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CHAPTER EIGHT1 

 

SLOPE STABILITY 

Table of Contents 

7 Introduction 

The term slope as used in here refers to any natural or man made earth mass, 

whose surface forms an angle with the horizontal. Hills and mountains, river banks, etc. 

are common examples of natural slopes. Examples of man made slopes include fills, 

such as embankments, earth dams, levees; or cuts, such as highway and railway cuts, 

canal banks, foundations excavations and trenches. Natural forces (wind, rain, 

earthquake, etc.) change the natural topography often creating unstable slopes. Failure 

of natural slopes (landslides) and man made slopes have resulted in much death and 

destruction. 

In assessing the stability of slopes, geotechnical engineers have to pay particular 

attention to geology, drainage, groundwater, and the shear strength of the soils. The 

most common slope stability analysis methods are based on simplifying assumptions 

and the design of a stable slope relies heavily on experience and careful site 

investigation. In this chapter, we will examine the stability of earth slopes in two 

dimensional space using limit equilibrium methods. 

When you complete this chapter, you should be able to: 

 Understand the causes and types of slope failure. 

 Estimate the stability of slopes using limit equilibrium methods. 

 

Sample Practical Situation: A reservoir is required to store water for domestic use. 

Several sites were investigated and the top choice is a site consisting of clay soils (clay 

is preferred because of its low permeability – it is practically impervious). The soils 

would be excavated, forming sloping sides. You are required to determine the maximum 

safe slope of the reservoir. 

7.0 Definitions of Key Terms 

Slip plane or failure plane or slip surface or failure surface is the surface of sliding. 

Sliding mass is the mass of soil within the slip plane and the ground surface. 

Slope angle (or simply slope) is the angle of inclination of a slope to the horizontal. The 

slope angle is usually referred to as a ratio, for example, 2:1 (horizontal: vertical) 

7.1 Some Types of Slope Failure 

Slope failures depend on the soil type, soil stratification, groundwater, seepage, 

and the slope geometry. A few types of slope failure are shown in Figure 7.1. Failure of 

a slope along a weak zone of soil is called a translational slide (Fig. 7.1 a). 
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Translational slides are common in coarse-grained soils. 

 

Figure 7.1: Some types of slope failure (Budhu, pp. 524) 

 

A common type of failure in homogeneous fine-grained soils is a rotational slide. 

Three types of rotational slides often occur. One type, called a base slide, occurs by an 

arc enclosing the whole slope. A soft soil layer resting on a stiff layer of soil is prone to 

base failure (Fig. 7.1 b). The second type of rotational failure is the toe slide, whereby 

the failure surface passes through the toe of the slope (Fig. 7.1 c). The third type of 

rotational failure is the slope slide, whereby the failure surface passes through the slope 

(Fig. 7.1 d). A flow slide occurs when internal and external conditions force a soil to 

behave like a viscous fluid and flow down even shallow slopes, spreading out in several 

directions (Fig. 7.1 e).  
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7.2 Some Causes of Slope Failure 

Slope failures are caused in general by natural forces, human mismanagement 

and activities. Some of the main factors that provoke failure are summarised in Figure 

7.2 below. 

 

Figure 7.2: Some causes of slope failure (Budhu, pp. 526) 

 

As shown in Fig. 7.2, some of the most common causes of slope failures are erosion, 

rainfall, earthquake, geological features, external loading, construction activities (ex. 

excavation & fill), and reservoir rapid drawdown. 

7.3 Two-Dimensional Slope Stability Analysis 

Slope stability can be analyzed using one or more of the following: the limit 

equilibrium method, limit analysis, finite difference method, and finite element method. 
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Limit equilibrium is the most widely used method for stability analysis. In the following 

sections, we will learn some of the commonly used slope stability analysis methods that 

are based on the limit equilibrium. 

7.4 Stability Analysis of Infinite Slopes 

Infinite slopes have dimensions that extend over great distances. In practice, the 

infinite slope mechanism is applied to the case when a soft material of very long length 

with constant slope may slide on a hard material (e.g. rock) having the same slope. Let’s 

consider a clean, homogeneous soil of infinite slope s  as shown in Figure 4.3. To use 

limit equilibrium method, we must first speculate on a failure of slip mechanism. We 

will assume the slip would occur on a plane parallel to the slope. If we consider a slice 

of soil between the surface of the soil and the slip plane, we can draw a free-body 

diagram of the slice as shown in Figure 7.3. 

