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PREFACE

Several important changes in emphasis have been made in this revision.
The most extensive change is in the handling of compressible flow. In
general, there is no fixed pattern for the election of thermodynamics
before fluid mechanics throughout the engineering colleges. The treat-
ment of compressible fluids should not repeat an appreciable amount of
work normally covered in thermodynamics but should either introduce
this work or supplement it. Owing to the limited class time in a course
on fluids, thermodynamic topics have been restricted to perfect gases
with constant specific heats. The treatment of losses conforms generally
to thermodynamic concepts. These changes have caused minor changes
in the fluid properties treatment, major changes in fluid concepts and
basic equations, and a new treatment of the chapter on compressible flow.

As the first courses in statics and dynamics are now being taught with
vectors in-many schools, they have been introduced where appropriate.
Most of the fluid treatment is one-dimensional and hence neither requires
nor benefits from vectors. In two- and three-dimensional flow, however,
they are used for derivations of continuity, momentum, and Euler’s
equation. The chapter on dimensional analysis has been strengthened
and moved forward to Chapter 4 for greater emphasis. The chapter on
fluid statics has been shortened somewhat, and the viscous effects treat-
ment, Chapter 5, has been shortened, with compressible examples and
applications removed to Chapter 6.

Ideal-fluid flow has been expanded to cover three-dimensional flow
cases, plus additional two-dimensional examples. The chapter on turbo-
machinery has been broadened to include compressible examples, and
fluid measurements now include optical measurements.

Division of the material into two parts, fundamentals and applica-
tions, bas been retained because of its wide acceptance in the second
edition. The treatment is more comprehensive than needed for a first
course, and the instructor should select those topics he wishes to stress.
A three-semester-hour course could normally include most of the first
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five chapters, plus portions of Chapters 6 and 7, with selected topics
from Part Two.

Most of the problems have been completely rewritten and range from
very simple ones to those requiring further development of theory.

The author wishes to acknowledge the help he has received from his
colleague Gordon Van Wylen for the many stimulating discussions of the
thermodynamic aspects of fluid flow, from the reviewers who have added
greatly to the text by their frank evaluations of the requirements of a
first text on fluids, from the McGraw-Hill Book Company representatives
for their understanding and full cooperation, and from Miss Pauline
Bentley and Evelyn Streeter for their wholehearted aid in preparing the
manuscript and in reading proof. The author is deeply greateful for
their help.

V. L. Streeter
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PART ONE

Fundamentals of Fluid Mechanics

In the first three chapters of Part One, the properties of fluids,
fluid statics, and the underlying framework of concepts, definitions,
and basic equations for fluid dynamics are discussed. Dimension-
less parameters are next introduced, including dimensional analysis
and dynamic similitude. Chapter 5 deals with real fluids and the
introduction of experimental data into fluid-flow caleulations.
Compressible flow of both real and frictionless fluids is then treated,
and the final chapter on fundamentals deals with two- and three--
dimensional ideal-fluid flow. The theory has been illustrated with
elementary applications throughout Part One.






1

FLUID PROPERTIES AND DEFINITIONS

Fluid mechanics is one of the engineering sciences that form the
basis for all engineering. The subject branches out into various special-
ties such as aerodynamics, hydraulic engineering, marine engineering,
gas dynamics, and rate processes. It deals with the statics, kinematies,
and dynamics of fluids, since the motion of a fluid is caused by unbalanced
forces exerted upon it. Available methods of analysis stem from the
application of the following principles, concepts, and laws: Newton’s
laws of motion, the first and second laws of thermodynamics, the principle
of conservation of mass, equations of- state relating fluid properties,
Newton’s law of viscosity, mixing-length concepts, and restrictions
caused by the presence of boundaries.

In fluid-flow ealculations, viscosity and density are the fluid properties
most generally encountered; they play the principal roles in open- and.
closed-channel flow and in flow around immersed bodies. Surface-
tension effects are of importance in the formation of droplets, in flow of
small jets, and in situations where liquid-gas-solid or liquid-liquid-solid
interfaces occur, as well as in theé formation of capillary waves. The
property of vapor pressure, accounting for changes of phase from liquid
to gas, becomes important when reduced pressures are encountered.
In this chapter fluid properties are discussed, as well as units and dimen-
siong-and concepts of the continuum.

.1. Definition of a Fluid. A fluid is a substance that deforms continu-
ously when subjected to a shear stress, no matter how small that shear
stress may be. A shear force is the force component tangent to a surface,
and this force divided by the area of the surface is the average shear stress
over the area. Shear stress at a point is the limiting value of shear force
to area as the area is reduced to the point.

In Fig. 1.1 a substance is placed between two closely spaced parallel
plates, so large that conditions at their edges may be neglected. The
lower plate is fixed, and a force F is applied to the upper plate, which
exerts a shear stress F/A on any substance between the plates. A is

3
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the area of the upper plate. When the force F causes the upper plate to
move with a steady (nonzero) velocity, no matter how small the magni-
tude of F, one may conclude that the substance between the two plates
is a fluid.

The fluid in immediate contact with a solid boundary has the same
velocity as the boundary, i.e., there is no slip at the boundary.! The fluid
in the area abcd flows to the new position ab’c’d with each fluid particle
moving parallel to the plate and the velocity  varying uniformly from
zero at the stationary plate to U at the upper plate. Experiments show

F1a. 1.1. Deformation resulting from application of constant shear force.

that other quantities being held constant, F is directly proportional to A
and to U and is inversely proportional to {. In equation form
P JAU
4
in which g is the proportionality factor and includes the effect of the
particular fluid. If r = F/A for the shear stress,

The ratio U/t is the angular velocity of line ab, or it is the rafe of angular
deformation of the fluid, i.e., the rate of decrease of angle bad. The
angular velocity may also be written du/dy, as both U/t and du/dy express
the velocity change divided by the distance over which the change occurs.
However, du/dy is more general as it holds for situations in which the
angular velocity and shear stress change with y. The velocity gradient
du/dy may also be visualized as the rate at which one layer moves relative
to an adjacent layer. In differential form,

T = uj—;: (1.1.1)

is the relation between shear stress and rate of angular deformation for

18, Goldstein, “Modern Developments in Fluid Dynamies,”” vol. II, pp. 676-680,
Oxford University Press, London, 1938.
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one-dimensional flow of a fluid. The proportionality factor x is called
the viscosily of the fluid, and Eq. (1.1.1) is Newton’s law of viscosity.

A plastic substance cannot fulfill the definition of a fluid because it has
an initial yield shear stress that must be exceeded to cause a continuous
deformation. An elastic substance placed between the two plates would
deform a certain gmount proportional to the force, but not continuously
at a“definite rate. A complete vacuum between the plates would not
result in a constant final rate, but in an ever-increasing rate. If sand
were placed between the two plates, dry friction would require a finite
force to cause a continuous motion. Thus sand will not satisfy the
definition of a fluid.

A

Rate of deformation g“
.y
ldeal fluid

—

| — :
[, Yield Shear stress r
stress ’l

0

Y

Fia. 1.2. Rheological diagram.

Fluids may be classified as Newtonian or non-Newtonian. In New-
tonian fluid there is a linear relation between the magnitude ¢f applied
shear stress and the resulting rate of deformation [u constant in Eq.
(1.1.1)], as shown in Fig. 1.2. In non-Newtonian fluid there is a nonlinear
relation between the magnitude of applied shear stress and the rate of
engular deformation. An 1deal plasiic has a definite yield stress and a
constant linear relation of 7 to du/dy. A thixotropic substance, such as
printer’s ink, has a viscosity that is dependent upon the immediately
prior angular deformation of the substance and has a tendency to takea
set when at rest.

Gases and thin liquids tend toward Newtonian fluids, while thick
liquids may be non-Newtonian. Tar is an example of a very viscous
liquid that cannot sustain a shear stress while at rest. Its rate of defor-



é _ FUNDAMENTALS OF FLUID MECHAMNICS [Chap, 1

mation is so slow that it will apparently sustain a load, such as a stone
placed on its free surface. However, after a day the stone will have
penetrated into the tar.

For purposes of analysis, the assumption is frequently made that a
fluid is nonviscous. With zero viscosity the shear stress is always zero,
regardless of the motion of the fluid. If the fluid is also considered to be
incompressible it is then called an ideal fluid, and plots as the ordinate
in Fig. 1.2. -

1.2. Force and Mass Units. The unit of force adopted in this text is
the pound (lb). Two units of mass are employed, the slug and the
pound mass (lb.). Since thermodynamic properties are generally tabu-
lated on a pound-mass basis, they are listed accordingly, but the example
problems generally convert to the slug.

The pound of force is defined in terms of the pull of gravity, at a speci-
fied (standard) location, on a given mass of platinum. At standard
gravitation, g = 32.174 ft/sec?, the body having a pull of gravity of one
pound has a mass of one pound mass. By writing Newton’s second law
of motion in the form

F="4 . (1.2.1)
go :
~and applying it to this object falling freely in a vacuum at standard
conditions

b =1Pmgy 174-‘1
. go
it 1s clear that
goE32N4£i& (1.2.2)

Whenever the pound mass is used in this text, it is labeled Ib,,. The
pound force is written Ib. The number g, is a constant, independent of
location of application of Newton’s law and dependent only on the units
pound, pound mass, foot, and second. At any other location than
standard gravity, the mass of a body remains constant but the weight
(force or pull of gravity) varies:

W=M%@§ (1.2.3)
0

For example, where ¢ = 31.0 ft/sec?,

10

35174 = 0.635 1b

10 lb,, weighs 31.0 X %+

The slug is a derived unit of mass, defined as the amount of mass that is
accelerated one foot per second per seeond by a foree of one pound. For
these units the constant g, is unity, i.e., 1 slug-ft/lb-sec?. Since fluid

4
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mechanics is so closely tied to Newton’s second law, the slug may be

defined as '

Ib-sec?
ft

1 slug =1 (1.2.4)

and the consistent set of units slug, pound, foot, second may be used
without a dimensional constant g,.

In the development of equations in this treatment, consistent units are
assumed and the equations appear without the constant go. If the pound
mass is to be used in dynamical equations, then go must be introduced.

/13 Viscosity. Of all the fluid properties, viscosity requires the great-
est consideration in the study of fluid flow. The nature and charac-
teristics of viscosity are discussed in this section as well as dimensions and
conversion factors for both absolute and kinematic viscosity. Viscosity
is that property of a fluid by virtue of which it offers resistance to shear
stress. Newton’s law of viscosity [Eq. (1.1.1)] states that for a given
rate of angular deformation of fluid the shear stress is directly proportional
to the viscosity. Molasses and tar are
examples of highly viscous liquids; wa-
ter and air have very small viscosities.

The viscosity of a gas increases with
temperature, but the viscosity of a liq-
u1d.de.crea_s es with temperature. The Fic. 1.3. Model for illustrating trans-
variation in temperature trends may (o of momentum. ‘
be explained upon examination of the
causes of viscosity. The resistance of a fluid to shear depends upon its
cohesion and upon its rate of transfer of molecular momentum. A liquid,
with molecules much more closely spaced than a gas, has cohesive forces
much larger than a gas. Cohesion appears to be the predominant cause
of viscosity in a liquid, and since cohesion decreases with temperature,
* the viscosity does likewise. A gas, on the other hand, has very small
cohesive forces. Most of its resistance to shear stress is the result of
the transfer of molecular momentum.

As a rough model of the way in which momentum transfer gives rise
to an apparent shear stress, consider two idealized railroad cars loaded
with sponges and on parallel tracks, as in Fig. 1.3.  Assume each car has
a water tank and pump, arranged so that the water is directed by nozzles
at right angles to the track. First, consider A4 stationary and B moving
to the right, with the water from its nozzles striking A and being absorbed
by the sponges. Car A will be set in motion owing to the component of
the momentum of the jets which is parallel to the tracks, giving rise to an
apparent shear stress between A and B. Now if 4 is pumping water back
into B at the same rate, its action tends to slow down B, and equal and
opposite apparent shear forces result. When A and B are both stationary
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or have the same velocity, the pumping does not exert an apparent shear
stress on either car.

Within fluid there is always a transfer of molecules back and forth
across any fictitious surface drawn in it. When one layer moves relative
to an adjacent layer, the molecular transfer of momentum brings momen-
tum from one side to the other so that an apparent shear stress is set up
that resists the relative motion and tends to equalize the velocities of
adjacent layers in a manner analogous to that of Fig. 1.3. The measure
of the motion of one layer relative to an adjacent layer is du/dy.

Molecular activity gives rise to an apparent shear stress in gases which
is more important than the cohesive forces, and since molecular activity
increases with temperature, the viscosity of a gas also increases with
temperature. :

IFor ordinary pressures viscosity is independent of pressure and depends
upon temperature only. For very great pressures gases and most liquids
have shown erratic variations of viscosity with pressure.

A fluid at rest, or in motion so that no layer moves relative to an adja-
cent. layer, will not have apparent shear forces set up, regardless of the
viscosity, because du/dy is zero throughout the fluid. Hence, in the study
of fluid statics, no shear forces can be considered because they do not
occur in a static fluid, and the only stresses remaining are normal stresses,
or pressures, This greatly simplifies the study of fluid statics, since any
free body of fluid can have only gravity forces and normal surface forces
acting on it.

The dimensions of viscosity are determined from Newton’s law of
viscosity [Eq. (1.1.1)]. Solving for the viscosity g,

# du/dy
Inserting dimensions F, L, T for force, length, and time,
7:FL™? w: LT y:L

p is seen to have the dimensions FL—2T. With the force dimension
expressed in terms of mass by use of Newton’s second law of motion,
F = MLT-? the dimensions of viscosity may be expressed as M L1T-1.

The English unit of viscosity (which has no special name} is 1 lb-sec/ft?
or 1 slug/ft-sec (these are identical). The egs unit of viscosity,! called

1 The relation of the English unit to the poise may be established by converting

from one system of units to the other. Consider a fluid that has a viscosity of 1 Ib-sec/
ft2.  After pounds are converted to dynes and feet to centimeters,

ibsec _ 454 X 980
ftz  —  (30.48)?

The English unit is much larger. Hence, to convert from the poise to the English unit,
divide by 479 ;'to convert from the English unit to the poise, multiply by 479.

dyne-sec

1 X1 “em? - 479 poise
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the poise, is 1 dyne-sec/cm? or 1 gm/cm-sec. The centipoise is one one-
hundredth of a poise. Water at 68°l" has a viscosity of 1.002 centipoise.
Kinematic Viscosity. The viscosity u is frequently referred to as the
absolute viscosity or the dynamsic viscosity to avoid confusing it with the
kinematic viscosity », which is the ratio of viscosity to mass density,

u .
v =2 (1.3.1)
The kinematic viscosity occurs in many applications, e.g., the Reynolds
number, which is VD,/». The dimensions of » are L2T-!. The English
unit, 1 ft?/sec, has no special name; the cgs unit, called the stoke, is
1 em?/sec. |
To convert to the English unit of viscosity from the English unit of
kinematic viscosity, it is necessary to multiply by the mass density in
slugs per cubic foot. To change to the poise from the stoke, it is neces-
sary to multiply by the mass density in grams per cubic centimeter,
which is numerically equal to the specific gravity.

Example 1.1: A liquid has a viscosity of 0.05 poise and a specific gravity of 0.85.
Calculate (a) the viscosity in knglish units; (&) the kinematic viscosity in stokes;
and (¢) the kinematic viscosity in English units.

_0.05 _ slug
(@) p = 479 0.00010 ft-sec
0.05 _
(b) y = —O"gg = 0.0589 StOke
_0.000105 . ft2
(¢) v = 1935 % 0.85 0'00006383_(3—0

Viscosity is practically independent of pressure and depends upon
temperature only. The kinematic viscosity of liquids, and of gases at a
given pressure, is substantially a function of temperature. Charts for
the determination of absolute viscosity and kinematic viscosity are given
in Apﬁendix C, Figs. C.1 and C.2, respectively.

U/A. Continuum. In dealing with fluid-flow relationships on a mathe-
matical or analytical basis, it is necessary to consider that the actual
molecular structure is replaced by a hypothetical continuous medium,
called the continuum. For example, velocity at a point in space is
indefinite in a molecular medium, as it would be zero at all times except
when a molecule occupied this exact point, and then it would be the

t The conversion from English unit to cgs is

ft2

1= =
secC

cm?
(30.48)2 X 1 —— = (30.48)2 stokes

sec
The English unit is again much larger than the cgs unit; therefore, to convert from
the stoke to the English unit, divide by (30.48)2; to convert from the English unit to
the stoke, multiply by (30.48)2.
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velocity of the molecule and not the mean mass velocity of the particles
in the neighborhood. This dilemma is avoided if one considers velocity
at a point to be the average or mass velocity of all molecules surrounding
the point, say, within a small sphere with radius large compared with the
mean distance between molecules. . With n molecules per cubic centimeter,
the mean distance between molecules is of the order n~% em. Molecular
theory, however, must be used to calculate fluid properties (e.g., viscosity)
which are associated with molecular motions, but continuum equations
can be employed with the results of molecular calculations.

In rarefied gases, such as the atmosphere at 50 miles above sea level,
the ratio of the mean free path! of the gas to a characteristic length for a
body or conduit is used to distinguish the type of flow. The flow regime
is called gas dynamsics for very small values of the ratio, the next regime
is called slip flow, and for large values of the ratio it is free molecule flow.
In this text only the gas dynamics regime is studied.

The quantities density, specific volume, pressure, velocity, and
acceleration are assumed to vary continuously throughout a fluid (or be
constant).

3. Density, Specific Volume, Specific Weight, Specific Gravity,
Pressure. The density p of a fluid is defined as its mass per unit volume.
To define density at a point the mass Am of fluid in a small volume A¥
surrounding the point is divided by A¥ and the limit is taken as A¥
becomes a value € in which e is still large compared with the mean distance
between molecules,

.. Am
lim

p= lim 7% (1.5.1)

When mass is expressed in slugs, p is in slugs per cubic foot; when mass
is expressed in pounds mass, then p is in pounds mass per cubic foot.
These units are related by

— _ P
psluza 32.174 (1.5.2)

For water at standard préssure (14.7 lb/in.2) and 75°F,
p = 1.935 slugs/ft? or 62.4 1b,,/ft?

The specific volume v, is the reciprocal of the density p; i.e., it is the
volume occupied by unit mass of fluid. Hence

(1.5.3)

| -

Ve =

The specific weight v of a substance is its weight per unit volume. It

' The mean free path is the average distance a molecule travels between collisions.
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changes with location,

. R JE
Y = Pagd = ?':'2_17—4 gftﬁ’ (1.54)

depending upon gravity. It is a convenient property when dealing with
fluid statics or with liquids with a free surface.

The specific gravity S of a substance is the ratio of its weight to the
weight of an equal volume of water. It may also be expressed as a ratio
of its density or specific weight to that of water.

The normal force pushing against a plane area, divided by the area, is
the average pressure. 'The pressure at a point is the ratio of normal force
to area as the area approaches a small value inclosing the point. Pressure
has the units force/area and may be pounds per square inch or pounds per
square foot. Pressure may also be expressed in terms of an equivalent
length of a fluid column, as shown in Sec. 2.3.

1.6. Perfect Gas. In- this treatment, thermodynamic relationships
and compressible-fluid-flow cases have been limited generally to perfect
gases. The perfect gas is defined in this section, and its various inter-
relationships with specific heats are treated in Sec. 6.1,

The perfect gas, as used herein, is defined as a substance that satisfies

the perfeci-gas law :
pv, = RT (1.6.1)

and that has constant specific heats. p is the absolute pressure, », the
specific volume, R the gas constant, and 7 the absolute temperature.
The perfect gas must be carefully distinguished from the ideal fluid. An
ideal fluid is frictionless and incompressible. The perfect gas has
viscosity and can therefore develop shear stresses, and it is compressible
according to Eq. (1:6.1).

Equation (1.6.1) is the equation of state for a perfect gas. It may be

written _
p = pRT (1.6.2)

The units of B may be determined from the equation when the other units
arec known. For p in pounds per square foot, p in slugs per cubic foot, and
T (°F 4+ 459.6) in degrees Rankine (°R),

Ib ft2 _ ftlb
slug °R

"1t slug°R
For p in pounds mass per cubie foot,

b £ ftdb
{2 1h, °R ~ Ib,°R

The magnitude of R in slug units is 32.174 times greater than in pound
mass units. Values of R for several common gases are given in Table C.2.

R
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Real gases at low pressure tend to obey the perfect-gas law. As the
pressure increases, the discrepancy increases and becomes serious near
the critical point. The perfect-gas law encompasses both Charles’ law
and Boyle’s law. Charles’ law states that for constant pressure the
volume of a given mass of gas varies as its absolute temperature. Boyle's
law (isothermal law) states that for constant temperature the density
varies directly as the absolute pressure. The:volume ¥ of m mass units

of gas is mv,; hence
p¥ = mRT (1.6.3)

Certain simplifications result from writing the perfect-gas law on a mole
basis. A pound-mole of gas is the number of pounds mass of gas equal
to its molecular weight; e.g., a pound-mole of oxygen O, is 32 1b,,. With
¢, the volume per mole, the perfect-gas law becomes

= MRT | (1.6.4)

if M is the molecular weight. In general, if n is the number of moles of

the gas in volume ¥,
p¥V = nMRT (1.6.5)

since nM = m. Now, from Avogadro’s law, equal volumes of gases at
the same absolute temperature and pressure have the same number of
molecules; hence their masses are proportional to the molecular weights.
From Eq. (1.6.5) it is seen that M R must be constant, since p¥/nT is the
same for any perfect gas. The product MR is called the universal gas
constant and has a value depending only upon the units employed. It is

ft-lb

MR = 1545m (1.66)

The gas constant R can then be determined -from

1545 ft-1b
| B = b.°r (1.6.7)
or in slug units,

_ 1545 X 32.174  ft-lb

R = i sTug °R (1.6.8)

so that knowledge of molecular weight leads to the value of B. In
Table C.2 of Appendix C molecular weights of some common gases are
listed.

Additional relationships and definitions used in perfect-gas flow are
introduced in Chaps. 3 and 6.

Ezample 1.2: A gas with molecular weight of 44 is at a pressure of 13.0 psia
(pounds per square inch absolute) and a temperature of 60°F Determine its
density in slugs per cubic foot.
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From Egq. (1.6.8)

_ 1545 X 32.174 _ | o0 ftlb

k 44 slug °R

Then from Eq. (1.6.2)

p _  13.0 X 144

= % _ == = . 1 3
P = R7 = 1129460 F 60) _ 00319 slug/it

1.7. Bulk Modulus of Elasticity. In the preceding section the com-
pressibility of a perfect gas is described by the perfect-gas law. For most
purposes a liquid may- be considered as incompressible, but for situations
involving either sudden or great changes in pressure, its compressibility
becomes important. Liquid compressibility (and gas also) becomes
important also when temperature changes are involved (e.g., free con-
‘vection). The compressibility of a liquid is expressed by its bulk modulus
of elasticity. If the pressure of a unit volume of liquid is increased by dp,
it will cause a volume decrease —d¥; the ratio —dp/d¥ is the bulk
modulus of elasticity K. Ior any volume ¥ of liquid

_ _dp_
av/¥
Since d¥ /1" is dimensionless, K is expressed in the units of p. For water
at ordinary temperatures and pressures K = 300,000 psi.
To gain some idea about the compressibility of water, consider the

application of 100 psi pressure to 1 ft? of water. When Eq. (1.7.1) is
solved for —d¥,

K = (1.7.1)

Vdp 10X 100 1
K 300,000 ~— 3000

Hence, the application of 100 psi to water under ordinary conditions
causes its volume to decrease by only 1 part in 3000. As a liquid is
compressed, the resistance to further compression increases; therefore
K increases with pressure. At 45,000 psi the value of K for water has
doubled.

Ezample 1.3: A liquid compressed in a cylinder has a volume of 0.400 ft® at
1000 psi and a volume of 0.396 ft* at 2000 psi. What is its bulk modulus of
elasticity?

—d¥ = ft3

Ap 2000 — 1000

K=- AV/V = 7 (0.396 — 0.400)/0.400

= 100,000 psi

1.8. Vapor Pressure. Liquids evaporate because of molecules escaping
from the liquid surface. The vapor molecules exert a partial pressure in
the space, known as vapor pressure. If the space above the liquid is
confined, after a sufficient time the number of vapor molecules striking
the liquid surface and condensing are just equal to the number escaping
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in any interval of time, and equilibrium exists. Since this phenomenon
depends upon molecular activity, which is a function of temperature, the
vapor pressure of a given fluid depends upon temperature and increases
with it. When the pressure above a liquid equals the vapor pressure
of the liquid, boiling occurs. Boiling of water, for example, may occur
at room temperature if the pressure is reduced sufficiently. At 68°F
water has a vapor pressure of 0.339 psi, and mercury has a vapor pressure

of 0.0000251 psi.
1.9. Surface Tension. Capillarity. At the interface between a liquid

and a gas, a film, or special layer, seems to form on the liquid, apparently
owing to the attraction of liquid molecules below the surface. It is a
simple experiment to place a small needle on a quiet water surface and
observe that it will be supported there by the film.

That property of the surface film to exert a tension is called the surface
tension and is the force required to maintain unit length of the film in
equilibrium. The surface tension of water varies from about 0.005 1b/ft
at 68°F to 0.004 1b/ft at 212°F. Burface tensions of other liquids are

given in Table 1.1.

TaBLE 1.1. SurracE TENsION oF CoMMoN Liquips IN CONTACT WITH -

AIR AT 68°F
Surface tension,
Ligquid o, Ib/ft

Alcohol, ethyl.................. 0.00153
Benzene. ... .................. 0.00198
Carbon tetrachloride............ 0.00183
Kerosene...................... 0.0016 to 0.0022
Water............. . ... 0.00498
Mercury

Inair. ...................... 0.0352

Inwater..................... 0.0269

Invacuum................... 0.0333
Oil

Lubricating. ................. 0.0024 to 0.0026

Crude....................... 0.0016 to 0.0026

The action of surface tension is to increase the pressure within a droplet
of liquid or within a small liquid jet. For a small spherical droplet of
radius r the internal pressure p necessary to balance the tensile force due
to the surface tension o is calculated in terms of the forces which act on a
hemispherical free body,!

prrt = 2xro
or

_ 2
P=3

1. 8ee Sec 2.7.
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For the cylindrical liquid jet of radius r, the pipe-tension equation apples,

P=7
Both equations show that the pressure becomes large for a very small
radius of droplet or eylinder.

Capillary attraction is caused by surface tension and by the relative
value of adhesion between liquid and solid to cohesion of the liquid. A
liquid that wets the solid has a greater adhesion than cohesion. The
action of surface tension in this case is to cause the liquid to rise within a
small vertical tube that is partially immersed in it. For liquids that do
not wet the solid, surface tension tends to depress the meniscus in a
small vertical tube. To avoid a correction for the effects of capillarity in

10
0.2in.
]
£ 08
£
o
2 06 37
s N\ 68°F )
2 } \ AN 104°F - —
E N I~
S 04 & wa \émffled i T —
. e’c‘llg, o 68op e Yaler
r'———
0.2 i

o 002 004 006 008 010 012 014 016 018 020
h=Capillary rise or depression, inches

Fie. 1.4. Capillarity in circular glass tubes. (By permission from “Hydraulics,”’ by
R. L. Daugherty, copyright 1944, McGraw-Hill Book Company, Inc.)

manometers, a tube 1 in. in diameter or larger should be used. When the
contact angle between liquid and solid is known, the capillary rise may be
computed for an assumed shape of the meniscus. Figure 1.4 shows the
capillary rise for water and mercury in circular glass tubes in air,

PROBLEMS

1.1. Classify the substance that has the following rates of deformation and
corresponding shear stresses:

du/dy, rad/sec........ 0 1 3 5
b/t oL 20 40 60 80

1.2. A Newtonian fluid is in the clearance between a shaft and a concentric
sleeve. When a force of 100 Ib is applied to the sleeve parallel to the shaft, the
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sleeve attains a speed of 2 ft/sec. If 500-1b force is applied, what speed will the
sleeve attain? The temperature of the sleeve remains constant.
1.3. Classify the following substances (maintained at constant temperature):

o
'
(30
W

(a) du/dy, rad/sec..| 0

(b) du/dy, rad/sec..| O 0.5(1.1]1.8
b/t .. ... 0 |2 4 6

(¢) du/dy, rad/sec..|
nlb/ftr ... ...

oo
e O
Ha
=21

1.4. Determine the weight in pounds of 2 slugs mass at a_location where
g = 31.7 ft/sec?

1.6. When standard scale weights and a balance are used, a body is found to
be equivalent in pull of gravity to two of the 1-lb scale weights at a location where
g = 31.5 ft/sec2. What would the body weigh on a correctly calibrated spring
balance (for sea level) at this location?

1.6. Determine the value of proportionality constant g, needed for the follow-
ing set of units: kip (1000 1b), slug, foot, second.

1.7. On another planet where standard gravity is 10 ft/sec?, what would be
the value of the proportionality constant g, in terms of the pound, pounds mass,
foot, and second?

1.8. A correctly calibrated spring scale records the weight of a 51-lb,, body as
17.01b at a location away from the earth. What is the value of g at this location?

1.9. A shear stress of 3 dynes/cm? causes a Newtonian fluid to have an angular
deformation of 1 rad/sec. What is its viscosity in centipoises?

1.10. A plate, 0.001 in. distant from a fixed plate, moves at 2 ft/sec and requires
a force of 0.04 1b/ft? to maintain this speed. Determine the fluid viscosity of the
substance between the plates, in English units.

3in. diam

1.11. A 3.0-in.-diameter shaft slides
at 0.4 ft/sec through a 6-in.-long sleeve
with radial clearance of 0.01 in. (Fig.
1.5) when a 10.0-lb force is applied.
Determine the viscosity of fluid be-
tween shaft and sleeve.

1.12. A flywheel weighing 100 Ib has a radius of gyration of 1 ft.” When it is
retating 600 rpm, its speed reduces 1 rpm/sec owing to fluid viscosity between
sleeve and shaft. The sleeve length is 2.0 in., shaft diameter 1,0 in., and radial
clearance 0.002 in. Determine the fluid viscosity.

1.13. A fluid has a viscosity of 6 centipoises and a density of 50 b, /ft3. Deter-
mine its kinematic viscosity in English units and in stokes.
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1.14. A fluid has a specific gravity of 0.83 and a kinematic viscosity of 2 stokes.
What is its viscosity in English units and in poises?

1.15. A body weighing 90 1b with a flat surface area of 1 ft* slides down a
lubricated inclined plane making a 30° angle with the horizontal. For viscosity
of 1 poise and body speed of 10 ft/sec, determine the lubricant film thickness.

1.16. What is the viscosity of gasoline at 100°F in poises?

1.17. Determine the kinematic viscosity of benzene at 60°F in stokes.

1.18. How much greater is the viscosity of water at 32°F than at 200°F?
How much greater is its kinematic viscosity for the same temperature range?

1.19. What is the specific volume in cubic feet per pound mass and cubic feet
per slug of a substance of specific gravity 0.75?

1.20. What is the relation between specific volume and specific weight?

1.21. The density of a substance is 2.94 gm/cm? What is its (a) specific
gravity, (b) specific volume, and (c) specific weight?

1.22. A gas at 60°F and 20 psia has a volume of 4.0 ft® and a gas constant
R = 48 ft-1b/lb,, °“R. Determine the density and number of slugs of gas.

1.23. What is the specific weight of air at 40 psia and 120°F?

1.24. What is the density of water vapor at 6 psia and 48°F, in slugs per
cubic foot?

1.26. A gas with molecular weight 48 has a volume of 4.0 ft* and a pressure
and temperature of 2000 psfa and 600°R, respectively. What is its specific
volume and specific weight?

1.26. 2.0 lb,, of hydrogen is confined in a volume of 1 ft? at —40°F. What is
the pressure?

1.27. Express the bulk modulus of elasticity in terms of density change rather
than volume change.

1.28. For constant bulk‘modulus of elasticity, how does the density of a liquid
vary with the pressure?

1.29. What is the bulk modulus of a liquid that has a density increase of 0.01
per cent for a pressure increase of 1000 1b/ft??

1.30. For K = 300,000 psi for bulk modulus of elasticity of water what pres-
sure is required to reduce its volume by 1 per cent?

1.31. A steel container expands in volume 1 per cent when the pressure w1th1n
it is increased by 10,000 psi. At standard pressure, 14.7 psia, it holds 1000 lb,,
water p = 62.41b,/ft3. For K = 300,000 psi, when it is filled, how many pounds
mass water need be added to increase the pressure to 10,000 psi?

1.32. What is the pressure within a droplet of water 0.002 in. in diameter at
68°F if the pressure outside the droplet is standard atmospheric pressure of
14.7 psi?

1.33. A small circular jet of mercury 0. 002 in. in diameter issues from an open-
ing. What is the pressure difference between the inside and outside of the jet
when at 68°F? '

1.34. Determine the capillary rise for distilled water at 32°F in a circular glass
tube 1 in. in diameter.

1.35. A fluid is a substance that

(a) always expands until it fills any container
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(b) is practically incompressible

(c) cannot be subjected to shear forces

(d) cannot remain at rest under action of any shear force

(e) has the same shear stress at a point regardless of its motion

1.36. A 2.0-lb, object weighs 1.90 lb on a spring balance. The value of g at
this location is, in feet per second per second,

1.37.

(@) 30.56 () 3207  (c) 32.17  (d) 33.87 () none of these
answers

At a location where g = 30.00 ft/sec?, 2.0 slugs is equivalent to how many

pounds mass?

1.38.

1.39.

1.40.

1.41.

1.42,

1.43.

(a) 60.0 (b) 62.4 (c¢) 64.35 (d) not equivalent units
(e) none of these answers

The weight, in pounds, of 3 slugs on a planet where g = 10.00 ft/sec? is
(a) 0.30 (b) 0.932 (c) 30.00 (d) 96.53 (e) none of these

answers
Newton’s law of viscosity relates

(a) pressure, velocity, and viscosity

(b) shear stress and rate of angular deformation in a fluid

(c) shear stress, temperature, viscosity, and velocity

(d) pressure, viscosity, and rate of angular deformation

(e) yield shear stress, rate of angular deformation, and viscosity

Viscosity has the dimensions
(a) FLT (6) FL1T1 (c) FLT— (d) FL*T (e) FLT?
Select the #ncorrect completion. Apparent shear forces '

(a) can never occur when the fluid is at rest
(b) may occur owing to cohesion when the liquid is at rest
(¢) depend upon molecular interchange of momentum

(d) depend upon cohesive forces
{e) can never occur in a frictionless fluid, regardless of its motion

Correct units for dynamic viscosity are

(a) dyne-sec?/cm (b) gm/cm-sec? (¢) gm-sec/cm (d) dyme-
cm/sec? (e) dyne-sec/cm?

Viscosity, expressed in poise, is converted to the English unit of viscosity

by multiplication by

(@ zr9 (B) 479 () p (d) 1/p  (e) none of these answers

1.44. The dimensions for kinematic viscosity are

(@ FL:T (b)) ML'\T' () L*T*  (d) L*T* () I*T*
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1.46. In converting from the English unit of kinematic viscosity to the stoke,
one multiplies by
(@) T4 () 1/(30.48)r  (c) 479 (d) (30.48)*  (¢) none of
these answers

1.46. The kinematic viscosity of kerosene at 90°F is, in square feet per second,

(a) 2 X 1075 (b) 3.2 X 1078 () 2 X104 (d) 3.2 X 104
(e) none of these answers

1.47. The kinematic viscosity of dry air at 25°F and 29.4 psia is, in square feet
per second,
(a) 6:89 X 107 (b) 1.4 X 107* (c) 6.89 X 10* (d) 1.4 X 103
(e) none of these answers
1.48. For p = 0.60 poise, sp gr = 0.60, », in stokes, is
(a) 2.78 () 1.0 (c) 0.60 (d) 0.36  (e) none of these answers

1.49. For p = 2.0 X 1074 slug/ft-see, the value of u in pound-seconds per
square foot is '

(@) 1.03 X 10~* () 2.0 X 107* (c) 6.21 X 10* (d) 6.44 X 1072
(e) none of these answers

1.50. For v = 3 X 104 stoke and p = 0.8 gm/em?, y, in slugs per foot-second,
18
(a) 5,02 X 1077 (b) 6.28 X 1077 (¢) 7.85 X 1077 (d) 1.62 X 107¢
(e) none of these answers
1.51. A perfect gas

(a) has zero viscosity (b) has constant viscosity
(c) is incompressible (d) satisfies pp = RT
(e) fits none of these statements

- 1.52. The molecular weight of a gas is 28. The value of R in foot-pounds per
slug degree Rankine is

(@) 53.3  (b) 552  (c) 1545 (d) 1775  (¢) none of these
answers

1.583. The density of air at 40°F and 100 psia in slugs per cubic foot is

(a) 0.00017 (b) 0.0168 () 0.21 (d) 0.54 (e) none of
these answers

1.64. How many pounds mass of carbon monoxide gas at 20°F and 30 psia is
contained in a volume of 4.0 ft3?

(a) 0.00453 (6) 0.0203 (c) 0.652 (d) 2.175 (e) none of
these answers

1.56. A container holds 2.0 lb,, air at 120°F and 120 psia. If 3.0 lbs air is



20 FUNDAMENTALS OF FLUID MECHANICS [Chap. 1

added and the final temperature is 240°F, the final pressure, in pounds per square
inch absolute, is

(a) 300 (b) 362.2 (c) 600 (d) indeterminable (e) none of
these answers

1.56. The bulk modulus of elasticity K for a gas at constant temperature T, is
given by :

(@) p/p &) RT, (¢) pp (d) pRT, (e) none of these

answers
1.67. The bulk modulus of elasticity

(a) is independent of temperature

(b) increases with the pressure

(¢) has the dimensions of 1/p

(d) is larger when the fluid is more compressible
(e) is independent of pressure and viscosity

1.58. For 1000-psi increase in pressure the density of water has increased, in
per cent, by about

(@35 @3 (@©x (@ % (e) none of these answers

1.59. A pressure of 150 psi applied to 10 ft3 liquid causes a volume reduction
of 0.02 ft3. The bulk modulus of elasticity, in pounds per square inch, is

(a) —750 (b) 750 () 7500 (d) 75,000 (e) none of these
answers ’

1.60. Surface tension has the dimensions

(a) F (b) FL™! (c) FL? (d) FL™3 (e) none of these
answers
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FLUID STATICS

The science of fluid statics will be treated in two parts: the study of
pressurc and its variation throughout a fluid and the study of pressure
forces on finite surfaces. Special cases of fluids moving as solids are
included in the treatment of statics because of the similarity of forces
involved. Since there is no motion of a fluid layer relative to an adjacent
layer, there are no shear stresses in the fluid. Hence, all free bodies in
fluid statics have only normal pressure forces acting on them.

.1. Pressure at a Point. The average pressure is calculated by
dividing the normal force pushing against a plane area by the area. The
pressure at a point is the limit of the ratio of normal force to area as the
area approaches zero size at the point.
At a point a fluid at rest has the same
pressure in all direetions. This means
that an element 84 of a very small area,
free to rotate about its center when
submerged in a fluid at rest, will have
a force of constant magnitude acting
on either side of it, regardless of its
orientation.

To demonstrate this, a small wedge-
shaped free body of unit length is taken
at the point (z,) in a fluid at rest (Fig.
2.1). Since there can be no shear
forces, the only forces are the normal surface forces and gravity. So, the
equations of equilibrium in the z- and y-directions are, respectively,

Fic. 2.1. Free-body diagram of wedge-
shaped particle.

Py — P S88in @ = 0
6x6y___

5 0

Py Ox — p, dscos @ — v

in which p,, p,, p. are the average pressures on the three faces and v is the
specific weight of the fluid. Taking the limit as the free body is reduced
21
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to zero size, by allowing the inclined face to approach (z,y) maintaining
the same angle 8, and using the geometric relations

ds sin 8 = &y 0s cos @ = dx
the equations simplify to .

pby — Dby =0 pbz—piz—vY =0

The last term of the second equation is an infinitesimal of higher order
of smallness and may be neglected. When divided by 8y and éz, respec-
tively, the equations may be combined,

De = Pz = Py (2.1.1)

Since 6 is any arbitrary angle, this equation proves that the pressure is the
same in all directions at a point in a static fluid. Although the proof was
carried out for a two-dimensional case, it may be demonstrated for the
three-dimensional case with the equilibrium equations for a small
tetrahedron of fluid with three faces in the coordinate planes and the
fourth face inclined arbitrarily.

If the fluid is in motion so that one layer moves relative to an adjacent
layer, shear stresses occur and the normal stresses are, in general, no
longer the same in all directions at a point. The pressure is then defined
as the average of any three mutually perpendicular nermal compressive
stresses at a point,

_ Pt Pyt P
p= 3

In a fictitious fluid of zero viscosity, i.e., a frictionless fluid, no shear
stresses can occur for any motion of the fluid, so at a point the pressure is

the same in all directions.
2.2. Pressure Variations in a Static Fluid. The laws of variation of

pressure in a static fluid may be developed by considering variations along
a horizontal line and variations along a vertical line.

L[—‘ l
P, da Pl e e p B0
A B

Frg. 2.2. Two points at same elevation in a static fluid.

Two points, A and B, in Fig. 2.2, are in a horizontal plane. On a
cylindrical free body, with axis through the points and end areas normal
to the axis and through the respective points, the only forces acting in an
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axial direction are p4 éa and pp déa, in which éa is the cross-sectional area
of the cylinder. Therefore pys = pg, which proves that two points in the
same horizonlal plane in a continuous ‘mass of fluid at rest have the same
pressure. Although the proof was for two points that could be con-
nected by a straight line through the fluid, it mav be extended to such

Fic. 2.3. Paths for considering variation of pressure in a fluid.

situations as points 1 and 2 in Fig. 2.3, when the variation of pressure in a
vertical line is considered.

Basic Fquation of Hydrostalics. Pressure Variation in an Incom-
pressible Fluid. As there is no variation of pressure in a horizontal
direction, the variation must occur in the vertical direction. Consider a
free body of fluid (I'ig. 2.4) consisting of a prism
of cross-sectional area A, with axis vertical and (p+g—§ 8y)A
height éy. The base is at elevation y from an l
arbitrary datum. The pressure at y is p and at = 4

y + dyitis p + (dp/dy)éy. The weight of the sy | -~ { Ady~-
free body is vA 8y, where v is the specific weight  * ' —
of fluid at elevation y. Since no shear forces T

exist, the three forces shown in Fig. 2.4 must pA

be in equilibrium, so ‘

y
p/ -—(p+d—-pay)x1 —yA by =0
dy :
When the equation is simplified and divided by 75 Y R

h .2 3 e :
the volume. 4 8y, as 6y becomes very small, Fie. 2.4, Froe-body dia-

dp = —ydy (2.2.1) gram for vertical forces act-
ing on a fluid element.
This simple differential equation relates the
change of pressure to specific weight and change of elevation, and holds
for both compressible and incompressible fluids.
I'or fluids that may be considered incompressible, y is constant, and
Flq. (2.2.1), when integrated, becomes

p= —vy+tec

in which ¢ is the constant of integration. The hydrostatic law of varia-
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tion of pressure is frequently written in the form
p=~h (2.2.2)

in which A is measured vertically downward (h = —y) from a free liquid
surface and p is the increase in pressure from that at the free surface.
Equation (2.2.2) may be derived by taking as fluid free body a vertical
column of liquid of finite height h with its upper surface in the free surface.
This is left as an exercise for the student.

Ezxample 2.1: An open tank contains 2.ft of water covered with 1 ft of oil,
ap gr 0.83. Find the pressure at the interface and at the bottom of the tank.
At the interface, h = 1,y = 0.83 X 62.4 = 51.7 1b/ft3, and

p = vh = 51.7 1b/ft?

At the bottom of the tank the pressure is that at the interface plus yA for the
water, or

p = 51.7 4+ 2 X 62.4 = 176.5 lb/ft?

Pressure Variation in a Compressible Flutd. When the fluid is a perfect
gas at rest at constant temperature, from Eq. (1.6.2)

P_ PR (2.2.3)
P Po

When the value of v in Eq. (2.2.1) is replaced by pg and p is eliminated
between Eqgs. (2.2.1) and (2.2.3),

—pod
dy = —Po 2P 2.2.4
Y gpo P ( )

It must be remembered that if p is in pounds mass per cubic foot, then
v = gp/go with g, = 32.174 1b,-ft/lb-sec?. If p = po when p = p,,
integration between limits

Yo agpo Jpo P

= =2 P 2.2.5
Y Yo gpo nPo ( )

yields

in which In is the natural logarithm. Then

p = poe—(y—un\l(mlapo) (2.2.6)

which is the equation for variation of pressure with elevation in an
isothermal gas. :
The atmosphere frequently is assumed to have a constant temperature

gradient, expressed by
T="T)+ 8y (2.2.7)



For the standard atmosphere 8 = —0.00357°F/ft up to the stratosphere.
The density may be expressed in terms of pressure and elevation from the

perfect-gas law:

=P - P .

= RT ~ R(Ts ¥ By (2.2.8)
Substitution into dp = —pg dy [Eq. (2.2.1)] permits the variables to be
separated and p to be found in terms of y by integration.

Example 2.2: Assuming isothermal conditions to prevail in the atmosphere,
compute the pressure and density at 5000 ft elevation if p = 14.7 psia, p =
0.00238 slug/ft? at sea level.

From Eq. (2.2.6)

p = 14.73—50001'(14.7X144I32.2X0.00238) —_— 12.27 pS]a

Then, from Eq. (2.2.3)

p = gp - (11(1)_2-2738 12.27 = 0.00199 slug/ft?

When compressibility of a liquid in static equilibrium is taken into
account, Igs. (2.2.1) and (1.7.1) are utilized.

2.3. Units and Scales of Pressure Measurement. Pressure may be
expressed with reference to any arbitrary datum. The usual ones are
absolute zero and local atmospheric pressure. 'When a pressure is expressed
as a difference between its value and a complete vacuum, it is called an .
absolute pressure. When it is expressed as a difference between its value
and the local atmospheric pressure, it is called a gage pressure.

The bourdon gage (Fig. 2.5) is typical of the devices used for measuring
gage pressures. The pressure element is a hollow, curved, flat, metallic
tube, closed at one end, with the other end connected to the pressure to be
measured. When the internal pressure is increased, the tube tends to
straighten, pulling on a linkage to which is attached a pointer and causing
the pointer to move. The dial reads zero when the inside and outside of
the tube are at the same pressure, regardless of its particular value. The
dial may be graduated to any convenient units, common ones being
pounds per square inch, pounds per square foot, inches of mercury, and
feet of water. (wing to the inherent construction of the gage, it measures
pressure relative to the pressure of the medium surrounding the tube,
which is the local atmosphere.

Figure 2.6 illustrates the data and the relationships of the common
units of pressure measurement. Standard atmospheric pressure is the
mean pressure at sea level, 29.92 in. mercury (rounded to 30 in. for slide-
rule work). A pressure expressed in terms of a column of liquid refers to
the force per unit area at the base of the column. The relation for varia-
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tion of pressure with altitude in a liquid (Eq. (2:2.2)]
p = vh (2.3.1)

shows the relation between head h, in length of a fluid column of specific
weight v, and the pressure p. In consistent units, p is in pounds per

Fi1a. 2.5. Bourdon gage. (Croshy Steam Gage and Valve Co.)

2
A TE
9&3'5 Staridard atmospheric pressure
(&2 33:3]
- ___________i__ﬂ . ______lLocal atmospheric pressure
o Negative
14.7 psi 5 suction ~Gage pressure
* v
21161b/ft? g vacuim
30in. mercury a Local 1
34 ft water £ barometer
1 atmosphere = reading
| g Absolute pressure
i
¥ Y » Absolute zero (complete vacuum)

Fia. 2.6. Units and scales for pressure measurement.

square foot, ¥ in pounds per cubic foot, and k in feet. Yor water v may
be taken as 62.4 Ib/ft%. With the specific weight of any liquid expressed
as its specific gravity S times the specific weight of water, Eq. (2.3.1)
becomes

p = 62.48h

When the pressure is desired in pounds per square inch, both sides of the
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equation are divided by 144,

_ 624

Poi = 147 Sh = 0.4335h (2.3.2)

in which A remains in fect.!

Local atmospheric pressure is measured by a mercury barometer
(Fig. 2.7) or by an aneroid barometer which measures the difference in
pressure between the atmosphere and an evacuated box
or tube, in a manner analogous to the bourdon gage ex-
cept that the tube is evacuated and sealed.

A mercury barometer consists of a glass tube sealed at
one end, filled with mercury, and inverted so that the open
end is submerged in mercury. It has a seale arranged so
that the height of column R (Fig. 2.7) can be determined.
The space above the mercury contains mercury vapor. If
the pressure of the mercury vapor, h,, is given in inches
of mereury, the pressure at A may be expressed as .

h, + R = h, in. mereury

Although k. is a function of temperature, it is very small
at usual atmospheric temperatures.  The barometric pres-
sure varies with location, i.e., elevation, and with weather
conditions.

In Fig. 2.6 a pressure may be located vertically on the chart, which
indicates its relation to absolute zero and to local atmospheric pressure,
1f the point is below the local-atmospheric-pressure line and is referred to
gage datum, it is called negafive, suction, or racuum. For example, the
pressure 18 in. merecury abs, as at 1, with barometer reading 29 in., may
be expressed as — 11 in. mercury, 11 in. mercury suction, or 11 in. mercury

Fra. 2.7. Mer-
cury barometer,

'In Eq. (2.3.2) the standard atmospheric pressure may be expressed in pounds per
square inch,
Ppei = 0.433 X 13.6 X %g'_ = 14.7

when S = 13.6 for mercury. When 14.7 is multiplied by 144, the standard atmos-
phere becomes 2116 1b/ft2. Then 2116 divided by 62.4 vields 34 ft water. Any of
these designations is for the standard atmosphere and may be called one atmosphere,
if it is always understood that it is a standard atmosphere and is measured from
ahsolute zero. These various designations of a standard atmosphere (Fig. 2.6) are
equivalent and provide a convenient means of converting from one set of units to
another. For example, 1o express 100 ft of water in pounds per square inch

%0 14.7 = 43.3 psi

A Y
sinee 4%0 is the number of standard atmospheres and each standard atmosphere is
14.7 psi.
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vacuum. It should be noted that

pabs = pbar + pgnge

To avoid any confusion, the convention is adopted throughout this
text that a pressure is gage unless specifically marked absolute, with the
exception of the atmosphere, which is an absolute pressure unit.

Ezample 2.3: Express 4 psi eight other customary ways. Barometer reading

28.5. in. mercury.
At point 2 in Fig. 2.6, other customary gage units are

1. 4 X 144 = 576 lb/ft?

4 .
2. a5 X 30 = 8.16 in. mercury
4
.= = 0,25 ft w
3 147 X 34 = 9.25 ft water

With absolute units,
4, From 2, 8.16 4 28.5 = 36.66 in. mercury abs

5. From 4, —3%39 = 1.222 atm
6. From 5, 1.222 X 14.7 = 18.0 psia

7. From 5, 1.222 X 2116 = 2583 lb/ft? abs
8. From 5, 1.222 X 34 = 41.6 {t water abs

The pressure conversion chart in IVig. 2.6 is most useful in working

with pressure units and should be carefully studied.
L/tl Manometers. Manometers are devices that employ liquid col-
fmns for determining differences in pressure. The most elementary
manometer, usually called a piezometer, 1s illustrated in Fig. 2.8qa; it
measures the pressure in a liquid when it 1s above zero gage. A glass tube
is mounted vertically so that it is connected to the space within the
container. Liquid rises in the tube until equilibrium is reached. The
pressure is then given by the vertical distance h from the meniscus (liquid
surface) to the point where the pressure is to be measured, expressed in
feet of the liquid in the container. It is obvious that the piezometer
would not work for negative gage pressures, because air would flow into
the container through the tube. It is also impractical for measuring
large pressures at A, since the vertical tube would need to be very long.
If the specific gravity of the liquid is S, the pressure at A is AS ft of
water.

- For measurement of small negative or positive gage pressures in a
liquid the tube may take the form shown in Fig. 2.8b. With this arrange-
ment the meniscus may come to rest below A, as shown. Since the
pressure at the meniscus is zero gage and since pressure decreases with

elevation,
hs = —hS ft of water
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For greater negative or positive gage pressures a second liquid of greater
specific gravity is employed (Fig. 2.8c). It must be immiscible in the
first fluid, which may now be a gas. If the specific gravity of the fluid at
A is Si (based on water) and the specific gravity of the manometer liquid
is S, the equation for pressure at A may be written, starting at either A or
the upper meniscus, and proceeding through the manometer, thus

hA + th1 — hng = 0

in which &4 is the unknown pressure, expressed in feet of water. and hq, hq
are in feet. If A contains a gas, S; is generally so small that £.S; may be

neglected.

(a) (b)

F1c. 2.8. Examples of simple manometers.

A general procedure may be followed in working all manometer
problems:

a. Start at one end (or any meniscus if the circuit is continuous), and
write the pressure there in an appropriate unit (say, feet of water) or in
an appropriate symbol if it is unknown.

b. Add to this the change in pressure, in the same unit, from one
meniscus to the next (plus if the next meniscus is lower, minus if higher).
(For feet of water this is the product of the difference in elevation in feet
and the specific gravity of the fluid.) _

¢. Continue until the other end of the gage (or the starting meniscus)
is reached and equate the expression to the pressure at that point, known
or unknown.

The expression will contain one unknown for a simple manometer or
will give a difference in pressures for the differential manometer. In
equation form,

ho — (41 — y0)So — (Y2 — y1)S1 — (y5 — y2)S»
e (y4 - y3)SS - - (yn - yn—l)su-—l = hn
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in which yo, y1, . . ., y. are elevations of each meniscus in feet and
Se, S1, Se, . . ., S, 1 are specific gravities of the fluid columns. The
above expression yields the answer in feet of water and may be converted
to other units by use of the conversions in Fig. 2.6.

A differential manometer (I'ig. 2.9) determines the difference in pres-
sures at two points A4 and B, when the actual pressure at any point in the

()

Fii. 2.9. Differential manometers.

system cannot be determined. Application of the procedure outlined
above to Fig. 2.9a produces

ha — RSy — haSs + h3S; = hy
or
h,o,_ -_ hy = h]S1 + thg _ h;;b‘;; ft Of water

Similarly, for Fig. 2.9b,

h_.‘_ + hllgl _— hQSQ — ’L:{AQ;; = hB
or
ha — by = —hiS1 4+ haSe 4+ kS

No formulas for particular manometers should be memorized. It is
much more satisfactory to work them out from the general procedure for
each case as needed.

Erample 2.4: In Fig. 2.9a the liquids at A and B are water and the manometer
liquid is oil, sp gr 0.80. A, = 1.0 ft, h. = 0.50 ft, #; = 2.0 ft. (a) Determine
pa — pp in pounds per square inch. () If ps = 10 psia and the barometer
reading is 29.5 in. mercury, find the gage pressure at A in pounds per square foot.

(@) ha — 1 X1 ~-03X08+2X1=hs
ha —hg =1+ 04 — 2 = —0.6 ft water
and .
pa— pe = —0.6 X 0433 = —0.26 psy
(b) pa = ps — 0.26 = 10 — 0.26 = 9.74 psia
290.5

Local atmospheric pressure = 35 X 147 = 14.47 psi
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In Fig. 2.6,

pa = 974 — 1447 = —4.73 psi
and
pa = —4.73 X 144 = 681 b ft* vacuum

A manometer may be calibrated to measure the volume of liquid in a
reservoir, the procedure being given in the following example:

Ezample 2.5: On the vertical rod in Fig. 2.10a is to be laid off a scale that reads
the volume ¥ of liquid, in gallons, in the reservoir.  Starting with manometer
liquid up to (-t in hoth legs., when no liquid is in the reservoir or connecting
tube, the distance R along the scale is desired for any depth y in the reservoir.

T

@ So Volume, gallons
(a) (b)

Fi1c. 2.10. Manometer used for measuring volume in tank,

Then, knowing the volume ¥V in terms of y, as in Fig. 2.10b, the distance R is
laid off and marked with the corresponding value of ¥V, in gallons. Writing the
cquation for the manometer, starting at the surface of the reservoir,

O+ (y+yo+ RS — 2RS, = 0
or
_ _ Yty
k 2(84/8) — 1

which yields R in terms of y. For ¥ = 0 and y = 0

R=_ .Y __
2(8,/8) — 1
a distance that is laid off on the scale from -t and marked 0. Taking ¥ as,
say, 10,000 gal, y is determined from Fig. 2.10b and R is laid off from ¢-f and
marked 10,000.

Micromanometers. Several types of manometers are on the market
for the determining of very small differences in pressure or precise
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determining of large pressure differences. One type very accurately
measures the differences in elevation of two menisci of a manometer.
By means of small telescopes with horizontal cross hairs mounted along
the tubes on a rack which is raised and lowered by a pinion and slow-

(a) () 4 B

FiG. 2.11. Hook-gage micromanometers. (a) For gases; (b) for liquids.

motion screw so that the cross hairs may be set accurately, the difference
in elevation of menisci (the gage difference) may be read with verniers.
The hook-gage micromanometer shown in Iig. 2.11 requires reservoirs
several inches in diameter to accommodate the hooks. The one in Fig.
2.11a is for gas measurement, and that in I'ig.

—TT —-—-—-T 2.11b is for liquid measurement. A hook with

\I r a conical point is attached to a graduated rod

ay V| By that is moved vertically through a stuffing box

i .. . .
=4 -=3=h -J( by a rack and pinion. As the conical point is
A~E—==F SZ—_I:Z-I-Z-? moved upward from below the liquid surface,

! it causes a slight curvature of the surface film
k,  before it penetrates it. By suitable lighting
the hook may be set at the elevation where the
surface-film reflection changes, with an ac-
curacy of about 0.001 in. A vernier may be
mounted on the rod, or a dial gage may be
mounted against the upper end of the rod.
When A and B are connected, both surfaces are
at the same elevation; readings taken for this
condition provide the “zero” for the gages.
_ With two gage liquids, immiscible in each
i‘:i(}n'g(zt:\ii' gfézrgiiggmeter other and in the fluid to be measured, a large
) ) gage difference R (Fig. 2.12) may be produced
for a small pressure difference. The heavier gage liquid fills the lower
U-tube up to 0-0; then the lighter gage liquid is added to both sides, filling
the larger reservoirs up to 1-1. The gas or liquid in the system fills the
space above 1-1. When the pressure at C is slightly greater than at D,
the menisci move as indicated in Fig. 2.12. The volume of liquid dis-

T AR A RIS R AR S L LR
'Illi]lll Illlilllll'l'lllIIIIIIlLllls'

3 (ML

i
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placed in each reservoir equals the displacement in the U-tube, thus

Ay A = I—; a
in which A and a are the cross-sectional areas of reservoir and U-tube,
respectively. The manometer equation may be written, starting at C,

in feet of water,

S (I PR S (R O
- (kl — Ay)Sl = hD

in which S, S2, and S; are the specific gravities as indicated in Fig. 2.12,
After simplifying and substituting for Ay,

a

hc—hD=R[Sg—'s2(1—K)—~sl-§] (2.4.1)

The quantity in brackets is a constant for specified gage and fluids;
hence, the pressure difference is directly proportional to R.

Example 2.6: In the micromanometer of Fig. 2.12 the pressure difference
pc — Pppis wanted in pounds per square inch when air is in the system. 8, = 1.0,
Ss = 1.05, a/A = 0.01, R = 0.10 in.

For air at standard conditions, 68°F, 30 in. mercury abs, S, = 0.0765/62.4 =
0.00123; then 8Si(a/A) = 0.0000123, S; — S2(1 — a/4) = 1.05 — 0.99 = 0.06.
The term Si(a/A) may be neglected. Substituting into Eq. (2.4.1) produces

ho — hp = 0_1'%0 % 0.06 = 0.0005 ft water

pec — pp = 0.0005 X 0.433 = 0.00022 psi

The inclined manometer (Fig. 2.13) is frequently used for measuring
small differences in gas pressures.. It is adjusted to read zero, by moving

A

Fii. 2.13. Inclined manometer.

the inclined scale, when A and B are open. The inclined tube requires’a
greater displacement of the meniscus for given pressure difference than

does a vertical tube, so the accuracy in reading the scale is greater in the
former.
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Surface tension causes a capillary rise in small tubes. If a U-tube is
used With a meniscus in each leg. the surface tension effects cancel.
The £apillary rise is negligible in tubes with a diameter of 0.5 in. or greater.
/5. Relative Equilibrivm. In fluid staties the variation of pressure
is simple to compute owing to the absence of shear stresses. For fluid
motion such that no layer moves relative to an adjacent layer, the shear
stress is also zero throughout the fluid. A fluid with a translation at
uniform velocity still follows the laws of static variation of pressure.
When a fluid is being accelerated so that no layer moves relative to an
adjacent one, i.e., when the fluid moves as if it were a solid, no shear
stresses occur and variation in pressure can be determined by writing the
equation of motion for an appropriate free body. Two cases are of
interest, a uniform linear aeceleration and a uniform rotation about a

Fra. 2.14. Horizontal aceeleration.

vertical axis. When moving thus, the fluid is said to be in relative
equilibrium. .

With very simple relations, equations for variation along single lines
have been developed. These can then be combined to determine pres-
sure differences between any two points.

Uniform Linear Accelération. In an open container with liquid (Fig.
2.14) under uniform horizontal acceleration, the liquid adjusts itself so
that it moves as a solid under the action of the accelerating force. To find
the variation of pressure in the vertical direction, the vertical free body
is used (Fig. 2.14) and the equation of motion in the vertical direction is
utilized, 2f, = ma,. Because the motion is that of a solid, no shear
stresses oceur in the liquid, and the only vertical forces are due to weight
~hA and to pressure force pA at the base of the vertical prism.  There is
no acceleration in the y-direetion; hence

pA — yhA =0
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or p = yh. The pressure variation along a vertical line is the same as for
a statie liquid.

In a prism of liquid considered as a free body normal to the direction of
a; but along a horizontal line, the pressure does not change, just as it does
not change with a static liquid. Therefore, the effect of the acceleration
a, must be in the z-direction.

The equation of motion Zf. = ma, for the horizontal free body of
Fig. 2.14 is

(A
1A — p2A = 77 a, (2.5.1)

as the weight acts normal to x, and the normal forces on the periphery
of the prism are normal to the z-direction. The mass is expressed in
slugs as the weight in pounds divided by gravity. Equation (2.5.1) can
be rewritten

e i g (2.5.2)

in which Ay, h. are the distances to the free surface. The expression
(hy ~ hy)/l is the slope of the free surface, tan 6. As

tan ¢ = % (2.5.3)

is constant for constant a,, the liquid surface is an inclined plane.  Planes
of constant pressure are parallel to the free surface.

If the vessel is ftlled with liquid and closed at the top, the liquid requires
no preliminary adjustment period before moving as a solid when subjected
to an acceleration. The planes of constant pressure are still given by
Eq. (2.5.3). If the pressure is known at one point in the vessel, it can
easily be computed for all other points. The shape of the container is
unimportant so long as the fluid is connected.

Ezample 2.7: The tank in Fig. 2.15 is filled with oil, sp gr 0.8, and accelerated
as shown. There is a small opening in the tank at A. Determine the pressure
at B and C and the acceleration a, required to make the pressure at B zero.

The planes of constant pressurc have the slope

and at A the pressure is zero. The plane through A passes 1 ft vertically above
B; hence
pe =1X 624 X 0.8 = 49.9 |b/ft?

Similarly, C is vertically below the zero pressure plane a distance 4.75 ft, and

pe = 4.75 X 62.4 X 0.8 = 237 lb/ft?
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For zero pressure at B,

4
tane—-ﬁ—

and a, = £ X 32.2 = 21.47 ft/sec?.

For vertical acceleration a,, the free surface (if one occurs) remains
horizontal. The pressure is constant in horizontal planes. With a

[6in.
_3in. A

=] ™~
= ~
= TN
] Lo
=5 TN
eyl ™~

‘S ~ 16.1 ft/sec?
= N —
- ™~
] ~ r
== .l
e 6 ft >
= By
[::::::::::::::_—_:_—_::::::::::::::::::::__.::::::::::::::___:::::::::_'_1 6in,

C L)

F1¢. 2.15. Tank completely filled with liquid.

vertical circular cylinder of cross-sectional area A (Fig. 2.16) and height
h as a free body and with the equation of motion written Zf, = ma,,

hA
pod — p1A — yhA = g,
Simplified,
pr= =k (1 t %’) (2.5.4)
For example, if the container is dropped, a, = —¢ and p; = p; and the

pressure is everywhere the same throughout the liquid.

. Ezample 2.8: A cubical box, 2 ft on a side, half filled with oil, sp gr 0.90, is
accelerated along an inclined plane at an angle of 30° with the horizontal, as
shown in Fig. 2.17. Find the slope of free surface and the pressure along the

bottom.
In the coordinate system as indicated in the figure,

a, = 8.05 cos 30° = 6.98 ft/sce?
and
a, = 8.05 sin 30° = 4.02 ft/sec?

If the pressure at the origin is pe, the variation of pressure in the z-direction is
[from Eq. (2.5.2)]

P = Po— 'yx—c;—" = po — 62.4 X 0.90 X 22—9—33: = po — 12.152 1b/ft?
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The pressure variation in the y-direction is [from Eq. (2.5.4)}

a 4.02
p=po—yh(1+ ?;) = po— 624 X 0.00 (14 250) y = po — 63.1y
To find the slope of the lines of constant pressure, the expressions for p are
equated,
12.15

= 31 z = 0.1925z

y/z = 0.1925 is the slope of liquid surface, downward to the right. As tan™?
0.1925 = 10°52’, the surface then makes an angle of 40°52’ with the bottom of
the box. The depth parallel to a side is less on the right-hand side by 2 tan

FiG. 2,16. Vertical acceleration. FiG. 2.17. Uniform acceleration along an
inclined plane.

40°52', or 1.73 ft. The total volume of oil is unchanged. Therefore, if s be the
depth on the right-hand side,

1.73
2(%° +5)2 =1t

"ors = 0,135 ft. The point A on the free surface has the coordinates

z = 2 cos 30° — 0.135 sin 30° = 1.665 ft
and

y = 2 sin 30° + 0.135 cos 30° = 1.117 ft

The pressure there is zero, and when the expressions for change in pressure in
the z- and y-directions are combined,

p = po — 12,15z — 63.1y
After substituting for z, y, and p,
0 =po— 12.15 X 1.665 — 63.1 X 1.117
or po = 90.73 Ib/ft2. If ¢ is the distance along the bottom from O, then

z = 0.866¢ and y = 0.50¢
and
p = 90.73 — 12.15 X 0.866f — 63.5 X 0.50¢
90.73 — 42.07¢t 1b/ft2
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Aiform Rotation about a Vertical Axis. Rotation of a fluid, moving
as a solid, about an axis 1s called forced-rorter motion. Every particle of
fluid has the same angular velocity. Thix motion is to be distinguished
from free-rorter motion, where each particle does not rotate but moves in
a circular path with a speed varying inversely as the distance from the
center. Free-vortex motion is discussed in Chaps. 7 and 8. A hquid in
a container, when rotated about a

/
LY // vertical axis at constant angular ve-
/ locity, moves as a solid after some
/810 pressure time interval. No shear stresses

line exist in the liquid and the only
acceleration that occurs is directed
radially inward toward the axis of
rotation. The equation of motion
in the vertical direction on a free
body shows that hydrostatic eondi-
»r  tions prevail along any vertical line;
hence, the pressure at any point in
the liquid is given by the product of
Fra. 2.18. Rotation of fluid about a ver- specific weight and vertical distance
from the free surface.
In the equation of motion tangent to the circular path of a particle,
the acceleration is zero, and the pressure does not change along the path.
In the equation of motion in the radial (horizontal) direction (Fig. 2.18),
with a free body of length 87 and cross-sectional area 84, if the pressure
at r be p, then, at the opposite face, the pressure is p + (dp/dr)yér. The
acceleration 1s —w?r; hence

<

s \sq = L0
pﬁzi-——(p—i—a—rér)&‘l— ;

After simplifying and dividing through by the volume of the element
3A br,

Y (=t

a _ v ,
ar g wir
After integrating,
=Yl
P=geg T

in which ¢ is the constant of integration  [f the value at the axis (r = 0)
be py, then ¢ = p,, and

' 2p2 _
P = P + ¥ %«-«g—- (205)

When the particular horizontal plane for which py = 0 is selected and
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Eq. (2.5.5) is divided by 7,

p _ wi? .
=5 ="— 2.5.6
Y 2 ( ‘
which shows that the head, or vertical depth, varies as the square of the
radius. The surfaces of equal pressure are paraboloids of revolution.
When a free surface oceurs in a container that is being rotated, the fluid
volume underneath the paraboloid of revolution is the original fluid

volume. The shape of the paraboloid depends only upon the angular

veloeity w. &
I'or the caseof a circular cylinder rotating about
its axis (Fig. 2.19) the rise of liquid from its vertex ]

to the wall of the cylinder is, from Kq. (2.5.6),
w?re?/2¢. Since a paraboloid of revolution has a
volume equal to one-half iis eircumseribing eylin-
der, the volume of the liquid above the horizontal
plane through the vertex is

1 w?ry?
Tr 2 X e
0 2 2¢

When the liquid 1s at rest, this liquid 1s also above
the plane through the vertex, to auniformdepth of

F1a. 2.19. Rotation of ¢ir-
1 w?ry? cular cylinder about its
2 2 axis.

