attach additional shader objects, and detach or delete shader objects. None of
these operations will affect the executables that are part of the current state. However, relinking the
program object that is currently in use will install the program object as part of the current rendering
state if the link operation was successful (see glLinkProgram). If the program object currently in use is
relinked unsuccessfully, its link status will be set to GL_FALSE, but the executables and associated state
will remain part of the current state until a subsequent call to glUseProgram removes it from use.
After it is removed from use, it cannot be made part of current state until it has been successfully
relinked.

If program is zero, then the current rendering state refers to an invalid program object and the
results of shader execution are undefined. However, this is not an error.

If program does not contain shader objects of type GL_FRAGMENT_SHADER, an executable will
be installed on the vertex, and possibly geometry processors, but the results of fragment shader execu-
tion will be undefined.

ptg

Notes

Like buffer and texture objects, the name space for program objects may be shared across a set of
contexts, as long as the server sides of the contexts share the same address space. If the name space is
shared across contexts, any attached objects and the data associated with those attached objects are
shared as well.

Applications are responsible for providing the synchronization across API calls when objects are
accessed from different execution threads.

Errors

GL_INVALID_VALUE is generated if program is neither 0 nor a value generated by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.
GL_INVALID_OPERATION is generated if program could not be made part of current state.
GL_INVALID_OPERATION is generated if transform feedback mode is active.

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with a valid program object and the index of an active attribute variable
glGetActiveUniform with a valid program object and the index of an active uniform variable
glGetAttachedShaders with a valid program object
glGetAttribLocation with a valid program object and the name of an attribute variable
glGetProgram with a valid program object and the parameter to be queried
glGetProgramInfoLog with a valid program object
glGetUniform with a valid program object and the location of a uniform variable
glGetUniformLocation with a valid program object and the name of a uniform variable
glIsProgram

See Also

glAttachShader, glBindAttribLocation, glCompileShader, glCreateProgram,
glDeleteProgram, glDetachShader, glLinkProgram, glUniform, glValidateProgram,
glVertexAttrib

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glValidateProgram

Validates a program object

C Specification

void glValidateProgram(GLuint program);

Parameters

program
Specifies the handle of the program object to be validated.

Description

glValidateProgram checks to see whether the executables contained in program can execute
given the current OpenGL state. The information generated by the validation process will be stored in

926

ptg

program’s information log. The validation information may consist of an empty string, or it may be a
string containing information about how the current program object interacts with the rest of current
OpenGL state. This provides a way for OpenGL implementers to convey more information about why
the current program is inefficient, suboptimal, failing to execute, and so on.

The status of the validation operation will be stored as part of the program object’s state. This
value will be set to GL_TRUE if the validation succeeded, and GL_FALSE otherwise. It can be queried
by calling glGetProgram with arguments program and GL_VALIDATE_STATUS. If validation is success-
ful, program is guaranteed to execute given the current state. Otherwise, program is guaranteed to
not execute.

This function is typically useful only during application development. The informational string
stored in the information log is completely implementation dependent; therefore, an application
should not expect different OpenGL implementations to produce identical information strings.

Notes

This function mimics the validation operation that OpenGL implementations must perform
when rendering commands are issued while programmable shaders are part of current state. The
error GL_INVALID_OPERATION will be generated by any command that triggers the rendering of
geometry if:

any two active samplers in the current program object are of different types, but refer to
the same texture image unit.
the number of active samplers in the program exceeds the maximum number of texture
image units allowed.

It may be difficult or cause a performance degradation for applications to catch these errors when
rendering commands are issued. Therefore, applications are advised to make calls to
glValidateProgram to detect these issues during application development.

Errors

GL_INVALID_VALUE is generated if program is not a value generate by OpenGL.
GL_INVALID_OPERATION is generated if program is not a program object.

Associated Gets

glGetProgram with arguments program and GL_VALIDATE_STATUS
glGetProgramInfoLog with argument program
glIsProgram

See Also

glLinkProgram, glUseProgram

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glVertexAttrib

Specifies the value of a generic vertex attribute

glVertexAttrib 927
C

ptg

928

C Specification

void glVertexAttrib1f(GLuint index,
GLfloat v0);

void glVertexAttrib1s(GLuint index,
GLshort v0);

void glVertexAttrib1d(GLuint index,
GLdouble v0);

void glVertexAttribI1i(GLuint index,
GLint v0);

void glVertexAttribI1ui(GLuint index,
GLuint v0);

void glVertexAttrib2f(GLuint index,
GLfloat v0,
GLfloat v1);

void glVertexAttrib2s(GLuint index,
GLshort v0,
GLshort v1);

void glVertexAttrib2d(GLuint index,
GLdouble v0,
GLdouble v1);

void glVertexAttribI2i(GLuint index,
GLint v0,
GLint v1);

void glVertexAttribI2ui(GLuint index,
GLuint v0,
GLuint v1);

void glVertexAttrib3f(GLuint index,
GLfloat v0,
GLfloat v1,
GLfloat v2);

void glVertexAttrib3s(GLuint index,
GLshort v0,
GLshort v1,
GLshort v2);

void glVertexAttrib3d(GLuint index,
GLdouble v0,
GLdouble v1,
GLdouble v2);

void glVertexAttribI3i(GLuint index,
GLint v0,
GLint v1,
GLint v2);

void glVertexAttribI3ui(GLuint index,
GLoint v0,
GLoint v1,
GLoint v2);

void glVertexAttrib4f(GLuint index,
GLfloat v0,
GLfloat v1,
GLfloat v2,
GLfloat v3);

ptg

glVertexAttrib 929
C

void glVertexAttrib4s(GLuint index,
GLshort v0,
GLshort v1,
GLshort v2,
GLshort v3);

void glVertexAttrib4d(GLuint index,
GLdouble v0,
GLdouble v1,
GLdouble v2,
GLdouble v3);

void glVertexAttrib4Nub(GLuint index,
GLubyte v0,
GLubyte v1,
GLubyte v2,
GLubyte v3);

void glVertexAttribI4i(GLuint index,
GLint v0,
GLint v1,
GLint v2,
GLint v3);

void glVertexAttribI4ui(GLuint index,
GLuint v0,
GLuint v1,
GLuint v2,
GLuint v3);

Parameters

index
Specifies the index of the generic vertex attribute to be modified.

v0, v1, v2, v3
Specifies the new values to be used for the specified vertex attribute.

C Specification

void glVertexAttrib1fv(GLuint index,
const GLfloat * v);

void glVertexAttrib1sv(GLuint index,
const GLshort * v);

void glVertexAttrib1dv(GLuint index,
const GLdouble * v);

void glVertexAttribI1iv(GLuint index,
const GLint * v);

void glVertexAttribI1uiv(GLuint index,
const GLuint * v);

void glVertexAttrib2fv(GLuint index,
const GLfloat * v);

void glVertexAttrib2sv(GLuint index,
const GLshort * v);

void glVertexAttrib2dv(GLuint index,
const GLdouble * v);

void glVertexAttribI2iv(GLuint index,
const GLint * v);

ptg

void glVertexAttribI2uiv(GLuint index,
const GLuint * v);

void glVertexAttrib3fv(GLuint index,
const GLfloat * v);

void glVertexAttrib3sv(GLuint index,
const GLshort * v);

void glVertexAttrib3dv(GLuint index,
const GLdouble * v);

void glVertexAttribI3iv(GLuint index,
const GLint * v);

void glVertexAttribI3uiv(GLuint index,
const GLuint * v);

void glVertexAttrib4fv(GLuint index,
const GLfloat * v);

void glVertexAttrib4sv(GLuint index,
const GLshort * v);

void glVertexAttrib4dv(GLuint index,
const GLdouble * v);

void glVertexAttrib4iv(GLuint index,
const GLint * v);

void glVertexAttrib4bv(GLuint index,
const GLbyte * v);

void glVertexAttrib4ubv(GLuint index,
const GLubyte * v);

void glVertexAttrib4usv(GLuint index,
const GLushort * v);

void glVertexAttrib4uiv(GLuint index,
const GLuint * v);

void glVertexAttrib4Nbv(GLuint index,
const GLbyte * v);

void glVertexAttrib4Nsv(GLuint index,
const GLshort * v);

void glVertexAttrib4Niv(GLuint index,
const GLint * v);

void glVertexAttrib4Nubv(GLuint index,
const GLubyte * v);

void glVertexAttrib4Nusv(GLuint index,
const GLushort * v);

void glVertexAttrib4Nuiv(GLuint index,
const GLuint * v);

void glVertexAttribI4bv(GLuint index,
const GLbyte * v);

void glVertexAttribI4ubv(GLuint index,
const GLubyte * v);

void glVertexAttribI4sv(GLuint index,
const GLshort * v);

void glVertexAttribI4usv(GLuint index,
const GLushort * v);

void glVertexAttribI4iv(GLuint index,
const GLint * v);

void glVertexAttribI4uiv(GLuint index,
const GLuint * v);

930

ptg

Parameters

index
Specifies the index of the generic vertex attribute to be modified.

v
Specifies a pointer to an array of values to be used for the generic vertex attribute.

C Specification

void glVertexAttribP1ui(GLuint index,
GLenum type,
GLboolean normalized,
GLuint value);

void glVertexAttribP2ui(GLuint index,
GLenum type,
GLboolean normalized,
GLuint value);

void glVertexAttribP3ui(GLuint index,
GLenum type,
GLboolean normalized,
GLuint value);

void glVertexAttribP4ui(GLuint index,
GLenum type,
GLboolean normalized,
GLuint value);

Parameters

index
Specifies the index of the generic vertex attribute to be modified.

type
Type of packing used on the data. This parameter must be GL_INT_10_10_10_2 or
GL_UNSIGNED_INT_10_10_10_2 to specify signed or unsigned data, respectively.

normalized
If GL_TRUE, then the values are to be converted to floating point values by normalizing.
Otherwise, they are converted directly to floating point values.

value
Specifies the new packed value to be used for the specified vertex attribute.

Description

OpenGL defines a number of standard vertex attributes that applications can modify with stan-
dard API entry points (color, normal, texture coordinates, etc.). The glVertexAttrib family of entry
points allows an application to pass generic vertex attributes in numbered locations.

Generic attributes are defined as four-component values that are organized into an array. The first
entry of this array is numbered 0, and the size of the array is specified by the implementation-depen-
dent constant GL_MAX_VERTEX_ATTRIBS. Individual elements of this array can be modified with a
glVertexAttrib call that specifies the index of the element to be modified and a value for that
element.

These commands can be used to specify one, two, three, or all four components of the generic
vertex attribute specified by index. A 1 in the name of the command indicates that only one value is
passed, and it will be used to modify the first component of the generic vertex attribute. The second
and third components will be set to 0, and the fourth component will be set to 1. Similarly, a 2 in the
name of the command indicates that values are provided for the first two components, the third

glVertexAttrib 931
C

ptg

932

component will be set to 0, and the fourth component will be set to 1. A 3 in the name of the
command indicates that values are provided for the first three components and the fourth component
will be set to 1, whereas a 4 in the name indicates that values are provided for all four components.

