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THEORY OF STRUCTURE MATRICS METHODS

INTRODUCTION

After the introduction of high-speed computers, there has been a revolution in
structural analysis, not only in the computational methods but also in the
fundamental theorems. Since digital computers are ideally suitable for
automatic computations of matrix algebra, it was found desirable to formulate
the entire structural analysis in matrix notation. Matrix methods of structural
analysis are based on the concept of replacing the actual structure by an
equivalent analytical model consisting of discrete structural elements having
known properties which can be expressed in matrix form. Matrices are useful
in expressing structural theory and in producing an efficient means for carrying
out numerical calculations.

Two methods have been formulated in matrix structural analysis; the
Nexibility and stiffness methods, It will not be possible in this textbook to
develop the two matrix methods to sufficient depth. The methods are developed
to the level of manual computation,

FORCE AND DISPLACEMENT MEASUREMENTS

It is evident that the overall description of the behaviour of a structure is
accomplished through the dual consideration of force and displacement
components at designated polnts. There are a number of ways of measuring a
foree applied to a structure or its displacement at designated points in a
prescribed direction. Such points are commonly known as node points. The first
step in the analysis of structures is to idealise the actual structure into a
mathematical model which consists of distinct structural elements interconnected
through node points. In this text the word force includes moment.
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Figure 7.1

To designate the forces and displacements at the nodes of a given structure, a
coordingte system is used to identify these measurements. For the frame shown
in Fig. 7.1, for example, the systemn consists of four arbitrary coordinates which
are identified by four numbered arrows shown at the specific nodes or joints.
The forces are listed in column matrix [P] and s referred Lo as a force vector

and represents an ordered array of force measurements, For instance, the force
vector for the frame of Fig. 7.1 is represented by

Fl = P [7.1]

Likewise, the coordinate displacement vector, having the same significance as in
the force vector may be expressed as

5,
&

: [7.2]
&3

bg

[&] =

In a similar manner, the forces and displacements at the nodes of a given
element may be designated by listing in column matrices [P] and [A],
respectively. For the beam clement of Fig. 7.2, for example, with direct forces at
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Figure 7.2
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node 1 and moments at node 2, the force vector iz written as

E£T

Py

LF] = M, [7.3]

My |

k.

and the displacement vector as
ruy ]

[a] = [7.4]

A necessary step in the formation of the force and displacement vectors is the
establishment of the node points and their location with respect to coordinate
axes. At this stage it is necessary to define two sets of orthogonal coordinate
systems. The first set is that of the structure, known as the global aces, and
consists of a sinpgle coordinate system. The second s2t is that of the members or
elements, known as the local axes, and consists of one coordinate system for
gach member, Since the members are in general differently oriented within a
structure, these axes originating at member ends will usually be differently
oriented from one element to the next. Global and local coordinates are
illustrated in Fig. 7.3{a) for trusses and in Fig. 7.3(b) for frames.

When forces are applied to structures, displacements occur. Alternatively,
when displacements are prescribed, node forces are necessary to produce them.
The relationships that exist between applied forces and displacements play an
important role in structural analysis. The force and displacement characteristics
of a structure are usually described under definitions of lexibility and sriffress
coefficients. The flexibility and stiffness coefficients depend on the force-
displacement properties of the structure and the coordinate system used.

A simple illustration of such relationships is obtlained by considering a linear
elastic spring shown in Fig. 7.4. Single coordinate is indicated for the force and
displacement measurements. The force P will stretch the spring thereby
producing a displacement A atl the end of the spring. The relationship between P
and A can be expressed as

& =[P [7.5]

In [7.5], f is the flexibility coefficient of the spring and is defined as the
value of the displacement at node 1. In general, a Mexibility coefficient is the
value of the displacement at a point of the structure, in a given direction, due to

a unit force applied at a second point in a second direction.
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An alternative way is to establish a relationship between the force P and the
displacement & for the spring of Fig. 7.4, The force P required to produce a
displacement A units is determined from

Fe=ih [7.6]

In [7.6], k i3 the stiffness coefficient of the spring and is defined as the value
of the force required at coordinate 1 to produce a unit displacement at 1. In
general, a stiffness coelMicient s the value of the force at a point of the structure,
in a given direction, due to unit displacement applied at a second point in a
second direction,
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Comparison af [7.5] and [7.6] reveals that the flexibility and the stiffness
of the spring are imverse to one another.

