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PREFACE 

Several important changes in emphasis have been made in this revision. 
The most. extensive change is in the handling of compressible flow. In 
general, there is no fixed pattern for the election of thermodynamics 
before fluid mechanics throughout the engineering colleges. The treat- 
ment of compressible fluids should not repeat an appreciable amount of 
work normally covered in thermodynamics but should either introduce 
this work or supplement it. Owing to the limited class time in a course 
on fluids, thermodynamic topics have been restricted to perfect gases 
with constant specific heats. The treatment of losses conforms generally 
to thermodynamic concepts. These changes have caused minor changes 
in the fluid properties treatment, major changes in fluid concepts and 
basic equations, and a new treatment of the chapter on compressible flow. 

As the first courses in statics and dynamics are now being taught with 
vectors in-many schools, they have been introduced where appropriate. 
Most of the fluid treatment is one-dimensional and hence neither requires 
nor benefits from vectors. In two- and three-dimensional flow, however, 
they are used for derivations of continuity, momentum, and Euler's 
equation. The chapter on dimensional analysis has been strengthened 
and moved forward to Chapter 4 for greater emphasis. The chapter on 
fluid statics has been shortened somewhat, and the viscous effects treat- 
ment, Chapter 5, has been shortened, with compressible examples and 
applications removed to Chapter 6. 

Ideal-fluid flow has been expanded to cover three-dimensional flow 
cases, plus additional two-dimensional examples. The chapter on turbo- 
machinery has been broadened to include compressible examples, and 
flu id measurements now include optical measurements. 

Division of the material into two parts, fundamentals and applica- 
tions, has been retained because of its wide acceptance in the second 
edition. The treatment is more comprehensive than needed for a first 
course, and the instructor should select those topics he wishes to stress. 
A three-semester-hour course could normzlUy include most of the first 
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five chapters, plus portions of Chapters 6 and 7, with selected topics 
from Part Two. 

Most of the problems have been completely rewritten and range from 
very simple ones to those requiring further development of theory. 

The author wishes to acknowledge the help he has received from his 
colleague Gordon Van Wylen for the many stimulating discussions of the 
thermodynamic aspects of fluid flow, from the reviewers who have added 
greatly to the text by their frank evaluations of the requirements of a 
first text on fluids, from the McGraw-Hill Book Company representatives 
for their understanding and full cooperation, and from Miss Pauline 
Bentley and Evelyn Streeter for their wholehearted aid in preparing the 
manuscript and in reading proof. The a'uthor is deeply greateful for 
their help. 

V .  L. Streeter 
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PART ONE 

Fundamentals of Fluid Mechanics 

In the first three chapters of Part One, the properties of fluids, 
fl [rid statics, and the underlying framework of concepts,. definitions, 
: I I I ~  basic equations for fluid dynamics are discussed. Dimension- 
less parameters are next introduced, including dimensional analysis 
tilid dynamic similitude. Chapter 5 deals with real fluids and the 
iritroduction of experimental data into fluid-flow calculations. 
Compressible flow of both real and frictionless fluids is then treated, 
and the final chapter on fundamer~tals deals with two- and three-e 
dimensional ideal-fluid flow. Thc theory has hecn illustrated with 
elementary applications throughout Yurt One. 





FLUID PROPERTIES AND DEFINITIONS 

Fluid mechanics is one of the engineering sciences that  form the 
basis for all engineering. The s~lbject branches out into various special- 
ties such as aerodynamics, hydraulic engineering, marine engineering, 
gas dynamics, and rate processes. It deals with the statics, kinematics, 
and dynamics of fluids, since the motion of a fluid is caused by unbalanced 
forces exerted upon it. Available methods of analysis stem from the 
application of the following principles, concepts, and laws: Newton's 
laws of motion, the first and second laws of thermodynamics, the principle 
of conservation of mass, equations of. state relating fluid properties, 
Yewton's law of viscosity, mixing-length concepts, and restrictions 
caused by thc presence of boundaries. 

In  fluid-flow calculations, viscosity and density are the fluid properties 
most generally encountered; they play the principal roles in open- and. 
closed-channel flow and in flow around immersed bodies. Surface- 
tension effects are of importance in the formation of droplets, in flow of 
small jets, and in situations where liquid-gas-solid or liquid-liquid-solid 
interfaces occur, as well as in the format.ion of capillary waves. The 
property of vapor pressure, accounting for changes of phase from liquid 
to gas, becomes important when reduced pressures are encountered. 
In this chapter fluid propertties are discussed, as well as units and dimen- 
sion and concepts of the continuum. d Definition of a Fluid. A fluid is a substance that  deforms continu- 
ously when subjected to a shear stress, no matter how small that  shear 
stress may be. A shear force is the force component tangent to a surface, 
and this force divided by the area of the surface is the average shear stress 
over tfie ires. Shear stress at a point is the limiting value of shear force 
to area as the area is reduced to  the point. 

I n  Fig. 1.1 ti substance is placed between two closely spaced parallel 
plates, so large that conditions at t,heir edges may be neglected. The 
lower plate is fixed, and a force F is applied to the upper plate, which 
exerts a shear stress F / A  on any substance between the plates. A is 
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4 FUNDAMENTALS OF RUlD MECHANICS (Chap. 1 

the area of the upper plate. When the force F causes the upper plate to 
move with a steady (nonzero) velocity, no matter how small the magni- 
tude of F, one may conclude that the substance between the two plates 
is a fluid. 

The fluid in irnqediate contact with a solid boundary has the same 
velocity as the boundary, i.e., there is no slip at  the boundary.' The fluid 
in the area abcd flows to the new position ab'c'd with each fluid particle 
moving parallel to the plate and the velocity u varying uniformly from 
zero a t  the stationary plate to U at the upper plate. Experiments show 

Fra. 1.1. Deformation resulting from application of constant shear force. 

that other quantities being held constant, F is directly proportional to A 
and to U and is inversely proportional to 1. In equation form 

AU F = ' T  

in which p is the proportionality factor and includes the effect of the 
particular fluid. If r = F / A  for the shear stress, 

The ratio U / t  is the angular velocity of line ab, or it is the rate of angular 
deformation of the fluid, i.e., the rate of decrease of angle bad. The 
angular velocity may also he writ.ten du/dy, as both U / t  and du/dy express 
the velocity change divided by the distance over which the change occurs. 
However, du/dy is more general as it holds for situations in which the 
angular velocity and shear stress change with y. The velocity gradient 
duldy may also be visualized as the rate a t  which one layer moves relative 
to an adjacent Iayer. In differential form, 

is the reIation between shear stress and rate of angular deformation for 

S. Goldstein, "Modern Developments in Fluid Dynamics," vol. II, pp. 676-680, 
Oxford University Prw, London, 1938. 
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one-dimensional flow of a fluid. The proportionality factor p is called 
the viscosity of the fluid, and Eq. ( 1.1.1) is Newtan's law of tviscosity. 

A plastic substance cannot fulfill the definition of a fluid because it baa 
an initial yield shear stress that must be exceeded to cause a continuous 
deformation. An elastic substance placed between the two plates would 
deform a certain amount proportional to the force, but not continuously 
at amdefinite rate. A complete vacuum between the plates would not 
result in a constant final rate, but in an ever-increasing rate. If sand 
were placed between the two plates, dry friction would require a Jinile 
force to cause a continuous motion. Thus sand will not satisfy the 
definition of a fluid. 

Yield ' Shear stress T 
stress 

FIG. 1.2. Rheological diagram. 

Fluids may be classified as Xewtonian or non-Scwtonian. In  New- 
tonian fluid there is a linear relation between the magnitude ~f applied 
shear stress and the resulting rate of deformntior~ [p constant in Eq. 
(1.1. I)], as shown in Fig. 1.2. In non-Xewtonian fluid there is a nonlinear 
relation between the magnitude of applied shear stress and the rate of 
mgular deformation. An ideal plaslic h i  a definite yield stress and a 
constant linear relation of T to du./dy. A thixotropic substance, such as 
printer's ink, has a visc0sit.y that is dcpendent upon t.he immediately 
prior angular deformation of the substance and has a tendency to take a 
set when a t  rest. 

Gases and thin liquids tend toward Sewtonian fluids, while thick 
liquids may be non-Kewtonian. Tar is an example of a very viscous 
liquid that cannot sustain a shear stress while at rest.. Its rate of defor- 
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mation is so slow that it will apparently sustain a load, such as a stone 
placed on its free surface. However, after a day the stone will have 
penetrated into the tar. 

For purposes of analysis, the assumption is frequently made that a 
fluid is noxiviscous. With zero viscosity the shear stress is always zero, 
regardless of the motion of the fluid. If the fluid is also considered to be 
incompressible it is then called an ideal fluid, and plots as the ordinate 
in Fig. 1.2. 

1.2. Force and M a s s  Units. The unit of force adopted in this text is 
the pound (Ib). Two units of mass are employed, the slug and the 
pound mass (lbm). Since thermodynamic properties are generally tabu- 
lated on a pound-mass basis, they are listed accordingly, but the example 
problems generally convert to the slug. 

The pound of force is defined in terms of the pull of gravity, a t  a speci- 
fied (standard) location, on a given mass of platinum. At standard 
gravitation, g = 32.174 ft/sec" the body having a pull of gravity of one - 

pound has a mass of one pound mass. By writing Newton's second law 
of motion in the form 

and applying it to this object faljing freely in a vacuum a t  standard 
conditions 

i t  is clear that 

Whenever the pound mass is used in this text, it is labeled lbm. The 
pound force is written lb. The number go is a constant, independent of 
location of application of Newton's law and dependent only on the units 
pound, pound mass, foot, and second. At any other location than 
standard gravity, the mass of a body remains constant but the weight 
(force or pull of gravity) varies: 

For example, where g = 31.0 ft/sec2, 

10 10 lb, weighs 31.0 X 
32.174 

= 9.635 lb 

The slug is a derived unit of mass, defined as the amount of mass that is 
accelerated one foot per second per second by a force of one pound. For 
these units the constant go is unity, i.e., 1 slug-ft/lb-sec2. Since fluid 
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mechanics is so closely tied to Newton's second law, the slug may be 
defined as 

lb-sec2 
f slug = 1 ft 

5 

and the consistent set of units slug, pound, foot, second .may be used 
without a dimensional constant go. 

In the development of equations in this treatment, consistent units are 
assumed and the equations appear without the constant go. If the pound 
mass is to be used in dynamical equations, then go must be introduced. 
:/).;& Viscosity. Of all the fluid properties, viscosity requires the great- 

est consideration in the study of fluid flow. The nature and charac- 
teristics of viscosity are discussed in this section as well as dimensions and 
conversion factors for both absolute and kinematic viscosity. Viscosity 
is that property of a fluid by virtue of which it offers resistance to shear 
stress. Kewton's law of viscosity [Eq. (1.1. I ) ]  states that for a given 
rate of angular deformation of fluid the shear stress is directly proportional 
to the viscosity. Molasses and tar are 
examples of highly viscous liquids ; wa- A 
ter and air have very small viscosities. - 

The viscosity of a gas increases with 
temperature, but the viscosity of a liq- 
uid with The FIG. 1.3. Model for illustrating tmns- 
variation in temperature trends may h, of ,,,,,turn. 
be explained upon exarninat.ion of the 
causes of viscosity. The resistance of a fluid to. shear depends upon its 
cohesion and upon its rate of transfer of molecular momentum. A liquid, 
wit.h molecules much more closely spaced than a gas, has cohesive forces 
much larger than a gas. Cohesion appears to be the predominant cause 
of viscosity in a liquid, and since cohcsion decreases with temperature, 
the viscosity does likewise. A gas, on the other hand, has very small 
cohesive forces. Most of its resistance to shear st.ress is the result of 
the transfer of molecular momentum. 

As a rough model of. the way in which momentum transfer gives rise 
to an apparent shear stress, consider two idealized railroad cars loaded 
with sponges and on parallcl tracks, as in i:ig. 1.3. Asslime each car has 
a water tank and pump, arranged so that. thr watcr is direct.ed by nozzles 
s t  right angles to the track. First, consider -4 stat.ionary and B moving 
to the right, with the water from its nozzles striking A and being absorbed 
by the sponges. Car A will be set in motion owing to the component of 
the momentum of the jets which is parallel to the tracks, giving rise to an 
apparent shear stress between A and R. Now if A is pumping water back 
.into B at the same rate, its action tends to slow dou-11 R, and equal and 
opposite apparent shear forces result. When A and 13 are both stationary 
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or have the same velocity, the pumping does not exert an apparent &ear 
stress on either car. 

Within fluid there is always a transfer of molecules back and forth 
across any fictitious surface drawn in it. When one layer moves relative . 
to an adjacent layer, the molecular transfer of momentum brings momen- 
tum from one side to the other so that an apparent shear stress is set up 
that resists the relative motion and tends to equalize the velocities of 
adjacent layers in a manner analogous to that of Fig. 1.3. The measure 
of the motion of one layer relative to an adjacent layer is du/dy. 

3lolecular activity gives rise to an apparent shear stress in gases which 
is more important than the cohesive forces, and since molecular activity 
increases with temperature, the viscosity of a gas also increases with 
temperature. 

For ordinary pressures viscosity is independent of pressure and depends 
upon temperature only. For very great pressures gases and most liquids 
have shown erratic variations of viscosity with pressure. 

A fluid a t  rest, or in motion so that no layer moves relative to an adja- 
cent. layer, will not have apparent shear forces set up, regardless of the 
visc.osity, because d u l d y  is zero throughout the fluid. Hence, in the study 
of fluid statics, no shear forces can be considered because they do not 
occur iri a static fluid, and the onIy stresses remaining are normal stresses, 
or pressures. This greatly simplifies the study of fluid statics, since any 
free body of fluid can have only gravity forces and normal surface forces 
acting on it. 

The dimensions of viscosity are determined from Newton's law o f '  
viscosity [Eq. (1.1. I)]. Solving for the viscosity /I, 

Inserting dimensions F,  L, T for force, length, and time, 

p is seen to have the dimensions FL-2T. With the force dimension 
expressed in terms of mass by use of Xewton's second law of motion, 
F = MLT-2, the dimensions of viscosity may be expressed as ML-IT-'. 

The Xnglish unit of viscosity (which has no special name) is 1 lb-sec/ft2 
or 1 slug/ft-sec (these are identical). The cgs unit of viscosity,' called 

' The relation of the English unit to the poise may be established by converting 
from one system of units to the other. Consider a fluid that has a viscosity of 1 lb-see/ 
ft2. After pounds are converted to dynes and feet to centimeters, 

lb-see 454 X 980 dyne-sec 
(30.48)1 

= 479 poise 
cmf 

The English unit is much larger. Hence, to convert from the poise to the English unit, 

divide by 479;'to convert from the English unit to the poise, multiply by 479. 
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the poise, is 1 dyne-sec/cm2 or 1 gm/cm-sec. The centipuise Is one one- 
hundredth of s poise. Water at 68*F has a viscosity of 1.002 contipoise. 

Kinematic Viscosity. The viscosity p is frequently referred to as the 
absolute viscosity or the dynamic viscosity to avoid confusing it with the 
kinematic viscosity v ,  which is tho ratio of viscosity to mass density, 

The kinematic viscosity occurs in many applications, e.g., the Reynolds 
number, which is V D j v .  The dimensions of v are L2T-I. The English 
unit, 1 ft2/sec, has' no special ilarne; the cgs unit, called the stoke, is 
I crn2/sec.t 

To convert to the English unit of viscosity from the English unit of 
kinematic viscosity, i t  is necessary to multiply by the mass density in 
slugs per cubic foot. To change to the poise from the stoke, it is neces- 
sary to multiply by the mass density in grams per cubic centimeter, 
which is numerically equal to the specific gravity. 

Example 1.1 : A liquid has a viscosity of 0.05 poise and a specific gravity of 0.85. 
Calculate: (a) the viscosity in English units; (b)  the kinematic viscosity in stokes; 
and (c) the kinematic viscosity in English units. 

0.05 slug - 0.000105 --- (a) P = r73 - ft-sec 
0.05 

(b)  v = -- = 0.0589 stoke 0.85 
f t 2  0'000105 0.0000638 - 

") = 1.935 X 0.85 sec 

Viscosity is practically independent of pressure and depends upon 
temperature only. The kinematic viscosity of liquids, and of gases at a 
given pressure, .is substantially a function of temperature. Charts for 
the determination of absolute viscosity and kinematic viscosity are given 
in ~ ~ g n d i x  C, Figs. C.l and (3.2, respectively. 
V/4. Continuum. In  dealing with fluid-flow relationships on a mathe- 

matical or analytical basis, it is necessary to consider that the actual 
molecular structure is replaced by a hypothetical continuous medium, 
called the continuum. 1;or example, velocity at a point in space is 
indefinite in a molecular medium, as it would be zero at  all times except 
when a molecuIe occupied this exact point, and then it would be the 

f The conversion from English unit to cgs is 

f t 2  cm2 
1 - = (30.48)= X 1 - = (30.48)' stokes 

sec sec 

The English unit is again much larger than the cgs unit; therefore, to convert from 
the stoke to the English unit, divide by (30.48)2; to convert from the English unit 
the stoke, multiply by (30.48)%. 
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velocity of the molecule and not the mean mass velocity of the particles 
in the neighborhood. This dilemma is avoided if one considers velocity 
at a point to be the average or mass velocity of all molecules surrounding 
the point, s.ay, within a small sphere with radius large compared with the 
mean distance between molecules. . With n molecules per cubic centimeter, 
the mean distance between molecules is of the order n-4 cm. Molecular 
theory, however, must be used to calculate fluid properties (e.g., viscosity) 
which are associated with molecular motions, but continuum equations 
can be employed with the results of molecular calculations. 

In rarefied gases, such as the atmosphere at 50 miles above sea level, 
the ratio of the mean free path1 of the gas to a characteristic length for a 
body or conduit is used to distinguish the type of flow. The flow regime 
is called gas dynamics for very small values of the ratio, the next regime 
is called sl ip $ow, and for large values of the ratio it is free molecule flow. 
In this text only the gas dynamics regime is studied. 

The quantities density, specific volume, pressure, velocity, and 
acceleration are assumed to vary continuously throughout a fluid (or be 
const nt). 
i,l'!? Density, Specific Volume, Specific Weight, Specific Gravity, 

Pressure. The density p of a fluid is defined as its mass per unit volume. 
To define density a t  a point the mass Am of fluid in a small volume AF 
surrounding t.he point is divided by A f  and the limit is taken as AV 
becomes a value e 3  in which E is still large compared with the mean distance 
between molecules, 

Am 
p = lim - 

*V+ra Av 
When mass is expressed in slugs, p is in slugs per cubic foot; when mass 

is expressed in pounds mass, then p is in pounds mass per cubic foot. 
These units are related by 

For water at standard pressure (14.7 Ib/in.2) and 75'F, 

The speciJic volume v, is the reciprocal of the density p ;  i.e., it is the 
volume occupied by unit mass of fluid. Hence 

The speci$c weight y of a substance is its weight per unit volume. I t  

The mean free path is the average distance a moleeule travels between collisions. 
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changes with location, 
Plb, 1 b 

Y = Psin& = 32.174 ff 
depending upon gravity. It is a convenient property when dealing with 
fluid statics or with liquids with a free surface. 

The specifcc gravity S of a substance is the ratio of its weight to the 
weight of an equal volume of water. I t  may also be expressed as a ratio 
of its density or specific weight to that of water. 

The normal force pi~shing against a plane area, divided by the area, is 
the average pressure. The pressure a t  a point is the ratio of normal force 
to area as the area approaches a small value inclosing the point. Pressure 
has the units force/area and may be pounds per square inch or pounds per 
square foot. Pressure may also be expressed in terms of an equivalent 
length of a fluid column, as shown in Sec. 2.3. 

1.6. Perfect Gas. In - this treatment, thermodynamic relationships 
and compressib16-fluid-flow cases have been limited generally to perfect' 
gases. The perfect gas is defined in this section, and its various inter- 
relationships'with specific heats are treated in Sec. 6.1. 

The perfect gas, as used herein, is defined as a substance that satisfies 
the perfect-gas law 

pv, = RT (1.6.1) 

and that has coi~stant specific heats. p is the absolute pressure, u, the 
specific volume, R the gas constant, and T the absolut,e temperature. 
The perfect gas must be carefully distinguished from the ideal fluid. An 
ideal fluid is frictionless and incompressible. The perfect gas has 
viscosity and can therefore dcvelop shear stresses, and it is compressible 
according to Eq. (1:6.1). 

Equation (1.6.1) is thc! equation of state for a perfect gas. It may be 
written 

p = &l' (1.6.2) 

The units of R may be determined from the equation when t.he other units 
arc known. For p in pounds per square foot, p in slugs per cubic foot, and 
T (OF + 459.6) in degrees Rankine (OR), 

lh ft3 f t-l b : - = --.- 
ft2slug0R slugOR 

For p in pounds mass per r:uhic foot, 

The magnitude of R in slug units is 32.174 times greater than in pound 
mass units. Values of R for several common gases are given in Table C.2. 
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Real gases at low pressure tend to obey the perfect-gas law. As the 
pressure increases, the discrepancy increases and becomes serious near 
the critical point. The perfect-gas law encompasses both Charles' law 
and Boyle's law. Charles' law states that for constant pressure the 
volume of a given mass of gas varies as its absolute temperature. Boyle's 
law (isothermal law) states that for constant temperature the density 
varies directly as the absolute pressure. Thevolume f of m mass units 
of gas is mv. ;+ hence 

p f  = mRT (1.6.3) 

Certain simplifications result from writing the perfect-gas law on a mole 
basis. A pound-mole of gas is the number of pounds mass of gas equal 
to its molecular weight; e-g., a pound-mole of oxygen Oz is 32 lb,. With 
fia the volume per mole, the perfect-gas law becomes 

p& = MRT (1.6.4) 

if M is the molecular weight. In general, if n is the number of moles of 
the gas in volume f, 

pV = nMRT (1.6.5) 

since nM = m. Now, from Avogadro's law, equal volumes of gases at  
the same absolute temperature and pressure have the same number of 
molecules; hence their masses are proportional to the molecular weights. 
From Eq. (1.6.5) it is seen that MR must be constant, since pF/nT is the 
same for any perfect gas. The product MR is called the universal gas 
constant and has a value depending only upon the units employed. It is 

MR = 1545 
ft-lb 

lb,-mole OR 

The gas constant R can then be determined-from 

1545 ft-lb R = -  
M lb, OR 

or in slug units, 

R = 
15.45X32.174 ft-lb 

M slug OR 

so that knowledge of molecular weight leads to the value of R. In 
Table C.2 of Appendix C molecular weights of some common gases are 
listed. 

Additional relationships and definitions used in perfect-gas flow are 
introduced in Chaps. 3 and 6. 

~ x a m p k  1.2: A g m  with molecular weight of 44 is at a pressure of 13.0 psia 
(pounda per square inch absolute) and a temperature of 60°F. Determine its 
density in dugs per cubic foot. 
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From Eq. (1.6.8) 

R =  1545 X 32.174 ft-lb 
44 = 1129 slug OR 

Then from Eq. (1.6.2) 

1.7. Bulk Modulus of Elasticity. In the preceding section the com- 
pressibility of a perfect gas is described by the perfect-gas law. For most 
purposes a liquid may be considered as incompressible, but for situations 
involving either sudden or great changes in pressure, its compressibility 
becomes important. Liquid compressibility (and gas also) becomes 
important also when temperature changes arc involved (e.g., free Lmn- 
vection). The compressibility of a liquid is expressed by its bulk modulus 
07 elasticity. If the pressure of a unit volume of liquid is increased by dp, 
it will cause a volume decrease -dV;  the ratio -dp /dV  is the bulk 
modulus of elasticity K. For any volume V of liquid 

Since d V /  I: is dimensionless, K is expressed in the units of p. For water 
at ordinary ternperaturcs and pressures K = 300,000 psi. 
TQ gain some idea about the compressibility of water, consider the 

applict3,tion of  100 psi pressure t.o I ft3 of water. When Eq. (1.7.1) is 
solved for - d If, 

Hence, the application of 100 psi to water under ordirlary conditions 
causes its volume to decrease by only 1 part in 3000. As a liquid is 
compressed, the resistance to further compression increases; therefore 
K increases with pressure. At 45,000 psi the value of K for water has 
doubled. 

Example 1.3: A liquid compressed in a cylinder has a volume of 0.400 ftJ at 
1000 psi and a volume of 0.396 ft3 at 2000 psi. What is its bulk modulus of 
elasticity? 

AP K = - - - = -  2000 - 1000 
AV/ V (0.396 - 0.400)/0.40~ = 100,000 psi 

1.8. Vapor Pressure. Liquids evaporate because of molecules escaping 
from the liquid surface. The vapor rnolecules exert a partial pressure in 
the space, known as vapor pressure. If the space above the liquid is 
confined, after a sufiicient time the number of vapor moIecules striking 
the liquid surface and condensing are just equal to the number escaping 



14 FUNDAMENTALS OF FLUID MECHANICS [Chap. 1 

in any interval of time, and equilibrium exists. Since this phenomenon 
depends upon molecular activity, which is a function of temperature, the 
vapor pressure of a @ven fluid depends upon temperature and increases 
with it. When the pressure above a liquid equals the vapor pre'mure 
of 'the liquid, boiling occurs. Boiling of water, for example, may occur 
a t  room temperature if the pressure is reduced sufficiently. At 68°F 
water has a vapor pressure of 0;339 psi, and mercury has a vapor pressure 
of 0.0000251 psi. 

1.9. Surface Tension. Capillarity. At  the interface between a liquid 
and a gas, ajilm, or special layer, seems to form on the liquid, apparently 
owing to the attraction of liquid molecules below the surface. It is a 
simple experiment to place a small needle on a quiet water surface and 
observe that i t  will be supported there by the film. 

That property of the surface film to exert a tension is called the surface 
tension and is the force required to maintain unit length of the film i'n 
equilibrium. The surface tension of water varies from about 0.005 lb/ft 
a t  68°F to 0.004 lb/ft a t  21Z°F. Surface tensions of other liquids are 
given in Table 1.1. 

TABLE 1.1. SURFACE TENSION OF COMMON LIQUIDS IN CONTACT WITH 

AIR AT 6g0F 
Suvuce tension, 

Liquid g, Wft 
................. Alcohol, ethyl. 0.00153 

Benzene . . . . . . . . . . . . . . . . . . . . . . .  0.00198 
Carbon tetrachloride. ........... 0.00183 
Kerosene. ..................... 0.0016 to 0.0022 
Water. ........................ 0.00498 
Mercury 
In air. ...................... 0.0352 
In water.. ................... 0.0269 
In vacuum.. ................. 0.0333 

Oil 
Lubricating. ................. 0.0024 to 0.0026 
Crude. ...................... 0.0016 to 0.0026 

The action of surface tension is to increase the pressure within a droplet 
of liquid or within a small liquid jet. For a small spherical droplet of 
radius T the internal pressure p necessary to balance the tensile force due 
to the surface tension a is calculated in terms of the forces which act on a 
hemispherical free body,l 

pJrr2 = 2rI-u 
or 
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For the cylindrical liquid jet of radius r, the pipe-tension equation applies, 

Both equations show that the pressure becomes large for a very small 
radius of droplet or cylinder. 

Capillary attraction is caused by surface tension and by the relative 
value of adhesion between liquid and solid to cohesion of the liquid. A 
liquid. that wets the solid has a greater adhesion than cohesion. The 
aption of surface tension in this case is to cause the liquid to rise within a 
small vertical tube that is partially immersed in it. For liquids that do 
not wet the solid, surface tension tends to depress the meniscus in a 
small vertical tube. To avoid a correction for the eflects of capillllrity in 

h = Capillary rise or depression, inches 

FIG. 1.4. Capillarity in circular glass tubes. (By permission from "Hydraulics," by 
R. L. Ilauyherty, copyright 1944, McOraw-Hill Book Company, Inc.) 

manometers, a tube ) in. in diameter or larger should be used. When the 
contact ande between liquid and solid is known, the capillary rise may be 
computed for an assumed shape of the meniscus. Figure 1.4 shows the 
capillary rise for water and mercury in circular glass tubes in air. 

PROBLEMS 

1.1. Classify the substance that has the following rates of deformation and 
corresponding shear str~ssrs: 

1.2. A Newtonian fluid is in the clearance between a shaft and a concentric 
sleeve. When a force of 100 lb is applied to the ~leeve parallel to the shaft, the 
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sleeve attains a speed of 2 ft/sec. If 500-lb force is applied, what speed will the 
sleeve attain? The temperature of the sleeve remains constant. 

1.3. Classify the following substances (maintained a t  constant temperature) : 

1.4. Determine the weight in pounds of 2 slugs mass at a,location where 
g = 31.7 ft/sec2. 

1.6. When standard scale weights and a balance are used, a body is found to 
be equivalent in pull of gravity to two of the 1-lb scale weights at  a location where 
g = 31.5 ft/sec2. What would the body weigh on a correctly calibrated spring 
balance (for sea level) a t  this location? 

1.6. Determine the value of prcqmrtionality constant go needed for the follow- 
ing set of units: kip (1000 lb), slug, foot, second. 

3.7. On another planet where standard gravity is 10 ft/sec2, what would be 
the value of the proportionality constant go in terms of the pound, pounds mass, 
foot, and second? 

1.8. A correctly calibrated spring scale records the weight of a 51-lb, body as 
17.0 lb at  a location away from the earth. What is the value of g a t  this location? 

1.9. A shear stress of 3 dynes/cm2 causes a Newtonian fluid to have an angular 
deformation of 1 rad/sec. What is its viscosity in centipoises? 

1.10. A plate, 0.001 in. distant from a fixed plate, moves a t  2 ft/sec and requires 
a force of 0.04 lb/ft2 to maintain this speed. Determine the fluid viscosity of the 
substance between the plates, in English units. 

3 in. diam 1.11. A 3.0-in.diameter shaft slides 
a t  0.4 ft/sec through a 6-in.-long sleeve 
with radial clearance of 0.01 in. (Fig. 
1.5) when a 10.0-lb force is applied. 
Determine the viscosity of fluid be- 
tween shaft and sleeve. FIG. 1.5 

1.12. A flywheel weighing 100 lb has a radius of gyration of 1 ft.' When it is 
retating 600 rpm, its speed reduces 1 rpm/sec owing to fluid viscosity between 
sleeve and shaft. The sleeve length is 2.0 in., shaft diameter 1,O in., and radial 
clearance 0.002 in. Determine the fluid viscosity. 

1.13. A fluid has a viscosity of 6 centipoises and a density of 50 lb,/ft3. Deter- 
mine its kinematic viscosity in English units and in atokes. 
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1.14. A fiuid has a specific gravity of 0.83 and a kinematic viscosity of 2 stokes. 
What is i b  viscosity in English units and in poises? 

1.15. A body weighing 90 lb with a flat surface area of 1 ft2 slides down a 
lubricated inclined plane making a 30" angle with the horizontal. For viscosity 
of 1 poise and body speed of 10 ft/sec, determine the lubricant film thickness. 

1.16. What is the viscosity of gasoline a t  100°F in poises? 
1.17, Determine the kinematic viscosity of benzene a t  60°F in stokes. 
1.18, How much greater is the viscosity of water a t  32°F than a t  20O0F? 

How much greater is its kinematic viscosity for the same temperature range? 
1.19. What is the specific volume in cubic feet per pound mass and cubic feet 

per slug of a subgtance of specific gravity 0.751 
1.20. What is the relation between specific volume and specific weight? 
1.21. The density of a substance is 2.94 gm/cm3. What is its (a) specific 

gravity, (b) specific volume, and (c) specific weight? 
1.22. A gas a t  60°F and 20 psia has a, volume of 4.0 ft3 and a gas constant 

R = 48 ft-lb/lb, OR. Determine the density and number of slugs of gas. 
1.23. What is the specific weight of air a t  40 psia and f 20°F? 
1.24, What is the density of water vapor a t  6 psia and 4S°F, in slugs per 

cubic foot? 
1.26, A gas with molecular weight 48 has a volume of 4.0 ft3 and a pressure 

and temperature of 2000 psfa and 600°R, respectively. What is its specific 
volume and specific weight? 

1.26. 2.0 lb, of hydrogen is confined in a volume of I ft3 a t  -40°F. What is 
the pressure? 

1.27. ~ x ~ i e s s  the bulk modulus of elasticity in terms of density change rather 
than volume change. 

1.28. For constant bulk'modulus of elasticity, how does the density of a liquid 
vary with the pressure? 

1.29, What is the bulk modulus of a liquid that has a density increase of 0.01 
per cent for a pressure increase of IOOO lb/ft2? 

1.30. For K = 300;000 psi for bulk modulus of elasticity of water what pres- 
sure is required to reduce its volume by I per cent? 

1.31. A steel container expands in volume 1 per cent when the pressure within 
i t  is increased by 10,000 psi. A t  standard pressure, 14.7 psia, i t  holds 1000 lb, 
water p = 62.4 1b,/ft3. For K = 300,000 psi; when i t  is filled, how many pounds 
mass water need be added to increase the pressure to 10,000 psi? 
Z.32. What is the pressure within a droplet of water 0.002 in. in diameter at 

68°F if the pressure outside the droplet is standard atmospheric pressure of 
14.7 psi? 

1.33. A small circular jet of mercury 0.002 in. in diameter issues from an open- 
ing. What is the pressure difference between the inside and outside of the jet 
when at 68OF? 

1.34. Determine the capillary rise for distilled water at 32OF in a circufar g l ~ s  
tube a in. in diameter. 

1.36. A fluid is a substance that 

(a) always expands until it fills any container 
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(b) is practicaIly incornpre~ible 
(c) cannot be subjected to shear forces 
(d) cannot remain a t  rest under action of any shear force 
(e) has the same shear stress a t  a point regardless of its motion 

1.36. A 2.0-lb, object weighs 1.90 Ib on a apring balance. The value of g at  
this location is, in feet per second per second, 

(a)  30.56 (b) 32.07 (c)  32.17 (d) 33.87 (e) none of these 
answers 

1.37. At a location where g = 30.00 ft/sec: 2.0 slugs is equivalent to how many 
pounds mass? 

(a)  60.0 (b) 62.4 (c) 64.35 (d) not equivalent units 
(e) none of these answers 

1.38. The weight, in pounds, of 3 slugs on a planet where g = 10.00 ft/sec2 is 

(a) 0.30 (b) 0.932 (c) 30.00 (d) 96.53 (e) none of these 
answers 

1.39. Newton's law of viscosity relates 

(a) pressure, velocity, and viscosity 
(b) shear stress and rate of angular deformation in a fluid 
(c) shear stress, temperature, viscosity, and velocity 
(d) pressure, viscosity, and rate of angular deformation 
(e)  yield shear stress, rate of angular deformation, and viscosity 

1.40. Viscosity has the dimensions 

(a) FL-2T (b) F T  (c) FLT-f (d)  FLtT (e) FLT2 

1.41, Select the incorrect completion. Apparent shear forces 

(a)  can never occur when the fluid is at rest 
(b) may occur owing to cohesion when the liquid is a t  rest 
(c) depend upon molecular interchange of momentum 
(4 depend upon cohesive forces 
(e) can never occur in a frictionless fluid, regardless of its motion 

1.42. Correct units for dynamic viscosity are 

(a) dyne-sec2/cm (b) gm/crn-sec2 , (c) gm-sec/cm (d)  dyne- 
cm/secz (e) dyne-sec/cm2 

1.43. Viscosity, expressed in poise, is converted to the English unit of viscosity 
by multiplication by 

(a)  & (b)  479 (c) p (d)  l/p (e) none of these answers 

1.44. The dimensions for kinematic viscosity an: 

(a)  FL-fT (b) ML-lT-l ( c )L2T2  .(d)L2TAL (e) L2T-2 
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1.46. In converting from the English unit of kinematic viscosity to the stoke, 
one multiplies by 

(b) 1/(30.48)= (c) 479 (d).(30.48)' (e) noneof 
these answers 

1.46. The kinematic viscosity of kerosene at 90°F is, in square feet per second, 

(a) 2 x 1 0 - 5  (b)3.2X10-L ( ~ ) 2 X 1 0 - ~  (d) 3.2X10-4 
(e) none of these answers 

1.47. The kinematic viscosity of dry air a t  25°F and 29.4 psia is, in square feet 
per second, 

(a) 6;89X (b) 1.4X (c) 6.89 X lo-' (d) 1.4 X 10-3 
(e) none of these answers 

1.48. For f i  = 0.60 poise, sp gr = 0.60, v, in stokes, is 

(a) 2.78 (b) 1.0 (c) 0.60 (d) 0.36 (e) none of these answers 

1.49. For p = 2.0 X lo-' siug/fbsec, the vdue of p in pound-seconds per 
square foot is 

(a) 1.03 X (b) 2.0 X lo-' (c) 6.21 X lo-' (d) 6.44 X 
(e) none of these answers 

1.60. For v = 3 X lo-' stoke and p = 0.8 gm/cma, p, in slugs per foot-second, 
is 

(a) 5.02 X lo-' (b) 6.28 X lW7 (c) 7.85 X lo-' (d) 1.62 X 
(e) none of these answers 

1.61. A perfect gas 

(a) has zero viscosity (b) has conshat viscosity 
(c) is incompressible (d) satisfies pp = RT 
(e) fits none of these statements 

1.62. The molecular weight of a gas is 28. The value of R in foot-pounds per 
slug degree Rankine is 

(a) 53.3 (b) 55.2 ' (c) I545 (d) 1775 (e) none of these 
answers 

1.63. The density of air a t  40°F and 100 psia in slugs per cubic foot is 

(a) 0.00017 (b) 0.0168 (c) 0.21 (d )  0.54 (e) none of 
these answers 

1.64. Wow many pounds mass of carbon monoxide gas at 20°F and 30 p i a  is 
contained in a volume of 4.0 ft3? 

(a) 0.00453 (b) 0.0203 (c) 0.652 (d) 2.175 (e) none of 
these answers 

1.66. A container holds 2.0 lb,  air at 120°F and 120 peia. If 3.0 lbn air is 
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added and the final temperature is 240°F, the final pressure, in pounds per square 
inch absolute, is 

(a) 300 (b)  362.2 (c) 600 (d)  indeterminable (e) none of 
these answers * 

1.66. The bulk modulus of elasticity K for a gas a t  constant temperature To is 
given by 

(a) p / p  (b) RTo (c)  pp (d) pRTo (e)  none of these 
answers 

1.67. The bulk modulus of elasticity 

(a) is independent of temperature 
(b) increases with the pressure 
(c) has the dimensions of l / p  
(d) is larger when the fluid is more compressible 
(e) is independent of pressure and viscosity 

1.68. For 1000-psi increase in pressure the density of water has increased, in 
per cent, by about 

(a) & (b)  ( c )  (d) & (e) none of these answers 

1.69. A pressure of 150 psi applied to 10 f t 3  liquid causes a volume reduction 
of 0.02 ft3. The bulk modulus of elasticity, in pounds per square inch, is 

(a) - 750 (b)  750 (c)  7500 (d) 75,000 (e) none of these 
answers 

1.80. Surface tension has the dimensions 

(a) F (b) FL-1 (c)  FL-* (d) FL-= (e) none of these 
answers 



FLUID STATICS 

The science of fluid statics will be Created in two parts: the study of 
pressure and its variation throughout a fluid and the study of pressure 
forces on finite surfaces. Special cases of fluids moving as solids are 
included in the treatment of stat.ics *because of the similarity of forces 
involved. Since there is no m o h n  of a fluid layer relative to an adjacent 
layer, *there are no shear stresses in the fluid. Hence, a11 free bodies in 
Aui statics have only normal pressure forces acting on them. 