The letters s, f, i, d, ub, us, and ui indicate whether the arguments are of type short, float, int,
double, unsigned byte, unsigned short, or unsigned int. When v is appended to the name, the
commands can take a pointer to an array of such values.

Additional capitalized letters can indicate further alterations to the default behavior of the
glVertexAttrib function:

The commands containing N indicate that the arguments will be passed as fixed-point values that
are scaled to a normalized range according to the component conversion rules defined by the
OpenGL specification. Signed values are understood to represent fixed-point values in the range [-1,1],
and unsigned values are understood to represent fixed-point values in the range [0,1].

The commands containing I indicate that the arguments are extended to full signed or unsigned
integers.

The commands containing P indicate that the arguments are stored as packed components within
a larger natural type.

OpenGL Shading Language attribute variables are allowed to be of type mat2, mat3, or mat4.
Attributes of these types may be loaded using the glVertexAttrib entry points. Matrices must be
loaded into successive generic attribute slots in column major order, with one column of the matrix
in each generic attribute slot.

A user-defined attribute variable declared in a vertex shader can be bound to a generic attribute
index by calling glBindAttribLocation. This allows an application to use more descriptive variable
names in a vertex shader. A subsequent change to the specified generic vertex attribute will be imme-
diately reflected as a change to the corresponding attribute variable in the vertex shader.

The binding between a generic vertex attribute index and a user-defined attribute variable in a
vertex shader is part of the state of a program object, but the current value of the generic vertex
attribute is not. The value of each generic vertex attribute is part of current state, just like standard
vertex attributes, and it is maintained even if a different program object is used.

An application may freely modify generic vertex attributes that are not bound to a named vertex
shader attribute variable. These values are simply maintained as part of current state and will not be
accessed by the vertex shader. If a generic vertex attribute bound to an attribute variable in a vertex
shader is not updated while the vertex shader is executing, the vertex shader will repeatedly use the
current value for the generic vertex attribute.

Notes

Generic vertex attributes can be updated at any time.
It is possible for an application to bind more than one attribute name to the same generic vertex

attribute index. This is referred to as aliasing, and it is allowed only if just one of the aliased attribute
variables is active in the vertex shader, or if no path through the vertex shader consumes more than
one of the attributes aliased to the same location. OpenGL implementations are not required to do
error checking to detect aliasing, they are allowed to assume that aliasing will not occur, and they are
allowed to employ optimizations that work only in the absence of aliasing.

There is no provision for binding standard vertex attributes; therefore, it is not possible to alias
generic attributes with standard attributes.

glVertexAttrib4bv, glVertexAttrib4sv, glVertexAttrib4iv, glVertexAttrib4ubv,
glVertexAttrib4usv, glVertexAttrib4uiv, and glVertexAttrib4N versions are available only
if the GL version is 3.1 or higher.

glVertexAttribP versions are available only if the GL version is 3.3 or higher.

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_ENUM is generated if glVertexAttribP is used with a type other than

GL_INT_10_10_10_2 or GL_UNSIGNED_INT_10_10_10_2.

ptg

glVertexAttribDivisor 933
C

Associated Gets

glGet with the argument GL_CURRENT_PROGRAM
glGetActiveAttrib with argument program and the index of an active attribute variable
glGetAttribLocation with argument program and an attribute variable name
glGetVertexAttrib with arguments GL_CURRENT_VERTEX_ATTRIB and index

See Also

glBindAttribLocation, glVertexAttribPointer

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glVertexAttribDivisor

modify the rate at which generic vertex attributes advance during instanced rendering

C Specification

void glVertexAttribDivisor(GLuint index,
GLuint divisor);

Parameters

index
Specify the index of the generic vertex attribute.

divisor
Specify the number of instances that will pass between updates of the generic attribute at
slot index.

Description

glVertexAttribDivisor modifies the rate at which generic vertex attributes advance when
rendering multiple instances of primitives in a single draw call. If divisor is zero, the attribute at slot
index advances once per vertex. If divisor is non-zero, the attribute advances once per divisor
instances of the set(s) of vertices being rendered. An attribute is referred to as instanced if its
GL_VERTEX_ATTRIB_ARRAY_DIVISOR value is non-zero.

index must be less than the value of GL_MAX_VERTEX_ATTRIBUTES.

Notes

glVertexAttribDivisor is available only if the GL version is 3.3 or higher.

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to the value of
GL_MAX_VERTEX_ATTRIBUTES.

See Also

glVertexAttribPointer, glEnableVertexAttribArray, glDisableVertexAttribArray

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and condi-
tions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/openpub/.

ptg

glVertexAttribPointer

define an array of generic vertex attribute data

C Specification

void glVertexAttribPointer(GLuint index,
GLint size,
GLenum type,
GLboolean normalized,
GLsizei stride,
const GLvoid * pointer);

void glVertexAttribIPointer(GLuint index,
GLint size,
GLenum type,
GLsizei stride,
const GLvoid * pointer);

Parameters

index
Specifies the index of the generic vertex attribute to be modified.

size
Specifies the number of components per generic vertex attribute. Must be 1, 2, 3, 4.
Additionally, the symbolic constant GL_BGRA is accepted by glVertexAttribPointer.
The initial value is 4.

type
Specifies the data type of each component in the array. The symbolic constants
GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, and
GL_UNSIGNED_INT are accepted by both functions. Additionally GL_HALF_FLOAT,
GL_FLOAT, GL_DOUBLE, GL_INT_2_10_10_10_REV, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted by glVertexAttribPointer. The
initial value is GL_FLOAT.

normalized
For glVertexAttribPointer, specifies whether fixed-point data values should be
normalized (GL_TRUE) or converted directly as fixed-point values (GL_FALSE) when they
are accessed.

stride
Specifies the byte offset between consecutive generic vertex attributes. If stride is 0, the
generic vertex attributes are understood to be tightly packed in the array. The initial
value is 0.

pointer
Specifies a offset of the first component of the first generic vertex attribute in the array in
the data store of the buffer currently bound to the GL_ARRAY_BUFFER target. The initial
value is 0.

Description

glVertexAttribPointer and glVertexAttribIPointer specify the location and data format
of the array of generic vertex attributes at index index to use when rendering. size specifies the
number of components per attribute and must be 1, 2, 3, 4, or GL_BGRA. type specifies the data type
of each component, and stride specifies the byte stride from one attribute to the next, allowing
vertices and attributes to be packed into a single array or stored in separate arrays.

934

ptg

For glVertexAttribPointer, if normalized is set to GL_TRUE, it indicates that values stored
in an integer format are to be mapped to the range [-1,1] (for signed values) or [0,1] (for unsigned
values) when they are accessed and converted to floating point. Otherwise, values will be converted to
floats directly without normalization.

For glVertexAttribIPointer, only the integer types GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, and GL_UNSIGNED_INT are accepted. Values are always
left as integer values.

If pointer is not NULL, a non-zero named buffer object must be bound to the
GL_ARRAY_BUFFER target (see glBindBuffer), otherwise an error is generated. pointer is treated as a
byte offset into the buffer object’s data store. The buffer object binding
(GL_ARRAY_BUFFER_BINDING) is saved as generic vertex attribute array state
(GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING) for index index.

When a generic vertex attribute array is specified, size, type, normalized, stride, and
pointer are saved as vertex array state, in addition to the current vertex array buffer object binding.

To enable and disable a generic vertex attribute array, call glEnableVertexAttribArray and
glDisableVertexAttribArray with index. If enabled, the generic vertex attribute array is used when
glDrawArrays, glMultiDrawArrays, glDrawElements, glMultiDrawElements, or glDrawRangeElements is
called.

Notes

Each generic vertex attribute array is initially disabled and isn’t accessed when glDrawElements,
glDrawRangeElements, glDrawArrays, glMultiDrawArrays, or glMultiDrawElements is called.

glVertexAttribIPointer is available only if the GL version is 3.0 or higher.

Errors

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS.
GL_INVALID_VALUE is generated if size is not 1, 2, 3, 4 or (for glVertexAttribPointer),

GL_BGRA.
GL_INVALID_ENUM is generated if type is not an accepted value.
GL_INVALID_VALUE is generated if stride is negative.
GL_INVALID_OPERATION is generated if size is GL_BGRA and type is not

GL_INT_2_10_10_10_REV or GL_UNSIGNED_INT_2_10_10_10_REV.
GL_INVALID_OPERATION is generated if type is GL_INT_2_10_10_10_REV or

GL_UNSIGNED_INT_2_10_10_10_REV and size is not 4 or GL_BGRA.
GL_INVALID_OPERATION is generated by glVertexAttribPointer if size is GL_BGRA and

noramlized is GL_FALSE.
GL_INVALID_OPERATION is generated if zero is bound to the GL_ARRAY_BUFFER buffer object

binding point and the pointer argument is not NULL.

Associated Gets

glGet with argument GL_MAX_VERTEX_ATTRIBS
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_ENABLED
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_SIZE
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_TYPE
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_NORMALIZED
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_STRIDE
glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING
glGet with argument GL_ARRAY_BUFFER_BINDING
glGetVertexAttribPointerv with arguments index and GL_VERTEX_ATTRIB_ARRAY_POINTER

glVertexAttribPointer 935
C

ptg

See Also

glBindAttribLocation, glBindBuffer, glDisableVertexAttribArray,
glDrawArrays, glDrawElements, glDrawRangeElements, glEnableVertexAttribArray,
glMultiDrawArrays, glMultiDrawElements, glVertexAttrib

Copyright

Copyright © 2003-2005 3Dlabs Inc. Ltd. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

glViewport

set the viewport

C Specification

void glViewport(GLint x,
GLint y,
GLsizei width,
GLsizei height);

Parameters

x
y

Specify the lower left corner of the viewport rectangle, in pixels. The initial value is (0,0).
width
height

Specify the width and height of the viewport. When a GL context is first attached to a
window, width and height are set to the dimensions of that window.

Description

glViewport specifies the affine transformation of and from normalized device coordinates to
window coordinates. Let be normalized device coordinates. Then the window coordinates

are computed as follows:

Viewport width and height are silently clamped to a range that depends on the implementation.
To query this range, call glGet with argument GL_MAX_VIEWPORT_DIMS.

Errors

GL_INVALID_VALUE is generated if either width or height is negative.

Associated Gets

glGet with argument GL_VIEWPORT
glGet with argument GL_MAX_VIEWPORT_DIMS

yw = (ynd + 1)aheight
2
b + y

xw = (xnd + 1)awidth
2
b + x

(xw,yw)
(xnd,ynd)

yx

936

ptg

See Also

glDepthRange

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free
Software B License. For details, see http://oss.sgi.com/projects/FreeB/.

glWaitSync

instruct the GL server to block until the specified sync object becomes signaled

C Specification

void glWaitSync(GLsync sync,
GLbitfield flags,
GLuint64 timeout);

Parameters

sync
Specifies the sync object whose status to wait on.

flags
A bitfield controlling the command flushing behavior. flags may be zero.

timeout
Specifies the timeout that the server should wait before continuing. timeout must be
GL_TIMEOUT_IGNORED.

