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Preface

This work first aims at introducing the minimal generalized galleries in
the Tits building of a reductive group G over a field k, and at constructing
a family of equivariant smooth resolutions for its Schubert varieties, which
may be described by these galleries in terms of Tits geometry (cf. [47],
Ch. 6-9). The second aim is to:

+ introduce the Universal Schubert scheme and Schubert schemes of
a reductive S-group G scheme, where S denotes an arbitrary base
scheme, and its description by transposing the buildings terminology
to this relative situation;

+ construct a canonical equivariant Resolution of Singularities of the
Universal Schubert scheme of G, which amounts to the construction
of smooth Resolutions for each Schubert scheme;

* study the behaviour of these Resolutions under base extensions
S’ — 8.

The canonical Schubert scheme smooth resolution is obtained after
a twisted constant finite extension of S. Under certain conditions these
smooth resolutions are obtained as the fibers of the Universal Smooth
Resolution of G. All these constructions rely on combinatorial data only.
Techniques, definitions, and verifications of this part of the work are
schematical and developed in the setting of S-reductive group schemes.
This may be of interest as until now, few resolutions of singularities of
algebraic varieties which are valid on fields of characteristic p are known.

The first seven chapters are written in the usual algebraic geometric
style over a field language, as in Hartshorne’s book [33]. They are relatively
self-contained, and give an overview of the subsequent developments in the
case of the linear group GI(k*!) over a field &, or even over a base scheme
S, thus they furnish both a guide and an example of the results of the rest
of the book. The classical Schubert varieties of a linear group appear as
subvarieties of the Flag varieties associated to k™! (resp. the projective
space P(k™')). They are indexed by couples formed by a matrix M (The
relative position matrix) with non negative integers as entries, and by a
flag D of k™*'. A flag belongs to a Schubert variety if its subspaces satisfy
intersection dimensional conditions defined by its corresponding couple.
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The Schubert varieties of the Grassmann variety Grass (k') of
n-dimensional linear sub-spaces of k™! correspond to the classical
Schubert varieties, for £ = R, or C, which play an important role in
Topology (cobordism theory), Algebraic Geometry, Representation Theory,
determinantial ideals, and Singularity Theory, particularly in the definition
of Boardman-Thom singularities. These varieties have been studied for a
long time by classical authors in connection with ennumerative geometry
problems. One of the main results was obtained by F. Severi and (his
student) J. Todd, who first obtained a formula for the arithmetic genus of
a subvariety of the projective space in terms of the intersection properties
of Schubert varieties. Ehresmann proved that “the classes defined by the
Schubert varieties of Grass (k™'), give a basis of their Z-homology (resp.
cohomology)” [28]. Characteristic classes of a non-singular algebraic variety
may be defined, by means of a classifying map, as the pull-back of special
Schubert Varieties. More generally Chevalley-Demazure proved that the
Chow ring of generalized Flag varieties (Varieties of parabolics) is given in
terms of Schubert varieties. The cohomological point of view was further
developed in A. Borel thesis in terms of the transgression homomorphism.
Finally, invariant differential forms were obtained by A. Weil and S. Chern
representing dual classes of Schubert varieties.

Equivariant smooth resolutions of singularities of Schubert varieties
are obtained as Configurations varieties. The underlying sets of points
of these varieties are subsets of finite products of Flag varieties (resp.
Grassmann varieties) of £+, or more generally subsets of finite products
of the Flag complex of £*!, defined by the incidence relation between flags.
The Flag complex of &' is a simplicial complex whose vertices correspond
with subspaces, and its simplices with flags of £*. It is endowed with a
natural incidence relation: Two subspaces of &' are incident if one of
them is contained in the other one (cf. [47], 1.2). A finite graph is naturally
associated with a Configurations variety, such that to each one of its vertices
is associated a type of a flag, and to each one of its edges a type of incidence
of flags. Such a graph is called a typical graph.

A generalized gallery of the Flag complex is, by definition, the image
of a linear typical graph by a mapping preserving types, and corresponds
to a point of a Configurations variety defined by this graph. Among the
linear typical graphs are the minimal generalized galleries of types
characterized as linear typical graphs defining Configurations varieties
birationally equivalent to Schubert varieties. To such a linear graph is
thus associated the relative position matrix indexing the Schubert variety
birationally equivalent to the Configurations variety defined by this linear
graph. A minimal generalized gallery of the Flag complex may be seen
as a generic point of such a Configurations variety. It is worth noting that
minimal generalized galleries, which play a central role in this work, are
characterized by a combinatorial property.

For a Schubert variety of GI(k*!), a family of Configurations varieties,
which are smooth resolutions of this variety, is thus obtained. To a relative
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position matrix is associated a typical graph (resp. a minimal generalized
gallery of types), thus defining a canonical smooth resolution of a Schubert
variety defined by this matrix. As an application of these canonical smooth
resolutions a characterization of the Singular Locus of the Schubert
varieties of GI(k™*'), which holds for all characteristics, is given. In fact,
this was the first such characterization (Author Thesis 1983, cf. [16]).

This result is completed by the construction of Configurations varieties
giving a Nash smooth resolution of singularities for each Schubert
variety in a Grassmannian, i.e. the pull back of the tangent module to the
corresponding Schubert cell admits a locally free extension to this smooth
resolution.

The subcomplex of the Flag complex whose simplices are given by the
flags adapted to the canonical basis of £ (The canonical Apartment),
plays the main role in the determination of minimal generalized galleries,
and relate this determination to calculations in the symmetric group in
r +1 letters.

To generalize the above results for GI(k!) to a reductive k-group G
observe that the Flag complex of £*! may be rendered solely in terms of
the linear group by means of the bijective correspondence D - P,, where
P, denotes the stabilizer of D in GI(k™") (as it follows from a result of
A. Borel-Cl. Chevalley, cf. [6], Th. 11.16). Thus the stabilizers of flags
correspond to the parabolic subgroups of the linear group, i.e. the smooth
subgroups P such that the quotient space GI(k™*')/Pis a projective variety.
Then the incidence relation between flags corresponds with the opposite
of the inclusion relation between parabolics, and generalized galleries
become configurations of parabolics defined by the incidence relation. This
correspondence establishes a simplicial complex isomorphism between the
Flag complex of £ and the Tits Building I(Gi(k™*')). Recall that the Tits
Building I(G) of the k-reductive group G is the simplicial complex whose
simplices are the parabolic subgroups of G, endowed with the incidence
relation given by the opposite relation to the inclusion of parabolics (cf.
[47], Ch. 5). All the definitions stated in the setting of Flag complex may
be naturally transposed to that of general buildings. As a particular case a
minimal generalized gallery (resp. Configurations varieties) in a building
I(G) of a reductive k-group G is defined following the same pattern of
its corresponding definition in the Flag complex, i.e. as a generic point
of a Configurations variety defined by a minimal generalized gallery of
types (resp. as a set of images in I(G) of a typical graph by typical graphs
morphisms). The construction of a family of smooth resolutions of Schubert
varieties of a reductive k-group G may be thus carried out by determinig
the minimal generalized galleries in an apartment.

The Apartment of the Flag complex of k™! corresponds to the
subcomplex of I(G) defined by the Weyl group of G endowed with the
canonical generating reflexions (The Coxeter Complex of (3). The latter
plays the same role in the determination of minimal generalized galleries
in I(G) that the former one in the Flag complex.
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There is a threefold reason for introducing the relatively heavy
machinery of building theory in the study of Schubert varieties and their
smooth resolutions:

+ Smooth resolutions appear as classes of linear subcomplexes of I(G),
1.e. families of generalized galleries whose corresponding galleries of
types are defined by minimal generalized galleries in I(G).

+ Relations between these smooth resolutions may be easily stated in
1(G) (Adjacency, composition).

* By means of the Incidence Geometries associated to buildings,
geometrical representations of smooth resolutions may be obtained in
algebraic symmetric spaces, or in terms of well known combinatorics
(The twenty seven lines on a cubic surface complex, the twenty eight
bitangents to a plane quartic complex --- etc.).

As an example the geometric realization of I(G(I(k™')) is given by the
flags of P"(k), and that of an apartment by the barycentric subdivision
of the r-dimensionnal simplex. Thus the geometric realization of
I(G) furnishes a natural frame to develop Schubert calculus and
Configurations varieties, as in the case of the linear group (cf.
Appendix).

Chapters 11 to 15 are written in the schematically setting. The technical
results concerning the schematic closure needed in our developments are
all included in the last two sections of Chapter 15. A Schubert scheme of G
is defined as the schematic closure of a Schubert cell in the Parabolics
scheme of G (cf. [23], Ch. XXV). The Schubert cells of a reductive S-group G
over an arbitrary base scheme S are defined in terms of couples of parabolics
in standard position, i.e. such that they contain locally in S a common
maximal torus of G. These couples are classified modulo the adjoint action
of G on the scheme of couples of parabolics in standard position, by the
twisted constant finite scheme of types of relative positions. The above
definition makes sens as Schubert cells are quasi-compact if S i1s affine,
and the Parabolics scheme of G is projective and thus separated.

It is shown how all the building constructions above, in the case of a
reductive group over an algebraically closed field, may be carried out in the
relative case to produce resolutions of singularities of Schubert schemes
associated to a reductive S-group scheme G.

The construction of galleries configurations smooth resolutions of
Schubert schemes may be carried out once the basical building machinery
1s extended to reductive S-groups. The parabolic subgroups scheme Par(G),
endowed with the incidence relation, plays the role of a relative building.
Remark that the only couples of parabolics that we consider in this setting
of the relative building, are those in standard position (cf. loc. cit.).
Actually, the relevance of the incidence relation is that it allows defining
configurations subschemes of finite products of Par(G). The complexes
associated to buildings (Weyl complex, typical simplex, convex hulls, root
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subcomplexes,...etc.) become, in this setting, twisted constant finite schemes
endowed with incidence relations. These schemes are all defined by etale
descent from the case where G is splitted.

In order to make all constructions intrinsic the Universal Schubert
scheme and its Universal Smooth Resolution are introduced. The
former is naturally a scheme over that of types of relative positions, and
the latter a scheme over that of minimal galleries of types. The main fact
is that the Universal Smooth Resolution is a canonical smooth resolution of
the Universal Schubert scheme, after the twisted constant finite extension
of the scheme of types of relative positions by the scheme of minimal
galleries of types.

The question arises naturally arises as to know whether the construction
of the smooth resolutions of the Schubert schemes associated to a reductive
S-group scheme G commutes with base extensions S’ — S. Chapter 16 is
devoted to this question. The Universal smooth resolution of the Universal
Schubert Scheme associated to a Chevalley group scheme G over Z defined
by a Z-root data R is introduced and it is shown that there exists an open
not-empty subset U of Spec(Z) with the following property. The Universal
Smooth resolution of G, commutes with the base extensions S — U.

Roughly speaking that means that the above Global smooth resolution
connects (almost) all the possible characteristic p smooth resolutions
of all Schubert schemes corresponding to groups of type R. It follows a
condition on S so that the construction of the Universal smooth resolution
of a reductive S-group scheme G commutes with base extensions S’ — S.

In the Appendix we establish a correspondence between the main
theorems of [47] concerning automorphisms group of a building I(G) of a
reductive group on an algebraically closed field and the canonical set of
generators and relations defining G as given in SGA3. This suggests how
building calculations may be expressed into canonical generators and
relations. It is also dicussed how the constructions of this work may be
represented in the Tits incidence geometries corresponding to the reductive
groups of differents types (Schubert Geometry), and how different smooth
resolutions given by different galleries are related by braid relations.

One of the aims at the outset of this work was to find a common setting
for the smooth resolutions given by configurations varieties associated to
flag varieties (cf. [12] and [13]), and the smooth resolutions, associated
to Schubert varieties in a quotient space G/B of a k-reductive group by a
Borel subgroup (cf. [21]). The latter are given by the contracted products,
corresponding to usual minimal galleries, first introduced by R. Bott and
H. Samelson in [7], and generalizing a construction of M. Morse in [38].

The author thanks Professor P. Deligne that once remarked him that
the above mentioned smooth resolutions by configurations varieties may be
rendered by some kind of minimal gallery; and professor L.é Dliing Trang,
who first suggested that he should write this book.

Carlos Contou-Carrére
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Chapter 1

Grassmannians and Flag
Varieties

This chapter is an introduction to a building point of view for describing
Grassmann varieties (resp. flags varieties) of £”+! (where k denotes a field).
The combinatorial grassmannians associated with a finite set are introduced.
The elements of this set correspond to the subspaces of k"1 adapted to the
canonical basis. They index the canonical affine open sets of Grassmann va-
rieties and allow a geometrical interpretation of their natural coordinates.
Generally the set of combinatorial flags, corresponding to the flags of k" *1,
adapted to the canonical basis, indexes the affine canonical open sets of flags
varieties. The algebraic variety structure of Grassmannians (resp. flag va-
rieties) is defined in terms of local canonical coordinates in these open sets.
The natural fibering in Grassmannians of flag varieties is obtained. Their pro-
jective variety structure over k is shown in terms of the Pliicker and Segre’s
embeddings.

1.1 Grassmann variety and combinatorial grassmannian

Let k be a field. Given a finite set £ # () (resp.F # ), we denote by k¥
the k-vector space with a basis eg = (e;);cp (the canonical basis of k)
indexed by E, and Mgxr(k) stands for the set of k-matrices M with rows
(resp. columns) indexed by E (resp. F), endowed with the canonical k-vector
space structure. Write k? = {0}.

For n € N, let Grass,(k¥) be the set of n-dimensional subspaces of k¥.
Of course, if |E| < n, then Grass, (k¥) is an empty set, where given a finite
set F' we put |F| = cardinal of F. Write:
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Grass(k¥) = H Grass, (k¥) .
neN
With the aim of defining a k-variety structure on Grass, (k¥) we introduce

the combinatorial grassmannian defined by the finite set E; given by the
class of its subsets

Grass(E) = H Grass,(E) =P(E) ,
neN

where Grass,(E) = Pn(E) denotes the class of subsets of E containing n
elements (cf. [50]). To a not empty subset H of E is associated a direct sum
decomposion

kP = kH o pH
with H- = E— H and k™ the k-vector subspace with canonical basis indexed
by H C E. Denote by g : k¥ — kH (resp.rys : k¥ — kHL) the canonical
projection, and define

Ug = {S € Grass,(kP)| rank (ng)s =n} ,

where, given a k-subspace S C k¥, (my)s (resp.(mg1)s) is the restriction
of Ty (resp.my1) to S. Denote by ey the canonical basis of k¥ and given
S € Uy let (7)5;' (exr) be the lifted basis of S.

Definition 1.1 Let S € Uy, and M((7r)g' (em)) € Mpxu (k) be the matriz
whose j-th column vector (j € H) is given by the eg-coordinates of the j-th
vector of the lifted basis of S:

en(S) = (mu)g'(en) = ((ru)g' (€j))jen

of S, where ey = (e;)jen denotes the canonical basis of k™. Denote by
Mp(S) = (€1(9) tienr jen) € Myr (k)

the HY x H-submatriz of M((7s)g" (em)) given by its H-row vectors. We
call ( g(S)) Up -coordinates of S, and My (S) the Uy -coordinates matrix
of S

Fix a total order on F given by some bijection F ~ [1,|E|]. Given H €
Grass,(E) there are induced bijections: H ~ [1,|H|] (|[H| = n) (resp. H+ ~
[1,|E|—|H|] ). Observe that the lifted basis (75)g" (esr) is naturally ordered
by the order of H induced by that of E. Denote by: (8;)i<;j<m| (resp.

(@i)i1<i<(1B|- ) the corresponding total order of H (resp. H7L). Write

eH = (eﬁj)1§j§|m (resp. ey = (eaihgig(m\f\m)),
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and given S € Grass,(k¥), write ég(S) = (€;(9))1<j<imy = (7 )5 (em).
The lifted basis éx(S) and the Ug-coordinates matrix My (S) = (¢/1(5)) €
M, g1 x 1) are related as follows:

€ (5) = eg; t+ Z fg(s)eai :

1SiS(|1E|-|H])

Observe that the matrix M ((7#)5'(er)) may be obtained from a basis
€ = > aje; (1 =7 < |H|) of S by normalization. Write A((é;)) =
1| B
(aij) € Migxm|(k) (the |E| x |H|-matrices with k-coefficients) and denote
by A((é;))m the |H| x |H|-submatrix defined by the row vectors of A((€;))
indexed by H. The condition S € Uy implies that A((€;))n is an invertible
matrix. The result is:

M((mr)s" (er)) = A((€;)) x A((&;))y" -

Thus the matrix Mg (S) is the |H*| x |H|-submatrix of A((¢;)) x (A((&;))) 5
whose row vectors are indexed by H+. Observe that the image of the j-th
column vector of the submatrix A((&;)) x A((€;))5" by (7m)s is the j-th
vector of the basis ey ordered by the order of E.

Definition 1.2 Denote by M}, (k) C Mgexu(k) the subset of rank |H|-
matrices. We say that M € M}, (k) is normalized if its H x H-submatriz

(aap) satisfies (anp) = (dap)-

The particular case where E is totally ordered and H C E is endowed with
the induced order is of interest for us. The coefficients of M may be ordered
accordingly. In this case every matrix A € M g|—n)xn(k) gives rise to a £/ x H-
normalized matrix in a canonical way. It may be noted that M ((7g)g' (em)) €
M} (k) is a normalized matrix.

On the other hand, the set Grass, (k%) identifies with the set of equiva-
lence classes: My, 1, n]]( )/ ~, defined by the equivalence relation:

M~M & M=M xA,

where A € GI(k™). The equivalence relation “ ~” is defined by the canonical
mapping My, 1, ,1(k) — Grass,(k E), associating with A = (aq;) the k-
subspace k¥, S = Vect((3 anjeq))- There is a canonical section of this
mapping on Uy given by S — M ((mw)5'(er)) (cf. definition 1.15). The
fiber of this mapping over the subspace S identifies with the set of its ordered
basis (cf. definition 1.15).

Given a subspace S and H,H' € Grass,(E) we shall now compare its
Upg-coordinates with its Ugr-coordinates. Let H' € Grass,(E) such that
S € UgNUg. It results from the above description of the coordinates matrix

( g(S))(resp ( H' (S))) the following relation:
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(EH'(8)) = pHH((EH(S))),

where (1 "“H) denotes a rational function of the Upg-coordinates of S.

More precisely stated, the affine space Ay = A(Mg.1 5 (k)) defined by the
k-vector space of H* x H-matrices with coefficients in k is the k-variety with
coordinates ringing the polynomial algebra k[Xg | in the set of indeterminates
(XD ijye mixm, and Y H) s a rational function in the variables (xi).
Let Ay C Ay denote the domain of definition of w(H/’H), which is an open
Zariski subset of Ay .

On the other hand, there is a bijective mapping Uy — Ay defined by the
Up- coordinate matrix S — My (S). The intersection Uy N Uy, corresponds
by this mapping, to the set of k-points Ay g/ (k) of Ayp/, and, as it is easy
to see, the rational function (¥ “H) induces an isomorphism of k-varieties:

H' H
HAD | A — A

which for the sake of briefnnes is denoted by »@HH).  The set
(pH *H))(H,7H)6GMSSH(E)XGmssn(E) satisfies the cocycle condition:

w(HNvH) _ w(H//#H/) o w(H/vH) )

Thus, the couple ((Ax)HeGrass,(E), (@ "))} defines a k-variety. It is im-
mediate that, by construction, its underlying set of k-points corresponds to
Grass,(kP).

Definition 1.3 If no confusion arises denote also by Grass, (k) this variety
(the Grassmann variety of the n-th dimensional subspaces of k%),
and write:

Grass(k¥) = H Grass, (k¥)

neN,n<|E|

(The Grassmann variety of k¥). By construction, the indeved set
(Un)HeGrass,(B) defines an affine open covering

Grass,(k¥) = HGGTZJSS (E)UH

(the canonical open covering of Grass, (k¥))

Remark 1.4 There is a natural action of the k-group GU(KE) of k-
automorphisms of k¥ on Grass, (k¥):

GU(EP) x Grass,(k¥) — Grass, (k¥),

(9,5) — g-S. This action may be easily proved, in terms of Ug -coordinates,
to be algebraic and homogeneous. We shall later prove that Grass,(k¥) is
in fact isomorphic to an homogeneous space defined by a subgroup of GI(k¥).
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1.1.1 Grassmannian functor

The following section gives a brief functorial approach to the Grassmannian
variety. We refer the reader to [24] for more details. Let 9rass, (k%) be the
k-functor, from k-algebras to Sets, associating to a k-algebra A the set of rank
n projective A-submodules M of AF.

It is well-known that ¥rass,, (k%) is a sheaf for the Zariski topology. There
is a functorial isomorphism

L2 Grass, (k¥) — Grass, (k¥)

defined by 14 : s — T'(Spec(A),s*(&,)), where s denotes a section s :
Spec(A) — Grass,(k¥), and &, the tautological OGrass, (x7)-module (cf.
1.13).

On the other hand, if A is a local ring the set ¥rass, (k¥)(A) identifies with
the set of equivalence classes of rank n E X [1, n]-matrices with coefficients in
A: My 1.0 (A)/ ~, defined by the equivalence relation: M ~ M’ «<— M =
M’ x A, where A € GI(A™). By construction of Grass, (k¥) and by using the
section of My, ry .1(k) — Grass, (k¥) on Uy obtained by normalization of
a matrix defining a basis of S, it follows that ¢4 is a bijection, and finally,
by a standard argument that ¢ is a functorial isomorphism. Equivalently
Grass,(k¥) may be described as associating with a k-algebra A the set of
locally trivial Ogpec(a)-submodules .# of ﬁgp cc(A) which are locally direct

factors.

1.2 The Pliicker embedding of the Grassmannian

A Grassmann variety may be canonically embedded in a projective space as
a closed subvariety thus proving that it is a projective variety. Assume that
the canonical basis e of k¥ is an ordered basis. Denote by ep = (e;)ick the
canonical basis of k¥, and fix a total ordering of E which gives an ordered
basis of k¥. Let H € Grass,(E). We suppose H endowed with the induced
ordering, and we write H = {iy,...,i,} with i1 < ... < iy, and 44 (H) =
n
i1y ey in(H) = in. The n-th exterior product Ak% of k¥ is endowed with the

canonical basis A eg = (Aen)Hearass,(B) = (€iy () A -+ A €, (H)) HeGrass(E)-
There is a mapping

ip = ipy: Grass,(k¥) — P(/\kE) = G?“assl(/\k:E,

n n
where P(Ak¥) denotes the projective space associated with Ak¥, defined as
follows. Let € = (€;);<;<,, be a basis of S. Write: €; = Zli'l a;;je;, and
A(é) = (ai;). The result is:

él/\/\én: Z AH(é)eil(H)/\"'/\ein(H) ’
HeGrass(E)
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where Ay (€) = det A(€)y, and A(é)y denotes the |H| x |H|-submatrix
defined by the H-rows of A(é). The mapping ip associates with S €

n
Grass,(k¥) the point of P(Ak¥) with homogeneous coordinates (resp.
Pliicker coordinates)(A (€)) meGrass, (£)- Let us see that this mapping is

well defined, i.e. that the point in P(Ak¥) corresponding to S does not depend
on the choice of the basis € defining its homogeneous coordinates. If &’ is an-
other basis of S, we might then write A(&') = A(é) x B, where B € GI(k!1).
Thus for H € Grass,(E) the result is (Ag(e’)) = (det(B)Ay(€)) proving
that the image is independant of the choice of a basis of S.

In fact, the mapping ip is induced by a morphism of k-varieties

Grass,(k¥) — P(AK®). So to see this we write (z1)pgerass, (r) for the

n
homogeneous coordinates in the projective space P(Ak¥) defined by the basis

A er of Ak¥ and given Hy € Grass,(E), let (—;If )HeGrass, (E) be the affine
0
coordinates of the open affine set:

Py = {(za) € P(\EP) | 2m, # 0} .

Lemma 1.5 Keep the above notation and terminology.

1) The restriction mapping ip g, : U, — Pn,) is given by ip g, : S +—>
(AA;i((eé)))HGGMSSn(E), where € is a basis of S, and is induced by a mor-
0

phism of k-varieties, which we denote also by ip g, .

2) The morphism ip g, defines a closed embedding.

Proof Given S C kT corresponding to a point v € Ug,, let € be a basis of S,
ém,(S) = (7m,) 5" (emy) = (€s;(S))1<j<n the normalized basis of S defined as

in 1.1, and My, (S) = (550(5)) (1<i < |Hg|,1 <5 < |Hyl|) the coordinate
matriz. Thus:

s, (S) =esj+ Y &(S)eqi -

1<j<|Hg' |
From A(€) x A(é);Ii = A(€én,(S)) one deduces:

An(A(e))
A, (A(€))

The right member being a polynomial in the (55” (S)) one concludes that the
P(#,)-affine coordinates of S are polynomials in the My, = (fgo(S)) This
proves our first assertion.

The second statement of the lemma follows from the following relation
between the coordinates matrizc My, (S) and the affine coordinates ip g, :

(V H € Grass,(E)) = Ap(A(en,(9))) -
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S — Ap(A(€n,(S))) of S. Observe that Ap,(A(ém,(S))). Let Ho(i,j) =
{i} U (H — {j}) for (i,j) € Hy x Hy, then:

Ay (ijy (€, (9))

__ ¢Hyp
Ay CEm(S)) o )

ij

From the proof of 1) it can be deduced that there exists a family of polynomi-

C A (e, (S Ay (i,g) (Erg (S))
als (Pu((Xij))) HeGrass, (B) satisfying 7A:D((g:’0((s)))) = PH((%))'

Thus the image of ip m, is the closed subvariety of P(g,) defined by the ideal

given by (;TH - PH(I;I[)*I;?))HGGMSSH(E)- This suffices to show that ip, m,

defines a closed embedding.

Thus we have the following

Proposition 1.6 The family of embeddings (ip u)HecGrass,(B) defines an

embedding of k-varieties ip : Grass, (k) — P(A\kT) called the Pliicker em-
bedding. More precisely, given Hy, Hi € Grass,(E) there is an isomorphism
U, NUpg, = Ug, XIP‘(;\kE) Un, induced by ip m, X ip p,. In fact, Grass,(kF)

is a proper k-variety, and thus ip is a closed embedding (cf. [24], §9, [25]).

Proof The coordinates transformation cocycle, defined on P g, )P (g, from
the affine coordinates (jTHO) on Py, to affine coordinates (;THl) on P,

AH(é) )
Apy (é)
of S, are related to the Hy-affine coordinates (AH(é)) of S by: AHI@

Amn,(€)
22‘;52 AA;O((Z)). Thus the family of embeddings defines a morphism. We now

proceed to show that this morphism is itself an embedding.
Given a section (S,S") of Un, XlP’(/n\kE) Un,, the Py, -affine coordinates

(resp. P,)-affine coordinates) of ip m,(S) (resp. ip u,(S)) are given by
the A eg-components of the exterior product Nép,(S) = €y 1(S) A - A
€ty (S) (resp. Nem,(S) = €m, 1(S) A -+ A ém, n(S)). As by hypothe-
sis ip p,(S) = ip.m, ('), there exists a section A of ﬁ};(}l\w) satisfying
N, (S) = A€, 1(S)). On the other hand, the set of sections v (resp. v') of
S (resp. S’) is characterized by Nép,(S) Av =0 (resp. Ném,(S)Av' =0), so
we conclude that S = 5.

Let us see that Grass, (k¥) is a proper variety and then its image by ip
n n

in P(A\(kF)) is also proper and thus, a closed subset of P(\(k¥)). Let K be
a field extension of k endowed with a valuation v, and with integers subring
Ag C K. Given a K-vector subspace S C K it may be shown that there
exists an Ax-submodule Sa,, C AL satisfying: S = K ®a, Sa, and giving
a Ag-section of Grass,(k¥). Let (A (S)) be the homogeneous coordinates
of S calculated with respect to some basis of S. Choose Hy € Grass(E) such

THy xg
JZHI IHO

s given by :fTH = . Accordingly the Hi-affine coordinates (
1
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that the valuation v(A g, (S)) is minimal amongst the set (v(Ap(S))). Define
Sax = Vect((é;)jen,), where:

AHO(Z,])(S)
6; = e] -+ ;Lmei .

It is clear that the generic fiber K @a, Sa, of Sa, is equal to S, and that
Sa, is a direct factor of AE. By the valuation criterium it may be concluded
that Grass,(k¥) is a k-proper variety, and that ip is a closed embedding.
This proves the last assertion.

Remark 1.7 The exterior product AKE is a Gl(kF)-representation, so there

is a natural action of GI(kT) on IP’(/T(kE) The Pliicker morphism ip is GI(k¥)-
equivariant.

1.3 Flag varieties

Flag varieties are natural generalizations of Grassmannians. Let n = (n; <
.. < ny < ny41) be an increasing sequence of positive integers with n; 1 = |E|.
Define the set of flags of k¥ of type n by:

Drap, (k¥) = {(Vi C ... €V, C Vi41) | Vi = n;-dimensional subspace of k¥ }.
Thus Drap(k¥) is the subset of the set theoretic product:

+1
HGrassn kE HGrassn ),

i=1

formed by the (V;);<;<;11 satisfying the inclusion conditions V; C Vj41 for
1 <4 £ 1. More precisely stated, there is a subfunctor Drap,(k¥) of

!
[1 Grass,, (k¥), from k-algebras to sets, associating with A the set of flags
i=1
of projective submodules of AF of type n (cf. [24]). The set of sections of
Drap,, (k¥) over k is given by Drap(kF).
Let us show that Drapn(k;E) is the underlying set of a k-subvariety of

the product of k-varieties H Grass,,(k¥) (i.e. that it is representable by a
=

k-scheme of finite type). Observe that there is a closed embedding:

L oy I+1  n;
Hz ! HGrassnl(kE) — TIP(AKE)
= i=1
given by the product of the corresponding Pliicker embeddings.
It suffices to see that there is a set of equations in the Pliicker coordinates
of the V;’s, characterizing the image of the composed morphism of functors:
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141 n;
Drap, (k*) — [TP(AK®),
i=1

for I = 2. Let V3 (resp.Vz) be a m-dimensional (resp. n-dimensional) subspace
of k¥. We suppose m < n. Let ey = (€13)1<i<m (resp. €2 = (e25)1<<,) be a
basis of V1 (resp. V3).
The Pliicker coordinates of V; (resp. V2) are thus given by
(AH(el))HEGrassm(E) (resp'(AJ(62))J€G7‘(LSSH(E))7 with:

et N ... \Netm = > Ap(er)ei, my N Neg, ()
HeGrassm (E)
(resp. ea1 A ... Aegp = > Aj(e2)ei oy N Nei(g))-
JeGrass, (E)

Let v= Y e €kE then

1=ig| B
e1iA...Nem ANv = > dr(e1,v)ei, (k) N A€y (K)
KeGrassmy1(FE)
(resp.
e N ... Neay ANV = > dr(ez,v)es )y A ANei (1)) -
LeGrassny1(F)

Here the (¢K(€17U))KEGrasSmJFME) (resp. (¢L(62av))LeGrassn+1(E)) are lin-
ear forms in the (7;);<;<;p With coefficients in the set of coordinates

(AH(BI))HEGT(}LSS"L(E) (resp. (AJ(eZ))JGGTass”(E))' The fOHOWiIlg proposi—
tion is easily verified.

Proposition 1.8 The kernel of the linear mapping:

m+1 n+1
kP — A KE x A\ KE

defined by:
vi— ((e11 Ao Aerm) A, (e21 A ... Aean) Av)
s equal to V1 N'V,. Hence, if we denote by r the rank of the linear system:
(¢ (e1,v) = 0) HeGrassmsy (B); (P7(€2,0) = 0) seGrassns (E))

we have r = |E|—dim ViNVa. Thus the inclusion condition Vi C Vo translates
as “r = |E| —m’, i.e. r =the minimal possible rank of this linear system.
It follows that the inclusion condition Vi C Vs is obtained as the simultaneous

vanishing of the set:

(Mo ((Au(e1)); (As(e2)))

of the (|E| — m + 1)-minors of this linear system.
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It results from this the:

I+1

Proposition 1.9 The subset Drap,,(k¥) C T[] Grass,, (k%) is the underlying
i=1

set of a k-subvariety which we denote also by Drap,(k¥) if no confusion

1+1
arises. The product action of GI(k¥) on [] Grass,, (k¥) stabilizes Drap,,(k*)
i=1

and induces a transitive left action (resp. an homogeneous action) of Gl(k*)
on Drap, (k¥).

Remark 1.10 The use of the term k-subvariety is rather abusive. The above
equations characterize the subfunctor on k-algebras

I+1
Drap, (k¥) C HGrassni (KF)

i=1

associating with a k-algebra A the set of flags D of local direct summands of
AP of typen = (0 < ny < ... < ny < nyy1 = |E|), i.e. the B-th module of 9
being of rank ng. Thus it follows that Drap, (k¥) is representable by a finite
type k-scheme. We shall later prove that Drapﬂ(kE) 18, in fact, a k-variety in
Serre’s sense from its decomposition in a sequence of locally trivial fibrations
with grassmannians as basis and typical fiber. On the other hand, there is a
functorial isomorphism:

v: Drap, (k*) — Drap, (k¥),

defined by 4 : s — T(Spec(A),s*(&,)), where s : Spec(A) — Drap, (k%)
denotes a section and &, the canonical flag on Drap,(k¥). (cf. 1.13)

Write:
Drap(k¥) = [ Drap,(k¥) (the flag variety of k¥),
netyp(E)
where:

typ(E) = {n e N | n = (0 <ny < ... <my <my1 = |E)) },

i.e. the set of length (I + 1) strictly increasing sequences of positive integers
with n;41 = |E|. Denote by typ(E) the set of types of combinatorial flags
of E. Consider that Grass, (k¥)=Drapg,< g (k¥).

Write typ(2) =n= (0 <ny < ... <my < nq1 = |E]), it 2 = (1 C

. C V, C kF), with dim V; = n; (1 £ i <1+ 1). One says that [ is

the length of 2, and that n is the type of 2. Write [(2) = [. Define
typ : Drap(k¥) — typ(E) by typ : 2 + typ(2).

It is useful considering the combinatorial analogues of the above definitions
for Drap(FE). Given n € typ(FE) let
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Drap,(E)={(E1 C...C E,CE) | E; € P(E) and |E;| =n; },
and

Drap(E)= [l Drap,(E) (The combinatorial flags of E).
netyp(E)

Given D = (Ey C --- C E; C Ej41) € Drap(E) write typ(D) = (|E1| <
- < |Ej| < |Ei31]), (D) =1 (length of D), and I(n) = [. Denote the empty
flag by (F), and write typ((E)) = (|E|) (resp. I((E)) = 0). Observe that
if B = I,4+1 = {1,---,r + 1} the set Drap(E) may be identified with the
first barycentrical subdivision A" of the combinatorial simplex A(")
defined by I,;.

Definition 1.11 Let D = (J;--- C J; C E) € Drap,(E). One associates
with D the open affine subset of Drap,(k¥):

Up = Drap,(k")n [ Us..
1<i<i(n)

where ] Uy, C %+1Grassm (kF), denotes the product of the open affine
subvarzfzfliz(%'h C é;rassm(kE), Remark that Up is the pullback of the
product of open affine sets [[Pcs,) C HIP’(T/L\kE) by the product embed-
ding lﬁlip’ni : l_lt[lGrassni(kE) — lﬁl]P’(T/L\kE), with I = l(n), and that
(UD);:elpmpﬂ(E)l:dleﬁnes an open aﬂ%nle:clovering of Drap,(k%):

Drap, (k) = DeDT%p (E)UD (The canonical open covering of

Drapﬁ(kE)).

There is a canonical embedding of Drap, (k%) in a projective space

is =isy: Drapy(k?) — B(® A EB),

I+1 ny
obtained by composing the embedding Drap,(k¥) — TJ[P(AKF) with
i=1
Segre’s embedding (cf. [24], §9,[25]) defined as follows. Assume that the

basis eg is ordered, and that ® A kP is endowed with the basis
1<i<i

)

( (9 A eHB) 141
1<B8<1 He [] Grassy, (E)
i=1

where Aep, denotes the ordered product of the canonical basis of kHs
ordered by the lexicographical ordering induced by that of em. Let
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(xg) be the homogeneous coordinates of a point in the pro-

H 1+1
He ] Grass,, (E)
i=1

i=

jective space P( ® A kF) relatively to this basis. Given a flag 2 =
1<i<i

(Sy--- C S C k¥), and for all 3 a basis eg, = (es,1," " ,€8,m,) Of Sa,
write Aeg, = €s,1 A+ Aesgn,. Define

is: D2 (A, (S1) x - x Ag,(S1))H,

I+1
where H = (Hy,- -+, H;) runs on [[ Grass,,(E), and
i=1

/\es/s = ZHEGrassnB (E) AH(Sﬁ)eil(H) A A ei,,,B(H) :

The coefficients (A (Sg)) are the homogeneous coordinates of the image of

Sp by the Pliicker embedding. Thus the homogeneous coordinates of is(2)

are given by the coordinates of the tensor product ® A eg, relatively to
1<p<1

the basis ( ® Aem,)n.
1<B<l o

Observe that, ® A KE being a representation of GI(k¥), there is a
1<i<l

natural action of GI(k*) on P( ® A kF) and that the embedding is is
1<i<l

Gl(k")-equivariant.

Definition 1.12 We call is, the Segre’s embedding of Drap, (k¥). It

+1
is obtained by composing the product of Plicker embeddings [[ip n, with the
i=1
I+1 n; ’
Segre embedding of the product of projective spaces [[P(\kT) in the projective
i=1

M4

space P( ® A EF).

1.3.1 Flag varieties fiber decomposition

We give a k-variety structure, in Serre’s sense, to Drap, (k¥) based on its
natural fibering.

Definition 1.13 There is a locally free rank m module &, over X =
Grass,(k¥) defined as follows. Let (Un)beGrass,(E) be the canonical open
covering of Grass,(k¥). Define &, in terms of local data. Let x € Uy cor-
respond to the subspace S C k¥, and éy . = (i 2)icy = (7TH)§1(6H) be the
lifted basis of S by (7g)s obtained from the canonical basis of k™. We assume
E is totally ordered. A rank n morphism of Oy, - modules:

om0, — ﬁgH
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may be defined by ¢p o 2 (M) = >, Ni€iy. The image &, vy, = Im ¢g C

1<i<n
ﬁgH is thus a rank n direct factor submodule satisfying:
(gn,UH)z =9 )

and ¢p defines an isomorphism ¢y : O, ~ §n vy - Thus the family ((b;], o
om) given by (du) fulfills the cocycle condition and defines a rank n submodule
&, of O% which we call the tautological module of Grass,, (k¥).

Let V (k™) denote the k-variety with coordinate ring k[X;];<,<,, (i.e. the
k-variety corresponding to Spec k[Xi];<;<,), and V(¢ 51 0¢m) : (UgNUgr) X
V(k™) — (Ug N Ugs) x V(k™) the morphism of k-varieties associated to
qﬁl}} o ¢g. From the cocycle condition satisfied by (¢I}} o ¢p) we deduce that
(V(¢yp o drr)) also satisfies the cocycle condition, and thus defines a vector
fiber bundle on Grass,(k¥) with typical fiber V (k") which we denote by
V(&n) (The associated vector bundle V(&) to &,).

The fiber bundle Grass,(§,) for m < n (resp. Drap, (k™) for m €
typ(l,)) may be defined in a similar way following the same pattern of the
definition of V' (&,), by considering the left action on (UgNUp/) X Grass,, (k™)
(resp. (Ug NUxr) x Drapy, (k™)) induced by the cocycle (V (¢ o ¢m)).

Remark 1.14 The above constructions hold for any rank n locally free
module n over a k-variety X giving rise to fiber bundles V(n) — X (resp.
Grassm(n) — X, Drap,(n) — X ). The fiber V(n)y (resp.Grassm,(n)sz,
Drapn(n)s) identifies with V(ng). (resp.Grassy,(ng), Drapm(ns)). More-
over:

“if X is a k-smooth variety (resp. a k-integral variety), it follows that V(n)
(resp. Grassm(n), Drapm,(n)) is a k-smooth variety (resp.k-integral variety)”.

It is easy from this remark to obtain another proof of proposition 1.9.
Observe that the equations given in the proof of proposition 1.9 define the
embedding of Drap,,(k¥) in a product of grassmannians in terms of the cor-
responding Pliicker coordinates.

Denote by pg : Drapn(k¥) — Grassy, (k") the canonical projection,
and by pj5(&n,) the pull-back of the tautological module &,,. Define the

tautological flag ¢,, of submodules of ﬁDmp (kE) by:

gﬂ = (pT(gnl) e C P? (gnl) - ﬁgrapl(kE))'

The inclusions between these submodules are evident by definition. Write
&ns = Pj5(€ny) if no confusion arises.

Let n = (ny < --- < my < mygy) € typ(Lry1). Write ng = (ny < --- <
ng—1 <ng) € typ(I,,) (resp. n® = (ng < --- <ny <ni41) € typ(In,,,)). For
2 < B <1 alocally trivial fiber bundle is associated:

Drapﬁ(kE) = Drapﬁﬁ (§ny) — Drap,s (k‘E),
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over Drap,,s (k¥), where {5 = (§,, C -+ C &, C OF ) (The canon-

rap, s (k)
ical fiberings of Drap,(k¥)). In schematic terminology this fibering gives
the structure of Drap,,(k¥) as a Drap,,s (k¥)-scheme.

Definition 1.15 Let Hom(O%,&n) (resp.  Isom(O%,&m)), where X =
Drap,,(k¥), denotes the sheaf of germs of Ox-homomorphisms (resp. iso-
morphisms) v : 0% — 0% satisfying v(0") C &m, .
It is clear that Hom(O%, &) is a locally free Ox-module. Thus we may con-
sider the vector fiber bundle V(Hom(O%,&m)). Define the Stiefel variety
of &, by

Stief(&m) C V(Hom(ﬁ%, €m))

the sub-bundle representing Zsom(O%, &), whose sections correspond to the
sections of Zsom(O%, &y). Let Dy, = (K™ --- C k™ C k™1 (= kIP1)). The
typical fiber of Stief (&) — Drapm(k¥), is the Stiefel variety Stief(Dy,)
whose points are given by the ordered basis of kP! adapted to D,,, (cf. defini-
tion 2.1). There is a principal natural right action of the stabilizer subgroup
Stab D,, C GI(KI!) on Stief(&m). We may thus consider Stief(E,,) as the
Stab D,,-principal bundle associated to V(&,,).

For more details about the Stiefel variety we refer the reader to [24], 9.10.

1.3.2 The fiber decomposition of the Flag Varieties canonical open
subvarieties

Keep the same notation of the preceding section. Given D = (Hy--- C H; C
Hi41) € Drap,(E) let

Dﬂ — (HB ---C H C Hl+1) S DTCLPQE(E)
(resp.
DB — (Hl - C Hﬂfl C HB) S DTapgﬁ(Hﬁ)) .

Definition 1.16 By definition a flag 2 = (J4--- C H#] C Hiy1) of lo-
cally free Ox-modules over a k-variety X is split if there exists submodules
(%L)lézgl with:

K2

S Z%@%L.

Let &6 = (§ny C -+ C &ny C &nyyy) be the canonical flag on Drap,,s (k%).
The module (§,,)v,, is endowed with a split flag 73 = (54 .-+ C )
characterized as follows. Let (Sg--- C S; C Sj4+1) correspond to the section
of Ups C Drap,s(k¥) on X = Spec(A), with A a k-algebra. By definition of

Upe, there is an isomorphism of &x-modules: (7p,)s, : Spg — ﬁg‘*. Then
D is given by:

(Z8)s = ((71,)s5,) " H(O%7)
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where 01° = (01" c ... ¢ 07%) and OF denotes the free @x-module
with a basis indexed by the finite set F'; the supplementary submodules
(H5r)1<p<p—1 being given by

1, (Hgr —Hg)
(7)o = ((mr,)s,) (O 77777,
Definition 1.17 Define an open subvariety

U@g - Dra’pﬂﬁ (STLB)

by the following condition on its sections: (S1--- C /) is a section of Ug,
if and only if for 1 < B’ < B the restrictions

(Wﬂﬁ/)yﬁ, : yg/ — %/

are isomorphisms. The projection 7y, is defined in terms of the direct sum
decomposition given by the splitting of the flag Dg.

By restriction of the base and of the fiber the locally trivial fiber bundle
Drapy, (§n;) — Drapys (k¥) gives rise to a locally trivial fiber bundle:

U@ﬁ — UDﬁ7

with Ug, C Drapy,(&n,) (resp. Ups C Drap,s(k*)), and typical fiber
Up, C Drapy,(k"?).

Thus we have the following

Proposition 1.18 The open affine subvariety Up C Drap,(kF) (cf. Defi-
nition 1.11) is decomposed in a sequence of locally trivial fibrations (Ups —
Ups+1)1<p<; with typical fiber Up, C Grassy,(k*) induced by the canonical
fibering decomposition (Drapy,, (k) — Drapﬂﬁ(kE))lgﬁil.

1.3.3 Coordinates for a Canonical open subvariety of a Flag variety

Assume that E is ordered totally by wg. Let D = (Hy C --- C H; C Hj4q =
E) € Drap,(E) (n=(n1 < --- <ny < g1 = |E|). Write:

AL =A( [T Mysyp, (k) (esp. Ap = A( [ M, —m,)xm,(k))), and
1<B< 1<p<l

Af = A( M 5|-ns)xns (F)) (resp. Ay = A( [T Mg,y —ng)yxns (K)))-
1<B<1 1<B<1

The order of E allows defining an isomorphism Ap ~ A,,. Let Hg ~ [1,n4]

(vesp. (Hgy1 — Hg) ~ [1,n54+1 —ng] ) be the bijection induced by the order

of E. Thus there are a k-vector space isomorphism Mg, —p,)xm, (k) =~

Mngy:—ng)xns(k), and a k-variety isomorphism Ap =~ A,. Similarly one

obtains an isomorphism: Af ~ AF.
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Let Un, C Grassjm, (k¥) be the affine open subset as in Definition 1.1.

One has an affine open subset [] Un, C [] Grassg,(k¥) and a k-
1Sp<1 1581

isomorphism  [] Up, ~ A defined by:
180

(55)1§B < MD((SB>1§5§1) = (MD(Sﬂ))1§B§l

where Mp(Sg) = Mp,(Sg) (cf. definition 1.1). The [] Up,—coordinates
15p51

Of (S/g)
Let 2 =(S; C---CS; C Siy1 = k¥) correspond to a point in

Up = ( H Un,) ﬂDmpﬂ(kE).
1£8<1

We consider now the Up-coordinates of 2.

Write Mp(2) = Mp((Sp)i1<p<;)- Define

mp(Sg) = Mu,(7r,+1(5p)) ,

where the right member denotes the U}{B—coordinates matrix of 7, 1(5) C
EHe Tl with Uy, = {S € Grass g, (k"e+1) | rank (Tu,)s = |Hg| } and
W}{ﬁ is the projection given by the direct sum decomposition: kfs+1 = kHs ¢

(Hpg41—Hp) ’ _
k . In fact T, © THppr = THg-

Notation 1.19 Let Mg € MH[J;XHB(IC) (resp. mpg € Mp,, —my)xws(k)).
Denote by A(Mg) € Mpxm,(k) (resp. A(mpg) € Mp,,  xm,(k)) the matriz
obtained by completing Mg (resp. mg), with "ones" and "zeros", in a Hg-
normalized matriz. Write:

Ap(Sp) = A(Mp(Sp)) = A(Mp, (Sp)) (resp. Ap(Sp) = A(mp(Ses)))

It is easy to check the following relations between (Ap(Sg)) and (Ap(Sg))
hold for 1 < 8 < I:

AD(SB) = AD(SZ) X AD(Sl—l) cee X AD(Sﬂ) .

Thus the sequence (mp(Sg)) determines the product coordinates (Mp(Sg))
of (Sg) € [l Un,, where 2 =(S;--- C 5, C k¥).
1561

PROPOSITION - DEFINITION 1.20 The morphism Up — Ap defined by
2 — mp(Z) = (mp(Sp))1<p<; is an isomorphism. The image of 7 by
the isomorphism Up ~ Ap ~ A, (resp.mp(2)) gives by definition the Up-
canonical coordinates of 7.
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Proof Let (mg) € Ap for 1< B 1.
Define Z((m5)1§6,§,@) = A(my) x A(my_1)--- x A(mg) € Mpxu, (k).

It is easy to verify that A((mpg)1<pr<p) is a Hg-normalized matriz. De-
note by (A((m,g)léﬁléﬁ))Hé the Hg x Hg-submatriz of A((mg) <z <g) given
by the row wvectors indexed by Hé‘ Define Ap — AE by (ms,) —
((Z((mﬁ)léﬁ/gﬁ))Hé)léﬁél. From the above relation it results that this mor-

phism is followed by the isomorphism AE ~ <H< Un, factors through the
1851
embedding

Up = ( H Un,) N Drap, (k¥) — H Un, C H Grass g, (k"),
1<6<1 1<p<1 1<6<1

and is the reciprocal isomorphism of Up — Ap. This proves our assertion.

Remark 1.21 Definition 1.20 applied to Ugcpy C Drap(|H|CE)(kE) =
Grass|g|(k®) gives mucp) (S C k) = My(S). Thus the Upcp-
canonical coordinates of (S C k¥') are precisely the coordinates of S as defined
m 1.1.

1.4 Chains

A chain of a finite set is informally speaking a redundant flag, given by an
ascending sequence of subsets, with the inclusion relations not necessarily
strict. Chains play a role in the construction of minimal galleries in A(")",

Definition 1.22 Let E be a finite set with |E| = r+1. Endow Grass(FE) with
the natural order relation defined by the inclusion of subsets of E.

a) Define a chain of E of length [ as an increasing function f: [1,1+
1] — Grass(F) satisfying f(I+1) = E. Let

In fo={ie[LI+1]] fG-1) Cf@), f—-1)# (@)}

(f(0) = @) be the set of strictly increasing points of f, and f' be the
restriction of f to In f. Write

(The flag defined by the chain f). Given a chain f of E of lengthl,
i.e. f is defined on [1,1 + 1], we associate to f the increasing sequence
of integers

typ f = (IF()D1ciciyr -
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b) Write
typ(£) := Im typ,
the set of types of chains.

Given n € typ(E) such that n = (ng < --- < ny < r+ 1), we say that
n is of length I. Denote by Chain,, (E) the set of chains of E of type n.
Write

Inn:= {iE [[l,l+1]]| n;—1 < n; (no :0)}: (il < e <y <il/+1) s

and n' = (n;; < --- < ny, <r+1). Herel denotes the length of
n € typ(E). Clearly we have the inclusion typ(E) C typ(E) as the
subset of strictly increasing sequences of [1,r + 1] with mazimum equal
tor+1.

¢) Given the couple of chains (f, f') € Chain,,(F) x Chain, (F) (m,n €
typ(E), with length n = X\, and length m = 1) write

A(f 1) = (f(@) N f(B))
(resp.
M(f, f') = (If(a) N f/(B)]) € NOTLx{HD)

(The relative position matrix of the chains f and f').

d) Let n € typ(E). Define a chain of subspaces D of kP of type
n following the pattern of the definition of a chain of E. Denote by
Chain, (k) the set of chains of type n. Write

Chain(k”) =[] Chain, (k")
netyp(E)

(resp.
Chain(E) =[] Chainy(E)) .
netyp(F)
Given D € Chain, (k) let (D) be the corresponding flag of type n'.

Define the following ordering on the set of chains Chain(E) (resp.
Chain(k%)):

Definition 1.23 Given chains D and D' of E defined respectively by
f: [LA+1]) — Grass(I, 1) and f': [1,N +1] — Grass(I,41)
with X' < X, write D' C D if [’ factors as f' = fop, with ¢ : [1,N +1] —

[1, A + 1] strictly increasing. Following the same pattern define D' C D for
D', D € Chain(k¥). Clearly “ C” is an order relation.
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We have D' C D = ¢(D') C ¢(D), ie. if o(D') =(H, C --- C Hy C E)
(resp. p(D) = (Jy C --- C J; C E)), then {Hy,--- ,Hy } C {J1,---,J; }.
The following definition plays a role in the contruction of minimal galleries
giving rise to resolutions of singulaties of Schubert varieties.

Definition 1.24 Let (D,H) € Drap(E) x Grass(E) (resp. (2,5) €
Drap(k¥) x Grass(k¥)). Denote by DN H € Chain(E) (resp. 2 NS €
Chain(kF)) the chain given by the intersections of the elements of D (resp.
) with H (resp. S).



Chapter 2

Schubert Cell Decomposition
of Grassmannians and Flag
Varieties

The classical indexation of Schubert cells (resp. Schubert varieties) in Grass-
mannians, by increasing functions from an integral interval into another, is
not easily adapted to Flag varieties (cf. [29], and [36]). Instead we introduce a
more suitable general indexation by Relative Position Matrices for Schu-
bert varieties in Flag varieties. These matrices are in bijection with classes
of the symmetric group and thus give a geometric interpretation of the orbits
in Bruhat decomposition of the linear group. On the other hand, we shall
see that such a matrix summarizes the construction of a minimal generalized
gallery and thus a block decomposition of the parametrizing subgroup of its
corresponding Schubert cell. The corresponding Young diagram reflects this
block decomposition.

From the construction of a basis adapted to a couple of flags (see be-
low), one deduces that the quotient set of the couples of flags in £"*! by the
natural action of GI(k"*!) is given by the set of Relative Position Matrices.
The parabolic subgroups of GI(k™"1) are defined as the stabilizers of flags in
GIl(k™1). The set of these subgroups correspond bijectively to the set of flags
of k"1 and represent the points of certain GI(k"*1)-homogeneous spaces. The
Schubert cell decomposition of the Flag variety Drap(k¥) defined by a fixed
flag corresponds to the Bruhat decompositions of GI(k¥) given by a couple of
parabolic subgroups. It is shown how a combinatorial flag is associated with
a subset of the set of roots of GI(k""1). The parabolic subgroups given by
the flags adapted to the canonical basis correspond to these subsets.

20
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2.1 The relative position matrix of a couple of flags

(n1 < ... <my <mg1 = |E|)) and an ordered basis € = (€;),<;<|p| of k¥, we
say that € is adapted to Z (or that & is adapted to €) if

Vi =Vect((€;)1<<n,)-

Definition 2.1 Given a flag 2 = (Vi C ... C V; C k¥) € Drap,(k¥) (n =

The direct sum decomposition k¥ = @ F, is adapted to & (or that é is
acA
adapted to this direct sum decomposition), if for each F,, there exists a subset

€a C € with F, = Vect(é,).
A direct sum decomposition k¥ = @ F,, is adapted to Z (or Z is adapted
acA

to k¥ = @AF w), if for every 1 < i < 1, there exists a subset A; C A satisfying

Vi= @ F,.. A flag Z is adapted to the basis eg if there exists an ordering
a€A;
of ég of eg such that 2 is adapted to €.

Given a couple of flags (2, d) of k¥ we proceed to show that there exists
a basis ep of k¥ adapted to both 2 and d. This result is a particular case of
a general one stating that given a couple of parabolics in a reductive group
there exists a maximal torus contained in both.

Lemma 2.2 Let

i — V3

1 1

Vo — Vi

be a cartesian diagram of inclusions of subspaces of k¥, i.e. Vi = Vo NVs,
and Vo = V1 @ Sy (resp. V3 = Vi @ S3) direct sum decompositions of Vo and
Vs . Then there are the direct sum decompositions:

Vo + Vi = VidSa®Ss (resp Vi = Va®Ss = VadSy).

Proof Clearly Vo4 V3 =V; + 51+ S3. On the other hand, S3N (Vi + Ss) =
SgﬁVQCVlﬂS;g:{O} (resp. SQQ(Vl"‘Sg):SQm‘/E}CV]ﬂSQZ{O}).
If v = s9+ s3 with v € Vi , s9 € Sy, s3 € S3, we deduce that s3 = v — sy €
S3NVa C ViNS3 ={0}. Thus v = sa, and finally v = s3 = 0.

Let 2 = (V4 C ... C V; C k) € Drap,,(k¥) (resp. d=W; C ... C W) C
kE) € Drap,(k¥)), where m = (m1 < ... < my < |E|) (rtesp.n = (n1 < ... <
ny < |E|)). We introduce the (I + 1) x (A + 1)-matrix with coefficients in
Grass(k¥):

M(2,d) = (V; "W).
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Proposition 2.3 There is a direct sum decomposition kP =

P Si; of k¥ adapted to 2 and d.
(6,7)€[L,1+1] X [1,A+1]

Proof We order lezicographically [1,1+ 1] x [1, A+ 1], and we proceed by re-
cursion to construct (S;;). We begin by splitting the first row (ViNW;)jeq1,a41]
i a direct sum:

VinW;= @ Sia (1=j=A+1).

1Sasj
We conclude the proof by recursion applying 2.2 to the cartesian squares:

VinWiza — VigiNWina
T T ;
VN Wj — Vier N Wj

following the lexicographical ordering. Define Siy1j41 as a subspace of k¥
satisfying:

Vier Wi = (Vin Wy + Viga N W) @ Siyajra-

Corollary 2.4 There is a basis € = 11 €;; adapted to the di-
(6,5) €L+ x [1,A+1]
rect sum k¥ = ) Sij, i.e. Sij = Vect(é;;), and giving rise,

(4,5)€[L,1+1]x [1,A+1]
after a convenient re-ordering, to a basis adapted to 9 (resp. d).

It may be noted that some of the S;; may be reduced to the zero subspace
S;; = {0}, in which case we write &;; = 0.
There is a natural action of GI(k¥) = Auty(k¥) on Drap(kF) :

Gl(kF) x Drap(k¥) — Drap(k¥)

defined by (g, 2) — g(2), where 2 = (V; C ... C V; C kF), and g(2) =
(g(V1) C ... € g(V}) C kF). Tt is easy to see that this action is algebraic,
i.e. that the above mapping is the underlying mapping of a morphism of
k-varieties. We aim at giving a description of the quotient set (Drap(k¥) x
Drap(k¥))/GI(kT) of Drap(k¥) x Drap(k¥)) under the diagonal action of
GI(EF).

Definition 2.5 There is a canonical mapping
Vg : Drap(E) — Drap(k¥)

defined by : g : D — kP, where D = (By C ... C By C E), kP = (kPr C ... C
KEr C kF), and kPr = Vect((e;)jer,) for 1 £i < 1. Given H € Grass(E)
write g (H) = k.
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Remark that the image of ¢ is the set of flags adapted to the canonical
basis e of kE.

On the other hand, there is a combinatorial natural action of the symmetric
group 6 = Aut(E) on Drap(FE) :

Sg X Drap(E) — Drap(FE)

defined by: (D,g) — g¢(D), with D = (E; C ... C E; C E) and ¢g(D) =
(9(Ey) C ... C g(E)) C E), and a group homomorphism: « : &5 — GI(kF)
associating with g € & the automorphism oy : k¥ — k¥ of the vector space
k¥ defined by : ag(e;) = ey(;). It is immediate that the canonical mapping
Drap(E) — Drap(k¥) is (GI(kF), & g)-equivariant. We may thus state:

Proposition 2.6 The induced canonical mapping
(Drap(E) x Drap(E))/&g — (Drap(k¥) x Drap(k¥))/GI(k")
18 a bijection.
The proof of this proposition is based on several definitions and a lemma.

Definition 2.7 Let (2,2') € Drap(k¥) x Drap(k¥) (resp. (D,D') €
Drap(E) x Drap(E)). Write :

M(2,92') = (dim(V; N W;)) € NU+Dx(3+1)
(resp. M(D,D') = (|E; N Fj|) € NUHDxO+1) )

where 9 = (V4 C ... CV; CkE) and 2 = Wy C ... C W, C k¥) (resp.
D=(EyCc..CECE)and D' =(F,C..CF CEk)).
Write M(D,D') = (E; N F;) € Grass(E)(H+1)>x(A+1),

There are natural mappings

Drap(k¥) x Drap(k?) — ] NEHDxA+D)
I,\eN
(resp. Drap(E) x Drap(E) — ][] NU+DxA+1)
I, AeN
defined by (2,2') — M(2,2') (resp. (D,D') — M(D,D')). Clearly there
is a commutative diagram:

Drap(k¥) x Drap(k¥) — I N xA+1)
I, AEN

L r (2.1.1)
Drap(k¥) x Drap(k¥)/&g

where the vertical arrow represents the quotient mapping.
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Definition 2.8 Let (m,n) € typ(E) x typ(E). Write
Relpos () = Relposm n) (E) = (Drap(E)m, X Drap(E),)/Gk

and
Relpos = Relpos(E) = H Relpos m n)-
(m,n)€etyp(E) xtyp(E)

We call Relpos(E) the set of types of relative position of Drap(FE). Let
S, = 65, with I, = [1,m]. If E is totally ordered we may assume that
E = 1I,41. There is a mapping

typ(Ir11) — Drap(l,41)

given by m = (m1 < ... <my <r+1)+— Dy, with D, = (I,, C ... C L, C
I,41). When we compose this mapping with Drap(I,1) — Drap(k"1) we
obtain : Dy, + kPm = (K™ C ... C k™ C k1.

Denote by & the stabilizer Stab D of the combinatorial flag D = (E; C ... C
E; C E)in 6. We have :

I+1
Gp=[16& _£_,
=1

where Ey = ), i.e. &p may be seen as the subgroup of & preserving the
partition E = [[ (E; — Ei—1). For E = I, 1 and D = D, write &,,, =
1<56iS1+1
I+1
&p,,. Thus there is the identification &,,, = [[ S,y y—mi)-
- i=1
Observe that the mapping Drap,,(E) x Drap,(E) — NUFDXMD) factors as

Drapm(E) x Drap,(E) — Relpos(m ny(E) — NUFDXA+D),

Lemma 2.9 The mapping Relpos(mn)(E) — NEDXAD induced by
(D,D") = M(D,D') is an injective mapping, i.e. the &,.41-orbit of a cou-
ple (D,D"Yy (D = (E; C .. C Ef C E),D = (E; C ... C E, C E),
typ(D) = m, typ(D’) = n) is characterized by the relative position matric
M(D, D) = (|E; 1 F).

Proof Let Dy, = Iy, C I, -+ C I, C Ipg1). It is evident that the natural
mapping
({Dm} x Drapn(E))/&m — (Drapm(E) x Drap,(E))/Sr41

18 a bijection. Thus it suffices to prove that:

M(Dy,,D) = M(Dy,,D') = (3we&,,) wD) =D



Schubert Cell Decomposition of Grassmannians and Flag Varieties 25

Let D= (Hy C --- C H C ILy1) (resp. D' = (H{ C --- C H C I11)),
Iy =0, and L,,,, = I, 41. As M(D,,, D) = M(D,,,, D’). It follows that

1+1

‘(Ima - I"la—l) mHl‘ = |([ma - Ima—l) QH{H
for 1<

a<
Hy = ]_[ Iy = I, )N Hy (resp. H = [ (ZIm, = Im,—1) N HY})
1<asi+

< 1Sasi+1

I+ 1. From the decomposition

it results that there exists w1 € &, with wi(H) = Hy. Therefore, we have
M(Dy,,w1(D)) = M(Dy,D"), and we may thus suppose Hy = H{. We
achieve the proof by induction. Let us suppose that Hy = Hy,--- ,Hg = Hj
(1 < p <1). Following the above reasoning with Hpgy1 and Hé-&-l instead of
Hy and Hy we deduce that there exists wgi1 € &y, with wpi1(Hpi1) = Hp,
and Wpt1| g, = 1m,. It follows from this that there exists w € Gy, satisfying
w(D)=D".

Proof of Proposition 2.6

Proof The image of Drap(E) — Drap(k¥) defined by D — kP is given
by the set of flags adapted to the canonical basis ep of k¥. On the other
hand, we know by 2.3, that for a couple of flags (2,2') with typ(2) = m
and typ(2') = n there exists a basis €g of k¥ adapted both to 9 and 7.
Let a € GI(kP) be the automorphism defined by a(ég) = er. Then eg is
adapted to the couple (a(2),a(D")), i.e. a(D) and a(D') are both adapted
to eg. It follows that the induced mapping Drap,,(E) x Drap,(E)/Gr —
Drap,(k¥) x Drap,(k¥)/GU(kP) is surjective.

The injectivity of this mapping results immediately both from Lemma 2.9
and the following commutative diagram

Drapy(E x Drapy(E)/GE S ] NGO
I,AeN

! r (2.1.2)
Drap,,(k¥) x Drap,(k¥)/GL(kF).

Remark that the oblique arrow is the mapping (2,9') — M(2,9'), that
the horizontal arrow is injective and that the down arrow is surjective. This
achieves the proof.

2.2 Schubert cells and Schubert varieties

In what follows we identify the set Relpos(E) of types of relative position
of flags of E with its image in the set of matrices with integral coefficients

[] NE+DXA1D) | The & g-orbits in Drap(E) x Drap(E) are thus represented
I AEN
by matrices with coefficients in N.
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From proposition 2.6 it results that the mapping Drap(k¥) x

Drap(k¥®) — ] NEHHDXAMD corresponds to the quotient mapping of
I XEN

Drap(k¥) x Drap(k¥) under the action of GI(kF). Actually it is induced
by an algebraic morphism, as it will be seen later.

By the following definitions we introduce the main objects of interest in
this chapter.

Definition 2.10 Let (M,%) € Relpos(E) x Drap(k¥) (resp. (M,D) €
Relpos(E) x Drap(FE)). Define
Y (M) C Drap(k¥) x Drap(k¥)
as the fiber over M of the quotient mapping, and
¥(M, ) C Drap(k¥)

as the fiber over 2 of the mapping (M) — Drap(k¥) induced by the second
projection.
Write ©(M, D) = (M, kP). We call

(M)
the Universal Schubert cell of type M, and

(M, 2)
the Schubert cell defined by the flag & and the type M.

Remark 2.11 All the mappings (resp. group actions) above are induced by
k-morphisms. This may be stated in scheme theory as follows. Drap(k”) is a
representable k-functor, and thus the product functor Drap(k¥) x Drap(kF)
is representable too. On the other hand, the diagonal action of GI(k¥) on this
product is functorial and thus algebraic. It is easy to see that the quotient
functor Drap(k¥) x Drap(k¥)/Gl(k¥) is representable by the variety of flags
relative positions, and thus the quotient morphism is given by a k-morphism.
All these assertions will be proved in the following chapters.

From the remark one concludes

Proposition 2.12 X(M) (resp. X(M,2)) is the underlying set of a k-
variety.

The following is a direct proof of this proposition.

Proof It suffices to prove the first assertion. Let 9 = (V1 C ... C V; C kF),
P = (W, C ... C W, CEKB), typ(2) = m, typ(2') = n, and M(2,9') =
(myj). The condition (2,2') € ¥(M) splits in the set of conditions: rk (V;
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W;) = my;. By the proof of Proposition 1.9 we know that this intersection rank
condition may be written in terms of the vanishing of a set of homogeneous
polynomials in the Pliicker coordinates of V; and W;.

On the other hand, observe that the product Drap(k¥),, x Drap(k¥),, is
first embedded in a product of grassmannians, and secondly in a product of
projective spaces, by taking the product of the corresponding Plicker embed-
dings. Thus the image of ©(M) C Drap(k¥),, x Drap(k¥), is characterized
by a set of equations in terms of Pliicker coordinates. We conclude that (M)
is a k-variety (cf. remark 1.10).

Remark 2.13 A more detailed description of the k-variety structure of X(M)
(resp. (M, 2)) will be given later.

Proposition 2.14 Let M € Relpos,(E) = ][  Relposin ) (E). The k-
netyp(E)

morphism induced by the first projection X(M) C Drap(k®),, x Drap(k¥) —

Drap(k¥),, defines a locally trivial fibration in the Zariski topology with typ-

ical fiber (M, Dy,).

Proof There is a natural left action of Stab Dy, on X(M,D,,). One may
thus define the contracted product:

Stief(&m) X stab D,, 2(M, D),
and a canonical isomorphism:
Stief(&m) Xstab Dy, (M, Dyy) — X(M),
showing that the universal Schubert cell defined by M :
Y(M) — Drap,,(k*),
defines a locally trivial fibration over Drap,,(k¥).
We may now state the

Definition 2.15 Let 2 € Drap(k¥),,, and (n,m) € typ(E) x typ(E).
Clearly we have the following cell decompositions:

Drap(k®),, x Drap(k®), = I =mn

M e Relpos(m,n)

(The Universal Schubert cell decomposition of Drap(kF), x
Drap(k¥),),
(resp.
Drap(k¥) x Drap(k¥) = H (M)
M e Relpos

(The Universal Schubert cell decomposition of Drap(k¥) x
Drap(k®)),
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Drap(k®), = 1 (M, 7)
M e Relpos(m ,n)

(The Schubert cell decomposition of Drap(k¥), defined by 2)).

Let E = I 41, and D, = (1 C ... C I, C I 41). One obtains the
classical Schubert cell decomposition of the Grassmannian Grass(k™!) =
[I Grass,(k™1):

1Sn<r

Grass(k™) = 11 (M, D,).

MeRelpos(n<ri1)

Definition 2.16 Let M € Relpos,, ), and 2 € Drap,(k"*'). Denote by
(M, 2) (resp. X(M))

the Zariski closure of %(M,P) (resp. S(M)) in the k-variety Drap, (k")
(resp. Drap,(k"') x Drapm,(k"+1)).
We call

(M)

the Universal Schubert variety of type M
(resp. B
(M, 2)

the Schubert variety of type M defined by the flag Z).

2.3 The Schubert cell decomposition as an orbit decomposition

Remark 2.17 From the isomorphism
Drap(k®) x Drap(k¥)/GI(kF) ~ Relpos(E)

it is deduced that the Universal Schubert cell decomposition Drap(k¥) x

Drap(k¥) = 11 Y(M) is the decomposition in Gl(kF)-orbits of
M e Relpos(E)

Drap(k¥) x Drap(k¥) under the diagonal action.

Fiz 9 € Drap,,(k¥) and denote by P(2) = Stab 9 C GI(kT) the stabilizer of

9. From the fact that Drap,,(k¥) is homogeneous under GL(k¥), one deduces

the isomorphism

Drapﬂ(kE)/Stab D ~ Drapm(k;E) X Drapﬂ(k;E)/Gl(k‘E),

and thus that Drap(k¥), = 11 X(M, D) is the orbit decomposition
B M e Relpos(n,m)

of Drap,,(k¥) under Stab 2 C GI(kF).
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Assume that F is identified with I,.;1, i.e. that E totally ordered and
|E| = r + 1. Thus one can write I,; for E. Let D, = (I; C Is--- C
I, C I41) (resp.D, = (In, C -+ C In, C Ir41)) be the maximal length
flag defined by the order of I, (resp. the flag given by the type n). Write
Dy = kPr = 9, = (k™ C k™. C k™ C k™) (vesp. # = k!l for
H € Grass(I;41)).

Proposition 2.18 Given 2 € Drap(k™*1) there exists D' € Drap(I,+1) and
o € Stab 2, with o - kP" = 9. Such that D' is unique with this property.

The proof of the proposition results immediately from 2.17 and the follow-
ing lemma.

Lemma 2.19 Let M € Relpos(yn)(Ir41). There exists one and only one
combinatorial flag D' € Drapy,(I,4+1) with M = M(D,,D").

Proof Write M = (myf) € Relpos(Ir1+1) as a 1 x (A + 1)-matriz consisting
of the (r + 1)-uples (mg)1<p<rt1 given by the columns of M. Let In mg =
(i1 <+ <iiyp) <iipy+1) be the set of jump points of mg and mjz = (mi, 5 <
s <My 8 < miw)ﬂg) where My 5y 18 = Mr118, and

mi,pg = ]-a e 7mil(5)ﬁ = I(B)vmil(5)+1ﬁ = I(B) +1.
Write Hg = {1, 7il([3)ail(ﬁ)+l} and
D'=(H,--- C Hx C I41).

It is easy to see that D' satisfies M(D,,D") = M, and that it is the only
combinatorial flag satisfying this condition. In fact, it suffices to verify this
equality for n = (n <1+ 1). In this case the result is immediate.

It is important to associate the following combinatorial objects to the
Schubert cells (resp. Schubert varieties) corresponding to definitions 2.10,
2.15, and 2.16. It should first be noted that M (D, D’) = M (kP kP").

Definition 2.20 Let
»eemb (M) = (g x ) H(Z(M)) € Drap(E) x Drap(E)

(resp.
: xeemb (M, D) = ¢ (8(M, D)) C Drap(E)).

Thus one has
Zcomb(M) — { (D7D’) c D?“ap(E) X Drap(E)| M(D,D/) =M }

(resp.
g »emb (M, D) ={ D' € Drap(E)| M(D,D’) = M }).
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In other words, X°™*(M) is the fiber of Drap(E) x Drap(E) —
Relpos(E) over M, and X°™Y(M,D) is the fiber of the mapping
neomb(M) —s Drap(E) induced by the first projection.

Let D € Drapy,(E). From definitions 2.20 and 2.15 one obtains the fol-
lowing disjoint unions:

Drap(E)= [ =“"(M,D)
MeRelposy,

(resp.
o comb
Drap(E) x Drap(E) =[] =™ (M)).
MeRelpos

Define the combinatorial closure of $°™?(M) (resp.X™?(M, D)) as

=comb

ST(M) = (e x yE) T H(E(M))

(resp. 57" (M, D) = ¢! (S(M, D)).
From 2.19 one obtains the fact:

PROPOSITION - DEFINITION 2.21 Let B = I,y and D = D, be the
canonical maximal length flag of I,y11; Then X°°™°(M, D) consists of only

one element:
»emb(M, D) = {Dy}.

We call D)y the center of (M, D).

From lemma 2.9 it is deduced that given D € Drap,,(E) (resp. D’',D" €
Drapy(E), and M € Relpos(y, »)) with M = M(D,D") = M(D,D"), there
exists ¢ € &p satisfying: g(D’) = D”. One deduces that ™" (M, D) is
homogeneous under Gp. In fact, 3" (M, D) C Drap,(FE) is the & p-orbit

defined by the relative position matrix M.

2.4 The Permutation group action on the combinatorial flags set

This section serves as an example of the action of the Weyl group on the
apartment of the building of a reductive group (cf. Chapter 8).

Definition 2.22 Denote by Ord(E) the set of total orderings of E (|E| =
r+1, r=(01<---<r<r+1)). There is a canonical bijection:

Drap,(E) ~ Ord(E),

between the set Drap(E), of maximal length combinatorial flags of E
and the set of total orderings of E, defined by D — wp = (a1 < ...ar < @p41)
where By = {a1}, Eiy1 = E;U{aj41}, (1 £ 4 < r). Let H € Drap,(E).
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Denote by wpny the ordering induced on H by wp. We make it explicit
by writing H = (iy < -+ < 'iy). Observe that the set Ord(E), is left principal
homogeneous under Sg.

Let 7p : E ~ [1,|FE]] be the order preserving bijection induced by the
ordering wp of E, defined by 7p(i) = inf{a € [1,|E|] | i € E4 }.

Let D,D’ € Drap,(E). There is a unique strictly increasing mapping
w(D,D’): E,, — E,_, between E ordered respectively by wp and by wp:
satisfying

w(D,D')(D) = D

It follows that Drap,(E) is a principal homogeneous set under the natural
action of &g. A set of generators of the group of bijections &g of FE is
associated with the ordering wp = (i1 < --- < 4g|) of E defined by 7p,
namely

Sp = {(i1,82), -, ({|g|-1,0|B|) }-

Define the length g, (w) of an element w € G as the length of a minimal
length word in Sp giving w.

Definition 2.23 Let the notation be as in the proof of proposition 2.19. Let
D be a mazimal length flag and (D,D') € Drap,(E) x Drap,(E), where
D' = (Hy C --- C Hy C Hyy1). Define a total ordering of E as follows.
Write E =] (Hpy1— Hg), where Hx,1 = E (resp. Hy =0). Let wip pr
0<B<A
be the ordering of E given by the above partition and the ordering induced by
wp on the (Hgy1 — Hg)’s. Thus by definition
i < g

W(D,D")

ifi € (Hg41—Hg), and j € (Hg11—Hg') for B < B, orifi,j € (Hpy1—Hg)

and i < j. Denote by projp D the mazimal length flag of E defined
wp

by wp,pry (the projection of D on D’), according to the general nota-

tion to be later introduced in this work in the setting of buildings. Define

w(D,D") = w(D,projp. D) Observe that D' C projp D (cf. definition

1.23), and w(D, projp: D)(D,) =D’ if n = typ(D’) and D,, C D.

From the general properties of Coxeter groups (cf. Chapter 8) it follows
that w(D, D) may be characterized as the minimal length element w € &g
relatively to Sp satisfying D' C w(D).

Remark 2.24 Let E = 1,4, and D = D,. There is the following connection
between the center Dy of X(M, D) C Drap,(E) and w(D, Dyy):

w(D,D]y[)(DQ) = DM y
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where D,, = (I, --- C I, C I.11), the sub-flag of D, of type n, and
w(D, Dyy) is the minimal length element of &,11 with this property with re-
spect to the canonical set of generators of G,y1 S ={(12),---,(rr+ 1)}.

2.4.1 The Schubert and Bruhat cell decomposition

We may now state the following relation between Schubert and Bruhat cell
decompositions (cf. [9], [23], Exp. XXVI)

Proposition 2.25 Keep the assumptions and notation of 2.25.

1. The set Drap,(E) is homogeneous under the action of Sg = &,41 of E.
Thus there is a canonical bijection:

S,4+1/6, ~ Drap,(E)

(resp.
Il &:+1/6n~ Drap(E)),
netyp(E)
defined by W — w(Dy). The relation of inclusion between flags corresponds
to the opposite of the relation of inclusion between classes.

2. There is a canonical bijection between the types of relative position between
a flag of type m and another of type m and a set of double classes

6 \Gr/6, ~ Relpos (1, ) (E) -

As a particular case of 1. It follows that Drap,(E) is a principal homogeneous
set under Gg.

Proof Let D' € Drap,(E) we have then w(D,,D’)(D,) = D', which proves
the homogeneity of Drap,(E) under &g. As &, = Stab D,, there is a
bijection &,41/6,, ~ Drap, (E), defined by W — w(D,,).

The decomposition

Drap,(E) = 11 $eomb (M, D,) = 11 {Dy},
M e Relpos(y n)(E) M e Relpos(y n) (E)

proves that there is a bijection Gp/&, ~ Relpos(, n)(E) defined by W —
M(Dy,w(Dr)).
On the other hand, the decomposition

Drap,(E) = H 2" (M, Dy
MERelpos (m n) (E)

is the &,,-orbit decomposition of 11 {Dn}. So the mapping
MGRelpOS(Lﬂ)(E)

6n\Gr/6, — Relposimn)(E) defined by W — M(Dy,w(Dy)) is a bi-
jection. We have thus proved 1. and 2.
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Remark 2.26 Let M € Relpos(m ) and Cyy C 6,,\G /6y, the double class
given by M and C'yy C Gg/6,, the corresponding subset of Car in Sg/6,.
There is a bijection C'py ~ X°™°(M, D) defined by w +— w(D,,).

Write %™*(M,D) (“par abus de langage’) for the image
$(S0m (M, D)) © Drap(k”).

Proposition 2.27 The Stab kP=-orbit decomposition of Drap, (k¥) may be
re-written as follows:

Drap,(k%)=  J] = Stab kP .5"(M, D,,) =
MeERelpos(m,n)

[T  Stab kPm . fw(Pn)
wWEGH\CE/Gn

The natural action of GI(k¥) on Drap, (k¥) allows defining a morphism
pn : GUE®) — Drap, (k%)

by g = g - D,. Thus the orbit decomposition in proposition 2.27 lifts to a
double class decomposition of GI(kF).

Proposition 2.28 With the above notation one has:

GI(KE) = [T  Stab kP=-w- Stab kP~ .
EGGQ\GE/Gﬁ

(Bruhat double class decomposition of GI(k%)).

2.5 R-subgroups of the linear group

A combinatorial simplified version of the root decomposition of the Lie algebra
of GI(kT) (cf. [5], p.185) is given in this section. We introduce a class of
subgroups of GI(k¥) (The R-subgroups) giving rise to natural coordinates
for ¥ (M, D). This class is a particular case of R-subgroups in the setting of
reductive groups schemes (cf. [23], Exp. XXII).

Let us identify the Lie algebra 41(k¥) = Lie(GI(k¥)) with the Lie algebra
of E x E-matrices Mg (k) with entries in k. Denote by (Ej;)i j)cpxr the
canonical basis of Mg(k) = Mpxg(k). The set (Ei;)q j)eexe is a basis of
eigenvectors of Mg (k) under the adjoint action by the subgroup T' C Mg(k)
of diagonal matrices.
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Definition 2.29 Let E be a finite set. Write
R(E)=ExE—-A(E) .
A subset # C R(E) is closed if:
(4,7), (U, k) e Z ,i#k — (i,k) € Z (cf. 4], Ch.VI).
Associate with the closed subset #Z of R(E) the k-subspace:
YGlg = Vect((Eij) (. jeamuz) C Me(k) .

Observe that [E;;, Ey | = 0,5 Ey if ¢ # [. Thus clearly ¥z is a Lie subalgebra
of Mg(k) stable under T. To this subalgebra corresponds a subgroup Glg C
GIl(KE).

We say that Glgz is a R-subgroup of GI(k*). We shall see that there is
a canonical bijection between the set of combinatorial flags Drap(E) and a
particular class of closed subsets of R(E).

Definition 2.30 Let D € Drap,(E) be a mazimal length flag of E. Write
Rp = R(E)NGr(wp) ,

where Gr(wp) C E x E denotes the graph of the order relation wp. From
the definition of wp easily results that Rp is a closed subset of R(E). Given
D’ € Drap(E) write

Rp = U Rp .

D/CDEDTapi(E)

IfD' =(Hy---CH CHy1) (Hg1=FE), then E= ][] (Hp+1 — Hp).
0<B<l
It is easily seen that:

Rpr=( [ R(Hspr —Hp) [] ( [ (Hs — Hs-1) x (E — Hp)).

0<B<1 1<B<1

Where Hy = (). Observe that

I Hs—Hs-)x(BE-Hp)= [T TI (Hp—Hp-1) x (Har1 — Ho) =
1<8<I1 1<8<I B<a<l

IT TI (Hs—Hp1) x (Hasa - = [] Ho x (Hay1 — Ha).

1<a<l 1<8<a 1<a<l
Remark that the subgroup Stab kP < GI(k¥) for D € Drap(E) is char-
acterized as the set of matrices (a;;) satisfying (i,7) ¢ (Rp U A(E) =
aij = 0. On the other hand, Lie (Stab k) = Vect((Ei;)u5erpun(r)))
thus [Eij7Ekl] = 0k € VGCt((Eij)(i,j)E(R(D)UA(E))) for B, By €
Vect((Eij)i,j)erpua(ry))- It follows that Rp is a closed set of the set of
roots R(E), and thus that

Glgr, = Stab (k7).
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Definition 2.31 The correspondence D — Rp gives rise to a mapping
Drap(E) — Z(R(E)) between the combinatorial flags and a class of closed
set of roots. The image of this mapping is called the class P(R(E)) of
parabolic subsets of R(E). Thus the parabolic subsets of R(E) are closed
subsets and correspond to the stabilizers of the flags adapted to the canonical
basis e of kF.

Thus the set of combinatorial flags may be identified with the parabol-
ics subsets of the set of roots R(FE), and a group theoretical description of
Drap(E) is obtained. The latter appears as a geometrical realization of the
former.

The class of parabolic subsets P(R(F)) C £(R(E)) is characterized by:

P(R(E)={ %€ P(R(E)) | % closed and R(E) =% J%°"? } ,

where Z°PP = { (i,j) € R(E) | (j,i) € Z }. It is clear that Z°PP is closed
if #Z is closed. Thus Z is parabolic if and only if Z°PP is parabolic (cf. loc.
cit.). The parabolic subsets of R(F) are the closed subsets corresponding to
the stabilizers of the flags adapted to the canonical basis ex of k¥. They are
naturally indexed by the combinatorial flags D € Drap(E).

Define two closed subsets of the parabolic set Rp by:

R}, = Rp — Rp NRA? (resp. R, = Rp N RAP).

Clearly we have:

H Ry —mp)
0<B<l

(resp. Ry = [[ (Hs— Hygr) x (E—Hp) = [] Hsx (Hgy1 — Hp)).
1<B<i 1<8<1

Definition 2.32 Let D = (Hy--- C H; C Hi41) € Drap(E). Write
D°P? = (Hj---- C H{- C E) € Drap(E).
Proposition 2.33 The following relations between closed subsets of R(E)
hold:
RPP = Rpove (Tesp.(R$,)°PP = RS opp , and (RY%)°PP = RY%.,, ).

Proof Let us prove the last formula. The two others follow easily from this
one. We know that:

Rfy= [] (Hs—Hp1) x (E—Hg) = [] Hsx (Hgs1 — Hp))
1<p<I 1<B<1

Thus

R = [ Hex(Hg_y—Hz) = [] (B-Hp)x(Hs—Hp-1) = (Rp)*" .
1<8<1 1<B<1
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Let U(D) C Glgy be the subgroup defined by
U(D) = {(aij) S GZRB | a; =1 (’L € E) } R
and observe that:
(i,4) € Rp , (4,k) € Rp = (i,k) € Rp
(resp. (i,j) € Rp , (4, k) € Rp = (i,k) € Rp ).

We conclude that the Lie subalgebra % (D) = Lie(U(D)) ¢ Z(D) =
Lie(P(D)) is a Lie algebra ideal. Thus, the subgroup U(D) is an invariant
subgroup of P(D). Let Glgs x U(D) denote the semi-direct product defined

by the action of Glgs on U(D) given by g — int(g). Thus we obtain Levi’s
decomposition of P(D) (cf. [23], Exp. XXVI):

As an example let us determine U(D) for D = (H C E). In this case
U= Hx H*,
and:
(i,§),(k,1) € Hx H* = E;j x Exy =0 .
It results that the Lie subalgebra My, m1 (k) C Mpxg(k) is abelian. The ele-
ments v of My, ;1 (k) being considered as endomorphisms of k¥, by imposing
I/(k:HL) =0onv. Thus U(D) = {Idg + v |v € My, p+(k)} is canonically

isomorphic to the vector group Vect(H x H*) whose underlying k-variety is
A(Mp (k).

Proposition 2.34

1. The group U(D°PP) stabilizes the open subset Up C Grass y|(k¥), and its
action is transitive.

2. The group P(D°PP) = Stab D°PP acts transitively on Up. Actually Up is a
P(D°PP)-Schubert cell.

Proof By definition Stab D°PP stabilizes EHT . As we have for g € Stab D°PP
g(SNEH ) =0 SNk =0,

we deduce that vk (tr)s = |H| <= rk (TH)gs) = |H|. A fortiori we obtain
that S € Up = ¢(S) € Up, for g € Stab D°PP, by definition of Up. As
U(D°PP) C Stab D°PP we conclude that U(D°PP) stabilizes Up.

Let us see that the action of U(D°PP) on Up 1is transitive. Given
S,S" € Up, the lifted basis éx(S) (resp. € (S’)) may be written éx(S) =
((ei,v(ei))ien (resp. em(S) = ((eiV'(€:))icn) with v,V' € My, (k).
Then: (Idg+ (V' —v)) € U(D°PP) and (Idg+ (V' —v))(S) = S’. Observe that
Up is the Schubert cell defined by S N EH =0 for S € Grassy|(k¥). This
achieves the proof of the proposition.
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In fact the open set Up is parametrized by the R-subgroup U (D°PP) C GI(kF).
Proposition 2.35 The action of U(DPP) on Up is simply transitive.

Proof We recall that the canonical coordinates on Up D = (H C E) define
an isomorphism Up — My, g(k) (¢f 1.20) by S — m(S). Denote by
A(S) € Mgxpu(k) the H-normalized matriz associated to m(S). Thus for
g € U(D°PP) the canonical coordinates of g(S) are obtained by normalizing
the product matriz g x A(S). Observe that if Sy = k!, the matriz g x A(Sp) is
H-normalized. Thus U(DP?) — My g (k), defined by g — m(g x A(Sy)),
is an isomorphism of k-varieties. This suffices to prove that the action of
U(D°PP) is simply transitive.

Remark 2.36 Consider GI(kT) for H € Grass(E) as a subgroup of GL(kF).
In fact g € GI(k™) may be extended to an endomorphism of k¥, by defining
g|kHJ_ = IdkHJ_.

Proposition 2.37 Let D = (Hy--- C H; C Hi11), and n = typ(D).
1. P(D°PP) stabilizes Up.

2. The action of U(DPP)(resp. P(D°PP)) on Up is transitive, thus Up is a
P(DerP)-Schubert cell.

Proof Let 2 =(S1--- C S, C Si+1) € Drap,(E), by definition 1.11:
9 e Up <—rk (TrHﬁ)S,ﬁ = |Hg| R

forall1 < B < 1. From proposition 2.534, in view of P(D°PP) C P((Hé CE)),
one obtains that P(D°PP) stabilizes Up.

Observe that U(D°PP) contains U(((Hg41 — Hg) C Hgy1)) C Gl(kHs+1).
From proposition 2.34, by induction on the cardinal |E|, there exists g €
U(D°PP) with g- 9 = kP. This proves the transitivity of the action of P(D°PP)
on Up.

2.5.1 The parabolic subgroups of the linear group

Let (i,7) € R(E). Denote by G c GI(k¥) the subgroup of matrices (az;)
satisfying: apr =1 (resp. ap; = 0 for (k,1) ¢ (A(E)U{(%,4)}) ).

Thus G(+9) = { Idys + AE;; | A € k }. It may be noted that if G#+7) denotes
the Lie algebra of G(*7), then:

g(i’j) = Vect(Eij),
and

GUEEY=Mp(k)=Tea( @ g,
(4,5)ER(E)
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where 7 = Lie(T). This direct sum decomposition is given by the diago-
nalisation of the adjoint action ¢ + Ad(t) of T on the Lie algebra GI(kF).
The set R(E) canonically indexes the non trivial characters (A; ;). )er(E)
of T (The roots defined by T') in this decomposition. The component 7
corresponds to the trivial character of T and is, precisely, the Lie algebra
Lie(T) of T. Thus T is a maximal torus of GI(k¥), and the above direct sum
decomposition is the root decomposition of GI(k¥) under the adjoint action
of T.

The following relations hold between the roots:

Alig) - AGk) = AGk)

(resp.A(ij) - Ay = 1). The product Mg jy - Ar,yy of the two root characters
A(i,j) and Ay is a root character if and only if j = k and i # [.

Definition 2.38 A set of roots . is closed if:
M e and M- N eRE)=\-\Ne7.

A set of roots .# is parabolic if . is closed, and .¥ U /7! =
the set of roots defined by T. Clearly

S is closed (resp. parabolic) <= &/ = (N ;). j)ez
with % C R(E) closed (resp. parabolic).

If k is an algebraically closed field, then a maximal torus T C GI(k¥) is
obtained as a subgroup whose elements stabilize the vectors of a base of kF.
A maximal torus of GI(k¥) is conjugated to the canonical torus defined by
the basis eg. Thus the root characters defined by the adjoint action of T may
be indexed by R(E), namely: (Ai;)ij)er(p)- Let (G49)); ser(p) be the set
of root subgroups defined by T'.

As a particular case of the general definition of a parabolic subgroup we
have:

A subgroup P C GI(k¥) is parabolic if:

1) the group Py obtained by the algebraic closure k¥ — k' contains a
maximal torus T

2) the subset (G(i’j))(ivj)egg of the root subgroups contained in Py is in-
dexed by a parabolic subset # C R(E) and P is generated by the
subgroups (G(i’j))(i’j)e@ and T.

Remark 2.39 It can be seen later that there is a Gl(k¥)-homogeneous k-
projective variety Par(Gl(kE)) whose sections with values in a field extension
k — k', correspond to the parabolic subgroups of GI(k'F)). There is natural
isomorphism Drap(k¥) — Par(GIL(kF)) defined by 9 +— Stab 2. typ(P) =
typ(D) should be written if the parabolic subgroup P corresponds to the flag
9. Par,(GI(kT)) denotes the variety of parabolic subgroups of type n.
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A parabolic subgroup P of GI(k¥) is its own normalizer P = Normp, as
results from the following proposition.

Proposition 2.40 Normppy = P(D) is available.

Proof It may be supposed that k is algebraically closed. Let ep, = & A
o 1<B<l

en, (¢f. 1.12), and L = Vect(ep,). The parabolic subgroup P(Dy) is the

stability group of L. Clearly g(ep,) = A-ep, (A € k) implies that g(Aeq,) =
Ag - Nem, (Ag € k) and thus, that g(k*#) C k"2, From P(D,) = Stab D, =

<rg< Stab kfe follows that g € P(D,). It is concluded that g(L) = L <>
1<8<1 -

g € P(Dy).
Consider the representation of V., of GI(kF) generated by ep,- It is
well-known that there is only one 1-dimensional subspace L of Ve, ~ stabilized

by P(Dy), namely L = Vect(ep, ), i-e. the weight vectors for P(D,) form a
1-dimensional subspace of Ve, . LetI' € Normpp,). Then

(Vg € P(Dy)) T™"-g-T € P(Dy) = g(T-ep,) =T(g" -ep,) = Ag(T-ep,) ,

where ¢’ € P(D,,). Thus P(D,,) stabilizes L' = Vect(T' - ep,) and it may be

concluded L' = L, that is to say T - ep, =A-ep, (A€ k). It may be deduced
that I € P(D,,). This achieves the proof.

2.5.2 Unipotent R-subgroups

By definition a unipotent R-group G is a subgroup of the form G = Gig N
U(D), where R C Rp is a closed subset, with D a combinatorial maximal
length flag. Then G is the unipotent radical of a R-subgroup of a P(D) with
D of maximal length. Given D’ € Drap(FE), if D’ C D is a maximal length
flag, we have RY,, C RY,. Thus U(D’) is a unipotent R-group.

A unipotent R-subgroup G generated by a family of subgroups
(G(i7j))(i,j)€RCRD with R is a closed subset. The following proposition is
a consequence of the general theory of unipotent k-groups in GI(k%) (cf. [10],

§11).

Proposition 2.41 We assume the notation above. The product in GI(k¥)
induces an isomorphism of k-varieties:

[T ¢% ~c caGir®).
(i,7)ER

In view of

%opp - H (Hﬂ_t,_l —Hﬂ) X H/g R
1=p<1
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proposition 2.41 implies the product decomposition:

I UW(Hpsa — Hp) € Hpy1)) ~ UDP)
12521

the isomorphism being given by the product in GI(k%).

There is an important corollary of this decomposition. One has defined the
canonical coordinates in Up (cf. definition 1.20). In fact, this parametrization
corresponds to the parametrization of Up in terms of the principal action of
U(D°PP) on Up (cf. proposition 2.37).

One may embed Mg, —m,)xH, in MEx g by completing a (Hgy1—Hp) x
Hpg-matrix m with zeros in a E x E-matrix m/, which one also denotes by m.
Write u(m) = 1g+m € U(((Hg+1—Hg) C Hgy1)). There is an isomorphism:

up : Ap = H M, —Hgyxms (k) — H U(((Hp+1 — Hp) C Hg))
1Zp 1251

~U(D)

defined by up : (mg) = up((mg)) = u(my) x --- x u(ma).
Let (mp(Ss)) denote the canonical coordinates of 2 = (Si--- C S; C
k¥) € Up. The element up((mp(Ss))) € U(DPP) satisfies:

mp(up((mp(Sp))) - k"#) = mp(Sp) .

This means that if one Hg-normalizes the matrix whose columns are the
columns of up((mp(Sp))) indexed by Hg, one obtains a E x Hg-matrix whose
(Hp41 — Hp) x Hg-submatrix is given by mp(Sg)). Thus it follows that:

up((mp(Sp))) - k" =7 .
The above formula is a particular case of the following one. Let U(DPP) —
Up be defined by u ~ u - k”. This morphism is, in fact, an isomorphism,
which can be seen by proving that the composed morphism

Ap ’:U(DOPP) —Up ~Ap

reduces to the identity morphism of Ap. Given (mg) € Ap, write I =
(S1---C S CkP)=up((mg))-kP. Then

mp(up((mg)) - k") =mg |
i.e. mp(Sg) = mg, which proves what has been asserted.

Proposition 2.42 1) The morphism U(D°?) — Up defined by u
u- kP is a k-isomorphism ;
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2) the action of U(D°PP) on Up is principal and, thus, induces an isomor-
phism of varieties U(DPP) ~ Up defined by g — g- kP (The U(D°PP)-
parametrization of Up).

The reciprocal of the isomorphism U(D°PP) — Up is given by 9 =
(Sl - C S C ]CE) — u(mD(Sl)) X u(mD(Sl,l)) .o u(mD(Sl))

Definition 2.43 Let D = (Ey--- C E, C E) (JE| = r + 1) be a mazimal
length flag (resp. D' = (Hy--- C H, C E) € Drap,(k¥)), wp the order
associated with D, and wpnp, the induced order on Hg. Denote by ep (resp.
epnH,) the corresponding ordered basis of kE (resp. kfs), and by D/DOH,; €
Drap(Hpg) the mazximal length flag defined by epnp, -

It may be observed that with the notation of 1.4 one has D/DﬁH,g =eo(DnN
Hg), i.e. DbmHﬁ is the flag of Hg defined by the chain D N Hg.

Corollary 2.44 There is a section (Epnu,)i1<s<i on Up of the product fiber
bundle o

H Stief(&,,) — Drap, (k") |

181

where &, = (§p, C -+ C &y, C ﬁgmpl(k,s)), defined by (épnm,) : 9 =
(S1-+-C S C kP (up((mp(Ss))) - epnH,)1<p<i- The following relation

hOldS éDﬂHﬁ (@) = (’/THﬁ)gﬁl (eDﬂHﬁ)~

Penote by Zwpn ", the maximal length flag section of Drap(¢,,) defined
by Cwpnmg -
Remark 2.45 The total ordering wp of E is coherent with D’ if

i€Hs={i'eE|i <i}CHg.
wp

This is equivalent supposing D' C D, in which case the section (Epnm,) gives

a section of Stief(§,) C [ Stief(&n,)-
- 1sBsl
2.5.3 Closed set of roots defined by a couple of flags

In this section we establish the relationship between the parametrization by
normalization of a Schubert cell, with that one given by an unipotent R-
subgroup.

Definition 2.46 Let D be a mazimal length flag and D’ € Drap(E). With
the couple (D, D") one associates the closed subset R(D,D’) C RY, given by

R(D,D") ={ (i,j) € R | (i,5) ¢ Rp’ } -
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Define the unipotent R-subgroup
U(D,D") = Glgp,pyNU(D) CU(D) .

The set R(D,D’') is closed. If D’ is of maximal length one has, then
R(D,D’) = Rp N Rpropp is closed. From the definition formula Rpr = URp»,
where D" runs on the set of maximal length flags containing D’ as a subflag,
it follows that R(D,D’) = NR(D, D") is closed in general.

Remark 2.47 Let D' = (H C E). From R(E)— R(D') =N(R(E) — R(D"))
we deduce R(E) — R(D') = { (j,4) € R(E) | j € H+, i € H }. Thus,
R(D,D")=Rpn{ (i) eR(E) |jeH ", iceH}={jeH"|j<i}
wp
Hence, R(D,D') = [ H* NE, 4 x {i} C H x H.
i€H

Definition 2.48 Let |[E|=r+1, D= (Ey---C E. CE), D' = (H;--- C
H; C Hi41) € Drap,(E) (n = (n1 < -+ < ny < nyy1)). Suppose E ordered
by wp. Let 7p : E ~ [1,|E|] be the order preserving bijection given by the
ordering wp of E, i.e. Tp(i) = inf{a € [1,|E|] | i € Eq }.

Write:
1. HSi|={z€eH |z <1 };
2. Rg(D,D") = [I (Hpa[Si]—Hp[=i])x{i} C(Hpy1—Hp) x Hp.

i€Hg
The set Rg(D,D’) is closed.

Proposition 2.49 R(D,D’) = ][] Rg(D,D’) C Ryop» = 1 (Hp41 —
15821 15p<1
H[g) X HB.

Proof One knows that:
Rpr = ( [] Rempen—nsy) 1] CT1 Hs x (Hsa — Hg))
0<B8<! 1<8<1

RODp,p = RD/npp thus, R(E) = RD/ U RD/op;n. Then R(E) — RD/ =

Il (Hp41 — Hp) x Hg, and finally
1Bl

R(D,D') = Rpn(R(E)=Rp) = [ (T {G.0) € (Hapa—Hp)x{i} | j <i}) =
1SB<1 i€Hg

= 1 (Il By 0 (Hpsr — Hp) x {i}) = [ Rs(D,D") .

1Spst €Hg 1=B51

Now suppose that D’ = (H C FE). Then one has:
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1. B

A

i | = E;, () (by definition of 7p);

2. B

A

i]-H[Si]=H"NE,@);
3. RD,D') = [TH"NE,,y x {i} CH" x H
i€H

(The set R(D,D’) for D' = (H C E)) ;

(3

4. U(D,D') C U((H*+ C E)) = U(D'""p).
Let
Mprp,py(k) ={ m=(aij) € My, g (k)| (i,7) ¢ R(D,D") = a;; =0} .
One has
UD,D')={1g+meU(D"P) | me Mgrp,p)k)}.

The following proposition explains how the U(D’°PP)-parametrization of Up:
induces a U(D, D’)-parametrization of ¥.(M,D’) — Up .

The relative position matrix M = M (D, D’) is characterized by the vector
(1ENH ) 1<j<p1- Let H = (iy < -+ < ip). Then one has that |E,, ;. N H| =
a, and that (7p(ia))1<,<, are the “increasing points” of the chain DNH. Thus
S € (M, D) < dim kFrpteo NS = o, and (7p(in))i<a<, are the increasing
points of the chain kP N'S. A basis fs = (fi.)i1<a<n of S may be obtained
satisfying k¥rpGo) NS = Vect((fi,, -, fi))- Let M(fs) = (£j:.) denote the
E x H-matrix whose column vectors are given by the components of the f; ’s.

