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How the Dilatancy of Soils Affects Their Behaviour
De la Maniére dont la Dilatance des Sols Influence Leur Comportement

G.T. Houlsby
Department of Engineering Science, Oxford University, U.K.

ABSTRACT: The relationships between the friction angle, dilation angle, density and pressure in a granular material are explored.
The link between friction and dilation is well established, but quantitative expressions for the dependance of dilation on density
and pressure are less well known. A new relationship based on the concepts of Critical State Soil Mechanics is suggested. The
types of problem in which dilation plays an important réle are then examined, and it is seen that dilatancy increases in significance
for heavily constrained problems. The influence of dilation on the capacity of piles is treated in more detail. Additional topics
treated include the generalisation of dilation expressions.

RESUME: Les relations entre I’angle de frottement, I’angle de dilatance, la densité et la pression dans un milieu granulaire sont
étudiées. Le lien entre frottement et dilatance est bien établi, mais les expressions quantitatives de I’influence de la densité et de
la pression sur la dilatance sont moins bien connues. Une nouvelle relation basée sur les concepts de la Mécanique des Sols de
I’Etat Critique est proposée. Les types de probleémes dans lesquels la dilatance joue un réle important sont ensuite examinés, et
il est montré que la dilatance croit d’une maniére significative dans les problémes a déformation empéchée. L’infuence de la
dilatance sur la capacité portante des pieux est traitée d’une maniére plus détaillée. Les aspects complémentaires qui sont traités

incluent la généralisation des expressions de la dilatance.

1 PREAMBLE

Professor Peter Wroth, of Oxford University, was invited to
present a lecture at the Tenth European Conference on Soil
Mechanics and Foundation Engineering, and chose as his
subject the title of this paper. Sadly, Professor Wroth died in
February 1991, and the Author was invited to present a lecture
on the same topic in his place. Professor Wroth had not written
his lecture, and so this paper is the Author’s own views on the
subject. The lecture at the Conference, and this written version
of it, are presented as the Author’s personal tribute to Professor
Wroth’s wisdom as an engineer, and in gratitude for his many
years of encouragement and support.

2 INTRODUCTION

This Paper is divided into two main parts. In the first the
relationships between friction, dilation, density and pressure
are explored. Itis seen that the relationship between the friction
angle and dilation angle is well established both theoretically
and experimentally. Relationships between the dilation angle
and density and pressure are equally important, although less
well established quantitatively. Dilation will be seen as
occupying a central role in explaining phenomena such as the
reduction of angle of friction with increasing stress level.

In the second part of the Paper a series of problems are
examined to establish the cases where dilation is important,
and it is seen that dilation assumes increasing significance as
problems become more kinematically constrained. Particular
empbhasis is placed in this section on the role of dilation in
calculations of the capacity of piles.

Some additional topics are treated at the end of the paper.

3 FRICTION, DILATION, DENSITY AND
PRESSURE

The simple frictional model for the failure of a soil, based on
Coulomb’s pioneering work in 1773, is familiar to all
geotechnical engineers, and is conveniently shown on the
Mohr’s circle diagram, Figure 1. The frictional relationship
must of course be expressed in terms of effective, not total,
stresses. In the remainder of this Paper the term stress shall

Figure 1, The Mohr-Coulomb failure criterion

always mean effective stress, and will be indicated by a prime
(7). The friction angle ¢’ is used to describe the strength of
the soil.

Closer examination reveals that the behaviour of soils is
more subtle, and shows a number of important features. Firstly,
in a test such as the simple shear test on a dense sand, a peak
isusually observed in the shear stress - shear strain relationship,
followed by a reduction in shear stress at large strain, Figure
2. Similar peaks are observed in other types of shear test. A
careful distinction between the peak and large strain angles of

S "
friction is therefore necessary, and they are called here ¢’, and
gy

If the vertical movements, as well as shear displacements,
are measured in a simple shear test, then a dense sand usually
dilates, that is it expands in volume, as the test proceeds. The
dilation usually takes place after a small initial compression,
Figure 3. The magnitude of the dilation depends very strongly
on the density of the soil, with denser samples expanding more
rapidly.
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Figure 3, Dilation of dense sand in a simple shear test

If tests are carried out at a number of normal stress levels,
it is found that the peak angle of friction reduces with
increasing stress level. The result is that the peak strength
envelope is curved in the Mohr-Coulomb plot, Figure 4. The
peak friction angle approaches the large strain friction angle
at very high stress levels.

The features of (a) peak and large strain angles of friction,
(b) dilation and the (c) reduction of peak strength with stress
level appear at first to be disconnected, and perhaps confusing,
phenomena. An important step in the understanding of soil
behaviouristhe realisation that these features are in fact closely
connected, and the understanding of the réle of dilation is the
key to the understanding of how these phenomena are linked.
The first step is to appreciate the link between the angles of
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Figure 5, Definitions of the angles of friction and dilation

friction and of dilation; it is then possible to relate the angle
of dilation to the density and pressure.

The quantities we must first define are as follows. The angle
of friction ¢ expresses the ratio of a shear stress to a normal

stress, and can be defined in terms of principal stresses, Figure
5:

o
sin¢ =———- ()

In a similar way the angle of dilation y (the symbol v is also
sometimes used for dilation angle) expresses the ratio between
a volumetric strain rate and a shear strain rate. For the case of
plane strain (g, = 0) it can be defined in terms of the principal
strain rates (Figure 5):

. —&,+8&)
siny = F—y (2)



The minus sign in Equation 2 arises simply from the
convention that compressive stresses and strains are taken as
positive in soil mechanics, and is introduced so that the angle
of dilation is positive when the soil expands.

The superposed dots used in Equation 2 to indicate the strain
rates do not imply that the process is in any way dynamic. The
term rate is being used here in the sense used in plasticity
theory, in which the time increment is artificial. The equation
could just as well be expressed in terms of strain increments

&¢ rather than strain rates €.

It is important to note that whilst the definition of the angle
of friction remains unchanged for different stress conditions
(e.g. triaxial compression, plane strain, triaxial extension), the
extension of the definition of the angle of dilation to other than
plane strain conditions needs to be treated with more care. The
usual definition employed is:

—(&+&+€)

"y ..(3)

siny =

which reduces to Equation 2 for plane strain conditions.

A more important distinction is that the angle of dilation
should strictly be defined in terms of the plastic components
of the strain rates, not the total strain rates. If the strain € is
divided into elastic (recoverable) and plastic (irrecoverable)
components:

e=¢+¢ 4
then Equation 2 should be modified to:

—(eP + €7
siny = —M ..(5)
el —€§
In theory this important distinction means that the
determination of the angle of dilation from a test becomes
much more difficult, since it depends on the estimate which is
made for the elastic properties of the soil. In practice the
distinction is less important since (for most soils, under most
test conditions) the elastic stiffness is sufficiently high that the
elastic strains are much smaller than the plastic strains and the
difference between Equations 2 and 5 is small. In particular,
at the peak in several commonly used shear tests the stresses
are not changing, so the elastic strain rates are zero and
Equations 2 and 4 coincide. In the remainder of this paper it
will be assumed that the elastic strain rates are sufficiently
small that Equation 2 can be used with adequate accuracy.

The simplest way to understand the relationship between the
angles of friction and dilation is to make use of a physical
analogy: the sawtooth model, see Figure 6.

If one frictional block slides over another on a flat plane,
with an angle of friction on the plane ¢, (i.e. a coefficient of
friction p =tan¢’,,) Then the ratio of the shear to the normal
stress is:

GlinzlanQ)’cv (6)
The choice of the subscript "cv" is to indicate that in this

case the shearing takes place atconstant volume, i.e. nodilation
occurs.

If we consider sliding on a rough plane, represented by a
sawtooth with teeth at an angle y to the horizontal, with the
same angle of friction ¢’,, as above acting on the teeth of the
saw, then simple statics can be used to derive the relationship
between the observed shear and normal stress when sliding
occurs. This ratio could be termed tan¢’, where ¢ is the
observed angle of friction. It can easily be shown that:

T ’__ ’
o, =tan¢’ = tan(9’,, + V) .7
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Figure 6, The sawtooth model for dilatancy
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Figure 7, Analogy used in Taylor’s energy correction

so that 9" = ¢", + v, and the observed angle of friction is the
sum of the angle of friction at constant volume and the angle
of dilation. This type of relationship is called a flow rule.

A variety of other more sophisticated theories have been put
forward to explain the relationship between the friction and
dilation angles, some of which are discussed below.

One of the first approaches to explain the connection was
made by Taylor (1948) who suggested an "energy correction”
to account for dilation. In more modern terminology Taylor’s
expression can be viewed as a hypothesis about the dissipation
of work in a frictional soil. All frictional relationships can be
viewed in terms of dissipation of energy rather than directly
interms of forces. For a block sliding on a smooth plane (Figure
7), the rate of input work is:

W=ty ..(8)

and if we adopt the hypothesis that this work is dissipated
internally in a way which is proportional to the normal stress
o, and the shear strain rate v, then we have:

W = (tan¢’ )0’ ¥ ...(9)

where the constant of proportionality is tan¢’.,. Combining
Equations (8) and (9) yields the familiar result T/¢”, = tand’,,.
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Figure 8, Triaxial parameters used for definition of the
Cam-Clay flow rule

The same hypothesis is adopted for a sample of soil in simple
shear: that the dissipated work is proportional to the normal
stress and the shear strain rate. This time, however, the input
work includes a term in ¢, multiplied by €,, since dilation may
take place and so the normal stress as well as the shear stress
does work. The result is therefore:

W=0"¢ +1y=(tan¢’,)o’,y ...(10)
Noting that we could define the apparent angle of friction

by tan¢’ = 1/0’,, and that the angle of dilation is given by
tan y = —¢,/y, then Equation 10 can be rearranged to give:

tand’ =tand’,, +tany .1

which differs slightly from the result from the sawtooth
model, but again expresses the notion that the angle of friction
is equal to the sum of the angle of friction at constant volume
and a term which depends on the rate of dilation.

Very similar concepts were used in the development of the
Cam-Clay model for soil behaviour (Schofield and Wroth,
1968). The results are usually expressed in terms appropriate
for the triaxial test, see Figure 8, and use the stress and strain
invariants:

1
p’=§(0’1+20’3) ...(12)
qg=0-0;, ...(13)
v =g +2¢, ...(14)

2
e=3E-8) ...(15)

The Cam-Clay work hypothesis is expressed as:

W=pv+qe=Mp’e ...(16)

which can be seen to be a direct analogy of Taylor’s
expression (Equation 10). On rearrangement it gives:

Lom-%

p b

which again gives a measure of the angle of friction (¢/p’,

actually equal to 6sind’/(3 —sin ¢")), equal to a constant (M)

plus a measure of the angle of dilation (—v/€, actually equal to
B siny)/2).