Hence, the liquid rises along the walls the same amount as the center
drops, thereby permitting the vertex to be located when w, ro, and depth
before rotation are given.

Example 2.9: A liquid, sp gr 1.2, is rotated at 200 rpm about a vertical axis.
At one point, 4, in the fluid 2 ft from the axis, the pressure is 10 psi.  What is
the pressure at a point B, 4 ft higher than 4 and 3 ft from the axis?

When Lq. (2.5.5) is written for the two points

wlral TR

Pa = Poa+ ¥ 2;“ Ps = P03+‘Y'§“B'
Then w = 200 X 2r/60 = 20.95 rad/sec, ¥ = 1.2 X 62.4 = 74.81b/ft?, r4 = 2{t,
re =3 ft, poa — pos = 4 X 74.8 = 299 Ib/ft?, ps = 1440 Ib/ft:. When the
second equation is subtracted from the first and the values are substituted,

2
Pa — P = Poa — Pos + ‘J;;‘ (TAQ — ?‘32)

and

T48 —
1440 — pp = 299 + é—f—j 20.952(2* — 3?)

Hence, ps = 3691 1b/{t2, or 25.6 psi.
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If a closed container with no free surface, or with a partially exposed
free surface, is rotated uniformly about some vertical axis, an imaginary
free surface can be constructed, consisting of a paraboloid of revolution of
shape given by Eq. (2.5.6). The vertical distance from any point in the
fluid to this free surface is the pressure head at the point.

Ezample 2.10: A straight tube 4 ft long, closed at the bottom and filled with
water, is inclined -30° with the vertical and rotated about a vertical axis through
“its mid-point 8.02 rad/sec. Draw the paraboloid of zero pressure, and determine
the pressure at the bottom and mid-point of the tube.

Y
|
|
r

X

Fra. 2.20. Rotation of inclined tube of Fia. 2.21. Notation for determining line
liguid about a vertical axis. of action of a foree.

In Fig. 2.20, the zero-pressure paraboloid passes through point A. If the
origin is taken at the vertex, that is, po = 0, Eq. (2.5.6) becomes

wir?  8.02! . anovs
—39——-'@(2811130)—1.0“} |
which locates the vertex at O, 1.0 ft below A. The pressure at the bottom of the
tube is ¥y X CD, or

4 cos 30° X 62.4 = 216 1b/ft?
At the mid-point, OB = 0.732 ft, and
pp = 0.732 X 62.4 = 45.6 Ib/ft?

2.6. Forces on Plane Areas. In the preceding sections variations of
pressure throughout a fluid have been considered. The distributed forces
resulting from the action of fluid on a finite area may be conveniently
replaced by a resultant force, in so far as external reactions to the force
system are concerned. In this section the magnitude of resultant force
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and its line of action (pressure center) are determined by integration, by
formula, and by use of the concept of the pressure prism.

Horizontal Surfaces. A plane surface in a horizontal position in a fluid
at rest is subjected to a constant pressure. The magnitude of the force
acting on one side of the surface is

JpdA = pfdA = pA

The elemental forces p dA acting on dA are all parallel and in the same
sensc; therefore, a scalar summation of all such elements yields the
magnitude of the resultant force. Its direction is normal to the surface,
and toward the surface if p is positive. To find the line of action of the
resultant, i.e., the point in the area where the moment of the distributed
force about any axis through the point is zero, arbitrary xy-axes may be
selected, as in IYig. 2.21. Then, since the moment of the resultant must
equal the moment of the distributed foree system about any axis, say
the y-axis,

pAx’ = /A xp dA

in which 2" is the distance from the y-axis to the resultant. Since p is

constant,
, 1 .
x = —A-];xd/l = T

in which # 1s the distance to the centroid of the area.! Ilence, for a
horizontal area subjected to static fluid pressure, the resultant passes
through the centroid of the area.

Inclined Surfaces. *In I'ig. 2.22 a plane surface is indicated by its
trace A’B’. It is inclined 6° from the horizontal. The intersection of
the plane of the area and the free surface is taken as the x-axis. The
y-axis is taken in the plane of the area, with origin O, as shown, in the
free surface. The zy-plane portrays the arbitrary inclined area. The
magnitude, direction, and line of action of the resultant force due to the
liguid, acting on one side of the area, are sought.

For an element with area 8A as a strip with thickness dy with long
edges horizontal, the magnitude of force 8F acting on it is

- oF = p 84 = vh 6A = vy sin 6 64 (2.6.1)

Since all such elemental forces are parallel, the integral over the area
vields the magnitude of foree F, acting on one side of the area,

F=[pdA = ysind [ydA = ysin 6 g4 = vhA = pgA (2.6.2)

with the relations from Fig. 2.22, 7 sin § = h, and pe = ~vh, the pressure
! See Appendix A. -
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at the centrotid of the area. In words, the magnitude of force exerted on
one side of a plane area submerged in a liquid is the product of the area
and the pressure at its centroid. In this form, it should be noted, the
presence of a free surface is unnecessary. Any means for determining the
pressure at the centroid may be used. The sense of the foree is to push
against the area, if pg is positive.  As all force elements are normal to the
surface, the line of action of the resultant is also normal to the surface,
Any surface may be rotated about any axis through its centroid without

Fia. 2.22, Notation for foree of liquid on one side of a plane inclined area.

changing the magnitude of the resultant, if the total area remains sub-
merged in the statie liquid.

Center of Pressure. " The line of action of the resultant force has its
piercing point in the surface at a point called the pressure center, with
coordinates (rp,y,) (Fig. 2.22). Unlike that for the horizontal surface,
the center of pressure of an inclined surface is not at the centroid. To
find the pressure center, the moments of the resultant x,F, y,F are
equated to the moment of the distributed forces about the y-axis and
r-axis, respectively; thus

2, = [A xp dA (2.6.3)
y,F = [A yp dA (2.6.4)



Sec. 2.6) FLUID STATICS 43
The area element in Lq. (2.6.3) should be éx éy, and not the strip shown
in Fig. 2.22.

After solving for the coordinates of pressure center,

1

= L xp dA (2.6.5)
1

Y» = L yp dA (2.6.6)

In many applications Eqs. (2.6.5) and (2.6.6) may be evaluated most
conveniently through graphical integration; for simple areas they may be
transformed into general formulas as follows:!

— I ) = = 1 e [”‘ ‘ -
Lp = W“Sirra L Tyy sin 6dA = Elj:i LT!} dA = A (26()

In Egs. (A.10), of Appendix A, and (2.6.7),

&3

|"-~u

+ & (2.6.8)

Lo Law
:Lp - ‘1

<

When cither of the centroidal axes, * = Zory = §, is an axis of symmetry
for the surface, I,, vanishes and the pressure center lies on & = £ Since
I,, may be cither positive or negative, the pressure center may lie on
either side of the line x = £ To determine y, by formula, with Eqgs.
(2/6.2) and (2.6.6),

Yy = i ]‘Silhl‘é [4 yvy sin 8dA = ?7]] L yrdA = gI;i (2.6.9)
In the parallel-axis theorem for moments of inertia
I. = I; + 72A
If 7, is eliminated from Eq. (2.6.9)

Ig

Yo = Zy-—" + 9 (2.6.10)
or B

I | (2.6.11)

JP B 'gA U

I 1s always positive; hence, y, — § is always positive, and the pressure
center is always below the centroid of the surface. It should be empha-
sized that § and y, — 7 are distances in the plane of the surface.

Ezample 2.11: The triangular gate CDE {Fig. 2.23) is hinged along CD and is
opened by a normal foree P applied at E. It holds oil, sp gr 0.80, above it and

! See Appendix A.
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is open to the atmosphere on its lower side. Negleeting the weight of the gate
determine (@) the magnitude of force exerted on the gate, by integration and by
Eq. (2.6.2); (b) the location of pressure center; (c) the force P necessary to open

the gate.

Fiac. 2.23. Triangular gate.

a. By integration with reference to Fig. 2.23

3
F=/ApdA =7sin9fyxdy='ysin0/81 :z:ydy—!-‘ysinﬁ[llsxydy

Wheny = 8,z = 0, and when y = 13,z = 6, with x varying linearly with y, thus
x=ay +b 0=8a + b 6 =13a + b

in which the coordinates have been substituted to find x in terms of y. After
solving for a and b,

a=% b= —48 z = §(y — 8)
Similarly y = 13,z = 6;y = 18, x = 0; and x = £(18 — y). Hence

. 6 13 18
Feysind[ [“-8yay+ [ 08— yyay]

After integrating and substituting for v sin 8,
6 ya 13 y3 18
F=624x08x050x;[(%—4) +(0-%) | =omaam

By Eq. (2.6.2)
F=ped =~jsind A =624 X 0.80 X 0.50 X 30 X 13 = 97344 Ib

b. With the axes as shown, = 2.0, § = 13. In Iiq. (2.6.8)

L I~

z

+ z

Tp =

B
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I., is zero owing to symmetry about the centroidal axis parallel to the z-axis;
hence & = z, = 2.0 ft. In Eq. (2.6.11),

o do . 1X6EXE
Yo =Y =34~ 12 X 13 X 30

= 0.32 ft

i.e., the pressure center is 0.32 ft below the centroid, measured in the plane of the

area.
¢. When moments about ('D are taken and the action of the oil is replaced by

the resultant,
PX6=097344 X 2 P =324481b

The Pressure Prism. The concept of the pressure prism provides
another means for determining the magnitude and location of the result-
ant force on an inclined plane surface. The volume of the pressure prism
is the magnitude of the force and the resultant force passes through the
centroid of the prism. The surface :
is taken as the base of the prism, and
its ‘altitude at each point is deter-
mined by the pressure 4k laid off to
an appropriate scale (Fig. 2.24).
Since the pressure increases linearly
with distance from the free surface,
the upper surface of the prism is in
a plane with its trace OM shown in
Fig. 2.24. The force acting on an
elemental area 84 is

8F = vh 84 = 6V (2.6.12)

L Fic. 2.24. Tllustration of pressure prism.
which is an element of volume of the

pressure prism. After integrating, ¥ = ¥, the volume of the pressure
prism equals the magnitude of the resultant force acting on one side of
the surface.

Equations (2.6.5) and (2.6.6),

T, = %Lxdv Up = %, /; yd¥ (2.6.13)

show that x,, y, are distances to the centroid of the pressure prism.!
Hence, the line of action of the resultant passes through the centroid
of the pressure prism. For some simple arcas the pressure prism is more
convenient than either integration or formula. l'or example, a rec-
tangular area with one edge in the free surface has a wedge-shaped
prism. Its centroid is onec-third the altitude from the base; hence,
the pressure center is one-third the altitude from its lower edge.

! Appendix A, Eq. (A.5).
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Effect of Atmospheric Pressure on Forces on Plane Areas. In the dis-
cussion of pressure forces the pressure datum was not mentioned. The
pressures were computed by p = vh. in which & is the vertical distance
below the free surface. Therefore, the datum taken was gage pressure
zero, or the loeal atmospheric pressure. When the opposite side of the
surface is open to the atmosphere, a force is exerted on it by the atmos-
phere equal to the product of the atmospheric pressure po and the area,
or pud, based on absolute zero as datum. On the liquid side the force is

I(pe + vh)dA = poAd + v[hdA

The effect of the atmosphere ped acts equally on both sides and in no
way contributes to the resultant force or its location.

So long as the same pressure datum is selected for all sides of a free
“body, the resultant can be determined by constructing a free surface at
pressure zero on this datum and by using the above methods.

Fluid Pressure Forces in Relative Kquilibrium. 'The magnitude of the
force acting on a plane area in contact with a fluid accelerating as a
rigid body may be obtained by integration over the surface,

F=[pdA

The nature of the acceleration and orientation of the surface governs
the particular variation of p over the surface. When the pressure
varies lincarly over the plane surface (linear acceleration), the magnitude
of force is given by the product of pressure at the centroid and area since
the volume of the pressure prism is given by pgA. IFor nonlinear distribu-
tions the magnitude and line of action may be found by integration.

Ezxample 2.12: Forces on a Gravity Dam., An application of pressure forces on
plane areas is given in the design of a gravity dam. 7The maximum and mini-
mum compressive stresses in the base of the dam are computed from the forces
which act on the dam. Figure 2.25 shows a cross section through a concrete
dam where the specific weight of concrete has been taken as 2.5y and v is the
specific weight of water. A 1-ft section of dam is considered as a free body; the
forces are due to the concrete, the water, the foundation pressure, and the hydro-
static uplift. The determination of amount of hydrostatic uplift is beyond the
scope of this treatment, but will be assumed one-half the hydrostatic head at the
upstream edge, decreasing linearly to zero at the downstream edge of the dam.
Enough friction or shear stress must be developed at the base of the dam to
balance the thrust due to the water, that is, B, = 5000y. The resultant upward
force on the base equals the weight of the dam less the hydrostatic uplift, B, =
6750y 4+ 2625y — 1750y = 7625y lb. The position of R, is such that the free
body is in equilibrium.” For moments around O,

ZM, = 0 = R,z — 5000y X 33.33 — 2625y X 5 — 6750y X 30 + 1750y X 23.33
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and
r = 1448t

It is customary to assume that the foundation pressure varies linearly over
the base of the dam, i.e., that the pressure prism is a trapezoid with a volume

equal to R,; thus

Cmux Cmin =
'21’ 70 = 76257

in which Cuax, Cumin are the maximum and minimum compressive stresses in
pounds per square foot. The centroid of the pressure prism is at the point where

90’

F1a. 2.25. Concrete gravity dam.

z = 44.8 ft. By taking moments about O to express the position of the centroid
in terms of Cpux and Cuyy,
CoinTO X 5 4 (Croax — Canin) 2> X 370

(Cmax + O'mln)lfrl

14.8 =

After simplifying,
Cuoex = 11.75C 110
Then

Crax = 210y = 12,500 1b/ft* Coin = 17.1y = 1067 1b/ft?
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When the resultant falls within the middle third of the base of the dam, C;,
will always be a compressive stress. Owing to the poor tensile properties of
concrete, good design requires the resultant to fall within the middle third of
the base.

2.7. Force Components on Curved Surfaces. When the elemental
forces p 8A vary in direction, as in the case of a curved surface, they
must -be added as vector quantities; i.e., their components in three
mutually perpendicular directions are added as scalars, and then the
three components are added vectorially. With two horizontal com-
ponents at right angles and with the vertical component, which are
easily computed for a curved surface, the resultant can be determined.
The lines of action of the components are readily determined, so the
resultant and its line of action can be completely determined.

Horizontal Component of Force on a Curved Surface. The horizontal
component of pressure force on a curved surface is equal to the pressure force

Frc. 2.26. Horizontal component of force  Fia. 2.27. Projections of area elements on
on a curved surface. opposite sides of a body.

exerted on a projection of the curved surface. The vertical plane of projection
is normal to the direction of the component. The surface of Fig. 2.26
represents any three-dimensional surface, and 4 an element of its area,
with its normal making the angle 8 with the negative z-direction. Then

6F, = p 6A cos @

is the r-component of force exerted on one side of 84. Summing up
the x-components of foree over the surface,

F, = [A p cos 8 dA (2.7.1)

Considering cos 6 8A, it is the projection of §4 onto a plane perpendicular
to 2. The element of force on the projected area is p cos 8 A, which is
also in the a-direetion. Projecting each element on a plane perpendicular
to x is equivalent to projecting the curved surface as a whole onto the
plane. Hence, the force acting on this projection of the curved surface
iz the horizontal component of foree exerted on the curved surface, in the
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direction normal to the plane of projection. To find the horizontal
component at right angles to the x-direction, the curved surface is pro-
jected onto a vertical plane parallel to z, and the force on the projection
1s determined.

When the horizontal component of pressure force on a closed body
is to be found, the projection of the curved surface on a vertical plane is
always zero, since on opposite sides of the body the area-element projec-
tions have opposite signs, as indicated in Fig. 2.27.  Let a small cylinder
of cross section 8A with axis parallel to x intersect the closed body at B
and C. If the element of area of the body cut by the prism at B is §4 3
and at (" is 6A¢, then

6Ap cos g = —8Ac cos ¢ = A

as cos f¢ is negative. Hence, with the pressure the same at each end of
the cylinder,
p 8Ag cos 0p + pdAccos =0

and similarly for all other area elements.
To find the line of action of a horizontal component of force on a
curved surface, the resultant of the parallel force system composed of

Fig. 2.28. Pressure prism for horizontal component of pressure

the force components from each area element is required. This is
exactly the resultant of the force on the projected area, since the two
force systems have identical pressure prisms, as indicated in Fig. 2.28.
Hence, the pressure center is located on the projected area by the meth-
ods of See. 2.6.

Vertical Component of Force on a Curved Surface. The vertical com-
ponenl of pressure force on a curved surface is equal to the weight of liquid
vertically above the curved surface and extending up to the free surface.
The vertical component of force on a curved surface can be determined
by summing up the vertical components of pressure force on clemental
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areas 84 of the surface. In Fig. 2.29 an arca element is shown with the
force p 84 acting normal to it. (Let @ be the angle the normal to the
area element makes with the vertical.) Then the vertical component
of force acting on the area element is p cos § §4, and the vertical com-
ponent of force on the curved surface is given by

F, = [A p cos 8 dA (2.7.2)

By replacing p by its equivalent vh, in which A is the distance from the
area element to the free surface, and noting that cos 8 §4 is the projection
of 64 on a horizontal plane, Kq. (2.7.2) becomes

F;; = 208 : = 2.7.:
v [A hcos 8dA = v fv d¥ (2.7.3)
in which 8¥ is the volume of the prism of height A and base cos 6 84,
l .
ol’ * S

e ST e e ————

N Ilil‘l‘l1l‘l.|

I

I‘l"ii

F1a. 2.29. Vertical component of force on Fia. 2.30. Liquid with imaginary free
a curved surface. surface.

or the volume of liquid vertically above the area element. Integrating,
F,=+¥ (2.7.4)

When the liquid is below the curved surface (Fig. 2.30) and the pressure
intensity is known at some point, e.g., O, an imaginary free surface s-s
may be constructed p/y above 0, so that the product of specific weight
and vertical distance to any point in the tank is the pressure at the point.
The weight of the imaginary volume of liquid vertically above the curved
surface is then the vertical component of pressure force on the curved
surface. In the constructing of an imaginary free surface, the imaginary
liquid must be of the same specific weight as the liquid in contact with
the curved surface; otherwise, the pressure distribution over the surface
will not be correctly represented. With an imaginary liquid above a sur-
face, the pressure at a point on the curved surface is equal on both sides,
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but the elemental force components in the vertical direction are opposite
in sign. Hence, the direction of the vertical force component is reversed
when an imaginary fluid is above the surface. In some cases a confined
liquid may be above the curved surface, and an imaginary liquid must be
added (or subtracted) to determine the free surface.

The line of action of the vertical component is determined by equating
moments of the clemental vertical components about a convenient axis
with the moment of the resultant force. With the axis at O (Fig. 2.29),

F.z = 'y/V:rdV

in which # is the distance from O to the line of action. Then, since
F, = ~¥,

1
x—V./;de

the distance to the centroid of the
volume. Therefore, the line of action
of the vertical force passes through
the centroid of the volume, real or
imaginary, that extends above the
curved surface up to the real or im-
aginary free surface. Fig. 2.31. Semifloating body.

Ezample 2.13: A evlindrical barrier (Fig. 2.31) holds water as shown. The
contact between cylinder and wall is smooth. Considering a one-foot length of
cylinder, determine (a) its weight and () the force exerted against the wall.

a. For equilibrium the weight of the cylinder must equal the vertical com-
ponent of force exerted on it by the water. The vertical force on BCD is

7-2
F""BCD = %— + 21’2) v = (2 + 8)7

The vertical force on AB is

Tt

Fma = - (T2 - "4 Y
Hence, the weight per foot of length is
Fo,, +F. = @r+4)y=2838Ib

—4 -7y

i

b. The force excrted against the wall is the horizontal force on ABC minus the
horizontal force on CD. The horizontal components of force on BC and CD
cancel since the projection of BCD on a vertical plane is zero. Hence,

FH =FHAB=2‘Y—_—- 124.8 Ib

since the projected area is 2 ft? and the pressure at the centroid of the projected
ares is 62.4 1b/ft2,
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To find external reactions due to pressure forces, the action of the
fluid may be replaced by the two horizontal components and one vertical
component acting along their lines of action.

Tensile Stress in a Pipe. A circular pipe under the action of an internal
pressure is in tension around its periphery. Assuming that no longi-
tudinal stress occurs, the walls are in tension as shown in Fig. 2.32. A
1-in. section of pipe is considered, i.e., the ring between two planes normal
to the axis and 1 in. apart. Taking one-half of this ring as a free body,

_ the tensions per inch at top and

linl bott respectively, Ty, T
_____ — Ty a— ottom are, respectively, Ty, T, as
shown in the figure. The horizon-

7,

H

1

11

L e tal component of force acts through

! 1

| i —}—’y” the pressure cente.ar of tbe pr()].ected

| area and is 2pr, in wl_nch. p is the
SEEEEE EEEE S T2<—-L pressure at the center line in pounds

per square inch and r is the pipe
radius (internal) in inches.

For high pressures the pressure center may be taken at the pipe center;
then ?’1 = T, and

F1c. 2.32. Tensile stress in pipe.

T = pr ot (2.7.5)
in which 7T is the tensile force per inch. For wall thickness ¢ in., the
tensile stress S in the pipe wall is )

S = -? 4 (2.7.6)
For larger variations in pressure between top and bottom of pipe the

pressure center is computed, and two equations are needed,

T+ Ty = 2pr
2rTy — 2pry = 0

in which the second equation is the moment equation about the lower end
of the free body, neglecting the vertical component of force. Solving,

T, = py Ty = p(2r — y)

in which y is in inches.

Ezample 2.14: A 4.0-in. 1D steel pipe has a £-in. wall thickness. For an allow-
able tensile stress of 10,000 psi what is the maximum pressure?

pr p2
=T = 10,000 =
ry
and hence
p = 1250 psi
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2.8. Buoyant Force. The resultant force exerted on a body by a static
fluid in which it is submerged or floating is called the buoyant force. The
buoyant force always acts vertically upward. There can be no horizontal
component of the resultant because the vertical projection of the sub-
merged body or submerged portion of the floating body is always zero.

The buoyant force on a submerged body is the difference between the
vertical component of pressure force on its underside and the vertical
component of pressure force on its upper side. In Fig. 2.33 the upward

-= g > :"o:::o‘f
gl §OR e S 5 S
- ‘.\. KR

F1c. 2.33. Buoyant force on floating and submerged bodies.
L 4

force on the bottom is equal to the weight of liquid, real or imaginary,
which is vertically above the surface ABC, indicated by the weight of
liquid within ABCEFA. The downward force on the upper surface
equals the weight of liquid ADCEFA. The difference between the two
forces is a force, vertically upward, due to the weight of fluid A BCD that
is displaced by the solid. In equation form

Fg = V‘Y (281)

in which F is the buoyant force, ¥ is the volume of fluid displaced, and ¥
is the specific weight of fluid. The same formula holds for floating bodies
when ¥ is taken as the volume of liquid displaced. This is evident from
inspection of the floating body in Fig. 2.33.

In Fig. 2.34a, the vertical force exerted on an element of the body in
the form of a vertical prism of cross section 84 is

§Fp = (p: — p1)dA = yh A = v é¥

in which §¥ is the volume of the prism. Integrating over the complete
body,

Fo=r [ d¥ = ¥

when v is considered constant throughout the volume.
To find the line of action of the buoyant force, moments are taken about
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a convenient axis O and are equated to the moment of the resultant, thus,

'ijdV='yVa':

.E=%,/de

in which Z is the distance from the axis to the line of action. This equa-
tion yields the distance to the centroid of the volume; hence the buoyant
force acts through the centroid of the displaced volume of flutd. 'This holds for

or

F1G. 2.34. Yertical force components on element of body.

both submerged and floating bodies. The centroid of the displaced

volume of fluid is called the cenier of buoyancy.
When the body floats at the interface of a static two-fluid system
(Fig. 2.34b) the buoyant force on & vertical prism of cross section 84 is

6Fp = (Pz - P1)5A = (‘Yzhz -+ 'Ylhl)aA

in which vi, 7. are the specific weights of the lighter and heavier fluids,
respectively. Integrating over the area,

Fg = vofhadA + vi[h1 dA = vV + vi¥

¥, is the volume of lighter fluid displaced, and ¥, is the volume of heavier
fluid displaced. To locate the line of action of the buoyant force,
moments are taken,

I"BJE' = 'ny dVl + 'Y?Ix dV:.)

or
7= vifz d¥1 4+ vofz d¥s _ viE ¥+ vaZo Vo
B ¥ + v ¥ vi¥y + vV

in which Z,, . are distances to centroids of volumes ¥,, ¥, respectively.
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The resultant does not, in general, pass through the centroid of the whole
volume.

In solving a statics problem involving submerged or floating objects,
the object is generally taken as a free body, and a free-body diagram is
drawn. The action of the fluid is replaced by the buoyant force. The
weight of the object must be shown (acting through its center of gravity)
as well as all other contact forces.

Weighing an odd-shaped object when suspended in two different fluids
yields sufficient data to determine its weight, volume, specific weight, and
specific gravity. Figure 2.35 shows two free-body diagrams for the same

i

t

i

]

S

dhl

F1c. 2.36. Hydrometer, in water and in liquid of specific gravity 8.

object suspended and weighed in two fluids. F, F. are the weights sub-
merged; v1, v. are the specific weights of the fluids. W and ¥, the weight
and volume of the object, are desired.

The equations of equilibrium are written

Fi+¥v=W Fo+ ¥Fryo =W
and solved
V=-F1_F2 W=F1‘72"‘F2‘¥1

Y2 — Y1 Y2 — Y1

A hydrometer uses the principle of buoyant force to determine specific
gravities of liquids. Figure 2.36 shows a hydrometer in two liquids. It
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has a stem of prismatic cross section a. Considering the liquid on the
left to be distilled water, S = 1.00, the hydrometer floats in equilibrium

when
Vovy =W (2.8.2)

in which ¥, is the volume submerged, v is the specific weight of water,
and W is the weight of hydrometer. The position of the liquid surface
is marked 1.00 on the stem to indicate unit specific gravity S. When the
hydrometer is floated in another liquid, the equation of equilibrium

becomes ‘
(Fo — A¥V)Sy =W (2.8.3)
in which A¥ = a Ah. Solving for Ak, with Egs. (2.8.2) and (2.8.3),
VoS~ 1
Ah = = S (2.8.4)

from which the stem may be marked off to read specific gravities.

Example 2.15: A piece of ore weighing 7 lb in air was found to weigh 5.6 lb
when submerged in water. What is its volume and specific gravity?
The buoyant force due to air may be neglected. From Fig. 2.35

7 =56+ 624¥ ¥ = 0.0224 ft?

7
= goazaxoa
2.9. Stability of Floating and Submerged Bodies. A body floating in
a static liquid has vertical stability. A small upward displacement
decreasecs the volume of liquid displaced, resulting in an unbalanced down-
ward foree which tends to return the body to its original position. Sim-
ilarly, a small downward displacement results in a greater buoyant force,
which causes an unbalanced upward force.

(e¢) Stable (b) Unstable

Fic. 2.37. Examples of (a) stable, (b) unstable, (¢) neutral equilibrium.

A body has linear stability when a small linear displacement in any
direction sets up restoring forces tending to return the body to its original
position. It has rotational stability when a restoring couple is set up by

any small angular displacement.
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Methods for determining rotational stability are developed in the
following discussion. A body may float in stable, unstable, or neutral
equilibrium. When a body is in unstable equilibrium, any small angular
displacement sets up a couple that tends to increase the angular displace-
ment. With the body in neutral equilibrium, any small angular dis-
placement sets up no couple whatever. Tigure 2.37 illustrates the three
cases of equilibrium: (a) a light piece of wood with a metal weight at its
bottom is stable; (b)) when the metal weight is at the top, the body is in
equilibrium but any slight angular displacement causes the body to
assume the position in a; (¢) a homogeneous sphere or right-circular
cylinder is in equilibrium for any angular rotation, i.e., no couple results
from an angular displacement.

A submerged object is rotationally stable only when its center of gravity
is below the center of buoyancy, as in Fig. 2.38a. When the object is

Fic. 2.38. Rotationally stable submerged body.

rotated in a counterclockwise direction as in Fig. 2.38b, the buoyant force
and weight produce a couple in the clockwise direction.

Normally, when a body is too heavy to float, it submerges and goes
down until it rests on the bottom. Although the specific weight of a
liquid increases s'ightly with depth, the higher pressure tends to cause
the liquid to compress the body or to penetrate into pores of solid sub-
stances, thus decreasing the buoyancy of the body. A ship, for example,
i sure to go to the bottom once it is completely submerged, owing to
compression of air trapped in various places within it.

Determination of Rotational Stability of Floating Objects. Any floating
object with center of gravity below its center of buoyancy (centroid of
displaced volume) floats in stable equilibrium, as in Tig. 2.37a. Certain
floating objects, however, are in stable equilibrium when their center of
gravity is above the center of buoyancy. The stability of prismatic
bodies ‘s first considered, followed by an analysis of general floating
bodies for small angles of tip.

Figure 2.39a is a cross section of a body with all other parallel cross
sections identical. The center of Buoyancy is always at the centroid of
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the displaced volume, which is at the centroid of the cross-sectional area
below liquid surface in this case. Hence, when the body is tipped, as in
Fig. 2.39b, the center of buoyancy is at the centroid B’ of the trapezoid
ABCD; the buoyant force acts upward through B’, and the weight acts
downward through G, the center of gravity of the body. When the
vertical through B’ intersects the original center line above G, as at M, a
restoring couple is produced, and the body is in stable equilibrium. The
intersection of the buoyant force and the center line is called the meta-
cenler, designated M. When M is above G, the body is stable; when

Fia. 2.39. Stability of prismatic body.

below G, it is unstable; and when at G, it is in neutral equilibrium. The
distance MG is called the melacentric height and is a direct measure of the
stability of the body. The restoring couple is

WMG sin 6
in which @ is the angular displacement and W the weight of the body.

Ezample 2.16: In Fig. 2.39 a scow 20 ft wide and 60 ft long has a gross weight of
225 short tons (2000 1b). Its center of gravity is 1.0 ft above the water surface.
Find the metacentric height and restoring couple when Ay = 1.0 ft.

The depth of submergence & in the water is

p 225 X 2000

= 5% 60 x 624 001t

The centroid in the tipped position is located with moments about AB and BC,

1 20
6 X 20

5X 20X 3 4+2X20 X7 X585
620 = 3.03 ft

y=

By similar triangles AEO and B'PM,
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Ay = 1,b/2 = 10, B'P = 10 — 9.46 = 0.54 ft; then

W=w=5.40ft

G is 7.0 it from the bottom; henee

GP = 7.00 — 3.03 = 3.97 1t
and - . '
MG = MP ~ GP = 5.40 — 3.97 = 1.43 ft

The scow is stable since M is positive; the righting moment is

AT 1

WGM sin 8 = 225 X 2000 X 1.43 X \/T_ = 64,000 lb-ft

Nonprismatic Cross Sections. I'or a floating object of variable cross
section, such as a ship (Fig. 2.40a), a convenient formula may be devel-
oped for determination of metacentric height for very small angles of

y

¥

Fra. 2.40. Stability relations in body of variable cross section.

rotation 8. The horizontal shift in center of buoyancy r (Fig. 2.40b) is
determined by the change in buoyant forces due to the wedge being
submerged, which causes an upward force on the left, and by the other
wedge decreasing the buoyant force by an equal amount AFz on the
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right. The force system, consisting of the original buoyant force at B
and the couple AFz X s due to the wedges, must have as resultant the
equal buoyant force at B’. With moments about B to determine the
shift r,

AFg X s = Wr (291)

The amount of the couple may be determined with moments about O,
the center line of the body at the liquid surface. For an element of
area 8A on the horizontal section through the body at the liquid surface,
an element of volume of the wedge is x8 84 ; the buoyant force due to this
element is yx6 §A, and its moment about O

¥ . . . . .
— is ¥0x? 84, in which 8 is the small angle of tip
‘S inradians. By integrating over the complete
< original horizontal area at the liquid surface,
o the couple is determined to be
AF5 X s = 78 [A 22dA = v0I (2.9.2)
T+
o in which { is the moment of inertia of the area
x - - X
I —
b~
&
X
Fi1e. 2.41. Horizontal cross Fic. 2.42. Cube floating in liquid.

section of ship at water line.

about the axis y—y (Fig. 2.40a). Substitution into Eq. (2.9.1) produces
v8I = Wr = ¥vyr

in which ¥ is the total volume of liquid displaced.
Since 6 is very small,

MBsin § = MB6§
or

B

< ~

I

=S !

The metacentric height is then
MG =MB T GB
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or

MG = {; F GB (2.9.3)

The minus sign is used if G is above B, the plus sign if G is below B.

Example 2.17: A ship displacing 1000 tons has the horizontal cross section at
water line shown in Fig. 2.41. Its center of buoyancy is 6.0 ft below water
surface, and its center of gravity is 1.0 ft below water surface. Determine its
metacentric height for rolling (about y—y-axis) and for pitching (about z—z-axis).

_ 1000 X 2000
624

Toey = T2 X 80 X 30° + 4 X 77 X 20 X 15° = 202,500 ft*

GB =50ft ¥ = 32,100 ft?

I._. =15 X 30 X80 + 2 X 5% X 30 X 203 + 600 X 46.672 = 2,603,000 ft*
For rolling:
= I == 202,500 . _
W—? GB = 35,100 5 = 1.32 ft
For pitching:
w5 _ L _ 7p _ 2603000
MG = 7 GB = 52,100 5 =762 ft

Ezxample 2.18: A homogeneous cube of specific gravity S, floats in a liquid of
specific gravity S. - Find the range of specific-gravity ratios S./S for it to float
with sides vertical.

In Fig. 2.42, b is the length of one edge of the cube. The depth of submergence
z is determined by application of the buoyant-force equation.

b3S, = b%yS
in which +y is the specific weight of water. Solving for depth of submergence,

z=b%

The center of buoyancy is z/2 from the bottom, and the center of gravity is 5/2
from the bottom. Hence

34 -5)

After applying Eq. (2.9.3),

i I e 1B X b—2
MG“V B 12 2b2 2
or
b 8 b S,
MG*E@‘Q(“@)

When MG equals zero, S./S = 0.212, 0.788. Substitution shows that MG is
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positive for
S S

0< 5 < 0.212 0.788 < 3 < 1.0

Figure 2.43 is a graph of MG /b vs. S./8S.

0.40

0.30

Fic. 2.43. Plot of S./8 vs. MG/b.

PROBLEMS

2.1. Prove that the pressure is the same in all directions at a point in a statie
fluid for the three-dimensional case.
‘2. The container of Fig, 2.44 holds water and air as shown. What is the
pressure at 4, B, C. and D in pounds per square foot?

A

Air E: = T

Air

Air

. Sp gr 0.85——"

Fic. 2.44 Fia. 2.45

2.3. The tube in Fig. 2.45 is filled with oil. Determine the pressure at A and
B in feet of water.
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2.4. Calculate the pressure at 4, B, C, and D of Fig. 2.46 in pounds per square
inch.

Fre. 2.46

2.5. Derive the law of variation of static pressure for an incompressible fluid
by considering a free body of fluid that is an inclined right circular cylinder.

2.6. Derive the equations that give the pressure and density at any elevation
in a static gas when conditions are known at one elevation and the temperature
gradient 8 is known.

2.7. By a limiting process as 8 — 0, derive the isothermal case from the results
of Prob. 2.6.

2.8. By use of the results of Prob. 2.6, determine the pressurc and density at
5000-ft elevation when p = 14.5 psia, { = 68°F, and 8 = —0.003°F/ft at eleva-
tion 1000 ft for air.

2.9. For isothermal air at 40°F, determine the pressure and density at 10,000 ft
when the pressure is 15 psia at sea level.

2.10. In isothermal air at 60°F what is the vertical distance for reduction of
density by 10 per cent?

2.11. Express a pressure of 5 psi in: (a) inches of mercury, (b) feet of water, (¢)
feet of acetylene tetrabromide, sp gr 2.94.

2.12. A bourdon gage reads 2-psi suction, and the barometer is 29.5 in. mer-
cury. Express the pressure in six other customary ways.

2.13. Express 3 atmospheres in feet of water gage. Barometer reading
29.2 in.

2.14. Bourdon gage A inside a pressure tank reads 10 psi. Another bourdon
gage B outside the pressure tank, connceted with the tank, reads 18 psi, and an
aneroid barometer reads 30 in. mercury. What is the absolute pressure measured
by 4 in inches of mercury?

2.15. Determine the heights of coluinns of water; kerosene, sp gr 0.83; and
acetylene tetrabromide, sp gr 2.94, equivalent to 10 in. mercury.

2.16. For a reading # = 16 in. in Fig. 2.8¢ determine the pressure at 4 in
pounds per square inch. The liquid has a specific gravity of 1.90.

2.17. Determine the reading A-in Fig. 2.8b for p4 = 2.5 psi suction if the liquid
i kerosene, sp gr 0.83

2.18. For h = 6 in. in Fig. 2.8 and barometer reading 29 in., with water the
liquid, find p,4 in feet of water sbsolute.

2.19. In Fig. 28¢ S, = 0.86, Sy = 1.0, hy = 83 in., by = 17 in. Find p4 in
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inches of mercury gage. If the barometer reading is 29.5 in., what is p4 in feet
of water absolute?

2.20. Gas is contained in vessel 4 of Fig. 2.8c. With water the manometer
fluid and A, = 7 in., determine the pressure at 4 in inches of mercury-.

2.21. In Fig. 290 8, = 1.0, S, = 0.95, S5 = 1.0, hy = hy = 1.0 ft, and h; =
3.0 ft. Compute p4 — ps in inches of water.

2.22. In Prob. 2.2 find the gage difference k, for p4 — ps = —10 in. water.

2.23. In Fig. 29681 = 83 = 0.83,8; = 13.6, h; = 16in., h, = 8 in. ,and by =
12in. (a) Find psif ps = 10 psi. (b) For p4 = 20 psia and a barometer read-
ing of 29.0 in. find pjs in feet of water gage.

2.24. Find the gage difference k, in Prob. 2.23 for p4 = ps.

2.25. In Fig. 2.47, A contains water and the manometer fluid has a specifie
gravity of 2.94. When the left meniscus is at zero on the scale, p, = 4 in. water.
Find the reading of the right meniscus for p4 = 1 psi with no adjustment of the
U-tube or scale.

MM S L AL LAY

Fi1a. 2.47

2.26. A vertical gas pipe in a building contains gas, p = 0.0016 slug/ft* and
p = 3.0in. water gage in the basement. At the top of the building 800 ft higher,
determine the gas pressure in inches water gage for two cases: () gas assumed
incompressible and (b) gas assumed isothermal. Barometric pressure 34 ft
water; t = 70°F.

2.27. In Fig. 2.12 determine R, the gage difference for a difference in gas pres-
sure of 1 in, water. S; = 1.0; 8; = 1.05; a/4 = 0.01.

2.28. The inclined manometer of Fig. 2.13 reads zero when A and B are at the
same pressure. The diameter of reservoir is 2.0 in., and that of the inclined °
tube tin. For § = 30°, gage fluid sp gr 0.832, find p4 — ps in pounds per square
inch as a function of gage reading R in feet.

2.29. A tank of liquid § = 0.86 is accelerated uniformly in a horizontal direc-
tion so that the pressure decreases within the liquid 1 psi/ft in the direction of
motion. Determine the acceleration.

2.30. The free surface of a liquid makes an angle of 20° with the horizontal
when accelerated uniformly in a horizontal direction. What is the acceleration?
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2.31. In Fig. 2.48, . = 8.05 ft/sec?, a, = 0. Find the imaginary free liquid
surface and the pressure at B, C, D, and E.

2.32. In Fig. 2.48, a: = 0, a, = —16.1 ft/sec?. Find the pressure at B, C, D,
and E.

2.33. In Fig. 2.48, a. = 8.05 ft/sec?, a, = 16.1 ft/vec?. Find the imaginary
free surface and the pressure at B, C, D, and E.

Fia. 2.48 F1a. 2.49

2.34. In Fig. 2.49, a, = 32.2 ft/sec? a, = 0. Find the pressure at A, B, and C.

2.356. In Fig. 2.49, a. = 16.1 ft/sec?, a, = 16.1 ft/sec®. Find the pressure at
A, B and C.

2.36. A circular cross-sectioned tank of 6-ft depth and 4 ft diameter is filled
with liquid and accelerated uniformly in a horizontal direction. If one-third of
the liquid spills out, determine the acceleration.

2.37. Derive an expression for pressure variation in a constant-temperature
gas undergoing an acceleration a, in the z-direction.

2.88. The tube of Fig. 2.50 is filled with liquid, sp gr 2.40. When accelérated
to the right 8.05 ft/sec?, draw the imaginary free surface and determine the pres-
sure at 4. For p, = 8 psi vacuum determine a..

' 2.39. A cubical box 3 ft on an edge, open at the top and half filled with water,
18 placed on an inclined plane making a 30° angle with the horizontal. The box
alone weighs 100 Ib and has a coefficient of friction_with the plane of 0.30. Deter-
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mine the acceleration of the box and the angle the free water surface makes with
the horizontal.

2.40. Show that the pressure is the same in all directions at a, point in a liquid
moving as a solid.

2.41. A closed box contains two immiscible liquids. When accelerated uni-
formly in the z-direction, prove that the interface and zero pressure surface are
parallel.

2.42. A vessel containing liquid, sp gr 1.2, is rotated about a vertical axis.
The pressure at one point 2 ft radially from the axis is the same as at another point
4 ft from the axis and with elevation 2 ft higher. Calculate the rotational
speed. :

2.43. The U-tube of Fig. 2.50 is rotated about a vertical axis 6 in. to the right
of A at such a speed that the pressure at A4 is zero gage. What is the rotational
speed?

2.44. Locate the vertical axis of rotation and the speed of rotation of the U-tube
of Fig. 2.50 so that the pressures of liquid at the mid-point of the U-tube and at A
are both zero.

2.46. An incompressible fluid of density p moving as a solid rotates at speed w
about an axis inclined at 8° with the vertical. Knowing the pressure at one point
in the fluid, how do you find the pressure at any other point? :

2.46. A right circular cylinder of radius 7, and height %, with axis vertical is
open at the top and filled with liquid. At what speed must it rotate so that half
the area of the bottom is exposed?

2.47. A liquid rotating about a horizontal axis as a solid has a pressure of 10 psi
at the axis. Determine the pressure variation along a vertical line through the
axis for density p and speed w.

2.48. Prove by integration that a paraboloid of revolution has a volume equal
to half its circumseribing cylinder.

2.49. A tank containing two immiscible liquids is rotated about a vertical axis,
Prove that the interface has the same shape as the zero pressure surface.

2.60. A hollow sphere of radius r, is filled with liquid and rotated about its
vertical axis at speed w. Locate the circular line of maximum pressure,
~ 2.51. A gas following the law pp~ = constant is rotated about a vertical axis
as a solid. Derive an expression for pressure in a radial direction for speed w,
pressure po, and density pe at a point on the axis.

2.62. Determinc the weight W that can be sustained by the 100-1b force acting
on the piston of Fig. 2.51.

6 in. diam
1.5 in. diam
w
_1001b,

F1a. 2.51
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2.563. Neglectiﬂg the weight of the container (Fig. 2.52), find (a) the force
tending to lift the circular top C'D and (b} the compressive load on the pipe wall

at A-A.
2.54. Find the force of oil on the top surface CD of Fig. 2.52 if the liquid level

in the open pipe is reduced by 4.0 ft.

|-—24 in. diam
‘_% -
c D

24in,

20in.}:
in, |
diam

Spgr08

Fi1i. 2.52 Fi1c. 2.53

2.55. The cylindrical container of Fig. 2.53 weighs 100 Ib when empty. It is
filled with water and supported on the piston. What force is exerted on the upper
end of the cylinder?  If an additional 100-1b weight were placed on the eylinder,
how much would the water force against the top of the cylinder be increased?

2.56. A barrel 2 ft in diameter filled with water has a vertical pipe of 0.50 in.
diameter attached to the top. Neglecting compressibility, how many pounds of
water must be added to the pipe to exert a force of 2000 b on the top of the
barrel? '

2.57. A right-angled triangular surface has a vertex in the free surface of a
iquid (Fig. 2.54). Find the force on one side (a) by integration and (b) by
formula.

Fi1g. 2.54

2.68. Determine the magnitude of the force acting on triangle ABC of Fig. 2.55
(@) by integration and (b) by formula.
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2.69. Find the moment about AB of the force acting on one side of the surface
ABC of Fig. 2.55.

2.60. Locate a horizontal line below AB of Fig. 2.55 such that the magnitude
of pressure force on the surface is equal above and below the line.

2.61. A cubical box 4 ft on an edge is open at the top and 'filled with water.
When accelerated upward 8.05 ft/sec?, find the magnitude of water force on one

side of the box.

l Oil (=56 Ib/ft’)

5 ft
A l S it B
v
= e
C Yy
F16. 2.55 F1c. 2.56

2.62. Determine the force acting on one side of the vertical surface of Fig. 2.56.
2.63. Calculate the force exerted by water on one side of the vertical annular
arca shown in Fig, 2.57.

Water

Fic. 2.57 Fic. 2.58

2.64. Determine the moment at A required to hold the gate as shown in

Fig. 2.58. .
2.65. If there is water on the other side of the gate (Fig. 2.58) up to A, deter-
mine the resultant force due to water on both sides of the gate, including its line

of action.
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{66. The shaft of the gate in Fig. 2.59 will fail at a moment of 100,000 1b-ft.
Determine the maximum value of liquid depth 4.

6 ft
Fia. 2.59 Fra. 2.60

2.67. The dam of Fig. 2.60 has a strut AB every 10 ft. Determine the com-
pressive force in the strut, neglecting the weight of the dam.

2.68. Locate the distance the pressure center is below the liquid surface in the
triangular arca ABC of Fig. 2.55 by integration and by formula.

2.69. By integration locate the pressure center horizontally in Fig. 2.55.

2.70. By using the pressure prism, determine the resultant force and location
for the triangle of Fig. 2.54.

2.71. By integration, determine the pressure center for Fig. 2.54.

2.72. Locate the pressure center for the annular area of Fig. 2.57.

2.78. Locate the pressure center for the gate of Fig. 2.58.

2.74. A vertical square area 4 by 4 ft is submerged in water with upper edge
2 ft below the surface. Locate a horizontal line on the surface of the square such
that (a) the force on the upper portion equals the force on the lower portion and
(b) the moment of force about the line due to the upper portion equals the moment
due to the lower portion.

2.76. An equilateral triangle with one edge in a water surface extends down-
ward at a 45° angle. Locate the pressure center in terms of the length of a
side b.

2.76. In Fig. 2.59 develop the expression for y, in terms of A.

2.77. Locate the pressure center of Fig. 2.56.

2.78. Locate the pressure center for the vertical area of Fig. 2.61.

Fi1a. 2.61
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2.79. The gate of Fig, 2.62 weighs 400 1b/ft normal to the paper. Its (:eryi:er
of gravity is 1.5 ft from the left face and 2.0 ft above the lower face. It is hinged
at 0. Determine the water-surface position for the gate just to start to come up.
(Water surface is below the hinge.) '

.,.'.;':é-:.-'q " a .4 -

Fia. 2.62

2.80. Find % of Prob, 2,79 for the gate just to come up to the vertical position
shown.

2.81. Determine the value of 2 and the force against the stop when this force
is a maximum for the gate of Prob. 2.79.
- 2.82. Determine y of Fig. 2.63 so the flashboards will tumble when water
reaches their top.

N

—_—

— N

j
r

¢

Fi1G. 2.63 Fic. 2.64

2.83. Determine the hinge location y of the rectangular gate of Fig. 2.64 so
that it will open when the liquid surface is as shown.
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2#4 By use of the pressure prism, show that the pressure center approaches
the centroid of an area as its depth of submergence is increased.

Fi1a. 2.65

2.85. (a) Find the magnitude and line of action of force on each side of the gate
of Fig. 2.65. (b) Find the resultant force due to the liquid on both sides of the
gate. (c) Determine F to open the gate if it is uniform and weighs 6000 lb,

2.86. For linear stress variation over the-base of the dam of Fig. 2.66, (a) locate
where the resultant crosses the base and (b) eompute the maximum and minimum
compressive stresses at the base. Neglect hydrostatic uplift.

2.87. Work Prob. 2.86 with the addition that the hydrostatic uplift varies
linearly from 60 ft at A to zero at the toe of the dam.

Fia. 2.67

2.88. Find the moment M at O (Fig. 2.67) to hold the gate closed.

2.89. A cube 1 ft on an edge is filled with liquid, sp gr 0.65, and is accelerated
downward 8.05 ft/see?. Find the resultant force on one side of the cube due to
liquid pressure.

2.90. A cylinder 2 ft in diameter and 6 ft long is accelerated uniformly along its
axis in a horizontal direction 16.1 ft/sec?. It is filled with liquid, v = 50 lb/{t3,
and has a pressure along its axis of 10 psi before acceleration commences. Find
the net force exerted against the liquid in the evlinder.

2.91. A closed cube, 1 ft on an edge, has a small opening at the center of its
top. When it is filled with water and rotated uniformly about a vertical axis
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through its center at w rad/sec, find the force on a side due to the water in %rms

of w. |
2.92. The gate shown in Fig. 2.68 isin equilibrium: Compute W, the Wciéht of

counterweight per foot of width, neglecting the weight of the gate. Is this gate
in stable equilibrium? :

== I

5

Figc. 2.68 Fi1c. 2.69

2.93. The gate of Fig. 2.69 weighs 100 lb/ft normal to the page. Itisin equi-
librium as shown. Neglecting the weight of the arm and brace supporting the
counterweight, (a) determine W and (b) determine whether the gate is in stable
equilibrium. The weight is made of concrete, sp gr 2.50.

2,94. The plane gate (Fig. 2.70) weighs 500 1b per foot of length, with its cen-
ter of gravity 6.0 ft from the hinge at 0. (a) Find 4 as a function of 8 for equi-
librium of the gate. (b) Is the gate in stable equilibrium for any values of a?

2.95. A 16-ft-diameter pressure pipe carries liquid at 200 psi. What thickness
pipe wall is required for maximum stress of 10,000 psi?

2.96. To obtain the same flow area, which pipe system requires the least steel:
a single pipe or four pipes-having half the diameter? The maximum allowable
pipe wall stress is the same in each case.

2.97. A thin-walled hollow sphere 8 ft in diameter holds gas at 200 psi. For
allowable stress of 6000 psi determine the minimum wall thickness.

2.98. A cylindrical container 6 ft high and 4 ft in diameter provides for pipe
tension with two hoops a foot from each end. When filled with water, what is
the tension in each hoop due to the water?

2.99. A I-in.-diameter steel ball covers a $-in. hole in a pressure chamber where
the pressure is 6000 psi. What force is required to lift the ball from the opening?
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9.100. If the horizontal component of force on a curved surface did not equal
the farce on a projection of the surface onto a vertical plane, what conclusions

could you draw regarding the propulsion of a boat (Fig. 2.71)?

Frc. 2.71

2.101. (a) Determine the horizontal component of force acting on the radial
gate (Fig. 2.72) and its line of action. (b) Determine the vertical component of
force and its line of action. (¢) What force F is required to open the gate,
neglecting its weight?

e s N e

= 4]
= Gate 6 ft wide
LAy Ly Lyby ke 4C
oz A LAY, D v e Il LI L LI

Fig. 2.72

2.102. Calculate the foree F required to hold the gate of Fig. 2.73 in a closed
position, R = 2 ft.

Hinge

Gate 4 ft
wide

ey

\\\\l\\\\\
LS
RUNNNENNNNNNAN

N
N
X
N
R
N
N
R

Fig. 2.73
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2.103. Calculate the force F required to open or hold closed the gate off Fig.

2.73 when R = 1.5 ft.
2.104. What is R of Fig. 2.73 for no force F required to hold the gate cloged or

to open it?
2.105. Find the vertical component of force on the curved gate of Fig. 2.74,

including its line of action.
2.106. Determine the moment M to hold the gate of Fig. 2.74, neglectmg its

weight.

2.107. Find the resultant force, including its line of action, acting on the outer
surface of the first quadrant of a spherical shell of radius 2.0 ft with center at the
origin. Its center is 3 ft below the water surface.

AY

-0 é'__ sp: gr08 :
~ =60 Ib/it? S o
4 ft
Gate 5 ft
M L, wide
T 7T T A
Fie. 2.74 F1G. 2.75

2.108. The log holds the water as shown in Fig. 2.75. Determine (g) the force
per foot pushing it against the dam, (b) the weight of the log per foot of length,
and (c) its specific gravity.

2.109. The cylinder of Fig. 2.76 is filled with liquid as shown. Find (a) the
horizontal component of force on A B per foot of length, including its line of action,
and (b) the vertical component of force on AB per foot of length, including 1ts
line of ac tlon

Fia. 2.76 Fig. 2.

2.110. The cylinder gate of Fig. 2.77 is made up from a circular cylinder and a
plate, hinged at the dam. The gate position is controlled by pumping water into
or out of the cylinder. The center of gravity of the empty gate is on the line of
symmetry 4 ft from the hinge. 1t is in equilibrium when empty in the position
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shown. How many cubic feet of water must be added per foot of eylinder to
hold the gate in its position when the water surface is raised 3 ft?

2.111. A hydrometer weighs 0.007 lb and has a stem 0.20 in. in diameter.
Compute the distance between specific gravity markings 1.0 and 1.1.

9.112. Design a hydrometer to read specific gravities in the range from 0.80
to 1.10 when the scale is to be 2 in. long.

2.113. A sphere 1 ft in diameter, sp gr 1.4, is immersed in a liquid having a
density varying with the depth y below the surface given by p = 2 4 0.1y,
Determine the equilibrium position of the sphere in the liquid.

2.114. A cube, 2 ft on an edge, has its lower half of specific gravity 1.4 and
upper half of specific gravity 0.6. It is submerged into a two-layered fluid, the
lower of specific gravity 1.2 and the upper of specific gravity 0.9. Determine
the height of the top of the cube above the interface.

2.115. Determine the density, specific volume, and volume of an object that
weighs 3 1b in water and 4 b in oil, sp gr 0.83.

2.116. Two cubes, of the same size, 27 ft°, one of sp gr 0.80, the other of sp
gr 1.1, are connected by a short wire and placed in water. What portion of the
lighter cube is above the water surface, and what is the tension in the wire?

2.117. In Fig. 2.78 the hollow triangular prism is in equilibrium as shown when
z =1ftand y = 0. Find the weight of prism per foot of length and z in terms
of y for equilibrium. Both liquids are water. Determine the value of y for
z =151t

2.118. How many pounds of concrete, v = 150 lb/ft?, must be attached to a
beam having a volume of 4 ft? and specific gravity 0.65 to cause both to sink in
water?

e

<1 firc.g

Fic. 2.78 Fig. 2.79

2.119. Two beams, each 6 ft by 12 by 4 in., are attached at their ends and float
as shown in Fig. 2.79. Determine the specific gravity of each beam.

2.120. A wooden cylinder 24 in. in diameter, sp gr 0.50, has a concrete eylinder
2 1t long of the same diameter, sp gr 2.50, attached to one end. Determine the
lengths of wooden cylinder for the system to float in stable equilibrium with axis
vertical, )

2.121. What are the proportions ro/h of a right circular cylinder of specific grav-
ity S so that it will float in water with end faces horizontal in stable equilibrium?

2.122. Will a beam 10 ft long with square cross section, sp gr 0.75, float in
stable equilibrium in water with two sides horizontal?
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2.128. Determine the metacentrie height of the torus shown in Fig. 2.80.
&

dftr

F1g. 2.80 Fra. 2.81

2.124. Determine whether the thick-walled cylinder of Fig. 2.81 is stable in
the position shown.

2.1256. A spherical balloon 40 ft in diameter is open at the bottom and filled
with hydrogen. For barometer reading of 28 in. mercury and 80°F, what is the
total weight of the balloon and the load to hold it stationary?

2.126. The normal stress is the same in all directions at a point in a fluid

(a) only when the fluid is frictionless

(b) only when the fluid is frictionless and incompressible

(¢) only when the fluid has zero viscosity and is at rest

(d}) when there is no motion of one fluid layer relative to an adjacent
layer

(e) regardless of the motion of one fluid layer relative to an adjacent
layer

2.127. The pressure in the air space above an oil (sp gr 0.75) surface in a tank
is 2 psi. The pressure 5.0 ft below the surface of the oil, in feet of water, is

(a) 7.0 (b) 8.37 (¢) 9.62 (d) 11.16 (e) none of these
answers

2.128. The pressure, in inches of mercury gage, equivalent to 8 in. of water
plus 6 in. manometer fluid, sp gr 2.94, is

(a) 1.03 (b) 1.88 {¢) 2.04 (d) 3.06 (e) none of these
answers

2.129. The differential equation for pressure variation in a static luid may be
written (y measured vertically upward)

(@) dp = —v dy by dp = —v dy (c) dy = —pdp
(d) dp = —pdy  (¢) dp = —ydp
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2.130. In an isothermal atmosphere, the pressure

(a) remains constant

(b) decreases linearly with elevation

(c) increases exponentially with elevation -
(d) varies in the same way as the density
(¢) and density remain constant

9.131. Select the correct statement.

(a) Local atmospheric pressure is always below standard atmospheric
pressure.

(b) Local atmospheric pressure depends upon elevation of locality only.

(¢) Standard atmospheric pressure is the mean local atmospheric pres-
sure at sea level.

(d) A barometer reads the difference between local and standard atmos-
pheric pressure.

(e) Standard atmospheric pressure is 34 in. mercury abs.

2.132. Select the three pressures that are equivalent.

(a) 10.0 psi, 23.1 ft water, 4.91 in. mercury
(d) 10.0 psi, 4.33 ft water, 20.3 in. mercury
(c) 10.0 psi, 20.3 ft water, 23.1 in. mercury
(d) 4.33 psi, 10.0 ft water, 20.3 in. mercury
(e) 4.33 psi, 10.0 {t water, 8.83 in. mercury

2.133. 2 psi suction, with barometer reading 28 in. mercury, is the same as

(a) 4.08in. mercury abs (b) 4.08 in. mercury
(¢) 4.62 ft water vacuum (d) 32.08 in, mercury abs
{e) 36.42 ft water abs

2.134. With the barometer reading 29 in. mercury, 7.0 psia is equivalent to

(a) 0.476 atmosphere () 0.493 atmosphere
(c) 7.9 psi suction (d) 7.7 psi
(e) 13.8 in. mercury abs

2.135. In Fig. 2.8b the liquid is oil, sp gr 0.80. When & = 2 ft, the pressure
at A may be expressed as

(a) —1.6 ft water abs () 1.6 ft water
(c) 1.6 ft water suction (d) 2.5 ft water vacuum
(e) none of these answers

2.136. In Fig. 2.8¢ air is contained in the pipe, water is the manometer liquid,
and h, = 2.0 ft, b, = 1.0 ft. The pressure at 4 is

(a) 2.0 ft water abs (b) 2.0 ft water vacuum

(¢) 1.0 ft water (d) 0.866 psi
(e) 0.433 psi
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2.137. In Fig. 2.9a, by = 2.0 ft, by = 1.0 ft, h; = 4.0 ft, S, = 0.80, S; = 0.65,
S: = 1.0. Then hz — ha in feet of water is

() —3.05 (b) —1.75 (¢} 3.05 (d) 6.25 {e) nonc of these
answers

2.138. In Fig. 2.95, Ay = 1.5 ft, hy = 1.0 ft, hy = 2.0 ft, S, = 1.0, 8, = 3.0,
S; = 1.0. Then ps — pg in pounds per square inch is

(a) —1.08 (b) 1.52 {¢) 8.08 (d) 218 (e) none of these

answers

2.139. A mercury-water manometer has a gage difference of 2.0 ft {(difference
in elevation of menisci). The difference in pressure, measured in feet of water, is

(a) 2.0 (b) 25.2 {c) 26.2 (d) 27.2 (¢) none of these
ANSWers

2.140. In the inclined manometer of Fig. 2.13 the reservoir is so large that its
surface may be assumed to remain at a fixed elevation, 6 = 30°. TUsed as a
simple manometer for measuring air pressure, it contains water, and B = 1.2 ft.
The pressure at A, in inches of water, is

(a) 7.2 (b) 7.2 vacuum (¢) 12.5 (d) 14.4 (e) none of
these answers

2.141. A closed cubical box, 2 ft on each edge, is half filled with water, the
other half being filled with oil, sp gr 0.75. When accelerated vertically upward
16.1 ft/sec?, the pressure difference between bottom and top, in pounds per
square foot, is

(a) 187.2 (b) 163.8 (¢} 109.0 (d) 54.6 (e) none of these
answers

2.142. When the box of Prob. 2.141 is accelerated uniformly, in a horizontal
direction parallel to one side, 16.1 ft/sec?, the slope of the interface is

(a) O (b) —% (c) —% (d) —1 (e) none of these answers

- 2.143. When the minimum pressure in the box of Prob. 2.142 is zero gage, the
maximum pressure in feet of water is

(@) 075 (3 1.0 (c) 1.625  (d) 1.875 () 2.75

2.144. When 3 liquid rotates at constant angular velocity about a vertical axis
as a rigid body, the pressure

(a) decreases as the square of the radial distance

(b) increases linearly as the radial distance

{¢) decreases as the square of increase in elevation along any vertical
line

(d) varies inversely as the elevation along any vertical line

(e) varies as the square of the radial distance
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2.145. When a liquid rotates about a vertical axis as a rigid body so that
points on the axis have the same pressure as points 2 ft higher and 2 ft from the
axis, the angular velocity in radians per second is

(a) R.02 (b) 11.34 (c) 64.4 (d) not determinable from data
given (e) none of these answers

2.146. A right-circular cylinder, open at the top, is filled with liquid, sp gr 1.2,
and rotated about its vertical axis at such speed that half the liquid spills out.
The pressure at the center of the bottom is

(a) zero

(b} one-fourth its value when cylinder was full

(c) indeterminable; insufficient data

(d) greater than a similar case with water as liquid
(e) none of these answers

2.147. A foreed vortex

(e) turns in an opposite direction to a free vortex

(b) always occurs in conjunction with a free vortex

(¢) has the velocity decreasing with the radius

(d) occurs when fluid rotates as a solid

(e) has the velocity decreasing inversely with the radius

2.148. The magnitude of force on one side of a circular surface of unit area,
with centroid 10 ft below a free water surface, is

{a) less than 10y

(b) dependent upon orientation of the area

(¢) greater than 10y

(d) the product of v and the vertical distance from free surface to
pressure center

(e) none of the above

2.149. A rectangular surface 3 ft by 4 ft has the lower 3-ft edge horizontal and
6 ft below a free oil surface, sp gr 0.80. The surface is inclined 30° with the
horizontal. The force on one side of the surface is

(a) 38.4y (b) 48y (c¢) 51.2v (d) 60y (¢) none of these
answers

2.150. The pressure center of the surface of Prob. 2.149 is vertically below the
liquid surface

(@) 10.133 ft (b) 5.133 ft (¢) 5.067 ft (d) 5.00 ft
(¢) none of these answers

2.161. The pressure center is

(a) at the centroid of the submerged area
(b) the centroid of the pressure prism
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(c) independent of the orientation of the area
(d) a point on the line of action of the resultant force
(e) always above the centroid of the area

2.152. What is the force exerted on the vertical annular area enclosed by
concentric cireles of radii 1.0 and 2.0 ft? The center is 3.0 ft below a free water
surface. ¥ = sp wt.

(a) 3my (b) 9ry (¢) 10.25xy (d) 127y (e) none of these
answers

2.153. The pressure center for the annular area of Prob. 2.152 is below the
centroid of the area ;

(@ Oft (b)) 0.42ft  (c) 0.44ft  (d) 0.47ft  (e) none of
these answers

2.154. A vertical triangular arca has one side in a free surface, with vertex
downward. Its altitude is A. The pressure center is below the free surface

(a) h/4 (b) h/3 (c) h/2 (d) 2h/3 (e) 3h/4

2.155. A vertical gate 4 ft by 4 ft holds water with free surface at its top. The
moment about the bottom of the gate is

(a) 42.7y (b) 57« (c) 64y (d) 85.3y (e) none of these
answers

2.156. The magnitude of the resultant force acting on both sides of the gate
(Fig. 2.82) is

(a) 768y (b) 1593y {¢) 1810y (d) 3820y (e) none of
these answers

Bar. 28in. Hg

i LT f'___’ jpiigi

Fig. 2.82

2.167. The line of action of the resultant force on both sides of the gate in
Fig. 2.82 is above the bottom of the gate

(a) 2.67 ft (b) 3.33ft (c) 3.68ft (d) 4.00ft (e) none of
these answers
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9.168. Liquid in a cylinder 10 ft long is accelerated horizontally 20g ft/sec?
along the axis of the eylinder. The difference in pressure intensities at the ends
of the cylinder, in pounds per square foot, if ¥ = sp wt of liquid, is

(a) 20y (b) 200y (¢) 20gv (d) 200v/g (e) none of these

answers
2.159. The horizontal component of force on a curved surface is equal to the

(a) weight of liquid vertically above the curved surface
(b) weight of liquid retained by the curved surface

(c) product of pressure at its centroid and area

(d) force on a vertical projection of the curved surface
(e) scalar sum of all elemental horizontal components

2.160. A pipe 16 ft in diameter is to carry water at 200 psi. For an allowable
tensile stress of 8000 psi, the thickness of pipe wall is '

(a) 1.2 in. (b) 1.6 in. (c) 2.4 in. (d) 3.2 in. (e) none of
these answers

2.161. The vertical component of pressure force on a submerged curved surface
is equal to

(a) its horizontal component

() the force on a vertical projection of the curved surface
(¢) the product of pressure at centroid and surface area

(d) the weight of liquid vertically above the curved surface
(e) none of the above answers

2.162. The vertical component of force on the quadrant of the cylinder AB
(Fig. 2.83) is

(a) 224y (b) 96.5y (¢) 81y (d) 42.5v (e) none of these
answers

Fia. 2.83

2.163. The vertical component of force on the upper half of a horizontal right-
circular eylinder, 3 ft in diameter and 10 ft long, filled with water, and with a
pressure of 0.433 psi at the axis, is

(a) —458 1b () —331lb- (c) 12481b (d) 1872 1b
(e) none of these answers
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2.164. A cylindrical wooden barrel is held together by hoops at top and bot-
tom. When the barrel is filled with liquid, the ratio of tension in the top hoop
to tension in the bottom hoop, due to the liquid, is

(@) & (b) 1 (c) 2 (d) 3 (¢) none of these answers

2.166. A 1-in. ID pipe with }-in. wall thickness carrics water at 250 psi. The
tensile stress in the pipe wall, in pounds per square inch, is

(a) 125 (b) 250 (¢) 500 (d) 2000 (e) none of these
answers

2.166. A slab of wood 4 ft by 4 ft by 1 ft, sp gr 0.50, floats in water with a
400-1b load on it. The volume of slab submerged, in cubic feet, is

(a) 1.6 (b) 6.4 (c) 8.0 (d) 144 (¢) none of these
answers

2.167. The line of action of the buoyant force acts through the

(a) center of gravity of any submerged body

(b) centroid of the volume of any floating body

(c) centroid of the displaced volume of fluid

(d) centroid of the volume of fluid vertically above the body
(e) centroid of the horizontal projection of the body

2.168. Buoyant force is

(a) the resultant force on a body due to the fluid surrounding it
" (b) the resultant force acting on a floating body
(¢) the force necessary to maintain equilibrium of a submerged body
(d) a nonvertical force for nonsymmetrical bodies
(¢) equal to the volume of liquid displaced

2.169. A body floats in stable equilibrium

(a) when its metacentric height is zero

(b) only when its center of gravity is below its center of buoyancy
(¢) when GB — I /V is positive and @ is above B

(d) when I/V is positive

(¢) when the metacenter is above the center of gravity

2.170. A closed cubical metal box 3 ft on an edge is made of uniform sheet and
weighs 1200 Ib. Its metacentric height when placed in oil, sp gr 0.90, with sides
vertical, is

(a) O ft (b)) —0.08 ft (c) 0.62 ft (d) 0.78 ft (e) none of
these angswers
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FLUID-FLOW CONCEPTS AND
BASIC EQUATIONS

The statics of fluids, treated in the preceding chapter, is almost an
exact science, specific weight (or density) being the only quantity that
must be determined experimentally. On the other hand, the nature of
flow of a real fluid is very complex. The basic laws describing the com-
plete motion of a fluid are not easily formulated and handled mathe-
matically, so recourse to experimentation is required. By an analysis
based on mechanics, thermodynamics, and orderly experimentation,
large hydraulic structures and efficient fluid machines have been produced.