The matrix (§;;,,) satisfies the equations &;;, = 0 for i, < j, and &;;, # 0
for j = i,. One deduces that a H-normalized matrix may be obtained by right
multiplying (&;;,) by a n x n-lower triangular matrix B. Hence the lifted basis
én = (mu)s' (exr) (emr = (e;,)), may be uniquely written as:

€i, = €, + Z &jin€s (ia € H) .
(Jria)EHENE, | (50)) % {ia}

Thus, mp/(S) = (&) € Mgp,p(k) and u(mp:(S)) € U(D,D’). Thus it
has been proved:

Proposition 2.50 Keep the above notation. Let M = M(D,D’). Remark
that D' is the center of X(M, D), i.e. D' = Dyy.

1. X(M,D) C Up;

2. the morphism U(D,D') — X(M, D) defined by g — g - k™ is an iso-
morphism of k-varieties;

3. ¥(M, D) is principal homogeneous under U(D, D’).



44 Buildings and Schubert Schemes

(The U(D,D’)-parametrization of a Schubert cell X(M,D) C
Grass(KF))

Keep the notation of 1.3.2, with D’ = D, and the notation of corollary 2.44
as well. The following proposition, which we give without proof, explains how
Y(M(B), D) is decomposed in terms of the fibrations (Ups — Ups+1)1<5<;-

Proposition 2.51 Let M(3) = M(D, D?). Clearly M(1) = M(D,D’"). It
may be assumed that X(M(B),D) C Ups, and that (M, D) = £(M (1), D)
decomposes in a sequence of locally trivial fibrations (X(M(B), D) — (M (8+
1),D))1<p<; with typical fiber (Mg, Dpry,) C Grassy,(k"#+1), where
Mg = M(DbmHﬁ’(Hﬂ C Hpgt1)) and DbmHﬁ denotes the flag given by
DN Hg. (This decomposition being induced by (Ups — Ups+1)1<p<i)-

The restriction (§n,,,)s of the Op.ep . (key-module &, ., to ¥ =

S(M(B+1),D) C Ust1 C Drap,s+ (k¥) is endowed with a maximal length
flag Zpnm,,, defining a section of Drap(§,,,,)s (cf. corollary 2.44). The
sections of the fiber bundle (M (8), D) — (M (8 + 1), D) given by the
sections & of Grassn,(&n,.,)s are satisfying:

1) .7 intersects the submodules of Zpnp,,, in a locally free direct factor;
2) M<@D0Hﬁ+1? (‘y - gﬂﬂ+1)) = Mﬂ

Remark 2.52 In fact, (&n,,,)s is endowed with the ordered basis €épnm,.,,
defining the flag Zpnm,,,, and a section Hp of Grassn,(&ns,,)s. Thus, the
fiber bundle X(M(8),D) — X(M (8 + 1), D) is isomorphic as a (M (5 +
1), D)-scheme to the relative Schubert cell ¥(Mg, Zpnp,,,), whose center
is given by (s C &ny,y), i-6. M(Ppangy > (5 C &nyyy)) = Mg and A3 is
adapted to €pnuy,.,, -

One has:
1. Ry(D.D') = R(Dippy, ., (Hs C Hyir)

= 171[ (Erp(iy N (Hp1 — Hp)) x {i} C (Hppr — Hp) x Hpg .
1€Hp

2. Ug(D,D') = U(Dpnp,,,, (Hs € Hy)) C GL(ET7+0);

3. Upg(D"P?) = U(((Hp41 — Hp) C Hpi)).

To the decomposition of R(D, D’):

R(D,D")= [] Rs(D,D')C [] (Hss1r— Hp) x Hs = Ripons ,
161 161

corresponds to the product decomposition:

UD,D') = H Us(D,D") C H Us(D'°PP) = U(D'PP) .
1£p21 1851
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Denote by AR(D,D’) = A( H MR/j(D,D’)) C A( H M(H[H_l,Hﬁ)XHﬁ(k)),
1=psl 1=ps1

where MRﬁ(D,D/) = { m = (aij) € M(H(1+1*H/1)XH/3(]€) | (4, 7) ¢ Rﬂ(D7DI) =
aij = 0}, the affine subspace being defined by [[ Mg, p,p1))-
15851

Proposition 2.53 Let D' = (Hy C ---H; C Hj11) € Drap(E) and M =
M(D,D'"). It is noted that D' is the center of (M, D), i.e. D' = Dyp;. The
restriction morphism given by the embedding:

ACTT Mrao.0(8) = AC T Miaass -, (k) ~ UD'PP) — Up:
1>821 12521

induces an isomorphism

A( H Mg, p,p(k)) ~U(D,D") ~ X(M, D) (cf. proposition 2.42).
1zp21

Thus one has:
1. ¥X(M,D) Cc Ups;

2. the morphism U(D,D') — X(M, D) defined by g + g - k™ is an iso-
morphism of k-varieties;

3. (M, D) is principal homogeneous under U(D, D’).

(The U(D,D’)-parametrization of a Schubert cell X (M,D) C
Grass(k?))

Proof Let us prove the first assertion by induction on l. From 2.50, it
results for 1 = 1. Let 1 < B. Suppose  [] ~ Mp,,(p,pro+1)(k) = S(M(B +
128'2p+1
1), D) (cf. proposition 2.51). Given a section (Sg C Sgi1---S; C Siy1) of
Y(M(B),D) — S(M(B + 1), D) we may write u((mp);>p>p541) - P =
(Sﬂ+1"'51 - Sl+1) with (mﬁ’)l;ﬁ’;ﬁﬂ € H MR[,/(D,D’/”l)(k)v and,
12B8"'2p8+1

thus, u((mp:);>p>p41) X u(mps(Sg)) - k5 = Sg. As S defines a section
of X(Mg, Ppnns,.,,) one obtains u(mps(Sg)) € Mg, (p,pey(k). We conclude
that u((mﬁl)l§5/2ﬁ+1) X u(mps (S@))-kD/B = (Sg C Sp41---5; C Si41). This
achieves the proof of the first assertion. The other statements follow easily
from the first one.
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2.6 The linear group parabolics variety

Denote by ¢, : GI(k¥) — GI(k¥)/P(D,,) the quotient morphism. The
morphism p,, : GI(k¥) — Drap,(k¥) defined by x +— x - kP= factors as:
Dn = Pn © Gn. We prove here that

Proposition 2.54 The induced morphism p, : GUkF)/P(D,) —
Drapﬂ(kE) s an isomorphism of k-varieties.

Given g € GI(k*) denote by Ay, (g) the ng-th diagonal minor of g. Let

Uy ={geGIE") | An,(9)# 0(L=B=D) }.

Clearly U,, is an open subvariety of GI(kF).

Lemma 2.55 1. If g € Uy, g may be written uniquely as g = u - g', with
u € U(DgPP) and g’ € P(Dy);

2. (w-Un)wesy/s, 18 an open covering of Gl(kF).

Proof The first statement is easily verified. Let us prove the second one. It
is clear that for w € &, w-U, is an open subvariety of GI(kF). From 5.21 it
follows that (w - Up)wes /s, 5 an open covering of Gl(kF).

Proof of 2.54

Lemma 2.55 shows that the restriction (Pn)q,w,) mduces an isomorphism
qn(Uy,) = U(DSPP) - kP | between an open subvariety of the integral variety
Gl(kE)/P(Dn)iand an open subvariety of the integral variety Drap,, (k¥). We

conclude that p, is a birational morphism, and that Vw € Gg:

(ﬁﬂ)qg(w(uﬁ)) D (w(Uy)) — U(w(Dy)P) - o (Pn)

is an isomorphism too. This implies that p,, is a quasi-finite morphism. Thus
we may apply Zariski’s main theorem (cf. [9], p.6) and deduce that p,, is an
isomorphism of k-varieties.

Definition 2.56 A parabolic subgroup P of the A-group GI(AF) may be de-
fined following the pattern of definition 2.38 and thus also the functor

Par(GI(kF))(A) = the parabolic subgroups of GI(AF)(A a k — algebra),

may be defined without any reference to Drap(kF). By proposition
2.40 we know that P(D,) is equal to its own normalizer and thus that
GU(k®)/P(D,) — Par(GlU(k®)) induced by g — int(g)(P(Dy,)) is a func-
torial isomorphism. We conclude that Par(GI(kF)) is a representable functor
isomorphic to the homogeneous space GLU(k¥)/P(D,,) (cf. [23], Exp. XXVI,
Corollaire 3.6).
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From proposition 2.54 it follows

Corollary 2.57 The morphism Drap,,(k¥) — Par(GU(kT)) defined in 2.39
18 an isomorphism.

2.7 Big cell defined by a maximal length flag

Taking into account the cell decomposition Drap(k¥), =
11 YX(M,D) with D € Drap,(F), which is also the P(D)-

M e Relpos (m,n)

orbit decomposition, and the isomorphism GI(k¥)/P(D') ~ Drap,(k¥)

(D' € Drap,(E)) implying that Drap, (k%) is an irreducible k-variety, one

can state the following

Definition 2.58 There is only one kP -Schubert cell which is an open sub-
variety of Drap,(k¥), namely the cell containing the generic point of
Drap,, (k). Denote by M(bfn n € Relposy, n) the relative position ma-
triz defining the open cell of the kP -Schubert cell decomposition. One calls
S(MPe |, D) the big (open) cell of Drap,(k¥) defined by D. One

(m,n)’
can say that a couple of flags (D, D’) satisfying M(bﬁl ny = M(D,D’) is in
transversal position (c¢f. loc. cit., Exp. XXVI, 4.). By definition two flags
D and D’ are incident (c¢f. [50], p.2) if there exists a flag D" satisfying:

D,D' c D".

Proposition 2.59 A couple of flags (D, D’) is in transversal position if and
only if D and (D')°PP are incident.

Proof The condition D, (D")°PP C D" implies that U((D’)°PP) C P(D").
Thus

Up = U((D")°PP)-kP" ¢ P(D")-kP" ¢ P(D)-k™,i.e. ©(M(D, D), D) =
P(D) - kP is an open subvariety and the couple (D,D') is in transversal
position.

Suppose D is of maximal length and that X(M(D,D'),D) C Up C
Drap,,(k¥) is an open subvariety. On the other hand, one knows that
X (M(D,D'),D) is a closed subvariety of Up thus X(M(D,D’),D) = Up.
It is deduced that U((D')??) = U(D,D’), and a fortiori that Ri'p e, =
R(D,D') C Rp. This implies that the two flags D and (D')°PP are in-
cident flags. If X(M(D,D’), D) is open there exists a mazimal length flag
D C D with S(M(D, D'), D) open. One concludes from the above reasoning
that (D')°PP. D C D, i.e. (D")°PP and D are incident flags.

Proposition 2.60 Let D € Drap,(k¥) be a mazimal length flag of E (|E| =
r+1). There exists a unique D' = (Hy --- C H; C E) € Drap,(k¥) satisfying
M(D,D’) = M/ ., characterized by 7p(Hg) = (r +2 —ng < -+ <r+1).

(r,n)’
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Proof From lemma 2.19 it follows that given a relative position matrix
M € Relpos(, ) (E), and a mazimal length flag D of E, there exists a unique
flag D' € Drap,(E) such that M(D,D") = M. Apply this result to M(b;ﬂ)
and D, and let D' denote the unique flag satisfying M (D, D’) = M(b;ﬂ). Thus
one obtains

R(D,D") = [] Rs(D, D)= [ (TI (Broy N (Hps1 — Hp)) x {i} =

1Spsl 1=p<l 1€Hg

[I (Hp+1—Hg) x Hg = Rpyopp
1SSl

and one deduces that: (Hgyy — Hg) C E; ;) for i € Hg, and thus that
Tp(Hg)=(r+2—-ng<---<r+1).

2.7.1 The embedding of a Schubert cell in a big Schubert cell

The open subvariety Ups C Drap, (k¥) contains as a closed subvariety ev-
ery Schubert cell ¥(M, D), with D some maximal length flag, and center
Dy = D', ie. M = M(D,D'). Tt may be observed that the set of flags
of maximal length in transversal position with D’ is those of flags con-
taining (D’)°PP as a subflag. In other terms incident to (D’)°PP by 2.59.
On the other hand, given a maximal length flag D and a minimal gallery
I(D,D’) (cf. [50]), this gallery may be completed into a minimal gallery
['(D,D’") Cc (D', D"), where D' is in transversal position with D’, and thus
(D")err C D', Thus X(M,D) C S(M(D',D’"),D') = Up:. By propo-
sition 2.35, Up- is principal homogeneous under the unipotent R-subgroup
U((D')°PP) defined by the closed set Ripiom = <]_[< (Hpg41 — Hp) x Hp
1<8<1
and by 1.3.3 one knows that there is an isomorphism of k-varieties: Up: =~
Ap = A( TI My, ,—my)xm,(k))(= U((D')°PP)), giving rise to a canonical
1<8<1

parametrization of Up/. Denote by (&), )e Ry onn the canonical coordinates

given by the above isomorphism. The embedding X(M, D) < Up is defined
by the set of equations (§;; = O)(ivj)E(R}"D,)opp—R(D7D’))' This embedding cor-
responds by the isomorphism Ups ~ Ap: to an embedding Ag(p pry < Ap =~
A, where Ag(p pr) is given by the coordinates (mg) = (ag,;) satisfying the
set of equations ag,;; = 0 for 03(i) < j < ngy1 — ng.

Proposition 2.61 Let os(i) = |E;,;(Hpgy1—Hp)|. The image of Ar(p, pr
by Ap ~ A, is given by the (mg) = (ag,;) satisfying the set of equations:
ag;ij =0 for op(t) < j = ngy1 —ng.



Chapter 3

Resolution of Singularities of
a Schubert Variety

A smooth resolution of singularities for a Schubert variety in a flag variety
is constructed in terms of a Configurations variety directly obtained from its
Relative Position Matrix. This is a canonical smooth resolution whose con-
struction is suggested by our indexation of Schubert varieties in Flag varieties
by Relative Position Matrices. We explicit a canonical decomposition of this
variety as a sequence of locally trivial fibrations with Grassmannians as typical
fibers. A schematic version of this construction is also given.

We proceed first to define a class of subvarieties of products of Grassman-
nians in terms of the incidence relation between subspaces. These varieties
give rise to examples of smooth resolutions of Schubert varieties by minimal
generalized galleries. The first examples of smooth resolutions by means of
these varieties appear in [12] and [13]. In [12] an application to the construc-
tion of an invariant differential form dual to a Schubert cycle in Grass, (k¥)
is given.

Let us explain another motivation of the smooth resolutions introduced in
this Chapter. In [49] R.Thom attempts to give a description of the singular-
ities of a differentiable function by means of an iterative procedure involving
functions into Grassmannians. These functions appear as locally classifying
mappings associated with the family of tangent spaces to the graph of this
function. Its generic singularities are thus described by a “Stratification” de-
fined by the Pull-Backs of Special Schubert varieties by these classifying map-
pings. What R.Thom introduces loosely as “La Ventilation d’une Singularité”
in loc.cit. amounts looking at a Classifying Mapping at a singular point of a
Schubert variety through its Smooth Resolution defined in this chapter and

49
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in [13].

3.1 Relative position matrix associated configurations variety

Definition 3.1 Given M = (map) € Relpos,, ) C NO+HDXUAD) pith m =
(m <--<my<r+1l),n=(m <---<n <r+1) define a weighted
graph A(M) as follows. The set of vertices Vert A(M) of A(M) is given by

Vert A(M) = [1, A+ 1] x [1,1+ 1],
and the set of edges Edg A(M) by
Bdg AM) = {((.B).(a+LA) 1<a<A 1<A<I+1}U
{((@,f), (e, 5+ 1)) I<a<A+1, 1<F<I).
Define a weight function on the set of vertices Vert A(M) by:
p: Vert A(M) > N, p(a, ) = mas.
A A(M)-configuration of Grass(I,41) = [[ Grass,(I,4+1) is a mapping
fo [L,A+1] x [1,1 + 1] — Grass(I,4+1)
satisfying:
(1) [f(e, B)| = card f(e, ) = map = p(e, B);
(2) fla,B) C fla+1,B) (resp. f(ea, f+1))if a <A (resp. B<1).

The inclusion relation seems better suited to desoube this relation. In
fact it is a usual mathematical term relation of Grass(I,41) = Z(I,+1) and
J — |J| naturally defines a weighted graph structure on Grass(l,11). A
A(M)-configuration ¢ of Grass(I,4+1) is a morphism ¢ : A(M) — Grass(I,4+1)
of weighted graphs. A A(M)-configuration ¢ is given by a matrix

(Jup) € Grass(I,.4,)A+Dx0+1)
satisfying |Jog| = Mmag, and Jag C Jat1,8 (resp. Jog C Jap+1) for 1 <a << A

(resp. 1 < B <1).
Denote by

Conf®™®(A(M)) = Conf(A(M), Grass(I,11))

the set of A(M)-configurations of Grass(I,+1) (The Combinatorial Con-
figurations). Remark that my11 41 = 7+ 1 and my ;11 = mq, Mo 141 =

Mo, s, My 141 = My (TESP. Ma41 1 = N1, Mag1 2 = N2y, Mgl | = My).
Thus there are natural mappings

p1=pi(M) : Conf(A(M),Grass(I+1)) — Drap,, (I,+1)
( resp. p2 = p2(M) :  Conf(A(M), Grass(f,41)) — Drap,,(1r41) ),
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defined by

P1((Jag)) = (J1 141 C -+ JIx 141 C L)
( resp. p2((Jag)) = (Jag11 C - Iag1 1 C Lry1) )a

where Jyi1 141 = Ir41. Given D, D’ € Drap([,.y1) write

Conf®™P(A(M), D) = Conf(A(M), Grass(I,11))p := p; - (D)
(resp. Conf®P(A(M), D,D’) := p; *(D) Npy (D) )

Definition 3.2 Following the same pattern as above define a A(M)-
configuration ¢ of the k-variety Grass(k"1). Denote by

Conf(A(M), Grass(k"11)),

the set of the A(M)-configurations of Grass(k™1). If no confusion arises one
can write Conf(A(M)) = Conf(A(M), Grass(k"+1)).

By definition there is a canonical inclusion:

Conf(A(M)) C H Grassm,,(k"™).
(a0, )€1, 1] x [1,141]

Proposition 3.3 Conf(A(M)) is a projective variety.

In the next section it is shown that Conf(A(M)) is a k-variety canonically
decomposed in a sequence of fiberings, each one with a smooth base and
typical fiber a Grassmannian, and thus a k-variety in Serre’s sense.

Proof There is an embedding of I Grassm,, (k™) in a
(a,B) €1, A+1] X [1,141]

product of projective spaces, given by the product of the corresponding Pliicker
embeddings.

By the proof of 1.9 one can conclude that the image of the subset Conf(A(M))
1s characterized by the vanishing of a set of homogeneous equations in the
Pliicker coordinates of the factors. Thus Conf(A(M)) is a closed subvariety
of a product of grassmannians. ( The equations defining the embedding corre-
spond to the set of inclusions defining Conf(A(M)) as a subset of this product
of grassmannians.) This achieves the proof.

Definition 3.4 To py (resp.ps) it corresponds the morphism
7 =11 (M) : Conf(A(M)) — Drap,, (k")

(resp.
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g = ma(M) : Conf(A(M)) —> Drap, (k™))

defined by m1((Sag)) = (S1141 C - Sx 141 C k™1 (resp. m2((Sag)) =
(Sa411C - Sxi11 CEk L) m and mo are induced by the canonical projec-
tions of the product. Thus it is immediate that w1 and wo are k-morphisms.

Let Z € Drap,,(k"™') and 2’ € Drap,,(k"™1). Write
Conf(A(M), ?) := Conf(A(M))g := 7y (2))
(resp. Cont(A(M), 2,2') := 771(2)) N wgl@’))).

From the above proposition it results that Conf(A(M), 2) is a k-projective
variety. This property also follows from the natural fibering of Conf(A(M), 2)
as it is shown in the next section.

Notation 3.5 Write:

a) (M) = (m1,m2) and denote by w(M,D) the restriction of w(M) to
Conf(A(M))g ;

b) S(M) = Conf(A(M)) (resp.3(M,2) = Conf(A(M), Z)).

Let 9 = kP (resp. 2’ = kP'). Define the Combinatorial Fiber
Conf ™ (A(M), 2, 2") of (m1,m3) as the image of the mapping

Conf®™ (A(M), D, D) — Conf“"(A(M),2,7") ,

defined by ¢ — (k@A) If no confusion arises denote by
Conf®™ (A(M), D, D') this image.

3.1.1 The Configurations Canonical Section

Definition 3.6 There is a natural embedding
O(M) : (M) < Conf(A(M))

of the universal Schubert cell 3(M) of type M into the variety of A(M)-
configurations, defined by (2,9') — M (2,2") = (W, N Vg), where I =
(Wy C---CWyCk™) (resp. 2" =(Vy C---C Vi C k™))

Proposition 3.7 The mapping (M) is induced by a k-morphism.

Proof Let Yog(M) C Drapy (k™) x Drap, (k™) (resp. ¥ 4(M) C
Grassm, (K"') x Grass,, (k")) be the Schubert cell defined by dim W, N
Vi = mag (resp. dim W NV = maz), where D = (Wy--- C Wy C k™),
and D' = (Vi --- CV; C k™). Remark that S(M) = NS,5(M).

The (a,B)-component of (M) = (0ap(M)) is obtained as the composi-
tion of the projection of Las(M) on E;B(M) followed by the mapping
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¥ a(M) — Grasspy,,,(K"™*), defined by (W, V) — W NV. In view of the
above remark, it suffices to prove that this mapping is induced by a morphism
0,5(M) : 3 5(M) — Grassm,, (k™). Let it be proved that the Plicker co-
ordinates of WNV are given by homogeneous polynomials in the Pliicker coor-
dinates of W and V. We keep the notation of the proof of 1.9. The Pliicker ho-
mogeneous coordinates of W (resp. V') are given by (An(e1)) HeGrassm, (I41)
(7'(35]7.(AJ(62))J€GWSS”ﬁ (I+1), where ey (resp.ey) denotes a basis of W (resp.
V). A system of defining linear equations is obtained for W NV as follows.
The kernel of the linear mapping

m—+1 n+1
Ok — A ETx A KT
defined by:
vi— ((e11 Ao Aerm) A, (ea1 A ... Aeay) Av),

is equal to W N'V. Denote by p the rank of ®. Let S € Grassm,,(k™") and
= (fe)1gk<m., e a basis of S. The condition S = Ker ® may be written
as follows. Let

m+1 n+1 Mag
v - kr-i—l — /\ kr+1 % /\ kr-i—l % /\ kr-i—l
be defined by:
v ((e11 Ao Aerm) Av,(e21 A Aean) AU (fL A o A frngs) AV).

Thus S = Ker ® if and only if: Ker ® = Ker V. This last condi-
tion may be written, as in 1.9, in terms of the vanishing of the (p + 1)-
minors of the linear system obtained from W. The minors of this system are
polynomials n (AH(el))HEGrassma(Ir+1) (resp'(AJ(62))J€GTass,,Lﬁ(IT,+1) and
in the Pliicker coordinates (AK(f)KeGmssmM(Irﬂ) of S. More precisely:
S = Ker ® < the set (M, ((Ar(e1)), (As(e2)); (Ax(f))) of the (p+1)-minors
linear in (Ag(f)) vanishes. Consider now the linear system in the vari-
ables (Xic)xerasom,  (1ven) 9i0€n by (My((Au(en)), (As(e2))i (Xic)) = 0);
(Ak(f)) is clearly a solution of this linear system. Let (X%) also be a solu-
tion. Then the vector

w = Z X%e“(K)/\/\ez"(K) s
KEGrassmaﬁ (Ir41)

satisfies w A fr, =0 for all1 £ k < myg. Thus there exists A € k with

w=x( Y Arc(f)ei ) Ao N e (i) =X A A fon.
KGGrassmaﬂ(Ir+1)
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Thus the subspace of solutions of this linear system is one dimensional. It
follows immediately that the coordinates (Ak (f)) of S are homogeneous poly-
nomials in the coefficients of (M,((Am(e1)),(As(e2)); (Xk)) = 0), which
are themselves homogeneous polynomials in (Ag(e1)) and (Ay(e2)). This
achieves the proof of the proposition.

Proposition 3.8 The morphism O(M) : ©(M) — Conf(A(M)) defines an
open embedding, and we have:

$(M) = x(M) " (2(M)) = Im O(M)

(resp. (M, 2) = n(M, 2)"(2(M, 2)) = Im O(M, 7)).
Proof Let us prove the first assertion. The condition on
(Wap)(@.penarigx[rir) € Conf(A(M), Grass(k"1))
to be in the image of O(M) is given by:
Wapg = Wat1s N Waita
((a, B) € [1,A] x [1,1]). Write
Ylap = LW, W) € Grassm, . ,,(k""") x Grass,, ., (K"™") | maj1p <

rk(WAW")Y,
and q(a,5) : Conf(A(M)) — Grassm, ., (k"™") x Grassp,,,,, (k™) for the
canonical projection. Let (€i)1<i<m. .., (T€sP-(€1)1<i<ma s, ) be a basis of W
Ma+18 Map+1

(resp. W'). Define ® : k™1 — A (K"t x A (K™1) by

Do ((e1 A Ay yy,) AU (€1 A Aep, ) AY)
As in 1.9 a linear system is obtained whose matriz coefficients are given by
the Pliicker coordinates of (W,W'). The condition mqz < rk ker ® may be
stated as the vanishing of a set of minors of this system. Thus E’(a’ﬁ) s a
Zariski closed subset of Grassp, . ,,(K"™') x Grassy,,,, (K"™'). On the other
hand, it is clear that

Im 6(M) = Conf(A(M)) (Ela,p):

(e B)E[1,A] % [[1,l]]q(047,3)

thus one concludes that Im (M) is an open set in Conf(A(M)). The mor-
phism (71, 72) gives a left inverse of (M), hence (M) may be seen as a
section of

(71, m2) : Conf(A(M)) — Drap(k"™1) x Drap(k"*!)
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along the subscheme %(M) — Drap(k™™1) x Drap(k"*1). This proves that
O(M) is an open embedding.

A simple geometrical argument proves the second assertz'on. Let (2,9') €
S(M), with @ = (W1 C -~ C Wa C k™) and 2' = (Vi € -~ C Vi C kH1).
If n(M)(Wag)) = (2,2’ ), then Wy 141 =Ws (1< a < l) and Wxy1 5 =Vp
1<B<I).

As (Wap) is a A(M)-configuration, one has

Y (a, B), dim Wag = mag,

and Wog C Wy 141 N Wig1 g = Wo N Vs, On the other hand, (2,9') €
E(M) = dim W, N Vg =mag by definition of X(M). It is concluded that

N (Oé,ﬂ), Wap =WoNVg, ie.

(Wap) = HM(2,9").
This achieves the proof of the proposition

Corollary 3.9 The restriction of the embedding 0(M) to X(M, D) induces
an open embedding

O(M,2): Y(M, D) =%(M)gy < Conf(A(M))y = Conf(A(M), D),
defined by 9' — M (2, D").

3.2 Fiber decomposition of a Grassmannian Configurations
Variety

Given a type of relative position M = (mag) € Relpos,, (Ir11) ANAFDX2 1 e
a type of relative position of a flag of type m = (mq < --- <my) <r+1) and
length I(m) = A and a flag of length 1, and a combinatorial flag D = (H; - -- C
Hy C I41), write Conf(A(M), D) = Conf(A(M),kP). To M is associated
the sequence of relative position matrices: My = (Ma/g)i<ar<a) (1 = a =
A+1). Let (Dq)i<q<ry1 be the sequence of truncated flags of D defined as
in 1.3.2, and m,, = typ(D,,).

Define

2 = %) (M, D) := (Mg, Dy) = Conf(A(M,),
“)

Grass(kfe))p, (1<a<A+1).

We have the following identification:

(@) = 5@ (M, D) (( H Grass,,_,, (ke ))xGrassma(k”“))ﬂChain(kH‘*),
a’=1

where Chain(kf«) denotes the k-variety of chains of subspaces of kff«
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Clearly SO+1 = (M, D) = Conf(A(M), kP). For every 1 < a < X the

a+1 o

projection morphism [] Grass,, , (k~') — T[] Grass,,_, (k™) induces
a’=1 a’'=1

a morphism

p(a+1) . z(oﬂrl) N i(a).

‘We shall now show

Proposition 3.10 1) pltY defines a locally trivial fibration with typical
fiber a grassmannian.

2) The (f)(a))l§a§ ar1 are integral and smooth k-varieties. In particular
il(M, D), 2 a flag of type m of k™+1, is an integral and smooth k-variety.

Proof There is a natural morphism: qo : 3 —s Grass,,,, (k7*) —
Grassy,,, (kfe+1). On the other hand, one knows that there is a locally trivial
fibration
H, a
Grass(7n"‘+11_m"‘l)(ﬁGra:;nal(kchJrl)/fmal) — Grassmal(k'H +1)'

The fiber on the section Jo1 of Grass,,, , (kfe+1) on some X = Spec(A),
where A denotes k-algebra, is given by the set of sections Jo+11 of
Grassp,, ,,, (kHe+1) satisfying Jo1 C Jag11 C oo+

Grassm,,, (kHat1)”
From this description it follows that there is a canonical isomorphism:

. Haota ~ (et1)
qa(Grass(mwu_mM)(ﬁGraSSma ~3 .

N (kHQ+1)/£ma1))

This implies that p'®tY) defines a locally trivial fibration with typical fiber a
grassmannian.

The total space of a locally trivial fiber bundle, with base and typical fiber
smooth and integral k-varieties, is a smooth and integral k-variety. It may
be observed that (V) = Grassy,,, (k). Thus the second assertion results
immediately by induction from the first one.

Remark 3.11 Let M € NOTDXUHD) pe o type of relative position ma-
triz of a chain of type m and a flag of type n (cf. 1.4). Given a chain
D € Chaing(E), the Schubert cell (M) C Drap,(k¥) x Drap,(k¥)
(resp.  X(M,D) C Drap,(k¥)) may be defined following the pattern
of 2.10, as well as the corresponding Schubert variety. The wvarieties
Conf(A(M)) (resp. Conf(A(M),D) = Conf(A(M),kP)) may also be de-
fined. The preceding constructions of this chapter may be carried out for M
and D; the above statements hold for a chain relative position type matriz
M and a chain D. In this case kP € Chain(k™*) denotes the chain of
k™1 corresponding to D. It is easy to see that their proofs may be reduced to
that of equivalent statements involving only flags, and relative position types

of flags.
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3.3 Fiber decomposition of a Flags Configurations Variety

Let D= (H; C---CHy ClI41) (resp. D' =(Jy C--- C J; C I41)), with
typ D = m (resp. typ D' =n). Write # (D, D’) = (Hnp) = (Ho N Jg) (resp.
M(D,D') = (mas) = ([Hasl) = (Ha N1 J5])), and D = (Jy C - C J C
I,41). M is associated with two sequences of relative positions matrices. The
first of these sequences is a sequence of types of relative positions of flags, and
the second one of chains.

1. M(ﬁ) = M(D,D/ﬁ) = (maﬁ/)6<5/<l+1 e N(A+1)X(l+2_5)7 fOI' (l 2 B Z
1);

2. MP = M(D***1,(Jg C Jg41)) = (map)p<pr<pr1 € Relpos (Jpr1) N
NOFX2 for (1 < B <),

where D***1 = (Hyp41 C --- C Hypy1 C Jg41), thus M? denotes the relative
position matrix defined by the two chains D*#*1, (J5 C Jg41) € Chain(Ja41).
Let pog be the composed morphism

$(M, D) = Conf(A(M), D) — 11 Grassm,, (k") —
(a,B)E[L,A+1] % [1,14+1]

Grassp,,, (k™) .

The last arrow denotes the canonical projection on the (a, 8)-factor. We say
that pos is induced by the corresponding canonical projection.

Definition 3.12 Denote by p25(fmaﬁ) the pullback of the tautological module
&ma, associated with Grassp,,,(k™) by pag. Write

(Hap) = (Pap(Emas))

This family of submodules of ﬁ;&b D) s characterized as follows. Given a

section s : X — S(M, D) the fiber (Hap)s on s is given by the A(M)-

configuration (s*(74g)) of ﬁi(M’D)-direct factor submodules of ﬁ;rl\l/[,p), i.e.

the A(M)-configuration given by s. Let us write S5 = S(M(8), D(8)) =

Conf(A(M(B)),D(B)) C I1 Grassm,, (k™). 2P+ de-
(a,8))€[LAF1]X[B,1+1]

notes the chain of ﬁ2/3+1—modules defined as follows:

P = (A g1 C - C Hgapra)-

The inclusion of weighted graphs A(M (8 + 1)) < A(M(B)) defines a
morphism

prg : Conf(A(M(5)), D(B)) — Conf(A(M(5+1)), D(5 + 1))
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(resp. ¥ — Lp11) -

3.5 is now described as a fiber bundle over ¥4 ;.

Let o(D*#*1) (resp. (2°°t1)) be the flag defined by D*/+! (resp.

2*P+1) and Stief(p(2°*P+1)) the Stiefel variety of ordered basis of 74 41511
adapted to the flag ¢(2°*%*t1), defined the following pattern of definition
1.15. It is known that Stief(¢(2°*°+1)) is right principal under the natural
action of Stab k#(P*"") c GI(km+1).
(MP,D*F+1) is associated to the sequence of Schubert cells
(S (MP, D)) 1 cacrit and  the  sequence  of  morphisms
(St (MP DAYy — S@)(MP, D*¥*t1)) cocx. There is a natural
left action of Stab k#@P*"") on $@) (MP, D*#*1)) for 1 < a < A+ 1 and the
morphisms S+ (AP DeA+1)) — 3@ (MP D*F+1)) are Stab e (D)
equivariants.

Definition 3.13 Write
S(MP, 7°0HY) = Stief(p(2°7)) Ngrap pocoos+1, B(MP, D))
(resp. 2%‘1) = 2@ (MP, PP+ = Stie f(o(2*P) Agrap pe(pos+1)
(@ (MP, DY) .
Let pr[(;l“) St (AP @Bty s 33 (MP| P*F+1) be defined by

priy V) i= Stief(p(7°7H) Ngpgp ecomnss (BCTVLP, DY) —

S (MP, DY)
The following proposition results easily from the above definition.

Proposition 3.14 1. The canonical morphism prg : f](Mﬁ,@'ﬂﬂ) o
Yg41 defines a locally trivial fibration with typical fiber X(MP, D*A+1).

2. The morphism pr(;‘“) o Slet) (M gty s (@) (VP gehtT)
defines a  locally  trivial  fibration — with  typical  fiber
a+18+1 af
Grass(m, 1 ,—mas) (K7 JEE).

3. A canonical isomorphism of X541 -schemes exists:
iﬁ : 2[(3 — i)(Mﬁ_H,.@.ﬁJrl),
defined functorially by

ig: (Hap itizp>p — (Hap )ivizp>p+15 (Hap ) pr1>p>6)-
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Observe that M(1) = M and that ¥; := Conf(A(M(l)), D) is a smooth
projective k-variety. We deduce from this and 3.10 the

Corollary 3.15 There is a sequence of locally trivial fibrations:
S(M,D) =%, — 5y — 5 = 5(M(1),D) ,

each fibration with typical fiber integral and smooth. Thus f](M ,D) is an
integral smooth k-variety.

From the decomposition of (M, D) in a sequence of fibrations (34, pr 5) a
further refined sequence of fibrations (2(50‘), pr(Ba)) 2SasA+1,1585))

is obtained. Observe that 2(;) = Grassy, ; (Hn, ., ) Define prél) : XA](BI) —
$(A+1)

G1 as the canonical morphism defining the fiber bundle structure of the

relative grassmannian Grass,,, , (%, ,,,) on igj:rll) For 1 < 8 <1 there is a

sequence of locally trivial fiberings each one with a typical fiber grassmannian:

(1) (1)
Pra—1 &(A+1) S(N) S(2) S(1) Pre (A1)
"'*)26 HEﬁ "'*}25 *)Zﬁ HEB_H

Coherence of (f]ﬁ,prﬁ) with (ﬁ:gl)’pr(ﬁa))‘

There are:
1. XA)E;‘H) = 35 (as a particular case 29“) =%, = %(M, D));

(A+1)

1) o @ ) $OH) _ 5, 505D 5

2. prg=prg oprg o---opry

A decomposition of $(M, D) = Conf(A(M), D) in a sequence of locally
trivial smooth fibrations with grassmannians as fibers is thus obtained.

Remark 3.16 Let Stief({,,) — Drap,, (k") be as in definition 1.15. It

may be written f](M) = Stief(&m) Astab kD fl(M7D) (The Universal Schu-
bert Variety of type M as a contracted product defined by a Stiefel variety of
adapted basis of a flag variety).

Corollary 3.17 The projection 7y : f](M) — Drap,, (k") defines a locally

trivial fibration with typical fiber fJ(M, D). Thus fJ(M) is an integral smooth
projective k-variety.

It is known that (M) : $(M) — 3(M) (resp.0(M, D) : %(M,D) —
f)(M ,D)) is an open embedding, thus it is deduced from the proposition
that the Zariski closure of Im (M) (resp.Im (M, D)) is equal to (M)
(resp.2(M, D)).

These results may be resumed:
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Proposition 3.18 1) 3(M) is a projective, integral, and smooth k-
variety;

2) O(M) : ©(M) < 3(M) is a dense open embedding;
3) m(M) factors by (M) — Drap(k™*!) x Drap(k"*+1);

4) the induced morphism w(M) : S(M) — S(M) , which is also denoted
by m(M), is a resolution of singularities of (M) . This means that
the variety f](M ) is projective smooth and integral and a section exists,
namely O(M), of 7(M) on X(M) with Im (M) C (M) a dense open
subvariety, and on the other hand, there is:

$(M) = =(M)~(S(M)) = Im 6(M)

(resp. 3(M, 2) = n(M, 2)"H(2(M, 2)) = Tm (M, 2)).
1t follows that w(M) is a birational morphism.
Remark 3.19 In general The morphism w(M) is not a resolution of singu-
larities as it is usually understood (cf. [30]). As a matter of fact it may

not induce an isomorphism on the smooth subvariety of YX(M). In the next
chapter the singular locus of (M) in terms of X(M) is discussed in detail.

Clearly the diagonal action of Gl(k**1) on Grass(k"+1)A+1)x(+1) Jeaves
3}(M) stable and thus there is an induced action of Gl(k**!) on L(M).
It results from this that the morphism m(M) is Gl(k"*!)-equivariant, if
Y(M) C Drap(k™*' x Drap(k"*!) is endowed with the action induced by
the left diagonal action of G1(k*!). It can be deduced that:

Theorem 3.20 The morphism
m(M) : (M) —s S(M)
is a smooth resolution. Moreover w(M) is GI(k"+1)-equivariant.

An equivariant resolution of singularities of X(M, 2) is now described. The
restriction 0(M, Z) of the embedding 0(M) to X(M, ) C (M, Z) induces
a dense open embedding

O(M, ) : S(M,2)=X(M)gy — S(M,Z) = Conf(A(M), D),
defined by 2’ — 4 (2, 2’). Thus there is
XM, 2) =n(M,2)"Y(2(M, 2)) =Im (M, 2)).

As Conf(A(M),2) is stable under the action of P(%) = Stab(Z2) C
Gl(k**1), one may consider the induced action of P(Z2) on %(M,2) =
Conf(A(M), 2).
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By definition of X(M,2) it is immediate that the natural action
of P(2) c Gl(k"!) on Drap(k"*!) leaves ¥ (M, 2) stable and, a for-
tiori, its closure X(M, %) as well. On the other hand, the embedding
O0(M,2) : ¥(M,2) — Conf(A(M), D) is P(Z)-equivariant as it is easily
seen.

This embedding may be seen as a section of the morphism

(m2)e : Conf(A(M), Z2) — Drap(k™!)
induced by m. Also (m2)g is P(Z)-equivariant. Thus it has been proved

Theorem 3.21 The morphism
(M, 2) = (m3) g : 2(M, D) — S(M, 2)

is a smooth resolution. Moreover m(M, ) is P(P)-equivariant.

3.4 The Schematic point of view

The description of the above constructions in scheme theory is summarized
here. The reader is referred to [24], Chap I, section 9, Foncteurs Representa-
bles elementaires, for a detailed description of the Grassmannians (resp. Flag,
Stiefel) functors and their representability. In this setting the general linear
group Schubert cells (resp.varieties) correspond to the linear group scheme
Schubert cells (resp. schemes) over a base scheme.

Let S be a base scheme playing the role of the field k, and .#Z a locally
free Og-module of rank r + 1 playing the role of the k-vector space k¥. Define
the grassmannian functor ¥rass, (.#) by:

TS Yrassp (M) ={ .7 C
Mg a submodule | Msi |7 locally free ,rank & =n },

where S’ — S denotes an S-scheme. The above condition on . is equivalent
to:

“the submodule . C s is locally a direct factor”

(resp.locally there exists a basis (e;) of .# adapted to ). An S-morphism
f:8 — S§" is associated with the mapping

T(S",9rass, (M) — T(S',9rass, (H))

given by the pull-back: .77 — f*().
It is easy to see that Yrass, (.#) is representable by a smooth projective S-
scheme Grassy (#) (cf. 1.1.1).

The functor Zrap,, () is defined as the subfunctor of [[ Yrassm,(#)
1<5iSA+1
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whose sections (.7;),<;<\y1 satisfy the inclusions ./, C #j11, and is thus
representable by a smooth projective S-scheme Drap,, (.#)( cf. 1.10). Pliicker
coordinates (Ap (7)) of a locally free rank n submodule . C .# may be
defined, locally in S, as in the case S = Spec (k). One has:

Lemma 3.22 A locally free rank n submodule ¥ C .# defines a section
of Grass, (A ) if and only if the ideal S (A (7)) generated by the Plicker
coordinates of . is the unit ideal .

Let . C .# be locally a direct factor, and ./ C .¥ a submodule. Then
" is locally a direct factor of .7 if and only if it is a direct factor of .Z. (cf.
[23], Exp. XXVI, 4.5.)

Definition 3.23 Two Os-modules 7€, C .# are in standard position
(std position) if the quotient module A | 7€ N F' is locally free. It is said
that the couple of flags (2,92') of M, i.e. D and D' are respectively sections
of Drapy,(A#), and Drap,, (A ), is in a standard position if their terms are
two by two in standard position.

Denote by Stand(.#) C Drap(.#) x Drap( ) the subfunctor whose sec-
tions are the couples (2,2') in standard position.

There is

Proposition 3.24 Stand(.#) is a representable subfunctor. The group
scheme GUM) = Aute, (M) stabilises Stand(#) under the diagonal ac-
tion. Let M = 0%, and Relpos(05™") = Relpos(I,41) x S. There is a
canonical isomorphism

Stand(05T) /GO ~ Relpos(C5).

(cf. loc. cit. 4.5.3.)

Let some definitions be introduced before giving the proof of the propo-
sition. To E € Grass(I,41) is associated the section of Grass(0gt!)
given by the submodule (ﬁg C Og“), and to D = (E; C ... C E; C
I41) € Drap,(I,+1), the section 6% of Drap,(€5™) defined by the flag:
oF = (05 c .08 c o5™).

Given M € Relpos(I,+1) denote by the same symbol the section of
Relpos(05™) that it defines.

Definition 3.25 Let M € Relpos(,, ). Denote by ©(M) C Stand(05+") the
fiber of the canonical morphism Stand(05"") — Relpos(C5™) over M, and
by (M) denote its schematic closure in Drap,(05t") x Drap,(05™).

Given a section 9 of Drapy,(05™") let S(M,2) C Drap,(05™") be the
fiver of (M) C Stand(05") — Drap,(05™) over @, and (M, 2) its
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schematic closure in Drap,(05™).

Let

(M) C H Grassm,,(05™),
(c,B)EA(M)

be the repesentable subfunctor defined as follows. The sections of i(M) over
S" are characterized as the set of matrices (H4p)(a,8)en(mr) of submodules of

ﬁg“ satisfying:
1. the quotient module ﬁg“/%g is locally free;
2. tk Hp = map;
3. there are inclusions g — Hoy1 g (resp. Hop — Ho g+1)-

Write (M, 9) for the fiber over @ of m(M) : (M) — Drap,(05™)
induced by the projection morphism I Grassmaﬁ(ﬁgﬂ) —
(a,B)EA(M)

Drap,,(05™) (cf. 8.4). There is a canonical morphism 0(M) : S(M) —
S3(M) associating with the section (2,9') of S(M) the A(M)-configuration
(Hp) = (o0 _F5), where D = (HA4 C .JA C Ky = O5) (resp.
9" =(J1 C ... I\ C Iy = @g“)). Let (M, D) be the restriction of
O(M) to (M, D) — S(M). The explicit expression of 0(M) may be obtained
as in the proof of proposition 3.7.

From the definition of 33(M) as a subfunctor of the product of grassman-
nians defined in terms of inclusions, it immediately follows that f)(M ) is a
closed S-subscheme of an S-projective scheme. Thus it follows that (M)
(resp. 2(M, 9)) is a projective S-scheme.

The following proposition results from the proof of 2.3 and taking into
account the following remark: let . C .# be a direct factor locally and
! C % a submodule, then .’ is a direct factor locally of . if and only if it
is a direct factor of .Z.

Proposition 3.26 Denote by ¥/(M) C S(M) the image of O(M). The sub-
scheme /(M) C (M) is an open subscheme. Let (Hp) be a section in
the image of i’(M), then there exists an open subscheme U of S and a basis
(fi)1<i<rt1 of Ot and a couple (D, D') € Drap,,(I,41) x Drap,, (I,41) such
that if it is written - -

%(D’D/) = (Haﬁ) = (Ha ﬂJﬂ)?
where D= (Hy C -+ C Hy CI41), D'=(J1 C--- C J; C Ir41), then

H,
Hop = ﬁS s
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where ﬁg *# is defined in terms of the indexed basis (f3).

Proof of 3.24 The first statement may be proved as proposition 3.8. In
view of the above proposition the proof of the second statement follows from
the same argument as in the proof of 2.6.

Notation 3.27 Let
(m1,72) : (M) — Drap, (05" x5 Drap,(05™)

be the morphism induced by the projection morphism
[1 Grassm.,(05™) — Drapn(05™) xs Drap,(05t"). Write

(a,B)EA(M)

(M) = (n1, ) and denote by w(M, ) the restriction of (M) to (M, 2)

(cf. 3.4).

The decomposition of 3(M) in terms of a sequence of fibrations, namely
(f] 5,Prg) and (f](ﬁa), pr(ﬁa)), may be easily transposed into the scheme theoretic

frame. It may be noted that the fiber of pr(ﬁa) is a grassmannian. On the other
hand, this sequence of fibrations induces a decomposition (ﬁ’ éa), pr’ gx)) of the

open subscheme f)’(M) with the fiber of pr’gx) being a big cell of the fiber of

prgl), i.e. a big cell of a grassmannian. It will be proved that a big cell in a

grassmannian is relatively schematically dense in that grassmannian (cf. [23],
Exp. XXII, Proposition 4.1.2, and [27], Ch. IV, 11.10.). Thus we can now
obtain the following basic proposition.

Proposition 3.28 The open subscheme Y/(M) C 3(M) is relatively
schematically dense.

Define . X X
(M, 2)=Y(M)NX(M,9D).

Let P(2) = StabGl((ngrl). We have then

Proposition 3.29 The open subscheme 3 (M) (resp. %'(M, 2) is stable un-
der the natural action of GI(O™") (resp. P(2)). The morphisms 6(M)
and (M) (resp. O(M,2) and n(M,9?)) are Gl(O4")-equivariant (resp.
P(2)-equivariant). w(M) (resp. n(M,2)) defines a left inverse of 6(M)
(resp.0(M, 2) ).

From the transitivity of schematic closures (cf. [24], 6.10.) and proposition
3.28 it follows that the morphism 7 (M) (resp. w(M, 2)) factors through the
closed embedding

X(M) — Drapm(ﬁg'H) Xg Drapﬂ(ﬁg'H)



Resolution of Singularities of a Schubert Variety 65

(resp. ©(M, 2) — Drapﬂ(ﬁ’g"’l)).

Denote by 7(M) (resp. w(M,2)) the induced morphism 2(M) — (M)
(resp. 3(M,2) — S(M, Z). From proposition 3.4 it follows that this mor-
phism is GI(€"t1)-equivariant (resp. P(Z)-equivariant).
One has

*(M) "L (S(M)) = Im 6(M)

(resp.

(M, 2)" (2)(M)) = Im 0(M, 7)),
and a fortiori that the morphism (M) (resp. 0(M,2)) induces an isomor-
phism

(resp. R
n(M, 2) 1 (2(M)) = ¥/ (M, D)).

Theorem 3.30 The morphism
(M, 2) = (13) 9 : (M, D) — S(M, 2)

is a smooth resolution of singularities.  Moreover w(M,2) is P(2)-
equivariant.

Theorem 3.31 The morphism 0(M) : (M) — S(M) (resp. 0(M,2) :

S(M,2) — S(M,9)) defines a section of the projective morphism w(M)
(resp. (M, D)) over (M) C (M) (resp. (M, P) C X(M,2)) and its
image Im 0(M) (resp Im (M, 2)) is an open set schematically dense in
(M) (resp. S(M, D)). It is said the morphism

(M) : S(M) — S(M)
(resp. -
(M, 2) : S(M,9) — (M, 7)) .

with S(M) (resp. S(M,2)) a smooth S-scheme, is a smooth resolution of
singularities of S(M) (resp. (M, 9)).

Moreover (M) is GUO5™)-equivariant (resp. 7(M,2) is P(2)-
equivariant).



Chapter 4

The Singular Locus of a
Schubert Variety

By the following developments a detailed description of the infinitesimal struc-
ture of a i(M ) is obtained, with an application to the determination of the
singular locus of ¥(M). The calculations carried out in this chapter are quite
involved and some proofs are outlined or simply omitted. The reader is re-
ferred to [15] and [16] for details. The main result amounts determine the
Zariski’s tangent space (resp. Nash tangent space) at a point of a Flag Schu-
bert variety by a combinatorial procedure thus allowing the characteriza-
tion of the Singular cells contained in a Schubert variety. This deter-
mination depends on the combinatorial structure of the smooth resolutions
constructed in the preceding chapter, more precisely on the combinatorial
fibers, Conf°™P(A(M), D, D).

It is known that the smooth resolution associated with a Schubert variety
in the former chapter contains an open subvariety isomorphic to the corre-
sponding Schubert cell and that this cell is isomorphic to its pull-back. Hence,
this pull-back is equal to this open subvariety. Anyway it may happen that
the restriction of the resolving morphism to the localization along a “critical”
Schubert cell, contained in the smooth open set of the Schubert variety, might
not define an isomorphism, i.e. this smooth resolution might not be a strict
resolution of singularities in Hironaka’s sense (cf. [34]). The critical Schubert
cells contained in the smooth open set of a Schubert variety are determined
by the Zariski’s tangent space at a point, combinatorially calculated, and this
without any characteristic restrictions on the base field k.

The notation of the preceding chapter are retained.

66
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4.1 The Schubert cells contained in a Schubert variety

Definition 4.1 There is an order relation on Relpos(I,11). Given the
relative position matrices M = (map), M' = (m,,5) € Relpos(m n)(Ir1) C
NOFDXEHD S ppite M < M if map < ml,g, i-e. the order induced by the
product order of NA+HDx(+1),

Proposition 4.2 Let x be the point of Drap(k™*!) defined by 9’. Then:
x€X(M,D) & M <M = M(D,D') ,
If € £(M, D) then S(M', D) € (M, D).

Proof [t is recalled that the schematic image of Im s is equal to (M, D).
Thus as kP € (M, D) there exists (az) € Conf(A(M);D,9') with
mo((Hap)) = kP, This implies that M < M(2,2') = M (D, D’).

To see that M = (mag) < M' = (mwp) = z € X(M,D) it suf-
fices to prove that Confe™*(A(M),D,D’) # (. In other there is a A(M)-
configuration ¢ subordinated to the A(M')-configuration (Ho N Jg), i.e. sat-
isfying p(o, B) C Ho N Jg. The graph A(M) may be well-ordered by the
lexicographical order obtained with [ as the first variable. By considering the
inequalities Ma4+18 +Mafr1 — Mas S Mat1841 = m£x+1,ﬁ+1 and proceeding by
induction, it is easy to see that the choice of Hy1 C HyNJy with |[Hyp| = mq;
may be completed in a A(M)-configuration ¢ subordinated to (Hy N Jg).

The last assertion follows from the Stab kP -stability of X(M, D).

Corollary 4.3 The closure of X(M,D) is given by X(M,D) =
U X(M(D,D"), D) where D' runs on the set {D' | M < M(D,D’)}.

4.2 A smoothness criterium for a Schubert variety

Notation 4.4 Given a smooth k-variety X and a point x € X it is denoted
by T(X), the tangent space to X in x, i.e. T(X), = Homk,yect((Qﬁ(/k)m, k),
where Q%{/k denotes the Ox-module of differentials of X.

To a morphism [ : X — Y the differential mapping T(f)s :
T(X), — TY), (y = f(z)) is associated, defined as follows. Let
f*(Q%,/k) — Qﬁ(/k be the induced morphism of Ox-modules, then T(f), :
Homk,vect((ﬂk/k)w,kz) — Homk,vect(f*(Q%//k)y,k) 18 the dual k-vector
space mapping of f*(Q%//k)T — (Qk/k)m.

The tangent space T'(X), may be calculated in terms of dual numbers

Homj, (Spec(kle]/(€%)), X) =~ T(X)a.
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The left term denotes the set of k-morphisms f : Spec(kle]/(€2)) — X giving
x by composition with Spec(k) — Spec(k[e]/(€?)).
The tangent Ox-module may be written as

T)%/k = Homg, (Qﬁc/k, Ox).

Thus T(X), = T§/k®ﬁx (Ox/mx 4), where mx ., C Ox denotes the mazimal
ideal of the local ring Ox .

The reader is referred to the SGA III, vol T (cf. [22]), for the above procedure
for calculating the tangent space to a k-scheme X by means of the functor
that it defines.

Definition 4.5

Let X be a smooth N-dimensional k-variety, Y C X an integral d-
dimensional k-subvariety , smooth at the generic point &y, and Y CY an
open smooth subvariety. Denote by Y —» Y the Y -variety obtained as the
Zariski closure of Grassd(’T}},/k) C Grassd(T)}/k)y. Y is called the Nash
transform of Y. Given y € Y the fiber }N/y satisfies: f/y C Grassd(T)l(/k)y =
Grassq(T(X)y). Let T"*"(Y), C T(X), denote the minimal k-subspace
S C T(X), satisfying Y,y C Grassy(S) (the Nash tangent space of Y at
y)

Observe that the existence of the subspace S results from the fact that
given two subspaces S’, S” of T'(X), one has Grassq(S") N Grassq(S") =
Grassqy(SNS"). Loosely speaking 774" (Y"),, is the subspace of T'(X), gener-
erated by the limiting subspaces of Y’ at y. The following inequality holds:

dim Y < dimpT™*"(Y), ,

where dim Y denotes the dimension of the variety Y. It may be recalled that
dim Y is also given by the transcendance degree of the function field £(Y") of
Y over k. From the above definition the following result is obtained:

Proposition 4.6

1) Let Y be a subvariety of the smooth variety X, as the preceding def-
inition, and Z C X be a smooth k-subvariety containing Y. Then
Tresh(y), C T(Z),.

2) Let (Zi)1<,<p be a family of smooth subvarieties X containing Y. Then
T MY, € NT(Zs)y-

The following result is a corollary of the jacobian criterium.
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Proposition 4.7
The notation of the preceding proposition is retained. Let y € Y. The follow-
ing statements are equivalent:

1) There exists a family of smooth subvarieties (Z;),<;<, of X containing
Y with T"*"(Y), = NT(Z;),.

2) There ezists a smooth subvariety Y C Z with T"*"(Y), = T(Z),

Under the above hypothesis dim T"%"(Y'),, = dim Y implies dim Y = dim Z.
Hence we have the smoothness criterium of Y in y:

Proposition 4.8
Let it be supposed that T"“Sh(Y)y satisfies one of the two equivalent conditions
above.

Then the variety Y is smooth in y <= dimy, T"*"(Y), = dim Y.

Proof It suffices to prove that “dimy, T"**"(Y), = dim Y =Y is smooth
iny” It may be supposed that Z = Spec(A) (resp. thatY = Spec(B)), where
A (resp. B) is an integral finite type k-algebra, and that dim(A) = dim(B) =
dimy, T"*"(Y),. Here dim(A) (resp. dim(B)) denotes the ring dimension
of A (resp. B). Let f : A — B be the k-algebra morphism corresponding
to the embedding Y — Z. From the formula dim(A) = dim(Ay) + dim(A/p)
(c¢f. [48], Ch 3, Proposition 15), it is deduced that dim(A,) = 0 and thus
p = Ker (f) C A is the zero prime ideal and f is an isomorphism. This
clearly proves that Y is smooth in y.

Notation 4.9 1) For the sake of briefness, put ¥ = %(M, D),
(Tesp. ¥ =%(M,D),Conf = Conf(A(M),D), Confg’,mb
= Conf™ (A(M), D, D'"),Confp: = Conf(A(M); D,D"))

2) Given a subvariety Z C 'Y denote by Z, the germ of Z in y € Y
(resp. the local scheme of Z at y (cf. [24])).

The following proposition exhibits the connection between the tangent space
at a point x, T(Conf(A(M), D), of the smooth resolution Conf(A(M), D),
and the Nash tangent space T"*" (X (M, D))y (a)-

Proposition 4.10
Given by a point x of Conf, one has

Im T(m2)y C T™(E) 12 -
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Proof Let V be a valuation ring and f : Spec(V) — Conf a morphism
sending the generic point £ to the generic point of Conf (resp. the special
point & to x). Thus the image T(m2)e(T(Conf)e) defines a section og :
Spec(K) — Grassd(T]:l,mpn(kTH)/k) over Spec(K), where K denotes the
quotient field of V. By the valuation criterion of property there is a section oy
on Spec(V) extending o . Observe that wo(£) is the generic point of ¥. Thus
ov (&) defines a subspace S of T(Drapﬂ(kr+1)),r2(z) necessarily contained in
T (2) ey (2)- Given v € T(Conf), let it be assumed that T(m2)y(Ly) #
0 (L, = Vectg(v)). We prove now that:

T(m2)z(Ly) C meh(i)m(x) .

Lift L, to a section L, C (Tcl‘onf/k)v‘ Thus T(m2)e((Lv)e) C
T(m2)e(T(Conf)e). This clearly gives: T(m3)(Ly) C S C T™M() ()
Thus Im(T(m2)2C T "(3) ry (2) -

Definition 4.11
1) Let 2' € (M, D). Define

T(X(M,D))g = Vectk( U Im(T(ﬂg)w) C T(Drap, (k")) g ,
pemy (2')

as the subspace of T(Drap,(k"™1))q generated by the images of the
differentials T(m2), of w2 at the points x of the fiber (2 =

Conf(A(M),D)g . T(X(M,D))g is called the Conf-tangent space
of X(M, D)) at Z'.

2) Assume 9' = kP' (D' € Drap,(I,41)). Define

Teomb(S(M, D)) g = Vectk( U Im(T(wQ)W) ,
peConf(A(M),D,D")
the subspace of T(E(M, D))y generated by the images of the dif-
ferentials T(ma)ke of mo at the points ¢ of the combinatorial fiber
Conf(A(M),D,D’) over D'. T (3(M, D))y is called the combi-
natorial Conf-tangent space of X(M, D)) at Z'.

From the above proposition it follows that:
T (5(M, D))o € T(S(M, D))o C T""(S(M, D))o .

Remark 4.12 1) The Nash tangent space T"**"(3(M, D)), at a point
y € X(M, D) satisfies the following equivariance property relative to
Stab kP c GI(k™t1):

T(g)y(T"**"(B(M, D))y) = T"**"(E(M, D)) g,y (9 € GUE™)) .
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2) The subspace T(E(M, D)), satisfies the same property of equivariance,
and T°*™(3(M, D)), = T(Z(M, D)), fory = kP, as it results from
the main theorem proved below.

By combining the above three propositions the combinatorial smoothness
criterium of (M, D)4 at &' is obtained:

Proposition 4.13 Let y € (M, D) given by 7', and (Z;),<;<,, be a family
of smooth subvarieties of Drap, (k™) satisfying:

1) %y, C(Zi)y ;

2) n T(Zz)y — Tcomb(i)y'

15i<n

Then one has;

@) Teomb(S(M, D))o = T(S(M, D))o = M (S(M, D))
b) ¥ is smooth at y <= dimy T (%), = dimy % .

In the following sections T¢™(S(M,D))g is calculated. We show a
family of smooth subvarieties of Drap,(k"*1) satisfying the conditions of
the smoothness criterium at the point y corresponding to %’. Given
¢ € Conf(A(M),D,D’) a canonical basis B(%D) of the tangent space
T(Conf(A(M), D))ge is constructed, and its image by the differential T'(ms) g«
is calculated in terms of the combinatorics of Conf(A(M), D, D’). The set

B(D,D’) = U T(WQ)kW(B(Lp,D))
pE€Conf(A(M),D,D’)
is a basis of T ($(M, D)) . The next step is to express T (S(M, D)) o
as an intersection of tangent spaces to smooth subvarieties containing the
point y given by 2’ using the expression of B(p ps), and thus to prove that

T (S(M, D))o = T™*"(S(M,D))g. This result is also obtained by
means of the combinatorics of Conf(A(M), D, D’).

4.3 Calculation of the tangent spaces of some configurations
varieties

The following canonical isomorphisms are obtained from remark 4.4. The
reader is referred to the SGA III, vol I (cf. [22]), for the procedure for cal-
culating the tangent space to a k-scheme X by means of the functor that it
defines and to [15] and [16] for details.

1) The tangent space T(Drap,(k"™))g (2 = (JA4--- C 54 C k™) is
given by:
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T(Drapn(k’”rl))_@ = Ker( H Homk_vect(%,kTJrl/%) —
o —
1851

IT Homk_wct(%nf(ﬁ/ﬁ),k’"“/g%’;up(ﬁxﬁ))). In fact there is an
1=8,8'<1
isomorphism:

Ker( H Homp,—peet (53, k™ | ) —
1=l

[T Homiseat (5,74 A1)
1Bl

~ r+1
_Ker( H Homp_yect (H3, k" | 73) :>
15851

H HOmkfvect(%nf(/?/,ﬁ)vkr—i_l/%up(ﬂ/ﬁ))) :
1=pBsl

2) To the embedding

icont(A(M)) + Conf(A(M)) — H Grassm,, (k™)
(a,8)

it corresponds the associated differential at the point (H5) €
Conf(A(M)):

T(icont(A(M))) () * T(Conf(A(M)))(s,5) —

T(I] Grassm., (&™) o)

(@8)
where

T(I] Grassm.,( ™ Noey =~ [ Homr—veet(Hap, k) Hp).
() (@,8)EA(M)

The tangent space T'(Con f(A(M))(s,,) is given by:

T(Conf(A(M))(ﬁfag) = Ker ( H Homkrfvect(jiﬁaﬂy k7.+1/%ﬁ) j
(e, B)EA(M)
Homk:—vect(f%EaB N %'6'7 kr+1/%ay5) +
((e,B),(a’,B"))€Edg A(M)
Hior, ) -
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3) The tangent space T(X(M, 2)) 4 C T(Grassn (k™)) 4 of £(M, 2) C
Grass, (k™) at _Zwhere 2 = (4 -+ C 4 C k") is obtained as
the following subspace:

Ker (HOmk—vect(/7kr+1//) —

I Homivea(Han 7,k (A + 7)) -

1SasA+1

More generally the tangent space T(X(M, 2))g (2" = (f1--- C #1 C
k™1)) of a Schubert cell (M, 2) C Drap(k™1) is given by the follow-
ing subspace of T'(Drap, (k"))

ﬂ Ker (T(Drap, (k")) o —

H Homkfvect(% N /ﬁv kr+1/(‘% n fﬁ+1 + jﬁ)))

1SasA+1

4.4 The Young indexation of the tangent basis to a Schubert cell
at a combinatorial point

The aim of this section and the two following ones is the determination of a
canonical basis of the tangent space to a configuration variety at a “combina-
torial point”, i.e. at a point given by a A(M)— configuration “adapted” to
the canonical basis of k"T'. The canonical isomorphism:
T(Drap, (k")) or = Ker( H Homy,_yeer (k78 KT /ET8) =
15851

)|
12851
gives rise to:

Proposition 4.14 There is an isomorphism:

T(Drapﬂ(k:’"“))ky ~ H Homk,vect(k‘]‘?,k‘]ﬂ“_Jﬁ)
15821
induced by the linear mapping defined as follows. To an element

(vg)i<p<i € Ker( H Homy—yeer (k78 kT JE78) =
151
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H Homk—vect(kJﬁa kr+1/k(]ﬁ+1)>

1SB=1

1s associated the element:

(l/;j’)lgﬁﬁl € H Homkfvect(kJﬁkaﬁJrliJﬁ); given by
- 158U

A —
Z/B—I/ﬁ 7TJB¢+IOI/[3 .

The set 11 Jg x (g1 — Jg) indexes a basis of T(Drap, (k™)) 0. More
1Sp2l
precisely
— B
Bpr = H (Eij)(i’j)EJBX(Jﬁ-%—l*Jﬁ)
1SB<1

is a basis of T(Drap,(k"')),0r (The combinatorial basis of
T(Drapy ("1))gor) -

As a particular case of this proposition it results that By : (Ei;) jyesx.ut
is the combinatorial basis of T(Grass, (k")) .

Notation 4.15 Let ¢ € Conf(A(M), D) with po(M, D) : ¢ — D'. If no con-

fusion arises denote by T'(wa(M, D))ke the composition of T(mwa(M, D)) ke with

the identification T(Drap, (k")) or ~ T[] Homg—yeet(k7?, k75+1775).
1Sp<l

Definition 4.16 A D’-Young data is a couple of sequences of chains
(D.D*) = ((Ds).(D"s)). where (Dy) € T[] Chain(Js), with Dy =
1SB=1
(K15~" C K)\Bﬁ C Jﬁ) (resp. ('D*ﬁ) S H Chain(JﬁH), with 'D*ﬁ =
15821
(Kig - C K3, 5 C Jg41) satisfying Js C Kig). To a D'-Young data (D,D")
are associated:
D)YS (DD = U Kigx(Jp1— Kjg) C g x (Jps1 — Jp);

1<,

2) YH(D,D*) = (Y5 (D, D)) 1<p<y, with [TV C [1J % (Jp1 — Jp);
3) Y; (D,D*) = Js x (Jp41/Jp) — Y5 (D, D*);
4) Y= (D,D*) = (Y; (D,DY))1<p<:-

Remark 4.17 The subset Y (D, D*) (resp. Y (D, D*)) of the set of indices
11 Js x (Jg+1 — Jg) defines a subfamily of the basis Bp:. A basis C Bp: of
the tangent space to a Schubert cell (M, D) at kP" € (M, D) is defined by
means of Young data.
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4.5 The tangent basis to a Configuration variety at a
combinatorial configuration

Remark that T(Conf(A(M))re C @ T(Grassm,,(k™"))geta.s, where
(a,8)
(o, ) runs on the vertices of A(M). The above description of
T(Conf(A(M))ge, where ¢ € Conf™(A(M)), may be applied in or-
der to determine a combinatorial basis of this tangent space.  With
@ € Confem™(A(M)) is associated (k) € Conf(A(M)). On the
other hand, there is a canonmical basis [] B,z of the tangent space
(a76)

@ T(Grassp,,(k™))pew@s of the product [] Grassy,,,(K™™))re at
(a.8) (a,8)

(k#(@R)) | where

_ (@)
Bo(a,p) = (B 1y ).5)e0(a,8)xo(a,8)

is the canonical basis of T(Grassm,,,(k"""))pew@.s identified with the set of

elementary matrices indexed by o(a, 8) x ¢(a, 3)*. Write Rfaa’ﬁ) = ¢(a, B) x

o(a, B)*, and let
= ] {(e. 8)} x RLP) .
(a,8)
Thus E(¢) indexes the basis

(e,8)
(EGy ) ((@8),(,5) €E()
of
T( H Grassm,, (kK" @T Grassm,,(K™™)) et ~ @k‘R(a e
(a,8) (a,8) (e,8)

The first isomorphism given by @ T(pas)re, Where pag
(a,8)

[1 Grassm,, (k") — Grassm,,(k"*'), denotes the canonical pro-

(e,B)

jection.

Definition 4.18 An equivalence relation is defined on the set E(¢) as fol-
lows. Write ((«, 8), (4,7)) ~ ((«/, 8), (¢, j")), if there is a sequence of vertices
of A(M):

((apa 6/)))0§p§r : (Oé, 6) = (O[(), ﬂo)v (O‘hﬂl)? Tty (QT7BT) = (0/75/)
satisfying:

(a) (o, Bp), (p41,Bp41)) (0 = p = 7 —1) is an edge of A(M), i.c.
((2ps Bp))o<,<r s a path of the graph A(M) with origin (ao, o)
and extremity («,5;).
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(b) (i,7) = (i',7") and (i,5) € ) Rgo%ﬁp).
0=p=r

Denote by B(p) = E(p)/ ~ the set of equivalence classes defined by

“N”.

Observe that to an equivalence class is associated a couple (%, j)«, character-

An equivalence class € € B(yp) defines an element

Ly = 5 g
‘ ((,B),Girj))eE (B0

of @ T(Grassm,,(k"™"))pe@s. Let D= (Hy C ... C Hxy1). Write
(a.8)

B(p,D)={ ¢ eB(p) | ¢n( [[ {(enl+1)} xR =0}
1SasSA+1
(resp.
B(e, D) ={ % €Blp) | €N ( ] {(al+D}x RV £0} ),
1SasA+1
and
B,.p) = (B¢)¢en(p.0) (resp. B, py = (E¢)vepe(p.0) s Bp = (E¢)ven(y)) -

The following relation results immediatly from the definitions above

B, = B(%D) HB(C%D) :
The following is deduced easily:

Proposition 4.19 It is also denoted by pog : Conf(A(M)) —
Gmssmaﬁ(lﬂ”l) the morphism induced by the canonical projection.

1) Let p € Confm™ (A(M)). B, is a basis of the tangent space
T(Conf(A(M)))ge C @T(G’rassmaﬂ(kr+1))w(a,ﬁ)
(a)/B)
(The p-tangent basis of Conf(A(M)) at k¥).
2) Let p € Conf™*(A(M), D). Then
Vect(B(y,p)) = T(Conf(A(M),D))re C @ T(Grassm,, (k")) ot -
(@,8)
B(,,py C By, is called the (¢, D)-tangent basis of Conf(A(M), D) at
<p-
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3) The matric  M(pag)re of the differential T (pap)ie
T(Conf(AM))e —> T(Grassm, (k")) pes caleulated with
respect to the basis B, and By, admits the following simple
description:

T(pap)ie (Be) = B if €0 {(a, )} x BP0,
thus necessarily € 01 {(a, )} x RE"™ = {((e. B), (i, ))}. otherwise
T(pa,ﬁ)lw (E%ﬁ) =0.

Let ¢ € Confeomb(A(M)
Conf(A(M)) — Grass,
its differential at k¥.

,D). Denote by ma(M, D) the restriction of my :
(k™1) to Conf(A(M), D), and by T(ms(M, D))

Definition 4.20 1) Write:
B(y.p) = T(m2(M, D))ye (B(g,py) — {0},
(resp. B{, py = T(m2(M, D))ie (B(, py) — {0}).

2) Bp.oy = U Biy.p)
peConfeomb(A(M),D,D’)

(vesp. B{p py = N B, p) ) -
pECon feomb(A(M),D,D")
Observe that B(D’D/) (resp. B(CD’D,)) 1s a linearly independant set of vec-
tors. It is recalled that by definition B(D,D/) generates the combinatorial
Conf(A(M), D)-tangent space T (S(M, D))o (cf. definition 4.11).
B(D pr) is called the canonical tangent basis of T (S(M, D))o -

3) One calls
N(Conf(A(M),D))ke = Vectp(B(, py)

the (¢, D)-normal space to Conf(A(M), D)) at k¥, and B¢

(¢,D) Bﬁa

the (¢, D)-normal basis at k¥ .

4) Write B(goD) = T(pap)ke(Bip,py)) — {0} (resp. B(cs(jbﬂ)) -

T (pap)re (B @D)) {0}).

Remark 4.21 Let p € Conf™(A(M), D).

1) From B, = B, p) HB(Ccp py follows the following direct sum decom-
position:

T(Conf(A(M)))ge = T(Conf(A(M),D))e @N(Conf(A(M),D))W .
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2) The fiber of w1 (M) : Conf(A(M)) — Drap,, (k") on kP identifies
with Conf(A(M), D) by definition, and the differential mapping:
T (71 (M))ge : T(Conf(AM)))ge — T(Drapy,(k"))go,
induces an isomorphism:

T(71(M))ge|n : N(Conf(A(M), D))o =~ T(Drapm,(k™))o .
In fact 71 (M) defines a fiber bundle structure.

4.6 The canonical basis of a Combinatorial Tangent Space

The tangent space T(Drap, (k"™1))g (2 = (4 --- C 74 C k™) is given by:

T(Drap, (k")) g ~ Ker( H Homp_yeet (55, k™1 | 3) -
1Sp<I

I1 Homk_q,ect(%”mf(ﬁ,ﬁ),krﬂ/%ﬂsup(ﬁfﬁ))). We have seen that for
158,8'<1

2 = kP (D' = (Ji--- C J; C k™t1)) this isomorphism gives rise to the
isomorphism:

T(Drap, (k")) o ~ Ker( H Homy_yeer (k78 k"L /ET8) =
1=p<1

II Homk,vect(k‘]ﬁ,k”“/k‘]ﬂ“)) and finally to an isomorphism
1Sl

T(Drapa (k™ ))or = [ Hompveer(k7, k707 7)
1=p<l

induced by the canonical projections:

H Hom;g,yect(k‘]ﬁ,k“rl/k‘jﬁ) — Homk,vect(k‘]ﬁ,k‘]‘?“_‘]ﬂ) )
181

On the other hand, it is known that the canonical basis of this space is
given by

Bp: = H (Efj)(ivj)e-]ﬁX(J/'J+1*J[3)'
1581

The matrix M(m2(M))ge of the differential

T(mao(M))ge : T(Conf(A(M)))gr —>
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T(Drapu (k™)) o (ma(M) : k2 = k')

calculated with respect to the basis B, and Bps, admits the following simple
description:

T(mo(M)ie (Bg) = E if €0{(A+1,8)} x (J? x JP*+1/7%) £ 0,

thus necessarily € N {(A + 1,8)} x (J? x J8F1/JB) = {(A+ 1,8), (i,5))},
where (i,7) is the element (i,j)% associated with the class ¥, otherwise
T(mo(M))ge (Ew) = 0. The subset

U “cEy

€eB(¢,D)

is the set of elements equivalent to an element of ] {(a,l 4+ 1)} x
1<a<A+1
REDO‘JH). The image of the tangent vectors B D) = (E¢)¢ecpe(p,p) C

T(Conf(A(M))ge by T(mi)re is a linearly 1ndependant set of vec-
tors.  The subset B, p) indexes a basis B, py = (E¢)eepp,p) of
the tangent space T(Conf(A(M), D). There is a natural isomorphism

T(Con f(A(M))e /T(Conf(A(M), D)ge = Vecty((Ew)¢cre(p,0))-
Observe that the image of B, py by T(m2(M, D))xe is the same as its image
by T'(m2)ke where mg = mo(M). One has

Bp = T(m2)ke (B, 0)/{0} [ [ T(m2)s (Bf,, p)) {0} = Big,py [ [ By.0)-

Proceding with pag : Conf(A(M)) — Grassm,,(k™™") instead of 5 one
obtains

3(c,8) zc(a,p) .
1) B (¢,D) UB(W D) — = By(a.p);

3(a, Blh) _
2) B NBH =0
Where Bw(a g) denotes the canonical basis of T(Grasspy,,, (k")) pec.s in-
dexed by R ’ﬁ ), This set decomposes into the disjointed union of the set of

indices glven by Bgz and that given by B ’B))

Definition 4.22 Let ¢ € Conf™(A(M),D,D’). Define Néa’ﬁ) c R&a,ﬁ)
by
@ x NP = U ¢)n({(e.8) x RE)
EEBe(p,D)
(resp. Téa’ﬁ) = Rglaﬁ) — Né%@)) )
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One has

B(%B) ( (a,8)

(o.D) E(i,j) )(Lj)eTéa,ﬁ) (resp BC(a,B) (E(chB)

(i) )(z',j)eNéf‘"*’ )

As a particular case one obtains
Js % JBL — Ngﬂ,ﬁ) HTéAH’ﬁ) ,
and thus
Jpx(Jgs1—=Jg) = NOTIN(Igx(Jga—Jp) [ [T (Tsx (T41—Jp)) -

From these equalities it follows that:

Proposition 4.23

= o B
Blooy = 1 Bisene s Mo —an
1<l
(resp.
= - B
B,.p) = H (Eij)(i,j)eTéHl’ﬁ)ﬁ(JﬁX(JB+1—Jﬂ))) ’
181
thus Bpr = B(Lp,D) HB(C%D)'

Proof It suffices to prove the first statement. The composition of
€L
T(mo(M,D))ge with T(Drap, (k™)) ypr —> Homp—yeet (k72 k75) is pre-
cisely T(m(x41,8) ke, thus the image of B(C%D) minus {0} by the above pro-
(,;A;)l B) _ (E((ZX;[)E))(M)EN(AH’M' It is concluded that the image
by T(Drap, (k™)) uor — Hompg—yect (K72, k75+1778) minus {0} is

(,D)
given by (E((a ?))(l DENOHYA AT x (T g1 ) and finally that

jection gives B

of B¢

/ c _ B8
T'(m2)ie (Biy p)) = <H< (Eij)ua)ezvé*“*%uﬁx(erJa)) :
181

From the definition of B(D’D/) (resp. l’;’fD D,)) and the above proposition
we deduce:

Proposition 4.24

e _ 8
B(D7D’) - H (Eij)(m)e N N (T5x(Ts11—Tp))
1<8<1 peConfcomb(A(M),D,D’)
(resp.
3 _ B
Bp,py = H (Eij)(i,j)e U Ty“'mm(ng(JMl—Jg))) ’
1<8<1 pEConfeomb(A(M),D,D’)

and Bp: = B(D,D') HB(CD,D’)‘
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_ In next sections it is aimed at giving another expression of the basis
B(D}D’) C Bp of Tcomb(E(M, D))

The following equality results immediately from definition 4.18:

NP = Ple),
+€Path(D, (,5))

where P(p,7) = N RS (v = (ap,B,)0<p<r), and Path(D, (a, 8))

0Sp=r
denotes the set of paths of A(M) issued from {(1,I+ 1),---,(\1+
1),(A+ 1,14+ 1)} and extremity («,3).

For the proof of the following proposition the reader is referred to [15] (see
also [16]).

Proposition 4.25 The following formula holds:

e V() (U ettt 40 )) -

BEP'Sl 12a’'Sa

~reN( ) (Y ).

BESB'Sl 1Sa/Sa
Notation 4.26 Write:

NED = () (U e @xel g+t ) = (U rE),

BEP'Sl 12a’Sa BEP'Sl 12a/'Sa

thus: Néo"ﬁ) = Rfoa’ﬁ) qu(’a,ﬁ).

4.7 A family of smooth varieties associated with a point of a
Schubert variety

Let y be a point in the closure X(M, D), and 2’ the flag to which it cor-
responds. Assume that y € X(M',D) with M < M’, and let D’ be a
combinatorial flag such that M’ = M(D,D’). A family of smooth subva-
rieties of Drap,(k"*!) is introduced whose germs at a point y € X(M, D)
contains ¥ (M, D), and such that the intersection of the corresponding fam-
ily of tangent spaces is given by Vect(B(D, p7)).  Recall that the set of
relative position matrices M’ € NOA+HUXU+D) gatisfying M < M’ indexes
the set of cells ¥(M’, D) contained in X(M, D). Given M' = (ml) €
Relpos(I,4 1) N NA+HDXUHD) with M < M’ write

GI(M, M) = {(a, 8) € [1,A] % [1.1] | mls = mas}
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(The set of generic indices of the relative position matrix
M £ M). To (a,) € GI(M,M’) is associated the relative po-
meg r+1
Mag ng

Mai+1 (resp.ng = nyip15), between a couple of subspaces in Grass,,,, (k") x
Grassnﬁ(k"”"’l). The set (Mag)(a,8)ccr(m,m) gives rise to a family of sub-
varieties (Eh(Ma,&Da)(a,g)eGI(M,M/) of Drap,, (k"*!) associated to a couple
(D,D") € Drap,,(I,+1) x Drap,,(I;+1) defined as follows. Let D = (H; C
<+ CHy CILy) (resp. D' =(Jy C---CJ; CI41),and M' = M(D,D’).

Thus one has M,g = < |H|h?11!] | ‘ﬁ;ﬂ > )
«a B B

sition matrix M,z = ( >, where it is written m, =

Definition 4.27
Let Do = (Ho C Iry1) € Grassig,,|(Ir41),

Y(Mag, Do) C Gmssuﬁ‘(k”’l),

the Schubert cell defined by (M.g,D,), and denote by pg :
Drap, (k"t') — Grass ;) (K"™) (n = (1] < ... < [Ji] <7 +1)), the
canonical morphism induced by the projection:

!
(Drapﬂ(errl) Q) H Grass|Jﬁ,|(kT+1) — Grass | (K").
g1

Define:

Eh(MaﬁvD) = (pﬁ)_l (Z<MaﬁvDa)) = E(MaﬁaDa)xGrassuﬁ‘(k’f+1)DrapQ(kT+1)'

Clearly X%(M,s,D) is a k-smooth locally closed subvariety of
Dmpﬂ(lfr"’l)7 as the pull-back of a k-smooth locally closed subvariety of
Grass7,|(k"*') by the morphism pg.

Remark 4.28 The family of subvarieties (Eh(MaB»D))(Q,B)GGI(M,M/) satis-
fies:

1) (V(a,B) € GI(M,M")) X(M',D) C X5(Myg, D).
2) $%(Mag, D) is stable under the action of Stab kP.
3) V(o,8) € GI(M,M")) X(M',D) C Zh(Mag,D).

4) The tangent space T(X%(Mag, D))o (2" = (f1--- C F1 C k™)) is
given by:
T(S%(Mag, D))o =

~ Ker (T(Ker(Dmpﬂ(kT"’l))@, —
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[T Homi—vecr(Ha 0 75, K+ g5 + 00 /B,H)),
BB’

where kP = (74 C --- C 54 C k™).

Definition 4.29 Given a flag 9" satisfying M = M(EP, 9" = M', i.e. the
point x corresponding to 2’ belongs to ©.(M, D) and determines the Schubert
cell X(M',D) C 3(M, D). Define:

T(X(M,D))g = ﬂ T(X%(Map, D)) g
(e, B)EGI(M,M")

(The (M, M')-tangent space to X(M, D) at 2' € X(M', D)).

Remark 4.30 If M = M(kP,9') = M’ one has GI(M,M') = A(M) and

thus (M, D) = N S4(M.g, D). It follows that T(S(M,D))gr =
us (M, D) wectonan (Mag, D). It follows that T(%(M, D))o

Ttha ,D ’, i.e. th M7M/_t t tiM,D
(o, B)EGI(M,M") (Z%( B ), i.e e ( )-tangent space to X( )

at 9' € £(M, D) is the tangent space T(X(M,D))gr.
From 2) of the 4.28 remark it results:
(Vg € Stab kP) T(9)o (T(X(M,D))g) = T(S(M, D)) 4,

where T(g) o denotes the differential of the translation morphism defined by
g. Thus dimy, T(X(M, D)) is independent of 2’ € 3(M’, D).
The next task is to prove the equality

T (S(M, D)) g = T(S(M, D))o,
between the combinatorial Conf(A(M), D)-tangent space and the (M, M')-

tangent space to X(M, D) at 2’ € £(M’, D) for 9’ = kP'. According to the
smoothness criterion this implies that

T (S(M, D)) g = T (S(M, D)) g = T(S(M, D))o

and thus allows to decide if (M’ D) is singular in (M, D)), without hy-
pothesis on k.

4.8 A combinatorial basis of a (1/, M')-tangent space

From the formula 4.28, 4), a basis B?g’g?) of T(X4(Mup, D))o ((o,B) €

GI(M,M")) is obtained which is in fact an indexed subset of Bp.. It results

that the intersection B(p py = ﬁB?gl’g,)) is a basis of T(X(M, D))g:. One has

i(a,B) _ B
B(D,D’)7B(D7Dl) C BD’ - H (Eij)(i,j)GJBX(Jg+1*J5)7

181
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thus each one of these bases is determined by its index set which is given in
terms of the following D’-Young-Data. For the sake of simplifying notation
J5+1/JB = J5+1 — Jg is written.

Definition 4.31 The Young D’-data (d(cv, 8),d" (v, B))(a.p)ccr(M,Mm7)

given by d(a, B) = (dgr(c, B))1<p<; (resp. d*(a,B) = (dz,(a,ﬁ)1§6,§l) is
introduced defined by:

_J (HanJgCJg) for B=p =1
dﬁ'(a’ﬂ){ OCJp) for 1<B <P
(resp.
* o (Jﬁ/ C Jﬁ/ U Jﬁ/ ﬂHa) f07” ﬂ § ﬂ/ é l
dirlen ) = { (U C Jya) for 125 <8 )
Let

Yﬂ—"’_(avﬁ) = Yﬁ—i’_((M’ Da Dl)7 (aaﬂ)) = Y;’_(d(aa ﬂ),d*(057 ))
(resp.
Yﬁ_/ (aaIB) = Yﬁ'((Ma Da Dl)7 (Oé,ﬂ)) = YB/(d(O{, 6)74*(0476))) :
For 8 < 3" <1 one has:
Vi (e, 8) = HaNJp % (Jgr41/(Jp U Ha N Jpr11)) C Jgr X (Jpr1/Jpr)
(resp.
Y (o, B) = Jgrx(Jgr41/ T ) =Ygi (o, B) = HaNTgx (HaN g 1)/ (Ha)N T pr))

[1s/Ha 0 I5) x (Jgri1/T50))

Y p) = [] Yi@p =[] Yi(p) =

1=p/<l B=p’'SI

[ HonJs x (Jri1/(Jp U Ha N Jgr4a)) =
BBl

= HoNJg % (I41/(J3 U Hy))
Lemma 4.32 Let (o, ) € GI(M,M"). The indexed subset

b(e.B) . B’
Biyon = [ (& Jigeys(ap € Bo (cf44)
1<

is a basis of T(X%(Map, D))o+ (The combinatorial basis of
T(3%(Mag, D))j,or)-
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The (M, M')-tangent space:

T(3%(M, D))o = N T(2*(Map, D))yor (M' = M(D,D')) may
(@,B)E€GI(M,M")
be endowed with a canonical basis indexed by means of Young D-data.

Definition 4.33 1) Define:

Hop = U Horp (= Hor N 1),
{ (@ BEGIMM) | (a,8)<(@6) }

and M (D,D") = (Hg) (resp. M(D,D") = (ag) = (|Hag|) -

2) With (M,D,D’) is associated the D’-Young data D(D,D’) =
D(M,D,D") = (Dg(D,D")) (resp. D*(D,D’') = D*(M,D,D’) =
(D5(D,D"))) defined by:

D@(D, D/) = (ﬁlg e C F}ﬁ C ﬁ)\_,_lg).

(resp.
Di(D,D')=(---CJgUJgy1NHa C---) (1S a=A+1)).
Write:
YE(D,D/) = Yg(M,D,D’) =Y, (D(D,D"),D*(D,D")) =
U Hap x Js41/(Js U Js11 N Ha),
1SasA
and Yy (D,D') =Y, (M,D,D’") = (Jg x (Jg+1/Jp) —Y;‘(D,D’) (resp.

YH(D,D')=Y*M,D,D")= [[ Y (D,D"), Y~ (D,D)
1SS

=Y (M,D,D') =
IT Y5 (0. D)= ] (Js x (Js11/Js) = Y5 (D, D)) .
1Sp<i 15p<1
From the following easy to check lemma it results that a combinatorial

basis of the (M, M')-tangent space to (M, D)) at kP indexed by the above
Young data may be obtained.
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Lemma 4.34 1) Y, (M,D,D’") = (a,ﬁ)eGQ(M,M’)YB, ((M,D,D"), (e, B))(resp.
Yi(M7D7D/): Al Yﬁ((MaDaD,)a(O‘aﬂ)))'

(e,B)EGI(M,M")
2) The indexed subset
r — B
Bp,py = H (Eij)(i,j) -,p,p) & H (i,)€ds X (Jp+—Jp)
1Sp/S1 1SB/S1

=—=comb
(

is a basis of T 3(M,D)),pr (The combinatorial basis of

T(E(M7 D))kD' ) :
It may thus be written:

B — i(a,8)
B(D,D’) - m B D D’) .
(e B)EGI(M, M)

4.9 Schubert variety Nash tangent spaces and its singular locus

In order to obtain a characterization of the singular locus LSY(M, D) of
(M, D) applying the combinatorial smoothness criterium (cf. propo-
sition 4.13), it is proved that the (M, M’)-tangent space T(X(M, D)), to
5(M, D) is equal to T°°"*(S(M, D)),o. The following proposition reduces
the proof of the equality to a combinatorial verification.

Proposition 4.35 The following assertions are equivalent:

1) N T(2(Mag, D))o = T (S(M, D))o ;
(nB)EGI(M,M")

2) E(D,D’) == B(D,D’);

3) T(S(M, D))yor = T (5(M, D))ot

Y (M,D,D') = n N A (T % (J541/05)) (1 <
4) Y5 ( ) seConeombiaG).D.D (Jpx(Jg41/Jp)) (1 =
B=1);
5) Y: (M,D,D') = U T A (T x (Jg41/d5)) (1 <
) Yy (M,D,D") oeComfemin a0 (Jg % (Jp4+1/Jp)) (1
B=1);
6) YH(M,D,D)) = ] N N (g5 x

1§B§l peConfeomb(A(M),D,D’)
(Ja41/J5)) A= B=1).
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The last assertion is equivalent to the equality of the index set of E( p,pry With

the index set of B(p pry. The reader is referred to [15] for the proof of the
following proposition which is the main verification to be accomplished in the
proof of the fundamental equality:

Proposition 4.36 1) Y, (M,D,D’) = N N;AH’B) N
p€Con feomb(A(M),D,D’)
(Js % (Jp+1/Jp)) -

_ A+1,
2) Y5 (M,D.D') = (Js x (Jo11/J5) — N N

peConfeomb(A(M),D,D’)
(Js x (Jp4+1/J3)). .
Where Y, (M, D, D') = U Hog % Jgy1/(Jp U Jg11 N Hy).
1SasA

Remark 4.37 The proof of the above equalities results from the exactness of
the properties of ¢ when a A(M)-configuration ¢ is interpreted as a functor
from the category defined by A(M) to the category P(I.41).

From propositions 4.35, and 4.36 it results that the family of subvari-

eties (Eh(Maﬁ,D))(a,g)eGI(M,M/) satisfies N T(X(Myg, D))o =
(a,B)EGI(M,M")

T (S(M, D)),»r and thus the combinatorial smoothness criterium (cf.
proposition 4.13) applies and it is concluded that:

(M, D) is smooth at kP <= dimy, T(X(M, D))o = dimy, %(M, D) .
It is convenient to re-state this assertion in the following form.
Theorem 4.38
S(M, D) is smooth at kP < |Y~(M, D, D")| = dimy, (M, D) .
Remark 4.39 1) The dimension dimy S(M, D) may be calculated easily

from M, and the condition |Y—(M,D,D")| = dimy, (M, D) may be
written in terms of G,41.

2) The set GI(M, M) is not arbitrary as it follows from the proof of propo-
sition 4.36.



Chapter 5

The Flag Complex

It is shown in this chapter and the following ones that the construction of
the smooth varieties Conf(A(M), D) is in fact a particular case of a general
one in the setting of building theory. For this aim it is introduced here the
building theory terminology.

The Flag Complex is the Tits Building of the general linear group
GL(k™1) so named by Mumford in [42]. It also plays an important role
in the contruction of a natural compactification of a reductive group [43], and
in that of smooth compactifications of symmetric spaces [44]. The term Flag
Complex refers to its underlying abstract simplicial complex, i.e. its combina-
torial structure. The aim of both this chapter and the next one is to introduce
the building setting in the case of the linear group, and to construct a family
of configurations varieties, which give rise to smooth resolutions of Schubert
varieties, in terms of the building geometry introduced by Tits in [50]. This
chapter may be seen as a guide suggesting the following general constructions
of the next chapters. The set of flags of k"*! adapted to the canonical ba-
sis, i.e. the combinatorial flags, is endowed with the structure of a simplicial
complex, namely the first barycentric subdivision of the combinatorial (r+1)-
simplex. On the other hand, there is a simplicial complex naturally associated
to the symmetric group &, ; (The Coxeter complex). The natural action
of 6,41 on the combinatorial flags induces an isomorphism between these
two complexes. There is a geometrical interpretation of these complexes as a
subdivision of an euclidean space by simplicial cones, given by a finite set of
hyperplanes, whose equations are given by the roots of GI(r + 1), as defined
in the preceding chapter. A geometrical realization of the Cayley Diagram
of the symmetric group is obtained from the geometrical interpretation of the
Coxeter Complex. This construction establishes a correspondence between
the paths issued from a point of the former with the galleries issued from a
chamber of the latter.

88
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The set of flags Drap(k™™t) of k™! endowed with a simplicial complex
structure forms the Flag complex that contains the complex of adapted
flags as a subcomplex (The Canonical Apartment). Both of them are
Buildings (cf. loc. cit.), so the general definitions of abstract buildings
apply. Generalized galleries in these complexes can then be defined. Minimal
generalized galleries are defined in terms of the combinatorial geometry of
the Apartment. In the next chapter it is shown how their associated typical
graphs give rise to a family of smooth resolutions of Schubert varieties.

5.1 Buildings and galleries

We define an abstract building as follows. The reader is referred to [4] and
[50] for details. Let A be a set and Ch(A) C P(A) a subset of the class of
subsets of A. The elements C' of Ch(A) are called chambers of A. A subset
F C C of a chamber C is called a facet, and the cardinal of C'\ F' is the
codimension of F' in C.

A gallery T' = (C = Cy,Ch,...,C, = C') of length n between two
chambers C' and C’ of A is a sequence of n + 1 chambers such that C; and
Ci+1 have a common facet F' of codimension 1. Then, either C; = C;41, or
C; N Ciy1 = F. The chamber C is called the origin (resp. left extremity) of
the gallery T' and C’ is called the end (resp. right extremity) of I'. The set
{C, C"} is the set of extremities of the gallery I'. Then, T is a gallery between
C and C’ of length n. A minimal gallery I" between C and C’ of length
n is a gallery such that there is no gallery between C' and C’ of length < n.

The pair (A, Ch(A)) is a building if:

o A=Ucecnn)C;
e There is at least one gallery between two chambers C' and C”.

Observe that a building is naturally endowed with a structure of a simplicial
complex. In a building A = (A,Ch(A)), the codimension of a facet F' is
independent of the chamber C' containing F'.

A sub-building A’ of A = (A,Ch(A)) is a couple (D,Ch(4) N P(D)),
where D is a subset of A and P(D) is the class of subsets of D, so that
(D,Ch(A) NP(D)) satisfies the two properties of buildings above. With
a chamber C is associated the sub-building A(C') formed by the set of
facets of C.

A morphism of buildings f : (4,Ch(A)) — (B,Ch(B)) is a mapping
f: A — B inducing for every chamber C' an isomorphism between A(C) and
A(F(C)).

An apartment is a building A so that every facet of codimension 1 is
contained in exactly two chambers.

The set of facets of a building A is naturally ordered by inclusion. Two
facets are incident if FUF" is a facet, or equivalently if F' and F’ are contained
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in some chamber C of the building A. A set ® of facets of the building A is
a sub-complex of Aif F'C F' and F € ® implies F' € ®.

Given two chambers C' and C’ of A the distance d(C,C’) between C
and C’ is the length of a minimal gallery between C' and C’. This length is
independent of the minimal gallery.

If the galleries T'! = (C4,...,CL) and I'? = (CZ, ..., C?) satisfy C}, = CZ,
then the sequence I'' 0 T2 = (C’O7 ., 0L =C2, ... ,C2?) is a gallery called the
composed gallery of I'! and I'?.

Definition 5.1 A sequence of facets v = (F,,...,Fo) of a building A is a
generalized gallery (gg) of A if it satifies one of the following conditions:

(i) Forn >i>1,i=1 (mod 2), Fix1 DO F; C F;_1, v is called a closed
gallery;

(i) Forn >i>2,1=0 (mod 2), with F41 =0, F; C F;_1 D F;_2, v is
called a right open gallery;

(ii) Form >1i>1,i=1 (mod 2), with F,;.1 =0, Fix1 D F; C F;_1, 7 is
called a left open gallery;

(iv) Form >i>1,i=1 (mod 2), Fi;1 C F; D F;_1, 7y is called an open
gallery.

If v is a gallery satisfying the conditions (i) (resp. (ii), (iii), (iv)), we
denote it respectively as follows

F.DF._1CF. o...F) CF);

F.DF_1 CF_o...FyD Fp);

F.CF._.1DF._1CF.o...F CF);
F.CF._.1DF._1CF.o...F) DF).

Remark 5.2 Another indexation of the facets composing a generalized

gallery v is possible. In fact this is the usual notation we employ in this
work. Denote by:

i) v=(F.DF.CF,_1...Fy D F| C Fy) a closed gallery;

i) y=(F. D F. CF._1 DF/,_y...F1 DF{) a right open gallery;
)" v = (F/ ., CF.DF/CF._1...F[ CFy) aleft open gallery;
vi)” v = (F/,, CF.DF CF,_1...Fy D Fy) an open gallery.
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Observe that given an ordered set (E, <), the above definition may be
reformulated in terms of the order <, i.e. by replacing C or D respectively
by < or >, and the facets by elements of E. We thus obtain the definition
of a generalized gallery in F.

A generalized gallery is non-stammering if all the facets inclusions are strict.
From now on all the generalized galleries we consider are implicitly supposed
to be non-stammering. On the other hand, it is immediate that a generalized
gallery may be reduced to a non-stammering gallery defined by the same set
of facets.

If no confusion arises, with the standard terminology of buildings, we say
simply gallery for generalized gallery. With the definition of 5.1, by definition
a gallery v in A is issued from F if F = F,, and F,, and Fy, or (F,, Fp),
are the extremities of v. Write Ei(y) = F, (resp. Ea(y) = Fy, E(y) =
(E1(7), E2())), for the left extremity(origin) (resp. right extremity(end), the
extremities) of .

Notation 5.3 Given a building I (resp. a building I, and F,F’ € I) Gally
(resp. Gallj(F), Gall;(F, F")) is defined as the set of generalized galleries of
I (resp. of generalized galleries of I issued from F, generalized galleries with
extremities (F, F")).

5.2 The simplex barycentric subdivision

An important example of building may be given. Denote by P(I41) (resp.
P*(I,+1)) the set of subsets of .11 (resp. the set of non-void subsets of I, 1).

Definition 5.4 Write A" = A(I,1) = P*(I,41). Let A" be endowed
with the symmetrization of the inclusion relation. (The combinatorial
r-simplex)

Let A" = A'(I41) be the set of combinatorial flags D = (J; C Jo C

<o CJp C Ipgq) of Irpr. Write (Irgq) for (0 C Irg1). (Ip41) is included in
AI(ITJrl). Let

Vert(AW') = { (J € Ls1) | J € P*(Is1) = {1} }

(The set of vertices of A")'). It is said that Vert(D) = {J1, ..., J;, 41}
is the set of vertices of D. The inclusion relation

Vert(D) C Vert(D')

defines an order on AU . In this case we write D C D'. By definition two
flags D and D’ are incident if there is a mazximal length flag D" with D C D"
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and D' C D" (cf. [50]). We endow A" with the inclusion order relation.
(The first barycentrical subdivision of A(")
Define )
typ : AT — typ(I,41)
as follows. Let D = (J; C Jo C -+ J; C I41) € A" with card Ji = nq,
card Jo =mg, -, card Jy=n;. Writetyp D=n=(n1 <ns <--- <n <
r+1) (resp. typ (Ly+1)) = (r+1)) (The type of a flag D).

The set of combinatorial flags is naturally endowed with a building
structure. Observe that Drap(I,41) = A", Write Ag) = Drap,(Ir41).
Let it be proved that A s a building with the set of maximal length

flags Drap,(I,41) (r = (1 < -+ < r < r + 1) as the set of chambers
Ch A", This results from the bijection: A’ ~ A(T)/(pl, e+ Dr+1), Where
A" (py,--- ,pr41) denotes the convex envelope (also called the convex hull)

of a set of affinely independent points pi,---pr+1 in some affine space, and
A (p1,-++ ,Pr+1), the set of simplices of the first barycentrical subdivision of
AT (py, -+ pry1) having the barycenter (p; +---+pry1)/(r+1) as a vertex.
The bijection being induced by the natural bijection ¢ — p;. By this corre-
spondence the chambers of A correspond to the r-dimensional simplices of
A (p1,-+ ,pr+1). Given two r-dimensional simplices in AT (p1,- -+, Pry1)
it is clear that there exists a sequence of r-dimensional simplices such that
two succesive simplices have a common (r — 1)-face. This shows that the

second axiom defining a building holds for A" the first one is trivially sat-
isfied by A",

Remark 5.5 1) The set of vertices Vert(A™") is given by Vert(A")') =
Grass(Ir11).