Pressure at a Point. The average pressure is calculated by 
dividing the normal force pushing against a plane area by the area. The 
pressure at a point is the limit of the ratio of normal force to area as the 
area approaches zero size at the point., **, .- ---- -. - - - - _ - - +  +-L=&.=-- -- - - -, . - . - -. - - - - At  a point a fluid at rest has the same -. -. - -  -. -____ . . - . - - - - - . - - - - 
pressure in all directions. This means Y *  
that an element 6.4 of a very small area, 
free to rotate about its center when 1 
submerged in a fluid at rest, will have 
a force of constant magnitude acting 
on either side of it, regardless of its 
orientation. ---+x 

To demonstrate this, a small wedge- 
shaped free body of unit length is taken 
at the point (x,y) in a fluid at rest (Fig. FIG. 2.1. Free-body diagram of wedge- 

shaped particle. 2.1). Since there can be no shear 
forces, the only forces are the normal surface forces and gravity. So, the 
equations of equilibrium in the x- and y-directions are, respectively, 

p, 6y -- p, 6s sin 9 = 0 
6x 6y pv 65 - p, 6s cos 8 - y T = O  

in which p,, pv, Pr are the average pressures on the three faces and 7 is the 
 pacific weight of the fluid. Taking the limit as the free body is reduced 

2 1 
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to zero size, by allowing the inclined face to approach (x,y) maintaining 
the same angle 8, and using the geometric relations 

6s sin 8 = 6y 8s cos 8 = 6x 

the equations simplify to 4 

The last term of the &cond equation is an infinitesimal of higher order 
of smallness and may be neglected. When divided by 6y and ax, respec- 
tively, the equations may be combined, 

Since B is any arbitrary angle, this equation proves that the pressure is the 
same in all directions at  a point in a static fluid. Although the proof was 
carried out for a two-dimensional case, it may be demonstrated for the 
three-dimensional case with the equilibrium equations for a small 
tetrahedron of fluid with three faces in the coordinate planes and the 
fourth face inclined arbitrarily. 

If the fluid is in motion so that one layer moves relative to an adjacent 
layer, shear stresses occur and the normal stresses are, in .general, no 
longer the same in all directions at a point. The pressure is then defined 
as the average of any three mutually perpendicular normal compressive 
stresses at  a point, 

P = 
P z  + Pv + P: 

3 

In a fictitious fluid of zero viscosity, i.e., a frictionless fluid, no shear 
stresses can occur for m y  motion of the fluid, so at  a point the pressure is 
the same in all directions. 

2.2. Pressure Variations in a Static Fluid. The laws of variation of 
prewure in a static fluid may be developed by considering variations along 
a horizontal line and variations along a vertical line. 

FIG. 2.2. Two poinb st same elevation in a static fluid. 

Two points, A and B, in Fig. 2.2, are in a horizontal plane. On a 
cylindrical free body, with axis through the points and end areas normal 
to the axis and through the respective points, the only forces acting in an 
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axial direction arc p~ 6a and p~ 6a, in which 6a 'x the cross-sectional area 
of the cylinder. Therefore p.4 = pe,  which proves that two p o d s  in the 
same horizontal plane in a conti?tuous mass of fluid at rest have the same 
pressure. Although the proof was for two points that could be con- 
nect.cd by zt straight line thror~gh thc fluid, i t  mav he extended to s ~ &  

FIG. 2.3. I'aths for considering variation of pressure in a fluid. 

sitr~zlt ions as poir~t~s 1 and 2 in Fig. 2.3, wheri the 1~ariat.ion of pressure ill a 
vert i c x l  liile is ronsidered. 

Basic Equation qf Hydrostatics. I>resszlre 1,'ariation in an Incom- 
pwssihle F/,rtid. As thcrc is no variation of pressure in a horizontal 
directt i o i l ,  t hc variation must occur in  the vcrtic?al direction. Consider a 
free body of fluid (F'ig. 2.4) consisting of a prism 
of cross-sectional area A ,  with axis vertical and 
height 6y. The base is at elevation y from an 
arbitrary dat.urn. The pressure at y is p and at. 
y + 6y it is p + ( d p l d y )  6y. The wcight of the 

L free body is 714 Sy, where 7 is the specific weight 
of fluid at clcvittion y. Since no shear forctcs 
exist, the three forces shown in Fig. 2.4 'n~rist 
he in equilibrium, so 

When the equation is simplified and divided by , /, ,/4 

the volume. 6y, as 6y becomes very small, FIG. 2.4. Free-body dia- 

d p  = - y d y  (2.2.1) gram for vertical forces act- 
ing on a fIuid element. 

This simple diffcrct~bial equntiorl relates tho 
(ahnnge of pressure to specific +eight and rhs i~ge  of elevat,ion, and holds 
for both compressible and incompressible fluids. 

l o r  ffuids that  may be considered incompressible, y is constant, and 
Eq. (2.2. I), when integrated, becomcs 

in which c is the constant of integration. The hydrostatic law of v a ~ a -  
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tion of pressure is frequently written in the form 

in which h is measured vertically downward (h = - y) from a free liquid 
surface and p is the increase in pressure from that at the free surface. 
Equation (2.2.2) may be derived by taking as fluid free body a vertical 
column of liquid of finite height h with its upper surface in the free surface. 
This is left as an exercise for t.he student. 

Example 2.1: An open tank contains 2. ft of water covered with I ft of oil, 
sp gr 0.83. Find the pressure at the interface and at the bottom of the tank. 

At the interface, h = 1,  y = 0.83 X 62.4 = 51.7 Ib/ft3, and 

At the bottom of the tank the pressure is that at the interface plus yh for the 
water, or 

p = 51.7 + 2 X 62.4 = 176.5 lb/ft2 

Pressure Variation in a Compressible Fluid. When the fluid is a perfect 
gas a t  rest at constant temperature, from Eq. (1.6.2) 

When t.he value of 7 in Eq. (2.2.1) is replaced by pg and p is eliminated 
between Eqs. (2.2.1) and (2.2.3), 

It must be remembered that  if p is in pounds mass per cubic foot, then 
7 = gp/go with go = 32.174 Ib,-ft/lb-sec*. If p = po when p = PO, 
integration between limits 

lI: dy = - Po 1% 
SPo PO P 

yields 

in which In is the natural logarithm. Then 

which is the equation for variation of pressure with elevation in an 
isothermal gas. 

The atmosphere frequently is assumed to have a constant temperature 
gradient, expressed by 

T = To + By 
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For the standard atmosphere B = -0.03.57OF/ft up to the stratosphere. 
The density may be expressed in terms of presstire and elevation from the 
perfect-gas law : 

Substitution into dp = -pg dy [Eq. (2.2.l)j permits the variables to be 
separated and p to be found in terms of y by integration. 

Example 2.2: Assuming isothermal conditions to prevail in the atmosphere, 
compute the pressure and density at 5000 ft elevation if p = 14.7 psia, p = 
0.00238 slug/ft3 at sea level. 

From Eq. (2.2.6) 

Then, from Eq. (2.2.3) 

When compressibility of a liquid in static equilibrium is taken into 
account, Eqs. (2.2.1) and (1.7.1) are utilized. 
2.3. Units and Scales of Pressure Measurement. Pressure may be 

expressed with reference to any arbitrary datum. The usual ones are 
absolute zero and local atniospheric pressure. When a pressure is expressed 
as a difference between its value and a complete vacuum, it is called an 
absolute pressure. When it is expressed as a differcnce between its value 
and the local at.mospheric pressure, it is called a gage pressure. 

The bourdon gage (Fig. 2.5) is typical of the devices used for measuring 
gage pressures. The pressure element is a hollow, curved, flat, metallic 
tube, closed at one end, with the other end connected to the pressure to be 
measured. When the internal pressure is increased, the tube tends to 
straighten, pulling on a linkage to which is attached a pointer and causing 
the pointer to move. The dial reads zero when the inside and outside of 
the tube are a t  the same pressure, regardless of its particular value. The 
dial may be graduated to any convenient units, common ones being 
pounds per square inch, pounds per square foot, inches of mercury, and 
feet of water. Owing to the inherent construction of the gage, it measures 
pressure relative to the pressure of the medium surrounding the tube, 
which is the local atmosphere. 

Figure 2.6 illustrates the data and the relationships of the common 
units of pressure measurement. Standard atmospheric pressure is the 
mean pressure at sea level, 29.92 in. mercury (rounded to 30 in. for slide- 
rule work). A pressure expressed in terms of a column of liquid refers to 
the force per unit area qt the base of the column. The relation for vari* 
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tion of with altitude in a liquid [Eq. (2:2.2)] 

shows the relation between head la, in length of a fluid column of specific 
weight y, and the pressure p. I n  consistent units, p is in pounds per 

FIG. 2.5. I3ourdon gage. (C~oshlj Slentn Gage and Valve Co.) 

2 

Staridard atmospheric pressure 
1 

Local atmospheric pressure 

14.7 psi LO 

21 16 1b/ft2 LO L 
30 in. mercury Local 
34 ft water 2 barometer 

3 
1 atmosphere reading 

I .O Absolute pressure 
I 

FIG. 2.6. Units and scales for pressure measurement. 

t 

square foot, y in pounds per cubic foot, and h in feet. I:or water 7 may 
be taken as 62.4 lb/ft3. With the specific 'weight of any liquid expressed 
as its specific gravity S times the specific weight of water, Eq. (2.3.1) 
becomes 

p = 62.4Sh 

When the pre8su.m is desired in pounds per square inch, both sides of the 

I 

t Absolute zero (complete vacuum) 



See. 2.31 FLUID STATICS 27 

ecluotioli arc divided by 144, 

in  ;vhic*h h rcrnzti~ls i l l  feet.' 
I,ocitl atmospheric pressurc is measrrwd by a mercury barometer 

(Fig. 2.7) or by an aneroid barometer which measures the diffcrrl~ec io 
pressure i)rtwn.i~ the at lnosphcre a~ld an evacuated box 
Or tube, i l l  a r~ iun i i~~r  alialogous to the bourdotl gage ex- 
cept that. i he tube is o1r:ic4ueted and sealed. 

A mercury barometer cbonsists of a glass tube scaled at 
one end, filled with mercury, and inverted so that the open 
end is subn~erged in mercury. It. has a scale arranged so 
that thc hright of column R (I'ig. 2.7) can be determined. 
Iglc spncacl abovc the mercury contains mercury vapor. If 
the prcssurc! of thc mercury vapor, h.,., is given in inches 
o f  rxicrcbury, the pressure at A may bc expressed as  

h,.  + K" = hn ill. mcrc!nry 

XIthougti h,, is a funr.t.ion of tcmpcraturc, it. i s  very small 
at usrrtll at<mospheric tempc?ratures. The barometric* prts- 
sure vt~ries with loc!i~t.ion, i-c., clcvation, a r ~ d  with wcathctr FIG. 2.7. Mer- 

cury barometer. 
(loridit ions. 

In Fig. 2.6 a pnlssure may be located vert.ic!ally on t.hc chart, which 
indicates its reIation 1.0 zthsolutc! zero and to local atmospheric pressure. 
If the point is bclow the local-nt.n~ospheric-pressure line itlid is referred to 
gage datum, it: is called negati'e, suction, or t?mu.um. For example, the 
pressure 18 in. mercury abs, as a t  1, with barometer re,ading '29 in., may 
be expressed as - 1 1  in, mercury, 1 1  in. mercury s ~ ~ r t , i o l ~ ,  or 1 1 in. mercury 

I n  .Eq. (2.3.2) t h e  standard atmospheric pressure may I)c tbspressed in pounds per 
square inch, 

p,,,; = 0.433 X 13.6 X %$ = 14.7 

when S = 13.6 for mercury. When 14.7 is niuItiplied by 144, the standard atmos- 
phere becomes 21 18 lh/ft2. Therl 21 16 divided by WL.4 yields 34 ft. water. Any of 
these designat.ions is for the standard atmosphere and may he called one utmosphere, 
if it is always understood that  it is rt staridard atrnosplicn~ and is measured from 
ahsolute zero. Thcse various designations of a standard atnrosphere (Fig. 2.6) are 
equivalent and provide a convenient. means of collvcrting frorn one set of units to 
another. Fur ctsanlplc, t.o express 100 f t  of water in pounds per square inch 

J3'$? 11.7 = 43.3 psi 
\ 

since is tlic rir~rnber of standard atrnosphercs and each standard at.mospherc is 
14.7 psi. 
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vacuum. I t  should be noted that 

Pabs = P b a ~  + Pgage 

To avoid any confusion, the convention is adopted throughout this 
text that a pressure is gage unless specijcally marked absolule, with the 
exception of the atmosphere, which is an absolute pressure unit. 

Example 2.3: Express 4 psi eight other customary ways. Barometer reading 
28.5. in. mercury. 

A t  point 2 in Fig. 2.6, other customary gage units are 

1. 4 X 144 = 576 lb/ft2 
4 

2. . X 30 = 8.16 in. mercury 
14.7 

With absolute units, 

4, From 2, 8.16 + 28.5 = 36.66 in. mercury abs 
36.66 5. From 4, -- - = 1.222 a tm 

30 
6. From 5, 1.222 X 14.7 = 18.0 psia 
7. From 5, 1.222 X 21 16 = 2583 lb/ft2 abs 
8. From 5, 1.222 X 34 = 41.6 ft water abs 

The pressure conversion chart in Fig. 2.6 is most useful in working 
wit pressure units and should be carefully studied. 

.4. Manometers. Manometers are devices that employ liquid col- .P mns for determining differences in pressure. The most elementary 
manometer, usually called a pietometer, is illustrated in Fig. 2 . 8 ~ ;  i t  
measures the pressure in a liquid when it is above zero gage. A glass tube 
is mounted vertically so that it is connected to the space within the 
container. Liquid rises in the tube until equilibrium is reached. The 
pressure is then given by the vertical distance h from the meniscus (liquid 
surface) to the point where t.he pressure is to be measured, expressed in 
feet of the liquid in the container. It is obvious that the piezorneter 
would not work for negative gage pressures, because air would flow into 
the container through the tube. It is also impract.ica1 for measuring 
large pressures at A ,  since the vertical tube would need to be very long. 
If the specific gravity of the liquid is S, the pressure a t  A is hS ft of 
water. 

FOP measurement of small negative or positive gage pressures in a 
liquid the tube may take the form shown in Fig. 2.8b. With this arrange- 
ment the mer~iscus may come to rest below A,  as shown. Since the 
pressure at the meniscus is zero gage and since pressure decreases with 
elevation, 

hA = -hS ft of water 
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For greater negative or positive gage pressrii-es a second liquid of greater 
specific gravity is employed (Fig. 2.8~). It must be immiscible in the 
first fluid, which may now be a gas. If the specific gravity of the fluid at 
A is SI (based on water) and the specific gravity of the manometer liquid 
is S2 the equation for pressure at A may be written, starting a t  either A or 
the upper meniscus, and proceedirig through the manometer, thus 

in which hA is the unknown pressure, expressed in feet of water, and hl,  ha 
arc in feet. If A contains a gas, S1 is generally so small that hnSl may be 
neglected, 

FIG. 2.8. Examples of simple manometers. 

A general procedure may be followed in working all manometer 
problems : 

a. Start at one end (or any meniscus if the circuit is continuous), and 
write the pressure there in an appropriate unit (say, feet of water) or in 
an appropriate symbol if i t  is unknown. 

b. Add to this the change in pressure, in the same unit, from one 
meniscus to the next (plus if the next meniscus is lower, minus if higher). 
(For feet of water this is the product of the difference in.elevation in feet 
and the specific gravity of the fluid.) 

c. Continue until the other end of the gage (or the starting meniscus) 
is reached and equate the expression t o  the pressure at that  point, known 
or unknown. 

'The expression will contain one unknown for a simple manometer or 
will give a difference in pressures for the differential manometer. I n  
equation form, 
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in which yo, yl, . . . , y, are elevations of each meniscus in feet and 
SO, SI, 8 2 ,  . . . , S,, - 1  :we specific gritvitics of t h ~  fluid columils. The 
above expression yields the answer in feet of wntw and may t)e c011\-~rttd 
to other units by use of thtl c:o~lversioris in 1;i.g. 2.6. 

A differential manometer (Fig. 2.9) (leterrnines the ditTcrcnce in prcs- 
sures at turo points ;.I and B, when the act,ual pressure a t  any point ,in the 

syst,cm cannot he determined. Application of the procedure outli~lcd 
abow to Fig. 2 . 8 ~  produces 

hA - h - h2S.J12 + h.383 = h . H  
or 

h A  - h H  = hlSl + h,lrSY - hnSa ft of water 

Similarly, for Fig. 2.9h, 

N o  fnrmtiltrs for particillur manometers should be memorized. I t  is 
much Inorc sat isfartory to work them out. from the gcncral procedure for 
earth casc as i~ceclcd. 

Example 2.4: In Fig. 2.9n tht! liquids at  A ant:! B are water and the munomrter 
liquid is oil, sp gr 0.80. h l  = 1.0 ft, 1 ~ 2  = 0.50 ft, ha = 2.0 ft. (a) 1)tlterminc 
P A  - P H  in pounds per srluarrl inch. ( h )  I f  p~ = 10 psia and the b:tromcter 
rearling is 20.5 in. mcrcnury, find thc gag(' presstire a t  A in pounds per square foot. 

(0) ] / A  - 1 X 1 - 0 . 5  X 0 . 8 + 2  X 1 = h~ 
h~ - A B  = 1 + 0.4 - 2 = -0.0 ft water 

and 
P A  - P B  = -0.6 X 0.433 = -0.26 psi 

(b)  P A  = p~ - 0.26 = 10 - 0.26 = 9.74 psia 

29.5 1,ocal atrnoepllcrie prcssrlrch = . X 14.7 = 14.47 psi 
30 
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In Fig. 2.6, 

p~ = 9.74 - 14.47 = -4.73 psi 
and 

p A  .- - L j . i : <  X 144 = fjX1 I I )  f t 2  1':i(~1111111 

..I nkujlometctr m;ty 1~ c*:tlit)r:~tcld to nltwslrrc thc volunlc? of licluid i l l  a 
rescrvoi~., t hc procrdllrcl 1)c'itlg gii-tw in  thv f'olloivil~g cx:tn~pIc: 

Exanzple 2.3: On tilth vcrtic.:tl rod in Fig. 2.10n is to I ) ( *  laid off u scbale that rchatls 
thc voluiticl f of liquid, in gullons, in the rc>sorvoir. Stilrting with 111:rnorncatc.r 
liquid u p  to 1-1 in both lcgs, ~\-llrn 110 liquid is in the rcls.;tbrvoir or c*onncc.ti~ig 
tube, t.hv clistanc*c~ R along thr  sc*alc is tlcsirtd for any d ty th  y in t h r b  ~vlscbrvoir. 

(a) ( b )  

FIG. 2.10. Manometer used for mrasuring volurne in tank. 

Then, knowing the volume V in terms of y, as in Fig. 2.10bJ the tlistance R is 
laid off and marked with thc corresponding vsluc~ of 8, in gallons. I'c'riting the 
equation for the manometer, starting at the surface of the reservoir, 

which yields R in titrms of y. For Y = 0 and p = 0 

a distancr that is laid off on the scale from t-t and  nlarkctl 0. l 'akii~g F' as, 
say, 10,000 gal, y is determined from Fig. 2.10h and R is 1:ricl off from l - f  :ltl(i 

marked 10,000. 

Micromanometers. Several types of manomet.(trs arc on the market 
.for the determining of very small differences in pressure or precise 
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clrtermilzing of large pressure differences. One type very accurately 
measures the differences in elevation of two menisci of a manometer. 
By means of small telescopes with horizontal cross hairs mounted 'along 
the tubes on a rack which is raised and lowered by a pinion and slow- 

FIG. 2.11. I I O O ~ - ~ & ~ C  rnicronlanotneters. (a) For gases; ( b )  for liquids. 

motion screw so that the cross hairs may be set accurately, the difference 
in elevation of mer~isci (the gage difference) may be read with verniers. 

The hook-gage micromanometer shown in Fig. 2.11 requires reservoirs 
several inches in diameter to accommodate the hooks. The one in Fig. - 

2.1 la is for gas measurement, and that in Fig. 
C D 2.1 l b  is for liquid measurement. A hook with 

---f a conical point is attached to a graduated rod 
k1 

1 . +  

that is moved vertically through a stuffing box 
'by a rack and pinion. As the conical point is 

A moved upward from below the liquid surface, 
it causes a slighb curvature of the surface film i 

k2 before it  penetrates it. By suitable lighting 
I 

the hook may be set a t  the elevation where the 
: surface-film reflection changes, with an ac- 

curacy of about 0.001 in. A vernier may be 
mounted on the rod, or a dial gage may be 
mounted against the upper end of the rod. 
When A and B are connect.ed, both surfaces are 
at the same elevation; readings taken for this 
condition provide the "zero" for the gages. 

With two gage liquids, immiscible in each 
FIG. '-lL'* Micromanometer other and in the fluid to be measured, a large 
using two gage liquids. 

gage difference R (E'ig. 2.123 may be produced 
for a small pressure difference. The hcavicr gage liquid fills the lower 
1;-tube up to 0-0; then the lighter gage liquid is added to both sides, filling 
the larger reservoirs up to 1-1. The gas or liquid in the system fills the 
space above 1-1. When the pressure a t  C is slightly greater than at .D, 
the menisci move as indicated in Fig. 2.12. The volume of liquid dis- 
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placed in each reservoir equals the displacement in the U-tube, thus 

in which A and a are the cross-sectional areas of reservoir and U-tube, 
respectively. The manometer equation may be written, starting at C,  
in feet of water, 

in which S1, Sz, and Ss are the specific gravities as indicated in Fig. 2.12. 
After simplifying and substituting for Ay, 

The quantity in brackets is a constant for specified gage and fluids; 
hence, the pressure difference is directly proport.iona1 to R. 

Example 2.6: In the micromanometer of Fig. 2.12 the pressure difference 
pc - . p ~  is wanted in pounds per square inch when air is in the system. 82 = 1.0, 
Ss = 1.05, a / A  = 0.01, R = 0.10 in. 

For air at standard conditions, 68"F, 30 in. mercury abs, S1 = 0.0765/62.4 = 
0.00123; then Sl (a /A)  = 0.0000123, S3 - SZ(1 - a / A )  = 1.05 - 0.99 = 0.06. 
The term Sl (a /A)  may be neglected. Substituting into Eq. (2.4.1) produces 

hc - h~ = - 0'10 X 0.06 = 0.0005 ft water 
12 

pc - pb = 0.0005 X 0.433 = 0.00022 psi 

The inclined manometer (Fig. 2.13) is frequently used for measuring 
small differences in gas pressures.. It is adjusted to read zero, by moving 

FIG. 2.13. Inclined manometer. 

t.he inclined scale, when and B are open. The inclined tube requires'& 
greater displacement of the meniscus for given pressure difference than 
does a vertical tube, so the accuracy in reading the scale is greater in the 
former. 
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Surface tension causes a capillary rise in small tubes. If a 1:'-tube is 
used ith a menisc~is in cacbh lcg, thc surface tensioli effcct.~ cancel, 
The apillary rise is negligible in tn l~cs  ivith s diameter of Q.5 in. or greater. 

.5. Relative Equilibrium. 111 fluid statics the variation of pressure J 
is simplc to  compute owing to the. abscnc*e of shear stresses. For fluid 
motion such that no layer moves relnt.iue !o an adjactent layer, the shear 
stress is also zero throlighout the fluid. :\ fluid with a translation a t  
uniform velocity still follows the laws of static variation of pressure. 
When a fluid is being accelerated so that no Iayer moves relative to an 
adjacent one, i.e., when the fluid moves as if it. were a solid, no shear 
strc!sses occur and variation in pressure can be det.crmined by writing the 
equation of motion for an appropriate .free body. Two cases are of 
iriterest, a uniform lil~eitr ucceleration and a u~liform rotation about a 

FIG. 2.11. I.Iorizonta1 acceleration. 

vertical axis. When moving thus, t.he fluid is said to he in re2atit.e 
equilibrium. 

With very simple relations, equations for variation along single lines 
h a t e  hr?en developed. These can then he c.ombincd t,o determine pres- 
sure differcrlccs between any two points. 

T,'n<form Linear Acceleration. I n  an open cor~tslirler with liquid (Fig. 
2.14) under uniform horizontal acceleration, the liquid adjusts itself so 
that it nlov(ts; ns il solid under the act-ion of the accelerating force. T o  find 
the variat iotl of pressure in the vcrt.icaJ direction, the vert.ical free body 
is l r s ~ d  (Fig. 2.14) and t.he equation of motion in  the vertical direction js 
utilized, 2,[#, = ?ma,. R ~ c a l ~ s e  the motion is that of a solid, no shear 
stresses occur in the liquid, and t,he only vertical forces are due to weight. 
yhA and to pressure. force pA at the base of the vertical prism. Therc is 
no acceleration in the y-direction; hence 
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or p = yh. The pressure vnriutio~l :ilung a vertical line is t.he same.as for 
a static liquid. 

In  a prism of liquid considered as a free body normal to the direction of 
a, hut. along a horizontal line, the pressure does not change, just as i t  does 
llot challge with a static liquid. Therefore, the effect of the acceleration 
a, must be in the x-direction. 

The equat-ion of nlotion X:f ,  = ma, for the. horizoiltal free hody of 
Fig. 2.14 is 

as the weight acts normal to a, and the normal forces or1 the periphery 
of the prism are riormal t.o the x-direction. The mass is expressed in 
slugs as the weight in pounds divided by gravity. Equation (2.5.1) can 
be rewritten 

in which hl,  hz are the distances to the free surface. The expression 
(h ,  - h2)/2 is the slope of the free surface, t.an 8. As 

ax tan 8 = - 
Y 

is cot~starit. for constarlt a,, the liquid surface is an i~lclined plane. Planes 
of corlst.ant. pressure are parallel to  the free surface. 

If the vessel is fillcd with liquid and closed a t  the top, the liquid requires 
no preliminary adjustment period before moving as  a solid when subjected 
to a n  accele~dtion. The planes of <:onstant pressure are still given by 
Ey. (2.5.3). If the pressure is known at one point in the vessel, it can 
easily be compl~ted for all other points. The shape of thc clontainer is 
~inimportanf. so long as  the fluid is conrlected. 

Example 2.7: The tank in Fig. 2.15 is filled with oil, sp gr 0.8, and at:caclerated 
as sho\vn. Thcrr is a small opening in the tttnk at A.  L)c!krmiritl the prcssure 
at R and C' and the acceleration a, required to make the pn!ssurr a t  B zrro. 

The planes of constant pressure have the slope 

arid at A thc prcssure is zero. The plane through A passes 1 ft verticalIy above 
B ;  henre 

p~ = 1 X 62.4 X 0.8 = 49.9 Ib/ft2 

Similarly, C is vertically hclos the zcro pressure plane a distancr 4.75 ft, and 
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For zero pressure at B, 

and a, = $ x 32.2 = 21.47 ft/sec2. 

For vertical acceleration a,, the free surface (if one occurs) remains 
horizontal. The pressure is constant in horizontal planes. With a 

,- 6 in. 

FIG. 2.15. Tank completeIy filled with liquid. 

vertical circuIar cylinder of cross-sectional area A (Fig. 2.16) and height 
h as a free body and with the equation of mot.ion written Zf, = ma,, 

Simplified, 

For example, if the container is dropped, a, = -g  and p2 = p ,  and the 
pressure is everywhere the same throughout the liquid. 

Example 2.8: A cubical box, 2 ft on a side, half filled with oil, sp gr 0.90, is 
accelerated along an inclined plane at an angle of 30" with the horizontal, as 
shown in Fig. 2.17. Find the slope of frcr! surface and the pressure along the 
bottom. 

Jn the coordinate syste~n as indic!atcd in the figure, 

and 
a, = 8.05 cos 30' = 6.98 ft/scc2. 

a, = 8.05 sin 30° = 4.02 ft/sec2 

If the pressure at the origin is po, the variation of pressure in the x-direction is 
[from Eq. (2.5.2)] 
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I'he pressure variation in the y-direction is [from Eq. (2.5.4)] 

To find the slope of the lines of constant pressure, the exprt?ssions for p are 
equated, 

y/x = 0.1925 is the slope of liquid surface, downit-ard to the right. As tan-' 
0.1925 = 10°52', the surfacc then makes an angle of 40'52' with thc bottom of 
the box. The depth parallel to a side is less on the right-hand side by 2 tan 

FIG. 2.16. Vertical acceleration. FIG. 2.17. Uniform acceleration along an 
inclined plane. 

40°52', or 1.73 ft. The total volume of oil is unchanged. Therefore, if s be the 
depth on the right-hand side, 

' or s = 0.135 ft. The point A on the free surface has the coordinates 

x = 2 cos 30" - 0.135 sin 30" = 1.665 ft 
and 

y = 2 sin 30" + 0.135 cos 30° = 1.117 ft 

The pressure there is zero, and when the expressions for change in pressure in 
the x- and ydirections arc combined, 

After substituting for x, y, and p, 

or Po = 90.73 1b/ft2. If t is the distance along the bottom from 0, then 

x = 0.866t and y = 0.50t 
and 

p - 90.73 - 12.15 X 0.866t - 63.5 X 0.50t 
= 90.73 - 42.075 lb/ft2 
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@form Rotation about a Vertical A x i s .  Rotation of a fluid, rnovillg 
as a solid, about an axis is called ,forcet/-riortr.r n~otiou. I;:very particle of . 

fluid has the same angular velocit-y. This lnotiorl is to be distinguished 
from free-r1orie.r motion, where each pnrticlr dors not rotate but moves in 
a circular path with a speed varying ilirrcrsrly tis the distance from the 
centclr. 1:rcc-vortex motion is ~ ~ F C I I S S C ~  i l l  Chaps. 7 :md 8. -4 liquid in 

/ (Z ro~it,aitier. ~vhen rotat.ed about a 

A? / wrtiral  axis a t  cbonstalit angular ve- 
/ 

1 locity, moves as a solid after some 
/ ~ Z W O  pressure time interval. S o  shcnr stresses 

exist in the liquid and the only 
:tctcelerntiol~ that occurs is directed 
radially inward toward the axis of 

r 7  rotat ion. I he ~cluat.ior1 of mot.ion 
in the vcrticnl direction on a free 
body shows that hydrostatic eondi- 

,r tions prevail along any vertical line ; 
hence, thc pressure at any point in 

I the licluid is given by the product of 
Fr(i. 2.18. ltot~tiorl of fluid ahout a vcr- ppp(!ifiC j\-eiRhl arid VPrt,icnl distance 
tical axis. from t.hc free s ~ ~ r f a ~ e .  

In the t?cl~ltltio~l of mot.ion tangent to the caircular path of a particle, 
the st:celerat,ioe is zcro, and the prcssurc docs not change along the path. 

I n  the equation of motion in t.he radial (horizot~ta!) direction (Fig. 2.18), 
with a free body of length 6r :tnd c:ross-sec!t.ioll:ll area 6.4, if the prcssurc 
at r be p, then, at the oppositc face, t,hc prthssur-cb is p + (ap/ar)br .  Thc 
accelcrat ion is - w2r ; herlc!c 

After simplifying and dividing through hy the volurne of the element 
6A 6r, 

Af tcr in t rgrat.ing, 

in which c is t h ~  cox~stant. of int.rgr:ltion I f  t h ~  v:~lric :it. the axis ( r  = 0) 
be pu, then c = p,,, and 

Whrn the p:l~*ticl~lur hori~olit~ul plarlc for which p ,  = 0 is selectcd and 
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Eq. (2.5.5) is divided by r, 
,.&? P - jr = - - -. 

Y 29 

lvhich shows that the hem-!, or vertical depth, vari~ri as thc scluarcl o f  the 
radius. The surfaces of cqual pressure a r t  par:tboloids o f  re\-olu t ion. 

When n free surface occurs in a container that is being rotat.ed, thc fluid 
volume underneath thr paraboloid of revolutioll is the  origilml fluid 
volume. The shapt? o f  thc piiraholoid dcpcntls only tip011 t , h ~  al~gular 
ve1ocit.y u. 

For the case of a circular ctylindcr rotating a b o ~ ~ t  
Q 

it,s axis (Fig. 2.19) thr rise of liquid from its vertex - ro .- + 
to the wall of the t!ylinder is, from Kq. (2.5.6), 
u2r02/'2g. Since a paraboloid of revolution has u 
volume equal to one-half its circumscribing cylin- 
der, the volume of' t hc liquid above the horizont:nl 
plarle t,hrough thr vert.ex is 

1 w2r02 
,ro2 X -- 

2 2g 

MThcn the liquid is a t  rest., this liquid is also above 
the plane through the vertex, to a uniform depth of 

FIG. 2.1 I). Kotution of cir- 
1 w2r02 . . - 

cular ctylinder about its 
2 2g axis. 

Wencc, thc liquid rises along the walls the sanw amount. as the ccnt.pr 
drops, thereby perrnit.t,ing thc vertex to be Io(tatcd wher1 W ,  ro ,  slid t1cpt.h 
before rotnt ioil :Ire gi \ . c~~ .  

