
 

 
MECHANICS OF DILATANCY AND ITS APPLICATION TO LIQUEFACTION  

 
PROBLEMS 

 
 
 
 
 
 
 
 
 
 

By 
 

NAVARATNARAJAH SASIHARAN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A dissertation submitted in partial fulfillment of 
the requirements for the degree of  

 
DOCTOR OF PHILOSOPHY 

 
 
 
 

WASHINGTON STATE UNIVERSITY 
Department of Civil and Environmental Engineering 

 
December 2006 



 

 

 

 

To the Faculty of Washington State University: 

 

The members of the Committee appointed to examine the dissertation of 

NAVARATNARAJAH SASIHARAN find it satisfactory and recommend that it be 

accepted. 

 

 

         Chair 

 

 

 

 

 

 ii



ACKNOWLEDGEMENT 

 

It is rather difficult to try to express in just few lines, my gratitude to all the 

people who helped me, in one way or another, to accomplish this work. I hope that those 

that I have mentioned realize that my appreciation extends far beyond the ensuing 

paragraphs. 

First and foremost, I would like to thank my supervisor and mentor Dr. 

Muhunthan for persuading me to continue my studies toward PhD degree. I will always 

be indebted to him for his guidance, motivation and friendship. His enthusiasm and 

integral view on research and his mission for providing 'only high-quality work and not 

less', has made a deep impression on me which I will always cherish the rest of my life. I 

owe him lots of gratitude for having me shown this way of research. He could not even 

realize how much I have learned from him. I am really glad and proud that I have had an 

opportunity to work closely with such a wonderful person. 

I wish to thank Dr. Adrian Rodriguez-Marek, Dr. William Cofer and Dr. Hussein 

Zbib for serving on my PhD committee. Special thanks are due to Dr.  Rodriguez-Marek 

for many interesting discussions on dynamic modeling of soils. 

My gratitude also goes to my colleagues in GeoTransportation group, especially 

Senthil, Farid, Mehrdad, Muthu, Suren, Gonzalo and Habtamu.   

Financial support by the National Science Foundation (NSF), Federal Highway 

Administration (FHWA), and Washington State University is acknowledged with 

gratitude. 

 

 iii



Last but certainly not least, I would like to express my deepest gratitude for the 

continuous support, caring, understanding and love that I received from my wife Lojini. 

Similar appreciation is extended to my mother, sister, brother-in-law, and nephew. The 

timely visit of my parent in-laws to Pullman helped recharge my batteries and finish up 

this dissertation. Thank you all. 

 

 iv



MECHANICS OF DILATANCY AND ITS APPLICATION TO LIQUEFACTION  
 

PROBLEMS 
 

Abstract 

 
by Navaratnarajah Sasiharan, Ph.D. 

Washington State University 
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Chair: Balasingam Muhunthan 

 

A novel conceptual model of the mechanics of sands is developed within an 

elastic-plastic framework. Central to this model is the realization that volume changes in 

anisotropic granular materials occur as a result of two fundamentally different 

mechanisms.  The first is purely kinematic, dilative, and is the result of the changes in 

anisotropic fabric. There is also a second volume change in granular media that occurs as 

a direct response to changes in stress as in a standard elastic-plastic continuum. Inclusion 

of the two sources of volume change into the modified Cam Clay dissipation function 

results in a new anisotropic model which is suitable for sands with pronounced 

anisotropic granular arrangement. The conditions that lead to features such as phase 

transition line and ultimate state line that dense sands exhibit are predicted theoretically 

by the new anisotropic sand model and confirmed with experimental results. The 

conventional volumetric-shear strain relation obtained from triaxial experiment is used to 

determine the evolution of fabric anisotropic parameter. 

The new anisotropic sand model is generalized to 3-D cases. Bounding surface 

plasticity theory is used to capture plastic deformation at small strain levels as well as 

during unloading/reloading. This enables the robust modeling of the accumulation of 
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plastic strains as well as the buildup of excess pore pressure under cyclic loading of 

sands. The bounding surface formulation is implemented to the numerical code FLAC3D 

and used to simulate drained and undrained triaxial tests on Ottawa sand. The FLAC3D 

model is also used to simulate undrained cyclic triaxial test and predict the liquefaction 

behavior of Nevada sand observed in centrifuge tests.  The analysis shows that the stress 

induced volumetric strain is the main cause for pore pressure build up leading to 

initialization of liquefaction whilst the fabric induced volumetric strain influences the 

post liquefaction behavior of sands. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 General 

 The cost of remediation of liquefaction damages caused by recent earthquakes 

often ran into several billions of dollars.  This emphasizes the need for the development 

of better deterministic tools to predict soil liquefaction and assess post-liquefaction 

stability of structures founded on liquefiable soils. 

 Liquefaction study has been directed mainly towards three different areas after the 

two devastating 1964 earthquakes in Niigata in Japan and the Great Alaska earthquake: 

field observations during and following earthquakes, laboratory experiments, and 

theoretical studies. Lack of instrumentation on most liquefaction failures observed in the 

field has made it impossible to obtain recordings of pore pressures and acceleration that 

induced liquefaction. Therefore, the investigation of liquefaction phenomena has often 

consisted of laboratory experiments and theoretical models. Laboratory experiments 

include cyclic triaxial, simple shear, torsional shear testing on samples obtained from the 

field by freezing or prepared in the laboratory by different methods. Centrifuge model 

testing has also provided a significant input towards developing a better understanding of 

liquefaction and related phenomena.  Theoretical sand models have also been developed 

based on fundamental physics of granular soil behavior and applied to boundary value 
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problems. Realistic constitutive models provide several advantages to liquefaction study. 

These include better understanding of soil behavior, extrapolation to conditions that 

cannot be produced in laboratory testing and prediction of soil behavior through finite 

difference or finite element based numerical techniques so that the liquefaction analysis 

can be made on a rational basis.  

The critical state framework developed by the Cambridge school in the 1960s has 

contributed immensely to the recent developments of comprehensive scientific 

approaches to study the shear response of soils.  It has also contributed to a fundamental 

paradigm shift to soil mechanics and helped bring it properly within the ambit of 

continuum mechanics and plasticity theory. Nevertheless, the original critical state 

concepts were developed mainly based on the behavior of reconstituted, essentially 

isotropic, materials. Therefore, it is well appreciated that, whilst the original Cambridge 

critical state models, Cam Clay (Roscoe et al., 1963) and modified Cam Clay (Roscoe 

and Burland, 1968) work well for normally consolidated clays, significantly more 

complex models are required to capture the essential properties of the mechanics of sands 

as well as anisotropically consolidated clays. Recent experimental information has also 

shown that the behavior of natural soils, especially sands with pronounced fabric 

anisotropy, deviate significantly from the fundamental premises of the critical state soil 

mechanics. Moreover, Vaid et al. (1999) have showed that sample preparation methods 

(producing different fabric arrangement) greatly influence the stress-strain behavior of 

sands. 
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Such deviations have often been attributed qualitatively to the important granular 

aggregate fabric which was absent at the outset from the foundations of the original 

critical state theory. The absence of the elements of fabric in the fundamental postulates 

of the original critical state models has led to many ad hoc proposals relating to critical 

state concepts. Non-associated flow rules (Lade and Duncan,1975), some form of shear 

hardening (Nova and Wood, 1979), induced anisotropy (Lade,1979), double hardening 

concepts (Vermeer,1978), and the improved modeling of dilatancy (Li, 2000), have been 

added to the basic structure of critical state theory in order to obtain an acceptable degree 

of realism in soil models. Another approach is to introduce fabric related quantities into 

the basic structures of critical state soil mechanics. Sand models accounting for fabric 

anisotropy not only represent its behavior within the continuum framework, but also give 

more physical intuition to the parameters introduced. The present study falls in this 

category.   

The advances indicated above proved to be successful in modeling the response of 

sands under static loads. The sand behavior under undrained cyclic loading, however, 

poses additional complexities in numerical modeling. Significant hysteretic behavior 

inside the yield surface is a feature of sands under cyclic loading. Moreover, during load 

reversal in cyclic load In addition, Bauschinger effect has been observed during load 

reversal in cyclic loading experiments. Isotropic hardening models cannot capture such 

effects. Moreover, permanent volumetric strains continue to accumulate with each 

loading-unloading cycle, which has been shown to be the predominant contributor for the 

build up of excess pore pressure that leads to liquefaction. In addition, the mechanical 
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response of solid grains is strongly coupled with the flow of the fluid in the pores of 

sands.  

Extended plasticity concepts such as multi-surface (Mroz et al., 1981), bounding 

surface (Dafalias, 1986), or subloading surface (Hashiguchi, 1989, 1998) plasticity that 

were inspired by kinematic hardening laws, have been used to improve the applicability 

of monotonic sand models to cyclic loading.  These concepts make it easy to account for 

the accumulated permanent volumetric strains that occur in sands during cyclic excitation 

in a unified manner. In order to relax some of the complexities that arise in the numerical 

formulation due to the coupling between two phases it is usually that the assumed 

undrained condition prevails during dynamic excitation. However, Seed (1979) reported 

that most of the liquefaction failures that occurred some time after the passage of the 

main shock were due to the redistribution of excess pore pressure. Thus, the liquefaction 

phenomenon is neither fully undrained nor fully drained. Therefore, a fully coupled 

formulation based on Biot’s (1941) theory is needed to analyze liquefaction problems.  

 Recent advances to account for the complexity of sand behavior in cyclic loading 

has unfortunately resulted in a rapid increase in model constants where a majority of 

them defy physical intuition (Scott, 1988).  Thus, more insight is needed into the 

controlling features of the mechanical behavior of granular masses (Scott, 1988).  This 

may only come from a careful interpretation of granular volume changes from a 

microscopic point of view. 
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1.2 Objectives of study 

 This study aims to develop a physically based constitutive model for sand along 

the lines of the critical state soil mechanics.  It examines the granular volume changes 

from a physical and microscopic point of view.  It is recognized that plastic volume 

changes in sand and granular media, occur due to two reasons: (a) as a result of stress 

changes and (b) as a result of changes in fabric during shear deformations (the “Reynolds 

Effect”).  

 The two sources of the plastic volume change in granular media are used to 

develop a constitutive model for sand behavior under monotonic and cyclic loading using 

bounding surface plasticity theory.  The model is subsequently implemented into the 

finite difference code FLAC3D and used to analyze liquefaction initiation.  FLAC3D is a 

widely used commercial 3-dimensional geotechnical software that provides interfaces to 

implement user-defined constitutive models.  The main objectives of the study are as 

follows: 

 

Objective 1: Development of a fabric constitutive model for granular soils  

 The mechanical behavior of granular media is influenced by their anisotropic 

fabric. The directional distribution of porosity in granular media is characterized here by 

a functional form. The kinematic relationship between fabric and plastic strain derived 

using this form results in the coupling of volumetric strain with shear strain through a 

fabric anisotropy parameter.  There is also a second volume change in granular media 

that occurs as a direct response to changes in stress as in a standard elastic/plastic 
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continuum. This volumetric strain decomposition is used in the Modified Cam Clay 

dissipation function and used to develop an anisotropic sand model. 

 

Objective 2: Extension of the model to cyclic loading conditions and application  

 The new sand is extended to cyclic loading 3-D conditions using bounding 

surface plasticity theory (Dafalias, 1986). Emphasis is placed on capturing the hysteretic 

behavior of sand and of excess pore pressure build up. 

 

Objective 3:  Implementation of the model into numerical codes 

 The new 3-D sand model is then implemented into FLAC3D. It makes use of 

FLAC3D feature that provides a user interface to implement new constitutive models. 

External constitutive models can be written in C++ and compiled as DLL (Dynamic Link 

Library) files that can be uploaded as needed in a FLAC3D simulation.  

 

Objective 4:  Liquefaction analysis 

 Implemented sand model is used in the liquefaction analysis. A centrifuge test 

was simulated and verified with measured test data. 

 

1.3 Organization of the Thesis 

Chapter 2 presents a review of the terminologies and the mechanisms that are 

currently used to explain liquefaction failures. A brief history of plasticity theory as 

applied to soil mechanics is also presented. The chapter highlights the need to better 
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understand granular dilatancy and stress-dilatancy relationships. A review of 

modifications made to critical state theory to model sand behavior is also presented. 

The representation of fabric and its changes with deformation is presented in 

Chapter 3. The developments relating to the decomposition of volumetric strains central 

to this study is also provided.  Application of this volume decomposition into the 

modified Cam Clay dissipation function produces a new anisotropic sand model. The 

model produces three important dilatancy datum states. Their importance to sand models 

is discussed. 

A description of the material parameters used in the soil model and their 

determination are provided in Chapter 4. The model parameters are determined using 

drained triaxial compression test results. In addition, a function describing the evolution 

of the fabric parameter is proposed. 

  Chapter 5 presents details of the classical plasticity theory and kinematic 

hardening laws used.  This chapter introduces to the theory of bounding surface plasticity 

on which the new anisotropic sand model is formulated for implementation into the 

numerical code, FLAC3D. Formulation of the new sand model in q-p space and 

generalization of it into six dimensions is also provided. 

  The implementation of the constitutive model into FLAC3D is detailed in 

Chapter 6. The Explicit, Dynamic Solution (EDS) scheme used in Itasca series software 

is introduced. Procedures used for dynamic analysis are also provided.  The mechanical 

time step for numerical stability and mixed discretization technique are presented as well. 
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FLAC3D with the new constitutive model is used in Chapter 7 to simulate 

monotonic drained and undrained tests, cyclic triaxial tests, and a centrifuge test 

involving liquefaction. Performance of the new sand model is verified against the 

measured values. 

A summary of the findings of the study as well as some recommendations for 

further research are presented in Chapter 8. 
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Chapter 2 

 

BACKGROUND 

 

2.1 Liquefaction  

 If loose saturated sand is subjected to ground vibration, it tends to compact and 

decrease in volume; if drainage is ceased, the tendency to decrease in volume leads to 

increase in pore water pressure.  If the pore water pressure builds to the point at which it 

becomes equal to the overburden pressure, the sand loses its strength completely, and 

attains a liquefied state. Although the term liquefaction was first used by Hazen (1920) to 

explain the mechanism of flow failure of the hydraulic-filled Calaveras Dam in California 

it has now been used to describe a number of different, though related phenomena.  The 

generation of excess pore water pressure under undrained loading conditions is a 

hallmark of all liquefaction phenomena. 

 The Niigata and Alaskan earthquakes of 1964 triggered the onset of earthquake 

induced liquefaction research. The flow slide of the San Fernando earth dam in the 1971 

earthquake added further impetus to seismic liquefaction research. The damaging effects 

of liquefaction on infrastructure such as roads, buildings, bridges, dams, airports, and port 

facilities in the earthquakes of Loma Prieta, California, Kobe, Japan, and most recently in 

Sumatra, Indonesia have sustained research efforts in this area. 
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 The study of liquefaction has consisted mainly of three different areas: field 

observations during and following earthquakes, laboratory experiments, and theoretical 

studies. The “critical void ratio” approach suggested by Casagrande (Casagrande, 1936) 

is perhaps the first scientific hypothesis to delineate conditions under which liquefaction 

might occur. Based on drained shearing tests in which dense sand expanded whereas very 

loose sand reduced its volume, he defined the critical void ratio as that at which drained 

shear takes place at constant volume. He supposed that liquefaction as the manifestation 

of flow failure of sand in states looser than the critical void ratio. The laboratory 

experiments of Seed and Lee (1966) showed that even dense sand develops positive pore 

water pressure under cyclic loading that leads to liquefaction.  Increased laboratory 

experimentation and field observation since then has brought forth a number of 

liquefaction related terminologies. Flow liquefaction and cyclic mobility are the most 

commonly used among these terms to describe the excessive deformation that ensues as a 

result of the development of excess pore water pressure. 

2.2 Flow liquefaction and cyclic mobility 

 The typical behavior of saturated loose soils under both monotonic and cyclic 

undrained shear tests in laboratory experiments is depicted in Fig. (2-1). Loose soil tends 

to compact when sheared and, without drainage, pore water pressure increases. Shear 

stress increases monotonically to “peak” stress before it softens and reaches steady state 

strength. The points at which the softening occurs fall on a straight line called 

“instability” line (Lade and Pradel, 1990; Ishihara, 1993; Chu and Leong, 2002) or 
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sometimes the “Collapse” line (Sladen et al 1985). It was proposed that when the stress 

path reaches the instability line, the soil structure collapses leading to development of 

high pore pressures. This collapse phenomenon was hypothesized as the main reason for 

flow liquefaction (Casagrande, 1936, 1975; Castro, 1975).  

q
q

pεq

M

Instability 
Line

Residual Strength

q
q

pεq

M

Instability 
Line

Residual Strength

 

Figure 2-1: Schematic diagram of flow liquefaction 

 
Fig. (2-2) shows the typical behavior of dense sand in monotonic and cyclic 

undrained loading. These sands initially contract followed by prepeak dilation before they 

reach the critical state line contrary to the behavior observed in loose sand under 

monotonic loading. They also develop much higher strength.  The point at which the 

transition from contractive to dilative behavior occurs is termed the phase transition 

(Ishihara, 1978).  Cyclic loading of the same sand, beyond the phase transition line leads 

to the development of large permanent strains; however, the sand does not collapse. This 

type of behavior is grouped into cyclic mobility. Lateral spreading, a subclass of cyclic 

mobility, is the lateral permanent deformation on a gentle slope. Damage caused by 
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lateral spreading, is severely disruptive and often pervasive. For example, during the 

Alaska earthquake of 1964, more than 250 bridges were damaged or destroyed by 

spreading of floodplain deposits toward river channels. Cumulatively, more damage has 

been reported by lateral spreads than any other form of liquefaction-induced ground 

failure (NRC, 1985). 

