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Preface 

This work first aims at introducing the minimal generalized galleries in 
the Tits building of a reductive group G over a field k, and at constructing 
a family of equivariant smooth resolutions for its Schubert varieties, which 
may be described by these galleries in terms of Tits geometry (cf. [47],  
Ch. 6–9). The second aim is to:
 • introduce the Universal Schubert scheme and Schubert schemes of 

a reductive S-group G scheme, where S denotes an arbitrary base 
scheme, and its description by transposing the buildings terminology 
to this relative situation;

 • construct a canonical equivariant Resolution of Singularities of the 
Universal Schubert scheme of G, which amounts to the construction 
of smooth Resolutions for each Schubert scheme;

 • study the behaviour of these Resolutions under base extensions  
S’ → S.

The canonical Schubert scheme smooth resolution is obtained after 
a twisted constant finite extension of S. Under certain conditions these 
smooth resolutions are obtained as the fibers of the Universal Smooth 
Resolution of G. All these constructions rely on combinatorial data only. 
Techniques, definitions, and verifications of this part of the work are 
schematical and developed in the setting of S-reductive group schemes. 
This may be of interest as until now, few resolutions of singularities of 
algebraic varieties which are valid on fields of characteristic p are known.

The first seven chapters are written in the usual algebraic geometric 
style over a field language, as in Hartshorne’s book [33]. They are relatively 
self-contained, and give an overview of the subsequent developments in the 
case of the linear group Gl(kr+1) over a field k, or even over a base scheme 
S, thus they furnish both a guide and an example of the results of the rest 
of the book. The classical Schubert varieties of a linear group appear as 
subvarieties of the Flag varieties associated to kr+1 (resp. the projective 
space P(kr+1)). They are indexed by couples formed by a matrix M (The 
relative position matrix) with non negative integers as entries, and by a 
flag D of kr+1. A flag belongs to a Schubert variety if its subspaces satisfy 
intersection dimensional conditions defined by its corresponding couple.
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The Schubert varieties of the Grassmann variety Grassn(kr+1) of 
n-dimensional linear sub-spaces of kr+1 correspond to the classical 
Schubert varieties, for k = R, or C, which play an important role in 
Topology (cobordism theory), Algebraic Geometry, Representation Theory, 
determinantial ideals, and Singularity Theory, particularly in the definition 
of Boardman-Thom singularities. These varieties have been studied for a 
long time by classical authors in connection with ennumerative geometry 
problems. One of the main results was obtained by F. Severi and (his 
student) J. Todd, who first obtained a formula for the arithmetic genus of 
a subvariety of the projective space in terms of the intersection properties 
of Schubert varieties. Ehresmann proved that “the classes defined by the 
Schubert varieties of Grassn(kr+1), give a basis of their Z-homology (resp. 
cohomology)” [28]. Characteristic classes of a non-singular algebraic variety 
may be defined, by means of a classifying map, as the pull-back of special 
Schubert Varieties. More generally Chevalley-Demazure proved that the 
Chow ring of generalized Flag varieties (Varieties of parabolics) is given in 
terms of Schubert varieties. The cohomological point of view was further 
developed in A. Borel thesis in terms of the transgression homomorphism. 
Finally, invariant differential forms were obtained by A. Weil and S. Chern 
representing dual classes of Schubert varieties.

Equivariant smooth resolutions of singularities of Schubert varieties 
are obtained as Configurations varieties. The underlying sets of points 
of these varieties are subsets of finite products of Flag varieties (resp. 
Grassmann varieties) of kr+1, or more generally subsets of finite products 
of the Flag complex of kr+1, defined by the incidence relation between flags. 
The Flag complex of kr+1 is a simplicial complex whose vertices correspond 
with subspaces, and its simplices with flags of kr+1. It is endowed with a 
natural incidence relation: Two subspaces of kr+1 are incident if one of 
them is contained in the other one (cf. [47], 1.2). A finite graph is naturally 
associated with a Configurations variety, such that to each one of its vertices 
is associated a type of a flag, and to each one of its edges a type of incidence 
of flags. Such a graph is called a typical graph.

A generalized gallery of the Flag complex is, by definition, the image 
of a linear typical graph by a mapping preserving types, and corresponds 
to a point of a Configurations variety defined by this graph. Among the 
linear typical graphs are the minimal generalized galleries of types 
characterized as linear typical graphs defining Configurations varieties 
birationally equivalent to Schubert varieties. To such a linear graph is 
thus associated the relative position matrix indexing the Schubert variety 
birationally equivalent to the Configurations variety defined by this linear 
graph. A minimal generalized gallery of the Flag complex may be seen 
as a generic point of such a Configurations variety. It is worth noting that 
minimal generalized galleries, which play a central role in this work, are 
characterized by a combinatorial property.

For a Schubert variety of Gl(kr+1), a family of Configurations varieties, 
which are smooth resolutions of this variety, is thus obtained. To a relative 
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position matrix is associated a typical graph (resp. a minimal generalized 
gallery of types), thus defining a canonical smooth resolution of a Schubert 
variety defined by this matrix. As an application of these canonical smooth 
resolutions a characterization of the Singular Locus of the Schubert 
varieties of Gl(kr+1), which holds for all characteristics, is given. In fact, 
this was the first such characterization (Author Thesis 1983, cf. [16]).

This result is completed by the construction of Configurations varieties 
giving a Nash smooth resolution of singularities for each Schubert 
variety in a Grassmannian, i.e. the pull back of the tangent module to the 
corresponding Schubert cell admits a locally free extension to this smooth 
resolution.

The subcomplex of the Flag complex whose simplices are given by the 
flags adapted to the canonical basis of kr+1(The canonical Apartment), 
plays the main role in the determination of minimal generalized galleries, 
and relate this determination to calculations in the symmetric group in 
r +1 letters.

To generalize the above results for Gl(kr+1) to a reductive k-group G 
observe that the Flag complex of kr+1 may be rendered solely in terms of 
the linear group by means of the bijective correspondence D ↦ PD, where 
PD denotes the stabilizer of D in Gl(kr+1) (as it follows from a result of 
A. Borel-Cl. Chevalley, cf. [6], Th. 11.16). Thus the stabilizers of flags 
correspond to the parabolic subgroups of the linear group, i.e. the smooth 
subgroups P such that the quotient space Gl(kr+1)/P is a projective variety. 
Then the incidence relation between flags corresponds with the opposite 
of the inclusion relation between parabolics, and generalized galleries 
become configurations of parabolics defined by the incidence relation. This 
correspondence establishes a simplicial complex isomorphism between the 
Flag complex of kr+1 and the Tits Building I(Gl(kr+1)). Recall that the Tits 
Building I(G) of the k-reductive group G is the simplicial complex whose 
simplices are the parabolic subgroups of G, endowed with the incidence 
relation given by the opposite relation to the inclusion of parabolics (cf. 
[47], Ch. 5). All the definitions stated in the setting of Flag complex may 
be naturally transposed to that of general buildings. As a particular case a 
minimal generalized gallery (resp. Configurations varieties) in a building 
I(G) of a reductive k-group G is defined following the same pattern of 
its corresponding definition in the Flag complex, i.e. as a generic point 
of a Configurations variety defined by a minimal generalized gallery of 
types (resp. as a set of images in I(G) of a typical graph by typical graphs 
morphisms). The construction of a family of smooth resolutions of Schubert 
varieties of a reductive k-group G may be thus carried out by determinig 
the minimal generalized galleries in an apartment.

The Apartment of the Flag complex of kr+1 corresponds to the 
subcomplex of I(G) defined by the Weyl group of G endowed with the 
canonical generating reflexions (The Coxeter Complex of G). The latter 
plays the same role in the determination of minimal generalized galleries 
in I(G) that the former one in the Flag complex.
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There is a threefold reason for introducing the relatively heavy 
machinery of building theory in the study of Schubert varieties and their 
smooth resolutions:
 • Smooth resolutions appear as classes of linear subcomplexes of I(G), 

i.e. families of generalized galleries whose corresponding galleries of 
types are defined by minimal generalized galleries in I(G).

 • Relations between these smooth resolutions may be easily stated in 
I(G) (Adjacency, composition).

 • By means of the Incidence Geometries associated to buildings, 
geometrical representations of smooth resolutions may be obtained in 
algebraic symmetric spaces, or in terms of well known combinatorics 
(The twenty seven lines on a cubic surface complex, the twenty eight 
bitangents to a plane quartic complex … etc.).

  As an example the geometric realization of I(G(l(kr+1)) is given by the 
flags of Pr(k), and that of an apartment by the barycentric subdivision 
of the r-dimensionnal simplex. Thus the geometric realization of 
I(G) furnishes a natural frame to develop Schubert calculus and 
Configurations varieties, as in the case of the linear group (cf. 
Appendix).

Chapters 11 to 15 are written in the schematically setting. The technical 
results concerning the schematic closure needed in our developments are 
all included in the last two sections of Chapter 15. A Schubert scheme of G 
is defined as the schematic closure of a Schubert cell in the Parabolics 
scheme of G (cf. [23], Ch. XXV). The Schubert cells of a reductive S-group G 
over an arbitrary base scheme S are defined in terms of couples of parabolics 
in standard position, i.e. such that they contain locally in S a common 
maximal torus of G. These couples are classified modulo the adjoint action 
of G on the scheme of couples of parabolics in standard position, by the 
twisted constant finite scheme of types of relative positions. The above 
definition makes sens as Schubert cells are quasi-compact if S is affine, 
and the Parabolics scheme of G is projective and thus separated.

It is shown how all the building constructions above, in the case of a 
reductive group over an algebraically closed field, may be carried out in the 
relative case to produce resolutions of singularities of Schubert schemes 
associated to a reductive S-group scheme G.

The construction of galleries configurations smooth resolutions of 
Schubert schemes may be carried out once the basical building machinery 
is extended to reductive S-groups. The parabolic subgroups scheme Par(G), 
endowed with the incidence relation, plays the role of a relative building. 
Remark that the only couples of parabolics that we consider in this setting 
of the relative building, are those in standard position (cf. loc. cit.). 
Actually, the relevance of the incidence relation is that it allows defining 
configurations subschemes of finite products of Par(G). The complexes 
associated to buildings (Weyl complex, typical simplex, convex hulls, root 



subcomplexes,...etc.) become, in this setting, twisted constant finite schemes 
endowed with incidence relations. These schemes are all defined by etale 
descent from the case where G is splitted.

In order to make all constructions intrinsic the Universal Schubert 
scheme and its Universal Smooth Resolution are introduced. The 
former is naturally a scheme over that of types of relative positions, and 
the latter a scheme over that of minimal galleries of types. The main fact 
is that the Universal Smooth Resolution is a canonical smooth resolution of 
the Universal Schubert scheme, after the twisted constant finite extension 
of the scheme of types of relative positions by the scheme of minimal 
galleries of types.

The question arises naturally arises as to know whether the construction 
of the smooth resolutions of the Schubert schemes associated to a reductive 
S-group scheme G commutes with base extensions S' → S. Chapter 16 is 
devoted to this question. The Universal smooth resolution of the Universal 
Schubert Scheme associated to a Chevalley group scheme G over Z defined 
by a Z-root data R is introduced and it is shown that there exists an open 
not-empty subset U of Spec(Z) with the following property. The Universal 
Smooth resolution of GU commutes with the base extensions S → U.

Roughly speaking that means that the above Global smooth resolution 
connects (almost) all the possible characteristic p smooth resolutions 
of all Schubert schemes corresponding to groups of type R. It follows a 
condition on S so that the construction of the Universal smooth resolution 
of a reductive S-group scheme G commutes with base extensions S' → S.

In the Appendix we establish a correspondence between the main 
theorems of [47] concerning automorphisms group of a building I(G) of a 
reductive group on an algebraically closed field and the canonical set of 
generators and relations defining G as given in SGA3. This suggests how 
building calculations may be expressed into canonical generators and 
relations. It is also dicussed how the constructions of this work may be 
represented in the Tits incidence geometries corresponding to the reductive 
groups of differents types (Schubert Geometry), and how different smooth 
resolutions given by different galleries are related by braid relations.

One of the aims at the outset of this work was to find a common setting 
for the smooth resolutions given by configurations varieties associated to 
flag varieties (cf. [12] and [13]), and the smooth resolutions, associated 
to Schubert varieties in a quotient space G/B of a k-reductive group by a 
Borel subgroup (cf. [21]). The latter are given by the contracted products, 
corresponding to usual minimal galleries, first introduced by R. Bott and 
H. Samelson in [7], and generalizing a construction of M. Morse in [38].

The author thanks Professor P. Deligne that once remarked him that 
the above mentioned smooth resolutions by configurations varieties may be 
rendered by some kind of minimal gallery; and professor Lê Dũng Tráng, 
who first suggested that he should write this book.

Carlos Contou-Carrère
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Chapter 1

Grassmannians and Flag
Varieties

This chapter is an introduction to a building point of view for describing
Grassmann varieties (resp. flags varieties) of kr+1 (where k denotes a field).
The combinatorial grassmannians associated with a finite set are introduced.
The elements of this set correspond to the subspaces of kr+1 adapted to the
canonical basis. They index the canonical affine open sets of Grassmann va-
rieties and allow a geometrical interpretation of their natural coordinates.
Generally the set of combinatorial flags, corresponding to the flags of kr+1,
adapted to the canonical basis, indexes the affine canonical open sets of flags
varieties. The algebraic variety structure of Grassmannians (resp. flag va-
rieties) is defined in terms of local canonical coordinates in these open sets.
The natural fibering in Grassmannians of flag varieties is obtained. Their pro-
jective variety structure over k is shown in terms of the Plücker and Segre’s
embeddings.

1.1 Grassmann variety and combinatorial grassmannian

Let k be a field. Given a finite set E 6= ∅ (resp.F 6= ∅), we denote by kE

the k-vector space with a basis eE = (ei)i∈E (the canonical basis of kE)
indexed by E, and ME×F (k) stands for the set of k-matrices M with rows
(resp. columns) indexed by E (resp. F ), endowed with the canonical k-vector
space structure. Write k∅ = {0}.

For n ∈ N, let Grassn(kE) be the set of n-dimensional subspaces of kE .
Of course, if |E| < n, then Grassn(kE) is an empty set, where given a finite
set F we put |F | = cardinal of F . Write:

1
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Grass(kE) =
∐
n∈N

Grassn(kE) .

With the aim of defining a k-variety structure on Grassn(kE) we introduce
the combinatorial grassmannian defined by the finite set E; given by the
class of its subsets

Grass(E) =
∐
n∈N

Grassn(E) = P(E) ,

where Grassn(E) = Pn(E) denotes the class of subsets of E containing n
elements (cf. [50]). To a not empty subset H of E is associated a direct sum
decomposion

kE = kH ⊕ kH
⊥
,

with H⊥ = E−H and kH the k-vector subspace with canonical basis indexed
by H ⊂ E. Denote by πH : kE −→ kH (resp.πH⊥ : kE −→ kH

⊥
) the canonical

projection, and define

UH = {S ∈ Grassn(kE)| rank (πH)S = n} ,

where, given a k-subspace S ⊂ kE , (πH)S (resp.(πH⊥)S) is the restriction
of πH (resp.πH⊥) to S. Denote by eH the canonical basis of kH and given
S ∈ UH let (π)−1

H (eH) be the lifted basis of S.

Definition 1.1 Let S ∈ UH , and M((πH)−1
S (eH)) ∈ME×H(k) be the matrix

whose j-th column vector (j ∈ H) is given by the eE-coordinates of the j-th
vector of the lifted basis of S:

ẽH(S) = (πH)−1
S (eH) = ((πH)−1

S (ej))j∈H

of S, where eH = (ej)j∈H denotes the canonical basis of kH . Denote by

MH(S) = (ξHij (S))(i∈H⊥,j∈H) ∈MH⊥×H(k)

the H⊥ ×H-submatrix of M((πH)−1
S (eH)) given by its H⊥-row vectors. We

call (ξHij (S)) UH-coordinates of S, andMH(S) the UH-coordinates matrix
of S.

Fix a total order on E given by some bijection E ' J1, |E|K. Given H ∈
Grassn(E) there are induced bijections: H ' J1, |H|K (|H| = n) (resp. H⊥ '
J1, |E|− |H|K ). Observe that the lifted basis (πH)−1

S (eH) is naturally ordered
by the order of H induced by that of E. Denote by: (βj)15j5|H| (resp.
(αi)15i5(|E|−|H|)) the corresponding total order of H (resp. H⊥). Write

eH = (eβj )15j5|H| (resp. eH⊥ = (eαi)15i5(|E|−|H|)),
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and given S ∈ Grassn(kE), write ẽH(S) = (ẽβj (S))15j5|H| = (πH)−1
S (eH).

The lifted basis ẽH(S) and the UH -coordinates matrix MH(S) = (ξHij (S)) ∈
M|H⊥|×|H| are related as follows:

ẽβj (S) = eβj +
∑

15i5(|E|−|H|)

ξHij (S)eαi .

Observe that the matrix M((πH)−1
S (eH)) may be obtained from a basis

ẽj =
∑

15i5|E|
aijei (1 5 j 5 |H|) of S by normalization. Write A((ẽj)) =

(aij) ∈ M|E|×|H|(k) (the |E| × |H|-matrices with k-coefficients) and denote
by A((ẽj))H the |H| × |H|-submatrix defined by the row vectors of A((ẽj))
indexed by H. The condition S ∈ UH implies that A((ẽj))H is an invertible
matrix. The result is:

M((πH)−1
S (eH)) = A((ẽj))×A((ẽj))

−1
H .

Thus the matrix MH(S) is the |H⊥|× |H|-submatrix of A((ẽj))× (A((ẽj)))
−1
H

whose row vectors are indexed by H⊥. Observe that the image of the j-th
column vector of the submatrix A((ẽj)) × A((ẽj))

−1
H by (πH)S is the j-th

vector of the basis eH ordered by the order of E.

Definition 1.2 Denote by M∗E×H(k) ⊂ ME×H(k) the subset of rank |H|-
matrices. We say that M ∈M∗E×H(k) is normalized if its H ×H-submatrix
(aαβ) satisfies (aαβ) = (δαβ).

The particular case where E is totally ordered and H ⊂ E is endowed with
the induced order is of interest for us. The coefficients of M may be ordered
accordingly. In this case every matrix A ∈M(|E|−n)×n(k) gives rise to a E×H-
normalized matrix in a canonical way. It may be noted thatM((πH)−1

S (eH)) ∈
M∗E×H(k) is a normalized matrix.

On the other hand, the set Grassn(kE) identifies with the set of equiva-
lence classes: M∗E×J1,nK(k)/ ∼, defined by the equivalence relation:

M ∼M ′ ⇐⇒M = M ′ × Λ ,

where Λ ∈ Gl(kn). The equivalence relation “ ∼ ” is defined by the canonical
mapping M∗E×J1,nK(k) −→ Grassn(kE), associating with A = (aαj) the k-
subspace kE , S = V ect((

∑
aαjeα)). There is a canonical section of this

mapping on UH given by S 7→ M((πH)−1
S (eH)) (cf. definition 1.15). The

fiber of this mapping over the subspace S identifies with the set of its ordered
basis (cf. definition 1.15).

Given a subspace S and H,H ′ ∈ Grassn(E) we shall now compare its
UH -coordinates with its UH′-coordinates. Let H ′ ∈ Grassn(E) such that
S ∈ UH ∩UH′ . It results from the above description of the coordinates matrix
(ξHij (S))(resp. (ξH

′

ij (S))) the following relation:
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(ξH
′

ij (S)) = ψ(H′,H)((ξHij (S))),

where ψ(H′,H) denotes a rational function of the UH -coordinates of S.
More precisely stated, the affine space AH = A(MH⊥×H(k)) defined by the

k-vector space of H⊥×H-matrices with coefficients in k is the k-variety with
coordinates ringing the polynomial algebra k[XH

ij ] in the set of indeterminates
(XH

ij )(i,j)∈ H⊥×H , and ψ(H′,H) is a rational function in the variables (XH
ij ).

Let AHH′ ⊂ AH denote the domain of definition of ψ(H′,H), which is an open
Zariski subset of AH .

On the other hand, there is a bijective mapping UH −→ AH defined by the
UH - coordinate matrix S 7→MH(S). The intersection UH ∩UH′ , corresponds
by this mapping, to the set of k-points AHH′(k) of AHH′ , and, as it is easy
to see, the rational function ψ(H′,H) induces an isomorphism of k-varieties:

ψ(H′,H)|AHH′ : AHH′ −→ AH′H ,

which for the sake of briefnnes is denoted by ψ(H′,H). The set
(ψ(H′,H))(H′,H)∈Grassn(E)×Grassn(E) satisfies the cocycle condition:

ψ(H′′,H) = ψ(H′′,H′) ◦ ψ(H′,H) .

Thus, the couple ((AH)H∈Grassn(E), (ψ
(H′,H))) defines a k-variety. It is im-

mediate that, by construction, its underlying set of k-points corresponds to
Grassn(kE).

Definition 1.3 If no confusion arises denote also by Grassn(kE) this variety
(the Grassmann variety of the n-th dimensional subspaces of kE),
and write:

Grass(kE) =
∐

n∈N,n5|E|

Grassn(kE)

(The Grassmann variety of kE). By construction, the indexed set
(UH)H∈Grassn(E) defines an affine open covering

Grassn(kE) = ∪
H∈Grassn(E)

UH

(the canonical open covering of Grassn(kE))

Remark 1.4 There is a natural action of the k-group Gl(kE) of k-
automorphisms of kE on Grassn(kE):

Gl(kE)×Grassn(kE) −→ Grassn(kE),

(g, S) 7→ g · S. This action may be easily proved, in terms of UH-coordinates,
to be algebraic and homogeneous. We shall later prove that Grassn(kE) is
in fact isomorphic to an homogeneous space defined by a subgroup of Gl(kE).
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1.1.1 Grassmannian functor

The following section gives a brief functorial approach to the Grassmannian
variety. We refer the reader to [24] for more details. Let G rassn(kE) be the
k-functor, from k-algebras to Sets, associating to a k-algebra A the set of rank
n projective A-submodules M of AE .

It is well-known that G rassn(kE) is a sheaf for the Zariski topology. There
is a functorial isomorphism

ι : Grassn(kE) −→ G rassn(kE)

defined by ιA : s 7→ Γ(Spec(A), s∗(ξn)), where s denotes a section s :
Spec(A) −→ Grassn(kE), and ξn the tautological OGrassn(kE)-module (cf.
1.13).

On the other hand, if A is a local ring the set G rassn(kE)(A) identifies with
the set of equivalence classes of rank n E× J1, nK-matrices with coefficients in
A: M∗E×J1,nK(A)/ ∼, defined by the equivalence relation: M ∼ M ′ ⇐⇒ M =

M ′×Λ, where Λ ∈ Gl(An). By construction of Grassn(kE) and by using the
section of M∗E×J1,nK(k) −→ Grassn(kE) on UH obtained by normalization of
a matrix defining a basis of S, it follows that ιA is a bijection, and finally,
by a standard argument that ι is a functorial isomorphism. Equivalently
G rassn(kE) may be described as associating with a k-algebra A the set of
locally trivial OSpec(A)-submodules M of OE

Spec(A) which are locally direct
factors.

1.2 The Plücker embedding of the Grassmannian

A Grassmann variety may be canonically embedded in a projective space as
a closed subvariety thus proving that it is a projective variety. Assume that
the canonical basis eE of kE is an ordered basis. Denote by eE = (ei)i∈E the
canonical basis of kE , and fix a total ordering of E which gives an ordered
basis of kE . Let H ∈ Grassn(E). We suppose H endowed with the induced
ordering, and we write H = {i1, ..., in} with i1 < ... < in, and i1(H) =

i1, ..., in(H) = in. The n-th exterior product
n∧
kE of kE is endowed with the

canonical basis
∧
eE = (∧eH)H∈Grassn(E) = (ei1(H) ∧ ... ∧ ein(H))H∈Grass(E).

There is a mapping

iP = iP,n : Grassn(kE) −→ P(

n∧
kE) = Grass1(

n∧
kE ,

where P(
n∧
kE) denotes the projective space associated with

n∧
kE , defined as

follows. Let ẽ = (ẽj)15j5n be a basis of S. Write: ẽj =
∑|E|
i=1 aijei, and

A(ẽ) = (aij). The result is:

ẽ1 ∧ ... ∧ ẽn =
∑

H∈Grass(E)

∆H(ẽ)ei1(H) ∧ ... ∧ ein(H) ,
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where ∆H(ẽ) = detA(ẽ)H , and A(ẽ)H denotes the |H| × |H|-submatrix
defined by the H-rows of A(ẽ). The mapping iP associates with S ∈
Grassn(kE) the point of P(

n∧
kE) with homogeneous coordinates (resp.

Plücker coordinates)(∆H(ẽ))H∈Grassn(E). Let us see that this mapping is

well defined, i.e. that the point in P(
n∧
kE) corresponding to S does not depend

on the choice of the basis ẽ defining its homogeneous coordinates. If ẽ′ is an-
other basis of S, we might then write A(ẽ′) = A(ẽ)×B, where B ∈ Gl(k|H|).
Thus for H ∈ Grassn(E) the result is (∆H(ẽ′)) = (det(B)∆H(ẽ)) proving
that the image is independant of the choice of a basis of S.

In fact, the mapping iP is induced by a morphism of k-varieties

Grassn(kE) −→ P(
n∧
kE). So to see this we write (xH)H∈Grassn(E) for the

homogeneous coordinates in the projective space P(
n∧
kE) defined by the basis∧

eE of
n∧
kE and given H0 ∈ Grassn(E), let ( xHxH0

)H∈Grassn(E) be the affine
coordinates of the open affine set:

P(H0) = {(xH) ∈ P(

n∧
kE) | xH0

6= 0} .

Lemma 1.5 Keep the above notation and terminology.

1) The restriction mapping iP,H0 : UH0 −→ P(H0) is given by iP,H0 : S 7−→
( ∆H(ẽ)

∆H0
(ẽ) )H∈Grassn(E), where ẽ is a basis of S, and is induced by a mor-

phism of k-varieties, which we denote also by iP,H0
.

2) The morphism iP,H0
defines a closed embedding.

Proof Given S ⊂ kE corresponding to a point x ∈ UH0
, let ẽ be a basis of S,

ẽH0
(S) = (πH0

)−1
S (eH0

) = (ẽβj (S))15j5n the normalized basis of S defined as
in 1.1 , and MH0

(S) = (ξH0
ij (S)) (1 5 i 5 |H⊥0 |, 1 5 j 5 |H0|) the coordinate

matrix. Thus:

ẽβj (S) = eβj +
∑

1≤j≤|H⊥0 |

ξH0
ij (S)eαi .

From A(ẽ)×A(ẽ)−1
H0

= A(ẽH0
(S)) one deduces:

(∀ H ∈ Grassn(E))
∆H(A(ẽ))

∆H0(A(ẽ))
= ∆H(A(ẽH0(S))) .

The right member being a polynomial in the (ξH0
ij (S)) one concludes that the

P(H0)-affine coordinates of S are polynomials in the MH0
= (ξH0

ij (S)). This
proves our first assertion.

The second statement of the lemma follows from the following relation
between the coordinates matrix MH0

(S) and the affine coordinates iP,H0
:
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S 7→ ∆H(A(ẽH0(S))) of S. Observe that ∆H0(A(ẽH0(S))). Let H0(i, j) =
{i} ∪ (H − {j}) for (i, j) ∈ H⊥0 ×H0, then:

∆H0(i,j)(ẽH0(S))

∆H0
(ẽH0

(S))
= ξH0

ij (S).

From the proof of 1) it can be deduced that there exists a family of polynomi-
als (PH((Xij)))H∈Grassn(E) satisfying ∆H(ẽH0

(S))

∆H0
(ẽH0

(S)) = PH((
∆H0(i,j)(ẽH0

(S))

∆H0
(ẽH0

(S)) )).
Thus the image of iP,H0 is the closed subvariety of P(H0) defined by the ideal
given by ( xHxH0

− PH(
xH0(ij)

xH0
))H∈Grassn(E). This suffices to show that iP,H0

defines a closed embedding.

Thus we have the following

Proposition 1.6 The family of embeddings (iP,H)H∈Grassn(E) defines an

embedding of k-varieties iP : Grassn(kE) −→ P(
n∧
kE) called the Plücker em-

bedding. More precisely, given H0, H1 ∈ Grassn(E) there is an isomorphism
UH0
∩UH1

w UH0
×

P(
n∧
kE)

UH1
induced by iP,H0

× iP,H1
. In fact, Grassn(kE)

is a proper k-variety, and thus iP is a closed embedding (cf. [24], §9, [25]).

Proof The coordinates transformation cocycle, defined on P(H0)∩P(H1), from
the affine coordinates ( xHxH0

) on P(H0) to affine coordinates ( xHxH1
) on P(H1)

is given by xH
xH1

=
xH0

xH1

xH
xH0

. Accordingly the H1-affine coordinates ( ∆H(ẽ)
∆H1

(ẽ) )

of S, are related to the H0-affine coordinates ( ∆H(ẽ)
∆H0

(ẽ) ) of S by: ∆H(ẽ)
∆H1

(ẽ) =
∆H0

(ẽ)

∆H1
(ẽ)

∆H(ẽ)
∆H0

(ẽ) . Thus the family of embeddings defines a morphism. We now
proceed to show that this morphism is itself an embedding.

Given a section (S, S′) of UH0
×

P(
n∧
kE)

UH1
, the P(U0)-affine coordinates

(resp. P(U1)-affine coordinates) of iP,H0
(S) (resp. iP,H1

(S′)) are given by
the

∧
eE-components of the exterior product ∧ẽH0(S) = ẽH0,1(S) ∧ · · · ∧

ẽH0,n(S) (resp. ∧ẽH1(S) = ẽH1,1(S) ∧ · · · ∧ ẽH1,n(S)). As by hypothe-
sis iP,H0

(S) = iP,H1
(S′), there exists a section λ of O∗

P(
n∧
kE)

satisfying

∧ẽH0
(S) = λ(ẽH0,1(S)). On the other hand, the set of sections v (resp. v′) of

S (resp. S′) is characterized by ∧ẽH0
(S)∧ v = 0 (resp. ∧ẽH1

(S)∧ v′ = 0), so
we conclude that S = S′.

Let us see that Grassn(kE) is a proper variety and then its image by iP
in P(

n∧
(kE)) is also proper and thus, a closed subset of P(

n∧
(kE)). Let K be

a field extension of k endowed with a valuation v, and with integers subring
AK ⊂ K. Given a K-vector subspace S ⊂ KE it may be shown that there
exists an AK-submodule SAK ⊂ AEK satisfying: S = K ⊗AK SAK and giving
a AK-section of Grassn(kE). Let (∆H(S)) be the homogeneous coordinates
of S calculated with respect to some basis of S. Choose H0 ∈ Grass(E) such
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that the valuation v(∆H0(S)) is minimal amongst the set (v(∆H(S))). Define
SAK = V ect((ẽj)j∈H0

), where:

ẽj = ej +
∑
i∈H⊥

∆H0(i,j)(S)

∆H0
(S)

ei .

It is clear that the generic fiber K ⊗AK SAK of SAK is equal to S, and that
SAK is a direct factor of AEK . By the valuation criterium it may be concluded
that Grassn(kE) is a k-proper variety, and that iP is a closed embedding.
This proves the last assertion.

Remark 1.7 The exterior product
n
∧kE is a Gl(kE)-representation, so there

is a natural action of Gl(kE) on P(
n
∧kE). The Plücker morphism iP is Gl(kE)-

equivariant.

1.3 Flag varieties

Flag varieties are natural generalizations of Grassmannians. Let n = (n1 <
... < nl < nl+1) be an increasing sequence of positive integers with nl+1 = |E|.
Define the set of flags of kE of type n by:

Drapn(kE) = {(V1 ⊂ ... ⊂ Vl ⊂ Vl+1) | Vi = ni-dimensional subspace of kE }.

Thus Drap(kE) is the subset of the set theoretic product:

l+1∏
i=1

Grassni(k
E) =

l∏
i=1

Grassni(k
E),

formed by the (Vi)15i5l+1 satisfying the inclusion conditions Vi ⊂ Vi+1 for
1 5 i 5 l. More precisely stated, there is a subfunctor Drapn(kE) of
l∏
i=1

Grassni(k
E), from k-algebras to sets, associating with A the set of flags

of projective submodules of AE of type n (cf. [24]). The set of sections of
Drapn(kE) over k is given by Drap(kE).

Let us show that Drapn(kE) is the underlying set of a k-subvariety of

the product of k-varieties
l∏
i=1

Grassni(k
E) (i.e. that it is representable by a

k-scheme of finite type). Observe that there is a closed embedding:

l+1∏
i=1

i
(ni)
P :

l+1∏
i=1

Grassni(k
E) −→

l+1∏
i=1

P(
ni∧
kE)

given by the product of the corresponding Plücker embeddings.
It suffices to see that there is a set of equations in the Plücker coordinates

of the Vi’s, characterizing the image of the composed morphism of functors:
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Drapn(kE) −→
l+1∏
i=1

P(
ni∧
kE),

for l = 2. Let V1 (resp.V2) be am-dimensional (resp. n-dimensional) subspace
of kE . We suppose m < n. Let e1 = (e1i)15i5m (resp. e2 = (e2j)15j5n) be a
basis of V1 (resp. V2).

The Plücker coordinates of V1 (resp. V2) are thus given by
(∆H(e1))H∈Grassm(E) (resp.(∆J(e2))J∈Grassn(E)), with:

e11 ∧ ... ∧ e1m =
∑

H∈Grassm(E)

∆H(e1)ei1(H) ∧ ... ∧ eim(H)

(resp. e21 ∧ ... ∧ e2n =
∑

J∈Grassn(E)

∆J(e2)ei1(J) ∧ ... ∧ ein(J)).

Let v =
∑

15i5|E|
xiei ∈ kE , then

e11 ∧ ... ∧ e1m ∧ v =
∑

K∈Grassm+1(E)

φK(e1, v)ei1(K) ∧ ... ∧ eim+1(K)

(resp.

e21 ∧ ... ∧ e2n ∧ v =
∑

L∈Grassn+1(E)

φL(e2, v)ei1(L) ∧ ... ∧ ein+1(L)) .

Here the (φK(e1, v))K∈Grassm+1(E) (resp. (φL(e2, v))L∈Grassn+1(E)) are lin-
ear forms in the (xi)15i5|E| with coefficients in the set of coordinates
(∆H(e1))H∈Grassm(E) (resp. (∆J(e2))J∈Grassn(E)). The following proposi-
tion is easily verified.

Proposition 1.8 The kernel of the linear mapping:

kE −→
m+1∧

kE ×
n+1∧

kE

defined by:

v 7−→ ((e11 ∧ ... ∧ e1m) ∧ v, (e21 ∧ ... ∧ e2n) ∧ v)

is equal to V1 ∩ V2. Hence, if we denote by r the rank of the linear system:

(φH(e1, v) = 0)H∈Grassm+1(E); (φJ(e2, v) = 0)J∈Grassn+1(E))

we have r = |E|−dim V1∩V2. Thus the inclusion condition V1 ⊂ V2 translates
as “r = |E| −m”, i.e. r =the minimal possible rank of this linear system.
It follows that the inclusion condition V1 ⊂ V2 is obtained as the simultaneous
vanishing of the set:

(Mα((∆H(e1)); (∆J(e2)))

of the (|E| −m+ 1)-minors of this linear system.
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It results from this the:

Proposition 1.9 The subset Drapn(kE) ⊂
l+1∏
i=1

Grassni(k
E) is the underlying

set of a k-subvariety which we denote also by Drapn(kE) if no confusion

arises. The product action of Gl(kE) on
l+1∏
i=1

Grassni(k
E) stabilizes Drapn(kE)

and induces a transitive left action (resp. an homogeneous action) of Gl(kE)
on Drapn(kE).

Remark 1.10 The use of the term k-subvariety is rather abusive. The above
equations characterize the subfunctor on k-algebras

Drapn(kE) ⊂
l+1∏
i=1

Grassni(k
E)

associating with a k-algebra A the set of flags D of local direct summands of
AE of type n = (0 < n1 < ... < nl < nl+1 = |E|), i.e. the β-th module of D
being of rank nβ. Thus it follows that Drapn(kE) is representable by a finite
type k-scheme. We shall later prove that Drapn(kE) is, in fact, a k-variety in
Serre’s sense from its decomposition in a sequence of locally trivial fibrations
with grassmannians as basis and typical fiber. On the other hand, there is a
functorial isomorphism:

ι : Drapn(kE) −→ Drapn(kE),

defined by ιA : s 7→ Γ(Spec(A), s∗(ξn)), where s : Spec(A) −→ Drapn(kE)
denotes a section and ξn the canonical flag on Drapn(kE). (cf. 1.13)

Write:

Drap(kE) =
∐

n∈typ(E)

Drapn(kE) (the flag variety of kE),

where:

typ(E) = {n ∈ N∗l+1 | n = (0 < n1 < ... < nl < nl+1 = |E|) } ,

i.e. the set of length (l + 1) strictly increasing sequences of positive integers
with nl+1 = |E|. Denote by typ(E) the set of types of combinatorial flags
of E. Consider that Grassn(kE)=Drap(n<|E|)(k

E).
Write typ(D) = n = (0 < n1 < ... < nl < nl+1 = |E|), if D = (V1 ⊂

... ⊂ Vl ⊂ kE), with dim Vi = ni (1 5 i 5 l + 1). One says that l is
the length of D , and that n is the type of D . Write l(D) = l. Define
typ : Drap(kE) −→ typ(E) by typ : D 7→ typ(D).

It is useful considering the combinatorial analogues of the above definitions
for Drap(E). Given n ∈ typ(E) let
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Drapn(E) = {(E1 ⊂ ... ⊂ El ⊂ E) | Ei ∈ P(E) and |Ei| = ni },

and

Drap(E) =
∐

n∈typ(E)

Drapn(E) (The combinatorial flags of E).

Given D = (E1 ⊂ · · · ⊂ El ⊂ El+1) ∈ Drap(E) write typ(D) = (|E1| <
· · · < |El| < |El+1|), l(D) = l (length of D), and l(n) = l. Denote the empty
flag by (E), and write typ((E)) = (|E|) (resp. l((E)) = 0). Observe that
if E = Ir+1 = {1, · · · , r + 1} the set Drap(E) may be identified with the
first barycentrical subdivision ∆(r)′ of the combinatorial simplex ∆(r)

defined by Ir+1.

Definition 1.11 Let D = (J1 · · · ⊂ Jl ⊂ E) ∈ Drapn(E). One associates
with D the open affine subset of Drapn(kE):

UD = Drapn(kE) ∩
∏

1≤i≤l(n)

UJi ,

where
∏

1≤i≤l(n)

UJi ⊂
l+1∏
i=1

Grassni(k
E), denotes the product of the open affine

subvarieties UJi ⊂ Grassni(k
E). Remark that UD is the pullback of the

product of open affine sets
∏

P(Ji) ⊂
∏

P(
ni∧kE) by the product embed-

ding
l+1∏
i=1

iP,ni :
l+1∏
i=1

Grassni(k
E) −→

l+1∏
i=1

P(
ni∧
kE), with l = l(n), and that

(UD)D∈Drapn(E) defines an open affine covering of Drapn(kE):

Drapn(kE) = ∪
D∈Drapn(E)

UD (The canonical open covering of

Drapn(kE)).

There is a canonical embedding of Drapn(kE) in a projective space

iS = iS,n : Drapn(kE) −→ P( ⊗
1≤i≤l

ni∧ kE),

obtained by composing the embedding Drapn(kE) −→
l+1∏
i=1

P(
ni∧
kE) with

Segre’s embedding (cf. [24], §9,[25]) defined as follows. Assume that the
basis eE is ordered, and that ⊗

1≤i≤l

ni∧ kE is endowed with the basis

( ⊗
1≤β≤l

∧ eHβ )
H∈

l+1∏
i=1

Grassni (E)
,

where ∧eHβ denotes the ordered product of the canonical basis of kHβ ,
ordered by the lexicographical ordering induced by that of eE . Let
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(xH)
H∈

l+1∏
i=1

Grassni (E)
be the homogeneous coordinates of a point in the pro-

jective space P( ⊗
1≤i≤l

ni∧ kE) relatively to this basis. Given a flag D =

(S1 · · · ⊂ Sl ⊂ kE), and for all β a basis eSβ = (eSβ1, · · · , eSβnβ ) of Sβ ,
write ∧eSβ = eSβ1 ∧ · · · ∧ eSβnβ . Define

iS : D 7→ (∆H1
(S1)× · · · ×∆Hl(Sl))H ,

where H = (H1, · · · , Hl) runs on
l+1∏
i=1

Grassni(E), and

∧eSβ =
∑
H∈Grassnβ (E) ∆H(Sβ)ei1(H) ∧ ... ∧ einβ (H) .

The coefficients (∆H(Sβ)) are the homogeneous coordinates of the image of
Sβ by the Plücker embedding. Thus the homogeneous coordinates of iS(D)
are given by the coordinates of the tensor product ⊗

1≤β≤l
∧ eSβ relatively to

the basis ( ⊗
1≤β≤l

∧ eHβ )H .

Observe that, ⊗
1≤i≤l

ni∧ kE being a representation of Gl(kE), there is a

natural action of Gl(kE) on P( ⊗
1≤i≤l

ni∧ kE) and that the embedding iS is

Gl(kE)-equivariant.

Definition 1.12 We call iS,n the Segre’s embedding of Drapn(kE). It

is obtained by composing the product of Plücker embeddings
l+1∏
i=1

iP,ni with the

Segre embedding of the product of projective spaces
l+1∏
i=1

P(
ni∧
kE) in the projective

space P( ⊗
1≤i≤l

ni∧ kE).

1.3.1 Flag varieties fiber decomposition

We give a k-variety structure, in Serre’s sense, to Drapn(kE) based on its
natural fibering.

Definition 1.13 There is a locally free rank n module ξn over X =
Grassn(kE) defined as follows. Let (UH)H∈Grassn(E) be the canonical open
covering of Grassn(kE). Define ξn in terms of local data. Let x ∈ UH cor-
respond to the subspace S ⊂ kE, and ẽH,x = (ẽi,x)i∈H = (πH)−1

S (eH) be the
lifted basis of S by (πH)S obtained from the canonical basis of kH . We assume
E is totally ordered. A rank n morphism of OUH - modules:

φH : On
UH −→ OE

UH
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may be defined by φH,x : (λi) 7→
∑

1≤i≤n
λiẽi,x. The image ξn,UH = Im φH ⊂

OE
UH

is thus a rank n direct factor submodule satisfying:

(ξn,UH )x = S ,

and φH defines an isomorphism φH : On
UH
' ξn,UH . Thus the family (φ−1

H′ ◦
φH) given by (φH) fulfills the cocycle condition and defines a rank n submodule
ξn of OE

X which we call the tautological module of Grassn(kE).

Let V (kn) denote the k-variety with coordinate ring k[Xi]15i5n (i.e. the
k-variety corresponding to Spec k[Xi]15i5n), and V (φ−1

H′ ◦φH) : (UH ∩UH′)×
V (kn) −→ (UH ∩ UH′) × V (kn) the morphism of k-varieties associated to
φ−1
H′ ◦ φH . From the cocycle condition satisfied by (φ−1

H′ ◦ φH) we deduce that
(V (φ−1

H′ ◦ φH)) also satisfies the cocycle condition, and thus defines a vector
fiber bundle on Grassn(kE) with typical fiber V (kn) which we denote by
V (ξn) (The associated vector bundle V (ξn) to ξn).

The fiber bundle Grassm(ξn) for m 5 n (resp. Drapm(kn) for m ∈
typ(In)) may be defined in a similar way following the same pattern of the
definition of V (ξn), by considering the left action on (UH∩UH′)×Grassm(kn)
(resp. (UH ∩ UH′)×Drapm(kn)) induced by the cocycle (V (φ−1

H′ ◦ φH)).

Remark 1.14 The above constructions hold for any rank n locally free
module η over a k-variety X giving rise to fiber bundles V (η) −→ X (resp.
Grassm(η) −→ X, Drapm(η) −→ X). The fiber V (η)x (resp.Grassm(η)x,
Drapm(η)x) identifies with V (ηx). (resp.Grassm(ηx), Drapm(ηx)). More-
over:
“if X is a k-smooth variety (resp. a k-integral variety), it follows that V (η)
(resp. Grassm(η), Drapm(η)) is a k-smooth variety (resp.k-integral variety)”.

It is easy from this remark to obtain another proof of proposition 1.9.
Observe that the equations given in the proof of proposition 1.9 define the
embedding of Drapm(kE) in a product of grassmannians in terms of the cor-
responding Plücker coordinates.

Denote by pβ : Drapn(kE) −→ Grassnβ (kE) the canonical projection,
and by p∗β(ξnβ ) the pull-back of the tautological module ξnβ . Define the
tautological flag ξn of submodules of OE

Drapn(kE) by:

ξn = (p∗1(ξn1
) · · · ⊂ p∗l (ξnl) ⊂ OE

Drapn(kE)).

The inclusions between these submodules are evident by definition. Write
ξnβ = p∗β(ξnβ ) if no confusion arises.

Let n = (n1 < · · · < nl < nl+1) ∈ typ(Ir+1). Write nβ = (n1 < · · · <
nβ−1 < nβ) ∈ typ(Inβ ) (resp. nβ = (nβ < · · · < nl < nl+1) ∈ typ(Inl+1

)). For
2 ≤ β ≤ l a locally trivial fiber bundle is associated:

Drapn(kE) = Drapnβ (ξnβ ) −→ Drapnβ (kE),
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overDrapnβ (kE), where ξnβ = (ξnβ ⊂ · · · ⊂ ξnl ⊂ OE
Drap

nβ
(kE)) (The canon-

ical fiberings of Drapn(kE)). In schematic terminology this fibering gives
the structure of Drapn(kE) as a Drapnβ (kE)-scheme.

Definition 1.15 Let Hom(O
m
X , ξm) (resp. Isom(O

m
X , ξm)), where X =

Drapm(kE), denotes the sheaf of germs of OX-homomorphisms (resp. iso-
morphisms) ν : OE

X −→ OE
X satisfying ν(O

mβ
X ) ⊂ ξmβ .

It is clear that Hom(O
m
X , ξm) is a locally free OX-module. Thus we may con-

sider the vector fiber bundle V (Hom(O
m
X , ξm)). Define the Stiefel variety

of ξm by
Stief(ξm) ⊂ V (Hom(O

m
X , ξm)) ,

the sub-bundle representing Isom(O
m
X , ξm), whose sections correspond to the

sections of Isom(O
m
X , ξm). Let Dm = (km1 · · · ⊂ kml ⊂ kml+1(= k|E|)). The

typical fiber of Stief(ξm) −→ Drapm(kE), is the Stiefel variety Stief(Dm)

whose points are given by the ordered basis of k|E| adapted to Dm (cf. defini-
tion 2.1). There is a principal natural right action of the stabilizer subgroup
Stab Dm ⊂ Gl(k|E|) on Stief(ξm). We may thus consider Stief(ξm) as the
Stab Dm-principal bundle associated to V (ξm).

For more details about the Stiefel variety we refer the reader to [24], 9.10.

1.3.2 The fiber decomposition of the Flag Varieties canonical open
subvarieties

Keep the same notation of the preceding section. Given D = (H1 · · · ⊂ Hl ⊂
Hl+1) ∈ Drapn(E) let

Dβ = (Hβ · · · ⊂ Hl ⊂ Hl+1) ∈ Drapnβ (E)

(resp.

Dβ = (H1 · · · ⊂ Hβ−1 ⊂ Hβ) ∈ Drapnβ (Hβ)) .

Definition 1.16 By definition a flag D = (H1 · · · ⊂ Hl ⊂ Hl+1) of lo-
cally free OX-modules over a k-variety X is split if there exists submodules
(H ⊥

i )15i5l with:
Hi+1 = Hi ⊕H ⊥

i .

Let ξnβ = (ξnβ ⊂ · · · ⊂ ξnl ⊂ ξnl+1
) be the canonical flag on Drapnβ (kE).

The module (ξnβ )U
Dβ

is endowed with a split flag Dβ = (H1 · · · ⊂ Hβ)
characterized as follows. Let (Sβ · · · ⊂ Sl ⊂ Sl+1) correspond to the section x
of UDβ ⊂ Drapnβ (kE) on X = Spec(A), with A a k-algebra. By definition of
UDβ , there is an isomorphism of OX -modules: (πHβ )Sβ : Sβ −→ O

Hβ
X . Then

Dβ is given by:
(Dβ)x = ((πHβ )Sβ )−1(O

Dβ
X ) ,
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where O
Dβ
X = (OH1

X ⊂ · · · ⊂ O
Hβ
X ) and OF

X denotes the free OX -module
with a basis indexed by the finite set F ; the supplementary submodules
(H ⊥

β′ )1≤β′≤β−1 being given by

(H ⊥
β′ )x = ((πHβ )Sβ )−1(O

(Hβ′+1−Hβ′ )
X ).

Definition 1.17 Define an open subvariety

UDβ ⊂ Drapnβ (ξnβ )

by the following condition on its sections: (S1 · · · ⊂ Sβ) is a section of UDβ

if and only if for 1 ≤ β′ ≤ β the restrictions

(πHβ′ )Sβ′ : Sβ′ −→Hβ′

are isomorphisms. The projection πHβ′ is defined in terms of the direct sum
decomposition given by the splitting of the flag Dβ.

By restriction of the base and of the fiber the locally trivial fiber bundle
Drapnβ (ξnβ ) −→ Drapnβ (kE) gives rise to a locally trivial fiber bundle:

UDβ −→ UDβ ,

with UDβ ⊂ Drapnβ (ξnβ ) (resp. UDβ ⊂ Drapnβ (kE)), and typical fiber
UDβ ⊂ Drapnβ (knβ ).

Thus we have the following

Proposition 1.18 The open affine subvariety UD ⊂ Drapn(kE) (cf. Defi-
nition 1.11) is decomposed in a sequence of locally trivial fibrations (UDβ →
UDβ+1)15β5l with typical fiber UHβ ⊂ Grassnβ (kE) induced by the canonical
fibering decomposition (Drapnβ (kE)→ Drapnβ (kE))15β5l.

1.3.3 Coordinates for a Canonical open subvariety of a Flag variety

Assume that E is ordered totally by ωE . Let D = (H1 ⊂ · · · ⊂ Hl ⊂ Hl+1 =
E) ∈ Drapn(E) (n = (n1 < · · · < nl < nl+1 = |E|). Write:

AED = A(
∏

1≤β≤l
MH⊥β ×Hβ

(k)) (resp. AD = A(
∏

1≤β≤l
M(Hβ+1−Hβ)×Hβ (k))), and

AEn = A(
∏

1≤β≤l
M(|E|−nβ)×nβ (k)) (resp. An = A(

∏
1≤β≤l

M(nβ+1−nβ)×nβ (k))).

The order of E allows defining an isomorphism AD ' An. Let Hβ ' J1, nβK
(resp. (Hβ+1 −Hβ) ' J1, nβ+1 − nβK ) be the bijection induced by the order
of E. Thus there are a k-vector space isomorphism M(Hβ+1−Hβ)×Hβ (k) '
M(nβ+1−nβ)×nβ (k), and a k-variety isomorphism AD ' An. Similarly one
obtains an isomorphism: AED ' AEn .
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Let UHβ ⊂ Grass|Hβ |(k
E) be the affine open subset as in Definition 1.1.

One has an affine open subset
∏

15β5l

UHβ ⊂
∏

15β5l

Grass|Hβ |(k
E) and a k-

isomorphism
∏

15β5l

UHβ ' AED defined by:

(Sβ)15β 5l 7→MD((Sβ)15β5l) = (MD(Sβ))15β5l

where MD(Sβ) = MHβ (Sβ) (cf. definition 1.1). The
∏

15β5l

UHβ−coordinates

of (Sβ).
Let D = (S1 ⊂ · · · ⊂ Sl ⊂ Sl+1 = kE) correspond to a point in

UD = (
∏

15β5l

UHβ ) ∩Drapn(kE).

We consider now the UD-coordinates of D .

Write MD(D) = MD((Sβ)15β5l). Define

mD(Sβ) = MHβ (πHβ+1(Sβ)) ,

where the right member denotes the U ′Hβ -coordinates matrix of πHβ+1(Sβ) ⊂
kHβ+1, with U ′Hβ = {S ∈ Grass|Hβ |(k

Hβ+1) | rank (π′Hβ )S = |Hβ | } and
π′Hβ is the projection given by the direct sum decomposition: kHβ+1 = kHβ ⊕
k(Hβ+1−Hβ). In fact π′Hβ ◦ πHβ+1

= πHβ .

Notation 1.19 Let Mβ ∈ MH⊥β ×Hβ
(k) (resp. mβ ∈ M(Hβ+1−Hβ)×Hβ (k)).

Denote by A(Mβ) ∈ ME×Hβ (k) (resp. A(mβ) ∈ MHβ+1×Hβ (k)) the matrix
obtained by completing Mβ (resp. mβ), with "ones" and "zeros", in a Hβ-
normalized matrix. Write:

AD(Sβ) = A(MD(Sβ)) = A(MHβ (Sβ)) (resp. AD(Sβ) = A(mD(Sβ))) .

It is easy to check the following relations between (AD(Sβ)) and (AD(Sβ))
hold for 1 5 β 5 l:

AD(Sβ) = AD(Sl)×AD(Sl−1) · · · ×AD(Sβ) .

Thus the sequence (mD(Sβ)) determines the product coordinates (MD(Sβ))
of (Sβ) ∈

∏
15β5l

UHβ , where D = (S1 · · · ⊂ Sl ⊂ kE).

Proposition - Definition 1.20 The morphism UD −→ AD defined by
D 7→ mD(D) = (mD(Sβ))15β5l is an isomorphism. The image of D by
the isomorphism UD ' AD ' An (resp.mD(D)) gives by definition the UD-
canonical coordinates of D .
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Proof Let (mβ) ∈ AD for 1 5 β 5 l.

Define A((mβ)15β′5β) = A(ml)×A(ml−1) · · · ×A(mβ) ∈ME×Hβ (k).

It is easy to verify that A((mβ)1≤β′≤β) is a Hβ-normalized matrix. De-
note by (A((mβ)15β′5β))H⊥β the H⊥β ×Hβ-submatrix of A((mβ)15β′5β) given
by the row vectors indexed by H⊥β . Define AD −→ AED by (mSβ ) 7→
((A((mβ)15β′5β))H⊥β )15β5l. From the above relation it results that this mor-
phism is followed by the isomorphism AED '

∏
15β5l

UHβ factors through the

embedding

UD = (
∏

15β5l

UHβ ) ∩Drapn(kE) ↪→
∏

1≤β≤l

UHβ ⊂
∏

1≤β≤l

Grass|Hβ |(k
E),

and is the reciprocal isomorphism of UD −→ AD. This proves our assertion.

Remark 1.21 Definition 1.20 applied to U(H⊂E) ⊂ Drap(|H|⊂E)(k
E) =

Grass|H|(k
E) gives m(H⊂E)((S ⊂ kE)) = MH(S). Thus the U(H⊂E)-

canonical coordinates of (S ⊂ kE) are precisely the coordinates of S as defined
in 1.1.

1.4 Chains

A chain of a finite set is informally speaking a redundant flag, given by an
ascending sequence of subsets, with the inclusion relations not necessarily
strict. Chains play a role in the construction of minimal galleries in ∆(r)′ .

Definition 1.22 Let E be a finite set with |E| = r+1. Endow Grass(E) with
the natural order relation defined by the inclusion of subsets of E.

a) Define a chain of E of length l as an increasing function f : J1, l +
1K −→ Grass(E) satisfying f(l + 1) = E. Let

In f := {i ∈ J1, l + 1K| f(i− 1) ⊂ f(i), f(i− 1) 6= f(i)}

(f(0) = ∅) be the set of strictly increasing points of f , and f ′ be the
restriction of f to In f . Write

ϕ(f) = f ′.

(The flag defined by the chain f). Given a chain f of E of length l,
i.e. f is defined on J1, l + 1K, we associate to f the increasing sequence
of integers

typ f := (|f(i)|)16i6l+1 .
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b) Write
typ(E) := Im typ,

the set of types of chains.

Given n ∈ typ(E) such that n = (n1 6 · · · 6 nl 6 r + 1), we say that
n is of length l. Denote by Chainn(E) the set of chains of E of type n.
Write

In n := {i ∈ J1, l + 1K| ni−1 < ni (n0 = 0)} = (i1 < · · · < il′ < il′+1) ,

and n′ = (ni1 < · · · < nil′ < r + 1). Here l′ denotes the length of
n′ ∈ typ(E). Clearly we have the inclusion typ(E) ⊂ typ(E) as the
subset of strictly increasing sequences of J1, r + 1K with maximum equal
to r + 1.

c) Given the couple of chains (f, f ′) ∈ Chainm(E) × Chainn(E) (m,n ∈
typ(E), with length n = λ, and length m = l) write

M (f, f ′) = (f(α) ∩ f ′(β))

(resp.
M(f, f ′) = (|f(α) ∩ f ′(β)|) ∈ N(λ+1)×(l+1))

(The relative position matrix of the chains f and f ′).

d) Let n ∈ typ(E). Define a chain of subspaces D of kE of type
n following the pattern of the definition of a chain of E. Denote by
Chainn(kE) the set of chains of type n. Write

Chain(kE) =
∐

n∈typ(E)

Chainn(kE)

(resp.
Chain(E) =

∐
n∈typ(E)

Chainn(E)) .

Given D ∈ Chainn(kE) let ϕ(D) be the corresponding flag of type n′.

Define the following ordering on the set of chains Chain(E) (resp.
Chain(kE)):

Definition 1.23 Given chains D and D′ of E defined respectively by

f : J1, λ+ 1K −→ Grass(Ir+1) and f ′ : J1, λ′ + 1K −→ Grass(Ir+1)

with λ′ 6 λ, write D′ ⊂ D if f ′ factors as f ′ = f ◦ϕ, with ϕ : J1, λ′ + 1K −→
J1, λ + 1K strictly increasing. Following the same pattern define D′ ⊂ D for
D′,D ∈ Chain(kE). Clearly “ ⊂ ” is an order relation.
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We have D′ ⊂ D ⇒ ϕ(D′) ⊂ ϕ(D), i.e. if ϕ(D′) = (H1 ⊂ · · · ⊂ Hλ ⊂ E)
(resp. ϕ(D) = (J1 ⊂ · · · ⊂ Jl ⊂ E)), then {H1, · · · , Hλ } ⊂ {J1, · · · , Jl }.
The following definition plays a role in the contruction of minimal galleries
giving rise to resolutions of singulaties of Schubert varieties.

Definition 1.24 Let (D,H) ∈ Drap(E) × Grass(E) (resp. (D , S) ∈
Drap(kE) × Grass(kE)). Denote by D ∩ H ∈ Chain(E) (resp. D ∩ S ∈
Chain(kE)) the chain given by the intersections of the elements of D (resp.
D) with H (resp. S).



Chapter 2

Schubert Cell Decomposition
of Grassmannians and Flag
Varieties

The classical indexation of Schubert cells (resp. Schubert varieties) in Grass-
mannians, by increasing functions from an integral interval into another, is
not easily adapted to Flag varieties (cf. [29], and [36]). Instead we introduce a
more suitable general indexation by Relative Position Matrices for Schu-
bert varieties in Flag varieties. These matrices are in bijection with classes
of the symmetric group and thus give a geometric interpretation of the orbits
in Bruhat decomposition of the linear group. On the other hand, we shall
see that such a matrix summarizes the construction of a minimal generalized
gallery and thus a block decomposition of the parametrizing subgroup of its
corresponding Schubert cell. The corresponding Young diagram reflects this
block decomposition.

From the construction of a basis adapted to a couple of flags (see be-
low), one deduces that the quotient set of the couples of flags in kr+1 by the
natural action of Gl(kr+1) is given by the set of Relative Position Matrices.
The parabolic subgroups of Gl(kr+1) are defined as the stabilizers of flags in
Gl(kr+1). The set of these subgroups correspond bijectively to the set of flags
of kr+1 and represent the points of certain Gl(kr+1)-homogeneous spaces. The
Schubert cell decomposition of the Flag variety Drap(kE) defined by a fixed
flag corresponds to the Bruhat decompositions of Gl(kE) given by a couple of
parabolic subgroups. It is shown how a combinatorial flag is associated with
a subset of the set of roots of Gl(kr+1). The parabolic subgroups given by
the flags adapted to the canonical basis correspond to these subsets.

20
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2.1 The relative position matrix of a couple of flags

Definition 2.1 Given a flag D = (V1 ⊂ ... ⊂ Vl ⊂ kE) ∈ Drapn(kE) (n =
(n1 < ... < nl < nl+1 = |E|)) and an ordered basis ẽ = (ẽi)15j5|E| of kE, we
say that ẽ is adapted to D (or that D is adapted to ẽ) if

Vi = V ect((ẽj)15j5ni).

The direct sum decomposition kE =
⊕
α∈A

Fα is adapted to ẽ (or that ẽ is

adapted to this direct sum decomposition), if for each Fα there exists a subset
ẽα ⊂ ẽ with Fα = V ect(ẽα).
A direct sum decomposition kE =

⊕
α∈A

Fα is adapted to D (or D is adapted

to kE =
⊕
α∈A

Fα), if for every 1 5 i 5 l, there exists a subset Ai ⊂ A satisfying

Vi =
⊕
α∈Ai

Fα. A flag D is adapted to the basis eE if there exists an ordering

of ẽE of eE such that D is adapted to ẽE.

Given a couple of flags (D , d) of kE we proceed to show that there exists
a basis eE of kE adapted to both D and d. This result is a particular case of
a general one stating that given a couple of parabolics in a reductive group
there exists a maximal torus contained in both.

Lemma 2.2 Let

V1 −→ V3

↓ ↓
V2 −→ V4

be a cartesian diagram of inclusions of subspaces of kE, i.e. V1 = V2 ∩ V3,
and V2 = V1 ⊕ S2 (resp. V3 = V1 ⊕ S3) direct sum decompositions of V2 and
V3 . Then there are the direct sum decompositions:

V2 + V3 = V1⊕S2⊕S3 (resp V4 = V2⊕S3 = V3⊕S2).

Proof Clearly V2 + V3 = V1 +S1 +S3. On the other hand, S3 ∩ (V1 +S2) =
S3 ∩ V2 ⊂ V1 ∩ S3 = {0} (resp. S2 ∩ (V1 + S3) = S2 ∩ V3 ⊂ V1 ∩ S2 = {0}).
If v = s2 + s3 with v ∈ V1 , s2 ∈ S2, s3 ∈ S3, we deduce that s3 = v − s2 ∈
S3 ∩ V2 ⊂ V1 ∩ S3 = {0}. Thus v = s2, and finally v = s2 = 0.

Let D = (V1 ⊂ ... ⊂ Vl ⊂ kE) ∈ Drapm(kE) (resp. d = W1 ⊂ ... ⊂ Wλ ⊂
kE) ∈ Drapn(kE)), where m = (m1 < ... < ml < |E|) (resp.n = (n1 < ... <
nλ < |E|)). We introduce the (l + 1) × (λ + 1)-matrix with coefficients in
Grass(kE):

M(D , d) = (Vi ∩Wj).
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Proposition 2.3 There is a direct sum decomposition kE =⊕
Sij

(i,j)∈J1,l+1K×J1,λ+1K
of kE adapted to D and d.

Proof We order lexicographically J1, l+1K× J1, λ+1K, and we proceed by re-
cursion to construct (Sij). We begin by splitting the first row (V1∩Wj)j∈J1,λ+1K
in a direct sum:

V1 ∩Wj =
⊕

15α5j

S1α (1 5 j 5 λ+ 1).

We conclude the proof by recursion applying 2.2 to the cartesian squares:

Vi ∩Wj+1 −→ Vi+1 ∩Wj+1

↑ ↑
Vi ∩Wj −→ Vi+1 ∩Wj

,

following the lexicographical ordering. Define Si+1j+1 as a subspace of kE
satisfying:

Vi+1 ∩Wj+1 = (Vi ∩Wj+1 + Vi+1 ∩Wj)⊕ Si+1j+1.

Corollary 2.4 There is a basis ẽ =
∐

(i,j)∈J1,l+1K×J1,λ+1K
ẽij adapted to the di-

rect sum kE =
⊕

(i,j)∈J1,l+1K×J1,λ+1K
Sij, i.e. Sij = V ect(ẽij), and giving rise,

after a convenient re-ordering, to a basis adapted to D (resp. d).

It may be noted that some of the Sij may be reduced to the zero subspace
Sij = {0}, in which case we write ẽij = ∅.
There is a natural action of Gl(kE) = Autk(kE) on Drap(kE) :

Gl(kE)×Drap(kE) −→ Drap(kE)

defined by (g,D) 7→ g(D), where D = (V1 ⊂ ... ⊂ Vl ⊂ kE), and g(D) =
(g(V1) ⊂ ... ⊂ g(Vl) ⊂ kE). It is easy to see that this action is algebraic,
i.e. that the above mapping is the underlying mapping of a morphism of
k-varieties. We aim at giving a description of the quotient set (Drap(kE) ×
Drap(kE))/Gl(kE) of Drap(kE) × Drap(kE)) under the diagonal action of
Gl(kE).

Definition 2.5 There is a canonical mapping

ψE : Drap(E) −→ Drap(kE)

defined by : ψE : D 7→ kD, where D = (E1 ⊂ ... ⊂ El ⊂ E), kD = (kE1 ⊂ ... ⊂
kEl ⊂ kE), and kE1 = V ect((ej)j∈Ei) for 1 5 i 5 l. Given H ∈ Grass(E)
write ψE(H) = kH .
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Remark that the image of ψE is the set of flags adapted to the canonical
basis eE of kE .

On the other hand, there is a combinatorial natural action of the symmetric
group SE = Aut(E) on Drap(E) :

SE ×Drap(E) −→ Drap(E)

defined by: (D, g) 7→ g(D), with D = (E1 ⊂ ... ⊂ El ⊂ E) and g(D) =
(g(E1) ⊂ ... ⊂ g(El) ⊂ E), and a group homomorphism: α : SE −→ Gl(kE)
associating with g ∈ SE the automorphism αg : kE −→ kE of the vector space
kE defined by : αg(ei) = eg(i). It is immediate that the canonical mapping
Drap(E) −→ Drap(kE) is (Gl(kE),SE)-equivariant. We may thus state:

Proposition 2.6 The induced canonical mapping

(Drap(E)×Drap(E))/SE −→ (Drap(kE)×Drap(kE))/Gl(kE)

is a bijection.

The proof of this proposition is based on several definitions and a lemma.

Definition 2.7 Let (D ,D ′) ∈ Drap(kE) × Drap(kE) (resp. (D,D′) ∈
Drap(E)×Drap(E)). Write :

M(D ,D ′) = (dim(Vi ∩Wj)) ∈ N(l+1)×(λ+1)

(resp. M(D,D′) = (|Ei ∩ Fj |) ∈ N(l+1)×(λ+1)),

where D = (V1 ⊂ ... ⊂ Vl ⊂ kE) and D ′ = (W1 ⊂ ... ⊂ Wl ⊂ kE) (resp.
D = (E1 ⊂ ... ⊂ El ⊂ E) and D′ = (F1 ⊂ ... ⊂ Fl ⊂ E)).

WriteM(D,D′) = (Ei ∩ Fj) ∈ Grass(E)(l+1)×(λ+1).

There are natural mappings

Drap(kE)×Drap(kE) −→
∐

l,λ∈N
N(l+1)×λ+1)

(resp. Drap(E)×Drap(E) −→
∐

l,λ∈N
N(l+1)×λ+1))

defined by (D ,D ′) 7→ M(D ,D ′) (resp. (D,D′) 7→ M(D,D′)). Clearly there
is a commutative diagram:

Drap(kE)×Drap(kE) −→
∐

l,λ∈N
N(l+1)×λ+1)

↓ ↗
Drap(kE)×Drap(kE)/SE

(2.1.1)

where the vertical arrow represents the quotient mapping.
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Definition 2.8 Let (m,n) ∈ typ(E)× typ(E). Write

Relpos(m,n) = Relpos(m,n)(E) = (Drap(E)m ×Drap(E)n)/SE

and
Relpos = Relpos(E) =

∐
(m,n)∈typ(E)×typ(E)

Relpos(m,n).

We call Relpos(E) the set of types of relative position of Drap(E). Let
Sm = SIm with Im = J1,mK. If E is totally ordered we may assume that
E = Ir+1. There is a mapping

typ(Ir+1) −→ Drap(Ir+1)

given by m = (m1 < ... < ml < r + 1) 7→ Dm with Dm = (Im1
⊂ ... ⊂ Iml ⊂

Ir+1). When we compose this mapping with Drap(Ir+1) −→ Drap(kr+1) we
obtain : Dm 7→ kDm = (km1 ⊂ ... ⊂ km1 ⊂ kr+1).
Denote by SD the stabilizer Stab D of the combinatorial flag D = (E1 ⊂ ... ⊂
El ⊂ E) in SE . We have :

SD =
l+1∏
i=1

S(Ei−Ei−1),

where E0 = ∅, i.e. SD may be seen as the subgroup of SE preserving the
partition E =

∐
15i5l+1

(Ei − Ei−1). For E = Ir+1 and D = Dm, write Sm =

SDm . Thus there is the identification Sm =
l+1∏
i=1

S(mi+1−mi).

Observe that the mapping Drapm(E)×Drapn(E) −→ N(l+1)×λ+1) factors as

Drapm(E)×Drapn(E) −→ Relpos(m,n)(E) −→ N(l+1)×(λ+1).

Lemma 2.9 The mapping Relpos(m,n)(E) −→ N(l+1)×λ+1) induced by
(D,D′) 7→ M(D,D′) is an injective mapping, i.e. the Sr+1-orbit of a cou-
ple (D,D′) ( D = (E1 ⊂ ... ⊂ El ⊂ E), D′ = (E1 ⊂ ... ⊂ El ⊂ E),
typ(D) = m, typ(D′) = n) is characterized by the relative position matrix
M(D,D′) = (|Ei ∩ Fj |).

Proof Let Dm = (Im1
⊂ Im2

· · · ⊂ Iml ⊂ Ir+1). It is evident that the natural
mapping

({Dm} ×Drapn(E))/Sm −→ (Drapm(E)×Drapn(E))/Sr+1

is a bijection. Thus it suffices to prove that:

M(Dm, D) = M(Dm, D
′)⇒ ( ∃ w ∈ Sm) w(D) = D′.
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Let D = (H1 ⊂ · · · ⊂ Hl ⊂ Ir+1) (resp. D′ = (H ′1 ⊂ · · · ⊂ H ′l ⊂ Ir+1)),
Im0

= ∅, and Iml+1
= Ir+1. As M(Dm, D) = M(Dm, D

′). It follows that

|(Imα − Imα−1) ∩H1| = |(Imα − Imα−1) ∩H ′1||

for 1 6 α 6 l + 1. From the decomposition

H1 =
∐

15α5l+1

(Imα − Imα−1) ∩H1 (resp. H ′1 =
∐

15α5l+1

(Imα − Imα−1) ∩H ′1)

it results that there exists w1 ∈ Sm with w1(H) = H ′1. Therefore, we have
M(Dm, w1(D)) = M(Dm, D

′), and we may thus suppose H1 = H ′1. We
achieve the proof by induction. Let us suppose that H1 = H ′1, · · · , Hβ = H ′β
(1 < β < l). Following the above reasoning with Hβ+1 and H ′β+1 instead of
H1 and H ′1 we deduce that there exists wβ+1 ∈ Sm with wβ+1(Hβ+1) = H ′β+1

and wβ+1|Hβ = 1Hβ . It follows from this that there exists w ∈ Sm satisfying
w(D) = D′.

Proof of Proposition 2.6

Proof The image of Drap(E) −→ Drap(kE) defined by D 7→ kD is given
by the set of flags adapted to the canonical basis eE of kE. On the other
hand, we know by 2.3, that for a couple of flags (D ,D ′) with typ(D) = m
and typ(D ′) = n there exists a basis ẽE of kE adapted both to D and D ′.
Let α ∈ Gl(kE) be the automorphism defined by α(ẽE) = eE. Then eE is
adapted to the couple (α(D), α(D ′)), i.e. α(D) and α(D ′) are both adapted
to eE. It follows that the induced mapping Drapm(E) ×Drapn(E)/SE −→
Drapm(kE)×Drapn(kE)/Gl(kE) is surjective.

The injectivity of this mapping results immediately both from Lemma 2.9
and the following commutative diagram

Drapn(E ×Drapm(E)/SE →
∐

l,λ∈N
N(l+1)×(λ+1)

↓ ↗
Drapn(kE)×Drapm(kE)/Gl(kE).

(2.1.2)

Remark that the oblique arrow is the mapping (D ,D ′) 7→ M(D ,D ′), that
the horizontal arrow is injective and that the down arrow is surjective. This
achieves the proof.

2.2 Schubert cells and Schubert varieties

In what follows we identify the set Relpos(E) of types of relative position
of flags of E with its image in the set of matrices with integral coefficients∐
l,λ∈N

N(l+1)×λ+1). The SE-orbits in Drap(E)×Drap(E) are thus represented

by matrices with coefficients in N.
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From proposition 2.6 it results that the mapping Drap(kE) ×
Drap(kE) −→

∐
l,λ∈N

N(l+1)×λ+1) corresponds to the quotient mapping of

Drap(kE) × Drap(kE) under the action of Gl(kE). Actually it is induced
by an algebraic morphism, as it will be seen later.

By the following definitions we introduce the main objects of interest in
this chapter.

Definition 2.10 Let (M,D) ∈ Relpos(E) × Drap(kE) (resp. (M,D) ∈
Relpos(E)×Drap(E)). Define

Σ(M) ⊂ Drap(kE)×Drap(kE)

as the fiber over M of the quotient mapping, and

Σ(M,D) ⊂ Drap(kE)

as the fiber over D of the mapping Σ(M) −→ Drap(kE) induced by the second
projection.
Write Σ(M,D) = Σ(M,kD). We call

Σ(M)

the Universal Schubert cell of type M , and

Σ(M,D)

the Schubert cell defined by the flag D and the type M .

Remark 2.11 All the mappings (resp. group actions) above are induced by
k-morphisms. This may be stated in scheme theory as follows. Drap(kE) is a
representable k-functor, and thus the product functor Drap(kE) × Drap(kE)
is representable too. On the other hand, the diagonal action of Gl(kE) on this
product is functorial and thus algebraic. It is easy to see that the quotient
functor Drap(kE)×Drap(kE)/Gl(kE) is representable by the variety of flags
relative positions, and thus the quotient morphism is given by a k-morphism.
All these assertions will be proved in the following chapters.

From the remark one concludes

Proposition 2.12 Σ(M) (resp. Σ(M,D)) is the underlying set of a k-
variety.

The following is a direct proof of this proposition.

Proof It suffices to prove the first assertion. Let D = (V1 ⊂ ... ⊂ Vl ⊂ kE),
D ′ = (W1 ⊂ ... ⊂ Wl ⊂ kE), typ(D) = m, typ(D ′) = n, and M(D ,D ′) =
(mij). The condition (D ,D ′) ∈ Σ(M) splits in the set of conditions: rk (Vi ∩
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Wj) = mij. By the proof of Proposition 1.9 we know that this intersection rank
condition may be written in terms of the vanishing of a set of homogeneous
polynomials in the Plücker coordinates of Vi and Wj.

On the other hand, observe that the product Drap(kE)m ×Drap(kE)n is
first embedded in a product of grassmannians, and secondly in a product of
projective spaces, by taking the product of the corresponding Plücker embed-
dings. Thus the image of Σ(M) ⊂ Drap(kE)m ×Drap(kE)n is characterized
by a set of equations in terms of Plücker coordinates.We conclude that Σ(M)
is a k-variety (cf. remark 1.10).

Remark 2.13 A more detailed description of the k-variety structure of Σ(M)
(resp. Σ(M,D)) will be given later.

Proposition 2.14 Let M ∈ Relposm(E) =
∐

n∈typ(E)

Relpos(m,n)(E). The k-

morphism induced by the first projection Σ(M) ⊂ Drap(kE)m×Drap(kE) −→
Drap(kE)m defines a locally trivial fibration in the Zariski topology with typ-
ical fiber Σ(M,Dm).

Proof There is a natural left action of Stab Dm on Σ(M,Dm). One may
thus define the contracted product:

Stief(ξm)×Stab Dm Σ(M,Dm),

and a canonical isomorphism:

Stief(ξm)×Stab Dm Σ(M,Dm) −→ Σ(M),

showing that the universal Schubert cell defined by M :

Σ(M) −→ Drapm(kE),

defines a locally trivial fibration over Drapm(kE).

We may now state the

Definition 2.15 Let D ∈ Drap(kE)m, and (n,m) ∈ typ(E)× typ(E).
Clearly we have the following cell decompositions:

Drap(kE)m ×Drap(kE)n =
∐

M∈Relpos(m,n)

Σ(M)

(The Universal Schubert cell decomposition of Drap(kE)n ×
Drap(kE)m),

(resp.
Drap(kE)×Drap(kE) =

∐
M∈Relpos

Σ(M)

(The Universal Schubert cell decomposition of Drap(kE) ×
Drap(kE)),
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Drap(kE)n =
∐

M∈Relpos(m,n)

Σ(M,D)

(The Schubert cell decomposition of Drap(kE)n defined by D)).

Let E = Ir+1, and Dr = (I1 ⊂ ... ⊂ Ir ⊂ Ir+1). One obtains the
classical Schubert cell decomposition of the Grassmannian Grass(kr+1) =∐
15n5r

Grassn(kr+1):

Grass(kr+1) =
∐

M∈Relpos(n<r+1)

Σ(M,Dr).

Definition 2.16 Let M ∈ Relpos(n,m), and D ∈ Drapm(kr+1). Denote by

Σ(M,D) (resp. Σ(M))

the Zariski closure of Σ(M,D) (resp. Σ(M)) in the k-variety Drapn(kr+1)
(resp. Drapn(kr+1)×Drapm(kr+1)).

We call

Σ(M)

the Universal Schubert variety of type M
(resp.

Σ(M,D)

the Schubert variety of type M defined by the flag D).

2.3 The Schubert cell decomposition as an orbit decomposition

Remark 2.17 From the isomorphism

Drap(kE)×Drap(kE)/Gl(kE) ' Relpos(E)

it is deduced that the Universal Schubert cell decomposition Drap(kE) ×
Drap(kE) =

∐
M∈Relpos(E)

Σ(M) is the decomposition in Gl(kE)-orbits of

Drap(kE)×Drap(kE) under the diagonal action.
Fix D ∈ Drapm(kE) and denote by P (D) = Stab D ⊂ Gl(kE) the stabilizer of
D . From the fact that Drapm(kE) is homogeneous under Gl(kE), one deduces
the isomorphism

Drapn(kE)/Stab D ' Drapm(kE)×Drapn(kE)/Gl(kE),

and thus that Drap(kE)n =
∐

M∈Relpos(n,m)

Σ(M,D) is the orbit decomposition

of Drapn(kE) under Stab D ⊂ Gl(kE).
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Assume that E is identified with Ir+1, i.e. that E totally ordered and
|E| = r + 1. Thus one can write Ir+1 for E. Let Dr = (I1 ⊂ I2 · · · ⊂
Ir ⊂ Ir+1) (resp.Dn = (In1

⊂ · · · ⊂ Inl ⊂ Ir+1)) be the maximal length
flag defined by the order of Ir+1 (resp. the flag given by the type n). Write
Dn = kDn = Dn = (kn1 ⊂ kn2 · · · ⊂ knl ⊂ kr+1) (resp. H = kH for
H ∈ Grass(Ir+1)).

Proposition 2.18 Given D ∈ Drap(kr+1) there exists D′ ∈ Drap(Ir+1) and
α ∈ Stab Dr with α · kD′ = D . Such that D′ is unique with this property.

The proof of the proposition results immediately from 2.17 and the follow-
ing lemma.

Lemma 2.19 Let M ∈ Relpos(r,n)(Ir+1). There exists one and only one
combinatorial flag D′ ∈ Drapn(Ir+1) with M = M(Dr, D

′).

Proof Write M = (mαβ) ∈ Relpos(Ir+1) as a 1× (λ+ 1)-matrix consisting
of the (r + 1)-uples (mβ)1≤β≤λ+1 given by the columns of M . Let In mβ =
(i1 < · · · < il(β) < il(β)+1) be the set of jump points of mβ and m′β = (mi1β <
· · · < mil(β)β < mil(β)+1β) where mil(β)+1β = mr+1β, and

mi1β = 1, · · · ,mil(β)β = l(β),mil(β)+1β = l(β) + 1.

Write Hβ = {i1, · · · , il(β), il(β)+1} and

D′ = (H1 · · · ⊂ Hλ ⊂ Ir+1).

It is easy to see that D′ satisfies M(Dr, D
′) = M , and that it is the only

combinatorial flag satisfying this condition. In fact, it suffices to verify this
equality for n = (n < r + 1). In this case the result is immediate.

It is important to associate the following combinatorial objects to the
Schubert cells (resp. Schubert varieties) corresponding to definitions 2.10,
2.15, and 2.16. It should first be noted that M(D,D′) = M(kD, kD

′
).

Definition 2.20 Let

Σcomb(M) = (ψE × ψE)−1(Σ(M)) ⊂ Drap(E)×Drap(E)

(resp.
Σcomb(M,D) = ψ−1

E (Σ(M,D)) ⊂ Drap(E)).

Thus one has

Σcomb(M) = { (D,D′) ∈ Drap(E)×Drap(E)| M(D,D′) = M }

(resp.
Σcomb(M,D) = { D′ ∈ Drap(E)| M(D,D′) = M }).
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In other words, Σcomb(M) is the fiber of Drap(E) × Drap(E) −→
Relpos(E) over M , and Σcomb(M,D) is the fiber of the mapping
Σcomb(M) −→ Drap(E) induced by the first projection.

Let D ∈ Drapm(E). From definitions 2.20 and 2.15 one obtains the fol-
lowing disjoint unions:

Drap(E) =
∐

M∈Relposm

Σcomb(M,D)

(resp.
Drap(E)×Drap(E) =

∐
M∈Relpos

Σcomb(M)).

Define the combinatorial closure of Σcomb(M) (resp.Σcomb(M,D)) as

Σ
comb

(M) = (ψE × ψE)−1(Σ(M))

(resp. Σ
comb

(M,D) = ψ−1
E (Σ(M,D)).

From 2.19 one obtains the fact:

Proposition - Definition 2.21 Let E = Ir+1 and D = Dr be the
canonical maximal length flag of Ir+1; Then Σcomb(M,D) consists of only
one element:

Σcomb(M,D) = {DM}.

We call DM the center of Σcomb(M,D).

From lemma 2.9 it is deduced that given D ∈ Drapm(E) (resp. D′, D′′ ∈
Drapn(E), and M ∈ Relpos(m,n)) with M = M(D,D′) = M(D,D′′), there
exists g ∈ SD satisfying: g(D′) = D′′. One deduces that Σcomb(M,D) is
homogeneous under SD. In fact, Σcomb(M,D) ⊂ Drapn(E) is the SD-orbit
defined by the relative position matrix M .

2.4 The Permutation group action on the combinatorial flags set

This section serves as an example of the action of the Weyl group on the
apartment of the building of a reductive group (cf. Chapter 8).

Definition 2.22 Denote by Ord(E) the set of total orderings of E (|E| =
r + 1, r = (1 < · · · < r < r + 1)). There is a canonical bijection:

Drapr(E) ' Ord(E),

between the set Drap(E)r of maximal length combinatorial flags of E
and the set of total orderings of E, defined by D 7→ ωD = (a1 < ...ar < ar+1)
where E1 = {a1}, Ei+1 = Ei ∪ {ai+1}, (1 5 i 5 r). Let H ∈ Drapn(E).
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Denote by ωD∩H the ordering induced on H by ωD. We make it explicit
by writing H = (i1 < · · · < in). Observe that the set Ord(E), is left principal
homogeneous under SE.
Let τD : E ' J1, |E|K be the order preserving bijection induced by the
ordering ωD of E, defined by τD(i) = inf{α ∈ J1, |E|K | i ∈ Eα }.

Let D,D′ ∈ Drapr(E). There is a unique strictly increasing mapping
w(D,D′) : EωD −→ EωD′ between E ordered respectively by ωD and by ωD′
satisfying

w(D,D′)(D) = D′.

It follows that Drapr(E) is a principal homogeneous set under the natural
action of SE . A set of generators of the group of bijections SE of E is
associated with the ordering ωD = (i1 < · · · < i|E|) of E defined by τD,
namely

SD = {(i1, i2), · · · , (i|E|−1, i|E|)}.

Define the length lSD (w) of an element w ∈ SE as the length of a minimal
length word in SD giving w.

Definition 2.23 Let the notation be as in the proof of proposition 2.19. Let
D be a maximal length flag and (D,D′) ∈ Drapr(E) × Drapn(E), where
D′ = (H1 ⊂ · · · ⊂ Hλ ⊂ Hλ+1). Define a total ordering of E as follows.
Write E =

∐
0≤β≤λ

(Hβ+1 −Hβ), where Hλ+1 = E (resp. H0 = ∅). Let ω(D,D′)

be the ordering of E given by the above partition and the ordering induced by
ωD on the (Hβ+1 −Hβ)’s. Thus by definition

i ≤
ω(D,D′)

j

if i ∈ (Hβ+1−Hβ), and j ∈ (Hβ′+1−Hβ′) for β < β′, or if i, j ∈ (Hβ+1−Hβ)
and i ≤

ωD
j. Denote by projD′ D the maximal length flag of E defined

by ω(D,D′) (the projection of D on D′), according to the general nota-
tion to be later introduced in this work in the setting of buildings. Define
w(D,D′) = w(D, projD′ D) Observe that D′ ⊂ projD′ D (cf. definition
1.23), and w(D, projD′ D)(Dn) = D′ if n = typ(D′) and Dn ⊂ D.

From the general properties of Coxeter groups (cf. Chapter 8) it follows
that w(D,D′) may be characterized as the minimal length element w ∈ SE

relatively to SD satisfying D′ ⊂ w(D).

Remark 2.24 Let E = Ir+1, and D = Dr. There is the following connection
between the center DM of Σ(M,D) ⊂ Drapn(E) and w(D,DM ):

w(D,DM )(Dn) = DM ,
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where Dn = (In1 · · · ⊂ Inλ ⊂ Ir+1), the sub-flag of Dr of type n, and
w(D,DM ) is the minimal length element of Sr+1 with this property with re-
spect to the canonical set of generators of Sr+1 S = {(12), · · · , (rr + 1)}.

2.4.1 The Schubert and Bruhat cell decomposition

We may now state the following relation between Schubert and Bruhat cell
decompositions (cf. [9], [23], Exp. XXVI)

Proposition 2.25 Keep the assumptions and notation of 2.23.
1. The set Drapn(E) is homogeneous under the action of SE = Sr+1 of E.
Thus there is a canonical bijection:

Sr+1/Sn ' Drapn(E)

(resp. ∐
n∈typ(E)

Sr+1/Sn ' Drap(E)),

defined by w 7→ w(Dn). The relation of inclusion between flags corresponds
to the opposite of the relation of inclusion between classes.
2. There is a canonical bijection between the types of relative position between
a flag of type m and another of type m and a set of double classes

Sm\SE/Sn ' Relpos(m,n)(E) .

As a particular case of 1. It follows that Drapr(E) is a principal homogeneous
set under SE.

Proof Let D′ ∈ Drapn(E) we have then w(Dr, D
′)(Dn) = D′, which proves

the homogeneity of Drapn(E) under SE. As Sn = Stab Dn, there is a
bijection Sr+1/Sn ' Drapn(E), defined by w 7→ w(Dn).
The decomposition

Drapn(E) =
∐

M∈Relpos(r,n)(E)

Σcomb(M,Dr) =
∐

M∈Relpos(r,n)(E)

{DM} ,

proves that there is a bijection SE/Sn ' Relpos(r,n)(E) defined by w 7→
M(Dr, w(Dn)).
On the other hand, the decomposition

Drapn(E) =
∐

M∈Relpos(m,n)(E)

Σcomb(M,Dm) ,

is the Sm-orbit decomposition of
∐

M∈Relpos(r,n)(E)

{DM}. So the mapping

Sm\SE/Sn −→ Relpos(m,n)(E) defined by w 7→ M(Dm, w(Dn)) is a bi-
jection. We have thus proved 1. and 2.
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Remark 2.26 Let M ∈ Relpos(m,n) and CM ⊂ Sm\SE/Sn the double class
given by M and C′M ⊂ SE/Sn the corresponding subset of CM in SE/Sn.
There is a bijection C′M ' Σcomb(M,D) defined by w 7→ w(Dn).

Write Σcomb(M,D) (“par abus de langage”) for the image
ψE(Σcomb(M,D)) ⊂ Drap(kE).

Proposition 2.27 The Stab kDm-orbit decomposition of Drapn(kE) may be
re-written as follows:

Drapn(kE) =
∐

M∈Relpos(m,n)

Stab kDm · Σcomb(M,Dm) =

∐
w∈Sm\SE/Sn

Stab kDm · kw(Dn) .

The natural action of Gl(kE) on Drapn(kE) allows defining a morphism

pn : Gl(kE) −→ Drapn(kE)

by g 7→ g · Dn. Thus the orbit decomposition in proposition 2.27 lifts to a
double class decomposition of Gl(kE).

Proposition 2.28 With the above notation one has:

Gl(kE) =
∐

w∈Sm\SE/Sn

Stab kDm · w · Stab kDn .

(Bruhat double class decomposition of Gl(kE)).

2.5 R-subgroups of the linear group

A combinatorial simplified version of the root decomposition of the Lie algebra
of Gl(kE) (cf. [5], p.185) is given in this section. We introduce a class of
subgroups of Gl(kE) (The R-subgroups) giving rise to natural coordinates
for Σ(M,D). This class is a particular case of R-subgroups in the setting of
reductive groups schemes (cf. [23], Exp. XXII).
Let us identify the Lie algebra G l(kE) = Lie(Gl(kE)) with the Lie algebra
of E × E-matrices ME(k) with entries in k. Denote by (Eij)(i,j)∈E×E the
canonical basis of ME(k) = ME×E(k). The set (Eij)(i,j)∈E×E is a basis of
eigenvectors of ME(k) under the adjoint action by the subgroup T ⊂ ME(k)
of diagonal matrices.
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Definition 2.29 Let E be a finite set. Write

R(E) = E × E −∆(E) .

A subset R ⊂ R(E) is closed if:

(i, j) , (j, k) ∈ R , i 6= k −→ (i, k) ∈ R (cf. [4], Ch. V I).

Associate with the closed subset R of R(E) the k-subspace:

G lR = V ect((Eij)(i,j)∈∆(E)∪R) ⊂ME(k) .

Observe that [Eij , Ekl ] = δjkEil if i 6= l. Thus clearly G lR is a Lie subalgebra
of ME(k) stable under T . To this subalgebra corresponds a subgroup GlR ⊂
Gl(kE).
We say that GlR is a R-subgroup of Gl(kE). We shall see that there is
a canonical bijection between the set of combinatorial flags Drap(E) and a
particular class of closed subsets of R(E).

Definition 2.30 Let D ∈ Drapr(E) be a maximal length flag of E. Write

RD = R(E) ∩Gr(ωD) ,

where Gr(ωD) ⊂ E × E denotes the graph of the order relation ωD. From
the definition of ωD easily results that RD is a closed subset of R(E). Given
D′ ∈ Drap(E) write

RD′ = ∪
D′⊂D∈Drapr(E)

RD .

If D′ = (H1 · · · ⊂ Hl ⊂ Hl+1) ( Hl+1 = E), then E =
∐

0≤β≤l
(Hβ+1 −Hβ).

It is easily seen that:

RD′ = (
∐

0≤β≤l

R(Hβ+1 −Hβ)
∐

(
∐

1≤β≤l

(Hβ −Hβ−1)× (E −Hβ)).

Where H0 = ∅. Observe that∐
1≤β≤l

(Hβ −Hβ−1)× (E −Hβ) =
∐

1≤β≤l

∐
β≤α≤l

(Hβ −Hβ−1)× (Hα+1 −Hα) =

=
∐

1≤α≤l

∐
1≤β≤α

(Hβ −Hβ−1)× (Hα+1 −Hα) =
∐

1≤α≤l

Hα × (Hα+1 −Hα).

Remark that the subgroup Stab kD ⊂ Gl(kE) for D ∈ Drap(E) is char-
acterized as the set of matrices (aij) satisfying (i, j) /∈ (RD ∪ ∆(E) =⇒
aij = 0. On the other hand, Lie (Stab kD) = V ect((Eij)(i,j)∈(RD∪∆(E)))
thus [Eij , Ekl] = δjkEil ∈ V ect((Eij)(i,j)∈(R(D)∪∆(E))) for Eij , Ekl ∈
V ect((Eij)(i,j)∈RD∪∆(E))). It follows that RD is a closed set of the set of
roots R(E), and thus that

GlRD = Stab (kD) .



Schubert Cell Decomposition of Grassmannians and Flag Varieties 35

Definition 2.31 The correspondence D 7→ RD gives rise to a mapping
Drap(E) −→P(R(E)) between the combinatorial flags and a class of closed
set of roots. The image of this mapping is called the class P (R(E)) of
parabolic subsets of R(E). Thus the parabolic subsets of R(E) are closed
subsets and correspond to the stabilizers of the flags adapted to the canonical
basis eE of kE.

Thus the set of combinatorial flags may be identified with the parabol-
ics subsets of the set of roots R(E), and a group theoretical description of
Drap(E) is obtained. The latter appears as a geometrical realization of the
former.

The class of parabolic subsets P (R(E)) ⊂P(R(E)) is characterized by:

P (R(E)) = { R ∈P(R(E)) | R closed and R(E) = R ∪Ropp } ,

where Ropp = { (i, j) ∈ R(E) | (j, i) ∈ R }. It is clear that Ropp is closed
if R is closed. Thus R is parabolic if and only if Ropp is parabolic (cf. loc.
cit.). The parabolic subsets of R(E) are the closed subsets corresponding to
the stabilizers of the flags adapted to the canonical basis eE of kE . They are
naturally indexed by the combinatorial flags D ∈ Drap(E).
Define two closed subsets of the parabolic set RD by:

RuD = RD −RD ∩RoppD (resp. RsD = RD ∩RoppD ).

Clearly we have:
RsD =

∐
0≤β≤l

R(Hβ+1−Hβ)

(resp. RuD =
∐

1≤β≤l

(Hβ −Hβ−1)× (E −Hβ) =
∐

1≤β≤l

Hβ × (Hβ+1 −Hβ)).

Definition 2.32 Let D = (H1 · · · ⊂ Hl ⊂ Hl+1) ∈ Drap(E). Write

Dopp = (H⊥l · · · ⊂ H⊥1 ⊂ E) ∈ Drap(E).

Proposition 2.33 The following relations between closed subsets of R(E)
hold:

RoppD = RDopp (resp.(RsD)opp = RsDopp , and (RuD)opp = RuDopp).

Proof Let us prove the last formula. The two others follow easily from this
one. We know that:

RuD =
∐

1≤β≤l

(Hβ −Hβ−1)× (E −Hβ) =
∐

1≤β≤l

Hβ × (Hβ+1 −Hβ))

Thus

RuDopp =
∐

1≤β≤l

H⊥β ×(H⊥β−1−H⊥β ) =
∐

1≤β≤l

(E−Hβ)×(Hβ−Hβ−1) = (RuD)opp .
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Let U(D) ⊂ GlRuD be the subgroup defined by

U(D) = {(aij) ∈ GlRuD | aii = 1 (i ∈ E) } ,

and observe that:

(i, j) ∈ RuD , (j, k) ∈ RsD ⇒ (i, k) ∈ RuD
(resp. (i, j) ∈ RsD , (j, k) ∈ RuD ⇒ (i, k) ∈ RuD ).

We conclude that the Lie subalgebra U (D) = Lie(U(D)) ⊂ P(D) =
Lie(P (D)) is a Lie algebra ideal. Thus, the subgroup U(D) is an invariant
subgroup of P (D). Let GlRsD n U(D) denote the semi-direct product defined
by the action of GlRsD on U(D) given by g 7→ int(g). Thus we obtain Levi’s
decomposition of P (D) (cf. [23], Exp. XXVI):

P (D) = GlRsD n U(D) .

As an example let us determine U(D) for D = (H ⊂ E). In this case

RuD = H ×H⊥,

and:
(i, j), (k, l) ∈ H ×H⊥ =⇒ Eij × Ekl = 0 .

It results that the Lie subalgebraMH×H⊥(k) ⊂ME×E(k) is abelian. The ele-
ments ν ofMH×H⊥(k) being considered as endomorphisms of kE , by imposing
ν(kH

⊥
) = 0 on ν. Thus U(D) = {IdE + ν |ν ∈ MH×H⊥(k)} is canonically

isomorphic to the vector group V ect(H ×H⊥) whose underlying k-variety is
A(MH×H⊥(k)).

Proposition 2.34
1. The group U(Dopp) stabilizes the open subset UD ⊂ Grass|H|(k

E), and its
action is transitive.
2. The group P (Dopp) = Stab Dopp acts transitively on UD. Actually UD is a
P (Dopp)-Schubert cell.

Proof By definition Stab Dopp stabilizes kH
⊥
. As we have for g ∈ Stab Dopp

g(S ∩ kH
⊥

) = 0⇐⇒ S ∩ kH
⊥

= 0 ,

we deduce that rk (πH)S = |H| ⇐⇒ rk (πH)g(S) = |H|. A fortiori we obtain
that S ∈ UD =⇒ g(S) ∈ UD, for g ∈ Stab Dopp, by definition of UD. As
U(Dopp) ⊂ Stab Dopp we conclude that U(Dopp) stabilizes UD.

Let us see that the action of U(Dopp) on UD is transitive. Given
S, S′ ∈ UD, the lifted basis ẽH(S) (resp. ẽH(S′)) may be written ẽH(S) =
((ei, ν(ei))i∈H (resp. ẽH′(S) = ((ei, ν

′(ei))i∈H) with ν, ν′ ∈ MH⊥×H(k).
Then: (IdE +(ν′−ν)) ∈ U(Dopp) and (IdE +(ν′−ν))(S) = S′. Observe that
UD is the Schubert cell defined by S ∩ kH⊥ = 0 for S ∈ Grass|H|(kE). This
achieves the proof of the proposition.
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In fact the open set UD is parametrized by the R-subgroup U(Dopp) ⊂ Gl(kE).

Proposition 2.35 The action of U(Dopp) on UD is simply transitive.

Proof We recall that the canonical coordinates on UD D = (H ⊂ E) define
an isomorphism UD −→ MH⊥×H(k) (cf. 1.20) by S 7→ m(S). Denote by
A(S) ∈ ME×H(k) the H-normalized matrix associated to m(S). Thus for
g ∈ U(Dopp) the canonical coordinates of g(S) are obtained by normalizing
the product matrix g×A(S). Observe that if S0 = kH , the matrix g×A(S0) is
H-normalized. Thus U(Dopp) −→MH⊥×H(k), defined by g 7→ m(g×A(S0)),
is an isomorphism of k-varieties. This suffices to prove that the action of
U(Dopp) is simply transitive.

Remark 2.36 Consider Gl(kH) for H ∈ Grass(E) as a subgroup of Gl(kE).
In fact g ∈ Gl(kH) may be extended to an endomorphism of kE, by defining
g|
kH⊥

= Id
kH⊥

.

Proposition 2.37 Let D = (H1 · · · ⊂ Hl ⊂ Hl+1), and n = typ(D).

1. P (Dopp) stabilizes UD.

2. The action of U(Dopp)(resp. P (Dopp)) on UD is transitive, thus UD is a
P (Dopp)-Schubert cell.

Proof Let D = (S1 · · · ⊂ Sl ⊂ Sl+1) ∈ Drapn(E), by definition 1.11:

D ∈ UD ⇐⇒ rk (πHβ )Sβ = |Hβ | ,

for all 1 5 β 5 l. From proposition 2.34, in view of P (Dopp) ⊂ P ((H⊥β ⊂ E)),
one obtains that P (Dopp) stabilizes UD.

Observe that U(Dopp) contains U(((Hβ+1 −Hβ) ⊂ Hβ+1)) ⊂ Gl(kHβ+1).
From proposition 2.34, by induction on the cardinal |E|, there exists g ∈
U(Dopp) with g ·D = kD. This proves the transitivity of the action of P (Dopp)
on UD.

2.5.1 The parabolic subgroups of the linear group

Let (i, j) ∈ R(E). Denote by G(i,j) ⊂ Gl(kE) the subgroup of matrices (akl)
satisfying: akk = 1 (resp. akl = 0 for (k, l) /∈ (∆(E) ∪ {(i, j)}) ).
Thus G(i,j) = { IdkE + λEij | λ ∈ k }. It may be noted that if G(i,j) denotes
the Lie algebra of G(i,j), then:

G(i,j) = V ect(Eij),

and
Gl(kE) = ME(k) = T ⊕ ( ⊕

(i,j)∈R(E)
G(i,j)),
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where T = Lie(T ). This direct sum decomposition is given by the diago-
nalisation of the adjoint action t 7→ Ad(t) of T on the Lie algebra Gl(kE).
The set R(E) canonically indexes the non trivial characters (λ(i,j))(i,j)∈R(E)

of T (The roots defined by T ) in this decomposition. The component T
corresponds to the trivial character of T and is, precisely, the Lie algebra
Lie(T ) of T . Thus T is a maximal torus of Gl(kE), and the above direct sum
decomposition is the root decomposition of Gl(kE) under the adjoint action
of T .
The following relations hold between the roots:

λ(i,j) · λ(j,k) = λ(i,k)

(resp.λ(i,j) · λ(j,i) = 1). The product λ(i,j) · λ(k,l) of the two root characters
λ(i,j) and λ(k,l) is a root character if and only if j = k and i 6= l.

Definition 2.38 A set of roots S is closed if:

λ, λ′ ∈ S , and λ · λ′ ∈ R(E) =⇒ λ · λ′ ∈ S .

A set of roots S is parabolic if S is closed, and S ∪ S −1 =
the set of roots defined by T . Clearly

S is closed (resp. parabolic)⇐⇒ S = (λ(i,j))(i,j)∈R

with R ⊂ R(E) closed (resp. parabolic).

If k is an algebraically closed field, then a maximal torus T ⊂ Gl(kE) is
obtained as a subgroup whose elements stabilize the vectors of a base of kE .
A maximal torus of Gl(kE) is conjugated to the canonical torus defined by
the basis eE . Thus the root characters defined by the adjoint action of T may
be indexed by R(E), namely: (λij)(i,j)∈R(E). Let (G(i,j))(i,j)∈R(E) be the set
of root subgroups defined by T .

As a particular case of the general definition of a parabolic subgroup we
have:

A subgroup P ⊂ Gl(kE) is parabolic if:

1) the group Pk′ obtained by the algebraic closure k −→ k′ contains a
maximal torus T ;

2) the subset (G(i,j))(i,j)∈R of the root subgroups contained in Pk′ is in-
dexed by a parabolic subset R ⊂ R(E) and P is generated by the
subgroups (G(i,j))(i,j)∈R and T .

Remark 2.39 It can be seen later that there is a Gl(kE)-homogeneous k-
projective variety Par(Gl(kE)) whose sections with values in a field extension
k −→ k′, correspond to the parabolic subgroups of Gl(k′E)). There is natural
isomorphism Drap(kE) −→ Par(Gl(kE)) defined by D 7→ Stab D . typ(P ) =
typ(D) should be written if the parabolic subgroup P corresponds to the flag
D . Parn(Gl(kE)) denotes the variety of parabolic subgroups of type n.
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A parabolic subgroup P of Gl(kE) is its own normalizer P = NormP , as
results from the following proposition.

Proposition 2.40 NormP (D) = P (D) is available.

Proof It may be supposed that k is algebraically closed. Let eDn = ⊗
1≤β≤l

∧

eHβ (cf. 1.12), and L = V ect(eDn). The parabolic subgroup P (Dn) is the
stability group of L. Clearly g(eDn) = λ · eDn (λ ∈ k) implies that g(∧eHβ ) =

λβ · ∧eHβ (λβ ∈ k) and thus, that g(kHβ ) ⊂ kHβ . From P (Dn) = Stab Dn =
∩

15β5l
Stab kHβ follows that g ∈ P (Dn). It is concluded that g(L) = L ⇐⇒

g ∈ P (Dn).
Consider the representation of VeDn of Gl(kE) generated by eDn . It is

well-known that there is only one 1-dimensional subspace L of VeDn stabilized
by P (Dn), namely L = V ect(eDn), i.e. the weight vectors for P (Dn) form a
1-dimensional subspace of VeDn . Let Γ ∈ NormP (Dn). Then

(∀g ∈ P (Dn)) Γ−1 · g · Γ ∈ P (Dn)⇒ g(Γ · eDn) = Γ(g′ · eDn) = λg′(Γ · eDn) ,

where g′ ∈ P (Dn). Thus P (Dn) stabilizes L′ = V ect(Γ · eDn) and it may be
concluded L′ = L, that is to say Γ · eDn = λ · eDn (λ ∈ k). It may be deduced
that Γ ∈ P (Dn). This achieves the proof.

2.5.2 Unipotent R-subgroups

By definition a unipotent R-group G is a subgroup of the form G = GlR ∩
U(D), where R ⊂ RD is a closed subset, with D a combinatorial maximal
length flag. Then G is the unipotent radical of a R-subgroup of a P (D) with
D of maximal length. Given D′ ∈ Drap(E), if D′ ⊂ D is a maximal length
flag, we have RuD′ ⊂ RuD. Thus U(D′) is a unipotent R-group.

A unipotent R-subgroup G generated by a family of subgroups
(G(i,j))(i,j)∈R⊂RD with R is a closed subset. The following proposition is
a consequence of the general theory of unipotent k-groups in Gl(kE) (cf. [10],
§II).

Proposition 2.41 We assume the notation above. The product in Gl(kE)
induces an isomorphism of k-varieties:∏

(i,j)∈R

G(i,j) ' G ⊂ Gl(kE).

In view of
RuDopp =

∐
15β5l

(Hβ+1 −Hβ)×Hβ ,
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proposition 2.41 implies the product decomposition:∏
l=β=1

U(((Hβ+1 −Hβ) ⊂ Hβ+1)) ' U(Dopp) ,

the isomorphism being given by the product in Gl(kE).
There is an important corollary of this decomposition. One has defined the

canonical coordinates in UD (cf. definition 1.20). In fact, this parametrization
corresponds to the parametrization of UD in terms of the principal action of
U(Dopp) on UD (cf. proposition 2.37).

One may embedM(Hβ+1−Hβ)×Hβ inME×E by completing a (Hβ+1−Hβ)×
Hβ-matrix m with zeros in a E ×E-matrix m′, which one also denotes by m.
Write u(m) = 1E+m ∈ U(((Hβ+1−Hβ) ⊂ Hβ+1)). There is an isomorphism:

uD : AD =
∏

15β5l

M(Hβ+1−Hβ)×Hβ (k) −→
∏

15β5l

U(((Hβ+1 −Hβ) ⊂ Hβ))

' U(Dopp) ,

defined by uD : (mβ) 7→ uD((mβ)) = u(ml)× · · · × u(m1).
Let (mD(Sβ)) denote the canonical coordinates of D = (S1 · · · ⊂ Sl ⊂

kE) ∈ UD. The element uD((mD(Sβ))) ∈ U(Dopp) satisfies:

mD(uD((mD(Sβ))) · kHβ ) = mD(Sβ) .

This means that if one Hβ-normalizes the matrix whose columns are the
columns of uD((mD(Sβ))) indexed by Hβ , one obtains a E×Hβ-matrix whose
(Hβ+1 −Hβ)×Hβ-submatrix is given by mD(Sβ)). Thus it follows that:

uD((mD(Sβ))) · kD = D .

The above formula is a particular case of the following one. Let U(Dopp) −→
UD be defined by u 7→ u · kD. This morphism is, in fact, an isomorphism,
which can be seen by proving that the composed morphism

AD ' U(Dopp) −→ UD ' AD

reduces to the identity morphism of AD. Given (mβ) ∈ AD, write D =
(S1 · · · ⊂ Sl ⊂ kE) = uD((mβ)) · kD. Then

mD(uD((mβ)) · kHβ ) = mβ ,

i.e. mD(Sβ) = mβ , which proves what has been asserted.

Proposition 2.42 1) The morphism U(Dopp) −→ UD defined by u 7→
u · kD is a k-isomorphism ;
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2) the action of U(Dopp) on UD is principal and, thus, induces an isomor-
phism of varieties U(Dopp) ' UD defined by g 7→ g · kD (The U(Dopp)-
parametrization of UD).

The reciprocal of the isomorphism U(Dopp) −→ UD is given by D =
(S1 · · · ⊂ Sl ⊂ kE) 7→ u(mD(Sl))× u(mD(Sl−1)) · · ·u(mD(S1)).

Definition 2.43 Let D = (E1 · · · ⊂ Er ⊂ E) (|E| = r + 1) be a maximal
length flag (resp. D′ = (H1 · · · ⊂ Hl ⊂ E) ∈ Drapn(kE)), ωD the order
associated with D, and ωD∩Hβ the induced order on Hβ. Denote by eD (resp.
eD∩Hβ ) the corresponding ordered basis of kE (resp. kHβ ), and by D′D∩Hβ ∈
Drap(Hβ) the maximal length flag defined by eD∩Hβ .

It may be observed that with the notation of 1.4 one has D′D∩Hβ = ϕ(D ∩
Hβ), i.e. D′D∩Hβ is the flag of Hβ defined by the chain D ∩Hβ.

Corollary 2.44 There is a section (ẽD∩Hβ )15β5l on UD of the product fiber
bundle ∏

15β5l

Stief(ξnβ ) −→ Drapn(kE) ,

where ξn = (ξn1 ⊂ · · · ⊂ ξnl ⊂ OE
Drapn(kE)), defined by (ẽD∩Hβ ) : D =

(S1 · · · ⊂ Sl ⊂ kE) 7→ (uD((mD(Sβ))) · eD∩Hβ )15β5l. The following relation
holds ẽD∩Hβ (D) = (πHβ )−1

Sβ
(eD∩Hβ ).

Denote by DωD∩Hβ
the maximal length flag section of Drap(ξnβ ) defined

by ẽωD∩Hβ .

Remark 2.45 The total ordering ωD of E is coherent with D′ if

i ∈ Hβ =⇒ {i′ ∈ E | i′ ≤
ωD

i } ⊂ Hβ .

This is equivalent supposing D′ ⊂ D, in which case the section (ẽD∩Hβ ) gives
a section of Stief(ξn) ⊂

∏
15β5l

Stief(ξnβ ).

2.5.3 Closed set of roots defined by a couple of flags

In this section we establish the relationship between the parametrization by
normalization of a Schubert cell, with that one given by an unipotent R-
subgroup.

Definition 2.46 Let D be a maximal length flag and D′ ∈ Drap(E). With
the couple (D,D′) one associates the closed subset R(D,D′) ⊂ RuD given by

R(D,D′) = { (i, j) ∈ RuD | (i, j) /∈ RD′ } .
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Define the unipotent R-subgroup

U(D,D′) = GlR(D,D′) ∩ U(D) ⊂ U(D) .

The set R(D,D′) is closed. If D′ is of maximal length one has, then
R(D,D′) = RD ∩RD′opp is closed. From the definition formula RD′ = ∪RD′′ ,
where D′′ runs on the set of maximal length flags containing D′ as a subflag,
it follows that R(D,D′) = ∩R(D,D′′) is closed in general.

Remark 2.47 Let D′ = (H ⊂ E). From R(E)−R(D′) = ∩(R(E)−R(D′′))
we deduce R(E) − R(D′) = { (j, i) ∈ R(E) | j ∈ H⊥, i ∈ H }. Thus,
R(D,D′) = RD ∩ { (j, i) ∈ R(E) | j ∈ H⊥, i ∈ H } = { j ∈ H⊥ | j <

ωD
i }.

Hence, R(D,D′) =
∐
i∈H

H⊥ ∩ EτD(i) × {i} ⊂ H⊥ ×H.

Definition 2.48 Let |E| = r + 1, D = (E1 · · · ⊂ Er ⊂ E), D′ = (H1 · · · ⊂
Hl ⊂ Hl+1) ∈ Drapn(E) (n = (n1 < · · · < nl < nl+1)). Suppose E ordered
by ωD. Let τD : E ' J1, |E|K be the order preserving bijection given by the
ordering ωD of E, i.e. τD(i) = inf{α ∈ J1, |E|K | i ∈ Eα }.

Write:

1. H[ 5 i ] = {x ∈ H |x 5 i } ;

2. Rβ(D,D′) =
∐
i∈Hβ

(Hβ+1[ 5 i ]−Hβ [ 5 i ])×{i} ⊂ (Hβ+1 −Hβ)×Hβ.

The set Rβ(D,D′) is closed.

Proposition 2.49 R(D,D′) =
∐

15β5l

Rβ(D,D′) ⊂ RuD′opp =
∐

15β5l

(Hβ+1 −

Hβ)×Hβ.

Proof One knows that:

RD′ = (
∐

0≤β≤l

R(Hβ+1−Hβ))
∐

(
∐

1≤β≤l

Hβ × (Hβ+1 −Hβ)) ,

RoppD′ = RD′opp thus, R(E) = RD′ ∪ RD′opp . Then R(E) − RD′ =∐
15β5l

(Hβ+1 −Hβ)×Hβ, and finally

R(D,D′) = RD∩(R(E)−RD′) =
∐

15β5l

(
∐
i∈Hβ

{ (j, i) ∈ (Hβ+1−Hβ)×{i} | j <
ω
i }) =

=
∐

15β5l

(
∐
i∈Hβ

EτD(i) ∩ (Hβ+1 −Hβ)× {i}) =
∐

15β5l

Rβ(D,D′) .

Now suppose that D′ = (H ⊂ E). Then one has:
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1. E[ 5 i ] = EτD(i) (by definition of τD);

2. E[ 5 i ]−H[ 5 i ] = H⊥ ∩ EτD(i);

3. R(D,D′) =
∐
i∈H

H⊥ ∩ EτD(i) × {i} ⊂ H⊥ ×H

(The set R(D,D′) for D′ = (H ⊂ E)) ;

4. U(D,D′) ⊂ U((H⊥ ⊂ E)) = U(D′opp).

Let

MR(D,D′)(k) = { m = (aij) ∈MH⊥×H(k) | (i, j) /∈ R(D,D′)⇒ aij = 0} .

One has

U(D,D′) = { 1E +m ∈ U(D′opp) | m ∈MR(D,D′)(k)} .

The following proposition explains how the U(D′opp)-parametrization of UD′
induces a U(D,D′)-parametrization of Σ(M,D′) ↪→ UD .

The relative position matrixM = M(D,D′) is characterized by the vector
(|Ej∩H|)15j5r+1. LetH = (i1 < · · · < in). Then one has that |EτD(iα)∩H| =
α, and that (τD(iα))15α5n are the “increasing points” of the chainD∩H. Thus
S ∈ Σ(M,D)⇔ dim kEτD(iα) ∩ S = α, and (τD(iα))15α5n are the increasing
points of the chain kD ∩ S. A basis fS = (fiα)15α5n of S may be obtained
satisfying kEτD(iα) ∩S = V ect((fi1 , · · · , fiα)). Let M(fS) = (ξjiα) denote the
E×H-matrix whose column vectors are given by the components of the fiα ’s.

The matrix (ξjiα) satisfies the equations ξjiα = 0 for iα < j, and ξjiα 6= 0
for j = iα. One deduces that a H-normalized matrix may be obtained by right
multiplying (ξjiα) by a n×n-lower triangular matrix B. Hence the lifted basis
ẽH = (πH)−1

S (eH) (eH = (eiα)), may be uniquely written as:

ẽiα = eiα +
∑

(j,iα)∈(H⊥∩EτD(iα))×{iα}

ξjiαej (iα ∈ H) .

Thus, mD′(S) = (ξjiα) ∈ MR(D,D′)(k) and u(mD′(S)) ∈ U(D,D′). Thus it
has been proved:

Proposition 2.50 Keep the above notation. Let M = M(D,D′). Remark
that D′ is the center of Σ(M,D), i.e. D′ = DM .

1. Σ(M,D) ⊂ UD′ ;

2. the morphism U(D,D′) −→ Σ(M,D) defined by g 7→ g · kH is an iso-
morphism of k-varieties;

3. Σ(M,D) is principal homogeneous under U(D,D′).
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(The U(D,D′)-parametrization of a Schubert cell Σ(M,D) ⊂
Grass(KE))

Keep the notation of 1.3.2, with D′ = D, and the notation of corollary 2.44
as well. The following proposition, which we give without proof, explains how
Σ(M(β), D) is decomposed in terms of the fibrations (UDβ → UDβ+1)15β5l.

Proposition 2.51 Let M(β) = M(D,Dβ). Clearly M(1) = M(D,D′). It
may be assumed that Σ(M(β), D) ⊂ UDβ , and that Σ(M,D) = Σ(M(1), D)
decomposes in a sequence of locally trivial fibrations (Σ(M(β), D)→ Σ(M(β+
1), D))15β5l with typical fiber Σ(Mβ , D

′
D∩Hβ ) ⊂ Grassnβ (knβ+1), where

Mβ = M(D′D∩Hβ , (Hβ ⊂ Hβ+1)) and D′D∩Hβ denotes the flag given by
D ∩Hβ. (This decomposition being induced by (UDβ → UDβ+1)15β5l).

The restriction (ξnβ+1
)Σ of the ODrap

nβ+1 (kE)-module ξnβ+1
to Σ =

Σ(M(β + 1), D) ⊂ Uβ+1 ⊂ Drapnβ+1(kE) is endowed with a maximal length
flag DD∩Hβ+1

defining a section of Drap(ξnβ+1
)Σ (cf. corollary 2.44). The

sections of the fiber bundle Σ(M(β), D) −→ Σ(M(β + 1), D) given by the
sections S of Grassnβ (ξnβ+1

)Σ are satisfying:

1) S intersects the submodules of DD∩Hβ+1
in a locally free direct factor;

2) M(DD∩Hβ+1
, (S ⊂ ξnβ+1

)) = Mβ .

Remark 2.52 In fact, (ξnβ+1
)Σ is endowed with the ordered basis ẽD∩Hβ+1

defining the flag DD∩Hβ+1
, and a section Hβ of Grassnβ (ξnβ+1

)Σ. Thus, the
fiber bundle Σ(M(β), D) −→ Σ(M(β + 1), D) is isomorphic as a Σ(M(β +
1), D)-scheme to the relative Schubert cell Σ(Mβ ,DD∩Hβ+1

), whose center
is given by (Hβ ⊂ ξnβ+1

), i.e. M(DD∩Hβ+1
, (Hβ ⊂ ξnβ+1

)) = Mβ and Hβ is
adapted to ẽD∩Hβ+1

.