Ern.otple 2.9: .A liquid, sp gr 1.2, is rotated :kt 200 rpm :d)out a vclrtical axis. 
i l t  onr. point, 14, in the fluid 2 ft from thc axis, tho prcssurtl is 10 psi. IThat is 
t h ~  prrtssurr at a point B, 4 ft highcr than A and 3 ft frorri thv asis:' 

1Vhr.n Iirl.  (2.5.5) is writtrn for thc t w o  ~>oi~lts 

Then w = 200 X 2n/60 = 20.95 ratl,/set., y = 1.2 X 62.4 = 74.8 lb:/ft3, r~ = 2 ft,  
T B  = 3 ft, p 0 ~  - p O ~  = 4 X 74.8 = 299 lt)/ft2, p~ = 1440 II,iftt. \l*hrn the 
srrond ccluation is s;l,tractcd from tllrt first and t.Ilct v:ilucls srr s~hstitut~ed, ' 

and 

Henct., p~ = 3691 l h / ' f t 2 ,  or 25.6 psi. 
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If a closed container wit.h no free surface, or with a partially exposed 
free surface, is rotated uniformly about some vertical axis, an imaginary 
free surface can be constructed, consisting of s paraboloid of revolution of 
shape given by Eq. (2.5.6). The vertical distance from any point in the 
fluid to this free surface is the pressnre head st the point. 

Example 2.10: A straight tube 4 ft long, dosed af the bottom and filled with 
water, is inclined -30" with the vertical and rotated about s vi!rtical axis through 
its mid-point 8.02 rad/sec. Draw the paraboloid of zt?ro pressure, and determine 
the pressure s t  thtl bottoni :tnd mid-point of the tube. 

FIG. 2.20. Rotation of inclined tube of FIG. 2.21. Sotation for deternlining line 
liquid about a vertical axis. of action of a force. 

In Fig. 2.20, the zero-pressure paraboloitl passes through point A. If the 
origin is taken at  the vertex, that is, po = 0, Eq. (23.6) becomes 

w2r2 m2 h = - - -  -- 
2g 64.4 

(2 sin 30°)* = 1.0 ft 

which locates the vt!rtex at  0, 1.0 f t  below A.  The pressure at  the bottom of the 
tube is 7 x G, or 

4 cos 30" X 62.4 = 216 lb/ft2 

At thc mid-point, OB = 0.732 ft, and 

2.6. -Forces on Plane Areas. I n  the preceding sections variations of 
pressure throughout a fluid have been considered. The distributed forces 
resulting from the action of fluid on a finite area may he conveniently 
replaced by a resultant force, in so far as external reactions to the force 
system are concerned. In this section the magnitude of resultant force 
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and its line of action (pressure center) are determined by integration, by 
formula, and by use of the concept of the pressure-prism. 

Horizontal Surfaces. A plane surface in a horizontal position in a fluid 
at rest. is subjected to a constant pressure. The magnitude of the force 
acting on one side of the surface is 

The elemental forces p d A  acting on d A  are all parallel and in the same. 
sense; therefore, a scalar summation of all such elements yields the 
magnitude of the resultant force. I t s  direction is normal to the surface, 
and toward the surface if p is positive. To find the line of action of the 
resultant, i.e., the point in the area where the moment of the distributed 
force about any axis through the point is zero, arbitrary xy-axes may be 
selected, as in Fig. 2.21. Then, since the moment of the resultant must 
equal the moment of the distributed force system about any axis, say 
the y-axis, 

in which x' is the distance from the y-axis to the resultant. Since p is 
constant, 

i l l  which 5 is the distance to the centroid of t.he area.' ITence, for a 
horizorltai area subjected to static fluid pressure, the resultant passes 
through the centroid of the area. 
Inclined Szufaces. ' I n  1;ig. 2.22 a plane s~lrfa(:e is indicated by its 

trace A'B'. I t  is iticlirled 8" from the horizontal. The intersection of 
the plane of the area and the free surface is taken as the x-axis. The 
y-axis is taken in the plarle of the area, with origin 0, as sho1v11, in the 
free surface. The xy-plane portrays the arbitrary irlclined ares. The 
magnitude, direction, a1.1d line of action of the resultant force due to Ihe 
liquid, acting on one side of the area, are sought. 

For an element with area 6A as a strip with thickness 6y with long 
edges horizontal, the magnitude of forcc! 6F acting on it is 

Since all such elcme~ital forces are parallel, thc integral over the area 
yields the magt~itudt. of force F, nt*t.ing on one side of the area, 

F = J p  dA = 7 sin B Jy d A  = 7 sin 8 gA = -yhA = ppoA (2.6.2) 

with the relations from Fig. 2.22, @ sin e = h! and p, = rL, the presgure 
See Appendix A*. - 
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at, the (fcntroid of the area. I n  wads, the magnitude of force exerted on 
o ~ l c  side of a plane area submerged ill a lir~uid is the product of the area 
and the pressure at. its centxoid. I n  this form, it should be noted, the 
preserlce of a free surface is unnecessary. Any means for det,ermining the 
prcssure at  the centroid may be used. The sense of the force is to push 
against the arca, if pc is posit.ivc. As all force dements arc normal to the 
~1lrf:ic.c~ thc line of acttion of the resultant, is also riormal t.o the sri~*face. 
Any surface may brt rotutcri about ally axis througll its caentroid without 

J 

Frc;. 2.22. Sotatiori for for.c~> of liqrlitl on on(! side of a plane inclinccl area. 

changing t hc mngr~i t udc of t hc result ant, if the total area remains sub- 
merged in t h e  st at ic liclrrid. 

Center of I'rrssure. ' The line of act.ion o f  thc resultant force has its 
piercing point in the s~irface at  a point cailcd the pressure center, with 
coordirltltes (.r,?yp) (I:ig. 2.22). I'rili ke that  for the horizontal surface, 
the c e n t ~ r  of pressure of an ir~clirled surface is not at. the centroid. To 
find th r  prcssurc! ccr~ter, the moments of the resultant. zPb1, y,P arc 
equated to t hr! mornerlt of t he clist ri buted forc!es about t h e  paxis a r ~ d  
x-axis, rcspect ivcly; f h l ~ s  
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The area element in Eq. (2.6.3) should be 6x 8 . ~ ,  and not. the strip shown 
in Fig. 2.22. 

After solving for the coordirlates of pressure center, 

In  many applications Eqs. (2.8.5) and (2.6.6) may be evaluated most 
conveniet~tly through graphical i~ltegration ; for simple arcas they may be 
transformed int.0 general formulas as fo1lows:l 

- 1 x 4  
2, - - -- xyy sin B dr l  = z,t/ d t l  = (2.8.7) 

yA4 

111 Ecls. (A.10), of Appendix A, and (2.6.7), 
- 
T 

Whcn cit.her of the centroidnl axes, x = ;F. or y = 8, i s  an axis of symmctry 
for the surfaec, f,, vanishes and the prc?ssl~rc cbolli(?r lies oil .e = 6. Since 
I,, may be ctit.her positive or negative, thc prrsstlrr r r l i t ~ r  miby lic on 
eit.her sidc of the liilc! ;r = 2. To dctrrrnillc! ,tj, hy form~il:~, with Eqs. 
(2,'~,.2) and (2.6.0), 

In the parallel-axis thcort!m for moments of inertia 

I ,  = Ic  + pi1  

If 1, is eliniinated from Eh4. (2.6.9) 

I(; is always positive; hcncc, ! j ,  - is ;~I\vilys posit iv~, and the pressrire 
c c ~ t  r r  'is :~l\tr:~ys '1)elo w the ~ e t ~ t  raid of' t hc SIII~:~,{:(!. I t should 1 ) ~  crnphzl- 
sized that :111d ! j p  - jj :ire dist:lrlces i l l  thct plane of the surfacte. 

Example 2.1 1 : Tt~r triu~lgulnr gate CL)E (Fig. 2.23) is hinged along CD and is 
opened by a rlorn~al force P apfilied at E. It holds oil, sp gr 0.80, above it and 

See Appendix A. 
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is open to the atmosphere on its lower side. Neglecting the jvcight of the gate 
determine (a) the magnitude of force exerted on the gate, by integration and by 
Eq. (2.6.2); (b) the location of pressure center; (c) the force Y necessary to open 
the gate. 

FIG. 2.23. Triangular gate. 

a. By integration with refcrcncc to Fig. 2.23 

13 18 
F = p d A  = y sin 0 yz dy = y sin 9 xy dy + y sin 8 k3 xy dy 

When y = 8,  x = 0, and when y = 13, x = 6, with x varying lincarly with y, thus 

in which the coordinates have been substituted to find x in terms of y. After 
solving for a and 6, 

6 4 8 a = s  b = - -  5 j x = Q(Y - 8 )  

Similarly y = 13, x = 6 ;  y = 18, x = 0; and x = Q(18 - y). Hence 

After integrating and substituting for y sin 0, 

B y  Eq. (2.6.2) 

F pGA = yg sin 8 A = 62.4 X 0.80 X 0.50 X 30 X 13 = 9734.4 lb 

b. With the axes as sho\vn, 2 = 2.0, = 13. In Kq. (2.6.8) 
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I., is zem owing to symmetry about the ecntroidnl axis parallel to the z-axis; 
hence Z = x, = 2.0 ft. In Eq. (2.6.1 l ) ,  

i.e., the prcssure center is 0.32 ft beIow the centroid, measureti in the plane of the 
area. 

c. \i\.%en monwnts about CI) are taken and thc action of the oil is replaced by 
the resultant,, 

I' X 6 = 9734.4 X 2 P = 3244.8 Ib 

The I'ressure Prism. The concept of the pressure prism provides 
:mother means for det.ermining the m:igilitude and location of the result- 
an t  force on an inclined plane surface. The volume of the pressure prism 
is the magnitude of the force and the resultant force passes t.hrough the 
centroid of the prism. The surface 
is taken as the base of t.he prism, and 
its altitude at each point is deter- 
mined by the pressure yh laid off to 
an appropriate scale (Fig. 2.24). 
Since the pressure increases linearly 
with distance from the free surfact?, 
,the upper surface of the prism is in 
a plane with its trace 0111 shown in 
Fig. 2.24. The force acting on an 
elemental area bA is 

6F = yh 6A = 6V (2.6.12) 
FIG. 2.24. Illristration of pressure prism. 

which is an element of volume of thc 
pressure prism. After integrating, F = f, the volume of the pressure 
prism equals the magnitude of the resultant force acting on one side of 
the surface. 

Equations (2.6.5) and (2.6.6), 

show tha t  z,, y, are distances to the centroid of the pressure prism.' 
Hence, the line of action of the resultant passes through thc centroid 
of the pressure prism. For some simple areas tho pressure prism is more 
convenient than either intcgmtion or formula. For example, a rec- 
tangular area with one edge in the free surface ~ I L S  a wedge-shaped 
prism. I t s  centroid is one-t.hird the altitude from the base; hence, 
the pressure center is one-third the altitude from its lower edge. 

Appendix A, Eq. (A.5). 



46 FUNDAMENTALS OF FLUID MECHANICS [Chap. 2 

1:'flect i!f tn~osphot.ir I'rrssrlre on Forces on IJlu,~ib A reas. 111 t h(! dis- 
c.ussion of pressure furcbcxs the prcssurc dat.~tm was not nlentiotlcd. The 
pressures were computed by p = yh. in which h is the vertical distance 
helo~v thc frre surface. Thercforc, thc datum taken 1%-as gage pressure 
zcro, ois the loc:~l i.itmospheric: prcssurc. IVhtil thc oppositc xido of tne 
surfttcae is opt11 to thc at.nlosphcrc, a force is cscrt.ed oil it by t.hc utrnos- 
phere equal to the product of the at,mospheric prcssure po and the area, 
or p,,.li? htlsed on absolute zero as datum. 0 1 1  thc liquid side thc force is 

The effect of the atmosphere poA acts equally on both sides a11d in no 
way roxltrihrrtt?~ to t.hc restllt,ztnt force or its location. 

So long us thc same pressure dateurn is selected for all sides of a fret! 
hody, the resultant (!an t)(? dctermi~ied by collstructing a free surfac:~ at  
pressure zero on this datum aiid by using the :&hove methods. 

Fluid Prussurt! Forces in Relative k~qz~ilibrit~rn. 'l'he magnitude of the 
force acting on a plane area in contact with :I fillid accelerating as a 
rigid body may be obtained by integratioii over tho surface, 

The nature of thc ac(!eleration and orientation of thc surface governs 
the part.iclilar variation of p over the surface. When the pressure 
varies linearly over the plane surface (linear acceleration), the magnit:~tdc 
of force is given by the produc.tt of pressure at the centroid and area since 
the volume of the pressure prism is given by pGA.  For nonlinear distrihu- 
tians the magnitude: and line of action may be found by integration. 

Example 2.12: Forces on a Gravity I lam, An application of pressure forces on 
plane areas is given in the design of a gravity dam. The maximum and mini- 
nun1 co~npressive stresses in the basct of the dam arc computed from the forces 
which act on the dan-r. Figure 2.25 sho~vs a cross section through a conkrctc 
dam where the specific weight of concruto llas been t,aken as 2.5y and y is the 
specific n.c?ight of water. A 1 -ft section of (lam is considert:ti as a free body; the 
forces arc due to the corlcretc.,, the \\-atrlr: the foundation prcssurcl, and thr hydro- 
static uplift. The determination of aniount of hydrostatic uplift is bcyond the 
scope of this treatnlent, but will he assumtld one-half the hydrostatic head at the 
upstrrarll cldgr, decreasing linrarly to zero at. the doivnstrearn edge of the dam. 
Enough friction or shear strcss must I)(: tfevelopcd at the base of the dam to 
balancc~ the thrust dur to thrl water, that is, R, = 5000y. l'hc resultant upward 
force on the base equals the iveight of the darn less thr: hytlrostatic uplift, R, = 
6750y + 26257 - 1750y = 76257 lb. The position of R, is such that tht? free 
body is in eyuilibriunl: For moments around 0, 
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and 
x - 44.8 ft 

I t  is customary to assumc tha t  the foundation pressure varies linearly over 
the base of the dam, i.c., that the pressure prism is a trapezoid with a volume 
equal to  R,; thus 

in which C,,,, C,,,;, are the nlaximuln and r~liriimum compressive stresses in 
pounds per square foot. The centroid of the prpssurc prism is a t  the point where 

FIG. 2.25. Concrete gravity dam. 

z = 44.8 ft. By taking rnorncnts about 0 to express the position of the eentrohi 
in terms of C,,, and C ,,,,, 

-4fter simplifying, 

CnLaX = 11 .75Cmin 
Then 

C,,, = 210y = 12,500 lb/ft2 C,,,i, = 1 7 . 1 ~  = 1067 lb/ft2 
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When the rtlsulta~lt falls within the middle third of the base of tht: dam, 
will always bc a compressive stress. Oiving to the poor tensile properties of 
concrete, good dtlsign requires the resultant to fall within the middle third of 
the base. 

2.7. Force Components on Curved Surfaces. When the elemental 
forces p 6A vary in direction, as in t.he case of a curved surface, they 
must -be added as vector quantities; i.e., their components in three' 
mutually perpendicular directions are added as scalars, and then the 
thrce components are added vectorially. With two horizontal corn- 
ponents at right angles and with the vertical component, which are 
easily computed for a curved surface, the resultant can be determined. 
The lines of action of the components are readily determined, so the 
resultant and its line of action can. be completely determined. 

IIorizontal Component of Force on a Curved Surface. The horizontal 
component of pressure force on a curved surface i s  equal to the pressure force 

p6A cos 8 ._ 3.:: 
FIG. 2.26. Horizontal component of force FIG. 2.27. Projections of area elements on 
on a curved surface. opposite sides of a body. 

exerted on  a projection of the curved surface. The vertical plane of projection 
i s  normal to the direction o j  the c.omponent. The surface of Fig. 2.26 
represcrlt,~ any t.hree-dimensional surface, and 6A an element of its area, 
with its normal making the angle 0 with the negative x-direction. Then 

is thc.x-component of force exerted on onc side of 6A. summing up 
the x-con~po~lcrits of force over the surface, 

Considering cos 8 6A, it is the projection of SA onto a plane perpendicular 
to x. The tlen~erit of force on the projected area is p cos 9 6A,  which is 
also in the x-direction. Projecting each element on a plane perpendicular 
to x is eyuivnletlt to projecting the curved surface as a whole onto the 
plane. Hence, the force acting on this projection of the curved surface 
is the horizontal component of force exerted on the curved surface, in the 
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direchtiotl normal to the plane of projection. To find the horizontal 
cxnponent at right angles to thc .r-direction, the curved surface is pro- 
jected onto a vertical plane parallel to x, and the force on the projection 
is determined. 

When the horizontal component o f  pressure force on a closed body 
is to be found, the projectiorl of the curved surface on a vcrticaf plane is 
always zero, since on opposite sides of the body the area-element projec- 
tions have opposite signs, as indicated in Fig. 2.27. Let a small cylinder 
of cross section 6A with axis parallel to  s intersect the closed body a t  B 
and (r. If the element of area of the body cut by the prism at B is & A B  
and at C is S A C ,  then 

~ A B  cos OH = - 6A cos Oc = 6.A 

as c:os Oc is negative. Hence, with the pressure the same at eachend of 
the cylinder, 

p BAg cos OR + p 6Ac cos Bc = 0 

and similarly for all other area elements. 
To find the line of action of a horizontal component of force on a 

c u r ~ e d  surface, the resultant of the parallel force system composed of 

FIG. 2.28. Pressure prisrn for horizontal component of pressure 

the force components from each area element is required. This is 
exactly the resultant of the force on the projected area, since the two 
force systems have identical pressure prisms, as indicated in Fig. 2.28. 
IIenc:e, tho pressure eroter is located on the projected area by the meth- 
ods of Sec. 2.0. 

I.'ertical Component of Force on a Czuued Surface. The certical com- 
ponent of pressure force on a curzted s~tr-ace is equal to the weight of liquid 
vertically above the curved sur/acc and extending up to the free surface. 
The vertical component of force on a curved surface can be determined 
by summing up  the vertical componrnts of pressure force 011 elemental 
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areas 6.4 of thc sl~rfacc. I n  Fig. 2.29 all awn ~lcmcii t  is shown with the 
force p d,4 acting 1101~nlnl to it. (IAct 8 I)c! the angle the. normal to  the 
area element makes with the vertical.) Then the vertical cornpoilent 
of force acting on t.hr area element is p cos 8 6A, and the vertical com- 
ponent of force on the curved surface is given by 

By rcplacii~g p 1,y its ctc4t~ivalr?ilt yh, i l l  which h, is the dist.arlce from the 
area elenlent to the free surface, and noting that: cos 8 6.4 is the projection 
of 6A on a horizontal plane, E:q. (2.7.2) becomes 

F ,  = y JA h cos BdA = y 
/v dv 

(2.7.3) 

in which 6Y is the volume of the prism of height h and base cos 8 6,4, 

FIG. 2.29, Vertical conlponent of force on FIG. 2.30. f.iquid with in~agin:try frctl 
a curved surface. surface. 

or the volume of liquid vertically above t.he area element. I~ltcgrating, 

When the liquid is below t.he curved surface (Fig. 2.30) and the pressure 
irrtensity is k ~ ~ o ~ v n  a t  somr point, e.g.,  0, an irnaginnr,y frro surftice s-s 
may be constructed p / ?  ahovc! 0, so that  the product of specific: weight 
and vertical distance to any point in the tank is the pressure a t  the point. 
The weight, of the imaginary volume of liquid vertically above thtr rrir\red 
surface is then  the vertical compon~nt  of pressure force on thc curved 
surface. In the construc.t.ing of an  imaginary free surface, t.he imuginnrjr 
liquid must be of the same specific: weight as the liquid in oolltac!t. with 
the curved surface ; otherwise, the pressure distribution ovcr thc surfacr 
will riot be corrcc:tly represented. With an imaginary liquid tthovt. tr sur- 
fa(!e, the pressure at a point on the curved surface is equal on both sides, 
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but the elemental force components in the vertical direction are opposite 
in sign. Hence, the direction of the vertical force component is reversed 
when an imaginary fluid is above the surface. I n  some cases a confined 
liquid may be above the curved surface, and a n  imaginary liquid must be 
added (or subtracted) to determine the free surface. 

The line of action of the vertical component is determined by equating 
moments of the elemer~tztl vertical components about a convenient axis 
with the m o m e ~ t  of the resultant. force. With the axis at O (Fig. 2.29), 

in Ivhic:h 3 is the distance from 0 t:o the line of action. 'I'hcn, since 
F v = y t C ,  . 

I A r =  lid^ 
--------- .- .- --- --- - ------- 
- - - - - - . 

the distarlce t.o the ccrltroid of the :--:-:-I-:-'-:- - .- - - - . . - - . - - - - . 
volume. Thercfore,thelineofactio~ :-I-:-:-:-:-:-: . A,--- ---- - -- --- .----- .  - 
of thr vertical forcle passes through :------.:I- ----- - ---- . . - - - - - . - - - - 
the centroid of the volume, real or _---:..-_-----I:-- . . - .  ---- . -- - . - --  - - . - - . .. . 

- . . - . . , . imaginary, that  t.xt,ellds abovc t.he -:.-. ---I:------ - - - 

clirved srirface up t.o the ~*c:nl or im- 
aginary free surfaoc. FIG. 2.3 1 .  S~rnifloat ing body. 

Example 2.13: A c*ylindrical barritlr (Fig. 2.31) holds water as shown. The 
contact hcttvcrn cylinder and wall is smooth. C'onsidering a one-foot length of 
cylil~dcr, dctcrminc! (a) its weight and ( b )  the forcar cxcrtcd against the walI. 

a.. For equilibrium the weight of the cylindrtr rnust equal the vertical com- 
ponent of force exerted on it by the water. Tht: vctrtical force on RCD is 

The vertical force on AB is 

Hence, the weight per foot of lclngth is 

b. The force excrteti against the wall is the horizontal force on ABC minus the 
horizontal forchc on CI). The horizontal ronlponents of forccl on BC and C D  
c:lnccl s i r l c b o  thc projcc*tion of BCII on a vertical 111:tnr is zero. Henoc, 

since the projected area is 2 f t 2  and the pressure at the centroid of the projected 
area is 62.4 Ib/ft2. 



52 FUNDAMENTALS OF FLUID MECHANICS * [Chap. 2 

To find external reactions due to pressure forces, the action of the 
fluid may be replaced by the two horizonta1 components and one vertical 
component acting along their lines of action. 

' 

Tensile Stress in a Pipe. A circular pipe under the action of an internal 
pressure is in tension around its periphery. Assuming that no longi- 
tudinal stress occurs, the walls are in tension as shown in Fig. 2.32. A 
I-in. section of pipe is considered, i.e., the ring between two planes normal 
to the axis and 1 in. apart. Taking one-half of this ring as a free body, 

the, 'tensions per inch at top and -q pl in. 
bottom arc, respect.ively, TI, TP, as 
shown in the figure. The horizon- 
tal component of force acts through 

1 I 
the pressure center of the projected 

I area and is 2pr, in which p is the 
I I 

4 - - - - - - -  pressure at the center line in pounds 

FIG. 2.32. Tensile stress in pipe. per square inch and r is the pipe 
radius (internal) in inches. 

For high pressures the pressure center may be taken at  the pipe center; 
then T1 = Tt ,  and 

in which T is the tensile force per inch. For wall thickness t in., the 
tensile stress S in the pipe wall is 

For larger variations in pressure between top and bottom of pipe the 
pressure center is computed, and two equations are needed, 

in which the second equation is the moment equation about the lower end 
of the free body, neglecting the vertical component of force. Solving, 

in which y is in inches. 

Example 2.14: A 4.0-in. ID steel pipe has a %-in. wall thickness. For an allow- 
able tensile stress of 10,000 psi what is the maximum pressure? 

and hence 
p = 1250 psi 
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2.8. Buoyant Force. The resultant force exerted on a body by a static 
&id in which it is submerged or floating is called'the buoyant force. The 
buoyant force always acts vertically upward. There can be no horizontal 
component of the resultant because the vertical projection of the sub- 
merged body or submerged portion of the floating body is  always zero. 

The buoyant force on a submerged body is the difference between the 
vertical component of pressure force on its underside and the vertical 
component of pressure force on its upper side. In Fig. 2.33 the upward 

FIG. 2.33. Buoyant force on floating and submerged bodies. -* 
force on the bottom is equal to the weight of liquid, real or imaginary, 
which is vertically above the surface ABC, indicated by the weight of 
liquid within ABCh'F.4. The downward force on the upper surface 
equals the weight of liquid ADCEFA. The difference between the two 
forces is a force, vertically upward, due 'to the weight of fluid ABCD that 
is displaced by the solid. I n  equation form 

in which FB is the buoyant force, bT is the volume of fluid displaced, and 7 
is the specific weight of fluid. The same formula holds for floating bodies 
when f is taken as the volume of liquid displaced. This is evident from 
inspection of the floating body in Fig. 2.33. 

In  Fig. 2.34a, the vertical force exerted on an element of the body in 
the form of a vertical prism of cross section 6A is 

in which 6V is the volume of the prism. Integrating over the complete 
body, 

when y is considered constant throughout the volume. 
To find the line of action of the buoyant force, moments are taken about 
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a convenient axis 0 and are etl~lat,cd t o  the rl~ornent of the resultant., thus, 

in which 3 is the distancc from the axis to the line of act.ion. This equa- 
tion yields the distitnce t.o thc rcntroid of the volume; hence the buo~jant  
forcc nets through !h.e centroid of the displaced r!olume o f j u i d .  This holds for 

( a )  ( b )  
FIG. 2.34. Vertical foroo components on eIcrnent of body. 

both submerged and floating bodies. The ce~lt,roid of the disp1ace.d 
volume of fluid is called the center of buoyancy. 

When the body floats at the interface of a static two-fluid system 
(Fig. 2.34b) the buoyant force on 2 vertical prism of cross section 6A is 

in which yl, 7 2  are the specific weights of the lighter and heavier fluids, 
respectively. Integrating over t.he area, 

f 1 is the volume of lighter fluid displaced, and V 2  is the volume of heavier 
fluid displaced. To locate the line of act.ion of the buoyant force, 
moments are taken, 

in which Z1, z2 are distances to centroids of volumes ~ F I ,  f 2, respectively. 



kc. 2.81 FLUID STATICS 55 

The resultant does not, in general, pass through the centroid of the whole 
volume. 

In solving a statics problem involving submerged or floating objects, 
the object is generally taken as a free body, and a free-body diagram is 
drawn. The action of the fluid is replaced by the buoyant force. The' 
weight of t.he object must be shown (acting through its center of gravity) 
as well as all other contact forces. 

Weighing an odd-shaped object when suspended in two different fluids 
yields sufficient data to determine its weight, volume, specific weight, and 
specific gravity. Figure 2.35 shows two free-body diagrams for the same 

FIG. 2.35. Free-body diagram for body suspended in a fluid. 

-----.---- --------- -I st* - AV) sy 
. - - - - - - - - - - - - - - 

FIG. 2.36. Hydrometer, in water and in liquid of specific gravity S. 

object suspended and weighed in two fluids. F1, fi are the weights sub- 
merged; 71, 7, are the specific weights of the fluids. W and V ,  the weight 
and volume of the. object, are desired. 

The equations of equilibrium are written 

and solved 
F1 - F2 v = .  W =  Fly2 - F ~ Y I  - 
Y2 - Yr y2 - YI 

A hydrometer uses the principle of buoyant force to determine specific 
gravities of liquids. Figure 2.36 8hows a hydrometer in two liquids. It 
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has a stem of cross section a. Considering the liquid on the 
left to be distilled water, S = 1.00, the hydrometer floats ih equilibrium 

in which bZo is the volume submerged, y is the specific weight of water, 
and is tho weight of hydrometer. The positioil of the liquid surface 
js 1.00 on the stem t.0 indicate unit. specific gravity S. UThen the 
hydrometer is floated in another liquid, the equation of equilibrium 
becomes 

(Yo  - AV)Sr = W 

in which AF = n 011. Solving for Ah, with Eqs. (2.8.2) and (2.8.3), 

flmom whicth the stern may be marked off to read specific gravities. 

Example 2.15: .4 piece of ore weighing 7 lb in air was found to weigh 5.6 lb 
when submerged in water. What is its volume and specific gravity? 

The buoyant force due to air may be neglected. From Fig. 2.35 

2.9. Stability of Floating and Submerged Bodies. A body floating in 
a static liquid has vertical stability. A small upward displacement 
decreases the volume of liquid displaced, resulting in an unbalanced down- 
ward force which tends to return the body to its original position. Sim- 
ilarly, a small downward displacement results in a greater buoyant force, 
which causes an unbalanced upward force. 

(a) stable ( b )  Unstable ( c )  Neukal 

FIG. 2.37. Examples of (a) stable, ( b )  unstable, ( c )  neutral equilibrium. 

A body has linear stability when a small linear displacement in any 
direction sets up restoring forces tending to return the body to its original 
position. It has rotational stability when a restoring couple is set up by 
any small angular displacement. 
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Methods for determining rotational stability are developed in the 
following discussion. A body may float in stable, unstable, or neutral 

When a body is in unstable equilibrium, any small angular 
displacement sets up a couple that tends to increase the angular displace- 
ment. With the body in neutral equilibrium, any small angular dis- 
placement sets up no couple whatever. Figure 2.37 illustrates the three 
eases of equilibrium: (a) a light piece of wood with a metal weight at its 
bottom is stable; ( b )  when the metal weight is a t  the top, the body is in 

but any slight angular displacement causes the body to 
assume the position in a; ( c )  a homogeneous sphere or right-circular 
cylinder is in equilibrium for any angular rotation, i.e., no couple results 
from an angular displacement: 

A submerged object is rotationally stable only when its center of gravity 
is below the center of buoyancy, as in Fig. 2 . 3 8 ~ .  When the object is 

FIG. 2.38, Rotationally stable submerged body. 

rotated in a counterclockwise direction as in Fig. 2.38b, the buoyant force 
and weight produce a couple in the clockwise direction. 

Kormally, when a body is too heavy to float, it submerges and goes 
down until it rests on the bottom. Although the specific weight of a 
liquid increases s'ightly with depth, the higher pressure tends to cause 
the liquid to compress the body or to penetrate into pores of solid sub- 
stances, thus decreasing the buoyancy of the body. A ship, for example, 
is sure to go to the bottom once it is completely submerged, owing to 
compression of air trapped in various places within it. 

Determination of Rotational Stability of Floating Objects. Any floating 
object with center of gravity below its center of buoyancy (centroid of 
displaced volume) floats in stable equilibrium, as in Fig. 2 .37~ .  Certsin 
floating objects, however, are in stable equilibrium when their center of 
gravity is above the center of buoyancy. The stability of prismatic 
bodies 's first considered, followed by an analysis of general floating 
bodies for small angles of tip. 

Figure 2 . 3 9 ~  is a cross section of a body with all other parallel cross 
sections identical. The center of Euoyancy is always at the centroid of 
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the displaced volume, which is at the centroid of the cross-sectional area 
below liquid surface in this case. Hence, when the body is tipped, as in 
Fig. 2.3%; the center of buoyancy is at the centroid B' of the trapezoid 
ABCD; the buoyant force acts upward through B', and the weight acts 
downward through G, the center of gravity of the body. When the 
vertical through R' intersects the original center line above G, as at M, a 
restoring couple is produced, and the body is in stable equilibrium. The 
intersection of the buoyant. force and the center line is called the meta- 
center, designated M. When M is above G, the body is stable; when 

---------------------------------.----------------------------.--. - -- :- - - - - 7-  -- - - - - - - - A  - - -- -- - --------------- - , - - - I , - - - - , I - - - - - - d - - - - - - -x { b ) +-------------------------z=: ----------------------------- --------------- 
--&--------------------------------------------------------"------ 

FIG, 2.39. Stability of prismatic. body. 
' 

below G, it  is unstable; and when at G, it is in neutral equilibrium. The - 
distance MG is called the metacentric height and is a direct measure of the 
stability of the body. The restoring couple is 

WMG sin 0 

in which 0 is the angular displacement and W the weight of the body. 

Zxample 2.16: In Fig. 2.39 a scow 20 f t  wide and 60 f t  long has s gross weight of 
225 short tons (2000 lb). Its center of gravity is 1.0 ft above the water surface. 
Find the metacentric height and restoring couple when Ap = 1.0 ft. 

The depth of submergence h in the water is 

The centroid in the tipped position is located with moments about AB and BC, 

By similar triangles AEO and B'PM, 
- 

Ay B'P - - -  
b /2  m 



Sec, 2-91 FLUID STATICS - 
L\y = 1, b / 2  = 10, H'I' = 10 - 9.46 = 0.54 ft.; then 

G is 7.0 It from the bottom; hence 

= 7.00 - 3.03 = 3.97 ft 
and - 

MG = MP - = 5.40 - 3.97 = 1.43 ft 
- 

The scow is stable since M(; is positive; the righting moment is 

- 1 WG,lf sin 6 = 225 X 2000 X 1.43 X = 64,000 lb-ft 
dlol 

Nonprismatic Cross Seetias.  For s floating object of variable cross 
section, such. as a ship (Fig. 2.40~): a convenient formula may be devel- 
oped for determination of metacentric height for very small angles of 

Fro. 2.40. Stability relations in body of variable cross section. 

mtation 8. Thc horizontal shift in center of buoyancy r (Fig. 2.40b) is 
determined by the. change in buoyant forces due to the wedge being 
"bmcrged, which causes an upward force on the left, and by the other 
wedge decreasing the buoyant force by an equal amount AFB On the 
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right. The force system, consisting of the original buoyant force a t  B 
and the couple AFB X s due to the wedges, must have as resultant the 
equal buoyant force at B'. With moments about B to determine the 
shift r, 

AFs X s = Wr (2.9.1) 

The amount of the couple may be determined with moments about 0, 
the center line of the body at the liquid surface. For an element of 
area 6A on the horizontal section through the body at, the liquid surface, 
an element of lrolurne of t-he wedge is x0 6A ; the buoyant. force due to this 

element is 7x8 bA,  and-its moment about 0 
is y#x2 6A,  in which e is the small angle of tip 
in radians. By integrating over the complete 
original horizontal area at the liquid surface, 
the couple is determined to be 

in which I is the moment of inertia of the area 

FIG. 2.41. Horizontal cross FIG. 2.42. Cube floating in liquid. 
section of ship st water line. 

about the axis y-y (Fig. 2.40~) .  Substitution into Eq. (2.9.1) produces 

in which V is the total volume of liquid displaced. 
Since 8 is very small, 

- - 
MB sin 0 = MB8 = r 

The metacentric height is then 
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The minus sign is used if G is above B, t.he plus sign if G is below B. 

Ezample 2.17: A ship displacing 1000 tons has the horizontal cross section at 
water line shown in Fig. 2.41. Its center of buoyancy is 6.0 ft below water 

and its center of gravity is 1.0 ft below water surface. Determine its 
metacentric height for rolling (about y-y-axis) and for pitching (about x-x-axis). 

For rolling: 

For pitching: 

Example 2.18: A homogeneous cube of specific gravity S, floats in a liquid of 
specific gravity S. . Find the range of specific-gravity ratios S,/S for i t  to float 
with sides vertical. 

I n  Fig. 2.42, b is the length of one edge of the cube. The depth of submergence 
z is determined by application of the buoyant-force equation. 

in which y is the specific weight of water. Solving for dcpth of submergence, 

The center of buoyancy is 2/2 from the bottom, and the center of gravity is b / 2  
from the bottom. Hence 

After applying Eq. (2.9.3)) 

When equals zero, Sc/S = 0.212, 0.788. Substitution shows that is 



FUNDAMENTALS OF FLUID MECHANICS [Chap. 2 

positive for 

0 < < 0.212 0.788 < 3 < 1.0 
S 

Figure 2.43 is a graph of E / b  vs. S,/S. 

-- 
FIG. 2.43. Plot of S,/S vs. M G / b .  

PROBLEMS 

2.1. Prove that the pressure is the same in all direction8 at a point in a static 
fluid or the three-dimensional case. 

.2. The container of Fig. 2.44 holds water and air 3s shown. What is the d 
pressure at A, 33, C, and D in pounds per square foot'? 

2.3. The tube in Fig. 2.45 is filled with oil. Determine the pressure at A and 
B in feet of water. 
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2.4. Calculate the pressure a t  A, B, C, and D of Fig. 2.46 in pounds per sqllarc 
inch. 

2.5. Derive the Ian. of variation of static pressure for an incompressible fluid 
by considering a free body of fluid that is an inclined right circular cyIinder. 

2.6. Derive the equations that. give the pressure and density a t  any el(?vation 
in a static gas when conditions arc! known a t  one elevation and the temperclturc 
gradient ,B is known. 

2.7. By a limiting process as /3 4 0, derive the isothermal case from the results 
of Prob. 2.6. 

2.8. By use of the results of Prob. 2.6, determine the pressure and density at. 
5000-ft elevation when p = 14.5 psia, t = 6B°F, and P = -0.003"F/ft a t  elevn- 
tion 1000 ft for air. 

2.9. For isothcrmal air a t  40°F, determine the pressure and density at 10,000 ft 
whcn the prcssure is 15 psia at sea level. 