 

q 

 

Figure 2-2: Schematic diagram of cyclic mobility 

 

2.3 Issues in laboratory testing 

Flow liquefaction and cyclic mobility phenomena are defined mainly based on 

laboratory experimental results. Therefore, the sample must be prepared such as to 

replicate the soil conditions at the field. There are several methods used to prepare soil 

sample in the laboratory such as moist tamping, dry deposition, and water sedimentation. 

Among them, Vaid et al. (1999) have shown that water sedimented specimens tend to 

q M 

p εq

Phase 
Transition 
Line 
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reproduce well field performance of sands.  Water sedimented specimens are prepared by 

pluviating sand into a mold previously filled with water.  Figure 2-3 shows the stress-

strain response from undrained simple shear tests conducted on relatively “undisturbed” 

samples obtained from soil freezing and water sedimented samples of Massey and KIDD 

sands.  It can be seen that water deposited specimen simulates the field behavior quite 

well. Furthermore, water deposited samples tend to show dilative behavior even when 

prepared in their loosest state (Vaid et al., 1999).  

 

 
Figure 2-3: Stress-Strain Response of Undisturbed and Water Pluviated Samples 

(Vaid et al., 1999) 
 

Figure 2-4 shows stress-strain curves obtained from triaxial compression tests on 

moist compacted and water pluviated samples of Fraser River sand prepared at the same 
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void ratio.  It can be seen that the water pluviated sample shows dilative behavior whilst 

the moist tamped sample shows contractive behavior.  Benahmed (2001) observed 

different structure formation when a sample of Hostun-RF sand is prepared by moist 

tamping and dry deposition (See Fig. 2-5). Casagrande (1976) described moist tamped  

 

 
Figure 2-4: Influence of Sample Preparation Method on Soil Behavior (Vaid et al., 1999) 
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sands as meta-stable due to their honeycomb structure. This structure is reflected in the 

stress-strain curve from samples prepared at higher void ratios, where a complete 

collapse of the sample and a significant reduction in strength can often be found (Fig.2-

4).  The meta-stable structure is most likely due to the small amount of water added to the 

soil when compacting the soil into the mold.  The small amount of water creates menisci 

in the soil fabric, allowing for higher void ratios than the ASTM maximum, which get 

destroyed upon final saturation (Terzaghi et al., 1996).  The result is a structure that may 

not be the most favorable, and prone to collapse.   

  Nevertheless, it is surprising to see the continued interest to simulate static 

liquefaction of saturated loose sands under undrained loading in laboratory specimens by 

using moist tamping preparation (e.g. Castro, 1969; Verdugo, 1992, Cubranovski and 

Ishihara 1998;  Yoshimine et al. 1998).  Such tests conducted on the behavior of moist 

tamped specimens have led to many proposals on the nature and existence of the critical 

state line of sands and liquefaction failures.  It is only recently experimental (Vaid et al., 

1999) as well as conceptual models (Wood, 2001) that have questioned the validity of the 

use of such experimentation to geotechnical practice.  There is no natural process by 

which a similar structure as moist tamped specimen would form in the field (Wood, 

2001). In addition, the formation of capillary forces with addition of small moisture 

effectively ensures that such sand is partially saturated and its behavior must be described 

based on a two pore size model (Wood, 2001). 
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Figure 2-5: Different structures due to the mode of reconstitution of Hostun-RF sand 
(after Benahmed 2001) 

 
Been and Jefferies (2004) investigated the stress-dilatancy behavior of very loose 

sand and found that the stress-dilatancy trends of very loose sand are the same as those of 

dense sand.  They also discussed the collapse/instability line in terms of mobilized stress 

ratio and concluded that that there is neither physical basis nor evidence to support the 

phenomenon of soil structure collapse. They thus proposed that “explanations of sand 

liquefaction must seek other physical explanations of the soil behavior”. We present here 

the view of liquefaction by Professor Andrew Schofield of Cambridge University that 

offers to provide an alternate view of liquefaction.  

2.4 Schofield’s view of liquefaction  

Schofield (1980, 2005) has given a new perspective of the liquefaction 

phenomenon within the framework of critical state theory. He has argued that the 
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formation of flow structure as suggested by Casagrande (1936) and phenomenon of 

collapse is impossible in a real situation based on his centrifuge test results (Schofield, 

1980). He further hypothesized that liquefaction is the result of rapid transmission of pore 

water pressures through soil at states near zero effective pressures. At near zero effective 

pressures, micro cracks form and in the presence of high hydraulic gradient it will lead to 

catastrophic failure: liquefaction (Schofield, 1982 & 2005).  

In the critical state soil mechanics framework, three classes of behavior are 

recognized; namely, yielding, rupturing, and fracturing (Fig.2-6).  On the “wet” or 

“stable-loose” side of the critical states, the soil yields at lower than critical deviatoric 

stress, and there may be massive plastic deformation, with rise in pore water pressures. 

This, however, is not the phenomenon which is described as liquefaction. The test paths 

that lead to liquefaction are those which exhibit reduction in effective stresses and move 

away from critical states on the “dry” or “stable-dense” side towards zero effective stress. 

At near zero effective stress, i.e. when the stress path reaches crack surface (Fig.2-6), 

there is virtually no contact stress between particles, then micro fissures can open. 

However, this complete relaxation of effectively stressed particle structure does not mean 

that the particles are less interlocked geometrically. If at any stage in the test path they 

are made to undergo a shear distortion they will tend to dilate and develop the full 

effective stresses that are required to reach a critical state at that packing. By themselves 

these micro fissures are not too important, but in the presence of an excess pore pressure 

gradient the approach to zero effective stress leads to one or other of the phenomena 

given the general name of liquefaction. Therefore, for either flow liquefaction or cyclic  
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Figure 2-6: Schematic of limits of stable states of soils (a) normalized q/pcrit –p/pcrit stress 
space (b) v- lnp space (Pillai and Muhunthan, 2002) 

mobility the pore water pressure must necessarily increase and bring the effective mean 

pressure to near zero. 

Muhunthan and Schofield (2000) have re-assessed some of failures of earth dams 

and reiterated that the failure mechanisms based on flow failure proposed by Casagrande 

(1936) were not possible and that there should have been excess pore water pressure 

gradients with fissures at near zero effective stress for their catastrophic failures.  

 As most of the geotechnical construction is on medium dense to dense soil 

conditions, it is most likely that soils show the behavior depicted in Fig. 2-2. Moreover, 

according to Schofield (1980, 1982), for any liquefaction phenomenon to occur, the pore 

water pressure needs to build up until effective mean stress becomes zero or nearly zero. 

It is therefore very important that the constitutive models capture this behavior correctly.  

 There have been several plasticity based constitutive models developed to predict 

the response of saturated sands under cyclic loading and ensuing liquefaction 

(Anandarajah, 1994; Yang et al., 2003). Among them the critical state soil mechanics 

based models have become widely popular. A brief overview of the history of plasticity 

based soil models and an introduction to the basic concepts of critical state soil 

mechanics is provided in the following sections. 

2.5 Plasticity in soil mechanics 

The classical plasticity theory started in 1868 when Tresca presented his yield 

criterion based on his experimental results on punching and extrusion which led him to 
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state that a metal yielded plastically when the maximum shear stress attained a critical 

value. However, Saint-Venant (1797-1886) was the first to set up the fundamental 

equations of plasticity and to use them in practical problems. In the 1950’s major 

advances were made in the theory of plasticity and the mathematical structure of 

plasticity was completed. The limit theorem (Drucker et al. 1951, 1952), the concepts of 

normality and the idea of the stability of a system (Drucker, 1959) are some of the 

notable advances.  

It is interesting to note that the criteria for the yielding of plastic solids, mainly 

soils, had been proposed by Coulomb (1773) several decades before Tresca published his 

yield criterion. Nevertheless, application of plasticity to soil mechanics started around 

1945. At its beginning, soil plasticity was strictly derived from metal plasticity. But soil, 

compared to metal, has a different rheological behavior, which depends mainly on mean 

pressure and density.  The Mohr-Coulomb criterion is one of the best known failure 

criteria in soil mechanics that takes the effect of the hydrostatic pressure on the strength 

of granular materials into consideration. Because the Mohr-Coulomb criterion is not 

mathematically convenient in three-dimensional situations due to the existence of corners 

(singularities), the perfect plasticity model of the Drucker-Prager type (1952) is the 

simplest model which approximates the Mohr-Coulomb criterion. 

Since most geological materials experience yielding from the very beginning, it is 

necessary to define the yield function for the continuous yielding behavior leading 

towards the failure, peak, critical or ultimate condition. One of the major advances in the 

application of plasticity theory was made by Drucker et al. (1957). They were concerned 
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with the limitations of perfect plasticity when applied to a frictional material with the 

Mohr-Coulomb failure criterion. The limitation came about because the failure envelope 

was treated as a yield envelope, and the normality condition implied an unacceptably 

large rate of dilation at failure. Moreover, the implication was that this rate was always 

applied, which was in conflict with the experimental evidence that in some cases soils 

reduce in volume during yield. To overcome these deficiencies, they proposed the idea of 

using a “cap” type yield function to define the continuous yielding of soils. 

There are two important consequences for soil models in the contribution of 

Drucker et al. (1957). The first is that the usual consolidation curve is but a case of work-

hardening stress-strain relationship, and can be associated with successive yield 

envelopes. The second follows from the first one in that when a soil is isotropically 

normally consolidated, an increase in mean effective stress would cause yield. The 

introduction of this work-hardening plasticity into soil mechanics contributed in large 

measure to the development of Critical State Soil Mechanics at Cambridge.  

The additional feature which has been an integral part of all Cambridge models 

has been the concept of critical state (Roscoe et al., 1958). Extensive research at 

Cambridge University had shown that soil and other granular materials, if continuously 

distorted until they flow as a frictional fluid, will come into a well-defined critical state 

(Roscoe and Schofield, 1963; Schofield and Wroth, 1968). The locus of the critical state 

points from drained and undrained tests lie on a unique line on a three dimensional space 

(q-p-v), called the critical state line (CSL). Its projection on q- p space and v-lnp space 

are given as: 
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Mpq =      (2-1) 

and 

plnv λ+=Γ       (2-2) 

respectively, where 
3

p 321 σ+σ+σ
=  and 31q σ−σ= . The associated volumetric and 

shear strains are described by 321v ε+ε+ε=ε &&&&  and 31q 3
2

ε−ε=ε &&& .   M is the slope of 

critical state line in the p- q space and Γ and λ are the intercept at p = 1 kPa and slope of 

the critical state line in the v-lnp, and v is the specific volume, respectively.  Once the 

CSL is reached, soils undergo unlimited distortion without any change in the state 

parameters. This is process is stated mathematically as: 
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The first term, 
q

p
ε&
&

, implies that at critical state, no further changes occur in the mean 

effective stress upon further straining the soil once the soil reaches the critical state.  The 

second term,
q

q
ε&
&

 states that no further changes in strength can occur once the soil has 

reached the critical state. Lastly, the term 
q

v

ε
ε
&

&
 represents a condition of zero dilatancy 
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upon reaching the critical state.  Zero dilatancy in drained conditions amounts to 0
q

v =
ε
ε
&

&
, 

and in undrained conditions, 0u

q

=
ε&
&

 where u is the pore water pressure. 

2.6 Granular Dilatancy 

The correct description of volume changes due to imposed stress is fundamental 

to the modeling of the stress-strain behavior of soils. The remarkable phenomenon of the 

coupling between volume and shape changes observed qualitatively and termed granular 

dilatancy by Osborne Reynolds (Reynolds, 1885) has influenced many a concept in 

granular media and soil mechanics.  Reynolds (1902) demonstrated the granular dilatancy 

with two rubber balloons, each full of colored water that his audience saw standing in a 

tube above each balloon in turn (Schofield, 2005). One balloon contained only water. The 

other contained a fully saturated dense aggregate. When he squeezed each balloon in 

turn, the water level rose in the tube from the water-filled balloon whereas the water level 

lowered down in the other tube. He explained this surprise result by using the dilatancy 

phenomenon that when the dense sand is sheared it tends to dilate and enlarge its voids. If 

there is a water supply at the moment, the enlarging voids draw the water from the 

supply, leading to the fall in water level. Since then much importance has been attached 

to the Reynolds’ concept in the literature on granular media and soil mechanics.  Whilst 

various attempts have been made to incorporate dilatancy into constitutive models little 

regard is made to its mechanical origins.  Many of the models have either failed to 

recognize the “Reynolds’ Effect” as an internal kinematical constraint or otherwise have 
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not followed its full mathematical consequences. This constraint has been discussed in 

the past by Kanatani (1982), Goddard and Bashir (1990), Houlsby (1993) and Collins and 

Muhunthan, (2003), and is reviewed in more detail later in this study. 

One of the earliest attempts to account for the increased shear strength due to 

dilatancy in dense sand was by D.W.Taylor (1948). Taylor used the term interlocking to 

describe the effects of dilatancy. He calculated the power at peak strength for some direct 

shear-box data and found that the energy input is partly dissipated by a critical state 

friction component and partly by the work needed to increase the volume.  

 

Figure 2-7: Taylor’s shear box analogy (Deshpande and Cebon, 1999) 

 

Fig. 2-7 shows the schematic diagram of direct shear box; σ is the applied normal 

stress, τ is the applied shear stress, dx is the horizontal displacement and dy the vertical 

displacement. Energy input to the system is τdx; the work needed to lift σ through 
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distance dy is σdy; and the energy dissipated by friction is µσdy. Considering energy 

balance, one will obtain:  

dydxdx σ+µσ=τ ; dxdydx µσ=σ−τ    (2-4) 

Eq.2-4 can be rearranged as 

dx
dy

+µ=
σ
τ       (2-5) 

This shows that the peak strength of the dense granular material under a normal stress is 

drawn from internal friction and interlocking (dilatancy). Taylor also saw that an increase 

in the effective stress reduces the interlocking, so that above a critical effective pressure 

there will not be an increase of volume but a reduction.  

 As part of his research thesis at Cambridge, Thurairajah (1961) performed a 

number of triaxial shear tests and calculated the proportion of work that went into 

Taylor’s dilation and the proportion that went into the change of elastic energy in an 

effectively stressed soil. His work with both drained and undrained tests on kaolin clays 

and sand led to some remarkable observations. He found that the rate of work dissipated 

in plastic deformation is equal to the product of the effective mean normal stress, with M, 

and the magnitude of the plastic shear strain rate.  Moreover, he found that this result 

applied not only when paths reached critical states but at all stages of the test paths. 

These important results have recently been reviewed by Schofield (2000) and Muhunthan 

and Olcott (2002).  This phenomenon has been recently termed as Thurairajah’s 

Dissipation Function by Schofield (2005).  Adopting the standard notation for triaxial 

tests, Thurairajah’s dissipation function can be cast in the form: 
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qMpˆ ε=Φ &        (2-6) 

Equating the plastic work done on the system to the dissipation function: 

p
q

p
q

p
v

p MpqpW ε=ε+ε= &&&&      (2-7) 

where and  denote the volumetric and shear components of the plastic strain rate 

tensor respectively (these rates can be interpreted as increments for rate independent 

materials).  

p
vε& p

qε&

 Based on minimum rate of internal work assumption, Rowe (1962) related 

dilatancy to the principal stress ratio as:  
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where Kµ is a parameter that depends on friction angle. The above relationship was 

termed the stress-dilatancy relation.  It has been used as a flow rule in a number of soil 

plasticity models. 

Using the critical state soil mechanics invariants, Eq. (2-8) can be rewritten as: 

η−+
η−

=
ε
ε

=
M2M39
)M(9d p

q

p
v

&

&
     (2-9) 

where
p
q

=η is the stress ratio.  