= —= =1
E &
[7.7]
1
k=—=f—1
f
MNow consider 2 more gencral case consisting of an elastic structure, supported
apainst rigid-body motion, and subjected to loads P, , P,, . .., P, acting at
nodes 1, 2, ..., n. The corresponding set of displacements is represented by A,
By e eas A, For linearly elastic systems, the principle of superposition is
applicable. Therefore, the displacement A; at node ¢ is given by
Si=fuPy *fnPr ¥.. . % fixPy [7.8]
or more generally,
=n
A= t iy 1791
i=1

By definition, f; is the displacement produced at node { due to a unit load at
node j (P = 1). The coefficients fi;, which are the displacements due to unit
loads, are known as flexibility coefficients.

In general, for n nodes, there will be n such displacements which may be
written in a single matrix equation

Ay iy fiz --- fie] [P)]

Sy S Faza oo [fam F
= . . } ) [7.10]

[Bn]  |fm faa oo fum] | P |

and which can be written in compact matrix form as

[a] = [F] [P] [7.11]

where [A] is the column displacement matrix, [F] is a square flexibility matrix
and [P] is a column load matrix (load vector). This equation is of the same type
as [2.17].

Using matrix operation, one can solve the set of algebraic equations
represented in [7.10] for forces in terms of displacements. In matrix notation

7] = [F1~"'[a] [7.12]
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where [F]~! is the inverse of matrix [F]. It is noted that [7.12] has the
same form as [7.6] since it expresses forces in terms of displacements.
Consequently,

717! = K] [7.13]

where [K] is the stiffness matrix which is the inverse of the flexibility matrix.
Thus

7] = K] [a] [7-14]

The expanded form of [7.14] is

— — = — — —

P, kv Kz Kin Ay
.F: k:l k"" PR kll'l .&.1

=1 . . i . [7.15]
| Pu) Lkmi kw2 oo Kan] LOa

By definition, k;; is the force required at node i to produce a unit displacement
at node i only (zero displacements at all other nodes).
Flexibility coefficients for linear elastic behaviour have the property of
reciprocity which may be expressed analytically as
Sig = Sy [7.16]

This equation defines symmetry of [F]. Since [F] is symmetrical the inverse of a
symmetric matrix will also become symmetrical. Therefore, [7.13] guarantees
that the stiffness matrix [K] will likewise be symmetrical. Consequently,

k[j'=k# [?.]?]

To illustrate these matrices consider a simple cantilever beam of uniform cross
section shown in Fig. 7.5(a). To determine the flexibility matrix, the influence
coefficients must be determined by applying unit loads to the free end,

Due to axial load &V = 1 (Fig. 7.5(b))

L
EA

By =0 [7.18]

8, =0
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Duee to vertical load F = 1| (Fig. 7.5(c))
&, =0
i
5, = ;E [7.19]
L?
. SE
Due to moment M = 1 (Fig. 7.5(d))

&

B = [7.20]

The above results may be written in matrix form as

- - i _
. I-ﬁ 0 0 N
L L2
= D = [
&y, | 3ET 2ET ¥ [7.21]
£ L
-ﬂ' | i 1] E’_ ET I-H
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or, when written in compact matrix form
[a] = [F] (P] (7.11]

In a similar manner the stiffness matrix may be determined by unit
displacements as shown in Fig. 7.6.

% EA,EI I;}___H {a)

- L |
I *n-il
g N (]
g v
T % By=p )
E)u
% @@=y } [T i ]
W
Figure 7.6
Due to unit axial displacement (Fig. 7.6(b))
A
N= I [7.22]
Due to unit vertical displacement (Fig. 7.6(c))
12ET
V= I3 [7.23]
e
M=_ F
Due to unit rotation (Fig. 7.6(d))
_ GET
L7
7.24
pp = 2ET (724
L
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The above results may be written in matrix form as

N 0 o B,
1 2ET GET
F’r ? F E-p [?_25]
Gy 4T
M = z||°
which may be written in compact ma[ri: form as
[F] = [K][a] [7.26]
The results may be checked by matrix multiplication
IF1IK] = [K]11F] = 11 [7.27]

It is noted that both [F] and [K] are symmetric matrices which is the
consequence of the reciprocal theorem.