The approach taken by Rowe (1962) in the development of
his stress-dilatancy theory is conceptually quite different,
although it leads to a very similar result. Rowe examined first
the properties regular assemblies of spheres, and was able to
obtain expressions for both the stress ratio ’,/0”; and the strain
rate ratio —€,/€, in terms of the geometry of packing. He then

assumed that analogies could be drawn with irregular packings
of soil particles. He assumes that sliding takes place on a

(17

Figure 9, Assumed sliding mechanism for Rowe’s
stress-dilatancy flow rule

sawtoothed plane, see Figure 9, and these ratios are therefore
functions of the angles o and B. The functions are such that o
can be eliminated to give:

o _tan@,+B)-&

o’; tanf € -+ (18)

where 0, is the fundamental angle of friction for
grain-to-grain contact. Rowe then adopts a minimum energy
ratio hypothesis to derive § = n/4 —¢,/2, but the same result

can also be obtained by assuming a minimum stress ratio at a
given strain rate ratio. The final result is:

0’/1 _ 2l T q)p _é3
0',3—lan [Z+3 8_1

which is often written in the short form R = KD . The precise
r6le of ¢, now becomes unclear, since it now appears as the

angle of friction at constant volume. Experimental evidence
is, however, that this is not equal to the grain-to-grain friction
angle. The discrepancy has been a matter of some debate.

...(19)

All the methods described above establish theoretical
reasons for a connection between the angles of friction and
dilation. Experimental evidence for the theories has been
presented both by the originators of the theories and by other
researchers. Alternatively one could take a mainly empirical
approach. Bolton (1986) presented a particularly
comprehensive review of the experimental data on friction and
dilation angles, and suggested a very simple empirical fit to
the data:

¢, =0",+08y,, ...(20)

If the various methods (for the plane strain case) are
compared, it can be seen from Figure 10, that the differences
arerelatively small. Of the theoretical expressions Rowe s falls
in the middle of the range, and Bolton’s empirical expression
matches Rowe’s very closely.

It should be noted that these flow rules can be applied in two
distinct senses. Firstly they may be used to express the
relationship between the mobilised angle of friction and the
current dilation rate as a test progresses. Secondly they may
be used to express the relationship between the peak friction
angle and the maximum dilation rate for several tests on the
same material. Bolton’s empirical relationship is based on the
observations of the latter type.
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Figure 11, Variation with measured ¢’,,,. with mode of
shearing

One problem in the use of the above flow rules is that the
constants employed in them (i.e. ¢’,,, M or ¢,) need to be
changed for different modes of shearing, as the angle of friction
at constant volume in plane strain is typically a few degrees
higher than that in triaxial compression. Bolton specifically
assumes the two angles to be equal, but this is not supported
by the experimental evidence. The Author has found that the
following work hypothesis provides a flow rule which fits the
data from tests with different modes of shearing well:

W =08 +06,+0& =

? tan ¢ cwc-\lojlo'lZ(e] - 32)2 +0,05(€,~ 33)2 +0/307,(8 = 81)2

.21

where &', is the angle of friction at constant volume in
triaxial compression. Figure 11 shows the implied values of
0’ evaluated from the peak points from true triaxial tests on

sand (Lade, 1972), and shows that this parameter is almost
independent of the mode of shearing.
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Figure 12, Shear stress - shear strain and volumetric strain -
shear strain for simple shear tests on sand (after Stroud,
1971)

It is clear from the above discussion that the relationship
between friction and dilation is firmly established both
theoretically and experimentally. Although the details of the
approaches taken by various authors may differ, the broad
conclusions are the same. We turn now to the relationship
between dilation and density. It is expected that the denser a
sand is the more it will tend to expand, i.e. the higher the
dilation angle will be. We find that although this trend is well
known, quantitative expressions for the variation of dilation
rate with density are much less well established.

One of the best ways of examining the stress-strain
behaviour of soils is by simple shear tests, and Stroud (1974)
carried out a particularly well controlled set of these tests at
Cambridge. The term "simple" refers to the mode of shearing
applied to the sample: the apparatus used for the test is in fact
rather complex. The upper graph in Figure 12 shows the shear
stress-strain curves for his tests on dense sand and the lower
curves the change in specific volume with shear strain. Each
of these tests started at about the same density, and all showed
about the same angle of dilation.

Wroth (1958) had earlier carried out simple shear tests on a
variety of materials. These experiments were some of those
which formed the basis of what later became known as Critical
State Soil Mechanics. Figure 13 shows a set of tests on steel
balls, initially packed at different densities. The rate of dilation
is higher for denser samples, i.e. those initially at a lower voids
ratio. The samples dilate until they reach the same critical voids
ratio, irrespective of their initial density, at which they can
continue to shear with no further changes of density. The
concept of critical voids ratio was not new, being due to
Casagrande (1936).

The critical voids ratio is, however, not unique, since it
reduces slightly with increasing normal stress. In Figure 14 the
end points (i.e. the points where no further changes in voids
ratio are occurring) of all of Stroud’s tests on sand are plotted
in the form of specific volume against mean stress. The points
clearly fall on a single line in this plot, with the critical voids
ratio reducing with pressure. This leads to the concept of the
critical state line. On shearing, all samples will approach this
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Figure 14, Critical State Line for simple shear tests on sand
(after Stroud, 1971)

line, and as they do so will shear with no further change of
specific volume, but the actual specific volume they attain will
be lower for samples subjected to higher normal pressures. It
is observed empirically for clays that the critical state line is
parallel to the normal compression line in the consolidation
plot.

Stroud’s tests covered a range of initial stresses and
densities, and the peak angle of friction he observed is shown
plotted against pressure in Figure 15. The primary controlling
factor for the peak strength is seen to be the density, with denser
samples giving a higher strength, but at a given density the
angle of friction reduces slightly with increasing stress level.
The reduction of the peak strength with stress level is linked
to the slope of the critical state line, but in order to establish
this connection it is necessary to define some additional
quantities.

On the critical state line the rate of dilation is zero, and it
seems reasonable that the rate of dilation should simply be a
function of the distance of the current stress point from the
critical state line. This is expressed by defining the quantities
shown in Figure 16. The slope of the critical state line in the
V:Inp’ plotis A, and its position is fixed by the value I" of the
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Figure 15, Peak strength against stress level for simple shear
tests at different densities (after Stroud, 1971)

Figure 16, Definitions of I" and V;

specific volume at some reference pressure p, (conveniently
taken as atmospheric pressure). The quantity V,, defined as
V +Aln(p’/p,), is the value of V at p, on a line drawn through
the current point and parallel to the critical state line. Clearly
the quantity (I'=V,) is the distance of the current point below

the critical state line. This concept was originally suggested
by Wroth and Bassett (1965), and has recently been
rediscovered by Been and Jefferies (1985) in their use of the
so-called "state parameter".

In Figure 17 the peak strengths from Stroud’s tests are
plotted against V,, and all the tests, from a variety of
combinations of pressure and density, plot on a single curve.
The peak strength is therefore a unique function of V,. In view
of the relationships between friction and dilation angles
already examined, this also means that the maximum dilation
rate is a unique function of V,. It is perhaps most helpful to

consider the latter relationship as the more fundamental: there
are obvious physical reasons why the dilation rate should be
higher for denser samples. This result establishes, at least
qualitatively, the dependence of the friction and dilation angles
on the pressure and density.

Wroth (private communication, 1990) replotted Stroud’s
data and suggested the simple expression sin y = o(I" - V,) for
the variation of the angle of dilation with distance from the
critical state line. The data are shown on Figure 18. The new
quantity ais taken as a constant for any given sand, and Wroth
found that values of o were typically near unity.
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Figure 18, Wroth’s interpretation of Stroud’s simple shear
tests on sand

In practice it is often more convenient to express the
behaviour of sand as a function of the relative density /;, rather

than the specific volume, and Wroth’s expression can be
reworked in these terms. The result is the expression:

’

siny =TV, )+ oV, ~ Vo), - alln(z— ] er)

a

Although this expression looks complex, it is simply of the
structure:

siny =A +BID—Cln(£—]

a

(23)

where A,B and C are all simple functions of well defined
properties of the soil. The angle of dilation (and therefore the
angle of friction) increases with density and reduces with
pressure. Equation 22 may be compared with the empirical
expression suggested by Bolton (1986) for the angle of friction
in plane strain (in degrees):

, , p’
¢P=¢n+5[1{10—1n[15&]}—1) .24)

Together with Equation 20, this can be used to derive an
expression for the angle of dilation (in radians):

y=-0.11+0.59,-0.1 11,)1n[£—J ..(25)
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Figure 19, Example problems in increasing order of
confinement

Equations 22 and 25 can be seen to be similar in structure,
except for the last term. For the range of data available they
give almost identical results, and Wroth’s expression fits the
data as well as Bolton’s. Both express the concept that dilation
rate (and hence strength) is primarily controlled by density,
but also reduces with increasing stress level. The Author
prefers Wroth’s approach since (a) it directly embodies the
concept of the critical state and (b) the constants required can
be related to well defined measurable quantities.

Ifitis possible to estimate the density of a granular material,
and the probable value of the working stresses, it is therefore
possible to estimate first the dilation rate and then the peak
angle of friction.

4 PROBLEMS IN WHICH DILATION IS
IMPORTANT

We now examine some cases where the dilation of the soil is
important. We should first note that dilation will always be
importantin thatit will control the appropriate angle of friction.
The purpose of this discussion is to examine cases where, in
addition to this effect, the very fact that the soil is dilating has
a further influence on the results.

The importance of dilation will be considered by examining
four types of problem in geotechnical engineering, shown
schematically in Figure 19. The examples have been ordered
in a way that they represent increasing confinement of the soil.
In a slope the soil is free to move in a relatively unconfined
way. A footing and a flexible tunnel lining impose increasing
levels of constraint on the way the soil can deform, and finally
the soil in the vicinity of a pile is highly constrained. Intuitively
we would expect that the more kinematically constrained the
soil is, the more important dilation will be.