2.10. In isothermal air a t  G O O F  what is thc vertical distance for reduction of 
density by 10 per cent? 

2.11. Express a pressure of 5 psi in: (a)  inches of mercury, (b)  feet of water, (c) 
feet. of acetylene tetrabromide, sp gr 2.94. 

2.12. A bourdon gage reads %psi suction, and the barometer is 29.5 in. mer- 
cury. Express the pressure in six other customary ways. 

2.13. I<xpress 3 atmospheres in feet of 1%-ater gage. Barometer reading 
29.2 in. 

2.14. Rourdon gage A inside a pressure tank reads 10 psi. Another bourdon 
gage B outside the pressure tank, conncctcd with the tank, reads 18 psi, and an 
aneroid barometer reads 30 in. mercury. \\'hat is the absolute pressure measured 
by A in inches-of mercury? 

2.16. Determine the heights of colurnns of water; kerosene, sp gr 0.83; and 
acetylene tetrabromide, sp gr 2.94, equivalent to 10 in. mercury. 

2.16. For a reading h = 16 in. in Fig. 2 . 8 ~  determine the prcssurr:! st in 
pounds per square inch. The liquid has a specific gravity of 1.90. 

2-17. Determine the reading h-in Fig. 2.8b for pn = 2.5 psi suction if the liquid 
is kerosene, sp gr 0.83 

2-18. For h = 6 in. in Fig. 2.8b and bsrornetcr reading 29 in., with water the 
liquid, find p~ in feet of water Libsolute. 

2.19. In Fig. 2.Sc.SI = 0.86, S3 = 1.0, hs = 8.3 in., hl = 17 in. Find PA in 
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inches of mercury gage.. If the barometer reading is 29.5 in., what is p~ in feet 
of water absolute? 

2.20. Gas is contained in vessel A of Fig. 2.8~. With water the manometer 
fluid and hl = 7 in., determine the pressure a t  A in inches of mercury. 

2.21. In Fig. 2 . 9 ~  SI = 1.0, Ss = 0.95, Sa = 1.0, hl = hz = 1.0 ft, and ha = 

3.0 ft. Compute p~ - p~ in inches of water. 
2.22. In Prob. 2.21 find the gage difference hz for PA - p~ = - 10 in. water. 
2.23. InFig. 2.9681 = Sa = 0.83,SZ = 13.6, hl = 16in., h2 = gin., andh3 = 

12 in. (a) Find P A  if p~ = 10 psi. (b)  For p~ = 20 psia and a barometer read- 
ing of 29.0 in. find pa in feet of u*ater gage. 

2.24. Find the gage difference hz in Yrob. 2.23 for P A  = p ~ .  
2.25. In Fig. 2.47, A contains water and the manometer fluid has a specific 

gravity of 2.94. When the left meniscus is a t  zero on the scale, p~ = 4 in. water. 
Find the reading of the right meniscus for p~ = 1 psi with no adjustment of the 
U-tube or scale. 

Fsa. 2.47 

2.26. A vertical gas pipe in a building contains gas, p = 0.0016 slug/fta and 
p = 3.0 in. water gage in the basement. At the top of the building 800 f t  higher, 
determine the gas pressure in inches water gage for two cases: (a) gas assumed 
incompressible and (b) gas assumed isothermal. Barometric pressure 34 ft 
water; t = 70°F. 

2.27. In Fig, 2.12 determine R, the gage difference for a difference in gas pres- 
sure of 1 in. water. Sz = 1.0; S3 = 1.05; a / A  = 0.01. 

2.28. The inclined manometer of Fig. 2.13 reads zero when A and B are a t  the 
same pressure. The diameter of reservoir is 2.0 in., and that of the inclined ' 

tube a in. For 0 = 30°, gage fluid sp gr 0.832, find p~ - p~ in pounds per square 
inch as a function of gage reading R in feet. 

2.29. A tank of liquid 8 = 0.86 is accelerated uniformly in a horizontal diiec- 
tion so that the pressure decreases within the liquid 1 psi/ft in the direction of 
motion. Determine the acceleration. 

2.30. The free surface of a liquid makes an angle of 20" with the horizontal 
when accelerated uniformly in a horizontal direction. What is the acceleration? 



2.31. In Fig. 2.48, a, = 8.05 ft/sec2, a, = 0. Find the imaginary free liquid 
surface and the pressure a t  B, C, D, and E. 
2.32. In Fig. -2.48, a, = 0, a, = - 16.1 ft/sec2. Find the pressure a t  B, C, D, 

and E. 
2.33. In Fig. 2.48, a, = 8.05 ft/sec" aa, = 16.1 ft/8ec2. Find the imaginary 

free surface and the pressure at B, C, D, and E. 

2.34. In Fig. 2.49, a, = 32.2 ft/sec2, a, = 0. Find the pressure at A, B, and C. 
2.36. In  Fig. 2.49, a, = 16.1 ft/sec2, aa, = 16.1 ft/sec2. Find the pressure a t  

A,  B, and C.' 
2.36. A circular cross-sectioned tank of 6-ft depth and 4 f t  diameter is filled 

with liquid and accelerated uniformly in a horizontal direction. If one-third of 
the liquid spills out, determine the acceleration. 

2.37. Derive an expression far pressure variation in a constant-temperature 
gas undergoing an acceleration a, in the x-direction. 

2.38. The tube of J?ig. 2.50 i s  filled with liquid, sp gr 2.40. When accelerated 
to the right 8.05 ft/see2, draw the imaginary free surface and determine the prcs- 
sure at A. For p~ = 8 psi vacuum determine a,. 

2.39. A cubical box 3 ft on an cdgc, open at the top and half filled with water, 
is placed on an inelintd plane making ti 30' angle with the horizontal. The box 
alone weighs 100 lb and has a coefficient of friction with the plane of 0.30. Deter- 
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mint: the acceleration of the box and the angle the free water surface makes with 
the horizontal. 

2.40. Show that the pressure is the same in all directions rtt a point in a liquid 
moving as a solid. 

2.41. A closed box contains two immiscible liquids. When accelerated uni- 
formly in the x-direction, prove that the interface and zero pressure surface are 
paralf el.. 

2.42. A vessel containing liquid, sp gr 1.2, is rotated about a vertical axis. 
The pressure a t  one point 2 f t  radially from the axis is the same as a t  another point 
4 ft from the axis and with elevation 2 ft higher. Calculate the rotational 
speed. 

2.43. The U-tube of Fig. 2.50 is rotated about a vertical axis 6 in. to the right 
of A a t  such a speed that the pressure at A is zero gage. What is the rotational 
speed? 

2.44. Locate the vertical axis of rotation and the speed of rotation of the U-tube 
of Fig. 2.50 so that the pressures of liquid a t  the mid-point of the C-tube and a t  A 
are both zero. 

2.46. An incompressible A ~ i d  of density p moving as a solid rotates a t  speed w 
about an axis inclined a t  8' \i.ith the vertical. Knoiving the pressure at one point 
in the fluid, how do you find the pressure at any other point? 

2.46. A right circular cylinder of radius ro and height ho with axis vertical is 
open at the top and fillet] with liquid. A t  what speed must i t  rotate so that half 
the area of the bottom is exposed? 

2.47. A liquid rotating about a horizontal axis as a solid has a pressure of 10 psi 
at the axis. Determine the pressure variation along a vertical line through the 
axis for density p and speed o. 

2.48. Prove by integration that a paraboloid of revolution has a volume equal 
to half its circumscribing cylinder. 

2.49, A tank containing two immiscible liquids is rotated about a vertical axis. 
Prove that the interface has the same shape as the a e k  pressure surface. 

2.60. h hollow sphere of radius ro is filled with liquid and rotated about i t s  
vertical axis a t  speed o. Locate the circular line of maximum pressure. 

2.61. A gas following the law pp-n = constant is rotated about a vertical axis 
as a solid. Derive an expression for pressure in a radial direction for speed w, 
pressure po, and density pa at a point on the axis. 

2.62. Determine the weight W that can be sustained by the 100-lb force acting 
on the piston of Fig. 2.51. 

6 in. diam 
l-7 

1.5 in. diam i Y i  
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2.53. Keglecting the weight of the container (Fig. 2.52), find (a) the force 
tending to lift the circular top CD and (b)  the compressive load on the pipe wall 
a t  A-A. 

2.64. Find the force of oil on the top surface CD of Fig. 2.52 if the liquid level 
in the open pipe is reduced by 4.0 ft. 

k-24 in. diarn 9 

7 24 in. 

2.66. The cylindrical container of Fig. 2.53 weighs 100 lb when empty. It is 
filled with water and supported on the piston. What force is exerted on the upper 
m d  of the cylinder'! If an additional 100-lb weight were placed on the cylinder, 
how much would the water force against the top of the cylinder be increased? 

2.66. A barrel 2 f t  in diameter filled with water has a vertical pipe of 0.50 in. 
diameter attached to the top. Neglecting compressibility, how many pounds of 
water must be added to the ,pipe to exert a force of 2000 lb on the top of the 
barrcl '? 

2.57. A right-angled triangular surface has a vertex in the free surface of a 
liquid (Fig. 2.54). Find the force on one side (a) by integration and (b)  by 
formula. 

2.68. Determine the magnitude of the force acting on triangle of Fig- 2-55 
(a) by integration and (6) by formula. 
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2.G. Find the moment about AB of the force acting on one side of the surface 
ABC of Fig. 2.55. 

2.60. Locate a horizontal line below AB of Fig. 2.55 such that the magnitude 
of pressure force on the surface is equal above and below the line. 

2.61. A cubical box 4 ft on an edge is open a t  the top and 'filled with water. 
When accelerated upward 8.05 ft/sec2, find the magnitude'of water force on one 
side of the box. 

2.62. Determine the forcc acting on one side of the vertical surface of Fig. 2.56. 
2.63. Calculate the force exerted by water on one side of the vertical annular 

area shown in Fig. 2.57. 

Water 1 

2.64. Determine the moment a t  A required to hold the gate as shown in 
Fig. 2.58. . 

2.65. If there is water on the other side of thc gate (Pig. 2.58) up to A, deter- 
mine the resultant forcc due to water on both sides of the gate, including its line 
of action. 
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5.66. The shaft of the gate in Fig. 2.59 will fail a t  a moment of 100,000 lb-ft. 

Determine the maximum value of liquid depth h. 

2.67. The dam of Fig. 2.60 has a strut AB every 10 ft. Determine the com- 
pressive force in the strut, neglecting the weight of the dam. 

2.68. Locate the distance .the pressure center is below the liquid surface in the 
triangular area ABC of Fig. 2.55 by integration and by formula. 

2.69. By integration locate the pressure center horizontally.in Fig. 2.55. 
2.70. By using the pressure prism, determine the resultant force and location 

for the triangle of Fig. 2.54. 
2.71. By integration, determine the pressure center for Fig. 2.54. 
2.72. Locate the pressure center for the annular area of Fig. 2.57. 
2.73. Locate the pressure center for the gate of Fig. 2.58. 
2.74. A vertical square area 4 by 4 ft is submerged in water with upper edge 

2 f t  below the surface. Locate a horizontal line on the surface of the square such 
that (a) the force on the upper portion equals the force on the lower portion and 
(b) the moment of force about the line due to the upper portion equals the moment 
due to the lower portion. 

2.75. An equilateral triangle with one edge in a water surfaue extends down- 
ward at  a 45O angle. Locate the pressure center in terms of the length of a 
side b. 

2.76. In Fig. 2.59 develop the expression for y, in terms of h. 
2.77. Locate the pressure center of Fig. 2.56. 
2.78. Locate the pressure centcr for the vertical area of Fig. 2.61. 
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2.79. The gate of Fig. 2.62 weighs 400 lb/ft normal to the paper. Its ceder 
of gravity is 1.5 ft from the left face and 2.0 ft above the low-er face. It is hinbcd 
at 0. Determine the water-surface position for the gate just to start to come:up. 
(Water surface is below the hinge.) 

2.80. Find h of Prob. 2.79 for the gate just to come up to the vertical position 
shown. 

2.81. Determine the value of h and the force against the stop when this force 
is a maximum for the gate of Prob. 2.79. 

2.82. Determine y of Fig. 2.63 so the flashboards will tumble when water 
reaches their top. 

2.83. Determine the hinge location y of the rectangular gate of Fig. 2.64 so 
that it will open when the liquid surface is as shown. 
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a+. By use of the pressure prism, show that the pressure center approaches 
the centroid of an area as its depth of submergence is increased. 

2.85. (a) Find the magnitude and line of action of force on each side of the gate 
of Fig. 2.65. (b) Find the resultant force due to the liquid on both sides of the 
gate. (c) Determine F to open thc gate if i t  is uniform and weighs 6000 Ib. 

2.86. For linear stress variation over the-base of the dam of Fig. 2.66, (a) locate 
where the resultant crosses the base and (6) compute the maximum and minimum 
compressive stresses at the base. Xeglect hydrostatic uplift. 

2.87. Work Prob. 2.86 with the addition that the hydrostatic uplift varies 
linearly from 60 ft at A to zero a t  the toe of the dam. 

Gate 6 ft 
----- 

wide 

2.88. Find the moment M a t  0 (Fig. 2.67) to hold the gate closed. 
2.89. A cube 1 ff on an edge is filled with liquid, sp gr 0.65, and is accelerated 

downward 8.05 ft/sec2. Find the resultant force on one side of. the cube due to 
liquid pressure. 

2.90. A cylinder 2 ft in diameter and 6 ft long is accelerated uniformly dong its 
axis in a horizontal direction 16.1 ft/seca. I t  is filled with liquid, y = 50 lb/ft3, 
and has a pressure along its axis of 10 psi before acceleration commences. Find 
the net force exerted against the liquid in the cylinder. 

2.91. A closed cube, 1 f t  on an edge, has a small opening a t  the center of its 
top. When it is filled with water and rotated uniformly about a vertical axis 
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through its center a t  o rad/scc, find the force on a side due to the water in 3 rms  
of w. 

2.92. The gate shown in Fig. 2.68 is in equilibrium: Compute W ,  the 
counterweight per foot of width, neglecting the weight of the gate. 1s 
in stable equilibrium? 

I--4 fi-4 

I 

w&ht of 
this gate 

2.93. The gate of Fig. 2.69 weighs 100 Ib/ft normal to the page. It is in equi- 
librium as shown. Neglecting the weight of the arm and brace supporting the 
counterweight, (a) determine W and (b) determine whether the gate is in stable 
equilibrium. The weight is made of concrete, sp gr 2.50. 

2.94. The plane gate (Fig. 2.70) weighs 500 lb per foot of length, with its cen- 
ter of gravity 6.0 ft from the hinge a t  0. (a) Find h ets a-function of 0 for equi- 
librium of the gate. (b)  Is the gate in stable equilibrium for any values of 89 

2.96. A 16-ft-diameter pressure pipe carries liquid a t  200 psi. What thickness 
pipe wall is required for maximum stress of 10,000 psi? 

2.96. To obtain the same flow area, which pipe system requires theleast steel: 
n single pipe or four pipes. having half the diameter? The maximum allowable 
pipe wall stress is the same in each case. 

2.97. A thin-walled hoilow sphere 8 f t  in diameter holds gas at 200 psi. For 
allowable stress of 6000 psi determine the minimum wall thickness. 

2.98. -4 cylindrical container 6 f t  high and 4 f t  in diameter provides for pipe 
tension with two hoops a foot from each end. When filled with water, what is 
the tension in each hoop due to the water? 

2.99. A 1-in.-diameter steel ball covers a :-in. hole in a  pressure chamber where 
the pressure is 6000 psi. What force is required to lift the ball from the opening? 
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2.W. If  the horizontal rorn~onent of force on u curved surface did not equal 
tile farat. on a projection of the surface onto a vertical plane, what conclusions 
could you draw regarding the propulsion of a boat (Fig. 2.71)? 

2.101. (a) Determine the horizontal component of force acting on the radial 
gate (Pig. 2.72) and its line of action. (b) Dctc!rminc the vertical component of 
force and its line of action. (c) What force F is required to open the gate, 
neglecting its weight? 

.. . ... . 

.... Gate 6 ft wide 
. . . .  . . . .  

.. 

2.102. Calculate the force F required to hold the gate of Fig. 2.73 in a closed 
position. R = 2 f t .  

/Hinge 
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2.103. Calculate the force F required to open or hold closed the gate of/Fig. 
2.73 when R = 1.5 ft. 

2.104. What is R of Fig. 2.73 for no force F required to hold the gate closd or 
to open it? 

2.106. Find the vertical component of force on the curved gate of Fig. 2.74, 
including its line of action. 

2.106. Determine the moment M to hold the gate of Fig. 2.74, neglecting its 
weight. 

2.107. Find the resultant force, including its line of action, acting on the outer 
surface of the first quadrant of a spherical shell of radius 2.0 ft with center at the 
origin. Its centcr is 3 ft below the water surface. 

Gate 5 ft 
wide 

2.108. The log holds the water as shown in Fig. 2.73. Determine (a) the force 
per foot pushing i t  against the dam, ( b )  the weight of the log per foot of length, 
and (c) its specific gravity. 

2.109. The cylinder of Fig. 2.76 is filled with liquid as sho~vn. Find (a) the 
horizontal component of force on AB per foot of length, including its line of action, 
and (b )  the vertical component of force on AB per foot of length, including its 
line of action. 

2.110. The cylinder gate of Fig. 2.77 is made up from a circular cylinder and a 
plate, hinged a t  the dam. The gate position is controlled by pumping water into 
or out of the cylinder. The center of gravity of the empty gate is on the line of 
symmetry 4 ft from the hinge. I t  is in equilibrium when empty in the position 
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&own. How many cubic feet of water must be added per foot of cylinder to 
hold the gate in its position when the water surface is raised 3 f t ?  

2.111. A hydrometer weighs 0.007 Ib and has a stem 0.20 in. in diameter. 
Compute the distance between specific gravity markings 1.0 and 1.1. 

2.112. Design a hydrometer to read specific gravities in the range from 0.80 
to 1.10 when the scale is to be 2 in. long. 
2.113. A sphere 1 ft in diameter, sp gr 1.4, is immersed in a liquid having a 

density varying with the depth y belo\v the surface given by p = 2 + 0.19. 
Determine the equilibrium position of the sphere in the liquid. 
2.114. A cube, 2 f t  on an edge, has its lowcr half of specific gravity 1.4 and 

upper half of specific gravity 0.6. I t  is submerged into a two-layered fluid, the 
lower of specific gravity 1.2 and the uppclr of specific gravity 0.9. Determine 
the height of the top of the cube above the interface. 
2.116. Determine the density, specific volume, and volume of an object that 

weighs 3 lb in water and 4 lb in oil, sp gr 0.83. 
2.116. Two cubes, of the same size, 27 ft3, one of sp gr 0.80, the other of sp 

gr 1 .I,  are connected by a short wire and placed in water. What portion of the 
lighter cube is above the water surface, and what is the tension in the wire? 
2.117. In Fig. 2.78 the hollow triangular prism is in equilibrium as shown when 

z = 1 ft and y = 0. Find the weight of prism per foot of length and x in terms 
of y for equilibrium. Both liquids are water. Determine the value of y for 
z = 1.5 ft. 
2.118. How many pounds of concrete, y = 150 Ib/ft3, must be attached to a 

beam having a volume of 4 ft3 and specific gravity 0.65 to cause both to sink in 
water? 

2.119. Two beams, each 6 ft by 12 by 4 in., are attached a t  their ends and float 
as shown in Fig. 2.79. Dt:termine the specific gravity of each beam. 
2.120. A wooden r:ylindcr 24 in. in diameter, sp gr 0.50, has a concrete cylinder 

2 ft  long of the same diameter, sp gr 2.50, attached to one end. Determine the 
lengths of wooden cylinder for the system to float in stable equilibrium with axis 
vertical. 
2.121. What.are the proportions ro/h of a right circular cylinder of specific grav- 

ity S so that i t  will float in water with end faces horizontal in stable equilibrium? 
2.122. Will a beam 10 ft long with square cross section, sp gr 0.75, float in 

stable equilibrium in water with two sides horizontal? 
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2.123. Determine the metacentric height of the torus shown in Fig. 2.80. 

2.124. Determine whether the thick-walled cylinder of Fig. 2.81 is stable in 
the position shown. 

2.126. A spherical balloon 40 ft in diameter is open a t  the bottom and filled 
with hydrogen. For barometer reading of 28 in. mercury and 80°F, what is the 
total weight of the balloon and the load to hold it stationary? 

2.126. The normal stress is the same in all directions at a point in a fluid 

(a) only when the fluid is frictionless 
(b)  only whcn the fluid is frictionless and incompressible 
(c) only when the fluid has zero viscosity and is a t  rest 
( d )  when there is no motion of one fluid Iaycr relative to an adjacent 

layer 
(e) regardloss of the motion of one fluid layer relative to an adjacent 

layer 

2.127. The pressure in the air space above an oil (sp gr 0.75) surface in a tank 
is 2 psi. The pressure 5.0 f t  below thc surfacc? of the oil, in feet of water, is 

(a) 7.0 (b)  8.37 (c) 9.62 (d) 11.16 (e) none of these 
answers 

2.128. The pressure, in inches of mercury gage, equivalent to 8 in. of water 
plus 6 in. manometer fluid, sp gr 2.94, is 

(a) 1.03 (b) 1.88 (c) 2.04 (d)  3.06 (e) none of these- 
answers 

2.129. Thr differential equation for pressure variation in n static fluid may be 
written (y measured vertically upward) 
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2.130. In an isothermal atmosphere, the pressure 

(a) remains constant 
(b) decreases linearly with elevation 
(c )  increases exponentially with elevation 
(d) varies in the same way as the density 
(e)  and density remain constant 

2.131. Select the correct statement. 

(a )  Local atmospheric pressure is always below standard atmospheric 
pressure. 

(b)  Local atmosphcric pressure depends upon elevation of locality only. 
(c) Standard atmospheric pressure is the mean local atmosphcric pres- 

sure a t  sea level. 
( d )  A barometer reads the difference between local and standard atmos- 

pheric pressure. 
(e) Standard atmospheric pressure is 34 in. mercury abs. 

2.132. Select the three pressures that are equivalent. 

(a) 10.0 psi, 23.1 f t  water, 4.91 in. mercury 
(b) 10.0 psi, 4.33 ft water, 20.3 in. mercury 
(c) 10.0 psi, 20.3 f t  water, 23.1 in. mercury 
(d) 4.33 psi, 10.0 ft water, 20.3 in. mercury 
(e)  4.33 psi, 10.0 ft water, ,8.83 in. mercury 

2.133. 2 psi suction, with barometer reading 28 in. mercury, is the same as 

(a) 4.08 .in. mercury abs (b)  4.08 in. mercury 
(c) 4.62 f t  water vacuum ( d )  32.08 in. mercury abs 
(e) 36.42 ft water abs 

2.134. With the barometer reading 29 in. mercury, 7.0 psia is equivalent to 

(a) 0.476 atmosphere (b)  0.493 atmosphere 
(c) 7.9 psi suction (d) 7.7 psi 
(e) 13.8 in. mercury abs 

2.136. In Fig. 2.8b the liquid is oil, sp gr 0.80. When h = 2 ft, the pressure 
a t  A may bc expressed as 

( a )  - 1.6 f t  water abs (6)  1.6 ft water 
(c) 1.6 f t  water suction (d) 2.5 ft water vacuum 
(e) none of these answers 

2.236. In Fig. 2 . k  air is contained in the pipe, water is tho manometer liquid, 
and hl = 2.0 ft, hz = 1.0 ft .  The pressure a t  A is 

I 

(a) 2.0 ft water abs (b) 2.0 ft water vacuum 
(c) 1.0 f t water (d)  0.866 psi 
(e) 0.433 psi 
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2.137. In Fig. 2.9a, hl = 2.0 ft, h2 = 1.0 ft, h3 = 4.0 ft, S1 = 0.80, S2 = 0.65, 
St = 1.0. Then hB - hA in feet of water is 

(a) -3.05 (b)  -1.75 (c )  3.05 (d) 6.25 (e) noncofthcse 
answers 

2.138. In Fig. 2.9b, hl = 1.5 ft, h2 = 1.0 ft, h3 = 2.0 ft, S1  = 1.0, Sz = 3.0, 
S3 = 1 .O. Then p ,  - p~ in pounds per square inch is 

(a) -1.08 (b) 1.52 (c) 8.08 (d) 218 (e )  noneofthese 
answers 

2.139. A mercxry-water manometer has a gage difference of 2.0 f t  (difft3rence 
in elevation of menisci). The difference in pntssurc, measured in feet of water, is 

(a) 2.0 (b)  25.2 (c) 26.2 (d) 27.2 (e)  none of these 
answers 

2.140. In the inclined manometer of Fig. 2.13 the reservoir is so large that its 
surface may be assumed to remain a t  a fixed elevation. 0 = 30". 'C'scd as a 
simple manometer for measuring air pressure, it contains water, and R = 1.2 ft. 
The pressure a t  A, in inches of watcr, is 

(a) 7.2 (b) 7.2 vacuum (c) 12.5 ( d )  14.4 (e) none of 
these answers 

2.141. A closed cubical box, 2 f t  on each edge, is half filled with watcr, the 
other half being filled with dl, sp gr 0.75. When acceleratal vrrtically upward 
16.1 ft/sec2, the pressure. difference between bottom and top, in pounds per 
square foot, is 

(a) 187.2 (b) 163.8 (c) 109.0 (d) 54.6 (e) none of these 
answers 

2.142. When the box of Prob. 2.141 is accelerated uniformly, in a horizontal 
direction parallel to one side, 16.1 ft/sec2, the slope of the interface is 

(a) 0 (b) -; (c) -+ (d) - 1 (e) none of these answers 

2.143. When the minimum pressure in the box of Prob. 2.142 is zero gage, the 
maximum pressure in feet of water is 

(a) 0.75 ' ( b )  1.0 (c) 1.625 (d)  1.875 (e) 2-75 

2.144. When a liquid rotates a t  constant angular velocity about a vertical axis 
as a rigid body, the pressure 

(a) decreases as the square of the radial distance 
(b) increases linearly as the radial distance 
(c) decreases as the square of increase in elevation along any vertical 

line 
( d )  varies inversely as the ekva.tion along any vertical line 
(e) varies as the square of the radial distance 
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2.146. When a liquid rotates about a vertical axis as a rigid body so that 
points on the axis have the same pressure as points 2 ft higher and 2 ft from the 
axis, the angular velocity in radians per second is 

(a) 8.02 ( b )  11.34 ( c )  64.4 (d) not determinable from data 
given (e) none of these answers 

2.146. A right-circular cylinder, open a t  the top, is filled with liquid, sp gr 1.2, 
and rotated about its vertical axis ti.t such speed that half the liquid spills out. 
The pressure a t  the center of the bottom is 

(a) zero 
(h)  one-fourth its value when cylinder was full 
(c) indeterminable; insufficient data 
( d )  greater than a similar case with water as liquid 
(e )  none of these answers 

2.147. A forced vortex 

(a) turns in an opposite direction to a free vortex 
(b)  always occurs in conjunction with a free vortex 
(c) has the velocity decreasing with the radius 
( d )  occurs when fluid rotates as a solid 
(e) has the velocity decreasing inversely with the radius 

2.148. The magnitude of force on one side of a circular surface of unit area, 
with centroid 10 ft below a'free water surface, is 

(a) less than 10y 
(b)  dependent upon orientation of the area 
(c )  greater than 10y 
(d) the product of y and the vr?rtical distance from free surface to 

pressure center 
(e) none of the above 

2.149. A rectangular surface 3 ft by 4 f t  has the lower 3-ft edge horizontal and 
6 ft below a free oil surface, sp gr 0.80. The surface is inclined 30" with the 
horizontal. The force on one side of the surface is 

(a) 3 8 . 4 ~  (b)  48y (c )  5 1 . 2 ~  (d) 60y (e) none of these 
ansnrers 

2.160. The pressure center of the surface of Prob. 2.149 is vertically below the 
liquid surface 

(a) 10.133 ft ( b )  5.133 ft (c) 5.067 ft (d) 5.00 ft 
(e )  none of these answers 

2.161. The pressure center is 

(a) at the centroid of the submerged area 
(b)  the centroid of the pressure prism 
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(c )  independent of the orientation of the area 
(d) a point on the line of action of the resultant force 
(e )  always above the centroid of the arca 

2.162. What is the force exerted on the vertical annular area enclosed by 
concentric circles of radii 1.0 and 2.0 f t?  The center is 3.0 f t  below a free water 
surface. Y = sp wt. 

( a )  3n7 (b)  9 ~ y  ( c )  10.25ry (d )  127ry (e)  noncofthese 
answers 

2.153. The pressure center for the annular area of Prob. 2.152 is below the 
ct)ntroid of the area 

(a) 0 ft (b) 0.42 it (c )  0.44 ft (6 0.47 ft (e) none of 
these answers 

2,154. A vertical triangular arca has one side in a free surface, with vertex 
downward. Its altitude is h. The pressure center is below the free surface 

( a )  h /4  ( b )  h/3 (c )  h / 2  (d )  2h/3 (e)  3h/4 

2.166. A vertical gate 4 ft by 4 f t  holds water with free surface a t  its top. The 
moment about the bottom of the gate is 

(a) 42.77 (b)  577 ( c )  64y (d) 85.37 (e )  none of these 
answers 

2.156. The magnitude of the resultant force acting on both sides of the gate 
(Fig. 2.82) is 

(a)  768y (b)  15937 (c )  1 8 1 0 ~  (d) 3 8 2 0 ~  (e) none of 
these answers 

Bar. 28 in. Hg 

- . . . - - - - - - . .- - - I 
- - - - - - - . . - - - -. -. - .- 8ft Air 

10 psia 
- .. ..- 

- - .. - - - - .. - . .- - . -- ., - .. . - .. - -  
Gate 12 ft wide 

2.157. The line of action of the resultant force on both sides of the gate in 
Fig. 2.82 is above the bottom of the gate 

( a )  2.67 ft (b)  3.33 ft (c )  3.68 ft (d) 4.00 f t  (e) none of 
these answers 



FLUID STATICS 8 1 

2.158. Liquid in a cylinder 10 ft long is accelerated horizontally 20g ft/sec2 
along the axis of the CJ-linder. The difference in pressure intensities a t  the ends 
of the cylinder, in pounds per square foot, if y = sp wt of liquid, is 

(a) 20y (b )200y  (c)20gy (d )200y /g  (e)noneofthese 
8nSH'PrS 

2.159. The horizontal component of force on a curved surface is equal to the 

(a) weight of liqcid vertically above the curved surface 
(b) weight of liquid retained by the curved surface 
(c) product of pressure at its centroid and area 
(d) force on a vertical projection of the <:urverI surface 
(e) scalar sum of all elemental horizontal components 

2.160. A pipe 16 ft in diameter is to carry water a t  200 psi. For an allowable 
tensile stress of 8000 psi, the thickness of pipe wall is 

(a) 1.2in. (b)  1.6in. (c) 2.4in. (d) 3.2in. (e) noncof 
these answers 

2.161. The vertical component of pressure force on a submerged curved surface 
is equal to 

(a) its horizontal component 
(b) the force on a vertical projection of the curved surface 
(c) the product of pressure a t  centroid and surface area 
(d) the weight of liquid vertically above the curved surface 
(e) none of the above answers 

2.162. The vertical component of force on the quadrant of the cylinder A B  
(Fig. 2.83) is 

(a) 2247 (b) 9 6 . h  (c) 81y ( d )  42 .h  (e)  noneofthese 
answers 

Surface 6 ft long 

2.163. The vertical component of force on the upper half of a horisonbl right 
circular cylinder, 3 ft in diameter and 10 ft long, filled with water, and with a 
pressure of 0.433 psi a t  the axis, is 

(a) -4581b (b) -3311b0 (c) 124.81b (d) 18721b 
(e) none of these answers 
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2,164. A cylindrical ivoodcn barrel is hcld togethcr by hoops a t  top and hot- 
tom. When the barrel is filled with liquid, the ratio of tension in the toy hoop 
to tension in the bottom hoop, due to the liquid, is 

(a) $ (b)  1 (c )  2 ( d )  3 (e)  none of these answers 

2,166. A I-in. ID pipe with +in. wall thickness carries water at 250 psi. The 
tensile stress in the pipe wall, in pounds per square inch, is 

(a) 125 (b)  250 (c) 500 (d) 2000 (e) noneofthese 
answers 

2.166. A slal~ of wood 4 f t  by 4 ft by 1 ft, sp gr 0.50, floats in water with a 
400-lb load on it. The volume of slab submerged, in cubic feet, is 

(a,) 1.6 (b)  6.4 (c )  8.0 ( d )  14.4 (e)  none of tbesc 
answers 

2.167. The line of action of the buoyant force acts through the 

(a) center of gravity of any submerged body 
(b)  centroid of the volume of any floating bodi 
(c) ccntroid of the displaced volume of fluid 
(d) ccntroid of the volume of fluid vertically above the body 
(e) ccntroid of the horizontal projection of the body 

2.168. Buoyant force is 

(a)  the resultant force on a body due to the fluid surrounding it 
(b) the resultant force acting on a floating body 
(c) the force necessary to maintain equilibrium of a submerged body 
( d )  a nonvertical force for nonsyrnmetrical bodies 
(e) equal to the volume of liquid displaced 

2.169. A body floats in stable equilibrium 

(a)  when its metacentric height is zero 
(b) only when its center of gravity is below its center of buoyancy 
(e )  when ?% - I / V  is positive and G is above LI 
(d)  when I /V is positive 
(e) when the metacentcr is above the center of gravity 

2.170. A closed cubical metal box 3 f t  on an edge is made of uniform sheet and 
weighs 1200 Ib. Its metacentric height when placed in oil, sp gr 0.90, with sides 
vertical, is 

(a)  0 f t  (b)  -0.08 f t  (c) 0.62 f t  (d) 0.78 ft (e) none of 
these answers 



FLUID-FLOW CONCEPTS AND 

BASIC EQUATIONS 

The statics of fluids, treated in the preceding chapter, is almost an 
exact science, specific weight (or density) being the only quantity that 
must be determined experimentally. On the other hand, the nature of 
Row of a real fluid is very complex. The basic laws describing the com- 
plete motion of a fluid are not easily formulated and handled rnathe- 
matically, so recourse to experimentation is required. By an analysis 
based on mechanics, thermodynamics, and orderly experimentation, 
large hydraulic structures and efficient fluid machines have been produced. 

This chapter introduces the concepts needed for analysis of fluid 
motion. The basic equations that enable us to predict fluid behavior 
are stated or derived: These are equations of motion, continuity, and 
momentum, and the first and second laws of thermodynamics as applied 
to steady flow of a perfect gas. The concepts of reversibility, irreversi- 
bility, and losses are first introduced. Viscous effects, the experimental 
determination of Iosses, and the dimensionless presentation of loss data 
are presented in Chap. 5 after dimensional analysis has been introduced 
in Chap. 4. In general, one-dimensional flow theory is developed in this 
chapter, with applications limited to incornpressibIe cases where viscous 
effects do not predominate. Chapter 6 deals with compressible flow, 
and Chap. 7 with two- and three-dimensional flow. 

3.1. The Concepts of Reversibility, Irreversibility, and Losses. A 
particular quantity of matter or a specified region in space may be 
designated as a system. All matter external to this system is referred to 
as its surroundings. -, A closed system refers to a specified mass and is 
limited by the boundaries of the mass. An example would be a pound 
mass of air contained in a cylinder. An open system, or control volume, 
refers to a definite, fixed region in space through which matter moves, 
an example being flow of air through a pipe. 

83 
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A process may be defined as the path of the succession of statcs through 
which the system passes, such as the changes in velocity, elevation, 
pressure, density, temperature, etc. The expansion of air in a cylinder 
as the piston moves out and heat is transferred through the walls is 
an example of a process. S'ormally? the process causes some change in 
the surroundings, such as displacing it or transferring heat to or from 
its boundaries. When a process can be made to take place in such a 
manner that it can be reversed, i.e., made to return to its original state 
without a final change in either the system or its surroundings, it is said 
to be reversible. In any actual flow of a real fluid or change in a rnechani- 
eal system, the effects of viscous friction, Coulomb friction, unrestrained 
expansion, hysteresis, etc., prohibit the process from being reversible. 
I t  is, however, an ideal to be strived for in design processes, and their 
efficiency is usually defined in terms of their nearness to reversibility. 

When a certain process has a sole effect upon its surroundings that is 
equivalent to the raising of a weight, it is said to have done work on its 
surroundings. Any actual process is irreversible. The difference between 
the amount of work a substance can do by changing from one state to 
another state along a path reversibly and the actual work it  produces for 
the same path is the irreversibility of the process. I t  may be defined 
in terms of work per unit mass or weight or work per unit time. Under . 
certain conditions the irreversibility of a process is referred to as its 
lost work,l that is, the loss of ability to do work because of friction and 
other causes. In this treatise when losses are referred to, they mean 
irreversibility or lost work and do not mean an act.ua1 loss of energy. 