THE FLEXIBILITY METHOD

The basic theory of the flexibility method is developed in this section, and the
concepts are clarified by numerical examples. The developmeant of the method
rests on the basic principles of equilibrium of forces, compatibility and linear
force-displacement relatonships.

Consider a structure, which is idealised into a model consisting of distinct
structural elements interconnected through node points, wnder the action of
generalised external forces applied at the nodes P, P5. . . . P,. These may be
conveniently represented by a column matrix or force vector [P]

[Pl ={P, . Py .. Pl [7.28]

Let it be assumed that the struciure consists of m redundants which are
forces to be determined, that is

[X] =1{X,.Xx,...X,} [7.29]

which are the redundant forces or reactions. If such redundants are removed,
the structure becomes determinate and the internal forces are determined from
conditions of equilibrium alone. In an indeterminate structure, the internal
forces must also satisfy compatibility in addition to equilibrium. In dealing with
an indeterminate structure with m redundants, the redundants are treated as
additional loads on the statically determinate structure, It is assumed that the
structure is compesed of an assemblage of f simple elements. Internal forces
exist in the structure at the node poinis, If the internal force members are
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represented by the vector [§] where
51=18, S2 ... 5l [7.30]
then, [§] can be related to the applied loads [F] and [X] as

[ 5y Py B

S Py X

=] B I [7.31(a)]
._S_f_ —'Fn | X .

which is written in compact notation as

5] = [Bo] [F] + [B,] [X] [7.31(k)]
or using partitioned matrices
P
[5] = [Bg § By ] [r] [7-31(c}]

where, in general, [B,] and [#, | are rectangular matrices whose elements are
obtained from eguilibrium conditions of the structure. For example, if P; is
taken as a wnit load with all other loads including [X] held at zero, the internal
forces in the structure represent the coefficients corresponding to the ith column
in the [8,] matrix. Likewise, the internal forces which result from a unit load X
with all others held at zero represent the coefficients corresponding to the jth
column of the [8, | matrix.

To formulate the compatibility condition, the principle of least work will be
utilised which may be stated as: The rrue values of the redundant forces are

those which make the strain energy U of the strained structure o rminimmm
The strain energy is given as

I = &
U=E[S| 31 « e S.f] F. S|
F )
? ' [7.32]
L FI,-J 5y
which is wrilten in compact matriy fommm as
1
U= IS1TIF] {5} [7.33]

In order to obtain the strain energy U in terms of the unknown | X},
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substitute [7.31(b)] into [7.33]. In deing so, note that the transpose |57 may
be written from [7.31(b)] as

P T
51 = [x] [Bo i By17
= [PiX][Bo i By1" [7.34]
Substituting [7.31(b)] and [7.34] into [7.33]
1 ~
U= [PiX] [H] L,] [7.35)
where
[H] = [Bg i By 1T [F] [Bg : B,] [7.36]

Since [P] and [X] are the applied and redundant forces, respectively, it is
convenient to partition [/] to conform to the load vectors, thus,

(. .
U=Z IPiX] | Hop | Hpu [P]
Hy | H. | LX [7.37]

After expanding [7.37]
U = (1] (Hpp) [P) + [P) () (X)

+ [X] [Hep] [P] + [X] [Hxx ) [X])

Lhilising the theorem of least work and noting that the [/] matrix is symmetric
Eives

[7-38]

aLs

ax [Hep] [Pl + [Heel [X] =0 [7.39]
from which the redundants are determined as
[X] = — [Hex] 7" [Hep] 1P] [7.40]

Solving for [X] from [7.40] all internal forces can be determined from
[7.31].