Influenced by Rowe’s study, many of the critical state constitutive models for 

soils interpret (2-7) and similar forms as a stress-dilatancy relationship.  For example, (2-

7) can be rewritten as: 
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η−= Md   or dM −=η      (2-10) 

 Burland (1965) and Roscoe and Burland (1968) proposed a modification to 

Thurairajah’s dissipation function Φ̂  and replaced (2-7) by: 

   
2p

q
22p

v
p
q

p
v Mpˆqp ε+ε=Φ=ε+ε &&&&          (2-11) 

where now the volumetric plastic strain rates also contribute to the dissipation. Eq. 2-11 

is also sometimes rewritten as a stress-dilatancy relation: 

η
η−

=
2

Md
22

      (2-12) 

However, it will be shown later that the above interpretations of granular dilatancy as a 

function of stress precludes consideration of other sources. 

2.7 Cam Clay models 

At the core of Critical State Soil Mechanics was the creation of the constitutive 

models called original and modified Cam Clay based on the theory of plasticity and the 

prediction of the successive ductile yielding states of specimens on the wet side of 

critical.  In the family of critical state based models (Schofield and Wroth, 1968, Roscoe 

and Burland, 1968), the stress-dilatancy relationship was interpreted as an equation for 

the plastic potential.  Invoking Drucker’s stability postulate (Drucker et al., 1957), the 

integrated form of the stress-dilatancy relationship was used to generate the yield curves 

and to develop plastic stress-strain models. Many of the extant, plasticity-based models in 

geomechanics do, in one form or another, incorporate these ideas. 

 

 

27



 The stress-dilatancy relation (Eq. 2-10) was used as the basis for the original Cam 

Clay (OCC) model of Schofield and Worth (1968), who realized that it could be 

interpreted as an equation for the plastic potential g(p,q), as it can be rewritten: 

M
dp
dqM

q
g

p
g

p
q

+≡+

∂
∂

∂
∂

−=      (2-13) 

which integrates to give 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

p
p

lnMpq c      (2-14) 

so that invoking Drucker’s stability postulate, which requires a normal flow rule, Eq. (2-

14) could also be used as that of the yield surface, with pc being interpreted as the normal 

consolidation pressure.   

Proceeding as above, Eq.2-12 can be integrated to give the modified Cam Clay 

(MCC) (Wood, 1990): 

0)pp(pMq c
22 =−−      (2-15) 
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Figure 2-8: Normalized OCC and MCC yield curves  

 
 
 Fig.2-8 shows the yield curves of OCC and MCC models in normalized space. 

The shape of the OCC model looks like a bullet whereas the MCC is an ellipse. As can be 

seen in the Fig.2-8, the OCC is not continuous and has a corner at q = 0. This results in 

unacceptable volumetric deformation around the corner and also causes numerical 

problems in implementing it into numerical codes.  The MCC model does not suffer from 

this shortcoming and is therefore widely used in numerical codes and practical 

applications. The normally consolidated pressure depends on plastic volumetric strain, 

and thus the hardening rule for the family of Cam Clay models is given as: 

κ−λ
ε+

=
p
v
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&
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2.8 Critical state based sand models 

Although application of Cam Clay models to normally consolidated clays have 

been quite successful, they suffer from limitations when used to model sands: (a) for 

states of stress below the critical state line, these models predict only compressive 

volumetric strains whereas sands exhibit dilation before the critical state is reached 

(prepeak dilation). For example, as shown in Fig.2-2, relatively dense sand changes its 

behavior from contractive to dilative before it reaches the critical state line.  However, the 

critical state dilatancy relationships (Eqs. 2-10 & 2-12) predict that a change in 

contractive to dilative behavior can only occur when the stress ratio η exceeds the critical 

state stress ratio M. Thus the models cannot capture such behavior; (b) the yield surface 

of these models is circular in the principal stress space; thus it cannot predict different 

strengths for compression and extension loading conditions (c) the hardening or yielding 

is defined through total volumetric plastic strains (or void ratio), thus the definition of 

hardening does not include the effect of deviatoric plastic strains.  

It is generally agreed that non-associated flow rules, some form of shear 

hardening, induced anisotropy, and the improved modeling of dilatancy, must be added to 

the basic structure of critical state soil mechanics in order to obtain an acceptable degree 

of realism in these models for sands. 

2.8.1 Improved stress-dilatancy rules 

Many sand models make use of the “state parameter” concept proposed by Been 

and Jefferies (1985).  In these models the voids ratio e is replaced by a “state parameter” 

as the fundamental variable, which determines the size of the yield surface and the flow 
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rule. The state parameter is defined to be the displacement of the current point from the 

critical state line in the (e, ln p) plane. It can be expressed either as the difference 

between the current and critical state voids ratio evaluated at constant pressure, or as 

,or simply as , where  is the critical state pressure evaluated at 

constant voids ratio, (Leroueil, 1997 and Wang et al., 2002).  Key to these models is the 

assumption that the critical state line in e-ln p space is unique. A major difficulty in 

determining critical state for dense sands is the frequent occurrence of shear band 

localization, at or just after the peak stress is achieved. Experimental issues in 

determining the critical state and investigating its uniqueness have been discussed by  

Chu (1995), Chu and Lo (1994), Mooney et al. (1998), Vaid et al. (1999), Santamarina 

and Cho (2001), Klotz and Coop (2002), and Papadimitriou et al. (2005). 

)p/pln( csl cslp/p cslp

Stress-dilatancy relationships of Rowe and Cam Clay models are only a function 

of η. Rowe (1962) did suggest that the stress-dilatancy relationship for granular soils 

must include a variable depending on the sample density and the stress history. As the 

state parameter represents the sample density and confining pressure, Li and Dafalias 

(2000, 2002), Manzari and Dafalias (1997) proposed an improved state dependent 

dilatancy relationship as: 

)M(
M
d

d f
0 η−=      (2-17) 

where Mf is now evolving with state parameter ( ψ ) that takes zero at critical state and 

negative and positive values when the states are on loose and dense side of critical state 

line, respectively. In accord with critical state concepts the evolution of Mf was proposed 
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as  by Manzari and Dafalias (1997) and asψ+= mMMf )mexp(MMf ψ= by Li and 

Dafalias (2000, 2002). At the critical state, 0=ψ  gives Mf = M; thus the dilatancy rule 

becomes that of original Cam Clay. For dense sand the state parameter takes negative 

value i.e. , M0<ψ f < M hence the dilatancy could also become zero for η<M. Therefore, 

the above relations can predict phase transition and ultimate state with the variation of 

state parameter. 

 These stress-dilatancy relationships have been used with the bounding surface 

framework for the prediction of granular soil behavior.  The peak stress ratio or slope of 

ultimate state line (Mb), which serves as the bounding surface is also assumed to be a 

function of the state parameter. Manzari and Dafalias (1997) used a linear relationship 

 which similar to the one used for Mψ−= nMM b f. Li and Dafalias (2000, 2002) used 

. It is noted that for dense sand M)nexp(MM b ψ−= b > M because 0<ψ . This idea of 

having a peak stress ratio varying with state parameter in order to address the issue of 

peak stress and subsequent softening of dense sand in drained conditions was proposed 

by Wood et al. (1994). There is hierarchy of similar kinds of models in the literature. All 

of them are based on critical state framework, but they differ only in defining the Mf and 

Mb. For example, Wang et al. (2002) proposed slightly different relations 

as, , where Mp00f I)MM(MM −+= )1I(MM 5.0
pb −β+= −

0 is a material constant and Ip 

is the state pressure index which is also a measure of state of the material from critical 

state line. In fact, Ip is related to ψ as, )Iln( pλ=ψ . In the proposal of Severn-Trent sand, 
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Gajo and Wood (1999) also made use of the state parameter in the definition of Mf and 

Mb.  

 Nova (1982) proposed a minor modification to the original Cam Clay stress-

dilatancy relation as: 

η−=− Md)N1(      (2-18) 

where N is a density-independent material property. He assumed N to be a constant based 

on the test data of Stroud (1971). If N = 0 then Eq. (2-18) becomes the Cam Clay flow 

rule. This model was further discussed by Jefferies (1997), who demonstrated that the 

extra term introduced by N represented stored rather than dissipated energy.  

Jefferies (1993) used Nova’s relationship to develop the “Nor-Sand” model for 

granular materials within the framework of critical state soil mechanics. He postulated 

that an infinity of isotropic Normally Consolidate Lines exist for sands, which prevents 

the direct coupling of yield surface size to void ratio. When the normality condition is 

used for the flow rule, the Cam Clay yield surfaces produce unrealistic dilation rates for 

dense sand. On the other hand, despite using the normality condition, Nor-Sand predicts 

realistic dilation rates by defining limiting hardening loci proportional to the state 

parameter at the image stress. Hence, the maximum dilatancy rate is controlled by the 

state parameter; this in turn controls the peak stress ratio.     

Jefferies and Shuttle (2002) modified Nova’s flow rule (Eq.2-18) by replacing M 

with Mf , where if MM ψ−= . ψi is related to state parameter as, )M/1(i η−λ−ψ=ψ . 

Recently, Rouse et al. (2006) have gone one step further and combined Nova’s flow rule 
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with state-based dilatancy, and allowing for particle shape, to get χψ−= NMMf , 

where the parameter  represents the particle shape.  χ

It is a well-known fact that both the geometrical packing of grains (fabric) and the 

contact forces between them strongly control the mechanical behavior of particulate 

systems, such as sands. A micro mechanics based parameter is often introduced into the 

stress-dilatancy relation to capture the effects of fabric. Oda (1975) and Mehrabadi and 

Nemat-Nasser (1983) used the second invariant of the deviatoric part of the fabric tensor 

in their stress-dilatancy equation as their fabric measure. Wan and Guo (2001, 2004) have 

also proposed a stress-dilatancy model that depends on a measure of the fabric tensor.  

2.8.2 Shear hardening 

Classical critical state soil mechanics models only involve volumetric hardening 

(Eq.2-16). As is shown in Fig. 2-8, for η < M, contractive behavior (i.e. ) is 

predicted. According to Eq.2-16 the increment rate of normally consolidated pressure 

( ) is positive, therefore the yield surface expands (hardening) during shear 

deformation in the region of η < M. For η > M, dilation occurs ( ); therefore the 

rate of increment of normally consolidated pressure is negative ( ) which makes the 

yield surface shrink (softening). At critical state η = M, this gives and , 

therefore no change in yield surface size. However, there will be continuous shear 

deformation without any change in states. Hence, a volumetric hardening rule would not 

simulate the prepeak dilation behavior that dense sands exhibit in the region of η < M. 

0p
v >ε&

0pc >&

0p
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0pc <&
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Models incorporating shear hardening have been proposed to overcome this by Nova and 

Wood (1979), Mroz and Norris (1982), Boukpeti and Drescher (2000), and Collins and 

Kelly (2002). In these models the rate of increment of the normally consolidated pressure 

is expressed in terms of total work done by the volumetric and shear strains as: 

κ−λ

εβ+ε+
=

))(e1(
pp

p
q

p
v

cc

&&
&       (2-20) 

where β is model parameter. According to the Eq. 2-20, remains positive even though 

 could become negative. For example, at or above critical state 

cp&

p
vε& M≥η  and ; but 

 because of the contribution of shear hardening  (Eq. 2-20). So, the yield surface 

continues to expand despite the fact that sample is dilating. This modification in 

hardening rule enables the prediction of prepeak dilation behavior of dense sand. 

0p
v ≤ε&

0pc >&

2.8.3 Non-associative flow rule  

 It is usually assumed in classical plasticity theory that the plastic potential 

function and the yield function are the same, i.e. the associated flow rule is assumed, for 

example in Cam Clay (Schofield and Wroth, 1968). Poorooshasb et al. (1967) and 

Tatsuoka and Ishihara (1974) performed a series of triaxial tests at different stress paths 

involving loading, unloading, and reloading to determine the yield condition 

experimentally for different sands. They concluded that the yield loci suggested by Cam 

Clay does not appear to duplicate real behavior. In addition, it has been found that use of 

the associated flow rule leads to large volumetric dilation. Therefore, the non-associated 

flow rule is employed to overcome this shortcoming. 
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 Lade and Duncan (1975) developed a non-associative elastoplastic model, based 

on experimental studies (Lade and Duncan, 1973). The failure criterion is expressed in 

terms of stress invariants as  and the plastic potential function takes the same 

form as  but with a different shape in the stress space. In the same line, 

Zienkiewicz and Mroz (1984) introduced “generalized plasticity” which does not need 

yield surfaces and plastic potentials to be defined. Instead of a yield surface and plastic 

potential, fields of unit vectors are defined for both loading and unloading processes. This 

enables successful simulation of both monotonic and cyclic loading of sands (Pastor et 

al., 1985, 1990)  

31
3
1 IIf κ−=

32
3
1 II κ−=ψ

2.8.4 Double hardening models 

 Based on the concept of multiple yield mechanisms (Koiter, 1953), Prevost and 

Hoeg (1975) employed two separate yield mechanisms to describe the behavior of soils. 

This concept, referred to as “double hardening”, was later adopted by a number of 

researchers (Lade, 1977; Vermeer, 1978; Ohmaki, 1979; Sribalaskandarajah, 1996).  

Vermeer (1978) used a functional form for the shear yield surface to get the first 

component of plastic strain. The yield surface closely matched the experimental shear 

yield surface by Stroud (1971) and Tatsuoka and Ishihara (1974) and a non-associated 

flow rule that is based upon Rowe’s stress-dilatancy relation. The second component of 

plastic strain is purely volumetric and a volumetric yield locus is used. Molenkamp 

(1981) has produced a far more sophisticated version of Vermeer’s model, with full 3D 

capability and consistent derivations, known as MONOT. Ghaboussi and Momen (1979, 
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1982) also used the double hardening principles to construct an elastoplastic constitutive 

model for sands which can be used for monotonic as well as cyclic loading conditions. 

2.8.5 Stored plastic work 

Recently, applications of the thermomechanics framework to geomechanics 

problems (Collins and Houlsby, 1997, Collins and Kelly, 2002 and Collins and 

Muhunthan, 2003) have had a fair amount of success. It has been shown that the soil 

models based on thermomechanics functions, such as the Helmholtz free energy, 

dissipation function, do not violate thermodynamic laws as opposed to the plasticity 

models derived based on extant procedures. It has been shown that the well-known 

original Cam Clay violates thermodynamic laws (Collins and Hilder, 2002; Collins and 

Kelly, 2002; Collins and Muhunthan, 2003). The concept of stored plastic work or frozen 

energy is the most important aspect of these models. Critical state based soil models often 

assume that the energy input to the system is entirely dissipated in frictional work. 

Nevertheless, some part of the input energy could be stored within plastically stressed 

force chains because of the highly heterogeneous nature of the stress and deformation 

fields at the micro level (Collins 2005, Collins and Kelly 2002, Collins and Muhunthan, 

2003). The stored energy is represented by the free energy function; the dissipation 

function gives the frictional work loss in the system. Once these functions have been 

specified, by using a systematic approach, the flow rule, yield condition can be deduced 

from them (Collins and Kelly, 2002).  

Collins and Houslby (1997) demonstrated that a non-associated flow rule is a 

necessary property of a frictional material, in which the plastic deformations are 
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governed by stress ratios rather than by the magnitudes of certain yield stresses as in 

metal plasticity. Collins (2005) clarified that there are two causes of dilatation in a soil, 

one due to Reynolds dilatancy, the other due to the recovery of the frozen energy. Collins 

et al. (2006) have further extended this work and modeled the Reynolds dilatancy in the 

framework of thermomechanics.  

The original critical state concepts were developed mainly based on the behavior 

of reconstituted, essentially isotropic, materials.  The behavior of sands, particularly the 

angular sands commonly encountered in the field have a better defined granular structure. 

These materials possess a significant degree of fabric anisotropy leading to the 

difficulties faced by the original critical state models to sands.  Yet, none of the sand 

models discussed above directly accounted for this phenomenon.  As a result while ad 

hoc improvements have been made in the predictions by these models, some of the 

parameters used by them have little physical meaning. 

 This study makes use of the fabric based plasticity model for anisotropic behavior 

of clays developed by Muhunthan and his colleagues (Muhunthan et al., 1996; Masad et 

al., 1998) to develop a physically based model for sands as shown in the next chapter. 
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Chapter 3 

 

THE NEW ANISOTROPIC SAND MODEL 

 

3.1 General 

There have been two major trends in describing the soil behavior. The first one is 

motivated by plasticity in which a soil medium is treated as a homogeneous continuum. It 

provides for a viable means of modeling the behavior of the soil mass (Schofield and 

Wroth, 1968). Many useful theories including the critical state soil mechanics framework 

have been developed based on this idealization (Roscoe et al, 1963; Roscoe and Burland, 

1965). 

The second approach is based on micromechanics in which soils are treated as 

assemblies of discrete particles. The early stages of this approach treated a soil medium 

as an assembly of regular and irregular arrays of rigid frictional particles and derived 

analytical solutions to describe their collective behavior (Mindlin, 1949; Rowe, 1962). 