Figure 20, Deformations of a slope (after Zienciewicz,
Humpheson and Lewis, 1975)

The influence of dilation on each of these problems must be
examined theoretically, because only in theoretical or
numerical analysis can the dilation rate be varied without
simultaneously affecting other properties of the soil.
Laboratory or field tests would be unable to distinguish the
effects of dilation and of friction, since the two, as shown
above, are linked for any given material.

The problem of slope stability was examined numerically
by Zienciewicz, Humpheson and Lewis (1975). They used the
finite element method to carry out two slope stability analyses
in which they used the same angle of friction of 20°. In one
they assumed the angle of dilation to be equal to the angle of
friction, and in the other they assumed zero dilation. The first
case infact gives animpossibly high dilation rate. The analyses

resulted in identical factors of safety. However, as would be
expected, the patterns of deformation, shown in Figure 20,
were rather different. Although this analysis involves a soil
with a rather low friction angle, their conclusion that dilation
in itself does not affect slope stability seems reasonable.

The problem of the bearing capacity of a footing was also
examined by Zienciewicz et al. (1975), and they again
observed no influence of the dilation rate. It was also examined
by de Borst and Vermeer (1984}, who carried out finite element
analyses of both strip and circular footings on a material with
an angle of friction of 40°. They used dilation angles of 40°
and 20° (again the first value is impossibly high). The
load-deformation curves for circular footings are shown in
Figure 21, and the analysis with the higher angle of dilation
shows a peak bearing capacity about 13% higher than for the
lower dilation angle. At large deformations both analyses
approach a similar capacity. It may be that the peak is an
artefact of the particular numerical technique involved, but it
is more likely that, at least for fairly high friction angles, the
rate of dilation does have a small influence on the bearing
capacity of a foundation.

As would be expected, the patterns of deformation around
the footing, shown much exaggerated in Figure 22, are very
different in the two cases. Much larger surface movements are
observed for the larger angle of dilation.

The example of the tunnel was also studied by Zienciewicz
etal. (1975), who made calculations for both the pressures on
atunnel lining, and the ground movements around it for various
stages in the construction procedure. The details of the results

20Cr

150 A
ssociatec —
@ = = 4C° ——Non associated ¢ = 40

¢ 20

toad lactor pi«

L L N
100 204 300 40d
Setuemrent ‘actor 8GO0

Figure 21, Load - deflection curves for circular footings
(after de Borst and Vermeer, 1984)
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Figure 22, Deformations below a circular footing (after de
Borst and Vermeer, 1984)

Figure 23, Deformations of a tunnel lining (after
Zienciewicz, Humpheson and Lewis, 1975)

must be regarded as specific only to the case they examined,
but an example of the influence of the dilation rate on the final
deformation of the tunnel lining is shown in Figure 23. Much
larger movements are observed for the more dilatant soil.

The conditions around a pile impose much more kinematic
constraint on soil movements than for any of the previous
problems. We would expect therefore that in a more dilatant
soil higher stresses would develop. We shall examine now in
rather more detail the influence of dilatancy on both the end
bearing capacity and the skin friction of piles.

The pressure on the tip of a driven pile may be estimated
using spherical cavity expansion theory, in which we attempt
to model the installation of the pile by the expansion of a cavity
within the soil. The analogy is shown in Figure 24. The theory
oversimplifies the rather complex process of pile driving, but
nevertheless has some merits.
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Figure 24, Idealisation of pile end bearing as a spherical
cavity expansion
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Figure 25, Variation of spherical limit pressure with angle of
friction for different dilation angles

The theory of spherical cavity expansion has been modified
recently to account for dilation in frictional materials, Yu
(1990), Yu and Houlsby (1991). The analysis involves a
detailed treatment of the stresses and strains within a zone of
soil close to the pile which is deforming plastically, and an
outer zone which remains elastic. A detailed explanation
would be inappropriate here. The calculated cavity expansion
pressures can be used as estimates of the end bearing capacity
of piles.

Some examples of the analysis are shown in Figure 25, which
shows the variation of the cavity expansion with the angle of
friction, for different values of dilation angle. The cavity
expansion pressure has been divided by the stress p, (which
must be assumed isotropic) at a large distance from the pile.
The three main curves show the pressures calculated for angles
of dilation of 0°,10° and 20°. The other parameters required
(constant for all these analyses) are the shear modulus
G =500p, and Poisson’s ratio v=0.2. The calculated end
bearing capacity increases more than fivefold as the angle of
dilation is increased from 0° to 20°, in sharp contrast to the
increase of only 13% in the bearing capacity of a surface
footing calculated by de Borst and Vermeer for a comparable
increase in the dilation angle.

It is clear that dilation plays a much more important role in
the highly confined problem of pile bearing capacity than in
the relatively unconstrained surface footing problem.

The dilation rate also affects the frictional capacity of piles,
but in order to understand its influence in this case, it is first
necessary to examine some features of the simple shear test.
This is because the deformation of the soil around a pile can
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Figure 26, Interpretation of the simple shear test assuming
sliding on horizontal planes

be regarded as similar to simple shear. The application the
simple shear test to the understanding of pile behaviour was a
topic of particular interest to Professor Wroth.

The interpretation of simple shear tests is not
straightforward, even when examining a problem apparently
as simple as the shear strength. The first assumption that might
be made is that the mechanism of failure is one of sliding on
horizontal planes, see Figure 26, so that these are planes on
which the Mohr-Coulomb condition is satisfied. At failure we
therefore have the expected relationship /0", = tan¢’. A closer
examination reveals that this assumption is too simplistic in
that it has ignored the details of the strain boundary conditions
which are imposed on the specimen.

The horizontal plane does not extend, and this condition,
together with a knowledge of the fixed dilation rate, fixes the
Mohr’s circle for strain rate at failure, Figure 27. If we assume
that the principal directions of strain rate and of stress coincide,
then it is possible to deduce the Mohr’s circle for stress. The
assumption of the coincidence of the strain rate and stress
directions is slightly controversial, and some researchers,
notably de Josselin de Jong (1971, 1988) have suggested more
complex models in which this assumption is not made.
Although such models would produce slightly different
calculations, most of the conclusions about pile behaviour
made later in this section would still follow.

Knowing the Mohr’s circle for stress the ratio of shear to
normal stress at failure can be calculated as:

T sin¢’cosy
o, 1-sin¢’siny

...(26)

This result is well known, and was independently derived
by Davis (1968) and Rowe (1969). It is less well recognised,
however, that this equation only refers to the ultimate
conditions in a test, and to explore what happens as the test
develops it is necessary to use a complete stress-strain model
for the soil, accounting for both elastic and plastic
deformations. The model used her is a simple elastic-perfectly
plastic model in which the elastic strains are given (for the case
of plane strain) by:
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the yield surface is given by the Mohr-Coulomb condition:

V(G ~ 0, +4T, ~(0L, +0,)sin®’ =0 ...(28)

The plastic potential is given by an analogous expression in
which the angle of friction is replaced by the angle of dilation:

V(OL -0 )Y +4T, ~(CL+0.)siny+A =0 ...29)

where A is a "constant” which depends on the stress point
at which yield occurs, and chosen so that the plastic potential
passes through that point.
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Figure 29, Shear stress - shear strain curves for different
initial horizontal stresses

The horizontal stress at the beginning of a simple shear test
has an important influence on the results of the test. On the left
of Figure 28 is the Mohr’s circle for a sample in which the
horizontal stress is initially as small as possible. The path
during the test of the point representing the stresses on the
vertical planes (i.e. the horizontal stress and a shear stress) is
from "H," to "J", showing how the horizontal stress increases
throughout the test. At the same time the point representing
the stresses on the horizontal planes (i.e. the vertical stress and
a shear stress) moves from "V" to "K". The apparent strength
is in this case given the Davis/Rowe expression (Equation 26)
and is less than tan¢’.

If, however, the test begins with a horizontal stress which is
as large as possible, then the initial Mohr’s circle is as shown
on the right of Figure 28. The path representing the horizontal
stress is this time from "H," to "J", showing that the horizontal
stress decreases during the test. The shear stress, however,
passes through a peak at point "P", before ending at the same
value as before. At the peak the vertical stress is represented
by the point "Q". Curiously the peak shear strength is given
by the original expression 7/0”, = tand’, whilst the final value
is given by Equation 26. Although effects similar to this have
been explored by de Josselin de Jong for a model which does
notinvolve coaxiality of plastic strain rate and stress, itis worth
noting that the initial stresses influence simple shear testresults
even if one adopts a coaxial model.

The stress-strain curves computed using the elastic-perfectly
plastic model for three different cases of initial horizontal stress
are shown in Figure 29, and demonstrate clearly the peak for
the case of a highinitial horizontal stress. In order to understand
the simple shear test we need therefore to know about the initial
stress conditions, and to account properly for them.

The dilation rate of the soil also affects the results of simple
shear tests (as can be seen from Equation 26). Figure 30 shows
the results for three tests with the same initial stresses and angle
of friction, but three different angles of dilation. Not only are
the volume changes different, as shown by the lower curves,
but the apparent strengths are also different.

Problems such as these are of interest to those who are
concerned with the precise interpretation of laboratory tests,
but may seem rather remote from practical soil mechanics
problems. In fact such calculations are extremely relevant to
the difficult task of the prediction of the frictional capacity of
bored piles.

When a pile is loaded vertically the behaviour of the soil
surrounding the pile could be idealised in the way shown in
Figure 31. The actual behaviour will be more complex, but the
simple model serves as an illustration.

A relatively thin band of soil close to the pile deforms in
simple shear, but in this case it is the vertical strain which is
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Figure 30, Shear stress - shear strain curves for different
dilatancy values
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Figure 31, Idealisation of shear zone adjacent to a pile

zero: it is like a conventional simple shear test turned through
90°. As the soil shears it dilates, and so the soil outside this
zone is pushed outwards. The result is that the normal stress
on the element of soil in simple shear does not remain constant.