Summarizsing, the essential steps in applying the flexibility method to lead to
the solution of structural problems may be stated as follows:

1. Idealise the structural problem to be analysed
2. Specify the redundant forces and identify the internal member forces
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3. Find the [8;] matrix for unit values of external forces; only one external
force must act at a time with all other forces held at zero

4. Find the [2,] matrix for unit values of redundant forces; only one
redundant force must act at a time with all other forces held at zero

5. Find the flexibility matrix [F] for all members following the sequential
order of the member forces in [B,] and [8,]

6. Formulate the [/] matrix of [7.36)

7. Calculate the redundant forces | X] from [7.40]

8. Calculate the internal forces [5] from [7.31]

EXAMPLE 7.1  Using the fexibility matrix method determine the bar forces
in the rruss with double diggonal system shown in Fig. 7. 7fa). The area of all
rop chord is fwice the area of all remaining members,

P=Il0kNn
T-— A g e B =IO kN
Am | al
.
D = F
T < m | 4 m
-
Ky
X, X,
T
* My
Figure 7.7

Az can be easily seen, the truss is redundant to the second degree. For the
selection of the redundant members several choices exist. Here members AE and
BE and the reaction at A are taken as the redundanis, then the trus is reduced
to a determinate one as shown in Fig. 7.7(b).

To determine the [Bg] matrix, Py and Py are set unit values one at a time
with all other forces including the redundants held at zero, then calculate the
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internal forces in all members for each case. Thus,

Po=1 Py=1 Member
0 0 ] AB
—0.667 +0,.500 BC
—0.500 0375 CF
0 0 FE
[Bg] = | +0.667 0.500 ED
| o 0 DA
—0.833 +0.625 DE
+0, 833 +0.625 CE
—0.500 —0.375 BE
0 0 AE
| © o BF

Similarly to determine the [B;] matrix the redundants X, , X, and X5 are
set unit values one at a time with all other forces including the applied loads
held at zero. The internal forces in each case are

X, =1 A =1 Xa=1 Member
—0.80 0 1.0 AB
0 —0.8 +0.5 BC
0 —0.6 +0.375 CF
] —0.8 0 FE
—.8 0 —0.5 E
[B#,]= |06 ] 0 DA
1.0 (4] —0.625 | DB
0 1.0 =625 CE
—0.6 —0.6 0375 BE
1.0 W] 0 AE
0 1.0 0o BF

The flexibility matrix for the members is
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From [7.36]
[#] = [Bo i 8117 [F] [Bo | B1]
substituting and carrying out the matrix multiplications gives

11.111 1792 : —5400  7.031 -3.125 7
! 1.792 6.25 : 2.200 3675 =5.250
[ lﬁ ______________________ __ .................................
—5400 2200 : 16.000  1.080 —3.800
7.031 3675 1.080 16.000 —5.275
—3.125 —5250 ! —3800 —5275 £250 .
Hpp | Hps
| Hop Hyo
The redundants are determined using [7.40]
[ 16.000 1080 —3800)-' [ s400 2200 |[10
[X] = 1.080 16000 —5.275 7.031 3.675 {lﬂ]
| —3.800 —5.275  8£.250 —3.125 —5.250
Solving for the redundants,
X, 4.617
Xz | =1]-3.743
| X5 9.883
The bar forces are determined using [7.31]
Van [ 6.197 ]
Nae I 6,265
Nee|  |-2799
Ny 2.997
Nep ~ 3.054
Noal  |=2.750
Nos | —3.654
Neg 4.661
Ngg —5.558
Nag 4.598
[Mee | L 3747

BY BIRHANU F.



THEORY OF STRUCTURE MATRICS METHODS

INTRODUCTION TO MATRIX ANALYSIS

EXAMPLE 7.2 Derermine the shear force and bending moment values in the
continuous beam of Fig. 7.8 using the flexibility matrix method.

R =10kN B =5kn
] | 3 i s
AN, 2 - e e (a)
5m Sm
E 1l = constant
o)
A == .
%‘ IOm + IOm I .
Figure 7.8

The beam is indeterminate to the first degree and the reaction at mode S is
chosen as the redundant as shown in Fig. 7.8(b).
To determine the (B ] matrix, P, and P, are set unit values one at a time,
thus
Pi=1 Py=1

0.5 -05] v,
0 0 M,
—0.5 —o0s| v,
| 2s 25| M,
[Bo] = = : v,
0 -5 M,
0 0 Va
0 0| M,
Similarly the [B, | matrix is determined setting X, = |_thus
X;=1
i
o| a1,
1| v,
s| M,
B,]1=
=1l 2%
10| M
1| v,
| 5| M.
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The member flexibility matrix from [7.20] neglecting the axial deformation

is

(.833

LF1 =5

I

50
15

15
&

]

[

50
15

IS]
6
[.SD
15

15
(i

]

50
15

15
[

J

L
Using [7.36] to solve for the [A] matrix

[H] = [Bo : B, |T[F][8e i 8]

250 375 75.0
0833 .