Description

glWaitSync causes the GL server to block and wait until sync becomes signaled. sync is the
name of an existing sync object upon which to wait. flags and timeout are currently not used and
must be set to zero and the special value GL_TIMEOUT_IGNORED, respectively*. glWaitSync will
always wait no longer than an implementation-dependent timeout. The duration of this timeout in
nanoseconds may be queried by calling glGet with the parameter GL_MAX_SERVER_WAIT_TIMEOUT.
There is currently no way to determine whether glWaitSync unblocked because the timeout expired
or because the sync object being waited on was signaled.

If an error occurs, glWaitSync does not cause the GL server to block.

Notes

glWaitSync is available only if the GL version is 3.2 or higher.

Errors

GL_INVALID_OPERATION is generated if sync is not the name of a sync object.
GL_INVALID_VALUE is generated if flags is not zero.
GL_INVALID_VALUE is generated if timeout is not GL_TIMEOUT_IGNORED.

glWaitSync 937
C

* flags and timeout are placeholders for anticipated future extensions of sync object capabilities. They must
have these reserved values in order that existing code calling glWaitSync operate properly in the presence of
such extensions.

ptg

See Also

glFenceSync, glClientWaitSync

Copyright

Copyright © 2010 Khronos Group. This material may be distributed subject to the terms and
conditions set forth in the Open Publication License, v 1.0, 8 June 1999. http://opencontent.org/
openpub/.

938

ptg

Index

Numbers
3D graphics, origins, 11-13

A
actor frames, 168-169

actors, adding to scenes, 173-174

Adding a Camera to SphereWorld2 listing
(4.6), 171-173

Adding a Sphere to SphereWorld2 listing
(4.4), 166-167

adding transformations, 143

ADS light model, 269-273

Phong shading, 273-276

ADSGouraud Shader Vertex Program
listing (6.9), 271-272

ADSPhone Fragment Shader listing (6.11),
275-276

ADSPhong Vertex Shader listing (6.10),
274-275

ADSTexture Fragment Program
listing (6.14), 280

affine transformations, 161

algebra, three-dimensional graphics,
126-132

algorithms, transform feedback, 518-519

Allocating and Initializing a Single VBO
listing (12.9), 485

alpha tests, 281

ambient lighting, 269

ptg

angles, Euler, 169-170

anisotropic filtering, textures, 221-223

antialiasing, blending, 117-121

APIs (application program interfaces),
44-45

data types, 45-46

GL Tools, 44

GLEW library, 44

GLUT

drawing triangles, 65-67

library, 43, 58-59

special keys, 74

Apple handheld platforms, OpenGL ES,
iPhone projects, 640-652

applications

Cocoa-based applications, creating,
571-585

geometry shaders, using in, 422-426

iPhone projects

moving to iPhone, 644-652

setting up, 640-644

applying

modelview matrices, 144-145

textures, 196-207

ARB (Architecture Review Board), 35

arrays

instanced arrays, 498

texture arrays, 314

accessing, 317-318

indexing, 316

loading 2D texture arrays, 314-316

uniforms, shaders, 251

ASCII art, 10

asterisks (*), artistic patterns, 10

Attaching a Depth Buffer to Our
Framebuffer Object listing (16.3), 649

attribute declarations, GLSL, 237

attributes

GLShadeManager, 87

pixel formats, 550-553

shaders, 83

AUX library, 43

B
back face culling, 102-104

Basic Conditional Rendering Example
listing (12.5), 479

batch containers, GBatch, 100-101

binding, GLSL, 240-241, 244-248

binding points, buffer objects, 324

Bishop, Lars, 630

bitmaps, 180-181

blending, 17-18, 113-114

antialiasing, 117-121

equations, 116-117

factors, 114-116

fragments, 402-405

multisampling, 121-123

Blur Fragment Shader listing (9.6), 376

buffer mappings, FBOs (framebuffer
objects), 340-342

buffers, 323-324, 359

binding points, 324

color buffers, 73

copying, 361

creating, 324-335

depth buffers, adding, 649

double buffering, 567-568

FBOs (framebuffer objects), 323, 336

buffer mappings, 340-342

completeness, 342-344

copying data in, 345-346

creating, 336-337

angles, Euler940

ptg

destroying, 337

drawing buffers, 339-351

RBOs (renderbuffer objects), 337-339

rendering to textures, 351-358

shader output, 339

filling, 325-326

floating-point formats, 364-379

fragments, mapping output, 361-364

integers, 385-386

mapping, 360-361

multisampling, 380-385

OpenGL EGL, 636-637

organizing VAOs (vertex array objects),
490-492

PBOs (pixel buffer objects), 326-334

pixel buffers, 73

pixel data, reading, 328-329

sRGB (Super-RGB), 386

TBOs (texture buffer objects), 334-335

textures, compression, 387-388

usage models, 325

vertex data, storing, 484-488

vertex indices, storing in, 489-490

built-in functions, shaders, 255, 458-459

common functions, 259

exponential functions, 256

geometric functions, 257

matrix functions, 257

trigonometry functions, 256

vector rational functions, 258

C
C++, iPhone applications, 643

CAD (computer-aided design), 20

Calculate Subpixel Distances listing
(9.8), 382

How can we make this index more useful? Email us at indexes@samspublishing.com

camera angles, Euler angles, 169-170

cameras, managing, 170-173

Cartesian coordinate system, 24-28

matrices, 130-132

vectors, 127-130

cathode ray tubes (CRTs), 10

cell shading, 284-287

centroid sampling, edge detection,
456-457

CGL (Core Open GL)