 

Figure 7.3: Forces on a slice of soil in an infinite slope. 

 

The forces acting on the slice per unit thickness are the weight, bzW  , the 

shear forces jX  and 1jX  on the sides, the normal forces jE  and 1jE  on the 

sides, the normal force N  on the slip plane and the mobilized shear resistance of the 

soil, T , on the slip plane. We will assume that forces that provoke failure are positive. 

If seepage is present, a seepage force bziJ ws   develops, where i  the hydraulic 

gradient. For a uniform slope of infinite extent, 1 jj XX  and 1 jj EE . To continue 

with the limit equilibrium method, we must now use the equilibrium equations to solve 

the problem. But before that we will define the factor of safety (FS) of a slope in the 

following subsection. The general objective of infinite slope stability analysis is to 

determine either the critical slope or critical height, or alternatively, the factor of safety 
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of the slope. 

7.4.1 Factor of Safety 

The factor of safety of a slope is defined as the ratio of the available shear 

strength, f , to the minimum shear strength required to maintain stability (which is 

equal to the mobilized shear stress on the failure surface), m , that is: 

m

f




FS                                  (7.1) 

The shear strength of the soil is governed by the Mohr-Coulomb failure criterion 

(Chapter 1).  

7.4.2 Stability of Infinite Slopes in 

u =0, cu soil. 

For the u =0, cu soil, the Mohr-Coulomb shear strength is given by: 

uf c                                  (7.2) 

From statics and using Figure 4.3, 

sWN cos  And sWT sin                    (7.3) 

The shear stress per unit length on the slip plane is given by: 
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The factor of safety is then, 
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At limit equilibrium, FS = 1. Therefore, the critical slope is 
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And the critical depth is:  
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7.4.3 Stability of Infinite Slopes in c’, '  soils - with no seepage. 

For a c’, ' soil, the Mohr-Coulomb shear strength is given by: 

'tan' '  nf c                             (7.8) 

The factor of safety FS is then: 
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The normal and shear stresses per unit length at the failure plane in reference to figure 
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7.3 are given by: 

l
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n '  And 
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m                           (7.10) 

For a slope without seepage, Js=0. From Eqns. (7.4, 7.9 and 7.10) we get: 
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At limit equilibrium FS = 1. Therefore, the critical depth zc is given by 
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For the case where, ' s , the factor of safety is always greater than 1 and is computed 

from Eqn. (7.6). This means that there is no limiting value for the depth z, and at an 

infinite depth, the factor of safety approaches to s tan/'tan . For a coarse-grained soil 

with c’ = 0, Eqn. (4.6) becomes: 

s

FS
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
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'tan
                               (7.13) 

At limit equilibrium FS = 1. Therefore, the critical slope angle is: 

' c                                  (7.14) 

The implication of Eqn. (7.8) is that the maximum slope angle of a coarse-grained soil 

with c’ = 0, can’t exceed ' . In other words, the case c’ = 0 and ' s  is always 

unstable and can not be applied to practical situations. 

 

Example 7.1 

An infinitely long slope is resting on a rock formation with the same inclination. The 

height of the slope is 3.2 m. 

 Determine a) the factor of safety, b) the shear stress developed on the sliding surface, 

and c) the critical height. s =250,  17.5 kN/m3, c’ = 12 kPa and ' 200. 

7.4.4 Stability of Infinite Slopes in c’, '  soils – steady state seepage. 

We will now consider groundwater at the ground surface and assume that 

seepage is parallel to the slope. The seepage force is: 

bziJ ws   

Since seepage is parallel to the slope, sini . From statics, 

ss bzWN  cos'cos''                        (7.15) 
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Therefore, the shear stress at the slip plane is: 
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From the definition of factor of safety (Eqn. 5.3), we get: 
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At limit equilibrium, FS=1. Therefore, the critical height is: 
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At infinite depth the factor of safety in Eqn. (7.17) becomes: 
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Eqn. (7.19) can also be used for calculating the factor of safety for a coarse-grained soil 

with c’ = 0. At limit equilibrium FS = 1, and hence, the critical slope for a 

coarse-grained soil with c’ = 0 is given by: 

'tan
'

tan 





sat

s                        (7.18) 

For most soils,
2
1' sat . Thus, seepage parallel to the slope reduces the limiting slope 

of a clean, coarse-grained soil by about one-half. 