= 3iT7.5 150.0 T —325.0

W == | R

75.0 —3250 2000

The redundant is determined wsing [7.40]. Hence,
Xy =——— [75 —325] [m]
5

=1.09375 kN

800
The shear force and bending moment values at the indicated nodes are
obtained using [7.31].

¥y
M,

0.5
0

=0.5

2.5

o Q @ Qo

—0.5
0

—0.5

—21.5

-5

o e e e

PSR —

1] [o

0o 5

s| |o937s
—1

10
—1 |

5

C 3.504 |
0

—f A

17.969
39005

_14.063

—1.094 |
5.45'9'_
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THE STIFFNESS METHOD

As in the flexibility method, the stiffness method considers a structure as an
assemblags of individual members. The connecting members are called node
poins. The fundamental difference in using the stiffness method is that the
individual displacements of the nodes are taken as the unknowns. In the stiffness
method the number of unknowns to be determined is the same as the degree of
kinematic indeterminateness,

In this method, the first step is to derive the stiffness matrix fora
component member by relating the member forces to the member deformations.
In a similar manner the nodal forces must be related to the nodal displacements
by the total stiffness matrix obtained from an assemblage of the stiffness matrices
of the individual members. Finally, from equilibrium conditions the nodal forces
obtained from the unknown nodal displacements must balance the externaily
applied nodal forces to find the total solution; that is, determining all unknown
displacements, reactions and member forces. In developing the stiffness method,
the same coordinate systems are used that were employed in the flexibility
method,

Member Stiffnesses

The relationship between the forces acting at the nodes P; and their corresponding
nodal displacements forms the stiffness matrix approach. This relationship is given
in matrix notation by [7.14] and in its generalised form by [7.15].

Consider a prismatic axial rod element m the ends of which are denoted as i
and i as shown in Fig. 7.9.

I L |
| |
bjap

F}.E‘- —l-:-!=-—-—ﬁ.-..ﬁr_ﬁ. b)

U
F: :—ﬂ it — Flll:l'ﬂ—
L L
Figure 7.9

The relationship between the axial forces and the corresponding displacements
of the rod is

[Pl] _ [ku k.;] [5;] [7.41]
Fy kKl LS,
BY BIRHANU F. 8
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The coefficients of the stiffness matrix are found by considering two distinct
displacement states. The first state is to let the nodal coordinate displacement
&; = 1 as shown in Fig. 7.9(b) while holding the others at zero. Imposing
equilibriuvm on the forces gives

P = 'FF(EL_A ) . [7.42]

The second state is similar, but distinct from the first. Following the same
procedure as in the first state provides

P,= P, = (;ﬂ) [7.43]

Combining the results given by [7.42] and [7.43] into a single matrix equation
vields the force—displacement relationship of an axial rod element

HEGREIH e

Consider a prismatic beam element shown in Fig. 7.10. Using the same
procedure used in obtaining [7.23] ta [7.25] the force —displacement
relationship for the given nodal coordinate system may be determined by
assigning unit values to the displacements as shown in Fig. 7.10(b) and (c).
The coefficients are shown for unit displacements at the end {; similar

M, , {E1)m

M.F . B
C- ? fajl
E L] I‘J

B

——

L L |

Ty

b
-BEI/L o

4 EISL
(ln.

2E1/L e
I & =i
2 ser s
~BEI/L

Figure 7.10
1
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coeflicients are obtained for unit displacements at end J. Thus

P, '| [ 12 —al =12 —6L &
M —6L aL? 6L 2L% ]
1= : [7.45]
P | L7)-12  sL 12 6L 5
My | |—6L 2. &L ALt | |
Transformation Matrices

If the properties of an element is known in terms of local axes, the transforma-
tions of these forces and displacements to the global coordinates is a necessary
step in stiffness matrix formulation. Figure 7.11 shows member i described by
the two coordinate systems. The local coordinates are shown asx” and ¥’ and
plobal coordinates as x and . In this text, the forces displacements and stiffness
matrices with respect to local axes are identified by primes. The prime is omitted
when written with respect to global axes,

bk
*e
ol
L

& : \L "
e Figure 7.11 o

Referring to Fig. 7.11, the relationship between the quantities in the local
and global axes for Mexural members is established as