2) In fact A" is o flag complex. This means that Vert(A"') =
Grass(I,+1) endowed with the incidence relation “ generates” A"’
More precisely the flags (resp. facets) D of A gre given by the sub-
sets of Grass(I,4+1) whose elements are two by two incidents (cf. loc.
cit.).

5.2.1 Simplex barycentric subdivision automorphisms group

The symmetric group &, acts naturally on A This group may be char-
acterized as the group of building automorphisms of A(")" which preserve the
type of the facets. Let

typacy = A /6, 44,

and ) )
RelposAm/ = (A(T) X A(T) )/6T+1.

One has the following identifications:
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Relpos(Iy41) = Relpos oy

and
typacy = typ(hip1) ={n=(n1 <ng <--- <my <r+1)

| ni,n9, -+ ,n € NfU{r+ 1}

(The typical simplex of A(M"). In fact typ(I,11) is endowed with
a canonical building structure with only one chamber C given by C =
{1,---,r+ 1}, and typ is a building morphism. One has A(C) ~ typ(I;41).

5.3 Combinatorial roots, and hyperplanes

Let D= (J; C--- CJ; CIr4q1). Write: (Vi € I.41) ap(i) :=min{«a| i € J,}.
We associate to D the set

RD(IrJrl) = {('67]) € Ir+1 X Ir+1/A‘ aD(i) < aD(])}

The closed subset of roots Rp C E x E/A(FE) associated with a flag
D € Drap(FE) has yet been defined. It is easy to see that Rp(I,41) is equal
to the parabolic set Rp associated to D € Drap(I,41). Recall that Glg, =
Stab (kP) thus Glr,ngr,, = Stab (kP) N Stab (kP). If D is a maximal
length flag, i.e. D € Ch A’ then by the bijection Ch A" ~ Ord(Z,41) it
corresponds to D an order % of I,.+1 which is precisely wp and whose graph

is given by Rp(Lr4+1) UA(Lr41) -
With (4,§) € Iy X Iy1/A(I41) is associated a subcomplex of A"
defined by
A =1{D € A"| (i,j) € Rp(E)} c A",

The subcomplex &; ;) may be characterized as the set of flags D € AT

incident to some maximal length flag D’ such that i <j. One has that
D/

A = i 5) U A ;). The transposition (ij) € &,41 sends &, ;) to ;).
(i jy is called a combinatorial root of A’ From the definition of a com-
binatorial root it results that {D} = N i 5)-
(4,5)€Rp (Ir+1)

The intersection subcomplex H;; = o/; jy N ;) is given by the set of flags
invariant by the transposition (ij). H;; is called the combinatorial hyper-
plane of A"’ (resp. wall of A(”)/) defined by the combinatorial root <7; ;.
Denote by 7 the set of combinatorial hyperplanes (H;;) j)er(r,.,)- Write:

0 jy = Hij (vesp. 04, = Hji),

i.e. H;j; is the hyperplane determined by /; ;). A hyperplane is the wall of
exactly two roots (cf. [4]).
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Definition 5.6 Let D € Ch A" = Ag)/. H ¢ 57 is a bounding hyper-
plane of D if H = H; ;. , where wp = (i1 < -+ +iq < Ga41-- irs1) denotes
the total order of I+1 defined by D (cf. Definition 2.22).

Let #/p={ He | DecH}
(resp. #p(D'Y={HeH#|DecH D ¢H} #D)={HecH D ¢HY).

Let D,D’ € A’ The hyperplane H,; separates D and D’ if H;; ¢
Hp U A and if one of the following statements holds:

1. i<jand j <1,
D D

2. j<iandi<j.
D D’
(i.e. either (i,j) € Rp and (4,5) ¢ Rps, or (4,j) ¢ Rp and (i,5) € Rp/) In
that case we have that D belongs to one of the combinatorial roots determined
by H,; and D’ to the other. Denote by 7 (D, D’) the set of hyperplanes which
separates D and D’.

EDeCh AW =AY r=(1<2<---<r+1)),and D' € A® write
d(D,D'") := |2(D,D")| = |[R(D,D’)|

(The combinatorial distance between D and D’). It is recalled that
R(D, D’) is the set of couples (i,7) € Rp such that (¢,j) ¢ Rp/. Otherwise
stated the set of couples (4, j) in Rp such that the wall H; ;) separates D and
D’. Remark that (i,j) € Rp if and only if D € /; ;). This definition of the
distance between a maximal length flag D, i.e. a chamber of A’ and a flag
D' is equivalent to the definition given in 5.1 if D’ is also a maximal length flag.

Retain the notation of 2.5.3. The following proposition, establishing
a relation between the set of couples R(D,D’) and the Coxeter group
(6r41,5p) (Sp = {(12),--- ,(rr +1)}) (cf. [4]), results from general con-
siderations about Coxeter complexes exposed in the next chapters, or may be
checked directly for the flag complex Drap(I,+1).

Proposition 5.7
Retain the above notation.

1. Let (D,D’") be a couple of maximal length flags then ls, (w(D,D")) =
|[R(D, D")|.

2. For (D,D') a couple of flags with D of mazimal length we have:
R(D,D’") = R(D,projp: D).

3. For (D,D’) as in 2— we have lg, (w(D,projp: D) = |R(D,D’)|.
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5.4 The Star Complex defined by a flag in the Simplex
barycentric subdivision

The general terminology of simplicial complexes may be adapted to a building
complex A" Let D € A", As a particular case of a general definition in
the theory of buildings (cf. [50], p.1) the set is introduced

Stp:={D' € AW'| Dc D'}

(the star of D in A(M'). This set endowed with the relation of inclusion
between flags is a building, whose set of chambers C'h Stp is given by the
maximal length flags incident to D. Recall that the flags D’ (resp. simplices)
of A" are classified according to their type.

Definition 5.8 Given a flag D € Drap(I.41) of type t and a type s €
typ(Iy+1) define Xp(s) C Drap(Ly1) (resp. Xi(s) C Drap(Ir41) %
Drap(I,41)) as the set of combinatorial flags given by:

Yp(s) = { D' €Drap,(l,4+1)] DC D'}
(resp. Su(s) = { (D, D') € Drapy(Lys1) x Drapy(Is1)| D C D'}).

One has that ;(s) C Drap,(k"™') x Draps(k™1) is the graph of the order
relation D C D’. Write:
StD = H ZD(S) .

tCs

The group of type preserving automorphisms of Stp is given by the stabilizer
of D: 6p C &,41. There is a building isomorphism

Stp ~ [ A=)

of Stp with a product of buildings given by barycentrical subdivisions of
combinatorial simplices. It would be seen that in fact A7)’ (resp. Stp) may
be obtained in terms of the system of Coxeter (&,41,S5) (resp. (&p,Sp)),
where S (resp. Sp) denotes the canonical set of generating transpositions.

5.5 The Simplex barycentric subdivision geometric realization

Let A" C R™! be the r-dimensional affine subspace of the euclidian space
R7*1 defined by the equation: xy + --- 2,41 = 1. Write p; = ey, ,Dry1 =
ert1, where (e1,--- ,e.41) denotes the canonical basis of R"*1. Clearly there
is p1,--- ,pry1 € A", Denote by A (py,--- ,py41) C A" the r-dimensional
regular simplex with vertices pi,- - pr41, i.e. the convex hull of the points
p1, - prt1. Given (i,5) € Iryq X Iy /A(L41) let H;; C R™™! be the hyper-
plane defined by the equation z; —z; = 0, and H;; C A" the affine hyperplane
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obtained as the intersection H,;; = H;; NA". Clearly one has H;; = H j; (resp.
Hij = Hji)- Write

H = {HU| (17.7) S I’r'-‘rl X I’r—i—l/A}-

The family .7 is indexed by the set of pairs {{i,5}| 4,j € Ir41, (1 # Jj)}.
This family is the family of symmetry hyperplanes of A7) (py,--- ,p.41). The
pair {i,j} corresponds to the hyperplane H;; = Hj; which may be character-
ized as the symmetry hyperplane of A(") defined by the r affinely independant
points

(Pi +Pj)/2,p1, s Dir 3 Djs e s Pri-

The orthogonal reflexion 5 = 5;; = 5;; defined by the hyperplane H;; = H;
is given by

5 (1'1;"' s Lyt m 3 Lgy e axT+1) = (.731,"' yLgy sy Ly ,$7»+1),
and leaves the simplex A (py,- - .py1) @ 1 4+ 201 = 1, 0 <
X1, - ,Tyy1 invariant. The restriction s = s;; = s; of 5 to A" is clearly

the orthogonal reflexion of A" defined by H;; = Hj;. Remark that
(VHeH), (p1+-+p+1)/(r+1)€H.

Let €' () be the set of simplicial cones obtained from the decomposition
of A" in terms of the equivalence relation defined by 57 (cf. [4], Ch.V, §1).
By definition the carrier supp F of a cone F € €(¢) is the affine subspace
generated by F. Write dim F = dim supp F. A chamber C of € ()
is by definition a cone F' with dim F = r. Moreover the set of chambers
Ch € () C €(H) is equal to the set of connected components of A" —J H;;.
An order relation on €() is defined by

F'<F if F CF.

Two cones F and F' are incident if there exists C € Ch € (s#) with C D
F,F’. Two chambers C,C’ are adjacent if their closures contain a common
cone of dimension r — 1.

There is a bijection )
A = @)

compatible with the order relations of A" and () defined as follows.
Given J C I,41 let Env{p;| i € J} be the facet of A" (py,--- ,p,41) with
vertices {p;| ¢ € J}, i.e. Env{p;| i € J} = convex hull in A" of the set
{pi| i € J}. Write

o(J) :=Env{p;| i € J}.
Given a facet o(J) of A (py,---,pr41) let bar o(J) denote the barycenter

of o(J). Denote by %, the open ray issued from bar o(I,41) = (p1 + -+ +
pr41)/(r+1) and determined by bar o(J). It is easy to see that 6,y € €'(H),
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i.e. that if .# is the line determined by €, ;) then: £ =\ mewr H, and
Cga(J) CH
Cs(7) = Dy N2 where Dy denotes a half space defined by some H € 7

containing ¢ (s). The vertices of A" correspond to the faces of A, Tt is
said that two faces J,J' of A(") are incident if (J C I,;1),(J" C I,;1) are
incident in A’ ie. if JC J or J' C J. One has

J, J' € A" incident <= %U(J)7 ngul) € €(H) incident.

Given D = (J; C --- C J; C I41) € A" the elements of Vert(D) =
{J1,-,J;, 41} C A" are two by two incident. Consequently the elements
of {€5(1,), -+, Cx(s)} are two by two incident in € (7). Let then €, p) €
% () be the unique facet such that ¢, py C Env(€,s,) U U%,,)) and
Co(a)s s Co(a) C ?U(D), i.e. ¢,(p) is incident to the €, ;,)’s. The bijection
A =@ () is defined by

D ng(D) .

Let &',11 C O(A") be the subgroup of the orthogonal group of A", gen-
erated by the set of orthogonal reflexions (s;;) = (sg)mex defined by the
symmetry hyperplanes of the simplex A(T)/(pl, <+, pr+1). Thus &',.1; fixes
its barycenter (p1 + -+ + pr41)/(r + 1).

Proposition 5.9 There is a natural isomorphism: &', 11 ~ Aut(I.41) =
Grii.

Proof It is clear that &',11 stabilises the set of vertices {p1,--- ,pr11} and
that the action of &',11 on this set characterizes the action of &1 on A”.
Thus there is a monomorphism

6/r+1 — Aut(IrJrl) = 6r+1.

The image of this monomorphism contains the set of transpositions of G,41.
It is concluded that it is an epimorphism and thus an isomorphism.

From the fact that &],, C O(A") is generated by the set of orthogonal
reflexions (spy)mesr defined by 52, it is deduced that &,41 acts naturally
on ¢ () through the isomorphism &, 1 = &) ;. One has (V w € &,41)
w((gg([))) = (gg(w(D)). One finally gets

Proposition 5.10 The correspondence D — €, (py defines a &, y1(~ &) )-
equivariant order preserving bijection

A~ g ().

A Dbuilding structure is associated to the set of cones € (7).
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Definition 5.11 Denote by Vert(€ (7)) C €(H) the set of 1-dimensional
cones, i.e. rays, and given F € €(H), by Vert(F) C Vert(€¢(J)) the
set of cones F' € € () contained in F. It results from 5.10 that the
couple (Vert(6 (), Vert(C))cecne(w)) defines a building structure on
Vert(€(s)). There is a natural bijection between € () and the set of facets
of (Vert(€'(s€)), (Vert(C))cecne())- If no confusion arises this building is

denoted by € ().

5.6 The Cayley Diagram of the Symmetric group

The reader is referred to [18], 6.2 (see also [35] and [19]) for the definition
and properties of the Cayley Diagram of a group, given in terms of a set of
generators and a set of relations. The symmetric group 6,41 is, according
to loc. cit., Ch. 6, §2 defined by the set of elementary transpositions S =
{s12, -, Srr+1} and the following set of relations:

es?2 =1 (1<i<r)

o (siit18i41i42)° =1 (1Zi<r—1);
o (siit1skkr1):=1 (i< k—2).

The Cayley Diagram of &, consists of the vertices and edges of a “uni-
form polytope” whose two-dimensional faces are hexagons and squares repre-
senting the set of defining relations of &,.11, the hexagons corresponding to
the second type and the squares to the third type of relations. The geometric
realization A(T)/(pl, -+« pry1) of the Coxeter complex gives rise to the follow-
ing one of the Cayley Complex. Let St = S"~1(py,--- ,p, 1) be the sphere
centered in the barycenter (py + --- 4 pry1)/(r + 1) of AW (py, -+ pri1),
and containing {p1,---,pr41}. To a chamber €, p) (resp. maximal length
flag D € A(T)/) it corresponds the spherical simplex € (py N S™~!. Denote
by Bp € €5y N S™=! the intersection point of the “barycentric ray of the
chamber” €, (p) with S"~1.

Thus the Cayley Diagram of (&,.1,S5) is the graph whose set of

vertices is (BD)DeA‘”" and the set of edges is the set of segments

([BD’BD'D(D,D/)eadj(A(;)'xA(;)/)’ where adj(Ag) X Agf) ) denotes the graph
of the adjacency relation. This graph is contained in a “uniform polytope”
whose faces are regular hexagons and regular squares. Observe that the set of
the generating reflexions S of &), ; is given by the the set of reflexions defined
by the bounding hyperplanes of the chamber €p, : 1 < 2+ < ZTp41. It
follows that the paths of the Cayley Diagram issued from Sp, correspond to
the galleries issued from %p,, and thus to the words in S.
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5.7 The geometric realization of the Chambers, Roots, and
Hyperplanes

Denote by Im%a(%a)(R(A(T)/)) the image in €(J€) of the set of the combina-
torial roots

R(AY) = (i) id)elres xLrsa
by the building isomorphism A ~ C(H). Let
E(1'7.7') ={(z1, -, 2r41) €A"| 2; — x; > 0}.
(resp.
D jy ={(z1,-+ ,2r1) € A" z; —2; > 0})

be the closed half space (resp. open half space) of A" defined by z; —x; > 0
(resp. z;—x; > 0). From the the definition of the isomorphism A"’ ~ @ (%)
it results that the image of the subcomplex .27, ;) is given by

Imcg(%)(JZf(lJ)) = E(i,j) n %(%) = {F S Cg(%” F C 5(1,])}
Finally the result is
Ineg () (RAT) = (D jy N E ().

It may be recalled that Drap,(I,+1) = Ch A", Let the image of the set
of chambers Img (s (Ch ANy c €(A) of AU be determined. It begins
by calculating the image Ime () (D,) of D, = (Iy C -+ C Ir11). Write
Ch (#; ;) = i, N Ch A" Observe that the canonical flag D, defined
by the total order of I,;; is determined in terms of a set of combinatorial
roots

{D,}= [\ Ch (e ) =Ch (H12)N: - NCh (Fsi1))-
(i.)ER(Dy)

It follows that
Imcg(%) (DE) = D(172) N---N D(T7T+1) =

{(xlv"‘ 7xr+1) € AT| To — T > O, y Lyl — Tp > 0}

It may be recalled that the set of maximal length flags Drap,(I,+1) cor-
responds to the set of total orderings Ord(I41) of I11. Given D € Ag) =
Drap,(Ir41), let (i1 < i2 < -+ < i < ir41) be the order < of I,4q de-

o D

fined by D, i.e. wp, and w € &,41 defined by w(a) =i, (1 < a < r+1).
Then w(D,) = D. From the characterization of the image Im ) (D;) it is

deduced
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Img ) (D) = Imgr(w(Dy)) = {(21, -+ Trt1)

| Tiy — Xy > 0,--- yLipygr = ‘/'CZTO}

= Dwm,we) N Pw@),w@) N N Daw)wir+1))- /
Finally the image of the set of maximal length flags A(ET)
rical realisation is given by

by the geomet-

Im(g(%”)(A(;)/) = ( m D(u;(a),11;(a+1)) )

1<axl w€6r+1.
As the set Ay) is &,41-principal homogeneous, for every chamber € of € ()
there is an order (i1 < -+ < 4,41) of I, 11 such that € is characterized by the
inequalities

C:oxyy < Ty <co- < Ty, < Tj -

Thus the set S¢ of reflexions defined by the walls of € (resp. the set %)
is given by

S¢ = (Siainns)  (1es0. Mg = (Hiio) ) (1<a<r),

By definition a wall of the chamber % is a hyperplane H € ¥ (4) given
by the carrier of a cone F' C € of codimension 1. It is clear that the set of
equations defining the walls of ¢ is given by (z; 41 —x;, = 0). If € = ép
then the walls of € correspond to the bounding hyperplanes of D.

5.8 The Flag complex

Definition 5.12 There is a natural order on Drap(k"™™') and a mapping
typ : Drap(k™1) — typ(I,41) defined following the pattern of 5.4. This
order and the set of chambers given by the mazimal length flags Drap, (k" +1)
define a building structure on Drap(k™1). This results from the following
facts:

1) Given two flags 2 and D' of k™! there erists a basis e adapted to
both (cf. 2.3).

2) To a basis ep of k™! is associated a mapping g : Drap(E) —
Drap(k™1) defined by vg : D — kP, identifying Drap(E) to a sub-
complex of Drap(k™1) (Apartment defined by g ).

It results that two mazimal length flags in Drap(l.+1) may be joined by
a sequence of chambers with two succesive having a common (r — 1)-
facet. Denote this building by I(Drap(k™1)). It may be noted that here
Vert(I(Drap(k™1)) = Grass(k™1).
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From 1) it follows that the two flags ¥ and 2’ are contained in some
Yg(Drap(E)), i.e. in some apartment. On the other hand, it is known that
Drap(E) is a building and thus it results that the two flags may be joined by
a gallery.

The mapping typ gives rise to a building morphism typ : I =
I(Drap(k™1)) — typ(I,41) inducing a mapping

Gally — Ga”typ(lr+1)

defined by v — typ v, where typ v denotes the gallery of typ(I,4+1) defined
by the types of the facets of v. No confusion arises if this mapping is also
denoted by "typ".

Write gall; = Gallyyyi,,,), and given g € gall; let

rtl
Gall;(g) == typ~'(9)

(resp.
Galli(g,2) = {y € Gall;(9) | E1(v) =2 }

if 2 € Drap(k™+1)).

Definition 5.13 Define ey (resp. eq) : gally — typ(I,11) as the left (resp.
right) extremity mapping of gall; = Gallyyy,, ), and write e = (e1, e2)
for the extremities mapping.

Definition 5.14 An apartment A of I(Drap(k™1)) is by definition the
subcomplex given by the image of a building morphism ¢g : Drap(E) —
Drap(k™1) (cf. definition 2.5). The set of apartments Ap(I(Drap(k™+1)))
is in bijection with the class of sets {L1,...,Ly+1} of r + 1 independant one
dimensional subspaces of k™11,

The apartment A4 defined by {L, ..., L.11} is given by the set of flags adapted
to the direct sum decomposition ("' = L, & --- ® L.y

Remark 5.15 1) The condition 1- of definition 5.12 may be translated as
follows:

“A couple of facets (D, D’) is always contained in an apartment”.

2) The class of sets {Li,...,Ly41} of r + 1 independant one dimensional
subspaces of k™t corresponds to the set of direct sum decompositions
k't =L@ L, ® L,y with dimy, L; = 1. This set is the set of k-
points of the k-variety of Stiefel decompositions of k"' (cf. [24],
9.10).
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Definition 5.16 A generalized gallery of Chain(I,41) (resp.
C’hain(k:”“)) is defined in terms of the “C” relation between chains
following the same pattern as in the definition of a generalized gallery in an

ordered set (cf. Definition 1.23).

To a gallery v of chains a generalized gallery may be associated by consid-
ering the reduction of the image ¢(v") to a non-stammering gallery.

5.8.1 Flag complex automorphisms group

The action of GI(k"*1) on Drap(k™ 1) factors through the action of the pro-
jective group PGI(k"™1) = GI(k™*1)/Center (The adjoint group of GI(k"+1)).
More precisely we have that the group of type preserving automorphisms of
I(Drap(k™1)) is given by PGI(k"™') (The Fundamental Theorem of pro-
jective Geometry) (cf. [11] and [50]). Let 7 be an apartment given by
the (r + 1)-subspaces {L1, -+, Ly41}. Write N(Ly,---, Ly41) for the stabi-
lizer Stab {Li1,---,Ly4+1}. There is an invariant subgroup T'(Ly, -+, Ly41)
of N(Ly,--+,L,41) defined by the automorphisms fixing each subspace
Ly,--+,L,41. The action of N(Ly,---,L,+1) on 7 factors through the quo-
tient N(L1,---, Ly41)/T (L1, -, Lyy1) which is easily seen to be isomorphic
with &,11. This group is isomorphic to the group of type preserving au-
tomorphisms of A~ o7, This last isomorphism makes correspond to
H € Grass(I,;1) the subspace Vect((L;)icy) of k"™ Thus the action
of 6,41 on & is characterized as follows. The image of Vect((L;)icn) by
o€ Gy is Veet((Li)ico(m))-

5.8.2 The Star complex defined by a flag in the Flag Complex

The flag complex is a particular case of a simplicial complex. A simplicial
complex is by definition a set K endowed with a class of finite subsets, called
the simplices of K, and such that every non empty subset of a simplex is also
a simplex. The general definition of the star of a simplex applies to the Flag
Complex.

Definition 5.17 Given a flag 9 € Drap = Drap(k"™1) of type t and a type
s € typ(I,41) define:

1. $9(s) C Drap(k™1) (resp. 3i(s) C Drap(k™) x Drap(k™1)) as the
subvariety whose set of k-points is given by

(B2(s)) (k) = {2 € Draps(k"t")| 2 c 2}
(resp. (X¢(s))(k) = {(2,2') € Drap;(k"™") x Draps(k"™')| 2 c 2'}).

Sty ={ 2" € Drap(k"™™|2 c 2’ }
(The Star of 2).
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3. If 2 = kP it is written Yo(s) = Bp(s) if no confusion arises.

The star complexes are the keystone in the construction of generalized
galleries.

1. Observe that there is the following decomposition:

St = [[ (S () (k).

tCs

2. We have ¥;(s) C Drap; (k™) x Drap,(k™1) is the graph of the order
relation 2 C 9'.

The variety Yo (s) may be seen as a Schubert variety. Let typ 2 =t =
(mp<--<my<mypr=r+1),s=Mm <--<n <ng1=r+1), and
M := (inf(mq,ng)) € NA+DXUFD “then

So(s) = (M, 2) = S(M, 9).

Let m = mi(t,s) (resp. m = ma(t,s)) : Xi(s) — Drap(k"*!) be the

morphism induced by the first (resp. second) projection Drap(k"*1) x

Drap(k™1) — Drap(k"*!). Let t' C s, m1(t,s D t') is defined thus: ¥;(s) —

Drapy (k™) as the composition of m; = 7y (¢, s) followed by the natural mor-

phism Drap, (k™) — Drapy (k"™1). Tt is observed that 3;(s) = L(M).
From 1.14 it is deduced

m(t,s) : Xe(s) — Drapt(k”“l)

is a locally trivial fiber bundle with typical fiber ¥ g, (s) where 2, = (k™ C
cookma C gL,

Proposition 5.18 The Schubert variety X5(s) is isomorphic to a product of
flag varieties.

Proof Lett=m (resp.s =n), and (2,9') € 5(s), ? = (V1 C---VA C
Kt (resp. 2" = Wy C -+ W, C k™). As 9 C 9’ there emists
an increasing sequence (iq)1<a<x With W;, = V,. Write Vj = {0}, po =
dim V(y_;,_l —dim Ve, and D, = (Wia—&-l/va C "'Wz‘aJrl_l/Va C Va+1/Va),
for 0 <a <A
Then there is

E@(S): H Drapua(kua)7

0<a<

where v, = typ Do € typ(IF=).
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Corollary 5.19 If Sty is endowed with the induced ordering between flags
there is an order preserving isomorphism:

Stg ~ HDrap(k’""‘H).
The right hand term is a product of buildings and thus endowed with a canon-
ical building structure, giving rise to a building structure on Stg. The group
of type preserving isomorphisms of St is given by [[ PGI(k"=T1).
5.8.3 The centered Bruhat decomposition
An improvement of the Bruhat decomposition is obtained as a corollary of
proposition 2.53 (cf. 2.28) by relating it to the building A"
Proposition 5.20 Let D € Drap,(E) (E ~ I,41) be a mazimal length flag.
1) The Bruhat decomposition may be re-written as:
GI(k")= ] UWD,w- D) w(D,w-D,) P(D,) .
weSE/Gn

Write w - Dy, = w - D,

2)
Drap, (k¥) = 11 U(D,Dyr) - w(D,Dyy) - kP
M e Relpos(y n) (E)

where S(M, D) = U(D, Dys)-w(D, Dag)-kP» = U(D, Dps) - kP (The
centered Bruhat decomposition of GI(k¥) (resp. Drap,(k¥)).

3) There is an isomorphism of k-varieties U(D, Dy) ~ (M, D) given by:
s ue kP

From the inclusion U(D,w - D,,) C U((w - D, )°PP) one obtains:
Corollary 5.21 With the above notation there is an open covering:

GIk®) = |J U(@- D)) P(w-D,)
weECE/Gn

(The big cell open covering of Gl(k¥)).

Remark 5.22 1) As dimy, U(D,Dy;) = |R(D, Dyy)| it results from the
above two propositions and the definition of R(D, Dyy) that:

dimy, (M, D) = number of hyperplanes in A separating D from

Dy, and that dimy, (M, D) =g, (w(D,projp,, D).
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2) Let M = M (b;ﬂ) the relative position matriz  defining
the big cell S(M",D) of the decomposition Drap,(k¥) =
I U(D,Dy) - kPM. On the other hand, it follows

MeRel[)()S(l,E) (E)
from the proof of proposition 2.60 that R(D, Dpe) = R%M}m. Thus:

dimy, Drap, (k") = |R(D, Dype)| = |5€(D e )| -
The following proposition is deduced from the above remark.

PROPOSITION - DEFINITION 5.23 A minimal gallery I'(D, D')((D, D’)
€ Drap,(Ir4+1) X Drap,(Ir11)) satisfies length (U'(D, D)) < |s2(D")|. If the
equality holds then the distance d(D,D’) is mazimal and it is said that the
couple (D, D’) is in transversal position. In this case a minimal gallery
[(D, D’ crosses all the hyperplanes of A" not containing D'.

It follows from proposition 5.18 and the above proposition the

Proposition 5.24 Let D € Draps(I,41) N Stp.. Then:

5.9 The Retraction of the Flag Complex on an Apartment

The building Complex as defined in [42] admits a retraction on the finite
subcomplex given by an Apartment. This retraction is also a combinatorial
Building morphism which transforms galleries into galleries, and gives another
interpretation of the Bruhat decomposition. It results from definition 2.21
that a maximal lenght flag D € Drap,(I,4+1) defines a natural bijection:

H Relpos . n) ~ A ,
netyp(Ir41)
given by M +~ Dy, whose reciprocal mapping is given by D’
M(D,D’). On the other hand, there is a mapping I(Drap(k™*!)) —

[I  Relpos(, ), associating to a flag 7 € I(Drap(k™1) the relative
netyp(l 1)
position matrix M (kP 2).

Definition 5.25 Define :

pp : I(Drap(k™)) — H Relposy n) ~ A

netyp(Iry1)

(The retraction of I(Drap(k"*!)) on the apartment A" with center
in D).
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The following proposition results immediatly from Bruhat decomposition.
Proposition 5.26

Retain the above notation. Let M = M (kP 2). There erists a unique
a(2) € U(D, Dyy) so that a(2) - 9 = kPM with Dy = pp(2).
Proposition 5.27

Keep the above notation. The mapping pp : I(Drap(k™1) — A" defines
a building morphism.

Proof [t suffices to prove that:
P C D= kPvw =pp(2') C pp(2) = kP .

This results immediatly from
pp(2') =a(2)- 7' C (D) P = pp(2) -

5.9.1 The Flag Complex Retraction on an Apartment and the Bruhat
decomposition

The Bruhat decomposition of Drap(k"*!) defined by k may be written:

Drap(k"™) = H H X(M,D)

netyp(Ir41) MERelpos(, n)

= JI II U, Duy)-kP.

netyp(Iry1) MERelpos(, n)

It follows from the definition of pp that the restriction pp|s(as,p) is equal to
the constant mapping defined by Dpy;. Thus:

pp' (D) =X(M(D,D"),D),

and one has that this fiber is principal under the action of U(D, Dyy).

5.10 The Flag Complex and the Parabolic subgroups of the
Linear Group

The canonical isomorphism Drap(k™*1) <— Par(GI(k"*!)) given by 2
Py = Stab 2 allows another interpretation of I(Drap(k"*!)) in terms of
parabolic subgroups of GI(k"*1). Denote by I(GI(k"1)) the set of parabolic
subgroups endowed with the relation “<” defined as the opposite of the in-
clusion relation between parabolics. The set of chambers of Drap(k"*!) cor-
respond to the set of minimal parabolic subgroups of GI(k™"1), and it results
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that two subgroups P and @ are incident if P N @ is a parabolic subgroup.
The set of apartments corresponds to the set of conjugates of the subgroup
of diagonal matrices. Let T be a subgroup conjugate to the subgroup of di-
agonal matrices. It is clear that to T it corresponds a Stiefel decomposition
k"t! = L @ --- @® L,;1. The appartment </ corresponding to T is thus
formed by the image of the mapping A« ofp defined by H — Py

where 7 = @ L;.
i€H

Proposition 5.28 The set of conjugates by GI(k"+1) of the subgroup of di-
agonal matrices contained in Py is homogeneous under conjugation by Pg.

Proof Given two basis é = (€i)i1<;<,41 and € = (€))1<j<,41 adapted
to 9 = (#4 C - A C k™M), de satisfying Hy = @ L (L =
Licﬂa
ké;) (resp. A = L/SB% L (L = ké;)) there exists a renumbering of €,
1 CHo

namely €" = (€;,)1<p<r41 with :
“the automorphism o (€,é") 1 & & -+ ,&41 > €;  belongs to Py "

It is immediate to see that this suffices to prove the proposition.

Proposition 5.29 Let 2,2 € Drap(k"™1). The set of conjugates T of the
subgroup of diagonal matrices satisfying T C Py N Py is homogeneous under
conjugation by Py N Pg:. In other terms the set of Stiefel decompositions of
k™1 “adapted to both 9 and 2'” is homogeneous under Py N Pg:.

Proof Following the pattern of the proof of Corollary 2.4 it is obtained that
given two basis € = (€;)1<;<,41 and € = (&;)1<;<,41 adapted to both 9 =
(A4 C I Ck™Y) and 9" = (F1 C -+ _Fi C k™) there exists disjoint

decompositions:

¢ = H €ap (resp. & = H s ) s

(o, B)€[1,A4+1] x [1,1+1] (o, B)€1,A+1] x [1,14+1]
satisfying:
1) k™ = @Wag (Wap = Vect(éap)) (resp. k™ = @W/5 (W), =
Vect(é;fj)));
2) |€apl = legal;
3) oy = Wagegﬁ’fa,waﬁ = W;B%%Q/Wéﬁ (resp. Jg = Waﬁ%jﬂfwaﬂ =
& Wis):

WéﬁC/B/
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4){ (@f) e [LA+ 1] x [LI+1] | Wap C Ao } ={ (af) € [1,A+ 1] X
[L1+1] | W), © A}
5) { (aB) e [LA+1] x [L,I4+1] | Wap C Za } ={ (af) € [1,A+1] x
[LI+1] | W5 C s }.
After reordering the basis & there exists f : k™71 — k™l sat-
isfying f(ap) = €,5 and thus f(Wap) = W/s.  This implies that
f(H) = Hor (resp. [(Fp) = Fp), i-e. f€ Py Py

Given T and T’, basis € and € are chosen defining respectively the Stiefel
decompositions corresponding to T and T'. If the above construction is applied
to € and €, there results f : k"™t! — k™1 satisfying f(T) = T" and f €
Py N Py:.

5.10.1 Invariance of the Convex hull of two flags with respect to the
Apartment containing them

Definition 5.30 The convez hull (resp. envelope) Env(D, D’) of two flags
D,D' € I(Drap(I,1+1)) = AW is defined as the subcomplez of A™ given
by :
Env(D,D') = N A g -
{(i,5)€R(Ir41)|D,D’€a(; jy}

Given 2,9' € I(Drap(k™")) their conver hull Envl(2,2') in
I(Drap(k™1)) is defined by: if 2,9" are adapted to a Stiefel decomposition
corresponding to the subgroup T and

if 2=k 2" =k then Emv'(2,92') = Emv™7(2,9') ,
where
Env”"(2,9') = image of Env(D,D') by A" — oy |

and /7 denotes the apartment of flags adapted to the Stiefel decomposition
corresponding to T. Observe that {(i,j) € R(I,41)|D, D" € o; )} = Rp N
Rp, and it is recalled that given two flags 9 and P’ there always exists a
Stiefel decomposition adapted to both flags.

From the following proposition it results that this definition is well posed.

Proposition 5.31 Let T,7'" C Py N Py then Env7(2,9') =
Env?t (2, 9").

Proof From the equality Glr,nr, = Stab (kP) N Stab (kP"Y (cf. [23],
Exzp XXII, 5.4.5.), the fact that Py (resp. P@/) is its own normal-
izer, and that its Lie algebra is generated by Lie(T) (resp. Lie(T')) and

(EGj)jern (resp- (B )G )eRrp )
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where  (E ;))@G.5)erE) (resp. (Eéi’j))(i’j)eR(E)) denotes a basis of
Lie(GU(k™1) formed of eigenvectors for T (resp. T'), corresponding to
the eigenvalues indexed by R(E) = E x E — A, it is deduced that:

w9t (2,9") = Env?' (2,9') = { 2" € I(Drap(k"*') | PpNPgy C Pgn }.

According to the general definition given in 5.1 a gallery in a building
re,c’) = (C = Cy,Cq,...,C, = C") of length n between two chambers
C and C’ is minimal if it is of minimal length. This general definition is
equivalent for A" = I(Drap(I,41)) to the following one.

Definition 5.32 A gallery:
F(D,D/) = (D =Dy, D1,...,D, = D/) c Aér'i_l)/

where Dy, D1 have precisely a common (r — 1)-length flag (resp. a flag
of codimension 1) D11 C D;, Diy1, is minimal if the set of hyperplanes it
crosses is equal to (D, D"). We say that T'(D, D) crosses the hyperplane
H if there exists 0 < i < n satisfying Dyip1 € H, ie. if wp, = (i1 < -+-iq <
bat1 - < dpy1) (resp. wp,, = (1 < -+ Ja < Jag1- < Jrg1)) then Dy
is tnvariant under the transposition (iq,ia+1) = (JasJja+1)- Thus H is a
bounding hyperplane of both D; and D; 4.

Proposition 5.33 Keep the above notation. A gallery T'(D,D') ¢ A
minimal according to Definition 5.32 <= T'(D, D’') is of minimal length.

The proof of this proposition is a particular case of a general assertion
about Coxeter complexes and will be given later. The main point is that
galleries in AT issued from D correspond to words in the set of generators
defined by D, Sp C &,41, and minimal galleries to minimal length words.
More precisely the following proposition resumes several equivalent definitions
whose equivalence will be proved in all generality in the next chapters.

Proposition 5.34 Keep the above notation. Let T'(D,D’) be a gallery
(D, D) in A", satisfying D; # D11, i.e. I'(D, D) is an injective gallery,
then the following assertions are equivalent.

1) T(D, D') is minimal according to Definition 5.32.

2) The set of the hyperplanes crossed by T'(D, D’) is equal to 77(D,D’).
3) length T'(D,D') = |5¢(D,D")|.

4) T(D, D) is of minimal length.

5) ls, (w(D,projp: D)) = the number of the hyperplanes crossed by
I'(D,D’).
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The following corollary justifies the introduction of the convex hull of two
flags.

Corollary 5.35 A minimal gallery T'(D, D’) is contained in the convex hull
of its extremities, i.e. I'(D, D) C Env(D,D").

Proof Consider the geometrical realization of T'(D,D’):
D(D,D") = (Do -+ D, Dnt1) — (D, D) = (Go(Dg) - Co (D), Co(Duin) -

It is recalled that the geometrical realization Env9®°™ (D, D") of the convex
hull Env(D, D) € A") is given by:

Envi®°™(D,D") = N E(i.j) .
{(6.7))€R(Ir41)| D,D’€a(; 5y}

If T9¢™(D, D') ¢ Env9°°™ (D, D’) then there exists some half space Dy; ;)
satisfying:

1) CKJ(D) UCKU(D/) C ‘D(LJ)’ i.€e. D,D/ S 'Q{(z,]ﬁ

2) D jy NT9°"™(D, D') # 0 (resp.(—D ;) NT9™(D, D) #0). Thus it
is “geometrically” clear that T'9°°™(D, D) crosses the hyperplane H;; =
Dy N (=Dayy) & #(D, D).

This last assertion contradicts the minimality of T'(D,D’).



Chapter 6

Configurations and Galleries
varieties

The Configuration varieties defined by typical graphs are introduced. The
galleries of types, or more generally the linear typical graphs, define a class of
k-smooth and integral Configurations varieties particularly important in this
work. The minimal galleries of types are characterized as the galleries of
types whose associated Configurations variety defines a smooth resolution of
a Schubert variety. A minimal generalized gallery of the Flag Complex is a
general point of the Configurations variety given by its gallery of types. They
are characterized by a combinatorial property. It is shown that a minimal
generalized gallery in the Flag Complex is contained in the convex hull of its
extremities.

Definition 6.1
1) Let J be a finite set, t : J — typ A(J)/ a mapping, K C J x J a subset,
satisfying:
(i,7) € K = t(i) C t(4).
We call A = (J, K, t) a typical graph.
Let E C 2(J) be a class of sets with two elements, andt : J — typ A(ET)
a mapping satisfying:
{i,j} € E=t(i) Ct(5) or t(j) Ct().

We call M = (J,E,t) a symmetric typical graph. M is a linear
typical graph if M is linear as a graph. Denote by A®Y™, the symmet-
ric typical graph defined by A. By definition A is linear if and only if
ASY™ s linear.

111
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2) A A-configuration of flags of Drap(k"™') (resp. I(Drap(k™*1)))
(resp.Drap(Iy+1)) is a point (P;)jes (resp.(Dj)jes) of the product
HJ Drap, (k™) (resp. HJ Drapy;y(I,41)) satisfying:

Jj€ Jj€

(i,j) € K = (%, 9;) and Z; C D,

(resp.
(Z,j) eK = (Dl,D]) and D; C Dj) .

A M-configuration of flags of Drap(k™') (resp. I(Drap(k"™1)))

(resp.Drap(Ir+1)) (Z;)ies (resp.(Dj)jes) is a point of the product
I Drap (1) (res. TT Dray (Trs)) stisfying
JE- JE.

{i,j}EEﬁgiC@j or @jC@i
(resp.
{i,j}EEiDiCDj or DJCDZ)

Write Conf(A) = Conf(A, I(Drap(k™1))) (resp. Confc™*(A) =
Conf(A, A1) the set of A-configurations of I(Drap(k™1)) (resp.
A(T),). The set Conf°™b(A) is considered as a subset of Conf(A) by
means of the injective mapping o — k¥.

Proposition 6.2 The set

Conf(A) C H Dmpt(j)(krﬂ)
jeJ
of A-configurations of Drap(k™1) is the set of k points of a projective k-
variety (The A-Configurations variety).

(Here by a projective k-variety we understand a finite type projective scheme
over k)

Proof It results easily from the proof of 1.9 (resp.3.3) that given a section
(2,9") of Drap, (k™) x Drap,, (k") the condition 2 C 2’ may be defined
by a set of equations in the Plicker coordinates of (2,2'). Thus we deduce
that Conf(A) is the underlying set of an algebraic k-variety (see Remark 1.10).

Two typical graphs A and A’ are equivalent if there is an isomorphism
Conf(A) ~ Conf(N),

i.e. if the variety of A-configurations Conf(A) is isomorphic to the variety of
A’-configurations Conf(A').
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The typical graph associated to a generalized gallery of types
g € gally.

Recall that to a gallery of types g € gall; is associated a typical graph
A(g) whose set of vertices Vert(A(g)) is given by the facets of g, and the set
of edges Edg(A(g)) by the inclusions of its facets. For instance, the gallery

g: trp1 CS8p D - C 89 Do

defines a typical graph A(g) whose set of vertices is given by Vert(A(g)) =
{ty41,Sr -+ S0,t0}, its set of edges by Edg(A(g)) = {(tr+1 C S¢), -, (s0 C
to)}, and the typical weight mapping ¢ : A(g) — typ(I+1) by the inclusion
Vert(A(g)) C typ A", Write Conf(g) = Conf(A(g)). There are morphisms

& : Conf(g) — Drap(k")

(resp.
(r)ﬁg : Conf(g) — Drap(kr+1) ) )

associating to a A(g)-configuration -~ its left extremity &1(vy) (resp. right
extremity &5(7)).

Definition 6.3 A variety of galleries is a variety of the form Conf(A(g)).
The underlying set of this variety is the set of galleries Galli(g) in the Flag
Complex I(Drap(k™1)) (resp. building I(GL(k"*1)) of GI(k"™+1)).

We have

Proposition 6.4 Given a linear typical graph A there ezists a gallery g €
gally whose associated graph A(g) is equivalent to A. The gallery g may be
chosen non-stammering, i.e. with strict inclusions between facets, and in this
case it 1S unique.

Let us give other examples of typical graphs.

1) (The weighted graph A(M) of definition 3.1) It is recalled that the
set of vertices Vert A(M) of A(M) is given by

Vert A(M) =[1,\+ 1] x [1,1 4+ 1],
and the set of edges Edg A(M) b

Edg A(M) = {((a, ), (@ +1,8))[ 1
{({(a, ), (@, B+ 1)) 1

The weight function being defined by:

A 1<pB<i+1}u
A1, 1<8<1}.

p: Vert A(M) = N, p(a, B) = mag.

may be seen as a mapping with values in typ(Grass(I,4+1)) C typ(L-41).
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2) (The Nash typical graph) Given a relative position matrix M =
M(D,d) = (mqag) defined by D = (H; C --- C Hy C I,41) and d =
(J C I,41). M is associated with a weighted graph I(M). Let I(M) be
the weighted graph defined as follows. The set of vertices Vert I(M) is
given by [[1, A + 1] x [0, A + 1], and the set of oriented edges Edg I(M)
by the couples ((«, 8), (¢, 8')) with (o/ — o, 8" — B) € {e1,ea}, where
€1 = (1,0), €y = (0,1).

Define the weight function p: I(M) — N by

p(aaﬁ):‘HamJUHﬁ| (where HOZ(Z))

and assume I (M) endowed with the product order.
The configurations variety associated to this graph is a smooth resolu-
tion of singularities X(M, D) — (M, D) such that the pull-back of

the tangent submodule 7~21( M, D)k C Témss Jk admits an extension as a

locally trivial submodule T3}y py /i © (T rase/n)si(0r ) (¢ [13])-

3) (The weighted graph A’(M) equivalent to A(M)) Let M €
NA+D)x(U+1) be a relative position matrix with A(M) is associated a
typical (resp. weighted) A’(M) graph as follows. Define the set

In(mg) ={l<a< A+ 1 ma_15<mag (mosg=0)}

the set of increasing points of mg = (mip < --- <myg =n < r+1),
where mg denotes the S-row of M. Remark that

Inmﬁclnmﬁ+1 for 1 >2p2>1.

Define A’'(M) by giving the set of vertices:

L Vert (M) = [I 1Inmgx {8} C VertA(M) = [1,A + 1] x
+12p2>1
[1,1+ 1]; and the set of edges:

2. Edg) A'(M) = (e, B), (o, B+ 1))) 12621,

a € mg
Edg® A (M) = {((a, B), (e, B)) € Vert A'(M) x Vert A'(M)| o #

A+1, o = nf a“l
a<a’€In(mg)

Edg /(M) = Edg™ A/(M)UEdg® A/(M).

The weight function p’ : A’(M) — N is given by the restriction of
p: A(M) — N to A(M) € A(M).

The following proposition results from the definition of A’(M).

Proposition 6.5 The variety of A'(M)-configurations
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Conf(A'(M))c ]  Grassm,,(k™*"),
(e, B)EN (M),
map=p’(c,B)
is canonically isomorphic to Conf(A(M)). More precisely the inclusion
A(M) C A(M) gives rise to a morphism of varieties ® : Conf(A(M)) —
Conf(A'(M)) which is in fact an isomorphism. Thus A(M) and A'(M) are
equivalent typical graphs.

Proof Let (#,p) be a A(M)-configuration. For 1 < f < I+ 1 we de-
note by Pg the chain defined by (Hog)i<a<r+1- Thus ¢(Dg) is given by
(Hap)acin m, and (p(Zp)) defines a A'(M)-configuration. The isomorphism
& makes correspond (p(Dg)) to (Dp).

Denote by ) = 71 (M) (resp. 7, = w5(M)) the restriction of m; (resp. m2)
to Conf(A'(M)).

In the next chapter it will be proved that there is a generalized gallery
g(M) associated to M defining a typical graph equivalent to A’(M) and thus
to A(M) too.

6.1 The Associated Fiber Product to a gallery of types

The variety Conf(A(g)) admits a description as a fiber product which is in fact
a decomposition of Conf(A(g)) in a sequence of locally trivial fiber bundles
with smooth bases and typical fiber of the form ¥4 (s) (resp. product of flag
varieties).

Definition 6.6 [Fiber product along a gallery of types]
Given a gallery of types g = ty41 C 84 D -+ C 8o, @-€. g € gally(prap(kr+1))s
we associate to g the following fiber product

2(‘9) = Zt,rJrl (ST) XDrap(errl) e XDTap(kT'+1) Ztl (80) C H ZtiJrl (Sl)
1<i<lr

defined by the sequence (wa(tit1,s: D t;),m1(ti, si—1))1<i<r (cf- §5.8.2 and
what follows).
Denote by
Q(a) : tr-l—l CsrD---C tr—a+2 C Sr—a+1
the a-th truncated gallery of g.

For every 1 < a < r+1 there is

2(g') == 2(g") Xprap(e+1) S, _aya (Sr—as1)
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the fiber product over Drap(k**1) of

(2(9((X—1))7 Wé(g(a_l))) and (itr7a+2(s'r*a+1)7 1 (tr—at2; Sr—a+1)),

where w(g\@~ V) is induced by mo(ty—_ai3,5r—ar2) composed with the natural
morphism
Drap, ., (k") — Drap, ., (E™Th.

S(9) = 3(¢"tY) is called the fiber product along g, and
(fl(g(a)), 72(g(®)), where we write w5 (g(™)) = T (t,_ a2, Sr— a+1) the fiber-
ing of 3(g). There are two morphisms m1(g), m2(g) : (g) —> Drap(k™+)
induced respectively by w1 (t,41,5:), and m(t1, o).

Remark 6.7 Clearly

(Vv €3(9)) m(trs1,5:)(y) = Ex(7) (resp. m(t1,50)(y) = Ex(7) -

To these mappings correspond the k-morphisms:
&1(g) i(g) — Draptrﬂ(krﬂ)

(resp. R
2(9) + B(g) — Draps, (k") ) .

The following proposition results from the definition of f)(g) as a fiber
product.

Proposition 6.8 There is a canonical isomorphism Z(g) ~ Conf(A(g)).
The underlying set of 3(g) (resp.Conf(A(g)) ) is given by Galli(g).

Remark 6.9 If ¢’ € gall; is as in 5.2, (i1)" (resp. (ii)", (iv)"), then $(g) is
defined as in definition 6.6 with ¢’ satisfying t,+1(9") = s.(¢') = t.(¢') (resp.
t1(9') = s0(g"); tr1(9') = sr(g') = tr(g') and t1(g") = so(g'))-

6.1.1 Galleries issued from a flag

Given 2 € Drap,, (4 (k") we write:

Conf(A(g), 2) :== D) and (g, 2) = Conf(A(g), D) .

There is a canonical isomorphism:

2A:(ga 9) = Z_@(ST) X Drap(k™+1) *** X Drap(kr+1) Etl (80) - H E7fz‘+1(8i) .
1<i<r
(g, ma(g(™))  of 3(g) induces a fibering

The fibering (X(g(®
), 7)) of %(g,2) (The fibering of 3(g,2)). As

(B(g @, 2), m(g@
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(g1, 2) = Sg(s,) it is deduced from proposition 5.18 that (g, Z) may
be decomposed in a sequence of locally trivial fibrations with typical fiber a
product of flag varieties. Thus:

Proposition 6.10 EAJ(g7 2) is an integral projective smooth k-variety.
It is remarked that the morphism
6)2(.9’ -@) : 2(97 -@) — Drapto(kr+l) )

induced by &(g) is a Stabgy-equivariant proper morphism.

6.1.2 Relative position matrix associated to a Gallery of types
Given
g=g: t,4g1 Csp D~ CsgDtg€gally (I= [(Dmp(krﬂ)) ’

and 2 € Drapel(g)(k’“) it is deduced from the Stabg-equivariance of m =
&g, ) : B(g9, 2) — Drap(k™) that:

Imn= HE(M’,@) ,

where M’ runs on the set of relative position matrices with X(M’, 2) C Im =.
On the other hand, EAI(g7 9) being irreducible, it results that there exists one
and only one M, € Relpos(I,+1) satisfying ¥(M,, Z) = Im w. The relative
position matrix M, is independant of the choice of 2.

Definition 6.11 There is a natural mapping:
gally(Drap(kr+1y) — Relpos(Ir41)

defined by g — M, (Relative position matrix associated to g).

6.2 Minimal generalized galleries in the Flag complex

The minimal generalized galleries in the apartment A’ c I (Drap(k™+1),
given by the flags adapted to the canonical basis of k"1, are defined by a
birational property. The following developements are based on material that
would be introduced in Chapter 9 and may be skipped in a first lecture.

Definition 6.12 Let 2,d € A", Write M = M(2,d). Let g C typ(A™)")
be a gallery of types, and v4(2,d) C A g generalized gallery of type g with
extremities (2,d). It is said that v,(2,d) is minimal if:

dimy, 3(g, 2) = dimy, (M, D) .

A generalized gallery of types g C typ(A(T)l) is minimal if g is the gallery of
types of a minimal generalized gallery v C A",
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Denote by gall’y,,, C gall5¢y the set of minimal galleries of types. It is

observed that as dimy (g, Z) increases indefinitely with the length of g, the
set gall?szp(er) must be finite.

Remark 6.13 It would be seen that this first definition of a minimal gener-
alized gallery (mgg) admits a combinatorial equivalent version, i.e. solely in
the terminology of building theory (cf. 9.16).

Let v € A" be gallery of type g. Denote by F;(v) the left extremity of
~. The notation of remark 5.2 is assumed and one writes D; = F; (resp. D} =
F!). There is then:

1) dimy (g, B1(7)) = 3 dimy, Epy,, (D) if g is closed;
r>i=0

2) dimy, $(g, E1(7)) = 3 dimy, Ypy,, (D;) if g is right open;

r>i>1

3) dimy, 2(g, E1(7)) = X dimg Ep, (D) if g is left open;

r=2i20

4) dimy, 2(g, E1(7)) = X dimy Epy, (D) if g is open.
r2i>1
It may be easily verified that the generalized gallery v4,(Z,d) is minimal
in the sens of 9.16. Consider:

e a maximal length flag ¥ D 2 at maximal distance from d, thus
d(2,d) = dimy, X(M, D);

e the generalized gallery 7, (2,d) obtained by composing 2 O 2 and
Vg (2,d).
The generalized gallery 7, (2, d) may be completed into an adapted gallery
I'(2,d) so that:

length T(2,d) < dimy, 3(g, 2) = dimy, (M, D) ,

as it follows from the above equalities. Thus one has necessarily that
length T'(2,d) = dimy, (M, 2), and that T'(Z,d) is a minimal gallery. It is
concluded that for all maximal length flag 2 C 2, at maximal distance from
d, the generalized gallery 7, (2,d) is minimal. This proves that v,(2,d) is
minimal generalized. More precisely stated.

Proposition 6.14 Retain the above notation and hypothesis.

o There exists a composed minimal gallery'(2,d) =Tyo---T'1, ifv4(2,d)
is closed (resp, Iypo---To, if v4(2,d) is right open, T'ry10---T'1 if v is
left open, I'yq10---Tg if 7y is open). Where I'; C Stp;. It is said that
I'(Z,d) is a gallery adapted to v4(2,d).
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e One has

i

d(2,d) = max d(D', Es(vy Z |77

+1
D’EA(;)/ incident to E1(7) B

e The generalized gallery v4(Z,d) is minimal in the sens of 9.16.

The proof of this proposition is given in the chapter about mgg’s in a
Coxeter complex.

From proposition 5.24 and the equalities of the above proposition:

dimy, (9,7 Z dimy Xp;, (D;) = Z |7, , (D)

it is deduced that the galleries I'; C Stp; are minimal and of maximal
length in S¢p, and finally that for every 2 as in proposition 6.14 the following
statements hold:

1) Hpy,,(Di) O Hpy, (D) =0if i £ ;

2) H(2,d) = [ b, (Di).

The “ i’s ” run on a set of indices which depend on the type of the gallery ~.
Minimal generalized galleries of types are defined by the following bira-
tional property.

Proposition 6.15 Retain the above notation. A generalized gallery v(Z,d)
1s minimal if and only if the natural morphism:

T E(g,@) HE(MWQ)
is birational.

_ The second statement results from the fact that 7 : $(g,2) —
YX(My,2) (g = typ vy) is a birational morphism if g is a minimal general-
ized gallery as it results from the second part of this work.

6.3 Birational characterization of minimal generalized galleries
of types

Proposition 6.16 Let g € gally (resp. 9 € A with typ 9 = e1(g)). The
following statements are equivalent.

1) The morphism 7 : (g, 2) — %(M,, 2) is a birational morphism.

2) There is a minimal generalized gallery v(2,d) € A" whose type is g.
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Proof From 6.15 it follows that 2) = 1). It suffices to prove that 1) = 2).
Let d € A so that My, = M(2,d). As 7 is a surjective morphism there
exists a gallery v(2,d) of type g issued from P so that Eo(v(2,d)) = d. Let a
mazimal length flag Z C D be chosen in AT at mazimal distance from d, i.e.
d(2,d) = dimy, ©(M,, ?). From dimy, ¥(g,2) = dimy, ©(M,, ) it results
that the composed gallery ¥(2,d) of 9 C 9 with v(2,d) may be completed in
a gallery (in the usual sens) T'(2,d) in I(Drap(k™1)), with length T'(2,d) <
d(Z,d). Thus T(,d) is a minimal gallery and thus contained in A", This
gives y(2,d) C AW The result follows from 6.14.

The above proposition is referred as the (The birational criterium of min-
imality).

Corollary 6.17 The generalized gallery v(2,d) C I(Drap(k™ 1) whose type
is g is a mgg if and only if

1) 7:%(g,2) — (M, ?) is a birational morphism;
2) M(2,d) = M,.

6.4 The convex hull of a minimal generalized gallery

The reader is referred to [4] and [50] for the proof of the following result.

Proposition 6.18 Let T'(2,2") = (9 = %0, %,...,.9, = 9') C
I(Drap(k™1) be a minimal length gallery, i.e. a minimal gallery (with the
usual meaning) in I(Drap(k™1)). Then T(2,2') C Envl(2,92").

It follows from the proposition that a minimal gallery T'(2,2’') may
be completed in a minimal generalized gallery v(2,2') = (2 = %y, 20 N
DDy ooy Doy Do O Dty Dvr = 2') C I(Drap(k™) . Tt is recalled
that if 2,2 € A"’ one has that Env!(2,9') = EnvAm/(@7 2'), thus
(2,2') ¢ A", The maximal length flags %y, Z1,..., 7, € AD) may be
seen as chambers in A", Define DoNDr, ..., Dn_1ND, as the corresponding
sequence of codimension 1 common facets of two succesive chambers.
Reciprocally to a minimal generalized gallery of the form

7(@7-@/) = (9: :@o,.@oﬁ.@h.@h-..,.@n,.@nﬂ.@n+1,9n+1 = ‘@/)7

is associated a gallery I'(2, 2’) in an obvious way. One has that v(2, 2’') is
minimal if and only if I'(2, 2’) is minimal.
It would be seen in chapter 9, as a corollary of the above proposition, that:

e a minimal generalized gallery v(Z2,d) of type g is the unique gallery of
type ¢ in I(Drap(k™!) connecting 2 and d and is contained in the
convex hull Env!(2,d).
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o If g is a minimal generalized gallery of types and M(Z,d) = My, there
is a minimal gallery v(2, d) of type g and (2, d) is the unique gallery
of type g in I(Drap(k™') connecting 2 and d .

From this it follows, as it would be seen, the existence of a canonical section:
0(0.9) : (Mg, 7) — £(9.2)

of the natural morphism 7 : 3(g,2) — X%(M,,2) on %(M,, 2) asso-
ciating to a couple (Z,2') satistying M(2,%') = M, the unique mgg
v4(2,2') of type g contained in Env!(2,2’), which establishes an isomor-
phism $(M,, 2) ~ ()" 1(S(M,, 2)).



Chapter 7

Configuration Varieties as
Gallery Varieties

In this chapter it is proved that the configurations variety giving a smooth
resolution of singularities for a Schubert variety is, in fact, isomorphic to a
gallery variety given by a minimal generalized gallery of types. More precisely,
with its relative position matrix M € Relpos C (][ NA+1x(+1)) ig associated
a gallery of types g(M) € gall; and an isomorphism

V(M) : Conf(A(M)) =~ Gall(g(M)),

where Gall(g(M)) = Gall(A(g(M))). Given a general A(M)-configuration of
adapted flags to the canonical basis, chains of adapted subspaces are of use
in constructing a minimal generalized gallery of type g(M) in terms of this
configuration. The gallery of types g(M) depends solely on M. A generalized
gallery of chains of adapted subspaces is first obtained from this configuration,
giving rise, after reduction, to that minimal generalized gallery. Thus we
obtain the above isomorphism by following the pattern of this correspondence.
It is also given another example of a configurations variety (The Nash variety
associated with a Schubert variety in a Grassmannian) and a corresponding
isomorphic gallery variety. These two examples show, for the linear group, the
role played by the geometry of the Tits building in unifying the constructions
of configuration varieties.

122
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7.1 The minimal generalized gallery associated with a Relative
position matrix

Let D =(Hy C -+ C Hy C I;41) (vesp. D' = (J C I 11)), with typ D =
m=(m; <---<my<r+1) (resp. typ D' =n = (n <r+ 1), the type of a
subspace in k"+1). Write M (D, D’) = (mqp) € NA+D*2) thus

(Ma2 = Ma)i<acr  (resp. (Ma1 = |Ha N J|)1<agr, Mat11 =n = |J],
Mx412 =T+ 1) .

The procedure is to first construct g(M) assuming that M = M (D, D’) =
(Mmap) € NOFTDX2 gatisfies:

1. 0 <mig, ma1 <Mgg11 forl <a<A
2. Mol < Mg for 1 <a <A+ 1.

Write J, = HyoNJ for 1 < a < A, (resp. Jyy1 = J). The chain D; = DNJ =
(J1 C -+~ C Jy C J) satisties J, C Hy, (Jo # He) and is in fact a flag of J.
Remark that the second column of the matrix .# (D, D’) = (H,p) is given by
Dy = D, and the first column by D; = DNJ. A generalized gallery is defined
between D and D’ in A" = Drap(I,41):

F(D,J): dyy1 CDyxDdyxC---C Dy Ddy C Dy D dy,

by
dyy1=D=(Hy C--- CHy) ClI41),
D,=(J1 C-  CJIrear1 C Hr—o41 C - C Hy C Lyq),
do =(J1 T+ CJrcat1 C Hrcap2 C - C Hy CIrgq),
for 2 < a < ), and

(table 1)

D1:(J1C"'J)\CH,\CIT+1)7
dy=(J1 C--CJIxCIrt1),

Dy=(J1Cc---CJIyCJCILy1),

do = (J C Iy1).

The assumption about M makes one sure that all the chains of (Table
1) are in fact flags of I,;1. The functions f defining these chains are all
increasing strictly. Write typ Do = 8o (resp. typ do = to) for 1 < a < ),
and tyy1 = typ da+1, and denote by (D, J) the sub-gallery of 7(D, J) with
extremities E(y(D,J)) = (dxt+1, Do)-
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Definition 7.1 Let g(M) := typ 5(D,J) (resp.g(M) = typ v(D,J))(M =
M(D,D")). There is

GM): txy1 CsAaDtxC - Cs1 Dt CsoDtp

(resp.
g(M): txy1 Csx Dty C - Cs1 Dty C sp).

Remark 7.2 If o((D,J)) = (Dy,Jo) for 0 € &,41 then o(y(D,J)) =
v(Do, Jo), as one has o(#(D,D")) = M (Dy,D}). 1t follows that the
gallery of types typ ¥(D,J) depends only on the relative position matriz
M = M(D, D"). This justifies the notation g(M) for typ F(D,J).

Definition 7.3 (The isomorphism ~(M))
it is assumed that M satisfies conditions 1-, and 2- above, and define

F(M) : Conf(A(M)) — Gall(g(M))

by y(M) : () — 7((Hap)) € Gall(g(M)), where the gallery
(o)) s dax1 CTPrDdrC---C Py Ddy

s obtained as follows. Let it be written

1. Hoy= A for1 <a <\ (resp. Byi11=k"), D= (4C- -4 C
k™) with typ 2 = m;

2. Koy = Jo forl <a< A (resp. fosp11= 7). 9 =(f1C--C
J C _F C k) with typ 2" = n;

then:
3.
dai1= ([ C---CH CE
Do =(J1C -+ C Irat1 CHiat1 C--- CHA CE™,
do=(f1CC Ireat1 C a2 C-- CHCE™)
for 2 < a < A, and
(table 2)

D= (J1 C--C IrCHCk™™);
di=(f1C--C _IxCk™h;
Do=(Jr C--C IrC F k't

do = (7 C k™).




Configuration Varieties as Gallery Varieties 125

Thus ¥((Hp)) is a generalized gallery of type G(M) between 9 = (J64 C
c CHBCKTY and 9" = (7 C k"TY).
The mapping Conf(A(M)) — Gall(g(M)), defined by (H5) — F((Hap)),
18 induced by a k-isomorphism, which is also denoted by

5 =5(M) : Conf(A(M))—> Gall(g(M)).

A section of Gall(g(M)) comes from a unique A(M)-configuration (H#5g). It
is clear that it is a functorial definition of the k-isomorphism 5(M).

From the fact that a gallery of type g(M) determines a unique gallery of
type G(M) and reciprocally, an isomorphism Conf(A(M)) ~ Gall(g(M)) is
deduced which is denoted by y(M).

Given a relative position matrix M € NATD*2 (without any restrictions)
a gallery g(M) defining a graph A(g(M)) equivalent to A(M) may be con-
structed. This construction is inspired by the above one.

The preceding definitions are restated in a slighty more general frame.
Given a finite set I, a flag D € Drap(I), and a subset J € £2*(I), with
|J] < |1], let

I1(J,D)
be the subflag of D whose vertices are those of D indexed by the set of
increasing points In m, where m € typ(I) is the type of the chain JN D €
Chain(I). Write D' = I(J,D) and D" = (J C I). The relative position
matrix M(D’, D") satisfies the set of conditions 1, but not necessarily the
conditions 2.

Let it be explained how the construction giving Table 1, can be modified
to obtain a gallery (D', D”) between D’ and D" if M (D’, D") satisfies only
condition 1, i.e. between two flags whose relative position matrix satisfies the
set of conditions 1 but not necessarily conditions 2. If the constructions of
Table 1 is carried out, a “gallery of chains” is obtained:

D:d)\_HCDA:)"‘CDa:)daCDa_lDda_1C"'CDoDdo.

It is remarked that if M satisfies only the inequalities of 1, without satisfying
inequalities 2 there is A > a > 1 so that: J D Hyx_qq1--- D Hy and J 2
Hy_ o2, thus:

/
AZad Za = My_a411=Mr o412
1

(resp. a>a” = = My—ao4+11 < Mi—q/41 2).

and

D = p(dr1) = (D) = -+~ = (D) = (da) is obtained,
and that
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W(D/,DH) :dy CDy_1D--CDygD do,

where do = I(J,D) and dy = (J C I). Thus v(D’, D") is a non-stammering
gallery of flags with strict inclusions, i.e. a reduced gallery. Recall that the
image by ¢ of a chain denotes its associated flag.

Definition 7.4 If D # I(J, D), define

(D, J) =~(D,D"): DDdy C Dg-1 D+ C Dy D do,

otherwise put
(D, J) =~4(D",D") = y(da, D").

In the latter case there is D = I(J, D). Denote by v(D,J) the sub-gallery
with extremities E(y(D,J)) = (D, o(J N D)). and write

g(M) = typ(v(D, J))

(resp.
g(M) = typ(y(D, J)) .
Following the pattern of Table 2 the above constructions allows one to
define a functorial morphism

F(M) : Conf(A(M)) = Conf (N (M)) — Conf(g(M))

(resp.

V(M) : Conf(A(M)) — Conf(g(M)) .
A A(g(M))-configuration (resp. gallery of type g(M)) v determines by con-
struction a unique A(M)-configuration (H55) with

V(M) ((Hap)) = -

Thus this morphism is clearly an isomorphism. The isomorphism (M) :
Conf(A(M)) — Conf(g(M)) is obtained following the same pattern as in
the construction of Table 2.

Observe that g(M) is a minimal generalized gallery of types, as it results
from the Birational Criterium of Minimality and the fact that all the terms
of its flags are obtained as the intersection of couples of terms from (D, D’).

Given M € NA+DxU+1) Jet a gallery of types g(M) € gall; be defined and
an isomorphism y(M) : Conf(A(M)) ~ Conf(g(M)), based on the preceding
construction of g(M) for M € NO+1x*2,

Let D= (Hy C -+ C H\ C I41) (resp.D' = (J; C -+ C J, C L 11)),
and M = M(D,D’). Denote by (Dg), with Dg = D N Jg, the column of the
matrix .# (D, D’) = (H, N Jg) indexed by §, and let

Confe (A(M)) — [ [ Chaing,, ().
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be the natural injective mapping. Recall that by definition of the graph
N (M) equivalent to A(M) there is a natural isomorphism ® : Conf(A(M)) ~
Conf(A'(M)). To the configuration (H, N Jg) corresponds the A’(M)-
configuration (¢(Dg)) = (@(D N Jg)).
Remark that to the preceding natural injective mapping corresponds the
following one
Confm (N (M)) — [ [ Drapu, (Jp)-

Define
Mﬁ = M((p(D n Jﬁ+1), (J,@ C Jg_;,_l)) S RelpOSA/(JB_H).

Following 7.4 a gallery of types

9(Mpg) = typ(v(p(D N Jp41), Js)) € gallar(g,,,),

and an isomorphism
V(Mp) : Conf(A(Mpg)) ~ Conf(g(Mp)),

are associated with Mg.

Definition 7.5
Let
D8 = (Jg c---J C Ir+1)

(The S-th upper truncation of D’). Given d € Drap(Jg) denote by
d* € Drap(I,,1) the flag defined by

Vert(d®) = Vert(d) U{ Js,- - Ji, [r41},

and by
0g : Drap(Jg) — Stps,

the mapping which makes d* correspond to d; it is clear that dg preserves the
incidence relation, thus the image v* = 65(v) of a gallery v C Drap(Jg) is a
gallery of Drap(I,41).

Let
9" (Mg) = typ(v*(o(D N Jg41), Jp)) € gall;.

It follows from

Ey(v(p(D N Jp41), Jp)) = (D N Jp),
where v(¢(D N Jgy1), Jp) is seen as a gallery in Drap(Jg+1), and from

E1(v(p(D N Jg), Jg-1)) = o(D N Jp),
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where v(¢(D N Jg), Jz—1) is seen as a gallery in Drap(Jg) and ¢(D N Jg) as
a flag in Drap(Jg), that

E>(¥(o(D N Js41), Jp)) = Er(v*(0(D N Jg), Js—1))

and the sequence of galleries(y#(¢(D N J11),J5)) may be composed in an
obvious way.
Write

(D, D) =( * A (p(DNJs41), ) * T (2(D N J2), 1)

1>8>2
(resp.

v(D,D') = (l>§>2v“(s0(D NJz41), J5))) * ¥ ((D N o), J1)).

Remark 7.6 By v~ the composition of a couple of galleries (v,7’)
is denoted satisfying E2(vy) = Ey1(y'). The product indezed by l > f > 2
denotes the composition of the sequence of galleries (Y (¢o(D N Jgy1), J5)) i
decreasing order from [ to 2.

3

Let
g(M) = typ(¥(D, D"))

(resp.
9(M) = typ(v(D,D"))).

Thus by adapting in an obvious way the above notation one may write

g(M) = (l;ﬁ'«;zg“(Mﬁ)) *g* (M)

(resp.

g(M) = (l>1ﬁ\'>29“(Mﬁ)) * g* (M)).

Given a A(M)-configuration (#,3) and 1 < 8y <[ associate to it the flags
Dpo+1 = p((Hape+1)) in Drap(Aiiap,+1)

(resp.
Dy = P((Hap,)) in Drap(Hiap,))

defined by Inmg . (resp. Inmg ), i.e. the (8p+1)-column (resp. Sp-column)
of the corresponding A’(M)-configuration ®((7,s)). Let

g, : Conf(A(M)) — Conf(g(Mpg,))

(resp.

g, : Conf(A(M)) — Conf(g(Mpg,))),
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be defined by

Lg, - (‘%5) = ’Y(gﬁo-‘rl’@éo)

(resp. B

rﬁo : (%[3) = 7(@[30-5-17-@;;’0));
where V(Zg,+1,Z5,) (resp.  F(Zgy+1,%p,)) denotes the g(Mg,)—confi-
guration (resp. g(Mpg,)—configuration) obtained from ~y(Dg,+1,J5,) (resp.
Y(Dgy+1, Jp,)) by replacing each H,g by the corresponding 77,3 in each flag

of 7(D50+1a Jﬁo) (resp. 7(D50+1’ Jﬁo))'
Following definition 7.5 define

14, : Conf(A(M)) — Conf(g*(Ms,))
(resp.
T,  Conf (A(M)) — Conf(g"(Mg,))
by
Fhﬁo L (Hp) — Vh(gﬁo-&-la 9//30)'
(resp.

T5, : (Hap) = T (D1, T,).

Where v4(Zp,+1, 75,) (resp. F(Dpg+1, 5,)) denotes the g%(Mg,)-confi-
guration (resp. g°(Mg,)—configuration) obtained from 7*(Dg, 41, J5,) (resp.
¥4 (Dg,+1,J3,)) by replacing each H,s by the corresponding .#4 in each flag
of 'yh(DﬁoJrl’ JIBO) (resp. 7h<D/30+17 Jﬂo))' Define

F(M) = ( J THMg)) « T (M) : Conf(A(M))

1>p>2
— (l>‘g’>200nf(9h<M,8)) « Con f(g* (M) = Conf(g(M))
(resp.
y(M) = l>}§‘>f% : Conf(A(M)) — l>»;>100nf(gh(MB>> = Conf(g(M))).

Remark 7.7 1. The product % F% denotes the composition of the gal-
1=p=>1

leries (Fhﬁ) in decreasing order from B =1 to B8 = 2. This product is
well defined since the sequence of galleries of types (g°(Mg)) may be
composed.

2. The sections of % Conf(g*(Mp)) are given by the composite config-
I>p>m
urations i *- - -* 7y, defined by the sections (yz) of [] Conf(g*(Mp))
>p>m

satisfying 62(vp+1) = 61(7p)-
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3. The morphism (M) : Conf(A(M)) — Conf(g(M)) given by:
(%B) = 7(97 @/)7

where 9 = w1 ((Hop)) (resp. D' = ma((Hop)), is obtained from the com-
binatorial A(M)-configuration %(D, D’), by replacing the combinatorial
A(M)-configuration (Hap) € Confe™ (v(M)) by the section (#ag)
of Conf(A(M)). That is we consider the Hu,z 's as variables and
we obtain a G(M)-configuration 5(2, ") by specializing these variables
(Hop) = (Ho).

From this we deduce that once ¥(2,92") is known we retrieve the A(M)-

configuration (4p), and finally that ¥(M) is a functorial isomorphism.

Notation 7.8 (The fiber of (Conf(g(M)),&(M)) over 2 € Drap(k™1))
Write

(Conf(g(M)),&(M))a = (Conf(g(M))g, &(M) )
= (Conf(g(M)7-@)7g(Mv 9))

where

Conf(g(M), 2) == Conf(g(M))g = (£1(M))"(2)

(resp.
EM, D) :=EM)g : Conf(g(M), D) — L(M, D)).

Let
(M, 9) :=5(M)o : Conf(A(M), 7) ~ Conf(g(M), 7)

be the induced isomorphism.

It results by construction of 7(M), theorem 3.30, the Birational Criterium
of minimality, and the fact that (M) is contained in Env(D, D’) the follow-
ing:

Theorem 7.9 Keep the notation of theorem 3.30 then:

1. The following commutativity relation holds:

(resp.
(M, 2)=&(M, D) o~5(M, D)),

where
é"(M) = (gl(M)7g2(M)) : Conf(g(M)) — D’r‘ap(errl) X Drap(k’““),

associates with a g(M)-configuration its left and right extremities. Thus & (M)
(resp. (M, 9)) factors through S(M) — Drap(k™') x Drap(k™*') (resp.
Y(M, 2) < Drap(k™1)) and the induced morphism
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Conf(g(M)) — S(M) (resp.Conf(g(M),2) — (M, 2P))

18 a smooth resolution of singularities, i.e. a birational morphism which is de-
noted by g(M) = (C/’@I(M)a éa2(M)) (7’85]). éa(Ma 9)) = (éal(Mv 9)7 gQ(Mv -@))

too if no confusion arises.

2.The morphism
0(g(M)) =~(M) o 6(M)

(resp.
0(g(M), 7)) =~7(M, Z) 0 (M, 7)).
defines a section of &(M) (resp.& (M, D)) over (M) (resp. X(M, D)) and an

open embedding:
0(g(M)) : B(M) — Conf(g(M)),

(resp.
0(g(M, 7)) : ©(M, 7) — Conf(g(M), 7)),

whose image Im 0(g(M)) (resp. Im 0(g(M,2P))) is schematically dense.
The underlying set of points of Im 0(g(M)) (resp. Im 0(g(M, D)) ) is given
by the set of galleries v € Gally(g(M)) (resp. v € Gall;(g(M),2P)) with
M(&1(7), &2(v)) = M (resp. M(Z,65(y)) = M).

7.2 Nash smooth resolutions

The Nash typical graph gives rise to a particular smooth resolution of a Schu-
bert variety in Grass(k™"1) which majorates the resolution associated with
A(M). The main application of this construction is to furnish a universal
smooth resolution of generic Boardman-Thom singularities (cf. [50]). To a
relative position matrix M = M(D,d) = (mag) € NATYU*2 defined by D =
(Hi C---CH\CI 1) € Drap(Iy41)) and d = (J C I41) € Grass(Ir4+1)),
defining a Schubert cell ¥ = X(M, D) C X = Grass;(k"t!), is associated
a weighted graph I(M). Let Conf(I(M), D) be the variety of configurations
defined by I(M) (cf. Ch. 6). The reader is referred to [13] for details.

Proposition 7.10 1) There is a birational morphism

m(I(M),D): Conf(I(M),D) —s S(M,D),

defined by w(I(M), D) : (Hap)(a,p)c1(m) = Hrt10, and a
section o(I(M),D)s, : F v+ Mrasn(D, F) = (ke _g Uklls)

inducing an isomorphism:

o(I(M),D)s. : ©(M,D) — n(I(M), D) (X(I(M), D)) .
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2) Let Tg = Tzlm C(Tg)s = (7}/,@)2 be the tangent module to X. Then
the pull-back module

n(I(M), D)3(Ts) € 7(I(M), D)5 (Tx)

is obtained as the restriction (7:12)7T(I(M)7D)71(2) of a locally free sub-
module T's C w(I(M), D)*(Tx), where n(I(M), D)s denotes the fiber

of m(I(M), D) over £(M, D) C ¥(M, D).
3) In dual terms there is a locally free submodule:
gConf : ﬁé’onf - (W(I(M’ D)))*(Qérass‘ﬂ(kr‘*'l)/k) )
so that:

(icons)lx(rar.0)) -1 () = (F(L(M, D)) (is/Grass,, (k+1))s

where
i C s — O ® 1%
¥ /Grass|j (kmtt) - nE/Grassu‘(k“rl) Grass| | (k™+t1)/k 0G7,a55‘”(;€7‘+1) %

denotes the canonical embedding of the co-normal submodule
1 .
nE/Grassu‘(ker to X, in

Qérass(k”’*l)/k ®ﬁGrass(kT+l) Os.

The construction of  two minimal generalized galleries
Ynash(D, d) (resp. ., .5, (D,d)) € AU and two isomorphisms are given

Conf(I(M)7 D) = 2(gnash(]w)’ D) (Tes}l Conf(I(M)’ D) = 2(g;ash(M), D)) )

where gnash(M) = typ PYnash(Dv d) (resp. g;zash(M) = typ ’Y;Lash(Da d))
Denote by @5, (D, J) : I(M) — Grass(I,4+1) the monotone mapping whose
graph is given by:

Masn(D,J) = (HyNJUHg) .

Recall that I(M) is ordered by the product order, and that Grass(l,41) is
ordered by the inclusion of subsets of I,; 1. A linearly ordered subset
of I(M) is a strictly increasing map

¥ [1,N] — I(M).

With any linearly ordered subset v of I(M) one may thus associate a
chain of some subset of I,.y; by simply composing ¢ with ®,,,s,(D,d), i.e.
D051 (D, d) o1 defines a chain of some subset of I.41.
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7.2.1 The Nash minimal gallery associated with a Relative position
matrix

Denote by:

1) (ﬁ(% ) the cycle of the ordered graph (M) defined by the square whose

vertices are {(a, 3),(a +1,08),(a,8+ 1), (e + 1,8 + 1)}, and counter
clock-wise oriented, where (a, ) € [1,A] x [0, A];

-
2) Tra,p) the cycle defined by the triangle with the set of vertices

Vert Triag = {( 8), (@, B+ 1), (0 + 1,8+ 1)}

and counter clock-wise oriented.

—
3) P(1,1) the complete oriented subgraph of I(M) defined by the set of
vertices:

N
Vert Py =1 (a,p) € I(M)|a—-B=00ra—-F=1}U{(1,0)}.
4) ;(1’1) the oriented graph defined by:

N — —
Py =Pay +Trao

—

P(;,1) may be seen as an oriented path of I(M). The interval [0, )]
is ordered by the order opposite to its canonical order and [1,A] X
[0,A] by the lexicographical order. The subset of the set of cycles
(B(a.)((, B) € [1,A] x [0,A]) indexed by the (a, 8) satisfying a — 5 > 0,
is ordered totally by the order induced by the lexicographical order of
[1, A] x [0, A]. Given («, 8) € [1, A] x [0, \] satisfying o — 8 > 0, it is written
(ar, ) for the element in this subset following (c, 3).

Define recursively two sequences of oriented paths

—
(fm,ﬁ)){(aﬂ)eﬂuﬂx[[tw] | a—p>0} and
(P (0,8)) {(.B)e[LAIx[0,A] | a—p>0} as follows:

—

.
1) Paoy=Pua + E(1,0) ;

— — -
2) Pa,p)+ = P(a,p) + D(a,p)+
and

N — —
1) P@1) = P(1,1) +Tr(2,1) ;

N — —
2) Pyt = Pla,p) + TT(ap)+
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Clearly each of the two families of oriented graphs

.
(Pa.p){(ep)l1 A1 0] | a=>0 and
(P (a,8)) {(.B)e[1AIX[0.A] | a—p>0}, 8ives Tise to a family of chains of I, 41,
which are denoted respectively by:

(D(a,8)){(e.8)e1,AIx[0,A] | a—p>0} and (d(a,8)){(a,8)e[IAIX[A] | a—B>0} -
Definition 7.11 Define the gallery of chains:
Vs (D5 d) : D C D1y D d11) € Doy D dia0) -+~ dap) C

D(a,,B)+ D) d(a)5)+ e ‘d()\71) D D(A70) od.

The gallery Ynash(D, d) is obtained by reducing the image (", (D, d))
to a generalized gallery with strict inclusions, i.e. a non-stammering gallery.

Write
q)nash((%ﬁ)(a,ﬁ)el(M)) : I(M) — Grass(k”l)

for the monotone mapping whose graph is given by (43)a,8)er(m)- Clearly
q)nash(%nash(Da J)) = (I)nash(Dy J)
Let .

Conf(I(M),D) — X(gnash(M), D)

be given by associating with (#s)(a,s)cr(ar) the gallery Ynqsn ((75)) defined
by the sequences of flags

(Z(0,8)) {(@.B) el AIX[0A] | a—p>0} A1 (d(a,8)){(a,8)[LAIX[A] | a—B>0} -

where

.
D(a,p) = Prash ((Hap)) © P(apy (resp. dia,py = Prasn((Hap)) © F(a,ﬂ)) ;

following the same pattern as in the definition of 7,45, (D, d) according to
definition 7.11. It is easy to see that this morphism is, in fact, an isomorphism,
and thus that 3(gnasn (M), D) — X(M,, D) is a birational morphism. From
the birational criterium of minimality , and that the flags in 'nyZ p, belong

to Env(D,d), immediatly it results that the generalized gallery y,qsn(D,d)
is minimal.



Chapter 8

The Coxeter complex

A simplicial complex C'(W,S) (The Coxeter Complex) is associated with
a Coxeter system (W, S), given solely in terms of (W, .S), which is naturally
endowed with a building structure. This complex admits a canonical geo-
metrical realization in an euclidean space, as a decomposition of this space
in simplicial cones, by means of a finite family of hyperplanes. The complex
C(W, S) given by the Weyl group W of a system of roots R of a complex semi-
simple Lie Algebra endowed with the set of generating reflexions S, given by
a system of simple roots, is a typical example of a Coxeter System. Its ge-
ometrical realization is obtained in the dual space of the real vector space
generated by the set of simple roots, by means of the hyperplanes defined
by the roots. It is explained how a combinatorial realization is provided
by the set A(R) of parabolic subsets of R. As an example remark that the
combinatorial realization of the Coxeter Complex C(&,41,S) of the general
linear group GI(k"*1) is given by A = Drap(I,41). It is recalled that
there is a correspondence D — Rp associating to a combinatorial flag D a
parabolic set of roots in R(I,+1) = Ir41 X Ir4+1/A(Ir4+1). The interest of the
combinatorial realization is that it is directly connected with the Tits geom-
etry associated with the building, and appears as a Galois geometry of the
characteristic equation of a generic element of the Lie algebra acting by the
adjoint action (cf. [4], Note historique).

8.1 Apartment associated to a Coxeter system

Definition 8.1 A finite Coxeter system (W, S) is the pair of a finite group
W, a set of generators S of W, and a symmetric matriz (m(s,s’))s.srcs with
integral coefficients m(s,s’), such that m(s,s) =1, m(s,s") = 2 if s # &', such
that the group W is generated by the set S with the relations (ss')m(s’sl) =1.

135
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Denote by Wx C W the subgroup generated by X. For X|Y C S, one
has the important properties Wxny = Wx N Wy and Wx C Wy (resp.
Wx = Wy) if and only if X C Y (resp. X =Y). To the Coxeter system is
associated a building C(W, S) (The Coxeter Complex) defined as follows.
Write

cw,s)= T w/wx ;
Xcs
The facets of C(W,S) are given by the Wx-classes of W and ordered by
the opposite ordering to the inclusion between classes. C(W,S) is naturally
endowed with a left action of W respecting the order structure. The set A of
vertices of C(W,S) is given by A = [[ .o W/W) and the set of chambers
ChC(W,S8) is defined, by ChC(W,S) := (Cy)wew where

Cop = {wW® |s € S} (weW)

and W) = Ws_(s3- The facets of C(W,S) can both be described as
Wx (X C S)-classes and as sets of vertices, Fx ., = {wW®) | s € X}. Thus a
chamber of C(W, S) is a facet of the form Fgs,,. There is a mapping associating
with the set of vertices of a a facet its corresponding class:

i Fxw={wW® |sec X} N wW® .
seX

It is observed that ﬂXwW(S) = wWs_x, ie. Jj(Fxw) = j(Fxuw)
sE

= wlw' € Wy_x.
Denote by
j: facets of C(W,S) — H W/Wx
Xcs
the induced bijection. As a particular case one has C\,, = CJ, if and only if
w = w’. Thus the set of chambers ChC(W,S) = W/Wy = W is principal
homogeneous under W.

Notation 8.2 Given two chambers C and C' let w(C,C") € W be the unique
w € W defined by w(C) = C".

The complex C(W,S) is in fact an Apartment. Remark that two differents
chambers C,, and C,, contain a codimension one common facet F' if there
exists s € S such that w’ = ws. More precisely it may be supposed that C' =
Cy, = {We .. Wkl and F = (W ... W)} Write X = {s4}.
Given C" = C,, = {wW 1) ... W a)} such that F € CNC” it follows that
Wx = wWy, ie. we WEDN...nWa-1) = Wy, thus w = sg, and that
the codimension 1 facet F' is contained in exactly two chambers.

By the above bijection the inclusion of facets corresponds to the opposite
of the inclusion relation. Denote a facet F by Fg if j(F) = w. Two facets
Fy and Fy are incident, i.e. contained in a chamber, if w N @’ # (. Thus
wNw' is a class.
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The quotient set C'(W, S)/W of the set of facets of C(W,.S) by the action
of W can be identified with the combinatorial simplex P(S), which can be
viewed as a building in an obvious way. The quotient mapping C'(W,S) —
C(W,S)/W is a building morphism.

A set of vertices {wW ) .. wWGD} ¢ A = [, o W/W) pairwise
incident has an upper bound and defines a facet F' of C(W,.S). Thus the set
of vertices A endowed with the incidence relation “generates” the apartment
C(W, S). This is proved using the following relation between subgroups of W:

Wx.(Wy M Wz) =Wx Wy NWx. Wy.
One calls C(W, S) a Flag Complex (see [50], 1.2.1., for details).

8.1.1 Combinatorial hyperplanes

Let T C W the set of conjugates of S in W. This set is precisely the set of
order 2 elements of W (cf. [4], Ch V, 3.1) and it plays an important role in
what follows.

Definition 8.3 For any t € T, the wall (resp. combinatorial hyper-
plane)
LycoWw,8)= ] w/wx
XcCs

s defined as the subcomplex formed by set of classes invariant by t. Denote
by H the set of walls of C(W,S). This set is naturally indexed by the set of
order two elements

A codimension one facet F' of C'(W, S) is invariant by an order two element
t if and only if j(F) = wWysy with ¢ = wsw™'. It follows that, for any
codimension one facet F' of C'(W,S), there is only one wall L; which contains
F. L; is called the carrier of F.

More generally the carrier of a facet I is defined as the intersection of
subcomplexes:

ﬂFCLtLt-
8.1.2 Type of a facet

Definition 8.4 The type quotient mapping typ : C(W,S) — C(W, S)/W s
given in terms of vertices by:

typ: F={wW® | scY } =Y.
Thus in terms of classes:

typ: CW, )= [[ W/Wx — C(W,9)/W =P(S5) ,
XeP(S)

is defined by w € W/Wx — S — X. typ(F) is called the type of F.
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Preceding definitions concerning buildings apply to the simplex P(S).
Thus one can speak of generalized galleries of typ(C(W,S)) = P(S). The
image typ(7) of a generalized gallery v of C(W,S) is a generalized gallery of
types, i.e. typ(7) € gallo(w,sy = Gallp(g).

If the facets F and F’ are incident to the same chamber C' and typ(F) =
typ(F’), one has F' = F'. Denote by (Fy)yep(s) the set of facets incidents
toCy, ={W® | sec S }. Given F € C(W,S), Wr = Stab F (Stabilizer
of the facet F' in W) is written. There is then Wg, = Stab Fy = Ws_y.

Notation 8.5
Write C(W, S) in terms of facets:

facets of CW,8)= [ & ~][[w/Wx(xcS9),
tetyp(C(W,S))

where §; = typ~L(t), and typ(C(W,S)) = P(S). The bijection is given by
j. The inverse map of j is given by w — Fg. If F is a facet whose type
is given by Y C S then F = w(Fy) where w is a representative of the class
_](F) S W/Ws_y.

8.2 Words and galleries

The correspondence between galleries in C(W,S) and words in S is estab-
lished as follows. A length n word in S is by definition a product expression
F()f(2)...f(n) in W given by a function f : [1,n] — S.

Definition 8.6 A chamber generalized gallery is a sequence I' : Cy D
nhcC...F,,CC,1DF,cCCcC,, where Cy,Cq,...,Cy, are chambers
and Fy, F, ..., F, are facets of C(W,S). An injective gallery wverifies by
definition C; # Ci1(0 < i < n) (cf. [4]).
Thus an injective gallery T : Cy, C4, ..., C, gives rise to a chamber gener-
alized gallery
f‘:C’ODFlcCl...FnCCn,

where F; 11 = C; N Ciy1 is the common codimension 1 facet to C; and Cyiy1q.
Let U*(T') = (L1, ..., L,) (The walls crossed by I') be the sequence of walls
given by the sequence of carriers of the of the codimension 1 facets (F, ..., Fy,)
of the chamber generalized gallery T. Let t; be the reflection defined by the car-

rier L; of F;. Write U(T) = (t1,...,t,) € [[W (The sequence of reflections
associated to ') ).

Given a gallery I' : Cy,C4,...,C,, not necessarily injective, define a se-
quence t},...,t! of elements of T U {1} C W as follows. If C; = C;41 then
t; 1 = 1, otherwise #;, | = t;11. It is clear that w(Cy,Cy) = t,...t]. Now
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from t},...,t), a sequence si,...,s, € SU{1} is recursively defined. Write
Y
s1 =1t} and

sy =(sy...8))7 th(sh. sl <i<n—1).

One then has ¢/’ _, ...t} = sisy...s(1 < j < n), and as a special case
w(Co, Cp) = sy sh...s),. Finally one can associate with the chamber general-
ized gallery T" the word s{s5...s), in SU{1}. If T is injective this is a word
in S, ie. s),sh,...5, €8.

Conversely, to any word s1s2...s, in S, a sequence (t1,...,t,) of T may

be asociated as follows:
tl = 81, t]‘+1 = (81 . Sj)8j+1(81 .. .Sj)_l(l < j < n— 1)

One then has an injective gallery I' of C(W,S) associated to the word
5189...5, defined by Cop = C, = {W®) | se€ S}, T :C, = t,(Cy),Cy =
tQtl (Co), ey Cn = tn N tgtl(C()) (resp. Cl = tl(CO), CQ = tz(cl), N Cn =
tn(Cr_1)).

If the construction explained before is applied to I' the word syss... s, is
obtained. The gallery I" may be seen as a path in the Cayley complex (cf.
[18], 3.3) associated to (W,S). The same construction may be carried out
applied to any word sf...s,, in SU {1}. In this case a gallery which is not

n
injective IV may be obtained.

Notation 8.7
If w = 8182...8, is a word in S one writes ®(s1,82...,8,) = (t1,...,tn)
with t1,...,t, defined as above.

Given a gallery I' : Cy,C4,---,C,, and w € W denote by wI' the
gallery given by w(Cy)),w(Ci), - ,w(Cy). The group W operates natu-
rally by T' — wIl' on the set of galleries T' of C(W,S). One has then
U(wl) = (wtyw™, ... wt,w™1).

8.3 Combinatorial roots

The root subcomplexes of C(W, S) are defined following [4], Ch. VI, 1.6.

Definition 8.8
Lett € T, and L; the hyperplane defined by t. Tot is associated an equivalence
relation on the set of chambers Ch C(W,S). Given an injective gallery T :
C' = Cy,...,C, = C" between C' and C" we define the integer n(T',t) as
the number of times that t € T appears in Y(T'). The parity of this number
depends only on C" and C" and not on T. Write n(C’,C",t) = (—=1)"T") and
define the relation n(C’,C",t) = 1, between the couple (C',C").

This is an equivalence relation with two equivalence classes, namely Ch™ (t)
and Ch™ (t), where Ch(t) is the class defined by C. = {W) | s e S}.



140 Buildings and Schubert Schemes

Remark that n(C’,C",t) = 1 if no minimal gallery T' between C' and C"
crosses Ly, i.e. t ¢ U(T).

Write AT(t) = UC(C € Ch™(t)) (resp. A=(t) = UC(C € Ch™(t)). More
explicitly At (t) (resp. A™(t)) denotes the subcomplex formed by the set of
facets incidents to some chamber C € Cht(t) (resp. C € Ch™(t)). It is
immediate that AT(t) (resp. A™(t)) is a sub-building of C(W,S). Fach of
the subsets AT (t), A= (t) C C(W,S) is called a half of C(W,S) (resp. half
apartment) or a combinatorial root of C(W,S). One has C(W,S) =
AT (t)U A~ (t), Ly is said to be the hyperplane given by At (t) (resp. A~ (t)).
One has Ly = AT () N A~ (t) and t(AT(t)) = A= (t) (¢f. [4], IV, Fz 16), and
one writes AT (t) = A~ (t) = Ly. Denote by ® a subcomplex of the form
AT(t) (resp. A=(t)), i.e. a root of C(W,S), and write ¢ = L.

The group W acts naturally on the set of roots of C(W,S). To make this
action explicit the following bijection is used ¢ : set of roots of C(W,S) —
{+1, =1} xT sending A" (t) (resp. A~ (t)) to the couple (+1,¢) (resp. (—1,1)).

Let ® be a root of C(W,S) with ¢«(®) = (e,t). For w € W one writes
n(w,t) = n(C,w(C),t). One then has t(w®) = (e - (w1, t),wtw=1) (cf. [4],
VI, §1, 1.6).

Remark 8.9 A wall L; (resp. root ®) of C(W,S) is a subset of the set of
vertices [ [ g W/W ) endowed with a subcomplex structure. A facet F' of Ly
(resp. root @) is thus a subset of Ly (resp. root ®). Sometimes one interprets
Ly (resp. root @) as the set of facets (resp. classes) of C(W,S) contained
in Ly (resp. root ®). In this way L; (resp. root ®) becomes a subset of

HXe”P(S) W/Wx.

Definition 8.10 It is said that the wall L; separates the two facets F' and F’
if F ¢ Ly and F' ¢ Ly and if F € ®1 and F' € ®g, where ®1 and Do are the
two combinatorial roots defined by the wall Ly. Denote by H(F, F') the set
of walls separating F and F’.

8.4 Convex subcomplexes

Definition 8.11 A subcomplex K of C(W,S) is convex if it is an intersec-
tion of combinatorial roots,

ie. K = ﬂI(I)Z- where (®;);er is a family of roots of C(W,S)
1€
(cf. [50], 2.19).
Remark 8.12 (i) As the image f(®) of a root ® by an automorphism f of

C(W,S) is a root of C(W,S) it may be concluded that the image f(K) of a
convex sub-complex K of C(W,S) by f is also a convex sub-complex.
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(i) A convex sub-complex K containing a chamber C of C(W,S) is a sub-
building of C(W,S), i.e. K is the set of all facets F which are incident to
the same chamber C' € K, and given two chambers C, C' € K there exists a
minimal gallery T' between C' and C' contained in K.

Definition 8.13 The convex envelope of a subset L of facets of C(W,S)
is the smallest convex sub-complex Env L containing L. If F and F' are two
facets it is written Env(F, F') = Env{F,F'}. One has Env(F,F') = N® (®
root of C(W,S), F', F € ®).

The carrier L = Lp py of Env(F,F’) is by definition the intersection
sub-complex given by the intersection of walls H containing Env(F, F) (resp.
Fand F'), i.e. L=NH(H € H, Env(F,F") C H (resp. F,F' C H)). Remark
that the set H' of walls defined by the roots ® containing Env(F, F") verifies
H=H][H(F,F).

Given two chambers ¢’ and C”, and a minimal gallery between C’ and
C".T:C"'=Cy...C, =C", the set of walls given by ¥(T') = (t1,...,t,), i.e.
Li,,...L;, may be characterized as the set of walls which separate C’ and
C", i.e. as the set H(C',C"). On the other hand, the distance d(C’,C")
between C’ and C” in C'(W, S) is defined as the length of any minimal gallery
between C’ and C”. Thus

d(C’,C") = cardinal of H(C',C").

The following proposition gives a characterization of the set of chambers
C belonging to Env(C’,C").

Proposition 8.14 The following three properties of a chamber C' are equiv-
alent: (i) C € Env(C',C"); (#) every root ® containing C' and C" contains
also C; (i) d(C',C") = d(C',C) + d(C,C"); (iv) there exists a minimal
gallery T': C" = Cy,...,C, = C” and there exists 0 < i < n with C; = C.

Given two facets F' and F’, projp F' is defined by means of the following

PROPOSITION - DEFINITION 8.15 There exists F" € Enu(F, F') verify-
ing F" D F' so that for every F' O F' with F' € Enu(F,F') there is
F'SF. IfF=C ¢ ChC(W,S) then F" is given by a chamber contained
in Env(F,F"). For any minimal gallery T : C = Cy...C,, D F' between C
and F there is C,, = F". Write F” = projm, F (the projection of F on
F'Y(cf. [50], 3.19).

As a particular case of this definition for C(&,41,5) ~ Drap(I,41) see defi-
nition 2.23.

Example 8.16 Let C = {W®) | sc S}, F' = Fg(w € W/Wx), and w' =
w(C, projp.C), then L(w'") (length of w' relatively to S) = d(C, projpC) =
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d(C,F") (number of walls separating C, and F') = cardinal of H(C,F").

Every representative w of w may be uniquely written as w = w'w”, where

w” € Wx.

8.4.1 Star complex of a facet in the Coxeter Complex

Definition 8.17 Given a facet F by Stp (The star of F in C(W,S5)) is de-
noted the complex formed by the set of all facets F C F'. The set of chambers
Ch Stp C Ch C(W,S) is given by the chambers incident to F'.

The following proposition shows that Stg is isomorphic to a Coxeter Com-
plex.

Proposition 8.18 LetY C S.
1) Ws_y,S —=Y) is a Coxeter system.

2) The set of facets Fy- C F corresponds to the set of facets Fy withY C Z
(resp. S—Z7Z C S—Y), and thus Ws_z C Ws_y. An equivariant
Ws_y -isomorphism may be thus defined

C(Ws_y,S — Y) = H WS—Y/WS—Z ~ Stp,
YCZ

given by W — w - Fy for We_y /[Ws_z.

3) One has O(WF,U)(S—Y)wil) ~ Stp (W(Fy) =F Wp = WW(S,Y)W—l).
It follows from this that Sty is endowed with a building structure iso-
morphic to a Cozxeter complex, independent of the choice of w € w(e€
W/Ws_x)).

4) The set of chambers Ch Str is principal homogeneous under Wg, and
has the property that given a minimal gallery T’ whose extremities are in
Ch Stg then I' C Ch Stg. Thus the distance of two chambers of Sty is
the same, whether measured in Stp or in C(W,S).

5) From the natural decomposition C(W,S) = [Tt (facets of type t) it
results Sty = [[§: N Str. The set of types of Sty runs on P(S —Y),
as it follows from 2).

Let the set of walls containing the facet F' be denoted by Hr C H. There
is a bijection:

Hp ~ walls of the Star complex Stg.

It has only to be proved that each H D F' defines a reflection sy conjugate in
Wr to some reflection sp: defined by the boundary wall of a fixed chamber
C'>F.
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It is first recalled that the set of chambers Ch Stg is equal to the set of
chambers C O F, and that Ch Stg is principal homogeneous under Wr =
Stab F. Given H € Hp there is a codimension 1 facet IV C H such that
F C F’. Then there is a chamber C containing F’ and having H as a boundary
wall. There exists w € Wy so that w(C) = C°, then w(H) is a boundary
wall of CY and sy =w™ ' o Sw(r) o w. It is remarked that w(H) D F because
w e Wg.

If He H—Hp then F ¢ H (here the wall H is seen as a subcomplex of
C(W,S)), and there exists a unique root defined by H containing F' which is
denoted by @ (F). It is easily seen that Ch Stp = Ch(N®u(F)(H € H—Hr)).
It is said that Ch Sty is a convex set of chambers. By definition that means
that if I : Cy,...,C, is a minimal gallery in C(W, S) with Cy,C,, € Ch Stp
then I' C Stg.

If Fi and Fy are two facets of Stgp denote by Hp(Fi,F») = {H €
H(F\,F,) | F C H} the set of walls separating F; and F; in Stp. Then
there is:

Lemma 8.19
Hp(Fy, Fy) = H(Fy, Fy) .