This chapter introduces the concepts needed for analysis of fluid
motion. The basic equations that enable us to predict fluid behavior
are stated or derived: These are equations of motion, continuity, and
momentum, and the first and second laws of thermodynamics as applied
to steady flow of a perfect gas. The concepts of reversibility, irreversi-
bility, and losses are first introduced. Viscous effects, the experimental
determination of losses, and the dimensionless presentation of loss data
are presented in Chap. 5 after dimensional analysis has been introduced
in Chap. 4. In general, one-dimensional flow theory is developed in this
chapter, with applications limited to incompressible cases where viscous
effects do not predominate. Chapter 6 deals with compressible flow,
and Chap. 7 with two- and three-dimensional flow. ‘

3.1. The Concepts of Reversibility, Irreversibility, and Losses. A
particular quantity of matter or a specified region in space may be
designated as a system. All matter external to this system is referred to
as its surroundings. . A closed system refers to a specified mass and is
limited by the boundaries of the mass. An example would be a pound
mass of air contained in a cylinder. An open system, or control volume,
refers to a definite, fixed region in space through which matter moves,
an example being flow of air through a pipe. '

83
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A process may be defined as the path of the succession of states through
which the system passes, such as the changes in velocity, elevation,
pressure, density, temperature, etc. The expansion of air in a cylinder
as the piston moves out and heat is transferred through the walls is
an example of a process. Normally, the process causes some change in
the surroundings, such as displacing it or transferring heat to or from
its boundaries. When a process can be made to take place in such a
manner that it can be reversed, i.e., made to return to its original state
without a final change in either the system or its surroundings, it is said
to be reverstble. In any actual flow of a real fluid or change in a mechani-
eal system, the effects of viscous friction, Coulomb friction, unrestrained
expansion, hysteresis, etc., prohibit the process from being reversible.
It is, however, an ideal to be strived for in design processes, and their
efficiency is usually defined in terms of their nearness to reversibility.

When a certain process has a sole effect upon its surroundings that is
equivalent to the raising of a weight, it is said to have done work on its
surroundings. Any actual process is irreversible. The difference between
the amount of work a substance can do by changing from one state to
another state along a path reversibly and the actual work it produces for
the same path is the irreversibility of the process. It may be defined
in terms of work per unit mass or weight or work per unit time. Under
certain conditions the irreversibility of a process is referred to as its
lost work,* that is, the loss of ability to do work because of friction and
other causes. In this treatise when losses are referred to, they mean
irreversibility or lost work and do not mean an actual loss of energy.

Ezample 3.1: A hydroelectric power plant has a head (difference in elevation
of headwater and tailwater) of 100 ft and a flow of 100 ft3/sec of water through
turbines, which rotate at 180 rpm. The torque in the turbine shaft is measured
to be 28,700 Ib-ft, and the horsepower output of the generator is 945. Determine
the irreversibility, or losses, and the reversible work for the system. ¢ = 32.17
ft/sec?.

The potential energy of the water is 100 ft-lb/1b,.. Hence for perfect conver-
sion the reversible work is 100 ft-lb/lb, or 100 X 100 X 62.4 = 6.24 X 10°
ft-lb/sec. The work done on the shaft by the water is

Tw = 28,700 X **2r = 5.41 X 10° ft-Ib/sec
The irreversibility through the turbine is then

(6.24 — 5.41) X 10°% = 83,000 ft-lb/sec
or
83,000
100 X 62.4
! The definitions of reversibility, irreversibility, and lost work just given are not

complete; reference to a text on thermodynamics is advised for a full discussion of
these concepts.

= 13.38 ft-1b/lbn
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The irreversibility through the generator is

5.41 X 105 — 945 X 550 = 21,000 ft-lb/sec
or )

21,000
100 X 624 — 3.37 {t-1b/lbs

Efficiency of the turbine %, is

100 - 13.38

and efficiency of the generator 5, is
86.62 — 3.37
"= "oz~ 0l%

3.2. Types of Flow. Flow may be classified in many ways, such as
turbulent, laminar; real, ideal; reversible, irreversible; steady, unsteady;
uniform, nonuniform. In this and the following section various types
of flow are distinguished.

Turbulent-flow situations are most preva.leht in engineering practice.
In turbulent flow the fluid particles (small molar masses) move in very
irregular paths, causing an exchange of momentum from one portion of
the fluid to another in a manner somewhat similar to the molecular
momentum transfer described in Sec. 1.3, but on a much larger scale.
The fluid particles can range in size from very small (say a few thousand
molecules) to very large (thousands of cubic feet in a large swirl in a
river or in an atmospheric gust). In a situation in which the flow could
be either turbulent or nonturbulent (laminar), the turbulence sets up
greater shear stresses throughout the fluid and causes more irreversibili-
ties or losses. Also, in turbulent flow, the losses vary about as the
square of the velocity, while in laminar flow, they vary as the first power
of the velocity.

In laminar flow, fluid particles move along smooth paths in laminas, or
layers, with one layer gliding smoothly over an adjacent layer. Laminar
flow is governed by Newton’s law of viscosity [Eq. (1.1.1) or extensions
of it to three-dimensional flow], which relates shear stress to rate of
angular deformation. In laminar flow, the action of viscosity damps
out turbulent tendencies (see Sec. 5.3 for criteria for laminar flow).
Laminar flow is not stable in situations involving combinations of low
viscosity, high velocity, or large flow passages and breaks down into
turbulent flow. An equation similar in form to Newton’s law of viscosity
may be written for turbulent flow:

T = ﬂgg (3.2.1)
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The factor 5, however, is not a fluid property alone but depends upon the
fluid motion and the density. It is called the eddy viscosity.
In many practical flow situations both viscosity and turbulence con-

tribute to the shear stress:

r= (u+7) ?iiyt : (3.2.2)

Experimentation is required for determination of this type of flow.

An ideal fluid is frictionless and incompressible and should not be
confused with a perfect gas (Sec. 1.6). The assumption of an ideal fluid
is helpful in analyzing flow situations involving large expanses of fluids,
as in the motion of an airplane or a submarine. A frictionless fluid is
nonviscous, and its flow processes are reversible. |

The layer of fluid in the immediate neighborhood of an actual flow
boundary that has had its velocity relative to the boundary affected
by viscous shear is called the boundary layer. Boundary layers may be
Iaminar or turbulent, depending generally upon their length, the viscosity,
the velocity of the flow near them, and the boundary roughness.

Adiabatic flow is that flow of a fluid in which no heat is transferred to
or from the fluid. Reversible adiabatic (frictionless adiabatic) flow is
called isentropic flow.

Regardless of the nature of the flow, all flow situations are subject to
the following relationships, which may be expressed in analytic form:

a. Newton’s laws of motion must hold for every particle at every
instant.

b. The continuity relationship, i.e., the law of conservation of mass.

¢. The first and second laws of thermodynamics.

d. Boundary conditions, analytical statements that a real fluid has
zero velocity relative to a boundary at a boundary or that ideal fluids
cannot penetrate a boundary.

Other relations and equations may enter, such as an equation of state
or Newton’s law of viscosity.

3.3. Definitions. To proceed in an orderly manner into the analysis of
fluid flow requires a clear understanding of the terminology involved.
Several of the more important technical terms are defined and illustrated
in this section.

Steady flow occurs when conditions at any point in the fluid do not
change with the time. For example, if the velocity at a certain point is
10 ft/sec in the -+z-direction in steady flow, it remains exactly that
amount and in that direction indefinitely. This can be expressed as
ov/dt = 0, in which space (x, y, z coordinates of the point) is held
constant. Likewise, in steady flow there is no change in density p,
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pressure p, or temperature 7, with time at any point; thus

dp _ ap'_ oT
a_t"o at =0 57 =0

In turbulent flow, owing to the erratic motion of the fluid particles,
there are always small fluctuations occurring at any point. The defini-
tion for steady flow must be generalized somewhat to provide for these
fluctuations. To illustrate this, a plot of veloeity against time, at some
point in turbulent flow, is given in
Fig. 3.1. When the temporal mean °

velocity
H
vy = }'[ v dt v
t Jo

indicated in the figure by the hori-
zontal line, does not change with the
time, the flow is said to be steady.
The =ame generalization applies to Time

density, pressure, temperature, etc., F1a. 3.1. Velocity at a point in steady tur-
when they are substituted for v in  nylent flow.

the above formula.

The flow is unsteady when conditions at any point change with the time,
ov/ot # 0. Water being pumped through a fixed system at a constant
rate is an example of steady flow. Water being pumped through a fixed
system at an increasing rate is an example of unsteady flow.

Uniform flow oceurs when at every point the velocity vector is identical
(in magnitude and direction) for any given instant, or, in equation form,
dv/ds = 0, in which time is held constant and &8s is a displacement in any
direction. The equation states that there is no change in the velocity
vector in any direction throughout the fluid at any one instant. It states
nothing about the change in velocity at a point with time.

In flow of a real fluid in an open or closed-conduit, the definition of
uniform flow may also be extended in most cases even though the velocity
vector at the boundary is always zero. When all parallel cross sections
through the conduit are identical (i.e., when the conduit is prismatic)
and the average velocity at each cross section is the same at any given
instant, the flow is said to be uniform.

Flow such that the velocity vector varies from place to place at any
instant (9v/ds s 0) is nonuniform flow. A liquid being pumped through
a long, straight pipe has uniform flow. A liquid flowing through a
reducing section or through a curved pipe has nonuniform flow.

Examples of steady and unsteady flow and of uniform and nonuniform
flow are: liquid flow through a long pipe at a constant rate is steady uni*
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form flow; liquid flow through a long pipe at a decreasing rate is unsteady
uniform flow; flow through an expanding tube at a constant rate is
steady nonuniform flow; and flow through an expanding tube at an increas-
ing rate is unsteady nonuniform flow.

One-dimensional flow neglects variations or changes in velocity, pres-
sure, ete., transverse to the main flow direction.. Conditions at a cross
section are expressed in terms of average values of velocity, density, and
other properties. I'low through a pipe, for example, may usually be
characterized as one-dimensional. Many practical problems may be
haridled by this method of analysis, which is much simpler than two-
and three-dimensional methods of analysis. In two-dimensional flow
all particles are assumed to flow in parallel planes along identical paths
in each of these planes; hence, there are no changes in flow normal to
these planes. The flow net, developed in Chap. 7, is the most useful
method for analysis of two-dimensional-flow situations. Three-dimen-
sional flow 1s the most general flow in which the velocity components
u, v,-w in mutually perpendicular directions are functions of space coordi-
nates and time z, y, 2, and . Methods of analysis are generally com-
plex mathematically, and only simple geometrical flow boundaries may
be handled.

A streamline is a continuous line drawn through the fluid so that it has
the direction of the velocity vector at every point. There can be no flow
across a streamline. Since a particle moves in the direction of the stream-
line at any instant, its displacement 8s, having components 3z, 8y, 6z, has
the direction of the velocity vector q that has components u, v, w in the
z~, y-, z-directions, respectively. Then

states that the corresponding components are proportional and hence
that ds and q have the same direction. Expressing the displacements in
differential form,

dr _ dy _ dz (3.3.1)

produces the differential equations of a streamline. Equations (3.3.1) are
two independent equations. Any continuous line that satisfies them is a
streamline.

In steady flow, since there is no change in direction of the velocity
vector at any point, the streamline has a fixed inclination at every point
and is, therefore, fired in space. A particle always moves tangent to the
streamline; hence, in steady flow the path of a particle is a streamline. In
unsteady flow, since the direction of the velocity vector at any point may
change with time, a streamline may shift in space from instant to instant.
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A particle then follows one streamline one instant, another one the next
instant, and so on, so that the path of the particle may have no resem-
blance to any given instantaneous streamline.

A dye, or smoke, is frequently injected into a fluid in order to trace its
subsequent motion. The resulting dye, or smoke, trails are called streak
lines. In steady flow a streak line is a streamline and the path of a
particle.

Streamlines in two-dimensional flow may be obtained by inserting
fine, bright particles (aluminum dust) into the fluid, brilliantly lighting
one plane, and taking a photograph of the streaks made in a short time
interval. Tracing on the picture con-

tinuous lines that have the direction - —

of the streaks at every point portrays

the streamlines for either steady or un- /N
steady flow.

In illustration of an incompressible

two-dimensional flow, as in Fig. 3.2,

the streamlines are drawn so that per \/
unit time the volume flowing between \/’_
adjacent streamlines is the same, if T~

unit depth is considered normal to the
plane of the figure. Hence, when the
streamlines are closer together, the. ve-
locity must be greater, and vice versa.
If v is the average velocity between two adjacent strea,mhnes at some posi-
tion where they are h apart, the flow rate Aq is

Ag = vh (3.3.2)

Fia. 3.2. Streamlines for steady flow
around a cylinder between parallel
walls.

At any other position on the chart where the distance between stream-
lines is hy, the average velocity is vy = Ag/h;. By increasing the number
of streamlines drawn, i.e., by decreasing Aq, in the limiting case the veloc-
ity at a point is obtained.

A stream tube is the tube made by all the strcamlines passing through a
small, closed curve. In steady flow it is fixed in space and can have no
flow through its walls because the velocity vector has no component
normal to the tube surface.

Ezample 3.2: In two-dimensional, incompressible, steady flow around an airfoil
the streamlines are drawn so that they are 1 in. apart at a great distance from the
airfoil where the velocity is 120 ft/sec. What is the velocity near the airfoil
where the streamlines are 0.75 in. apart?

The flow per unit width is the same at both positions; hence

120 X 1 = » X 0.75
and v = 120/0.75 = 160 ft/sec.
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3.4. Continvity Equaton. The continuity equation may take several
forms, each appropriate for a certain class of problems, but they all
derive from the general principle of conservation of mass. Iirst, a general
conservation of mass relation is developed, which states analytically
that the net mass efflux from any control volume! is just equal to the
time rate of decrease of mass within the control volume. The con-
tinuity equation applies to real fluids as well as to ideal fluids.

Consider a small finite volume element §¥ (Fig. 3.3a). An element, of
area dA of its surface may be expressed as a vector quantity. The
vector is drawn normal to the area clement, its length is proportional to
the magnitude of the area element, and the sense is such that the vector
is positive when drawn in the outward direction from the volume cle-
ment. The fluid-velocity vector at some point in the area element is v,

dA

Fic. 3.3a. Notation for flow through a  Fic. 3.3b. Decomposition of large volume
surface. into clements.

and the density is p. Then the rate of mass outflow through the area
element is pv + dA = pr dA cos e, as v cos a is the component of velocity
normal to the area element, and this is the component that accounts for
flow through the arca. Where the angle « is greater than 90°, mass flux
is into the volume element. By integrating over the surface area of the
small volume, the net mass eflux (mass outflow per unit time) is obtained
Jpv-dA. Since this is a small volume element, the density may be
considered as given by its value at any point within the volume element.
Then the time rate of decrease of mass within the element is — (/) (p §¥)
and conservation of mass takes the form

] ov-dh = — 2 (ps¥) (3.4.1)
area of element ;

To extend this relationto any size control volume (Fig. 3.3b) (remem-
bering that control volumes are fixed in space), the volume is broken

1 The control volume, as used here, is a fixed region in space through which matter
flows.
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down into a large number of very small control volume elements that
completely comprise the volume. By applying Eq. (3.4.1) to each
clement and then summing up over all the elements, the left-hand side
becomes the integral over the external surface of the control volume,
because all internal surface elements occur in pairs that just cancel; i.e.,
flux out of one internal area element is the flux into the adjacent element.

Hence,
d
/ pv - dA = — [ Y (p d¥) (3.4.2)
area of control
oorlltrol volume
volumaoe

This is a rate equation that applics at any instant. Since the volume
is fixed in space, ¥ is independent of ¢ and

a [y
pv-dA = — Lay (3.4.3)
area of control at
control volume
volume

I'rom this general law of conservation of mass, specific continuity
equations may be derived.

Fic. 3.4. Steady flow through a stream TFia. 3.5. Collection of stream tubes he-
tube. tween fixed boundaries,

For steady flow, dp/d¢ = 0 and Eq. (3.4.3) becomes

ov-dA = 0 (3.4.4)

/::ontrol volume area

which states that the net mass rate of inflow into any control volume in
steady flow must be zero. By applying Eq. (3.4.4) to a stream tube

(Iig. 3.4), there is mass flow only through the cross sections 1 and 2;
hence

P11 oA, = pave 645
Summing up the mass flux over a collection of stream tubes (Fig. 3.5),

p1iViAr = pyVads = m (3.4.5)
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if p and V represent average density and velocity over the flow area A -
at each section, m is the mass per second flowing.

Example 3.3: A pipeline is carrying 0.50 Ib./sec air. At section 1, where the
diameter is 6.0 in., p = 40 psia, ¢ = 60°, and at section 2, where the diameter is
' 8.0in., p = 30 psia and t = 80°F. Find the velocity at each section.

_ P 40X 144
P1 = RT, = 53.3(460 + 60)

= 0.208 lb,,/ft?

and
_ P 30 X 144
P = RT, ~ 53.3(460 + 80)
From Eq. (3.4.5)

= 0.150 lb,./ft?

" 0.50
Vi= oA, = 02087/16 — 12.25 ft/sec
Ve = 050 _ _ .56 ft/sec

27 [ 2Y: P = 0150‘"’/9
For incompressible flow, p = constant and Eq. (3.4.3) becomes
[v-dA =0 (3.4.6)

which states that the net volume outflow per unit time is zero (this
implies that the control volume is filled with fluid at all times). Applied
to a collection of stream tubes, as in Fig. 3.5,

Q=Vid, = VA, (3.4.7)

in which @, the discharge, is the volume per unit time flowing and V' and
Vs are the average velocities at cross sections 1 and 2, respectively.

Ezample 3.4: At section 1 of a pipe system carrying water the velocity is 3.0
ft/sec and the diameter is 2.0 ft. This same flow passes another section 2 where
the diameter is 3.0 ft. Find the discharge and the velocity at section 2.

From Eq. (3.4.7)
Q = V,A; = 3.00r = 9.42 cfs
and

V=" = 55— = 1.33 ft/sec"

For two- and three-dimensional flow studies, differential expressions
of the continuity equation are used. For three-dimensional cartesian
coordinates, Eq. (3.4.3) is applied to the volume element éx 8y 6z of
Fig. 3.6 with center at (x,y,z) where the velocity components in the
z, y, £-directions are u, v, w, respectively, and p is the density. Consider
first the flux through the pair of faces normal to the z-direction. On the
right-hand face the flux outward is

6
[pu + aa—x (pu) —2{] by oz
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" gince both p and u are assumed to vary continuously throughout the
fluid. In the expression, pu 8y 6z is the mass flux through the center
face normal to the z-axis.. The second term is the rate of increase of
mass flux with respect to z, multiplied by the distance dx/2 to the right-
hand face. Similarly on the left-hand

face the flux into the volume is 4
: A
d & T —
-2 ot ! [
[pu 3z (P¥) 2]61/ 8z O Dbt
ad ; (|
since the step is —éz/2. The net /)___+/_;'___,_
flux out through these two faces is ¥ 82
9 (pu) ox 8y 62
oz p Y

The other two directions yield simi-
lar expressions; hence the net out-
flow is

é a d F16. 3.6. Time rate of mass flow through
[5.; (pu) + a_y (pv) + P (P’w)] oz Oy bz a face.

which takes the place of the left-hand side of Eq. (3.4.3). The right-
hand side of Eq. (3.4.3) becomes, for an element,

dp

—(—ﬁﬁxayaz

By equating these two expressions and after dividing through by the
volume element and taking the limit as éx éy 8z approaches zero, the
continuity equation at a point becomes

adp

2 (o) + o) = — o (3.4.8)

9y
which must hold for every point in the flow, steady or unsteady, com-

pressible or incompressible. For incompressible flow, however, it
simplifies to

J
Ey (pu) +

ou ov ow
A T A S 3.4.9
Iz -+ E + 52 0 ( )
Equations (3.4.8) and (3.4.9) may be compactly written in vector nota-
tion. By using fixed unit vectors in-z, y, z-directions, i, j, k, respectively,
the operator V (pronounced “del’”’) is defined as

0

o d
=i= § — — 3.4.10
v la:c+16y+_kaz ( )
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and the velocity vector q is given by

q = iu + j» + kw (3.4.11)
Then

. 0 . 0 d . .
V- {pq) = (155 tig, + k&) * (ipwe + jov + kpw)
d 0 d
= 7 (pu) + ;3?/ (pv) + Fy (pw)

becausei-i = 1,i+j = 0, ete. Equation (3.4.8) becomes

3p

- (3.4.12)

V:(pq) = —

and Eq. (3.4.9) becomes _
V " q = 0 (3-4.1‘3)

The dot product V - q is called ‘the divergence of the velocity vector q.
In words it is the net mass efflux at a point and must be zero for incom-
pressible flow.  See Sec. 7.2 for further discussion of the operator V.

In two-dimensional flow, generally assumed to be in planes parallel
to the xy-plane, w = 0 and there is no change with respect to z, so
d/9z = 0, which reduces the three-dimensional equations given for
continuity. '

Example 3.5: The velocity distribution for a two-dimensional incompressible
flow is given by
. ' ) y
Zxrgyg UT T3

12 4 2
Show that it satisfies continuity.
In two dimensions the continuity equation is

U= —

du | ov
o Ty =
Then
du 1 2z2 v 1 2y*

&“—xz+y2+(xz+gé)2 5§=—x2+y2+‘(12+‘372_)_3
and their sum does equal zero, satisfying continuity.

3.5. Euler's Equation of Motion along a Streamline. In addition to
the continuity equation, other general controlling equations are Fuler’s
equation, Bernoulli's equation, the momentum equations, and the first
and second laws of thermodynamics. In this section Euler’s equation is
derived in differential form. In the following section it is integrated to
obtain Bernoulli’s equation. The first law of thermodynamics is then
developed for steady flow, and some of the interrelations of the equations
are explored, including an introduction to the second law of thermo-
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dynamics. In Chap. 7 Euler’s equation is derived for general threé-
dimensional flow. Here it is restricted to steady flow along a streamline.
In Fig. 3.7 a prismatic-shaped fluid
particle of mass p 64 8x is moving along
q streamline in the - s-direction. To
simplify the development of the equa-
tion of motion for this particle it is as-
sumed that the viscosity 1s zero, or that
the fluid is frictionless. This eliminates
all shear forces from consideration, leav-
ing as forces to take into consideration
the body force due to the pull of gravity .
and surface forees on the end areas of
the particle. The gravity forceis pg 64
6s. On the upstream face the pressure
force is p 84 in the +s-direction; on the
downstream faceitis[p + (9p/9s)ds] 64 Fig. 3.7. Force components on a
. ] ; fluid particle in the dlI‘PCtIOH of the
and acts in the —s-direction. Any gtreamline.
forces on the sides of the clement are
normal to s and do not enter the equation. The body-force component
in the s-direction is —pg 6A 6s cos 8. By substituting into Newton’s sec-
ond law of motion, Zf, = ém a,,

0
p é6A —(p-l——a—i_)as)éA — pg 8A 8scos § = p A és a,

a. is the acceleration of the fluid particle along the streamline. After
dividing through by the mass of the particle, p 84 8s, and simplifying,

10

s -I—gcosﬂ-—i—as: (3.5.1)

8z 1s the increase in elevation of the particle for a displacement és.
From Fig. 3.7,
z 0z
Fr cos 8 = 35
The acceleration a, is de/dt.  In general, if » depends upon s and time ¢,
v= 1"('35{'))

dy = ——d +@dt

s becomes a function of ¢ in describing the motion of a particle, so one
may divide by dt, yielding

ow=g=RD4 2 (3.5.2)
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To simplify the equation of motion the assumption is now made that
the flow is steady, that is, dv/8t = 0. Since ds/dt =

v
ag = 0 5_8- (353)
By use of this expression and that for cos 8, Eq. (3.5.1) becomes
14dp dv
P 68 + + v-a—s =0 (354)

With p, p, v, and z not functions of ¢, but of s only, the partial differentials
may be replaced by total differentials:

%?+gdz+vdv=0 (3.5.5)

This is Euler’s equation of motion and requires three assumptions:

(1) motion along a streamline, (2) frictionless fluid, and (3) steady flow.

It may be integrated if p is known as a function of p or is a constant.
3.6. The Bernoulli Equation. Integration of Eq. (3.5.5) yields

2

gz +v§ + /djp = constant (3.6.1)
if p is a function of p only. The constant of integration (called the
Bernoulli constant) in general varies from one streamline to another but
remains constant along a streamline in steady, frictionless flow (with
no pump or turbine involved). When p is some explicit function of p
such as p = ppo/po for isothermal flow, the integral can be evaluated.

By assuming that the fluid is incompressible, Eq. (3.6.1) becomes

gz—l— + = constant, (3.6.2)

This is Bernoulld’s equation for incompressible flow. It is for steady
flow of a frictionless, incompressible fluid along a streamline. These four
assumptions are needed and must be kept in mind when applying this
equation. Each term has the dimensions (L/T)? or the units ft2/sec?,
which 1s equivalent to ft-lb/slug:

ft-lb _ ft-lb ft2
slug ~ lb-sec?/ ft  sect

as 1 slug = 1 lb-see?/ft. Therefore Eq. (3.6.2) is energy per unit mass.
By dividing it through by g,

z+ + = constant (3.6.3)
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since ¥y = pg, or
?)12

b p L v P
21+29 + - 22‘|"zg +; (3.6.4)

it may now be interpreted as energy per unit weight, or ft-1Ib/Ib. This
form is particularly convenient for dealing with liquid problems with a
free surface. By multiplying Eq. (3.6.2) by p

pv? .
vz + =~ + p = constant (3.6.5)

which is convenient for gas flow, since elevation changes are frequently
unimportant and yz may be dropped out. In this form each term is
ft-1b/ft? or energy per unit volume. '
Each of the terms of Bernoulli’s equation may be interpreted as a form -
of energy. In Eq. (3.6.2) the first term is potential energy per unit

)

I

L

i

- — - - — - —_—— — =

F1c. 3.8. Potential encrgy. Fic. 3.9. Work done by sustained pressure
force, '

mass. With reference to I'ig. 3.8 the work nceded to lift W Ib z ft is We.
The mass of W 1b weight is W/g slugs; hence the potential energy per
slug is )
Wz _

Wig ¥

The next term, #2/2, is interpreted as follows: Kinetic energy of a particle
of mass is ém v2/2. To place this on a unit mass basis, divide by om;
thus v2/2 1s ft-Ib/slug kinetic energy.

The last term p/p is the flow work or flow energy per unit mass. Flow
work is net work done by the fluid clement on its surroundings while
it is lowing. For example in Iig. 3.9, imagine a piston placed at the
opening from the reservoir. The force on the piston would be pA.
For flow through the length 8 the work done on the piston is pA él.
The mass of fluid leaving the reservoir is pA 8l; hence the work per
unit mass is p/p. The three energy terms in Eq. (3.6.2) are referred to
as the avatlable energy.
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Ezample 3.6: Show that the cnergy per unit mass is everywhere constant in a
reservoir.
For any point A in the reservoir (Fig. 3.10) the energy is given by Eq. (3.6.2).

LAy _pX -
grtg+ =g+ 0+ U —y) =gl

Since y drops out of the equation, the energy per unit mass is gf/ for all locations.

By applying Eq. (3.6.4) to two points on a stre_amline,

D1 ?)1 Vo~ .
z1 + 5 + 5 39 -I— —I— (3.6.6)

or
— N S
zl__z?+p1 P2+11 ?).:O
¥ 2g

This equation shows that it is the difference in potential energy, flow
energy, and kinetic energy that actually has significance in the equation.
Thus, 21 — 22 is independent of the
particular elevation datum, as it is
the difference in elevation of the two
points. Similarly (pi/v) — (p2/7v)
is the difference in pressure heads ex-
pressed in feet of the fluid flowing
and is not altered by the particular
pressure datum selected. Since the
velocity terms are not linear, their
F1G. 3.10. Liquid reservoir. datum is fixed.

Arbitrary y datum

Ezample 3.7: Water is flowing in an open channel at a depth of 4 ft and a
velocity of 8.02 ft/sec. It then flows down a chute into another open channel,
where the depth is 2 ft and the velocity is 40.1 ft/sec. Assuming frictionless
flow, determine the difference in elevation of the channel floors.

If the difference in elevation of floors is y, then Bernoulli’s equation from the
upper water surface to the lower water surface may be written

Vit | P _Ve pe
"§g“+?+z1—2g+,y+zz

V, and V, are average velocities. With gage pressure zero as datum and the
floor of the lower channel as elevation datum, thenz, = y + 4,2: = 2, V, = 8.02,
V2 = 401, P1L= P2 = 0, and

(8.02)2
64.4

@401y
+0+y+4=-g4 +0+2

and y = 22 ft.

Kinetic-energy Correction Factor. In dealing with flow situations in
open- or closed-channel flow, the so-called “one-dimensional” form of
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analysis is frequently used. The whole flow is considered to be one
large stream tube with average velocity V at each cross section. The
_kinetic energy per unit weight given by V2/2¢, however, is not the aver-
age of v2/2g taken over the cross section. It is necessary to compute a
correction factor o for V2/2¢, so that aV?/2g is the average kinetic
energy per unit weight passing the seetion. Referring to I'ig. 3.11, the
kinetic energy passing the cross section per unit time is

[ —vdA

in which y» 84 is the weight per unit time passing 84 and »?/2g is the
kinetic encrgy per unit weight. By equating this to the kinetic energy
per unit time passing the section, in terms of aV?2/2¢

aH——'yVA_'y[——dA (
2 42 s

YUOA = - 2D
By solving for «, the kinetic-energy correction factor, -V —»

1 v \?3 :
a = ?TL(T/_) dA (3.6.7) a

://‘_ .

Bernoulli’s equation becomes

21+ + V;___2+p2+a2

Fic. 3.11. Velocity
Vo2 digtribution and av-
(3.6.8)  erage velocity.

For laminar flow in a pipe, a« = 2, as shown in Sec. 5.2. For turbulent
flow! in a pipe, a varies from about 1.01 to 1.10 and is usually neglected
except for precise work.

Example 3.8: The velocity distribution in turbulent flow in a pipe is given
approximately by Prandtl’s one-seventh power law,

v (¥ )%
VYmax - Ty
with y the distance from the pipe wall and ry the pipe radius. Find the kinetic-

energy correction factor.
The average velocity V is expressed by

wrotV = 27 fom rv dr

in which r = ro — 3. By substituting for r and v,

ro 5 98
wro?V = 2% Vmax fo (ro — y) (1%)) dy = T1yWemax 120

1'V. L. Streeter, The Kinetic Energy and Momentum Correction Factors for Pipes
and Open Channels of Great Width, Civil Eng., vol. 12, no. 4, pp. 212-213, 1942.
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or

98 v 120
V = ﬁo Pmax k74 (ro)

By substituting into Eq. (3.6.7)

el o (R (O =2 () S = (2) a0 - 100

M odiﬁcation of Assumptions Underlying Bernoulli’s Equation. Under
special conditions each of the four assumptions underlying Bernoulli’s
equation may be waived.

a. When all streamlines originate from a reservoir, where the energy
content is everywhere the same, the constant of integration docs not
change from one streamline to another and points 1 and 2 for application
of Bernoulli’s equation may be selected arbitrarily, i.e., not necessarily
on the same streamline.

b. In the flow of a gas, as in a ventilation system, where the change
in pressurc is only a small fraction (a few per cent) of the absolute
pressure, the gas may be considered incompressible. Equation (3.6.6)
may be applied, with an average specific weight ~.

¢. For unsteady flow with gradually changing conditions, such as the
emptying of a reservoir, Bernoulli’s equation may be applied without
appreciable error.

d. All real fluids have viscosity, and during flow, shear stresses result
that cause the flow to be irreversible. Bernoulli’s equation may be
applied to a real fluid by adding a term to the equation that accounts for
losses. By letting 1 be an upstream point and 2 a downstream point
on a streamline, the available energy per unit weight at 1 equals the
available energy per unit weight at 2 plus all the losses between the

~two points.
E, = E; 4 losses;_; _ (3.6.9)

This assumes no fluid machine such as a pump or turbine between the
two points. Expanding Eq. (3.6.9),

2 2
z1 + P + ﬁ = 2o + p: + —T—/?— + losses;—» (3.6.10)
Y 2 Yy 2
When a pump adds energy E, per unit weight between the two points,
V.2
71+ = p1 —|— —l— E,=2+ %—2 + 2—; + losses;—:  (3.6.11)
For a turbine, replace Ep by —Er, the encrgy per unit weight extracted

by the turbine. The nature of the losses varies with the application, but
experimental data are usually required.
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Ezxample 3.9: (a) Determine the velocity of eflux from the nozzle in the wall
of the reservoir of Fig. 3.12. (b) Find the discharge through the nozzle. Neglect
losses.

a. The jet issues as a cylinder with
atmospheric pressure intensity around
its periphery. The pressure along its
center line is at atmospheric pressure for
all practical purposes. Bernoulli’s equa-
tion is applied between a point on the
water surface and a point downstream
from the nozzle,

v
2g

P _Ve o p
+_Y+zl 2g+7

Fic. 3.12. Flow from a reservoir.

With the pressure datum as local atmos-
pheric pressure, p, = p; = 0; with the elevation datum through point 2, z, = 0,
2z = H. The velocity on the surface of the reservoir is zero (practically); hence

2
0+0+H=Ig;—+0+0

and
Vo = v/9gH = v/2 X 322 X 16 = 32.08 ft/sec

which staﬁes that the velocity of efflux is équal to the velocity of free fall from the
surface of the reservoir. This is known as Torricelli’s theorem.

b. The discharge Q is the product of velocity of eflux and area of stream,
l’
36

Equation (3.6.11) may be written on a unit mass basis:

Q = AV, = 7, 32.08 = 2.80 cfs

V 2 2 .
or + B B gy = ek B S ooy (3612)

E, and losses are now per unit mass of fluid flowing.

Fic. 3.13. Venturi meter.

Ezample 3.10: A venturi meter, consisting of a converging portion followed by a
throat portion of constant diameter, and then a gradually diverging portion, is
used to determine rate of flow in a pipe (Fig. 3.13). The diameter at section 1
is 6.0 in. and at section 2 is 4.0 in. Neglecting losses, find the discharge through
the pipe when p; — pz = 3 psi and oil, sp gr 0.90, is flowing.
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From the continuity equation, kEq. (3.4.7)

Q = A1V1 = A:Vg = 1—1; .Vl = %172

in which @ is the discharge (volume per unit time flowing). By applying Eq.
(3.6.4) for z; = z,, |

pr— pr =3 X 144 = 432 1b/ft2 vy = 0.90 X 62.4 = 56.16 Ib/ft?

or
432 Q1

56.16 = 2 2¢ [(30)7 — (16)7]

Solving for discharge, @ = 2.20 cfs (cubic feet per second).

Bernoulli’s equation, with its four assumptions—(a) frictionless,
(b) along a streamline, (c) steady, and (d) incompressible --1s not a com-
plete energy equation in the sense of the first law of thermodynamies.

8 in. diam+ =~ =4 8ft

]

Fi6. 3.14. Siphon.

It is an available energy equation, tabulating only those forms of energy
that could be used to produce work, as through a turbine. When a
corrective term is applied to the equation to permit it to be used with
real, viscous fluids, as in Eq. (3.6.10), the available energy decreases in
the downstream direction, owing to irreversibilities or losses. A plot
showing how the available energy changes along a streamline is called
the energy grade line (see Scc. 10.1). A plot of the two terms z 4+ p/y
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along a streamline is called the hydraulic grade line. The energy grade
line always slopes downward in real fluid flow, except at a pump or other
source of energy. Reductions in energy grade line are referred to as
head losses also. '

Example 3.11: The siphon of Fig. 3.14 is filled with water and discharging at
2.80 cfs. Find the losses from point 1 to point 3 in terms of the velocity head
V2/2g. Find the pressure at point 2 if two-thirds of the losses occur between
points 1 and 2.

Bernoulli’s equation applied to points 1 and 3, with elevation datum at point 3
and gage pressure zero for pressure datum, is

7.2 2
I—1-I-&“I-o%=—]/'—‘?—-I-@-f-Z.—,-I—losses
29 v 29 v

or
K15

0+0+4 "5

YWiotos
g

in which the losses from 1 to 3 have been expressed as KV 3%/2¢.  From the

discharge

Q  2.80

A 7/9

and V32/2¢ = 1.0 ft. Hcnce K = 3 and the losses are 31732, 2¢ or 3 ft-1b b,
Bernoulli’s equation applied to points 1 and 2, with losses 21732 /2g = 2.0 {t, is

Vs = = 8.02 ft/scc

0+0+0=1+248+2

The pressure at 2 is —11 ft of water, or 4.76 psi vacuum.

Erample 3.12: The device shown in I'ig. 3.15 is used to determine the veloeity
of liquid at point 1, It is a tube with its lower end directed upstream and its
other leg vertical and open to the atmos-
phere.  The impact of liquid against
the opening 2 forces liquid to rise in the
vertical leg to the height Az above the
free surface. Determine the velocity
at 1.

Point 2 is a stagnation point, where
the velocity of the flowis reduced to zero.
This creates an impact pressure, called Fia. 3.15. Pitot tube.
the dynamie pressure, which forees the
fluid into the vertical leg. By writing Bernoulli’s equation between points 1 and
2, neglecting losses, which are very small,

2 b
%L+E+0:0+E;+o
g Y Y

p1/7 is given by the fluid above point 1 and equals & ft of fluid flowing. p:/‘)_f E
given by the manometer as & + Az, neglecting capillary rise.  After substituting
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these values into the equation, V,?/2¢g = Az and
Vi= V2 Az

This is the pitot tube in a simple form.

Examples of compressible flow are given in Chap. 6.

3.7. Steady-flow Form of First Law of Thermodynamics. Entropy.
The principle of conservation of energy may be applied to steady flow
through a control volume. This approach permits a special form of the
first law of thermodynamics to be developed. It is helpful in under-
standing the nature of losses when com-
pared with Euler’s equation.

In the control volume of Fig. 3.16, con-
tained between sections 1and 2, an en-
ergy balance is taken that accounts for all
work done, heat transferred, and energy
brought into or out of the control volume.
It 1s necessary to introduce the concept
of internal energy, which is a fluid prop-
erty. The internal energy comprises
the molecular energy of the substance.
Arbitrary datum . In the absence of nuclear, electrical, sur-
face-tension, and magnetic effects, the in-
ternal energy of a perfect gas may be
shown to be a function of temperature
only. It is a measure of molecular energy, as distinguished from the
molar forms of energy, kinetic and potential.

When internal energy is expressed as u per unit mass, the kinetic,
potential, and internal energy entering section 1 of ¥Fig. 3.16 is

Fic. 3.16. Control volume for
steady flow.

V.2
gz + —21— + U1
and similarly the energy per unit mass leaving at section 2 is
V 2
gz: + —2‘2— + U2

The flow work done per unit time at section 1 in.forcing the fluid into
the control volume is p1A4:V1, and the mass per unit time m is p1A4,Viy;
hence the flow work per unit mass is p1A,1V1/pA.1Vy = pi/p1.  Similarly
the flow work at section 2 is ps/ps. Heat transfer to the control volume
is Qu per unit time. Per unit mass heat transfer gy is

Q Qn

Mmoo AV,
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This term is considered positive if heat is transferred into the control
volume and negative if transferred to the surroundings.

The work done by the fluid within the control volume and transmitted
out by a turning shaft, electric power lines, or other means is W per
unit time, and the work per unit mass is
w_ W

W= ~— =
m 14V,

When all the terms are assembled,
V 2 V 2
gzs+—1+u1+qf1+7—3—1=gz2+—2+u2+23+w (3.7.1)
2 P1 2 P2

This is the first law of thermodynamics for steady flow. In case a pump is
within the control volume, w becomes negative. This equation is valid
for flow of real fluids, regardless of losses within the control volume.

It is informative to compare the Euler equation (3.5.5) with the first
law when each is expressed in differentfal form, i.e., when sections 1 and 2
are close together. Equation (3.7.1) becomes

dgn = g dz + Vdv+d§+du+dw (3.7.2)

Equation (3.5.5) is for a frictionless fluid without a work term. When
a term for work done is included (as by an infinitesimal turbine),

gdz + VdV-i—d?p-i—dw=O (3.7.2a)
After this equation is subtracted from Eq. (3.7.2),
qu=d£+du-—(?=du+pd1p (3.7.3)

Now, for reversible flow, entropy s per unit mass is defined by

ds — (dfl{ﬂ)m (3.7.4)

in which T is the absolute temperature. Entropy is shown to be a fluid
property in texts on the subject. In this equation it may have the
units Btu per slug per degree Rankine, or foot-pounds per slug per degree
Rankine, as heat may be expressed in foot-pounds (1 Btu = 778 ft-lb).
Since Eq. (3.7.3) is for a frictionless fluid (reversible), dg; may be elimi-
nated from Eqgs. (3.7.3) and (3.7.4).

Tds = du + pd% (3.7.5)
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which 18 a very important thermodynamic relation. Although it was
derived for a reversible process, since all terms are thermodynamic
properties, it must also hold for irreversible flow cases as well. By use of
Eq. (3.7.5) and various combinations of Euler’s equation and the first
law, a cledrer understanding of entropy and losses is gained.

3.8. Interrelationships between the First Law and Euler's Equation.
For a reversible flow, from Eq. (3.7.4),

T dS = dq;;

it 1s seen that the entropy increases if heat is added and it decreases if
heat is transferred from the control volume. For the reversible, adiabatic
case (i.e., isentropic flow) dqy = 0 and ds = 0, so the entropy of the fluid
per unit mass flowing remains constant.

To examine the relationships for flow of a real fluid, a loss term is
included in Kuler's equation in differential form, similar to Eq. (3.7.2a),

dw + d—:) +gdz + VdV = —d (losses) (3.8.1)
When this equation is subtracted from the first.law {Eq. (3.7.2)],
d (losses) = du + pd% — dqy = T ds — dqy (3.8.2)

by use of Eq. (3.7.5). Now, for the adiabatic case (dgg = 0),
d (losses) = T ds and it is seen that entropy always increases owing to
irreversibilities. Also the adiabatic-flow process having the least change
in entropy has the least losses and is most efficient. By rewriting Eq.
(3.8.2)

T ds = dqy + d (losses) (3.8.3)

it is seen that entropy can never decrease in adiabatic flow, and that it
can decrease only when heat is transferred from the control volume.
It can increase, however, owing to addition of heat, to irreversibilities,
or to combinations of the two. Equation (3.8.3) is a consequence of the
second law of thermodynamics for steady flow. In Eq. (3.8.1) account 1s
taken only of losses in available energy. However, in Eq. (3.8.3),
which now includes thermodynamic terms, it must include losses due to
irreversible heat transfer, in order to satisfy Eq. (3.7.4).
For liquids d(1/p) = 0 and Eq. (3.8.2) becomes

d (losses) = du — dqu (3.8.4)

Hence losses, due to viscous or turbulent shear, may show up as an
increase in internal energy (i.e., increase in temperature) or may cause
heat transfer from the control volume.
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Two interesting flow cases® are (1) adiabatic flow of a real liquid through
a horizontal pipeline and (2) adiabatic flow of a perfect gas through a
horizontal pipeline. It is assumed that kinetic-energy changes along
the pipes are unimportant. In the first case d (losses) = du and the
internal energy and temperature must rise in a downstream direction.
In the second case, the first law [Eq. (3.7.1)] applied to the pipe at
entrance and exit yields

Each side of this equation is a combination of fluid properties and is
also a fluid property. It is given the name enthalpy and symbol h. For
a perfect gas k is a function of temperature only, and hence as A1 = h.,
Ty = T» and the flow must be isothermal. Therefore this is a case of
adiabatie, isothermal flow, with du and dgn equal to zero and

d (losses) = T'ds = pd (};)

The enfropy must increase in both cases, and the losses in the second
case cause a decrease in p. The term d (1/p) is of the form of a work
term and represents some of the energy of a unit mass of fluid in expand-
ing its volume. A

3.9. Linear Momentum Equation for Steady Flow through a Control
Volume. The linear momentum equation is first derived for steady flow
through a control volume for a given direction, the r-direction. In this
form, with direction specified, it is a scalar equation. The result, how-
ever, is easily extended to the y- and z-directions and then to the general
vector equation. Section 3.10 develops the linear momentum equation
for unsteady flow through a control volume, and in Sec. 3.11 the steady-
flow moment-of-momentum equation is developed.

Newton’s second law of motion for a particle may be written for the

z-component as

dv, d ém
Ti? + v, -Tif_ (391)

8f is the resultant x-component of force on the particle. When the equa-
tion is applied to a given mass element as it moves through the control
volume, &m 1s a constant and the last term drops out. The first term
on the right may be expanded to

dv,ds = o .
= e S T 3.9.2
o = om (as it at) (8.9.2)

as in Eq. (3.5.2). For steady flow, dv,/0t = 0. The mass element may

d
of . = 7 (v: 6m) = om

1 These examples were furnished by Prof. Gordon Van Wylen.
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conveniently ‘be written as p §Q §f, the mass flowing by any section of a
stream tube in steady flow. This yields

s

2 ds = p 3Q b, (3.9.3)

Gf : = poQ
Now, by integrating along the stream tube from its entrance to its exit
from the control volume (¥Fig. 3.17)

f. = p50Q [ e = p 8Q (V2 — V2,y) (3.9.4)

This equation may be summed up for all stream tubes passing through
the control volume, and since internal forces occur i1n equal and opposite
pairs that cancel, they drop out of the expression, leaving the resultant
z-component of force on the con-
trol volume due to both surface
and body forces. Equation (3.9.4)
becomes :

Fo= [pts, dQ — [pr.;, dQ@ (3.9.5)

in which the integrals are carried
out over those portions of the con-
trol volume surface where v, , and
vs, have positive nonzero values.
By use of the notation of Fig. 3.3, 8Q = v cos a dA with « the angle
between the normal to the surface area element and the velocity vector at
the element, the two integrals of Eq. (3.9.5) may be combined:

F, = [;rea o PV=v COS @ dA (3.9.6)

control
volume

Fi1c. 3.17. Control volume for derivation
of momentum equation.

In vector notation, this becomes

F, = [ PV - dA / (3.9.7)

control
volume

The y- and z-components are

Fy - [areai oil‘ LY - dA F; - .[areaé m; pU:v - dA (398)
caniro contro

volume volume

By addition of the component equations vectorially, the general, steady
linear momentum equation is obtained.

F = f _ (v dA) (3.9.9)

control
volume
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Practical Formulations of Momentum Equation. In some applications
p and v, are constant over the inlet and outlet sections of the control
volume. With V. the average velocity over a section, Eq. (3.9.5)
becomes

Fo= pQ(Van, — Vi) (3.9.10)

since for steady flow (pQ)in = (PQ)oue-

When the density i1s constant over the inlet section or the outlet
section of the control volume, one of the integrals of Eq. (3.9.5) may be
written (dropping subscripts)

pfv:dQ = pBV.Q (3.9.11)

in which 8 is called the momentum correction factor and V., is the average
r-component over the section. Since @ = AV, dQ = v dA, by solving for

B .
1 v Vs 1 v \?
B=1 f vv.M=a / ( Tf) 4 3919

because v./V, = v/V from Fig. 3.18. The value of 8 is never less than
1.0. For laminar flow in a round tube, 8 = 4. In turbulent flow in
pipes,! 8 varies from about 1.01 to
1.05. When the momentum equa-
tion is applied, efforts are made to
select the control volume so that the
in and out sections have uniform
veloecity and 8 = 1.

The momentum equations for
constant velocity over the sections,
for the y- and z-directions, are

Fy = pQ(Vipe = Vi) (3.9.13)

Fo=pQ(V.., — Vo) (3.9.14) .
Adding Eqs. (3.9.10), (3.9.13), and
(3.9.14) vectorially, z
= — V. Fic. 3.18. Notation for momentum rela-
F = pQ(Vou = Vi) (3.9.15) tionships.

Hence, the resultant force on a con-

.trol volume in steady flow equals the product of p@ (the mass of fluid per
unit time having its momentum changed) and the velocity vector of
leaving fluid minus the velocity vector of entering fluid.

1 See footnote, p. 99.
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Ezample 3.13: Determine the momentum correction factor for the velocity
distribution in Example 3.8.

3'—‘”0 re (120) (
(B AL 2

Erample 3.14: A jet of water 3 in. in diameter with a velocity of 120 ft/scc is
discharged in a horizontal direction from a nozzle mounted on a boat. What
foree is required to hold the boat stationary?

The momentum in the jet requires a thrust, or unbalanced force [Eq. (3.9.10)],
of

= pQ(V,  — V.) = 1‘93567% 120(120 — 0) = 1370 Ib

This force must be applied to the boat, in the direction the jet is discharging, to
hold it at rest.

A change in direction of a pipeline causes forces to be exerted on the
line unless the bend or elbow is anchored in place. These forces are due
to both static pressure in the line
and dynamic reactions in the turn-
ing fluid stream. Expansion joints
are placed in large pipelines to avoid
stress in the pipe in an axial direc-
tion, whether caused by fluid or by
temperature change. These expan-
sion jJoints permit relatively free
movement of the line in an axial di-
rection and, hence, the static and
dynamic forces must be provided
for at the bends.

Example 3.15: The force components
on a reducing elbow making a 60° turn
in a horizontal plane are desired. At
the entering section, Dy = 20 ft, ¥V, = 50 ft/sec, pi = 40 psi; at the exit section,
D, = 16 ft. Water is flowing in the line and elbow losses are to be neglected.

With axes as in Fig. 3.19, Q@ = V,wD*/4 = 15,710 cfs. Then

Fiac. 3.19. Control volume for fluid within
a reducing bend.

- Q _ 15710 _
Vo = A, = 7 (16)2/4 78.1 ft/sec

By using Bernoulli’s equation,

2 ﬂ
PTRLE GO I I Ny
29 v g v
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Since 21 = 2s,
(50)2+ 40 _ (7R8.1)®

= MO P
64.4 0433 6.4 +

0.433
and p. = 15.8 psi. Applying Eq. (3.9.10) ;
mA, — paAacos § — P, = pQ(Vaocos 8§ — 1)
or
40 X 144 X 100r — 15.8 X 144 X 647 X 0.500 — P, =
1,935 X 15,710(78.1 X 0.500 — 30)
and P, = 1,915,000 Ib. Similarly for Eq. (3.9.13),
P, = p.Assin § = pQ1 . sin 6

or P, — 15.8 X 144 X 647 X 0.866 = 1.935 X 15,710 X 78.1 X 0.866 and P, =
2,452,000 Ib.  The force components exerted on the elbow are equal and opposite
to I’; and P,

In this example gage pressures were used. I absolute pressures had been used
a different answer would result.  The forces would be those required to hold the
elbow if it were surrounded by a complete vacuum,

1in. diam

(b}
Fia, 3.20. Nozzle at the end of a pipe.

Ezxample 3.16: Find the force exerted by the nozzle on the pipe of Fig. 3 20a.
Negleet losses,  The fluid is oil, sp gr 0.85, and p, = 100 psi.

To determine the discharge, Bernoulh s equation is written for the stream from
section 1 to the downstream end of the nozzle, where the pressure is zero.

100 Ve
ot o +080><0433 =at oy 0

Since z; = 25, and V., = (1)1/D2)2V1 = 917, after substituting,

V] 100
g (=80 * 5850433 = 0
2
and V, = 14.78 ft/sec, Vo = 133 ft/sec, Q = 14.781-(%) = 0,725 cfs. Let

P, (Fig. 3.20b) be the force exerted on the free body of liquid by the nozzle; then,
with Eq. (3.9.10),

10072'9 — P, = 1.935 X 0.85 X 0.725(133 — 14.78)

or P, = 565 1b. The oil exerts a force on the nozzle of 565 Ib to the right, a-nd a
tension force of 565 Ib is exerted by the nozzle on the pipe.
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The Momentum Theory for Propellers. The action of a propeller is
to change the momentum of the fluid within which it is submerged and
thus to develop a thrust that is used for propulsion. Propellers cannot
be designed according to the momentum theory, although some of the
relations governing them are made evident by its applicatign. A pro-
peller, with its slipstream and velocity distributions at two sections a
fixed distance from it, is shown in Fig. 3.21. The propeller may be
either (a) stationary in a flow as indicated or () moving to the left
with a velocity V. through a stationary fluid since the relative picture
is the same. The fluid 1s assumed to be frictionless and incompressible.

131

1122112122 112121111212

"\LH\

Fic. 3.21. Propeller in a fluid stream.

The flow is undisturbed at section ! upstream from the propeller and is
accelerated as it approaches the propeller, owing to the reduced pressure
on its upstream side. In passing through the propeller, the fluid has its
pressure increased, which further accelerates the flow and reduces the
cross section at 4. The velocity V does not change across the propeller,
from 2 to 3. The pressure intensities at 1 and 4 are those of the undis-
turbed fluid, which is also the pressure along the slipstream boundary.

When the momentum equation [Eq. (3.9.10)] is applied to the free body
of fluid between sections 1 and 4 and the slipstream boundary, the only
force, F, acting on it in the flow direction is that due to the propeller
as shown, since the outer boundary of the free body is everywhere at the
same pressure. Therefore,

F=pQ(Vi— Vi) = (ps — po)4 (3.9.16)
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in which A is the area swept over by the propeller blades. The force
on the propeller must be equal and opposite to the force on the fluid.
After substituting @ = AV and simplifying,

CPV(Vi= V) = ps — ps (3.9.17)

When Bernoulli’s equation is written for the stream between sections 1
and 2 and between sections 3 and 4,

P+ 30V = pa + LpV? Ps + 2pV? = ps + oV

since z; = 22 = 23 = 24 In solving for p; — pe, with p, = p,,

ps — P2 = §p(Vil = V3,7 (3.9.18)
By eliminating p; — p. in Egs. (3.9.17) and (3.9.18),
V = &_—‘S_Vf (3.9.19)

which shows that the velocity through the propeller area is the average
of the velocities upstream and downstream from it.

The useful work done by a propeller moving through still fluid is the
product of propeller thrust and velocity, i.e.,

Power = FV, = pQ(V,— V)V, (3.9.20)

The power input is.that required to increase the velocity of fluid from
171 to Vy, or the useful work plus the kinetic energy per unit time remain-
ing in the slipstream.

Power input = p-g (V2 — Vi) = pQ(Vy— V)V,

+ 0 5 (V= V2 (3.9.21)

With the ratio of Eqgs. (3.9.20) and (3.9.21) used to obtain the theoretical
efficiency e,

= 1 (3.9.22)

If AV = V4, — V, is the increase in slipstream velocity, substituting
into Eq. (3.9.22) produces
Vi
L S— 3.9.23
“= V¥ av/? ( )
which shows that maximum efficiency is obtained with a propeller that

increases the velocity of slipstream as little as possible, or for which
AV/V, is a minimum.
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Owing to compressibility effects, the efficiency of an airplane propeller
drops rapidly with speeds above 400 mph. Airplane propellers under
optimum conditions have actual efficiencies close to the theoretical
efficiencies, in the neighborhood of 85 per cent. Ship propeller efficiencies
are less, around 60 per cent, owing to restrictions in diameter.

The windmill may be analyzed by application of the momentum rela-
tions. The jet has its speed reduced, and the diameter of slipstream is

increased.

Ezxample 3.17: An airplane traveling 250 mph through still air, ¥ = 0.080 1b/ft3,
discharges 33,000 cfs through its two 7.0-ft-diameter propellers. Determine (a)
the theoretical efficiency, (b) the thrust, (¢) the pressure difference across the
blades, and (d) the theoretical horsepower required. '

a.
_ 250 X 88 _ _ 16,500 _
V, = 60 = 366 ft/sec V = 20m/4 = 428 ft/sec
From Eq. (3.9.22)
Vi 366
Pt—-'.'[‘;—m—85-5%

b. From Eq. (3.9.19)
Veo=2V — TV, = 2 X 428 — 366 = 490 ft/sec
The thrust from both propellers is, from Eq. (3.9.16)

F = %;‘2_)%0 X 33,000(490 — 366) = 10,170 Ib

¢. The pressure difference, from Eq. (3.9.17), is

Py — P2 = %%9 428(490 — 366) = 132 Ib/ft?

d. The theoretical horsepower is

& Py, _ 10070 %366 _
550¢, ~ 550 X 0.855

Jet Propulsion. The propeller is one form of jet propulsion in that
it creates a jet and by so doing has a thrust exerted upon it that is the
propelling force. In jet engines, air (initially at rest) is taken into the
engine and burned with a small amount of fuel; the gases are then ejected
with a much higher velocity than in a propeller slipstream. The jet
diameter is necessarily smaller than the propeller slipstream. For the
mechanical energy only, the theoretical efficiency is given by the ratio
of useful work to work input or by useful work divided by the sum of
useful work and kinetic energy per unil time remaining in the jet. If
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the mass of fuel burned is neglected, the propelling force F [Eq. (3.9.16)] is
F = pQV,, (3.9.24)

in which V.. (Fig. 3.22) is the absolute velocity of fluid in the jet and
p@ is the mass per unit time being
discharged. The useful workis FV,, v, v
in which V', is the speed of the body. h
The kinetic energy per unit time Vaps=v,—V,

t‘),(: :;%2;18:01;35%(}3’827;, zlnecej?th liSS &3 F16. 3.22. Notation for jet propulsion.
weight per unit time being discharged and V,..2/2¢g is the kinetic energy
per unit weight. Hence, the theoretical mechanical efficiency is

o — output _ FV,
“ 7 output + loss  FV, + pQV.2/2
pQI/’absIf] 1

QVe Vi + QVai/2 - T Vy2v,  (39:329)
which is the same cxpression as that for cfficiency of the propeller. It
is obvious that, other things being equal, V,../V. should be as small as
possible. JX'or a given speed V), the resistance force F is determined by
the body and fluid in which it moves; hence, in Eq. (3.9.24) for V..
to be very small, pQ must be very large.

An example is the type of propulsion system to be used on a boat
(Fig. 3.23). If the boat requires a force of 400 1b to move it through

Up

PR ———
‘/l =% AV

@ _
7D%4

Fia. 3.23. Propulsion of boat with liquid jet.

AV 14

water at 15 mph, first a method of jet propulsion ca be considered in
which water is taken in at the front of the boat and discharged out the
rear by a 100 per cent efficient pumping system.

If a 6-in.-diameter jet pipe is used, v, = 16Q/x and the absolute veloe-
ity of the jet as it leaves the boat is V., = (16Q/7) — V1. By sub-
stituting into Eq. (3.9.24) for V; = 15 mph = 22 ft/scc,

400 = 1.935Q (1—6—— — 22)

T
Hence, @ = 8.89 cfs, V.., = 23.2, and the efficiency is

1 1
T 1% V/2V: | 1 232/44

= 65.5%

€
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The horsepower required is

FV, 400 X 22
550e;, ~ 550 X 0.655

With an 8-in.-diameter jet pipe, v, = 9Q/m, V. = (9Q/x) — 22, and

24.4

400 = 1.935Q (?TQ — 22)
so @ = 13.14 cfs, V. = 15.72, ¢, = 73.7 per cent, and the horsepower
required is 21.7.

With additional enlarging of the jet pipe and the pumping of mote
water with less velocity head, the efficiency can be further increased.
The type of pump best suited for large flows at small head is the axial-
flow propeller pump. Increasing the size of pump and jet pipe would
increase weight greatly and take up useful space in the boat; the logical
limit is to drop the propeller down below or behind the boat and thus elim-
inate the jet pipe, which is the usual propeller for boats. Jet propulsion of
a boat by a jet pipe is practical, however, in very shallow water where a
propeller would be damaged by striking bottom or other obstructions.

To take the weight of fuel into aceount in jet propulsion, let m,;, be the -
mass of air per unit time and r the ratio of mass of fuel burned to mass of
air. Then (Fig. 3.22), the propulsive force F ig

F = muirVabs + Wil
The second term on the right is the mass of fuel per unit time multi-

plied by its change in velocity. By substituting V,. = ». — V; and

rearranging,
F = g [v.(1 +7) — Vil (3.9.26)

Defining the mechanical efficiency again as the useful work divided by
the sum of useful work and kinetic energy remaining,

~ FV,
- FVI + mair(l + T)(vf - V1)2/2

By use of Eq. (3.9.26)

€y

i
e = . (1 + nle,/Vy) — 1}2
2((1 + r)(v./ V1) — 1]

The efficiency becomes unity for »; = v,, as the combustion products are
then brought to rest and no kinetic energy remains in the jet.

(3.9.27)

Exzample 3.18: An airplane consumes 1 lb,, fuel for each 20 lb,, air and discharges
hot gases from the tail pipe at », = 6000 ft/sec. Determine the mechanical
efficiency for airplane speeds of 1000 and 500 ft/sec.
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For 1000 ft/sec v,/V1 = $388 = 6, r = 0.05. From Eq. (3.9.27),

1
“ T 006 1) - 0.287
2[6(1 + 0.05) — 1]
For 500 ft/sec v,/V, = &%% = 12 and
1
, = 0.154

@ =1+ 1+ 005012 —1)
2[12(1 + 0.05) — 1]

Jet Propulsion of Aircraft or Missiles. Propulsion through air or water
in each case is caused by reaction to the formation of a jet behind the
body. The various means include the propeller, turbojet, turboprop,
ram jet, and rocket motor, which are briefly described in the following
paragraphs.

The momentum relations for a propeller determine that its theoretical
efficiency increases as the speed of the aircraft increases and the absolute
velocity of the slipstream decreases. As the speed of the blade tips
approaches the speed of sound, however, compressibility effects greatly
increase the drag on the blades and thus decrease the over-all efficiency
of the propulsion system.

A turbojet is an engine consisting of a compressor, a combustion
chamber, a turbine, and a jet pipe. Air is scooped through the front
of the engine and is compressed, and fuel is added and burned with a
great excess of air.  The air and combustion gases then pass through a
gas turbine that drives the compressor. Only a portion of the energy
of the hot gases is removed by the turbine, since the only means of pro-
pulsion is the issuance of the hot gas through the jet pipe. The over-all
efficiency of a jet engine increases with speed of the aircraft. Although
there is very little information available on propeller systems near the
speed of sound, it appears that the over-all efficiencies of the turbojet
and propeller systems are about the same at the speed of sound. '

The turboprop is a system combining thrust from a propeller with
thrust from the ejection of hot gases. The gas turbine must drive both
compressor and propeller. The proportion of thrust between the pro-
peller and the jet may be selected arbitrarily by the designer.

The ram jel is a high-speed engine that has neither compressor nor
turbine. The ram pressure of the air forces air into the front of the
engine, where some of the kinetic energy is converted into pressure
energy by enlarging the flow cross section. It then enters a combustion
chamber, where fuel is burned, and the air and gases of combustion are
ejected through a jet pipe. It is a supersonic device requiring very
high speed for compression of the air. An intermittent ram jet was used
by the Germans in the V-1 buzz bomb. Air is admitted through spring-
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closed flap valves in the nose. I'uel is ignited to-build up pressure that
closes the flap valves and ejects the hot gases as a jet. The ram pressure
then opens the valves in the nose to repeat the cycle. The cyclic rate
is around 40 per second. Such a device must be launched at high speed
to initiate operation of the ram jet.

Rocket Motors. The rocket motor carries with it an oxidizing agent to
mix with its fuel so that it develops a thrust that is independent of the
medium through which it travels. On the contrary, a gas turbine can
eject a mass many times the weight of fuel it ecarries, because it takes in
air to mix with the fuel.

Fi1i. 3.24. Rocket notation.

The theoretical efficiency of a rocket motor (based on mechanical
energy available) is shown to increase with rocket speed. F represents
the mechanical energy available in the propellant per unit mass. When
the propellant is ignited, its mechanical energy is converted into kinetic
energy; £ = v,.2/2, in which v, is the jet velocity relative to the rocket, or
v, = \/2E (Fig. 3.24). The force F exerted on the rocket, depends on the
rate of burning m, in mass per unit time. According to the momentum
equation [Eq. (3.9.10)] '

F = nw, (3.9.28)

since v, is the final velocity minus the initial velocity. For rocket speed
Vi referred to axes fixed in the earth, the useful work is

FV1 = ml)rV1 (3929)

The kinetic energy being used up per unit time is due to mass loss mV,2/2
of the unburned propellant and to the burning mFE, or

7.2
Mechanical-energy input per unit time = 7 ( 7+ 1/21 ) (3.9.30)

The mechanical efficiency e is

(M) ViV2E v,/ V1
¢ S EE VS A TT VY (3.9.31)

By taking the derivative of e with respect to v,/V, and by equating to
zero, v,/ V', = 1 for maximum efficiency, e = 1. In this case the absolute
velocity of cjected gas is zero.

When the propulsive force on a rocket is greater than the resistance
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force, the rocket accelerates. Its mass is continuously reduced. To lift
a large rocket off its launching pad, the thrust must exceed the weight
W of rocket and fuel:

F=nw>W (3.9.32)

Ezample 3.19: (a) Determine the burning time for a rocket that initially weighs
1,000,000 Ib, of which 75 per cent is fuel. It consumes
fuel at a constant rate, and its initial thrust equals
its weight. o = 12,000 ft/sec. (b) Considering ¢
constant at 32.2 ft/sec? and the flight to be vertical
without air resistance, find the speed of the rocket at
burnout time and its height above sea level.

a. From Eq. (3.9.32)

000,000 -gmt
Wo = mw, = 1,000,000 = 712,000
and 7 = 83.3slugs/sec. The available mass of fuel is

0.75 X 1,000,000

3.2 = 23,280 slugs
The burning time is vy 21,000,000 1b
=rhw, =1,000,
23,280
833 279 sec F1a. 3.25. Vertical rocket

ascent.
b. The rocket thrust (Fig. 3.25) is constant at
1,000,000 1b. From Newton’s second law of motion F — W = (W/g)(dV /dt),
with W decreasing at 83.3g 1b/scc

1,000,000 — 83.3g¢ AV

1,000,000 — (1,000,000 — 83.3¢t) =

g dt
or
av. _ _tdt
g 3713—1t
After integrating, for V = 0,1 =0

v t
7= —-t-—3731n(1-§7§)

When ¢ = 279 see, V = 7580 ft/sec = 5160 mph. The height reached is

279 279 y
= [ Vit=g [—t-373ln(1--§7—3)]-dt

= 534,000 ft = 101.2 miles

Fized and Moving Vanes. The theory of turbomachines is based on
the relationships between jets and vanes. The mechanics of transfer
of work and energy from fluid jets to moving vanes is studied as an
application of the momentum principles. When a free jet impinges onto
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a smooth vane that is curved, as in Fig. 3.26, the jet is deflected, its
momentum is changed, and a force is exerted on the vane. The jet is

y
x %y,
V
A
A % % E
0 — >

O
ks

F1c. 3.26. Frec jet impinging on a smooth, fixed vane.

assumed to flow onto the vane in a tangential direction, without shock;
and furthermore, the frictional resistance between jet and vane is neg-
lected. The velocity is assumed to
be uniform throughout the jet up-
stream and downstream from the
vape. Since the jet is open to the
air, it has the same pressure intensity

&’B at each end of the vane. Neglecting

§ v, . ;
-é%}(e\ Q the small change in elevation be-
& 2@V, tween ends, if any, application of

A;y Bernoulli’s equation shows that the
magnitude of the velocity is un-
changed for fized vanes.