Py cosa sine O i O 0 o] |ra

Py —sine cose O E 0 0 0l |Puw

Ml o o ato o offm) o
Poi ] 0 0 : cosae  sina 0O |Py

Py (1] 0 0 i —sinae  cosa Of [P,y

_ﬂqr‘_ L o 0 0 0 0 1 |
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and for axial members, after omitting M and &, the relationship is

Pyl [ cose sina 0 o 1re;]
P, —sina@  coso 0 0 P
= > [7.47]
Py 0 0 cosa  sina Pr
Pal | O 0 —sinee  cosa || Py

Equations [7.46] and [7.47] may be written in compact matrix form

[# = 11 1P] [7.48)
where |T] is the rofational transformation matrix, which is a function of the
direction cosines between the two sets of axes, for the particular system shown,
Solving [7.48] for [P)

[Pl = [T "] [P°]

= [T [P]

Huch a matrix is called an orthogonal mgirix, which may be defined as a sguare

matrix having an inverse equal to its transpose.
If the displacements are denoted by [&§] then it follows that

[8] = [715] (7.50]

The transformation matrix [T] may be applied to obtain the stiffness matrix
in global coordinates, From the definition of stiffness, that is [P] = [&] [&8], &t
follows that

Pl =1&7187 [7.51]

Substituting [7.48] and [7.50] into [7.51] and noting that 77 = 7" for
arthogonal matrices

[T]1P] = [K'T[T115]

[7.49]

or
[#] = [T 'K [T]([5]
=TT (%] (7] (5]
= k] [5] [7.52]
Hence, the transformed stiffness matrix is given by
&1 = [T17 &[T [7.53]

Using the relationship derived above, the stiffness matrix for axial members
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(Fig. 7.11} in global coordinates will be

RS e Y
EA T P et
[k] = (_) . Leeees sevesans . [7.54]
L)/ m]|-2* = @' A A
| = b o p?
where & = cos o and g = sin e. Similarly, for Nlexural members
[ 1247 : ]
—12n 12a2 ! Symmetric
£t 6Lu  —6LM 412
[k]s E messsmsnsnpsnamm e e e et e e e —————— ['}'55]
mo|_12u? 122 —6Lu ¢ 12u?
120 —1232 GLA | —12du 1237
6Ly —BLM 202 | _alp eLa 4L?

Assembly of Element Maitrices

It s important to form the total assemblage nodal stiffness matrix of a structure
from the stiffness matrices of the separate structural elements. This involves
only simple additions when all element stiffness matrices have been expressed in
the same global coordinate system.

Consider the axial member system shown in Fig. 7.12 with a total of three
possible joint displacements one for each node. The members have individual
stiffness constants (EA/L), and (EA/L); as shown in the figure.

] ‘EA L 2 {Eﬁ Jl 5

l Ly I Lz
I |

Figure 7.12

1

The order of the stiffness matrix for the assemblage will be 3 x 3. The individual
member stiffness matrices are:

wa= (), [ 7,
wi-(7), Ly L

[7.56]
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The assembled stiffness matrix for the complete system can be formed by
superposition of the individual element stiffnesses contributing to each nodal
point. Thus, the assembled stiffness matrix for the system shown in Fig. 7.12

T, )

----------------------------------------

K1 = _(ﬂ) (E +(E) 2
St Y Lly i NLJo AL /2 | L /2 [7.57]

. _(E_:). '[1‘:1-_4)1..3

In a similar manner, it may be concluded that the order of the global stiffness
matrix of a system is equal to the total number of degrees of freedom of the
gysiem. The order of the matric may be expressed as the sum of the unknown
displacements f and the prescribed (support) displacements g, After reordering
the rows and columns to separate the alemenis corresponding to the supports
from the remainder, the rearranged stiffness matrix may be written as

mmEaEEE

Te

|
—
=

[fi] _ [f{{..-i.-.f:"?.] [ﬁ-‘f] [7.58]
P, Ky | Kgo Ay |
Method of Solution

Expanding [7.58] and noting that the support displacements, jast =0

1Pl = [Hﬂ"] [ﬂ-,r] [T.59(a)]
[Fs] = [Ksrl [A] [7.59(b)]