One has:
1. Rβ(D,D′) = R(D′D∩Hβ+1

, (Hβ ⊂ Hβ+1))

=
∐
i∈Hβ

(EτD(i) ∩ (Hβ+1 −Hβ))× {i} ⊂ (Hβ+1 −Hβ)×Hβ .

2. Uβ(D,D′) = U(D′D∩Hβ+1
, (Hβ ⊂ Hβ+1)) ⊂ Gl(kHβ+1);

3. Uβ(D′opp) = U(((Hβ+1 −Hβ) ⊂ Hβ+1)).

To the decomposition of R(D,D′):

R(D,D′) =
∐

15β5l

Rβ(D,D′) ⊂
∐

15β5l

(Hβ+1 −Hβ)×Hβ = RuD′opp ,

corresponds to the product decomposition:

U(D,D′) =
∏

l5β51

Uβ(D,D′) ⊂
∏

l5β51

Uβ(D′opp) = U(D′opp) .
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Denote by AR(D,D′) = A(
∏

15β5l

MRβ(D,D′)) ⊂ A(
∏

15β5l

M(Hβ+1−Hβ)×Hβ (k)),

where MRβ(D,D′) = { m = (aij) ∈M(Hβ+1−Hβ)×Hβ (k) | (i, j) /∈ Rβ(D,D′)⇒
aij = 0}, the affine subspace being defined by

∏
15β5l

MRβ(D,D′)).

Proposition 2.53 Let D′ = (H1 ⊂ · · ·Hl ⊂ Hl+1) ∈ Drap(E) and M =
M(D,D′). It is noted that D′ is the center of Σ(M,D), i.e. D′ = DM . The
restriction morphism given by the embedding:

A(
∏

l=β=1

MRβ(D,D′)(k)) ↪→ A(
∏

l=β=1

M(Hβ+1−Hβ)×Hβ (k)) ' U(D′opp) −→ UD′

induces an isomorphism

A(
∏

l=β=1

MRβ(D,D′)(k)) ' U(D,D′) ' Σ(M,D) (cf. proposition 2.42).

Thus one has:

1. Σ(M,D) ⊂ UD′ ;

2. the morphism U(D,D′) −→ Σ(M,D) defined by g 7→ g · kH is an iso-
morphism of k-varieties;

3. Σ(M,D) is principal homogeneous under U(D,D′).

(The U(D,D′)-parametrization of a Schubert cell Σ(M,D) ⊂
Grass(kE))

Proof Let us prove the first assertion by induction on l. From 2.50, it
results for l = 1. Let 1 5 β. Suppose

∏
l=β′=β+1

MRβ′ (D,D
′β+1)(k) ' Σ(M(β +

1), D) (cf. proposition 2.51). Given a section (Sβ ⊂ Sβ+1 · · ·Sl ⊂ Sl+1) of
Σ(M(β), D) → Σ(M(β + 1), D) we may write u((mβ′)l=β′=β+1) · kD′β+1

=

(Sβ+1 · · ·Sl ⊂ Sl+1) with (mβ′)l=β′=β+1 ∈
∏

l=β′=β+1

MRβ′ (D,D
′β+1)(k), and,

thus, u((mβ′)l=β′=β+1) × u(mD′β (Sβ)) · kHβ = Sβ. As Sβ defines a section
of Σ(Mβ ,DD∩Hβ+1

) one obtains u(mD′β (Sβ)) ∈MRβ(D,D′β)(k). We conclude
that u((mβ′)l=β′=β+1)×u(mD′β (Sβ))·kD′β = (Sβ ⊂ Sβ+1 · · ·Sl ⊂ Sl+1). This
achieves the proof of the first assertion. The other statements follow easily
from the first one.
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2.6 The linear group parabolics variety

Denote by qn : Gl(kE) −→ Gl(kE)/P (Dn) the quotient morphism. The
morphism pn : Gl(kE) −→ Drapn(kE) defined by x 7→ x · kDn factors as:
pn = p̃n ◦ qn. We prove here that

Proposition 2.54 The induced morphism p̃n : Gl(kE)/P (Dn) −→
Drapn(kE) is an isomorphism of k-varieties.

Given g ∈ Gl(kE) denote by ∆nβ (g) the nβ-th diagonal minor of g. Let

Un = { g ∈ Gl(kE) | ∆nβ (g) 6= 0 (1 5 β 5 l) } .

Clearly Un is an open subvariety of Gl(kE).

Lemma 2.55 1. If g ∈ Un, g may be written uniquely as g = u · g′, with
u ∈ U(Dopp

n ) and g′ ∈ P (Dn);

2. (w · Un)w∈SE/Sn is an open covering of Gl(kE).

Proof The first statement is easily verified. Let us prove the second one. It
is clear that for w ∈ S, w · Un is an open subvariety of Gl(kE). From 5.21 it
follows that (w · Un)w∈SE/Sn is an open covering of Gl(kE).

Proof of 2.54
Lemma 2.55 shows that the restriction (p̃n)qn(Un) induces an isomorphism

qn(Un) ' U(Dopp
n ) · kDn , between an open subvariety of the integral variety

Gl(kE)/P (Dn) and an open subvariety of the integral variety Drapn(kE). We
conclude that pn is a birational morphism, and that ∀w ∈ SE:

(p̃n)qn(w(Un)) : qn(w(Un)) −→ U(w(Dn)opp) · kw(Dn)

is an isomorphism too. This implies that p̃n is a quasi-finite morphism. Thus
we may apply Zariski’s main theorem (cf. [9], p.6) and deduce that p̃n is an
isomorphism of k-varieties.

Definition 2.56 A parabolic subgroup P of the A-group Gl(AE) may be de-
fined following the pattern of definition 2.38 and thus also the functor

Par(Gl(kE))(A) = the parabolic subgroups of Gl(AE)(A a k − algebra),

may be defined without any reference to Drap(kE). By proposition
2.40 we know that P (Dn) is equal to its own normalizer and thus that
Gl(kE)/P (Dn) −→ Par(Gl(kE)) induced by g 7→ int(g)(P (Dn)) is a func-
torial isomorphism. We conclude that Par(Gl(kE)) is a representable functor
isomorphic to the homogeneous space Gl(kE)/P (Dn) (cf. [23], Exp. XXVI,
Corollaire 3.6).



Schubert Cell Decomposition of Grassmannians and Flag Varieties 47

From proposition 2.54 it follows

Corollary 2.57 The morphism Drapn(kE) −→ Par(Gl(kE)) defined in 2.39
is an isomorphism.

2.7 Big cell defined by a maximal length flag

Taking into account the cell decomposition Drap(kE)n =∐
M∈Relpos(m,n)

Σ(M,D) with D ∈ Drapm(E), which is also the P (D)-

orbit decomposition, and the isomorphism Gl(kE)/P (D′) ' Drapn(kE)
(D′ ∈ Drapn(E)) implying that Drapn(kE) is an irreducible k-variety, one
can state the following

Definition 2.58 There is only one kD-Schubert cell which is an open sub-
variety of Drapn(kE), namely the cell containing the generic point of
Drapn(kE). Denote by M bc

(m,n) ∈ Relpos(m,n) the relative position ma-
trix defining the open cell of the kD-Schubert cell decomposition. One calls
Σ(M bc

(m,n), D) the big (open) cell of Drapn(kE) defined by D. One
can say that a couple of flags (D,D′) satisfying M bc

(m,n) = M(D,D′) is in
transversal position (cf. loc. cit., Exp. XXVI, 4.). By definition two flags
D and D′ are incident (cf. [50], p.2) if there exists a flag D′′ satisfying:
D,D′ ⊂ D′′.

Proposition 2.59 A couple of flags (D,D′) is in transversal position if and
only if D and (D′)opp are incident.

Proof The condition D, (D′)opp ⊂ D′′ implies that U((D′)opp) ⊂ P (D′′).
Thus

UD′ = U((D′)opp)·kD′ ⊂ P (D′′)·kD′ ⊂ P (D)·kD′ , i.e. Σ(M(D,D′), D) =
P (D) · kD′ is an open subvariety and the couple (D,D′) is in transversal
position.

Suppose D is of maximal length and that Σ(M(D,D′), D) ⊂ UD ⊂
Drapn(kE) is an open subvariety. On the other hand, one knows that
Σ(M(D,D′), D) is a closed subvariety of UD thus Σ(M(D,D′), D) = UD.
It is deduced that U((D′)opp) = U(D,D′), and a fortiori that Ru(D′)opp =

R(D,D′) ⊂ RD. This implies that the two flags D and (D′)opp are in-
cident flags. If Σ(M(D,D′), D) is open there exists a maximal length flag
D ⊂ D with Σ(M(D,D′), D) open. One concludes from the above reasoning
that (D′)opp, D ⊂ D, i.e. (D′)opp and D are incident flags.

Proposition 2.60 Let D ∈ Drapr(kE) be a maximal length flag of E (|E| =
r+1). There exists a unique D′ = (H1 · · · ⊂ Hl ⊂ E) ∈ Drapn(kE) satisfying
M(D,D′) = M bc

(r,n), characterized by τD(Hβ) = (r + 2− nβ < · · · < r + 1).
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Proof From lemma 2.19 it follows that given a relative position matrix
M ∈ Relpos(r,n)(E), and a maximal length flag D of E, there exists a unique
flag D′ ∈ Drapn(E) such that M(D,D′) = M . Apply this result to M bc

(r,n)

and D, and let D′ denote the unique flag satisfying M(D,D′) = M bc
(r,n). Thus

one obtains

R(D,D′) =
∐

15β5l

Rβ(D,D′) =
∐

15β5l

(
∐
i∈Hβ

(EτD(i) ∩ (Hβ+1 −Hβ))× {i} =

∐
15β5l

(Hβ+1 −Hβ)×Hβ = RuD′opp ,

and one deduces that: (Hβ+1 − Hβ) ⊂ EτD(i) for i ∈ Hβ, and thus that
τD(Hβ) = (r + 2− nβ < · · · < r + 1).

2.7.1 The embedding of a Schubert cell in a big Schubert cell

The open subvariety UD′ ⊂ Drapn(kE) contains as a closed subvariety ev-
ery Schubert cell Σ(M,D), with D some maximal length flag, and center
DM = D′, i.e. M = M(D,D′). It may be observed that the set of flags
of maximal length in transversal position with D′ is those of flags con-
taining (D′)opp as a subflag. In other terms incident to (D′)opp by 2.59.
On the other hand, given a maximal length flag D and a minimal gallery
Γ(D,D′) (cf. [50]), this gallery may be completed into a minimal gallery
Γ(D,D′) ⊂ Γ(Dtr, D′), where Dtr is in transversal position with D′, and thus
(D′)opp ⊂ Dtr. Thus Σ(M,D) ⊂ Σ(M(Dtr, D′), Dtr) = UD′ . By propo-
sition 2.35, UD′ is principal homogeneous under the unipotent R-subgroup
U((D′)opp) defined by the closed set Ru(D′)opp =

∐
15β5l

(Hβ+1 − Hβ) × Hβ

and by 1.3.3 one knows that there is an isomorphism of k-varieties: UD′ '
AD′ = A(

∏
1≤β≤l

M(Hβ+1−Hβ)×Hβ (k))(' U((D′)opp)), giving rise to a canonical

parametrization of UD′ . Denote by (ξij)(i,j)∈Ru
(D′)opp

the canonical coordinates
given by the above isomorphism. The embedding Σ(M,D) ↪→ UD′ is defined
by the set of equations (ξij = 0)(i,j)∈(Ru

(D′)opp−R(D,D′)). This embedding cor-
responds by the isomorphism UD′ ' AD′ to an embedding AR(D,D′) ↪→ AD '
An, where AR(D,D′) is given by the coordinates (mβ) = (aβ;ij) satisfying the
set of equations aβ;ij = 0 for σβ(i) < j 5 nβ+1 − nβ .

Proposition 2.61 Let σβ(i) = |EτD(i)∩(Hβ+1−Hβ)|. The image of AR(D,D′)

by AD ' An is given by the (mβ) = (aβ;ij) satisfying the set of equations:
aβ;ij = 0 for σβ(i) < j 5 nβ+1 − nβ.



Chapter 3

Resolution of Singularities of
a Schubert Variety

A smooth resolution of singularities for a Schubert variety in a flag variety
is constructed in terms of a Configurations variety directly obtained from its
Relative Position Matrix. This is a canonical smooth resolution whose con-
struction is suggested by our indexation of Schubert varieties in Flag varieties
by Relative Position Matrices. We explicit a canonical decomposition of this
variety as a sequence of locally trivial fibrations with Grassmannians as typical
fibers. A schematic version of this construction is also given.

We proceed first to define a class of subvarieties of products of Grassman-
nians in terms of the incidence relation between subspaces. These varieties
give rise to examples of smooth resolutions of Schubert varieties by minimal
generalized galleries. The first examples of smooth resolutions by means of
these varieties appear in [12] and [13]. In [12] an application to the construc-
tion of an invariant differential form dual to a Schubert cycle in Grassn(kE)
is given.

Let us explain another motivation of the smooth resolutions introduced in
this Chapter. In [49] R.Thom attempts to give a description of the singular-
ities of a differentiable function by means of an iterative procedure involving
functions into Grassmannians. These functions appear as locally classifying
mappings associated with the family of tangent spaces to the graph of this
function. Its generic singularities are thus described by a “Stratification” de-
fined by the Pull-Backs of Special Schubert varieties by these classifying map-
pings. What R.Thom introduces loosely as “La Ventilation d’une Singularité”
in loc.cit. amounts looking at a Classifying Mapping at a singular point of a
Schubert variety through its Smooth Resolution defined in this chapter and

49
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in [13].

3.1 Relative position matrix associated configurations variety

Definition 3.1 Given M = (mαβ) ∈ Relpos(m,n) ⊂ N(λ+1)×(l+1) with m =
(m1 < · · · < mλ < r + 1), n = (n1 < · · · < nl < r + 1) define a weighted
graph Λ(M) as follows. The set of vertices Vert Λ(M) of Λ(M) is given by

Vert Λ(M) = J1, λ+ 1K× J1, l + 1K,

and the set of edges Edg Λ(M) by

Edg Λ(M) = {((α, β), (α+ 1, β))| 1 6 α ≤ λ, 1 ≤ β ≤ l + 1} ∪
{((α, β), (α, β + 1))| 1 6 α ≤ λ+ 1, 1 ≤ β ≤ l}.

Define a weight function on the set of vertices Vert Λ(M) by:

p : Vert Λ(M)→ N, p(α, β) = mαβ .

A Λ(M)-configuration of Grass(Ir+1) =
∐

Grassn(Ir+1) is a mapping

f : J1, λ+ 1K× J1, l + 1K→ Grass(Ir+1)

satisfying:

(1) |f(α, β)| = card f(α, β) = mαβ = p(α, β);

(2) f(α, β) ⊂ f(α+ 1, β) (resp. f(α, β + 1)) if α 6 λ (resp. β 6 l).

The inclusion relation seems better suited to desoube this relation. In
fact it is a usual mathematical term relation of Grass(Ir+1) = P(Ir+1) and
J → |J | naturally defines a weighted graph structure on Grass(Ir+1). A
Λ(M)-configuration ϕ of Grass(Ir+1) is a morphism ϕ : Λ(M)→ Grass(Ir+1)
of weighted graphs. A Λ(M)-configuration ϕ is given by a matrix

(Jαβ) ∈ Grass(Ir+1)(λ+1)×(l+1)

satisfying |Jαβ | = mαβ , and Jαβ ⊂ Jα+1,β (resp. Jαβ ⊂ Jαβ+1) for 1 6 α 6 λ
(resp. 1 6 β 6 l).

Denote by

Confcomb(Λ(M)) = Conf(Λ(M), Grass(Ir+1))

the set of Λ(M)-configurations of Grass(Ir+1) (The Combinatorial Con-
figurations). Remark that mλ+1 l+1 = r + 1 and m1 l+1 = m1, m2 l+1 =
m2, · · · , mλ l+1 = mλ (resp. mλ+1 1 = n1, mλ+1 2 = n2, · · · , mλ+1 l = nl).
Thus there are natural mappings

p1 = p1(M) : Conf(Λ(M),Grass(Ir+1))→ Drapm(Ir+1)(
resp. p2 = p2(M) : Conf(Λ(M),Grass(Ir+1))→ Drapn(Ir+1)

)
,
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defined by

p1((Jαβ)) = (J1 l+1 ⊂ · · · Jλ l+1 ⊂ Ir+1)(
resp. p2((Jαβ)) = (Jλ+1 1 ⊂ · · · Jλ+1 l ⊂ Ir+1)

)
,

where Jλ+1 l+1 = Ir+1. Given D,D′ ∈ Drap(Ir+1) write

Confcomb(Λ(M), D) = Conf(Λ(M),Grass(Ir+1))D := p−1
1 (D)(

resp. Confcomb(Λ(M), D,D′) := p−1
1 (D) ∩ p−1

2 (D′)
)
.

Definition 3.2 Following the same pattern as above define a Λ(M)-
configuration ϕ of the k-variety Grass(kr+1). Denote by

Conf(Λ(M),Grass(kr+1)),

the set of the Λ(M)-configurations of Grass(kr+1). If no confusion arises one
can write Conf(Λ(M)) = Conf(Λ(M),Grass(kr+1)).

By definition there is a canonical inclusion:

Conf(Λ(M)) ⊂
∏

(α,β)∈J1,λ+1K×J1,l+1K

Grassmαβ (kr+1).

Proposition 3.3 Conf(Λ(M)) is a projective variety.

In the next section it is shown that Conf(Λ(M)) is a k-variety canonically
decomposed in a sequence of fiberings, each one with a smooth base and
typical fiber a Grassmannian, and thus a k-variety in Serre’s sense.

Proof There is an embedding of
∏

(α,β)∈J1,λ+1K×J1,l+1K
Grassmαβ (kr+1) in a

product of projective spaces, given by the product of the corresponding Plücker
embeddings.
By the proof of 1.9 one can conclude that the image of the subset Conf(Λ(M))
is characterized by the vanishing of a set of homogeneous equations in the
Plücker coordinates of the factors. Thus Conf(Λ(M)) is a closed subvariety
of a product of grassmannians. ( The equations defining the embedding corre-
spond to the set of inclusions defining Conf(Λ(M)) as a subset of this product
of grassmannians.) This achieves the proof.

Definition 3.4 To p1 (resp.p2) it corresponds the morphism

π1 = π1(M) : Conf(Λ(M)) −→ Drapm(kr+1)

(resp.
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π2 = π2(M) : Conf(Λ(M)) −→ Drapn(kr+1))

defined by π1((Sαβ)) = (S1 l+1 ⊂ · · ·Sλ l+1 ⊂ kr+1) (resp. π2((Sαβ)) =
(Sλ+1 1 ⊂ · · ·Sλ+1 l ⊂ kr+1); π1 and π2 are induced by the canonical projec-
tions of the product. Thus it is immediate that π1 and π2 are k-morphisms.

Let D ∈ Drapm(kr+1) and D ′ ∈ Drapn(kr+1). Write

Conf(Λ(M),D) := Conf(Λ(M))D := π−1
1 (D))(

resp. Conf(Λ(M),D ,D ′) := π−1
1 (D)) ∩ π−1

2 (D ′))
)
.

From the above proposition it results that Conf(Λ(M),D) is a k-projective
variety. This property also follows from the natural fibering of Conf(Λ(M),D)
as it is shown in the next section.

Notation 3.5 Write:
a) π(M) = (π1, π2) and denote by π(M,D) the restriction of π(M) to
Conf(Λ(M))D ;
b) Σ̂(M) = Conf(Λ(M)) (resp.Σ̂(M,D) = Conf(Λ(M),D)).

Let D = kD (resp. D ′ = kD
′
). Define the Combinatorial Fiber

Confcomb(Λ(M),D ,D ′) of (π1, π2) as the image of the mapping

Confcomb(Λ(M), D,D′) −→ Confcomb(Λ(M),D ,D ′) ,

defined by ϕ 7→ (kϕ(α,β)). If no confusion arises denote by
Confcomb(Λ(M), D,D′) this image.

3.1.1 The Configurations Canonical Section

Definition 3.6 There is a natural embedding

θ(M) : Σ(M) ↪→ Conf(Λ(M))

of the universal Schubert cell Σ(M) of type M into the variety of Λ(M)-
configurations, defined by (D ,D ′) 7→ M (D ,D ′) = (Wα ∩ Vβ), where D =
(W1 ⊂ · · · ⊂Wλ ⊂ kr+1) (resp. D ′ = (V1 ⊂ · · · ⊂ Vl ⊂ kr+1)).

Proposition 3.7 The mapping θ(M) is induced by a k-morphism.

Proof Let Σαβ(M) ⊂ Drapm(kr+1) × Drapn(kr+1) (resp. Σ′αβ(M) ⊂
Grassmα(kr+1) × Grassnβ (kr+1)) be the Schubert cell defined by dim Wα ∩
Vβ = mαβ (resp. dim W ∩ V = mαβ), where D = (W1 · · · ⊂ Wλ ⊂ kr+1),
and D′ = (V1 · · · ⊂ Vl ⊂ kr+1). Remark that Σ(M) = ∩Σαβ(M).
The (α, β)-component of θ(M) = (θαβ(M)) is obtained as the composi-
tion of the projection of Σαβ(M) on Σ′αβ(M) followed by the mapping
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Σ′αβ(M) −→ Grassmαβ (kr+1), defined by (W,V ) 7→ W ∩ V . In view of the
above remark, it suffices to prove that this mapping is induced by a morphism
θ′αβ(M) : Σ′αβ(M) −→ Grassmαβ (kr+1). Let it be proved that the Plücker co-
ordinates of W ∩V are given by homogeneous polynomials in the Plücker coor-
dinates ofW and V . We keep the notation of the proof of 1.9. The Plücker ho-
mogeneous coordinates of W (resp. V ) are given by (∆H(e1))H∈Grassmα (Ir+1)

(resp.(∆J(e2))J∈Grassnβ (Ir+1), where e1 (resp.e2) denotes a basis of W (resp.
V ). A system of defining linear equations is obtained for W ∩ V as follows.
The kernel of the linear mapping

Φ : kr+1 −→
m+1∧

kr+1 ×
n+1∧

kr+1

defined by:

v 7−→ ((e11 ∧ ... ∧ e1m) ∧ v, (e21 ∧ ... ∧ e2n) ∧ v),

is equal to W ∩ V . Denote by ρ the rank of Φ. Let S ∈ Grassmαβ (kr+1) and
f = (fk)15k5mαβ be a basis of S. The condition S = Ker Φ may be written
as follows. Let

Ψ : kr+1 −→
m+1∧

kr+1 ×
n+1∧

kr+1 ×
mαβ∧

kr+1

be defined by:

v 7−→ ((e11 ∧ ... ∧ e1m) ∧ v, (e21 ∧ ... ∧ e2n) ∧ v, (f1 ∧ ... ∧ fmαβ ) ∧ v).

Thus S = Ker Φ if and only if: Ker Φ = Ker Ψ. This last condi-
tion may be written, as in 1.9, in terms of the vanishing of the (ρ + 1)-
minors of the linear system obtained from Ψ. The minors of this system are
polynomials in (∆H(e1))H∈Grassmα (Ir+1) (resp.(∆J(e2))J∈Grassnβ (Ir+1) and
in the Plücker coordinates (∆K(f)K∈Grassmαβ (Ir+1) of S. More precisely:
S = Ker Φ⇔ the set (Mµ((∆H(e1)), (∆J(e2)); (∆K(f))) of the (ρ+1)-minors
linear in (∆K(f)) vanishes. Consider now the linear system in the vari-
ables (XK)K∈Grassmαβ (Ir+1) given by (Mµ((∆H(e1)), (∆J(e2)); (XK)) = 0);
(∆K(f)) is clearly a solution of this linear system. Let (X0

K) also be a solu-
tion. Then the vector

ω =
∑

K∈Grassmαβ (Ir+1)

X0
Kei1(K) ∧ ... ∧ ein(K) ,

satisfies ω ∧ fk = 0 for all 1 5 k 5 mαβ. Thus there exists λ ∈ k with

ω = λ · (
∑

K∈Grassmαβ (Ir+1)

∆K(f)ei1(K) ∧ ... ∧ ein(K)) = λ · f1 ∧ · · · ∧ fmαβ .
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Thus the subspace of solutions of this linear system is one dimensional. It
follows immediately that the coordinates (∆K(f)) of S are homogeneous poly-
nomials in the coefficients of (Mµ((∆H(e1)), (∆J(e2)); (XK)) = 0), which
are themselves homogeneous polynomials in (∆H(e1)) and (∆J(e2)). This
achieves the proof of the proposition.

Proposition 3.8 The morphism θ(M) : Σ(M) −→ Conf(Λ(M)) defines an
open embedding, and we have:

Σ̂′(M) = π(M)−1(Σ(M)) = Im Θ(M)

( resp. Σ̂′(M,D) = π(M,D)−1(Σ(M,D)) = Im Θ(M,D)).

Proof Let us prove the first assertion. The condition on

(Wαβ)(α,β)∈J1,λ+1K×J1,l+1K ∈ Conf(Λ(M),Grass(kr+1))

to be in the image of θ(M) is given by:

Wαβ = Wλ+1β ∩Wαl+1

((α, β) ∈ J1, λK× J1, lK). Write

Σ′(α,β) = {(W,W ′) ∈ Grassmα+1β
(kr+1)×Grassnαβ+1

(kr+1) | mα+1β <

rk(W∩W ′)},
and q(α,β) : Conf(Λ(M)) −→ Grassmα+1β

(kr+1)×Grassmαβ+1
(kr+1) for the

canonical projection. Let (ei)15i5mα+1β
(resp.(e′i)15i5mαβ+1

) be a basis of W

(resp. W ′). Define Φ : kr+1 −→
mα+1β

∧ (kr+1)×
mαβ+1

∧ (kr+1) by

Φ : v 7−→ ((e1 ∧ ... ∧ emα+1β
) ∧ v, (e′1 ∧ ... ∧ e′mαβ+1

) ∧ v) .

As in 1.9 a linear system is obtained whose matrix coefficients are given by
the Plücker coordinates of (W,W ′). The condition mαβ < rk ker Φ may be
stated as the vanishing of a set of minors of this system. Thus Σ′(α,β) is a
Zariski closed subset of Grassmα+1β

(kr+1)×Grassnαβ+1
(kr+1). On the other

hand, it is clear that

Im θ(M) = Conf(Λ(M))− ∪
(α,β)∈J1,λK×J1,lK

q−1
(α,β)(Σ

′
(α,β)),

thus one concludes that Im θ(M) is an open set in Conf(Λ(M)). The mor-
phism (π1, π2) gives a left inverse of θ(M), hence θ(M) may be seen as a
section of

(π1, π2) : Conf(Λ(M))→ Drap(kr+1)×Drap(kr+1)
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along the subscheme Σ(M) ↪→ Drap(kr+1) × Drap(kr+1). This proves that
θ(M) is an open embedding.

A simple geometrical argument proves the second assertion. Let (D ,D ′) ∈
Σ(M), with D = (W1 ⊂ · · · ⊂ Wλ ⊂ kr+1) and D ′ = (V1 ⊂ · · · ⊂ Vl ⊂ kr+1).
If π(M)((Wαβ)) = (D ,D ′), then Wα l+1 = Wα (1 6 α 6 l) and Wλ+1 β = Vβ
(1 6 β 6 l).

As (Wαβ) is a Λ(M)-configuration, one has

∀ (α, β), dim Wαβ = mαβ ,

and Wαβ ⊂ Wα l+1 ∩ Wλ+1 β = Wα ∩ Vβ. On the other hand, (D ,D ′) ∈
Σ(M)⇒ dim Wα ∩ Vβ = mαβ by definition of Σ(M). It is concluded that

∀ (α, β), Wαβ = Wα ∩ Vβ , i.e.

(Wαβ) = M (D ,D ′).

This achieves the proof of the proposition

Corollary 3.9 The restriction of the embedding θ(M) to Σ(M,D) induces
an open embedding

θ(M,D) : Σ(M,D) = Σ(M)D ↪→ Conf(Λ(M))D = Conf(Λ(M),D),

defined by D ′ 7→M (D ,D ′).

3.2 Fiber decomposition of a Grassmannian Configurations
Variety

Given a type of relative positionM = (mαβ) ∈ Relposm(Ir+1)∩N(λ+1)×2, i.e.
a type of relative position of a flag of type m = (m1 < · · · < mλ < r+ 1) and
length l(m) = λ and a flag of length 1, and a combinatorial flag D = (H1 · · · ⊂
Hλ ⊂ Ir+1), write Conf(Λ(M), D) = Conf(Λ(M), kD). To M is associated
the sequence of relative position matrices: Mα = (mα′β)15α′5α) (1 5 α 5
λ + 1). Let (Dα)15α5λ+1 be the sequence of truncated flags of D defined as
in 1.3.2, and mα = typ(Dα).
Define

Σ̂(α) = Σ̂(α)(M,D) := Σ̂(Mα, Dα) = Conf(Λ(Mα),

Grass(kHα))Dα (1 6 α 6 λ+ 1) .

We have the following identification:

Σ̂(α) = Σ̂(α)(M,D) =
(( α∏

α′=1

Grassmα′1(kHα′ )
)
×Grassmα(kr+1)

)
∩Chain(kHα),

where Chain(kHα) denotes the k-variety of chains of subspaces of kHα .
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Clearly Σ̂(λ+1) = Σ̂(M,D) = Conf(Λ(M), kD). For every 1 6 α 6 λ the

projection morphism
α+1∏
α′=1

Grassmα′1(kHα′ ) −→
α∏

α′=1

Grassmα′1(kHα′ ) induces

a morphism

p(α+1) : Σ̂(α+1) −→ Σ̂(α).

We shall now show

Proposition 3.10 1) p(α+1) defines a locally trivial fibration with typical
fiber a grassmannian.

2) The (Σ̂(α))15α5 λ+1 are integral and smooth k-varieties. In particular
Σ̂(M,D), D a flag of typem of kr+1, is an integral and smooth k-variety.

Proof There is a natural morphism: qα : Σ̂(α) −→ Grassmα1(kHα) ↪→
Grassmα1

(kHα+1). On the other hand, one knows that there is a locally trivial
fibration

Grass(mα+11−mα1)(O
Hα+1

Grassmα1
(kHα+1 )

/ξmα1) −→ Grassmα1(kHα+1).

The fiber on the section Jα1 of Grassmα1(kHα+1) on some X = Spec(A),
where A denotes k-algebra, is given by the set of sections Jα+11 of
Grassmα+11

(kHα+1) satisfying Jα1 ⊂ Jα+11 ⊂ O
Hα+1

Grassmα1 (kHα+1 )
.

From this description it follows that there is a canonical isomorphism:

q∗α(Grass(mα+11−mα1)(O
Hα+1

Grassmα1
(kHα+1 )

/ξmα1)) ' Σ̂(α+1) .

This implies that p(α+1) defines a locally trivial fibration with typical fiber a
grassmannian.
The total space of a locally trivial fiber bundle, with base and typical fiber
smooth and integral k-varieties, is a smooth and integral k-variety. It may
be observed that Σ̂(1) = Grassm11

(kH1). Thus the second assertion results
immediately by induction from the first one.

Remark 3.11 Let M ∈ N(λ+1)×(l+1) be a type of relative position ma-
trix of a chain of type m and a flag of type n (cf. 1.4). Given a chain
D ∈ Chainm(E), the Schubert cell Σ(M) ⊂ Drapn(kE) × Drapn(kE)
(resp. Σ(M,D) ⊂ Drapn(kE)) may be defined following the pattern
of 2.10, as well as the corresponding Schubert variety. The varieties
Conf(Λ(M)) (resp. Conf(Λ(M), D) = Conf(Λ(M), kD)) may also be de-
fined. The preceding constructions of this chapter may be carried out for M
and D; the above statements hold for a chain relative position type matrix
M and a chain D. In this case kD ∈ Chain(kr+1) denotes the chain of
kr+1corresponding to D. It is easy to see that their proofs may be reduced to
that of equivalent statements involving only flags, and relative position types
of flags.
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3.3 Fiber decomposition of a Flags Configurations Variety

Let D = (H1 ⊂ · · · ⊂ Hλ ⊂ Ir+1) (resp. D′ = (J1 ⊂ · · · ⊂ Jl ⊂ Ir+1)), with
typ D = m (resp. typ D′ = n). Write M (D,D′) = (Hαβ) = (Hα ∩ Jβ) (resp.
M(D,D′) = (mαβ) = (|Hαβ |) = (|Hα ∩ Jβ |)), and D′β = (Jβ ⊂ · · · ⊂ Jl ⊂
Ir+1). M is associated with two sequences of relative positions matrices. The
first of these sequences is a sequence of types of relative positions of flags, and
the second one of chains.

1. M(β) = M(D,D′β) = (mαβ′)β6β′6l+1 ∈ N(λ+1)×(l+2−β), for (l ≥ β ≥
1);

2. Mβ = M(D•β+1, (Jβ ⊂ Jβ+1)) = (mαβ′)β6β′6β+1 ∈ Relpos (Jβ+1) ∩
N(λ+1)×2, for (1 ≤ β ≤ l),

where D•β+1 = (H1β+1 ⊂ · · · ⊂ Hλβ+1 ⊂ Jβ+1), thusMβ denotes the relative
position matrix defined by the two chainsD•β+1, (Jβ ⊂ Jβ+1) ∈ Chain(Jβ+1).

Let pαβ be the composed morphism

Σ̂(M,D) = Conf(Λ(M), D) ↪→
∏

(α,β)∈J1,λ+1K×J1,l+1K

Grassmαβ (kr+1) −→

Grassmαβ (k r+1 ) .

The last arrow denotes the canonical projection on the (α, β)-factor. We say
that pαβ is induced by the corresponding canonical projection.

Definition 3.12 Denote by p∗αβ(ξmαβ ) the pullback of the tautological module
ξmαβ associated with Grassmαβ (kr+1) by pαβ. Write

(Hαβ) = (p∗αβ(ξmαβ ))

This family of submodules of Or+1

Σ̂(M,D)
is characterized as follows. Given a

section s : X −→ Σ̂(M,D) the fiber (Hαβ)s on s is given by the Λ(M)-
configuration (s∗(Hαβ)) of OΣ̂(M,D)-direct factor submodules of Or+1

Σ̂(M,D)
, i.e.

the Λ(M)-configuration given by s. Let us write Σ̂β := Σ̂(M(β), D(β)) =
Conf(Λ(M(β)), D(β)) ⊂

∏
(α,β′)∈J1,λ+1K×Jβ,l+1K

Grassmαβ (kr+1). D•β+1 de-

notes the chain of OΣ̂β+1
-modules defined as follows:

D•β+1 = (H1 β+1 ⊂ · · · ⊂Hλ+1β+1).

The inclusion of weighted graphs Λ(M(β + 1)) ↪→ Λ(M(β)) defines a
morphism

prβ : Conf(Λ(M(β)), D(β)) −→ Conf(Λ(M(β + 1)), D(β + 1))
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(resp. Σ̂β −→ Σ̂β+1) .

Σ̂β is now described as a fiber bundle over Σ̂β+1.
Let ϕ(D•β+1) (resp. ϕ(D•β+1)) be the flag defined by D•β+1 (resp.

D•β+1), and Stief(ϕ(D•β+1)) the Stiefel variety of ordered basis of Hλ+1β+1

adapted to the flag ϕ(D•β+1), defined the following pattern of definition
1.15. It is known that Stief(ϕ(D•β+1)) is right principal under the natural
action of Stab kϕ(D•β+1) ⊂ Gl(kr+1).
(Mβ , D•β+1) is associated to the sequence of Schubert cells
(Σ̂(α)(Mβ , D•β+1))16α6λ+1 and the sequence of morphisms
(Σ̂(α+1)(Mβ , D•β+1)) −→ Σ̂(α)(Mβ , D•β+1))16α6λ. There is a natural
left action of Stab kϕ(D•β+1) on Σ̂(α)(Mβ , D•β+1)) for 1 6 α 6 λ+ 1 and the
morphisms Σ̂(α+1)(Mβ , D•β+1)) −→ Σ̂(α)(Mβ , D•β+1)) are Stab kϕ(D•β+1)-
equivariants.

Definition 3.13 Write

Σ̂(Mβ ,D•β+1) = Stief(ϕ(D•β+1)) ∧
Stab kϕ(D•β+1) Σ̂(Mβ , D•β+1))

(resp. Σ̂
(α)
β = Σ̂(α)(Mβ ,D•β+1) = Stief(ϕ(D•β+1))∧

Stab kϕ(D•β+1)

Σ̂(α)(Mβ , D•β+1)) .

Let pr(α+1)
β : Σ̂(α+1)(Mβ ,D•β+1) −→ Σ̂(α)(Mβ ,D•β+1) be defined by

pr
(α+1)
β := Stief(ϕ(D•β+1)) ∧

Stab kϕ(D•β+1) (Σ̂(α+1)(Mβ , D•β+1) −→

Σ̂(α)(Mβ , D•β+1))

The following proposition results easily from the above definition.

Proposition 3.14 1. The canonical morphism prβ : Σ̂(Mβ ,D•β+1) −→
Σ̂β+1 defines a locally trivial fibration with typical fiber Σ̂(Mβ , D•β+1).

2. The morphism pr
(α+1)
β : Σ̂(α+1)(Mβ ,D•β+1) −→ Σ̂(α)(Mβ ,D•β+1)

defines a locally trivial fibration with typical fiber
Grass(mα+1β−mαβ)(k

Hα+1β+1

/kH
αβ

).

3. A canonical isomorphism of Σ̂β+1-schemes exists:

iβ : Σ̂β −→ Σ̂(Mβ+1,D•β+1),

defined functorially by

iβ : (Hαβ′)l+1>β′>β 7→ ((Hαβ′)l+1>β′>β+1; (Hαβ′)β+1>β′>β).
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Observe that M(1) = M and that Σ̂l := Conf(Λ(M(l)), D) is a smooth
projective k-variety. We deduce from this and 3.10 the

Corollary 3.15 There is a sequence of locally trivial fibrations:

Σ̂(M,D) = Σ̂1 −→ Σ̂2 · · · −→ Σ̂l = Σ̂(M(l), D) ,

each fibration with typical fiber integral and smooth. Thus Σ̂(M,D) is an
integral smooth k-variety.

From the decomposition of Σ̂(M,D) in a sequence of fibrations (Σ̂β ,prβ) a
further refined sequence of fibrations (Σ̂

(α)
β ,pr

(α)
β ) (2 5 α 5 λ+ 1, 1 5 β 5 l)

is obtained. Observe that Σ̂
(1)
β = Grassm1β

(Hm1β+1
). Define pr(1)

β : Σ̂
(1)
β −→

Σ̂
(λ+1)
β+1 as the canonical morphism defining the fiber bundle structure of the

relative grassmannian Grassm1β
(Hm1β+1

) on Σ̂
(λ+1)
β+1 . For 1 < β 5 l there is a

sequence of locally trivial fiberings each one with a typical fiber grassmannian:

· · ·
pr

(1)
β−1−→ Σ̂

(λ+1)
β −→ Σ̂

(λ)
β · · · −→ Σ̂

(2)
β −→ Σ̂

(1)
β

pr
(1)
β−→ Σ̂

(λ+1)
β+1 · · · .

Coherence of (Σ̂β ,prβ) with (Σ̂
(α)
β ,pr

(α)
β ).

There are:

1. Σ̂
(λ+1)
β = Σ̂β (as a particular case Σ̂

(λ+1)
1 = Σ̂1 = Σ̂(M,D));

2. prβ = pr
(1)
β ◦ pr

(2)
β ◦ · · · ◦ pr

(l+1)
β : Σ̂

(λ+1)
β = Σ̂β −→ Σ̂

(λ+1)
β+1 = Σ̂β+1.

A decomposition of Σ̂(M,D) = Conf(Λ(M), D) in a sequence of locally
trivial smooth fibrations with grassmannians as fibers is thus obtained.

Remark 3.16 Let Stief(ξm) −→ Drapm(kr+1) be as in definition 1.15. It
may be written Σ̂(M) = Stief(ξm) ∧Stab kD Σ̂(M,D) (The Universal Schu-
bert Variety of type M as a contracted product defined by a Stiefel variety of
adapted basis of a flag variety).

Corollary 3.17 The projection π1 : Σ̂(M) −→ Drapm(kr+1) defines a locally
trivial fibration with typical fiber Σ̂(M,D). Thus Σ̂(M) is an integral smooth
projective k-variety.

It is known that θ(M) : Σ(M) −→ Σ̂(M) (resp.θ(M,D) : Σ(M,D) −→
Σ̂(M,D)) is an open embedding, thus it is deduced from the proposition
that the Zariski closure of Im θ(M) (resp.Im θ(M,D)) is equal to Σ̂(M)
(resp.Σ̂(M,D)).

These results may be resumed:
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Proposition 3.18 1) Σ̂(M) is a projective, integral, and smooth k-
variety;

2) θ(M) : Σ(M) ↪→ Σ̂(M) is a dense open embedding;

3) π(M) factors by Σ(M) ↪→ Drap(kr+1)×Drap(kr+1);

4) the induced morphism π(M) : Σ̂(M) → Σ(M) , which is also denoted
by π(M), is a resolution of singularities of Σ(M) . This means that
the variety Σ̂(M) is projective smooth and integral and a section exists,
namely θ(M), of π(M) on Σ(M) with Im θ(M) ⊂ Σ̂(M) a dense open
subvariety, and on the other hand, there is:

Σ̂′(M) = π(M)−1(Σ(M)) = Im θ(M)

( resp. Σ̂′(M,D) = π(M,D)−1(Σ(M,D)) = Im θ(M,D)).

It follows that π(M) is a birational morphism.

Remark 3.19 In general The morphism π(M) is not a resolution of singu-
larities as it is usually understood (cf. [30]). As a matter of fact it may
not induce an isomorphism on the smooth subvariety of Σ(M). In the next
chapter the singular locus of Σ(M) in terms of Σ̂(M) is discussed in detail.

Clearly the diagonal action of Gl(kr+1) on Grass(kr+1)(λ+1)×(l+1) leaves
Σ̂(M) stable and thus there is an induced action of Gl(kr+1) on Σ̂(M).
It results from this that the morphism π(M) is Gl(kr+1)-equivariant, if
Σ(M) ⊂ Drap(kr+1 × Drap(kr+1) is endowed with the action induced by
the left diagonal action of Gl(kr+1). It can be deduced that:

Theorem 3.20 The morphism

π(M) : Σ̂(M) −→ Σ(M)

is a smooth resolution. Moreover π(M) is Gl(kr+1)-equivariant.

An equivariant resolution of singularities of Σ(M,D) is now described. The
restriction θ(M,D) of the embedding θ(M) to Σ(M,D) ⊂ Σ(M,D) induces
a dense open embedding

θ(M,D) : Σ(M,D) = Σ(M)D ↪→ Σ̂(M,D) = Conf(Λ(M),D),

defined by D ′ 7→M (D ,D ′). Thus there is

Σ̂′(M,D) = π(M,D)−1(Σ(M,D)) = Im θ(M,D)).

As Conf(Λ(M),D) is stable under the action of P (D) = Stab(D) ⊂
Gl(kr+1), one may consider the induced action of P (D) on Σ̂(M,D) =
Conf(Λ(M),D).
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By definition of Σ(M,D) it is immediate that the natural action
of P (D) ⊂ Gl(kr+1) on Drap(kr+1) leaves Σ(M,D) stable and, a for-
tiori, its closure Σ(M,D) as well. On the other hand, the embedding
θ(M,D) : Σ(M,D) ↪→ Conf(Λ(M),D) is P (D)-equivariant as it is easily
seen.
This embedding may be seen as a section of the morphism

(π2)D : Conf(Λ(M),D)→ Drap(kr+1)

induced by π2. Also (π2)D is P (D)-equivariant. Thus it has been proved

Theorem 3.21 The morphism

π(M,D) = (π2)D : Σ̂(M,D) −→ Σ(M,D)

is a smooth resolution. Moreover π(M,D) is P (D)-equivariant.

3.4 The Schematic point of view

The description of the above constructions in scheme theory is summarized
here. The reader is referred to [24], Chap I, section 9, Foncteurs Representa-
bles elementaires, for a detailed description of the Grassmannians (resp. Flag,
Stiefel) functors and their representability. In this setting the general linear
group Schubert cells (resp.varieties) correspond to the linear group scheme
Schubert cells (resp. schemes) over a base scheme.

Let S be a base scheme playing the role of the field k, and M a locally
free OS-module of rank r+1 playing the role of the k-vector space kE . Define
the grassmannian functor G rassn(M ) by:

Γ(S′,G rassn(M )) = { S ⊂
MS′ a submodule | MS′/S locally free , rank S = n },

where S′ −→ S denotes an S-scheme. The above condition on S is equivalent
to:

“the submodule S ⊂MS′ is locally a direct factor”

(resp.locally there exists a basis (ei) of M adapted to S ). An S-morphism
f : S′ −→ S′′ is associated with the mapping

Γ(S′′,G rassn(M )) −→ Γ(S′,G rassn(M ))

given by the pull-back: S 7→ f∗(S ).
It is easy to see that G rassn(M ) is representable by a smooth projective S-
scheme Grassn(M ) (cf. 1.1.1).
The functor Drapm(M ) is defined as the subfunctor of

∏
15i5λ+1

G rassmi(M )
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whose sections (Si)15i5λ+1 satisfy the inclusions Si ⊂ Si+1, and is thus
representable by a smooth projective S-schemeDrapm(M )( cf. 1.10). Plücker
coordinates (∆H(S )) of a locally free rank n submodule S ⊂ M may be
defined, locally in S, as in the case S = Spec (k). One has:

Lemma 3.22 A locally free rank n submodule S ⊂ M defines a section
of Grassn(M ) if and only if the ideal I (∆H(S )) generated by the Plücker
coordinates of S is the unit ideal .

Let S ⊂M be locally a direct factor, and S ′ ⊂ S a submodule. Then
S ′ is locally a direct factor of S if and only if it is a direct factor of M . (cf.
[23], Exp. XXVI, 4.5.)

Definition 3.23 Two OS-modules H ,H ⊂ M are in standard position
(std position) if the quotient module M /H ∩H ′ is locally free. It is said
that the couple of flags (D ,D ′) of M , i.e. D and D ′ are respectively sections
of Drapm(M ), and Drapm′(M ), is in a standard position if their terms are
two by two in standard position.

Denote by Stand(M ) ⊂ Drap(M )×Drap(M ) the subfunctor whose sec-
tions are the couples (D ,D ′) in standard position.

There is

Proposition 3.24 Stand(M ) is a representable subfunctor. The group
scheme Gl(M ) = AutOS (M ) stabilises Stand(M ) under the diagonal ac-
tion. Let M = Or+1

S , and Relpos(Or+1
S ) = Relpos(Ir+1) × S. There is a

canonical isomorphism

Stand(Or+1
S )/Gl(Or+1

S ) ' Relpos(Or+1
S ).

(cf. loc. cit. 4.5.3.)
Let some definitions be introduced before giving the proof of the propo-

sition. To E ∈ Grass(Ir+1) is associated the section of Grass(Or+1
S )

given by the submodule (OE
S ⊂ Or+1

S ), and to D = (E1 ⊂ ... ⊂ El ⊂
Ir+1) ∈ Drapn(Ir+1), the section OD

S of Drapn(Or+1
S ) defined by the flag:

OD
S = (OE1

S ⊂ ...OEl
S ⊂ Or+1

S ).
Given M ∈ Relpos(Ir+1) denote by the same symbol the section of

Relpos(Or+1
S ) that it defines.

Definition 3.25 Let M ∈ Relpos(m,n). Denote by Σ(M) ⊂ Stand(Or+1
S ) the

fiber of the canonical morphism Stand(Or+1
S ) −→ Relpos(Or+1

S ) over M , and
by Σ(M) denote its schematic closure in Drapm(Or+1

S )×Drapn(Or+1
S ).

Given a section D of Drapm(Or+1
S ) let Σ(M,D) ⊂ Drapn(Or+1

S ) be the
fiber of Σ(M) ⊂ Stand(Or+1

S ) −→ Drapn(Or+1
S ) over D , and Σ(M,D) its
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schematic closure in Drapn(Or+1
S ).

Let
Σ̂(M) ⊂

∏
(α,β)∈Λ(M)

Grassmαβ (Or+1
S ),

be the repesentable subfunctor defined as follows. The sections of Σ̂(M) over
S′ are characterized as the set of matrices (Hαβ)(α,β)∈Λ(M) of submodules of
Or+1
S satisfying:

1. the quotient module Or+1
S /Hαβ is locally free;

2. rk Hαβ = mαβ;

3. there are inclusions Hαβ ↪→Hα+1 β (resp. Hαβ ↪→Hα β+1).

Write Σ̂(M,D) for the fiber over D of π(M) : Σ̂(M) −→ Drapm(Or+1
S )

induced by the projection morphism
∏

(α,β)∈Λ(M)

Grassmαβ (Or+1
S ) −→

Drapm(Or+1
S ) (cf. 3.4). There is a canonical morphism θ(M) : Σ(M) −→

Σ̂(M) associating with the section (D ,D ′) of Σ(M) the Λ(M)-configuration
(Hαβ) = (Hα ∩Jβ), where D = (H1 ⊂ ...Hλ ⊂ Hλ+1 = Or+1

S ) (resp.
D ′ = (J1 ⊂ ...Jλ ⊂ Jλ+1 = Or+1

S )). Let θ(M,D) be the restriction of
θ(M) to Σ(M,D) ↪→ Σ(M). The explicit expression of θ(M) may be obtained
as in the proof of proposition 3.7.

From the definition of Σ̂(M) as a subfunctor of the product of grassman-
nians defined in terms of inclusions, it immediately follows that Σ̂(M) is a
closed S-subscheme of an S-projective scheme. Thus it follows that Σ̂(M)
(resp. Σ̂(M,D)) is a projective S-scheme.

The following proposition results from the proof of 2.3 and taking into
account the following remark: let S ⊂ M be a direct factor locally and
S ′ ⊂ S a submodule, then S ′ is a direct factor locally of S if and only if it
is a direct factor of M .

Proposition 3.26 Denote by Σ̂′(M) ⊂ Σ̂(M) the image of θ(M). The sub-
scheme Σ̂′(M) ⊂ Σ̂(M) is an open subscheme. Let (Hαβ) be a section in
the image of Σ̂′(M), then there exists an open subscheme U of S and a basis
(fi)16i6r+1 of Or+1

U and a couple (D,D′) ∈ Drapm(Ir+1)×Drapm(Ir+1) such
that if it is written

M (D,D′) = (Hαβ) = (Hα ∩ Jβ),

where D = (H1 ⊂ · · · ⊂ Hλ ⊂ Ir+1), D′ = (J1 ⊂ · · · ⊂ Jl ⊂ Ir+1), then

Hαβ = O
Hαβ
S .
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where O
Hαβ
U is defined in terms of the indexed basis (fi).

Proof of 3.24 The first statement may be proved as proposition 3.8. In
view of the above proposition the proof of the second statement follows from
the same argument as in the proof of 2.6.

Notation 3.27 Let

(π1, π2) : Σ̂(M) −→ Drapm(Or+1
S )×S Drapn(Or+1

S )

be the morphism induced by the projection morphism∏
(α,β)∈Λ(M)

Grassmαβ (Or+1
S ) −→ Drapm(Or+1

S ) ×S Drapn(Or+1
S ). Write

π(M) = (π1, π2) and denote by π(M,D) the restriction of π(M) to Σ̂(M,D)
(cf. 3.4).

The decomposition of Σ̂(M) in terms of a sequence of fibrations, namely
(Σ̂β ,prβ) and (Σ̂

(α)
β ,pr

(α)
β ), may be easily transposed into the scheme theoretic

frame. It may be noted that the fiber of pr
(α)
β is a grassmannian. On the other

hand, this sequence of fibrations induces a decomposition (Σ̂′
(α)

β ,pr′
(α)
β ) of the

open subscheme Σ̂′(M) with the fiber of pr′
(α)
β being a big cell of the fiber of

pr
(α)
β , i.e. a big cell of a grassmannian. It will be proved that a big cell in a

grassmannian is relatively schematically dense in that grassmannian (cf. [23],
Exp. XXII, Proposition 4.1.2, and [27], Ch. IV, 11.10.). Thus we can now
obtain the following basic proposition.

Proposition 3.28 The open subscheme Σ̂′(M) ⊂ Σ̂(M) is relatively
schematically dense.

Define
Σ̂′(M,D) = Σ̂′(M) ∩ Σ̂(M,D).

Let P (D) = StabGl(Or+1
S ). We have then

Proposition 3.29 The open subscheme Σ̂′(M) (resp. Σ̂′(M,D) is stable un-
der the natural action of Gl(Or+1

S ) (resp. P (D)). The morphisms θ(M)
and π(M) (resp. θ(M,D) and π(M,D)) are Gl(Or+1

S )-equivariant (resp.
P (D)-equivariant). π(M) (resp. π(M,D)) defines a left inverse of θ(M)
(resp.θ(M,D)).

From the transitivity of schematic closures (cf. [24], 6.10.) and proposition
3.28 it follows that the morphism π(M) (resp. π(M,D)) factors through the
closed embedding

Σ(M) ↪→ Drapm(Or+1
S )×S Drapn(Or+1

S )
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(resp. Σ(M,D) ↪→ Drapn(Or+1
S )).

Denote by π(M) (resp. π(M,D)) the induced morphism Σ̂(M) −→ Σ(M)
(resp. Σ̂(M,D) −→ Σ(M,D). From proposition 3.4 it follows that this mor-
phism is Gl(Or+1)-equivariant (resp. P (D)-equivariant).
One has

π(M)−1(Σ(M)) = Im θ(M)

(resp.
π(M,D)−1(Σ)(M)) = Im θ(M,D)),

and a fortiori that the morphism θ(M) (resp. θ(M,D)) induces an isomor-
phism

π(M)−1(Σ(M)) = Σ̂′(M)

(resp.
π(M,D)−1(Σ(M)) = Σ̂′(M,D)).

Theorem 3.30 The morphism

π(M,D) = (π2)D : Σ̂(M,D) −→ Σ(M,D)

is a smooth resolution of singularities. Moreover π(M,D) is P (D)-
equivariant.

Theorem 3.31 The morphism θ(M) : Σ(M) −→ Σ̂(M) (resp. θ(M,D) :
Σ(M,D) −→ Σ̂(M,D)) defines a section of the projective morphism π(M)
(resp. π(M,D)) over Σ(M) ⊂ Σ(M) (resp. Σ(M,D) ⊂ Σ(M,D)) and its
image Im θ(M) (resp. Im θ(M,D)) is an open set schematically dense in
Σ̂(M) (resp. Σ̂(M,D)). It is said the morphism

π(M) : Σ̂(M) −→ Σ(M)

(resp.
π(M,D) : Σ̂(M,D) −→ Σ(M,D)) .

with Σ̂(M) (resp. Σ̂(M,D)) a smooth S-scheme, is a smooth resolution of
singularities of Σ(M) (resp. Σ(M,D)).

Moreover π(M) is Gl(Or+1
S )-equivariant (resp. π(M,D) is P (D)-

equivariant).



Chapter 4

The Singular Locus of a
Schubert Variety

By the following developments a detailed description of the infinitesimal struc-
ture of a Σ̂(M) is obtained, with an application to the determination of the
singular locus of Σ(M). The calculations carried out in this chapter are quite
involved and some proofs are outlined or simply omitted. The reader is re-
ferred to [15] and [16] for details. The main result amounts determine the
Zariski’s tangent space (resp. Nash tangent space) at a point of a Flag Schu-
bert variety by a combinatorial procedure thus allowing the characteriza-
tion of the Singular cells contained in a Schubert variety. This deter-
mination depends on the combinatorial structure of the smooth resolutions
constructed in the preceding chapter, more precisely on the combinatorial
fibers, Confcomb(Λ(M), D,D′).

It is known that the smooth resolution associated with a Schubert variety
in the former chapter contains an open subvariety isomorphic to the corre-
sponding Schubert cell and that this cell is isomorphic to its pull-back. Hence,
this pull-back is equal to this open subvariety. Anyway it may happen that
the restriction of the resolving morphism to the localization along a “critical”
Schubert cell, contained in the smooth open set of the Schubert variety, might
not define an isomorphism, i.e. this smooth resolution might not be a strict
resolution of singularities in Hironaka’s sense (cf. [34]). The critical Schubert
cells contained in the smooth open set of a Schubert variety are determined
by the Zariski’s tangent space at a point, combinatorially calculated, and this
without any characteristic restrictions on the base field k.

The notation of the preceding chapter are retained.

66
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4.1 The Schubert cells contained in a Schubert variety

Definition 4.1 There is an order relation on Relpos(Ir+1). Given the
relative position matrices M = (mαβ),M ′ = (m′αβ) ∈ Relpos(m,n)(Ir+1) ⊂
N(λ+1)×(l+1), write M 5 M ′ if mαβ 5 m′αβ, i.e. the order induced by the
product order of N(λ+1)×(l+1).

Proposition 4.2 Let x be the point of Drap(kr+1) defined by D ′. Then:

x ∈ Σ(M,D)⇐⇒M 5M ′ = M(D,D′) ,

If x ∈ Σ(M,D) then Σ(M ′, D) ⊂ Σ(M,D).

Proof It is recalled that the schematic image of Im π2 is equal to Σ(M,D).
Thus as kD

′ ∈ Σ(M,D) there exists (Hαβ) ∈ Conf(Λ(M); D ,D ′) with
π2((Hαβ)) = kD

′
. This implies that M 5M(D ,D ′) = M(D,D′).

To see that M = (mαβ) 5 M ′ = (mα′β′) =⇒ x ∈ Σ(M,D) it suf-
fices to prove that Conf comb(Λ(M), D,D′) 6= ∅. In other there is a Λ(M)-
configuration ϕ subordinated to the Λ(M ′)-configuration (Hα ∩ Jβ), i.e. sat-
isfying ϕ(α, β) ⊂ Hα ∩ Jβ. The graph Λ(M) may be well-ordered by the
lexicographical order obtained with β as the first variable. By considering the
inequalities mα+1β +mαβ+1−mαβ 5 mα+1β+1 5 m′α+1β+1 and proceeding by
induction, it is easy to see that the choice of H11 ⊂ H1 ∩ J1 with |H11| = m11

may be completed in a Λ(M)-configuration ϕ subordinated to (Hα ∩ Jβ).
The last assertion follows from the Stab kD-stability of Σ(M,D).

Corollary 4.3 The closure of Σ(M,D) is given by Σ(M,D) =
∪ Σ(M(D,D′), D) where D′ runs on the set {D′ | M 5M(D,D′)}.

4.2 A smoothness criterium for a Schubert variety

Notation 4.4 Given a smooth k-variety X and a point x ∈ X it is denoted
by T (X)x the tangent space to X in x, i.e. T (X)x = Homk−vect((Ω

1
X/k)x, k),

where Ω1
X/k denotes the OX-module of differentials of X.

To a morphism f : X −→ Y the differential mapping T (f)x :
T (X)x −→ T (Y )y (y = f(x)) is associated, defined as follows. Let
f∗(Ω1

Y/k) −→ Ω1
X/k be the induced morphism of OX-modules, then T (f)x :

Homk−vect((Ω
1
X/k)x, k) −→ Homk−vect(f

∗(Ω1
Y/k)y, k) is the dual k-vector

space mapping of f∗(Ω1
Y/k)x −→ (Ω1

X/k)x.
The tangent space T (X)x may be calculated in terms of dual numbers

Homx
k

(
Spec(k[ε]/(ε2)), X

)
' T (X)x.
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The left term denotes the set of k-morphisms f : Spec(k[ε]/(ε2)) −→ X giving
x by composition with Spec(k) −→ Spec(k[ε]/(ε2)).
The tangent OX-module may be written as

T 1
X/k = HomOX (Ω1

X/k,OX).

Thus T (X)x = T 1
X/k⊗OX (OX/mX,x), where mX,x ⊂ OX denotes the maximal

ideal of the local ring OX,x.

The reader is referred to the SGA III, vol I (cf. [22]), for the above procedure
for calculating the tangent space to a k-scheme X by means of the functor
that it defines.

Definition 4.5
Let X be a smooth N -dimensional k-variety, Y ⊂ X an integral d-

dimensional k-subvariety , smooth at the generic point ξY , and Y ′ ⊂ Y an
open smooth subvariety. Denote by Ỹ −→ Y the Y -variety obtained as the
Zariski closure of Grassd(T 1

Y ′/k) ⊂ Grassd(T 1
X/k)Y . Ỹ is called the Nash

transform of Y . Given y ∈ Y the fiber Ỹy satisfies: Ỹy ⊂ Grassd(T 1
X/k)y =

Grassd(T (X)y). Let Tnash(Y )y ⊂ T (X)y denote the minimal k-subspace
S ⊂ T (X)y satisfying Ỹy ⊂ Grassd(S) (the Nash tangent space of Y at
y).

Observe that the existence of the subspace S results from the fact that
given two subspaces S′, S′′ of T (X)y one has Grassd(S′) ∩ Grassd(S′′) =
Grassd(S∩S′′). Loosely speaking Tnash(Y )y is the subspace of T (X)y gener-
erated by the limiting subspaces of Y ′ at y. The following inequality holds:

dim Y ≤ dimkT
nash(Y )y ,

where dim Y denotes the dimension of the variety Y . It may be recalled that
dim Y is also given by the transcendance degree of the function field k(Y ) of
Y over k. From the above definition the following result is obtained:

Proposition 4.6

1) Let Y be a subvariety of the smooth variety X, as the preceding def-
inition, and Z ⊂ X be a smooth k-subvariety containing Y . Then
Tnash(Y )y ⊂ T (Z)y.

2) Let (Zi)15i5n be a family of smooth subvarieties X containing Y . Then

Tnash(Y )y ⊂ ∩T (Zi)y.

The following result is a corollary of the jacobian criterium.
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Proposition 4.7
The notation of the preceding proposition is retained. Let y ∈ Y . The follow-
ing statements are equivalent:

1) There exists a family of smooth subvarieties (Zi)15i5n of X containing
Y with Tnash(Y )y = ∩T (Zi)y.

2) There exists a smooth subvariety Y ⊂ Z with Tnash(Y )y = T (Z)y

Under the above hypothesis dim Tnash(Y )y = dim Y implies dim Y = dim Z.
Hence we have the smoothness criterium of Y in y:

Proposition 4.8
Let it be supposed that Tnash(Y )y satisfies one of the two equivalent conditions
above.

Then the variety Y is smooth in y ⇐⇒ dimk T
nash(Y )y = dim Y.

Proof It suffices to prove that “dimk T
nash(Y )y = dim Y =⇒ Y is smooth

in y”. It may be supposed that Z = Spec(A) (resp. that Y = Spec(B)), where
A (resp. B) is an integral finite type k-algebra, and that dim(A) = dim(B) =
dimk T

nash(Y )y. Here dim(A) (resp. dim(B)) denotes the ring dimension
of A (resp. B). Let f : A −→ B be the k-algebra morphism corresponding
to the embedding Y ↪→ Z. From the formula dim(A) = dim(Ap) + dim(A/p)
(cf. [48], Ch 3, Proposition 15), it is deduced that dim(Ap) = 0 and thus
p = Ker (f) ⊂ A is the zero prime ideal and f is an isomorphism. This
clearly proves that Y is smooth in y.

Notation 4.9 1) For the sake of briefness, put Σ = Σ(M,D),(
resp. Σ = Σ(M,D), Conf = Conf(Λ(M), D), Conf combD′

= Conf comb(Λ(M), D,D′), ConfD′ = Conf(Λ(M);D,D′)
)

2) Given a subvariety Z ⊂ Y denote by Zy the germ of Z in y ∈ Y
(resp. the local scheme of Z at y (cf. [24])).

The following proposition exhibits the connection between the tangent space
at a point x, T (Conf(Λ(M), D)x of the smooth resolution Conf(Λ(M), D),
and the Nash tangent space Tnash(Σ(M,D))π2(x).

Proposition 4.10
Given by a point x of Conf , one has

Im T (π2)x ⊂ Tnash(Σ)π2(x) .
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Proof Let V be a valuation ring and f : Spec(V ) −→ Conf a morphism
sending the generic point ξ to the generic point of Conf (resp. the special
point ξ0 to x). Thus the image T (π2)ξ(T (Conf)ξ) defines a section σK :
Spec(K) −→ Grassd(T 1

Drapn(kr+1)/k) over Spec(K), where K denotes the
quotient field of V . By the valuation criterion of property there is a section σV
on Spec(V ) extending σK . Observe that π2(ξ) is the generic point of Σ. Thus
σV (ξ0) defines a subspace S of T (Drapn(kr+1))π2(x) necessarily contained in
Tnash(Σ)π2(x). Given v ∈ T (Conf)x let it be assumed that T (π2)x(Lv) 6=
0 (Lv = V ectk(v)). We prove now that:

T (π2)x(Lv) ⊂ Tnash(Σ)π2(x) .

Lift Lv to a section L̃v ⊂ (T 1
Conf/k)V . Thus T (π2)ξ((L̃v)ξ) ⊂

T (π2)ξ(T (Conf)ξ). This clearly gives: T (π2)x(Lv) ⊂ S ⊂ Tnash(Σ)π2(x).

Thus Im(T (π2)x⊂ Tnash(Σ)π2(x).

Definition 4.11

1) Let D ′ ∈ Σ(M,D). Define

T̃ (Σ(M,D))D′ = V ectk

( ⋃
ϕ∈π−1

2 (D′)

Im(T (π2)x

)
⊂ T (Drapn(kr+1))D′ ,

as the subspace of T (Drapn(kr+1))D′ generated by the images of the
differentials T (π2)x of π2 at the points x of the fiber π−1

2 (D ′) =
Conf(Λ(M), D)D′ . T̃ (Σ(M,D))D′ is called the Conf-tangent space
of Σ(M,D)) at D ′.

2) Assume D ′ = kD
′

(D′ ∈ Drapn(Ir+1)). Define

T̃ comb(Σ(M,D))D′ = V ectk

( ⋃
ϕ∈Conf(Λ(M),D,D′)

Im(T (π2)kϕ
)
,

the subspace of T̃ (Σ(M,D))D′ generated by the images of the dif-
ferentials T (π2)kϕ of π2 at the points ϕ of the combinatorial fiber
Conf(Λ(M), D,D′) over D′. T̃ comb(Σ(M,D))D′ is called the combi-
natorial Conf-tangent space of Σ(M,D)) at D ′.

From the above proposition it follows that:

T̃ comb(Σ(M,D))D′ ⊂ T̃ (Σ(M,D))D′ ⊂ Tnash(Σ(M,D))D′ .

Remark 4.12 1) The Nash tangent space Tnash(Σ(M,D))y at a point
y ∈ Σ(M,D) satisfies the following equivariance property relative to
Stab kD ⊂ Gl(kr+1):

T (g)y(Tnash(Σ(M,D))y) = Tnash(Σ(M,D))g(y) (g ∈ Gl(kr+1)) .
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2) The subspace T̃ (Σ(M,D))y satisfies the same property of equivariance,
and T̃ comb(Σ(M,D))y = T̃ (Σ(M,D))y for y = kD

′
, as it results from

the main theorem proved below.

By combining the above three propositions the combinatorial smoothness
criterium of Σ(M,D)D′ at D ′ is obtained:

Proposition 4.13 Let y ∈ Σ(M,D) given by D ′, and (Zi)15i5n be a family
of smooth subvarieties of Drapn(kr+1) satisfying:

1) Σy ⊂ (Zi)y ;

2)
⋂

15i5n

T (Zi)y = T̃ comb(Σ)y.

Then one has;

a) T̃ comb(Σ(M,D))D′ = T̃ (Σ(M,D))D′ = Tnash(Σ(M,D))D′ ;

b) Σ is smooth at y ⇐⇒ dimk T̃
comb(Σ)y = dimk Σ .

In the following sections T̃ comb(Σ(M,D))D′ is calculated. We show a
family of smooth subvarieties of Drapn(kr+1) satisfying the conditions of
the smoothness criterium at the point y corresponding to D ′. Given
ϕ ∈ Conf(Λ(M), D,D′) a canonical basis B̃(ϕ,D) of the tangent space
T (Conf(Λ(M), D))kϕ is constructed, and its image by the differential T (π2)kϕ

is calculated in terms of the combinatorics of Conf(Λ(M), D,D′). The set

B̃(D,D′) =
⋃

ϕ∈Conf(Λ(M),D,D′)

T (π2)kϕ(B̃(ϕ,D))

is a basis of T̃ comb(Σ(M,D))D′ . The next step is to express T̃ comb(Σ(M,D))D′

as an intersection of tangent spaces to smooth subvarieties containing the
point y given by D ′ using the expression of B̃(D,D′), and thus to prove that
T̃ comb(Σ(M,D))D′ = Tnash(Σ(M,D))D′ . This result is also obtained by
means of the combinatorics of Conf(Λ(M), D,D′).

4.3 Calculation of the tangent spaces of some configurations
varieties

The following canonical isomorphisms are obtained from remark 4.4. The
reader is referred to the SGA III, vol I (cf. [22]), for the procedure for cal-
culating the tangent space to a k-scheme X by means of the functor that it
defines and to [15] and [16] for details.

1) The tangent space T (Drapn(kr+1))D (D = (H1 · · · ⊂ Hl ⊂ kr+1) is
given by:
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T (Drapn(kr+1))D = Ker
( ∏

15β5l

Homk−vect(Hβ , k
r+1/Hβ) −→

−→

∏
15β,β′5l

Homk−vect(Hinf(β′,β), k
r+1/Hsup(β′,β))

)
. In fact there is an

isomorphism:

Ker
( ∏

15β5l

Homk−vect(Hβ , k
r+1/Hβ)

−→−→

∏
15β5l

Homk−vect(Hβ , k
r+1/Hβ+1)

)

' Ker
( ∏

15β5l

Homk−vect(Hβ , k
r+1/Hβ) −→

−→

∏
15β5l

Homk−vect(Hinf(β′,β), k
r+1/Hsup(β′,β))

)
.

2) To the embedding

iConf(Λ(M)) : Conf(Λ(M)) ↪→
∏

(α,β)

Grassmαβ (kr+1),

it corresponds the associated differential at the point (Hαβ) ∈
Conf(Λ(M)):

T (iConf(Λ(M)))(Hαβ) : T(Conf(Λ(M)))(Hαβ) −→

T (
∏

(α,β)

Grassmαβ (kr+1))(Hαβ)

where

T (
∏

(α,β)

Grassmαβ (kr+1))(Hαβ) '
∏

(α,β)∈Λ(M)

Homk−vect(Hαβ , k
r+1/Hαβ).

The tangent space T (Conf(Λ(M))(Hαβ) is given by:

T (Conf(Λ(M))(Hαβ) = Ker
( ∏

(α,β)∈Λ(M)

Homk−vect(Hαβ , k
r+1/Hαβ) −→

−→∏
((α,β),(α′,β′))∈Edg Λ(M)

Homk−vect(Hαβ ∩ Hα′β′ , k
r+1/H(α,β) +

H(α′,β′))
)
.
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3) The tangent space T (Σ(M,D))J ⊂ T (Grassn(kr+1))J of Σ(M,D) ⊂
Grassn(kr+1) at Jwhere D = (H1 · · · ⊂ Hλ ⊂ kr+1) is obtained as
the following subspace:

Ker
(
Homk−vect(J , kr+1/J ) −→

∏
15α5λ+1

Homk−vect(Hα ∩J , kr+1/(Hα + J ))
)
.

More generally the tangent space T (Σ(M,D))D′ (D ′ = (J1 · · · ⊂Jl ⊂
kr+1)) of a Schubert cell Σ(M,D) ⊂ Drap(kr+1) is given by the follow-
ing subspace of T (Drapn(kr+1))D′ :⋂

15β5l

Ker
(
T (Drapn(kr+1))D′ −→

∏
15α5λ+1

Homk−vect(Hα ∩Jβ , k
r+1/(Hα ∩Jβ+1 + Jβ))

)
.

4.4 The Young indexation of the tangent basis to a Schubert cell
at a combinatorial point

The aim of this section and the two following ones is the determination of a
canonical basis of the tangent space to a configuration variety at a “combina-
torial point”, i.e. at a point given by a Λ(M)− configuration “adapted” to
the canonical basis of kr+1. The canonical isomorphism:

T (Drapn(kr+1))kD′ = Ker
( ∏

15β5l

Homk−vect(k
Jβ , kr+1/kJβ )

−→−→

∏
15β5l

Homk−vect(k
Jβ , kr+1/kJβ+1)

)
,

gives rise to:

Proposition 4.14 There is an isomorphism:

T (Drapn(kr+1))kD′ '
∏

15β5l

Homk−vect(k
Jβ , kJβ+1−Jβ )

induced by the linear mapping defined as follows. To an element

(νβ)15β5l ∈ Ker
( ∏

15β5l

Homk−vect(k
Jβ , kr+1/kJβ )

−→−→
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∏
15β5l

Homk−vect(k
Jβ , kr+1/kJβ+1)

)
is associated the element:

(ν′β)15β5l ∈
∏

15β5l

Homk−vect(k
Jβ , kJβ+1−Jβ ), given by

ν′β = νβ − πJ⊥β+1
◦ νβ .

The set
∐

15β5l

Jβ × (Jβ+1 − Jβ) indexes a basis of T (Drapn(kr+1))kD′ . More

precisely
BD′ :=

∐
15β5l

(Eβij)(i,j)∈Jβ×(Jβ+1−Jβ)

is a basis of T (Drapn(kr+1))kD′ (The combinatorial basis of
T (Drapn(kr+1))kD′ ) .

As a particular case of this proposition it results that BJ : (Eij)(i,j)∈J×J⊥

is the combinatorial basis of T (Grassn(kr+1))kJ .

Notation 4.15 Let ϕ ∈ Conf(Λ(M), D) with p2(M,D) : ϕ 7→ D′. If no con-
fusion arises denote by T (π2(M,D))kϕ the composition of T (π2(M,D))kϕ with
the identification T (Drapn(kr+1))kD′ '

∏
15β5l

Homk−vect(k
Jβ , kJβ+1−Jβ ).

Definition 4.16 A D′-Young data is a couple of sequences of chains
(D,D∗) = ((Dβ), (D∗β)), where (Dβ) ∈

∏
15β5l

Chain(Jβ), with Dβ =

(K1β · · · ⊂ Kλββ ⊂ Jβ) (resp. (D∗β) ∈
∏

15β5l

Chain(Jβ+1), with D∗β =

(K∗1β · · · ⊂ K∗λββ ⊂ Jβ+1) satisfying Jβ ⊂ K∗1β). To a D′-Young data (D,D∗)
are associated:

1) Y +
β (D,D∗) = ∪

15i5λβ
Kiβ × (Jβ+1 −K∗iβ) ⊂ Jβ × (Jβ+1 − Jβ);

2) Y +(D,D∗) = (Y +
β (D,D∗))15β5l, with

∐
Y +
β ⊂

∐
Jβ × (Jβ+1 − Jβ);

3) Y −β (D,D∗) = Jβ × (Jβ+1/Jβ)− Y +
β (D,D∗);

4) Y −(D,D∗) = (Y −β (D,D∗))15β5l.

Remark 4.17 The subset Y +(D,D∗) (resp. Y −(D,D∗)) of the set of indices∐
Jβ × (Jβ+1 − Jβ) defines a subfamily of the basis BD′ . A basis ⊂ BD′ of

the tangent space to a Schubert cell Σ(M,D) at kD
′ ∈ Σ(M,D) is defined by

means of Young data.
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4.5 The tangent basis to a Configuration variety at a
combinatorial configuration

Remark that T (Conf(Λ(M))kϕ ⊂
⊕

(α,β)

T (Grassmαβ (kr+1))kϕ(α,β) , where

(α, β) runs on the vertices of Λ(M). The above description of
T (Conf(Λ(M))kϕ , where ϕ ∈ Conf comb(Λ(M)), may be applied in or-
der to determine a combinatorial basis of this tangent space. With
ϕ ∈ Conf comb(Λ(M)) is associated (kϕ(α,β)) ∈ Conf(Λ(M)). On the
other hand, there is a canonical basis

∐
(α,β)

Bϕ(α,β) of the tangent space⊕
(α,β)

T (Grassmαβ (kr+1))kϕ(α,β) of the product
∏

(α,β)

Grassmαβ (kr+1))kϕ at

(kϕ(α,β)) , where

Bϕ(α,β) = (E
(α,β)
(i,j) )(i,j)∈ϕ(α,β)×ϕ(α,β)⊥

is the canonical basis of T (Grassmαβ (kr+1))kϕ(α,β) identified with the set of
elementary matrices indexed by ϕ(α, β)×ϕ(α, β)⊥. Write R(α,β)

ϕ = ϕ(α, β)×
ϕ(α, β)⊥, and let

E(ϕ) =
∐

(α,β)

{(α, β)} ×R(α,β)
ϕ .

Thus E(ϕ) indexes the basis

(E
(α,β)
(i,j) )((α,β),(i,j))∈E(ϕ)

of

T (
∏

(α,β)

Grassmαβ (kr+1))kϕ '
⊕
(α,β)

T (Grassmαβ (kr+1))kϕ(α,β) '
⊕
(α,β)

kR
(α,β)
ϕ .

The first isomorphism given by
⊕

(α,β)

T (pαβ)kϕ , where pαβ :∏
(α,β)

Grassmαβ (kr+1) −→ Grassmαβ (kr+1), denotes the canonical pro-

jection.

Definition 4.18 An equivalence relation is defined on the set E(ϕ) as fol-
lows. Write ((α, β), (i, j)) ∼ ((α′, β′), (i′, j′)), if there is a sequence of vertices
of Λ(M):

((αρ, βρ))05ρ5r : (α, β) = (α0, β0), (α1, β1), · · · , (αr, βr) = (α′, β′)

satisfying:

(a) ((αρ, βρ), (αρ+1, βρ+1)) (0 5 ρ 5 r − 1) is an edge of Λ(M), i.e.
((αρ, βρ))05ρ5r is a path of the graph Λ(M) with origin (α0, β0)

and extremity (αr, βr).
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(b) (i, j) = (i′, j′) and (i, j) ∈
⋂

05ρ5r

R
(αρ,βρ)
ϕ .

Denote by B(ϕ) = E(ϕ)/ ∼ the set of equivalence classes defined by
“∼” .

Observe that to an equivalence class is associated a couple (i, j)C , character-
ized by: ((α, β), (i, j)) ∈ C ⇒ (i, j) = (i, j)C .

An equivalence class C ∈ B(ϕ) defines an element

EC = Σ
((α,β),(i,j))∈C

E
(α,β)
(i,j) .

of
⊕

(α,β)

T (Grassmαβ (kr+1))kϕ(α,β) . Let D = (H1 ⊂ . . . ⊂ Hλ+1). Write

B(ϕ,D) = { C ∈ B(ϕ) | C ∩ (
∐

15α5λ+1

{(α, l + 1)} ×R(α,l+1)
ϕ ) = ∅ }

(
resp.

Bc(ϕ,D) = { C ∈ B(ϕ) | C ∩ (
∐

15α5λ+1

{(α, l + 1)} ×R(α,l+1)
ϕ ) 6= ∅ }

)
,

and

B(ϕ,D) = (EC )C∈B(ϕ,D) (resp. Bc(ϕ,D) = (EC )C∈Bc(ϕ,D) ,Bϕ = (EC )C∈B(ϕ)) .

The following relation results immediatly from the definitions above

Bϕ = B(ϕ,D)

∐
Bc(ϕ,D) .

The following is deduced easily:

Proposition 4.19 It is also denoted by pαβ : Conf(Λ(M)) −→
Grassmαβ (kr+1) the morphism induced by the canonical projection.

1) Let ϕ ∈ Conf comb(Λ(M)). Bϕ is a basis of the tangent space

T (Conf(Λ(M)))kϕ ⊂
⊕
(α,β)

T (Grassmαβ (kr+1))kϕ(α,β)

(The ϕ-tangent basis of Conf(Λ(M)) at kϕ).

2) Let ϕ ∈ Conf comb(Λ(M), D). Then

V ectk(B(ϕ,D)) = T (Conf(Λ(M), D))kϕ ⊂
⊕
(α,β)

T (Grassmαβ (kr+1))kϕ(α,β) .

B(ϕ,D) ⊂ Bϕ is called the (ϕ,D)-tangent basis of Conf(Λ(M), D) at
kϕ.
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3) The matrix M(pαβ)kϕ of the differential T (pαβ)kϕ :
T (Conf(Λ(M)))kϕ −→ T (Grassmαβ (kr+1))kϕ(α,β) calculated with
respect to the basis Bϕ and Bϕ(α,β) admits the following simple
description:

T (pαβ)kϕ(EC ) = E
(α,β)
(i,j) if C ∩ {(α, β)} ×R(α,β)

ϕ 6= ∅,

thus necessarily C ∩ {(α, β)} × R
(α,β)
ϕ = {((α, β), (i, j)C )}, otherwise

T (pαβ)kϕ(EC ) = 0.

Let ϕ ∈ Conf comb(Λ(M), D). Denote by π2(M,D) the restriction of π2 :
Conf(Λ(M)) −→ Grassn(kr+1) to Conf(Λ(M), D), and by T (π2(M,D))kϕ

its differential at kϕ.

Definition 4.20 1) Write:

B̃(ϕ,D) = T (π2(M,D))kϕ(B(ϕ,D))− {0},(
resp. B̃c(ϕ,D) = T (π2(M,D))kϕ(Bc(ϕ,D))− {0}

)
.

2) B̃(D,D′) =
⋃

ϕ∈Confcomb(Λ(M),D,D′)

B̃(ϕ,D)(
resp. B̃c(D,D′) =

⋂
ϕ∈Confcomb(Λ(M),D,D′)

B̃c(ϕ,D)

)
.

Observe that B̃(D,D′) (resp. B̃c(D,D′)) is a linearly independant set of vec-
tors. It is recalled that by definition B̃(D,D′) generates the combinatorial
Conf(Λ(M), D)-tangent space T̃ comb(Σ(M,D))kD′ (cf. definition 4.11).
B̃(D,D′) is called the canonical tangent basis of T̃ comb(Σ(M,D))kD′ .

3) One calls
N(Conf(Λ(M), D))kϕ = V ectk(Bc(ϕ,D))

the (ϕ,D)-normal space to Conf(Λ(M), D)) at kϕ, and Bc(ϕ,D) ⊂ Bϕ
the (ϕ,D)-normal basis at kϕ .

4) Write B̃(α,β)
(ϕ,D) = T (pαβ)kϕ(B(ϕ,D)) − {0}

(
resp. B̃c(α,β)

(ϕ,D) =

T (pαβ)kϕ(Bc(ϕ,D))− {0}
)
.

Remark 4.21 Let ϕ ∈ Conf comb(Λ(M), D).

1) From Bϕ = B(ϕ,D)

∐
Bc(ϕ,D) it follows the following direct sum decom-

position:

T (Conf(Λ(M)))kϕ = T (Conf(Λ(M), D))kϕ
⊕

N(Conf(Λ(M), D))kϕ .
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2) The fiber of π1(M) : Conf(Λ(M)) −→ Drapm(kr+1) on kD identifies
with Conf(Λ(M), D) by definition, and the differential mapping:

T (π1(M))kϕ : T (Conf(Λ(M)))kϕ −→ T (Drapm(kr+1))kD ,

induces an isomorphism:

T (π1(M))kϕ |N : N(Conf(Λ(M), D))kϕ ' T (Drapm(kr+1))kD .

In fact π1(M) defines a fiber bundle structure.

4.6 The canonical basis of a Combinatorial Tangent Space

The tangent space T (Drapn(kr+1))D (D = (H1 · · · ⊂Hl ⊂ kr+1) is given by:

T (Drapn(kr+1))D ' Ker
( ∏

15β5l

Homk−vect(Hβ , k
r+1/Hβ) −→

−→

∏
15β,β′5l

Homk−vect(Hinf(β′,β), k
r+1/Hsup(β′,β))

)
. We have seen that for

D = kD
′

(D′ = (J1 · · · ⊂ Jl ⊂ kr+1)) this isomorphism gives rise to the
isomorphism:

T (Drapn(kr+1))kD′ ' Ker
( ∏

15β5l

Homk−vect(k
Jβ , kr+1/kJβ )

−→−→

∏
15β5l

Homk−vect(k
Jβ , kr+1/kJβ+1)

)
and finally to an isomorphism

T (Drapn(kr+1))kD′ '
∏

15β5l

Homk−vect(k
Jβ , kJβ+1−Jβ ) ,

induced by the canonical projections:

∏
15β5l

Homk−vect(k
Jβ , kr+1/kJβ ) −→ Homk−vect(k

Jβ , kJβ+1−Jβ ) .

On the other hand, it is known that the canonical basis of this space is
given by

BD′ :=
∐

15β5l

(Eβij)(i,j)∈Jβ×(Jβ+1−Jβ).

The matrix M(π2(M))kϕ of the differential

T (π2(M))kϕ : T (Conf(Λ(M)))kϕ −→



The Singular Locus of a Schubert Variety 79

T (Drapn(kr+1))kD′ (π2(M) : kϕ 7→ kD
′
)

calculated with respect to the basis Bϕ and BD′ , admits the following simple
description:

T (π2(M))kϕ(EC ) = Eβij if C ∩ {(λ+ 1, β)} × (Jβ × Jβ+1/Jβ) 6= ∅,

thus necessarily C ∩ {(λ + 1, β)} × (Jβ × Jβ+1/Jβ) = {((λ + 1, β), (i, j))},
where (i, j) is the element (i, j)C associated with the class C , otherwise
T (π2(M))kϕ(EC ) = 0. The subset⋃

C∈Bc(ϕ,D)

C⊂ E(ϕ)

is the set of elements equivalent to an element of
∐

1≤α≤λ+1

{(α, l + 1)} ×

R
(α,l+1)
ϕ . The image of the tangent vectors Bc(ϕ,D) = (EC )C∈Bc(ϕ,D) ⊂

T (Conf(Λ(M))kϕ by T (π1)kϕ is a linearly independant set of vec-
tors. The subset B(ϕ,D) indexes a basis B(ϕ,D) = (EC )C∈B(ϕ,D) of
the tangent space T (Conf(Λ(M), D)kϕ . There is a natural isomorphism
T (Conf(Λ(M))kϕ/T (Conf(Λ(M), D)kϕ ' V ectk((EC )C∈Bc(ϕ,D)).
Observe that the image of B(ϕ,D) by T (π2(M,D))kϕ is the same as its image
by T (π2)kϕ where π2 = π2(M). One has

BD′ = T (π2)kϕ(B(ϕ,D))/{0}
∐

T (π2)kϕ(Bc(ϕ,D))/{0} = B̃(ϕ,D)

∐
B̃c(ϕ,D).

Proceding with pαβ : Conf(Λ(M)) −→ Grassmαβ (kr+1) instead of π2 one
obtains

1) B̃(α,β)
(ϕ,D)

⋃
B̃c(α,β)

(ϕ,D) = Bϕ(α,β);

2) B̃(α,β)
(ϕ,D)

⋂
B̃(α,β)

(ϕ,D) = ∅ .

Where Bϕ(α,β) denotes the canonical basis of T (Grassmαβ (kr+1))kϕ(α,β) in-
dexed by R(α,β)

ϕ . This set decomposes into the disjointed union of the set of
indices given by B̃(α,β)

(ϕ,D) and that given by B̃c(α,β)
(ϕ,D) .

Definition 4.22 Let ϕ ∈ Conf comb(Λ(M), D,D′). Define N (α,β)
ϕ ⊂ R

(α,β)
ϕ

by
{(α, β)} ×N (α,β)

ϕ = (
⋃

C∈Bc(ϕ,D)

C ) ∩ ({(α, β)} ×R(α,β)
ϕ )

(
resp. T (α,β)

ϕ = R(α,β)
ϕ −N (α,β)

ϕ

)
.
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One has

B̃(α,β)
(ϕ,D) = (E

(α,β)
(i,j) )

(i,j)∈T (α,β)
ϕ

(
resp. B̃c(α,β)

(ϕ,D) = (E
(α,β)
(i,j) )

(i,j)∈N(α,β)
ϕ

)
.

As a particular case one obtains

Jβ × J⊥β = N (λ+1,β)
ϕ

∐
T (λ+1,β)
ϕ ,

and thus

Jβ×(Jβ+1−Jβ) = N (λ+1,β)
ϕ ∩(Jβ×(Jβ+1−Jβ))

∐
T (λ+1,β)
ϕ ∩(Jβ×(Jβ+1−Jβ)) .

From these equalities it follows that:

Proposition 4.23

B̃c(ϕ,D) =
∐

15β5l

(Eβij)(i,j)∈N(λ+1,β)
ϕ ∩(Jβ×(Jβ+1−Jβ))

(
resp.

B̃(ϕ,D) =
∐

15β5l

(Eβij)(i,j)∈T (λ+1,β)
ϕ ∩(Jβ×(Jβ+1−Jβ))

)
,

thus BD′ = B̃(ϕ,D)

∐
B̃c(ϕ,D).

Proof It suffices to prove the first statement. The composition of
T (π2(M,D))kϕ with T (Drapn(kr+1))kD′ −→ Homk−vect(k

Jβ , kJ
⊥
β ) is pre-

cisely T (π(λ+1,β))kϕ , thus the image of B̃c(ϕ,D) minus {0} by the above pro-

jection gives B̃c(λ+1,β)
(ϕ,D) = (E

(α,β)
(i,j) )

(i,j)∈N(λ+1,β)
ϕ

. It is concluded that the image

of B̃c(ϕ,D) by T (Drapn(kr+1))kD′ −→ Homk−vect(k
Jβ , kJβ+1−Jβ ) minus {0} is

given by (E
(α,β)
(i,j) )

(i,j)∈N(λ+1,β)
ϕ ∩(Jβ×(Jβ+1−Jβ))

, and finally that

T ′(π2)kϕ(Bc(ϕ,D)) =
∐

15β5l

(Eβij)(i,j)∈N(λ+1,β)
ϕ ∩(Jβ×(Jβ+1−Jβ))

.

From the definition of B̃(D,D′)

(
resp. B̃c(D,D′)

)
and the above proposition

we deduce:

Proposition 4.24

B̃c(D,D′) =
∐

15β5l

(Eβij)(i,j)∈ ∩
ϕ∈Confcomb(Λ(M),D,D′)

N
(λ+1,β)
ϕ ∩(Jβ×(Jβ+1−Jβ))

(
resp.

B̃(D,D′) =
∐

15β5l

(Eβij)(i,j)∈ ∪
ϕ∈Confcomb(Λ(M),D,D′)

T
(λ+1,β)
ϕ ∩(Jβ×(Jβ+1−Jβ))

)
,

and BD′ = B̃(D,D′)

∐
B̃c(D,D′).
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In next sections it is aimed at giving another expression of the basis
B̃(D,D′) ⊂ BD′ of T̃ comb(Σ(M,D)).

The following equality results immediately from definition 4.18:

N (α,β)
ϕ =

⋃
γ∈Path(D,(α,β))

P(ϕ, γ),

where P(ϕ, γ) =
⋂

05ρ5r

R
(αρ,βρ)
ϕ (γ = (αρ, βρ)05ρ5r), and Path(D, (α, β))

denotes the set of paths of Λ(M) issued from {(1, l + 1), · · · , (λ, l +
1), (λ+ 1, l + 1)} and extremity (α, β).

For the proof of the following proposition the reader is referred to [15] (see
also [16]).

Proposition 4.25 The following formula holds:

N (α,β)
ϕ = R(α,β)

ϕ

⋂( ⋂
β5β′5l

( ⋃
15α′5α

ϕ(α′, β′)× ϕ(α′, β′ + 1)⊥
))

=

= R(α,β)
ϕ

⋂( ⋂
β5β′5l

( ⋃
15α′5α

R(α′,β′)
ϕ

))
.

Notation 4.26 Write:

N (α,β)
ϕ =

⋂
β5β′5l

( ⋃
15α′5α

ϕ(α′, β′)×ϕ(α′, β′+1)⊥
)

=
⋂

β5β′5l

( ⋃
15α′5α

R(α′,β′)
ϕ

)
,

thus: N (α,β)
ϕ = R

(α,β)
ϕ

⋂
N (α,β)
ϕ .

4.7 A family of smooth varieties associated with a point of a
Schubert variety

Let y be a point in the closure Σ(M,D), and D ′ the flag to which it cor-
responds. Assume that y ∈ Σ(M ′, D) with M 5 M ′, and let D′ be a
combinatorial flag such that M ′ = M(D,D′). A family of smooth subva-
rieties of Drapn(kr+1) is introduced whose germs at a point y ∈ Σ(M,D)

contains Σ(M,D)y and such that the intersection of the corresponding fam-
ily of tangent spaces is given by V ect(B̃(D,D′)). Recall that the set of
relative position matrices M ′ ∈ N(λ+1)×(l+1) satisfying M 5 M ′ indexes
the set of cells Σ(M ′, D) contained in Σ(M,D). Given M ′ = (m′αβ) ∈
Relpos(Ir+1) ∩ N(λ+1)×(l+1) with M 5M ′ write

GI(M,M ′) =
{

(α, β) ∈ J1, λK× J1, lK |m′αβ = mαβ

}
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(The set of generic indices of the relative position matrix
M 5 M ′). To (α, β) ∈ GI(M,M ′) is associated the relative po-

sition matrix Mαβ =

(
mα r + 1
mαβ nβ

)
, where it is written mα =

mαl+1 (resp. nβ = nλ+1β), between a couple of subspaces in Grassmα(kr+1)×
Grassnβ (kr+1). The set (Mαβ)(α,β)∈GI(M,M ′) gives rise to a family of sub-
varieties (Σ\(Mαβ , Dα)(α,β)∈GI(M,M ′) of Drapn(kr+1) associated to a couple
(D,D′) ∈ Drapm(Ir+1) × Drapn(Ir+1) defined as follows. Let D = (H1 ⊂
· · · ⊂ Hλ ⊂ Ir+1) (resp. D′ = (J1 ⊂ · · · ⊂ Jl ⊂ Ir+1), and M ′ = M(D,D′).

Thus one has Mαβ =

(
|Hα| |Ir+1|

|Hα ∩ Jβ | |Jβ |

)
.

Definition 4.27
Let Dα = (Hα ⊂ Ir+1) ∈ Grass|Hα|(Ir+1),

Σ(Mαβ , Dα) ⊂ Grass|Jβ |(k
r+1),

the Schubert cell defined by (Mαβ , Dα), and denote by pβ :
Drapn(kr+1) −→ Grass|Jβ |(k

r+1) (n = (|J1| < . . . < |Jl| < r + 1)), the
canonical morphism induced by the projection:

(
Drapn(kr+1) ⊂

) l∏
β′=1

Grass|Jβ′ |(k
r+1) −→ Grass|Jβ |(k

r+1).

Define:

Σ\(Mαβ , D) = (pβ)
−1

(Σ(Mαβ , Dα)) = Σ(Mαβ , Dα)×Grass|Jβ |(k
r+1)Drapn(kr+1).

Clearly Σ\(Mαβ , D) is a k-smooth locally closed subvariety of
Drapn(kr+1), as the pull-back of a k-smooth locally closed subvariety of
Grass|Jβ |(k

r+1) by the morphism pβ .

Remark 4.28 The family of subvarieties (Σ\(Mαβ , D))(α,β)∈GI(M,M ′) satis-
fies:

1) (∀(α, β) ∈ GI(M,M ′)) Σ(M ′, D) ⊂ Σ\(Mαβ , D).

2) Σ\(Mαβ , D) is stable under the action of Stab kD.

3) (∀(α, β) ∈ GI(M,M ′)) Σ(M ′, D) ⊂ Σ\(Mαβ , D).

4) The tangent space T (Σ\(Mαβ , D))D′ (D ′ = (J1 · · · ⊂ Jl ⊂ kr+1)) is
given by:

T (Σ\(Mαβ , D))D′ '

' Ker
(
T
(
Ker(Drapn(kr+1))D′ −→
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∏
β≤β′

Homk−vect(Hα ∩Jβ , k
r+1/Jβ′ + Hα ∩Jβ′+1)

)
,

where kD = (H1 ⊂ · · · ⊂Hλ ⊂ kr+1).

Definition 4.29 Given a flag D ′ satisfying M 5 M(kD,D ′) = M ′, i.e. the
point x corresponding to D ′ belongs to Σ(M,D) and determines the Schubert
cell Σ(M ′, D) ⊂ Σ(M,D). Define:

T (Σ(M,D))D′ =
⋂

(α,β)∈GI(M,M ′)

T (Σ\(Mαβ , D))D′

(The (M,M ′)-tangent space to Σ(M,D) at D ′ ∈ Σ(M ′, D)).

Remark 4.30 If M = M(kD,D ′) = M ′ one has GI(M,M ′) = Λ(M) and
thus Σ(M,D) = ∩

(α,β)∈GI(M,M ′)
Σ\(Mαβ , D). It follows that T (Σ(M,D))D′ =

∩
(α,β)∈GI(M,M ′)

T (Σ\(Mαβ , D))D′ , i.e. the (M,M ′)-tangent space to Σ(M,D)

at D ′ ∈ Σ(M,D) is the tangent space T (Σ(M,D))D′ .

From 2) of the 4.28 remark it results:

(∀g ∈ Stab kD) T (g)D′
(
T (Σ(M,D))D′

)
= T (Σ(M,D))g(D′),

where T (g)D′ denotes the differential of the translation morphism defined by
g. Thus dimk T (Σ(M,D))D′ is independent of D ′ ∈ Σ(M ′, D).
The next task is to prove the equality

T̃ comb(Σ(M,D))D′ = T (Σ(M,D))D′ ,

between the combinatorial Conf(Λ(M), D)-tangent space and the (M,M ′)-
tangent space to Σ(M,D) at D ′ ∈ Σ(M ′, D) for D ′ = kD

′
. According to the

smoothness criterion this implies that

Tnash(Σ(M,D))D′ = T̃ comb(Σ(M,D))D′ = T (Σ(M,D))D′

and thus allows to decide if Σ(M ′, D) is singular in Σ(M,D)), without hy-
pothesis on k.

4.8 A combinatorial basis of a (M,M ′)-tangent space

From the formula 4.28, 4), a basis B\(α,β)
(D,D′) of T (Σ\(Mαβ , D))D′ ((α, β) ∈

GI(M,M ′)) is obtained which is in fact an indexed subset of BD′ . It results
that the intersection B(D,D′) = ∩B\(α,β)

(D,D′) is a basis of T (Σ(M,D))D′ . One has

B\(α,β)
(D,D′),B(D,D′) ⊂ BD′ =

∐
15β5l

(Eβij)(i,j)∈Jβ×(Jβ+1−Jβ),
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thus each one of these bases is determined by its index set which is given in
terms of the following D′-Young-Data. For the sake of simplifying notation
Jβ+1/Jβ = Jβ+1 − Jβ is written.

Definition 4.31 The Young D′-data (d(α, β), d∗(α, β))(α,β)∈GI(M,M ′)

given by d(α, β) = (dβ′(α, β))15β′5l (resp. d∗(α, β) = (d∗β′(α, β)15β′5l) is
introduced defined by:

dβ′(α, β) =

{
(Hα ∩ Jβ ⊂ Jβ′) for β 5 β′ 5 l

(∅ ⊂ Jβ′) for 1 5 β′ < β(
resp.

d∗β′(α, β) =

{
(Jβ′ ⊂ Jβ′ ∪ Jβ′+1 ∩Hα) for β 5 β′ 5 l

(Jβ′ ⊂ Jβ′+1) for 1 5 β′ < β

)
.

Let
Y +
β′ (α, β) = Y +

β′ ((M,D,D′), (α, β)) = Y +
β′ (d(α, β), d∗(α, β))

(resp.

Y −β′ (α, β) = Yβ′((M,D,D′), (α, β)) = Yβ′(d(α, β), d∗(α, β))) .

For β 5 β′ 5 l one has:

Y +
β′ (α, β) = Hα ∩ Jβ × (Jβ′+1/(Jβ′ ∪Hα ∩ Jβ′+1)) ⊂ Jβ′ × (Jβ′+1/Jβ′)(

resp.

Y −β′ (α, β) = Jβ′×(Jβ′+1/Jβ′)−Y +
β′ (α, β) = Hα∩Jβ×((Hα∩Jβ′+1)/(Hα)∩Jβ′))∐

(Jβ/Hα ∩ Jβ)× (Jβ′+1/Jβ′)
)
,

Y +(α, β) =
∐

15β′5l

Y +
β′ (α, β) =

∐
β5β′5l

Y +
β′ (α, β) =

∐
β5β′5l

Hα ∩ Jβ × (Jβ′+1/(Jβ′ ∪Hα ∩ Jβ′+1)) =

= Hα ∩ Jβ × (Ir+1/(Jβ ∪Hα)
)

Lemma 4.32 Let (α, β) ∈ GI(M,M ′). The indexed subset

B
\(α,β)
(D,D′) :=

∐
15β′5l

(Eβ
′

ij )(i,j)∈Y −
β′ (α,β) ⊂ BD′ (cf.4.4)

is a basis of T (Σ\(Mαβ , D))kD′ (The combinatorial basis of
T (Σ\(Mαβ , D))kD′ ).
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The (M,M ′)-tangent space:
T (Σ(M,D))kD′ =

⋂
(α,β)∈GI(M,M ′)

T (Σ\(Mαβ , D))kD′ (M ′ = M(D,D′)) may

be endowed with a canonical basis indexed by means of Young D-data.

Definition 4.33 1) Define:

Hαβ =
⋃

{ (α′,β′)∈GI(M,M ′) | (α′,β′)5(α,β) }

Hα′β′(= Hα′ ∩ Jβ′),

and M (D,D′) = (Hαβ) (resp. M(D,D′) = (mαβ) = (|Hαβ |) .

2) With (M,D,D′) is associated the D′-Young data D(D,D′) =
D(M,D,D′) = (Dβ(D,D′)) (resp. D∗(D,D′) = D∗(M,D,D′) =
(D∗β(D,D′))) defined by:

Dβ(D,D′) = (H1β · · · ⊂ Hλβ ⊂ Hλ+1β).

(resp.

D∗β(D,D′) = (· · · ⊂ Jβ ∪ Jβ+1 ∩Hα ⊂ · · · ) (1 5 α 5 λ+ 1)) .

Write:

Y +
β (D,D′) = Y +

β (M,D,D′) = Y +
β (D(D,D′),D∗(D,D′)) =

⋃
15α5λ

Hαβ × Jβ+1/(Jβ ∪ Jβ+1 ∩Hα),

and Y −β (D,D′) = Y −β (M,D,D′) = (Jβ × (Jβ+1/Jβ)−Y +
β (D,D′)

(
resp.

Y +(D,D′) = Y +(M,D,D′) =
∐

15β5l

Y +
β (D,D′) , Y −(D,D′)

= Y −(M,D,D′) =

∐
15β5l

Y −β (D,D′) =
∐

15β5l

(Jβ × (Jβ+1/Jβ)− Y +
β (D,D′)

)
.

From the following easy to check lemma it results that a combinatorial
basis of the (M,M ′)-tangent space to Σ(M,D)) at kD

′
indexed by the above

Young data may be obtained.
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Lemma 4.34 1) Y −β′ (M,D,D′) = ∩
(α,β)∈GI(M,M ′)

Y −β′ ((M,D,D′), (α, β))
(
resp.

Y −(M,D,D′) = ∩
(α,β)∈GI(M,M ′)

Y −((M,D,D′), (α, β))
)
.

2) The indexed subset

B(D,D′) :=
∐

15β′5l

(Eβij)(i,j)∈Y −β (M,D,D′) ⊂
∐

15β′5l

(Eβij)(i,j)∈Jβ×(Jβ+−Jβ)

is a basis of T
comb

(Σ(M,D))kD′ (The combinatorial basis of
T (Σ(M,D))kD′ ).

It may thus be written:

B(D,D′) =
⋂

(α,β)∈GI(M,M ′)

B\(α,β)
(D,D′) .

4.9 Schubert variety Nash tangent spaces and its singular locus

In order to obtain a characterization of the singular locus LSΣ(M,D) of
Σ(M,D) applying the combinatorial smoothness criterium (cf. propo-
sition 4.13), it is proved that the (M,M ′)-tangent space T (Σ(M,D))kD′ to
Σ(M,D) is equal to T̃ comb(Σ(M,D))kD′ . The following proposition reduces
the proof of the equality to a combinatorial verification.

Proposition 4.35 The following assertions are equivalent:

1)
⋂

(α,β)∈GI(M,M ′)

T (Σ\(Mαβ , D))kD′ = T̃ comb(Σ(M,D))kD′ ;

2) B(D,D′) = B̃(D,D′);

3) T (Σ(M,D))kD′ = T̃ comb(Σ(M,D))kD′ ;

4) Y +
β (M,D,D′) = ∩

ϕ∈Confcomb(Λ(M),D,D′)
N (λ+1,β)
ϕ ∩(Jβ×(Jβ+1/Jβ)) (1 5

β 5 l);

5) Y −β (M,D,D′) = ∪
ϕ∈Confcomb(Λ(M),D,D′)

T
(λ+1,β)
ϕ ∩ (Jβ× (Jβ+1/Jβ)) (1 5

β 5 l);

6) Y +(M,D,D′) =
∐

15β5l

∩
ϕ∈Confcomb(Λ(M),D,D′)

N (λ+1,β)
ϕ ∩ (Jβ ×

(Jβ+1/Jβ)) (1 5 β 5 l).
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The last assertion is equivalent to the equality of the index set of B(D,D′) with
the index set of B̃(D,D′). The reader is referred to [15] for the proof of the
following proposition which is the main verification to be accomplished in the
proof of the fundamental equality:

Proposition 4.36 1) Y +
β (M,D,D′) = ∩

ϕ∈Confcomb(Λ(M),D,D′)
N (λ+1,β)
ϕ ∩

(Jβ × (Jβ+1/Jβ)) .

2) Y −β (M,D,D′) = (Jβ × (Jβ+1/Jβ) − ∩
ϕ∈Confcomb(Λ(M),D,D′)

N (λ+1,β)
ϕ ∩

(Jβ × (Jβ+1/Jβ)).
Where Y +

β (M,D,D′) =
⋃

15α5λ

Hαβ × Jβ+1/(Jβ ∪ Jβ+1 ∩Hα).

Remark 4.37 The proof of the above equalities results from the exactness of
the properties of ϕ when a Λ(M)-configuration ϕ is interpreted as a functor
from the category defined by Λ(M) to the category P(Ir+1).

From propositions 4.35, and 4.36 it results that the family of subvari-
eties (Σ\(Mαβ , D))(α,β)∈GI(M,M ′) satisfies

⋂
(α,β)∈GI(M,M ′)

T (Σ\(Mαβ , D))kD′ =

T̃ comb(Σ(M,D))kD′ and thus the combinatorial smoothness criterium (cf.
proposition 4.13) applies and it is concluded that:

Σ(M,D) is smooth at kD
′
⇐⇒ dimk T (Σ(M,D))kD′ = dimk Σ(M,D) .

It is convenient to re-state this assertion in the following form.

Theorem 4.38

Σ(M,D) is smooth at kD
′
⇐⇒ |Y −(M,D,D′)| = dimk Σ(M,D) .

Remark 4.39 1) The dimension dimk Σ(M,D) may be calculated easily
from M , and the condition |Y −(M,D,D′)| = dimk Σ(M,D) may be
written in terms of Sr+1.

2) The set GI(M,M ′) is not arbitrary as it follows from the proof of propo-
sition 4.36.



Chapter 5

The Flag Complex

It is shown in this chapter and the following ones that the construction of
the smooth varieties Conf(Λ(M), D) is in fact a particular case of a general
one in the setting of building theory. For this aim it is introduced here the
building theory terminology.

The Flag Complex is the Tits Building of the general linear group
GL(kr+1) so named by Mumford in [42]. It also plays an important role
in the contruction of a natural compactification of a reductive group [43], and
in that of smooth compactifications of symmetric spaces [44]. The term Flag
Complex refers to its underlying abstract simplicial complex, i.e. its combina-
torial structure. The aim of both this chapter and the next one is to introduce
the building setting in the case of the linear group, and to construct a family
of configurations varieties, which give rise to smooth resolutions of Schubert
varieties, in terms of the building geometry introduced by Tits in [50]. This
chapter may be seen as a guide suggesting the following general constructions
of the next chapters. The set of flags of kr+1 adapted to the canonical ba-
sis, i.e. the combinatorial flags, is endowed with the structure of a simplicial
complex, namely the first barycentric subdivision of the combinatorial (r+1)-
simplex. On the other hand, there is a simplicial complex naturally associated
to the symmetric group Sr+1 (The Coxeter complex). The natural action
of Sr+1 on the combinatorial flags induces an isomorphism between these
two complexes. There is a geometrical interpretation of these complexes as a
subdivision of an euclidean space by simplicial cones, given by a finite set of
hyperplanes, whose equations are given by the roots of Gl(r + 1), as defined
in the preceding chapter. A geometrical realization of the Cayley Diagram
of the symmetric group is obtained from the geometrical interpretation of the
Coxeter Complex. This construction establishes a correspondence between
the paths issued from a point of the former with the galleries issued from a
chamber of the latter.

88
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The set of flags Drap(kr+1) of kr+1 endowed with a simplicial complex
structure forms the Flag complex that contains the complex of adapted
flags as a subcomplex (The Canonical Apartment). Both of them are
Buildings (cf. loc. cit.), so the general definitions of abstract buildings
apply. Generalized galleries in these complexes can then be defined. Minimal
generalized galleries are defined in terms of the combinatorial geometry of
the Apartment. In the next chapter it is shown how their associated typical
graphs give rise to a family of smooth resolutions of Schubert varieties.

5.1 Buildings and galleries

We define an abstract building as follows. The reader is referred to [4] and
[50] for details. Let A be a set and Ch(A) ⊂ P(A) a subset of the class of
subsets of A. The elements C of Ch(A) are called chambers of A. A subset
F ⊂ C of a chamber C is called a facet, and the cardinal of C \ F is the
codimension of F in C.

A gallery Γ = (C = C0, C1, . . . , Cn = C ′) of length n between two
chambers C and C ′ of A is a sequence of n + 1 chambers such that Ci and
Ci+1 have a common facet F of codimension 1. Then, either Ci = Ci+1, or
Ci ∩ Ci+1 = F . The chamber C is called the origin (resp. left extremity) of
the gallery Γ and C ′ is called the end (resp. right extremity) of Γ. The set
{C,C ′} is the set of extremities of the gallery Γ. Then, Γ is a gallery between
C and C ′ of length n. A minimal gallery Γ between C and C ′ of length
n is a gallery such that there is no gallery between C and C ′ of length < n.

The pair (A,Ch(A)) is a building if:

• A = ∪C∈Ch(A)C;

• There is at least one gallery between two chambers C and C ′.

Observe that a building is naturally endowed with a structure of a simplicial
complex. In a building A = (A,Ch(A)), the codimension of a facet F is
independent of the chamber C containing F .

A sub-building A′ of A = (A,Ch(A)) is a couple (D,Ch(A) ∩ P(D)),
where D is a subset of A and P(D) is the class of subsets of D, so that
(D,Ch(A) ∩ P(D)) satisfies the two properties of buildings above. With
a chamber C is associated the sub-building ∆(C) formed by the set of
facets of C.

A morphism of buildings f : (A,Ch(A)) → (B,Ch(B)) is a mapping
f : A→ B inducing for every chamber C an isomorphism between ∆(C) and
∆(f(C)).

An apartment is a building A so that every facet of codimension 1 is
contained in exactly two chambers.

The set of facets of a building A is naturally ordered by inclusion. Two
facets are incident if F∪F ′ is a facet, or equivalently if F and F ′ are contained
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in some chamber C of the building A. A set Φ of facets of the building A is
a sub-complex of A if F ⊂ F ′ and F ∈ Φ implies F ′ ∈ Φ.

Given two chambers C and C ′ of A the distance d(C,C ′) between C
and C ′ is the length of a minimal gallery between C and C ′. This length is
independent of the minimal gallery.

If the galleries Γ1 = (C1
0 , . . . , C

1
m) and Γ2 = (C2

0 , . . . , C
2
n) satisfy C1

m = C2
0 ,

then the sequence Γ1 ◦Γ2 = (C1
0 , . . . , C

1
m = C2

0 , . . . , C
2
n) is a gallery called the

composed gallery of Γ1 and Γ2.

Definition 5.1 A sequence of facets γ = (Fn, . . . , F0) of a building A is a
generalized gallery (gg) of A if it satifies one of the following conditions:

(i) For n > i > 1, i ≡ 1 (mod 2), Fi+1 ⊃ Fi ⊂ Fi−1, γ is called a closed
gallery;

(ii) For n > i > 2, i ≡ 0 (mod 2), with Fn+1 = 0, Fi ⊂ Fi−1 ⊃ Fi−2, γ is
called a right open gallery;

(iii) For n > i > 1, i ≡ 1 (mod 2), with Fn+1 = 0, Fi+1 ⊃ Fi ⊂ Fi−1, γ is
called a left open gallery;

(iv) For n > i > 1, i ≡ 1 (mod 2), Fi+1 ⊂ Fi ⊃ Fi−1, γ is called an open
gallery.

If γ is a gallery satisfying the conditions (i) (resp. (ii), (iii), (iv)), we
denote it respectively as follows

(i)’ γ = (Fr ⊃ Fr−1 ⊂ Fr−2 . . . F1 ⊂ F0);

(ii)’ γ = (Fr ⊃ Fr−1 ⊂ Fr−2 . . . F0 ⊃ F0);

(iii)’ γ = (Fr ⊂ Fr−1 ⊃ Fr−1 ⊂ Fr−2 . . . F1 ⊂ F0);

(iv)’ γ = (Fr ⊂ Fr−1 ⊃ Fr−1 ⊂ Fr−2 . . . F1 ⊃ F0).

Remark 5.2 Another indexation of the facets composing a generalized
gallery γ is possible. In fact this is the usual notation we employ in this
work. Denote by:

i)” γ = (Fr ⊃ F ′r ⊂ Fr−1 . . . F1 ⊃ F ′1 ⊂ F0) a closed gallery;

ii)” γ = (Fr ⊃ F ′r ⊂ Fr−1 ⊃ F ′r−1 . . . F1 ⊃ F ′1) a right open gallery;

iii)” γ = (F ′r+1 ⊂ Fr ⊃ F ′r ⊂ Fr−1 . . . F
′
1 ⊂ F0) a left open gallery;

vi)” γ = (F ′r+1 ⊂ Fr ⊃ F ′r ⊂ Fr−1 . . . F0 ⊃ F ′0) an open gallery.
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Observe that given an ordered set (E,≺), the above definition may be
reformulated in terms of the order ≺, i.e. by replacing ⊂ or ⊃ respectively
by ≺ or �, and the facets by elements of E. We thus obtain the definition
of a generalized gallery in E.

A generalized gallery is non-stammering if all the facets inclusions are strict.
From now on all the generalized galleries we consider are implicitly supposed
to be non-stammering. On the other hand, it is immediate that a generalized
gallery may be reduced to a non-stammering gallery defined by the same set
of facets.

If no confusion arises, with the standard terminology of buildings, we say
simply gallery for generalized gallery. With the definition of 5.1, by definition
a gallery γ in A is issued from F if F = Fn, and Fn and F0, or (Fn, F0),
are the extremities of γ. Write E1(γ) = Fn (resp. E2(γ) = F0, E(γ) =
(E1(γ), E2(γ))), for the left extremity(origin) (resp. right extremity(end), the
extremities) of γ.

Notation 5.3 Given a building I (resp. a building I, and F, F ′ ∈ I) GallI
(resp. GallI(F ), GallI(F, F

′)) is defined as the set of generalized galleries of
I (resp. of generalized galleries of I issued from F , generalized galleries with
extremities (F, F ′)).

5.2 The simplex barycentric subdivision

An important example of building may be given. Denote by P(Ir+1) (resp.
P∗(Ir+1)) the set of subsets of Ir+1 (resp. the set of non-void subsets of Ir+1).

Definition 5.4 Write ∆(r) = ∆(Ir+1) = P∗(Ir+1). Let ∆(r) be endowed
with the symmetrization of the inclusion relation. (The combinatorial
r-simplex)

Let ∆(r)′ = ∆′(Ir+1) be the set of combinatorial flags D = (J1 ⊂ J2 ⊂
· · · ⊂ Jl ⊂ Ir+1) of Ir+1. Write (Ir+1) for (∅ ⊂ Ir+1). (Ir+1) is included in
∆′(Ir+1). Let

V ert(∆(r)′) = { (J ⊂ Ir+1) | J ∈ P∗(Ir+1)− {Ir+1} }

(The set of vertices of ∆(r)′). It is said that V ert(D) = {J1, ..., Jl, Ir+1}
is the set of vertices of D. The inclusion relation

Vert(D) ⊂ Vert(D′)

defines an order on ∆(r)′ . In this case we write D ⊂ D′. By definition two
flags D and D′ are incident if there is a maximal length flag D′′ with D ⊂ D′′
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and D′ ⊂ D′′ (cf. [50]). We endow ∆(r)′ with the inclusion order relation.
(The first barycentrical subdivision of ∆(r))

Define
typ : ∆(r)′ −→ typ(Ir+1)

as follows. Let D = (J1 ⊂ J2 ⊂ · · · Jl ⊂ Ir+1) ∈ ∆(r)′ with card J1 = n1,
card J2 = n2, · · · , card Jl = nl. Write typ D = n = (n1 < n2 < · · · < nl <
r + 1) (resp. typ ((Ir+1)) = (r + 1)) (The type of a flag D).

The set of combinatorial flags is naturally endowed with a building
structure. Observe that Drap(Ir+1) = ∆(r)′ . Write ∆

(r)′

n = Drapn(Ir+1).
Let it be proved that ∆(r)′ is a building with the set of maximal length
flags Drapr(Ir+1) (r = (1 < · · · < r < r + 1) as the set of chambers
Ch ∆(r)′ . This results from the bijection: ∆(r)′ ' ∆(r)′(p1, · · · , pr+1), where
∆(r)(p1, · · · , pr+1) denotes the convex envelope (also called the convex hull)
of a set of affinely independent points p1, · · · pr+1 in some affine space, and
∆(r)′(p1, · · · , pr+1), the set of simplices of the first barycentrical subdivision of
∆(r)(p1, · · · , pr+1) having the barycenter (p1 + · · ·+pr+1)/(r+ 1) as a vertex.
The bijection being induced by the natural bijection i 7→ pi. By this corre-
spondence the chambers of ∆(r)′ correspond to the r-dimensional simplices of
∆(r)′(p1, · · · , pr+1). Given two r-dimensional simplices in ∆(r)′(p1, · · · , pr+1)
it is clear that there exists a sequence of r-dimensional simplices such that
two succesive simplices have a common (r − 1)-face. This shows that the
second axiom defining a building holds for ∆(r)′ , the first one is trivially sat-
isfied by ∆(r)′ .