{0
QQ' ';/ Ezample 3.20: Find the force exerted
on a fixed vane when a jet discharging
2 cfs water at 150/ft sec is deflected
through 135°.
By referring to Fig. 3.26 and by applying Eqgs. (3.9.10) and (3.9.13), it is found
that

F1c. 3.27. Two-dimensional jet imping-
ing on an inclined, fixed plane surface.

~F, = pQ(Vocos § — V)
F, = pQV,sin
Hence,
F,. = —1.935 X 2(150 cos 135° — 150) = 990 1b
F, = 1.935 X 2 X 150 sin 135° = 4101b

The force components on the fixed vane are then equal and opposite to F, and F,.

Ezample 3.21: Fluid issues from a long slot and strikes against a smooth inclined
flat plate (Fig. 3.27). Determine the division of flow and the force exerted on
the plate, neglecting energy loss due to impact.
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As there are no changes in elevation or pressure before and after impact the
magnitude of the velocity leaving is the same as the initial speed of jet. The
division of flow @, @. can be computed by applying the momentum equation
in the s-direction, parallel to the plate. No force'is exerted on the fluid by the
plate in this direction; hence, the final momentund component must equal the
initial momentum component in the s-direction. By rewriting the momentum
equation so that it contains two terms for final momentum,

F,=0= levo - PQ2V0 - PQOVO cos 8

After simplifying
Q, — Q2 = Qo cos 4

and with the continuity equation
Qi+ Q.= Qo

The two equations may be solved for @, and @,

Ql=%9(1+(3059)

Qz=%9(1—cost9)

The force F exerted on the plate must be normal toit. For the momentum equa-
tion normal to the plate '

F = pQyV,sin 8

Moving Vanes. Turbomachinery utilizes the forces resulting from the
motion of fluid over moving vanes. No work can be done on or by a
fluid that flows over a fixed vane. When vanes can be displaced, work

&
B

F1a. 3.28. Velocity relationships for a moving vane.

can be done either on the vane or on the fluid. A moving vane is shown
in Fig. 3.28 with the fluid jet flowing onto it tangentially. The force
components F., F, exerted on the free body of fluid that is on the vane
are determined from Eqs. (3.9.10) and (3.9.13). Since these equations
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contain terms with the difference in final and initial velocity components,
either the absolute or the relative components may be used. In Fig.
3.28 the polar vector diagram shows both absolute and relative vectors.
The relative velocity v, is turned through the angle ¢ without change in
magnitude. This vector, added to u, gives the final absolute velocity
leaving the vane V..

The mass per unit time having its momentum changed is not the mass
per unit time being discharged, as in the case of the single fixed vane. In
each unit of time the vane is displaced a distance u; that is, the jet
becomes longer each second. The mass per second that has its velocity
(and, hence, its momentum) changed is that which overtakes the vane
each second and flows onto it. In 1 sec the vane moves a distance u ft
(Fig. 3.29). The fluid, however, moves V, ft, and thus v, ft ride up

7 rd
- /

,,/’/ i
=TT W 7
p—————r ,/

—-'____:: '—“,.__:tf _____________
u v,=¥=u
ol ST -
Vo

F1c. 3.29. Fluid overtaking vane in 1-sec period.

onto the vane in 1 sec. The volume per second overtaking the vane is
v.Ao, and the mass per second having its momentum changed is pv,A4,.

The fluid velocity relative to the vane at entrance to the free body is
v,. The vane is assumed to be smooth; hence, this relative speed is
maintained along its curved surface. At the exit the relative velocity
makes the anglé 6 with the z-direction. To determine the absolute
velocity leaving, the velocity of the vane u is added to the velocity
of the fluid relative to the vane at its exit end (Iig. 3.28). The final
absolute velocity then has the components, evident from the vector
diagram, of

Viye = vrCO8 8 + u

Views = vrsin 6@

Example 3.22: Determine for the single moving vane of Fig. 3.30 the force
components due to the water jet and the rate of work done on the vane.
The mass per second having its velocity changed is

1.935(120 — 60)137 = 2.42 slugs/sec
The final absolute velocity, from the vector diagram of Fig. 3.30, is

Vs, = 60 — 60 cos 10° = 60(1 — 0.985) = 0.90 ft/sec
Vi, = 60 sin 10° = 60 X 0.174 = 10.44 ft/sec
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From the momentum equations

—F, = 2.42(0.90 — 120) = —288 1b
F, = 2.42(10.44 — 0) = 253 1b

The force components on the vane are 288 lb in the +z-direction and 25.3 1b in
the —y-direction. The rate of work done is F.u, or

288 X 60 = 17,280 ft-1b/sec

For the efficient development of power the single vane is not practical.
With a series of vanes, usually on the periphery of a wheel, arranged so
that one or another of the vanes deflects the entire jet as the vanes move
almost tangent to the undeflected jet, the mass per second having its
momentum changed becomes p@Q or pVd, the total mass per second
being discharged.

170° ~ b 4

=60 10°

0 u 60 120

u=60 {t/s8c . x

fs

Fiac. 3.30. Vector diagram for jet on moving vane.

\

-*-—F‘x

0 253% LR U R
—_—

60/ s2c v, =407

F1G. 3.31. Vector diagram for moving vane,

Ezample 3.23: Determine the horsepower that may be obtained from a series of
vanes, curved through 150°, moving 60 ft/sec away from a 3.0 cfs water jet having
& cross-sectional areca of 0.030 ft2. Draw the vector diagram and determige the
energy remaining in the jet.

The jet velocity is 3/0.03 = 100 ft/sec. The vector diagram is shown in’
Fig. 3.31. The power is

P = —1.935 X 3(25.36 — 100)60 = 26,000 ft-Ib/sec

and the horsepower
_ 26,000

hp = —%— = 47.3
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The absolute velocity component V,_  leaving the vane is

Vy . = (100 — 60) sin 30° = 20 ft/sec

Yout
and the exit velecity head is

Vi (25.36)" + (20)
3 = 64.4

= 16.2 ft-1b/lb

The kinetic energy remaining in the jet, in foot-pounds per second, is

7.2
Qv—% =3 X 62.4 X 16.2 = 3030

The initial kinetic energy available was

2
3 X 62.4 X %%2— = 29,030 ft-1b/sec

which is the sum of the work done and the energy remaining per second.

When a vane, or series of vanes, moves toward a jet, work is done
by the vane system on the jet, thereby increasing the energy of the fluid.
Figure 3.32 illustrates this situation; the velocity leaving is 145.2 ft/sec
as shown, and the velocity entering is 50 ft/sec.

V, =50
——l

F1a. 3.32. Vector diagram for vane doing work on a jet.

In most instances losses must be determined by experiment. In the
following two cases, application of the continuity, Bernoulli, and momen-
t%{gquations permits the losses to be evaluated analytically.

0sses Due to Sudden Expansion in a Pipe. The losses due to sudden
enlargement in a pipeline may be caleulated with both the Bernoulli and
momentum equations. For steady, incompressible, turbulent flow
between sections 1 and 2 of the sudden expansion of Fig. 3.33a, the fluid
may be taken as a free body (Fig. 3.33b) and the small shear force exerted
on the walls between the two sections may be neglected. By assuming
uniform velocity over the flow cross sections, which is approached in
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turbulent flow, application of Eq. (3.9.10) produces

P1A2 — p2Ae = % (Vz — V1)
At section 1 the radial acceleration of fluid particles in the eddy along the
surface is small, so generally a hydrostatic pressure variation occurs

()

FiG. 3.33. Sudden expansion in a pipe.

across the section. The Bernoulli equation, applied to sections 1 and 2,
with the loss term A, is (for a = 1)

V,? ™" V,? P2
ML .4 SN NN L
29+7 29+7+’

Solving for (p1 — p2)/v in each equation and equating the results,

Q _ V=V
‘/T;& (V2 VL) - _“‘__29 + hl
As Q/Az = Vz,
_ (V=2 Va2 AN
hy = 3 =3 | i, (3.9.33)

which indicates that the losses in turbulent flow are proportional to the
square of the velocity.

‘Y Mydraulic Jump. - The hydraulic jump is the second application of the
basic equations to determine losses due to a turbulent-low situation.

2

™ S |:3\ 2 } v

T vy, A

¥ Yl \ o 22 ¥z —

¥ L~ Y 2 |
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Fic. 3.34. Hydraulic jump in a rectangular channpel.

Under proper conditions a rapidly flowing stream of liquid in an open
channel suddenly changes to a slowly flowing stream with a larger cross-
sectional area and a sudden rise in elevation of liquid surface. This
phenomenon is known as the hydraulic jump and is an example of steady
nonuniform flow. In effect, the rapidly flowing liquid jet expands (Fig.
3.34) and converts kinetic energy into potential energy and losses or
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irreversibilities. A roller develops on the inclined surface of the expanding
liquid jet and draws air into the liquid. The surface of the jump is very
rough and turbulent, the losses being greater as the jump height is greater.
For small heights, the form of the
jump changes to a standing wave
(Fig. 3.35). The jump is discussed
further in Sec. 11.4.

The relations among the varia-
bles for the hydraulic jump in a hor-
1zontal rectangular channel are eas-
ily obtained by use of the continuity, momentum, and Bernoulli equations.
For convenience the width of channel is taken as unity. The continuity
equation (Fig. 3.34) is

Fic. 3.35. Standing wave.

V1y1 = V2y2

The momentum equation is

2 2 V
Tgl _ 7%2 — ly17 (Vz _ Vl)

and the Bernoulli equation (for points on the liquid surface)

2~g+y1-—§é—+yz+h

in which h; represents losses due to the jump. By eliminating V3 in the

first two equations,
+ \/(yl) 2V1 2V 2y, | (3.9.34)

in which the plus sign has been taken before the radical (a negative ys
has no physical significance). The depths y, and y. are referred to as
conjugate depths. By solving the Bernoulli equation for #; and eliminat-
ing Vi and Vs,

_ (y2 — )3

hi = T (3.9.35)
The hydraulic jump, which is a very effective device for creating
irreversibilities, is commonly used at the end of chutes or the bottom of
spillways to destroy much of the kinetic energy in the flow. It is also an
effective mixing chamber, because of the violent agitation that takes
place in the roller. Experimental measurements of hydraulic jumps show
that the equations yield the correct value of y; to within 1 per cent. The
reasons the jump equations are not precise are due to neglect of shear stress

on walls and to nonuniform velocity distribution.
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Ezample 3.24: 120 cfs water per foot of width flows down a spillway onto a
horizontal floor. The velocity is 50 ft/sec. Determine the depth of tail water
required to cause a hydraulic jump and the losses in horsepower by the jump

per foot of width. '
h = ']“5'2‘60‘ = 2.4 {t

By substituting into Eq. (3.9.34),

. 2 X 50% X 2.4
= —12 :
Yo + \/(1 2)2 + — 3575 = 18.1 ft
With Eq. (3.9.35),
_ (181 —2 _)-. -
Losses = IX24ix1 22.3 ft-lb/Ib
or
12 . .
hp/ft 0 X 62.4 X 22.3 304

550

3.10. Linear Momentum Equation for Unsteady Flow through a Con-
trol Volume. The unsteady-flow momentum equation is developed by
finding the force component required for the unsteady portion of Eq.
(3.9.1), which was neglected in the steady-flow derivation. Equation
(3.9.1) in expanded form is

3 5s 9
e = o= (v m) gzs + 5 (v2 8m) (3.10.1)

Attention is now focused on the last term. Its contribution to the
z-component of resultant force is

J
5f.; = ET, (pv- 6¥)

for a small element of volume é¥ in the control volume. By integrating
throughout the control volume, one obtains

d
F’ = T d = - T . .
N lontrol ot (PU V) at j;ontrol pY ¥ (3 10 2)
volume volume

in which F’ is the contribution from the time rate of increase of momen-
tum within the control volume.
By combining Eq. (3.10.2) with Eq. (3.9.7)

F, = puLVv « dA —l— ptt: d¥ (3.10.3)
area of at control
control . volumne
volume

which is the linear momentum equation for the x-component for unsteady
flow through a control volume. The general vector equation obtained by
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adding vectorially the z-, y-, and z-components becomes

F = pv(v - dA) + 2
area of at control

control volume
volume

v d¥ (3.10.4)

Ezample 3.25: Find the head H in the reservoir of Fig. 3.36 needed to accelerate
the flow of oil, S = 0.85, at the rate of 0.5 ft/sec? when the velocity is 8.02 ft/sec.
At 8.02-ft/sec steady flow the head is 20 ft.

The oil may be considered incompressible and to be moving uniformly in the
pipeline,” By applying Eq. (3.10.3), the first term is zero, as the momentum leav-
ing equals the momentum entering per unit time. The second integral becomes

d oV
3% (pVAL) = pAL—é?

The friction force due to the walls of the pipe exerts a force just balanced by the
20 ft head at the upstream end, i.e., for steady conditions

ffrictinn = 720‘4

When the pipe is considered as the control volume, the momentum equation
for the z~component yields

yHA — v204 = pAL%

or

Ladv 1000
H_20=EW=W X 0.5 = 15.52 ft
Hence, at 8.02-ft/sec velocity the level in the reservoir is 20 + 15.52 = 35.52 ft

above the pipeline to cause the flow to accelerate at 0.5 ft.sec?.

Fic. 3.36. Acceleration of liquid in a Frig. 3.37. Notation for moment of a
pipe. vector.

3.11. The Moment-of-momentum Equation. The moment of a force
F about a point O, Fig. 3.37, is given by

FXr

which is the cross, or vector, product of F and the position vector r of a
point on the line of action of the vector from 0. The cross product of two
vectors is a vector at right angles to the plane defined by the first two
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vectors and with magnitude
Fr sin 6

which is the product of F and the shortest distance from O to the line of
action of F. The sense of the final vector follows the right-hand rule.
In Fig. 3.37 the force tends to cause a counterclockwise rotation around
0. If this were a right-hand thread, it would tend to come up, so the
vector is directed likewise up out of the paper. With the fingers of the
right hand curled in the direction the force would tend to cause rotation,
the thumb yields the direction, or sense, of the vector.

Since Eq. (3.10.4) represents the same vector F on either side of the
equation, its vector product with the position vector r of a point O may be

taken; thus '
F)(r=[ fpv)(r(v-dA)-l-% pv X rd¥ (3.11.1)

control
control volume
volume

The left-hand side of the equation is the torque exerted by the force, and
the terms on the right-hand side represent the rate of change of moment of
momentum. This is the general moment-of-momentum equation for
unsteady flow through a control volume. It has great value in analyzing
certain flow problems, such as in turbomachinery,
where torques are more significant in the analysis
than forces.

When Eq. (3.11.1) is applied to a case of flow in %
the xy-plane, with r the shortest distance to the
tangential component of the velocity »,, as in Fig.
3.38, and v, the normal component of velocity,

9

Fr =T, = prvn dA + 5 prv; A¥
prea of control Fia. 3.38. Notation for
volume two-dimensional flow.
(3.11.2)

in which T, is the torque. A useful form of Eq. (3.11.2) for steady flow,
which drops out the last term, is

T, = [prow, dA . — [prow, dA,, (3.11.3)

For complete circular symmetry, where », p, »;, and v, are constant
over the inlet and over the outlet, it takes the form

T. = pQU(rv)ows — (rvs);l (3.11.4)
since [pva dA = pQ, the same at inlet or outlet.

Ezample 3.26 A turbine discharging 400 cfs is to be designed so that a torque
of 10,000 Ib-ft is to be exerted on an‘impeller turning at 200 rpm that takes all
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the moment of momentum out of the fluid. At the outer periphery of the

impeller, » = 3.0 ft. What must the tangential component of velocity be at this

location? :
Equation (3.11.4) is

T = PQ(Wf)in
in this case, since the outflow has », = 0. By solving for v,
T 10,000

4.30 ft/sec

Yia T 50r T 1.935 X 400 X 3

Ezample 3.27: The sprinkler of Fig. 3.39 discharges 0.01 cfs through each noz-
zle. Neglecting friction, find its speed of rotation. The area of each nozzle
opening is 0.001 ft2.

& Ik
ANl N l
le———8" < 12" >

Fic. 3.39. Rotating jet system.

The fluid entering the sprinkler has no moment of momentum, and no torque
is exerted on the system externally; hence the moment of momentum of fluid
leaving must be zero. Let w be the speed of rotation; then the moment of
momentum leaving is

phrivy + pQorave

in which #;, and », are absolute velocities. Then

v,1=v,,—wr;=mﬁ—wrl=10—w

and
2
Uy = U, —wry = 10 — Fw

For moment of momentum to be zero

PQ(Tlvll + r2vlz) =0
or
10 —w + $(10 — 3w) = 0

and w = 11.54 rad/sec, N = 110.2 rpm.

PROBLEMS

3.1. A pump takes oil, sp gr 0.83, from a 2.0-in.-diameter pipe and returns it
to a 2.0-in.-diameter pipe at the same elevation with a pressure increase of 20 psi.
The quantity pumped is 0.50 cfs (cubic feet per second). The motor driving
the pump delivers 3.50 hp to the pump shaft. Calculate the irreversibility of
the pump in foot-pounds per pound mass and in foot-pounds per second. g =
32.17 ft/sec?.
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3.2. A pipeline leads from one water reservoir to another which has its water
surface 20 ft lower. For a discharge of 1.0 cfs, determine the losses in foot-
pounds per slug and in horsepower.

3.3. A blower delivers 10,000 c¢fm (cubic feet per minute) air, p = 0.0024
slugs/it?, at an increase in pressure of 4.0 in. water, It is 72 per cent efficient.
Determine the irreversibility of the blower in foot-pounds per slug and in horse-
power, and determine the torque in the shaft if the blower turns at 1800 rpm.

3.4. A three-dimensional velocity distribution is given by u = —z, v = 2y,
w = 2 — z. Find the equation of the streamline through (1,1,1).

3.5. The irreversibilities in a pipeline amount to 20 ft-Ib/lb,, when the flow
is 300 gpm (gallons per minute) and amount to 30 ft-lb/lb,, when the flow is
450 gpm. What is the nature of the flow?

3.6. In flow of liquid through a pipeline the losses are 2 hp for average velocity
of 4 ft/see and 4 hp for 6 ft/sec. - What is the nature of she flow?

3.7. When tripling the flow in a line causes the losses to increase by 7.64 times,
how do the losses vary with velocity and what is the nature of the flow?

3.8. In two-dimensional flow around a circular cylinder (Fig. 3.2), the discharge
between streamlines is 0.40 cfs/ft. At a great distance the streamlines are
0.20 in. apart, anc at a point near the cylinder they are 0.12 in. apart. Calculate
the magnitude of the velocity at these two points.

3.9. A pipeline carries oil, sp gr 0.83, at V = 6 ft/sec through 8.0-in. ID pipe.
At another section the diameter is 6.0 in. Find the velocity at this section and
the mass rate of flow in slugs per second.

3.10. Hydrogen is flowing in a 3.0-in.-diameter pipe at the mass rate of 0.40
lb../sec. At section 1 the pressure is 40 psia and ¢ = 40°F. What is the average
velocity ?

3.11. A nozzle with base diameter of 3.0 in. and with 1g-in.-diameter tip dis-
charges 300 gpm. Find the velocity at the base and tip of nozzle.

3.12. An 18-ft-diameter pressure pipe has a velocity of 16 ft/see. After pass-
ing through a reducing bend the flow is in a 16-ft-diameter pipe. U the losses
vary as the square of the velocity, how much greater are they through the 16-ft
pipe than through the 18-ft pipe per 1000 ft of pipe?

3.13. Does the velocity distribution of Prob. 3.4 for incompressible flow satisfy
the continuity equation?

3.14. Does the velocity distribution

q=i4d — 24+ y) +jB + 2y — 2) + k2:(z — 1)

satisfy continuity for incompressible flow.

3.15. Consider a cube with 1-ft edges parallel to the coordinate axes located in
the first quadrant with one corner at the origin. By using the velocity distri-
bution of Prob. 3.14, find the flow through each face and show that continuity is
satisfied for the cube as a whole.

3.16. Find the flow (per foot in the z-direction) through each edge of the square
with corners at (0,0), (0,1), (1,1), (1,0), due to

q = i2zy + j(2? — y?)

and show that continuity is satisfied.
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3.17. Show that the velocity

qQ=id 5= + 4 Z 75

ﬁ+y ﬂ+y

satisfies continuity at every point except the origin.

3.18. Problem 3.17 is a velocity distribution that is everywhere radial from the
origin with magnitude v, = 4/r. Show that the flow through each circle eon-
centric with the origin (per foot in the z-direction) is the same,

3.19. Perform the operation V - q on the velocity vectors of Probs. 3.14, 3.16,
and 3.17.

3.20. Does the velocity

q=ilnx"-y2+j(-2££—lnxt)

satisfy continuity?

3.21. A standpipe 16 ft in diameter and 40 ft high is filled with water. How
much potential energy is in this water if the elevation datum is taken 10 ft below
the base of the standpipe?

3.22. How much work could be obtained from the water of Prob. 3.21 if run
through a 100 per cent efficient turbine that discharged into a reservoir with
elevation 20 ft below the base of the standpipe?

3.23. What is the kinetic energy in foot-pounds per second of 200 gpm of oil,
sp gr 0.80, discharging through a 1.0-in.-diameter nozzle?

3.24. By neglecting air resistance, determine the height a vertical jet of water
will rise, with velocity 80.2 ft/sec.

3.25. If the water jet of Prob. 3.24 is directed upward 45° with the horizontal
and air resistance is neglected, how high will it rise and what is the velocity at its
high point?

3.26. Show that the work a liquid can do by virtue of its pressure [p dV, in
which ¥ is the volume of liquid displaced.

3.27. What angle of jet « is required to reach the roof of the building of Fig. 3.40
with minimum jet velocity Vy at the nozzle? What is the value of V¢?

~N
100 ft

- 100 ft ’;i]

Fig. 3.40
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3.28. For highly turbulent flow the velocity distribution in a pipe is given by

v AY
Dmsx (70)
with y the wall distance and ro the pipe radius. Determine the kinetic-energy .
correction factor for this flow.

3.29. When the velocity over half a cross section is uniform at 40 per cent of
the uniform velocity over the rest of the section, what is the kinetic-energy cor-
rection factor?

3.30. The velocity over half a cross section is Vo, and over the other half it is
—0.10V,. What is the kinetic-energy correction factor?

3.31. The velocity distribution in laminar flow in a pipe is given by v =
Vmaxll — (r/70)?]. Determine the average velocity and the kinetic-energy cor-
rection factor.

3.32. Water is flowing in a channel, as shown in Fig. 3.41. Neglecting all
losses, determine the two possible depths of flow y, and y..

O I
= -
16.1 ﬁ/SEC | 3 ft ~

A
Channel
6 lﬁ 10 ft wide

Fia. 3.41

3.33. High-velocity liquid, sp gr 1.20, flows up an inclined plane as shown in
Fig. 3.42. Neglecting all losses, calculate the two possible depths of flow at
section B.

77" Channel 8 ft wide

F1c. 3.42

3.34. If the losses from section A to section B of Fig. 3.41 are 2 ft-1b/1b, deter-
mine the two possible depths at section B.

3.36. In Fig. 3.42 losses are 8 hp per foot of width between sections 4 and B
for water flowing. Determine the lower depth of flow at section B.

3.36. Neglecting all losses, in Fig. 3.41 the channel narrows in the drop to 5 ft
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wide at section B. For uniform flow across section B, determine the two possi-
ble depths of flow.

3.37. In Fig. 3.42 the channel changes in width from 4 ft at section A to 8 ft
at seetion B. For losses of 1 ft-lb/lb between sections 4 and B find the two
possible depths at section B.

3.38. Some steam locomotives had scoops installed that took water from a
tank bétween the tracks and lifted it into the water reservoir in the tender. To
lift the water 12 ft with a scoop, neglecting all losses, what speed is required?
(votE: Consider the locomotive stationary and the water moving toward it, to
reduce to a steady-flow situation.)

3.39. In Fig. 3.43 oil discharges from a ‘‘two-dimensional” slot as indicated
at A into the air. At B oil discharges from under a gate onto a floor. Neglecting
all losses, determine the discharges of A and at B per foot of width. Why do
they differ?

3.40. At point A in a pipeline carrying water the diameter is 4.0 ft, the pressure
10 psi, and the velocity 8.02 ft/sec. At point B, 6 ft higher than A, the diameter
is 2.0 ft and the pressure 2 psi. Determine the direction of flow.

' 5 g
Oil sp gr 0.80 é
v

Fia. 3.43 Fig. 3.44

.

3.41. Neglecting losses, determine the discharge in Fig. 3.44.
3.42. Neglecting losses, determine the discharge in Fig. 3.45.

?//
v Air 4 psig i
7 —— 12 psia
4__ — - ___—-3
] iy — =
/ 4 ft 2 in. di i el
g in. diam 16 #
]
/ . —F | 4
2 =164 Ib/ft Water
/]
L7
Fic. 3.45 Fic. 3.46

3.43. For losses of 0.3 ft-1b/Ib, find the velocity at 4 in Fig. 3.46. Barometer
reading 29.5 in. mercury.
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3.44. Neglecting losses in the ‘converging section, calculate the discharge in
Fig. 3.47.

Air 4 psi

s b
H

6 in. diam
— v agke=

Fic. 3.47 Fig. 3.48

8.45. The losses in Fig. 3.48 for I/ = 16 ft are 3V?%/2¢ ft-lb/lb. What is the
discharge?

3.46. For flow of 705 gpm in Fig. 3.48, determine H for losses of 15V?%/2¢
ft-1b/1b.

3.47. For 1410-gpm flow and H = 32 ft in Fig. 3.48, calculate the losses
through the system in velocity heads, K17%/2g.

3.48. In Fig. 3.49 the losses up to sce-
tion 4 are 4V,%/2g and the nozzle losses
are 0.05V.,2/2g. Determine the dis- |. H
charge and the pressure at A. /f = 16 L D=6 in. ‘?
ft. —>V, o=

3.49. For pressure at 4 of 5 psi in Water T pi2in
Fig. 3.49, with the losses in Prob. 3.48, 2 '
determine the discharge and the head H. Fia. 3.49

3.50. Neglecting losses atd surface-tension effects, derive an equation for the
water surface of the jet of Fig. 3.50, r in terms of y/II.

1
T T Ve e F e

Fig. 3.50 Fig. 3.51

3.51. For losses of 0.5V 42/2g between points A and 2 of. Fig. 3.51, find I for
the pressure at A to be equal to vapor pressure. Barometric pressure 34 ft
water. H, = 10 ft.
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3.62. Yor /I = 30 ft and losses from A downstream of 0.6V ,4%/2¢ in Fig. 3.51,
determine /7, for vapor pressure at A. Barometric pressure 33 ft water.

3.53. In the siphon of Fig. 3.52, hy = 3 ft, k. = 9 ft, D, = 10 {t, D, = 14 ft,
and the losses are 1.61.%/2g, with 10 per cent of the losses occurring before sec-
tion 1. Find the discharge and the pressure at section 1.

3.64. Find the pressure at A of Prob. 3.53 if it is a stagnation point (velocity
Z€T0).

3.55. The siphon of Fig. 3.14 has a nozzle 6 in. long attached at section 3,
reducing the diameter to 6 in. For no losses, compute the discharge, and the
pressure at sections 2 and 3.

3.56. With exit velocity Vg in Prob. 3.55 and losses from 1 to 2 of 1.7V ,%/2g,
from 2 to 3 of 0.9V .%/2¢ and through the nozzle 0.06Vg?/2g, caleulate the dis-
charge and the pressure at sections 2 and 3.

3.57. Determine the shaft horsepower for an 80 per cent efficient pump to dis-
charge 1 cfs through the system of Fig. 3.53. The system losses, exclusive of
pump losses, are 5V?/2¢, and H = 40 ft.

3.68. The fluid horsepower (@vH,/550) produced by the pump of Fig. 3.53 is
10. For H = 60 {t and system losses of 6V%/2g, determine the discharge and the
pump head.

Fic. 3.53 FiGc. 3.54

3.569. If the over-all efficieney of the system and turbine in Fig. 3.54 is 80 per
cent, what horsepower is produced for H = 300 ft and @ = 1,000 cfs?
3.60. Losses through the system of Fig. 3.54 are 4V?/2g, exclusive of the tur-



FLUID-FLOW CONCEPTS AND BASIC EQUATIONS 137

bine. The turbine is 90 per cent efficient and runs at 200 rpm. To produce
1000 hp for I = 400 ft, determine the discharge and torque in the turbine shaft.

3.61. Neglecting losses, find the discharge through the venturi meter of Fig.
3.55.

3.62. With losses of 0.2V,2/2¢ between sections 1 and 2 of Fig. 3.55, calculate
the flow in gallons per minute,

3.63. Neglecting losses in an 8- by 4-in.-diameter venturi meter carrying oil,
sp gr 0.83, find the gage difference on a mereury-oil manometer for 600-gpm flow.

—Air
K hy
Water I
Dl @ I)2
? 6 in. diam
2
12 in. diam
\ ~a
Fi1G. 3.55 Fic. 3.56

3.64. In Fig. 3.56, hy = 6 in.,, D; = 4 in. and D, = 3 in. QOil, sp gr 0.85, is
flowing. p, = 16 psi, and p; = 12 pgi. Neglecting losses, find the flow in gal-
lons per- minute, -

3.66. With losses of 0.05V,%/2g between sections 1 and 2 of Prob. 3.64, calcu-
late the discharge. )

3.66. In Fig. 3.57, for B = 12 in. and V = 15 ft/sec, determine the bourdon
gage reading at 4 1n pounds per square inch.

3.67. In Fig. 3.57 p4 = 14 psiand B = 2 ft. Determine V.

12 in. diam
- O !

2+ft +=60 |b/ft3

T %F > l \ l_sm. diam
r E —_ L_
ks § —_———
a r
s ] +=64 b/t |

Fia. 3.57 F1c. 3.58

3.68. In Fig. 3.58 I/ = 16.0 ft and h = 15.7 ft. Calculate the discharge and
the losses in foot-pounds per pound and in horsepower. :

3.69. Neglecting losses, caleulate H in terms of R for Fig. 3.59.

3.70. For losses of 0.1/ through the nozzle of Fig. 3.59, what is the gage differ-
ence R in terms of f1?
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3.71. A liquid flows through a long pipeline with losses of 4 ft-lb/1b per 100 ft
of pipe. What is the slope of the hydraulic and energy grade lines?

H 4 in. diam
:L G

-

Spgrl2

R
B

S§=3.0
Fig. 3.59

3.72. In Fig. 3.60, 4 cfs water flows from section 1 to section 2 with losses of
04(V, — V3)*/2g. p: = 10psi. Compute p., and plot the energy and hydraulic

grade lines through the diffuser.

|
12 in. diam 18 in. diam

Fia. 3.60

3.73. In an isothermal, reversible flow at 200°F, 2 Btu/sec heat is added to
14 slug/sec flowing through a control volume. Calculate the entropy increase in
foot-pounds per slug per degrees Rankine.

3.74. Inisothermal flow of a real fluid through a pipe system the losses are 60 ft-
Ib/slug per 100 ft and 0.02 Btu/sec per 100 ft heat transfer from the fluid is
required to hold the temperature at 40°F., What is the entropy change As in
foot-pounds per slug per degree Rankine per 100 {t of pipe system for 10 lb, /sec
flowing?

3.75. In Example 3.19 of Sec. 3.9, to what height will the rocket glide?

3.76. Determine the momentum correction factor for the velocity distribution
of Prob. 3.31.
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8.77. Calculate the average velocity and momentum correction factor for the
velocity distribution in a pipe
v y l.l'n
Vmax ;;)

with y the wall distance and r, the pipe radius.

3.78. Determine the momentum correction factor for the velocity distribution
of Prob. 3.29.

3.79. Determine the momentum correction factor for the velocity distribution
of Prob. 3.30.

3.80. When the momentum correction factor is unity, prove that the velocity
must be uniform over the cross section.

3.81. Determine the momentum per second passing an open-channel cross
section carrying 1000 cfs water with velocity of 8 ft/sec.

3.82. What force F (Fig. 3.61) is required to hold the plate for oil flow, sp gr
0.83, for Vo = 40 ft/sec.

3 in.ldiam J

FiG. 3.61 Fi1c. 3.62

3.83. How much is the apparent weight of the tank full of water (Fig. 3.62)
increased by the steady jet flow into the tank?

3.84. Does a nozzle on a fire hose place the hose in tension or in compression?

3.85. When a jet from a nozzle is used to aid in manecuvering a fircboat, can
more force be obtained by directing the jet against a solid surface such as a wharf
than by allowing it to discharge into air?

3.86. Work Example 3.15 with the flow direction reversed, and compare
results.

3.87. 25 ft3/sec of water flows through an 18-in.-diameter pipeline that con-
tains a 90° bend. The pressure at the entrance to the bend is 10 psi. Determine
the force components, parallel and normal to the approach velocity, required to
hold the bend in place. Neglect losses.

3.88. Oil, sp gr 0.83, flows through a 90° expanding pipe bend from 18- to 24-in.-
diameter pipe. The pressure at the bend entrance is 20 psi, and losses are to be
neglected. For 20,000 gpm, determine the force components (parallel and normal
to the approach velocity) necessary to support the bend.

3.89. Work Prob. 3.88 with elbow losses of 0.6V,2/ 2g, with V; the approach
velocity, and compare results,
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3.90. A 4-in.-diameter steam line carries saturated sfteam at 1400 ft/sec
velocity. Water is entrained by the steam at the rate of 0.3 lb/sec. What
force is required to hold a 90° bend in place owing to the entrained water?

3.91. Neglecting losses, determine the z- and y-components of force needed to
hold the tee (Fig. 3.63) in place.

130 cfs
-~ 24 in. diam

30 in. diam

-——36 in. diam —

« p=20 psi
[200 cfs water

Fic. 3.63

3.92. Apply the momentum and energy equations to a windmill as if it were a
propeller, noting that the slipstream is slowed down and expands as it passes
through the blades. Show that the velocity through the plane of the blades is
the average of the velocities in the slipstream at the downstream and upstream
sections, By defining the theoretical efficiency (neglecting all losses) as the power
output divided by the power available in an undisturbed jet having the area at
the plane of the blades, determine the maximum theoretical efficiency of a
windmill.

3.93. An airplane with propeller diameter of 8.0 ft travels through still air
(p = 0.0022 slug/ft*) at 180 mph. The speed of air through the plane of the
propeller is 250 mph relative to the airplane. Calculate (a) the thrust on the
plane, (b) the kinetic energy per second remaining in the slipstream, (¢) the theo-
retical horsepower required to drive the propeller, (d) the propeller efficiency, and
(e) the pressure difference across the blades.

3.94. A boat traveling at 30 mph has a 2-ft-diameter propeller that discharges
160 cfs through its blades. Determine the thrust on the boat, the theoretical
efficiency of the propulsion system, and the horsepower input to the propeller.

3.95. A ship propeller has a theoretical efficiency of 60 per cent. If itis 4 ftin
diameter and the ship travels 30 mph, what is the thrust developed and what is
the theoretical horsepower required ?

3.96. A jet-propelled airplane traveling 575 mph takes in 20 lb,/sec air and
discharges it at 5500 ft/sec relative to the airplane. Neglecting the weight of
fuel, what thrust is produced?

3.97. A jet-propelled airplane travels 635 mph. It takes in 18 lb./sec air and
uses 1 lby, fuel for each 12 lb,, air. What thrust is developed when the exhaust
gases have an absolute velocity of 5000 ft/sec?
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3.98. What is the theoretical mechanical efficiency of the jet engine of Prob.
3.97?

3.99. A boat requires a 500-1b thrust to keep it moving at 16 mph. How many
cubic feet per second water must be taken in and ejected through a 16-in. pipe to
maintain this motion? What is the over-all efficiency if the pumping system is
60 per cent efficient?

3.100. In Prob. 3.99 what would be the required discharge if water were taken
from a tank inside the boat and ejected from the stern through a 16-in. pipe?

3.101. Determine the size of jet pipe and the theoretical horsepower necessary
to produce a thrust of 2000 1b on a boat moving 45 ft/sec when the propulsive
efficiency is 68 per cent.

3.102. An airplane consumes 1 lb, fuel for each 18 lb,, air and discharges hot
gases from the tail pipe at v, = 5400 ft/sec. What plane speed would be required
to obtain a mechanical efficiency of 28 per cent?

3.103. What is the speed of a jet engine for zero thrust when the gas leaves at
5000 ft/sec relative to the plane and 1 lb,, of fuel is burned for each 12 1b,, of air?

3.104. In Fig. 3.64, a jet, p = 2 slugs/ft?, is deflected by a vane through 180°.
Assume that the cart is frictionless and free to move in a horizontal direction.
The cart weighs 200 1b. Determine the velocity and the distance traveled by
the cart 10 sec after the jet is directed against the vane. A, = 0.01 ft%; V, =

100 ft/sec.
Vi ‘10
9,
i 1
D e

AR

Fi1a. 3.64

3.105. A rocket burns 10 lb,,/sec fuel, ejecting hot gases at 8000 ft/sec relative
to the rocket. How much thrust is produced at 500 and 1500 mph?

3.106. What is the mechanical efficiency of a rocket moving at 2000 ft/sec that
ejects gas at 6000 ft/sec relative to the rocket?

3.107. Can a rocket travel faster than the velocity of ejected gas? What is
the mechanical efficiency when it travels 12,000 ft/sec and the gas is ejected at
8000 ft/sec relative to the rocket? Is a positive thrust developed?

8.108. Neglecting air resistance, what velocity would a vertically directed
rocket attain in 8 sec if it starts from rest, initially weighs 240 1b, burns 10 1b,,/sec,
and ejects gas at v, = 6440 ft/sec? Consider g = 32.17 ft/sec?.

3.109. What height has the rocket of Prob. 3.108 attained at the end of 8 sec?

3.110. If the rocket of Prob. 3.108 has only 80 lb,, fuel, what is the maximum
height it attains?

3.111. Draw the polar vector diagram for a vane, angle 8, doing work on a jet.
Label all vectors. .

3.112. Determine the resultant force exerted on the vane of Fig. 3.26. Aq =
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0.06 ft2; Vo = 80 ft/sec; # = 60°, ¥ = 55 lb/ft>. How can the line of action be
determined?
3.113. In Fig. 3.27, 40 per cent of the flow is deflected in one direction. What

is the plate angle 87

3.114. A flat plate is moving with veloc-
ity u into a jet, as shown in Fig. 3.65.
Derive the expression for power required
to move the plate.

3.115. At what speed u should the cart
of Fig. 3.65 be given away from the jet in
order to produce maximum work from the
jet?

Fi1c. 3.65

3.116. At what speed u should the vane of Fig. 3.28 travel for maximum power
from the jet?

3.117. Draw the polar vector diagram for the moving vane of Fig. 3.28 for
Vo = 100 ft/sec, u = 60 ft/sec, and ¢ = 120°.

3.118. Draw the polar vector diagram for the moving vane of Fig. 3.28 for
Vo = 120 ft/sec, u = —50 ft/sec, and § = 150°,

3.119. What horsepower can be developed from (a) a single vane and (d) a
series of vanes (Fig. 3.28) when 4o, = 91in.2, V, = 270 ft/sec, v = 90 ft/sec, and
@ = 173° for water flowing?

3.120. Determine the blade angles 8; and 8. of Fig. 3.66 so that the flow enters
the vane tangent to its leading edge and leaves with no z-component of absolute

velocity.

Qe
0,
//’)
Q- 'y
200 % T
30’E l/"‘eo
0&660 T‘FS’
/4 -
400 ft/sec — on ..(_F_
x
F1g. 3.66 Fi1a. 3.67

3.121. Calculate the force components F,, F, needed to hold the stationary
vane of Fig, 3.67. Qo = 2 cfs; p = 2 slugs/ft3; V, = 300 ft/sec.

3.122. If the vane of Fig. 3.67 moves in the z-direction at » = 40 ft/sec, for
@ = 3 cfs, p = 1.935 slugs/ft3, V, = 120 ft/sec, what are the force components
F, F,?
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3.123. What force components F., F, are required to hold the “black box” of
Fig. 3.68 stationary?

Q=0.7 cfs
T V=150 ft/sec

F.V
45° |
& F,
o
Q
% .
2 slu
g \ Q=05 cfs
V=100 ft/Aec
Fig. 3.68

3.124. Determine the vane angle required to deflect the absolute velocity of a
jet 120° (Fig. 3.69).

V=100 ft/Aec
u=490 ft/sec

Fi1c. 3.69

3.125. In Prob. 3.38 for pickup of 2 cfs water at locomotive speed of 36 mph,
what force is exerted parallel to the tracks?

3.126. Determine the irreversibility in foot-pounds per pound mass for 2 cfs
flow of liquid, p = 1.6 slugs/ft3, through a sudden expansion from a 12- to 24-in.-
diameter pipe. g = 30 ft/sec?.

3.127. Air flows through a 24-in.-diameter duct at p = 20 psia, ¢t = 40°F,
V = 200 ft/sec. The duct suddenly expands to 36 in. diameter, Considering
the gas as incompressible, calculate the losses in foot-pounds per pound of air and
the pressure difference in inches of water.

3.128. What are the losses when 200 cfs water discharges from a submerged
48-in.-diameter pipe into a reservoir?

3.129. Show that in the limiting case, as y; = y2 in Eq. (3.9.34), the relation

= +/gy is obtained.

3.130. Derive the equation for depth y; needed before a hydraulic jump for it
to reach y, and V..

3.131. A jump occurs in a 20-ft-wide channel carrying 600 cfs water at a depth
of 1 ft. Determine y; V, and the losses in foot-pounds per pound and in
horsepower.
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3.132. Derive an expression for determining the initial depth y, before a jump

when y. and V', are known.
3.133. Derive Eq. (3.9.35).

3.134. Assuming no losses through
the gate of Fig. 3.70 and neglecting
Vo?/2g, for yo = 16 ft and y, = 2 ft,
find y. and losses through the jump.

Fig. 3.70

3.136. Under the same assumption as in Prob. 3.134, for y, = 1 ft and y. =
4 ft, determine y,.

3.136. Under the same assumptions as in Prob. 3.134, y, = 20 ft and y. = 8 ft.
Find the discharge per foot.

3.137. For losses down the spillway of Fig. 3.71 of 10 ft-1b/lb and discharge
per foot of 120 cfs, determine the floor elevation for the jump to occur.

Ei 100 ft

FiG. 3.71

3.138. Determine the depth after jump of a flow of kerosene, sp gr 0.83, with
velocity 1 ft/sec and depth % in.

3.139. Water is flowing through the pipe of Fig. 3.72 with velocity V = 8.02
ft/sec and losses of 8 ft-Ib/Ib up to section 1. When the obstruction at the end
of the pipe is removed, caleulate the acceleration of water in the pipe.

=7
16 ft o F, . 8 in. diam
L 4 in. diam o ——
1,000 ft 24 in. diam | W
L L
— : - —V ®. .1 - 2.
[ R
! | VLTSI IIIIII IS LIS IIISY.]
ke—10 ft—ske—20 ft —]

Fic. 3.72 Fic. 3.73

3.140. Water fills the piping system of Fig. 3.73. At one instant p, =  psi,
p: = 0, V, = 10 ft/see, and the flow rate is increasing by 5000 gpm per minute.
Find the force F. required to hold the piping system stationary.
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3.141. In a centrifugal pump 400 gpm water leaves an 8-in.-diameter impeller
with a tangential velocity component of 30 ft/sec. It enters the impeller in a
radial direction. For pump speed of 1200 rpm and neglecting all losses, deter-
mine the torque in the pump shaft, the horsepower input, and the energy added
to the flow in foot-pounds per pound.

3.142. A water turbine at 240 rpm discharges 1200 cfs. To produce 50,000 hp,
what must be the tangential component of velocity at the entrance to the impeller
at r = 6 ft? Al whirl is taken from the water when it leaves the turbine.
Neglect all losses.  'What head is required for the turbine?

: 8in.
3.143. The symmetrical sprinkler of 1‘ 'i 45°
Fig. 3.74 has a total discharge of 20 gpm y, u‘\1 72 }
and is frictionless. Determine its rpm if 7. wJw

the nozzle tips are f-in. diameter. Fig. 3.74

3.144. If there is a torque resistance of 0.50 lb-ft in the shaft of Prob. 3.143,
what is its speed of rotation?

3.145. For torque resistance of 0.0lw? in the shaft, determine the speed of
rotation of the sprinkler of Prob. 3.143.

3.146. For a frictionless shaft in the sprinkler of Fig. 3.75 and equal flow
through each nozzle (v, = 30 ft/sec), find its speed of rotation.

=40 ft/sec\
|‘——4 in. —-’474 in. —)l% zl
le . 2l .
6 in: e 8in. > (C,
! 3o° l’
L 0 v,=30 ft/sec v, =35 ft/sec
Fia. 3.75 Fia, 3.':1'6

3.147. For equal discharge through each of the nozzles of the sprinkler of
Fig. 3.76 of 10 gpm and a frictionless shaft, determine its speed of rotation.

3.148. What torque would be required to hold the sprinkler of Prob. 3.147
stationary? Total flow 40 gpm water.

3.149. A reversible process requires that

(a) there be no heat transfer

(b) Newton’s law of viscosity be satisfied

(c) temperature of system and surroundings be equal

(d) there be no viscous or Coloumb friction in the system
(e) heat transfer occurs from surroundings to system only

3.150. An open system implies’

(a) the presence of a free surface
(b) that a specified mass is considered
(¢) the use of a control volume
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3.151.

3.162.

3.163.

3.1564.
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(d) no interchange between system and surroundings
(e) none of the above answers

A control volume refers to

(a) a fixed region in space
(b) a specified mass

(¢) an isolated system

(d) a reversible process only
(e) a closed system

Which three of the following are synonymous?

losses

irreversibilities

energy losses

available energy losses

drop in hydraulic grade line

(@ 1,2,3 (0 1,25 (01,24 (d) 234

S e

Irreversibility of the system of Fig. 3.77 is

(a) 9.2 hp (b) 36.8 hp (c) 8.45 ft (d) 11.55 ft
of these answers

200 ft 12 in. diam
— V=10 fi/sec

Frc. 3.77

Isentropic flow is

(a) irreversible adiabatic flow (b) perfect-gas flow

~ (¢) ideal-fluid flow (d) reversible adiabatic flow

3.1b66.

(e) frictionless reversible flow
One-dimensional flow is

(a) steady uniform flow

(b} uniform flow

(¢) flow which neglects changes in a transverse direction
(d) restricted to flow in a straight line

(e) none of these answers

3.156. The continuity equation may take the form

(a) € = pdv (b) prd1 = p2d. (c) prAw: = paAaw:
(d) v ‘P = 0 (e) A1I‘)1 = szz

[Chap. 3

() 3,4, 5

(e) none
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3.158.

3.1569.

3.160.

3.161.

3.162.

3.163.

3.164.
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The first law of thermodynamics, for steady flow,

(a) accounts for all energy entering and leaving a control volume
(b) is an energy balance for a specified mass of fluid

(c) is an expression of the conservation of linear momentum

(d) is primarily concerned with heat transfer

(e) is restricted in its application to perfect gases

Entropy, for reversible flow, is defined by the expression

(a) ds = du + p d(1/p) (0) ds = T dqn (¢) s = u -+ pv,
(d) ds = dqu/T (¢) none of these answers -

The equation d (losses) = T ds is restricted to

(a) isentropic flow (b) reversible flow (¢) adiabatic flow
(d) perfect-gas flow (e¢) none of these answers

In turbulent flow

(a) the fluid particles move in an orderly manner

() cohesion is more effective than momentum transfer in causing shear
stress

(¢) momentum transfer is on a molecular scale only

(d) one lamina of fluid glides smoothly over another

(e) the shear stresses are generally larger than in a similar laminar flow

The ratio 1 = r/(du/dy) for turbulent flow is

(a) a physical property of the fluid

(b) dependent upon the flow and the density

(¢) the viscosity divided by the density

(d) a function of temperature and pressure of fluid
(e) independent of the nature of the flow

Turbulent flow generally occurs for cases involving

(a) very viscous fluids

(b) very narrow passages or capillary tubes
(¢) very slow motions

(d) combinations of (a), (b), and (c¢)

(e) none of these answers

In laminar flow

(a) experimentation is required for the simplest flow cases
(b) Newton’s law of viscosity applies

(¢) the fluid particles move in irregular and haphazard paths
(d) the viscosity is unimportant

(e) the ratio 7/(du/dy) depends upon the flow

An ideal fluid is

(a) very viscous
(b) one which obeys Newton’s law of viscosity
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(¢) a useful assumption in problems in conduit flow
(d) frictionless and incompressible
(e) none of these answers

3.165. Which of the following must be fulfilled byT the flow of any fluid, real
or ideal? '

Newton’s law of viscosity

Newton’s second law of motion

The continuity equation

7 = (u+ ) du/dy

Velocity at boundary must be zero relative to boundary
Fluid cannot penetrate a boundary

(a) 1,2,3 b) 1,3,6 () 2,3,5 (d) 2,3,6 (e) 2,4,5

SR o

3.166. Steady flow occurs when

{a) conditions do not change with time at, any point

(b} conditions are the same at adjacent points at any instant
(¢) conditions change steadily with the time
(d) ov/dt is constant

(e) dv/ds is constant

3.167. Uniform flow occurs

(a) whenever the flow is steady

(b) when 39/9¢ is everywhere zero

(c) only when the velocity vector at any point remains constant

(d) when 09/0ds = 0

(e) when the discharge through a curved pipe of constant cross-sec-
tional area is constant

3.168. Select the correct practical example of steady nonuniform flow:

(@) motion of water around a ship in a lake

(b) motion of a river around bridge piers

(¢) steadily increasing flow through a pipe

(d) steadily decreasing flow through a reducing section
(e} constant discharge through a long, straight pipe

3.169. A streamline

(a) is the line connecting the mid-points of flow cross sections
(8) is defined for uniform flow only

(¢) is drawn normal to the velocity vector at every point

(d) is always the path of a particle

(e) 1s fixed in space in steady flow

3.170. In two-dimensional flow around a cylinder the streamlines are 2 in. apart
at a great distance from the cylinder, where the velocity is 100 ft/sec. At one
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point near the cylinder the stfeamlings are 1.5 in. apart. The average velocity
there is T

(@) T5it/sec () 133 Tt/sec  (c) 150 fi/scc - (d)-200 ft/sec
(e) 300 ft/sec o .

3.171. An oil has a specific gravity of 0.80. Its density in slugs per cubic foot
is T
(a) 0.775 (&) 0.80 (c) 1.56  (d) 1.935  "(e) 49.92

-

3.172. The continuity equatic;n

(a) requires that Newton’s second law of motion be satisfied at every
point in the fluid '

(b) expresses the relation between energy and work

(c) states-that the velocity at a boundary must be zero relative to the

&. boundary for a real fluid g At
~ (d) relates the momentum per unit volume for two points on a stream-
line

(e) relates mass rate of flow alopg a stream tube

3.173. Water has an average velocity of 10 ft/sec through a 24-in. pipe. The
discharge through the pipe, in cubic feet per second, is

(a) 7.85  (b) 31.42 (c) 40  (d) 125.68 (e) none of these
answers '

3.174. The assumptions about flow required in deriving the equation gz + v%/2
+ Jdp/p = constant arc thgt it is

(a) st,ea,dy,'frictionlesgs, incompressible, along a streamline

(b) uniform, frictionless, along a streamline, p a function of p
(c) steady, uniform, incompressible, along a streamline

(d) steady, frictionless, p a function of p, along a streamline
(e) none of these answers

3.1756. The equation z + p/y + v*/2g = ( has the units of
(a) ft-lb/sec (b) Ib (c) ft-l1b/slug (d) ft-Ib/ft3 (e) ft-1b/Ib

3.176. The work that a liquid is capable of doing by virtue of its sustained
pressure is, in foot-pounds per pound,

@z ®p (©p/r (D2 (&) V20h
3.177. The velocity head is

(a) v¥/2g &) z (c) v (d) V2gh (e) none of these answers
3.178. The kinetic-energy correction factor

(a) applies to the continuity equation
(b) has the units of velocity head
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. 1 v
(c) is expressed by i fA (‘7) dA
. 1 v\?
(d) is expressed by Y f 4 (17) dA
y i dby [ () a4
(e) is expressed by i/.\7
3.179. The kinetic-energy correction factor for the velocity distribution given
by Fig. 1.1 is
(@) O ®) 1 (c) § (d) 2 (e) none of these answers

3.180. The equation ZF, = pQ(Vry — Vain) requires the following assump-
tions for its derivation:

Velocity constant over the end cross sections
Steady flow

Uniform flow

Compressible fluid

Frictionless fluid

(@) 1,2 b 1,5 () 1,3 (d) 3,5 (e) 2,4

G WO~

3.181. The momentum correction factor is expressed by

@zl (7)u oz[(G)a ©a[(5)u
(d) ZI f 4 (%)4 dA (e) none of these answers

3.182. The momentum correction factor for the velocity distribution given by
Fig. 1.1 s

(a) O (b) 1 (c) $ (d) 2 (e) none of these answers

3.183. The velocity over one-third of a cross section is zero and is uniform over
the remaining two-thirds of the area. The momentum correction factor is

(a) 1 (b) 4 (c) 3 (d) £ (¢) none of these answers

3.184. The magnitude of the resultant force necessary to hold a 6-in.-diameter
90° elbow under no-flow conditions when the pressure is 100 psi is, in pounds,

(a) 5644 (b) 3996 (c) 2822 (d) 0 (e) none of these

answers

3.185. A 12-in.-diameter 90° elbow carries water with average velocity of 15 ft/
sec and pressure of —5 psi. The force component in the direction of the approach
velocity necessary to hold the elbow in place is, in pounds,

(a) —342 (b) 223 (¢) 565 (d) 907 (e) none of these
answers
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3.186. A 3-in.-diameter 180° bend carries a liquid, p = 2.0, at 20 ft/sec at a
pressure of zero gage. The force tending to push the bend off the pipe is, in

pounds,

(a) 0 (b) 39.2 (c) 78.5 (d) 286.5 (¢) none of these
answers

3.187. The thickness of wall for a large high-pressure pipeline is determined by
consideration of

(a) axial tensile stresses in the pipe

(b) forces exerted by dynamic action at bends

(¢) forces exerted by static and dynamic action at bends
(d) circumferential pipe wall tension

(e} temperature stresses

3.188. Select from the following list the correct assumptions for analyzing flow
of a jet that is deflected by a fixed or moving vane:

The momentum of the jet is unchanged.

The absolute speed does not change along the vane.

The fluid flows onto the vane without shock.

The flow from the nozzle is steady.

The cross-sectional area of jet is unchanged.

Friction between jet and vane is neglected.

The jet leaves without velocity.

The velocity is uniform over the cross section of the jet before and
after contacting the vane.

(@ 1,3,46 (3 2,367 (3,456 (d 3,468
(e) 3,5,6,8

e N e e

3.189. When a steady jet impinges on a fixed inclined plane surface

(a) the momentum in the direction of the approach velocity is un-
changed

(b) no force is exerted on the jet by the vane

(c) the flow is divided into parts directly proportional to the angle of
inclination of the surface

(d) the speed is reduced for that portion of the jet turned through more

* than 90° and increased for the other portion

(e) the momentum component is unchanged parallel to the surface

3.190. A jet with initial velocity of 100 ft/sec in the +z-direction is deflected
by a fixed vane with a blade angle of 120°. The velocity components leaving the
vane parallel to and normal to the approach velocity are

(a) v; = —50, v, = 86.6 (b) v = 100, v, = 0
(¢) v. = 50, v, = 50 (d) v. = 50, v, = 86.6
(e) v, = —86.6, v, = 50

I
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3.191. An oil jet, sp gr 0.80, discharges 0.50 slug/sec onto a fixed vane that
turns the flow through 90°. The speed of the jet is 100 ft/sec as it leaves the
vane. The force component on the vane in the direction of the approach velocity
is, in pounds,

(a) 70.7 (b) 50 (¢) 40 (d) 35.35 (e) none of these
answers

3.192. A water jet having a velocity of 120 ft/sec and cross-sectional area 0.05
ftz flows onto a vane moving 40 ft/sec in the same direction as the jet. The
mass having its momentum changed per unit time, in slugs per second, is

(a) 4 (b) 7.74 (¢) 11.61 (d) 15.48 (¢) none of these

answers

3.193. A jet having a velocity of 100 ft/sec flows onto a vane, angle § = 150°,
having a velocity of 50 ft/sec in the same direction as the jet. The final absolute
velocity components parallel and normal to the approach velocity are

(a) v, =67, v, =25 (b) v, = 24, v, = 43.3

(¢) v, = —36.6, v, = 50 (d) v, = 14.65, v, = 35.35
(e) none of these answers

3.194. A vane moves toward a nozzle 30 ft/sec, and the jet issuing from the
nozzle has a velocity of 40 ft/sec. The vane angle is § = 90°. The absolute
velocity components of the jet as it leaves the vane, parallel and normal to the
undisturbed jet, are

(a) v, = 10, v, = 10 b) v, = —30,v, = 10
(¢) v« = —30, v, = 40 (d) v- = —30,v, =70
(e) none of these answers

3.195. A force of 60 b is exerted upon a moving blade in the direction of its
motion, v = 55 ft/sec. The horsepower obtained is

(a) 0.1 ) 3 (c) 5.5 (d) 10 (e) none of these answers

3.196. A series of moving vanes, u = 50 ft/sec, 6 = 90° intercepts a jet,
Q = 1 cfs, p = 1.5 slugs/ft3, Vo = 100 ft/sec. The work done on the vanes, in

foot-pounds per second, is

(a) 1875 (b) 2500 (¢) 3750 (d) 7500 (e) none of these
answers

3.197. The horsepower available in a water jet of cross-sectional area 0.04 ft2
and velocity 80.2 {t/sec is

(a) 1.13 (b) 36.35 (¢) 39 (d) 72.7 (e) none of these

ANSWers

3.198. A ship moves through water at 30 ft/sec. The velocity of water in the
slipstream behind the boat is 20 ft/sec, and the propeller diameter is 3.0 ft. The
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theoretical efficiency of the propeller is, in per cent,

(a) O (b) 60 (¢} 75 (d) 86 (e) none of these answers
3.199. The thrust on the ship of Prob. 3.198, in pounds, is
(a) 1362 (b) 4090 (c) 5450 (d) 8180 (e) none of these

answers

3.200. A rocket exerts a constant horizontal thrust of 40 1b on a missile for
3 sec. 1f the missile weighs 8 lb and starts from rest, its speed at the end of the
period, neglecting the downward acceleration of gravity and reduction in weight
of the rocket, is, in feet per second, :

(a) 386 (b) 483 (c) 580 (d) 600 (e) none of these
answers

8.201. What is the reduction in weight of the rocket of Prob. 3.200 if the jet
leaves at 6000 ft/sec relative to the rocket?

(a) 0.021b (b) 0.041b (¢) 0.321b (d) 0.641b (¢) none
of these answers

3.202. A glass tube with a 90° bend is open at both ends. It is inserted into a
flowing stream of oil, sp gr 0.90, so that one opening is directed upstream and the
other is directed upward. Oil inside the tube is 2 in. higher than the surface of
flowing oil. The velocity measured by the tube is, in feet per seeond,

(a) 2.95 (b) 3.28 (¢) 3.64 (d) 4.64 (e) none of these
answers

3.203. In TFig. 9.6 the gage difference R’ for v, = 5 ft/sec, S = 0.08, S¢ = 1.2,
is, in feet,

(a) 0.39 (b) 0.62 (¢) 0.78 (d) 1.17 (e) none of these
answers

3.204. The theoretical velocity of oil, sp gr 0.75, flowing from an orifice in a
reservoir under a head of 9.0 ft is, in feet per second,

(a) 18.1 (b) 24.06 (c) 32.1 (d) not determinable from data
given (e) none of these answers

38.205. In which of the following cases is it possible for flow to occur from low
pressure to high pressurc?

(a) flow through a converging section

(b) adiabatic flow in a horizontal pipe

(¢) flow of a liquid upward in a vertical pipe

(d) flow of air downward in a pipe

(¢) impossible in a constant.cross-section conduit
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3.206. The head loss in turbulent flow in a pipe

(a) varies directly as the velocity

(b) varies inversely as the square of the velocity

(¢) varies inversely as the square of the diameter

(d) depends upon the orientation of the pipe

(e) varies approximately as the square of the velocity

3.207. The losses due to a sudden expansion is expressed by

V2=V, Vi—V, Val — V2 1 — Vo)?
R ORI Ol A LA A

LN g g
(¢ Lo Vo) ';g 2

3.208. If all losses are neglected, the pressure at the summit of a siphon

(a) is a minimum for the siphon

(b) depends upon height of summit above upstream reservoir only
(¢) is independent of the length of the downstream leg

(d) is independent of the discharge through the 'siphon

(e} is independent of the liquid density

3.209. The depth conjugate to ¥ = 1 ft and V = 20 ft/sec is

(a) 2.32 1t - (b) 4.5 1t (c) 5.0 ft (d) 5.5 1t (e} none of
these answers

3.210. The depth conjugate to y = 10 ft and V = 20 ft/sec is

(@) 10721t (b) 11516  (c) 1651t  (d) 2151t  (e) none
of these answers

3.211. The depth conjugate to y = 10 ft and V = 1 ft/sec is

(a) 0.06 ft (b) 1.46 ft (c) 5.06 ft (d) 10.06 ft (e) none
of these answers

3.212. The continuity equation in ideal fluid flow

(a) states that the nct rate of inflow inte any small volume must be zero
(b) states that the energy is constant along a streamline

(¢) states that the energy is constant everywhere in the fluid

(d) applies to irrotational flow only

(e) implies the existence of a velocity potential
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DIMENSIONAL ANALYSIS AND
DYNAMIC SIMILITUDE

Dimensionless parameters have aided materially in our understanding
of fluid-flow phenomena. They permit limited experimental results to be
applied to cases dealing with different physical dimensions and to fluids
with different physical properties. As a means of formally determining
dimensionless parameters, the process of dimensional analysis is intro-
duced in this chapter. The concepts of dynamic similitude combined
with careful selection and use of dimensionless parameters make possible
the generalization of experimental data. In the following chapter, deal-
inging primarily with viscous effects, one parameter is highly significant,
viz., Reynolds number. In Chap. 6, dealing with compressible flow, the
Mach number is the most important dimensionless parameter. In Chap.
10, dealing with open channels, the Froude number has the greatest
significance.

Many of the dimensionless parameters may be viewed as a ratio of a
pair of fluid forces, the relative magnitude indicating the relative impor-
tance of one of the forces with respect to the other. For situations with
several forces of the same magnitude, such as inertial, viscous, and
gravitational forces, special techniques are required. After a discussion
of dimensions, dimensional analysis, and dimensionless parameters,
dynamic similitude and model studies are presented.

4.1, Dimensional Homogeneity and Dimensionless Ratios. The solv-
ing of practical design problems in fluid mechanics usually requires both
theoretical developments and experimental results. By means of a
grouping of significant quantities into dimensionless parameters it is
possible to reduce the number of variables appearing and to make this
compact result (equations or data plots) applicable to all similar situations,

1f one were to write the equation of motion ZF = ma for a fluid particle.

including all types of force terms that could act, such as gravity, pressure,
155
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viscous, elastic, and surface-tension forces, an equation of the sum of
these forces equated to ma, the inertial force, would result. As with all
physical equations, each term must have the same dimensions, in this
case, force. The division of each term of the equation by any one of the
terms would make the equation dimensionless. For example, dividing
through by the inertial force term would yield a sum of dimensionless
parameters equated to unity. The relative size of any one parameter,
compared with unity, would indicate its importance. If one were to
divide the force equation through by a different term, say the viscous-
force term, then another set of dimensionless parameters would result.
Without experience in the flow case it is difficult to determine which
parameters will be most useful.

The writing of such a force equation for a complex situation may not be
feasible, and another process, dimensional analysis, is then used if one
knows the pertinent quantities that enter into the problem.

In a given situation several of the forces may be of little significance,
leaving perhaps two or three foreces of the same order of magnitude.
With three forces of the same order of magnitude, two dimensionless
parameters are obtained; one set of experimental data on a geometrically
similar model provides the relationships between parameters holding for
all other similar flow cases.

4.2. Dimensions and Units. The dimensions of mechanics are force,
mass, length, and time, related to Newton’s second law of motion,

= c¢cMa (4.2.1)

Force and mass units are discussed in Sec. 1.2.  For all physical systems,

it would probably be necessary to introduce two more dimensions, one

dealing with electromagnetics and the other with thermal effects. For

the compressible work in this text, it is unnecessary to include a thermal

unit, as the equations of state link pressure, density, and temperature.
Newton’s second law of motion in dimensional form is

F = MLT-* (4.2.2)

which shows that only three of the dimensions are independent. F is the
force dimension, M the mass dimension, L the length dimension, and T
the time dimension. One common system employed in dimensional
analysis is the M, L, T-system. Table 4.1 is a listing of some of the
quantities used in fluid flow, together with their symbols and dimensions.

4.3. The II-Theorem. The Buckingham! II-theorem proves that in a
physical problem including » quantitics in which there are m dimensions,
the quantities may be arranged into n — m independent dimensionless

1E. Buckingham, Model Experiments and the Form of Empmcal Equations,
Trans. ASME, vol. 37, pp. 263-296, 1915.
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TaBLE 4.1. DIMENSIONS oF PHysIiCAL QuANTITIES UsED IN Fruip MECHANICS

Quantity Symbol | Dimensions (M,L,T)

Tength. . ... ... ... ... ... . ... .... l L

Time. ... ... ... ... . ... ... ... .... ¢ T

Mass...........ooii M M

Force....... ... ... ... . .. ... ... . ... F MLT—

Veloeity. . ............ .. ... L. Vv LT

Aceeleration............. ... ... ... " a LT

Area. .. ... .., A L?

Discharge.......................... Q L3T1

Pressure....................... .... Ap ML\T?

Gravity.................. ... .. .. .. g LT

Density.............. .............. P ML—3

Specifieweight....... ... ... ..., .. ¥ ML

Dynamie viscosity. . ................ m ML

Kinematic viscosity . . ............... v LT~

Surface tension..................... o MT™?

Bulk modulus of elasticity........... K ML T2
parameters. Let Ay, A, As, . . ., A, be the quantities involved, such

as pressure, viscosity, velocity, etc. All the quantities are known to be
essential to the solution, and hence some functional relation must exist.

F(AAsAs . . . ,A) =0 (4.3.1)

If IT,, II,, ete., represent dimensionless groupings of the quantities A, 4.,
Aj, ete., then with m dimensions involved, an equation of the form

f(H1,H2,II3, ..o ,Hn-—m) = 0 (432)
exists.

Proof of the II-theorem may be found in Buckingham'’s paper. The
method of determining the II-parameters is to select m of the A-quantities,
with different dimensions, that contain among them the m dimensions,
and to use them as repeating variables together with one of the other
A-quantities for each II. For example, let A,, A, A; contain M, L, and
T, not necessarily in each one, but collectively. Then the first II-param-
eter is made up as

Hl = A111A231A3=1A_4 (433)
the second one as
H2 = Alx’A2y’A 322A5
and so on, until
Mo = ApemAgin-mAz-ng,

In these equations the exponents are to be determined so that each II is
dimensionless. The dimensions of the A-quantities are substituted and
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the exponents M, L, and T are set equal to zero respectively. These
produce three equations in three unknowns for each II-parameter, so that
the x, y, z exponents can be determined, and hence the II-parameter.