OS X, 593-595

sync frame rate, 593-594

clamp function, 459

clipping, coordinates, 25-26

Cocoa, 570-585

creating programs, 571-585

full-screen rendering, 586-592

pixel format attributes, 587

versus GLEW, 584-585

Cocoa-Based SphereWorld listing (14.2),
582-584

code listings

2.1 (Simply Draw a Triangle), 62-64

2.2 (Handling the Arrow Keys), 74-75

2.3 (Rendering Function for the
Animated Bounce Example
Program), 76

3.1 (Function to Draw a Primitive
Batch), 110-111

3.2 (Scissor Box to Render a Series of
Rectangles), 112

3.3 (Switching Between Antialiased and
Normal Rendering), 120-121

4.1 (Code to Translate Then Rotate the
Square On the Screen), 144-145

4.2 (Matrix Operations for the
ModelviewProjection), 156-157

code listings 941

ptg

4.3 (Initial SphereWorld
Transformations), 162-164

4.4 (Adding a Sphere to SphereWorld2),
166-167

4.5 (Code to Derive a 4 x 4 Matrix from
a Frame), 168-169

4.6 (Adding a Camera to SphereWorld2),
171-173

5.1 (gltWriteTGA Function to Save the
Screen as a Targa File), 186

5.2 (Function to Load Targa Files for Use
in OpenGL), 189-192

5.3 (Complete Texture Loading
Function), 204-205

5.4 (Source Code for the Tunnel Sample
Program), 211-220

6.1 (ShadedIdentity Shader Vertex
Program), 236

6.2 (ShadedIdentity Shader Fragment
Program), 236

6.4 (Flat Shader Vertex Program), 252

6.5 (Flat Shader Fragment Program), 253

6.6 (Making Use of the New Flat
Shader), 254

6.7 (Diffuse Light Vertex Shader),
264-266

6.8 (Setup and Rendering Code from the
DiffuseLight Example), 267-268

6.9 (ADSGouraud Shader Vertex
Program), 271-272

6.10 (ADSPhong Vertex Shader), 274-275

6.11 (ADSPhone Fragment Shader),
275-276

6.12 (TexturedTriangle Vertex
Program), 278

6.13 (TexturedTriangle Fragment
Program), 278-279

6.14 (ADSTexture Fragment
Program), 280

6.15 (Dissolve Fragment Shader),
282-283

6.16 (Toon Vertex Shader), 286

7.1 (Loading a Rectangle Texture), 290

7.2 (Fragment Shader for the
TextureRect), 293

7.3 (Cube Mapped Vertex Shader), 297

7.4 (Cube Mapped Fragment
Shader), 298

7.5 (Reflection Vertex Shader), 299

7.6 (Reflection Shader with Multitexture
Support), 304

7.7 (Texturing a Point Sprite in the
Fragment Shader), 306

7.8 (Vertex Shader for the Star Field
Effect), 308

7.9 (Naïve Rotated Point Sprite
Fragment Shader), 312

7.10 (Rotated Point Sprite Vertex
Shader), 313

7.11 (Rotated Point Sprite Fragment
Shader), 314

7.12 (Vertex Shader for the TextureArray
Sample), 317

7.13 (Fragment Shader for the
TextureArray Sample), 317

8.1 (Set Up PBO and Textures for
pix_buffs), 329-330

8.2 (Scene Is Rendered, Copy the Result
to the Most Recent Texture), 330

8.3 (Fragment Shader—blur.fs), 332

8.4 (Fragment Shader for fbo_
drawbuffers—multibuffer.fs), 339

8.5 (Creating and Setting Up an FBO
with Four Attachments), 346

8.6 (Set Up OpenGL State for the
Program), 349

8.7 (Perform Rendering to FBO, Copy to
Screen), 350

code listings942

ptg

8.8 (Set Up an FBO with Texture
Attachments), 352

8.9 (Drawing from the Mirror’s
Perspective), 355

8.10 (Drawing the Rest of the Scene,
Including the Mirror), 357

9.1 (Fragment Shader for
fbo_drawbuffers), 362

9.2 (Rendering HDR Content to an FBO),
369-371

9.3 (hdr_exposure.fs Fragment Shader
for HDR to LDR Conversion), 371

9.4 (hdr_adaptive Fragment Shader for
Adaptive Exposure Levels), 372

9.5 (tex_replace Fragment Shader), 375

9.6 (Blur Fragment Shader), 376

9.7 (hdr_exposure Fragment
Shader), 377

9.8 (Calculate Subpixel Distances), 382

9.9 (Perform MSAA Resolve and Tone
Map Operations), 383

10.1 (Setting Up Sample Mask
State), 395

10.2 (Resolving Multiple Layers by
Depth), 396-398

10.3 (Example Stencil Buffer Usage,
Stencil Border Decorations), 401

10.4 (Example Stencil Buffer Usage,
Stencil Border Decorations), 405

11.1 (Spring Mass System Vertex Shader),
415-417

11.2 (Source Code for a Simple
Geometry Shader), 420

11.3 (Geometry Shader Layout
Qualifiers), 421

11.4 (Iterating over the Elements of
gl_in[]), 421

11.5 (Definition of gl_in[]), 423

How can we make this index more useful? Email us at indexes@samspublishing.com

11.6 (Configuring the Custom Culling
Geometry Shader), 426

11.7 (Finding a Face Normal in a
Geometry Shader), 427

11.8 (Conditionally Emitting Geometry
in a Geometry Shader), 427

11.9 (Setting Up the “Explode”
Geometry Shader), 429

11.10 (Pushing a Face Out along Its
Normal), 430

11.11 (Simple Pass-Through Vertex
Shader), 431

11.12 (Setting Up the “Tessellator”
Geometry Shader), 431

11.13 (Setting Up the “Tessellator”
Geometry Shader), 432

11.14 (Emitting the Tessellated
Vertices), 433

11.15 (Tessellating Using a Triangle
Strip), 433

11.16 (Pass-Through Vertex Shader That
Includes Normals), 435

11.17 (Setting Up the “Normal
Visualizer” Geometry Shader), 435

11.18 (Producing Lines from Normals in
the Geometry Shader), 436

11.19 (Drawing a Face Normal in the
Geometry Shader), 437

11.20 (Full-Screen Quad Pass-Through
Vertex Shader), 441

11.21 (Full-Screen Quad Geometry), 442

11.22 (Setting Up the Color Correction
Fragment Shader), 443

11.23 (Main Body of the Color
Correction Fragment Shader), 443

11.24 (Inputs to the Convolution
Fragment Shader), 445

11.25 (Separable Convolution Fragment
Shader), 445

code listings 943

ptg

11.26 (Setting Up the Julia Set
Renderer), 449

11.27 (Inner Loop of the Julia
Renderer), 450

11.28 (Using a Gradient Texture to Color
the Julia Set), 451

11.29 (Simple Alpha-Testing Fragment
Shader), 452

11.30 (Modifying the Julia Renderer
with the discard Keyword), 453

11.31 (Example Uniform Block
Declaration), 460

11.32 (Retrieving the Indices of Uniform
Block Members), 462

11.33 (Retrieving the Information about
Uniform Block Members), 462

11.34 (Setting a Single float in a
Uniform Block), 464

11.35 (Retrieving the Indices of Uniform
Block Members), 464

11.36 (Specifying the Data for an Array
in a Uniform Block), 464

11.37 (Setting Up a Matrix in a Uniform
Block), 465

11.38 (Retrieving the Indices of Uniform
Block Members), 466

11.39 (Example Uniform Block with
Offsets), 467

11.40 (Specifying Bindings for Uniform
Blocks), 469

12.1 (Getting the Result from a Query
Object), 475

12.2 (Figuring Out If Occlusion Query
Results Are Ready), 476

12.3 (Simple, Application Side
Conditional Rendering), 476

12.4 (Rendering When Query Results
Aren’t Available), 477

12.5 (Basic Conditional Rendering
Example), 479

12.6 (More Complete Conditional
Rendering Example), 480

12.7 (Timing Operations Using Timer
Queries), 481

12.8 (Timing Operations Using
glQueryCounter), 482

12.9 (Allocating and Initializing a Single
VBO), 485

12.10 (Using a Single VBO to Hold
Multiple Vertex Attributes), 486

12.11 (Using a Single VBO to Hold
Interleaved Attributes), 487

12.12 (Simple Example of
glMultiDrawArrays), 493

12.13 (Drawing the Same Geometry
Many Times), 496

12.14 (Pseudo-code Illustrating the
Behavior of glDrawArraysInstanced),
498

12.15 (Pseudo-code Illustrating the
Behavior of glDrawElementsInstanced),
498

12.16 (Simple Vertex Shader with Per-
Vertex Color), 503

12.17 (Simple Instanced Vertex
Shader), 505

12.18 (Setting Up Instanced
Attributes), 506

12.19 (Getting Ready for Instanced
Rendering), 506

12.20 (Drawing Data Written to a
Transform Feedback Buffer), 517

12.21 (Initializing Data Structures for
the Flocking Example), 521

12.22 (Initializing Attributes and
Transform Feedback for the Flocking
Example), 523

code listings944

ptg

12.23 (Rendering Loop for the Flocking
Example), 523

12.24 (Initializing Attributes and
Transform Feedback for the Flocking
Example), 524

12.25 (Main Body of the Flocking
Update Vertex Shader), 525

12.27 (Second Rule of Flocking), 526

12.28 (Declarations of Inputs to the
Flocking Rendering Vertex Shader), 527

12.29 (Flocking Vertex Shader
Body), 527

12.30 (Working While Waiting for a
Sync Object), 534

13.1 (Finding a Pixel Format to Match
Your Needs), 550

13.2 (WinMain Function of the
GLRECT), 560-564

13.3 (Setting Up a Full-Screen Window),
566

14.1 (Skeleton OpenGL View Class),
578-579

14.2 (Cocoa-Based SphereWorld),
582-584

14.3 (Creating and Managing Our Full-
Screen Window), 588-590

16.1 (Our Newly Slimmed-Down Render
Method), 646

16.2 (Modified Main Function), 648

16.3 (Attaching a Depth Buffer to Our
Framebuffer Object), 649

16.4 (Rotating Our Point of View), 650

16.5 (Using the Touch Messages for
Camera Movement), 651

code paths, including, 50-51

Code to Derive a 4 x 4 Matrix from a
Frame listing (4.5), 168-169

Code to Translate Then Rotate the Square
On the Screen listing (4.1), 144-145

How can we make this index more useful? Email us at indexes@samspublishing.com

color buffers, 73

masking, 408

textures, 193

color correction, fragment shaders,
442-444

coloring, OpenGL ES, 622

colors, blending, 114-116

Column-Major matrix ordering, 132

common functions, shaders, 259

compiling GLSL, 240-248

Complete Texture Loading Function listing
(5.3), 204-205

compression

RGTC (Red-Green Texture
Compression), 387

textures, 223-227, 387-388

computer graphics, origins, 9-13

computer-aided design (CAD), 20

conditional rendering, 478-480

Conditionally Emitting Geometry in a
Geometry Shader listing (11.8), 427

cones, creating, 148-149

config attribute list (GLX), 604-605

configuration

Custom Culling Geometry shader, 426

GLEW, Linux, 600-601

GLUT, Linux, 600-601

hardware drivers, 600

Mesa, 599-600

Configuring the Custom Culling Geometry
Shader listing (11.6), 426

conformance, OpenGL, 38

contexts

devices, 564

management

GLX, 609-612

OpenGL EGL, 636

contexts 945

ptg

rendering, 548

initializing, 565

shutting down, 565

Windows, 556-559

convolution, fragment shaders, 444-448

coordinate systems, 24. See also
coordinates

Cartesian coordinate system, 24-28

drawing triangles, 67-70

vertices, 72

geometric transformations, 132

eye coordinates, 132-133

modeling, 134-135

modelview matrices, 135-145

projection matrices, 150-158

projection transformations, 136-137

viewing, 133

viewpoint transformations, 137

matrices, 130-132

vectors, 127-130

setting up, 84-86

coordinates. See also coordinate systems

clipping, 25-26

drawing coordinates, mapping to win-
dow coordinates, 26-27

multitextures, 301-302

projections, 28-29

orthographic projections, 29, 85

perspective projections, 30, 85-86

textures, 196-198

specifying, 205-207

vertices, 27

window coordinates, scissoring, 392

copying buffers, 361

counting vertices, primitive queries,
515-516

Creating and Managing Our Full-Screen
Window listing (14.3), 588-590

Creating and Setting Up an FBO with Four
Attachments listing (8.5), 346

cross function, 459

cross product, vectors, 129-130

CRTs (cathode ray tubes), 10

Cube Mapped Fragment Shader listing
(7.4), 298

Cube Mapped Vertex Shader listing
(7.3), 297

cube maps, 294-295

creating skyboxes, 297-298

loading, 295-296

reflections, 299-300

cylinders, creating, 148-149

D
data projection, 132

data types, 45-46

GLSL, 231

matrix types, 233-234

vector types, 231-233

shaders, scalar and vector data types,
250-251

decaling, 108

Declarations of Inputs to the Flocking
Rendering Vertex Shader listing
(12.28), 527