Proof Let He H —Hp. If F' and F" are two facets of Sty there exist two
chambers C',C" € Ch Stg so that C' D F' and C"" D F”, as in a building
every facet is incident to a chamber. As C',C"” € Ch Stg it is C',C" € ®y(F)
and as a consequence H separates neither C' and C" nor F' and F".

8.5 The set of relative position types of a Coxeter Complex

Definition 8.20
Let Relpos C(W,S) be the quotient set (C(W,S) x C(W,S))/W of C(W,S) x
C(W,S), by the diagonal action of W.

e The natural decomposition C(W,S) = [[Fe =~ [] W/Wx gives rise to
Xcs

the decomposition

Relpos = Relpos C(W, S) H(%t X §s)/W ((t,s) € typ X typ) ~
[TW/wWx x W/Wwy)/W((X,Y)

€ P(S) x P(S)).

1R

e Byt :C(W,S)xC(W,S) = (C(W,S)xC(W,S))/W = Relpos C(W,S)
the quotient map is denoted. It is said that the image 7(F, F') is the
type of relative position of the facets F' and F'.

Write
Relpos, o) = Relposi, o C(W,S) = (Ft x §s)/W ,
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thus there is the decomposition

Relpos C(W, S) = H Relpos, o C(W, S) .
(t,8)

o Let Fy C C, denote the unique facet of type t contained in in the chamber
Ce defined by the identity, and Wy = Stab Fy for t € typ. A (Wi, Wy)-
double class of W is by definition a Wy-orbit in the set W/Ws. Denote
by W \W/W, the set of these double classes.

There is a bijection (§; X §s)/W =~ {F;} x (Fs/W:) defined by O — O’
where O' = {F,} x {F € §s | (Fi,F) € O}. The reciprocal bijection is
given by O’ — O = gww(O'). On the other hand there is a bijection

w

{F} x (Fs/Wy) =~ W \W/Wj associating with the class of (F}, F) the W;-
class of w € W/W,, where w is given by j(F) = w, with (F},F) € O'. By
composition a bijection is obtained

Relpos(t,s)C(VVv S) = §¢ X SS/W = Wt\W/Ws

(cf. [23], Exp XXVI, 4.5.3.).

8.6 Geometrical realization of the Coxeter complex

8.6.1 Representation of a Coxeter system as a group of reflections in
euclidean space

From the geometrical representation of the Coxeter system (W,S) (cf
[4], Ch V') one deduces a geometrical realization of the Coxeter complex
C(W,S), given by the simplicial cones of a suitable decomposition of some
real affine euclidean space A, and generalizing that of C(&,41,5) ~ A
This decomposition is defined by means of a set of hyperplanes H of A.

The geometrical representation of a finite Coxeter system (W, S) is de-
scribed (cf. loc. cit., 4.). Let (m(s,s'))s,s7es be the Coxeter matrix (a sym-
metric matrix of integers verifying m(s,s) = 1 and m(s,s’) > 2 if s # &)
giving W as a group with S as the set of generators and (ss’)m(s’sl) =1 as
the set of defining relations. Let R(®) be the R-vector space with (es)ses as
the canonical basis. Let B(z,y) be the symmetric bilinear form defined
by B(es,es) =1, B(es,es/) = —cos(m/m(s,s’)). This bilinear form is a scalar
product of RS which is denoted by (z|y). Let O(R®)) be the orthogonal
group defined by (z|y).

Denote by H the hyperplane orthogonal to e; and by o5 the orthogonal
reflection defined by Hy.

Proposition 8.21 There exists an injective homomorphism o : W —
O(R®™)) defined by o(s) = 0.
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Identify W with a subgroup of O(R(¥)). Thus W is endowed with the
canonical set of generators (os)ses. The couple

(VV7 (US)SES) = (U(W)7 (US)SES)

is called the geometrical representation of (W, .5).

Let H = (w(H,))seswew be the set of hyperplanes of R(%) obtained as
the images of the set of hyperplanes (Hy)scs by the elements of W. The set
H may be characterized as the set of hyperplanes H of R(S) whose associated
orthogonal reflection sy belongs to W (reflection hyperplanes). This set
corresponds to the set of hyperplanes (L;) of C(W,S). It is observed that
the same notation A is used for the set of walls of C'(W, S) and for the set of
reflection hyperplanes of W C O(R()) as there is a natural bijection between
these two sets.

8.6.2 Coxeter system representation space simplicial decomposition

Definition 8.22 Let A be a real affine space, a € A,eq,...,eq a basis of the
translation vector space of A, and I1[J = {1,...,d} a decomposition of the
basis indexes. Any point x € A may be written uniquely as x = a + ae1 +
<o ageq with ay,...,aq € R. The set of © € A defined by a; =0 (i € 1),
and ci; >0 (j € J) is by definition a simplicial cone.

Definition 8.23 The set of reflection hyperplanes H endows RS with an
equivalence relation defined by:

“x ~y if no hyperplane H € H separates x and y”.

(1t is said that H separates x and y if x andy belong to different connected
components of R$S) — H.) The equivalence classes defined by this equivalence
relation are simplicial cones of RS which are called the facets defined by H.
The open facets in R(5) are called the chambers defined by . Denote by
C(H) the set of facets and by Ch C(H) the set of chambers.

Via the formula s,,(z) = wosy ow™!(w € W) the group W acts naturally
on the set H. It follows then that W operates on the set of facets C(#H). If
F € C(H) it holds that w(F) = F if and only if w fixes any point in F. One
has:

Proposition 8.24 The set Ch C(H) is equal to the connected components of
R — HUHH, and is principal homogenous under W.
€

Remark 8.25 The definition of C(H) (resp. Ch C(H) may be stated with any
finite (resp. locally finite) family H of hyperplanes in any real affine space.
The facets are simplicial cones. This fact will be used later.
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The carrier subspace Lr C R of a facet F is defined by Lr =

N H. The facet F is an open subset in the subspace Lx, and then
HeH,FCH

Ly may be characterized as the smallest subspace L of R(®) containing F.
By definition the codimension of F € C(H) is equal to the codimension of
its carrier Lz in R(S). The closure F of a facet F is equal to the union | JF’
of all facets F’ contained in F.

The closure C of a chamber contains exactly £ = |S| codimension 1 facets.
A bounding hyperplane H of a chamber C is by definition the carrier
of a codimension 1 facet F C C. Let C° = {x € R(S) | (esz) > 0}; C°
is a chamber defined by H. The set of bounding hyperplanes of C° is given
by (Hs)ses, and as a corollary one has that W is generated by the set of
orthogonal reflections (sp_)ses (S, = 05).

From the fact that the set of chambers Ch C(#) is principal homogenous
under W it results that, if C' is a chamber and S¢ = (sg), where H runs on
the bounding hyperplanes of C, then (W, S¢) is a Coxeter system canonically
isomorphic to (W, (05)ses)-

8.6.3 Facets viewed as simplicial cones

The following proposition shows that there is a bijection between the set of
simplicial cones C(#) and the set of facets of the Coxeter complex C(W, S) =
[xeps) W/ Wk, seen as classes in W.

Proposition 8.26

1) For each facet F € C(H) there exists a unique facet F' C C° andw € W,
not necessarily unique, satisfying w(F) = F', i.e. the closure C° of C°©
is o fundamental domain for the action of W on R().

2) The set of facets F C C° is indexed by P(S) and Fx is written for the
facet given by X C S. More precisely with each subset X C S the facet

Fx C C° defined by Fx = ( () Hs)(C is associated. (Remark that
seX

F =F"if and only if F = F'.) One has Stab Fx = Ws_x.

3) There is a bijection
C(W,S) = C(H) defined by w + Crp = w(Fx) if w € W/Ws_x.

Thus F' = {wW®|s € X} — w(Fx). By this bijection the chamber
C. corresponds to C°. This is the unique type preserving equivariant
bijection between C(W,S) and C(H).

4) By this bijection the relation of inclusion between facets F' C F' in
C(W,S) becomes F C F', and thus it introduces a natural structure of
building on the set C(H).
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5) The set H of walls of C(W,S) corresponds to the set of hyperplanes H
of R with sy € W which we also denote by H.

Following the general definition a subcomplex C’ of C(H) is by definition
a set of facets of C(H) such that F € C’ and 7/ C F implies ' € C’'. With
the set of combinatorial roots of C(W,S) corresponds the following set of
subcomplexes of C(H).

Definition 8.27 - -

Given H € H write DE (resp. Dy;) for the closed half-space of RS defined

by H and containing C° (resp. mnot containing C°). Let Cj; (resp. Cj) be

the subcomplex of C(H) given by the set of facets F contained in EZ (resp.

Dy, ). Then there is ﬁ;} = U F (resp. Dy= U F), andCy =C;NCy,
Fecy, FeCy

where Cy 1s the subcomplex given by the facets contained in H. A closed half
space subcomplex of C(H) is a subcomplez of the form C; (resp. Cp)-

If H € H and A # 0 is a set contained in RYS) — H write Dy (A) for the
closed half space subcomplex defined by H and A.

The bijection C(W,S) = C(H) induces a complex isomorphism
A*(t) ~ Cj; (vesp. A™(t) ~Cj;) where t = sy.

Cj; (resp. Cj;) is called the positive root (resp. negative root) defined by
H. If no confusion arises write H (resp. D};, Dy;) for Cy (vesp. Cj;,Crp).

8.6.4 Simplicial decomposition of a Convex Hull

Definition 8.28 ~
A convex subcomplex K of C(H) is the intersection subcompler K = _ﬂIDi,
1€

defined by a family of closed half space subcomplexes (D;)icr, i.e. an inter-
section of root subcomplexes of C(H).

The class of convex subcomplexes of C(H) and the class of convex sub-
complexes of C'(W,S) are clearly in bijection.

Definition 8.29

The Convex Envelope (resp. Convex Hull) Enu(F,F') C C(H) of the
facets F and F' € C(H) is the smallest convexr subcomplex of C(H) containing
F and F', i.e. the intersection (subcomplex) of all the roots of C(H) containing
F and F'. Alternatively Env(F, F') is the set of all facets F € C(H) contained
in the intersection ND of all the closed half spaces D of RS defined by H € H
and containing F and F'. As Env(F,F') is an intersection of roots, the
underlying set of points of Env(F,F') is given by

Env(F,F') = U F.
F1eC(H),F''C Eno(F,F')
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Let L = _ﬁIHi be the intersection subspace of R(®) defined by a family of
1€

hyperplanes (H;)ier C H. Write C, = {F € C(H) | F C L} for the set of
facets contained in L. Clearly L = }‘gc F. Let 7/ C F be a facet contained
L

in the closure F of a facet F € Cy, then F' € C;. Thus Cr, is a subcomplex of
C(H). Let

Hr={HeH | LCH} and H;, =H—H, .

Cr, may be interpreted as the set of equivalence classes given by the equivalence
relation “~” defined, following [4], Ch V, by the family of hyperplanes H} on
L as follows:
“r ~yif for all H € H), either z,y € HNL or both x and y belong to a same
open half space of the two open half spaces defined by H N L.”

The subcomplex C;, C C(H) is endowed with a natural building structure.
The set of chambers Ch Cp, is given by the set of connected components of
L— U HNL. The chambers of C; may be characterized as the maximal

HEH),
dimension facets F (resp. minimal codimension facets F) of C contained in L.
Thereisthen L— U HNL= U C(Cand L= U (. This means

HeH,, CeCh Cyp, CeCh Cyp,
that every facet in Cy, is contained in the closure of some chamber. In other
terms every facet in Cy, is incident to a chamber. Given two chambers C’
and C” there is a gallery I' : C' = Cy,...,C,, = C” connecting them. If the
points z € C’ and y € C” are “generic enough” the segment [z,y] intersects
only chambers and codimension 1 facets of C;,. Then T'(C’,C") is taken as
the ordered set of chambers that [z, y] intersects.

Definition 8.30 The carrier subspace L = L(x 7y C RS of the convex hull

. l E ") is d d by L = H. Let
(resp. convex envelope) Env(F,F') is defined by Hen ang]-',]:/CH e

Hy be the subset of hyperplanes containing L.
The sub-building structure of Env(F, F’) C Cy, is examined in detail.

Lemma 8.31 The carrier Lyz+ of a facet of mazimal dimension in

Env(F, F') is equal to the carrier Lix 7y of Env(F,F').

Proof As Lrn C L(r 5 it suffices to prove that Lr» O Env(F,F'). Oth-
erwise one has either F ¢ Lxn or F' ¢ Lzu. Then there exists either
pEF —Lgn orp€ F — Lgn, and thus

dimension of the convex hull K of p and F" > dimension of F".

It follows that K C U F with dimension F < dim F” < dim K, and
FeEnvu(F,F")

this is impossible because UF is a finite union.
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As a maximal dimensional facet 7" of Env(F,F’) is open in Lz 7 one
deduces that the set of facets 7 C Env(F, F") which are open in L(r 5 is

not empty, and thus that Env(F, F’) # (. On the other hand, one has that

x € E;v(}', F')and y € Env(F, F') implies that [z, y[C E;w(]-', F'). It results
that

“Env(F,F') is the closure of Env(F,F")"”

It is easy to see that a facet F” contained in Env(F,F’), such that 7’ N

Env(F,F’) # 0, is contained in Env(F, F’). Let z € F” N Env(F,F’) and
y € F”. Since F” is open in its carrier, it results that there is a segment
[, z[C Env(F,F’), with z € F”, such that y € [z, z[, thus y € Env(F,F’).
Thus it is concluded that

Env(F, F') = U F'.
FAED(F, F)£0

Let
HE}:]:/) = { 8@ c H | ETLU(.F,.F/) cod },

where 0P denotes the hyperplane defined by the root ®, be the set of hyper-
planes of H € H which do not separate the facets F and F’. One may

write

=M Ml 7
where H{/z 7 = (H—HL)"H{z 5/ denotes thiset of Hie (H—"Hr) which do
not separate F and F'. Given H € ’H(}-’J_-,) let Dgnr, = Dunr(Env(F,F')) C
Cr, be the closed half space of L defined by H N L and containing Env(F,F’),

and Dynr, = Dynar(Env(F, F')) C Dynr(Env(F,F')) be the corresponding
open half space. There is then (cf. loc. cit.):

1) Eno(F,F)= QH”DHOL ;
L

2) EHV(.F7.7:/) = HQH”DHQL;
L

3) The equality NDgnr = NDgnr gives again closure of Env(F,F’) =
Env(F, F').

Remark 8.32 It results that Env(F,F') is a facet defined by the family of hy-
perplanes HE}- ) of R i.e. an equivalence class of the equivalence relation

defined by the set of hyperplanes HE}.’]_-,) instead of H.
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From 2) it results that Env(F, F’) is the union of facets 7" C L defined by
the set of hyperplanes (HNL) ey in L (resp. the union of facets 7 € C(H)

)
contained in Env(F, F")). Since every facet F of Cy, is contained in the closure

C of some chamber C of Cy, given F’ C Env(F, F’) there exists a maximal
dimensional facet C' C Env(F, F’) such that 7" C C. Tt is deduced then

that Env(F,F’) C u C (C € Ch Cr). By 3) it is concluded that
CCEw(F,F')
U C = Env(F, F").
CCEnv(F,F')
This proves that any facet 7" of Env(F,F’) is incident to a chamber C of

Cr. contained in Env(F,F’) (resp. Env(F, F")). If C',C" C Env(F,F’) the
gallery T' defined by a segment [z,y], with z € C” and y € C”, is contained
in Env(F,F’) as [z,y] C Env(F, F'), because Env(F, F’) is a convex set. We
resume all these results in the following

Proposition 8.33 The subcomplex Env(F,F') of Cr, is a sub-building. The
chambers of Env(F,F') are the facets F"' C Env(F,F') which are open in
L (resp. whose carrier Ly. is equal to the carrier L of Env(F,F')). We
may characterize projz F as the unique chamber C' of Env(F,F') such that
CoF.

8.7 Combinatorial Representation of the Coxeter Complex of a
root system

An Apartment A(R) is associated with a root system R, formed by its
parabolics subsets (cf. definition below) as its facets, and an isomorphism
with the Coxeter Complex C(W(R), S) ~ A(R), given by the Coxeter system
(W(R),S), where W(R) is the Weyl group of R, and S the reflexions defined
by a system of simple roots of R. A(R) is called the Combinatorial Real-
ization of C(W(R),S). It is remarked that a parabolic subset is characterized
by the set of systems of positive roots (resp. simple roots systems) that it
contains. On the other hand, for each type of root system a correspondence
may be established between the simple systems of roots and some classical
geometrical configurations, thus obtaining a geometrical description of A(R)
(cf. 2], [3], [28], and [50]).

It is explained now how the preceding construction of a geometric realiza-
tion of a Coxeter complex specializes for a C(W(R), S) given by a simple root
system. Here [4], Chap. VI is followed.

Definition 8.34 Let V be an R-vector space, and R C V a finite subset
verifying:

1) 0 ¢ R and R generates V;
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2) there is a map o — «V from R to the dual space V* of V, such that
< a,a¥ >=2 (< z,y > denotes the duality pairing on V x V*), and
the reflection

S0 x> z—<z,0" >

leaves R stable;

3) (Crystallographic condition) for all « € R we have o¥(R) C Z. It is
said that (V, R) is a root system.

4) Let Aut(R) be the subgroup of the group of automorphisms of V' leaving
R stable. By definition the Weyl group W(R) of R is the subgroup of
Aut(R) generated by the reflections {s, | € R}.

The image RY in V* of R by o +— o defines a root system in the dual space
(V*,RY) (cf. also [23], Definition 1.1.1., and 6.4 of this work). The map u
tu~1 (inverse of the transposed map) is an isomorphism from W (R) to W (RY).
These two groups are identified by this isomorphism. It follows from [4], Chap
VI, §1, that V* is endowed with a canonical bilinear form ®gv, positive, non-
degenerate, and Aut(R)-invariant. The group W(R) C Aut(R) acts on V*
as a group of ®pv-orthogonal transformations. Write ®gv(x,y) = (x,y).
The orthogonal transformation sg_ given by the hyperplane H, = Ker(«) is
equal to sov @ x— < a,z > «V. From the definition of W(R) follows that
W (R) is the group of orthogonal transformations generated by the orthogonal
reflections (su, ) H,en-

Let Q(R) C V be the subgroup generated by R. It is easily seen that there
is at least one ordered group structure on Q(R) (cf. [23], Exp. XXI, Remarque
3.2.7, and [4], Chap VI, Corollaire 2). Thus there is a decomposition

R=R, [] R-,

where R, (resp R_) is the system of positive roots (resp. negative roots)
defined by the order. A system of positive roots R, is characterized by the
decomposition R = Ry [[ —R4. To a system of positive roots is associated a
particular basis of V.

PROPOSITION - DEFINITION 8.35 1) There is a wunique subset
B(R:) = {oa,...,qq} C Ry characterized by : every a € Ry may be
written in a unique way as o =y no; (1 <i<1)(n; €N). B(Ry) is
called a system of simple roots for R.

2) Two positive systems of roots Ry, R!, C R are conjugate under W (R),
i.e. 3w € W(R) such that w(Ry) = R!,. Thus one has w(B(R,)) =
B(R.,).

3) The action of W on the set of Ry is simply transitive (cf. [4], Ch VI,
Théoréme 2).
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Definition 8.36 Write:

SR+ 2{81,...,81},

where $1 = Sayy---381 = Sq,- It may be proved (cf. [4], Ch. VI, §1,5) that
(W(R),Sgr,) is a Cozeter system. In view of the preceding proposition if
R C R is another system of positive roots, (W(R), Sk, ) and (W(R),Sg;,)
are canonically isomorphic Coxeter systems.

It is observed that if w is defined by w(Ry) = R/ then Sp,_ =

{w051 ow™!

7...,wosloufl}.
Definition 8.37 A parabolic set P C R is a closed subset of R, i.e. satis-
fying

a,EPanda+fER=—=a+L<P,

and so that R = P U (—=P) (¢f. [4], Ch VI, Définition 4). Denote by A(R)
the set of parabolic subsets of R endowed with the opposed relation defined by
the inclusion relation between subsets. By definition P and P’ € A(R) are
incident if PN P’ is a parabolic set, i.e. PN P’ € A(R).

Let

Vert(A(R)) be the set of maximal proper parabolic subsets of R,

i.e. the set of P € A(R) such that : P # R, P’ € A(R) and P C P' =
P =P or P =R, and Ch(A(R)) the set of positive systems of roots (resp.
minimal parabolic subsets).

Two chambers Cr, and C R, in A(R) are connected by a gallery (cf.
[39], Chap VIII, Th. 2). The following proposition shows that the couple
(Vert(A(R)),Ch(A(R))) defines an apartment A(R), whose set of vertices is
Vert(A(R)) and whose set of chambers is Ch(A(R)).

PROPOSITION - DEFINITION 8.38 There is a bijection between the class
of parabolic sets A(R) and the class of subsets {P;,,..., P;,} of Vert(A(R)),
whose elements are two by two incidents defined by

{P,,...,P,})—»P=P,N...0P,

A?
i.e. A(R) is a flag complex. It is said that P;,, ..., P;, are the vertices of P.

Let R, be a system of positive roots, B(R4) = {a1,...,q;} be the simple
roots defined by Ry, and S = {s1,--+, s} C W the corresponding reflections.
Write Ry = B(R4), and for 1 £ ¢ < [:

RY = Z(Ry — {a;}) N RU Ry
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The subsets RS:) C R are two by two incident maximal parabolic sets. With

X C Sisassociated the parabolic set Px = ﬂXR@. The set (R$)>si€X is the
S; €

set, of vertices of Px. The stabilizer of Px in W is given by Stab Px = Wg_x.

From the simple transitive action of W on Ch(A(R)) it may be proved that

given P € A(R) there exists a unique X C S and a unique w € W/Wgs_x
with w(Px) = P.

Proposition 8.39
1) Stabw Px = Ws_x;

2) For every parabolic set P there exists w € W(R) and a unique X € S
with w(Px) = P, the class w € W/Wg_x being unique.

It results easily from this proposition the following

Proposition 8.40

1) There is a unique W-equivariant incidence preserving map
cw,S) — A(R)

defined by : W) — Rgf) and preserving the incidence relation. This

map sends the facet w(Fx) = {w(W©))|s; € X C S}, where Fx =

{Wi|s; € X C S}, to the parabolic set w(Px) = () w(RSf)), The
ieX

set of chambers Ch C(W,S) corresponds to the set of positive systems

of roots of R. The chamber C. corrresponds to Ry. It may be noted

that the set of vertices of w(Px) is precisely {w(RSz)) | s; € X},

2) If C(W,S) = [] W/Wy is written then C(W,S) — A(R) is given
Ycs
by
w(e W/Ws_x) — w(Px).

3) There is a bijection
R 5 set of combinatorial roots ® of A(R)

associating to a € R the combinatorial root &, C R given by the sub-

complex
b, ={Pe€ A(R)|a € P}.

The wall 0P, defined by @, is thus equal to {P € A(R) | o, —ax € P}.
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8.8 Geometric representation of the Coxeter Complex of a root
system

A simplicial decomposition of V* is obtained in terms of the hyper-
planes defined by R and corresponding to the geometrical representation of
C(W(R),S). This simplicial decomposition is a specialization of the one as-
sociated to a general Coxeter complex.

Definition 8.41 Let the indexed set H = (Ha)(acr) of hyperplanes in V* be
defined by:
Hy={zeV"|a(z)=0}.

(obviously H, = H_,, ). Write:
Df={zeV*|a>0}(resp. D, ={z€V* | a=0}),

and D, = —D} (resp. D, = —ﬁ:).

The set H defines an equivalence relation ~ on V*, as in [4], Ch. V, §1,
whose equivalence classes are simplicial cones of V* which are also called
facets. Denote by Cr(H) the quotient set V*/ ~, and by CI the set of

facets (resp. simplicial cones) contained in the closed half space b;r. Write
C, = —CI. The set of chambers Ch Cr(H) is given by Ch Cr(H) = (Cr, ),
where Cr, = r} D} and R, runs on the positive root systems of R.

achRy

There is a natural mapping A(R) — Cr(H), P — Fp defined as follows.
Given a parabolic set P € A(R), let the ” ~" - equivalence class Fp € Cr(H)
be defined as follows. Write

P’>=PnN(=P) (resp. P, =P —PnN(-P)).
There is then P = P° [[ P,. Define
Fp<ﬂ Ha>ﬁ () D&
a€e PO aePy

(The facet of Cr(H) associated to P) (cf. [4], Ch V, §1, 2.). It is easy to
see that F'p is an equivalence class for ~. Actually the correspondence

PI—>FP

is a bijection between A(R) and Cr(H). The reciprocal map associates to
F € Cr(#H) the parabolic subset

Pr={a€R|VzeF (a,z)>0}.
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Pr C R is a closed subset containing a positive system of roots and thus a
parabolic set. The following duality formula holds:

P={a€R|VzeFp (a,z)>0}.

The root ®,, corresponds to the set C by this bijection.
The Theorem 1 of [4], Ch. V, §3 applies to H and one obtains :

Proposition 8.42

1) Let C be a chamber of V* defined by H, S the set of reflections defined
by the walls of C (= bounding hyperplanes of C), and W the group
generated by S. Then (W,S) is a Coxeter system. If C' corresponds to
CRr, then the set of bounding hyperplanes is given by (Ha)aeB(r,), in
fact (W, S) = (W(RY),SY) where S = (sav)acB(R,)-

2) The set of hyperplanes H of V* so that the orthogonal reflection sy € W
is given by H.

Definition 8.43 It follows from (2)- that the set of hyperplanes H such that
H e H = sy € W(R) is canonically indexed by the set T of conjugates of
S in W(R). It is concluded that Cr(H) in V* may be looked at as the geo-
metrical representation of C(W(R),S(Ry)). Cr(H) is called the canonical
geometrical representation of C(W(R),S(R4)).

Remark 8.44 1) Let P be a parabolic set of R, i.e. P € A(R), and Fp €
Cr(H) the corresponding facet (resp. simplicial cone) given by A(R) —
Cr(H). Then the carrier Lp, C V* of Fp is given by

Lp, = ﬂ H,.
agePo

2) The combinatorial root ®, of A(R) corresponds by A(R) — Cr(H) to

the closed half space

D, = {z|a(z) > 0}

of V*, and the wall 0¥, to the hyperplane H,.
8) The facet Fp C Lr may be seen as the chamber of Lr given by
Fp=LpN ﬂ D
acPy

One has DI = Ez — H,.

The following construction plays a role in the study of a minimal general-
ized gallery between two facets ' and F’.
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8.9 The opposition involution in a Coxeter complex

Let C(W,S) be a finite Coxeter complex. Given C € Ch C(W,S)), C°PP
denotes the only chamber C’ of C(W, S) so that there is no root ® of C'(W, S)
with C,C” € Ch ® (The opposed chamber to C' € Ch C(W,S)). In other
terms C°PP is the unique chamber C’ satisfying H(C,C") = H.

Definition 8.45 Following [4], Ex 22, Ch IV, there exists a unique involu-
tive automorphism ¢ of C(W,S) such that

o(C) = c
for every chamber C of C(W,S), and
e(H)=H

for every wall H of C(W,S). Write F°P? = o(F) (F € C(W,S)) (The
opposed facet to F).

Remark 8.46 The following two properties characterizes FPP:
1) LFopp = LF,'
2) H(FPP F)=H(F)={HeH | F¢H}.

It is known that Sty (F' € C(W,S)) is isomorphic to some Coxeter
complex C(W’' S’), so the above definition applies to Stg. Denote by
@pr : Stpr — Stps the involutive automorphism of Stg/.

Definition 8.47 Given F € Stg/, i.e. F D F', write
FPP(F', F) = o (F)

(The opposed facet to F relatively to F’ (resp. of F in Stp/)).
As Stp, = C(W,S) given F € C(W,S) one has

FOPP — FoPP(Fy F),

where Fy denotes the facet incident to every facet indexed by the empty set.

8.9.1 Opposed parabolic set in a star subcomplex

If the Coxeter system (W,S) is associated to a root system R C V, RY C
V*, endowed with a system of positive roots R (resp. simple roots Ry =
{ag,... ,al})7 and S = (Sq)acR,, the above definitions specialize as follows.
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Remark 8.48

It is clear that the mapping ga(r) : « = —« is an involutive automorphism
of the root system R, thus ga(r) gives an involutive automorphism o a(gry of
A(R). It is immediate that © s(p)(0Ps) = 0Py and that Y z(p)(Pa) = P_a.
It is concluded that pary corresponds to the involutive isomorphism ¢ of
C(W,S) by the isomorphism

C(W,S) — A(R),

Definition 8.49 Define P°P? (P € A(R)) following the pattern of the def-
inition of FPP q.e. P°PP = —P. More precisely let F — P by the above
isomorphism. Write P°PP = Ppopp. Let P' = Ppi (resp. P = Pr), and
F/ C F Write POpp(Ple) = PFopp(F/7F),

8.9.2 Determination of the opposed parabolic set in a star subcomplex

Proposition 8.50 Let R’ C R, and Vi = Vectgr(R'). The following state-
ments are equivalent:

1) R’ is a closed and symmetric subset of R, i.e. R' = —R’.

2) R’ is a closed subset of R and R’ is a root system in the vector space
Vi

For all « € R’ let af be the restriction of " to Vg.. Then the mapping
a — of is the canonical bijection R' ~ RY. The Weyl group of the root
system R’ is the subgroup Wr, C W generated by (So)acr’ -

(cf. [4], Ch. VI, n° 1.1, Prop. 4)
Clearly the above proposition applies to Rx = Px N(—Px) C R and one has:

Proposition 8.51 A simple system of roots of Rx is given by {a € Ry | s €
S—X}, and (W(Rx),S—X) is a Coxeter system. One has W(Rx) = Wg_x.
Thus (Rx, R¥%, VRy, Vi) defines a system of roots endowed with the system
of simple roots {a« € Ry | so € S — X}, and Ws_x,S — X) as its associated
Cozeter system.

The content of this section is motivated by the correspondence between
parabolic subsets of R contained in Px and the parabolic subsets of Rx. The
facet Fx = {W) |s; € X} € C(W,S)(X € P(9)) is associated with a star
complex in C'(W, S) (resp. a Coxeter system, a Coxeter complex):

Stp, C C(W,S) (resp. (Ws_x,S —X), C(Ws_x,5 — X)),
where Wg_x = Stab Fx.
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Let A(Rx) be the apartment defined by the system of roots Rx. One
knows that there is a canonical isomorphism C(Wgs_x,S — X) ~ A(Rx). On
the other hand, there is a building isomorphism:

Stpx ~ A(Rx) 5
where Stp, denotes the star complex of Px in A(R), defined by P — PN

[Px N (—Px)] = PN Rx. Its reciprocal mapping A(Rx) — Stp, is defined
by:

Q— Q[[IPx — Px n(~Px)].

It is recalled that Stp, C A(Rx) is given by the set of of parabolic sets P’ of
A(Rx) with P’ C Rx, and that P’ may be completed into a parabolic set of
R by addition of the set Px — Px N (—Px) C Ry.

On the other hand, the isomorphism C(W, S) ~ A(R) induces an isomor-
phism

(C(stx,S—X) L)) Stry = Stpy.

By this isomorphism the building involution ¢g, : Stp, — Stp, corre-
sponds to the involution ¢p, of Stp, described as follows.

Proposition 8.52 The involutive isomorphism ¢p, : Stp, — Stp, is
given by

ery s P=[P' 0 (=P)[[(P' = P' 1 (PN [[(Px = Px N (=Px)) —
P (~P) [P = P'n (=P ) [](Px — Px N (=Px)),

where P’ = PN Rx. Observe that [P’ N (—P)][(P'—P' n(=P))] =[PnN
(=P)I(P = PN (=P))|NRx

Corollary 8.53 The opposed parabolic P°PP(Px, P) is given by:
P (Px, P) = [P'n(=P)[[-(P' = P'n (=P [[(Px — Px N (—Px))
in A(R), and by
PP (Px,P) = [P'n (=P [[-(P" = P'n(-P")]
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8.10 Opposed parabolic set in a star subcomplex simplicial
representation

Retain the notation of the preceding section. One obtains a geometric rep-
resentation Stp, ~ Cr,(Hx) as follows. The set of root hyperplanes in
Vectr(Rx) is given by Hx = (HoNVectr(Rx))acry, where Hy, € Hp, CH.
On the other hand, there are the following direct sum decompositions

V* =Vectg(R%)® N H, (resp. Hy = HyNVectg(RY)® N H, (o € Rx)),
a€Rx a€Rx

thus establishing a bijection Hx ~ Hr,. By this bijection the set of chambers
Cry (Hx) corresponds to the set of chambers of Cr(H) incident to Fx, and
more generally the set of of facets Cr, (Hx) to the set of facets in Cr(H)
incidents to Fx. On the other hand, from the bijection Stp, ~ A(Rx), P —
P’ = PNRx one obtains the expressions of P°PP(Px, P) = P °PP[[(Px—Rx).
The following proposition makes explicit how this expression translates by this
geometric representation.
From the above discussion it results easily the following

Proposition 8.54 Let F' (resp. F°PP(Fx, F)) be the facet in Cry (Hy) cor-
responding to P’ (resp. to P°PP(Px,P) in Cr(H)), and Lg: be the carrier of
F' in Cry (H). There is the following representation of Lr: in Cry (H):

Ly = Lpiopy = m H,| N Vect]R(R}/()
a€P'N(—P')

and
lorp _ Ly N ﬂ D;'
ac—(P'—P'N(—P"))
The representation of FPP(Fx, F) in Cr(H) is given by:

ag€—(P'—P'N(—P")) a€(Px—PxN(—Px))

FoPP(Fx,F) = LpN N DY | n N D}

Observe that
PA(~P) = P'N(~P') (resp. P—PN(~P) = P'~P'n(~F') [ [ Px—PxN(~Px) ,
and thus Lr = L.
Corollary 8.55 The set Hp, (F, F°PP(Fx, F)) of walls 0P, D Fx separating
F and F°PP(Fx, F) is given by

Hpy (F, FoP?(Fx, F)) = Hp, (F) = Hp, (FPP(Fx, F)).

In fact this property characterizes FPP(Fx , F), i.e. F°PP(Fx, F) is the unique
facet incident to Fx satisfying this property.



Chapter 9

Minimal Generalized
(zalleries 1n a Coxeter
Complex

The minimal generalized galleries in the setting of Coxeter complexes, are
introduced. The existence of minimal generalized galleries is proven by means
of the geometrical realization of a Coxeter Complex as a decomposition of an
euclidean space by simplicial cones (chambers). The correspondence between
minimal generalized galleries and block decompositions of elements in W
is established. It is specifically explained how geometric constructions with
generalized galleries translate into special decompositions of elements of W. A
unicity result about generalized galleries with associated minimal galleries of
types, i.e. galleries of types defined by minimal generalized galleries, is proven.
The Convex hull subcomplex of two facets which plays an important
role in this work is introduced. This follows from the result obtained here:
a Minimal Generalized Gallery is contained in the Convex Envelope of its
extremities. Thus generalizing a result proven for the Flag Complex.

In this chapter A denotes a finite apartment with a selected chamber C
endowed with a building morphism

typ: A—typ A,

so that the restriction of typ to the sub-building A(C), formed by the
facets incident to C, induces a building isomorphism A(C) =~ typ. Let
W4 C Aut(A) be the subgroup of automorphisms of A commuting with typ,
i.e. preserving the type of a facet. It is supposed that there is an isomor-
phism of A with a Coxeter Complex, C'(W,S) ~ A sending the chamber

160
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C., given by the identity of W, to C, so that the induced isomorphism
Aut(C(W, S)) ~ Aut(A) sends W C Aut(C(W,S)) to W4. There are
building isomorphisms C(W, S)/W ~ A/W4 ~ A(C), and an identification
A/W 4 ~ typ A. Denote by Sc the image of the generating reflexions S
by W ~ Wy4. There is a canonical identification C(W4,S¢) ~ A. Given
a chamber C of A there is a building isomorphism A(C) ~ typ A given by
typ. We define the Roots, the Hyperlanes,... etc of A as the images of
the corresponding objects in C'(W,S). Denote by H4 (resp. D4) the set
of Hyperplanes (resp. Roots). The subindex A is omitted if no confusion
arises. With I, F’ € A are associated the subset Hr C H_4 of Hyperplanes
containing F', Hp(F') = Hp — Hps, the Hyperplanes separating F and F”,
H(F,F') ¢ A— (Hp UHp), and Hp(F',F") = Hp 0 H(F',F"). P
denotes the opposed root to ® € D4 and by 90 = & N ®°PP its associated
Hyperplane. With F' € A and H € H 4 — Hp is associated the Root @y (F)
so that 0@y (F) = H and F' € &y (F) = H.

As an example of an abstract Coxeter Complex as defined above, consider
A(R) the apartment defined by a root system, with C = Cg,, where Cg,
denotes the chamber defined by the simple system of roots Ry, and typ :
A(R) — P(Ryo) associates with a parabolic subset, the corresponding set of
simple roots in P(Ry).

The building typ A (the typical simplex of A) of types of facets of A,
is by definition the quotient set .A/W 4, endowed with the relation induced by
the inclusion of facets. Given F' € A, the type t = typ F of the facet F is by
definition the image of F' by the quotient mapping typ : A — typ A. Write:

A= T A,
tetyp A

where A; = (typ)~(t). Given t € typ A and C € Ch A let F,(C) c C
be the unique facet of type ¢ incident to C. The reciprocal isomorphism of
A(C) ~ typ A is defined by t — Fi(C).

Define the set Relpos A of types of relative positions of facets in A by

Relpos A:=Ax A/W4 .
Denote by 7: A x A — Relpos A the quotient mapping. Write
1) Relposg sy A= Ar x As/Wa4 ((t,5) € typ A x typ A);
2) (Ax A)r, = (1)"1(0) (70 € Relpos A);
3) (Ch Ax Ay = { (C,F) | 7(Fy(C), F) =70 .

If A= C(W,S) the quotient set .A/W may be identified with the combi-
natorial simplex P(S) given by the set of subsets of S, endowed with relation
of inclusion of subsets of S. Given a facet by its set of vertices

F={wW®|seX} (weW, XS, W& =Ws —{s})
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of C(W, S) there is
typ F' = X (resp. Stab F = w(Wgs_x)w ™).

Let Y € P(S) = typ C(W, S), and let C, = {W)| s € S} € Ch C(W, S).
One thus obtains

Fy(C.) = {W®| s € Y} (resp. Stab Fy(C.) = Ws_y) .
It is recalled that there is a natural bijection

[T w/wx =cw,s)
XeP(S)

described as follows. Let X € P(S). Then W/Wx — C(W,S5) is given by
W +— w(Fs_x(C.)) where Fx(C.) = {W®)| s € X}.

PROPOSITION - DEFINITION 9.1 In each class w € W/Wx there is a
unique minimal length element w™ € w, given by

w™ = w(Ce, projy,(ry_)Ce)-
Write C = projw(Fs_X)C’e.

Proof This is immediate from the characterization of proj,p;_,)Ce as the
unique chamber of Sty rs_y) satisfying

min d(C.,C) .

d(CE’pmjw(FS—x)Ce) ~ cecn st (Fs_x)
wtrs—x

Gally (resp. Gall4(F), Gall4(F, F’)) is defined as the set of generalized
galleries of A (resp. issued from F', with extremities (F, F")) (cf. 5.3). Given
a gg v of Alet

g=typyCtyp A
be the gg of types (resp. typ .A) whose facets are given by the images of the
facets of v by typ. There is a mapping

Gally — gall 4 = Gallyyp 4

defined by v — typ ~, where typ v denotes the gallery of typ A defined by
the types of the facets of 4. This mapping can also denoted by “typ” when
there is no confusion. It is observed that the restriction of typ to Galla(c)
gives a bijection Gallacy ~ gall 4.

Let g € gall 4. Write

Gall4(g) := typ '(g) (resp. Gall4(g, F) := typ *(g) N Gall4(g)

(The gg’s of type g (resp. of type g and extremity F)).
The following terminology adapted from [23], Exp. XXVI, 4. (cf. also [4],
Ch. IV, 1., Ex. 22) is introduced.
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Definition 9.2 [t is said that a couple of facets (F, F') € AxA is in transver-
sal position or simply transversal if there exists a chamber C' € Ch A satisfy-
an Ftyp(F) (C) = F and Ftyp(F/)(COpp) = F/.

It is clear that C' and F' are transversal if and only if
d(C,F) =|H(C,F)| > |H(C,F")| = d(C, F'),
for I € Ay, thus there is

Proposition 9.3 A chamber C and a facet F of A are in transversal po-
sition if the length n of a minimal gallery

r-c==~cy,---,C,>F

is mazimal on the set of all minimal galleries between C and a facet F' € A;
of the same type t as F.

The following lemma allows defining the center of a Bruhat cell.

Lemma 9.4 Given C € Ch A, andt € typ A there is only one facet F/"(C) €
Ay such that C and F"(C) are transversal in A.

Proof Let C°PP be the opposed chamber to C in A. Then Ff"(C) may be
characterized as the only facet F € A incident F' C C°PP to C°PP. This
proves the lemma.
Let § := {(¢,t) € typ A x typ A| t € typ A} and write
typ® A := {(t,s) € typ A x typ A — 4| t C s}.
Given (t,s) € typ®® A, and C € Ch A, denote by
Fii) = F(i5(C) € Str, (),
the unique facet of type s in A is such that:
“C and Fftfs)(C) are transversal in the Star Complex Stg, (¢)”.
If A= C(W,S) one obtains
typ® A= {(X,Y) e P(S)x P(S)| X #Y, X CY}.

An indexed set of elements of W associated with a chamber C' in C(W,.5)
is introduced so that with minimal generalized galleries issued from C are
associated words in these elements.
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Definition 9.5 Let C € Ch A (resp. (t,s) € typ'® A). Write F = F!"

(t}s) (C)
and define

w(tv 5) = wC’(tﬂ 5) = w(Ca prOjFC)'

The mapping (t,s) — w(t,s) (resp. (X,Y) — w(X,Y)) defines an indexed
family of elements of W

S == (wC(ta S))(t,s)etyp(2) A

(resp. & 1= S, = (W(X,Y))(x,v)etyp® cw,s))-

9.1 Minimal Generalized Galleries issued from a chamber

Definition 9.6 Let C € Ch A and F € A. A generalized gallery (gg) of the
form

v=~(C,F): C=F,D>F CF,_1---Fy D F,=F (right open gallery)

(resp.y=7(C,F): C=F, D> F. CF,_1--- C Fy = F) (right closed gallery),

or in abbreviated notation

y=~(C,F): (F;DF) (r>i>0), and (F, C F;_q) (r=i=>1),

. =C, F,=F
(resp. y=~(C,F): (F;D>F]) (r>i>1), and (F/ C Fi_1) (r =i > 1),

F.=C, F/CFy=F)

with F; # F] (resp. F! # F;_1), is a Minimal Generalized Gallery
(MGG) between C and F, or with extremities C and F, if:

(1) The sets Hp:(Fi—1) (r =i > 1) are two by two disjoint, i.e. i # j =
/HF{(Fi—l) ﬂrHF]{(Fj_l) = @;

(2) H(C, F) =UHp (Fi—1) = [[Hp (Fi-1) for (r=i>1).

Denote by Gall™(C, F) the set of Minimal Generalized Galleries between C
and F'.

Remark 9.7 1) Observe that if v(C, F) is a Minimal Generalized Gallery
right open then Fy C projp C.

2) To a minimal gallery T : C =C,---Cy D F corresponds the MGG:
(CiDF) (r=zi>0) (resp. (Fiq1 CCy) (r—12>2142>0)),

C,=C, Fy=F,
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where F; = C;NCi—1 (r 2 i > 1) denotes the common codimension 1
facet to C; and C;_1. This result comes from the following characteri-
zation of the minimal galleries of A:

An injective gallery ' : C = C,.---Cy D F between C' and F' is minimal
if T crosses only once each wall L it encounters, and L € H(C,F) (cf.
[4] Chap. 4, §1.4, Lemma 2).

As in 8.6 we denote by

\II*(F>:(LT7LT717"' ;Ll)
the sequence of walls that T' crosses, and by
\II(F) = (t’f’atr—la'” atl)

the sequence of reflections defined by U*(T'). Remark that L; (r > i > 1)
is the carrier of the codimension 1 facet F; = C; N Cj_q.

9.2 Adapted minimal galleries to a Minimal Generalized
Gallery

Assume the notation of the preceding section. A family of minimal galleries
“majorating” a Minimal Generalized Gallery is defined. Write:

Cr=C and C;_y =projp,_,C; (r=zi=>1).
Remark that Oi, C;_1 € Ch StF: (I‘ >i> 1), as Ci, F,_q, € StF; and Ch StF:
is a convex set of chambers of A, i.e. if a minimal gallery I'(C, C") satisfies

C,C e Str; then rc,c) c Stg;. For each r > i > 1 a minimal gallery
' =T%C;,C;_1) between C; and C;_; is chosen. Thus I' C Stgs. Define

I =T(C,Co) =T" ol to...0oT",

i.e. I'is the composed gallery defined by (I'¥). Let IV = I'(C, F) be the
gallery obtained as “the composition of I'(C, Cy) and the inclusion Cy D F”.

Lemma 9.8 TV(C, F) is a minimal gallery between C and F.
Proof As set U*(I'") C Hp,(Fi—1), it is deduced that
U (T) C [[He (Fio).
By (1) of Definition 9.6 it is concluded that T is injective, and each wall L
it encounters crosses only once, and by (2) of Definition 9.6 that this wall

satisfies L € H(C, F). It is deduced that T is a minimal gallery between C
and F'.
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Definition 9.9 It is said that a gallery T'(C,F) is a minimal gallery
adapted to the generalized gallery v(C, F) if it is obtained from v(C, F) ac-
cording to the pattern of the construction of T'(C, F).

Remark 9.10 a) From the above lemma it follows that the set W*(T') is
equal to H(C, F). As set O*(T') = [[H(Ci,Ci—1), and H(C;,Ci—1) C
Hp: (Fi-1), it is deduced by (2) of Definition 9.6 that H(C;, Ci—1) =
HF’( i— 1) One also has ’H(C’i,C’i_l) = H(Ci,ﬂ_l) as Ci—l =
projp, , Ci.

b) The equality H(Ci, F;—1) = Hp/(Fi-1) means that the distance
d(Cy, Fi_1) is the mazimal d(C, F) between a chamber C and a facet
F of StF; of the same type as F;_1. It is then deduced that C; and F;_q
are transversal in Sty; (cf. Definition 9.3).

The following reformulation of Definition 9.6 is then given:

Definition 9.11 The same notation as in Definition 9.6 is kept. A gg
YC,F): (F;DF)(r>i>0), (F,CFi_1) (rzi>1), F,=C, F;=F
(resp. Y(C,F): (F;DF) (r>i>1), (F/CF_1) (r=>i>1),
F.=C, Fy=F)

is « Minimal Generalized Gallery (MGG) if: F; # F] (resp. F! # F;_1)
and

(1)-bis Hp: (Fi-1) m7‘{F’( 1) = 0 fori# j;

(2)-bis |H(C, F)[ = > |Hp;(Fi1)l.
Proof It is proved that (1) and (2) in Definition 9.6 is equivalent to (1)-bis
and (2)-bis of Definition 9.11.

The implication “ = 7 being immediate, let it be seen “ < 7. The gallery
I"(C, F) constructed as in Lemma 9.8 from v(C, F') satisfies:

(*) [H(C,F)| < |9 (I(C,F)| < Y [Hp (Fioy)| = [H(C, F)].
This establishes that T'(C, F') is a minimal gallery, and thus set (defined by)

U*(I'(C,F)) = H(C,F). On the other hand, by construction of I'(C, F),
there is

set U*( Hset\I' (Ci,Ci—1) CHHF/ i—1),
which in view of (x) implies

H(C, F) = set ¢*(I' HHF' i—1)
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Without proof the following reciprocal of Lemma 9.8 is given.

Lemma 9.12 Given a g9 (sq D ta) (r = a2 0) (to C Sa—1) (r2a > 1) of
types of A with to, # Sq—1 (Tesp. to # Sa), a minimal gallery

r=rC,r): C=Cp,---,CyDF
with types typ C,, = s, and typ F = tg, and a strictly increasing function
g [0,r] = [0,7]
with j(0) = 0 and j(r) = n, one writes
Fo = Fs, (Cj(a)), Foo = Fro(Cia))-
It is supposed for 1 < a < r:
1.V jla—1)<i<j(a), F,=F, (Cjuw);

2. Cj(a) and F,_1 are at mazimal distance (resp. transversal) in Stpg,
and projr, _,Cja) = Cj(a-1)-

Then the g9 (Fo D FL) (r2a >0), (F,C Fa_1), (rza>=1)isa MGG of
A.

9.3 Reduced words corresponding to Minimal Generalized
Galleries

Definition 9.13 Let g be a generalized gallery in typ A given by
g: tr CSp_1---1t1 C 8o
(resp. g: tp C Sp_q1---t1 C 89 Do) -
A So-reduced expression of type g is the product w = [[w; (r =i > 1) of the
s

elements of the r-uple (w,, -+ ,w1) € [[Lc defined by

w; = w(ti,si—1)  (r=i>1),
if

ls(w) = ls([ Jwi) = ls(w,) + -+ Is(wn).

Then it is said that w = [[w; is a So-reduced expression of w of type g.

Let w € W (resp. w € W/Wy). It is known that the set of minimal galleries
in the usual sense Grall’m(C’e7 Cy) (resp. Gall'm(C’e, Fg)) of C(W, S), between
Ce and Cy = w(Ce) (resp. Fz = w(F(Ce))), is in bijection with the set of
S-reduced expressions Redg(w) (resp. Reds(w™)) of w (resp. of the minimal
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length element w™ of w) (cf. [4], Ch. IV, Ex 16).

The set of Minimal Generalized Galleries Gall™(C., w™(F;(C)), between C,
and w™(F;(C)), is in bijection with the set of .#-reduced expressions of w™.
Retain the notation of Lemma 9.8. It is shown how a minimal generalized
gallery v = y(Ce, w™(F;(C)) gives rise to a .#-reduced expression of w™ of

type typ 7.

Write F,. = C¢, and s; = typ F; (resp. t; = typ F)). Let C,.,Cr_1,--+ ,Co
be the sequence of chambers, and I'(C,, F) =" o---oI'! the minimal gallery
of A defined as in Lemma 9.8. Define forr > 7> 1:

1. w; = ’LU(Ci,Ci_l);
2. v; = w; - W
3. U; = ’U)(ti,sifl).

Clearly
U1 = w(Ce7 CO) = w(cea prOjFCe)

(this results from the fact that C. is the first term of a minimal gallery between
C. and F'), and more generally

v = ’LU(CG, Ci—1)~
There is:
w; = w(Ci, Ci—1) = vip1w(t;, Sifl)viq_ll = Ui+1uivi;11,

as v;_ll(C’i) = C,, and v;_ll(projFiflCi) = projzCe, where F = F(tti’si_l)(C’e).
Let it be proved:

a) WiWi41 Wy = Up *** Uj41U5 (7’ 2 ) > 1),
b) wu, - up = w(Ce, projpCe).

It is clear that b) follows from a). Thus it is proved a) by induction on i. It
is clear that w, = u,. Let it be supposed that i < r and v;41 = wi41 - -w, =
Uy - - - U;41. One thus obtains

—1 —1
Wiwig - Wr = (Vi1 UV VU Ui = (Vi1 U0 ) Vi1

= Vit1Ui = Uy = Ui 1U;-

Let it be proved now that vy = u,---uy is a .#-reduced expression. As
I is a minimal gallery between C; and C;_; = proj r,_, Ci the transformed
gallery T := vi;ll (') C St F,, 1s also a minimal gallery between C. and
proj F“i‘%il)Ce. To I'! corresponds a reduced expression, relatively to S,

)CE) = H ul(al) 3

1<a; <ls (uq)

u; = U/(C’&projF(tiYSi_1
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with u;(a;) € S. Remark that
Is(u;) = length T = length I' = [Hp (Fi_1)|.

From Remark 9.10 a) it is found

Is(ty -+ uy) = Lsg(w(Ce, projpCe)) = Y [Hp (Fio1)| = [H(Ce, F)|.
It is then concluded that

w(Ce,projpCe) = [[ € ]  wilew))

rzizl 1<a; <s(uq)
is an S-reduced expression, and finally that
w(Ce, projpCe) = up -~ u1 = wW(tr11,8-) - w(t, So)

is an .#-reduced expression.

Reciprocally to an .#c-reduced expression w(Ce, projr Ce) = [] w(ts, si—1)
r2i>1

of type g corresponds a minimal generalized gallery ~(Ce, F) of type g. Let
(w;),<;<1 be the sequence of elements associated with (w(t;,s;-1)),>;>1 as
above. Define a sequence of chambers (C;),>;>; by Ci_1 = (w; -~ w,)(C.).
Let «(Ce, F) be generalized gallery whose type is given by g = (tiy Siz1)p>i>1
and its set of facets by (F, (C;), Fs, ,(Ci)),>i>1. It is easy to see that y(C, F)
is minimal (cf. loc. cit.). Thus a bijection between the set of .#c-reduced
expressions and the Minimal Generalized Galleries Gall™(C,) issued from C,
is obtained.

9.4 Minimal Generalized Galleries

Notation 9.14 The following notation is introduced to distinguish the four
classes of galleries to which the following definition applies:

i) o(F,F')=(F=F DF CF._1...Fi DF CFy=F') a closed
gallery;

it) W F,F)=(F=F, >DF CF,_1DF _,...Fy DF =F') arigh
open gallery;

i) yW(F,F')=(F=F/ , CF.DF . CF._1...F| CFy=F') aleft open
gallery;

w) V(F,F')=(F=F, CF.DF CF._1...Fy D F,=F') an open
gallery.
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Given F" O F one denotes by y1(F"; F,F') (resp. v{(F";F,F")) the gg
between F" and F' given by the “composition” of F"' D F and v1(F, F') (resp.
(L E)), and by o (F" F,F') (resp. v (F"; F,F')), the gg v2(F"; F\ F)
F'SE - Fl C Fy=F (resp. W(F";E,F'): F" > F...Fy > F} = F')
obtained by substitution of F,, = F by F".

Definition 9.15 Given a couple of facets (F, F') € Ax A and C € Ch Stg
it is said that C is at mazimal distance from F' if it satisfies d(C,F') =
maXc’eCh Stp d(Cl, F/)

The following definition is suggested by proposition 6.16.

Definition 9.16 1) Let (F, F') € Ax A a Minimal Generalized Gallery
(MGG), y(F,F’) is a gg of the form ~v(F,F") = v (F, F’) (resp. v (F,F'),
Yo (F, F"), v(F, F")), with F,. # F such that for every C € Ch Sty at maz-
imal distance from F' the g9 v(C; F,F') = v1(C; F, F") (resp. v{(C;F,F"),
v2(C; FyF'), v5(C; FyF')) is a MGG between C and F' (cf. Definition 9.6).

94.1 Reformulation of the definition

It is recalled that the carrier L of Env(F, F’) in A is obtained as the inter-

section of all the walls H of A containing F' and F',ie. L= ()| H. It
HeH,
F.F'eH

is known that L is a building (but not a sub-building of A in general) whose
chambers are the facets F' C L of minimal codimension, and that Env(F, F')
is a sub-building of L.

The facet projpF’ € Env(F, F') is characterized as the only facet containing
F so that every facet of Env(F, F') containing F' is contained in projpF".
Thus Lyroj,rr = L, where Lyoj,. r denotes the carrier of projpF’, i.e. the
maximal facet contained in the convex hull Env(F, F’) and incident to F.

Definition 9.17 If F # projpF’ (resp. F = projpF") it is written
o(F,F') == FPP(F, projp F')
(resp. ¢(F, F') :== projpF' = F).
(cf. §2. €)). By definition the facet ¢(F, F") satisfies the property
H(c(F, F'),projp ') = Hp(projp F')

as results from the Corollary 8.55. If ¢(F, F’) = F then Hp(projpF’) = 0.
The facet ¢(F, F’) is a chamber of the building L. This means that the carrier
Lo(F,Fry is equal to L.
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Write
M =H(FF)[[Hr(F)

(the set of walls separating F' and F’ or containing F' without con-
taining F”), and ¢ := ¢(F, F’).

Proposition 9.18 With the above notation one has:

1) If C is a chamber of Str then H(C,F') C M.

2)
Ch St, = {C e ChStp| H(C,F') =M}
i AN ! !
= {C e Ch Stp| d(C,F') = C/EmC%XStF d(C', F"}.

Proof 1) Let H € H(C,F'), it is first supposed that H ¢ Hp. Thus if
CDO>OF=HecHFF)CM. IfH € Hp then H € Hp(F') (F' is not
contained in H as H € H(C, F")) thus H € M.

To prove 2) it suffices to show that the first equality is satisfied. Let it first
be seen that
CDoc=c(F,F")= H(C,F)= M.

It is certain that in this case H(F,F') C H(C,F"). If H € Hp(F') =
Hp(projpF’), then H does not separate F and F'. Thus the root ® deter-
mined by H and F' contains Env(F, F"), and a fortiori H does not separate
projm F and F'. Then if H € Hp(projpF’) (# 0) one has projpF’ ¢ H,
and by definition of ¢(F, F') the wall H D F separates ¢(F, F') and projpF’.
Thus C D ¢(F,F') and H € Hp(F') = H € H(C,projpF’). One finally
has H € H(C,F') = H(C,projpF’). It was proved that C D> ¢(F,F') =
Hr(F') C H(C,F), and finally that M = H(F, F") [ I Hp(F') C H(C,F").
Let C € Ch Stg be such that H(C,F') = M. It is first shown that C € St,
under the assumption ¢ # projpF’. If C ¢ St., i.e. C 2 ¢, there exists
H € Hp (= walls of Stp) separating C and ¢, i.e. H € H(C,c). Asc ¢ H
there is H 2 Lc(carrier of ¢) = L(carrier of Env(F, F")). Thus by definition
of ¢, H separates ¢ and projpF’, i.e. H € H(projpF’,c). It is concluded that
H does not separate C and projpF’'. On the other hand, H D F implies that
H does not separate projpF' and F', as it does not separate F and F'. It is
concluded that H € Hp(F') does not separate C and F'. This being contrary
to the assumption H(C,F') = M = H(F,F')[[Hr(F’), it has been proved
that H(C,F') = M = C € St.. If ¢ = projm F then F = projm F and there
18 nothing to prove.

(To prove that if C € Stp realizes the mazimal distance between a chamber

C € Ch Stgp and F', then C is incident to ¢(F,F'), one may argue as fol-
lows. It may be assumed that F # projr F'. As a hyperplane H € Hp does
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not separate F' and F' and c(F, F')°P? = projr F' in Stp, one has that H
separates c(F,F") from F'. Let C' € Ch Stg so that ¢(F,F') & C'. Thus for
a chamber c(F, F") C C there exists H € Hp separating C and C’ (resp. F').

It is concluded that d(C', F') < d(C, F’))

Corollary 9.19 The set of chambers C € Str at maximal distance from F’
is principal homogeneous under Wep gy = Stab c(F, F') C W (resp. Wg).

The definition 9.16 may be reformulated as follows:

Definition 9.20 1) Given F,F’ € A with ¢(F,F') # F o Minimal Gener-
alized Gallery (MGG), ~(F,F') is a gg of the form v(F,F’') = v (F, F’)
(resp. Vi (F,F"), v2(F,F"), v4(F,F")), with F, # F! so that for every
C € Ch Stc(F,F’) the 99 7(07F7F,) = Vl(CaFaF/) (T’esp' Vi(C;FaF/):
v2(C; FyF'), 45(C; F, F")) is a MGG between C' and F' according to Defini-
tion 9.6.

2) Given F,F' € A with ¢(F,F') = F is a Minimal Generalized Gallery
(MGG) ~(F, F') is a gg of the form ~(F,F') = vo(F,F’) (resp. ~4(F,F"))
with F,. # F such that for every C € Stoppy 7(C; F,F') = v(C; F,F')
(resp. v5(C; F,F')) is a MGG.

Proposition 9.21 Let v(F, F’) be a generalized gallery. Then v(F,F') is a
MGG if and only if it satisfies the following conditions:

1) y(F.F') C Env(F, F');
2) 3 C € Styp,pry so that ¥y(C; F, F') is a MGG between C' and F'.

Proof It will be seen in the next sub-paragraphs, that: “y(F, F') is a MGG
= 1)”. The condition 2) is verified by definition. If v(F, F') as in 1) satisfies
~v(F,F’") C Env(F, F') then:
Vwe WC(F,F’) = w(W(F7 F/)) = 7(F7 F/)
Thus it is deduced that if C' € Sto(p pry and w € We(p pry, there is:
w(y(C; F,F')) = v(w(C); F, F'),

as Lop,pry = carrier of Env(F, F'). On the other hand, if it is supposed that
Y(C; F, F') is a MGG it is concluded that

Vwe Wypry, yw(C);F,F')isa MGG,

(If v(c,F) is a MGG then: Yw € W w(y(c,F)) is a MGG) and, as
Ch Steppry is principal homogeneous under We(p pry, finally that V C' €
Ste(r,rry V(O FLF') is a MGG, i.e. y(F,F') is a MGG.
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Proposition 9.22 Let C € Ch A and (F,F’) € (A x A),,, with 7o — (s,1),
so that Fs(C) = F satisfying

d(C,F") =max {d(C,F") | (F,F") € (Ax A)}

(resp. d(C,F')=maz d(C, F”)) .

T(F,F")=rq

Then F' € A; is unique with this property. Moreover
d(C,F') = max d(C, F),
CDF

i.e. F' is at mazimal distance from the chamber F C C, and thus C D
c(F, F").

Proof First observe that d(C,F') = max  d(C,F") implies d(C, F') =

T(F,F")=rq

max d(C,F’). Let (C,F") € (Ch A x A),, satisfying d(C,F") = d(C, F").
CoF

From 7(F,F") = 7(F, F’) it results that there exists w € Wg so that F"' =
w(F"), and thus that Env(F, F") = w(Env(F, F")). Assume that c¢(F, F') #

F. One has d(C,F") = max d(C,F") and projp F" = w(projr F'). The
CDOF

couples (C,projp F") and (C,projr F') are both in transversal position in

Str as C D ¢(F, F') = (projg F')°PP (resp. C D c¢(F,F") = (projgp F")°PP).

It results projrp F" = projrp F' and projr F" = w(projr F’), and w leaves

Lp pry pointwise fized (cf. [4], Ch. V', §28, Prop. 1), and thus F"" = F'. The

case ¢(F, F') = F follows immediately from this last remark.

Let the facet F’ of Proposition 9.22 be determined in terms of W. Given
C € Ch A denote as usual by S = S¢ the set of generators of W given
by the reflections defined by the walls of C. Let i : C(W,S) — A be
the building isomorphism corresponding to C'. Under this isomorphism the
relative position mapping

7: AXx A — Relpos A,
corresponds to the mapping
Tew,s) s C(W,8) x C(W,S) — H WA\ W/Wy
(s,t)etyp Axtyp A
defined by:
TOW,s) : (@, w') — double class of w™'w' in W, \ W/W; ,

where (W, w’) € (W/Wy) x (W/Wy). Clearly 7o (w.s) is a well defined mapping.
Given 7 € Relpos A it is denoted by w, € W, \ W/W, the double class
corresponding to 7, i.e.

T(Fs(C), wr(F(C))) = 7.
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Let w € Wy \ W/W; be the double class defined by w. Observe that o is a
subset of W/W;. Thus one has

W=, & WewCW/W;.

The isomorphism ic induces a bijection between the elements in a double
class and a class of facets:

{w € W/Wy| @ = @7 (resp. W € wr)} — (A X A)r,r,(c)) =

{F' € A | 7(Fs(C),F') =10},
defined by @w — (F(C),w(F:(C))). Let wp € W/W; be the class correspond-
ing to F’ as in Lemma 9.22, i.e. wp/(F(C)) = F'. The elements w € W/W,
such that w € (w:lw’), where (w,w’) — (F,F"), correspond to the facets
F' ¢ A, with 7(Fs(C),F’) = 19. Thus there is only one “maximal length
class” W™ € (w—lw') satisfying (C, W™ (F,(C)) are at maximal distance.
Thus one has the following

Proposition 9.23 With the above notation Wg: € W/W, is characterized by
the following properties:

1) Wpr =W, (resp. W € Wy );

2) lsg(Wp+) is mazimal on the set (w=tw') C W/W,.

9.5 An expression for the convex Hull of two facets

An expression of the convex hull of two facets is obtained. It allows one to
prove that a Minimal Generalized Gallery is contained in the convex hull of
its extremities.
Given F, F' € A, write Hp/ (F) for the set of hyperplanes containing F’
but not F', and
E(F, F'):={®ecDy| F,F' € &}

(The set of Roots containing F' and F”). By definition of the convex
envelope one has Env(F, F') = (| ®. Define four subsets of D4 in terms of
F and F’ as follows: e

1) D(F, F') ={® € Da| F, F' ¢ 02} = (0)7' (M — (Hr UHp);

2) Dp/(F) ={® € Da| 00 € Hp:(F)} = ()~ (Hp (F));
3) Dp(F') = {® € Da| 00 € Hp(F)} = (0)" 1 (Hp(F'));
)

4) D ={®P €Du| F,F' € 09} ={® € D4| L C 09} = (0) ' (H(L) (L =
carrier of Env(F, F")).
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One has the partition of the set of roots D 4 given by (F, F’).:

Da=D(F,F)[[Pr(F)[[Dr(F)[[ D

This partition induces a partition of the se E(F, F’). Write E = E(F, F') and
c=c(F,F).
Write:

1) D(F,F')=D(F,F))NE={®| F,F' € ®};

2) Dp(F)=Dp(F)NE={® | F' €9, F € ® — 0D};
3) Dp(F')=Dp(F)NE={®|F €0®, Fecd—0od};
4y D, =D, NE=Dy

Retain the above notation. Observe that if C'€ Ch St. then C' D ¢ D F.

Proposition 9.24

a) E=D(F,F') [IDp/(F) [IDr(F') [ Dr;

b) E' = {® € D4l ¢, F' € ®} = D(c, ') [[ D (¢) [ [ D1, and Env(e, F') =
n o;

PecE’

¢) B" = {® € Da| C,F' € ®} = D(C,F")[[ D (C) and Env(C,F') =
n o;

deE"
d) DF/(C) = DL(C)HDF/(F) (: DF/(C)), where DL(C) = {(I) ‘ L C
0, C € B}.

Proof The above partition of D4 gives rise to the following one of the subset
E CDy:

E=DANE=DF F)NE[[Dr(F)NE][Dr(F)NE][DLNE,

which may be re-written as E = D(F, F') [ Dp (F) [ | Dr(F') I Dr. The dis-
joint union of a) follows from

E=DuNE=DF F)NE][[Dr(F)NE[[Dr(F)nE][DLNE.

One obtains b) (resp. c¢)), as particular cases of a), by writing F =
¢ = ¢(F,F') (resp. F = C) in the equality of a). Remark that E' =
E(¢,F') and E” = E(C,F'). Thus b) follows from a) by writing F =
c¢(F,F') and ¢) by writing F = C. From the inclusion Dp/(C) C E =
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D(F,F) ]I Dp(F)[IDr(F) ]I DL, and on account of Dp:(C) N Dpi(F) =
Dp(F), Dp(C)ND(F,F') =0, and Dp/(C)NDp(F') =0 one obtains

Dr(C) = {®eDy| F €09, (FC)C e d}
{®eDy| F',Fedd, (FC)Ced}
—_——

LCO®
[[ {®eDu| F €dd, Fe¢dd, Ced} (=Dp(F), as F CC)

O [ Pr (F) (= Dr(c)).
Remark that if ® € Dp/(F') then C € ® as F C C.

Notation 9.25 The following convention is used in: if F = (E;)ier s a
family of sets one writes (N F = (,c; Ei

From a), b), ¢), and “c)+d)” it is respectively obtained:

Proposition 9.26
a)’ Env(F, F') = (WD(F, F'))(N e (F))(NDr(F'))(NDP1) (= L);
b)” Env(c, ') = (ND(c, F'))(N Dr+ (c))(NDL)(= L);
¢)” Env(C,F') = (ND(C, F"))(N D (C));
d)’ Env(C, F') = (ND(C, F')) (N DL(C)(NDr(c)).

Proof The four statements result respectively from a), b), c), and “c)+d)”.

Remark 9.27 One has ® € Dy, < Env(F, F') C 9. Thus ® € D < D°PP
(opposed root to ®) € Dy, as O = ODPP. [t is then deduced that:

ﬂDL: ﬂ (® N BOPP) ﬂ 0P = ﬂ H=L.

®eD, ®eDy, HewH,,
Proposition 9.28
e)” Env(c, F') = (N(Dr(F') N D(c, F'))) (ND(F, F')) N(NDp (F)) L.
) Env(F, F') = (N Dr(F")) N Env(c(F, F'), F").

Proof As D(c,F') ={® | ® D Env(c, F'), ¢,F' ¢ ®} and in view ¢ DO F
one has
D(c,F') =D(F,F') [[ Dr(F')(\D(c, F')

By substitution of D(c, F') by the second member of the above equality in b)’,
and by remarking that Dp/(c) = D/ (F'), one obtains €').
By a)', Env(F, F') = (ND(F, F'))(NDr (F))(NDr(F))(NDL) (= L) =;
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(e (F)(NDr(F) N Dle, F)(D(F, F) (1 Dr(F)L

by remarking that the inclusion Dp(F') N D(c, F') C Dp(F') gives
N Dr(F') C (Dp(F') ND(c, F')). One concludes by €') that Env(F, F') =
(" Dr(F') NEnv(e(F, '), ),

Let ¢ C C. By definition of DL(C): Dr(C) ={® € D4| 00 D L, C € I},
one has Dy (C) = D.(C), as “carrier of ¢ ” = L.

Lemma 9.29 The intersection of the family of conver subcomplexes
(NDL(C))cecn st. is given by

OEE

CeCh St.

Proof Let C € Ch St. and C°PP = F°PP(¢,C) the chamber opposed to C
relatively to ¢ (resp. in St.). By definition of C°PP one has:

B € D, (C) & BPP € D,(CPP).

It is concluded that

(PN Pe(CPP)) = (] (@Nd*P)
PeD.(C)
— (N 92= () =L
PeD.(C) HeH.

The equality of the lemma follows from:

N (20) = [ (NPLON(Pe(C)) = L.

CeSt, CeSt.

Proposition 9.30 One has:
1)

ﬂ Env(C, F') = Env(c, F').
CeSt.
2)
Env(F, F') = (\Dr(F) [ [ Exv(C,F")).

CeSt.

Proof As 2) follows immediately from f) and 1) let it be proved 1). From
d)’ it is obtained:

N Euv(C,F) () (2 F)(PLC))(Dr ()]

CeSte CeSt.

LN e ][ N e D).

CEeSt, CEeSt,
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On the other hand, the inclusion (C D ¢) D(c, F') C D(C, F’), implies

() D(C, F') ¢ (\Dlc, F)

and gives

) (D, F) c(D(c. F).

CeSte

Using the preceding lemma finally the inclusion is obtained:

I) N Ew(C,F) c (ND(e, F))L(NDr:(c)) = Env(c, F') by b). As
CeSte
¢ C C one has that:

II) Env(c, F') C () Env(C,F’)
Cest.

The equality of 1) results from I) and II).

9.6 The convex envelope of a Minimal Generalized Gallery
Here it is proved the

Proposition 9.31 Let v(F, F') be a MGG between F and F' then
A(F,F) © Bav(F, F'),
i.e. all the facets of v(F, F') belong to Env(F, F"').

Let it first be shown that:

Proposition 9.32
v(F, F") C Env(c(F, F'), F").

Proof Let v(C;F,F'), for C D ¢(F,F'), be defined as in Proposition 9.21.
Let T'(C, F') be the minimal gallery of Lemma 9.8 given by v(C; F, F'). One
has

I'(C,F') C Env(C, F").
By construction of T'(C, F') every facet of v(C;F,F"), and a fortiori of
~Y(F, F"), is incident to some chamber of I'(C,F"). It is thus obtained by
the reformulation of Definition 9.16

Ce Stc(F,F’) = ’Y(CaFv F/) C EDV(C, F/)
(resp. v(F,F') C Env(C, F")). It is concluded that

VWE,F)yc (] Env(C,F') =Env(c(F, F'), F') (cf. Proposition 9.30).
CEStop pry
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Observe that the inclusion is evident in the case v(F, F') = v
Y1 (E,F")). To obtain this inclusion in the case v(F, F') = 7
v5(F, F")) remark that F C ¢(F, F’).

F,F") (resp.
F,F') (resp.

—~

Remark 9.33 If F = projpF' = ¢(F, F') then
Env(F, F') = Env(c(F, F'), F'),
and in this case one has
y(F,F") C Env(F, F'),

i.e. the assertion of Proposition 9.31 is verified.

9.6.1 Proof of Proposition 9.31

The case F' = ¢(F, F') follows immediately as pointed in the above remark.
Let one consider F' # ¢(F, F’). The case ¢(F, F') # F, v(F,F') = v (F, F’)
(resp. 1 (F, F")) is first treated.

By f)” above one has

Env(F, F') = (\Dr(F")) [ | Env(c(F, F'), F').

Thus in order to prove that ~(F,F’) C Env(F,F’) one needs, in view of
~(F,F") C Env(c(F, F'), F'), only to see that:

® € Dp(F') = ~(F,F') C ®.

Let C be a chamber so that C D ¢(F, F’), i.e. at maximal distance from F’
(thus transversal to projp F’ in Stg), and I(C, F’) the minimal gallery of
Lemma 9.8 adapted to v(C; F, F’). It is recalled that I(C, F') is defined by
the sequence of chambers

OT+1 = C, Oz = projFiC’,;_H (r Z 7 2 O),

where F; = F;(v(F,F’)), i.e. F; denotes the i-th facet of v(F,F') = (F =
F/,, CF. D F C F,_1...F] C Fj = F') and a sequence of choices of
minimal galleries

[ =T (Cig, Gi) C Sty (Flyy = FL (W(F F) (r=i>0).
The minimal gallery I'V(C, F’) is obtained as the composed gallery
I'(C,F'y=T""o...oT

Lemma 9.34 Let H € Hp;, (F;). Denote by ®u(Co) = the root of A defined
by 0Py (Co) = H and Cy C @y (Cy). There are the inclusions:

@y (Co) D Ci,Ci—q,y---,Cp
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and a fortiori
@y (Co) D Fiy Fiy, -, Fy

(resp. @ (Co) D F{ 1,--- ,F]).
Proof The proof follows from the following remark. By Remark 9.10 b) it

is known that
H(Cit1,Ci) = Hpy, (Fr).
Thus H(C,F') = I Hpy, (F5), and the uple V(I of walls that T
r>i>0 '
crosses, gives the set HF{H(Fi) in a certain order. It is concluded that a

hyperplane H € HFi’+l(Fi) cannot separate the chambers C; and Cy, and
a fortiori the chambers C; and Cy with 0 < j < i which are contained in
Env(Ci,Co).

Let
S eDp(F)={PeDy| F,F' € ®, 0P Hp(F')}.

Then Env(F,F’) C ® and
H=0% € Hp(projpF') = Hp(F') .

Thus H separates ¢(F, F') and projyF’ but does not separate F' and F’. It is
recalled that ¢(F, F') being the opposed facet to projpF’ in Stg implies that
every H € Hp(projpF") separates ¢(F, F') and projzF’. On the other hand,
from C D ¢(F, F'), and projpF’ € Env(F, F’) it follows that:

e H separates C' and projpF”;
e H separates C' and Env(F, F’) as projpF’ € Env(F, F').
It is concluded that ® D Env(F, F’), and “0® separates C' and F””. Thus
H=00eH(C F)=]]Hr,, (F).
Let r > ip = ig(H) > 0 be defined by

H e /7"[Fi/0_*_1 (Fio)-

Lemma 9.35 Retain the above notation and assume ig(H) < r. There is
then Fp,Fr_1-+-Fio41 € H (H € Hp(F")), in other terms:

“IfH ¢ Hpr (F,) then io(H) = min{i| F,,--- F; € H} —17.

Proof Clearly if H € Hp;,  and H ¢ Hp:, (Fy) one has F,, € H. Let it be
seen that:

F.,--- JFi41 € H and H ¢ HF{+1(Fi) = F;, € H.
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As Fip1 € H, and Fi ) C Fiqy it is deduced that H € Hp;, . Thus if it is
supposed H ¢ Mg,  (Fy) it is concluded that F; € H.

Thus at each step there are two issues F; € H or F; ¢ H, and the process
stops if F; ¢ H. The hypothesis H € Hp(F'), with F = F| | (resp. F' = Fp),
giwes min{i| F,,---F; € H} > 1. It follows from the above reasoning that the
integer ig(H) satisfies:

1. 4o(H) 2 1;
2. Fr, e ,FiO(H)J'_l S H, and Fio(H) ¢ H.
Clearly these properties characterize ig(H).

The proof of Proposition 9.31 in the case ¢(F,F’) # F and v(F, F’) a left
open gallery, thus let v(F, F’) = v, (F, F’) (resp. v{(F,F’)) runs as follows.
Let H € Hp(F"). If H € Hp:, (F)) on the basis of Lemma 9.34 one has that

CI)H(F/) D) CDH(C()) D) Fr,‘-‘ ,FO

and a fortiori v(F,F') C ®y(Cp). Otherwise on the basis of Lemma 9.35
there exists an integer io(H) so that:

Fryoo S Fyymy1 €H
(resp. Fipy, -+ F gy € H), and H € HF{O(HHl(FiO(H)). On the basis of
Lemma 9.34 it is concluded that
Sy (Fo) = Pu(Co) D Fiymys -+, Fo
(resp. Fi/o(H)’ .-+, F]), and finally that v(F, F") C ®g(F").

Proof of Proposition 9.31 in the case ¢(F,F') # F, and v(F,F’) a
left closed gallery ~(F, F') = vyo(F, F’) (vesp. v(F, F') = v4(F, F"))

Given C D ¢(F,F') D F = F,, and H € Hp(F"), let v(C; F, F’) be ob-
tained from «(F, F') as in Definition 9.16. One proceeds to construct IV (C, F’)
as in Lemma 9.8. It is deduced then using Lemmas 9.34 and 9.35 as above
that

(PH(F/) D) F;, Fr_q,--- ,Fll7 Fp.

By hypothesis F,. € H(€ Hp(F")) thus F € H and consequently v(F, F’) C
Dy (F").

9.7 Minimal Generalized Galleries unicity properties
Given a Minimal Generalized Gallery:

Y(C,F'): C=F.DF.---FyDF,=F
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between a chamber C of A and F’ € A, write:
si=typ F; (resp. t; =typ F}) (r >i>0).

Let g =typ v : s D t.---so C ty be the corresponding gallery of types
defined by v = v(C, F").

Recall that given a chamber C' of 4 and a couple of types ¢t C s (t #s) of
A it is denoted by F(ttis) (C) the unique facet of Stp, ), with typ F, (t 5) (C) =s,
transversal to C' € Ch Stg,(¢) in the star complex Stg,(¢), i.e. F([S)(C’)
facet of type s of Stp, () at maximal distance from C'

Proposition 9.36 Let v(C,F') = v4(C,F’) (resp. ~v(C,F') = v(C,F"))
be a right open (resp. closed) Minimal Generalized Gallery of type g =
typ v(C, F"). Then v(C, F’) is the unique Minimal Generalized Gallery issued
from C' of type g.

Proof By induction on r > i > 0 one defines a sequence of triples of facets

(Ci, Fi, F';) of A such that:
C; €Ch A (resp. typ F; = s;, typ F'; = t;),

as follows. Write

and if r > i
F'i = F,(Civ1), Fipr = FJ ) (Citr), Ci=projg,, Ciyr.

Let (Cy)rsiz0 be the sequence of chambers associated with v(C,F’) as in
Lemma 9.8, and defined by:

C,=0C, Ci=projpCiy1 (r>1i>0).

Clearly C' and sequence of facets (F;),>;>q (resp. (F}),>;>) define a gener-
alized gallery:
v(C,F"): C=F,.>F, - Fy DF:):F'

By an easy induction one has C; = C; (r > i > 0). It is clear that
C, iCT’ F, = F,., F'. = F'. It is supposed for r>i>1 that C;
Ci, F; = F,, F'; = F!. It is deduced that F;_q = F(tt ., )(C’Z—) = F;_4,
as H(C;, Fioq) = ’HFi/(Fi,l), and this proves that C; = C and F;_1 are
transversal (by Lemma 9.4 there is only one facet of type s;—1 transversal to
C; relatively to F'; = F;). It is concluded that C;—y = Ci—1 = projp, C;. 1t



Minimal Generalized Galleries in a Coxeter Complex 183

has thus been proved that with C € Ch and g € gall4 there is associated a
generalized gallery ~v,(C, F') satisfying:

g € gall g and v(C, F') a mgg of type g = v(C, F') = 74(C, F') .
This implies that if v(C,F') is a MGG of type g then it is unique to this
property.

It is clear that the preceding argument proves mutatis mutandis the propo-

sition in the case y(C, F') = vo(C, F").

Corollary 9.37 Let v(F,F') and 7(F, F") be two Minimal Generalized Gal-
leries with extremities F' and F' of the same type, i.e. so that typ v(F, F') =
typ ¥(F, F’) between F and F'. Then v(F,F') =5(F, F").

Proof Let C D ¢(F,F'). By Definition 9.16 v(C; F, F") (resp. ¥(C; F,F"))
is a MGG between C and F' and typ v(C; F, F') = typ F(C; F,F'). On the
basis of Proposition 9.36 it is concluded that v(C; F,F') =5(C; F,F") and a
fortiori v(F, F') = ~5(F, F").

The following proposition allows assigning to a type of relative position a set
of minimal galleries of types. This set furnishes a family of smooth resolutions
of a Schubert variety defined by this type.

Proposition 9.38 Let v(F,F') (resp. 7(F,F’)) be a Minimal Generalized
Gallery (resp. a generalized gallery) between F' and F' of type g. Then

7(F7F/):7(F3F,) )

i.e. if there exists a MGG ~v(F, F’) between F and F' of type g, this is the
unique gg of type g between F and F'. In this case one writes v4(F,F') =
Y(E F).

Proof For the sake of briefness the proof in the case g = g1, l(g) = r+1
(see i) below) is carried out. Thus write

VF,F): F=F, CF.---Fy D F},=F
(resp. ¥(F,F'): F=F, .y CF,---FoDFo=1F").
Choose a chamber C D c(F, F') (cf. Proposition 9.18) and define:

Cry1=0C, Ci=projp Ciy1 (r=i>0).

Observe that Ciy1 O F'yyy C F;, and choose a Minimal Gallery [

fi+1(6¢+1,éz‘); between C;y1 and C;. The set Ch S‘GF(Jr1 being a convex set
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of chambers, one then has T cchn Stf{+1 and thus “set of walls given by
() € Hyr,, (Fi)7 Write

T F)y=T"0...0T"'

(the composed gallery given by (fi)r+1>i>1 which is looked at as a gg between
C and I'), and |V*(I'(C, F"))| = number of components of W*(I'(C, F')) (resp.
|&*(T(Cy, Ci—1))| = number of components of W*(T'(Ci, Ci_1))). There is

0 (T (s, Ci1))| < [Hr, (Fiv)|
(resp. [UH(T(C,F)) = S [ (T(Ci, Cimn))D).

r1>i>1

On the other hand, the hypothesis v(F, F") = MGG (cf. Definition 9.11) gives
the equality

ZH’LFI 21|—Z|HF/ zl‘_”{(CF/)‘
Thus it is deduced B
[ (I(C, )| < [H(C, F').
This proves that T(C, F') is a Minimal Gallery (adapted to F(F,F')); and
thus that “set O*(T)N set O*(T7) = 07 for i 7é j, and |V*(T(C,F"))| =

|H(C, F")|. From the inclusions ¥*(T ) C Hgr,(Fi—1) and |9*(D(C, F'))| =
S| Hp (Fi—1)| it is deduced

v ( ) HF’ ( i— 1)
It is finally obtained
= H \I/*(fz) (abusive language) = HHF{ (F;_1),
i.e. ¥(F,F') is a MGG between F and F'. On the other hand, typ v(F, F') =

g = typ J(F, F’) by hypothesis proves that v(F, F') = 5(F, F'), as results from
Corollary 9.37.
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9.8 The Type of Relative Position associated to Minimal
Generalized Galleries of types

Definition 9.39

1) Recall gall 4 := Gallyyp 4, t.e. gall 4 = set of generalized galleries of the
typical simplex typ A, and define

gall’y := {typ 7| v a MGG of A} C gall 4
(the set of Minimal Generalized Galleries of types of A). Thus
gall’y = image by typ : Gall4 — gall 4 of Gall’y C Gally.
Given g € gall 4 (resp. F € A) write:

2) Gally(g) = typ~'(g) (resp. Gall’y(g) = Gall’y N Galla(g)). (The
Minimal Generalized Galleries of type g)

3) Gall’j (g, F) = Gall’j(g) N Gall4(F') (The Minimal Generalized
Galleries of type g with left extremity F')

Let v(F, F’) be a gg of A. Given an automorphism f : A — A of A, it is
denoted by

FOF ) = (f)(f(F), f(F))

the transformation of the gallery v = ~(F,F’) under f. If f € Wy then
fv = f(y(F,F")) is a generalized gallery of the same type as v(F, F’). The
mapping Gall 4 — Gall 4, defined by v — f., induces a mapping of the set of
Minimal Generalized Galleries Gall’} — Gall’y. It follows from its definition
that if v is a Minimal Generalized Gallery then f.7 is a minimal too and thus
Gall’y is stable under automorphisms of A. If f € Wy, i.e. f is admissible,
one has that V v € gall 4

typ f.oy =typ 7.
Thus
typ : Gallg — gall 4

factors through the quotient map

ga: Gally — Gally /Wy .
Then there exists a mapping

typ : Gallg /W4 — gallg
satisfying typ = typ o g4. Denote by

g% Galls — Gall’s /W4 C Gallq/Wa
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the mapping induced by ¢4, which is in fact the quotient mapping defined by
the induced action of W4 on Gally. Let
typ” : Gall’y /W4 — gall’y
be the mapping induced by typ. One has thus
typ™ =typ" o qj}.

From the following proposition it follows that typ " is a bijection.

Proposition 9.40 Let ~(F,F') and ~N(F,F") be two MGG of A with
tvp (F, ') = typ 7(F, 7). Then 1(F, F')
W =Wy, i.e. 3w e W so that w(y(F, F"))

and 7&?,7 ") are conjugate under
= 5(F, ) (resp. wy=7).

PIBOE iet C € Step,rry (resp. C € Ch Stc(f)@). T@ Y(C; F,F') (resp.
F(C; F,F")) is a MGG between C and F' (resp. C and F'). Let w € W such

that w(C) = C. By Remark 9.10, b), one has (C;, F;_1)is a couple in transver-
sal position thus it follows, by induction, that w(f/) = F'. Thus by hypothesis

w(F(C; F, F")) and v(C; F, F') are two MGG issued from C' and of the same
type and the same extremities, i.e. with typ w(y(C; F, F")) = typ v(C; F, F").
From Proposition 9.36 it is deduced w(5(C; F,F')) = ~(C; F, F’), and a for-

tiori w(F(F, F")) = v(F, F").

The following corollary states that Minimal Generalized Galleries under the
action of W are classified by gall’).

Corollary 9.41 The mapping typ" : Gall’} /W4 — gall’y is a bijection.

Let v(F, F') € Gall’} be a representative of the class of Gall’y /W4 = gall’y
indexed by ¢ € gall’y. The class 7(F, F’') € (A x A)/W of (F, F’') is indepen-
dent of the choice of the representative v(F, F’) of the class g. This results
from the evident fact that the mapping e : Gall4 — A x A defined by

E = (Ey,Ey) : y(F,F') — (F,F’) (the extremities mapping)

is W = W 4-equivariant, by definition of the action of W on Gally (resp.
A x A).

A type of relative position correspondant to a Minimal Generalized Gallery
of types g € gall’} is defined as the type of relative position of the extremities
of a representative gallery of the class g.

Definition 9.42 Let 7, : Gall’y /W = gall’y — Relpos A = (A x A)/W
be the mapping defined by 1¢ : g+ 74 = T4(F, F'), where v(F,F') € gall’y
is a representative MGG of the class defined by g. If E™ : Gall’y — A x A
denotes the restriction of E to Gall’y C Gall 4, one obtains the relation:

ToE™ =71404q7.
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Tt is known that the quotient (C(&,41,5)xC(&r41,5))/Sr41,.5) is identified
with the set of relative position matrices. Let M be a matrix defining a type
of relative position. One has defined a minimal generalized gallery g(M). By
its construction it is clear that to g(M) it corresponds by the above definition
the type of relative position defined by M. In fact one has thus defined a
section of 7, : gally g | ¢y — Relpos C(&,41,5)), Le. Ta(g(M)) = M.
Let 79 € Relpos A = (A x A)/W 4. Recall that (A x A),, =7 1(70).

Definition 9.43 Write
gall’} (7o) = 757} (70) = {g € gall’} | 7a(9) = 70}
(resp. Galllg (7o) = (¢¢) "' (typ™ ) ~"gall’y (10) = (typ™)~*(gall’} (10)) ).

There is the following disjoint union:

Gall} () =[] Gall’}(g) .
g€gall’y (o)

The set of MGG ~(F,F’) with 7(F,F') = 79 decomposes in a disjoint
union indexed by the set of types of MGG gall™(7g). The following propo-
sition proves that the restriction of E™ to Gall’y(g) induces a bijection
E™|ganr (g) © Gall{(g) ~ (Ax A),. In other words given a couple ((F, F'), g)
with 7(F, F’) = 79 and ¢ € gall’y(70) there exists a unique Minimal Gener-
alized Gallery ~4(F, F') of type g characterized by E™(v,(F,F"')) = (F,F’).
Proposition 9.38 implies:

Proposition 9.44 The mapping
By Gall’y(g9) — (A x A)r,,

induced by E™, admits a W -equivariant section oy : (A x A)., — Gall’}(g)
defined by

og: (F,F') — v4(F, F') ,
where T(F,F') = 14 and ~4(F,F’") denotes the unique MGG of type g (cf.
Proposition 9.38) between F' and F'. In fact 04 is a W 4-equivariant bijection.

Let (A X A) XRelpos 4 gall’y be the fiber product set defined by the couple
(1,7s). Given 7 € Relpos A the fiber over T is given by

((A x A) XRelpos 4 gall’})r = (A x A), x gall’y (7).

Thus the following decomposition holds

(A x A) XRelpos 4 gall} = I (AxA);xgalli(r)

T€Relpos A

= II (A x A)r x {g}.
(1,9)€(Relpos A)xgally,

T=Tg
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Consider also the decomposition defined by the types of galleries
Gall = [[ Gall’}(g).
gEgall’y

The natural mapping E™ X Rreipos, typ : Gall’} — 0 1 (A X A) XRelpos 4
gall’} — Gall’y admits a section

0 (A X A) XRelpos 4 gall’y — Gall’y

o= 1[ =

g€Egall’y

defined by

where

Gy (Ax A, x{g} = Gall’{(g),
is defined by @, : ((F,F’),g) — ~4(F, F’). From the fact that 7, (g € gall’y)
is a W 4-equivariant bijection, it follows that o is a W 4-equivariant bijection.
For example observe that oy @ (A x (AM)y — Gall?,,, (g(M)) is

Al
given by 7oy 1 (D, D) = ygany (D, D'), where vyar)(D, D') = v(M).

9.9 The Contracted Product defined by a Gallery of Types

The correspondence between Minimal Generalized Galleries issued from a
chamber C and a set of words in % is extended to a correspondence between
the generalized galleries issued from C and words in a set W2 larger than
e

It is recalled that there is a building isomorphism typ A — A(C) defined by
t— F(C). Let g € gall ;. Define v, ¢ C A(C) as the image of g by the pre-
ceding isomorphism. It is called -, ¢ the basical gg of type g defined by C.

Definition 9.45 With the notation of Definition 9.16 the length
I(y1(F, F")) is defined (resp. I(y{(F, F")), l(y2(F, F")), U(75(F, F"))) by:

I(FF)=r+1 (resp. [ (F, F)) =r+1, l(y(F F'))
1, U(E ) = 5+ 1),
It may be represented thus v1(F, F') (resp. vi(F,F"), v2(F, F'), v4(F, F")) by:

V(EE)  (F)rzizo » (F))rizizt
(resp. N(F, F') s (Fi)rzizo > (F))rp1ziz0

V2 (L F')  (Fy)rzizo 5 (F)rziz1

Vo(F,F) : (Fi)rzizo 5 (F))rsizo )

Write typ F; = s; and typ F! =t;.
Let g1 = typ n(F,F') (resp. g1 = typ n(F, F'), g2 = typ »(F, F"),
95 = typ vo(F, F') ). Write:
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2) l(g1) (length of g1) = l(v1(F, F")) (resp. U(g}) = L(vi(F, F"))(length of
91), Ug2) = U(ra(F, F'))(length of ga), l(g5) = l(va(F, F")) (length of

0]

3) s(g1) = (s;) = (typ Fi)rziz0, t(g1) = (t;) = (typ F))ry13i>1 (resp
5(g1) = (i) = (typ Fi)rzizo, t(g1) = (i) = (typ F})ri13i>0,
5(g2) = (s:) = (typ Fi)rzizo, t(g2) = (ti) = (typ F})rziz1,
s(g5) = (s:) = (typ Fi)rziz0, t(gh) = (t:) = (typ F)rziz0);

4) s(g) = (si), t(g) = (t;) we write t;(g) :=t;, si(g) := si.

Denote by gally (resp. gally, gally, galll) the set of g € gall 4 which are
of the form: g1 = typ n(F,F') (resp. g = g1 = typ Nn(F.F'), g =
g2 = typ w(FF'), g = g5 = typ v%(F,F')). Let v € Gally with
typ v € gally (resp. typ v € gally, typ v € galls, typ v € gally). Write
v=m (resp. ¥ =71, ¥ =72, ¥ ="3), and denote by

th‘ (7) = Ftri(typ ) (’Y) (resp. E‘?i (’Y) = FSi(typ '7)) y
the corresponding facet of ~y.

Remark 9.46 With this convention the generalized gallery v associated with
an injective gallery T = (Cy., -+, Cy), as in the commentary that follows Def-
inition 9.6, is of length r + 1, while T is a gallery of length r.

Definition 9.47 Let s € typ A be the type of a chamber, i.e. s = typ C,
C e Ch A.

Define a mapping galla — gall 4 by g — g* € gall 4 where g* is defined
as follows. If g = g1, ¢} (resp. g = g2, g5) with 1(g) =7+ 1, let g* € gall 4 be
given by:

W(g")=r+2 (resp. l(¢*)=r—+1), and

gt (8))rr1ziz0, t(g) (vesp. g*: (s7)r>iz0, t(9)),

with sf =s (r+1>2i>0) (resp. sf=s (r>i>0)). Thus g* is obtained
from g by changing each type s;(g) into the type of a chamber s;(g*) .

Write Wy = Wg, (o) (t € typ A). Let C(W_4,Sc) be the Coxeter system
defined by the set of reflexions S¢ defined by the walls of C, and C'(W 4, S¢) ~
A the corresponding building isomorphism, and ¢ = (w(t,s)) ((t,s) €
typ® A), where w(t,s) = w(C, projxC), with F = F&’:S)(C). There is then
w(t,s) € Wi. Let X € P(S¢) correspond to ¢ under the identification

P(SC) ~ typ A7

i.e. Fy C C corresponds to the facet of C(W 4, Sc) whose set of vertices is
X C S¢. Then W, = WSC—X-

One defines for each gallery of types g a couple of groups We(t(g)) (resp.
We(s(g))) and an action of We(s(g)) on We(t(g)).
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Definition 9.48 Let g € gall 4 be characterized by t(g) = (t:(g))(resp. t(s) =
(s;j(g9))). Define the group We(t(g)) (resp. We(s(g))) in the four different
cases by:

1) g=a0
Welt(g) =Wetg) = [ W
rel1zi>1
(resp. We(s(9) =Wels(g) =[] W)
r>i>0
2) g=9
Welt(g) =Wetlg) = [ Wuw
r41>i>1
(resp. We(s(9) =Wels(g) =[] W)
r>i>0
3) g =92
Wel(t(g) = Wel(t(g) = H Wii(9)
(resp. We(s(g)) = We(s(g) = H Wii0));
r—1>2i>0
4) 9=95
Wel(t(g) = Wel(t(g) = H Wii(9)
(resp. We(s(g)) = We(s(g) = H W)
r—1>i>0

Remark 9.49 The above construction is a particular case of a general one.
Let v € Gally, and g = typ v. One associates with v two groups as follows.
White t(7) = (FL(,\(1)) (resp. (1) = (Fs,(g) (1)), and define:

)):HWF{i(g) (resp. W (s H Fy, (g)

where i (resp.j) runs over a convenient set of indices which depends on the
class of g. Clearly there is:

Wo(t(g)) = W(t(yg.c))  (resp. Wel(s(g)) = Wis(v.0)))-

Definition 9.50 Define a right action We(t(g)) x We(s(g)) = We(t(g)), of
/

the product group We(s(g)), on the underlying set of We(t(g)), by (x,y) — o',
where:
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1) ifg=g1,x= (xi)r—i-l}i%l (resp. @' = (})ry13i>1), ¥ = (Yi)r>izo0, then
Tygq = Tpg1Yr, T =Y; TiYio (120 21);

2) ifg=g), x= (xi)r+1>i%1 (resp. @' = (2})r+12i>1), Yy = (Yi)rziz0, then
x;q.l = Tp41Yr, :C; = yl_ TilYi—1 (T =12 1);

3) ifg=g2, = (%)@@1 (7”65]7- = (172)797:;1), Yy = (yv:)r—1>z'>o, then
Ty =y, ¥ =y iy (r—12021);

4) if g =95, = (Ti)rziz1 (resp. ' = (2})r>iz1), ¥ = Yi)r—13i0, then
1

The quotient set W (t(g))/We(s(g)) is called the contracted product de-
fined by the basical gallery v, c.

Remark 9.51 Two groups W(s(7y)) and W (t(y)) may be similarly defined
and a right action of W(s(vy)) on W (t(~)) for a generalized gallery v in A,
and correspondingly define the quotient set

Wo (t(7)/Weo(s(v))

(the contracted product associated with the gg 7).

9.9.1 Sets of Generalized Galleries as Contracted Products

Notation 9.52 Given v = v(F,F') € Gally of type typ v = g and length
I(~y) we write:

v (Fj)jerg) ; (Fil)iel/(g) )
where the set of indices 1(g)(resp. I'(g)) depend on the class of g. 1t is
understood that:

1) the inclusions F; O Fy, Fj, | C F; hold whenever they are defined;

2) this same convention applies mutatis mutandis to a g € gall 4, it is
written:
9:(sj)jerig) » (tj)ier(g) -

Let the gg v = v(F, F’) with I(y) = r + 1 be given, according to the above
notation, by v = y(F, F') : (), (F}), where v = v; or 7; (i = 1,2). Write
typy=g: (si), (t;). Thus

Fy=F,,(v), Fj = F;(7) .
The gallery 74, c C A(C) is given by

Tg.0 0 (Fs (C)), (F,(C)).
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Let Gall4(g, F) denote the set of gg of type g issued from F, and z =

(Ti)ry13iz1 (vesp. = (T3)rziz1) € Wel(t(g)). If g = g1, 97 (resp. g = go,93).
Write

i = H Loy ZT+2=1

r+1>a>1i

(resp. z; = H Ta, Zr41=1),

r>azt

and define, by means of v, ¢, the mapping:

We(t(g)) —  Galla(g, Fi,., (C))
(resp. We(t(g)) —  Galla(g, F5,(C))) ,

if g =g1,91 (resp. g = g2,93), by
z = yg,0() (2 (Fs (0))), (2j3+1(F,(C)))-
Also write z - v4.c = v4,c(z) with x € W (t(g)). Remark that:
Fo,(C)D F(C) = 2i41(Fs,(C)) D 21 (F1,(C))

(I"GSp. Fi (C) C FSi (C) = Zi+2(Fti+1(C)) C ziJrl( (C)))

i+1

as Zj41 = Zi4+2Ti4+1 with Ti+1 S WFti+1 giVGS Zi+2(Ft7',+1 (C)) = Zi+1(Fti+1 (O))
Thus v4,c(x) is a gg of the same type as v4,¢, i.e. typ v4,0(x) = g. Given
C € Ch A one writes:

FQ(C) = Ft7~+1(g)(C), if g= glagll
(resp. Fy(C) F, (), if g=g2,95) .

Definition 9.53 The above defined mapping
We(t(g)) — Galla(g, Fy(C))
factors through the quotient mapping:

We(t(g)) = Wel(t(g))/We(s(g)),

as it is easily verified. Denote by

igc: Wol(t(g))/Wo(s(g)) — Galla(g, Fy(C))

the induced mapping.
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9.9.2 Bijectivity of this mapping
Let the isomorphism C (W, S¢) ~ A be made explicit. The choice of C' € Ch A
gives rise to a building isomorphism
ic= [ inc: COW.Se)= [ W/Wse-x=A= [] A
tetyp A XCP(Sc) tetyp A

defined as follows. Let ¢t € typ A correspond to Y € P(S¢) = typ C(W, S¢)
under the induced bijection typ C(W, S¢) ~ typ A, given by X — Fx(C)
where Fx(C) C C denotes the facet invariant under Wgs,_x, one writes
t = tx. Then thereis: W = Stab Fi(C') = Ws._x. Define i, c : W/W; — A,
by:

inc: @ w(F(C)) .