If only two dimensions are involved, then two of the A-quantities are
selected as repeating variables, and two equations in the two unknown
exponents are obtained for each Il term.

In many cases the grouping of A-terms is such that the dimensionless
arrangement is evident by inspection. The simplest case is that, when
two quantities have the same dimensions, e.g., length, then the ratio of
these two terms is the II-parameter. :

The procedure is best illustrated by several examples.

Ezample 4.1: The discharge through a horizontal capillary tube is thought to
depend upon the pressure drop per unit length, the diameter, and the viscosity.
Find the form of the equation.

The quantities are listed with their dimensions:

Quantity Symbol | Dimensions
Discharge. .. ... . .. e Q L3T-1
Pressure drop/length. .. ... ... .. Ap/l ML=
Diameter. ..................... D L
Viscosity....................... M ML

Then
Ap _
F’(Q, - D,p) =0

Three dimensions are used, and with four quantities there will be one II-parameter:

Ap\¥:
II = Qﬁ (7;?) D’-ly,

By substituting in the dimensions,
I = (L3T-Y= (ML 2T Ls ML T = MOLOT®

The exponents of each dimension must be the same on both sides of the equation.

With L first,
3z, -2 +2,—1=0

and similarly for M and T

nn+1=0

—r — 2y1 —_ 1 = 0
from which z; = 1, 41 = —1,21 = —4, and
Qu

~ DiAp/i
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After solving for @

from which dimensional analysis yields no information about the numerical value
of the dimensionless constant C. Experiment (or analysis) shows that it is
x/128 [Eq. (5.2.6)].

When dimensional analysis is used, the variables in a problem must be
known. In the last example if kinematic viscosity had been used in place
of dynamic viscosity an incorrect formula would have resulted.

Ezxample 4.2: A V-notch weir is a vertical plate with a notch of angle ¢ cut
into the top of it and placed across an open channel. The liquid in the channel is
hacked up and forced to flow through the notch. The discharge @ is some func-
tion of the elevation H of upstream liquid surface above the bottom of the notch.
In addition the discharge depends upon gravity and upon the velocity of approach
V"o to the weir. Determine the form of discharge equation.

A functional relationship

F(Q:H!gs VO;¢') = 0

18 to be grouped into dimensionless parameters. ¢ is dimensionless, hence it is
one Il-parameter. Only two dimensions are used, L and T. If g and H are the
repeating variables

II; = HaygnQ = L=(LT~H)nL3T1

II; = Hzgu:Vy = Le(LT-2)»LT!

Then

nt+yp+3=0 rt+y+1=0

—2y, ~ 1 = —2,—1=0
and rn=—g, 5= '—'%: Iy = _é-y Y2 = _%
Q Vo

I, = —= II, = —— II; =

1 ngg 2 \/gH 3 ¢
or

This may be written
_9 (Ve
Vemi~h (\/ ol ¢)

in which both f, f, are unknown functions. After solving for Q

Either experiment or analysis is required to yield additional information as to the
function f,.
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If I and V, were selected as repeating variables in place of g and &,

I, = HaVQ = La(LT~1)mLiT-
W, = HVong = La(LT 1)L T2

and
n+yp+3=90 Tyt y2+1=0
—n—1=0 ~Yy2—2=0
from whichzy = —2, 4, = =1, 2, = 1, y2 = —2; hence
Q gH
Hl = l12V0 HZ = T/_;i H3 = ¢
or

Since any of the II-parameters may be inverted or raised to any power without
affecting their dimensionless status,

o= (i)

The unknown function f; has the same parameters as fi, but it could not be the
same function.  The last form is not very useful, in general, because frequently
Vo may be neglected with V-notch weirs. This shows that a term of minor
importance should not be selected as a repeating variable.

Another method of determining alternate sets of II-parameters would be
the arbitrary recombination of the first set. If four independent II-param-
eters are known II,, II,, I3, I1,, the term

Ha = II1"1H2“2II 3““114“‘

with the exponents chosen at will would yield a new parameter. Then
., M, II;, I, would constitute a new set. This procedure may be con-
tinued to find all possible sets.

Ezxample 4.3: The losses per unit length of pipe Ak/lin turbulent fiow through a
smooth pipe depend upon velocity V, diameter D, gravity g, dynamic viscosity
#, and density p. With dimensional analysis, determine the general form of the
equation

F (%—’-", V,D,p,u,g) =0

Clearly, Ah/l is a Il-parameter, If V, D, and p are repeating variables,

I, = VaDwpuy = (LT-YmLu(ML-*)»MLT-
£1+‘y1"'321'-120
hant 31 -1=0
. 21 + 1= 0
=1 y=-1 z=-1
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II; = V=2Dvipsg = (LTV)=Ly:(ML™%)»LT?
Test+y2—32+1=0

—Xa —2=0

22 =0
.’Bz'—""z y2=1 22-_—0
-k _gD _ 4k
=35, =% Ik=7

or
VDp V2 Ah
N 7)=°

since the II-quantitics may be inverted if desired. The first parameter, VDp/u
is Reynolds number, one of the most important of the dimensionless parameters
in fluid mechanics. The size of Reynolds number determines the nature of the
flow. It is discussed in Sec. 5.3. After solving for Ah/l

Ak 12

T=1(®5p)
The usual formula employed is

Ah 1V?

T IR 5o

Ezxample 4.4: A fluid-flow situation depends upon the velocity V, the density p,
several linear dimensions [, {;, l,, pressure drop Ap, gravity g, viscosity u, surface
tension o, and bulk modulus of elasticity K.* Apply dimensional analysis to these
variables to find a et of LI-parameters.

F(V,p,Ll1,ls,Ap,g,1u,0,K) = 0

As three dimensions are involved, three repeating variables are selected. For
complex situations, V, p, and [ are generally helpful. There are scven
H-parameters:

Hl = VripyllZlAp IIz = V«szyitlzg H3 = folpllez-‘l‘u
H4 = V‘“Py"lz‘ﬂ' H5 = stpyslﬂK 115 = l/ll
II, = /1,

By-expanding the II-quantities into dimensions,

O, = (LT-Y)a(ML-3)nLa ML~
=3 t+a—-1=0
-I —2=10
N +1=0
$1=—2 yl‘—“‘l 21"—:0
M, = (LT-Y)=(ML-%)w:L=LT-
$2—3y2+22+1 =0
— T2 —2 =

x2=—2 y2=0 29
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0, = (LT-)=(ML-vLaML~T-*
x3—3y3+z§—1=0
- —Z3 —-1=20
Ys +1=0
23 = —1 ys = —1 2= —1
= (LT V)s(ML=3)vs[* M T2

x4 — 3Ys + 24 = 0
—T4 —2=0
Y4 +1=0

x4=—-2 y4="1 Z4=—1
= (LT-Vs (ML) wLaML 1T~
25— 3ys+2s—1=0

—Xs -2=0
Ys +1=0
35 == ---2 y5 = —-1 25 = 0
Hence
Ap _ g _ b -9
Li=3y: =3 L=y =55
K [ {
H5 = ;V_é Hﬁ = l—l H-,v = [2
and

B o u o K LD
f pV2: Vz’ le; V”pl’ sz, l1’ 12 =

It is convenient to invert some of the parameters and to take the square root of IT,
f Ap V?* Vip V”lp v 1 l)-—O
eV @ e R WL T

The first parameter, usually written Ap/(pV?2/2), is the pressure coefficient; the

second parameter is the Froude number F; the third is Reynolds number R; the -
fourth is the Weber number W, and the fifth the Mach number M. Hence

1
f,( P FRW,M, 1 12) 0

After solving for pressure drop

ap = oV (FRW,M, ll r)

in which f,, f; must be determined from analysis or experiment. By selecting
other repeating variables, a different set of II-parameters could be obtained.

Ezample 4.5: The thrust due to any one of a family of geometrically similar
airplane propellers is to be determined experimentally from a wind-tunnel test
on a model. By means of dimensional analysis find suitable parameters for
plotting test results.

The thrust Fr depends upon speed of rotation w, speed of advance V, diameter
D, air viscosity u, density p, and speed of sound ¢. The function

f(FT:VU;D:w:#:p:c) =0
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is to be arranged into four dimensionless parameters, sinee there are seven quanti-
ties and three dunensmns Starting first, by selecting p, w, and D as repeating

variables,
I, = prwDoFy = (ML3)>(T-Y)WLaMLT2
I, = p=vtD#Vy = (ML™3)=(T )Ll T!
II; = p=w¥ Dy = (ML™3)=s(T)vsLssML1T1
II, = prwwvsDese = (ML-3)x(T-VwsLaLT?

By writing the simultaneous equations in zi, i1, z), etc., as before and solving
them,

__Fr Ve o i e
Hl_m Hz—wD H3—wa2 H.;—Z’T)
Solving for the thrust parameter
FT Vo waz [ )
pwD* =h u D

Since the parameters may be recombined to obtain other forms, the second term
is replaced by the product of the first and second terms, VDp/u and the third
term is replaced by the first term divided by the third term, Vy/c; thus

Fro _gu(Js VeDe Ve
pw”l)“_f2 wD’

Of the dimensionless parameters, the first is probably of the most importance,
since it relates speed of advance to speed of rotation. The second parameter is
a Reynolds number and accounts for viscous effects. The last parameter, speed
of advance divided by speed of sound, is a Mach number, which would be impor-
tant for speeds near or higher than the speed of sound. Reynolds effects are
usually small, so a plot of F,/pw?D* against V,/wD should be most informative.

The steps in a dimensional analysis may be summarized as follows:
1. Select the pertinent variables. This requires some knowledge of the

process.
2. Write the functional relationships, e.g.,

f(V,D,p,p,C,H) =

3. Select the repeating variables. (Do not make the dependent

quantity a repeating variable.)
4. Write the II-parameters in terms of unknown exponents, e.g.,

= VaDunpry = (LT-Y)aLn(ML-3)»M L1171

5. For each of the II-expressions write the equations of the exponents,
so that the sum of the exponents of each dimension will be zero.

6. Solve the equations simultaneously.

7. Substitute back into the II-expressions of step 4 the exponents to
obtain the dimensionless II-parameters.
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8. Establish the functional relation
Sl 005, . . . ) =0
or solve for one of the I's explicitly:
Iy = f(I1,105, . . . o)

9. Recombine, if desired, to alter the forms of the Il-parameters,
keeping the same number of independent parameters.

4.4, Discussion of Dimensionless Parameters. The five dimensionless
parameters, pressure coefficient, Reynolds number, Froude number,
Weber number, and Mach number, are of importance in correlating
experimental data. They are discussed in this section, with particular
emphasis placed on the relation of pressure coefficient to the other
parameters.

Pressure Coefficient. The pressure coefficient Ap/(pV?%/2) is the ratio
of pressure to dynamic pressure. When multiplied by area it is the ratio
of pressure force to inertial foree, as (pV2/2)A would be the force needed
to reduce the velocity to zero. 1t may also be written as Ah/(V2/2g) by
division by v. For pipe flow the Darcy-Weisbach equation relates
losses h; to length of pipe L, diameter ), and velocity V by a dimension-

less friction factor! f
L Ve
h=1%5 2
or
fL_ b _ Ll
b = Vg ~ A\ REWM g
as fL./D is shown to be equal to the pressure coefficient (see Example 4.4).
In pipe flow, gravity has no influence on losses; therefore F may be
dropped out. Similarly surface tension has no effect and W drops out.
For steady liquid flow compressibility is not important and M is dropped.
{ may refer to D, I to roughness height projection ¢ in the pipe wall, and I,

Pipe-flow problems are discussed in Chaps. 5, 6, and 10. If compres-
sibility is important,

FL € e'

Compressible-flow problems are studied in Chap. 6.

! There are several friction factors in general use. This is the Darcy-Weisbach
friction factor, which is four times the size of the Fanning friction factor, also called f.
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With orifice flow, studied in Chap. 9, V = C, v/2¢H,

H 1 Il
Vizg ~ ¢ (RWM’l l) (43

in which ! may refer to orifice diameter and !; and I; to upstream dimen-
sions. Viscosity and surface tension are unimportant for large orifices
and low-viscosity fluids. Mach number effects may be very important
for gas flow with large pressure drops, i.e., Mach numbers approaching
unity.

In steady, uniform open-channel flow, discussed in Chap. 11, the Chézy
formula relates average velocity V, slope of channel S, and hydraulic
radius of cross section R (area of section divided by wetted perimeter) by

V =C~/RS = C\/R—[l‘ (4.4.4)

C is a coeflicient depending upon size, shape, and roughness of channel.

Then
Ah  2gL 1 I 1
Vi5g ~ R ¢ fo (F R, + 7 12) (4.4.5)

since surface tension and compressible effects are usually unimportant.

The drag F on a body is expressed by F = CpApV?%/2, in which A is a
typical area of the body, usually the projection of the body onto a plane
normal to the flow. Then F/A is equivalent to Ap, and

F L1 .
—-—-—APVQ/z = CD - f2 (R F M; tl. £2) (4'4'6)

The term R is related to skin friction drag due to viscous shear as well as
to form, or profile, drag resulting from separation of the flow streamlines
from the body; F is related to wave drag if there is a free surface; for large
Mach numbers Cp may vary more markedly with M than with the other
parameters; the length ratios may refer to shape or roughness of the
surface.

Reynolds Number. Reynolds number VDp/u is the ratio of inertial
forces to viscous forces. It may also be viewed as a ratio of turbulent
shear forces to viscous shear forces (Sec. 5.3). A ‘‘critical” Reynolds
number distinguishes among flow regimes, such as laminar or turbulent
flow in pipes, in the boundary layer, or around immersed objects. The
particular value depends upon the situation. In compressible flow, the
Mach number is generally more significant than the Reynolds number.

Froude Number. The Froude number V?/gl, when multiplied and
divided by pA, is a ratio of dynamic (or inertial force) to weight. With
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free liquid surface flow the nature of the flow (rapid! or tranquil) depends
upon whether the Froude number is greater or less than unity. It is
useful in calculations of hydraulic jump, in design of hydraulic structures,
and in ship design.

Weber Number. The Weber number V2p/s is the ratio of inertial
forces to surface-tension forces (evident when numerator and denominator
are multiplied by I). Tt is important at gas-liquid or liquid-liquid inter-
faces and also where these interfaces are in contact with a boundary.
Surface tension causes small (capillary) waves and droplet formation and
has an effect on discharge of orifices and weirs at very small heads.

Mach Number. The speed of sound in a liquid is written v/K/p, if K
is the bulk modulus of elasticity (Secs. 1.7 and 6.2) or¢ = \/ERT (k is the
specific heat ratio and T the absolute temperature, for a perfect gas).
V/e or V/A/K/p is the Mach number. It is a measure of the ratio of
inertial forces to elastic forces. By squaring V/¢ and multiplying by
pA/2 in numerator and denominator, the numerator is the dynamie
force and the denominator is the dynamic force at sonie flow. It may also
be shown to be a measure of the ratio of kinetic energy of the flow to
internal energy of the fluid. It is the most important correlating
parameter when velocities are near or above local sonic velocities.

4.5. Similitude—Model Studies. Model studies of proposed hydraulie
structures and machines are frequently undertaken as an aid to the
designer. They permit visual observation of the flow and make possible
the obtaining of certain numerical data, e.g., calibrations of weirs and
gates, depths of flow, velocity distributions, forces on gates, efficiencies
and capacities of pumps and turbines, pressure distributions, and losses.

If accurate quantitative data are to be obtained from a model study
there must be dynamic similitude between model and prototype. This
similitude requires (a) that there be exact geometric similitude, and
(b) that the ratio of dynamic pressures at corresponding points be a
constant. Part b may also be expressed as a kinematic similitude; i.e.,
the streamlines must be geometrically similar. _

Geometric similitude extends to the actual surface roughness of model
and prototype. If the model is one-tenth the size of the prototype in
every linear dimension, then the height of roughness projections must
be in the same ratio. For dynamic pressures to be in the same ratio at
corresponding points in model and prototype, the ratios of the various
types of forces must be the same at corresponding points. Hence, for
strict dynamic similitude, the Mach, Reynolds, Froude, and Weber
numbers must be the same in both model and prototype.

! Open-channel flow at depth y is rapid when the flow velocity is greater than the

speed /gy of an elementary wave in quiet liquid. Tranqui! flow occurs when the
flow velocity is less than +/gy.
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Strict. fulfillment of these requirements is generally impossible of
achievement, except with a 1:1 scale ratio. Fortunately, in many situa-
tions only two of the forces are of the same magnitude. Discussion of a
few cases will make this clear.

Pipe Flow. In steady flow in a pipe viscous and inertial forces are
the only ones of consequence; hence, when geometric similitude is
observed, the same Reynolds number in model and prototype provides
dynamic similitude. The various corresponding pressure coefficients are
the same. For testing with fluids having the same kinematic viscosity
in model and prototype, the product, VD, must be the same. Frequently
this requires very high velocities in small models.

Open Hydraulic Structures. Structures such as spillways, stilling pools,
channel transitions, and weirs generally have forces due to gravity (from
changes in elevation of liquid surfaces) and inertial forces that are
greater than viscous and turbulent shear forces. In these cases geo-
metric similitude and the same value of Froude’s number in model and
prototype produce a good approximation to dynamic similitude; thus

|4 V2

m2

Imbn — Golp
Since gravity is the same the velocity ratio varies as the square root of the
scale ratio A = [,/la,

V, = Va2

The corresponding times for events to take place (as time for passage
of a particle through a transition) are related, thus

el

m
- t, = —=

tm

I

3
<
2

and
t, = :mlﬂl = tn VA
The discharge ratio Q,/Q. is

_Qp _ lpa/tp — 5

3

3
o

Qn  In®/tn
Force ratios, e.g., on gates, F,/F,, are

Fo _ aholy? A3

‘ Fm '}'hmlmz

In a similar fashion other pertinent ratios may be derived so that model
results can be interpreted as prototype performance.

Ship's Resistance. The resistance to motion of a ship through water
is composed of pressure drag, skin friction, and wave resistance. Model
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studies are complicated by the three types of forces that are important,
inertia, viscosity, and gravity. Skin-friction studies should be based on
equal Reynolds numbers in model and prototype, but wave resistance
depends upon the Froude number. To satisfy both requirements, model
and prototype have to be the same size.

The difficulty is surmounted by using a small model and measuring the
total drag on it when towed. The skin friction is then computed for
the model and subtracted from the total drag. The remainder is stepped
up to prototype size by Froude’s law, and the prototype skin friction is
computed and added to yield total resistance due to the water.

Hydraulic Machinery. Due to the moving parts in a hydraulic
machine, an extra parameter is required to ensure that the streamline
patterns are similar in model and prototype. This parameter must
relate the throughflow (discharge) to the speed of moving parts. For
geometrically similar machines if the vector diagrams of velocity entering
or leaving the moving parts are similar, the units are homologous; i.e., for
practical purposes dynamic similitude exists. The Froude number is
unimportant, but the Reynolds number effects (called scale effects because
it is impossible to maintain the same Reynolds number in homologous
units) may cause a discrepancy of 2 or 3 per cent in efficiency between
model and prototype. The Mach number is also of importance in
axial-flow compressors and gas turbines.

PROBLEMS

4.1. Show that Eqgs. (3.6.4), (3.7.5), and (3.9.15) are dimensionally homo-
geneous,
4.2. Arrange the following groups into dimensionless parameters:

(@) &p,p, V. ®) g V,F (o) m, F, Ap, ¢
4.3. By inspection, arrange the following groups into dimensionless parameters:
(@) g, Lt @) vt () 4,Qw (d K,0, A

4.4. Derive the unit of mass consistent with the units inches, minutes, tons.

4.6. In terms of M, L, T, determine the dimensions of radians, angular velocity,
power, work, torque, and moment of momentum.

4.6. Find the dimensions of the quantities in Prob. 4.5 in the F, L, T-system.

4.7. Work Example 4.2 using @ and H as repeating variables.

4.8. Using the variables Q, D, Ah/l, p, u, g as pertinent to smooth pipe flow,
arrange them into dimensionless parameters with @, p, u as repeating variables.

4.9. If the shear stress 7 is known to depend upon viscosity and rate of angular
deformation du/dy in one-dimensional laminar flow, determine the form of
Newton’s law of visecosity by dimensional reasoning.

4.10. The variation of pressure Ap in static liquids is known to depend upon



DIMENSIONAL ANALYSIS AND DYNAMIC SIMILITUDE 169

specific weight v and clevation difference Az. By dimensional reasoning deter-
mine the form of the hydrostatic law of variation of pressure,

4.11. Neglecting viscous and surface-tension effects, the velocity ¥V of eflux
of liquid from a reservoir is thought to depend upon the pressure drop Ap of the
liquid and its density p. Determine the form of expression for V.

4.12. The buoyant force Fp on a bady is thought to depend upon its volume
submerged ¥ and upon gravity g and fluid density p. Determine the form of
the buoyant-force equation.

4.13. In a fluid rotated as a solid about a vertical axis with angular velocity w,
the pressure rise p in a radial direction depends upon speed w, radius r, and fluid
density p. Obtain the form of equation for p.

4.14. In Example 4.3, work out two ovher sets of dimensionless parameters by
recombination of the dimensionless parameters given.

4.15. Find the dimensionless parameters of Example 4.4 using Ap, p, and [ as
repeating variables.

4.16. The Mach number M for flow of a perfect gas in a pipe depends upon the
specific heat ratio k& (dimensionless), the pressure p, the density p, and the
velocity V. Obtain by dimensional reasoning the form of the Mach number
expression.

4.17. Work out the scaling ratio for torque T on a disk of radius r that rotates
in fluid of viscosity u with angular velocity w and clearancé y between disk and
fixed plate.

4.18. The velocity at a point in a model of a spillway for a dam is 4.3 ft/sec.
For a ratio of prototype to model of 10:1 what is the velocity at the corresponding
point in the prototype under similar conditions?

4.19. The power input to a pump depends upon discharge @, head H, specific
weight v, and efficiency e. Find the expression for power by use of dimensional
reasoning.

4.20. The torque delivered by a water turbine depends upon discharge @, head
{1, specifie weight v, angular velocity w, and efficiency e. Determine the form of
equation for torque.

4.21. A model of a venturi meter has linear dimensions one-fourth those of the
prototype. The prototype operates on water at 68°F, and the model on water
at 200°F. For a throat diameter of 24 in. and a velocity at the throat of 20 ft/sec
in the prototype, what discharge is nceded through the model for similitude?

4.22. The drag F on a high-velocity projectile depends upon speed V of pro-
jectile, density of fluid p, acoustic velocity ¢, diameter of projectile D, and vis-
cosity u. Develop an expression for the drag.

4.23. The wave drag on a model of a ship is 2.35 Ib at a speed of 8 ft/see. For
a prototype fifteen times as long what would be the corresponding speed and wave
drag if the liquid is the same in each casc?

4.24. A small spherical droplet of radius r, and density po settles at velocity U
in another liquid of density p and viscosity m. Determine an expression for
drag F on the droplet and for its terminal velocity U. (nore: Drag on an
object at small Reynolds number is independent of density of fluid.)

4.26. The losses in a Y in a 48-in.-diameter pipe system carrying gas (p =
0.08 slug/ft?, » = 0.002'poise, ¥V = 75 ft/sec) are to be determined by testing a
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model with water at 70°F. The laboratory has a water capacity of 1000 gpm.
What model scale should be used, and how are the results converted into proto-
type losses?

4.26. A one-fifth scale model of a water pumping station piping system is to
be tested to determine over-all head losses. Air at 80°F, 14 psia is available.
For a prototype velocity of 1.0 ft/sec in a 14-ft-diameter section with water at
60°F, determine the air velocity and quantity needed and how losses determined
from the model are converted to prototype losses.

4.27. Full-scale wind-tunnel tests of the lift and drag on hydrofoils for a boat
are to be made. The boat will travel at 30 mph through water at 60°F. What
velocity of air (p = 30 psia, ¢ = 90°F) is required to determine the lift and drag?
(NoTE: The lift coefficient Cy is dimensionless. . Lift = CrApV?/2))

4.28. The resistance to ascent of a balloon is to be determined by studying the
ascent of a 1:50 scale model in water. How would such a model study be con-
ducted and the results converted to prototype behavior?

4.29. The moment exerted on a submarine by its rudder is to be studied with
a 1:100 scale model in a water tunnel. If the torque measured on the model is
3.50 1b-ft for a tunnel velocity of 50 ft/sec, what are the corresponding torque and
speed for the prototype? |

4.30. For two hydraulic machines to be homologous they must (a) be geo-
metrically similar; (6) have the same discharge coefficient when viewed as an
orifice, @/(41 /2gH,) = Q2/(A2/2gH,); and (c) have the same ratio of periph-
era] speed to fluid velocity, wD/(Q/A). Show that the scaling ratios may be
expressed as Q/ND? = constant and H/(ND)? = constant.

4.31. By use of the scaling ratios of Prob. 4.30, determine the head and dis-
charge of a 1:4 model of a centrifugal pump that produces 200 cfs at 96 ft head
when turning 240 rpm. The model operates at 1200 rpm,

4.32. An tncorrect arbitrary recombination of the II-parameters

Vo pwD?

Foy ™ ,w—D)=o

0 (52 5) o

Tf 0 pcD
) F I wl)) -
V VoC'p pcD

(d) F (w2D3 4 wD
(¢) none of these answers

4.33. The repeating variables in a dimensional analysis should

(@) include the dependent variable

(b) have two variables with the same dimensions if possible

(c) exclude one of the dimensions from each variable if possible
(d) include those variables not considered very important factors
(e) satisfy none of these answers
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Select a common dimensionless parameter in fluid mechanics from the

following:

4.36.

4.36.

4.37.

4.38.

4.39.

(a) angular velocity (b) kinematic viscosity (c) specific gravity
(d) specific weight (e) none of these answers

Select the quantity in the following that is not a dimensionless parameter:

(a) pressure coefficient (b) Froude number (¢) Darcy-Weisbach
friction factor (d) kinematic viscosity (¢) Weber number

Which of the following has the form of a Reynolds number?
(@) ul/v (b)) VDu/p  (c) wwv/l  (d) V/gD  (e) Ap/pV?
Reynolds number may be defined as the ratio of

(a) viscous forces to inertial forces
(b) viscous forces to gravity forces
(c) gravity forces to inertial forces
(d) elastic forces to pressure forces
(e) none of these answers

The pressure coeflicient may take the form

(@) Ap/yH (&) Ap/(V¥/2) () Ap/V  (d) App/wils
(e) none of these answers

Select the correct answer. The pressure coefficient is a ratio of pressure

forces to

4.40.

= 0?

4.41,

(a) viscous forces

(b) inertial forces

(c) gravity forces

(d) surface-tension forces
(e) elastic-energy forces

How many Il-parameters are needed to express the function F(a,V,i,»,L)

@5 G4 (3 @2 ()1
Which of the following could be a II-parameter of the function F(Q,H g,

Vo,9) = 0 when @ and g are taken as repeating variables?

4.42,

(a) Q¥gH* (b)) Vo?/g?@  (c) Q/g9* (d) @/~/gH  (e) none

of these answers
Select the situation in which inertial forces would be unimportant:

(a) flow over a spillway crest

(b) flow through an open-channel transition
(c) waves breaking against a sea wall

(d) flow through a long capillary tube

(e) flow through a half-opened valve
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4.43. Which two forces are most important in laminar flow between closely
spaced parallel plates:

(@) inertial, viscous (b) pressure, inertial (c) gravity, pressure
(d) viscous, pressure {e) none of these answers

4.44. A dimensionless combination of Ap, p, I, Q is

A A
@ P8 0tk oZe @2 o [EF

4.45. What velocity of oil, p = 1.6 slugs/ft?, 4 = 0.20 poise, must occur in a
1-in.-diameter pipe to be dynamically similar to 10 ft/sec water velocity at 68°F
in a t-in.-diameter tube?

(a) 0.60 ft/sec (b) 9.6 ft/sec (c) 4.0 ft/sec (d) 60 it/sec
(e) none of these answers

4.46. The velocity at a point on a model dam crest was measured to be 2.5
ft/sec. The corresponding prototype velocity for A = 25 is, in ft/sec,

(a) 62.5 (d) 12.5 (¢) 0.5 (d) 0.10 (¢) none of these
answers

4.47. The height of a hydraulic jump in a stilling pool was found to be 4.0 in.
in a model, A\ = 36. The prototype jump height is

(@) 12 ft b) 21t (¢) not determinable from data given
(d) less than 4 in. (e) none of these answers

4.48. A ship’s model, scale 1:100, had a wave resistance of 2.5 lb at its design
speed. The corresponding prototype wave resistance is, in lb,

(@) 2500 (b) 25,000 (¢) 250,000 (d) 2,500,000 (e) none
of these answers

4.49. A 1:5 scale model of a projectile has a drag coefficient of 3.5 at M = 2.0,
How many times greater would the prototype resistance be when fired at the
same Mach number in air of the same temperature and half the density?

(a) 3.12 (b) 12.5 (¢) 25 (d) 100 (e) none of these

answers

4.50. If the capillary rise Ah of a liquid in a circular tube of diameter D) depends
upon surface tension ¢, and specific weight v, the formula for capillary rise could
take the form,

(@) Ak = \/gﬁ'(;%ﬂ) () Ak = c( ) (©) Ak = cD (s)

2
(d) Ak = ,\/EF (%) (e) none of these answers
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5

VISCOUS EFFECTS—FLUID RESISTANCE

In Chap. 3 the basic equations used in the analysis of fluid-flow situa-
tions were discussed. The fluid was considered frictionless, or in some
cases, losses were assumed or computed without probing into their under-
lying causes. This chapter deals with real fluids, i.e., with situations in
which irreversibilities are important. Viscosity is the fluid property that
causes shear stresses in a moving fluid; it is also one means by which
irreversibilities or losses are developed. Without viscosity in a fluid
there is no fluid resistance. Simple cases of laminar incompressible flow
are first developed in this chapter, since in these cases the losses may be

U

. -
-

ar
5y1 (r+dy6y) ol .
7«- — U —
poy [ ¥ Tml (p+%Panay| |
y Y

Y L e e L e A e e e e e s

ft—————— §l ———»

F1a. 5.1. Flow between parallel plates with upper plate in motion.

computed. The concept of Reynolds number, introduced in Chap. 4, is
then further developed. Turbulent-flow shear relationships are intro-
duced by use of the Prandtl mixing-length theory and are applied to
turbulent velocity distributions. This is followed by boundary-layer
concepts and by drag on immersed bodies. Resistance to steady,
uniform, incompressible, turbulent flow is then examined for open and
closed conduits, with a section devoted to open channels and to pipe flow.
The chapter closes with a section on lubrication mechanics.

5.1. Laminar, Incompressible Flow between Parallel Plates. Flow
between paralle]l plates when one plate moves with velocity U in its own
plane is first developed. Flow between fixed parallel plates is a special

174
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case obtained by letting U = 0. In Fig. 5.1 the upper plate moves with
velocity U in the [l-direction and there is a pressure variation in the
I-direction. The flow is analyzed by taking a thin lamina of unit width
as a free body. The equation of motion for the lamina in steady motion
in the Il-direction 1s

pay—(p+‘f’i—’;’al)ay-—ral+(r+(h )al= 0
After dividing through by the volume of the element and after simplifying,

dr d’p ~
ag = -(Yl_ (D.l.l)
Since dp/dl is independent of y, this integrates at once with respect to y,

/——dv— dy + A
or

_dp
T =y y+ A
The direction of the shear forces on the free body is that for the case in
which u increases as y increases; hence, from Eq. (1.1.1)
_

R

After substituting for r,
du _ ldp é

dy & arY
By integrating again with respect to y,
du _ 1 dp
or
u = 1 dp + Y+ B

in which A, B are constants of 1nt-egrat10n and may be selected to make
the velocity of fluid at the boundary equal to the velocity of the boundary;
thatis, u = U wheny = e and u = 0 wheny = 0. Substitution in turn
produces

._ldp | Aa _
D—_ﬂdla+p+B B#O
After eliminating A and B,
w="UY_ iﬁiﬂ (ay — 3?) (5.1.2)
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For dp/dl = 0 there is no pressure drop, and the velocity has a straight-
line distribution. When U = 0, the velocity distribution for flow
between fixed parallel plates is ob-
tained. The discharge is calculated
with Eq. (5.1.2) by integration,

(5.1.3)

The maximum velocity is generally at
some point other than the midplane.

Ezxample 5.1:In Fig. 5.2 one plate moves
relative to the other as shown. u = 0.80
poise, p = 1.7 slugs/ft3. Determine the
velocity distribution, the discharge, and
the shear stress exerted on the upper plate.

In Eq. (5.1.2) dp/dl must be replaced by d(p + v2z)/dl to account for the weight
component, At the upper point '

P+ vz =20 X 144 4 1.7 X 32.2 X 10 = 3426 1b/ft*

Fi1G. 5.2. Flow between inclined flat
plates.

and at the lower point
p+ vz =12 X 144 = 1728 Ib/ft?
to the same datum. Hence

d(p + v2) _ 1728 — 3427
di 10 /2

From the figure a = 0.24/12 = 0.02 ft, U = —3.0 ft/see, and from Eq. (5.1.2)

= —120 lh/ft?

_ 3y 120
| “ =~ .02 T 2(0.807479)
After simplifying

(0.02y — ¥

u = 566y — 35,800y*

the maximum velocity occurs where du/dy = 0, or y = 0.0079 ft. It 18 tUmax =
2.24 ft/sec, so the minimum velocity occurs at the upper plate.
The discharge is

0.02 0.02
Q = ﬁ) wdy = 283y? — 11,933;;3]0 = 0.0177 cfs/ft

and is downward.
To find the shear stress on the upper plate

gﬂ] — 366 — 71,600y] — 866
Y dy=0.02

y=0.02



sec. 5.1] VISCOUS EFFECTS—FLUID RESISTANCE 177

and

du 0.80 -
T = pa‘g‘{‘ = Z.?-g (—866) = —1.45 lb/ft2

This is the fluid shear at the plate; hence, the shear force on the plate is 1.45 Ib/ft?
resisting the motion of the plate.

Losses itn Laminar Flow. An expression for the irreversibilities is
developed for one-dimensional, incompressible, steady, laminar flow, in
which the equation of motion and the principle of work and energy are
utilized. There is no increase in kinetic energy in steady flow in a tube or
between parallel plates. The pressure drop in horizontal flow, which
represents work done on the fluid per unit volume, is converted into
irreversibilities by the action of viscous shear. The losses in the length
L are ¢ Ap per unit time, in which Ap is the pressure drop.

y
(r+%§6y) ox

) ———

| .
| dp

+ ox——»
r ——
Téx

F1:G. 5.3. Forces on a fluid element.

After examination of the work done on the fluid in one-dimensional
flow, an expression for the losses can be developed. First, the equation
of motion applied to an element (Fig. 5.3) relates the shear stress and
pressure drop. There is no acceleration; hence, =f, = 0, and

d d
péy—(p+£6x)6y—-r6x+(r+a§6y)6a:=0

After simplifying,

dp dr

bl 1.4

dr dy (5.1.4)
which implies that the rate of change of pressure in the z-direction must
cqual the rate of change of shear in the y-direction. Clearly, dp/dzx
1s independent of y, and dr/dy is independent of z.

The work done per unit time, or power input, to a fluid element (Fig.

5.4) for one-dimensional flow consists in the work done on the element by
pressure and by shear stress, minus the work. that the element does on
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the surrounding fluid, or

du By 5 dp du dy
_p(u &y 2)6y (p—b—dx&a:)(u &y 2)6y+ru6m

d
+ iy (rw) 8y 8x — Tu oz

After simplifying,

Net power input _ d dp
Unit volume = dy (ru) — u—- (5.1.5)

By expanding Eq. (5.1.5) and substituting Eq. (5.1.4)

Net power input _  du dr _ dp _ du
Cuit volume " dy ~ “dy ~ “dz T "y (5.1.6)

With Newton’s law of viscosity,

Net power input _ du du\? _ 1-_2
Unit volume T@ - H a-g-/) =% - (5.1.7)

This power is used up by viscous friction and is converted into
irreversibilities.

Power in ru6x+a‘—i-—'(ru) dyéx
/_" v
du
u+a}' t_Sy

du ¢
p(u+3§ -;-_,‘X)By (p+g—£6x) (u+% %Z) 3y
—-—.——+

—_— ———p.*-—_—
du by du 8y
Lt —— 5= U+
dy 2 dy 2
—— Power out
P E——
TU 6x<—-/

F1G. 5.4. Work done on a fluid element in one-dimensional motion.

By integrating the expression over a length L between two fixed
parallel plates, with Eq. (5.1.2) for U = 0 and with Eq. (5.1.7),

] _ a du\2 _ a ,_1_(}2 _ 2
Net power input = L p(—gg;) Ldy = ij; [2” dl (2y a)] dy
_ (4 L
T \dl) 12
By substituting for @ from Eq. (5.1.3) for U = 0,

Losses = net power input = ~@Q %—? L =0QAp
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in which Ap is the pressure drop in the length L. The expression for
power input per unit volume [Eq. (5.1.7)] is also applicable to cases of
laminar flow in a tube. The irreversibilities are greatest when du/dy is
greatest. The distribution of shear stress, velocity, and losses is shown
in Fig. 5.5 for a round tube.

Energy dissipation

Voo
P G 08@
<

/FJG. 5.5. Distribution of velocity, shear, and losses for a round tube.

'4.2. Laminar Flow through Circular Tubes and Circular Annuli. Flow
through Circular Tubes. For steady, incompressible, laminar flow through
a straight, round tube, the velocity distribution, discharge, and pressure
drop can be determined analytically. In a horizontal tube (Fig. 5.6)
with a concentric cylinder of fluid as a free body, the flow is steady and,
since the size of the cross section does not change, every particle of fluid
moves without acceleration. Therefore, the summation of forces on
the free body must equal zero. When the component of forces is taken

L L L e L e iy

2urélr

- (p+%}z)- 8lywr2
Jt—— - ——

A e B o s 1 e o S S A o F e o o A e

ol ———»

F1q. 5.6. Free-body diagram for steady flow through a round tube.

in the l-direction, there are normal pressure forces over the end areas and
shear forces over the curved surface of the cylinder. In the figure,

pare — (p + %—?ﬂ)ﬂz — 2zrdlr =0
or, after dividing through by the volume #r? 8l and simplifying,

. dpr
T = - m § (5.2.1)



180 FUNDAMENTALS OF FLUID MECHANICS [Chap. §

The term dp/dl depends upon [ only for a given flow. This equation
shows that the shear stress is zero at the tube axis and increases linearly
with r to its maximum value 7, at the wall of the tube. The pressure
must decrease in the direction of flow in a horizontal tube in that pressure
force is the only means available to overcome resistance to flow; the
potential and kinetic energies remain constant. The term —dp/dl is
positive. Equation (5.2.1) holds for turbulent flow as well as for laminar
flow since in deriving it no assumptions were made as to the nature of the
flow.

For one-dimensional laminar flow the shear stress is related to the
velocity by Newton’s law of viscosity,

du

T = —ﬂm

into which the minus sign is introduced because du/dr is negative for the
particular choice of coordinates; that is, u decreases as r increases. By
substituting for r in Eq. (5.2.1),

du _ ldpr
dr  udl 2
The term —dp/dl is the drop in pressure per unit length of tube and is
not a function of . By integrating with respect to r, if u and r are the

only variables in the equation,

/i—udr=lfd—p rdr + c
r

or

u=—-=rt+c

The velocity of a real fluid is always zero at a fixed boundary; hence,
% = 0 for r = ro. After substituting this boundary condition into the
equation,

dp

_._.r02+c

1
O-—Z‘-; )

To eliminate the constant of integration ¢, the difference between the
last two equations is taken, so :

= — —— — (re2 — 72) (5.2.2)
H

which is the equation for velocity distribution. The velocity varies para-
bolically, and the velocity distribution surface is a paraboloid of revolu-



Sec. 5.2] VISCOUS EFFECTS—FLUID RESISTANCE Cy 181
——
| —— 71

r

!

)

Fig. 5.7. Velocity distribution and shear-stress distribution in laminar flow in a round
tube.

F1G. 5.8. Ring element of area used to compute discharge.

tion. It is shown, together with the shear-stress distribution, in Fig. 5.7.
The maximum velocity u... occurs at the axis and is

_ dp 1'02
Upgax = — m 1_‘; (5.2.3)

The discharge is the quantity within the velocity distribution surface

Q=fudA.—.-f"uzﬂdr
0

in which the ring element of area (Fig. 5.8) has been used. By sub-
stituting for » from Eq. (5.2.2) and performing the integration,

____d_p'n' 7o s o __54_27”'04

The term —dp/dl may be written Ap/L, in which Ap is the pressure
drop in the length L. Equation (5.2.4) then becomes

_ Ap et
Q="=gT (5.2.5)
In terms of the tube diameter D,
Q = dp =D (5.2.6)

128ulL,
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The average velocity V is Q/=r¢?, or

_Aprg?
V = 8al (5.2.7)

which is one-half of the maximum velocity.
Equation (5.2.6) can then be solved for pressure drop, which represents

losses per unit volume,

_128uLQ

Ap - 1['D4 (5-2.8)

The losses are seen to vary directly as the viscosity, the length, and
the discharge, and to vary inversely as the fourth power of the diameter.

F1G. 5.9. Free-body diagram for steady flow through an inclined tube.

It should be noted that tube roughness does not enter into theequations.
Equation (5.2.6) is known as the Hagen-Poiseutlle equation; it was deter-
mined experimentally by Hagen in 1839 and independently by Poiseuille
in 1840. The analytical derivation was made by Wiedemann in 1856.
The results as given by Eqgs. (5.2.2) to (5.2.8) are not valid near the
entrance of a pipe. If the flow enters the pipe from a reservoir through a
well-rounded entrance, the velocity at first is almost uniform over the
cross section. The action of wall shear stress (as the velocity must be
zero at the wall) is to slow down the fluid near the wall. As a con-
sequence of continuity the velocity must then increase in the central
region. The transition length L’ for the characteristic parabolic velocity
distribution to develop is a function of the Reynolds number. Langhaar!

1H. L. Langhaar, Steady Flow in the Transition Length of a Straight Tube,
J. Appl. Mechanics, vol. 9, pp. 55-58, 1942.
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developed the theoretical formula

LI’
D= 0.058R
which agrees well with observation.

When the tube is inclined, as in Fig. 5.9, the losses can come from
potential energy as well as from flow energy. An additional term comes
into the equation due to the weight component vyar2 8l cos 8. If z is
measured vertically upward, a change 8z corresponds to a change —él.
In Fig. 5.9

¢ 0__§§__d_z
BY=TuT T d

When the weight component is included in Eq. (5.2.1)

d
T= T4 (? + v2) -2—r (5.2.9)
and Eq. (5.2.4) becomes _
- d 1I'T|)4 .
Q= — di (p + v2) B (5.2.10)

The losses per unit volume per unit length of tube are —d(p + vz)/dl.

1

s p1=20 psi

ol

< in. diam

15t

Fia. 5.10. Flow through an inclined tube,

Ezample 5.2: Determine the direction of flow through the tube shown in Fig.
5.10, in which vy = 501b/ft3, u» = 0.40 poise. Find the quantity flowing in gallons
per minute, and compute the Reynolds number for the flow.

At section 1

P+ vz = 20 X 144 4 50 X 15 = 3630 Ib/ft?

and at section 2
P+ vz = 30 X 144 = 4320 lb/ft?

if datum for z is taken through section 2. The flow is from 2 to 1 since the energy
is greater at 2 (kinetic energy must be the same at both sections) than at 1.
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To determine the quantity flowing, the expression is written

_d _ _ 3630 — 4230 _ :
7Pt 72 gy — 231b/ft

After substituting into Eq. (5.2.10),

2311'(1')‘
8 X (12) 40.40/479)

Q= = 0.00203 cfs

By converting to gallons per minute,
Q = 0.00203 X 7.46 X 60 = 0.91 gpm
The average velocity is Q/xr?, or

9—0})2&3 = 1.486 ft/sec

W(z‘lg)z
and the Reynolds number is (Sec. 4.4)

VDp _ 1.486 X 1 X 50 X 478

G T T %322 X040 -

R =

If the Reynolds number had ‘been above 2000, the Hagen-Poiseuille equation
would no longer apply, as discussed in Sec. 5.3.

The kinetic-energy correction factor a [Eq. (3.6.7)] may be determined
for laminar flow in a tube by use of Egs. (6.2.2) and (5.2.3),

u U r\?
R

By substituting into the expression for «,

1 w\3 1 ro r\2 3

There is twice as much kinetic energy in the flow as in uniform flow at
the same average velocity.

Fiow through an Annulus. Steady laminar flow through the annular
space between two concentric round tubes can be determined analytically.
In place of the solid cylinder of Fig. 5.6, a cylindrical sleeve is taken as
free body. The forces acting on it are shown in Fig. 5.11. Again the
flow is steady, and the summation of forces on the free body in the axial
direction must be zero. The equation may be written

p21rr6r—(p+ 6l)2rr6r+21rralr—21r(r+6r)al(r+——6r) 0
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Fic. 5.11. Free-body diagram for flow through an annulus.

After dividing through by the volume of the element 2xr ér 8l and drop-
ping the term containing the inﬁnitesimal,

+ =

In this expression 7 is a function of r only, and p is a function of { only.
The last two terms may be cornbined, 80
1 d('rr)
r dr

Since dp/dl is not a function of r, the equation can be integrated with
respect to r,

+ =0 | (5.2.13)

dp _dpr2 _
il rdr+/d(rr)dr dlz—-l—rr—A

in which A is the constant of integration. By substituting for r from
r = —udu/dr and multiplying through by dr/r, the equation can be
integrated again,

‘l@ rdr — u ~dr~ QZ—FB
2 dl r
or
2
%i—-—pu=Alnr+B

B is the second constant of integration. The velocity must be zero at the
outer wall, u = 0, » = a; and at the inner wall, w =0, r = b. After
substituting in turn,

dp b* _
a1

dp a?

mE:AIna—f—B Alnb+4 B

Eliminating the constants A, B in the three equations and solving for u,

__Lld : - b 5.2.14
= Edl( T+lb/alnr) (5:2.14)
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The discharge @ is

= [° - _ X 9p _ps (@ = b7
Q= ﬁ 2xru dr = 85 dl [a‘ b na/b ] (5.2.15)
For sloping tubes dp/dl may be replaced by d(p + v2)/dl as in Eq.

(5.2.10).

5.3. Reynolds Number. Laminar flow is defined as flow in which the
fluid moves in layers, or laminas, one layer gliding smoothly over an
adjacent layer with only a molecular interchange of momentum. Any
tendencies toward instability and turbulence are damped out by viscous
shear forces that resist relative motion of adjacent fluid layers. Turbu-
lent flow, however, has very erratic motion of fluid particles, with a
violent transverse interchange of momentum. The nature of the flow,
i.e., whether laminar or turbulent, and its relative position along a scale
indicating the relative importance of turbulent to laminar tendencies are
indicated by Reynolds number. The concept of Reynolds number and its
interpretation are discussed in this section. In Sec. 3.5 an equation of
motion was developed with the assumption that the fluid is frictionless,
i.e., that the viscosity is zero. More general equations have been devel-
oped that include viscosity, by including shear stresses. These equations
(Navier-Stokes) are complicated, nonlinear, partial differential equations
for which no general solution has been obtained. In the last century
Osborne Reynolds! studied these equations to try to determine when two
different flow situations would be similar.

Two flow cases are said to be dynamically stmilar when

a. they are geometrically similar, i.e., corresponding linear dimensions
have a constant ratio and

b. the corresponding streamlines are geometrically similar, or pressures
at corresponding points have a constant ratio.

In considering two geometrically similar flow situations, Reynolds
deduced that they would be dynamically similar if the general differ-
ential equations describing their low were identical. By changing the
units of mass, length, and time in one set of equations and determining
the conditions that must be satisfied to make them identical to the
original equations, Reynolds found that the dimensionless group ulp/p
must be the same for both cases. Of these, u is a characteristic velocity,
I a characteristic length, p the mass density, and p the viscosity. This
group, or parameter, is now called the Reynolds number R,

= Ul (5.3.1)
M
1 0. Reynolds, An Experimental Investigation of the Circumstances Which Deter-
mine whether the Motion of Water Shall Be Direct or Sinuous, and of the Laws of
Resistance in Parallel Channels, Trans. Roy. Soc. (London), vol. 174, 1883.
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To determine the significance of the dimensionless group, Reynolds
conducted his experiments on flow of water through glass tubes, illus-
trated in Fig. 5.12. A glass tube was mounted horizontally with one
end in a tank and a valve on the opposite end. A smooth bellmouth
entrance was attached to the upstream end, with a dye jet arranged so
that a fine stream of dye could be ejected at any point in front of the
bellmouth. Reynolds took the average velocity V as characteristic
velocity and the diameter of tube D as characteristic length, so that
R = VDp/p.

For small flows the dye stream moved as a straight line through the
tube, showing that the flow was laminar. As the flow rate increased, the
Reynolds number increased, since D, p, u were constant, and V was
directly proportional to the rate of flow. With increasing discharge a

)

F1G. 5.12. Reynolds apparatus.

condition was reached at which the dye stream wavered and then sud-
denly broke up and was diffused throughout the tube. The flow had
changed to turbulent flow with its violent interchange of momentum
that had completely disrupted the orderly movement of laminar flow.
By careful manipulation Reynolds was able to obtain a value R = 12,000
before turbulence set in. A later investigator, using Reynolds’ original
equipment, obtained a value of 40,000 by allowing the water to stand in
the tank for several days before the eéeriment and by taking precau-
tions to avoid vibration of the water or equipment. These numbers,
referred to as the Reynolds upper critical numbers, have no practical
significance in that the ordinary pipe installation has irregularities that
cause turbulent flow at a much smaller value of the Reynolds number.
Starting with turbulent flow in the glass tube, Reynolds found that it
would always become laminar when the velocity was reduced to make R
less than 2000. This is the Reynolds lower critical number for pipe flow
and is of practical importance. With the usual piping installation, the
flow will change from laminar to turbulent in the range of the Reynolds
numbers from 2000 to 4000. ¥or the purpose of this treatment it is
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assumed that the change occurs at R = 2000. In laminar flow the losses

are directly proportional to the average velocity, while in turbulent flow

the losses are proportional to the velocity to a power varying from 1.7
to 2.0.

There are many Reynolds numbers in use today in addition to the one

for straight, round tubes. [or example, the motion of a sphere through

¢, & fluid may be characterized by UDp/p, in

/‘ which U is the velocity of sphere, D is the

" diameter of sphere, and p and g are the fluid

/ density and viscosity.

P . N
B The Reynolds number may be viewed as
2'5( a ratio of shear stress . due to turbulence to
— shear stress r, due to viscosity. By applying

- o the momentum equation to the flow through an
:'; Ir‘;:‘(isé?{:";it:gsli‘r’;sgl‘s&r element of area 84 (Iig. 5.13) the apparent

" shear stress due to turbulence can be deter-
mined. If »* is the velocity normal to 84 and ' is the difference in
velocity, or the velocity fluctuation, on the two sides of the area, then,
with Eq. (3.9.10), the shear force 8F acting is computed to be

oF = pv’' 84 v/

in which pv’ §4 is the mass per second having its momentum changed
and «’ is the final velocity minus the initial velocity in the s-direction.
By dividing through by 84, the shear stress r, due to turbulent fluctua-
tions is obtained,

o= pu'v (5.3.2)

The shear stress due to viscosity may be written

Ty = “_,;1’“ (5-3-3)

in which %’ is interpreted as the change in velocity in the distance /,
measured normal to the velocity. Then the ratio,

T 'L"lp

Ty H

has the form of a Reynoids number.

Although this method of viewing the Reynolds number is not exact,
it does indicate that for large Reynolds numbers the numerator is much
more important than the denominator or that the viscous shear may be
neglected because it is very small compared with the shear due to tur-
bulence. On the other hand a small Reynolds number indicates that the
denominator is much more important than the numerator, or that the
viscous shear is much greater than turbulent shear.
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The nature of a given flow of an incompressible fluid is characterized
by its Reynolds number. For large values of R one or all of the terms
in the numerator are large compared with the denominator. This
implies a large expanse of fluid, high velocity, great density, extremely
small viscosity, or combinations of these extremes. The numerator
terms are related to inertial forces, or to forces set up by acceleration
or deceleration of the fluid. The denominator term is the cause of
viscous shear forces. Thus, the Reynolds number parameter may also
be considered as a ratio of inertial to viscous forces. A large R indicates
a highly turbulent flow with losses proportional to the square of the
velocity. The turbulence may be fine scale, composed of a great many
small eddies that rapidly convert mechanical energy into irreversibilities
through viscous action; or it may be large scale, like the huge vortices
and swirls in a river or gusts in the atmosphere. The large eddies gen-
erate smaller eddies, which in turn create fine-scale turbulence. Tur-
bulent flow may be thought of as a smooth, possibly uniform flow, with a
secondary flow superposed on it. A fine-scale turbulent flow has small
fluctuations in velocity that occur with high frequency. The root-mean-
square value of the fluctuations and the frequency of change of sign of
the fluctuations are quantitative measures of turbulence. In general
the intensity of turbulence increases as the Reynolds number increases.

For intermediate values of R both viscous and inertial effects are
important, and changes in viscosity change the velocity distribution and
the resistance to flow.

For the same R, two geometrically similar closed-conduit systems (one,
say, twice the size of the other) will have the same ratio of losses to
velocity head. The use of Reynolds number provides a means for using
experimental results with one fluid for predicting results in a similar case
with another fluid.

5.4. Prandtl Mixing Length. Velocity Distribution in Turbulent Flow.
Pressure drop and velocity distribution for several cases of laminar flow
were worked out in the preceding section. In this section the mixing-
length theory of turbulence is developed, including its application to
several flow situations. The apparent shear stress in turbulent flow is
expressed by [Eq. (3.2.2)]

=+ ) % (5.4.1)

including direct viscous effects. Prandtl' has developed a most useful
theory of turbulence called the mixing-length theory. In Sec. 5.3 the

' For an account of the development of turbulence theory the reader is referred
to L. Prandtl, “Essentials of Fluid Dynamics,” pp. 105-145, Hafner Publishing Com-
pany, New York, 1952.
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shear stress r, due to turbulence, was shown to be
T = pu'v’ (5.3.2)

in which «/, v* are the velocity fluctuations at a point. In Prandtl’s?
theory, expressions for 4’ and ¢’ are obtained in terms of a mixing-length
distance ! and the velocity gradient du/dy, in which u is the temporal
mean velocity at a point and y is the distance normal to u, usually
measured from the boundary. In a gas, one molecule, before striking
another, travels an average distance known as the mean free path of the
gas. Using this as an analogy (Fig. 5.14a), Prandtl assumed that a

(@)
Fic. 5.14. Notation for mixing-length theory.

particle of fluid is displaced a distance ! before its momentum is changed
by the new environment. The fluctuation u’ is then related to I by

which means that the amount of the change in velocity depends upon
the change in temporal mean velocity at two points distant [ apart in
the y-direction. From the continuity equation, he reasoned that there
must be a correlation between v’ and »’ (Fig. 5.14b), so that ¢’ is pro-
portional to ¥/,

t (v 4 Mt —

v w ~1 ay
By substituting for 4’ and ¢’ in Eq. (5.3.2) and by letting { absorb the
proportionality factor, the defining equation for mixing length is obtained:

S (%)2 (5.4.2)

1 L. Prandtl, Bericht iiber Untersuchungen zur ausgebildeten Turbulenz, Z. angew.
Math. u. Mech., vol. 5, no. 2, p. 136, 1925.



Sec. 5.4] VISCOUS EFFECTS—FLUID RESISTANCE - 191

r always acts in the sense that causes the velocity distribution to become
more uniform. When Eq. (5.4.2) is compared with Eq. (3.2.1) it is found

that

du
— 2
n = pl @y (5.4.3)

But 7 is not a fluid property as is dynamic viscosity. Rather, » depends
upon the density; the velocity gradient and the mixing length I. In
turbulent flow there is a violent interchange of globules of fluid except
at a boundary, or very near to it, where this interchange is reduced to
zero; hence, I must approach zero at a fluid boundary. The particular
relationship of ! to wall distance y is not given by Prandtl’s derivation.
Von Kérmdn! suggested, after considering similitude relationships in a
turbulent fluid, that
=« du/dy
d?u/dy?

in which « is'a universal constant in turbulent flow, regardless of the
boundary configuration or value of Reynolds number.

In turbulent flows, 5, sometimes referred to as the eddy viscosity, is
generally much larger than u. It may be considered as a coefficient of
momentum transfer, expressing the transfer of momentum from points
where the concentration is high to points where it is lower. It is con-
venient to utilize a kinematic eddy viscosity e = n/p which is a property
of the flow alone and is analogous to kinematic viscosity.

The violent interchange of fluid globules in turbulence also tends to
transfer any uneven concentration within the fluid, such as salinity,
temperature, dye coloring, or sediment concentration. Studies? indi-
cate that the transfer coefficient is roughly proportional to, but probably
larger than, the eddy viscosity for turbulent diffusions of concentrations
other than momentum.

If T is the temperature, H the heat transfer per unit area per unit
time, and ¢, the specific heat at constant pressure (Btu per unit of temper-
ature per unit of mass), then

(5.4.4)

H = —cpn2—= —c lzauﬂ1

3y 2P 3y 3y (5.4.5)

in which ¢,n is the eddy conductivity. For transfer of material sub-
stances, such as salinity, dye, or sediment, if C is the concentration per
unit volume (e.g., pounds of salt per cubic foot, number of particles per
cubic foot) and ¢ the rate of transfer per unit area per unit time (e.g.,

! Th. von Kdrmén, Turbulence and Skin Friction, J. Aeronaut. Sci., vol. 1, no. 1,
p- 1, 1934.
2 See footnote, p. 189.
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pounds of salt per square foot per second, number of sediment particles
per square foot per second), then

C= —€— (5.4.6)

and e is proportional to e.

Ezxample 5.3: A tank of liquid containing fine solid particles of uniform size is
agitated so that the kinematic eddy viscosity may be considered constant. If the
fall velocity of the particles in still liquid is v; and the concentration of particles is
Coaty = yo (y measured from the bottom), find the distribution of solid particles
vertically throughout the liquid. ]

By using Eq. (5.4.6) to determine the rate per second carried upward by turbu-
lence per square foot of area at the level y, the amount per second falling across
this surface by settling is equated to it for steady conditions. Those particles in
the height v, above the unit area will fall out in a second, i.c., Cv, particles cross
the level downward per second per square foot. From Eq. (5.4.6) —e, dC/dy
particles are carried upward due to the turbulence and the higher conecentration
below ; hence

dC
CU/ = —€ d'—y'
or
dC v
| T LW
After integrating
InC = — z—fy + constant

For C = Co, ¥ = Yo,
C = Cuerledlv—uD

Velocity Distributions. Utilizing the mixing-length concept, turbulent
velocity distributions are discussed for the flat plate, the pipe, and for
spreading of a fluid jet. ¥or turbulent flow over a smooth plane surface
(such as the wind blowing over smooth ground) the shear stress in the
fluid is constant, say ro. Equation (5.4.1) is applicable, but 5 approaches
zero at the surface and u becomes negligible away from the surface. If
n is negligible for the film thickness y = §, in which p predominates,
Eq. (5.4.1) becomes

r
p

o

pu
Y _
PY Y
The term 4/7o/p has the dimensions of a velocity and is called the shear-
stress velocity u,. Hence

Yoy <s (5.4.7)

L WY < (5.4.8)

Uy v

shows a linear relation between « and y in the laminar film. Fory > §,
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u is neglected, and Eq. (5.4.1) produces

2
Ty = p12 (%) (:)4:9)

Since [ has the dimensions of a length and from dimensional considera-
tions would be proportional to y (the only significant linear dimension),
assume | = xy. By substituting into Eq. (5.4.9) and rearranging,
d -
du _ 1dy (5.4.10)
After integrating,
1 -
Xl y + constant (5.4.11)
Uy, K
It is to be noted that this value of u substituted in Eq. (5.4.4) also deter-
mines [ proportional to y (d?u/dy? is negative since the velocity gradient
decreases as y increases). Equation (5.4.11) agrees well with experiment
and, in fact, is also useful when 7 is a funection of y, because most of the
velocity change occurs near the wall where 7 is substantially constant.
It is quite satisfactory to apply to turbulent flow in pipes.

Example 5.4: By integration of Eq. (5.4.11) find the relation between the aver-
age velocity ¥ and the maximum velocity u,, in turbulent flow in a pipe.
When y = ro, u = tn, 80
) Uom 1 i
Ug  U* + K In To

The discharge Vare? is obtained by integrating the veloeity distribution
To— & 7o ]
Vare? = 27r[ ur dr = 27r[ (um + 2 jl) (ro — y) dy
0 5 K 7o

The integration cannot be carried out to y = 0, since the equation holds in the
turbulent zone only. The volume per sceond flowing in the laminar zene is so
small that it may be neglected. Then

I ]
V=2[ (um—}-gilngi)(l—‘—y)d(ﬁ
&/ro K To To o

in which the variable of integration is y/ro. By integrating,

' _y._.l(g)z] zt_*_[_y Jz_g_l(;ﬂ Y 1(1; ]} |
V= 2 {um [Tu 2 T + K To ln To o 2 Yo In o + 4 To A} 517
Since §/ro is very small, such terms as 8/ro and (8/r¢) In 8/r, are negligible

(limzlnz = 0);so
x—0

=

*
K
or
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In evaluating the constant in Eq. (5.4.11), following the methods of
Bakhmeteff,! u = u,, the “wall velocity,” when y = 6. According to

Eq. (5.4.8)
o _ Ul _ iy (5.4.12)
Uy v
from which it is reasonqd that u*8/v should have a critical value N at
which flow changes from laminar to turbulent, since it is a Reynolds
number in form. By substituting © = w, when y = & into Eq. (5.4.11)

and by using Eq. (5.4.12),
Yo _ N = lln é 4+ constant = 1In ]—Yﬁ + constant
By K K Uy,

After eliminating the constant

e =—1~1n-‘?’m—*+N--llnN
Uy K v K
or
R N L (5.4.13)
Uy K v

in which 4 = N — %ln N has been found experifnentally by plotting

u/u, against lnyu,/v. For flat plates « = 0.417, A = 5.84, but for
smooth wall pipes Nikuradse? experiments yield x = 0.40 and A = 5.5.

Prandtl has developed a convenient exponential velocity distribution
formula for turbulent pipe flow,

v (y\
= = (;;) (5.4.14)
in which n varies with Reynolds number. This empirical equation is
valid only at some distance from the wall. For R less than 100,000,
n = 1/7, and for greater values of R, n decreases. The velocity distribu-
tion equations, Egs. (5.4.13) and (5.4.14), both have the fault of a nonzero
value of du/dy at the center of the pipe.

Example 5.5: Find an approximate expression for mixing-length distribution in
turbulent flow in a pipe from Prandtl’s one-seventh-power law.

By applying Eq. (5.2.1) to the pipe wall, 7y = %? 7—21' Dividing into ¥q. (5.2.1}

and using Eq. (5.4.2),
= A Y ‘_13‘.)2
T= To(l To) =l dy

1 B. A. Bakhmeteff, ‘The Mechanics of Turbulent Flow,” Prineceton University
Press, Princeton, N.J., 1941.

*J. Nikuradse, Gesetzmassigkeiten der turbulenten Strémung in glatten Rohren.
VDI Forsch. 356, 1932.
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in solving for [,

Ue V1 — y/rg
du/dy

u (_?4 ¥
Um To

the approximate velocity gradient is obtained

1=
From Eq. (5.4.14)

du Ul fy\-%

dy To 7 FO
and

[ A B
7'_0_'um7(7‘0) VI=y/n

The dimensionless velocity defictency, (u. — u)/u,, is a function of
y/ro only for large Reynolds numbers (Example 5.4) whether the pipe
surface is smooth or rough. From Eq. (5.4.11), by evaluating the
constant for ¥ = u, when y = r,,

(5.4.15)

Un — 4 _ 1y 7o
Uy kY
For rough pipes, the velocity may be assumed to be u, at the wall
distance y, = me, in which ¢ is a typical height of the roughness projec-
tions and m is a form coefficient depending upon the nature of the rough-
ness. By substituting into Eq. (5.4.15), then by eliminating wum/u,
between the two equations
—~tf-=—1—lng+&——£lnm (5.4.16)
Uy K € Uy K
in which the last two terms on the right-hand side are constant for a
given type of roughness,
-nlyB (5.4.17)

u
_* K €
In Nikuradse’s experiments with sand-roughened pipes constant-size sand
particles (those passing a given screen and being retained on a slightly
finer screen) were glued to the inside pipe walls. If ¢ represents the
diameter of sand grains, experiment shows that x = 0.40, B =. 8.48,
Spreading of a Fluid Jet. A free jet of fluid issuing into a large space
containing the same fluid otherwise at rest is acted upon by frictional
forces between the jet and the surrounding fluid. The jet velocity
reduces and additional fluid is set in motion in the axial direction. The
pressure is substantially constant throughout the jet and surroundings
so that the momentum in the axial direction remains constant. The
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turbulent mixing length within the jet can be taken as proportional to
its breadth b (Fig. 5.15) | = ab. Experiments show that o« = . A
conclusion from the constancy of momentum within the jet is that the
maximum velocity (at the center line) varies inversely as the axial
distance = along the jet. Both theory! and experiment show that the
breadth varies linearly with axial distance, b = x/8. Turbulent shear
forces reduce the jet velocity within the eentral cone, and equal turbulent
shear forces act to increase velocity in the outer portions of the jet.

: |
: |—’ L‘ e~ *<;-~f!\-:— ‘;f L—xb'— L —

h_—‘fh_#——r&—ﬁiﬁ(ﬁt\—,&_*

Fi1g. 5.15. Fluid jet issuing into same fluid medium.

- 5.5. Boundary-layer Concepts. In 1904 Prandtl? developed the con-
cept of the boundary layer. 1t provides an important link between
ideal fluid flow and real fluid flow. For fluids having relatively small vis-
costly, the effect of internal friction in a flurd is appreciable only in a narrow
region surrounding the flusd boundaries. From this hypothesis, the flow
outside of the narrow region near the solid boundaries may be considered
as ideal flow or potential flow. Relations within the boundary-layer
region may be computed from the general equations for viscous fluids, but
use of the momentum equation permits the developing of approximate
equations for boundary-layer growth and drag. In this section the
boundary layer is described and the momentum equation applied to it.
Two-dimensional flow along a flat plate is studied by means of the momen-
tum relationships for both the laminar and the turbulent boundary layer.
The phenomenon of separation of the boundary layer and formation of
the wake is described.

Description of the Boundary Layer. When motion is started in a fluid
having very small viscosity, the flow is essentially irrotational in the

' W. Tollmien, Berechnung turbulenter Ausbreitungsvorgange, Z. angew. Math. u.
Mech., vol. 6, p. 468, 1926.

* L. Prandt], Uber Flussigkeitshewegung bei sehr kleiner Reibung, Verhandl. 111
Intern. Math.-Kongr., Heidelberg, 1904.
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first instants. Since the fluid at the boundaries has zero velocity relative
to the boundaries, there is a steep velocity gradient from the boundary
into the flow. This velocity gradient in a real fluid sets up near the
boundary shear forces that reduce the flow relative to the boundary.
That fluid layer which has had its velocity affected by the boundary
shear is called the boundary layer. The velocity in the boundary layer
approaches the velocity in the main flow asymptotically. The boundary
layer is very thin at the upstream end of a streamlined body at rest in
an otherwise uniform flow. As this layer moves along the body, the
continual action of shear stress tends to slow down additional fluid
particles, causing the thickness of the boundary layer to increase with
distance from the upstream point. The fluid in the layer is also sub-
jected to a pressure gradient, determined from the potential flow, that
increases the momentum of the layer if the pressure decreases downstream
and decreases its momentum if the pressure increases downstream
(adverse pressure gradient). The flow outside the boundary layer may
also bring momentum into the layer.