default light shader, 88

Definition of gl_in[] listing (11.5), 423

depth of fragment shaders, controlling,
453

depth buffers

adding, 649

masking, 408

contexts946

ptg

depth testing, 104-106

fragments, 402

devices, contexts, 564

Diffuse Light shader, 264-269

Diffuse Light Vertex Shader listing (6.7),
264-266

diffuse lighting, 262, 270

Diffuse Light shader, 264-269

surface normals, 262-263

vertex lighting, 263-264

Direct3D, compared with OpenGL, 38-40

disks, creating, 150

display configs, OpenGL EGL, 632-635

displays

OpenGL EGL, 631-632

refreshing, GLUT, 75

X Windows, 603

Dissolve Fragment Shader listing (6.15),
282-283

distance function, 459

dithering, fragments, 406-407

dot function, 459

dot product, vectors, 129

double buffering, 567-568

draw modes, geometry shaders, allow-
ing, 422

drawing

points, 89

synchronizing, 532-537

triangles, 61-62, 101-108

coordinate system, 67-72

GLUT, 65-67

headers, 64-65

rendering, 73

RGB color space, 71

shaders, 72

How can we make this index more useful? Email us at indexes@samspublishing.com

Drawing a Face Normal in the Geometry
Shader listing (11.19), 437

drawing coordinates, mapping to window
coordinates, 26-27

Drawing Data Written to a Transform
Feedback Buffer listing (12.20), 517

Drawing from the Mirror’s Perspective
listing (8.9), 355

drawing functions, combining, 492-494

Drawing the Rest of the Scene, Including
the Mirror listing (8.10), 357

Drawing the Same Geometry Many Times
listing (12.13), 496

drivers

ICDs (Installable Client Drivers),
542-543

setting up, 600

E
edge detection, centroid sampling,

456-457

EGL (OpenGL), 630

buffers, 636-637

context management, 636

creating windows, 632-636

display configs, 632-635

displays, 631-632

errors, 637

extending, 638

strings, 638

Emitting the Tessellated Vertices
listing (11.14), 433

EmitVertex() function, 425

EndPrimitive() function, 425

enumerating pixel formats, 554-555

equations, blending, 116-117

Ericsson compressed texture format,
OpenGL ES, 626

Ericsson compressed texture format, OpenGL ES 947

ptg

error codes, 46

error flags, 46

errors, 46-47

error codes, 46

flags, 46

OpenGL EGL, 637

Essential Mathematics for Games and
Interactive Applications, 630

Euler angles, 169-170

Example Stencil Buffer Usage, Stencil
Border Decorations listing (10.3), 401

Example Stencil Buffer Usage, Stencil
Border Decorations listing (10.4), 405

Example Uniform Block Declaration
listing (11.31), 460

Example Uniform Block with Offsets
listing (11.39), 467

exponential functions, shaders, 256

extensions, 544-545

code paths, 37

GLEW (GL Extension Wrangler)
library, 546

mechanism, 36-37

prefixes, 37

WGL extensions, 545-547

eye coordinates, 132-133

F
face culling, 102-104

factors, blending, 114-116

fans, triangles, 99

FBOs (framebuffer objects), 323, 336, 442

buffer mappings, 340-342

completeness, 342-344

copying data in, 345-346

creating, 336-337

destroying, 337

drawing buffers, 339-351

RBOs (renderbuffer objects), 337-338

attaching, 338

sizing, 339

rendering to textures, 351-358

shader output, 339

Figuring Out If Occlusion Query Results Are
Ready listing (12.2), 476

fill limited renderings, 104

filling buffers, 325-326

filtering

mipmaps, 209-210

textures, 199-201

anisotropic filtering, 221-223

Finding a Face Normal in a Geometry
Shader listing (11.7), 427

Finding a Pixel Format to Match Your
Needs listing (13.1), 550

fixed-point math, OpenGL ES, 629-630

flags, errors, 46

Flat Shader Fragment Program listing
(6.5), 253

Flat Shader Vertex Program listing (6.4),
252

flat shaders, 88, 252-255

FlatShader program, 252-255

floatBitsToInt function, 459

floating-point formats, 364-379

floating-point textures, OpenGL ES, 626

flocking, transform feedback, 519-527

Flocking Vertex Shader Body listing
(12.29), 527

formats

floating-point formats, 364-379

packed pixels, 185-186

error codes948

ptg

pixels, 548-550, 553-556

attributes, 550, 553

enumerating, 554-555

locating, 553-554

selecting, 556

setting, 556

fragment operations, OpenGL ES, 625

Fragment Shader for fbo_drawbuffers
listing (9.1), 362

Fragment Shader for fbo_drawbuffers—
multibuffer.fs listing (8.4), 339

Fragment Shader for the TextureArray
Sample listing (7.13), 317

Fragment Shader for the TextureRect
listing (7.2), 293

fragment shaders, 441-442

color correction, 442-444

controlling depth, 453

convolution, 444-448

cube mapped, 298

discarding, 281-284

discarding work in, 451-453

image data, generating, 448-451

rotated point sprite, 312-314

texture arrays, 317-318

texturing point sprites, 306

Fragment Shader—blur.fs listing (8.3), 332

fragments

blending, 402-405

depth testing, 402

dithering, 406-407

logic operations, 407

mapping outputs, 361-364

masking output, 408-409

multisampling, 380-385, 392-399

scissoring, 392

stencil operations, 399-401

How can we make this index more useful? Email us at indexes@samspublishing.com

framebuffer objects (FBOs). See FBOs
(framebuffer objects)

framebuffers, OpenGL ES, 625

frames, actor, 168-169

front face culling, 102-104

Full-Screen Quad Geometry listing
(11.21), 442

Full-Screen Quad Pass-Through Vertex
Shader listing (11.20), 441

full-screen quad pass-through vertex
shaders, 441

full-screen rendering, 565

OS X, 585-592

Function to Draw a Primitive Batch listing
(3.1), 110-111

Function to Load Targa Files for Use in
OpenGL listing (5.2), 189-192

functions

built-in functions, shaders, 255-259

clamp, 459

cross, 459

distance, 459

dot, 459

drawing functions, combining, 492-494

EmitVertex(), 425

EndPrimitive(), 425

floatBitsToInt, 459

intBitsToFloat, 459

length, 459

lessThan, 459

lessThanEqual, 459

normalize, 459

notEqual, 459

outerProduct, 459

reflect, 459

refract, 459

functions 949

ptg

shaders, built-in functions, 458-459

smoothstep, 459

step, 459

G
GBatch class, 100-101

GDI (Graphics Device Interface), 547-548

geometric functions, shaders, 257

geometric transformations, 132

adding together, 143

affine transformations, 161

eye coordinates, 132-133

modeling, 134-135

modelview matrices, 135-138

applying, 144-145

constructing, 138-140

identity matrix, 140

rotations, 141-142

scaling, 142-143

translations, 141

pipeline, 159

managing, 161-167

matrix stacks, 159-161

popping, 160

pushing, 160

projection matrices, 150

ModelviewProjection matrix, 155-158

orthographic projections, 151-153

perspective projections, 153-155

projection transformations, 136-137

viewing, 133

viewpoint transformations, 137

geometry

combining, primitive restart, 494-496

geometry shaders

discarding in, 426-428

generating, 430-434

modifying, 429-430

geometry management, 471

clipping, 528-532

determining drawings, 528-532

efficient drawing, 492-508

GPU memory, storing data in, 483-490

organizing buffers, VAOs (vertex array
objects), 490-492

pipeline, queries, 472-483

storing transformed vertices, 508-527

synchronizing drawing, 532-537

Geometry Shader Layout Qualifiers
listing (11.3), 421

geometry shaders, 419-420

allowing draw modes, 422

discarding geometry, 426-428

generating geometry, 430-434

input arrays, sizes, 424

layout qualifiers, 421

modifying geometry, 429-430

normal visualizer geometry shader,
435-436

pass-through geometry shaders, 420-422

primitive types

changing, 434-437

new, 438-441

tessellator geometry shaders, 431-432

using in applications, 422-426

Getting Ready for Instanced Rendering
listing (12.19), 506

Getting the Result from a Query Object
listing (12.1), 475

GL Tools, 44

functions950

ptg

GL utility toolkit (GLUT). See GLUT
(OpenGL utility toolkit)

GLEW (GL Extension Wrangler) library,
44, 546

setting up, 600-601

versus Cocoa, 584-585

glGetActiveUniformsiv uniform parameter
queries, 463

glHint, 47-48

glPolygonMode, 106-108

GLShadeManager, 86

attributes, 87

uniforms, 87-89

GLSL (OpenGL Shading Language),
230-231

attribute declarations, 237

binding, 240-241, 244-248

built-in functions, 255

common functions, 259

exponential functions, 256

geometric functions, 257

matrix functions, 257

trigonometry functions, 256

vector rational functions, 258

compiling, 240-241, 244-248

data types, 231

matrix types, 233-234

vector types, 231-233

declaring output, 238

lighting

ambient lighting, 269

diffuse lighting, 262-270

simulating, 262-276

specular lighting, 270-271

linking, 240-241, 244-248

Phong shading, 273-276

provoking vertex, 248-249

How can we make this index more useful? Email us at indexes@samspublishing.com

ShadedIdentity Shader program,
236-240

storage qualifiers, 234-235

textures, accessing, 277-287

variables, 231, 234

versions, 237

GLTools, iPhone applications, 643-644

GLTriangleBatch, 146

gltWriteTGA Function to Save the Screen
as a Targa File listing (5.1), 186

GLUT (OpenGL utility toolkit) library, 43,
58-59, 77

drawing triangles, 65-67

iPhone projects

moving to iPhone, 644-652

setting up, 640-644

refreshing display, 75

setting up, 600-601

special keys, 74

GLX (OpenGL Extension to the X Window
System)

config attribute list, 604-605

context management, 609-612

queries, 613

strings, 608

synchronization, 612-613

X Windows, 602-616

GL_LINES_ADJACENCY primitive type, 438

GL_LINE_STRIP_ADJACENCY primitive type,
438

GL_TRIANGLES_ADJACENCY primitive
type, 439

GL_TRIANGLE_STRIP_ADJACENCY primitive
type, 440-441

GPU memory, storing data in, 483-490

GPUs (graphics processing units), 22

GPUs (graphics processing units) 951

ptg

graphics

3D graphics, origins, 11-13

bitmaps, 180

image data, 180-181

packed pixels, 185-186

pixel packing, 181-182

pixmaps, 183-185

reading pixels, 188-192

saving pixels, 186

origins, 9-13

pixels, 89

textures

anisotropic filtering, 221-223

applying, 196-207

compressing, 223-227

coordinates, 196-198, 205-207

loading, 192-196, 203-207

mipmapping, 207-213, 219-220

parameters, 199-202

three-dimensional graphics, 14

blending, 17-18

hidden surface removal, 14-15

mathematics, 126-132

non-real-time three-dimensional
graphics, 22

projections, 14

rasterization, 14-15

real-time three-dimensional graphics,
18-22

rendering, 14

shaders, 22-23

shading, 16

texture mapping, 16-17

transformations, 14

wireframe rendering, 15

Graphics Device Interface (GDI), 547-548

graphics processing units (GPUs), 22

H
half-float vertex format, OpenGL ES, 625

Handling the Arrow Keys listing (2.2),
74-75

hardware drivers, setting up, 600

HDR rendering, floating-point buffers, 366,
369-371

hdr_adaptive Fragment Shader for
Adaptive Exposure Levels listing
(9.4), 372

hdr_exposure Fragment Shader listing
(9.7), 377

hdr_exposure.fs Fragment Shader for HDR
to LDR Conversion listing (9.3), 371

hidden surface removal, 101-102

depth testing, 104-106

face culling, 102-104

polygon modes, 106-108

three-dimensional graphics, 14-15

I–J
ICDs (Installable Client Drivers), 542-543

identity matrix, 140

identity shader, 88

image data, 180-181

fragment shaders, generating, 448-451

packed pixels, formats, 185-186

pixel packing, 181-182

pixmaps, 183-185

reading pixels, 188-189, 192

saving pixels, 186

indexing texture arrays, 316

Initial SphereWorld Transformations
listing (4.3), 162-164

Initializing Attributes and Transform
Feedback for the Flocking Example listing
(12.22), 523

graphics952

ptg

Initializing Attributes and Transform
Feedback for the Flocking Example listing
(12.24), 524