Example 3.1: A hydroelectric power plant has a head (difference in elevation 
of headwater and tailw.ater) of 100 ft and a flow of 100 ft3/sec of u.atcr through 
turbines, ~ .h i ch  rotate at 180 rpm. The torq.ue in the turbine shaft is measured 
to be 28,700 Ib-ft, and the horsepou.er output of the generator is 945. Determine 
the irreversibility, or losses, and the reversible work for the system. g = 32.17 
ft/sec2. 

The potential energy of thc water is 100 ft-lb/lb,. Hence for perfect conver- 
sion the reversible work is 100 ft-lb/lb, or 100 X 100 X 62.4 = 6.24 X lo5 
ft-lb/sec. The work done on the shaft by the water is 

The irreversibility through the turbine is then 

' The definitions of rever~ibilit~, irreversibility, and lost work just given are not 
complete; reference to a text on thermodynamics is advised for a full discussion of 
thwe concepts. 
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The irreversibility through the generator is 

Efficiency of thc turbine qt is 

and efficiency of the generator q, is 

3.2. Types of Flow. Flow may be . . classified in many ways, such as 
turbulent, laminar; real, ideal; reversible, irreversible; steady, unsteady; 
uniform, nonuniform. In this and the following section various types 
of flow are distinguished. 

Turbulent-flow situations are most in engineering practice. 
In turbulent flow the fluid particles (small molar masses) move in very 
irregular paths, causing an exchange of momentum from one portion of 
the fluid to another in a manner somewhat similar to the molecular 
momentum transfer described in Sec. 1.3, but on a much larger scale. 
The fluid particles can range in size from very small (say a few thousand 
molecules) to very large (thousand6 of cubic feet in a large swirl in a 
river or in an atmospheric gust). In a situation in which the flow could 
be either turbulent or nonturbulent (laminar), the turbulence sets up 
greater shear stresses throughout the fluid and causes more irreversibili- 
ties or losses. Also, in turbulent flow, the losses vary about as the 
square of the velocity, while in laminar flow, they vary as the first power 
of the velocity. 

In laminw flow, fluid particles move along smooth paths in laminas, or 
layers, with one layer gliding smoothly over an adjacent layer. Laminar 
flow is governed by Newton's law of viscosity [Eq. (1.1.1) or extensiohs 
of it to three-dimensional flow], which relates shear stress to rate of 
angular deformation. In  laminar flow, the action of viscosity damps 
out turbulent tendencies (see Sec. 5.3 for criteria for laminar flow). 
Laminar flow is not stable in situations involving combinations of low 
viscosity, high velocity, or large flow passages and breaks down into 
turbulent flow. An equation similar in form to Newton's law of viscosity 
may be written for turbulent flow: 
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The factor 7,  however, is not a fluid property alone but depends upon the 
fluid motion and the density. It is called the eddy viscosity. 

I n  many practical flow situations both viscosity and turbulence con- 
tribute to the shear stress: 

Experimentation is required for determination of this type of flow. 
An ideal Jluid is frictionless and incompressible and should not be 

confused with a perfect gas (Sec. 1.6). The assumption of an ideal fluid 
is helpful in analyzing Aow situations involving large expanses of fluids, 
as in the motion of an airplane or a submarine. A frictionless fluid is 
nonviscous, and its flow processes are reversible. 

The layer of fluid in the immediate neighborhood of an actual flow 
boundary that has had its velocity relative to the boundary affected 
by viscous shear is called the boundary layer. Boundary layers may be 
laminar or turbulent, depending generally upon their length, the viscosity, 
the velocity of the flow near them, and the boundary roughness. 

Adiabatic flow is that flow of a fluid in which no heat is transferred to 
or from the fluid. Reversible adiabatic (frictionless adiabatic) flow is 
called isentropic flow. 

Regardless of the nature of the flow, all flow situations are subject to 
the following relationships, which may be expressed in analytic form: 

a. Newton's laws of mot.ion must. hold for every particle a t  every 
instant. 

b. The continuity relationship, i.e., the law of conservation of mass. 
c. The first and second laws of thermodynamics. 
d. Boundary conditions, analytical statementas that a real fluid has 

zero velocity relative to a boundary a t  s boundary or that ideal fluids 
cannot penetrate a boundary. 

Other relations and equations may enter, such as an equation of state 
or Kewton's law of viscosity. 

3.3. Definitions. To proceed in an  orderly manner into the analysis of 
fluid flow requires a clear understanding of the terminology involved. 
Several of the more important technical terms are defined and illustrated 
in this section. 

Steady flow occurs when conditions a t  any point in the fluid do not 
change with the time. For example, if the velocity a t  a certain point is 
10 ft/sec in the +x-direction in steady flow, it remains exactly that 
amount and in that direction indefinitely. This can be expressed as 
av/at = 0, in wh'ich space (x, y, z coordinates of the point) is held 
constant. Likewise, in steady fiow there is no change in density p, 
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pressure p, or temperature T, with t-ime at  any point.; thus 

In t1whu1en.t flow, owing to the erratic motion of the fluid particles, 
there nrc always small fluctuations occurring a t  any point.. The defini- 
tion for steady flow mttst be generalized somewhat to  provide for these 
fluctuations. To illustrate this, a plot of 17clocit.y against tirne, at some 
point in tui.bulent flow, is given in 
Fig. 3.1. \IThen the temporal mean . I 
velocity 

v 

indicated in the figure by  the hori- 
zolltul line, does not change with the I 
t,imc, the flow is said to be steady. 
Thc same gcneralixittion applies to 
0 Time 

density, pressure, tem~erat'ure, etc., FIG. 3.1. Vcloeitp at a point i n  tur- 
whrn they are substituted for 1, in llulent flolv. 
the above formula. 

The flow is unsteady when conditions a t  any point changc with thc time, 
dv/dt # 0. Water being pumped through a fixed system a t  a constant 
rate is an example of steady flow. Water being pumpcd through a fixed 
system at an  increasing rate is an example of unsteady flow. 

Uniform flow occurs when at every point the velocity vector is identical 
(in magnitude and direction) for any given instant., or, in equation form, 
&/as = 0, in which time is held constant and 6s is a displacement in any 
direction. The equation states that thcre is no change in the velocity 
vector in any direction t,hroughout the fluid at any one instant. It states 
nothing a b o ~ t  the change in velocity a t  a point with time. 

In  flow of a real fluid in an open or closed.conduit, the definition of 
uniform flow may also be extended in mast cases even though the velocity 
vector at the boundary is always sero. When all parallel cross sections 
through .the conduit are identical ( i . ,  when the co hduit is 
and the average velocity a t  each cross section is the same a t  any gi-n 
instant, the flow is said to  be unijorm. 

Flow such that the velocity vector varies from place to place a t  any 
instant (dv/ds # 0) is nonuniform flow. A liquid being pumped through 
a long, straight pipe has uniform flow. A liquid flowing through a 
reducing section or through a curved pipe has nonuniform flow. 

Examples of steady and unsteady flow and of uniform and nonuniform 
flow are: liquid flow through a long pipe at a constant rate is steady ud- 
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form flow; liquid flow through a long pipe a t  a decreasing rate is unsteady 
uniform flow; flow through an expanding tube a t  a constant rate is 
steady nonuniform flow; and flow through an expanding tube at an increas- 
ing rate is unsteady nonuniform flow. 

One-dimensional flow neglects variations or changes in velocity, pres- 
sure, etc., transverse to the main flow direction. Conditions a t  a cross 
section are expressed in terms of average values of velocity, density, and 
other properties. Flow through a pipe, for example, may usually be 
characterized as one-dimensional. Many practical problems may be 
haridled by this method of analysis, which is much simpler than two- 
and three-dimensional methods of analysis. In two-dimensional flow 
all particles are assumed to flow in parallel planes along identical paths 
in each of these planes; hence, there are no changes in flow normal to 
these planes. The flow net, developed in Chap. 7, is the most useful 
method for analysis of two-dimensional-flow situations.. Threedimen- 
sional flow is the most general flow in which the velocity components 
u, v,. w in mutually perpendicular directions are functions of space coordi- 
nates and time x, y, x ,  and t .  Methods of analysis are generally com- 
plex mathematica.lly, and only simple geometrical flow boundaries may 
be handled. 

A streamline is a continuous line drawn through the fluid so that it has 
the direction of the velocity vector a t  every point. There can be no flow 
across a streamline. Since a particle moves in the direction of the strearn- 
line at any instant, its displacement 6s, having components 62, 69, 62, has 
the direction of the velocity vector q that has components u, v, w in the 
x-, y-, z-directions, respectively. Then 

states that the corresponding components are proportional and hence 
that 6s and q have the same direction. Expressing the displacements in 
differential form, 

produces the differential equations of a streamline. Equations (3.3.1) are 
two independent equations. Any continuous line that satisfies them is a 
streamline. 

In steady flow, since there is no change in direction of the velocity 
vector.at any point, the streamline has a fixed inclination at every point 
and is, therefore, $xed in space. A particle always moves tangent to the 
streamline; hence, in steady flow the path of a particle is a streamline. In 
unsteady flow, since the direction of the velocity vector at any point may 
change with time, a streamline may shift in space from instant to instant. 
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A then follows one streamline one instant, another one the next 
instant., and so on, so that the path of the particle may have no resem- 
blance to any given instantaneous st reamline. 

A dye, or smoke, is frequently injected into a fluid in order to trace its 
motion. The resulting dye, or smoke, trails are called streak 

lines. In steady flow a streak line is a streamline and the path of a 

, Streamlines in two-dimensional flow may be obtained by inserting 
fine, bright particles (aluminum dust) into the fluid, brilliantly lighting 
one plane, and taking a photograph of the streaks made in a short time 
interval. Tracing on the picture con- - - .  

tinuous lines that have the direction 
of the streaks at every point portrays 
the streamlines for either steady or un- 
steady flow. 

In illustration of an incompressible 
two-dimensional flow, as in Fig. 3.2, 
the streamlines are drawn so that per 
unit time the volume flowing between 
adj accnt streamlines is the same, if 
unit d e ~ t h  is considered normal to the 
plane of the figure. Hence, when the FIG. 3.2. Streamlines for steady flow 

around a cylinder between parallel streamlines are closer together, the. ve- walls. 
locity must be greater, and vice versa. 
If v is the average velocity between two adjacent streamlines at some posi- 
tion where they are h apart, the flow rate dq is 

A t  any other position on the chart where the distance between stream- 
lines is h,, the average velocity is ol = Aq/hl.  By increasing the number 
of streamlines drawn, i.e., by decreasing Aq, in the limiting case the veloc- 
ity a t  a point is obtained. 

h stream t d e  is the tube made by all the st.reamlines passing through a 
smaI1, closed curve. In  steady flow it is fixed in space and can have no 
Row through its walls because the velocity vector .has no component 
tlorrnal to thc tube surface. 

Example 3.2: In two-dimensional, incompressible, steady flow around an airfoil 
t h c h  streamlines are drawn so that they are 1 in. apart at a great distance from the 
airfoil n-hrre the velocity is 120 ft/sec. What is the velocity near'the airfoil 
\vhcrt thc streamlines are 0.75 in. apart? 

The flow per unit width is the same at both positions; hence 

and u = 120/0.75 = 160 ft/sec. 
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3.4. Continuity Equagon. The continuity equation may take several 
forms, each appropriate for a certiin class of problems, but they all 
derive from the general principle of conservation of mass. I:irst, a general 
conservation of mass relation is developed, which states analytically 
that the net mass efflux from any c.ontrol volume1 is just equal to the 
time rate of decrease of mass within the control volume. The con- 
tinuity equation applies to real fluids as well as to ideal fluids. 

Consider a small finite volume element 6V (Fig. 3.3a). An element of 
area dA of its surface may be expressed as a vector quantity. The 
vector is drawn normal to  the area element, jts length is proportional to 
the magnitude of the area element, and the sense is such that the vector 
is positive when drawn in t.he outward direction from the volume clc- 
ment. The fluid-velocity vector at some point in the area element is v, 

FIG. 3 . 3 ~ .  Notation for flow through a FIG. 3 3 .  I)ecornposition of large volume 
surface. into elements. 

and the density is p. Then the rate of rnass outflow through the area 
element is pv dA = pz! d A  cos a, as u cos a! is the component of velocity 
normal to the area element, and this is the component that accotlnts for 
flow through the area. Where the angle a is greater than 90°, mass flux 
is into the volume element. By integrating over the surface area of the 
small volume, the net mass efflux (mass outflow per unit time) is obtained 
JPv dA. Since this is a small volume element, the density may be 
considered as given by its value a t  any point within the volume element. 
Then the time rate of decrease of.mass within the element is - ( t ~ / a t ) ( ~  6V) 
and conservation of mass takes the form 

a 
p~ dA = - - ( p  6V) at. (3.4.1) 

area of dement 

To extend this rclation,to any size control volume (Fig. 3 . 3 )  (remem- 
bering that control volumes are fixed in space), the volume is broken 

1 The control volume, as used here, is a fixed region in space through which matter 
flows. 
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do~vn illto a large !lumber of very small control volumc elements that 
completely conlprise the volume. By applying Eq. (3.4.1) to  each 
element and then summing up over all the elements, the left-hand side 
becomes the integral over the external surface of the control yolume, 
because all internal surface elements occur in pairs that just cancel ; i.e., 
flux out of one internal area element is the flux into the adjacent clement. 
Hence, 

pv dA = - 
a 

area of I control a t 
- control \~olume 

This is a rate equation that npplics at any instant. Sincr the volume 
is fixed in space, V is independent of t and 

/ area, of p v - c i ~ = - J  control 9 at dv 
control volume 
volume 

From this general law of conservation of mass, spccific col~tinuity 
equations may be derived. 

FIG. 3.4. Steady flow through a stream FIG. 3.5. CaIlection of stream tubes he- 
tube. tween fixed boundaries. 

For steady flow, a p / d t  = 0 and Eq. (3.4.3) becomes 

p~ dA = 0 
control volume area / 

which states tha t  the net r&ss ratc of inflow into any control volume in 
steady flow must be zero. 13y applying Eq. (3.4.4) to a stream tube 
(Fig. 3.4), therc is mass flow only through the 'cross scctions I and 2; 
hence 

PIVJ  614 r = ~ 2 ~ 2  8A2 

Summing tip the mass flux over u collect.ion of stream tubes (Fig. 3.5), 
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if p and V represent average density and velocity over the flow area A 
at each section, riz is the mass per second flowing. 

Example 3.3: A pipeline is carrying 0.50 lb,/sec air. At section I, where the 
diameter is 6.0 in., p = 40 psia, t = 60°, and at section 2, &here the diameter is 
8.0 in., p = 30 psia and t = 80°F. Find the velocity a% each section. 

P 1 Pi=-- 40 X 144 
RTI - 53.3(460 + 60) = 0.208 lb,/ft3 

and 
P 2 p 2 = -  30 X 144 

RT2 '- 53.3(460 + 80) = 0.150 lb,/ft3 

From Eq. (3.4.5) 
?h v l = - - -  0.50 

plAl - 0.208~/16 
= 12.25 ft/sec 

m v B = - =  0.50 
pzAz 0.15&/9 

= 9.56 ft/sec 

For incompressible flow, p = constant and Eq. (3.4.3) becomes 

which states that the net volume outflow per unit time is zero (this 
implies that the control volume is filled with fluid at all times). A.pplied 
to a collection of stream tubes, as in Fig. 3.5, 

in which Q, the discharge, is the volume per unit time flowing and V1 and 
Vz are the average velocities at cross sections 1 and 2, respectively. 

Example 3.4: At  section 1 of a pipe system carrying water the velocity is 3.0 
ft/sec and the diameter is 2.0 ft. This same flow passes another section 2 where 
the diameter is 3.0 ft. Find the discharge and the velocity a t  section 2. 

From Eq. (3.4.7) 
Q = VIAl = 3 . 0 ~  = 9.42 C ~ S  

and 

For two- and three-dimensional flow studies, differential expressions 
of the continuity equation are used. For three-dimensional cartesian 
coordinates, Eq. (3.4.3) is applied to the volume element 6x 6y 82 of 
Fig. 3.6 with center at  (z,y,z) where the velocity components in the 
X, g, &directions are u, v, W, respectively, and p is the density. Consider 
first the flux through the pair of faces normal to the x-direction. On the 
right-hand face the flux outward is 
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since both p and u are assumed to vary continuously throughout the 
fluid. In the expression, pu 6y 62 is the mass flux through the center 
face normal to the x-axis.. The second term is the rate of increase of - - 
mass flux with respect to z, multiplied by the distance 6x/2,to the right- 
hand face. Similarly on the left-hand . U 
face the flux into the volume is 

since the step is - 6 x / 2 .  The net 
flux out through thesc two faces is 

a - (pu) 6x 6y 62 
dx 

The other two directions yield simi- 
lar expressions; hence the net out- 
flow is 

d 

a I FIG. 3.6. Time rate of mass flow through [$ (PU) + - (PV) + (PW) 6 1  61 6% a fact, 
8~ 

which takes the place of the left-hand side of Eq. (3.4.3). The right- 
hand side of Eq. (3.4.3) becomes, for an element, 

By equat-ing these two expressions and after dividing through by the 
volrrmc element and taking the limit as ax 6y 6z approaches zero, the 
continuity equation at a point becomes 

which must hold for eLery point in the flow, steady or unsteady, com- 
prcssible or incompressible. For incompressible flow, however, if 
simplifies to 

Equations (3.4.8) and (3.4.9) may be compactly written in vector not&- 
tion. By using fixed unit vectors inz,  y, z-directions, i, j, k, respectively, 
the operator v (pronounced "del") is defined as 
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and the velocity vecltor q is given by 

q = iu + j v  + kw 
Then 

a a 
ax 

a ) (iplt + jpn + ~ P W )  vWtpq) = ( i - + j q + k z  

because i i = 1, i j = 0, ctc. Equat.ion (3.4.8) becomes 

and Eq. (3.4.9) becomes 
v * q = o  

The dot product V q is called 'the diverger~ce of the ve1ocit.y vector q. 
In words it is the net mass efflux a t  a point and must be zero for incom- 
pressible flow. See Sec. 7.2 for further discussion of the operator V. 

In two-dimensional flow, generally assumcd t.o bc in plaiics parallel 
to the xy-plane, w = 0 and there is no c:hange with respect to x ,  so 
aid2 = 0, which reduces the three-dimensionttl equations given for 
continuity. 

Example 3.5: The velocity distribution for tt twodimensional incompressible 
flow is given by 

Show that it satisfies continuity. 
In two dimensions the continuity equation is 

au av z+s;=o 
Then 

au 1 2~~ a u I 2 y 2  -= - - -  -- - - - 
ax x2 + y 2  + (z2 + y i ) 2  a~ i 2  + y2 + i n - r n  

and their sum does equal zero, satisfying continuity. 

3.5. Euler's Equation of Motion along a Streamline. In addition to 
the continuity equation, other general controlling equations are Euler's 
equation, Bernoulli's equation, tho momentum equations, and the first 
and second laws of thermodynamics. In this section Edler's equation is 
derived in differential form. In  the following section it is integrated to 
obtain Bernoulli's equation. The first law of thermodynamics is then 
developed for steady flow, and some of the interrelatiorls of the equations 
are explored, including an iiltroduction to the second law of t.hermo- 
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dynamics. In Chap. 5 Eulr~s's equation is derived for genor;~l thre@- 
dimensional flow. Here i t  is restricted to steady flow along a streamline. 

In Fig. 3.7 a prismdtic-shaped fluid 
of mass p 6A 62 is moving along 

a streamline in the +s-direction. To 
simplify the development of thc equa- 
tion of motion for this particle i t  is as- 
sumed that the viscosity is zen), or that  
the fluid is frictionless. This eliminates 
all shear forces from consideration, lcav- 
ing as forccs to take into consideration 
the body force due to the pull of gravity. 
and surface forces on the end areas of 
the particle. The gravity force is pg 6A 
6s. On the upstream face the pressure 
force is p 6A in the +s-direction; on the 

FIG. 3.7. Force components on a 
do~~'1lstream it is [P fluid particle in the direction of the 
and acts in the -8-direction. Any streamline. 
forces on the sides of t.he element are 
normal t-o s and do not enter the equation. The body-force conlporlcnt 
in t.he s-direction is -pg 6A 6s cos 8. By substituting into ?;e\'ton's sec- 
ond Ittw of motion, Zf, = 6m a,, 

a, is the acceleration of the fluid particle along the streamline. After 
dividing t-hrough by the mass of the part:icle, p 6A 6s, and simplifying, 

62 is t.he illcrease in elevation of thc particle for a displacement 6s. 
From Fig. 3.7, 

Thc accclcration as is d ~ / d t .  I n  gt:nernl, if e depends upon s and'timr 1, 
2' = I: (s, t.) , 

s hccomes a flcnction of t in describing t.he motion of a pnrt.icle, so on(> 
may divide by dt,  yielding 
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To simplify the equation of motion the assumption is now made that 
the flow is steady, that is, av/dt = 0. Since dsldt = u, 

By use of this expression and that for cos 8, Eq. (3.5.1) becomes 

With p, p, v,  and z not functions of t, but  of s only, the partial differentials 
may be replaced by total differentials: 

This is Euler's equation of motion and requires three assumptions: 
( I )  motion along a streamline, (2) frictionless fluid, and (3) steady flow. 
It may be integrated if p is known as a function of p or is a constant. 
3.6. The Bernoulli Equation. Integration of Eq. (3.5.5) yields 

gr + + = constant 2 0 

if p is a function of p only. The constant of integration (called the 
Bernoulli constant) in general varies from one streamline to another but 
remains constant along a streamline in steady, frictionless flow (with 
no pump or turbine involved). When p is some explicit function of p 
such as p = ppo/po for isothermal flow, the integral can be evaluated. 

' 

By assuming that the fluid is incompressible, Eq. (3.6.1) becomes 

V2 - constant g z + z + - -  
P 

This is Bernoulli's equation for incompressible flow. It is for steady 
flow of a frictionless, incompressible fluid along a streamline. These four 
assumptions are needed and must be kept in mind when applying this 
equation. Each term has the dimensions (LIT)* or the units ft2/sec2, 
which is equivalent to ft-lb/slug: 

ft-lb - f t-lb ft2 --  = -  
slug lb-sec2/f t sec2 

as 1 slug = 1 Ib-sec2/ft. Therefore Eq. (3.6.2) is energy per unit mass. 
By dividing it through by g, - 

v2 P z + - + - = constant 
2g r 
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since y = pq, or 

it may now be interpreted as energy per unit weight, or ft-lb/lb. This 
form is particularly convenient for dealing with liquid problems with 
free surface. By multiplying Eq. (3.6.2) by p 

pu2 
yz + + p = constant ' 

which is convenient for gas flow, since elevation changes are frequently 
unimportant and rz may be dropped out. In  this form each term is 
ft-lb/ft3 or energy per unit volume. 

Each of the terms of Bernoulli's equation may be interpreted as a form 
of energy. In Eq. (3.6.2) the first term is potential energy per unit 

-- Datum --*--. - 

FIG. 3.8. PotentiaI energy. FIG. 3.9. Work done by sustained pressure 
force, 

mass. With reference to 1;ig. 3.8 the work needed to lift W lb 2 ft is Wz.  
The mass of W lb weight is W/g slugs; hence the potential energy per 
slug is 

The next term, v 2 / 2 ,  is interpreted as follows: Kinetic energy of a particle 
of mass is 6m 02/2. To place this on a unit mass basis, divide by 6m; 
thus v2/2 is ft-lb/slug kinetic energy. 

The last term p / j ~  is the flow work or .$ow energy per unit mass. Flow 
work is net work done by the fluid element on its surroundings while 
it is flowing. For cxamplc in 1:ig. :J.!),  imagine a piston placed at the 
opening from the reservoir. The force on the piston would be PA. 
For flow through the length 61 the work done on the piston is PA 61. 
The mass of fluid leaving the reservoir is 61; hence the work per 
unit mass is p / p .  The three energy terms in Eq. (3.6.2) are referred to 
as the available energy. 
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Example 3.6.: Show that thr energy per unit mass is evc~where  constant in a 
reservoir. 

For any point A in the reservoir (Fig. 3.10) the energy is given by Eq. (3.6.2). 

Since y drops out of the equation, the energy per unit mass is g l i  for a11 locations. 

By applying Eq. (3.0.4) to two points on a stre.amline, 

This equation shows that it is the difference in potential energy, flow 
energy, and kinetic energy that actually has significance in the equation. 

Thus, zl - 22 is independent of the 
particular elevation datum, as it is 
the difference in elevation of the two 
points. Similarly ( p l / y )  - (pz/r) 
is the diff ererlce in pressure heads ~ x -  
pressed in feet of the fluid flowing 
and is not altered by the particular 
pressure datum selected. Since the 
velocity terms are not linear, their 

FIG. 3.10. Liquid reservoir. datum is fixed. 

ExampZe 3.7: Water is flowing in an open channel a t  3 depth of 4 ft and a 
velocity of 8.02 ft/sec. It then flows down a chute into another open channel, 
where the depth is 2 ft and the velocity is 40.1 ft/scc. Assuming frictionless 
flow, determine thc difference in elevation of the ohannel floors. 

If the difference in elevation of floors is y, then Bernoulli's equation from the 
upper water surface to the lower water surface may be written 

VI and V2 are average velocities. With gage pressure zero as datum and the 
floor of the lower channel as elevation datum, then zl = y + 4, z t  = 2, V1 = 8.02, 
V2 = 40.1, pl = p2 = 0, and 

and y = 22 ft. 

Kinetic-energy Correction Factor. In dealing with flow situations in 
open- or closed-channel flow, the so-called "one-dimensional" form of 
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analysis is freqlie~ltly used. The whole flow is considered to be one 
large stream tlibt with average velocity V at each cross section. The 

-kinetic energy per unit weight given by V2/2g, however, is not the aver- 
age of v2/2g taken over the cross section. It is necessary to compute a 
co~rection factor a for TT2/2g, so that aV2/2g is the avcrage kinetic 
energy per unit weight passing the section. Referring to Fig. 3.11, the 
kinetic energy passing the cross section per unit time is 

in which rv 6 4  is the weight per unit time passing 64 and v2/2g is the 
kinetic energy per unit weight. I3y equating this to the kinetic energy 
per unit time passing the sect.ion, in terms of aV*/2g 

v2 
a - ~ V A  = T L ~ ~ A  

29 

By solving for a, the kinetic-energy correction fictor, 

a = i l ( + ) 3 d ~  (3.6.7) 

Bernoulli's equation becomes FIG. 3.11. Velocity 

V12 P2 v22 
distribution and av- 

~ l + p + a l -  - - x 2  + - + a2 - (3.6.8) erage velocity. 
Y 2g Y 2g 

For laminar flow in a pipe, a = 2, as shown in See. 5.2. I;or turbulent 
flow1 in a pipe, a varies from about 1.01 to 1.10 and is usually neglected 
except for precise work. 

Example 3.8: The velocity distribution in turbulent flow in a pipe is given 
approximately by Prandtl's one-seventh power law, 

with y the distance from the pipe wall and ro the pipe radius. Find the kinetic- 
energy correction factor. 

The average velocity V is expressed by. 

in which r = ro - y. Ry substituting for r and a, 

' V. 11. Streeter, The Kinetic Energy and Momentum Correction Factors for Pipes 
and Open Channels of Great Width, Civil Eng., vol. 12, no. 4, pp. 212-213, IW?. 
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By substituting into Eq. (3.6.7) 

.Modification of A ssumptions Underlying Bernoulli's Equation. Under 
special conditions each of the four assumptions underlying Bernoulli's 
equation may be waived. 

a. When all streamlines originate from a reservoir, where the energy 
content is everywhere the same, the constant of integration docs not 
change from one streamline to another and points 1 and 2 for application 
of Bernoulli's equation may be selected arbitrarily, i.e., not necessarily 
on tvhe same streamline. 

b. In the flow of a gas, as in a ventilation system, where the change 
in pressure is only a small fraction (a 'few per cent) of the absolute 
pressure, the gas may be considered incornprcssible. Equation (3.6.6) 
may be applied, with an average specific weight y. 

c. For unsteady flow with gradually changing conditions, such as the 
emptying of a rcservoir, Rcrnoulli's equation may be applied without 
appreciable error. 

d. All real fluids have viscosity, and during flow, shear stresses result 
that cause the flow to be irreversible. Bernoulli's equation may be 
applied to a real fluid by adding a term to the equation that accounts, for 
losses. 13y letting 1 be an upstream point and 2 a downstream point 
on a streamline, the available energy per unit weight at 1 equals the 
available energy per unit weight at 2 plus all the losses between the 
two points. 

E' r  = E?; + 10sses~-~ (3.6.9) 

This assumes no fluid machine such as a pump or turbine between the 
two points. Expanding Eq. (3.6.9), 

When a pump adds energy E p  per unit weight between th.c t,wa points, 

For a turbine, replace E, by -ET, the energy per unit weight extracted 
by the turbine. The nature of the losses varies with the appliaation, but 
experimental data are usually required. 
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Example 3.9: (a) Iletcrmine the velocity of efflux from the nozzle in the wall 
of the reservoir of Fig. 3.12. (b) Find the discharge through the nozzle. Neglect 
losses. 

a. The jet issues as a cylinder with 
atmospheric pressure intensity around 
its periphery. The pressure along its 
center line is a t  atmospheric pressure for 
all practical purposes. Bernoulli's cqua- 
tion is applied between a point on the 
water surface and a point downstream 
from the nozzle, 

Fra. 3.12. Flow from a reservoir. 
With the pressure datum as local atmos- 
pheric pressure, pl = pl = 0; with the elevation datum through point 5 2 2  = 0, 

. sl = II. The velocity on the surface of the reservoir is zero (prtctically) ; hence 

and 

which states that the velocity of efflux is equal to the velocity of free fall from the 
surface of the reservoir. This is known as Torricelli's theorem. 

b. The discharge Q is the product of velocity of efflux and area of stream, 

1 

Q = A2Vz - 32.08 = 2.80 cfs - 36 
Eqrlation (3.6.11) may  be written on a unit mass basis: 

Ep and losses are now per unit mass of fluid flowing. 

FIG. 3.13. Venturi meter. 
I 

Example 3.10: A vcnturi meter, consisting of a converging portion~followed by a 
throat portion of constant diameter, and then a gradually diverging portion, is 
used to determine rate of flow in a pipe (Fig. 3.13). The diameter at section 1 
is 6.0 in. and a t  section 2 is 4.0 in. Neglecting losses, find the discharge through 
the pipe when p~ - p, = 3 psi and oil, sp gr 0.90, is flowing. 
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From the continuity equation, Eq. (3.4.7) 

in which 0 is the discharge (volume per unit time flowing). By applying Eq. 
(3.6.4) for zl = 22, 

Solving for discharge, Q = 2.20 cfs (cubic feet pcr secotld). 

Bernoulli's equation, with its four assumpt.ions-(a) frictiollles,~, 
(L) along a st.reamline, (c) steady, and ( t i )  incompressible --is not n cbam- 
plete energy equation in the sensc of t.he first Inw of t.hermodynamics. 

I 
8 in. diam 8ft 

t 

- .  .----- *--- .  ------ ------ --- -- - - - -. - - - - .- - - - - - - - - - -. - -. - - - - ---.- --- --------------- ---. ----- --- -- 
*.-- - - - - - - - - - - - - - - - - - - - -  --- -- --- -- I $--I pi], i- 
d------------ -----.---.-- - A -  -- ------------.----------- --- -- ---- ---- -------. - - - -A -  --------A- 

& ------- ---- --- 
* . - -ma-- - - - - - - - -  -------------- ------------------------------ 
- - - - - - -A*" - - - - - - - - - - - - - - - - - - - -  .------------------------------ 8 ,,I ..1 / - - - - - - - - -. - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - I --- ----.---- ------------------- 

FIG. 3.14. Siphon. 

It is an available energy equation, tabulating only thonc forms of energy 
that  could be used to producc work, as through :r t~ll-hinc. When :I 

corrective term is applied to  the equation to permit i t  to ke used with 
real, viscous fluids, as in Eq. (3.6.10), the available energy decreases in 
the downstream direction, owing to irreversibilities or losses. X plot 
showing how the available energy changes along a streamline is called 
the energy grade line (see Sec. 10.1). A plot of the two terms z + p / y  
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along a strc!amline is called the hydraulic grade lint:. l h c  clicrgy grade 
line always slopes downward  in real fluid flow, except at. i L  prinlp or othcr 
source of energy. Rcdrlctions in eucrgy grade line :Ire referred to a?; 
head losses also. 

Example 3.1 1: The siphon of Fig. 3.14 is filled wit11 ~vntcr : l n c I  clisc.llarging :it 
2.80 cfs. Find the losses from point 1 to  point 3 in tcrms of tllc. vclloc*ity Iicarl 
1'*/2g. IJi~icl the pressure : k t  point 2 if two-thircis of tlic Iosscs occ-ur 1,c~twecn 
poitits I nncl 2. 

I3crnouIli's cquation applied to  points 1 and 3, with elevation tIutllrn :it point 3 
and gagcl prcssurcl zero for pressure datum, is 

v 3 + 211 + z1 = - -I- + + Z a  + losses 
29 7 2g Y 

in which .the losscs from 1 to 3 have heon exprcssctl as h'1.r32/2g. ZJron~ tho 

and 1732/2g = 1.0 ft. Hr rice h' = 3 and the losses arc 31~~3','2g or 3 ft-11) '11). 
Rernoulli's equation applictl to  points 1 and 2, with losst*s 21-'32,"2g = 2.0 ft, is 

The pressure at 2 is - 11 ft of water, or -1176 psi vacuum. 
Example 3.12: Tlict device s11on.n in Fig. 3.15 is usctl to dc!trrrninc tho vctlocity 

of liquid at point 1. It is a tube with its ltnvrr m d  (lirrctcvl upatroam ant1 its 
othibr leg vertical and ope11 to thc atmos- 
phcrt:. The impact of liqriitl against 
the  opcriing 2 forces Iiquid to  rise in thc 
vctrtictal lrg to tl-it! litbight Aa :~bovr? thr  
free surf:ictc. rlctcrmincl tlw velocity 
a t  1. 

Point 2 is ri stsgn:tt.io~i point! ~vllcrtb 
the velocity of the flow is rcduc*c!d t.o zcro. 
This crclntcs an impact prcsstlrrt, c:illt~t J:l(;. 3.15. J'itot  till)^. 

the (Iy~lamic: pressurcx, \vliic~ll forctls tht, 
fluid ihto the vertitanl lrg. I3y writiug I3~r11oulli's cqiiation beltnr~1n points 1 an(! 
2, ncgiecting loswls, \vlhirh :int vcry smal I ,  

PI/? is given by the fluid above point 1 and rqunls P ft of fluid florrinp. p r / ~  is 
given by the manometer ;is 1 + Ar, nc!pl(:eting cspilI:iry rise. After sul)xtitlititV! 
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these values into the equation, VI2/2g = Az and 

This is the pitot tube in a simple form. 

Examples of compressible flow are given in Chap. 6. 

3.7. Steady-flow Form of First Law of Thermodynamics. Entropy. 
The principle of conservation of energy m3y be applied to steady flow 
through a control volume. This approach permits a special form of the 
first law of thermodynamics to be developed. It is helpful in under- 

sttinding the nature of losses when com- 
pared with Euler's equation. 

In the control volume of Fig. 3.16, con- 
tained between sections 1 and 2, an en- 
ergy balance is taken that accounts for all 
work done, heat transferred, and energy 
brought into or out of the control volume. 
I t  i s  necessary to introduce the concept 
of internal energy, which is a fluid p r o p  
crty. The internal energy comprises 
the molecular energy of the substance. 

Arbitrary datum I In the absence of nuclear, electrical, sur- 
face-tension, and magnetic effects, the in- 

FIG. 3.16. Control volurne for 
steady flow. ternal energy of a perfect gas may be 

shown to be a funct.ion of temperature 
only. It is a measure of molecular energy, as distinguished from the 
molar forms of energy, kinetic and potential. 

When internal energy is expressed as u per unit mass, the kinetic, 
potent.ia1, and internal energy entering section 1 of Fig. 3.16 is 

and similarly the energy per unit mass leaving a t  section 2 is 

The flow work done per unit time at section 1 in.forcing the fluid into 
the control volume is plAIV1,  and the mass per unit time m is plA1V1; 
hence the flow work per unit mass is plAIV1/plAIV1 = pl/pl. Similarly 
the flow work at section 2 is ~ 2 , ' ~ ~ .  Heat transfer to the control volume 
is QB per unit time. Per unit mass heat transfer q~ is 
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This t.errn is considered positive if heat is transferred into the control 
volume and negative if transferred to  the surroundings. 