For smooth upstream boundaries, the boundary layer starts out as a
laminar boundary layer in which the fluid particles move in smooth layers.
As the thickness of the laminar boundary
layer increases, it becomes unstable and —{ =099
finally transforms into a turbulent boundary U T
layer in which the fluid particles move in 5
haphazard paths, although their velocity

- —_——— —_——_———

has been reduced by the action of viscosity "3 J
at the boundary. When the boundary R
layer has become turbulent, there is still (a) (b)

a very thin layer next to the boundary o« .6 Definitions of bound-
that has laminar motion. It is called the ary.layer thickness.
laminar sub-layer.

Various definitions of boundary-layer thickness § have been suggested.
The most basic definition refers to the displacement of the main flow
due to slowing down of fluid particles in the boundary zone. This thick-
ness 8y, called the displacement thickness, is expressed by

Us, = [0" (U — w) dy (5.5.1)

in whHich & is that value of y at which w = U. In Fig. 5.16a, the line
y = & is drawn so that the shaded areas are equal. This distance is, in
itself, not the distance that is strongly affected by the boundary. In
fact, that region is frequently taken as 35,. Another definition, expressed
by Fig. 5.16b, is the distance to the point where u/U = 0.99.
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U Momentum Equation Applied to the
b_E Boundary Layer. By following Von
, op FAT y .
u o8l ax lt" '3 ‘) Karmén’'s method,! the principle of mo-
d

T —»x Mmentum may be applied directly to the

i (4 ' boundary in steady flow. In a small
7. dx .

segment of the layer (Fig. 5.17) where

IFIG' 5.17. Begment of boundary  gp.g i fixed, the resultant force in the

ayer. z~direction must equal the net efflux of

momentum across the surface of the element in unit time. The resultant
force on the element is, for unit breadth,

—rgdr — P dxs
ox

The net mass outflow through ¢d and ab is

o &
55[ pu dy dx
0

This mass must be entering through bc and, hence, brings into the element
in unit time the momentum

0 [*pudyd
U%](;puyx

The excess of momentum per unit time leaving cd over that entering ab is

a [°? '
e [ pu? dy dx
0

When the force and momentum terms are assembled and dz is divided out,

___dp._ 9 [& . a (8 '
To 556—55[] pu? dy Uga“:’[) pu dy (5.5.2)

For a flat plate, dp/0xz = 0, and U is constant. The equation reduces to

0 5
To = 533/; p(U — wyudy (5.5.3)

Two-dimensional Flow along a Flat Plate. Calculations of boundary-
layer growth, in general, are very complex and require advanced mathe-
matical treatment. As a simple example, the case of steady flow parallel
to a flat plate is worked out by use of the momentum relationship.

Laminar Boundary Layer. Equation (5.5.3) may be written

A
Ty = -(%ﬁ p(U — uyu dy (5.5.4)

' Th. von K4rmdn, On Laminar and Turbulent Friction, Z. angew. Math. u. Mech.,
vol. 1, pp. 235-236, 1921.
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in which & is greater than & but is independent of z. This is permissible
because the integrand is zero for y > 8, as v = U. The momentum
equation gives no information regarding the velocity distribution in the
boundary layer. For an assumed distribution, which satisfies the bound-
ary conditions ¥ =0, y =0 and u = U, y = §, the boundary-layer
thickness as well as the shear at the boundary can be determined. The
velocity distribution is assumed to have the same form at each value of z,

G-r(Y)-rm -1

when 4 is unknown. Prandtl assumed that

U 3 n®
—_—=f=_p - = <
7 F 571~ 3 0<y<s
and
F = 6 <y
which satisfies the boundary conditions. Fquation (5.5.4) may he
rewritten
a6 [1 uy u
3 2 - 7= | —=
70 = pU 3 o (1 U) Udn
and

aés [1 3 5\ /3 3 ad
To = pUzgiﬁ (1 ——2-17—_|—22~)(§n — %)dn = 0.139pU25;

At the boundary

SRR 7SR5« RN X B YR R
" T RSy l—o T F T8 [0 ¥ e an\2 2) =0 2%% 7
In equating the two expressions for 7,
3 U , @6
"2— H -S- == 0 139pU -(:);
By rearranging,
_ udx
ddé = 10.78 yid
since & is a function of z only in this equation. After integrating,
L. 10.78 = z + constant
2 U

If § = 0, for z = 0, the constant of integration is zero. In solving for
8/,

= 4650 = 465 (5.5.6)

Us v R,

8o
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in which R, = Ux/»v is a Reynolds number based on the distance z from
the leading edge of the plate. This equation for boundary-layer thickness
in laminar flow shows that & increases as the square root of the distance

from the leading edge.
After substituting the value of § into Eq. (5.5.5),

= 0.322 “"x[’ (5.5.7)

The shear stress varies inversely as the square root of x and directly as
the three-halves power of the velocity. The drag on one side of the plate,
of unit width, is

Drag = [0’ rodz = 0.644 \/ppU% (5.5.8)

The selecting of other velocity distributions does not radiecally alter thesc
results. The exact solution, worked out by Blasius from the general
equations of viscous motion, yields the coefficients 0.332 and 0.664 for
Fas. (5.5.7) and (5.5.8), respectively.

~ The drag can be expressed in terms of a drag coefficient Cp times the
stagnation pressure pU?/2 and the area of plate [ (per unit breadth),

, pU?
Drag = ('p 3 {
in which, for the laminar boundary layer,
Cp = -—§2—8 (6.5.9)

V'R,
and R; = Ul/».

When the Reynolds number for the plate reaches a value between
500,000 and 1,000,000, the boundary layer becomes turbulent. Figure

5.18 indicates the growth and

U transition from laminar to turbu-

' 11— lent boundary layer. The critical

v, - -t Reynolds number depends upon

’_U—V ' ! the initial turbulence of the fluid

] E T’”"Siﬁ"“i stream, upon the upstream edge of

Laminar N_Critical | Turbulent the plate, and. upon the plate
roughness.

Turbulent Boundary Layer. 'The
momentum equation can be used to
determine turbulent boundary-layer growth and shear stress along a
smooth plate in a manner analogous to the treatment of the laminar
boundary layer. The universal velocity-distribution law for smooth
pipes, Eq. (5.4.13), provides the best basis but the calculations are

!

Fic. 5.18. Boundary-layer growth. (The
vertical scale is greatly enlarged.)
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involved. A sunpler approach is to use Prandtl’s one-seventh-power law.
It iS %/ Ume = (y/ro)?, in which % is measured from the wall of the pipe
and 7, is the pipe radius. Applying it to flat plates produces

and
= 0.0228p0? ( o 6)" (5.5.10)

in which the latter expression is the shear stress at the wall of a smooth
plate with a turbulent boundary layer. With the same method as that
used to calculate the laminar boundary layer,

Ty = pUz——/ (1 — 7))yt dn =

By equating the expressions for shear stress, the differential equation for
boundary-layer thickness é is obtained,

5ids = 0.234 (li)} da

pl2 22 (5.5.11)

73 dr

After integrating, and then by assuming that the boundary layer is
turbulent over the whole length of the plate so that the initial conditions

= (), § = 0 can be used,
= (0.292
i - o ()
After solving for §,

5= 037 (24t - 037 _ 037z (5.5.12)
S\ (Uz/nt R i

The thickness increases more rapldly in the turbulent boundary layer.
In it the thickness increases as z%, but in the lammar boundary layer §
varies as z%.

To determine the drag on a smooth, flat plate, § is climinated in Eqgs.
(5.5.10) and (5.5.12), and

7o = 0.0299U2'(U”—x)§’ (5.5.13)
The drag for unit width on one side of the plate is
Drag = ﬁ "o dz = 0.036pU2 (Ul)é - O'O‘rii’;m.‘ (5.5.14)
In terms of the drag coefficient
Cp = 0.072R, (5.5.15)

in which R; is the Reynolds number based on the length of plate.
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The above equations are valid only for the range in which the Blasius
resistance equation holds. For larger Reynolds numbers in smooth-pipe
flow, the exponent in the velocity-distribution law is reduced. At
R = 400,000, » = , and for R = 4,000,000, n = y. The drag law,
Eq. (5.5.14), is valid for a range

5 X 105 < Ry < 107

Experiment shows that the drag is slightly higher than is predicted by
Eq. (5.5.15),

Cp = 0.074R; (5.5.16)
The boundary layer is actually laminar along the upstream part of the
1072
8
6 *\\

] T”’bUlent

Transition
-/
2 \.,_ bt ﬁ
I~
[ .
-
oy
%y
1073
105 2 4 6 8 10° 2 4 6 8 107
R = Ul/ v
1.328 0.074 1700 0 074
Laminar Cp= transition Cp= - , turbulent C
D= -\/_R_T ran o™ ?Ilﬁ' R u D=

Fic. 5.19. The drag law for smooth plates.

plate. Prandtl' has subtracted the laminar portion, producing the
equation

Cp = 0.074R;% — Hg -5 X105 < R; < 107 (5.5.17)

!

In Fig. 5.19 a log-log plot of Cp vs. R; shows the trend of the drag coefhi-

cients. '
Use of the logarithmic velocity distribution for pipes produces

0455 .
Co = Gog pyem  1W0F<Ri<I0 (5.5.18)

in which the constant term has been selected for best agreement with
experimental results.

1 L. Prandtl, Uber den Reibungswiderstand stromender Luft, Resulis Aerodynamic
Test Inst. (Gottingen), II1. Lieferung, 1927.
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Ezample 5.6: A smooth, flat plate 10 ft wide and 100 ft long is towed through
still water at 68°F with a speed of 20 ft/sec. Determine the drag on one side of
the plate and the drag on the first 10 ft of the plate.

For the whole platé
_ 100 X 20 X 1.935

R, = 0.01/479 = 1.85 X 108
From Eq. (5.5.18) |
0.455 0.455
Co = Hogre (185 X 1A% — (8.2675) — 0-00196
The drag on one side is
2 —
Drag = Cnblp—g- = 0.00196 X 10 X 100 X Ig—§—5 X 202 = 760 1b

in which & is the plate width. If the critical Reynolds number occurs at 5 X 10¢,
the length I, to the transition is

lo X 20 X 1.935
0.01/479

=5 X 105 lo = 0.27 ft

For the first 10 ft of the plate, R; = 1.85 X 107, Cp = 0.00274, and

Drag = 0.00274 X 10 X 10 X I'(:;—?'——s X 202 = 106 Ib

Caleulation of the turbulent boundary layer over rough plates proceeds
in similar fashion, starting with the rough-pipe tests using sand rough-
nesses. At the upstream end of the flat plate, the flow may be laminar;
then, in the turbulent boundary layer where the boundary layer is still
thin and the ratio of roughness height to boundary-layer thickness ¢/
is significant, the region of fully developed roughness occurs, and the
drag is proportional to the square of the velocity. For long plates, this
region is followed by a transition region where ¢/6 becomes increasingly
smaller, and eventually the plate becomes hydraulically smooth, i.e., the
loss would not be reduced by reducing the roughness. Prandtl and
Schlichting® have carried through these calculations, which are too com-
plicated for reproduction here.

Separation. Wake. Along a flat plate the boundary layer continues
to grow in the downstream direction, regardless of the length of the plate,
when the pressure gradient remains zero. With the pressure decreasing
in the downstream direction, as in a conical reducing section, the bound-
ary layer tends to be reduced in thickness.

For adverse pressure gradients, i.e., with pressure increasing in the
downstream direction, the boundary layer thickens rapidly. The adverse

' L. Prandtl and H. Schlichting, Das Widerstandsgesetz rauher Platten, Werft,
Reederei, Hafen, p. 1, 1934. See also NACA Tech. Mem. 1218, part II.
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gradient plus the boundary shear decrease the momentum in the bound-
ary layer, and if they both act over a sufficient distance, they cause the
boundary layer to come to rest. This phenomenon is called separation.
Figure 5.20 illustrates this case. The boundary streamline must leave
the boundary at the separation point, and downstream from this point
the adverse pressure gradient causes backflow near the wall. This

Separation point —*
Fic. 5.20. Effect of adverse pressure gradient on boundary layer. Separation.

region downstream from the streamline that separates from the boundary
is known as the wake. The effect of separation is to decrease the net
amount of flow work that can be done by a fluid element on the surround-
ing fluid at the expense of its kinetic energy, with the net result that

pressure recovery is incomplete and flow losses (drag) increase.
Streamlined bodies (Fig. 5.21) are designed so that the separation point
oceurs as far downstream along the body as possible. If separation can
be avoided, the boundary layer re-

A= mains thin, and the pressure is almost
’ e S’;Wake recovered downstream along the
i body. The only loss or drag is due
F1g. 5.21. Streamlined body. to shear stress in the boundary layer,
called skin friction. In the wake, the
pressure is not recovered and -a pressure drag results. Reduction of wake
reduces the pressure drag on a body. In general, the drag is caused by
both skin friction and pressure drag.

Flow around a sphere is an excellent example of the effect of separation
on drag. For very small Reynolds numbers, VD/» < 1, the flow is
everywhere nonturbulent, and the drag is referred to as deformation drag.
Stokes’ law! gives the drag force for this case. TFor large Reynolds
numbers, the flow may be considered potential flow except in the bound-
ary layer and the wake. The boundary layer forms at the forward
stagnation point and is generally laminar. In the laminar boundary
layer, an adverse pressure gradient causes separation more readily than
in a turbulent boundary layer, because of the small amount of momentum

1 See See. 5.6.
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brought into the laminar layer. If separation occurs in the laminar
boundary layer, the location is farther upstream on the sphere than it is
when the boundary layer becomes turbulent first and then separation
oceurs.

In Fig. 522 this is graphically portrayed by the photographs of
the two spheres dropped into water at 25 ft/sec. In g, separation
occurs in the laminar boundary layer that forms along the smooth sur-
face and causes a very large wake with a resulting large pressure drag,
In b, the nose of the sphere, roughened by sand glued to it. induced an

% ¥

@ | T ®)

Fia. 5.22. Shift in separation point due to induced turbulence. (a) 8.5-in. bowling
ball, smooth surface, 25 ft /sec entry velocity into water. (b) Same except for 4-in.-
diameter pateh of sand on nose. (Official U.S. Navy photograph made at Navy Ord-
nance Test Station, Pasadena Annex.) ‘

early transition to turbulent boundary layer before separation occurred.
The high momentum transfer in the turbulent boundary layer delayed
the separation so that the wake is substantially reduced, resulting in a
total drag on the sphere Jess than half that occurring in a.

A plot of drag coefficient against Reynolds number, (Fig. 5.23) for
smooth spheres shows that the shift to turbulent boundary layer (before
separation) occurs by itself at a sufficiently high Reynolds number, as
evidenced by the sudden drop in drag coefficient. The exact Reynolds
number for the sudden shift depends upon the smoothness of the sphere
and upon the turbulence in the fluid stream. In fact, the sphere is
frequently used as g turbulence meter by determining the Reynolds
number at which the drag coefficient is 0.30, a point located in the center
of the sudden drop (Fig. 5.23). By use of the hot-wire anemometer,
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Dryden! has correlated the turbulence level of the fluid stream to the
Reynolds number for the sphere at Cp = 0.30. The greater the turbu-
lence of the fluid stream, the smaller the Reynolds number for shift in
separation point.

5.6. Drag on Immersed Bodies. The principles of potential flow
around bodies are developed in Chap. 7, and principles of the boundary
layer, separation, and wake in the section preceding this one (Sec. 5.5).

10%
10°
102
Cp
10 3
‘\‘ \ /-i)iscs
1 NCNRCT TIHEL. _
Stokes N i Rl
-1 L “Spheres_
1672 107 107} 1 10 102 10° 100 10° 10°
UD
R-T

F1c. 5.23. Drag coeflicients for spheres and circular disks.

In this section drag is defined, some experimental drag coefficients are
listed, the effect of compressibility on drag is discussed, and Stokes’ law
is presented. Lift is defined and the lift and drag coefficients for an
airfoil are given. .

Drag is defined as the force component, parallel to the relative approach
velocity, exerted on the body by the moving fluid. The drag-coefficient
curves for spheres and circular disks are shown in Fig. 5.23. In Fig. 5.24
the drag coefficient for an infinitely long circular cylinder (two-dimen-
sional case) is plotted against Reynolds number. This case also has
the sudden shift in separation point as in the case of the sphere. In
each case, the drag coefficient Cp is defined by

Drag = Cp4 ggf

in which 4 is the projected area of the body on a plane normal to the flow.

1 H. Dryden, Reduction of Turbuleh¢e in Wind Tunnels, NACA Tech. Rept. 392,
1931.
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F1a. 5.24. Drag coeflicients for circular cylinders.

TABLE 5.1. Tyrical, DrRag CoEFFICIENTS FOR VARIOUs CYLINDERS IN
Two-pDIMENSIONAL Frowt

Body shape Cp Reynolds number
Circular eylinder — O 1.2 104 to 1.5 X 10°
Elliptical cylinder ——» - 0.6 4 X 104
2l 0.46 105
—— S 0.32 2.5 X 104 to 105
— & 0.29 2.5 X 10
81 0.20 2 X 108
Square cylinder —_— ] 2.0 3.5 X 10¢
— O 1.6 16¢ to10°
Triangular cylinders — 120‘9 2.0 104
— q 1200] 1.72 10*
— w[} 2.15 10*
— cQsao« 1.60 10¢
—_— 60°D 2.20 104
—— 60° 1.39 104
e T2 |10 10
Semitubular —_— D) 2.3 4 X 10*
— C 1.12 4 X 10

t Data from W. F. Lindsey, NACA Tech. Rept. 619, 1938.

In Table 5.1 typical drag coefficients are shown for several cylinders.
In general, the values given are for the range of Reynolds number in
which the coefficient changes little with Reynolds number.

A typieal lift and drag curve for an airfoil section is shown in Fig. 5.25.
Lift is the fluid-force component on a body at right angles to the relative
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approach velocity. The lift coefficient Cy, is defined by
2
Lift = €4 25"

in which A refers to the chord length times the wing length for lift and
drag for airfoil sections.

Effect of Compressibility on Drag. To determine drag in gas flow the
effects of compressibility, as expressed by the 3/ach number, are more
important than Reynolds number. The Mach number M is defined as

20 r—0.40
1.8} . . 11036
0 — B A
14} l~—Chord length—= Ay 0.28
o
12 ] {024 o
2 10 Cr T oz 2
g 1 / s
3 3
£ 08 /1Co 0.16 £
8 r/ 8
; 0.6 A 0.12 =
5 a
0.4 yas v, 0.08
02f- 0.04
0 ' 0
[ L, )
-02 ' : —0.04
-041— _IL__.. . b : -0.08

-8 -4 0 4 8 12 16 20 24 28 32
Angle of attack, « (degrees)

Fia. 5.25. Typical lift and drag coeflicients for an airfoil.

the ratio of fluid velocity to velocity of sound in the fluid medium. When
flow is at the critical velocity ¢, it has exactly the speed of the sound wave
s0 small pressure waves cannot travel upstream. For this condition
M = 1. When M is greater than unity, the flow is supersonic; and
when M is less than unity, it is subsonie.

Any small disturbance is propagated with the speed of sound, Sec. 6.2.
For example, a disturbance in still air travels outward as a spherical pres-
sure wave. When the source of the disturbance moves with a velocity
less than ¢, as in Fig. 5.26a, the wave travels ahead of the disturbing body
and gives the fluid a chance to adjust itself to the oncoming body. - By
the time the particle has moved a distance Vt, the disturbance wave has
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moved out as far as r = ¢t from the point 0. As the disturbing body
moves along, new spherical waves are sent out, but in all subsonic cases

(a)

F16. 5.26. Wave propagation produced by a particle moving at (a) subsonic velocity
and (b) supersonic velocity.

they are contained within the initial spherical wave shown. In super-
sonic motion of a particle (Fig. 5.26b) the body moves faster than the
spherical waves emitted from it, yielding a cone-shaped wave front with
vertex at the body, as shown. The
half angle of cone a is called the
Mach angle,

a = sint & = sin &
Vi vV
The conical pressure front extends out
behind the body and is ealled a Mach :
wave, Sec. 6.4. There is a sudden |
small change in velocity and pressure 0 1 2 3
across a Mach wave. Vie
The drag on bodies varies greatly
with the Mach number and becomes
relatively independent of the Reynolds
number when compressibility effects
become important. In Iig. 5.27 the
drag coeflicients for four projectiles are @ b ¢ d
plotted against Mach number. F1c. 5.27. Drag coefficients for pro-
For low Mach numbers, a body jectiles as a function of M_ach numbef.
should be rounded in front, with a blunt (From L. I,),mm,u{’ “Abriss der Siro-
. mungslehre,””  Friedrig Vieweg und
nose and a long, tapering afterbody Séhne, Brunswick, Germany, 1935.)
for minimum drag. For high Mach '
numbers (0.7 and over), the drag rises very rapidly owing to formation of
the vortices behind the projectile and to formation of the shock waves;
the body should have a tapered nose or thin forward edge. As the Mach
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numbers increase, the curves tend to drop and to approach a constant
value asymptotically. This appears to be due to the fact that the reduc-
tion of pressure behind the projectile is limited to absolute zero, and
hence its contribution to the total drag tends to become constant. The
pointed projectile creates a narrower shock front that tends to reduce the
limiting value of the drag coefficient.

Stokes’ Law. The flow of a viscous incompressible fluid around a
sphere has been solved by Stokes! for values of Reynolds number UD/»
less than 1. The derivation is beyond the scope of this treatment; the
results, however, are of value in such problems as the settling of dust
particles. Stokes found the drag (force exerted on the sphere by flow of
fluid around it) to be

Drag = 6rauU

in which a is the radius of sphere and U the velocity of sphere relative to
the fluid at a great distance. To find the terminal velocity for a sphere.
dropping through a fluid that is otherwise at rest, the buoyant force plus
the drag force must just equal its weight, or

4raly + braplU = $wady,

in which v is the specific weight of liquid and #, is the specific weight of the
sphere. By solving for U, the terminal velocity is found to be

o* (ve — ) (5.6.1)

M
T}l Aight-line portion of Fig. 5.23 represents Stokes’ law. .

/7. Resistance to Turbulent Flow in Open and Closed Conduits. In
steady turbulent incompressible flow in conduits of constant cross section

(steady uniform flow) the wall shear stress varies closely proportional to
the square of the velocity,

2
U=3

To = 7\5" Ve (5.7.1)

in which A iIs a dimensionless coefficient. For open channels and non-
circular closed conduits the shear stress is not constant over the surface.
In these cases, 7o is used as the average wall shear stress. Secondary
flows? occurring in noncircular conduits act to equalize the wall shear
stress. The wall shear-stress forces in steady flow are balanced either
by pressure forces, by the axial weight component of fluid in the conduit,
or by both forces (Fig. 5.28). The equilibrium expression, written in

1 G. Stokes, Trans. Cambridge Phil. Soc., vol. 8, 1845; vol. 9, 1851.
2 Secondary flows, not wholly understood, are transverse components that cause the
main central flow to spread out into corners or near walls.
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the axial direction, is
(pr — p2)A + vA Az = 7 LP

in which Az = L sin 8 and P is the wetled perimeter of the conduit, i.e., the
portion of the perimeter where the wall is in contact with the fluid (free

TAL
F1a. 5.28. Axial forces on free body of fluid in a conduit.

liquid surface excluded). The ratio A/P is called the hydraulic radius
of the conduit B. If p; — p: = Ap,

A A 1%
P - +*L_L z _ up o (5.7.2)
or, when divided through by v, if h; = (Ap + v Az)/y be the losses per
unit weight,

L R 2g
in which S represents the losses per unit weight per unit length. After
solving for V

V = \/2%‘_’ v'RS = C\/RS (5.7.3)

This is the Chézy formula, in which originally the Chézy coefficient C
was thought to be a constant for any size conduit or wall surface condi-
tion. Various formulas for C are now generally used.

For pipes, when A\ = f/4, and R = D/4 the Darcy-Weisbach equation
is obtained,

(5.7.4)

in which D is the inside pipe diameter. This equation may be applied
to open channels in the form

- J¥vEs 1.
V—\/f\/RS (5.7.5)

with values of f determined from pipe experiments.
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L{ﬁﬂéec:dy Uniform Flow in Open Channels. For incompressible,
steady flow at constant depth in a prismatic open channel, the Manning
formula is widely used. It can be obtained from the Chézy formula
[Eq. (5.7.3)] by setting

o= 149 o (5.8.1)
n
50
V- _1_%_9 Rig} (5.8.2)

which is the Manning formula. V is the average velocity at a cross sec-
tion, R the hydraulic radius (Sec. 5.7), and S the losses per unit weight
per unit length of channel or the slope of the bottom of the channel. It
is also the slope of the water surface, which is parallel to the channel
bottom. The coefficient n was thought to be an absolute roughness
coefficient, 1.e., dependent upon surface roughness only, but actually
depends upon the size and shape of channel eross section in some unknown
manner. Values of the coefficient n, determined by many tests on actual
canals, are given in Table 5.2. Equation (5.8.2) must have velocity in
feet per sccond and R in feet for use with the values in Table 5.2.

TABLE 5.2. AVERAGE VALUES oF THE MannNING RoveuNEss FacTor rFor
Vartous BouNparRy MATERIALS

Boundary material Manning n
Planed wood .. . .. .. ... .. .. .. .. .. 0.012
Unplaned wood......... .. ... .. ... 0.013
Finished concrete. . . ... ... .. ... .. .. .. 0.012
Unfinished concrete. .. ... ... .. . . 0.014
Castiron. ... ................. ...... 0.015
Brick....... ... ... ... . .. ... 0.016
Riveted steel.. ... .. ... . ... ... . .. .. 0.018
Corrugated metal. ... ... ... ... ... .. .. 0.022
Rubble. ... . .. .. ... .. ......... . .. 0.025
Earth. ... ... . ... ... ... .. ... ... 0.025
Earth, with stones or weeds. . .. . .. ..... 0.035
Gravel..... ... . e R, 0.029

When Eq. (5.8.2) is multiplied by the cross-sectional area A, the
Manning formula takes the form

1.49
Q =

n
When the cross-sectional area is known, any one of the other gquantities
can be obtained from Eq. (5.8.3) by direct solution.

ARISY (5.8.3)

Ezample 5.7: Determine the discharge for a trapezoidal channel (Fig. 5.29) with
a bottom width b = 8 ft and side slopes 1 on 1. The depth is 6 ft, and the slope
of the bottom is 0.0009. The channel has a finished concrete lining.
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From Table 5.2, n = 0.012. The area is
A =8X6+46X06=84ft
and the wetted perimeter is
P=8+2X6+2=2496
By substituting into Eq. (5.8.3),

1.49

= 0012 84 (24 96) (0.0009)% = 703 cfs

Trial solutions are required in some instances when the cross-sectional
area is unknown. Expressions for both the hydraulic radius and the
area contain the depth in a form that cannot be solved explicitly.

Example 5.8: What depth is required for 150 cfs flow in a rectangular planed-
wood channel 5 ft wide with a bottom slope of 0.002?

If the depth is y, A = 5y, P = 5 + 2y, and » = 0.012. By substituting in
Eq. (5.8.3),

1.49
150 = 5,012 % (5 T2 ) (0.002)?

After simplifying,
5.4

I

fy) =y (ﬁg@“@)g

Assume y = 4 ft; then f(y) = 5.332. Assume y = 4.05; then f(y} = 5. 41 The
correct depth then is about 4.05 ft.

More general cases of open-channel flow are considered in Chap. 11.

T'o 2 Zf-ro AL

AL

Fra. 5.29. Notation for trapezoidal Fic. 5.30. Equilibrium conditions
cross section. for steady flow in a pipe.

-5.9. Steady, Incompressible Flow through Simple Pipe Systems.
Colebrook Formula. A force balance for steady flow (no acceleration) in a
pipe (Fig. 5.30) yields

Ap ‘I'T02 = 1'021l'To AL
or simplifying,

Ap To
ro=2PT (5.9.1)
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which holds for laminar or turbulent flow. The Darcy-Weisbach equa—
tion (5.7.4) may be written

AL V2
Ap = vhy = f 5

After eliminating Ap in the two equatlons and simplifying,

N 692

which relates wall shear stress, friction factor, and average velocity.
The average velocity ¥V may be obtained from Eq. (5.4.13) by integrating
over the cross section. Substituting for V in Eq. (5.9.2.) and simplifying
produces the equation for friction factor in smooth-pipe flow,

1
—=A,+ B.In (R 5.9.3
Vs 4 n (R /1) ( )

with the Nikuradse! data for smooth pipes, the equation becomes

— = 0.861In (R/f) — 0.8 (5.9.4)
.\/
For rough pipes in the complete turbulence zone,

1 ¢ €

7:; = F2 (m, E) 4+ B,- 11'1—5 (5.9.5)
in which F, is,"in general, a constant for a given form and spacing of the
roughness elements. For the Nikuradse sand-grain roughness (Fig. 5.33)
Eq. (5.9.5) becomes

L j14-086mIE (5.9.6)

V2 D

The roughness height ¢ for sand-roughened pipes may be used as a
measure, of the roughness of commercial pipes. If the value of f is
known for a commercial pipe in the fully-developed wall turbulence zone,
i.e., large Reynolds numbers and the loss proportional to the square of the
velocity, the value of ¢ may be computed by Eq. (5.9.6) In the transi-
tion region where f depends upon both 5— and R sand-roughened pipes pro-
duce different results than commercial pipes  This is made evident by a
graph based on Egs. (5.9.4) and (5.9.6) with both sand-roughened and
commercial-pipe-test results shown. By rearranging Eq. (5.9.6)

1 €
—= 4+ 0.86In = = 1.14
V'Y D

1 J. Nikuradse, Gesetzmassigkeiten der turbulenten Stromung in glatten Rohren,
VDI Forsch. 356, 1932.
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and by adding 0.86 In ¢/D to each side of Eq. (5.9.4)

1 € - €
\7?+ 0.86 1nE = 0.86 In (R \/fﬁ) - 0.8
By selecting 1/4/f + 0.86 In ¢/D as ordinate and In (R+/f ¢/D) as
abscissa (Fig. 5.31) smooth-pipe-test results plot as a straight line with
slope +0.86 and rough-pipe-test results in the complete turbulence zone
plot as the horizontal line. Nikuradse sand-roughness-test results plot
along the dashed line in the transition region and commercial-pipe-test

+3 I
Nikuradse sand
roughness
+2 DE St B
e g N
viQ N
= ~~
g +1 r =
+ . Rough
—II'% // Cor\';,ri'np%rmal pipe
| / i
-1
0 1 2 3 4 5 6 7

In (R \/7-5-)
Fig. 5.31. Colebrook transition function.

results plot along the lower curved line. An empirical transition func-
tion for commercial pipes for the region between smooth pipes and the
complete turbulence zone has been developed by Colebrook,!

1 e/D 2.51
7= 086 m( R \/}) (5.9.7)

which is the basis for the Moody diagram (Fig. 5.34).

Pipe Flow. In steady incompressible flow in a pipe the irreversibilities
are expressed in terms of a head loss, or drop in hydraulic grade line (Sec.
10.1). The hydraulic grade line is p/y above the center of the pipe, and if
z is the elevation of the center of the pipe, then z 4+ p/v is the elevation
of a point on the hydraulic grade line. The locus of values of z + p/¥
along the pipeline gives the hydraulic grade line. Losses, or irreversi-

L C. F. Colebrook, Turbulent Flow in Pipes, with Particular Reference to the Transi-
tion Region between the Smooth and Rough Pipe Laws, J. Inst. Civil Engs. (London),
vol. 11, pp. 133-156, 1938-1939.
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bilities, cause this line to drop in the direction of flow. The Darcy-
Weisbach equation (5.7.4)
hy = fE E (5.7.4)

is generally adopted for pipe-flow caleulations. A, is the head loss, or
drop in hydraulic grade line, in the pipe length L, having an inside
diameter D and an average velocity V. h; has the dimension length
and is expressed in terms of foot-pounds per pound or feet. The friction
factor f is a dimensionless factor that is required to make the equation
produce the correct value for losses.  All quantities in Eq. (5.7.4) except f
may be measured experimentally. A typical setup is shown in Fig. 5.32.
By measuring the discharge and inside diameter, the average velocity can
be computed. The head loss h, is measured by a differential manometer

- L

..__..,.b

o

FD 2

pr——

Fr1e. 5.32. Experimental arrangement for determination of head loss in a pipe.

.attached to piezometer openings at sections I"and 2, distance L apart.

Experimentation shows the following to be true in turbulent flow:

a. The head loss varies directly as the length of the pipe.

b. The head loss varies almost as the square of the velocity.

¢. The head loss varies almost inversely as the diameter.

d. The head loss depends upon the surface roughness of the interior pipe
wall.

e. The head loss depends upon the fluid properties of density and
viscosity.

f. The head loss is independent of the pressure.

The friction factor f must be selected in a manner so that Eq. (5.7.4)
correctly yields the head loss; hence, f cannof be a constant but must
depend upon velocity V, diameter D, density p, viscosity g, and certain
characteristics of the wall roughness that are signified by ¢, ¢, and m.
These symbols are defined thus: € is a measure of the size of the roughness
projections and has the dimensions of a length; ¢ is a measure of the
arrangement or spacing of the roughness elements and also has the dimen-
sions of a length; m is a form factor, depending upon the shape of the
individual roughness elements, and is dimensionless. The term f,
instead of being a simple constant, turns out to be a factor that depends
upon seven quantities

f = f(V,D,p,u,e,e',m) (598)
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Since f is a dimensionless factor, it must depend upon the grouping
of these quantities into dimensionless parameters. For smooth pipe
¢ = ¢ = m = 0, leaving f dependent upon the first four gquantities.
They can be arranged in only one way to make them dimensionless,
namely, VDp/u, which is the Reynolds number. Ior rough pipes the
terms ¢, ¢ may be made dimensionless by dividing by D. Therefore,
in general,

_fVDp e ¢ .
f=7 (T’ DD m) , (5.9.9)

The proof of this relationship is left to experimentation. For smooth
pipes a plot of all experimental results shows the functional relationship,
subject to a scattering of +5 per cent. The plot of friction factor against
Reynolds number on a log-log chart is called a Stanton diagram. Blasius!
was the first to correlate the smooth-pipe experiments in turbulent flow. -
He presented the results by an empirical formula that is valid up to about
R = 100,000. The Blasius formula is

_ 0.316

o (5.9.10)

f

In rough pipes the term ¢/D is called the relative roughness. Nikuradse?
proved the validity of the relative roughness concept by his tests on sand-
roughened ‘pipes. He used three sizes of pipes and glued sand grains
(e = diameter of the sand graing) of practically constant size to the
interior walls so that he had the same values of ¢/D for the different
pipes. These experiments (IFig. 5.33) show that for one value of /D
the 7, R curve is smoothly connected regardless of the actual pipe diam-
eter. These tests did not permit variation of ¢/D or m but proved the
validity of the equation

€
r=1(r75)
for one type of roughness.

Because of the extreme complexity of naturally rough surfaces, most
of the advances in understanding the basic relationships have been
developed around experiments on artificially roughened pipes. Moody?
has constructed one of the most convenient charts for determining fric-

tion factors in clean, commerecial pipes. Thig chart, presented in Fig.
5.34, is the basis for pipe-flow calculations in this chapter. The chart

1 H. Blasius, Das Aehnlichkeitsgesetz bei Reibungsvorgiingen in Flissigkeiten, V.DI
Forsch. 131, 1913.

2 J. Nikuradse, Stromungsgesetze in rauhen Rohren, VDI Forsch. 361, 1933.

3I.. F. Moody, Friction Factors for Pipe Flow, Trans. ASME, November, 1944.
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is a Stanton diagram that expresses f as a function of relative roughness
and Reynolds number. The values of absolute roughness of the com-
mercial pipes are determined by experiment in which f and R are found
and substituted into the Colebrook formula Eq. (5.9.7), which closely
represents natural pipe trends. These are listed in the table in the lower
left-hand corner of Fig. 5.34. The Colebrook formula provides the shape
of the ¢/D = constant curves in the transition region.

0.10 H
0.09
0.08
0.07 |
0.06 h' D=2412 crp + D=482cm _E___l__
: D=487¥ e D73%"
005 < B i el Cm\ DLg.Mcm\\ 1
) > Dsé.4 . _e_n
3 ™ e, ‘l!"l’*"‘"?‘;{“l' D~§12
2| > 0.04 —H D=9.8cm
.""'Q D=2434¢cm | Te)" . T%ﬁ
[ )
= 003 D=992cm
=2.474cm v e 1
y D™ 357
D=994cm €__1
0.02 D =494 cm =T D504
NG 1111 D~ 1018
D=994 cm
0.01 ’ l , ’ ,
103 104 105 106
_VDp
7}

F16. 5.33. Nikuradse's sand-roughened-pipe tests.

The straight line marked “laminar flow” is the Hagen-Poiseuille equa-
tion. Equation (5.2.7)

_ Ap ry?
V= 8ulL

may be transformed into Eq. (5.7.4) with Ap = «vh; and by solving for hy,
_ V8L _64u LV _ 64 LV

hi = F T oD D%~ iDV/uD %
or
LV: 64LVe
=5 = RO (5.9.11)
from which
;=9 (5.9.12)
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This equation, which plots as a straight line with slope —1 on a log-log
chart, may be used for the solution of laminar flow problems in pipes. It
applies to all roughnesses, as the head loss in laminar flow is independent
of wall roughness. The Reynolds critical number is about 2000, and the
critical zone, where the flow may be either laminar or turbulent, is about
2000 to 4000. ‘

It should be noted that the relative-roughness curves ¢/D = 0.001 and
smaller approach the smooth-pipe curve for decreasing Reynolds num-
bers. This can be explained by the presence of a laminar film at the wall
of the pipe that decreases in thickness as the Reynolds number increases.
For certain ranges of Reynolds number in the transition zone, the film
completely covers small roughness projections, and the pipe has a friction
factor the same as that of a smooth pipe. For larger Reynolds numbers,
projections protrude through the laminar film, and each projection
causes extra turbulence that increases the head loss. For the zone
marked “complete turbulence, rough pipes,” the film thickness is negli-
gible compared with the height of roughness projections, and each projec-
tion contributes fully to the turbulence. Viscosity does not affect the
head loss in this zone, as evidenced by the fact that the friction factor
does not change with Reynolds number. In this zone the loss follows the
V2 law, i.e., it varies directly as the square of the velocity.

Two auxiliary scales are given along the top of the Moody diagram.
One is for water at 60°F, and the other is for air at standard atmospheric
pressure and 60°F. Since the kinematic viscosity is constant in each case,
the Reynolds number is a function of V. For these two scales only, D
must be expressed in inches. ,

Simple Pipe Problems. The three simple pipe-low cases that are
basic to solutions of the more complex problems are

Given To find
1. Q, L, D, », ¢ hy
11. hy, L, D, v, € Q
HI. hy, @, L, v, € D

In each of these cases the Darcy-Weisbach equation, the continuity equa-
tion, and the Moody diagram are used to determine the unknown quantity.

In the first case the Reynolds number and the relative roughness
are readily determined from the data given, and h; is found by deter-
mining f from the Moody diagram and substituting into the Darcy-
Weisbach equation. '

Ezxample 5.9: Determine the head loss due to the flow of 2000 gpm of oil,
v = 0.0001 ft2/sec, through 1000 ft of 8-in.-diameter cast-iron pipe.

2000 2 1
= m \= 12.8 ft/sec R=128 X 3

v 3 X 0.0001

= 85,500



220 FUNDAMENTALS OF FLUID MECHANICS [Chop. 5

The relative roughness i1s ¢/D = 0.00085,/0.667 = 0.0013. From Fig. 5.34, by
interpolation, f = 0.024; hence

2
LV 0024)(1000128

fD 29 z 644 = 91.8 ft-1b/1b

In the second case, V and f are unknowns, and the Darcy-Weisbach
equation and Moody diagram must be used simultaneously to find their
values. Since ¢/D is known, a value of f may be assumed by inspection
of the Moody diagram. Substitution of this trial f into the Darcy-
Weisbach equation produces a trial value of 1", from which a trial Reyn-
olds number is computed. With the Reynolds number an improved
value of f is found from the Moody diagram. When f has been found
correct to two significant figures, the correspouding 17 is the value sought,
and @ is determined by multiplying by the area.

Ezample 5.10: Water at 60°F flows through a 12-in.-diameter riveted-steel
pipe, € = 0.01, with a head loss of 20 ft in 1000 ft. Determine the flow.

The relative roughness is ¢/D = 0.01, and from Fig. 5.34 a trlal f 1s taken as
0.040. By substituting into Eq. (5.7. 4),

1000 V?

20 = 0.040 — 1 64d

V = 5.67 ft/sec
and VD’ = 68 for use with the scale at the top of Fig. 5.34, which shows f =

0.038. With this f in place of 0.040 in the above equation, V = 5.81, VD" =
69.8, and f remains 0.038. The discharge is

T

Q =. 581 5 = 4.56 cfs = 2044 gpm

!

In the third case, with ) unknown, there are three unknowns in
Eq. (6.7.4), f, V, D; two in the continuity equation, V, D; and three in
the Reynolds number equation, V, D, R. The relative roughness is
also unknown. Using the continuity equation to eliminate the velocity
in Eq. (5.7.4) and in the expression for R, simplifies the problem. Egqua-
tion (5.7.4) becomes

2
=1 5 7y
or

8LQ*
Dr = sl = O (5.9.13)

in which C, is the known quantity 8LQ*/hsgn?. As VD? = 4Q /= from
continuity,

YD _4Q1_0C (5.9.14)
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in which C, is the known quantity 4Q/x». The solution is now effected
by the following procedure:

Assume a value of f.

Solve Eq. (5.9.13) for D.

Solve Eq. (5.9.14) for R.

Find the relative roughness ¢/D.

With R and ¢/D, look up a new f from Fig. 5.34.

Use the new f, and repeat the procedure.

When the value of f does not change, all equations are satisfied and
the problem is solved.

Normally only one or two trials are required. Since standard pipe
sizes are usually selected, the next larger size of pipe from that given by
the computation is taken. Nominal standard pipe sizes are 3, 1, 3, 1, 3,
1, 12, 1%, 2, 21, 3, 33, 4, 5, 6, 8, 10, 12, 14, 16, 18, 24, and 30 in. The
inside diameters are larger than the nominal up to 12 in. Above the
12-in. size the actual inside diameter depends upon the ‘“‘schedule” of
the pipe, and manufacturer’s tables should be consulted. Throughout
this chapter the nominal size is taken as the actual inside diameter.

N g s 9

Example 5.11: Determine the size of clean wrought-iron pipe required to convey
4000 gpm oil, » = 0.0001 ft?/sec, 10,000 ft with a head loss of 75 ft-1b/1b.

The discharge is

. 4000

PV = 8,93 efs

Q=

From Eq. (5.9.13)

R % 10,000 X 8.932

Ds =
75 X 32.2 X 72

f = 267.0f

and from Eq. (5.9.14)
_4X8931 _ 113,800

and from Fig. 5.34, ¢ = 0.00015 ft.

If f=10.02 D= 1398 ft, R = 81,400, ¢/D = 0.00011 and from Fig. 5.34,
f=0.019. In repeating the procedure, D = 1.382, R = 82,300, f = 0.019.
Therefore, D = 1.382 X 12 = 16.6 in. If a 75-ft head loss is the maximum
allowable, an 18-in. pipe is required.

In each of the cases considered, the loss has been expressed in feet of
head or in foot-pounds per pound. For horizontal pipes, this loss shows
up as a gradual reduction in pressure along the line. For nonhorizontal
cases, Bernoulli’s equation is applied to the two end sections of the pipe,
and the loss term is included, thus

V.2

‘,g-+”'+.——+”“’+z2+hf  (39.19)
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in which the kinetic-energy correction factors have been taken as unity.
The upstream section is given the subscript 1 and the downstream section
the subscript 2. The total head at section 1 is equal to the sum of the
total head at section 2 and all the head losses between the two sections.

Ezxample 5.12: In the preceding example, for D = 16.6 in., if the specific gravity
is 0.85, p1 = 40 psi, 2, = 200 ft, and z. = 50 ft, determine the pressure at section 2.
In Eq. (5.9.15) V, = V,; hence,

40 - P B
0.85 X 0.433 + 200 = 0.85 X 0.433 T +75

and ~

Ve

-~ p: = 67.6 psi

,/%nor Losses. Those losses which occur in pipelines due to bends,
elbows, joints, valves, etc., are called minor losses. This is a misnomer,
because in many situations they are more important than the losses
due to pipe friction considered in the preceding section, but it is the
conventional name. In almost all cases the minor loss is determined by
experiment. However, one important exception is the head loss due to a

sudden expansion in a pipeline (Sec. 3.9).

Equation (3.9.33) may also be written

_ V12 _ _ Ql 2 ]2 V12
he - K"i"g"’ —_ [1 (D2> ] Féé- (5916)

b7 |
k-[i-(2)] som

From Eq. (5.9.16) it is obvious that the head loss varies as the square of
the velocity. This is substantially true for all

in which

1 ] . .
—_— minor losses in turbulent flow. A convenient
0 (2 method of expressing the minor losses in flow is
L U e i_._2_,. by means of the coefficient K, usually determined

fg—iieg—e— by experiment.

If the sudden expansion is from a pipe to a

7 reservoir, D;/D, = 0 and the loss becomes.

. 5.35. Sudden con- g 2/9, thatis, the complete kinetic energy in the
traction in a pipeline, . )

flow is converted into thermal energy.

The head loss &, due to a sudden contraction in the pipe eross section,
illustrated in Fig. 5.35, is subject to the same analysis as the sudden
expansion, provided that the amount of contraction of the jet is known.
The process of converting pressure head into velocity head is very

efficient; hence, the head loss from section 1 to the vena contracta! is small
compared with the loss from section O\to section 2, where velocity head

' The vena contracta is the section of greatest contraction of the jet.
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is being reconverted into pressure head. By applying Eq. (3.9.33) to
this expansion, the head loss is computed to be
(Vo — V)2

29

With the continuity equation V,C.As = V:4,, in which C, is the con-
traction coefficient (i.e., the area of jet at section 0 divided by the area
of section (), the head loss is computed to be

(1 2 Y,2
h, = (? 1) 671 (5.9.18)

The contraction coefficient for water C., determined by Weisbach,! is
presented in the tabulation.

he =

Ag/A, 0.1 0.2 |0.3 (0.4 (0.5 [0.6 (0.7 0.8 (0.9 1.0

Ce 0.62410.632/0.64310.6590.6810.712!0.755|0.813|0.892|1.00
|

The head loss at the entrance to a pipeline from a reservoir is usually

taken as 0.5V2/2g, if the opening is square-edged. For well-rounded
12
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F1G. 5.36. Loss coeflicients for gradual conical expansions.

entrances, the loss is between 0.01V2/2g and 0.05V?%/2¢g and may usually
be neglected. For re-entrant openings, as with the pipe extending into
the reservoir beyond the wall, the loss is taken as 1.0V2/2g, for thin pipe
walls.

! Julius Weisbach, ‘‘Die Experimental-Hydraulik,”” p. 133, J. S. Englehardt, Frei-
berg, 1855.
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The head loss due to gradual expansions has been investigated experi-
mentally by Gibson,! whose results are given in Fig. 5.36.

A summary of representative head loss coefficients K for typical fittings,
published by the Crane Company,? is given in Table 5.3.

TapLE 5.3. HEAp Loss CoerriciEnTs K For Variovs FITTINGS

K
Globe valve (fully open)....... ... ... ... .. 10.0
Angle valve (fully open). . .............. ... 5.0
Swing check valve (fully open). . ... ........ 2.5
(Gate valve (fullyopen)................. ... 0.19
Closereturnbend. ... ... .. ... .. ... ... . .. 2.2
Standard tee. ... ... ... .. ... . ... . ... ... 1.8
Standard elbow..... ... ... ... .. e 0.9
Medium sweep elbow....... ... . AU 0.75
Long sweepelbow...... ......... ....... .. 0.60

Minor losses may be expressed in terms of the equivalent length of pipe
L, that has the same head loss in foot-pounds per pound for the same
discharge, thus,

L, V? |4
iy D 2g = K 2g

in which K may refer to one minor head loss or to the sum of several losses.

After solving for L.,

KD
f

For example, if the minor losses in a 12-in. pipeline add to K = 20 and if
f = 0.020 for the line, then to the actual length of line may be added
20 X 1/0.020 = 1000 ft, and this additional or equivalent length causes
the same resistance to flow as the minor losses.

Le = (5.9. 19)

Example 5.13: Find the discharge through the pipeline in Fig. 5.37 for H =
30 ft, and determine the head loss H for @ = 2.0 cfs.

Bernoulli’s equation app.ied to points 1 and 2, including all the losses, may be
written

340 V*? V"'
H+0+0 -23—+0+0+229+f 1 % +2X09 +1029

After simplifying

H-= -23 (13.3 + 680f)

' A. H. Gibson, The Conversion of Kinetic t¢o Pressure Energy in the Flow of Water
through Passages Having Divergent Boundafies, Engineering, vol. 93, p. 205, 1912.
2 Crane Company, “Flow of F 1uids,f' Tech. Paper 409, May, 1942,
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When the head is given, this problem is solved as the second type of simple pipe
problem. If f = 0.02, then

2
30 = -2% (13.3 + 680 X 0.02)

and V' = 8.46 ft/sec. ¢/D = 0.00085/0.5 = 0.0017; VD" = 846 X 6 = 50.7.
From Fig. 5.34, f = 0.023. By solving again for the velocity, V' = 8.16 ft/sec,

Globe vaive

PRttt Standard elbows

200 ft

Square -edged entrance

7 Fia. 5.37. Pipeline with minor losses.
VD" = 8.16 X 6 = 49, and f does not change. The discharge is

™

Q = 8.16 16

= 1.60 efs

For the second part, with ¢ known, the solution is straightforward,

2
V = 7 X 16 = 10.18 ft/sec VD" = 61.1 f=0.023

and

10.182

H =13

(13.3 + 680 X 0.023) = 46.5 it

With equivalent lengths [Eq. (5.9.19)], the value of f is approximated, say
f = 0.020. The sum of minor losses is K = 13.3, in which the kinetic energy at
2 is included as a minor loss,

133 X 0.50

L, = 0.02 = 332 ft

Hence, the total length of pipe is 332 + 340 = 672 ft. The first part of the
problem is solved by this method,

L+L Ve 672 V2
0=7=p 2 ~Tos2

If f=002 V=847, VD" = 508, f = 0.023; then V = 7.9, VD" = 474,
[ =0.023, Q = 1.55cfs. Normally it is not necessary to use the new value of fin
Eq. (5.9.19).

Minor losses may be neglected in those situations where they compose
only 5 per cent or less of the head losses due to pipe friction. The fric-
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tion factor, at best, is subject to about 5 per cent error, and it is meaning-
less to select values to more than two significant figures. In general,
minor losses may be neglected when, on the average, there is a length of
1000 diameters between each minor loss.

4y
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F1c. 5.38. Sliding bearing.

Compressible flow in pipes is treated in Chap. 6. Complex pipe-flow
situations are treated in Chap. 10.

5.10. Lubrication Mechanics. The effect of viscosity on flow and its
effect on head losses have been examined in the preceding sections of
.this chapter. A laminar-flow case of
great practical importance is the hy-
drodynamic theory of lubrication.
Simple aspects of this theory are
developed 1n this section.

Large forces are developed in small
clearances when the surfaces are
slightly inclined and one is in motion
so that fluid is “wedged” into the
decreasing space. The slipper bear-
ing, which operates on this principle, is
illustrated in Fig. 5.38. The journal
bearing (Fig. 5.39) develops its force

F1a. 5.39. Journal bearing. by the same action, except that the
surfaces are curved.

The laminar-flow equations may be used to develop the theory of
lubrication. The assumption is made that there is no flow out of the
ends of the bearing, normal to the plane of Fig. 5.38. Starting with
Eq. (5.1.4), which relates pressure drop and shear stress, the equation
for the force P that the bearing will support is worked out, and the drag
on the bearing is computed.

Substituting Newton’s law of viscosity into Eq. (5.1.4) produces

dp d*u
= u dy’ (5.10.1)
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Since the inclination of the upper portion of the bearing (Fig. 5.38) is
very slight, it is assumed that the velocity distribution is the same as if
the plates were parallel and that p is independent of y. Integrating
Eq. (5.10.1) twice with respect to y, with dp/dz constant, produces

y—#[ dy+A
or
dp

d:cy_‘udy—l_A

and the second time

dp . du
T ydy—[ dy+A[dy+B

or

dp y*? '

L =w+Ay+B
The constants of integration A, B are determined from the conditions
u=0,9y=>0;u= U, y=0. Substituting in turn produces

dp b?

p = Ab+ B wU+B=20

Eliminating A and B and solving for % results in

u = 2-” Py —b) + U(l - g) (5.10.2)

The discharge @ must be the same at each cross section. By integrat-
ing over a typical section, again with dp/dx constant,

0= [udy=3~ P (5.10.3)

Now, since @ cannot vary with z, b may be expressed in terms of z,
b = b, — az, in which « = (b, — b,)/L and the equation is integrated
with respect to z to determine the pressure distribution. Solving Eq.
(5.10.3) for dp/dx produces '

dp 6ul 12uQ

dxr (by — am';)2 - (b, — ax)? (5.10.4)

By integrating,

/__de = Gpr(bl ) IQpQ/ b = az)? ax)3

p~ 8 e __ | ¢

alby — az) b, — ax)?

or
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In this equation @ and C are unknowns. Since the pressure must be the
same, say zero, at the ends of the bearing, namely, p = 0,z = 0; p = 0,
z = L, the constants may be determined,

- Ubybs 6ul/

~ C=— -2
Q by + b a(by + bo)
With these values inserted, the equation for pressure distribution becomes

_ 6plx(d — bo)
b2(b1 + b2)

This equation shows that p is positive between z = 0 and z = L if
b > bs. It is plotted in I'ig. 5.38 to show the distribution of pressure
throughout the bearing. With this one-dimensional method of analysis
the very slight change in pressure along a vertical line x = constant is
neglected. |

The total force P that the bearing will sustain, per unit width, is

_[E . 6ulU Lx(b — by)dx
P—ﬁ)pdx—b1+bgﬁ ’)2

After substituting the value of b in terms of x and performing the integra-

tion, U
6}1 112 b1 b] -_ bg -
P= """ |ln- —2—F8= 5.10.6
(bl“'b2)2(nb2 b1+bz) (5.10.6)

" The drag force D required to move the lower surface at speed U is

expressed by
. L L dul
D = dx = — dx
.[) T ¥=0 Y /f; Hdy dy Iy =0

By evaluating du/dy from Eq. (5.10.2), for y = 0,

(5.10.5)

du]  _ _bdp U
dy ly=0 2uder b
With this value in the integral, along with the value of dp/d;v from Eq.
(5.10.4),
_ 2}.&[}]’[4 b1 bl - b2

The maximum load P is computed with Eq. (5.10.6) when b, = 2.2b..

With this ratio,

wUL2 wUL

P = 0.16 b | D = 0 75 by (5.10.8)
The ratio of load to drag for optimum load is
P L
D= 0. 2/1 5, (5.10.9)

which can be very large since b, can be very small.
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Ezample 5.14: A vertical turbine shaft carries a load of 80,000 1b on a thrust
bearing consisting of 16 flat rocker plates, 3 in. by 9 in., arranged with their long

dimensions radial from the shaft and with their
centers on a cirele of radius 1.5 ft. The shaft
turns at 120 rpm; u = 0.002 lb-sec/ft2. If the »

plates take the angle for maximum load, neglect-
ing effects of curvature of path and radial
lubricant flow, find (a) the clearance between
rocker plate and fixed plate; (b) the torque loss
due to the bearing.

a. Since the motion is considered straight-
line,

U=
L

5 X 1202 = 18.85 ft/sec

3.25 ft Fic. 5.40. Hydrostatic lubrica-

tion by high-pressure pumping
of oil.

The load is 5000 lb for each plate, which 1is
5000/0.75 = 6667 1b for unit width. By solving for the clearance b., from Eq.
(5.10.8),

-_____é i
by = \/9—'1—6%@ = 0.4 X 0.25 \/0'002662718'85 = 2.38 X 10~ ft = 0.0029 in.

(b) The drag due to one rocker plate is, per foot of width,

pUL  0.75 X 0.002 X 18.85 X 0.25
b: 2.38 X 10~

For a 9-in. plate, D = 29.6 X 0.75 = 222 Ib. The torque loss due to the 16
rocker plates is

=2061b

D =075

16 X 22.2 X 1.5 = 533 ft-lb

Another form of lubrication, called hydrostatic lubrication,' has many
important applications. It involves the continuocus pumping of high-
pressure oil under a step bearing, as illustrated in Fig. 5.40. The load
may be lifted by the lubrication before rotation starts, which greatly
reduces starting friction.

PROBLEMS

B.1. Derive Eq. (5.1.1) for the case of the plates making an angle 8 with the
horizontal, showing that in the equation p may be replaced by p + vz. zis the
change in elevation in length 1.

5.2. Derive Eq. (5.1.3) for two fixed plates by starting with Eq. (5.1.1).

! For further information on hydrostatic lubrication see ID. D. Fuller, Lubrication
Mechanies, in “Handbook of Fluid Dynamies,” ed. by V. L. Streeter, pp. 22-21
to 22-30, McGraw-Hill Book Company, Ine., New York, 1961.

-~
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6.3. Determine the formulas for shear stress on each plate and for the velocity
distribution for flow in Fig. 5.1 when an adverse pressure gradient exists such
that @ = 0.

6.4. In Fig. 5.1, with U positive as shown, find the expression for dp/dl such
that the shear is zero at the fixed plate. What is the discharge for this case?

§.5. In Fig. 5.41a, U = 2 ft/sec. Find the rate at which oil is carried into the
pressure chamber by the piston and the shear force and total force F acting.

§.6. Determine the force on the piston of Fig. 5.41a due to shear and the leak-
age from the pressure chamber for U = 0.

-

20 psi | —-— mzzzzzzzzzm —s-y
A=1 poise L ‘@ a '@

V‘-——- P T INTTTTRTTPF TSI NI IITS

7 Radial clearance pe—————— | ——————

0.003 in.
! (a) (b)
Fia. 5.41

5.7. Find F and U in Fig. 5.41a such that no oil is lost through the clearance
from the pressure chamber.

5.8. Derive an expression for the flow past a fixed cross section of Fig. 5.41b
for laminar flow between the two moving plates.

6.9. In Fig. 5.41b, for p, = p; = 10 psi, U = 2V = 10 ft/sec, a = 0.005 ft,
u = 0.5 poise, find the shear stress at each plate.

6.10. Compute the kinetic-energy and momentum correction factors for
laminar flow between fixed parallel plates.

6.11. Determine the formula for angle 6 for fixed parallel plates so that laminar
flow at constant pressure takes place.

Fii. 5.42

5.12. With a free body, as in Fig. 5.42, for uniform flow of a thin lamina of
liguid down an inclined plane, show that the velocity distribution is

= X (B2 - g%
u—zu(b? $%) sin 6



VISCOUS EFFECTS—FLUID RESISTANCE 231

and that the discharge per unit width is

Q = —g"'; b sin

6.13. Derive the velocity distribution of Prob. 5.12 by inserting the condition
that the shear at the moving plate must be zero from Eq. (5.1.2) when p is
replaced by p + vz

65.14. In Fig. 543, p1 = 5 psi, p» = 8 psi, [ = 4 ft, a = 0.005 (t, § = 30°,
U = 3 ft/sec, vy = 501b/ft? and u = 0.8 poise. Determine the force per square
foot exerted on the upper plate and its direction.

6.15. For 6 = 90° in Fig. 5.43, what speed U is required for no discharge?
v = 55 1b/ft3, a = 0.02 ft, p1 = p., and p = 0.004 lb-sec/ft2

Fic. 5.43 FiG. 5.44

6.16. The belt conveyor (Fig. 5.44) is of sufficient length that the velocity on
the free liquid surface is zero. By considering only the work done by the belt on
the fluid in shear, how efficient is this device in transferring energy to the fluid?

6.17. A film of fluid 0.005 ft thick flows down a fixed vertical surface with a
surface velocity of 2 ft/sec. Determine the fluid viscosity. v = 60 lb/ft?.

6.18. Determine the momentum correction factor for laminar flow in a round
tube.

6.19. What are the losses per pound per foot of tubing for flow of mercury at
60°F through 0.002 ft diameter at a Reynolds number of 1800?

6.20. Determine the shear stress at the wall of a vg-in.-diameter tube when
water at 50°F flows through it with a velocity of 1 ft/sec.

5.21. Determine the pressure drop -per 100 ft of §-in. ID tubing for flow of
liquid, g = 60 centipoises, sp gr = 0.83, at a Reynolds number of 20.

5.22. Glycerin at 80°F flows through a $-in.-diameter pipe with a pressure drop
of 5 psi/ft. Find the discharge and the Revnolds number.

6.23. Calculate the diameter of vertical pipe needed for flow of liquid at a
Reynolds number of 1800 when the pressure remains constant. » = 1.5 X 10~
ft?/sec.

5.24. Calculate the discharge of the system in Fig. 5.45, neglecting all losses
except through the pipe.
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_______________________

1)
TN NN St )

Fig. 5.45 Fi1a. 5.46

5.26. In Fig. 546, H = 30 ft, L = 60 ft, 8 = 30°, D = 3 in,, v = 64 1b/ft3,
and p = 0.001736 lb-sec/ft2. Find the head loss per unit length of pipe and the
discharge in gallons per minute.

5.26. In Fig. 5.46 and Prob. 5.25, find H if the velocity is 10 ft/sec.

5.27. At what distance r from the center of a tube of radius r¢ does the average
velocity occur in laminar flow?

6.28. Determine the maximum wall shear stress for laminar ﬂow in a tube of
diameter D with fluid properties p and p given.

5.29. Show that laminar flow between paraliel plates may be used in place of
flow through an annulus for 1 per cent accuraey if the clearance is no more than
4 per cent of the inner radius,

5.30. Oil, sp gr 0.85, p = 0.50 poise, flows through an annulus a = 0.60 in.,
b = 0.30 in. When the shear stress at the outer wall is 0.25 Ib/ft?, calculate
(a) the pressure drop per foot for a horizontal system, (b) the discharge in gallons
per hour, and (c) the axial force exerted on the inner tube per foot of length.

6.31. What is the Reynolds number for flow of 4000 gpm oil, sp gr 0.86,
g = 0.27 poise, through an 18-in.-diameter pipe?

5.32. Calculate the flow of crude oil, sp gr 0.86, at 80°F in a #-in.-diameter
tube to yield a Reynolds number of 700.

6.33. Determine the velocity of kerosene at 90°F in a 3-in. pipe to be dynami-
cally similar to the flow of 6000 cfm air at 20 psia and 60°F through a 24-in. duct..

5.34, What is the Reynolds number for a sphere 0.004 ft in diameter falling
through water at 100°F at 0.5 ft/sec?

5.35. Show that the power input for laminar flow in a round tube is @ Ap by
integration of ‘Eq. (5.1.7).

5.36. By use of the one-seventh-power law of velocity distribution u/ume =
(y/ro)%, determine the mixing-length distribution I/ro in terms of y/r, from
Eq. (5.4.4).

5.37. A fluid is agitated so that the kinematic eddy viscosity increases linearly
from y = 0 at the bottom of the tank to 2.0 ft?/sec at y = 2 ft. For uniform
particles with fall velocities of 1 ft/sec in still fluid, find the concentration at

= 1if it is 200/ft* at y = 2.

5.38. Plot a curve of ¢/uxro as a function of y/r, using Eq. (5.4.11) for velocity
distribution in a pipe.
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5.39. Find the value of y/ro in a pipe where the velocity equals the average
velocity.

65.40. A 3-in.-diameter pipe discharges water (submerged) into a reservoir.
The average velocity in the pipe is 40 ft/sec. At what distance is the velocity

reduced to 1.0 ft/sec? {SUGGESTION: Assume a velocity distribution u =

Um [1 -3 (;—;)2 - 2 (g)s] The momentum per second is then % pb*um’.}

5.41. Istimate the skin-friction drag on an airship 400 ft long, average diame-
ter 60 ft, with velocity of 80 mph traveling through air at 13 psia and 80°F.

5.42. The velocity distribution in a boundary layveris given by w/U = 3(y/8) —
2(y/6)%. Show that the displacement thickness of the boundary layeris 6, = /6.

5.43. Using the veloeity distribution /U = sin my/26, determine the equation
for growth of the laminar boundary layer and for shear stress along a smooth,
flat plate in two-dimensional flow.

5.44. Work out the equations for growth of the turbulent boundary layer,
based on the exponential law uw/U = (y/8)¢ and f = 0.185/R3. (v = pfV?%/8.)

5.45. Air at 70°F, 14.2 psia, flows along a smooth plate with a velocity of
100 mph. How long does the plate have to be to obtain a boundary-layer
thickness of % in.? '

5.46. What is the terminal velocity of 2 2-in.-diameter metal ball, sp gr 3.5,
dropped in oil, sp gr 0.80, u = 1 poise?

5.47. At what speed must a 4-in. sphere travel through water at 50°F to have
a drag of 1 1b?

5.48. A spherical balloon contains helium and ascends through air at 14 psia,
40°F. Balloon and pay-load weigh 300 Ib: What is its diameter to be able to
ascend at 10 ft/sec? Cp = 0.21.

65.49. How many 100-ft-diameter parachutes (Cp = 1.2) should be used to
drop a bulldozer weighing 11,000 Ib at a terminal speed of 32 ft/sec through air
at 14.5 psia, 70°F?

5.60. An object weighing 300 Ib is attached to a ecircular disk and dropped from
a plane. What diameter should the disk be to have the object strike the ground
at 72 ft/sec? The disk is attached so that it is normal to direction of motion.
p = 14.7 psia; t = 70°F.

b.61. A circular disk 10 ft in diameter is held normal to a 60-mph air stream
(p = 0.0024 slug/fts). What foree is required to hold it at rest.

b.62. A semitubular cylinder of 3-in. radius with concave side upstream is
submerged in water flowing 2 ft/sec.  Calculate the drag for a cylinder 24 {t long.

5.83. A projectile of the form of (a), Fig. 5.27, is 108 mm in diameter and travels
at 3000 ft/sec through air. p = 0.002 slug/ft3; ¢ = 1000 ft/sec, What is its
drag? ' :

5.64. If an airplane 1 mile above the earth passes over an observer and the
observer does not hear the plane until it has traveled 1.6 miles farther, what is
its speed? Sound velocity is 1080 ft/sec. What is its Mach angle?

5.65. What is the ratio of lift to drag for the airfoil section of Fig. 5.25 for an
angle of attack of 2°?

5.66. Determine the settling velocity of small metal spheres, sp gr 4.5, 0.004 in.
diameter, in crude oil at 80°F.
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6.67. How large a spherical particle of dust, sp gr 2.5, will settle in atmospheric
air at 70°F in obedience to Stokes’ law? What is the settling velocity?

5.568. The Chézy coefficient is 127 for flow in a rectangular channel 6 ft wide,
2 ft deep, with bottom slope of 0.0016. What is the discharge?

5.569. A rectangular channel 4 ft wide, Chézy C = 60, S = 0.0064, carries
40 cfs. Determine the velocity.

6.60. What is the value of the Manning roughness factor n in Prob. 5.59?

6.61. A rectangular, brick-lined channel 6 ft wide and 5 ft deep carries 210 cfs.
What slope is required for the channel?

5.62. The channel cross section shown in Fig. 5.47 is made of unplaned wood
and has a slope of 0.0009. What is the discharge?

5.63. A trapezoidal, unfinished concrete channel carries water at a depth of
6 ft. Its bottom width is 8 ft and side slope 1 horizontal to 14 vertical. For a
bottom slope of 0.004 what is the discharge?

b.64. A trapezoidal channel with bottom slope 0.003, bottom width of 4 ft, and
side slopes 2 horizontal to 1 vertical carries 220 cfs at a depth of 4 ft. What is
the Manning roughness factor?

6.66. A trapezoidal earth canal, bottom width 8 ft and side slope 2 on 1 (2 hon-
zontal to 1 vertical), is to be constructed to carry 280 cfs. The best velocity for
nonscouring is 2.8 ft/sec with this material. What is the bottom slope required?

5.66. What diameter is required of a semicircular corrugated-metal channel
to carry 50 cfs when its slope is 0.01?

5.67. A semicircular corrugated-metal channel 10 ft in diameter has a bottom
slope of 0.004. What is its capacity when flowing full?