Proposition 9.54 Let g € gall ,. It is supposed g = g1, l(g) =r + 1. Write,
according to the preceding convention (cf. Notation 9.52)

g (8i)rziz0, (tj)r+125>0-
Then, with the above notation (cf. Definition 9.48), the mapping
We(t(g)) = Galla(g, Fi,., (C))
defined by x — v4.c(z) (x = (z;) € Wc(t(g))) where
Yg,0(®) + (2it1(F1,(C)))rziz0, (2j41(Fs; (C)))r+13520

and zo = [] =z, (resp. zr42 = 1), satisfies:
r12j>a

Yg.0(7) =g.0(u) (u=(ui)ri12521 € Wel(t(g))) =
3y = (Yi)rzizo € Wels(g))
so that: ©.y = (Tr11yr, Yy ' Tryro1,--- Y ' T1Y0) = w.
Proof Denote by Z; 1 (resp. 2'j+1) the class of zi41 (resp. ziq1) in W/W,
(resp. W/Wy; ). Let g € galloy,s,.y correspond to g by typ A = P(Sc), and

Y C Sc to tysa, i.e. ty =t,q1. The composed mapping of © — 4 c(z) with
the bijection ial : A C(W, S¢), induces the following mapping:
Galla(g, Fy,.,, (0)) = Gallow,s.) (g, Fy (Ce))
transforming vy o (x) into ¥, (x) : (Ziy1), (j41). Write va =  []  w.
r+12iZa

The hypothesis 74 c(x) = v4,c(u) translates into:

Zatl = Vat1 (mod W)
(resp. za41 = Vat1 (mod Wi,)) (r>a >0).
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Then
(*) Vrza>0 Iy, € Ws,/ Vat1 = Zat+1Ya-

Let it be proved by induction thatV r > a > 1 the equality
E(a) : (xr-l-lyrv y;lxry'r'—lv ce axaya—l) = (ur+17 ce aua)

holds.
For o = r + 1 this is just (x). Let then r > «, and suppose that E(a + 1)
holds. Thus Va1 = Za+1Ya- By (x) one obtains

Va+1Uag = Va = 2alYa—-1 = Za+1TaYa—1-
By substitution vo4+1 = Za+1Ya one obtains
Za+1Yala = Za+1TaYa—1,

Be. Uy = Yo ' WaYa—1. This equality joint to E(a+1) gives E(a). The equality
E(1) is that of the proposition.

Remark 9.55 The proof of proposition 9.5/ may be easily adapted, mutatis
mutandis, to that of the corresponding statement obtained by supposing g = g1

(resp. g = g2, 9 = g3), instead of g = g;.

The proposition gives immediatly the following

Corollary 9.56 The induced mapping igc :  We(t(g)/We(s(g)) —
Gall4(g, Fy(C)) defined by x — vg.c(x) (x € We(t(g))) is injective.

Definition 9.57  I) Let v € Gall4(g), where g = g} (resp. g = ¢1), and
l(g) =r+1, be given by

v (Fi)rzizo, (Fj{)r+1>j>0 (resp. (Fj{)r+1>j>1)~

Given r > o > 0 one defines the a-truncated gallery v of ~ by:
(@)

Y (Fi)rzizar (Fj)ri1zizat1-
Givenr > a >0 (resp. 7 = a > 1) one defines the a-truncated gallery
7" of y by- ,

YO (F)rsisa (FD)ri1zj>a-

Thus typ 7)€ gally (resp. typ v € gall}).

II) Let v € Gall4(g), where g = g (resp. g = g2), and l(g) = r+ 1, be
given by

v (F)rzizo, (F))rzjzo  (vesp. (F))rzjz1)-
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Given r > o > 0 one defines the a-truncated gallery v(*) of v by:
’V(a) : (Fi)r>i>a7 (F]{)r>j>a+l~

Givenr > a 20 (resp. 7 > a > 1) one defines the a-truncated gallery
7@ of v by /
’7(“) : (Fi)r>i>a7 (F{>r>j>a'

Thus typ 7% € gally (resp. typ v (@) ¢ galll).

The following proposition is interesting by itself and does not play any role
in the proof of the bijectivity of iy c.

Proposition 9.58 Let v = v(C, F’) a MGG between the chamber C' and the
facet F' of A. It is supposed that typ v = g5, and I(y) =+ 1. Write

Y=9C F') s (F)rzizo, (Fj)rzjzo-
One then has that the a-truncated galleries
Y =~N(C,Fy) (rza>0)  (resp. ¥ (C,F)) (r>a>0)
are Minimal Generalized Galleries.

Proof As in Lemma 9.8 a minimal gallery adapted to v(C,F’) is con-
structed. Thus one defines the sequence of chambers

Cr=C, Cy=projp Cot1 (r>a=0),
and a sequence of minimal galleries:

( 1'\04(: Fa(com Cafl))) r>a>1-

It is known (cf. Subsection 9.2 Construction of a minimal gallery adapted to
~(C, F")) that the gallery obtained by composition of (T'*):

r =rWC,,Cy)=T"o0--- oI

is a minimal gallery adapted to v(C, F'). A fortiori the a-truncated gallery
@ =T"0...0T% is also a minimal gallery. Let it be proved that T'(® is in
fact a minimal gallery between C and F.,. One must then see that for every
wall

HeHp(Fa) [[ [THr,, (Fa)  (=H(C,Ca))
that T(®) crosses one has F! ¢ H. It is clear that if this property holds, there
18

H(C, F) =Hp (B[] [ He,, (Fo)
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and consequently that T (C, F.) is a minimal gallery between C' and F',. It
s supposed that there exists j > « so that

(*) HEHE;+1(FJ‘) and FéEH.

Let it be proved that mecessarily j > «. Otherwise one must have H €
Hrr, (Fo) and F, € H. It is known that H € Hp,  (Fo) = H € H(Cy, FY),
thus Fj ¢ H.

On the other hand,

H e HFA+1 (F,) and ’HF‘/]Jr1 (Fu) ﬂ’HFLf! (Fo1) = 0

implies Fo—1 € H. Thus as Fl,_; C Fa_1 it is deduced that H € Her s
and finally that Fo_o € H, otherwise one should have H € ’HFC/YA(FQ,Q).
Pursuing this same reasoning one must certainly obtain the conclusion Fy € H
(and a fortiori F) € H ), which contradicts the hypothesis F{y ¢ H.

Let now j > « so that (%) holds for j. One then has H € Hp: NH(C,, Fp).
As ’HF]{H(Fj) NHe: (Fa1) = 0, one must have Fo,_1 € H. By the same
argument as above, the contradiction F}, € H is obtained. Thus no H satisfies
(¥). This proves that T®) is a minimal gallery and finally that ~(*)(C, F!) is
a MGG.

Corollary 9.59 [of the proof| One has projp, C' = Cq (r > a > 0).

Remark 9.60 In fact it is easily seen that, more generally, the truncation

Y (F,F') of a MGG, v(F, F') is also a MGG.
Proposition 9.61 The mapping i4c is surjective.

Proof It suffices to see that x — v4.c(x) is a surjective mapping in the case
g =gy andl(g) =r+1. The cases g = g1, g2, g5 may be handled in essentially
the same way. Write t; := t;(g) (resp. s; := si(g)). Let it be proved that
given

v (Fi)rzizo, (Fj)ri1z530,
with F}, = Fy, ., (C) there exists v = (x;) € We(t(g)), so that, with the
notation of proposition 9.54, one has:

Fi = 241(Fs(0) (vesp. Fj = 211 (F,(C))).

In this case one writes v = x.v4,C.-
One proceeds to prove by induction that:

(%) Vr>a>0 3zt = (x;) € H Wi(t;(9)),

r+l1zj>za+l
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so that:
Fi=21(F(C) (r>i>a) (resp. Fl = 21(Fy(C) (r>j > a)).
Let o = r. One has
Yy ot Fr 1 (C) C Fs (C) D F, (C).

There is a bijection Wy, ., /Ws, — (Str, . (c))s,, defined by: T — x(F;, (C))
(T € Wy, .,/Ws, ). Thus given Fy ., C F,., with typ F, = s,, there exists
x € Wi,,, with x(Fs, (C)) = Fy, i.e. 320D € W(t(g™"")) = W,,,, so that
gy oy o =T

Let r > a > 0. Reasoning by induction, it is supposed that there exists

@t = (;) € H W(t;(9)),

r+1z2j>2a+2

r+4+1

satisfying: £ A iy o = ~ @' Then one has Fl,, 1 = zo12(Fr, (C).
Thus there is a surjection

WF{;+1 — (StF(’H_l)saa

defined by: w — w(za42-Fs, (C)), as (Strr, )s, is a Wry  -homogeneous set.
On the other hand,
W

_ -1
Y1 za+2Wta+1za+2.

It is concluded that there exists xo11 € Wy so that

at1?
F, = Za+2xa+1Z;J1r2(Za+2(Fsa (@) = zat2Tat1(Fs, (C)).

Write x>+ = (@})r+12j>a41, with Toi1 = Tay1 (Tesp. (z}) = (ot
(r+1>j>a+2)). Itis finally obtained that 9C(a+1)~79<a)/7c =~ This
concludes the proof of (x), and consequently

ig.c: Wel(t(g)) — Galla(g, Fy(C))

defined by igc : x +— v40(x), where Fy(C) = Fe,()(C), is a surjective
mapping.

From Corollary 9.56 and Proposition 9.61 one deduces the

Proposition 9.62 The mapping

igc: Wo(t(g))/Wo(s(g)) — Galla(g, Fy(C))

s a bijection.
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One has associated with g € gall4 a gallery g* € gall4 (cf. Definition
9.47). Observe that

W (t(g"))/W(s(g")) = W(t(g"))-

Thus, in this case, there is a bijection ig« o : W(t(g*)) — Galla(g*,C). On
the other hand, there is a natural mapping

qq+ : Gall4(g*) — Gall4(g),

defined by:
g V"= Fy(v") (77 € Galla(g”))
where F,(v*) is the gg of type g defined by F, (Fy(v*)) = Fs,(Ci) (r > i > 0),
and Iy (Fy(v*)) = F4,;(Cy), with (¢;) = t(g) (resp. (s:) = s(g)).
From the inclusions t;11(g) C si(g) D ti(g) it results that Fy,  (Ciy1) C
F,,(Ci) D Fi,(Cy). ie. the sets of facets (Fy, (C;)), (F,;(Cj)) satisfy the

i

inclusions defining a generalized gallery F(v*).
Denote by
gg+.c : Galla(g*,C) — Galla(g, Fy(C))

the restriction of g4« to the set of g*-galleries (resp. galleries of type g*)
issued from C, Gall4(g*,C) C Gall 4(g*). The set Gall4(g,C) thus appears
as quotient set of Gall4(g*, C).

Let W(g-.c) : Welt(g)) — We(t(g))/We(s(g)) be the mapping defined
by

W(qg*,C) = Z;lc ©{gg*,Cc © Z.g*,C'

The following lemma shows that g4~ ¢ corresponds to the quotient mapping
W(t(g)) — W(t(g))/W(s(g)) by the isomorphisms iy o (resp. igs,c). It is
easy to see (cf. Proposition 9.54) the

Lemma 9.63 The mapping W (g c) coincides with the quotient mapping
defined by the right action of We(s(g)) on We(t(g)) (c¢f Definition 9.50).

Definition 9.64
A) Let g € gall, with I(g) = r+ 1, and C € Ch A. Define a mapping
sg.c: Galla(g, Fy(C)) — Galla(g*,C) by
Sgrct Y
(The canonical section of g4« ) where v* is defined as follows.

1) Let g = g1 (resp.  g1), and v :  (Fy)rzizo, (Fj)ri1zj>1
(resp. (F})rt12j20) - Define v* by

70 (Ci)rizizos (Fj)rpizjs1 (vesp. (F))r+13530),

where Cry1 = C, C; = projp Cip1 (r>1>0).
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B)

2) Let g = g2 (resp. g5), and v :  (Fy)rziz0, (Fj)rzjz1
(resp. (F})r>j>0) - Define v* by

71 (Ci)rzizo, (Fj)rzjz1 (vesp. (Fj)r>j>0),
where C,. = C, C; = projpCiy1 (r>i20).

Denote by sy o+ Gall’{(g, Fy(C)) — Galla(g*, C) the restriction of
sg+.c to Gall{ (g, Fy(C)) C Gallu(g, Fy(C)).

Let G C Gall4(g). Write:
Ch Ax G :={(C,y(F,F")) € Ch Ax G| Fyy, r(C) = F},

i.e. Ch AxG = Ch A x 4G where the second member is the fiber product
defined by the couple of mappings Ch A — A (resp. G — A), given by
C— Fo (g)(C) (resp. Erlg : v(F,F') — F). The section sy« c may be
extended to a section on Ch A x Gall4(g).

Let sg= cp, : Ch Ax Gall4(g) — Gall4(g*) be the mapping defined by

Sgecn i (Coy(F, F')) — " (C, F").

Thus given (C,~y) € Ch Ax Gall4(g) one has sg- cn((C,7)) = sg+.c (7).
Let
Sgeen s Ch Ax Gallj(g9) — Gall4(g")

be the restriction of sg« cp, to Ch A x Gall’j(g) C Ch A« Gall 4(g).

Let E = (F1, Ey) : Gally — A x A be defined by E : y(F, F') — (F, F’) (the
extremities mapping). Let

Eq xqg- 0 Gally(g*) = Ch A Gall4(g)

be the fiber product mapping

El*q_q* :E1 X_Aqu.

It results immediately from Definition 9.64 and the definition of g4~ that:

(Vv € Galla(g, Fy(C))) »  (gg=,c08g+0)(7) =7

(resp. V (C,v) € Ch Ax Gall4(g) ((E1 % qg+) 0 sg.en)((C,7)) = (C,7) ).

Then one has

dg*,c © Sg*,c = lGalla(g,F,(C))

(resp. (E1 % qg) © Sg.ch = 1ch AxGalla(g)).
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9.10 The Representatives Set of a Contracted Product defined
by a gallery of types

With the natural section s4« ¢ of the quotient mapping g4+ ¢ corresponds a
section of the contracted product W (t(g))/W(s(g)) — W (t(g)) whose val-
ues gives a set of canonical representatives of the quotient. These represen-
tatives are calculated in terms of the minimal length elements in the classes
(W/Wr)rce-

Define

W(sge,c) 2 Wlg) =Wel(t(g)/We(s(g)) — Welt(g))
by
W(sg+c) = i;*l,c 0 84+, Olg,C-
One thus has
W(gge.c) o W(sgc) = (i ¢ 0aq.c0igec)o(iydcose coige)
= ijgolpoige =l

It is concluded that:

Proposition 9.65 The mapping W (sg+,c) is a section of the quotient map-
ping W(qg.c) : We(t(g)) = Wig) = We(t(g)/We(s(g))-

Notation 9.66 Given a classT € W (g) one denotes by wy« ¢ (T) the element
which makes W (sg+ ) correspond to T. It is thus concluded that the set

(wg+.c(T))zew(g) © Welt(g))

is a set of representatives of W(gqg-.c): We(t(g)) = Wel(t(g))/We(s(g)).

9.10.1 Explicit calculation of the Representatives set

Write:
g (Si)rziz0, (tj)rt125205 T = (Ti)r+13i20 € Wel(t(9)); 2z =

H Zo (resp. zp4o =1).
r+l1>a>1

Thus one obtains i, c(Z) = v,,c(x) for T € W(g) cf. Definition 9.53, with

Yg,c(@) 1 (2ig1(Fs,(C))rziz0,  (24+1(Ft;(C)))rt13530-

Let v, o(z) be the image of v4,c(x) by sg«,c (cf. Definition 9.63). Write

Vg,0(®) 1 (Ci(@))rt1ziz0, (2541 (Fy, (C)))r1z520-
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The determination of ’y;"c(x) amounts to that of the sequence of chambers
Crp1=C, C; = Ci(z) = projp, ) Citi1(z) (r=1i2>0)

where F; = F;(x) = z;41(Fs,(C)) (r =i > 0). Clearly the following inclusions
holds
C;DF; D Fz/ = Zl_._l(Ft?(C))

Definition 9.67 Define 2™ = z* = by the following recursive defini-
tion. Let x)", = the minimal length ls.(z]" ) representative of the class
Trp1 € Wi /W, ; and y, € W, be the element defined by x| = Try1Yy,
ie. Yp = m;ilxm_l. Forr > i 2 1 one writes z]" = the minimal length
ls. () representative of the class yi_lxi € Wy, /Ws,_,, and let y;—1 € W, _,
be the element defined by x]* = y;lxiyi,l, e Y1 = x;lyiwﬁn.

Let it be written w,- ¢(T) = 2™ = (2;™). The characteristic property of
'™ being
2" g0 =Yg ,0(2"™) = sg+ 0 (Vg,0(T)) = 75.0(2),

or equivalently

m —
where 2| = I =
r+1>2a2i+1

Proposition 9.68 The following identity holds: ™™ = wg- ¢ (T).

Proof Let w, =w(C;,Ci—1) (r+1>21>1) (resp. zry2 = yrp1 = 1). One
then has w;y = w(Cry1,Cy) = 27 4. Define forr +1>i>1

w = (zip1y:) ;" 2yi-1) (ziv1y) ™ = (Zigys) 2l (zigays)

From the equality ™ = (z*) = (y;lxiyi,l)r+1>i21 it is obtained

zZit1 = H Ty = H (Y ' Tata—1) = ( H Ta)¥i = Zi41Yi-

r+l1>a>i+1 r+l1>a>i+1 r+1>a>i+1
Then it follows that w]* = zﬁlxgn(zﬁ_l)_l. Consequently it is obtained, as
may be easily verified by induction, that

m m

— m — m
(%) Fi1Yi = Tppqet Tipy = Wigg - Wpgq-

Let it now be proved by induction w, = w(Cy, C;—1) = wi™. It is known that
wy = w(Cry1,Cr) = 2 = Tpg1yr = wlyy. Letr >0 > 1. It is supposed
by recursive hypothesis that w),,; = wy',, for o > i. Thus one obtains

/ /! _ m m —_ sm . .
Wigq "Wy = Wigq Wy = 21 = Ri+1Yis
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then (zi41y:)(C) = wi ;- w1 (C) = C; D F; (D F}). On the other hand,
Cl_1 =2z/(C) D zi(Fs,_,(C)) = Fi_1, i.e. C{_; is a chamber incident to F;_1.
As

2 = Zi41d = (Ziﬂyi)(y;lf”i)(Zi+1yz')71(Ziﬂyz) = Z7.+1(y' 1951)(2211)712:11-

It is recalled that 2"}, (C) = Cy, thus it is deduced that
Ciy = 2(C) = 241 (y; 20) (2]11) 71 (Co).-

Let w; = the minimal length lgc,)(u;) element of the class of

2 (i) (272,) " in W /270, W, (2 2it) T =2 (W, /W) (20) . Tt
is concluded that C;_y = projp,_ C; = u;(Cy), i.e. u; = w(C;, Ci_1). On the
other hand, it is known that by definition

" =y iy € Wi, /W,

is the minimal length s, (z") element of the class y; 'x; € Wy, /Ws, ,, and
finally one has w} = 2/ 7 (271,) ™" = wl™. From (xx) it is concluded that (x)
holds in view of (wi, ---w,.1)(C) = Cj. This proves that x™ gives wg- c(T),
and thus achieves the proof of the proposition.

9.11 Minimal length class representatives in facet stabilizer
subgroups

Write
Sta@ = {F e A(C)| Fy C F}

(Star Complex of F; in A(C)), and St}f}t for the Star Complex of F; in
A, where F; = F;(C) (t € typ A). On the other hand, the isomorphisms
ic : C(Wy,S8c) ~ A (resp. typ C(W,S¢) = P(S¢) ~ typ A ~ A(C))
induce the isomorphisms

‘StFt

1o : C(WSC—Xf,aSC*Xt)‘}StFt :St?},

where X; C S¢ corresponds to ¢t by P(S¢) ~ typ A; thus X; indexes the
vertices of Fy, and

typ C(Ws,—-x,,Sc — X)) = P(Sc — X¢) ~ typ St ~ StA(%)
One has that
CWse-x,,8c—X)= [ Wse-x,/Wr
FeStﬁt((CC))

and given s D t the restriction

StFt

los * WSC_Xt/WFs = (Stﬁ)s (FS 2 Ft)v

is defined by w — w(Fy) € (StA)
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Definition 9.69
Given F' € (Stgp,¢))s, let Wp € Wso—x,/WFr,, where Wg, = Ws_x_,
be the class of an element wr satisfying wp(Fs(C)) = F. In other terms
Wp = (ip ™) L(F). Let
wip = w(C,projpC) € Ws,_x,.

One has that wi € Wr is the minimal length element in the class Wy, i.e.
lse (WE) is a minimum of the function w — lg,(w) (w € Wp). As Wi €
Ws,—x, one then has

lSC*Xt( ?) lSc( m)

Thus Wy € Wr 1s characterized as the minimal length element, relatively to
Sc — X, of this class wp C Ws,_x,-

Write Wy = Wg,_x, thus Wgp, = W.

Definition 9.70
Let (t,s) € typP A (cf. Definition 9.5). Write:

W&n(t,s) = {w? S Wt| F e (StFt(C))s ~ Wt/WS}
(The set of minimal length representatives of the classes W;/Wj),

and
wg= I wes) .
(t,s)etypD A

Given g € gall 4 so that g = g1,9) (resp. g = g2,95) with I(g) =7+ 1, let:

Weg) = I Wee),si-1(9)
r4+1>2i>1
(resp. W& (g) == [ Weti9),si-1(9))).
rzi>1

Clearly one has the inclusion W& (g) C We(t(g)).

Remark that the family of classes of representatives (W' (£, 5)) (1,5)ctyp 4
is indexed by the same set of indices as . C W (cf. loc. cit.). The set
W (t,s) C Wy (cf. Definition 9.70) is in fact a set of representatives of the
quotient set W;/Ws, by means of the following correspondence. Given w €
W, /Wy, one writes Fi := w(F5(C)). Define a bijection Wy/Wy — WZ (¢, s),
by w — wit (cf. loc. cit.). The set W' plays the same role with respect to
generalized galleries issued from C' as S¢ with respect to Minimal Generalized
Galleries, i.e. Generalized Galleries issued from C correspond to words in W
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Definition 9.71

Define the length of a class w € W, /W relatively to S = S¢ by ls(w) =
ls(w™), where w™ € W 1is the minimal length ls(w™) element of this class.
If F = Fftis)(C) then the element wi (cf. loc. cit.) satisfies the following
characteristic property:

(Vwe Wy /Wy) lg(wh) > ls(w).

By definition F = F (tt” s

C in Stg,(¢), i.e. C and F are in transversal position in Str, (C) and wi =
w(C, projC), thus

)(C) is the facet of type s at maximal distance from

(Vw € Wy /Ws)  ls(wi) =d(C, F) > d(C, Fy) = ls(w).
By definition of w(t, s) it is obtained
w(t,s) = w(C,projpC) = wiy.
Thus w(t, s) is the representative of the maximal length class in W;/Wj.

Proposition 9.72 With the notation of Proposition 9.5/ one has: The map-
ping

igo: We'(g) = Galla(g, Fy(C))
defined by iy'c : x> vg,0(x) (x € WE(g)) is bijective.

Observe that iy'c = restriction of g c 0 ig,c (cf. 9.62) to W (g) (vesp. the
composition of the natural mapping WZ (g) — We(t(g))/We(s(g)) followed

by ig,C)~

Proof It suffices to carry out the proof in the case g = ¢q1,g). In this case
Fy(C) = Fy,,,(9(C). Remark that

(%) == (x;) e W& (g9) & x; is the minimal length element of its own class
Ti € Wti(g)/Wsi—l(g)'

Asigc : W(g) — Galla(g, Fy(C)) is bijective given v € Galla(g, F,(C)),
there exists © = (z;) so that vg,c(x) =~. Let y = (y;) € We(s(g)) be defined
as in Subsection 9.10.1. Then x™ = (x;) € We(t(g)) given by

e =Ty, AT =y iy (=i ),
satisfies:
1) " is the minimal length element of its own class " € Wy, (g)/Ws, 1 (g)-

2) 7g(x™) = 7g,0(2),
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as follows from loc. cit. This proves that i’ is a surjective mapping. Let it
be proved that given x = (z;), and t = (t;) € W& (g), then v4.c(x) = v,4(t) =
r =t, ie iy'c is an injective mapping. By (x) it is deduced as in loc. cit.
) = Tyy1, and thus y, = 1. One determines xj* (resp. y;) by induction.
Let it be supposed y; = 1. Following the recursive pattern of definition of ™
one obtains x|, = x;—1, and y;—1 = 1 (cf. loc. cit.). Thus ™ = x. In the
same way it is proved that t"* =t and thus r = ™ =t™ = t.

Corollary 9.73 The restriction to W (g)
W(gg-.c)lwmg) : We'(g) = Welt(g)/Wel(s(g)),

of the quotient mapping W(qy-c) : We(t(g)) — W(g) (cf. Lemma 9.63)
satisfies

W(gg~.c)lwzg) = Z;}; olgc
(cf. Proposition 9.62). Thus the set Wi (g) C W (t(g)) is a set of represen-
tatives of We(t(9))/We(s(g)), and one has

Im W (sg+.c) = (wg,c(T))zewe (t(g))/We (s(9) = W' (9)
(cf. Subsection 9.10.1).
Proof By definition one has
W(qg*,c) = 2;10 o qg*,C o ig*,C7

and by the remark following Proposition 9.72 one obtains

~TN _ .
lg,c = (qg+,c © Zg*,C)\WgL(gy

Finally one gets
W(ag+.c)lwez(g) = Zq_}J o g
From Proposition 9.62 and Proposition 9.72 it follows that W(Qg*,c)|wg(g) 18

a bijective mapping. Thus it is concluded that W¢'(g) is a set of representa-
tives of W(g). The construction of 9.10.1 proves the last assertion.

9.12 Minimal length class representatives sequence associated
with a minimal generalized gallery

Define w@ (g) € Wg (g) by

0)

Wie) = (wltiens) (i3
T >120)).

(resp. wei(g) = (w(tiy1,s:)) (r—1

according to g = g1,9; (resp. g = g2,95). Let F,F’' € A, and g € gall’)y the
gallery of types of a MGG between F' and F’. With the minimal generalized
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gallery ~,(F, F') of type g, and a chamber C' D F at maximal distance from
F’ ie. so that C D ¢(F, F'), is associated a #c-reduced expression of type ¢
of w = w(C, projpC), as follows.

Let v4(C; F, F') be the MGG between C' and F' associated with ~4(F, F")
as in Definition 9.16. It has been seen how to associate a .-reduced ex-
pression of w(Cp, projrC.) with a MGG ~(C,, F)(cf. Subsection 9.3). These
considerations apply here and one obtains, in the case g = g1, 9] I(g) =r+ 1:

wi = w(C,projpC) = w(tyi1,8,) - w(ty, So)-

It is concluded that the element of W (t(g)) defined by ~4(C; F, F') is pre-
cisely wi(g). It is easy to verify that

ig.c (W (g)) = vy (FL F').

Thus one has proved the

Proposition 9.74
Let v4(F, F') be the MGG of type g € gall’y between F and F', and C D F
a chamber at mazximal distance from F'. Then

wer(g) = (w(ti,si1)) € WE(9),
is an So-reduced expression of w(C,projrC), and moreover
VoW (9)) = g (F, F').

Proposition 9.75

Assume g € gally and that w = we(tr, Sp—1) - - - we(t, So) s a S -reduced
expression. Denote by wi(g) € WE(g) its corresponding element. Write
F = w(Fs,(C)) (resp. F = w(F;,(C))), according to g = g2 (resp. g = g5).
Let y(Fs, F) be the generalized gallery constructed from w (g). Then y(Fs, F)
is a Minimal Generalized Gallery, v(Fs, F) = ~4(Fs, F), and C realizes the

maximal distance between a chamber C O Fy and F.

Proof It is supposed g = g4, and one can write:

i>0)
>

).

Then u; -+ -u, = w,---w; (r=1i21) (resp. w(C,projpC) =w =uy---u).
Let C; = z;41(C) (r 2 i > 1). One chooses, forr =i > 1 a minimal gallery
't = I'Y(C;,C;_1). Observe that u; = w(C;,C;_1). (One has: u;(C;) =
Zi_,_lw,;zi__h (Zi+1(0)) = ZH_le(C) = Z,(C) == Cz'—l)‘ Write:

wi =w(ty,si-1) (r=i=21), zip1=wp-wiy (v

>
1 .
(resp. zp41 =1), w;=ziwiz, (r>1

70(“’?(9)) (Fi)r2i207 (Fj{)rkj}O-
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By definition one has: F; = z11(Fs,(C)) (resp. F! = zi41(F,(C))). As
2141(Fy,(C)) = Fay(551(C)) = Foy(C) (resp. 201 (Fo(C)) = Fy, (2101(C)) =
F;,(C;)), one obtains immediately C; D F; D F]. On the other hand, w; =
w(ty, si—1) € Wy, gives
Ftl(c) c Fsi—l(C) = Fti (C) - wi(FSi—l(C))7

thus F! = 2;41(F, (C)) C zip1wi(Fs, ,(C)) = zi(Fs,_,(C)), and it is deduced
that le CF,_1CCi_1.

Thus T*(Cy,Ci—1) C Stpr. Apply the following lemma 9.76 to (C,w;(C)),
and (2i+1(C), zip1wi(C)) = (C4,Ci—1), and wi(Fs,_,(C)) C wi(C) =
Projr, | (cyC. One obtains

2i1(PrOJu (,, , (0)C) = PrOu, k(e Ci = Cia

(Ci=2i41(0), zipwi(Fs,_,(C)) = Fiq).

Thus T%(C;,C;_1) is a Minimal Gallery between C; and F;_1, so that
set U*(T(Cy,Ci_1)) = Hp: (Fio1),
and thus
(*)  length I'(C;,Ci_1) = [Hp (Fim1)| = ls(w;) (S =S(C)).

Let T(C,Cy) =T" o---oTL. The hypothesis gives:

d(C, F) = ls(wi) = ls(wy) + - -+ ls(w1),
and (x) implies:

length T'(C, Cy) = ls(wy) + - - + ls(wy),
thus
length T(C, Co) = d(C, F).

It is concluded that T'(C,Cy) is a Minimal Gallery between C' and F, such
that
set U*(I'(C, Cyp)) H HF/ i—1)

r>iz1

F)=[]Hr(Fi-).

By a step by step comparison of this gallery with a Minimal Generalized
Gallery of type g one obtains that 7(Fs, F) = 1, and thus that v(Fs, F') is
manimal of type g. Thus vg(w(g)) = v4(F, F').

To see that C' O Fs is at maximal distance from F let objects and
their properties introduced in the next chapter be used.  Observe that
dim S(F,, F) < dim S(F,, F) = dim $(C,F). On the other hand one has
S(C,F) C X(Fy, F), and dim (C, F) =dim %(C,F). Thus dim X(C,F) =
dim %(F,,F). (Where $(Fy, F) = (g, F,) and 3(C,F) = %(g,C)). This
achieves the proof.

and consequently
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The construction of the projection of a facet over another one (cf. Defini-
tion 8.15) commutes with the action of W.

Lemma 9.76 Let (C,C"), (C,C") € Ch AxCh A, and F C C' so that C' =
projrC. Suppose that there exists w € W so that (w(C),w(C")) = (C,C"),
and one writes F' = w(F). Then

w(C") = w(projxC) = projzC.
Proof One has w(C,C") = ww(C,C")w™}, and thus
Is (w(C,C")) = ls. (w(C,C")).
The hypothesis C' = projrC gives:
lse (w(C,C") = d(C,C") = [H(C, F)].
As clearly w(H(C,F)) = H(C,F) it is concluded that ls,(w(C,C")) =

|H(C,F)|. As F C C" it is deduced that

w(projpC) = w(C') = C" = projzC.

Recall that projfé is the chamber in St at minimal distance from C.
9.13 Couples of facets and Minimal Generalized Galleries
correspondence
Let 7, € Relpos A, be the type of relative position given by g € gall’y. Define
og: (Ax A, — Gall}(g) ,

as the mapping induced by

0 (A X A) XRgelpos A gall’y — Gall’y
(cf. Notation 9.43), i.e.

oy (F,F') — ~4(F, F"), where 7(F, F') =, .

Thus by o4 to a couple of facets (F,F"’), whose type of relative position is
T4, corresponds the unique minimal generalized gallery of type g, v4(F, F")
joining F' and F’. Observe that o, is in fact a bijection.

Denote by

ogen: (Ch Ax A);, — Ch Ax Gall’j(g) = Ch A x4 Gall’y(g)
(cf. Definition 9.64) the mapping defined by

Og,ch * (C7 F) — (Cv ’Yg(Fel(g)(C)aF/))a
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and write
O(g,F),ch = Og,ch|(Ch AxA),, r
for the restriction of o4 04 to (Ch A X A),, p.
Let
(Ch Ax A), »C(Ch Ax A)r, r

be the subset formed by the couples (C,F’) satisfying the hypothesis of
Proposition 9.22 (resp. C' D F is at maximal distance from F’). The following
proposition characterizes the image of (Ch A x A)7 » C (Ch A x A);, r by
0(g,F),ch as a subset of A Gall’y (g, F) = Ch A x4 Gall’j (g, F').

Proposition 9.77 (C,v,(F,F’)) € Ax Gallj(¢9,F) = Ch A x 4 Gall’j (g, F)
belongs to I'm o4 gy ch if and only if v4(C; F, F') is a MGG.

Proof Let d(C,F’) be mazimal on the set of F' with 7(F,F') = 14. Then
d(C, F") is mazimal on the set of chambers C incident to F. Thus it follows
by definition of MGG that v4(C; F, F') is a MGG. Reciprocally if v4(C; F, F")
is a MGG it results from the definition that H(C, F") = [[ Hp/ (Fi-1), where
the i's Tun on a set depending on the class of g. It is concluded from this that
d(C, F") is mazimal on the set of chambers C incident to F, and thus that it
is mazimal on the set of F' such that 7(F,F") = 14. This achieves the proof.

9.14 Weyl group Minimal Generalized Galleries
characterization

Taking into account that Ch St gy is homogeneous under W gy =
Stabilizer of L(p ry and Proposition 9.21 one obtains:

Proposition 9.78 Let y(F, F') be a generalized gallery. Then v(F, F’) is a
MGG if and only if it satisfies the following 2 conditions:

1) y(F,F") C L(g,pry (The carrier of F and F');
2) 3 C € Step,pry such that v(C; F, F') is a MGG between C' and F'.

One now proceeds to characterize a MGG between Fy(C) and w(F;(C))
in terms of W by translating the above proposition in terms of W.

Let F € A (resp. C € Ch A). One supposes F = Fs(C). Let L be
the carrier of Env(F, F'), and F” € A. The following two assertions are
equivalent:

1) F" e L;

2) F” is stable under the set of reflections {sy| H € Hr N Hp} defined
by the set of walls Hr N Hpr.
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Remark that given w € W/W; the set of reflections {sy| H € Hp, N Huy(r,)}
(Fs = F5(C), F; = F;(C)) may be characterized as the set of reflections of W
common to the subgroups W, and wW,w™!.
If F”" = w(F}) then one immediately obtains

sg(F")=F" & sywewe W/W,.

Let w™ € w be defined by w™ = w(C, proj,,(p,)C) (the minimal length Is(w™)
element of the class W). As in definition 9.70 one writes

ls(@) = ls(’wm).

Notation 9.79 Let w € W, \ W/W;. Denote by w' € w the maximal length

class ls(w') element of W, and by w™ € w’ the minimal length element of the

class w’. Thus one has by definition of w™, ls(w™) = ls(w’) (resp. ®™ = w,
ls(w™) = lg(w") for every w" € w).

Observe that d(C,w’(F};)) realizes the maximal distance d(C,w(F}))(w €

).
One fixes a gallery of types g = ¢} given by

g: (si)rziz0, (Lj)rs1z50-
Consider the element
wer (9) = (w(tit1,8i))rziz0 € W (9).
Let w™ = w(ty41, $r) - - - w(ty, S0). Write

F=F,,  (C) (resp. F' =w™(Fy,(C))),

r+1
and z;11 = w(tpg1,8r) - w(tip1,8;) (r=i>=0).

Let z;41 € W/Ws, be the class defined by z;1. Remark that with the
notation of Subsection 9.5 one has Hr N Hpr = Dy, i.e. Hp N Hp = set

of walls containing F' and F’. One has the following criterion to decide if
~vg(wiE(g)) is a MGG between F' and F".

Proposition 9.80 With the above notation v4(wg(g)) is a MGG between F
and F' if the following two conditions are satisfied by wi(g):

1) w™ = w(tyy1, 8r) - w(ty, o) is a So-reduced expression;

2) forall He Hrp N Hpr, SHZi41 € Zit1 (T =02 0)



Minimal Generalized Galleries in a Coxeter Complex 211

Let w € Wy, \ W/Wy, (resp. W' € W/Wy,) be the double class defined by
w™ (resp. the mazimal length class defined by w). Then w™ is the minimal
length element of W'.

Proof The first condition assures that v(C; F,F') defined by ~v(F,F') =
vo(we(g)) is a« MGG. By 2) we have that v(F,F') C L = carrier of
Env(F,F’). Thus v(F,F') is a MGG between F and F' of type g, i.e.

Vg (Wi (9)) = v (F, F').

9.15 Existence proof of Minimal Generalized Galleries between
two given facets

Let C(H) be the geometric realization of A obtained from some isomorphism
A ~ C(W,S). The carrier L of Env(F,F’) is defined as the subspace of

R() defined by L = N H. In this section H denotes the set of
HEM, F,F'CH

hyperplanes of R(°) given by the set of conjugates of the reflections, associated
with the walls of the chamber (resp. simplicial cone) C R, corresponding
to C. in C(W,S).
It is known that L has a building structure. The set Ch L of chambers of L
is given by

Ch L={FeC(H)| Lr = L}.

Let Hp :={H € H| L C H} and H; :={HNL| H € H— Hr}. Then the
set of hyperplanes of L is given by H7. One has Hy, = H.(p,r). One chooses
C = C¢(p,rry € Ch Sty(p ), and considers the sub-building of A

A(c(F, F'),C) := N .
P root of A,
Ced, o(F,F')edd

(Observe that according to [50],

proj;(},F,)C’ = ﬂ Ch o,
® root of A,
Ced, o(F,F')edd
where proj;(}F,)C = {C" € Ch A| projppr)C" = C}. One has
that projc_(}F,)C is a convex set of chambers (cf. loc. cit.).) It is

known that c(F,F’) is a chamber of L, then there exists one and
only one chamber Cg.ppy in A(c(F,F'),C) such that c(F,F’) is in-
cident to Cyppry, ie. 6C(F7F/) D c¢(F,F’), since the intersection

( N <I>) N (Ch Stc(pp,)) defines one and only one
Co(p.p)E®, c(F,F')€OD ’
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chamber C of St.(p gy namely C' = C,(p pr).

Observe that the set of facets F' of L may be defined as the equivalence
classes, given in the usual way, by the set of hyperplanes H’ of L. It may
thus be denoted by C(H7) the building defined by L.

Definition 9.81 A segment [x,y] C R (resp. [x,y] C L) is called a generic
segment of C(H) (resp. C(H%)) if it satisfies:

(1) x € C andy € C', with C,C’" € Ch C(H) (resp. Ch C(H}));

(2) [z,y] intersects only chambers and codimension 1 facets of C(H) (resp.
C(HL)).

Let
F([x’y]) : C: Cn7 70() :C/

be the minimal gallery of C(H) (resp. C(H})) defined by the ordered set of
chambers C' = Cy, --- Cy, = C’ that [z,y] intersects.
Let

’y([.’lﬁ,y])Z C:an)-uCiCCiﬂCi_l:)C’i_l--~CC’0:C’

be the corresponding generalized gallery, where C;NC;—1 denotes the codimen-
sion 1 facet F;, incident to C; and C;—q (i.e. F; C C;, C;—1), which [x,y]
intersects.

One now constructs a generalized gallery v(F, F’) between F and F' as
follows. Recall first that projzF"’ (resp. projz F') defines a chamber of C(#}).
Choose z € projpF’ and y € projy F so that the segment [z, y] is a generic
segment of C(H}). Assume c(F, F') # projpF’, and denote by

F(prijF”projF/F): E. Fo_i,--,Fy

(F, = projpF’, Fy = projp. F) the minimal gallery of C(H}): T'([x,y]). Write
F! = F; N F;_1, and define

Y(F,F'): F=F | CF,=projpF' D F.---F{ C Fy =projp F D F;=F'.

The first and last inclusions may not be strict, i.e. one may have F’ = proj, F'
(resp. F = projpF").

It is now proved that y(F, F’) is a MGG. Let u € ¢(F, F') so that [u,z] is a
generic segment of C(H’). It may be supposed that after suitable choices of
u,x and y, these three points are on the same line and [u, z] U [z, y] = [u, y].
One then has

Y([w,y]) = ([z,y]) 0 ([, z]).
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From the definition of ¢(F, F") it is clear that y([u, z]) C Sty “crosses” all the
hyperplanes H € Hp(projzF"). On the other hand, one has

H(F,, Fo) = H(F, Fooy) [[ - [[H(F1, Fo).

F,. = projpF’ (resp. Fy = projpF), as [z, y] intersects precisely these hyper-
planes, as easily seen. One finally gets

H(c(F, F'), Fo) = Hpr, (B [[HE o) [T [T H(F Fo)

(Fl 4 =F).

T
Observe now that as L = Ly, = Lp,

C(H’) then:

and F] = codimension 1 facet of

-1

H(E, Fio1) ={H e " —Hy| HD F/} =Hp/ (F;i—1).
Thus one has
H(c(F, F'), Fo) = Hpr (F) [[He (Fr) T T Hrr (Fo).
Let Cp, be the unique chamber with Cr, D Fy = projmF and

Cr, € A(c(F,F'),C). Choose © € C = Cyppy and § € Cp, so
that:

“ [@,7] is near enough to [u,y] as to intersect the same hyperplanes as

[u,y], i.e.
HnN(u,yl #0 & H e H(c(F,F), Fy)”.

Thus the minimal gallery T'(C, Fy) = I'([Z, 7]) satisfies:
set U(D(C, Fy)) = Hpr, (F) ]+ [T #ry (Fo)-
As Hr N Hp/(Fio1) = 0 (r+1 > i > 1) it is deduced that I'(C, Fp) is a

minimal gallery between C' and F{. It is concluded that y(F, F’) is a mgg
between F and F’. The case F = projpF’ is similarly handled.



Chapter 10

Minimal Generalized
Galleries in a Reductive
Group Building

The reader is referred to [50] for details about the Building I(G) of a reductive
algebraic group G over an algebraically closed field &, and to [6], [9] and [23]
for the basic definitions and properties of a parabolic subgroup of G. The
reader may follow the constructions of this section by considering those of the
Flag complex as a guiding example. The role of Flags there is played here by
the Parabolic subgroups. The developments of this chapter are reconsidered
in more detail in the next ones, in the setting of Group Schemes. The Build-
ing I(G) of a reductive algebraic group G, over an algebraically closed field
k, is the simplicial complex whose simplices are the parabolic subgroups of G.
The incidence relation is defined as the symmetric inclusion relation between
parabolics subgroups. It thus extends the definition of the Flag Complex of
GI(k™1) to the setting of k-reductive groups. The Minimal Generalized
Galleries in the Building I(G) are introduced. A minimal generalized
gallery is contained in the Convex Envelope of its extremities, in 7(G) and in
all the Apartments containing these extremities. With a minimal generalized
gallery of types g is associated a type of relative position 7,, satisfying the
important property: Given a couple of facets (F, F’) with a type of relative
position 74, there is a unique Minimal Generalized Gallery v(F, F') with as-
sociated gallery of types g and extremities (F, F”). The set of generalised
galleries of type g, issued from a fixed facet F' admits a canonical “Cell De-
composition” indexed by generalized galleries of type g in the Weyl complex,
which generalizes Bruhat cell decomposition. This set is described in terms of

214
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a contracted product along a gallery of types g in the Weyl Complex. Natural
Parametrizations of the Cells are given.

10.1 Building of a reductive group

Let k& be an algebraically closed field, and G a k-reductive group. Denote
by G = G(k) the group given by the set of k-points of G. By a parabolic
subgroup P C G(k) (resp. maximal torus T' C G(k)) it can be understood in
this section the set of k-points P (k) (resp. T'(k)) of some parabolic subgroup
P C G (resp. maximal torus T C G). Let Par(G) (resp. Bor(G), Tor(G)) be
the set of parabolic subgroups (maximal torus) of G defined over k.

The building I(G) of G may be described as the set of parabolic subgroups
Par(G) of G endowed with the relation opposed to the inclusion of parabolic
subgroups of G. The group G acts on I(G) by conjugation, and thus as a
group of automorphisms of I(G). Given F' € I(G) we denote by Pr the cor-
responding parabolic subgroup. The set of apartments App I of I is indexed
by Tor(G), in fact there is a bijection

Tor(G) ~ App(I)
which associates with the maximal torus 7' the sub-building
Ar={F e I(G) | T C Pr}.

There is also a bijection

Bor(G) ~ Ch I(G)
between the set of Borel subgroups and the set of chambers Ch I(G) of the
Tits building I(G).

Given a maximal torus 7" we denote by R = Ry the system of roots defined
by T. Let A(Rr) be the apartment whose facets F' are given by the parabolic
subsets of Ry, and the inclusion (F” C F') of facets by the opposed relation
to the inclusion of parabolic subsets.

There is a building isomorphism
A(RT) ~ AT

which associates with the facet F' € A(Rr) the R-subgroup Pr of G defined
by the maximal torus T and the parabolic set R given by F' (cf. [23], Exp.
XXII).

The reciprocal isomorphism

Ar ~ A(Rr)



216 Buildings and Schubert Schemes

associates to F' € Ar the set Rp of roots given by the action of T' on the Lie
algebra Lie(Pr). Let B D T be a minimal parabolic subgroup containing T,
and C = Cpg € A the corresponding chamber. Write

Wr =N(T)/T
where N(T') denotes the normalizer of T in G. Then there is an isomorphism:

A frame E € Ep(G)y, (cf. [23], Exp. XXII) (cf. also the definition of a frame
of G given in next chapters) gives rise to a killing couple:

Ew— (T CB)g.

Given E, E' € Ep(G)g, let Qzp : G—— G be the automorphism defined
by Oy (E) = E'. Define the Weyl complex of G as the building given by the
inductive limit

C(W,S) =lim C(Wr, S(Ci))
E

the transition isomorphisms being induced by the (Qpg).
Given a frame E the associated Killing couple (T' C B)g gives rise to the
building isomorphisms:

C(W, ) ~ C(Wr, Sc,)) ~ A(Rr) ~ Ar € I(G)

inducing a bijection
typ C(W,S) ~ typ I(G) = I(G)/G

(resp. Relpos C(W, S) ~ Relpos I(G) = I(G) x I(G)/G (diagonal action)).

Two parabolic subgroups P and () are incident if: their intersection PNQ
is a parabolic subgroup. (resp. there exists a minimal parabolic subgroup
B C P,Q). The building I(G) may also be obtained from the set

Vert I(G) C I(G)

of the maximal parabolic subgroup of GG, which is endowed with the relation
induced by the incidence relation, as follows. The facets of I(G) are given by
the subsets

o C Vert I(G)

of maximal parabolics two by two incidents. The set of chambers of I(G) thus
corresponds to the set (0z) pepor(c) Where

0y = {P € Vert I(G) | P > B}.
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The class of subsets 0 of Vert I(G) defines a building structure IJ(G) on
Vert I(G), according to the general definition, with (0z) pepor() as the set of
chambers. There is a building isomorphism

defined by
F— o

where
0 ={P €Vert I(G) | Pr C P}.

10.2 Minimal Generalized Galleries in a reductive group
building

It has been seen that given two flags 2 and 2’ in k™! there exists a basis e of
k™+1 adapted to 2 and 2'. The result generalizes to a building I(G). Given
a couple of parabolics (P, Q) of G there exists a maximal torus 7' contained in
both P and Q). This property translates into the building setting as follows,
the facets F'p and Fy are contained in an apartment Az. With a fixed Killing
couple B D T is associated a Coxeter system C(W, S¢), where W = N(T)/T
and S¢ is the set of reflexions defined by the system of simple roots Ry given
by the system of positive roots R defined by B.

Define

typ I(G) := I1(G) /G (resp. Relpos I(G) := I(G) x I(G)/G (diagonal action)) .
Write I = I(G) and denote by:
typ, I —typI=1/G

(resp. 7 : I x I — Relpos I = I x I/G) the quotient mapping. Let

typi 1 Gall, — Gallgy 1

be the mapping induced by typ ; assigning to a generalized gallery its gallery
of types.

From the conjugation of maximal torus in G it results that the natural
inclusion C(W, S¢) < I(G) induces the natural identifications:

typ C(W,S¢) =typ I (resp. Relpos C(W,S¢c) = Relpos I ) .

Write:
gall ;= Gallgyp 1
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and remark that we may identify gallI with gallo(y,g)- Denote by
m
gall ; C gallI

the subset of gall - corresponding to the subset gallg(w, s) C gallg g of types
of minimal generalized galleries in C(W,5)), and by Ey : Gall, — I x I the
extremities mapping. Write Er = (Ey, Es). Denote by

% gallzn — Relpos

the mapping corresponding to 7 : gallg(W s) — Relpos C (W, S) which asso-

ciates with a Minimal Generalized Gallery of types a type of relative position.
Let F €I (resp. g € gallj). Write

Gall, (9) = (typ;)"*(9)
(resp. Gall, (g, F) = Gall, (g) N ET'(F) ).

Definition 10.1 (Minimal Generalized Galleries in I)
A generalized gallery 7y € Gall, is minimal (MGG if

g m
typ, (7) € gall,

and

7(Er(7)) = %(typ, (7))

i.e. if v = Y(F,F'), and we write g = typi(”y), then g € gall;n and
T(F F') = 5(=2(9))-

A generalized gallery ~ is minimal if its corresponding gallery of type g is
minimal and the type of relative position of its extremities Er(y) = (F, F') is
precisely the associated one to g, Te(g) = 7(F, F’).
Let Gall7" denote the set of Minimal Generalized Galleries of I. Write for
g€ gall

Gallf*(g) = Gallf* N Gall, (g)

(resp. for F € A, Galli'(g, F) = Gall]* N Gallj'(g, F)). Write E}* for the
restriction of E; to Gallf" C Gall,.

The convex hull EnvA” (F, F") of a couple of facets contained in an apartment
Ar may be described as the set of parabolic subgroups P containing the
intersection subgroup Pr N Pr: C P. More precisely as the set of facets F”
such that Pr N Prs C Ppr. On the other hand, two maximal tori T, 7" of G
contained in Pr N Pgs are conjugate in Pr N Pp/, thus

EnvAT (F, F') = Env7 (F, F') .
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Given (F, F') define Env! (F, F') = Env7 (F, F’) (Convex Hull (resp. En-
velope) in I of (F, F")) for some apartment F, F" C Ar. The convex hull of
two facets in I may be defined in the setting of general buildings (cf. [50]).
The projection projk, F in I is defined following the same pattern. The exis-
tence of a Minimal Generalized Gallery v4(F, F') with 74(g) = 7(F, F"') results
from the following remark.

Remark 10.2 If A is an apartment containing F and F' it is known that
A~ C(W,S) Thus there exists such a MGG ~4(F, F') between F and F' in
A, and moreover v, (F, F') C Env' (F, F').

A minimal gallery T'(C,C’), in the usual sense, i.e. of minimal length, is
contained in Env’(C,C") (cf. loc. cit.). From this property and the unicity
of a minimal generalized gallery ~,(F, F') of fixed type g in an apartment A
one obtains the corresponding unicity property in I.
Let
YEF) (F)(r>i20), (F)(r+1>3j2>0)

with F' = F/,, F' = F{, be a MGG in I of length I(y(F,F')) =+ 1, and
of the form y(F, F') = 7 (F, F'). Let A be an apartment containing F' and
F'. Write . .

g= typj Y(F,F') € gall = gall.

By Definition 10.1 one has

m1(Er(Y(F, F'))) = 7(F, F') = 2(9) (= 5)-

Let
YEF): () (2> 0), (F)) (r+12]>0)

with F¥,, = F, Fy' = F’, be the unique MGG in A between F' and F’ of
type g, i.e. Y*(F, F") =y, (F, F') (cf. Proposition 9.38).

Let it be proved that y(F, F') = v*(F, F’). Choose a chamber in A so that
C D F and at maximal distance d(C, F’) from F’, ie. C D ¢(F,F’) (cf.
Definition 9.17, Proposition 9.18). Define a sequence of chambers

A .
i1 =C, Cf=projpCiy (r=i>0)

(resp. Cry1=C, C;=projnCiy1 (r=i>0) ) .
Choose a sequence of minimal galleries

e+l = PO CF) © St;‘il (r>1>0)

(resp. P =T (O, C) CSEL, (1212 0) ) .

i+1
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Recall that Ch StIF, is a convex set of chambers in /. Remark that
i+1
length of "1 = [#, (FY)|
Let
™ =r*C,Cc;) =T""o...or*!
(resp. T =T(C,Cy) =T"*1o...0T1) be the composite gallery. By Remark

3.7,a) one has

length of I'*(C, C7) = i ‘HF;;1 (£7)

)

and by Lemma 9.8 that I'*(C, C{}) gives rise to a minimal gallery in A, thus
in I, between C and F' C Cj. On the other hand, as I'""(C;41,C;) is a

minimal gallery in StIF ,  between a chamber Cji; and the facet F; D F/ |,
i+1

with
typ, Fl =tipi(g) = typ, iy
(resp. typ, Iy = s; (9) = typ, F), it is deduced that:

length I'"*1(Ciy1, Cy) < ’HF;/I(F:)‘ (Ci = projgy,  Fi),

and finally one obtains

length I'(C, Co) = Xi_glength I (Ciy1,Cy) < B \HF*/ (F7)

it1

length I'*(C,C{) .

AsT*(C,Cy) (resp. I'(C, Cp)) gives rise to a minimal gallery (resp. gallery)
between C' and F’ in I (Observe that a minimal gallery in 4 is also minimal
in I), it is concluded that:

“T'(C, Cp) is a minimal gallery between C' and F’ in I”.
It results from this that
I'(C,Cy) Cc Env! (C,F')C A
as C, F’ € A. On the other hand, the inclusions
F/cF,cC; (r=zi=0)
(resp. F},; C Cry1), give
Y(F,F') c Env! (C,F') C A

By unicity of the MGG of type g € gallj, between the facets F' and F’ with
T7(F,F’) = 5, in A, one obtains that y(F,F’) = v*(F, F’"). It has thus been
proved the
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Proposition 10.3 Given (F,F') € IxI, and g € gall? so that 5 = 7(F, F"),
there exists one and only one MGG ’yg(R F') of type g in I with extremities
F and F'. Furthermore one has

Y, (F.F') C End' (F,F') .

Y, (F,F') C Env' (F, F') .

Remark 10.4

It follows from this proposition that a generalized gallery ~(F,F’) is
minimal if and only if it is contained in the conver hull of its extrem-
ities y(F,F') C Env!(F,F') and ~(F,F') is minimal in an apartment
Env! (F,F") = Env*(F, F’) C A containing Env' (F, F").

The action of G on I(G) induces an action on Gall,. It results from the

definition of a mgg the subset Gall;n C Gall, is stable under this action. The
mapping typi : Gall, — gallI being G-equivariant, if gallI is endowed with

the trivial action of GG, induces a G-equivariant mapping

m . m m
qa; .GallI —>gallI

Let
m m
q;" : Gall, /G — gall,

denote the quotient mapping. Given an apartment A = Ap of I there is a
natural mapping

Jy o Gall /Wa — Gall /G
Lemma 10.5 The mapping jA 1s bijective.

Proof Given (F,F’) € I xI there exists an apartment A" such that (F,F') €
A" x A’. On the other hand, there exists v € G with x(A') = A. Thus

(x(F),z(F') e Ax A
and 11(E, F') = 71(2(F), z(F")) .

Let y(F,F') € Gallf", g = typ) (Y(F,F")) € gall| , thus 7(F,F') = 5 (=
%(9)) by definition of a MGG. By proposition 9.31 one has

Y(F,F') C Env (F,F') Cc A
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By Proposition 9.36 and Proposition 9.38 it is obtained:
’7(F7F/) = IYg(FvFI)

where 7y, (F,F') is the uniqgue MGG in A with E(7,(F,F')) =
(E,F") (t1(F,F'") = 5). It is then deduced that:

2(Y(F, F')) = 7, (x(F), z(F)) C A

again by loc.cit., and thus that y(F, F') is equivalent to 7y ,(x(F), z(F')) C A.
This proves that jA s a surjective mapping.

Given N
Vo= ’ya(Fa’Fé)v Yy = %(Fb,Fé) S GallA
such that there exists x € G with:
(Vo) =V

it 1s deduced that
9 =P, Vo =P Vp
and
b= 71(Fa, Fy) = 71 (Fy, Fy)

Thus v, = 7V,(Fa, Fy) (resp. 7, = 7,(Fb, Fy)) (cf. Corollary 9.37 and
Proposition 9.58). Let w € W so that

(w(Fa), w(Fa)) = (Fy, Fy)

then
w(Y,) =", (cf. Proposition 9.38)

i.e. jA is injective, and thus bijective.
The bijective mapping
_m m m m
typy : GallA /W — gallA = galll
of Corollary 9.37 factors as
7m —m .
typa =9q; °J,
Corollary 10.6 The mapping
g Gall| /G — gall
RV I gally

is bijective. (Compare with the mapping qj in section 9.8.)
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10.3 A combinatorial cartesian square

Let it be verified that the following commutative square
™ Gall —— gall
q;" : Gall, gall,

iE;n l

7l xI Relpos I

is cartesian. One defines a bijective G-equivariant mapping

PROPOSITION - DEFINITION 10.7
There is a bijective G-equivariant mapping

O (Ix 1) Xy, . gall] — Gall}"

which is defined following the same pattern as in the definition of the W -
equivariant mapping

0 : (AX A) XReipos A gallj: — Gallj: (cf. Notation 9.43).

Proof There is
Galli' =[] Gally'(g),

gEgallI
and
Ix D) %o 90y = [ xDexz7()
TE Relpos 1
= 11 (I x 1), x{g}.
(T,g)ERelposIXgallTIn with g=7
Let
o= ][ @,
g€gallI
where

6y (I xI), x{g} — Gall'(9)  (r=7)
1s defined by

99:((F’F/)7g)—>f)/g(F7F/) (T(FvF/):?t—])'



224 Buildings and Schubert Schemes

It follows from Proposition 10.3 that the mapping
(I x 1), — Galli*(g) (9 € gall,")

associating with (F, F') with T(F, F') = 5, the unique MGG 7y ,(F, F') between
F and F' in I of type g € gall;n is a G-equivariant bijection, thus @g also is.

It is deduced that © = ] O, is a G-equivariant bijection.
g€gall™

T
Remark 10.8 The equivariant mapping © may be seen as a section of the

natural mapping

B x s Gall, — (I x 1) x

n"
T Relpos I ga T

which in fact is a bijection. For every g € gall}n and (F,F') € I x I, with
11(F, F') = 5, one has

(Erxae0) (B F)g) = (B <) (v,(R.F))
= (Br O, (R F)), ) (0, (F.F))
= (F.F).9).
Thus

(B} x q") 0 © = identity of (I x I) xp gall .

NoTATION 10.9 Let F € I, 79 € Relpos!, g € gallT one writes:

1. X(r0) = (I x I)p, (resp. = J] X(r)=1Ix1);

TERelpos
2. Y10, F) = X(r0) N({F} x I);
3. X(g) = Gall;n (9) (resp. X" = ] X(g) = Gallzn);

g€ gall;"

4. B(g, F) = Gall| (g, F) = Gall, (g) N E;'(F);

5. 3(g) = Gall,(9)  (resp. Y= [ X(g));

g€ gall;"’

6. X(g, F) = Gall (9, F).

It follows from its definition that (7o, F) is B.-homogeneous.  Actually
(10, F) is a B,-orbit in {F} x I. Observe that ™ C .
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Definition 10.10 For g € gallzn one defines

Oy : X(5) = (I x I); — X(g) C X(9g)
as the co-restriction to 2(g) = Gall}n (9) c ¥ = Gallzn of the composed

mapping of

N(5) = (I x D)y = (I x )y x {g} = (I x ) xp o gall)’

with ©.
Observe that ©4(X(g, F)) C X(g, F). Let
O4r : 2(5, F) — X(g, F) (Fel)

be the mapping induced by ©,. Denote by

D Y=y (resp. T: % — %)
the mapping given by the restriction of the extremities mapping

Er:Gall, — Ix1I to X" = Gall, (resp. ) C Gall,, ie. 7" = EJ'
(cf. Definition 10.1). By Definition 10.1 of MGG of type g in I one has

N(g) = Gall| (g) = {7 € Gall, (g) | 7(E1(7)) = 5}

thus
T (N(g)) = EP(Gall, (9)) € (I x I); = X(g).

On the other hand, ©g: (I x 1), — Gall? (g9) being a bijective section of

E ., =7 , it is deduced that the restriction
Gall" (g) 2(9)

™ (g) = 7rm|2(q) :2(g) — X(g)

(resp. 7" (g, F) = : 2(g9,F) — (5, F) ) is bijective. Given

T

(9. )
7 € Relpos I and g € galll , with g = 7, the results of the next chapters prove
that the image

T(X(g) CIxI  (resp. (X(g, F) C I))

is independent of the choice of g with 5 = 7.
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Definition 10.11 Define the combinatorial closure d(r) C ic(r) (resp.
dYi(r, F) C EC(T,F)) of (1) (resp. (1, F)) in I x I (resp. I), by

S =m(2(g)  (resp. & (7, F) = w(X(g, F)))

with g € 77Y7) C gallzn. It follows from Remark 10.8 that ©4 (resp.

9y.r = O(9)lsy
Yi(g.F)
twn) of ™ (g) (resp. ™™ (g, F')) which is bijective.

) is a G-equivariant section (resp. F;,—equivariant sec-

10.4 Cell decomposition of the set of galleries

For a building I = I(G) of a k-reductive group G let
Relpos(y o I = Iy x I,/G ((s',s) € typI x typI) .

Thus Relpos, ) I denotes the set of types of relative positions of couples of
facets of types s and s'. If s’ = typ; C (C € Chl), ie. if s is the type of a
chamber, we simply write:

Relpos, I = Relpos, I (resp. Relpos' I = H Relpos, I).

setyp 1

Given 19 € Relpos’ I, a chamber C' and an apartment A containing C, let
F,,(C) denote the unique facet satisfying 7;(C, Fr,(C)) = 79. There is a
bijection Relpos’' I ~ A, given by 79 ~ F,,(C). The composition of F +
71(C, F') with the preceding bijection is a building morphism pac: I — A
(Retraction of I on A with center C).

Definition 10.12 Define for t,s, s’ € typI with t C s, s’
Relposzs,’s) = Relposzs,’s) 1
(resp. Relposi = Relposﬁtq I)
as the image of
Relpos 4 Str — Relposl
(resp. Relpos,Str — Relpos]1)

where F € Iy (t € typI). This image is independant of the choice of F' and
is the set of types of relative positions of couples of facets of types s and s’
which are incident to a facet of type t.

For g € gall, with I(g) =7+ 1 such that g = g1,97 (resp. g = ga,g%) one
writes:

all )
Relposg (9)=11 Relposil(_gl)(g) (r+12i>1) (resp. r>i>1)
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1
(the set of relative position types galleries of type g), and Relposia =

gall
nggalll RelposI (9)-

It is recalled that given g € gallI = gall 4, g* € gall . has been defined by:

si(g") =typC (CeChl) (r+1>i>0), tj(g*) =t;

(resp.  si(g") =typC  (r=i20), t;j(g") =1;)
and F,, 4 (C) by:
Foy()(C) = Fi, 1y (9(C)  (resp. Fe,(4)(C) = F,(9))
according to g = g1, ¢ (resp. g = ga, g5) (cf. §9.9.2, 1)).
Definition 10.13 Let

ste 1 Gall (g, F.,(4)(C)) — Gall (¢*,C)

be defined according to the same pattern as
sge,c + Gall, (g, Fe, () (C)) — Gall, (%, C)

in Definition 9.64 with the big building I instead of the apartment A. In this
case projfwi Ciy1 plays the role of proj“}‘i Ciy1in the building I. If no confusion
arises one writes 8274*,0 = 5¢%.C.

Let
11

* ga
7'91*,0 : Gall (g%, C) — Relpos, (9)

denote the mapping
Tgec Y = 2(V) = (7(Ci, Fy, 1 (Cimr)))

where v* € Gall, (g%, C), and C; = Fj(77") is the chamber of y*. Finally let

gall
Tg{c : Gall, (9, Fe,()(C)) — RelposI

be the composed mapping;:

I _ I I
Tg,c = Tg*7c o} 59*70 .

Let A = Ar be an apartment containing C' = Cp, i.e. (A, C) corresponds
to the killing couple (7', B). The following commutative diagram
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5274*,0 : Gall, (g, Fe, (4)(C)) — Gall, (9", C)

sl. o1 Gall (g, F.,(4)(C)) — Gall, (g%, C)

where the vertical arrows are the inclusions induced by A < I, expresses the
compatibility between the mappings s;;l o, and sé o
Denote by Tg o (resp. T C) the composed mapping of

Gall (g, Fe, (9)(C)) < Gall, (g, Fey(5)(C))

(resp. Gall,(¢",C) — Gall, (g7, C) ) followed by 7. c(9) (resp. 7 ~(g%)), i.e.
the restriction of 7/ ., (resp. T o) toGall, (g, Fe,()(C)) (vesp. Gall,(g*,C)).

Definition 10.14 (Cell decomposition of Gall (g, ') defined by a
chamber C D F).
Write

be(9:7) = (750) 7" (1) C Gall (g, F)

all
where T € Relposf (9), and F = F¢, (5(C). Clearly

Gall,(9,F)= [ (90

gall (

TE Relpos g)

One calls 6,,(g,7) the Cell defined by the gallery of relative position
types T and C D F.

The next aim is to give a canonical parametrization in terms of a block de-
composition of <gc(g, T) once an apartment A containing C' is chosen.

10.5 Galleries of relative position types and Galleries in an
apartment

For the sake of briefness it is supposed g = ¢/, and {(g) = r+1 in the following
developments.

With a gallery of relative position types is associated a sequence of ele-
ments in W. Let W(t,s) with C' € A be as in Definition 9.70. There is a
bijection

We(t, s) — Relposz I

defined by
w— 7 (C,w(Fs(C))) .
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There is thus an induced bijection

m m i gall
wi(g) = LT Wz (ti(9), si—1(g)) — HReIposii(_gl)(g) = Relpos, I .

On the other hand, by Proposition 9.72 there is a bijection
Z.Z,LC : ng(g) — GaHA(ngel(g)(C))

given by:
x>, () (@ = (@i)r12i21 € WE(9))

where v, (z) = z - 7,(C) is defined as in Proposition 9.54, i.e. 7y (z) = the
translation by x of the basical gallery v ,(C) C A(C).

Definition 10.15 Let 7= (7 ,,...,7) € Relposga” I(9=g1,91). One as-
sociates with T a sequence of chambers, and two sequences of facets of A by the
following recursive pattern. Write Cr11 = C (resp. F/,, = F,  (o(Cry1) =
Fo,g(C), F. = F. (C), C, = projFrCT_H). Given (F;,C;) (r 21 > 1),

(
r41
with F; C C; we define, for g = g} :

F{ = Fi(g(Ci) , Fioa = F (C4) , Cioy =proj, Ci.
Let 7y, € Gall, (g, F) (resp. ;€ Gall, (g%, C)) be defined by

Y (B (r2i20), (F) (r+125>0)

(resp. Vi (Ci) (r=i=0), (F)) (r+1>52>0)).
Denote by
7,7 : Relpos?®™' I — Gall, (g, F., (4(C))
(resp. 7;1470 : Relposg™' I — Gall, (g%, C) )
the mapping defined by

/.A,
Tg7c.l|—>’y£

(resp. T!;f‘,c ST 7;)
From the construction of 7y_ (resp. 7y*) it results that

sgro(7,) =71 (cf. Definition 9.64)

and thus by definition of T;}C that

o) = e (s c(r,)) =7 o) = 1
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as by construction of 7 and definition of Tgl*’c one has that

Tgl*,c(’Y;) =T

Finally one obtains

Ve Relposgall (T;}C o T;:‘é;) (1) =T.

This gives that 7';}0 is surjective. To prove the injectivity of 7';}0 one needs
the following

Lemma 10.16 The triangle

’ gall
Tg% : RelposI (9) — GallA (9, Fe,()(C))

|

igic We(9)

commutes. Where the vertical arrow is defined as above. (Remark that as two
of its arrows are bijections it follows that ng“c also is a bijection, and that a

fortiori T;}C is a bijection).

Proof Let 7(z) = (7,

sitions corresponding to © = (Typi1,...,T1) € ng (9). Let (Cry1,...,Ch) the
sequence of chambers given by y*. Write w; = w(C;,Ci—1) (r+12>1d>1).
Let B

7)€ Relposga” I be the gallery of relative po-

Vigl = Wil -« Wit1 (r=i2>20).

Then it may be seen by induction that the following relations holds between
(Wri1y .. wr) and € = (Tpg1,...,01):

1. Ty = Wpa1, T = villl w; Vg1 (r =i 2 1);

2. Tpg1...Ti =W;...Wry1-
From (2) it follows immediately that

(Xpg1...25)(C) =Ci—1 (r+1>2i>1).

By definition of ’yg(aj) (cf. Proposition 9.54) it follows that ’yg(x) =7_, and

L?

a fortiori that i_:? (x) = 7. This proves the commutativity of the triangle.

From the Lemma one obtains:

Proposition 10.17 T;}C t Gall (g, Fe, () (C)) — Relposg“” A is a bijec-
tive mapping whose inverse is given by

—1 ’
(T;}C) = Tgf‘C :



Minimal Generalized Galleries in a Reductive Group Building 231

10.6 Galleries cells parametrizations

Let g : (8i)r>iz0, ({j)r+12i20 be a gg g € gall = gall , with I(g) = r + 1,
and g = gi (resp. 7,(C) : (F, (), 5150, (F1)(C), 1=, the corresponding
basical gg defined by C). It is recalled that given F' € I(G) one has Stab , ' =
B, = the parabolic subgroup of G given by F. Following the pattern of
Definition 9.48 one writes:

Staby(g) 7,(C) = IIStab,, F, (0)  (r+1

+ >1)
(resp. Stabyg) 7,(C) = 1IStab, F, (C)  (r>i

J
0))

VAR

This definition corresponds to the case 2) of Definition 9.48. The definition of
Staby(g) 7, (C) (resp. Staby)Y,(C)) in the cases 1), 3), and 4) follows the
corresponding patterns 1), 3), and 4). One develops the case 1), i.e. g = ¢1,
in detail. It is easy to see that 1), 3) and 4) are similarly handled.
Definition 10.18 Given x € Stabyy) 7,(C) one writes

zaznmi (r+1>2i>a) (resp. zpy2=1).
Let
’Lé = ’L'é,c : Stabt(g) ’)/Q(C) — Galll(g, Fel(g)(c))
(Fel(g)(C) = Ftr+1(0)) be given by:
igcia i Y,(@) = z-7,(C) |
where
7,(@) = 27, (C) s (201 (P, (€)) (r3 02 0), (351(Fy(C))) (r413 > 1)
(see Proposition 9.54).
To avoid repetitions define a right action
Stabt(g) '}/g(C) X Stabs(g) ’}/9(0) — Stabt(g) ’)/Q(C)

according to Definition 9.50, by writing Stabyg) Y, (C) (resp. Stabg(g) ¥,(C))
instead of W (t(g)) (resp. W(s(g))). ‘

One calls the quotient set

Stabt(g) ’yg(C)/Stabs(g) ’79(0)
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the contracted product associated to the gg 7,(C) in L.
The mapping ié : Staby(g) ’yg(C’) — Gall, (g, Fe,(4)(C)) factors through the

quotient mapping
Stabt(g) ’YQ(C) — Stabt(g) W/g(C)/Stabs(g) ’}/q(C) .

Let

I_
g =

=1
lgCt Stabt(g) ’)/g(C)/StabS(g) ’)/g(C) — Galll(g, Fel(g)(C))

i
be the induced mapping.

Remark 10.19 The mapping 5_([170 corresponds to the mapping

ig.c s W(t(g))/W(s(g)) — Gall, (g, Fe, () (C))

of Corollary 9.56.

Proposition 10.20 The mapping f;}c is a bijection.

The proof of this Proposition follows mutatis mutandis from that of Corollary
9.56 (which gives that %;’C is injective) and Proposition 9.61 (which gives that

i, o 1S surjective).

Let
qg- : Gall (g%) — Gall (g)

denote the mapping
g+ V" = Fy(77)
where Fy(7*) is the gg of type g defined by v* € Gall,(g%). By
g ot Gall,(¢g*,C) — Gall, (g, F.,(,(C))

the induced mapping is denoted.
It is easy to see that the mapping

sf]*,c ¢ Gall, (9,Fg(C)) — Gall, (g*,C)
is a section of the surjective mapping q;*,c, i.e. that

q;*,c o 55*70 = identity of the set Gall, (g, F¢, (4)(C)).

See Definition 9.64 and what follows.
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10.6.1 Cells parametrizations

Given a cell €(g,7) a set of class representatives U(w;)w, C Stabyg) 74(C)
is defined such that ié,o induces a bijection U(w;)w, ~ €(g,1).

We suppose A = Ap, T a maximal torus of G. Let R = Ry be the system
of roots defined by T'. Denote by B¢ the Borel subgroup corresponding to the
chamber C' € Ch A, and by R, (C) C R the system of positive roots defined
by C.

The natural action of W = W, = N(T')/T on Ch.A corresponds to the
action of W on (R4 (C)) (C € ChA), i.e.

w(R+(C)) = Ra(w(C)).

Tt is recalled that by definition (cf. Notation 10.9,2.)
(T, F)=(I xI),Nn({F}x1I).

Let 7 € Relpos, = (ChI x I;)/W. In this section one writes (by abuse of
language):
Y1, O)={F el | (C,F)e(IxI).}.
Let it be recalled that F.(C) € A is the unique facet such that
T(C,F;(C)) =71
ie. ANX(7,C)={F,(C)}. Write

wl =W o) = w(C,projp (¢ O).

F,(C) may be seen as the image of (7, C') by the retraction Proi I — A

(cf. [50], 3.3). Thus F;(C) = w(Fs(C)) (cf. Definition 9.70). Given w € W
one considers a closed subset of the positive roots R (C)

Ry(w) = Ry (C) = Ry (C) Nw(Ry (C)).

Define the subgroup
U(w) C B¢

as the image of the mapping
IIx, (o € Ry (w)) — Be

induced by the multiplication of G, where by X, (« € R) one denotes the
root subgroup corresponding to . Remark that

H(C,w(C)) ={0%q | a € RL(C)},
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where 0®, denotes the hyperplane of A defined by the root a. It is well
known that the mapping

Uw™) — X(r,C) (7 € (ChIx1)/G)

defined by
u = u(Fy, C) = uw!(Fs(C))

is a bijection, i.e. every F' € X(7,C) is uniquely written in the form

F=uw™(F(C))  (ueU™)

g
is known that to 7 corresponds a unique element (cf. Lemma 10.16, and

Proposition 10.17)

(cf. [23], Exp. XXVI, 4.5.3). Given 7 € Relpos?®‘I, 7 = (Tyqse--m)s it

w,_ = (w ,...,wfll) e Wg(9).

Write
U(w,) =U(w! ) x---x U(w:z) C Staby(4)7,(C).

Observe that 7; € Relpos(tji_1 == w:’; € Wg, (o), One has

proj,m (g, (0)C = w;';(C) and Fy, (C) C F,,(C), thus that H(C, w’:LL(C)) C

Hpti (C) and R+(w:_n) C RFri(C)‘

i

This gives
U(w:n) - ]?Q.(C) = Stab, I}, (C)
and finally
U(w,) C II Stab, Fy, ) = Stabt(gﬂg(c)
(ti = ti(9)).

Definition 10.21 For each w € W = N(T')/T one denotes w a representa-
tive w € N(T') by the same letter if no confusion arises (see Definition 11.8).

Let
U(w, )w, C Stabyg)7,(C)

be defined by

Ulw )w, = U@ )w" x---xU!™)w’"
= = r+1 r+1 1 1
= II U(w™)w™ .

i i

Let
ir'e U(w, )w, — Gallp(g, Fe,4(C)) -
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be the restriction of
ié,c rx Y, (w) =2 -7,(C) (cf. Definition 10.18)

to U(w, )w, C Stabyg) 7,(C).
The following Proposition completes this definition.

Proposition 10.22
Imif'c C 6, (9, 7).

Proof Write

w; = w!".
Given
T = (Up 1 Wry1, .-, ugwr) € U(w, )w,
Define a sequence of chambers
Cr+1 =C 5 Cl = (ur+1’wr+1 e ’U,Z’LUZ)(C) (’I’ > ) 2 ].) .

Let it be seen that
TI (C“ Fsifl(CZ-,l)) =T; (resp. Cifl = prosti,I(Cifl)(Ci))

One has
Tr((urprw?! o uiw, )(C), Fopoy ((urpwyl - ugwl})(C))
= TI(Cv Fsi,l (’LU,ZL(C))
and

71(C, Fy,, (wi(C)) = 71(C, Fr, (C)) -

m

m
L Ui W thus

. i+1) _
Write w1 = Up 1 W L

7; = (w(C), w D (F(C))) = (Ci, e, (Cin)),
and
w D (proje, () C) = projuenr,, oy w(C) = projucin e, ) Ci -

Observe that Fs, | (7,(wM)) = w Y (F, (C)). This achieves the proof of
both equalities. It results from the above equalities that

(T5.0)(Vy(2)) =

ie. Y (z) € C..(9,7) (cf Definition 10.14), and this completes Definition
10.21.
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Lemma 10.23 i7" induces a bijection

U(w

r

Jw, ~ C,(9,T) -

Proof Let it be proved that 7y € (gc(g,z) may be uniquely written

Y =7,@) =2 7,(C) , & € Ulw,)u,.

As Fr(7) € X(1.,4,C) clearly one has,
Fr(77) = upp1 w1 (F5,.(C))
with up41 € U(w,41) uniquely determined. Now it is supposed that
Fi(7) = trp1 wrgr - ujriwia (Fs (C)  (r>j >4)

with (W41 Wry1, ..., Wj41 Wit1) uniquely determined.
One then has v, (Fi—1(7)) € Str, (c), with

Vit1l = Up41 Wr41 - - Uiyl Wit

and vi:tll(Fi—l(’Y)) € 2(7;70)7 as

71 (v (Ch), v (Fiea () = 71 (Covfh (Fa (7)) = 7

(Define Cr = tpy1 wrp1(C), Croy = Upp1 Wrprtrwye(C) ... recursively).
Thus there exists u; w; € U(w;)w;, uniquely, determined so that

vih (Fea () = wiw; (Fs,, (C))-
It is finally obtained
FJ("}/) = Up41 Wr41 -+ - Uj41 W1 (st (C)) (T 2 j 2 i — 1)
with (Up41 Wri1, ..., Wjp1 Wi41) uniquely determined.

It is clear that

1#17 = U(w,)w, N U(wT,)wT, =0.

One may thus write

U U(w, Jw, = H U(w, )w, C Stabyg)7,(C).

gall p

T € Relpos? sall p

TE Relposg
The bijective mapping

We(g) — RelposZ“”I
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is obtained as the composition of bijections
Z'Tqr,LC : W&'n(g) — Ga‘HA(gv Fel(g) (C))
(cf. Proposition 9.72) followed by
7';}0 : Gall (g, Fe, () (C)) — Relposgaul.

Thus the cell decomposition

Gall (9. F)= [ 4.(9,7)

TE RclposiaLll I

may be indexed by the set W' (g) (resp. Gall, (g, Fe, (4)(C)))-
By Corollary 9.73 it is known that

Wei(9) € Welt(g))
is a set of representatives of the quotient set
We(t(g9))/We(s(g))-

One now gives a set of representatives of Staby(,) y,(C)/Staby 7,(C),
closely tied to Wi (g), which generalizes the parametrization of double classes
given by Bruhat decomposition.

Definition 10.24 Whrite:

vweg) =TI = Ulww, cStabyy)y,(0).

TE Relposii111 I

Define the bijective mapping:

i UWE(9)) — Gall (9, Fey (@) = [ Cl9.1)

TE Relposianf

Imo -m
9.0 = I &
TE Relposiaul

The mapping iéjg being the restriction of ié,c (cf. Definition 10.18) it
factors through the bijective mapping;:

=1
tg.C " Stabt(g) VQ(C)/Stabs(g) ’79(0) — Galll (g, Fel(g)(c))'

It is deduced that the mapping

(Stabe(g) 7, (C) 2) UV (9)) — Stabyq) 7, (C) /Staby(q) 7, (C)



238 Buildings and Schubert Schemes

induced by the quotient mapping is also bijective. From this it results that
U(W¢(g)) may be viewed as a set of representatives of the Stabg(,) 7y, (C)-
classes of Staby(,) 7, (C).

The cells (gc (g9,7) are obtained as the fibers of a retraction mapping.

Definition 10.25 Define the retraction of galleries given by the couple
(A,0).
&C(g)  Gall (g, Fe, () (C)) — Gall, (g, Fe, (4)(C))

by:
@LC(Q) = (T;}C)_l o TgI,c-
(cf. Proposition 10.17)
The fibers of Prc (9) are given by the set of cells (6 (g,7))

More precisely, we have

1€Relpos§a”1'

(6o @) () = %.(0.7),

N r

where 7 € Gall,(g,C) is the unique gg of A such that (T;}C)(’yT) =7. It
is recalled that T;}C : Gall, (9, Fe,(9)(C)) — Relposgalll is bijective, and its
inverse is given by Tgf‘c : 7y (cf. loc. cit.). On the other hand, there is

a natural mapping
UWe' (9)) — We'(g),

defined by:
(U1 Wrg 1,y ug w1) > (Weg, ..., w1) € ng(g) )

The following commutative diagram expresses the compatibility between zé?}
and ip'c.

ilg  UWE(g)) —= Gall, (g, Fey () (O)) -

i i&’cw)

ig,LC' : ng(g) - Ga‘HA(g7Fel(9) (C))

Given g € gallm = gallj;I = gall?, so that g = ¢, one has associated with
C € Ch A the bijections:

ig'c We(g) — Gall, (g, Fe, (4)(O)) (cf. Proposition 9.72)

(resp. T;}C t Gall (g, Fe, () (C)) — Relposga”I (cf. Proposition 10.17) .
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It is easy to see that the composed mapping
Toc oigc: W (g) — Relposy™'I
g,C g,C c\9 € pOSg
is the bijection induced by the mappings

W (t,s) — Relpos! T

defined by: w — 7(C,w(Fs(C))) (cf. §9.3,c)).

10.6.2 The generic gallery

Recall that
yc = (w(t’ 5))(t,s)€typ(2>A7

with (typ(2)A ={(t,s) € typA x typA— A | t C s}), where
w(ta 5) = 'UJ(C, prOjF C)

and F = F(ttrs)(C’) = the facet of type s incident to C°PP in Stp, (). With
the notation of §9.1, a), F' = F(t[s)(C) may be characterized as the facet of
type s in Stp, (c) at maximal distance from C, i.e. if 7 = 7(C, projy C), then
wi = w = the element of maximal length of {w]" | 7 € Relpos’}, with
respect to S¢. The couple (C, F(tt’:s)(C’)) is in transversal position in Stg, ().

Observe that
S NWE(ti(g), si-1(9)) = {w(ti(9), si-1(9)) }-
Definition 10.26
Let 7" € Relposgalll denote the image of
w' = (wi") = (w(ti(9), 5i-1(9))) € We(g) = ITIWE (ti(g), si-1(9)) by 73
ig?c, One calls the cell

(gc(g’ztr) C XAl(«g’}?el(g)(cv)) = GaH[(g’Fel(g)(C))

corresponding to T, the big cell of i(g,Fel(g)(C’)), with respect to C.

The transversal relative position type 7/ is the image of w!" =

w(ti(g),si—1(g)) € W& (ti(g), si—1(g)) by the above defined mapping

WE (t:(9), si-1(g)) —> Relpos™ @ 1.

Thus
" = (1I") (r+1>2i>1).

K2
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Remark 10.27

1. Write
w;h:waT (r+1>2i>1).

Then w'™ = (wi") is a Sc-reduced expression of type g of w;flc, ac-

cording to Definition 9.183.

2. The image ¥, (w') = w' - v,(C) by ij'c of w' = (wf") is a MGG
of type g between F = F, ;)(C) = Fy,,,(C) and F' = w"(Fy,5)(C)),
namely

Vg(wtr) = 7g(F7 FI) :

8. It is easy to verify that by definition of wgh(FtU(g)(C)) one has: “C O F
is at mazximal distance from wi"(Fy,4)(C))”. (wg" is the mazimal length
element among those obtained as the product of the components of some
w € WZ(g)). It follows that €c(g,T'") is the cell of mazimal dimension.

Write

i = 7(Coug (Fiy () (O)) € (Ax AT /W, (rg = 7(F, ).

Observe that weh = w™, .
g Tg

10.7 Minimal Generalized Gallery block decomposition of a
Schubert cell parametrizing subgroup

One explicates the parametrization of the big cell of the galleries of type
g € gall’} and its relation with the corresponding Schubert cell.
By definition of MGG between F' and F’ one obtains

H(C, F) =[] Hr (Fima) (r412i>1)  (resp. H(C,F') = H(C,projp,C))

where F; = (7, (F, F")) (vesp. Fj = Fj(7,(F, F"))).

One has defined a mapping
sg=,c : Gall (g, F, (9)(C)) — Gall, (%, C)

(cf.  Definition 9.64) which associates with 7y (F,F’) a gg, namely,
sg«,c(7,(F, F")) characterized by the sequence of chambers C,i1 = C,
Ci = projp,Ciz1 (r = i@ > 0). Following a standard calculus (cf. §9.62,
i)), one obtains

Ci = w'iy - w1 (C) = vi41(0)
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where
_ tr tr
Vit1 = Wpgq - - - Wiy q-

As C; D F; D F}, it is deduced that

F = F/(7,(FF)) =vit1(F)(0)).
(resp. F; = Fi(V,(F\F')) = vit1(Fi,(4)(C0))) -
On the other hand, by definition of 7/" one has
7" =7(Cow (s, 9)(0))),
one then deduces that
7(Ci, Fi—1) = 71(C,wi" (Fs,_,(9)(0))) = 7",
(as Ci = vi41(C), vig1 - wi" = v;) and

vigr (H(C wi" (Fy,_y(9)(C))) = H(Ci, Fix).
From this last equality it follows that wv;41 transforms the set
R (C,wl"(Fy,_,(o(C))) of roots o € Ry(C), so that 9P, €
H(C,wi"(Fy,_,(4)(C))), into the set Ry (Cy, F;—1). Remark that as 7, (w'") is
a MGG one has

H e ’H(Cl, Fl‘fl) — H ¢ IH(CT+1, CZ) (Cr+1 = C)
(cf. Remark 3.6,a)), and that
Vi4+1 = U}(C, Cz) y (CZ = 'Ui+1(c)) .

On the other hand, given o € R4 (C') the following equivalence holds

viy1(a) € =R (C) <= 0%, € H(C,C;) ,
as C; = v;41(C). Tt is then deduced that

R+(Ci,Fi,1) C R+(C) .

As
'HFZ/ (Fi1) = H(C;, Fi—1)
one obtains

H(C F) =] H(Ci, Fiy)

and finally
Ry(C,F") = [ R4(Ci, Fiv) .
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From the definition it follows that
Ry (wi") = Ry (C) — Ry (C) Nwi (R4 (C))

and that
Ry (wg") = Ry (C,wg") = Ry (C, F').

Thus results the equality
R+(C,F) R+ HR+ Czan 1)

One now remarks that a set of roots Ry (C,F) = R, (C) — R+(C)NRp is a
closed set of roots. Then the image of the mapping

IIXo(0 € Ry (C, F)—=G

induced by the multiplication in G is a subgroup of Bo which is denoted by
U(C,F).

Lemma 10.28 With the above notation
U(Cy, Fi—1) = vip1U(w!" )oY
Proof This equality results from the following facts:

U(w;") = U(C,w;" (Fy,_,(9)(C)))

(resp. Ry (Ci, Fi_1) = vig1 (R (C,wi"(Fy,_,(5)(C))))), in view of the im-
plcation (C, F) = (u(C).0(F)) = RIC.F) = o(RIC.F)) = U(C.F) =
vU(C, F)v~
Proposition 10.29 The equality

R—i— Ch HR+ Csz 1)
gives a bijection immediately

o, Fimy) — Uy =U(C, F')

induced by the multiplication in G.

10.8 Minimal type galleries big cell
Let one establish the connection between U(wg") = U(C, F') and

E(EChv C) C 2(7@7 Fel(g) (C)),

where 7y = 7(F, F’) and 75" = 7(C, F'), and C' D F is at maximal distance
from F’.
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Remark 10.30 Observe that if (C,F) corresponds to (I, 4 (C), F) by the
mapping

(Ax AT 5 (Ax A), ., then
2(7’, C) C E(Tg,F@l(g)(C))7
where T = 17(C, F) (cf. Lemma 9.22).

Lemma 10.31 The multiplication in G induces a bijection

Ulw,er)w i = IT Ui yw!” ~ U(weywe" .

7

Proof One first observes that

wi:q = w;tr (resp. w e = (wi")),
r+1 =
thus U(wyerJw,ir = HU(U’?)“}?'

On the other hand, the mapping
U(U}ztr)’u)ztr — G

induced by the multiplication factors as follows. It is obtained as the compo-
sition of the bijection

I1 U(wi"wi" — Hvi_H U(wﬁr)villl
followed by the bijection
HU(CZ, Fi—l) = H Vi+1 U(wfr)villl — U(w;h)
(cf. §10.7) induced by the multiplication in G, and the right multiplication

ch .

by wg":
ch
T Twy
This follows immediately from the identity
tr tr tr -1 -1 -1

Uppr WU W, U WY = U1 (Vg1 UpVy ) (U Up 10,7 ) - (U1 w0; )01
((Urg1 Wiy, .. ug wi') € U(wper)w,er ). Observe that v} v; = wih,

There is a bijective mapping

Uwwi* — B(15",C) € B(rg, Fey(5)(C))
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defined by
wes By (©) (€ Ul yugh)

g

(cf. §10.8). On the other hand, the mapping
igtv‘,c : U(wzt")wzt" — (gc(gaztr) - Z(g7F€1(g)(C))

being induced by

g, Staby(g) V,(C) — 1(g, Fe,(9)(C) = Gall, (g, Fe, (4)(C))
defined by
ié,c rr ey, (@) =27, (0) (z € Staby(g) 7,(C)) -
(cf. Definition 10.21, and Definition 10.18), verifies
Fo(7,(@)) = 1w/ - oy wi” (Fyy(g)(C))
where & = (upy1 w1, ..., up wi”) € U(woer )w e C Stabyg V,4(0).

Putting together these facts from Lemma 10.31 it results that the compo-
sition mapping

By 0if s Ul )iy — (5, Foy()(C))
sends U (w, ¢ )w, e bijectively to
(U (S0 (Fiy ) (C) = 2521, C) € Sy, oy (C)) -

one has proved the

Proposition 10.32 The following diagram

ipm Nolt U(wzw)wzw - Cgc(.%ltr)(—) 2(97 Fe1(9)(c))

T
m
l J{ 9:Feq (9)(C)

U(w;h)w;h - Z(ECh’ )= X(5, Fe, (9)(0))

where U(wgh)w;h — E(T_gh,C) is defined as above, and the left vertical

arrow is given by Lemma 10.81, commutes.
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It is known that 7T;"’F (@) = EZ" is a bijective mapping whose inverse map-
ey
ping is given by the section

Og.Fu, (@) 25 Fey () (C)) — L9, Fey (9)(C))

defined by:
691Fel(g)(C) D F e ’yg(Fel(g)(O)vF/)
(= the MGG between F 4 (C) and F’ of type g satisfying
(T(Fe1(9) (C)v F/) = Tg))
Thus one obtains that all the arrows of the above diagram, with the exception

of the two inclusions, are bijective. The following is deduced

Corollary 10.33 With the above notation

(Ouriier) (B 0) = E.lg. 2.

10.9 Galleries of fixed type as fiber products

It is possible to write the set of galleries of type g, Gall;(g) as a fiber product
of “closed universal Schubert cells” given by the set of type s facets incident
to Ft7 (StFt)s-
Recall typP A = {(t,s) € typ A x typ A — A | t C s}. There is a natural
mapping
7@ typ® A — Relpos A

defined by

7@ (t,s) s T (FF) ((t,5) € typ@ A)

where (F',F) € I, x I, satisfies I’ C F. Clearly the mapping 72 is well-
defined, injective, and 7(?)(t, s) € Relposzt,s) I.

Definition 10.34
Given (t,s) € typ® A, and F' € I, write:

Y(t,s) =X (r P (t,s)) C I x I,
(resp. di(t,s; F') = 2(7(2)(t,s),F'))

One calls Yi(t,s; F') the (t,s)-elementary cell defined by F’ (resp.
S(t, s) the (t, s)-universal elementary cell). One has % (t,s) = L(t, 5).

Let (¢,s) € typ? A, and a type t’ C 5. There is a natural mapping

Pryy =pryy Mt s) — Iy (resp. pry = pry @ X(t,s) — I} )
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associating with (F”, F') € Y(t, s) the unique facet Fy (F) of type t' incident
to FtypF =s D t'), ie.

pryy : (F',F) — Fu(F) .
(resp. defined by pry : (F',F)— F').

Definition 10.35
1. Let (t,s),(t',s") € typP A, with t' C s, and F' € I,. Then it is said
that (t,s), and (t',s’) are composable. Write:
it s) x5t s") = X(¢, s) X, 2(t, s
(resp. Nt s F')« Nt s") = X(t, s, F') x, %(t',s))
where the fiber product is defined relatively to the couple:

Ty 47, PT resp. (pry 4 ,Pry)).
(pro,pry)  (resp. (pro, |2(t,s;F/) pry))

2. Let F € I with typ F D t. Define

S(t, 8 F) = S(t, 5 F(F)) .

To g € Gall,, of length  + 1, with g = g1, so that (t;41(g),s:(g)) € typP A
given by:
g:(si) (rziz0), () (r+12j21)

one associates the star product X" (g) which is defined by induction from
Definition 10.35:

Y (g) = X(trg1,8r) ¥ Dty 5p1) - % L(t1, 50).
Definition 10.36 Given g = g; we define
X (g) = X" (¢")

where g% denotes the truncated gallery defined by g (cf. Definition 9.57). If
g=g2:(s;) (r=i>=0), (t;) (r+1>j>1) one defines

Y (g) = Xty 5p_1) % - % 2(t1, 50)

For g = g}, one writes

3 (g) = X7 ().
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Proposition 10.37 There is a canonical bijection

*

Gall, (9) =27 (9)

for g € Gall, verifying (ti1+1(9),s:(g)) € typ@® A.
Proof Let v € Gall,(g), with g = g1 be given by:
YiE) 30,  (F) r+13531).

With Y one associates the element
(Ff1, F) € TS (ti40,8)  (r=i>0)
which clearly belongs to E*(g) cII Yi(tiv1,8:). Thus one defines a mapping

Gall, (9) — X" (9) ,

which is immediately seen to be bijective. A bijection Gall (g) =~ X" (9)

may be obtained in the case g = go (resp. g = ¢4, g = gb) following the same
pattern.

Given F with typ F = t,11(g) (resp. typ F' = s.(g)) one defines
E(g. F) X (9)

as the image of Gall, (g, F), by the bijection Gall (g) — X (g), ifg=g1,9,
(resp. g = g2, 95).

ForgEgallA,andTEaEO(resp. r>a>0)let

7T(g"‘) : Gall, (g) — Gall; (9%

be the mapping:
ﬂ-( ). 3 f\}/( )
ga Ly e

if g = g1,9) (resp. g = go2,g5) (cf. Definition 9.57).

Let
7%+ Gall, (g, F) — Gall, (¢, F)

denote the mapping induced by 7T£(,a) by restriction to Gall, (g, ') C Gall (g),
and co-restriction to Gall, (g(‘"), F)C Gall, (g(a))_

From the definition of ()

g(a/)) (o > ') results the following proposition.
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-1
Proposition 10.38 Let y(®) ¢ Galll(g(a)). The fiber (ﬂ;ﬂ/J (v*) of

i, ¢ Gall (¢¢)) — Gall (9°) (o' <a)
over 7y is given by:

1
(W;?iw) (V') = Etas sa—1; Fro (Fs, (7)) # - * Bltars1, Sar).

If one introduces the notation

[v,a”]

g ta(9) C sa-1(9)tart1(g) C sa/(9)

the equality of the Proposition 10.38 may be written

1 . , ,
(i) () = T B (Fa (7)) = Gall (6, P (Fo (7).

As a particular case of the Proposition 10.38 for o/ = a — 1 one obtains the
equality:

-1
(70) " (1) = Dltas sams; Fru (Fo (1)).

Definition 10.39 Let g = g1,9] (resp. g = go,g5). It is called the sequence
of mappings

(7)) w+1zaz)

gla—1)
(resp. (71';?2,1)) (rzazl))

the tower of fibrations associated with Gall (g). If typF = t,11(g)
(resp. typ F = s,.(g)) one has, corresponding to the preceding sequence, the
sequence

(7 p)  H1zaz1)

(resp. (W;“271)7F> (rzaz>1))

(the tower of fibrations associated with Gall (g, F')). Where ﬂér(:l)

(T(Z,l)) denotes the canonical mapping

(resp. ,

Galll (g) — It7~+1(9)

(resp. Gall (9) — Ls,(g) )-
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10.10 Galleries cells tower fibration
Let 7,7 € (Ch.A x A)/W = (ChI x I)/G. Define
pr : X(r) — ChI
(resp.  prl: E(r') — Chl)
by
prl: (C,F) = projpC  (resp. pr’ : (C,F) s C ).

Write
(1) * 25(7) = (1) XA (7

where the fiber product is defined by the couple (prg7 prI/). Given C € Chl
one writes: 2(C,7) x 2(7") = fiber over C of the mapping

Y1) * X(r") — X(7) p—r% ChI .

all
Definition 10.40 For 1 € Relposf (9), and C € ChI define

E*(z):Z(T * "*2(71)

r+1)
(resp. X1, C) = X(1 C’)*~-~*Z(7i)).

1

where T = (7;+1,... ;7). One supposes g = g1,g1. The corresponding defini-
tion in the case g = go, gy is obtained by replacing r + 1 by r in the preceding

equalities.

Suppose now C' € Ch A and g = g;. The next aim is to obtain the cell
cgo (9,7) C Gall (g) as the star product 3" (1, C) along the gallery of relative
positions

gall
(r+1"' ,l)ERelpos (g)-

One represents an element 2 € X" (7) in the form

= ((Cip1, F5))  (r=i20)

T =

and one defines
jC (Q,I) : Z*(Ia C) — Gau[ (ga Fel(g) (O))

by
io(@.1)  ((Cigr, Fi)) — Y((Cisr, F3))

where this latter is given by
Y(Cit1, F2)) o (F) (r>i20),  (Fp(C)) (r+1>j=>1).

From the Definition 10.14 of ‘fgc(g, 7) one obtains the proposition:
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Proposition 10.41 The image Sjc(g,z) is given by

Si(9.1) =€ (9,1).

One identifies X" (7, C) with (gc(g,z) by means of jc(g,z).

Let
gall

7@ = (7;,“, ceyTa) € RelposI (g(’kl))

be the a-truncated gallery of relative positions defined by 7. One has the
inclusions:

Cgc(g(afl),z(a)) _ E*(z(a),c’) C E*(g(afl),C) )

Let

T, o BT, 0) — B (e, )

denote the mapping obtained as the restriction to
X (), 0) c B(g“ ., 0)
and the co-restriction to
XD, 0) € B(g ™), C)

(@)
of T a1 o

Given

v € C. (g, rT) =X (C, rl )

one associates with 7y a sequence of chambers

C=Cr1=Cra(7),  CGi(7) =projp, ., () Cit1 (7).
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Proposition 10.42 Let ¥(®) € X(r(**V, C) C Gall, (9™, C).
-1
The fiber (w% C) (7)) of 7L, . over V() is given by:

-1
(70 e) () = S(ra, Caly)).

¥z, 0) —— Gall (g7, C)
E*(I(OﬁLl)a C) — Ga”[ (g(a)a C)

where the horizontal arrows are inclusions, and the vertical left arrows (resp.
right arrow) is given by

W(I(:(Z)C (resp. W(go(‘(z,l)yc).

One has the inclusion of fibers over y(®):

(T, Co (V') € Blta, sa—1; Fi. (Fs. (7))

(cf. Proposition 10.38).



Chapter 11

Parabolic Subgroups in a
Reductive Group Scheme

One summarizes the essential definitions and results of reductive S-groups
schemes which are useful for our purpose of defining Schubert Schemes and
their associated canonical and functorial Smooth Resolutions and for extend-
ing to this setting the buildings constructions. In fact, it is remarked, that
both Grothendieck reductive group schemes and Tits Buildings are both in-
spired by the fundamental Chevalley’s Tohoku paper [10]. The principal ob-
jects associated with a building become in the schematic context twisted lo-
cally constant finite S-schemes. They are defined by etale descent.

One recalls the definition of a Reductive S-Group scheme G, of a
Splitting (resp. Frame) of such a group, and of a Parabolic subgroup of G.
According to [23], the functor of Parabolics subgroups of G, the Types
of Parabolics quotient scheme of this functor by the adjoint action of G,
i.e. the Dynkin scheme, the functor of Couples Parabolics in Standard
Position, the Types of Relative Positions quotient scheme of this func-
tor by the diagonal adjoint action of GG, are introduced, along with the class
of (R)-subgroups of G, which are of use to generalize buildings constructions
to the relative setting. The representability of the (R)-subgroups functor
implies the representability of functors of more restricted classes of subgroups
allowing to introduce the analogues of Convex Hull subcomplexes of a Build-
ing in the relative frame. It implies in particular the representability of the
Parabolics subgroups functor, the one of the Cartan subgroups giving the rel-
ative apartments --- etc. Finally the construction of the Weyl Complex
scheme of G is given. The reader is referred to Chapters X XI1I — X XV I of
SGA III [23] for details.