The contact distribution of particles in the basic models was subsequently modified with 

a probabilistic distribution function to reflect their anisotropic nature (Horne, 1965; Oda, 

1972; Matsuoka, 1974). The advances in computational power enabled the simulation of 

contact deformation of spheres under loads using Newtonian laws of motion and led to 

the development of Discrete Element Method (Cundall and Strack 1978).  It has since 

become a tool simulate the behavior of an assembly of spherical particles in a computer 
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and has been used to identify a number of problems in granular mechanics including 

dilatancy and the development of shear bands (Suiker and Fleck, 2004, Barthust and 

Rothenburg, 1990).  

The continuum plasticity models often do not account directly for the 

micromechanics of granular irreversible deformation whereas the detailed study of the 

particulate nature of soil material is mathematically complicated and its applicability to 

field problems and design is limited (Scott, 1987).  

Therefore, a new approach in which the plasticity theory is improved with the 

proper choice of additional parameters based on micromechanics has been used by a 

number of researchers.  This approach takes advantage of the continuum theory as a 

powerful technique for practical applications; however, it recognizes the particulate 

nature of soils and incorporates into plasticity theory the features of the spatial 

arrangement of solid particles and associated voids, termed granular fabric.  

3.2 Fabric measure based on void space 

 The mechanical behavior of granular materials is strongly influenced by its 

microstructure. In triaxial compression tests on sands, Oda (1972b) observed that the 

strength of granular soils is different depending on the direction of compression with 

respect to the horizontal. Moreover, he observed that non-spherical particles tend to be 

rotated perpendicular to the direction of a maximum compression. Void ratio or the 

porosity is often used to characterize the state of packing in granular materials.  These scalar 

measures, however, are insufficient to characterize the directional behavior of granular 
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materials.  Higher order micro-structural variables known as “fabric tensors” have been 

used to describe the distribution and orientation of grains and voids (Oda et al., 1982, 

1985; Mehrabadi et al., 1982; Tobita, 1989; Pietruszczak and Krucinski, 1989a; Bathurst 

and Rothenburg, 1990; Muhunthan et al., 1996). Models incorporating fabric measures 

are also extant in the literature (Wan and Guo, 2004, Tsutsumi and Hashiguchi, 2005; and 

Zhu et al., 2006). 

 This study makes use of the void fabric tensor measure to characterize fabric effects 

in granular media (Muhunthan et al, 1996; Masad and Muhunthan, 2000).  Void fabric 

tensor is developed based on the concept of a representative elemental volume (REV) which 

consists of sufficient number of particles to make the statistical treatment valid.  The REV 

can be generally of any shape such as cubical, spherical, etc.  In this study, an idealized 

spherical REV with voids shaded as shown in Fig. 3-1 is chosen.  Using averaging 

techniques the distribution of void ratio within the REV can be approximated by a 

directional function ec(l) of the form (Muhunthan et al., 1996; Masad et al. 1998): 

( ) ( )jiijc ll1ee Ω+=l  (3-1) 

where ec(l) is the magnitude of the void ratio vector in the direction of the unit vector l, e is 

the isotropic void ratio of the soil, the components of the unit vector l are given by l1 = 

sinθsinφ, l2 = cosθ and l3 = sinθcosφ (Fig. 3-1), and Ω ij  is termed the void fabric tensor.  If 

the voids are isotropically distributed, the components of the void fabric tensor become zero 

and Eq. (3-1) reduces to the isotropic average value, e, of the void ratio.  Thus, the 

components of the void fabric tensor represent deviations from the isotropic distribution of 
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voids. The components of  can be obtained from microscopic observations within a 

representative elemental volume (REV).  Details of the experimental procedure and the 

complete derivation of Eq. (3-1) are given in Muhunthan et al. (1996). 

Ω ij

 

 
 

Figure 3-1: The coordinate system used in the void fabric tensor analysis 

 
 The specific volume v = 1+e has often been used in the development of concise 

critical state based stress-strain models for soils.  The magnitude of the directional specific 

volume in l-direction, vc(l),  follows from the directional void ratio as: 

ϕ−ϕ+= vv)(vc l  (3-2) 

where ϕ = Ωijlilj and v is the isotropic specific volume. 
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3.3 Fabric change due to deformation  

 The changes in material points in granular materials induced by deformation are 

registered by the evolution of its fabric.  Past investigators have explored the relationship 

between fabric and strain originating with the seminal contribution by Philofsky and Finn 

(1967) who introduced the idea of measuring strain by stereological principles. Kanatani 

(1984) extended this work and developed relationships between strain and different fabric 

tensors. Satake (1989) developed the average strain in granular materials as a function of the 

relative displacement between particles and the branch vector which connects the centroids 

of pairs of particles.  This is utilized by Iai (1993) to develop a concept of effective strain in 

granular materials and re-interpret the stress dilatancy relation in the Cam Clay model (Iai, 

1994). In what follows, we explore a simpler relationship between volumetric strain and 

changes in void fabric tensor (see also Muhunthan et al. 1996).  

 The rate of change of volume in granular materials equals the rate of change in 

volume of voids, thus the rate of change in void ratio. Differentiating Eq.(3-1): 

    ( ) ( ) jiijjiijc llell1ee Ω+Ω+= &&& l          

(3-3) 

Summation of the directional rate of volume change over all directions leads to: 

                   

(3-4) 

jiijc lleee Ω+= &&&

Denoting , Eq. (3-4) can be simplified to: jiij llΩ=ϑ &&

ϑ+= &&& eeec       (3-5) 
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The above relationship shows that the rate of change of directional volume consists of two 

components; the standard macroscopic component and one that is dependent on the rate of 

change of fabric. The decomposition of the rate of volume change is shown schematically as 

in Fig. 3-2.  In extant granular models, rate of volume change is assumed to occur entirely 

within the void skeleton due to contraction/dilation of voids (Fig. 3-2(b)). The derivation 

here shows that the evolution of anisotropic granular fabric contributes an additional 

contribution to the rate of volume change (Fig. 3-2c). This additional rate of volume change 

that occurs within the sample must, therefore, be incorporated in plasticity models to reflect 

its contribution. 
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Figure 3-2: Schematic description of volume changes in void and solid skeleton 

For small strains, the rate of volumetric strain in granular materials is equal to the 

rate of change of the volume divided by the current total volume (total volume = 1+e). 

Dividing Eq. (3-5) by the total volume: 

e1
e

e1
e

e1
ec

+
ϑ

+
+

=
+

&&&
     (3-6) 
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Defining 
e1

ec
vc +

=ε
&

&  and 
e1

e
v +

=ε
&

& , Eq. (3-6) can be re-written as; 

ϑ
+

−ε=ε &&&
e1

e
vcv      (3-7) 

vε&  can be recognized as the standard macroscopic volumetric strain rate measured by 

experiments..  

 Since the fabric tensor Ωij is deviatoric, it is possible to relate its change to the 

deviatoric or shear strain change, ijε&  through the use of an isotropic tensor valued functional 

representation (Boehler, 1987): 

( )e,, klklijij εΩΩ=Ω &&&      (3-8) 

The functional form is generally complex.  However, if the principal axes of and are 

assumed to be coincident, the relation can be modeled as (Muhunthan et al., 1996): 

ijε& ijΩ&

ijij εβ=Ω &&       (3-9) 

with: 

( ) ( ) kiik21 e/11ae/11a ΩΩ−+−=β     (3-10) 

where a1 and a2 are scalar functions of the isotropic void ratio.  It is noted in passing that the 

detailed relationship between fabric and the strain deviator tensor has been studied by 

Kanatani (1985).  Denoting qjiij ll ε=ε && for triaxial condition, and multiplying Eq. (3-9) by li 

and lj one will get: 

qεβ=ϑ &&       (3-11) 
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where l is chosen at any convenient direction to study fabric changes with deformation.  

Substituting Eq. (3-11) in Eq. (3-7) results in: 

qvcv e1
e

εβ
+

−ε=ε &&&      (3-12) 

The last expression shows that the rate of volumetric strain in is coupled with the rate of 

shear strain in anisotropic soils.  The relationship Eq. (3-12) can be simplified with the use 

of a coupling parameter,  as (see also Muhunthan et al. 1996): α

   qvvc εα+ε=ε &&&     (3-13) 

where β
+

=α
e1

e         

It is evident from the above discussion that the relationship between volumetric strain and 

shear strain is purely kinematic and is induced by fabric anisotropy. 

3.4 Decomposition of plastic strain 

 Most plasticity models of granular media consider the plastic volumetric strain to be 

solely contributed by changes in stress.   This precludes contributions from other 

mechanisms to plastic volumetric strain.  The kinematic relationship between volumetric 

strain and fabric relationship developed here enables us to put forward a proposal for an 

additional source of plastic strain that arises purely as a result of changes in fabric. 

Accordingly, the plastic volumetric strain is considered to be: p
vε&

p
q

p
vc

p
v εα−ε=ε &&&         (3-14) 

Re arranging Eq. (3-14) and denoting  p
q

p
vi εα−=ε &&
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                    (3-15) p
vi

p
vc

p
v ε+ε=ε &&&

where  is that part that is caused by changes in stress and  is that part that arises as 

a result of changes fabric anisotropy. 

p
vcε& p

viε&

The above formulation suggests that the overall plastic volumetric strain rate in 

granular materials is contributed by two sources.   is that part that arises as a result of 

changes fabric anisotropy and thus termed “fabric induced volumetric strain”. 

Since , it always remains dilative during loading. This part of plastic 

volumetric strain is predominant in granular materials as their aggregate arrangements are 

highly anisotropic. The coupling between volume and shape changes observed 

qualitatively and termed granular dilatancy by Osborne Reynolds (Reynolds, 1885) has 

influenced many a concept in the modeling of the stress-strain behavior of soils.  

However, whilst various attempts have been made to incorporate dilatancy into 

constitutive models, little regard is made to its mechanical origins. Goddard and Bashir 

(1990) have shown that Reynold’s dilatancy is essentially a kinematical constraint. 

Further, Kanatani (1982), Goddard & Bashir (1990) and Houlsby (1993) have argued that 

such an internal kinematic constraint does not contribute to plastic energy dissipation. 

Since  is a kinematic constraint and is always dilative, it is assumed here  is that 

due to Reynolds effect. 

p
viε&

p
q

p
vi εα−=ε &&

p
viε& p

viε&

 Micro-mechanical studies have shown that when a granular material is subjected 

to loading, the load is carried by a combination of strong and weak networks ((Radjai et 

al).  These studies also show that no plastic strains occur in the force chains and all the 
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plastic deformation occurs in the weak frail network.  Thus, all plastic energy dissipation 

will occur in the weak networks and therefore corresponding strains must be used in the 

description of the dissipation function as well as in hardening rules. Based on this 

analogy, , the effective plastic volumetric strain is considered to be occurring inside 

the weak networks and therefore must be included in both dissipation and hardening 

rules.  

p
vcε&

 Division of volumetric strain as in Eq. (3-15) has been explored in the past by 

Shamoto et al. (1998) and Zhang et al. (1999) for modeling the behavior of sands under 

cyclic loading.  A rather different division of the plastic volume strain has been proposed 

by Chandler (1985) and Nixon and Chandler (1999). The shear induced plastic strain  

is that part of the volume strain which is recovered after a loading cycle; whilst the stress 

induced part is the “settlement or accumulated plastic strain” which remains after a 

loading cycle is completed. The two volume strains  and  can hence be thought of 

as the “reversible” and “irreversible” plastic volume strains in this context. 

P
viε&

P
viε& P

vcε&

 According to the proposed division of volumetric strains, both dilative and 

contractive volumetric strains are present right from the beginning of loading contrary to 

extant constitutive models. The new separation of volume changes in granular media is 

incorporated into the plasticity theory to develop a new anisotropic sand model. 
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3.5 Yield loci of anisotropic sand 

 The proposed division of plastic volumetric strain by the two sources; fabric 

induced kinematic , and stress induced  enables us to revise the plastic dissipation 

function(Eq (9)) proposed by Burland (1965) that was used to develop the modified Cam 

Clay model. Kanatani (1982), Goddard & Bashir (1990) and Houlsby (1993) have argued 

that since the fabric induced volumetric strain,  is the manifestation of internal 

kinematic constraints, it does not  contribute to plastic dissipation (see also Collins and 

Muhunthan 2003; Collins et al. 2006).  Thus, we revise Eq. (2-11) as: 

P
viε& P

vcε&

P
viε&

2p
q

22p
vc Mpˆ ε+ε=Φ &&       (3-16) 

Note that only enters into the above dissipation function.  We also note that the choice 

of the modified Cam Clay dissipation function for revision was motivated by 

experimental observations, since,  is the compressive “accumulated strain increment” 

induced by cyclic loading under drained conditions as discussed in the previous section. 

These increments have been found to be approximately normal to a modified Cam Clay 

type surface by Chang and Whitman (1988) and Nieumunis et al. (2005). Following the 

family of critical state models, equating the revised dissipation function to the plastic 

work done results in: 

P
vcε&

P
vcε&

( ) 2p
q

22p
q

p
v

p
q

p
v Mpqp ε+εα+ε=ε+ε &&&&&      (3-17) 

The above equation can be simplified to give the ratio of plastic strains as: 
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( )α−η
η−α+

=
ε
ε

2
M 222

p
q

p
v

&

&
     (3-18) 

Eq. 3-18 can be interpreted as a stress-dilatancy rule, which contains an additional 

parameter, the fabric anisotropy α.  

Recognizing the plastic strain ratio above as the associated flow rule of the theory 

of plasticity, (3-18) can be integrated to give the yield locus for the anisotropic sand 

model as (Wood, 1990): 

( ) ⎥
⎦

⎤
⎢
⎣

⎡

α−η+
= 22

2

c M
M

p
p  (3-19) 

where pc is the value of p when η = α.  The yield loci for different values of the fabric 

anisotropy parameter α  are as shown in Fig. 3-3.   It is evident that non zero values of α 

result in rotated and distorted elliptical yield loci.  They reduce to the ellipse that is 

centered along the p axis as in modified Cam Clay when α is zero.   
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Figure 3-3: Yield locus of new anisotropic sand model with different α values 

 
Oda (1993) has also produced yield loci which are distorted ellipses with rotation 

when he included the fabric tensor as measure of induced anisotropy for granular 

materials. He demonstrated that the yield locus of the shape of the distorted ellipse with 

rotation fits very well with the experimentally determined yield locus (Yasufuku, 1990) 

for anisotropically consolidated sands.  

3.6 Datum states of dilatancy 

 The inclusion of the fabric anisotropy parameter α in the dissipation function and 

consequently in the yield curve results in three important datum states as shown in Fig. 3-

4. Firstly, when subjected to isotropic strains,  the resulting stress state is not 

isotropic but lies upon the “kinematic normal consolidation line” KNCL, with slope 

0p
q =ε&

α . 

 In most critical state based models, relationships of the form (3-19) are often 

characterized as a form of stress-dilatancy relationship. However, as discussed earlier 

granular dilatancy consists of kinematic (Reynolds type) as well as stress-induced 

components.  Thus the use of stress-dilatancy in relationships of the form (3-19) is not 

appropriate for anisotropic soils. It is just a flow rule as used here (see also Collins and 

Muhunthan 2003). 

 There is a second datum state at which the volumetric strain  = 0 and where it 

changes its sign from positive to negative. The line on which this occurs is often termed 

the phase transformation line (PTL) encountered in undrained tests (Ishihara 1978), 

P
vε&
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though Mroz (1998) suggested the term “Zero dilatancy line” since the plastic volumetric 

strain rate is zero on this line.  From (19), the slope of the PTL can be determined to be 

22M α+=η . 

 The third datum line corresponds to the state defined by . An expression 

for can be derived from Eq. (3-19) using the decomposition of the volumetric plastic 

strains (Eq. (3-13)) as: 

0P
vc =ε&

P
vcε&

( )α−η
α−η−

=
ε
ε

2
)(M 22

p
q

p
vc

&

&
     (3-20) 

When : 0P
vc =ε&

α+=η M ;    α−=
ε
ε

P
q

P
v

&

&
    (3-21) 

This is the classic Taylor (1948) stress-dilatancy relation. Notice, however, that  is 

non-zero at this state; therefore, dilation is now entirely due to the Reynolds effect. Even 

though the sand is dilating, the dissipation is entirely due to shear as at this state the 

dissipation function (3-17) reduces to: 

P
viε&

                                             p
qT Mpˆ ε=Φ &                                                                    (3-22) 

which is the classical Thurairajah (1961) dissipation function that was used in the original 

Cam Clay model (Roscoe et al. 1963). Some further properties of this line were discussed 

by Collins and Muhunthan (2003) and Collins (2005), who termed it as the “Reynolds-

Taylor Line” (RTL). As the undrained stress path of dense sands becomes asymptotic to 
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this line, it was also termed as the asymptotic line by Gudehus et al. (1976) or the 

“ultimate line” by Poorooshasb (1989) in the literature. 