5.68. Calculate the depth of flow of 2000 cfs in a gravel trapezoidal channel
with bottom width of 12 ft, side slopes of 3 horizontal to 1 vertical, and bottom
slope of 0.001.

5.69. What is the velocity of flow of 260 cfs in a rectangular channel 12 ft
wide? 8 = 0.0049; n = 0.016.

5.70. A trapezoidal channel, brick-lined, is to be constructed to carry 1200 cfs
5 miles with a head loss of 12 ft. The bottom width is 16 ft, the side slopes 1 on 1.
What is the velocity?

5.71. How does the discharge vary with depth in Fig. 5.48?

6.72. How does the velocity vary with depth in Fig. 5.48?

6.73. Determine the depth of flow in Fig. 5.48 for discharge of 12 cfs. It is
made of riveted steel with bottom slope 0.02.
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5.74. Determine the depth y (Fig. 5.49) for maximum velocity for given =
and 8.

5.76. Determine the depth y (Fig. 5.49) for maximum discharge for given n
and S.

6.76. A test on a 12-in.-diameter pipe with water showed a gage difference of
13 in. on a mercury-water manometer connected to two piezometer rings 400 ft
apart. The flow was 8.24 cfs. What is the friction factor?

6.77. By using the Blasius equation for determination of friction factor,
determine the horsepower per mile required to pump 3.0 cfs liquid, » = 3.3 X
10—4 ft2/sec, v = 55 lb/ft3, through a 12-in. pipeline.

6.78. Determine the head loss per 1000 ft required to maintain a velocity of
14 ft/sec in a 0.50-in.-diameter pipe. v = 4 X 10~ f2/sec.

5.79. Fluid flows through a #-in.-diameter tube at a Reynolds number of 1600.
The head loss is 30 ft in 100 ft of tubing. Calculate the discharge in gallons per
minute.

6.80. What size galvanized-iron pipe is needed to be “hydraulically smooth”
at B = 3.5 X 10%? (A pipe is said to be hydraulically smooth when it has the
same losses as a smoother pipe under the same conditions.)

6.81. Above what Reynolds number is the flow through an 8-ft-diameter
riveted steel pipe, ¢ = 0,01, independent of the viscosity of the fluid?

6.82. Determine the absolute roughness of a 2-ft-diameter pipe that has a
friction factor f = 0.03 for B = 1,000,000.

6.83. What diameter clean galvanized-iron pipe has the same friction factor
for B = 100,000 as a 12-in.-diameter cast-iron pipe?

5.84. Under what conditions do the losses in a pipe vary as some power of the
velocity greater than the second?

5.86. Why does the friction factor increase as the velocity decreases in laminar
flow in a pipe?

5.86. Look up the friction factor for atmospheric air at 60°F traveling 80 ft/sec
‘through a 3-ft-diameter galvanized pipe.

5.87. Water at 70°F is to be pumped through 1200 ft of 8-in.-diameter Wrought-
iron pipe at the rate of 1000 gpm. Compute the head loss and horsepower
required.

5.88. 16,000 ft*/min atmospheric air at 90°F is conveyed 1000 ft through a
4-fi-diameter galvanized pipe. What is the head loss in inches of water?
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5.89. 2.0 cfs oil, u = 0.16 poise, v = 53 lb/ft3,|is pumped through a 12-in.
pipeline of cast iron. If each pump produces 80 psi, how far apart may they be
placed?

5.90. A 2.5-in.-diameter smooth pipe 500 ft long conveys 200 gpm water at
80°F from a water main, p = 100 psi, to the top of a building &5 ft above the
main. What pressure can be maintained at the top of the building?

5.91, For water at 150°F, calculate the discharge for the pipe of Fig. 5.50.

5.92. In Fig. 5.50, how much power would be required to pump 160 gpm from
a reservoir at the bottom of the pipe to the reservoir shown?

2
2
- 260 ft
-1 240 ft
2in. diam {
Wrought iron g __JL

m
Fri. 5.50

6.93. A 3-in.-diameter commercial steel pipe 40 ft long is used to drain an oil
tank. Determine the discharge when the oil level in the tank is 6 ft above the
exit end of the pipe. u = 0.10 poise;y = 50 Ib/ft2.

5.94. Two liquid reserveirs are connected by 200 ft of 2-in.-diameter smooth
tubing. What is the flow rate when the difference in elevation is 50 ft? » =
0.001 ft2/sec.

5.96. For a head loss of 2-in. water in a length of 600 ft for flow of atmospheric
air at 60°F through a 4-ft-diameter duct, e = 0.003 ft, calculate the flow in
gallons per minute.

5.96. A gas of molecular weight 37 flows through a galvanized 24-in.-diameter
duct at a pressure of 90 psia and 100°F. The head loss per 100 ft of duct is 2 in.
water. What is the mass flow in slugs per hour?

5.97. What is the horsepower per mile required for a 70 per cent efficient blower
to maintain the flow of Prob. 5.96?

5.98. 100 lb,./min air is required to ventilate a mine. It is admitted through
2000 ft of 12-in.-diameter galvanized pipe. Neglecting minor losses, what head
in inches of water does a blower have to produce to furnish this flow? p = 14
psia; t = 90°F,

5.99. In Fig. 546 I{ = 60 ft, L = 500 {t, D = 2 in,, v = 55 Ib/ft?, u = 0.04
poise, ¢ = 0.003 ft. Find the pounds per second flowing.

5.100. In a process 10,000 Ib/hr of distilled water at 70°F is conducted through
a smooth tube between two reservoirs having a distance between them of 40 ft
and a difference in elevation of 4 ft.  What size tubing is needed?

5.101. What size of new cast-iron pipe is needed to transport 10 cfs water at
80°F 1 mile with head loss of 6 ft?
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5.102. Two types of steel plate, having surface roughnesses of ¢; = 0.0003 ft
and €, = 0.001 ft, have a cost differential of 10 per cent more for the smoother
plate. With an allowable stress in each of 10,000 psi, which plate should be
selected to convey 100 cfs water at 200 psi with a head loss of 6 ft/mile?

5.103. An old pipe 48 in. in diameter has a roughness of € = 0.1 ft. A -in.-
thick lining would reduce the roughness to € = 0.0004. How much in pumping
costs would be saved per year per 1000 ft of pipe for water at 70°F with velocity
of & ft/sec? The pumps and motors are 80 per cent efficient ‘and power costs
1 cent per kilowatthour.

5.104. Calculate the diameter of new wood-stove pipe in excellent condition
needed to convey 300 cfs water at 60°F with a head loss of 1 ft per 1000 ft of pipe.

5.106. Two oil reservoirs with difference in elevation of 12 it are connected by
1000 ft of commercial steel pipe. What size must the pipe be to convey 1000
gpm? u = 0.001 slug/ft-sec; v = 55 1b/it’

5.106. 200 cfs air, p = 16 psia, ¢ = 90°F, is to be delivered to a mine with a
head loss of 3 n. water per 1000 ft. What size galvanized pipe is needed?

5.107. Compute the losses in foot-pounds per pound due to flow of 600 cfm
air, p = 14.7 psia, t = 70°F, through a sudden expansion from 12- to 36-in. pipe.
How much head would be saved by using a 10° conical diffuser?

5.108. Calculate the value of I in Fig. 5.51 for 6 cfs water at 60°F through
commercial steel pipe. Include minor losses.

100 ft 12 in. diam

FiG. 5.51

5.109. In Fig. 5.51 for H = 10 ft, calculate the discharge of oil, ¥ = 55 Ib/ft?,
p = 0.07 poise, through smooth pipe. Include minor losses.

5.110. If a valve is placed in the line in Prob. 5.109 and adjusted to reduce the
discharge by one-half, what is X for the valve and what is its equivalent length of
pipe at this setting?

6.111. A water line connecting two reservoirs at 70°F has 4000 ft of 24-in.-
diameter steel pipe, three standard elbows, a globe valve, and a re-entrant pipe
entrance. What is the difference in reservoir elevations for 20 cfs?

5.112. Determine the discharge in Prob. 5.111 if the difference in elevation
is 40 ft.

5.113. Compute the losses in horsepower due to flow of 100 cfs water through
a sudden contraction from 6- to 4-ft-diameter pipe. :

5.114. What is the equivalent length of 2-in.-diameter pipe, f = 0.022, for
(@) a re-entrant pipe entrance, (b) a sudden expansion from 2 to 4 in. diameter,
(¢) a globe valve and a standard tee?

5.115. Find H in Fig. 5.52 for 100-gpm oil flow, u = 0.1 poise, ¥ = 60 1b/ft3,
for the angle valve wide open.
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6.116. Find K for the angle valve in Prob 5.115 for flow of 60 gpm at the
same H.

6.117. What is the discharge through the system of Fig. 5.52 for water at
80°F when H = 16 ft?

5.118. Compare the smooth-pipe curve on the Moody diagram with Eq.
(5.9.4) for R = 105, 105, 107,

5.119. Check the location of line ¢/D = 0.0002 on the Moody diagram with
Eq. (5.9.7). '

5.120. In Eq. (5.9.7) show that when ¢ = 0, it reduces to Eq. (5.9.4) and that,
when R is very large, it reduces to Eq. (5.9.6).

5.121. In Fig. 5.53 the rocker plate has a width of 1 ft. Calculate (a) the load

the bearing will sustain, () the drag on the bearing. Assume no flow normal to
the paper.

Fia. 5.53

6.122. Find the maximum pressure in the fluid of Prob. 5.121, and determine
its location.

5.123. Determine the pressure center for the rocker plate of Prob. 5.121.

6.124. Show that a shaft concentric with a bearing can sustain no load.

5.126. The shear stress in a fluid flowing between two fixed parallel plates

(a) is constant over the cross section

{(b) is zero at the plates and increases lincarly to the mid-point

(¢) varies parabolically across the section

(d) is zero at the midplane and varies linearly with distance from the
midplane

(e) is none of these answers

5.126. The velocity distribution for flow between two fixed parallel plates

(a) is constant over the cross section

(b) 1s zero at the plates and increases linearly to the midplane

(c) varies parabolically across the section

(d) varies as the three-halves power of the distance from the mid-point
(e) is none of these answers
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5.127. The discharge between two parallel plates, distant a apart, when one has
the velccity 7 and the shear stress is zero at the fixed plate, is

(@) Ua/3 (b)) Ua/2 () 2Ua/3 (d) Uas  (¢) none of these
answers

5.128. Fluid is in laminar motion between two parallel plates, with one plate in
motion and is under the action of a pressure gradient so that the discharge through
any fixed cross section is zero. The minimum velocity occurs at a point which is
distant from the fixed plate

(a) a/6 b) a/3 (c) a/2 (d) 2a/3 (e) none of these answers
5.129. In Prob. 5.128 the value of the minimum velocity is
(a) ~3U/4 ) =-2U/3 (¢) =U/2 (d) -U/3 (e) —U/6

65.130. The relation between pressure and shear stress in one-dimensional
laminar flow in the z-direction is given by

(a) dp/dzx = udr/dy (b) dp/dy = dr/dz (¢) dp/dy = pdr/dx
(d) dp/dx = dr/dy (e) none of these answers

5.131. The expression for power input per unit volume to a fluid in one-dimen-
sional laminar motion in the z-direction is

(a) rdu/dy  (b) 7/p* (¢} mdu/dy  (d) 7(du/dy)’
(¢) none of these answers

6.132. When liquid is in laminar motion at constant depth in flowing down an
inclined plate (y measured normal to surface),

(a) the shear is zero throughout the liquid

(b) dr/dy = 0 at the plate

(¢) 7 = 0 at the surface of the liquid

(d) the velocity is constant throughout the liquid
(e) there are no losses

5.133. The shear stressin a fluid flowing in a round pipe

(a) is constant over the cross section

(b) is zero at the wall and increases linearly to the center
{¢) varies parabolically across the section

(d) is zero at the center and varies linearly with the radius
(e) is none of these answers

5.134. When the pressure drop in a 24-in.-diameter pipeline is 10 péi in 100 ft,
the wall shear stress in pounds per square foot is

(a) O (b) 7.2 (c) 14.4 (d) 720 (e) none of these answers
6.135. In Jaminar flow through a round tube the discharge varies

(a) linearly as the viscosity

(b) as the square of the radius
(¢) inversely as the pressure drop
(d) inversely as the viscosity

(¢) as the cube of the diameter
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5.136. When a tube is inclined, the term —dp/dl is replaced by

(@) —dz/dl (b)) —vydz/dl  (¢) —d(p + 2)/dl
(d) —d(p + p2)/dl  (e) —d(p + v2)/dl

5.137. The upper critical Reynolds number is

(a) important from a design viewpoint

(b) the number at which turbulent flow changes to laminar flow
(¢) about 2000

(d) not more than 2000

(e) of no practical importance in pipe-flow problems

5.138. The Reynolds number for pipe flow is given by

(@) VD/v (b) VDu/p (¢c) VDp/v (d) VD/u (¢) none of
these answers

5.139. The lower critical Reynolds number has the value

(a) 200 (b) 1200 (¢) 12,000 (d) 40,000 (e} none of these

answers

5.140. The Reynolds number for a 1.0-in.-diameter sphere moving 10 ft/sec
through o1l, sp gr 0.90, ¢ = 0.002 lb-sec/ft?, is

(a) 375 b) 725 (¢) 806 (d) 8700 (e) none of these

answers

6.141. The Reynolds number for 10 cfs discharge of water at 68°F through a
12-in.-diamter pipe is

(a) 2460 (b) 980,000 (¢) 1,178,000 (d) 14,120,000
(e) none of these answers

5.142. The Prandtl mixing length is

(a) independent of radial distance from pipe axis
(6) independent of the shear stress

(¢) zero at the pipe wall

(d) a universal constant

(e} useful for computing laminar-flow problems

5.143. In a fluid stream of low viscosity

{(a) the effect of viscosity does not appreciably increase the drag on a
body

(b) the potential theory yields the drag force on a body

(c) the effect of viscosity is limited to a narrow region suwrrounding a
body

(d) the deformation drag on a body always predominates

(e) the potential theory contributes nothing of value regarding flow
around bodics

5.144. The lift on a body immersed in a fluid stream is

(a) due to buovant force
(b) always in the opposite direction to gravity
(¢) the resultant fluid force on the body
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(d) the dynamic fluid-force component exerted on the body normal to
the approach velocity

(e) the dynamic fluid-force component exerted on the body parallel to
the approach velocity

5.145. The displacement thickness of the boundary layer is

(a) the distance from the boundary affected by boundary shear
(b) one-half the actual thickness of the boundary laver

(") the distance to the point where /U7 = 0.99

(d) the distance the main flow is shifted

{¢) none of these answors

5.146. The shear stress at the boundary of a flat plate is

(@) Op/dz (D) pOu/Oylyee  (€) pOU/By|umo  (d) w Ou/3ylums
(¢) none of these answers

5.147. Which of the following velocity distributions u/U satisfy the boundary
conditions for flow along a flat plate? » = y/é.

(@) e (b) cosmp/2 () m—n* (d) 2n — 93
(e) none of these answers

5.148. The drag coeflicient for a flat plate is (D = drag)

(a) 2D/pU¥ ~ (b) pUL/D (e) pUl/2D (d) pU/2D
(¢) none of these answers

5.149., The average velocity divided by the maximum velocity, as given by the
one-seventh-power law, is

(@) 120 () (c) % (d) 1% (¢) none of these answers
5.150. The laminar-houndary-layer thickness varies as

(@) 1/z2 (b) 7 (¢) zz (d) =% (e) none of these answers
5.161. The turbulent-boundary-layer thickness varies ax

(@) 1/x} (b) x4 (¢) x% (d) r? (¢) none of these answers

5.162. In flow along a rough plate, the order of flow type from upstream to
downstream is

(@) laminar, fully developed wall roughness, transition region, hydrau-
lically smooth

(b) laminar, transition region, hvdraulically smooth, fully developed
wall roughness

(v) laminar, hydraulically smooth, transition region, ully developed
wall roughness

(d) laminar, hydraulically smooth, fully developed wall roughness,
transttion region

(¢) laminar, fully developed wall roughness, hydraulically smooth,
transition region
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Separation is caused by '

(a) reduction of pressure to vapor pressure

(b) reduction of pressure gradient to zero

(c) an adverse pressure gradient

(d) the boundary-layer thickness reducing to zero
(e) none of these answers

Separation occurs when

(a) the cross section of a channel is reduced
(b) the boundary layer comes to rest

(¢) the velocity of sound is reached

(d) the pressure reaches a minimum

(e) a valve is closed

The wake

(a) is a region of high pressure

(b) is the principal cause of skin friction

(c) always occurs when deformation drag predominates
(d) always occurs after a separation point

(e) is none of these answers

Pressure drag results from

(a) skin friction
(b) deformation drag

[Chap. §

(c) breakdown of potential flow near the forward stagnation point

(d) occurrence of a wake
(e) none of these answers

A body with a rounded nose and long, tapering tail is usually best suited

(@) laminar flow

(b) turbulent subsonic flow
(c¢) supersonic flow

(d) flow at speed of sound -
{e) none of these answers

5.168. A sudden change in position of the separation point in flow around a
sphere occurs at a Reynolds number of about

(a) 1 (6) 300 (¢} 30,000 (d) 3,000,000 (e) none of these

5.169.

answers
The effect of compressibility on the drag force is to

(a) greatly increase it near the speed of sound
(b) decrease it near the speed of sound

(¢) cause it to asymptotically approach a constant value for la.rge Mach

numbers
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(d) cause it to increase more rapidly than the square of the speed at high
Mach numbers
(e) reduce it throughout the whole flow range

The terminal velocity of a small sphere settling in a viscous fluid varies

(a) first power of its diameter

(b) inverse of the fluid viscosity

(¢) inverse square of the diameter

(d) inverse of the diameter

(e) square of the difference in specific weights of solid and fluid

The losses in open-channel flow generally vary as the

(a) first power of the roughness

(b) inverse of the roughness

(¢) square of the velocity

(d) inverse square of the hydraulic radius
(e) velocity

The most simple form of open-channel-low computation is

(a) steady uniform

(b) steady nonuniform
(¢) unsteady uniform
(d) unsteady nonuniform
(e) gradually varied

In an open channel of great width the hydraulic radius equals

(@) y/3 ) y/2 (¢) 2y/3 (d) vy (e) none of these
answers

The Manning roughness coefficient for finished concrete is

(a) 0.002 (b) 0.020 (¢) 0.20 (d) dependent upon hydraulic
radius (e) none of these answers

In turbulent flow a rough pipe has the same friction factor as a smooth

(a) in the zone of complete turbulence, rough pipes

(b) when the friction factor is independent of Reynolds number

(¢) when the roughness projections are much smaller than the thickness
of the boundary layer

(d) everywhere in the transition zone

(e) when the friction factor is constant

The friction factor in turbulent flow in smooth pipes depends upon the

following:

(a) V: D: » L: M
(b) Q; Ly, p
() V,D, p, p,
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(@ V,D,uop
(e) p, L, D, Q, V

5.167. In a given rough pipe, the logses depend upon

(a) 1, V

(b) n, p

(c) R

(d) @ only

(e) none of these answers

5.168. In the complete-turbulence zone, rough pipes,

(a) rough and smooth pipes have the same friction factor

(b} the laminar film covers the roughness projections

(¢) the friction factor depends upon Reynolds number only
(d) the head loss varies as the square of the velocity

(e) the friction factor is independent of the relative roughness

5.169. The friction factor for flow of water at 60°F through a 2-ft-diameter
cast-iron pipe with a velocity of 5 ft/sec is

(a) 0.013  (b) 0.017 {¢) 0.019 (d) 0.021 (e) none of these
answers

6.170. The procedure to foliow in solving for losses when Q, L, D, », and € are
given is to

(a) assume an f, look up R on Moody diagram, ete.

(b) assume an h;, solve for f, check against R on Moody diagram
(c) assume an f, solve for h;, compute R, ete.

(d) compute R, look up f for ¢/D, solve for A,

(e) assume an R, compute V, look up f, solve for A,

6.171. The procedure to follow in solving for discharge when ks, L, D, », and e
are given is to

(a) assume an f, compute V, R, ¢/D, look up f, and repeat if necessary
(b) assume an R, compute f, check ¢/D, ete.

(c) assume a V, compute R, look up f, compute V again, etc.

(d) solve Darcy-Weisbach for V, compute @

(e) assume a @, compute V, R, look up f, ete.

5.172. The procedure to follow in solving for pipe diameter when Ay, @, L, »,
and e are given is to

(a) assume a D, compute V, R, ¢/D, look up f, and repeat

(b) compute V from continuity, assume an f, solve for D

(c) eliminate V in R and Darcy-Weisbach, using continuity, assume an
f, solve for D, R, look up f, and repeat

(d) assume an R and an ¢/D, look up f, solve Darcy-Weisbach for
¥2/D, and solve simultaneously with continuity for V and D, com-
pute new R, ete.

(e) assume a V, solve for D, R, ¢/D, look up f, and repeat
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5.173. The losses due to a sudden contraction are giveh by

1 _._2_? e _sz_e 1 ? Vo2
@ (ge=1)z ®0-cag 0(G-1)y
|

(d) (C, — 1)? o (e) none of these answers

65.174. The losses at the exit of a submerged pipe in a reservoir are

(a) negligible (b) 0.05(V2/29) {e) 0.5(V?/2g) (d)y V2/2g
(e) none of these answers '

6.175. Minor losses usually may be neglected when

(a) there are 100 ft of pipe hetween special fittings

(b) their loss is'5 per cent or less of the friction loss

(c) there are 500 diameters of pipe between minor losses
(d) there are no globe valves in the line

(e) rough pipe is used

5.176. The length of pipe (f = 0.025) in diameters, equivalent to a g]obé
valve, is

(a) 40 (b) 200 (¢} 300 (d) 400 (e) not determinable;
insufhicient data

5.177. The hydraulic radius is given by

(a) wetted perimeter divided by area

(b) area divided by square of wetted perimeter
(¢) square root of area

(d) area divided by wetted pcrimeter -

(e) none of these answers

5.178. The hydraulic radius of a 6-in. by 12-in. cross section is, in feet,
@% B% (% (% (e none of these answers
5.179. In the theory of lubrication the assumption is made that

(a) the velocity distribution is the same at all cross sections

(b) the velocity distribution at any section is the same as if the plates
were parallel

(¢) the pressure variation along the bearing is the same as if the plates
were parallel

(d) the shear stress varies linearly between the two surfaces

(e) the velocity varies linearly between the two surfaces

5.180. A 4-in.-diamcter shaft rotates at 240 rpm in a bearing with a radial clear-
ance of 0.006 in. The shear stress in an oil film, g = 0.1 poise, is, in pounds per
square foot,

(@ 015 (b)) 175 () 3.50  (d) 16.70  (¢) none of these
aAnswers
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COMPRESSIBLE FLOW

In Chap. 5 viscous incompressible-fluid-flow situations were mainly
considered. In this chapter on compressible flow, one new variable
enters, the density, and one extra equation is available, the equation of
state, which relates pressure and density. The other equations—con-
tinuity, momentum, and the first and second laws of thermodynamics—
are also needed in the dnalysis of compressible-fluid-flow situations.
In this chapter topics in steady one-dimensional flow of a perfect gas
are discussed. The one-dimensional approach is limited to those applica-
tions in which the velocity and density may be considered constant over
any cross section. When density changes are gradual and do not change
by more than a few per cent, the flow may be treated as incompressible
with the use of an average density. :

The following topics are discussed in this chapter: perfect-gas relation-
ships, speed of a sound wave, Mach number, isentropic low, shock waves,
Fanno and Rayleigh lines, adiabatic flow, flow with heat transfer, iso-
thermal flow, high-speed flight, and the analogy between shock waves
and open-channel waves.

6.1. Perfect-gas Relationships. In Sec. 1.6 [Eq. (1.6.2)] a perfect gas
is defined as a fluid that has constant specific heats and that follows the
law

p = pRT (6.1.1)

in which p and T are the absolute pressure and absolute temperature,
respectively, p is the density, and R the gas constant. In this section
specific heats are defined, the specific heat ratio is introduced and
related to specific heats and the gas constant, internal energy and
enthalpy are related to temperature, entropy relations are established,
and the isentropic and reversible polytropic processes are introduced.

In general, the specific heat at constant volume ¢, is defined by

¢, = (3‘3%) (6.1.2)
246
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in which u 1s the internal energy per unit mass. In words, ¢, is the
amount of internal energy increase required by a unit mass of gas to
increase its temperature by one degree when its volume is held constant.
In thermodynamic theory it is proved that u is a function only of tempera-
ture for a perfect gas.

The specific heat at constant pressure ¢, is defined by

Cp = (;7,:),, (6.1.3)

in which h is the enthalpy per unit mass given by h = u + p/p. Since
p/p is equal to RT and u is a function only of temperature for a
perfect gas, h depends only on temperature. Many of the common
gases, such as water vapor, hydrogen, oxygen, carbon monoxide, and
air, have a fairly small change in specific heats over the temperature
range 500 to 1000°R, and an intermediate value is taken for their use as
perfect gases. Table C.2 of Appendix C lists some common gases with
values of specific heats at 80°L.
For perfect gases Eq. (6.1.2) becomes

du = ¢, dT (6.1.4)
and Eq. (6.1.3) becomes
dh = ¢, dT (6.1.5)
Then, from
h=u+%=u+RT
differentiating

dh = du + RdT
and by substitution of Eqs. (6.1.4) and (6.1.5)
¢, =¢, + R (6.1.6)

which is valid for any gas obeying Eq. (1.6.2) (even when ¢, and ¢, are
changing with temperature). If ¢, and ¢, are given in heat units per
unit mass (i.e., Btu per pound mass per degree Rankine or Btu per
slug per degree Rankine), then R must be in heat units also (i.e., Btu per
pound mass per degree Rankine or Btu per slug per degree Rankine).
The conversion factor is 1 Btu = 778 ft-lb if it is desired to express units
in the foot-pound-second system.
The specific-heat ratio k is defined as the ratio

kz% (6.1.7)

By solving with Eq. (6.1.6)
¢p = —— R Co = (6.1.8)
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Entropy Relationships. The internal energy change for a perfect gas is

Uy — U = C.;(Tz —_ T1) (619)
and the enthalpy change
h2 —~ hy = Cp(Tz — Tl) (6.110)
¥From Eq. (3.6.15)
Tds = du + pd% (3.6.15)

which is a relationship among thermodynamic properties and must hold
for all pure substances; the change in ontropy s may be obtained

du 1
ds = 7 + £ 7 i— = Cp ~r ,1 -l— de— (6.1.11)
from Egs. (6.1.4) and (6.1.1). After integrating,
s = T P1
82 — 8 = ¢y In T + Rln p (6.1.12)
By use of Eqgs. (6.1.8) and (6.1.1), Eq. (6.1.12) becomes
[T k—1
82 — 81 = ¢, In _-7—,—: (%-:) ] (6.1.13)
or
P2 Y
—§ = == L
$2 — 81 = ¢, In P (p2) ] (6.1.14)
and
_ 3 i k Do 1—k
Ss — 8 = €, In i —TTI) (px) ] (6.1.15)

‘These equations are forms of the second law of thermodynamics.
An 1isenlropic process 1s a reversible adiabatic process. Equation

(3.8.3)
T ds = dgy + d (losses) (3.8.3)

shows that ds = 0 for an isentropic process, since there is no heat transfer;
dgr = 0; and there are no losses. Then, from Eq. (6.1.14) for s, = 8

ﬁ‘; - ﬁ | (6.1.16)

Equation (6.1.16) combined with the general gas law yields

T (k—1) 1k k—1
7"? - (g) = (_E) (6.1.17)

The enthalpy change for an isentropic process is

(k—1) Ik
hz — h-l = CP(T2 — Tl) = C,,T], (% - 1) = CpT1 [(2:) - 1]
' (6.1.18)
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The polytropic process is defined by

“ == constant
pn (6. 1. 19)

and is an approximation to certain actual processes in which » would
plot substantially as a straight line against p on log-log paper. This
relationship is frequently used to calculate the work when the polytropie
process is reversible, by substitution into the relation w = fp d¥. Heat
transfer occurs in a reversible polytropic process except when n = k, the
isentropic case.

Ezample 6.1: Express R in Btu per slug per degree Rankine for helium.
A conversion from 1 ft-Ib/Ib, °R to the Btu per slug per degree Rankine is
made first. Since 1 Btu = 778 ft-lb and 1 slug = 32.17 lb,,

1 ft-1b Btu 32.17 Btu

B, °R = ! 778 slug °r ~ 0414 qurem
Then, for helium, from Table C.2
ft-1b Btu Btu
R = 386 o5 b.°R = 386 X 0. 0414 °R = 16.0 m

Example 6.2: Compute the value of K from the values of k and ¢, for air and
__check in Table C.2.
From Eq. (6.1.8)

k—1 1.40 — Btu

R==7"c,= 140 ><024O——006861b °R

By converting from Btu to foot-pounds,

ft-1b

R = 0.0686 X 778 = 53. 3lb R

which checks the value in Table C.2.

Example 6.3: Compute the enthalpy change in 7.0 1b,, of oxygen when the
initial conditions are p, = 20 psia, {; = 50°F and final conditions p, = 80 psia,
t, = 200°F.

Enthalpy is a function of temperature only. By use of Eq. (6.1.10), the
enthalpy change per pound mass is

(T — T1) = 0.219(200 — 50) = 32.9 ?‘3

and the enthalpy change for 7.0 1b,,
Hy, — H, = 7.0 X 329 = 230.3 Btu

Ezxample 6.4: Determine the entropy change in 4.0 slugs of water vapor when
the initial conditions are p, = 6 psia, {; = 110°F and the final conditions are
P2 = 40 psia and {; = 38°F. '
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From Eq. (6.1.15) and Table C.2

460 +- 38 \"33 (40)“’ 33] Btu

65 — & = 0.335 In [ 505116 —0.271 o

or

Btu

8; — 81 = —0.271 X 4.0 X 32.17 = 349 = R

Example 6.5: A cylinder contfaining 3.5 lb,, nitrogen at 20 psia and 40°F is
compressed isentropically to 45 psia. Find the final temperature and the work
required.

From the principle of conservation of energy, the work done on the gas must
equal its increase in internal energy, since there is no heat transfer in an isentropic
process; i.e.,

U — Uy = C,,(Tz - T1) = work
By Eq. (6.1.17)

(k1) 1k (1.4-1)/1,4 .
T, =T, (%f) — (460 + 40) (%% = 630°R

and
Work = 0.177(630 — 500) X 3.5 = 80.6 Btu

Ezample 6.6: 3.0 slugs of air are involved in 4 reversible polytropic process in
which the initial conditions p, = 12 psia, f, = 60°F change to p; = 20 psia, and
volume ¥ = 1011 ft3. Determine (a) the formula for the process, (b) the work
done on the air, (¢) the amount of heat transfer, and (d) the entropy change.

_ P 12 X 144 slug
a. PL=RT, = 533 X 32.17(460 + 60y — 000194 15

R was converted to foot-pounds per slug degree Rankine by multiplying by 32.17.
Also

slug

pa = Ty = 0.002065 58

From Eq. (6.1.19)

P _ Pz
lﬂ 2n
In (p2/p1) In (3%) - 1.20

= 1n (pz/p) _ In (0.002965/0.00194)
hence

—’L = constant
pt?

describes the polytropic process.
b. Work of expansion is

¥1 ¥
W = # P d
This is the work .done by the gas on its surroundings. Since

¥ = p. ¥V = p¥P
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by substituting into the integral,

V’ﬁ _ p2V2 - p1V1 mR

W =pi¥s V- 1—an 1-mn

(T — Ty

if m is the mass of gas. V¥, = 1011 ft* and

_ _P_z 1/n - (29 1/1.2 _ ) R
V= Vz(pl) =011 (%) = 15481

) ]- _— ) ]

Hence the work done on the gas is 1,183,000 ft-1b.
¢. From the conservation of energy the heat added minus the work done by
the gas must equal the increase in internal energy; i.e.,

Qu —W=U, — U1=Cvm(T§—Tl)

First
o 20 X 144 o
T2 = & = 0002065 X 533 X 32.17 — 00 B
Then
1
Qn = — —1-’—78——%@ + 0.171 X 32.17 X 3(566 — 520)

=---760 Bfu

760 Btu were transferred from the mass of air.
d. From Eq. (6.1.14) the entropy change is computed:

20 7 0.00194 \*4 Btu
83 — 8§ = 0.171 ln [1_2' ((T—00296_5 ] = -—0.01441 —--——-—-Ibm OR

and
Btu

S: — 8, = —0.01441 X 3 X 32.17- = —1.3927;R-

A rough check on the heat transfer may be made by using Eq. (3.6.18), by using
an average temperature T = (520 + 566)/2 = 543, and by remembering that
the losses are zero in a reversible process.

Qun = T(S: — 81) = 543 X (—1.392) = —756 Btu

6.2, Speed of a Sound Wave. Mach Number. The speed of a small
disturbance in a channel may be determined by application of the
momentum equation and the continuity equation. The question is first
raised as to whether a-stationary small change in velocity, pressure, and
density can occur in a channel. By referring to Fig. 6.1, the continuity
equation can be written

pVA = (p + dp)(V + dV)A
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in which A 1s the cross-sectional area of channel. The equation can be
reduced to
pdV 4+ Vdp=20

When the momentum equation [Eq. (3.9.10)] is applied to the control
volume within the dotted lines,

. pA — (p+ dp)A = pVA(V +dV — V)

or .
dp = —pV dV
If p dV is ehminated between the two equations,
dp
2 _ 2F
%4 o (6.2.1)

So, a small disturbance or sudden change in conditions in steady flow
can occur only when a particular velocity V = \/dp/dp exists in the
channel. Now, if .a uniform velocity V = +/dp/dp is assumed to the
left in Fig. 6.1, the continuity and

T

v i ! Vidv momentum equations apply as be-

- 1! — fore, and the small disturbance is
! propagated through a fluid at rest.

p p+dp This is called the speed of sound ¢

j :+dp in the medium. The disturbance

from a point source would cause a
F1e. 6.1. Steady flow in prismatic channel  gpherical wave to emanate, but at
with sudden small change in velocity, some distance from the source the
pressure, and density. .
wave front would be essentially
linear or one-dimensional. Large disturbances may travel faster than the
speed of sound, e.g., a bomb explosion.
The equation for speed of sound

€= 4|5 (6.2.2)

may be expressed in several useful forms. The bulk modulus of elasticity
can be introduced:

in which ¥ is the volume of fluid subjected to the pressure change dp.
Since

K may be expressed as
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Then, from Eq. (6.2.2),
K
¢ = \/; (6.2.3)

This equation applies to liquids as well as gases.

Ezample 6.7: Carbon tetrachloride has a bulk modulus of elasticity of 163,000
psi and a density of 3.09 slugs/ft3. What is the speed of sound in the medium?

K 144
c = \/; = \/153,000 X 309 = 2758 ft/sec

The rapid thermodynamic changes resulting from passage of a sound
wave are isentropic for all practical purposes. Then

d k
pp—* = constant, % = ?p
and
c = \/@ . (6.2.4)
p
or, from the perfect-gas law p = pRT,
¢ = VkRT (6.2.5)

which shows that the speed of sound in a perfect gas is a function of its
absolute temperature only. In flow of gas through a channel, the speed
of sound generally changes from section to section as the temperature is
changed by density changes and friction effects. In isothermal flow the
speed of sound remains constant.

The Mach number has been defined as the ratio of velocity of a fluid
to the local velocity of sound in the medium,

_r

. (6.2.6)

Squaring the Mach number produces V2/c?, which may be interpreted
as the ratio of kinetic energy of the fluid to its thermal energy, since
kinetic energy is proportional to V2 and thermal energy is proportional
to T. The Mach number is a measure of the importance of compressibil-
ity. In an incompressible fluid K is infinite and M = 0. For perfect
gases

K=kp (6.2.7)

when the compression is isentropic.

Ezxample 6.8: What is the speed of sound in dry air at sea level whent = 68°F,
and in the stratosphere when { = —@7°F?
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At sea level, from Eq. (6.2.5)
¢ = /1.4 X 322 X 53.3(460 + 68) = 1125 ft/sec

and in the stratosphere

¢ =14 X 322 X 53.3(460 — 67) = 972 ft/sec

4.3. Isentropic Flow. Frictionless adiabatie, or isentropic, flow is an
ideal that cannot be reached in the flow of real gases. It is approached,
however, in flow through transitions, nozzles, and venturi meters where
friction effects are minor, owing to the short distances traveled, and heat
transfer is minor because the changes that a particle undergoes are slow
enough to keep the velocity and temperature gradients small.! The
performance of fluid machines is frequently compared with the perform-
ance assuming the flow were isentropic. In this section one-dimensional
steady flow of a perfect gas through converging and converging-diverging
ducts is studied.

Some very general results may be obtained by use of Euler’s equation
(3.5.5), neglecting elevation changes,

Vdv + C% = (6.3.1)
. .and the continuity equation
pAV = constant (6.3.2)
By differentiating pAV, then dividing through by pAV,
do , dV  dA _
" + vt = 0 . (6.3.3)

From Eq. (6.2.2) dp may be obtained and substituted into Eq. (6.3.1)
yielding '

Vdv + czd—: =0 (6.3.4)

By eliminating dp/p in the last two equations and rearranging,

dA A [V? A
da _4 (c_ - 1) - Lo - (6.3.5)

The assumptions underlying this equation are thag the flow is steady and
frictionless. No restrictions as to heat transfer have been imposed.
Equation (6.3.5) shows that for subsonic flow (M < 1), dA/dV is
always negative; i.e., the channel area must decrease for increasing

'H. W. Liepmann and A. Roshko, ‘“Elements of Gas Dynamics,”” p. 51, John
Wiley & Sons, Inc., New York, 1957.
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velocity. As dA/dV is zero for M = 1 only, the velocity keeps increas-
ing until the minimum section or throat is reached, and that is the only
section at which sonic flow may occur. Also, for Mach numbers greater
than unity (supersonic flow) dA/dV is positive and the area must
increase for an increase in velocity. Ience to obtain supersonic steady
flow from a fluid at rest in a reservoir, it must first pass through a con-
verging duct and than a diverging duet.
When the analysis is restricted to isentropic flow, Eq. (6.1.16) may be
written
p = pipy ot (6.3.6)

After differentiating and substituting for dp in Eq. (6.3.1),
Vv + k;%pk~2dp =0
1

Integration yields
Ve, k.
2

+ =

—E,lc p*~1 = constant
P .

or

V,? k pl_V2 _E_P__Q -

This equation is useful when expressed in terms of temperature; from
p = pRT

]/‘12 k _ V22 k m <

5 +k_1RT1— ) +k—__—lR12 . (6.3.8)
For adiabatic flow from a reservoir whelc conditions are given by

Po, po, To, at any other section

V2 kR

5 =T (Ty — T) (6.3.9)

In terms of the local Mach number V /¢, with ¢2 = kRT,

Meo VIR =) 2 (10
et = (k= DERT ~ k= I\T
or
Ty ) .
7 =1 + -1y (6.3.10)

From Egs. (6.1.10) and (6.3.17), Whl(‘h now restrict the followmg equa-
tions to isentropic flow,

e kf(k—1)
%‘ _ (1 y R - lM?) | _ (6.3.11)
and

. _— 1/ (k—1)
Po (1 + l—“—z-—l M2) (6.3.12)
p



256 FUNDAMENTALS OF FLUID MECHANICS [Chap. 6

I'low conditions are termed critical at the throat section when the
velocity there is sonic. Sonic conditions are marked with an asterisk.

M= 1;c¢*= V* = v/kRT*. By applying Eqs. (6.3.10) to (6.3.12) to
the throat section for critical conditions (for k¥ = 1.4 in the numerical

portion),

T* 9 '

s B 0.833 k= 1.40 (6.3.13)

p* 2 ki (k—=1)

- (m) ~ 0528 k= 140 (6.3.14)
0

I

o ( 2 V' L0634 k=140 (6.3.15
o~ \ir1 . = 1. .3.15)

These relations show that for air flow, the absolute temperature drops
about 17 per cent from reservoir to throat, the critical pressure is 52.8 per
cent of the reservoir pressure, and the density is reduced by about
37 per cent.

The variation of area with the Mach number for the critical case is
obtained by use of the continuity equation and Eqs. (6.3.10) to (6.3.15).
First

pAV = p*A*V* (6.3.16)
in which A* is the minimum, or throat, area. Then
A * T7*
o= 25 - (6.3.17)

Now V* = ¢* = VERT* and V = ¢M = M VERT, so

v 1 [T 1 [T* [To _ 1 [1+[(k—1)/2]M?2|*
=T AT | 0519

by use of Egs. (6.3.13) and (6.3.10). In a similar manner

p*  p*po (14 [(k — 1)/2]M2) V=D

ey e & + 1)/2 (6.3.19)
By substituting the last two equations into Eq. (6.3.17),

A 1 (14 [(k— 1)/2]M2] ®+D/20-D

A* ™ M { k + 1)/2 (6.3.20)

which yields the variation of area of duct in terms of Mach number.
A/A* is never less than unity, and for any value greater than unity
there will be two values of Mach number, one less than and one greater
than unity. For gases with k = 1.40, Eq. (6.3.20) reduces to

A 1 (54 M -
Z"‘"M’( 5 ) k=140 (6.3.21)
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The maximum mass flow rate #i... can be expressed in terms of the
throat area and reservoir condttions:

1/(k-=1)
Mimae = pTATVE = py (ki 1) A*\JIIZRAQ—T;O

by use of Eqgs. (6.3.15) and (6.3.13). By replacing po by po/RT,,

‘ B A*Po \/1{;— 2 (e+1){ (k—1)
Mmax = \/—170 R (m) (6.3.22)
For k = 1.40 this reduces to
A*pn
Mmax = 0.686 (6.3.23)

V' RT,

For m... in slugs per second, with air, R = 53.3 X 32.2 ft-Ib/slug °R,
A* is in square feet, po in pounds per square foot absolute, and T, in
degrees Rankine. Equation (6.3.23) shows that the mass flow rate
varies linearly as A* and p, and varies inversely as the absolute
temperature.

For subsonic flow throughout a converging-diverging duct, the velocity
at the throat must be less than sonic velocity, or M; < 1 with subseript ¢
indicating the throat section. The mass rate of flow m is obtained from

. A . k p 2/k P k—1)/k 63 24

which is derived from Egs. (6.3.9) and (6.3.6) and the perfect-gas law.
This equation holds for any section and is applicable as long as the
velocity at the throat is subsonic. It may be applied to the throat
section, and for this section, from Eq. (6.3.14),

P 9 k! (k1)
£t (.
Po (l.: —+ 1)

p: 1s the throat pressure. When the equal sign is used in the expression,
Eq. (6.3.24) reduces to Eq. (6.3.22).

For maximum mass flow rate, the flow downstream from the throat
may be either supersonic or subsonic, depending upon the downstream
pressure. After substituting Eq. (6.3.22) for m in Eq. (6.3.24) and .
simphfying, ' '

P— 27k _ ,_P_ (h—1Dk _ A '—_l —_2_ (k+1)/(k=1) £ L2 R 9
(Po) [1 | (Po 2 k+1 A (6.3.25)

A may be taken as the outlet area and p as the outlet pressure. For a
given A*/A (less than unity) there will be two values of p/po between
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zero and unity, the upper value for subsonic flow through the diverging
duct and the lower value for supersonic flow through the diverging duct.
For all other pressure ratios less than the upper value complete isentropie
flow is impossible and shock waves form in or just downstream from
the diverging duct. They are briefly discussed in the following section.

Ezample 6.9: A preliminary design of a wind-tunnel duct to produce Mach
number 3.0 at the exit is desired. The mass flow rate is 2.0 lb,,/sec at p, = 12.0
psia, to = 80°F. Determine: (a) the throat area, (b) the outlet area, and (c) the
velocity, pressure, temperature, and density at the outlet.

a. The throat area is determined from Eq. (6.3.23):

Tmax VRTy _ 20 o /53.3 X 32.17(460 + 80) _ 4504 42
0.686p, 32.17 0.686 X 12 X 144

b. The area of outlet may be determined from Eq. (6.3.21):

_ A% (5 4 M2\® _ 0.0504 /5 + 32\F _ .
A M( . ) . ( - ) 0.2137 ft

¢. From Eq. (6.3.11)

A* =

- p _ 12 _ .
P= 1+ k- 1)01\42/2]“(::—1) T O F (14 = DFERRUaED 0.326 psia

From Eq. (6.3.12)

p = Po — Po
1+ (B — )M2/2]1/&D RTJ1 + (k — 1)M2/2]1/G—1

- 12 X 144 _ 3
53.3 X 82.2 X 540(1 + 0.2 X 3%)25 0.000142 slug/ft

From Eq. (6.3.10)

_ To _ 540 _ o
T= 14+ (k—1M2/2 1+02X32 192.7°R

The velocity is
V=cM=EkRT3=3v14 X533 X 3217 X 192.7 = 2040 ft/sec

Ezample 6.10: A converging-diverging air duct has a throat cross section of
0.40 ft2 and an exit cross section of 1.0 ft2. Reservoir pressure is 30 psia, and
temperature is 60°F. Determine the range of Mach numbers and the pressure
range at the cxit for isentropic flow. Find the maximum flow rate.

Equation (6.3.21)

A _ _ 1 /54 M2\3
== 28= 1\71( 6 )
when solved by trial yields M = 2.44 and 0.24. FEach of these values of Mach
number at the exit is for critical conditions; hence the Mach number range for

isentropic flow is 0 to 0.24 and the one value 2.44.
From Eq. (6.3.11)

%‘ = (1 4+ 0.2M?2)3:5
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for M = 2.44, p = 30/15.55 = 1.929 psia, and for M = 0.24, p = 30/1.041 =
28.8 psia. The downstream pressure range is then from 28.8 to 30 psia, and the
isolated point 1.929 psia.

The maximum mass flow rate is determined from Eq. (6.3.23):

_ 0.686 X 0.40 X 30 X 144 _ | peslug _ o . Ibs

v/53.3 X 32.17(460 + 60) ~  sec sec

Example 6.11: A converging-diverging duct in an air line downstream from g
reservoir has a 2.0-in.-diameter throat. Determine the mass rate of flow when
po = 120 psia, {, = 90°F, and p, = 80 psia.

_ P _ 120 X 144 )
P* = RT, ~ 53.3 X 32.17(460 F 90)

From Eq. (6.3.24)

h= T 2% 120 X 144 X 0.0183 - 4
m‘m\/ 14—1(120 [ (120 ]

~ 0.254 51U8
sec

= (.0183 slug/ft?

Tables which greatly simplify isentropic flow calculations are available
in the books by Cambel and Jennings and by Shapiro et al., listed at the
end of the chapter.

6.4. Shock Waves. In one-dimensional flow the only type of shock
wave that can occur is a normal com-
pression shock wave, as illustrated in
Fig. 6.2. TFor a complete discussion of
converging-diverging flow for all down-
stream pressure ranges! oblique shock
waves must be taken into account as
they occur at the exit. In the preced-
Ing section isentropic flow was shown
to occur throughout a converging-
diverging tube for a range of down-
stream pressures in which the flow was
subsonic throughout and for one down-
stream pressure for supersonic flow
through the diffuser (diverging por-
tion). In this section the normal
shock wave In a diffuser is studied,
with isentropic flow throughout the
tube, except for the shock-wave surface. The shock wave occurs in
supersonic flow and reduces the flow to subsonic flow, as proved in the

gt
Lt

F1e. 6.2, Normal compression shock
wave, '

'H. W. Liepmann and A. Roshko, “Elements of Gas Dynamies,”” John Wlley &
Sons, Inc., New York, 1957.
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following section. It has very hittle thickness, of the order of the molecular
mean free path of the gas. The controlling equations are (Fig. 6.2) for

adiabatic flow

Continuity: G = % = p V1= pV, (6.4.1)
L T L AT Ay
Energy: — + = 5 + hy = ho = 5 + F—1p (6.4.2)

which are obtained from Eq. (3.6.10) for no change in elevation, no
heat transfer, and no work done. h = u + p/p = ¢,T is the enthalpy,
and hy is the value of stagnation enthalpy, i.e., its value in the reservoir
or where the fluid is at rest. Equation (6.4.2) holds for real fluids and is
valid both upstream and downstream from a shock wave. The momen-
tum equation, (3.9.10) for a control volume between sections 1 and 2
becomes

(pr = p2)A = p2AV3? — p)AV 2
or

p1+ piVi® = p2 + paV? (6.4.3)

For given upstream conditions k4, p1, V1, p1, the three equations are to

be solved for p,, p2, Va. The equation of state for a perfect gas is also
available for use, p = pRT. The value of p; is

1
Pa = IL+1

Once p- is determined by combination of the continuity and momentum
equations

[2p1V1®* — (K — Dpl (6.4.4)

pr+ piVi2 = pa + pViV3 (6.4.5)

V, is readily obtained. Finally p. is obtained from the continuity
equation. |

For given upstream conditions, with M, > 1, the values of ps, V2, pa,
and M. = Vy/N/kpa/pe exist and M, < 1. By eliminating V, and V,
among Eqgs. (6.4.1), (6.4.2), and (6.4.3) the Rankine-Hugoniot equations
are obtained:

P2 {(k 4+ 1)/(k — D(p2/p1) — 1
o (T D/ D] — e/ (6-4.6)
and '

PG 1)/(k — 1)I + p/p1 Ve
These equations, relating conditions on either side of the shock wave,
take the place of the isentropic relation, Eq. (6.1.16), pp~* = constant.
From Eq. (6.4.2), the energy equation,

V2 A p_c*z c*z
ST E i, 7 T

s+ 1
1

k
— = (6.4.8)

¥
2
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since the equation holds for all points in adiabatic flow without change in
elevation, and ¢* = v/kp*/p* is the velocity of sound. After dividing
Eq. (6.4.3) by Eq. (6.4.1),

Vi—V,= P B
' : P2V2 pV,

and by eliminating ps/p2 and p./p1 by use of Eq. (6.4.8),

Vie Va= (V= V) ["';,(ﬁ,j:) +5 1] (6.4.9)
which is satisfied by Vi = V3, (no shock wave) or by
ViVs = c* ' (6.4.10)
It may be written .
%CL: = 1 (6.4.11)

When V), is greater than c¢*, the upstream Mach number is greater than
unity and V', is less than ¢*, so the final Mach number is less than unity,
and vice versa. It is shown in the following section that the process
can occur only from supersonic upstream to subsonic downstream.

By use of Eq. (6.1.14), together with Eqs. (6.4.4), (6.4.6), and (6.4.7),
an expression for change of entropy across a normal shock wave may be
obtained in terms of M, and k. From Eq. (6.4.4)

?Lg - 1 [2kp1V12
Y k '+' 1 kpl

Since ¢ = kpi/pr and My = V /¢, from Eq. (6.4.12),

ps _ 2kM2 — (k — 1)
D1 k+1

Placing this value of ps/p, in Eq. (6.4.7) yields

pr _ M3k + 1)
1 24+ M3k - 1)

Now, after substituting these pressure and density ratios into Eq. (6.1.14),

%Mz — k + 12+ M2k — 1)t
k1 [ M:2(k + 1) “ (6.4.14)

By substitution of M; > 1 into this equation for the appropriate value of
k, the entropy may be shown to increase across the shock wave, showing
that the normal shock may proceed from supersonic flow upstream to
subsonic flow downstream. Substitution of values of M; < 1 into
Eq. (6.4.14) has no meaning, since Eq. (6.4.13) yields a negative value
of the ratio py/p;.

— (k-1 )] (6.4.12)

. (6.4.13)

S; — 81 = ¢, In
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In the next section the shock wave is examined further by introduction
of Fanno and Rayleigh lines. :

Ezxample 6.12: If a normal shock wave occurs in the flow of helium, p, = 1 psia,
L = 40°F, V, = 4500 ft/sec, find P2, P2 Vz, and Z,.
From Table C.2, B = 386, k = 1.66, and

i 1 X 144 _
o1 = BT, = 386 X 32.17(a60 + 40y ~ 0-0000232 slug/ft7
From Eq. (6.4.4)
1
P2 = THg o [2 X 0.0000232 X (4500)* — (166 — 1) X 144 X 1]

= 317 1b/ft? abs
From Eq. (6.4.5)
P2 — M 317 — 144

Vo= Vi =" = = 4500 ~ o=000.0000232

= 2840 ft/sec
From Eq. (6.4.1)

_ Vi _0.000746 4500
P2 =PI, = " 359 X 5240 — 0.0000367 slug/ft?

and
P2 460 = 317
p:R ~ 0.0000367 X 32.2 X 386

6.5. Fanno and Rayleigh Lines. To examine more closely the nature
of the flow change in the short distance across a shock wave, where the
area may be considered constant, the continuity and energy equations
are combined for steady, frictional, adiabatic flow. By considering
upstream conditions fixed, that is, p1, V), g1, a plot may be made of
all possible conditions at section 2, Fig. 6.2. The lines on such a plot
for constant mass flow per unit area G are called Fanno lines. The most
revealing plot is that of enthalpy against entropy, i.e., an hs diagram.

The entropy equation for a perfect gas, Eq. (6.1.14), is

§ — 8 = ¢ In [% ("—:;1-)’0] (6.5.1)

The energy equation for adiabatic flow with no change in elevation,
from Eq. (6.4.2) is

to = Ty — 460 = — 460 = 235°F

2
ho = h + —g— (6.5.2)

and the continuity equation for no change in area, from Eq. (6.4.1), is
G = pV (6.5.3)
The equation of state, linking &, p, and p, is

h=c,T = %’; (6.5.4)
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By eliminating p, p, and V from the four equations,

, _
s=‘sl—k.f,',,lnl:‘o—'-ﬁ(ig

P1 Cp

which is shown on Fig. 6.3 (not to scale).

A ) ) ] + ¢, In [h(ho — h)*=D1] (6.5.5)

To find the conditions for

maximum entropy, Eq. (6.5.5) is differentiated with respect to A and

ds/dh set cqual to zero.
maximum entropy point,

ds_ o1

dh he

or

=
d
‘m

=
_|_

After substituting this into Eq. (6.5.

k+1

h0=—_ha:ha+

2
and

By indicating by subscript a values at the

k—1 1

o

2 ho— h,

1""

) to find V,,

Va?
2

kR

Va2 = (k — l)ha = (k - ].)CI,T,] = (k - ].) l:—__mi 71(1 = kRTa = 4’

(6.5.6)

Hence the maximum entropy at point a is for M = 1, or sonic conditions.

For h > h, the flow is subsonic, and
for h < h, the flow 1s supersonic.
The two conditions, before and after
the shock, must lie on the proper
Fanno line for the area at which the
shock wave occurs. The momentum
equation was not used to determine
the Fanno line, so the complete solu-
tion is not determined yet.

Raylergh Line. Conditions before
and after the shock must also satisfy
the momentum and continuity equa-
tions. Assuming constant upstream
conditions and constant area, kgs.
(6.5.1), (6.5.3), (6.5.4), and (6.4.1)

are used to determine the Rayleigh line.

and momentum equations,

2

p+ gp— = constant = B

Ah
hor=hg,

Fanno line

Subsonic Subsonic

Rayleigh
line
Supersonic

G =pV=constant

>3
Fic. 6.3. Fanno and Rayleigh lines,

Eliminating V in the continuity

(6.5.7)
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Next, by eliminating p from this equation and the entropy equation,

k _— 2
§=8+¢In ;’—;— + ¢ In g___g_/_,: (6.5.8)
1
Enthalpy may be expressed as a function of p and upstream conditions,
from Eq. (6.5.7):
h=c¢,T =c¢ p___ﬁ_B_g* (6.5.9)
P *Rp Rop p e

The last two equations determine s and 4 in terms of the parameter p
and plot on the hs diagram as indicated in Fig. 6.3. This is a Rayleigh
line. The value of maximum entropy is found by taking ds/dp and
dh/dp from the equations, then by division and equating to zero, using
subscript b for maximum point:

ds _ ¢ Res G?/[pp(B — G*/py)| —
dh Cp 2G%/pp, — B
To satisfy this equation, the numerator must be zero and the denominator
not zero. The numerator, set equal to zero, yields
G? 2V
p(B — G*/ps)  popo

—0

k=

or

that is, M = 1. For this value the denominator is not zero. Again, as
with the Fanno line, sonic conditions occur at the point of maximum
entropy. Since the flow conditions must be on both curves, just before and
just after.the shock wave, it must suddenly change from one point of
intersection to the other. The entropy cannot decrease, as no heat is
being transferred from the flow, so the upstream point must be the inter-
section with least entropy. In all gases investigated the intersection in
the subsonic flow has the greater entropy. Thus the shock occurs from
supersonic to subsonic.

The I'anno and Rayleigh lines are of value in analyzing flow in con-

stant-area ducts. These are treated in the following sections.
- 6.6. Adiabatic Flow with Friction in Conduits. Gas flow through a
pipe or constant-area duct is analyzed in this section subject to the
following assumptions:

1. Perfect gas (constant specific heats).

2. Steady, one-dimensional flow.

3. Adiabatic flow (no heat transfer through walls).

4. Constant friction factor over length of conduit.

5. Effective conduit diameter D is four times hydraulic radius (cross-
sectioned area divided by perimeter).
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6. Ilevation changes are unimportant as compared with friction effects,

7. No work added to or extracted from the flow.

The controlling equations are continuity, energy, momentum, and the
equation of state. The Fanno line, developed in Sec¢. 6.5 and shown in
Fig. 6.3, was for constant area and used the continuity and energy
equations; hence, it.applies to adiabatic flow in a duct of constant area.
A particle of gas at the upstream end of the duct may be represented by a
point on the appropriate Fanno line for proper stagnation enthalpy h,
and mass flow rate G per unit area. As the particle moves downstream,
its properties change, owing to friction or irreversibilities such that the
entropy always increases in adiabatic flow. Thus the point representing
these properties moves along the ¥anno line toward the maximum s
point, where M = 1. If the duct is fed by a converging-diverging
nozzle, the flow may originally be supersonic; the velocity must then
decrease downstream. If the flow is subsonic at the upstream end, the
velocity must increase in the downstream direction. _

For exactly one length of pipe, depending upon upstream conditions,
the flow is just sonic (M = 1) at the downstream end. For shorter
lengths of pipe, the flow will not have reached sonic conditions at the
outlet, but for longer lengths of pipe, there must be shock waves (and
possibly choking) if supersonic and choking effects if subsonic. By
choking, one means that the mass flow rate specified cannot take place
in this situation and less flow will occur. The following chart indicates
the trends in properties of a gas in adiabatic flow through a constant-
area duct, as can be shown from the equations in this section.

Property Subsonic flow | Supersonic flow
Velocity V.................. ' Increases |  Decreases
Mach number M...... ... .. .. Increases Decreases
Pressurep. ... ... ... .. .. .. - Decreases Increases
Temperature 7°. .. ..., .. .. .. Decreases Increases
Density p.......... .. .. .. . . . Decreases Increases
Stagnation enthalpy......... I Constant Constant
Entropy........... . ..... ... I Increases Increases

The gas cannot change gradually from subsonic to supersonic or vice
versa in a constant-area duct.

The momentum equation must now include the effects of wall shear
stress and is conveniently written for a segment of duct of length éx
(Fig. 6.4):

d ..o d
pA —(p-#d—i&x)/i -—TUWD6x=pVA(I —I~(—£81¢——V)
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Upon simplification,
dp + Xde + oV aV = 0 (6.6.1)

By use of Eq. (5.9.2) 7o = pfV?%/8, in which f is the Darcy-Weisbach
friction factor,

dp +f"’V dz + pVdV =0 (6.6.2)

For constant f, or average value over the length of reach, this equation
may be transformed into an equation for x as a function of Mach number.

7'0 T’DEI
1

i I(p+-— 6.1:)

pPA—>

V—»{ ﬁ———*V+ 2V 5z

P

Fic. 6.4. Notation for application -of momentum equation.

By dividing Eq. (6.6.2) by p,

d” + 4 "Z dz + 2 dV =0 (6.6.3)
each term is now developed in terms of M. By definition V/e = M
Ve = M2 (6.6.4)
or _
2
-‘% kM (6.6.5)

for the middle term of the momentum equation. By rearranging Eq.
(6.6.4)

”V dV = kM? dg (6.6.6)

Now to express dV/V in terms of M, from the energy equaﬁon
V2 2
ho=h+ 5 =cT + Kz (6.6.7)

Differentiating,

8T +VdV =0 (6.6.8)
By dividing through by V? = M2*%RT,

¢, 1 dT I av -0

RkM*T "V
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Since ¢,/R = k/(k — 1),

aT e 3V
= M2k — 1) 7 (6.6.9)
Differentiating V2 = M2kRT and dividing by the equation,
dV dM dT
27 = 2ﬁ +—T- (6.6.10)
Eliminating d7/T in Eqs. (6.6.9) and (6.6.10) and simplifying,
av dM/M
V T k= D2 1 (6.6.11)
‘which permits elimination of dV/V from Eq. (6.6.6), yielding
eV EM M .
L = 6.12
p VS Gm D T (6.6.12)
And finally, to express dp/p in terms of M, from p = pRT and G = pV,
' pV = GRT (6.6.13)
By differentiation
dp _dT _dv
p T vV
Equations (6.6.9) and (6.6.11) are used to eliminate dT/T and dV/V:
dp _ (k—1)M*4+1 dM
p - T-DAM I M (6.6.14)

Equations (6.6.5), (6.6.12), and (6.6.14) are now substituted into the
momentum equation (6.6.3). After rearranging,

J . 2(1 — M?)
&=k = vepeE =11 M
_2dM k41 dM

T EME Tk M{[(k — 1)/2IM? + 1} .(6‘6'15_)

which may be integrated directly. By using the limits x = 0, M = M,,
x=lM=M,
1 ]M k+ 1 M: ]M

TR | T 2F PR D)AME T |,

JU( N kL T(Mo (= DM 42
=¥ (M02 M?) t = In [(M) K= DMZ + 2] (6.6.17)

For k = 1.4, this reduces to

51 1\, 6, [(M) M +5 -
1 7(M_02 _ ’M‘z) + 4 m[(ﬁ) WTB] k=14 (6.6.18)

fl _
o= (6.6.16)
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If M, is greater than 1, then M cannot be less than 1, and if M, is less
than 1, then M cannot be greater than 1. For the limiting condition

M=1and k = 14,

Pl _ 56 1 (N4 6y, 6M2 -
e 7(M02 1) toilngrery k=14 (66.19)

Experiments by Keenan and Neumann! show apparent friction factors
for supersonic flow of about half the value for subsonic flow.

Example 6.13: Determine the maximum length of 2.0-in. ID pipe, f = 0.02 for
flow of air, when the Mach number at the entrance to the pipe is 0.30.

From Eq. (6.6.19)

0.02 5¢ 1 b 6)(0302
%Lm“_?((ﬁ?—z— )+7] 0.30° + 5

Liax = 44.17 ft.

The pressure, velocity, and temperature may also be expressed in
integral form in terms of the Mach number. To simplify the equations
that follow they will be integrated from upstream conditions to condi-
tions at M = 1, indicated by p*, V*, and T*. From Eq. (6.6.14)

* kE— )My + 2 o
% J( k+3+ (6.6.20)

From Eq. (6.6.11)

Vv* 1 [tk = DMy + 2

V. =W, P (6.6.21)
From Eqs. (6.6.9) and (6.6.11)
ar . M dM
R (1Y) =S
which, when integrated, yields
Tk . 9 §
> _ k= DM + 2 (6.6.22)

Ty k 4+ 1

Ezample 6.14: A 4.0-in. ID pipe, f = 0.010, has air at 14.7 psia and at ¢ = 60°F
flowing at the upstream end with Mach number 3.0. Determine Lp.., p*, V¥,
T* and valuesof p, ¥V, T, and Lat M = 2.0

From Eq. {(6.6.19)
0.01 5/1 6 X 3
0333 Lmax = 7('9 - 1)+ Inar g

J_J. H. Keecnan and E. P. Neumann, Measurements of Friction in a Pipe for Sub-
sonic and Supersonic Flow of Air, J. Appl. Meck., vol. 13, no. 2, p. A-91, 1946.
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from which Lmax = 17.33 ft. If the flow originated at M = 2, the length L,

is given by the same equation:
2
I_ 1)+ E}ln 6 X2
4 7 2245

L, = 10.14 ft

. 0.01 §
0.333° "™ 7

Hence the length from the upstream section at M = 3 to the section where
M = 2is 17.33 — 10.14 = 7.19 ft.
The velocity at the entrance is .

V = VERTM = /1.4 X 53.3 X 32.17(460 + 60) X 3 = 3354 ft/sec
From Egs. (6.6.20) to (6.6.22)

* 2
1117=3\/0.4><3 +2=4.581

2.4

v: 1 [lAXF T2
3354 ~ 3\/ 24— 0509
T* _04X3+2 7

520~ 24 3

So p* = 67.4 psia, V* = 1707 ft/sec, T* = 1213°R. For M = 2 the same
equations are now solved for pa, Vi, and T:,:

2
§7T.zx=2\/0.4x2 +2_, .
Po 2.4
- ___"T_"'
.1_7,& _ 1\/0.4 X2+ 2 _ oo
Ve 2 2.4
1213 04 X 22 +2 3
T4 2.4 2

So py = 27.5 psia, V§ = 2790 ft/sec, and T = 809°R.

6.7. Frictionless Flow through Ducts with Heat Transfer. The steady
flow of a perfect gas (with constant specific heats) through a constant-area
duct is considered in this section. I'riction is neglected, and no work is
done on or by the flow. '

The appropriate equations for analysis of this case are

m

Continuity: G=—=pV (6.7.1)

Momentum: p + pV? = constant (672)
Va2 — V2 Va2 — V,?

Energy: quw = hy — hy + .._17_1{1_ = ¢p(T2 — Ty) + __2__2_____1_

cp(Toz — To1) (6.7.3)

I
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To and Ty, are the isentropic stagnation temperatures, i.e., the tempera-
ture produced at a section by bringing the flow isentropically to rest.
The Rayleigh line, obtained from the solution of momentum and
continuity for a constant cross section by neglecting friction, is very
helpful in examining the flow. First, by eliminating V in Eqgs. (6.7.1)
and (6.7.2), '
2

» + %— = constant (6.7.4)

which is Eq. (6.5.7). Equations (6.5.8) and (6.5.9) express the entropy s
and enthalpy 2 in terms of the
parameter p for the assumptions of
this section, as in Fig. 6.5.
. Since, by Eq. (3.8.3), for no losses,
entropy can increase only when heat
is added, the properties of the gas
must change as indicated in Fig. 6.5,
moving toward the maximum en-
tropy point as heat is added. At
the maximum s point there is no
change in entropy for a small change
-5 in h, and isentropic conditions apply
Fra. 6.5. Rayleigh line. to the point. The speed of sound
under isentropic conditions is given
by ¢ = V/dp/dp as given by Eq. (6.2.2). From Eq. (6.7.4), by
differentiation

G =pV=constant

using Eq. (6.7.1). Hence at the maximum s point of the Rayleigh line
V = +/dp/dp also and M = 1, or sonic conditions, prevail. The addi-
tion of heat to supersonic flow causes the Mach number of the flow to
decrease toward M = 1, and if just the proper amount of heat is added,
M becomes 1. If more heat is added, choking results and conditions at
the upstream end are altered to reduce the mass rate of flow. The addi-
tion of heat to subsonic flow causes an increase in the Mach number
toward M = 1, and again, too much heat transfer causes choking with
an upstream adjustment of mass flow rate to a smaller value.

From Eq. (6.7.3) it is noted that the increase in isentropic stagnation
pressure is a measure of the heat added. From V? = M2LRT, p = pRT,
and continuity,

pV = GRT
and
pV?2 = kpM? -
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Now, from the momentum equation

71+ kpiM2 = p2 + kpsM,?

and
pr 14 kM
p: 1+ kM’ (6.7.5)
By writing this equation for the limiting case p. = p* when M, = 1,
p _ l1+k

with p the pressure at any point in the duct where M is the corresponding
Mach number. Tor the subsonic case, with M increasing to the right
(Fig. 6.5), p must decrcase, and for the supersonic case, as M decreases
toward the right, p must increase.