If the groundwater level is not at the ground surface, weighted average unit 

weights have to be used in Eqns. (7.17 and 7.18). 

 

Example 7.2 

A long slope of 4.5 m deep is to be constructed of material having the following 

properties: sat =20 kN/m3, dry =17.5 kN/m3, c’=10 kPa, and ' =320. 

    Determine the factor of safety a) when the slope is dry, b) there is steady state 

seepage parallel to the surface with the water level 2 m above the base and c) the water 

level is at the ground surface. 

7.5 Rotational Slope Failure 

The infinite slope failure mechanism is reasonable for infinitely long and 

homogeneous slopes made of coarse-grained soils, where the failure plane is assumed to 

be parallel to the ground surface. But in many practical problems slopes have been 

observed to fail through a rotational mechanism of finite extent. As shown in Fig. (7.1), 

rotational failure mechanism involves the failure of a soil mass on a circular or 
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non-circular failure surface. In the following sections, we will continue to use the limit 

equilibrium method assuming a circular slip surface. Those methods,  

Which are based on non-circular slip surface, are beyond the scope of this course 

7.5.1 Stability of Slopes in cu, u =0 soils – circular failure surface. 

The simplest circular analysis is based on the assumption that a rigid, cylindrical 

block will fail by rotation about its center and that the shear strength along the failure 

surface is defined by the undrained strength cu. Figure 7.4 shows a slope of height H 

and angle s . The trial circular failure surface is defined by its center C, radius R and 

central angle . 

 

Figure 7.4: Slope failure in cu, u =0. 

 

The weight of the sliding block acts at a distance d from the center. Taking 

moments of the forces about the center of the circular arc, we have: 
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Where L is the length of the circular arc, W is the weight of the sliding mass and d is the 

horizontal distance between the circle center, C, and the centroid of the sliding mass. If 

cu varies along the failure surface, then: 

0

00

22

0

11
2

180

)...( 





Wd

cccR
FS nunuu              (7.20) 

The centroid of the sliding mass is obtained using a mathematical procedure based on 
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the geometry or the sub-division of the sliding mass into narrow vertical slices. 

 

Example 7.3 

Find the factor of safety of a 1V:1.5H slope that is 6 m high. The center of the trial mass 

is located 2.5 m to the right and 9.15 m above the toe of the slope. Cu = 25 kPa, and 

 =18 kN/m3. Take d = 3.85 m. 

7.5.2 Effect of Tension Cracks 

Tension cracks may develop from the upper ground surface to a depth z0 that can 

be estimated using Eqn. (7.13). The effect of the tension crack can be taken into account 

by assuming that the trial failure surface terminates at the depth z0, thereby reducing the 

weight W and central angle . Any external water pressure in the crack creates a 

horizontal force that must be included in equilibrium considerations. 

 

Example 7.4 

Rework Example 4.3 by taking into account tension cracks. Geometric data are: 

 =66.60, area of sliding mass = 27.46 m2 and d = 3.48 m. 

7.5.3 Stability of Slopes in c’, ' soils – Method of Slices. 

The stability of a slope in a c’, '  soil is usually analyzed by discretizing the 

mass of the failure slope into smaller slices and treating each individual slice as a 

unique sliding block (Fig. 7.5). This technique is called the method of slices. 

 

Figure 7.5: Slice discretization and slice forces in a sliding mass. 

In the method of slices, the soil mass above a trial failure circle is divided into a 

series of vertical slices of width b as shown in Fig. 7.6 (a). For each slice, its base is 

assumed to be a straight line defined by its angle of inclination   with the horizontal 

whilst its height h is measured along the centerline of the slice. 



Soil Mechanics II: Lecture Notes                           10 

 

Figure 7.6 a) Method of slices in c’, '  soil, b) Forces acting on a slice. 

 

 

The forces acting on a slice shown in Fig. 7.6 (b) are: 

W = total weight of the slice =  ×h×b 

N = total normal force at the base = N’ + U, where N’ is the effective total 

normal force and U = ul is the force due to the pore water pressure at 

the midpoint of the base length l. 

T = the mobilized shear force at the base = lm  , where m  is the minimum 

shear stress required to maintain equilibrium and is equal to the shear 

strength divided by the factor of safety, FSfm   .  