Remark 5.5 1) The set of vertices V ert(∆(r)′) is given by V ert(∆(r)′) =
Grass(Ir+1).

2) In fact ∆(r)′ is a flag complex. This means that V ert(∆(r)′) =
Grass(Ir+1) endowed with the incidence relation “ generates” ∆(r)′ .
More precisely the flags (resp. facets) D of ∆(r)′ are given by the sub-
sets of Grass(Ir+1) whose elements are two by two incidents (cf. loc.
cit.).

5.2.1 Simplex barycentric subdivision automorphisms group

The symmetric group Sr+1 acts naturally on ∆(r)′ . This group may be char-
acterized as the group of building automorphisms of ∆(r)′ which preserve the
type of the facets. Let

typ∆(r)′ = ∆(r)′/Sr+1,

and
Relpos∆(r)′ = (∆(r)′ ×∆(r)′)/Sr+1.

One has the following identifications:
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Relpos(Ir+1) = Relpos∆(r)′

and
typ∆(r)′ = typ(Ir+1) = {n = (n1 < n2 < · · · < nl < r + 1)

| n1, n2, · · · , nl ∈ N} ∪ {r + 1}

(The typical simplex of ∆(r)′). In fact typ(Ir+1) is endowed with
a canonical building structure with only one chamber C given by C =
{1, · · · , r + 1}, and typ is a building morphism. One has ∆(C) ' typ(Ir+1).

5.3 Combinatorial roots, and hyperplanes

LetD = (J1 ⊂ · · · ⊂ Jl ⊂ Ir+1). Write: (∀ i ∈ Ir+1) αD(i) := min{α| i ∈ Jα}.
We associate to D the set

RD(Ir+1) := {(i, j) ∈ Ir+1 × Ir+1/∆| αD(i) 6 αD(j)}.

The closed subset of roots RD ⊂ E × E/∆(E) associated with a flag
D ∈ Drap(E) has yet been defined. It is easy to see that RD(Ir+1) is equal
to the parabolic set RD associated to D ∈ Drap(Ir+1). Recall that GlRD =
Stab (kD) thus GlRD∩RD′ = Stab (kD) ∩ Stab (kD

′
). If D is a maximal

length flag, i.e. D ∈ Ch ∆(r)′ then by the bijection Ch ∆(r)′ ' Ord(Ir+1) it
corresponds to D an order 6

D
of Ir+1 which is precisely ωD and whose graph

is given by RD(Ir+1) ∪∆(Ir+1) .
With (i, j) ∈ Ir+1 × Ir+1/∆(Ir+1) is associated a subcomplex of ∆(r)′

defined by
A(i,j) := {D ∈ ∆(r)′ | (i, j) ∈ RD(E)} ⊂ ∆(r)′ .

The subcomplex A(i,j) may be characterized as the set of flags D ∈ ∆(r)′

incident to some maximal length flag D′ such that i 6
D′
j. One has that

∆(r)′ = A(i,j) ∪ A(j,i). The transposition (ij) ∈ Sr+1 sends A(i,j) to A(j,i).
A(i,j) is called a combinatorial root of ∆(r)′ . From the definition of a com-
binatorial root it results that {D} =

⋂
(i,j)∈RD(Ir+1)

A(i,j).

The intersection subcomplex Hij = A(i,j) ∩A(j,i) is given by the set of flags
invariant by the transposition (ij). Hij is called the combinatorial hyper-
plane of ∆(r)′ (resp. wall of ∆(r)′) defined by the combinatorial root A(i,j).
Denote by H the set of combinatorial hyperplanes (Hij)(i,j)∈R(Ir+1). Write:

∂A(i,j) = Hij (resp. ∂A(j,i) = Hji),

i.e. Hij is the hyperplane determined by A(i,j). A hyperplane is the wall of
exactly two roots (cf. [4]).
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Definition 5.6 Let D ∈ Ch ∆(r)′ = ∆
(r)′

r . H ∈ H is a bounding hyper-
plane of D if H = Hiαiα+1

where ωD = (i1 < · · · iα < iα+1 · · · ir+1) denotes
the total order of Ir+1 defined by D (cf. Definition 2.22).

Let HD = { H ∈H | D ∈ H }

(resp. HD(D′) = { H ∈H | D ∈ H, D′ /∈ H }, H (D′) = { H ∈H | D′ /∈ H }) .

Let D,D′ ∈ ∆(r)′ . The hyperplane Hij separates D and D′ if Hij /∈
HD ∪HD′ and if one of the following statements holds:

1. i6
D
j and j 6

D′
i,

2. j6
D
i and i 6

D′
j.

(i.e. either (i, j) ∈ RD and (i, j) /∈ RD′ , or (i, j) /∈ RD and (i, j) ∈ RD′) In
that case we have that D belongs to one of the combinatorial roots determined
byHij and D′ to the other. Denote by H (D,D′) the set of hyperplanes which
separates D and D′.

If D ∈ Ch ∆(r)′ = ∆
(r)′

r (r = (1 < 2 < · · · < r + 1)), and D′ ∈ ∆(r)′ write

d(D,D′) := |H (D,D′)| = |R(D,D′)|

(The combinatorial distance between D and D′). It is recalled that
R(D,D′) is the set of couples (i, j) ∈ RD such that (i, j) /∈ RD′ . Otherwise
stated the set of couples (i, j) in RD such that the wall H(i,j) separates D and
D′. Remark that (i, j) ∈ RD if and only if D ∈ A(i,j). This definition of the
distance between a maximal length flag D, i.e. a chamber of ∆(r)′ , and a flag
D′ is equivalent to the definition given in 5.1 ifD′ is also a maximal length flag.

Retain the notation of 2.5.3. The following proposition, establishing
a relation between the set of couples R(D,D′) and the Coxeter group
(Sr+1, SD) (SD = {(12), · · · , (rr + 1)}) (cf. [4]), results from general con-
siderations about Coxeter complexes exposed in the next chapters, or may be
checked directly for the flag complex Drap(Ir+1).

Proposition 5.7
Retain the above notation.

1. Let (D,D′) be a couple of maximal length flags then lSD (w(D,D′)) =
|R(D,D′)|.

2. For (D,D′) a couple of flags with D of maximal length we have:
R(D,D′) = R(D, projD′ D).

3. For (D,D′) as in 2− we have lSD (w(D, projD′ D) = |R(D,D′)|.
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5.4 The Star Complex defined by a flag in the Simplex
barycentric subdivision

The general terminology of simplicial complexes may be adapted to a building
complex ∆(r)′ . Let D ∈ ∆(r)′ . As a particular case of a general definition in
the theory of buildings (cf. [50], p.1) the set is introduced

StD := {D′ ∈ ∆(r)′ | D ⊂ D′}

(the star of D in ∆(r)′). This set endowed with the relation of inclusion
between flags is a building, whose set of chambers Ch StD is given by the
maximal length flags incident to D. Recall that the flags D′ (resp. simplices)
of ∆(r)′ are classified according to their type.

Definition 5.8 Given a flag D ∈ Drap(Ir+1) of type t and a type s ∈
typ(Ir+1) define ΣD(s) ⊂ Drap(Ir+1) (resp. Σt(s) ⊂ Drap(Ir+1) ×
Drap(Ir+1)) as the set of combinatorial flags given by:

ΣD(s) := { D′ ∈ Draps(Ir+1)| D ⊂ D′}
(resp. Σt(s) := { (D,D′) ∈ Drapt(Ir+1)×Draps(Ir+1)| D ⊂ D′}).

One has that Σt(s) ⊂ Drapt(kr+1)×Draps(kr+1) is the graph of the order
relation D ⊂ D′. Write:

StD =
∐
t⊂s

ΣD(s) .

The group of type preserving automorphisms of StD is given by the stabilizer
of D: SD ⊂ Sr+1. There is a building isomorphism

StD '
∏

∆(rα)′

of StD with a product of buildings given by barycentrical subdivisions of
combinatorial simplices. It would be seen that in fact ∆(rα)′ (resp. StD) may
be obtained in terms of the system of Coxeter (Sr+1, S) (resp. (SD, SD)),
where S (resp. SD) denotes the canonical set of generating transpositions.

5.5 The Simplex barycentric subdivision geometric realization

Let Ar ⊂ Rr+1 be the r-dimensional affine subspace of the euclidian space
Rr+1, defined by the equation: x1 + · · ·xr+1 = 1. Write p1 = e1, · · · , pr+1 =
er+1, where (e1, · · · , er+1) denotes the canonical basis of Rr+1. Clearly there
is p1, · · · , pr+1 ∈ Ar. Denote by ∆(r)(p1, · · · , pr+1) ⊂ Ar the r-dimensional
regular simplex with vertices p1, · · · pr+1, i.e. the convex hull of the points
p1, · · · pr+1. Given (i, j) ∈ Ir+1 × Ir+1/∆(Ir+1) let Hij ⊂ Rr+1 be the hyper-
plane defined by the equation xj−xi = 0, and Hij ⊂ Ar the affine hyperplane
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obtained as the intersection Hij = Hij∩Ar. Clearly one has Hij = Hji (resp.
Hij = Hji). Write

H := {Hij | (i, j) ∈ Ir+1 × Ir+1/∆}.

The family H is indexed by the set of pairs {{i, j}| i, j ∈ Ir+1, (i 6= j)}.
This family is the family of symmetry hyperplanes of ∆(r)(p1, · · · , pr+1). The
pair {i, j} corresponds to the hyperplane Hij = Hji which may be character-
ized as the symmetry hyperplane of ∆(r) defined by the r affinely independant
points

(pi + pj)/2, p1, · · · , p̂i, · · · , p̂j , · · · , pr+1.

The orthogonal reflexion s = sij = sji defined by the hyperplane Hij = Hji

is given by

s : (x1, · · · , xi, · · · , xj , · · · , xr+1) 7→ (x1, · · · , xj , · · · , xi, · · · , xr+1),

and leaves the simplex ∆(r)(p1, · · · , pr+1) : x1 + · · ·xr+1 = 1, 0 6
x1, · · · , xr+1 invariant. The restriction s = sij = sji of s to Ar is clearly
the orthogonal reflexion of Ar defined by Hij = Hji. Remark that

(∀ H ∈H ), (p1 + · · ·+ pr+1)/(r + 1) ∈ H.

Let C (H ) be the set of simplicial cones obtained from the decomposition
of Ar in terms of the equivalence relation defined by H (cf. [4], Ch.V, §1).
By definition the carrier supp F of a cone F ∈ C (H ) is the affine subspace
generated by F . Write dim F = dim supp F . A chamber C of C (H )
is by definition a cone F with dim F = r. Moreover the set of chambers
Ch C (H ) ⊂ C (H ) is equal to the set of connected components of Ar−

⋃
Hij .

An order relation on C (H ) is defined by

F ′ ≺ F if F ′ ⊂ F .

Two cones F and F ′ are incident if there exists C ∈ Ch C (H ) with C ⊃
F, F ′. Two chambers C,C ′ are adjacent if their closures contain a common
cone of dimension r − 1.

There is a bijection
∆(r)′ ∼−→C (H )

compatible with the order relations of ∆(r)′ and C (H ) defined as follows.
Given J ⊂ Ir+1 let Env{pi| i ∈ J} be the facet of ∆(r)(p1, · · · , pr+1) with
vertices {pi| i ∈ J}, i.e. Env{pi| i ∈ J} = convex hull in Ar of the set
{pi| i ∈ J}. Write

σ(J) := Env{pi| i ∈ J}.

Given a facet σ(J) of ∆(r)(p1, · · · , pr+1) let bar σ(J) denote the barycenter
of σ(J). Denote by Cσ(J) the open ray issued from bar σ(Ir+1) = (p1 + · · ·+
pr+1)/(r+1) and determined by bar σ(J). It is easy to see that Cσ(J) ∈ C (H ),
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i.e. that if L is the line determined by Cσ(J) then: L =
⋂

H∈H
Cσ(J)⊂H

H, and

Cσ(J) = DH ∩ L where DH denotes a half space defined by some H ∈ H

containing Cσ(J). The vertices of ∆(r)′ correspond to the faces of ∆(r). It is
said that two faces J, J ′ of ∆(r) are incident if (J ⊂ Ir+1), (J ′ ⊂ Ir+1) are
incident in ∆(r)′ , i.e. if J ⊂ J ′ or J ′ ⊂ J . One has

J, J ′ ∈ ∆(r)′ incident ⇐⇒ Cσ(J), Cσ(J′) ∈ C (H ) incident.

Given D = (J1 ⊂ · · · ⊂ Jl ⊂ Ir+1) ∈ ∆(r)′ the elements of Vert(D) =
{J1, · · · , Jl, Ir+1} ⊂ ∆r are two by two incident. Consequently the elements
of {Cσ(J1), · · · ,Cσ(Jl)} are two by two incident in C (H ). Let then Cσ(D) ∈
C (H ) be the unique facet such that Cσ(D) ⊂ Env(Cσ(J1) ∪ · · · ∪ Cσ(Jl)) and
Cσ(J1), · · · ,Cσ(Jl) ⊂ C σ(D), i.e. Cσ(D) is incident to the Cσ(Ji)’s. The bijection
∆(r)′ ∼−→C (H ) is defined by

D 7→ Cσ(D) .

Let S′r+1 ⊂ O(Ar) be the subgroup of the orthogonal group of Ar, gen-
erated by the set of orthogonal reflexions (sij) = (sH)H∈H defined by the
symmetry hyperplanes of the simplex ∆(r)′(p1, · · · , pr+1). Thus S′r+1 fixes
its barycenter (p1 + · · ·+ pr+1)/(r + 1).

Proposition 5.9 There is a natural isomorphism: S′r+1 ' Aut(Ir+1) =
Sr+1.

Proof It is clear that S′r+1 stabilises the set of vertices {p1, · · · , pr+1} and
that the action of S′r+1 on this set characterizes the action of S′r+1 on Ar.
Thus there is a monomorphism

S′r+1 −→ Aut(Ir+1) = Sr+1.

The image of this monomorphism contains the set of transpositions of Sr+1.
It is concluded that it is an epimorphism and thus an isomorphism.

From the fact that S′r+1 ⊂ O(Ar) is generated by the set of orthogonal
reflexions (sH)H∈H defined by H , it is deduced that Sr+1 acts naturally
on C (H ) through the isomorphism Sr+1

∼→S′r+1. One has (∀ w ∈ Sr+1)
w(Cσ(D)) = Cσ(w(D)). One finally gets

Proposition 5.10 The correspondence D → Cσ(D) defines a Sr+1(' S′r+1)-
equivariant order preserving bijection

∆(r)′ ' C (H ).

A building structure is associated to the set of cones C (H ).
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Definition 5.11 Denote by V ert(C (H )) ⊂ C (H ) the set of 1-dimensional
cones, i.e. rays, and given F ∈ C (H ), by V ert(F ) ⊂ V ert(C (H )) the
set of cones F ′ ∈ C (H ) contained in F . It results from 5.10 that the
couple (V ert(C (H )), (V ert(C))C∈ChC (H )) defines a building structure on
V ert(C (H )). There is a natural bijection between C (H ) and the set of facets
of (V ert(C (H )), (V ert(C))C∈ChC (H )). If no confusion arises this building is
denoted by C (H ).

5.6 The Cayley Diagram of the Symmetric group

The reader is referred to [18], 6.2 (see also [35] and [19]) for the definition
and properties of the Cayley Diagram of a group, given in terms of a set of
generators and a set of relations. The symmetric group Sr+1 is, according
to loc. cit., Ch. 6, §2 defined by the set of elementary transpositions S =
{s12, · · · , srr+1} and the following set of relations:

• s2
ii+1 = 1 (1 5 i 5 r);

• (sii+1si+1i+2)3 = 1 (1 5 i 5 r − 1);

• (sii+1skk+1)2 = 1 (i 5 k − 2).

The Cayley Diagram of Sr+1 consists of the vertices and edges of a “uni-
form polytope” whose two-dimensional faces are hexagons and squares repre-
senting the set of defining relations of Sr+1, the hexagons corresponding to
the second type and the squares to the third type of relations. The geometric
realization ∆(r)′(p1, · · · , pr+1) of the Coxeter complex gives rise to the follow-
ing one of the Cayley Complex. Let Sr−1 = Sr−1(p1, · · · , pr+1) be the sphere
centered in the barycenter (p1 + · · · + pr+1)/(r + 1) of ∆(r)(p1, · · · , pr+1),
and containing {p1, · · · , pr+1}. To a chamber Cσ(D) (resp. maximal length
flag D ∈ ∆(r)′) it corresponds the spherical simplex Cσ(D) ∩ Sr−1. Denote
by βD ∈ Cσ(D) ∩ Sr−1 the intersection point of the “barycentric ray of the
chamber” Cσ(D) with Sr−1.

Thus the Cayley Diagram of (Sr+1, S) is the graph whose set of
vertices is (βD)

D∈∆
(r)′
r

, and the set of edges is the set of segments(
[βD, βD′ ]

)
(D,D′)∈adj(∆(r)′

r ×∆
(r)′
r )

, where adj(∆(r)′

r ×∆
(r)′

r ) denotes the graph
of the adjacency relation. This graph is contained in a “uniform polytope”
whose faces are regular hexagons and regular squares. Observe that the set of
the generating reflexions S of S′r+1 is given by the the set of reflexions defined
by the bounding hyperplanes of the chamber CD0 : x1 < x2 · · · < xr+1. It
follows that the paths of the Cayley Diagram issued from βD0 correspond to
the galleries issued from CD0

, and thus to the words in S.
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5.7 The geometric realization of the Chambers, Roots, and
Hyperplanes

Denote by ImC (H )(R(∆(r)′)) the image in C (H ) of the set of the combina-
torial roots

R(∆(r)′) = (A(i,j))(i,j)∈Ir+1×Ir+1/∆,

by the building isomorphism ∆(r)′ ' C (H ). Let

D(i,j) := {(x1, · · · , xr+1) ∈ Ar| xj − xi > 0}.

(resp.
D(i,j) := {(x1, · · · , xr+1) ∈ Ar| xj − xi > 0})

be the closed half space (resp. open half space) of Ar defined by xj − xi > 0

(resp. xj−xi > 0). From the the definition of the isomorphism ∆(r)′ ' C (H )
it results that the image of the subcomplex A(i,j) is given by

ImC (H )(A(i,j)) = D(i,j) ∩ C (H ) = {F ∈ C (H )| F ⊂ D(i,j)}.

Finally the result is

ImC (H )(R(∆(r)′) = (D(i,j) ∩ C (H )).

It may be recalled that Drapr(Ir+1) = Ch ∆(r)′ . Let the image of the set
of chambers ImC (H )(Ch ∆(r)′) ⊂ C (H ) of ∆(r)′ be determined. It begins
by calculating the image ImC (H )(Dr) of Dr = (I1 ⊂ · · · ⊂ Ir+1). Write
Ch (A(i,j)) := A(i,j) ∩ Ch ∆(r)′ . Observe that the canonical flag Dr defined
by the total order of Ir+1 is determined in terms of a set of combinatorial
roots

{Dr} =
⋂

(i,j)∈R(Dr)

Ch (A(i,j)) = Ch (A(1,2)) ∩ · · · ∩ Ch (A(r,r+1)).

It follows that

ImC (H )(Dr) = D(1,2) ∩ · · · ∩D(r,r+1) =

{(x1, · · · , xr+1) ∈ Ar| x2 − x1 > 0, · · · , xr+1 − xr > 0}.

It may be recalled that the set of maximal length flags Drapr(Ir+1) cor-
responds to the set of total orderings Ord(Ir+1) of Ir+1. Given D ∈ ∆

(r)′

r =
Drapr(Ir+1), let (i1 < i2 < · · · < ir < ir+1) be the order 6

D
of Ir+1 de-

fined by D, i.e. ωD, and w ∈ Sr+1 defined by w(α) = iα (1 6 α 6 r + 1).
Then w(Dr) = D. From the characterization of the image ImC (H )(Dr) it is
deduced
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ImC (H )(D) = ImC (H )(w(Dr)) = {(x1, · · · , xr+1)

| xi2 − xi1 > 0, · · · , xir+1 − xir0}
= D(w(1),w(2)) ∩D(w(2),w(3)) ∩ · · · ∩D(w(r),w(r+1)).

Finally the image of the set of maximal length flags ∆
(r)′

r by the geomet-
rical realisation is given by

ImC (H )(∆
(r)′

r ) =
( ⋂

16α6l

D(w(α),w(α+1))

)
w∈Sr+1

.

As the set ∆
(r)′

r isSr+1-principal homogeneous, for every chamber C of C (H )
there is an order (i1 < · · · < ir+1) of Ir+1 such that C is characterized by the
inequalities

C : xi1 < xi2 < · · · < xir < xir+1
.

Thus the set SC of reflexions defined by the walls of C (resp. the set HC )
is given by

SC = (siαiα+1
)

(
resp. HC = (Hiαiα+1

)
)

(1 6 α 6 r).

By definition a wall of the chamber C is a hyperplane H ∈ C (H ) given
by the carrier of a cone F ⊂ C of codimension 1. It is clear that the set of
equations defining the walls of C is given by (xiα+1 − xiα = 0). If C = CD
then the walls of C correspond to the bounding hyperplanes of D.

5.8 The Flag complex

Definition 5.12 There is a natural order on Drap(kr+1) and a mapping
typ : Drap(kr+1) −→ typ(Ir+1) defined following the pattern of 5.4. This
order and the set of chambers given by the maximal length flags Drapr(kr+1)
define a building structure on Drap(kr+1). This results from the following
facts:

1) Given two flags D and D ′ of kr+1 there exists a basis eE adapted to
both (cf. 2.3).

2) To a basis eE of kr+1 is associated a mapping ψE : Drap(E) −→
Drap(kr+1) defined by ψE : D 7→ kD, identifying Drap(E) to a sub-
complex of Drap(kr+1) (Apartment defined by ψE).

It results that two maximal length flags in Drap(Ir+1) may be joined by
a sequence of chambers with two succesive having a common (r − 1)-
facet. Denote this building by I(Drap(kr+1)). It may be noted that here
V ert(I(Drap(kr+1)) = Grass(kr+1).
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From 1) it follows that the two flags D and D ′ are contained in some
ψE(Drap(E)), i.e. in some apartment. On the other hand, it is known that
Drap(E) is a building and thus it results that the two flags may be joined by
a gallery.

The mapping typ gives rise to a building morphism typ : I =
I(Drap(kr+1)) −→ typ(Ir+1) inducing a mapping

GallI −→ Galltyp(Ir+1)

defined by γ 7→ typ γ, where typ γ denotes the gallery of typ(Ir+1) defined
by the types of the facets of γ. No confusion arises if this mapping is also
denoted by "typ".
Write gallI = Galltyp(Ir+1), and given g ∈ gallI let

GallI(g) := typ−1(g)

(resp.
GallI(g,D) := {γ ∈ GallI(g) | E1(γ) = D }

if D ∈ Drap(kr+1)).

Definition 5.13 Define e1 (resp. e2) : gallI −→ typ(Ir+1) as the left (resp.
right) extremity mapping of gallI = Galltyp(Ir+1), and write e = (e1, e2)
for the extremities mapping.

Definition 5.14 An apartment A of I(Drap(kr+1)) is by definition the
subcomplex given by the image of a building morphism ψE : Drap(E) −→
Drap(kr+1) (cf. definition 2.5). The set of apartments Ap(I(Drap(kr+1)))
is in bijection with the class of sets {L1, . . . , Lr+1} of r + 1 independant one
dimensional subspaces of kr+1.

The apartmentA defined by {L1, . . . , Lr+1} is given by the set of flags adapted
to the direct sum decomposition kr+1 = L1 ⊕ · · · ⊕ Lr+1.

Remark 5.15 1) The condition 1- of definition 5.12 may be translated as
follows:

“A couple of facets (D,D′) is always contained in an apartment”.

2) The class of sets {L1, . . . , Lr+1} of r + 1 independant one dimensional
subspaces of kr+1 corresponds to the set of direct sum decompositions
kr+1 = L1 ⊕ · · ·Lr ⊕ Lr+1 with dimk Li = 1. This set is the set of k-
points of the k-variety of Stiefel decompositions of kr+1 (cf. [24],
9.10).
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Definition 5.16 A generalized gallery of Chain(Ir+1)
(
resp.

Chain(kr+1)
)

is defined in terms of the “⊂” relation between chains
following the same pattern as in the definition of a generalized gallery in an
ordered set (cf. Definition 1.23).

To a gallery γch of chains a generalized gallery may be associated by consid-
ering the reduction of the image ϕ(γch) to a non-stammering gallery.

5.8.1 Flag complex automorphisms group

The action of Gl(kr+1) on Drap(kr+1) factors through the action of the pro-
jective group PGl(kr+1) = Gl(kr+1)/Center (The adjoint group of Gl(kr+1)).
More precisely we have that the group of type preserving automorphisms of
I(Drap(kr+1)) is given by PGl(kr+1) (The Fundamental Theorem of pro-
jective Geometry) (cf. [11] and [50]). Let A be an apartment given by
the (r + 1)-subspaces {L1, · · · , Lr+1}. Write N(L1, · · · , Lr+1) for the stabi-
lizer Stab {L1, · · · , Lr+1}. There is an invariant subgroup T (L1, · · · , Lr+1)
of N(L1, · · · , Lr+1) defined by the automorphisms fixing each subspace
L1, · · · , Lr+1. The action of N(L1, · · · , Lr+1) on A factors through the quo-
tient N(L1, · · · , Lr+1)/T (L1, · · · , Lr+1) which is easily seen to be isomorphic
with Sr+1. This group is isomorphic to the group of type preserving au-
tomorphisms of ∆(r)′ ' A . This last isomorphism makes correspond to
H ∈ Grass(Ir+1) the subspace V ect((Li)i∈H) of kr+1. Thus the action
of Sr+1 on A is characterized as follows. The image of V ect((Li)i∈H) by
σ ∈ Sr+1 is V ect((Li)i∈σ(H)).

5.8.2 The Star complex defined by a flag in the Flag Complex

The flag complex is a particular case of a simplicial complex. A simplicial
complex is by definition a set K endowed with a class of finite subsets, called
the simplices of K, and such that every non empty subset of a simplex is also
a simplex. The general definition of the star of a simplex applies to the Flag
Complex.

Definition 5.17 Given a flag D ∈ Drap = Drap(kr+1) of type t and a type
s ∈ typ(Ir+1) define:

1. ΣD(s) ⊂ Drap(kr+1) (resp. Σt(s) ⊂ Drap(kr+1)×Drap(kr+1)) as the
subvariety whose set of k-points is given by

(ΣD(s))(k) := {D ′ ∈ Draps(kr+1)| D ⊂ D ′}
(resp. (Σt(s))(k) := {(D ,D ′) ∈ Drapt(kr+1)×Draps(kr+1)| D ⊂ D ′}).

2.
StD = { D ′ ∈ Drap(kr+1)|D ⊂ D ′ }

(The Star of D).
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3. If D = kD it is written ΣD(s) = ΣD(s) if no confusion arises.

The star complexes are the keystone in the construction of generalized
galleries.

1. Observe that there is the following decomposition:

StD =
∐
t⊂s

(ΣD(s))(k).

2. We have Σt(s) ⊂ Drapt(k
r+1)×Draps(kr+1) is the graph of the order

relation D ⊂ D ′.

The variety ΣD(s) may be seen as a Schubert variety. Let typ D = t =
(m1 < · · · < mλ < mλ+1 = r + 1), s = (n1 < · · · < nl < nl+1 = r + 1), and
M := (inf(mα, nβ)) ∈ N(λ+1)×(l+1), then

ΣD(s) = Σ(M,D) = Σ(M,D).

Let π1 = π1(t, s) (resp. π2 = π2(t, s)) : Σt(s) −→ Drap(kr+1) be the
morphism induced by the first (resp. second) projection Drap(kr+1) ×
Drap(kr+1) −→ Drap(kr+1). Let t′ ⊂ s, π1(t, s ⊃ t′) is defined thus: Σt(s) −→
Drapt′(k

r+1) as the composition of π1 = π1(t, s) followed by the natural mor-
phism Draps(k

r+1) −→ Drapt′(k
r+1). It is observed that Σt(s) = Σ(M).

From 1.14 it is deduced

π1(t, s) : Σt(s) −→ Drapt(k
r+1)

is a locally trivial fiber bundle with typical fiber ΣDt(s) where Dt = (km1 ⊂
· · · kmλ ⊂ kr+1).

Proposition 5.18 The Schubert variety ΣD(s) is isomorphic to a product of
flag varieties.

Proof Let t = m (resp.s = n), and (D ,D ′) ∈ ΣD(s), D = (V1 ⊂ · · ·Vλ ⊂
kr+1) (resp. D ′ = (W1 ⊂ · · · ,Wl ⊂ kr+1)). As D ⊂ D ′ there exists
an increasing sequence (iα)1≤α≤λ with Wiα = Vα. Write V0 = {0}, µα =
dim Vα+1 − dim Vα, and Dα = (Wiα+1/Vα ⊂ · · ·Wiα+1−1/Vα ⊂ Vα+1/Vα),
for 0 ≤ α ≤ λ.
Then there is

ΣD(s) '
∏

0≤α≤λ

Drapνα(kµα),

where να = typ Dα ∈ typ(Iµα).
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Corollary 5.19 If StD is endowed with the induced ordering between flags
there is an order preserving isomorphism:

StD '
∏

Drap(krα+1).

The right hand term is a product of buildings and thus endowed with a canon-
ical building structure, giving rise to a building structure on StD . The group
of type preserving isomorphisms of StD is given by

∏
PGl(krα+1).

5.8.3 The centered Bruhat decomposition

An improvement of the Bruhat decomposition is obtained as a corollary of
proposition 2.53 (cf. 2.28) by relating it to the building ∆(r)′ .

Proposition 5.20 Let D ∈ Drapr(E) (E ' Ir+1) be a maximal length flag.

1) The Bruhat decomposition may be re-written as:

Gl(kE) =
∐

w∈SE/Sn

U(D,w ·Dn) · w(D,w ·Dn) · P (Dn) .

Write w ·Dn = w ·Dn.

2)
Drapn(kE) =

∐
M∈Relpos(r,n)(E)

U(D,DM ) · w(D,DM ) · kDn ,

where Σ(M,D) = U(D,DM ) ·w(D,DM ) ·kDn = U(D,DM ) ·kDM
(
The

centered Bruhat decomposition of Gl(kE) (resp. Drapn(kE)
)
.

3) There is an isomorphism of k-varieties U(D,DM ) ' Σ(M,D) given by:
u 7→ u · kDM .

From the inclusion U(D,w ·Dn) ⊂ U((w ·Dn)opp) one obtains:

Corollary 5.21 With the above notation there is an open covering:

Gl(kE) =
⋃

w∈SE/Sn

U((w ·Dn)opp) · P (w ·Dn)

(The big cell open covering of Gl(kE)).

Remark 5.22 1) As dimk U(D,DM ) = |R(D,DM )| it results from the
above two propositions and the definition of R(D,DM ) that:

dimk Σ(M,D) = number of hyperplanes in ∆(r)′ separating D from

DM , and that dimk Σ(M,D) = lSD (w(D, projDM D).
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2) Let M bc = M bc
(r,n) the relative position matrix defining

the big cell Σ(M bc, D) of the decomposition Drapn(kE) =∐
M∈Relpos(r,n)(E)

U(D,DM ) · kDM . On the other hand, it follows

from the proof of proposition 2.60 that R(D,DMbc) = RuD
Mbc

. Thus:

dimk Drapn(kr+1) = |R(D,DMbc)| = |H (DMbc)| .

The following proposition is deduced from the above remark.

Proposition - Definition 5.23 A minimal gallery Γ(D,D′)((D,D′)
∈ Drapr(Ir+1)×Drapn(Ir+1)) satisfies length (Γ(D,D′)) 5 |H (D′)|. If the
equality holds then the distance d(D,D′) is maximal and it is said that the
couple (D,D′) is in transversal position. In this case a minimal gallery
Γ(D,D′) crosses all the hyperplanes of ∆(r)′ not containing D′.

It follows from proposition 5.18 and the above proposition the

Proposition 5.24 Let D ∈ Draps(Ir+1) ∩ StD′ . Then:

dimk ΣD′(D) = |HD′(D)| .

5.9 The Retraction of the Flag Complex on an Apartment

The building Complex as defined in [42] admits a retraction on the finite
subcomplex given by an Apartment. This retraction is also a combinatorial
Building morphism which transforms galleries into galleries, and gives another
interpretation of the Bruhat decomposition. It results from definition 2.21
that a maximal lenght flag D ∈ Drapr(Ir+1) defines a natural bijection:∐

n∈typ(Ir+1)

Relpos(r,n) ' ∆(r)′ ,

given by M 7→ DM , whose reciprocal mapping is given by D′ 7→
M(D,D′). On the other hand, there is a mapping I(Drap(kr+1)) −→∐
n∈typ(Ir+1)

Relpos(r,n), associating to a flag D ∈ I(Drap(kr+1) the relative

position matrix M(kD,D).

Definition 5.25 Define :

ρD : I(Drap(kr+1)) −→
∐

n∈typ(Ir+1)

Relpos(r,n) ' ∆(r)′

(The retraction of I(Drap(kr+1)) on the apartment ∆(r)′ with center
in D).
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The following proposition results immediatly from Bruhat decomposition.

Proposition 5.26

Retain the above notation. Let M = M(kD,D). There exists a unique
α(D) ∈ U(D,DM ) so that α(D) ·D = kDM with DM = ρD(D).

Proposition 5.27

Keep the above notation. The mapping ρD : I(Drap(kr+1) −→ ∆(r)′ defines
a building morphism.

Proof It suffices to prove that:

D ′ ⊂ D =⇒ kDM′ = ρD(D ′) ⊂ ρD(D) = kDM .

This results immediatly from

ρD(D ′) = α(D) ·D ′ ⊂ α(D) ·D = ρD(D) .

5.9.1 The Flag Complex Retraction on an Apartment and the Bruhat
decomposition

The Bruhat decomposition of Drap(kr+1) defined by kD may be written:

Drap(kr+1) =
∐

n∈typ(Ir+1)

∐
M∈Relpos(r,n)

Σ(M,D)

=
∐

n∈typ(Ir+1)

∐
M∈Relpos(r,n)

U(D,DM ) · kDM .

It follows from the definition of ρD that the restriction ρD|Σ(M,D) is equal to
the constant mapping defined by DM . Thus:

ρ−1
D (D′) = Σ(M(D,D′), D) ,

and one has that this fiber is principal under the action of U(D,DM ).

5.10 The Flag Complex and the Parabolic subgroups of the
Linear Group

The canonical isomorphism Drap(kr+1) ←→ Par(Gl(kr+1)) given by D 7→
PD = Stab D allows another interpretation of I(Drap(kr+1)) in terms of
parabolic subgroups of Gl(kr+1). Denote by I(Gl(kr+1)) the set of parabolic
subgroups endowed with the relation “≺” defined as the opposite of the in-
clusion relation between parabolics. The set of chambers of Drap(kr+1) cor-
respond to the set of minimal parabolic subgroups of Gl(kr+1), and it results



The Flag Complex 107

that two subgroups P and Q are incident if P ∩ Q is a parabolic subgroup.
The set of apartments corresponds to the set of conjugates of the subgroup
of diagonal matrices. Let T be a subgroup conjugate to the subgroup of di-
agonal matrices. It is clear that to T it corresponds a Stiefel decomposition
kr+1 = L1 ⊕ · · · ⊕ Lr+1. The appartment AT corresponding to T is thus
formed by the image of the mapping ∆(r)′ ←→ AT defined by H 7→ PH

where H =
⊕
i∈H

Li.

Proposition 5.28 The set of conjugates by Gl(kr+1) of the subgroup of di-
agonal matrices contained in PD is homogeneous under conjugation by PD .

Proof Given two basis ẽ = (ẽi)15i5r+1 and ẽ′ = (ẽ′j)15j5r+1 adapted
to D = (H1 ⊂ · · ·Hλ ⊂ kr+1), i.e. satisfying Hα =

⊕
Li⊂Hα

Li (Li =

kẽi)
(
resp. Hα =

⊕
L′j⊂Hα

L′j (L′j = kẽ′j)
)
there exists a renumbering of ẽ′,

namely ẽ′′ = (ẽ′jβ )15β5r+1 with :

“the automorphism σ(ẽ, ẽ′′) : ẽi 7→ ẽ′j1 , · · · , ẽr+1 7→ ẽ′jr+1
belongs to PD ”.

It is immediate to see that this suffices to prove the proposition.

Proposition 5.29 Let D ,D ∈ Drap(kr+1). The set of conjugates T of the
subgroup of diagonal matrices satisfying T ⊂ PD ∩PD′ is homogeneous under
conjugation by PD ∩ PD′ . In other terms the set of Stiefel decompositions of
kr+1 “adapted to both D and D ′” is homogeneous under PD ∩ PD′ .

Proof Following the pattern of the proof of Corollary 2.4 it is obtained that
given two basis ẽ = (ẽi)15i5r+1 and ẽ′ = (ẽ′j)15j5r+1 adapted to both D =

(H1 ⊂ · · ·Hλ ⊂ kr+1) and D ′ = (J1 ⊂ · · ·Jl ⊂ kr+1) there exists disjoint
decompositions:

ẽ =
∐

(α,β)∈J1,λ+1K×J1,l+1K

ẽαβ
(
resp. ẽ′ =

∐
(α,β)∈J1,λ+1K×J1,l+1K

ẽ′αβ
)
,

satisfying:

1) kr+1 =
⊕
Wαβ (Wαβ = V ect(ẽαβ))

(
resp. kr+1 =

⊕
W ′αβ (W ′αβ =

V ect(ẽ′αβ))
)
;

2) |ẽαβ | = |ẽ′αβ |;

3) Hα′ = ⊕
Wαβ⊂Hα′

Wαβ = ⊕
W ′αβ⊂Hα′

W ′αβ
(
resp. Jβ′ = ⊕

Wαβ⊂Jβ′
Wαβ =

⊕
W ′αβ⊂Jβ′

W ′αβ
)
;
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4) { (αβ) ∈ J1, λ + 1K × J1, l + 1K | Wαβ ⊂ Hα′ } = { (αβ) ∈ J1, λ + 1K ×
J1, l + 1K | W ′αβ ⊂Hα′};

5) { (αβ) ∈ J1, λ+ 1K× J1, l + 1K | Wαβ ⊂Jβ′ } = { (αβ) ∈ J1, λ+ 1K×
J1, l + 1K | W ′αβ ⊂Jβ′ }.

After reordering the basis ẽ′ there exists f : kr+1 −→ kr+1 sat-
isfying f(ẽαβ) = ẽ′αβ and thus f(Wαβ) = W ′αβ. This implies that
f(Hα′) = Hα′

(
resp. f(Jβ′) = Jβ′

)
, i.e. f ∈ PD ∩ PD′ .

Given T and T ′, basis ẽ and ẽ′ are chosen defining respectively the Stiefel
decompositions corresponding to T and T ′. If the above construction is applied
to ẽ and ẽ′, there results f : kr+1 −→ kr+1 satisfying f(T ) = T ′ and f ∈
PD ∩ PD′ .

5.10.1 Invariance of the Convex hull of two flags with respect to the
Apartment containing them

Definition 5.30 The convex hull (resp. envelope) Env(D,D′) of two flags
D,D′ ∈ I(Drap(Ir+1)) = ∆(r)′ is defined as the subcomplex of ∆(r)′ given
by :

Env(D,D′) =
⋂

{(i,j)∈R(Ir+1)|D,D′∈A(i,j)}

A(i,j) .

Given D ,D ′ ∈ I(Drap(kr+1)) their convex hull EnvI(D ,D ′) in
I(Drap(kr+1)) is defined by: if D ,D ′ are adapted to a Stiefel decomposition
corresponding to the subgroup T and

if D = kD,D ′ = kD
′
then EnvI(D ,D ′) = EnvAT (D ,D ′) ,

where

EnvAT (D ,D ′) = image of Env(D,D′) by ∆(r)′ −→ AT ,

and AT denotes the apartment of flags adapted to the Stiefel decomposition
corresponding to T . Observe that {(i, j) ∈ R(Ir+1)|D,D′ ∈ A(i,j)} = RD ∩
RD′ , and it is recalled that given two flags D and D ′ there always exists a
Stiefel decomposition adapted to both flags.

From the following proposition it results that this definition is well posed.

Proposition 5.31 Let T, T ′ ⊂ PD ∩ PD′ then EnvAT (D ,D ′) =
EnvAT ′ (D ,D ′).

Proof From the equality GlRD∩RD′ = Stab (kD) ∩ Stab (kD
′
) (cf. [23],

Exp XXII, 5.4.5.), the fact that PD

(
resp. PD′

)
is its own normal-

izer, and that its Lie algebra is generated by Lie(T ) (resp. Lie(T ′)) and
(E(i,j))(i,j)∈RD (resp. (E′(i,j))(i,j)∈RD′ ),
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where (E(i,j))(i,j)∈R(E) (resp. (E′(i,j))(i,j)∈R(E)) denotes a basis of
Lie(Gl(kr+1) formed of eigenvectors for T (resp. T ′), corresponding to
the eigenvalues indexed by R(E) = E × E −∆, it is deduced that:

EnvAT (D ,D ′) = EnvAT ′ (D ,D ′) = { D ′′ ∈ I(Drap(kr+1) | PD∩PD′ ⊂ PD′′ } .

According to the general definition given in 5.1 a gallery in a building
Γ(C,C ′) = (C = C0, C1, . . . , Cn = C ′) of length n between two chambers
C and C ′ is minimal if it is of minimal length. This general definition is
equivalent for ∆(r)′ = I(Drap(Ir+1)) to the following one.

Definition 5.32 A gallery:

Γ(D,D′) = (D = D0, D1, . . . , Dn = D′) ⊂ ∆(r+1)′

r

where Di, Di+1 have precisely a common (r − 1)-length flag (resp. a flag
of codimension 1) Dii+1 ⊂ Di, Di+1, is minimal if the set of hyperplanes it
crosses is equal to H (D,D′). We say that Γ(D,D′) crosses the hyperplane
H if there exists 0 5 i 5 n satisfying Dii+1 ∈ H, i.e. if ωDi = (i1 < · · · iα <
iα+1 · · · < ir+1) (resp. ωDi+1

= (j1 < · · · jα < jα+1 · · · < jr+1)) then Dii+1

is invariant under the transposition (iα, iα+1) = (jα, jα+1). Thus H is a
bounding hyperplane of both Di and Di+1.

Proposition 5.33 Keep the above notation. A gallery Γ(D,D′) ⊂ ∆(r)′ is
minimal according to Definition 5.32 ⇐⇒ Γ(D,D′) is of minimal length.

The proof of this proposition is a particular case of a general assertion
about Coxeter complexes and will be given later. The main point is that
galleries in ∆(r)′ issued from D correspond to words in the set of generators
defined by D, SD ⊂ Sr+1, and minimal galleries to minimal length words.
More precisely the following proposition resumes several equivalent definitions
whose equivalence will be proved in all generality in the next chapters.

Proposition 5.34 Keep the above notation. Let Γ(D,D′) be a gallery
Γ(D,D′) in ∆(r)′ , satisfying Di 6= Di+1, i.e. Γ(D,D′) is an injective gallery,
then the following assertions are equivalent.

1) Γ(D,D′) is minimal according to Definition 5.32.

2) The set of the hyperplanes crossed by Γ(D,D′) is equal to H (D,D′).

3) length Γ(D,D′) = |H (D,D′)|.

4) Γ(D,D′) is of minimal length.

5) lSD (w(D, projD′ D)) = the number of the hyperplanes crossed by
Γ(D,D′).
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The following corollary justifies the introduction of the convex hull of two
flags.

Corollary 5.35 A minimal gallery Γ(D,D′) is contained in the convex hull
of its extremities, i.e. Γ(D,D′) ⊂ Env(D,D′).

Proof Consider the geometrical realization of Γ(D,D′):

Γ(D,D′) = (D0 · · ·Dn, Dn+1) −→ Γgeom(D,D′) = (Cσ(D0) · · ·Cσ(Dn),Cσ(Dn+1)) .

It is recalled that the geometrical realization Envgeom(D,D′) of the convex
hull Env(D,D′) ⊂ ∆(r)′ is given by:

Envgeom(D,D′) = ∩
{(i,j)∈R(Ir+1)| D,D′∈A(i,j)}

D(i,j) .

If Γgeom(D,D′) * Envgeom(D,D′) then there exists some half space D(i,j)

satisfying:

1) Cσ(D) ∪ Cσ(D′) ⊂ D(i,j), i.e. D,D′ ∈ A(i,j);

2) D(i,j) ∩ Γgeom(D,D′) 6= ∅ (resp.(−D(i,j)) ∩ Γgeom(D,D′) 6= ∅). Thus it
is “geometrically” clear that Γgeom(D,D′) crosses the hyperplane Hij =
D(i,j) ∩ (−D(i,j)) /∈H (D,D′).

This last assertion contradicts the minimality of Γ(D,D′).



Chapter 6

Configurations and Galleries
varieties

The Configuration varieties defined by typical graphs are introduced. The
galleries of types, or more generally the linear typical graphs, define a class of
k-smooth and integral Configurations varieties particularly important in this
work. The minimal galleries of types are characterized as the galleries of
types whose associated Configurations variety defines a smooth resolution of
a Schubert variety. A minimal generalized gallery of the Flag Complex is a
general point of the Configurations variety given by its gallery of types. They
are characterized by a combinatorial property. It is shown that a minimal
generalized gallery in the Flag Complex is contained in the convex hull of its
extremities.

Definition 6.1

1) Let J be a finite set, t : J → typ ∆
(r)′

r a mapping, K ⊂ J × J a subset,
satisfying:

(i, j) ∈ K ⇒ t(i) ⊂ t(j).
We call Λ = (J,K, t) a typical graph.
Let E ⊂P(J) be a class of sets with two elements, and t : J → typ ∆

(r)′

r

a mapping satisfying:

{i, j} ∈ E ⇒ t(i) ⊂ t(j) or t(j) ⊂ t(i).

We call M = (J,E, t) a symmetric typical graph. M is a linear
typical graph if M is linear as a graph. Denote by Λsym, the symmet-
ric typical graph defined by Λ. By definition Λ is linear if and only if
Λsym is linear.

111
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2) A Λ-configuration of flags of Drap(kr+1) (resp. I(Drap(kr+1)))
(resp.Drap(Ir+1)) is a point (Dj)j∈J (resp.(Dj)j∈J) of the product∏
j∈J

Drapt(j)(kr+1) (resp.
∏
j∈J

Drapt(j)(Ir+1)) satisfying:

(i, j) ∈ K ⇒ (Di,Dj) and Di ⊂ Dj

(resp.
(i, j) ∈ K ⇒ (Di, Dj) and Di ⊂ Dj) .

A M-configuration of flags of Drap(kr+1) (resp. I(Drap(kr+1)))
(resp.Drap(Ir+1)) (Dj)j∈J (resp.(Dj)j∈J) is a point of the product∏
j∈J

Drapt(j)(kr+1) (resp.
∏
j∈J

Drapt(j)(Ir+1)) satisfying

{i, j} ∈ E ⇒ Di ⊂ Dj or Dj ⊂ Di

(resp.
{i, j} ∈ E ⇒ Di ⊂ Dj or Dj ⊂ Di ) .

Write Conf(Λ) = Conf(Λ, I(Drap(kr+1))) (resp. Conf comb(Λ) =
Conf(Λ,∆(r)′)) the set of Λ-configurations of I(Drap(kr+1)) (resp.
∆(r)′). The set Conf comb(Λ) is considered as a subset of Conf(Λ) by
means of the injective mapping ϕ 7→ kϕ.

Proposition 6.2 The set

Conf(Λ) ⊂
∏
j∈J

Drapt(j)(k
r+1)

of Λ-configurations of Drap(kr+1) is the set of k points of a projective k-
variety (The Λ-Configurations variety).

(Here by a projective k-variety we understand a finite type projective scheme
over k)

Proof It results easily from the proof of 1.9 (resp.3.3) that given a section
(D ,D ′) of Drapm(kr+1)×Drapn(kr+1) the condition D ⊂ D ′ may be defined
by a set of equations in the Plücker coordinates of (D ,D ′). Thus we deduce
that Conf(Λ) is the underlying set of an algebraic k-variety (see Remark 1.10).

Two typical graphs Λ and Λ′ are equivalent if there is an isomorphism

Conf(Λ) ' Conf(Λ′),

i.e. if the variety of Λ-configurations Conf(Λ) is isomorphic to the variety of
Λ′-configurations Conf(Λ′).
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The typical graph associated to a generalized gallery of types
g ∈ gallI .

Recall that to a gallery of types g ∈ gallI is associated a typical graph
Λ(g) whose set of vertices V ert(Λ(g)) is given by the facets of g, and the set
of edges Edg(Λ(g)) by the inclusions of its facets. For instance, the gallery

g : tr+1 ⊂ sr ⊃ · · · ⊂ s0 ⊃ t0

defines a typical graph Λ(g) whose set of vertices is given by V ert(Λ(g)) =
{tr+1, sr · · · s0, t0}, its set of edges by Edg(Λ(g)) = {(tr+1 ⊂ sr), · · · , (s0 ⊂
t0)}, and the typical weight mapping t : Λ(g) −→ typ(Ir+1) by the inclusion
V ert(Λ(g)) ⊂ typ ∆(r)′ . Write Conf(g) = Conf(Λ(g)). There are morphisms

E1 : Conf(g) −→ Drap(kr+1)

(resp.
E2 : Conf(g) −→ Drap(kr+1) ) ,

associating to a Λ(g)-configuration γ its left extremity E1(γ) (resp. right
extremity E2(γ)).

Definition 6.3 A variety of galleries is a variety of the form Conf(Λ(g)).
The underlying set of this variety is the set of galleries GallI(g) in the Flag
Complex I(Drap(kr+1)) (resp. building I(Gl(kr+1)) of Gl(kr+1)).

We have

Proposition 6.4 Given a linear typical graph Λ there exists a gallery g ∈
gallI whose associated graph Λ(g) is equivalent to Λ. The gallery g may be
chosen non-stammering, i.e. with strict inclusions between facets, and in this
case it is unique.

Let us give other examples of typical graphs.

1) (The weighted graph Λ(M) of definition 3.1) It is recalled that the
set of vertices Vert Λ(M) of Λ(M) is given by

Vert Λ(M) = J1, λ+ 1K× J1, l + 1K,

and the set of edges Edg Λ(M) by

Edg Λ(M) = {((α, β), (α+ 1, β))| 1 6 α ≤ λ, 1 ≤ β ≤ l + 1} ∪
{((α, β), (α, β + 1))| 1 6 α ≤ λ+ 1, 1 ≤ β ≤ l}.

The weight function being defined by:

p : Vert Λ(M)→ N, p(α, β) = mαβ .

may be seen as a mapping with values in typ(Grass(Ir+1)) ⊂ typ(Ir+1).
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2) (The Nash typical graph) Given a relative position matrix M =
M(D, d) = (mαβ) defined by D = (H1 ⊂ · · · ⊂ Hλ ⊂ Ir+1) and d =
(J ⊂ Ir+1). M is associated with a weighted graph I(M). Let I(M) be
the weighted graph defined as follows. The set of vertices Vert I(M) is
given by J1, λ+ 1K× J0, λ+ 1K, and the set of oriented edges Edg I(M)
by the couples ((α, β), (α′, β′)) with (α′ − α, β′ − β) ∈ {e1, e2}, where
e1 = (1, 0), e2 = (0, 1).
Define the weight function p : I(M) −→ N by

p(α, β) = |Hα ∩ J ∪Hβ | (where H0 = ∅)

and assume I(M) endowed with the product order.
The configurations variety associated to this graph is a smooth resolu-
tion of singularities Σ̃(M,D) −→ Σ(M,D) such that the pull-back of
the tangent submodule T 1

Σ(M,D)/k ⊂ T
1
Grass/k admits an extension as a

locally trivial submodule T̃ 1
Σ(M,D)/k ⊂ (T 1

Grass/k)Σ̃(M,D) (cf. [13]).

3) (The weighted graph Λ′(M) equivalent to Λ(M)) Let M ∈
N(λ+1)×(l+1) be a relative position matrix with Λ(M) is associated a
typical (resp. weighted) Λ′(M) graph as follows. Define the set

In(mβ) := {1 6 α 6 λ+ 1| mα−1 β < mαβ (m0β = 0)}

the set of increasing points of mβ = (m1β 6 · · · 6 mλβ = n 6 r + 1),
where mβ denotes the β-row of M . Remark that

In mβ ⊂ In mβ+1 for l > β > 1.

Define Λ′(M) by giving the set of vertices:

1. Vert Λ′(M) =
∐

l+1>β>1

In mβ × {β} ⊂ VertΛ(M) = J1, λ + 1K ×

J1, l + 1K; and the set of edges:

2. Edg(1) Λ′(M) = (((α, β), (α, β + 1))) l>β>1,
α ∈ In mβ

;

Edg(2) Λ′(M) = {((α, β), (α′, β)) ∈ Vert Λ′(M)×Vert Λ′(M)| α 6=
λ+ 1, α′ = inf

α<α′′∈In(mβ)

α“};

Edg Λ′(M) = Edg(1) Λ′(M) ∪ Edg(2) Λ′(M).

The weight function p′ : Λ′(M) −→ N is given by the restriction of
p : Λ(M) −→ N to Λ′(M) ⊂ Λ(M).

The following proposition results from the definition of Λ′(M).

Proposition 6.5 The variety of Λ′(M)-configurations
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Conf(Λ′(M)) ⊂
∏

(α,β)∈Λ′(M),
mαβ=p′(α,β)

Grassmαβ (kr+1),

is canonically isomorphic to Conf(Λ(M)). More precisely the inclusion
Λ′(M) ⊂ Λ(M) gives rise to a morphism of varieties Φ : Conf(Λ(M)) −→
Conf(Λ′(M)) which is in fact an isomorphism. Thus Λ(M) and Λ′(M) are
equivalent typical graphs.

Proof Let (Hαβ) be a Λ(M)-configuration. For 1 ≤ β ≤ l + 1 we de-
note by Dβ the chain defined by (Hαβ)1≤α≤λ+1. Thus ϕ(Dβ) is given by
(Hαβ)α∈In mβ

and (ϕ(Dβ)) defines a Λ′(M)-configuration. The isomorphism
Φ makes correspond (ϕ(Dβ)) to (Dβ).

Denote by π′1 = π′1(M) (resp. π′2 = π′2(M)) the restriction of π1 (resp. π2)
to Conf(Λ′(M)).

In the next chapter it will be proved that there is a generalized gallery
g(M) associated to M defining a typical graph equivalent to Λ′(M) and thus
to Λ(M) too.

6.1 The Associated Fiber Product to a gallery of types

The variety Conf(Λ(g)) admits a description as a fiber product which is in fact
a decomposition of Conf(Λ(g)) in a sequence of locally trivial fiber bundles
with smooth bases and typical fiber of the form ΣD(s) (resp. product of flag
varieties).

Definition 6.6 [Fiber product along a gallery of types]
Given a gallery of types g : tr+1 ⊂ sr ⊃ · · · ⊂ s0, i.e. g ∈ gallI(Drap(kr+1)),

we associate to g the following fiber product

Σ̂(g) = Σtr+1(sr)×Drap(kr+1) · · · ×Drap(kr+1) Σt1(s0) ⊂
∏

1≤i≤r

Σti+1(si)

defined by the sequence (π2(ti+1, si ⊃ ti), π1(ti, si−1))1≤i≤r (cf. §5.8.2 and
what follows).

Denote by

g(α) : tr+1 ⊂ sr ⊃ · · · ⊂ tr−α+2 ⊂ sr−α+1

the α-th truncated gallery of g.

For every 1 6 α 6 r + 1 there is

Σ̂(g(α)) := Σ̂(g(α−1))×Drap(kr+1) Σtr−α+2(sr−α+1)
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the fiber product over Drap(kr+1) of

(Σ̂(g(α−1)), π′2(g(α−1))) and (Σ̂tr−α+2(sr−α+1), π1(tr−α+2, sr−α+1)),

where π′2(g(α−1)) is induced by π2(tr−α+3, sr−α+2) composed with the natural
morphism

Drapsr−α+2
(kr+1) −→ Draptr−α+2

(kr+1).

Σ̂(g) = Σ̂(g(r+1)) is called the fiber product along g, and
(Σ̂(g(α)), π2(g(α))), where we write π2(g(α)) = π2(tr−α+2, sr−α+1), the fiber-
ing of Σ̂(g). There are two morphisms π1(g), π2(g) : Σ̂(g)

−→−→ Drap(kr+1)
induced respectively by π1(tr+1, sr), and π2(t1, s0).

Remark 6.7 Clearly

(∀ γ ∈ Σ̂(g)) π(tr+1, sr)(γ) = E1(γ)
(
resp. π(t1, s0)(γ) = E1(γ) .

To these mappings correspond the k-morphisms:

E1(g) : Σ̂(g) −→ Draptr+1
(kr+1)

(resp.
E2(g) : Σ̂(g) −→ Draps0(kr+1) ) .

The following proposition results from the definition of Σ̂(g) as a fiber
product.

Proposition 6.8 There is a canonical isomorphism ˆΣ(g) ' Conf(Λ(g)).
The underlying set of Σ̂(g) (resp.Conf(Λ(g)) ) is given by GallI(g).

Remark 6.9 If g′ ∈ gallI is as in 5.2, (ii)′′ (resp. (ii)′′, (iv)′′), then Σ̂(g) is
defined as in definition 6.6 with g′ satisfying tr+1(g′) = sr(g

′) = tr(g
′) (resp.

t1(g′) = s0(g′), tr+1(g′) = sr(g
′) = tr(g

′) and t1(g′) = s0(g′)).

6.1.1 Galleries issued from a flag

Given D ∈ Drape1(g)(k
r+1) we write:

Conf(Λ(g),D) := E−1(D) and Σ̂(g,D) = Conf(Λ(g),D) .

There is a canonical isomorphism:

Σ̂(g,D) = ΣD(sr)×Drap(kr+1) · · · ×Drap(kr+1) Σt1(s0) ⊂
∏

1≤i≤r

Σti+1
(si) .

The fibering (Σ̂(g(α)), π2(g(α))) of Σ̂(g) induces a fibering
(Σ̂(g(α),D), π2(g(α),D)) of Σ̂(g,D) (The fibering of Σ̂(g,D)). As
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Σ̂(g(1),D) = ΣD(sr) it is deduced from proposition 5.18 that Σ̂(g,D) may
be decomposed in a sequence of locally trivial fibrations with typical fiber a
product of flag varieties. Thus:

Proposition 6.10 Σ̂(g,D) is an integral projective smooth k-variety.

It is remarked that the morphism

E2(g,D) : Σ̂(g,D) −→ Drapt0(kr+1) ,

induced by E2(g) is a StabD -equivariant proper morphism.

6.1.2 Relative position matrix associated to a Gallery of types

Given

g = g : tr+1 ⊂ sr ⊃ · · · ⊂ s0 ⊃ t0 ∈ gallI
(
I = I(Drap(kr+1)

)
,

and D ∈ Drape1(g)(k
r+1) it is deduced from the StabD -equivariance of π =

E2(g,D) : Σ̂(g,D) −→ Drap(kr+1) that:

Im π =
∐

Σ(M ′,D) ,

whereM ′ runs on the set of relative position matrices with Σ(M ′,D) ⊂ Im π.
On the other hand, Σ̂(g,D) being irreducible, it results that there exists one
and only one Mg ∈ Relpos(Ir+1) satisfying Σ(Mg,D) = Im π. The relative
position matrix Mg is independant of the choice of D .

Definition 6.11 There is a natural mapping:

gallI(Drap(kr+1)) −→ Relpos(Ir+1)

defined by g 7→Mg (Relative position matrix associated to g).

6.2 Minimal generalized galleries in the Flag complex

The minimal generalized galleries in the apartment ∆(r)′ ⊂ I(Drap(kr+1),
given by the flags adapted to the canonical basis of kr+1, are defined by a
birational property. The following developements are based on material that
would be introduced in Chapter 9 and may be skipped in a first lecture.

Definition 6.12 Let D , d ∈ ∆(r)′ . Write M = M(D , d). Let g ⊂ typ(∆(r)′)
be a gallery of types, and γg(D , d) ⊂ ∆(r)′ a generalized gallery of type g with
extremities (D , d). It is said that γg(D , d) is minimal if:

dimk Σ̂(g,D) = dimk Σ(M,D) .

A generalized gallery of types g ⊂ typ(∆(r)′) is minimal if g is the gallery of
types of a minimal generalized gallery γ ⊂ ∆(r)′ .
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Denote by gallm
∆(r)′ ⊂ gall∆(r)′ the set of minimal galleries of types. It is

observed that as dimk Σ̂(g,D) increases indefinitely with the length of g, the
set gallmI(Drap(kr+1) must be finite.

Remark 6.13 It would be seen that this first definition of a minimal gener-
alized gallery (mgg) admits a combinatorial equivalent version, i.e. solely in
the terminology of building theory (cf. 9.16).

Let γ ⊂ ∆(r)′ be gallery of type g. Denote by E1(γ) the left extremity of
γ. The notation of remark 5.2 is assumed and one writes Di = Fi (resp. D′i =
F ′i ). There is then:

1) dimk Σ̂(g,E1(γ)) =
∑

r>i=0

dimk ΣD′i+1
(Di) if g is closed;

2) dimk Σ̂(g,E1(γ)) =
∑

r>i=1

dimk ΣD′i+1
(Di) if g is right open;

3) dimk Σ̂(g,E1(γ)) =
∑

r=i=0

dimk ΣD′i+1
(Di) if g is left open;

4) dimk Σ̂(g,E1(γ)) =
∑

r=i=1

dimk ΣD′i+1
(Di) if g is open.

It may be easily verified that the generalized gallery γg(D , d) is minimal
in the sens of 9.16. Consider:

• a maximal length flag D ⊃ D at maximal distance from d, thus
d(D , d) = dimk Σ(M,D);

• the generalized gallery γg(D , d) obtained by composing D ⊃ D and
γg(D , d).

The generalized gallery γg(D , d) may be completed into an adapted gallery
Γ(D , d) so that:

length Γ(D , d) 5 dimk Σ̂(g,D) = dimk Σ(M,D) ,

as it follows from the above equalities. Thus one has necessarily that
length Γ(D , d) = dimk Σ(M,D), and that Γ(D , d) is a minimal gallery. It is
concluded that for all maximal length flag D ⊂ D , at maximal distance from
d, the generalized gallery γg(D , d) is minimal. This proves that γg(D , d) is
minimal generalized. More precisely stated.

Proposition 6.14 Retain the above notation and hypothesis.

• There exists a composed minimal gallery Γ(D , d) = Γr◦· · ·Γ1, if γg(D , d)
is closed

(
resp. Γr ◦ · · ·Γ2, if γg(D , d) is right open, Γr+1 ◦ · · ·Γ1 if γ is

left open, Γr+1 ◦ · · ·Γ2 if γ is open
)
. Where Γi ⊂ StD′i . It is said that

Γ(D , d) is a gallery adapted to γg(D , d).
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• One has

d(D , d) = max
D′∈∆

(r)′
r incident to E1(γ)

d(D′, E2(γ)) =
∑
|HD′i+1

(Di)| .

• The generalized gallery γg(D , d) is minimal in the sens of 9.16.

The proof of this proposition is given in the chapter about mgg’s in a
Coxeter complex.

From proposition 5.24 and the equalities of the above proposition:

dimk Σ̂(g,D) =
∑

dimk ΣD′i+1
(Di) =

∑
|HD′i+1

(Di)|

it is deduced that the galleries Γi ⊂ StD′i are minimal and of maximal
length in StD′i and finally that for every D as in proposition 6.14 the following
statements hold:

1) HD′i+1
(Di) ∩HD′

i′+1
(Di′) = ∅ if i 6= i′ ;

2) H (D , d) =
∐

HD′i+1
(Di).

The “ i’s ” run on a set of indices which depend on the type of the gallery γ.
Minimal generalized galleries of types are defined by the following bira-

tional property.

Proposition 6.15 Retain the above notation. A generalized gallery γ(D , d)
is minimal if and only if the natural morphism:

π : Σ̂(g,D) −→ Σ(Mg,D)

is birational.

The second statement results from the fact that π : Σ̂(g,D) −→
Σ(Mg,D) (g = typ γ) is a birational morphism if g is a minimal general-
ized gallery as it results from the second part of this work.

6.3 Birational characterization of minimal generalized galleries
of types

Proposition 6.16 Let g ∈ gallI (resp. D ∈ ∆(r)′ with typ D = e1(g)). The
following statements are equivalent.

1) The morphism π : Σ̂(g,D) −→ Σ(Mg,D) is a birational morphism.

2) There is a minimal generalized gallery γ(D , d) ⊂ ∆(r)′ whose type is g.
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Proof From 6.15 it follows that 2) =⇒ 1). It suffices to prove that 1) =⇒ 2).
Let d ∈ ∆(r)′ so that Mg = M(D , d). As π is a surjective morphism there
exists a gallery γ(D , d) of type g issued from D so that E2(γ(D , d)) = d. Let a
maximal length flag D ⊂ D be chosen in ∆(r)′ at maximal distance from d, i.e.
d(D , d) = dimk Σ(Mg,D). From dimk Σ̂(g,D) = dimk Σ(Mg,D) it results
that the composed gallery γ(D , d) of D ⊂ D with γ(D , d) may be completed in
a gallery (in the usual sens) Γ(D , d) in I(Drap(kr+1)), with length Γ(D , d) 5
d(D , d). Thus Γ(D , d) is a minimal gallery and thus contained in ∆(r)′ . This
gives γ(D , d) ⊂ ∆(r)′ . The result follows from 6.14.

The above proposition is referred as the (The birational criterium of min-
imality).

Corollary 6.17 The generalized gallery γ(D , d) ⊂ I(Drap(kr+1) whose type
is g is a mgg if and only if

1) π : Σ̂(g,D) −→ Σ(Mg,D) is a birational morphism;

2) M(D , d) = Mg.

6.4 The convex hull of a minimal generalized gallery

The reader is referred to [4] and [50] for the proof of the following result.

Proposition 6.18 Let Γ(D ,D ′) = (D = D0,D1, . . . ,Dn = D ′) ⊂
I(Drap(kr+1) be a minimal length gallery, i.e. a minimal gallery (with the
usual meaning) in I(Drap(kr+1)). Then Γ(D ,D ′) ⊂ EnvI(D ,D ′).

It follows from the proposition that a minimal gallery Γ(D ,D ′) may
be completed in a minimal generalized gallery γ(D ,D ′) = (D = D0,D0 ∩
D1,D1, . . . ,Dn,Dn ∩ Dn+1,Dn+1 = D ′) ⊂ I(Drap(kr+1) . It is recalled
that if D ,D ′ ∈ ∆(r)′ one has that EnvI(D ,D ′) = Env∆(r)′

(D ,D ′), thus
Γ(D ,D ′) ⊂ ∆(r)′ . The maximal length flags D0,D1, . . . ,Dn ⊂ ∆(r)′ may be
seen as chambers in ∆(r)′ . Define D0∩D1, . . . ,Dn−1∩Dn as the corresponding
sequence of codimension 1 common facets of two succesive chambers.
Reciprocally to a minimal generalized gallery of the form

γ(D ,D ′) = (D = D0,D0 ∩D1,D1, . . . ,Dn,Dn ∩Dn+1,Dn+1 = D ′),

is associated a gallery Γ(D ,D ′) in an obvious way. One has that γ(D ,D ′) is
minimal if and only if Γ(D ,D ′) is minimal.
It would be seen in chapter 9, as a corollary of the above proposition, that:

• a minimal generalized gallery γ(D , d) of type g is the unique gallery of
type g in I(Drap(kr+1) connecting D and d and is contained in the
convex hull EnvI(D , d).
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• If g is a minimal generalized gallery of types and M(D , d) = Mg, there
is a minimal gallery γ(D , d) of type g and γ(D , d) is the unique gallery
of type g in I(Drap(kr+1) connecting D and d .

From this it follows, as it would be seen, the existence of a canonical section:

σ(g,D) : Σ(Mg,D) −→ Σ̂(g,D)

of the natural morphism π : Σ̂(g,D) −→ Σ(Mg,D) on Σ(Mg,D) asso-
ciating to a couple (D ,D ′) satisfying M(D ,D ′) = Mg the unique mgg
γg(D ,D ′) of type g contained in EnvI(D ,D ′), which establishes an isomor-
phism Σ(Mg,D) ' (π)−1(Σ(Mg,D)).



Chapter 7

Configuration Varieties as
Gallery Varieties

In this chapter it is proved that the configurations variety giving a smooth
resolution of singularities for a Schubert variety is, in fact, isomorphic to a
gallery variety given by a minimal generalized gallery of types. More precisely,
with its relative position matrixM ∈ Relpos ⊂ (

∐
N(λ+1)×(l+1)) is associated

a gallery of types g(M) ∈ gallI and an isomorphism

γ(M) : Conf(Λ(M)) ' Gall(g(M)),

where Gall(g(M)) = Gall(Λ(g(M))). Given a general Λ(M)-configuration of
adapted flags to the canonical basis, chains of adapted subspaces are of use
in constructing a minimal generalized gallery of type g(M) in terms of this
configuration. The gallery of types g(M) depends solely on M . A generalized
gallery of chains of adapted subspaces is first obtained from this configuration,
giving rise, after reduction, to that minimal generalized gallery. Thus we
obtain the above isomorphism by following the pattern of this correspondence.
It is also given another example of a configurations variety (The Nash variety
associated with a Schubert variety in a Grassmannian) and a corresponding
isomorphic gallery variety. These two examples show, for the linear group, the
role played by the geometry of the Tits building in unifying the constructions
of configuration varieties.

122
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7.1 The minimal generalized gallery associated with a Relative
position matrix

Let D = (H1 ⊂ · · · ⊂ Hλ ⊂ Ir+1) (resp. D′ = (J ⊂ Ir+1)), with typ D =
m = (m1 < · · · < mλ < r + 1) (resp. typ D′ = n = (n < r + 1), the type of a
subspace in kr+1). Write M(D,D′) = (mαβ) ∈ N(λ+1)×2), thus

(mα2 = mα)16α6λ (resp. (mα1 = |Hα ∩ J |)16α6λ, mλ+11 = n = |J |,

mλ+12 = r + 1) .

The procedure is to first construct g(M) assuming that M = M(D,D′) =
(mαβ) ∈ N(λ+1)×2 satisfies:

1. 0 < m11, mα1 < mα+1 1 for 1 6 α 6 λ

2. mα1 < mα2 for 1 6 α 6 λ+ 1.

Write Jα = Hα∩J for 1 6 α 6 λ, (resp. Jλ+1 = J). The chain D1 = D∩J =
(J1 ⊂ · · · ⊂ Jλ ⊂ J) satisfies Jα ⊂ Hα (Jα 6= Hα) and is in fact a flag of J .
Remark that the second column of the matrix M (D,D′) = (Hαβ) is given by
D2 = D, and the first column by D1 = D∩J . A generalized gallery is defined
between D and D′ in ∆(r)′ = Drap(Ir+1):

γ(D,J) : dλ+1 ⊂ Dλ ⊃ dλ ⊂ · · · ⊂ D1 ⊃ d1 ⊂ D0 ⊃ d0,

by

(table 1)



dλ+1 = D = (H1 ⊂ · · · ⊂ Hλ ⊂ Ir+1),

Dα = (J1 ⊂ · · · ⊂ Jλ−α+1 ⊂ Hλ−α+1 ⊂ · · · ⊂ Hλ ⊂ Ir+1),

dα = (J1 ⊂ · · · ⊂ Jλ−α+1 ⊂ Hλ−α+2 ⊂ · · · ⊂ Hλ ⊂ Ir+1),

for 2 6 α ≤ λ, and

D1 = (J1 ⊂ · · · Jλ ⊂ Hλ ⊂ Ir+1),

d1 = (J1 ⊂ · · · ⊂ Jλ ⊂ Ir+1),

D0 = (J1 ⊂ · · · ⊂ Jλ ⊂ J ⊂ Ir+1),

d0 = (J ⊂ Ir+1).

The assumption about M makes one sure that all the chains of (Table
1) are in fact flags of Ir+1. The functions f defining these chains are all
increasing strictly. Write typ Dα = sα (resp. typ dα = tα) for 1 6 α ≤ λ,
and tλ+1 = typ dλ+1, and denote by γ(D,J) the sub-gallery of γ(D,J) with
extremities E(γ(D,J)) = (dλ+1, D0).
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Definition 7.1 Let g(M) := typ γ(D,J) (resp.g(M) := typ γ(D,J))(M =
M(D,D′)). There is

g(M) : tλ+1 ⊂ sλ ⊃ tλ ⊂ · · · ⊂ s1 ⊃ t1 ⊂ s0 ⊃ t0

(resp.
g(M) : tλ+1 ⊂ sλ ⊃ tλ ⊂ · · · ⊂ s1 ⊃ t1 ⊂ s0).

Remark 7.2 If σ((D,J)) = (D0, J0) for σ ∈ Sr+1 then σ(γ(D,J)) =
γ(D0, J0), as one has σ(M (D,D′)) = M (D0, D

′
0). It follows that the

gallery of types typ γ(D,J) depends only on the relative position matrix
M = M(D,D′). This justifies the notation g(M) for typ γ(D,J).

Definition 7.3 (The isomorphism γ(M))
it is assumed that M satisfies conditions 1-, and 2- above, and define

γ(M) : Conf(Λ(M)) −→ Gall(g(M))

by γ(M) : (Hαβ) 7→ γ((Hαβ)) ∈ Gall(g(M)), where the gallery

γ((Hαβ)) : dλ+1 ⊂ Dλ ⊃ dλ ⊂ · · · ⊂ D0 ⊃ d0

is obtained as follows. Let it be written

1. Hα = Hα2 for 1 6 α ≤ λ (resp. Hλ+1 1 = kr+1), D = (H1 ⊂ · · ·Hλ ⊂
kr+1) with typ D = m;

2. Hα1 = Jα for 1 6 α 6 λ (resp. Jλ+1 1 = J ), D ′ = (J1 ⊂ · · · ⊂
Jl ⊂J ⊂ kr+1) with typ D ′ = n;

then:

3.

(table 2)



dλ+1 = (H1 ⊂ · · · ⊂Hλ ⊂ kr+1)

Dα = (J1 ⊂ · · · ⊂Jλ−α+1 ⊂Hλ−α+1 ⊂ · · · ⊂Hλ ⊂ kr+1),

dα = (J1 ⊂ · · · ⊂Jλ−α+1 ⊂Hλ−α+2 ⊂ · · · ⊂Hλ ⊂ kr+1)

for 2 6 α 6 λ, and

D1 = (J1 ⊂ · · · ⊂Jλ ⊂Hλ ⊂ kr+1);

d1 = (J1 ⊂ · · · ⊂Jλ ⊂ kr+1);

D0 = (J1 ⊂ · · · ⊂Jλ ⊂J ⊂ kr+1);

d0 = (J ⊂ kr+1).
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Thus γ((Hαβ)) is a generalized gallery of type g(M) between D = (H1 ⊂
· · · ⊂Hλ ⊂ kr+1) and D ′ = (J ⊂ kr+1).
The mapping Conf(Λ(M)) −→ Gall(g(M)), defined by (Hαβ) 7→ γ((Hαβ)),
is induced by a k-isomorphism, which is also denoted by

γ = γ(M) : Conf(Λ(M)) ∼−→Gall(g(M)).

A section of Gall(g(M)) comes from a unique Λ(M)-configuration (Hαβ). It
is clear that it is a functorial definition of the k-isomorphism γ(M).

From the fact that a gallery of type g(M) determines a unique gallery of
type g(M) and reciprocally, an isomorphism Conf(Λ(M)) ' Gall(g(M)) is
deduced which is denoted by γ(M).

Given a relative position matrix M ∈ N(λ+1)×2 (without any restrictions)
a gallery g(M) defining a graph Λ(g(M)) equivalent to Λ(M) may be con-
structed. This construction is inspired by the above one.

The preceding definitions are restated in a slighty more general frame.
Given a finite set I, a flag D ∈ Drap(I), and a subset J ∈ P∗(I), with
|J | < |I|, let

I(J,D)

be the subflag of D whose vertices are those of D indexed by the set of
increasing points In m, where m ∈ typ(I) is the type of the chain J ∩ D ∈
Chain(I). Write D′ = I(J,D) and D′′ = (J ⊂ I). The relative position
matrix M(D′, D′′) satisfies the set of conditions 1, but not necessarily the
conditions 2.

Let it be explained how the construction giving Table 1, can be modified
to obtain a gallery γ(D′, D′′) between D′ and D′′ if M(D′, D′′) satisfies only
condition 1, i.e. between two flags whose relative position matrix satisfies the
set of conditions 1 but not necessarily conditions 2. If the constructions of
Table 1 is carried out, a “gallery of chains” is obtained:

D = dλ+1 ⊂ Dλ ⊃ · · · ⊂ Dα ⊃ dα ⊂ Dα−1 ⊃ dα−1 ⊂ · · · ⊂ D0 ⊃ d0.

It is remarked that if M satisfies only the inequalities of 1, without satisfying
inequalities 2 there is λ > α > 1 so that: J ⊃ Hλ−α+1 · · · ⊃ H1 and J +
Hλ−α+2, thus:

λ > α′ > α ⇒ mλ−α′+1 1 = mλ−α′+1 2

(resp. α > α′′ > 1 ⇒ mλ−α′′+1 1 < mλ−α′′+1 2).

and

D = ϕ(dλ+1) = ϕ(Dλ) = · · · = ϕ(Dα) = ϕ(dα) is obtained,

and that
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γ(D′, D′′) : dα ⊂ Dα−1 ⊃ · · · ⊂ D0 ⊃ d0,

where dα = I(J,D) and d0 = (J ⊂ I). Thus γ(D′, D′′) is a non-stammering
gallery of flags with strict inclusions, i.e. a reduced gallery. Recall that the
image by ϕ of a chain denotes its associated flag.

Definition 7.4 If D 6= I(J,D), define

γ(D,J) = γ(D,D′′) : D ⊃ dα ⊂ Dα−1 ⊃ · · · ⊂ D0 ⊃ d0,

otherwise put
γ(D,J) = γ(D′, D′′) = γ(dα, D

′′).

In the latter case there is D = I(J,D). Denote by γ(D,J) the sub-gallery
with extremities E(γ(D,J)) = (D,ϕ(J ∩D)). and write

g(M) = typ(γ(D,J))

(resp.
g(M) = typ(γ(D,J)) .

Following the pattern of Table 2 the above constructions allows one to
define a functorial morphism

γ(M) : Conf(Λ(M)) ' Conf(Λ′(M)) −→ Conf(g(M))

(resp.
γ(M) : Conf(Λ(M)) −→ Conf(g(M)) .

A Λ(g(M))-configuration (resp. gallery of type g(M)) γ determines by con-
struction a unique Λ(M)-configuration (Hαβ) with

γ(M)((Hαβ)) = γ.

Thus this morphism is clearly an isomorphism. The isomorphism γ(M) :
Conf(Λ(M)) −→ Conf(g(M)) is obtained following the same pattern as in
the construction of Table 2.

Observe that g(M) is a minimal generalized gallery of types, as it results
from the Birational Criterium of Minimality and the fact that all the terms
of its flags are obtained as the intersection of couples of terms from (D,D′).

GivenM ∈ N(λ+1)×(l+1) let a gallery of types g(M) ∈ gallI be defined and
an isomorphism γ(M) : Conf(Λ(M)) ' Conf(g(M)), based on the preceding
construction of g(M) for M ∈ N(λ+1)×2.

Let D = (H1 ⊂ · · · ⊂ Hλ ⊂ Ir+1) (resp.D′ = (J1 ⊂ · · · ⊂ Jl ⊂ Ir+1)),
and M = M(D,D′). Denote by (Dβ), with Dβ = D ∩ Jβ , the column of the
matrix M (D,D′) = (Hα ∩ Jβ) indexed by β, and let

Confcomb(Λ(M)) −→
∏

Chainmβ (Jβ).
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be the natural injective mapping. Recall that by definition of the graph
Λ′(M) equivalent to Λ(M) there is a natural isomorphism Φ : Conf(Λ(M)) '
Conf(Λ′(M)). To the configuration (Hα ∩ Jβ) corresponds the Λ′(M)-
configuration (ϕ(Dβ)) = (ϕ(D ∩ Jβ)).

Remark that to the preceding natural injective mapping corresponds the
following one

Conf comb(Λ′(M)) −→
∏

Drapm′β (Jβ).

Define
Mβ = M(ϕ(D ∩ Jβ+1), (Jβ ⊂ Jβ+1)) ∈ Relpos∆′(Jβ+1).

Following 7.4 a gallery of types

g(Mβ) = typ(γ(ϕ(D ∩ Jβ+1), Jβ)) ∈ gall∆′(Jβ+1),

and an isomorphism

γ(Mβ) : Conf(Λ(Mβ)) ' Conf(g(Mβ)),

are associated with Mβ .

Definition 7.5
Let

D′β = (Jβ ⊂ · · · Jl ⊂ Ir+1)

(The β-th upper truncation of D′). Given d ∈ Drap(Jβ) denote by
d\ ∈ Drap(Ir+1) the flag defined by

V ert(d\) = V ert(d) ∪ { Jβ , · · · Jl, Ir+1},

and by
δβ : Drap(Jβ) −→ StD′β ,

the mapping which makes d\ correspond to d; it is clear that δβ preserves the
incidence relation, thus the image γ\ = δβ(γ) of a gallery γ ⊂ Drap(Jβ) is a
gallery of Drap(Ir+1).

Let
g\(Mβ) = typ(γ\(ϕ(D ∩ Jβ+1), Jβ)) ∈ gallI .

It follows from

E2(γ(ϕ(D ∩ Jβ+1), Jβ)) = ϕ(D ∩ Jβ),

where γ(ϕ(D ∩ Jβ+1), Jβ) is seen as a gallery in Drap(Jβ+1), and from

E1(γ(ϕ(D ∩ Jβ), Jβ−1)) = ϕ(D ∩ Jβ),
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where γ(ϕ(D ∩ Jβ), Jβ−1) is seen as a gallery in Drap(Jβ) and ϕ(D ∩ Jβ) as
a flag in Drap(Jβ), that

E2(γ\(ϕ(D ∩ Jβ+1), Jβ)) = E1(γ\(ϕ(D ∩ Jβ), Jβ−1)) ,

and the sequence of galleries(γ\(ϕ(D ∩ Jβ+1), Jβ)) may be composed in an
obvious way.

Write

γ(D,D′) = ( F
l≥β≥2

γ\(ϕ(D ∩ Jβ+1), Jβ))) ∗ γ\(ϕ(D ∩ J2), J1)

(resp.

γ(D,D′) = ( F
l≥β≥2

γ\(ϕ(D ∩ Jβ+1), Jβ))) ∗ γ\(ϕ(D ∩ J2), J1)).

Remark 7.6 By γ ∗ γ′ the composition of a couple of galleries (γ, γ′)
is denoted satisfying E2(γ) = E1(γ′). The product indexed by l ≥ β ≥ 2
denotes the composition of the sequence of galleries (γ\(ϕ(D ∩ Jβ+1), Jβ)) in
decreasing order from l to 2.

Let
g(M) = typ(γ(D,D′))

(resp.
g(M) = typ(γ(D,D′))).

Thus by adapting in an obvious way the above notation one may write

g(M) = ( F
l≥β≥2

g\(Mβ)) ∗ g\(M1)

(resp.
g(M) = ( F

l≥β≥2
g\(Mβ)) ∗ g\(M1)).

Given a Λ(M)-configuration (Hαβ) and 1 ≤ β0 ≤ l associate to it the flags

Dβ0+1 = ϕ((Hαβ0+1)) in Drap(Hλ+1β0+1)

(resp.
Dβ0

= ϕ((Hαβ0
)) in Drap(Hλ+1β0

))

defined by In mβ0+1 (resp. In mβ0
), i.e. the (β0+1)-column (resp. β0-column)

of the corresponding Λ′(M)-configuration Φ((Hαβ)). Let

Γβ0 : Conf(Λ(M)) −→ Conf(g(Mβ0))

(resp.

Γβ0
: Conf(Λ(M)) −→ Conf(g(Mβ0

))),
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be defined by

Γβ0
: (Hαβ) 7→ γ(Dβ0+1,D

′
β0

)

(resp.
Γβ0

: (Hαβ) 7→ γ(Dβ0+1,D
′
β0

));

where γ(Dβ0+1,D ′β0
) (resp. γ(Dβ0+1,D ′β0

)) denotes the g(Mβ0
)–confi-

guration (resp. g(Mβ0
)–configuration) obtained from γ(Dβ0+1, Jβ0

) (resp.
γ(Dβ0+1, Jβ0

)) by replacing each Hαβ by the corresponding Hαβ in each flag
of γ(Dβ0+1, Jβ0

) (resp. γ(Dβ0+1, Jβ0
)).

Following definition 7.5 define

Γ\β0
: Conf(Λ(M)) −→ Conf(g\(Mβ0

))

(resp.

Γ
\

β0
: Conf(Λ(M)) −→ Conf(g\(Mβ0

))

by
Γ\β0

: (Hαβ) 7→ γ\(Dβ0+1,D
′
β0

).

(resp.
Γ
\

β0
: (Hαβ) 7→ γ\(Dβ0+1,D

′
β0

)).

Where γ\(Dβ0+1,D ′β0
) (resp. γ\(Dβ0+1,D ′β0

)) denotes the g\(Mβ0
)–confi-

guration (resp. g\(Mβ0)–configuration) obtained from γ\(Dβ0+1, Jβ0) (resp.
γ\(Dβ0+1, Jβ0)) by replacing each Hαβ by the corresponding Hαβ in each flag
of γ\(Dβ0+1, Jβ0

) (resp. γ\(Dβ0+1, Jβ0
)). Define

γ(M) = ( F
l≥β≥2

Γ\(Mβ)) ∗ Γ
\
(M1) : Conf(Λ(M))

−→ ( F
l≥β≥2

Conf(g\(Mβ)) ∗ Conf(g\(M1)) = Conf(g(M))

(resp.

γ(M) = F
l≥β≥1

Γ\β : Conf(Λ(M)) −→ F
l≥β≥1

Conf(g\(Mβ)) = Conf(g(M))).

Remark 7.7 1. The product F
l≥β≥1

Γ\β denotes the composition of the gal-

leries (Γ\β) in decreasing order from β = l to β = 2. This product is
well defined since the sequence of galleries of types (g\(Mβ)) may be
composed.

2. The sections of F
l≥β≥m

Conf(g\(Mβ)) are given by the composite config-

urations γ1∗· · ·∗γm defined by the sections (γβ) of
∏

l≥β≥m
Conf(g\(Mβ))

satisfying E2(γβ+1) = E1(γβ).
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3. The morphism γ(M) : Conf(Λ(M)) −→ Conf(g(M)) given by:

(Hαβ) 7→ γ(D ,D ′),

where D = π1((Hαβ)) (resp. D ′ = π2((Hαβ)), is obtained from the com-
binatorial Λ(M)-configuration γ(D,D′), by replacing the combinatorial
Λ(M)-configuration (Hαβ) ∈ Conf comb(γ(M)) by the section (Hαβ)
of Conf(Λ(M)). That is we consider the Hαβ

′s as variables and
we obtain a g(M)-configuration γ(D ,D ′) by specializing these variables
(Hαβ) 7→ (Hαβ).
From this we deduce that once γ(D ,D ′) is known we retrieve the Λ(M)-
configuration (Hαβ), and finally that γ(M) is a functorial isomorphism.

Notation 7.8 (The fiber of (Conf(g(M)),E (M)) over D ∈ Drap(kr+1))
Write

(Conf(g(M)),E (M))D = (Conf(g(M))D ,E (M)D)

= (Conf(g(M),D),E (M,D))

where

Conf(g(M),D) := Conf(g(M))D = (E1(M))−1(D)

(resp.
E (M,D) := E (M)D : Conf(g(M),D) −→ Σ(M,D)).

Let
γ(M,D) := γ(M)D : Conf(Λ(M),D) ' Conf(g(M),D)

be the induced isomorphism.

It results by construction of γ(M), theorem 3.30, the Birational Criterium
of minimality, and the fact that γ(M) is contained in Env(D,D′) the follow-
ing:

Theorem 7.9 Keep the notation of theorem 3.30 then:
1. The following commutativity relation holds:

π(M) = E (M) ◦ γ(M),

(resp.
π(M,D) = E (M,D) ◦ γ(M,D)),

where

E (M) = (E1(M),E2(M)) : Conf(g(M)) −→ Drap(kr+1)×Drap(kr+1),

associates with a g(M)-configuration its left and right extremities. Thus E (M)
(resp. E (M,D)) factors through Σ(M) ↪→ Drap(kr+1) × Drap(kr+1) (resp.
Σ(M,D) ↪→ Drap(kr+1)) and the induced morphism
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Conf(g(M)) −→ Σ(M) (resp.Conf(g(M),D) −→ Σ(M,D))

is a smooth resolution of singularities, i.e. a birational morphism which is de-
noted by E (M) = (E1(M),E2(M)) (resp. E (M,D)) = (E1(M,D),E2(M,D))
too if no confusion arises.

2.The morphism
θ(g(M)) = γ(M) ◦ θ(M)

(resp.
θ(g(M),D)) = γ(M,D) ◦ θ(M,D)).

defines a section of E (M)(resp.E (M,D)) over Σ(M) (resp. Σ(M,D)) and an
open embedding:

θ(g(M)) : Σ(M) ↪→ Conf(g(M)),

(resp.
θ(g(M,D)) : Σ(M,D) ↪→ Conf(g(M),D)),

whose image Im θ(g(M)) (resp. Im θ(g(M,D))) is schematically dense.
The underlying set of points of Im θ(g(M)) (resp. Im θ(g(M,D))) is given
by the set of galleries γ ∈ GallI(g(M)) (resp. γ ∈ GallI(g(M),D)) with
M(E1(γ),E2(γ)) = M(resp. M(D ,E2(γ)) = M).

7.2 Nash smooth resolutions

The Nash typical graph gives rise to a particular smooth resolution of a Schu-
bert variety in Grass(kr+1) which majorates the resolution associated with
Λ(M). The main application of this construction is to furnish a universal
smooth resolution of generic Boardman-Thom singularities (cf. [50]). To a
relative position matrix M = M(D, d) = (mαβ) ∈ N(λ+1)×2 defined by D =
(H1 ⊂ · · · ⊂ Hλ ⊂ Ir+1) ∈ Drap(Ir+1)) and d = (J ⊂ Ir+1) ∈ Grass(Ir+1)),
defining a Schubert cell Σ = Σ(M,D) ⊂ X = Grass|J|(k

r+1), is associated
a weighted graph I(M). Let Conf(I(M), D) be the variety of configurations
defined by I(M) (cf. Ch. 6). The reader is referred to [13] for details.

Proposition 7.10 1) There is a birational morphism

π(I(M), D) : Conf(I(M), D) −→ Σ(M,D),

defined by π(I(M), D) : (Hαβ)(α,β)∈I(M) 7→Hλ+10, and a

section σ(I(M), D)Σ : J 7→Mnash(D,J ) = (kHα ∩J ∪ kHβ )

inducing an isomorphism:

σ(I(M), D)Σ : Σ(M,D) −→ π(I(M), D)−1(Σ(I(M), D)) .
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2) Let T 1
Σ = T 1

Σ/k ⊂ (T 1
X)Σ = (T 1

X/k)Σ be the tangent module to Σ. Then
the pull-back module

π(I(M), D)∗Σ(T 1
Σ ) ⊂ π(I(M), D)∗Σ(T 1

X)

is obtained as the restriction (T̃ 1
Σ)π(I(M),D)−1(Σ) of a locally free sub-

module T̃ 1
Σ ⊂ π(I(M), D)∗(TX), where π(I(M), D)Σ denotes the fiber

of π(I(M), D) over Σ(M,D) ⊂ Σ(M,D).

3) In dual terms there is a locally free submodule:

ĩConf : η̃1
Conf ↪→ (π(I(M,D)))∗(Ω1

Grass|J|(kr+1)/k) ,

so that:

(̃iConf )|π(I(M,D))−1(Σ) = (π(I(M,D)))∗(iΣ/Grass|J|(kr+1)),

where

iΣ/Grass|J|(kr+1) : η1
Σ/Grass|J|(kr+1) ↪→ Ω1

Grass|J|(kr+1)/k⊗OGrass|J|(kr+1)
OΣ

denotes the canonical embedding of the co-normal submodule
η1

Σ/Grass|J|(kr+1) to Σ, in

Ω1
Grass(kr+1)/k ⊗OGrass(kr+1) OΣ.

The construction of two minimal generalized galleries
γnash(D, d) (resp. γ′nash(D, d)) ⊂ ∆(r)′ and two isomorphisms are given

Conf(I(M), D) ' Σ̂(gnash(M), D)
(
resp. Conf(I(M), D) ' Σ̂(g′nash(M), D)

)
,

where gnash(M) = typ γnash(D, d)
(
resp. g′nash(M) = typ γ′nash(D, d)

)
.

Denote by Φnash(D,J) : I(M) −→ Grass(Ir+1) the monotone mapping whose
graph is given by:

Mnash(D,J) = (Hα ∩ J ∪Hβ) .

Recall that I(M) is ordered by the product order, and that Grass(Ir+1) is
ordered by the inclusion of subsets of Ir+1. A linearly ordered subset ψ
of I(M) is a strictly increasing map

ψ : J1, NK −→ I(M).

With any linearly ordered subset ψ of I(M) one may thus associate a
chain of some subset of Ir+1 by simply composing ψ with Φnash(D, d), i.e.
Φnash(D, d) ◦ ψ defines a chain of some subset of Ir+1.
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7.2.1 The Nash minimal gallery associated with a Relative position
matrix

Denote by:

1)
←
2(α,β) the cycle of the ordered graph I(M) defined by the square whose
vertices are {(α, β), (α + 1, β), (α, β + 1), (α + 1, β + 1)}, and counter
clock-wise oriented, where (α, β) ∈ J1, λK× J0, λK;

2)
←
Tr(α,β) the cycle defined by the triangle with the set of vertices

V ert
←
Tr(α,β) = {(α, β), (α, β + 1), (α+ 1, β + 1)}

and counter clock-wise oriented.

3)
→
P (1,1) the complete oriented subgraph of I(M) defined by the set of
vertices:

V ert
→
P (1,1) = { (α, β) ∈ I(M) | α− β = 0 or α− β = 1 } ∪ {(1, 0)} .

4)
→
p (1,1) the oriented graph defined by:

→
p (1,1) =

→
P (1,1) +

←
Tr(1,0)

→
P (1,1) may be seen as an oriented path of I(M). The interval J0, λK
is ordered by the order opposite to its canonical order and J1, λK ×
J0, λK by the lexicographical order. The subset of the set of cycles
(
←
2(α,β))((α, β) ∈ J1, λK× J0, λK) indexed by the (α, β) satisfying α − β > 0,
is ordered totally by the order induced by the lexicographical order of
J1, λK× J0, λK. Given (α, β) ∈ J1, λK× J0, λK satisfying α− β > 0, it is written
(α, β)+ for the element in this subset following (α, β).
Define recursively two sequences of oriented paths

(
→
P (α,β)){(α,β)∈J1,λK×J0,λK | α−β>0} and

(
→
p (α,β)){(α,β)∈J1,λK×J0,λK | α−β>0} as follows:

1)
→
P (1,0) =

→
P (1,1) +

←
2(1,0) ;

2)
→
P (α,β)+ =

→
P (α,β) +

←
2(α,β)+ .

and

1)
→
p (2,1) =

→
P (1,1) +

←
Tr(2,1) ;

2)
→
p (α,β)+ =

→
P (α,β) +

←
Tr(α,β)+ .
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Clearly each of the two families of oriented graphs
(
→
P (α,β)){(α,β)∈J1,λK×J0,λK | α−β>0} and

(
→
p (α,β)){(α,β)∈J1,λK×J0,λK | α−β>0}, gives rise to a family of chains of Ir+1,

which are denoted respectively by:

(D(α,β)){(α,β)∈J1,λK×J0,λK | α−β>0} and (d(α,β)){(α,β)∈J1,λK×J,λK | α−β>0} .

Definition 7.11 Define the gallery of chains:

γchnash(D, d) : D ⊂ D(1,1) ⊃ d(1,1) ⊂ D(1,0) ⊃ d(1,0) · · · d(α,β) ⊂

D(α,β)+ ⊃ d(α,β)+ · · · d(λ,1) ⊃ D(λ,0) ⊃ d .

The gallery γnash(D, d) is obtained by reducing the image ϕ(γchnash(D, d))
to a generalized gallery with strict inclusions, i.e. a non-stammering gallery.

Write
Φnash((Hαβ)(α,β)∈I(M)) : I(M) −→ Grass(kr+1)

for the monotone mapping whose graph is given by (Hαβ)(α,β)∈I(M). Clearly
Φnash(Mnash(D,J)) = Φnash(D,J).
Let

Conf(I(M), D) −→ Σ̂(gnash(M), D)

be given by associating with (Hαβ)(α,β)∈I(M) the gallery γnash((Hαβ)) defined
by the sequences of flags

(D(α,β)){(α,β)∈J1,λK×J0,λK | α−β>0} and (d(α,β)){(α,β)∈J1,λK×J,λK | α−β>0} ,

where

D(α,β) = Φnash((Hαβ)) ◦
→
P (α,β)

(
resp. d(α,β) = Φnash((Hαβ)) ◦→p (α,β)

)
,

following the same pattern as in the definition of γnash(D, d) according to
definition 7.11. It is easy to see that this morphism is, in fact, an isomorphism,
and thus that Σ̂(gnash(M), D) −→ Σ(Mg, D) is a birational morphism. From
the birational criterium of minimality , and that the flags in γchnash belong
to Env(D, d), immediatly it results that the generalized gallery γnash(D, d)
is minimal.



Chapter 8

The Coxeter complex

A simplicial complex C(W,S) (The Coxeter Complex) is associated with
a Coxeter system (W,S), given solely in terms of (W,S), which is naturally
endowed with a building structure. This complex admits a canonical geo-
metrical realization in an euclidean space, as a decomposition of this space
in simplicial cones, by means of a finite family of hyperplanes. The complex
C(W,S) given by the Weyl groupW of a system of roots R of a complex semi-
simple Lie Algebra endowed with the set of generating reflexions S, given by
a system of simple roots, is a typical example of a Coxeter System. Its ge-
ometrical realization is obtained in the dual space of the real vector space
generated by the set of simple roots, by means of the hyperplanes defined
by the roots. It is explained how a combinatorial realization is provided
by the set A(R) of parabolic subsets of R. As an example remark that the
combinatorial realization of the Coxeter Complex C(Sr+1, S) of the general
linear group Gl(kr+1) is given by ∆(r)′ = Drap(Ir+1). It is recalled that
there is a correspondence D 7→ RD associating to a combinatorial flag D a
parabolic set of roots in R(Ir+1) = Ir+1 × Ir+1/∆(Ir+1). The interest of the
combinatorial realization is that it is directly connected with the Tits geom-
etry associated with the building, and appears as a Galois geometry of the
characteristic equation of a generic element of the Lie algebra acting by the
adjoint action (cf. [4], Note historique).

8.1 Apartment associated to a Coxeter system

Definition 8.1 A finite Coxeter system (W,S) is the pair of a finite group
W , a set of generators S of W , and a symmetric matrix (m(s, s′))s.s′∈S with
integral coefficients m(s, s′), such that m(s, s) = 1, m(s, s′) > 2 if s 6= s′, such
that the group W is generated by the set S with the relations (ss′)m(s,s′) = 1.

135
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Denote by WX ⊂ W the subgroup generated by X. For X,Y ⊂ S, one
has the important properties WX∩Y = WX ∩ WY and WX ⊂ WY (resp.
WX = WY ) if and only if X ⊂ Y (resp. X = Y ). To the Coxeter system is
associated a building C(W,S) (The Coxeter Complex) defined as follows.
Write

C(W,S) =
∐
X⊂S

W/WX ;

The facets of C(W,S) are given by the WX -classes of W and ordered by
the opposite ordering to the inclusion between classes. C(W,S) is naturally
endowed with a left action of W respecting the order structure. The set A of
vertices of C(W,S) is given by A =

∐
s∈SW/W

(s) and the set of chambers
ChC(W,S) is defined, by ChC(W,S) := (Cw)w∈W where

Cw = {wW (s) | s ∈ S} (w ∈W )

and W (s) := WS−{s}. The facets of C(W,S) can both be described as
WX(X ⊂ S)-classes and as sets of vertices, FX,w = {wW (s) | s ∈ X}. Thus a
chamber of C(W,S) is a facet of the form FS,w. There is a mapping associating
with the set of vertices of a a facet its corresponding class:

j : FX,w = { wW (s) | s ∈ X} 7→ ∩
s∈X

wW (s) .

It is observed that ∩
s∈X

wW (s) = wWS−X , i.e. j(FX,w) = j′(FX,w′)

⇐⇒ w−1w′ ∈WS−X .
Denote by

j : facets of C(W,S) −→
∐
X⊂S

W/WX

the induced bijection. As a particular case one has Cw = C ′w if and only if
w = w′. Thus the set of chambers ChC(W,S) = W/W∅ = W is principal
homogeneous under W .

Notation 8.2 Given two chambers C and C ′ let w(C,C ′) ∈W be the unique
w ∈W defined by w(C) = C ′.

The complex C(W,S) is in fact an Apartment. Remark that two differents
chambers Cw and Cw′ contain a codimension one common facet F if there
exists s ∈ S such that w′ = ws. More precisely it may be supposed that C =
C1w = {W (s1), · · · ,W (sd)} and F = {W (s1), · · · ,W (sd−1)}. Write X = {sd}.
Given C ′ = Cw = {wW (s1), · · · , wW (sd)} such that F ⊂ C∩C ′ it follows that
WX = wWX , i.e. w ∈ W (s1) ∩ · · · ∩W (sd−1) = WX , thus w = sd, and that
the codimension 1 facet F is contained in exactly two chambers.

By the above bijection the inclusion of facets corresponds to the opposite
of the inclusion relation. Denote a facet F by Fw if j(F ) = w. Two facets
Fw̄ and Fw̄′ are incident, i.e. contained in a chamber, if w̄ ∩ w̄′ 6= ∅. Thus
w̄ ∩ w̄′ is a class.
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The quotient set C(W,S)/W of the set of facets of C(W,S) by the action
of W can be identified with the combinatorial simplex P(S), which can be
viewed as a building in an obvious way. The quotient mapping C(W,S) −→
C(W,S)/W is a building morphism.

A set of vertices {wW (s1), . . . , wW (sd)} ⊂ A =
∐
s∈SW/W

(s) pairwise
incident has an upper bound and defines a facet F of C(W,S). Thus the set
of vertices A endowed with the incidence relation “generates” the apartment
C(W,S). This is proved using the following relation between subgroups ofW :

WX .(WY ∩WZ) = WX .WY ∩WX .WZ .

One calls C(W,S) a Flag Complex (see [50], 1.2.1., for details).

8.1.1 Combinatorial hyperplanes

Let T ⊂ W the set of conjugates of S in W . This set is precisely the set of
order 2 elements of W (cf. [4], Ch V, 3.1) and it plays an important role in
what follows.

Definition 8.3 For any t ∈ T , the wall (resp. combinatorial hyper-
plane)

Lt ⊂ C(W,S) =
∐
X⊂S

W/WX

is defined as the subcomplex formed by set of classes invariant by t. Denote
by H the set of walls of C(W,S). This set is naturally indexed by the set of
order two elements

A codimension one facet F of C(W,S) is invariant by an order two element
t if and only if j(F ) = wW{s} with t = wsw−1. It follows that, for any
codimension one facet F of C(W,S), there is only one wall Lt which contains
F . Lt is called the carrier of F .

More generally the carrier of a facet F is defined as the intersection of
subcomplexes:

∩F⊂LtLt.

8.1.2 Type of a facet

Definition 8.4 The type quotient mapping typ : C(W,S) −→ C(W,S)/W is
given in terms of vertices by:

typ : F = { wW (s) | s ∈ Y } 7→ Y .

Thus in terms of classes:

typ : C(W,S) =
∐

X∈P(S)

W/WX −→ C(W,S)/W = P(S) ,

is defined by w ∈W/WX 7→ S −X. typ(F ) is called the type of F .
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Preceding definitions concerning buildings apply to the simplex P(S).
Thus one can speak of generalized galleries of typ(C(W,S)) = P(S). The
image typ(γ) of a generalized gallery γ of C(W,S) is a generalized gallery of
types, i.e. typ(γ) ∈ gallC(W,S) = GallP(S).

If the facets F and F ′ are incident to the same chamber C and typ(F ) =
typ(F ′), one has F = F ′. Denote by (FY )Y ∈P(S) the set of facets incidents
to C1w = { W (s) | s ∈ S }. Given F ∈ C(W,S), WF = Stab F (Stabilizer
of the facet F in W ) is written. There is then WFY = Stab FY = WS−Y .

Notation 8.5
Write C(W,S) in terms of facets:

facets of C(W,S) =
∐

t∈typ(C(W,S))

Ft '
∐

W/WX(X ⊂ S) ,

where Ft = typ−1(t), and typ(C(W,S)) = P(S). The bijection is given by
j. The inverse map of j is given by w̄ 7→ Fw̄. If F is a facet whose type
is given by Y ⊂ S then F = w(FY ) where w is a representative of the class
j(F ) ∈W/WS−Y .

8.2 Words and galleries

The correspondence between galleries in C(W,S) and words in S is estab-
lished as follows. A length n word in S is by definition a product expression
f(1)f(2) . . . f(n) in W given by a function f : J1, nK→ S.

Definition 8.6 A chamber generalized gallery is a sequence Γ : C0 ⊃
F1 ⊂ C1 . . . Fn−1 ⊂ Cn−1 ⊃ Fn ⊂ Cn, where C0, C1, . . . , Cn are chambers
and F1, F2, . . . , Fn are facets of C(W,S). An injective gallery verifies by
definition Ci 6= Ci+1(0 6 i 6 n) (cf. [4]).

Thus an injective gallery Γ : C0, C1, . . . , Cn gives rise to a chamber gener-
alized gallery

Γ̄ : C0 ⊃ F1 ⊂ C1 . . . Fn ⊂ Cn ,

where Fi+1 = Ci ∩ Ci+1 is the common codimension 1 facet to Ci and Ci+1.
Let Ψ∗(Γ) = (L1, . . . , Ln) (The walls crossed by Γ) be the sequence of walls
given by the sequence of carriers of the of the codimension 1 facets (F1, . . . , Fn)
of the chamber generalized gallery Γ̄. Let ti be the reflection defined by the car-

rier Li of Fi. Write Ψ(Γ) = (t1, . . . , tn) ∈
n∏
W (The sequence of reflections

associated to Γ ) ).

Given a gallery Γ : C0, C1, . . . , Cn, not necessarily injective, define a se-
quence t′1, . . . , t′n of elements of T ∪ {1} ⊂ W as follows. If Ci = Ci+1 then
t′i+1 = 1, otherwise t′i+1 = ti+1. It is clear that w(C0, Cn) = t′n . . . t

′
1. Now
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from t′1, . . . , t
′
n a sequence s′1, . . . , s′n ∈ S ∪ {1} is recursively defined. Write

s′1 = t′1 and

s′j+1 = (s′1 . . . s
′
j)
−1 t′j+1(s′1 . . . s

′
j)(1 6 j 6 n− 1).

One then has t′jt′j−1 . . . t
′
1 = s′1s

′
2 . . . s

′
j(1 6 j 6 n), and as a special case

w(C0, Cn) = s′1s
′
2 . . . s

′
n. Finally one can associate with the chamber general-

ized gallery Γ the word s′1s′2 . . . s′n in S ∪ {1}. If Γ is injective this is a word
in S, i.e. s′1, s′2, . . . s′n ∈ S.

Conversely, to any word s1s2 . . . sn in S, a sequence (t1, . . . , tn) of T may
be asociated as follows:

t1 = s1, tj+1 = (s1 . . . sj)sj+1(s1 . . . sj)
−1(1 6 j 6 n− 1).

One then has an injective gallery Γ of C(W,S) associated to the word
s1s2 . . . sn defined by C0 = Ce = {W (s) | s ∈ S}, Γ : C1 = t1(C0), C2 =
t2t1(C0), . . . , Cn = tn . . . t2t1(C0) (resp. C1 = t1(C0), C2 = t2(C1), . . . Cn =
tn(Cn−1)).

If the construction explained before is applied to Γ the word s1s2 . . . sn is
obtained. The gallery Γ may be seen as a path in the Cayley complex (cf.
[18], 3.3) associated to (W,S). The same construction may be carried out
applied to any word s′1 . . . s′n in S ∪ {1}. In this case a gallery which is not
injective Γ′ may be obtained.

Notation 8.7
If w = s1s2 . . . sn is a word in S one writes Φ(s1, s2 . . . , sn) = (t1, . . . , tn)
with t1, . . . , tn defined as above.

Given a gallery Γ : C0, C1, · · · , Cn, and w ∈ W denote by wΓ the
gallery given by w(C0)), w(C1), · · · , w(Cn). The group W operates natu-
rally by Γ 7→ wΓ on the set of galleries Γ of C(W,S). One has then
Ψ(wΓ) = (wt1w

−1, . . . , wtnw
−1).

8.3 Combinatorial roots

The root subcomplexes of C(W,S) are defined following [4], Ch. VI, 1.6.

Definition 8.8
Let t ∈ T , and Lt the hyperplane defined by t. To t is associated an equivalence
relation on the set of chambers Ch C(W,S). Given an injective gallery Γ :
C ′ = C0, . . . , Cn = C ′′ between C ′ and C ′′ we define the integer n(Γ, t) as
the number of times that t ∈ T appears in Ψ(Γ). The parity of this number
depends only on C ′ and C ′′ and not on Γ. Write η(C ′, C ′′, t) = (−1)n(Γ,t) and
define the relation η(C ′, C ′′, t) = 1, between the couple (C ′, C ′′).

This is an equivalence relation with two equivalence classes, namely Ch+(t)
and Ch−(t), where Ch+(t) is the class defined by Ce = {W (s) | s ∈ S}.
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Remark that η(C ′, C ′′, t) = 1 if no minimal gallery Γ between C ′ and C ′′

crosses Lt, i.e. t /∈ Ψ(Γ).
Write A+(t) = ∪C(C ∈ Ch+(t)) (resp. A−(t) = ∪C(C ∈ Ch−(t)). More

explicitly A+(t) (resp. A−(t)) denotes the subcomplex formed by the set of
facets incidents to some chamber C ∈ Ch+(t) (resp. C ∈ Ch−(t)). It is
immediate that A+(t) (resp. A−(t)) is a sub-building of C(W,S). Each of
the subsets A+(t), A−(t) ⊂ C(W,S) is called a half of C(W,S) (resp. half
apartment) or a combinatorial root of C(W,S). One has C(W,S) =
A+(t) ∪A−(t), Lt is said to be the hyperplane given by A+(t) (resp. A−(t)).
One has Lt = A+(t) ∩ A−(t) and t(A+(t)) = A−(t) (cf. [4], IV, Ex 16), and
one writes ∂A+(t) = ∂A−(t) = Lt. Denote by Φ a subcomplex of the form
A+(t) (resp. A−(t)), i.e. a root of C(W,S), and write ∂φ = Lt.

The group W acts naturally on the set of roots of C(W,S). To make this
action explicit the following bijection is used ι : set of roots of C(W,S) →
{+1,−1}×T sending A+(t) (resp. A−(t)) to the couple (+1, t) (resp. (−1, t)).

Let Φ be a root of C(W,S) with ι(Φ) = (ε, t). For w ∈ W one writes
η(w, t) = η(C,w(C), t). One then has ι(wΦ) = (ε · η(w−1, t), wtw−1) (cf. [4],
VI, §1, 1.6).

Remark 8.9 A wall Lt (resp. root Φ) of C(W,S) is a subset of the set of
vertices

∐
s∈SW/W

(s) endowed with a subcomplex structure. A facet F of Lt
(resp. root Φ) is thus a subset of Lt (resp. root Φ). Sometimes one interprets
Lt (resp. root Φ) as the set of facets (resp. classes) of C(W,S) contained
in Lt (resp. root Φ). In this way Lt (resp. root Φ) becomes a subset of∐
X∈P(S)W/WX .

Definition 8.10 It is said that the wall Lt separates the two facets F and F ′
if F /∈ Lt and F ′ /∈ Lt and if F ∈ Φ1 and F ′ ∈ Φ2, where Φ1 and Φ2 are the
two combinatorial roots defined by the wall Lt. Denote by H(F, F ′) the set
of walls separating F and F ′.

8.4 Convex subcomplexes

Definition 8.11 A subcomplex K of C(W,S) is convex if it is an intersec-
tion of combinatorial roots,

i.e. K = ∩
i∈I

Φi where (Φi)i∈I is a family of roots of C(W,S)

(cf. [50], 2.19).

Remark 8.12 (i) As the image f(Φ) of a root Φ by an automorphism f of
C(W,S) is a root of C(W,S) it may be concluded that the image f(K) of a
convex sub-complex K of C(W,S) by f is also a convex sub-complex.
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(ii) A convex sub-complex K containing a chamber C of C(W,S) is a sub-
building of C(W,S), i.e. K is the set of all facets F which are incident to
the same chamber C ∈ K, and given two chambers C, C ′ ∈ K there exists a
minimal gallery Γ between C and C ′ contained in K.

Definition 8.13 The convex envelope of a subset L of facets of C(W,S)
is the smallest convex sub-complex Env L containing L. If F and F ′ are two
facets it is written Env(F, F ′) = Env{F, F ′}. One has Env(F, F ′) = ∩Φ (Φ
root of C(W,S), F ′, F ∈ Φ).

The carrier L = L(F,F ′) of Env(F, F ′) is by definition the intersection
sub-complex given by the intersection of walls H containing Env(F, F ) (resp.
F and F ′), i.e. L = ∩H(H ∈ H,Env(F, F ′) ⊂ H (resp. F, F ′ ⊂ H)). Remark
that the set H′ of walls defined by the roots Φ containing Env(F, F ′) verifies
H = H′

∐
H(F, F ′).

Given two chambers C ′ and C ′′, and a minimal gallery between C ′ and
C ′′: Γ : C ′ = C0 . . . Cn = C ′′, the set of walls given by ψ(Γ) = (t1, . . . , tn), i.e.
Lt1 , . . . Ltn may be characterized as the set of walls which separate C ′ and
C ′′, i.e. as the set H(C ′, C ′′). On the other hand, the distance d(C ′, C ′′)
between C ′ and C ′′ in C(W,S) is defined as the length of any minimal gallery
between C ′ and C ′′. Thus

d(C ′, C ′′) = cardinal of H(C ′, C ′′).

The following proposition gives a characterization of the set of chambers
C belonging to Env(C ′, C ′′).

Proposition 8.14 The following three properties of a chamber C are equiv-
alent: (i) C ∈ Env(C ′, C ′′); (ii) every root Φ containing C ′ and C ′′ contains
also C; (iii) d(C ′, C ′′) = d(C ′, C) + d(C,C ′′); (iv) there exists a minimal
gallery Γ : C ′ = C0, . . . , Cn = C ′′ and there exists 0 6 i 6 n with Ci = C.

Given two facets F and F ′, projF ′F is defined by means of the following

Proposition - Definition 8.15 There exists F ′′ ∈ Env(F, F ′) verify-
ing F ′′ ⊃ F ′ so that for every F̄ ′ ⊃ F ′ with F̄ ′ ∈ Env(F, F ′) there is
F ′′ ⊃ F̄ ′. If F = C ∈ Ch C(W,S) then F ′′ is given by a chamber contained
in Env(F, F ′). For any minimal gallery Γ : C = C0 . . . Cn ⊃ F ′ between C
and F there is Cn = F ′′. Write F ′′ = projF ′F (the projection of F on
F ′)(cf. [50], 3.19).

As a particular case of this definition for C(Sr+1, S) ' Drap(Ir+1) see defi-
nition 2.23.

Example 8.16 Let C = {W (s) | s ∈ S}, F ′ = Fw̄(w̄ ∈W/WX), and w′ =
w(C, projF ′C), then `(w′) (length of w′ relatively to S) = d(C, projF ′C) =
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d(C,F ′) (number of walls separating Ce and F ′) = cardinal of H(C,F ′).
Every representative w of w̄ may be uniquely written as w = w′w′′, where
w′′ ∈WX .

8.4.1 Star complex of a facet in the Coxeter Complex

Definition 8.17 Given a facet F by StF (The star of F in C(W,S)) is de-
noted the complex formed by the set of all facets F ⊂ F ′. The set of chambers
Ch StF ⊂ Ch C(W,S) is given by the chambers incident to F .

The following proposition shows that StF is isomorphic to a Coxeter Com-
plex.

Proposition 8.18 Let Y ⊂ S.

1) (WS−Y , S − Y ) is a Coxeter system.

2) The set of facets FY ⊂ F corresponds to the set of facets FZ with Y ⊂ Z
(resp. S − Z ⊂ S − Y ), and thus WS−Z ⊂ WS−Y . An equivariant
WS−Y -isomorphism may be thus defined

C(WS−Y , S − Y ) =
∐
Y⊂Z

WS−Y /WS−Z ' StFY

given by w 7→ w · FZ for WS−Y /WS−Z .

3) One has C(WF , w(S−Y )w−1) ' StF

(
w(FY) = F,WF = Ww(S−Y)w−1

)
.

It follows from this that StF is endowed with a building structure iso-
morphic to a Coxeter complex, independent of the choice of w ∈ w̄(∈
W/WS−X)).

4) The set of chambers Ch StF is principal homogeneous under WF , and
has the property that given a minimal gallery Γ whose extremities are in
Ch StF then Γ ⊂ Ch StF. Thus the distance of two chambers of StF is
the same, whether measured in StF or in C(W,S).

5) From the natural decomposition C(W,S) =
∐

Ft (facets of type t) it
results StF =

∐
Ft ∩ StF . The set of types of StF runs on P(S − Y ),

as it follows from 2).

Let the set of walls containing the facet F be denoted by HF ⊂ H. There
is a bijection:

HF ' walls of the Star complex StF.

It has only to be proved that each H ⊃ F defines a reflection sH conjugate in
WF to some reflection sH′ defined by the boundary wall of a fixed chamber
C0 ⊃ F .
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It is first recalled that the set of chambers Ch StF is equal to the set of
chambers C ⊃ F , and that Ch StF is principal homogeneous under WF =
Stab F . Given H ∈ HF there is a codimension 1 facet F ′ ⊂ H such that
F ⊂ F ′. Then there is a chamber C containing F ′ and havingH as a boundary
wall. There exists w ∈ WF so that w(C) = C0, then w(H) is a boundary
wall of C0 and sH = w−1 ◦ sw(H) ◦w. It is remarked that w(H) ⊃ F because
w ∈WF .