The work done by the fluid within the control volume and transmitted 
out by a turning shaft, electric power lines, or other means is W pei  
unit time, and the work per unit mass is 

When all the terms are assembled, 

This i s  the jirst law o f  thermodynamics for steady $ow. I n  case a pump is 
within t.he control volume, w becomes negative. This equation is valid 
for flow of real fluids, regardless of losses within the control volume. 

It is informative to  compare the Euler equation (3.5.5) with the first 
law when each is expressed in differenttal form, i.e., when sections 1 and 2 
are close together. Equation (3.7.1) becomes 

Equation (3.5.5) is for a frictionless fluid without a work term. When 
a term for work done is included (as by an infinit,esimal turbine), 

After this equation is subtracted from Eq. (3.7.2), 
.I 

Now, for reversible flow, entropy s per unit mass is defined by 

ds = (+) 
rev 

in which T is the absolute temperature. Kntropy is shown to be a .fluid 
propcrty in texts on the subject. I n  this equation i t  may have the 
units Rtu per slug per degree Rankine, or foot-pounds per-slug per degree 
Rsnkine, as heat may be expressed in foot-pounds (I Btu = 778 ft-lb). 
Sir~ce Kq. (3.7.3) is for a frictionless fluid (reversible), dqw may be eiimi- 
rlated from Eqs. (3.7.3) and (3.7.4). 

1 T d s  = d u  + p d -  
P 
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which is a very important thermodynamic relation. Although it  was 
derived for a reversible process, since all ternls arc thermodyi~amic 
properties, it must also hold for irrevt.rsik)le flow cases as well. By use of 
Eq. (3.7.5) and various combinations of Euler's equation and the first 
law, a cletirer understtanding of entropy aild losses is gained. 

3.8. Interrelationships between the First Law and Euler's Equation. 
For a reversible flow, from F:q. (3.7.4), 

7' d s  = dq, 

it is seen that the entropy increases if heat is added and it  decreases if 
heat is transferred from the control volume. For the reversible, adiabatic 
case (i.e., iscntropic flow) dqlt = 0 and ds = 0, SO the entropy of the fluid 
per unit mass flowing remains constant. 

To examine the relationships for flow o f  a real fluid, a loss term is 
included in %uler's equat,ion in differential form, similar to Eq. (3.7.2a), 

When this equation is subtracted from the first .law '[Nq. (3.7,2)], 

by use of Eq. (3.7.5). Now, for the adiabatic case ( d q ~  = O ) ,  
d (losses) = 7 'ds and it is seer1 that  entropy always increases owing to 
irreversibilities. Also the adiabatic-flow process having the least change 
in entropy has the least losses and is most efficient.. By rewriting Eq. 
(3.8.2) 

T d s  = dql, + d (losses) (3.8.3) 

i t  is seen that entropy c m  never decrease in adiabatic flow, and that it 
can decrease only when heat is transferred from the control volume. 
It can increase, however, owing t.o addition of heat, to irreversibilities, 
or to ~ornbinat~ions of the two. Equation (3.8.3) is a consequence of the 
second l aw  of t hermodynamics  for steady flow. In Eq. (3.8.1) account is 
taken only of losses in available energy. However, 1 Eq. (3.8.3), 7 which now includes thermodynamic terms, it must include losses due to 
irreversible heat, transfer, in order to satisfy I ' l c ~ .  (3.7.4). 

For liquids d ( l l p )  = 0 and Xq. (3.8.2) becomes 

d (losses) = du - d q t ~  (3.8.4) 

Hence losses, due to viscous or turbulent shear, may show up as an 
increase in internal energy (i-e., increase in temperature) or ma.y cause 
heat transfer from the c:ont.rol volume. 
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Two irltercsting flow cases1 are (1) adiabatic flow of a real liquid through 
a horizanta1 pipeli~lc and (2) adiabatic flow of a perfect gas through n 
horizontal pipeline. It is assumed that kinetic-energy changes along 
the pipes are unimportant,. In  the first case d (losses) = du. and the 
ir~ternal energy and temperature must rise in a downstream .direction. 
I n  the second case, the first Iaw [Eq. (3.7.l)j applied to the pipe at 
entrance and exit, yields 

Each side of this equation is a combination of fluid properties and is 
also a fluid property. It is given the name enthalpy and symbol h. For 
a perfect gas h is a function of temperature only, and hcnce as hr = hz, 
TI = Tz and the flow must bc isothermal. Therefore this is zt case of 
adiabatic, isothermal flow, with du and dqrr equal to zero and 

d (losses) = T de = p d (f) 
The entropy must increase in both cases, and the losses in the second 
case cause a decrease in p. The term d (l/p) is of the form of a work 
term and represents some of the energy of a unit mass of fluid in expand- 
ing its volume. 

3.9. Linear Momentum Equation for Steady Flow through a ~oitrol 
Volume. The linear momentlim equation is first derived for steady flow 
through a control voIume for a given direction, the $-direction. In this 
form, with direction specified, it is a scalar equation. The result, how- 
ever, is easily extended to the y- and x-directions and then to the general 
vector equation. Section 3.10 develops the linear momentum equation 
for unsteady flow through a control volume, and in See. 3.11 the steady- 
flow moment-of-momentum equation is developed. 

Sewton's second law of motion for a particle may be written for the 
x-component as 

d dv, d 6m gX = , (v. am) = 6m - f 2s -- 
dt dt 

4fz is the resultant x-component of force on the particle. When the equa- 
tion is applied to a given mass element as i t  moves through the control 
volume, bm is a constant and the last term drops out. The first term 
on the right may be expanded to 

as in Eq. (3.5.2). For steady flow, &,/at = 0. The mass element may 

These examples were furnished by Prof. Gordon Van Wylen. 
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convenientlyahe written as p  6& 6t, the mass flowing by any section of a 
stream tube in steady flow. This yields 

XOW, by integrating along the stream tube from its entrance to its exit 
from the control volume (Fig. 3.17) 

This equation may be summed up for all stream tubes passing through 
the control volume, and since internal forces occur in equal and opposite 
pairs that cancel, they drop out of the expression, leaving the resultant 

x-component of force on the con- 
trol volume due to both surface 
and body forces. Equation (3.9.4) 
becomes 

Fz = J P ~ ! ~ ~ , , ~  dQ - Jpv,,,, dQ (3.9.5) 

in which the integrals are carried 
out over those portions of the con- 

FIG. 3.17. Control volume for derivation trol volume surface where v,w, and 
of momenturrl equation. 

v,;, have positive nonzero values. 
By use of the notation of Fig. 3.3, 6Q = v cos a d A  with cr the angle 
between the normal to the surface area element and the velocity vector a t  
the element, the two integrals of Eq. (3.9.5) may be combined: 

F z  = f pva, cos a dA 
area of - control 
volume 

In  vector notation, this becomes 

F. = \ pv,~ dA 
area of - control 
volume 

The y- and 2'-components are 

F" ISM 01 p t l , ~  - dA F z = /  area of p n e d A  (3.9.8) 
control control 
volume volume 

By addition of the component equations vectorially, the general, steady 
linear momentum equation is obtained. 

F = 1 ~ V ( V  dA) 
area of " .  
control 
volume 



Sec. 3.91 FLUID-fLOW CONCEPTS AND BASIC EQUATIONS 109 

practical Formulations of Momentum Equation. In some applications 
and u, are constant over the inlet and outlet sections of the control 

volume. With V ,  the average velocity over a section, Eq. (3.9.5) 
becomes 

F z  = P Q ( V Z ~ , ~  - Vx;,) (3.9.10) 

since for steady flow (pQ)in = ( P Q ) ~ ~ ~ .  
When the density is constant over the inlet section or the outlet 

section of the control volume, one of the integrals of Eq. (3.9.5) may be 
written (dropping subscripts) 

in which 6 is called the momentum correction factor and V ,  is the average 
x-component over the section. Since & = A V ,  d& = 2) d A ,  by solving for 
P 

because v,/V, = v/V from Fig. 3.18. The value of P is never less than 
1.0. For laminar flow in a round tube, j3 = 9. In turbulent flow in 
pipes,' ,8 varies from about 1.01 to 
1.05. When the momentum equa- 
tion is applied, efforts are made to 
select the control volume so that the 
in and out sections have uniform 
velocity and 0 = 1. 

The momentum equations for 
constant velocity over the sections, 
for the y- and %-directions, are 

F, = pQ(V,,, - V,,) (3.9.13) 
Fz = PQ(VZ~~, - Vqn) (3.9.14) 

Adding Eqs. (3.9. lo), (3.9.13), and 
(3.9.14) vectorially, 

= pQ(Vout- V;,) (3.9.15) FIG. 3.18. Notation for momentum rela- 
tionships. 

Hence, the resultant force on a con- 
. trol volume in steady flow equals the product of pQ (the mass of fluid per 
unit time having its momentum changed) and the velocity vector of 
leaving fluid minus the velocity vector of entering fluid. 

See footnote, p. 99. 
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Example 3.13: Deterrnirlc the momentum corrcct.ion factor for the velocity 
distribution in Example 3.8. 

Example 3.14: A jet of n-atcr 3 in. in rliltmetczr tvith a velocity of 120 ft/sec is 
tiischarged in a horizontal direction from a nozzle mounted on n boat. What 
fortbe is required to hold the boat stationary? 

Thc rr~orncntur~~ in t h e  jet rclquircs a thrust, or unbalanced force [Eq. (3.9.10)], 
of 

This force must he applied to the boat, in the direction the jet is discharging, to 
hold it a t  rest. 

h changc in direction of a pipeline causes forces to be cxerted on the 
line unless the bend or elbow is anchorcd in place. Thcse forces are due 

to both stat.ic pressure in t.he line ~v and dynamic reactions in the turn- 
ing fluid stream. Expansion joints 
are placed in large pipelines to avoid 
stress in tohe pipe in an axial direc- 
tion, whether caused by fluid or by 
t,emperature change. These expan- 
sion joints permit rclativcly free 
movement of the line in an axiaI di- 
rection and, hcnce, the static and 
dynamic forces must be provided 
for at the beads. 

Exawple 3.15: The force components FIG. 3-19. Control volume for fluid within 
a reducing bend. on a reducing elbow making a 60" turn 

in a horizontal plane are dcsired. At 
tho entering section, Dl = 20 ft, V ,  = 50 f t / s cc ,  pl = 40 psi; a t  the exit section, 
Dz = 16 ft. Water is flowing in the line and elbow losses arc to be neglected. 

Ki th  axes as in Fig. 3.19, Q = V17rL)12/4 = 15,7 10 cfs. Then 

Ry using Bcrnoulli's equation, 
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Since z1 = 22, 

and p 2  = 15.8 psi. Applying Eq. (3.9.10) I 

plA1 - psAf cos 8 - P, = pQ(17:! cos 6 - T ' , )  
or 

and P, = 1,915,000 111. Similarly for Elq. (3.0.13), 

P ,  - p2A2 sin 8 = p(,?l.': sin 6 

or Y ,  - 15.8 X 144 X 6 4 ~  X 0.866 = 1.93,5 X 15,7 10 X 715.1 X 0.86(i :111d I', = 

2,452,000 lb. The forctc  component.^ cxortcd on the clbon. arc cxcyu:il :inti upl)ositc.l 
to I', :i11d YY. 

In this example g:tgcb prcxssurcs \vtlrc usctl. If rrbsol~~tc prossuros I1:1(1 t,c)on rlsotI 
a diffcrorit :insivcr 1voultl rcksult. The forclcs wouItf bc tliosc rt~luircbtl to  tlolt l  t . 1 ~  
rlboil: if it \\-art. surror~ntl(l(l b ~ -  s c.omplrtr v:ic1uurn. 

1 in. diam 

-- 
E 3  in. diams- _1*-1-1-:; , - -  

- -7-- 

( a )  ( 6 )  

FIG. 3.20. Sozzle at t.hc end of a pipe. 

Exan~ple 3.16: E'incl the force exerted by the nozzlc on the pipe of Fig. 3.20a. 
Xrgleet losscs. Tllc fluid is oil, sp gr 0.85, and pl = 100 psi. 

To  dttcrmine the discharge, BernouIli's equation is writtcn for the stream from 
section 1 to the doivnstrcam end of the nozzle, ivhtlrr thc! pressure is zcro. 

Since 21 = 2 2 ,  and V ?  = ( I ) l / D 2 ) 2 V l  = 0 / 7 ~ ,  t1ftt.r substituting, 

2 

and VI  = 14.78 ft/sec, V ,  = 133 ft/src, Q = 14.78 1 (i) = 0.725 efs. Let 

P, (Fig. 3.20b) be the force exerted on the free body of liquid by the nozzle'; then, 
with Eq. (3.9.10), 

or P. = 56.5 lb. The oil exerts a force on the nozzle of 565 ib to the right, and a 
tension force of 565 lb is exerted by the nozzle on the pipe. 
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The Momentum Theory for Propellers. The action of a propeller is 
t.0 change the momentum of the fluid within which it is submerged and 
thus to develop a thrust that is used for propulsion. Propellers cannot 
be designed according to the momentum theory, although some of the 
relations governing them are made evident by its applicatiqn. A pro- 
peller, with its slipstream and velocity distributions a t  two sections a 
fixed distance from it, is shown in Fig. 3.21. The propeller may be 
either (a) stationary in a flow as indicated or (b)  moving to the left 
with a velocity VI  through a stationary fluid since the relative picture 
is the same. The fluid is assumed to be frictionless and incompressible. 

4 
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FIG. 3.21. Propeller in a fluid stream. 

The flow is undisturbed at section 1 upstream from the propeller and is 
accelerated as it approaches the propeller, owing to the reduced pressure 
on its upstream side. In passing through the propeller, the fluid has its 
pressure increased, which further accelerates the flow and reduces the 
cross section at 4. The velocity V does not change across the propeller, 
from 2 to 3. The pressure intensities a t  1 and 4 are those of the undis- 
turbed fluid, which is also the pressure along the slipstream boundary. 

When the momentum equation [Eq. (3.9. lo)] is applied to the free body 
of fluid between sections 1 and 4 and the slipstream boundary, the only 
force, F ,  acting on it  in the flow direction is that due to the propeller 
as shown, since the outer boundary of the free body is everywhere at the 
same pressure. Therefore, 
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in which A is the area swept over by the propeller blades. The force 
on the propeller must be equal and opposite to the force on the fluid. 
After substituting & = A V and simplifying, 

pV(V4 - V1) = ps - pi? (3.9.17) 
b 

When Bernoulli's equation is written for the stream between sections 1 
and 2 and between sections 3 and 4, 

since 21 = 2 2  = 23 = 24. In solving for pa - p2, with pl = p4: 

By climillating pl - p2 in Eqs. (3.9.17) and (3.9.18), 

which shows that the velocity through the propeller area is the average 
of the velocities upstream and downstream from it. 

The useful work done by a propeller moving through still fluid is the 
product of propeller thrust and velocity, i.e., 

'I'he power input is. that mquired to increase the velocity of fluid from 
1'1 to V4, or the useful .work plus the kinetic energy per unit time remain- 
i ~ l g  ill the slipstream. 

Power input = P $ (v42 - V12) = pQ(V4 - v I ) V I  

With the ratio of Eqs. (3.9.20) and (3.9.21) used to obtain the theoretical 
efficiency ec, 

If AV = Vq - V1 is the increase in slipstream velocity, substituting 
into Eq. (3.9.22) prodr~ces 

which shows that maximum efficiency is obtained with a propeller that 
increases the velocity of slipstream as little as possible, or for which 
A T7/ V 1 is a minimum. 
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Owing to compressibility effects, t he  efficiency of an  airplane propellcr 
drops rapidly with speeds above 400 mph. Airplane propellers under 
optimum conditions have actual effkiencies close to the theoretical 
efficiencies, in the neighborhood of 85 per cent. Ship propeller efficiencies 
are less, around 60 per cent, owing to  restrictions in diameter. 

The windmill may be analyzed by application of the momentum rcla- 
tions. The jet. has its speed reduced, and the diameter of slipstream is 
increased. 

Example 3.17: An airplane traveling 250 mph through still air, y = 0.080 lb/ft3, 
tlischttrgcs 33,000 cfs through its two 7.0-ft-diameter propttllers. Determine (a)  
the thcorctical cfficienr:y, (b)  the thrust, (c) the prcssurc difftlrence across the 
blades, and (d) the theoretical horsepo\vcr required. 

a. 

From Eq. (3.9.22) 

b. From Hq. (3.9.1 9) 

The thrust from both propcllcrs is, from Eq. (3.9.16) 

c. The prcssurt: tliffcrcncc, from Eq. (3.9.17), is 

d. The theortltic!aI horsepower is 

J e t  Propulsion. The propeller is one form of jet propulsion in that 
i t  creates a jet and by so doing has a thrust exerted upon it that  is the 
propelling force. I n  je t  cngines, air (initially at rest) is taken into the 
engine and burrled with u small amount of fuel; the gascs arc then ejected 
with a much higher vclocity thar~ in a propeller slipst.rtt:irn. The jet 
diameter is necessarily smaller than the propeller slipstream. For the 
mechanir.al energy only, the theoretical efficiency is given by the ratio 
of useful work to work input or by useful work divided by the sum of 
useful work and kinetic energy per unit time remaining in the jet. I f  
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the mass of fuel burned is neglected, the propelling force F [Eq. (3.9.16)] is 

in \\*hich ITab (Fig. 3.22) is the absolute velocity of fluid in the jet and 
pQ is the mass per unit time being 
discaharged. The useful work is F lT l ,  Kbs 
in which VI is the speed of the body. 

+- 

The kinetic energy per unit time V,b,=v, -Vl 
b~eing discharged in the jet is y& 

FIG. 3.22. Sotation for jet propulsion. 
TT,,.,?/2g = PQ 17,,,2/2, since y Q  is the 
weight per unit time being discharged and 17.tH2/2g is the kinetic energy 
per unit weight. Hence, the theoretical mechanical efficiency is 

output 
el = - - Ft71 

output $- loss Fvl + p&Vabr2/2 

which is the same cxprcssion as that for efficiency of the propeller. It 
is obvious that, other things being equal, Vabs/ V1 should be as small as 
possible. For a given speed V l ,  the resistance force P is determined by 
the body and fluid in which it moves; hence, in Eq. (3.9.24) for vaba 
to be very small, PQ must be very large. 

An example is the type of propulsion system to be used on a boat 
(Fig. 3.23). If the boat requires a force of 400 Ib to move it through 

AV--- % 
rLIZ/4 

FIG. 3.23. Prop~llsion of boat with liquid jet. 

water at 15 mph, first a method of jet propulsion ct be considered in 
which water is taken in at the front of the boat and discharged out the 
rear by a 100 per cent eficictlt pumping system. 

If a. 6-in.-diameter jet pipe is used, v, = 16Q/a and the absolute veloc- 
ity of the jet as it. leaves the boat is Vsbs = (16Q/?r) - V I .  By sub- 
stituting into Eq. (3.9.24) for V1 = 15 rnph = 22 ft/sec, 

16Q 400 = 1.935Q (_ - 22) 

Hence, Q = 8.80 cfs, Vabs = 23.2, and the efficiency is 
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The horsepower required is 

With an 8-in.-diamet.er jet pipe, v, = 9Q/r, V n b  = (9Q/r) - 22? and 

so & = 13.14 cfs, Vab = 15.72, e, = 73.7 per cent, and the horsepower 
required is 21.7. 

With additional enlarging of the jet pipe and the pumping of mope 
water with less velocity head, the efficiency can be further increased. 
The type of pump best suited for large flows a t  small head is the axial- 
flow propeller pump. Increasing the size of pump and jet pipe would 
increase weight greatly and take up useful space in the boat; the logical 
limit is to drop the propeller down below or behind the boat and thus elim- 
inate the jet pipe, which is the usual propeller for boats. Jet propulsion of 
a boat by a jet pipe is practical, however, in very shallow water where a 
propeller would be damaged by striking bottom or other obstructions. 

To take the weight of fuel into account in jet propulsion, let hair be the 
mass of air per unit time and r the ratio of mass of fuel burned to mass of 
air. Then (Fig. 3.22), the propulsive force F is 

The second term on the right is the mass of fuel per unit time multi- 
plied by its change in velocity. By substituting Vnbs = vr - V1 and 
rearranging, 

F = hair[vr(l 3. r )  - VrI (3.9.26) 

Defining the mechanical efficiency *again as the useful \iork divided by 
the sum of useful work and kinetic energy remaining, 

By use of Eq. (3.9.26) 
1 

The efficiency becomes unity for vl = v,, as the combustion products are 
then brought to rest and no kinetic energy remains in the jet. 

Example 3.18: An airplane consumes 1 lb, fuel for each 20 lb, air and discharges 
hot gases from the tail pipe at v, = 6000 ft/sec. Determine the mechanical 
efficiency for airplane speeds of 1000 and 500 ft/sec. 
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6 0 0 0  For 1000 ft/sec v, /Vl  = = 6, r = 0.05. From Eq. (3.9.27), 

6 0 0 0  For 500 f t /sec v,/Vl = -- = 12 and 

Jet Propulsion qf Aircraft or Missiles. Propulsioil through air or water 
jn each case is caused by reaction to the formation of a jet behind the 
body. The variouk means include the propeller, turbojet., turboprop, 
ram jet, and rocket motor, which are briefly described in the following 
paragraphs. 

The momentum relations for a propeller determine that its theoretical 
efficiency increases as the speed of the aircraft increases and the absolute 
velocity of the slipstream decreases. As the speed of the blade tips 
approaches the speed of sound, however, cornprcssibility effects greatly 
increase the drag on the blades and thus decrease the over-all efficiency 
of the propulsion system. 

A turbojet is an engine consisting of a compressor, a combustion 
chamber, a turbine, and a jet pipe. Air is scooped through the front 
of the engine and is compressed, and fuel is added and burned with s 
great excess of air. The air and combustion gases then pass through s 
gas turbine that drives the compressor. Only a portion of the energy 
of the hot gases is removed by the turbine, since the only means of pro- 
pulsion is the issuance of the hot gas through the jet pipe. The over-all 
efficiency of a jet engine increases with speed of the aircraft. Although 
there is very little information available on propeller systems near the 
speed of sound, it appears that the over-all efficiencies of the turbojet 
and propeller systems are about the same at the speed of sound. 

The turboprop is a system combining thrust from a propeller with 
thrust from the ejection of hot gases. The gas turbine must drive both 
compressor and propelIer. The proportion of thrust between the pro- 
peller and the jet may be selected arbitrarily by the designer. 

The ram jet is a high-speed engine that has neither compressor nor 
turbine. The ram pressure of the air forces air into the front of the 
engine, where some of the kinetic energy is converted into pressure 
energy by enlarging the flow cross section. It then enters a combustion 
chamber, where fuel is burned, and the air and gases of combustion are 
ejected through a jet pipe. It is a supersonic device requiring very 
high speed for compression of the air. An intermittent ram jet was used 
by the Germans in the V-1 buzz b a b .  Air is admitted through spring- 
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closed flap valves in the nose. Fuel is ignited to -build up pressure that 
closes the flap valves and ejects the hot gases as a jet. The ram pressure 
then opens the vaIves in the nose to repeat the cycle. The cyclic rate 
is around 40 per second. Such a device must be launched at high speed 
to initiate operation of the ram jet. 

Rockct J lo tors .  The rocket motor carries with it an oxidizing agent to 
mix with its fuel so that it develops a thrust that is independent of the 
medium through which it travels. On the contrary, a gas turbine can 
eject a mass marly times the weight of fucl it carries, because it takes in 
air ta mix with t hc flwl. 

Frc;. 3.241. Rocket notation. 

The theoretical efficiency of a rocket motor (bascd on mechanical 
energy available) is shown to increase with rocket speed. E represents 
the mechanical energy available in the propeIlant per unit mass. When 
the propellant is ignited, its mechanical energy is converted into kinetic 
energy; E = vT2/2 ,  in which v, is the jet velocity relative to the rocket, or 
v, = dz (Fig. 3.24). The force F exerted on the rocket depends on tho 
rate of burning m, in mass per unit time. According to thc momentum 
equation [Eq. (3.9. lo)] 

F = rizv, (3.9.28) 

since v, is the final velocity minus the initial velocity. For rocket speed 
Vl referred to axes fixed in the earth, the useful work is 

The kinetic energy being used up per unit time is due to mass loss mV12/2 
of the unburned propellant and to the burning niE, or 

( ) (3.9.30) Mechanical-energy input per unit ti-me = ?fa E + - 
The mechanical efficiency e is 

By taking the derivat.ive of e with respect to v,/V1 and by equating to 
zero, v T / V l  = 1 for maximum efficiency, e = 1. In this case the absolute 
velocity of ejected gas is zero. 

When the propulsive force on a rocket is greater than the resistance 
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force, the rocket accelerates. Its mass is continuously reduced. To lift 
a large mcket off its launching pad, the thrust must exceed the weight 
w of rocket and fuel: 

I 

F = rhu, > W (3.9.32) 

Example 3.19: (a) Determine the burning time for a rocket that initially weighs 
1,000,000 Ib, of which 75 per cent is fuel. I t  consumes 
fuel at a constant rate, and its initial thrust equals 
its weight. v, = 12,000 ft/sec. (b) Considering g 
constant at 32.2 ft/sec2 and the flight to be vertical 
without air resistance, find the speed of the rocket at 
burnout time and its height above sea level. 

a. From Eq. (3.9.32) , . 

W,, = rizv7 = 1,000,000 = lit12,oOo 

and m = 83.3 slugs/sec. The available mass of fuel is 

0.75 - X 1,000,000 
32.2 

= 23,280 slugs 

The burning time is 

23,280 - = 279 sec 83.3 Ra. 3.25. Vertical rocket 
=cent. 

b. The rocket thrust (Fig. 3.25) is constant at 
1,000,000 lb. From Newton's second law of motion F - W = ( W/g)(dV/dl), 
with W decreasing at 83.3g lb/sec 

After integrating, for V = 0, t = 0 

When 8 = 279 sec, V = 7580 ft/sec = 5160 mph. The height reached is 

= 534,000 f t  = 101.2 miles 

Fixed and Moving Vanes. The theory of turbomachines is based on 
the relationships' between jets and vanes. The mechanics of transfer 
of work and energy from fluid jets to moving vanes is studied an 

application of the momentum principles. When a free jet impinges onto 
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a smooth vane that is curved, as in Fig. 3.26, the jet is deflected, its 
momentum is changed, and a force is exerted on the vane. The jet is 

FIG. 3.26. Free jet impinging on a smooth, fixed vane. 

assumed to flow onto the vane in a tangential direction, without shock; 
and f urthcrmore, the frict.iona1 resistance between jet and vane is neg- 

lected. The velocity is assumed to 

7' be uniform throughout the jet up- 
stream and downstream from the 

o x  [ vane. Since the jet is open to the 
air, it has the same pressure intensity tj at each end of the vane. Neglecting 

4.9' Q the small change in elevation be- 
Po 'oQOyO tween ends, if any, application of '-$f Bernoulli's equation shows that the 

magnitude of the velocity is un- 
changed for $xed vanes. $7 

Q Example 3.20: Find the force exerted 

FIG. 3.27. Two-dimensional jet imping- on a fixed vane when a jet discharging 
ing on an inclined, fixed plane surface. 2 cfs water at 150/ft sec is deffected 

through 135'. 
By referring to Fig. 3.26 and by applying Eqs. (3.9.10) and (3.9.13), it is found 

that 
- F ,  = p Q ( V o ~ o ~ 8  - Vo) 
F, = pQVa sin 0 

Hence, 
F, = -1.935 X 2(150 cos 135" - 150) = 990 Ib 
F ,  = 1.935 X 2 X 150 sin 135" = 410 lb 

The force components on the fixed.vane are then equal and opposite to F. and F.. 
Example 3.21 : Fluid issues from a long slot and strikes againit a smooth inclined 

flat plate (Fig. 3.27). Determine the division of flow and the force exerted on 
the plate, neglecting energy loss due to impact. 
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As there are no changes in elevation or pressure before and after impact the 
of the velocity leaving is the same as the initial speed of jet. The 

division of flow QI, &2 can be computed by applying the momentum equation 
in the s-direction, parallel to the plate. No force'is exerted on the fluid by the 
plate in this direction; hence, the find momenturd component must equal the 
initial momentum component in the sdirection. By rewriting the momentum 
equation so that it  contains two terms for final momentum, 

After simplifying 
Qr - Q2 = &O cos 0 

and with the continuity equation 

& I +  Q* = Qo 

The two equations may be solved for Q1 and Q2, 

Qo &. = g (1 - cos 0) 

The force F exerted on the plate must benormal to it. For the momentum equa- 
tion normal to the plate 

F = pQoVo sin 8 

llloving Vanes. Turbomachinery utilizes the forces resulting from the 
motion of fluid over moving vanes. XO work can be done on or by a 
fluid that flows over a fixed vane, When vanes can be displaced, work 

FIG. 3.28. Velocity relationships for a moving vane. 

can be done either on the vane or on the.fluid. A moving vane is shown 
in Fig. 3.28 with the fluid jet flowing onto it tangentially. The force 
components F,, F, exerted on the free body of fluid that is on the vane 
are determined from Eqs. (3.9.10) and (3.9.13). Since these equations 



122 FUNDAMENTALS O F  FLUID MECHANICS [Chap. 3 

contain terms with the difference in final and initial veIocity components, 
either the absolute or the relative components may be used. In  Fig. 
3.28 the polar vector diagram shows both absolute and relative vectors. 
The relative velocity r ,  is turned through the angle 6 without change in 
magnitude. This vector, added to u, gives the final absolute velocity 
Ieaving the vane Vz. 

The mass per unit time having its momcnt.urn changed is not the mass 
per unit time being discharged, as in the case of the single fixed vane. In  
each unit of time the vane is displaced a distance u ;  that is, the jet 
becomes longer each second. The mass per second that has its velocity 
(and, hence, its momentum) changed is that which overtakes the vane 
each second and flows onto it. In 1 sec the vane moves a distance u ft 
(Fig. 3.29). The fluid, however, moves Vo ft, and thus V r  f t  ride up 

PIG. 3.29. Fluid overtaking vane in 1-sec period. 

onto the vane in 1 sec. The volume per second overtaking the vane is 
vpAo, and the mass per second having-its momentum changed is ~ v T A ~ .  

The fluid velocity relative to the vane at  entrance to the free body is 
v,. The vane is assumed to be smooth; hence, this relative speed is 
maintained along its curved surface. At the exit the relat.ive velocity 
makes the angk 8 with the x-direction. To determine the ahsolute 
velocity Ieaving, the velocity of the vane u is added to the velocity 
of the fluid relative to the vane at its exit end (Fig. 3.28). The final 
absolute velocity then has the components, evident from the vector 
diagram, of 

VzOut = Vr cos 0 + u 
VUout = uT sin 8 

Exampb 3.22: Determine for the single moving vane of Fig. 3.30 the force 
compculents due to the water jet and the rate of work done on the vane. 
The mass per second having its velocity changed is 

The final absolute velocity, from the vector diagram of Fig. 3.30, is 

V =out = 60 - 60 cos 10" = 60(1 - 0.985) = 0.90 ft/sec 
VVo, = 60 sin 10" = 60 X 0.174 = 10.44 ft/sec 
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From the momentum equations 

-F, = 2.42(0.90 - 120) = - 288 ib 
F, = 2.42(10.44 - 0) = 25.3 Ib 

1 

The force components on the vane are 288 lb in the 4-x-direction and 25.3 Ib in 
the -9-direction. The rate of work done is F,u, or 

For the efficient development of power the single vane is not practical. 
With a series of vanes, usually on the periphery of a wheel, arranged SO 
that one or another of the vanes deflects the entire jet as the vanes move 
almost tangent to the undeflccted jet, the mass per second having its 
momentum changed becomes pQ or pVoAo, the tot;ai mass per second 
being discharged. 

\ 

-4 
3 in? 

FIG. 3.30. .Vector diagram for jet on moving vane. 

FIG. 3.31. Vector diagram for moving vane. 

Example 3.23: Determine the horsepower that may be obtained from a series of 
vanes, curve(] through 150°, moving 60 ft/sec away from a 3.0 cfs water jet having 
a cross-set:tional area ,of 0.030 ft2. Draw the vector diagram and determige the 
energy remaining in the jet. 

The jct velocity is 3/0.03 = 100 ft/sec. The vector diagram is shown in' 
Fig. 3.31. The power is 

and the horsepower 



124 FUNDAMENTALS OF FLUID MECHANICS [Chop. 3 

The absolute velocitjr component VVoU, leaving the vane is 

Vye" t = (100 - 60) sin 30" = 20 ft/sec 

and the exit velscity head is 

The kinetic energy remaining in the jet, in foot-pounds per seconti, is 

The initial kinetic energy availsble ~vas 

which i s  the sum of the work done and the energy remaining per second. 

When a vane, or series of vanes, moves toward a jet, work is done 
by the vane system on the jet, thereby increasing the energy of the fluid. 
Figure 3.32 illustrates this situation; the velocity leaving is 145.2 ft/sec 
as shown, and the velocity entering is 50 ft/sec. 

FIG. 3.32. Vector diagram for vane doing work on a jet. 

In most instances losses must be determined by experiment. In the 
follo ing two cases, application of the continuity, Bernoulli, and momen- 

equations permits the losses to be evaluated analytically. td osses Due 2r, Sudden Expansion, in a Pipe. The losses due to sudden 
enlargement in a pipeline may be calculat.cd with both the Bernoulli and 
momentum equations. For steady, incompressible, turbulent flow 
between sections 1 and 2 of the sudden expansion of Fig. 3.33~4 the fluid 
may be taken as a free body (Fig. 3.336) and the small shear force exerted 
on the walls between the two sections may be neglected. By assuming 
uniform velocity over the flow cross sections, which is approached in 
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turbulent flow, application of Eq. (3.9.10) produces 

At section 1 the radial acceleration of fluid particles in the eddy along the 
surface is small, so generally a hydrostatic pressure variation occurs 

FIG. 3.33. Sudden expansion in a pipe. 

across the section. The Bernoulli equation, applied to sections 1 and 2, 
with the loss term hi, is (for a! = 1) 

Solving for ( p l  - p 2 ) / ~  in each equation and equating the results, 

Q - ( V ,  - Vt) = 
Vz2 - V12 + h, 

A2g 2g 

which indicates that the losses in turbulent flow are proportional to the 
s y e '  of the velocity. 
' ~ / H ~ d r u u l i c  Jump. The hydraulic jump is the second application of the 
basic equations to determine losses due to a turbulent-flow situation. 

FIG. 3.34. Hydraulic jump in a rectangular channel. 

Under proper conditions a rapidly flowing stream of liquid in an open 
channel suddenly changes to a slowly flowing stream with a larger cross- 
sectional area and a sudden rise in elevation of liquid surface. This 
phenomenon is known as the hydraulic jump and is an example of steady 
nonuniform flow. In effect, the rapidly flowing liquid jet expands (Fig. 
3.34) and converts kinetic energy illto potential energy and ~OSWS or 
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irreversibilities. A roller develops on the inclined surface of the expanding 
liquid jet and draws air into the liquid. The surface of the jump is very 
rough and turbulent, the losses being greater as the jump height is greater. 

FIG. 3.35. Standing wave. 

For small heights, the form of the 
jump changes to a standing wave 
(Fig. 3.35). The jump is discussed 
further in Sec. 11.4. 