252
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11.1 Reductive group schemes

Let be stated first some important definitions.! In this number S denotes

a base scheme. Given a point s € S and an S-scheme X, X3 denotes the
geometric fiber of X on s, i.e.

X5 = X xg Spec (R(9)),
where K(s) is the algebraic closure of the residual field
k(s) = Og,s/mg,s.

Definition 11.1 1) By a reductive (resp. semi-simple) group S-
scheme G one understands an affine smooth S-group scheme G, such
that Gz is a connected and reductive (resp. semi-simple) (s)-group, for
every s € S.

2) A maximal torus T of G, is a torus T C G so that Ts C Gz is a
mazximal torus for every s € S. A torus T C G 1is trivial if there exists
a finitely generated free Z-module M satisfying:

T~ Hﬂls—gr (M57@m5') B
where Mg denotes the trivial sheaf defined by M.

Definition 11.2 (¢f. loc. cit., Exp. XIX, Definition 3.2.)
Let G be a reductive S-group scheme, and T C G an S-torus. Write G =
Lie(G).

A character o« € Homs_gr(T, Gy, 5) is a root of G if for each s € S, one
has that the induced character az € Hom (Ts,Gp3), is a root of Gz, i.e. if
one considers the decomposition

Gs = gO S < QEBR QO‘) (R C Hom (T§7 Gmg)),

of Gs under the action of T, one has
g€ R.

Let W(G) be the S-vector group defined by G = Lie(G), i.e. the group
S-functor defined by
S — Og Rog g.

Define a subfunctor of W (G) by

W(G)*(S") = {z € W(G)(S") ] ad(t)a = a(t)z for every t € T(S"), S" — §'} .

1For more details see loc. cit., Exp. XIX
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There exists a rank 1 direct factor Og-submodule G* C G so that
W(G)* =W(G*) (cf. loc. cit., Exp. XIX, §4).
If o is a root of G then —« is also a root of G.

Definition 11.3 Let G be a reductive S-group scheme and T a mazximal
torus, and R a set of roots relatively to T. It is said that R is a root sys-
tem of G relatively to T if

G=¢"o ( o g“) ;
a€ER
Where G° = Lie(T). One also writes Lie(T) = T.
Definition 11.4 Let
R (S" — S) — set of roots of Gg with respect to Tgr

be the root functor. The natural inclusion morphism Rs <
Homg_4 (T, G,,) gives rise to an isomorphism Rg ~ Z.

11.2 Z-root systems

Definition 11.5 (¢f. loc. cit., Exp. XXI, Definition 1.1.1.)
A Z-root system
R=(M,M* R,RY)

s the data given by:

1. A finitely generated Z-module M, and its dual M*.
Denote by (x,y) the duality pairing

M x M* — Z.

2. A finite subset
RC M (resp. RY C M*)

and a map
R— RY

given by
a— o’ (a € R).
Write for « € R, x € M (resp. oV € R,y € M*), so(z) =z — (z,a") «
(resp. sav(y) =y —(a,y)a).
This mapping satisfies:

(@Y, a) =2 (resp. so(R) C R, sov(RY) C RY).
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Thus
Sa: M — M (resp. sqv: M* — M¥)

is a reflexion invariating R (resp. RY).
Let
V=R®z M (resp. V* =R®z M™).

Denote also by R C V (resp. RY C V*) the image of R (resp. RY) by
M — R®y M (resp. M* — R ®z M).
One has then

(V,V*,R,R")

is a root system as defined in [4], Ch. VI, §1, Def. 1 (the Root System
defined by R).

11.3 Z-root system defined by a splitting of a reductive group
scheme

Let T = Hom g4, (Mg, G,,s) be a maximal and trivial torus 7" of the S-
reductive group scheme G. Write G = Lie(G) (the Lie algebra of G). Let

G=G"® (®G“(a € R))

be the root decomposition of G under the action of T' (cf. loc. cit., Exp.
XIX, Definition 3.6).

11.3.1 Co-roots defined by a splitting of a reductive group scheme

PROPOSITION - DEFINITION 11.6 1) There exists a Os-module mor-
phism:
goc ®ﬁs gia — ﬁS 9
given by a duality pairing: (X,Y) —< XY > identifying G* to
g
2) For all a € R there exists a unique T-equivariant group morphism:

exp, : W(GY) — G,

where T acts on G* by the adjoint action and on G by conjugation, in-
ducing the natural inclusion Lie algebra morphism G* = Lie(W (G®)) —

G.
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3) There is a unique group morphism o : Gus — T satisfying for all
(X,Y) € G*x G, so that 1+ < X,Y > is an invertible section of Og,
the following formula:

Y

—_—) . \/
hexys) @ (r<Xy>)

expa(X) - expa(Y) = exp_a

_*
1+ < X, Y >/

One calls oV the co-root associated with o, and one writes R = {aV|a €
R} (c¢f. Definition 1.5. of loc. cit., Exp. XXII, Proposition 1.10).

eapa

Remark 11.7 Let M =  Homg_g (T,Gprs) (resp. M* =
Homs_gr (Gps, T)) Remark that

Mngr (T7 GmS) ~ MS (7”63]9' Msfgr (GmSa T) =~ M;’) .

Thus each constant function o € R (resp. ¥ € R*) is given by some element
of the finitely generated Z-module M (resp. M*)

11.3.2 Conjugation automorphisms of a maximal torus defined by the

roots

Definition 11.8 Denote by s, the automorphism of T defined by:

This automorphism acts on Mg = Homg_ g (T, Gy,s) by Cartier duality by:
sa(m) =m — (a¥,m)a ,
and finally on Mg = Hom g_gr (Grns, T') by:
sa(u) =u— (a,u)a .
Where m (resp. u) denotes a section of Homg_g4r (T,Gps) (resp.

Hom S—gr (GmSa T))

11.3.3 Splittings and frames of a reductive group scheme

Assume that:

1. The roots (resp. the corresponding co-roots) a € Hom g_g, (T, Gyns)
(resp. a¥ € Hom g_g (Ging,T)) are given by constant functions of S
with values in M (resp. M™*).
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2. Each G C G is a free Og-module.

Definition 11.9 (cf. loc. cit., Exp. XXII, Definition 1.13.)

It is said that the above data (G,T, M, R) defines a split (resp. deployed)
S-reductive group G, or that the data T = Hom s_q4r (Ms,Gs), RC M (M
being a finitely generated Z-module) is a splitting of the S-reductive group
G.

It results from the general theory of S-reductive groups G that
R=(M,M* R,RY)

is a Z-root data. It is said that R is the Z-root data defined by the split
S-reductive group (G,T, M, R). Write

R =R(G).

Definition 11.10 (¢f. loc. cit., Exp. XXIII, Definition 1.1.)
A frame E of a splitted S-reductive group (G, T, M, R) is given by the follow-
ing additional data:

1. A simple root system Ry C R.
2. The choice for each o € Ry of a basis (X,) of G*.

Remark 11.11
One renders by “frame” the french word “épinglage”.

There is the

Proposition 11.12 (¢f. loc. cit., Exp. XXII, Proposition 2.1.)

Let T C G be a trivial mazximal torus of the S-reductive group G. Then
for each s € S there exists a Zariski neighborhood Ug of s and a splitting
(Gu.,Tu.,M,R) of G, i.e. a splitting of Gy, with mazimal torus Ty, =
restriction of T toUs C S.

The following corollary explains how to proceed for obtaining a splitting
of the S-reductive group G.

Corollary 11.13
Let it be supposed the S-reductive group G is endowed with a mazimal torus
T CG. Let

(S; = 8)

be an etale covering of S trivializing T, i.e. so that the maximal torus Ts, is
trivial. Then after composing this covering with open coverings (S;; — S;)

iel

JEL;
of the S; one obtains an etale covering (S;; — S)(ij)eK of S such that G,

is split (resp. admits a frame).
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Corollary 11.14 The root scheme % associated with the maximal torus T is
representable by a locally finite etale S-scheme.

The following proposition resumes the main interest of frames.

Proposition 11.15 (¢f. loc. cit., Exp. XXIV, Lemme 1.5.)
Let By and E5 be two frames of the S-reductive group G. Then there exists a

unique inner automorphism
a: G—=G

of G such that a(Fy) = Ey. Write a = a(E1, Eg).
Definition 11.16 (cf. loc. cit., Exp. XXII, 2.6.)
Let R be a Z-root system. It is said that the S-reductive group G is of type

R if for each s € S there exists an etale neighborhood U, such that there exists
a splitting (GUS,T, M, R) with the corresponding Root Data satisfying

R (Gy.,T,M,R) = R.
Definition 11.17 Let
= (GvTv M7 R7 RO» (Xa)aeRl))

be a frame of G. It is associated with E a Z-root system R(E) endowed with
a frame of root system, i.e. a simple system of roots Ry, namely

R(E) = (M,M*,R,R", Ry)
(¢f. Exp. XXIII, §1).
Observe that the main goal of [23], is the proof of the following
Theorem 11.18 (c¢f. loc. cit., Exp. XXV, Théoréme 1.1.)

The functor
(G, E) = R(E)

from the category of S-reductive groups G endowed with a frame E to that of
Z-root data endowed with a simple system of roots is a category equivalence.

Definition 11.19 (¢f. [23], Exp. XXIII, p. 317)

Given a Z-root system R there exists a reductive group Z-scheme Ep (R)
endowed with a canonical frame Er, of type R, called the Chevalley scheme
of type R.

It will be seen that the Smooth Resolutions of the Schubert Schemes of Z-
scheme @Z(’R) have a Universal property. On the other hand, observe that
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the data of a frame E of type R of a reductive group S-scheme G amounts to
that of an isomorphism

G~ Ep,(R) x S = Ep (R).

More precisely, with the notation of [23], Exp. XXIV, the Autg_, (Ep (R))-
principal fiber space of isomorphisms

I‘Sﬂs—gr(@s(R)? G)a

may be seen as the scheme of frames of G of type R. (cf. [23], Exp. XXIV,
Remarque 1.20).
This result suggests that functorial constructions concerning objects nat-

urally associated with G may be described in terms of the combinatorial data

11.4 Parabolic subgroups
Definition 11.20 A Parabolic Subgroup
PCG

is a smooth S-subgroup scheme of G, so that for every s € S, Ps is a parabolic
subgroup of Gs, i.e. Gg/Ps is a proper R(s)-scheme, or which amounts to the
same, Ps contains a Borel subgroup of Gs. A Borel subgroup of G is a
Minimal Parabolic Subgroup.

The Parabolic Subgroups Functor Par(G) (resp. Borel Subgroups
S-sub-functor Bor(G)), is obtained naturally from the above definition
(cf. 11.42) and is representable by a smooth and projective S-scheme with
integral geometric fibers as will be seen (cf. also loc.cit., Fxp. XXV1, §3.2).

The main property of a Parabolic Subgroup P is given by:

“P is a closed subgroup, with connected fibers, it is equal to its own normal-
izer, i.e. Normg(P) = P, and the quotient sheaf G/P is representable by a
projective smooth S-scheme”

(cf. loc. cit., Exp. XXV, Proposition 1.2).

Definition 11.21 According to [23], Exp. XXVI, Definition 1.11, it is
said that E = (T, M, R, Ry, (Xa)acr,) s o frame of G adapted to the
parabolic subgroup P if the Lie algebra Lie(P) of P may be written as:

Lie(P) —go@( ® g“)

a€Rp

where Rp C R is a parabolic subset containing Ry.
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11.5 Standard position couples of Parabolics scheme

Given two facets F' and F’ of a building I, defined by a reductive group G over
an algebraically closed field k, there exists an apartment A C I which contains
both. This means that there exists a maximal torus T' C Pr N Pr/ such that
A = Ap. Let G be an reductive S-group scheme. Given two parabolic
subgroups P and @Q, it is not always true that there exists a maximal torus T
locally contained in both P and ). This motivates the following developments.

Let (P,Q) be a couple of parabolics of G. The following conditions are
equivalent:

1. PNQ is smooth.

2. PN Q locally contains a maximal torus of G for the fpqc-topology.

3. PN Q@ locally contains a maximal torus of G for the Zariski-topology.
(cf. loc. cit., Exp. XXVI, 4.5.1.)
Definition 11.22 (¢f. loc. cit., 4.5.1.)
If (P, Q) verifies one of the three equivalent conditions above, it is said that

P and Q are in standard position, or that the couple of parabolics (P, Q)
18 in standard position.

Let
Stand(G) C Par(G) x g Par(Q)

be the representable sub-functor whose sections are the couples (P, Q) of
parabolics in standard position (cf. loc. cit., 4.5.3.).

Remark 11.23 [t will be seen that, in the relative case, Stand(G) plays the
same role as I x I in the case of a building I of a k-reductive group G.

PROPOSITION - DEFINITION 11.24 (c¢f. loc. cit., Exp. XXVI, 4.5.5.)
Given two couples (P, Q) and (P, Q") of parabolics in standard position the
following assertions are equivalent:

1. (P,Q) and (P',Q") are locally conjugate for the fpge-topology, i.e. there
ezists a locally defined section x of G with int(z)(P) = xPx~t = P’

(resp. int(z)(Q) = zQz~' = Q).
2. (P,Q) and (P', Q") are locally conjugate for the etale topology.

3. For every s € S, (P5,Qz) and (PL, Q%) are conjugate, i.e. there exists
x € Gz ((R(s)) with

(int(x) (Ps) , int(z) (Qs)) = (P, Q) -

It is said that (P, Q) and (P',Q’) define the same type of relative position.
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11.5.1 Relative position types quotient scheme

The relative position types index naturally the Bruhat (resp. Schubert) Cells.
There is a natural action of G on Stand(G):

G x Stand(G) — Stand(G)

defined by
(z,(P,Q)) — (int(z)(P), int(z)(Q)).

The quotient Stand(G)/G of Stand(G) under the action of G is representable
by a twisted locally constant finite S-scheme (denoted by T.st in loc. cit.,
Exp. XXV1I,84.5.3). Denote by

ty : Stand(G) — Relposg
the quotient morphism.

Proposition 11.25
1. The functor Stand(QG) is representable

2. The morphism ty : Stand(G) — Relposq is S-smooth, of finite presen-
tation, with irreducible geometrical fibers.

There is a natural morphism
ta x pri : Stand(G) — Relpos g x g Par(G),

where pr] denotes the restriction to Stand(G) C Par(G) xg Par(G) of the
first projection
pr1 : Par(G) xg Par(G) — Par(G).

Let (7, P) be a section of Relpos ¢ x g Par(G), and write:
Stand(r, P) = (to x pry) " (1, P))

(resp. Stand(7) = ;' (7), Stand(P) = (pr}) " (P)) .

Remark that it depends on a compatibility condition between the type of
relative position 7 and the type t of the parabolic P, as it will be later defined,
for Stand(7, P) to be empty or not.

Let

Stand(G)" = Stand(G) N (Bor(G) x Par(Q)) .

Definition 11.26
Define Relposy, C Relposg as the quotient S-subscheme

Relpos; = Stand(G)'/G.
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Let B C G be a Borel subgroup of G, thus defining a section of Bor(G).
The quotient of
Stand(B) C Stand(G)’,

by B is canonically identified with Relpos(G)’:
Stand(B)/B =~ Relpos ¢,

where the isomorphism is induced by the above inclusion.
Thus there is a morphism

pp : Stand(B) — Stand(B)/B ~ Relpos,

induced by the quotient morphism.
For the sake of briefness one calls, in what follows, a reductive group S-
scheme G simply an S-reductive group G.

11.6 Dinkyn scheme and the typical simplex scheme

Each one of the following basic sets associated to a building I:
1) the typical simplex typ I;

2) the set gall ; (resp. gall 7*) of generalized galleries (resp. Minimal Gen-
eralized Galleries) of the typical simplex typ I;

3) the set of relative positions Relpos I,

have a corresponding object in the setting of S-reductive groups G. This
objects are twisted locally constant S-schemes. One proceeds to define them
by descent from the case G split. Let a description of typ [ in terms of a frame
E of G be given. Denote by

mclI

the set of minimal facets of I, i.e. the set of vertices of I, and it is written
typI™ =1I"/G
for the image of I"™ by typ: I™ — I/G. One has then a canonical bijection
typI = P (typI™).
Every facet F' of I may be written as
F= | F.
F'el™ F'CF

Thus with the class of F in typ I = I/G, is associated the set of classes of the
F’ € typ I"™ with F' C F which determines F, i.e. F is the upper bound of
its vertices (cf. [50]).
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The natural building morphism Ag < I induces the bijections typ Ag ~
typ I (resp. typ A% ~ typ I"™), where Ag denotes the building of parabolic
subsets of the root system Rp given by the frame E, and typ A% denotes the
types of the set of maximal parabolics subsets. Given a € Ry, write

R(a) =7 (Ro — {Oé}) NRU R+ (resp. F(a) = FR(Q), P(a) = PF((’)) .

R(®) is a maximal parabolic set of R. There is a natural bijection Ry ~ typ A
defined by o — R(®). One obtains a canonical bijection

Ry = Dyn(FE) ~ typ I™,

(cf. loc. cit., Exp. XXIV, 3.) defined by a + F(),
Denote by A(E) the set P(Dyn(E)). There is an order preserving bijection

A(E) — typ 1,

defined by

" typ ( U F}{(a))

a€ER’

Clearly, | Frw (a € R') gives the facet defined by the parabolic set
NR® (€ R).

Identify the simplex A(FE) to the subcomplex of I (resp. Ag), given by
the set of parabolics P (resp. facets F') so that

Bgr, C P (resp. Cr, D F).
On the other hand, under the canonical isomorphism
C (WAE,SE) >~ AE

the simplex A(FE) is identified with the class of subgroups (W;);ea(g) of W =
W 4., where one writes

Wt = Stab WFn R(a),

a€eS—t

i.e. t € A(F) may be identified with the set of canonical generators X; C S
of the Weyl group of P g -
aeS—t
Given two frames F and E’ of G, it is denoted by
a(E,E )pyn : Dyn(E) — Dyn(E"),

the Dynkin diagram isomorphism induced by «(F, E’). One obtains an in-
ductive (resp. transitive) system of isomorphisms

(Dyn(E), a(E, E")pyn) -
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It is easy to see that there is a natural isomorphism

lin A(E) > typI =1/G,

where the inductive limit is given by the inductive system of isomorphisms
(A(E),a(E, E')a) associated with the above system. Let

Gall A(g) (resp. Gall’A”(E))

be the set of MGG of A(FE) (resp. the set of types of MGG of I, which
is defined taking on account the isomorphism A(FE) = typ I). The above
isomorphism induces the bijection

l%n Gall () — Gall gy 7 = gall

(resp. 1%11 GallX(py — Gally, ;= gall}”) .

The above preliminaries motivate the following definitions. Let G be an
S-reductive group.

Definition 11.27 (The Dynkin S-scheme Dyn(G) of G) (c¢f. loc. cit.,
Ezp. XXIV, 3.)
First suppose G split. In this case the set of frames G is not empty. Given a
frame E of G write

R(E) = (M,M*,R,RY, Ry),

for the Z-root system, endowed with a system of simple roots Ry, defined by
E. Let Dyn(E) be the Dynkin diagram defined by R(E) (cf. loc. cit., Exp.
XXI, Definition 7.4.2).
Write
Dyn(G) = lim Dyn(E)s,

where Dyn(E)g denotes the constant S-scheme defined by Dyn(E). The in-
ductive limit is defined by the inductive system (Dyn(E)s, (a(E,E")pyn)g)-
In the general case it is considered an etale covering (S; — S) so that Gg, is
split. Denote by (c;;) the corresponding cocycle (resp. descent data) defining
G.

The set (Dyn(Gsg,)) is endowed with o descent data ((¢ij) pyn) induced by
(cij)-

Define

Dyn(G)

by descent from this data.
This definition is independent of the etale covering (S; — S).
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The Dynkin scheme as defined in SGA 11 is a more complete data than ours.
It consists of a Dynkin diagram structure defined by a morphism Dyn(G) —
{1,2,3}s. Recall that the Dynkin diagram structure defined by a system of
simple roots S amounts to that of the Cartan matrix of S. Thus a system of
roots R may be obtained from the Dynkin diagram. The root scheme R is
defined by etale descent by means of the following proposition.

Proposition 11.28 Given adjoint root data R and R’, a simple root system
S of R and a simple root system S’ of R', and a bijection u : S — S’
transforming the Cartan matriz of S in that of S'. Then there exists a unique
isomorphism R ~ R’ induced by u.

Definition 11.29 (The relative typical simplex S-scheme A(G)) (cf.
loc. cit., Exp. XXVI, 3.1.)
Given a frame E of G write

A(E) = A(Dyn(E)) = P(Dyn(E))

(the combinatorial simplex given by the vertices of Dyn(FE)). Define A(G)
following the same pattern as in the definition of Dyn(G).
If G is split write
A(G) = lim A(B)s

where E runs on the (non-empty) set of frames of G and the transition iso-
morphisms are induced by (a(E, E")).

In the general case one defines A(G) by descent from an etale covering
(S; = S) such that Gg, is split as was done for Dyn(G).

By loc. cit., the sections of A(G) over an S-scheme S’ may be characterized
as follows:

A(G)(S) = the set of open and closed subsets of Dyn(G)g,

From this characterization it follows that the locally trivial S-scheme A(G)
is endowed with a functorial inclusion relation “C”, naturally allowing the
definition of generalized galleries of A(G).

Remark 11.30 According to loc. cit., with a constant “twisted” finite S-
scheme X is associated the S-functor P(X) defined by

P(X)(S") = the set of open and closed subsets of Xg

which is representable by a constant “twisted” finite S-scheme. More explicitly
if X = Ag then P(X) = (P(A))s. The assertion is obtained in general by
descent of open and closed subschemes. This remark clearly applies to Dyn(G)
and allows defining A(G) otherwise.
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11.7 Parabolic type morphism

According to [23], Exp. XXVI, Definition 1.11., in order to define the
type section t1(P) for a parabolic P C G, one may proceed locally for
the etale topology, and may suppose that G is endowed with a frame
E =(T,M,R, Ry, (Xa)acr,) adapted to P.

It is recalled that this means that P D T, and that the Lie algebra Lie(P)
of P may be written as

Lie(P) = ¢° @ (#G*) (a € Rp)

where Rp C R is a parabolic subset containing Ry. In other terms there exists
F € A(CEg) such that Rp = Rp.

There is a canonical isomorphism
(Ro)s ~ Dyn(G) (Ro = Dyn(E)),

and the image t1(P) of P is given by the section (Ry — Ry N (—Rp))s of
P(Ry)s defined by Ry — Ry N (—Rp) C Ryg. Remark that in loc. cit., t;(P)
is defined by (Ro N (—Rp))s. The definition of ¢; given here is coherent with
the view point of buildings.

The morphism t; allows the identification of the quotient S-scheme
Par(G)/G with P(Dyn(G)). One may then write

t1: Par(G) — Par(G)/G ~ P(Dyn(G)) = A(G).

11.8 (R)-subgroups
Definition 11.31 A S-sub-group scheme H C G is of type (R) if:

1) His a smooth S-scheme of finite presentation, with connected fibers, i.e.
H xg k(s) is connected for all s € S.

2) H contains a mazimal torus locally for the etale topology of S.

Notation 11.32 Let H C G be a Lie subalgebra of Lie(G) = G. Denote by
Normg(H) C G the S-subgroup functor whose sections g on the S-scheme
(8" — S) satisfy: adj g (Hs') = Hs'. Normg(H) is representable by a closed
and finite presentation subscheme of G.

The following Proposition shows that a (R)-group is characterized by its
Lie algebra.

Proposition 11.33 Let H be a (R)-subgroup of G with Lie algebra H. Then
Normg(H) is smooth along the identity section, and

H = Normg(H)° ,

where Normg(H)° denotes the connected component of the identity.
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Corollary 11.34 Let H (resp. H') be a (R)-subgroup of G. Then:
(H=H)<= H=H).

(cf. loc. cit., Exp. XXII, Corollaire 5.3.5.)

11.8.1 (R)-subgroups and closed subsets of roots

Let G be endowed with a splitting G = (G,T, M, R). The Lie algebra of a
(R)-subgroup is of the form:

H=Teao( @ G%),
aER’
where R’ C R is by definition a subset of type (R).
It is recalled that a subset R’ C R is a closed subset if

(,Be R anda+B€R)= (a+BER).
Proposition 11.35 Every closed subset R’ C R is a subset of type (R).

Remark 11.36 This Proposition characterizes all the subsets of type (R) if
S satisfies:
for all s € S ch(k(s)) #2or 3.

Corollary 11.37 1) A parabolic subgroup P of G is a subgroup of type
(R).

2) Given a couple of parabolics in standard position (P, Q) the intersection
subgroup PN Q is a subgroup of type (R).

Proof The property a subgroup of being of type (R) is local in S, one may
suppose that G is endowed with a splitting: G = (G,T,M,R). Thus P =

Tao ( E% G where Fp denotes a parabolic subset of R.
aclkp

It may be supposed that T C PN Q. Thus PN Q=T & ( GF@OF QO‘).
« P Q

The following Proposition allows adapting to the relative case important
building constructions.

Proposition 11.38 Two mazimal tori T,T' C H of a type (R) subgroup H
of G are locally conjugate for the etale topology.
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11.8.2 Representability of the (R)-subgroups functor
Definition 11.39 Define the type (R)-subgroups of G functor S by:

vV (S"— 8) #(S") = {subgroups of type (R) of G} .

There is a canonical morphism v : % — Grass(G) associating to a (R)-
subgroup H its Lie algebra H. Corollary 11.34 implies that this morphism
is a monomorphism. In fact this monomorphism is representable by a finite
presentation embedding. It results then the

Theorem 11.40 57 is representable by a quasi-projective and finite presen-
tation S-scheme.

(cf. loc. cit., Exp. XXII, Theoreme 5.8.1)

This theorem has an important consequence. Observe that the normalizer
Normg(H) of a type (R) subgroup H, is a closed and smooth S-subgroup
scheme of GG, thus

Proposition 11.41 1) The morphism v : G — Grass(G) defined by:

v:g s uint(g)- H factors as G — G/Normeg(H) — Grass(G) with
v an embedding, identifying G/Normg(H) with an open subscheme U
of . Thus G/Normg(H) is a quasi-projective S-scheme.

The following functors play an important role in the relative building con-
structions. A Killing couple of G is a couple (T, B) formed by a maximal
torus 7" and a Borel subgroup T' C B containing T of G.

Definition 11.42 The functor Par(G) of parabolic subgroups of G is defined
by:
Par(G)(S") = {parabolic subgroups of Gg'} ;

the functor of Borel subgroups by:
Bor(G)(S") = {Borel subgroups ofGs: } ;
the functor of mazximal tori of G by:
Tor(G)(S") = {maximal tori of Gg'} ;
and the functor of Killing couples of G by:
Kil(G)(S") = {Killing couples of Gg'} .

Let T (resp. B a Borel subgroup of G, T C B a Killing couple of G, and
P a type t parabolic subgroup of G ) From the conjugation properties of
maximal tori, and of parabolic subgroups of the same type it follows:
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Proposition 11.43 There are isomorphisms:
1) G/Normg(T) ~ Tor(G);
2) G/B ~ Bor(G);
3) G/T ~ Kil(G);
1) G/P = Par(G),
defined by:

7

1) g —int(g) - T;
B;
T

3) g int(g C int(g) - B;

(9)-

2) g+ int(g) -
(9)-

)- P

4) g int(g

From the Proposition 11.41 it follows:

Corollary 11.44 The functor Tor(G) (resp. Kil(G)) is representable by a
smooth quasi-projective S-scheme. The functor Bor(G) (resp. Pari(G)) is
representable by a projective, smooth S-scheme with integral geometric fibers.

11.9 Weyl complex scheme

Given frames FE,FE’, the isomorphism of Proposition clearly transforms
parabolic subsets of A(Rg) in parabolic subsets of A(Rg/), and its unicity
allows defining, by etale descent, the following S-schemes. The root scheme
R(G), the apartment scheme A(G), and the Weyl group scheme W ..
Given a frame E = (T, M, R, Ry, (Xa)acr,) of G, let Ag, be the apartment
given by the Z-root system R(E) defined by E. A facet F of Ag corresponds
to a parabolic set of roots Rp C R.

Let Wpg, be the Weyl group of Rp as defined in loc. cit.,
Exp. XX I, Definition 1.1.8. In fact Wg,, is the Weyl group of the apartment
Ag, i.e. the group W 4, of type preserving automorphisms of Ag. Denote by
CE € ChAEg the chamber defined by the positive root system Ry = (NRy)NR,
i.e. such that R¢, = R+.

If G is split write

A(G) = l%n (Ag)s (resp. R(G) = li_én (Re)s) ,
where E runs on the set of frames of GG, and the transition isomorphisms are

induced by the family of automorphisms («(FE, E’)), where (E, E’) runs on
the set of the couples of frames of G. In the case of an S-reductive group G,
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A(G) (resp. R(G)) is defined by descent from an etale covering (S; — 5)
such that G, is splitted.
Define the Weyl group S-scheme W & by

Wea= 1%}1 (Wag)s
if G is split, and by descent for an S-reductive group G.
11.10 Weyl complex typical simplex scheme and the Type
morphism

The group W ¢ acts as a group of automorphisms of A(G). One may thus
consider the quotient scheme

AG)/ W
(The S-scheme of types of facets of A(G)). If G is split one has

A(G) /W ¢ =~ 1%11 (Ap/Way)s -

For a frame F of G there is a building morphism
P(Dyn(E)) —» Ag,

induced by the mapping Dyn(E) — Ag, which correspond to o € Ry =
Dyn(E), the maximal parabolic set R(®) defined by:

R =(Z(Ro — {a})) NRp U (RE)+ -

Thus to R) C Ry = Dyn(E) corresponds the parabolic subset () R(®) (o € R})
of RE

Given a facet F' € Ag, satistying (Rg)+ C Rp, i.e. so that ' € A(Cg) C
Ap, there exists a unique subset Ro(F) C Ry, such that Z(Ry — Ro(F)) =
Rp N (—Rp) which satisfies

Rp =R (a € Ro(F)).

The set Ro(F) is given by Ro(F) = Ry — RoN(—Rp), and is in fact the set of
vertices of the facet F'. Thus it is concluded that P(Dyn(E)) — Ag gives a
building isomorphism between P(Dyn(E)) and the subcomplex A(Cg), given
by the set of faces of C'g. Observe that

RycR{= () R“> (] R“.

aERy aERy

Thus according to the definition of the ordering of Ag, the mapping R} +—
N R (a € R}) is order preserving. Since the restriction of the quotient
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morphism Agp — Ag/Wa,, to A(Cg) induces an isomorphism of buildings
A(Cg) ~ A /W4, it is deduced that the composed mapping

P(Dyn(E)) = Ap/Way,
is a building isomorphism. If G is split one obtains an isomorphism

AG) = 1%11 P(Dyn(E))s — 1%11 (Ap/Wap)s = AG)/W 6.

It is deduced that there is a canonical isomorphism defined by etale descent

A(G) ~ A(G) /W g

for an S-reductive group G. Denote by
tra: A(G) = A(G)/W.e ~ A(G)

the quotient morphism (Weyl Complex type morphism). The isomor-
phism A(G)/W ¢ ~ A(G) admits the factorization:

AG)/W o = Par(G)/G — A(G) .

11.11 Weyl Complex type of relative position morphism
With a frame F of G there is an associated natural morphism
(Ag)s Xs (Ag)s — Stand(G),

that correspond to (Fs, F§) ((F,F') € Ag x Ag) the couple of parabolics in
standard position
(PF7 PF’))

where Pp (resp. Pp) is given by the parabolic subset Rp (resp. Rp/).
This morphism induces, by composition with ¢5 : Stand(G) — Relpos ¢,
a morphism
tap: (Ag)s xs (Ag)s — Relposg ,

which factors as
to g : (Ag)s Xs (-AE)S — ((.AE X AE)/WAE)S — Relposg ,
There are isomorphisms

ll_gl((AE X AE)/WAE)S ~ A(G) Xs A(G)/EG y

ie.
l%n (Relpos Ag) ¢ = Relpos A(G) ,
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and
Relpos A(G) = A(G) x5 A(G)/W ¢ = Relpos ¢.

Assume that G is split. Define ¢ 4 as the quotient morphism

to 4 A(G) x5 A(G) = Relpos A(G) = Relpos .

(resp. to 4 = l%n to g : l%n ((AE)S X g (AE)S) — Relpos G) .

Clearly for a reductive S-group there exists a morphism
to 4 A(G) x5 A(G) = Relpos A(G) = Relpos .

which corresponds to the above one if G is split, and in fact is the canonical
quotient morphism.
The morphism

t; Xt : Par(GQ) xg Par(G) — A(G) xs A(G)
induces by restriction the morphism
Stand(G) — A(G) xs A(G),
which factors through
to : Stand(G) — Relposg.
Denote by
e=-¢€ X ea: Relposg — A(G) x5 A(G)

the induced morphism.
If G is endowed with a frame F, then in view of isomorphism
A(G) = Relpos ¢, € may be described as follows. Write

Relpos Ag = H Relpos (¢ 5) AE ,
(t,s)etyp A xtyp Ag
with
Relpos (1.5) A = (Ag): X (Ag)s/W(R(E)).
Define:
er = (eg)1 x (eg)2 : Relpos Ag — typ Ap x typ Ag
by

e T (L,8),

if 7 € Relpos (4,5)Ag. One has € = (eg)s.
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11.12 Relative Position Types scheme of a Weyl Star Complex
scheme

It is supposed that G is endowed with a frame E of G. For
t € typ Ag,

one defines
Relpos’ Ap C Relpos Ag,

as the image of the injective mapping
St X Sti® /W — Ag x Ag/W(R(E))
where I’ denotes a facet of type t of Ag, and one writes
WF = Stab W(R(E)) -

This image is independant of the choice of F'.
Let t € typ Ag, and t = tg. Define:

Relposg, = Relpos s = (Relpos’ Ag) -

Given an S-reductive group G, and a section ¢ of A(G), there is a sub-
scheme
Relposé C Relpos g,

so that if F is a locally (for the etale topology) defined frame of G, the
canonical isomorphism

(Relpos Ag) g =~ (Relpos ) g/

induces the isomorphism

Relpos E;S' ~ (Relposé)

s’

if (t)sr =tg for t € typ Ap.
It is recalled that there is a canonical isomorphism

Relpos A(G) ~ Relpos ¢ (resp. A(G)/W ¢ ~ A(G)) ,
allowing identification of both members. Define
Relpost A(G) = RelposLG ,

for a section t of A(G).
The morphism € induces a morphism

E.A(G) : Relpos A(G) — A(G) Xg A(G) )
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by composition with Relpos A(G) ~ Relpos g.
Given a section (s,s’) of A(G) xg A(G) one defines:

Relpos (s ¢y = € ' ((s,5')) C Relpos ¢

(reSp~ Relpos (5,51) A(G) = (ea@)) ((Qi))) ,

and
Relposz )= Relpos (5 5y N Relpos%

(5,8"

(resp. Relpos ]Eé,s;) A(G) = Relpos (5 o) A(G) N Relpos?A(G)) .



Chapter 12

Associated Schemes to the
Relative Building

Preceding definitions and constructions about buildings are adapted to the
schematic and functorial point of view. The main constructions carried out
in this chapter are those of the Root functors of the Apartment scheme, the
Convex Hull scheme defined by two parabolic subgroups and the canonical
affine open covering of a parabolics standard position scheme.

The Data given by:

e the Parabolics scheme Par(G);

o the scheme of Couples of Parabolics in Standard Position Stand(G) —
Relposa seen as a Relposa-scheme;

e the subscheme of Incident Parabolics of Stand(G) corresponding
to the couples of parabolics in osculating relative position of [23];

e and the Apartments scheme given by the scheme of maximal tori

Tor(G) of G,

play the role of a Relative Building for the Reductive S-Group scheme G.
The following schemes are naturally defined in terms of these Data: The Root
functors. The Universal Schubert Cell scheme X of G is defined as the
graph gr(tz) of the type of relative position morphism ¢ : Stand(G) —
Relposc, and the Universal Schubert scheme ¥ — Relposg of G is
defined as its Schematic Closure in Relposg xs Par(G) xg Par(G), i.e.
> = ¥sche This Schematic Closure is well defined as ¥ — S is a quasi-
compact morphism and Relposg Xg Par(G) xg Par(G) an S-projective

275
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scheme. The Convex Hull scheme Fixz(P,Q) of a couple of parabolics in
standard position (P, Q) is defined in this setting. The Tautological Cou-
ple of Parabolics (P, Q) on Stand(G) is the section of Stand(G) given by
the diagonal section A : Stand(G) — Stand(G) x s Stand(G). By means of
the Big Cell open covering of the Universal Schubert Cell it is proven that
the Tautological Couple is in Standard Position. Thus, one obtains the finite
Convex Hull scheme Fiz(P,Q) over the Universal Schubert Cell scheme.
The fiber of Fiz(P, Q) over the couple (P, Q) is given by Fiz(P, Q). It will be
seen that this scheme has the following important property: With a section
g of the “Typical Simplex scheme (resp. Dynkin scheme) minimal generalized
galleries of types scheme”, defined in the next chapter, is associated a section
Tg of Relposg, and a unique section fyg(f’,Q) of the galleries scheme
associated with Fiz(P, Q)Tg — X,

12.1 Root functors

Let T be a torus of the reductive S-group G, and « a root defined by T, i.e. a
section of the root functor Ry (cf. (23|, Fxp. XIX, §3). One recalls that if «
is a root of G (cf. 11.2) then —« is also a root of G, and that the subfunctor
of W(G) defined by

W(G)“(S") = {z e W(G)(S") / ad(t)x = a(t)z for every t € T(S"), S"”" — S'},

satisfies:
There exists a rank 1 direct factor Og-submodule G* C G so that:

W(G)* =W(G%) (cf. loc. cit., Exp. XIX, §4.1).

Definition 12.1
Let
Fo C Par(Q)

be the S-subfunctor defined by
Fo(S") = {P parabolic of Gs1/ G& = Og @0y G C Lie(P)}.
Fo is called the Root S-functor defined by the root o of G.

Definition 12.2
Define the Hyperplane S-functor H, defined by the root o of G by

Ho = FaNF_q CPar(G).

It is proved below that F, is a representable S-functor, and a fortiori that
H, is also representable.
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12.1.1 The Pliicker embedding of the Parabolics scheme and
representability of Root functors

It follows from Proposition 11.33 and the fact that a parabolic subgroup is its
own normalizer that a parabolic subgroup is characterized by its Lie algebra.

Proposition 12.3
Let P C G be a parabolic subgroup of the reductive S-group G. Write P =
Lie(P). We then have:

Normg(P) =P

From Proposition 11.40 it is obtained:

Proposition 12.4 The morphism
Upar © Par(G) — Grass(G),
defined by: Upqr : P+ P = Lie(P), defines a closed embedding.

Let one make explicit this embedding into a grassmannian. Let n(t) be
the rank of the Lie algebra of a parabolic group P of type t. Let Pliicker’s
embedding morphism be recalled

n(t) n(t)
wy © Grass ;) (G) — Grass /\ G| =P /\ G| (cf. [24], Ch. 1, 9.8).

Let 7 be a section of Grass ,;)(G), given by a rank n(t) submodule N' C G with
locally free quotient G/A/, then the image w(n) of 7 is obtained as follows.

n(t)
The n(t)-th exterior product A AN of A is a rank 1 locally free submodule

n(t)
of A G, with locally free quotient

n(t)

n(t)
NG/ N\N-

n(t)
Thus the section wi(n) of P ( A g) corresponds to the rank 1 locally free,

n(t) n(t)

direct factor submodule A N of A G.

To see that w; is an embedding it suffices to see that the submodule
n(t) n(t)
A N C A G characterizes N C G. Let e1,--- ,e,(;) be a basis of V.

n(t)
Then e = e; A -+ A ey is a basis of A N.
Let S’ be a local S-scheme. One thus has

N(S’) _ {:L' section of Og: ®og g/x Aeg = 0}'
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If S’ = Spec(k), k a field, the equality is immediate. The general case fol-
lows from Nakayama’s lemma (cf. [40]). It results from this that w; is an
embedding. Write n = n(t).

Definition 12.5
Let
gecg
be the rank 1 submodule of G defined by the root . Define the S-subfunctor
Zo C Grass,(G), by:

Zo(S") ={N C Gs | Gs /N locally free, rank N'=n, and G§ C N'}.

Let it be seen that Z, is a representable S-subfunctor of Grass,(G). In
fact Z, is a Schubert cell. It suffices to see that the image w;(Z,) by Pliicker’s

embedding is a representable subfunctor of P [ A G |.
Notation 12.6 Write
n
P (/\Q) = Sph (Og[A(i1, - ,in)] 1<iy < - <ip <rk G)).

where (A(i1, -+ ,in))1<ii<<in<rk ¢ denotes a set of variables. Denote by
IOé - OS [A(Zh e 5in)]a
the homogeneous ideal generated by the set of variables

(A(ih T ’in))2§i1<~~<inérk [en}

and by
Jo C OIP’ </n\g>

the corresponding ideal defined by I,.
Choose a basis (¢;)(1 < i <1k G) of G so that:
Gao = Vect(eq).

Given a submodule N' C G representing a section of Grass,(G), choose
a basis (e}, -+ ,el) of N and denote by N = N(e, -+ ,el) the section of

’r n
/

O 9% given by the matrix of the coordinates of the vectors (ef,--- ,el,)

relatively to the basis (e;) of G. Its j-th column (a;;) (1 < i < rk G) gives

thus the coordinates of e, ie. e; = > aije;. By N(ir, - ,in), one
1<i<rk G

denotes the n x n-submatrix of N defined by the i1-th,...,i,-th rows of N, and

one writes

AN(ZD 7’Ln) = det N(Zh aln)
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The Pliicker homogeneous coordinates of N relatively to (e;) are thus given
by:
(A./\/'(ilv e 7in))1<i1 <<Zin<rk G

It is supposed that N(i},---,i%) is an invertible n x n submatrix of N.
This is, locally in S, always the case, i.e. at least one of the homogeneous
coordinates of N is given by an invertible section of Og. The hypothesis
G/N is locally free which implies that, given s € S, there exists A(, - -+ ,4))
defining a section of O .. Write:

N, - % = N(e}, -~ ,el) x N9, --- i)t

r'n

Then one has that

N[i‘f,--- 2'0] = N(&1,--- ,€n),

’'n

where (€1, -+ ,€,) is the normalized basis of N.
The affine coordinates of the €;’s may be calculated in terms of the Pliicker
homogeneous coordinates (A y (i1, ,i,)) as follows. Let

rkG
g=> &ie (1<j<n)
=1

Then one has

0 j-th place 0
AN(/Ll’.'.7 1 7.’. /L)

&ij=

Proposition 12.7
Denote by J7, C Ograss, (g) the inverse image w; (Ja) of Jo C O]P’(K o) by wy.

Thus there is a canonical isomorphism
Za =~ Spec (O crass,(9)/T5) +
which proves that Z,, is representable by a proper subscheme of Grass,(G).
Proof If it is supposed now that for 2 <iy--- <i, <rk G one has
An(it, ++ ,in) =0.
It results immediately from the above expression for &1 that
e = ey,

thus one obtains

G = Vect(er) C N.
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On the other hand, if it is supposed that
G* = Vect(e1) C N,
it is clear that for 2 <iy--- < i, < TkG one has:
An(ir, - yin) =0.

Given N it is denoted by mpr the section of Grass,(G) defined by N'. It has
thus been seen:
- defines a section of Zo C Grass,(G) < wi(nn) defines a section of

V(34) CP </\(g)>
It follows from the definition of F,, (resp. Z,) that:

Corollary 12.8 There is a canonical isomorphism
Fo =~ u;m,,t(Za).

Thus the subfunctor F, C Par(Q) is representable by a projective subscheme.

12.2 Big Cell Open Covering of a Parabolics scheme

Assume that G is endowed with a frame E = (T, M, R, Ry, (Xa)acr,)(cf.
Proposition 11.12). Let R = (M, M* R, RY, Ry) be the corresponding Z-
system of roots, and Ry = (NRy) N R the system of positive roots defined
by Ry. Denote by Ag the apartment building defined by R. Let C = Cr,
be the chamber of Ag corresponding to the positive roots system Ry. Write
F, = F;(C) (the facet of type t incident to C'). Let

Br,. CG (resp. Br C G),

with R_ = —R,, be the Borel subgroup defined by R, (resp. R_). There is
a canonical isomorphism

G/Br, — Bor(G),

induced by the morphism G — Bor(G), functorially defined by x +— int(x) -
(Br, ) - More generally, denote by P, r, the parabolic subgroup of type ¢,
containing Br, . There is an isomorphism

G/P;r, — Par(G),

induced by z +— int(z)(P;, g, ) from G to Par,(G). (cf. [23], Exp. XXVI, Th.
3.3.)
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Let P, C G (a € R) be the subgroup defined as the image of the vector
group W(G®) by exp, : W(G%*) — G . (cf. loc. cit., Exp. XXII., Théoréme
1.1). For each G* one chooses a basis X,. Let

expl,, : Spec(Oslta]) — Pa

denote the morphism defined by composing the isomorphism induced by X,,
Spec(Oslta]) ~ W(G*) , with exp,.

Definition 12.9

The Big Open Cell Qr, C G is the relatively schematically dense open
subscheme of G defined as the image of the S-morphism

H P, xT x H P, = G,

acR_ acRy

induced by the product of G, and the (exp,)acr, where the cartesian
products have taken over S, and Ry (resp. R_) is endowed with some
total order. (cf. loc. cit., Exp. XX1I,84.1.)

Define the Big Open Cell of G/Bpg,
Qr, C G/Bg,
as the image of Qg by the quotient morphism G — G /Bg, . Let
Qg, C Bor(G),
denote the open subscheme image of QRJr by G/Bgr,—~ Bor(G);
Define the Big Open Cell
Qt,R+ C G/Pr,,

as the image of the Big Open Cell Q g, by the quotient morphism G —
G/P g, and let
Qyr, CPary(G)

be the image 0]‘(2,57}3+ by the isomorphism
G/Pyr. — Par(G),

induced by x — int(x)(Py,r, ) from G to Par(G).

There is an induced isomorphism of S-schemes

I P> s,
acER_
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which by right composition with [] exp,, (v € R_) gives rise to an isomorphism

H Spec (OS[tozD = Spec (OS[ta]aER_) = QR+~

aER_

It results in an isomorphism

H Spec (Oslta]) = Qr, ,

acR_

which may be paraphrased as follows. For every section of (QR +) o0 glven by

some Borel subgroup B C Ggr, there exists a unique section (z,) of [] Og,
acR_

with B = int ([ exp(2aXa)) - (Br,)s'. More generally one has: Let Ry D R
be the parabolic set of roots given by P g, i.e. R; verifies P,(E) = Pg,.
Denote by

Z/[t,R+ C BR7 (R, = —R+),

the subgroup of G defined by the closed set of roots R — R;. This subgroup
parameterizes the big cell £2; r,. Thus there is an isomorphism

Ur, =R,

defined by y +— int(y)(P;). Remark that U g is isomorphic as an S-scheme to

the product [[  P,. The quotient morphism G — G/P; r, being smooth,
a€ER—Ry

and the reciprocal image of Q, r, being equal to the relatively schematically
open subscheme 2, of G, it results that the big cell ﬁt,pur is an open
relatively schematically dense subscheme of Par,(G).

From the Bruhat Cell decomposition of Par(G) given by Bg., the
fact that a Cell may be embedded in a Big cell is defined by some Borel
subgroup adapted to the splitting of G, one may state the following

Definition 12.10
The family of relatively affine open sets of Par:(G)

(ﬁtvlﬁ) )

where Ry runs on the set of systems of positive roots of R, is called the Big
Cell Open Covering of Par;(G). One has

Par(G) = U Qi g,

12.3 The Big cell Open Covering trivializes a Standard Position
scheme

Let 7 be a type of relative position of Ag, and (¢, s) the corresponding couple
of types of parabolics. Let Stand(r g) be seen as defining a locally trivial
fibration

prp - : Stand(rs) — Par(G),
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where pr p ; is induced by the first projection pry : Par,(G) xg Par s(G) —
Par t(G)

Proposition 12.11 The Big Cell Open Covering of Par(G)
Pari(G) = U Qyr, (cf Definition 12.10),

where G = (G, T, M, R) and R4 runs on the positive root system of R, triv-
ializes the locally trivial fibration defined by prp . One has:

Stand(rg) U Stand(ts)g Ua ((Q4,r, x Stand(ts, Py r,)) -

Proof Identify Uy r, withﬁtﬂ+ by means of the isomorphism obtained from
the definition of ﬁt,RJr, Ui, r, — ﬁt,RJr. Define an isomorphism of ﬁt,R+—
schemes:

Ug) (Us,r, ~) Q¢ r, xsStand (Ts, Prr, ) — St‘(mcl(Ts)ﬁtﬁ+ =(prp.)"" (Qu.ry)

by
o) (4 (Pir,, Q) = (int(y)(Per, ), int(y)(Q)

(v, (Py,r.,Q)) being a section of Uy r, xs Stand(ts, Py r, ). Clearly there is
Stand(ts) U Stand( Ts)

Thus the family of open subschemes (Qy . ) of Pari(G) trivializes the locally
trivial fibration defined by prp ..

12.4 Big Cell Open Covering of a Standard Position scheme

Let 7 a type of relative position and (t,s) be the corresponding couple of
parabolic types. There is a canonical section of Stand(7) over S’ = Stand(QG)
given by the restriction of the diagonal section A : Par(G) xg Par(G) —
(Par(G) x sPar(G)) x s (Par(G) x s Par(G)) to Stand (7). This section is given
by a couple of parabolics (P Q) The Big Cell Open Covering of Stand(7)
allows one to prove that (P Q) is in standard position. Thus the relative
convex hull of (P, Q) may be defined. This construction is the corner stone
needed to define the minimal generalized galleries in the relative case.

Given a parabolic P = Pp (F € Ag) define the centers of Stand(rg, P)
as the facets F' € Ag with 7(F, F’) = 7, or equivalently the facets F’ € Ag
such that Pps is a section of Stand(7g, P). Remark that the stabilizer Wg of
Fin W = W4, acts transitively on the set of centers, as it follows from the
fact that the intersection subgroup PrN Pp- is an (R)-subgroup containing 7T,
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and acts transitively on the set of maximal tori contained in Pr N Pp/. Thus
if Pps and Ppr are conjugate under the action of Pr, as all the three contain
T, it results that they are also conjugate under the normalizer N (T') of T

Consider a chamber C' € Ch Stp, C Ch Ag, where F; = F;(C), and
C = Cg, is the chamber given by the splitting of G. The Bruhat cell
decomposition of Stand(7s, P; g, ) under the action of Bcr may be written
as

Stand(rs, Py g, ) = | JStand(r(C’, F')s, Bev),

where I runs over the centers of Stand(7s, P; r, ). Recall that P, g, = Pp,.
More precisely one has

Proposition 12.12 The natural morphism

11 Stand(r(C", F')s, Ber) — Stand(ts, Py.r. )
F'eAr and 7(Fy,F')=1

s a surjective monomorphism.

Remark that the center F” of a Ber-Bruhat cell Stand(7(C’, F')g, B) con-
tained in Stand(7s, P, g, )) is a center of Stand(7(C’, F')s, Bc).
Given C' € Stp, p, there is a unique facet

F,c € Ag.
characterized by
1. 7(Fy, Fr o) = T3
2. d(C',F; ) =max{d(C',F') | F' € Ag,7(F,F') =1}

(cf. 9.22).

The facet F,cr is the center of a Bcgs-Bruhat cell contained in
Stand(7g, Py g, ) which is open in Stand(rs,P; r,). In fact there is one
and only one center of Stand(7s, P, r, ) satisfying this condition.

Lemma 12.13
The S-subscheme

Stand((T(C'7 Fﬂc/)s, BC/) C Stand(Ts, Pt’RJr),

is open and relatively schematically dense. Consequently
Stand((7(C', Fy.c1)s, Bor )" = Stand(rs, PtyRJr)“hc,

Proof Let g be a minimal gallery of types of Ag with corresponding type
of relative position given by T, i.e. so that T(gPrr,) Confg(gs, P r,) —

Stand(ts, Pt,R+)SChC s a smooth resolution of singularities. Thus
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o There is an open relatively schematically dense subscheme
Conff(gs, Pir,) C Confii(gs, Pi,r,) so that the restriction of the
resolving morphism T(r,Prr,) Confg(gs, Pir,) — Confg(z, Pir,)
to Conf{i(gs, Pr,r.) is an isomorphism;

e Confii(gs, Pir,) is the reciprocal image of Stand(rs,Pir,) —
Stand(tg, PtyRJr)“hc. In fact Conf(gs, Prr.)" is the image of a canon-
ical section on Stand(ts, Py g, ).

Let s be the type of a chamber, and consider g the gallery of types obtained
by composing s D t with g. By definition of a Minimal Generalized Gallery
of types it follows that g is a minimal gallery of types. Consider the Gener-
alized Minimal Gallery vg(Fy(Ry), Frcr); as C' is incident to Fy(R,.) and at
mazimal distance from Fr ¢, then the gallery vg(C', Fr c/) obtained by com-
position of vg(Fi(Ry), Fr.cr) with C' O Fy(R4) is minimal by definition of
Minimal Generalized Gallery, and of type g. On the other hand, there are a
natural isomorphism

COnfg(gs, BC') = Confg(g57 Pt,RJr) )
and an inclusion of open subsets

Conf&(8s, Ber)' C Confi(gs, Pir,)
thus Conf¢i(gg, Bcr)' is open and schematically dense in Conf(gs, Pir. )"

The unicity of F, o also follows from the above result. If F’ sat-
isfies the same conditions as F, ¢ then Stand(7(C’,F')s,Bcr) is rela-
tively schematically dense in Stand(rs, P r,). The geometric fibers x(3),
Stand(7(C", F')s, Bcr)w(s) and Stand((7(C’, Fr.c)s, Ber)(x(s) are open sub-
schemes of the irreducible scheme Stand(7s, Py, r, )(x(s) and have a not empty
intersection. The centers of these Bruhat cells are respectively F’ and F; ¢)
thus it is concluded that F’ = F ¢». Write

7o = 7(C’, Fy.cv) € Relpos Ap.

The following proposition results from the transitivity of the action of Wg on
the set of chambers incident to F'.

Proposition 12.14
Keep the above notation.

e Given T € Relpos Ag and F € A of type t, the type of relative position
1o defined as above by F is independant of the choice of C'.

e Given a center F of Stand(rs, P r,) there is a chamber C' €
Ch Stp,c), so that F' = F; o, i.e. every center of Stand(ts, Py r, )
is also the center of a Ber-open cell for some chamber C' € Ch Stp, .
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Observe that there may be several chambers C” satisfying the property of the
proposition. Denote by P ¢ the parabolic subgroup corresponding to Fi c-.

Definition 12.15
Let C € Ch Ag and F € Ag,

R(C,F):{CVGRc|Ha EH(C,F)},

where Rc denotes the positive system of roots defined by C' € Ch Ag, H, the
wall of Ag defined by the root o € R, and H(C, F) the set of walls separating
C and F. Denote by Bc the Borel subgroup given by the chamber C, i.e. by
Rc, and

U(C, F) C Be

the subgroup defined by the closed system of roots R(C, F).

The main property of U(C, F) is given by:

Lemma 12.16
There is an isomorphism of S-schemes

U(C,F) > Stand (1(C, F)s, Be),
defined by x — int(x)(Pr).

Proposition 12.17
There is an open covering by affine open sets (if S is an affine scheme)

Stand(ts, P;) = U Stand((r¢r)s, Ber)
C’€Ch Str,

(The Big Cell Open covering of the P;-cell Stand(ts, P;)). Moreover there
are isomorphisms U(C', F; c/)>Stand((tcr)s, Ber).

It is clear that this covering corresponds to the Big Cell Open Covering

Part(G) = LJﬁt,RJr y

where R, runs over the set of positive systems of roots given by R.
In view of the above cell decomposition (cf. 12.12) it is easy to see that
this Proposition follows from the following

Proposition 12.18
Given F' € Ag with 7(Fy, F') = 7, i.e. a center of Stand(rs, P;) , there exists
C(F’") € Ch Sty,, such that:

1. 7(C(F'), F") = 7(C,Fr¢c), ie Stand(r(C(F'),F")s,Bcr)) is the
Bepry-open cell, with center F', in Stand(ts, P;) ;
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2. Stand(1(C, F')s, Bc) C Stand(1(C(F'), F')s, Bo(rry),
i.e. the Bg-cell Stand(t(C,F')s,Bc) may be embedded in the big cell
Stand(t(C(F'), F')s, Be(pry) with the same center F'.
Proof Define C(F') = proj.(p, ry C. Let it be proved that:

a) T(C(F'), F') = 7(C, Fr.0);

b) Ri.(C,F") C R (C(F"), F").

Clearly condition a) corresponds to condition 1. On the other hand, in
view of the isomorphism

U(C(F'), F") = Stand(T(C(F'), F')s, Born),

one deduces that b) = 2

By definition of C(F') one has ¢(F;,F') € C(F') From Proposition
9.18 it follows that C(F') C Ch Stp, is at mazimal distance from F' with
7(Fy, F') = 7. Thus Stand(t(C(F"), F')s, Bo(rry) is the Bopry-open cell in
Stand(rs, P;), and it is concluded that T(C(F'),F') = 7(C, F: c).

To prove b) it suffices to show that there is a minimal gallery T(C(F"), F")
containing C. This gives

H(C,F') Cc H(C(F"), F'),

and consequently

R.(C,F') C Ry(C(F'),F") .

Let
F1 C StFt7

be a minimal gallery between c(Fy, F') and C, which may be seen as a gallery
between C(F') = proj (g, py C and C. Choose a minimal gallery

I'y=T(C,F') C Env(C,F') ,

and write
F=T(C(F),F)=T10T,.

Remark that if H € H(c(Fy, F'),C) C Hp, then:
“H separates c¢(Fy, F') from F' 7.
Thus as H separates also c¢(Fy, F') from C, it is deduced that
H & H(C, F') (cf. Definition 9.17).
It follows that the set of walls H(T') crossed by T is given by:

H(T) = H(c(Fy, F),C) [] H(C, F)
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Thus T' crosses each wall it encounters only once.

By the above remark, if H € H(c(F:, F'),C), as H € Hp,, then H sepa-
rates ¢(Fy, F) from F'. If H € H(C,F’) and H € Hp,, then H separates F}
and F' and thus H separates c(Fy, F') and F'.

If H € H(C,F")NHp,, then F' ¢ H, thus ¢(F,,F') ¢ H, and by the
above remark H separates c(Fy, F') from F'. (The carrier of ¢(Fy, F') is the
same as that of the convex hull of (Fy, F').) Thus all the hyperplanes that T
crosses separate C(F") from F', and it crosses each one of them only once. It
1s concluded that T is a minimal gallery. This achieves the proof.

Denote by Fram(R) the set of positive root systems of R. Write
I(R) = {(R+, C'") € Fram(R) x Ch Ag | ' € StFt(CRQ} :

where as usual Cr, denotes the chamber of Ag given by R, € Fram(R).
Let
Ugj,c/ : ut,R+ Xs U(C/,F-r’(j/) — Stand(rg)

be the morphism defined by
o) ot (yox) e (int(y)(Prg, ), int(ya)(Pr.er))

Observe that Uy g, =U(Cr_, Fyr, ).
From 12.11 immediately follows

ﬁt,R+7

Proposition 12.19
There is a canonical open covering of the Universal Bruhat cell Stand(ts)
of the split group G defined by T:

Stand(tg) = U o) o (Qer, xsUC!, Frcr))
(Ry,CEL(R)

which, if S is affine, is a refinement by affine open sets, which are indeed
isomorphic to affine spaces, of the covering of Proposition 12.11.

()

The properties of the morphisms (UR+7C/ are clearly re-

>(R+7C/)€If(72)
sumed in the following

Proposition 12.20 The morphism ng’cu defines an open embedding of

Upr, xsU(C', Frcr) in Stand(ts)g, n namely the image

UgLC, (Upr, xsU(C', Fycr)) C Stand(ts)

Qry,’

is a relatively schematically dense open affine subscheme and the in-

duced morphism by o 5270,

Upr, XsU(C',Frcr) — Ugic/ (Uy,r, xsU(C', Frcr)),

s an isomorphism.
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12.5 Apartment subschemes
Definition 12.21 Let T' be a mazimal torus of G. Define the S-functor
Fiz(T) C Par(G) by:

Fiz(T): S" — {P C Gg parabolic subgroup | Ts: C P},

where S’ is an S-scheme. (The Apartment subscheme defined by the
maximal torus T)

Let E = (T, M, R, Ry, (Xa)acr,) be a frame of G given by a trivialization of
T. Thus there is an isomorphism Ag ~ Fix(T) so that the root ®, of Ag
corresponds to the representable subfunctor F, N Fix (T) C Fix (T).

Remark 12.22 As a parabolic subgroup P of G is its own normalizer it is
obtained that:
(Tsr C P) < ((Vt € Ty) int(t) - (P) = P).

Thus Fiz(T) C Par(G) is the fixred points functor of the conjugation action
of T on Par(G). It is concluded that Fiz(T) is representable. However an
ad-hoc proof of this fact is given.

Recall the isomorphism [] Spec(Oslta]) = Qr,, which may be para-
aER_

phrased as follows. For every section of (QR +) o+ given by some Borel sub-

group B C Gg, there exists a unique section (z,) of [][ Og, with
aER_

B = int (H exp(ana)) - (Bgr,)s-

Let the action of T relatively to the (z4)-coordinates in Q. be described.
For every section t of T one has

int(¢)(B) = B' & 2}, = a(t)za(a € R_),

where (z,) (resp. z/,)) denotes the coordinates of B (resp. B’) in QR+7 ie.

B = int (H exp(ana)> (Br,) (resp. B’ = int (H exp(x;Xa)> (BR+)> :

Then the invariance condition on B, under normalization by T', translates
as:
For every section t of T : a(t) 24 = Zq.

This implies that the sections of Fix (I)NQpg, , are characterized as the zeroes
of the ideal J((tn)) of O[ta](a € R_), generated by (to)(a € R_). With the
usual notation one has

V((ta)) = V(3((ta))) = Fix (T) N Qg .
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By considering the big cell open covering of Bor(G)

Bor(G) = | J O, ,
where R runs over all possible systems of positive roots of R, we deduce the

Proposition 12.23
The S-functor
Fiz(T) N Bor(G) C Bor(G)

is representable by the constant S-scheme
(ChAg)g,
i.e. there is a canonical isomorphism
(Ch Ag) g ~ Fiz(T) N Bor(G),

associating to (R)s the parabolic (resp. Borel) subgroup Br, = Pr. , given
by “the center of Qr,”, i.e. with (z4)-coordinates, to, =0 (a € R_).

Let P r, be the parabolic of G of type t, containing Bg, . Proceeding as
in the case Par(G) = Bor(G), one introduces (to)(a € R — R;)-coordinates.
Here R; C R denotes the parabolic set defining P; g, , i.e. Py r, = Pg,. It is
then proved, following the same reasoning as above, that

J—'.IX(T) m§t73+,
is given by V((ta)acr—g,)- It has thus been proved the following

Proposition 12.24
There are canonical isomorphisms:

1. ((Ap))g =~ Fiz(T) N Pary(G);
2. (Ap)s = I (Ap)i)s (t € typ Ap) ~ Fiz(T).

Thus Fix (T) is representable by a twisted constant S-scheme.

Remark 12.25
Normg(T) acts as a group of automorphisms on Fiz(T). This action factors
through the quotient

Normg(T) - Wr =Normg(T)/T,

i.e. the Weyl group S-scheme Wr defined by the maximal torus T acts on the
S-scheme Fix(T).
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12.6 The Retraction morphism of the Parabolics scheme on an
Apartment scheme

Keep the above hypothesis on G and denote by FE its frame. Write A = Ag.
Let C' € ChA be the chamber given by the system of positive roots R defined
by E, and B the corresponding Borel subgroup. There is a bijection

Relpos’ A= {7(C,F) | F € A} = A,

associating to 7 € Relpos’ A the facet F, € A such that 7(C, F,) = 7. By
Proposition 12.24 there is a canonical isomorphism of S-schemes Ag—= Fix(T),
defined by Fg +— Ppg, for F' € A. On the other hand, there is a canonical
isomorphism Relposg; ~ (Relpos’ A)s. Thus one deduces a canonical isomor-
phism

Relposg; = Fix(T).

Definition 12.26
Define the retraction morphism

pE : Stand(B) — Fix(T),
as the composition of the morphism
th : Stand(B) — Relposg
induced by ta, followed by the isomorphism Relposy — Fiz(T).

For example given a section (B, P) of Stand(B) with t2(B, P) = 75 (7 €
Relpos A), one has pg : (B, P) — P-, where P; is the parabolic corresponding
to the center of Stand(t2(B, P), B).

Observe that the fibers of the Retraction morphism are precisely the
Bruhat cells defined by Bc and the centers F .

12.7 Convex Hull of a couple of parabolics in standard position

Keep the above hypothesis on G. Let (P,Q) be a couple of parabolics of
G in standard position. Recall that the intersection subgroup P N @ is an
(R) subgroup (cf. [23], Exp. XXII,§5), i.e. PN Q is S-smooth, of finite
presentation, with connected geometric fibers, and containing a maximal torus
T locally for the etale topology. Assume that T C PN Q (resp. T C (P, Q)),
where T is the maximal torus given by E.

Let R be the Z-root system defined by the frame E of G and Ag the apartment
defined by R. Let D4, denote the set of combinatorial roots of Ag. The
system of roots R being reduced, it is recalled that there exists a bijection

R — DAE,
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associating with o € R, the combinatorial root
o, ={FeAg|a € Rr} C Ag.
Given (F, F') € Ap x Ag write
Dy, (F,F')={® €Dy, |F F cd}.
By definition of the convex hull Env(F, F’) one has
Env(F, F') = () Da,(F, F').
Consider the subgroups corresponding to the facets F' and F”,
P = Pp = Pg, (resp. Q=Qr = PRF,) .

From loc. cit., it follows that the subgroup P N Q is characterized by its Lie
algebra
Lie(PNQ) =G ® (6G*(a € Rp N Rp1)),

where G° = Lie(T)). On the other hand, Rr N R is a closed system of roots,
and the bijection R = D 4, induces a bijection

Rpr N Ry %DAE(F,F,).

Let
P, =exp(W(G*) C G

be the image of the vector group W(G*) by the morphism
exp: W(G%) — G

(cf. loc. cit., Exp. XXII, Théoréme 1.1).
The group P N Q is generated by the maximal torus 7" and by the set of
subgroups (Py)acrznR, - Thus one obtains the

Proposition 12.27 -
The following four statements concerning a parabolic subgroup P C G are
equivalent:

1. PNQ C P;

2. (P,)CP (a€ RpNRp/), T CP (P defines a section of Fa);
3. G C Lie(P) (¢ € Re N Rpr), T C P;

4. there exists F € Env® (F, F') with P = Py.
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Definition 12.28
Define the S-subfunctor

Fiz(P, Q) C Par(G),

by
Fiz(P,Q)(S") = {P parabolic of Gs/ | (PN Q)s: C P}.

(The Convex Hull scheme defined by the couple (P, Q))

Let it be proved that Fix(P, Q) is representable by giving a local descrip-
tion of this functor in terms of a splitting of G. From Proposition 12.27,3,
and Definition 12.28 one obtains the

Proposition 12.29
Let G = (G,T, M, R), one has

Fia(P,Q) = Fiz(T) N (ﬂ Fa(a€RpN RF/)) .
It is immediate that for & € R there is an isomorphism of S-schemes
(Pa)g = Fix(T) N Fa,
where ®, C Ag denotes the combinatorial root defined by « € R, defined by
Fs — Pp(= Pgr,).

It is then deduced that

Fix(P,Q)= (]| (Fx(MnF)= ) (cpa)sz< N %).

a€ERpNRE a€ERFNR g/ a€ERFNR g,
One finally obtains the

Proposition 12.30
Let F,F' € Ag. Write P = Pr, Q = Pr:. There is a canonical isomorphism

Env(F, F")s = Fizx(P,Q),

given by o
Fg— Pf7
(F € Envu(F, F")) .
Corollary 12.31

The S-subfunctor
Fiz (P, Q) C Par(G)

is representable by a twisted constant finite S-scheme.
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Given a maximal torus T C P N Q of G the functor Fix(P,Q) may be
seen as a subcomplex scheme of Fix (T'). We recall that two maximal tori
of G contained in the (R)-subgroup P N @ are conjugate locally for the etale
topology by an element of P N Q. It follows that

Proposition 12.32

Given two mazimal tori T, T' C PNQ, i.e. satisfying Fiz(P,Q) C Fiz(T) and
Fir(P,Q) C Fiz(T') a conjugation isomorphism « satisfying a(Fiz(T)) =
Fiz(T') and o| riyp,q) = Idriyp,q) evists locally for the etale topology.

Remark 12.33

From Proposition 12.32 it follows that the convex hull Env(F, F") of two facets
of the building I, of a reductive k-reductive group G over an algebraically closed
field k, is independant of the apartment A containing F and F'. In fact the
statement of this proposition corresponds to one of the definition axioms of
abstract buildings. This justifies the introduction of (R)-subgroups in this
work. The main example is thus given by the intersection of two parabolic
subgroups and their main properties are:

1) Two mazimal tori in an (R)-subgroup are conjugate locally for the etale
topology;

2) the R-groups of a reductive S-group G functor is representable by a
quasi-projective S-scheme.

The latter allows one to carry out the building constructions in the relative
case. In fact the representability of the apartment functor (resp. convex hull
functor) follows from it. It will be seen that another consequence is that min-
imal generalized galleries configurations depend uniquely on the convex hull
defined by its extremities and not on the apartment containing it.

12.8 Convex Hull of the Tautological Couple of parabolics

Keep the above notation and hypothesis on G. Fix a type of relative position
7 with corresponding couple of types (¢, s).
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Definition 12.34

o Let G be a reductive S-group scheme and T a section of Relposg. The
graph of the natural embedding j, : Stand(r) — Par(G) xg Par(G)
defines a section

& Stand(t) — (Par(G) xs Par(G)) x g Stand(1)
of the product Par(G) x s Par(G) over Stand(r). It will be seen that &, is
in fact given by a couple of parabolics (I:’, Q) in standard position,

and thus defines a section of Stand(r) over itself. More precisely, write
S’ = Stand(t), then & may be seen as a section of Stand(t) over S'.

One calls (15, Q) the couple of tautological parabolics of type 7.

r

o The section & may be extended to a section &, of the Universal Schu-
bert Cell ¥ (¢f. Definition 12.44) over ¥ itself. This section is char-
acterized by the property: Given a section T of Relposg then:

§Z|Stand(1) = gz .
Write (ﬁ,@) for the corresponding couple of parabolics in standard
by
position.

e If G is endowed with a frame E and T is a type of relative position of
Ag with corresponding couple of types (t,s) write

& =&yt Stand(ts) — (Pari(G) xs Pars(Q)) xg Stand(t )

and (15, Q)T = (]5,@) . There are identifications

Ts

by ~ H & (resp. (]3’(2>2 ~ H (15,@)7) .

TERelpos A(R(E).) TERelpos A(R(E).)

Remark 12.35 The section (P,Q); of Par(G); x5 Par(G)s xs Stand(t),
over Stand(t), is obtained as the restriction to

Stand(t) C Par(G): xs Par(G)s,
of the diagonal section
Ax: X — X Xgs X,
with X = Par(Q): xs Par(G)s.

Let the above terminology be justified by proving that (]5, Q) is in stan-

.
dard position. Consider the restriction of the section &, of Stand(7g/) corre-

sponding to (]5, Q)T to the open subset of the Big Cell open covering indexed
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by (Ry,C"). Write §" = Stand(7s), and U = U g, x5 U(C', Frcr). The
pull-back Gy is endowed with the pull-back frame Ey of E. Denote by T
the maximal torus given by E. The section (P g, , Py o) of Stand(rg) gives
rise to the section (P g, , Pr.cr)u of Stand(7g) given by (). Observe that
T C (Pyr,,Prcs) implies Ty C (Pyr,,Prc)u. On the other hand, the

section (ﬁ, Q) over the section (z,y) of U = Uy g, xsU(C’, Fr ) is given

TU

by (z,y) — (int(y)(Pr,r, ), int(yz)(Prcr)). It results that

int(yx)(T) C (int(y)(Pt7R+),int(ya:)(PT7C/)) ,

h int(yz)(T) C int(y)(Pr,r, ) Nint(yz)(Prcr),

and thus P and Q contain a common maximal torus locally, namely
int(yz)(T) Cc PNQ.
It has thus been proved the

Proposition 12.36
The couple (P,Q), of parabolics of Ggr is in standard position, and one has

tg((p, Q)T) = Ts’.

Definition 12.37
Let G denote a reductive S-group scheme, T a section of Relposg.

o Write S' = Stand(r). The couple of parabolics (P,Q), of Ggr, is
in standard position, and thus defines a section of Stand(Gg) =
Stand(G) xg S’. Define the finite S’'-scheme

Fiz, = Fir(P,Q), C Par(Gs)
(The Convex Hull of the tautological couple (P,Q),).

e Denote by Fixy, — X the finite scheme characterized by: for all sec-
tions T of Relposq,
]:Z.-TE|Stand(1) = ]:ML

(The Convex Hull of the tautological couple (P,Q)x).

Proposition 12.38 (The Universal Property of Fiz,)
Let (P, Q) be a section of Stand(r) defined over the S-scheme S, and S —
Stand(T) the corresponding morphism. Then one has

fil’l XStand(z) S/ >~ ./.'.Z:L’(P, Q)
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Proof Retain the above notation. Let Eg: be the frame of Gg: pull-back of
Ey by S" — U. There is a natural building isomorphism Ag, ~ Ag,, . Let
F,F' € Ag, so that

(p,Q) = (PF,PF/) in GU and (P,Q) = (PF,PF/) in GS’- There is
an induced isomorphism of constant S’-schemes (EnvAev (F, F')y) xy S’ =~
EnvAes (F, F")gr, which proves that the natural morphism

Fir(P,Q) xy 8 — Fiz(P,Q)

is also an  isomorphism, on account of the isomorphisms
(EnvAru (F,F\y) xu S ~ Fig(P,Q) xy S (resp. Env*es' (F,F')g ~
Fiz(P,Q)), and a commutative square with vertices these four schemes and
with arrows these four morphisms.

12.8.1 The Projection Morphism

Let (P,Q) be a couple of parabolics of the reductive S-group scheme G in
standard position. Assume that Gg is endowed with a frame. Then there is
an isomorphism: Env(P,Q)s =~ lim Env(Fg, Ff;)s, where E runs on the set

E

of frames of Gg “adapted” to the couple (P, Q), and (Fg, Ff;) represents the
corresponding couple of facets in Ag. Suppose that (S; — S) is an etale
covering such that G, is endowed with a frame E;. Denote by G; (resp. G;)
the pull-back of Gs, (resp. Gg,) by the projection S; xg S; — S; (resp.
S; xgS; — S;), and by «; ; : G; ~ G the cocyle isomorphism. Denote also
E; (resp. Ej) the frame of G; (resp. G;) given by the pull-back of the frame
of G5, (resp. Gs,).

Fix (i,7), write &« = «;5, E = E;. Let x be a section of G;. Denote by
int(x)(E) the frame obtained from E by conjugation, and by a(FE) the image
frame by « of G;. There is a commutative diagram:

(03

(Gi, E) (G, a(E))

int(x) int(a(x))

(Giyint(2)(E)) =+ (Gj, int(a(z)(a(E)))

On the other hand given an isomorphism of split groups 5 : (G1, E1) —
(G3, Es), ie. an isomorphism § : G; — G such that 3(F;) = E,, and
F,F" € Ag then: B(projp: F) = projgry B(F). On account of these devel-
opements the following can be stated

Definition 12.39
Keep the above notation.
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e Let (P,Q) be a couple of parabolics in standard position of G. Denote
by projp,q) the section of Fix(P,Q) so that if E is a frame of G/,
where S’ denotes an etale scheme, then (projpqgy)s: corresponds to
the constant section (projr F)s: by the isomorphism Env(F, F')g =~
Fix(P,Q). Define the T-projection section

proj @ : Stand(r) — Fiz, C Stand(r) x s Par(G)
as the section proj(};’@ given by the tautological couple (]5, Q)z of type
7 of the finite Stand(t)-scheme Fiz, = Fix(P, Q).
e Define the T-projection morphism
Proj ™ : Stand(r) — Par(G)
as the composition of proj@) followed by the projection on Par(G).

e Define the Y-projection morphism
Proj® . ¥ — Par(Q)
as the morphism characterized by: for all sections T of Relposg
Proj®™|sianaz) = Proj™ .

Write Proj((?Q) for the image of (P,Q). Define the section proj™) :
3 — Fiz x following the same pattern.

12.9 Schematic closure of a subscheme

The following definitions are of use in defining Schubert schemes in the next
section. For more details see §16.3.

Definition 12.40

Let f: X — Y be a morphism of schemes. It is said that the smallest closed
subscheme Y' C Y, so that the canonical embedding jy: : Y' — Y factors f,
is the schematic image of f, if it exists.

If X is a subscheme of Y, and jx : X — Y the canonical embedding,
the schematic closure X°"¢ of X in'Y is defined as the schematic image
of jx. (¢f- [24], Ch. 1, Definition (6.10.1)).

If the canonical injection jx : X — Y is schematically dominant, it
is said that X is schematically dense in Y (c¢f. [24], Ch. 1, Definition

(5.4.2))

Definition 12.41
A morphism f : X — Y is schematically dominant if for every open
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subset U C Y and every closed subscheme Z C U, so that the restriction
f~YU) — U of f factors as

o) S oz 5,

it 18
Z =U.

The transitivity of schematic images is recalled.

Proposition 12.42

Let f: X — Y andg: Y — Z two morphisms. It is supposed that the
schematic image Y' of [ exists, and that the schematic image Z' of Y' by the
restriction g’ of g to Y’ also exists. Then the schematic image of X by go f
exists and is equal to Z'. (cf. loc. cit., Proposition (6.10.3))

The following Proposition gives sufficient conditions assuring the existence
of the schematic image (resp. schematic closure) of f : X — Y (resp.
ix: X — Y)

Proposition 12.43
The schematic image Y’ of X by the morphism f: X — Y exists in each of
the following two cases:

1. f«(Ox) is a quasi-coherent Oy-module (this condition is satisfied if
f is quasi-compact and quasi-separated).

2. X is reduced.

The underlying subspace of Y is given by f(X) (= the closure in Y of the
image of f), and f factors as

X 4y My,
where g is schematically dominant. (cf. [24], Ch 1, Proposition (6.10.5))

It is proved in §16.3 that the scheme Stand(7g, P) of parabolics of type s
in Standard Position with P as a quasi-compact scheme if S is affine, so
that the scheme of couples of parabolics in standard position Stand(r) is also
a quasi-compact scheme. Thus the Schematic Closure Stand(rg, P)*¢"*
(resp. Stand(7)) of Stand(rs, P) (resp. Stand(r)*¢"¢) in Pars(G) (resp.
Par,(G) xs Parg(G)) exists.
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12.10 The Universal Schubert Cell and the Universal Schubert
scheme

Definition 12.44 1. The Universal Schubert Cell (resp. Bruhat
Cell) of G is by definition the G-orbit scheme of Stand(G), given by
the graph

gr(t2) C Stand(G) x g Relpos g,
of the type of relative position morphism te : Stand(G) — Relposg =
Stand(G)/G. Write ¥ = gr(ts). There is a natural embedding js : X —
(Par(G) xs Par(G)) xs Relposg.

2. Define the Universal Schubert scheme ¥ of G as the schematic
image of jx (resp. the schematic closure X5°"¢ of the Universal
Schubert cell ¥) in

(Par(G) xg Par(G)) Xs Relposq .

Denote by j5 : ¥ — Par(G) xs Par(G) xg Relposg the natural
embedding.

Recall that:
1. The functor Stand(G) is representable

2. The morphism ¢5 : Stand(G) — Relpos¢ is the quotient morphism
Stand(G) — Stand(G)/G and it is S-smooth, of finite presentation,
with irreducible geometrical fibers, and thus faithfully flat.

(7.Q)

b

be the tautological couple of parabolics in standard position of Gy. This
couple is characterized locally for the etale topology as follows. Let E be
a frame of Gg/, where S — S is an etale morphism. One has Yg =

11 Stand(7gs), and ((P, Q)Z)St oo = (P, Q) , where the first
and(rg/ Ty

TERelpos Ag
member denotes the restriction of (P, Q) to Stand(7s:), and the second the
by

Let

tautological couple (p, Q)
Define

Tg!

prr : X — Relposg (resp. Prps: Y — Relpos G)

by prr = prgojs (resp. Prp s = pr3ojs), where pry : (Par(G) xs Par(G)) x s
Relpos ¢ — Relpos ¢ denotes the canonical projection. Given a section T
of Relpos ¢ write X, = p1r7_z1 (7). Then one has

Y, = Stand(7).
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Let
prp = pry sz DX — Par(G)
(resp. PI'p 5 = Py 0 g : Yy — Par(G))
be the morphism obtained as the composition of js (resp. j;) followed by the
first projection pry : Par(G) xg Par(G) xgs Relposg — Par(G). Given a
section (7, P) of Relpos ¢ x g Par(G) (resp. a parabolic P of G) write:
Se.py = (prg x prp) ' ((z, P)) (vesp. Sp = prp'(P)) .

Where P denotes the section of Par(G) given by the parabolic subgroup
PCG.
There is a natural embedding

Jjr+ Ly — Par(G) xg Par(G)

(resp. jir.p) : B(z.p) — Par(G), jp: Xp — Par(G)Rrelposq) ;

as it results from the definition of

X (resp. Yz, P) Zp).
Define

Xy (resp. i(z’p), fp)

as the schematic image of

jl (resp. j(I,P)7jP) )

or equivalently the schematic closure of

Xr (resp. Y(z,P) Ep),
in
Par(G) xgs Par(G) (resp. Par(G), Par(G)Relpos¢) -
One calls iz (resp. i(z, P)s fp) the Universal Schubert scheme of

G of type 7 (resp. the Schubert scheme of type (7, P), the Universal

Schubert scheme of G defined by the parabolic P C GG). Observe that
-1

Y= (prnf) (7).

To make evident the dependence of the above defined objects on G write:

»¢=x (resp. Eg =X, iG

Recall that given S — S, there is the following isomorphism

Par(GS/) ~ Par(G)S/
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(resp. Stand(Gg) ~ Stand(G)s') ,

which results immediately from the definition of the functor Par(G) (resp.
Stand(G)) (cf. [23], Exp. XXVI, 3.2. (resp. 4.5.3)). An isomorphism is
deduced

Relposa,, — (Relposg)s:.

On the other hand, the morphism
ty : Par(Gg) — Relposgy,,

is obtained as t) = (t2)s/. From the above remark one obtains the identifica-
tions
Gsr _ (yG
% = (29,

(resp. Efss/’ = (Eg) S/) ,

where 7 denotes a section of Relpos g.

12.11 The group action on the Universal Schubert scheme

By definition of X as the G-orbit scheme gr(t;) = graph of t9, there is a
natural action of G on ¥ that is induced by the action of G on

Par(G) xg Par(G) xgs Relpos g,

given by
(9, ((P,Q),1)) = ((int(g)(P),int(9)(Q)),T) -
Clearly, the subscheme

Y — Par(G) xg Par(G) xgs Relpos ¢

is invariant under G.
Let 7 be a section of Relpos ¢. It follows that

Y, C Par(G) xg Par(G)
(resp. X(;,py C Par(G)),

is G-invariant (resp. P-invariant).

Proposition 12.45
For every section g of G (resp. h of P) there is

int(g)(X) =X

(resp. int(g)(E,) = Sy, int(h)(S(z,p)) = S(z.p)) -



Associated Schemes to the Relative Building 303

Proof For every section g of G int(g)(X) = X. It follows that
3 C int(g)(2)

by definition of the schematic closure 3, as int(g)(X) is a closed subscheme
of Par(G) xs Par(G) xg Relpos. It is deduced that

int(g~ () C X for every section g of G.
It is concluded that
int(g~1)(X) = X for every section g of G,

and finally that o
int(g)(X) = X.

This proves the first equality. The second one follows from
3, = prﬁl (1) = fiber of ¥ over T,

and the G-invariance of prr. The following one is immediate from the second
equality as P is equal to its own normalizer in G.

12.12 The Universal Schubert scheme locally trivial fibration
over the Parabolics scheme

Assume that G is endowed with a frame E. Let 7 € Relpos Ag and
let (t,s) be the couple of types determined by 7. Write 7 = 75. Recall
that the Universal Schubert scheme defined by the type of relative position
T € Relposg, ¥, = Stand(r) — Pari(G) is a locally trivial fibration with
typical fiber ¥, p,y = Stand(z, P;), which is trivialized by the big cell open
covering (R4 r, ) r L erram(R(E)) (That is why it is assumed that G is endowed
with a frame). With the aim of simplifying notations denote by (U;) the big
cell open covering of Pary(G).

There are isomorphisms «; : U; X5 X, p,) = (EL) U, where «; is induced
by an automorphism int(g;) and g; denotes a section of Gy,. In fact int(g;)
induces an U;- automorphism of U; Xg Par(G) and sends U; xg Yirp) C
U;x sPar(G) on (,) v, = UiXpar(G) Xz C Par(G). As by definition Sr,p) is
the schematic closure of ¥, p,) in Par(G) and U; is smooth it is deduced that
U; Xsi(z7pt) is also the schematical closure of U; x5 X, p,) in U; x5 Par(G).
On the other hand, the automorphism int(g;) induces an isomorphism a; :
U, xg i(z, Py~ (21) U, of schematical closures which in fact extends «;.
With the data (ai, U; xg E(Lpt)) (resp. (oTi, U; xg i(l,pt))) is associated the
set of transition isomorphisms (c;; = ;o ;) (resp. (Gi; = a;'o @;)). The
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set (c;;) satisfies the cocycle condition as it defines the Par(G)-sub-bundle

Je.t B.C Pary(G) x5 Pars(Q)

N

Part ((;’)7

where the couple of types of parabolics (¢, s) is defined by 7.
From the fact that ¥, p,) is schematically dense in ¥, p,) it follows that

(€i;) also satisfies the cocycle condition and thus the data (oTi, U; Xg E(L pt))

defines a Par(G)-sub-bundle iﬁ of Pary(G) xg Pars(G) — Pary(G) which
in fact gives an embedding

Jst s/c Pari(G) xg Pars(Q)

r

N

Par; (G).

Remark that iﬁ — Par; (G) is a proper morphism as the fiber i(z, p) C
Par; (G) is a projective scheme. Thus the morphism ii — S is proper

as Par; (G) — S is a projective scheme. It is concluded that the iﬁ C
Par; (G) xs Parg (G) is a closed subscheme.
As the embedding ¥, — Par,(G) x s Pars(G) is quasi-compact and separated

the schematic closure X, exists (cf. Proposition 12.43), satisfies ¥, C iﬁ,
and commutes with the flat extension X — Pari(G) xs Pars(G), where
X =11Ui xs Par:(G). Thus there is an isomorphism

HOTi U XSE(LPH = H (ZI)Ui = (ZL)X = (Eiz)x :

Thus it follows that the image of the embedding js is equal to 3.

One concludes that

Proposition 12.46

Keep the above notation. Suppose G endowed with a frame. Then X, —
Par(G) is a locally trivial fiber bundle with typical fiber f(z_’pt), and X, —
Par(G) is a sub-bundle of it with typical fiber 3, p,).



Chapter 13

Incidence Type Schemes of
the Relative Building

By G denote a reductive S-group scheme. By a Building type scheme
associated with G one understands an S-scheme X so that for all s € S the
geometric fiber X5z “may be written” in terms of the Building I(Gs) of the
geometric fiber Gz of G. The schemes associated with the Relative Building
which has been constructed in the preceding chapter are examples of Building
type schemes. An Incidence type scheme is a subscheme of a finite product
of Building type schemes defined in terms of the Incidence scheme Znc(G).
With the following Building type schemes

e the Typical Simplex scheme A(G);

e the Weyl Complex scheme A(G);

e the Types of Relative Position scheme Relposg;
e the Parabolic scheme Par(G),

are associated Incidence type schemes, whose geometric fibers over s are re-
spectively given by sets of generalized galleries of the Typical Simplex, the
Weyl Complex, the Types of Relative Positions of I(Gs), and I(Gs) itself.
The smooth resolutions are constructed for the Schubert schemes are partic-
ular cases of these objects. More precisely stated one has:

The Minimal Galleries of Types scheme and the Relative Positions
Galleries scheme associated with the reductive S-group scheme G are first de-
fined, along with the morphism 5 associating with a minimal gallery of types
g a type of relative position section 7. The Incidence scheme plays the

305
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role, in the setting of relative buildings, of the incidence relation of a building.
The Galleries Configurations scheme (resp. Galleries Configurations
over minimal galleries of types scheme) is defined in terms of the Inci-
dence scheme, as a subscheme of the disjoint union of all finite products of
the Parabolics scheme Par(G). The Minimal Galleries Configurations
are defined in terms of the Convex Hull scheme Fix(P,Q) — X. They are
particular sections of the Convex Hull scheme over the Universal Schubert Cell
3. There is a morphism associating with a gallery configuration a gallery of
types. It will be seen in the next chapter that the fiber of the Galleries Con-
figurations scheme over a section g of the Minimal Galleries of types scheme
provides a smooth resolution of singularities of the Schubert scheme ng.

13.1 Typical Simplex Generalized Galleries scheme

Recall that the set of sections of the relative typical simplex A(G)(S5’) is
given by the set of open and closed subsets of Dyn(G)s: and thus it is
naturally endowed with an order relation, namely the inclusion relation “C”.
Define the S-functor

D(AG)) € JTA(G) xs -+ x5 A(G) (N-times)

NeN

of Generalized Galleries of types (resp. Generalized Galleries of A(G))
by: “The set

D(A(G)(S) N(A(G)(S') x5 -+~ x5 A(G)(S") (N-times))

is given by the N-uples of sections of A(G) on S’ satisfying, relatively to
‘C’, the defining relations of a Generalized Gallery in a building as given in
Definition 5.17. If G is split one has

L(A(G)) > lim (Gall am)) g
where A(E) = typ Ag = Ag/W(R(E)). Thus T'(A(G)) is locally repre-

sentable by a disjoint union of constant S-schemes, namely l%n Gall A(g)

5
It is concluded that in general I'(A(G)) is representable by a locally constant

S-scheme.

13.2 Minimal Generalized Galleries of types scheme

Let G be split and F a frame of G. Denote by

gally, Cgally,
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the subset of Generalized Galleries of types, given by the images of the min-
imal Generalized Galleries of the apartment Ag by the mapping

typ? : Gall 4, — gall 4.,

associating with v € Gall 4,, the Generalized Gallery of types typy € gall 4,
given by the images by typ : Agp — typ Ag of its facets. Observe that
the subset gall’}  is invariant under the action of the group Aut(Ag) of
automorphisms of the apartment Ag. Given a reductive S-group scheme one
may thus define an S-subfunctor

I"(A(G)) C T(A(G))

characterized by the following property. If G is split then there is a canonical
isomorphism

i (gl ) = T (A(G)).

where E runs on the set of frames of G. The sections of I (A(G)) are charac-
terized as the sections of I'(A(G)) which are locally of the form typy(F, F')g,
where S’ — S is an etale morphism so that G5 is endowed with a frame E
and v(F, F') is a Minimal Gallery of Ag.

The canonical isomorphism

A(G) = A(G) /W,

allows the identification of the sections of I'(A(G)) with the gg of the S-
scheme of types A(G)/W ¢ of A(G). Thus I'(A(G)) appears as the image
of I ;) by the restriction I ) — T'(A(G)/W ¢) of the morphism I' 4Gy —
I'(A(G)/W &) induced by the quotient morphism A(G) — A(G)/W g.
13.3 Weyl Complex Generalized Galleries scheme

For a split S-group G write

Ca = l%n (Gall 4) ¢

(resp. i) = li_;)n (Gall QE)S> .

Given in general an S-reductive group G one defines the generalized gal-
leries of A(S), S-scheme I' 4y (resp. the MGG, S-scheme i) of A(S)) by
descent, following the pattern of the definition of A(G) itself.



308 Buildings and Schubert Schemes

13.4 The Weyl Complex Gallery type morphism

Let G be endowed with a frame E. Let typ? : Gall 4, — gall 4, be defined
by typ? : v — typ~v , and

tlf,E = (typg)s : (Ga’HAE)S — (gallAE)S
Write for a split reductive S-group G:

o= 1%11 tig: Dae = TAQG) ,

where E runs on the set of frames of G. Thus there exists a morphism
tia: Tae = T(AG)

locally characterized as above, defined by descent, if it is supposed only G a
reductive S-group. Let

denote the induced morphism. It is clear that the Weyl group W & acts
naturally on I'", W) Assume that G is endowed with a frame F, then there is
a canonical isomorphism

% =~ (Galls,)

(resp. %) /W 6 =~ (Galld, /W (R(E))) S) .

On the other hand, there is an isomorphism

g (Gall”jE/W(R(E)))S ~ (gallﬁE)S

induced by tli E
It is clear that {77, factors through the quotient morphism

e = The/Wa,
and thus that it induces a morphism

g I @) /We =T (A(G)).

ty

|
-

=1

im
—

E

it is deduced the following

Lemma 13.1
The morphism ETA is an isomorphism.
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13.5 Relative position types galleries scheme

A twisted constant scheme is defined which indexes, as will be seen, a cellular
decomposition of the galleries scheme. Let ¢ (resp. &', s) be a section of A(G).
Suppose that

tcs,s

and that s’ denotes the type section of a Borel subgroup of G. Write
Relposé = Relpos%s,j)
(cf. §11.12).

Definition 13.2

1. Suppose that the S-group scheme G is endowed with a frame E.
Let g € gally,, with [(g) =7+ 1, such that

g=g91, 9, (resp. g= g2, g).
Wrrite

Relposg’”(gs) = H Relposii{gl)(sg)s (r+1ziz1)(resp. r2i>=1),

where the products are products of S-schemes.

Given a section g of T'(A(G)) define

Relposga”( 9)

for a reductive S-group scheme G by descent from the above definition,
by taking into account that locally, there is an isomorphism

(9all ap)sr = T(A(G))-

Here 8" — S denotes an étale morphism and E a frame of Gg,and 9
is supposed to be of the form 9g = 9s’ for some g € gally, .

2. If G is endowed with a frame E define

Relpos%" = H Relpos%™(gs).
gEgall A(R(E)
Define in general Relposéf’” (The Relative Position Types galleries
scheme) for a reductive S-group scheme G by descent, following the
same pattern as in 1.
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8. If G is endowed with a frame E, there is a morphism
€99l : Relpost" = H Relpos & (gs) — T(A(Q)),

so that given a section T of Relpos¢ ga” then

9 (1) = gs,

gall(

if T 1s a section of Relpos?™(gs).

In the general case define €9 by descent.

13.6 The type of relative position associated to a minimal gallery
of types

Let
EA:(ElAXSQA: F.A(G)*) A(G) XSA(G)

(resp. e=e1 X ex: [(A(GQ)) = A(G) xs A(G))

be the morphism associating with a section v (resp. g) of I' 4 (resp. A(G))
the couple of its extremities

(E14(7), E24(7)) (resp. (e1(g), e2(y))) -

The restriction of €4 (resp. e) to

(HA ) NT 4 (resp (ﬂ ) mF(A(G»)

is the morphism induced by
P1 A(G) X PN A(G) (resp- P1AG) X PN A(G)) )
where

N
P14(c) (resp. py ae) : [[AG) = AG)

<TGSP~ p1a@) (resp. v aq)) H A(G ))

denotes the first projection (resp. the N-th projection).
Write
EN=E x EFYy (resp. €™ =e]" X €3")

for the restriction of £4 (resp. e) to the minimal galleries scheme

i) (resp. I"(A(G))).
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The morphism giving the relative position of the extremities of a minimal
gallery
tQ”A e} (S‘;‘n : le(G) — Relpos A(G),

factors through
M = The/We.
Let:

52 . Fg(G) /EG — RelpOS A(G)7

be the induced morphism.
On the other hand, on the basis of Lemma 13.1 one has an isomorphism

W @) /W — I'"(AG)),
induced by ¢7" 4. Thus one may define

53 =050 (7 4) " : T™ (A(G)) — Relpos A(G)

(Minimal Generalized Gallery of types Type of Relative Position

Morphism).
Locally 62 may be described as follows. Let F be a frame of G. Then
there is a canonical isomorphism

(gall ZLE)S ~ T (A(G))
(resp. (Relpos Ag)g =~ Relpos A(G)) .
Thus the morphism induced by s
8 : (gall’},) g — (Relpos Ag)g,

is given by /
0y = (TO)Sa

where 7, : gall’, — Relpos Ag, is defined by associating with a minimal
gallery of types the relative position of the extremities of a minimal gallery of
this type (cf. Definition 9.20).

13.7 The Incidence morphisms in the Weyl Complex

Given a section (s,t) of A(G) xs A(G), satisfying s D t define the Incidence
morphism of type (s,t)

Fh o AG), — AG)

locally as follows. Suppose that G is endowed with a frame FE. Thus there is
a canonical isomorphism

(Ap)s ~ A(G).
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Given (s,t) € typ Ag X typ Ag, define the incidence mapping
]'—;L,‘ﬁ (Ag)s = (Ag)t,

as the mapping associating with a facet F' € (Ag)s the unique facet F’ €
(Ag): incident to F. Thus one has

FA(F)=F'.

Let

Define
féé}z = (]::}t)s

One obtains F. ;}z in the general case by etale descent.
The corresponding incidence morphism

Fsi: Pars(G) — Pary(G)

is easier to define. Let () C G be a parabolic subgroup of type s.

Then F;; associates with () the unique parabolic subgroup P C G, so
that P is of type t, and Q C P (cf. [23]|, Exp. XXVI, Lemme 3.8).

The product of incidence morphisms:

FAXFdy: AG)s x5 A(G)y — A(G)y x5 AG)y

(resp. Fsy x Fg vt Parg(G) xg Par ¢ (G) — Pary(G) xg Pary(G))

induces a morphism
Relpos (5 oy A(G) — Relpos ) A(G)

(resp. (Relpos ) s,y — (Relposa) (1))

which is called the Relpos incidence morphism in A(G) (resp. the
Relpos incidence morphism) defined by the couples of types (s,s’) and
(t.t') satisfying s O t, and &' D /. If Ff, x ]—';f"t, 1 (Q,Q) — (P,P") and

(@, Q') is in standard position then (P, P’) is also in standard (resp. transver-
sal) position.

Definition 13.3
It is recalled that A(G) is ordered by a functorial order relation (cf. §11.27).

N
One endows [ A(G) = [T TTA(G) (1 < N) with the order given by the product
order < and the linear order of the products. Given a couple of sections (o', 0)

N’ N
of [TA(G) x [T A(G) with N' < N, one writes

o < o
(@.p)
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N
if o' is obtained from o as follows. There exists a section & of [[ A(G) with

c<o

so that o’ is obtained as the image of @ by some projection

N N’
p: [Ta@ = [Taw©)

Given two sections ¢’ and g of I'(A(G)), one writes
/
—(@p) T

if the corresponding sections of [[ A(G), verify this relation.

Remark that N
FA(G) C H H A(G

Thus given g ( %) g one introduces a natural morphism
a.p

—=T
.Fg:‘(lgz)I (tl.A 17 — H.A ﬁF_A(G

This morphism is induced by the composition of a product of incidence

morphisms
N
Fis: [T AG) — T A@G),

followed by the projection

N N’
[TAG - [TJA@

given by p. These morphisms allow considering a hierarchical relation between
galleries. They depend on the choice of some (7, p). In practice this choice is
natural.

13.8 The Incidence scheme

The incidence relation in buildings plays a very important role in the descrip-
tion of their associated geometry (cf. [50]). In the schematic setting the graph
of the incidence relation appears as a subscheme of Stand(G). The galleries
configurations that are introduced are sections of fiber products of the In-
cidence scheme with itself. One may say that the types of relative position
between couples of parabolics are generated by the “types of incidence” be-
tween couples of parabolics (cf. galleries of types of relative position associated
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with minimal galleries of types). Schubert cells are obtained as fiber prod-
ucts of cells defined in terms of the incidence relation, along galleries of types
of relative position. These decompositions give rise to smooth resolutions of
their schematic closures;

Let G be a reductive S-group and (P, Q) a couple of parabolics of G.

Definition 13.4
It is said that P and @ are incident parabolics if the following equivalent
statements hold:

1. PNQ is a parabolic subgroup of G
2. PN Q contains a Borel subgroup locally for the étale topology of S'.
(cf. loc. cit., Exp. XXVI, Proposition 4.4.1)

Let
Jne(G) C Par(G) xs Par(G)

be the subfunctor whose sections over S’ — S are the couples (P,Q) of
incident parabolics of Gg:. One calls Jnc(G) the Incidence scheme.
Clearly one has the inclusion

Jnc(G) C Stand(G) ,

and the diagonal action of G stabilizes Jnc(G). From the following proposition
it results that the type of relative position of a couple of incident parabolics
is characterized by their corresponding couple of types.