To develop the other pertinent relations, the energy cquation (6.7.3)
is used

cpT0=k—a—-—]‘flT k]t_}_BIT—I——H

in which T, is the isentropic stagnation temperature and 7 the free
stream temperature at the same section. By applying this to section 1,
after dividing through by kRT./(k — 1),

Tow _ + (k — 1) == (6.7.7)
T

and for section 2
To _y + (k — 1)-—— (6.7.8)
T:

Dividing Eq. (6.7.7) by Eq. (6.7.8)

T _ T2 24 (k — HM?
Tos T2 2 + (k — )My

The ratio 71/ T2 is determined in terms of the Mach numbers as follows:
From the perfect-gas law, p1 = p1RT, p2 = pR T,

(6.7.9)

Ty _ prp
T, Pz p1

From continuity ps/p1 = V1/Vs, and by definition,
Vi V.,

—— M

VERT, '~ VERT,

(6.7.10)

1 i
SO
Vl Ml T'_l

V: M,NT.
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and .
M T
%f = —M—; T; (6.7.11)
Now, by substituting Eqgs. (6.7.5) and (6.7.11) into Eq. (6.7.10) and
simplifying,
T, (M; 1+ EM,?\?
T, (M2 i lez) (6.7.12)
With this equation substituted into Eq. (6.7.9),
To,  (Mil+ EM2\22 4 (K — 1)M;® (6.7.13)
Toe \ M2l 4+ EM2) 24 (K~ 1)M;2 e

By applying this equation to the downstream section where Ty = T§
and M; = 1, by dropping the subscripts for the upstream section,

To _ Mk + D[2 4 (k — HM]

T = 1+ FM5: (6.7.14)

All the necessary equations for determination of frictionless flow with

heat transfer in a constant-area duct are now available. Heat transfer
per unit mass is given by qn = ¢,(T¢ — T) for M = 1 at the exit. Use
of the equations is illustrated in the following example.

Example 6.15: Air at V, = 300 ft/sec, p = 40 psia, { = 60°F flows into a
4.0-in.-diameter duct. How much heat transfer per unit mass is needed for sonic
conditions at the exit? Determine pressure, temperature, and velocity at the
exit and at the section where M = 0.70.

Vi 300

M, = ——1o = = 0.268
"7 VERT, /1.4 X 53.3 X 32.17(460 + 60)

The isentropic stagnation temperature at the entrance, from Eq. (6.7.7), is
T =T, (1 + ’E—g—l M,”) = 520(1 4+ 0.2 X 0.268%) = 527°R

The isentropic stagnation temperature at the exit, from Eq. (6.7.14), is

To(1- 2)2 27(1 4+ 1.4 X 0.2682)2 ‘
* o1+ kM?) 527(1 + 14 X n? _ 1827°R

T = - =
T (b + DMI2 + (k — DM2] 9.4 x 0.268%(2 + 0.4 X 0.268?)

The heat transfer per slug of air flowing is

Btu
g = c,(To — To) = 0.24 X 32.17(1827 — 527) = 10,050%

The pressure at the exit, Eq. (6.7.6), is

«_ 1+ EkM? 40
PP=P%F1 T 21

(1 + 1.4 X 0.268%2) = 18.35 psia
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and the temperature, from Eq. (6.7.12),

1+ kM2 2 1 + 1.4 X 0.2682\2
L J — = —_— - <]
T = T[(k T l)M] 520( 5.4 % 0.268 1520°R
At the exit,

V* = c* = VERT* = /1.4 X 53.3 X 32.17 X 1520 = 1910 ft/sec
At the section where M = 0.7, from Eq. (6.7.6),

E+1 18.35 X 2.4 :
p=pr*y M = = 26.1 psia

14+ 1.4 X072
From Eq. (6.7.12)

2 2

and

V = M VERT = 0.7 V1.4 X 53.3 X 32.17 X 1507 = 1332 ft/sec
The trends in flow properties are shown in the following table:

TreENDs IN FLow PROPERTIES

Heating Cooling
M>1 M<1 M>1 M<I1
Pressure p....... ....... .. |Increases | Decreases Decreases | Increases
Veloeity V.......... ... ... Decreases | Increases Increases | Decreases
Isentropic stagnation temper- '
ature To. ......... . ..., Increases | Increases Decreases | Decreases
Density o.................. Increages | Decreases Decreases | Increases
Temperature T......... .. .. Increases [ Increases for | Decreases | Decreases for
' M < 1/k M<1/k
Decreases for Increases for
M > 1/k M>1/k

For curves and tables tabulating the various equations, consult the
books by Cambel and Jennings, Shapiro, and Shapiro et al., listed in the
references at the end of the chapter.

6.8. Steady, Isothermal Flow in Long Pipelines. In the analysis of
1sothermal flow of a perfect gas through long ducts, neither the Fanno nor
Rayleigh lines are applicable, since the Fanno line applies to adiabatic
flow and the Rayleigh line to frictionless flow. An analysis somewhat
similar to those of the previous two sections is carried out to show the
trend in properties with Mach number.

The appropriate equations are

,, dp f pV? pV
\, . —_— e —— —— = 6.8.1
Momentum [Eq. (6.6.3)]: + 5D dx + dV 0 ( )
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dp dp

Equation of state: g = constant > = (6.8.2)
Continuity: pV = constant fip—p = - QT;—I (6.8.3)
Energy [Eq. (6.7.7)]: T, = [1 + (k — 1) MZ] (6.8.4)

in which T, is the isentropic stagnation temperature at the section where
the free-stream static temperature is T and the Mach number is M.

. E—1 k[ (k—1)
Stagnation pressure [Eq. (6.3.11)]: pe = p (1 + —5— M2)
' (6.8.5)

in which p, is the pressure (at the section of p and M) obtained by

reducing the velocity to zero isentropically.
From definitions and use of the above equations,

' —7 dav  dM _ dM?

pV _vdv ¢ _
—;dV— BT = TMdM—kMdM
PV _ ME e
> =~ RT = kM
By substifuting into the momentum equation, using the relations,
dp _dp_ _dV _ _1dM'_ _ _EM! fdz oo
P p vV~ T 2MF T T—=kM:2D o

The differential dz is positive in the downstream direction, so one may
conclude that the trends in properties vary depending upon whether M is
less than 1/4/k or greater than 1/A/k. Tor M < 1/4/k, the pressure
and density decrease and velocity and Mach number increase, with the
opposite trends for M.> 1/4/k; hence, the Mach number always
approaches 1/4/k, in place of unity for adiabatic flow in pipelines.

To determine the direction of heat transfer, by differentiation of Eq.
(6.8.4) then division by it, remembering that T is constant,

dTy _ k-1
To = 3F (k= D™ (6.8.7)

By eliminating dM? in this equation and Eq. (6.8.6),
dT, k(k — 1)MH* fdz (6.8.8)

T ~ (1 — kM2 + (k — DM? D
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which shows that the isentropic stagnation temperature increases for
M < 1/4/k, indicating that heat is transferred to the fluid. For
M > 1/4/k beat transfer is from the fluid.

From Eqs. (6.8.5) and (6.8.6)

dpo _ 2 — (k+ 1)M?  kM? fdax
e 2+ (k- DM2EMZ — 12D (6.8.9)

The following tabulation shows the trends of fluid properties.

TreENDS IN FrLuip PROPERTIES FOR 1SOTHERMAL FrLow

M < 1//% M > 1//%
subsonic subsonic or supersonic

Pressure p.. ... ................ Decreases Increases
Density po............. ... ....... Decreases Increases
Velocity V...................... Increases Decreases
Mach Number M............. ... Increases Decreases
Stagnation temperature 7%...... .. Increases Decreases

Increases for M < £/2/(k+1)
Stagnation pressure po............ Decreases Decreases for M > /2/(k+1)

By integration of the various Eqgs. (6.8.6) in terms of M, the change
with Mach number is found. The last two terms yield

D—/; d{B - E /M _ "M'4' — dM2

L _l—kM
D taax T kM2

or

+ In (¢kM?) (6.8.10)

in which L., as before, represents the maximum length of duct. For
greater lengths choking oceurs and the mass rate is decreased. To find

the pressure change
[p“ dp 1 /’1/\& dM?
, P 2l WM

*
PZT‘ —VEM (6.8.11)
The superscript ** indicates conditions at M = 1/4/%k, and M and p

represent values at any upstream section.

and

Example 6.16: Helium enters a 4.0-in. ID pipe from a converging-diverging -
nozzle at M = 1.30, p = 2.0 psia, T = 400°R. Determine for isothermal flow:
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(a) the maximum length of pipe for no choking, (b) the downstream conditions,
and (¢) the length from the exit to the section where M = 1.0. f = 0.006.
a. From Eq. (6.8.10) for &k = 1.66

0.006Lmax _ 1 — 1.66 X 1.3
Tr 1.66 X 1.32

+ 1n (1.66 X 1.3
L = 21.54 ft.
b. From LEq. (6.8.11)
p* = pVEM = 2.0 /1.66 1.3 = 3.35 psia
The Mach number at the exit is 1/4/1.66 = 0.756. From Egs. (6.8.6)
j’V" dV 1 [1/+/kdM?2

v V 2/m M:?

or
v 1
V. VEM

At the upstream section

V = M VERT = 1.3V 1.66 X 386 X 32.17 X 400 = 3740 ft/sec
and
V 3740

VEM /166 1.3
c. From Eq. (6.8.10) for M =1

V* = = 2072 ft/sec

0.006 1% 1 — 1.66 4 In 1.66

max
A 1

TZ

or LI . = 6.01ft. M = 1 occurs 6.0 ft from the exit.

6.9. High-speed Flight. This section on high-speed flight deals with
five aspects of the problem: effect of shock waves and stalling on airfoil
lift and drag, sonic boom, wave drag, area rule, and aerodynamic heating.
The last four of these topics are reproduced with minor changes from
‘“Supplementary Notes, Aerodynamics and Gas Dynamics,” Department
of Mechanics, United States Military Academy, West Point, New York.

Effect of Shock Waves and Stalling on Airfoil Lift and Drag. The lift
coefficient C, of the usual airfoil profile in subsonic flow tends to increase
almost linearly (Fig. 5.25) with the angle of attack. C. reaches a
maximum value between 1.2 and 1.8, which is limited by separation of
the boundary layer (Sec. 5.5) from the upper airfoil surface. When the
bounding streamline becomes detached, as in Fig. 6.6, the pressure over
the airfoil in the detached region becomes about equal to the undisturbed
pressure in the fluid stream. Since most of the lift is normally produced
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by underpressure on the upper surface rather than overpressure on the
lower surface, the lift coefficient drops sharply. This formation of a
large, turbulent zone over most of the upper surface is known as stalling,
and is also accompanied by a sharp increase in drag coeflicient. At small
angles of attack (Fig. 6.6a) the flow separates near the trailing edge, but
this does not materially affect the lift.

As the airfoil speed approaches that of the speed of sound in the air,
compressibility effects become important. A thin airfoil in subsonic

F1c. 6.6. Airfoil in subsonic flow. (a) Flow without stalling; (b) flow with stalling.

flow has a lift coefficient that is related to the lift coefficient for incom-
pressible flow Cpo, by the Prandtl-Glauert transformation

CLO
CL ‘\/1 - Mooz

in which M_, is the Mach number of the approaching velocity relative to
the airfoil. Hence, the lift coefficient increases as Mach number increases
up to the transonic range. The drag coefficient increases greatly in this
range (Fig. 5.27). .

The transonic range is defined as the Mach-number range of approach
velocity when both supersonic and subsonic flow occur around the airfoil
(Fig. 6.7). By considering slowly increasing approach velocity (or
speed of airfoil through still air), a region of supersonic flow first occurs
over a small zone of the upper airfoil surface where the local velocity is
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highest. Oblique shock waves form and there is a decrease in lift coef-
ficient and an increase in drag coefficient. The adverse pressure gradient
across the shock waves undoubtedly

— —_— affects the boundary layer and may
- (a) Subsonic seriously influence separation. At
slightly larger Mach numbers, shock
waves occur along the undersurface
too, as in Fig. 6.7b. In Fig. 6.8,
. 7 for some airfoils, the lift coefficient
— starts to decrease as the upper shock
—_ \\A\w waves form (point A), and then
®) Tr;ns;nic starts to increase when the lower

shock waves occur (point B).
; For higher approach velocities in
—— / the transonic range, a detached shock
—_ wave forms ahead of the airfoil, with
—_— subsonic flow between it and the

A

\ \ N\

\ \ forward portion of the airfoil (Fig.
() Transonic 6.7¢). For increasing M, the de-

tached shock wave approaches the
= /[
T \X \\\ A c

(d) Supersonic

(e) Hypersonic Moo

Fi1G. 6.7. Shock waves on thin airfoil. F1a. 6.8. Variation of Cr through the
(With permission, from ‘“Elemenis of  transonic range.

Gas Dynamics,” by H. W. Liepmann

and A. Roshko, John Wiley & Sons,

Inc., New York, 1957.)

airfoil leading edge. When it becomes attached, the flow is everywhere
supersonic (Fig. 6.7d). Figure 6.7e indicates the shock-wave formation
for the hypersonic range.

Sonic Boom. Sound is caused by a pressure wave striking the ear.
A very loud sound, where a very great difference in pressure occurs across
the wave, is interpreted by the ear as an explosion. This type of pressure

wave is called a shock wave.
When an aircraft flies at a speed faster than sound, it creates shock
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waves In the air. TUnder certain atmospheric conditions these shock
waves reach the ground and are heard as explosions, or “sonic booms.”
Most booms heard are the strong shock waves caused by aireraft accel-
erating from below to above the speed of sound in a dive. In so doing,
many shock waves are formed on the aircraft, with the strongest (greatest
pressure difference) occurring at the nose-and tail. Then, as the pilot
pulls out of the dive, the aircraft slows down and the shock wave con-
tinues on, striking the listener’s ear and causing him to hear either one or
two booms, depending on atmospheric conditions, direction of dive, ete.
The loudness will depend on the aircraft speed, its rate of pull-out, and its
altitude at the bottom of the dive. In low-altitude, level flight at super-
sonic speeds the boom will be heard, but not until after the aircraft has
flown past the listener.

Wave Drag. The occurrence of shock waves is detrimental to the
performance of an aircraft for two reasons. The sudden pressure increase
through a shock wave produces an adverse pressure gradient in the
boundary layer, promoting separation and the usual effects on lift and
drag (a decrease and an increase, respectively). Also, additional drag
results because energy is made unavailable by the shock waves.

The drag resulting from compressibility effects (called wave drag) begins
to affect an aircraft at flight velocities slightly below the speed of sound
owing to the presence of regions of supersonic flow on the aircraft surfaces
at these speeds. The lowest Mach number at which such regions and the
accompanying shock waves will occur is called the critical Mach number
(M,:). The rapid increase in drag and decrease in lift and propeller
efficiency occurring at about M, = 0.7 convinced a large number of
people in the 1930s that there existed a ‘“‘sonic barrier,” a limiting speed
beyond which aircraft would never fly. The aircraft propulsion systems
in use at that time simply could not produce sufficient thrust to accelerate
past this velocity. Even by the early 1940s, aerodynamic refinements
had extended this ‘“drag divergence”’ speed only up to speeds in the
vicinity of M., = 0.8. Then in 1945 North American Aviation com-
bined a sweptback wing and a jet engine and the sonic barrier was
overcome. '

Probably the two most effective methods for delaying compressibility
effects on airfoils are the use of thin airfoils and sweepback. A_swept-
back wing is one whose mean chord line (see Fig. 6.9) is not perpendicular
to the relative air velocity. To understand the physical concept of this
design consider a uniform wing of infinite span with its leading edge swept
back at an angle ¢ from the normal to the relative air velocity V. The
flow normal to the leading edge has the velocity V cos¢. The tangential
velocity V sin o of the original flow does not influence the lift on the wing
but is important only in the determination of frictional stresses. Since
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only the normal component of velocity is significant, the effective Mach
number is M coso. Therefore, even though the flight Mach number may
be 1 or greater, the effective Mach number M cos ¢ may, through suffi-
cient sweepback, be made small enough to postpone and lessen the adverse
effeet of shocks (shock stall).

Sweepback does have two major disadvantages. First, the lift is
decreased by reducing the normal component of velocity from V to V cos ¢,
thus requiring larger wing areas. Second, severe structural problems are
associated with sweptback wings,
which must be made longer to provide
additional area. The above disad-
vantages of sweepback are overcome
in the transonic regime by the use of
delta wings (for example, the F-102 or
B-58), which do, however, possess
problems of stability and control. On
the other hand, the inherent advan-
tages of sweptback wings can be
utilized in the regime of supersonic
flight. Here the velocities are suffi-
ciently large that the wing area is rela-
* tively unimportant in the generation of lift (L = CripAV?) and strong,
stubby wings of this design are sufficient for flight (examples include the
F-101 and ¥-105).

In addition to the major disadvantages of sweepback stated above,
there is also a decrease in dC1/da at low speeds, thereby requiring a high
angle of attack in landing. Also, difficulty in control occurs near the
stall owing to a tendency for early stall at the tips. Vertical strips
parallel to the direction of flight placed just inboard of the ailerons are
useful in preventing the boundary-layer flow responsible for the tip-stall
phenomenon.

Area Rule. Another method of reducing the drag rise which occurs as
an aircraft enters the transonic zone is the use of the area rule in aircraft
design. Experiments have shown that the drag rise in this zone 1s
primarily a function of the axial distribution of the cross-sectional area
of the aircraft normal to the air stream.” In other words, if the change in
cross-sectional area (slope of curve, Fig. 6.10) is gradual from nose to tail,
the drag will be small. The addition of wing and tail to a body of
revolution, however, causes an abrupt increase in the effective cross-
sectional area (Fig. 6,10) and therefore a large transonic drag. The area
rule prescribes that the entire aircraft be designed to provide a gradual
change in area from nose to tail (solid line, ¥ig. 6.11). This could be
accomplished by indentation of the fuselage at the wing and tail roots.

Fig. 6.9. Sweptback wing.
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However, the volume requirements for engine, fuel, instruments, pay load,
etc., remain the same, so the gradual change is effected by building up the
body fore and aft of the wing, giving the aircraft a “‘coke-bottle” shape.
By means of this rule, 90 per cent of the drag rise can be eliminated in the
region of 1.00 < M < 1.05. At higher Mach numbers the drag on an
aircraft using the area rule approaches the drag of a conventional aircraft.

Aerodynamic Heating. One of the problems of very high-speed (hyper-
sonic) flight is aerodynamic heating. If heat conduction is neglected
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(adiabatic flow), the temperature of a stagnation point is found from Eq.
(6.6.7) by replacing hy by ¢,T,; then
To=T+ 2 6.9.1
o= T+ 3¢, (6.9.1)
in which 7 is the free-stream static temperature of the fluid at velocity V
relative to a body immersed in the fluid. 7T, is the stagnation tempera-
ture. From Eq. (6.1.8) and ¢ = VkRT

k-1

Rz—-kcp

and
c = Ve, (k— 1T . (6.9.2)

By eliminating ¢, in Egs. (6.9.1) and (6.9.2),

T0=T+gli~;—1T=T(1+k_lM2) (6.9.3)

2
For air, k = 1.4,
T, = T(1 + 0.2M?2) (6.9.4)
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A Mach number of 5 results in a stagnation temperature six times the
free-stream static temperature.

In a real fluid, because of viscous action, the velocity at a solid bound-
ary is zero relative to the boundary, and it may be shown! that the fric-
tional heating in the boundary layer causes about the same temperature
rise as the adiabatic compression given by Eq. (6.9.3). The severity of
this aerodynamic heating is one of the dominant considerations in all
advanced aircraft design.

The aerodynamic heating problem can be solved in several ways, some
of which are demonstrated in the design of current high-velocity missiles.

One, the heat-sink approach, uses sufficient mass or coolant to absorb
all the incoming heat without exceeding the temperature limits of the
materials. A second method, ablation, is to make the leading edges out
of a material that is a poor conductor so that the outer surface melts or
sublimes while the inner surface remains cool. Both of these methods,
particularly ablation, would not be suited for long flight (re-entry) times.
Another attempt at a solution is by the use of transpiration, or “sweat
cooling,” in which a liquid, gas, or vapor is pumped through a porous
surface, absorbing the heat and cooling by evaporation. This method
works for flights of both long and short duration but has two principal
disadvantages: (1) a materials problem and (2) a strong tendency to
- cause transition from laminar to turbulent boundary-layer flow, the
latter having the undesirable characteristic of transferring several times
as much heat to the surface as the former.

The. heat-sink design is best exemplified by the blunt nose cones
presently employed on intercontinental ballistic missiles (ICBM’s). The
blunt-nosed body is surrounded by a boundary layer of high-temperature
air which will be partly dissociated (broken down into constituent
elements or dissociation of a single element, e.g., Hy == 2H) and, to a
lesser extent, ionized and will be at temperatures of 15,000°F at ICBM
velocities (M = 24). This hot gas can transfer heat to the body by
convection and by radiation. The former is the prime contributor of
heat, which the body can then dissipate by conduction and radiation.
The convective heat transfer to the stagnation point of a blunt body is
inversely proportional to the square root of the nose radius 1/4/r. Thus
a large nose radius, i.e., blunt rather than pointed, results in less con-
vective heat transfer from the air to the surface. This design also
provides more nose-cone material immediately adjacent to the highest
temperature (the stagnation point), thus facilitating the conduction of
heat away from this point. Transition of the boundary layer from
laminar to turbulent with the accompanying rise in convective heat

1 H. Schlichting, ‘‘Boundary Layer Theory,” 4th ed., chap. 15, McGraw-Hill Book
Company, Inc., New York, 1961.
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transfer to the nose cone is prevented by giving the nose cone a highly
polished surface.

The use of the heat-sink design has a limitation imposed by the thermal
conductivity of the heat-sink material. For the larger peak heat transfer
associated with the highest speed missiles, the heat cannot be conducted
away from the exposed face of the heat sink into the interior rapidly
enough, and catastrophic melting occurs. This process of melting during
re-entry is called ablation and is actually a type of self-regulating heat
transfer by vaporization.

Slow satellite re-entry usually requires additional insulating material
behind the ablating skin to keep inner surface temperatures within limits
which can be tolerated by the pay load. However, in the re-entry of a
ballistic nose cone, involving much more severe heat transfer, the surface
of the ablating material recedes at the same rate that the heat penetrates
into the interior. Ablating materials that have been or are being studied
include pure plastics, plastics reinforced with organic or inorganic fibers,
silica and other oxides, carbon or graphite, gypsum, magnesium nitride,
and ceramics.

The problem of aerodynamic heating is still far from being completely
solved and will constitute a challenge in the field of aerophysics for years
to come. However, the progress made toward a solution in the few short
years since the problem has become important is positive proof that
better and better methods of reducing heat input and transferring more
heat to the surrounding space will be discovered in the very near future.

6.10. Analogy of Shock Waves to Open-channel Waves. Both the
oblique and normal shock waves in a gas have their counterpart in
open-channel flow, An elementary surface wave has a speed in still
liquid of 4/gy, in which y is the depth in a wide, open channel. When
flow in the channel is such that V = V, = 4/gy, the ¥Froude number is
unity and flow is said to be critical, i.e., a small disturbance cannot be
propagated upstream. This is analogous to sonic flow at the throat of a
tube, with Mach number unity. For liquid velocities greater than
V. = /gy the Froude number is greater than unity and the velocity
is supercritical, analogous to supersonic gas flow. Changes in depth are
analogous to changes in density in gas flow.

The continuity equation in an open channel of constant width is

Vy = constant

and the continuity equation for compressible flow in a tube of constant
cross section is

Vp = constant

Compressible fluid density p and open-channel depth y are analogous.
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The same analogy is also present in the energy equation. The energy
equation for a horizontal open channel of constant width, neglecting
friction, 18

Ve
% + y = constant

After differentiating ,
VdV 4-gdy =0

By substitution from V., = 4/gy to eliminate ¢,
Vdv + V. ‘fy—y -

which is to be compared with the energy equation for compressible flow
[Eq. (6.3.4)]

Vv + cz%’f -0 (6.3.4)

The two critical velocities V, and ¢ are analogous, and, hence, y and p
are analogous.

By applying the momentum equation to a small depth change in
horizontal open-channel flow, and to a sudden density change in com-
pressible flow, the density and the open-channel depth can again be
shown to be analogous. In effect, the analogy is between the Froude
number and the Mach number.

Analogous to the normal shock wave is the hydraulic jump, which
causes a sudden change in velocity and depth, and a change in Froude
number from greater than unity to less than unity. Analogous to the
oblique shock and rarefaction waves in gas flow are oblique liquid waves
produced in a channel by changes in the direction of the channel walls, or
by changes in floor elevation.

A body placed in an open channel with flow at Froude number greater
than unity causes waves on the surface that are analogous to shock and
rarefaction waves on a similar (two-dimensional) body in a supersonic
wind tunnel. Changes to greater depth are analogous to compression
shock, and changes to lesser depth to rarefaction waves. Shallow water
tanks, called ripple tanks, have been. used to study supersonic flow
situations.

PROBLEMS

6.1. 3 1b,, of a perfect gas, molecular weight 36, had its temperature increased
3.2°F when 2000 ft-lb of work was done on it in an insulated constant-volume
chamber. Determine ¢, and c,.

6.2. A gas of molecular weight 48 has a ¢, = 0.372. What is ¢, for this gas?

6.3. Calculate the specific heat ratio k for Probs. 6.1 and 6.2.
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6.4. The enthalpy of a gas is increased by 0.4 Btu/lb,, °R when heat is added
at constant pressure, and the internal energy is increased by 0.3 Btu/lb,, °R
when the volume is maintained constant and heat is added. Calculate the
molecular weight.

6.6. Calculate the enthalpy change of 3 1b.. carbon monoxide from p, = 20
psia, T\ = 40°F to p, = 60 psia, T, = 340°F :

6.6. Calculate the entropy change in Prob. 6.5.

6.7. From Eq. (6.1.13) and the perfect-gas law, derive the equation of state for
isentropic flow.

6.8. Compute the enthalpy change per slug for helium from T, = 0°F, p, =
20 psia, to T'» = 100°F in an isentropic process.

6.9. In an isentropic process 3 lb., oxygen with a volume of 4.0 ft3 at 60°F has
its absolute pressure doubled. What is the final temperature?

6.10. Work out the expression for density change with temperature for a
reversible polytropic process. '

6.11. Hydrogen at 40 psia, 30°F, has its temperature increased to 100°F by a
reversible polytropic process with n = 1.20. Calculate the final pressure.

6.12. A gas has a density decrease of 13 per cent in a reversible polytropic
process when the temperature decreases from 115 to 40°F. Compute the expo-
nent n for the process. _

6.13. A projectile moves through water at 60°F at 3000 ft/sec. What is its
Mach number?

6.14. If an airplane travels at 500 mph at sea level p = 14.7 psia, t = 68°F,
and at the same speed in the stratosphere where { = —67°F, how much greater
is the Mach number in the latter case?

6.15. What is the speed of sound through hydrogen at 100°F?

6.16. Derive the equation for speed of a small liquid wave in an open channel
by using the methods of Sec. 6.2 for determination of speed of sound (Fig. 6.12):

\4 T V+dV ‘T
— vy - y+dy
Fic. 6.12

6.17. By using the Euler equation with a loss term
dp
Vdv + " + d (losses) = 0

the continuity equation pV = constant, and ¢ = \/dp/dp, show that for sub-
sonic flow in a pipe the velocity must increase in the downstream direction.
6.18. Isentropic flow of air occurs at a section of a pipe where p = 40 psia,
t = 90°F, and V = 430 ft/sec. An object is immersed in the flow which brings
the velocity to zero. What are the temperature and pressure at the stagnation
point? .
6.19. What is the Mach number for the flow of Prob. 6.187
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6.20. How does the temperature and pressure at the stagnation point in isen-
tropic flow compare with reservoir conditions?

6.21. Air flows from a reservoir at 160°F, 80 psia. Assuming isentropic flow,

calculate the velocity, temperature, pressure, and density at a section where
M = 0.60.
« 6.22. Oxygen flows from a reservoir p, = 100 psia, ¢, = 80°F, to a 6-in.-
diameter section where the velocity is 600 ft/sec. Calculate the mass rate of
flow (isentropic) and the Mach number, pressure, and temperature at the 6-in.
section.

6.23. Helium discharges from a 3~in.-diameter converging nozzle at its maxi-
mum rate for reservoir conditions of p = 60 psia, ¢ = 72°F. What restrictions
are placed on the downstream pressure? Calculate the mass flow rate and
velocity of the gas at the nozzle. '

= 6.24. Air in a reservoir at 400 psi, ¢ = 290°F, flows through a 2-in.-diameter
.throat in a converging-diverging nozzle. For M = 1 at the throat, calculate p,
p, and T there.

6.26. What must be the velocity, pressure, density, temperature, and diameter
at a cross section of the nozzle of Prob. 6.24 where M = 2.4?

« 6.26. Nitrogen in sonic flow at a 1-in.-diameter throat section has a pressure
of 10 psia, ¢ = 0°F. Determine the mass flow rate.

6.27. What is the Mach number for Prob. 6.26 at a 13-in.-diameter section in
supersonjc and in subsonic flow? '

+6.28. What diameter throat section is needed for critical flow of 0.6 lb,/sec
carbon monoxide from a reservoir where p = 300 psia, ¢ = 100°F?

6.29. A supersonic nozzle is to be designed for air flow with M = 3 at the exit
section, which is 6 in. in diameter and has a pressure of 1 psia and temperature of
—120°F. Calculate the throat area and reservoir conditions.

rv- 6.30. In Prob. 6.29 calculate the diameter of cross section for M = 1.5, 2.0,
. and 2.5,

6.31. For reservoir conditions p, = 120 psia, {, = 120°F, air flows through a
converging-diverging tube with a 3.0-in.-diameter throat with a maximum Mach
number of 0.80. Determine the mass rate of flow and the diameter, pressure,

. velocity, and temperature at the exit where M = 0.50.

~-6.32. Calculate the exit velocity and the mass rate of flow of nitrogen from a
reservoir p = 60 psia, t = 50°F, through a converging nozzle of 2 in. diameter
discharging to atmosphere.

6.33. Reduce Eq. (6.3.25) to its form for air flow. Plot p/po vs. 4*/A for the
range of p/po from 0.98 to 0.02.

6.34. By utilizing the plot of Prob. 6.33, find the two pressure ratios for
A*/A = 0.50.

6.35. In a converging-diverging duct in supersonic flow of hydrogen, the

throat diameter is 2.0 in. Determine the pressure ratios p/p, in the converging
and diverging duects where the diameter is 2.5 in.
. 8.36. A shock wave occurs in a duct carrying air where the upstream Mach
number is 2.0 and upstream temperature and pressure are 60°F and 2 psia.
Calculate the Mach number, pressure, temperature, and velocity after the shock
wave.
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6.37. Show that entropy has increased across the shock wave of Prob. 6.36.

- 6.38. Conditions immediately before a normal shock wave in air flow are
p« = 8 psia, t, = 100°F, V, = 1800 ft/sec. Find M., Mg, p4, and ¢4, where the
subseript d refers to conditions just downstream from the shock wave.

6.39. For A = 0.16 {t? in Prob. 6.38, calculate the entropy increase across the
shock wave in Btu per second per degree Rankine.

6.40. Show, from the equations of Sec. 6.6, that temperature, pressure, and
density decrease in real, adiabatic duct flow for subsonie conditions and increase
for supersonic conditions.

6.41. What length of 2-in.-diameter insulated duct, f = 0.012, is needed when
oxygen enters at M = 3.0 and leaves at M = 2.0?

« 6.42. Air enters an insulated pipe at M = 0.3 and leaves at M = 0.7. What
portion of the duct length is required for the flow to occur at M = 0.5?

6.43. Determine the maximum length, without choking, for the adiabatic flow
of air in a 4-in.-diameter duct, f = 0.025, when upstream conditions are ¢t =
120°F, V = 700 ft/sec, p = 30 psia. What are the pressure and temperature at
the exit?

*6.44. What minimum size insulated duct is required to transport 2 lb,/sec
nitrogen’1000 ft? The upstream temperature is 90°F, and the velocity there is
200 ft/sec. f = 0.020.

6.46. Find the upstream and downstream pressures in Prob. 6.44.

+5.46. What is the maximum mass rate of flow of air from a reservoir, { = 60°F,
through 19.15 ft of insulated 1-in.-diameter pipe, f = 0.020, discharging to
atmosphere? p = 14.7 psia.

6.47. In frictionless oxygen flow through a duct the following conditions pre-
vail at inlet and outlet: V; = 300 ft/sec; {; = 60°F; M, = 0.4. Find the heat
added per slug and the pressure ratio p/p..

~6.48. In frictionless air flow through a 4-in.-diameter duct 0.4 lb,./sec enters
at ¢t = 30°F, p = 10 psia. How much heat, in Btu per pound mass, can be
added without choking the flow?

6.49. Frictionless flow through a duct with heat transfer causes the Mach
number to decrease from 2 to 1.8. %k = 1.4. Determine the temperature,
velocity, pressure, and density ratios.

6.50. In Prob. 6.49 the duct is 2 in. square, p, = 10 psia, and V, = 2000 ft/sec.
Calculate the mass rate of flow for air flowing.

6.51. How much heat must be transferred per pound mass to cause the Mach
number to inerease from 2 to 2.8 in a frictionless duct carrying air? V. =
2000 ft/sec. '

N 6.52. Oxygen at V, = 1600 ft/sec, p = 12 psia, £ = 0°F flows in a 2-in.-
diameter frictionless duct. How much heat transfer per pound mass is needed
for sonic conditions at the exit? '

6.53. Prove the density, pressure, and velocity trends given in Sec. 6.8 in the
table of trends in flow properties.

6.54. Apply the first law of thermodynamics, Eq. (3.7.1), to isothermal flow-
of a perfect gas in a horizontal pipeline, and develop an expression for the heat
added per slug flowing. _

6.56. Air is flowing at constant temperature through a 3-in.-diameter hori-
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zontal pipe, f = 0.02. At the entrance V, = 300 ft/sec, { = 100°F, p; = 30 psia.
What is the maximum pipe length for this flow, and how much heat is transferred
to the air per pound mass?

6.56. Air at 60°F flows through a l-in.-diameter pipe at constant temperature.
At the entrance V; = 200 ft/sec, and at the exit V; = 400 ft/sec. f = 0.016.
What is the length of the pipe?

6.57. 1f the pressure at the entrance of the pipe of Prob. 6.56 is 20 psia, what
is the pressure at the exit and what is the heat transfer to the pipe per second?

6.58. Hydrogen enters a pipe from a converging nozzle at M =1, p =1
psia, t = 0°F. Determine for isothermal flow the maximum length of pipe, in
diameters, and the pressure change over this length. f = 0.010.

6.69. Oxygen flows at constant temperature of 68°F from a pressure tank,
p = 2000 psia, through 10 ft of 0.01-ft ID tubing to another tank where p =
1600 psia. f = 0.010. Determine the mass rate of flow.

6.60. In isothermal flow of nitrogen at 90°F, 2 lb,./sec is to be transferred
100 ft from a tank p = 200 psia to a tank p = 160 psia. What is the minimum
size tubing, f = 0.016, that is needed?

6.61. Specific heat at constant volume, is defined by

(a) ke,  (b) (%%‘1 , (c) (g—g)” (d) (g—% ] (¢) none of
these answers

6.62. Specific heat at constant pressure, for a perfect gas, is not given by

(a) ke, (b) (8h/0T), () (he — b1))/(T2 — T)
(d) [Au + A(p/p))/At (e) any of these answers

6.63. For a perfect gas, the enthalpy

(a) always increases owing to losses

(b) depends upon the pressure only

{¢) depends upon the temperature only

(d) may increase while the internal energy decreases
(e) satisfies none of these answers

6.64. The following classes of substances may be considered perfect gases:

(a) ideal fluids

(b) saturated steam, water vapor, and air

(¢) fluids with a constant bulk modulus of elasticity

(d) water vapor, hydrogen, and nitrogen at low pressure
(e) none of these answers

6.66. ¢, and ¢, are related by

(a) k = ¢c,/co &) k = cpey (©) k= co/co (d) ¢p = ¢,
(¢) none of these answers

6.66. If ¢, = 0.30 Btu/lb,, °R and %k = 1.66, in foot-pounds per slug degree
Fahrenheit, ¢, equals
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() 0582 (5) 1452 (c) 4520  (d) 7500  (e) none of these
answers

6.67. If ¢, = 0.30 Btu/lb. °R and k = 1.33, the gas constant in Btu per
pound mass per degree Rankine is

(a) 0.075 (b) 0.099 (¢) 0.399 (d) 0.699 (e) none of these
answers

6.68. R = 62 ft-lb/lb, °R and ¢, = 0.279 Btu/lb,, °F. The isentropic
exponent k is

(a) 1.2 (b) 1.33 {¢) 1.66 (d) 1.89 {e) none of these
answers

6.69. The specific heat ratio is given by

1 , , 1
@ T=F%7, (w1+% @ J+R @ 1—TR

(e) none of these answers

6.70. The‘entropy change for a perfect gas is

(a) always positive

(b) a function of temperature only

(C) (AQH/T)rev

(d) athermodynamic property depending upon temperature and pressure
(e) a function of internal energy only

6.71. An isentropic process is always

(a) irreversible and adiabatic
(b) reversible and isothermal
(¢) frictionless and adiabatic
(d) frietionless and irreversible
(¢} none of these answers

6.72. The relation p = constant p* holds only for those processes that are

(a) reversible polytropic

(b) isentropic

(¢) frictionless isothermal
(d) adiabatic irreversible
(e) none of these answers

6.73. The reversible polytropie process is

(a) adiabatic frictionless

(b) given by p/p = constant :
(c) given by pp* = constant

(d) given by p/p® = constant

(e) none of these answers
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6.74.

6.76.

6.76.

6.77.

6.78.

6.79.
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A reversible polytropic process could be given by

<>T2 G oR-CG)Y on-G)"

P\ Din
(d) Tz ( ) (¢) none of these answers

In a reversible polytropic process

(a) some heat transfer occurs

(b) the entropy remains constant

(c) the enthalpy remains constant

(d) the internal energy remains constant
(e) the temperature remains constant

The differential equation for energy in isentropic iow may take the form
(a) dp + d(sz) = 0
(b) + + 1 0

(c) 2VdV+? =

(d) VdV + %E =0
(e) none of these answers

Select the expression that does not give the speed of a sound wave:

(@ VERT () Vp/p () Vdp/de (@) VEp/p (&) VK/p
The speed of a sound wave in a gas is analogous to

(a) the speed of flow in an open channel

(b) the speed of an elementary wave in an open channel

(¢) the change in depth in an open channel

(d) the speed of a disturbance traveling upstream in moving liquid
(e) none of these answers

The speed of sound in water, in feet per second, under ordinary condi-

tions is about

6.80.

(@) 460 () 1100  (c) 4600  (d) 11,000  (e) none of these
answers

The speed of sound in an ideal gas varies directly as

(a) the density

(b) the absolute pressure

(c) the absolute temperature

(d) the bulk modulus of elasticity
(e) none of these answers
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Select the correct statement regarding frictionless flow:

(a) In diverging conduits the velocity always decreases.

(b) Tl:)e velocity is always sonic at the throat of a converging-diverging
tube.

(c) In supersonic flow the area decreases for increasing velocity.

(d) Sonic velocity cannot be exceeded at the throat of a converging-
diverging tube.

(e) At Mach zero the velocity is sonic.

In isentropic flow the temperature

(a) cannot exceed the reservoir temperature

(b) cannot drop, then increase again downstream
(¢) is independent of the Mach number

(d) is a function of Mach number only

(e) remains constant in duct flow

The critical pressure ratio for isentropic flow of carbon monoxide is

(@) 0.528  (b) 0.634  (c) 0.833 (d) 1.0 (&) none of these
answers

Select the correct statement regarding flow through a converging-diverg-

ing tube.

6.85.

6.86.

(a) When the Mach number at exit is greater than unity no shock wave
has developed in the tube.

(b) When the critical pressure ratio is exceeded, Mach number at the
throat is greater than unity.

(¢) For sonic velocity at the throat, one and only one pressure or velocity
can occur at a given section downstream,

(d) The Mach number at the throat is always unity.

(e) The density increases in the downstream direction throughout the
converging portion of the tube.

In a normal shock wave in one-dimensional flow the

(a) velocity, pressure, and density increase

(b) pressure, density, and temperature increase

(¢) velocity, temperature, and density increase

(d) pressure, density, and momentum per unit time increase
(e) entropy remains constant

A normal shock wave

(a) is reversible

(b) may occur in a converging tube
(c) is irreversible

(d) is isentropic

(e) is none of these answers
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6.87. A normal shock wave is analogous to

(¢) an elementary wave in still liquid

(b) the hydraulic jump

(c¢) open-channel conditions with F < 1

(d) flow of liquid through an expanding nozzle
(e) none of these answers

6.88. Across a normal shock wave in a converging-diverging nozzle for adiabatic
flow the following relationships are valid:

6.89.

6.90.

6.91.

6.92.

(a) continuity and energy equations, equation of ‘state, isentropic
relationship

(b) energy and momentum equations, equation of state, isentropic
relationship

(c) continuity, energy, and momentum equations; equation of state

(d) equation of state, isentropic relationship, momentum equation,
mass-conservation principle

(e) none of these answers

Across a normal shock wave there 1s an increase in

(@) p, M, s (d) p, s; decrease in M (¢) p; decrease in 5, M
(d) p, M; no change in s () p, M, T

A Fanno line is developed from the following equations:

(@) momentum and continuity

(b) energy and continuity

(¢) momentum and energy

(d} momentum, continuity, and energy
(e} none of these answers

A Rayleigh line is developed from the following equations:

(@) momentum and continuity

(b) energy and continuity

(¢) momentum and energy

(d) momentum, continuity, and energy
(e) none of these answers

Select the correct statement regarding a Fanno or Rayleigh line:

(a) Two points having the same value of entropy represent conditions
before and after a shock wave.

(b) pV is held constant along the line.

(¢) Mach number always increases with entropy.

(d) The subsonic portion of the curve is at higher enthalpy than the
supersonic portion.

(¢) Mach 1 is located at the maximum enthalpy point.
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6.93. Choking in pipe flow means that

(a) a valve is closed in the line

(b) a restriction in flow area occurs

(¢) the specified mass flow rate cannot occur

(d) shock waves always occur

(e) supersonic flow occurs somewhere in the line

6.94. In subsonic adiabatic flow with friction in a pipe

(a) V, M, s increase; p, T, p decrease.
(6) p,V,M,increase; T, p  decrease.
(¢) p, M, s increase; V, T, p decrease.
(d) p, M, s increase; V, T, p decrease.
(e) T, V, s increase; M, p, p decrease.

6.95. In supersonic adiabatic low with friction in a pipe

(a) V, M, s increase; p, T, p decrease.
(d) p, T,s increase; p, V, M decrease.
(¢) p, M, s increase; V, T, p decrease.
(d) p, T, p, sincrease; V, M  decrease.
(e) p, p, s increase; V, M, T decrease.

6.96. Select the correct statement regarding frictionless duct flow with heat
transfer:

(a) Adding heat to supersonic flow increases the Mach number.

(b) Adding heat to subsonic flow increases the Mach number.

(¢) Cooling supersonic flow decreases the Mach number.

(d) The Fanno line is valuable in analyzing the flow.

(¢) The isentropic stagnation temperature remains constant along the

pipe.

6.97. Select the correct trends in flow properties for frictionless duct flow with
heat transferred to the pipe, M < 1:

(@) p, V increase; p, T, T decrease.
(b) V, Ty increase; p, p decrease.
(¢) p, p, T increase; V, Ty decrease.
(d) V, T increase; p, p, Ty decrease.
(e) Ty, V, pincrease; p, T  decrease.

6.98. Select the correct trends for cooling in frictionless duct flow, M > 1:

(@) V increases; p, p, T, Ty decrease.
) p, V increase; p, T, Ty decrease.
(¢) p,p, V increase; T, T, decrease.
(d) p, p increase; V, T, Ty decrease.

(&) V, T, Toincrease; p, p decrease.
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6.99. In steady, isothermal flow in long pipelines, the significant value of M for
determining trends in flow properties is

@1k O YVE @1 @DVE (ek

6.100. Select the correct trends in fluid properties for isothermal flow in ducts
for M < 0.5:

(a) V increases; M, Ty, p, po, p decrease.

®» vV, M increase; T\, p, po, p decrease.

(¢) V, M, Ty increase; p, po, p decrease.

(d)y V, T increase; M, p, po, P decrease.

(e) V, M, po, Ty increase; p, p decrease.
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IDEAL-FLUID FLOW

In the preceding chapters most of the relationships have been developed
for one-dimensional flow, i.e., flow in which the average velocity at each
cross section is used and variations across the section are neglected.
Many design problems in fluid flow, however, require more exact knowl-
edge of velocity and pressure distributions, such as in flow over curved
boundaries along an airplane wing, through the passages of a pump or
compressor, or over the crest of a dam. An understanding of two- and
three-dimensional flow of a nonviscous, incompressible fluid provides the
student with a much broader approach to many real fluid-flow situations.
There are also analogies that permit the same methods to apply to flow
through porous media.

In this chapter the principles of irrotational flow of an ideal fluid are
developed and applied to elementary flow cases. After the flow require-
ments are established, the vector operator V is introduced, Euler’s equa-
tion is derived, and the velocity potential is defined. Euler’s equation is
then integrated to obtain Bernoulli’s equation, and stream functions and
boundary conditions are developed. Flow cases are then studied in
three and two dimensions.

7.1. Requirements for Ildeal-fluid Flow. The Prandtl hypothesis,
Sec. 5.5, states that, for fluids of low viscosity, the effects of viscosity are
appreciable only in a narrow region surrounding the fluid boundaries.
For incompressible flow situations in which the boundary layer remains
thin, ideal-fluid results may be applied to flow of a real fluid to a satis-
factory degree of approximation. Converging or accelerating flow
situations generally have thin boundary layers, but decelerating flow may
have separation of the boundary layer and development of a large wake
that is difficult to predict analytically.

An ideal fluid must satisfy the following requirements:

a. The continuity equation, Sec. 3.4, divq = 0, or

ov

ow
@+§&0
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b. Newton’s second law of motion at every point at every instant.

¢. Neither penetration of fluid into nor gaps between fluid and bound-
ary at any solid boundary.

If, in addition to requirements a, b, and ¢, the assumption of irrota-
tional flow is made, the resulting fluid motion closely resembles real fluid
motion for fluids of low viscosity, outside boundary layers.

Using the above conditions, the application of Newton’s second law to a
fluid particle leads to the Euler equation which, together with the assump-
tion of irrotational flow, may be integrated to obtain the Bernoulli
equation. The unknowns in a fluid-flow situation with given boundaries
are velocity and pressure at every point.
Unfortunately, in most cases it is impossible
to proceed directly to equations for velocity
and pressure distribution from the boundary
conditions.

7.2. The Vector Operator V. The vec-
tor operator V (pronounced ‘‘del”), which
may act on a vector as a scalar or vector
Fie. 7.1. Notation for unit product or may act on a scalar function,
:i‘grmal n; to arca element o poq4 ygeful in developing ideal-fluid-flow

' theory.

Let U be the quantity acted upon by the operator. The operator V is
defined by

my n

ds

VU = lim = | mUdS (7.2.1)
¥—0 ¥ S

U may be interpreted as - a, X a, where a is any vector, or as a scalar,

say ¢. Consider a small volume ¥ with surface S and surface element

dS. mn, is a unit vector in the direction of the outwardly drawn normal

n of the surface element dS (Fig. 7.1). - This definition of the operator is

now examined to develop the concepts of gradient, divergence, and curl.
When U is a scalar, say ¢, the gradient of ¢ is

grad ¢ = V¢ = lim —%t- j;n1¢ dsS (7.2.2)

¥—0

To interpret grad ¢, the volume element is taken as a small prism of
cross-sectional area dS, of height dn, with one end area in the surface
¢(x,y,2) = ¢ and the other end area in the surface

d¢ 3
¢ + (-573) dn = constant

(Fig. 7.2).  As there is no change in ¢ in surfaces parallel to the end faces,
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by symmetry /n;¢ dS over the curved surface of the element vanishes.
Then

[nlqde = n, (qs + 22 gy — qs)ds
S on
and the right-hand side of Eq. (7.2.2) becomes

1 a4 0
| iﬂd&’dn?ﬁdnds—nl an

and

4= v = n 00
grad ¢ = V¢ = ny o (7.2.3)
in which n, is the unit vector, drawn normal to the surface over which ¢ is

constant, positive in the direction of increasing ¢. grad ¢ is a vector.

Fia. 7.2, Surfaces of constant scalar ¢.

By interpreting U as the scalar (dot) product with V, the divergence

is obtained. Let U be - q; then
divg=V --q = lim L [ n; -qds (7.2.4)
v—o ¥V s ‘ _

This expression has been used (in somewhat different form) in deriving
the general continuity equation in Sec. 3.4. It is the volume flux per
unit volume at a point and is a scalar.

The curl v X q is a more difficult concept that deals with the vorticity or
rotation of a fluid element:

curlq =V X q = lir%%[éDIquS (7.2.5)

With reference to Fig. 7.3, n, X q is the velocity component tangent to
the surface element dS at a point, since the vector product is a vector at
right angles to the plane of the two constituent vectors, with magnitude
¢sin §, as m; = 1. Then n; X qdS is an elemental vector that is the
product of tangential velocity by the surface area element. Summed up
over the surface, then divided by the volume, and the limit taken as
¥ — 0 yields the curl q at a point. '
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A special type of fluid motion is examined to demonstrate the con-
nection between curl and rotation. Let a small circular eylinder of fluid
be rotating about its axis-as if it were a solid (Fig. 7.4), with angular
velocity @, which is a vector parallel to the axis of rotation. The radius
of the cylinder is r and the length /. n, X q at every point on the curved
surface is a vector parallel to the axis having the magnitude ¢ = or.
Over the end areas the vector n, X q is equal and opposite at correspond-

n;xq

F16. 7.3. Notation for curl of the velocity  Fie. 7.4. Small fhiid cylinder rotating as
vector. -a solid.

ing points on each end and contributes nothing to the curl. Then, since
ds = Ir da,

[S n X qdS = [02' rlr da = 2nrtlo

!

Equation (7.2.5) now yields
curl ¢ = lim L 2rrie = 20

¥ 7T %l

showing that for solid-body rotation the curl of the velocity at a point is
twice the rotation vector. If one considers the pure translation of a small
element moving as a solid, then the curl q is always zero. As any rigid
body motion is a combination of a transldtion and a rotation, it is noted
that the curl of the velocity vector is always twice the rotation vector.

A fluid, however, not only may translate and rotate but may also
deform. The definition of curl q applies, and hence the rotation of a flusd
at a point is defined by

w=1curlg =3V X q (7.2.6)

When © = 0 throughout certain portions of a fluid, the motion there is
described as irrotational. The vorticity vector curl q has certain charac-
teristics similar to the velocity vector q. Vortex lines are everywhere
tangent to the vorticity vector, and vortex tubes, comprised of the vortex
lines through a small closed curve, follow certain continuity principles;
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viz., the produet of vorticity by area of the tube must remain constant
along the vortex tube, or div (curlq) = V- (Vv X q) = 0.

The operator V acts like a vector but ~ .
must be applied to a scalar or a vector
to have physical significance. da A\

Scalar Components of Vector Relation- a
ships. Any vector may be decomposed \ \
into three components along mutually \\ \
perpendicular axes, say the z, y, z-axes. \ n;
The component is a scalar, as only
magnitude and sign (sense) is needed
to specify it; f, = —3 indicates the
z-component of a vector f acting in the

— z-direction. Fic. 7.5. Change of vector a corre-
The vector may be expressed in sponding to change in normal direc-
tion.

terms of its scalar components by use
of the fixed unit vectors i, j, k parallel to the z, y, z-axes, respectively:

a=ia;+jay+kaz
The unit vectors combine as follows:

iri=j-j=k-k=1 ivj=j-E=k-i=0
iXj=k jXk=i kXi=j=—-iXk etc

The scalar product of two vectors a - b is

a:b = (ia, + je, + ka,) - (ib, + jb, + kb.)
= a.b. + a,b, + a.b.

The vector product of two vectors a X b is

aXb= (ie, + ja, + ka;) X (ib: + jb, + kb.)
= i(ab, — a.b,) + jla.b: — azb.) + k(ab, — a,b.)

It is conveniently written in determinant form:

i j k
a x b = az ay aZ
b, b, b,

To find the scalar components of V¢, first consider a - V¢ (Fig. 7.5)
in which a is any vector. By Eq. (7.2.3)

_ dp do
a-Vop = a n;an--acosﬁan

a3 0 is the angle between a and n; and n, = 1. A change da in magnitude
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of a corresponds to a change in n, given by da cos # = dn, hence

3¢ _ ¢
a cos @ In a 30
and
_ g
a Vo =a % (7.2.7)
The scalar components of V¢ are
3 3 _ 3¢
lv¢_6‘x <l'b—y kv'_az
and
Vo = 1—~é+] +k§£ (7.2.8)

The operator V, in terms of its scalar components, is
vV = -l- j— ay + k—— (7.2.9)
The scalar product, say V - q, becomes

L] . a L] - -

V-q=(1%+Ja%+k5;)-(m+w+kw)
du , dv , dw

= o+ 3 + 5 (7.2.10)

as in Sec. 3.4. | _
The vector product V X q, in scalar components, is

. d . 0 d . .
V)(q—-(1-55-]-]@—1—1{5))((11&4—]0-}-]{10)
ow  dv .fou ow av Ju
= (‘a@'a—z)“(ag‘az)“(&"@) (7.2.11)

The quantities in parentheses are vorticity components, which are twice
the value of rotation components, w,, wy, w,, so

V X q = i2w: + j20, + kK20, (7.2.12)

7.3. Euler's Equation of Motion. In Sec. 3.5 Euler’s equation was
derived for steady flow of a frictionless fluid along a streamline. The
assumption is made here that the flow is frictionless, and a continuum is
assumed. Newton's second law of motion is applied to a fluid particle of
mass pd¥. Three terms enter, the body force, the surface force, and
mags times acceleration. Let F be the body force (such as gravity) per
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unit mass acting on the particle. Then Fpé¥ is the body-force -vector.
The surface force, from the preceding section, is — fsnlp dS if the fluid is

frictionless or nonviscous, so only normal forces act. The mass times
acceleration term is pé¥ dq/dt. After assembling these terms,

dt

Now, dividing through by the mass of the element and taking the limit as
8% — 0,

Fp 6% — j:gnlpds= p ¥ 3

1 L1 __dq
¥ _P#LHOVandS_E

By use of the operator V
1 _dq
F ;VP =2 (7.3.1)
This is Euler’s equation of motion in vector notation. By forming the
scalar product of each term with i, then j, then k, the following scalar

component equations are obtained

_Llop _du

pdr  di

io dv
Y- 6—5 == (1.3.2)

1dp dw

i

in which X, ¥, Z are the body force components per unit mass. The
acceleration terms may be expanded. In general u = u(zx,y,zt), so
(see Appendix B)

_ odu du ou ou
du = axd:z:+@dy + gzdz+ Sfdt
For du/dt to be the acceleration component of a particle in the z-direc-

tion, the z, y, z-coordinates of the moving particle become functions of
time, and du may be divided by dt, yielding

du odudr , dudy , dudz , du
=G matayd T wa
But
=% ,_% _d
dt t t
and

u—x+v—y+'w— - (7.3.3)
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Similarly
. dv ov o dv , o

%-—-u-a—x+va—y+w-a—z+-53 (7.3.4)
dw Jw ow ow . ow

If the extraneous force is conservative, it may be derived from a potential
(F = — grad Q):
o2 d9Q o0

In particular, if gravity is the only body force acting, @ = gh, with h a
direction measured vertically upward; thus

oh dh oh
X = ~9 5 Y = ——g@ Z = —93 (7.3.7)

Remembering that p is constant for an ideal fluid, substituting Egs.
(7.3.3) to (7.3.7) into Eqs. (7.3.2),

19 ou ou ou ou
—;£(p+7h)—u%+vé—y+w"é;+"a (7.3.8)

19 ov ov v v
_;:9'_y(p+7h)_u-6_m+v(—3§+w5_z+§ (7.3.9)

10 ow ow ow ow
—;‘&(P+‘Yh)—u-a—£+va—y+w5;+—g (7.3.10)

The first three terms on the right-hand side of the equations are ‘“‘con-
vective acceleration” terms, depending upon changes of velocity with
space. The last term is the “local acceleration,” depending upon velocity
change with time at a point.

Natural Coordinates tn Two-dimensional Flow. Euler's equations in
two dimensions are obtained from the general component equations by
setting w = 0 and 3/9z = 0; thus

1 d u ou , ou
'—;'@(P'i"yh)—ua:’*‘va—y'{'“& (7.3.11)
14 ov dv |, dv
—;@'(P'F‘Yh) wué—£+vé—g+“(3—t (7-3°12)

By taking particular directions for the z- and y-axes, they may be reduced
to a form that aids in understanding them. If the z-axis, called the
s-axis, is taken parallel to the velocity vector at a point (Fig. 7.6), it is
then tangent to the streamline through the point. The y-axis, called the
n-axis, is drawn toward the center of curvature of the streamline. The
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velocity component u is v,, and the component v isv,.. Aswv, is zero at the
point, Eq. (7.3.11) becomes

1

5}
“;g(?'{“ﬂb)—v

av, ov,

* s + a3 (7.3.13)

Although v, is zero at the point (s,n), its rates of change with respect to s
and ¢ are not necessarily zero. Equation (7.3.12) becomes

1 o, O0tn

d
—‘?(P+Th)=vsa—s+g

3 (7.3.14)

By considering the velocity at s and at s + és along the streamline, v,

h
n
s
vy,
56 r Ug
60
)

Fra. 7.6. Notation for natural coordinates,

changes from zero to dv,. With r the radius of curvature of the stream-
line at s, from similar triangles (Fig. 7.6)

o8  dua

T
or

p s

3 T

By substituting into Eq. (7.3.14)

14 V,2 | Ova
“;57“?’(27‘1'7’1) = -t (7.3.15)

For steady flow of an incompressible fluid Egs. (7.3.11) and (7.3.15)
may be written

134 0 {v,?
— = = — |2 .3.16
L+ =2 (%) (7.3.16)

and

14 TR
— e i— + —3 _-’ at .17
pan (P vh) r (7.3 )
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Equation (7.3.16) may be integrated with respect to s to produce Eq.
(3.6.2), with the constant of integration varying with =, i.e., from one
streamline to another. Equation (7.3.17) shows how pressure head varies
across streamlines. With v, and r known functions of n, Eq. (7.3.17) may

be integrated.

Ezample 7.1: A container of liquid is rotated with angular velocity « about a
vertical axis as a solid. Determine the variation of pressure intensity in the

liquid.
n is the radial distance, measured inwardly, n = —r, dn = —dr, and v, = wr.
By integrating Eq. (7.3.17)
2
— % (p+ vh) = ~ [ w": dr -+ constant

or
wir?

1
P (p+ vh) = 3 + constant

To evaluate the constant, if p = po when r = 0 and & = 0, then

wir?
p=p~rh+p—5

which shows that the pressure is hydrostatic along a vertical line and increases
as the square of the radius. Integration of Eq. (7.3.16) shows that the pressure
is constant for a given k and v,, i.e., along a streamline.

7.4, lIrrotational Flow. Velocity Potential. In this section it is shown
that the assumption of irrotational flow leads to the existence of a velocity
potential. By use of these relations and the assumption of a conservative
body force, the Euler equations may be integrated.

The individual particles of a frictionless incompressible fluid initially at
rest cannot be caused to rotate. This may be visualized by considering a
small free body of fluid in the shape of a sphere. Surface forces act nor-
mal to its surface, since the fluid is frictionless, and therefore act through
the center of the sphere. Similarly the body force acts at the mass center.
Hence no torque can be exerted on the sphere, and it remains without
rotation. Likewise, once an ideal fluid has rotation, there is no way of
altering it, as no torque can be exerted on an elementary sphere of the
fluid.

By assuming that the fluid has no rotation, i.e., it is irrotational,
curl ¢ = 0, or from Eq. (7.2.11)

d _ du ow _ v du _ ow (7.4.1)

— T —— — e —

d dy 9y oz dz oz

These restrictions on the velocity must hold at every point (except special
gingular points or lines). The first equation is the irrotational condition
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for two-dimensional flow. It is the condition that the differential
expression

' udz + vdy
is exact, say

e e ¢4 09
vdr +vdy = ~do¢ = e dx 3 dy (7.4.2)

The minus sign is arbitrary. It isa convention that causes the value of ¢
to decrease in the direction of the velocity. By comparing terms in
Eq. (7.4.2), u = —d¢/9z, v = —3¢/dy. This proves the existence, in
two-dimensional flow, of a function ¢ such that its negative derivative
with respect to any direction is the velocity component in that direction.
It may also be demonstrated for three-dimensional flow. In vector form

. q= —grad ¢ = —V¢ (7.4.3)
is equivalent to
_ 9 __ 9 - _ %
U=~ - ) 3 w o (7.4.4)

The assumption of a velocity potential is equivalent to the assumption of
irrotational flow, as

curl (— grad ¢) = ~ VX Ve =0 (7.4.5)

because V ¥ V = 0. This is shown from Eq. (7.4.4) by cross differentia~
tion:
ou . 9%¢ dv _ 3¢

dy dzrdy ox  dyox

proving dv/dx = du/dy, ete.
Substitution of Eqgs. (7.4.4) into the continuity equation

Ju ov ow ,
55+3§+a—z-—0

yields
¢ 9% | 9%¢ _
dz? + dy? + 9z: 0 : (7.4.6)
In vector form this is
Veq= -V V¢ = —V2¢ =0 (7.4.7)

and is written V2¢ = 0. Equation (7.4.6) or (7.4.7) is the Laplace
equation. Any function ¢ that satisfies the Laplace equation is a possible
irrotational fluid-flow case. As there are an infinite number of solutions
to the Laplace equation, each of which satisfies certain flow- boundaries,
the main problem is the selection of the proper function for the particular
fow case.
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Beeause ¢ appears to the first power in each term of Eq. (7.4.6), it is a
linear equation, and the sum of two solutions is also a solution; e.g., if ¢,
and ¢: are solutions of Eq. (7.4.6), then ¢: + ¢. is a solution; thus

Vi, =0 Vig = 0
then
V(s + ¢2) = V3¢ + Vigs = 0

Similarly if ¢, is a solution, C¢, is a solution if C is constant.
7.5. Integration of Euler’'s Equations. Bernoulli Equation. Equation
(7.3.8) may be rearranged so that every term contains a partial deriva-

tive with respect to z. From Eq. (7.4.1)

ou o J v? au ow 0 w?

ay—vé'a; dr 2 Yor = Yer = 9z 2

and from Eq. (7.4.4)
ou _ d do

a  or dt
Making these substitutions into Eq. (7.3.8) and rearranging,

9 w?: A\ _
ax( +h+ + +—'_ﬁ)—0

Asu? 4+ v 4+ w? = ¢

3 ¢ 3¢

ax( + gh + £_ E) 0 (7.5.1)
Similarly for the y- and z-directions

3 3o\ _

ay( + g —l— T _ Ft) = 0 (7.5.2)

d f d¢

az( + gh + % — 3—5) 0 (7.5.3)

The quantities within the parentheses are the same in Eqs. (7.5.1) to
(7.5.3). Equation (7.5.1) states that the quantity is not a function of z,
since the derivative with respect to z is zero. Similarly the other equa-~
tions show that the quantity is not a function of y or z. Therefore it
can be a function of ¢ only, say F(¢):

ot
In steady flow d¢/9t = 0 and F(t) becomes a constant E:

2
o+ L - 5% = FO) (7.5.4)

2
f+m+%=E (7.5.5)
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The available energy is everywhere constant throughout the fluid. This
is Bernoulli’s equation for an irrotational fluid.

The pressure term may be separated into two parts, the hydrostatic
pressure p, and the dynamic pressure ps, so that p = p, + ps. By
inserting in Eq. (7.5.5),

2
gh+B B L -
p P
The first two terms may be written

gh + 2 = L (p, + yh)
P P
with A measured vertically upward. The expression is a constant, since
it expresses the hydrostatic law of variation of pressure. These two
terms may be included in the constant E. After dropping the sub-
script on the dynamic pressure, there remains

2
f+%=E (7.5.6)

This simple equation permits the variation in pressure to be determined
if the velocity is known, or vice versa. Assuming both the velocity g,
and the dynamic pressure p, to be known at one point,

or

_ e[, _ (Y
P =p+ ) [1 (Qo) ] (7.5.7)

Ezample 7.2: A submarine moves through water at a speed of 30 ft/sec. At a
point A on the submarine 5 ft above the nose, the velocity of submarine relative
to the water is 50 ft/sec. Determine the dynamic pressure difference between
this point and the nose, and determine the difference in total pressure between
the two points.

If the submarine is stationary and the water is moving past it, the velocity at
the nose is zero, and the velocity at A is 50 ft/sec. By selecting the dynamic
pressure at infinity as zero, from Eq. (7.5.6)

Q(}z 30
E =0+ =5 = 450
For the nose

f = E =450 p = 450 X 1.935 = 870 lb/ft?
For point A
2_n_ @ _ b0
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and

an2 ENe
p = 1,935 (3—3— - %) = 1548 Ib/ft?

Therefore the difference in dynamic pressure is
—1548 — 870 = —2418 lb/{t?
The difference in total pressure may be obtalned by applying Eq. (7.5.5) to
point A and to the nose =,
Pa q Pu
Hence

2 0,2 02
pa = pu = o (ke — ghs + 25 47) = 1935 (=50 - %) = 2740 1o/

It may also be reasoned that the actual pressure difference varies by &y from the
dynamic pressure difference since A is 5 ft above the nose, or —2418 — 5 X 62.4
= —2740 lb/ft2.

7.6. Stream Functions. Boundary Conditions. Two stream functions
are defined: one for two-dimensional flow, where all lines of motion are

5

~

B

A

Fig. 7.7. Fluid region showing the posi- Fic. 7.8. Flow between two points in a
tive flow direction used in the definition fluid region,
of a stream function,

parallel to a fixed plane, say the xy-plane, and the flow is identical in
each of these planes, and the other for three-dimensional flow with axial
symmetry, i.e., all flow lines are in planes intersecting the same line or
axis, and the flow is identical in each of these planes.

Two-dimensional Stream Function. If A, P represent two points in
one of the flow planes, e.g., the zy-plane (Fig. 7.7), and if the plane has
unit thickness, the rate of flow across any two lines ACP, ABP must
be the same, if the density is constant and no fluid is created or destroyed
within the region, as a consequence of continuity. Now, if 4 is a fixed
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point and P a movable point, the flow rate across any line connecting
the two points is a function of the position of P. If this function is y,
and if it is taken as a sign eonvention that it denotes the flow rate from
right to left as the observer views the line from A looking toward P, then

¥ = y(z,y)

is defined as the stream function.

If y1, ¥» represent the values of stream function at points P,, P,
(Fig. 7.8), respectively, then ¢, — ¢, is the flow across P,P; and is
independent of the location of A. Taking another point O in the place
of A changes the values of yi, ¢ by the same amount, viz., the flow
across OA. Then ¢ is indeterminate to the extent of an arbitrary
constant.

or
P
X \{P
I: rée-7" ’x‘/"o
L3 ___.p r
A j— bx S
O et
(b)

0 X
() -

F1a6. 7.9. Selection of path to show relation of velocity components to stream function.

The velocity components «, v in the z-, y-directions may be obtained

from the stream function. In Fig. 7.9a, the flow & across AP = dy,
from right to left, is —u &y, or

U= —— = — — .(7.6.1)

and similarly

p=F =¥ (7.6.2)

In words, the partial derivative of the stream funection with respect to any
direction gives the velocity component +90° (counterclockwise) to that
direction. In plane polar coordinates

from Fig. 7.9b.

When the two points P,, P; of Fig. 7.8 lie on the same streamline,
¥1 — ¢¥a = 0 as there is no flow across a streamline. Hence, a streamline
is given by ¢ = constant. By comparing Eqgs. (7.4.4) with Egs. (7.6.1)
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and (7.6.2),
do oy do oy

By Eqs. (7.6.3) a stream function may be found for each velocity
potential. I