Initializing Data Structures for the Flocking
Example listing (12.21), 521

Inner Loop of the Julia Renderer listing
(11.27), 450

input arrays for geometry shaders,
sizes, 424

Inputs to the Convolution Fragment
Shader listing (11.24), 445

Installable Client Drivers (ICDs), 542-543

instanced arrays, 498

instanced rendering, 496-503

intBitsToFloat function, 459

integers, 385-386

Integrated Raster Imaging System Graphics
Language (IRIS GL), 598

interpolation, shaders, 454-457

without perspective correction, 457-458

inverse, 459

IRIS GL (Integrated Raster Imaging System
Graphics Language), 34, 598

Iterating over the Elements of gl_in[]
listing (11.4), 421

iterative algorithms, transform feedback,
518-519

K–L
Khronos Group

ARB (Architecture Review Board), 38

OpenGL ES, 621

Kilgard, Mark, 43

layout qualifiers, geometry shaders, 421

length function, 459

lessThan function, 459

How can we make this index more useful? Email us at indexes@samspublishing.com

lessThanEqual function, 459

levels, mipmaps, generating, 210

libraries

GL Tools, 44

GLEW, 44

GLUT, 43, 58-59

licensing, OpenGL, 38

light shader, 88

lighting

ambient lighting, 269

diffuse lighting, 262, 270

Diffuse Light shader, 264-269

surface normals, 262-263

vertex lighting, 263-264

scenes, 175-176

simulating, shaders, 262-276

specular lighting, 270-271

texels, 279-280

line loops, 94

line strips, 93

linear algebra, 126

three-dimensional graphics, 126-132

lines, 90

line loops, 94

line strips, 93

rendering, 92-94

linking, GLSL, 240-241, 244-248

Linux, 597-599

GLEW, setting up, 600-601

GLUT

building applications, 601-602

setting up, 600-601

hardware drivers, setting up, 600

Mesa, setting up, 599-600

X Windows, 602-616

context management, 609-612

Linux 953

ptg

listings. See code listings

loading

cube maps, 295-296

rectangle textures, 290

textures, 192-196, 203-207

compressed textures, 225-226

two-dimensional texture arrays, 314-316

Loading a Rectangle Texture listing
(7.1), 290

logic operations

fragments, 407

masking output, 408-409

lops, lines, 94

Lunar Lander, 10

M
Mac OS X, 569-570, 595

CGL, 593-595

Cocoa, 570-585

full-screen rendering, 585-592

projects, setting up, 55-61

Main Body of the Color Correction
Fragment Shader listing (11.23), 443

Main Body of the Flocking Update Vertex
Shader listing (12.25), 525

Making Use of the New Flat Shader
listing (6.6), 254

managing transformations, 161-167

mapping

buffers, 360-361, 626

drawing coordinates to window coordi-
nates, 26-27

fragment outputs, 361-364

texture mapping, 16-17

masking

color buffers, 408

depth buffers, 408

stencil buffers, 408

usage buffers, 409

Math3d, 126

mathematics, three-dimensional graphics,
126-132

matrices, 126, 130-132

Column-Major matrix ordering, 132

modelview matrices, 135-138

applying, 144-145

constructing, 138-140

identity matrix, 140

rotations, 141-142

scaling, 142-143

translations, 141

normal matrices, 176

projection matrices, 14, 150

ModelviewProjection matrix, 155-158

orthographic projections, 151-153

perspective projections, 153-155

transformation matrices, 14

uniforms, shaders, 252

vectors, 127-128

cross product, 129-130

dot product, 129

matrix data types (GLSL), 233-234

matrix functions, shaders, 257

Matrix Operations for the
ModelviewProjection listing (4.2),
156-157

matrix stacks, transformations, 159-161

matrixCompMult, 459

measuring three-dimensional objects, 11

Mesa, setting up, 599-600

Microsoft Windows. See Windows

mipmapping textures, 207-213, 219-220

filtering, 209-210

generating levels, 210

listings. See code listings954

ptg

mobile devices

OpenGL EGL

buffers, 636

context management, 636

creating windows, 632-636

OpenGL ES

buffers, 637

coloring, 622

creating windows, 633

Ericsson compressed texture
format, 626

errors, 637

floating-point textures, 626

fragment operations, 625

framebuffers, 625

half-float vertex format, 625

home gaming, 639

iPhone projects, 640-652

mapping buffers, 626

operating systems, 638

rasterization, 624

shaders, 623-624

state, 625

strings, 638

texturing, 625

three-dimensional textures, 626

unsigned integer element indices, 626

vendor-specific extensions, 639

vertex processing, 622

modeling transformations, 134-135

modelview matrices, transformations,
135-138

applying, 144-145

constructing, 138-140

identity matrix, 140

rotations, 141-142

How can we make this index more useful? Email us at indexes@samspublishing.com

scaling, 142-143

translations, 141

ModelviewProjection matrix, 155-158

Modified Main Function listing (16.2), 648

Modifying the Julia Renderer with the dis-
card Keyword listing (11.30), 453

More Complete Conditional Rendering
Example listing (12.6), 480

Move program example, 74-76

multisampling

blending, 121-123

fragments, 380-385

pixel pipeline, 392-399

multitextures, 301

coordinates, 301-302

example, 302-304

N
Naïve Rotated Point Sprite Fragment

Shader listing (7.9), 312

non-real-time three-dimensional
graphics, 22

nonstock shaders, 229

built-in functions, 255

common functions, 259

exponential functions, 256

geometric functions, 257

matrix functions, 257

trigonometry functions, 256

vector rational functions, 258

fragment shaders, discarding, 281-284

GLSL (OpenGL Shading Language),
230-231

attribute declarations, 237

binding, 240-241, 244-248

compiling, 240-241, 244-248

nonstock shaders 955

ptg

data types, 231-234

declaring output, 238

linking, 240-241, 244-248

provoking vertex, 248-249

ShadedIdentity Shader program,
236-240

storage qualifiers, 234-235

variables, 231, 234

versions, 237

lighting

ambient lighting, 269

diffuse lighting, 262-270

simulating, 262-276

specular lighting, 270-271

Phong shading, 273-276

textures, accessing, 277-287

uniforms, 249

FlatShader program, 252-255

locating, 249-250

scalar data type, 250-251

setting arrays, 251

setting matrices, 252

vector data type, 250-251

normal matrix, 176

normal visualizer geometry shader,
435-436

normalize function, 459

normals, pass-through vertex shaders, 435

notEqual function, 459

O
objects

FBOs (Frame Buffer Objects), 442

measuring, 11

sync objects, 533

TBOs (texture buffer objects), 412

textures, 195-196

three-dimensional objects, perspec-
tive, 13

UBOs (uniform buffer objects), 460-469

VAOs (vertex array objects), organizing
buffers, 490-492

VBOs (vertex buffer objects), 412,
417, 484

offset, polygons, 108-111

OpenEXR, floating-point buffers, 367-368

OpenGL, 9, 33-34, 42

APIs, 44-45

data types, 45-46

GL Tools, 44

GLEW library, 44

GLUT library, 43, 58-59

ARB (Architecture Review Board), 35

AUX library, 43

benefits, 23

conformance, 38

Direct3D, compared, 38-40

errors, 46-47

evolution of, 34

extensions, 544-545

code paths, 37

mechanism, 36-37

prefixes, 37

WGL extensions, 545-547

functionality, 40-41

future of, 38

glHint, 47-48

licensing, 38

Linux, 597-599

building applications, 601-602

GLEW, 600-601

GLUT, 600-601

nonstock shaders956

ptg

hardware drivers, 600

Mesa, 599-600

X Windows, 602-616

multithreaded OpenGL, 595

state machine, 48-49

versions, 41

identifying, 47

OpenGL EGL, 630

buffers, 636-637

context management, 636

creating windows, 632-636

display configs, 632-635

displays, 631-632

errors, 637

extending, 638

strings, 638

OpenGL ES, 619-620, 638

application design considerations,
627-628

coloring, 622

displays, 631

environment, 627-630

fixed-point math, 629-630

fragment operations, 625

framebuffers, 625

half-float vertex format, 625

home gaming, 639

iPhone projects

moving to iPhone, 644-652

setting up, 640-644

Khronos Group, 621

mapping buffers, 626

operating systems, 638

origins, 620-621

rasterization, 624

How can we make this index more useful? Email us at indexes@samspublishing.com

shaders, 623-624

state, 625

texturing

Ericsson compressed texture
format, 626

half-float vertex format, 626

three-dimensional textures, 626

texturizing, 625

unsigned integer element indices, 626

vendor-specific extensions, 639

versions

choosing, 622-626

development, 621

vertex processing, 622

operating systems, OpenGL ES, 638

operations

logic operations, fragments, 407

per-pixel operations, 392

stencil operations, 399-401

orthographic projections, 29, 85, 151-153

OS X. See Mac OS X

Our Newly Slimmed-Down Render Method
listing (16.1), 646

outerProduct function, 459

outs, shaders, 84

P
packed pixels, formats, 185-186

parameters

point sprites, 310-311

textures, 199-202

pass-through geometry shaders, 420-422

Pass-Through Vertex Shader That Includes
Normals listing (11.16), 435

pass-through vertex shaders, 431

Pass-Through Vertex Shader That Includes Normals listing (11.16) 957

ptg

full-screen quad pass-through vertex
shaders, 441

normals, 435

paths, including, 50-51

PBOs (pixel buffer objects), 326-334

per-pixel operations, 392

Perform MSAA Resolve and Tone Map
Operations listing (9.9), 383

Perform Rendering to FBO, Copy to Screen
listing (8.7), 350

perspective correction, shaders, interpola-
tion, 457-458

perspective projections, 30, 85-86, 153-155

perspectives, three-dimensional objects, 13

Phong shading, 273-276

physical simulation, vertex shaders,
412-419

pipeline

client-server, 81

depth testing, 402

fragments

blending, 402-405

dithering, 406-407

logic operations, 407

masking output, 408-409

gathering information, queries, 472-483

multisampling, 392-399

primitives, 80-84

queries

issuing, 473-474

preparing, 472-473

retrieving results, 474

using results, 475-478

scissoring, 392

shaders, 82

attributes, 83

outs, 84

texture, 84

uniforms, 83

stencil operations, 399-401

transformations, 159

managing, 161-167

matrix stacks, 159-161

popping, 160

pushing, 160

pixel buffer objects (PBOs), 326-334

pixel buffers, 73

pixel data, buffers, reading, 328-329

pixel format attributes, Cocoa, 587

pixel packing, 181-182

pixel pipeline

depth testing, 402

fragments

blending, 402-405

dithering, 406-407

logic operations, 407

masking output, 408-409

multisampling, 392-399

scissoring, 392

stencil operations, 399-401

pixel shaders, fragments, mapping output,
361-364

pixels, 89

packed pixels, formats, 185-186

pixel packing, 181-182

pixmaps, 183-185

reading, 188-189, 192

saving, 186

Windows formats, 548-550, 553-556

pass-through vertex shaders958

ptg

attributes, 550, 553

enumerating, 554-555

locating, 553-554

selecting, 556

setting, 556

pixmaps, 183-185

point light diffuse shader, 264-269

point light shader, 88

point sprites, 304-305

parameters, 310-311

rotating, 312-314

shaped points, 311-312

sizes, 306-307

texturing, 305-314

points, 90

drawing, 89

rendering, 90-91

polygons, offset, 108-111

Pong, 10

post-processing fragment shaders

color correction, 442-444

convolution, 444-448

predication, 478

prefixes, extensions, 37

primitive queries

counting vertices, 515-516

using results, 516

primitive restart, combining geometry,
494-496

primitive types, geometry shaders

changing, 434-437

new, 438-441

primitives, 27, 80

lines, 90

rendering, 92-94

pipeline, 80-84

How can we make this index more useful? Email us at indexes@samspublishing.com

points, 90

rendering, 90-91

polygons, offset, 108-111

stock shaders, 86

attributes, 87

uniforms, 87-89

three-dimensional triangles, drawing, 94

triangles, 95-96

fans, 99

strips, 97-98

winding, 96-97

Producing Lines from Normals in the
Geometry Shader listing (11.18), 436

programs, creating Cocoa-based programs,
571-585

projection matrices, transformations, 150

ModelviewProjection matrix, 155-158

orthographic projections, 151-153

perspective projections, 153-155

projection matrix, 14

projection transformations, 136-137

projections, 28-29, 132

orthographic projections, 29

perspective projections, 30

three-dimensional graphics, 14

projects

Mac OS X projects, setting up, 55-61

Windows projects, setting up, 49-55

proxies, textures, 318-319

Pseudo-code Illustrating the Behavior
of glDrawArraysInstanced listing
(12.14), 498

Pseudo-code Illustrating the Behavior of
glDrawElementsInstanced listing
(12.15), 498