Proposition 13.5 (¢f. [23], Exp. XXVI, Corollaire 4.4.3.)
Let (P,Q) (resp. (P',Q")) be a couple of incident parabolics of type (t,s)
(resp. a couple of parabolics of type (t,s)).

Then (P',Q’) is a couple of incident parabolics, if and only if, the couple
(P',Q") is conjugate, under the diagonal inner action of G, to the couple
(P,Q), locally for the etale topology of S’.

There is a morphism
A(G) xs A(G) — Relposg,

which associates with a couple of types (t,s), the type of relative position
t2(P, Q) of a couple of incident parabolics of type (t,s). By 7(t,s) denote
the type of relative position t3(P, Q) of a couple of incident parabolics
(P,Q), with (ty x 1)((P,Q)) = (L, 5).

It results
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Corollary 13.6
The morphism

(t1 x t1) : Ine(G) — A(G) xs A(G),

obtained as the restriction of t1 X t1 to Inc(G) C Par(G) xg Par(G), allows
identifying A(G) xs A(G) with the quotient scheme Inc(G)/G C Relpos G,
of the subscheme Inc(G) C Stand(G) under the diagonal action of G. The
restriction of the type of relative position morphism th, : Inc(G) — Relposg
factors through (t; x t1)" followed by (t,s) v 7(t,s). The S-functor Inc(G)
is representable. Assume G endowed with a frame E, then

Ine(G) = H Stand(7(ts, sg)) -
(t,s)etyp Apxtyp Ap
Given a section (t,s) of A(G) xs A(G), by definition of 7(t,s) one has:
(tr x t1)' " (8, 8) = t5 ' (7(t, 8)) = Stand(7(t, s)).

From the Proposition 11.25 it results that (t; x t1)'"1(t,s) is an S-scheme
smooth, projective, with integral fibers.

Let (t,t') be a section of A(G) xg A(G) such that ¢ C t. Recall that the
incidence morphism of type (t,t'), v : Par,(G) — Pary(G), by
definition, associates with a parabolic P of type ¢ the parabolic P’ D P of
type t’. Given a couple of sections (t,s) of A(G) denote by t U s the section
of A(G) given by sup (¢, s) defined relatively to the order of A(G). It is easy
to see that there is a canonical isomorphism

Fiust X Frus,s @ Par s (G)=>Stand(7(2, s)).

The reciprocal isomorphism is given by the isomorphism
Stand(7(t,s)) — Parus(G),

defined by
(P.Q) ~ PNQ.

It is deduced that the geometrical fibers of
(t1 x t1)": Ine(G) — A(G) x5 A(G)

(resp. of the restriction ¢ : Jnc(G) — Relpos ¢ of t2)

are S-smooth, projective, and irreducible. Observe that the Stein factorization
of Jne(G) — S is given by

Ine(G) — A(G) x5 A(G) — S.
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13.9 Galleries of Parabolics Configurations schemes

Definition 13.7
The Typical Simplex generalized galleries scheme T'(A(G)) may be seen as a

subscheme of [ A(G) = ]N[ ﬁA(G) Let

N

N
[17Par(G) c [] Par(G)
be the S-subfunctor whose sections (P;)(1 < i < N) satisfy:

for 1 <i < N, (P;, Piy1) is a couple of incident parabolics

N
(resp. H nepar(Q) = H Hmc Par(G) (The Scheme of
N

Chains of incident parabolics))

Clearly
N .
Hmc Par(G) = Inc(G) Xpar@) = XParc) Inc(G)
((N —1) times product of Inc(G) over Par(G)).
Write

-1

Confy = (ﬁ" Par(G)) N <ﬂ t1> <<ﬁ A(G)) mr(A(G)))

Remark that a couple of incident parabolics (P, Q) of type (¢,s) with t C s
(resp. t D s) verifies P D @ (resp. P C Q). Thus if (P;) is a section of
ConfY Par(G), then the image

N
(H t1> (P)) = ((P) = g

defines a section of I'(A(G)), let it be said
g: il CtQ D) ”'EN—I DEN

From the above remark it is obtained that (P;) satisfies

PrD>P,C---Pyx_1 C Py.
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From Definition 13.7 a natural embedding is obtained

N
ConfX H Par(G)

One thus obtains an embedding

N
Confg—H(ZonfG CHPar :HHPar (G).
N

There is a natural morphism

th: Confg — T(A(G)),

induced by || H t1 (compare with ¢} 4 of §13.4).
Given a section g of I'(A(G)) let it be written

Conf a(g) = (1) (g).

If g is of the form g = gg, with g € gall 4, for some F frame of GG, one denotes
by N(g) the integer N so that

Conf(; ) C H Par(G
Let the extremities morphism £ = &; x & : Conf¢ — Par(G) x s Par(G) be
defined as follows. Write & = [[EY, where £V : Conf — Par(G)x sPar(G),
N
is induced by the morphism
N
T X TN HPar(G) — Par(G) x Par(QG),

denoting by 7; (resp. mn) the first (resp. last) projection morphism.

Notation 13.8 For a section P of Par(G) (resp. (g,P) of I'(A(G)) xs
Par(G)) one writes:

Confa(P) = (&) *(P)
(resp. Confa(g, P) = (t] x 51)71 (g, P)) .

The sections of Confa (resp. Confa(g), Confa(yg, P)) are called Generalized
Galleries Configurations (GG) of G (resp. Generalized Galleries (GG)
configurations of type g, Generalized Galleries (GG) configurations of type
g issued from P).
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13.10 Galleries Configurations schemes fiber decomposition

Suppose that G is endowed with a frame E. Given a section g of I'(A(G)) of
the form g = gs with g € gall 4,,, we write Conf(g) = Conf(gs).
Let
poettl: Confg(g'@) — Confg(gl@t?)

be the natural morphism associating with a section o of Confg(g(®)) the

(a+1) —th truncated configuration O’E;H_l). Where o Egﬂ) is defined in terms

), following the pattern of Proposition 10.9.1 giving v(*) in terms of ~.

of o g‘j‘
Proposition 13.9
The morphism Pl defines a locally trivial fibration, with typical fiber
proper and smooth.

Proof Let
gt Par,, () (G) = Pary, ., )(G),

be the natural morphism associating with a parabolic Q of type s (g) the unique
parabolic of type toi1(g), containing Q, i.e. gt = Foulg)tarilg) (Cf
§13.7). It is easy to see that ¢\t is a locally trivial fibration with typical
fiber being the quotient P'/Q’ of a parabolic P of type to+1(g) by a parabolic
Q' C P of type sa(9g).

On the other hand, there is a natural isomorphism

pary, ., Confg(g(o‘+1)) — Pary, . (9)(G),

associating with the configuration o of type g1 the parabolic P,y of type

tar1(g) of o%.
It is clear that the Confg(g(@t))-scheme

Confg (g(a+1)) XPGT'ta+1(g) (@) Parsa(g) (G),

is canonically isomorphic to the Confg(g(®+1))-scheme Confa(g™).
It is concluded by remarking that the morphism

a+1
S

)

Confalgs ™) XPar,, . (@) Pars,g)(G) = Confalg

obtained from gt (resp. from the fiber product given by
(partaﬂ,q[“’“"’l])) by base change, defines a locally trivial fibration with

typical fiber P'/Q)’.

13.11 Minimal Galleries Configurations

In this section the definition of a Minimal Generalized Gallery for a reductive
S-group scheme is given.
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Definition 13.10

Define the Minimal Galleries type Configurations scheme of G as the
pull-back of

["(A(G)) = T(A(G)) by Confe — T'(A(G)),

Confg = (1)~ (I"™(A(G))) € Confe.

NorAaTION 13.11

o Write -1
Conf (1) = (1) (I"™(A(G)).) ,

where T denotes a section of Relposg, and
I"™(A(G))r = 5 (1),
Confd (I’ (P/v Q/)) =Conf¢& (I) N g_l((Pv Q)) )

where (P,Q) denotes a couple of parabolics. It will be seen in the next
chapter that the Configurations scheme Conf{ (g) defined by a section g
of I (A(Q))r contains a relatively schematically dense open subscheme
isomorphic to the schematic closure of Stand(r), 3,, where T denotes
the type of relative position associated to g, i.e. d2(g) = 7. Remark that
Conf (g, (P,Q)) = Conf (g) NE1((P,Q) is the fiber over (P,Q) of
the restriction of € to Confg (g).

e Suppose G endowed with a frame E. Given a subcompler K C A= Ag
one writes

Gallg C Gall g (resp. Gallg = Gallg N Gall'y)

for the set of gg of A (resp. MGG of A) contained in K.

Given F,F' € A, let P = Pr (resp. Q@ = Pps) be written. Fix(P,Q) C
Par(G) has been defined as the subfunctor whose sections over S’ are the
parabolics P of Gg/ satisfying (PN Q)s C P.

It is known that

Env(F, F')s ~ Fix(P, Q).

Write
Conf riy(pq) = Conf e ) (H Fix(P, Q)) ,

where N
I 7ix(P.@ =[] ][ Fix(P, @).
N
From the definition of Conf ri(p ) it follows that

(Gall Env(F,F/))S >~ Conf]-'ix(P,Q)-
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One may thus define, given a section (P, Q) of Stand(G),

ConfZiy p gy = Conf & N Conf rix(p,Q)

(resp. Conf’Z (p oy (7) = Conf (1) NConf Fiy(pq),
Conf 'z (pg) (T, (P, Q")) = Conf (7, (P, Q") NConf rix(p,q))-

Definition 13.12

A Minimal Gallery Configuration oy with extremities (P, Q) of G, is a
section o of Conf riyp,q) which is locally for the etale topology in S of the
form (o¢)s = v(F, F')s, where

’Y(F, F/) € Gall?;nv(F’F,).

In other words, o is local in S equal to the image of some minimal gener-
alized gallery v(F, F'), by the above isomorphism induced by a splitting of G.
Remark that Conf riyp,q) has been defined for any reductive S-group scheme
G, and a couple of parabolics (P,Q) of G defining a section of Stand(G).
A section a¢ of Conf riyp,q) i a minimal configuration given by the couple
(P, Q) of Stand(G), if there exists an étale covering (S; — S), so that Gg, is
endowed with a frame E;, whose mazimal torus T is contained in Ps, (resp.
Py, ), and (o%)s, is a minimal configuration defined by (Ps,,Qs,) as above.

The following proposition is a criterion for a section o4 of Conf }’ix( po) to
be a minimal gallery configuration.

Proposition 13.13
Let (P, Q) be a section of Stand(r), thusta(P, Q) = 7. Then the set of sections
over the S-scheme S’ of the S-scheme

ConfZipq) (t2(P,Q), (P,Q)),

correspond to the minimal generalized galleries configurations ow given by
(P,Q) (resp. with extremities (P,Q)).

Proof One may suppose S’ = S. Let (P,Q) be a section of Stand(T) over
S and o a configuration of G giving a section of Conf riu(p,q), then oz is a
section of

Conf’]’_figc(RQ) (t2(P,Q), (P,Q)), if E(ow) = (P,Q), and the image g = th(0%)
of o¢ gives a section of T (A(QG)), satisfying 62(g) = t2(P, Q). The statement
of the proposition may be verified locally. With the aim of comparing the
former defining conditions of the proposition on o¢ with the later, one may
thus suppose that there is a frame E of G, so that

P =Pr (resp. Q= Pr/),
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with F,F' € Ag, ~(F,F') € Gall 4, so that v(F,F’) C Env(F,F’), and
og =V(F, F")s. Let it be written g = typ9 y(F, F') € gall’y . Recall that:

Y(F,F') is a MGG < 14(9) = 74 = 7(F, F')

(cf. Proposition 9.38, and Definition 9.20).
One has by Definition of o4

ta(P,Q) = 7(F, F')s (resp. (820t]) (0%) = (74)s) ,
and on the other hand that
(62 0t1) (0%) = t2(P, Q) if and only if T, = 7(F, F").
One concludes that a section o of Conf riyp,q) with
E(ow) = (P,Q)

is a minimal configuration if and only if o¢ defines a section of
COTLf%im(}{Q) (tQ(Pa Q)) (Pa Q))



Chapter 14

Smooth Resolutions of
Schubert Schemes

The relation between the Minimal Galleries type Configurations scheme over
the Minimal Galleries of Types scheme, t}  : Conf® — T'™(A(G)) and
the Universal Schubert scheme over the Types of Relative positions scheme
> — Relpos g is made explicit. Observe that the former scheme is also a
Relpos g-scheme through the finite morphism d; : I'"(A(G)) — Relpos . It
is proven that the natural morphism

Confg i Fm(A(G)) X Relpos @ p

is a Smooth Resolution of Singularities (cf. 14.17).

Given a section g of I'"(A(G)), with associated type of relative po-
sition d2(g) = 1, there is a relatively schematically dense open
subscheme Conf{i(g)’ of the fiber Conf{(g), and an isomorphism
Conf&(g)’ ~ X, = Stand(r), induced by the above resolving morphism. One
constructs a section

Og : Stand(r) — Confg(g)’

which is its reciprocal isomorphism (cf. 12.34).

The Universal Cellular scheme Conf ' &4 is defined in terms of the
projection morphism, giving rise, by specialization, to cellular decompo-
sitions of Galleries Configurations schemes whose sections begin by a Borel
subgroup. Thus the Configurations scheme Conf g (g, P) whose sections are
the galleries configurations of type g with left extremity P admits the follow-
ing cell decomposition. Let B C P be a Borel subgroup and suppose that the

322
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finite scheme of galleries of types of relative positions Relpos gGall (gs) is trivial
a surjective monomorphism is obtained

[itre.mr = Cont’ &g, B) =[] Cont ' &(re, B) — Conffi(g, P)

where T¢ runs on its set of sections. The cells Conf’ $¥¢(r¢, B) are isomorphic
to affine spaces, and are parametrized in terms of Contracted products
defined by root subgroups. There is only one open cell (The Big Cell),
and it corresponds to a Minimal Generalized Gallery. Both of these results
are proven in the next chapter where contracted products are introduced. A
retraction morphism is defined from the Galleries Configurations scheme
of G to the Galleries Configuration scheme of an Apartment scheme, which is
in fact an interpretation of the above cellular decomposition.

14.1 Universal Minimal Galleries of Types Configurations
Scheme

Recall that with the notation of 13.12 a Mlinimal Gallery Configuration is
a section of Con f¢ locally of the form (y(F, F’'),)s. Recall that "™ (A(G)) C
I'(A(G)) is the subscheme whose sections are locally given by the images,
by the gallery type morphism t! : Confs — T'(A(G)), of Minimal Gallery
Configurations. A section of I'"(A(G)) C I'(A(G)) is called a Minimal
Gallery of Types Configuration. Write

Conf = (t1) ™1 (I™(A(G))) C Confg (resp. Conf () = t1) "1 ((62) (1)) ,

where 3 : I (A(G)) — Relpos g associates with a Minimal Gallery of
Types the type of relative position of the extremities of a representative Min-
imal Gallery Configuration of this gallery. One calls Conf{; the Universal
Minimal Galleries of Types Configurations Scheme. Thus the sections
of Conf are the sections 7 of Conf so that its image ¢} (v) is a section of
D™ (A(G)).

Define t1" : Conf®% — T'™(A(G)), as the restriction of t} to Conf?. From
the definition of Conf ¢ in terms of the incidence relation, and the functorial
formula Par(G) xg S’ = Par(Gg/), it is deduced

Confg xg 8" = Conf ¢, (resp. Confl xg S = Confgfs/) .
As a particular case with S’ = Stand(z), one obtains
Confg xg Stand(l) = ConfGStand(I)
(resp. Conf@ xg Stand(r) = Confgsmdm) .

Recall that Fix, = Fix (]5, Q), where (]5, Q): denotes the tautological couple

in standard position of type 7 over Stand(r). Thus Fix, is a finite Stand(7)-
scheme whose fiber over a section given by a couple of parabolics (P, Q),
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defined over an algebraically closed field k, is the convex hull of the couple of
facets (Fp, Fg) of the building of Gy (cf. §12.7). By definition, the sections
of the subscheme Conf rix, C Confgyg,,,,(,, are the configurations contained
in Fix,. Write

Conf i, = Conf Fix, N Confgsmndm

(resp. CO?’Lf 3—'”1)( ( ) CO?’Lf Fixr ﬂCOHfgLSt d(r)( )) ’

and
Conf %y (7,(P.Q)z) = Con pix, NCoNEE, (1) NET((P,Q)y).

Where € = (&1, &) denotes the extremities morphism. From this definition a
canonical embedding of Stand(z)-schemes results immediately

Conf's, (z, (P, Q)z) CConf, . (r)=Conf(r) xs Stand(z)
Following the pattern of the proof of the isomorphism
.7:iXI XStand(z) SI ~ .FiX(P, Q),

where (P, Q) is a section of Stand(r) over the S-scheme S’, i.e. (P,Q) is a
couple of parabolics of Gg/ in standard position, with

t2(P,Q) =g (cf. Proposition 12.38),
one obtains the following

Proposition 14.1
With the above notation there is a natural isomorphism

CO”f%’ixl (17 (Paé)z) X Stand(r) s’ Nconf}'w(p Q)( (P Q))

Corollary 14.2 (The universal property of Conf,, (L (1’57 Q)z))

Let (P,Q) be a section of Stand(t) over S'. The set of minimal con-
figurations o¢ over (P,Q) corresponds naturally to the set of sections of

ConfZ,, ( (P, Q)T>, over the section (P, Q) of Stand(r) defined by (P, Q),
i.e. ConfZ, poy(T (1,(P,Q)) is given by the fiber product defined by the couple
(€ 0rq)-
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14.2 The Canonical section of a Minimal Galleries of Types
Configurations Scheme

There are natural morphisms
Ext!™: Conf? — Par(G) x5 Par(G) xs I™(A(G))
(reSp. Ex (6y0t!™): Conf — Par(G) xg Par(G) x5 RelposG) .

Definition 14.3
Let T be a section of Relposg over S. Observe that

I'"™(A(G) 1) stand(r) = Stand(r)x 565 (1) C Par(G)x sPar(G)x sT™(A(G)) .

Write
Confii(r) = (8 X tgm)il (Stand(r) x5 65 (1)) C Confd(T),
and denote by
(€ x t{’”)/; Conf (1) — Stand(r) xs 85 (),

the morphism induced by £ X tlfm.

Observe that the sections of Conf ()" over S” — S are the galleries config-
urations v with associated gallery of types ] (y) = g satisfying d2(g) = T,
and extremities £(v) = (P, Q) such that (P, Q) is in standard position with
type of relative position equal to 7. Thus Conf % ()" is naturally a Stand(7)-
scheme. In fact it will be seen that Conf % (1)’ is a canonical open subscheme
relatively schematically dense in Conf{%(r) and that the morphism

Conf(r)' ~ Stand(r) x5 65 (1)

is in fact an isomorphism. Thus the above definition is a functorial description
of Conf%(7)’, i.e. a characterization of the sections of Conf? (7) which are in
fact sections of Conf?(7)’. Observe that £ and ] are G-equivariant mor-

phisms. The next aim is the construction of a canonical section of (5 X tlfm)l.
One can look at Conf’? (7,(P,Q);) as an S-scheme. A section of

ConfZ, (1, (P, Q)z) on the S-scheme S’ is given by a couple

((PaQ)70_%0) )

formed by a section (P, Q) of Stand(7) over S’, and a Minimal Gallery Con-
figuration o4 given by (P,Q) (cf. Proposition 14.1) and contained in the
fiber (.Fixl)(PQ) = Fix(P,Q). Thus there is an inclusion of S-functors
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ConfR, (1, (P, Q)l) C Conf % (7)’, which is an isomorphism.
On the other hand there is a natural morphism of Stand(r)-schemes induced
by the restriction of (£ x tlfm)lz

Cont e (z.(P,Q)z) — (T (A(G))2)stand(z) = Stand(z) x5 35 (z)

defined by
o¢ (tlfm> (o).

Stand(1)

It may be seen that it is an isomorphism. One proceeds locally in S. Assume
that G is endowed with a frame E. With the notations of the proof of 12.36
the group Gstand(r) is thus endowed with a frame E over the open subscheme
given by the open set of the big cell covering, U; r, Xs U(C' . c/) adapted

to the tautological couple (P Q) The maximal torus T given by E is related
to the maximal torus T of E as follows.

Let (y,x) be a section of U = Uy g, xsU(C’, F; cr). By definition of Py ¢
one has, with the obvious notation,

T C(Pur,,Prc),
where T is the maximal torus defined by F, and thus
T = int(yz)(T) C (int(y)(Pe,r, ), int(y2)(Pr.cr))
ie. R o
T =int(yz)(T) CPNQ .

Write A = Aj. Assume that there exists 7 € Relpos A with 7 = 7(F, F")
and 7 = 7y, where F € A (resp. F' € A) denote the parabolic set of roots
corresponding to P, g, (resp. Prcv), i.e. Pr = P, g, (vesp. Ppr = Py c).

Let the isomorphism Env(F, F')y ~ (Fiz,)y be made explicit. Let F” €
Env(F, F'), then

F(/]/ — int(yz)(PFu) .

Similarly the following isomorphisms is established. One has
62 - (TO)Ua
where 7, : gall’y — Relpos A is defined as in Definition 9.20. Thus
&y () = 75 (T)u = gall X (T
and
gall  (T)u ~ (I"(A(G))-)u -
Write
Gall} (1) = (re 0 typ?)~'(7) = (typ?) ™" (gall ¥ (7))
(resp Gall g, (g () = Gall} (1) N Gall EHV(F’F/)> .
One has:
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1. GallfE”nV(F’F,)(7’)I’WE_l((F7 F")) = Gall} ()N E~Y((F, F")), since a Min-

imal Generalized Gallery v satisfying E(y) = (F, F’) and 7 = 7(F, F’)
is contained in Env(F, F');

m —1 ~ m D )
2. (GallEnv(F’F,)(T)ﬁE ((F, Ff)))U ~ Conf R, o) (70, (P, Q) )-

Observe that Gall i, 1 (T)NE~Y((F, F")) is the set of Minimal Generalized
Galleries v of A contained in Env(F, F’), so that E(y) = (F,F’), and g =
typ 9(7y) verifies 7, = 7. The morphism (t'"" )¢ corresponds to the mapping

Gallg,y () (1) VETH((F F)) — galli(7),
given by v — typ9~. By proposition (3.22), given (F,F’) € (A x A),, so

that 7(F, F") = 7, and g € gall?(7), a minimal gallery of types, there exists
a unique Minimal Generalized Gallery -, (F, F") so that

typ? vy (F, F') = g (vesp. E(yy(F,F')) = (F,F")).

It follows that the above mapping is bijective, and thus that tlfm induces an
isomorphism. It has thus been proved the

Proposition 14.4
The natural morphism

Confi,, (z,(P,Q)r) — Stand(z) x5 65" (z) = (I"™(A(G))r)stand(r)

defined above is an isomorphism of Stand(r)-schemes which is G equivariant
when it is supposed that 55 (1) is endowed with the trivial action of G.

Definition 14.5
There is an S-scheme monomorphism

1) Denote by
©r : (I"™(A(G))r)stand(r) — Confg (1),
the composed morphism given by
(T (A(G))standte) — ConfPis, (2,(P.Q)z) (cf: Coroliary 14.4)
followed by the morphism
Confty, (z.(P.Q);) = Conf& (z)

(The 7-Canonical Section).
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2) Let g be a section of (I (A(G))r)stand(r) over Stand(r). Denote by
& : Stand(z) — ("™ (A(G))r)stand(r)
the corresponding morphism. Define
CFE Stand(t) — Confs (9) (: Confg(g)),
as the composed morphism ©4 = ©; o0&, (The g-Canonical Section).
Remark that the morphism ©, satisfies
(£00;) ((P,Q),9) = (P,Q) (resp. (1 2O-) (PQ).9)) =4g) .

le. O is a Stand(r)-morphism. Thus ©, defines a section of Conf7; (g)

over Stand(r).
There is a natural G-invariant S-morphism

/

Conf (1) — Par(G) xg Par(G) xg 6, (1),

induced by € x t{". Denote by (€ x tlfm)/ its restriction to Conf ()" and
remark that Conf{% ()’ is G-invariant. From the above equalities it follows
the

Proposition 14.6
The morphism

0, : Stand(t) x5 65" (1) — Conf (1),

defines a G-equivariant section of the G-equivariant morphism (5 X tlfm)l.
The next aim is to prove that:
1. ©; is an open embedding;

2. The open subscheme Ug, C Conf (1) defined by O, i.e. the image of
O, is relatively schematically dense;

3. Us, = ConfZ(r)". Observe that Conf{%(r)" is the reciprocal image
of Stand(r) by the extremities morphism Conf{%(r) — Par(G) Xg
Par(G).

The proof of these facts is founded on an isomorphism of this Configu-
rations scheme with a Contracted Product and on the induced Cell De-
composition.
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14.2.1 Local Description of a Canonical Section

The following local description of the section ©, is given. Let it be supposed
that G is endowed with a frame E. Write A = Ag for the apartment defined
by R(E). Let 7 € Relpos A, with 7 = 7, and (¢,$) € typA X typA the
corresponding couple of types defined by 7. With the notation of Definition
9.20 recall the following canonical isomorphisms:

7o (1)s = gall} (1)s ~ 65 ' (7s),

and
Stand(rs) x5 05 ' (rs)) ~ [[ Stand(rs)",
gere (1)
where the second member denotes the disjoint union of set of copies of
Stand(7g), (Stand(Ts)(g))geT:l(T) indexed by 7,°1(7). On the other hand,
there are isomorphisms

Conf} (rs)' ~ ][I Conf¥ (gs)
gere M (g)

(resp. Conf# (1s)~ [[ Conf# (95)) .
gers (1)

Accordingly the morphism O, (resp. ©,,) splits as

O, = I Og <resp. 0., = ]I @gs>~
geTe (1) geTe (1)
Where O, (resp. ©,,) is obtained by composing ©,, (resp. ©,,) with the
corresponding inclusion morphism.
Let t = e1(g) i.e. t = the first type of g. One has that ©,, may be seen
as a Par;(G)-morphism, i.e. there is a commutative diagram

O4 : Stand(rg) Conf & (gs)
Part

where & 4, is the restriction of & to Confgf (9s), and prp . the morphism
induced by the first projection.

Remark 14.7

It follows from the proof of 14.4 that ©44 associates with a couple of parabol-
ics (P,Q) = (Pp, Pp), containing a mazimal torus T, with type of relative
position given by T the Minimal Gallery Configuration o g = v4(F, F')g with
extremities E(o g) = (P, Q). Where v4(F, F') is the unique mgg in R(E) de-
fined by a couple of facets (F, F") with type of relative position 7 and 7¢(g) = 7.
On the other hand, the morphism ©4 is G-invariant. Thus ©4, is completely
determined by the image of a couple (P, Q).
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14.2.2 Restriction of a Canonical Section to the Big Cell Covering

Assume again that G is endowed with a frame E = (T, M, R, Ry, (Xa)acR,)
(cf. Proposition 11.12). Let R = (M, M*, R, RV, Ry) be the corresponding
Z-system of roots, and R, = (N Ry) N R the system of positive roots defined
by Ry. Denote by Ag the apartment building defined by R. Let C = Cgr_ be
the chamber of A = Ag corresponding to the positive roots system R. Write
F; = Fy(C) for the facet of type ¢ incident to C. Remark that Pr, = P; g .
For the sake of briefness write g, 7, 7¢,- - -, for the constant sections gg, 7s,
(1¢)s, -+, if no confusion arises. Let one write 7 in this section instead of
7s and g € gall™A, such that 7,(9) = 7, = 7, instead of gg. Suppose T
corresponds to (t,s) € typ Ag X typ Ag. By Proposition 12.20, 2., there is
the big cell open covering of the Universal Cell Stand(r)

Stand(r) = |J oW (Qur, xs Stand(r, P r,))
RyeFram(R)

- U U%z,c" (ut,R+ XS U(C/7FT,C/)) .
(R4+,C")€EI(R)

The morphism
E1g: Conf (9) — Pary(G),

defines a locally trivial fibration, with typical fiber Conf{ (g, P r,). It is
trivialized by the big cell open covering (¢ g, )Ry eFram(r) of Par+(G). There
are isomorphisms of ﬁt, R, -schemes:

) Qun, xsConfl (9. Pir,) — Confy (D,
defined by
¥ (y.0e(Prr,)) = (int(y)(Pg,). int(y) (04 (Pur,))) |

where y is a section of U; g, ~ ﬁtyRJr and 0'<,‘;/‘(Pt’3+) denotes a configuration
of type g, issued from P g, .

Let
Og,Pip, Stand(7, Py r,) — Conf (g, PR, ),

denote the fiber of the morphism ©, over the section of Par;(G), de-
fined by the parabolic P, g, C G (resp. (@g)ﬁtR+ : Stand(T)ﬁt_RJr —
Conf (9)q, ,, - the morphism induced by ©, over the open set Qur, C

Par(G)). The G-equivariance (cf. Proposition 14.6) of ©, implies the com-
mutativity of the following diagram:
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%y n, XS Og. P, g, Q¢ p, Xs Stand(r, Py r, ) — Q¢,r, Xs Confg (9, Pry)
o) o
Ry Ry
m
eyl H e} rel .
(@g)ﬂtﬁ+ Stand(T)QtﬁJr ——> Conf (g)”f,,RJr

which establishes the “compatibility” of the above trivializations.
Let the composed morphism be made explicit:

Oy, 00 ) UC! Fror) — Confl (g, Pyr,)-

(There is the following relation between (™) and Ugj,o“

,C") _ () :
U( ) - UR+,C/ OJZ/{(ClvFT,C’) ?

where jy o r. ) U(C!, Fror) = U r, XsU(C', Fr cr) is the closed embed-
dlng defined as ju(C,aF-r,C/) = 1Mt,R+ Xs Idu(clvF-r,C’)')

Recall that with the notation of Lemma 12.16 there is an isomorphism of
S-schemes:

o) U(C!, Fror) = Stand(rer, Bor) € Stand(r, Py g, )

which is a parametrization of the big cell Stand(r¢v, Bor) of Stand(7, Py r.)
defined by Bg:.
Remark that from Proposition 12.17 it results that the set of restrictions

(@g,Pt,RJr © O—(T)C/))

gives a complete description of the section ©4 p, Ry Thus one proceeds to de-
scribe ©g p, oo™, Let F,F' € Asuch that P, p, = Pp,and F' = F, cr.
As in Proposition 9.38, denote by ~4(F, F’') € Gall’y the minimal generalized
gallery of type g, with 7, = 7(F, F’). With the notation of Definition 9.16
let v4(C"; F, F') be the Generalized Gallery obtained from ~y,(F, F') by com-
position with C’ D F. In fact v4(C’; F, F') is minimal between the chamber
C" and the facet F’, by definition of Minimal Generalized Gallery, as C’ is
at maximal distance from F’. To the closed set of roots in R whose walls
separate C' and F': R(C',F') = R4 (C',F') ={a € Rc/ | Hy € H(C',F")},
corresponds the subgroup U(C’, F; ¢+) C B, parametrizing Stand(7¢/, Ber)
(= the Begr-cell contained and open in Stand(7, Py g, )). Let o« (v4(F,F"))
denote the section of Conf{ (g, P, r,) obtained by replacing a facet F of
v¢(F,F") by the corresponding parabolic P, and thus the couple (F,F")
by (Pr,Pps). Observe that o (v4(F, F')) is a Minimal Gallery Configura-
tion, since y,(F, F’) is a Minimal Gallery, i.e. o« (v,(F,F")) is a section of
Conf{ (g, Py.r.) = Conf (g) NConf (g, PR, ).

From the G-equivariance of ©4 (cf. Remark 14.7) one obtains the following

C’€Ch Sty (r )
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Proposition 14.8
The morphism

Og00%) ot Unr, XUC!, Fror) — Conff (9)

T,

(resp. Og,P. oo™ L U(C, Fror) — Conf (Q»Pt,RJ)

1s given by
0y00%) ot (y,x) = (int(y)(Prr, ), int(y) (int(z) (o (v (F, F')))))

(resp. Og.Pr, © o™z s int(z) (o (vg(F, F’)))) .

14.3 Block decomposition of a Bruhat Cell parametrizing
subgroup by a minimal gallery of types

Keep the above hypothesis on G and notations. For the sake of briefness
write g, T, T¢, - -, for the constant sections ggs, 7s, (7¢)s, -, if no confusion
arises. In this section and the following one makes the morphism (resp. the
section) Og p, Ry explicit, over the open subscheme of the Big cell covering,
corresponding to Uy g, xsU(C’, Fr c), by means of a product decomposition
of the parametrizing subgroup U(C’, F; ¢/) of Stand(r¢/, Ber), [] U(w;) ~
Stand(7¢r, Ber). This decomposition is given by a minimal gallery of types
g, namely m(9:C") . I1 U(Ci, Fieq) ~ U(C', F; i), where the U(C;, Fi—1)
are subgroups of B¢ defined by g (see below), and m@:C) is given by the
multiplication in Ber. In fact one obtains two representations of O p, ;. , one
in terms of the minimal gallery v,(C’; F, F") of Ag, and the other in terms of

0o(C) ¢ (P (CN)(r 2> 0), (P(C)) (r412j>1),

where
g (s)r2i>0), () (r+13531),

the basical configuration defined by (g,C’). Observe that by definition
04(C") is contained in the simplex subcomplex A(C”) defined by C’.
With the aim of simplifying notation assume that g = ¢q, with I(g) = r + 1.
One may thus write:

Vg(FvF/): (FZ')(TZZ'ZO), (F;)(r+12j21)

One associates with the Minimal Generalized Gallery ~,(C’; F, F') a decom-
position of R, (C’, F’) as a disjoint union of closed systems of roots. Namely

Ri(C',Fror) =[] R(Ci, Figa) (r+12i2>1),
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where
R_;,_(Oi,Fi_l) = {Oé S Rci ‘ H, € H(CZ‘,FZ‘_l)} .

Recall that by Definition 9.6 one has
H(C F) =[] H(Ci, Fim),
from which the above equality follows. Let
U(C;, Fi—1) C Ber,
be the subgroup defined by the closed set of roots R4 (C;, Fi—1).

Definition 14.9
From the above equality one obtains an isomorphism of S-schemes

m(g’C/) : H Z/{(ChFifl) — U(C/7FT7C/)’

induced by the multiplication of G. It is called the block decomposition of
U(C', F; cr) defined by the Minimal Generalized Gallery of types g and
the chamber C’.

The isomorphism m(9:¢") gives rise to another isomorphism which is
described now. The sequence of chambers constructed is (Cx) (r+1 > k > 0)
as in §9.2, b). With this sequence of chambers is associated a . (C’)-reduced
expression of w(C’, projpC’) (F' = F; ¢+), namely

’LU(C/,pI‘OjF,C/) = Wpg1 - Wy -+ - WY,
where the (w;) (r+1 > > 1) are defined as follows. Let
u; = w(C;, Cig1) (r+121d2>1),

and
Ui:Hua r¢l>a>1)

(resp. vp42 =1). Then
w; = U;_i_ll U; Vi41-

Then one has the equality, as is easy to see (otherwise cf. §9.2, b) being
aware that what is called w; (resp. w;) here, is called u; (resp. w;)) there:

Wy41 - Wy s - - Wy = Uy = Up Up41

(resp. Wyy1 Wy Wi = U+~ Up Wyp1) -

Let it be written

si=5:9) (r>130) (esp. t; =t;(g) (r+13j>1)).
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With the notation of §9.2, b). one has
w; = w(t;, $i—1)-
Given w € W is denoted by
U(w) C Ber,
the subgroup defined by the closed system of roots
R (C'w(C"))={a€C"| Hy, € H(C,w(C"))}.

For each w; € W a representative in N(7T') may be chosen. Denote this
representative also by w; and define v; ;1 in terms of these w;’s as above.
From Lemma 10.28 it is deduced

U(CZ, Fifl) = ’U7;+1 L{(wi)v;}l.

In fact the proof of this equality runs accordingly Lemma 10.28, taking on

account that

tr

Thus there is an isomorphism of S-schemes

[T uw) — ] Ui Fiov),
defined by
(z:) = (Int(vipr)(2i)) -

This isomorphism composed with m(9:¢") gives rise to an isomorphism of S-

schemes ,
9.0 . H U(w;) — UC', Fror).

Let
5.0 . H U(w;) — Stand(7cr, Ber),

be the composition
E(Q:C') = 0(7'70/) om(g,c").

Clearly 79 is an isomorphism of S-schemes. By definition of 79 one
obtains:

Proposition 14.10
There is a commutative diagram

(9.0 . H U(w;) — Stand(tcr, Beor) .

o)
(a:¢")

U(C/7 FT,C’)
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Let 79:°") be made explicit. From
U1 =wri1 - wr = w(C projp_,C"),

it is deduced that
’Ul(FS(C/)) = F—,—’C”-

Finally one obtains
int(’l/1>(PFs(C/)) = P7_7C/,

On the other hand, by an easy calculation one obtains
1 . o -1 .
Hvi+1xivi+1(r—l—l}z}l)—(Hxiwi) v (r+1z2i>1),

where x = (z;) denotes a section of [[ U(w;). Thus

int (H Vit1 T; vi;ll) (Prc/) =int (H x; w1> int(v; ") (int(v1)(Pr, 1))
= int(] [ @i wi)(Pr. )

i.e.

7@ (2) = imt([ ] @i wi)(Pr,cr) -

thus it is known to which section of Stand(r¢r, Ber) the section (z;) of the
product [] U(w;) corresponds by the isomorphism (9.0,
Next one looks at the composition of Oy p, , with

090" . H U(Ci, Fi1) — Stand(rer, Ber)

where 0(9:0") = () om(9:C") The following proposition describes ®g’pt’R+ )

o(9:¢") in terms of the block decomposition of U (C”, F") defined by the minimal
gallery of types g. The description of

O.pn, 00T+ s int(x) (o3 (3 (F, F')))
as required in proposition 14.8, follows from that one.

Proposition 14.11
Write

J

Vo(FF): (Fi) (r>i20), (F)) (r+1>j2>1).
Let (y;) be a section of [ U(Ci, Fi—1) (r+1>1>1). Then

int H yi | (Pr,) = int H yi | (Pr,) (r=za>=0).
r+12i>1 r+12iza+1
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Proof Let
WNCHFFY: (F) (r+1>iza), (F)(r+12j>a+1),

with Fry1 = C' be the a-truncated gallery of v4(C'; F, F'). As Véa)(C’; F,F")
s a MGG, it is

Ry (C'Fo)=]] Re(Ci, Fiy) (r+12i>a+1).
On the other hand, the following equality holds:
R (C',Fo) =[] R4(Ci,Fimy) [ Rer N Ry, .
It is deduced that
I[ R+(Ci, Fima)(@ > i > 1) € R N Ry,

This gives
azi>1l = U(Ci,Fi_l) C PFa,
and the image of

H UCLFisy) (az2i>=1),

in Bor is contained in Pr,. It is concluded that [] wv; is a section of Pp,.
azizl
This suffices to prove the assertion.

Write:
™ = (1(C;, F;_1)) € H Relpos ii(,gl)(g) (r+12i>1).

The couple of facets (C;, F;—1) is a couple of transversal facets in St Fl-
Denote by

0y(C) 1 (P (C)(r 212 0), (Py(C)) (r+12j>1),

the basical configuration defined by C’. Observe that by definition o4(C")
is contained in the simplex subcomplex A(C’) defined by C".

One associates with the section x = (x;) of [] U(w;), the following config-
uration:

oya ) e [ wpwn)Pulc) ] r=i>0),
r+12p2i+1

int( [[ asws @y (C)] 41250,
r4122j+1



Smooth Resolutions of Schubert Schemes 337

where it is written

H l‘ﬁwg=1

rH1>B25+1

if j=r+1, and
Psi (C/) = PFsi(C') (resp. Ptj (C/) = Pth (C’)) .

The next proposition gives a description of ©4 p, R, © (™) in terms of
the basical configuration o,(C") instead of v, (C’; F, F’).

Proposition 14.12
The following diagram

Ao s | [ Uwi) —Conf& (g, Pur.) ;

!
Og.p oo™
(9.C") T s

[Tuc, Fre
where )\[T%T,C/] is defined by
Apiron @ @ og(@,C'),
is commutative. Observe that A« o) = @g,Pt,RJr 0g9:C,

Proof Results easily from the two preceding Propositions.

14.4 The schematic image of the Canonical Section

Keep the notation of the preceding section. Recall that ﬁt,pur C Par(G) is
obtained as the image of the Big Cell Q; r, C G/P; g, , by the isomorphism
G/P; r, — Par,(G) defined by T — int(x)(P;, g, ). On the other hand there
is an isomorphism U g, ~ §t7R+ defined by x +— int(x)(P,, g, ), where Uy r,
is the subgroup generated by the vector subgroups corresponding to the roots
a € —(Ry — Rp,), where Fy = Fy(C) (thus Pr, = Py g, ), and C = Cg,
is the chamber given by R. In fact ﬁt,R+ is the Big Cell defined by the
Borel subgroup B°PP opposed to B = B¢, i.e. given by —R,, and there is
Uy r, =U(CPP,F;) C B°PP. On the other hand the morphism Stand(r) —
Par:(G), induced by the first projection, gives a locally trivial “family” of
Schubert Cells, (Stand(r, P)) indexed by the sections of Par;(G). There

is an ﬁt’RJr—isomorphism ng : ﬁt,R+ x g Stand(r, P;) — Stand(T)g N
L. t, +
associating with the couple (P, (P, @)), formed by a parabolic P section of
Q¢ r,, and a section (P, Q) of the fiber of Stand(r)g, . over the center
tRy
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of Qy g, , the couple (P,int(z)(Q) = (int(x)(P,),int(z)(Q)), where z is the
section of Uy, r, corresponding to P.
The open covering

Stand(r) = U Stand(r)ﬁt R = U G‘gi (ﬁthJr X s Stand(7, P, ))
Ry €Fram(R) Tt Ry eFram(R)

may be refined as follows. Recall that there is an open covering

Stand(7, P g, ) = U Stand(r¢r, Ber)
C’€Ch Stp,

and isomorphisms U(C', F; ) = Stand (7¢v, Ber), defined by =z +—
int(z)(Pr,c), where P, ¢ corresponds to Fr ¢s. Thus one has

Stand(7) = U ﬁt,RJr x g Stand(7¢r, Ber)
(Ry,CEL (R)

U O'EQ)C’ (Z/ItR+ st/{(cl TC")) .
(R4+,C")€eI-(R)

Remark that Qt,Fu x g Stand(7¢r, Bev) is affine if S is affine.
There is a commutative diagram

Alrtr,cr) = G)g’pm+ 079" . H U(w;) — Conf (g, PR, ) ,

\ Tj[T}é"E]O)\[ )

HU(wi)wl

where
j[T%T,E] : Confétd(/r(/,BC’) — ConfG(gv-Pt,R+)7

denotes the embedding of the open cell defined by B¢/, and
Al B HZ/I Yw!™ = Conf &4 (7l Ber)

denotes the isomorphism of the 7/-representatives scheme with the cell

Conf (i, Ber). The sequence w™, = (wi™) is associated with the gallery
€

of types of relative positions 7. This gallery is determined by ~,(C; F, F").

The proof of the following properties of the canonical section Oy p, , —are

based on the representation of Conf ¢ (g, P r,) as a contracted product

along the generalized minimal gallery of types g,

g [gaE] lJConfG(gaPt,RJr) ;
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given in the next chapter. There is a commutative diagram

qp tr
[Tuwm wr <" 11 (g, E]
>‘[7—fg’",E] Alg, B)

Jirtr e
Conf34(r2 | Ber) clre ) Conf (g, PR, ) -

The morphism lrtr B defines an open embedding and its image is a relatively
schematically dense subscheme of II ¢ [g, E] (cf. §15.3). As the vertical arrows
are isomorphism the following proposition results easily.

Proposition 14.13 The image of Jirir E] S an open relatively schematically
dense subscheme of Confa(g, PR, ). Thus Og.p, ., s an open embedding
relatively schematically dominant.

On the other hand, there are, a natural isomorphism Conf@(¢’,Bcr) =~
Conf (g, PR, ), a relation between the corresponding canonical sections:

65771:'t,RJr |Stand(‘rC/,BC/) = G)g’,Bc/ ,

where ¢’ denotes the gallery of types defined by v,(C; F, F’), and

((g.p)) "(Stand(r, Pr,)) = | J (7 ,Bo)) " (Stand(rcr, Bev)) -
C’€Ch Sty,

Where 7y p.,) (resp. ﬂ(g’pt,m)) is the restriction of & to

Conf&(g', Ber) (resp. Confgi (g, Prr,))-
In the next chapter it will be proved that

Confl (g, Ber) = (w(g/,Bc,))_l(Stand(TC/,BC/)) =Im Oy p,, .

(Given C € Stp, write B = B¢). There is a Cellular Decomposition
associated with a Borel subgroup B contained in P; g, (cf. Proposition 14.26):

Conf (g, Pir.) = H Confgd(qu,B)

T ERelpos 2211 (g)

The set Relpos#®!!(g) denotes the galleries of types of relative position of Ag
whose associated gallery of types is g. The Open Cell, which is relatively
schematically dense, is indexed by the gallery 72/ of types of “transversal”
relative positions and satisfies the equalities

Conf&i(rX B) = Conf& (g, B) = Im Oy .8 .
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Remark that the proof of these equalities, given in the next section, follows
from the above Cellular Decomposition.
It is deduced that

(W(g7p))71(8tand(7, Pt,R.,_)) =1Im @gypt’RJr ,

and that there is an isomorphism G)g,ptﬁ+ o Stand(rs, Pr,) =~
Conf& (g, Pi,r,) whose reciprocal isomorphism is Tg,Pr, - 1t is called
Conf& (g, Pi,r,) the Canonical Open Subscheme of Conf@ (g, P r, ).
The sections of this subscheme are characterized as those galleries configu-
rations ¢ with associated gallery of types equal to gg, whose extremities
E(v¢) = (PR, , Q) are in standard position, and whose type of relative posi-

tion is given by t2(Py g, ,Q) = 7s = (74)s-
Thus one obtains the open covering

Conf&(g, Pir,) = U (ﬂ(g’,Bc/))_l(Stcmd(TC/,Bc/)) =
C’eCh Stp,

U Conflg,Bor)
C’€Ch Str,
which is in fact the image by ('“)g’pt‘R_*_ of the Big Cell Open covering of
Stand(7, Py g, )),

Stand(7, P g, ) = U Stand(r¢r, Ber) -
C’€Ch Sty,

Proposition 14.14

Keep the above hypothesis and notation. The morphism vaptwpur is an open
embedding whose image is a relatively schematically dense subscheme
ConfE (g, Pyr,)" of Confi(g, Pir,). It induces an isomorphism @QJ:LR+ :
Stand(t, P, r, ) ~ Conf(g, Pr,r.)’. The image by Og,p, n, of the Big Cell
open covering of Stand(t, P r, ) gives rise to the open covering

COTLfgl(g, Pt,RJr) - U Conf(g’, BC')/ .
C’€Ch Str,

Corollary 14.15 Let G be a reductive S-group scheme, g a section of
I (A(G)) with associated type of relative position T = da(g), and P
a parabolic subgroup of G. The morphism ©4p : Stand(r,Pir,) —
Conf (g, P)" is an open embedding whose image is a relatively schemat-
ically dense subscheme Confg (g, P)" of Confi(g, P).

It is clear that the proof of the Corollary may be reduced by etale localization
to the case where G is endowed with a frame E. In this case it follows
immediately from proposition 14.14.
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Corollary 14.16 Keep the hypothesis of the above Corollary. The image of
O, is the relatively schematically dense open subscheme Im ©, = Conf (1)’

This Corollary results from the local description of ©.

14.5 Configurations schemes as Schubert schemes Smooth
Resolutions

The following definition characterizes the type of resolution of singularities we
consider in this work.

Definition 14.17
Let Y C Z be an S-subscheme of a proper S-scheme Z, and Y its
schematic closure. We say that a proper S-morphism

fi X — yeehe

is an S-smooth resolution of Y°h¢  if:
1. X is an S-smooth scheme.

2. There exists a section
O:Y - X

of f, defining an open embedding of Y in X, such that Im© C X is a
relatively schematically dense open subscheme of X, satisfying Im © =

1Y),

It follows that f is surjective and its schematic image is equal to Y*°h. It
is briefly said that (X, f) is a smooth resolution of Y*¢"¢ if no confusion
arises.

It is observed that the morphism f is a birational morphism of schemes
(cf. [24] Ch. 1, 23.4.). The results of this section may be resumed in the
following

Theorem 14.18
Let g € gall™ (Ag), and T = 1,. The morphism

Eg. P iyt Confii(g, Pey(g)) — Stand(r, Pel(g))“hc

(resp. €4 ConfE(g) — Stand(r)*c"c)

s an S-smooth resolution of the schematic closure
Stand(t, Po,())*" (resp. Stand(r)*").

Where gg,pel(g) (resp. EQ) denotes the morphism induced by &,.
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On account of the Cellular Decomposition of Conf; (g, P, (4)) it results,
by §16.3, that schematic image of the morphism

5g7Pel(g) : COIlfg,L (gaPel(g)) — Par 62(9) (G)

exists, and it is known that the schematic image of the canonical embed-
ding
g+ Stand(1, P, (g)) — Par ) (G),

in view of the Cellular Decomposition of Stand (7, P.,(4)), also exists. From
the definition of ©4 p (cf. Proposition 14.6, Definition 12.34) one obtains:

5971)61(9) © 997Pe1(g) = IdStand(T7Pf’~1(g))'

From the Proposition 14.12 it results that

Im 9971361(9)

C Conf’c’} (g7Pel(g))7

is a relatively schematically dense open subscheme. By the principle of tran-
sitity of schematic images (cf. Proposition 12.42) applied with

X = Stand(7, P.,(g)), Y = Conf{ (g, Pe,(g));, Z = Par 4(G)
(resp. X = Stand(7), Y =Conf ¥ (9), Z = Par+(G) xg Par ;(G)),
and with 7 = 7,4,
f= 997&1(9)’ g= Eg’pel(g) = restriction of & to Conf& (g, P, ()
(resp. f=0,, g=E&,; = fiber of & over g) ,
and taking into account that
90 f = lstand(r,P., 5 (¥€SP- lstand(r)):

it is deduced:

Proposition 14.19
Let 7 = 14,. The schematic image of Eg.p

o) (resp. &) is equal to the
schematic closure

Stand(T, Pel(g))“hC (resp. Stand(r)*")

of Stand(, Py, (4)) (resp. Stand(1)) in Par(G) (resp. Pary(G) xs Pars(G)
with t = e1(g), s = ea(g)), and thus a factorization is obtained

597Pe

Lo - Confér (g, Pey(g)) Stand(r, Pq(g))schc

Pars(G)
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resp. E4: Confd (g) Stand(t)%"e

T,

Pari(G) xs Pars(G)

The right arrow is the canonical embedding morphism.

Let it be proved that the couple (Conf (g,Pel(g)),Eg,pq(g)) (resp.
(resp.

sche

(Conf (g),&,)) is a smooth resolution of Stand(r,P.,(y))
Stand(7)%¢"¢). Let one prove:

e Im Ogp, , C Confy (9,P.,(g)) is an open subscheme relatively
schematically dense;

o Im @Q)pcl(g) = (?gfmg))_l(Stand(T, Pe\(g))-

The first statement results from proposition 14.13. Let one prove the equality
Im Oy.p, (,, = (Eg.p. ) ' (Stand(r, P, (y)). Clearly there is an inclusion of

e

open schemes

Im 69’}9&1@) C (&q,p, )_1(‘S‘tanal(7'7 Pei(g)))

1(9)

thus the equality holds if the underlying open sets are equal.
Given an S-scheme X, as usual denote by X5 = X Xxg Spec(k(s)) the
geometric fiber of X over 5, and by X the set of sections of X over

Spec(x(s)). It suffices to prove that for all geometric point § the equality

(1m @g,pﬂl(g))@ = (€70 (Stand(r, Pel(g)))@ holds. Let

<5g,p61(g))(§): Conf @ (9, Pe,(g)) (5 — Stand(7, P, (y)),
be induced by

(:‘,’g,pel(g))§ = geometric fiber of & p, , over s.

-1
One may interpret the geometric fiber (5971361@))( : (Stand(T, Pel(g)))(g) in

terms of the building I(G5) of the geometric fiber Gz of G over s, Gz being a

reductive group over the algebraically closed field x(s), namely

s

-1
(ggvpﬁ(g))( ) (Stal’ld(T, Pe1(g)))(§) = Gall ?n(ng) (97 Fel(g) (C))/ 3

s
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where Gall 7 (g, Fe,(5)(C))" denotes the set of Minimal Generalized Gal-
leries in the building /(G5) of type g, with 7 = 7, issued from F,, 4 (C).
On the other hand, observe that Im (@mpel(y))(j may be interpreted as the

set of Minimal Generalized Galleries 7,(F,(4)(C), F"), where F' is a facet
satisfying 7(F, 4)(C), F') = 7.

Let v € Gallyg (9, Fe,(9)(C))". Then 7 is a minimal generalized gallery
with extremities (I, (5)(C), F’) such that 7(F, (C),F') = 71, and of
type g. Recall that there is only one Minimal Generalized Gallery satisfy-

ing these properties, thus v = ~,(F,, 4 (C),F’) and Im (@g,pel(g) - =

((?mpeug))_l(Stand(T, Pel(g)))(?). It is concluded that the corresponding

open sets contain the same points with residual field () and thus that they

are equal I'm (@g7p€1(g))7 = ((Eg,pe )L (Stand(, Pel(g))),- It has thus
been proved the second statement. °

From the above reasoning one obtains the following

1(9)

Corollary 14.20
The mapping

—1
(EgvPeug))(g): (b)) (Stand(r.Puy))s) = Stand(r, Pey(g)) o)

induced by £, p, is bijective, and its inverse is given by the mapping

1(9)

~1
<®g7pq(g)>(§)f Stand(t, P.,(g)) — (59,1:51@) (Stand(r, Pel(g)))(§)7

induced by the section @g,pﬁl(g).

From the corollary immediately one obtains the following

Proposition 14.21
The open embedding

-1
@gwpel(g) : Stand(T, Pel(g)) — (ggypel(g)) (Stand(T, Pel(g)))

is a Pe,(g)-equivariant morphism which is in fact an isomorphism, with the
relatively schematically dense open subscheme

-1
(5g,p€1(g)> (Stand(T7 Pel(g))) C Confg (9, Pey(q))-
The corresponding inverse isomorphism

1
;Vpe : (59,1361(9)) (Stand(T, Pel(g))) — Stand(t, P.,(4)),

1(9)
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1s the morphism induced by

Ey.P, : Confty (9, Pey(g)) — Pars(G),

1(9)
with s = ea(g).

Let one now consider the corresponding statement with respect to the
couple of morphisms

O, : Stand(g) — Sgl(Stand(T)) C Conf ¢ (9)

(resp. &g : Conf (g) — Par.,(5)(G) x5 Par ., (G)),

with 7= 74:
e Im ©,4 C Conf(g) is an open subscheme relatively schematically dense;
e Im O, = (€,) 1 (Stand(1)).

There is a commutative diagram:

()

m R m
Qel(g)7R+ X g Conf ¢ (gvpel(g)) — Confg (g)ﬁel(g%RJr

XS gg,P61(g) (59)5

df
Se1(9), Ry e1(9), Ry

e

O R
Qe (g).r, X5 Stand(r, Po,(4))"" —> (Stand(7)*")g

e1(9), Ry

Observe that Egl is the morphism induced by agj. The section

X5 Og,p, (,, corresponds to the section (©) , l.e. the fol-

Qey(9), Ry Qey(9),ry

lowing diagram commutes

) . O 5 O m
Id§R+ XS ©g.P, (g D0y (g),Ry X8 Stand(r, Py, () ——= T, (g) m, X5 Conf & (3, Poy(g))
(r) (7)
TRy Ry
(©g)s : Stand(7)s —_— > Conf® (9) .
e (9). Ry ey (9). Ry G % (9).Ry

Thus it is deduced that

e The image of O, is relatively schematically dense if and only if image
of Og,p,, ,, is relatively schematically dense.

b (eg)ﬁ

997Pe

is an isomorphism, if and only if
e1(9), Ry

(o) 1S AN isomorphism.
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Since (Q %ﬁg))Rﬁ;ram(R(E)) is an open covering of Par ., (4)(G), by Propo-
sition 14.21 one obtains the following result.

Proposition 14.22
The open embedding

Q, : Stand(t) : — (&) (Stand(r))

is a G-invariant morphism, which is in fact an isomorphism with the relatively
schematically dense open subscheme

(&,) " (Stand(1)) C ConfE(g).
The corresponding inverse isomorphism

gl (&) N (Stand(r)) — Stand(r),

being the morphism induced by
&y Conft(g) — Pary(G) x Parg(G),

with s = ea(g).

14.6 The Cellular scheme

Consider a gallery of types section g of I'(A(G)) with left extremity ei(g) =

the type of a Borel subgroup of G. It will be seen that there is a canonical

functorial cell decomposition of Confg(g) indexed by the sections 7 of

the scheme Relpos%“”(g) of galleries of types of relative positions.

Given two sections 7 and 7’ of the subscheme of relative positions Relpos C
Relposg, corresponding to the subscheme Stand(G)’ C Stand(G), i.e. whose
sections are the types of relative positions of couples of parabolics (B, P),
with B a Borel subgroup of G (cf. Definition 11.26), let

Stand(z) X por() Stand(z') = Stand(z) x( ) Stand(z'),

Proj@, prp s

denote the fiber product defined by the couple (’Proj@, prpi/), where

Proj™@ is the projection morphism (cf. Definition 12.39), and prp ., de-
notes the restriction of prp to Stand(r’), induced by the first projection.
For the sake of simplifying notations assume that g = ((s;); (¢;)) (N > i >
0, N > j >1). Recall that with the notation of §11.11 given a section (s, s’)
of A(G) xs A(G) one defines:

Relpos (s ¢y = € ' ((s,5')) C Relpos g

and
t t
Relpos (88 = Relpos (5 sy N Relpos
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If s is the type of a Borel subgroup write Relposé, = Relpos%s o) Define
Standi(G) = (t2)~* (Relposé) .

Let 7, = (z;) be a section of Relpos%a”(g) = Relposéﬁfl Xg ot Xg

Relposg], thus €e(r;) = (s,8,_1), where s is the type of a Borel subgroup.
Write

Confgd(gg) = Standgvvi1 (Tn) X Bor(G) *** X Bor(G) Standg) (1)

(The Cell of Confs(g) defined by the gallery of relative positions z(g).

The sections of this scheme are in fact chamber galleries.

Recall that the incidence morphism ¥, ; : Par;(G) — Par;(G) associates
with a parabolic @ of type s the unique parabolic P of type t C s with Q@ C P
(cf. (23], Exp. XXV I, Lemme 3.8). Write F;, = Fy, if s is the type of a
Borel subgroup. Consider the family of morphisms

Fr, =Fi, ¥ (]—;F1 o Proj (L:)) : Standéiil(zi) — Par, (G) x5 Pars,  (G).

(N >1i>1). Observe that F, _ oProj (7:) is induced by the second projection.
The product morphism
PIp . Xs 11 Fr, Standg_1 (TN) XBor(G) =" XBor(G) Standét () —
Bor(G) xs |1 (Parli(G) Xg Paréifl(G))
(N > i > 1) induces an embedding

Jry Confgd(z%) — Confg(g) .

A section ((Bj,Qi—1)) of Conf {d(r,) satisfies By_1 = Proj=~(By),- -,
By = Proj=(B;). Write Py = F;, (Bn),---, Pr = F, (B1). Thus

Jrg + (B, Qi—1)) = ((Qi)N>iz0; (Pj)Ni>1) -
where Qn = By. A section
Y ((Qi) (N >1i2>0),(F) (N =>j=>1)),

of Conf (g) belongs to I'm j, if and only if it verifies the following conditions:
Let By = Qu, then:

1. (Bn,®@n-1) is a couple in standard position and to(By,QNn—_1) = Tx;

2. for N > i > 1 define B; = Proj(p,,,,Q,)+ then (B, Qi-1) is a couple in
standard position and t2(B;, Qi—1) = T;.



348 Buildings and Schubert Schemes

The configurations satisfying the above conditions are called standard gal-
leries configurations.
Let

Proj> : ¥ — Par(QG)

be the morphism defined as follows: for all sections 7 of Relposg the composed
morphism of Stand(r) < ¥ with Proj> is equal to Proj™). Denote by

556 = (t2) 7 (Sta)

the pull-back of the subscheme Stg C Relposg by the morphism t5. The
subscheme Stq is defined locally as follows. Suppose that G is endowed with
a frame over the etale covering S’ — S then ( L%tRelpos’;)S/ ~ 58 xg Stg by

the natural isomorphism.

Definition 14.23

Let
N,std

Conf@t = H H 556 X goria) ¢ -+ Xpona) B9

N,std
(The Universal Cellular scheme). The symbol [[ means that only

products along galleries of relative positions are considered. By definition
of Confgd there is a canonical morphism

3t Confitd — Relposg’” .

such that its restriction

N,std
std,N | St St St gall
ts : H yrte X Bor(@) »oE .. X Bor(G) ¥7'¢ — Relposs

s given by

N
5t — H(tz opri) xs (tzopra) -+ xs (t2opry) ,

i.e. by t5': ((Bi, Qi—1)) = (t2(Bi, Qi—1)).

Remark that the sections ofCOnfgd are chamber galleries, i.e. galleries
of the form g = ((s;);(t;)) (N > i >0, N > j > 1), where the s; are the
types of Borel subgroups.

Observe that the above product morphism erN -~ s [ Fr,s associates with

a chamber gallery a gallery of type g.
If G is endowed with a frame E one has

Conf= J[  Confd'((m)s) -

(14) ERelpos_‘f;L
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Notation 14.24
Let £ : Confgld — Bor(G) be the morphism associating with a configu-
ration its left extremity, i.e. induced by &1. Write

tftdzfga” tstd Con std N F(A(G))
Let g (resp. ¢, B C G) be a section of T'(A(G))

(resp, Relposgl”, a Borel subgroup of G), and np the section of Bor(G)
given by B.

Define:
ConfE(g) = (t5") "' (g)
(resp. Conf & (re) = (t3') " (1),
ConfE'(B) = (€)' (np),
Confstd(i ) — (tstd % gstd) ((g7 773))7
Conf& (1, B) = (t5' x £ ((14,1))-
Suppose G endowed with a frame E. Given a section 7w € Relpos ga”(g)

let
j[Tcg E] : Con, Std(ﬂg:B) - COTLfG(g7B) ;

be the natural embedding induced by j.,.. Where B = B¢, and C denotes the
chamber of Ag given by R(E). Define

Jig. ) : I  confi(r4.B) — Conf(g,B)

T € Relpos 994 (g)

Jig.B] = 11 Jire,B] -

T € Relpos 9%U(g)
If g = g1, g1 (vesp. g = ga, g) one may write

Conf (1, B) = Stand(r,, |, B) X Bor(G) Stand(z,.) X -+ X gor(c) Stand(z;)

(resp. Conf gd(zcg, B) = Stand(7,., B) Xpor(c) Stand(7,_;) X -+ Xgor(@) Stand(zl)) ,

where

To = (1) (r+12i>1) (resp. 74 = (1;) (r =i >1)).

The fiber products are defined in terms of the couples of morphisms

(Proj (Ii)’prf])$li71) (r+1>i>1)(resp. r =21 >1).
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Remark 14.25
Assume that G is endowed with a frame E, and t¢ € Relpos f’fE” (g). One then
has the set of S-points

Conf & (¢, B)(s)

of the geometrical fiber Conf 3% (¢, B)(s) is equal to the cell €c(g,7¢) =

(11.c(9)) Y (1¢), as defined in 10.14.

14.7 The Bruhat cell decomposition of the Configurations
Scheme

One proves the following generalization of the Bruhat cell decomposition for
the standard galleries Configurations Scheme.

Proposition 14.26
The morphism

Jig.E] : [T  conf(rs.B) — Conf(g,B)

T € Relpos 92l g)

is a surjective monomorphism. One calls I Confd(r4, B) the
T € Relpos 974 (g)
Cellular scheme associated with Conf (g, B).

For the sake of simplifying notations assume that g = ((s;); (¢;)) (N > >
0, N>j>1). Write

ti(g) =t; (N >j>1) (resp. si(g9) =s; (N >1i>0)),

and
Ptj = Ptj (C) (Qsi = QSL(C)) :
Clearly there is an inclusion ((Qs,); (P;,;)) C A(G). This gallery is called the
basic gallery defined by the gallery of types g.
Given 74 € Relpos&!(g), let

T.i(;) =N, Ta) (N>a>1).
Write g(®) = ((s;); (t;)) (N >i>a, N> j>a+1). One then has
Téfﬂ) € Relpos & (g(@)).

Let P C G be a parabolic subgroup. Denote by Pars(P) the functor of
parabolics subgroups of type s of P. Let t,s € typ Ag, with t C s, and B be
the Borel subgroup defined by E. From the Bruhat cell decomposition in
double classes of a reductive group G (cf. [23], Exp. XXVI, 4.5.4) results
that

H Bw‘r QS/QS — Pars(Pt)

TERelpos t A



Smooth Resolutions of Schubert Schemes 351

is a surjective monomorphism. Given a section ¢ : ((Qs,); (FP;,)) of

Confa(g, B), g = ((s:); (t)), write Qs,(0%) = Qs, and P, (0¢) = P,. Let it
be proved by induction on N > « > 1 the

Proposition 14.27
For all 1 > o« > N the morphism

Jlgte,B) ¢ H Conf&d(ry, B) — Confa(g'®, B),
T € Relpos 991 (g(@))

where one writes:

Jjgter,B) = H Jire B

T € Relpos 99t (g(@))

18 surjective.

Proof Clearly for « = N, this follows from the Bruhat decomposition quoted
above. Let T(to+1,Sa) be the type of relative position defined by the couple of
incident parabolics (P;_,,,Qs.). Recall that the natural morphism

pettel: Confalgs”, B) — Conflg¢™", B)
defines a locally trivial fibration, with typical fiber
Pars, (P, .,) = Stand(T(tat1,5q), Proyy)s

(¢f. Proposition 13.9). For allm¢ = (Tn, -+ ,Tata) € Relpos9®(glet1)) there
18 an tsomorphism:

Kirg ) ¢ (Jire, 1) (Conf(9'™), B)) = Conftd (e, B) X par(c) Stand(T(ta+1, 5a))-
Here the fiber product is defined by the couple of morphisms given by
o — P (0%) (resp. (P,Q)— P).

Where P, (0«) denotes the parabolic of type toy1 defined by the configura-
tion o, i.e. the unique parabolic P of type to11 containing Q. ., (0¢).
Remark that the following two statements are equivalent:

1. jgte),p) @5 @ surjective morphism

2. Ewvery section

a((;) : Spec(K) HCOnfg(g(“),B) ,

~_|

S

over an algebraically closed field K, factors through some ji,, g (T¢ €
Relpos?®(g(®)) ).
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Given 05@3) let it be supposed as inductive hypothesis that:
“Jlgtetn) B 1S a surjective morphism’

and prove that it verifies 2. Thus the composed morphism

oot —pletlal o 6l Gpee(K) — Conf(g ™™, B),
factors through some cell

Jirter gy * Confd! (™ B) = Confalg**V, B)
for some gallery of relative positions

7'<(;+2) € Relposga”(g(aﬂ)).

One may then write

1
0'((;+ ) f‘][ (a+2) og-((;-i- )/,

with ¢tV being a section of Confs’d( (a+2) ,B).

Let Qs ., (o ;H)) be the parabolic of type so4+1 defined by U(QH), and let

(@&)

P, be the unique parabolic of type to11 so that

a+1

[e% a+1
Qoo (08T C P (08T,

Let Boyo be the Borel subgroup given by definition of the section o(@+t1)/
of Conf&td( c(;ﬂ),B) (cf. Definitions 12.39 and 14.24) and

Ba+1 C Q8a+1 (UE(;X+1))

be the Borel subgroup obtained as the projection of Bat2 on Qs ., (0%).
From the isomorphism ki, g) one deduces an isomorphism

Confg(g(o‘),B) (ot ~ Stand(7(ta+1,5a)s Proy, (0 E;‘H)))

= Par,, (P, (0,
(@)

making correspond to o’ a morphism

55;): Spec(K) — ’Parsa(PtaH(a((;H))).

Let
Relpos gall(g(o‘))T(a+z> =
©

{ﬁﬁ € Relpos (') | 7 7O (a + 2)-truncation of T¢) = T<(€a+2)}
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Observe that there is a bijection

Relposg“”(g(a)) (o) = ~ Relpos o+t A,

which is denoted by
Tg — T(?cg).

There is a commutative square

HCon Std T<g S ) %¥+1) HConfg(gga),Pel(g))U;gﬂ)

| |

[ Stand(r(7¢)s, Ba+1) Pare, (P, (cT)) .

The upper horizontal arrow is given by ]_[][T%E] (o), and the lower hor-

izontal arrow by [ Jir(74)s,Basy], Where T¢ € Relpos gall(g(a)) (a+2) and

j[‘r(?cg)s,Ba+1] : Stand(T(?‘g)S’Ba+1) — PGT‘SQ (Ptfl+1( ((;Jrl)))’

1s defined by

JirFe)sBasi] ¢ (Bay1,Q) = Q.
The vertical arrows are bijective, and the lower horizontal is surjective (Bruhat
lemma). One deduces that the upper horizontal arrow is also bijective.

Thus one obtains a factorization of 65;“) :

A = i 07

which finally gives rise to a factorization of afg), namely

GE;) = j[g((’),E] o O'E;C) ,.
This achieves the proof of the recursive step from a+1 to « and thus the proof
of the surjectivity of jigw) g form > a >0 (resp. r>a >0).

14.8 Retraction morphism on an Apartment scheme of
Standard Galleries Configurations

Let one interpret the morphism ¢3¢ as a retraction morphism. In §10.5 one

has defined for g € gall 4, where A Ag, a bijection
Tﬁci Gally (g, F.,(y)(C)) — Relpose®!!(g) |

which is recalled here.

By definition 9.64 one has introduced a mapping
sg=.c + Galla(g, Fy(C)) — Galla(g*,C) by sg«.c : v — ~*, where v* is
defined as follows:
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1) Let g = g1 (resp. g}), and
v (Fi)rzizo, (F))r1zj21 (vesp. (F))ri13530) - Define v* by
v (Ci)r+1>z>o, (F]{)r+1>j21 (resp. (Fj{)r+12j20) )
where Cr—i—l = O, CZ = pI‘OijO,L'_;,_l (T = 7 > O)
2) Let g = g2 (resp. g5), and
v (Fi)r2i20a (F;)sz>1 (resp. (FJ/')T>j>0) . Define ’)/* by
Y (Ci)rzizo, (F))rzjz1 (vesp. (F)rzj0)
where C,. = C, C; = projg,Ciy1 (r >1i > 0).

Let it be supposed that F,(C) = C. Thus s4- ¢ associates with a Gen-
eralized Gallery v of Ag with first term (resp. left extremity) a chamber a
chamber gallery ~*, i.e. such that the set of (s;) of the gallery of types g*
of v* is given by the type of a chamber C of Ag. Define 7 = 7(C;,C;_1)
(resp. 7, = 7(C;, F;—1)) where 4 runs on one of the sets above accord-
ing to the type of g. Clearly (7(C;, F;—1)) is a gallery of types of relative
positions and (7(Cy, Fi—1)) € HRelpos;\E. One thus obtains a mapping
Ta,c(g) : Gallg,(C) — Relposifé1 associating with a gallery  issued from
F C C the gallery of relative positions (7(C;, F;—_1)). From the reciprocal
bijection

(r2c) ™1 Relpos®™(g) — Gall 4 (g, F.,(4)(C))
one obtains an S-isomorphism

—1 a ~
(reic)s = Relpos &' (g) = Conf rix (1) (9, Pey(g) (E))

(cf. Definition 10.15).

Definition 14.28
Define the S-morphism

Pyt Conft (9. Peyq) — Confriery (9, Peu()(E))
as the composition of the morphism
51" Confild (g, Poy()(E)) — Relpos %™ (g)
induced by t 51, followed by (T 4,c(9))5" -
The sub-building of A isomorphic to the typical building
A(C) = {F(C) | t € typ A}
gives rise to a subscheme A(C)s C Ag. Denote by
A(G, E) C Par(G),
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the S-subscheme of Par(G) given by the image of A(C)g by Ag = Fix(T') C
Par(G). The couple (A(G, E), Fix(T)) corresponds to an apartment A of the
building of a reductive group and a chamber C' in this apartment. It is ob-
served that A(G, E) is a trivialization of the relative typical simplex A(G) (cf.
Definition 11.29). It is known that Bruhat decomposition of Par(G) defined
by B¢ may be seen as a retraction of the building on A. One introduces
here the retraction of the scheme of configurations issued from Bg on the
configurations scheme of Fix(T).

Definition 14.29
Write
COnfg(é(G, E)) = ConfG XPar(G) é(G7 E)a

where the fiber product is defined by the couple (glzjé(G,E)); with
ja.p) s A(G,E) — Par(G)

the canonical embedding, i.e. Confa(A(G, E)) = (Confg)a(a,r)- The sections
of this scheme are the galleries configurations issued from a section given by

A(G,E).
The following identifications are supposed

ConfSth(Tcg, Pel(g)) = ConfSth(Tcg, B)

resp. Conf (g, P., () = H Conf &’ (r¢, B)
T E€Relpos 821l (g)
One has
Conf ¢ (A(G, E)) H Confa(g, P.,(g))-
g € gall 4
Write

CODf].'iX (T) (é(G,E)) COIlfG( (G E)) ﬂConf}-iX (T)

resp. Conf§4(A(G, E)) = [[ Conf&¥(g, P.,()(E))

g € gall 4

Thus from the definition one obtains

COHf]:lX(T)( (G E H Conf]-'lx (T) (gaPel(g)(E))

g € gall 4

Definition 14.30
Let
P ConfE(A(G, E)) — Confriw)(A(G, E)),
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be given by ; ;
con con
Pe = = H PE.g
g € gally

(The Retraction morphism of standard galleries configurations).



Chapter 15

Contracted Products and
(alleries Configurations
Schemes

It is shown that the galleries configurations scheme Confg(g) of a split reduc-
tive S-group scheme G, defined by a fixed gallery of types g, is isomorphic to a
Contracted Product. This isomorphism gives rise to natural parametriza-
tions of the Confg(g)-Cells. By means of a parametrization it is proved that
there is a Cell of Confg(g) which is an open relatively schematically dense
subscheme (The Big Open Cell). A Contracted Product may be decom-
posed in a sequence of locally trivial fibrations with typical fiber G/P, where
P is a parabolic subgroup of G. The Big Open Cell is isomorphic to a con-
tracted product of big open cells of homogeneous spaces G/P. By means of
the Contracted Product the image of a minimal gallery type configuration is
calculated by the Retraction on an apartment. This calculation amounts to
determining the fibers of the resolving morphism.

15.1 Contracted Products

Assume that G is endowed with a frame E = (T, M, R, Ry, (Xa)(a € Ro)).
Let A = Ag be the apartment defined by the Z-root data R(E). Given
t € typ A let P,(E) denote the parabolic of type ¢, such that E is adapted to
P,i.e. P/(F)= P,(C) where C denotes the chamber of R(FE) given by E.

Let one state some conventions concerning the notation of a generalized
gallery g (resp. 7) of typ A (resp. A). Given g € gall A, let I(g) denote its
length. Write:

357
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Lg=g : hlg) =1 la(g) =l(g);
2. 9=91 : l(g) =0, la(g) = U(g);
3.9=92: l(g) =1 k(g =l(g) - L
4 g=g5 : lhlg) =0, l(g) =lg) - 1.

Thus a GG g of typ A is represented by g : (s;)(I(g) > > 0), (¢;)(l2(g) =
Jj = 1li(g)). Write

s(g) = (s:) (l(g) > i > 0), and s4(g) = s
(resp. t(g) = (t;) (l2(g) = j = l1(g)), and t;(g) =) .
Given v € Gally write I3 (y) = l1(typ ) (resp. la(y) = l2(typ 7)) . Let
v (F) (Uy) > 20), (F) (I2(v) 27 = L(v),

write Fi(y) = F; and Fj(y) = F}

Let e = ef! xef : gallA — typ A x typ A be the extremities mapping

N
defined as the restriction to (H typ A) N gall, of the mapping p1 X pn,
N
where p; (resp. pn): [[typ A — typ A is the 1%-projection (resp. the N-th

projection). Write e = e (resp. e; = ef!, ea = e4') if no confusion arises with
the notation of 13.6.

Definition 15.1
The basic configuration (resp. gallery) o,(E) of G associated to (E,g),
g € gally is, by definition, given by

04(E) : (Qs,(9)(E)) (I(g) >0 = 0),(Py;g)(E)) (l2(g) = j = 1 (9))-
Let
Pig)(B) = ] Pryio)(E) (l2(9) 2§ > 1)
(resp. Qs(g)(E) =] Qs.(9)(E) (l(g) > i > 0), if e1(9) = tia(g) = tu(g),

Qo) (B) = [ ] Quit)(B) (Ug) =1 > i > 0), if er(9) = s1(9)-1(9))-

Define a right action of Qgg)(E) on Py (E) following the pattern explained
in Definition 9.45.
The quotient scheme

¢ g, E] = Py (E) | Qs(g)(E)

is called the contracted product along the basic configuration o,(E)
(resp. g € gall,).
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Let (¢()) (I(g) > o > 0) be the sequence of truncated galleries defined by
g as in Definition 9.57. There are natural morphisms

Pt Mg [ E] — g gt E] (I(g) —1 > a > 0),

defining, as is easy to see, locally trivial fibrations with typical fibers respec-
tively P, ., (g)(E)/Qs,.(g)(E) (The canonical fibration of a contracted
product. (See Remark 15.6 below). From this remark results the following

Proposition 15.2
The contracted product Il ¢ [g, E] is a smooth S-scheme.

Definition 15.3
Following the pattern of the definition of the combinatorial mapping

Z.g,C : HW [970] = Wt(g)/Ws(g) — Ga”A(Q?—Fel(g)(C))
(cf. Definition 9.53) define
A[g,E‘] My [97E] — ConfG(gS7Pel(g)(E))

as follows. Given a section x = (x;) (la(g) = j = 1) of Py (E), write

=[] #a (al9) = a =) (resp. 2,041 = 1)

Let a4(E,x) be the section of Confa(gs, Pe,(g)) defined as follows using the
conventions of §15.1

04(E.x) : (inf(z141)(Quq) () (I(g) > i > 0),

(int(zj11) (P, (9)(E))) (I2(9) > j = li(g)).
Let
Mg, - Lg (9, E] = Pyg)/Qsq) — Confa(gs, Pe,(g)),

be the morphism induced by x — o4(E, ).

It is proved that (4 g is an isomorphism following the pattern of the proof
of Proposition 9.62.

Proposition 15.4
The morphism

)\[%E] Ve [g7E] - ConfG(gSaPel(g))

is an isomorphism of P, (q))-schemes.
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Observe that the following statements concerning a gg g are equivalent:
(1) 9= 91,91, 2) la(g) = U9), 3) e1(g) = tig)

(resp. (1) g = g2, 95, 2') la(g) = U(g) — 1, 3') e1(g) = syg)-1) -
Let g be such that

la(g) = I(g) (resp. la(g) =1(g) — 1).

It is then written:
Pyg)(E) =G x5 [[ Pyo)(E) (la(g) =1 =5 > hi(g))

Pyg(E) =G xs [[ Pyg(B) (la(g) = 5 > hi(g)),
and

Qs(e)(B) = Qs(g) (reSp- I1 Qo) (E) (ig) > i> 0)) .

A right action of @s(g)(E) on Py, (E) is defined following the pattern ex-
plained in Definition 9.48.
The quotient

g [9, E] = Pi(g)(E)/Qyg)(E)
is representable by a smooth and projective S-scheme, as results from Propo-
sition 15.5 below and from Proposition 13.9.
Following the definition of Ay £ above, a morphism

No.z1 ¢ T [9, E] — Confg(gs) is obtained.

Proposition 15.5
The morphism Ay g) is an isomorphism of G-schemes.

Proof One follows the pattern of the proof of Proposition 15.4.

Let
rleetl]l: Mg E] - OglgetY, E]

be the natural morphism obtained by the definition of II[¢(®), E.

Remark 15.6
Denote by

Flevatl] . ConfG(gga)) — ConfG(ggaH))

the morphism associating with a configuration o of type g(Sa) the truncated
configuration 0'((;+1).
The following compatibility between T+ (resp. platll) and xloet]

(resp. pl@ot1) holds

%[a,oc-‘rl] o\ [a,a+1]

lg(),5) = Aglatn, 5] O T

(Tesin' pretilo Alg(@),B] = Algla+), ] OP[(LQH]) ’
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Thus from Proposition 13.9 one obtains:
“The morphism 7[®**1 (resp. pl®*+1]) defines a locally trivial fibration
with smooth typical fiber P, ()(E)/Qs,(g)(E).”

15.2 Contracted product parametrization of cells

For 74 € Relpos®™!(g) one gives a parametrization of Conf &4 ((m4)s, B) in
terms of the isomorphism Ay .
The same hypothesis about G is kept as in Section 15.1. Given 14 = (7;) €

11 Relpos ¥ et

si—1(g)’
Wy, = (w;) (resp. wll = (wi")),
where
w; € Wti(g)/WsFl(y)’

is defined by 7;, and wj* € w; is the minimal length (Ig(c)(wj")) element of
w;. wl is an .#-word (C'= Cg., ), corresponding to the GG

T¢

Yre € Galla(g, Fe,(5)(C)),

(cf. §10.5). As usual let
U(w) C .BR+

be the subgroup defined by the closed system of roots
R, (C,w(C)) = {a € Ry |w(a) < 0}.
Write
g [r¢, E] = H U(wi") wi

(I(g) Zi>1) (resp. I(g) >i>1).
Here w!™ € N(T) denotes also a representative of w™ € W.
Clearly, there is a natural morphism

dir4,E] * g [vaE} — Pt(g)/Qs(g) =1Ilg [gaE]

Definition 15.7
Let

)\Eng,E]: IIg [Tcg,E] — Confg(gS,Pel(g))

be the morphism obtained as the composition of the morphism q,., g), followed
by the isomorphism

)‘[g,E]: HG[ng} - COnfG(957P€1(9))’

i.€.

Nirg,B] = Mg, © Qre )
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PROPOSITION - DEFINITION 15.8
The morphism )\{T% ] factors through the embedding

Jire.)  Confi¥((r4)s, B) — Confa(gs, Pey(g)):

and the factorization induces an isomorphism of S-schemes
)\[T(g,E] . HG [TQ,;,E] = Confgd((ﬁg)s, B).

Proof Consider the case g = g1,97. The same proof works for the case
g = g2, g5 mutatis mutandis. Thus one may write

og(E) : (Qsi())((g) > 2 0), (Py(9))(2(g) 2 J = li(g)) (l2(g) = U(g) =r+1).
Recall that there is an isomorphism of S-schemes
U(w™)w* = Stand(B, 7;),

by definition of wi™.
The definition of A+, g) of the assertion results from the following points
(cf. §12.83). By definition of 7; (resp. wi™) (I(g) =i > 1), one obtains:

1. ts (znt( rﬁl xawg>( ), int (Tﬁl Tow )(Qs )) = (7)s;

a=i+1

r+1 r+1
2. Proj (mt( 1 za wm) (B), mt(H T wm> (Qsi(g))> —

a=1+1

int (af_f o wa> (B)

r+1
3. )‘Eﬁg B (s wy) = (mt( I za wa) (Qsi(g))> (r>i>0),

a=1+1
. r+1 .
int | ] | Taa (Pr;(q) | (r =7 = 1la(9))
a=j+

(resp. Pi, ., = Pey(g))-

Remark 15.9
The section of Confgd((g)s, B) is configurations of type (g*)s issued from B.

Proposition 15.10
The morphism

Qre.E) : UG [me, E] — Ilg g, E]

is an embedding.
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Proof By Proposition 15.8 it is known that

trem) - a1, E] — Confg(gs, Pe,(g))

1s an embedding. As by Definition 15.7 one obtains

Aire,E] = Alg,E] © Qire, B>

it is then deduced that

—1
e8] = (Ng.B])  © N

defines also an embedding.
Definition 15.11

Denote by
H/G [vaE] C HG [ng]

the S-subscheme defined by qir, g

15.3 The canonical relatively schematically dense open
subscheme of a Contracted Product

It is shown that with the cell Conf&i? ((72) g, B) of Conf¢(gs, P.,(4)) corre-
sponds the cell I [7, E], which is a relatively schematically dense open
subscheme, of the corresponding isomorphic contracted product Il ¢ [g, E] ~
Conf ¢(gs, Pel(g)>- Let

T4 = 72 € Relpos’™ (g)

(resp. Wyir = (W), ie. (w;) is the word corresponding to 7¢ )
(cf. Remark 10.26). Write:
1. Wi, = (wi™), i

where w;" denotes the minimal length [y (w;

") representative of w;;

2. t; =t;(g) (resp. s; = s:(9));
3. Py, = P (E) (resp. Qs;, = Qs,(E));

4. Wy, = Stab F,(C) (resp. Wy, = Stab F (C)), where C' denotes the
chamber of Ag given by E.

Let T (resp. B) be the maximal torus (resp. the Borel subgroup) defined
by E, and P = P;, (resp. Q = Qs,_,). Write P as the semi-direct product

P=L(P) -U(P),
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where U(P) C P (resp. L(P) C P) denotes the unipotent radical of P
(resp. the Levi subgroup of P defined by the maximal torus 7)) (cf. [23],
Exp. XXVI, Proposition 1.6).

One has the Bruhat decomposition of P in (B, Q)-double classes

p=]] Bwa,
where w runs over some set of representatives in N(T') of the set

Wy, /Ws,_, ~ Relpos!

1

One may write

[[Bwe=]] BNnL(P)w@n L(P)] UP).

Let w™ be the minimal length Igcy(w™) representative of w € Wy, _, /Wi,.
Observe that
Uw™) C BN L(P),

thus one obtains

[[Bwe=]] U™ wma,

where as usual w™ also denotes a representative of w™ in N(T)).
Let
QL(P) = U(w’”) w;” Q N L(P)

(2

be the big cell of L(P) relatively to (B,Q N L(P)).
It is known that
Qrpy C L(P)

is a relatively schematically dense open S-subscheme.
Thus one obtains

Proposition 15.12
The image Qrpy C P/Q of Qrpy, by the quotient morphism P — P/Q, is
a relatively schematically dense open S-subscheme.

One proceeds to prove the following assertion by induction on «, with the
notation of Definition 15.11. One has:

“Vi(g) > a=1) Ty 79 E] c g [, B,

is a relatively schematically dense open S-subscheme”. Recall that the
image of the canonical morphism

u(wtr)zn-‘rl) w;n-‘rl — Pta+1 /Qsaa
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is a relatively schematically dense S-subscheme in P, /Qs,. Thus
g [rg V. B € g [o, B] = Pi,,. /@,

(resp. e [72(;), E) cIlg [g(rfl), E) = Ptr+1/QsT_1) ,

if g = g1, g5 (resp. g = ga, g5), is a relatively schematically dense open S-
subscheme. As inductive hypothesis for r — 1 > « (resp. r — 2 > «) assume
that:

‘I [ret2 B C g [glotY, B
is a relatively schematically dense (r. sch. d.) open S-subscheme”. There is a
commutative diagram:

Qoo gy s g g™ Bl ——Tlg [¢*), B]

pgf;‘aJrl] p[a,a+1]

QG gy g g™ Bl ——Te [, B,

where p[ﬁg’aﬂl is the morphism induced by pl®®*1. Remark that pleo+1l

defines a locally trivial fibration and p!>*™" a sub-bundle given by the re-

striction of Ig [¢(®), E] to I, [T<((§a+2),E]. The proof of the recursive step
results from the following easy lemma.

Lemma 15.13

Let X — Y be a locally trivial fibration of S-schemes with typical fiber F,
i.e. a “‘bundle”, Y' C Y a relatively schematically dense sub-scheme of Y,
and X' — Y’ a “sub-bundle” of Xy, — Y', with typical fiber a relatively
schematically dense open sub-scheme F' C F. Then X' C X is a relatively
schematically dense sub-scheme.

Thus to prove the assertion about the embedding
Mg [, B € T (g, E)
it suffices to see that the image of the natural morphism
g [ E) = T [f8 7, E] xy, g,z e [0, E]
is a relatively schematically dense open S-subscheme. Let
G /\quJrl (Ptcx+1 /QSQ) - G/Qsa+l
be the contracted product defined by the right @, , principal space

G = G/Qu.,\,
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and the a left action of Q,,,, on P, /Q,,. This contracted product
is isomorphic to the pull-back of the locally trivial fibration Pars (G) —
Par;, ., (G) by the morphism Par,,_ , (G) — Par;,,,(G) associating with a
parabolic @ of type so41 the parabolic @ C P of type t,y1. It follows that
GAq.. ., (Prasy/Qs,) = G/Qs.,, is alocally trivial fibration with typical
fiber P; ., /Qs,.. On the other hand the image of the schematically dominant
morphism U (wp ) wiy, — Pi..,/Qs. is contained in a big cell Qs ,-cell
in P, ,. This big cell is invariant under @, ,,. Observe that Il [¢(**V), E]
may thus be written

HG [g(a),E] = HG [g(OH‘l),E} XG/QSQ+1 (G /\QsaJrl (Pt(x+l/Qsa)7
where the fiber product is defined by the morphism
m@t) . I, [g(‘”l),E] = G/Qsois

induced by the multiplication in G, and pl®**+1] corresponds to the first pro-
jection T [g(e+Y), E].
Thus an application of the lemma proves the following

Proposition 15.14
One has that
1, (7Y E] = g (¢, E]

1s a relatively schematically dense open S-subscheme.

From the Remark 15.6 follows the

Corollary 15.15
The S-subscheme Conf3t? (&) s, B) C Confa(g, P.,(g)) is open and relatively
schematically dense.

15.4 The Contracted Product and Galleries Configurations
retraction morphism

One may resume the results of Chapter 14 as follows. There is a
functorial cellular decomposition of Confs(A(G, E)) given by the mor-
phism Conf&4(A(G,E)) — Confg(A(G,E)) induced by [ Jjg.5-

g € gally
The cells of this decomposition are indexed in terms of the morphism
tgtd - C'onfSth — Relpos%a” , or more precisely to its restriction to

Conf4(A(G, E)) C Confgd. This morphism may be turned into a retrac-

tion pi™ = 11 pFe : Conf@U(A(G, E)) — Confrixr)(A(G, E)) (cf.
g €gall 4

14.30). Where pw"f = (7'g‘40)§1 otst, Tl - Galla(g, F, () — Relpos’™ (g),

and Confrip (A G,E))= [l Galla(g, Fe,(g))s-

g€Egalla
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One has the following description of p%™/ (cf. 14.30) in terms of the
isomorphisms A4 g)’s.

Proposition 15.16
There is a commutative diagram

HG [Tcg,E] _— GallA(A(C>)S

g € gally \ 74 € Relpos 9%(g)

td
AlE] i

P ConfE(A(G, E)) ————— Conf ri (1) (A(G, E)),

where the upper horizontal arrow is given by the morphism:

H H (T;C)gl OI"‘% )

g € gally, \ 74 € Relpos92ii(g)

where I, : Ug[re, E] — Relpos9%(gs) is the constant morphism defined by
the section (1¢)g, and one writes

ae= 11 II Alg.E] © Ufre  B)

g € gally \ T €Relpos99ti(g)
The right vertical arrow is induced by the canonical isomorphism Ag =~

Fiz(T).

Remark 15.17
The mapping

(Tﬁc)*l: Relposga”(g) — Galla(g, Fe,()(C)

is obtained as follows. Write wy = (wi"). Then

(o) h s T = (W)
Assume that g € gall’}. Let o« be a section of
Confgd((ﬂ?)s, P, (y) C Confgd(gS,Pel(g)) ,

i.e. a section of the big cell of Conf{!?(gs, Pe,(4)).- By section §14.3 there
exists a section = (z;) of [[ U(w;), so that, with the notation of Proposition
14.12,

Aprr o) (®) = 04 (2,C) = o5

Tcg,
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From section §14.3 it follows, that if one writes

oz (Qi)(l(g) >1i>0),(P)(la(g) =7 = l(9)),

then the couple of parabolics

(B, Q;) (resp. (B, Pj))

is in standard position, and thus defines a section of Stand(B) C Stand(G).
One may then define a section pg (o) of Confriy (1) by:

pe(0%) : (pe(Q:)), (pE(F)))-

It results easily from definitions the following

Proposition 15.18
With the above notation one has

conf

PEg (0¢) = pe(oe).

Remark 15.19
Given T4 € RelposI¥(g), let one write

-1
Yoo = (7)™ (re) € Gallalg,Foyi (C)).

From the definition of p%o”;f, it results:
-1
Conf&*(1¢)s, Pey(g)) = (Pﬂf) ((Yr)9)-

15.5 The image of a Gallery Configuration by the Building
Retraction morphism on an apartment

Let it be assumed that S is the spectre of an algebraically closed fields. Given
the closure of a Bruhat cell and a corresponding smooth resolution of singular-
ities by a galleries configurations scheme one gives an algorithm calculating
the image by the extremity morphism &; of a section of this scheme, and
simultaneously the retraction of this section on an apartment. This latter
calculation amounts deciding to which Bruhat cell in Par(G) this image be-
longs, and the former allows determining the fibers of the resolution morphism
&5. More precisely, the algorithm allows the explicit calculation of the coor-
dinates of the image of a section by &; in its Schubert cell, and that of the
corresponding gallery in an apartment. Recall that one denotes by X5 the

set of k(s)-points of the S-scheme X, where § = Spec(k(s)) and k(s) is the
algebraic closure of the residual field of s € X.
One writes

2= (pEY)s
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and

i = (P%t,dg)(g) : Conf&(gs, Pey(g))s) — Fix(T)s)

for the induced mapping.
Let
o € Confgd(gs, Pel(g))(g) = Confg(gs, Pel(g))(g).

The above identification holds from the fact that any couple of parabolics
(P, Q) over Spec(k(s)) is in standard position (cf. [10], Exp. XXVI, Lemme
4.1.1).

The next aim is the calculation of £ (o¢) and “the retraction of o¢” on
Fix(T)s), i.e. the retraction term by term of the gallery o¢: pp(oy) =
(pE)(s)(0%). Recall that Fix(T')(s) is the same thing as an apartment of G5
and that the retraction preserves the incidence relation and thus carries a

gallery onto a gallery. Remark that in general

pit(oe) # (pE)i)(0%)-

Let it be written
Q' = &(o¢) = (E2))(0%)-

It is clear that the determination of pg(c¢) may be obtained if one knows
how to calculate pg(Q') = pr(&2(0%)), as pr(o¢) is determined by the set of
facets

pE(E2(08))),
(a

where (mg )) denotes the set of a-truncations of 0. Thus the determination

of (pg) @) (0¢) follows from that of (pg)s)(E2(0%)).
The cellular decomposition (cf. Proposition 14.26)

Confg(gs,Pel(g))(g) = H Confgd((T%)&B)(E)

T €Relpos g211(g)
implies that there exists 74 € Relpos#!(g) so that
O¢ € COnfgd((Tcg)S, B)(g)

Given 74 € Relpos®!(g), denote by w,, = (w;) the uple of classes of W
determined by 74 = (7;). Let w]l = (w;"), be the uple of minimal length
representatives defined by w,,.. The above cellular decomposition corresponds
by the isomorphism

)‘[g,E] : HG [g7E] — Confgd(gs, Pel(g))7

of Confl?(gg, B) with the contracted product Ilg [g, E], with the disjoint

union ,
HG[%E](;) = 11 HG[T%,E]@)

T €Relpos 82ll(g)
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(cf. Proposition 14.26, and Proposition 15.8). Where [[(,[7%, E] denotes the

image of
H [r¢, E H U(w

(I(g) =i = 1) (resp. l(g) > i > 1) by the embedding q(,, g : [ [T¢, E] —
Pyg)/Qsqy = Hg [g9,E]. By the above isomorphism, to the surjective
monomorphism (cf. Proposition 15.8)

Jig.B] = H Jire B>

T« E€Relpos 221l (g)

corresponds

11 Ajrep ] 1T Ig[re, E] — g lg, E] .

T ERelpos g211(g) T €Relpos g211(g)

There are commutative diagrams:

1)
HH [r¢, B E‘“E] H 9, Es)

\L]—[)‘[ﬂng](s) lk[g,m(s)

Jlg
HConf‘gd((Tcg)s,B)(g) [—>Confg(gs, @)@ -

Where the 7 indexing the terms of the disjoint unions run on
Relpos 8 (g), and

q(g,E] = 1 Aire ] (T€SD. Jig.m) = I Jire.E])-
T ERelpos 22l (g) T ERelpos 821l (g)

/\/[T<{;’,E] : HG [Tg,E} —>C0nfg(gS,Pel(g))

N

G/Q 7)(17"62(9)<G) ,

where the vertical arrow I [r¢, E] = [[ U(w™) w* — G/Q is defined

by
(wowf") (g) >i> 1) — (T] wwi) - @

The horizontal arrow 1is defined as in 15.7. Thus one has

int ([T 2 wi") (Q) = E2(0%).
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Let the notations be simplified by writing, for a fixed point s € S:
P =P (9)(E)s)

(resp. Q = QEQ(Q)(E)(E), G= G(g), B= B(g), T = T(g), N(T) = N(T)(g)) .

Denote by Sgp C W = N(T')/T, the set of reflexions defined by the system of

simple roots Ry given by E. Thus Sg is a system of generators of W.

We know that (G,B, N, Sg) is a Tits system (cf. [4]), i.e. the following

properties hold:

(T1) The set BU N generates G, and BN N is an invariant subgroup of N.

(T2) The set Sk generates W = N/B N N, and the elements w of Sg verify

w? = 1.

(T3) rBw C BwCUBrwB for every r € Sg, and w € W.

(T4) For all r € Sg, int(r)(B) # B. (cf. loc. cit.)

The building associated to this Tits system is in fact the building of the

geometric fiber G5 of G.

Let G = [ BwQ, with Pr = Q, ie. F = F.,45)(C), be the (B,Q)-
weEW/Wg

double class decomposition of G. Given y € Bw @, denote by § € G/Q its

class modulo Q, and by w™ € w the minimal length element of the class

weW/Wg.

Definition 15.20
It is said that xw™ € Bw™ is the canonical representative of § € G/Q if w™
is the minimal length element in its class W™ € W/Wp,

zeU(w™), and zw™ € 7.

It follows from the general properties of the Bruhat cell decomposition of G
in (B, Q)-double classes that the canonical representative x w™ of § is uniquely
determined and thus well defined.

Given a parabolic Q' C G of type es(g) we determine pr(Q’) as follows. Let
y € G such that Q' = int(y)(Q), and zw™ the canonical representative of
7y € G/Q. One has then

Q' = int(xw™)(Q) = int(z) int(w™)(Q).

As U(w™) C B, it is deduced that the couple (B,int(w™)(Q)), defines the
same type of relative position as (B, Q’), and both B and int(w™)(Q) contain
the maximal torus T'. Thus one has that

pe(Q) = int(w™)(Q).

For the sake of briefness, let it be supposed g = g1, so that P, ) = P (9)-
The other cases g = g1, ga, g5 are treated similarly.
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From the commutativity of diagram 2) above and by definition of

Ng.E) : g [9, E] = Pyg)/Qsqy — Confa(gs, Pe,(q)),

as Ajg,g) : @+ 04(E, x), where o, (E, ) denotes the deformation of the basical
configuration o4(E) (cf. Definition 15.3), and the relation

Alre.E] = Mg, E] © Qlr,B) >

(cf. Definition 15.7, and Proposition 15.10) one obtains:
Proposition 15.21 Let

1
UEK - ()‘[g E]) (3) (J%) € HG [T‘gaE](a)'

One has aiﬂ = ()\[T%E])(;%(ogg) € llg [1¢, E]s), and

ol = (zsw}™) (I(g) =i >1)

with x; € UWw])E), e oy(E,x) = o¢ with v = (x;), and
int([Ja; wi) (Q) = Ex(o¢). Thus the class ([ x; w™) - Q corresponds to
Ea(ow).

Let it be explained how to calculate the canonical representative of the class
of ] z; w™ in G/Q according to Definition 15.20. Clearly this calculation
amounts to that of £2(0¢) and the image of the retraction pg(€2(ow)). Write
each element w" as a reduced word in Sg:

wft = o))l (g 2> 1),
where 1) = g, (w™).
Let it first be determined w € W, so that w is the minimal length element of
the class w € W/Wp it determines, and y € U(w) so that

2,0 @ 0.

ywQ = wyr1w'Q Ty T1WT"

Proceedlng by induction on 1 > k > I®| let one determine y( N e B, and
wd® ), so that
y(l(z))

7”1(<22)> T Q= w™ Q.
By (T3) one has:

rl%)) z1wy' € Bw"BU BTI((QZ,)) wi' B,
and one deduces that there exists some

y(l@)) c B,
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so that
(1(2)

(l(2>)Q

1((2) Twy'Q =
with

1@y _ o m (2)
w7 = wl  or Ty Wi

Let t be the type of @, i.e. t = ea(g). One chooses w!™) as the min-
imal length element w™ in its class in W/W;. In other terms w™ =
w(C,projr,(c)). It is easy to see that y(lm) may be chosen in Z/{(w(lw)). Let
U"=Bn int(w(l(z)))(B). This subgroup is generated by the root subgroups
indexed by the closed set of roots Ry N w( () )(Ry) and T.