The expansion of the surrounding soil can be modelled as
analogous to a pressuremeter test, so there is a relationship
between the outward movement and the change in normal
stress. For simplicity this relationship may be regarded as
elastic, and the result is:

AS,=2G % ...(30)

In practice the distinction between the thin shearing zone (in
which the soil is deforming plastically) and the outer zone (in
which the soil is assumed to remain elastic) will not be as clear
cut as in this simple model. A more complete model could be
created using, for instance, one dimensional finite element
analysis. The approach adopted here has, however, been used
with some success. Johnston, Carter, Novello and Qoi carried
out "constant normal stiffness tests” in which the normal stress
in a simple shear test was related to the vertical movement, in
order to model the behaviour of the soil around piles in
carbonate sand.
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Figure 32, Shear stress - shear strain curves for different
dilatancy values and constant normal stiffness
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Figure 33, Shear stress - shear strain curves for typical
properties for a pile in dense sand

In this model of pile behaviour the dilation becomes very
important, because the more the soil dilates, the greater the
normal stress becomes. (In the constant normal stiffness tests
on carbonate sand the inverse problem occurs: the more the
soil crushes the more the normal stress reduces).

Stress-strain curves for the case of constant normal stiffness
are shown in Figure 32, for three different dilation angles. The
frictional capacity of the pile becomes strongly dependent on
dilation. Since a constant angle of dilation has been used in
this calculation, both the normal stress and the shear stress
increase indefinitely as the sample continues to expand.

More realistic calculations take account of the fact that the
angle of dilation reduces as the critical state is approached. The
relationship used for the calculations shown in Figure 33 is the
one suggested by Wroth (private communication, 1990), as
discussed above. The shear stress now approaches a constant
value at a large strain. Although the implied strains in the
shearing zone are very large, the thickness of this zone is small,
so that the associated pile displacements may be small. The
calculations are made with three of the sets of values shown
in Table 1, which are appropriate for a pile in dense sand. The
three curves are for three different points along the length of
the pile. At greater depths the stresses in the soil are larger,
and so the angle of dilation is smaller. The increase of stress
at the pile wall becomes less important at greater depth, and
the unit friction on a pile therefore decreases with depth.

The predicted variation of the unit friction on a pile of
diameter 0.6m is shown by the solid line on Figure 34, using
the valuesin Table 1. The horizontal axis is the factor "K tan "
which is frequently used in pile analysis. It can be seen that
the understanding of the importance of dilation can play a key
role in the understanding of pile behaviour.
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Figure 34, variation of K tan § with depth calculated for piles
of different diameters in dense sand

Table 1, Properties used in analysis of frictional capacity of
piles

z (m) o, (kPa) | o, (kPa) G (MPa)
2.5 25 12.5 2.5
5 50 25 3.5
10 100 50 5
20 200 100 7.1
40 400 200 10
All analyses | ¢, =35%v=02,0=1.15T=1.88,
V,=153,1=0022,R,=0.6m, h =0.01m

The numerical values shown in Figure 34 depend critically
on the estimate of the thickness 4 of the shearing zone, which
may be about 10 to 15 grain diameters thick for a very rough
pile. For arelatively smooth steel pile it may be that the failure
will occur solely at the pile-soil interface, and the dilatant
properties of the soil may be much less important. The results
depend in fact on the ratio of the shear zone thickness to the
diameter of the pile, and if the zone remains the same thickness
then a lower capacity is predicted for larger piles. The broken
curve on Figure 34 is computed for a pile of diameter 1.2m,
but with all other parameters unchanged. This result has, of
course, very significant implications for the use of small scale
pile tests, whether in the laboratory or in the field, to predict
the behaviour of larger piles. This 1s a genuine effect of scale
which cannot be avoided by, for instance, using a centrifuge
to increase the stress level.

The influence of dilatancy in enhancing the horizontal stress
on piles has been recognised for some time (see for instance

G,

Figure 35, Matsuoka’s failure criterion in the octahedral
plane

Cernak, Dvorak, Hlavacek, Klein and Petrasek, 1973). Jardine
and Christoulas (1991) review evidence of the increase in
normal stress on the shaft of a pile due to dilation and discuss
some of the factors which influence this increase. The
importance of this increase may vary considerably with soil
conditions, for instance Frank and Tadjbakhsh (1986) report
finite element analyses which give only a modest increase in
calculated values of radial stress.

The above examples should show that dilation does not
significantly affect the stresses calculated in problems which
are relatively unrestrained kinematically, although the
deformations will be affected by the dilation angle. In contrast,
for problems such as piling, in which strong constraints are
placed on the movement of the soil, the fact that the soil is
dilating assumes much more importance. The approximate
calculations for both the end bearing and frictional capacity of
piles demonstrate that dilation can be accounted for using
relatively simple soil models.

5 GENERALISATION OF DILATION
EXPRESSIONS

It has long been accepted that the angle of friction depends on
the mode of shearing as well as other variables such as density
and pressure. The angle of friction in plane strain is a few
degrees higher than the angle of friction in triaxial
compression. This can be understood by examining a plot in
the octahedral plane of stress points at failure. This plot is a
view looking down the space diagonal in a three dimensional
plot of the principal stresses. The Mohr-Coulomb failure
criterion for a constant ¢’ value plots as an irregular hexagon.
A section at constant p” through the failure surface is shown
in Figure 35, in which a test in triaxial compression would plot
at "C", a triaxial extension test at "E", and a plane strain test
at some point in between.

The observed shape of the failure surface for a sand can be
well fitted by an expression suggested by Matsuoka (1976),
which gives a smooth curve in this plot:

(cﬂ—dz>2+(dz—o’2)2+(dg—dl)2
0,10/2 6,2613 0"30"1

Although the Matsuoka expression is a little more complex
than the Mohr-Coulomb expression, given an estimate of the
intermediate principal stress it is no harder to use. At point "P"
in Figure 35 it results in a higher angle of friction in plane
strain than in triaxial compression. Lade (1972, 1977) has also
suggested an expression for the failure surface which results
in a higher angle of friction in plane strain than in triaxial

=8tan’®’, .31
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Figure 36, Dilatancy function versus b for Lade’s tests on
dense and loose sand

compression. His expression differs from Matsuoka’s in that
it also predicts a slightly higher angle of friction in triaxial
extension.

In contrast, very little attention has been paid to changes in
the angle of dilation with different modes of shearing, and this
variation may be just as important as the variation of the angle
of friction. The Author has found that for a number of samples
at the same density and sheared in different modes, the peak
dilation angles can be modelled by the expression:

(& +&+ &)

L v, ...(32)

€ -8+ (E -8 +(E—-8) 2
The expression, which can be seen to be in some ways
analogous to Matsuoka’s expression for the friction angle, has
been tested against true triaxial tests on sand at two different
densities by Lade (1972), see Figure 36. The constant required
in the new expression is almost independent of the mode of
shearing. This expression may therefore provide a way of
understanding the relationship between measurements of
dilation angles in different types of test.

6 PEAK AND CRITICAL STATE STRENGTH

Itisimportant to introduce a final note of caution. Animportant
consequence of the dilatant properties of soils is that they
exhibit peak strengths, followed by a reduction in strength as
the critical state is approached. Often we can rely on the large
peak strength to be developed, but if there is the possibility of
progressive failure then we must be cautious. In Figure 37 the
case of a slope failure in which the failure propagates from the
toe of the slope is illustrated (more commonly the failure might
propagate from the crest). An element of soil at point "A" may
have suffered large strain and be past its peak strength by the
time the soil at "B" has only just reached peak. At the same
time the element at "C" has not yet reached its peak.

In such cases is it not possible for all the soil to achieve its
peak strength at the same time, and so the peak strength would
be inappropriate for design. The critical state (or constant
volume) friction angle ¢’,,, which can be relied on at large
strains, would be more appropriate in this case.

Y

Figure 37, Schematic diagram of stress strain behaviour of
points on a slip surface propagating from the toe of a slope

7 CONCLUDING REMARKS

The angle of friction depends on the angle of dilation, which
in turn depends on density and pressure. This provides a
framework for the understanding of soil behaviour, and
explains problems such as the reduction of the peak angle of
friction with increasing stress level.

The fact that soil is dilating has an important effect on the
solutions to problems where the soil is heavily constrained, as
beneath the tip of a pile. It is much less important (except for
its effect on the strength) for unconstrained problems such as
slope stability.

The dilation of soil can be included in quite simple
elastic-plastic models of soil behaviour, and its effects on
certain problems explored. More work needs to be done to
establish quantitatively how the dilation rate varies with soil
conditions, but a suggestion has been made as to how this can
be achieved within the framework of Critical State Soil
Mechanics.
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ABSTRACT: The relationships between the friction angle, dilation angle, density and pressure in a granular material are explored.
The link between friction and dilation is well established, but quantitative expressions for the dependance of dilation on density
and pressure are less well known. A new relationship based on the concepts of Critical State Soil Mechanics is suggested. The
types of problem in which dilation plays an important réle are then examined, and it is seen that dilatancy increases in significance
for heavily constrained problems. The influence of dilation on the capacity of piles is treated in more detail. Additional topics
treated include the generalisation of dilation expressions.

RESUME: Les relations entre I’angle de frottement, I’angle de dilatance, la densité et la pression dans un milieu granulaire sont
étudiées. Le lien entre frottement et dilatance est bien établi, mais les expressions quantitatives de I’influence de la densité et de
la pression sur la dilatance sont moins bien connues. Une nouvelle relation basée sur les concepts de la Mécanique des Sols de
I’Etat Critique est proposée. Les types de problemes dans lesquels la dilatance joue un réle important sont ensuite examin€s, et
il est montré que la dilatance croit d’une maniere significative dans les problemes a déformation empéchée. L’infuence de la
dilatance sur la capacité portante des pieux est traitée d’une maniére plus détaillée. Les aspects complémentaires qui sont traités

incluent la généralisation des expressions de la dilatance.

1 PREAMBLE

Professor Peter Wroth, of Oxford University, was invited to
present a lecture at the Tenth European Conference on Soil
Mechanics and Foundation Engineering, and chose as his
subject the title of this paper. Sadly, Professor Wroth died in
February 1991, and the Author was invited to present a lecture
on the same topic in his place. Professor Wroth had not written
his lecture, and so this paper is the Author’s own views on the
subject. The lecture at the Conference, and this written version
of it, are presented as the Author’s personal tribute to Professor
Wroth’s wisdom as an engineer, and in gratitude for his many
years of encouragement and support.

2 INTRODUCTION

This Paper is divided into two main parts. In the first the
relationships between friction, dilation, density and pressure
areexplored. Itis seen that the relationship between the friction
angle and dilation angle is well established both theoretically
and experimentally. Relationships between the dilation angle
and density and pressure are equally important, although less
well established quantitatively. Dilation will be seen as
occupying a central role in explaining phenomena such as the
reduction of angle of friction with increasing stress level.