The vectors of all unknown nodal displacements (at unsupported nodes) are
obtained from [7.59%a)]

[&7) = [Keed ~" 1Pf]) [7.60]

When [47] has been found from [7.60], the support reactions by substitution
of the results in [7.59(b)] will be

1P:]l = [Kgp] [Kpp] ~" [Pf] [7.61]

The internal force in any element rm may be obtained by substituting the
calculated degrees of freedom for that element, designated by [A,, ], into ths

element stiffness matrix [k, |. Thus, the joint force component acting on that
element becormes

[Fen] = [Kim ] | &0] 17.62]
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For the case of an axial member shown in Fig. 7.11 the member force,
denoted by P, i3 found to be

P,=P,cosa+ P, sina [7.63]
Tt
EA ,
Puj =7 UBxj — Bxideosa+ (8, — 5yy)cos a sin a)
- . [7.64]
Py === (B — Bxi)eos asin a8, — 8,)sin’a)
Rearranging and writing in matrix form, [7.64] may be written as
by — by
P, .(\E_f) [cosa sina) [ ! '] [7.65]
m ¥i '5.3‘"[

Similarly, for the case of 2 beam element [7.45] and the tree nodal
displacements are used and the internal forces for the beam slement taken to be
the shear and bending moments are

'ﬁjl'l
Vi ET 12 —6L —12 —6L 8
ARG BN | E3 I
M; Lo m L-eL 4L 6L 2021 |5,

& |

When these are external loads acting between the joints of a beam element the
concept of equivalent loads must be adopted, The member action is then
computed by adding the effects of the member end deformation to the fixed-end
actions produced by the loads. In a similar manner, the support reactions are
computed by adding the fixed-end effects of the loads. Thus [7.14] may be
written as

[P] = [K] [A] — [PF) [7.67)
where [P7] is the load vector of the fixed-end actions.

EXAMPLE 7.3 Determine the bar forces, using the sriffness matrix method, of
the fruss shown in Fig 713 EA = constant.

Member data for the truss

Member ends Member properties Ddrection cosines
Member . .
i ¥ A L O8O Fin o
1 A B A L 0 |
2 A C A 1.155L —0.5 —0, B6b
3 A D A 1. 41460 0.707 —0.707
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fal

Figure 7.13

ikl

The member stiffnesses oriented in global coordinate system are obtained from

[7.54]).

Member AB

[yl ==

a o o g

Member AC

) T TTs

EA
Lal4L

ky=

o o 071
o —-1]2
0 0O 013
-1 0 o |4
[ 0.25 0.433
0.433 0.75
—0.25 —0.433
| —0.433 —0.75
[ 05 D5 0.5
—0.5 0.5 0.5
0.5 0.5 0.5
0.5 —-0.5 =05

—0.25
—D.433
0.25

0433

0.5
—0.5
—0.5

0.5

—-0.433

—0.75
0.433
0.75

= k=

8

3 ot ke

After assemblage of the element stiffness matrices, the global stiffness
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eguation becomes

vl C 0570 00211 0 0 —0217 -0375 -0354  0354] [a,]
—Q D021 200 : 0 —1.0 -0375 —0650 0354 —0354] | A,
0 0 o I o o 0 0 0 0 B
ol Ea 0 -10 o 1.0 0 0 0 0 Ay
0 --L-F —.217 —DJTEE 0 ] 0217 0.375 (1] LI By
0 —0375 0650 0 0 0.375 0650 O 0 A
[ —{1_354 D.35‘|-§ 1] 0 0 0 0354 —0354 Hin
| 0 | 0354 0354} 0 0O o 0 -0354 0.354] | &g

Note that the displacements A, to Ag are restrained and the elements
corresponding to A, and A, are placed at the top left of the global stiffness
matrix. Hence the reduced stiffness matrix given by [7.5%a)] is written as

[ P\ Ea [u_ﬁm E}.[I'EI:| [.ri.
—Q] L o021 200 .-.‘L:]
The unknown displacements are obtained by applying [7.60],

[z oo "ol [o]

Dy [—H_DIE 0. 500 o

Having found the unknown displacements, the reactions are calculated by
applying [7.61]. Thus