The relations among the varia- 
bles for the hydraulic jump in a hor- 
izontal rectangular channel are eas- - 

ily obtained by use of the cont.inuity, momentum, and Bernoulli equations. 
For convenience the width of channel is taken as unity. The continuity 
equation (Fig. 3.34) is 

Vlyl = v2y2 

The momentum equation is 

and the Bernoulli equation (for points on the liquid surface) 

in which hj represents losses due to the jump. By eliminating VI in the 
first two equations, 

in which the plus sign has been taken before the radical (a negative y2 
has no physical significance). The depths y l  and y 2  are referred to as 
conjugate depths. By solving the Bernoulli equation for hi and eliminat- 
ing V1 and Vz, 

The hydraulic jump, which is a very effective device for creating 
irreversibilities, is commonly used at the end of chutes or the bottom of 
spillways to destroy much of the kinetic energy in the flow. It is also an 
effective mixing chamber, because of the violent agitation that takes 
place in the roller. Experimental  measurement.^ of hydraulic jumps show 
that the equations yield the correct value of y2 to within 1 per cent. The 
reasons the jump equations are not precise are due to neglect of shear stress 
on walls and to nonuniform velocity distribution. 
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Example 3.24: 120 cfs water per foot of width Aows down a spillway onto a 
horizontal floor. The velocity is 50 ft/sec. Determine the depth of tail wahr 
required to cause a hydraulic jump and the losses in horsepower by the jump 
per foot of width. L 

y, = = 2.4 ft 

By substituting into Eq. (3.9.34), 

With Eq. (3.9.36), 

3.10. linear Momentum Equation for Unsteady Flow through a Con- 
trol Volume. The unsteady-flow momentum equation is developed by 
finding the force component required for the unsteady portion of Eq. 
(3.9. I) ,  which was neglected in the steady-flow derivation. Equation 
(3.9.1) in expanded form is 

d 6s d 
61, = - (P. 6m) - + ,, (u3 Sm) ds 6t 

Attention is now focused on the last term. Its contribution to the 
x-component of resultant force is 

for a small element of volume 6 f  in the control volume. By integrating 
throughout the control volume, one obtains 

a 
-(pv,dt)=d/ pu,db. (3.10.2) 

control at at contro~ 
volume volume 

in which Fi is the contribution from the time rate of increase of momen- 
tum within the control volume. 

By combining Eq. (3.10.2) with Eq. (3.9.7) 

Fz = / PVZV dA + PI!, dV (3.10.3) 
area of 
control 
volume 

which is the linear momentum equation for the x-component for unsteady 
flow through a control volume. The general vector equation obtained by 
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adding vectorially the x-, 3-, and x-components becomes 

I ? = /  ares of p ~ ( ~ * d A ) + i /  control . p ~ d f  

control volume 
volume 

Example 3.25 : Find the head H in the reservoir of Fig. 3.36 needed to accelerate 
thr  flow of oil, S = 0.85, a t  the rate of 0.5 ft/sec2 when the vclocity is 8.02 ft/sec. 
At 8.02-ft/scc stcndy flow the head is 20 ft. 

Tllc oil nlny tw considered incompressible and to be moving unifornlly in the 
pipcline.' By applying Eq. (3.10.3), the first term is zero, as the momentum leav- 
ing cqua.1~ the moment.um entering per unit time. Thc second integral becorncs 

Tllc friction force due to the walls of the pipe cxcrts a force just balanced by the 
20 ft head a t  the upstream end, i.e., for steady conditions 

When the pipe is considered as the control volume, the momentum equation 
for the x-component yields ' 

LdV 1000 H-20=---- 
g at - 32.2 X 0.5 = 15.52 ft 

I-Irnce, at 8.02-ft/sec velocity the level in the reservoir is 20 + 15.52 = 35.52 ft 
above the pipeline to cause the flow to accelerate at 0.5 ftg*scc2. 

FIG. 3.36. Acceleration of liquid in a Fra. 3.37. Xotation for moment of a 
pipe. vector. 

3.11. The Moment-of-momentum Equation. The moment of a force 
F about a point 0, Fig. 3.37, is given by 

which is the cross, or vector, product of F and the position vector r of a 
point on the  line of action of the  vector from 0. The cross product of two 
vectors is a vector at right angles to the plane defined by the first two 
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vectors and with magnitude 
Fr sin e 

which is the product of F and the shortest distance from 0 to the line of 
action of F. The sense of the final vector foUows the right-hand rule. 
In Fig. 3.37 the force tends to cause a counterclockwise rotation around 
0. If this were a right-hand thread, it would tend to come up, so the 
vector is directed likewise up out of the paper. With the fingers of the 
right hand curled in the direction the force would tend to cause rotation, 
the thumb yields the direction, or sense, of the vector. 

Since Eq. (3.10.4) 'represents the same vector F on either side of the 
equation, its vector product with the position vector r of a point 0 may be 
taken ; thus 

pv X r d V  (3.11.1) F x r = / pv x r(r d ~ )  + 
area of control 
control volume 
volume 

The left-hand side of the equation is the torque exerted by the force, and 
the terms on the right-hand side represent the rate of change of moment of 
momentum. This is the general moment-of-momentum equation for 
unsteady flow through a control volume. It has great value in analyzing 
certain flow problems, such as in turbomachinery, 
where torques are more significant in the analysis 
than forces. 

When Eq. (3.11.1) is applied to a case of flow in 
the xy-plane, with r the shortest distance to the 
tangential component of the velocity vt, as in Fig. 
3.38, and v. the normal component of velocity, ' .( 
Ftr = Ta = prva. d A  + 

area of 1 a / p u t  d~ 
control 

u 
control volume FIG. 3.38. JSotation for 
volume two-dimensional flow. 

(3.11.2) 

in which Tz is the torque. A useful form of Eq. (3.11.2) for steady flow, 
which drops out the last term, is 

For complete circular symmetry, where r, p, vt, and a. are constant 
over the inIet and over the outlet, it takes the form 

T, = ~Q[(rut)out - (rvt)inI 
since J p v ,  d A  = pQ, the same at inlet or outlet. 

Example 3.26: A turbine discharging 400 cfs is to be designed so that a torque 
of 10,000 lb-ft is to be exerted on an'impeller turning at 200 rpm that takes all 
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the moment of momentum out of the fluid. At thc outer periphery of the 
impeller, r = 3.0 ft. What must the tangential component of velocity be a t  this 
location? 

Equation (3.1 1.4) is 
T = p&(mt)in 

in this case, since the outflow has vt = 0. By solving for u,,, 

Example 3.27: The sprinklcr of Fig. 3.39 discharges 0.01 cfs through each noz- 
sle. Neglecting friction, find its sport1 of rotation. The area of each nozzle 
opening is 0.001 ft2. 

FIG. 3.39. Rotating jet system. 

The fluid entering the sprinkler has no moment of momentum, and no torque 
is exerted on the system externally; hence the moment of momentum of fluid 
leaving must be zero. Let w be the speed of rotation; then the moment of 
momentum leaving is 

~Qlrlat, + pQ2r2vtt 

in which vt,  and v, are absolute velocities. Then 

Q1 
Vt1 = V,* - wrx = - - or, = 10 - 0 0.001 

and 
V t )  = Vr2 - ur2 = 10 - #w 

For moment of momentum to be zero 

and w = 11.54 rad/sec, N = 110.2 rpm. 

PROBLEMS 

3.1. A pump takes oil, sp gr 0.83, from a 2.0-in.-diametcr .pipe and returns it 
to a 2.0-in.-tiiamrtcr pipe a t  the same elevation with a pressure incrcase of 20 psi. 
The quantity pumped is 0.50 cfs (cubic feet per second). Tho motor tlriving 
the pump delivers 3.50 hp to the pump shaft. Calculate the irreversibility of 
the pump in foot-pounds per pound mass and in foot-pounds per second. g = 
32.17 ft/sec2. 
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3.2. A pipeline leads from one water rcsrrvoir to another which has its water 
surface 20 f t  lower. For a discharge of 1.0 cfs, determine the Iosses in foot- 
p u n d s  per slug and in horsepower. 

3.3. A blower delivers 10,000 cfm (cubic feet per minute) air, p = 0.0024 
slugs/ft3, a t  an increase in pressure of 4.0 in. water. It is 72 per cent efficient. 
1)etermine the irreversibility of the blower in foot-pounds per slug and in horse- 
power, and determine the torque in the shaft if the blower turns a t  1800 rpm. 

3.4. A three-dimensional velocity distribution is given by u = -x, v = 2y, 
w = 2 - z. Find the equation of the streamline through (1,1,1). 

3.6. The irrevctrsibilities in a pipeline amount to 20 ft-lb/Ib, when the ,flow 
is 300 gpm (gallons per minute) and amount to 30 ft-lb/lb, when the flow is 
450 gpm. What is the nature of the flow? 

3.6. In flow of liquid through a pipeline the losses are 2 hp for average velocity 
of 4 ft/sec and 4 hp for 6 ft/sec. ' What is the nature of tAe flow? 

3.7. When tripling the flow in a line causes the losses to increase by 7.64 times, 
how do the losses vary with velocity and what is the nature of the flow? 

3.8. In two-dimensional flow around a circular cylinder (Fig. 3.2), the discharge 
between streamlines is 0.40 cfs/ft. A t  a great distance the streamlines are 
0.20 in. apart, and a t  a point near the cylinder they are 0.12 in. apart. Calculate 
the magnitude of the velocity a t  these two points. 

3.9. A pipeline carries oil, sp gr 0.83, a t  V = 6 ft/sec through 8.0-in. ID pipe. 
At another section the diameter is 6.0 in. Find the velocity a t  this section and 
the mass rate of flow in slugs pcr second. 

3.10. Hydrogen is flowing in a 3.0-in.-diameter pipc a t  the mass rate of 0.40 
lb,/sec. At section 1 the pressure is 40 psia and t = 40°F. What is the average 
velocity? 

3.11. A nozzle with base diameter of 3.0 in. and with l&in.diameter tip dis- 
charges 300 gpm. Find the velocity a t  the base and tip of nozzle. 

3.12. An 18-ft-diameter pressure pipe has a velocity of 16 ft/sec. After pass- 
ing through a reducing bend the flow is in a 16-ft-diametcr pipe. If the losses 
vary as the square of the velocity, how much greater are they through the 16-ft 
pipe than through the 18-ft pipe per 1000 ft of pipe? 

3.13. Does the velocity distribution of Prob. 3.4 for incompressible flow satisfy 
the continuity equation ? 

3.14. Does the velocity distribution 

satisfy continuity for incompressible flow. 
3.15. Consider a cube with I-ft edges parallel to the coordinate axes located in 

the first quadrant with one corner a t  the origin. By using the velocity distri- 
bution of I'rob. 3.14, find the flow through each face and show that continuity is 
satisfied for the cube as a whole. 

3.16. Find the flow (per foot in the zdirection) through each edge of the square 
with corners a t  (0,0), (0,1), (1,1), (l,O), due to 

and show that continuity is satisfied. 
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3.17. Show that the velocity 

satisfies continuity a t  every point except the origin. 
3.18. Problem 3.17 is a velocity distribution that is everywhere radial from the 

origin with magnitude v, = 4/r .  Show that the flow through each circle con- 
centric with the origin (per foot in the zdirection) is the same. 

3.19. Perform the operation V q on the velocity vectors of Probs. 3.14, 3.16, 
and 3.17. 

3.20. Does the velocity 

satisfy continuity? 
3.21. A standpipe 16 ft in diameter and 40 ft high is filled with water. How 

much potential energy is in this wakr  if the elevation datum is taken 10 ft below 
the base of the standpipe? 

3.22. How much work could be obtained from thc water of Prob. 3.21 if run 
through a 100 per cent effcient turbine that discharged into a reservoir with 
elevation 20 ft below the base of the standpipe? 

3.23. What is the kinetic energy in foot-pounds per second of 200 gpm of oil, 
sp gr 0.80, discharging through a 1.0-in.-diameter nozzle? 

3.24. By neglecting air resistance, determine the height a vertical jet of water 
will rise, with velocity 80.2 ft/sec. 

3.25. If the water jet of Prob. 3.24 is directed upward 45" with the horizontal 
and air resistance is neglected, how high will i t  rise and what is the velocity st its 
high point? 

3.26. Show that the work a liquid can do by virtue of its pressure J p  dV, in 
which V is the volume of liquid displaced. 

3.27. What angle of jet a is required to reach the roof of the building of Fig. 3.40 
with minimum jet velocity V o  a t  the nozzle? What is the value of Va? 
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3.28. For highly turbulent flow the veIocity distribution in a pipe is given by 

with y the wall distance and T O  the pipe radius. Determine the kinetic-energy . 
correction factor for this flow. 
3.29. When the velocity over half a cross section is uniform a t  40 per cent of 

the uniform velocity over the rest of the section, what' is the kinetic-energy cor- 
rection factor? 
3.30. The velocity over half a cross section is Vo, and over the other half it is 

- 0.10 Vo. What is the kinetic-energy correction factor? 
3.31. The velocity distribution in laminar %ow in a pipe is given by v = 

V [ l  - r ) .  Determine the average velocity and the kinetic-energy cor- 
rection factor. 
3.32. Water is flowing in a channel, as shown in Fig. 3.41. Neglecting all 

losses, determine the two possible depths of flow yl and yz. 

3.33. High-velocity liquid, sp gr 1.20, flows up an inclined plane as shown in 
Fig. 3.42. Neglecting all losses, calculate the two possible dcpths of flow a t  
section B. 

3.34. If the losses from section A to section B of Fig. 3.41 are 2 ft-lb/lb, deter- 
mine the two possible depths a t  section B. 
3.36. In Fig. 3.42 losses are 8 hp per foot of width between sections A and 

for water flowing. Determine the lower depth of flow a t  section B. 
3.36. Neglecting all losses, in Fig. 3.41 the channel namows in the drop to 5 ft 
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wide a t  section B. For uniform flow across section B, determine the two possi- 
ble depths of flow. 

3.37. In Fig. 3.42 the channel changes in width from 4 ft a t  section A to 8 f t  
at section B. For losses of 1 ft-lb/lb between sections A and B, find the two 
possible depths a t  section B. 

3.38. Some steam locomotives had scoops installed that took water from a 
tank between the tracks and lifted i t  into the water reservoir in the tender. To 
lift the water 12 ft with a scoop, neglecting all losses, what speed is required? 
(NOTE: Consider the locomotivc stationary and the water moving toward it, to 
reduce to a steady-flow situation.) 

3.39. In Fig. 3.43 oil discharges from a "two-dimensional" slot as indicated 
a t  A into the air. At B oil discharges from under a gate onto a floor. Xeglecting 
all losses, determine the discharges of A and a t  B per foot of width. UThy do 
they differ? 

3.40. At point A in n pipeline carrying water thc dinmetor is 4.0 ft, the pri:ssurc 
10 psi, and the velocity 8.02 ft/sec. At point B, 6 ft higher than A, the diameter 
is 2.0 f t  and thc pressure 2 psi. Ilcterminc the direc:tion of flow. 

----------------- ft r..---g 4 in. d iam 
- - - - 7 - - - - - - .  --- 
-------------L--- I 

FIG. 3.43 FIG. 3.44 

.* 

3.41. Seglecting losses, determine the discharge in Fig. 3.44. 
3.42. Seglccting losses, detcrminc the discharge in Fig. 3.15. 

3.43. For losses of 0.3 ft-lb/lb, find the velocity a t  A in Fig. 3.46. Barometer 
reading 29.5 in. mercury. 
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3.44. Scglec ting losses in the 'converging section, calculate the discharge in 
Fig. 3.47. 

> 

Air 4 psi 
- -- -- - - - -  - - -  

in- diam-iY 4t 
- - -- . d 

y=50 ib/n3 

3.45. The losses in Fig. 3.48 for I1 = 16 ft are 3Vy2g  ff-lb/lb. What is the 
discharge? 

3.46. For flow of 705 gpm in Fig. 3.48, determine I3 for losses of 15V2/2g 
ft-lb/lb. 

3.47. For 1410-gpm flow and If = 32 ft in Fig. 3.48, calculate the losses 
through the system in velocity heads, K TT2/2g. 

3.50. ScgIecting losscs af~d surface-tension effects, derive an equation for the 
\vator surfaec. of the jet of Fig. 3.50, T in terms of !//If. 

3.48. In Fig. 3.49 the losses up to sec- 
tion A are 4V12/2g and the nozzle losses 
arc 0.05VZ2//2g. Determine the dis- 
cllurge and thc pressure a t  A.  l'i = 16 
ft. 

3.49. For pressure a t  A of 5 psi in 

3.51. For losses of 0.5vA2/2g between points A and 2 of.Fig. 3.51, find Ii for 
the pressure a t  A to be equal to vapor pressure. Barometric pressure 34 ft 
water. H, = 10 ft .  

+.., . - L Z : ~ .  

- ., ' - 

. 
A 

Wafer I ! D2=2 in. 
Fig. 3.49, with the losses in Prob. 3.48, 
determine the discharge and the head H. FIG. 3.49 
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3.52. For 11 = 30 f t  and losses from A downstream of 0.6VA2/2g in Fig. 3.51, 
clrtcrminrb I I ,  for v:lpor pressure a t  A. Barometric pressure 33 ft water. 

3.63. In  the siphon of Fig. 3.52, hl = 3 ft ,  h2 = 9 ft, Dl = 10 ft, D2 = I4  ft, 
:tnd the 1ossc.s :trc 1 .Cil'2*/2g, with 10 per cent of the losses occurring before scc- 
tion 1. Find thc tlisc~llargc and the pressure a t  section 1. 

3.64. Find the pressure a t  A of Prob. 3.53 if it is a stagnation point fvelocity 
zero). 

3.56. The siphon of Fig. 3.14 has a nozzle 6 in. long attached a t  section 3, 
reducing the diameter to 6 in, For no losscs, compute the discharge, and the 
prtLssure a t  sections 2 and 3. 

3.66. With exit velocity VE in Prob. 3.55 and losscs from 1 to 2 of 1.7VZ2/2g, 
frum 2 to 3 of 0.9V22/2g and through the nozzle 0.06VE2/2g, calculate the dis- 
charge and the pressure st sections 2 and 3. 

3.67. Determine the shaft horsepower for an 80 per cent eficient pump to clis- 
charge 1 cfs through the system of Fig. 3.53. The system losses, exclusivc of 
pump losses, are 5V2/2g, and H = 40 ft. 

3.68. The fluid horsepower (Qy H,/550) produced by the pump of Fig. 3.53 is 
10. For I1 = 60 ft and system losses of 6V2/2g, determine the discharge and the 
pump head. 

?-I Water 

- 

10 ft diam 

Water 

Fra. 3.53 FIG. 3.54 

3.59. If the over-all efficiency of the system and turbine in Fig. 3.54 is 80 per 
cent, what hors~po~ver is produced for H = 300 ft and Q = 1,000 cfs? 

3.60. Losscs through the system of Fig. 3.54 are 4V8/2g, exclusive of the tur- 
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bine. The turbine is 90 per cent efficient and runs at 200 rpm. To produce 
1000 hp for I1 = 400 ft, determine the discharge and torque in the turbine shaft. 

3.61. Xeglecting losses, find the discharge through the venturi meter of Fig. 
3.55. 

3.62. With losses of 0.2V1~/2g between sections 1 and 2 of Fig. 3.55, calculate 
the flow in gallons per minute. 

3.63. Feglecting losses in an 8- by 4-in.diameter venturi meter carrying oil, 
sp gr 0.83, find the gage difference on a mercury-oil manometer for 600-gpm %ow. 

12 in. disrn - d 5 6  in. diam 

3.64. In Fig. 3.56, hI = 6 in., Dl = 4 in. and D2 = 3 in. Oil, sp gr 0.85, is 
flowing. p ,  = 16 psi, and pt = 12 p$i. Neglecting losses, find the flow in gal- 
lons per. minute. 

3.66. With losscs of 0.05Vt2/2g bstween sections 1 and 2 of Prob. 3.64, calcu- 
late the discharge. 

3.66. In Fig. 3.57, for R = 12 in. and V = 15 ft/sec, determine the bourdon 
gage reading at A In pounds per square inch. 
3.67. In Fig. 3.57 p~ = 14 psi and R = 2 ft. Determine V. 

12 in. diam 

in. diam 
L 

3.68. In Fig. 3.58 I! = 16.0 f t  and h = 15.7 it. Calculate the discharge and 
the 1osst.s in foot-pounds per pound and in horsepower. 

3.69. Keglccting losscs, calculate H in terms of R for Fig. 3.59. 
3.70. For losses of 0.111 through the nozzle of Fig. 3.59, what is the gage differ- 

ell(:e R in terms of 113 
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3.71. A liquid flows through a long pipeline with losses of 4 ft-lb/lb per 100 ft 
of pipe. What is the slope of the hydraulic and energy grade lines? 

3.72. In Fig. 3.60, 4 cfs water flows from section 1 to section 2 with losses of 
0.4(V1 - V 2 )  2/2g. pl = 10 psi. Compute p2, and plot the energy and hydraulic 
grade lines through the diffuser. 

3.73. In an isothermal, reversible flow at 200°F, 2 Btu/sec heat is added t o  
14 slug/sec flowing through a control volume. Calculate the entropy increase in 
foot-pounds per slug per degrees Rankine. 

3.74. In isothermal flow of a real fluid through a pipe system the losses are 60 ft- 
lb/slug per 100 ft and 0.02 Btu/sec per 100 ft heat transfer from the fluid is 
required to hold the temperature a t  40°F. What is the entropy change As in 
foot-pounds per slug per degree Etankine per 100 ft of pipe system for 10 lb,/sec 
flowing? 

3.76. In Example 3.19 of See. 3.9, to  what height will the racket glide? 
3.76. Determine the momentum correction factor for the velocity distribution 

of Prob. 3.31. 
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3.77. Calculate the average velocity and momentum correction factor for the 
velocity distribution in a pipe 

y the 'wall distance and ro the pipe radius. 
3.78. Determine the momentum correction factor for the velocity distribution 

of Prob. 3.29. 
3.79. Determine the momentum correction factor for the velocity distribution 

of Prob. 3.30. 
3.80. When the momentuni correction factor is unity, prove that the velocity 

must be uniform over the cross section. 
3.81. Determine the momentum per second passing an open-channel cross 

section carrying 1000 cfs water with velocity of 8 ft/sec. 
3.82. What force F (Fig. 3.61) is required to hold the plate for oil flow, sp gr 

0.83, for 1'0 = 40 ft/sec. 

3.83. How much is the apparent weight of the tank full of water (Fig. 3.62) 
increased by thc steady jet Aow into the tank? 

3.84. Does a nozzIe on a fire hose place the hose in tension or in compression? 
3.86. When a jet from a nozzle is used to aid in maneuvering a fireboat, can 

more force be obtained by directing the jet against a solid surface such as a wharf 
than by allowing it to discharge into air? 

3.86. Work Example 3.15 with the flow direction reversed, and compare 
results. 

3.87. 25 ft3//sc of water flows through an 18-in.-diameter pipeline that con- 
tains a 90" bend. The pressure a t  the e,ntrance to the bend is 10 psi. Determine 
the force components, parallel and normal to the approach velocity, required to 
hold the bend in place. Neglect losses. 

3.88. Oil, sp gr 0.83, flows through a 90' expanding pipe bend from 18- to 2Pin.- 
diameter pipe. The pressure a t  the bend entrance is 20 psi, and losses are to be 
neglected. For 20,000 gpm, determine the force components (parallel and normal 
to  tihe approach velocity) necessary to support the bend. 

3-89. Work Prob. 3.88 with elbow losses of 0.6VI2/2g, with VI the approach 
velocity, and compare results. . 
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3.90. A 4-in.-diameter steam line carries saturated steam a t  1400 ft/scc 
velocity. Water is entrained by the steam a t  the rate of 0.3 lb/sec. What 
force is required to hold a 90" bend in place owing to the entrained water? 

3.91. Neglecting losses, determine the x- and y-components of force needed to 
hold the tee (Fig. 3.63) in place. 

130 cfs 

1 200 cfs water 

3.92. Apply the momehtum and energy equations to a windmill as if it were a 
propeller, noting that the slipstream is slowed down and expands as it passes 
through the blades. Show that the velocity through the plane of the blades is 
the average of the velocities in the slipstream a t  the downstream and upstream 
sections. B~ defining the tht?orctical efficiency (neglecting all losses) as the power 
output divided by the power available in an undisturbed jet having the area a t  
the plane of the blades, determine the maximum theoretical efficiency of a 
windmill. 

3.93. An airplane with propelkr diameter of 8.0 f t  travels through still air 
(p  = 0.0022 slug/ft3) a t  180 mph. The speed of air through the plane of the 
propeller is 250 mph relative to the airplane. Calculate (a) the thrust on the 
plane, (b) the kinetic energy per second remaining in the slipstream, (c) the theo- 
retical horsepower required to drive the propeller, (d) the propeller efficiency, and 
(e) the pressure difference across the blades. 

3.94. A boat traveling a t  30 mph has a 2-ft-diameter propeller that discharges 
160 cfs through its blades. Determine the thrust on the boat, the theoretical 
efficiency of the propulsion system, and the horsepower input to the propeller. 

3.95. A ship propeller has a theoretical efficiency of 60 per cent. If it is 4 ft in 
diameter and the ship travels 30 mph, what is the thrust developed and what is 
the theoretical horsepower required? 

3.96. A jet-propelled airplane traveling 575 mph takes in 20 lb,/sec air and 
discharges it at 5500 ft/sec relative to the airplane. Neglecting the weight of 
fud,  what thrust is produced? 

3.97. A jet-propelled airplane travels 635 mph. I t  takes in 18 lb,/sec air and 
uses 1 Ib, fuel for each 12 lb, air. What thrust is developed when the exhaust 
gases have an absolute velocity of 5000 ft/sec? 
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3.98. What is the theoretical mechanical efficiency of the jet engine of Prob. 
3-97? 

3.99. A boat requires a 50elb thrust to keep it moving a t  16 mph. How many 
cubic feet per second water must be taken in and ejected through a 16-in. pipe to 
maintain this motion? What is the over-all efficiency if the pumping system is 
60 per cent efficient? 
3.100. In Prob. 3.99 what would be the required discharge if water were taken 

from a tank inside the boat and ejected from the stern through a 16-in. pipe? 
3.101. Determine the size of jet pipe and the theoretical horsepower necessary 

to produce a thrust of 2000 lb on a boat moving 45 ft/sec when the propulsive 
efficiency is 68 per cent. 
3.102. An airplane consumes 1 lb, fuel for each 18 lb, air and discharges hot 

gases from the tail pipe a t  v, = 5400 ft/sec. What plane speed would be required 
to obtain a mechanical efficiency of 28 per cent? 

3.103. What is the speed of a jet engine for zero thrust when the gas leaves a t  
5000 ft/sec relative to the plane and 1 Ib, of fuel is burned for each 12 lb, of air? 

3.104. In Fig. 3.64, a jet, p = 2 slugs/ft3, is deflected by a vane through 180". 
Assume that the cart is frictionless and free to move in a horizontal direction. 
The cart weighs 200 lb. Determine the velocity and the distance traveled by 
the cart 10 sec after the jet is directed against the vane. Ao = 0.01 ft2; V o  = 
100 ft/sec. 

3.106. A rocket burns 10 lb,/sec fuel, ejecting hot gases a t  8000 ft/sec relative 
to the rocket. How much thrust is produced a t  500 and 1500 mph? 
3.106. What is the mechanical efficiency of a rocket moving at  2000 ft/sec that 

ejects gas a t  6000 ft/sec relative to the rocket? 
3.107. Can a rocket travel faster than the velocity of ejected gas? What is 

the mechanical efficiency when it travels 12,000 ft/sec and the gas is ejected at  
8000 ft/sec relative to the rocket? Is a positive thrust developed? 
3.108. Neglecting air resistance, what velocity would a vertically directed 

rocket attain in 8 sec if it starts from rest, initially we;ghs 240 Ib, burns 10 lb,/sec, 
and ejects gas a t  v, = 6440 ft/sec? Consider g = 32.17 ft/sec2. 

3.109. What height has the rocket of Prob. 3.108 attained a t  the end of 8 see? 
3.110. If the rocket of Prob. 3.108 has only 80 lb, fuel, what is the maximum 

height it attains? 
3.111. Draw the polar vector diagram for a vane, angle 8, doing work on a jet. 

Label all vectors. 
3.112. Determine the resultant force exerted on the vane of Fig. 3.26. Ao = 
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0.06 ft2; V o  = 80 ft/sec; 8 = 60°, y = 55 lb/ft3. How can the line of action be 
determined ? 
3.113. In Fig. 3.27, 40 per cent of the flow is deflected in one direction. What 

is the plate angle 03 

3.114. A flat plate is moving with vcloc- 
ity u into a jet, as shown in Fig. 3.65. 
Derive the expression for power required \ 

to move the plate. 
3.116. At what speed u should the cart 

of Fig. 3.65 be given away from the jet in 
order to produce maximum work from the 
jet? 

3.116. At what speed u should the vane of Fig. 3.28 travel for maximum power 
from the jet? 
3.117. Draw the polar vector diagram for the moving vane of Fig. 3.28 for 

V O  = 100 ft/sec, u = 60 ft/sec, and 8 = 120". 
3.118. Draw the poIar vector diagram for the moving vane of Fig. 3.28 for 

VO = 120 ft/sec, u = -50 ft/sec, and 8 = 150". 
3.119. What horsepower can be developed from (a) a single vane and (b)  a 

series of vanes (Fig. 3.28) when A0 = 9 inn2, VO = 270 ft/sec, u = 90 ft/sec, and 
0 = 173", for water flowing? 
3.120. Determine the blade angles 81 and 8 2  of Fig. 3.66 so that the flow enters 

the vane tangent to its leading edge and leaves with no x-component of absolute 
velocity. 

3.121. Calculate the force components F,, F ,  needed to hold the stationary 
vane of Fig. 3.67. Qo = 2 cfs; p = 2 slugs/ft3; V o  = 300 ft/sec. 

3.122. If the vane of Fig. 3.67 moves in the xdirection a t  u = 40 ft/sec, for 
& = 3 cfs, p = 1.935 slugs/ft3, V O  =- 120 ft/sec, what are the force components 
Fz, F,? 
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3.123. What force components F,, F, are required to hold the "black box" of 
Fig. 3.68 stationary? 

Qz0.7 cfs 

Q=0.5 cfs \\ V=100 ftbec 

3.124. Determine the vane angIe required to deflect the absolute velocity of a 
jet 120" (Fig. 3.69). 

3.126. In Prob. 3.38 for pickup of 2 cfs water a t  locomotive speed of 36 mph, 
what force is exerted parallel to the tracks? 

3.126. Determine the irreversibility in foot-pounds per pound mass for 2 cfs 
flow of liquid, p = 1.6 slugs/ft3, through a sudden expansion from a 12- to 24-in.- 
diameter pipe. g = 30 ft/sec2. 

3.127. -4ir flows through a 24-in.diameter duct at  p = 20 psia, t = 40°F, 
V = 200 ft/sec. The duct suddenly expands to 36 in. diameter. Considering 
the gas as incompressible, calculate the losses in foot-pounds per pound of air and 
the pressure difference in inches of water. 

3.128. What are the losses when 200 cfs water discharges from a submerged 
48-in .-diameter pipe in to a reservoir? 

3.129. Show that in the limiting case, as yl = yr in Eq. (3.9.34), the relation 
V = fi is obtained. 

3.130. Derive the equation for depth yl needed before a hydraulic jump for it 
to reach y2 and V2. 
3.131. -4 jump occurs in a 2 W w i d e  channel carrying 600 cfs water a t  a depth 

of 1 ft. Determine ys Va and the losses in foot-pounds per pound and in 
horsepower. 
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3.132. Derive an exprcssion for determining the initial depth yl before a jump 
when yt and V1 arc known. 

3.133. ncri+e Eq. (3.9.35). 

3.134. Assuming no losses through 
the gate of Fig. 3.70 and neglecting 
Vo2/2g, for yo = 16 ft and yl = 2 ft, 
find yz and losscs through the jump. f 

Fro. 3.70 

3.136. Under the same assumption as in Prob. 3.134, for yl = 1 ft and y2 = 
4 ft, determine yo. 

3.136. Under the same assumptions as in Prob. 3.134, yo = 20 f t  and y2 = 8 ft. 
Find the discharge per foot. 

3.137. For losses down the- spillway of Fig. 3.71 of 10 ft-lb/lb and discharge 
pcr foot of 120 cfs, determine the floor elevation for the jump to occur. 

3.138. Determine the depth after jump of a flow of kerosene, sp gr 0.83, with 
velocity 1 ft/scc and depth in. 

3.139. Water is flowing through the pipe of Fig. 3.72 with velocity V = 8.02 
ft/sec and losses of 8 ft-lb/lb up to section 1. \\Then the obstruction a t  the end 
of the pipc is rclmuvcd, calculate the acceleration of water in thr pipe. 

F, - - 8 
4 in. diam 

C)  

in. diam 

3.140. Water fills tllc piping system of Fig. 3.73. -At one instant pr = 5 psi, 
pa = 0, 1'1 = 10 ft/sec, ancl the flow rate is increasing by 5000 gpm per minute. 
Find the force F ,  required to hold thtt piping system stationary. 
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3.1a. In a centrifugal pump 400 gpm water leaves an 8-in.diarneter impeller 
\\.ith a tangential velocity component of 30 ft/sec. It enters the impeller in a 
radial direction. For pump speed of 1200 rpm and neglecting all losses, deter- 
mine the torque in the pump shaft, the horsepower input, and the energy added 
to the flow in foot-pounds per pound. 

3.142. A water turbine a t  240 rpm discharges 1200 cfs. To produce 50,000 hp, 
!&at must be the tangential component of velocity at the entrance to the impeller 
at r = 6 ft? AH whirl is taken from the water when it leaves the turbine. 
Seglect all losses. What head is required for the turbine? 

3.143. The symmetrical sprinkler of -4 
Fig. 3.74 has a total discharge of 20 gpm , ! 

and is frictionless. Determine its rpm if ' . 0 I / - 
lw 

thc nozzle tips are +in. diameter. 
FIG. 3.74 

3.144. If there is a torque resistance of 0.510 lb-ft in the shaft of Prob. 3.143, 
what is its speed of rotation? 

3.146. For torque resistance of 0.01u2 in the shaft, determine the speed of 
rotation of the sprinkler of Prob. 3.143. 

3.146. For a frictionless shaft in the sprinkler of Fig. 3.75 and equal flow 
through each nozzle (v, = 30 ft/sec), find its speed of rotation. 

6 in. - r - 
I 

I I 

li' t J  f l  J v, = 3 5 ft/sec 

3.147. For equal discharge through each of the nozzles of the sprinkler of 
Fig. 3.76 of 10 gpm and a frictionless shaft, determine its speed of rotation. 

3.148. What torque would be required to hold the sprinkler of Prob. 3.147 
stationary? Total flow 40 gpm water. 

3.149. A reversible process requires that 

(a) there be no heat transfer 
(b) Newton's law of viscosity'be satisfied . 

(c) temperature of system and surroundings be equal 
(d) there be no viscous or Coloumb friction in the system 
(e) heat transfer occurs from surroundings to system only 

3.150 An open system implies 

(a) the presence of a free surface 
(b) that a specified mass is considered 
(c) the use of a control volume 
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(d) no interchange between system and surroundings 
' 

(e) .none of the above answers 

3.151. A control volume refers to 

( a )  a fixed region in space 
(b)  a specified mass 
(c) an isolated system 
(d) a reversible process only 
(e) a closed system 

3.162. Which three of the following are synonymous? 

1. losses 
2. irreversibilities 
3. energy losses 
4. available energy losses 
5. drop in hydraulic grade line 

( a )  1, 2, 3 (b)  1, 2, 5 (c )  1, 2, 4 (4 2, 3, 4 

3.163. Irreversibility of the system of Fig. 3.77 is 

( a )  9.2 hp (b)  36.8 hp (c)  8.45 ft ( d )  11.55 ft 
of these answers 

(4 3, 4, 5 

(e) none 

3.164. Isentropic Aow is 

- -- - - -  - -- - - --- - 
p=2 slug/$ 

( a )  irreversible adiabatic flow (b) perfect-gas flow 
(c) ideal-fluid flow (d) reversible adiabatic flow 
(e) frictionless reversible flow 

-- 
-7 

10 ft - -. . - - - -  
-. - - -  - 

1200 ft 12 in. diam 1 

3.166. One-dimensional flow is 

+V=lO ft/sec 
? I 

(a) steady uniform flow 
(b)  uniform flow 
(c) flow which neglects changes in a transverse direction 
(d) restricted to flow in a straight line 
(e) none of these answers 

3.166. The continuity equation may take the form 

(a)  Q = pAu (b)  = p2A2 (c )  p l A 1 ~ 1  = p2A2~2 
( d )  V e p = O  (e) AIVI = A2v2 
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3.167. The first law of thermodynamics, for steady flow, 

(a) accounts for all energy entering and leaving a control volume 
(b) is an energy balance for a specified mass of fluid 
(c) i~ an expression of the conservation of linear momentum 
(d) is primarily concerned with heat transfer 
(e) is restricted in its application to perfect gases 

3.168. Entropy, for reversible flow, is defined by the expression 

( a ) & = d u + p d ( l / p )  ( b ) d s = T & ~  ( c ) s = u + p v a  
(d) & = dqH/T (e) none of these answers .- 

3.169. The equation d (losses) = T ds is restricted to 

(a) isentropic ff ow (b) reversible flow (c) adiabatic: flow 
(d) perfect-gas flow (e) none of these answers 

3.160. In turbulent flow 

(a) the fluid particles move in an orderly manner 
(b) cohesion is more effective than momentum transfer in causing shear 

stress 
(c) momentum transfer is on a molecular scale only 
(d) one lamina of fluid glides smoothly over another 
(e) the shear stresses are generally larger than in a similar laminar flow 

3.161. The ratio q = r/(du/dy) for turbulent flow is 

(a) a physicaI property of the fluid 
(b) dependent upon the flow and the density 
(c) the viscosity divided by the density 
(d) a function of temperature and pressure of fluid 
(e) independent of the nature of the flow 

3.162. Turbulent flow generally occurs for cases involving 

(a) very viscous fluids 
(b) very narrow passages or capillary tubes 
(c) very slow motions 
(d) combinations of (a), (b), and (c) 
(e) none of these answers 

3.163. In laminar flow 

(a) experimentation is required for the simplest flow cases 
(b) Newton's law of viscosity applies 
(c) the fluid particles move in irregular and haphazard paths 
(d) the viscosity is unimportant 
(e) the ratio r/(du/dy) depends upon the flow 

3.164. An ideal fluid is 

(a) very viscous 
(b) one which obeys Newton'e law of viscoeity 
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(c) a useful assumption in problems in contluit flow 
( d )  frictionless and incompressible 
(e )  none of these answers 

3.166. Which of the following must be fulfilled by'the floy of any fluid, real 
.or ideal? 

1. Newton's law of viscosity 
2. Newton's second law of motion 

.) 