In the second part of the Paper a series of problems are
examined to establish the cases where dilation is important,
and it is seen that dilation assumes increasing significance as
problems become more kinematically constrained. Particular
emphasis is placed in this section on the role of dilation in
calculations of the capacity of piles.

Some additional topics are treated at the end of the paper.

3 FRICTION, DILATION, DENSITY AND
PRESSURE

The simple frictional model for the failure of a soil, based on
Coulomb’s pioneering work in 1773, is familiar to all
geotechnical engineers, and is conveniently shown on the
Mohr’s circle diagram, Figure 1. The frictional relationship
must of course be expressed in terms of effective, not total,
stresses. In the remainder of this Paper the term stress shall

Figure 1, The Mohr-Coulomb failure criterion

always mean effective stress, and will be indicated by a prime

(7). The friction angle ¢’ is used to describe the strength of
the soil.

Closer examination reveals that the behaviour of soils is
more subtle, and shows a number of important features. Firstly,
in a test such as the simple shear test on a dense sand, a peak
isusually observed in the shear stress - shear strainrelationship,
followed by a reduction in shear stress at large strain, Figure
2. Similar peaks are observed in other types of shear test. A
careful distinction between the peak and large strain angles of
friction is therefore necessary, and they are called here ¢’, and
e

If the vertical movements, as well as shear displacements,
are measured in a simple shear test, then a dense sand usually
dilates, that is it expands in volume, as the test proceeds. The
dilation usually takes place after a small initial compression,
Figure 3. The magnitude of the dilation depends very strongly

on the density of the soil, with denser samples expanding more
rapidly.
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Figure 3, Dilation of dense sand in a simple shear test

If tests are carried out at a number of normal stress levels,
it is found that the peak angle of friction reduces with
increasing stress level. The result is that the peak strength
envelope is curved in the Mohr-Coulomb plot, Figure 4. The
peak friction angle approaches the large strain friction angle
at very high stress levels.

The features of (a) peak and large strain angles of friction,
(b) dilation and the (c) reduction of peak strength with stress
level appear at first to be disconnected, and perhaps confusing,
phenomena. An important step in the understanding of soil
behaviouris the realisation that these features are in fact closely
connected, and the understanding of the réle of dilation is the
key to the understanding of how these phenomena are linked.
The first step is to appreciate the link between the angles of
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Figure 4, Curved peak strength envelope on Mohr's circle
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Figure 5, Definitions of the angles of friction and dilation

friction and of dilation; it is then possible to relate the angle
of dilation to the density and pressure.

The quantities we must first define are as follows. The angle
of friction ¢" expresses the ratio of a shear stress to a normal

stress, and can be defined in terms of principal stresses, Figure
5:

sino _91-9, (1)
5,10,

In a similar way the angle of dilation y (the symbol v is also
sometimes used for dilation angle) expresses the ratio between
a volumetric strain rate and a shear strain rate. For the case of
plane strain (g, = 0) it can be defined in terms of the principal
strain rates (Figure 5):
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The minus sign in Equation 2 arises simply from the
convention that compressive stresses and strains are taken as
positive in soil mechanics, and is introduced so that the angle
of dilation is positive when the soil expands.

The superposed dots used in Equation 2 to indicate the strain
rates do not imply that the process is in any way dynamic. The
term rate is being used here in the sense used in plasticity
theory, in which the time increment is artificial. The equation
could just as well be expressed in terms of strain increments
3¢ rather than strain rates €.

It is important to note that whilst the definition of the angle
of friction remains unchanged for different stress conditions
(e.g. triaxial compression, plane strain, triaxial extension), the
extension of the definition of the angle of dilation to other than
plane strain conditions needs to be treated with more care. The
usual definition employed is:

—(&,+&,+8&)
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which reduces to Equation 2 for plane strain conditions.

A more important distinction is that the angle of dilation
should strictly be defined in terms of the plastic components
of the strain rates, not the total strain rates. If the strain € is
divided into elastic (recoverable) and plastic (irrecoverable)
components:

e=g+¢ (4
then Equation 2 should be modified to:

..(9)

In theory this important distinction means that the
determination of the angle of dilation from a test becomes
much more difficult, since it depends on the estimate which is
made for the elastic properties of the soil. In practice the
distinction is less important since (for most soils, under most
test conditions) the elastic stiffness is sufficiently high that the
elastic strains are much smaller than the plastic strains and the
difference between Equations 2 and 5 is small. In particular,
at the peak in several commonly used shear tests the stresses
are not changing, so the elastic strain rates are zero and
Equations 2 and 4 coincide. In the remainder of this paper it
will be assumed that the elastic strain rates are sufficiently
small that Equation 2 can be used with adequate accuracy.

The simplest way to understand the relationship between the
angles of friction and dilation is to make use of a physical
analogy: the sawtooth model, see Figure 6.

If one frictional block slides over another on a flat plane,
with an angle of friction on the plane ¢, (i.e. a coefficient of
friction i =tan¢’,) Then the ratio of the shear to tlic normal
stress is:

T — ’
o’n—mmb” ...(6)

The choice of the subscript "cv" is to indicate that in this

case the shearing takes place at constant volume, i.e. nodilation
occurs.

If we consider sliding on a rough plane, represented by a
sawtooth with teeth at an angle y to the horizontal, with the
same angle of friction ¢’,, as above acting on the teeth of the
saw, then simple statics can be used to derive the relationship
between the observed shear and normal stress when sliding
occurs. This ratio could be termed tand’, where ¢’ is the
observed angle of friction. It can easily be shown that:
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Figure 6, The sawtooth model for dilatancy
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Figure 7, Analogy used in Taylor’s energy correction

so that & = ¢’,, + y, and the observed angle of friction is the
sum of the angle of friction at constant volume and the angle
of dilation. This type of relationship is called a flow rule.

A variety of other more sophisticated theories have been put
forward to explain the relationship between the friction and
dilation angles, some of which are discussed below.

One of the first approaches to explain the connection was
made by Taylor (1948) who suggested an "energy correction"
to account for dilation. In more modern terminology Taylor’s
expression can be viewed as a hypothesis about the dissipation
of work in a frictional soil. All frictional relationships can be
viewed in terms of dissipation of energy rather than directly
interms of forces. For a block sliding on a smooth plane (Figure
7), the rate of input work is:

W=ty ~..(8)

and if we adopt the hypothesis that this work is dissipated

internally in a way which is proportional to the normal stress
o', and the shear strain rate ¥, then we have:

W = (tano’,)o’,y ..(9)

where the constant of proportionality is tan¢’.,. Combining
Equations (8) and (9) yields the familiar result 7/¢’, = tand’_,.
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Figure 8, Triaxial parameters used for definition of the
Cam-Clay flow rule

The same hypothesis is adopted for a sample of soil in simple
shear: that the dissipated work is proportional to the normal
stress and the shear strain rate. This time, however, the input
work includes a term in &, multiplied by €,, since dilation may

take place and so the normal stress as well as the shear stress
does work. The result is therefore:

W=0"¢ +1y=(tan¢’ )",y ...(10)
Noting that we could define the apparent angle of friction
by tan¢’=1/0’,, and that the angle of dilation is given by

tany = —¢,/v, then Equation 10 can be rearranged to give:

tan¢’ =tan¢’,, +tany ...(11)

which differs slightly from the result from the sawtooth
model, but again expresses the notion that the angle of friction
is equal to the sum of the angle of friction at constant volume
and a term which depends on the rate of dilation.

Very similar concepts were used in the development of the
Cam-Clay model for soil behaviour (Schofield and Wroth,
1968). The results are usually expressed in terms appropriate
for the triaxial test, see Figure 8, and use the stress and strain
invariants:

1
p'=~§(0",+20"3) ...(12)
qg=0,-0, ...(13)
v =g +2¢, ...(14)

2
£=§(e,—£3) ...(15)

The Cam-Clay work hypothesis is expressed as:
W=pv+qge=Mp'e ...(16)

which can be seen to be a direct analogy of Taylor’s
expression (Equation 10). On rearrangement it gives:

4y .7

which again gives a measure of the angle of friction (¢/p’,
actually equal to 6sin¢’/(3 —sin ¢”)), equal to a constant (M)
plus a measure of the angle of dilation (—v/¢, actually equal to
(3siny)/2).

The approach taken by Rowe (1962) in the development of
his stress-dilatancy theory is conceptually quite different,
although it leads to a very similar result. Rowe examined first
the properties regular assemblies of spheres, and was able to
obtain expressions for both the stress ratio o’,/6”5 and the strain

rate ratio —€y/€, in terms of the geometry of packing. He then

assumed that analogies could be drawn with irregular packings
of soil particles. He assumes that sliding takes place on a

Figure 9, Assumed sliding mechanism for Rowe’s
stress-dilatancy flow rule

sawtoothed plane, see Figure 9, and these ratios are therefore
functions of the angles a and [3. The functions are such that o
can be eliminated to give:

o/, tan(d, +P)-¢€
g _an6,+ P& ...(18)

o5 tanfl ¢
where ¢, is the fundamental angle of friction for
grain-to-grain contact. Rowe then adopts a minimum energy
ratio hypothesis to derive B = /4 —¢,/2, but the same result

can also be obtained by assuming a minimum stress ratio at a
given strain rate ratio. The final result is:

OJI_ 2l T ¢y _éB
oq“a“[Z*E &

which is often written in the short form R = KD . The precise
rdle of ¢, now becomes unclear, since it now appears as the

angle of friction at constant volume. Experimental evidence
is, however, that this is not equal to the grain-to-grain friction
angle. The discrepancy has been a matter of some debate.

...(19)

All the methods described above establish theoretical
reasons for a connection between the angles of friction and
dilation. Experimental evidence for the theories has been
presented both by the originators of the theories and by other
researchers. Alternatively one could take a mainly empirical
approach. Bolton (1986) presented a particularly
comprehensive review of the experimental data on friction and
dilation angles, and suggested a very simple empirical fit to
the data:

¢Ip = Qlﬂ + O'8Wmax

If the various methods (for the plane strain case) are
compared, it can be seen from Figure 10, that the differences
arerelatively small. Of the theoretical expressions Rowe’s falls
in the middle of the range, and Bolton’s empirical expression
matches Rowe’s very closely.