 In general, α evolves with shear and the three datum state lines, KNCL, PTL and 

RTL rotate as the deformation proceeds. It should be noted when α = 0, the yield curve 

reduces to an ellipse centered along the p axis as in modified Cam Clay, RTL and PTL 

coincide and become the standard critical state, and KNCL becomes the isotropic 

consolidation line (ICL).  

 

Figure 3-4: Features of new anisotropic sand model 

 
 In compression tests, these datum rotate counter-clockwise (Fig. 3-5), therefore 

RTL moves inside the PTL in the extension side. In the extension region, where  is 

negative, the resultant volumetric strain rate due to fabric anisotropy,  is compressive, 

and would result in overall volume decrease. Thus, if a specimen is unloaded from a 

P
qε&

P
viε&
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given dilatational state, at constant pressure, and then sheared in the opposite direction, 

the specimen starts to contract plastically, and reach the RTL first with no possibility of 

attaining PTL.   This would be the case for sands with a collapsible structure for which α 

would be negative to begin with. 

Usually the shearing in the extensive side develops anisotropy in that direction 

destroying the anisotropy that developed in the compressive side. In other words, the 

value of the fabric anisotropy parameter goes from positive to negative according to the 

sign of plastic shear strain. Upon further deformation the evolution of α and accordingly 

the locations of RTL and PTL would essentially follow the pattern as in the case of 

normal sands. This has been observed in the past by several experiments on ultra loose 

sands (e.g. Alarcon et al. 1988). As one would expect in such a kinematic hardening, 

anisotropic model, the material is exhibiting a Bauschinger effect.  This is also a feature 

of the model of Houlsby (1993), who notes that this is entirely consistent with the 

‘sawtooth’ analogy, where there is a definite preferred orientation needed to produce 

dilation.  
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Figure 3-5: Dilatancy datum in compressive and extensive sides 

 

The insights gained from the granular dilatancy model and its implications on 

plastic dissipation and the yield surface discussed above are utilized in the following 

sections to model monotonic and cyclic behavior of sands within the context of bounding 

surface elasto-plasticity. 
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Chapter 4 

 

MODEL  PARAMETERS 

 

This chapter presents a discussion of the various parameters of the model and 

their determination using laboratory test. 

4.1 Experimental observations 

 A series of drained and undrained triaxial compression tests were conducted by 

Olcott (2001) on Ottawa sand, manufactured by U.S. Silica from Ottawa Illinois. 

Specimens were prepared using water sedimentation. The sand is a silica sand consisting 

of mostly rounded grains with a specific gravity of 2.65.  The grain size distribution is 

given in Figure 4-1.  Soil index properties include a coefficient of uniformity of 1.51, 

coefficient of curvature of 0.97, and a mean grain size of 0.44mm.  According to USCS, 

the sand is classified as poorly graded (SP).  The maximum void ratio was determined in 

accordance with ASTM D4254-91 Method C.  The minimum void ratio was determined 

using a slight variation of ASTM D4253-93 (Olcott, 2001). The ASTM maximum and 

minimum void ratios for Ottawa F-35 sand were determined to be 0.76 and 0.56 

respectively. 
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Figure 4-1: Grain Size Distribution for Ottawa F-35 Sand and Glass Beads 

A Brainard-Kilman Model S-600 triaxial loading frame manufactured by GEO 

Store from Stone Mountain, Georgia was used to conduct all triaxial compression tests. 

Allowable deformation rates range from 0.0025mm/min to 5.0 mm/min.  The maximum 

allowable cell pressure for this load frame is 1200 kPa, but limitations such as supply 

pressure, maximum line pressures, and regulators limited the maximum allowable cell 

pressure to 800 kPa.   

Typical measured stress, strain and volume change characteristics of sands with 

differing void ratio but consolidated to the same initial confining stress are as shown in 

Figure 4-2.  It can be seen that the critical state condition is not achieved in any of these 

specimens even after 18% of shear strain.  
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The measured shear stress strain and volumetric values are used to calculate the 

plastic dissipation rate,
p
q

m p

ˆ

ε
Φ

=ς
&

 using necessary energy corrections (Muhunthan and 

Olcott, 2002; Muhunthan et al. 2004) and plot its variation with strain as shown in Fig. 4-

3.  It can be seen that after an initial scatter mς values attain a constant value around 3 to 

4 % strain and remains constant beyond. Similar data for simple shear tests have been 

given by Stroud – see Muir Wood (1990). As emphasized by Muhunthan et al (2004) this 

result enables the slope of the final critical state line in q-p space, to be determined from 

data obtained at low strain levels, and so avoiding the difficulties caused by the 

development of inhomogeneous deformations, which occur at strains greater than 20%. 

 Furthermore, the constant value mς is found to be equal to M independent of the 

initial consolidated conditions thus reducing the plastic dissipation Φ̂  to Thurairajah’s 

dissipation function  (Eq. 2-11). Consequently,  must necessarily be zero. Thus, in 

accord with the proposed theory, the Reynolds Taylor Line (RTL) is attained at this stage 

(Eq. 3-20) and sand state continues to remain in this state.  Since  in this state, the 

rate of change of volumetric strain is entirely due to Reynolds dilatancy, given by 

 (see Eq. 3-14). This is evident from the near linear volumetric response in the 

post RTL region for the strains considered here (Fig. 4-2). 

TΦ̂ P
vcε&
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vc =ε&

p
q

p
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 Note that there is scatter in the mς values at the initial stages due to the fact that 

the realization of M to its ultimate value is not instantaneous but gradual as the granular 

assembly becomes fully mobilized. This was also recognized and discussed by  
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Figure 4-2: Typical drained test results on Ottawa sand 

 

Kabilamany and Ishihara (1990). Following their proposal, the variation of M is modeled 

by an inverse tangent relation between M and the plastic shear strain: 

  )S/arctan()MM(MM P
q0f

2
o ε−+= π                                                    (4-1) 

where is the initial value (estimated to be 0.9), and is the final value of M (Fig.4-

2). The value of  is 1.14 for Ottawa sand, whilst S is taken to be 0.012. 

0M fM

fM
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Figure 4-3: Variation of ςm with shear strain 

 

4.2 Critical state line 

 The uniqueness of the critical state line in the three dimensional space (q, p, e) is 

central to current critical state based soil models and practical approaches in determining 

the residual shear strength characteristics. The original critical state concepts were 

developed mainly based on the behavior of reconstituted, essentially isotropic, materials. 

As further experimental information has been obtained, it has become evident that 

although in some cases a unique critical state line is found, this by no means is universal.  

For example, Riemer and Seed (1997) and Mooney et al. (1997) and (1998), show 

dependence of the CSL in the void ratio e – mean effective pressure p space on the 

loading direction and manner, while Yoshimine and Ishihara (1998) show the same for 
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the ultimate steady state line. The behavior of sands, particularly the angular sands 

commonly encountered in the field, appears to deviate significantly from the original 

premises of critical state in the sense of a non-unique critical state line. Such deviation 

has been attributed to the microstructure or fabric of naturally deposited granular 

medium, and sand models accounting for fabric anisotropy have introduced the 

possibility of a critical state line in the e – p space which is not unique, but dependent on 

the fabric, inherent and/or evolving, with considerable success in simulation of data (Li 

and Dafalias, 2002, Dafalias et al., 2004).  

 Li and Dafalias (2002) and Dafalias et al. (2004) proposed that the dependence 

can be introduced through the value of the critical void ratio e0 at p = 0 as: 

)Aexp(ee A0 −=            (4-2) 

where A is the fabric parameter. The results of this dependence are shown in Fig. 4-4, 

where the parallel “translation” of the CSL resulting from such dependence may be 

observed. For A = 0 (isotropic fabric) the e0 = eA. Note that Γ≡Ae  (Eq. 2-2). Since the 

state parameter ψ is now measured from the “translating” CSL, the peak stress ratio Mb 

and stress-dilatancy relations are indirectly dependent on the fabric parameter (Sec.2.8.1).  
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Figure 4-4: The relocation of the CSL as a function of the anisotropy parameter A 

 

 This feature is automatically captured by the current theory because here the RTL, 

which is equivalent to the CSL in critical state theory, rotates and translates in q – p space 

and e – lnp space, respectively, with the fabric anisotropy parameter, α. Therefore, the 

concept of RTL can be useful in determining the state parameter ψ. Moreover, no 

assumption is made about the existence or uniqueness of a critical state line. However, if 

a homogenous, drained test can be sustained until the dilation ceases, without the 

occurrence of significant crushing, then the sand would reach a final, critical state line.  

4.3 Evolution of fabric anisotropic parameter 

As explained in the section 4.1, beyond shear strain of 3 – 4 % the plastic dilation 

is purely kinematic and equal to the fabric anisotropic parameter, α. However, it is 

evident that the fabric anisotropic parameter is not a constant, as samples at different 

packing have entirely different slopes of volumetric strain vs. shear strain curves (Fig.4-
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2). Desai (1995) has suggested that under a combination of shear and hydrostatic stresses, 

anisotropy of geologic materials first increases. But upon further loading, it must 

necessarily decrease as the relative magnitude of the hydrostatic stress increases. Thus, as 

the loading is increased, the material will self-adjust and tend toward the isotropic state; 

which represents an amorphous condition (Drucker, 1991). Horne (1965) had surmised 

that during the initial stages of deformation grains tend to align with the major principal 

stress direction resulting in the development of anisotropy in that direction. But after 

some deformation, when the sliding between particles is no longer confined to specific 

directions, the degree of anisotropy decreases, causing a decrease in the stress ratio as 

well as the rate of dilation.  These proposals suggest that  α must vary with shear strain, 

beginning at zero, since the material is assumed initially isotropic, here growing to a 

maximum level of anisotropy and thereafter reducing progressively. Accordingly, the 

following set of equations is proposed to capture the evolution of α:  

  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ε

ε
α−αε=α

p
q

p
q

f
p
qA

&

&
&&       (4-3) 

)}vvd{exp( 0kk2mf −−α=α          (4-4) 

where d2 is material constant, αm is the maximum anisotropy that the sample could 

develop and ;plnev λ+=κ c00 plnev λ+=κ  (e0 is initial void ratio). The Macauley 

brackets define the operation Z)Z(hZ = , where h  being the Heaviside step function, 

which takes zero or one if the argument is less or greater than zero, respectively. The 
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incremental rate of fabric anisotropy parameter has been proposed following Houlsby 

(1993). 

 The rate of dilation with shear strain after attainment of the Reynolds Taylor state 

is given by the tangential slope of the volumetric curve (Fig. 4-2 (b), Eq. 3-21).  The peak 

slope of this curve would correspond to the maximum level of anisotropy, αm, attained. 

Using the curves in Fig 4-2(b) and other similar data at various combinations of initial 

void ratios and confining pressures (Olcott, 2001), the maximum level of anisotropy αm 

can be calculated and plotted as a function of vk0 as shown in Fig. 4-5. Based on this, αm 

is assumed to vary as: 

   )bvexp(B 0km −=α       (4-5) 

where and B and b are material constants. For Ottawa sand B = 30405, b =16.44, 

respectively. 

 

 The following table summarizes the model parameters, the material constants 

used in them, and corresponding equations.      
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Figure 4-5: variation of maximum anisotropy with vk 

  

Table 4-1: Summary of model parameters 

Model parameter Material constants 

fabric anisotropic parameter, 
α                    (Eq. 4-3, 4-4 & 4-5) A, αm, d2, B, b 

slope of critical state line in q-p space, 
M (Eq.4-1) M0, Mf=Mc, S 

slope of critical state line in v-lnp 
space λ, κ, N 

elastic moduli (Eq. 5-27, 5-28) G0, pa, ν 

plastic moduli (Eq. 5-21) H0
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Chapter 5 

 

BOUNDING SURFACE SAND MODEL 

 

5.1 General 

The anisotropic sand model developed under triaxial loading in the previous 

chapter is extended here to general 3 – D conditions using the bounding surface theory of 

plasticity (Dafalias and Popov, 1975). In the early days, the load-deformation problems in 

geotechnical analysis were solved by employing the simplest linear elastic or rigid-plastic 

material models. However, soil is a multi-phase material that consists of solids, water, 

and air; hence its mechanical response is highly nonlinear, inelastic, rate dependent, and 

anisotropic. Therefore, in order to describe nonlinear mechanical behavior of soils, 

several nonlinear models have been proposed. Nonlinear soil models based on the Mohr-

Coulomb and the hyperbolic stress-strain formulation (Duncan and Chang, 1970) have 

been used successfully to model embankments under monotonic loading. Since the 

dependence of the stress-strain relationship on stress path and stress history is ignored in 

these models the unloading path would trace back the initial loading path unless a 

different modulus (unloading-reloading modulus) is used. Masing’s laws (Masing, 1926) 

are often used to capture the hysteresis effects of soil response under cyclic loadings.   

It is virtually impossible to model path dependence and dilatant characteristics of 

soils by elastic models.  For example, if a clockwise shear stress produced dilation then 
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conversely an anticlockwise shear stress would have to produce compression (Schofield, 

1980). Moreover, granular materials exhibit permanent volumetric deformation during 

drained cyclic loading. This permanent volumetric deformation is the primary reason for 

the progressive build up of excess pore pressure during undrained cyclic loading that 

leads to liquefaction. Several empirical formulations have been proposed to compute the 

volumetric strains due to shear strain changes. Martin et al. (1975) proposed an empirical 

relationship that relates the incremental volumetric strain, vdε∆ , to the cyclic shear strain 

amplitude, , where  is presumed to be the “engineering” shear strain and the current 

accumulated volumetric strain, : 

γ γ

vdε

vd4

2
vd3

vd21vd c
c

)c(c
ε+γ

ε
+ε−γ=ε∆     (5-1) 

where c1, c2, c3,and c4 are constants. It can be noted that the above equation enables the 

volumetric strain increment to decrease with accumulation of strains.  

An alternative and simpler formula is proposed by Byrne (1991): 

)cexp(c vd
21

vd

γ
ε

−=
γ
ε∆      (5-2) 

where c1and c2 are constants which can be related to the relative density, Dr (Byrne, 

1991).  

Constitutive models that are derived based on plastic theory avoid such empirical 

relations because the irrecoverable volume strain is naturally coupled with the shear 

strain, and is given by the stress-dilatancy relation. History of the previous loadings can 

be tracked by the proper use of plastic internal variables. As strain increment directions 
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are given by the plastic potential function as opposed to the linear elastic theory where 

strain increment directions are coaxial to the stress increments, dilative behavior can be 

modeled in the theory of plasticity; i.e. both clockwise and anti-clockwise shear would 

produce dilation. Thus, the theory of plasticity is central to the advanced developments of 

constitutive modeling for liquefaction analysis.  

5.2 Classical plasticity 

When using the concepts of the theory of classical plasticity, one has to formulate: 

(a) the yield condition defining elastic and inelastic deformation domains (b) the flow 

rule relating the increments or rates of stress and irreversible strain, and (c) the hardening 

rule specifying the evolution of the yield surface in the course of plastic deformation and 

the evolution of hardening parameters defining the state of the material. In stress space, 

the surface is represented by: 

0)q,(F nij =σ′      (5-3) 

Since constitutive relations refer to the deformation of the soil skeleton, the state 

of the material and yield condition are defined in terms of the effective stress ijσ′  and 

plastic internal variables accounting for the past loading history. The internal variables 

are usually scalar or second-order tensor quantities such as the plastic work, the plastic 

strains, etc.  

nq

If small strain theory is assumed, and ijε  , , and  are total, elastic, and plastic 

strains, respectively, the total strain rate is decomposed into: 

e
ijε p

ijε
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p
ij

e
ijij ε+ε=ε &&&       (5-4) 

The elastic incremental constitutive relations are given by  

ijijkl
e
ij C σ′=ε &&     or         (5-5) e

ijijklij E ε=σ′ &&

where ,  are the elastic compliance and moduli matrices, respectively.  ijklC ijklE

The plastic constitutive relations require the definition of the direction (or vector) 

of plastic loading (flow rule)  and the plastic modulus, both functions of the state, 

which in turn determine the loading function L as: 

ijL

ijij
p

L
K
1L σ′= &       (5-6) 

where is plastic modulus. Plastic loading, unloading, and neutral loading occur when 

L > 0, L< 0, and L = 0, respectively. The inclusion of  in L allows for the description 

of unstable behavior (softening) when both scalar quantities 

pK

pK

ijijL σ′&  and  are negative 

but L > 0 (Dafalias, 1982 & 1986). The plastic strain increment and increment in internal 

variables are given in terms of L as: 

pK

ij
p
ij RL=ε&       (5-7) 

nn rLq =&           (5-8) 

where the brackets  define the operation )z(hzz = , h  being the Heaviside step 

function, and ,  are functions of the state.  In classical plasticity,  and  are 

defined as the gradient of a plastic potential, G = 0, and gradient of a yield locus, F = 0; 

ijR nr ijL ijR
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both are equal to each other if the associated flow rule is assumed, i.e.  .  is the 

direction of the internal variable increment.  