If H ∈ H −HF then F /∈ H (here the wall H is seen as a subcomplex of
C(W,S)), and there exists a unique root defined by H containing F which is
denoted by ΦH(F ). It is easily seen that Ch StF = Ch(∩ΦH(F)(H ∈ H−HF)).
It is said that Ch StF is a convex set of chambers. By definition that means
that if Γ : C0, . . . , Cn is a minimal gallery in C(W,S) with C0, Cn ∈ Ch StF

then Γ ⊂ StF.
If F1 and F2 are two facets of StF denote by HF (F1, F2) = {H ∈

H(F1, F2) | F ⊂ H} the set of walls separating F1 and F2 in StF. Then
there is:

Lemma 8.19
HF (F1, F2) = H(F1, F2) .

Proof Let H ∈ H−HF . If F ′ and F ′′ are two facets of StF there exist two
chambers C ′, C ′′ ∈ Ch StF so that C ′ ⊃ F ′ and C ′′ ⊃ F ′′, as in a building
every facet is incident to a chamber. As C ′, C ′′ ∈ Ch StF it is C ′, C ′′ ∈ ΦH(F )
and as a consequence H separates neither C ′ and C ′′ nor F ′ and F ′′.

8.5 The set of relative position types of a Coxeter Complex

Definition 8.20
Let Relpos C(W,S) be the quotient set (C(W,S)×C(W,S))/W of C(W,S)×
C(W,S), by the diagonal action of W .

• The natural decomposition C(W,S) =
∐

Ft '
∐
X⊂S

W/WX gives rise to

the decomposition

Relpos = Relpos C(W,S) =
∐

(Ft × Fs)/W ((t, s) ∈ typ× typ) '

'
∐

(W/WX ×W/WY )/W ((X,Y )

∈ P(S)× P(S)).

• By τ : C(W,S)×C(W,S)→ (C(W,S)×C(W,S))/W = Relpos C(W,S)
the quotient map is denoted. It is said that the image τ(F, F ′) is the
type of relative position of the facets F and F ′.
Write

Relpos(t,s) = Relpos(t,s)C(W,S) = (Ft × Fs)/W ,
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thus there is the decomposition

Relpos C(W,S) =
∐
(t,s)

Relpos(t,s)C(W,S) .

• Let Ft ⊂ Ce denote the unique facet of type t contained in in the chamber
Ce defined by the identity, and Wt = Stab Ft for t ∈ typ. A (Wt,Ws)-
double class of W is by definition a Wt-orbit in the set W/Ws. Denote
by Wt\W/Ws the set of these double classes.

There is a bijection (Ft × Fs)/W ' {Ft} × (Fs/Wt) defined by O 7→ O′

where O′ = {Ft} × {F ∈ Fs | (Ft, F ) ∈ O}. The reciprocal bijection is
given by O′ 7→ O = ∪

w∈W
w(O′). On the other hand there is a bijection

{Ft} × (Fs/Wt) ' Wt\W/Ws associating with the class of (Ft, F ) the Wt-
class of w ∈ W/Ws, where w is given by j(F ) = w, with (Ft, F ) ∈ O′. By
composition a bijection is obtained

Relpos(t,s)C(W,S) = Ft × Fs/W 'Wt\W/Ws

(cf. [23], Exp XXV I, 4.5.3.).

8.6 Geometrical realization of the Coxeter complex

8.6.1 Representation of a Coxeter system as a group of reflections in
euclidean space

From the geometrical representation of the Coxeter system (W,S) (cf.
[4], Ch V ) one deduces a geometrical realization of the Coxeter complex
C(W,S), given by the simplicial cones of a suitable decomposition of some
real affine euclidean space A, and generalizing that of C(Sr+1, S) ' ∆(r)′ .
This decomposition is defined by means of a set of hyperplanes H of A.

The geometrical representation of a finite Coxeter system (W,S) is de-
scribed (cf. loc. cit., 4.). Let (m(s, s′))s,s′∈S be the Coxeter matrix (a sym-
metric matrix of integers verifying m(s, s) = 1 and m(s, s′) > 2 if s 6= s′)
giving W as a group with S as the set of generators and (ss′)m(s,s′) = 1 as
the set of defining relations. Let R(S) be the R-vector space with (es)s∈S as
the canonical basis. Let B(x, y) be the symmetric bilinear form defined
by B(es, es) = 1, B(es, es′) = − cos(π/m(s, s′)). This bilinear form is a scalar
product of R(S) which is denoted by (x|y). Let O(R(S)) be the orthogonal
group defined by (x|y).

Denote by Hs the hyperplane orthogonal to es and by σs the orthogonal
reflection defined by Hs.

Proposition 8.21 There exists an injective homomorphism σ : W →
O(R(S)) defined by σ(s) = σs.
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Identify W with a subgroup of O(R(S)). Thus W is endowed with the
canonical set of generators (σs)s∈S . The couple

(W, (σs)s∈S) = (σ(W ), (σs)s∈S)

is called the geometrical representation of (W,S).
Let H = (w(Hs))s∈S,w∈W be the set of hyperplanes of R(S) obtained as

the images of the set of hyperplanes (Hs)s∈S by the elements of W . The set
H may be characterized as the set of hyperplanes H of R(S) whose associated
orthogonal reflection sH belongs to W (reflection hyperplanes). This set
corresponds to the set of hyperplanes (Lt) of C(W,S). It is observed that
the same notation H is used for the set of walls of C(W,S) and for the set of
reflection hyperplanes of W ⊂ O(R(S)) as there is a natural bijection between
these two sets.

8.6.2 Coxeter system representation space simplicial decomposition

Definition 8.22 Let A be a real affine space, a ∈ A, e1, . . . , ed a basis of the
translation vector space of A, and I

∐
J = {1, . . . , d} a decomposition of the

basis indexes. Any point x ∈ A may be written uniquely as x = a + α1e1 +
· · · + αded with α1, . . . , αd ∈ R. The set of x ∈ A defined by αi = 0 (i ∈ I),
and αj > 0 (j ∈ J) is by definition a simplicial cone.

Definition 8.23 The set of reflection hyperplanes H endows R(S) with an
equivalence relation defined by:

“x ∼ y if no hyperplane H ∈ H separates x and y”.

(It is said that H separates x and y if x and y belong to different connected
components of R(S) −H.) The equivalence classes defined by this equivalence
relation are simplicial cones of R(S) which are called the facets defined by H.
The open facets in R(S) are called the chambers defined by H. Denote by
C(H) the set of facets and by Ch C(H) the set of chambers.

Via the formula sw(H) = w ◦sH ◦w−1(w ∈W ) the group W acts naturally
on the set H. It follows then that W operates on the set of facets C(H). If
F ∈ C(H) it holds that w(F) = F if and only if w fixes any point in F . One
has:

Proposition 8.24 The set Ch C(H) is equal to the connected components of
R(S) − U

H∈H
H, and is principal homogenous under W .

Remark 8.25 The definition of C(H) (resp. Ch C(H) may be stated with any
finite (resp. locally finite) family H of hyperplanes in any real affine space.
The facets are simplicial cones. This fact will be used later.
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The carrier subspace LF ⊂ R(S) of a facet F is defined by LF =
∩

H∈H,F⊂H
H. The facet F is an open subset in the subspace LF , and then

LF may be characterized as the smallest subspace L of R(S) containing F .
By definition the codimension of F ∈ C(H) is equal to the codimension of
its carrier LF in R(S). The closure F̄ of a facet F is equal to the union

⋃
F ′

of all facets F ′ contained in F̄ .
The closure C̄ of a chamber contains exactly ` = |S| codimension 1 facets.

A bounding hyperplane H of a chamber C is by definition the carrier
of a codimension 1 facet F ⊂ C̄. Let C0 = {x ∈ R(S) | (es|x) > 0}; C0

is a chamber defined by H. The set of bounding hyperplanes of C0 is given
by (Hs)s∈S , and as a corollary one has that W is generated by the set of
orthogonal reflections (sHs)s∈S (sHs = σs).

From the fact that the set of chambers Ch C(H) is principal homogenous
under W it results that, if C is a chamber and SC = (sH), where H runs on
the bounding hyperplanes of C, then (W,SC) is a Coxeter system canonically
isomorphic to (W, (σs)s∈S).

8.6.3 Facets viewed as simplicial cones

The following proposition shows that there is a bijection between the set of
simplicial cones C(H) and the set of facets of the Coxeter complex C(W,S) =∐
X∈P(S)W/WX , seen as classes in W .

Proposition 8.26

1) For each facet F ∈ C(H) there exists a unique facet F ′ ⊂ C̄0 and w ∈W ,
not necessarily unique, satisfying w(F) = F ′, i.e. the closure C̄0 of C0

is a fundamental domain for the action of W on R(S).

2) The set of facets F ⊂ C̄0 is indexed by P(S) and FX is written for the
facet given by X ⊂ S. More precisely with each subset X ⊂ S the facet
FX ⊂ C̄0 defined by FX = (

⋂
s∈X

Hs)
⋂
C is associated. (Remark that

F̄ = F̄ ′ if and only if F = F ′.) One has Stab FX = WS−X .

3) There is a bijection

C(W,S)
∼−→ C(H) defined by w̄ 7→ CF = w(FX) if w̄ ∈W/WS−X .

Thus F = {wW (s)|s ∈ X} 7→ w(FX). By this bijection the chamber
Ce corresponds to C0. This is the unique type preserving equivariant
bijection between C(W,S) and C(H).

4) By this bijection the relation of inclusion between facets F ⊂ F ′ in
C(W,S) becomes F ⊂ F̄ ′, and thus it introduces a natural structure of
building on the set C(H).
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5) The set H of walls of C(W,S) corresponds to the set of hyperplanes H
of R(S) with sH ∈W which we also denote by H.

Following the general definition a subcomplex C′ of C(H) is by definition
a set of facets of C(H) such that F ∈ C′ and F ′ ⊂ F̄ implies F ′ ∈ C′. With
the set of combinatorial roots of C(W,S) corresponds the following set of
subcomplexes of C(H).

Definition 8.27
Given H ∈ H write D̄+

H (resp. D̄−H) for the closed half-space of R(S) defined
by H and containing C0 (resp. not containing C0). Let C+

H (resp. C−H) be
the subcomplex of C(H) given by the set of facets F contained in D

+

H (resp.
D
−
H). Then there is D

+

H = ∪
F∈C+

H

F (resp. D
−
H = ∪

F∈C−H
F), and CH = C+

H ∩C
−
H ,

where CH is the subcomplex given by the facets contained in H. A closed half
space subcomplex of C(H) is a subcomplex of the form C+

H (resp. C−H).
If H ∈ H and A 6= ∅ is a set contained in R(S) − H write D̄H(A) for the
closed half space subcomplex defined by H and A.

The bijection C(W,S)
∼−→ C(H) induces a complex isomorphism

A+(t) ' C+
H (resp. A−(t) ' C−H) where t = sH .

C+
H (resp. C−H) is called the positive root (resp. negative root) defined by
H. If no confusion arises write H (resp. D̄+

H , D̄
−
H) for CH (resp. C+

H , C
−
H).

8.6.4 Simplicial decomposition of a Convex Hull

Definition 8.28
A convex subcomplex K of C(H) is the intersection subcomplex K = ∩

i∈I
D̄i,

defined by a family of closed half space subcomplexes (D̄i)i∈I , i.e. an inter-
section of root subcomplexes of C(H).

The class of convex subcomplexes of C(H) and the class of convex sub-
complexes of C(W,S) are clearly in bijection.

Definition 8.29
The Convex Envelope (resp. Convex Hull) Env(F ,F ′) ⊂ C(H) of the
facets F and F ′ ∈ C(H) is the smallest convex subcomplex of C(H) containing
F and F ′, i.e. the intersection (subcomplex) of all the roots of C(H) containing
F and F ′. Alternatively Env(F ,F ′) is the set of all facets F ∈ C(H) contained
in the intersection ∩D̄ of all the closed half spaces D̄ of R(S) defined by H ∈ H
and containing F and F ′. As Env(F ,F ′) is an intersection of roots, the
underlying set of points of Env(F ,F ′) is given by

Env(F ,F ′) = ∪
F ′′∈C(H),F ′′⊂Env(F,F ′)

F ′′.
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Let L = ∩
i∈I
Hi be the intersection subspace of R(S) defined by a family of

hyperplanes (Hi)i∈I ⊂ H. Write CL = {F ∈ C(H) | F ⊂ L} for the set of
facets contained in L. Clearly L = ∪

F∈CL
F . Let F ′ ⊂ F be a facet contained

in the closure F of a facet F ∈ CL then F ′ ∈ CL. Thus CL is a subcomplex of
C(H). Let

HL = {H ∈ H | L ⊂ H} and H′L = H−HL .

CL may be interpreted as the set of equivalence classes given by the equivalence
relation “∼” defined, following [4], Ch V , by the family of hyperplanes H′L on
L as follows:
“x ∼ y if for all H ∈ H′L either x, y ∈ H ∩L or both x and y belong to a same
open half space of the two open half spaces defined by H ∩ L.”

The subcomplex CL ⊂ C(H) is endowed with a natural building structure.
The set of chambers Ch CL is given by the set of connected components of
L − ∪

H∈H′L
H ∩ L. The chambers of CL may be characterized as the maximal

dimension facets F (resp. minimal codimension facets F) of C contained in L.
There is then L − ∪

H∈H′L
H ∩ L = ∪

C∈Ch CL
C and L = ∪

C∈Ch CL
C̄. This means

that every facet in CL is contained in the closure of some chamber. In other
terms every facet in CL is incident to a chamber. Given two chambers C ′
and C ′′ there is a gallery Γ : C ′ = C0, . . . , Cn = C ′′ connecting them. If the
points x ∈ C ′ and y ∈ C ′′ are “generic enough” the segment [x, y] intersects
only chambers and codimension 1 facets of CL. Then Γ(C ′, C ′′) is taken as
the ordered set of chambers that [x, y] intersects.

Definition 8.30 The carrier subspace L = L(F,F ′) ⊂ R(S) of the convex hull
(resp. convex envelope) Env(F ,F ′) is defined by L = ∩

H∈H and F,F ′⊂H
H. Let

HL be the subset of hyperplanes containing L.

The sub-building structure of Env(F ,F ′) ⊂ CL is examined in detail.

Lemma 8.31 The carrier LF ′′ of a facet of maximal dimension in
Env(F ,F ′) is equal to the carrier L(F,F ′) of Env(F ,F ′).

Proof As LF ′′ ⊂ L(F,F ′) it suffices to prove that LF ′′ ⊃ Env(F ,F ′). Oth-
erwise one has either F 6⊂ LF ′′ or F ′ 6⊂ LF ′′ . Then there exists either
p ∈ F − LF ′′ or p ∈ F ′ − LF ′′ , and thus

dimension of the convex hull K of p and F ′′ > dimension of F ′′.

It follows that K ⊂
⋃

F̃∈Env(F,F ′)
F̃ with dimension F̃ 6 dimF ′′ < dimK, and

this is impossible because ∪F̃ is a finite union.
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As a maximal dimensional facet F ′′ of Env(F ,F ′) is open in L(F,F ′) one
deduces that the set of facets F ⊂ Env(F, F ′) which are open in L(F,F ′) is

not empty, and thus that
◦

Env(F, F ′) 6= ∅. On the other hand, one has that

x ∈
◦

Env(F ,F ′) and y ∈ Env(F ,F ′) implies that [x, y[⊂
◦

Env(F ,F ′). It results
that

“Env(F ,F ′) is the closure of
◦

Env(F ,F ′)′′

It is easy to see that a facet F ′′ contained in Env(F ,F ′), such that F ′′ ∩
◦

Env(F ,F ′) 6= ∅, is contained in
◦

Env(F ,F ′). Let x ∈ F ′′ ∩
◦

Env(F ,F ′) and
y ∈ F ′′. Since F ′′ is open in its carrier, it results that there is a segment

[x, z[⊂ Env(F ,F ′), with z ∈ F ′′, such that y ∈ [x, z[, thus y ∈
◦

Env(F ,F ′).
Thus it is concluded that

◦
Env(F ,F ′) = ∪

F ′′∩
◦

Env(F,F ′)6=∅
F ′′ .

Let
H′(F,F ′) = { ∂Φ ∈ H | Env(F ,F ′) ⊂ Φ },

where ∂Φ denotes the hyperplane defined by the root Φ, be the set of hyper-
planes of H ∈ H which do not separate the facets F and F ′. One may
write

H′(F,F ′) = HL
∐
H′′(F,F ′) ,

whereH′′(F,F ′) = (H−HL)∩H′(F,F ′) denotes the set ofH ∈ (H−HL) which do
not separate F and F ′. GivenH ∈ H′′(F,F ′) letDH∩L = DH∩L(Env(F ,F ′)) ⊂
CL be the closed half space of L defined by H ∩L and containing Env(F ,F ′),
and DH∩L = DH∩L(Env(F ,F ′)) ⊂ DH∩L(Env(F ,F ′)) be the corresponding
open half space. There is then (cf. loc. cit.):

1) Env(F ,F ′) = ∩
H∈H′′L

D̄H∩L ;

2)
◦

Env(F ,F ′) = ∩
H∈H′′L

DH∩L;

3) The equality ∩DH∩L = ∩D̄H∩L gives again closure of
◦

Env(F ,F ′) =
Env(F ,F ′).

Remark 8.32 It results that
◦

Env(F ,F ′) is a facet defined by the family of hy-
perplanes H′(F,F ′) of R

(S), i.e. an equivalence class of the equivalence relation
defined by the set of hyperplanes H′(F,F ′) instead of H.
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From 2) it results that
◦

Env(F ,F ′) is the union of facets F ′′ ⊂ L defined by
the set of hyperplanes (H∩L)H∈H′′L in L

(
resp. the union of facets F ′′ ∈ C(H)

contained in
◦

Env(F ,F ′)
)
. Since every facet F of CL is contained in the closure

C̄ of some chamber C of CL, given F ′′ ⊂
◦

Env(F ,F ′) there exists a maximal

dimensional facet C ⊂
◦

Env(F ,F ′) such that F ′′ ⊂ C̄. It is deduced then

that
◦

Env(F ,F ′) ⊂ ∪
C⊂

◦
Env(F,F ′)

C̄ (C ∈ Ch CL). By 3) it is concluded that

∪
C⊂

◦
Env(F,F ′)

C̄ = Env(F ,F ′).

This proves that any facet F ′′ of Env(F ,F ′) is incident to a chamber C of

CL contained in Env(F ,F ′) (resp.
◦

Env(F, F ′)). If C ′, C ′′ ⊂ Env(F ,F ′) the
gallery Γ defined by a segment [x, y], with x ∈ C ′ and y ∈ C ′′, is contained
in Env(F ,F ′) as [x, y] ⊂ Env(F ,F ′), because Env(F ,F ′) is a convex set. We
resume all these results in the following

Proposition 8.33 The subcomplex Env(F ,F ′) of CL is a sub-building. The
chambers of Env(F ,F ′) are the facets F ′′ ⊂ Env(F ,F ′) which are open in
L (resp. whose carrier LF ′′ is equal to the carrier L of Env(F ,F ′)). We
may characterize projF ′ F as the unique chamber C of Env(F ,F ′) such that
C ⊃ F ′.

8.7 Combinatorial Representation of the Coxeter Complex of a
root system

An Apartment A(R) is associated with a root system R, formed by its
parabolics subsets (cf. definition below) as its facets, and an isomorphism
with the Coxeter Complex C(W (R), S) ' A(R), given by the Coxeter system
(W (R), S), where W (R) is the Weyl group of R, and S the reflexions defined
by a system of simple roots of R. A(R) is called the Combinatorial Real-
ization of C(W (R), S). It is remarked that a parabolic subset is characterized
by the set of systems of positive roots (resp. simple roots systems) that it
contains. On the other hand, for each type of root system a correspondence
may be established between the simple systems of roots and some classical
geometrical configurations, thus obtaining a geometrical description of A(R)
(cf. [2], [3], [28], and [50]).

It is explained now how the preceding construction of a geometric realiza-
tion of a Coxeter complex specializes for a C(W (R), S) given by a simple root
system. Here [4], Chap. VI is followed.

Definition 8.34 Let V be an R-vector space, and R ⊂ V a finite subset
verifying:

1) 0 6∈ R and R generates V ;
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2) there is a map α 7→ α∨ from R to the dual space V ∗ of V , such that
< α,α∨ >= 2 (< x, y > denotes the duality pairing on V × V ∗), and
the reflection

sα : x 7→ x− < x,α∨ > α

leaves R stable;

3) (Crystallographic condition) for all α ∈ R we have α∨(R) ⊂ Z. It is
said that (V,R) is a root system.

4) Let Aut(R) be the subgroup of the group of automorphisms of V leaving
R stable. By definition the Weyl group W (R) of R is the subgroup of
Aut(R) generated by the reflections {sα | α ∈ R}.

The imageR∨ in V ∗ ofR by α 7→ α∨ defines a root system in the dual space
(V ∗, R∨) (cf. also [23], Definition 1.1.1., and 6.4 of this work). The map u 7→
tu−1 (inverse of the transposed map) is an isomorphism fromW (R) toW (R∨).
These two groups are identified by this isomorphism. It follows from [4], Chap
VI, §1, that V ∗ is endowed with a canonical bilinear form ΦR∨ , positive, non-
degenerate, and Aut(R)-invariant. The group W (R) ⊂ Aut(R) acts on V ∗

as a group of ΦR∨ -orthogonal transformations. Write ΦR∨(x, y) = (x, y).
The orthogonal transformation sHα given by the hyperplane Hα = Ker(α) is
equal to sα∨ : x− < α, x > α∨. From the definition of W (R) follows that
W (R) is the group of orthogonal transformations generated by the orthogonal
reflections (sHα)Hα∈H.

Let Q(R) ⊂ V be the subgroup generated by R. It is easily seen that there
is at least one ordered group structure on Q(R) (cf. [23], Exp. XXI, Remarque
3.2.7, and [4], Chap VI, Corollaire 2). Thus there is a decomposition

R = R+

∐
R−,

where R+ (resp R−) is the system of positive roots (resp. negative roots)
defined by the order. A system of positive roots R+ is characterized by the
decomposition R = R+

∐
−R+. To a system of positive roots is associated a

particular basis of V .

Proposition - Definition 8.35 1) There is a unique subset
B(R+) = {α1, . . . , αl} ⊂ R+ characterized by : every α ∈ R+ may be
written in a unique way as α =

∑
niαi (1 ≤ i ≤ l) (ni ∈ N). B(R+) is

called a system of simple roots for R.

2) Two positive systems of roots R+, R
′
+ ⊂ R are conjugate under W (R),

i.e. ∃w ∈ W (R) such that w(R+) = R′+. Thus one has w(B(R+)) =
B(R′+).

3) The action of W on the set of R+ is simply transitive (cf. [4], Ch VI,
Théorème 2).
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Definition 8.36 Write:

SR+ = {s1, . . . , sl} ,

where s1 = sα1
, . . . , sl = sαl . It may be proved (cf. [4], Ch. VI, §1,5) that

(W (R), SR+) is a Coxeter system. In view of the preceding proposition if
R′+ ⊂ R is another system of positive roots, (W (R), SR+) and (W (R), SR′+)
are canonically isomorphic Coxeter systems.

It is observed that if w is defined by w(R+) = R′+ then SR′+ ={
w ◦ s1 ◦ w−1, . . . , w ◦ sl ◦ w−1

}
.

Definition 8.37 A parabolic set P ⊂ R is a closed subset of R, i.e. satis-
fying

α, β ∈ P and α+ β ∈ R =⇒ α+ β ∈ P ,

and so that R = P ∪ (−P ) (cf. [4], Ch VI, Définition 4). Denote by A(R)
the set of parabolic subsets of R endowed with the opposed relation defined by
the inclusion relation between subsets. By definition P and P ′ ∈ A(R) are
incident if P ∩ P ′ is a parabolic set, i.e. P ∩ P ′ ∈ A(R).
Let

V ert(A(R)) be the set of maximal proper parabolic subsets of R,

i.e. the set of P ∈ A(R) such that : P 6= R, P ′ ∈ A(R) and P ⊂ P ′ ⇒
P = P ′ or P ′ = R, and Ch(A(R)) the set of positive systems of roots (resp.
minimal parabolic subsets).

Two chambers CR+ and CR′+ in A(R) are connected by a gallery (cf.
[39], Chap V III, Th. 2). The following proposition shows that the couple
(V ert(A(R)), Ch(A(R))) defines an apartment A(R), whose set of vertices is
V ert(A(R)) and whose set of chambers is Ch(A(R)).

Proposition - Definition 8.38 There is a bijection between the class
of parabolic sets A(R) and the class of subsets {Pi1 , . . . , Piλ} of V ert(A(R)),
whose elements are two by two incidents defined by

{Pi1 , . . . , Piλ} 7→ P = Pi1 ∩ . . . ∩ Piλ ,

i.e. A(R) is a flag complex. It is said that Pi1 , . . . , Piλ are the vertices of P .

Let R+ be a system of positive roots, B(R+) = {α1, . . . , αl} be the simple
roots defined by R+, and S = {s1, · · · , sl} ⊂W the corresponding reflections.
Write R0 = B(R+), and for 1 5 i 5 l:

R
(i)
+ = Z(R0 − {αi}) ∩R ∪R+.
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The subsets R(i)
+ ⊂ R are two by two incident maximal parabolic sets. With

X ⊂ S is associated the parabolic set PX = ∩
si∈X

R
(i)
+ . The set (R

(i)
+ )si∈X is the

set of vertices of PX . The stabilizer of PX inW is given by Stab PX = WS−X .
From the simple transitive action of W on Ch(A(R)) it may be proved that
given P ∈ A(R) there exists a unique X ⊂ S and a unique w ∈ W/WS−X
with w(PX) = P .

Proposition 8.39

1) StabW PX = WS−X ;

2) For every parabolic set P there exists w ∈ W (R) and a unique X ∈ S
with w(PX) = P , the class w ∈W/WS−X being unique.

It results easily from this proposition the following

Proposition 8.40

1) There is a unique W -equivariant incidence preserving map

C(W,S) −→ A(R)

defined by : W (si) 7→ R
(i)
+ and preserving the incidence relation. This

map sends the facet w(FX) =
{
w(W (si)) | si ∈ X ⊂ S

}
, where FX ={

W (si) | si ∈ X ⊂ S
}
, to the parabolic set w(PX) =

⋂
i∈X

w(R
(i)
+ ). The

set of chambers Ch C(W,S) corresponds to the set of positive systems
of roots of R. The chamber Ce corrresponds to R+. It may be noted
that the set of vertices of w(PX) is precisely

{
w(R

(i)
+ ) | si ∈ X

}
.

2) If C(W,S) =
∐
Y⊂S

W/WY is written then C(W,S) −→ A(R) is given

by
w(∈W/WS−X) 7→ w(PX).

3) There is a bijection

R
∼→ set of combinatorial roots Φ of A(R)

associating to α ∈ R the combinatorial root Φα ⊂ R given by the sub-
complex

Φα = {P ∈ A(R) | α ∈ P} .

The wall ∂Φα defined by Φα is thus equal to {P ∈ A(R) | α,−α ∈ P}.
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8.8 Geometric representation of the Coxeter Complex of a root
system

A simplicial decomposition of V ∗ is obtained in terms of the hyper-
planes defined by R and corresponding to the geometrical representation of
C(W (R), S). This simplicial decomposition is a specialization of the one as-
sociated to a general Coxeter complex.

Definition 8.41 Let the indexed set H = (Hα)(α∈R) of hyperplanes in V ∗ be
defined by:

Hα = {x ∈ V ∗ | α(x) = 0} .

(obviously Hα = H−α). Write:

D+
α = { x ∈ V ∗ | α > 0} (resp. D

+

α = { x ∈ V ∗ | α = 0}) ,

and D−α = −D+
α (resp. D

−
α = −D+

α ).

The set H defines an equivalence relation ∼ on V ∗, as in [4], Ch. V, §1,
whose equivalence classes are simplicial cones of V ∗ which are also called
facets. Denote by CR(H) the quotient set V ∗/ ∼, and by C+

α the set of
facets (resp. simplicial cones) contained in the closed half space D

+

α . Write
C−α = −C+

α . The set of chambers Ch CR(H) is given by Ch CR(H) = (CR+
),

where CR+
= ∩
α∈R+

D+
α and R+ runs on the positive root systems of R.

There is a natural mapping A(R) −→ CR(H), P 7→ FP defined as follows.
Given a parabolic set P ∈ A(R), let the ′′ ∼′′ - equivalence class FP ∈ CR(H)
be defined as follows. Write

P 0 = P ∩ (−P ) (resp. P+ = P − P ∩ (−P )) .

There is then P = P 0
∐

P+. Define

FP =

( ⋂
α∈P 0

Hα

)
∩

 ⋂
α∈P+

D+
α


(The facet of CR(H) associated to P ) (cf. [4], Ch V, §1, 2.). It is easy to
see that FP is an equivalence class for ∼. Actually the correspondence

P 7→ FP

is a bijection between A(R) and CR(H). The reciprocal map associates to
F ∈ CR(H) the parabolic subset

PF = {α ∈ R | ∀x ∈ F (α, x) ≥ 0} .
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PF ⊂ R is a closed subset containing a positive system of roots and thus a
parabolic set. The following duality formula holds:

P = {α ∈ R | ∀x ∈ FP (α, x) ≥ 0} .

The root Φα corresponds to the set C+
α by this bijection.

The Theorem 1 of [4], Ch. V, §3 applies to H and one obtains :

Proposition 8.42

1) Let C be a chamber of V ∗ defined by H, S the set of reflections defined
by the walls of C (= bounding hyperplanes of C), and W the group
generated by S. Then (W,S) is a Coxeter system. If C corresponds to
CR+

then the set of bounding hyperplanes is given by (Hα)α∈B(R+), in
fact (W,S) = (W (R∨), S∨) where S∨ = (sα∨)α∈B(R+).

2) The set of hyperplanes H of V ∗ so that the orthogonal reflection sH ∈W
is given by H.

Definition 8.43 It follows from (2)- that the set of hyperplanes H such that
H ∈ H ⇒ sH ∈ W (R) is canonically indexed by the set T of conjugates of
S in W (R). It is concluded that CR(H) in V ∗ may be looked at as the geo-
metrical representation of C(W (R), S(R+)). CR(H) is called the canonical
geometrical representation of C(W (R), S(R+)).

Remark 8.44 1) Let P be a parabolic set of R, i.e. P ∈ A(R), and FP ∈
CR(H) the corresponding facet (resp. simplicial cone) given by A(R) −→
CR(H). Then the carrier LFP ⊂ V ∗ of FP is given by

LFP =
⋂
α∈P 0

Hα.

2) The combinatorial root Φα of A(R) corresponds by A(R) −→ CR(H) to
the closed half space

D
+

α = {x | α(x) ≥ 0}

of V ∗, and the wall ∂Φα to the hyperplane Hα.

3) The facet FP ⊂ LF may be seen as the chamber of LF given by

FP = LF ∩

 ⋂
α∈P+

D+
α

 .

One has D+
α = D

+

α −Hα.

The following construction plays a role in the study of a minimal general-
ized gallery between two facets F and F ′.
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8.9 The opposition involution in a Coxeter complex

Let C(W,S) be a finite Coxeter complex. Given C ∈ Ch C(W,S)), Copp
denotes the only chamber C ′ of C(W,S) so that there is no root Φ of C(W,S)
with C,C ′ ∈ Ch Φ (The opposed chamber to C ∈ Ch C(W,S)). In other
terms Copp is the unique chamber C ′ satisfying H(C,C ′) = H.

Definition 8.45 Following [4], Ex 22, Ch IV, there exists a unique involu-
tive automorphism ϕ of C(W,S) such that

ϕ(C) = Copp

for every chamber C of C(W,S), and

ϕ(H) = H

for every wall H of C(W,S). Write F opp = ϕ(F ) (F ∈ C(W,S)) (The
opposed facet to F ).

Remark 8.46 The following two properties characterizes F opp:

1) LF opp = LF ;

2) H(F opp, F ) = H(F ) = {H ∈ H | F /∈ H}.

It is known that StF′ (F′ ∈ C(W,S)) is isomorphic to some Coxeter
complex C(W ′, S′), so the above definition applies to StF′ . Denote by
ϕF ′ : StF′ −→ StF′ the involutive automorphism of StF′ .

Definition 8.47 Given F ∈ StF′ , i.e. F ⊃ F ′, write

F opp(F ′, F ) = ϕF ′(F )

(The opposed facet to F relatively to F ′ (resp. of F in StF ′)).
As StF∅ = C(W,S) given F ∈ C(W,S) one has

F opp = F opp(F∅, F ),

where F∅ denotes the facet incident to every facet indexed by the empty set.

8.9.1 Opposed parabolic set in a star subcomplex

If the Coxeter system (W,S) is associated to a root system R ⊂ V , R∨ ⊂
V ∗, endowed with a system of positive roots R+

(
resp. simple roots R0 =

{α1, . . . , αl}
)
, and S = (sα)α∈R0 , the above definitions specialize as follows.
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Remark 8.48
It is clear that the mapping gA(R) : α 7→ −α is an involutive automorphism
of the root system R, thus gA(R) gives an involutive automorphism ϕA(R) of
A(R). It is immediate that ϕA(R)(∂Φα) = ∂Φα and that ϕA(R)(Φα) = Φ−α.
It is concluded that ϕA(R) corresponds to the involutive isomorphism ϕ of
C(W,S) by the isomorphism

C(W,S) −→ A(R),

Definition 8.49 Define P opp (P ∈ A(R)) following the pattern of the def-
inition of F opp, i.e. P opp = −P . More precisely let F 7→ P by the above
isomorphism. Write P opp = PF opp . Let P ′ = PF ′ (resp. P = PF ), and
F ′ ⊂ F . Write P opp(P ′, P ) = PF opp(F ′,F ).

8.9.2 Determination of the opposed parabolic set in a star subcomplex

Proposition 8.50 Let R′ ⊂ R, and VR′ = V ectR(R′). The following state-
ments are equivalent:

1) R′ is a closed and symmetric subset of R, i.e. R′ = −R′.

2) R′ is a closed subset of R and R′ is a root system in the vector space
VR′ .

For all α ∈ R′ let α∨1 be the restriction of α∨ to VR′ . Then the mapping
α → α∨1 is the canonical bijection R′ ' R

′∨. The Weyl group of the root
system R′ is the subgroup WR′ ⊂W generated by (sα)α∈R′ .

(cf. [4], Ch. V I, n0 1.1, Prop. 4)
Clearly the above proposition applies to RX = PX ∩ (−PX) ⊂ R and one has:

Proposition 8.51 A simple system of roots of RX is given by {α ∈ R0 | sα ∈
S−X}, and (W (RX), S−X) is a Coxeter system. One has W (RX) = WS−X .
Thus (RX , R

∨
X , VRX , V

∗
RX

) defines a system of roots endowed with the system
of simple roots {α ∈ R0 | sα ∈ S −X}, and (WS−X , S −X) as its associated
Coxeter system.

The content of this section is motivated by the correspondence between
parabolic subsets of R contained in PX and the parabolic subsets of RX . The
facet FX =

{
W (si) | si ∈ X

}
∈ C(W,S)(X ∈ P(S)) is associated with a star

complex in C(W,S)
(
resp. a Coxeter system, a Coxeter complex):

StFX ⊂ C(W,S)
(
resp. (WS−X , S −X), C(WS−X , S −X)

)
,

where WS−X = StabFX .
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Let A(RX) be the apartment defined by the system of roots RX . One
knows that there is a canonical isomorphism C(WS−X , S−X) ' A(RX). On
the other hand, there is a building isomorphism:

StPX ' A(RX) ,

where StPX denotes the star complex of PX in A(R), defined by P 7→ P ∩
[PX ∩ (−PX)] = P ∩ RX . Its reciprocal mapping A(RX)

∼−→ StPX
is defined

by:

Q 7→ Q
∐

[PX − PX ∩ (−PX)].

It is recalled that StPX ⊂ A(RX) is given by the set of of parabolic sets P ′ of
A(RX) with P ′ ⊂ RX , and that P ′ may be completed into a parabolic set of
R by addition of the set PX − PX ∩ (−PX) ⊂ R+.

On the other hand, the isomorphism C(W,S) ' A(R) induces an isomor-
phism

(C(WS−X , S −X)
∼−→) StFX

∼−→ StPX .

By this isomorphism the building involution ϕFX : StFX −→ StFX corre-
sponds to the involution ϕPX of StPX described as follows.

Proposition 8.52 The involutive isomorphism ϕPX : StPX
−→ StPX

is
given by

ϕPX : P =[P ′ ∩ (−P ′)
∐

(P ′ − P ′ ∩ (−P ′))]
∐

(PX − PX ∩ (−PX)) −→

[P ′ ∩ (−P ′)
∐
−(P ′ − P ′ ∩ (−P ′))]

∐
(PX − PX ∩ (−PX)),

where P ′ = P ∩ RX . Observe that [P ′ ∩ (−P ′)
∐

(P ′ − P ′ ∩ (−P ′))] = [P ∩
(−P )

∐
(P − P ∩ (−P ))] ∩RX

Corollary 8.53 The opposed parabolic P opp(PX , P ) is given by:

P opp(PX , P ) = [P ′ ∩ (−P ′)
∐
−(P ′ − P ′ ∩ (−P ′))]

∐
(PX − PX ∩ (−PX))

in A(R), and by

P ′opp(PX , P ) = [P ′ ∩ (−P ′)
∐
−(P ′ − P ′ ∩ (−P ′))]

in A(RX).
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8.10 Opposed parabolic set in a star subcomplex simplicial
representation

Retain the notation of the preceding section. One obtains a geometric rep-
resentation StFX ' CRX (HX) as follows. The set of root hyperplanes in
V ectR(RX) is given byHX = (Hα∩V ectR(RX))α∈RX , where Hα ∈ HFX ⊂ H.
On the other hand, there are the following direct sum decompositions

V ∗ = V ectR(R∨X)⊕ ∩
α∈RX

Hα (resp.Hα′ = Hα′∩VectR(R∨X)⊕ ∩
α∈RX

Hα (α′ ∈ RX)) ,

thus establishing a bijection HX ' HFX . By this bijection the set of chambers
CRX (HX) corresponds to the set of chambers of CR(H) incident to FX , and
more generally the set of of facets CRX (HX) to the set of facets in CR(H)
incidents to FX . On the other hand, from the bijection StPX ' A(RX), P 7→
P ′ = P∩RX one obtains the expressions of P opp(PX , P ) = P

′opp
∐

(PX−RX).
The following proposition makes explicit how this expression translates by this
geometric representation.

From the above discussion it results easily the following

Proposition 8.54 Let F ′ (resp. F opp(FX , F )) be the facet in CRX (Hx) cor-
responding to P ′ (resp. to P opp(PX , P ) in CR(H)), and LF ′ be the carrier of
F ′ in CRX (H). There is the following representation of LF ′ in CRX (H):

LF ′ = LF ′opp =

 ⋂
α∈P ′∩(−P ′)

Hα

 ∩ V ectR(R∨X)

and

F
′opp = LF ′ ∩

 ⋂
α∈−(P ′−P ′∩(−P ′))

D+
α

 .

The representation of F opp(FX , F ) in CR(H) is given by:

F opp(FX , F ) = LF ∩

 ⋂
α∈−(P ′−P ′∩(−P ′))

D+
α

 ∩
 ⋂
α∈(PX−PX∩(−PX))

D+
α

 .

Observe that

P∩(−P ) = P ′∩(−P ′) (resp. P−P∩(−P) = P′−P′∩(−P′)
∐

PX−PX∩(−PX) ,

and thus LF = LF ′ .

Corollary 8.55 The set HFX (F, F opp(FX , F )) of walls ∂Φα ⊃ FX separating
F and F opp(FX , F ) is given by

HFX (F, F opp(FX , F )) = HFX (F ) = HFX (F opp(FX , F )).

In fact this property characterizes F opp(FX , F ), i.e. F opp(FX , F ) is the unique
facet incident to FX satisfying this property.



Chapter 9

Minimal Generalized
Galleries in a Coxeter
Complex

Theminimal generalized galleries in the setting of Coxeter complexes, are
introduced. The existence of minimal generalized galleries is proven by means
of the geometrical realization of a Coxeter Complex as a decomposition of an
euclidean space by simplicial cones (chambers). The correspondence between
minimal generalized galleries and block decompositions of elements in W
is established. It is specifically explained how geometric constructions with
generalized galleries translate into special decompositions of elements ofW . A
unicity result about generalized galleries with associated minimal galleries of
types, i.e. galleries of types defined by minimal generalized galleries, is proven.
The Convex hull subcomplex of two facets which plays an important
role in this work is introduced. This follows from the result obtained here:
a Minimal Generalized Gallery is contained in the Convex Envelope of its
extremities. Thus generalizing a result proven for the Flag Complex.

In this chapter A denotes a finite apartment with a selected chamber C
endowed with a building morphism

typ : A → typ A ,

so that the restriction of typ to the sub-building ∆(C), formed by the
facets incident to C, induces a building isomorphism ∆(C) ' typ. Let
WA ⊂ Aut(A) be the subgroup of automorphisms of A commuting with typ,
i.e. preserving the type of a facet. It is supposed that there is an isomor-
phism of A with a Coxeter Complex, C(W,S) ' A sending the chamber

160
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Ce, given by the identity of W , to C, so that the induced isomorphism
Aut(C(W,S)) ' Aut(A) sends W ⊂ Aut(C(W,S)) to WA. There are
building isomorphisms C(W,S)/W ' A/WA ' ∆(C), and an identification
A/WA ' typ A. Denote by SC the image of the generating reflexions S
by W ' WA. There is a canonical identification C(WA, SC) ' A. Given
a chamber C of A there is a building isomorphism ∆(C) ' typ A given by
typ. We define the Roots, the Hyperlanes,... etc of A as the images of
the corresponding objects in C(W,S). Denote by HA (resp. DA) the set
of Hyperplanes (resp. Roots). The subindex A is omitted if no confusion
arises. With F, F ′ ∈ A are associated the subset HF ⊂ HA of Hyperplanes
containing F , HF (F ′) = HF − HF ′ , the Hyperplanes separating F and F ′,
H(F, F ′) ⊂ A − (HF ∪ HF ′), and HF (F ′, F ′′) = HF ∩ H(F ′, F ′′). Φopp

denotes the opposed root to Φ ∈ DA and by ∂Φ = Φ ∩ Φopp its associated
Hyperplane. With F ∈ A and H ∈ HA −HF is associated the Root ΦH(F )
so that ∂ΦH(F ) = H and F ∈ ΦH(F ) = H.

As an example of an abstract Coxeter Complex as defined above, consider
A(R) the apartment defined by a root system, with C = CR0 , where CR0

denotes the chamber defined by the simple system of roots R0, and typ :
A(R) −→ P(R0) associates with a parabolic subset, the corresponding set of
simple roots in P(R0).

The building typ A (the typical simplex of A) of types of facets of A,
is by definition the quotient set A/WA, endowed with the relation induced by
the inclusion of facets. Given F ∈ A, the type t = typ F of the facet F is by
definition the image of F by the quotient mapping typ : A → typ A. Write:

A =
∐

t∈typ A
At ,

where At = (typ)−1(t). Given t ∈ typ A and C ∈ Ch A let Ft(C) ⊂ C
be the unique facet of type t incident to C. The reciprocal isomorphism of
∆(C) ' typ A is defined by t 7→ Ft(C).
Define the set Relpos A of types of relative positions of facets in A by

Relpos A := A×A/WA .

Denote by τ : A×A −→ Relpos A the quotient mapping. Write

1) Relpos(t,s) A = At ×As/WA ((t, s) ∈ typ A× typ A);

2) (A×A)τ0 = (τ)−1(τ0) (τ0 ∈ Relpos A);

3) (Ch A×A)τ0 = { (C,F ) | τ(Fs(C), F ) = τ0 }.

If A = C(W,S) the quotient set A/W may be identified with the combi-
natorial simplex P(S) given by the set of subsets of S, endowed with relation
of inclusion of subsets of S. Given a facet by its set of vertices

F = {wW (s)| s ∈ X} (w ∈W, X ⊂ S, W (s) = WS − {s})
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of C(W,S) there is

typ F = X (resp. Stab F = w(WS−X)w−1).

Let Y ∈ P(S) = typ C(W,S), and let Ce = {W (s)| s ∈ S} ∈ Ch C(W,S).
One thus obtains

FY (Ce) = {W (s)| s ∈ Y } (resp. Stab FY (Ce) = WS−Y ) .

It is recalled that there is a natural bijection∐
X∈P(S)

W/WX
∼−→ C(W,S)

described as follows. Let X ∈ P(S). Then W/WX → C(W,S) is given by
w 7→ w(FS−X(Ce)) where FX(Ce) = {W (s)| s ∈ X}.

Proposition - Definition 9.1 In each class w ∈ W/WX there is a
unique minimal length element wm ∈ w, given by

wm = w(Ce, projw(FS−X)Ce).

Write Cw = projw(FS−X)Ce.

Proof This is immediate from the characterization of projw(FS−X)Ce as the
unique chamber of Stw(FS−X) satisfying

d(Ce, projw(FS−X)Ce) = min
C∈Ch Stw(FS−X)

d(Ce, C) .

GallA (resp. GallA(F ), GallA(F, F ′)) is defined as the set of generalized
galleries of A (resp. issued from F , with extremities (F, F ′)) (cf. 5.3). Given
a gg γ of A let

g = typ γ ⊂ typ A
be the gg of types (resp. typ A) whose facets are given by the images of the
facets of γ by typ. There is a mapping

GallA → gallA = Galltyp A

defined by γ → typ γ, where typ γ denotes the gallery of typ A defined by
the types of the facets of γ. This mapping can also denoted by “typ” when
there is no confusion. It is observed that the restriction of typ to Gall∆(C)

gives a bijection Gall∆(C) ' gallA.
Let g ∈ gallA. Write

GallA(g) := typ−1(g) (resp. GallA(g,F) := typ−1(g) ∩GallA(g)

(The gg’s of type g (resp. of type g and extremity F )).
The following terminology adapted from [23], Exp. XXVI, 4. (cf. also [4],

Ch. IV , 1., Ex. 22) is introduced.
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Definition 9.2 It is said that a couple of facets (F, F ′) ∈ A×A is in transver-
sal position or simply transversal if there exists a chamber C ∈ Ch A satisfy-
ing: Ftyp(F )(C) = F and Ftyp(F ′)(Copp) = F ′.

It is clear that C and F are transversal if and only if

d(C,F ) = |H(C,F )| > |H(C,F ′)| = d(C,F ′),

for F ′ ∈ At, thus there is

Proposition 9.3 A chamber C and a facet F of A are in transversal po-
sition if the length n of a minimal gallery

Γ : C = C0, · · · , Cn ⊃ F

is maximal on the set of all minimal galleries between C and a facet F ′ ∈ At
of the same type t as F .

The following lemma allows defining the center of a Bruhat cell.

Lemma 9.4 Given C ∈ Ch A, and t ∈ typ A there is only one facet F trt (C) ∈
At such that C and F trt (C) are transversal in A.

Proof Let Copp be the opposed chamber to C in A. Then F trt (C) may be
characterized as the only facet F ∈ At incident F ⊂ Copp to Copp. This
proves the lemma.

Let δ := {(t, t) ∈ typ A× typ A| t ∈ typ A} and write

typ(2) A := {(t, s) ∈ typ A× typ A− δ| t ⊂ s}.

Given (t, s) ∈ typ(2) A, and C ∈ Ch A, denote by

F tr(t,s) := F tr(t,s)(C) ∈ StFt(C),

the unique facet of type s in A is such that:

“ C and F tr(t,s)(C) are transversal in the Star Complex StFt(C)”.

If A = C(W,S) one obtains

typ(2) A = {(X,Y ) ∈ P(S)× P(S)| X 6= Y, X ⊂ Y }.

An indexed set of elements of W associated with a chamber C in C(W,S)
is introduced so that with minimal generalized galleries issued from C are
associated words in these elements.
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Definition 9.5 Let C ∈ Ch A (resp. (t, s) ∈ typ(2) A). Write F = F tr(t,s)(C)
and define

w(t, s) = wC(t, s) = w(C, projFC).

The mapping (t, s) 7→ w(t, s) (resp. (X,Y ) 7→ w(X,Y )) defines an indexed
family of elements of W

S := SC = (wC(t, s))(t,s)∈typ(2) A

(resp. S := SCe = (w(X,Y ))(X,Y )∈typ(2) C(W,S)).

9.1 Minimal Generalized Galleries issued from a chamber

Definition 9.6 Let C ∈ Ch A and F ∈ A. A generalized gallery (gg) of the
form

γ = γ(C,F ) : C = Fr ⊃ F ′r ⊂ Fr−1 · · ·F0 ⊃ F ′0 = F (right open gallery)

(resp. γ = γ(C,F ) : C = Fr ⊃ F ′r ⊂ Fr−1 · · · ⊂ F0 = F ) (right closed gallery),

or in abbreviated notation

γ = γ(C,F ) : (Fi ⊃ F ′i ) (r > i > 0), and (F ′i ⊂ Fi−1) (r > i > 1),

Fr = C, F ′0 = F

(resp. γ = γ(C,F ) : (Fi ⊃ F ′i ) (r > i > 1), and (F ′i ⊂ Fi−1) (r > i > 1),

Fr = C, F ′1 ⊂ F0 = F )

with Fi 6= F ′i (resp. F ′i 6= Fi−1), is a Minimal Generalized Gallery
(MGG) between C and F , or with extremities C and F , if:

(1) The sets HF ′i (Fi−1) (r > i > 1) are two by two disjoint, i.e. i 6= j ⇒
HF ′i (Fi−1) ∩HF ′j (Fj−1) = ∅;

(2) H(C,F ) =
⋃
HF ′i (Fi−1) =

∐
HF ′i (Fi−1) for (r > i > 1).

Denote by Gallm(C,F ) the set of Minimal Generalized Galleries between C
and F .

Remark 9.7 1) Observe that if γ(C,F ) is a Minimal Generalized Gallery
right open then F0 ⊂ projF C.

2) To a minimal gallery Γ : C = Cr · · ·C0 ⊃ F corresponds the MGG:

(Ci ⊃ Fi) (r > i > 0) (resp. (Fi+1 ⊂ Ci) (r − 1 > i > 0)),

Cr = C, F0 = F,
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where Fi = Ci ∩ Ci−1 (r > i > 1) denotes the common codimension 1
facet to Ci and Ci−1. This result comes from the following characteri-
zation of the minimal galleries of A:
An injective gallery Γ : C = Cr · · ·C0 ⊃ F between C and F is minimal
if Γ crosses only once each wall L it encounters, and L ∈ H(C,F ) (cf.
[4] Chap. 4, §1.4, Lemma 2).
As in 8.6 we denote by

Ψ∗(Γ) = (Lr, Lr−1, · · · , L1)

the sequence of walls that Γ crosses, and by

Ψ(Γ) = (tr, tr−1, · · · , t1)

the sequence of reflections defined by Ψ∗(Γ). Remark that Li (r > i > 1)
is the carrier of the codimension 1 facet Fi = Ci ∩ Ci−1.

9.2 Adapted minimal galleries to a Minimal Generalized
Gallery

Assume the notation of the preceding section. A family of minimal galleries
“majorating” a Minimal Generalized Gallery is defined. Write:

Cr = C and Ci−1 = projFi−1
Ci (r > i > 1).

Remark that Ci, Ci−1 ∈ Ch StF′i
(r > i > 1), as Ci, Fi−1 ∈ StF′i

and Ch StF′i
is a convex set of chambers of A, i.e. if a minimal gallery Γ(C,C ′) satisfies
C,C ′ ∈ StF ′i then Γ(C,C ′) ⊂ StF ′i . For each r > i > 1 a minimal gallery
Γi = Γi(Ci, Ci−1) between Ci and Ci−1 is chosen. Thus Γi ⊂ StF′i

. Define

Γ = Γ(C,C0) = Γr ◦ Γr−1 ◦ · · · ◦ Γ1,

i.e. Γ is the composed gallery defined by (Γi). Let Γ′ = Γ′(C,F ) be the
gallery obtained as “the composition of Γ(C,C0) and the inclusion C0 ⊃ F ”.

Lemma 9.8 Γ′(C,F ) is a minimal gallery between C and F .

Proof As set Ψ∗(Γi) ⊂ HFi(Fi−1), it is deduced that

Ψ∗(Γ) ⊂
∐
HF ′i (Fi−1).

By (1) of Definition 9.6 it is concluded that Γ is injective, and each wall L
it encounters crosses only once, and by (2) of Definition 9.6 that this wall
satisfies L ∈ H(C,F ). It is deduced that Γ′ is a minimal gallery between C
and F .
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Definition 9.9 It is said that a gallery Γ(C,F ) is a minimal gallery
adapted to the generalized gallery γ(C,F ) if it is obtained from γ(C,F ) ac-
cording to the pattern of the construction of Γ′(C,F ).

Remark 9.10 a) From the above lemma it follows that the set Ψ∗(Γ) is
equal to H(C,F ). As set Ψ∗(Γ) =

∐
H(Ci, Ci−1), and H(Ci, Ci−1) ⊂

HF ′i (Fi−1), it is deduced by (2) of Definition 9.6 that H(Ci, Ci−1) =
HF ′i (Fi−1). One also has H(Ci, Ci−1) = H(Ci, Fi−1) as Ci−1 =
projFi−1

Ci.

b) The equality H(Ci, Fi−1) = HF ′i (Fi−1) means that the distance
d(Ci, Fi−1) is the maximal d(C,F ) between a chamber C and a facet
F of StF′i

of the same type as Fi−1. It is then deduced that Ci and Fi−1

are transversal in StF′i
(cf. Definition 9.3).

The following reformulation of Definition 9.6 is then given:

Definition 9.11 The same notation as in Definition 9.6 is kept. A gg

γ(C,F ) : (Fi ⊃ F ′i ) (r > i > 0), (F ′i ⊂ Fi−1) (r > i > 1), Fr = C, F ′0 = F

(resp. γ(C,F ) : (Fi ⊃ F ′i ) (r > i > 1), (F ′i ⊂ Fi−1) (r > i > 1),

Fr = C, F0 = F )

is a Minimal Generalized Gallery (MGG) if: Fi 6= F ′i (resp. F ′i 6= Fi−1)
and

(1)-bis HF ′i (Fi−1) ∩HF ′j (Fj−1) = ∅ for i 6= j;

(2)-bis |H(C,F )| =
∑
|HF ′i (Fi−1)|.

Proof It is proved that (1) and (2) in Definition 9.6 is equivalent to (1)-bis
and (2)-bis of Definition 9.11.
The implication “ ⇒ ” being immediate, let it be seen “ ⇐ ”. The gallery
Γ′(C,F ) constructed as in Lemma 9.8 from γ(C,F ) satisfies:

(∗) |H(C,F )| 6 |Ψ∗(Γ′(C,F ))| 6
∑
|HF ′i (Fi−1)| = |H(C,F )|.

This establishes that Γ′(C,F ) is a minimal gallery, and thus set (defined by)
Ψ∗(Γ′(C,F )) = H(C,F ). On the other hand, by construction of Γ′(C,F ),
there is

set Ψ∗(Γ′(C,F )) =
∐

set Ψ∗(Γ(Ci, Ci−1)) ⊂
∐
HF ′i (Fi−1),

which in view of (∗) implies

H(C,F ) = set ψ∗(Γ′(C,F )) =
∐
HF ′i (Fi−1).
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Without proof the following reciprocal of Lemma 9.8 is given.

Lemma 9.12 Given a gg (sα ⊃ tα) (r > α > 0) (tα ⊂ sα−1) (r > α > 1) of
types of A with tα 6= sα−1 (resp. tα 6= sα), a minimal gallery

Γ = Γ(C,F ) : C = Cn, · · · , C0 ⊃ F

with types typ Cn = sr and typ F = t0, and a strictly increasing function

j : [0, r]→ [0, n]

with j(0) = 0 and j(r) = n, one writes

Fα = Fsα(Cj(α)), F
′
α = Ftα(Cj(α)).

It is supposed for 1 6 α 6 r:

1. ∀ j(α− 1) 6 i 6 j(α), F ′α = Ftα(Cj(α));

2. Cj(α) and Fα−1 are at maximal distance (resp. transversal) in StF′α
,

and projFα−1
Cj(α) = Cj(α−1).

Then the gg (Fα ⊃ F ′α) (r > α > 0), (F ′α ⊂ Fα−1), (r > α > 1) is a MGG of
A.

9.3 Reduced words corresponding to Minimal Generalized
Galleries

Definition 9.13 Let g be a generalized gallery in typ A given by

g : tr ⊂ sr−1 · · · t1 ⊂ s0

(resp. g : tr ⊂ sr−1 · · · t1 ⊂ s0 ⊃ t0) .

A SC-reduced expression of type g is the product w =
∏
wi (r > i > 1) of the

elements of the r-uple (wr, · · · , w1) ∈
r∏

SC defined by

wi = w(ti, si−1) (r > i > 1),

if
lS(w) = lS(

∏
wi) = lS(wr) + · · ·+ lS(w1).

Then it is said that w =
∏
wi is a SC-reduced expression of w of type g.

Let w ∈ W (resp. w ∈ W/Wt). It is known that the set of minimal galleries
in the usual sense Gall

′m(Ce, Cw) (resp. Gall
′m(Ce, Fw)) of C(W,S), between

Ce and Cw = w(Ce) (resp. Fw = w(Ft(Ce))), is in bijection with the set of
S-reduced expressions RedS(w) (resp. RedS(wm)) of w (resp. of the minimal
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length element wm of w) (cf. [4], Ch. IV, Ex 16).
The set of Minimal Generalized Galleries Gallm(Ce, w

m(Ft(C)), between Ce
and wm(Ft(C)), is in bijection with the set of SC-reduced expressions of wm.
Retain the notation of Lemma 9.8. It is shown how a minimal generalized
gallery γ = γ(Ce, w

m(Ft(C)) gives rise to a SC-reduced expression of wm of
type typ γ.

Write Fr = Ce, and si = typ Fi (resp. ti = typ F ′i ). Let Cr, Cr−1, · · · , C0

be the sequence of chambers, and Γ(Ce, F ) = Γr ◦ · · · ◦Γ1 the minimal gallery
of A defined as in Lemma 9.8. Define for r > i > 1 :

1. wi = w(Ci, Ci−1);

2. vi = wi · · ·wr;

3. ui = w(ti, si−1).

Clearly
v1 = w(Ce, C0) = w(Ce,projFCe)

(this results from the fact that Ce is the first term of a minimal gallery between
Ce and F ), and more generally

vi = w(Ce, Ci−1).

There is:

wi = w(Ci, Ci−1) = vi+1w(ti, si−1)v−1
i+1 = vi+1uiv

−1
i+1,

as v−1
i+1(Ci) = Ce, and v−1

i+1(projFi−1
Ci) = projFCe, where F = F tr

(ti,si−1)(Ce).
Let it be proved:

a) wiwi+1 · · ·wr = ur · · ·ui+1ui (r > i > 1);

b) ur · · ·u1 = w(Ce,projFCe).

It is clear that b) follows from a). Thus it is proved a) by induction on i. It
is clear that wr = ur. Let it be supposed that i < r and vi+1 = wi+1 · · ·wr =
ur · · ·ui+1. One thus obtains

wiwi+1 · · ·wr = (vi+1uiv
−1
i+1)ur · · ·ui+1 = (vi+1uiv

−1
i+1)vi+1

= vi+1ui = ur · · ·ui+1ui.

Let it be proved now that v1 = ur · · ·u1 is a S -reduced expression. As
Γi is a minimal gallery between Ci and Ci−1 = projFi−1

Ci the transformed
gallery Γie := v−1

i+1(Γi) ⊂ StFti is also a minimal gallery between Ce and
projF(ti,si−1)

Ce. To Γie corresponds a reduced expression, relatively to S,

ui = w(Ce,projF(ti,si−1)
Ce) =

∏
16αi6lS(ui)

ui(αi) ,
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with ui(αi) ∈ S. Remark that

lS(ui) = length Γie = length Γi = |HF ′i (Fi−1)|.

From Remark 9.10 a) it is found

lS(ur · · ·u1) = lS(w(Ce,projFCe)) =
∑
|HF ′i (Fi−1)| = |H(Ce, F )|.

It is then concluded that

w(Ce,projFCe) =
∏
r>i>1

(
∏

16αi6lS(ui)

ui(αi))

is an S-reduced expression, and finally that

w(Ce,projFCe) = ur · · ·u1 = w(tr+1, sr) · · ·w(t1, s0)

is an S -reduced expression.
Reciprocally to an SC-reduced expression w(Ce, projF Ce) =

∏
r=i=1

w(ti, si−1)

of type g corresponds a minimal generalized gallery γ(Ce, F ) of type g. Let
(wi)r5i51 be the sequence of elements associated with (w(ti, si−1))r=i=1 as
above. Define a sequence of chambers (Ci)r=i=1 by Ci−1 = (wi · · ·wr)(Ce).
Let γ(Ce, F ) be generalized gallery whose type is given by g = (ti, si−1)r=i=1

and its set of facets by (Fti(Ci), Fsi−1
(Ci))r=i=1. It is easy to see that γ(Ce, F )

is minimal (cf. loc. cit.). Thus a bijection between the set of SC-reduced
expressions and the Minimal Generalized Galleries Gallm(Ce) issued from Ce
is obtained.

9.4 Minimal Generalized Galleries

Notation 9.14 The following notation is introduced to distinguish the four
classes of galleries to which the following definition applies:

i) γ2(F, F ′) = (F = Fr ⊃ F ′r ⊂ Fr−1 . . . F1 ⊃ F ′1 ⊂ F0 = F ′) a closed
gallery;

ii) γ′2(F, F ′) = (F = Fr ⊃ F ′r ⊂ Fr−1 ⊃ F ′r−1 . . . F1 ⊃ F ′1 = F ′) a right
open gallery;

iii) γ1(F, F ′) = (F = F ′r+1 ⊂ Fr ⊃ F ′r ⊂ Fr−1 . . . F
′
1 ⊂ F0 = F ′) a left open

gallery;

iv) γ′1(F, F ′) = (F = F ′r+1 ⊂ Fr ⊃ F ′r ⊂ Fr−1 . . . F0 ⊃ F ′0 = F ′) an open
gallery.
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Given F ′′ ⊃ F one denotes by γ1(F ′′;F, F ′) (resp. γ′1(F ′′;F, F ′)) the gg
between F ′′ and F ′ given by the “composition” of F ′′ ⊃ F and γ1(F, F ′) (resp.
γ′1(F, F ′)), and by γ2(F ′′;F, F ′) (resp. γ′2(F ′′;F, F ′)), the gg γ2(F ′′;F, F ) :
F ′′ ⊃ F ′r · · ·F ′1 ⊂ F0 = F ′ (resp. γ′2(F ′′;F, F ′) : F ′′ ⊃ F ′r · · ·F0 ⊃ F ′0 = F ′)
obtained by substitution of Fr = F by F ′′.

Definition 9.15 Given a couple of facets (F, F ′) ∈ A × A and C ∈ Ch StF

it is said that C is at maximal distance from F ′ if it satisfies d(C,F ′) =
maxC′∈Ch StF d(C ′, F ′).

The following definition is suggested by proposition 6.16.

Definition 9.16 1) Let (F, F ′) ∈ A×A a Minimal Generalized Gallery
(MGG), γ(F, F ′) is a gg of the form γ(F, F ′) = γ1(F, F ′) (resp. γ′1(F, F ′),
γ2(F, F ′), γ′2(F, F ′)), with Fr 6= F ′r such that for every C ∈ Ch StF at max-
imal distance from F ′ the gg γ(C;F, F ′) = γ1(C;F, F ′) (resp. γ′1(C;F, F ′),
γ2(C;F, F ′), γ′2(C;F, F ′)) is a MGG between C and F ′ (cf. Definition 9.6).

9.4.1 Reformulation of the definition

It is recalled that the carrier L of Env(F, F ′) in A is obtained as the inter-
section of all the walls H of A containing F and F ′, i.e. L =

⋂
H∈H,
F,F ′∈H

H. It

is known that L is a building (but not a sub-building of A in general) whose
chambers are the facets F ⊂ L of minimal codimension, and that Env(F, F ′)
is a sub-building of L.
The facet projFF

′ ∈ Env(F, F ′) is characterized as the only facet containing
F so that every facet of Env(F, F ′) containing F is contained in projFF

′.
Thus LprojFF

′ = L, where LprojFF
′ denotes the carrier of projFF

′, i.e. the
maximal facet contained in the convex hull Env(F, F ′) and incident to F .

Definition 9.17 If F 6= projFF
′ (resp. F = projFF

′) it is written

c(F, F ′) := F opp(F,projFF
′)

(resp. c(F, F ′) := projFF
′ = F ).

(cf. §2. e)). By definition the facet c(F, F ′) satisfies the property

H(c(F, F ′),projFF
′) = HF (projFF

′)

as results from the Corollary 8.55. If c(F, F ′) = F then HF (projFF
′) = ∅.

The facet c(F, F ′) is a chamber of the building L. This means that the carrier
Lc(F,F ′) is equal to L.
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Write
M := H(F, F ′)

∐
HF (F ′)

(the set of walls separating F and F ′ or containing F without con-
taining F ′), and c := c(F, F ′).

Proposition 9.18 With the above notation one has:

1) If C is a chamber of StF then H(C,F ′) ⊂M.

2)

Ch Stc = {C ∈ Ch StF | H(C,F ′) =M}
= {C ∈ Ch StF | d(C,F ′) = max

C′∈Ch StF
d(C ′, F ′)}.

Proof 1) Let H ∈ H(C,F ′), it is first supposed that H /∈ HF . Thus if
C ⊃ F ⇒ H ∈ H(F, F ′) ⊂ M. If H ∈ HF then H ∈ HF (F ′) (F ′ is not
contained in H as H ∈ H(C,F ′)) thus H ∈M.

To prove 2) it suffices to show that the first equality is satisfied. Let it first
be seen that

C ⊃ c = c(F, F ′)⇒ H(C,F ) =M.

It is certain that in this case H(F, F ′) ⊂ H(C,F ′). If H ∈ HF (F ′) =
HF (projFF

′), then H does not separate F and F ′. Thus the root Φ deter-
mined by H and F ′ contains Env(F, F ′), and a fortiori H does not separate
projF ′F and F ′. Then if H ∈ HF (projFF

′) ( 6= ∅) one has projFF
′ /∈ H,

and by definition of c(F, F ′) the wall H ⊃ F separates c(F, F ′) and projFF
′.

Thus C ⊃ c(F, F ′) and H ∈ HF (F ′) ⇒ H ∈ H(C, projFF
′). One finally

has H ∈ H(C,F ′) = H(C, projFF
′). It was proved that C ⊃ c(F, F ′) ⇒

HF (F ′) ⊂ H(C,F ), and finally thatM = H(F, F ′)
∐
HF (F ′) ⊂ H(C,F ′).

Let C ∈ Ch StF be such that H(C,F ′) = M. It is first shown that C ∈ Stc
under the assumption c 6= projFF

′. If C /∈ Stc, i.e. C + c, there exists
H ∈ HF (= walls of StF ) separating C and c, i.e. H ∈ H(C, c). As c /∈ H
there is H + Lc(carrier of c) = L(carrier of Env(F, F ′)). Thus by definition
of c, H separates c and projFF

′, i.e. H ∈ H(projFF
′, c). It is concluded that

H does not separate C and projFF
′. On the other hand, H ⊃ F implies that

H does not separate projFF
′ and F ′, as it does not separate F and F ′. It is

concluded that H ∈ HF (F ′) does not separate C and F ′. This being contrary
to the assumption H(C,F ′) = M = H(F, F ′)

∐
HF (F ′), it has been proved

that H(C,F ′) =M⇒ C ∈ Stc. If c = projF ′F then F = projF ′F and there
is nothing to prove.(
To prove that if C ∈ StF realizes the maximal distance between a chamber
C ∈ Ch StF and F ′, then C is incident to c(F, F ′), one may argue as fol-
lows. It may be assumed that F 6= projF F ′. As a hyperplane H ∈ HF does
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not separate F and F ′ and c(F, F ′)opp = projF F ′ in StF , one has that H
separates c(F, F ′) from F ′. Let C ′ ∈ Ch StF so that c(F, F ′) * C ′. Thus for
a chamber c(F, F ′) ⊂ C there exists H ∈ HF separating C and C ′ (resp. F ′).
It is concluded that d(C ′, F ′) < d(C,F ′).

)
Corollary 9.19 The set of chambers C ∈ StF at maximal distance from F ′

is principal homogeneous under Wc(F,F ′) = Stab c(F, F ′) ⊂W (resp. WF ).

The definition 9.16 may be reformulated as follows:

Definition 9.20 1) Given F, F ′ ∈ A with c(F, F ′) 6= F a Minimal Gener-
alized Gallery (MGG), γ(F, F ′) is a gg of the form γ(F, F ′) = γ1(F, F ′)
(resp. γ′1(F, F ′), γ2(F, F ′), γ′2(F, F ′)), with Fr 6= F ′r so that for every
C ∈ Ch Stc(F,F ′) the gg γ(C;F, F ′) = γ1(C;F, F ′) (resp. γ′1(C;F, F ′),
γ2(C;F, F ′), γ′2(C;F, F ′)) is a MGG between C and F ′ according to Defini-
tion 9.6.

2) Given F, F ′ ∈ A with c(F, F ′) = F is a Minimal Generalized Gallery
(MGG) γ(F, F ′) is a gg of the form γ(F, F ′) = γ2(F, F ′) (resp. γ′2(F, F ′))
with Fr 6= F ′r such that for every C ∈ Stc(F,F ′) γ(C;F, F ′) = γ2(C;F, F ′)
(resp. γ′2(C;F, F ′)) is a MGG.

Proposition 9.21 Let γ(F, F ′) be a generalized gallery. Then γ(F, F ′) is a
MGG if and only if it satisfies the following conditions:

1) γ(F, F ′) ⊂ Env(F, F ′);

2) ∃ C ∈ Stc(F,F ′) so that γ(C;F, F ′) is a MGG between C and F ′.

Proof It will be seen in the next sub-paragraphs, that: “γ(F, F ′) is a MGG
⇒ 1)”. The condition 2) is verified by definition. If γ(F, F ′) as in 1) satisfies
γ(F, F ′) ⊂ Env(F, F ′) then:

∀ w ∈Wc(F,F ′) ⇒ w(γ(F, F ′)) = γ(F, F ′).

Thus it is deduced that if C ∈ Stc(F,F ′) and w ∈Wc(F,F ′), there is:

w(γ(C;F, F ′)) = γ(w(C);F, F ′),

as Lc(F,F ′) = carrier of Env(F, F ′). On the other hand, if it is supposed that
γ(C;F, F ′) is a MGG it is concluded that

∀ w ∈Wc(F,F ′), γ(w(C);F, F ′) is a MGG,

(If γ(c, F ) is a MGG then: ∀w ∈ W w(γ(c, F )) is a MGG) and, as
Ch Stc(F,F ′) is principal homogeneous under Wc(F,F ′), finally that ∀ C ∈
Stc(F,F ′) γ(C;F, F ′) is a MGG, i.e. γ(F, F ′) is a MGG.
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Proposition 9.22 Let C ∈ Ch A and (F, F ′) ∈ (A×A)τ0 , with τ0 7→ (s, t),
so that Fs(C) = F satisfying

d(C,F ′) = max {d(C,F ′′) | (F, F ′′) ∈ (A×A)τ0}(
resp. d(C,F ′) = max

τ(F,F ′′)=τ0
d(C,F ′′)

)
.

Then F ′ ∈ At is unique with this property. Moreover

d(C,F ′) = max
C⊃F

d(C,F ′),

i.e. F ′ is at maximal distance from the chamber F ⊂ C, and thus C ⊃
c(F, F ′).

Proof First observe that d(C,F ′) = max
τ(F,F ′′)=τ0

d(C,F ′′) implies d(C,F ′) =

max
C⊃F

d(C,F ′). Let (C,F ′′) ∈ (Ch A × A)τ0 satisfying d(C,F ′′) = d(C,F ′).

From τ(F, F ′′) = τ(F, F ′) it results that there exists w ∈ WF so that F ′′ =
w(F ′), and thus that Env(F, F ′′) = w(Env(F, F ′)). Assume that c(F, F ′) 6=
F . One has d(C,F ′′) = max

C⊃F
d(C,F ′′) and projF F ′′ = w(projF F ′). The

couples (C, projF F ′′) and (C, projF F ′) are both in transversal position in
StF as C ⊃ c(F, F ′) = (projF F ′)opp (resp. C ⊃ c(F, F ′′) = (projF F ′′)opp).
It results projF F ′′ = projF F ′ and projF F ′′ = w(projF F ′), and w leaves
L(F,F ′) pointwise fixed (cf. [4], Ch. V , §23, Prop. 1), and thus F ′′ = F ′. The
case c(F, F ′) = F follows immediately from this last remark.

Let the facet F ′ of Proposition 9.22 be determined in terms of W . Given
C ∈ Ch A denote as usual by S = SC the set of generators of W given
by the reflections defined by the walls of C. Let iC : C(W,S) → A be
the building isomorphism corresponding to C. Under this isomorphism the
relative position mapping

τ : A×A → Relpos A,

corresponds to the mapping

τC(W,S) : C(W,S)× C(W,S)→
∐

(s,t)∈typ A×typ A

Ws \W/Wt ,

defined by:

τC(W,S) : (w,w′) 7→ double class of w−1w′ in Ws \W/Wt ,

where (w,w′) ∈ (W/Ws)×(W/Wt). Clearly τC(W,S) is a well defined mapping.
Given τ ∈ Relpos A it is denoted by w̃τ ∈ Ws \ W/Wt the double class
corresponding to τ , i.e.

τ(Fs(C), wτ (Ft(C))) = τ.
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Let w̃ ∈ Ws \W/Wt be the double class defined by w. Observe that w̃ is a
subset of W/Wt. Thus one has

w̃ = w̃τ ⇔ w ∈ w̃ ⊂W/Wt.

The isomorphism iC induces a bijection between the elements in a double
class and a class of facets:

{w ∈W/Wt| w̃ = w̃τ (resp. w ∈ w̃τ )} → (A×A)(τ,Fs(C)) =

{F ′ ∈ At | τ(Fs(C), F ′) = τ0},

defined by w 7→ (Fs(C), w(Ft(C))). Let wF ′ ∈W/Wt be the class correspond-
ing to F ′ as in Lemma 9.22, i.e. wF ′(Ft(C)) = F ′. The elements w ∈ W/Wt

such that w ∈ ˜(w−1w′), where (w,w′) 7→ (F, F ′), correspond to the facets
F ′ ∈ At with τ(Fs(C), F ′) = τ0. Thus there is only one “maximal length
class” wmax ∈ ˜(w−1w′) satisfying (C,wmax(Ft(C)) are at maximal distance.
Thus one has the following

Proposition 9.23 With the above notation wF ′ ∈W/Wt is characterized by
the following properties:

1) w̃F ′ = w̃τ (resp. wF ′ ∈ w̃τ );

2) lS(wF ′) is maximal on the set ˜(w−1w′) ⊂W/Wt.

9.5 An expression for the convex Hull of two facets

An expression of the convex hull of two facets is obtained. It allows one to
prove that a Minimal Generalized Gallery is contained in the convex hull of
its extremities.

Given F, F ′ ∈ A, write HF ′(F ) for the set of hyperplanes containing F ′
but not F , and

E(F, F ′) := {Φ ∈ DA| F, F ′ ∈ Φ}

(The set of Roots containing F and F ′). By definition of the convex
envelope one has Env(F, F ′) =

⋂
Φ∈E

Φ. Define four subsets of DA in terms of

F and F ′ as follows:

1) D(F, F ′) = {Φ ∈ DA| F, F ′ /∈ ∂Φ} = (∂)−1(H− (HF ∪HF ′);

2) DF ′(F ) = {Φ ∈ DA| ∂Φ ∈ HF ′(F )} = (∂)−1(HF ′(F ));

3) DF (F ′) = {Φ ∈ DA| ∂Φ ∈ HF (F ′)} = (∂)−1(HF (F ′));

4) DL = {Φ ∈ DA| F, F ′ ∈ ∂Φ} = {Φ ∈ DA| L ⊂ ∂Φ} = (∂)−1(H(L) (L =
carrier of Env(F, F ′)).
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One has the partition of the set of roots DA given by (F, F ′).:

DA = D(F, F ′)
∐
DF ′(F )

∐
DF (F ′)

∐
DL.

This partition induces a partition of the se E(F, F ′). Write E = E(F, F ′) and
c = c(F, F ′).

Write:

1)’ D(F, F ′) = D(F, F ′) ∩ E = { Φ | F, F ′ ∈ Φ};

2)’ DF ′(F ) = DF ′(F ) ∩ E = {Φ | F ′ ∈ ∂Φ, F ∈ Φ− ∂Φ};

3)’ DF (F ′) = DF (F ′) ∩ E = {Φ | F ′ ∈ ∂Φ, F ∈ Φ− ∂Φ};

4)’ DL = DL ∩ E = DL

Retain the above notation. Observe that if C ∈ Ch Stc then C ⊃ c ⊃ F .

Proposition 9.24

a) E = D(F, F ′)
∐
DF ′(F )

∐
DF (F ′)

∐
DL;

b) E′ = {Φ ∈ DA| c, F ′ ∈ Φ} = D(c, F ′)
∐
DF ′(c)

∐
DL and Env(c, F ′) =⋂

Φ∈E′
Φ;

c) E′′ = {Φ ∈ DA| C,F ′ ∈ Φ} = D(C,F ′)
∐
DF ′(C) and Env(C,F ′) =⋂

Φ∈E′′
Φ;

d) DF ′(C) = DL(C)
∐
DF ′(F ) (= DF ′(c)), where DL(C) = {Φ | L ⊂

∂Φ, C ∈ Φ}.

Proof The above partition of DA gives rise to the following one of the subset
E ⊂ DA:

E = DA ∩ E = D(F, F ′) ∩ E
∐
DF ′(F ) ∩ E

∐
DF (F ′) ∩ E

∐
DL ∩ E,

which may be re-written as E = D(F, F ′)
∐
DF ′(F )

∐
DF (F ′)

∐
DL. The dis-

joint union of a) follows from

E = DA ∩ E = D(F, F ′) ∩ E
∐
DF ′(F ) ∩ E

∐
DF (F ′) ∩ E

∐
DL ∩ E.

One obtains b) (resp. c)), as particular cases of a), by writing F =
c = c(F, F ′) (resp. F = C) in the equality of a). Remark that E′ =
E(c, F ′) and E′′ = E(C,F ′). Thus b) follows from a) by writing F =
c(F, F ′) and c) by writing F = C. From the inclusion DF ′(C) ⊂ E =
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D(F, F ′)
∐
DF ′(F )

∐
DF (F ′)

∐
DL, and on account of DF ′(C) ∩ DF ′(F ) =

DF ′(F ), DF ′(C) ∩ D(F, F ′) = ∅, and DF ′(C) ∩ DF (F ′) = ∅ one obtains

DF ′(C) = {Φ ∈ DA| F ′ ∈ ∂Φ, (F ⊂)C ∈ Φ}
= {Φ ∈ DA| F ′, F ∈ ∂Φ︸ ︷︷ ︸

L⊂∂Φ

, (F ⊂) C ∈ Φ}

∐
{Φ ∈ DA| F ′ ∈ ∂Φ, F /∈ ∂Φ, C ∈ Φ} (= DF ′(F ), as F ⊂ C)

= DL(C)
∐
DF ′(F ) (= DF ′(c)).

Remark that if Φ ∈ DF ′(F ) then C ∈ Φ as F ⊂ C.

Notation 9.25 The following convention is used in: if F = (Ei)i∈I is a
family of sets one writes

⋂
F =

⋂
i∈I Ei.

From a), b), c), and “c)+d)” it is respectively obtained:

Proposition 9.26

a)’ Env(F, F ′) = (
⋂
D(F, F ′))(

⋂
DF ′(F ))(

⋂
DF (F ′))(

⋂
DL) (= L);

b)’ Env(c, F ′) = (
⋂
D(c, F ′))(

⋂
DF ′(c))(

⋂
DL)(= L);

c)’ Env(C,F ′) = (
⋂
D(C,F ′))(

⋂
DF ′(C));

d)’ Env(C,F ′) = (
⋂
D(C,F ′))(

⋂
DL(C))(

⋂
DF ′(c)).

Proof The four statements result respectively from a), b), c), and “c)+d)”.

Remark 9.27 One has Φ ∈ DL ⇔ Env(F, F ′) ⊂ ∂Φ. Thus Φ ∈ DL ⇔ Φopp

(opposed root to Φ) ∈ DL, as ∂Φ = ∂Φopp. It is then deduced that:⋂
DL =

⋂
Φ∈DL

(Φ ∩ Φopp) =
⋂

Φ∈DL

∂Φ =
⋂

H∈HL

H = L.

Proposition 9.28

e)’ Env(c, F ′) = (
⋂

(DF (F ′) ∩ D(c, F ′)))
⋂

(∩D(F, F ′))
⋂

(∩DF ′(F ))L.

f)’ Env(F, F ′) = (
⋂
DF (F ′))

⋂
Env(c(F, F ′), F ′).

Proof As D(c, F ′) = {Φ | Φ ⊃ Env(c, F ′), c, F ′ /∈ Φ} and in view c ⊃ F
one has

D(c, F ′) = D(F, F ′)
∐
DF (F ′)

⋂
D(c, F ′) .

By substitution of D(c, F ′) by the second member of the above equality in b)′,
and by remarking that DF ′(c) = DF ′(F ), one obtains e′).

By a)′, Env(F, F ′) = (
⋂
D(F, F ′))(

⋂
DF ′(F ))(

⋂
DF (F ′))(

⋂
DL) (= L) =;
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(
⋂
DF ′(F ))(

⋂
(DF (F ′) ∩ D(c, F ′)))(

⋂
D(F, F ′))(

⋂
DF (F ′))L

by remarking that the inclusion DF (F ′) ∩ D(c, F ′) ⊂ DF (F ′) gives⋂
DF (F ′) ⊂

⋂
(DF (F ′) ∩ D(c, F ′)). One concludes by e′) that Env(F, F ′) =

(
⋂
DF (F ′))

⋂
Env(c(F, F ′), F ′).

Let c ⊂ C. By definition of DL(C): DL(C) = {Φ ∈ DA| ∂Φ ⊃ L, C ∈ Φ},
one has DL(C) = Dc(C), as “carrier of c ” = L.

Lemma 9.29 The intersection of the family of convex subcomplexes
(
⋂
DL(C))C∈Ch Stc is given by⋂

C∈Ch Stc

(
⋂
DL(C)) = L.

Proof Let C ∈ Ch Stc and Copp = F opp(c, C) the chamber opposed to C
relatively to c (resp. in Stc). By definition of Copp one has:

Φ ∈ Dc(C)⇔ Φopp ∈ Dc(Copp).

It is concluded that

(
⋂
Dc(C))

⋂
(
⋂
Dc(Copp)) =

⋂
Φ∈Dc(C)

(Φ ∩ Φopp)

=
⋂

Φ∈Dc(C)

∂Φ =
⋂

H∈Hc

= L.

The equality of the lemma follows from:⋂
C∈Stc

(
⋂
Dc(C)) =

⋂
C∈Stc

((
⋂
Dc(C))

⋂
(
⋂
Dc(Copp))) = L.

Proposition 9.30 One has:

1) ⋂
C∈Stc

Env(C,F ′) = Env(c, F ′).

2)
Env(F, F ′) = (

⋂
DF (F ′))

⋂
(
⋂

C∈Stc

Env(C,F ′)).

Proof As 2) follows immediately from f)′ and 1) let it be proved 1). From
d)’ it is obtained:⋂
C∈Stc

Env(C,F ′) =
⋂

C∈Stc

[(
⋂
D(C,F ′))(

⋂
DL(C))(

⋂
DF ′(c))]

=
[ ⋂
C∈Stc

(
⋂
D(C,F ′))

][ ⋂
C∈Stc

(
⋂
DL(C))][

⋂
DF ′(c)

]
.
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On the other hand, the inclusion (C ⊃ c) D(c, F ′) ⊂ D(C,F ′), implies⋂
D(C,F ′) ⊂

⋂
D(c, F ′)

and gives ⋂
C∈Stc

(
⋂
D(C,F ′)) ⊂

⋂
D(c, F ′).

Using the preceding lemma finally the inclusion is obtained:

I)
⋂

C∈Stc

Env(C,F ′) ⊂ (
⋂
D(c, F ′))L(

⋂
DF ′(c)) = Env(c, F ′) by b)’. As

c ⊂ C one has that:

II) Env(c, F ′) ⊂
⋂

C∈Stc

Env(C,F ′)

The equality of 1) results from I) and II).

9.6 The convex envelope of a Minimal Generalized Gallery

Here it is proved the

Proposition 9.31 Let γ(F, F ′) be a MGG between F and F ′ then

γ(F, F ′) ⊂ Env(F, F ′),

i.e. all the facets of γ(F, F ′) belong to Env(F, F ′).

Let it first be shown that:

Proposition 9.32

γ(F, F ′) ⊂ Env(c(F, F ′), F ′).

Proof Let γ(C;F, F ′), for C ⊃ c(F, F ′), be defined as in Proposition 9.21.
Let Γ′(C,F ′) be the minimal gallery of Lemma 9.8 given by γ(C;F, F ′). One
has

Γ′(C,F ′) ⊂ Env(C,F ′).

By construction of Γ′(C,F ′) every facet of γ(C;F, F ′), and a fortiori of
γ(F, F ′), is incident to some chamber of Γ′(C,F ′). It is thus obtained by
the reformulation of Definition 9.16

C ∈ Stc(F,F ′) ⇒ γ(C;F, F ′) ⊂ Env(C,F ′)

(resp. γ(F, F ′) ⊂ Env(C,F ′)). It is concluded that

γ(F, F ′) ⊂
⋂

C∈Stc(F,F ′)

Env(C,F ′) = Env(c(F, F ′), F ′) (cf. Proposition 9.30).
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Observe that the inclusion is evident in the case γ(F, F ′) = γ1(F, F ′) (resp.
γ′1(F, F ′)). To obtain this inclusion in the case γ(F, F ′) = γ2(F, F ′) (resp.
γ′2(F, F ′)) remark that F ⊂ c(F, F ′).

Remark 9.33 If F = projFF
′ = c(F, F ′) then

Env(F, F ′) = Env(c(F, F ′), F ′),

and in this case one has

γ(F, F ′) ⊂ Env(F, F ′),

i.e. the assertion of Proposition 9.31 is verified.

9.6.1 Proof of Proposition 9.31

The case F = c(F, F ′) follows immediately as pointed in the above remark.
Let one consider F 6= c(F, F ′). The case c(F, F ′) 6= F , γ(F, F ′) = γ1(F, F ′)
(resp. γ′1(F, F ′)) is first treated.

By f)’ above one has

Env(F, F ′) = (
⋂
DF (F ′))

⋂
Env(c(F, F ′), F ′).

Thus in order to prove that γ(F, F ′) ⊂ Env(F, F ′) one needs, in view of
γ(F, F ′) ⊂ Env(c(F, F ′), F ′), only to see that:

Φ ∈ DF (F ′)⇒ γ(F, F ′) ⊂ Φ.

Let C be a chamber so that C ⊃ c(F, F ′), i.e. at maximal distance from F ′

(thus transversal to projF F ′ in StF ), and Γ′(C,F ′) the minimal gallery of
Lemma 9.8 adapted to γ(C;F, F ′). It is recalled that Γ′(C,F ′) is defined by
the sequence of chambers

Cr+1 = C, Ci = projFiCi+1 (r > i > 0),

where Fi = Fi(γ(F, F ′)), i.e. Fi denotes the i-th facet of γ(F, F ′) = (F =
F ′r+1 ⊂ Fr ⊃ F ′r ⊂ Fr−1 . . . F

′
1 ⊂ F0 = F ′) and a sequence of choices of

minimal galleries

Γi+1 = Γi+1(Ci+1, Ci) ⊂ StF ′i+1
(F ′i+1 = F ′i+1(γ(F, F ′))) (r > i > 0).

The minimal gallery Γ′(C,F ′) is obtained as the composed gallery

Γ′(C,F ′) = Γr+1 ◦ · · · ◦ Γ1.

Lemma 9.34 Let H ∈ HF ′i+1
(Fi). Denote by ΦH(C0) = the root of A defined

by ∂ΦH(C0) = H and C0 ⊂ ΦH(C0). There are the inclusions:

ΦH(C0) ⊃ Ci, Ci−1, · · · , C0
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and a fortiori
ΦH(C0) ⊃ Fi, Fi−1, · · · , F0

(resp. ΦH(C0) ⊃ F ′i+1, · · · , F ′1).

Proof The proof follows from the following remark. By Remark 9.10 b) it
is known that

H(Ci+1, Ci) = HF ′i+1
(Fi).

Thus H(C,F ′) =
∐

r>i>0

HF ′i+1
(Fi), and the uple Ψ∗(Γi+1) of walls that Γi+1

crosses, gives the set HF ′i+1
(Fi) in a certain order. It is concluded that a

hyperplane H ∈ HF ′i+1
(Fi) cannot separate the chambers Ci and C0, and

a fortiori the chambers Cj and C0 with 0 < j < i which are contained in
Env(Ci, C0).

Let
Φ ∈ DF (F ′) = {Φ ∈ DA| F, F ′ ∈ Φ, ∂Φ ∈ HF (F ′)} .

Then Env(F, F ′) ⊂ Φ and

H = ∂Φ ∈ HF (projFF
′) = HF (F ′) .

Thus H separates c(F, F ′) and projFF
′ but does not separate F and F ′. It is

recalled that c(F, F ′) being the opposed facet to projFF
′ in StF implies that

every H ∈ HF (projFF
′) separates c(F, F ′) and projFF

′. On the other hand,
from C ⊃ c(F, F ′), and projFF

′ ∈ Env(F, F ′) it follows that:

• H separates C and projFF
′;

• H separates C and Env(F, F ′) as projFF
′ ∈ Env(F, F ′).

It is concluded that Φ ⊃ Env(F, F ′), and “∂Φ separates C and F ′”. Thus

H = ∂Φ ∈ H(C,F ′) =
∐
HF ′i+1

(Fi).

Let r > i0 = i0(H) > 0 be defined by

H ∈ HF ′i0+1
(Fi0).

Lemma 9.35 Retain the above notation and assume i0(H) < r. There is
then Fr, Fr−1 · · ·Fi0+1 ∈ H (H ∈ HF (F ′)), in other terms:

“IfH /∈ HF ′r+1
(Fr) then i0(H) = min{i| Fr, · · · , Fi ∈ H} − 1”.

Proof Clearly if H ∈ HF ′r+1
and H /∈ HF ′r+1

(Fr) one has Fr ∈ H. Let it be
seen that:

Fr, · · · , Fi+1 ∈ H and H /∈ HF ′i+1
(Fi)⇒ Fi ∈ H.
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As Fi+1 ∈ H, and F ′i+1 ⊂ Fi+1 it is deduced that H ∈ HF ′i+1
. Thus if it is

supposed H /∈ HF ′i+1
(Fi) it is concluded that Fi ∈ H.

Thus at each step there are two issues Fi ∈ H or Fi /∈ H, and the process
stops if Fi /∈ H. The hypothesis H ∈ HF (F ′), with F = F ′r+1 (resp. F ′ = F0),
gives min{i| Fr, · · ·Fi ∈ H} > 1. It follows from the above reasoning that the
integer i0(H) satisfies:

1. i0(H) > 1;

2. Fr, · · · , Fi0(H)+1 ∈ H, and Fi0(H) /∈ H.

Clearly these properties characterize i0(H).

The proof of Proposition 9.31 in the case c(F, F ′) 6= F and γ(F, F ′) a left
open gallery, thus let γ(F, F ′) = γ1(F, F ′) (resp. γ′1(F, F ′)) runs as follows.
Let H ∈ HF (F ′). If H ∈ HF ′r+1

(Fr) on the basis of Lemma 9.34 one has that

ΦH(F ′) ⊃ ΦH(C0) ⊃ Fr, · · · , F0

and a fortiori γ(F, F ′) ⊂ ΦH(C0). Otherwise on the basis of Lemma 9.35
there exists an integer i0(H) so that:

Fr, · · · , Fi0(H)+1 ∈ H

(resp. F ′r+1, · · · , F ′i0(H)+1 ∈ H), and H ∈ HF ′
i0(H)+1

(Fi0(H)). On the basis of
Lemma 9.34 it is concluded that

ΦH(F0) = ΦH(C0) ⊃ Fi0(H), · · · , F0

(resp. F ′i0(H), · · · , F
′
1), and finally that γ(F, F ′) ⊂ ΦH(F ′).

Proof of Proposition 9.31 in the case c(F, F ′) 6= F, and γ(F, F ′) a
left closed gallery γ(F, F ′) = γ2(F, F ′) (resp. γ(F, F ′) = γ′2(F, F ′))

Given C ⊃ c(F, F ′) ⊃ F = Fr, and H ∈ HF (F ′), let γ(C;F, F ′) be ob-
tained from γ(F, F ′) as in Definition 9.16. One proceeds to construct Γ′(C,F ′)
as in Lemma 9.8. It is deduced then using Lemmas 9.34 and 9.35 as above
that

ΦH(F ′) ⊃ F ′r, Fr−1, · · · , F ′1, F0.

By hypothesis Fr ∈ H(∈ HF (F ′)) thus F ∈ H and consequently γ(F, F ′) ⊂
ΦH(F ′).

9.7 Minimal Generalized Galleries unicity properties

Given a Minimal Generalized Gallery:

γ(C,F ′) : C = Fr ⊃ F ′r · · ·F0 ⊃ F ′0 = F ′
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between a chamber C of A and F ′ ∈ A, write:

si = typ Fi (resp. ti = typ F ′i ) (r > i > 0).

Let g = typ γ : sr ⊃ tr · · · s0 ⊂ t0 be the corresponding gallery of types
defined by γ = γ(C,F ′).

Recall that given a chamber C of A and a couple of types t ⊂ s (t 6= s) of
A it is denoted by F tr(t,s)(C) the unique facet of StFt(C), with typ F tr(t,s)(C) = s,
transversal to C ∈ Ch StFt(C) in the star complex StFt(C), i.e. F tr(t,s)(C) =
facet of type s of StFt(C) at maximal distance from C.

Proposition 9.36 Let γ(C,F ′) = γ′2(C,F ′) (resp. γ(C,F ′) = γ2(C,F ′))
be a right open (resp. closed) Minimal Generalized Gallery of type g =
typ γ(C,F ′). Then γ(C,F ′) is the unique Minimal Generalized Gallery issued
from C of type g.

Proof By induction on r > i > 0 one defines a sequence of triples of facets
(Ci, F i, F ′i) of A such that:

Ci ∈ Ch A (resp. typ F i = si, typ F ′i = ti),

as follows. Write

Cr = C, F r = C, F ′r = Ftr (C) = Ftr (Cr),

and if r > i

F ′i = Fti(Ci+1), F i+1 = F tr(ti,si)
(Ci+1), Ci = projF i+1

Ci+1.

Let (Ci)r>i>0 be the sequence of chambers associated with γ(C,F ′) as in
Lemma 9.8, and defined by:

Cr = C, Ci = projFiCi+1 (r > i > 0).

Clearly C and sequence of facets (Fi)r=i=0 (resp. (F ′i )r=i=0) define a gener-
alized gallery:

γg(C,F
′) : C = F r ⊃ F

′
r · · ·F 0 ⊃ F

′
0 = F ′

By an easy induction one has Ci = Ci (r > i > 0). It is clear that
Cr = Cr, F r = Fr, F ′r = F ′r. It is supposed for r > i > 1 that Ci =
Ci, F i = Fi, F ′i = F ′i . It is deduced that F i−1 = F tr(ti,si−1)(Ci) = Fi−1,
as H(Ci, Fi−1) = HF ′i (Fi−1), and this proves that Ci = Ci and Fi−1 are
transversal (by Lemma 9.4 there is only one facet of type si−1 transversal to
Ci relatively to F ′i = Fi). It is concluded that Ci−1 = Ci−1 = projFiCi. It
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has thus been proved that with C ∈ Ch and g ∈ gallA there is associated a
generalized gallery γg(C,F ′) satisfying:

g ∈ gallA and γ(C,F ′) a mgg of type g =⇒ γ(C,F ′) = γg(C,F
′) .

This implies that if γ(C,F ′) is a MGG of type g then it is unique to this
property.

It is clear that the preceding argument proves mutatis mutandis the propo-
sition in the case γ(C,F ′) = γ2(C,F ′).

Corollary 9.37 Let γ(F, F ′) and γ(F, F ′) be two Minimal Generalized Gal-
leries with extremities F and F ′ of the same type, i.e. so that typ γ(F, F ′) =
typ γ(F, F ′) between F and F ′. Then γ(F, F ′) = γ(F, F ′).

Proof Let C ⊃ c(F, F ′). By Definition 9.16 γ(C;F, F ′) (resp. γ(C;F, F ′))
is a MGG between C and F ′ and typ γ(C;F, F ′) = typ γ(C;F, F ′). On the
basis of Proposition 9.36 it is concluded that γ(C;F, F ′) = γ(C;F, F ′) and a
fortiori γ(F, F ′) = γ(F, F ′).

The following proposition allows assigning to a type of relative position a set
of minimal galleries of types. This set furnishes a family of smooth resolutions
of a Schubert variety defined by this type.

Proposition 9.38 Let γ(F, F ′) (resp. γ(F, F ′)) be a Minimal Generalized
Gallery (resp. a generalized gallery) between F and F ′ of type g. Then

γ(F, F ′) = γ(F, F ′) ,

i.e. if there exists a MGG γ(F, F ′) between F and F ′ of type g, this is the
unique gg of type g between F and F ′. In this case one writes γg(F, F ′) =
γ(F, F ′).

Proof For the sake of briefness the proof in the case g = g′1, l(g) = r + 1
(see i) below) is carried out. Thus write

γ(F, F ′) : F = F ′r+1 ⊂ Fr · · ·F0 ⊃ F ′0 = F ′

(resp. γ(F, F ′) : F = F ′r+1 ⊂ F r · · ·F 0 ⊃ F ′0 = F ′).

Choose a chamber C ⊃ c(F, F ′) (cf. Proposition 9.18) and define:

Cr+1 = C, Ci = projF iCi+1 (r > i > 0).

Observe that Ci+1 ⊃ F ′i+1 ⊂ F i, and choose a Minimal Gallery Γ
i+1

=

Γ
i+1

(Ci+1, Ci), between Ci+1 and Ci. The set Ch StF ′i+1
being a convex set
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of chambers, one then has Γ
i+1 ⊂ Ch StF ′i+1

and thus “set of walls given by

Ψ∗(Γ
i+1

) ⊂ HF ′i+1
(F i)”. Write

Γ(C,F ′) = Γ
r+1 ◦ · · · ◦ Γ

1

(the composed gallery given by (Γ
i
)r+1>i>1 which is looked at as a gg between

C and F ′), and |Ψ∗(Γ(C,F ′))| = number of components of Ψ∗(Γ(C,F ′)) (resp.
|Ψ∗(Γi(Ci, Ci−1))| = number of components of Ψ∗(Γ

i
(Ci, Ci−1))). There is

|Ψ∗(Γi(Ci, Ci−1))| 6 |HF ′i(F i−1)|

(resp. |Ψ∗(Γ(C,F ′))| =
∑

r+1>i>1

|Ψ∗(Γi(Ci, Ci−1))|).

On the other hand, the hypothesis γ(F, F ′) = MGG (cf. Definition 9.11) gives
the equality ∑

|HF ′i(F i−1)| =
∑
|HF ′i(Fi−1)| = |H(C,F ′)|.

Thus it is deduced
|Ψ∗(Γ(C,F ′))| 6 |H(C,F ′)|.

This proves that Γ(C,F ′) is a Minimal Gallery (adapted to γ(F, F ′)); and
thus that “set Ψ∗(Γ

i
)∩ set Ψ∗(Γ

j
) = ∅” for i 6= j, and |Ψ∗(Γ(C,F ′))| =

|H(C,F ′)|. From the inclusions Ψ∗(Γ
i
) ⊂ HF ′i(F i−1) and |Ψ∗(Γ(C,F ′))| =∑

|HF ′i(Fi−1)| it is deduced

Ψ∗(Γ
i
) = HF ′i(F i−1).

It is finally obtained

H(C,F ) =
∐

Ψ∗(Γ
i
) (abusive language) =

∐
HF ′i (Fi−1),

i.e. γ(F, F ′) is a MGG between F and F ′. On the other hand, typ γ(F, F ′) =
g = typ γ(F, F ′) by hypothesis proves that γ(F, F ′) = γ(F, F ′), as results from
Corollary 9.37.



Minimal Generalized Galleries in a Coxeter Complex 185

9.8 The Type of Relative Position associated to Minimal
Generalized Galleries of types

Definition 9.39

1) Recall gallA := Galltyp A, i.e. gallA = set of generalized galleries of the
typical simplex typ A, and define

gallmA := {typ γ| γ a MGG of A} ⊂ gallA

(the set of Minimal Generalized Galleries of types of A). Thus

gallmA = image by typ : GallA → gallA of GallmA ⊂ GallA.

Given g ∈ gallA (resp. F ∈ A ) write:

2) GallA(g) = typ−1(g) (resp. GallmA (g) = GallmA ∩ GallA(g)). (The
Minimal Generalized Galleries of type g)

3) GallmA (g, F ) = GallmA (g)∩GallA(F ) (The Minimal Generalized
Galleries of type g with left extremity F )

Let γ(F, F ′) be a gg of A. Given an automorphism f : A → A of A, it is
denoted by

f(γ(F, F ′)) = (f.γ)(f(F ), f(F ′))

the transformation of the gallery γ = γ(F, F ′) under f . If f ∈ WA then
f.γ = f(γ(F, F ′)) is a generalized gallery of the same type as γ(F, F ′). The
mapping GallA → GallA, defined by γ 7→ f.γ, induces a mapping of the set of
Minimal Generalized Galleries GallmA → GallmA . It follows from its definition
that if γ is a Minimal Generalized Gallery then f.γ is a minimal too and thus
GallmA is stable under automorphisms of A. If f ∈ WA, i.e. f is admissible,
one has that ∀ γ ∈ gallA

typ f.γ = typ γ.

Thus
typ : GallA → gallA

factors through the quotient map

qA : GallA → GallA/WA .

Then there exists a mapping

typ : GallA/WA → gallA

satisfying typ = typ ◦ qA. Denote by

qmA : GallmA → GallmA/WA ⊂ GallA/WA
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the mapping induced by qA, which is in fact the quotient mapping defined by
the induced action of WA on GallmA . Let

typ
m

: GallmA/WA → gallmA

be the mapping induced by typ. One has thus

typm = typ
m ◦ qmA .

From the following proposition it follows that typ
m is a bijection.

Proposition 9.40 Let γ(F, F ′) and γ(F , F ′) be two MGG of A with
typ γ(F, F ′) = typ γ(F , F ′). Then γ(F, F ′) and γ(F , F ′) are conjugate under
W = WA, i.e. ∃ w ∈W so that w(γ(F, F ′)) = γ(F , F ′) (resp. w.γ = γ).

Proof Let C ∈ Stc(F,F ′) (resp. C ∈ Ch Stc(F,F ′)). Then γ(C;F, F ′) (resp.
γ(C;F , F ′)) is a MGG between C and F ′ (resp. C and F ′). Let w ∈W such
that w(C) = C. By Remark 9.10, b), one has (Ci, Fi−1)is a couple in transver-
sal position thus it follows, by induction, that w(F

′
) = F ′. Thus by hypothesis

w(γ(C;F , F ′)) and γ(C;F, F ′) are two MGG issued from C and of the same
type and the same extremities, i.e. with typ w(γ(C;F , F ′)) = typ γ(C;F, F ′).
From Proposition 9.36 it is deduced w(γ(C;F , F ′)) = γ(C;F, F ′), and a for-
tiori w(γ(F , F ′)) = γ(F, F ′).

The following corollary states that Minimal Generalized Galleries under the
action of W are classified by gallmA .

Corollary 9.41 The mapping typ
m

: GallmA/WA → gallmA is a bijection.

Let γ(F, F ′) ∈ GallmA be a representative of the class of GallmA/WA = gallmA
indexed by g ∈ gallmA . The class τ(F, F ′) ∈ (A×A)/W of (F, F ′) is indepen-
dent of the choice of the representative γ(F, F ′) of the class g. This results
from the evident fact that the mapping e : GallA → A×A defined by

E = (E1, E2) : γ(F, F ′) 7→ (F, F ′) (the extremities mapping)

is W = WA-equivariant, by definition of the action of W on GallA (resp.
A×A).

A type of relative position correspondant to a Minimal Generalized Gallery
of types g ∈ gallmA is defined as the type of relative position of the extremities
of a representative gallery of the class g.

Definition 9.42 Let τ• : GallmA/WA = gallmA → Relpos A = (A × A)/W
be the mapping defined by τ• : g 7→ τg = τg(F, F

′), where γ(F, F ′) ∈ gallmA
is a representative MGG of the class defined by g. If Em : GallmA → A × A
denotes the restriction of E to GallmA ⊂ GallA, one obtains the relation:

τ ◦ Em = τ• ◦ qmA .
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It is known that the quotient (C(Sr+1, S)×C(Sr+1, S))/Sr+1, S) is identified
with the set of relative position matrices. Let M be a matrix defining a type
of relative position. One has defined a minimal generalized gallery g(M). By
its construction it is clear that to g(M) it corresponds by the above definition
the type of relative position defined by M . In fact one has thus defined a
section of τ• : gallmC(Sr+1,S)) −→ Relpos C(Sr+1, S)), i.e. τ•(g(M)) = M .
Let τ0 ∈ Relpos A = (A×A)/WA. Recall that (A×A)τ0 = τ−1(τ0).

Definition 9.43 Write
gallmA (τ0) = τ−1

• (τ0) = {g ∈ gallmA | τ•(g) = τ0}
(resp. GallmA (τ0) = (qmA )−1(typ

m
)−1gallmA (τ0) = (typm)−1(gallmA (τ0))).

There is the following disjoint union:

GallmA (τ0) =
∐

g∈gallmA (τ0)

GallmA (g) .

The set of MGG γ(F, F ′) with τ(F, F ′) = τ0 decomposes in a disjoint
union indexed by the set of types of MGG gallm(τ0). The following propo-
sition proves that the restriction of Em to GallmA (g) induces a bijection
Em|GallmA (g) : GallmA (g) ' (A×A)τ0 . In other words given a couple ((F, F ′), g)
with τ(F, F ′) = τ0 and g ∈ gallmA (τ0) there exists a unique Minimal Gener-
alized Gallery γg(F, F ′) of type g characterized by Em(γg(F, F

′)) = (F, F ′).
Proposition 9.38 implies:

Proposition 9.44 The mapping

Emg : GallmA (g)→ (A×A)τg ,

induced by Em, admits a W -equivariant section σg : (A × A)τg → GallmA (g)
defined by

σg : (F, F ′) 7→ γg(F, F
′) ,

where τ(F, F ′) = τg and γg(F, F
′) denotes the unique MGG of type g (cf.

Proposition 9.38) between F and F ′. In fact σg is a WA-equivariant bijection.

Let (A × A) ×Relpos A gallmA be the fiber product set defined by the couple
(τ, τ•). Given τ ∈ Relpos A the fiber over τ is given by

((A×A)×Relpos A gallmA )τ = (A×A)τ × gallmA (τ).

Thus the following decomposition holds

(A×A)×Relpos A gallmA =
∐

τ∈Relpos A

(A×A)τ × gallmA (τ)

=
∐

(τ,g)∈(Relpos A)×gallmA ,

τ=τg

(A×A)τ × {g}.
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Consider also the decomposition defined by the types of galleries

GallmA =
∐

g∈gallmA

GallmA (g).

The natural mapping Em ×RelposA typ : GallmA −→ σ : (A × A) ×Relpos A
gallmA → GallmA admits a section

σ : (A×A)×Relpos A gallmA → GallmA

defined by
σ =

∐
g∈gallmA

σg

where
σg : (A×A)τg × {g} → GallmA (g),

is defined by σg : ((F, F ′), g) 7→ γg(F, F
′). From the fact that σg (g ∈ gallmA )

is a WA-equivariant bijection, it follows that σ is a WA-equivariant bijection.
For example observe that σg(M) : (∆(r)′ × (∆(r)′)M −→ Gallm

∆(r)′ (g(M)) is
given by σg(M) : (D,D′) 7→ γg(M)(D,D

′), where γg(M)(D,D
′) = γ(M).

9.9 The Contracted Product defined by a Gallery of Types

The correspondence between Minimal Generalized Galleries issued from a
chamber C and a set of words in SC is extended to a correspondence between
the generalized galleries issued from C and words in a set Wm

C larger than
SC .
It is recalled that there is a building isomorphism typ A ∼−→ ∆(C) defined by
t 7→ Ft(C). Let g ∈ gallA. Define γg,C ⊂ ∆(C) as the image of g by the pre-
ceding isomorphism. It is called γg,C the basical gg of type g defined by C.

Definition 9.45 With the notation of Definition 9.16 the length
l(γ1(F, F ′)) is defined (resp. l(γ′1(F, F ′)), l(γ2(F, F ′)), l(γ′2(F, F ′))) by:

l(γ1(F, F ′)) = r + 1 (resp. l(γ′1(F, F ′)) = r + 1, l(γ2(F, F ′))

= r + 1, l(γ′2(F, F ′)) = r + 1).

It may be represented thus γ1(F, F ′) (resp. γ′1(F, F ′), γ2(F, F ′), γ′2(F, F ′)) by:

γ1(F, F ′) : (Fi)r>i>0 , (F ′i )r+1>i>1(
resp. γ′1(F, F ′) : (Fi)r>i>0 , (F ′i )r+1>i>0

γ2(F, F ′) : (Fi)r>i>0 , (F ′i )r>i>1

γ′2(F, F ′) : (Fi)r>i>0 , (F ′i )r>i>0

)
.

Write typ Fi = si and typ F ′i = ti.
Let g1 = typ γ1(F, F ′) (resp. g′1 = typ γ′1(F, F ′), g2 = typ γ2(F, F ′),

g′2 = typ γ′2(F, F ′)). Write:
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2) l(g1) (length of g1) = l(γ1(F, F ′))
(
resp. l(g′1) = l(γ′1(F, F ′))(length of

g′1), l(g2) = l(γ2(F, F ′))(length of g2), l(g′2) = l(γ′2(F, F ′)) (length of
g′2)
)

3) s(g1) = (si) = (typ Fi)r>i>0, t(g1) = (ti) = (typ F ′i )r+1>i>1

(
resp.

s(g′1) = (si) = (typ Fi)r>i>0, t(g′1) = (ti) = (typ F ′i )r+1>i>0,
s(g2) = (si) = (typ Fi)r>i>0, t(g2) = (ti) = (typ F ′i )r>i>1,
s(g′2) = (si) = (typ Fi)r>i>0, t(g′2) = (ti) = (typ F ′i )r>i>0

)
;

4) s(g) = (si), t(g) = (ti) we write ti(g) := ti, si(g) := si.

Denote by gall1 (resp. gall′1, gall2, gall
′
2) the set of g ∈ gallA which are

of the form: g1 = typ γ1(F, F ′) (resp. g = g′1 = typ γ′1(F, F ′), g =
g2 = typ γ2(F, F ′), g = g′2 = typ γ′2(F, F ′)). Let γ ∈ GallA with
typ γ ∈ gall1 (resp. typ γ ∈ gall′1, typ γ ∈ gall2, typ γ ∈ gall′2). Write
γ = γ1 (resp. γ = γ′1, γ = γ2, γ = γ′2), and denote by

Fti(γ) = Fti(typ γ)(γ) (resp. Fsi(γ) = Fsi(typ γ)) ,

the corresponding facet of γ.

Remark 9.46 With this convention the generalized gallery γ associated with
an injective gallery Γ = (Cr, · · · , C0), as in the commentary that follows Def-
inition 9.6, is of length r + 1, while Γ is a gallery of length r.

Definition 9.47 Let s ∈ typ A be the type of a chamber, i.e. s = typ C,
C ∈ Ch A.

Define a mapping gallA −→ gallA by g 7→ g∗ ∈ gallA where g∗ is defined
as follows. If g = g1, g′1 (resp. g = g2, g′2) with l(g) = r+ 1, let g∗ ∈ gallA be
given by:

l(g∗) = r + 2 (resp. l(g∗) = r + 1), and

g∗ : (s∗i )r+1>i>0, t(g) (resp. g∗ : (s∗i )r>i>0, t(g)),

with s∗i = s (r + 1 > i > 0) (resp. s∗i = s (r > i > 0)). Thus g∗ is obtained
from g by changing each type si(g) into the type of a chamber si(g∗) .

Write Wt = WFt(C) (t ∈ typ A). Let C(WA, SC) be the Coxeter system
defined by the set of reflexions SC defined by the walls of C, and C(WA, SC) '
A the corresponding building isomorphism, and SC := (w(t, s)) ((t, s) ∈
typ(2)A), where w(t, s) = w(C,projFC), with F = F tr(t,s)(C). There is then
w(t, s) ∈Wt. Let X ∈ P(SC) correspond to t under the identification

P(SC) ' typ A,

i.e. Ft ⊂ C corresponds to the facet of C(WA, SC) whose set of vertices is
X ⊂ SC . Then Wt = WSC−X .

One defines for each gallery of types g a couple of groups WC(t(g)) (resp.
WC(s(g))) and an action of WC(s(g)) on WC(t(g)).
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Definition 9.48 Let g ∈ gallA be characterized by t(g) = (ti(g))(resp. t(s) =
(sj(g))). Define the group WC(t(g)) (resp. WC(s(g))) in the four different
cases by:

1) g = g1

WC(t(g)) = WC(t(g)) =
∏

r+1>i>1

Wti(g)

(resp. WC(s(g)) = WC(s(g)) =
∏
r>i>0

Wsi(g));

2) g = g′1

WC(t(g)) = WC(t(g)) =
∏

r+1>i>1

Wti(g)

(resp. WC(s(g)) = WC(s(g)) =
∏
r>i>0

Wsi(g));

3) g = g2

WC(t(g)) = WC(t(g)) =
∏
r>i>1

Wti(g)

(resp. WC(s(g)) = WC(s(g)) =
∏

r−1>i>0

Wsi(g));

4) g = g′2

WC(t(g)) = WC(t(g)) =
∏
r>i>1

Wti(g)

(resp. WC(s(g)) = WC(s(g)) =
∏

r−1>i>0

Wsi(g)).

Remark 9.49 The above construction is a particular case of a general one.
Let γ ∈ GallA, and g = typ γ. One associates with γ two groups as follows.
Write t(γ) = (F ′ti(g)(γ)) (resp. s(γ) = (Fsj(g)(γ))), and define:

W (t(γ)) =
∏

WF ′
ti(g)

(resp. W (s(γ)) =
∏

WFsj(g)
),

where i (resp.j) runs over a convenient set of indices which depends on the
class of g. Clearly there is:

WC(t(g)) = W (t(γg,C)) (resp. WC(s(g)) = W (s(γg,C))).

Definition 9.50 Define a right action WC(t(g))×WC(s(g))→WC(t(g)), of
the product groupWC(s(g)), on the underlying set ofWC(t(g)), by (x, y) 7→ x′,
where:
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1) if g = g1, x = (xi)r+1>i>1 (resp. x′ = (x′i)r+1>i>1), y = (yi)r>i>0, then
x′r+1 = xr+1yr, x′i = y−1

i xiyi−1 (r > i > 1);

2) if g = g′1, x = (xi)r+1>i>1 (resp. x′ = (x′i)r+1>i>1), y = (yi)r>i>0, then
x′r+1 = xr+1yr, x′i = y−1

i xiyi−1 (r > i > 1);

3) if g = g2, x = (xi)r>i>1 (resp. x′ = (x′i)r>i>1), y = (yi)r−1>i>0, then
x′r = xryr−1, x′i = y−1

i xiyi−1 (r − 1 > i > 1);

4) if g = g′2, x = (xi)r>i>1 (resp. x′ = (x′i)r>i>1), y = (yi)r−1>i>0, then
x′r = xryr−1, x′i = y−1

i xiyi−1 (r − 1 > i > 1);

The quotient set WC(t(g))/WC(s(g)) is called the contracted product de-
fined by the basical gallery γg,C .

Remark 9.51 Two groups W (s(γ)) and W (t(γ)) may be similarly defined
and a right action of W (s(γ)) on W (t(γ)) for a generalized gallery γ in A,
and correspondingly define the quotient set

WC(t(γ))/WC(s(γ))

(the contracted product associated with the gg γ).

9.9.1 Sets of Generalized Galleries as Contracted Products

Notation 9.52 Given γ = γ(F, F ′) ∈ GallA of type typ γ = g and length
l(γ) we write:

γ : (Fj)j∈I(g) ; (F ′i )i∈I′(g) ,

where the set of indices I(g)(resp. I ′(g)) depend on the class of g. It is
understood that:

1) the inclusions Fi ⊃ F ′i , F ′i+1 ⊂ Fi hold whenever they are defined;

2) this same convention applies mutatis mutandis to a g ∈ gallA, it is
written:

g : (sj)j∈I(g) , (tj)i∈I′(g) .

Let the gg γ = γ(F, F ′) with l(γ) = r+ 1 be given, according to the above
notation, by γ = γ(F, F ′) : (Fi), (F ′j), where γ = γi or γ′i (i = 1, 2). Write
typ γ = g : (si), (tj). Thus

Fi = Fsi(γ), Fj = Ftj (γ) .

The gallery γg,C ⊂ ∆(C) is given by

γg,C : (Fsi(C)), (Ftj (C)).
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Let GallA(g, F ) denote the set of gg of type g issued from F , and x =
(xi)r+1>i>1 (resp. x = (xi)r>i>1) ∈WC(t(g)). If g = g1, g

′
1 (resp. g = g2, g

′
2).

Write

zi =
∏

r+1>α>i

xα, zr+2 = 1

(resp. zi =
∏

r>α>i

xα, zr+1 = 1) ,

and define, by means of γg,C , the mapping:

WC(t(g)) → GallA(g, Ftr+1(C))

(resp. WC(t(g)) → GallA(g, Fsr (C))) ,

if g = g1, g
′
1 (resp. g = g2, g

′
2), by

x 7→ γg,C(x) : (zi+1(Fsi(C))), (zj+1(Ftj (C))).