...(20)

It should be noted that these flow rules can be applied in two
distinct senses. Firstly they may be used to express the
relationship between the mobilised angle of friction and the
current dilation rate as a test progresses. Secondly they may
be used to express the relationship between the peak friction
angle and the maximum dilation rate for several tests on the
same material. Bolton’s empirical relationship is based on the
observations of the latter type.
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Figure 11, Variation with measured ¢’,,. with mode of
shearing

One problem in the use of the above flow rules is that the
constants employed in them (i.e. ¢',, M or ¢,) need to be
changed for different modes of shearing, as the angle of friction
at constant volume in plane strain is typically a few degrees
higher than that in triaxial compression. Bolton specifically
assumes the two angles to be equal, but this is not supported
by the experimental evidence. The Author has found that the
following work hypothesis provides a flow rule which fits the
data from tests with different modes of shearing well:

Wed f +08 40 =

V8 — — —
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.21

where ¢, is the angle of friction at constant volume in
triaxial compression. Figure 11 shows the implied values of
¢’ evaluated from the peak points from true triaxial tests on

sand (Lade, 1972), and shows that this parameter is almost
independent of the mode of shearing.
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Figure 12, Shear stress - shear strain and volumetric strain -
shear strain for simple shear tests on sand (after Stroud,
1971)

It is clear from the above discussion that the relationship
between friction and dilation is firmly established both
theoretically and experimentally. Although the details of the
approaches taken by various authors may differ, the broad
conclusions are the same. We turn now to the relationship
between dilation and density. It is expected that the denser a
sand is the more it will tend to expand, i.e. the higher the
dilation angle will be. We find that although this trend is well
known, quantitative expressions for the variation of dilation
rate with density are much less well established.

One of the best ways of examining the stress-strain
behaviour of soils is by simple shear tests, and Stroud (1974)
carried out a particularly well controlled set of these tests at
Cambridge. The term "simple” refers to the mode of shearing
applied to the sample: the apparatus used for the test is in fact
rather complex. The upper graph in Figure 12 shows the shear
stress-strain curves for his tests on dense sand and the lower
curves the change in specific volume with shear strain. Each
of these tests started at about the same density, and all showed
about the same angle of dilation.

Wroth (1958) had earlier carried out simple shear tests on a
variety of materials. These experiments were some of those
which formed the basis of what later became known as Critical
State Soil Mechanics. Figure 13 shows a set of tests on steel
balls, initially packed at different densities. The rate of dilation
is higher for denser samples, i.¢. those initially at a lower voids
ratio. The samples dilate until they reach the same critical voids
ratio, irrespective of their initial density, at which they can
continue to shear with no further changes of density. The
concept of critical voids ratio was not new, being due to
Casagrande (1936).

The critical voids ratio is, however, not unique, since it
reduces slightly with increasing normal stress. In Figure 14 the
end points (i.e. the points where no further changes in voids
ratio are occurring) of all of Stroud’s tests on sand are plotted
in the form of specific volume against mean stress. The points
clearly fall on a single line in this plot, with the critical voids
ratio reducing with pressure. This leads to the concept of the
critical state line. On shearing, all samples will approach this
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Figure 13, Voids ratio against shear displacement for simple
shear tests on steel balls (from Wroth, 1958)
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Figure 14, Critical State Line for simple shear tests on sand
(after Stroud, 1971)

line, and as they do so will shear with no further change of
specific volume, but the actual specific volume they attain will
be lower for samples subjected to higher normal pressures. It
is observed empirically for clays that the critical state line is
parallel to the normal compression line in the consolidation
plot.

Stroud’s tests covered a range of initial stresses and
densities, and the peak angle of friction he observed is shown
plotted against pressure in Figure 15. The primary controlling
factor for the peak strength is seen to be the density, with denser
samples giving a higher strength, but at a given density the
angle of friction reduces slightly with increasing stress level.
The reduction of the peak strength with stress level is linked
to the slope of the critical state line, but in order to establish
this connection it is necessary to define some additional
quantities.

On the critical state line the rate of dilation is zero, and it
seems reasonable that the rate of dilation should simply be a
function of the distance of the current stress point from the
critical state line. This is expressed by defining the quantities
shown in Figure 16. The slope of the critical state line in the

V:Inp’ plotis A, and its position is fixed by the value I" of the
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Figure 15, Peak strength against stress level for simple shear
tests at different densities (after Stroud, 1971)

Figure 16, Definitions of " and V,

specific volume at some reference pressure p, (conveniently
taken as atmospheric pressure). The quantity V,, defined as
V +Aln(p’/p,), is the value of V at p, on a line drawn through
the current point and parallel to the critical state line. Clearly
the quantity (I'—V}) is the distance of the current point below
the critical state line. This concept was originally suggested
by Wroth and Bassett (1965), and has recently been

rediscovered by Been and Jefferies (1985) in their use of the
so-called "state parameter".

In Figure 17 the peak strengths from Stroud’s tests are
plotted against V,, and all the tests, from a variety of
combinations of pressure and density, plot on a single curve.
The peak strength is therefore a unique function of V;. In view
of the relationships between friction and dilation angles
already examined, this also means that the maximum dilation
rate is a unique function of V;. It is perhaps most helpful to

consider the latter relationship as the more fundamental: there
are obvious physical reasons why the dilation rate should be
higher for denser samples. This result establishes, at least
qualitatively, the dependence of the friction and dilation angles
on the pressure and density.

Wroth (private communication, 1990) replotted Stroud’s
data and suggested the simple expression sin y = o(I" = V,) for

the variation of the angle of dilation with distance from the
critical state line. The data are shown on Figure 18. The new

quantity ais taken as a constant for any given sand, and Wroth
found that values of o were typically near unity.
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Figure 18, Wroth’s interpretation of Stroud’s simple shear
tests on sand

In practice it is often more convenient to express the
behaviour of sand as a function of the relative density /,, rather

than the specific volume, and Wroth’s expression can be
reworked in these terms. The result is the expression:

a

siny =TV, )+a(V,. — V.- cx?\ln[p—] ..22)

Although this expression looks complex, it is simply of the
structure:

...(23)

a

siny =A +BID—Cln[£—)

where A, B and C are all simple functions of well defined
properties of the soil. The angle of dilation (and therefore the
angle of friction) increases with density and reduces with
pressure. Equation 22 may be compared with the empirical
expression suggested by Bolton (1986) for the angle of friction
in plane strain (in degrees):

b _ P’ .
¢p—¢w+5[lo[10 1"(1.5;)“]} 1] ...(24)

Together with Equation 20, this can be used to derive an
expression for the angle of dilation (in radians):

w=-0.11+0.597, - 0.1 11D1n(§—] ..(25)
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Figure 19, Example problems in increasing order of
confinement

Equations 22 and 25 can be seen to be similar in structure,
except for the last term. For the range of data available they
give almost identical results, and Wroth’s expression fits the
data as well as Bolton’s. Both express the concept that dilation
rate (and hence strength) is primarily controlled by density,
but also reduces with increasing stress level. The Author
prefers Wroth’s approach since (a) it directly embodies the
concept of the critical state and (b) the constants required can
be related to well defined measurable quantities.

Ifitis possible to estimate the density of a granular material,
and the probable value of the working stresses, it is therefore
possible to estimate first the dilation rate and then the peak
angle of friction.

4 PROBLEMS IN WHICH DILATION IS
IMPORTANT

We now examine some cases where the dilation of the soil is
important. We should first note that dilation will always be
importantin thatit will control the appropriate angle of friction.
The purpose of this discussion is to examine cases where, in
addition to this effect, the very fact that the soil is dilating has
a further influence on the results.

The importance of dilation will be considered by examining
four types of problem in geotechnical engineering, shown
schematically in Figure 19. The examples have been ordered
in a way that they represent increasing confinement of the soil.
In a slope the soil is free to move in a relatively unconfined
way. A footing and a flexible tunnel lining impose increasing
levels of constraint on the way the soil can deform, and finally
the soil in the vicinity of a pile is highly constrained. Intuitively
we would expect that the more kinematically constrained the
soil is, the more important dilation will be.
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Figure 20, Deformations of a slope (after Zienciewicz,
Humpheson and Lewis, 1975)

The influence of dilation on each of these problems must be
examined theoretically, because only in theoretical or
numerical analysis can the dilation rate be varied without
simultaneously affecting other properties of the soil.
Laboratory or field tests would be unable to distinguish the
effects of dilation and of friction, since the two, as shown
above, are linked for any given material.

The problem of slope stability was examined numerically
by Zienciewicz, Humpheson and Lewis (1975). They used the
finite element method to carry out two slope stability analyses
in which they used the same angle of friction of 20°. In one
they assumed the angle of dilation to be equal to the angle of
friction, and in the other they assumed zero dilation. The first
caseinfact gives animpossibly high dilationrate. The analyses
resulted in identical factors of safety. However, as would be
expected, the patterns of deformation, shown in Figure 20,
were rather different. Although this analysis involves a soil
with a rather low friction angle, their conclusion that dilation
in itself does not affect slope stability seems reasonable.

The problem of the bearing capacity of a footing was also
examined by Zienciewicz et al. (1975), and they again
observed no influence of the dilation rate. It was also examined
by de Borstand Vermeer (1984), who carried out finite element
analyses of both strip and circular footings on a material with
an angle of friction of 40°. They used dilation angles of 40°
and 20° (again the first value is impossibly high). The
load-deformation curves for circular footings are shown in
Figure 21, and the analysis with the higher angle of dilation
shows a peak bearing capacity about 13% higher than for the
lower dilation angle. At large deformations both analyses
approach a similar capacity. It may be that the peak is an
artefact of the particular numerical technique involved, but it
is more likely that, at least for fairly high friction angles, the
rate of dilation does have a small influence on the bearing
capacity of a foundation.

As would be expected, the patterns of deformation around
the footing, shown much exaggerated in Figure 22, are very
differentin the two cases. Much larger surface movements are
observed for the larger angle of dilation.

The example of the tunnel was also studied by Zienciewicz
et al. (1975), who made calculations for both the pressures on
atunnel lining, and the ground movements around it for various
stages in the construction procedure. The details of the results
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Figure 21, Load - deflection curves for circular footings
(after de Borst and Vermeer, 1984)
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Figure 22, Deformations below a circular footing (after de
Borst and Vermeer, 1984)

Figure 23, Deformations of a tunne! lining (after
Zienciewicz, Humpheson and Lewis, 1975)

must be regarded as specific only to the case they examined,
but an example of the influence of the dilation rate on the final
deformation of the tunnel lining is shown in Figure 23. Much
larger movements are observed for the more dilatant soil.