FG ≡ nr

 

The plastic modulus  is obtained by the consistency condition:  pK

0q
q
FFF n

n
ij

ij

=
∂
∂

+σ
σ∂
∂

= &&&     (5-9) 

Substituting Eq. 5-8 into 5-9 gives: 

n
n

p r
q
FK

∂
∂

−=      (5-10) 

In Cam Clay models, the yield surface is assumed to undergo isotropic and 

kinematic hardening along the hydrostatic axis, described by one single scalar , which 

measures the plastic volumetric strain. If e is the total void ratio, the plastic volumetric 

strain is expressed as 

nq

)e1(
e

0

p
p
ii +

=ε
&

&      (5-11) 

where is the trace of the plastic volumetric strain rate tensor, ep
iiε& 0 is the initial void ratio, 

and is increment in plastic void ratio. Following the critical state framework, the 

plastic void ratio increment, is expressed as: 

pe&

pe&

c

cp

p
p

)(e
&

& κ−λ=     (5-12) 

Combining (5-11) & (5-12),  
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=ε     (5-13) 

Thus, Kp is given by: 

κ−λ
+

∂
∂

−= c
0

c
p

p
)e1(

p
FK     (5-14) 

Combining (5-4), (5-5), and (5-6), the stress and strain increment for elastoplastic 

deformation is expressed as (Dafalias, 1986): 

klijklij D ε=σ &&       (5-15) 

where Dijkl, elastoplastic modulus: 

klij
1

ijklijkl QPB)L(hED −−=     (5-16) 

rsklrskl LEQ = ;   abijabij REP =     (5-17) 

cdabcdabp RELKB +=      (5-18) 

5.3 Kinematic hardening models

Many of the typical foundation problems encountered by geotechnical engineers 

involve stress reversals, rotation of principal stresses and anisotropic behavior. 

Earthquake and offshore structures introduce the additional complication of cyclic 

loading and degradation. 

In the classical theory of plasticity, the region enclosed by the yield surface is 

assumed to be purely elastic and plastic deformation is predicted when the stress state lies 

on the yield surface and the stress probe is acting outward, i.e. L > 0. Therefore, a loading 

that originates from a point inside the yield surface produces elastic deformation until it 
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reaches the yield surface. Thereafter, both plastic and elastic deformations occur during 

loading, i.e. L > 0, only elastic deformation is predicted for unloading, i.e. L < 0. On the 

contrary, most geological materials such as clay, rock, and sand do not exhibit purely 

elastic behavior during unloading and the yield surface, when defined by a small offset 

value, usually encloses an elastic domain lying in the vicinity of the loading point. 

Indeed, in some cases the yield surface may not exist at all, i.e., most geological materials 

experience yield from the very beginning. Moreover, they also show significant 

hysteretic behavior during unloading – reloading cycles. Therefore, the isotropic 

hardening model cannot reproduce realistic soil behavior as the yield surface expands 

uniformly with plastic deformation, so that the size of the elastic region, controlled by the 

maximum stresses that have been applied, becomes very large. This feature does not 

allow the classical plasticity models to predict strain accumulation in drained and 

progressive pore water pressure build up for undrained cyclic deviatoric loading within a 

stress domain which has been defined as elastic. Therefore, kinematic hardening models 

were proposed to better describe cyclic loading phenomena in soils.  

5.3.1 Multi – surface plasticity models 

Prager (1955, 1956) was first to introduce the kinematic hardening rule in 

plasticity, in which he assumed that yield surface translates without rotation in the stress 

space in the direction of the strain increment. Ziegler (1959) modified Prager’s hardening 

rule and assumed the rate of translation to take place in the direction of the reduced-stress 

vector.  In kinematic hardening models, the size of yield surfaces remained unchanged 
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during translation. However, it is argued that mixed hardening rules (Isotropic and 

Kinematic hardening) where the yield surface is allowed to translate and expand should 

be used for the realistic representation of soil behavior under cyclic loading condition 

(Hashiguchi, 1986; Chen and Huang, 1994). Iwan (1967), starting from a one-

dimensional model, generalized for multi-dimensional cases in the stress space by 

assuming a collection of yield surfaces arranged in a series-parallel combination instead 

of the usual single surface. Each one of the yield surfaces is assumed to obey a linear 

work-hardening law of the Prager type, but the combined effect gives rise to a non-linear 

hardening law and can effectively model the Bauschinger effect.  Independently, Mroz 

(1967, 1969) proposed a similar model introducing the concept of the field of work 

hardening moduli. This field is defined by a configuration of surfaces of constant work 

hardening moduli in the stress space. To do so, he postulated that the response of a 

material is governed by a collection of nested yield surfaces, with each surface obeying a 

linear kinematic hardening law. He also proposed a new kinematic hardening rule that 

controls the movements of the yield surfaces.  

As this framework requires many memory surfaces to keep track of previous 

loading histories, it is widely called “multi-surface” plasticity. The multisurface 

framework has been used by several researchers for both clays and sands under 

monotonic as well as cyclic loading conditions (Prevost, 1977, 1985, Elgamal et al., 

2003). Although there are definite advantages in using a multi-surface framework for 

modeling soil behavior, it does not have a smooth transition from an elastic to fully 

plastic state for reversed loading, which is observed experimentally on most materials. 
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Moreover, in a multi-surface formulation, the plastic modulus varies in piecewise fashion 

and this requires large storage capacity in numerical modeling to keep track of the 

combined information of many surfaces.  

On the contrary, the bounding surface theory of plasticity, originally introduced 

by Dafalias and Popov (1976) using the plastic internal variables concept and 

independently by Krieg (1975) in conjunction with an enclosed yield surface, uses only 

two surfaces; a bounding surface and a loading surface to define a continuous variation of 

the plastic modulus between them. Therefore, the bounding surface plasticity formulation 

is used in this study. Subloading surface models (Hashiguchi, 1989, 1998) are sub sets of 

bounding surface plasticity, as they have the similar structures.  

5.4 Bounding surface plasticity  

Bounding surface plasticity has been one of the advanced plasticity theories, 

which has been applied to numerous problems in geotechnical engineering with a fair 

amount of success. The theory assumes that all states of soil behavior are enclosed by a 

surface, which was given different names such as limiting (Krieg, 1975), consolidation 

(Mroz et al., 1979; Mroz and Norris, 1982), failure (Fardis et al., 1983), or memory 

surface (Tseng and Lee, 1983). Dafalias (1986) called this surface the bounding surface, 

and in modeling soil behavior, the normal consolidation surface is considered to be the 

bounding surface (Dafalias and Hermann 1982; 1986). In spite of the different names, the 

role of the enclosed surface is essentially the same, as follows: for any given stress state 

within or on the bounding surface, a proper mapping rule associates it to a corresponding 
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“image” stress point on the surface. A measure of the distance between the actual and 

image stress points is used in order to specify the plastic modulus at the actual stress state 

in terms of a bounding plastic modulus at the “image” stress state (Dafalias, 1986).  

Initially the bounding surface theory was applied to clays (Dafalias and 

Herrmann, 1986). Bardet (1984, 1986) extended its application to sands using a single 

elliptic surface with variable aspect ratio. Crouch et al. (1994) made further advancement 

to the bounding surface plasticity for two-dimensional stress space and Crouch and Wolf 

(1994 a, b) for three-dimensional stress space. The bounding surface concepts have 

become integral to many soil models, especially for the prediction of their cyclic behavior 

(Dafalias and Manzari, 1997; Noorzad, 1998; Wang et al., 2002; Li and Dafalias, 2000, 

2002). Although the approach is geometric in nature and makes no appeal to physical 

reasoning of the problem, it lends itself to a number of general and versatile formulations 

in removing the inherent restrictions in the conventional theory of plasticity. 

 The loading surface or yield surface is assumed to be of the same shape as the 

bounding surface (Fig. 4-1).  This enables the latter not to intersect but translate and 

deform with the bounding surface.  The bounding surface and loading surface are defined 

by: 

0)q,(F nij =σ  and 0)q,(f nij =σ     (5-19) 

respectively, where nq  and are internal variables for the bounding and loading 

surfaces, respectively. 

nq

ijσ  is the image point on the bounding surface for the stress 

point  on the loading surface (Fig.5-1). The image point is found in a way such that the ijσ
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gradient at the stress point and image point are the same. The plastic modulus on the 

loading surface is found using linear interpolation with the distance δ  between the image 

and stress points. The distance δ  is expressed in terms of the coordinates as: 

( )( )[ ] 2
1

ijijijij − σ−σσσ=δ      (5-20) 

 

 

Figure 5-1: Schematic illustration of the bounding surface in a general stress space  

 
 The plastic modulus at image point  is found using the consistency condition 

(Eq. 4-9), and the plastic modulus at the image point, K is given as: 
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where is the maximum possible distance 0δ δ  could take, is a model constant that 

depends both on the current stress and accumulated plastic strains, and M

H

RTL is the slope 

the RTL. When , ; the loading surface touches the bounding surface and 

the standard classical plasticity formulation holds. Inclusion of η into the plastic modulus 

allows one to simulate strain softening and control the dilatancy in dense sand. A similar 

approach is used by Bardet (1986) and Khalili et al. (2005).  

0→δ PKK →

5.5 New sand model in q - p space 

  
 The bounding surface version of the new sand model is first formulated in a 

triaxial q – p space as there is a vast amount of experimental data available to verify it. It 

is then generalized to 3 – D conditions. The bounding surface of the new sand model is 

obtained from (Eq. 3-19) as: 

( ) 0)pp(pMpqF c
22 =−−α−=     (5-22) 

The loading function L (Eq. 4-6) becomes: 

)qnpn(
K
1L qp && +=      (5-23) 
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)p2p(M)pq(2p
F

c
2 −−αα−−=∂

∂     (5-26) 

Substituting for  using equation (Eq. 5-22), cp

p))(M(p)(2p
F 22 α−η−+αα−η−=∂

∂    (5-25) 

p)(2q
F α−η=∂

∂      (5-26) 

5.5.1 Elastic strains 

 The shear modulus is assumed to be a function of the mean effective pressure, p 

and current void ratio e (Richart et al., 1970; Anandarajah, 1994): 
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=     (5-27) 

The bulk modulus is related to in terms of the Poisson’s ratio as: SG

)21(3
)1(G2KS υ−

υ+
=      (5-28) 

where pa is atmospheric pressure, G0 is the model parameter.  

The rate of elastic strains follow as: 

S

e
v K

p&
& =ε ; 

S

e
q G3

q&
& =ε      (5-29) 

5.5.2 Plastic strains 

 The bounding surface of the new sand model is as shown in Fig. 5-2.  The loading 

surface is shrunk to a point (Dafalias and Herrmann 1986). Thus, the image point is now 

found using a “radial” mapping and the plastic strains are formulated from (5-7) as: 
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&&& +=ε      (5-31) 

The parameter K is found using the interpolation relation in Eq.5-21. The distance 

between current stress point and image point is given by: 

( )( )[ ] 2
1

qqpp −−=δ       (5-32) 

 

 

Figure 5-2: Bounding surface illustration in q-p space for the new sand model 

 
Use of the α parameter in the volumetric hardening rules used in the family of critical 

state leads to the anisotropic hardening law for the model from which Kp can be found as 

follows: 
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5.5.3 Formulation of incremental stress-strain relations 

The total volumetric and deviatoric shear strain increments are given as: 

p
v

e
vv ε+ε=ε &&&       (5-37) 

p
q

e
qq ε+ε=ε &&&       (5-38) 

Substituting Eq. (5-29), (5-30) and (5-31) into Eq. (5-37) and (5-38), the incremental 

stress-strain relation for the triaxial loading condition can be obtained as: 
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where  
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1
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1C +=      (5-42) 

For undrained loading, the condition of the total volumetric strain increment is 

zero, . 0v =ε&

5.5.4 Model prediction  

The above formulation was coded into MATLAB and some simple simulations 

were performed to ensure that the new sand model captures the behavior of sand. Typical 

predictions of drained and undrained tests by the model are shown in Fig. 5-3 and 5-4. 

Both tests start from mean effective pressure of 100 kPa, with the void ratio of 0.72. In 

the drained test, the sample initially contracts for stress states below PTL. Once the stress 

path crosses the PTL, the behavior changes from contraction to dilation. The sample 

continues to dilate at RTL as shown in Fig.5-3 (a) & (c).   Similarly, in the undrained test, 

positive pore water pressure builds up initially below PTL. Once the stress path crosses 

the PTL, it begins to dilate, and negative pore water pressure builds up. In this case also, 

the sample continues to dilate at RTL as shown in Fig.5-4 (a). Therefore, the model 

predicts the sand behavior satisfactorily in q – p space.   
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Figure 5-3: Simulation of drained triaxial test (a) stress path in q – p space (b) shear stress 
vs. shear strain (c) volumetric strain vs. shear strain 
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Figure 5-4: Simulation of undrained triaxial test (a) stress path in q – p space (b) shear 
stress vs. shear strain  
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However, it is evident from Fig. 5-5 that the incremental formulation does not 

capture the actual behavior of sand during unloading.  This has also been the case with 

past investigations (Dafalias and Manzari, 2004). Dafalias and Manzari (2004) chose to 

modify their stress-dilatancy relation (Eq.12 ) with an ad hoc term to represent the “effect 

of fabric” to capture this behavior. We present a new mechanism based on the plastic 

volumetric strain decomposition to rectify this defect. It is conceived that the dilatational 

volumetric strains are held up by the applied stress ratio and these are “reversible” during 

unloading.  Subsequently, during unloading as the stress ratio decreases, the dilatational 

volumetric strain is recovered. Thus, the reversible plastic volumetric strain takes the 

form: 

[ ]βη−−=ε e1cp
v      (5-39) 

where c, β are constants, and  is the dilatational volumetric strain during the 

unloading. Constant c can be found equating with the conditions at the point of load 

reversal.  

p
vε

 

Eq. (5-39) can be rewritten in rate form by taking derivatives, 

ηβ=ε βη− && ecp
v        (5-40) 

The prediction of the proposed mechanism is shown in Fig. 5-5 and it can be seen 

that it agrees well with the experimental data.  
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Fig.5-5: Typical loading-unloading stress path 

5.6 Generalization of new sand model 

 The new anisotropic sand model is now generalized into six dimensional spaces 

using invariants in order to implement it into numerical code such as FLAC3D. The 

stress invariants and their gradients are defined by (Dafalias and Herrmann, 1986): 

iiI σ=       ; ij
ij

I
δ=

σ∂
∂      (5-43) 
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where is the Kronecker delta; θ is the Lode angle which takes the values of  for 

the loading conditions of triaxial compression and extension. The deviatoric tensor  , 

shear stress q, and the mean effective stress p are defined as: 

ijδ 6/π±

ijs

ijijij ps δ−σ=   ; 
3
Ip 1=  ; J3q ±=        (5-47) 

Yield function can be written as: 

0),,J,I(F =κθ      (5-48) 

Gradient of the yield function Lij is given as: 
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The fabric anisotropy parameter α is replaced with a second order dimensionless 

deviatoric tensor αij, which is related to α of triaxial space as: 

2
1

jiij2
3

⎟
⎠
⎞

⎜
⎝
⎛ αα=α      (5-50) 

Rewriting the new sand model (Eq.3-19): 

0)pp(pM)ps(:)ps(F c
2

ijijijij =−−α−α−=     (5-50) 

The partial derivative of yield function F with respect to I, J, and M: 
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)ppp(M2,F 2
cM −−=       (5-53) 

 
The energy dissipation equations in the family of critical state models have been 

formulated as a function of the frictional constant M. However, sand possesses different 

critical state strength values for compression and extension. In the triaxial compression 

( ) and extension ( ) regions, the energy dissipation must necessarily be 

governed by the triaxial compression (M

0q > 0q <

c) and triaxial extension (Me) critical state 

parameters, respectively. The parameters Mc and Me can be obtained from the friction 

angle using the Mohr-Coulomb failure criterion.  

 The critical state parameter M is therefore interpolated between Mc and Me as:  

)c,(gMM c θ=      (5-54) 

where    
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=θ
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e
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c =  

 
Partial derivative of M with respect to θ is given as: 
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M
,M      (5-55) 

 

The evolution law for α  (Eq.4-3 & 4-4) is generalized as: 
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where is the deviatoric part of the plastic strain tensor. p
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where  is the deviatoric part of the gradient . ijL′ ijL
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Chapter 6 

 

MODEL  IMPLEMENTATION 
 

6.1 General 

 The Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) was 

developed by Itasca Consulting Group, Inc. as a general three-dimensional procedure for 

analysis of geotechnical/geological media subjected to static, dynamic, water flow, and 

thermal loading conditions (Itasca, 2002). FLAC3D uses a finite difference approach that 

incorporates the Lagrangian description capable of computing large deformations. It has 

gained wide acceptance among practicing engineers and researchers as a tool for the 

design and analysis of a range of engineering problems in rock mechanics, geomechanics, 

and soil mechanics. It has also been successfully used to numerically simulate a number 

of geotechnical problems.  Besides many built-in nonlinear soil constitutive models such 

as Mohr-Coulomb, Cam Clay, etc., it provides a user interface to implement new 

constitutive models. FLAC3D is therefore selected for the current study. 