Also write x · γg,C = γg,C(x) with x ∈WC(t(g)). Remark that:

Fsi(C) ⊃ Fti(C) ⇒ zi+1(Fsi(C)) ⊃ zi+1(Fti(C))

(resp. Fti+1(C) ⊂ Fsi(C) ⇒ zi+2(Fti+1(C)) ⊂ zi+1(Fsi(C))) ,

as zi+1 = zi+2xi+1 with xi+1 ∈WFti+1
gives zi+2(Fti+1(C)) = zi+1(Fti+1(C)).

Thus γg,C(x) is a gg of the same type as γg,C , i.e. typ γg,C(x) = g. Given
C ∈ Ch A one writes:

Fg(C) = Ftr+1(g)(C), if g = g1, g
′
1

(resp. Fg(C) = Fsr(g)(C), if g = g2, g
′
2) .

Definition 9.53 The above defined mapping

WC(t(g))→ GallA(g, Fg(C))

factors through the quotient mapping:

WC(t(g))→WC(t(g))/WC(s(g)),

as it is easily verified. Denote by

ig,C : WC(t(g))/WC(s(g))→ GallA(g, Fg(C))

the induced mapping.
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9.9.2 Bijectivity of this mapping

Let the isomorphism C(W,SC) ' A be made explicit. The choice of C ∈ Ch A
gives rise to a building isomorphism

iC =
∐

t∈typ A
it,C : C(W,SC) =

∐
X⊂P(SC)

W/WSC−X → A =
∐

t∈typ A
At

defined as follows. Let t ∈ typ A correspond to Y ∈ P(SC) = typ C(W,SC)
under the induced bijection typ C(W,SC) ' typ A, given by X 7→ FX(C)
where FX(C) ⊂ C denotes the facet invariant under WSC−X , one writes
t = tX . Then there is: Wt = Stab Ft(C) = WSC−X . Define it,C : W/Wt → At
by:

it,C : w 7→ w(Ft(C)) .

Proposition 9.54 Let g ∈ gallA. It is supposed g = g′1, l(g) = r + 1. Write,
according to the preceding convention (cf. Notation 9.52)

g : (si)r>i>0, (tj)r+1>j>0.

Then, with the above notation (cf. Definition 9.48), the mapping

WC(t(g))→ GallA(g, Ftr+1(C))

defined by x 7→ γg,C(x) (x = (xj) ∈WC(t(g))) where

γg,C(x) : (zi+1(Fti(C)))r>i>0, (zj+1(Fsj (C)))r+1>j>0,

and zα =
∏

r+1>j>α
xj (resp. zr+2 = 1), satisfies:

γg,C(x) = γg,C(u) (u = (ui)r+1>j>1 ∈WC(t(g)))⇒

∃ y = (yi)r>i>0 ∈WC(s(g))

so that: x.y = (xr+1yr, y
−1
r xryr−1, · · · , y−1

1 x1y0) = u.

Proof Denote by zi+1 (resp. z′j+1) the class of zi+1 (resp. z′j+1) in W/Wsi

(resp. W/Wtj ). Let g ∈ gallC(W,SC) correspond to g by typ A ∼−→ P(SC), and
Y ⊂ SC to tr+1, i.e. tY = tr+1. The composed mapping of x 7→ γg,C(x) with
the bijection i−1

C : A ∼−→ C(W,SC), induces the following mapping:

GallA(g, Ftr+1
(C))

∼−→ GallC(W,SC)(g, FY (Ce))

transforming γg,C(x) into γg(x) : (zi+1), (z′j+1). Write vα =
∏

r+1>i>α
ui.

The hypothesis γg,C(x) = γg,C(u) translates into:

zα+1 ≡ vα+1 (mod Wsα)

(resp. zα+1 ≡ vα+1 (mod Wtα)) (r > α > 0).
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Then
(∗) ∀ r > α > 0 ∃yα ∈Wsα/ vα+1 = zα+1yα.

Let it be proved by induction that ∀ r > α > 1 the equality

E(α) : (xr+1yr, y
−1
r xryr−1, · · · , xαyα−1) = (ur+1, · · · , uα)

holds.
For α = r + 1 this is just (∗). Let then r > α, and suppose that E(α + 1)
holds. Thus vα+1 = zα+1yα. By (∗) one obtains

vα+1uα = vα = zαyα−1 = zα+1xαyα−1.

By substitution vα+1 = zα+1yα one obtains

zα+1yαuα = zα+1xαyα−1,

i.e. uα = y−1
α xαyα−1. This equality joint to E(α+1) gives E(α). The equality

E(1) is that of the proposition.

Remark 9.55 The proof of proposition 9.54 may be easily adapted, mutatis
mutandis, to that of the corresponding statement obtained by supposing g = g1

(resp. g = g2, g = g′2), instead of g = g′1.

The proposition gives immediatly the following

Corollary 9.56 The induced mapping ig,C : WC(t(g))/WC(s(g)) →
GallA(g, Fg(C)) defined by x 7→ γg,C(x) (x ∈WC(t(g))) is injective.

Definition 9.57 I) Let γ ∈ GallA(g), where g = g′1 (resp. g = g1), and
l(g) = r + 1, be given by

γ : (Fi)r>i>0, (F ′j)r+1>j>0 (resp. (F ′j)r+1>j>1).

Given r > α > 0 one defines the α-truncated gallery γ(α) of γ by:

γ(α) : (Fi)r>i>α, (F ′j)r+1>j>α+1.

Given r > α > 0 (resp. r > α > 1) one defines the α-truncated gallery
γ(α)′ of γ by:

γ(α)′ : (Fi)r>i>α, (F ′j)r+1>j>α.

Thus typ γ(α) ∈ gall1 (resp. typ γ(α)′ ∈ gall′1).

II) Let γ ∈ GallA(g), where g = g′2 (resp. g = g2), and l(g) = r + 1, be
given by

γ : (Fi)r>i>0, (F ′j)r>j>0 (resp. (F ′j)r>j>1).
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Given r > α > 0 one defines the α-truncated gallery γ(α) of γ by:

γ(α) : (Fi)r>i>α, (F ′j)r>j>α+1.

Given r > α > 0 (resp. r > α > 1) one defines the α-truncated gallery
γ(α)′ of γ by

γ(α)′ : (Fi)r>i>α, (F ′j)r>j>α.

Thus typ γ(α) ∈ gall2 (resp. typ γ(α)′ ∈ gall′2).

The following proposition is interesting by itself and does not play any role
in the proof of the bijectivity of ig,C .

Proposition 9.58 Let γ = γ(C,F ′) a MGG between the chamber C and the
facet F ′ of A. It is supposed that typ γ = g′2, and l(γ) = r + 1. Write

γ = γ(C,F ′) : (Fi)r>i>0, (F ′j)r>j>0.

One then has that the α-truncated galleries

γ(α) = γ(α)(C,Fα) (r > α > 0) (resp. γ(α)′(C,F ′α) (r > α > 0))

are Minimal Generalized Galleries.

Proof As in Lemma 9.8 a minimal gallery adapted to γ(C,F ′) is con-
structed. Thus one defines the sequence of chambers

Cr = C, Cα = projFαCα+1 (r > α > 0),

and a sequence of minimal galleries:

( Γα(= Γα(Cα, Cα−1))) r>α>1.

It is known (cf. Subsection 9.2 Construction of a minimal gallery adapted to
γ(C,F ′)) that the gallery obtained by composition of (Γα):

Γ(1) = Γ(1)(Cr, C0) = Γr ◦ · · · ◦ Γ1

is a minimal gallery adapted to γ(C,F ′). A fortiori the α-truncated gallery
Γ(α) = Γr ◦ · · · ◦ Γα is also a minimal gallery. Let it be proved that Γ(α) is in
fact a minimal gallery between C and F ′α. One must then see that for every
wall

H ∈ HF ′r (Fr−1)
∐
· · ·
∐
HF ′α+1

(Fα) (= H(C,Cα))

that Γ(α) crosses one has F ′α /∈ H. It is clear that if this property holds, there
is

H(C,F ′α) = HF ′r−1
(Fr−1)

∐
· · ·
∐
HF ′α+1

(Fα),
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and consequently that Γ(α)(C,F ′α) is a minimal gallery between C and F ′α. It
is supposed that there exists j > α so that

(∗) H ∈ HF ′j+1
(Fj) and F ′α ∈ H.

Let it be proved that necessarily j > α. Otherwise one must have H ∈
HF ′α+1

(Fα) and F ′α ∈ H. It is known that H ∈ HF ′α+1
(Fα)⇒ H ∈ H(Cr, F

′
0),

thus F ′0 /∈ H.
On the other hand,

H ∈ HF ′α+1
(Fα) and HF ′α+1

(Fα) ∩HF ′α(Fα−1) = ∅

implies Fα−1 ∈ H. Thus as F ′α−1 ⊂ Fα−1 it is deduced that H ∈ HF ′α−1
,

and finally that Fα−2 ∈ H, otherwise one should have H ∈ HF ′α−1
(Fα−2).

Pursuing this same reasoning one must certainly obtain the conclusion F0 ∈ H
(and a fortiori F ′0 ∈ H), which contradicts the hypothesis F ′0 /∈ H.
Let now j > α so that (∗) holds for j. One then has H ∈ HF ′α ∩ H(Cr, F

′
0).

As HF ′j+1
(Fj) ∩ HF ′α(Fα−1) = ∅, one must have Fα−1 ∈ H. By the same

argument as above, the contradiction F ′0 ∈ H is obtained. Thus no H satisfies
(∗). This proves that Γ(α) is a minimal gallery and finally that γ(α)(C,F ′α) is
a MGG.

Corollary 9.59 [of the proof] One has projF ′αC = Cα (r > α > 0).

Remark 9.60 In fact it is easily seen that, more generally, the truncation
γ(α)(F, F ′) of a MGG, γ(F, F ′) is also a MGG.

Proposition 9.61 The mapping ig,C is surjective.

Proof It suffices to see that x 7→ γg,C(x) is a surjective mapping in the case
g = g′1 and l(g) = r+1. The cases g = g1, g2, g

′
2 may be handled in essentially

the same way. Write tj := tj(g) (resp. si := si(g)). Let it be proved that
given

γ : (Fi)r>i>0, (F ′j)r+1>j>0,

with F ′r+1 = Ftr+1
(C) there exists x = (xi) ∈ WC(t(g)), so that, with the

notation of proposition 9.54, one has:

Fi = zi+1(Fsi(C)) (resp. F ′j = zj+1(Ftj (C))).

In this case one writes γ = x.γg,C .
One proceeds to prove by induction that:

(∗) ∀ r > α > 0, ∃ x(α+1) = (xj) ∈
∏

r+1>j>α+1

W (tj(g)),
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so that:

Fi = zi+1(Fsi(C)) (r > i > α) (resp. F ′j = zj+1(Ftj (C)) (r > j > α)).

Let α = r. One has

γg(r)′ ,C : Ftr+1
(C) ⊂ Fsr (C) ⊃ Ftr (C).

There is a bijection Wtr+1
/Wsr → (StFtr+1

(C))sr , defined by: x 7→ x(Fsr (C))

(x ∈ Wtr+1/Wsr). Thus given Ftr+1 ⊂ Fr, with typ Fr = sr, there exists
x ∈ Wtr+1

with x(Fsr (C)) = Fr, i.e. ∃ x(r+1) ∈ W (t(g(r)′)) = Wtr+1
so that

x(r+1).γg(r)′ ,C = γ(r)′ .
Let r > α > 0. Reasoning by induction, it is supposed that there exists

x(α+2) = (xj) ∈
∏

r+1>j>α+2

W (tj(g)),

satisfying: x(α+2).γg(α+1)′ ,C = γ(α+1)′ . Then one has F ′α+1 = zα+2(Ftα+1
(C).

Thus there is a surjection

WF ′α+1
→ (StF ′α+1

)sα ,

defined by: w 7→ w(zα+2.Fsα(C)), as (StF ′α+1
)sα is a WF ′α+1

-homogeneous set.
On the other hand,

WF ′α+1
= zα+2Wtα+1

z−1
α+2.

It is concluded that there exists xα+1 ∈Wtα+1
, so that

Fα = zα+2xα+1z
−1
α+2(zα+2(Fsα(C))) = zα+2xα+1(Fsα(C)).

Write x(α+1) = (x′j)r+1>j>α+1, with x′α+1 = xα+1 (resp. (x′j) = x(α+2)

(r + 1 > j > α + 2)). It is finally obtained that x(α+1).γg(α)′ ,C = γ(α)′ . This
concludes the proof of (∗), and consequently

ig,C : WC(t(g))→ GallA(g, Fg(C))

defined by ig,C : x 7→ γg,C(x), where Fg(C) = Fe1(g)(C), is a surjective
mapping.

From Corollary 9.56 and Proposition 9.61 one deduces the

Proposition 9.62 The mapping

ig,C : WC(t(g))/WC(s(g))→ GallA(g, Fg(C))

is a bijection.
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One has associated with g ∈ gallA a gallery g∗ ∈ gallA (cf. Definition
9.47). Observe that

W (t(g∗))/W (s(g∗)) = W (t(g∗)).

Thus, in this case, there is a bijection ig∗,C : W (t(g∗)) → GallA(g∗, C). On
the other hand, there is a natural mapping

qg∗ : GallA(g∗)→ GallA(g),

defined by:
qg∗ : γ∗ 7→ Fg(γ

∗) (γ∗ ∈ GallA(g∗)) ,

where Fg(γ∗) is the gg of type g defined by Fsi(Fg(γ∗)) = Fsi(Ci) (r > i > 0),
and F ′tj (Fg(γ

∗)) = Ftj (Cj), with (tj) = t(g) (resp. (si) = s(g)).
From the inclusions ti+1(g) ⊂ si(g) ⊃ ti(g) it results that Fti+1

(Ci+1) ⊂
Fsi(Ci) ⊃ Fti(Ci). i.e. the sets of facets (Fsi(Ci)), (Ftj (Cj)) satisfy the
inclusions defining a generalized gallery Fg(γ∗).

Denote by
qg∗,C : GallA(g∗, C)→ GallA(g, Fg(C))

the restriction of qg∗ to the set of g∗-galleries (resp. galleries of type g∗)
issued from C, GallA(g∗, C) ⊂ GallA(g∗). The set GallA(g, C) thus appears
as quotient set of GallA(g∗, C).

Let W (qg∗,C) : WC(t(g))→ WC(t(g))/WC(s(g)) be the mapping defined
by

W (qg∗,C) = i−1
g,C ◦ qg∗,C ◦ ig∗,C .

The following lemma shows that qg∗,C corresponds to the quotient mapping
W (t(g)) −→ W (t(g))/W (s(g)) by the isomorphisms ig,C (resp. ig∗,C). It is
easy to see (cf. Proposition 9.54) the

Lemma 9.63 The mapping W (qg∗,C) coincides with the quotient mapping
defined by the right action of WC(s(g)) on WC(t(g)) (cf. Definition 9.50).

Definition 9.64

A) Let g ∈ gallA with l(g) = r + 1, and C ∈ Ch A. Define a mapping
sg∗,C : GallA(g, Fg(C))→ GallA(g∗, C) by

sg∗,C : γ 7→ γ∗,

(The canonical section of qg∗,C) where γ∗ is defined as follows.

1) Let g = g1 (resp. g′1), and γ : (Fi)r>i>0, (F ′j)r+1>j>1

(resp. (F ′j)r+1>j>0) . Define γ∗ by

γ∗ : (Ci)r+1>i>0, (F ′j)r+1>j>1 (resp. (F ′j)r+1>j>0),

where Cr+1 = C, Ci = projFiCi+1 (r > i > 0).
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2) Let g = g2 (resp. g′2), and γ : (Fi)r>i>0, (F ′j)r>j>1

(resp. (F ′j)r>j>0) . Define γ∗ by

γ∗ : (Ci)r>i>0, (F ′j)r>j>1 (resp. (F ′j)r>j>0),

where Cr = C, Ci = projFiCi+1 (r > i > 0).

Denote by smg∗,C : GallmA (g, Fg(C)) → GallA(g∗, C) the restriction of
sg∗,C to GallmA (g, Fg(C)) ⊂ GallA(g, Fg(C)).

B) Let G ⊂ GallA(g). Write:

Ch A ∗ G := {(C, γ(F, F ′)) ∈ Ch A× G| Ftyp F (C) = F},

i.e. Ch A∗G = Ch A×AG where the second member is the fiber product
defined by the couple of mappings Ch A → A (resp. G → A), given by
C 7→ Fe1(g)(C) (resp. E1|G : γ(F, F ′) 7→ F ). The section sg∗,C may be
extended to a section on Ch A ∗GallA(g).
Let sg∗,ch : Ch A ∗GallA(g)→ GallA(g∗) be the mapping defined by

sg∗,ch : (C, γ(F, F ′)) 7→ γ∗(C,F ′).

Thus given (C, γ) ∈ Ch A ∗GallA(g) one has sg∗,ch((C, γ)) = sg∗,C(γ).
Let

smg∗,ch : Ch A ∗GallmA (g)→ GallA(g∗)

be the restriction of sg∗,ch to Ch A ∗GallmA (g) ⊂ Ch A ∗GallA(g).

Let E = (E1, E2) : GallA → A×A be defined by E : γ(F, F ′) 7→ (F, F ′) (the
extremities mapping). Let

E1 ∗ qg∗ : GallA(g∗)→ Ch A ∗GallA(g)

be the fiber product mapping

E1 ∗ qg∗ = E1 ×A qg∗ .

It results immediately from Definition 9.64 and the definition of qg∗ that:

(∀ γ ∈ GallA(g, Fg(C))) , (qg∗,C ◦ sg∗,C)(γ) = γ

(resp. ∀ (C, γ) ∈ Ch A ∗GallA(g) , ((E1 ∗ qg∗) ◦ sg∗,ch)((C, γ)) = (C, γ) ).

Then one has
qg∗,C ◦ sg∗,C = 1GallA(g,Fg(C))

(resp. (E1 ∗ qg∗) ◦ sg∗,ch = 1Ch A∗GallA(g)).
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9.10 The Representatives Set of a Contracted Product defined
by a gallery of types

With the natural section sg∗,C of the quotient mapping qg∗,C corresponds a
section of the contracted product W (t(g))/W (s(g)) −→ W (t(g)) whose val-
ues gives a set of canonical representatives of the quotient. These represen-
tatives are calculated in terms of the minimal length elements in the classes
(W/WF )F⊂C .
Define

W (sg∗,C) : W (g) = WC(t(g))/WC(s(g))→WC(t(g))

by
W (sg∗,C) = i−1

g∗,C ◦ sg∗,C ◦ ig,C .

One thus has

W (qg∗,C) ◦W (sg∗,C) = (i−1
g,C ◦ qg∗,C ◦ ig∗,C) ◦ (i−1

g∗,C ◦ sg∗,C ◦ ig,C)

= i−1
g,C ◦ 1E ◦ ig,C = 1W (g).

It is concluded that:

Proposition 9.65 The mapping W (sg∗,C) is a section of the quotient map-
ping W (qg∗,C) : WC(t(g))→W (g) = WC(t(g))/WC(s(g)).

Notation 9.66 Given a class x ∈W (g) one denotes by wg∗,C(x) the element
which makes W (sg∗,C) correspond to x. It is thus concluded that the set

(wg∗,C(x))x∈W (g) ⊂WC(t(g))

is a set of representatives of W (qg∗,C) : WC(t(g))→WC(t(g))/WC(s(g)).

9.10.1 Explicit calculation of the Representatives set

Write:

g : (si)r>i>0, (tj)r+1>j>0; x = (xi)r+1>i>0 ∈WC(t(g)); zi =∏
r+1>α>i

xα (resp. zr+2 = 1).

Thus one obtains ig,C(x) = γg,C(x) for x ∈W (g) cf. Definition 9.53, with

γg,C(x) : (zi+1(Fsi(C)))r>i>0, (zj+1(Ftj (C)))r+1>j>0.

Let γ∗g,C(x) be the image of γg,C(x) by sg∗,C (cf. Definition 9.63). Write

γ∗g,C(x) : (Ci(x))r+1>i>0, (zj+1(Ftj (C)))r+1>j>0.
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The determination of γ∗g,C(x) amounts to that of the sequence of chambers

Cr+1 = C, Ci = Ci(x) = projFi(x)Ci+1(x) (r > i > 0)

where Fi = Fi(x) = zi+1(Fsi(C)) (r > i > 0). Clearly the following inclusions
holds

Ci ⊃ Fi ⊃ F ′i = zi+1(Fti(C)).

Definition 9.67 Define xm = xmi = by the following recursive defini-
tion. Let xmr+1 = the minimal length lSC (xmr+1) representative of the class
xr+1 ∈ Wtr+1/Wsr ; and yr ∈ Wsr be the element defined by xmr+1 = xr+1yr,
i.e. yr = x−1

r+1x
m
r+1. For r > i > 1 one writes xmi = the minimal length

lSC (xmi ) representative of the class y−1
i xi ∈ Wti/Wsi−1

, and let yi−1 ∈ Wsi−1

be the element defined by xmi = y−1
i xiyi−1, i.e. yi−1 = x−1

i yix
i
m.

Let it be written wg∗,C(x) = x
′m = (x

′m
i ). The characteristic property of

x′m being

x′m.γg∗,C = γg∗,C(x′m) = sg∗,C(γg,C(x)) = γ∗g,C(x),

or equivalently
(∗) zmi+1(C) = Ci (r > i > 0),

where zmi+1 =
∏

r+1>α>i+1

x
′m
α .

Proposition 9.68 The following identity holds: xm = wg∗,C(x).

Proof Let w′i = w(Ci, Ci−1) (r + 1 > i > 1) (resp. zr+2 = yr+1 = 1). One
then has w′r+1 = w(Cr+1, Cr) = xmr+1. Define for r + 1 > i > 1

wmi = (zi+1yi)(y
−1
i xiyi−1)(zi+1yi)

−1 = (zi+1yi)x
m
i (zi+1yi)

−1.

From the equality xm = (xmi ) = (y−1
i xiyi−1)r+1>i>1 it is obtained

zmi+1 =
∏

r+1>α>i+1

xmα =
∏

r+1>α>i+1

(y−1
α xαyα−1) = (

∏
r+1>α>i+1

xα)yi = zi+1yi.

Then it follows that wmi = zmi+1x
m
i (zmi+1)−1. Consequently it is obtained, as

may be easily verified by induction, that

(∗∗) zi+1yi = xmr+1. · · ·xmi+1 = wmi+1 · · ·wmr+1.

Let it now be proved by induction w′i = w(Ci, Ci−1) = wmi . It is known that
w′r+1 = w(Cr+1, Cr) = xmr+1 = xr+1yr = wmr+1. Let r > i > 1. It is supposed
by recursive hypothesis that w′α+1 = wmα+1 for α > i. Thus one obtains

w′i+1 · · ·w′r+1 = wmi+1 · · ·wmr+1 = zmi+1 = zi+1yi,
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then (zi+1yi)(C) = w′i+1 · · ·w′r+1(C) = Ci ⊃ Fi (⊃ F ′i ). On the other hand,
C ′i−1 = zi(C) ⊃ zi(Fsi−1

(C)) = Fi−1, i.e. C ′i−1 is a chamber incident to Fi−1.
As

zi = zi+1xi = (zi+1yi)(y
−1
i xi)(zi+1yi)

−1(zi+1yi) = zmi+1(y−1
i xi)(z

m
i+1)−1zmi+1.

It is recalled that zmi+1(C) = Ci, thus it is deduced that

C ′i−1 = zi(C) = zmi+1(y−1
i xi)(z

m
i+1)−1(Ci).

Let ui = the minimal length lS(Ci)(ui) element of the class of
zmi+1(yixi)(z

m
i+1)−1 in WF ′i

/zmi+1Wsi−1
(zmi+1)−1 = zmi+1(Wti/Wsi−1

)(zmi+1)−1. It
is concluded that Ci−1 = projFi−1

Ci = ui(Ci), i.e. ui = w(Ci, Ci−1). On the
other hand, it is known that by definition

xmi = y−1
i xiyi−1 ∈Wti/Wsi−1

,

is the minimal length lSC (xmi ) element of the class y−1
i xi ∈ Wti/Wsi−1

, and
finally one has w′i = zmi+1x

m
i (zmi+1)−1 = wmi . From (∗∗) it is concluded that (∗)

holds in view of (w′i+1 · · ·w′r+1)(C) = Ci. This proves that xm gives wg∗,C(x),
and thus achieves the proof of the proposition.

9.11 Minimal length class representatives in facet stabilizer
subgroups

Write
St

∆(C)
Ft

:= {F ∈ ∆(C)| Ft ⊂ F}

(Star Complex of Ft in ∆(C)), and StAFt for the Star Complex of Ft in
A, where Ft = Ft(C) (t ∈ typ A). On the other hand, the isomorphisms
iC : C(WA, SC) ' A (resp. typ C(W,SC) = P(SC) ' typ A ' ∆(C))
induce the isomorphisms

i
StFt
C : C(WSC−Xt , SC −Xt)→ StFt = StAFt ,

where Xt ⊂ SC corresponds to t by P(SC) ' typ A; thus Xt indexes the
vertices of Ft, and

typ C(WSC−Xt , SC −Xt) = P(SC −Xt) ' typ StAFt ' St
∆(C)
Ft(C).

One has that

C(WSC−Xt , SC −Xt) =
∐

F∈St
∆(C)

Ft(C)

WSC−Xt/WF

and given s ⊃ t the restriction

i
StFt
C,s : WSC−Xt/WFs ' (StAFt)s (Fs ⊃ Ft),

is defined by w 7→ w(Fs) ∈ (StAFt)s.
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Definition 9.69
Given F ∈ (StFt(C))s, let wF ∈ WSC−Xt/WFs , where WFs = WS−Xs ,

be the class of an element wF satisfying wF (Fs(C)) = F . In other terms
wF = (i

StFt(C)

C )−1(F ). Let

wmF = w(C,projFC) ∈WSC−Xt .

One has that wmF ∈ wF is the minimal length element in the class wF , i.e.
lSC (wmF ) is a minimum of the function w 7→ lSC (w) (w ∈ wF ). As wmF ∈
WSC−Xt one then has

lSC−Xt(w
m
F ) = lSC (wmF ).

Thus wmF ∈ wF is characterized as the minimal length element, relatively to
SC −Xt, of this class wF ⊂WSC−Xt .

Write Wt = WSC−Xt thus WFs = Ws.

Definition 9.70
Let (t, s) ∈ typ(2)A (cf. Definition 9.5). Write:

Wm
C (t, s) := {wmF ∈Wt| F ∈ (StFt(C))s 'Wt/Ws}

(The set of minimal length representatives of the classes Wt/Ws),
and

Wm
C =

∐
(t,s)∈typ(2)A

Wm
C (t, s) .

Given g ∈ gallA so that g = g1, g
′
1 (resp. g = g2, g

′
2) with l(g) = r+ 1, let:

Wm
C (g) :=

∏
r+1>i>1

Wm
C (ti(g), si−1(g))

(resp. Wm
C (g) :=

∏
r>i>1

Wm
C (ti(g), si−1(g))).

Clearly one has the inclusion Wm
C (g) ⊂WC(t(g)).

Remark that the family of classes of representatives (Wm
C (t, s))(t,s)∈typ(2)A

is indexed by the same set of indices as SC ⊂ W (cf. loc. cit.). The set
Wm
C (t, s) ⊂ Wt (cf. Definition 9.70) is in fact a set of representatives of the

quotient set Wt/Ws, by means of the following correspondence. Given w ∈
Wt/Ws, one writes Fw := w(Fs(C)). Define a bijection Wt/Ws → Wm

C (t, s),
by w 7→ wmFw (cf. loc. cit.). The set Wm

C plays the same role with respect to
generalized galleries issued from C as SC with respect to Minimal Generalized
Galleries, i.e. Generalized Galleries issued from C correspond to words inWm

C .
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Definition 9.71
Define the length of a class w ∈Wt/Ws relatively to S = SC by lS(w) =

lS(wm), where wm ∈ w is the minimal length lS(wm) element of this class.
If F = F tr(t,s)(C) then the element wmF (cf. loc. cit.) satisfies the following
characteristic property:

(∀ w ∈Wt/Ws) lS(wmF ) > lS(w).

By definition F = F tr(t,s)(C) is the facet of type s at maximal distance from
C in StFt(C), i.e. C and F are in transversal position in StFt(C) and wmF =
w(C,projFC), thus

(∀w ∈Wt/Ws) lS(wmF ) = d(C,F ) > d(C,Fw) = lS(w).

By definition of w(t, s) it is obtained

w(t, s) = w(C,projFC) = wmF .

Thus w(t, s) is the representative of the maximal length class in Wt/Ws.

Proposition 9.72 With the notation of Proposition 9.54 one has: The map-
ping

img,C : Wm
C (g)→ GallA(g, Fg(C))

defined by img,C : x 7→ γg,C(x) (x ∈ Wm
C (g)) is bijective.

Observe that img,C = restriction of qg∗,C ◦ ig∗,C (cf. 9.62) to Wm
C (g) (resp. the

composition of the natural mappingWm
C (g) −→WC(t(g))/WC(s(g)) followed

by ig,C).

Proof It suffices to carry out the proof in the case g = g1, g
′
1. In this case

Fg(C) = Ftr+1(g)(C). Remark that

(∗) x = (xi) ∈ Wm
C (g)⇔ xi is the minimal length element of its own class

xi ∈Wti(g)/Wsi−1(g).

As ig,C : W (g) → GallA(g, Fg(C)) is bijective given γ ∈ GallA(g, Fg(C)),
there exists x = (xi) so that γg,C(x) = γ. Let y = (yi) ∈WC(s(g)) be defined
as in Subsection 9.10.1. Then xm = (xj) ∈WC(t(g)) given by

xmr+1 = xr+1yr, xmi = y−1
i xiyi−1 (r > i > 1),

satisfies:

1) xmi is the minimal length element of its own class xmi ∈Wti(g)/Wsi−1(g).

2) γg(xm) = γg,C(x),
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as follows from loc. cit. This proves that img,C is a surjective mapping. Let it
be proved that given x = (xi), and t = (ti) ∈ Wm

C (g), then γg,C(x) = γg(t)⇒
x = t, i.e. img,C is an injective mapping. By (∗) it is deduced as in loc. cit.
xmr+1 = xr+1, and thus yr = 1. One determines xmi (resp. yi) by induction.
Let it be supposed yi = 1. Following the recursive pattern of definition of xm
one obtains xmi−1 = xi−1, and yi−1 = 1 (cf. loc. cit.). Thus xm = x. In the
same way it is proved that tm = t and thus x = xm = tm = t.

Corollary 9.73 The restriction to Wm
C (g)

W (qg∗,C)|Wm
C (g) : Wm

C (g)→WC(t(g))/WC(s(g)),

of the quotient mapping W (qg∗,C) : WC(t(g)) → W (g) (cf. Lemma 9.63)
satisfies

W (qg∗,C)|Wm
C (g) = i−1

g,C ◦ i
m
g,C

(cf. Proposition 9.62). Thus the set Wm
C (g) ⊂ WC(t(g)) is a set of represen-

tatives of WC(t(g))/WC(s(g)), and one has

Im W (sg∗,C) = (wg∗,C(x))x∈WC(t(g))/WC(s(g)) =Wm
C (g)

(cf. Subsection 9.10.1).

Proof By definition one has

W (qg∗,C) = i−1
g,C ◦ qg∗,C ◦ ig∗,C ,

and by the remark following Proposition 9.72 one obtains

img,C = (qg∗,C ◦ ig∗,C)|Wm
C (g).

Finally one gets
W (qg∗,C)|Wm

C (g) = i−1
g,C ◦ i

m
g,C .

From Proposition 9.62 and Proposition 9.72 it follows that W (qg∗,C)|Wm
C (g) is

a bijective mapping. Thus it is concluded that Wm
C (g) is a set of representa-

tives of W (g). The construction of 9.10.1 proves the last assertion.

9.12 Minimal length class representatives sequence associated
with a minimal generalized gallery

Define wmC (g) ∈ Wm
C (g) by

wmC (g) := (w(ti+1, si)) (r > i > 0)

(resp. wmC (g) := (w(ti+1, si)) (r − 1 > i > 0)).

according to g = g1, g
′
1 (resp. g = g2, g

′
2). Let F, F ′ ∈ A, and g ∈ gallmA the

gallery of types of a MGG between F and F ′. With the minimal generalized
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gallery γg(F, F ′) of type g, and a chamber C ⊃ F at maximal distance from
F ′, i.e. so that C ⊃ c(F, F ′), is associated a SC-reduced expression of type g
of wmF ′ = w(C,projF ′C), as follows.
Let γg(C;F, F ′) be the MGG between C and F ′ associated with γg(F, F

′)
as in Definition 9.16. It has been seen how to associate a S -reduced ex-
pression of w(Ce,projFCe) with a MGG γ(Ce, F )(cf. Subsection 9.3). These
considerations apply here and one obtains, in the case g = g1, g

′
1 l(g) = r+ 1:

wmF ′ = w(C,projF ′C) = w(tr+1, sr) · · ·w(t1, s0).

It is concluded that the element of WC(t(g)) defined by γg(C;F, F ′) is pre-
cisely wmC (g). It is easy to verify that

img,C(wmC (g)) = γg(F, F
′).

Thus one has proved the

Proposition 9.74
Let γg(F, F ′) be the MGG of type g ∈ gallmA between F and F ′, and C ⊃ F

a chamber at maximal distance from F ′. Then

wmC (g) = (w(ti, si−1)) ∈ Wm
C (g),

is an SC-reduced expression of w(C,projF ′C), and moreover

γg(w
m
C (g)) = γg(F, F

′).

Proposition 9.75
Assume g ∈ gallmA and that w = wC(tr, sr−1) · · ·wC(t1, s0) is a SC-reduced

expression. Denote by wmC (g) ∈ Wm
C (g) its corresponding element. Write

F = w(Fs0(C)) (resp. F = w(Ft0(C))), according to g = g2 (resp. g = g′2).
Let γ(Fs, F ) be the generalized gallery constructed from wmC (g). Then γ(Fs, F )
is a Minimal Generalized Gallery, γ(Fs, F ) = γg(Fs, F ), and C realizes the
maximal distance between a chamber C ⊃ Fs and F .

Proof It is supposed g = g′2, and one can write:

wi = w(ti, si−1) (r > i > 1), zi+1 = wr · · ·wi+1 (r > i > 0)

(resp. zr+1 = 1), ui = zi+1wiz
−1
i+1 (r > i > 1).

Then ui · · ·ur = wr · · ·wi (r > i > 1) (resp. w(C,projFC) = w = u1 · · ·ur).
Let Ci = zi+1(C) (r > i > 1). One chooses, for r > i > 1 a minimal gallery
Γi = Γi(Ci, Ci−1). Observe that ui = w(Ci, Ci−1). (One has: ui(Ci) =
zi+1wiz

−1
i+1(zi+1(C)) = zi+1wi(C) = zi(C) = Ci−1). Write:

γg(w
m
C (g)) : (Fi)r>i>0, (F ′j)r>j>0.
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By definition one has: Fi = zi+1(Fsi(C)) (resp. F ′i = zi+1(Fti(C))). As
zi+1(Fsi(C)) = Fsi(zi+1(C)) = Fsi(C) (resp. zi+1(Fti(C)) = Fti(zi+1(C)) =
Fti(Ci)), one obtains immediately Ci ⊃ Fi ⊃ F ′i . On the other hand, wi =
w(ti, si−1) ∈Wti gives

Fti(C) ⊂ Fsi−1(C)⇒ Fti(C) ⊂ wi(Fsi−1(C)),

thus F ′i = zi+1(Fti(C)) ⊂ zi+1wi(Fsi−1
(C)) = zi(Fsi−1

(C)), and it is deduced
that F ′i ⊂ Fi−1 ⊂ Ci−1.
Thus Γi(Ci, Ci−1) ⊂ StF ′i . Apply the following lemma 9.76 to (C,wi(C)),
and (zi+1(C), zi+1wi(C)) = (Ci, Ci−1), and wi(Fsi−1

(C)) ⊂ wi(C) =
projFsi−1

(C)C. One obtains

zi+1(projwi(Fsi−1
(C))C) = projwi(Fi−1(C))Ci = Ci−1

( Ci = zi+1(C), zi+1wi(Fsi−1
(C)) = Fi−1).

Thus Γi(Ci, Ci−1) is a Minimal Gallery between Ci and Fi−1, so that

set Ψ∗(Γi(Ci, Ci−1)) = HF ′i (Fi−1),

and thus

(∗) length Γi(Ci, Ci−1) = |HF ′i (Fi−1)| = lS(wi) (S = S(C)).

Let Γ(C,C0) = Γr ◦ · · · ◦ Γ1. The hypothesis gives:

d(C,F ) = lS(wmF ) = lS(wr) + · · ·+ lS(w1),

and (∗) implies:

length Γ(C,C0) = lS(wr) + · · ·+ lS(w1),

thus
length Γ(C,C0) = d(C,F ).

It is concluded that Γ(C,C0) is a Minimal Gallery between C and F , such
that

set Ψ∗(Γ(C,C0)) =
∐
r>i>1

HF ′i (Fi−1),

and consequently
H(C,F ) =

∐
HF ′i (Fi−1).

By a step by step comparison of this gallery with a Minimal Generalized
Gallery of type g one obtains that τ(Fs, F ) = τg and thus that γ(Fs, F ) is
minimal of type g. Thus γg(wmC (g)) = γg(F, F

′).
To see that C ⊃ Fs is at maximal distance from F let objects and

their properties introduced in the next chapter be used. Observe that
dim Σ(Fs, F ) 5 dim Σ̂(Fs, F ) = dim Σ̂(C,F ). On the other hand one has
Σ(C,F ) ⊂ Σ(Fs, F ), and dim Σ̂(C,F ) = dim Σ(C,F ). Thus dim Σ(C,F ) =
dim Σ(Fs, F ). (Where Σ̂(Fs, F ) = Σ̂(g, Fs) and Σ̂(C,F ) = Σ̂(g, C)). This
achieves the proof.
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The construction of the projection of a facet over another one (cf. Defini-
tion 8.15) commutes with the action of W .

Lemma 9.76 Let (C,C ′), (C,C ′) ∈ Ch A×Ch A, and F ⊂ C ′ so that C ′ =
projFC. Suppose that there exists w ∈ W so that (w(C), w(C ′)) = (C,C ′),
and one writes F = w(F ). Then

w(C ′) = w(projFC) = projFC.

Proof One has w(C,C ′) = ww(C,C ′)w−1, and thus

lSC (w(C,C ′)) = lSC (w(C,C ′)).

The hypothesis C ′ = projFC gives:

lSC (w(C,C ′)) = d(C,C ′) = |H(C,F )|.

As clearly w(H(C,F )) = H(C,F ) it is concluded that lSC (w(C,C ′)) =
|H(C,F )|. As F ⊂ C ′ it is deduced that

w(projFC) = w(C ′) = C ′ = projFC.

Recall that projFC is the chamber in StF at minimal distance from C.

9.13 Couples of facets and Minimal Generalized Galleries
correspondence

Let τg ∈ Relpos A, be the type of relative position given by g ∈ gallmA . Define

σg : (A×A)τg → GallmA (g) ,

as the mapping induced by

σ : (A×A)×Relpos A gallmA → GallmA

(cf. Notation 9.43), i.e.

σg : (F, F ′) 7→ γg(F, F
′), where τ(F, F ′) = τg .

Thus by σg to a couple of facets (F, F ′), whose type of relative position is
τg, corresponds the unique minimal generalized gallery of type g, γg(F, F ′)
joining F and F ′. Observe that σg is in fact a bijection.

Denote by

σg,ch : (Ch A×A)τg → Ch A ∗GallmA (g) = Ch A×A GallmA (g)

(cf. Definition 9.64) the mapping defined by

σg,ch : (C,F ) 7→ (C, γg(Fe1(g)(C), F ′)),
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and write
σ(g,F ),ch = σg,ch|(Ch A×A)τg,F

for the restriction of σg,ch to (Ch A×A)τ0,F .
Let

(Ch A×A)′τ0,F ⊂ (Ch A×A)τg,F

be the subset formed by the couples (C,F ′) satisfying the hypothesis of
Proposition 9.22 (resp. C ⊃ F is at maximal distance from F ′). The following
proposition characterizes the image of (Ch A×A)′τg,F ⊂ (Ch A×A)τg,F by
σ(g,F ),ch as a subset of A ∗GallmA (g, F ) = Ch A×A GallmA (g, F ).

Proposition 9.77 (C, γg(F, F
′)) ∈ A ∗GallmA (g, F ) = Ch A×A GallmA (g, F )

belongs to Im σ(g,F ),ch if and only if γg(C;F, F ′) is a MGG.

Proof Let d(C,F ′) be maximal on the set of F ′ with τ(F, F ′) = τg. Then
d(C,F ′) is maximal on the set of chambers C incident to F . Thus it follows
by definition of MGG that γg(C;F, F ′) is a MGG. Reciprocally if γg(C;F, F ′)
is a MGG it results from the definition that H(C,F ′) =

∐
HF ′i (Fi−1), where

the i′s run on a set depending on the class of g. It is concluded from this that
d(C,F ′) is maximal on the set of chambers C incident to F , and thus that it
is maximal on the set of F ′ such that τ(F, F ′) = τg. This achieves the proof.

9.14 Weyl group Minimal Generalized Galleries
characterization

Taking into account that Ch Stc(F,F ′) is homogeneous under Wc(F,F ′) =
Stabilizer of L(F,F ′) and Proposition 9.21 one obtains:

Proposition 9.78 Let γ(F, F ′) be a generalized gallery. Then γ(F, F ′) is a
MGG if and only if it satisfies the following 2 conditions:

1) γ(F, F ′) ⊂ L(F,F ′) (The carrier of F and F ′);

2) ∃ C ∈ Stc(F,F ′) such that γ(C;F, F ′) is a MGG between C and F ′.

One now proceeds to characterize a MGG between Fs(C) and w(Ft(C))
in terms of W by translating the above proposition in terms of W .

Let F ∈ A (resp. C ∈ Ch A). One supposes F = Fs(C). Let L be
the carrier of Env(F, F ′), and F ′′ ∈ A. The following two assertions are
equivalent:

1) F ′′ ∈ L;

2) F ′′ is stable under the set of reflections {sH | H ∈ HF ∩ HF ′} defined
by the set of walls HF ∩HF ′ .
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Remark that given w ∈W/Wt the set of reflections {sH | H ∈ HFs ∩Hw(Ft)}
(Fs = Fs(C), Ft = Ft(C)) may be characterized as the set of reflections of W
common to the subgroups Ws and wWtw

−1.
If F ′′ = w(Ft) then one immediately obtains

sH(F ′′) = F ′′ ⇔ sHw ∈ w ∈W/Wt.

Let wm ∈ w be defined by wm = w(C,projw(Ft)C) (the minimal length lS(wm)
element of the class w). As in definition 9.70 one writes

lS(w) = lS(wm).

Notation 9.79 Let w̃ ∈ Ws \W/Wt. Denote by w′ ∈ w̃ the maximal length
class lS(w′) element of w̃, and by wm ∈ w′ the minimal length element of the
class w′. Thus one has by definition of wm, lS(wm) = lS(w′) (resp. w̃m = w̃,
lS(wm) > lS(w′′) for every w′′ ∈ w̃).

Observe that d(C,w′(Ft)) realizes the maximal distance d(C,w(Ft))(w ∈
w̃).

One fixes a gallery of types g = g′1 given by

g : (si)r>i>0, (tj)r+1>j>0.

Consider the element

wmC (g) = (w(ti+1, si))r>i>0 ∈ Wm
C (g).

Let wm = w(tr+1, sr) · · ·w(t1, s0). Write

F = Ftr+1(C) (resp. F ′ = wm(Ft0(C))),

and zi+1 = w(tr+1, sr) · · ·w(ti+1, si) (r > i > 0).

Let zi+1 ∈ W/Wsi be the class defined by zi+1. Remark that with the
notation of Subsection 9.5 one has HF ∩ HF ′ = DL, i.e. HF ∩ HF ′ = set
of walls containing F and F ′. One has the following criterion to decide if
γg(w

m
C (g)) is a MGG between F and F ′.

Proposition 9.80 With the above notation γg(wmC (g)) is a MGG between F
and F ′ if the following two conditions are satisfied by wmC (g):

1) wm = w(tr+1, sr) · · ·w(t1, s0) is a SC-reduced expression;

2) for all H ∈ HF ∩HF ′ , sHzi+1 ∈ zi+1 (r > i > 0).
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Let w̃ ∈ Wtr+1 \W/Wt0 (resp. w′ ∈ W/Wt0) be the double class defined by
wm (resp. the maximal length class defined by w̃). Then wm is the minimal
length element of w′.

Proof The first condition assures that γ(C;F, F ′) defined by γ(F, F ′) =
γg(w

m
C (g)) is a MGG. By 2) we have that γ(F, F ′) ⊂ L = carrier of

Env(F, F ′). Thus γ(F, F ′) is a MGG between F and F ′ of type g, i.e.
γg(w

m
C (g)) = γg(F, F

′).

9.15 Existence proof of Minimal Generalized Galleries between
two given facets

Let C(H) be the geometric realization of A obtained from some isomorphism
A ' C(W,S). The carrier L of Env(F, F ′) is defined as the subspace of
R(S) defined by L =

⋂
H∈H, F,F ′⊂H

H. In this section H denotes the set of

hyperplanes of R(S) given by the set of conjugates of the reflections, associated
with the walls of the chamber (resp. simplicial cone) ⊂ R(S), corresponding
to Ce in C(W,S).
It is known that L has a building structure. The set Ch L of chambers of L
is given by

Ch L = {F ∈ C(H)| LF = L}.

Let HL := {H ∈ H| L ⊂ H} and H′L := {H ∩ L| H ∈ H − HL}. Then the
set of hyperplanes of L is given by H′L. One has HL = Hc(F,F ′). One chooses
C = Cc(F,F ′) ∈ Ch Stc(F,F ′), and considers the sub-building of A

A(c(F, F ′), C) :=
⋂

Φ root of A,
C∈Φ, c(F,F ′)∈∂Φ

Φ.

(
Observe that according to [50],

proj−1
c(F,F ′)C =

⋂
Φ root of A,

C∈Φ, c(F,F ′)∈∂Φ

Ch Φ,

where proj−1
c(F,F ′)C = {C ′ ∈ Ch A| projc(F,F ′)C

′ = C}. One has

that proj−1
c(F,F ′)C is a convex set of chambers (cf. loc. cit.).

)
It is

known that c(F, F ′) is a chamber of L, then there exists one and
only one chamber Cc(F,F ′) in A(c(F, F ′), C) such that c(F, F ′) is in-
cident to Cc(F,F ′), i.e. Cc(F,F ′) ⊃ c(F, F ′), since the intersection(

∩
Cc(F,F ′)∈Φ, c(F,F ′)∈∂Φ

Φ
)
∩
(

Ch Stc(F,F ′)

)
defines one and only one
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chamber C of Stc(F,F ′) namely C = Cc(F,F ′).

Observe that the set of facets F of L may be defined as the equivalence
classes, given in the usual way, by the set of hyperplanes H′L of L. It may
thus be denoted by C(H′L) the building defined by L.

Definition 9.81 A segment [x, y] ⊂ R(S) (resp. [x, y] ⊂ L) is called a generic
segment of C(H) (resp. C(H′L)) if it satisfies:

(1) x ∈ C and y ∈ C ′, with C,C ′ ∈ Ch C(H) (resp. Ch C(H′L));

(2) [x, y] intersects only chambers and codimension 1 facets of C(H) (resp.
C(H′L)).

Let
Γ([x, y]) : C = Cn, · · · , C0 = C ′

be the minimal gallery of C(H) (resp. C(H′L)) defined by the ordered set of
chambers C = Cn · · ·C1 = C ′ that [x, y] intersects.
Let

γ([x, y]) : C = Cn ⊃ · · ·Ci ⊂ Ci ∩ Ci−1 ⊃ Ci−1 · · · ⊂ C0 = C ′

be the corresponding generalized gallery, where Ci∩Ci−1 denotes the codimen-
sion 1 facet Fi, incident to Ci and Ci−1 (i.e. Fi ⊂ Ci, Ci−1), which [x, y]
intersects.

One now constructs a generalized gallery γ(F, F ′) between F and F ′ as
follows. Recall first that projFF

′ (resp. projF ′F ) defines a chamber of C(H′L).
Choose x ∈ projFF

′ and y ∈ projF ′F so that the segment [x, y] is a generic
segment of C(H′L). Assume c(F, F ′) 6= projFF

′, and denote by

Γ(projFF
′,projF ′F ) : Fr, Fr−1, · · · , F0

(Fr = projFF
′, F0 = projF ′F ) the minimal gallery of C(H′L): Γ([x, y]). Write

F ′i = Fi ∩ Fi−1, and define

γ(F, F ′) : F = F ′r+1 ⊂ Fr = projFF
′ ⊃ F ′r · · ·F ′1 ⊂ F0 = projF ′F ⊃ F ′0 = F ′.

The first and last inclusions may not be strict, i.e. one may have F ′ = projF ′F
(resp. F = projFF

′).
It is now proved that γ(F, F ′) is a MGG. Let u ∈ c(F, F ′) so that [u, x] is a
generic segment of C(H′L). It may be supposed that after suitable choices of
u, x and y, these three points are on the same line and [u, x] ∪ [x, y] = [u, y].
One then has

γ([u, y]) = γ([x, y]) ◦ γ([u, x]).
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From the definition of c(F, F ′) it is clear that γ([u, x]) ⊂ StF “crosses” all the
hyperplanes H ∈ HF (projFF

′). On the other hand, one has

H(Fr, F0) = H(Fr, Fr−1)
∐
· · ·
∐
H(F1, F0),

Fr = projFF
′ (resp. F0 = projF ′F ), as [x, y] intersects precisely these hyper-

planes, as easily seen. One finally gets

H(c(F, F ′), F0) = HF ′r+1
(Fr)

∐
H(Fr, Fr−1)

∐
· · ·
∐
H(F1, F0)

(F ′r+1 = F ).
Observe now that as L = LFi = LFi−1 , and F ′i = codimension 1 facet of
C(H′L) then:

H(Fi, Fi−1) = {H ∈ H −HL| H ⊃ F ′i} = HF ′i (Fi−1).

Thus one has

H(c(F, F ′), F0) = HF ′r+1
(Fr)

∐
HF ′r (Fr−1)

∐
· · ·
∐
HF ′1(F0).

Let CF0
be the unique chamber with CF0

⊃ F0 = projF ′F and
CF0

∈ A(c(F, F ′), C). Choose u ∈ C = Cc(F,F ′) and y ∈ CF0
so

that:

“ [u, y] is near enough to [u, y] as to intersect the same hyperplanes as
[u, y], i.e.

H ∩ [u, y] 6= ∅ ⇔ H ∈ H(c(F, F ′), F0) ”.

Thus the minimal gallery Γ(C,F0) = Γ([x, y]) satisfies:

set Ψ∗(Γ(C,F0)) = HF ′r+1
(Fr)

∐
· · ·
∐
HF ′1(F0).

As HF ∩ HF ′i (Fi−1) = ∅ (r + 1 > i > 1) it is deduced that Γ(C,F0) is a
minimal gallery between C and F ′0. It is concluded that γ(F, F ′) is a mgg
between F and F ′. The case F = projFF

′ is similarly handled.



Chapter 10

Minimal Generalized
Galleries in a Reductive
Group Building

The reader is referred to [50] for details about the Building I(G) of a reductive
algebraic group G over an algebraically closed field k, and to [6], [9] and [23]
for the basic definitions and properties of a parabolic subgroup of G. The
reader may follow the constructions of this section by considering those of the
Flag complex as a guiding example. The role of Flags there is played here by
the Parabolic subgroups. The developments of this chapter are reconsidered
in more detail in the next ones, in the setting of Group Schemes. The Build-
ing I(G) of a reductive algebraic group G, over an algebraically closed field
k, is the simplicial complex whose simplices are the parabolic subgroups of G.
The incidence relation is defined as the symmetric inclusion relation between
parabolics subgroups. It thus extends the definition of the Flag Complex of
Gl(kr+1) to the setting of k-reductive groups. The Minimal Generalized
Galleries in the Building I(G) are introduced. A minimal generalized
gallery is contained in the Convex Envelope of its extremities, in I(G) and in
all the Apartments containing these extremities. With a minimal generalized
gallery of types g is associated a type of relative position τg, satisfying the
important property: Given a couple of facets (F, F ′) with a type of relative
position τg, there is a unique Minimal Generalized Gallery γ(F, F ′) with as-
sociated gallery of types g and extremities (F, F ′). The set of generalised
galleries of type g, issued from a fixed facet F admits a canonical “Cell De-
composition” indexed by generalized galleries of type g in the Weyl complex,
which generalizes Bruhat cell decomposition. This set is described in terms of

214
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a contracted product along a gallery of types g in the Weyl Complex. Natural
Parametrizations of the Cells are given.

10.1 Building of a reductive group

Let k be an algebraically closed field, and G a k-reductive group. Denote
by G = G(k) the group given by the set of k-points of G. By a parabolic
subgroup P ⊂ G(k) (resp. maximal torus T ⊂ G(k)) it can be understood in
this section the set of k-points P (k) (resp. T (k)) of some parabolic subgroup
P ⊂ G (resp. maximal torus T ⊂ G). Let Par(G) (resp. Bor(G), Tor(G)) be
the set of parabolic subgroups (maximal torus) of G defined over k.
The building I(G) of G may be described as the set of parabolic subgroups
Par(G) of G endowed with the relation opposed to the inclusion of parabolic
subgroups of G. The group G acts on I(G) by conjugation, and thus as a
group of automorphisms of I(G). Given F ∈ I(G) we denote by PF the cor-
responding parabolic subgroup. The set of apartments App I of I is indexed
by Tor(G), in fact there is a bijection

Tor(G) ' App(I)

which associates with the maximal torus T the sub-building

AT = {F ∈ I(G) | T ⊂ PF }.

There is also a bijection
Bor(G) ' Ch I(G)

between the set of Borel subgroups and the set of chambers Ch I(G) of the
Tits building I(G).

Given a maximal torus T we denote by R = RT the system of roots defined
by T . Let A(RT ) be the apartment whose facets F are given by the parabolic
subsets of RT , and the inclusion (F ′ ⊂ F ) of facets by the opposed relation
to the inclusion of parabolic subsets.

There is a building isomorphism

A(RT ) ' AT

which associates with the facet F ∈ A(RT ) the R-subgroup PF of G defined
by the maximal torus T and the parabolic set RF given by F (cf. [23], Exp.
XXII).

The reciprocal isomorphism

AT ' A(RT )
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associates to F ∈ AT the set RP of roots given by the action of T on the Lie
algebra Lie(PF ). Let B ⊃ T be a minimal parabolic subgroup containing T ,
and C = CB ∈ AT the corresponding chamber. Write

WT = N(T )/T

where N(T ) denotes the normalizer of T in G. Then there is an isomorphism:

C(WT , S(C)) ' A(RT ) .

A frame E ∈ Ep(G)k (cf. [23], Exp. XXII) (cf. also the definition of a frame
of G given in next chapters) gives rise to a killing couple:

E 7→ (T ⊂ B)E .

Given E, E′ ∈ Ep(G)k, let αEE′ : G // G be the automorphism defined
by αEE′(E) = E′. Define the Weyl complex of G as the building given by the
inductive limit

C(W,S) = lim−−→
E

C(WT , S(CB)) ,

the transition isomorphisms being induced by the (αEE′).
Given a frame E the associated Killing couple (T ⊂ B)E gives rise to the

building isomorphisms:

C(W,S) ' C(WT , SCB ) ' A(RT ) ' AT ⊂ I(G)

inducing a bijection

typ C(W,S) ' typ I(G) = I(G)/G

(resp. Relpos C(W,S) ' Relpos I(G) = I(G)× I(G)/G (diagonal action)).

Two parabolic subgroups P and Q are incident if: their intersection P ∩Q
is a parabolic subgroup. (resp. there exists a minimal parabolic subgroup
B ⊂ P,Q). The building I(G) may also be obtained from the set

Vert I(G) ⊂ I(G)

of the maximal parabolic subgroup of G, which is endowed with the relation
induced by the incidence relation, as follows. The facets of I(G) are given by
the subsets

σ ⊂ Vert I(G)

of maximal parabolics two by two incidents. The set of chambers of I(G) thus
corresponds to the set (σB)B∈Bor(G) where

σB = {P ∈ Vert I(G) | P ⊃ B}.
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The class of subsets σ of Vert I(G) defines a building structure I(G) on
Vert I(G), according to the general definition, with (σB)B∈Bor(G) as the set of
chambers. There is a building isomorphism

I(G) ' I(G)

defined by
F 7→ σF

where
σF = {P ∈ Vert I(G) | PF ⊂ P}.

10.2 Minimal Generalized Galleries in a reductive group
building

It has been seen that given two flags D and D ′ in kr+1 there exists a basis e of
kr+1 adapted to D and D ′. The result generalizes to a building I(G). Given
a couple of parabolics (P,Q) of G there exists a maximal torus T contained in
both P and Q. This property translates into the building setting as follows,
the facets FP and FQ are contained in an apartment AT . With a fixed Killing
couple B ⊃ T is associated a Coxeter system C(W,SC), where W = N(T )/T
and SC is the set of reflexions defined by the system of simple roots R0 given
by the system of positive roots R+ defined by B.
Define

typ I(G) := I(G)/G (resp. Relpos I(G) := I(G)×I(G)/G (diagonal action)) .

Write I = I(G) and denote by:

typ
I

: I −→ typ I = I/G

(resp. τ
I

: I × I −→ Relpos I = I × I/G ) the quotient mapping. Let

typ
g

I
: Gall

I
−→ Galltyp I

be the mapping induced by typ
I
assigning to a generalized gallery its gallery

of types.
From the conjugation of maximal torus in G it results that the natural

inclusion C(W,SC) ↪→ I(G) induces the natural identifications:

typ C(W,SC) = typ I (resp. Relpos C(W,SC) = Relpos I ) .

Write:
gall

I
= Galltyp I
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and remark that we may identify gall
I
with gallC(W,S). Denote by

gall
m

I
⊂ gall

I

the subset of gall
I
corresponding to the subset gall

m

C(W,S) ⊂ gallC(W,S) of types
of minimal generalized galleries in C(W,S)), and by EI : Gall

I
−→ I × I the

extremities mapping. Write EI = (E1, E2). Denote by

τ• : gall
m

I
−→ Relpos I

the mapping corresponding to τ• : gall
m

C(W,S) −→ Relpos C(W,S) which asso-
ciates with a Minimal Generalized Gallery of types a type of relative position.
Let F ∈ I (resp. g ∈ gall

I
). Write

Gall
I
(g) = (typ

g

I
)−1(g)

(resp. Gall
I
(g, F ) = Gall

I
(g) ∩ E−1

1 (F ) ).

Definition 10.1 (Minimal Generalized Galleries in I)
A generalized gallery γ ∈ Gall

I
is minimal (MGG) if

typ
g

I
(γ) ∈ gall

m

I

and
τ
I
(EI(γ)) = τ•(typ

g

I
(γ))

i.e. if γ = γ(F, F ′), and we write g = typ
g

I
(γ), then g ∈ gall

m

I
and

τ(F, F ′) = τg(= τ•(g)).

A generalized gallery γ is minimal if its corresponding gallery of type g is
minimal and the type of relative position of its extremities EI(γ) = (F, F ′) is
precisely the associated one to g, τ•(g) = τ(F, F ′).
Let GallmI denote the set of Minimal Generalized Galleries of I. Write for
g ∈ gall

m

I

GallmI (g) = GallmI ∩Gall
I
(g)

(resp. for F ∈ A, GallmI (g, F ) = GallmI ∩ GallmI (g, F )). Write EmI for the
restriction of EI to GallmI ⊂ Gall

I
.

The convex hull EnvAT (F, F ′) of a couple of facets contained in an apartment
AT may be described as the set of parabolic subgroups P containing the
intersection subgroup PF ∩ PF ′ ⊂ P . More precisely as the set of facets F ′′
such that PF ∩ PF ′ ⊂ PF ′′ . On the other hand, two maximal tori T, T ′ of G
contained in PF ∩ PF ′ are conjugate in PF ∩ PF ′ , thus

EnvAT (F, F ′) = EnvAT ′ (F, F ′) .
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Given (F, F ′) define EnvI(F, F ′) = EnvAT (F, F ′) (Convex Hull (resp. En-
velope) in I of (F, F ′)) for some apartment F, F ′ ⊂ AT . The convex hull of
two facets in I may be defined in the setting of general buildings (cf. [50]).
The projection projIF′ F in I is defined following the same pattern. The exis-
tence of a Minimal Generalized Gallery γg(F, F ′) with τ•(g) = τ(F, F ′) results
from the following remark.

Remark 10.2 If A is an apartment containing F and F ′ it is known that
A ' C(W,S) Thus there exists such a MGG γg(F, F

′) between F and F ′ in
A, and moreover γg(F, F ′) ⊂ EnvI(F, F ′).

A minimal gallery Γ(C,C ′), in the usual sense, i.e. of minimal length, is
contained in EnvI(C,C ′) (cf. loc. cit.). From this property and the unicity
of a minimal generalized gallery γg(F, F ′) of fixed type g in an apartment A
one obtains the corresponding unicity property in I.

Let
γ(F, F ′) : (Fi)(r > i > 0), (F ′j)(r + 1 > j > 0)

with F = F ′r+1, F ′ = F ′0, be a MGG in I of length l(γ(F, F ′)) = r + 1, and
of the form γ(F, F ′) = γ′1(F, F ′). Let A be an apartment containing F and
F ′. Write

g = typ
g

I
γ(F, F ′) ∈ gall

m

I
= gall

m

A .

By Definition 10.1 one has

τI(EI(γ(F, F ′))) = τ
I
(F, F ′) = τ•(g) (= τg) .

Let
γ∗(F, F ′) : (F ∗i ) (r > i > 0), (F ∗′j ) (r + 1 > j > 0)

with F ∗′r+1 = F , F ∗′0 = F ′, be the unique MGG in A between F and F ′ of
type g, i.e. γ∗(F, F ′) = γg(F, F

′) (cf. Proposition 9.38).
Let it be proved that γ(F, F ′) = γ∗(F, F ′). Choose a chamber in A so that
C ⊃ F and at maximal distance d(C,F ′) from F ′, i.e. C ⊃ c(F, F ′) (cf.
Definition 9.17, Proposition 9.18). Define a sequence of chambers

C∗r+1 = C, C∗i = projAFiC
∗
i+1 (r > i > 0)(

resp. Cr+1 = C, Ci = projIFiCi+1 (r > i > 0)
)
.

Choose a sequence of minimal galleries

Γ∗i+1 = Γ∗i+1(C∗i+1, C
∗
i ) ⊂ StA

F∗′i+1

(r > i > 0)

(
resp. Γi+1 = Γi+1(Ci+1, Ci) ⊂ StI

F′i+1

(r > i > 0)
)
.
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Recall that Ch StI

F′i+1

is a convex set of chambers in I. Remark that

length of Γ∗i+1 =
∣∣∣HF∗′i+1

(F ∗i )
∣∣∣

Let
Γ∗ = Γ∗(C,C∗0 ) = Γ∗r+1 ◦ · · · ◦ Γ∗1

(resp. Γ = Γ(C,C0) = Γr+1 ◦ · · · ◦ Γ1) be the composite gallery. By Remark
3.7,a) one has

length of Γ∗(C,C∗0 ) = Σr
i=0

∣∣∣HF∗′i+1
(F ∗i )

∣∣∣ ,
and by Lemma 9.8 that Γ∗(C,C∗0 ) gives rise to a minimal gallery in A, thus
in I, between C and F ′ ⊂ C∗0 . On the other hand, as Γi+1(Ci+1, Ci) is a
minimal gallery in StI

F′i+1

between a chamber Ci+1 and the facet Fi ⊃ F ′i+1,

with
typ

I
F ′i+1 = ti+1(g) = typ

A
F ∗′i+1

(resp. typ
I
Fi = si(g) = typ

A
F ∗i ), it is deduced that:

length Γi+1(Ci+1, Ci) 6
∣∣∣HF∗′i+1

(F ∗i )
∣∣∣ (Ci = projF ′i+1

Fi) ,

and finally one obtains

length Γ(C,C0) = Σr
i=0length Γi+1(Ci+1, Ci) 6 Σr

i=0

∣∣∣HF∗′i+1
(F ∗i )

∣∣∣ =

length Γ∗(C,C∗0 ) .

As Γ∗(C,C∗0 ) (resp. Γ(C,C0)) gives rise to a minimal gallery (resp. gallery)
between C and F ′ in I (Observe that a minimal gallery in A is also minimal
in I), it is concluded that:

“Γ(C,C0) is a minimal gallery between C and F ′ in I”.

It results from this that

Γ(C,C0) ⊂ EnvI (C,F ′) ⊂ A

as C, F ′ ∈ A. On the other hand, the inclusions

F ′i ⊂ Fi ⊂ Ci (r > i > 0)

(resp. F ′r+1 ⊂ Cr+1), give

γ(F, F ′) ⊂ EnvI (C,F ′) ⊂ A

By unicity of the MGG of type g ∈ gall
m

A
, between the facets F and F ′ with

τ(F, F ′) = τg, in A, one obtains that γ(F, F ′) = γ∗(F, F ′). It has thus been
proved the
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Proposition 10.3 Given (F, F ′) ∈ I×I, and g ∈ gall
m

I
so that τg = τ(F, F ′),

there exists one and only one MGG γg(F, F
′) of type g in I with extremities

F and F ′. Furthermore one has

γg(F, F
′) ⊂ EnvI (F, F ′) .

γg(F, F
′) ⊂ EnvI (F, F ′) .

Remark 10.4
It follows from this proposition that a generalized gallery γ(F, F ′) is

minimal if and only if it is contained in the convex hull of its extrem-
ities γ(F, F ′) ⊂ EnvI(F, F ′) and γ(F, F ′) is minimal in an apartment
EnvI(F, F ′) = EnvA(F, F ′) ⊂ A containing EnvI(F, F ′).

The action of G on I(G) induces an action on Gall
I
. It results from the

definition of a mgg the subset Gall
m

I
⊂ Gall

I
is stable under this action. The

mapping typ
g

I
: Gall

I
−→ gall

I
being G-equivariant, if gall

I
is endowed with

the trivial action of G, induces a G-equivariant mapping

qm
I

: Gall
m

I
−→ gall

m

I
.

Let
qm
I

: Gall
m

I
/G −→ gall

m

I

denote the quotient mapping. Given an apartment A = AT of I there is a
natural mapping

j
A

: Gall
m

A
/WA −→ Gall

m

I
/G

Lemma 10.5 The mapping j
A

is bijective.

Proof Given (F, F ′) ∈ I×I there exists an apartment A′ such that (F, F ′) ∈
A′ ×A′. On the other hand, there exists x ∈ G with x(A′) = A. Thus

(x(F ), x(F ′)) ∈ A×A
and τI(F, F

′) = τI(x(F ), x(F ′)) .

Let γ(F, F ′) ∈ GallmI , g = typ
g

I
(γ(F, F ′)) ∈ gall

m

I
, thus τ(F, F ′) = τg (=

τ•(g)) by definition of a MGG. By proposition 9.31 one has

γ(F, F ′) ⊂ Env (F, F ′) ⊂ A′
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By Proposition 9.36 and Proposition 9.38 it is obtained:

γ(F, F ′) = γg(F, F
′)

where γg(F, F
′) is the unique MGG in A with E(γg(F, F

′)) =
(F, F ′) (τI(F, F

′) = τg). It is then deduced that:

x(γg(F, F
′)) = γg(x(F ), x(F ′)) ⊂ A

again by loc.cit., and thus that γ(F, F ′) is equivalent to γg(x(F ), x(F ′)) ⊂ A.
This proves that j

A
is a surjective mapping.

Given
γa = γa(Fa, F

′
a), γb = γb(Fb, F

′
b) ∈ Gall

m

A

such that there exists x ∈ G with:

x(γa) = γb

it is deduced that
g = typ

A
γa = typ

A
γb

and
τg = τI(Fa, F

′
a) = τI(Fb, F

′
b)

Thus γa = γg(Fa, F
′
a) (resp. γb = γg(Fb, F

′
b)) (cf. Corollary 9.37 and

Proposition 9.38). Let w ∈W so that

(w(Fa), w(Fa)) = (Fb, F
′
b)

then
w(γa) = γb (cf. Proposition 9.38)

i.e. j
A

is injective, and thus bijective.

The bijective mapping

typ
m

A : Gall
m

A
/W −→ gall

m

A
= gall

m

I

of Corollary 9.37 factors as

typ
m

A = qm
I
◦ j
A

Corollary 10.6 The mapping

qm
I

: Gall
m

I
/G −→ gall

m

I

is bijective. (Compare with the mapping qm
A

in section 9.8.)
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10.3 A combinatorial cartesian square

Let it be verified that the following commutative square

qm
I

: Gall
m

I
//

EmI

��

gall
m

I

τ•

��
τ
I

: I × I // Relpos I

is cartesian. One defines a bijective G-equivariant mapping

Proposition - Definition 10.7
There is a bijective G-equivariant mapping

Θ : (I × I)×Relpos I gall
m

I
−→ GallmI

which is defined following the same pattern as in the definition of the W -
equivariant mapping

σ : (A×A)×Relpos A gall
m

A
−→ Gall

m

A
(cf. Notation 9.43).

Proof There is
GallmI =

∐
g∈gallm

I

GallmI (g),

and

(I × I)×Relpos I gall
m

I
=

∐
τ∈Relpos I

(I × I)τ × τ−1
• (τ)

=
∐

(τ,g)∈Relpos I×gallm
I

with τg=τ

(I × I)τ × {g}.

Let
Θ =

∐
g∈gallm

I

Θg,

where
Θg : (I × I)τ × {g} −→ GallmI (g) (τ = τg)

is defined by

Θg : ((F, F ′), g) −→ γg(F, F
′) (τ(F, F ′) = τg) .
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It follows from Proposition 10.3 that the mapping

(I × I)τg −→ GallmI (g) (g ∈ gall
m

I
)

associating with (F, F ′) with τ(F, F ′) = τg, the unique MGG γg(F, F
′) between

F and F ′ in I of type g ∈ gall
m

I
is a G-equivariant bijection, thus Θg also is.

It is deduced that Θ =
∐

g∈gallm
I

Θg is a G-equivariant bijection.

Remark 10.8 The equivariant mapping Θ may be seen as a section of the
natural mapping

EmI × qm
I

: Gall
m

I
−→ (I × I)×Relpos I gall

m

I

which in fact is a bijection. For every g ∈ gall
m

I
and (F, F ′) ∈ I × I, with

τI(F, F
′) = τg, one has(

(EmI × qm
I

) ◦Θ
)

((F, F ′), g) =
(
EmI × qm

I

)(
γg(F, F

′)
)

=
(
EmI (γg(F, F

′)), qm
I

(γg(F, F
′))
)

= ((F, F ′), g) .

Thus
(EmI × qm

I
) ◦Θ = identity of (I × I)×Relpos I gall

m

I
.

Notation 10.9 Let F ∈ I, τ0 ∈ Relpos I, g ∈ gall
m

I
one writes:

1. Σ(τ0) = (I × I)τ0 (resp. Σ =
∐

τ∈Relpos
Σ(τ) = I × I) ;

2. Σ(τ0, F ) = Σ(τ0) ∩ ({F} × I);

3. Σ(g) = Gall
m

I
(g) (resp. Σm

=
∐

g∈ gallm
I

Σ(g) = Gall
m

I
);

4. Σ(g, F ) = Gall
m

I
(g, F ) = Gall

m

I
(g) ∩ E−1

1 (F );

5. Σ̂(g) = Gall
I
(g) (resp. Σ̂ =

∐
g ∈ gallm

I

Σ̂(g));

6. Σ̂(g, F ) = Gall
I
(g, F ).

It follows from its definition that Σ(τ0, F ) is P
F
-homogeneous. Actually

Σ(τ0, F ) is a P
F
-orbit in {F} × I. Observe that Σm ⊂ Σ̂.
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Definition 10.10 For g ∈ gall
m

I
one defines

Θg : Σ(τg) = (I × I)τg −→ Σ(g) ⊂ Σ̂(g)

as the co-restriction to Σ(g) = Gall
m

I
(g) ⊂ Σm = Gall

m

I
of the composed

mapping of

Σ(τg) = (I × I)τg ' (I × I)τg × {g} ↪→ (I × I)×Relpos I gall
m

I

with Θ.

Observe that Θg(Σ(τg, F )) ⊂ Σ(g, F ). Let

Θg,F : Σ(τg, F ) −→ Σ(g, F ) (F ∈ I)

be the mapping induced by Θg. Denote by

πm : Σm −→ Σ (resp. π : Σ̂ −→ Σ)

the mapping given by the restriction of the extremities mapping
EI : Gall

I
−→ I × I to Σm

= Gall
m

I
(resp. Σ̂) ⊂ Gall

I
, i.e. πm = EmI

(cf. Definition 10.1). By Definition 10.1 of MGG of type g in I one has

Σ(g) = Gall
m

I
(g) = {γ ∈ Gall

I
(g) | τ

I
(EI(γ)) = τg}

thus
πm(Σ(g)) = EmI (Gall

m

I
(g)) ⊂ (I × I)τg = Σ(τg).

On the other hand, Θg : (I × I)τg −→ Gall
m

I
(g) being a bijective section of

E|
Gall

m

I
(g)

= πm|
Σ(g)

, it is deduced that the restriction

πm(g) = πm|
Σ(g)

: Σ(g) −→ Σ(τg)

(resp. πm(g, F ) = πm|
Σ(g,F )

: Σ(g, F ) −→ Σ(τg, F ) ) is bijective. Given

τ ∈ Relpos I and g ∈ gall
m

I
, with τg = τ , the results of the next chapters prove

that the image

π(Σ̂(g)) ⊂ I × I (resp. π(Σ̂(g, F ) ⊂ I))

is independent of the choice of g with τg = τ .
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Definition 10.11 Define the combinatorial closure Σ(τ) ⊂ Σ
c
(τ) (resp.

Σ(τ, F ) ⊂ Σ
c
(τ, F )) of Σ(τ) (resp. Σ(τ, F )) in I × I (resp. I), by

Σ
c
(τ) = π(Σ̂(g)) (resp. Σ

c
(τ, F ) = π(Σ̂(g, F )))

with g ∈ τ−1
• (τ) ⊂ gall

m

I
. It follows from Remark 10.8 that Θg (resp.

Θg,F = Θ(g)|
Σ(g,F )

) is a G-equivariant section (resp. P
F
-equivariant sec-

tion) of πm(g) (resp. πm(g, F )) which is bijective.

10.4 Cell decomposition of the set of galleries

For a building I = I(G) of a k-reductive group G let

Relpos(s′,s) I = Is′ × Is/G ((s′, s) ∈ typ I × typ I) .

Thus Relpos(s′,s) I denotes the set of types of relative positions of couples of
facets of types s and s′. If s′ = typI C (C ∈ Ch I), i.e. if s′ is the type of a
chamber, we simply write:

Relposs I = Relpos(s′,s) I (resp. Relpos′ I =
∐

s∈typ I

Relposs I).

Given τ0 ∈ Relpos′ I, a chamber C and an apartment A containing C, let
Fτ0(C) denote the unique facet satisfying τI(C,Fτ0(C)) = τ0. There is a
bijection Relpos′ I ' A, given by τ0 7→ Fτ0(C). The composition of F 7→
τI(C,F ) with the preceding bijection is a building morphism ρA,C : I −→ A
(Retraction of I on A with center C).

Definition 10.12 Define for t, s, s′ ∈ typ I with t ⊂ s, s′

Relpos
t

(s′,s) = Relpos
t

(s′,s) I

(resp. Relpos
t

s = Relpos
t

s I)

as the image of

Relpos(s′,s)StF −→ Relpos I

(resp. RelpossStF −→ Relpos I )

where F ∈ It (t ∈ typ I). This image is independant of the choice of F and
is the set of types of relative positions of couples of facets of types s and s′
which are incident to a facet of type t.
For g ∈ gall

I
with l(g) = r + 1 such that g = g1, g

′
1 (resp. g = g2, g

′
2) one

writes:

Relpos
gall

I
(g) = ΠRelposti(g)si−1(g) (r + 1 > i > 1) (resp. r > i > 1)
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(the set of relative position types galleries of type g), and Relpos
gall

I
=∐

g ∈ gall
I

Relpos
gall

I
(g).

It is recalled that given g ∈ gall
I

= gallA, g∗ ∈ gall
I
has been defined by:

si(g
∗) = typC (C ∈ Ch I) (r + 1 > i > 0), tj(g

∗) = tj

(resp. si(g
∗) = typC (r > i > 0), tj(g

∗) = tj)

and Fe1(g)(C) by:

Fe1(g)(C) = Ftr+1(g)(C) (resp. Fe1(g)(C) = Ftr (g))

according to g = g1, g
′
1 (resp. g = g2, g

′
2) (cf. §9.9.2, i)).

Definition 10.13 Let

sIg∗,C : Gall
I
(g, Fe1(g)(C)) −→ Gall

I
(g∗, C)

be defined according to the same pattern as

sg∗,C : GallA(g, Fe1(g)(C)) −→ GallA(g∗, C)

in Definition 9.64 with the big building I instead of the apartment A. In this
case projIFiCi+1 plays the role of projAFiCi+1in the building I. If no confusion
arises one writes sAg∗,C = sg∗,C .

Let
τ Ig∗,C : Gall

I
(g∗, C) −→ Relpos

gall

I
(g)

denote the mapping

τ Ig∗,C : γ∗ 7→ τ(γ∗) =
(
τ(Ci, Fsi−1(Ci−1))

)
where γ∗ ∈ Gall

I
(g∗, C), and Ci = Fi(γ∗) is the chamber of γ∗. Finally let

τ Ig,C : Gall
I
(g, Fe1(g)(C)) −→ Relpos

gall

I

be the composed mapping:

τ Ig,C = τ Ig∗,C ◦ sIg∗,C .

Let A = AT be an apartment containing C = CB , i.e. (A, C) corresponds
to the killing couple (T,B). The following commutative diagram
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sAg∗,C : GallA(g, Fe1(g)(C)) //

��

GallA(g∗, C)

��
sIg∗,C : Gall

I
(g, Fe1(g)(C)) // Gall

I
(g∗, C)

where the vertical arrows are the inclusions induced by A ↪→ I, expresses the
compatibility between the mappings sAg∗,C , and s

I
g∗,C .

Denote by τAg,C (resp. τAg∗,C) the composed mapping of

GallA(g, Fe1(g)(C)) ↪→ Gall
I
(g, Fe1(g)(C))

(resp. GallA(g∗, C) ↪→ Gall
I
(g∗, C) ) followed by τ

I,C
(g) (resp. τ

I,C
(g∗)), i.e.

the restriction of τ Ig,C (resp. τAg∗,C) to GallA(g, Fe1(g)(C)) (resp. GallA(g∗, C)).

Definition 10.14 (Cell decomposition of Gall
I
(g, F ) defined by a

chamber C ⊃ F ).
Write

C
C

(g, τ) = (τ Ig,C)−1(τ) ⊂ Gall
I
(g, F )

where τ ∈ Relpos
gall

I
(g), and F = Fe1(g)(C). Clearly

Gall
I
(g, F ) =

∐
τ ∈Relposgall

I
(g)

C
C

(g, τ) .

One calls C
C

(g, τ) the Cell defined by the gallery of relative position
types τ and C ⊃ F .

The next aim is to give a canonical parametrization in terms of a block de-
composition of C

C
(g, τ) once an apartment A containing C is chosen.

10.5 Galleries of relative position types and Galleries in an
apartment

For the sake of briefness it is supposed g = g′1, and l(g) = r+1 in the following
developments.

With a gallery of relative position types is associated a sequence of ele-
ments in W . Let Wm

C (t, s) with C ∈ A be as in Definition 9.70. There is a
bijection

Wm
C (t, s) −→ Relpos

t

s I

defined by
w −→ τ (C,w(Fs(C))) .
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There is thus an induced bijection

Wm
C (g) = Π Wm

C (ti(g), si−1(g)) −→ΠRelposti(g)si−1(g) = Relpos
gall
g I .

On the other hand, by Proposition 9.72 there is a bijection

img,C :Wm
C (g) −→ GallA(g, Fe1(g)(C))

given by:
x 7→ γg(x) (x = (xi)r+1>i>1 ∈ Wm

C (g))

where γg(x) = x · γg(C) is defined as in Proposition 9.54, i.e. γg(x) = the
translation by x of the basical gallery γg(C) ⊂ ∆(C).

Definition 10.15 Let τ = (τ
r+1

, . . . , τ
1
) ∈ Relposgallg I (g = g1, g

′
1). One as-

sociates with τ a sequence of chambers, and two sequences of facets of A by the
following recursive pattern. Write Cr+1 = C (resp. F ′r+1 = Ftr+1(g)(Cr+1) =
Fe1(g)(C), Fr = Fτ

r+1
(C), Cr = proj

Fr
Cr+1). Given (Fi, Ci) (r > i > 1),

with Fi ⊂ Ci we define, for g = g′1:

F ′i = Fti(g)(Ci) , Fi−1 = Fτ
i
(Ci) , Ci−1 = proj

Fi−1
Ci.

Let γ
τ
∈ GallA(g, F ) (resp. γ∗

τ
∈ GallA(g∗, C)) be defined by

γ
τ

: (Fi) (r > i > 0) , (F ′j) (r + 1 > j > 0)

(resp. γ∗
τ

: (Ci) (r > i > 0) , (F ′j) (r + 1 > j > 0)).

Denote by

τ
′A
g,C : Relposgallg I −→ GallA(g, Fe1(g)(C))

(resp. τ
′A
g∗,C : Relposgallg I −→ GallA(g∗, C) )

the mapping defined by

τ
′A
g,C : τ 7→ γ

τ

(resp. τ
′A
g∗,C : τ 7→ γ∗

τ
).

From the construction of γ
τ
(resp. γ∗

τ
) it results that

sg∗,C(γ
τ
) = γ∗

τ
(cf. Definition 9.64)

and thus by definition of τAg,C that

τAg,C(γ
τ
) = τAg∗,C

(
sg∗,C(γ

τ
)
)

= τAg∗,C(γ∗
τ
) = τ
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as by construction of γ∗
τ
and definition of τ Ig∗,C one has that

τ Ig∗,C(γ∗
τ
) = τ .

Finally one obtains

∀ τ ∈ Relposgallg

(
τAg,C ◦ τ

′A
g,C

)
(τ) = τ .

This gives that τAg,C is surjective. To prove the injectivity of τAg,C one needs
the following

Lemma 10.16 The triangle

τ
′A
g,C : Relpos

gall

I
(g) // GallA(g, Fe1(g)(C))

img,C :Wm
C (g)

OO 55

commutes. Where the vertical arrow is defined as above. (Remark that as two
of its arrows are bijections it follows that τ

′A
g,C also is a bijection, and that a

fortiori τAg,C is a bijection).

Proof Let τ(x) = (τ
r+1

, . . . , τ
1
) ∈ Relposgallg I be the gallery of relative po-

sitions corresponding to x = (xr+1, . . . , x1) ∈Wm

C (g). Let (Cr+1, . . . , C0) the
sequence of chambers given by γ∗

τ
. Write wi = w(Ci, Ci−1) (r + 1 > i > 1).

Let
vi+1 = wr+1 . . . wi+1 (r > i > 0).

Then it may be seen by induction that the following relations holds between
(wr+1, . . . , w1) and x = (xr+1, . . . , x1):

1. xr+1 = wr+1, xi = v−1
i+1 wi vi+1 (r > i > 1);

2. xr+1 . . . xi = wi . . . wr+1.

From (2) it follows immediately that

(xr+1 . . . xi)(C) = Ci−1 (r + 1 > i > 1).

By definition of γg(x) (cf. Proposition 9.54) it follows that γg(x) = γ
τ
, and

a fortiori that i
m

g (x) = γ
τ
. This proves the commutativity of the triangle.

From the Lemma one obtains:

Proposition 10.17 τAg,C : GallA(g, Fe1(g)(C)) −→ Relposgallg A is a bijec-
tive mapping whose inverse is given by(

τAg,C
)−1

= τ
′A
g,C .
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10.6 Galleries cells parametrizations

Let g : (si)r>i>0, (tj)r+1>i>0 be a gg g ∈ gall
I

= gall
A
, with l(g) = r + 1,

and g = g′1 (resp. γg(C) : (Fsi(C))r>i>0,
(
Ftj (C)

)
r+1>j>0

the corresponding
basical gg defined by C). It is recalled that given F ∈ I(G) one has Stab

G
F =

P
F

= the parabolic subgroup of G given by F . Following the pattern of
Definition 9.48 one writes:

Stabt(g) γg(C) = Π Stab
G
Ftj (C) (r + 1 > j > 1)

(resp. Stabs(g) γg(C) = Π Stab
G
Fsi(C) (r > i > 0) )

This definition corresponds to the case 2) of Definition 9.48. The definition of
Stabt(g) γg(C) (resp. Stabs(g) γg(C)) in the cases 1), 3), and 4) follows the
corresponding patterns 1), 3), and 4). One develops the case 1), i.e. g = g′1,
in detail. It is easy to see that 1), 3) and 4) are similarly handled.

Definition 10.18 Given x ∈ Stabt(g) γg(C) one writes

zα = Πxi (r + 1 > i > α) (resp. z r+2 = 1) .

Let
iIg = iIg,C : Stabt(g) γg(C) −→ Gall

I
(g, Fe1(g)(C))(

Fe1(g)(C) = Ftr+1
(C)
)
be given by:

iIg,C : x 7→ γg(x) = x · γg(C) ,

where

γg(x) = x·γg(C) : (zi+1(Fsi(C))) (r > i > 0) ,
(
zj+1(Ftj(C))

)
(r+1 > j > 1)

(see Proposition 9.54).

To avoid repetitions define a right action

Stabt(g) γg(C)× Stabs(g) γg(C) −→ Stabt(g) γg(C)

according to Definition 9.50, by writing Stabt(g) γg(C) (resp. Stabs(g) γg(C))
instead of W (t(g)) (resp. W (s(g))).

One calls the quotient set

Stabt(g) γg(C)/Stabs(g) γg(C)
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the contracted product associated to the gg γg(C) in I.

The mapping iIg : Stabt(g) γg(C) −→ Gall
I
(g, Fe1(g)(C)) factors through the

quotient mapping

Stabt(g) γg(C) −→ Stabt(g) γg(C)/Stabs(g) γg(C) .

Let

i
I
g = i

I
g,C : Stabt(g) γg(C)/Stabs(g) γg(C) −→ Gall

I
(g, Fe1(g)(C))

be the induced mapping.

Remark 10.19 The mapping iIg,C corresponds to the mapping

ig,C : W (t(g))/W (s(g)) −→ GallA(g, Fe1(g)(C))

of Corollary 9.56.

Proposition 10.20 The mapping iIg,C is a bijection.

The proof of this Proposition follows mutatis mutandis from that of Corollary
9.56 (which gives that iIg,C is injective) and Proposition 9.61 (which gives that

i
I
g,C is surjective).

Let
qg∗ : Gall

I
(g∗) −→ Gall

I
(g)

denote the mapping
qg∗ : γ∗ 7→ Fg(γ∗)

where Fg(γ∗) is the gg of type g defined by γ∗ ∈ Gall
I
(g∗). By

qIg∗,C : Gall
I
(g∗, C) −→ Gall

I
(g, Fe1(g)(C))

the induced mapping is denoted.

It is easy to see that the mapping

sIg∗,C : Gall
I
(g, Fg(C)) −→ Gall

I
(g∗, C)

is a section of the surjective mapping qIg∗,C , i.e. that

qIg∗,C ◦ sIg∗,C = identity of the set Gall
I
(g, Fe1(g)(C)).

See Definition 9.64 and what follows.
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10.6.1 Cells parametrizations

Given a cell C (g, τ) a set of class representatives U(wτ )wτ ⊂ Stabt(g) γg(C)
is defined such that iIg,C induces a bijection U(wτ )wτ ' C (g, τ).

We suppose A = AT , T a maximal torus of G. Let R = RT be the system
of roots defined by T . Denote by BC the Borel subgroup corresponding to the
chamber C ∈ ChA, and by R+(C) ⊂ R the system of positive roots defined
by C.

The natural action of W = WA = N(T )/T on ChA corresponds to the
action of W on (R+(C)) (C ∈ ChA), i.e.

w(R+(C)) = R+(w(C)).

It is recalled that by definition (cf. Notation 10.9,2.)

Σ(τ, F ) = (I × I)τ ∩ ({F} × I) .

Let τ ∈ Relposs = (Ch I × Is)/W. In this section one writes (by abuse of
language):

Σ(τ, C) = {F ∈ Is | (C,F ) ∈ (I × I)τ } .

Let it be recalled that Fτ (C) ∈ As is the unique facet such that

τ(C,Fτ (C)) = τ

i.e. A ∩Σ(τ, C) = {Fτ (C)}. Write

wmτ = wm
Fτ (C)

= w(C, projFτ (C) C).

Fτ (C) may be seen as the image of Σ(τ, C) by the retraction ρ
A,C

: I −→ A
(cf. [50], 3.3). Thus Fτ (C) = wmτ (Fs(C)) (cf. Definition 9.70). Given w ∈W
one considers a closed subset of the positive roots R+(C)

R+(w) = R+(C)−R+(C) ∩ w(R+(C)).

Define the subgroup
U(w) ⊂ BC

as the image of the mapping

Π Xα (α ∈ R+(w)) −→ BC

induced by the multiplication of G, where by Xα (α ∈ R) one denotes the
root subgroup corresponding to α. Remark that

H(C,w(C)) = {∂Φα | α ∈ R+(C)} ,
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where ∂Φα denotes the hyperplane of A defined by the root α. It is well
known that the mapping

U(wmτ ) −→ Σ(τ, C) (τ ∈ (Ch I× I)/G)

defined by
u 7→ u(Fτ , C) = uwmτ (Fs(C))

is a bijection, i.e. every F ∈ Σ(τ, C) is uniquely written in the form

F = uwmτ (Fs(C)) (u ∈ U(wmτ ))

(cf. [23], Exp. XXVI, 4.5.3). Given τ ∈ Relposgallg I, τ = (τ
r+1

, . . . , τ
1
), it

is known that to τ corresponds a unique element (cf. Lemma 10.16, and
Proposition 10.17)

wτ = (wmτ
r+1

, . . . , wmτ
1
) ∈ Wm

C (g).

Write
U(wτ ) = U(wmτ

r+1
)× · · · × U(wmτ

1
) ⊂ Stabt(g)γg(C).

Observe that τi ∈ Relpostisi−1
=⇒ wmτ

i
∈ WFti (C), One has

projwm
τ
i

(Fsi−1
(C))C = wmτ

i
(C) and Fti(C) ⊂ Fτi(C), thus that H(C,wmτ

i
(C)) ⊂

HFti (C) and R+(w
m

τ
i
) ⊂ RFτi (C).

This gives
U(wmτ

i
) ⊂ P

Fti
(C) = Stab

G
Fti(C)

and finally
U(wτ ) ⊂ ΠStab

G
Fti(C) = Stabt(g)γg(C)

(ti = ti(g)).

Definition 10.21 For each w ∈ W = N(T )/T one denotes w a representa-
tive w ∈ N(T ) by the same letter if no confusion arises (see Definition 11.8).

Let
U(wτ )wτ ⊂ Stabt(g)γg(C)

be defined by

U(wτ )wτ = U(wmτ
r+1

)wmτ
r+1
× · · · × U(wmτ

1
)wmτ

1

= ΠU(wmτ
i
)wmτ

i
.

Let
imτ,C : U(wτ )wτ −→ GallI(g, Fe1(g(C)) .
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be the restriction of

iIg,C : x 7→ γg(x) = x · γg(C) (cf. Definition 10.18)

to U(wτ )wτ ⊂ Stabt(g) γg(C).

The following Proposition completes this definition.

Proposition 10.22
Im imτ,C ⊂ C

C
(g, τ).

Proof Write
wi = wmτ

i
.

Given
x = (ur+1wr+1, . . . , u1w1) ∈ U(wτ )wτ

Define a sequence of chambers

Cr+1 = C , Ci = (ur+1wr+1 . . . uiwi)(C) (r > i > 1) .

Let it be seen that

τI
(
Ci, Fsi−1

(Ci−1)
)

= τi (resp. Ci−1 = projFsi−1
(Ci−1)(Ci))

One has

τI((ur+1w
m
τr+1
· · ·ui+1w

m
τi+1

)(C), Fsi−1((ur+1w
m
τr+1
· · ·uiwmτi )(C))

= τI(C,Fsi−1
(wmτi (C))

and
τI(C,Fsi−1

(wmτi (C)) = τI(C,Fτi(C)) .

Write w(i+1) = ur+1w
m
τr+1
· · ·ui+1w

m
τi+1

, thus

τi = (w(i+1)(C), w(i+1)(Fτi(C))) = (Ci, Fsi−1
(Ci−1)),

and

w(i+1)(projFτi (C) C) = projw(i+1)(Fτi (C)) w
(i+1)(C) = projw(i+1)(Fτi (C)) Ci .

Observe that Fsi−1
(γg(w

(1))) = w(i+1)(Fτi(C)). This achieves the proof of
both equalities. It results from the above equalities that

(τ Ig,C)(γg(x)) = τ

i.e. γg(x) ∈ C
C

(g, τ) (cf. Definition 10.14), and this completes Definition
10.21.
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Lemma 10.23 imτ,C induces a bijection

U(wτ )wτ ' C
C

(g, τ) .

Proof Let it be proved that γ ∈ C
C

(g, τ) may be uniquely written

γ = γg(x) = x · γg(C) , x ∈ U(wτ )wτ .

As Fr(γ) ∈ Σ(τ
r+1

, C) clearly one has,

Fr(γ) = ur+1 wr+1(Fsr (C))

with ur+1 ∈ U(wr+1) uniquely determined. Now it is supposed that

Fj(γ) = ur+1 wr+1 . . . uj+1 wj+1(Fsj (C)) (r > j > i)

with (ur+1 wr+1, . . . , uj+1 wj+1) uniquely determined.
One then has v−1

i+1(Fi−1(γ)) ∈ StFti
(C), with

vi+1 = ur+1 wr+1 . . . ui+1 wi+1,

and v−1
i+1(Fi−1(γ)) ∈ Σ(τ

i
, C), as

τI
(
v−1
i+1(Ci), v

−1
i+1(Fi−1(γ))

)
= τI

(
C, v−1

i+1(Fi−1(γ))
)

= τ
i
.

(Define Cr = ur+1 wr+1(C), Cr−1 = ur+1 wr+1urwr(C) . . . recursively).
Thus there exists ui wi ∈ U(wi)wi, uniquely, determined so that

v−1
i+1 (Fi−1(γ)) = ui wi

(
Fsi−1(C)

)
.

It is finally obtained

Fj(γ) = ur+1 wr+1 . . . uj+1 wj+1

(
Fsj (C)

)
(r > j > i− 1)

with (ur+1 wr+1, . . . , uj+1 wj+1) uniquely determined.

It is clear that

τ 6= τ ′ =⇒ U(wτ )wτ ∩ U(w
τ ′

)w
τ ′

= ∅.

One may thus write⋃
τ ∈Relposgall

g
I

U(wτ )wτ =
∐

τ ∈Relposgall
g

I

U(wτ )wτ ⊂ Stabt(g)γg(C).

The bijective mapping

Wm
C (g) −→ Relposgallg I
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is obtained as the composition of bijections

img,C :Wm
C (g) −→ GallA(g, Fe1(g)(C))

(cf. Proposition 9.72) followed by

τAg,C : GallA(g, Fe1(g)(C)) −→ Relposgallg I.

Thus the cell decomposition

Gall
I
(g, F ) =

∐
τ ∈Relposgall

g
I

C
C

(g, τ)

may be indexed by the set Wm
C (g) (resp. GallA(g, Fe1(g)(C))).

By Corollary 9.73 it is known that

Wm
C (g) ⊂ WC(t(g))

is a set of representatives of the quotient set

WC(t(g))/WC(s(g)).

One now gives a set of representatives of Stabt(g) γg(C)/Stabs(g) γg(C),
closely tied toWm

C (g), which generalizes the parametrization of double classes
given by Bruhat decomposition.

Definition 10.24 Write:

U(Wm
C (g)) =

∐
τ ∈Relposgall

g
I

U(wτ )wτ ⊂ Stabt(g)γg(C).

Define the bijective mapping:

iI,mg,C : U(Wm
C (g)) −→ Gall

I
(g, Fe1(g)(C)) =

∐
τ ∈Relposgall

g
I

C
C

(g, τ) ,

by:
iI,mg,C =

∐
τ ∈Relposgall

g
I

imτ,C .

The mapping iI,mg,C being the restriction of iIg,C (cf. Definition 10.18) it
factors through the bijective mapping:

i
I
g,C : Stabt(g) γg(C)/Stabs(g) γg(C) −→ Gall

I
(g, Fe1(g)(C)).

It is deduced that the mapping(
Stabt(g) γg(C) ⊃

)
U(Wm

C (g)) −→ Stabt(g) γg(C)/Stabs(g) γg(C)
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induced by the quotient mapping is also bijective. From this it results that
U(Wm

C (g)) may be viewed as a set of representatives of the Stabs(g) γg(C)-
classes of Stabt(g) γg(C).
The cells C

C
(g, τ) are obtained as the fibers of a retraction mapping.

Definition 10.25 Define the retraction of galleries given by the couple
(A, C).

ρ
A,C

(g) : Gall
I
(g, Fe1(g)(C)) −→ GallA(g, Fe1(g)(C))

by:
ρ
A,C

(g) :=
(
τAg,C

)−1 ◦ τ Ig,C .

(cf. Proposition 10.17)

The fibers of ρ
A,C

(g) are given by the set of cells (C
C

(g, τ))τ∈Relposgallg I .
More precisely, we have(

ρ
A,C

(g)
)−1

(γ
τ
) = C

C
(g, τ),

where γ
τ
∈ GallA(g, C) is the unique gg of A such that (τAg,C)(γ

τ
) = τ . It

is recalled that τAg,C : GallA(g, Fe1(g)(C)) −→ Relposgallg I is bijective, and its
inverse is given by τ

′A
g,C : τ 7→ γ

τ
(cf. loc. cit.). On the other hand, there is

a natural mapping
U(Wm

C (g)) −→Wm
C (g),

defined by:

(ur+1 wr+1, . . . , u1 w1) 7→ (wr+1, . . . , w1) ∈W
m

C (g) .

The following commutative diagram expresses the compatibility between iI,mg,C
and img,C .

iI,mg,C : U(Wm
C (g)) //

��

Gall
I
(g, Fe1(g)(C))

ρ
A,C

(g)

��
img,C :Wm

C (g) // GallA(g, Fe1(g)(C))

.

Given g ∈ gall
m

= gall
m

A
= gall

m

I
, so that g = g′1, one has associated with

C ∈ ChA the bijections:

img,C :Wm
C (g) −→ Gall

I
(g, Fe1(g)(C)) (cf. Proposition 9.72)

(resp. τAg,C : GallA(g, Fe1(g)(C)) −→ Relposgallg I (cf. Proposition 10.17) .
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It is easy to see that the composed mapping

τAg,C ◦ img,C : Wm
C (g) −→ Relposgallg I

is the bijection induced by the mappings

Wm
C (t, s) −→ Relposts I

defined by: w 7→ τ(C,w(Fs(C))) (cf. §9.3,c)).

10.6.2 The generic gallery

Recall that
SC = (w(t, s))(t,s)∈typ(2)A,

with
(
typ(2)A = {(t, s) ∈ typA× typA−∆ | t ⊂ s}

)
, where

w(t, s) = w(C,projF C)

and F = F tr(t,s)(C) = the facet of type s incident to Copp in StFt(C). With
the notation of §9.1, a), F = F tr(t,s)(C) may be characterized as the facet of
type s in StFt(C) at maximal distance from C, i.e. if τ = τ(C,projF C), then
wm
F

= wmτ = the element of maximal length of {wmτ | τ ∈ Relposts}, with
respect to SC . The couple (C,F tr(t,s)(C)) is in transversal position in StFt(C).
Observe that

SC ∩Wm
C (ti(g), si−1(g)) = {w(ti(g), si−1(g))}.

Definition 10.26
Let τ tr ∈ Relposgallg I denote the image of
wtr = (wtri ) = (w(ti(g), si−1(g))) ∈ Wm

C (g) = ΠWm
C (ti(g), si−1(g)) by τAg,C ◦

img,C . One calls the cell

C
C

(g, τ tr) ⊂ Σ̂(g, Fe1(g)(C)) = Gall
I
(g, Fe1(g)(C))

corresponding to τ tr, the big cell of Σ̂(g, Fe1(g)(C)), with respect to C.

The transversal relative position type τ tri is the image of wtri =
w(ti(g), si−1(g)) ∈ Wm

C (ti(g), si−1(g)) by the above defined mapping

Wm
C (ti(g), si−1(g)) // Relposti(g)si−1(g) I.

Thus
τ tr = (τ tri ) (r + 1 > i > 1).
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Remark 10.27

1. Write
wchg = Πwtri (r + 1 > i > 1).

Then wtr = (wtri ) is a SC-reduced expression of type g of wchg,C , ac-
cording to Definition 9.13.

2. The image γg(w
tr) = wtr · γg(C) by img,C of wtr = (wtri ) is a MGG

of type g between F = Fe1(g)(C) = Ftr+1
(C) and F ′ = wchg (Ft0(g)(C)),

namely
γg(w

tr) = γg(F, F
′) .

3. It is easy to verify that by definition of wchg (Ft0(g)(C)) one has: “C ⊃ F
is at maximal distance from wchg (Ft0(g)(C))”. (wchg is the maximal length
element among those obtained as the product of the components of some
w ∈ Wm

C (g)). It follows that CC(g, τ tr) is the cell of maximal dimension.

Write

τ chg = τ(C,wchg (Ft0(g)(C))) ∈ (A×A)
ch

τg
/WA (τg = τ(F, F ′)).

Observe that wchg = wmτchg
.

10.7 Minimal Generalized Gallery block decomposition of a
Schubert cell parametrizing subgroup

One explicates the parametrization of the big cell of the galleries of type
g ∈ gallmA and its relation with the corresponding Schubert cell.
By definition of MGG between F and F ′ one obtains

H(C,F ′) =
∐
HF ′i (Fi−1) (r+1 > i > 1) (resp. H(C,F ′) = H(C,projF0

C))

where Fi = Fi(γg(F, F
′)) (resp. F ′j = Fj(γg(F, F

′))).

One has defined a mapping

sg∗,C : GallA(g, Fe1(g)(C)) // GallA(g∗, C)

(cf. Definition 9.64) which associates with γg(F, F
′) a gg, namely,

sg∗,C(γg(F, F
′)) characterized by the sequence of chambers Cr+1 = C,

Ci = projFiCi+1 (r > i > 0). Following a standard calculus (cf. §9.62,
i)), one obtains

Ci = wtrr+1 . . . w
tr
i+1(C) = vi+1(C)



Minimal Generalized Galleries in a Reductive Group Building 241

where
vi+1 = wtrr+1 . . . w

tr
i+1.

As Ci ⊃ Fi ⊃ F ′i , it is deduced that

F ′i = F ′i (γg(F, F
′)) = vi+1(Fti(g)(C)).

(resp. Fi = Fi(γg(F, F
′)) = vi+1(Fsi(g)(C))) .

On the other hand, by definition of τ tri one has

τ tri = τ(C,wtri (Fsi−1(g)(C))),

one then deduces that

τ(Ci, Fi−1) = τI(C,w
tr
i (Fsi−1(g)(C))) = τ tri ,

(as Ci = vi+1(C), vi+1 · wtri = vi) and

vi+1

(
H(C,wtri (Fsi−1(g)(C)))

)
= H(Ci, Fi−1).

From this last equality it follows that vi+1 transforms the set
R+(C,wtri (Fsi−1(g)(C))) of roots α ∈ R+(C), so that ∂Φα ∈
H(C,wtri (Fsi−1(g)(C))), into the set R+(Ci, Fi−1). Remark that as γg(w

tr) is
a MGG one has

H ∈ H(Ci, Fi−1) +3 H /∈ H(Cr+1, Ci) (Cr+1 = C)

(cf. Remark 3.6,a)), and that

vi+1 = w(C,Ci) , (Ci = vi+1(C)) .

On the other hand, given α ∈ R+(C) the following equivalence holds

vi+1(α) ∈ −R+(C) ks +3 ∂Φα ∈ H(C,Ci) ,

as Ci = vi+1(C). It is then deduced that

R+(Ci, Fi−1) ⊂ R+(C) .

As
HF ′i (Fi−1) = H(Ci, Fi−1)

one obtains
H(C,F ′) =

∐
H(Ci, Fi−1) ,

and finally
R+(C,F ′) =

∐
R+(Ci, Fi−1) .
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From the definition it follows that

R+(wchg ) = R+(C)−R+(C) ∩ wchg (R+(C))

and that
R+(wchg ) = R+(C,wchg ) = R+(C,F ′).

Thus results the equality

R+(C,F ′) = R+(wchg ) =
∐

R+(Ci, Fi−1).

One now remarks that a set of roots R+(C,F ) = R+(C) − R+(C) ∩ RF is a
closed set of roots. Then the image of the mapping

Π Xα(α ∈ R+(C,F )) // G

induced by the multiplication in G is a subgroup of BC which is denoted by
U(C,F ).

Lemma 10.28 With the above notation

U(Ci, Fi−1) = vi+1U(wtri )v−1
i+1.

Proof This equality results from the following facts:

U(wtri ) = U(C,wtri (Fsi−1(g)(C)))

(resp. R+(Ci, Fi−1) = vi+1

(
R+(C,wtri (Fsi−1(g)(C)))

)
), in view of the im-

plication (C̄, F̄ ) = (v(C), v(F )) =⇒ R(C̄, F̄ ) = v(R(C,F )) =⇒ U(C̄, F̄ ) =
v U(C,F )v−1.

Proposition 10.29 The equality

R+(wchg ) =
∐

R+(Ci, Fi−1)

gives a bijection immediately

Π U(Ci, Fi−1) −→ U(wchg ) = U(C,F ′)

induced by the multiplication in G.

10.8 Minimal type galleries big cell

Let one establish the connection between U(wchg ) = U(C,F ′) and

Σ(τ chg , C) ⊂ Σ(τg, Fe1(g)(C)),

where τg = τ(F, F ′) and τ chg = τ(C,F ′), and C ⊃ F is at maximal distance
from F ′.
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Remark 10.30 Observe that if (C,F ) corresponds to (Fe1(g)(C), F ) by the
mapping

(A×A)
ch

τg
−→ (A×A)τg , then

Σ(τ, C) ⊂ Σ(τg, Fe1(g)(C)),

where τ = τI(C,F ) (cf. Lemma 9.22).

Lemma 10.31 The multiplication in G induces a bijection

U(wτtr )wτtr = Π U(wtri )wtri ' U(wchg )wchg .

Proof One first observes that

wtrr+1 = wmτtr
r+1

(resp. wτtr = (wtri )),

thus U(wτtr )wτtr = ΠU(wtri )wtri .

On the other hand, the mapping

U(wτtr )wτtr −→ G

induced by the multiplication factors as follows. It is obtained as the compo-
sition of the bijection

Π U(wtri )wtri −→Π vi+1 U(wtri )v−1
i+1

followed by the bijection

ΠU(Ci, Fi−1) = Π vi+1 U(wtri )v−1
i+1 −→ U(wchg )

(cf. §10.7) induced by the multiplication in G, and the right multiplication
by wchg :

x 7→ xwchg .

This follows immediately from the identity

ur+1 w
tr
r+1ur w

tr
r . . . u1 w

tr
1 = ur+1(vr+1 urv

−1
r+1)(vr ur−1v

−1
r ) · · · (v1 uv

−1
1 )v1.

( (ur+1 w
tr
r+1, . . . , u1 w

tr
1 ) ∈ U(wτtr )wτtr). Observe that v−1

i+1 vi = wtri+1

There is a bijective mapping

U(wchg )wchg −→ Σ(τ chg , C) ⊂ Σ(τg, Fe1(g)(C))
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defined by
u 7→ u(Ft0(g)(C)) (u ∈ U(wchg )wchg )

(cf. §10.8). On the other hand, the mapping

imτtr,C : U(wτtr )wτtr −→ C
C

(g, τ tr) ⊂ Σ(g, Fe1(g)(C))

being induced by

iIg,C : Stabt(g) γg(C) −→ Σ̂(g, Fe1(g)(C)) = Gall
I
(g, Fe1(g)(C))

defined by

iIg,C : x 7→ γg(x) = x · γg(C) (x ∈ Stabt(g) γg(C)) .

(cf. Definition 10.21, and Definition 10.18), verifies

F ′0(γg(x)) = ur+1 w
tr
r+1 . . . u1 w

tr
1 (Ft0(g)(C))

where x = (ur+1 w
tr
r+1, . . . , u1 w

tr
1 ) ∈ U(wτtr )wτtr ⊂ Stabt(g) γg(C).

Putting together these facts from Lemma 10.31 it results that the compo-
sition mapping

E2 ◦ imτtr,C : U(wτtr )wτtr −→ Σ(τg, Fe1(g)(C))

sends U(wτtr )wτtr bijectively to

(U(wchg )wchg )(Ft0(g)(C)) = Σ(τ chg , C) ⊂ Σ(τg, Fe1(g)(C)) .

one has proved the

Proposition 10.32 The following diagram

imτm,C : U(wτtr )wτtr
//

��

C
C

(g, τ tr) �
� // Σ(g, Fe1(g)(C))

πmg,Fe1(g)(C)

��
U(wchg )wchg // Σ(τ chg , C)

� � // Σ(τg, Fe1(g)(C))

where U(wchg )wchg −→ Σ(τ chg , C) is defined as above, and the left vertical
arrow is given by Lemma 10.31, commutes.
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It is known that πmg,Fe1(g)(C) = Em2 is a bijective mapping whose inverse map-
ping is given by the section

Θg,Fe1(g)(C) : Σ(τg, Fe1(g)(C)) −→ Σ(g, Fe1(g)(C))

defined by:
Θg,Fe1(g)(C) : F ′ 7→ γg(Fe1(g)(C), F ′)

(= the MGG between Fe1(g)(C) and F ′ of type g satisfying
(τ(Fe1(g)(C), F ′) = τg))

Thus one obtains that all the arrows of the above diagram, with the exception
of the two inclusions, are bijective. The following is deduced

Corollary 10.33 With the above notation(
Θg,Fe1(g)(C)

) (
Σ(τ chg , C)

)
= C

C
(g, τ tr).

10.9 Galleries of fixed type as fiber products

It is possible to write the set of galleries of type g, GallI(g) as a fiber product
of “closed universal Schubert cells” given by the set of type s facets incident
to Ft, (StFt)s.
Recall typ(2)A = {(t, s) ∈ typA × typA − ∆ | t ⊂ s}. There is a natural
mapping

τ (2) : typ(2)A −→ RelposA

defined by
τ (2) : (t, s) 7→ τI(F

′, F ) ((t, s) ∈ typ(2)A)

where (F ′, F ) ∈ It × Is satisfies F ′ ⊂ F . Clearly the mapping τ (2) is well-
defined, injective, and τ (2)(t, s) ∈ Relpost(t,s) I.

Definition 10.34
Given (t, s) ∈ typ(2)A, and F ′ ∈ It write:

Σ(t, s) = Σ(τ (2)(t, s)) ⊂ It × Is
(resp. Σ(t, s;F ′) = Σ(τ (2)(t, s), F ′))

One calls Σ(t, s;F ′) the (t, s)-elementary cell defined by F ′ (resp.
Σ(t, s) the (t, s)-universal elementary cell). One has Σ

c
(t, s) = Σ(t, s).

Let (t, s) ∈ typ(2)A, and a type t′ ⊂ s. There is a natural mapping

pr2,t′ = prΣ2,t′ : Σ(t, s) −→ It′ (resp. pr1 = prΣ1 : Σ(t, s) −→ It )
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associating with (F ′, F ) ∈ Σ(t, s) the unique facet Ft′(F ) of type t′ incident
to F (typF = s ⊃ t′), i.e.

pr2,t′ : (F ′, F ) 7→ Ft′(F ) .

(resp. defined by pr1 : (F ′, F ) 7→ F ′ ).

Definition 10.35

1. Let (t, s), (t′, s′) ∈ typ(2)A, with t′ ⊂ s, and F ′ ∈ It. Then it is said
that (t, s), and (t′, s′) are composable. Write:

Σ(t, s) ∗Σ(t′, s′) = Σ(t, s)×
It′

Σ(t′, s′)

(resp. Σ(t, s;F ′) ∗Σ(t′, s′) = Σ(t, s;F ′)×
It′

Σ(t′, s′))

where the fiber product is defined relatively to the couple:

(pr2,t′ , pr1) (resp. (pr2,t′ |Σ(t,s;F ′)
,pr1)).

2. Let F ∈ I with typF ⊃ t. Define

Σ(t, s;F ) = Σ(t, s;Ft(F )) .

To g ∈ GallA , of length r + 1, with g = g1, so that (ti+1(g), si(g)) ∈ typ(2)A
given by:

g : (si) (r > i > 0), (tj) (r + 1 > j > 1)

one associates the star product Σ∗(g) which is defined by induction from
Definition 10.35:

Σ∗(g) = Σ(tr+1, sr) ∗Σ(tr, sr−1) · · · ∗Σ(t1, s0).

Definition 10.36 Given g = g′1 we define

Σ∗(g) = Σ∗(g(0))

where g(0) denotes the truncated gallery defined by g (cf. Definition 9.57). If
g = g2 : (si) (r > i > 0), (tj) (r + 1 > j > 1) one defines

Σ∗(g) = Σ(tr, sr−1) ∗ · · · ∗Σ(t1, s0)

For g = g′2 one writes
Σ∗(g) = Σ∗(g(0)).
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Proposition 10.37 There is a canonical bijection

Gall
I
(g) ' Σ∗(g)

for g ∈ GallA verifying (ti+1(g), si(g)) ∈ typ(2)A.

Proof Let γ ∈ Gall
I
(g), with g = g1 be given by:

γ : (Fi) (r > i > 0), (F ′j) (r + 1 > j > 1).

With γ one associates the element

((F ′i+1, Fi)) ∈ΠΣ(ti+1, si) (r > i > 0)

which clearly belongs to Σ∗(g) ⊂ΠΣ(ti+1, si). Thus one defines a mapping

Gall
I
(g) −→ Σ∗(g) ,

which is immediately seen to be bijective. A bijection Gall
I
(g) ' Σ∗(g)

may be obtained in the case g = g2 (resp. g = g′1, g = g′2) following the same
pattern.

Given F with typF = tr+1(g) (resp. typF = sr(g)) one defines

Σ∗(g, F ) ⊂ Σ∗(g)

as the image of Gall
I
(g, F ), by the bijection Gall

I
(g) −→ Σ∗(g), if g = g1, g

′
1

(resp. g = g2, g
′
2).

For g ∈ gall
A
, and r > α > 0 (resp. r > α > 0) let

π(α)
g : Gall

I
(g) −→ Gall

I
(g(α))

be the mapping:
π(α)
g : γ 7→ γ(α)

if g = g1, g
′
1 (resp. g = g2, g

′
2) (cf. Definition 9.57).

Let
π(α)
g,F : Gall

I
(g, F ) −→ Gall

I
(g(α), F )

denote the mapping induced by π(α)
g by restriction to Gall

I
(g, F ) ⊂ Gall

I
(g),

and co-restriction to Gall
I
(g(α), F ) ⊂ Gall

I
(g(α)).

From the definition of π(α)

g(α′)) (α > α′) results the following proposition.
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Proposition 10.38 Let γ(α) ∈ Gall
I
(g(α)). The fiber

(
π(α)

g(α′)

)−1

(γα) of

π(α)

g(α′) : Gall
I
(g(α′)) −→ Gall

I
(g(α) (α′ 6 α)

over γ is given by:(
π(α)

g(α′)

)−1

(γ(α)) = Σ(tα, sα−1;Ftα(Fsα(γ))) ∗ · · · ∗Σ(tα′+1, sα′).

If one introduces the notation

g[α,α′] : tα(g) ⊂ sα−1(g) · · · tα′+1(g) ⊂ sα′(g)

the equality of the Proposition 10.38 may be written(
π(α)

g(α′))
)−1

(γ(α)) = Σ∗(g[α,α′], Ftα(Fsα(γ(α)))) = Gall
I
(g[α,α′], Ftα(Fsα(γ(α)))).

As a particular case of the Proposition 10.38 for α′ = α − 1 one obtains the
equality: (

π(α)

g(α−1)

)−1

(γ(α)) = Σ(tα, sα−1;Ftα(Fsα(γ(α)))).

Definition 10.39 Let g = g1, g
′
1 (resp. g = g2, g

′
2). It is called the sequence

of mappings (
π(α)

g(α−1)

)
(r + 1 > α > 1)

(resp.
(
π(α)

g(α−1)

)
(r > α > 1))

the tower of fibrations associated with Gall
I
(g). If typF = tr+1(g)

(resp. typF = sr(g)) one has, corresponding to the preceding sequence, the
sequence (

π(α)

g(α−1),F

)
(r + 1 > α > 1)

(resp.
(
π(α)

g(α−1),F

)
(r > α > 1))

(the tower of fibrations associated with Gall
I
(g, F )). Where π(r+1)

g(r)

(resp. π(r)

g(r−1)) denotes the canonical mapping

Gall
I
(g) −→ Itr+1(g)

(resp. Gall
I
(g) −→ Isr(g) ).
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10.10 Galleries cells tower fibration

Let τ, τ ′ ∈ (ChA×A)/W = (Ch I× I)/G. Define

prτ
2

: Σ(τ) −→ Ch I

(resp. prτ
1

: Σ(τ ′) −→ Ch I )

by
prτ

2
: (C,F ) 7→ projF C (resp. prτ

1
: (C,F ) 7→ C ).

Write
Σ(τ) ∗Σ(τ ′) = Σ(τ)×

ChA Σ(τ ′)

where the fiber product is defined by the couple (prτ
2
, prτ

′

1
). Given C ∈ Ch I

one writes: Σ(C, τ) ∗Σ(τ ′) = fiber over C of the mapping

Σ(τ) ∗Σ(τ ′) −→ Σ(τ)
prτ

1−→ Ch I .

Definition 10.40 For τ ∈ Relpos
gall

I
(g), and C ∈ Ch I define

Σ∗(τ) = Σ(τ
r+1

) ∗ · · · ∗Σ(τ
1
)

(resp. Σ∗(τ , C) = Σ(τ
r+1

, C) ∗ · · · ∗Σ(τ
1
)).

where τ = (τ
r+1

, . . . , τ
1
). One supposes g = g1, g

′
1. The corresponding defini-

tion in the case g = g2, g
′
2 is obtained by replacing r+ 1 by r in the preceding

equalities.