The conditions around a pile impose much more kinematic
constraint on soil movements than for any of the previous
problems. We would expect therefore that in a more dilatant
soil higher stresses would develop. We shall examine now in
rather more detail the influence of dilatancy on both the end
bearing capacity and the skin friction of piles.

The pressure on the tip of a driven pile may be estimated
using spherical cavity expansion theory, in which we attempt
tomodel the installation of the pile by the expansion of a cavity
within the soil. The analogy is shown in Figure 24. The theory
oversimplifies the rather complex process of pile driving, but
nevertheless has some merits.
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Figure 24, Idealisation of pile end bearing as a spherical
cavity expansion

v =20°

v =10°

30 | 34 38 42 4% 50

Figure 25, Variation of spherical limit pressure with angle of
friction for different dilation angles

The theory of spherical cavity expansion has been modified
recently to account for dilation in frictional materials, Yu
(1990), Yu and Houlsby (1991). The analysis involves a
detailed treatment of the stresses and strains within a zone of
soil close to the pile which is deforming plastically, and an
outer zone which remains elastic. A detailed explanation
would be inappropriate here. The calculated cavity expansion
pressures can be used as estimates of the end bearing capacity
of piles.

Some examples of the analysis are shown in Figure 25, which
shows the variation of the cavity expansion with the angle of
friction, for different values of dilation angle. The cavity
expansion pressure has been divided by the stress p, (which
must be assumed isotropic) at a large distance from the pile.
The three main curves show the pressures calculated for angles
of dilation of 0°,10° and 20°. The other parameters required
(constant for all these analyses) are the shear modulus
G =500p, and Poisson’s ratio v=0.2. The calculated end
bearing capacity increases more than fivefold as the angle of
dilation is increased from 0° to 20°, in sharp contrast to the
increase of only 13% in the bearing capacity of a surface
footing calculated by de Borst and Vermeer for a comparable
increase in the dilation angle.

It is clear that dilation plays a much more important role in
the highly confined problem of pile bearing capacity than in
the relatively unconstrained surface footing problem.

The dilation rate also affects the frictional capacity of piles,
but in order to understand its influence in this case, it is first
necessary to examine some features of the simple shear test.
This is because the deformation of the soil around a pile can

=tan ¢’

’
n

Figure 26, Interpretation of the simple shear test assuming
sliding on horizontal planes

be regarded as similar to simple shear. The application the
simple shear test to the understanding of pile behaviour was a
topic of particular interest to Professor Wroth.

The interpretation of simple shear tests is not
straightforward, even when examining a problem apparently
as simple as the shear strength. The first assumption that might
be made is that the mechanism of failure is one of sliding on
horizontal planes, see Figure 26, so that these are planes on
which the Mohr-Coulomb condition is satisfied. At failure we
therefore have the expected relationship 1/6’, = tand’. A closer
examination reveals that this assumption is too simplistic in
that it has ignored the details of the strain boundary conditions
which are imposed on the specimen.

The horizontal plane does not extend, and this condition,
together with a knowledge of the fixed dilation rate, fixes the
Mohr’s circle for strain rate at failure, Figure 27. If we assume
that the principal directions of strain rate and of stress coincide,
then it is possible to deduce the Mohr’s circle for stress. The
assumption of the coincidence of the strain rate and stress
directions is slightly controversial, and some researchers,
notably de Josselin de Jong (1971, 1988) have suggested more
complex models in which this assumption is not made.
Although such models would produce slightly different
calculations, most of the conclusions about pile behaviour
made later in this section would still follow.

Knowing the Mohr’s circle for stress the ratio of shear to
normal stress at failure can be calculated as:

T sind’ cosy
—_— = .2
o, 1-sind’siny (26)

This result is well known, and was independently derived
by Davis (1968) and Rowe (1969). It is less well recognised,
however, that this equation only refers to the ultimate
conditions in a test, and to explore what happens as the test
develops it is necessary to use a complete stress-strain model
for the soil, accounting for both elastic and plastic
deformations. The model used her is a simple elastic-perfectly
plastic model in which the elastic strains are given (for the case
of plane strain) by:



N =2

Strain Rate

m-v

Stress H
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the yield surface is given by the Mohr-Coulomb condition:

\(o, -, ) +4T, ~(0!, + o,)sin¢’ =0 ...(28)

The plastic potential is given by an analogous expression in
which the angle of friction is replaced by the angle of dilation:

x/(c; -0, +41, ~(oL, +oL)siny+A =0 ...(29)

where A is a "constant” which depends on the stress point
at which yield occurs, and chosen so that the plastic potential
passes through that point.
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Figure 29, Shear stress - shear strain curves for different
initial horizontal stresses

The horizontal stress at the beginning of a simple shear test
has an important influence on the results of the test. On the left
of Figure 28 is the Mohr’s circle for a sample in which the
horizontal stress is initially as small as possible. The path
during the test of the point representing the stresses on the
vertical planes (i.e. the horizontal stress and a shear stress) is
from "H," to "J", showing how the horizontal stress increases
throughout the test. At the same time the point representing
the stresses on the horizontal planes (i.e. the vertical stress and
a shear stress) moves from "V" to "K". The apparent strength
is in this case given the Davis/Rowe expression (Equation 26)
and is less than tan ¢’.

If, however, the test begins with a horizontal stress which is
as large as possible, then the initial Mohr’s circle is as shown
on the right of Figure 28. The path representing the horizontal
stress is this time from "H," to "J", showing that the horizontal
stress decreases during the test. The shear stress, however,
passes through a peak at point "P", before ending at the same
value as before. At the peak the vertical stress is represented
by the point "Q". Curiously the peak shear strength is given
by the original expression 1/¢’, = tan¢’, whilst the final value

is given by Equation 26. Although effects similar to this have
been explored by de Josselin de Jong for a model which does
notinvolve coaxiality of plastic strain rate and stress, itis worth
noting that the initial stresses influence simple shear testresults
even if one adopts a coaxial model.

The stress-strain curves computed using the elastic-perfectly
plastic model for three different cases of initial horizontal stress
are shown in Figure 29, and demonstrate clearly the peak for
the case of a high initial horizontal stress. In order to understand
the simple shear test we need therefore to know about the initial
stress conditions, and to account properly for them.

The dilation rate of the soil also affects the results of simple
shear tests (as can be seen from Equation 26). Figure 30 shows
the results for three tests with the same initial stresses and angle
of friction, but three different angles of dilation. Not only are
the volume changes different, as shown by the lower curves,
but the apparent strengths are also different.

Problems such as these are of interest to those who are
concerned with the precise interpretation of laboratory tests,
but may seem rather remote from practical soil mechanics
problems. In fact such calculations are extremely relevant to
the difficult task of the prediction of the frictional capacity of
bored piles.

When a pile is loaded vertically the behaviour of the soil
surrounding the pile could be idealised in the way shown in
Figure 31. The actual behaviour will be more complex, but the
simple model serves as an illustration.

A relatively thin band of soil close to the pile deforms in
simple shear, but in this case it 1s the vertical strain which is
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Figure 30, Shear stress - shear strain curves for different
dilatancy values
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Figure 31, Idealisation of shear zone adjacent to a pile

zero: itis like a conventional simple shear test turned through
90°. As the soil shears it dilates, and so the soil outside this
zone is pushed outwards. The result is that the normal stress
on the element of soil in simple shear does not remain constant.

The expansion of the surrounding soil can be modelled as
analogous to a pressuremeter test, so there is a relationship
between the outward movement and the change in normal
stress. For simplicity this relationship may be regarded as
elastic, and the result is:

AG’,,=2GSA£ ...(30)
R

In practice the distinction between the thin shearing zone (in
which the soil is deforming plastically) and the outer zone (in
which the soil is assumed to remain elastic) will not be as clear
cut as in this simple model. A more complete model could be
created using, for instance, one dimensional finite element
analysis. The approach adopted here has, however, been used
with some success. Johnston, Carter, Novello and Qoi carried
out "constant normal stiffness tests” in which the normal stress
in a simple shear test was related to the vertical movement, in
order to model the behaviour of the soil around piles in
carbonate sand.
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Figure 32, Shear stress - shear strain curves for different
dilatancy values and constant normal stiffness
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Figure 33, Shear stress - shear strain curves for typical
properties for a pile in dense sand

In this model of pile behaviour the dilation becomes very
important, because the more the soil dilates, the greater the
normal stress becomes. (In the constant normal stiffness tests
on carbonate sand the inverse problem occurs: the more the
soil crushes the more the normal stress reduces).

Stress-strain curves for the case of constant normal stiffness
are shown in Figure 32, for three different dilation angles. The
frictional capacity of the pile becomes strongly dependent on
dilation. Since a constant angle of dilation has been used in
this calculation, both the normal stress and the shear stress
increase indefinitely as the sample continues to expand.

More realistic calculations take account of the fact that the
angle of dilation reduces as the critical state is approached. The
relationship used for the calculations shown in Figure 33 is the
one suggested by Wroth (private communication, 1990), as
discussed above. The shear stress now approaches a constant
value at a large strain. Although the implied strains in the
shearing zone are very large, the thickness of this zone is small,
so that the associated pile displacements may be small. The
calculations are made with three of the sets of values shown
in Table 1, which are appropriate for a pile in dense sand. The
three curves are for three different points along the length of
the pile. At greater depths the stresses in the soil are larger,
and so the angle of dilation is smaller. The increase of stress
at the pile wall becomes less important at greater depth, and
the unit friction on a pile therefore decreases with depth.

The predicted variation of the unit friction on a pile of
diameter 0.6m is shown by the solid line on Figure 34, using
the values in Table 1. The horizontal axis is the factor "K tan §"
which is frequently used in pile analysis. It can be seen that
the understanding of the importance of dilation can play a key
role in the understanding of pile behaviour.
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Figure 34, variation of K tan d with depth calculated for piles
of different diameters in dense sand

Table 1, Properties used in analysis of frictional capacity of
piles

z (m) o, (kPa) 1, (kPa) G (MPa)
25 25 12.5 25
S 50 25 3.5
10 100 50 5
20 200 100 7.1
40 400 200 10
All analyses o, =35°v=02 a=1.15T=1.88,
V,=153,2=0.022,R,=0.6m, h =0.0lm

The numerical values shown in Figure 34 depend critically
on the estimate of the thickness 4 of the shearing zone, which
may be about 10 to 15 grain diameters thick for a very rough
pile. For arelatively smooth steel pile it may be that the failure
will occur solely at the pile-soil interface, and the dilatant
properties of the soil may be much less important. The results
depend in fact on the ratio of the shear zone thickness to the
diameter of the pile, and if the zone remains the same thickness
then a lower capacity is predicted for larger piles. The broken
curve on Figure 34 is computed for a pile of diameter 1.2m,
but with all other parameters unchanged. This result has, of
course, very significant implications for the use of small scale
pile tests, whether in the laboratory or in the field, to predict
the behaviour of larger piles. This is a genuine effect of scale
which cannot be avoided by, for instance, using a centrifuge
to increase the stress level.