6.2 Dynamic analysis 

The dynamic analysis option in FLAC3D permits three-dimensional, fully 

dynamic analysis with FLAC3D. The calculation is based on the explicit finite difference 

scheme to solve the full equations of motion, using lumped grid point masses derived 

from the real density of surrounding zone as opposed to fictitious masses used for static 
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solution. FLAC3D also permits analysis of soil-interaction brought about by ground 

shaking by coupling the dynamic formulation with the structural element model. The 

dynamic option in FLAC3D is applicable to a wide range of problems in disciplines such 

as earthquake engineering, seismology, and mine rock burst.  

Earthquake loading is basically a cyclic loading because of the shear wave 

transmission though the soil layers. “Equivalent-linear” and fully nonlinear methods are 

two commonly used in earthquake engineering for analyzing wave transmission and 

dynamic soil-structure interaction. In the equivalent-linear method (Seed and Idriss, 

1969), a linear analysis is performed, with some initial values assumed for damping ratio 

and shear modulus in the various regions of the model. With the reference to laboratory-

derived curves that relate damping ratio and secant modulus to amplitude of cyclic shear 

strain, an iterative procedure is performed until there are no further change in assumed 

and determined soil properties. In contrast, only one run is done with a fully nonlinear 

method, since nonlinearity in the stress-strain law is followed directly by each element as 

the solution marches on in time. If appropriate nonlinear laws are used, the dependence of 

damping and apparent modulus on strain level is automatically modeled.  

Although the equivalent-linear method is conceptually simple and user-friendly, it 

takes drastic liberties with physics. On the other hand, the fully nonlinear method 

correctly represents the physics but demands more user involvement. If a comprehensive 

constitutive model is available, the fully nonlinear method can be used to reproduce some 

of the more-subtle dynamic phenomena. FLAC3D uses the latter procedure in solving 

dynamic problems. As the new anisotropic sand model captures the nonlinear behavior of 
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sands well, the new sand model is implemented into FLAC3D to simulate the 

liquefaction phenomena.  

6.3 Modeling dynamic pore pressure generation  

  Besides modeling the mechanical response of solid materials, FLAC3D also 

models the flow of fluid through a permeable solid, such as soils. The flow modeling may 

be done by itself, independent of the usual mechanical calculations of FLAC3D, or it may 

be done in parallel with the mechanical modeling in order to capture the effects of 

fluid/solid interaction (Coupled analysis). Fluid/solid interaction involves two mechanical 

effects. First, the fluid in a zone reacts to mechanical volume changes by a change in pore 

pressure. Second, changes in pore pressure cause changes in effective stress, which 

affects the response of the solids. In FLAC3D by default, the pore fluid simply responds 

to changes in pore volume caused the mechanical dynamic loading. The average pore 

pressure remains essentially constant in the analysis. However, if the permanent 

volumetric strain is accounted properly, FLAC3D generates excess pore pressure 

accordingly.  

6.4 Explicit, Dynamic Solution (EDS) Scheme 

Numerical solution schemes face several difficulties when geomaterial models are 

implemented (Hart and Detournay, 2005).  Three characteristics of geomaterials cause 

specific problems in implementing constitutive models. 

1. Physical instability: Physical instability occurs in materials with softening behavior, 

such as rock, concrete and dense/over-consolidated soils. The softening behavior 

occurs when the material fails and parts of it accelerate and the stored energy is 
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released in the form of kinetic energy. Numerical solution schemes often have 

difficulties at this stage because the solution may fail to converge when a physical 

instability arises. 

2. Path dependence of nonlinear materials: In most geo-mechanical systems, there are an 

infinite number of solutions that satisfy the equilibrium, compatibility and 

constitutive relations that describe the system. These solutions are corresponding to 

different stress paths, respectively. A correct solution needs to be identified for the 

actual stress path. For example, if an excavation is made suddenly (e.g., by explosion) 

then the solution may be influenced by inertial effects that introduce additional failure 

of the material. This may not be seen if the excavation is made gradually. The 

numerical solution scheme should be able to accommodate different loading paths in 

order to apply the constitutive model properly. 

3. Nonlinearity of the stress-strain relation: This is referred to as the dependence of the 

elastoplastic stiffness matrix on the stress state. The numerical scheme needs to be 

able to accommodate the various forms of nonlinearity. 

The above three characteristics of geo-materials, which cause difficulties in 

implementing the constitutive model, can all be addressed by using an explicit, dynamic 

solution (EDS) scheme, which is used by FLAC3D (Itasca, 2002) to implement elasto-

plastic constitutive models for soils and rocks. The scheme allows the numerical analysis 

to follow the evolution of a geologic system in a realistic manner, without concerns about 

numerical instability problems.  In the explicit, dynamic solution scheme, the full 

dynamic equations of motion are included in the formulation, and the static equilibrium 
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state is reached by absorbing the energy in the system through inertial terms added in the 

formulation. During the ‘collapse’ failure process in softening materials, some of strain 

energy in the system is transferred into kinetic energy. The kinetic energy radiates from 

the source and dissipates through the inertial terms in the full dynamic formulations.  

Therefore, the numerical solution is always stable even when the system being modeled 

is unstable. On the contrary, schemes that do not include inertial terms must use some 

numerical procedure to treat physical instabilities. Even if the procedure is successful at 

preventing numerical instability, the stress path taken may not be a realistic one. 

However, the EDS scheme can follow the physical path and simulate the effect of the 

loading path on the constitutive response. 

 The EDS scheme also allows the implementation of strongly nonlinear 

constitutive models because the general calculation sequence allows the field quantities 

(velocities/displacements and forces/stresses) at each element in the model to be 

physically isolated from one another during one calculation step. This implementation in 

the general calculation sequence is described as follows. 

 The general calculation sequence for the EDS scheme is illustrated in Figure 6.1. 

The figure presents the calculation sequence of one loop calculation for one time step and 

for each tetrahedron element. In each sequence loop of the time step, the calculation 

solves two sets of equations: equilibrium of motion and constitutive relationships. The 

former is invoked to derive the new velocities and displacements from stresses and forces 

at each mass point. By application of the Gauss divergence theorem to the tetrahedron 

element, the derived velocities at each mass point are used to express the strain rates of 
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the tetrahedron element. Then, the constitutive equations are used to calculate new stress 

from strain rates.  The key feature here is that each box in Fig. 6-1 updates all model 

variables from known values that remain fixed while control is within that box. For 

example, the lower box takes the set of velocities already calculated and, for each 

tetrahedron element, computes new stresses. The velocities and other variables are 

assumed to be frozen for the operation of the box, i.e., the newly calculated stresses do 

not affect the existing velocities. The assumption is valid provided the time step is so 

small that the calculated variables cannot propagate from one element to another during 

this time step. This EDS approach makes the implementation of the non-linear 

constitutive model possible. All inputs of strain rates and other variables in one 

tetrahedron element, during the time step, are fixed and not affected by the calculations in 

other elements. The stress increment calculation from strain rate is straightforward and 

there is no need to use any iteration process even if the constitutive law is highly 

nonlinear. 
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Equillibrium Equation
 (Equation of Motion)

Stress/Strain Relation 
(Constitutive Equation)

       New 
Velocities and         
displacements

    New 
 Stresses 
and Forces

(for all mass-points)

(for all elements)

Strainrates are 
fixed during this
 calculation

Forces are 
fixed during this
 calculation

Figure 6-1: Calculation loop of EDS scheme in FLAC3D 

 

6.5 Mechanical time step for numerical stability 

  The differential motion equations cannot provide valid answers unless the 

numerical scheme is stable. In FLAC, the idealized medium in the system is viewed as an 

assembly of point masses (located at the nodes) connected by linear springs. It was found 

from studying the oscillating mass-spring system with a finite difference scheme that a 

time step must be used that does not exceed a critical time step related to the minimum 

eigenperiod of the total system. Similarly, the EDS scheme in implementing non-linear 

constitutive models requires that the time step is so small that the calculated variables 

cannot propagate from one element to another during the time step.  Hence, the stability 

criterion for the numerical scheme must provide an upper bound for the values of the 

time steps used in the finite difference scheme.     
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 In FLAC3D, a characteristic of the numerical scheme is that a uniform unit time 

step is adopted for the whole system. And, the nodal masses in the motion equations 

are taken as variables and adjusted to fulfill the local stability conditions. 

t∆

 The one-dimensional, one series mass-spring system governed by the differential 

equation is: 

td
xdmkx 2

2

=−           (6-1) 

where k is the stiffness of the spring, and m is the point mass. The critical time step 

corresponding to a second-order finite difference scheme for the equation is given by: 

k
m4t =∆          (6-2) 

For an infinite series spring-mass case, the limit-stability criterion has the form 

     ( )2tkm ∆=          (6-3) 

By selecting , the system will be stable if the magnitude of the point mass is greater 

than or equal to the spring stiffness. In FLAC3D, the validity of Equation (6-3) is 

extended to one tetrahedron by interpreting m as the nodal mass contribution m

1t =∆

l at local 

node l and k as the corresponding nodal stiffness contribution kl. The nodal mass 

contribution as derived from the infinite series criterion provides an upper-bound value 

for the system under consideration. In order to obtain a stable numerical scheme, the 

nodal mass contribution should be given a value that is equal to or larger than the nodal 

stiffness contribution.  By a simple diagonalization technique of the local stiffness matrix, 

the nodal stiffness contribution at local node l is given by  
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     [ ]2ll
q

1
qq Sn

V9
k α

=         (6-4) 

where G34K1 +=α , K is the bulk modulus, and G is the shear modulus. No 

summation is implied on repeated index q of kqq, which runs from 1 to 3. Then the upper-

bound value for the nodal stiffness contribution can be expressed as: 

)k,k,kmax(k 332211
l =        (6-5) 

which yields the expression for the tetrahedron mass contribution at node l: 

( ) ( )[ ]( )3,1i,Snmax
V9

m 2ll
i

1l =
α

=        (6-6) 

to provide a numerically stable solution. 

 

6.6 Mixed discretization 

The EDS scheme in FLAC3D is set up on the basis of tetrahedron elements. The 

tetrahedron element is a constant strain-rate, three-dimensional element. However, these 

elements do not provide for enough modes of deformation when used in the framework 

of plasticity. For example, they cannot deform individually without change of volume as 

required by certain important constitutive laws and exhibit an over-stiff response as 

compared to that expected from the theory. To overcome this problem, a process of 

mixed discretization is applied in FLAC3D, as described in Marti and Cundall (1982). 

For the mixed discretization technique, more volumetric flexibility is applied to 

an element by proper adjustment of the first invariant of the tetrahedral strain-rate tensor. 

A coarser discretization in zones is superposed on a finer tetrahedral discretization. Then, 
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the technique is accomplished by assigning the first strain-rate invariant and the first 

stress tensor invariant of any particular tetrahedron as the volumetric-average over all 

tetrahedral elements in a zone. As shown in Fig. 6-2, the individual tetrahedron will not 

keep constant volume when subjected to the pattern of deformation; however the total 

volume of the assembly of the tetrahedral elements (i.e. the zone) remains constant under 

that deformation pattern. 

In FLAC3D, the discretization starts with zones. Then, each zone is internally 

discretized into tetrahedral elements. An eight-node zone, for instance, can be discretized 

into two different configurations of five tetrahedral elements (corresponding to overlay1 

and overlay2 in Fig. 6-3). The calculation of nodal force can be carried out using one 

overlay or a combination of two overlays. The advantage of the two-overlay approach is 

to ensure symmetric response for symmetric loading. 
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Figure 6-2: Deformation model for which mixed discretization would be most efficient 
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Figure 6-3: An 8-node zone with 2 overlays of 5 tetrahedra in each overlay 

 

.7 Model Implementation 

tive models can be written in C++ and compiled as DLL 

(dynam

6

User defined constitu

ic link library) files that can be loaded whenever it is needed in FLAC3D 

simulation. The main function of the constitutive model is to return new stresses, given 

 

 

101



strain increments. C++ is an object-oriented computer language using classes to represent 

objects. The data associated with an object are encapsulated by the object and are 

invisible outside the object. Communication with the object is by member functions that 

operate on the encapsulated data. In addition, there is strong support for a hierarchy of 

objects. New object types may be derived from a base object and the base-object’s 

member functions may be superseded by similar functions provided by the derived 

objects. This arrangement confers a distinct benefit in terms of program modularity and 

the program can access the derived classes through the base objects.   

The emphasis of the object-oriented approach of C++ is to provide a base class 

that in

Dim, State *ps)” as a main 

interfac

cludes a framework for implementing constitutive models, which are classes 

derived from the base class. The base class, called ‘ConstitutiveModel’, is termed an 

‘abstract’ class because it declares a number of ‘pure virtual’ member functions. This 

means that no object of the base class can be created and that any derived-class object 

must supply real member functions to replace each of the pure virtual functions of the 

base class. The methodology of writing a constitutive model in C++ for operation in 

FLAC3D includes descriptions of the base class, member functions, registration of 

models, information passed between the model and FLAC3D, and the model state 

indicators.  The implementation is achieved by supplying real member functions to 

replace each of the pure virtual functions of the base class.  

A member function “const char *Run(unsigned u

e is called for each sub-zone (up to ten per zone for a two-overlay case ) at each 

cycle from within FLAC3D’s zone scan. The model is coded within the member function 
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and updates the stress tensor from the strain increment tensor for each sub-zone at each 

cycle. The structure “ps” contains the current stress components and the computed strain 

increment components for the sub-zone being processed.  For each sub-zone cycle, 

besides the updated stress tensor, the state parameters must also be returned. 

As opposed to the implementation of constitutive models based on the 

conven

he  the anisotropic sand model is shown in Figure 

6.4. Th

tional plasticity, the trial-and-correction approach, which is adopted by all built-in 

models implemented in the FLAC3D manual, is not used in the implementation of 

bounding surface constitutive model. This is because the yielding surface that defines the 

pure elastic deformation range doesn’t occur in the bounding surface models. The main 

objective of the current model implementation is to calculate the elastoplastic stiffness 

matrix ijklD  shown in Equation (3-26).  

T  flow chart for programming

is program is included in the member function “const char *Run(unsigned uDim, 

State *ps)”. Each tetrahedral element calls this member function for each cycle to update 

the stress state of the tetrahedron. After all tetrahedral elements in the zone are scanned, 

the state variables of the zone are modified according to the rule of the mixed 

discretization scheme. However, the modification of the stress state of the zone will be 

left for FLAC3D. The member function ConfineModulus(void) is used to return a value 

for its best estimate of the maximum confined modulus. This is used to determine the 

stable time step. 
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Figure 6-4: Flow chart for coding the constitutive model 

Lij, Dijkl  

  ijσ&

 FINAL TETRAHEDRON? 

AVERAGE OF THE STATE 
VARIABLE OVER THE ZONE 

 EXIT 

ijσ&

N 

Y 

 

 

104



Chapter 7 

 

FLAC3D ANALYSIS AND RESULTS 
 

The new sand model implemented in FLAC3D is verified using some available 

test data under monotonic and cyclic loading. Drained and undrained tests performed by 

Olcott (2001) are used for the verification of the new sand model under monotonic 

loading. Cyclic triaxial and centrifuge tests reported in “VELACS” project (Verification 

of Liquefaction Analysis by Centrifuge Studies, Arulanandan and Scott, 1993) are used to 

verify the prediction of cyclic loading.  

7.1 Monotonic laboratory triaxial test 

 Triaxial tests are simulated numerically by using a single zone with unit 

dimensions. The grid is fixed in the z-direction and a prescribed velocity boundary 

condition applied at the top of the model (Fig 7-1). The material parameters used are 

summarized in Table 7-1. The desired initial consolidation pressure is applied by using 

the “initial” command of FLAC3D. The numerical prediction of triaxial behavior is 

verified against the tests performed by Olcott (2001) at different combinations of void 

ratio and consolidation pressure (Table 7-2). 

Figs. 7-2 to 7-5 show shear stress vs. shear strain and volumetric strain vs. shear 

strain drained test prediction and experimental result for the consolidation pressure of 

100, 200, 400, and 600 kPa. It can be seen that the model simulations closely match the 
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experimental results. Fig. 7-6 shows the prediction and experimental results for the 

undrained tests performed at the void ratio of 0.64 and mean effective pressures of 100, 

400, and 750 kPa. Model predictions have again good agreement with experimental 

results. 