Pushing a Face Out Along Its Normal
listing (11.10), 430

Pushing a Face Out Along Its Normal listing (11.10) 959

ptg

Q–R
quaternions, 170

queries

GLX, 613

pipeline

gathering information, 472-483

issuing, 473-474

preparing, 472-473

retrieving results, 474

using results, 475-478

primitive queries

counting vertices, 515-516

using results, 516

rasterization

OpenGL ES, 624

three-dimensional graphics, 14-15

turning off, 514-515

RBOs (renderbuffer objects), 337-338

attaching, 338

drawing buffers, 341-351

sizing, 339

reading pixels, 188-189, 192

real-time three-dimensional graphics, 18-22

rectangle textures, 289-290

implementing, 291-294

loading, 290

rectangles, rendering a series of, 111-113

recursive algorithms, transform feedback,
518-519

Red-Green Texture Compression (RGTC),
387

reflect function, 459

Reflection Shader with Multitexture
Support listing (7.6), 304

Reflection Vertex Shader listing (7.5), 299

reflections, creating, 299-300

refract function, 459

refreshing displays, GLUT, 75

render surfaces, X Windows, 607-608

rendering

blending, 113-114

antialiasing, 117-121

equations, 116-117

factors, 114-116

multisampling, 121-123

conditional rendering, 478-480

context, 548

initializing, 565

shutting down, 565

coordinate systems, setting up, 84-86

cutting out renderings, 111-113

face culling, 102-104

FBOs (framebuffer objects), textures to,
351-358

fill limited renderings, 104

full-screen rendering, 565

OS X, 585-592

HDR rendering, floating-point buffers,
366, 369, 371

hidden surface removal

depth testing, 104-106

face culling, 102-104

polygon modes, 106-108

instanced rendering, 496-503

lines, 92-94

points, 90-91

rectangles, series of, 111-113

shaders, 82

attributes, 83

quaternions960

ptg

outs, 84

textures, 84

uniforms, 83

three-dimensional graphics, 14

three-dimensional triangles, 94

triangles, 73, 81, 101-108

Windows, 547-550, 553-559

context, 556-559

Rendering Function for the Animated
Bounce Example Program listing (2.3), 76

Rendering HDR Content to an FBO listing
(9.2), 369, 371

Rendering Loop for the Flocking Example
listing (12.23), 523

Rendering When Query Results Aren’t
Available listing (12.4), 477

Resolving Multiple Layers by Depth listing
(10.2), 396-398

Retrieving the Indices of Uniform Block
Members listing (11.32), 462

Retrieving the Indices of Uniform Block
Members listing (11.35), 464

Retrieving the Indices of Uniform Block
Members listing (11.38), 466

Retrieving the Information about Uniform
Block Members listing (11.33), 462

RGB color space, drawing triangles, 71

RGTC (Red-Green Texture Compression),
387

Rotated Point Sprite Fragment Shader
listing (7.11), 314

Rotated Point Sprite Vertex Shader listing
(7.10), 313

rotating point sprites, 312-314

Rotating Our Point of View listing (16.4),
650

rotations, modelview matrices, 141-142

How can we make this index more useful? Email us at indexes@samspublishing.com

S
saving pixels, 186

scalar data type, shaders, 250-251

scaling, modelview matrices, 142-143

Scene Is Rendered, Copy the Result to the
Most Recent Texture listing (8.2), 330

scenes, 167

actor frames, 168-169

adding actors, 173-174

camera management, 170-173

Euler angles, 169-170

lights, 175-176

Scissor Box to Render a Series of
Rectangles listing (3.2), 112

scissoring, 392

scissors, cutting out renderings, 111-113

Second Rule of Flocking listing (12.27), 526

Separable Convolution Fragment Shader
listing (11.25), 445

Set Up an FBO with Texture Attachments
listing (8.8), 352

Set Up OpenGL State for the Program
listing (8.6), 349

Set Up PBO and Textures for pix_buffs
listing (8.1), 329-330

Setting a Single float in a Uniform Block
listing (11.34), 464

setting pixel formats, 556

Setting Up a Full-Screen Window listing
(13.3), 566

Setting Up a Matrix in a Uniform Block
listing (11.37), 465

Setting Up Instanced Attributes listing
(12.18), 506

Setting Up Sample Mask State listing
(10.1), 395

Setting Up Sample Mask State listing (10.1) 961

ptg

Setting Up the “Explode” Geometry Shader
listing (11.9), 429

Setting Up the “Normal Visualizer”
Geometry Shader listing (11.17), 435

Setting Up the “Tessellator” Geometry
Shader listing (11.12), 431

Setting Up the “Tessellator” Geometry
Shader listing (11.13), 432

Setting Up the Color Correction Fragment
Shader listing (11.22), 443

Setting Up the Julia Set Renderer listing
(11.26), 449

Setup and Rendering Code from the
DiffuseLight Example listing (6.8),
267-268

SGI (Silicon Graphics), 598

shaded shader, 88

ShadedIdentity Shader Fragment Program
listing (6.2), 236

ShadedIdentity Shader program, 236-240

ShadedIdentity Shader Vertex Program
listing (6.1), 236

shaders, 16, 22-23, 82, 229, 411, 470

attributes, 83

built-in functions, 255, 458-459

common functions, 259

exponential functions, 256

geometric functions, 257

matrix functions, 257

trigonometry functions, 256

vector rational functions, 258

drawing triangles, 72

edge detection, centroid sampling,
456-457

fragment shaders, 442

color correction, 444

convolution, 445

cube mapped, 298

discarding, 281-284

rotated point sprite, 314

rotated point sprites, 312

texture arrays, 317-318

texturing point sprites, 306

geometry shaders

changing primitive type, 434

discarding geometry, 427-428

pass-through geometry shaders, 421

tessellator geometry shaders, 431-432

GLSL (OpenGL Shading Language),
230-231

attribute declarations, 237

binding, 240-241, 244-248

compiling, 240-241, 244-248

data types, 231-234

declaring output, 238

linking, 240-241, 244-248

provoking vertex, 248-249

ShadedIdentity Shader program,
236-240

storage qualifiers, 234-235

variables, 231, 234

versions, 237

interpolation, 454-457

without perspective correction,
457-458

lighting

ambient lighting, 269

diffuse lighting, 262-270

simulating, 262-276

specular lighting, 270-271

Setting Up the “Explode” Geometry Shader listing (11.9)962

ptg

OpenGL ES, 623-624

outs, 84

Phong shading, 273-276

pixel shaders, mapping fragment out-
puts, 361-364

stock shaders, 86

attributes, 87

default light shader, 88

flat shader, 88

identity shader, 88

point light shader, 88

shaded shader, 88

texture modulate shader, 89

texture replace shader, 89

textured point light shader, 89

uniforms, 87-89

storage qualifiers, 454-457

textures, 84

accessing, 277-287

UBOs (uniform buffer objects), 460-469

uniforms, 83, 249

FlatShader program, 252-255

locating, 249-250

scalar data type, 250-251

setting arrays, 251

setting matrices, 252

vector data type, 250-251

vertex shaders

cube mapped, 297-298

pass-through vertex shaders, 431,
435, 441

physical simulation, 414

reflections, 299-300

rotated point sprite, 313

star field effect, 308-309

texture arrays, 316

How can we make this index more useful? Email us at indexes@samspublishing.com

shading

cell shading, 284-287

three-dimensional graphics, 16

Shading Language, 34

shaped point sprites, 311-312

shapes

cones, creating, 148-149

cylinders, creating, 148-149

disks, creating, 150

polygons, offset, 108-111

rectangles, rendering, 111-113

spheres, creating, 146-147

torus, creating, 147-148

triangles

drawing, 61-73, 101-108

fans, 99

RGB color space, 71

strips, 97-98

triangle batch class, 146

winding, 96-97

Shrek, 22

signaled state, sync objects, 533

Silicon Graphics (SGI), 598

Simple Alpha-Testing Fragment Shader
listing (11.29), 452

Simple Example of glMultiDrawArrays
listing (12.12), 493

Simple Instanced Vertex Shader listing
(12.17), 505

Simple Pass-Through Vertex Shader
listing (11.11), 431

Simple Vertex Shader with Per-Vertex
Color listing (12.16), 503

Simple, Application Side Conditional
Rendering listing (12.3), 476

Simply Draw a Triangle listing (2.1), 62-64

sizing RBOs (renderbuffer objects), 339

sizing RBOs (renderbuffer objects) 963

ptg

Skeleton OpenGL View Class listing (14.1),
578-579

skyboxes, creating, 297-298

smoothstep function, 459

Source Code for a Simple Geometry Shader
listing (11.2), 420

Source Code for the Tunnel Sample
Program listing (5.4), 211-220

special keys, GLUT, 74

Specifying Bindings for Uniform Blocks
listing (11.40), 469

Specifying the Data for an Array in a
Uniform Block listing (11.36), 464

specular lighting, 270-271

spheres, creating, 146-147

Spring Mass System Vertex Shader listing
(11.1), 415-417

sRGB (Super-RGB), 386

star field effects, vertex shaders, 308-309

state, OpenGL ES, 625

state machines, 48-49

state of the pipeline, variables, 48

state sorting, 122

statements, switch, 459

stencil buffers, masking, 408

stencil operations, pixel pipeline, 399-401

step function, 459

stock shaders, 86

attributes, 87

default light shader, 88

drawing triangles, 72

flat shader, 88

identity shader, 88

point light shader, 88

shaded shader, 88

texture modulate shader, 89

texture replace shader, 89

textured point light shader, 89

uniforms, 87-89

storage qualifiers

GLSL, 234-235

shaders, 454-457

storing transformed vertices, transform
feedback, 508-527

strings

GLX, 608

OpenGL EGL, 638

strips

lines, 93

triangles, 97-98

surface normals, diffuse lighting, 262-263

surface removal, 101-102

depth testing, 104-106

face culling, 102-104

polygon modes, 106-108

switch statements, 459

Switching Between Antialiased and Normal
Rendering listing (3.3), 120-121

sync frame rate (CGL), 593-594

sync objects, 533

synchronization

drawing, 532-537

GLX, 612-613

T
TBOs (texture buffer objects), 334-335, 412

tearing, eliminating, 567

Tessellating Using a Triangle Strip listing
(11.15), 433

tessellator geometry shaders, 431-432

texels, 179, 277-279

as light, 284-287

lighting, 279-280

Skeleton OpenGL View Class listing (14.1)964

ptg

texture arrays, 314

accessing, 317-318

indexing, 316

loading 2D texture arrays, 314-316

texture buffer objects (TBOs), 334-335, 412

texture mapping, 16-17, 179-180

texture modulate shader, 89

texture replace shader, 89

textured point light shader, 89

TexturedTriangle Fragment Program listing
(6.13), 278-279

TexturedTriangle Vertex Program listing
(6.12), 278

textures, 179, 289, 320

accessing, 277-287

anisotropic filtering, 221-223

applying, 196-207

color buffers, 193

compressing, 223-227

compression, 387-388

coordinates, 196-198

specifying, 205-207

cube maps, 294-295

loading, 295-296

reflections, 299-300

skyboxes, 297-298

FBOs (framebuffer objects), rendering to,
351-358

filtering, 199-201

loading, 192-196, 203-207