X1, X2 = shear forces on sides of the slice and E1, E2 = normal forces on sides 

the slice. The sum of the moments of the inter slice or side forces about 

the centre C is zero.  

Thus, for moment equilibrium about the centre C (note the normal forces pass through 

the centre): 
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Where, n is the total number of slices. Replacing f  by the Mohr-Coulomb shear 

strength, we obtain: 
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The term c’l may be replaced by cos/'bc . For uniform c’, the algebraic summation of 

c’l is replaced by c’L, where L is the length of the circular arc. The values of N’ must be 

determined from the force equilibrium equations. However, this problem is statically 
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indeterminate – because we have six unknown variables for each slice but only three 

equilibrium equations. Therefore some simplifying assumptions have to be made. In 

this chapter two common methods that apply different simplifying methods will be 

discussed. These methods are called the Fellenius method and Bishop simplified 

method. 

7.5.3.1 Fellenius or Ordinary or Swedish Method 

The ordinary or Swedish method of slices was introduced by Fellenius (1936). 

This method assumes that for each slice, the interslice forces X1=X2 and E1=E2. Based 

on this assumption and from statics, the forces normal to each slice are given by: 

ulWNulNWN   cos''cos               (7.22) 

Substituting N’ into Eqn. 5.21, we obtain: 
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For convenience, the force due to pore water is expressed as a function of W: 
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Where ru is called the pore water pressure ratio. Consequently, we have: 
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The term ru is dimensionless because the term 1 bhub ww  represents the 

weight of water with a volume of 1bhw . Furthermore, ru can be simplified as 

follows: 
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In the case of the steady state seepage the height of water above the midpoint of 

the base is obtained by constructing the flow net. Alternatively, an average value of ru 

may be assumed for the slope. By doing so it is assumed that the height of water above 

the base of each slice is a constant fraction of the height of each slice. If the height of 

the water and the average height of the slice are equal, the maximum value of ru 

becomes  w , which for most soils, is approximately 0.5. Note that the effective 

normal force N’ acting on the base is equal to ulWN  cos'  

or )sec(cos'  urWN  . If the term )sec(cos  ur  is negative, N’ is set to zero 

because effective stress can not be less than zero (i.e. soil has no tension strength). 
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The whole procedure explained above must be repeated for a number of trial 

circles until the minimum factor of safety corresponding to the critical circle is 

determined. The accuracy of the predictions depends on the number of slices, position 

of the critical surface, and the magnitude of ru. There are several techniques that are 

used to reduce the number of trial slip surfaces. One simple technique is to draw a grid 

and selectively use the nodal points as centers of rotation. 

 

Example 7.5 

Using Fellenius’ method of slices, determine the factor of safety for the slope of 

example 4.3 for ru = 0 and 0.4. Take the number of slices as 8, each having 1.5 m width 

(check the width of the last slice). Soil properties are c’ = 10 kPa, ' =290, and  =18 

kN/m3. 

Bishop Simplified Method 

This method assumes that for each slice X1=X2 but E1 E2. These assumptions 

are considered to make this method more accurate than the Swedish method. An 

increase of 5% to 20% in the factor of safety over the Swedish method is usually 

obtained. Referring to Figure 7.6 b, and writing the force equilibrium in vertical 

direction (in order to eliminate E1 and E2), the following equation for N’ can be found: 
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In addition to the force in the vertical direction, Bishop Simplified method also satisfies 

the overall moment equilibrium about the center of the circle as expressed in Eqn. (7.21). 

Putting cos/bl   and Wrub u , and substituting Eqn. (7.27) into Eqn. (7.21), we 

obtain: 
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where, 

FS
m

'tansin
cos
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                       (7.29) 

Equation (7.29) is non-linear in FS (that is FS appears on both sides of the equations) 

and is solved by iteration. An initial value of FS is guessed (slightly greater than FS 

obtained by Fellenius’ method) and substituted to Eqn. (7.29) to compute a new value 

for FS. This procedure is repeated until the difference between the assumed and 

computed values is negligible. Convergence is normally rapid and only a few iterations 
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are required. The procedure is repeated for number of trial circles to locate the critical 

failure surface with the lowest factor of safety. 

 

Example 7.6 

Re-work Example 7.5 for ru = 0.4 using Bishop’s simplified Method. 

 

 

 

 

 

 

 

 