 

 

        Prescribed velocity  

      Confining stress 

 

 

Figure 7-1: FLAC3D single zone; boundary conditions 
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Table 7-1: Material parameters of Ottawa sand 

 

Material parameters 

G0 125 
ν 0.3 
λ 0.016 
κ 0.005 
N 2.74 
H0 10000 

Mc=Mf 1.14 
Me/Mc 0.67 

c 0.7 
B 30405 
b -16.44 

M0 0.9 
S 0.012 
A 50 
d2 2 

 

Table 7-2: Combinations of mean effective pressure and void ratio for the triaxial  
monotonic tests 

Consolidation Pressure 
void 
ratio 

kPa   
100 0.637 
100 0.681 
100 0.715 
200 0.676 
200 0.699 
200 0.739 
400 0.640 
400 0.679 
400 0.722 
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600 0.670 
600 0.699 
600 0.731 
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Figure 7-2: Measurements and prediction of drained tests at 100 kPa with different void 
ratios of 0.637, 0.681, 0.715 (a) shear stress vs. shear strain (b) volumetric strain-shear 

strain 
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Fig. 7-3: Measurements and prediction of drained tests at 200 kPa with different void 
ratios of 0.676, 0.699, 0.739 (a) shear stress vs. shear strain (b) volumetric strain-shear 

strain 
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Figure 7-4: Measurements and prediction of drained tests at 400 kPa with different void 
ratios of 0.640, 0.679, 0.722 (a) shear stress vs. shear strain (b) volumetric strain-shear 

strain 
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Figure 7-5: Measurements and prediction of drained tests at 600 kPa with different void 
ratios of 0.670, 0.699, 0.731 (a) shear stress vs. shear strain (b) volumetric strain-shear 

strain 
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Figure 7-6: Measurements and prediction of drained tests at void ratio of 0.640 with 
different mean effective pressures of 100, 400, 750 kPa (a) shear stress vs. shear strain (b) 

shear stress vs. mean effective pressure 
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7.2 Cyclic laboratory triaxial test  

 Fig. 7-7 shows the stress path under an undrained cyclic triaxial test done on 

Nevada sand as a part of the VELACS project (Arulmoli et al., 1992). The sample was 

prepared at the void ratio of 0.65 with the air pluviation method. Fig. 7-8 shows the 

simulation of the new sand model. It can be seen that the simulation and experimental 

results agree well.  
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Figure 7-7: Measurement of cyclic triaxial test on Nevada sand consolidated at 80 kPa 
and void ratio of 0.65 
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Figure 7-8: Prediction of cyclic triaxial test on Nevada sand consolidated at 80 kPa and 
void ratio of 0.65 

7.3 Centrifuge testing 

Centrifuge testing has been widely employed by geotechnical investigators in 

recent decades to study scale model problems in soils. The centrifuge offers the ability to 

simulate fairly realistic full-scale stress states together with uniform and measurable soil 

properties. Since centrifuge models replicate real field conditions, they are used to study 

the attenuation of acceleration, the generation and dissipation of pore pressure, and the 

rate and magnitude of settlement and lateral deformation during liquefaction. It has thus 

become a useful tool to study the mechanisms involved in liquefaction, remediation, as 

well as to validate numerical codes. One of the notable centrifuge studies on liquefaction 

was the VELACS Project (Arulanandan and Scott, 1993). Centrifuge test data are made 

available at: http://gees.usc.edu/velacs/Centrifuge/cntdata.html for use by researchers. 

 The centrifuge test results of “Model 1” (Arulanandan and Scott, 1993) are used 

here to verify the prediction of the new sand model.  Fig. 7-9 shows the arrangement of 

the model of horizontally layered loose sand in a laminar box and placement of LVDT’s 

(Linear Variable Displacement Transducers), pore  pressure transducers (PPT), and 

accelerometers to measure the vertical and horizontal response (AH & AV).  

The laminar box consisted of a 20 cm high, horizontal layer of uniform Nevada 

No. 120 sand, placed at a relative density of 40 % by dry pluviation. It was fully saturated 

with water, spun at a centrifuge acceleration of 50g, and excited horizontally at the base. 

This combination was to simulate a 10 m soil layer in prototype. The input horizontal 
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acceleration time history at the base of the box consisted of 20 cycles of a 100 Hz 

sinusoidal input, with variable amplitude and maximum peak acceleration of 11.75 g. For 

the 50 g centrifuge acceleration of the test, this corresponds to a frequency of 2 Hz and 

peak acceleration of 0.235 g in the prototype. Some of the material parameters are 

extracted from Arulmoli et al. (1992) (Tab. 7-3) and the remainder are the same as that 

given in Tab. 7-1. 

 

 

 Figure 7-9: Centrifuge model arrangement 

 

Table 7-3: Material parameters of Nevada sand 

Material parameters 

G0 250 
ν 0.3 
λ 0.017 
κ 0.003 
N 2.74 
H0 10000 

Mc=Mf 1.0 
Mc/Me 1.43 
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7.3.1 Numerical model of the centrifuge  

 The finite difference mesh used for this model is given in Fig.7-10. When 

subjected to base shaking, the soil in the laminar box simulates approximately a semi-

infinite layer. In order to reflect the semi-infinite condition in the numerical model, the 

grid points at the same horizontal level are tied-up together, i.e. grid points 1-2, 4-7, 9-11 

etc. (Fig.7-10). In other words, the grid points at the same level are allowed to displace by 

the same amount.  A static analysis was performed to determine the initial stress state and 

pore water pressure distribution of the model before applying dynamic excitation. 

Thereafter, the chosen acceleration time history was applied at the base of the model.  

The recorded acceleration-time by the accelerometer, AH1 (Fig. 7-11) at the base 

is used as the input. Base line correction was performed to remove the noise present in 

the recorded acceleration time history. Base line corrected input along with the original 

history is presented in Fig.7-11.  
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Figure 7-10: FLAC3D model of centrifuge testing 
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Figure 7-11: Acceleration input at the base 

 

7.3.2 Results of numerical analysis 

 Fig. 7-12 shows the shear stress – mean effective pressure variation in zone 1. It 

can be seen that mean effective pressure reduces from initial value of about 95 kPa to all 

the way up to zero due to the generation of excess pore pressure in zone 1.  As shown in 

Fig. 7-7 pore pressure transducers were placed at depths of 1.25 m (P1 & P5), 2.5 m (P2 

& P6), 5.0 m (P3 & P7), and 7.5 m (p4 & P8). Fig. 7-13 to 7-16 show the measured and 

predicted excess pore pressure at these depths. It can be seen that the model predictions 

closely match with experimental measurements except at the depth of 7.5 m. The 

deviation is due to the fact that the undrained condition was assumed during the dynamic 

loading. However, in reality the pore pressure starts to dissipate after a few seconds 
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elapsed in sands as they have high permeability. Redistribution of pore water pressure is 

evident from the Figs. 7-13 to 7-16. 
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Figure 7-12: Shear stress – mean effective pressure variation in zone 1 

0

5

10

15

20

25

0 5 10 15 20

time (sec)

ex
ce

ss
 p

or
e 

pr
es

su
re

 (k
Pa

) experimental
prediction

P1

 
Figure 7-13: Experimental and prediction of pore pressure of transducer P1 

 

 

119



0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

time (sec)

ex
ce

ss
 p

or
e 

pr
es

su
re

 (k
Pa

) experiment
prediction

P2

 
Figure 7-14: Experimental and prediction of pore pressure of transducer P2 
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Figure 7-15: Experimental and prediction of pore pressure of transducer P3 
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Figure 7-16: Experimental and prediction of pore pressure of transducer P4 

 
 

 Fig. 7-17 to 7-19 show the recorded and predicted acceleration at the depth of 0, 

2.5, and 5 meters by the accelerometers AH3, AH4, and AH5 (Fig. 7-9). It is evident that 

the model predictions closely agree with recorded acceleration for about 5 seconds. 

Thereafter, the predicted accelerations attenuate very rapidly because the assumption of 

undrained condition makes the sand layer liquefy sooner than for the actual case. 

Therefore, refined analysis is needed to account for the pore pressure redistribution. This 

is described in the next section. 
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Figure 7-17: Experimental and prediction of acceleration of accelerometer AH3 
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Figure 7-18: Experimental and prediction of acceleration of accelerometer AH4 
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Figure 7-19: Experimental and prediction of acceleration of accelerometer AH5 

 
 

  
7.4 Coupled analysis 
 
 In order to take the pore pressure dissipation into account, a fully solid-fluid 

coupled analysis was performed. In this analysis, stresses and displacement in the solid 

matrix, pore pressure in the fluid phase, and mean fluid velocity are coupled by the Biot 

theory for the behavior of porous media with single phase and Darcy’s law for fluid 

transport. The coupled analysis is in FLAC3D is done by turning on the option “fluid 

flow”.  

The same finite different mesh (Fig.7-10) and boundary conditions were used. As 

flow of water was allowed to occur during shaking, pore pressure boundary conditions 

needed to be given. In FLAC3D all physical boundaries are assumed to be impermeable 
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by default. As the pore pressures at the surface remains zero always, the pore pressures at 

the top surface are made zero using the “initial” command. The remainder of the analysis 

is the same as the previous one. In addition to the material parameters used in the 

previous one, hydraulic conductivity of 0.0033 m/s is used (Arulmoli et al., 1992). 

 Fig. 7-20 shows the shear stress – mean effective pressure variation. It can be seen 

that, unlike in the undrained condition, zone 1 did not liquefy when the dissipation of 

pore pressure is allowed to occur. Fig. 7-21 to 7-24 show the prediction of pore pressure 

generation using coupled analysis. It can be seen that when dissipation is allowed to take 

place, the prediction matches well with the measurements. Fig.7-25 to 7-27 show the 

predicted acceleration time history. Close agreement with measured acceleration time 

history is also evident. Therefore, the non-liquefied zones are still stiff enough to pass the 

shear wave through them. This is evident from the acceleration time history (Fig.7-27).  
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Figure 7-20: Shear stress – mean effective pressure variation in zone 1 
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Figure 7-21: Experimental and prediction of pore pressure of transducer P1 
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Figure 7-22: Experimental and prediction of pore pressure of transducer P2 
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Figure 7-23: Experimental and prediction of pore pressure of transducer P3 
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Figure 7-24: Experimental and prediction of pore pressure of transducer P4 
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Figure 7-25: Experimental and prediction of acceleration of accelerometer AH3 
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 Figure 7-26: Experimental and prediction of acceleration of accelerometer AH4 
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Figure 7-27: Experimental and prediction of acceleration of accelerometer AH5 
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Chapter 8 

 
CONCLUSIONS AND RECOMENDATIONS 

 

The widely used critical state concepts in constitutive modeling of soils were 

developed based mainly on the behavior of reconstituted, essentially isotropic, materials. 

Significant improvements are necessary in order to obtain an acceptable degree of realism 

in these models for sands. This study presents an extension of the critical model by 

incorporating the features of granular fabric.  The resulting model is a physically 

attractive and robust anisotropic model for sand. The new anisotropic sand model is 

generalized into six dimensional spaces using bounding surface plasticity. The model was 

then implemented into the finite difference code, FLAC3D and used to simulate 

monotonic and cyclic triaxial tests. A centrifuge test is simulated to verify its predictive 

capability to liquefaction and attenuation of shear waves. This chapter summarizes first 

the development of the new model, its features, and its uses towards the constitutive 

modeling of sands followed by recommendations for further research. 

8.1 Conclusions 

Central to the development of the model is the recognition that volumetric strain 

increments during shear deformation of granular materials result from two sources.  The 

first source  is as a result of changes in granular fabric and unique to these 

materials.  This relation is purely kinematic, always dilative, and identified to be that of 

p
q

p
vi εα−=ε &&
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Reynolds’s kind and is termed as fabric induced volumetric strain. It does not contribute 

to plastic energy dissipation in granular materials. This relation resulted from the 

characterization of the directional distribution of porosity in sand and its evolution under 

shear deformation. The second source  is a direct response to changes in stress as in a 

standard elastic/plastic continuum. This component of volumetric strain increment 

contributes to the plastic energy dissipation and hence is included in the dissipation 

function. However, these two volume changes are present right from the start of shear 

loading and the sum of these two is the macroscopic volume change measured in 

experiments.  

P
vcε&

The inclusion of the two sources of volume change in the anisotropic model 

results in three important datum states. When subjected to isotropic strains, the resulting 

stress state is not isotropic but lies upon the kinematic normal consolidation line with 

slope . There exists a state in which the volumetric strain rate  = 0 and where it 

changes its sign from positive to negative. The line on which this occurs is often termed 

the phase transformation line (PTL) with slope

α P
vε&

22M α+=η . The third datum state is 

one in which the stress induced volumetric strain rate   is zero with slopeP
vcε& α+=η M . 

Note that  is non-zero at this state; therefore, dilation is now entirely due to the 

Reynolds effect. Even though the sand is dilating, the dissipation is entirely due to shear 

at this state as in Taylor’s work dissipation.  The latter state is termed the Reynolds-

Taylor state. None of these states are deemed necessarily unique.  

P
viε&
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It is shown that during a plastic shear strain cycle, the  is reversible whilst the 

 is permanent. The accumulation of the permanent volumetric strain causes generation 

of excess pore pressure that under undrained loading leads to liquefaction. Therefore, as 

the anisotropic model explicitly accounts for the permanent and reversible plastic 

volumetric strain, the model is implemented into the numerical code FLAC3D for 

numerical studies on liquefaction. Since  is recovered after each cycle of plastic shear 

strain, it does not explicitly contribute to the pore pressure build up. However, it has a 

strong effect on post liquefaction behavior such as lateral spreading.  

P
viε&

P
vcε&

P
viε&

A correlation for the evolution of α with shear is proposed based on drained 

triaxial compression test results. It is seen that α is dependent on the mean effective 

pressure as well as the initial void ratio. Since the proposal is made based on the triaxial 

test of samples of Ottawa sand prepared by water sedimentation, it is only applicable to 

the soils without any collapsible structure or crushable particles.  

Micromechanical considerations suggest that α must vary with shear strain, 

beginning at zero, since the material is assumed initially isotropic here, growing to a 

maximum level of anisotropy and thereafter reduce progressively. It is not clear if it 

would return to zero at higher pressures without the possibility of crushing. In the event α 

does return to zero, a critical state as in isotropic theory could be reached. 

The discussion here assumed that α is positive, as would be the case for normal 

sands. However, for sands with a collapsible structure α would be negative to begin with. 

Thus,  would be positive and would result in overall volume decrease (Sec. 3.5). Such P
viε&
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sands would contract and reach the RTL first with no possibility of attaining PTL.  Upon 

further deformation the evolution of α and accordingly the locations of RTL and PTL 

would essentially follow the pattern as in the case of normal sands. This has been 

observed in the past by several experiments on ultra loose sands (e.g. Alarcon et al. 

1988). 

The new anisotropic sand model is implemented into FLAC3D to verify its 

performance in numerical studies. It is seen that the model simulates the drained and 

undrained monotonic triaxial tests well. The numerical simulation of cyclic triaxial test 

matches well with experimental data. The applicability of the model to field problems is 

verified with the centrifuge test. At first, it is assumed that undrained condition prevails 

during dynamic excitation. Results showed that there is significant pore pressure 

dissipation during earthquake loading. Hence, a solid-fluid coupled analysis is performed 

to capture the pore pressure distribution within the soil layer. It is seen that the model 

simulations agree well with the experimental results. 

8.2 Recommendations 

• The fabric induced volumetric strain increment  is a unique phenomenon for 

granular materials. In this study, it is applied in the improvement of modified 

Cam Clay. Similar procedures can be carried out to improve other well-known 

continuum soil models. 

p
viε&

• This study presented a systematic way of decomposing macroscopic plastic 

volumetric strain into two parts; one is cumulative and the other is reversible. It is 
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shown that proper account of accumulated volumetric strain simulate the build of 

excess pressure very well. The model can also be used to predict the settlement in 

sand layer due to drained cyclic loading. 

• Although the evolution law for α is derived from experimental test data, the 

prediction of very dense sand does not match very well. Therefore, the evolution 

law will need to be refined. Non-destructive imaging techniques such as X-ray 

computed tomography could be used for this purpose to characterize the initial 

fabric arrangement as well as it evolution with shear deformation in order to 

obtain better forms. 

• The model prediction of liquefaction of level ground is verified with the 

centrifuge test. The model could be applied to sloping ground as well as to soil 

structures such as dams, levees etc. for the prediction of liquefaction under cyclic 

loading. 

• In the bounding surface plasticity formulation, radial mapping is used to get the 

flow rule and plastic modulus. Radial mapping is found to be suitable only for 

monotonic loading. In cyclic loading, at η = 0, radial mapping gives the dilatancy 

as infinity. This in turn predicts zero pore pressure increment. This is not in 

accord with the experimental data. Some other mapping rules should be used to 

get a better prediction of cyclic loading. 
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