mipmapping, 207-213, 219-220

filtering, 209-210

generating levels, 210

multitextures, 301

coordinates, 301-302

example, 302-304

How can we make this index more useful? Email us at indexes@samspublishing.com

objects, 195-196

parameters, 199-202

point sprites, 304-314

parameters, 310-311

rotating, 312-314

shaped points, 311-312

sizes, 306-307

proxies, 318-319

rectangle textures, 289-290

implementing, 291-294

loading, 290

shaders, 84

texels, 277-279

as light, 284-287

lighting, 279-280

texture arrays, 314

accessing, 317-318

indexing, 316

loading 2D texture arrays, 314-316

updating, 194-195

wraps, 201-202

texturing

image data, 180-181

packed pixels, 185-186

pixel packing, 181-182

pixmaps, 183-185

reading pixels, 188-189, 192

saving pixels, 186

OpenGL ES, 625

Texturing a Point Sprite in the Fragment
Shader listing (7.7), 306

tex_replace Fragment Shader listing
(9.5), 375

three-dimensional graphics, 14

blending, 17-18

hidden surface removal, 14-15

mathematics, 126-132

three-dimensional graphics 965

ptg

non-real-time three-dimensional
graphics, 22

projections, 14

rasterization, 14-15

real-time three-dimensional graphics,
18-22

rendering, 14

wireframe rendering, 15

shaders, 22-23

shading, 16

texture mapping, 16-17

transformations, 14

three-dimensional objects

measuring, 11

perspective, 13

three-dimensional scenes, 167

actor frames, 168-169

adding actors, 173-174

camera management, 170-173

Euler angles, 169-170

lights, 175-176

three-dimensional textures, OpenGL
ES, 626

three-dimensional triangles, drawing, 94

Timing Operations Using glQueryCounter
listing (12.8), 482

Timing Operations Using Timer Queries
listing (12.7), 481

tone mapping, floating-point buffers,
368-369

toolkits, 23

Toon Vertex Shader listing (6.16), 286

torus, creating, 147-148

Toy Story, 22

transform feedback, 509

algorithms, 518-519

counting vertices, 515-516

flocking, 519-527

transformed vertices, storing, 508-527

turning off rasterization, 514-515

transformation matrix, 14

transformations, 132

adding together, 143

affine transformations, 161

eye coordinates, 132-133

modeling, 134-135

modelview matrices, 135-138

applying, 144-145

constructing, 138-140

identity matrix, 140

rotations, 141-142

scaling, 142-143

translations, 141

pipeline, 159

managing, 161-167

matrix stacks, 159-161

popping, 160

pushing, 160

projection matrices, 150

ModelviewProjection matrix, 155-158

orthographic projections, 151-153

perspective projections, 153-155

projection transformations, 136-137

scenes, 167

actor frames, 168-169

adding actors, 173-174

camera management, 170-173

Euler angles, 169-170

lights, 175-176

three-dimensional graphics, 14

viewing, 133

viewpoint transformations, 137

three-dimensional graphics966

ptg

transformed vertices, storing transform
feedback, 508-527

translations, modelview matrices, 141

transpose, 459

triangles, 95-96. See also polygons

drawing, 61-62, 101-108

coordinate system, 67-72

GLUT, 65-67

headers, 64-65

rendering, 73

RGB color space, 71

shaders, 72

fans, 99

rendering, 81

strips, 97-98

three-dimensional triangles, drawing, 94

triangle batch class, 146

winding, 96-97

trigonometry functions, shaders, 256

Tunnel sample program code, 211-213,
216-220

two-dimensional texture arrays, loading,
314-316

U
UBOs (uniform buffer objects), 460-469

uniform blocks, building, 461-469

uniforms, 83

GLShadeManager, 87-89

shaders, 249

FlatShader program, 252-255

locating, 249-250

scalar data type, 250-251

setting arrays, 251

setting matrices, 252

vector data type, 250-251

How can we make this index more useful? Email us at indexes@samspublishing.com

unsignaled state, sync objects, 533

unsigned integer element indices, OpenGL
ES, 626

updating textures, 194-195

usage buffers, masking, 409

usage models, buffer objects, 325

Using a Gradient Texture to Color the Julia
Set listing (11.28), 451

Using a Single VBO to Hold Interleaved
Attributes listing (12.11), 487

Using a Single VBO to Hold Multiple
Vertex Attributes listing (12.10), 486

Using the Touch Messages for Camera
Movement listing (16.5), 651

V
Van Verth, James, 630

VAOs (vertex array objects), organizing
buffers, 490-492

variables

data types, 45-46

GLSL, 231, 234

state machines, 48-49

state of the pipeline, 48

VBOs (vertex buffer objects), 412, 417, 484

vector data type

GLSL, 231-233

shaders, 250-251

vector rational functions, shaders, 258

vectors, 127-128

cross product, 129-130

dot product, 129

vendor-specific extensions, OpenGL
ES, 639

versions, 41

GLSL, 237

identifying, 47

versions 967

ptg

OpenGL ES

choosing, 622-626

development, 621

vertex array objects (VAOs), organizing
buffers, 490-492

vertex buffer objects (VBOs), 412, 417, 484

vertex data, buffers, storing, 484-488

vertex indices, buffers, storing in, 489-490

vertex lighting, diffuse lighting, 263-264

vertex processing, OpenGL ES, 622

Vertex Shader for the Star Field Effect
listing (7.8), 308

Vertex Shader for the TextureArray Sample
listing (7.12), 317

vertex shaders, 412

cube mapped, 297-298

pass-through vertex shaders, 431

full-screen quad pass-through vertex
shaders, 441

normals, 435

physical simulation, 412-419

reflections, 299-300

rotated point sprite, 313

star field effect, 308-309

texture arrays, 316

vertices, 27

transformed vertices, storing, 508-527

triangles, specifying, 72

view frustum, 528

View-Masters, 13

viewing geometric transformations, 133

viewpoint transformations, 137

viewports, drawing coordinates, mapping
to window coordinates, 26-27

Vista, implementation on, 543

Visual C++ projects, setting up, 49-55

visual tearing, eliminating, 567

W–Z
WGF (Windows Graphics Foundation), 547

WGL extensions, 545-547

winding triangles, 96-97

window coordinates

mapping drawing coordinates to, 26-27

scissoring, 392

Windows, 541

implementation on, 542-547

pixel formats, 548-550, 553-556

attributes, 550, 553

enumerating, 554-555

locating, 553-554

selecting, 556

setting, 556

rendering, 547-550, 553-559

context, 556-559

windows, creating, 560, 564

OpenGL EGL, 632-636

Windows Graphics Foundation (WGF), 547

Windows Presentation Foundation
(WPF), 547

Windows projects, setting up, 49-55

WinMain Function of the GLRECT listing
(13.2), 560, 564

wireframe 3D cubes, 12

wireframe rendering, three-dimensional
graphics, 15

Working While Waiting for a Sync Object
listing (12.30), 534

WPF (Windows Presentation Founda-
tion), 547

wraps, textures, 201-202

versions968

ptg

X Window Systems, 598

X Windows

context management, 609-612

displays, 603

GLX, 602-616

context management, 609-612

queries, 613

synchronization, 612-613

render surfaces, 607-608

Xcode projects, setting up, 55-61

z-fighting, 108

How can we make this index more useful? Email us at indexes@samspublishing.com

z-fighting 969

	Table of Contents
	Preface to the Fifth Edition
	Preface to the Fourth Edition
	Preface to the Third Edition
	Introduction
	What’s New in This Edition
	How This Book Is Organized
	Part I: Basic Concepts
	Part II: Intermediate to Advanced Ideas
	Part III: Platform-Specific Notes

	Conventions Used in This Book
	About the Companion Web Site

	PART I: Basic Concepts
	1 Introduction to 3D Graphics and OpenGL
	A Brief History of Computer Graphics
	3D Graphics Techniques and Terminology
	Common Uses for 3D Graphics
	Basic 3D Programming Principles
	Summary

	2 Getting Started
	What Is OpenGL?
	Using OpenGL
	Setting Up Windows Projects
	Setting Up Mac OS X Projects
	Your First Triangle
	Putting a Little Life into It!
	Summary

	3 Basic Rendering
	The Basic Graphics Pipeline
	Setting Up Your Coordinate System
	Using the Stock Shaders
	Connecting The Dots
	Blending
	Summary

	4 Basic Transformations: A Vector/Matrix Primer
	Is This the Dreaded Math Chapter?
	A Crash Course in 3D Graphics Math
	Understanding Transformations
	The Modelview Matrix
	More Objects
	Projection Matrix
	The Transformation Pipeline
	Moving Around Using Cameras and Actors
	Summary

	5 Basic Texturing
	Raw Image Data
	Loading Textures
	Texture Application
	Mipmapping
	Anisotropic Filtering
	Texture Compression
	Summary

	6 Thinking Outside the Box, Nonstock Shaders
	GLSL 101
	Shader Uniforms
	Built-In Functions
	Simulating Light
	Accessing Textures
	Summary

	7 More Advanced Texture Topics
	Rectangle Textures
	Cube Maps
	Multitexture
	Point Sprites
	Texture Arrays
	Texture Proxies
	Summary

	PART II: Intermediate to Advanced Ideas
	8 Buffer Objects: Storage Is Now in Your Hands
	Buffers
	Framebuffer Objects, Going Beyond the Window
	Rendering to Textures
	Summary

	9 Advanced Buffers: Beyond the Basics
	Getting at Your Data
	Controlling the Destiny of Your Pixel Shaders; Mapping Fragment Outputs
	New Formats for a New Hardware Generation
	Summary

	10 Fragment Operations: The End of the Pipeline
	Scissoring—Cutting Your Geometry Down To Size
	Multisampling
	Stencil Operations
	Depth Testing
	Blending Everything Together
	Dithering
	Logic Ops
	Masking Output
	Summary

	11 Advanced Shader Usage
	Advanced Vertex Shaders
	Geometry Shaders
	Advanced Fragment Shaders
	More Advanced Shader Functions
	Uniform Buffer Objects
	Summary

	12 Advanced Geometry Management
	Gathering Information about the OpenGL Pipeline—Queries
	Storing Data in GPU Memory
	Using Vertex Array Objects to Organize Your Buffers
	Drawing a lot of Geometry Efficiently
	Storing Transformed Vertices—Transform Feedback
	Clipping and Determining What Should Be Drawn
	Synchronizing When OpenGL Begins to Draw
	Summary

	PART III: Platform-Specific Notes
	13 OpenGL on Windows
	OpenGL Implementations on Windows
	Basic Windows Rendering
	Putting It All Together
	Full-Screen Rendering
	Double Buffering
	Summary

	14 OpenGL on OS X
	The Four Faces of OpenGL on the Mac
	OpenGL with Cocoa
	Full-Screen Rendering
	CGL
	Summary

	15 OpenGL on Linux
	The Basics
	Getting Started
	GLX—Interfacing with X Windows
	Summary

	16 OpenGL ES on Mobile Devices
	OpenGL on a Diet
	Which Version Is Right for You?
	The ES Environment
	EGL: A New Windowing Environment
	Negotiating Embedded Environments
	Apple Handheld Platforms
	Summary

	Appendix A: Further Reading
	Other Good OpenGL Books
	3D Graphics Books
	Web Sites

	Appendix B: Glossary
	A
	B
	C
	D
	E
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

	Appendix C: OpenGL Man Pages for (Core) OpenGL 3.3
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I-J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-Z