The influence of dilatancy in enhancing the horizontal stress
on piles has been recognised for some time (see for instance

G

Figure 35, Matsuoka’s failure criterion in the octahedral
plane

Cernak, Dvorak, Hlavacek, Klein and Petrasek, 1973). Jardine
and Christoulas (1991) review evidence of the increase in
normal stress on the shaft of a pile due to dilation and discuss
some of the factors which influence this increase. The
importance of this increase may vary considerably with soil
conditions, for instance Frank and Tadjbakhsh (1986) report
finite element analyses which give only a modest increase in
calculated values of radial stress.

The above examples should show that dilation does not
significantly affect the stresses calculated in problems which
are relatively unrestrained kinematically, although the
deformations will be affected by the dilation angle. In contrast,
for problems such as piling, in which strong constraints are
placed on the movement of the soil, the fact that the soil is
dilating assumes much more importance. The approximate
calculations for both the end bearing and frictional capacity of
piles demonstrate that dilation can be accounted for using
relatively simple soil models.

5 GENERALISATION OF DILATION
EXPRESSIONS

It has long been accepted that the angle of friction depends on
the mode of shearing as well as other variables such as density
and pressure. The angle of friction in plane strain is a few
degrees higher than the angle of friction in triaxial
compression. This can be understood by examining a plot in
the octahedral plane of stress points at failure. This plot is a
view looking down the space diagonal in a three dimensional
plot of the principal stresses. The Mohr-Coulomb failure
criterion for a constant ¢’ value plots as an irregular hexagon.
A section at constant p’ through the failure surface is shown
in Figure 35, in which a test in triaxial compression would plot
at "C", a triaxial extension test at "E", and a plane strain test
at some point in between.

The observed shape of the failure surface for a sand can be
well fitted by an expression suggested by Matsuoka (1976),
which gives a smooth curve in this plot:

(0,1 _clz)z+(0/2_6/2)2+(0,3 ‘61): _ 8 [arlz(bl
o0, 0,0, o0, “

...(31)

Although the Matsuoka expression is a little more complex
than the Mohr-Coulomb expression, given an estimate of the
intermediate principal stress it is no harder to use. At point "P"
in Figure 35 it results in a higher angle of friction in plane
strain than in triaxial compression. Lade (1972, 1977) has also
suggested an expression for the failure surface which results
in a higher angle of friction in plane strain than in triaxial
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Figure 36, Dilatancy function versus b for Lade’s tests on
dense and loose sand

compression. His expression differs from Matsuoka’s in that
it also predicts a slightly higher angle of friction in triaxial
extension.

In contrast, very little attention has been paid to changes in
the angle of dilation with different modes of shearing, and this
variation may be just as important as the variation of the angle
of friction. The Author has found that for a number of samples
at the same density and sheared in different modes, the peak
dilation angles can be modelled by the expression:

(€ +E,+ ) Lty
E -8+ &) +(E—€) 2 “

...(32)

The expression, which can be seen to be in some ways
analogous to Matsuoka’s expression for the friction angle, has
been tested against true triaxial tests on sand at two different
densities by Lade (1972), see Figure 36. The constant required
in the new expression is almost independent of the mode of
shearing. This expression may therefore provide a way of
understanding the relationship between measurements of
dilation angles in different types of test.

6 PEAK AND CRITICAL STATE STRENGTH

Itis importantto introduce a final note of caution. Animportant
consequence of the dilatant properties of soils is that they
exhibit peak strengths, followed by a reduction in strength as
the critical state is approached. Often we can rely on the large
peak strength to be developed, but if there is the possibility of
progressive failure then we must be cautious. In Figure 37 the
case of a slope failure in which the failure propagates from the
toe of the slope is illustrated (more commonly the failure might
propagate from the crest). An element of soil at point "A" may
have suffered large strain and be past its peak strength by the
time the soil at "B" has only just reached peak. At the same
time the element at "C" has not yet reached its peak.

In such cases is it not possible for all the soil to achieve its
peak strength at the same time, and so the peak strength would
be inappropriate for design. The critical state (or constant
volume) friction angle ¢’.,. which can be relied on at large
strains, would be more appropriate in this case.

v

Figure 37, Schematic diagram of stress strain behaviour of
points on a slip surface propagating from the toe of a slope

7 CONCLUDING REMARKS

The angle of friction depends on the angle of dilation, which
in turn depends on density and pressure. This provides a
framework for the understanding of soil behaviour, and
explains problems such as the reduction of the peak angle of
friction with increasing stress level.

The fact that soil is dilating has an important effect on the
solutions to problems where the soil is heavily constrained, as
beneath the tip of a pile. It is much less important (except for
its effect on the strength) for unconstrained problems such as
slope stability.

The dilation of soil can be included in quite simple
elastic-plastic models of soil behaviour, and its effects on
certain problems explored. More work needs to be done to
establish quantitatively how the dilation rate varies with soil
conditions, but a suggestion has been made as to how this can
be achieved within the framework of Critical State Soil
Mechanics.

8 ACKNOWLEDGEMENTS

The Author is grateful to the members of the soil mechanics
group at Oxford University for their constructive comments
on the content of the spoken version of this paper, and also to
Judith Tacaks and John Mooney for their assistance in the
preparation of the diagrams. He is also grateful to Dr Roger
Frank and Dr Richard Jardine for material for inclusion in the
written paper.

9 REFERENCES

Been, K. and Jefferies, M.G. (1985) A State Parameter for
Sands, Géotechnique, Vol. 35, No.2, 99-112

Bolton, M.D. (1986) The Strength and Dilatancy of Sands,
Géotechnique, Vol. 36, No. 1, 65-78, Discussion: Vol 37,
No. 2,219-226

Casagrande, A. (1936) Characteristics of Cohesionless Soils
Affecting the Stability of Slopes and Earth Fills, Jour.
Boston Soc. Civ. Eng., Jan.

Cernak, B, Dvorak, A., Hlavacek, J., Klein, K. and Petrasek,
J.(1973) New Approaches to Problems of Bearing Capacity
and Settlement of Piles, Proc. 8th Int. Conf. Soil. Mech.
Found. Eng., Moscow, 67-74

Davis, E.H. (1968) Theories of Plasticity and the Failure of
Soil Masses, in Soil Mechanics, Selected Topics, ed. LK.
Lee, Butterworth

de Borst, R. and Vermeer, P.A. (1984) Possibilities and
Limitations of Finite Elements for Limit Analysis,
Géotechnique, Vol. 34, No. 2,199-210



de Josselin de Jong, G. (1971) The Double Sliding Free
Rotating Model for Granular Assemblies, Géotechnique,
Vol. 21, No. , 155-163

de Josselin de Jong, G. (1988) Elastic-Plastic Version of the
Double Sliding Model in Undrained Simple Shear Tests,
Géotechnique, Vol. 38, No. 4, 533-555

Frank. R. and Tadjbakhsh, S. (1986) Finite Element Study of
Pile Axial Behaviourin Elasto-Plastic Dilating Media, Proc.
3rd Int. Conf. on Numerical Methods in Offshore Piling,
Nantes, May, 201-217

Jardine, R. and Christoulas, S. (1991) Recent Developments
in Defining and Measuring Static Piling Parameters, General
Report, Int. Conf. on Deep Foundations, Paris, March

Lade, P.V. (1972) The Stress-Strain and Strength
Characteristics of Cohesionless Soils, Ph.D. Thesis,
University of California, Berkeley

Lade, P.V. (1977) Elasto-Plastic Stress-Strain Theory for
Cohesionless Soils with Curved Yield surfaces, Int. Jour.
Solids and Structures, Vol. 13, 1019-1035

Matsuoka, H. (1976) On the Significance of the ‘Spatial
Mobilised Plane’, Soils and Foundations, Vol. 16, No. 1,
Mar, 91-100

Johnston, IL.W., Carter, J.P, Novello, E.A. and Ooi, L.H. (1988)
Constant Normal Stiffness Direct Shear Testing of
Calcarenite, Proc. Int. Conf. on Calcareous Sediments,
Perth, Vol. 2, 541-554

Reynolds, O. (1885) On the Dilation of Media Composed of
Rigid Particles in Contact, with Experimental Illustrations,
Phil. Mag., Vol. 20, 469-481

Rowe, P.W. (1962) The Stress-Dilatancy Relation for Static
Equilibrium of an Assembly of Particles in Contact, Proc.
Roy. Soc, Series A, Vol. 269, 500-527

Rowe (1969) The Relation Between the Shear Strength of
Sands in Triaxial Compression, Plane Starin and Direct
Shear, Géotechnique, Vol. 19, No. 1, 75-86

Schofield A.N. and Wroth C.P. (1968) Critical State Soil
Mechanics, McGraw Hill, London

Stroud, M.A. (1971) The Behaviour of Sand at Low Stress
Levels in the Simple Shear Apparatus, Ph.D. Thesis,
University of Cambridge

Taylor, D.W. (1948) Fundamentals of Soil Mechanics, Wiley,
New York

Wroth, C.P. and Bassett, R.H. (1965) A Stress-Strain
Relationship for the Shearing Behaviour of Sand,
Géotechnique, Vol. 15, No. 1, 32-56

Wroth, C.P.(1958) The Behaviour of Soils and Other Granular
Media when Subjected to Shear , Ph.D. Thesis, University
of Cambridge

Yu, H.S. (1990) Cavity Expansion Theory and Its Application
to the Analysis of Pressuremeters, D.Phil Thesis, University
of Oxford

Yu, H.S. and Houlsby, G.T. (1991) Finite Cavity Expansion
in Dilatant Soils: Loading Analysis, Géotechnigue, Vol. 41,
No. 2, 173-184

Zienciewicz, O.C., Humpheson, C. and Lewis R.W. (1975)
Associated and Non-Associated Visco-Plasticity and
Plasticity in Soil Mechanics, Géotechnique, Vol. 25, No. 4,
671-689


https://www.researchgate.net/publication/252527991