Since w(l@))(RJr nw™) (R+)) C R4, where R is the positive root system
defined by E, one obtains U"w™)Q = wl™) Q. ! The subgroup U’ =
U (w(lm)) C B is generated by the root subgroups indexed by the closed set
of roots Ry — Ry N (l(z))(R )={a € R+| w l(2>)( ) € —R.} thus one has
B =U'-U". Finally one obtains Buw(” >Q U - UwQ = uwt™)Q.
Thus y @) w(l(z))Q = (2)) (l<2))Q if y )" denotes the U’-component of

y(lm). Consequently one may suppose y(l(2)) = y(lm)l.

Let k < 1. One supposes that:

7"1(@%21 ) rz(<22‘)>$1 wi' Q= yF D (R Q.
Proceeding as above it is deduced that
7ﬂl(€2) yFHD (D) 0 = () () Q,

with y*) € B, and
w® = w* or r,(f) wk Y,

Thus by induction on 1 < k < 1®, one finally obtains:
“There exists zo € B, and ws € W so that w3® 1 w" Q = 20w2Q”.

More precisely one may suppose wsg of minimal length in its class and z9 €
U(ws). Let it be supposed for 2 < j < I(g) that:

m m m — .
Wity T Wity - Ty WY Q=z_1wj—1Q.
By reducing the expression

m
Wy Tj—12Zj—1Wj—1,

Let w € W. The roots in Ry N w(Ry) are those roots a € Ry whose associated
hyperplane H, does not separate the chambers CR+ and Cw(R+). On the other hand,

the set of roots o € Ry such that H, separates Cr, and Cw(R+) is given by { o €
R4+ | w(a) < 0 }. One concludes that

a€RiNw(Ry) =0 < w(a) .
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as above one obtains

m

wj

. m
{,ijl w];

g Wyt Q = 25w Q,
with z; € B, and w; € W. (Remark that z;_; z;_1 € B.)

Thus by induction on j, it has been proved that there exists w = w4 € W
of minimal length in its class w and z = z;(y) € Z/[(wl(g)), so that

U(g)
H wi'r;Q =zwQ,
j=1

and & (0¢) = int(zw )(Q). One obtains the retraction of £»(0%) on Fix(T') )
by:
pe(E2(0w)) = int(w™)(Q).

Remark 15.22

The preceding algorithm allows the explicit determination of the fibers of
(pE)s. In fact this calculation may be further developed if combined with the
defining relations of G (c¢f. [23], Exp. XXIII, 3.5).



Chapter 16

Functoriality of Schubert
Schemes Smooth Resolutions
and Base Changes

The following two questions are considered in this chapter.

e Under which conditions on the base scheme S one has a natural identi-
fication

i.e. when the fiber - B
X(z,P) = (E)(Lp) ,

over (7, P) of the Universal Schubert scheme
3 — Relposg x5 Par(G) x g Par(QG)

gives the schematic closure of the fiber ¥, py in Par(G)? This question
amounts to determine when the formation of the schematic closure of
a Schubert cell commutes with base changes S — S. A convenient
answer to it is obtained by considering the Chevalley reductive Z-group
scheme @Z(R) associated with a given root data type R and observ-
ing that given a reductive S-group scheme G of type R, there is an
isomorphism S x @Z(R) ~ @ locally for the etale topology (cf. [23],
Exp. XXII, Def. 5.11.). It is obtained that if S is an scheme with
residues fields of characteristics distinct from a finite set of primes de-
pending on R then the above identification holds for all sections (7, P)
of Relposg x s Par(G). More precisely, for each root data of type R a
not-empty open sub-scheme U™ C Spec(Z) exists so that:

375
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“The formation of the schematic closure of the Universal Schubert Cell
of the Chevalley scheme Ep, (R) commutes with base extensions

S UR

Moreover the open sub-scheme U™ is maximal with this property. In
fact this set is characterized as the set of those primes so that their
corresponding geometrical fiber of the Universal Schubert scheme is not
integral. It follows that given a reductive group scheme G over a scheme
S — UR !, the formation of the schematic closure of the Universal
Schubert Cell of G commutes with base changes. Thus the formation of
the Smooth Resolution of the Universal Schubert Scheme of G and its
cellular decomposition also commutes with base changes S’ — S.

e Under which conditions on S the fiber over (g, P), where d3(g) = 7, of

the Universal Smooth Resolution 7 : I gives the corresponding
resolutions 7, py : Xz p)y — X p) of the Schubert scheme ¥, py.
The answer to this question relies on the preceding one.

In §16.3 all the results about the schematic closure of a sub-scheme that we
need in this work are collected.

16.1 The main theorem

It is recalled that the Universal Schubert scheme ¥ of G is the schematic
image of the embedding jx : ¥ — (Par(G) xgs Par(G)) xs Relpos ¢ (resp.
the schematic closure of the Universal Bruhat cell

Y = gr(te) C (Par(G) xg Par(G)) xs Relpos g).

Let j5: ¥ — Par(G) xg Par(G) xs Relpos ¢ the natural embedding. De-
note by pri : ¥ — Relposg (resp. PIgs : ¥ — Relpos G) the morphism
induced by the third projection, and by 5 : I'"(A(G)) — Relpos ¢ the mor-
phism whose geometric fibers associate with a minimal gallery of types g the
unique type 7, of relative position so that the configurations variety defined
by g is a resolution of singularities of the Schubert variety defined by 7,. One
has the following important remark: "A generalized gallery v(F, F’) of type g,
in an apartment, is minimal if and only if Con f(g, Pr) is a smooth resolution
of X(r(F,F"), Pp)".

A more adapted notation is introduced aiming at obtaining a simple for-
mulation of our main result. Let

Zl"m = XRelposG Fm(A(G))

I This condition amounts to: “The residual characteristics of S are not in the finite subset
of primes complementary to U”.
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(resp. il"m =X XRelposG Fm(é(G))) ’

where the fiber product is defined by the couple of morphisms
(prg,d2) (resp. (pry w,02))-

Thus Xrm (resp. Ypm) is obtained from the Relpos g-scheme ¥ (resp. 3) by
the finite etale base change I'™(A(G)) — Relpos ¢. One proves in this chap-
ter that there is a canonical resolution of singularities (f], ) of X of G after
this finite etale extension. The Universal Schubert scheme has the following
universal property. If the characteristics of the base scheme S are not among
a fixed finite set of primes depending on the type of G, then the Schubert
scheme X (7, P) defined by a couple (, P), of a type of relative position and
a parabolic subgroup, is obtained as the fiber of ¥ over (z, P). If S satisfies
this condition, the resolution of singularities f)(g, P) — X(1, P) given by a
configurations scheme defined by a section g of I"™(A(G)) is obtained as the
fiber m(; py of the morphism IR 35
One has

Ypm = schematic closure of Xrm in Par(G) xg Par(G) xg ',

as the formation of the schematic closure commutes with flat quasi-compact
and separated base changes S° — S (cf. [27], Théoréme (11.10.5)). Here
S =T"(A(G)) LN Relpos ¢. Let G be an S-reductive group scheme,
and & = Conf™ = (1)~ (I™(A(Q))).

Suppose that G be endowed with a frame E. Thus there are isomorphism
I[™(A(G)) ~ (gall} )s, and

irm ~ H i(‘rg)s

m
g€ gall Rg

resp.if: H flgs ,

ge gallj{E

where one writes, given a section g of I'"™(A(G)) (resp. a section 7 of
Relpos ¢):

~

Yy = (t{)_l (g) = Conf(g) ( resp. E(Tg)s = (t2)71(z))

(cf. §13.8).

Define r = € : ¥ — Yrm bynm =& =[] &,y where &, :
gegalle

Conf?(gs) — X associates with a configuration its extremities.
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Recall that the morphism ©,, (cf. Definition 12.34) gives rise to a section of
Yy = Conf{(gs) over X, ), = Stand((7y)s). Let

@E : Erm — Wﬁl(ZFm) C i,
be the morphism defined by

0F: Yrm = [ Stand((ry)s) — ] Zes

g € gall Z“E g € gall Z‘LE
where ©F =[] O, and O, : Stand((1,)s) — igs factors through
ge€gally
the embedding Stand((7,)s) ~ E;Sl (Stand((74)s)) C igs. It is known that

-1

(Egs)  (Birps) ~ ?;sl (Stand((14)s)) is a relatively schematically dense

open subscheme of igs (cf. Proposition 14.22). Thus
Ime” c s

is a relatively schematically dense open subscheme of S
Let the section ©F be described more precisely. Suppose that a section o of
Yrm over S is of the form

o= ((P.Q),9s),
where g € gall”}_, (P, Q) a section of ¥ = Stand(G) so that

TS = tQ((PaQ))>

with 7 € Relpos Ag, and
T =1,

This last equality means
Ts = 02(9s)-
Denote by o¢((P, @), gs) the section of Conf}‘ix(RQ)(gs) characterized by
E(ow((P,Q),95)) = (P.Q)

(resp. tll—‘(o'%”((Pv Q)agS)) = gS) .
By definition of Conf'z p 5)(gs) there is an inclusion

Conf %, (p.g)(9s) C Conf i (gs),
thus o ((P,Q), gs) may be seen as a section of Conf % (gg). Then

@E(U) = U%((Pv Q)7gS)

It is clear that a unique morphism © may defined in general by etale descent
locally giving the above morphism.
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Remark 16.1
Denote by (P,Q)s the section of Stand(G) over X so that, given a section T of
Relpos g, the restriction to ¥; = Stand(r) C ¥ gives (P, Q). (cf. Definition

12.37) (The tautological section of Stand(G) over X). Let (P,Q)E

rm
be the section of Stand(G) over Yrm, given by the pull-back of (15,(2)2 by

the canonical morphism
El"m = XRelposc Fm(é(G)) — .

Denote by 0 : S — Yrm the section of ¥rm — S given by o = ((P,Q),g)
with t2(P, Q) = d2(g). Then

Fiz(P,Q) = (fz'ac (15, Q)Em> = (}'z’x (]57(2)52(9))(13@)7

(cf. §12.8).

Theorem 16.2
Keep the above notation. Let G be a reductive S-group scheme.

1) There exists a unique morphism © : Ypm — f], so that if S — S
is an etale covering and E a frame of Gg: then ©g = OF. Thus © is
a section of the morphism ¥ — Spm, and establishes an isomorphism
©: Yrm =~ 7 YZrm). Moreover Im © = 7= 1(Xrm) is a relatively
schematically dense subscheme of s.

2) The quadruple (i,f,w, @) defines a canonical Smooth Resolution

(cf. Definition 14.17) of the pull-back Srm = I'™ X Reppos, & of the
Universal Schubert scheme ¥ — Relposa by

d2 : T™(A(G)) — Relposg .

The Smooth Resolution (i,i, T, @) is represented by the following com-
mutative cube.
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Im ©¢ - 2
~ b =G
5¢ T >
t t2
v 5 "
I'"A(GQ)) 2 > Relposa
& @
5$ !
I'"(A(G)) 2 > Relposc

Where 7” is the composition of 7 followed by Idpar(@yxspar(c) Xs 02-
It induces a finite morphism Im ©¢ — €. Recall that ©¢ : ¢, —

aa - . . a =G .
Im ©% C X% is a dominant open embedding, and that 7 : ¥¢ — ¥, is a
smooth resolution. The above commutative cube shows that:

“The Universal Schubert scheme ¢ — Relposg admits a canonical
Smooth Resolution after the twisted finite extension
02 : T™(A(G)) — Relposg.”

Remark 16.3 The super index G is naturally introduced with the aim of
studying the behaviour of Smooth Resolutions under base changes S' — S
and their dependence on G. It will be omitted if no confusion arises.

Remark that the horizontal arrows of the cube upper face factor as follows:

. 56 . 5° (resp. Im 0% —=»¢
59, ¥&. ).

Where 7/ denotes the restriction of 7 to Im ©¢ C %€ and it is in fact
an isomorphism. There is a commutative square of I'"(A(G))-morphisms

. . S =G .
which shows that the image I'm ©% connects ¢ and Y., where 7’ is an
isomorphism and 7 a smooth resolution.
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Im ©% . 3¢

=G

One may go into the details of the above theorem by looking at the fibers of
" ¥ — I'"™(A(G)) as follows. Let g : S — I'™(A(G)) be a section of
I'"™(A(G)) over S, and (g)*(Xr=) the pull-back by g of the I (A(G))-scheme
Spm. Write 7 = d2(g), and 3, = (9)*(Spm). By definition of Xpm there are
canonical identifications 3, :7§1 (resp. £, =3;). Let

~

ﬂg:22—>§g

be the restriction moJs, of mto ig, where Jgg ¢ 5

denotes the natural embedding. Thus 779_1(2g
Recall that one has a R
Oy: 5y = 7w, () C Xy

where ©4 = © o js , and

Jog t Bg = Stand(r) — Xpm
denotes the natural embedding. As ¥, = X, the definition of ©, is coherent
with that of ©,, in Proposition 14.22. Recall that the Universal Schubert

scheme of type 7, ¥, may be seen as the fiber (E)T of the Universal Schubert

scheme ¥ — Relpos ¢ over the section 7.

The connection between the above morphisms is represented by the following
commutative cubic diagram of I'"(A(G))-morphisms, where all the arrows,
with the exception of the two descending vertical ones, are open embeddings.
This diagram explicits the connection between I'm © and Im ©,4. The later

being the fiber of Im © over the section g of I'"™(G). ¥ is identified with the
fiber of ¥pm over (z,g). Super indices are omitted.
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Im 0, < »Im ©
TN H
HC)
~ Jsg ~
cH Eg = = - >
Tg
X, > Ym .
A A
— J= —
X, = > Yrm

Observe that the right lateral face of this cube is precisely the above commu-
tative square and that the lateral left face is obtained as the fiber over the
section g of I'"(A(G)) of the right one.

Theorem 16.4
Keep the above notation. Let G be a reductive S-group scheme, and g a section

of I (A(G)) with d2(g) = T over S.

1) There exists a unique morphism ©4 : ¥, — ig, such that if S — S
is an etale covering and E a frame of Gg then (@g)s' 1s locally of the

~ T p—
form ©g4,,. Thus Og4 is a section of the morphism X, % %, over

Y, and establishes an isomorphism ©4 : X, =~ Tl';l(zl). Moreover

Im Gg = wg_l(Zl) 18 a relatively schematically dense subscheme of ig.

2) The quadruple (ig, i(h@,w@ (92) is a canonical Smooth Resolu-

tion of the schematical closure 3, = Stand(t)*" of Stand(r) in

Par(G) xs Par(G).

The link between Theorem 16.2 and Theorem 16.4 is resumed by the follow-
ing diagram which makes it evident that the resolution of Theorem 16.4 is
obtained as a fiber over g of the resolution of Theorem 16.2 for a section g of

I over S. Thus the fiber of 7” given by 7y defines a smooth resolution of
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the Universal Schubert scheme 3, defined by the type of relative position 7 .

~ iz, ~
S, - 5
N 25
NI
_ = “_
s, o= >
Y Y
%9 m
S > T
% %
Y - Y
S = » Relposg

Remark that the front face and the back face of this commutative cube are
cartesian diagrams, and that the right lateral face of this cube corresponds
to the front face of the first cube. The formation of the schematic closure
commutes with flat base changes. Thus, given a section g of I'"* over a flat
scheme S’ — S, a similar commutative cube is obtained with S’ instead of
S, where m, defines a smooth resolution of iz- In the next sections one
investigates under which conditions S’ — S the corresponding morphism
defines a Smooth Resolution. B

16.2 Smooth Resolutions and base changes

Recall that

Proposition 16.5 Keep the above notation. Suppose G is endowed with a
frame. Then X, — Pary(G) is a locally trivial fiber bundle with typical fiber

f(l)pt), and X, — Pary(G) is a sub-bundle of it with typical fiber X, p,).

Let G be a reductive S-group scheme and (g, P) be a section of I (A(G)) x g
Par(G). Write

a —1
Sy = (t1 xprg) (g, P));

where prg : 5. = Conf & — Par(G) denotes the restriction of the left extremity
morphism &; : Confg — Par(G) to Conf % (cf. Definition 6.10.5). There are
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cartesian squares:

and

S — 5% Par(Q).

Where o, py denotes the morphism defined by the section (g,P) of
I'"(A(G)) xsPar(G) and op the morphism defined by the section of Par(G)
given by P. It is clear that the second square may be intercalated in the first
one.

Theorem 16.6
Keep the above notation. Write T = 62(g).

1) There exists a unique morphism Oy py : Xz py — i(g,p), so that if
S" — S is an etale covering and E a frame of Gg then (©y p))s: is
locally of the form ©(,, p.,). Thus O, p) is a section of the morphism

f]g Wg) i(Lp) over ¥, py, and establishes an isomorphism ©, py :

X(r,p) w(*?P)(E(Lp)), Moreover Im O, py = W(;?P)(Z(l7p)) is a

relatively schematically dense subscheme of i(g)p).

2) The quadruple (i\](g’p),i(z’P),W(g’P),G(g,p)) is a canonical Smooth

Resolution of the schematical closure ¥(; py = Stand(t, P)*"¢ of
Stand(z, P) in Par(G) xg Par(G).

The two following commutative cubes show in detail the connection between
Im © and I'm ©, p,), and that of 7 and m(, p,). X4 p,) is the fiber of X

over (g, P;) however i(z, p,) may not be equal to the fiber of Spm over
(7, Pt), and thus 7, p,) is not in general the fiber of w. To the first cube of
the previous section corresponds the following one where all the schemes are
considered as Par(G)-schemes.
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m o¢ » =€
-G b \ —
5| > =
r
Prag Xsty PreG ><st2{
IdxgdS
m s%3
Par(G) x g ' (A(G)) » Par(G) X g Relposg

\ \
IdxgsS

Par(G) x g I (A(G)) ————— == » Par(G) xg Relposg

Where prec : S¢ Par(G) associates the left extremity with a gallery
configuration, and pryc : ¢ — Par(Q) is given by (P,Q) — P.

The following commutative cubes correspond respectively to the second
and third ones of the previous section.

Im @(g Py) > Il’l’lA (S]
@(g Pt) z:(g Py) C — - X
(g, Pt)
p) > Y= ™
/ . /
s, \
2(7‘ Py) < — > Erm

(resp.
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is
BN (g,Pg) BN
E(Evpt) >~ X
»
(Q&) »b
%
s
= (7,Pyg) =
DEN ) - > X
4 Xg 4
op, X5,
S t72 % Par(G) xs T™(A(G))
3
2 Q'ba
<, &
& )'\'&J
A op, Xg0r '
S t = » Par(G) xs Relposg ) .

On the other hand, there is a commutative diagram

EI
Prs,
Prig

Par (G),

Ty b))

|

where 7 = d2(g), prs (resp. pry_) is the fiber of prg (resp. prs = prp5)

over g (resp. T)(cf. Proposition 14.19), and Ty is seen as Par (G)-morphism.

The following question are treated:

Under which conditions on the base scheme S the diagram obtained from
the above one by the base change S 7% Par(G) is a smooth resolution?
If the answer is affirmative it establishes the connection between the Universal
Schubert scheme ¥, Smooth Resolution and that one of the usual Schubert
scheme i(z, p)- The following definition provides the terminology needed to
state the more general problem about the commutation of the Smooth Res-
olution of singularities of Schubert schemes with base changes. For the S-
reductive group schemes G of a fixed type such that S satisfies the condition
stated at the introduction of this chapter, it will be seen that the answers to
this question and the preceding one are affirmative. In fact such a condition
is easily obtained for a Z-Chevalley group scheme of a given type. From its
Universal Property with respect to S-reductive group schemes of the same
type the general condition on S results. More generally given a base exten-
sion S’ — S such that S’ satisfies this condition the Smooth Resolution of
the Universal Schubert scheme of G is obtained by base change from that of
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G. Let U be as in the introduction. One has that for all reductive S-group
schemes with S in Sch|y= the formation of the Universal Smooth Resolution
commutes with base changes S” — S in Sch|y=.

Definition 16.7 The smooth resolution quadruple (ic,iG,wG,GG)

(resp. (ig,ig(g)wf,®§)> of the Schubert scheme ¢ (resp. ii@) of
the reductive group G, is a S-Universal Smooth Resolution, if for all
S — S,

(SI Xg §G7S/ X g iG,IdS/ X g ¢ ,Idg xg @G) (EGS/ EGSI,WGS',@GS/)

(reSp. (S’ Xg flgyS’ X g fg( ), Lds ><s7T Idsi xs @G> =

Gy T0s 7Gs @Gs
(Z Z52(9 DRI egss,)'

Let one look at ig (resp. 352@) as Par (G )schemes and 5, @G as

Pari(G)-morphisms. The Smooth Resolution (Z 252 ) g, g) of 252(9)

is a Pary(G)-Universal Smooth Resolution if for all

X — Par (G

\/

a e
(X X’Part(G) Eg»X X'Par,,(G) 252(g)»IdX ><’Pa7“,,(G) 71—;7 IdX X’Part(G) 95) =

one has

Sl G G G
(E(gxfx)’2(52(2X)»PX)’7T(QX7PX)’G(ng’x)) :

Where the fiber product X Xpar,(a) ig(g) (resp. X Xpar(a) i?}
is defined by the couple of morphisms (ax,igz(g)ﬁpart((?))

(resp. (JX,SlzigHPart(G))) and Px denotes the parabolic sub-

group of G over X given by the section ox defined by X — Pari(Q).
Denote the first members of the above equalities respectively by

Se v¢ 6 oG Se w6 G oG Sa w6 G G
(2 3¢ 760 )sﬂ (22,262(2),%,@2)5” and <22’252<ﬁ>’”£’@2)x

One may now state that the triangle (i(gfz), 3, Par(Q@)) gives rise to a
smooth resolution of igz(gx)ypx) by the base change X — Par,(G) if and only
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if (Zg ,252(9), g ,9 ) of 252 is a Par;(G)-Universal Smooth Resolu-

tion. To give an answer to the : above stated question one needs the following
definition.

Definition 16.8 o Consider Par(G) xg Par(G) as a Par(G)-scheme by
the first projection. It is said that the formation of the Schematic
closure (cf. Definition 16.34) of the Schubert cell

noc Par(G) xg Par(G)
Par(G) ,
(resp.

ELG C Par(G) xs Par(G), B¢ C Relposg xs Par(G) xg Par(Q))
commutes with the base change X — Par(G) (resp. S — S) if
the natural morphism

sche —
(Xxszg) — X x5 50
(resp.
sche .
(S/XSEg) —)S/XSEE,

(S/ Xs ZG)SChc — Sl Xs SG)

is an isomorphism, where the superscript “schc” denotes the schematic
closure in X xg Par(G) (resp. S’ xg Par(G) xs Par(G), S’ xg
Relposg x s Par(G) xg Par(G)).

e Recall that the Schubert cell

N

Par(G

G

(resp.

sec 56

\S/ ;
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ZGC—>EG
\S/)

is universally relatively schematically dense (c¢f. loc. cit.) in
the Schubert scheme if for all base change X — Par(G) (resp.

sche .
S" — S) the natural morphism (X X g Zg) — X Xg Eg, (resp.

)schc

sche _ —
(S/ X8 Eg) — 5 Xs ES s (Sl Xs ZG — 9’ Xg EG), s an

isomorphism, where the superscript “schc” denotes the
. . =G =G =G
schematic  closure in X xg¥_ (resp. S'xg ¥, , 8" xg¥").

For the sake of simplifying notation suppose X =.5. Write P; instead of Py,

write Xy p,) instead of Z&Pt)...etc., and denote by (TFg)pt : i(g’pvt) — (Zl)Pt
the fiber of 74 over the section op,.
The relation between (7y)p,, 74, and the base change op, : S — Par(G)

is represented by the following commutative diagram.

gPy) - g
p
Q %
(EL)P'; > il
Y
0Py
S > Pary(G)
%

0Py

S

The front face and the back face of the cube are cartesian diagrams. Remark

that the morphism 7y as a morphism in Par(G) satisfies <7r9> = T(4,p,), and
g 9) p, o-F.

one has that its schematic image (cf. Definition 16.34) is equal to X(; p,).

By definition of this schematic image in Par(G) the morphism (ﬂ‘g) factors
9) p,
as
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Thus the fiber (7g)p, : f)(&pt) — (il)Pf coincides with m(y p,) f)(g,pt) —
i(z,Pt) if and only if

i(Lpt) = (El)pt =S XPar(G) f*r .

Otherwise stated, as by definition E(L p,) is the schematic closure of ¥, p,)
in Pary(G), (my)p, = 7(g,p,) if and only if “the formation of the schematic
closure of X, in Par;(G) commutes with the base change defined by op,”.
From Proposition 16.46 results the equivalence of the following statements:

prs,
1) The formation of the schematic closure of X, % Pari(G) in

Par,(G) x5 Par(G) % Par,(G), commutes with all the base changes
X — Par(G).

pr T . . . . .
2) ¥, 5 Par;(G) is universally relatively schematically dense in

— Prs_
Y, — Par(G)

Assume 1). As the schematic image of the natural embedding X Xpar,(q)
Yr = X Xpar(q) Xz always exists (cf.  Proposition 16.46), it fol-
lows from the hypothesis and the transitivity of schematic images that
(X X Par (G) Zz) sehe _ x X Par(G) iz' Thus that Y, is Universally rel-
atively schematically dense in X, as Par;(G)-schemes.

Assume  2). Then (X Xpary(c) Ze) " (in X Xpary@) 52) =
X Xpar(q) Yr- Thus by the transitivity of schematic images one has
(X Xpary(@) B2) " (in X Xpara) Pari(G)) = X Xpar(q) Sr, €. the
formation of the schematic closure commutes with all base changes.

From the equalities (74)p, = 7(g,p,) as morphisms in Par;(G), (ZI)Pt =

Y.(z,p,) as subschemes of Par;(G), and the fact that there is a unique section

1 N
Oro i Swry — (Tgry)  (Bwro) € Semy

of w4 p,) over X, p,), it follows that (@g) = O(g,p,)- It is clear that from

this reasoning results the
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Proposition 16.9
The smooth resolution <Zq,262(q 7r , 0, ) of ig@ is a Pary(G)-
Universal Smooth Resolution if and only if the Schubert cell 256;(9) s

Universally relatively schematically dense in the Schubert scheme ig(g)
as a Pary(G)-scheme. -

Observe that the statement 2) is shown by the following diagram:
(X Xpar(@) 1) = X xpu(e) By — =,

(prfL)X prs

X > Par(G),
where X — Par(G) denotes a Par(G)-scheme, and (X Xpar(q) Sr)*" the

schematic closure of X Xpayc) Bz in X Xpar(a) O

Proposition 16.10
Universality is a hereditary property of quadruples representing Smooth
Resolutions of Schubert schemes. Write 62(g) = 7. More precisely stated:

1) If (iG,SG,WG,@G> is an S-Universal Smooth Resolution then for all
S — S,

SI
s a S’-Universal Smooth Resolution.

2) If (EG Ef, ?,@G> is an S-Universal Smooth Resolution then for all
S — S,

(56,57 75 0F) = (50,507 a8 o)

91 ? TTsr 7 " 9gr ) T 9
is a S’'-Universal Smooth Resolution.
3) If (ZG ; ,ﬂ'g,@G) is a Pary(G)-Universal Smooth Resolution, then
forall 8" — S

(ZG 5¢ LG @G) <ZGS/ 5Cs  Gg @GS,)
T g Y g Tgr? g 5 Y

25/

is a S'-Smooth Resolution (resp. Pary(Ggs:)-Universal Smooth Resolu-
tion).
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Proof The assertions 1) and 2) are immediate let it be seen 3). One proves
the first assertion of 3). Write X = S’ x5 Pary(G). Clearly X Xpqr, ()

f =5 xg Eg (resp. X Xpar, (@) iLG =5 xg if) From the hypothesis it
follows that the subscheme S’ XSZG cs XSEG is schematically dense. Thus
S’ xg SG = EGS/ It results that (EG E ¢ @G> is S-Universal, and that

T g bl
(EG ET ,Wf, @G) is S’-Universal.
To prove the respective assertion of 3) it suffices to see that the schematic clo-

sure ofETS, inPary(Gg )xgPary(Gg) commutes with the base changes X —
Pary(Gs). After replacing in X Xpap,(Gg) 2 f, (resp X Xpary(@g) ETS,

Pary(Gsr) by " xsPar(G), andifj by S/XSZZ one obtains: X Xpar, (G4)
—G o =G Ggr

X7 ¥ = X Xpar, () 5, (resp. Xxpcm(gs,)ETSS, = X Xpar,(c) B¢ ). From the
hypotheszs it follows that ZGS' cx ; is Universally schematically dense rela-
tively to Pary(Ggr). It results that the formation of the schematic closure com-
mutes with base changes X — Pari(Ggr), so that (igg,iﬁj,ﬁgj/',Ggg)

is Pary(Ggsr)-Universal.

In the next section a sufficient condition on the base scheme S implying that

pr T . . . . . ~ prﬁT
X - Par(G) is universally relatively schematically dense in ¥, =% Par(G)
is given.

16.2.1 Universality of Smooth Resolutions

Let R be a Z-root system. It is said that a reductive S-group scheme G
endowed with a frame F is of type R, if the root data it defines satisfies

R(E) = R.

It is recalled that a reductive S-group scheme G is of type R, if there exists
an étale covering (S; — ) of S such that Gg, is of endowed with a frame
E; of type R. One recalls the following

Definition 16.11 (¢f. [23], Exp. XXIII, p. 317)

Given a Z-root system R there exists a reductive group Z-scheme QZ(R)
endowed with a canonical frame E®, of type R, called the Chevalley group
scheme of type R.

The construction of the group Ep, (R) is carried out in loc. cit., Exp. XXV.
More precisely for all reduced Z-root data R endowed with a root data frame
is associated a Z-group G endowed with a canonical frame E™ so that the root
data defined by E™ is isomorphic to R. This construction follows from that
of Chevalley’s Tohoku memoir [10] later improved by Chevalley himself [9].
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Considering the group of automorphisms of a Lie algebra over the complex
numbers associated to a Cartan matrix, a germ of group with root data given
by the adjoint root data ad(R) is obtained, giving rise to a reductive group
scheme over Z following a procedure by Weil. The reductive group @Z (R) is
obtained as a covering group of this one. The other achievement of loc. cit., is
the functorial presentation of this group in terms of generators and relations,
which is recalled in the last chapter, where its correspondence is shown with
that of the automorphisms group of a building.

In this section the Universal Schubert scheme and its smooth resolution of sin-
gularities of @Z(R) are compared with the corresponding objects associated
with an S-reductive group scheme G of type R.

The data of a frame F of type R of a reductive group S-scheme G amounts
to that of an isomorphism

G~ Ep,(R) x § = Ep (R).

More precisely, with the notation of loc. cit., Exp. XXIV, the Autg_,,
(Epg4(R))-principal fiber space of isomorphisms

Msfgr(@s(R% G)

may be seen as the scheme of frames of G of type R, i.e. the sections of
Isomg_,,(Ep4(R),G) over S — S are the frames of Gg/(cf. loc. cit., Exp.
XXIV, Remarque 1.20). From the above isomorphism it follows that all the
schemes associated to the reductive S-group G endowed with a frame F of
type R are obtained in general by pull-back of the corresponding scheme of
&Z(R), with the exception of the Schubert scheme. This later one deserves
special attention. Assume there is an isomorphism

Ep (R)~G,
where Ep (R) = Ep,(R) Xspeczy S (cf. loc. cit., Exp. XXIV). One investi-
gates the link between the schematic closure ¢ of
(zE®) =3¢
s

i Par(G) xs Par(G) xs Relposg, and the pullk-back (T7)

s
of the corresponding schematic closure E@Z(R) of XERR) iy
Par(@z(’}%)) X Par(@Z(R)) X Relpos&z(n), by the canonical mor-
phism S — Spec(Z). More precisely we establish the existence of an open
subscheme U® is established so that (E@Z(R)) = C (i@zm)) n is an
U U
open relatively schematically dense subscheme. Implying that for all § — U™
and all S-reductive group scheme G, the smooth resolution quadruples are
S-universal.

The notation is simplified as follows.
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Notation 16.12

Let A be the apartment given by the Z-root system R = R(E™), i.e. A= Ag.

R
Given T € Relpos A, write T instead of Tgpee(z), thus BF instead of Ersieim))

etc. For g € gall’} write g instead gspec(z), and denote by T the type of
relative position in A given by g. Write ¥° = 2@2(73)7 SR = ZE”Z(R),

ER = E&Z(R) (The Absolute Universal Schubert Scheme of root type
R). Let ¥R = 11 xR

TERelpos A

resp. SR = H Z i H if

g€Egall™ A TE Relpos A
be the canonical decompositions. Write

aR = gErs (R) OR = 0E2(R) ... etc

for ™, ©---etc, defined as in the previous section with G = @Z(R).
One investigates:

e Under which condition on S the quadruple

SR =R 3 s
(S X Spec(z) Ef,S X Spec(z) 27 1ds X spec(z) TF? Ids X spec(z) 95)

obtained by the base change S — Spec(Z) from the quadruple
SR v _R R
(OADERNCH

giving a resolution of singularities for a Schubert Scheme of the Cheval-
ley group scheme EpZ(’R) coincides with the resolution of singularities

(iG 252( @G) for a Schubert Scheme of G = Ep (R). A class
of schemes formmg a full subcategory of that of schemes such that the
quadruple

(iflz(ﬁ) ’ ifJZ(R) ’ F;EJZ(R) ’ @%Z(R))

is Universal relatively to this subcategory is obtained.
e Under which condition on (Eg ,252(9), gc, (C) ) the quadruple
a =G
(S/ Xs Eg, S Xg 252(2),16@/ Xs WQG’ Ids/ Xg @g)

obtained by the base change S’ — S from the quadruple

ao <G - . . . ”
(25,252(9),71'?,@?), coincides with the resolution of singularities
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S ’ =Gs/ ’ ’
(ngs/ ’Eézs(gs,)vﬁgcssl ,@gssl ) for a Schubert scheme of Gg/. In other
words one looks under which conditions the quadruple associated to G

is S-Universal.

The following proposition states the flatness of the Absolute Universal
Schubert Scheme of root type R. This allows one to apply the general theo-
rems of schematic closure and base change of which are resumed in §16.3.

Proposition 16.13
Keep the above notation. The morphisms

I Spec(Z) (resp. i? — Spec(Z), izi’Pt(ER)) — Spec(Z))

are proper, flat, and of finite presentation; the corresponding schemes are
integral.

Proof It is clear that by definition ¥ = TR is a closed subscheme of the
proper Z-scheme

Par(@Z(R)) X Spec(Z) ’Par(@Z(R)) X Spec(Z) Relpos@zm),

and thus proper. Let it be seen that 3 is flat over Spec(Z). Write

3= H 3, = H Stand(Tgpec(z))-

7 € Relpos Ag T € Relpos Ag

s=1[=-
where ¥+ 15 the projective scheme given by the schematic closure of Stand(T)
in Par(Ep,(R)) X spec(z) Par(Ep,(R)). It follows that ¥ is a scheme of finite
presentation overg, -
To prove that X, is flat over Spec(Z), it suffices to see that X, is integral.
From this it follows that the sheaf of rings Og  has no torsion and is thus
flat over Z. Observe that the transitive action of Ep,(R) on X, implies that

Thus

the Schubert cell ¥, is irreducible and thus that ¥, is also irreducible. In
Proposition 12.20 there is a covering

Y, = Stand(Tspec(z)) = U Ugj,c/ (U, R, X Spec(z) U(TC/))
(R4,C") € 1.(R)

by open sets. Each of them being isomorphic to the spectrum of a polynomial
ring over Z. Given

g € gall’y withty =71 (resp. (Ry,C") € I.(R)),
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it results from Corollary 15.15 and the relation that exists between “the big
open cells of ¥ and X7, that

= T sche
ZT = J;%l,c" (ut,R+ XSpec(Z) U(TC’)) .

Thus one has that the schematic closure ¥, = $3" is an integral scheme.
(Recall that the schematic closure of an integral subscheme is integral.) It
results that the local rings O . of X; are without Z-torsion, and thus flat
over Z. r

The integrality of ¥, p,(gry) — Spec(Z) results from the fact that E@,Pt(ER))

may be covered by open sets which are spectra of polynomial rings over Z as
1t 1s irreducible.

It follows from Proposition 16.13 that the couple XX C E? satisfies the
hypothesis of Proposition 16.44 of the last section.

Proposition 16.14
Assume that G = Ep (R) so that £¢ ~ (X®)
not-empty subscheme so that the open subscheme

g- Let Z C Spec(Z) be a

(), c (if)z (7 € Relpos Ag),
is universally schematically dense relatively to Z. Let S be a Z-scheme.

Then there is the Universal Schubert scheme of G of type T is obtained as the
pull-back of the Absolute Universal Schubert scheme of type T, i.e.
TS T

=5 = (57), =7 xspety S

This means that the formation of the schematic closure of % in
Par(Ep,(R)) x Par(Ep,(R)) commutes with base changes of the form

S——Z

L

Spec(Z).

Proof The statement of the Proposition follows immediately from Proposi-

tion 16.44. Put S=2,58" =85,V = (ZE)Z, X = (if)z’ and

Y = Par(Ep,(R))x zPar(Ep,(R)) = (Par(@Z (R)) X spec(z) Par(@Z(R)))Z

On the other hand, recall that ETGS is by definition the schematic closure of

26 = (¥F), = (¥F),, s 5= Vs
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Par(G) x5 Par(G) = (Par(Ep,(R)) xz Par(@Z(R)))S ~ Vs

Thus ffs = <§f)s = (if) x z S as it follows from Propositions 16.13 and
z
16.45.

The following proposition characterizes the subschemes Z C Spec(Z) sat-
isfying the condition of the above proposition.

Proposition 16.15 The notation of the above proposition is retained.

e The open subscheme (X;), C (ET)y is schematically dense if and only

y
if (ET)y is integral.

o A subscheme Z C Spec(Z) satisfies the hypothesis of Proposition 16.1/
if and only if for every y € Z the fiber (ZT)y is an integral scheme.

Proof If (ET)y is integral then the not-empty open subscheme (ET)y -
(ET)y s dense in (ET)y, and thus schematically dense. Reciprocally if the
(integral) open subscheme (¥:), C (ET)y is schematically dense, then (ET)y
1s integral as the schematic closure of an integral subscheme. The second
assertion follows from the first one and Proposition 16.44.

Remark 16.16 In fact there is a subscheme U C Spec(Z) which is open and
mazximal with respect to the property defining Z.

This remark justifies the following

Definition 16.17
Given T € Relpos A one associates with T the reduced subscheme UR C
Spec(Z), defined by

UF = {y € Spec(Z) | the fiber (i?) is integml}.
y

Let
Uirpy) = {y € Spec(Z) | the fiber (Eﬁpt)) is mtegml},
Y
where one writes P, = P,(E™). Write

UF = UF Xspee(zy Par(Ep,(R)) C Par(Ep,(R)).
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Proposition 16.18 The subschemes UR C Spec(Z), and Utr,p,) C Spec(Z)
satisfy:

o UR 40 (resp. Ui p,) #0).
. . <R\ ..
o UX =U(; py = Y € Spec(Z) | the geometric fiber (ET )7 is integral ;.
Y

o UR is an open not-empty subscheme of Spec(Z).
T Y

e UR is an open not-empty subscheme of Par(Ep,(R)).

Proof Observe that UR # 0 (resp. U p,) # 0) as the generic point & of
Spec(Z) belongs to UR (resp. Uir,p,)). Remark that (ET) X spec(z) Spec(Q) is
clearly integral as the schematic closure X of the integral scheme X is also
integral (cf. proof of Proposition 16.51). The second assertion is proved in
Proposition 16.22. As EF is a proper and faithfully flat Spec(Z)-scheme, it is
known by loc. cit., that

{y € Spec(Z) | the geometric fiber (if), is integml}
7

is an open non-empty subscheme of Spec(Z). Thus by definition UF is an
open subscheme of Par(Ep,(R)).

Apply now the Proposition 16.44 and Proposition 16.45 to show that U*
satisfies the condition of the subscheme Z of Proposition 16.14 and is maximal
with this property. It follows from Proposition 16.13 that the couple ©* C if
satisfies the hypothesis of Proposition 16.44 of the next section. Observe that
the geometrical fibers of ¥ are integral (cf. loc. cit.).

Theorem 16.19
The open subscheme

=R
(Zﬁ)U]} - (ET )U]?

is universally schematically dense relatively to the open subscheme
UR C Spec(Z). This subscheme is maximal for this property, i.e. if
Z C Spec(Z) is a subscheme so that the open subscheme (X;), C (Z;)
18 universally schematically dense relatively to Z, then

Z

Z Cc UR.

The Absolute Universal Schubert scheme of type T, (i?) . satisfies the fol-
UT
lowing property. Let G be a reductive S-group scheme of type R endowed with



Functoriality of Schubert Schemes Smooth Resolutions and Base Changes 399

a frame E, and assume that S is a UX-scheme. There is an isomorphism

— — Ep,r(R)
Efs o~ (Zf) X Spec(Z) S = (ZTU;;R > XU]_Q S

(cf. Proposition 16.14).

Remark 16.20

The scheme (SF) - is in fact the Schubert scheme of type T of the U -group
Ep,(R) = U x Ep,(R), i.c. one has

— _E R
(57) e =S ™
UR T

A

When one looks at izz as a Pary(Ep, (R))-scheme one obtains the following
result corresponding to UX instead of UX.

Theorem 16.21
The notation of the above theorem are kept.

e The open subscheme
R =R
(25 )Uf C (ET >uR

is universally schematically dense relatively to UX C
Pary(Ep,(R)). Observe that

T = )z (e (7)o = (7))

e UR is maximal with respect to this property, i.e. if the subscheme
ZP c Pary(Ep,(R)) satisfies

(57 z» € (if> zP

is universally schematically dense relatively to Z7 then Z¥ C
UR.

e Let S be a UR-scheme. The embedding of the Schubert cell

Ep R)¢ pr R)

\/

Par( Eps

is a dominant morphism, i.e. it defines a universally relatively schemat-
ically dense open subscheme of the Schubert scheme.
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o Let S 75 Par(Epy(R)) be the section defined by the parabolic subgroup
P of Epy(R)) then the following diagram is cartesian:

b))

i(LP)

[~

S —% Par(Epy(R)).

This means that there is a canonical isomorphism

=Ep (R)) wEpg(R)) p(R))
Yoap) = (ETSS )JP =5 XPar(Ep (R) (2 ) .

Otherwise stated the Schubert schemes E(*S;,) )

fibers of the Universal Schubert scheme E 2s(R))

are obtained as the

— Pary(Epy(R)).

Proof Following the pattern of the proof of Proposition 16.13 one obtains
that X, p,(g)) s an integral scheme. Thus its schematic closure X, p,(g))
in Pars(Ep,(R)) is also an integral scheme. It results that Sr,p(E)) 18
Spec(Z)-flat and finally the locally trivial morphism with Spec(Z)-flat typical
ﬁber Z(T,Pt(E)) ;

R
Prps.t X = Part(@Z(R))

T

s flat, and of finite presentation, as if is a noetherian scheme. One may
thus apply Proposition 16.47 or Proposition 16.44. Let it be seen that for

zeUr

the open subscheme
(=7). < (=F)

1s schematically dense or what amounts to the same thing that (if) is an
z

integral scheme.
Suppose that y € UR. By definition of UF it is known that the fiber

(if)y = Spec(r(y)) x Sr

1s integral. On the other hand, Prp s, defines a locally trivial fibration triv-
ialized by the big cell open covering of Pary(Ep,(R)). Hence there exists
an open sub-scheme U C Pary(Ep,(R)) zsomorphic to a polynomial ring

over Z spectrum and an isomorphism (XR)y ~ U x i(ﬂpt(E)). Thus the
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open subscheme ((ff) U) of (i?) 18 integral. From the isomorphism
y Yy
772 —
((ET )U)y ~ Uy XSpec(n(y)) (E(T,Pt(E)))y s the fact that

Par(Ep,(R)), —> Spec(i(y)) .

is faithfully flat, and U, C Part(@Z(R))y is an open set it is deduced that
(E(T,pt(E)))y is integral. Thus it results in the inclusion UF C Ur,p,)-

If (fgpt)) is integral then for every set U of the open big cell cover-
y

) =R\ = . . =R
mng ((ZT )U)y =~ Uy X spec(r(y)) (E(T,pt(E)))y is also integral and (ET )y =

U ((i?) U) , where U runs over the big cell covering. It is recalled that for
Yy

a locally noetherian scheme to be integral is equivalent to being a connected
scheme that is covered by the spectra of integral domains. It is concluded
that (Zf)y is integral and thus the inclusion U, p,y C UR and finally that

[]Z2 = U(T,Pt) .
Let z € UR. Its image y by the canonical morphism

UF = UF Xspeezy Par(Ep,(R)) — UF.

belongs U, p,y and thus one has that (E(T,pt(E)))y is integral. The absolutely

integral open subscheme (E(T’pt(E)))y C (E(T’pt(E))>y is thus schematically
dense and thus relatively schematically dense by Proposition 16.44. Hence
from the isomorphism

(if)z =~ Spec(r(2)) X spec(n(y)) (E(T,Pt(E)))y

by transitivity of fibers (cf. [24], Corollaire 3.4.9), it results that (i?) is in-
tegral as the schematic closure of the integral subscheme Spec(k(2)) X spec(r(y))
(E(npt(E)))y. Consequently on the basis of Proposition 16.44 Y% C i? 1S
universally relatively schematically dense with respect to Pary(Ep,(R)). This
achieves the proof of the first statement. The second statement is proved in
the following proposition. The third one is a particular case of the fourth

assertion of Proposition 16.44. The last one results from Proposition 16.14
taking on account the third statement.

Proposition 16.22 With the notation of the above theorem one has:
e Uyrpy=UF.
e The open subscheme UR C Par(Ep,(R)) is mazimal with the prop-
erty (Ef)uz2 C (§F>UR is ¢ universally relatively schematically

dense open subscheme.
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Proof The first assertion results from the proof of the above proposition. Let
it be proved the second one. By Propositions 16.44 it suffices to see that the
open subscheme

V= {z € Par(Ep,(R)) | the fiber (i?)z is integml}

is equal to UF. Let y be a point in the image of V by the natural projection.
It follows by the proof of the above proposition that y € U, p,y and thus that
y € UR. It is concluded that V C UR = Par(Ep,(R)) X spec(z) UR. By the
above proposition UR = Par(@Z(R)) X Spec(Z) UR CV thus V =UR.

Proposition 16.23
For all scheme S — UR C Spec(Z), and all S-reductive group scheme G of

=G . . . .
type R, Eg C ¥, is Universally schematically dense relatively to S,
where T denotes a type of relative position such that T = 75’ for some etale
covering 8" — S.

Proof Suppose that G is endowed with a frame of type R. Thus given a UX-
scheme S one has G~ S x Ep,(R) = S xyr Ep (R). From the definition

of UR it results that the subscheme
G R TR
Yo =8 xyr B C S xyr X,

is schematically dense. Thus for all UR-scheme S the schematic closure ifs
of X, in Pary(G) xs Pary(G) is equal to S Xyr EF, Let " — S. One has
7G — —

S'xs¥ =8 xg (S X Ef) =9 x ER. Thus from the previous argument
with S" instead of S one obtains ETGSS, S’ xg ETS, ie. X C ffs is
Universally schematically dense relatively to S.

Let G be a reductive group scheme of type R and S’ — S. By definition
there exists an etale covering (S; — S), where S; may be supposed finite etale
over S, and isomorphisms Gg, =~ S; Xy= @Ul‘ (R). Write S = S; xg 5.
One has, for all i, S; xs (S’ X g ig) =Sl xs, (Si X g ifs) =S/ xg, if;ﬂ
The former equality is tautological and the later follows from the commuta-
tion of the formation of the schematic closure with ﬁm'te etale base changes

By the first part of the proof the natural morphisms ETS,’{ — S! xg, E
are isomorphisms, as Gg, is endowed with a frame of type R. It is con-

cluded that [1S; xs (S xs X&) = HETS,; is schematically dense in [[S; xg
(S’ Xs ifs) =1ISixs, if:: and consequently that S" x §3¢. is schematically

. =G . . ..
dense in S" xg X . This achieves the proof of the proposition.
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The following proposition is an immediate corollary of Theorem 16.21.

Proposition 16.24

Write &% = 11 SR (resp. bl 11 i?) and de-
T€Relpos A(ER) T€Relpos A(ETR)
fine open subsets by UR = N Uk c Par(Ep,(R)) (resp. UR =
TERelpos A -

UR c S). There is a commutative diagram of Par(Ep,(R))-
TERelpos A T
morphisms

Epyr(R) _ <R
ETUgR ( UR Xspec(z)z (2 >Z/{R

and a commutative diagram of S-morphisms

Ep (R) =R =R
srrer™ —(gR R spec) B :(2 )UR

\/

where the horizontal arrow is respectively a universally dominant embedding
relatively to U™ and U™. Thus the open subscheme (ER)L{R - (iR) 2 18
u

universally schematically dense relatively to U™ and to UR.

Let S be a Ug-scheme, and G a reductive S-group scheme of type R. The
Universal property of the above diagram gives rise to the Par(G)-universally

dominant embedding
Par(G

(resp. the S-universally dominant embedding

»ec . F¢

%

3
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the T (A(G))-universally dominant embedding

—=G
She(a(@)’ Erma@))

Remark that this last assertion is equivalent to the following: for all section
g of I'"(A(G)) the embedding ¥, < 3, is a dominant S-embedding.
Thus a a

Theorem 16.25
Let S be a UR-scheme, and G a reductive S-group scheme of type R.

1) (iG,EG,ﬂ'G, @G) is an S-Universal smooth resolution.

R i |
2) (E6n i Bona@) @) Onawy) 8 @ TMAG)-

Universal — smooth  resolution, and also a T™(A(G)) Xxg
Par(G)-Universal  smooth resolution. In  fact the notation
S =G .
(S aen Trmisi@y T Ofnaiay)  amounts 1o sceing
(iG,EG,WG,GG) as formed by I'"™(A(G))-schemes and morphisms.
Recall that 7&,, denotes the canonical morphism
=G =G <G
TiY — FW(A(G)) X Relposg ¥ o= ZFW(A(G))'
8) For all section g of T™(A(G)) the smooth resolution
(ig, ig(g), Wg, @g) is S-Universal.

4) For all section (g, P) of T (A(G)) x5 Pary(G) the smooth resolution

Stel =G G G
(E(gapt)7 2(52(2)713»:)’ ﬂ-(gapt)7 @(37137:))
18 S-Universal.

Assume that G is splitted, i.e. endowed with a frame. Then the third asser-
tion is represented by the following diagram whose front and back faces are
cartesian squares.



Functoriality of Schubert Schemes Smooth Resolutions and Base Changes 405

ac ar
ng (25 )Usg@
@%
2% \Qjo
\® o
S
\J
—G =R
52(8,) (Xs,(2))Usy o)
Y v
S > U52(g)
2
JQ VO
& o
®r
Y © v
S - U(;z(g) .

Let N® be the smallest natural integer N such that U® = Spec(Z[1/NR]).
Let S be a scheme given in terms of the disjoint sum [] Spec(A4;) of affine
schemes and the transition cocycle (®;;), and an integer 1 < N. Define
Spec(Og[1/N]) as the scheme defined by [] Spec(A4;[1/N]) and the cocycle
(®,;[1/N]) obtained by restriction to []Spec(A;[1/N]) N Spec(A;[1/N]) of
(®;5). The underlying set of points of Spec(Og[1/N]) is the open subset
of S formed by all the points s such that ch x(s) do not divide N. Write
Syr = Spec(Os[1/N™®]). Remark that the restriction of a smooth resolution

to an open subscheme U C S is a smooth resolution.

Theorem 16.26
Let G be a reductive S-group scheme of type R. Suppose that there exists at
least a residual characteristic of S not dividing N™, i.e. Sy= # 0.

1) (;V\JG,EG,WG, @G)S s a Sy -Universal smooth resolution.
UR

SG S G G .
2) (26 aey Srm a0 MEn(a () OFniacon) 5y n X ST (AE)) "

a Syr xgs T™(A(Q))-Universal smooth resolution, and also a
Sur xg I'"(A(G)) xs Par(Q)-Universal smooth resolution.

3) For all section g of Syr xs I'(A(G)) the smooth resolution

(ig, ig@, Wg, @g) Sum is Sy -Universal.
4) For all section (g, P;) of Syr x5 I'"™(A(G)) xs Pary(G) the smooth
resolution quadruple

Ste. ¢ G G
(Z(gf’t)’ 2(52(9),Pt)’7r(g,Pt)’ @(g,Pt))S -

- U
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is Syw -Universal.

16.2.2 A general condition of Universality of smooth resolutions

Proposition 16.27 Let G be a reductive S-group scheme endowed with a
frame of type R. Let T = 75 for some relative position type T of Ag, and
be the type of a facet defined by T. Then the locally trivial fibration ¥, —

Pary(G) is of finite presentation if and only if its typical fiber E(I,pt) is of
finite presentation over S.

Proof It is known that X, — Par(G) is trivialized by the big cell open
covering. Let U be a big cell subscheme of Pary(G). There is an isomorphism

(EI)U ~U Xg E(I;Pt)-

On the other hand, the ideal T C Oy defining the embedding j : i(l)pt) — 3,
given by the fiber of ¥, over the center of U is finitely generated. Observe
that i: — S is a finite presentation morphism as the composition of finite
presentation morphisms, namely ¥, — Pary(G) followed by Pary(G) — S.
It is concluded that the morphism i(zﬁpt) — S is locally of finite presentation.
On the other hand, it is known that it is projective and thus proper. It is
deduced that E(I,Pt) is of finite presentation over S.

Suppose i(Lpt) of finite presentation over S. From the above isomorphism it
results that for all open set U of the big cell open covering (iz)u — U is of
finite presentation. It results that ¥, — Par,(G) is of finite presentation.

Proposition 16.28 Let G be a reductive S-group scheme endowed with a
frame of type R. Then the morphism X — Pary(G) is flat if and only if
i(Lpt) — S is a flat morphism.

Proof Suppose that i(z’pt) — S is a flat morphism. Thus for all big cell
U,
(Cr)y =U x5 Zzp) — U

is a flat morphism. It results immediately that ¥, — Pary(G) is a flat
morphism. Suppose that ¥, — Pary(G) is a flat morphism. Let U be a
big cell. Then (EL)U ~ U xgX(r,p,) — U is a flat morphism. By descent
of flatness by faithfully flat morphisms it results that f(l,pt) — S is a flat
morphism.

Let k be a field and X a k-scheme of finite type, V' C X be an integral
open subscheme. Then V is schematically dense in X if and only if X is
integral. Suppose that V' is absolute integral, i.e. for all field extension k — K,
Spec(K )XV is an integral scheme, and schematically dense in X. Then for all
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K, Spec(K) xV is schematically dense in Spec(K) x X (resp. Spec(K)x X
is integral). Reciprocally it is clear by descent that if for some extension K,
Spec(K) x, V is schematically dense in Spec(K) xj X (resp. Spec(K) x X is
an integral scheme), then V' C X is schematically dense (resp. X is integral).
Denote by k an algebraic closure of k. It follows that V C X is schematically

dense in X (resp. X is integral) if and only if Spec(k) xj V is schematically
dense in Spec(k) xp X (resp. Spec(k) x; X is integral). Let S be a scheme
and V C X an open subscheme of an S-scheme X. Where X is of finite
presentation and flat, and V' with absolute integral fibers. Define the subsets
of S by

Uvx)y=1{s€S |V, CX, schematically dense}

(resp. Uvx)={s€S|VsC X5 schematically dense}) .

By the previous argument Uy, x) = Uy, x), and
ﬁ(wx) ={se S| Xs integral, Vi not empty}.

Suppose that X — S is proper, flat, and of finite presentation. Under
these hypotheses the set of points s € S such that X5 is integral is an open
subset of S. From the above equality we conclude that Uy, x) is an open set
such that for all s € Uy, x) the subscheme Vi C X, is schematically dense.
As X — S is in particular flat and of finite presentation it results that the
subscheme Vy,, , C Xu, y, is schematically dense, and that Uy x) is the
maximal subscheme of S with this property.

Let G be a reductive S-group scheme of type R. Let V = Zg and X = flG.
Write

ULG =Uw,x) (resp. L{LG =Uw,x) if Eg and fg are seen as Par:(G) — schemes) .

Given z + y there is an isomorphism
=G =G
(Zl)z = SpeC(Ii(Z)) ><Spec(f{(y)) (E(Z,Pt))y

(transitivity of fibers). Thus the fiber (fg) is integral if and only if the

fiber (i(ci Pt)) is integral. It follows the equality
Ty

US =UE x5 Pary(G) ,

as both members are open subschemes of Par;(G) with the same underlying
set of points.



408 Buildings and Schubert Schemes

Let G~ S x Ep, (R) for the etale topology locally in S. Suppose that EG —

Par(G) (¢ denotes a section of types of G) is for the etale topology locally in

ps(R)

S isomorphic to 27 — Pary (Epy(R)), where t' (resp. 7) is a type (resp.

R
a type of relative pos1t10n) of Agp depending on 7. It is said that E ps( ,;
is the typical fiber of Zz — Pary(G). Let Ef define a smooth resolutlon

of ELG, i.e. g is a “relative minimal gallery of types” of G with d2(g) = 7.

~Ep_(R
Suppose there is a minimal gallery of types g of Ag such that ETSPS( )

Ep (73) and Z PS(R)

defines

a smooth resolution of Z ~ EA]? for the etale topology

R ~
locally in S. It is said that Z(*S( ; is the typical fiber of Eg.

Proposition 16.29
Keep the above notation and hypothesis. The following three assertions are
equivalent.

1) The scheme if is of finite presentation, flat, and with integral fibers
relatively to S.

2) The scheme ELG is of finite presentation, flat, and with integral fibers
relatively to Par:(G).

—FEp_(R
3) The typical fiber Z(jl;s I(Qt)) is of finite presentation, flat, and with integral
fibers relatively to S.

Proposition 16.30
Keep the notation and hypothesis of the preceding proposition. If one of the
three assertions of the above theorem is satisfied then:

1) (iG,EG,WG, @G) is an S-Universal smooth resolution.

N =G ) m
2) (E?m@(c»’ S (A(G)) TR (A(G)) @?m(gc))) is o T™(AG)-
Universal smooth resolution, and also a T™(A(G)) x s Par(G)-Universal
smooth resolution.

3) For all section g of T™(A(G)) the smooth resolution

(if, ig(g), <, @f) is S-Universal.

4) For all section (g, Pt) of T (A(G)) x5 Pary(G) the smooth resolution

SaG G G G
(E@,Pt)v 2(52(9).P2) T(g,Pr) @<g,Pt>)

1s S-Universal.
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Let one recall the Theorem of generical flatness (cf. Theoreme(6.9.1), [26]).

Theorem 16.31 Let S be an integral scheme locally noetherian and f :
X — S a morphism of finite type. There exists a not-empty open subset
U of S so that Ox|y is flat over U.

Theorem 16.32
Let G be a reductive group scheme over a reduced locally noetherian scheme
S. Then there exists a dense open subset U of S satisfying the following

property. The morphism (iG) e U% is a flat morphism of locally finite
U

. . . =G .
presentation so that its fibers are integral. Thus US x g £¢ < (E ) . s
U

dominant, otherwise stated U® x g ¢ is universally schematically dense in

=G . .
(2 ) o relatively to UY. Moreover U may be chosen containing Sy .
U

Proof As density is a local property one may clearly suppose that S is affine
reduced and noetherian. Write S = Spec(A), and denote by SW o SO the
irreducible components of S. There are N prime ideals of A, W ,--. PO
with S = Spec(A/PM),--- SN = Spec(A/BWN)). By the theorem of
cal flat tied to (39 — Spec(A/PD) there i
generical flatness applied to Spec(A/30) pec(A/PBY)) there is a

not-empty open subset U of Spec(A/PBD) such that (EG)U(,) — U isa

flat morphism. Observe that the generic point £ of Spec(A/B®) belongs to
U, and that Spec(k(€D)) — Spec(A/BD) is a quasi-compact flat exten-
sion. Thus o

Spec(r(€D)) x EG<—><§)

pec(s(€)) xs e

18 a dominant morphism. Otherwise stated (EG)g(i) s schematically dense in
(EG) . It follows that (EG)ﬁ is schematically dense in (ic)f . Let
£ 3 £
V' be the set of points s of Spec(A) so that the geometrical fiber (iG) of

EG is integral. It is known that V N U® is in fact open. On the other hand,
VNUW coincides with the set of points s € U™ so that (ZG)S s schematically
dense in (EG) . Thus VN U® is an open subscheme of UY so that £ is
universally schematically dense in EG relatively to VN U® (and is mazimal
with this property). The open subscheme U® = (JV NUW) U Syr satisfies
the property of the theorem, as V N U is dense in Spec(A/BD), and thus
UV NU® s dense in Spec(A).

Corollary 16.33 One keeps the same hypothesis and notation of the above
theorem. Then the four statements of Theorem 16.30 hold for G over U®
instead of S
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16.3 Schematic closure and base change

16.3.1 Generalities about the schematic closure

The following definitions are recalled:

Definition 16.34

Let f: X — Y be a morphism of schemes. The smallest closed subscheme
Y’ C Y, so that the canonical embedding jy: : Y' — Y factors f, is the
schematic image of f, if it exists.

o If X is a subscheme of Y, and jx : X — Y the canonical embedding, by
definition the schematic closure X*"° of X in Y is the schematic
image of jx. (cf. [24], Ch. 1, Definition (6.10.1)).

e X is schematically dense in Y (c¢f. [2/], Ch. 1, Definition (5.4.2))
if the canonical embedding jx : X — Y is schematically dominant.

Otherwise stated: the schematic closure X°°"Y of X in'Y is equal to
Y.

o The S-subscheme X C Y is universally relatively schematically
dense if for all base change 8" — S the subscheme S’ xg X C S’ xgY
is schematically dense. Otherwise stated the canonical embedding jx is
universally schematically dominant, i.e. for all base change S’ —
S the morphism Ids Xgs jx : S' xs X — S’ xg Y is schematically
dominant.

Definition 16.35
A morphism f: X — Y is schematically dominant if for every open

subset U C Y and every closed subscheme Z C U, such that the restriction
Y U) = U of f factors as

it 1s
Z =U.

One recalls the transitivity of schematic images which plays an important
role in the proof of the main theorem.

Proposition 16.36
Let f: X — Y andg: Y — Z be the two morphisms. Suppose that
the schematic image Y' of [ exists, and that the schematic image Z' of Y’
by the restriction ¢’ of g to Y’ exists also. Then the schematic image of
X by the composed morphism g o f exists and is equal to Z'. (cf. loc. cit.,
Proposition (6.10.3))
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Let S’ — S. Suppose that the schematic closure (S’ xg X)SChCY' exists (resp.
Xsehey exists). It is said that the formation of the schematic closure
of the S-subscheme X C Y commutes with the base change S’ — S if the
canonical morphism (S’ xg X)*™" — § x g Xs¢hev is an isomorphism.
The following Proposition gives a sufficient conditions allowing the existence
of the schematic image (resp. schematic closure) of a morphism f: X — Y
(resp. an embedding jx : X — Y).

Proposition 16.37
The schematic image Y' of X by the morphism f: X — Y exists in each of
the following two cases:

1. f+(Ox) is a quasi-coherent Oy-module (this condition is satisfied if
f is quasi-compact and separated ).

2. X is reduced and as a particular case if X is an integral scheme.

The underlying subspace of Y is given by the closure f(X) in Y of the image
f(X) of f, and f factors as

X &% vy

where ¢ is schematically dominant (cf. [24], Ch. 1, Proposition (6.10.5)). As
an embedding is a separated morphism it results the following

Corollary 16.38 Let j : X — Y be a quasi-compact embedding, i.e. for all
affine open set U C Y, j=1(U) is quasicompact. Then the schematic closure
of X inY exists.

As the S-schemes being considered in this work are quasi-projective or pro-
jective, it follows from the above proposition that if we suppose one of the
following conditions

1. S is a reduced scheme.

2. S is a noetherian scheme.

the hypothesis for the existence of the schematic image are satisfied. Anyhow
in this context one may state results in all generality concerning the base
scheme S.

The following proposition allows one to give the schematic closure of a sub-
scheme jx : X — Y in terms of descent data once one knows it exists.

Proposition 16.39 1) Suppose that f : X — Y salisfies one of the con-
ditions of Proposition 16.37. Denote by fy : f=*(V) — V the restric-
tion of f to an open set V of Y. Then the schematic image of f=1(V)
in V exists and is given by the subscheme inf(V,Y"') induced by Y' on
the open set VNY' of Y'.
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2) More generally if f : X — Y satisfies one of the conditions of Proposi-
tion 16.37 the formation of the schematic closure commutes with a flat
morphism Z — Y, i.e. (Z xy X)*"z = 7 xy Xschev,

Proposition 16.40
Let V C X be a subscheme and g : X' — X a faithfully flat morphism.

1) Suppose X' xx V. C X' is schematically dense in X’'. Then V is
schematically dense in X.

2) Let V and X be S-schemes and S — S a faithfully flat morphism.
Suppose that the subscheme S’ xgV C S xg X is schematically dense.
Then V is schematically dense in X.

Proof The first assertion is an immediate corollary of Théoréme (11.10.5)
of [27] 1966. The following remark proves 2). It results from the commutative
diagram

XS XIXXV

where i is the isomorphism of schemes defined by (3’, v) = ((8,2),v), with z,
denoting the image of v in X, that if S’ x gV — X' = 5’ xgX is schematically
dense then X' xx V < X' is also schematically dense.

Let some general results concerning separated schemes be recalled.

1) An affine scheme X is separated, i.e. the diagonal Ax is a closed sub-
scheme of the product X x X = X xz X.

2) A projective scheme X — S is separated over S. Thus if one supposes
S separated the composed morphism

\/

Spec(Z

is also separated. It results that a projective scheme is separated. Thus
any subscheme of a projective scheme is also separated.

3) Let Y be a separated scheme and f : X — Y a morphism. For all
affine open subset U of X and all affine open subset V of Y, UN f~1(V)
is affine.
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Recall that a morphism f : X — Y is quasi-compact if for all quasi-compact
openset V C Y, f~1(V)is quasi-compact. Let S be a scheme and S = | J U; an

1
open covering by affine open subsets. Observe that an S morphism f: X — Y
is quasi-compact if and only if f~1(V) is quasi-compact for all open affine
subset V' contained in some Xy,

Proposition 16.41 A morphism f : X — Y between a quasi-compact
scheme X and a separated scheme Y is quasi-compact.

Proof Write X as a finite union of affine open sets, X = |J U;. Let
1<i<N
V. C Y be an affine open set. Then for all 1 < i < N the intersection

U; N f~Y(V) is an affine open set in X and f=1(V) = U U;nfYV).
1<i<N

It follows that f=*(V) is a quasi-compact open set as a finite union of affine
open sets.

Proposition 16.42

Let S be an affine scheme, G a reductive S-scheme endowed with a frame F,
P C G (resp. B C P) a parabolic subgroup of type t (resp. a Borel subgroup)
adapted to the frame E, T € Relpos A(R(E)).

e The Schubert cell X, py C Par(G) is a quasi-compact subscheme.

e The Universal Schubert cell ¥ C Relposg xs Par(G) xs Par(G) is a
quasi-compact subscheme.

e The schematic closure X, p) (resp. X, %;) of B(,p) (resp. T, %)
in Par(G) (resp. Par(G) xs Par(G), Relposg xs Par(G) xgs Par(G))
exists.

Proof Observe first that as S is a separated scheme then Par(G) is separated
as Par(G) — S is a proper morphism and thus separated and S is separated
as it is affine. One has T, py = U X By, where 7/ € Relpos A(R(E))

runs on the finite set of types of relative positions indexing the B-Schubert
cells X' contained in X, py. On the other hand, the B-Schubert cells 3. p)
are affine schemes and thus quasi-compact. It results that 3, py is a quasi-
compact scheme.

Observe that the Universal Schubert Cell X, — Pary(G) of type T is a locally
trivial fibration trivialized by the big cell open covering (U;) of Par(G) and
that:

o (ET)U]- ~ Uj X5 E(T,P);
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As the U; are affine schemes and j runs on a finite set, it is concluded that
3. is a finite union of quasi-compact schemes, and thus quasi-compact.

As X = 11 X, it results that X is quasi-compact.

TERelpos A(R(E))
The last assertion follows immediately from Proposition 16.42 and Proposition
16.37.

Corollary 16.43

1) Let S be an affine scheme, and G a reductive S-group scheme, T a type
of relative position section, and P C G a parabolic subgroup. Then
the schematic closure E(T’p) (resp. X, ) of 3p) (resp. 3r, X)
in Par(G) (resp. Par(G) xs Par(G), Relposg xs Par(G) xgs Par(G))

exists.

2) Same statement as in 1) for S a general scheme.

Proof From Proposition 16.37 it suffices to verify that the canonical em-
bedding of X, py (resp. Xr, X) in Par(G) (resp. Par(G) xs Par(G),
Relposg xs Par(G) xg Par(G)) is quasi-compact.

The verification of the quasi-compacity condition of an S-embedding is local
in S for the etale topology. Let S’ — S be an affine etale covering so that
Gg is endowed with a frame. One has that (E(Lp))s, = E(CiZ’,’PS/) (resp.

(=;) g = EESS,', (2)g = XG5 ). Thus it suffices to show the quasi-compacity

of this embedding for G/, where S’ — S is an affine etale covering such that
Gy is endowed with a frame. That has been proved in the proof of Proposition
16.42.

The following remark implies that the proof of the quasi-compacity of the
canonical embedding when S is a general base scheme, results from the case
where S is affine and thus 2) follows from 1). Let S be a scheme and S =
\J Si an open covering by affine open subsets. A S-morphism f: X =Y is

K3

quasi-compact if and only for all open affine subset V' contained in some Yg,,
f~YV) C Xg, is quasi-compact, i.e. if an only if fs, is quasi-compact for all
S;.

16.3.2 Criterion of Universal relative schematical density

Proposition 16.44
Let X be an S-scheme proper and flat of finite presentation, and VC X an
open subscheme with not empty fibers which are absolute integral, i.e. given
s € S and K a field extension of the residual field k(s) of s then Vi is integral,
where § = Spec(K).

1) Given a fized field extension K of k(s) write § = Spec(K). Then X5z is
integral if and only if X is integral. As a particular case one has that
X is integral if and only if the geometric fiber Xz is integral.
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2) Vs is schematically dense in X if and only if X is integral.

3) Given a fized field extension K of k(s) one has that Vz is schematically
dense in Xz if and only if Vi is schematically dense in X;. As a partic-
ular case V is schematically dense in X, if and only if the geometrical
fiber Vz is schematically dense in the geometrical fiber Xs.

4) The open subscheme V' of X is universally relatively schematically
dense if an only if the fibers Vs (resp. the geometrical fibers Vz) are
schematically dense in the fibers X (resp. the geometrical fibers Xz).

5) The open subscheme V is universally relatively schematically
dense in X if and only if the fibers X (resp. the geometrical fibers
Xz) are integral.

6) There is an open subscheme U C S so that if T C S satisfies “T Xg
V C T xg X is a universally relatively schematically dense” then
TcU.

The above proposition is complemented by the following corollary which
compares the schematic images V<"“*s/ and V*"“¥s for §’ — S and results
from the transitivity of schematic images.

Proposition 16.45
Let V C X be S-schemes and X — Y a closed embedding of S-schemes.

1) Suppose that V is universally relatively schematically dense in X. Then
for all ' — S the schematic closure V"¥s' of §' xg V in §' xgY
exists and is equal to 8" x5 X, i.e. the formation of the schematic closure
of V in'Y commutes with base changes 8" — S.

2) Suppose that for all S — S the schematic closure Ve epists and
is equal to Xg/, i.e. the formation of the schematic closure of V inY
commutes with base changes S' —s S. If V*"“Xst exists for all ' — S
then V is universally relatively schematically dense in X.

(resp. Vhexs:)

Proof To see 1) apply the transitivity of schematic images to the sequence
of embeddings Vg 4 Xg < Ys:, taking on account that by hypothesis
hex ., hey., . . :
VSS,C - Xgr, and that X;f Vs = Xgsr, as Xg: is closed in Ys:. This
h
gives that the schematic closure VSS,C s exists and is equal to Xgr.
Observe that by the transitivity of schematic images, the schematic image
of VEhexsi <« X g by the embedding X < Yg is equal to Vs and thus
by hypothesis to Xgr, thus one obtains 2).
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If the embedding V' — X of S-schemes is quasi-compact and X is a projective
S-scheme then for all base change 8" — S, S’ xgV — S’ xg X is a quasi-
compact embedding and S’ x g X is a projective S’-scheme. Thus for all S' —
S the existence of the schematical closure V¢"“Xs/ is granted. Proposition
16.45 may be then re-stated as follows.

Proposition 16.46

Let V — X be a quasi-compact embedding into a projective scheme X, and
X =Y an embedding. Then V 1is universally relatively schematically dense
i X if and only if the formation of the schematic closure of V in'Y commutes
with base changes.

The proof of Proposition 16.44 is an immediate consequence of the following
ones. The following Proposition states a Criterion for an open set V of an
S-scheme X to be universally schematically dense in X, relatively to S.

Proposition 16.47
Let
f:r X —> S

be a flat morphism, locally of finite presentation, and
VcXx

an “open set”. Then V is universally schematically dense in X relatively to S
if and only if
Vse S, Vo=V NX;

is schematically dense in Xs. (cf. loc. cit., Proposition 11.10.9).

The following proposition states that the property for a morphism to be
schematically dominant, is local for the faithfully flat topology.

Proposition 16.48
Let g: X' — X be a faithfully flat morphism and

f:Z = X
a quasi-compact morphism. Then
fXIZ ZXXX/ - X'

is a schematically dominant morphism < fis a schematically dominant mor-
phism. (cf. [27], Théoreme (11.10.5)).

The following corollary is an immediate consequence of the proposition.
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Corollary 16.49 One keeps the mnotation and hypothesis of Proposition
16.44. The open sub-scheme Vi is schematically dense in X, if and only
if Vi is schematically dense in X;.

Corollary 16.50 With the notation and hypothesis of Proposition 16.44 one
has that V (resp. Vz) is schematically dense in X (resp. X;z) if and only if
X (resp. X3) is integral. Thus X is integral if and only if Xz is integral.

Proof If Vi (resp. V;) is schematically dense in X (resp. Xz) then X,
(resp. Xz is integral, as the schematic closure of an integral scheme is integral.
On the other hand, if X5 (resp. Xs) is integral then the not void open set Vs
(resp. Vz) is schematically dense.

One recalls the following result.

Proposition 16.51
Let
f: X —>Y
be a morphism proper, flat, and of finite presentation.
Then the set of y € Y such that the geometric fiber

Xy is integral
is an open set of Y. (cf. loc. cit., Théoréme (12.2.4)).

Corollary 16.52 One keeps the mnotation and hypothesis of Proposition
16.44. The set U of points s of S such that Vs is schematically dense in
X is an open set of S. If U is not empty then Viy — U 1is universally
relatively schematically dense in Xy — U.



Appendix A

About the Coxeter Complex

A.1 Adjacency

The building I(G) of a k-reductive group G corresponds to the Cayley com-
plex D(H) (cf. [18]) of a discrete group H. It is observed that the contracted
product defined by a usual minimal gallery may be seen as a set of paths of
the compact real form of G (cf. [7]). The Cayley complex of the Weyl group
W of G is obtained in terms of the Weyl complex C'(W,.S) as follows.

The geometrical representation C(H) of C'(W,S), as a decomposition in sim-
plicial cones of the euclidian space R(), gives rise to a decomposition into
spherical simplices {o¢} (C' € Ch C(W,S)) of the unit sphere S} ™' ¢ R(S),
The set of barycenters {b,} (0 € Ch C(W,S)) give the vertices of the Cay-
ley diagram D(G) of W (we recall that Ch C(W,S) is principal homogeneous
under the action of W). The edges of D(G) join the barycenters in pairs as
follows. Given a simplex o denote by bs,, ..., by, the barycenters correspond-
ing respectively to the [ chambers Cy,...,C; having a common bounding
hyperplane with C' = C,. Thus there are [ edges issued from b,, namely:

[bd7b0'1]1 R [ba'ﬂbgl,]'

If (nij); jes 1 the Coxeter matrix of (W, S) then the two dimensional faces of
D(G) are n;j-gons (i # j) (cf. [18]).

Let ¢t € typ C(W,S) be the type of a facet given by some subset ¢ C S and
Wy C W the subgroup generated by ¢. There is a bijection

W/W, ~ F,

between the set of classes W/W, and the set of facets F; of C(W,S) of type
t, defined by

418
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w — w(Fy(C)). One associates with ¢ a 1-complex D;(W) generalizing the
Cayley complex. The set of vertices of D;(WW) is given by the set of classes
W/Wy (resp. of facets F; of type t of W). The edges issued from some
facet F' are given by the couples (C, H), where C' € Sty and H is a bounding
hyperplane of C. The couple (C, H) defines an edge between F' and the image
s (F) of F by the reflexion sy defined by H. Thus the set of edges of D;(W)
corresponds to the set of generalized galleries of the form

FcCoOF cCo>F",

with typ F' = typ F”" and cod F' = 1.

Remark that some edges join F' to itself, namely those satisfying F' C F’. The
group W acts as a group of automorphisms on D(W), as follows easily from
its definition.

The geometric realization C(#H) of C(W, S) gives rise to a description of Dy (W)
as in the case of the Cayley complex. The point is that this 1-complex allows
a description of the action of W on the set of F; in terms of the generators S
of W and the relations defined by the Coxeter matrix.

The group W may be obtained as the group of automorphisms of the Cay-
ley complex. Similarly, W may be obtained as a group of automorphisms of
C (W, S) preserving the type of facets. In this case the group defining relations
are replaced by the incidence relations of C'(W, S), i.e. the group of automor-
phisms of C'(W,S) is obtained in term of incidence relations.

The adjacency relation between two chambers C' and C” of a building I (cf.
[50], 1.2) may be defined in terms of a gg. In fact, C' and C’ are adjacent
chambers if there exists a gg

CO>FccC,

where cod F' = 1, and CNC’ = F. The edge relation as defined above between
two facets F and F’ of the same type t generalises this relation. This gg is
minimal if and only if C # C".

More generally, given a chamber C of I and an integer i > 0, let F;(C) , as
in loc. cit., be the set of chambers C’ in I such that there exists a gg

COFccC,

with cod F' = i. Let A be an apartment of I containing C. It is easy to see
that F;(C) may be written as

Ei(C) = H Y (Be,r(C,07)s
C'€E;(C)NCh A

where 7(C,C’) denotes the type of relative position defined by (C,C").
Observe that C D F C C" is a MGG if and only if C' and C” are transversal
in £ tF.
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A.2 Braid relations

Let TV = TMW(C,C") (resp. T'® = T'?(C,C")) be the minimal gallery
defining the big cell coordinates (X(()tl))aeR(C,C’) (resp. (Xél))aeR(C,C’)) of
i(g(l),B) (resp. i(g(z),B)), i.e. there are isomorphisms

Spee (K[X(V]) = (g, B)

(resp.
spec (KIXP]) = (4@, B).

Where g(!) (resp. ¢(®) denotes the Minimal Generalized Gallery of types
defined by I'™ (resp. I'®), 7.4, (resp. T7,2) its corresponding type
of relative position, and S'(¢g1),B) ~ X(r\",B)) (resp. ¥'(¢?,B) ~
2(752),3)) the big cell of (g™, B) (resp. S(¢9(2, B)). Denote by [R(C, F’)
the commutative monoid generated by R(C,F’) C R,, and by H®) =
E[[R(C, FN® = k[Xéi)]aeR(ap/) (i = 1,2) the corresponding k-algebra.
Given p € N(R(C, F")) write:

Hff) C k[Xéi)]aeR(c,F')

for the k-subspace generated by the monomials X7 X712 ... X! satisfying
(@) (@)

! o CHyly . One
may thus graduate the polynomial ring k[Xc(f)] acR(C,F7) by the k-subspaces

(,H/(Ji))peN[R(QF’)]- Write

niay + noas + ... + nyag = p. Clearly one has Hff) -H

HO =k b =P,

PEN[R(C,F")]

thus %9 is a graded k-algebra obtained from the polynomial algebra k[Xa.] by
changing its natural graduation. Let (Xél))aeR(C’F,) (resp. (X((XQ))QGR(C’F/))
be the coordinates of %(7,, B) given by the minimal gallery I'") (resp. '),

and
Promre)y: KXP] — kXY

the isomorphism given by the coordinates change cocycle

X® = XO(X)wercrn) (a€RCF)),
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defined by the vertical arrow of the diagram:

Spec (k[X((X/)D

.

E(T§7 B)

Spec (k:[X((f)D

One has:
(Vp € N[R(C, F")]) ¢rm pen(HP) =HD,

Le. the isomorphism ¢ o) re)) is an isomorphism of graded algebras.
This property results immediately from the commutation defining relations

(Com) of G-
exp(X,X,) exp(X5Xs) exp(X,Xy) " = exp(XsXs) HeXperja (Cijvé Xo X} %ivﬂ'é)

with Cjj45 € Z, and (X),er a Chevalley system, if it is observed that
o L
Cijyo Xo X5 € Hiyyjss

with 4 = 1,2. The factors of the product are indexed by the set of roots of
the form ia + jv with 7,5 € N*. In fact one has the following relation:

int H exp (Xc(yl) ya) (P') = int H exp (X,(f) ya) (P").
Q€R(C,F) a€R(C,F)
(ordered by I'(1)) (ordered by T'(2))

Thus the second member is obtained by reordering the factors of the first
member according to the order of R(C, F’) defined by I'® by repeated use
of the commutation relations (Com). As a section of X(7,, B) given by P, is
uniquely written as int(g)(Bcr) = B, with g a section of Up, it is deduced that

a/
relations (Com) and thus that Xéz)((Xil,))a,eR(C’C/)) € HW. This proves the
assertion. In fact this operation may be carried out more systematically as
follows.
1

The change of coordinates cocycle X&Q)((Xé,))aleR(cyc/)) e HM defined

the polynomials XC(YQ)((X(U)Q/GR(C,C,)) “are generated” by the commutation

by the coordinates systems (X&Q)) and (X S,)) given respectively by I'®) and
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' may be obtained as the composition of a sequence of change of coordinates
cocycles

(on,j—i-l(Xa’,j)) (] = Oa s al - 1) )
defined by a sequence of minimal galleries (I'j)og;<i, with T'g = '™ and
I, = T between the chambers C and proj C, i.e. (Xaj4+1(Xar;)) is the
cocycle given by the expression of the coordinates (X4, j4+1) defined by I';j 41
in terms of the coordinates (X, ;) defined by I';. One then writes

(Xff) (XS,)) = (Xol(Xari-1)) 0 (Xai-1(Xari—2)) 0. 0 (Xa,1(Xar0)) -

On the other hand, it is recalled that the apartment associated with a
rank 2 reductive group G is a polygon II (cf. [15], 3.34). Thus given a
couple (C,C°PP) of antipodal chambers in II there are exactly 2 minimal
galleries namely T'")(C, C?) and T?(C,CPP) between C and C°PP in II.
The set of cocycles (Xc(f) (X ((11/))) arising from polygonal apartments may
be thus calculated from the tables giving rank 2 reductive groups in terms
of defining relations (cf. [10], Exp. XXIII). Given an apartment A defined
by a reductive group G, and two minimal galleries I'") = T'(W)(C, C") (resp.
I'® =1®(C,C") in A between the couple (C,C") of chambers of A, a se-
quence of minimal galleries (I'; )0« < between C and C’ may be obtained with
Ty =T'W (resp. T, = T?) such that T';;; is obtained from I'; by a rank 2
deformation. More precisely there is a chamber C of I'; and a codimension 2
facet ' C C, such that if it is denoted by C” the chamber in Stp opposed
to C, and by IV = I"(C,C°P) (resp. I = T"(C,C°PP)) the two minimal

galleries in Strp with extremities C' and C°PP, then one may write
Fj = Fj,a * PI * Fj,b
(resp. I'jo =T« %T;,),

with Tj . = T';.4(C,C) (resp. T, = T;5(C™",C")). With the terminology of
[20] two minimal galleries with the same extremities are equivalent.

From this it is deduced that the cocycle (X, j+1(Xas ;)) is given by a rank 2
cocycle, and consequently that the cocycle (X&Q) (X él/))) may be obtained as
the composition of rank 2 coordinates change cocycles.

From the isomorphisms /(¢ B) ~ X(r{",B) and ¥/(¢®,B) ~
2(7_52)7 B)) it follows that i’(g(l)7 B) Xpar(a) i’(g(Q),B) ~ Z(Tél), B) =
E(Tg@), B) is “the big cell” of the Correspondance i(g(l), B) Xpar(a)
f)(g@), B) — X(7, B) where 7 = Tél) = Tg(Q). This cell may be parametrized
by I'M-coordinates or by I'®-coordinates, by means of the graph of Prm re)

(resp. @(r<2>,r<1>))-

Remark that the above assertion results from the relation between the
apartment 4 and the Cayley diagram D(W) of (W, S). A geometric inter-
pretation of an algebraic transformation of a path 7 into a path ms, of the



Appendix A: About the Coxeter Complex 423

Cayley diagram D(W) by means of the relations s? = 1, (s;s;)™7 = 1 is given
in [18], 4.3 (see also [19])

A.3 Schubert geometry

In the case of GI(r + 1) the Schubert cells are described geometrically by the
relative position matrices which in fact resume their classical indexation in
terms of the dimensions of the intersection of subspaces of k™! with a fixed
flag. With the canonical basis of k"1 is associated a simplex whose vertices
correspond to the basis vectors. The barycenters of its faces correspond to
the maximal parabolic subgroups (resp. subspaces of k"*1) “adapted to the
canonical basis”. The barycentrycal subdivision of this simplex is a geomet-
rical representation of the Coxeter complex associated with the symmetric
group S,1. The vertices of the simplex thus play an important role. In
fact they generate the representation of the Coxeter complex by definition
of the barycentic subdivision. It has been seen that a relative position ma-
trix is an abbreviated description of a Minimal Generalized Gallery of types,
thus furnishing a smooth resolution of the corresponding Schubert variety.
The correspondence between the vertices of the barycentic subdivision of the
simplex and the maximal parabolic subgroups of GI(r 4 1) is obtained by as-
sociating with such a vertex the stabilizer of the subspace of k"' generated
by the corresponding subset of the canonical basis. Remark that the galleries
giving smooth resolutions may be obtained solely in terms of subspaces, i.e.
without flags of length greater than 1 playing a role. The Coxeter complex
and its geometric realization play a central role in the building, and all the
galleries giving smooth resolutions of Schubert varieties may be seen as sets
of generalized galleries of the building I(Gi(r + 1)) of Gi(r + 1).

The building I(GI(r + 1)) is the same as the building I(PGI(r + 1)) of
the projective group PGI(r + 1). This is considered its geometric realization
in terms of the flags of the projective space P(k"*1), i.e. the associated
geometry of Gl(r + 1), or of its adjoint form PGI(r + 1), according to Tits
(cf. [50]). On the other hand, one knows that Tits associates an incidence
geometry with a reductive group GG and thus characterizes the adjoint form of
G as the automorphism group of this geometry (cf. loc. cit., see also Freuden-
thal H., de Vries H., Rosenfeld B., and [38]) thus obtaining a generalization
of the fundamental theorem of projective geometry. The following question
naturally arises: How our constructions associated with Schubert cells
or varieties are represented in this geometry? It has been seen that
the smooth resolutions of Schubert varieties are calculated in the abstract
Coxeter complex. The first step to be taken to answer the above question is
to investigate the geometrical realization of the Coxeter complex.

The study of the Galois group of the characteristic Killing equation, i.e.
the characteristic equation defined by the adjoint action of a generic element
of the Lie algebra, associated with a Lie algebra (cf. [4]) plays an important
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role in E. Cartan’s classification of simple Lie algebras over the complex field
C (cf. [1]). This group is precisely the automorphism group of the corre-
sponding system of roots of the Lie algebra and it has the Weyl group as a
distinguished subgroup. In a subsequent paper E. Cartan studies this Galois
group and gives Galois resolvents (cf. [2]), i.e. the corresponding Galois ex-
tension, for the characteristic Killing equations of each type of Lie algebra.
These groups are isomorphic to Galois groups associated to classical algebraic
geometrical problems as E. Cartan himself proves it (cf. [3], and [2]). He
considers in particular the Galois groups of the classical algebraic geometric
problems which are isomorphic to those of the Killing equation of Fg and Er,
i.e. the Galois group of the 27 lines on a cubic surface in P3, and that of
the 28 bitangents of a quartic curve of P2. Remark that these Galois groups
may be considered as monodromy groups (cf. [32]) and are thus calculated
following the pattern of Jordan classical treatise.

E. Cartan establishes this correspondence using the representation of roots
given in [1], by associating with "roots configurations" classical "geometric
configurations", thus making evident how the respective actions of the Galois
groups correspond to each other. On the other hand, these configurations have
been extensively studied by classical geometers, and are related to geometric
and combinatorial objects. For example, those corresponding to Eg are asso-
ciated with the Twenty-seven Lines Polytope studied by Coxeter in [18]. This
equivariant correspondence, with respect to the Galois group, between classes
of sets of roots and classes of configurations is stated in modern terms by
Dolgachev in [28]. As the corresponding Galois principal homogeneous spaces
are thus isomorphic, the result is that the set of simple roots correspond to
a well known class of configurations. On the other hand, one knows that the
Coxeter complex may be described in terms of minimal parabolic sets, i.e. in
terms of positive systems of roots (resp. simple systems of roots), thus giving
rise to a representation of Schubert cells and minimal generalized galleries in
terms of classical configurations and thus generalizing the simplex represen-
tation of the Coxeter complex, in the case of the classical Group GI(r + 1),
to a Eg exceptional group. Thus obtaining a geometrical interpretation of
abstract galleries configurations in this cases. A description of the Bruhat
decomposition may be obtained in terms of “this geometry” for these groups.

On the other hand, it is known (cf. [50]) that there exists a very sim-
ple algorithm by which, from the mere knowledge of the Dynkin diagrams
of the groups, one can deduce basic properties of the associated geometries
(for instance, the axioms of projective geometry in the case of SL,) (cf. loc.
cit., Théoréme 6.3) and relations between geometries associated with different
groups.

For each particular simple group G a description of its adapted geometry
may thus be obtained. For instance for each of the groups corresponding
to Dynkin diagrams without ramification, i.e. groups of types A,, By, Cy,
Fy, G2 the Coxeter complex may be realized as the barycentric subdivi-
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sion respectively of an m-simplex, an n-cube, an n-octahedron (cf. loc. cit.,
Ch. 6-Ch. 10), (see also the description of these objects given in [18] and
compare it with that of the indexations of the basis of classical algebras as
given in [5], §13) a 24-cell polytope, an hexagon (cf. [8]). It has been seen
that in the case of a group of type A,, simple descriptions of MGG in terms of
the incidence relation of the combinatorial simplex A() (or of its barycentric
subdivision A(")’) may be obtained, namely Conf(A(M)) ~ Gall(g(M)).

It seems easy to arrive at corresponding simplifications in the description of
Minimal Generalized Galleries for the groups of type B,, (resp. Cy, Fy, G2)
by means of configurations varieties defined in terms of the geometry of the
polytopes associated with them.

For the groups corresponding to the other Dynkin diagrams, more compli-
cated geometries may serve for the same purposes, for instance, for Eg the
combinatorial geometry of the configuration of the 27 lines on a cubic surface
of P3.

The parabolic sets A(R) of a root system R are determined by the set of
minimal parabolics sets. On the other hand there is a natural correspondence
between this latter set and certain “configurations” of the 27 lines polytope
(cf. [28], [2], [3]) & natural correspondence between A(R) and a set of “config-
urations” of the 27 lines polytope follows. Consequently geometric represen-
tations of A(R) of Eg, of its Schubert varieties, and their smooth resolutions
(cf. [38], [37], [47] are obtained.

These descriptions are useful to analyze the fibers of $ — Sover ¥ — %
in terms of the canonical cell decomposition of 3, and the relations between
them and the local rings of ¥. Remark that the relations between geome-
tries of different groups induce relations between their Schubert cells. On the
other hand it is well known that the intersection relations between classes of
Schubert cycles are described in terms of the Weyl group W and thus these
calculations may be re-interpreted, by means of the associated geometry with
the Coxeter complex. Thus Ehresmann geometric setting of Schubert calculus
(cf. [27]) may be generalized to all groups.

The incidence geometry is particularly interesting in the case of algebraic
symmetric spaces, i.e. the hermitian compact symmetric spaces corresponding
to the classical groups and to groups of type Eg and E7;. These spaces are
varieties of parabolics, i.e. are isomorphic to the quotient of a reductive group
by a parabolic subgroup, and may also be realized as generalized grasmannians
(cf. [37], and [39]) by means of the Magic Square, and thus obtain the
realization of configurations giving resolutions of Schubert varieties in a way
similar to that of the linear group. These spaces play a particular role with
respect to buildings.

Remark A.1 The following general proposition plays an important role in
[50] as the key to the above mentioned algorithm.
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Proposition A.2 Let (A,7) be a building, where A (resp. f ) denotes the
corresponding simplicial complex (resp. the set of apartments), and F € A
a facet. Let o' be the set of all intersections with Str of all apartments
containing F. Then (Stp,o’) is a building whose diagram is obtained by
removing from diagr A all vertices which belong to typ F.

Remark that the building blocks of generalized galleries are precisely a cou-
ple of facets in these buildings.

Observe that the algorithm which gives the geometry of the building I(G)
of a k-reductive group corresponds to “Théoréme 1.1.” of [23], Exp. XXIII,
Théoréme 3.5.1, as it results from the discussion in the next section. It as-
serts that the functor G — R(G) associating with an S-reductive group G
endowed with a frame the root data is an equivalence of categories.
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(Generators and Relations
and the Building of a
Reductive Group

The following theorem is proved in [50] and shows the interest of the incidence
relation.

Theorem B.1 A building isomorphism ¢ : I — I’ is entirely determined
by its restriction to E1(C)U A, and Theorem 4.1.2. of loc. cit., explains how
such an isomorphism may be induced:

Given C € ChlI and C' € ChT, then every adjacence preserving bijection
p: Ey(C) — E5(C') extends to an isomorphism ¢ : I — T'.

On the other hand, it is known that given two k-reductive groups G and
G’, each endowed with a frame, and a g-morphism h : R(G') — R(G) of
the corresponding root data, there exists a unique morphism f: G — G’
of k-reductive groups endowed with a frame inducing h (cf. [23], Exp. XXV,
Théoréme 1.1). In fact this Theorem results from a characterization of a
morphism f: G — G’ in terms of generators and relations of the groups G
and G’ (cf. [23], Exp. XXIII, Théoréme 2.3).

By comparing these two sets of results one obtains the table of generators
and relations defining G may be interpreted in the building setting and that
all building calculations may be translated into calculations of generators and
relations.

The following comparison suggests how the geometrical constructions in-
volving varieties of configurations (resp. of generalized galleries) which are

427
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carried out in buildings, lead to algebraic geometrical constructions, by com-
paring the incidence and the generators and relations description of a reductive
group.

It is supposed that G is endowed with the frame (T, M, R, Ry, (XQ)QGRO).
Denote by A(R) the apartment associated to R and by C' = Cr, the chamber
of A(R) defined by the system of positive roots R = N Ry N R.

Let (Fa)qer, (resp. (Fag)(a ,B)EROXR0> the set of codimension 1 (resp.

codimension 2) facets of C' and T, (resp. T,3) the maximal torus contained
in
Ker a (resp. Ker aNKer ).

With the notation of [23], Exp. XXIII, 1.7. Let
Zy = Cent(Zy) (resp. Zap = Cent(Zag));

Zo (resp. Zog) is a k-reductive subgroup of G with radical subgroup T,
(resp. Thp). Write:

Ry =Z -{a}NR (resp. Rap=Z-{a,B8} NR),
and one endows Z, (resp. Z,p) with the canonical frame
(T, M, Ro, {a}, (Xa))

(resp. (T, M, Ro,{a, B}, (Xa, X3)))

(cf. loc. cit., Exp. XXIII, 1.7). Let H be an S-sheaf in groups for the fffp
(faithfully flat finite presentation) topology.
Theorem 2.3 of [23], Exp. XXIII asserts that the data

1. an S-group morphism fr: T — H;
2. morphisms f,: P, — H («a € Rp);
3. sections (hg)acr, of H over S,
subjected to the following conditions:
a. there exists an S-group morphism fy ) : N(T) — H extending fr;

b. there exist morphisms fo: Za — H (a € Ry) extending f,, such that

folwa) = he (Write w, = exp(X,) exp(—X_q) exp(Xy), where X_,
denotes the dual section of X,, in Lie(Z,));

c. there are morphisms fus : Zog — H so that fap | Py = fo, fap | Ps =
f,6’7 faﬁ(wa) = h’Oé7 foc,@(wﬂ) - h’ﬁ
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Conditions a., b., and c¢. may be translated in terms of relations of the
“generators” T, (P )acRy, (Wa)acr, of G and fr, (fa)acr,- Denote by (n.s)
the Coxeter matrix of R, and write

tag = (wa )" € T(S)
(resp. ta = taa = w2 =aV(-1) € T(S)) .

The automorphism of 7" defined by w,, is given by:

int(wy)(t) = ta¥ (a(t)) L.
One introduces conditions A _, B_, and C'_, corresponding to a., b., and c.

A_ (@) ha fr() " = fr (int(wa) (1))
(%3). fr(tag) = (ha hg)™?.
Observe that A allows to define a group homomorphism for every v € R
fy: Py — H.

For every root v € R, there is a section n of N(T') so that its image in N(T')/T
gives rise to an element 7 of W with n(y) = a € Ry.
Condition A also implies that there is a morphism

extending fr. Write h = fy(r)(n) and given a section z of P, define

f(@) = 1int(h) [fa (int(n")(2))].

From loc. cit., Exp. XXIII, Lemme 2.3.5 it results that f, : P, — H is a
well defined group homomorphism.

B (ha fa (exp(X4)))® = e (= the section of H corresponding to the unity of H) .

By definition a Chevalley system (Xq),cp of a splitted S-group (G, T, M, R)
is a family of sections of Lie(G) satisfying X, € I'(S,G*)*, i.e. X, is a basis
of G satisfying the following condition:

for every «, f € R one has

ad(we (Xa))Xs = £X,_(8),
where w,(X,) = exp(X,exp(—X; 1) exp(X,), and s, denotes the reflexion
given by a.

Let a, 8, + 8 € R, then one has

[XouXﬁ] = :I:pX(x+Ba
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where p > 0 is the smallest integer so that 5 — pa is not a root (cf. [23], Exp.
XXIII, Definition 6.1). The following result holds:

“Let G be an S-group endowed with a frame (T, M, R, Ry, (X))
there exists a Chevalley system (X, )aecr of G so that

aeRo)' Then

Vo € Ry Xo =X\

Let U = Ug, be the unipotent radical of Br, , one defines Uyg = Zo3NU. The
unipotent group Uy, is generated by the set of root subgroups (Py)yer,snR. ;
satisfying the following commutation relations. Given 7,6 € Rng N Ry there
exists a unique set of constants (Cijh,g){(i J)EN*XN* | iv-+i6€Rap} C Z satisfying:
for all z,y € G,(5") (S" an S — scheme)

there is:

Com) exp(zX,)exp(yXs) exp(X,) ™" = exp(vX;)

[I €XDPiny+j6 (Cij'yt5 zty! Xiv—i-jé) )
(4,5)EN* X N*
ivt+jSER

where it is supposed that the factors are arranged according to some fixed
order of Rag.

C_ (i) For every couple (o, 3) € Ry x Rg and every n € Norm,  (T)(S)
so that int(n)(P,) = P, (resp. int(n)(P,) = Ps) one has:
for every © € P,(S") (5" an S — scheme)

int (fy(r)(n)) fa(z) = fo (int(n) )

(resp. int (fN(T) (n)) fa(x) = fz (int(n) ac)) .
(ii) Let fap: Uap= ]I P, — H be defined by the set (f,) er.snr,
YERasNR
and the composition morphism of . Then f,3 must satisfy the set of relations
(Com)’ obtained as the image by f.s of the set of relations (Com).
Thus one obtains conditions “a.”, “b.”, and “c.” in terms of generators and
relations as follows. One has the following implications:

“A 7 =%a” (resp. “A_and B "=“b.” “A /B _,and C_" =“c.”).

Conditions (i) and (ii) of C'_ are made explicit for each type of rank 2 group
in 23], Exp. XXIII (cf. sections 3, 3.1, 3.2, and 3.4 respectively for groups of
type A1 + Al, AQ, B27 and GQ.

If S is given by the spectrum of an algebraically closed field k, i.e. S =
Spec(k), then the above defining relations for a morphism f: G — H, give
rise to an explicit description of the group in terms of generators and relations
(cf. [23], Exp. XXIII, 3.5.3).
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The isomorphism Aut(I(G)) ~ G®¢ generalizes the fundamental theorem of
projective geometry (cf. [50]). The proof of this isomorphism is obtained by
reducing the general case to the case of a rank 2 building (cf. [50], Th. 4.1.1,
and Th. 4.1.2).

Observe that E5(C) = |J ChStg
the building I(Z,3) of Z.zs.

As Z,p(k) is a rank 2 group, one may suppose that Aut(I(Z,g)) realizes
as Zg‘é(k) Theorem 4.1.1 of [50] essentially states that the groups Z,(k)
and T generate G(k). The following consequence of the incidence preserving
hypothesis of Th. 4.1.2 of [50] suggests that incidence implicitly corresponds
to the above defining relations of G(k):

Let A C I (resp. A’ C I') be an apartment of the building I (resp. I'),
and C € Ch A (resp. ¢’ € Ch A’). Given an isomorphism o« : A — A,
and v : Ey(C) — E2(C") an adjacence preserving mapping which coincides
with o on AN E(C). Then o and ~y are restrictions to A and E3(C) of an
isomorphism of I onto I’.

and that Stg__, may be identified with

aB? aB
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