Suppose now C ∈ ChA and g = g1. The next aim is to obtain the cell
C
C

(g, τ) ⊂ Gall
I
(g) as the star product Σ∗(τ , C) along the gallery of relative

positions
τ = (τ

r+1
, . . . , τ

1
) ∈ Relpos

gall

I
(g).

One represents an element x ∈ Σ∗(τ) in the form

x = ((Ci+1, Fi)) (r > i > 0)

and one defines

j
C

(g, τ) : Σ∗(τ , C) −→ Gall
I
(g, Fe1(g)(C))

by
j
C

(g, τ) : ((Ci+1, Fi)) −→ γ((Ci+1, Fi))

where this latter is given by

γ((Ci+1, Fi)) : (Fi) (r > i > 0), (Ftj(g)(Cj)) (r + 1 > j > 1).

From the Definition 10.14 of C
C

(g, τ) one obtains the proposition:
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Proposition 10.41 The image = j
C

(g, τ) is given by

= j
C

(g, τ) = C
C

(g, τ).

One identifies Σ∗(τ , C) with C
C

(g, τ) by means of j
C

(g, τ).

Let
τ (α) = (τ

r+1
, . . . , τα) ∈ Relpos

gall

I
(g(α−1))

be the α-truncated gallery of relative positions defined by τ . One has the
inclusions:

C
C

(g(α−1), τ (α)) = Σ∗(τ (α), C) ⊂ Σ∗(g(α−1), C) .

Let
π(α)

τ(α),C
: Σ∗(τ (α), C) −→ Σ∗(τ (α+1), C)

denote the mapping obtained as the restriction to

Σ∗(τ (α), C) ⊂ Σ̂(g(α−1), C)

and the co-restriction to

Σ∗(τ (α+1), C) ⊂ Σ̂(g(α), C)

of π(α)

g(α−1),C
.

Given
γ ∈ C

C
(g(α), τ (α+1)) = Σ∗(C, τ (α+1))

one associates with γ a sequence of chambers

C = Cr+1 = Cr+1(γ), Ci(γ) = projFti(g)(γ)Ci+1(γ).
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Proposition 10.42 Let γ(α) ∈ Σ(τ (α+1), C) ⊂ Gall
I
(g(α), C).

The fiber
(
π(α)

τ(α),C

)−1

(γ(α)) of π(α)

τ(α),C
over γ(α) is given by:

(
π(α)

τ(α),C

)−1

(γ(α)) = Σ(τα, Cα(γ(α))).

Σ∗(τ (α), C) //

��

Gall
I
(g(α−1), C)

��
Σ∗(τ (α+1), C) // Gall

I
(g(α), C)

where the horizontal arrows are inclusions, and the vertical left arrows (resp.
right arrow) is given by

π(α)

τ(α),C
(resp. π(α)

g(α−1),C
).

One has the inclusion of fibers over γ(α):

Σ(τα, Cα(γ(α))) ⊂ Σ(tα, sα−1;Ftα(Fsα(γ)))

(cf. Proposition 10.38).



Chapter 11

Parabolic Subgroups in a
Reductive Group Scheme

One summarizes the essential definitions and results of reductive S-groups
schemes which are useful for our purpose of defining Schubert Schemes and
their associated canonical and functorial Smooth Resolutions and for extend-
ing to this setting the buildings constructions. In fact, it is remarked, that
both Grothendieck reductive group schemes and Tits Buildings are both in-
spired by the fundamental Chevalley’s Tohoku paper [10]. The principal ob-
jects associated with a building become in the schematic context twisted lo-
cally constant finite S-schemes. They are defined by etale descent.

One recalls the definition of a Reductive S-Group scheme G, of a
Splitting (resp. Frame) of such a group, and of a Parabolic subgroup of G.
According to [23], the functor of Parabolics subgroups of G, the Types
of Parabolics quotient scheme of this functor by the adjoint action of G,
i.e. the Dynkin scheme, the functor of Couples Parabolics in Standard
Position, the Types of Relative Positions quotient scheme of this func-
tor by the diagonal adjoint action of G, are introduced, along with the class
of (R)-subgroups of G, which are of use to generalize buildings constructions
to the relative setting. The representability of the (R)-subgroups functor
implies the representability of functors of more restricted classes of subgroups
allowing to introduce the analogues of Convex Hull subcomplexes of a Build-
ing in the relative frame. It implies in particular the representability of the
Parabolics subgroups functor, the one of the Cartan subgroups giving the rel-
ative apartments · · · etc. Finally the construction of the Weyl Complex
scheme of G is given. The reader is referred to Chapters XXII −XXV I of
SGA III [23] for details.

252
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11.1 Reductive group schemes

Let be stated first some important definitions.1 In this number S denotes
a base scheme. Given a point s ∈ S and an S-scheme X, Xs denotes the
geometric fiber of X on s, i.e.

Xs = X ×S Spec (κ(s)) ,

where κ(s) is the algebraic closure of the residual field

κ(s) = OS,s/mS,s.

Definition 11.1 1) By a reductive (resp. semi-simple) group S-
scheme G one understands an affine smooth S-group scheme G, such
that Gs is a connected and reductive (resp. semi-simple) κ(s)-group, for
every s ∈ S.

2) A maximal torus T of G, is a torus T ⊂ G so that Ts ⊂ Gs is a
maximal torus for every s ∈ S. A torus T ⊂ G is trivial if there exists
a finitely generated free Z-module M satisfying:

T ' Hom S−gr (MS ,GmS) ,

where MS denotes the trivial sheaf defined by M .

Definition 11.2 (cf. loc. cit., Exp. XIX, Definition 3.2.)
Let G be a reductive S-group scheme, and T ⊂ G an S-torus. Write G =
Lie(G).

A character α ∈ Hom S−gr(T,GmS) is a root of G if for each s ∈ S, one
has that the induced character αs ∈ Hom (Ts,Gms) , is a root of Gs, i.e. if
one considers the decomposition

Gs = G0 ⊕
(
⊕
α∈R
Gα
)

(R ⊂ Hom (Ts,Gms)) ,

of Gs under the action of Ts, one has

α s ∈ R.

Let W (G) be the S-vector group defined by G = Lie(G), i.e. the group
S-functor defined by

S′ → OS′ ⊗OS G.

Define a subfunctor of W (G) by

W (G)α(S′) = {x ∈W (G)(S′) / ad(t)x = α(t)x for every t ∈ T (S′′), S′′ → S′} .
1For more details see loc. cit., Exp. XIX
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There exists a rank 1 direct factor OS-submodule Gα ⊂ G so that

W (G)α = W (Gα) (cf. loc. cit., Exp. XIX, §4).

If α is a root of G then −α is also a root of G.

Definition 11.3 Let G be a reductive S-group scheme and T a maximal
torus, and R a set of roots relatively to T . It is said that R is a root sys-
tem of G relatively to T if

G = G0 ⊕
(
⊕
α∈R
Gα
)
,

Where G0 = Lie(T ). One also writes Lie(T ) = T .

Definition 11.4 Let

R : (S′ −→ S) 7→ set of roots of GS′ with respect to TS′ ,

be the root functor. The natural inclusion morphism RS ↪→
HomS−gr(T,Gm) gives rise to an isomorphism RS ' R.

11.2 Z-root systems

Definition 11.5 (cf. loc. cit., Exp. XXI, Definition 1.1.1.)
A Z-root system

R = (M,M∗, R,R∨)

is the data given by:

1. A finitely generated Z-module M , and its dual M∗.
Denote by (x, y) the duality pairing

M ×M∗ → Z.

2. A finite subset
R ⊂M (resp. R∨ ⊂M∗)

and a map
R→ R∨

given by
α 7→ α∨ (α ∈ R).

Write for α ∈ R, x ∈M (resp. α∨ ∈ R, y ∈M∗), sα(x) = x− (x, α∨)α
(resp. sα∨(y) = y − (α, y)α∨).

This mapping satisfies:

(α∨, α) = 2 (resp. sα(R) ⊂ R, sα∨(R∨) ⊂ R∨) .
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Thus
sα : M →M (resp. sα∨ : M∗ →M∗)

is a reflexion invariating R (resp. R∨).
Let

V = R⊗Z M (resp. V ∗ = R⊗Z M
∗) .

Denote also by R ⊂ V (resp. R∨ ⊂ V ∗) the image of R (resp. R∨) by
M → R⊗Z M (resp. M∗ → R⊗Z M).

One has then
(V, V ∗, R,R∨)

is a root system as defined in [4], Ch. VI, §1, Def. 1 (the Root System
defined by R).

11.3 Z-root system defined by a splitting of a reductive group
scheme

Let T = Hom S−gr (MS ,GmS) be a maximal and trivial torus T of the S-
reductive group scheme G. Write G = Lie(G) (the Lie algebra of G). Let

G = G0 ⊕ (⊕Gα (α ∈ R))

be the root decomposition of G under the action of T (cf. loc. cit., Exp.
XIX, Definition 3.6).

11.3.1 Co-roots defined by a splitting of a reductive group scheme

Proposition - Definition 11.6 1) There exists a OS-module mor-
phism:

Gα ⊗OS G−α −→ OS ,

given by a duality pairing: (X,Y ) −→< X,Y > identifying Gα to
G−α.

2) For all α ∈ R there exists a unique T -equivariant group morphism:

expα : W (Gα) −→ G ,

where T acts on Gα by the adjoint action and on G by conjugation, in-
ducing the natural inclusion Lie algebra morphism Gα = Lie(W (Gα)) ↪→
G.
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3) There is a unique group morphism α∨ : GmS −→ T satisfying for all
(X,Y ) ∈ Gα×G−α, so that 1+ < X,Y > is an invertible section of OS,
the following formula:

expα(X) · expα(Y ) = exp−α
( Y

1+ < X,Y >

)
· α∨

(
1+ < X,Y >

)
·expα

( X

1+ < X,Y >

)
.

One calls α∨ the co-root associated with α, and one writes R∨ = {α∨|α ∈
R} (cf. Definition 1.5. of loc. cit., Exp. XXII, Proposition 1.10).

Remark 11.7 Let M = Hom S−gr (T,GmS)
(
resp. M∗ =

Hom S−gr (GmS , T )
)
Remark that

Hom S−gr (T,GmS) 'MS (resp.Hom S−gr (GmS , T ) 'M∗S) .

Thus each constant function α ∈ R (resp. α∨ ∈ R∗) is given by some element
of the finitely generated Z-module M (resp. M∗)

11.3.2 Conjugation automorphisms of a maximal torus defined by the
roots

Definition 11.8 Denote by sα the automorphism of T defined by:

sα(t) = t · α∨(α(t))−1 .

This automorphism acts on MS = Hom S−gr (T,GmS) by Cartier duality by:

sα(m) = m− (α∨,m)α ,

and finally on M∗S = Hom S−gr (GmS , T ) by:

sα(u) = u− (α, u)α∨ .

Where m (resp. u) denotes a section of Hom S−gr (T,GmS) (resp.
Hom S−gr (GmS , T )).

11.3.3 Splittings and frames of a reductive group scheme

Assume that:

1. The roots (resp. the corresponding co-roots) α ∈ Hom S−gr (T,GmS)
(resp. α∨ ∈ Hom S−gr (GmS , T )) are given by constant functions of S
with values in M (resp. M∗).
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2. Each Gα ⊂ G is a free OS-module.

Definition 11.9 (cf. loc. cit., Exp. XXII, Definition 1.13.)
It is said that the above data (G,T,M,R) defines a split (resp. deployed)
S-reductive group G, or that the data T = Hom S−gr (MS ,GmS), R ⊂M (M
being a finitely generated Z-module) is a splitting of the S-reductive group
G.

It results from the general theory of S-reductive groups G that

R = (M,M∗, R,R∨)

is a Z-root data. It is said that R is the Z-root data defined by the split
S-reductive group (G,T,M,R). Write

R = R(G).

Definition 11.10 (cf. loc. cit., Exp. XXIII, Definition 1.1.)
A frame E of a splitted S-reductive group (G,T,M,R) is given by the follow-
ing additional data:

1. A simple root system R0 ⊂ R.

2. The choice for each α ∈ R0 of a basis (Xα) of Gα.

Remark 11.11
One renders by “frame” the french word “épinglage”.

There is the

Proposition 11.12 (cf. loc. cit., Exp. XXII, Proposition 2.1.)
Let T ⊂ G be a trivial maximal torus of the S-reductive group G. Then
for each s ∈ S there exists a Zariski neighborhood Us of s and a splitting
(GUs , TUs ,M,R) of G, i.e. a splitting of GUs with maximal torus TUs =
restriction of T to Us ⊂ S.

The following corollary explains how to proceed for obtaining a splitting
of the S-reductive group G.

Corollary 11.13
Let it be supposed the S-reductive group G is endowed with a maximal torus
T ⊂ G. Let

(Si → S)i∈I

be an etale covering of S trivializing T , i.e. so that the maximal torus TSi is
trivial. Then after composing this covering with open coverings (Sij → Si)j∈Li
of the Si one obtains an etale covering (Sij → S)(i,j)∈K of S such that GSij
is split (resp. admits a frame).
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Corollary 11.14 The root scheme R associated with the maximal torus T is
representable by a locally finite etale S-scheme.

The following proposition resumes the main interest of frames.

Proposition 11.15 (cf. loc. cit., Exp. XXIV, Lemme 1.5.)
Let E1 and E2 be two frames of the S-reductive group G. Then there exists a
unique inner automorphism

α : G→ G

of G such that α(E1) = E2. Write α = α(E1, E2).

Definition 11.16 (cf. loc. cit., Exp. XXII, 2.6.)
Let R be a Z-root system. It is said that the S-reductive group G is of type
R if for each s ∈ S there exists an etale neighborhood Ũs such that there exists
a splitting

(
GŨs , T,M,R

)
with the corresponding Root Data satisfying

R
(
GŨs , T,M,R

)
= R.

Definition 11.17 Let

E =
(
G,T,M,R,R0, (Xα)α∈R0

)
be a frame of G. It is associated with E a Z-root system R(E) endowed with
a frame of root system, i.e. a simple system of roots R0, namely

R(E) = (M,M∗, R,R∨, R0)

(cf. Exp. XXIII, §1).

Observe that the main goal of [23], is the proof of the following

Theorem 11.18 (cf. loc. cit., Exp. XXV, Théorème 1.1.)
The functor

(G,E)→ R(E)

from the category of S-reductive groups G endowed with a frame E to that of
Z-root data endowed with a simple system of roots is a category equivalence.

Definition 11.19 (cf. [23], Exp. XXIII, p. 317)
Given a Z-root system R there exists a reductive group Z-scheme EpZ(R)
endowed with a canonical frame ER, of type R, called the Chevalley scheme
of type R.

It will be seen that the Smooth Resolutions of the Schubert Schemes of Z-
scheme EpZ(R) have a Universal property. On the other hand, observe that
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the data of a frame E of type R of a reductive group S-scheme G amounts to
that of an isomorphism

G ' EpZ(R)× S = Ep
S

(R).

More precisely, with the notation of [23], Exp. XXIV, the AutS−gr(EpS(R))-
principal fiber space of isomorphisms

IsomS−gr(EpS(R), G),

may be seen as the scheme of frames of G of type R. (cf. [23], Exp. XXIV,
Remarque 1.20).

This result suggests that functorial constructions concerning objects nat-
urally associated with G may be described in terms of the combinatorial data
R(E).

11.4 Parabolic subgroups

Definition 11.20 A Parabolic Subgroup

P ⊂ G

is a smooth S-subgroup scheme of G, so that for every s ∈ S, Ps is a parabolic
subgroup of Gs, i.e. Gs/Ps is a proper κ(s)-scheme, or which amounts to the
same, Ps contains a Borel subgroup of Gs. A Borel subgroup of G is a
Minimal Parabolic Subgroup.

The Parabolic Subgroups Functor Par(G) (resp. Borel Subgroups
S-sub-functor Bor(G)), is obtained naturally from the above definition
(cf. 11.42) and is representable by a smooth and projective S-scheme with
integral geometric fibers as will be seen (cf. also loc.cit., Exp. XXV I, §3.2).

The main property of a Parabolic Subgroup P is given by:
“P is a closed subgroup, with connected fibers, it is equal to its own normal-
izer, i.e. NormG(P ) = P , and the quotient sheaf G/P is representable by a
projective smooth S-scheme”
(cf. loc. cit., Exp. XXV I, Proposition 1.2).

Definition 11.21 According to [23], Exp. XXVI, Definition 1.11, it is
said that E = (T,M,R,R0, (Xα)α∈R0

) is a frame of G adapted to the
parabolic subgroup P if the Lie algebra Lie(P ) of P may be written as:

Lie(P ) = G0 ⊕
(
⊕

α∈RP
Gα
)

where RP ⊂ R is a parabolic subset containing R0.
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11.5 Standard position couples of Parabolics scheme

Given two facets F and F ′ of a building I, defined by a reductive group G over
an algebraically closed field k, there exists an apartment A ⊂ I which contains
both. This means that there exists a maximal torus T ⊂ PF ∩ PF ′ such that
A = AT . Let G be an reductive S-group scheme. Given two parabolic
subgroups P and Q, it is not always true that there exists a maximal torus T
locally contained in both P andQ. This motivates the following developments.

Let (P,Q) be a couple of parabolics of G. The following conditions are
equivalent:

1. P ∩Q is smooth.

2. P ∩Q locally contains a maximal torus of G for the fpqc-topology.

3. P ∩Q locally contains a maximal torus of G for the Zariski-topology.

(cf. loc. cit., Exp. XXVI, 4.5.1.)

Definition 11.22 (cf. loc. cit., 4.5.1.)
If (P,Q) verifies one of the three equivalent conditions above, it is said that
P and Q are in standard position, or that the couple of parabolics (P,Q)
is in standard position.

Let
Stand(G) ⊂ Par(G)×S Par(G)

be the representable sub-functor whose sections are the couples (P,Q) of
parabolics in standard position (cf. loc. cit., 4.5.3.).

Remark 11.23 It will be seen that, in the relative case, Stand(G) plays the
same role as I × I in the case of a building I of a k-reductive group G.

Proposition - Definition 11.24 (cf. loc. cit., Exp. XXVI, 4.5.3.)
Given two couples (P,Q) and (P ′, Q′) of parabolics in standard position the
following assertions are equivalent:

1. (P,Q) and (P ′, Q′) are locally conjugate for the fpqc-topology, i.e. there
exists a locally defined section x of G with int(x)(P ) = xPx−1 = P ′

(resp. int(x)(Q) = xQx−1 = Q′).

2. (P,Q) and (P ′, Q′) are locally conjugate for the etale topology.

3. For every s ∈ S, (Ps, Qs) and (P ′s, Q
′
s) are conjugate, i.e. there exists

x ∈ Gs ((κ(s)) with

(int(x) (Ps) , int(x) (Qs)) = (P ′s, Q
′
s) .

It is said that (P,Q) and (P ′, Q′) define the same type of relative position.
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11.5.1 Relative position types quotient scheme

The relative position types index naturally the Bruhat (resp. Schubert) Cells.
There is a natural action of G on Stand(G):

G× Stand(G)→ Stand(G)

defined by
(x, (P,Q))→ (int(x)(P ), int(x)(Q)) .

The quotient Stand(G)/G of Stand(G) under the action of G is representable
by a twisted locally constant finite S-scheme (denoted by T.st in loc. cit.,
Exp. XXV I, §4.5.3). Denote by

t2 : Stand(G)→ RelposG

the quotient morphism.

Proposition 11.25

1. The functor Stand(G) is representable

2. The morphism t2 : Stand(G)→ RelposG is S-smooth, of finite presen-
tation, with irreducible geometrical fibers.

There is a natural morphism

t2 × pr′1 : Stand(G)→ RelposG ×S Par(G),

where pr′1 denotes the restriction to Stand(G) ⊂ Par(G) ×S Par(G) of the
first projection

pr1 : Par(G)×S Par(G)→ Par(G).

Let (τ, P ) be a section of RelposG ×S Par(G), and write:

Stand(τ, P ) = (t2 × pr′1)
−1

((τ, P ))(
resp. Stand(τ) = t−1

2 (τ) , Stand(P ) = (pr′1)
−1

(P )
)
.

Remark that it depends on a compatibility condition between the type of
relative position τ and the type t of the parabolic P , as it will be later defined,
for Stand(τ, P ) to be empty or not.

Let
Stand(G)′ = Stand(G) ∩ (Bor(G)× Par(G)) .

Definition 11.26
Define Relpos ′G ⊂ RelposG as the quotient S-subscheme

Relpos ′G = Stand(G)′/G.
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Let B ⊂ G be a Borel subgroup of G, thus defining a section of Bor(G).
The quotient of

Stand(B) ⊂ Stand(G)′,

by B is canonically identified with Relpos(G)′:

Stand(B)/B ' Relpos ′G,

where the isomorphism is induced by the above inclusion.
Thus there is a morphism

ρB : Stand(B)→ Stand(B)/B ' Relpos ′G,

induced by the quotient morphism.
For the sake of briefness one calls, in what follows, a reductive group S-

scheme G simply an S-reductive group G.

11.6 Dinkyn scheme and the typical simplex scheme

Each one of the following basic sets associated to a building I:

1) the typical simplex typ I;

2) the set gall I (resp. gall mI ) of generalized galleries (resp. Minimal Gen-
eralized Galleries) of the typical simplex typ I;

3) the set of relative positions Relpos I,

have a corresponding object in the setting of S-reductive groups G. This
objects are twisted locally constant S-schemes. One proceeds to define them
by descent from the case G split. Let a description of typI in terms of a frame
E of G be given. Denote by

Im ⊂ I

the set of minimal facets of I, i.e. the set of vertices of I, and it is written

typ Im = Im/G

for the image of Im by typ : Im → I/G. One has then a canonical bijection

typ I →̃ P (typ Im) .

Every facet F of I may be written as

F =
⋃

F ′∈Im, F ′⊂F
F ′ .

Thus with the class of F in typ I = I/G, is associated the set of classes of the
F ′ ∈ typ Im with F ′ ⊂ F which determines F , i.e. F is the upper bound of
its vertices (cf. [50]).
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The natural building morphism AE ↪→ I induces the bijections typ AE '
typ I (resp. typ AmE ' typ Im), where AE denotes the building of parabolic
subsets of the root system RE given by the frame E, and typ AmE denotes the
types of the set of maximal parabolics subsets. Given α ∈ R0, write

R(α) = Z (R0 − {α}) ∩R ∪R+

(
resp. F (α) = FR(α) , P (α) = PF (α)

)
.

R(α) is a maximal parabolic set of R. There is a natural bijection R0 ' typAmE
defined by α 7→ R(α). One obtains a canonical bijection

R0 = Dyn(E) ' typ Im,

(cf. loc. cit., Exp. XXIV, 3.) defined by α 7→ F (α).
Denote by ∆(E) the set P(Dyn(E)). There is an order preserving bijection

∆(E)→ typ I,

defined by

R′ 7→ typ

( ⋃
α∈R′

FR(α)

)
.

Clearly,
⋃
FR(α) (α ∈ R′) gives the facet defined by the parabolic set⋂

R(α) (α ∈ R′).
Identify the simplex ∆(E) to the subcomplex of I (resp. AE), given by

the set of parabolics P (resp. facets F ) so that

BRE ⊂ P (resp. CRE ⊃ F ).

On the other hand, under the canonical isomorphism

C (WAE , SE) ' AE

the simplex ∆(E) is identified with the class of subgroups (Wt)t∈∆(E) of W =
WAE , where one writes

Wt = StabWF ⋂ R(α)

α∈S−t

,

i.e. t ∈ ∆(E) may be identified with the set of canonical generators Xt ⊂ S
of the Weyl group of P ⋂ R(α)

α∈S−t

.

Given two frames E and E′ of G, it is denoted by

α(E,E′)Dyn : Dyn(E)→ Dyn(E′),

the Dynkin diagram isomorphism induced by α(E,E′). One obtains an in-
ductive (resp. transitive) system of isomorphisms

(Dyn(E), α(E,E′)Dyn) .
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It is easy to see that there is a natural isomorphism

lim−→
E

∆(E) →̃ typ I = I/G,

where the inductive limit is given by the inductive system of isomorphisms
(∆(E), α(E,E′)∆) associated with the above system. Let

Gall∆(E)

(
resp. Gallm∆(E)

)
be the set of MGG of ∆(E) (resp. the set of types of MGG of I, which
is defined taking on account the isomorphism ∆(E) →̃ typ I). The above
isomorphism induces the bijection

lim−→
E

Gall∆(E) → Gall typ I = gall I

(
resp. lim−→

E

Gallm∆(E) → Gallmtyp I = gallmI

)
.

The above preliminaries motivate the following definitions. Let G be an
S-reductive group.

Definition 11.27 (The Dynkin S-scheme Dyn(G) of G) (cf. loc. cit.,
Exp. XXIV, 3.)
First suppose G split. In this case the set of frames G is not empty. Given a
frame E of G write

R(E) = (M,M∗, R,R∨, R0),

for the Z-root system, endowed with a system of simple roots R0, defined by
E. Let Dyn(E) be the Dynkin diagram defined by R(E) (cf. loc. cit., Exp.
XXI, Definition 7.4.2).

Write
Dyn(G) = lim−→

E

Dyn(E)S ,

where Dyn(E)S denotes the constant S-scheme defined by Dyn(E). The in-
ductive limit is defined by the inductive system

(
Dyn(E)S , (α(E,E′)Dyn)S

)
.

In the general case it is considered an etale covering (Si → S) so that GSi is
split. Denote by (cij) the corresponding cocycle (resp. descent data) defining
G.

The set (Dyn (GSi)) is endowed with a descent data ((cij)Dyn) induced by
(cij).

Define
Dyn(G)

by descent from this data.
This definition is independent of the etale covering (Si → S).
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The Dynkin scheme as defined in SGA III is a more complete data than ours.
It consists of a Dynkin diagram structure defined by a morphism Dyn(G) −→
{1, 2, 3}S . Recall that the Dynkin diagram structure defined by a system of
simple roots S amounts to that of the Cartan matrix of S. Thus a system of
roots R may be obtained from the Dynkin diagram. The root scheme R is
defined by etale descent by means of the following proposition.

Proposition 11.28 Given adjoint root data R and R′, a simple root system
S of R and a simple root system S′ of R′, and a bijection u : S −→ S′

transforming the Cartan matrix of S in that of S′. Then there exists a unique
isomorphism R ' R′ induced by u.

Definition 11.29 (The relative typical simplex S-scheme ∆(G)) (cf.
loc. cit., Exp. XXVI, 3.1.)
Given a frame E of G write

∆(E) = ∆(Dyn(E)) = P(Dyn(E))

(the combinatorial simplex given by the vertices of Dyn(E)). Define ∆(G)
following the same pattern as in the definition of Dyn(G).

If G is split write
∆(G) = lim−→

E

∆(E)S ,

where E runs on the (non-empty) set of frames of G and the transition iso-
morphisms are induced by (α(E,E′)).

In the general case one defines ∆(G) by descent from an etale covering
(Si → S) such that GSi is split as was done for Dyn(G).

By loc. cit., the sections of ∆(G) over an S-scheme S′ may be characterized
as follows:

∆(G)(S) = the set of open and closed subsets of Dyn(G)S′ ,

From this characterization it follows that the locally trivial S-scheme ∆(G)
is endowed with a functorial inclusion relation “⊂”, naturally allowing the
definition of generalized galleries of ∆(G).

Remark 11.30 According to loc. cit., with a constant “twisted” finite S-
scheme X is associated the S-functor P(X) defined by

P(X)(S′) = the set of open and closed subsets of XS′ ,

which is representable by a constant “twisted” finite S-scheme. More explicitly
if X = AS then P(X) = (P(A))S. The assertion is obtained in general by
descent of open and closed subschemes. This remark clearly applies to Dyn(G)
and allows defining ∆(G) otherwise.
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11.7 Parabolic type morphism

According to [23], Exp. XXVI, Definition 1.11., in order to define the
type section t1(P ) for a parabolic P ⊂ G, one may proceed locally for
the etale topology, and may suppose that G is endowed with a frame
E = (T,M,R,R0, (Xα)α∈R0

) adapted to P .
It is recalled that this means that P ⊃ T , and that the Lie algebra Lie(P )

of P may be written as

Lie(P ) = G0 ⊕ (⊕Gα) (α ∈ RP )

where RP ⊂ R is a parabolic subset containing R0. In other terms there exists
F ∈ ∆(CE) such that RP = RF .

There is a canonical isomorphism

(R0)S ' Dyn(G) (R0 = Dyn(E)),

and the image t1(P ) of P is given by the section (R0 − R0 ∩ (−RP ))S of
P(R0)S defined by R0 − R0 ∩ (−RP ) ⊂ R0. Remark that in loc. cit., t1(P )
is defined by (R0 ∩ (−RP ))S . The definition of t1 given here is coherent with
the view point of buildings.

The morphism t1 allows the identification of the quotient S-scheme
Par(G)/G with P(Dyn(G)). One may then write

t1 : Par(G)→ Par(G)/G ' P(Dyn(G)) = ∆(G).

11.8 (R)-subgroups

Definition 11.31 A S-sub-group scheme H ⊂ G is of type (R) if:

1) H is a smooth S-scheme of finite presentation, with connected fibers, i.e.
H ×S κ(s) is connected for all s ∈ S.

2) H contains a maximal torus locally for the etale topology of S.

Notation 11.32 Let H ⊂ G be a Lie subalgebra of Lie(G) = G. Denote by
NormG(H) ⊂ G the S-subgroup functor whose sections g on the S-scheme
(S′ → S) satisfy: adj g (HS′) = HS′ . NormG(H) is representable by a closed
and finite presentation subscheme of G.

The following Proposition shows that a (R)-group is characterized by its
Lie algebra.

Proposition 11.33 Let H be a (R)-subgroup of G with Lie algebra H. Then
NormG(H) is smooth along the identity section, and

H = NormG(H)◦ ,

where NormG(H)◦ denotes the connected component of the identity.
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Corollary 11.34 Let H (resp. H ′) be a (R)-subgroup of G. Then:

(H = H ′)⇐⇒ (H = H′) .(
cf. loc. cit., Exp. XXII, Corollaire 5.3.5.

)
11.8.1 (R)-subgroups and closed subsets of roots

Let G be endowed with a splitting G = (G,T,M,R). The Lie algebra of a
(R)-subgroup is of the form:

H = T ⊕
(
⊕

α∈R′
Gα
)
,

where R′ ⊂ R is by definition a subset of type (R).
It is recalled that a subset R′ ⊂ R is a closed subset if

(α, β ∈ R′ and α+ β ∈ R)⇒ (α+ β ∈ R) .

Proposition 11.35 Every closed subset R′ ⊂ R is a subset of type (R).

Remark 11.36 This Proposition characterizes all the subsets of type (R) if
S satisfies:

for all s ∈ S ch(κ(s)) 6= 2 or 3 .

Corollary 11.37 1) A parabolic subgroup P of G is a subgroup of type
(R).

2) Given a couple of parabolics in standard position (P,Q) the intersection
subgroup P ∩Q is a subgroup of type (R).

Proof The property a subgroup of being of type (R) is local in S, one may
suppose that G is endowed with a splitting: G = (G,T,M,R). Thus P =
T ⊕

(
⊕

α∈FP
Gα where FP denotes a parabolic subset of R.

It may be supposed that T ⊂ P ∩Q. Thus P ∩Q = T ⊕
(

⊕
α∈FP∩FQ

Gα
)
.

The following Proposition allows adapting to the relative case important
building constructions.

Proposition 11.38 Two maximal tori T, T ′ ⊂ H of a type (R) subgroup H
of G are locally conjugate for the etale topology.
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11.8.2 Representability of the (R)-subgroups functor

Definition 11.39 Define the type (R)-subgroups of G functor H by:

∀ (S′ −→ S) H (S′) = {subgroups of type (R) of G} .

There is a canonical morphism u : H −→ Grass(G) associating to a (R)-
subgroup H its Lie algebra H. Corollary 11.34 implies that this morphism
is a monomorphism. In fact this monomorphism is representable by a finite
presentation embedding. It results then the

Theorem 11.40 H is representable by a quasi-projective and finite presen-
tation S-scheme.

(cf. loc. cit., Exp. XXII, Theoreme 5.8.1)
This theorem has an important consequence. Observe that the normalizer

NormG(H) of a type (R) subgroup H, is a closed and smooth S-subgroup
scheme of G, thus

Proposition 11.41 1) The morphism v : G −→ Grass(G) defined by:
v : g 7→ u int(g) ·H factors as G −→ G/NormG(H)

v−→ Grass(G) with
v an embedding, identifying G/NormG(H) with an open subscheme U
of H . Thus G/NormG(H) is a quasi-projective S-scheme.

The following functors play an important role in the relative building con-
structions. A Killing couple of G is a couple (T,B) formed by a maximal
torus T and a Borel subgroup T ⊂ B containing T of G.

Definition 11.42 The functor Par(G) of parabolic subgroups of G is defined
by:

Par(G)(S′) = {parabolic subgroups of GS′} ;

the functor of Borel subgroups by:

Bor(G)(S′) = {Borel subgroups ofGS′ } ;

the functor of maximal tori of G by:

T or(G)(S′) = {maximal tori of GS′} ;

and the functor of Killing couples of G by:

Kil(G)(S′) = {Killing couples of GS′} .

Let T
(
resp. B a Borel subgroup of G, T ⊂ B a Killing couple of G, and

P a type t parabolic subgroup of G
)
. From the conjugation properties of

maximal tori, and of parabolic subgroups of the same type it follows:
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Proposition 11.43 There are isomorphisms:

1) G/NormG(T ) ' Tor(G);

2) G/B ' Bor(G);

3) G/T ' Kil(G);

4) G/P ' Part(G),

defined by:

1) g 7→ int(g) · T ;

2) g 7→ int(g) ·B;

3) g 7→ int(g) · T ⊂ int(g) ·B;

4) g 7→ int(g) · P .

From the Proposition 11.41 it follows:

Corollary 11.44 The functor Tor(G) (resp. Kil(G)) is representable by a
smooth quasi-projective S-scheme. The functor Bor(G) (resp. Part(G)) is
representable by a projective, smooth S-scheme with integral geometric fibers.

11.9 Weyl complex scheme

Given frames E,E′, the isomorphism of Proposition clearly transforms
parabolic subsets of A(RE) in parabolic subsets of A(RE′), and its unicity
allows defining, by etale descent, the following S-schemes. The root scheme
R(G), the apartment scheme A(G), and the Weyl group scheme WG.
Given a frame E = (T,M,R,R0, (Xα)α∈R0

) of G, let AE , be the apartment
given by the Z-root system R(E) defined by E. A facet F of AE corresponds
to a parabolic set of roots RF ⊂ R.
Let WRE be the Weyl group of RE as defined in loc. cit.,
Exp. XXI, Definition 1.1.8. In factWRE is the Weyl group of the apartment
AE , i.e. the group WAE of type preserving automorphisms of AE . Denote by
CE ∈ ChAE the chamber defined by the positive root system R+ = (NR0)∩R,
i.e. such that RCE = R+.
If G is split write

A(G) = lim−→
E

(AE)S
(
resp. R(G) = lim−→

E

(RE)S
)
,

where E runs on the set of frames of G, and the transition isomorphisms are
induced by the family of automorphisms (α(E,E′)), where (E,E′) runs on
the set of the couples of frames of G. In the case of an S-reductive group G,
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A(G)
(
resp. R(G)

)
is defined by descent from an etale covering (Si → S)

such that GSi is splitted.
Define the Weyl group S-scheme W G by

W G = lim−→
E

(WAE )S

if G is split, and by descent for an S-reductive group G.

11.10 Weyl complex typical simplex scheme and the Type
morphism

The group W G acts as a group of automorphisms of A(G). One may thus
consider the quotient scheme

A(G)/W G

(The S-scheme of types of facets of A(G)). If G is split one has

A(G)/W G ' lim−→
E

(AE/WAE )S .

For a frame E of G there is a building morphism

P(Dyn(E))→ AE ,

induced by the mapping Dyn(E) → AE , which correspond to α ∈ R0 =
Dyn(E), the maximal parabolic set R(α) defined by:

R(α) = (Z (R0 − {α})) ∩RE ∪ (RE)+ .

Thus to R′0 ⊂ R0 = Dyn(E) corresponds the parabolic subset
⋂
R(α) (α ∈ R′0)

of RE .
Given a facet F ∈ AE , satisfying (RE)+ ⊂ RF , i.e. so that F ∈ ∆(CE) ⊂

AE , there exists a unique subset R0(F ) ⊂ R0, such that Z(R0 − R0(F )) =
RF ∩ (−RF ) which satisfies

RF =
⋂
R(α) (α ∈ R0(F )).

The set R0(F ) is given by R0(F ) = R0−R0 ∩ (−RF ), and is in fact the set of
vertices of the facet F . Thus it is concluded that P(Dyn(E)) → AE gives a
building isomorphism between P(Dyn(E)) and the subcomplex ∆(CE), given
by the set of faces of CE . Observe that

R′0 ⊂ R′′0 ⇒
⋂
α∈R′0

R(α) ⊃
⋂
α∈R′′0

R(α).

Thus according to the definition of the ordering of AE , the mapping R′0 7→⋂
R(α) (α ∈ R′0) is order preserving. Since the restriction of the quotient
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morphism AE → AE/WAE , to ∆(CE) induces an isomorphism of buildings
∆(CE) ' AE/WAE , it is deduced that the composed mapping

P(Dyn(E))→ AE/WAE ,

is a building isomorphism. If G is split one obtains an isomorphism

∆(G) = lim−→
E

P(Dyn(E))S → lim−→
E

(AE/WAE )S = A(G)/W G.

It is deduced that there is a canonical isomorphism defined by etale descent

∆(G) ' A(G)/W G

for an S-reductive group G. Denote by

t1,A : A(G)→ A(G)/W G ' ∆(G)

the quotient morphism (Weyl Complex type morphism). The isomor-
phism A(G)/W G ' ∆(G) admits the factorization:

A(G)/WG → Par(G)/G→ ∆(G) .

11.11 Weyl Complex type of relative position morphism

With a frame E of G there is an associated natural morphism

(AE)S ×S (AE)S → Stand(G),

that correspond to (FS , F
′
S) ((F, F ′) ∈ AE ×AE) the couple of parabolics in

standard position
(PF , PF ′),

where PF (resp. PF ′) is given by the parabolic subset RF (resp. RF ′).
This morphism induces, by composition with t2 : Stand(G) −→ Relpos G,

a morphism
t2,E : (AE)S ×S (AE)S → RelposG ,

which factors as

t2,E : (AE)S ×S (AE)S →
((
AE ×AE

)
/WAE

)
S
→ RelposG ,

There are isomorphisms

lim−→
E

((
AE ×AE

)
/WAE

)
S
' A(G)×S A(G)/W G ,

i.e.
lim−→
E

(RelposAE)S →̃ Relpos A(G) ,
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and
RelposA(G) = A(G)×S A(G)/W G →̃ RelposG.

Assume that G is split. Define t2,A as the quotient morphism

t2,A : A(G)×S A(G)→ Relpos A(G) →̃ RelposG.

(
resp. t2,A = lim−→

E

t2,E : lim−→
E

(
(AE)S ×S (AE)S

)
−→ Relpos G

)
.

Clearly for a reductive S-group there exists a morphism

t2,A : A(G)×S A(G)→ Relpos A(G) →̃ RelposG.

which corresponds to the above one if G is split, and in fact is the canonical
quotient morphism.

The morphism

t1 × t1 : Par(G)×S Par(G) → ∆(G)×S ∆(G)

induces by restriction the morphism

Stand(G) → ∆(G)×S ∆(G),

which factors through

t2 : Stand(G) → RelposG.

Denote by

ε = ε1 × ε2 : RelposG → ∆(G)×S ∆(G)

the induced morphism.
If G is endowed with a frame E, then in view of isomorphism

A(G) →̃ RelposG, ε may be described as follows. Write

RelposAE =
∐

(t,s)∈typAE×typAE

Relpos (t,s) AE ,

with
Relpos (t,s)AE = (AE)t × (AE)s/W (R(E)).

Define:
εE = (εE)1 × (εE)2 : RelposAE → typAE × typAE

by
εE : τ 7→ (t, s),

if τ ∈ Relpos (t,s)AE . One has ε = (εE)S .
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11.12 Relative Position Types scheme of a Weyl Star Complex
scheme

It is supposed that G is endowed with a frame E of G. For

t ∈ typAE ,

one defines
Relpost AE ⊂ RelposAE ,

as the image of the injective mapping

StAE

F × StAE

F /WF → AE ×AE/W(R(E))

where F denotes a facet of type t of AE , and one writes

WF = StabW (R(E)) .

This image is independant of the choice of F .
Let t ∈ typAE , and t = tS . Define:

Relpos tG = Relpos tSG =
(
Relpost AE

)
S
.

Given an S-reductive group G, and a section t of ∆(G), there is a sub-
scheme

Relpos tG ⊂ RelposG,

so that if E is a locally (for the etale topology) defined frame of G, the
canonical isomorphism

(RelposAE)S′ ' (RelposG)S′

induces the isomorphism

Relpos tS′G '
(
Relpos tG

)
S′
,

if (t)S′ = tS′ for t ∈ typAE .
It is recalled that there is a canonical isomorphism

RelposA(G) ' RelposG (resp. A(G)/W G ' ∆(G)) ,

allowing identification of both members. Define

Relpos t A(G) = Relpos tG ,

for a section t of ∆(G).
The morphism ε induces a morphism

εA(G) : RelposA(G) → ∆(G)×S ∆(G) ,
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by composition with RelposA(G) ' RelposG.
Given a section (s, s′) of ∆(G)×S ∆(G) one defines:

Relpos (s,s′) = ε−1 ((s, s′)) ⊂ RelposG(
resp. Relpos (s,s′) A(G) =

(
εA(G)

)−1
((s, s′))

)
,

and
Relpos t(s,s′) = Relpos (s,s′) ∩ Relpos tG(

resp. Relpos t(s,s′) A(G) = Relpos (s,s′) A(G) ∩ Relpos t A(G)
)
.



Chapter 12

Associated Schemes to the
Relative Building

Preceding definitions and constructions about buildings are adapted to the
schematic and functorial point of view. The main constructions carried out
in this chapter are those of the Root functors of the Apartment scheme, the
Convex Hull scheme defined by two parabolic subgroups and the canonical
affine open covering of a parabolics standard position scheme.
The Data given by:

• the Parabolics scheme Par(G);

• the scheme of Couples of Parabolics in Standard Position Stand(G) −→
RelposG seen as a RelposG-scheme;

• the subscheme of Incident Parabolics of Stand(G) corresponding
to the couples of parabolics in osculating relative position of [23];

• and the Apartments scheme given by the scheme of maximal tori
T or(G) of G,

play the role of a Relative Building for the Reductive S-Group scheme G.
The following schemes are naturally defined in terms of these Data: TheRoot
functors. The Universal Schubert Cell scheme Σ of G is defined as the
graph gr(t2) of the type of relative position morphism t2 : Stand(G) −→
RelposG, and the Universal Schubert scheme Σ −→ RelposG of G is
defined as its Schematic Closure in RelposG ×S Par(G) ×S Par(G), i.e.
Σ = Σschc. This Schematic Closure is well defined as Σ −→ S is a quasi-
compact morphism and RelposG ×S Par(G) ×S Par(G) an S-projective

275
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scheme. The Convex Hull scheme Fix(P,Q) of a couple of parabolics in
standard position (P,Q) is defined in this setting. The Tautological Cou-
ple of Parabolics (P̃, Q̃) on Stand(G) is the section of Stand(G) given by
the diagonal section ∆ : Stand(G) −→ Stand(G)×S Stand(G). By means of
the Big Cell open covering of the Universal Schubert Cell it is proven that
the Tautological Couple is in Standard Position. Thus, one obtains the finite
Convex Hull scheme Fix(P̃ , Q̃) over the Universal Schubert Cell scheme.
The fiber of Fix(P̃ , Q̃) over the couple (P,Q) is given by Fix(P,Q). It will be
seen that this scheme has the following important property: With a section
g of the “Typical Simplex scheme (resp. Dynkin scheme) minimal generalized
galleries of types scheme”, defined in the next chapter, is associated a section
τg of RelposG, and a unique section γg(P̃, Q̃) of the galleries scheme
associated with Fix(P̃ , Q̃)τg −→ Στg .

12.1 Root functors

Let T be a torus of the reductive S-group G, and α a root defined by T , i.e. a
section of the root functor RT (cf. [23], Exp. XIX, §3). One recalls that if α
is a root of G (cf. 11.2) then −α is also a root of G, and that the subfunctor
of W (G) defined by

W (G)α(S′) = {x ∈W (G)(S′) / ad(t)x = α(t)x for every t ∈ T (S′′), S′′ → S′} ,

satisfies:
There exists a rank 1 direct factor OS-submodule Gα ⊂ G so that:

W (G)α = W (Gα) (cf. loc. cit., Exp. XIX, §4.1).

Definition 12.1
Let

Fα ⊂ Par(G)

be the S-subfunctor defined by

Fα(S′) = {P parabolic of GS′/ GαS′ = OS′ ⊗OS Gα ⊂ Lie(P )}.

Fα is called the Root S-functor defined by the root α of G.

Definition 12.2
Define the Hyperplane S-functor Hα defined by the root α of G by

Hα = Fα ∩ F−α ⊂ Par(G).

It is proved below that Fα is a representable S-functor, and a fortiori that
Hα is also representable.
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12.1.1 The Plücker embedding of the Parabolics scheme and
representability of Root functors

It follows from Proposition 11.33 and the fact that a parabolic subgroup is its
own normalizer that a parabolic subgroup is characterized by its Lie algebra.

Proposition 12.3
Let P ⊂ G be a parabolic subgroup of the reductive S-group G. Write P =
Lie(P ). We then have:

NormG(P) = P

From Proposition 11.40 it is obtained:

Proposition 12.4 The morphism

upar : Par (G) −→ Grass (G),

defined by: upar : P 7→ P = Lie(P ), defines a closed embedding.

Let one make explicit this embedding into a grassmannian. Let n(t) be
the rank of the Lie algebra of a parabolic group P of type t. Let Plücker’s
embedding morphism be recalled

ωt : Grass n(t)(G)→ Grass 1

n(t)∧
G

 = P

n(t)∧
G

 (cf. [24], Ch. 1, 9.8).

Let η be a section of Grass n(t)(G), given by a rank n(t) submoduleN ⊂ G with
locally free quotient G/N , then the image ωt(η) of η is obtained as follows.

The n(t)-th exterior product
n(t)∧
N of N is a rank 1 locally free submodule

of
n(t)∧
G, with locally free quotient

n(t)∧
G/

n(t)∧
N .

Thus the section ωt(η) of P

(
n(t)∧
G

)
corresponds to the rank 1 locally free,

direct factor submodule
n(t)∧
N of

n(t)∧
G.

To see that ωt is an embedding it suffices to see that the submodule
n(t)∧
N ⊂

n(t)∧
G characterizes N ⊂ G. Let e1, · · · , en(t) be a basis of N .

Then e = e1 ∧ · · · ∧ en(t) is a basis of
n(t)∧
N .

Let S′ be a local S-scheme. One thus has

N (S′) = {x section of OS′ ⊗OS G/x ∧ eS′ = 0}.
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If S′ = Spec(k), k a field, the equality is immediate. The general case fol-
lows from Nakayama’s lemma (cf. [40]). It results from this that ωt is an
embedding. Write n = n(t).

Definition 12.5
Let

Gα ⊂ G
be the rank 1 submodule of G defined by the root α. Define the S-subfunctor
Zα ⊂ Grass n(G), by:

Zα(S′) = {N ⊂ GS′ | GS′/N locally free, rank N = n, and GαS′ ⊂ N}.

Let it be seen that Zα is a representable S-subfunctor of Grassn(G). In
fact Zα is a Schubert cell. It suffices to see that the image ωt(Zα) by Plücker’s

embedding is a representable subfunctor of P
(
n∧
G
)
.

Notation 12.6 Write

P

(
n∧
G

)
= Sph (OS [∆(i1, · · · , in)] (1 6 i1 < · · · < in 6 rk G)) .

where (∆(i1, · · · , in))16i1<···<in6rk G denotes a set of variables. Denote by

Iα ⊂ OS [∆(i1, · · · , in)],

the homogeneous ideal generated by the set of variables

(∆(i1, · · · , in))26i1<···<in6rk G ,

and by
Iα ⊂ O

P
(
n∧
G
)

the corresponding ideal defined by Iα.

Choose a basis (ei)(1 6 i 6 rk G) of G so that:

Gα = Vect(e1).

Given a submodule N ⊂ G representing a section of Grassn(G), choose
a basis (e′1, · · · , e′n) of N and denote by N = N(e′1, · · · , e′n) the section of
Ork G×nS given by the matrix of the coordinates of the vectors (e′1, · · · , e′n)
relatively to the basis (ei) of G. Its j-th column (ai j) (1 6 i 6 rk G) gives
thus the coordinates of e′j , i.e. e′j =

∑
16i6rk G

ai jei. By N(i1, · · · , in), one

denotes the n×n-submatrix of N defined by the i1-th,...,in-th rows of N , and
one writes

∆N (i1, · · · , in) = det N(i1, · · · , in).
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The Plücker homogeneous coordinates ofN relatively to (ei) are thus given
by:

(∆N (i1, · · · , in))16i1<···<in6rk G .

It is supposed that N(i01, · · · , i0n) is an invertible n × n submatrix of N .
This is, locally in S, always the case, i.e. at least one of the homogeneous
coordinates of N is given by an invertible section of OS . The hypothesis
G/N is locally free which implies that, given s ∈ S, there exists ∆(i01, · · · , i0n)
defining a section of O∗S,s. Write:

N [i01, · · · , i0n] = N(e′1, · · · , e′n)×N(i01, · · · , i0n)−1.

Then one has that
N [i01, · · · , i0n] = N(e1, · · · , en),

where (e1, · · · , en) is the normalized basis of N .
The affine coordinates of the ej ’s may be calculated in terms of the Plücker

homogeneous coordinates (∆N (i1, · · · , in)) as follows. Let

ej =

rkG∑
i=1

ξij ei (1 6 j 6 n).

Then one has

ξi j =
∆N (i01, · · · ,

j-th place
i , · · · , i0n)

∆N (i01, · · · , i0n)
(1 6 i 6 rkG, 1 6 j 6 n) .

Proposition 12.7
Denote by I∗α ⊂ OGrassn(G) the inverse image ω∗t (Iα) of Iα ⊂ O

P(
n∧
G)

by ωt.

Thus there is a canonical isomorphism

Zα ' Spec
(
OGrassn(G)/I

∗
α

)
,

which proves that Zα is representable by a proper subscheme of Grassn(G).

Proof If it is supposed now that for 2 6 i1 · · · < in 6 rk G one has

∆N (i1, · · · , in) = 0.

It results immediately from the above expression for ξi 1 that

e1 = e1,

thus one obtains
Gα = Vect(e1) ⊂ N .
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On the other hand, if it is supposed that

Gα = Vect(e1) ⊂ N ,

it is clear that for 2 6 i1 · · · < in 6 rkG one has:

∆N (i1, · · · , in) = 0.

Given N it is denoted by ηN the section of Grassn(G) defined by N . It has
thus been seen:

ηN defines a section of Zα ⊂ Grassn(G) ⇔ ωt(ηN ) defines a section of

V (Iα) ⊂ P
(
n∧

(G)

)
.

It follows from the definition of Fα (resp. Zα) that:

Corollary 12.8 There is a canonical isomorphism

Fα ' u∗par,t(Zα).

Thus the subfunctor Fα ⊂ Par(G) is representable by a projective subscheme.

12.2 Big Cell Open Covering of a Parabolics scheme

Assume that G is endowed with a frame E = (T,M,R,R0, (Xα)α∈R0)(cf.
Proposition 11.12). Let R = (M,M∗, R,R∨, R0) be the corresponding Z-
system of roots, and R+ = (NR0) ∩ R the system of positive roots defined
by R0. Denote by AE the apartment building defined by R. Let C = CR+

be the chamber of AE corresponding to the positive roots system R+. Write
Ft = Ft(C) (the facet of type t incident to C). Let

BR+ ⊂ G
(
resp. BR− ⊂ G

)
,

with R− = −R+, be the Borel subgroup defined by R+ (resp. R−). There is
a canonical isomorphism

G/BR+
→ Bor(G) ,

induced by the morphism G → Bor(G), functorially defined by x 7→ int(x) ·
(BR+

) . More generally, denote by Pt,R+
the parabolic subgroup of type t,

containing BR+ . There is an isomorphism

G/Pt,R+
→ Par t(G),

induced by x 7→ int(x)(Pt,R+
) from G to Par t(G). (cf. [23], Exp. XXVI, Th.

3.3.)
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Let Pα ⊂ G (α ∈ R) be the subgroup defined as the image of the vector
group W (Gα) by expα : W (Gα) → G . (cf. loc. cit., Exp. XXII., Théorème
1.1). For each Gα one chooses a basis Xα. Let

exp′α : Spec(OS [tα])→ Pα

denote the morphism defined by composing the isomorphism induced by Xα,
Spec(OS [tα]) 'W (Gα) , with expα.

Definition 12.9

• The Big Open Cell ΩR+
⊂ G is the relatively schematically dense open

subscheme of G defined as the image of the S-morphism∏
α∈R−

Pα × T ×
∏
α∈R+

Pα → G,

induced by the product of G, and the (expα)α∈R, where the cartesian
products have taken over S, and R+ (resp. R−) is endowed with some
total order. (cf. loc. cit., Exp. XXII, §4.1.)

• Define the Big Open Cell of G/BR+

Ω̃R+
⊂ G/BR+

as the image of ΩR+
by the quotient morphism G→ G/BR+

. Let

ΩR+ ⊂ Bor(G),

denote the open subscheme image of Ω̃R+ by G/BR+→̃ Bor(G);

• Define the Big Open Cell

Ω̃ t,R+
⊂ G/Pt,R+

,

as the image of the Big Open Cell ΩR+
by the quotient morphism G →

G/Pt,R+
, and let

Ω t,R+
⊂ Par t(G)

be the image of Ω̃ t,R+
by the isomorphism

G/Pt,R+
→ Par t(G),

induced by x 7→ int(x)(Pt,R+
) from G to Par t(G).

There is an induced isomorphism of S-schemes∏
α∈R−

Pα →̃ Ω̃R+
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which by right composition with
∏

exp′α(α ∈ R−) gives rise to an isomorphism∏
α∈R−

Spec (OS [tα]) = Spec
(
OS [tα]α∈R−

)
→̃ Ω̃R+

.

It results in an isomorphism∏
α∈R−

Spec (OS [tα]) →̃ ΩR+ ,

which may be paraphrased as follows. For every section of
(
ΩR+

)
S′
, given by

some Borel subgroup B ⊂ GS′ , there exists a unique section (xα) of
∏

α∈R−
OS′ ,

with B = int (
∏

exp(xαXα)) · (BR+
)S′ . More generally one has: Let Rt ⊃ R+

be the parabolic set of roots given by Pt,R+
, i.e. Rt verifies Pt(E) = PRt .

Denote by
Ut,R+

⊂ BR− (R− = −R+),

the subgroup of G defined by the closed set of roots R − Rt. This subgroup
parameterizes the big cell Ω t,R+ . Thus there is an isomorphism

Ut,R+
' Ω t,R+

,

defined by y 7→ int(y)(Pt). Remark that Ut,R+
is isomorphic as an S-scheme to

the product
∏

α∈R−Rt
Pα. The quotient morphism G → G/Pt,R+

being smooth,

and the reciprocal image of Ω t,R+ being equal to the relatively schematically
open subscheme ΩR+

of G, it results that the big cell Ω t,R+
is an open

relatively schematically dense subscheme of Par t(G).
From the Bruhat Cell decomposition of Par t(G) given by BR+ , the

fact that a Cell may be embedded in a Big cell is defined by some Borel
subgroup adapted to the splitting of G, one may state the following

Definition 12.10
The family of relatively affine open sets of Par t(G)(

Ω t,R+

)
,

where R+ runs on the set of systems of positive roots of R, is called the Big
Cell Open Covering of Par t(G). One has

Par t(G) =
⋃

Ω t,R+
.

12.3 The Big cell Open Covering trivializes a Standard Position
scheme

Let τ be a type of relative position of AE , and (t, s) the corresponding couple
of types of parabolics. Let Stand(τ S) be seen as defining a locally trivial
fibration

prP,τ : Stand(τS) → Par t(G),
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where prP,τ is induced by the first projection pr1 : Par t(G)×S Par s(G) →
Par t(G).

Proposition 12.11 The Big Cell Open Covering of Par t(G)

Par t(G) =
⋃

Ω t,R+ (cf. Definition 12.10),

where G = (G,T,M,R) and R+ runs on the positive root system of R, triv-
ializes the locally trivial fibration defined by prP,τ . One has:

Stand(τS) =
⋃
Stand(τS)Ω t,R+

=
⋃
σ

(τ)
R+

((Ω t,R+
× Stand(τS , Pt,R+

)) .

Proof Identify Ut,R+ with Ω t,R+ by means of the isomorphism obtained from
the definition of Ω t,R+

, Ut,R+
→̃ Ω t,R+

. Define an isomorphism of Ω t,R+
-

schemes:

σ
(τ)
R+

:
(
Ut,R+ '

)
Ω t,R+×SStand

(
τS , Pt,R+

)
→ Stand(τS)Ω t,R+

= (prP,τ )−1 (Ωt,R+

)
,

by
σ

(τ)
R+

: (y, (Pt,R+
, Q)) 7→

(
int(y)(Pt,R+

), int(y)(Q)
)
,

(y, (Pt,R+
, Q)) being a section of Ut,R+

×S Stand(τS , Pt,R+
). Clearly there is

Stand(τS) =
⋃
Stand(τS)Ω t,R+

.

Thus the family of open subschemes (Ω t,R+) of Par t(G) trivializes the locally
trivial fibration defined by prP,τ .

12.4 Big Cell Open Covering of a Standard Position scheme

Let τ a type of relative position and (t, s) be the corresponding couple of
parabolic types. There is a canonical section of Stand(τ) over S′ = Stand(G)
given by the restriction of the diagonal section ∆ : Par(G) ×S Par(G) →
(Par(G)×SPar(G))×S (Par(G)×SPar(G)) to Stand(τ). This section is given
by a couple of parabolics (P̃ , Q̃). The Big Cell Open Covering of Stand(τ)
allows one to prove that (P̃ , Q̃) is in standard position. Thus the relative
convex hull of (P̃ , Q̃) may be defined. This construction is the corner stone
needed to define the minimal generalized galleries in the relative case.

Given a parabolic P = PF (F ∈ AE) define the centers of Stand(τS , P )
as the facets F ′ ∈ AE with τ(F, F ′) = τ , or equivalently the facets F ′ ∈ AE
such that PF ′ is a section of Stand(τS , P ). Remark that the stabilizer WF of
F in W = WAE acts transitively on the set of centers, as it follows from the
fact that the intersection subgroup PF ∩PF ′ is an (R)-subgroup containing T ,
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and acts transitively on the set of maximal tori contained in PF ∩ PF ′ . Thus
if PF ′ and PF ′′ are conjugate under the action of PF , as all the three contain
T , it results that they are also conjugate under the normalizer N(T ) of T .

Consider a chamber C ′ ∈ Ch StFt
⊂ Ch AE, where Ft = Ft(C), and

C = CR+ is the chamber given by the splitting of G. The Bruhat cell
decomposition of Stand(τS , Pt,R+) under the action of BC′ may be written
as

Stand(τS , Pt,R+
) =

⋃
Stand(τ(C ′, F ′)S , BC′),

where F ′ runs over the centers of Stand(τS , Pt,R+
). Recall that Pt,R+

= PFt .
More precisely one has

Proposition 12.12 The natural morphism∐
F ′∈AE and τ(Ft,F ′)=τ

Stand(τ(C ′, F ′)S , BC′) → Stand(τS , Pt,R+
)

is a surjective monomorphism.

Remark that the center F ′ of a BC′ -Bruhat cell Stand(τ(C ′, F ′)S , B) con-
tained in Stand(τS , Pt,R+

)) is a center of Stand(τ(C ′, F ′)S , BC′).
Given C ′ ∈ StFt,R+

there is a unique facet

Fτ,C′ ∈ AE .

characterized by

1. τ(Ft, Fτ,C′) = τ ;

2. d(C ′, Fτ,C′) = max {d(C ′, F ′) | F ′ ∈ AE , τ(Ft, F
′) = τ}

(cf. 9.22).
The facet Fτ,C′ is the center of a BC′ -Bruhat cell contained in

Stand(τS , Pt,R+
) which is open in Stand(τS , Pt,R+

). In fact there is one
and only one center of Stand(τS , Pt,R+

) satisfying this condition.

Lemma 12.13
The S-subscheme

Stand((τ(C ′, Fτ,C′)S , BC′) ⊂ Stand(τS , Pt,R+),

is open and relatively schematically dense. Consequently
Stand((τ(C ′, Fτ,C′)S , BC′)

schc. = Stand(τS , Pt,R+)schc.

Proof Let g be a minimal gallery of types of AE with corresponding type
of relative position given by τ , i.e. so that π(g,Pt,R+

) : ConfmG (gS , Pt,R+
) −→

Stand(τS , Pt,R+)schc is a smooth resolution of singularities. Thus
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• There is an open relatively schematically dense subscheme
ConfmG (gS , Pt,R+

)′ ⊂ ConfmG (gS , Pt,R+
) so that the restriction of the

resolving morphism π(τ,Pt,R+
) : ConfmG (gS , Pt,R+

) −→ ConfmG (τ , Pt,R+
)

to ConfmG (gS , Pt,R+
)′ is an isomorphism;

• ConfmG (gS , Pt,R+
)′ is the reciprocal image of Stand(τS , Pt,R+

) ↪→
Stand(τS , Pt,R+

)schc. In fact ConfmG (gS , Pt,R+
)′ is the image of a canon-

ical section on Stand(τS , Pt,R+).

Let s be the type of a chamber, and consider g the gallery of types obtained
by composing s ⊃ t with g. By definition of a Minimal Generalized Gallery
of types it follows that g is a minimal gallery of types. Consider the Gener-
alized Minimal Gallery γg(Ft(R+), Fτ,C′); as C ′ is incident to Ft(R+) and at
maximal distance from Fτ,C′ , then the gallery γg(C ′, Fτ,C′) obtained by com-
position of γg(Ft(R+), Fτ,C′) with C ′ ⊃ Ft(R+) is minimal by definition of
Minimal Generalized Gallery, and of type g. On the other hand, there are a
natural isomorphism

ConfmG (gS , BC′) ' ConfmG (gS , Pt,R+) ,

and an inclusion of open subsets

ConfmG (gS , BC′)
′ ⊂ ConfmG (gS , Pt,R+

)′ ,

thus ConfmG (gS , BC′)
′ is open and schematically dense in ConfmG (gS , Pt,R+

)′.

The unicity of Fτ,C′ also follows from the above result. If F ′ sat-
isfies the same conditions as Fτ,C′ then Stand(τ(C ′, F ′)S , BC′) is rela-
tively schematically dense in Stand(τS , Pt,R+

). The geometric fibers κ(s),
Stand(τ(C ′, F ′)S , BC′)κ(s) and Stand((τ(C ′, Fτ,C′)S , BC′)(κ(s) are open sub-
schemes of the irreducible scheme Stand(τS , Pt,R+)(κ(s) and have a not empty
intersection. The centers of these Bruhat cells are respectively F ′ and Fτ,C′)
thus it is concluded that F ′ = Fτ,C′ . Write

τC′ = τ(C ′, Fτ,C′) ∈ RelposAE .

The following proposition results from the transitivity of the action of WF on
the set of chambers incident to F .

Proposition 12.14
Keep the above notation.

• Given τ ∈ RelposAE and F ∈ AE of type t, the type of relative position
τC′ defined as above by F is independant of the choice of C ′.

• Given a center F of Stand(τS , Pt,R+) there is a chamber C ′ ∈
Ch StFt(C), so that F = Fτ,C′ , i.e. every center of Stand(τS , Pt,R+

)
is also the center of a BC′-open cell for some chamber C ′ ∈ Ch StFt

.
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Observe that there may be several chambers C ′ satisfying the property of the
proposition. Denote by Pτ,C′ the parabolic subgroup corresponding to Fτ,C′ .

Definition 12.15
Let C ∈ ChAE and F ∈ AE,

R(C,F ) = {α ∈ RC | Hα ∈ H(C,F )} ,

where RC denotes the positive system of roots defined by C ∈ ChAE, Hα the
wall of AE defined by the root α ∈ R, and H(C,F ) the set of walls separating
C and F . Denote by BC the Borel subgroup given by the chamber C, i.e. by
RC , and

U(C,F ) ⊂ BC
the subgroup defined by the closed system of roots R(C,F ).

The main property of U(C,F ) is given by:

Lemma 12.16
There is an isomorphism of S-schemes

U(C,F ) →̃ Stand (τ(C,F )S , BC) ,

defined by x 7→ int(x)(PF ).

Proposition 12.17
There is an open covering by affine open sets (if S is an affine scheme)

Stand(τS , Pt) =
⋃

C′∈Ch StFt

Stand((τC′)S , BC′)

(The Big Cell Open covering of the Pt-cell Stand(τS , Pt)). Moreover there
are isomorphisms U(C ′, Fτ,C′)→̃Stand((τC′)S , BC′).

It is clear that this covering corresponds to the Big Cell Open Covering

Par t(G) =
⋃

Ω t,R+ ,

where R+ runs over the set of positive systems of roots given by R.
In view of the above cell decomposition (cf. 12.12) it is easy to see that

this Proposition follows from the following

Proposition 12.18
Given F ′ ∈ AE with τ(Ft, F

′) = τ , i.e. a center of Stand(τS , Pt) , there exists
C(F ′) ∈ Ch StFt

, such that:

1. τ(C(F ′), F ′) = τ(C,Fτ,C), i.e. Stand(τ(C(F ′), F ′)S , BC(F ′)) is the
BC(F ′)-open cell, with center F ′, in Stand(τS , Pt) ;
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2. Stand(τ(C,F ′)S , BC) ⊂ Stand(τ(C(F ′), F ′)S , BC(F ′)),

i.e. the BC-cell Stand(τ(C,F ′)S , BC) may be embedded in the big cell
Stand(τ(C(F ′), F ′)S , BC(F ′)) with the same center F ′.

Proof Define C(F ′) = proj c(Ft,F ′) C. Let it be proved that:

a) τ(C(F ′), F ′) = τ(C,Fτ,C);

b) R+(C,F ′) ⊂ R+(C(F ′), F ′).

Clearly condition a) corresponds to condition 1. On the other hand, in
view of the isomorphism

U(C(F ′), F ′) →̃ Stand(τ(C(F ′), F ′)S , BC(F ′)),

one deduces that b)⇒ 2.
By definition of C(F ′) one has c(Ft, F

′) ∈ C(F ′) From Proposition
9.18 it follows that C(F ′) ⊂ Ch StFt

is at maximal distance from F ′ with
τ(Ft, F

′) = τ . Thus Stand(τ(C(F ′), F ′)S , BC(F ′)) is the BC(F ′)-open cell in
Stand(τS , Pt), and it is concluded that τ(C(F ′), F ′) = τ(C,Fτ,C).

To prove b) it suffices to show that there is a minimal gallery Γ(C(F ′), F ′)
containing C. This gives

H(C,F ′) ⊂ H(C(F ′), F ′),

and consequently
R+(C,F ′) ⊂ R+(C(F ′), F ′) .

Let
Γ 1 ⊂ StFt

,

be a minimal gallery between c(Ft, F ′) and C, which may be seen as a gallery
between C(F ′) = proj c(Ft,F ′) C and C. Choose a minimal gallery

Γ 2 = Γ(C,F ′) ⊂ Env(C,F ′) ,

and write
Γ = Γ(C(F ′), F ′) = Γ 1 ◦ Γ 2.

Remark that if H ∈ H(c(Ft, F
′), C) ⊂ HFt then:

“H separates c(Ft, F ′) from F ′ ”.

Thus as H separates also c(Ft, F ′) from C, it is deduced that

H 6∈ H(C,F ′) (cf. Definition 9.17).

It follows that the set of walls H(Γ) crossed by Γ is given by:

H(Γ) = H(c(Ft, F
′), C)

∐
H(C,F ′).
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Thus Γ crosses each wall it encounters only once.
By the above remark, if H ∈ H(c(Ft, F

′), C), as H ∈ HFt , then H sepa-
rates c(Ft, F ) from F ′. If H ∈ H(C,F ′) and H 6∈ HFt , then H separates Ft
and F ′ and thus H separates c(Ft, F ′) and F ′.

If H ∈ H(C,F ′) ∩ HFt , then F ′ 6∈ H, thus c(Ft, F ′) 6∈ H, and by the
above remark H separates c(Ft, F ′) from F ′. (The carrier of c(Ft, F ′) is the
same as that of the convex hull of (Ft, F

′).) Thus all the hyperplanes that Γ
crosses separate C(F ′) from F ′, and it crosses each one of them only once. It
is concluded that Γ is a minimal gallery. This achieves the proof.

Denote by Fram(R) the set of positive root systems of R. Write

Iτ (R) =
{

(R+, C
′) ∈ Fram(R)× ChAE | C′ ∈ StFt(CR+

)

}
,

where as usual CR+
denotes the chamber of AE given by R+ ∈ Fram(R).

Let
σ

(τ)
R+,C′

: Ut,R+
×S U(C ′, Fτ,C′) → Stand(τS)Ω t,R+

,

be the morphism defined by

σ
(τ)
R+,C′

: (y, x) 7→
(
int(y)(Pt,R+

), int(yx)(Pτ,C′)
)
.

Observe that Ut,R+
= U(CR− , Ft(R+)).

From 12.11 immediately follows

Proposition 12.19
There is a canonical open covering of the Universal Bruhat cell Stand(τS)
of the split group G defined by τ :

Stand(τS) =
⋃

(R+,C′)∈Iτ (R)

σ
(τ)
R+,C′

(
Ω t,R+

×S U(C ′, Fτ,C′)
)
,

which, if S is affine, is a refinement by affine open sets, which are indeed
isomorphic to affine spaces, of the covering of Proposition 12.11.

The properties of the morphisms
(
σ

(τ)
R+,C′

)
(R+,C′)∈Iτ (R)

are clearly re-

sumed in the following

Proposition 12.20 The morphism σ
(τ)
R+,C′

defines an open embedding of
Ut,R+

×S U(C ′, Fτ,C′) in Stand(τS)Ω t,R+
, namely the image

σ
(τ)
R+,C′

(
Ut,R+

×S U(C ′, Fτ,C′)
)
⊂ Stand(τS)

Ω t,R+

,

is a relatively schematically dense open affine subscheme and the in-
duced morphism by σ (τ)

R+,C′

Ut,R+
×S U(C ′, Fτ,C′) → σ

(τ)
R+,C′

(
Ut,R+

×S U(C ′, Fτ,C′)
)
,

is an isomorphism.
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12.5 Apartment subschemes

Definition 12.21 Let T be a maximal torus of G. Define the S-functor
F ix (T ) ⊂ Par(G) by:

F ix (T ) : S′ → {P ⊂ GS′ parabolic subgroup / TS′ ⊂ P} ,

where S′ is an S-scheme. (The Apartment subscheme defined by the
maximal torus T )

Let E = (T,M,R,R0, (Xα)α∈R0
) be a frame of G given by a trivialization of

T . Thus there is an isomorphism AE ' F ix(T ) so that the root Φα of AE
corresponds to the representable subfunctor Fα ∩ F ix (T ) ⊂ F ix (T ).

Remark 12.22 As a parabolic subgroup P of G is its own normalizer it is
obtained that:

(TS′ ⊂ P ) ⇐⇒ ((∀t ∈ TS′) int(t) · (P ) = P ).

Thus F ix (T ) ⊂ Par(G) is the fixed points functor of the conjugation action
of T on Par(G). It is concluded that F ix (T ) is representable. However an
ad-hoc proof of this fact is given.

Recall the isomorphism
∏

α∈R−
Spec (OS [tα]) →̃ ΩR+

, which may be para-

phrased as follows. For every section of
(
ΩR+

)
S′
, given by some Borel sub-

group B ⊂ GS′ , there exists a unique section (xα) of
∏

α∈R−
OS′ , with

B = int
(∏

exp(xαXα)
)
· (BR+

)S′ .

Let the action of T relatively to the (xα)-coordinates in ΩR+
be described.

For every section t of T one has

int(t)(B) = B′ ⇔ x′α = α(t)xα(α ∈ R−),

where (xα) (resp. x′α)) denotes the coordinates of B (resp. B′) in Ω̃R+ , i.e.

B = int
(∏

exp(xαXα)
)

(BR+
)
(
resp. B′ = int

(∏
exp(x′αXα)

)
(BR+

)
)
.

Then the invariance condition on B, under normalization by T , translates
as:

For every section t of T : α(t) xα = xα.

This implies that the sections of F ix (T )∩ΩR+
, are characterized as the zeroes

of the ideal I((tα)) of O[tα](α ∈ R−), generated by (tα)(α ∈ R−). With the
usual notation one has

V ((tα)) = V (I((tα))) ' F ix (T ) ∩ ΩR+
.
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By considering the big cell open covering of Bor(G)

Bor(G) =
⋃

ΩR+
,

where R+ runs over all possible systems of positive roots of R, we deduce the

Proposition 12.23
The S-functor

F ix (T ) ∩ Bor(G) ⊂ Bor(G)

is representable by the constant S-scheme

(ChAE)S ,

i.e. there is a canonical isomorphism

(ChAE)S ' F ix (T ) ∩ Bor(G),

associating to (R+)S the parabolic (resp. Borel) subgroup BR+ = PR+ , given
by “the center of ΩR+

”, i.e. with (xα)-coordinates, xα = 0 (α ∈ R−).

Let Pt,R+
be the parabolic of G of type t, containing BR+

. Proceeding as
in the case Par t(G) = Bor(G), one introduces (tα)(α ∈ R− Rt)-coordinates.
Here Rt ⊂ R denotes the parabolic set defining Pt,R+ , i.e. Pt,R+ = PRt . It is
then proved, following the same reasoning as above, that

F ix (T ) ∩ Ω t,R+ ,

is given by V ((tα)α∈R−Rt). It has thus been proved the following

Proposition 12.24
There are canonical isomorphisms:

1. ((AE)t)S ' F ix (T ) ∩ Par t(G);

2. (AE)S =
∐

((AE)t)S (t ∈ typAE) ' F ix (T ).

Thus F ix (T ) is representable by a twisted constant S-scheme.

Remark 12.25
NormG(T ) acts as a group of automorphisms on F ix (T ). This action factors
through the quotient

NormG(T )→ WT = NormG(T )/T,

i.e. the Weyl group S-scheme WT defined by the maximal torus T acts on the
S-scheme F ix (T ).
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12.6 The Retraction morphism of the Parabolics scheme on an
Apartment scheme

Keep the above hypothesis on G and denote by E its frame. Write A = AE .
Let C ∈ ChA be the chamber given by the system of positive roots R+ defined
by E, and B the corresponding Borel subgroup. There is a bijection

Relpos′ A = {τ(C,F ) | F ∈ A} →̃ A,

associating to τ ∈ Relpos′ A the facet Fτ ∈ A such that τ(C,Fτ ) = τ. By
Proposition 12.24 there is a canonical isomorphism of S-schemesAS→̃ F ix(T ),
defined by FS 7→ PF , for F ∈ A. On the other hand, there is a canonical
isomorphism Relpos′G ' (Relpos′ A)S . Thus one deduces a canonical isomor-
phism

Relpos′G →̃ F ix(T ).

Definition 12.26
Define the retraction morphism

ρE : Stand(B) → F ix(T ),

as the composition of the morphism

t′2 : Stand(B) → Relpos′G

induced by t2, followed by the isomorphism Relpos′G →̃ F ix(T ).

For example given a section (B,P ) of Stand(B) with t2(B,P ) = τS (τ ∈
RelposA), one has ρE : (B,P ) 7→ Pτ , where Pτ is the parabolic corresponding
to the center of Stand(t2(B,P ), B).

Observe that the fibers of the Retraction morphism are precisely the
Bruhat cells defined by BC and the centers Fτ .

12.7 Convex Hull of a couple of parabolics in standard position

Keep the above hypothesis on G. Let (P,Q) be a couple of parabolics of
G in standard position. Recall that the intersection subgroup P ∩ Q is an
(R) subgroup (cf. [23], Exp. XXII, §5), i.e. P ∩ Q is S-smooth, of finite
presentation, with connected geometric fibers, and containing a maximal torus
T locally for the etale topology. Assume that T ⊂ P ∩Q (resp. T ⊂ (P,Q)),
where T is the maximal torus given by E.
LetR be the Z-root system defined by the frame E ofG andAE the apartment
defined by R. Let DAE denote the set of combinatorial roots of AE . The
system of roots R being reduced, it is recalled that there exists a bijection

R→ DAE ,
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associating with α ∈ R, the combinatorial root

Φα = {F ∈ AE | α ∈ RF } ⊂ AE .

Given (F, F ′) ∈ AE ×AE write

DAE (F, F ′) = {Φ ∈ DAE | F, F ′ ∈ Φ} .

By definition of the convex hull Env(F, F ′) one has

Env(F, F ′) =
⋂
DAE (F, F ′).

Consider the subgroups corresponding to the facets F and F ′,

P = PF = PRF
(
resp. Q = QF ′ = PRF ′

)
.

From loc. cit., it follows that the subgroup P ∩Q is characterized by its Lie
algebra

Lie(P ∩Q) = G0 ⊕ (⊕Gα(α ∈ RF ∩RF ′)) ,

where G0 = Lie(T ). On the other hand, RF ∩RF ′ is a closed system of roots,
and the bijection R →̃ DAE induces a bijection

RF ∩RF ′ →̃ DAE (F, F ′).

Let
Pα = exp(W (Gα)) ⊂ G

be the image of the vector group W (Gα) by the morphism

exp : W (Gα) → G

(cf. loc. cit., Exp. XXII, Théorème 1.1).
The group P ∩ Q is generated by the maximal torus T and by the set of

subgroups (Pα)α∈RF∩RF ′ . Thus one obtains the

Proposition 12.27
The following four statements concerning a parabolic subgroup P ⊂ G are
equivalent:

1. P ∩Q ⊂ P ;

2. (Pα) ⊂ P (α ∈ RF ∩RF ′) , T ⊂ P ( P defines a section of Fα);

3. Gα ⊂ Lie(P ) (α ∈ RF ∩RF ′) , T ⊂ P ;

4. there exists F ∈ EnvAE (F, F ′) with P = PF .
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Definition 12.28
Define the S-subfunctor

F ix(P,Q) ⊂ Par(G),

by
F ix (P,Q)(S′) =

{
P parabolic of GS′ | (P ∩Q)S′ ⊂ P

}
.

(The Convex Hull scheme defined by the couple (P,Q))

Let it be proved that F ix(P,Q) is representable by giving a local descrip-
tion of this functor in terms of a splitting of G. From Proposition 12.27,3,
and Definition 12.28 one obtains the

Proposition 12.29
Let G = (G,T,M,R), one has

F ix(P,Q) = F ix (T ) ∩
(⋂

Fα (α ∈ RF ∩RF ′)
)
.

It is immediate that for α ∈ R there is an isomorphism of S-schemes

(Φα)S →̃ F ix (T ) ∩ F α,

where Φα ⊂ AE denotes the combinatorial root defined by α ∈ R, defined by

FS 7−→ PF (= PRF ).

It is then deduced that

F ix(P,Q) =
⋂

α∈RF∩RF ′

(F ix (T ) ∩ Fα) =
⋂

α∈RF∩RF ′

(Φα)S =

 ⋂
α∈RF∩RF ′

Φα


S

.

One finally obtains the

Proposition 12.30
Let F, F ′ ∈ AE. Write P = PF , Q = PF ′ . There is a canonical isomorphism

Env(F, F ′)S →̃ F ix(P,Q),

given by
FS 7→ PF ,(

F ∈ Env(F, F ′)
)
.

Corollary 12.31
The S-subfunctor

F ix (P,Q) ⊂ Par(G)

is representable by a twisted constant finite S-scheme.
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Given a maximal torus T ⊂ P ∩ Q of G the functor F ix(P,Q) may be
seen as a subcomplex scheme of F ix (T ). We recall that two maximal tori
of G contained in the (R)-subgroup P ∩Q are conjugate locally for the etale
topology by an element of P ∩Q. It follows that

Proposition 12.32
Given two maximal tori T, T ′ ⊂ P∩Q, i.e. satisfying F ix(P,Q) ⊂ F ix (T ) and
F ix(P,Q) ⊂ F ix (T ′) a conjugation isomorphism α satisfying α(F ix (T )) =
F ix (T ′) and α|Fix(P,Q) = IdFix(P,Q) exists locally for the etale topology.

Remark 12.33

From Proposition 12.32 it follows that the convex hull Env(F, F ′) of two facets
of the building I, of a reductive k-reductive group G over an algebraically closed
field k, is independant of the apartment A containing F and F ′. In fact the
statement of this proposition corresponds to one of the definition axioms of
abstract buildings. This justifies the introduction of (R)-subgroups in this
work. The main example is thus given by the intersection of two parabolic
subgroups and their main properties are:

1) Two maximal tori in an (R)-subgroup are conjugate locally for the etale
topology;

2) the R-groups of a reductive S-group G functor is representable by a
quasi-projective S-scheme.

The latter allows one to carry out the building constructions in the relative
case. In fact the representability of the apartment functor (resp. convex hull
functor) follows from it. It will be seen that another consequence is that min-
imal generalized galleries configurations depend uniquely on the convex hull
defined by its extremities and not on the apartment containing it.

12.8 Convex Hull of the Tautological Couple of parabolics

Keep the above notation and hypothesis on G. Fix a type of relative position
τ with corresponding couple of types (t, s).
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Definition 12.34

• Let G be a reductive S-group scheme and τ a section of RelposG. The
graph of the natural embedding jτ : Stand(τ) −→ Par (G)×S Par (G)
defines a section

ξτ : Stand(τ) −→ (Par(G)×S Par(G))×S Stand(τ)

of the product Par(G)×SPar(G) over Stand(τ). It will be seen that ξτ is

in fact given by a couple of parabolics
(
P̃ , Q̃

)
τ
in standard position,

and thus defines a section of Stand(τ) over itself. More precisely, write
S′ = Stand(τ), then ξτ may be seen as a section of Stand(τ) over S′.

One calls
(
P̃ , Q̃

)
τ
the couple of tautological parabolics of type τ .

• The section ξτ may be extended to a section ξΣ of the Universal Schu-
bert Cell Σ (cf. Definition 12.44) over Σ itself. This section is char-
acterized by the property: Given a section τ of RelposG then:

ξΣ|Stand(τ) = ξτ .

Write
(
P̃ , Q̃

)
Σ

for the corresponding couple of parabolics in standard
position.

• If G is endowed with a frame E and τ is a type of relative position of
AE with corresponding couple of types (t, s) write

ξτ = ξτS : Stand(τ S) −→ (Par t(G)×S Par s(G))×S Stand(τ S)

and
(
P̃ , Q̃

)
τ

=
(
P̃ , Q̃

)
τS
. There are identifications

ξΣ '
∐

τ∈Relpos A(R(E).)

ξτ (resp.
(
P̃ , Q̃

)
Σ
'

∐
τ∈Relpos A(R(E).)

(
P̃ , Q̃

)
τ
) .

Remark 12.35 The section (P̃ , Q̃)τ of Par(G)t ×S Par(G)s ×S Stand(τ),
over Stand(τ), is obtained as the restriction to

Stand(τ) ⊂ Par(G)t ×S Par(G)s,

of the diagonal section
∆X : X → X ×S X,

with X = Par(G)t ×S Par(G)s.

Let the above terminology be justified by proving that
(
P̃ , Q̃

)
τ
is in stan-

dard position. Consider the restriction of the section ξτ of Stand(τS′) corre-
sponding to (P̃ , Q̃)τ to the open subset of the Big Cell open covering indexed
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by (R+, C
′). Write S′ = Stand(τS), and U = Ut,R+ ×S U(C ′, Fτ,C′). The

pull-back GU is endowed with the pull-back frame EU of E. Denote by T
the maximal torus given by E. The section (Pt,R+

, Pτ,C′) of Stand(τS) gives
rise to the section (Pt,R+

, Pτ,C′)U of Stand(τS′) given by (ξτ )U . Observe that
T ⊂ (Pt,R+ , Pτ,C′) implies TU ⊂ (Pt,R+ , Pτ,C′)U . On the other hand, the

section
(
P̃ , Q̃

)
τU

over the section (x, y) of U = Ut,R+
×S U(C ′, Fτ,C′) is given

by (x, y) 7→
(
int(y)(Pt,R+

), int(yx)(Pτ,C′)
)
. It results that

int(yx)(T ) ⊂
(
int(y)(Pt,R+

), int(yx)(Pτ,C′)
)
,

i.e.
int(yx)(T ) ⊂ int(y)(Pt,R+

) ∩ int(yx)(Pτ,C′),

and thus P̃ and Q̃ contain a common maximal torus locally, namely

int(yx)(T ) ⊂ P̃ ∩ Q̃.

It has thus been proved the

Proposition 12.36
The couple (P̃ , Q̃)τ of parabolics of GS′ is in standard position, and one has

t2((P̃ , Q̃)τ ) = τS′ .

Definition 12.37
Let G denote a reductive S-group scheme, τ a section of RelposG.

• Write S′ = Stand(τ). The couple of parabolics (P̃ , Q̃)τ of GS′ , is
in standard position, and thus defines a section of Stand(GS′) =
Stand(G)×S S′. Define the finite S′-scheme

F ix τ = F ix(P̃ , Q̃)τ ⊂ Par(GS′)

(The Convex Hull of the tautological couple (P̃ , Q̃)τ).

• Denote by F ixΣ −→ Σ the finite scheme characterized by: for all sec-
tions τ of RelposG,

F ixΣ|Stand(τ) = F ix τ

(The Convex Hull of the tautological couple (P̃ , Q̃)Σ).

Proposition 12.38 (The Universal Property of F ix τ )
Let (P,Q) be a section of Stand(τ) defined over the S-scheme S′, and S′ →
Stand(τ) the corresponding morphism. Then one has

F ix τ ×Stand(τ) S
′ ' F ix(P,Q).
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Proof Retain the above notation. Let ES′ be the frame of GS′ pull-back of
EU by S′ → U . There is a natural building isomorphism AEU ' AES′ . Let
F, F ′ ∈ AEU so that

(P̃ , Q̃) = (PF , PF ′) in GU and (P,Q) = (PF , PF ′) in GS′ . There is
an induced isomorphism of constant S′-schemes (EnvAEU (F, F ′)U ) ×U S′ '
EnvAES′ (F, F ′)S′ , which proves that the natural morphism

F ix(P̃ , Q̃)×U S′ → F ix(P,Q)

is also an isomorphism, on account of the isomorphisms
(EnvAEU (F, F ′)U ) ×U S′ ' F ix(P̃ , Q̃) ×U S′ (resp. EnvAES′ (F, F ′)S′ '
F ix(P,Q)), and a commutative square with vertices these four schemes and
with arrows these four morphisms.

12.8.1 The Projection Morphism

Let (P,Q) be a couple of parabolics of the reductive S-group scheme G in
standard position. Assume that GS is endowed with a frame. Then there is
an isomorphism: Env(P,Q)S ' lim−→

E

Env(FE , F
′
E)S , where E runs on the set

of frames of GS “adapted” to the couple (P,Q), and (FE , F
′
E) represents the

corresponding couple of facets in AE . Suppose that (Si −→ S) is an etale
covering such that GSi is endowed with a frame Ei. Denote by Gi (resp. Gj)
the pull-back of GSi (resp. GSj ) by the projection Si ×S Sj −→ Si (resp.
Si ×S Sj −→ Sj), and by αi,j : Gi ' Gj the cocyle isomorphism. Denote also
Ei (resp. Ej) the frame of Gi (resp. Gj) given by the pull-back of the frame
of GSi (resp. GSj ).
Fix (i, j), write α = αij , E = Ei. Let x be a section of Gi. Denote by
int(x)(E) the frame obtained from E by conjugation, and by α(E) the image
frame by α of Gj . There is a commutative diagram:

(Gi, E)
α - (Gj , α(E))

(Gi, int(x)(E))

int(x)

?
α- (Gj , int(α(x)(α(E)))

int(α(x))

?

On the other hand given an isomorphism of split groups β : (G1, E1) −→
(G2, E2), i.e. an isomorphism β : G1 −→ G2 such that β(E1) = E2, and
F, F ′ ∈ AE then: β(projF ′ F ) = projβ(F ′) β(F ). On account of these devel-
opements the following can be stated

Definition 12.39
Keep the above notation.
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• Let (P,Q) be a couple of parabolics in standard position of G. Denote
by proj(P,Q) the section of Fix(P,Q) so that if E is a frame of GS′ ,
where S′ denotes an etale scheme, then (proj(P,Q))S′ corresponds to
the constant section (projF ′ F )S′ by the isomorphism Env(F, F ′)S′ '
Fix(P,Q). Define the τ-projection section

proj(τ) : Stand(τ) −→ F ixτ ⊂ Stand(τ)×S Par(G)

as the section proj(P̃ ,Q̃) given by the tautological couple (P̃ , Q̃)τ of type
τ of the finite Stand(τ)-scheme F ixτ = F ix(P̃ , Q̃).

• Define the τ-projection morphism

Proj(τ) : Stand(τ) −→ Par(G)

as the composition of proj(τ) followed by the projection on Par(G).

• Define the Σ-projection morphism

Proj(Σ) : Σ −→ Par(G)

as the morphism characterized by: for all sections τ of RelposG

Proj(Σ)|Stand(τ) = Proj(τ) .

Write Proj(Σ)
(P,Q) for the image of (P,Q). Define the section proj(Σ) :

Σ −→ F ix Σ following the same pattern.

12.9 Schematic closure of a subscheme

The following definitions are of use in defining Schubert schemes in the next
section. For more details see §16.3.

Definition 12.40
Let f : X → Y be a morphism of schemes. It is said that the smallest closed
subscheme Y ′ ⊂ Y , so that the canonical embedding jY ′ : Y ′ → Y factors f ,
is the schematic image of f , if it exists.

If X is a subscheme of Y , and jX : X → Y the canonical embedding,
the schematic closure Xschc of X in Y is defined as the schematic image
of jX . (cf. [24], Ch. 1, Definition (6.10.1)).

If the canonical injection jX : X → Y is schematically dominant, it
is said that X is schematically dense in Y (cf. [24], Ch. 1, Definition
(5.4.2))

Definition 12.41
A morphism f : X → Y is schematically dominant if for every open
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subset U ⊂ Y and every closed subscheme Z ⊂ U , so that the restriction
f−1(U) → U of f factors as

f−1(U)
g→ Z

jZ→ U,

it is
Z = U.

The transitivity of schematic images is recalled.

Proposition 12.42
Let f : X → Y and g : Y → Z two morphisms. It is supposed that the
schematic image Y ′ of f exists, and that the schematic image Z ′ of Y ′ by the
restriction g′ of g to Y ′ also exists. Then the schematic image of X by g ◦ f
exists and is equal to Z ′. (cf. loc. cit., Proposition (6.10.3))

The following Proposition gives sufficient conditions assuring the existence
of the schematic image (resp. schematic closure) of f : X → Y (resp.
jX : X → Y ).

Proposition 12.43
The schematic image Y ′ of X by the morphism f : X → Y exists in each of
the following two cases:

1. f∗(OX) is a quasi-coherent OY -module (this condition is satisfied if
f is quasi-compact and quasi-separated).

2. X is reduced.

The underlying subspace of Y ′ is given by f(X) (= the closure in Y of the
image of f), and f factors as

X
g→ Y ′

jY ′→ Y,

where g is schematically dominant. (cf. [24], Ch 1, Proposition (6.10.5))

It is proved in §16.3 that the scheme Stand(τS , P ) of parabolics of type s
in Standard Position with P as a quasi-compact scheme if S is affine, so
that the scheme of couples of parabolics in standard position Stand(τ) is also
a quasi-compact scheme. Thus the Schematic Closure Stand(τS , P )schc

(resp. Stand(τ)) of Stand(τS , P ) (resp. Stand(τ)schc) in Pars(G) (resp.
Part(G)×S ParS(G)) exists.
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12.10 The Universal Schubert Cell and the Universal Schubert
scheme

Definition 12.44 1. The Universal Schubert Cell (resp. Bruhat
Cell) of G is by definition the G-orbit scheme of Stand(G), given by
the graph

gr(t2) ⊂ Stand(G)×S RelposG,

of the type of relative position morphism t2 : Stand(G) → RelposG =
Stand(G)/G. Write Σ = gr(t2). There is a natural embedding jΣ : Σ →
(Par(G)×S Par(G))×S RelposG.

2. Define the Universal Schubert scheme Σ of G as the schematic
image of jΣ (resp. the schematic closure Σschc of the Universal
Schubert cell Σ) in

(Par(G)×S Par(G))×S RelposG .

Denote by jΣ : Σ → Par(G) ×S Par(G) ×S RelposG the natural
embedding.

Recall that:

1. The functor Stand(G) is representable

2. The morphism t2 : Stand(G) → RelposG is the quotient morphism
Stand(G) −→ Stand(G)/G and it is S-smooth, of finite presentation,
with irreducible geometrical fibers, and thus faithfully flat.

Let (
P̃ , Q̃

)
Σ

be the tautological couple of parabolics in standard position of GΣ. This
couple is characterized locally for the etale topology as follows. Let E be
a frame of GS′ , where S′ −→ S is an etale morphism. One has ΣS′ =∐
τ∈RelposAE

Stand(τS′), and
((
P̃ , Q̃

)
Σ

)
Stand(τS′ )

=
(
P̃ , Q̃

)
τS′

, where the first

member denotes the restriction of
(
P̃ , Q̃

)
Σ
to Stand(τS′), and the second the

tautological couple
(
P̃ , Q̃

)
τS′

.

Define

prR : Σ −→ RelposG
(
resp. prR,Σ : Σ −→ RelposG

)
by prR = pr3◦jΣ (resp. prR,Σ = pr3◦jΣ), where pr3 : (Par(G)×S Par(G))×S
RelposG −→ RelposG denotes the canonical projection. Given a section τ
of RelposG write Στ = pr−1

R (τ). Then one has

Στ = Stand(τ).
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Let
prP = pr1 ◦ jΣ : Σ −→ Par(G)(

resp. prP,Σ = pr1 ◦ jΣ : Σ −→ Par(G)
)

be the morphism obtained as the composition of jΣ (resp. jΣ) followed by the
first projection pr1 : Par(G) ×S Par(G) ×S RelposG −→ Par(G). Given a
section (τ , P ) of RelposG ×S Par(G) (resp. a parabolic P of G) write:

Σ(τ,P ) = (prR × prP)
−1

((τ , P ))
(
resp. ΣP = pr−1

P (P )
)
.

Where P denotes the section of Par(G) given by the parabolic subgroup
P ⊂ G.

There is a natural embedding

jτ : Στ −→ Par(G)×S Par(G)(
resp. j(τ,P ) : Σ(τ,P ) −→ Par(G), jP : ΣP −→ Par(G)RelposG

)
,

as it results from the definition of

Στ
(
resp. Σ(τ,P ), ΣP

)
.

Define
Στ

(
resp. Σ(τ,P ), ΣP

)
as the schematic image of

jτ
(
resp. j(τ,P ), jP

)
,

or equivalently the schematic closure of

Στ
(
resp. Σ(τ,P ), ΣP

)
,

in
Par(G)×S Par(G) (resp. Par(G), Par(G)RelposG) .

One calls Στ
(
resp. Σ(τ,P ), ΣP

)
the Universal Schubert scheme of

G of type τ (resp. the Schubert scheme of type (τ , P ), the Universal
Schubert scheme of G defined by the parabolic P ⊂ G). Observe that

Στ =
(
prR,Σ

)−1

(τ).
To make evident the dependence of the above defined objects on G write:

ΣG = Σ
(
resp. ΣGτ = Στ , Σ

G
= Σ, Σ

G

τ = Στ · · · etc
)
.

Recall that given S′ −→ S, there is the following isomorphism

Par(GS′) ' Par(G)S′
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(resp. Stand(GS′) ' Stand(G)S′) ,

which results immediately from the definition of the functor Par(G) (resp.
Stand(G)) (cf. [23], Exp. XXVI, 3.2. (resp. 4.5.3)). An isomorphism is
deduced

RelposGS′ → (RelposG)S′ .

On the other hand, the morphism

t′2 : Par(GS′) → RelposGS′ ,

is obtained as t′2 = (t2)S′ . From the above remark one obtains the identifica-
tions

ΣGS′ =
(
ΣG
)
S′(

resp. ΣGS′τS′
=
(

ΣGτ

)
S′

)
,

where τ denotes a section of RelposG.

12.11 The group action on the Universal Schubert scheme

By definition of Σ as the G-orbit scheme gr(t2) = graph of t2, there is a
natural action of G on Σ that is induced by the action of G on

Par(G)×S Par(G)×S RelposG,

given by
(g, ((P,Q), τ)) 7→ ((int(g)(P ), int(g)(Q)) , τ) .

Clearly, the subscheme

Σ ↪→ Par(G)×S Par(G)×S RelposG

is invariant under G.
Let τ be a section of RelposG. It follows that

Στ ⊂ Par(G)×S Par(G)(
resp. Σ(τ,P ) ⊂ Par(G)

)
,

is G-invariant (resp. P -invariant).

Proposition 12.45
For every section g of G (resp. h of P ) there is

int(g)(Σ) = Σ(
resp. int(g)(Στ ) = Στ , int(h)(Σ(τ,P )) = Σ(τ,P )

)
.
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Proof For every section g of G int(g)(Σ) = Σ. It follows that

Σ ⊂ int(g)(Σ)

by definition of the schematic closure Σ, as int(g)(Σ) is a closed subscheme
of Par(G)×S Par(G)×S RelposG. It is deduced that

int(g−1)(Σ) ⊂ Σ for every section g of G.

It is concluded that

int(g−1)(Σ) = Σ for every section g of G ,

and finally that
int(g)(Σ) = Σ.

This proves the first equality. The second one follows from

Στ = pr−1
R (τ) = fiber of Σ over τ ,

and the G-invariance of prR. The following one is immediate from the second
equality as P is equal to its own normalizer in G.

12.12 The Universal Schubert scheme locally trivial fibration
over the Parabolics scheme

Assume that G is endowed with a frame E. Let τ ∈ Relpos AE and
let (t, s) be the couple of types determined by τ . Write τ = τS . Recall
that the Universal Schubert scheme defined by the type of relative position
τ ∈ RelposG, Στ = Stand(τ) −→ Part(G) is a locally trivial fibration with
typical fiber Σ(τ,Pt) = Stand(τ , Pt), which is trivialized by the big cell open
covering (Ω t,R+

)R+∈Fram(R(E)) (That is why it is assumed that G is endowed
with a frame). With the aim of simplifying notations denote by (Ui) the big
cell open covering of Part(G).

There are isomorphisms αi : Ui ×S Σ(τ,Pt) '
(
Στ
)
Ui

where αi is induced
by an automorphism int(gi) and gi denotes a section of GUi . In fact int(gi)
induces an Ui- automorphism of Ui ×S Par(G) and sends Ui ×S Σ(τ,Pt) ⊂
Ui×SPar(G) on

(
Στ
)
Ui

= Ui×Par(G)Στ ⊂ Par(G). As by definition Σ(τ,Pt) is
the schematic closure of Σ(τ,Pt) in Par(G) and Ui is smooth it is deduced that
Ui×S Σ(τ,Pt) is also the schematical closure of Ui×S Σ(τ,Pt) in Ui×S Par(G).
On the other hand, the automorphism int(gi) induces an isomorphism αi :

Ui ×S Σ(τ,Pt) '
(
Στ
)
Ui

of schematical closures which in fact extends αi.
With the data

(
αi, Ui ×S Σ(τ,Pt)

)
(resp.

(
αi, Ui ×S Σ(τ,Pt)

)
) is associated the

set of transition isomorphisms
(
cij = α−1

i ◦ αj
)
(resp.

(
cij = α−1

i ◦ αj
)
). The
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set (cij) satisfies the cocycle condition as it defines the Par(G)-sub-bundle

jΣτ : Στ
� � //

$$

Part(G)×S Pars(G)

vv
Part (G),

where the couple of types of parabolics (t, s) is defined by τ .
From the fact that Σ(τ,Pt) is schematically dense in Σ(τ,Pt) it follows that
(cij) also satisfies the cocycle condition and thus the data

(
αi, Ui ×S Σ(τ,Pt)

)
defines a Par(G)-sub-bundle Σ

f

τ of Part(G) ×S Pars(G) → Part(G) which
in fact gives an embedding

j
Σ
f
τ

: Σ
f

τ
� � //

##

Part(G)×S Pars(G)

vv
Part (G).

Remark that Σ
f

τ → Part (G) is a proper morphism as the fiber Σ(τ,Pt) ⊂
Part (G) is a projective scheme. Thus the morphism Σ

f

τ → S is proper

as Part (G) → S is a projective scheme. It is concluded that the Σ
f

τ ⊂
Part (G)×S Pars (G) is a closed subscheme.
As the embedding Στ ↪→ Part(G)×SPars(G) is quasi-compact and separated
the schematic closure Στ exists (cf. Proposition 12.43), satisfies Στ ⊂ Σ

f

τ ,
and commutes with the flat extension X → Part(G) ×S Pars(G), where
X =

∐
Ui ×S Part(G). Thus there is an isomorphism∐

αi : Ui ×S Σ(τ,Pt) '
∐(

Στ
)
Ui

=
(
Στ
)
X

=
(
Στ
)
X
.

Thus it follows that the image of the embedding j
Σ
f
τ
is equal to Στ .

One concludes that

Proposition 12.46
Keep the above notation. Suppose G endowed with a frame. Then Στ −→
Part(G) is a locally trivial fiber bundle with typical fiber Σ(τ,Pt), and Στ −→
Part(G) is a sub-bundle of it with typical fiber Σ(τ,Pt).



Chapter 13

Incidence Type Schemes of
the Relative Building

By G denote a reductive S-group scheme. By a Building type scheme
associated with G one understands an S-scheme X so that for all s ∈ S the
geometric fiber Xs “may be written” in terms of the Building I(Gs) of the
geometric fiber Gs of G. The schemes associated with the Relative Building
which has been constructed in the preceding chapter are examples of Building
type schemes. An Incidence type scheme is a subscheme of a finite product
of Building type schemes defined in terms of the Incidence scheme Inc(G).
With the following Building type schemes

• the Typical Simplex scheme ∆(G);

• the Weyl Complex scheme A(G);

• the Types of Relative Position scheme RelposG;

• the Parabolic scheme Par(G),

are associated Incidence type schemes, whose geometric fibers over s are re-
spectively given by sets of generalized galleries of the Typical Simplex, the
Weyl Complex, the Types of Relative Positions of I(Gs), and I(Gs) itself.
The smooth resolutions are constructed for the Schubert schemes are partic-
ular cases of these objects. More precisely stated one has:

The Minimal Galleries of Types scheme and the Relative Positions
Galleries scheme associated with the reductive S-group schemeG are first de-
fined, along with the morphism δ2 associating with a minimal gallery of types
g a type of relative position section τg. The Incidence scheme plays the

305
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role, in the setting of relative buildings, of the incidence relation of a building.
The Galleries Configurations scheme (resp. Galleries Configurations
over minimal galleries of types scheme) is defined in terms of the Inci-
dence scheme, as a subscheme of the disjoint union of all finite products of
the Parabolics scheme Par(G). The Minimal Galleries Configurations
are defined in terms of the Convex Hull scheme F ix(P̃, Q̃) −→ Σ. They are
particular sections of the Convex Hull scheme over the Universal Schubert Cell
Σ. There is a morphism associating with a gallery configuration a gallery of
types. It will be seen in the next chapter that the fiber of the Galleries Con-
figurations scheme over a section g of the Minimal Galleries of types scheme
provides a smooth resolution of singularities of the Schubert scheme Στg .

13.1 Typical Simplex Generalized Galleries scheme

Recall that the set of sections of the relative typical simplex ∆(G)(S′) is
given by the set of open and closed subsets of Dyn(G)S′ and thus it is
naturally endowed with an order relation, namely the inclusion relation “⊂”.
Define the S-functor

Γ(∆(G)) ⊂
∐
N∈N

∆(G)×S · · · ×S ∆(G) (N -times)

ofGeneralized Galleries of types (resp. Generalized Galleries of ∆(G))
by: “The set

Γ(∆(G))(S′) ∩ (∆(G)(S′)×S · · · ×S ∆(G)(S′) (N -times))

is given by the N -uples of sections of ∆(G) on S′ satisfying, relatively to
‘⊂’, the defining relations of a Generalized Gallery in a building as given in
Definition 5.1”. If G is split one has

Γ(∆(G)) ' lim−→
E

(
Gall∆(E)

)
S

where ∆(E) = typ AE = AE/W (R(E)). Thus Γ(∆(G)) is locally repre-

sentable by a disjoint union of constant S-schemes, namely
(

lim−→
E

Gall∆(E)

)
S

.

It is concluded that in general Γ(∆(G)) is representable by a locally constant
S-scheme.

13.2 Minimal Generalized Galleries of types scheme

Let G be split and E a frame of G. Denote by

gallmAE ⊂ gallAE
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the subset of Generalized Galleries of types, given by the images of the min-
imal Generalized Galleries of the apartment AE by the mapping

typg : GallAE → gallAE ,

associating with γ ∈ GallAE the Generalized Gallery of types typ γ ∈ gallAE
given by the images by typ : AE → typ AE of its facets. Observe that
the subset gallmAE is invariant under the action of the group Aut(AE) of
automorphisms of the apartment AE . Given a reductive S-group scheme one
may thus define an S-subfunctor

Γm(∆(G)) ⊂ Γ(∆(G))

characterized by the following property. If G is split then there is a canonical
isomorphism

lim−→
E

(
gallmAE

)
S
' Γm (∆(G)) ,

where E runs on the set of frames of G. The sections of Γm(∆(G)) are charac-
terized as the sections of Γ(∆(G)) which are locally of the form typγ(F, F ′)S′ ,
where S′ → S is an etale morphism so that GS′ is endowed with a frame E
and γ(F, F ′) is a Minimal Gallery of AE .

The canonical isomorphism

∆(G) ' A(G)/WG,

allows the identification of the sections of Γ(∆(G)) with the gg of the S-
scheme of types A(G)/W G of A(G). Thus Γm(∆(G)) appears as the image
of ΓmA(G) by the restriction ΓmA(G) → Γ(A(G)/W G) of the morphism ΓA(G) →
Γ(A(G)/W G) induced by the quotient morphism A(G) → A(G)/W G.

13.3 Weyl Complex Generalized Galleries scheme

For a split S-group G write

ΓA(G) = lim−→
E

(GallAE )S(
resp. ΓmA(G) = lim−→

E

(
GallmAE

)
S

)
.

Given in general an S-reductive group G one defines the generalized gal-
leries of A(S), S-scheme ΓA(G) (resp. the MGG, S-scheme ΓmA(G) of A(S)) by
descent, following the pattern of the definition of A(G) itself.
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13.4 The Weyl Complex Gallery type morphism

Let G be endowed with a frame E. Let typg : GallAE → gallAE , be defined
by typg : γ → typ γ , and

tΓ1,E = (typg)S : (GallAE )S → (gallAE )S .

Write for a split reductive S-group G:

tΓ1,A = lim−→
E

tΓ1,E : ΓA(G) → Γ (∆(G)) ,

where E runs on the set of frames of G. Thus there exists a morphism

tΓ1,A : ΓA(G) → Γ (∆(G))

locally characterized as above, defined by descent, if it is supposed only G a
reductive S-group. Let

tm1,A : ΓmA(G) → Γm (∆(G)) ,

denote the induced morphism. It is clear that the Weyl group W G acts
naturally on ΓmA(G). Assume that G is endowed with a frame E, then there is
a canonical isomorphism

ΓmA(G) '
(
GallmAE

)
S(

resp. ΓmA(G)/W G '
(
GallmAE/W (R(E))

)
S

)
.

On the other hand, there is an isomorphism

tm1,E :
(
GallmAE/W (R(E))

)
S
'
(
gallmAE

)
S
,

induced by tΓ1,E .
It is clear that tm1,A factors through the quotient morphism

ΓmA(G) → ΓmA(G)/W G,

and thus that it induces a morphism

tm1,A : Γm (G)/W G → Γm (∆(G)) .

As
tm1,A = lim

→
E

tm1,E

it is deduced the following

Lemma 13.1
The morphism tm1,A is an isomorphism.
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13.5 Relative position types galleries scheme

A twisted constant scheme is defined which indexes, as will be seen, a cellular
decomposition of the galleries scheme. Let t (resp. s′, s) be a section of ∆(G).
Suppose that

t ⊂ s′, s

and that s′ denotes the type section of a Borel subgroup of G. Write

Relposts = Relpost(s′,s)

(cf. §11.12).

Definition 13.2

1. Suppose that the S-group scheme G is endowed with a frame E.

Let g ∈ gallAE , with l(g) = r + 1, such that

g = g1, g
′
1 (resp. g = g2, g

′
2) .

Write

RelposgallG (gS) =
∏

Relposti(g)Ssi−1(g)S
(r + 1 > i > 1)(resp. r > i > 1),

where the products are products of S-schemes.

Given a section g of Γ(∆(G)) define

RelposgallG (g)

for a reductive S-group scheme G by descent from the above definition,
by taking into account that locally, there is an isomorphism

(gallAE )S′ ' Γ(∆(G)).

Here S′ → S denotes an étale morphism and E a frame of GS′ ,and gS′
is supposed to be of the form g

S′
= gS′ for some g ∈ gallAE .

2. If G is endowed with a frame E define

RelposgallG =
∐

g∈gall A(R(E)

RelposgallG (gS).

Define in general RelposgallG (The Relative Position Types galleries
scheme) for a reductive S-group scheme G by descent, following the
same pattern as in 1.
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3. If G is endowed with a frame E, there is a morphism

εgall : RelposgallG =
∐

Relpos gall
G (gS) → Γ(∆(G)),

so that given a section τC of Relpos gall
G , then

εgall(τC ) = gS ,

if τC is a section of Relpos gall
G (gS).

In the general case define εgall by descent.

13.6 The type of relative position associated to a minimal gallery
of types

Let
EA = E1A × E2A : ΓA(G) → A(G)×S A(G)

(resp. e = e1 × e2 : Γ(∆(G)) → ∆(G)×S ∆(G))

be the morphism associating with a section γ (resp. g) of ΓA(G) (resp. ∆(G))
the couple of its extremities(

E1A(γ), E2A(γ)
) (

resp.
(
e1(g), e2(g)

))
.

The restriction of EA (resp. e) to(
N∏
A(G)

)
∩ ΓA(G)

(
resp.

(
N∏

∆(G)

)
∩ Γ(∆(G))

)

is the morphism induced by

p1A(G) × pN A(G)

(
resp. p1 ∆(G) × pN ∆(G)

)
,

where

p1A(G) (resp. pN A(G)) :

N∏
A(G) → A(G)(

resp. p1 ∆(G)

(
resp. pN ∆(G)

)
:

N∏
∆(G) → ∆(G)

)
denotes the first projection (resp. the N -th projection).

Write
EmA = Em1A × Em2A (resp. em = em1 × em2 )

for the restriction of EA (resp. e) to the minimal galleries scheme

ΓmA(G) (resp. Γm(∆(G))) .
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The morphism giving the relative position of the extremities of a minimal
gallery

t2,A ◦ EmA : ΓmA(G) → RelposA(G),

factors through
ΓmA(G) → ΓmA(G)/W G.

Let:
δ2 : ΓmA(G) / W G → RelposA(G),

be the induced morphism.
On the other hand, on the basis of Lemma 13.1 one has an isomorphism

tm1,A : ΓmA(G) / W G → Γm (∆(G)) ,

induced by tm1,A. Thus one may define

δ2 = δ2 ◦ (tm1,A)−1 : Γm (∆(G)) → RelposA(G)(
Minimal Generalized Gallery of types Type of Relative Position

Morphism
)
.

Locally δ2 may be described as follows. Let E be a frame of G. Then
there is a canonical isomorphism(

gallmAE
)
S
' Γm (∆(G))

(resp. (RelposAE)S ' RelposA(G)) .

Thus the morphism induced by δ2

δ′2 :
(
gallmAE

)
S
→ (RelposAE)S ,

is given by
δ′2 = (τ•)S ,

where τ• : gallmAE → Relpos AE , is defined by associating with a minimal
gallery of types the relative position of the extremities of a minimal gallery of
this type (cf. Definition 9.20).

13.7 The Incidence morphisms in the Weyl Complex

Given a section (s, t) of ∆(G)×S ∆(G), satisfying s ⊃ t define the Incidence
morphism of type (s, t)

FAs,t : A(G)s → A(G)t

locally as follows. Suppose that G is endowed with a frame E. Thus there is
a canonical isomorphism

(AE)S ' A(G).
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Given (s, t) ∈ typAE × typAE , define the incidence mapping

FAs,t : (AE)s → (AE)t,

as the mapping associating with a facet F ∈ (AE)s the unique facet F ′ ∈
(AE)t incident to F . Thus one has

FAs,t(F ) = F ′.

Let
(s, t) = (sS , tS).

Define
FAs,t =

(
FAs,t

)
S

One obtains FAs,t in the general case by etale descent.
The corresponding incidence morphism

Fs,t : Par s(G) → Par t(G)

is easier to define. Let Q ⊂ G be a parabolic subgroup of type s.
Then Fs,t associates with Q the unique parabolic subgroup P ⊂ G, so

that P is of type t, and Q ⊂ P (cf. [23], Exp. XXV I, Lemme 3.8).
The product of incidence morphisms:

FAs,t ×FAs′,t′ : A(G)s ×S A(G)s′ → A(G)t ×S A(G)t′(
resp. Fs,t ×Fs′,t′ : Par s(G)×S Par s′(G) → Par t(G)×S Par t′(G)

)
induces a morphism

Relpos (s,s′) A(G) → Relpos (t,t′) A(G)(
resp. (RelposG) (s,s′) → (RelposG) (t,t′)

)
which is called the Relpos incidence morphism in A(G) (resp. the
Relpos incidence morphism) defined by the couples of types (s, s′) and
(t, t′) satisfying s ⊃ t, and s′ ⊃ t′. If FAs,t × FAs′,t′ : (Q,Q′) 7→ (P, P ′) and
(Q,Q′) is in standard position then (P, P ′) is also in standard (resp. transver-
sal) position.

Definition 13.3
It is recalled that ∆(G) is ordered by a functorial order relation (cf. §11.27).

One endows
∏

∆(G) =
∐ N∏

∆(G) (1 6 N) with the order given by the product
order 6 and the linear order of the products. Given a couple of sections (σ′, σ)

of
N ′∏

∆(G)×
N∏

∆(G) with N ′ 6 N , one writes

σ′ ≺
(σ,p)

σ
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if σ′ is obtained from σ as follows. There exists a section σ of
N∏

∆(G) with

σ 6 σ

so that σ′ is obtained as the image of σ by some projection

p :

N∏
∆(G) →

N ′∏
∆(G).

Given two sections g′ and g of Γ(∆(G)), one writes

g′ ≺
(σ,p)

g

if the corresponding sections of
∏

∆(G), verify this relation.
Remark that

ΓA(G) ⊂
∐ N∏

A(G).

Thus given g′ ≺
(σ,p)

g one introduces a natural morphism

F ΓA(G)

g,(σ,p) : (tΓ1,A)−1(g) →
N ′∏
A(G) ∩ ΓA(G).

This morphism is induced by the composition of a product of incidence
morphisms

FAσ,σ :

N∏
A(G) →

N∏
A(G),

followed by the projection

N∏
A(G) →

N ′∏
A(G)

given by p. These morphisms allow considering a hierarchical relation between
galleries. They depend on the choice of some (σ, p). In practice this choice is
natural.

13.8 The Incidence scheme

The incidence relation in buildings plays a very important role in the descrip-
tion of their associated geometry (cf. [50]). In the schematic setting the graph
of the incidence relation appears as a subscheme of Stand(G). The galleries
configurations that are introduced are sections of fiber products of the In-
cidence scheme with itself. One may say that the types of relative position
between couples of parabolics are generated by the “types of incidence” be-
tween couples of parabolics (cf. galleries of types of relative position associated
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with minimal galleries of types). Schubert cells are obtained as fiber prod-
ucts of cells defined in terms of the incidence relation, along galleries of types
of relative position. These decompositions give rise to smooth resolutions of
their schematic closures;

Let G be a reductive S-group and (P,Q) a couple of parabolics of G.

Definition 13.4
It is said that P and Q are incident parabolics if the following equivalent
statements hold:

1. P ∩Q is a parabolic subgroup of G

2. P ∩Q contains a Borel subgroup locally for the étale topology of S′.

(cf. loc. cit., Exp. XXVI, Proposition 4.4.1)

Let
Inc(G) ⊂ Par(G)×S Par(G)

be the subfunctor whose sections over S′ → S are the couples (P,Q) of
incident parabolics of GS′ . One calls Inc(G) the Incidence scheme.

Clearly one has the inclusion

Inc(G) ⊂ Stand(G) ,

and the diagonal action of G stabilizes Inc(G). From the following proposition
it results that the type of relative position of a couple of incident parabolics
is characterized by their corresponding couple of types.

Proposition 13.5 (cf. [23], Exp. XXVI, Corollaire 4.4.3.)
Let (P,Q) (resp. (P ′, Q′)) be a couple of incident parabolics of type (t, s)
(resp. a couple of parabolics of type (t, s)).

Then (P ′, Q′) is a couple of incident parabolics, if and only if, the couple
(P ′, Q′) is conjugate, under the diagonal inner action of G, to the couple
(P,Q), locally for the etale topology of S′.

There is a morphism

∆(G)×S ∆(G) → RelposG,

which associates with a couple of types (t, s), the type of relative position
t2(P,Q) of a couple of incident parabolics of type (t, s). By τ(t, s) denote
the type of relative position t2(P,Q) of a couple of incident parabolics
(P,Q), with (t1 × t1)((P,Q)) = (t, s).

It results
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Corollary 13.6
The morphism

(t1 × t1)′ : Inc(G) → ∆(G)×S ∆(G),

obtained as the restriction of t1 × t1 to Inc(G) ⊂ Par(G)×S Par(G), allows
identifying ∆(G) ×S ∆(G) with the quotient scheme Inc(G)/G ⊂ Relpos G,
of the subscheme Inc(G) ⊂ Stand(G) under the diagonal action of G. The
restriction of the type of relative position morphism t′2 : Inc(G) → RelposG
factors through (t1 × t1)′ followed by (t, s) 7→ τ(t, s). The S-functor Inc(G)
is representable. Assume G endowed with a frame E, then

Inc(G) =
∐

(t,s)∈typ AE×typ AE

Stand(τ(tS , sS)) .