-—
FA

~Pp.1 r D [/ I 1.755 —0/018 P
FPgy 0 -1.0 [—l}.ﬂ'lﬂ 0500 [—ﬂ' ]
Pox | | 0217 —037s
Po, | | —0375 —0650
Po. —0.354 0354

| Pp,d L 0354 _0.354 4

= 0 1] . P
0.018 —0.500 [-E]
—0.373 —0.184
“| —0s46 0318
—0.628 0,183
- 0628 0,183 4
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The internal member forces are obtained by using Eq. [7.65]. Thus

B — A
P IE—E [cos e sin |: * ﬂ]
L ﬁ}plr - ﬂr!

Since A, = Ay = 0 because of support conditions, the member forces are:

Member AB

—1.755P — 0.018Q
Fan=[0 1]

0.018F + 0.500
= 0.018P + 0.50Q

Member AC

i
== —0.5 —I0, B&a&
Pac 1.155 [ | [

—1.755P — l}.l}lﬂﬂ]
0.018P + 0.500
= 0.746P + 0.3670

Member AL

Pap =

—1.755P — D.018Q
214 [0.707 —0.707] [ ]

0.0180 + 0.500
= L BRTF — 02597

EXAMPLE 7.4  Find rhe support rotations and the support reactions of the
conrrfirnpons begn shown in Fig 7 14,

The equivalent fixed-end actions are shown in Fig. 7.14(b).

The member stiffinesses are (see [7.45]):

Member AB
12 48 _—12 -—4811
[k ]_E,,r —<H 256 458 128 | 2
osi2 |12 as 12 48 | 3
48 128 4B 256 | 4
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ZEN ™ 1k N sm
! L
ia P B . c

| am L s |
[ i |

[al Sctual Structure

akN fi\IE-H 4 Kk
{,—I, 5.33 kN ’I.“t 5 33kN-m

10, &F kK N-m
[l Eguivalent Jaint Load
& &
2( © N @ N
1 ' ‘ 3 ‘!
{e] Coordinate System
Figure 7.14
Member BC
T 12 —48 —12 -—487 3
gr | —a8 256 as 128 | 4
2505 L2 a8 12 as s
| _48 128 48 256 | 6
The assembled stiffness matrix is
[ 12 48 12 48 0O o1
_Er |-48 256 48 128 0O o |2
KI=siz| 12 48 24 o —12 —as |3
—48 128 0 512 48 128 |4
1] 0 —12 48 12 48 o
| O 0 —48 128 48 2536 | 6

Mote that the prescribed displacements are 5; =65 =65 =0 and 54 and 54
are the unknown displacements. Thus the assembled stiffness matrix must be
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rearranged by moving the rows and columns associated to 64 and 5, to the top
left of the stiffness matrix. Thus

512 128 —48 128 0 4B-|

4

EI | 128 256 0 0 -48 48 | 6
[K] =

512 —48 0 12 —48 —12 o0 |1

128 0 —48 256 48 o0 | 2

o —48 —12 48 24 12| 3

48 48 0 0 -12 12 ] 5

The submatrix [K ] is
] [sm 123]
77 s12 [ 128 256

and its inverse is

K y]—! 1 [:Sﬁ -113]
1r 224ET | 128 512

The load vector for the beam shown in Fig, 7.14{b) is

1
10.67 2
3
—3.33 4
5
—5.33 [

Rearranging the vector in conformity with the stiffness matrix is

—533] 4
=5.33 L)

] = —E |
10.&7T 2

—1z | 3

L —4 _ 5
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The unknown rotations at support B and C are computed using [7.60]

fg
(4] = [ 2 ] = [Kyy) (Pf]
c

1 [ 256 —128 [—5.33] 1 [-3.05]
224E1 | 128 512) L-533) ET L-9.4
The support reactions due to the displacement contributions are determined

by using [7.59(b)]. After adding the fixed-end effects of the loads, the support
reactions will be

[P,] = KyelAf] - [PF]

"Ry T 48 0 - - 8 1 [ 829]
M| g |18 o | 13057 |1067| |-1143
Ry | 512| 0 —as | Bl [—9.14]- 12 | 2ss
| Re | 48 48 L4 Jd L. 286
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