Given a section (t, s) of ∆(G)×S ∆(G), by definition of τ(t, s) one has:

(t1 × t1)′−1(t, s) = t−1
2 (τ(t, s)) = Stand(τ(t, s)).

From the Proposition 11.25 it results that (t1 × t1)′−1(t, s) is an S-scheme
smooth, projective, with integral fibers.

Let (t, t′) be a section of ∆(G) ×S ∆(G) such that t′ ⊂ t. Recall that the
incidence morphism of type (t, t′), Ft,t′ : Par t(G) → Par t′(G), by
definition, associates with a parabolic P of type t the parabolic P ′ ⊃ P of
type t′. Given a couple of sections (t, s) of ∆(G) denote by t ∪ s the section
of ∆(G) given by sup (t, s) defined relatively to the order of ∆(G). It is easy
to see that there is a canonical isomorphism

Ft∪s,t ×Ft∪s,s : Par t∪s(G)→̃Stand(τ(t, s)).

The reciprocal isomorphism is given by the isomorphism

Stand(τ(t, s)) → Par t∪s(G),

defined by
(P,Q) 7→ P ∩Q.

It is deduced that the geometrical fibers of

(t1 × t1)′ : Inc(G) → ∆(G)×S ∆(G)

(resp. of the restriction t′2 : Inc(G) → RelposG of t2)

are S-smooth, projective, and irreducible. Observe that the Stein factorization
of Inc(G) → S is given by

Inc(G) → ∆(G)×S ∆(G) → S.
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13.9 Galleries of Parabolics Configurations schemes

Definition 13.7
The Typical Simplex generalized galleries scheme Γ(∆(G)) may be seen as a

subscheme of
∏

∆(G) =
∐
N

N∏
∆(G). Let

N∏
inc Par(G) ⊂

N∏
Par(G)

be the S-subfunctor whose sections (Pi)(1 6 i 6 N) satisfy:

for 1 6 i < N, (Pi, Pi+1) is a couple of incident parabolics

(
resp.

∏
inc Par(G) =

∐
N

N∏
inc Par(G) (The Scheme of

Chains of incident parabolics)
)

Clearly
N∏

inc Par(G) = Inc(G)×Par(G) · · · ×Par(G) Inc(G)

((N − 1) times product of Inc(G) over Par(G)) .

Write

ConfNG =

(
N∏

inc Par(G)

)
∩

( N∏
t1

)−1(( N∏
∆(G)

)
∩ Γ(∆(G))

) .

Remark that a couple of incident parabolics (P,Q) of type (t, s) with t ⊂ s
(resp. t ⊃ s) verifies P ⊃ Q (resp. P ⊂ Q). Thus if (Pi) is a section of
ConfNG Par(G), then the image(

N∏
t1

)
((Pi)) = (t1(Pi)) = g

defines a section of Γ(∆(G)), let it be said

g : t1 ⊂ t2 ⊃ · · · tN−1 ⊃ tN .

From the above remark it is obtained that (Pi) satisfies

P1 ⊃ P2 ⊂ · · ·PN−1 ⊂ PN .
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From Definition 13.7 a natural embedding is obtained

ConfNG ⊂
N∏
Par(G).

One thus obtains an embedding

ConfG =
∐
N

ConfNG ⊂
∏
Par(G) =

∐
N

N∏
Par(G).

There is a natural morphism

tΓ1 : ConfG → Γ(∆(G)),

induced by
∐ N∏

t1 (compare with tΓ1,A of §13.4).
Given a section g of Γ(∆(G)) let it be written

ConfG(g) = (tΓ1 )−1(g).

If g is of the form g = gS , with g ∈ gallAE , for some E frame of G, one denotes
by N(g) the integer N so that

ConfG(g) ⊂
N∏
Par(G).

Let the extremities morphism E = E1×E2 : ConfG → Par(G)×S Par(G) be
defined as follows. Write E =

∐
N

EN , where EN : ConfNG → Par(G)×SPar(G),

is induced by the morphism

π1 × πN :

N∏
Par(G) → Par(G)× Par(G),

denoting by π1 (resp. πN ) the first (resp. last) projection morphism.

Notation 13.8 For a section P of Par(G) (resp. (g, P ) of Γ(∆(G)) ×S
Par(G)) one writes:

ConfG(P ) = (E1)−1(P )(
resp. ConfG(g, P ) =

(
tΓ1 × E1

)−1
(g, P )

)
.

The sections of ConfG (resp. ConfG(g), ConfG(g, P )) are calledGeneralized
Galleries Configurations (GG) of G (resp. Generalized Galleries (GG)
configurations of type g, Generalized Galleries (GG) configurations of type
g issued from P ).
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13.10 Galleries Configurations schemes fiber decomposition

Suppose that G is endowed with a frame E. Given a section g of Γ(∆(G)) of
the form g = gS with g ∈ gallAE , we write ConfG(g) = ConfG(gS).

Let
p[α,α+1] : ConfG(g(α)) → ConfG(g(α+1))

be the natural morphism associating with a section σC of ConfG(g(α)) the
(α+1)− th truncated configuration σ(α+1)

C . Where σ (α+1)
C is defined in terms

of σ (α)
C , following the pattern of Proposition 10.9.1 giving γ(α) in terms of γ.

Proposition 13.9
The morphism p[α,α+1] defines a locally trivial fibration, with typical fiber
proper and smooth.

Proof Let
q[α,α+1] : Par sα(g)(G) → Par tα+1(g)(G),

be the natural morphism associating with a parabolic Q of type sα(g) the unique
parabolic of type tα+1(g), containing Q, i.e. q[α,α+1] = Fsα(g),tα+1(g) (cf.
§13.7). It is easy to see that q[α,α+1] is a locally trivial fibration with typical
fiber being the quotient P ′/Q′ of a parabolic P ′ of type tα+1(g) by a parabolic
Q′ ⊂ P ′ of type sα(g).

On the other hand, there is a natural isomorphism

par tα+1
: ConfG(g(α+1)) → Par tα+1(g)(G),

associating with the configuration σC of type g(α+1) the parabolic Pα+1 of type
tα+1(g) of σC .

It is clear that the ConfG(g(α+1))-scheme

ConfG(g(α+1))×Par tα+1(g)(G) Par sα(g)(G),

is canonically isomorphic to the ConfG(g(α+1))-scheme ConfG(g(α)).
It is concluded by remarking that the morphism

ConfG(g
(α+1)
S )×Par tα+1(g)(G) Par sα(g)(G) → ConfG(g

(α+1)
S ),

obtained from q[α,α+1] (resp. from the fiber product given by
(partα+1

, q[α,α+1])) by base change, defines a locally trivial fibration with
typical fiber P ′/Q′.

13.11 Minimal Galleries Configurations

In this section the definition of a Minimal Generalized Gallery for a reductive
S-group scheme is given.



Incidence Type Schemes of the Relative Building 319

Definition 13.10
Define the Minimal Galleries type Configurations scheme of G as the
pull-back of
Γm(∆(G)) ↪→ Γ(∆(G)) by ConfG → Γ(∆(G)),

ConfmG = (tΓ1 )−1 (Γm(∆(G))) ⊂ ConfG.

Notation 13.11

• Write
ConfmG (τ) =

(
tΓ1
)−1 (

Γm(∆(G))τ
)
,

where τ denotes a section of RelposG, and

Γm(∆(G))τ = δ−1
2 (τ),

ConfmG (τ , (P ′, Q′)) = ConfmG (τ) ∩ E−1((P,Q)) ,

where (P,Q) denotes a couple of parabolics. It will be seen in the next
chapter that the Configurations scheme ConfmG (g) defined by a section g
of Γm(∆(G))τ contains a relatively schematically dense open subscheme
isomorphic to the schematic closure of Stand(τ), Στ , where τ denotes
the type of relative position associated to g, i.e. δ2(g) = τ . Remark that
ConfmG (g, (P,Q)) = ConfmG (g) ∩ E−1((P,Q) is the fiber over (P,Q) of
the restriction of E to ConfmG (g).

• Suppose G endowed with a frame E. Given a subcomplex K ⊂ A = AE
one writes

GallK ⊂ GallA (resp. GallmK = GallK ∩GallmA )

for the set of gg of A (resp. MGG of A) contained in K.

Given F, F ′ ∈ A, let P = PF (resp. Q = PF ′) be written. F ix(P,Q) ⊂
Par(G) has been defined as the subfunctor whose sections over S′ are the
parabolics P of GS′ satisfying (P ∩Q)S′ ⊂ P .

It is known that
Env(F, F ′)S ' F ix(P,Q).

Write
ConfF ix(P,Q) = ConfG

⋂(∏
F ix(P,Q)

)
,

where ∏
F ix(P,Q) =

∐
N

N∏
F ix(P,Q).

From the definition of ConfF ix(P,Q) it follows that(
Gall Env(F,F ′)

)
S
' ConfF ix(P,Q).
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One may thus define, given a section (P,Q) of Stand(G),

ConfmF ix(P,Q) = ConfmG ∩ ConfF ix(P,Q)

(resp. ConfmF ix(P,Q) (τ) = ConfmG (τ) ∩ ConfF ix(P,Q),

ConfmF ix(P,Q) (τ , (P ′, Q′)) = ConfmG (τ , (P ′, Q′)) ∩ ConfF ix(P,Q)).

Definition 13.12
A Minimal Gallery Configuration σC with extremities (P,Q) of G, is a
section σC of ConfFix(P,Q) which is locally for the etale topology in S of the
form (σC )S = γ(F, F ′)S, where

γ(F, F ′) ∈ GallmEnv(F,F ′).

In other words, σC is local in S equal to the image of some minimal gener-
alized gallery γ(F, F ′), by the above isomorphism induced by a splitting of G.
Remark that ConfFix(P,Q) has been defined for any reductive S-group scheme
G, and a couple of parabolics (P,Q) of G defining a section of Stand(G).
A section σC of ConfFix(P,Q) is a minimal configuration given by the couple
(P,Q) of Stand(G), if there exists an étale covering (Si → S), so that GSi is
endowed with a frame Ei, whose maximal torus T is contained in PSi (resp.
PQi), and (σC )Si is a minimal configuration defined by (PSi , QSi) as above.

The following proposition is a criterion for a section σC of ConfmF ix(P,Q) to
be a minimal gallery configuration.

Proposition 13.13
Let (P,Q) be a section of Stand(τ), thus t2(P,Q) = τ . Then the set of sections
over the S-scheme S′ of the S-scheme

ConfmFix(P,Q) (t2(P,Q), (P,Q)) ,

correspond to the minimal generalized galleries configurations σC given by
(P,Q) (resp. with extremities (P,Q)).

Proof One may suppose S′ = S. Let (P,Q) be a section of Stand(τ) over
S and σC a configuration of G giving a section of ConfFix(P,Q), then σC is a
section of
ConfmFix(P,Q) (t2(P,Q), (P,Q)), if E(σC ) = (P,Q), and the image g = tΓ1 (σC )

of σC gives a section of Γm(∆(G)), satisfying δ2(g) = t2(P,Q). The statement
of the proposition may be verified locally. With the aim of comparing the
former defining conditions of the proposition on σC with the later, one may
thus suppose that there is a frame E of G, so that

P = PF (resp. Q = PF ′) ,
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with F, F ′ ∈ AE , γ(F, F ′) ∈ GallAE so that γ(F, F ′) ⊂ Env(F, F ′), and
σC = γ(F, F ′)S . Let it be written g = typ g γ(F, F ′) ∈ gallmAE . Recall that:

γ(F, F ′) is a MGG⇔ τ•(g) = τg = τ(F, F ′)

(cf. Proposition 9.38, and Definition 9.20).

One has by Definition of σC :

t2(P,Q) = τ(F, F ′)S
(
resp.

(
δ2 ◦ tΓ1

)
(σC ) = (τg)S

)
,

and on the other hand that(
δ2 ◦ tΓ1

)
(σC ) = t2(P,Q) if and only if τg = τ(F, F ′).

One concludes that a section σC of ConfFix(P,Q) with

E(σC ) = (P,Q)

is a minimal configuration if and only if σC defines a section of
ConfmFix(P,Q)(t2(P,Q), (P,Q)).



Chapter 14

Smooth Resolutions of
Schubert Schemes

The relation between the Minimal Galleries type Configurations scheme over
the Minimal Galleries of Types scheme, tΓm

1 : Confm
G → Γm(∆(G)) and

the Universal Schubert scheme over the Types of Relative positions scheme
Σ −→ RelposG is made explicit. Observe that the former scheme is also a
RelposG-scheme through the finite morphism δ2 : Γm(∆(G)) −→ RelposG. It
is proven that the natural morphism

Confm
G −→ Γm(∆(G))×Relpos G

Σ

is a Smooth Resolution of Singularities (cf. 14.17).
Given a section g of Γm(∆(G)), with associated type of relative po-

sition δ2(g) = τ , there is a relatively schematically dense open
subscheme ConfmG (g)′ of the fiber ConfmG (g), and an isomorphism
Confm

G(g)′ ' Στ = Stand(τ), induced by the above resolving morphism. One
constructs a section

Θg : Stand(τ) −→ ConfmG (g)′

which is its reciprocal isomorphism (cf. 12.34).
The Universal Cellular scheme Conf ′ stdG is defined in terms of the

projection morphism, giving rise, by specialization, to cellular decompo-
sitions of Galleries Configurations schemes whose sections begin by a Borel
subgroup. Thus the Configurations scheme Confm

G(g,P) whose sections are
the galleries configurations of type g with left extremity P admits the follow-
ing cell decomposition. Let B ⊂ P be a Borel subgroup and suppose that the

322
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finite scheme of galleries of types of relative positions Relpos gall
G (gS) is trivial

a surjective monomorphism is obtained∐
j[τC ,E] : Conf ′ stdG (g, B) =

∐
Conf ′ stdG (τC , B) → ConfmG (g, P ) ,

where τC runs on its set of sections. The cells Conf ′ stdG (τC , B) are isomorphic
to affine spaces, and are parametrized in terms of Contracted products
defined by root subgroups. There is only one open cell (The Big Cell),
and it corresponds to a Minimal Generalized Gallery. Both of these results
are proven in the next chapter where contracted products are introduced. A
retraction morphism is defined from the Galleries Configurations scheme
of G to the Galleries Configuration scheme of an Apartment scheme, which is
in fact an interpretation of the above cellular decomposition.

14.1 Universal Minimal Galleries of Types Configurations
Scheme

Recall that with the notation of 13.12 aMinimal Gallery Configuration is
a section of ConfG locally of the form (γ(F, F ′)g)S . Recall that Γm(∆(G)) ⊂
Γ(∆(G)) is the subscheme whose sections are locally given by the images,
by the gallery type morphism tΓ1 : ConfG −→ Γ(∆(G)), of Minimal Gallery
Configurations. A section of Γm(∆(G)) ⊂ Γ(∆(G)) is called a Minimal
Gallery of Types Configuration. Write

ConfmG = (tΓ1 )−1 (Γm(∆(G))) ⊂ ConfG (resp. ConfmG (τ) = tΓ1 )−1((δ2)−1(τ)) ,

where δ2 : Γm(∆(G)) −→ RelposG associates with a Minimal Gallery of
Types the type of relative position of the extremities of a representative Min-
imal Gallery Configuration of this gallery. One calls ConfmG the Universal
Minimal Galleries of Types Configurations Scheme. Thus the sections
of ConfmG are the sections γ of ConfG so that its image tΓ1 (γ) is a section of
Γm(∆(G)).
Define tΓ

m

1 : ConfmG → Γm(∆(G)), as the restriction of tΓ1 to ConfmG . From
the definition of ConfG in terms of the incidence relation, and the functorial
formula Par(G)×S S′ = Par(GS′), it is deduced

ConfG ×S S′ = ConfGS′
(
resp. ConfmG ×S S′ = ConfmGS′

)
.

As a particular case with S′ = Stand(τ), one obtains

ConfG ×S Stand(τ) = ConfGStand(τ)(
resp. ConfmG ×S Stand(τ) = ConfmGStand(τ)

)
.

Recall that F ixτ = F ix
(
P̃ , Q̃

)
, where (P̃ , Q̃)τ denotes the tautological couple

in standard position of type τ over Stand(τ). Thus F ixτ is a finite Stand(τ)-
scheme whose fiber over a section given by a couple of parabolics (P,Q),
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defined over an algebraically closed field k, is the convex hull of the couple of
facets (FP , FQ) of the building of Gk (cf. §12.7). By definition, the sections
of the subscheme Conf F ixτ ⊂ ConfGStand(τ)

are the configurations contained
in F ixτ . Write

Conf mF ixτ = Conf F ixτ ∩ ConfmGStand(τ)(
resp. Conf mF ixτ (τ) = Conf F ixτ ∩ ConfmGStand(τ)

(τ)
)
,

and

ConfmF ix τ

(
τ , (P̃ , Q̃)τ

)
= ConfF ixτ ∩ ConfmGStand(τ)

(τ ) ∩ E−1((P̃ , Q̃)τ ).

Where E = (E1, E2) denotes the extremities morphism. From this definition a
canonical embedding of Stand(τ)-schemes results immediately

ConfmF ix τ

(
τ , (P̃ , Q̃)τ

)
⊂ ConfmGStand(τ)

(τ) = ConfmG (τ)×S Stand(τ)

Following the pattern of the proof of the isomorphism

F ix τ ×Stand(τ) S
′ ' F ix(P,Q),

where (P,Q) is a section of Stand(τ) over the S-scheme S′, i.e. (P,Q) is a
couple of parabolics of GS′ in standard position, with

t2(P,Q) = τS′ (cf. Proposition 12.38),

one obtains the following

Proposition 14.1
With the above notation there is a natural isomorphism

ConfmFix τ

(
τ , (P̃ , Q̃)τ

)
×Stand(τ) S

′ ' ConfmFix (P,Q)
(τ , (P,Q)).

Corollary 14.2 (The universal property of ConfmFix τ

(
τ , (P̃ , Q̃)τ

)
)

Let (P,Q) be a section of Stand(τ) over S′. The set of minimal con-
figurations σC over (P,Q) corresponds naturally to the set of sections of
ConfmFix τ

(
τ , (P̃ , Q̃)τ

)
, over the section τ(P,Q) of Stand(τ) defined by (P,Q),

i.e. ConfmFix(P,Q)(τ , (P,Q)) is given by the fiber product defined by the couple
(E , σ(P,Q)).
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14.2 The Canonical section of a Minimal Galleries of Types
Configurations Scheme

There are natural morphisms

E × tΓ
m

1 : ConfmG −→ Par(G)×S Par(G)×S Γm(∆(G))(
resp. E × (δ2 ◦ tΓ

m

1 ) : ConfmG −→ Par(G)×S Par(G)×S RelposG
)
.

Definition 14.3
Let τ be a section of RelposG over S. Observe that

Γm(∆(G)τ )Stand(τ) = Stand(τ)×Sδ−1
2 (τ) ⊂ Par(G)×SPar(G)×SΓm(∆(G)) .

Write

ConfmG (τ)′ =
(
E × tΓ

m

1

)−1 (
Stand(τ)×S δ−1

2 (τ)
)
⊂ ConfmG (τ),

and denote by(
E × tΓ

m

1

)′
: ConfmG (τ)′ −→ Stand(τ)×S δ−1

2 (τ),

the morphism induced by E × tΓm1 .

Observe that the sections of ConfmG (τ)′ over S′ → S are the galleries config-
urations γ with associated gallery of types tΓ

m

1 (γ) = g satisfying δ2(g) = τ ,
and extremities E(γ) = (P,Q) such that (P,Q) is in standard position with
type of relative position equal to τ . Thus ConfmG (τ)′ is naturally a Stand(τ)-
scheme. In fact it will be seen that ConfmG (τ)′ is a canonical open subscheme
relatively schematically dense in ConfmG (τ) and that the morphism

ConfmG (τ)′ ' Stand(τ)×S δ−1
2 (τ)

is in fact an isomorphism. Thus the above definition is a functorial description
of ConfmG (τ)′, i.e. a characterization of the sections of ConfmG (τ) which are in
fact sections of ConfmG (τ)′. Observe that E and tΓ

m

1 are G-equivariant mor-
phisms. The next aim is the construction of a canonical section of

(
E × tΓm1

)′
.

One can look at ConfmF ix τ (τ , (P̃ , Q̃)τ ) as an S-scheme. A section of

ConfmF ixτ

(
τ , (P̃ , Q̃)τ

)
on the S-scheme S′ is given by a couple

((P,Q), σC ) ,

formed by a section (P,Q) of Stand(τ) over S′, and a Minimal Gallery Con-
figuration σC given by (P,Q) (cf. Proposition 14.1) and contained in the
fiber

(
F ix τ

)
(P,Q)

= F ix(P,Q). Thus there is an inclusion of S-functors
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ConfmF ix τ

(
τ , (P̃ , Q̃)τ

)
⊂ ConfmG (τ)′, which is an isomorphism.

On the other hand there is a natural morphism of Stand(τ)-schemes induced
by the restriction of

(
E × tΓm1

)′
:

ConfmF ix τ

(
τ , (P̃ , Q̃)τ

)
−→ (Γm(∆(G))τ )Stand(τ) = Stand(τ)×S δ−1

2 (τ)

defined by
σC 7→

(
tΓ
m

1

)
Stand(τ)

(σC ).

It may be seen that it is an isomorphism. One proceeds locally in S. Assume
that G is endowed with a frame E. With the notations of the proof of 12.36
the group GStand(τ) is thus endowed with a frame Ẽ over the open subscheme
given by the open set of the big cell covering, Ut,R+

×S U(C ′, Fτ,C′), adapted
to the tautological couple (P̃ , Q̃)τ . The maximal torus T̃ given by Ẽ is related
to the maximal torus T of E as follows.

Let (y, x) be a section of U = Ut,R+×S U(C ′, Fτ,C′). By definition of Pτ,C′
one has, with the obvious notation,

T ⊂ (Pt,R+
, Pτ,C′) ,

where T is the maximal torus defined by E, and thus

T̃ = int(yx)(T ) ⊂
(
int(y)(Pt,R+

), int(yx)(Pτ,C′)
)
,

i.e.
T̃ = int(yx)(T ) ⊂ P̃ ∩ Q̃ .

Write A = AẼ . Assume that there exists τ ∈ Relpos A with τ = τ(F, F ′)
and τ = τU , where F ∈ A (resp. F ′ ∈ A) denote the parabolic set of roots
corresponding to Pt,R+

(resp. Pτ,C′), i.e. PF = Pt,R+
(resp. PF ′ = Pτ,C′).

Let the isomorphism Env(F, F ′)U ' (Fixτ )U be made explicit. Let F ′′ ∈
Env(F, F ′), then

F ′′U 7→ int(yx)(PF ′′) .

Similarly the following isomorphisms is established. One has

δ2 = (τ•)U ,

where τ• : gallmA → RelposA is defined as in Definition 9.20. Thus

δ−1
2 (τU ) = τ−1

• (τ)U = gallmA (τ)U ,

and
gallmA (τ)U ' (Γm(∆(G))τ )U .

Write
GallmA (τ) = (τ• ◦ typ g)−1(τ) = (typ g)−1(gallmA (τ))(
resp. GallmEnv(F,F ′)(τ) = GallmA (τ) ∩Gall Env(F,F ′)

)
.

One has:
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1. GallmEnv(F,F ′)(τ)∩E−1((F, F ′)) = GallmA (τ)∩E−1((F, F ′)), since a Min-
imal Generalized Gallery γ satisfying E(γ) = (F, F ′) and τ = τ(F, F ′)
is contained in Env(F, F ′);

2.
(
GallmEnv(F,F ′)(τ) ∩ E−1((F, F ′))

)
U
' ConfmF ix(P,Q)(τU , (P̃ , Q̃)τU ).

Observe that GallmEnv(F,F ′)(τ)∩E−1((F, F ′)) is the set of Minimal Generalized
Galleries γ of A contained in Env(F, F ′), so that E(γ) = (F, F ′), and g =
typ g(γ) verifies τg = τ . The morphism (tΓ

m

1 )U corresponds to the mapping

GallmEnv(F,F ′)(τ) ∩ E−1((F, F ′)) −→ gallmA (τ),

given by γ 7→ typ g γ. By proposition (3.22), given (F, F ′) ∈ (A × A)τ , so
that τ(F, F ′) = τ , and g ∈ gallmA (τ), a minimal gallery of types, there exists
a unique Minimal Generalized Gallery γg(F, F ′) so that

typg γg(F, F ′) = g (resp. E(γg(F, F
′)) = (F, F ′)) .

It follows that the above mapping is bijective, and thus that tΓ
m

1 induces an
isomorphism. It has thus been proved the

Proposition 14.4
The natural morphism

ConfmFix τ (τ , (P̃ , Q̃)τ ) −→ Stand(τ)×S δ−1
2 (τ) = (Γm(∆(G))τ )Stand(τ)

defined above is an isomorphism of Stand(τ)-schemes which is G equivariant
when it is supposed that δ−1

2 (τ) is endowed with the trivial action of G.

Definition 14.5
There is an S-scheme monomorphism

1) Denote by

Θτ : (Γm(∆(G))τ )Stand(τ) −→ ConfmG (τ)′,

the composed morphism given by

(Γm(∆(G))τ )Stand(τ) −→ ConfmFixτ

(
τ , (P̃ , Q̃)τ

)
(cf. Corollary 14.4)

followed by the morphism

ConfmFixτ

(
τ , (P̃ , Q̃)τ

)
' ConfmG (τ)′

(The τ-Canonical Section).
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2) Let g be a section of (Γm(∆(G))τ )Stand(τ) over Stand(τ). Denote by

ξg : Stand(τ) −→ (Γm(∆(G))τ )Stand(τ)

the corresponding morphism. Define

Θg : Stand(τ) −→ ConfmG (g)
(
= ConfG(g)

)
,

as the composed morphism Θg = Θτ ◦ ξg (The g-Canonical Section).

Remark that the morphism Θτ satisfies(
E ◦Θτ

) (
((P,Q), g)

)
= (P,Q)

(
resp.

(
tΓ1 ◦Θτ

) (
((P,Q), g)

)
= g
)
,

i.e. Θτ is a Stand(τ)-morphism. Thus Θg defines a section of ConfmG (g)′

over Stand(τ).
There is a natural G-invariant S-morphism

ConfmG (τ) −→ Par(G)×S Par(G)×S δ−1
2 (τ),

induced by E × tΓm1 . Denote by
(
E × tΓm1

)′
its restriction to ConfmG (τ)′ and

remark that ConfmG (τ)′ is G-invariant. From the above equalities it follows
the

Proposition 14.6
The morphism

Θτ : Stand(τ)×S δ−1
2 (τ) −→ ConfmG (τ)′ ,

defines a G-equivariant section of the G-equivariant morphism
(
E × tΓm1

)′
.

The next aim is to prove that:

1. Θτ is an open embedding;

2. The open subscheme UΘτ ⊂ ConfmG (τ) defined by Θτ , i.e. the image of
Θτ , is relatively schematically dense;

3. UΘτ = ConfmG (τ)′. Observe that ConfmG (τ)′ is the reciprocal image
of Stand(τ) by the extremities morphism ConfmG (τ) −→ Par(G) ×S
Par(G).

The proof of these facts is founded on an isomorphism of this Configu-
rations scheme with a Contracted Product and on the induced Cell De-
composition.
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14.2.1 Local Description of a Canonical Section

The following local description of the section Θτ is given. Let it be supposed
that G is endowed with a frame E. Write A = AE for the apartment defined
by R(E). Let τ ∈ Relpos A, with τ = τ , and (t, s) ∈ typA × typA the
corresponding couple of types defined by τ . With the notation of Definition
9.20 recall the following canonical isomorphisms:

τ−1
• (τ)S = gallmA (τ)S ' δ−1

2 (τS),

and
Stand(τS)×S δ−1

2 (τS)) '
∐

g∈τ−1
• (τ)

Stand(τS)(g),

where the second member denotes the disjoint union of set of copies of
Stand(τS),

(
Stand(τS)(g)

)
g∈τ−1
• (τ)

indexed by τ−1
• (τ). On the other hand,

there are isomorphisms

ConfmG (τS)′ '
∐

g∈τ−1
• (g)

ConfmG (gS)′(
resp. ConfmG (τS) '

∐
g∈τ−1
• (τ)

ConfmG (gS)

)
.

Accordingly the morphism ΘτS (resp. ΘτS ) splits as

ΘτS =
∐

g∈τ−1
• (τ)

ΘgS

(
resp. ΘτS =

∐
g∈τ−1
• (τ)

ΘgS

)
.

Where ΘτS (resp. ΘgS ) is obtained by composing ΘτS (resp. ΘgS ) with the
corresponding inclusion morphism.

Let t = e1(g) i.e. t = the first type of g. One has that ΘgS may be seen
as a Par t(G)-morphism, i.e. there is a commutative diagram

ΘgS : Stand(τS) //

prP,τS &&

ConfmG (gS)

E1,gSxx
Par t(G)

where E1,gS is the restriction of E1 to ConfmG (gS), and prP,τS the morphism
induced by the first projection.

Remark 14.7
It follows from the proof of 14.4 that ΘgS associates with a couple of parabol-
ics (P,Q) = (PF , PF ′), containing a maximal torus T , with type of relative
position given by τ the Minimal Gallery Configuration σC ,g = γg(F, F

′)S with
extremities E(σC ,g) = (P,Q). Where γg(F, F ′) is the unique mgg in R(E) de-
fined by a couple of facets (F, F ′) with type of relative position τ and τ•(g) = τ .
On the other hand, the morphism ΘgS is G-invariant. Thus ΘgS is completely
determined by the image of a couple (P,Q).
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14.2.2 Restriction of a Canonical Section to the Big Cell Covering

Assume again that G is endowed with a frame E = (T,M,R,R0, (Xα)α∈R0)
(cf. Proposition 11.12). Let R = (M,M∗, R,R∨, R0) be the corresponding
Z-system of roots, and R+ = (NR0) ∩R the system of positive roots defined
by R0. Denote by AE the apartment building defined by R. Let C = CR+

be
the chamber of A = AE corresponding to the positive roots system R+. Write
Ft = Ft(C) for the facet of type t incident to C. Remark that PFt = Pt,R+ .
For the sake of briefness write g, τ , τC ,· · · , for the constant sections gS , τS ,
(τC )S ,· · · , if no confusion arises. Let one write τ in this section instead of
τS and g ∈ gallmA, such that τ•(g) = τg = τ , instead of gS . Suppose τ
corresponds to (t, s) ∈ typ AE × typ AE . By Proposition 12.20, 2., there is
the big cell open covering of the Universal Cell Stand(τ)

Stand(τ) =
⋃

R+∈Fram(R)

σ
(τ)
R+

(
Ω t,R+ ×S Stand(τ, Pt,R+)

)
=

⋃
(R+,C′)∈Iτ (R)

σ
(τ)
R+,C′

(
Ut,R+ ×S U(C ′, Fτ,C′)

)
.

The morphism
E1,g : ConfmG (g) → Par t(G),

defines a locally trivial fibration, with typical fiber ConfmG (g, Pt,R+
). It is

trivialized by the big cell open covering (Ω t,R+
)R+∈Fram(R) of Par t(G). There

are isomorphisms of Ω t,R+
-schemes:

ζ
(g)
R+

: Ω t,R+
×S ConfmG (g, Pt,R+

) → ConfmG (g)Ω t,R+
,

defined by

ζ
(g)
R+

:
(
y, σC (Pt,R+

)
)
7→
(
int(y)(Pt,R+

), int(y)
(
σC (Pt,R+

)
))
,

where y is a section of Ut,R+ ' Ω t,R+ and σC (Pt,R+) denotes a configuration
of type g, issued from Pt,R+

.

Let
Θg,Pt,R+

: Stand(τ, Pt,R+) → ConfmG (g, Pt,R+),

denote the fiber of the morphism Θg over the section of Par t(G), de-
fined by the parabolic Pt,R+

⊂ G (resp. (Θg)Ω t,R+
: Stand(τ)Ω t,R+

→
ConfmG (g)Ω t,R+

, the morphism induced by Θg over the open set Ω t,R+
⊂

Par t(G)). The G-equivariance (cf. Proposition 14.6) of Θg implies the com-
mutativity of the following diagram:
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1Ω t,R+
×S Θg,Pt,R+

: Ω t,R+
×S Stand(τ, Pt,R+

) //

σ
(τ)
R+

��

Ω t,R+
×S ConfmG (g, Pt,R+

)

ζ
(τ)
R+

��
(Θg)Ω t,R+

: Stand(τ)Ω t,R+

// Confm (g)Ω t,R+
.

,

which establishes the “compatibility” of the above trivializations.
Let the composed morphism be made explicit:

Θg,Pt,R+
◦ σ(τ,C′) : U(C ′, Fτ,C′) → ConfmG (g, Pt,R+

).(
There is the following relation between σ(τ,C′) and σ(τ)

R+,C′
:

σ(τ,C′) = σ
(τ)
R+,C′

◦ jU(C′,Fτ,C′ )
,

where jU(C′,Fτ,C′ )
: U(C ′, Fτ,C′)→ Ut,R+

×S U(C ′, Fτ,C′) is the closed embed-
ding defined as jU(C′,Fτ,C′ )

= 1Ut,R+
×S IdU(C′,Fτ,C′ )

.
)

Recall that with the notation of Lemma 12.16 there is an isomorphism of
S-schemes:

σ(τ,C′) : U(C ′, Fτ,C′) →̃ Stand(τC′ , BC′) ⊂ Stand(τ, Pt,R+
)

which is a parametrization of the big cell Stand(τC′ , BC′) of Stand(τ, Pt,R+
)

defined by BC′ .
Remark that from Proposition 12.17 it results that the set of restrictions(

Θg,Pt,R+
◦ σ(τ,C′)

)
C′∈Ch StFt(R+)

gives a complete description of the section Θg,Pt,R+
. Thus one proceeds to de-

scribe Θg,Pt,R+
◦σ(τ,C′). Let F, F ′ ∈ A such that Pt,R+

= PF , and F ′ = Fτ,C′ .

As in Proposition 9.38, denote by γg(F, F ′) ∈ GallmA the minimal generalized
gallery of type g, with τg = τ(F, F ′). With the notation of Definition 9.16
let γg(C ′;F, F ′) be the Generalized Gallery obtained from γg(F, F

′) by com-
position with C ′ ⊃ F . In fact γg(C ′;F, F ) is minimal between the chamber
C ′ and the facet F ′, by definition of Minimal Generalized Gallery, as C ′ is
at maximal distance from F ′. To the closed set of roots in RC′ whose walls
separate C ′ and F ′: R(C ′, F ′) = R+(C ′, F ′) = {α ∈ RC′ |Hα ∈ H(C ′, F ′)} ,
corresponds the subgroup U(C ′, Fτ,C′) ⊂ BC′ , parametrizing Stand(τC′ , BC′)
(= the BC′ -cell contained and open in Stand(τ, Pt,R+

)). Let σC (γg(F, F
′))

denote the section of ConfmG (g, Pt,R+) obtained by replacing a facet F of
γg(F, F

′) by the corresponding parabolic PF , and thus the couple (F, F ′)
by (PF , PF ′). Observe that σC (γg(F, F

′)) is a Minimal Gallery Configura-
tion, since γg(F, F ′) is a Minimal Gallery, i.e. σC (γg(F, F

′)) is a section of
ConfmG (g, Pt,R+)′ = ConfmG (g)′ ∩ ConfmG (g, Pt,R+).
From the G-equivariance of Θg (cf. Remark 14.7) one obtains the following
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Proposition 14.8
The morphism

Θg ◦ σ(τ)
R+,C′

: Ut,R+
× U(C ′, Fτ,C′) → ConfmG (g)Ω t,R+(

resp. Θg,Pt,R+
◦ σ(τ,C′) : U(C ′, Fτ,C′) → ConfmG (g, Pt,R+)

)
is given by

Θg ◦ σ(τ)
R+,C′

: (y, x) 7→
(
int(y)(Pt,R+

), int(y) (int(x)(σC (γg(F, F
′))))

)
(
resp. Θg,Pt,R+

◦ σ(τ,C′) : x 7→ int(x) (σC (γg(F, F
′)))
)
.

14.3 Block decomposition of a Bruhat Cell parametrizing
subgroup by a minimal gallery of types

Keep the above hypothesis on G and notations. For the sake of briefness
write g, τ , τC ,· · · , for the constant sections gS , τS , (τC )S ,· · · , if no confusion
arises. In this section and the following one makes the morphism (resp. the
section) Θg,Pt,R+

explicit, over the open subscheme of the Big cell covering,
corresponding to Ut,R+

×S U(C ′, Fτ,C′), by means of a product decomposition
of the parametrizing subgroup U(C ′, Fτ,C′) of Stand(τC′ , BC′),

∏
U(wi) '

Stand(τC′ , BC′). This decomposition is given by a minimal gallery of types
g, namely m(g,C′) :

∏
U(Ci, Fi−1) ' U(C ′, Fτ,C′), where the U(Ci, Fi−1)

are subgroups of BC′ defined by g (see below), and m(g,C′) is given by the
multiplication in BC′ . In fact one obtains two representations of Θg,Pt,R+

, one
in terms of the minimal gallery γg(C ′;F, F ′) of AE , and the other in terms of

σg(C
′) : (Psi(C

′))(r > i > 0),
(
Ptj (C

′)
)

(r + 1 > j > 1),

where
g : (si)(r > i > 0), (tj) (r + 1 > j > 1),

the basical configuration defined by (g, C ′). Observe that by definition
σg(C

′) is contained in the simplex subcomplex ∆(C ′) defined by C ′.
With the aim of simplifying notation assume that g = g1, with l(g) = r + 1.
One may thus write:

γg(F, F
′) : (Fi)(r > i > 0), (F ′j)(r + 1 > j > 1).

One associates with the Minimal Generalized Gallery γg(C ′;F, F ′) a decom-
position of R+(C ′, F ′) as a disjoint union of closed systems of roots. Namely

R+(C ′, Fτ,C′) =
∐

R+(Ci, Fi+1) (r + 1 > i > 1),
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where
R+(Ci, Fi−1) = {α ∈ RCi |Hα ∈ H(Ci, Fi−1)} .

Recall that by Definition 9.6 one has

H(C ′, F ′) =
∐
H(Ci, Fi−1),

from which the above equality follows. Let

U(Ci, Fi−1) ⊂ BC′ ,

be the subgroup defined by the closed set of roots R+(Ci, Fi−1).

Definition 14.9
From the above equality one obtains an isomorphism of S-schemes

m(g,C′) :
∏
U(Ci, Fi−1) → U(C ′, Fτ,C′),

induced by the multiplication of G. It is called the block decomposition of
U(C ′, Fτ,C′) defined by the Minimal Generalized Gallery of types g and
the chamber C ′.

The isomorphism m(g,C′) gives rise to another isomorphism which is
described now. The sequence of chambers constructed is (Ck) (r+ 1 > k > 0)
as in §9.2, b). With this sequence of chambers is associated a S (C ′)-reduced
expression of w(C ′, projF ′C ′) (F ′ = Fτ,C′), namely

w(C ′, projF ′C
′) = wr+1 · wr · · ·w1,

where the (wi) (r + 1 > i > 1) are defined as follows. Let

ui = w(Ci, Ci+1) (r + 1 > i > 1),

and
vi =

∏
uα (r + 1 > α > 1)

(resp. vr+2 = 1). Then
wi = v−1

i+1 ui vi+1.

Then one has the equality, as is easy to see (otherwise cf. §9.2, b) being
aware that what is called wi (resp. ui) here, is called ui (resp. wi)) there:

wr+1 · wr · · ·w1 = u1 · · ·ur ur+1

(resp. wr+1 wr · · ·wi = ui · · ·ur wr+1) .

Let it be written

si = si(g) (r > i > 0) (resp. tj = tj(g) (r + 1 > j > 1)) .
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With the notation of §9.2, b). one has

wi = w(ti, si−1).

Given w ∈W is denoted by

U(w) ⊂ BC′ ,

the subgroup defined by the closed system of roots

R+(C ′, w(C ′)) = {α ∈ C ′ | Hα ∈ H(C ′, w(C ′))} .

For each wi ∈ W a representative in N(T ) may be chosen. Denote this
representative also by wi and define vi+1 in terms of these wi’s as above.

From Lemma 10.28 it is deduced

U(Ci, Fi−1) = vi+1 U(wi)v
−1
i+1.

In fact the proof of this equality runs accordingly Lemma 10.28, taking on
account that

wtri = wi.

Thus there is an isomorphism of S-schemes∏
U(wi) →

∏
U(Ci, Fi−1),

defined by
(xi) 7→ (int(vi+1)(xi)) .

This isomorphism composed with m(g,C′) gives rise to an isomorphism of S-
schemes

m(g,C′) :
∏
U(wi) → U(C ′, Fτ,C′).

Let
σ(g,C′) :

∏
U(wi) → Stand(τC′ , BC′),

be the composition
σ(g,C′) = σ(τ,C′) ◦m(g,C′).

Clearly σ(g,C′) is an isomorphism of S-schemes. By definition of σ(g,C′) one
obtains:

Proposition 14.10
There is a commutative diagram

σ(g,C′) :
∏
U(wi) //

m(g,C′) ''

Stand(τC′ , BC′)

U(C ′, Fτ,C′)

σ(τ,C′)

OO
.
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Let σ(g,C′) be made explicit. From

v1 = wr+1 · · ·w1 = w(C ′, projFτ,C′C
′),

it is deduced that
v1(Fs(C

′)) = Fτ,C′ .

Finally one obtains
int(v1)(PFs(C′)) = Pτ,C′ .

On the other hand, by an easy calculation one obtains∏
vi+1 xi v

−1
i+1 (r + 1 > i > 1) =

(∏
xi wi

)
v−1

1 (r + 1 > i > 1),

where x = (xi) denotes a section of
∏
U(wi). Thus

int
(∏

vi+1 xi v
−1
i+1

)
(Pτ,C′) = int

(∏
xi wi

)
int(v−1

1 )
(
int(v1)(PFs(C′))

)
= int(

∏
xi wi)(PFs(C′)),

i.e.
σ(g,C′)(x) = int(

∏
xi wi)(PFs(C′)) ,

thus it is known to which section of Stand(τC′ , BC′) the section (xi) of the
product

∏
U(wi) corresponds by the isomorphism σ(g,C′).

Next one looks at the composition of Θg,Pt,R+
with

σ(g,C′) :
∏
U(Ci, Fi−1) → Stand(τC′ , BC′) ,

where σ(g,C′) = σ(τ,C′)◦m(g,C′). The following proposition describes Θg,Pt,R+
◦

σ(g,C′) in terms of the block decomposition of U(C ′, F ′) defined by the minimal
gallery of types g. The description of

Θg,Pt,R+
◦ σ(τ,C′) : x 7→ int(x) (σC (γg(F, F

′))) ,

as required in proposition 14.8, follows from that one.

Proposition 14.11
Write

γg(F, F
′) : (Fi) (r > i > 0), (F ′j) (r + 1 > j > 1).

Let (yi) be a section of
∏
U(Ci, Fi−1) (r + 1 > i > 1). Then

int

 ∏
r+1>i>1

yi

 (PFα) = int

 ∏
r+1>i>α+1

yi

 (PFα) (r > α > 0).
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Proof Let

γ(α)
g (C ′;F, F ′) : (Fi) (r + 1 > i > α), (F ′j) (r + 1 > j > α+ 1),

with Fr+1 = C ′ be the α-truncated gallery of γg(C ′;F, F ′). As γ
(α)
g (C ′;F, F ′)

is a MGG, it is

R+(C ′, Fα) =
∐

R+(Ci, Fi−1) (r + 1 > i > α+ 1).

On the other hand, the following equality holds:

R+(C ′, Fα) =
∐

R+(Ci, Fi−1)
∐

RC′ ∩RFα .

It is deduced that∐
R+(Ci, Fi−1)(α > i > 1) ⊂ RC′ ∩RFα .

This gives
α > i > 1 ⇒ U(Ci, Fi−1) ⊂ PFα ,

and the image of ∏
U(Ci, Fi−1) (α > i > 1),

in BC′ is contained in PFα . It is concluded that
∏

α>i>1

yi is a section of PFα .

This suffices to prove the assertion.

Write:

τ trC = (τ(Ci, Fi−1)) ∈
∏

Relpos ti(g)si−1(g) (r + 1 > i > 1).

The couple of facets (Ci, Fi−1) is a couple of transversal facets in StF ′i .
Denote by

σg(C
′) : (Psi(C

′))(r > i > 0),
(
Ptj (C

′)
)

(r + 1 > j > 1),

the basical configuration defined by C ′. Observe that by definition σg(C ′)
is contained in the simplex subcomplex ∆(C ′) defined by C ′.

One associates with the section x = (xi) of
∏
U(wi), the following config-

uration:

σg(x,C
′) :

int(
∏

r+1>β>i+1

xβ wβ)(Psi(C
′))

 (r > i > 0),

int(
∏

r+1>β>j+1

xβ wβ)(Ptj (C
′))

 (r + 1 > j > 0),
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where it is written ∏
r+1>β>j+1

xβ wβ = 1

if j = r + 1, and

Psi(C
′) = PFsi (C′)

(
resp. Ptj (C

′) = PFtj (C′)

)
.

The next proposition gives a description of Θg,Pt,R+
◦ σ(τ,C′) in terms of

the basical configuration σg(C ′) instead of γg(C ′;F, F ′).

Proposition 14.12
The following diagram

λ[τtrC ,C′] :
∏
U(wi) //

m(g,C′) ''

ConfmG (g, Pt,R+)

∏
U(C ′, Fτ,C′)

Θg,Pt,R+
◦σ(τ,C′)

OO
,

where λ[τtrC ,C′] is defined by

λ[τtrC ,C′] : x 7→ σg(x,C
′),

is commutative. Observe that λ[τtrC ,C′] = Θg,Pt,R+
◦ σ(g,C′).

Proof Results easily from the two preceding Propositions.

14.4 The schematic image of the Canonical Section

Keep the notation of the preceding section. Recall that Ω t,R+
⊂ Part(G) is

obtained as the image of the Big Cell Ω t,R+
⊂ G/Pt,R+

, by the isomorphism
G/Pt,R+ −→ Part(G) defined by x 7→ int(x)(Pt,R+). On the other hand there
is an isomorphism Ut,R+

' Ω t,R+
defined by x 7→ int(x)(Pt,R+

), where Ut,R+

is the subgroup generated by the vector subgroups corresponding to the roots
α ∈ −(R+ − RFt), where Ft = Ft(C) (thus PFt = Pt,R+

), and C = CR+

is the chamber given by R. In fact Ω t,R+ is the Big Cell defined by the
Borel subgroup Bopp opposed to B = BC , i.e. given by −R+, and there is
Ut,R+

= U(Copp, Ft) ⊂ Bopp. On the other hand the morphism Stand(τ) −→
Part(G), induced by the first projection, gives a locally trivial “family” of
Schubert Cells, (Stand(τ, P )) indexed by the sections of Part(G). There
is an Ω t,R+ -isomorphism σ

(τ)
R+

: Ω t,R+ ×S Stand(τ, Pt) −→ Stand(τ)Ω t,R+

associating with the couple (P, (Pt, Q)), formed by a parabolic P section of
Ω t,R+ , and a section (Pt, Q) of the fiber of Stand(τ)Ω t,R+

over the center
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of Ω t,R+ , the couple (P, int(x)(Q) = (int(x)(Pt), int(x)(Q)), where x is the
section of Ut,R+

corresponding to P .
The open covering

Stand(τ) =
⋃

R+∈Fram(R)

Stand(τ)Ω t,R+
=

⋃
R+∈Fram(R)

σ
(τ)
R+

(
Ω t,R+

×S Stand(τ, Pt,R+
)
)

may be refined as follows. Recall that there is an open covering

Stand(τ, Pt,R+) =
⋃

C′∈Ch StFt

Stand(τC′ , BC′) ,

and isomorphisms U(C ′, Fτ,C′) →̃ Stand (τC′ , BC′) , defined by x 7→
int(x)(Pτ,C′), where Pτ,C′ corresponds to Fτ,C′ . Thus one has

Stand(τ) =
⋃

(R+,C′)∈Iτ (R)

Ω t,R+
×S Stand(τC′ , BC′)

⋃
(R+,C′)∈Iτ (R)

σ
(τ)
R+,C′

(
Ut,R+

×S U(C ′, Fτ,C′)
)
.

Remark that Ω t,R+
×S Stand(τC′ , BC′) is affine if S is affine.

There is a commutative diagram

λ[τtrC ,C′] = Θg,Pt,R+
◦ σ(g,C′) :

∏
U(wi) //

''

ConfmG (g, Pt,R+)

∏
U(wi)wi

j[τtr
C
,E]◦λ[τtr

C
,E]

OO
,

where
j[τtrC ,E] : Conf stdG (τ trC , BC′) ↪→ Conf G(g, Pt,R+),

denotes the embedding of the open cell defined by BC′ , and

λ[τtrC ,E] :
∏
U(wmi )wmi →̃ Conf stdG (τ trC , BC′)

denotes the isomorphism of the τ trC -representatives scheme with the cell
Conf stdG (τ trC , BC′). The sequence wmτtrC

= (wmi ) is associated with the gallery
of types of relative positions τ trC . This gallery is determined by γg(C;F, F ′).

The proof of the following properties of the canonical section Θg,Pt,R+
are

based on the representation of Conf G(g, Pt,R+) as a contracted product
along the generalized minimal gallery of types g,

ΠG [g,E] ' Conf G(g, Pt,R+) ,
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given in the next chapter. There is a commutative diagram

∏
U(wmi )wmi

⊂
q[τtr

C
,E] - ΠG [g,E]

Conf stdG (τ trC , BC′)

λ[τtr
C
,E]

?
⊂
j[τtr

C
,E]- Conf G(g, Pt,R+

) .

λ[g,E]

?

The morphism q[τtrC ,E] defines an open embedding and its image is a relatively
schematically dense subscheme of ΠG [g,E] (cf. §15.3). As the vertical arrows
are isomorphism the following proposition results easily.

Proposition 14.13 The image of j[τtrC ,E] is an open relatively schematically
dense subscheme of ConfG(g, Pt,R+). Thus Θg,Pt,R+

is an open embedding
relatively schematically dominant.

On the other hand, there are, a natural isomorphism ConfmG (g′, BC′) '
ConfmG (g, Pt,R+

), a relation between the corresponding canonical sections:

Θg,Pt,R+
|Stand(τC′ ,BC′ )

= Θg′,BC′ ,

where g′ denotes the gallery of types defined by γg(C;F, F ′), and

(π(g,P ))
−1(Stand(τ, Pt,R+

)) =
⋃

C′∈Ch StFt

(π(g′,BC′ )
)−1(Stand(τC′ , BC′)) .

Where π(g′,BC′ )
(resp. π(g,Pt,R+

)) is the restriction of E2 to
ConfmG (g′, BC′) (resp. ConfmG (g, Pt,R+)).

In the next chapter it will be proved that

ConfmG (g′, BC′)
′ = (π(g′,BC′ )

)−1(Stand(τC′ , BC′)) = Im Θg′,BC′ .

(Given C ∈ StFt write B = BC). There is a Cellular Decomposition
associated with a Borel subgroup B contained in Pt,R+

(cf. Proposition 14.26):

ConfmG (g, Pt,R+) =
∐

τC∈Relpos gall(g)

Conf stdG (τC , B)

The set Relpos gall(g) denotes the galleries of types of relative position of AE
whose associated gallery of types is g. The Open Cell, which is relatively
schematically dense, is indexed by the gallery τ trC of types of “transversal”
relative positions and satisfies the equalities

Conf stdG (τ trC , B) = ConfmG (g′, B)′ = Im Θg′,B .
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Remark that the proof of these equalities, given in the next section, follows
from the above Cellular Decomposition.
It is deduced that

(π(g,P ))
−1(Stand(τ, Pt,R+)) = Im Θg,Pt,R+

,

and that there is an isomorphism Θg,Pt,R+
: Stand(τS , Pt,R+) '

ConfmG (g, Pt,R+
)′ whose reciprocal isomorphism is πg,Pt,R+

. It is called
ConfmG (g, Pt,R+)′ the Canonical Open Subscheme of ConfmG (g, Pt,R+).
The sections of this subscheme are characterized as those galleries configu-
rations γC with associated gallery of types equal to gS , whose extremities
E(γC ) = (Pt,R+

, Q) are in standard position, and whose type of relative posi-
tion is given by t2(Pt,R+

, Q) = τS = (τg)S .
Thus one obtains the open covering

ConfmG (g, Pt,R+)′ =
⋃

C′∈Ch StFt

(π(g
′, BC′))

−1(Stand(τC′ , BC′)) =

⋃
C′∈Ch StFt

Conf(g′, BC′)
′ ,

which is in fact the image by Θg,Pt,R+
of the Big Cell Open covering of

Stand(τ, Pt,R+
)),

Stand(τ, Pt,R+
) =

⋃
C′∈Ch StFt

Stand(τC′ , BC′) .

Proposition 14.14
Keep the above hypothesis and notation. The morphism Θg,Pt,R+

is an open
embedding whose image is a relatively schematically dense subscheme
ConfmG (g, Pt,R+

)′ of ConfmG (g, Pt,R+
). It induces an isomorphism Θg,Pt,R+

:

Stand(τ, Pt,R+
) ' ConfmG (g, Pt,R+

)′. The image by Θg,Pt,R+
of the Big Cell

open covering of Stand(τ, Pt,R+) gives rise to the open covering

ConfmG (g, Pt,R+
) =

⋃
C′∈Ch StFt

Conf(g′, BC′)
′ .

Corollary 14.15 Let G be a reductive S-group scheme, g a section of
Γm(∆(G)) with associated type of relative position τ = δ2(g), and P
a parabolic subgroup of G. The morphism Θg,P : Stand(τ , Pt,R+

) −→
ConfmG (g, P )′ is an open embedding whose image is a relatively schemat-
ically dense subscheme ConfmG (g, P )′ of ConfmG (g, P ).

It is clear that the proof of the Corollary may be reduced by etale localization
to the case where G is endowed with a frame E. In this case it follows
immediately from proposition 14.14.
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Corollary 14.16 Keep the hypothesis of the above Corollary. The image of
Θτ is the relatively schematically dense open subscheme Im Θτ = ConfmG (τ)′.

This Corollary results from the local description of Θτ .

14.5 Configurations schemes as Schubert schemes Smooth
Resolutions

The following definition characterizes the type of resolution of singularities we
consider in this work.

Definition 14.17
Let Y ⊂ Z be an S-subscheme of a proper S-scheme Z, and Y schc its
schematic closure. We say that a proper S-morphism

f : X → Y schc

is an S-smooth resolution of Y schc, if:

1. X is an S-smooth scheme.

2. There exists a section
Θ : Y → X

of f , defining an open embedding of Y in X, such that Im Θ ⊂ X is a
relatively schematically dense open subscheme of X, satisfying Im Θ =
f−1(Y ).

It follows that f is surjective and its schematic image is equal to Y sch. It
is briefly said that (X, f) is a smooth resolution of Y schc, if no confusion
arises.

It is observed that the morphism f is a birational morphism of schemes
(cf. [24] Ch. 1, 23.4.). The results of this section may be resumed in the
following

Theorem 14.18
Let g ∈ gallm (AE), and τ = τg. The morphism

Eg,Pe1(g)
: ConfmG (g, Pe1(g)) → Stand(τ, Pe1(g))

schc

(
resp. Eg : ConfmG (g) → Stand(τ)schc

)
is an S-smooth resolution of the schematic closure

Stand(τ, Pe1(g))
schc

(
resp. Stand(τ)schc

)
.

Where Eg,Pe1(g)

(
resp. Eg

)
denotes the morphism induced by E2.
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On account of the Cellular Decomposition of ConfmG (g, Pe1(g)) it results,
by §16.3, that schematic image of the morphism

Eg,Pe1(g)
: ConfmG (g, Pe1(g)) −→ Par e2(g)(G)

exists, and it is known that the schematic image of the canonical embed-
ding

j : Stand(τ, Pe1(g)) → Par e2(g)(G),

in view of the Cellular Decomposition of Stand(τ, Pe1(g)), also exists. From
the definition of Θg,P (cf. Proposition 14.6, Definition 12.34) one obtains:

Eg,Pe1(g)
◦Θg,Pe1(g)

= IdStand(τ,Pe1(g)).

From the Proposition 14.12 it results that

Im Θg,Pe1(g)
⊂ ConfmG (g, Pe1(g)),

is a relatively schematically dense open subscheme. By the principle of tran-
sitity of schematic images (cf. Proposition 12.42) applied with

X = Stand(τ, Pe1(g)), Y = ConfmG (g, Pe1(g)), Z = Par s(G)

(resp. X = Stand(τ), Y = ConfmG (g), Z = Par t(G)×S Par s(G)) ,

and with τ = τg,

f = Θg,Pe1(g)
, g = Eg,Pe1(g)

= restriction of E2 to ConfmG (g, Pe1(g))

(resp. f = Θg, g = Eg = fiber of E2 over g) ,

and taking into account that

g ◦ f = 1Stand(τ,Pe1(g)) (resp. 1Stand(τ)),

it is deduced:

Proposition 14.19
Let τ = τg. The schematic image of Eg,Pe1(g)

(resp. Eg) is equal to the
schematic closure

Stand(τ, Pe1(g))
schc

(
resp. Stand(τ)schc

)
of Stand(τ, Pe1(g)) (resp. Stand(τ)) in Par s(G) (resp. Par t(G)×S Par s(G)
with t = e1(g), s = e2(g)), and thus a factorization is obtained

Eg,Pe1(g)
: ConfmG (g, Pe1(g)) //

Eg,Pe1(g) ''

Stand(τ, Pe1(g))
schc

vv
Par s(G)
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resp. Eg : ConfmG (g) //

Eg ((

Stand(τ)schc

uu
Par t(G)×S Par s(G)


.

The right arrow is the canonical embedding morphism.

Let it be proved that the couple (ConfmG (g, Pe1(g)), Eg,Pe1(g)
) (resp.

(ConfmG (g), Eg)) is a smooth resolution of Stand(τ, Pe1(g))
schc (resp.

Stand(τ)schc). Let one prove:

• Im Θg,Pe1(g)
⊂ ConfmG (g, Pe1(g)) is an open subscheme relatively

schematically dense;

• Im Θg,Pe1(g)
= (Eg,Pe1(g)

)−1(Stand(τ, Pe1(g)).

The first statement results from proposition 14.13. Let one prove the equality
Im Θg,Pe1(g)

= (Eg,Pe1(g)
)−1(Stand(τ, Pe1(g)). Clearly there is an inclusion of

open schemes

Im Θg,Pe1(g)
⊂ (Eg,Pe1(g)

)−1(Stand(τ, Pe1(g))) ,

thus the equality holds if the underlying open sets are equal.
Given an S-scheme X, as usual denote by Xs = X ×S Spec(κ(s)) the

geometric fiber of X over s, and by X(s) the set of sections of X over
Spec(κ(s)). It suffices to prove that for all geometric point s the equality(
Im Θg,Pe1(g)

)
(s)

=
(

(Eg,Pe1(g)
)−1(Stand(τ, Pe1(g))

)
(s)

holds. Let

(
Eg,Pe1(g)

)
(s)

: ConfmG (g, Pe1(g))(s) → Stand(τ, Pe1(g)),

be induced by(
Eg,Pe1(g)

)
s

= geometric fiber of Eg,Pe1(g)
over s.

One may interpret the geometric fiber
(
Eg,Pe1(g)

)−1

(s)

(
Stand(τ, Pe1(g))

)
(s)

in

terms of the building I(Gs) of the geometric fiber Gs of G over s, Gs being a
reductive group over the algebraically closed field κ(s), namely

(
Eg,Pe1(g)

)−1

(s)
(Stand(τ, Pe1(g)))(s) = GallmI(Gs)(g, Fe1(g)(C))′ ,
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where GallmI(Gs)(g, Fe1(g)(C))′ denotes the set of Minimal Generalized Gal-
leries in the building I(Gs) of type g, with τ = τg, issued from Fe1(g)(C).

On the other hand, observe that Im
(

Θg,Pe1(g)

)
(s)

may be interpreted as the

set of Minimal Generalized Galleries γg(Fe1(g)(C), F ′), where F ′ is a facet
satisfying τ(Fe1(g)(C), F ′) = τg.
Let γ ∈ GallmI(Gs)(g, Fe1(g)(C))′. Then γ is a minimal generalized gallery
with extremities (Fe1(g)(C), F ′) such that τ(Fe1(g)(C), F ′) = τg and of
type g. Recall that there is only one Minimal Generalized Gallery satisfy-
ing these properties, thus γ = γg(Fe1(g)(C), F ′) and Im

(
Θg,Pe1(g)

)
(s)

=(
(Eg,Pe1(g)

)−1(Stand(τ, Pe1(g))
)

(s)
. It is concluded that the corresponding

open sets contain the same points with residual field κ(s) and thus that they
are equal Im

(
Θg,Pe1(g)

)
s

=
(

(Eg,Pe1(g)
)−1(Stand(τ, Pe1(g))

)
s
. It has thus

been proved the second statement.
From the above reasoning one obtains the following

Corollary 14.20
The mapping(
Eg,Pe1(g)

)
(s)

:
(
Eg,Pe1(g)

)−1

(Stand(τ, Pe1(g)))(s) → Stand(τ, Pe1(g))(s),

induced by Eg,Pe1(g)
is bijective, and its inverse is given by the mapping(

Θg,Pe1(g)

)
(s)

: Stand(τ, Pe1(g)) →
(
Eg,Pe1(g)

)−1 (
Stand(τ, Pe1(g))

)
(s)
,

induced by the section Θg,Pe1(g)
.

From the corollary immediately one obtains the following

Proposition 14.21
The open embedding

Θg,Pe1(g)
: Stand(τ, Pe1(g)) →

(
Eg,Pe1(g)

)−1 (
Stand(τ, Pe1(g))

)
is a Pe1(g)-equivariant morphism which is in fact an isomorphism, with the
relatively schematically dense open subscheme(

Eg,Pe1(g)

)−1 (
Stand(τ, Pe1(g))

)
⊂ ConfmG (g, Pe1(g)).

The corresponding inverse isomorphism

E ′g,Pe1(g)
:
(
Eg,Pe1(g)

)−1 (
Stand(τ, Pe1(g))

)
→ Stand(τ, Pe1(g)),
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is the morphism induced by

Eg,Pe1(g)
: ConfmG (g, Pe1(g)) → Par s(G),

with s = e2(g).

Let one now consider the corresponding statement with respect to the
couple of morphisms

Θg : Stand(g) → E−1
g (Stand(τ)) ⊂ ConfmG (g)(

resp. Eg : ConfmG (g) → Par e1(g)(G)×S Par e2(g)(G)
)
,

with τ = τg:

• Im Θg ⊂ ConfmG (g) is an open subscheme relatively schematically dense;

• Im Θg = (Eg)−1(Stand(τ)).

There is a commutative diagram:

Ω e1(g),R+
×S ConfmG (g, Pe1(g))

ζ
(τ)
R+ - ConfmG (g)Ω e1(g),R+

Ω e1(g),R+
×S Stand(τ, Pe1(g))

schc

IdΩe1(g),R+

?

×S Eg,Pe1(g)

σ
(τ)
R+- (Stand(τ)schc)Ω e1(g),R+

(Eg)Ω e1(g),R+

?

Observe that σ
(τ)
R+

is the morphism induced by σ
(τ)
R+

. The section
IdΩe1(g),R+

×S Θg,Pe1(g)
corresponds to the section (Θg)Ω e1(g),R+

, i.e. the fol-
lowing diagram commutes

Id
ΩR+

×S Θg,Pe1(g)
: Ω e1(g),R+

×S Stand(τ, Pe1(g)) //

σ
(τ)
R+

��

Ω e1(g),R+
×S ConfmG (g, Pe1(g))

ζ
(τ)
R+

��(
Θg

)
Ω e1(g),R+

: Stand(τ)
Ω e1(g),R+

// ConfmG (g)
Ω e1(g),R+

.

Thus it is deduced that

• The image of Θg is relatively schematically dense if and only if image
of Θg,Pe1(g)

is relatively schematically dense.

• (Θg)Ω e1(g),R+

is an isomorphism, if and only if
Θg,Pe1(g)

is an isomorphism.
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Since (Ω
e1(g)
R+

)R+∈Fram(R(E)) is an open covering of Par e1(g)(G), by Propo-
sition 14.21 one obtains the following result.

Proposition 14.22
The open embedding

Θg : Stand(τ) :−→ (Eg)−1(Stand(τ))

is a G-invariant morphism, which is in fact an isomorphism with the relatively
schematically dense open subscheme

(Eg)−1(Stand(τ)) ⊂ ConfmG (g).

The corresponding inverse isomorphism

E ′g : (Eg)−1(Stand(τ)) → Stand(τ),

being the morphism induced by

Eg : ConfmG (g) → Part(G)× Pars(G),

with s = e2(g).

14.6 The Cellular scheme

Consider a gallery of types section g of Γ(∆(G)) with left extremity e1(g) =
the type of a Borel subgroup of G. It will be seen that there is a canonical
functorial cell decomposition of ConfG(g) indexed by the sections τC of
the scheme RelposgallG (g) of galleries of types of relative positions.
Given two sections τ and τ ′ of the subscheme of relative positions Relpos′G ⊂
RelposG, corresponding to the subscheme Stand(G)′ ⊂ Stand(G), i.e. whose
sections are the types of relative positions of couples of parabolics (B,P ),
with B a Borel subgroup of G (cf. Definition 11.26), let

Stand(τ)×Bor(G) Stand(τ ′) = Stand(τ)×(Proj(τ), prP,τ′)
Stand(τ ′),

denote the fiber product defined by the couple
(
Proj(τ), prP,τ ′

)
, where

Proj(τ) is the projection morphism (cf. Definition 12.39), and prP,τ ′ de-
notes the restriction of prP to Stand(τ ′), induced by the first projection.
For the sake of simplifying notations assume that g = ((si); (tj)) (N ≥ i ≥
0, N ≥ j ≥ 1). Recall that with the notation of §11.11 given a section (s, s′)
of ∆(G)×S ∆(G) one defines:

Relpos (s,s′) = ε−1 ((s, s′)) ⊂ RelposG

and
Relpos t(s,s′) = Relpos (s,s′) ∩ Relpos tG
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If s is the type of a Borel subgroup write Relpos ts′ = Relpos t(s,s′). Define

Standts(G) = (t2)−1
(
Relpos

t
s

)
.

Let τC = (τ i) be a section of RelposgallG (g) = Relpos
tN
sN−1

×S · · · ×S
Relpos

t1
s0 , thus ε(τ i) = (s, si−1), where s is the type of a Borel subgroup.

Write

Conf stdG (τC ) = StandtNsN−1
(τN )×Bor(G) · · · ×Bor(G) Standt1s0(τ1)(

The Cell of ConfG(g) defined by the gallery of relative positions τC

)
.

The sections of this scheme are in fact chamber galleries.

Recall that the incidence morphism Fs,t : Pars(G) −→ Part(G) associates
with a parabolic Q of type s the unique parabolic P of type t ⊂ s with Q ⊂ P
(cf. [23], Exp. XXV I, Lemme 3.8). Write Ft = Fs,t if s is the type of a
Borel subgroup. Consider the family of morphisms

Fτ i = Fti ×
(
Fsi−1

◦ Proj (τ i)
)

: Standtisi−1
(τ i) → Parti(G)×S Parsi−1

(G).

(N > i > 1). Observe that Fsi−1
◦Proj (τ i) is induced by the second projection.

The product morphism

prP,τN ×S
∏
Fτ i : StandtNsN−1

(τN )×Bor(G) · · · ×Bor(G) Standt1s0(τ1) −→

Bor(G)×S
∏ (
Parti(G)×S Parsi−1

(G)
)

(N > i > 1) induces an embedding

jτC
: Conf stdG (τC ) → Conf G(g) .

A section ((Bi, Qi−1)) of Conf stdG (τC ) satisfies BN−1 = ProjτN (BN ), · · · ,
B0 = Projτ1(B1). Write PN = FtN (BN ), · · · , P1 = Ft1(B1). Thus

jτC
: ((Bi, Qi−1)) 7→ ((Qi)N≥i≥0; (Pj)N≥i≥1) .

where QN = BN . A section

γC : ((Qi) (N ≥ i ≥ 0), (Pj) (N ≥ j ≥ 1)),

of ConfG(g) belongs to Im jτC if and only if it verifies the following conditions:
Let BN = QN , then:

1. (BN , QN−1) is a couple in standard position and t2(BN , QN−1) = τN ;

2. for N > i > 1 define Bi = Proj(Bi+1,Qi), then (Bi, Qi−1) is a couple in
standard position and t2(Bi, Qi−1) = τ i.
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The configurations satisfying the above conditions are called standard gal-
leries configurations.
Let

ProjΣ : Σ −→ Par(G)

be the morphism defined as follows: for all sections τ of RelposG the composed
morphism of Stand(τ) ↪→ Σ with ProjΣ is equal to Proj(τ). Denote by

ΣStG = (t2)−1(StG)

the pull-back of the subscheme StG ⊂ RelposG by the morphism t2. The
subscheme StG is defined locally as follows. Suppose that G is endowed with
a frame over the etale covering S′ → S then ( ∪

s⊃t
Relposts)S′ ' S′ ×S StG by

the natural isomorphism.

Definition 14.23
Let

Conf stdG =
∐N,std∏

ΣStG ×Bor(G) ΣStG · · · ×Bor(G) ΣStG

(The Universal Cellular scheme). The symbol
N,std∏

means that only
products along galleries of relative positions are considered. By definition
of Conf stdG there is a canonical morphism

tstd2 : Conf stdG −→ RelposgallG .

such that its restriction

tstd,N2 :

N,std∏
ΣStG ×Bor(G) ΣStG · · · ×Bor(G) ΣStG −→ RelposgallG

is given by

tstd,N2 =

N∏
(t2 ◦ pr1)×S (t2 ◦ pr2) · · · ×S (t2 ◦ prN ) ,

i.e. by tstd2 : ((Bi, Qi−1)) 7→ (t2(Bi, Qi−1)).
Remark that the sections of Conf stdG are chamber galleries, i.e. galleries

of the form g = ((si); (tj)) (N ≥ i ≥ 0, N ≥ j ≥ 1), where the si are the
types of Borel subgroups.

Observe that the above product morphism pr
(τN )
1 ×S

∏
FτiS associates with

a chamber gallery a gallery of type g.
If G is endowed with a frame E one has

Conf stdG =
∐

(τi)∈RelposgallAE

Conf stdG ((τi)S) .
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Notation 14.24
Let Estd : Conf stdG −→ Bor(G) be the morphism associating with a configu-
ration its left extremity, i.e. induced by E1. Write

tstd1 = εgall ◦ tstd2 : Conf stdG → Γ(∆(G)).

Let g (resp. τC , B ⊂ G) be a section of Γ(∆(G))(
resp. Relpos gall

G , a Borel subgroup of G
)
, and ηB the section of Bor(G)

given by B.
Define:

Conf stdG (g) = (tstd1 )−1(g)

(resp. Conf stdG (τC ) = (tstd2 )−1(τC ),

Conf stdG (B) = (Estd)−1(ηB),

Conf stdG (g,B) = (tstd1 × Estd)−1((g, ηB)),

Conf stdG (τC , B) = (tstd2 × Estd)−1((τC , ηB)).

Suppose G endowed with a frame E. Given a section τC ∈ Relpos gall
AE (g)

let
j[τC ,E] : Conf stdG (τC , B) → ConfG(g,B) ,

be the natural embedding induced by jτC . Where B = BC , and C denotes the
chamber of AE given by R(E). Define

j[g,E] :
∐

τC∈Relpos gall(g)

Conf stdG (τC , B) → Conf (g,B)

by
j[g,E] =

∐
τC∈Relpos gall(g)

j[τC ,E] .

If g = g1, g
′
1 (resp. g = g2, g

′
2) one may write

Conf stdG (τC , B) = Stand(τ r+1, B)×Bor(G) Stand(τ r)× · · · ×Bor(G) Stand(τ1)

(
resp. Conf stdG (τC , B) = Stand(τr, B)×Bor(G) Stand(τr−1)× · · · ×Bor(G) Stand(τ1)

)
,

where

τC = (τ i) (r + 1 > i > 1) (resp. τC = (τ i) (r > i > 1)) .

The fiber products are defined in terms of the couples of morphisms(
Proj (τ i),prP,τ i−1

)
(r + 1 > i > 1) (resp. r > i > 1).



350 Buildings and Schubert Schemes

Remark 14.25
Assume that G is endowed with a frame E, and τC ∈ Relpos gallAE (g). One then
has the set of s-points

Conf stdG (τC , B)(s)

of the geometrical fiber Conf stdG (τC , B)(s) is equal to the cell CC(g, τC ) =
(τI,C(g))−1(τC ), as defined in 10.14.

14.7 The Bruhat cell decomposition of the Configurations
Scheme

One proves the following generalization of the Bruhat cell decomposition for
the standard galleries Configurations Scheme.

Proposition 14.26
The morphism

j[g,E] :
∐

τC∈Relpos gall(g)

Conf stdG (τC , B) → Conf (g,B)

is a surjective monomorphism. One calls
∐

τC∈Relpos gall(g)

Conf stdG (τC , B) the

Cellular scheme associated with Conf (g,B).

For the sake of simplifying notations assume that g = ((si); (tj)) (N ≥ i ≥
0, N ≥ j ≥ 1). Write

tj(g) = tj (N ≥ j ≥ 1) (resp. si(g) = si (N ≥ i ≥ 0)) ,

and
Ptj = Ptj (C) (Qsi = Qsi(C)) .

Clearly there is an inclusion ((Qsi); (Ptj )) ⊂ ∆(G). This gallery is called the
basic gallery defined by the gallery of types g.

Given τC ∈ Relpos gall(g), let

τ
(α)
C = (τN , · · · , τα) (N ≥ α ≥ 1) .

Write g(α) = ((si); (tj)) (N ≥ i ≥ α, N ≥ j ≥ α+ 1). One then has

τ
(α+1)
C ∈ Relpos gall(g(α)).

Let P ⊂ G be a parabolic subgroup. Denote by Pars(P ) the functor of
parabolics subgroups of type s of P . Let t, s ∈ typAE , with t ⊂ s, and B be
the Borel subgroup defined by E. From the Bruhat cell decomposition in
double classes of a reductive group G (cf. [23], Exp. XXVI, 4.5.4) results
that ∐

τ∈Relpos tsA

Bwτ Qs/Qs → Pars(Pt)
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is a surjective monomorphism. Given a section σC : ((Qsi); (Ptj )) of
ConfG(g,B), g = ((si); (tj)), write Qsi(σC ) = Qsi and Ptj (σC ) = Ptj . Let it
be proved by induction on N ≥ α ≥ 1 the

Proposition 14.27
For all 1 ≥ α ≥ N the morphism

j[g(α),E] :
∐

τC∈Relpos gall(g(α))

Conf stdG (τC , B) → ConfG(g(α), B),

where one writes:

j[g(α),E] =
∐

τC∈Relpos gall(g(α))

j[τC ,E],

is surjective.

Proof Clearly for α = N , this follows from the Bruhat decomposition quoted
above. Let τ(tα+1, sα) be the type of relative position defined by the couple of
incident parabolics (Ptα+1

, Qsα). Recall that the natural morphism

p[α+1,α] : ConfG(g
(α)
S , B) → Conf(g(α+1)

S , B)

defines a locally trivial fibration, with typical fiber

Parsα(Ptα+1
) = Stand(τ(tα+1, sα), Ptα+1

),

(cf. Proposition 13.9). For all τC = (τN , · · · , τα+2) ∈ Relpos gall(g(α+1)) there
is an isomorphism:

k[τC ,E] : (j[τC ,E])
∗(ConfG(g(α), B)) ' ConfstdG (τC , B)×Par(G)Stand(τ(tα+1, sα)).

Here the fiber product is defined by the couple of morphisms given by

σC 7→ Ptα+1
(σC ) (resp. (P,Q) 7→ P ).

Where Ptα+1(σC ) denotes the parabolic of type tα+1 defined by the configura-
tion σC , i.e. the unique parabolic P of type tα+1 containing Qsα+1

(σC ).
Remark that the following two statements are equivalent:

1. j[g(α),E] is a surjective morphism

2. Every section

σ
(α)
C : Spec(K) //

''

ConfG(g(α), B)

��
S

,

over an algebraically closed field K, factors through some j[τC ,E] (τC ∈
Relposgall(g(α))).
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Given σ(α)
C let it be supposed as inductive hypothesis that:

“j[g(α+1),E] is a surjective morphism”

and prove that it verifies 2. Thus the composed morphism

σ
(α+1)
C = p[α+1,α] ◦ σ(α)

C : Spec(K) → Conf (g(α+1), B),

factors through some cell

j
[τ

(α+2)
C ,E]

: Conf stdG (τ
(α+2)
C , B) → ConfG(g(α+1), B),

for some gallery of relative positions

τ
(α+2)
C ∈ Relpos gall(g(α+1)).

One may then write

σ
(α+1)
C = j

[τ
(α+2)
C ,E]

◦ σ(α+1)
C

′,

with σ(α+1) ′ being a section of Conf stdG (τ
(α+2)
C , B).

Let Qsα+1(σ
(α+1)
C ) be the parabolic of type sα+1 defined by σ(α+1)

C , and let
Ptα+1

(σ
(α+1)
C ) be the unique parabolic of type tα+1 so that

Qsα+1(σ
(α+1)
C ) ⊂ Ptα+1(σ

(α+1)
C ).

Let Bα+2 be the Borel subgroup given by definition of the section σ(α+1) ′

of Conf stdG (τ
(α+2)
C , B) (cf. Definitions 12.39 and 14.24) and

Bα+1 ⊂ Qsα+1
(σ

(α+1)
C )

be the Borel subgroup obtained as the projection of Bα+2 on Qsα+1
(σC ).

From the isomorphism k[τC ,E] one deduces an isomorphism

ConfG(g(α), B)
σ

(α+1)
C

' Stand(τ(tα+1, sα), Ptα+1
(σ

(α+1)
C ))

= Parsα(Ptα+1
(σ

(α+1)
C )),

making correspond to σ(α)
C a morphism

σ
(α)
C : Spec(K) → Parsα(Ptα+1

(σ
(α+1)
C )).

Let
Relpos gall(g(α))

τ
(α+2)
C

={
τC ∈ Relpos gall(g(α)) | τ (α+2)

C ((α+ 2)-truncation of τC ) = τ
(α+2)
C

}
.
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Observe that there is a bijection

Relpos gall(g(α))
τ

(α+2)
C

' Relpostα+1
sα A,

which is denoted by
τC 7→ τ(τC ).

There is a commutative square∐
Conf stdG ((τC )S , B)

σ
(α+1)
C

��

// ConfG(g
(α)
S , Pe1(g))σ(α+1)

C

��∐
Stand(τ(τC )S , Bα+1) // Parsα(Ptα+1(σ

(α+1)
C )) .

The upper horizontal arrow is given by
∐
j[τC ,E]σ

(α+1)
C

′ and the lower hor-

izontal arrow by
∐

j[τ(τC )S ,Bα+1], where τC ∈ Relpos gall(g(α))
τ

(α+2)
C

and

j[τ(τC )S ,Bα+1] : Stand(τ(τC )S , Bα+1) → Parsα(Ptα+1
(σ

(α+1)
C )),

is defined by
j[τ(τC )S ,Bα+1] : (Bα+1, Q) 7→ Q.

The vertical arrows are bijective, and the lower horizontal is surjective (Bruhat
lemma). One deduces that the upper horizontal arrow is also bijective.

Thus one obtains a factorization of σ(α)
C :

σ
(α)
C = j[Bα+1] ◦ σ

(α)
C
′,

which finally gives rise to a factorization of σ(α)
C , namely

σ
(α)
C = j[g(α),E] ◦ σ

(α)
C
′.

This achieves the proof of the recursive step from α+1 to α and thus the proof
of the surjectivity of j[g(α),E] for r > α > 0 (resp. r > α > 0).

14.8 Retraction morphism on an Apartment scheme of
Standard Galleries Configurations

Let one interpret the morphism tstd2 as a retraction morphism. In §10.5 one
has defined for g ∈ gallA, where A = AE , a bijection

τAg,C : GallA
(
g, Fe1(g)(C)

)
−→ Relposgall(g) ,

which is recalled here.
By definition 9.64 one has introduced a mapping

sg∗,C : GallA(g, Fg(C)) → GallA(g∗, C) by sg∗,C : γ 7→ γ∗, where γ∗ is
defined as follows:
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1) Let g = g1 (resp. g′1), and
γ : (Fi)r>i>0, (F ′j)r+1>j>1 (resp. (F ′j)r+1>j>0) . Define γ∗ by

γ∗ : (Ci)r+1>i>0, (F ′j)r+1>j>1 (resp. (F ′j)r+1>j>0) ,

where Cr+1 = C, Ci = projFiCi+1 (r > i > 0).

2) Let g = g2 (resp. g′2), and
γ : (Fi)r>i>0, (F ′j)r>j>1 (resp. (F ′j)r>j>0) . Define γ∗ by

γ∗ : (Ci)r>i>0, (F ′j)r>j>1 (resp. (F ′j)r>j>0) ,

where Cr = C, Ci = projFiCi+1 (r > i > 0).

Let it be supposed that Fg(C) = C. Thus sg∗,C associates with a Gen-
eralized Gallery γ of AE with first term (resp. left extremity) a chamber a
chamber gallery γ∗, i.e. such that the set of (si) of the gallery of types g∗
of γ∗ is given by the type of a chamber C of AE . Define τ∗i = τ(Ci, Ci−1)
(resp. τi = τ(Ci, Fi−1)) where i runs on one of the sets above accord-
ing to the type of g. Clearly (τ(Ci, Fi−1)) is a gallery of types of relative
positions and (τ(Ci, Fi−1)) ∈

∏
Relpos′AE . One thus obtains a mapping

τA,C(g) : GallAE (C) −→ RelposgallAE associating with a gallery γ issued from
F ⊂ C the gallery of relative positions (τ(Ci, Fi−1)). From the reciprocal
bijection

(τAg,C)−1 : Relposgall(g) → GallA
(
g, Fe1(g)(C)

)
,

one obtains an S-isomorphism(
τAg,C

)−1

S
: Relpos gall

G (g) →̃ ConfF ix (T )

(
g, Pe1(g)(E)

)
(cf. Definition 10.15).

Definition 14.28
Define the S-morphism

ρ confE,g : Conf stdG
(
g, Pe1(g)

)
→ ConfFix(T )

(
g, Pe1(g)(E)

)
,

as the composition of the morphism

t std2
′ : Conf stdG

(
g, Pe1(g)(E)

)
→ Relpos gall

G (g)

induced by t std2 , followed by (τ A,C(g))−1
S .

The sub-building of A isomorphic to the typical building

∆(C) = {Ft(C) | t ∈ typA}

gives rise to a subscheme ∆(C)S ⊂ AS . Denote by

∆(G,E) ⊂ Par(G),
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the S-subscheme of Par(G) given by the image of ∆(C)S by AS →̃ F ix(T ) ⊂
Par(G). The couple (∆(G,E),F ix(T )) corresponds to an apartment A of the
building of a reductive group and a chamber C in this apartment. It is ob-
served that ∆(G,E) is a trivialization of the relative typical simplex ∆(G) (cf.
Definition 11.29). It is known that Bruhat decomposition of Par(G) defined
by BC may be seen as a retraction of the building on A. One introduces
here the retraction of the scheme of configurations issued from BC on the
configurations scheme of F ix(T ).

Definition 14.29
Write

ConfG(∆(G,E)) = ConfG ×Par(G) ∆(G,E),

where the fiber product is defined by the couple
(
E1, j∆(G,E)

)
, with

j∆(G,E) : ∆(G,E) → Par(G)

the canonical embedding, i.e. ConfG(∆(G,E)) = (ConfG)∆(G,E). The sections
of this scheme are the galleries configurations issued from a section given by
∆(G,E).

The following identifications are supposed

Conf stdG (τC , Pe1(g)) = Conf stdG (τC , B)resp. Conf stdG (g, Pe1(g)) =
∐

τC∈Relpos gall(g)

Conf stdG (τC , B)

 .

One has
ConfG(∆(G,E)) =

∐
g∈ gallA

ConfG(g, Pe1(g)).

Write
ConfF ix (T )(∆(G,E)) = ConfG(∆(G,E)) ∩ ConfF ix (T )resp. Conf stdG (∆(G,E)) =

∐
g∈ gallA

Conf stdG (g, Pe1(g)(E))

 .

Thus from the definition one obtains

ConfF ix (T )(∆(G,E)) =
∐

g ∈ gallA

ConfF ix (T )(g, Pe1(g)(E)).

Definition 14.30
Let

ρconfE : Conf stdG (∆(G,E)) → ConfFix (T )(∆(G,E)),
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be given by
ρconfE :=

∐
g ∈ gallA

ρconfE,g

(The Retraction morphism of standard galleries configurations).



Chapter 15

Contracted Products and
Galleries Configurations
Schemes

It is shown that the galleries configurations scheme ConfG(g) of a split reduc-
tive S-group scheme G, defined by a fixed gallery of types g, is isomorphic to a
Contracted Product. This isomorphism gives rise to natural parametriza-
tions of the ConfG(g)-Cells. By means of a parametrization it is proved that
there is a Cell of ConfG(g) which is an open relatively schematically dense
subscheme (The Big Open Cell). A Contracted Product may be decom-
posed in a sequence of locally trivial fibrations with typical fiber G/P , where
P is a parabolic subgroup of G. The Big Open Cell is isomorphic to a con-
tracted product of big open cells of homogeneous spaces G/P . By means of
the Contracted Product the image of a minimal gallery type configuration is
calculated by the Retraction on an apartment. This calculation amounts to
determining the fibers of the resolving morphism.

15.1 Contracted Products

Assume that G is endowed with a frame E = (T,M,R,R0, (Xα)(α ∈ R0)).
Let A = AE be the apartment defined by the Z-root data R(E). Given
t ∈ typA let Pt(E) denote the parabolic of type t, such that E is adapted to
P , i.e. Pt(E) = Pt(C) where C denotes the chamber of R(E) given by E.

Let one state some conventions concerning the notation of a generalized
gallery g (resp. γ) of typ A (resp. A). Given g ∈ gall A, let l(g) denote its
length. Write:

357
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1. g = g1 : l1(g) = 1, l2(g) = l(g);

2. g = g′1 : l1(g) = 0, l2(g) = l(g);

3. g = g2 : l1(g) = 1, l2(g) = l(g)− 1;

4. g = g′2 : l1(g) = 0, l2(g) = l(g)− 1.

Thus a GG g of typA is represented by g : (si)(l(g) > i > 0), (tj)(l2(g) >
j > l1(g)). Write

s(g) = (si) (l(g) > i > 0), and si(g) = si

(resp. t(g) = (tj) (l2(g) > j > l1(g)), and tj(g) = tj) .

Given γ ∈ GallA write l1(γ) = l1(typ γ) (resp. l2(γ) = l2(typ γ)) . Let

γ : (Fi) (l(γ) > i > 0), (F ′j) (l2(γ) > j > l1(γ)) ,

write Fi(γ) = Fi and F ′j(γ) = F ′j
Let eA = eA1 ×eA2 : gallA → typA× typA be the extremities mapping

defined as the restriction to
(
N∏

typA
)
∩ gallA of the mapping p1 × pN ,

where p1 (resp. pN ) :
N∏

typA → typA is the 1st-projection (resp. the N -th
projection). Write e = eA (resp. e1 = eA1 , e2 = eA2 ) if no confusion arises with
the notation of 13.6.

Definition 15.1
The basic configuration (resp. gallery) σg(E) of G associated to (E, g),
g ∈ gallA is, by definition, given by

σg(E) : (Qsi(g)(E)) (l(g) > i > 0), (Ptj(g)(E)) (l2(g) > j > l1(g)).

Let
Pt(g)(E) =

∏
Ptj(g)(E) (l2(g) > j > 1)

(resp. Qs(g)(E) =
∏

Qsi(g)(E) (l(g) > i > 0), if e1(g) = tl2(g) = tl(g),

Qs(g)(E) =
∏

Qsi(g)(E) (l(g)− 1 > i > 0), if e1(g) = sl(g)−1(g)).

Define a right action of Qs(g)(E) on Pt(g)(E) following the pattern explained
in Definition 9.45.

The quotient scheme

ΠG [g,E] = Pt(g)(E) /Qs(g)(E)

is called the contracted product along the basic configuration σg(E)
(resp. g ∈ gallA).
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Let (g(α)) (l(g) > α > 0) be the sequence of truncated galleries defined by
g as in Definition 9.57. There are natural morphisms

p[α,α+1] : ΠG [g(α), E] → ΠG [g(α+1), E] (l(g)− 1 > α > 0),

defining, as is easy to see, locally trivial fibrations with typical fibers respec-
tively Ptα+1(g)(E)/Qsα(g)(E) (The canonical fibration of a contracted
product. (See Remark 15.6 below). From this remark results the following

Proposition 15.2
The contracted product ΠG [g,E] is a smooth S-scheme.

Definition 15.3
Following the pattern of the definition of the combinatorial mapping

ig,C : ΠW [g, C] = Wt(g)/Ws(g) → GallA(g, Fe1(g)(C))

(cf. Definition 9.53) define

λ[g,E] : ΠW [g,E] → ConfG(gS , Pe1(g)(E))

as follows. Given a section x = (xj) (l2(g) > j > 1) of Pt(g)(E), write

zi =
∏

xα (l2(g) > α > i) (resp. zl2(g)+1 = 1).

Let σg(E, x) be the section of ConfG(gS , Pe1(g)) defined as follows using the
conventions of §15.1

σg(E, x) :
(
int(zi+1)(Qsi(g)(E))

)
(l(g) > i > 0),(

int(zj+1)(Ptj(g)(E))
)

(l2(g) > j > l1(g)).

Let
λ[g,E] : ΠG [g,E] = Pt(g)/Qs(g) → ConfG(gS , Pe1(g)),

be the morphism induced by x 7→ σg(E, x).

It is proved that λ[g,E] is an isomorphism following the pattern of the proof
of Proposition 9.62.

Proposition 15.4
The morphism

λ[g,E] : ΠG [g,E] → ConfG(gS , Pe1(g))

is an isomorphism of Pe1(g))-schemes.
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Observe that the following statements concerning a gg g are equivalent:

(1) g = g1, g
′
1, 2) l2(g) = l(g), 3) e1(g) = tl(g)(

resp. (1′) g = g2, g
′
2, 2′) l2(g) = l(g)− 1, 3′) e1(g) = sl(g)−1

)
.

Let g be such that

l2(g) = l(g) (resp. l2(g) = l(g)− 1) .

It is then written:

P t(g)(E) = G×S
∏

Ptj(g)(E) (l2(g)− 1 > j > l1(g))

P t(g)(E) = G×S
∏

Ptj(g)(E) (l2(g) > j > l1(g)),

and
Qs(g)(E) = Qs(g)

(
resp.

∏
Qsi(g)(E) (l(g) > i > 0)

)
.

A right action of Qs(g)(E) on P t(g)(E) is defined following the pattern ex-
plained in Definition 9.48.

The quotient
ΠG [g,E] = P t(g)(E)/Qs(g)(E)

is representable by a smooth and projective S-scheme, as results from Propo-
sition 15.5 below and from Proposition 13.9.

Following the definition of λ[g,E] above, a morphism

λ[g,E] : ΠG [g,E] → ConfG(gS) is obtained.

Proposition 15.5
The morphism λ[g,E] is an isomorphism of G-schemes.

Proof One follows the pattern of the proof of Proposition 15.4.

Let
π[α,α+1] : Π[g(α), E] → ΠG[g(α+1), E]

be the natural morphism obtained by the definition of Π [g(α), E].

Remark 15.6
Denote by

π[α,α+1] : ConfG(g
(α)
S ) → ConfG(g

(α+1)
S )

the morphism associating with a configuration σC of type g(α)
S the truncated

configuration σ(α+1)
C .

The following compatibility between π[α,α+1] (resp. p[α,α+1]) and π[α,α+1]

(resp. p[α,α+1]) holds

π[α,α+1] ◦ λ[g(α),E] = λ[g(α+1),E] ◦ π[α,α+1](
resp. p[α,α+1] ◦ λ[g(α),E] = λ[g(α+1),E] ◦ p[α,α+1]

)
.
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Thus from Proposition 13.9 one obtains:
“The morphism π[α,α+1] (resp. p[α,α+1]) defines a locally trivial fibration

with smooth typical fiber Ptα+1(g)(E)/Qsα(g)(E).”

15.2 Contracted product parametrization of cells

For τC ∈ Relposgall(g) one gives a parametrization of Conf stdG ((τC )S , B) in
terms of the isomorphism λ[g,E].

The same hypothesis about G is kept as in Section 15.1. Given τC = (τi) ∈∏
Relposti(g)si−1(g), let

wτC = (wi) (resp. wmτC
= (wmi )),

where
wi ∈Wti(g)/Wsi−1(g),

is defined by τi, and wmi ∈ wi is the minimal length (lS(C)(w
m
i )) element of

wi. wmτC
is an S -word (C = CR+), corresponding to the GG

γτC ∈ GallA(g, Fe1(g)(C)),

(cf. §10.5). As usual let
U(w) ⊂ BR+

be the subgroup defined by the closed system of roots

R+(C,w(C)) = {α ∈ R+ | w(α) < 0} .

Write
ΠG [τC , E] =

∏
U(wmi )wmi

(l(g) > i > 1) (resp. l(g) > i > 1).
Here wmi ∈ N(T ) denotes also a representative of wmi ∈W .
Clearly, there is a natural morphism

q[τC ,E] : ΠG [τC , E] → Pt(g)/Qs(g) = ΠG [g,E].

Definition 15.7
Let

λ′[τC ,E] : ΠG [τC , E] → ConfG(gS , Pe1(g))

be the morphism obtained as the composition of the morphism q[τC ,E], followed
by the isomorphism

λ[g,E] : ΠG [g,E] → ConfG(gS , Pe1(g)),

i.e.
λ′[τC ,E] = λ[g,E] ◦ q[τC ,E].
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Proposition - Definition 15.8
The morphism λ′[τC ,E] factors through the embedding

j[τC ,E] : Conf stdG ((τC )S , B) → ConfG(gS , Pe1(g)),

and the factorization induces an isomorphism of S-schemes

λ[τC ,E] : ΠG [τC , E] →̃ Conf stdG ((τC )S , B).

Proof Consider the case g = g1, g
′
1. The same proof works for the case

g = g2, g
′
2 mutatis mutandis. Thus one may write

σg(E) : (Qsi(g))(l(g) > i > 0), (Ptj(g))(l2(g) > j > l1(g)) (l2(g) = l(g) = r+1).

Recall that there is an isomorphism of S-schemes

U(wmi )wmi →̃ Stand(B, τi),

by definition of wmi .
The definition of λ[τC ,E] of the assertion results from the following points

(cf. §12.3). By definition of τi (resp. wmi ) (l(g) > i > 1), one obtains:

1. t2
(
int
(

r+1∏
α=i+1

xα w
m
α

)
(B), int

(
r+1∏
α=i

xα w
m
α

)
(Qsi(g))

)
= (τi)S ;

2. Proj :

(
int
(

r+1∏
α=i+1

xα w
m
α

)
(B), int

(
r+1∏
α=i

xα w
m
α

)
(Qsi(g))

)
7→

int
(
r+1∏
α=i

xα wα

)
(B)

3. λ′[τC ,E] : (xi wi) 7→
(
int
(

r+1∏
α=i+1

xα wα

)
(Qsi(g))

)
(r > i > 0),(

int

(
r+1∏

α=j+1

xα wα

)
(Ptj(g))

)
(r > j > l1(g))(

resp. Ptr+1 = Pe1(g)

)
.

Remark 15.9
The section of Conf stdG ((g)S , B) is configurations of type (g∗)S issued from B.

Proposition 15.10
The morphism

q[τC ,E] : ΠG [τC , E] → ΠG [g,E]

is an embedding.
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Proof By Proposition 15.8 it is known that

λ′[τC ,E] : ΠG [τC , E] → ConfG(gS , Pe1(g))

is an embedding. As by Definition 15.7 one obtains

λ′[τC ,E] = λ[g,E] ◦ q[τC ,E],

it is then deduced that

q[τC ,E] =
(
λ[g,E]

)−1 ◦ λ′[τC ,E]

defines also an embedding.

Definition 15.11
Denote by

Π′G [τC , E] ⊂ ΠG [g,E]

the S-subscheme defined by q[τC ,E].

15.3 The canonical relatively schematically dense open
subscheme of a Contracted Product

It is shown that with the cell Conf stdG ((τ trC )S , B) of ConfG(gS , Pe1(g)) corre-
sponds the cell ΠG [τ trC , E], which is a relatively schematically dense open
subscheme, of the corresponding isomorphic contracted product ΠG [g,E] '
ConfG(gS , Pe1(g)). Let

τC = τ trC ∈ RelposgallA (g)(
resp. wτtrC

= (wi), i.e. (wi) is the word corresponding to τ trC

)
(cf. Remark 10.26). Write:

1. wmτtrC
= (wmi ),

where wmi denotes the minimal length lS(C)(w
m
i ) representative of wi;

2. tj = tj(g) (resp. si = si(g));

3. Ptj = Ptj (E) (resp. Qsi = Qsi(E));

4. Wtj = Stab Ftj (C) (resp. Wsi = Stab Fsi(C)), where C denotes the
chamber of AE given by E.

Let T (resp. B) be the maximal torus (resp. the Borel subgroup) defined
by E, and P = Pti (resp. Q = Qsi−1

). Write P as the semi-direct product

P = L(P ) · U(P ),
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where U(P ) ⊂ P (resp. L(P ) ⊂ P ) denotes the unipotent radical of P
(resp. the Levi subgroup of P defined by the maximal torus T ) (cf. [23],
Exp. XXV I, Proposition 1.6).

One has the Bruhat decomposition of P in (B,Q)-double classes

P =
∐

BwQ,

where w runs over some set of representatives in N(T ) of the set

Wti/Wsi−1
' Relpostisi−1

.

One may write∐
w

BwQ =
∐
w

[B ∩ L(P )wQ ∩ L(P )] U(P ).

Let wm be the minimal length lS(C)(w
m) representative of w ∈ Wti−1

/Wsi .
Observe that

U(wm) ⊂ B ∩ L(P ),

thus one obtains ∐
w

BwQ =
∐
U(wm)wmQ,

where as usual wm also denotes a representative of wm in N(T ).
Let

ΩL(P ) = U(wmi )wmi Q ∩ L(P )

be the big cell of L(P ) relatively to (B,Q ∩ L(P )).
It is known that

ΩL(P ) ⊂ L(P )

is a relatively schematically dense open S-subscheme.
Thus one obtains

Proposition 15.12
The image Ω̃L(P ) ⊂ P/Q of ΩL(P ), by the quotient morphism P → P/Q, is
a relatively schematically dense open S-subscheme.

One proceeds to prove the following assertion by induction on α, with the
notation of Definition 15.11. One has:

“(∀ l(g) > α > 1) Π′G [τ
(α+1)
C , E] ⊂ ΠG [g(α), E],

is a relatively schematically dense open S-subscheme”. Recall that the
image of the canonical morphism

U(wmα+1)wmα+1 → Ptα+1
/Qsα ,
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is a relatively schematically dense S-subscheme in Ptα+1/Qsα . Thus

Π′G [τ
(r+1)
C , E] ⊂ ΠG [g(r), E] = Ptr+1

/Qsr(
resp. Π′G [τ

(r)
C , E] ⊂ ΠG [g(r−1), E] = Ptr+1/Qsr−1

)
,

if g = g1, g
′
2 (resp. g = g2, g

′
2), is a relatively schematically dense open S-

subscheme. As inductive hypothesis for r − 1 > α (resp. r − 2 > α) assume
that:

“Π′G [τ (α+2), E] ⊂ ΠG [g(α+1), E]

is a relatively schematically dense (r. sch. d.) open S-subscheme”. There is a
commutative diagram:

q
[τ

(α+1)
C ,E]

: Π′G [τ
(α+1)
C , E] //

p[α,α+1]
τC

��

ΠG [g(α), E]

p[α,α+1]

��
q
[τ

(α+2)
C ,E]

: Π′G [τ
(α+2)
C , E] // ΠG [g(α+1), E],

where p[α,α+1]
τC is the morphism induced by p[α,α+1]. Remark that p[α,α+1]

defines a locally trivial fibration and p
[α,α+1]
τC a sub-bundle given by the re-

striction of ΠG [g(α), E] to Π′G [τ
(α+2)
C , E]. The proof of the recursive step

results from the following easy lemma.

Lemma 15.13
Let X → Y be a locally trivial fibration of S-schemes with typical fiber F ,
i.e. a “bundle”, Y ′ ⊂ Y a relatively schematically dense sub-scheme of Y ,
and X ′ → Y ′ a “sub-bundle” of XY ′ → Y ′, with typical fiber a relatively
schematically dense open sub-scheme F ′ ⊂ F . Then X ′ ⊂ X is a relatively
schematically dense sub-scheme.

Thus to prove the assertion about the embedding

Π′G [τ
(α+1)
C , E] ⊂ ΠG [g

(α)
C , E]

it suffices to see that the image of the natural morphism

Π′G [τ
(α+1)
C , E] → Π′G [τ

(α+2)
C , E]×ΠG [g(α+1),E] ΠG [g(α), E]

is a relatively schematically dense open S-subscheme. Let

G ∧Qsα+1
(Ptα+1/Qsα) → G/Qsα+1

be the contracted product defined by the right Qsα+1
principal space

G → G/Qsα+1
,
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and the a left action of Qsα+1 on Ptα+1/Qsα . This contracted product
is isomorphic to the pull-back of the locally trivial fibration Parsα(G) →
Partα+1

(G) by the morphism Parsα+1
(G) → Partα+1

(G) associating with a
parabolic Q of type sα+1 the parabolic Q ⊂ P of type tα+1. It follows that
G ∧Qsα+1

(Ptα+1/Qsα) → G/Qsα+1 is a locally trivial fibration with typical
fiber Ptα+1

/Qsα . On the other hand the image of the schematically dominant
morphism U(wmα+1)wmα+1 ↪→ Ptα+1

/Qsα is contained in a big cell Qsα+1
-cell

in Ptα+1
. This big cell is invariant under Qsα+1

. Observe that ΠG [g(α+1), E]
may thus be written

ΠG [g(α), E] = ΠG [g(α+1), E]×G/Qsα+1
(G ∧Qsα+1

(Ptα+1/Qsα),

where the fiber product is defined by the morphism

m(α+1) : ΠG [g(α+1), E] → G/Qsα+1
,

induced by the multiplication in G, and p[α,α+1] corresponds to the first pro-
jection ΠG [g(α+1), E].
Thus an application of the lemma proves the following

Proposition 15.14
One has that

Π′G [τ
(α+1)
C , E] → ΠG [g(α), E]

is a relatively schematically dense open S-subscheme.

From the Remark 15.6 follows the

Corollary 15.15
The S-subscheme Conf stdG ((τ trC )S , B) ⊂ ConfG(g, Pe1(g)) is open and relatively
schematically dense.

15.4 The Contracted Product and Galleries Configurations
retraction morphism

One may resume the results of Chapter 14 as follows. There is a
functorial cellular decomposition of ConfG(∆(G,E)) given by the mor-
phism Conf stdG (∆(G,E)) −→ ConfG(∆(G,E)) induced by

∐
g ∈ gallA

j[g,E].

The cells of this decomposition are indexed in terms of the morphism
tstd2 : Conf stdG −→ RelposgallG , or more precisely to its restriction to
Conf stdG (∆(G,E)) ⊂ Conf stdG . This morphism may be turned into a retrac-
tion ρconfE =

∐
g ∈ gallA

ρconfE,g : Conf stdG (∆(G,E)) −→ ConfF ix(T )(∆(G,E)) (cf.

14.30). Where ρconfE,g = (τAg,C)−1
S ◦ tstd2 , τAg,C : GallA(g, Fe1(g))→ RelposgallA (g),

and ConfF ix(T )(∆(G,E)) =
∐

g∈gallA
GallA(g, Fe1(g))S .
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One has the following description of ρconfE (cf. 14.30) in terms of the
isomorphisms λ[g,E]’s.

Proposition 15.16
There is a commutative diagram

∐
g∈ gallA

 ∐
τC∈Relpos gall(g)

ΠG [τC , E]

 //

λstd[E]

��

GallA(∆(C))S

��
ρconfE : Conf stdG (∆(G,E)) // ConfFix (T )(∆(G,E)),

where the upper horizontal arrow is given by the morphism:

∐
g ∈ gallA

 ∐
τC∈Relpos gall(g)

(τAg,C)−1
S ◦ IτC

 ,

where IτC : ΠG[τC , E] → Relpos gall(gS) is the constant morphism defined by
the section (τC )S, and one writes

λstd[E] =
∐

g∈ gallA

 ∐
τC∈Relpos gall(g)

λ[g,E] ◦ q[τC ,E]

 .

The right vertical arrow is induced by the canonical isomorphism AS '
F ix (T ).

Remark 15.17
The mapping

(τAg,C)−1 : Relpos gall(g) → GallA(g, Fe1(g)(C)

is obtained as follows. Write wmτC
= (wmi ). Then

(τAg,C)−1 : τC 7→ γg((w
m
i )).

Assume that g ∈ gallmA . Let σC be a section of

Conf stdG ((τ trC )S , Pe1(g)) ⊂ Conf stdG (gS , Pe1(g)) ,

i.e. a section of the big cell of Conf stdG (gS , Pe1(g)). By section §14.3 there
exists a section x = (xi) of

∏
U(wi), so that, with the notation of Proposition

14.12,
λ[τtrC ,C](x) = σC (x,C) = σC .
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From section §14.3 it follows, that if one writes

σC : (Qi)(l(g) > i > 0), (Pj)(l2(g) > j > l1(g)),

then the couple of parabolics

(B,Qi) (resp. (B,Pj))

is in standard position, and thus defines a section of Stand(B) ⊂ Stand(G).
One may then define a section ρE(σC ) of ConfF ix (T ) by:

ρE(σC ) : (ρE(Qi)), (ρE(Pj)).

It results easily from definitions the following

Proposition 15.18
With the above notation one has

ρconfE,g (σC ) = ρE(σC ).

Remark 15.19
Given τC ∈ Relpos gall(g), let one write

γτC =
(
τAg,C

)−1
(τC ) ∈ GallA(g, Fe1(g)(C)).

From the definition of ρconfE,g , it results:

Conf stdG ((τC )S , Pe1(g)) =
(
ρconfE,g

)−1

((γτC )S).

15.5 The image of a Gallery Configuration by the Building
Retraction morphism on an apartment

Let it be assumed that S is the spectre of an algebraically closed fields. Given
the closure of a Bruhat cell and a corresponding smooth resolution of singular-
ities by a galleries configurations scheme one gives an algorithm calculating
the image by the extremity morphism E2 of a section of this scheme, and
simultaneously the retraction of this section on an apartment. This latter
calculation amounts deciding to which Bruhat cell in Par(G) this image be-
longs, and the former allows determining the fibers of the resolution morphism
E2. More precisely, the algorithm allows the explicit calculation of the coor-
dinates of the image of a section by E2 in its Schubert cell, and that of the
corresponding gallery in an apartment. Recall that one denotes by X(s) the
set of κ(s)-points of the S-scheme X, where s = Spec(κ(s)) and κ(s) is the
algebraic closure of the residual field of s ∈ X.

One writes
ρstds =

(
ρstdE,g

)
s
,
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and
ρstd(s) =

(
ρstdE,g

)
(s)

: Conf stdG (gS , Pe1(g))(s) → F ix (T )(s)

for the induced mapping.
Let

σC ∈ Conf stdG (gS , Pe1(g))(s) = ConfmG (gS , Pe1(g))(s).

The above identification holds from the fact that any couple of parabolics
(P,Q) over Spec(κ(s)) is in standard position (cf. [10], Exp. XXVI, Lemme
4.1.1).

The next aim is the calculation of E2(σC ) and “the retraction of σC ” on
F ix(T )(s), i.e. the retraction term by term of the gallery σC : ρE(σC ) =
(ρE)(s)(σC ). Recall that F ix(T )(s) is the same thing as an apartment of G(s)

and that the retraction preserves the incidence relation and thus carries a
gallery onto a gallery. Remark that in general

ρstds (σC ) 6= (ρE)(s)(σC ).

Let it be written
Q′ = E2(σC ) = (E2)(s)(σC ).

It is clear that the determination of ρE(σC ) may be obtained if one knows
how to calculate ρE(Q′) = ρE(E2(σC )), as ρE(σC ) is determined by the set of
facets

ρE(E2(σ
(α)
C )),

where
(
σ

(α)
C

)
denotes the set of α-truncations of σC . Thus the determination

of (ρE)(s)(σC ) follows from that of (ρE)(s)(E2(σC )).
The cellular decomposition (cf. Proposition 14.26)

ConfmG (gS , Pe1(g))(s) =
∐

τC∈Relpos gall(g)

Conf stdG ((τC )S , B)(s)

implies that there exists τC ∈ Relpos gall(g) so that

σC ∈ Conf stdG ((τC )S , B)(s).

Given τC ∈ Relpos gall(g), denote by wτC = (wi) the uple of classes of W
determined by τC = (τi). Let wmτC

= (wmi ), be the uple of minimal length
representatives defined by wτC . The above cellular decomposition corresponds
by the isomorphism

λ[g,E] :
∏

G
[g,E] −̃→ Conf stdG (gS , Pe1(g)),

of Conf stdG (gS , B) with the contracted product ΠG [g,E], with the disjoint
union ∏

G
[g,E](s) =

∐
τC∈Relpos gall(g)

∏′

G
[τC , E](s)
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(cf. Proposition 14.26, and Proposition 15.8). Where
∏′
G[τC , E] denotes the

image of ∏
G

[τC , E] =
∏
U(wmi )wmi

(l(g) > i > 1) (resp. l(g) > i > 1) by the embedding q[τC ,E] :
∏
G [τC , E] −→

Pt(g)/Qs(g) = ΠG [g,E]. By the above isomorphism, to the surjective
monomorphism (cf. Proposition 15.8)

j[g,E] =
∐

τC∈Relpos gall(g)

j[τC ,E],

corresponds∐
τC∈Relpos gall(g)

q[τC ,E] :
∐

τC∈Relpos gall(g)

ΠG [τC , E] −→ ΠG [g,E] .

There are commutative diagrams:

1) ∐ ∏
G

[τC , E](s)
q[g,E](s) //

∐
λ[τC ,E](s)

��

∏
G

[g,E](s)

λ[g,E](s)

��∐
Conf stdG ((τC )S , B)(s)

j[g,E](s) // ConfG(gS , Pe1(g))(s) .

Where the τC indexing the terms of the disjoint unions run on
Relpos gall(g), and

q[g,E] =
∐

τC∈Relpos gall(g)

q[τC ,E] (resp. j[g,E] =
∐

τC∈Relpos gall(g)

j[τC ,E]).

2)
λ′[τC ,E] : ΠG [τC , E]

��

// ConfG(gS , Pe1(g))

E2
��

G/Q
∼ // Pare2(g)(G) ,

where the vertical arrow ΠG [τC , E] =
∏
U(wmi )wmi −→ G/Q is defined

by
(xi w

m
i ) (l(g) > i > 1) −→

(∏
xi w

m
i

)
·Q .

The horizontal arrow is defined as in 15.7. Thus one has
int (

∏
xi w

m
i ) (Q) = E2(σC ).
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Let the notations be simplified by writing, for a fixed point s ∈ S:

P = Pe1(g)(E)(s)

(
resp. Q = Qe2(g)(E)(s), G = G(s), B = B(s), T = T(s), N(T ) = N(T )(s)

)
.

Denote by SE ⊂W = N(T )/T , the set of reflexions defined by the system of
simple roots R0 given by E. Thus SE is a system of generators of W .
We know that (G,B,N, SE) is a Tits system (cf. [4]), i.e. the following
properties hold:
(T1) The set B ∪N generates G, and B ∩N is an invariant subgroup of N .
(T2) The set SE generates W = N/B ∩N , and the elements w of SE verify
w2 = 1.
(T3) r B w ⊂ BwC ∪B rwB for every r ∈ SE , and w ∈W .
(T4) For all r ∈ SE , int(r)(B) 6= B. (cf. loc. cit.)
The building associated to this Tits system is in fact the building of the
geometric fiber G(s) of G.
Let G =

∐
w∈W/WF

BwQ, with PF = Q, i.e. F = Fe2(g)(C), be the (B,Q)-

double class decomposition of G. Given y ∈ BwQ, denote by y ∈ G/Q its
class modulo Q, and by wm ∈ w the minimal length element of the class
w ∈W/WF .

Definition 15.20
It is said that xwm ∈ Bwm is the canonical representative of y ∈ G/Q if wm
is the minimal length element in its class wm ∈W/WF ,

x ∈ U(wm), and xwm ∈ y.

It follows from the general properties of the Bruhat cell decomposition of G
in (B,Q)-double classes that the canonical representative xwm of y is uniquely
determined and thus well defined.

Given a parabolic Q′ ⊂ G of type e2(g) we determine ρE(Q′) as follows. Let
y ∈ G such that Q′ = int(y)(Q), and xwm the canonical representative of
y ∈ G/Q. One has then

Q′ = int(xwm)(Q) = int(x) int(wm)(Q).

As U(wm) ⊂ B, it is deduced that the couple (B, int(wm)(Q)), defines the
same type of relative position as (B,Q′), and both B and int(wm)(Q) contain
the maximal torus T . Thus one has that

ρE(Q′) = int(wm)(Q).

For the sake of briefness, let it be supposed g = g1, so that Pe1(g) = Ptl(g)(g).
The other cases g = g′1, g2, g

′
2 are treated similarly.
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From the commutativity of diagram 2) above and by definition of

λ[g,E] : ΠG [g,E] = Pt(g)/Qs(g) −→ ConfG(gS , Pe1(g)),

as λ[g,E] : x 7→ σg(E, x), where σg(E, x) denotes the deformation of the basical
configuration σg(E) (cf. Definition 15.3), and the relation

λ′[τC ,E] = λ[g,E] ◦ q[τC ,E] ,

(cf. Definition 15.7, and Proposition 15.10) one obtains:

Proposition 15.21 Let

σ\C =
(
λ[g,E]

)−1

(s)
(σC ) ∈ Π′G [τC , E](s).

One has σ\C = (λ[τC ,E])
−1
(s)(σC ) ∈ ΠG [τC , E](s), and

σ\C = (xi w
m
i ) (l(g) > i > 1)

with xi ∈ U(wmi )(s), i.e. σg(E, x) = σC with x = (xi), and
int (

∏
xi w

m
i ) (Q) = E2(σC ). Thus the class (

∏
xi w

m
i ) · Q corresponds to

E2(σC ).

Let it be explained how to calculate the canonical representative of the class
of
∏

xi w
m
i in G/Q according to Definition 15.20. Clearly this calculation

amounts to that of E2(σC ) and the image of the retraction ρE(E2(σC )). Write
each element wmi as a reduced word in SE :

wmi = r
(i)
1 r

(i)
2 · · · r

(i)

l(i)
(l(g) > i > 1) ,

where l(i) = lSE (wmi ).
Let it first be determined w ∈W , so that w is the minimal length element of
the class w ∈W/WF it determines, and y ∈ U(w) so that

y wQ = wm2 x1w
m
1 Q = r

(2)
1 r

(2)
2 · · · r

(2)

l(2) x1w
m
1 Q.

Proceeding by induction on 1 > k > l(2), let one determine y(l(2)) ∈ B, and
w(l(2)), so that

r
(2)

l(2) x1 w
m
1 Q = y(l(2)) w(l(2))Q.

By (T3) one has:

r
(2)

l(2) x1 w
m
1 ∈ Bwm1 B ∪B r(2)

l(2) w
m
1 B,

and one deduces that there exists some

y(l(2)) ∈ B,
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so that
r

(2)

l(2)x1w
m
1 Q = y(l(2))w(l(2))Q,

with
w(l(2)) = wm1 , or r(2)

l(2) w
m
1 .

Let t be the type of Q, i.e. t = e2(g). One chooses w(l(2)) as the min-
imal length element wm in its class in W/Wt. In other terms wm =

w(C, projFt(C)). It is easy to see that y(l(2)) may be chosen in U(w(l(2))). Let
U ′′ = B ∩ int(w(l(2)))(B). This subgroup is generated by the root subgroups
indexed by the closed set of roots R+ ∩ w(l(2))(R+) and T .

Since w(l(2))(R+∩w(l(2))(R+)) ⊂ R+, where R+ is the positive root system
defined by E, one obtains U ′′w(l(2))Q = w(l(2))Q. 1 The subgroup U ′ =

U(w(l(2))) ⊂ B is generated by the root subgroups indexed by the closed set
of roots R+ − R+ ∩ w(l(2))(R+) = {α ∈ R+| w(l(2))(α) ∈ −R+} thus one has
B = U ′ · U ′′. Finally one obtains Bw(l(2))Q = U ′ · U ′′w(l(2))Q = U ′w(l(2))Q.
Thus y(l(2))w(l(2))Q = y(l(2))′w(l(2))Q if y(l(2))′ denotes the U ′-component of
y(l(2)). Consequently one may suppose y(l(2)) = y(l(2))′ .

Let k < l(2). One supposes that:

r
(2)
k+1 · · · r

(2)

l(2)x1 w
m
1 Q = y(k+1) w(k+1)Q.

Proceeding as above it is deduced that

r
(2)
k y(k+1) w(k+1)Q = y(k) w(k)Q,

with y(k) ∈ B, and
w(k) = w(k+1), or r(2)

k w(k+1).

Thus by induction on 1 6 k 6 l(2), one finally obtains:

“There exists z2 ∈ B, and w2 ∈W so that wm2 x1 w
m
1 Q = z2w2Q”.

More precisely one may suppose w2 of minimal length in its class and z2 ∈
U(w2). Let it be supposed for 2 < j 6 l(g) that:

wmj−1 xj−2 w
m
j−2 · · ·x1 w

m
1 Q = zj−1 wj−1Q.

By reducing the expression

wmj xj−1 zj−1 wj−1,

1Let w ∈ W . The roots in R+ ∩ w(R+) are those roots α ∈ R+ whose associated
hyperplane Hα does not separate the chambers CR+

and Cw(R+). On the other hand,
the set of roots α ∈ R+ such that Hα separates CR+

and Cw(R+) is given by { α ∈
R+ | w(α) < 0 }. One concludes that

α ∈ R+ ∩ w(R+) =⇒ 0 < w(α) .
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as above one obtains

wmj xj−1 w
m
j−2 · · ·x1 w

m
1 Q = zj wj Q,

with zj ∈ B, and wj ∈W . (Remark that xj−1 zj−1 ∈ B.)
Thus by induction on j, it has been proved that there exists w = wl(g) ∈W

of minimal length in its class w and z = zl(g) ∈ U(wl(g)), so that

l(g)∏
j=1

wmj xj Q = z wQ,

and E2(σC ) = int(z w )(Q). One obtains the retraction of E2(σC ) on F ix(T )(s)

by:
ρE(E2(σC )) = int(wm)(Q).

Remark 15.22
The preceding algorithm allows the explicit determination of the fibers of
(ρE)s. In fact this calculation may be further developed if combined with the
defining relations of G (cf. [23], Exp. XXIII, 3.5).



Chapter 16

Functoriality of Schubert
Schemes Smooth Resolutions
and Base Changes

The following two questions are considered in this chapter.

• Under which conditions on the base scheme S one has a natural identi-
fication

i.e. when the fiber
Σ(τ,P ) '

(
Σ
)

(τ,P )
,

over (τ , P ) of the Universal Schubert scheme

Σ −→ RelposG ×S Par(G)×S Par(G)

gives the schematic closure of the fiber Σ(τ,P ) in Par(G)? This question
amounts to determine when the formation of the schematic closure of
a Schubert cell commutes with base changes S′ −→ S. A convenient
answer to it is obtained by considering the Chevalley reductive Z-group
scheme EpZ(R) associated with a given root data type R and observ-
ing that given a reductive S-group scheme G of type R, there is an
isomorphism S × EpZ(R) ' G locally for the etale topology (cf. [23],
Exp. XXII, Def. 5.11.). It is obtained that if S is an scheme with
residues fields of characteristics distinct from a finite set of primes de-
pending on R then the above identification holds for all sections (τ , P )
of RelposG ×S Par(G). More precisely, for each root data of type R a
not-empty open sub-scheme UR ⊂ Spec(Z) exists so that:

375
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“The formation of the schematic closure of the Universal Schubert Cell
of the Chevalley scheme EpZ(R) commutes with base extensions

S → UR ”.

Moreover the open sub-scheme UR is maximal with this property. In
fact this set is characterized as the set of those primes so that their
corresponding geometrical fiber of the Universal Schubert scheme is not
integral. It follows that given a reductive group scheme G over a scheme
S → UR 1, the formation of the schematic closure of the Universal
Schubert Cell of G commutes with base changes. Thus the formation of
the Smooth Resolution of the Universal Schubert Scheme of G and its
cellular decomposition also commutes with base changes S′ → S.

• Under which conditions on S the fiber over (g, P ), where δ2(g) = τ , of
the Universal Smooth Resolution π : Σ̂ −→ Σ gives the corresponding
resolutions π(τ,P ) : Σ̂(τ,P ) −→ Σ(τ,P ) of the Schubert scheme Σ(τ,P ).
The answer to this question relies on the preceding one.

In §16.3 all the results about the schematic closure of a sub-scheme that we
need in this work are collected.

16.1 The main theorem

It is recalled that the Universal Schubert scheme Σ of G is the schematic
image of the embedding jΣ : Σ → (Par(G)×S Par(G)) ×S RelposG (resp.
the schematic closure of the Universal Bruhat cell

Σ = gr(t2) ⊂ (Par(G)×S Par(G))×S RelposG).

Let jΣ : Σ → Par(G) ×S Par(G) ×S RelposG the natural embedding. De-
note by prR : Σ −→ RelposG

(
resp. prR,Σ : Σ −→ RelposG

)
the morphism

induced by the third projection, and by δ2 : Γm(∆(G)) −→ RelposG the mor-
phism whose geometric fibers associate with a minimal gallery of types g the
unique type τg of relative position so that the configurations variety defined
by g is a resolution of singularities of the Schubert variety defined by τg. One
has the following important remark: "A generalized gallery γ(F, F ′) of type g,
in an apartment, is minimal if and only if Conf(g, PF ) is a smooth resolution
of Σ(τ(F, F ′), PF )".

A more adapted notation is introduced aiming at obtaining a simple for-
mulation of our main result. Let

ΣΓm = Σ×RelposG Γm(∆(G))

1This condition amounts to: “The residual characteristics of S are not in the finite subset
of primes complementary to UR”.
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(
resp. ΣΓm = Σ×RelposG Γm(∆(G))

)
,

where the fiber product is defined by the couple of morphisms

(prR, δ2) (resp. (prR,Σ, δ2)).

Thus ΣΓm (resp. ΣΓm) is obtained from the RelposG-scheme Σ (resp. Σ) by
the finite etale base change Γm(∆(G)) −→ RelposG. One proves in this chap-
ter that there is a canonical resolution of singularities (Σ̂, π) of Σ of G after
this finite etale extension. The Universal Schubert scheme has the following
universal property. If the characteristics of the base scheme S are not among
a fixed finite set of primes depending on the type of G, then the Schubert
scheme Σ(τ , P ) defined by a couple (τ , P ), of a type of relative position and
a parabolic subgroup, is obtained as the fiber of Σ over (τ , P ). If S satisfies
this condition, the resolution of singularities Σ̂(g, P ) −→ Σ(τ , P ) given by a
configurations scheme defined by a section g of Γm(∆(G)) is obtained as the
fiber π(τ,P ) of the morphism Σ̂

π−→ Σ.
One has

ΣΓm = schematic closure of ΣΓm in Par(G)×S Par(G)×S Γm,

as the formation of the schematic closure commutes with flat quasi-compact
and separated base changes S′ → S (cf. [27], Théorème (11.10.5)). Here
S′ = Γm(∆(G))

δ2−→ S = RelposG. Let G be an S-reductive group scheme,
and Σ̂ = ConfmG = (tΓ1 )−1(Γm(∆(G))).
Suppose that G be endowed with a frame E. Thus there are isomorphism
Γm(∆(G)) ' (gallmAE )S , and

ΣΓm '
∐

g∈ gallmAE

Σ(τg)S

resp. Σ̂ '
∐

g∈ gallmAE

Σ̂gS

 ,

where one writes, given a section g of Γm(∆(G)) (resp. a section τ of
RelposG):

Σ̂g =
(
tΓ1
)−1

(g) = ConfmG (g)
(
resp. Σ(τg)S = (t2)−1(τ)

)
(cf. §13.8).
Define π = E : Σ̂ → ΣΓm by π = E =

∐
g∈ gallmAE

EgS , where EgS :

ConfmG (gS) −→ Σ associates with a configuration its extremities.
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Recall that the morphism ΘgS (cf. Definition 12.34) gives rise to a section of
Σ̂gS = ConfmG (gS) over Σ(τg)S = Stand((τg)S). Let

ΘE : ΣΓm → π−1(ΣΓm) ⊂ Σ̂,

be the morphism defined by

ΘE : ΣΓm =
∐

g ∈ gallmAE

Stand((τg)S) −→
∐

g ∈ gallmAE

Σ̂gS

where ΘE =
∐

g∈ gallmAE

ΘgS and ΘgS : Stand((τg)S) −→ Σ̂gS factors through

the embedding Stand((τg)S) ' E−1

gS (Stand((τg)S)) ⊂ Σ̂gS . It is known that(
EgS
)−1 (

Σ(τg)S

)
' E−1

gS (Stand((τg)S)) is a relatively schematically dense
open subscheme of Σ̂gS (cf. Proposition 14.22). Thus

Im ΘE ⊂ Σ̂

is a relatively schematically dense open subscheme of Σ̂.
Let the section ΘE be described more precisely. Suppose that a section σ of
ΣΓm over S is of the form

σ = ((P,Q), gS),

where g ∈ gallmAE , (P,Q) a section of Σ = Stand(G) so that

τS = t2((P,Q)),

with τ ∈ RelposAE , and
τ = τg.

This last equality means
τS = δ2(gS).

Denote by σC ((P,Q), gS) the section of ConfmF ix(P,Q)(gS) characterized by

E(σC ((P,Q), gS)) = (P,Q)(
resp. tΓ1 (σC ((P,Q), gS)) = gS

)
.

By definition of ConfmF ix(P,Q)(gS) there is an inclusion

ConfmF ix(P,Q)(gS) ⊂ ConfmG (gS),

thus σC ((P,Q), gS) may be seen as a section of ConfmG (gS). Then

ΘE(σ) = σC ((P,Q), gS).

It is clear that a unique morphism Θ may defined in general by etale descent
locally giving the above morphism.
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Remark 16.1
Denote by (P̃ , Q̃)Σ the section of Stand(G) over Σ so that, given a section τ of
RelposG, the restriction to Στ = Stand(τ) ⊂ Σ gives (P̃ , Q̃)τ (cf. Definition

12.37) (The tautological section of Stand(G) over Σ). Let
(
P̃ , Q̃

)
ΣΓm

be the section of Stand(G) over ΣΓm , given by the pull-back of
(
P̃ , Q̃

)
Σ

by
the canonical morphism

ΣΓm = Σ×RelposG Γm(∆(G)) → Σ.

Denote by σ : S → ΣΓm the section of ΣΓm → S given by σ = ((P,Q), g)
with t2(P,Q) = δ2(g). Then

F ix(P,Q) =

(
F ix

(
P̃ , Q̃

)
ΣΓm

)
σ

=

(
F ix

(
P̃ , Q̃

)
δ2(g)

)
(P,Q)

,

(cf. §12.8).

Theorem 16.2
Keep the above notation. Let G be a reductive S-group scheme.

1) There exists a unique morphism Θ : ΣΓm −→ Σ̂, so that if S′ −→ S
is an etale covering and E a frame of GS′ then ΘS′ = ΘE. Thus Θ is
a section of the morphism Σ̂

π−→ ΣΓm , and establishes an isomorphism
Θ : ΣΓm ' π−1(ΣΓm). Moreover Im Θ = π−1(ΣΓm) is a relatively
schematically dense subscheme of Σ̂.

2) The quadruple
(

Σ̂,Σ, π,Θ
)
defines a canonical Smooth Resolution

(cf. Definition 14.17) of the pull-back ΣΓm = Γm ×RelposG Σ of the
Universal Schubert scheme Σ → RelposG by

δ2 : Γm(∆(G)) → RelposG .

The Smooth Resolution
(

Σ̂,Σ, π,Θ
)
is represented by the following com-

mutative cube.
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Im ΘG - ΣG

Σ̂G
π[ -

⊂

-

Σ
G

⊂

-

Γm(∆(G))
?

δG2 - RelposG

t2

?

Γm(∆(G))

tΓ
1

?
δG2 -

Id

-

RelposG
?

Id

-

Where π[ is the composition of π followed by IdPar(G)×SPar(G) ×S δ2.
It induces a finite morphism Im ΘG −→ ΣG. Recall that ΘG : ΣGΓm −→
Im ΘG ⊂ Σ̂G is a dominant open embedding, and that π : Σ̂G −→ Σ

G

Γm is a
smooth resolution. The above commutative cube shows that:

“The Universal Schubert scheme Σ
G −→ RelposG admits a canonical

Smooth Resolution after the twisted finite extension
δ2 : Γm(∆(G)) −→ RelposG.”

Remark 16.3 The super index G is naturally introduced with the aim of
studying the behaviour of Smooth Resolutions under base changes S′ −→ S
and their dependence on G. It will be omitted if no confusion arises.

Remark that the horizontal arrows of the cube upper face factor as follows:

π[ : Σ̂G //

π
��

Σ
G

Σ
G

Γm

>> (resp. Im ΘG //

π′

��

ΣG

ΣGΓm ).

99

Where π′ denotes the restriction of π to Im ΘG ⊂ Σ̂G and it is in fact
an isomorphism. There is a commutative square of Γm(∆(G))-morphisms
which shows that the image Im ΘG connects Σ̂G and Σ

G

Γm , where π′ is an
isomorphism and π a smooth resolution.
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Im ΘG ⊂ - Σ̂G

ΣG
Γm

π′

?
⊂ - Σ

G

Γm .

π

?

One may go into the details of the above theorem by looking at the fibers of
tΓ
m

: Σ̂ −→ Γm(∆(G)) as follows. Let g : S → Γm(∆(G)) be a section of
Γm(∆(G)) over S, and (g)∗(ΣΓm) the pull-back by g of the Γm(∆(G))-scheme
ΣΓm . Write τ = δ2(g), and Σg = (g)?(ΣΓm). By definition of ΣΓm there are
canonical identifications Σg = Στ (resp. Σg = Στ ). Let

πg : Σ̂g −→ Σg

be the restriction π◦jΣ̂g of π to Σ̂g, where jΣ̂g : Σ̂g = ConfmG (g) → Σ̂ = ConfmG
denotes the natural embedding. Thus π−1

g (Σg) = E−1
g (Stand(τ)) ⊂ Σ̂g.

Recall that one has
Θg : Σg → π−1

g (Σ g) ⊂ Σ̂g

where Θg = Θ ◦ jΣg , and

jΣg : Σg = Stand(τ) → ΣΓm

denotes the natural embedding. As Σg = Στ , the definition of Θg is coherent
with that of ΘgS in Proposition 14.22. Recall that the Universal Schubert
scheme of type τ , Στ may be seen as the fiber

(
Σ
)
τ
of the Universal Schubert

scheme Σ −→ RelposG over the section τ .
The connection between the above morphisms is represented by the following
commutative cubic diagram of Γm(∆(G))-morphisms, where all the arrows,
with the exception of the two descending vertical ones, are open embeddings.
This diagram explicits the connection between Im Θ and Im Θg. The later
being the fiber of Im Θ over the section g of Γm(G). Στ is identified with the
fiber of ΣΓm over (τ , g). Super indices are omitted.
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Im Θg
⊂ - Im Θ

Σ̂g
⊂

jΣ̂g -

⊂

-
Θ

6
...................

Σ̂

⊂

-

Στ

Θg

6
......................................

- ΣΓm

..................

Στ

πg

??
⊂

jΣτ -

⊂

-

ΣΓm

π

??

⊂

-

Observe that the right lateral face of this cube is precisely the above commu-
tative square and that the lateral left face is obtained as the fiber over the
section g of Γm(∆(G)) of the right one.

Theorem 16.4
Keep the above notation. Let G be a reductive S-group scheme, and g a section
of Γm(∆(G)) with δ2(g) = τ over S.

1) There exists a unique morphism Θg : Στ −→ Σ̂g, such that if S′ −→ S

is an etale covering and E a frame of GS′ then (Θg)S′ is locally of the

form ΘgS′ . Thus Θg is a section of the morphism Σ̂g
πg
−→ Στ over

Στ , and establishes an isomorphism Θg : Στ ' π−1
g (Στ ). Moreover

Im Θg = π−1
g (Στ ) is a relatively schematically dense subscheme of Σ̂g.

2) The quadruple
(

Σ̂g,Σδ2(g), πg,Θg

)
is a canonical Smooth Resolu-

tion of the schematical closure Στ = Stand(τ)schc of Stand(τ) in
Par(G)×S Par(G).

The link between Theorem 16.2 and Theorem 16.4 is resumed by the follow-
ing diagram which makes it evident that the resolution of Theorem 16.4 is
obtained as a fiber over g of the resolution of Theorem 16.2 for a section g of
Γm over S. Thus the fiber of π[ given by πg defines a smooth resolution of
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the Universal Schubert scheme Στ defined by the type of relative position τ .

Σ̂g
⊂

jΣ̂g - Σ̂

Στ
⊂

jΣτ -

π
g

--

Σ

π [

--

S
? σg - Γm

?

S
?

στ -

Id
S

-

RelposG
?

δ
2

-

Remark that the front face and the back face of this commutative cube are
cartesian diagrams, and that the right lateral face of this cube corresponds
to the front face of the first cube. The formation of the schematic closure
commutes with flat base changes. Thus, given a section g of Γm over a flat
scheme S′ → S, a similar commutative cube is obtained with S′ instead of
S, where πg defines a smooth resolution of Στ . In the next sections one
investigates under which conditions S′ → S the corresponding morphism πg
defines a Smooth Resolution.

16.2 Smooth Resolutions and base changes

Recall that

Proposition 16.5 Keep the above notation. Suppose G is endowed with a
frame. Then Στ −→ Part(G) is a locally trivial fiber bundle with typical fiber
Σ(τ,Pt), and Στ −→ Part(G) is a sub-bundle of it with typical fiber Σ(τ,Pt).

Let G be a reductive S-group scheme and
(
g, P

)
be a section of Γm(∆(G))×S

Par(G). Write
Σ̂(g,P ) =

(
tΓ1 × prΣ̂

)−1
((g, P )),

where prΣ̂ : Σ̂ = ConfmG → Par(G) denotes the restriction of the left extremity
morphism E1 : ConfG → Par(G) to ConfmG (cf. Definition 6.10.5). There are
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cartesian squares:

Σ̂(g,P )
⊂ - Σ̂

S
? σ(g,P )- Γm(∆(G))×S Par(G),

tΓ1×prΣ̂

?

and

Σ̂(g,P )
⊂ - Σ̂g

S
?

σP- Par(G).

prΣ̂g

?

Where σ(g,P ) denotes the morphism defined by the section (g, P ) of
Γm(∆(G))×S Par(G) and σP the morphism defined by the section of Par(G)
given by P . It is clear that the second square may be intercalated in the first
one.

Theorem 16.6
Keep the above notation. Write τ = δ2(g).

1) There exists a unique morphism Θ(g,P ) : Σ(τ,P ) −→ Σ̂(g,P ), so that if
S′ −→ S is an etale covering and E a frame of GS′ then (Θ(g,P ))S′ is
locally of the form Θ(gS′ ,PS′ )

. Thus Θ(g,P ) is a section of the morphism

Σ̂g
π(g,P )

−→ Σ(τ,P ) over Σ(τ,P ), and establishes an isomorphism Θ(g,P ) :

Σ(τ,P ) ' π−1
(g,P )(Σ(τ,P )). Moreover Im Θ(g,P ) = π−1

(g,P )(Σ(τ,P )) is a

relatively schematically dense subscheme of Σ̂(g,P ).

2) The quadruple
(

Σ̂(g,P ),Σ(τ,P ), π(g,P ),Θ(g,P )

)
is a canonical Smooth

Resolution of the schematical closure Σ(τ,P ) = Stand(τ , P )schc of
Stand(τ , P ) in Par(G)×S Par(G).

The two following commutative cubes show in detail the connection between
Im Θ and Im Θ(g,Pt), and that of π and π(g,Pt). Σ̂(g,Pt) is the fiber of Σ̂

over (g, Pt) however Σ(τ,Pt) may not be equal to the fiber of ΣΓm over
(τ , Pt), and thus π(g,Pt) is not in general the fiber of π. To the first cube of
the previous section corresponds the following one where all the schemes are
considered as Par(G)-schemes.
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Im Θ
G - Σ

G

Σ̂
G π[ -

⊂

-
Σ
G

⊂

-

Par(G) ×S Γ
m

(∆(G))

?
Id×Sδ

G
2 - Par(G) ×S RelposG

pr
ΣG×St2

?

Par(G) ×S Γ
m

(∆(G))

pr
Σ̂G×StΓ1

?
Id×Sδ

G
2 -

Id

-
Par(G) ×S RelposG

?

Id

-

Where prΣ̂G : Σ̂G → Par(G) associates the left extremity with a gallery
configuration, and prΣG : ΣG → Par(G) is given by (P,Q) 7→ P .

The following commutative cubes correspond respectively to the second
and third ones of the previous section.

Im Θ(g,Pt)
⊂ - Im Θ

Σ̂(g,Pt)
⊂

jΣ̂g -

⊂

-
Θ

6
...................

Σ̂

⊂

-

Σ(τ,Pt)

Θ(g,Pt)

6
......................................

- ΣΓm

..................

Σ(τ,Pt)

π(g,Pt)

??
⊂

jΣτ -

⊂

-

ΣΓm

π

??

⊂

-

(resp.
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Σ̂(g,Pt)
⊂

j
Σ̂(g,Pt) - Σ̂

Σ(τ,Pt)
⊂

j
Σ(τ,Pt) -

π
(g
,P

t )--

Σ

π [

--

S

? σPt
×Sσg- Par(G)×S Γ

m
(∆(G))

?

S

? σPt
×Sστ -

Id
S

-

Par(G)×S RelposG ) .

?

Id
Par(G

) ×
S δ

2
-

On the other hand, there is a commutative diagram

πg : Σ̂g //

prΣ̂g ##

Στ
prΣτ

{{
Par (G),

where τ = δ2(g), prΣ̂g (resp. prΣτ ) is the fiber of prΣ̂ (resp. prΣ = prP,Σ)
over g (resp. τ)(cf. Proposition 14.19), and πg is seen as Par (G)-morphism.

The following question are treated:

Under which conditions on the base scheme S the diagram obtained from
the above one by the base change S σP−→ Par (G) is a smooth resolution?
If the answer is affirmative it establishes the connection between the Universal
Schubert scheme Στ Smooth Resolution and that one of the usual Schubert
scheme Σ(τ,P ). The following definition provides the terminology needed to
state the more general problem about the commutation of the Smooth Res-
olution of singularities of Schubert schemes with base changes. For the S-
reductive group schemes G of a fixed type such that S satisfies the condition
stated at the introduction of this chapter, it will be seen that the answers to
this question and the preceding one are affirmative. In fact such a condition
is easily obtained for a Z-Chevalley group scheme of a given type. From its
Universal Property with respect to S-reductive group schemes of the same
type the general condition on S results. More generally given a base exten-
sion S′ → S such that S′ satisfies this condition the Smooth Resolution of
the Universal Schubert scheme of GS′ is obtained by base change from that of
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G. Let UR be as in the introduction. One has that for all reductive S-group
schemes with S in Sch|UR the formation of the Universal Smooth Resolution
commutes with base changes S′ → S in Sch|UR .

Definition 16.7 The smooth resolution quadruple
(

Σ̂G,Σ
G
, πG,ΘG

)
(
resp.

(
Σ̂Gg ,Σ

G

δ2(g)π
G
g ,Θ

G
g

))
of the Schubert scheme Σ

G
(
resp. Σ

G

δ2(g)

)
of

the reductive group G, is a S-Universal Smooth Resolution, if for all
S′ → S,(
S′ ×S Σ̂G, S′ ×S Σ

G
, IdS′ ×S πG, IdS′ ×S ΘG

)
=
(

Σ̂GS′ ,Σ
GS′ , πGS′ ,ΘGS′

)
(
resp.

(
S′ ×S Σ̂Gg , S

′ ×S Σ
G

δ2(g), IdS′ ×S πGg , IdS′ ×S ΘG
g

)
=(

Σ̂GS′g
S′
,Σ

GS′
δ2(g

S′
), π

GS′
g
S′
,ΘGS′

g
S′

)
.

Let one look at Σ̂Gg (resp. Σ
G

δ2(g)) as Part(G)-schemes and πGg , ΘG
g as

Part(G)-morphisms. The Smooth Resolution
(

Σ̂Gg ,Σ
G

δ2(g), π
G
g ,Θ

G
g

)
of Σ

G

δ2(g)

is a Part(G)-Universal Smooth Resolution if for all

X //

��

Part(G)

{{
S ,

one has(
X ×Part(G) Σ̂Gg , X ×Part(G) Σ

G

δ2(g), IdX ×Part(G) π
G
g , IdX ×Part(G) ΘG

g

)
=(

Σ̂G(g
X
,PX),Σ

G

(δ2(g
X

),PX), π
G
(g
X
,PX),Θ

G
(g
X
,PX)

)
.

Where the fiber product X ×Part(G) Σ
G

δ2(g) (resp. X ×Part(G) Σ̂Gg )

is defined by the couple of morphisms
(
σX ,Σδ2(g) −→ Part(G)

)
(
resp.

(
σX , E1 : Σ̂g −→ Part(G)

))
, and PX denotes the parabolic sub-

group of G over X given by the section σX defined by X → Part(G).
Denote the first members of the above equalities respectively by(

Σ̂G,Σ
G
, πG,ΘG

)
S′
,
(

Σ̂Gg ,Σ
G

δ2(g), π
G
g ,Θ

G
g

)
S′
, and

(
Σ̂Gg ,Σ

G

δ2(g), π
G
g ,Θ

G
g

)
X
.

One may now state that the triangle (Σ̂(g,P ), Στ , Par(G)) gives rise to a

smooth resolution of Σ
G

(δ2(g
X

),PX) by the base changeX → Part(G) if and only
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if
(

Σ̂Gg ,Σ
G

δ2(g), π
G
g ,Θ

G
g

)
of Σ

G

δ2(g) is a Part(G)-Universal Smooth Resolu-
tion. To give an answer to the above stated question one needs the following
definition.

Definition 16.8 • Consider Par(G)×S Par(G) as a Par(G)-scheme by
the first projection. It is said that the formation of the Schematic
closure (cf. Definition 16.34) of the Schubert cell

ΣGτ
� � //

##

Par(G)×S Par(G)

vv
Par(G) ,

(resp.

ΣGτ ⊂ Par(G)×S Par(G), ΣG ⊂ RelposG ×S Par(G)×S Par(G))

commutes with the base change X −→ Par(G) (resp. S′ −→ S) if
the natural morphism(

X ×S ΣGτ

)schc
−→ X ×S Σ

G

τ

(resp. (
S′ ×S ΣGτ

)schc
−→ S′ ×S Σ

G

τ ,(
S′ ×S ΣG

)schc −→ S′ ×S Σ
G

)

is an isomorphism, where the superscript “schc” denotes the schematic
closure in X ×S Par(G) (resp. S′ ×S Par(G) ×S Par(G), S′ ×S
RelposG ×S Par(G)×S Par(G)).

• Recall that the Schubert cell

ΣGτ
� � //

""

Σ
G

τ

||
Par(G) ,

(resp.

ΣGτ
� � //

��

Σ
G

τ

��
S ,
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ΣG
� � //

��

Σ
G

��
S )

is universally relatively schematically dense (cf. loc. cit.) in
the Schubert scheme if for all base change X −→ Par(G) (resp.

S′ −→ S) the natural morphism
(
X ×S ΣGτ

)schc
−→ X ×S Σ

G

τ , (resp.(
S′ ×S ΣGτ

)schc
−→ S′ ×S Σ

G

τ ,
(
S′ ×S ΣG

)schc −→ S′ ×S Σ
G

), is an
isomorphism, where the superscript “schc” denotes the
schematic closure in X ×S Σ

G

τ (resp. S′ ×S Σ
G

τ , S′ ×S Σ
G
).

For the sake of simplifying notation suppose X = S. Write Pt instead of PX ,
write Σ̂(g,Pt) instead of Σ̂G(g,Pt)...etc., and denote by (πg)Pt : Σ̂(g,Pt) →

(
Στ
)
Pt

the fiber of πg over the section σPt .
The relation between (πg)Pt , πg, and the base change σPt : S → Part(G)

is represented by the following commutative diagram.

Σ̂(g,Pt)
- Σ̂g

(Στ )Pt
-

(π
g )

P
t

-

Στ

π
g

-

S
?

σPt- Part(G)
?

S
?

σPt -

Id
S

-

Part(G)
?

Id
P
a
r
t (G

) -

The front face and the back face of the cube are cartesian diagrams. Remark
that the morphism πg as a morphism in Par(G) satisfies

(
πg

)
Pt

= π(g,Pt), and

one has that its schematic image (cf. Definition 16.34) is equal to Σ(τ,Pt).

By definition of this schematic image in Par(G) the morphism
(
πg

)
Pt

factors
as
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Σ̂(g,Pt)

π(g,P) //

%%

Σ(τ,Pt)

��

� �
jΣ(τ,P) // (Στ )Pt

yy
Part(G)

.

Thus the fiber (πg)Pt : Σ̂(g,Pt) →
(
Στ
)
Pt

coincides with π(g,Pt) : Σ̂(g,Pt) →
Σ(τ,Pt) if and only if

Σ(τ,Pt) =
(
Στ

)
Pt

= S×Par(G) Στ .

Otherwise stated, as by definition Σ(τ,Pt) is the schematic closure of Σ(τ,Pt)

in Part(G), (πg)Pt = π(g,Pt) if and only if “the formation of the schematic
closure of Στ in Part(G) commutes with the base change defined by σPt”.
From Proposition 16.46 results the equivalence of the following statements:

1) The formation of the schematic closure of Στ
prΣτ−→ Part(G) in

Part(G)×S Par(G)
pr1−→ Part(G), commutes with all the base changes

X −→ Part(G).

2) Στ
prΣτ−→ Part(G) is universally relatively schematically dense in

Στ
prΣτ−→ Part(G)

Assume 1). As the schematic image of the natural embedding X ×Part(G)

Στ ↪→ X ×Part(G) Στ always exists (cf. Proposition 16.46), it fol-
lows from the hypothesis and the transitivity of schematic images that(
X ×Part(G) Στ

)schc
= X ×Part(G) Στ . Thus that Στ is Universally rel-

atively schematically dense in Στ as Part(G)-schemes.
Assume 2). Then

(
X ×Part(G) Στ

)schc
(in X ×Part(G) Στ ) =

X ×Part(G) Στ . Thus by the transitivity of schematic images one has(
X ×Part(G) Στ

)schc
(in X ×Part(G) Part(G)) = X ×Part(G) Στ , i.e. the

formation of the schematic closure commutes with all base changes.
From the equalities (πg)Pt = π(g,Pt) as morphisms in Part(G),

(
Στ
)
Pt

=

Σ(τ,Pt) as subschemes of Part(G), and the fact that there is a unique section

Θ(g,Pt) : Σ(τ,Pt) −→
(
π(g,Pt)

)−1 (
Σ(τ,Pt)

)
⊂ Σ̂(τ,Pt)

of π(g,Pt) over Σ(τ,Pt), it follows that
(

Θg

)
Pt

= Θ(g,Pt). It is clear that from

this reasoning results the
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Proposition 16.9
The smooth resolution

(
Σ̂Gg ,Σ

G

δ2(g), π
G
g ,Θ

G
g

)
of Σ

G

δ2(g) is a Part(G)-

Universal Smooth Resolution if and only if the Schubert cell ΣGδ2(g) is

Universally relatively schematically dense in the Schubert scheme Σ
G

δ2(g)

as a Part(G)-scheme.

Observe that the statement 2) is shown by the following diagram:

(X×Par(G) Στ )schc = X×Par(G) Στ
- Στ

X

(prΣτ )X

?
- Par(G),

prΣτ

?

where X −→ Par(G) denotes a Par(G)-scheme, and (X ×Par(G) Στ )schc the
schematic closure of X ×Par(G) Στ in X ×Par(G) Στ .

Proposition 16.10
Universality is a hereditary property of quadruples representing Smooth
Resolutions of Schubert schemes. Write δ2(g) = τ . More precisely stated:

1) If
(

Σ̂G,Σ
G
, πG,ΘG

)
is an S-Universal Smooth Resolution then for all

S′ → S, (
Σ̂G,Σ

G
, πG,ΘG

)
S′

=
(

Σ̂GS′ ,Σ
GS′ , πGS′ ,ΘGS′

)
is a S′-Universal Smooth Resolution.

2) If
(

Σ̂Gg ,Σ
G

τ , π
G
g ,Θ

G
g

)
is an S-Universal Smooth Resolution then for all

S′ → S, (
Σ̂Gg ,Σ

G

τ , π
G
g ,Θ

G
g

)
S′

=
(

Σ̂GS′g
S′
,Σ

GS′
τS′

, πGS′g
S′
,ΘGS′

g
S′

)
is a S′-Universal Smooth Resolution.

3) If
(

Σ̂Gg ,Σ
G

τ , π
G
g ,Θ

G
g

)
is a Part(G)-Universal Smooth Resolution, then

for all S′ → S(
Σ̂Gg ,Σ

G

τ , π
G
g ,Θ

G
g

)
S′

=
(

Σ̂GS′g
S′
,Σ

GS′
τS′

, πGS′g
S′
,ΘGS′

g
S′

)
is a S′-Smooth Resolution (resp. Part(GS′)-Universal Smooth Resolu-
tion).
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Proof The assertions 1) and 2) are immediate let it be seen 3). One proves
the first assertion of 3). Write X = S′ ×S Part(G). Clearly X ×Part(G)

ΣGτ = S′ ×S ΣGτ (resp. X ×Part(G) Σ
G

τ = S′ ×S Σ
G

τ ). From the hypothesis it

follows that the subscheme S′×SΣGτ ⊂ S′×SΣ
G

τ is schematically dense. Thus

S′ ×S Σ
G

τ = Σ
GS′
τS′

. It results that
(

Σ̂Gg ,Σ
G

τ , π
G
g ,Θ

G
g

)
is S-Universal, and that(

Σ̂Gg ,Σ
G

τ , π
G
g ,Θ

G
g

)
S′

is S′-Universal.
To prove the respective assertion of 3) it suffices to see that the schematic clo-
sure of Σ

GS′
τS′ in Part(GS′)×S′Part(GS′) commutes with the base changes X →

Part(GS′). After replacing in X ×Part(GS′ ) Σ
GS′
τS′

(resp. X ×Part(GS′ ) Σ
GS′
τS′ ),

Part(GS′) by S′×SPart(G), and Σ
GS′
τS′

by S′×SΣ
G

τ one obtains: X×Part(GS′ )

Σ
GS′
τS′

= X×Part(G) Σ
G

τ (resp. X×Part(GS′ ) Σ
GS′
τS′ = X×Part(G) ΣGτ ). From the

hypothesis it follows that Σ
GS′
τS′ ⊂ Σ

GS′
τS′

is Universally schematically dense rela-
tively to Part(GS′). It results that the formation of the schematic closure com-
mutes with base changes X → Part(GS′), so that

(
Σ̂
GS′
g
S′
,Σ

GS′
τS′

, π
GS′
g
S′
,Θ

GS′
g
S′

)
is Part(GS′)-Universal.

In the next section a sufficient condition on the base scheme S implying that

Στ
prΣτ−→ Par(G) is universally relatively schematically dense in Στ

prΣτ−→ Par(G)
is given.

16.2.1 Universality of Smooth Resolutions

Let R be a Z-root system. It is said that a reductive S-group scheme G
endowed with a frame E is of type R, if the root data it defines satisfies

R(E) = R.

It is recalled that a reductive S-group scheme G is of type R, if there exists
an étale covering (Si → S) of S such that GSi is of endowed with a frame
Ei of type R. One recalls the following

Definition 16.11 (cf. [23], Exp. XXIII, p. 317)
Given a Z-root system R there exists a reductive group Z-scheme EpZ(R)

endowed with a canonical frame ER, of type R, called the Chevalley group
scheme of type R.

The construction of the group EpZ(R) is carried out in loc. cit., Exp. XXV.
More precisely for all reduced Z-root data R endowed with a root data frame
is associated a Z-group G endowed with a canonical frame ER so that the root
data defined by ER is isomorphic to R. This construction follows from that
of Chevalley’s Tohoku memoir [10] later improved by Chevalley himself [9].
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Considering the group of automorphisms of a Lie algebra over the complex
numbers associated to a Cartan matrix, a germ of group with root data given
by the adjoint root data ad(R) is obtained, giving rise to a reductive group
scheme over Z following a procedure by Weil. The reductive group EpZ(R) is
obtained as a covering group of this one. The other achievement of loc. cit., is
the functorial presentation of this group in terms of generators and relations,
which is recalled in the last chapter, where its correspondence is shown with
that of the automorphisms group of a building.
In this section the Universal Schubert scheme and its smooth resolution of sin-
gularities of EpZ(R) are compared with the corresponding objects associated
with an S-reductive group scheme G of type R.
The data of a frame E of type R of a reductive group S-scheme G amounts
to that of an isomorphism

G ' EpZ(R)× S = Ep
S

(R).

More precisely, with the notation of loc. cit., Exp. XXIV, the AutS−gr
(Ep

S
(R))-principal fiber space of isomorphisms

IsomS−gr(EpS(R), G)

may be seen as the scheme of frames of G of type R, i.e. the sections of
IsomS−gr(EpS(R), G) over S′ −→ S are the frames of GS′(cf. loc. cit., Exp.
XXIV, Remarque 1.20). From the above isomorphism it follows that all the
schemes associated to the reductive S-group G endowed with a frame E of
type R are obtained in general by pull-back of the corresponding scheme of
EpZ(R), with the exception of the Schubert scheme. This later one deserves
special attention. Assume there is an isomorphism

Ep
S

(R) ' G,

where Ep
S

(R) = EpZ(R)×Spec(Z) S (cf. loc. cit., Exp. XXIV). One investi-

gates the link between the schematic closure Σ
G

of(
ΣEpZ(R)

)
S

= ΣG

in Par(G) ×S Par(G) ×S RelposG, and the pull-back
(

Σ
Ep

Z
(R)
)
S

of the corresponding schematic closure Σ
Ep

Z
(R)

of ΣEpZ(R) in
Par(EpZ(R)) × Par(EpZ(R)) × RelposEp

Z
(R), by the canonical mor-

phism S → Spec(Z). More precisely we establish the existence of an open
subscheme UR is established so that

(
ΣEpZ(R)

)
UR
⊂
(

Σ
Ep

Z
(R)
)
UR

is an

open relatively schematically dense subscheme. Implying that for all S → UR

and all S-reductive group scheme G, the smooth resolution quadruples are
S-universal.

The notation is simplified as follows.
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Notation 16.12
Let A be the apartment given by the Z-root system R = R(ER), i.e. A = AE.
Given τ ∈ RelposA, write τ instead of τSpec(Z), thus ΣRτ instead of Σ

Ep
Z
(R)

τSpec(Z)
...

etc. For g ∈ gallmA write g instead gSpec(Z), and denote by τ the type of
relative position in A given by g. Write ΣR = ΣEpZ(R), Σ̂R = Σ̂EpZ(R),
Σ
R

= Σ
Ep

Z
(R)

(The Absolute Universal Schubert Scheme of root type
R). Let ΣR =

∐
τ∈Relpos A

ΣRτresp. Σ̂R =
∐

g∈gallm A

Σ̂Rg , Σ
R

=
∐

τ∈Relpos A

Σ
R
τ

 .

be the canonical decompositions. Write

πR = πEpZ(R), ΘR = ΘEp
Z
(R) · · · etc,

for π, Θ · · · etc, defined as in the previous section with G = EpZ(R).

One investigates:

• Under which condition on S the quadruple
(
S ×Spec(Z) Σ̂

R
g , S ×Spec(Z) Σ

R
τ , IdS ×Spec(Z) π

R
g , IdS ×Spec(Z) Θ

R
g

)
obtained by the base change S −→ Spec(Z) from the quadruple(

Σ̂Rg ,Σ
R

τ , π
R
g ,Θ

R
g

)
giving a resolution of singularities for a Schubert Scheme of the Cheval-
ley group scheme EpZ(R), coincides with the resolution of singularities(

Σ̂Gg ,Σ
G

δ2(g), π
G
g ,Θ

G
g

)
for a Schubert Scheme of G = Ep

S
(R). A class

of schemes forming a full subcategory of that of schemes such that the
quadruple (

Σ̂
Ep

Z
(R)

g ,Σ
Ep

Z
(R)

τ , π
Ep

Z
(R)

g ,Θ
Ep

Z
(R)

g

)
is Universal relatively to this subcategory is obtained.

• Under which condition on
(

Σ̂Gg ,Σ
G

δ2(g), π
G
g ,Θ

G
g

)
, the quadruple(

S′ ×S Σ̂Gg , S ×S Σ
G

δ2(g), IdS′ ×S πGg , IdS′ ×S ΘG
g

)
obtained by the base change S′ −→ S from the quadruple(

Σ̂Gg ,Σ
G

δ2(g), π
G
g ,Θ

G
g

)
, coincides with the resolution of singularities
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Σ̂
GS′
g
S′
,Σ

GS′
δ2(g

S′
), π

GS′
g
S′
,Θ

GS′
g
S′

)
for a Schubert scheme of GS′ . In other

words one looks under which conditions the quadruple associated to G
is S-Universal.

The following proposition states the flatness of the Absolute Universal
Schubert Scheme of root type R. This allows one to apply the general theo-
rems of schematic closure and base change of which are resumed in §16.3.

Proposition 16.13
Keep the above notation. The morphisms

Σ
R → Spec(Z)

(
resp. Σ

R
τ → Spec(Z), Σ

R
(τ,Pt(ER)) → Spec(Z)

)
are proper, flat, and of finite presentation; the corresponding schemes are
integral.

Proof It is clear that by definition Σ = Σ
R

is a closed subscheme of the
proper Z-scheme

Par(EpZ(R))×Spec(Z) Par(EpZ(R))×Spec(Z) RelposEp
Z
(R),

and thus proper. Let it be seen that Σ is flat over Spec(Z). Write

Σ =
∐

τ ∈RelposAE

Στ =
∐

τ ∈RelposAE

Stand(τSpec(Z)).

Thus
Σ =

∐
Στ ,

where Στ is the projective scheme given by the schematic closure of Stand(τ)
in Par(EpZ(R))×Spec(Z)Par(EpZ(R)). It follows that Στ is a scheme of finite
presentation over Z.

To prove that Στ is flat over Spec(Z), it suffices to see that Στ is integral.
From this it follows that the sheaf of rings OΣτ

has no torsion and is thus
flat over Z. Observe that the transitive action of EpZ(R) on Στ implies that
the Schubert cell Στ is irreducible and thus that Στ is also irreducible. In
Proposition 12.20 there is a covering

Στ = Stand(τSpec(Z)) =
⋃

(R+,C′)∈ Iτ (R)

σ
(τ)
R+,C′

(Ut,R+
×Spec(Z) U(τC′)

)
by open sets. Each of them being isomorphic to the spectrum of a polynomial
ring over Z. Given

g ∈ gallmA with τg = τ (resp. (R+, C
′) ∈ Iτ (R)) ,



396 Buildings and Schubert Schemes

it results from Corollary 15.15 and the relation that exists between “the big
open cells of Στ and Σ̂g”, that

Στ = σ
(τ)
R+,C′

(
Ut,R+

×Spec(Z) U(τC′)
)schc

.

Thus one has that the schematic closure Στ = Σschcτ is an integral scheme.
(Recall that the schematic closure of an integral subscheme is integral.) It
results that the local rings O Στ ,x

of Στ are without Z-torsion, and thus flat
over Z.
The integrality of Σ

R
(τ,Pt(ER)) → Spec(Z) results from the fact that ΣR(τ,Pt(ER))

may be covered by open sets which are spectra of polynomial rings over Z as
it is irreducible.

It follows from Proposition 16.13 that the couple ΣRτ ⊂ Σ
R
τ satisfies the

hypothesis of Proposition 16.44 of the last section.

Proposition 16.14
Assume that G = Ep

S
(R) so that ΣG '

(
ΣR
)
S
. Let Z ⊂ Spec(Z) be a

not-empty subscheme so that the open subscheme(
ΣRτ
)
Z
⊂
(

Σ
R
τ

)
Z

(τ ∈ RelposAE),

is universally schematically dense relatively to Z. Let S be a Z-scheme.
Then there is the Universal Schubert scheme of G of type τ is obtained as the
pull-back of the Absolute Universal Schubert scheme of type τ , i.e.

Σ
G

τS =
(

Σ
R
τ

)
S

= Σ
R
τ ×Spec(Z) S.

This means that the formation of the schematic closure of ΣRτ in
Par(EpZ(R))× Par(EpZ(R)) commutes with base changes of the form

S //

��

Z

{{
Spec(Z).

Proof The statement of the Proposition follows immediately from Proposi-
tion 16.44. Put S = Z, S′ = S, V =

(
ΣRτ
)
Z
, X =

(
Σ
R
τ

)
Z
, and

Y = Par(Ep
Z

(R))×ZPar(EpZ(R)) =
(
Par(EpZ(R))×Spec(Z) Par(EpZ(R))

)
Z
.

On the other hand, recall that Σ
G

τS is by definition the schematic closure of

ΣGτS =
(
ΣRτ
)
S

=
(
ΣRτ
)
Z
×Z S = VS
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in

Par(G)×S Par(G) =
(
Par(Ep

Z
(R))×Z Par(EpZ(R))

)
S

= YS .

Thus Σ
G

τS =
(

Σ
R
τ

)
S

=
(

Σ
R
τ

)
Z
×Z S as it follows from Propositions 16.13 and

16.45.

The following proposition characterizes the subschemes Z ⊂ Spec(Z) sat-
isfying the condition of the above proposition.

Proposition 16.15 The notation of the above proposition is retained.

• The open subscheme (Στ )y ⊂
(
Στ
)
y
is schematically dense if and only

if
(
Στ
)
y
is integral.

• A subscheme Z ⊂ Spec(Z) satisfies the hypothesis of Proposition 16.14
if and only if for every y ∈ Z the fiber

(
Στ
)
y
is an integral scheme.

Proof If
(
Στ
)
y
is integral then the not-empty open subscheme (Στ )y ⊂(

Στ
)
y
is dense in

(
Στ
)
y
, and thus schematically dense. Reciprocally if the

(integral) open subscheme (Στ )y ⊂
(
Στ
)
y
is schematically dense, then

(
Στ
)
y

is integral as the schematic closure of an integral subscheme. The second
assertion follows from the first one and Proposition 16.44.

Remark 16.16 In fact there is a subscheme U ⊂ Spec(Z) which is open and
maximal with respect to the property defining Z.

This remark justifies the following

Definition 16.17
Given τ ∈ Relpos A one associates with τ the reduced subscheme URτ ⊂
Spec(Z), defined by

URτ =

{
y ∈ Spec(Z) | the fiber

(
Σ
R
τ

)
y
is integral

}
.

Let
U(τ,Pt) =

{
y ∈ Spec(Z) | the fiber

(
Σ
R
(τ,Pt)

)
y
is integral

}
,

where one writes Pt = Pt(E
R). Write

URτ = URτ ×Spec(Z) Par(EpZ(R)) ⊂ Par(EpZ(R)).
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Proposition 16.18 The subschemes URτ ⊂ Spec(Z), and U(τ,Pt) ⊂ Spec(Z)
satisfy:

• URτ 6= ∅ (resp. U(τ,Pt) 6= ∅).

• URτ = U(τ,Pt) =

{
y ∈ Spec(Z) | the geometric fiber

(
Σ
R
τ

)
y
is integral

}
.

• URτ is an open not-empty subscheme of Spec(Z).

• URτ is an open not-empty subscheme of Par(EpZ(R)).

Proof Observe that URτ 6= ∅ (resp. U(τ,Pt) 6= ∅) as the generic point ξ of
Spec(Z) belongs to URτ (resp. U(τ,Pt)). Remark that

(
Στ
)
×Spec(Z) Spec(Q) is

clearly integral as the schematic closure Στ of the integral scheme Στ is also
integral (cf. proof of Proposition 16.51). The second assertion is proved in
Proposition 16.22. As Σ

R
τ is a proper and faithfully flat Spec(Z)-scheme, it is

known by loc. cit., that{
y ∈ Spec(Z) | the geometric fiber

(
Σ
R
τ

)
y
is integral

}
is an open non-empty subscheme of Spec(Z). Thus by definition URτ is an
open subscheme of Par(EpZ(R)).

Apply now the Proposition 16.44 and Proposition 16.45 to show that URτ
satisfies the condition of the subscheme Z of Proposition 16.14 and is maximal
with this property. It follows from Proposition 16.13 that the couple ΣRτ ⊂ Σ

R
τ

satisfies the hypothesis of Proposition 16.44 of the next section. Observe that
the geometrical fibers of ΣRτ are integral (cf. loc. cit.).

Theorem 16.19
The open subscheme (

ΣRτ
)
URτ
⊂
(

Σ
R
τ

)
URτ

is universally schematically dense relatively to the open subscheme
URτ ⊂ Spec(Z). This subscheme is maximal for this property, i.e. if
Z ⊂ Spec(Z) is a subscheme so that the open subscheme (Στ )Z ⊂

(
Στ
)
Z

is universally schematically dense relatively to Z, then

Z ⊂ URτ .

The Absolute Universal Schubert scheme of type τ ,
(

Σ
R
τ

)
URτ

satisfies the fol-

lowing property. Let G be a reductive S-group scheme of type R endowed with
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a frame E, and assume that S is a URτ -scheme. There is an isomorphism

Σ
G

τS '
(

Σ
R
τ

)
×Spec(Z) S =

(
Σ
Ep

URτ
(R)

τURτ

)
×URτ S

(cf. Proposition 16.14).

Remark 16.20

The scheme
(

Σ
R
τ

)
URτ

is in fact the Schubert scheme of type τ of the URτ -group

Ep
URτ

(R) = URτ × EpZ(R), i.e. one has(
Σ
R
τ

)
URτ

= Σ
Ep

Uτ
(R)

τUτ .

When one looks at Σ
R
τ as a Part(EpZ(R))-scheme one obtains the following

result corresponding to URτ instead of URτ .

Theorem 16.21
The notation of the above theorem are kept.

• The open subscheme (
ΣRτ
)
URτ
⊂
(

Σ
R
τ

)
URτ

is universally schematically dense relatively to URτ ⊂
Part(EpZ(R)). Observe that(

ΣRτ
)
URτ

=
(
ΣRτ
)
URτ

(
resp.

(
Σ
R
τ

)
URτ

=
(

Σ
R
τ

)
URτ

)
.

• URτ is maximal with respect to this property, i.e. if the subscheme
ZP ⊂ Part(EpZ(R)) satisfies(

ΣRτ
)
ZP
⊂
(

Σ
R
τ

)
ZP

is universally schematically dense relatively to ZP then ZP ⊂
URτ .

• Let S be a URτ -scheme. The embedding of the Schubert cell

Σ
Ep

S
(R)

τ
� � //

&&

Σ
Ep

S
(R)

τ

xx
Par(Ep

S
(R)) ,

is a dominant morphism, i.e. it defines a universally relatively schemat-
ically dense open subscheme of the Schubert scheme.
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• Let S σP−→ Par(Ep
S

(R)) be the section defined by the parabolic subgroup
P of Ep

S
(R)) then the following diagram is cartesian:

Σ(τ,P)
- Στ

S
?

σP- Par(Ep
S
(R)).

prΣτ

?

This means that there is a canonical isomorphism

Σ
Ep

S
(R))

(τS ,P ) '
(

Σ
Ep

S
(R))

τS

)
σP

= S ×Part(Ep
S

(R))

(
Σ
Ep

S
(R))

τS

)
.

Otherwise stated the Schubert schemes Σ
Ep

S
(R))

(τS ,P ) are obtained as the

fibers of the Universal Schubert scheme Σ
Ep

S
(R))

τS −→ Part(EpS(R)).

Proof Following the pattern of the proof of Proposition 16.13 one obtains
that Σ(τ,Pt(E)) is an integral scheme. Thus its schematic closure Σ(τ,Pt(E))

in Pars(EpZ(R)) is also an integral scheme. It results that Σ(τ,Pt(E)) is
Spec(Z)-flat and finally the locally trivial morphism with Spec(Z)-flat typical
fiber Σ(τ,Pt(E)):

prP,Στ : Σ
R
τ → Part(EpZ(R))

is flat, and of finite presentation, as Σ
R
τ is a noetherian scheme. One may

thus apply Proposition 16.47 or Proposition 16.44. Let it be seen that for

z ∈ URτ

the open subscheme (
ΣRτ
)
z
⊂
(

Σ
R
τ

)
z

is schematically dense or what amounts to the same thing that
(

Σ
R
τ

)
z
is an

integral scheme.
Suppose that y ∈ URτ . By definition of URτ it is known that the fiber(

Σ
R
τ

)
y

= Spec(κ(y))× Σ
R
τ

is integral. On the other hand, prP,Στ defines a locally trivial fibration triv-
ialized by the big cell open covering of Part(EpZ(R)). Hence there exists
an open sub-scheme U ⊂ Part(EpZ(R)) isomorphic to a polynomial ring
over Z spectrum and an isomorphism (ΣRτ )U ' U × Σ(τ,Pt(E)). Thus the
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open subscheme
((

Σ
R
τ

)
U

)
y
of
(

Σ
R
τ

)
y
is integral. From the isomorphism((

Σ
R
τ

)
U

)
y
' Uy ×Spec(κ(y))

(
Σ(τ,Pt(E))

)
y
, the fact that

Part(EpZ(R))y −→ Spec(κ(y)) ,

is faithfully flat, and Uy ⊂ Part(EpZ(R))y is an open set it is deduced that(
Σ(τ,Pt(E))

)
y
is integral. Thus it results in the inclusion URτ ⊂ U(τ,Pt).

If
(

Σ
R
(τ,Pt)

)
y

is integral then for every set U of the open big cell cover-

ing
((

Σ
R
τ

)
U

)
y
' Uy ×Spec(κ(y))

(
Σ(τ,Pt(E))

)
y
is also integral and

(
Σ
R
τ

)
y

=⋃((
Σ
R
τ

)
U

)
y
, where U runs over the big cell covering. It is recalled that for

a locally noetherian scheme to be integral is equivalent to being a connected
scheme that is covered by the spectra of integral domains. It is concluded
that

(
ΣRτ
)
y
is integral and thus the inclusion U(τ,Pt) ⊂ URτ and finally that

URτ = U(τ,Pt).
Let z ∈ URτ . Its image y by the canonical morphism

URτ = URτ ×Spec(Z) Part(EpZ(R)) → URτ .

belongs U(τ,Pt) and thus one has that
(
Σ(τ,Pt(E))

)
y
is integral. The absolutely

integral open subscheme
(
Σ(τ,Pt(E))

)
y
⊂
(
Σ(τ,Pt(E))

)
y
is thus schematically

dense and thus relatively schematically dense by Proposition 16.44. Hence
from the isomorphism(

Σ
R
τ

)
z
' Spec(κ(z))×Spec(κ(y))

(
Σ(τ,Pt(E))

)
y

by transitivity of fibers (cf. [24], Corollaire 3.4.9), it results that
(

Σ
R
τ

)
z
is in-

tegral as the schematic closure of the integral subscheme Spec(κ(z))×Spec(κ(y))(
Σ(τ,Pt(E))

)
y
. Consequently on the basis of Proposition 16.44 ΣRτ ⊂ Σ

R
τ is

universally relatively schematically dense with respect to Part(EpZ(R)). This
achieves the proof of the first statement. The second statement is proved in
the following proposition. The third one is a particular case of the fourth
assertion of Proposition 16.44. The last one results from Proposition 16.14
taking on account the third statement.

Proposition 16.22 With the notation of the above theorem one has:
• U(τ,Pt) = URτ .

• The open subscheme URτ ⊂ Par(EpZ(R)) is maximal with the prop-

erty
(
ΣRτ
)
URτ
⊂
(

Σ
R
τ

)
URτ

is a universally relatively schematically

dense open subscheme.
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Proof The first assertion results from the proof of the above proposition. Let
it be proved the second one. By Propositions 16.44 it suffices to see that the
open subscheme

V =
{
z ∈ Par(EpZ(R)) | the fiber

(
Σ
R
τ

)
z
is integral

}
is equal to URτ . Let y be a point in the image of V by the natural projection.
It follows by the proof of the above proposition that y ∈ U(τ,Pt) and thus that
y ∈ URτ . It is concluded that V ⊂ URτ = Par(EpZ(R)) ×Spec(Z) U

R
τ . By the

above proposition URτ = Par(EpZ(R))×Spec(Z) U
R
τ ⊂ V thus V = URτ .

Proposition 16.23
For all scheme S → URτ ⊂ Spec(Z), and all S-reductive group scheme G of
type R, ΣGτ ⊂ Σ

G

τ is Universally schematically dense relatively to S,
where τ denotes a type of relative position such that τ = τS

′ for some etale
covering S′ → S.

Proof Suppose that G is endowed with a frame of type R. Thus given a URτ -
scheme S one has G ' S × EpZ(R) = S ×URτ Ep

URτ
(R). From the definition

of URτ it results that the subscheme

ΣGτS = S ×URτ ΣRτ ⊂ S ×URτ Σ
R
τ

is schematically dense. Thus for all URτ -scheme S the schematic closure Σ
G

τS

of ΣGτS in Part(G)×S Part(G) is equal to S ×URτ Σ
R
τ . Let S′ → S. One has

S′ ×S Σ
G

τS = S′ ×S
(
S × Σ

R
τ

)
= S′ × Σ

R
τ . Thus from the previous argument

with S′ instead of S one obtains Σ
GS′
τS′

= S′ ×S Σ
G

τS , i.e. ΣGτS ⊂ Σ
G

τS is
Universally schematically dense relatively to S.
Let G be a reductive group scheme of type R and S′ → S. By definition
there exists an etale covering (Si → S), where Si may be supposed finite etale
over S, and isomorphisms GSi ' Si ×URτ Ep

URτ
(R). Write S′i = Si ×S S′.

One has, for all i, Si ×S
(
S′ ×S Σ

G

τS

)
= S′i ×Si

(
Si ×S Σ

G

τS

)
= S′i ×Si Σ

GSi
τSi

.

The former equality is tautological and the later follows from the commuta-
tion of the formation of the schematic closure with finite etale base changes.

By the first part of the proof the natural morphisms Σ
GS′

i
τS′
i
→ S′i ×Si Σ

GSi
τSi

are isomorphisms, as GSi is endowed with a frame of type R. It is con-

cluded that
∐
i

Si ×S
(
S′ ×S ΣGτS

)
=
∐
i

Σ
GS′

i
τS′
i

is schematically dense in
∐
i

Si ×S(
S′ ×S Σ

G

τS

)
=
∐
i

S′i×SiΣ
GSi
τSi

and consequently that S′×SΣGτS is schematically

dense in S′ ×S Σ
G

τS . This achieves the proof of the proposition.
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The following proposition is an immediate corollary of Theorem 16.21.

Proposition 16.24
Write ΣR =

∐
τ∈Relpos A(ER)

ΣRτ (resp. Σ
R

=
∐

τ∈Relpos A(ER)

Σ
R
τ ) and de-

fine open subsets by UR =
⋂

τ∈Relpos A
URτ ⊂ Par(EpZ(R)) (resp. UR =⋂

τ∈Relpos A
URτ ⊂ S). There is a commutative diagram of Par(EpZ(R))-

morphisms

Σ
Ep

UR
(R)

τUR
=
(
ΣR
)
UR
� � //

##

UR ×Spec(Z) Σ
R

=
(
Σ
R)
UR

vv
UR ,

and a commutative diagram of S-morphisms

Σ
Ep

UR
(R)

τUR
=
(
ΣR
)
UR
� � //

$$

UR ×Spec(Z) Σ
R

=
(
Σ
R)

UR

vv
UR ,

where the horizontal arrow is respectively a universally dominant embedding
relatively to UR and UR. Thus the open subscheme

(
ΣR
)
UR ⊂

(
Σ
R)
UR

is

universally schematically dense relatively to UR and to UR.

Let S be a UR-scheme, and G a reductive S-group scheme of type R. The
Universal property of the above diagram gives rise to the Par(G)-universally
dominant embedding

ΣG � � //

##

Σ
G

{{
Par(G)

(resp. the S-universally dominant embedding

ΣG � � //

  

Σ
G

~~
S

,
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the Γm(∆(G))-universally dominant embedding

ΣG
Γm(∆(G))

� � //

''

Σ
G

Γm(∆(G))

ww
Γm(∆(G)) ) .

Remark that this last assertion is equivalent to the following: for all section
g of Γm(∆(G)) the embedding Σg ↪→ Σg is a dominant S-embedding.
Thus

Theorem 16.25
Let S be a UR-scheme, and G a reductive S-group scheme of type R.

1)
(

Σ̂G,Σ
G
, πG,ΘG

)
is an S-Universal smooth resolution.

2)
(

Σ̂GΓm(∆(G)),Σ
G

Γm(∆(G)), π
G
Γm(∆(G)),Θ

G
Γm(∆(G))

)
is a Γm(∆(G))-

Universal smooth resolution, and also a Γm(∆(G)) ×S
Par(G)-Universal smooth resolution. In fact the notation(

Σ̂GΓm(∆(G)),Σ
G

Γm(∆(G)), π
G
Γm(∆(G)),Θ

G
Γm(∆(G))

)
amounts to seeing(

Σ̂G,Σ
G
, πG,ΘG

)
as formed by Γm(∆(G))-schemes and morphisms.

Recall that πGΓm denotes the canonical morphism
π : Σ

G −→ Γm(∆(G))×RelposG Σ
G

= Σ
G

Γm(∆(G)).

3) For all section g of Γm(∆(G)) the smooth resolution(
Σ̂Gg ,Σ

G

δ2(g), π
G
g ,Θ

G
g

)
is S-Universal.

4) For all section (g, Pt) of Γm(∆(G))×S Part(G) the smooth resolution(
Σ̂G(g,Pt),Σ

G

(δ2(g),Pt), π
G
(g,Pt)

,ΘG
(g,Pt)

)
is S-Universal.

Assume that G is splitted, i.e. endowed with a frame. Then the third asser-
tion is represented by the following diagram whose front and back faces are
cartesian squares.
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Σ̂G
g

S

- (Σ̂Rg )Uδ2(g)

Σ
G

δ2(g
S

)
-

π G
g
S

-

(Σ
R
δ2(g))Uδ2(g)

(π R
g )

U
δ
2 (g

)-

S
?

- Uδ2(g)

?

S
?

-

Id
S

-

Uδ2(g) .
?

Id
U
δ
2 (g

) -

Let NR be the smallest natural integer N such that UR = Spec(Z[1/NR]).
Let S be a scheme given in terms of the disjoint sum

∐
Spec(Ai) of affine

schemes and the transition cocycle (Φij), and an integer 1 5 N . Define
Spec(OS [1/N ]) as the scheme defined by

∐
Spec(Ai[1/N ]) and the cocycle

(Φij [1/N ]) obtained by restriction to
∐
Spec(Ai[1/N ]) ∩ Spec(Ai[1/N ]) of

(Φij). The underlying set of points of Spec(OS [1/N ]) is the open subset
of S formed by all the points s such that ch κ(s) do not divide N . Write
SUR = Spec(OS [1/NR]). Remark that the restriction of a smooth resolution
to an open subscheme U ⊂ S is a smooth resolution.

Theorem 16.26
Let G be a reductive S-group scheme of type R. Suppose that there exists at
least a residual characteristic of S not dividing NR, i.e. SUR 6= ∅.

1)
(

Σ̂G,Σ
G
, πG,ΘG

)
SUR

is a SUR-Universal smooth resolution.

2)
(

Σ̂GΓm(∆(G)),Σ
G

Γm(∆(G)), π
G
Γm(∆(G)),Θ

G
Γm(∆(G))

)
SUR×SΓm(∆(G))

is

a SUR ×S Γm(∆(G))-Universal smooth resolution, and also a
SUR ×S Γm(∆(G))×S Par(G)-Universal smooth resolution.

3) For all section g of SUR ×S Γm(∆(G)) the smooth resolution(
Σ̂Gg ,Σ

G

δ2(g), π
G
g ,Θ

G
g

)
SUR

is SUR-Universal.

4) For all section (g, Pt) of SUR ×S Γm(∆(G)) ×S Part(G) the smooth
resolution quadruple(

Σ̂G(g,Pt),Σ
G

(δ2(g),Pt), π
G
(g,Pt)

,ΘG
(g,Pt)

)
SUR
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is SUR-Universal.

16.2.2 A general condition of Universality of smooth resolutions

Proposition 16.27 Let G be a reductive S-group scheme endowed with a
frame of type R. Let τ = τS for some relative position type τ of AE, and t
be the type of a facet defined by τ . Then the locally trivial fibration Στ −→
Part(G) is of finite presentation if and only if its typical fiber Σ(τ,Pt) is of
finite presentation over S.

Proof It is known that Στ −→ Part(G) is trivialized by the big cell open
covering. Let U be a big cell subscheme of Part(G). There is an isomorphism(

Στ
)
U
' U ×S Σ(τ,Pt).

On the other hand, the ideal I ⊂ OΣτ
defining the embedding j : Σ(τ,Pt) ↪→ Στ

given by the fiber of Στ over the center of U is finitely generated. Observe
that Στ −→ S is a finite presentation morphism as the composition of finite
presentation morphisms, namely Στ −→ Part(G) followed by Part(G) −→ S.
It is concluded that the morphism Σ(τ,Pt) −→ S is locally of finite presentation.
On the other hand, it is known that it is projective and thus proper. It is
deduced that Σ(τ,Pt) is of finite presentation over S.
Suppose Σ(τ,Pt) of finite presentation over S. From the above isomorphism it
results that for all open set U of the big cell open covering

(
Στ
)
U
→ U is of

finite presentation. It results that Στ −→ Part(G) is of finite presentation.

Proposition 16.28 Let G be a reductive S-group scheme endowed with a
frame of type R. Then the morphism Στ −→ Part(G) is flat if and only if
Σ(τ,Pt) −→ S is a flat morphism.

Proof Suppose that Σ(τ,Pt) −→ S is a flat morphism. Thus for all big cell
U , (

Στ
)
U
' U ×S Σ(τ,Pt) −→ U

is a flat morphism. It results immediately that Στ −→ Part(G) is a flat
morphism. Suppose that Στ −→ Part(G) is a flat morphism. Let U be a
big cell. Then

(
Στ
)
U
' U ×S Σ(τ,Pt) −→ U is a flat morphism. By descent

of flatness by faithfully flat morphisms it results that Σ(τ,Pt) −→ S is a flat
morphism.

Let k be a field and X a k-scheme of finite type, V ⊂ X be an integral
open subscheme. Then V is schematically dense in X if and only if X is
integral. Suppose that V is absolute integral, i.e. for all field extension k → K,
Spec(K)×kV is an integral scheme, and schematically dense inX. Then for all
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K, Spec(K)×kV is schematically dense in Spec(K)×kX (resp. Spec(K)×kX
is integral). Reciprocally it is clear by descent that if for some extension K,
Spec(K)×kV is schematically dense in Spec(K)×kX (resp. Spec(K)×kX is
an integral scheme), then V ⊂ X is schematically dense (resp. X is integral).
Denote by k an algebraic closure of k. It follows that V ⊂ X is schematically
dense in X (resp. X is integral) if and only if Spec(k)×k V is schematically
dense in Spec(k) ×k X (resp. Spec(k) ×k X is integral). Let S be a scheme
and V ⊂ X an open subscheme of an S-scheme X. Where X is of finite
presentation and flat, and V with absolute integral fibers. Define the subsets
of S by

U(V,X) = { s ∈ S | Vs ⊂ Xs schematically dense}(
resp. Ũ(V,X) = { s ∈ S | Vs ⊂ Xs schematically dense}

)
.

By the previous argument U(V,X) = Ũ(V,X), and

Ũ(V,X) = { s ∈ S | Xs integral, Vs not empty}.

Suppose that X −→ S is proper, flat, and of finite presentation. Under
these hypotheses the set of points s ∈ S such that Xs is integral is an open
subset of S. From the above equality we conclude that U(V,X) is an open set
such that for all s ∈ U(V,X) the subscheme Vs ⊂ Xs is schematically dense.
As X −→ S is in particular flat and of finite presentation it results that the
subscheme VU(V,X)

⊂ XU(V,X)
is schematically dense, and that U(V,X) is the

maximal subscheme of S with this property.
Let G be a reductive S-group scheme of type R. Let V = ΣGτ and X = Σ

G

τ .
Write

UGτ = U(V,X)

(
resp. UGτ = U(V,X) if ΣGτ and Σ

G
τ are seen as Part(G)− schemes

)
.

Given z 7→ y there is an isomorphism(
Σ
G

τ

)
z
' Spec(κ(z))×Spec(κ(y))

(
Σ
G

(τ,Pt)

)
y

(transitivity of fibers). Thus the fiber
(

Σ
G

τ

)
z
is integral if and only if the

fiber
(

Σ
G

(τ,Pt)

)
y
is integral. It follows the equality

UGτ = UGτ ×S Part(G) ,

as both members are open subschemes of Part(G) with the same underlying
set of points.
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Let G ' S ×EpZ(R) for the etale topology locally in S. Suppose that Σ
G

τ →
Part(G) (t denotes a section of types of G) is for the etale topology locally in
S isomorphic to Σ

Ep
S

(R)

τS → Part′S (Ep
S

(R)), where t′ (resp. τ) is a type (resp.

a type of relative position) of AE depending on τ . It is said that Σ
Ep

S
(R)

(τS ,Pt′ )

is the typical fiber of Σ
G

τ → Part(G). Let Σ̂Gg define a smooth resolution

of Σ
G

τ , i.e. g is a “relative minimal gallery of types” of G with δ2(g) = τ .

Suppose there is a minimal gallery of types g of AE such that Σ̂
Ep

S
(R)

gS defines

a smooth resolution of Σ
Ep

S
(R)

τS , and Σ̂
Ep

S
(R)

gS ' Σ̂Gg for the etale topology

locally in S. It is said that Σ̂
Ep

S
(R)

(gS ,Pt′ )
is the typical fiber of Σ̂Gg .

Proposition 16.29
Keep the above notation and hypothesis. The following three assertions are
equivalent.

1) The scheme Σ
G

τ is of finite presentation, flat, and with integral fibers
relatively to S.

2) The scheme Σ
G

τ is of finite presentation, flat, and with integral fibers
relatively to Part(G).

3) The typical fiber Σ
Ep

S
(R)

(τS ,Pt)
is of finite presentation, flat, and with integral

fibers relatively to S.

Proposition 16.30
Keep the notation and hypothesis of the preceding proposition. If one of the
three assertions of the above theorem is satisfied then:

1)
(

Σ̂G,Σ
G
, πG,ΘG

)
is an S-Universal smooth resolution.

2)
(

Σ̂GΓm(∆(G)),Σ
G

Γm(∆(G)), π
G
Γm(∆(G)),Θ

G
Γm(∆(G))

)
is a Γm(∆(G))-

Universal smooth resolution, and also a Γm(∆(G))×SPar(G)-Universal
smooth resolution.

3) For all section g of Γm(∆(G)) the smooth resolution(
Σ̂Gg ,Σ

G

δ2(g), π
G
g ,Θ

G
g

)
is S-Universal.

4) For all section (g, Pt) of Γm(∆(G))×S Part(G) the smooth resolution(
Σ̂G(g,Pt),Σ

G

(δ2(g),Pt), π
G
(g,Pt)

,ΘG
(g,Pt)

)
is S-Universal.
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Let one recall the Theorem of generical flatness (cf. Theoreme(6.9.1), [26]).

Theorem 16.31 Let S be an integral scheme locally noetherian and f :
X −→ S a morphism of finite type. There exists a not-empty open subset
U of S so that OX |U is flat over U .

Theorem 16.32
Let G be a reductive group scheme over a reduced locally noetherian scheme
S. Then there exists a dense open subset UG of S satisfying the following
property. The morphism

(
Σ
G
)
UG
−→ UG is a flat morphism of locally finite

presentation so that its fibers are integral. Thus UG ×S ΣG ↪→
(

Σ
G
)
UG

is

dominant, otherwise stated UG ×S ΣG is universally schematically dense in(
Σ
G
)
UG

relatively to UG. Moreover UG may be chosen containing SUR .

Proof As density is a local property one may clearly suppose that S is affine
reduced and noetherian. Write S = Spec(A), and denote by S(1), · · · , S(N) the
irreducible components of S. There are N prime ideals of A, P(1),· · · ,P(N),
with S(1) = Spec(A/P(1)),· · · ,S(N) = Spec(A/P(N)). By the theorem of
generical flatness applied to

(
Σ
G
)
Spec(A/P(i))

−→ Spec(A/P(i)) there is a

not-empty open subset U (i) of Spec(A/P(i)) such that
(

Σ
G
)
U(i)
−→ U (i) is a

flat morphism. Observe that the generic point ξ(i) of Spec(A/P(i)) belongs to
U (i), and that Spec(κ(ξ(i))) −→ Spec(A/P(i)) is a quasi-compact flat exten-
sion. Thus

Spec(κ(ξ(i)))×S ΣG ↪→
(

Σ
G
)
Spec(κ(ξ(i)))

is a dominant morphism. Otherwise stated
(
ΣG
)
ξ(i) is schematically dense in(

Σ
G
)
ξ(i)

. It follows that
(
ΣG
)
ξ(i) is schematically dense in

(
Σ
G
)
ξ(i)

. Let

V be the set of points s of Spec(A) so that the geometrical fiber
(

Σ
G
)
s
of

Σ
G

is integral. It is known that V ∩ U (i) is in fact open. On the other hand,
V ∩U (i) coincides with the set of points s ∈ U (i) so that

(
ΣG
)
s
is schematically

dense in
(

Σ
G
)
s
. Thus V ∩ U (i) is an open subscheme of U (i) so that ΣG is

universally schematically dense in Σ
G

relatively to V ∩ U (i) (and is maximal
with this property). The open subscheme UG = (

⋃
V ∩ U (i)) ∪ SUR satisfies

the property of the theorem, as V ∩ U (i) is dense in Spec(A/P(i)), and thus⋃
V ∩ U (i) is dense in Spec(A).

Corollary 16.33 One keeps the same hypothesis and notation of the above
theorem. Then the four statements of Theorem 16.30 hold for G over UG
instead of S
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16.3 Schematic closure and base change

16.3.1 Generalities about the schematic closure

The following definitions are recalled:

Definition 16.34
Let f : X → Y be a morphism of schemes. The smallest closed subscheme
Y ′ ⊂ Y , so that the canonical embedding jY ′ : Y ′ → Y factors f , is the
schematic image of f , if it exists.

• If X is a subscheme of Y , and jX : X → Y the canonical embedding, by
definition the schematic closure Xschc of X in Y is the schematic
image of jX . (cf. [24], Ch. 1, Definition (6.10.1)).

• X is schematically dense in Y (cf. [24], Ch. 1, Definition (5.4.2))
if the canonical embedding jX : X → Y is schematically dominant.
Otherwise stated: the schematic closure XschcY of X in Y is equal to
Y .

• The S-subscheme X ⊂ Y is universally relatively schematically
dense if for all base change S′ → S the subscheme S′ ×S X ⊂ S′ ×S Y
is schematically dense. Otherwise stated the canonical embedding jX is
universally schematically dominant, i.e. for all base change S′ →
S the morphism IdS′ ×S jX : S′ ×S X −→ S′ ×S Y is schematically
dominant.

Definition 16.35
A morphism f : X → Y is schematically dominant if for every open
subset U ⊂ Y and every closed subscheme Z ⊂ U , such that the restriction
f−1(U) → U of f factors as

f−1(U)
g→ Z

jZ→ U,

it is
Z = U.

One recalls the transitivity of schematic images which plays an important
role in the proof of the main theorem.

Proposition 16.36
Let f : X → Y and g : Y → Z be the two morphisms. Suppose that
the schematic image Y ′ of f exists, and that the schematic image Z ′ of Y ′
by the restriction g′ of g to Y ′ exists also. Then the schematic image of
X by the composed morphism g ◦ f exists and is equal to Z ′. (cf. loc. cit.,
Proposition (6.10.3))
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Let S′ → S. Suppose that the schematic closure (S′ ×S X)
schcY ′ exists (resp.

XschcY exists). It is said that the formation of the schematic closure
of the S-subscheme X ⊂ Y commutes with the base change S′ → S if the
canonical morphism (S′ ×S X)

schcY ′ → S′ ×S XschcY is an isomorphism.
The following Proposition gives a sufficient conditions allowing the existence
of the schematic image (resp. schematic closure) of a morphism f : X → Y
(resp. an embedding jX : X → Y ).

Proposition 16.37
The schematic image Y ′ of X by the morphism f : X → Y exists in each of
the following two cases:

1. f∗(OX) is a quasi-coherent OY -module (this condition is satisfied if
f is quasi-compact and separated).

2. X is reduced and as a particular case if X is an integral scheme.

The underlying subspace of Y ′ is given by the closure f(X) in Y of the image
f(X) of f , and f factors as

X
g→ Y ′

jY ′→ Y,

where g is schematically dominant (cf. [24], Ch. 1, Proposition (6.10.5)). As
an embedding is a separated morphism it results the following

Corollary 16.38 Let j : X ↪→ Y be a quasi-compact embedding, i.e. for all
affine open set U ⊂ Y , j−1(U) is quasicompact. Then the schematic closure
of X in Y exists.

As the S-schemes being considered in this work are quasi-projective or pro-
jective, it follows from the above proposition that if we suppose one of the
following conditions

1. S is a reduced scheme.

2. S is a noetherian scheme.

the hypothesis for the existence of the schematic image are satisfied. Anyhow
in this context one may state results in all generality concerning the base
scheme S.
The following proposition allows one to give the schematic closure of a sub-
scheme jX : X ↪→ Y in terms of descent data once one knows it exists.

Proposition 16.39 1) Suppose that f : X −→ Y satisfies one of the con-
ditions of Proposition 16.37. Denote by fV : f−1(V ) −→ V the restric-
tion of f to an open set V of Y . Then the schematic image of f−1(V )
in V exists and is given by the subscheme inf(V, Y ′) induced by Y ′ on
the open set V ∩ Y ′ of Y ′.
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2) More generally if f : X −→ Y satisfies one of the conditions of Proposi-
tion 16.37 the formation of the schematic closure commutes with a flat
morphism Z → Y , i.e. (Z ×Y X)

schcYZ = Z ×Y XschcY .

Proposition 16.40
Let V ⊂ X be a subscheme and g : X ′ → X a faithfully flat morphism.

1) Suppose X ′ ×X V ⊂ X ′ is schematically dense in X ′. Then V is
schematically dense in X.

2) Let V and X be S-schemes and S′ → S a faithfully flat morphism.
Suppose that the subscheme S′ ×S V ⊂ S′ ×S X is schematically dense.
Then V is schematically dense in X.

Proof The first assertion is an immediate corollary of Théorème (11.10.5)
of [27] 1966. The following remark proves 2). It results from the commutative
diagram

S′ ×S V
i //� r

##

X ′ ×X V
lL

zz
X ′ ,

where i is the isomorphism of schemes defined by (s′, v) 7→ ((s′, xv), v), with xv
denoting the image of v in X, that if S′×SV ↪→ X ′ = S′×SX is schematically
dense then X ′ ×X V ↪→ X ′ is also schematically dense.

Let some general results concerning separated schemes be recalled.

1) An affine scheme X is separated, i.e. the diagonal ∆X is a closed sub-
scheme of the product X ×X = X ×Z X.

2) A projective scheme X −→ S is separated over S. Thus if one supposes
S separated the composed morphism

X //

##

S

{{
Spec(Z)

,

is also separated. It results that a projective scheme is separated. Thus
any subscheme of a projective scheme is also separated.

3) Let Y be a separated scheme and f : X −→ Y a morphism. For all
affine open subset U of X and all affine open subset V of Y , U ∩f−1(V )
is affine.
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Recall that a morphism f : X → Y is quasi-compact if for all quasi-compact
open set V ⊂ Y , f−1(V ) is quasi-compact. Let S be a scheme and S =

⋃
i

Ui an

open covering by affine open subsets. Observe that an S morphism f : X → Y
is quasi-compact if and only if f−1(V ) is quasi-compact for all open affine
subset V contained in some XUi

Proposition 16.41 A morphism f : X −→ Y between a quasi-compact
scheme X and a separated scheme Y is quasi-compact.

Proof Write X as a finite union of affine open sets, X =
⋃

1≤i≤N
Ui. Let

V ⊂ Y be an affine open set. Then for all 1 ≤ i ≤ N the intersection
Ui ∩ f−1(V ) is an affine open set in X and f−1(V ) =

⋃
1≤i≤N

Ui ∩ f−1(V ).

It follows that f−1(V ) is a quasi-compact open set as a finite union of affine
open sets.

Proposition 16.42
Let S be an affine scheme, G a reductive S-scheme endowed with a frame E,
P ⊂ G (resp. B ⊂ P ) a parabolic subgroup of type t (resp. a Borel subgroup)
adapted to the frame E, τ ∈ Relpos A(R(E)).

• The Schubert cell Σ(τ,P) ⊂ Par(G) is a quasi-compact subscheme.

• The Universal Schubert cell Σ ⊂ RelposG ×S Par(G) ×S Par(G) is a
quasi-compact subscheme.

• The schematic closure Σ(τ,P) (resp. Σ, Στ ) of Σ(τ,P) (resp. Στ , Σ)
in Par(G) (resp. Par(G)×S Par(G), RelposG ×S Par(G)×S Par(G))
exists.

Proof Observe first that as S is a separated scheme then Par(G) is separated
as Par(G) −→ S is a proper morphism and thus separated and S is separated
as it is affine. One has Σ(τ,P) =

⋃
τ ′

Σ(τ ′,B), where τ ′ ∈ Relpos A(R(E))

runs on the finite set of types of relative positions indexing the B-Schubert
cells Σ′ contained in Σ(τ,P). On the other hand, the B-Schubert cells Σ(τ ′,B)

are affine schemes and thus quasi-compact. It results that Σ(τ,P) is a quasi-
compact scheme.
Observe that the Universal Schubert Cell Στ −→ Part(G) of type τ is a locally
trivial fibration trivialized by the big cell open covering (Uj) of Par(G) and
that:

• (Στ )Uj ' Uj ×S Σ(τ,P);

• Στ =
⋃
j

(Στ )Uj .
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As the Uj are affine schemes and j runs on a finite set, it is concluded that
Στ is a finite union of quasi-compact schemes, and thus quasi-compact.
As Σ =

∐
τ∈Relpos A(R(E))

Στ it results that Σ is quasi-compact.

The last assertion follows immediately from Proposition 16.42 and Proposition
16.37.

Corollary 16.43

1) Let S be an affine scheme, and G a reductive S-group scheme, τ a type
of relative position section, and P ⊂ G a parabolic subgroup. Then
the schematic closure Σ(τ,P) (resp. Σ, Στ ) of Σ(τ,P) (resp. Στ , Σ)
in Par(G) (resp. Par(G)×S Par(G), RelposG ×S Par(G)×S Par(G))
exists.

2) Same statement as in 1) for S a general scheme.

Proof From Proposition 16.37 it suffices to verify that the canonical em-
bedding of Σ(τ,P) (resp. Στ , Σ) in Par(G) (resp. Par(G) ×S Par(G),
RelposG ×S Par(G)×S Par(G)) is quasi-compact.
The verification of the quasi-compacity condition of an S-embedding is local
in S for the etale topology. Let S′ −→ S be an affine etale covering so that
GS′ is endowed with a frame. One has that

(
Σ(τ,P)

)
S′

= Σ
GS′
(τS′ ,PS′ )

(resp.(
Στ

)
S′

= Σ
GS′
τS′ , (Σ)S′ = ΣGS′ ). Thus it suffices to show the quasi-compacity

of this embedding for GS′ , where S′ → S is an affine etale covering such that
GS′ is endowed with a frame. That has been proved in the proof of Proposition
16.42.

The following remark implies that the proof of the quasi-compacity of the
canonical embedding when S is a general base scheme, results from the case
where S is affine and thus 2) follows from 1). Let S be a scheme and S =⋃
i

Si an open covering by affine open subsets. A S-morphism f : X → Y is

quasi-compact if and only for all open affine subset V contained in some YSi ,
f−1(V ) ⊂ XSi is quasi-compact, i.e. if an only if fSi is quasi-compact for all
Si.

16.3.2 Criterion of Universal relative schematical density

Proposition 16.44
Let X be an S-scheme proper and flat of finite presentation, and V ⊂ X an
open subscheme with not empty fibers which are absolute integral, i.e. given
s ∈ S and K a field extension of the residual field κ(s) of s then Vs̃ is integral,
where s̃ = Spec(K).

1) Given a fixed field extension K of κ(s) write s̃ = Spec(K). Then Xs̃ is
integral if and only if Xs is integral. As a particular case one has that
Xs is integral if and only if the geometric fiber Xs is integral.



Functoriality of Schubert Schemes Smooth Resolutions and Base Changes 415

2) Vs is schematically dense in Xs if and only if Xs is integral.

3) Given a fixed field extension K of κ(s) one has that Vs̃ is schematically
dense in Xs̃ if and only if Vs is schematically dense in Xs. As a partic-
ular case Vs is schematically dense in Xs if and only if the geometrical
fiber Vs is schematically dense in the geometrical fiber Xs.

4) The open subscheme V of X is universally relatively schematically
dense if an only if the fibers Vs (resp. the geometrical fibers Vs) are
schematically dense in the fibers Xs (resp. the geometrical fibers Xs).

5) The open subscheme V is universally relatively schematically
dense in X if and only if the fibers Xs (resp. the geometrical fibers
Xs) are integral.

6) There is an open subscheme U ⊂ S so that if T ⊂ S satisfies “T ×S
V ⊂ T ×S X is a universally relatively schematically dense” then
T ⊂ U .

The above proposition is complemented by the following corollary which
compares the schematic images V schcXS′ and V schcYS′ for S′ → S and results
from the transitivity of schematic images.

Proposition 16.45
Let V ⊂ X be S-schemes and X ↪→ Y a closed embedding of S-schemes.

1) Suppose that V is universally relatively schematically dense in X. Then
for all S′ → S the schematic closure V schcYS′ of S′ ×S V in S′ ×S Y
exists and is equal to S′×SX, i.e. the formation of the schematic closure
of V in Y commutes with base changes S′ −→ S.

2) Suppose that for all S′ → S the schematic closure V schcYS′ exists and
is equal to XS′ , i.e. the formation of the schematic closure of V in Y
commutes with base changes S′ −→ S. If V schcXS′ exists for all S′ → S
then V is universally relatively schematically dense in X.

(resp. V schcXS′ )

Proof To see 1) apply the transitivity of schematic images to the sequence

of embeddings VS′
i
↪→ XS′

j
↪→ YS′ , taking on account that by hypothesis

V
schcX

S′
S′ = XS′ , and that X

schcY
S′

S′ = XS′ , as XS′ is closed in YS′ . This

gives that the schematic closure V
schcY

S′
S′ exists and is equal to XS′ .

Observe that by the transitivity of schematic images, the schematic image
of V schcXS′ ⊂ XS′ by the embedding XS′ ↪→ YS′ is equal to V schcYS′ and thus
by hypothesis to XS′ , thus one obtains 2).
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If the embedding V ↪→ X of S-schemes is quasi-compact and X is a projective
S-scheme then for all base change S′ → S, S′ ×S V ↪→ S′ ×S X is a quasi-
compact embedding and S′×SX is a projective S′-scheme. Thus for all S′ →
S the existence of the schematical closure V schcXS′ is granted. Proposition
16.45 may be then re-stated as follows.

Proposition 16.46
Let V ↪→ X be a quasi-compact embedding into a projective scheme X, and
X ↪→ Y an embedding. Then V is universally relatively schematically dense
in X if and only if the formation of the schematic closure of V in Y commutes
with base changes.

The proof of Proposition 16.44 is an immediate consequence of the following
ones. The following Proposition states a Criterion for an open set V of an
S-scheme X to be universally schematically dense in X, relatively to S.

Proposition 16.47
Let

f : X → S

be a flat morphism, locally of finite presentation, and

V ⊂ X

an “open set”. Then V is universally schematically dense in X relatively to S
if and only if

∀s ∈ S, Vs = V ∩Xs

is schematically dense in Xs. (cf. loc. cit., Proposition 11.10.9).

The following proposition states that the property for a morphism to be
schematically dominant, is local for the faithfully flat topology.

Proposition 16.48
Let g : X ′ → X be a faithfully flat morphism and

f : Z → X

a quasi-compact morphism. Then

fX′ : Z ×X X ′ → X ′

is a schematically dominant morphism ⇔ f is a schematically dominant mor-
phism. (cf. [27], Théorème (11.10.5)).

The following corollary is an immediate consequence of the proposition.
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Corollary 16.49 One keeps the notation and hypothesis of Proposition
16.44. The open sub-scheme Vs is schematically dense in Xs if and only
if Vs̃ is schematically dense in Xs̃.

Corollary 16.50 With the notation and hypothesis of Proposition 16.44 one
has that Vs (resp. Vs̃) is schematically dense in Xs (resp. Xs̃) if and only if
Xs (resp. Xs̃) is integral. Thus Xs is integral if and only if Xs̃ is integral.

Proof If Vs (resp. Vs̃) is schematically dense in Xs (resp. Xs̃) then Xs

(resp. Xs̃ is integral, as the schematic closure of an integral scheme is integral.
On the other hand, if Xs (resp. Xs̃) is integral then the not void open set Vs
(resp. Vs̃) is schematically dense.

One recalls the following result.

Proposition 16.51
Let

f : X → Y

be a morphism proper, flat, and of finite presentation.
Then the set of y ∈ Y such that the geometric fiber

Xy is integral

is an open set of Y . (cf. loc. cit., Théorème (12.2.4)).

Corollary 16.52 One keeps the notation and hypothesis of Proposition
16.44. The set U of points s of S such that Vs is schematically dense in
Xs is an open set of S. If U is not empty then VU −→ U is universally
relatively schematically dense in XU −→ U .



Appendix A

About the Coxeter Complex

A.1 Adjacency

The building I(G) of a k-reductive group G corresponds to the Cayley com-
plex D(H) (cf. [18]) of a discrete group H. It is observed that the contracted
product defined by a usual minimal gallery may be seen as a set of paths of
the compact real form of G (cf. [7]). The Cayley complex of the Weyl group
W of G is obtained in terms of the Weyl complex C(W,S) as follows.
The geometrical representation C(H) of C(W,S), as a decomposition in sim-
plicial cones of the euclidian space R(S), gives rise to a decomposition into
spherical simplices {σC} (C ∈ Ch C(W,S)) of the unit sphere S l−1

1 ⊂ R(S).
The set of barycenters {bσ} (σ ∈ Ch C(W,S)) give the vertices of the Cay-
ley diagram D(G) of W (we recall that Ch C(W,S) is principal homogeneous
under the action of W ). The edges of D(G) join the barycenters in pairs as
follows. Given a simplex σ denote by bσ1 , . . . , bσl the barycenters correspond-
ing respectively to the l chambers C1, . . . , Cl having a common bounding
hyperplane with C = Cσ. Thus there are l edges issued from bσ, namely:

[bσ, bσ1
], . . . , [bσ, bσl ].

If (nij)i,j∈S is the Coxeter matrix of (W,S) then the two dimensional faces of
D(G) are nij-gons (i 6= j) (cf. [18]).
Let t ∈ typ C(W,S) be the type of a facet given by some subset t ⊂ S and
Wt ⊂W the subgroup generated by t. There is a bijection

W/Wt ' Ft

between the set of classes W/Wt and the set of facets Ft of C(W,S) of type
t, defined by

418
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w 7→ w(Ft(C)). One associates with t a 1-complex Dt(W ) generalizing the
Cayley complex. The set of vertices of Dt(W ) is given by the set of classes
W/Wt (resp. of facets Ft of type t of W ). The edges issued from some
facet F are given by the couples (C,H), where C ∈ StF and H is a bounding
hyperplane of C. The couple (C,H) defines an edge between F and the image
sH(F ) of F by the reflexion sH defined by H. Thus the set of edges of Dt(W )
corresponds to the set of generalized galleries of the form

F ⊂ C ⊃ F ′ ⊂ C ′ ⊃ F ′′ ,

with typ F = typ F ′′ and cod F ′ = 1.
Remark that some edges join F to itself, namely those satisfying F ⊂ F ′. The
group W acts as a group of automorphisms on Dt(W ), as follows easily from
its definition.
The geometric realization C(H) of C(W,S) gives rise to a description of Dt(W )
as in the case of the Cayley complex. The point is that this 1-complex allows
a description of the action of W on the set of Ft in terms of the generators S
of W and the relations defined by the Coxeter matrix.
The group W may be obtained as the group of automorphisms of the Cay-
ley complex. Similarly, W may be obtained as a group of automorphisms of
C(W,S) preserving the type of facets. In this case the group defining relations
are replaced by the incidence relations of C(W,S), i.e. the group of automor-
phisms of C(W,S) is obtained in term of incidence relations.
The adjacency relation between two chambers C and C ′ of a building I (cf.
[50], 1.2) may be defined in terms of a gg. In fact, C and C ′ are adjacent
chambers if there exists a gg

C ⊃ F ⊂ C ′,

where codF = 1, and C∩C ′ = F . The edge relation as defined above between
two facets F and F ′ of the same type t generalises this relation. This gg is
minimal if and only if C 6= C ′.
More generally, given a chamber C of I and an integer i > 0, let Ei(C) , as
in loc. cit., be the set of chambers C ′ in I such that there exists a gg

C ⊃ F ⊂ C ′,

with cod F = i. Let A be an apartment of I containing C. It is easy to see
that Ei(C) may be written as

Ei(C) =
∐

C′∈Ei(C)∩ChA

Σ(BC ,τ(C,C′)),

where τ(C,C ′) denotes the type of relative position defined by (C,C ′).
Observe that C ⊃ F ⊂ C ′ is a MGG if and only if C and C ′ are transversal
in E tF .
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A.2 Braid relations

Let Γ(1) = Γ(1)(C,C ′) (resp. Γ(2) = Γ(2)(C,C ′)) be the minimal gallery
defining the big cell coordinates (X

(1)
α )α∈R(C,C′) (resp. (X

(1)
α )α∈R(C,C′)) of

Σ̂(g(1), B) (resp. Σ̂(g(2), B)), i.e. there are isomorphisms

Spec
(
k[X(1)

α ]
)
∼−→ Σ̂′(g(1), B)

(resp.
Spec

(
k[X(2)

α ]
)
∼−→ Σ̂′(g(2), B)).

Where g(1) (resp. g(2)) denotes the Minimal Generalized Gallery of types
defined by Γ(1) (resp. Γ(2)), τg(1) (resp. τg(2)) its corresponding type
of relative position, and Σ̂′(g(1), B) ' Σ(τ

(1)
g , B)) (resp. Σ̂′(g(2), B) '

Σ(τ
(2)
g , B)) the big cell of Σ̂(g(1), B) (resp. Σ̂(g(2), B)). Denote by [R(C,F ′)]N

the commutative monoid generated by R(C,F ′) ⊂ R+, and by H(i) =

k[[R(C,F ′)]N](i) = k[X
(i)
α ]α∈R(C,F ′) (i = 1, 2) the corresponding k-algebra.

Given ρ ∈ N(R(C,F ′)) write:

H(i)
ρ ⊂ k[X(i)

α ]α∈R(C,F ′)

for the k-subspace generated by the monomials Xn1
α1
Xn2
α2
. . . Xnl

αl
satisfying

n1α1 + n2α2 + . . . + nlαl = ρ. Clearly one has H(i)
ρ · H(i)

ρ′ ⊂ H
(i)
ρ+ρ′ . One

may thus graduate the polynomial ring k[X
(i)
α ]α∈R(C,F ′) by the k-subspaces

(H(i)
ρ )ρ∈N[R(C,F ′)]. Write

H(i) = k ⊕

 ⊕
ρ∈N[R(C,F ′)]

H(i)
ρ

 ,

thusH(i) is a graded k-algebra obtained from the polynomial algebra k[Xα] by
changing its natural graduation. Let (X

(1)
α )α∈R(C,F ′) (resp. (X

(2)
α )α∈R(C,F ′))

be the coordinates of Σ(τg, B) given by the minimal gallery Γ(1) (resp. Γ(2)),
and

ϕ(Γ(1),Γ(2)) : k[X(2)
α ] −→ k[X(1)

α ]

the isomorphism given by the coordinates change cocycle

X(2)
α = X(2)

α ((X
(1)
α′ )α′∈R(C,F ′)) (α ∈ R(C,F ′)) ,
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defined by the vertical arrow of the diagram:

Spec
(
k[X

(1)
α′ ]
)

''

��

Σ(τg, B)

Spec
(
k[X(2)

α ]
)

77

.

One has:
(∀ρ ∈ N[R(C,F ′)]) ϕ(Γ(1),Γ(2))(H(2)

ρ ) = H(1)
ρ ,

i.e. the isomorphism ϕ(Γ(1),Γ(2)) is an isomorphism of graded algebras.
This property results immediately from the commutation defining relations
(Com) of G:

exp(XγXγ) exp(XδXδ) exp(XγXγ)−1 = exp(XδXδ)
∏

expiγ+jδ

(
CijγδX

i
αX

j
δ Xiγ+jδ

)

with Cijγδ ∈ Z, and (Xγ)γ∈R a Chevalley system, if it is observed that

CijγδX
i
αX

j
δ ∈ H

k
iγ+jδ,

with i = 1, 2. The factors of the product are indexed by the set of roots of
the form iα+ jγ with i, j ∈ N∗. In fact one has the following relation:

int

 ∏
α∈R(C,F ′)

(ordered by Γ(1))

exp
(
X(1)
α Yα

) (P ′) = int

 ∏
α∈R(C,F ′)

(ordered by Γ(2))

exp
(
X(2)
α Yα

) (P ′).

Thus the second member is obtained by reordering the factors of the first
member according to the order of R(C,F ′) defined by Γ(2) by repeated use
of the commutation relations (Com). As a section of Σ(τg, B) given by P , is
uniquely written as int(g)(BC′) = B, with g a section of UB , it is deduced that
the polynomials X(2)

α ((X
(1)
α′ )α′∈R(C,C′)) “are generated” by the commutation

relations (Com) and thus that X(2)
α ((X

(1)
α′ )α′∈R(C,C′)) ∈ H(1). This proves the

assertion. In fact this operation may be carried out more systematically as
follows.

The change of coordinates cocycle X(2)
α ((X

(1)
α′ )α′∈R(C,C′)) ∈ H(1) defined

by the coordinates systems (X
(2)
α ) and (X

(1)
α′ ) given respectively by Γ(2) and
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Γ(1) may be obtained as the composition of a sequence of change of coordinates
cocycles

(Xα,j+1(Xα′,j)) (j = 0, . . . , l − 1) ,

defined by a sequence of minimal galleries (Γj)06j6l, with Γ0 = Γ(1) and
Γl = Γ(2) between the chambers C and projF ′ C, i.e. (Xα,j+1(Xα′,j)) is the
cocycle given by the expression of the coordinates (Xα,j+1) defined by Γj+1

in terms of the coordinates (Xα,j) defined by Γj . One then writes(
X(2)
α (X

(1)
α′

)
= (Xα,l(Xα′,l−1)) ◦ (Xα,l−1(Xα′,l−2)) ◦ . . . ◦ (Xα,1(Xα′,0)) .

On the other hand, it is recalled that the apartment associated with a
rank 2 reductive group G is a polygon Π (cf. [15], 3.34). Thus given a
couple (C,Copp) of antipodal chambers in Π there are exactly 2 minimal
galleries namely Γ(1)(C,Ci) and Γ(2)(C,Copp) between C and Copp in Π.
The set of cocycles

(
X

(2)
α (X

(1)
α′ )
)

arising from polygonal apartments may
be thus calculated from the tables giving rank 2 reductive groups in terms
of defining relations (cf. [10], Exp. XXIII). Given an apartment A defined
by a reductive group G, and two minimal galleries Γ(1) = Γ(1)(C,C ′) (resp.
Γ(2) = Γ(2)(C,C ′)) in A between the couple (C,C ′) of chambers of A, a se-
quence of minimal galleries (Γj)06j6l between C and C ′ may be obtained with
Γ0 = Γ(1) (resp. Γl = Γ(2)) such that Γj+1 is obtained from Γj by a rank 2
deformation. More precisely there is a chamber C of Γj and a codimension 2
facet F ⊂ C, such that if it is denoted by C

opp
the chamber in StF opposed

to C, and by Γ′ = Γ′(C,Copp) (resp. Γ′′ = Γ′′(C,Copp)) the two minimal
galleries in StF with extremities C and Copp, then one may write

Γj = Γj,a ∗ Γ′ ∗ Γj,b

(resp. Γj,a = Γj,a ∗ Γ′′ ∗ Γj,b) ,

with Γj,a = Γj,a(C,C) (resp. Γj,b = Γj,b(C
opp
, C ′)). With the terminology of

[20] two minimal galleries with the same extremities are equivalent.
From this it is deduced that the cocycle (Xα,j+1(Xα′,j)) is given by a rank 2
cocycle, and consequently that the cocycle

(
X

(2)
α (X

(1)
α′ )
)
may be obtained as

the composition of rank 2 coordinates change cocycles.
From the isomorphisms Σ̂′(g(1), B) ' Σ(τ

(1)
g , B) and Σ̂′(g(2), B) '

Σ(τ
(2)
g , B)) it follows that Σ̂′(g(1), B) ×Par(G) Σ̂′(g(2), B) ' Σ(τ

(1)
g , B) =

Σ(τ
(2)
g , B) is “the big cell” of the Correspondance Σ̂(g(1), B) ×Par(G)

Σ̂(g(2), B) −→ Σ(τ,B) where τ = τ
(1)
g = τ

(2)
g . This cell may be parametrized

by Γ(1)-coordinates or by Γ(2)-coordinates, by means of the graph of ϕ(Γ(1),Γ(2))

(resp. ϕ(Γ(2),Γ(1))).
Remark that the above assertion results from the relation between the

apartment A and the Cayley diagram D(W ) of (W,S). A geometric inter-
pretation of an algebraic transformation of a path π1 into a path π2, of the
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Cayley diagram D(W ) by means of the relations s2
i = 1, (sisj)

nij = 1 is given
in [18], 4.3 (see also [19])

A.3 Schubert geometry

In the case of Gl(r+ 1) the Schubert cells are described geometrically by the
relative position matrices which in fact resume their classical indexation in
terms of the dimensions of the intersection of subspaces of kr+1 with a fixed
flag. With the canonical basis of kr+1 is associated a simplex whose vertices
correspond to the basis vectors. The barycenters of its faces correspond to
the maximal parabolic subgroups (resp. subspaces of kr+1) “adapted to the
canonical basis”. The barycentrycal subdivision of this simplex is a geomet-
rical representation of the Coxeter complex associated with the symmetric
group Sr+1. The vertices of the simplex thus play an important role. In
fact they generate the representation of the Coxeter complex by definition
of the barycentic subdivision. It has been seen that a relative position ma-
trix is an abbreviated description of a Minimal Generalized Gallery of types,
thus furnishing a smooth resolution of the corresponding Schubert variety.
The correspondence between the vertices of the barycentic subdivision of the
simplex and the maximal parabolic subgroups of Gl(r+ 1) is obtained by as-
sociating with such a vertex the stabilizer of the subspace of kr+1 generated
by the corresponding subset of the canonical basis. Remark that the galleries
giving smooth resolutions may be obtained solely in terms of subspaces, i.e.
without flags of length greater than 1 playing a role. The Coxeter complex
and its geometric realization play a central role in the building, and all the
galleries giving smooth resolutions of Schubert varieties may be seen as sets
of generalized galleries of the building I(Gl(r + 1)) of Gl(r + 1).

The building I(Gl(r + 1)) is the same as the building I(PGl(r + 1)) of
the projective group PGl(r + 1). This is considered its geometric realization
in terms of the flags of the projective space P(kr+1), i.e. the associated
geometry of Gl(r + 1), or of its adjoint form PGl(r + 1), according to Tits
(cf. [50]). On the other hand, one knows that Tits associates an incidence
geometry with a reductive group G and thus characterizes the adjoint form of
G as the automorphism group of this geometry (cf. loc. cit., see also Freuden-
thal H., de Vries H., Rosenfeld B., and [38]) thus obtaining a generalization
of the fundamental theorem of projective geometry. The following question
naturally arises: How our constructions associated with Schubert cells
or varieties are represented in this geometry? It has been seen that
the smooth resolutions of Schubert varieties are calculated in the abstract
Coxeter complex. The first step to be taken to answer the above question is
to investigate the geometrical realization of the Coxeter complex.

The study of the Galois group of the characteristic Killing equation, i.e.
the characteristic equation defined by the adjoint action of a generic element
of the Lie algebra, associated with a Lie algebra (cf. [4]) plays an important
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role in E. Cartan’s classification of simple Lie algebras over the complex field
C (cf. [1]). This group is precisely the automorphism group of the corre-
sponding system of roots of the Lie algebra and it has the Weyl group as a
distinguished subgroup. In a subsequent paper E. Cartan studies this Galois
group and gives Galois resolvents (cf. [2]), i.e. the corresponding Galois ex-
tension, for the characteristic Killing equations of each type of Lie algebra.
These groups are isomorphic to Galois groups associated to classical algebraic
geometrical problems as E. Cartan himself proves it (cf. [3], and [2]). He
considers in particular the Galois groups of the classical algebraic geometric
problems which are isomorphic to those of the Killing equation of E6 and E7,
i.e. the Galois group of the 27 lines on a cubic surface in P3, and that of
the 28 bitangents of a quartic curve of P2. Remark that these Galois groups
may be considered as monodromy groups (cf. [32]) and are thus calculated
following the pattern of Jordan classical treatise.

E. Cartan establishes this correspondence using the representation of roots
given in [1], by associating with "roots configurations" classical "geometric
configurations", thus making evident how the respective actions of the Galois
groups correspond to each other. On the other hand, these configurations have
been extensively studied by classical geometers, and are related to geometric
and combinatorial objects. For example, those corresponding to E6 are asso-
ciated with the Twenty-seven Lines Polytope studied by Coxeter in [18]. This
equivariant correspondence, with respect to the Galois group, between classes
of sets of roots and classes of configurations is stated in modern terms by
Dolgachev in [28]. As the corresponding Galois principal homogeneous spaces
are thus isomorphic, the result is that the set of simple roots correspond to
a well known class of configurations. On the other hand, one knows that the
Coxeter complex may be described in terms of minimal parabolic sets, i.e. in
terms of positive systems of roots (resp. simple systems of roots), thus giving
rise to a representation of Schubert cells and minimal generalized galleries in
terms of classical configurations and thus generalizing the simplex represen-
tation of the Coxeter complex, in the case of the classical Group Gl(r + 1),
to a E6 exceptional group. Thus obtaining a geometrical interpretation of
abstract galleries configurations in this cases. A description of the Bruhat
decomposition may be obtained in terms of “this geometry” for these groups.

On the other hand, it is known (cf. [50]) that there exists a very sim-
ple algorithm by which, from the mere knowledge of the Dynkin diagrams
of the groups, one can deduce basic properties of the associated geometries
(for instance, the axioms of projective geometry in the case of SLn) (cf. loc.
cit., Théorème 6.3) and relations between geometries associated with different
groups.
For each particular simple group G a description of its adapted geometry
may thus be obtained. For instance for each of the groups corresponding
to Dynkin diagrams without ramification, i.e. groups of types An, Bn, Cn,
F4, G2 the Coxeter complex may be realized as the barycentric subdivi-
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sion respectively of an n-simplex, an n-cube, an n-octahedron (cf. loc. cit.,
Ch. 6–Ch. 10), (see also the description of these objects given in [18] and
compare it with that of the indexations of the basis of classical algebras as
given in [5], §13) a 24-cell polytope, an hexagon (cf. [8]). It has been seen
that in the case of a group of type An simple descriptions of MGG in terms of
the incidence relation of the combinatorial simplex ∆(r) (or of its barycentric
subdivision ∆(r) ′) may be obtained, namely Conf(∧(M)) ' Gall(g(M)).
It seems easy to arrive at corresponding simplifications in the description of
Minimal Generalized Galleries for the groups of type Bn (resp. Cn, F4, G2)
by means of configurations varieties defined in terms of the geometry of the
polytopes associated with them.
For the groups corresponding to the other Dynkin diagrams, more compli-
cated geometries may serve for the same purposes, for instance, for E6 the
combinatorial geometry of the configuration of the 27 lines on a cubic surface
of P3.
The parabolic sets A(R) of a root system R are determined by the set of
minimal parabolics sets. On the other hand there is a natural correspondence
between this latter set and certain “configurations” of the 27 lines polytope
(cf. [28], [2], [3]) a natural correspondence between A(R) and a set of “config-
urations” of the 27 lines polytope follows. Consequently geometric represen-
tations of A(R) of E6, of its Schubert varieties, and their smooth resolutions
(cf. [38], [37], [47] are obtained.
These descriptions are useful to analyze the fibers of Σ̂ −→ Σ over Σ − Σ
in terms of the canonical cell decomposition of Σ̂, and the relations between
them and the local rings of Σ. Remark that the relations between geome-
tries of different groups induce relations between their Schubert cells. On the
other hand it is well known that the intersection relations between classes of
Schubert cycles are described in terms of the Weyl group W and thus these
calculations may be re-interpreted, by means of the associated geometry with
the Coxeter complex. Thus Ehresmann geometric setting of Schubert calculus
(cf. [27]) may be generalized to all groups.

The incidence geometry is particularly interesting in the case of algebraic
symmetric spaces, i.e. the hermitian compact symmetric spaces corresponding
to the classical groups and to groups of type E6 and E7. These spaces are
varieties of parabolics, i.e. are isomorphic to the quotient of a reductive group
by a parabolic subgroup, and may also be realized as generalized grasmannians
(cf. [37], and [39]) by means of the Magic Square, and thus obtain the
realization of configurations giving resolutions of Schubert varieties in a way
similar to that of the linear group. These spaces play a particular role with
respect to buildings.

Remark A.1 The following general proposition plays an important role in
[50] as the key to the above mentioned algorithm.
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Proposition A.2 Let (∆,A ) be a building, where ∆ (resp. A ) denotes the
corresponding simplicial complex (resp. the set of apartments), and F ∈ ∆
a facet. Let A ′ be the set of all intersections with StF of all apartments
containing F . Then (StF ,A ′) is a building whose diagram is obtained by
removing from diagr ∆ all vertices which belong to typ F .

Remark that the building blocks of generalized galleries are precisely a cou-
ple of facets in these buildings.

Observe that the algorithm which gives the geometry of the building I(G)
of a k-reductive group corresponds to “Théorème 1.1.” of [23], Exp. XXIII,
Théorème 3.5.1, as it results from the discussion in the next section. It as-
serts that the functor G −→ R(G) associating with an S-reductive group G
endowed with a frame the root data is an equivalence of categories.



Appendix B

Generators and Relations
and the Building of a
Reductive Group

The following theorem is proved in [50] and shows the interest of the incidence
relation.

Theorem B.1 A building isomorphism ϕ : I −→ I ′ is entirely determined
by its restriction to E1(C)∪A, and Theorem 4.1.2. of loc. cit., explains how
such an isomorphism may be induced:
Given C ∈ Ch I and C ′ ∈ Ch I′, then every adjacence preserving bijection
ϕ : E2(C) −→ E2(C ′) extends to an isomorphism ϕ : I −→ I ′.

On the other hand, it is known that given two k-reductive groups G and
G′, each endowed with a frame, and a q-morphism h : R(G′) −→ R(G) of
the corresponding root data, there exists a unique morphism f : G −→ G′

of k-reductive groups endowed with a frame inducing h (cf. [23], Exp. XXV,
Théorème 1.1). In fact this Theorem results from a characterization of a
morphism f : G −→ G′ in terms of generators and relations of the groups G
and G′ (cf. [23], Exp. XXIII, Théorème 2.3).

By comparing these two sets of results one obtains the table of generators
and relations defining G may be interpreted in the building setting and that
all building calculations may be translated into calculations of generators and
relations.

The following comparison suggests how the geometrical constructions in-
volving varieties of configurations (resp. of generalized galleries) which are

427
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carried out in buildings, lead to algebraic geometrical constructions, by com-
paring the incidence and the generators and relations description of a reductive
group.

It is supposed that G is endowed with the frame
(
T,M,R,R0, (Xα)α∈R0

)
.

Denote by A(R) the apartment associated to R and by C = CR+
the chamber

of A(R) defined by the system of positive roots R+ = NR0 ∩R.
Let (Fα)α∈R0

(
resp. (Fαβ)(α,β)∈R0×R0

)
the set of codimension 1 (resp.

codimension 2) facets of C and Tα (resp. Tαβ) the maximal torus contained
in

Ker α (resp. Ker α ∩Ker β) .

With the notation of [23], Exp. XXIII, 1.7. Let

Zα = CentG(Zα) (resp. Zαβ = CentG(Zαβ)) ;

Zα (resp. Zαβ) is a k-reductive subgroup of G with radical subgroup Tα
(resp. Tαβ). Write:

Rα = Z · {α} ∩R (resp. Rαβ = Z · {α, β} ∩R) ,

and one endows Zα (resp. Zαβ) with the canonical frame

(T,M,Rα, {α}, (Xα))

(resp. (T,M,Rα, {α, β}, (Xα, Xβ)))

(cf. loc. cit., Exp. XXIII, 1.7). Let H be an S-sheaf in groups for the fffp
(faithfully flat finite presentation) topology.

Theorem 2.3 of [23], Exp. XXIII asserts that the data

1. an S-group morphism fT : T −→ H;

2. morphisms fα : Pα −→ H (α ∈ R0);

3. sections (hα)α∈R0
of H over S,

subjected to the following conditions:

a. there exists an S-group morphism fN(T ) : N(T ) −→ H extending fT ;

b. there exist morphisms fα : Zα −→ H (α ∈ R0) extending fα, such that
fα(wα) = hα (Write wα = exp(Xα) exp(−X−α) exp(Xα), where X−α
denotes the dual section of Xα in Lie(Zα));

c. there are morphisms fαβ : Zαβ −→ H so that fαβ |Pα = fα, fαβ |Pβ =
fβ , fαβ(wα) = hα, fαβ(wβ) = hβ .
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Conditions a., b., and c. may be translated in terms of relations of the
“generators” T, (Pα)α∈R0

, (wα)α∈R0
of G and fT , (fα)α∈R0

. Denote by (nαβ)
the Coxeter matrix of R, and write

tαβ = (wα wβ)
nαβ ∈ T (S)(

resp. tα = tαα = w2
α = α∨(−1) ∈ T (S)

)
.

The automorphism of T defined by wα is given by:

int(wα)(t) = t α∨(α(t))−1.

One introduces conditions A_, B_, and C_, corresponding to a., b., and c.

A_ (i). hα fT (t)h−1
α = fT (int(wα)(t)) ;

(ii). fT (tαβ) = (hα hβ)nαβ .

Observe that A_ allows to define a group homomorphism for every γ ∈ R

fγ : Pγ −→ H.

For every root γ ∈ R, there is a section n of N(T ) so that its image in N(T )/T
gives rise to an element n of W with n(γ) = α ∈ R0.
Condition A_ also implies that there is a morphism

fN(T ) : N(T ) −→ H

extending fT . Write h = fN(T )(n) and given a section x of Pγ define

fγ(x) = int(h)
[
fα
(
int(n−1)(x)

)]
.

From loc. cit., Exp. XXIII, Lemme 2.3.5 it results that fγ : Pγ −→ H is a
well defined group homomorphism.

B_ (hα fα (exp(Xα)))
3

= e (= the section of H corresponding to the unity of H) .

By definition a Chevalley system (Xα)α∈R of a splitted S-group (G,T,M,R)
is a family of sections of Lie(G) satisfying Xα ∈ Γ(S,Gα)∗, i.e. Xα is a basis
of Gα satisfying the following condition:
for every α, β ∈ R one has

ad(wα(Xα))Xβ = ±Xsα(β),

where wα(Xα) = exp(Xα exp(−X−1
α ) exp(Xα), and sα denotes the reflexion

given by α.
Let α, β, α+ β ∈ R, then one has

[Xα, Xβ ] = ±pXα+β ,
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where p > 0 is the smallest integer so that β− pα is not a root (cf. [23], Exp.
XXIII, Definition 6.1). The following result holds:
“Let G be an S-group endowed with a frame

(
T,M,R,R0, (X

′
α)α∈R0

)
. Then

there exists a Chevalley system (Xα)α∈R of G so that

∀α ∈ R0 Xα = X ′α”.

Let U = UR+ be the unipotent radical of BR+ , one defines Uαβ = Zαβ∩U . The
unipotent group Uαβ is generated by the set of root subgroups (Pγ)γ∈Rαβ∩R+

,
satisfying the following commutation relations. Given γ, δ ∈ Rαβ ∩ R+ there
exists a unique set of constants (Cijγδ){(i,j)∈N∗×N∗ | iγ+jδ∈Rαβ} ⊂ Z satisfying:

for all x, y ∈ Ga(S′) (S′ an S − scheme)

there is:

Com) exp(xXγ) exp(yXδ) exp(Xγ)−1 = exp(γXδ)∏
(i,j)∈N∗×N∗
iγ+jδ∈R

expiγ+jδ

(
Cijγδ x

i yj Xiγ+jδ

)
,

where it is supposed that the factors are arranged according to some fixed
order of Rαβ .

C_ (i) For every couple (α, β) ∈ R0 ×R0 and every n ∈ NormZαβ
(T )(S)

so that int(n)(Pα) = Pα (resp. int(n)(Pα) = Pβ) one has:
for every x ∈ Pα(S′) (S′ an S − scheme)

int
(
fN(T )(n)

)
fα(x) = fα (int(n)x)(

resp. int
(
fN(T )(n)

)
fα(x) = fβ (int(n)x)

)
.

(ii) Let fαβ : Uαβ =
∏

γ∈Rαβ∩R+

Pγ −→ H be defined by the set (fγ)γ∈Rαβ∩R+

and the composition morphism ofH. Then fαβ must satisfy the set of relations
(Com)′ obtained as the image by fαβ of the set of relations (Com).

Thus one obtains conditions “a.”, “b.”, and “c.” in terms of generators and
relations as follows. One has the following implications:

“A_” ⇒ “a.” (resp. “A_ and B_” ⇒ “b.”, “A_, B_, and C_” ⇒ “c.”) .

Conditions (i) and (ii) of C_ are made explicit for each type of rank 2 group
in [23], Exp. XXIII (cf. sections 3, 3.1, 3.2, and 3.4 respectively for groups of
type A1 +A1, A2, B2, and G2.

If S is given by the spectrum of an algebraically closed field k, i.e. S =
Spec(k), then the above defining relations for a morphism f : G −→ H, give
rise to an explicit description of the group in terms of generators and relations
(cf. [23], Exp. XXIII, 3.5.3).
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The isomorphism Aut(I(G)) ' Gad generalizes the fundamental theorem of
projective geometry (cf. [50]). The proof of this isomorphism is obtained by
reducing the general case to the case of a rank 2 building (cf. [50], Th. 4.1.1,
and Th. 4.1.2).
Observe that E2(C) =

⋃
Ch St Fαβ , and that StFαβ may be identified with

the building I(Zαβ) of Zαβ .
As Zαβ(k) is a rank 2 group, one may suppose that Aut(I(Zαβ)) realizes
as Zadαβ(k). Theorem 4.1.1 of [50] essentially states that the groups Zα(k)
and T generate G(k). The following consequence of the incidence preserving
hypothesis of Th. 4.1.2 of [50] suggests that incidence implicitly corresponds
to the above defining relations of G(k):
Let A ⊂ I (resp. A′ ⊂ I ′) be an apartment of the building I (resp. I ′),
and C ∈ Ch A (resp. C ′ ∈ Ch A′). Given an isomorphism α : A −→ A′,
and γ : E2(C) −→ E2(C ′) an adjacence preserving mapping which coincides
with α on A ∩ E2(C). Then α and γ are restrictions to A and E2(C) of an
isomorphism of I onto I ′.
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