3. The continuity equation 
4. r = (P + TI) du/dy 
5. Velocity a t  boundary must be zero relative to boundary 
6. Fluid cannot penetrate a boundary 

3.166. Steady flow occurs when 

(a) conditions do not change with time at, any point 
(b) conditions are the same a t  adjacent points a t  any instant 
(c) conditions change steadily with the time 
(d) is constant 
(e )  &/as is constant -, 

3.167. Uniform flow occurs 

(a) whenever the flow is steady 
(b) when %/at is everywhere zero 
(c) only when the velocity vector a t  any point % remains constant 
(d) when aD/as = 0 
(e) when the discharge through a curved pipe of constant cross-sec- 

tional area is constant 

3.168. Select the correct practical example of steady nonuniform flow: 

(a) motion of water around tt ship in a lake 
(b) motion of a river around bridge piers 
(c) steadily increasing flow through a pipe 
(d) stcadily decreasing flow through a reducing section 
(e) constant discharge through a long, straight pipe 

3.169. A streamline 

(a) is the line connecting tlie mid-points of flow cross sections 
(b) is defined for uniform flow only 
(c) is drawn normal to the velocity vector a t  every point 
( d )  is always the path of a particle 
(e)  is fixed in space in steady flow 

3.170. In twodimensional flow around a cylinder the streamlines are 2 in. apart 
at a great distance from the cylinder, where the velocity is 100 ft/sec. At  one 



- 
point near the cylinder the streamlines . . are 1.5 in. apart. The average velocity 
there is 

(a) 75 f$/sec (b) 133 ft/sec (c)  150 ft/sec (d)  -200 ft/sec 
(e) 300 ft/scc t .  

3,171. An oil has a specific gravity of 0.80. Its density in slugs per cubic foot .. . ,- 
is 

(a)  0.775 (b) 0.80 (c) 1.55 ( d )  1.935 ' ie )  49.92 

3.172. The continuity equstidn - 
(a) rcquires that Newtori's second law of motion be satisfied a t  every 

point in the fluid ' .. 
(b) expresses the relation between energy and work 
(c)  states-that the velocity a t  8 boundary must be zero relative to the 

boundary for a real fluid " * I  

( d )  relates the momentum per unit volume for two points on a stream- 
line 

(e)  relates mass rate of flow alopg a stream tube* 

3.173. Water has an averagc velocity of 10 ft/sec through a 24-in. pipe. The 
discharge through the pipe, in cubic feet per second, is 

(a) 7.85 (b)  31.42 (c) 40 (d)  125.68 (e)  none of these . . 
answers 

3.174. The assumptions about flow required in deriving the equation gz + v2/2 
+ $ d p / p  = constant arc th@ Ft is 

(a) steady, 'frictionle&, incompressible, along s, streamline 
(b) uniform, frictionless, along a streamline, p a function of p 
(c)  steady, uniform, incompressible, along a streamline 
(d) steady, frictionless, p a function of p, along a streamline 
(e) none of these answers 

3.176. The equation r + ply  + v2/2g = C has'the units of 

(a) ft-lb/sec (b) lb (c) ft-lb/slug (d) ft-lb/ft3 (e) ft-lb/lb 

3.176. The work that a liquid is capable of doing by virtue of its sustained 
pressure is, in foot-pounds per pound, 

(a )  z (b) p (c)  P/Y (dl v2/2g (4 fib 
3.177. The velocity head is 

( a )  v2/2g (b) z (c) v (d) a h  (e) none of these answers 

3.178. The kineticenergy correction factor 

(a) applies to the continuity equation 
(b) has the units of velocity head 
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(c) is expressed by ;i 1. (e) d~ 

(d) is expressed by - A 

(e) is expressed by ' /, ( ' V ) 3 d ~  
3.179. The kinetic-energy correction factor for the velocity distribution given 

by Fig. 1.1 is 

(a)  0 (b )  1 ( c )  ( d )  2 (e) noneoftheseanst\-ers 

3.180. The equation ZF, = pQ(Vz,,, - F7zi,) requires the following assump- 
tions for its derivation : 

1. Velocity constant over the end cross sections 
2. Steady flow 
3. Uniform flow 
4. Compressible fluid 
5. Frictionless fluid 

3,181. The momentum correction factor is expressecl by 

(d) (+r dA (e) none of these answers 

3.182. The momentum correction factor for the velocity distribution given by 
Fig. 1.1 is 

(a)  0 (b)  1 (c)  $ (d) 2 (e) none of these answers 

3.183. The velocity over one-third of a cross section is zero and is uniform over 
the remaining two-thirds of the area. The momentum correction factor is 

(a) 1 (b)  + (c) 3 (d)  3 (e)  none of these answers 

3.184. The magnitude of the resultant force necessary to hold a 6-in.diameter 
90" elbow under no-flow conditions when the pressure is 100 psi is, in pounds, 

(a) 5644 (b) 3996 (c) 2822 (d) 0 (e) none of these 
answers 

3.186. A 12-in.diameter 90" elbow carries water with average vclocity of 15 ft/ 
sec and pressure of - 5 psi. The force component in the direction of the approach 
velocity necessary to hold the elbow in place is, in pounds, 

(a) - 342 (b) 223 (c) 565 (d) 907 (e) none of these 
answers 
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3.186. A 3-in.diameter 180" bend carries a liquid, p = 2.0, a t  20 ft/sec at a 
pressure of zero gage. The force tending to push the bend off the pipe is, in 
pounds, 

(a)  0 (b)  39.2 (c) 78.5 (4 286.5 (e) hone of these 
answers 

3.187. The thickness of wall for a large high-pressure pipeline is determined by 
consideration of 

(a) axial tensile stresses in the pipe 
(b) forces exerted by dynamic action a t  bends 
(c) forces exerted by static and dynamic action a t  bends 
(d) circumferential pipe wall tension 
(e) temperature stresses 

3.188. Select from the following 'list the correct assumptions for analyzing flow 
of a jet that is deflected by a fixed or moving vane: 

1. The momentum of the jet is unchanged. 
2. The absolute speed does not change along the vane. 
3. The fluid flows onto the vane without shock. 
4. The flow from the nozzle is steady. 
I .  

5. The cross-sectional area of jet is unchanged. 
6. Friction between .jet and vane is neglected. 
7. The jet leaves without velocity. 
8. The velocity is uniform over the cross section of the jet before and 

after contacting the vane. 

3.189. When a steady jet impinges on a fixed inclined plane surface 

(a) the momentum in the direction of the approach velocity is un- 
changed 

(b) no force is exerted on the jet by the vane 
(c) the flow is divided into parts directly proportional to the angle of 

inclination of the surface 
(d) the speed is reduced for that portion of the jet turned through more 
' 

than 90" and increased for the other portion 
(e) the momentum component is unchanged parallel to the surface 

3.190. A jet with initial velocity of 100 ft/sec in the +x-direction is deflected 
by a fixed vane with a blade angle of 120". The velocity components leaving the 
vane parallel to and normal to the approach velocity are 

(a) v, = -50,v, = 86.6 (6)  v, = 100,v, = 0 
(c) v, = 50, vv = 50 (d) v, = 50, vv = 86.6 
(e) v, = -86.6, u, = 50 
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3.191. An oil jet, ay gr 0.80, discharges 0.50 slug/sec onto a fixed vane that 
turns the flow through 90". The speed of the jet is 100 ft/sec as i t  leaves the 
vnnr. The force component on the vane in the direction of thr approach velocity 
is, in pounds, 

(a) 70.7 (b)  50 ( r )  40 ( d )  35.35 (e) none of these 
an s~vers 

3.192. X water jet having a velocity of 120 ft/sec and cross-sectional area 0.05 
f t z  flo~i-s onto a vane moving 40 ft/sec in the same direction as the jet. The 
mass 11:tving its momentum changed per unit time, in slugs per second, is 

(0.) 4 (b)  7.74 ( c )  1 1 .GI (d) 15.48 (e) none of these 
ansjvers 

3.193. A jet having a velocity of 100 ft/sec flows onto a vane, angle 8 = 150°, 
having s velocity of 50 ft/sec in the same direction as the jet. The final absolute 
velot:it?. components parallel and normal to the approach velocity are 

(a)  v, = 6 . 7 , ~ ~  = 25 (b) v, = 24,v, = 43.3 
( c ) t 9 , =  - 3 6 . 6 , v v = 5 0  ( d ) v , = 1 4 . 6 5 , ~ , = 3 5 . 3 5  
(e) none of these answers 

3.194. A vane moves toward a nozzle 30 ft/sec, and the jet issuing from the 
nozzle has a velocity of 40 ft/sec. The vane angle is 0 = 90". The absolute 
velocity components of the jet as it  leaves the vane, parallel and normal to the 
undisturbed jet, are 

(a)  v, = 10, zjy = 10 (b) v ,  = -30, vv = 10 
( c ) v , = - 3 0 , v , = 4 0  ( d ) v , =  - 3 O , v , = 7 0  
( e )  none of these answers 

3.195. A force of 60 lb is exerted upon n moving blade in the direction of its 
motion, u = 55 ft/sec. The horsepower obtained is 

(a )  0.1 (b )  3 (c) 5.5 ( d )  10 (e)  none of these answers 

3.196. A series of moving vanes, u = 50 ft/sec, 8 = 90°, intercepts a jet, 
Q = 1 cfs, p = 1.5 slugs/ft3, Va = 100 ft/sec. The work done on the vanes, in 
foot-pounds per second, is 

(a)  1875 (b)  2500 (c)  3750 (d )  7500 (e )  none of these 
answers 

3.197. The horsepower available in a water jet of cross-sectional area 0.04 fta 
and velocity 80.2 ft/sec is 

(a)  1.1 3 (b )  36.36 (c )  39 ( d )  72.7 (e) none of these 
answers 

3.198. A ship moves through water a t  30 ft/sec. The velocity of water in the 
slipstream behind the boat is 20 ft/sec, and the propeller diameter is 3.0 ft. The 
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theoretical efficienc3. of the propeller is, in per cent, 

(a) 0 ( b )  60 (c )  75 (d) 86 (el none of these answers 

3.199. The thrust on the ship of Prob. 3.198, in pounds, is 

(a) 1362 (b) 4090 (c )  5450 (d)  8180 (e) none of these 
answers 

3.200. A rocket exerts a constant horizontal thrust of 40 lb on a missile for 
3 sec. If the missile weighs 8 Ib and starts from rest, its speed at the end of the 
period, neglecting the downward acceleration of gravity and reduction in weight 
of the rocket, is, in feet per second, 

(a) 386 (b) 483 (c) 580 ( d )  600 (e) none of these 
answers 

3.201. What is the reduction in weight of the rocket of Prob. 3.200 if the jet 
leaves a t  6000 ft/sec relative to the rocket? 

(a) 0.02 1b (b) 0.04 1b (c) 0.32 1b (d) 0.64 1b (e)  none 
of these answers 

3.202. A glass tube with a 90" bend is open a t  both ends. It is inserted into a 
flowing stream of oil, sp gr 0.90, so that one opening is directed upstream and the 
other is directed upward. Oil inside the tube is 2 in. higher than the surface of 
floiving oil. The velocity measured by the tube is, in feet per second, 

(a )  2.95 (b )  3.28 (c) 3.64 ( d )  4.64 (e)  none of these 
answers 

3.203. In Fig. 9.6 the gage difference R' for vl = 5 ft/sec, S = 0.08, So = 1.2, 
is, in feet, 

( a )  0.39 (b)  0.62 (c )  0.78 (d) 1.17 (e)  none of these 
answers 

3.204. The theoretical velocity of oil, sp gr 0.75, flowing from an orifice in a 
reservoir under a head of 9.0 ft is, in feet per second, 

(a) 18.1 (b)  24.06 (c) 32.1 (d) not determinable from data 
given ( e )  none of these answers 

3.205. In  which of the following cases is it possible for flow to occur from low 
pressure to high pressure? 

( a )  flow through a converging section 
(b) adiabatic flow in a horizontal pipe 
(c) flow of a liquid upward in a vertical pipe 
(d) flow of air downward in a pipe 
(e )  impossible in a constanb cross-section conduit 
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3.206. The head loss in turbulent flow in a pipe 

(a) varies directly as the, velocity 
(b) varies inversely as the square of the velocity 
(c) varies inversely as the square of the diarnekr 
(d) depends upon the orientation of the pipe 
(e) varies approximately as the square of the velocity 

3.207. The lossea due to a sudden expansion is expressed by 

3.208. If all losses are neglected, the pressure a t  the summit of a siphon 

(a)  is a minimum for the siphon 
(b) depends upon height of summit above upstream reservoir only 
(c) is independent of the length of the downstream leg 
(d) is independent of the discharge through the'siphon 
(e) is independent of the liquid density 

3.209. The depth conjugate to y = 1 ft and T l  = 20 ft/sec is 

(a)  2.32 ft . (b) 4.5 ft ( c )  5.0 f t  (d) 5.5 f t  (e) none of 
these answers 

3.210. The depth conjugate to y = 10 ft and V = 20 ft/sec is 

(a)  10.72ft (6) i1.5ft (c) 16.5ft (d) 21.5ft (e) none 
of these answers 

3.211. The depth conjugate to y = 10 f t  and V = 1 ft/sec is . 
(a)  0.06 ft (b) 1.46 ft (c) 5.06 ft ( d )  10.06 ft ( e )  none 

.of these answers 

3.212. The continuity equation in ideal fluid flow 

(a) states that the net rate of inflow into any small volume must be zero 
(b) states that the energy is constant along a streamline 
(c) states that the energy is constant everywhere in the fluid 
(d) applies to irrotational flow only 
(e) implies the existence of a velocity potential 



DIMENSIONAL ANALYSIS AND 

DYNAMIC SIMILITUDE 

Dimensionless parameters have aided materially in our understanding 
of fluid-flow phenomena. They permit limited experimental results to be 
applied to cases dealing with different physical dimensions and to fluids 
with different physical properties. As a means of formally determining 
dimensionless parameters, the process of dimensional analysis is intro- 
duced in this chapter. The concepts of dynamic similitude combined 
with carefuI selection and use of dimensionless parameters make possible 
the generalization of experimental data. In the following chapter, deal- 
inging primarily with viscous effects, one parameter is highly significant, 
viz., Reynolds number. In Chap. 6, dealing with compressible flow, the 
Mach number is the most important dimensionless parameter. In Chap. 
10, dealing with open channels, the Froude number has the greatest 
significance. 

Many of the dimensionless parameters may be viewed as a ratio of a 
pair of fluid forces, the relative magnitude indicating the relative impor- 
tance of one of the forces with respect to the other. For situations with 
several forces of the same magnitude, such as inertiaI, viscous, and 
gravitational forces, special techniques are required. After a discussion 
of dimensions, dimensional analysis, and dimensionless parameters, 
dynamic similitude and model studies are presented. 

4.1. Dimensional Homogeneity and Dimensionless Ratios. The solv- 
ing of practical design problems in fluid mechanics usually requires both 
theoretical developments and experimental results. By means of a 
grouping of significant quantities into dimensionless parameters it is 
possible to reduce the number of variables appearing and to make this 
compact result (iquations or data plots) applicable to all similar situations, 

If one were to write the equation of motion ZF - ma for a fluid particle. 
including all types of force terms that could act, such as gravity, pressure, 

155 
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viscous, elastic, and surface-tension forces, an equation of the sum of 
these forces equated to ma, the inertial force, would result. As with all 
physical equations, each term must have the same dimensions, in this 
case, force. The division of each term of the equation by any one of the 
terms would make the equation dimensionless. For example, dividing 
through by the inertial force term would yield a sum of dimensionless 
parameters equated to unity. The relative size of any one parameter, 
compared with unity, would indicate its importance. If one were to 
divide the force equation through by a different term, say the viscous- 
force term, then another set of dimensionless parameters wo~rld 1-csult. 
Without experience in the flow case it is difficult to determine which 
piirameters will be most useful. 

The writing of such a force equation for a complex situation may not be 
feasible, and another process, dimensional analysis, is then used if one 
knows the pertinent quantities that enter into the problem. 

In a given situation several of the forces may be of little significance, 
leaving perhaps two or three forces of the same order of magnitude. 
With three forces of the same order of magnitude, two dimensionless 
patameters are obtained; one set of experimental data on a geometrically 
similar model provides the relationships between parameters holding for 
all other similar flow cases. 
4.2. Dimensions and Units. The dimensions of mechanics are force, 

mass, length, and time, related to Xewton's second law of motion, 

Force and mass units are discussed in Sec. 1.2. For all physical systems, 
it would probably be necessary to introduce two more dimensions, one 
dealing with electromagnetics and the other with thermal effects. For 
the compressible work in this text, it is unnecessary to include a thermal 
unit, as the equations of state link pressure, density, and temperature. 

Xewton's second law of motion in dimensional form is 

which shows that only three of the dimensions are independent. F is the 
force dimension, M the mass dimension, I, the length dimension, and T 
the time dimension. One common system employed in dimensional 
analysis is the Ai, L, T-system. Table 4.1 is a listing of some of the 
quantities used in fluid flow, together with their symbols and dimensions. 

4.3. The n-Theorem. The Buckinghaml H-theorem proves that in a 
physical problem including n quantities in which there are m dimensions, 
the quantities may be arranged into n - m independent dimensionless 

' E. Buckingharn, Model Experiments and the Form of Empirical Equations, 
Trans. ASAIE, vol. 37, pp. 263-296, 1915. 
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parameters. Let Al, Aq, A3, . . . ,  A, be the quantities involved, such 
a.s pressure, viscosity, velocity, et.c. All the quantities are known to be 
essential to the solution, and hence some functional relation must exist. 

F(AI ,A~,A~,  . . .  ,A,) = 0 (4.3.1) 

Quantity 

Length . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Mass.. . . . . . . . . . . . . . . . . . . . . . . . . . . : . .  
Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Velocity 
Acceleration. . . . . . . . . . . . . . . . . . . . . . : .  
Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Discharge. . . . . . . . . . . . . . . . . . . . . . . . . .  
Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Gravity. 
Density. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  Specific weight. ; 
Dynamic viscosity. . . . . . . . . . . . . . . . . .  
Kinematic viscosity. . . . . . . . . . . . . . . . .  
Surface tension. . . . . . . . . . . . . . . . . . . . .  
Bulk modulus of elasticity. . . . . . . . . .  : 

If ITTI, n2, etc., represent dimensionless groupings of the quantities Al, Ae, 
AS,  ctc., then with m dimensions involved, an equation of the form 

f(n~,&,&, . . ,n t~-~)  = 0 (4.3.2) 
exists. 

Proof of the n-theorem may be found in Buckingham's paper. The 

Symbol 

I 
1 

M 
F 
V 
a 
A 
Q 
AP 
g 
P 

Y 

P 
Y 

v 
K 

method of determining the 11-parameters is to select m of the A-quantities, 
with different dimensions, that contain among them the m dimensions, 
and to use them as repeating variables together with one of the other 
A-quantities for each n. For example, let Al ,  A2, A 3  contain 211, L, and 
T, not necessarily in each one, but collectively. Then the first rl[-param- 

Dimensions (M,L,  T) 

L 
T 
M 

MLT-2 
LT-I 
I, T-' 

I,* 
L3T-I 

ML-IT-2 
LT-2 
M L-3 

ilfL-2T-2 
ML-lT-l 

LZT-1 
M T-2 

M 1.-IT-2 

eter is made up as 
n, = A1Z~A2v1A3zlA4 (1.3.3) 

the second one as 
IT2 = AIZ~A2~~ABzzA~ 

and so on, until 
fin, = A I+n -mA 2~m-1"A 3 ~ n - A  

In these equations the exponents are to be determined so that each I-I is 
dimensionless. The dimensions of the A-quantities are substituted and 
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the exponents M, L, and T are set equal to  zero respectively. These 
produce three equations in three unknowns for each ll-parameter, so tha t  
the x, y, z exponents can be determined, and hence the IT-parameter. 

If only two dimensions are involved, then two of the A-quantities are 
selected as repeating variables, and two equations in the two unknown 
exponents are obtained for each II term. 
In many cases the grouping of A-terms is such that  the dimensionless 

arrangement is evident by  inspection. The simplest case is that, when 
two quantities have the same dimensions, e.g., length, then the ratio of 
these two terms is the rZ-parameter. 

The procedure is best illustrated by several examples. 

Example 4.1: The discharge through et horizontal capillary tube is thought to 
depend upon the pressure drop per unit length, the diameter, and the viscosity. 
Find the form of the equation. 

The quantities arc listed with their dimensions : 

Quantity I Symbol 1 Dimensions 
- 

llischarge. . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  Pressure drop/lengt h 

Then 

F (Q, y? ~ , p )  = 0 

Viscosity. . . . . . . . . . . . . . . . . . . . . . .  

Three dimensions are used, and with four quantities there will be one II-parameter: 

Q 
p 

1 ML-IT-' 

By substituting in the dimensions, 

LST-I 
ML-2T-2 

Diameter. . . . . . . . . . . . . . . . . . . . .  . /  D 

The exponents of each dimension must be the same on both sides of the equation. 
With L first, 

321 - 2 ~ 1  + Zl - 1 = 0 

I, 

and similarly for M and T 
y 1 + 1  = o  

-21 - 29, - 1 = 0 

from which zl = 1, yl = - 1, zl = -4, and 
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Afttlr solving for Q 

from which dinlcnsional analysis yields no information about the numerical value 

f 
of the dimensionless constant C. Experiment (or analysis) shows that  it is 
?r/J 28 [Eq. (5.2.6)l. 

When dimensional analysis is used, the variables in a problem must hr 
known. In  the last example if kinematic viscosity had been used in place 
of dynamic~viscosity an incorrect formula would have resulted. 

Exutnple 4.2: A V-notch weir is a vertical plate with a notch of angle 4 cut 
into the top of i t  and placed across an open channel. The liquid in the cllannel is 
hacked up and forced to flour through the notch. The discharge is some func- 
tion of the elevation N of upstream liquid surface above the bottom of thr  notch. 
In addition the discharge depends upon gravity and upon the velocity of approach 
T V o  to the weir. Determine the form of discharge equation. 

A functional relationship 

is to be grouped into dimensionless parameters. 4 is dimensionless, hencr! i t  is 
one 11-parameter. Only two dimensions are used, L and T. If g and Ei are the 
repeating variables 

HI = ~ ~ ~ I ~ u I Q  = L Z I ( L T - ~ ) V ~ L ~ T - ~  
n2 = l ] ~ z g ~ z V ,  = L~Z(LT-~)U?LT-~  

Then 
2 1 + y 1 + 3 = 0  x 2 + y 2 + 1  = O  

-2y, - 1 = 0 -2y2 - 1 = 0 

1 1 1 and X I  = -9, yl = -3, 5 2  = -9, Yz = -5 

This may be written 

in which both f, f l  are unknown functions. After solving for Q 

Either experiment or analysis is required to yield additional information as to the 
function f l .  
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If If and Vo were selected as repeating variables in place of g and h, 

- -1, x2 = I, y2 == -2; hence from which XI = -2, y1 - 

Since any of the II-parameters may be invcrted or raised to any power without 
affecting their dimensionless status, 

The unknown function f z  has the same parameters as fl, but it could not be the 
same function. ' The last form is. not very useful, in general, because frequently 
Vo may be neglected with V-notch weirs. This shows that a term of minor 
importance should not be selected as a repeating variable. 

Another method of determining alternate sets of n-parameters would be 
the arbitrary recombination of the first set. If four independent II-param- 
eters are known HI, TI2, n3, IIa ,  the term 

with the exponents chosen a t  will would yield a new parameter. Then 
Ti,, U2, It3, 114 would constitute a new set. This procedure may be con- 
tinued to find all possible sets. 

ExampZe 4.3: The losses per unit length of pipe Ah/E in turbulent flow through a 
smooth pipe depend upon velocity V, diameter D, gravity g, dynamic viscosity 
p, and density p. With dimensional analysis, determine the general form of the 
equation 

Clearly, Ah/l is a &parameter. If V, D, and p are repeating variables, 
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since the II-quantities may be inverted if desired. The first parameter, V D p / p  
is Reynolds number, one of the most important of the dimensionless parameters 
in fluid mechanics. The size of Reynolds number determines the nature of the 
flow. It is discussed in Sec. 5.3. After solving for Ah/l 

The usud formula employed is 

Example 4.4: A fluid-flow situation depends upon the velocity V, the density p, 
several l inea~  dimensions 1, Z1, 12? pressure drop Ap, gravity g, viscosity p, surface 
tension a, and bulk modulus of elasticity K. ' Apply dimensiopal analysis to these 
variables to' find a set of Il-parameters. 

As three dimensions are involved, three repeating variables are selected. For 
c:omplcx situations, V, p, and I are generally helpful. There are seven 
11-pa.ramcters : 

B y  expanding the II-quantities into dimensions, 
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It8 = (LT-l)z~(ML-~)~*D~AVL-lT-l 
XJ - 3yo + a; - 1 = 0 

* -xa -1 = 0 
+ 1 = 0  

xs = - 1  $ 3 - 4  a t = - 1  
114 = ( L T - ~ ) X ~ ( M L - ~ ) W ~ L ~ ~ M  T-2 

$4 - 3y4 + 2 4  = 0 
- x4 -2  = 0 

Y4 + I - 0  
2 1 = - 2  y 4 = - 1  Z d = - - l  

== (L T- 1 )  's(ML-)) v bLxbML-1 T-2 

xs - 3y5 + 25 - 1 = 0 
- x5 -2 = 0 

95 $- 1-= 0 
x a = - 2  y s = - l  Z ~ S O  

Hence 

and 

It is convenient to invert some of the parameters and to take the square root of I T h ,  

The first parameter, usually written Ap/(pV2/2) ,  is the pressure coeflcient; the 
second parameter is the Froude number F; the third is Reynolds number R; the 
fourth is the Weber number W, and the fifth the Mach number M. Hence 

After solving for pressure drop 

in which fi, f 2  must be determined from analysis or experiment. By selecting 
other repeating variables, a different set of II-parameters could be obtained. 

Example 4.5: The thrust due to any one of a family of geometrically similar 
airplane propellers is to be determined experimentally from a wind-tunnel test 
on a model. By means of dimensional analysis find suitable parameters for 
plotting test results. 
The thrust F T  depends upon speed of rotation u, speed of advance VO,  diameter 

D, air viscosity p, density p, and speed of sound c. The function 
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is to be arranged into four dimensionless parameters, since there are seven quanti- 
ties and three dimensions. Starting first, by aelecting p, w, and D repeating 
variables, 

\ 

n1 = p z ~ W ~ l  DslFT = (,$fL-3)zi (T-1) Y I L Z ~ M L T - ~  
n = p x * o ~ 2 D ~ t  Va = ( J ~ L - ~ ) z z ( T - ' )  u?L~LT-' 
n3 = p+w~aD~~JL = (ML-~)xI(T-I) Y ~L~IML-I  T-1 

n4 = p t ~ t r 4 ~ s 4 ~  = ( A ~ L - ~ ) X ~ ( T - ~ ) ~ ~ D ~ L  T-1 

By writing the simuItaneous equations in XI, yl, 21, etc., as before and solving 
them, 

Solving for the thrust parameter 

Since the parameters may be recombined to obtain other forms, the second term 
is replaced by the product of the first and second terms, VDp/p  and the third 
term is replaced by the first term divided by the third term, VO/c ;  thus 

Of the dimensionlesls parameters, the first is probably of the most importance, 
since i t  relates speed of advance to speed of rotation. The second parameter is 
a Reynolds number and accounts for viscous effects. The last parameter, speed 
of advance divided by speed of sound, is a Mach number, which would be impor- 
tant for speeds near or higher than the speed of sound. Reynolds effects are 
usually small, so a plot of F,./pa2D4 against Vo/oD should be most informative. 

The steps in a dimensional analysis may be summarized as follows: 
1. Select the pertinent variables. This requires some knowledge of the 

process. 
2. Write the functional relationships, e.g., 

3. Select the repeating variables. (Do not make the dependent 
quantity a repeating variable.) 

4. Write the ll-parameters in terms of unknown exponents, e.g., 

5. For each of the n-expressions write the equations of the exponents, 
so t.hat the sum of t-he exponents of each dimension will be zero. 

6. Solve the equations simultaneously. 
7. Substitute back into the IT-expressions of step 4 the exponents to 

obtain the dimensionless fI-parameters. 
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8. Establish the functional relatiofi 

or solve for one of the n's explicitly: 

9. Itecombine, if desired, to alter the forms of the IT-parameters, 
keeping the same number of independent parameters. 

4.4. Discussion of Dimensionless Parameters. The five dimensionless 
parameters, pressure coefficient, Reynolds number, Froude number, 
Weber number, and Mach number, are of importance in correlating 
experimental data. They are discussed in this section, with particular 
emphasis placed on the relation of pressure coefficient to the other 
parameters. 

Pressure Coeficienb. The pressure coefficient Ap/(pV2/2) is the ratio 
of pressure to dynamic pressure. When multiplied by area it is the ratio 
of pressure force to inertial force, as ( p V 2 / 2 )  A would be the force needed 
to reduce the velocity to zero. It may also be written as Ah/(V2/2g) by 
division by 7.  For pipe flow the Darcy-Weisbach equation relates 
losses hl to length of pipe L, diameter D, and velocity V by a dimension- 
less friction factor1 f 

L v2 
h = f a s  

asfL,/D is shown to be equal to the pressure coeffickrlt (see Example 4.4). 
In pipe flow, gravity has no influence on losses; therefore F may be 
dropped out. Similarly surface tension has no effect and W drops out. 
For steady liquid flow compressibility is not important and M is dropped. 
I may refer to D, 1, to roughness height projection E in the pipe wall, and Ez 
to their spacing t' ; hence 

Pipe-flow problems are discussed in Chaps. 5, 6, and 10. If compres- 
sibility is important, 

Compressible-flow problems are studied in Chap. 6. 

There are several friction factors in general use. This i s  the Darcy-Weisbach 
friction factor, which is four times the size of the Fanning friction factor, also called f. 



Sec. 4.41 DIMENSIONAL ANALYSIS AND DYNAMIC SlMlllTUbE 166 
- 

With orifice flow, studied in Chap. 9, V = C. . \ / ~ s H ,  

in which I may refer to orifice diameter and I, and l e  to upstream dimen- 
sions. Viscosity and surface tension are unimportant for large orifices 
and low-viscosity fluids. Mach number effects may be very important 
for gas flow with large pressure drops, i.e., Mach numbers approaching 
unity. 

In steady, uniform open-channel flow, discussed in Chap. 11, the Ch6zy 
formula relates average velocity V, slope of channeI S, and hydraulic 
radius of cross section R (area of section divided by wetted perimeter) by 

C is a coefficient depending upon size, shape, and roughness. of channel. 
Then 

since surface tension and compressible effects are usually unimportant. 
The drag F on a body is expressed by F = CDApV2/2, in which A is a 

typical area of the body, usually the projection of the body onto a plane 
normal to the flow. Then F / A  is equivalent to Ap,  and 

The term R is related to skin friction drag due to viscous shear as well as 
to form, or projile, drag resulting from separation bf the flow streamlines 
from the body; F is related to wave drag if there is a free surface; for large 
Mach numbers CD may vary more markedly with M than with the other 
parameters; the length ratios may refer to shape or roughness of the 
surface. 

Reynolds Number. Reynolds number V D P / ~  is the ratio of inertial 
forces to viscous forces. It may also be viewed as a ratio of turbulent 
shear forces to viscous shear forces (Sec. 5.3). A "critical" ReynoIds 
number distinguishes among flow regimes, such as laminar or turbulent 
flow in pipes, in the boundary layer, or around immersed objects. The 
particular value depends upon the situation. In compressible flow, the 
Mach number is generally more significant than the Reynolds number. 

Froude Number. The Froude number V2/gl, when multiplied and 
divided by pA, is a ratio of dynamic (or inertial force) to weight. With 
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free liquid surface flow the nature of the flow (rapid1 or tranquil) depends 
upon whether the Froude number is greater or less than unity. I t  is 
useful in calculations of hydraulic jump, in design of hydraulic structures, 
and in ship design. 

Weber Number. The Weber number V21p/g is the ratio of inertial 
forces to surface-tension forces (evident when numerator and denominator 
are multiplied by I). It is important at gas-liquid or liquid-liquid inter- 
faces and also where these interfaces are in contact with a boundary. 
Surface tension causes small (capillary) waves and droplet formation and 
has an effect on discharge of orifices and weirs at very small heads. 

Mach Number. The speed of sound in a liquid is written dw, if K 
is the bulk modulus of elasticity (Secs. 1.7 and 6.2) or c = t / k ~ ~  (k is the 
specific heat ratio and T the absolute temperature, for a perfect gas). 
V / c  or v / ~ / K / ~  is the Mach number. It is a measure of the ratio of 
inertial forces to elastic forces. By squaring V / c  and multiplying by 
 PA/^ in numerator and denominator, the numerator is the dynamic 
force and the denominator is the dynamic force a t  sonic flow. It may also 
be shown to be a measure of the ratio of kinetic energy of the flow to 
internal energy of tho fluid. It is the most important correlating 
parameter when velocities are near or above local sonic velocities. 

4.5. Simili tude-Model Studies. Model studies of proposed hydraulic 
structures and machines are frequently undertaken as an aid to the 
designer. They permit visual observation of the flow and make possible 
the obtaining of certain numerical data, e.g., calibrations of weirs and 
gates, depths of flow, velocity distributions, forces on gates, efficiencies 
and capacities of pumps and turbines, pressure distributions, and losses. 

If accurate quantitative data are to be obtained from a model study 
there must be dynamic similitude between model and prototype. This 
similitude requires (a) that there be exact geometric similitude, and 
(b )  that the ratio of dynamic pressures at corresponding points be a 
constant. Part b may also be expressed as a kinematic similitude; i.e., 
the streamlines must be geometrically similar. 

Geometric similitude extends to the actual surface roughness of model 
and prototype. If the model is one-tenth the size of the prototype in 
every linear dimension, then the height of roughness pr~jections must 
be in the same ratio. dynamic pressures to be in the same ratio a t  
corresponding points in model and prototype, the ratios of the various 
types of forces must be the same at corresponding points. Hence, for 
strict dynamic similitude, the Mach, Reynolds, Froude, and Weber 
numbers must be the same in both model and prototype. 

Open-channel flow at depth y is rapid when the flow velocity is greater than the 
speed 6 of an elementary wave in quiet liquid. Tranquil flow occurs when the 
flow velocity is less than fi. 
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Strict fulfillment of these requirements is generally impossible of 
achievement, except with a 1 : 1 scab ratio. Fortunately, in many situa- 
tions only two of the forces are of the same magnitude. Discussion of a 
few cases will make this clear. 

Pipe Flow. In steady flow in a pipe viscous and inertial forces are 
the only ones of consequence; hence, when geometric similitude is 
observed, the same Reynolds number in model and prototype provides 
dynamic similitude. The various corresponding pressure coefficients are 
the same. For testing with fluids having the same kinematic viscosity 
in model and prototype, the product, V D ,  must be the same. Frequently 
this requires very high velocities in small models. 

Open Hydraulic Structures. Struct.ures such as spillways, stilling pools, 
channel transitions, and weirs generally have forces due to gravity (from 
changes in elevation of liquid surfaces) and inertial forces that are 
greater than viscous and turbulent shear forces. I n  these cases geo- 
metric similitude and the same value of Froude's number in model and 
prototype produce a good approximation to dynamic similitude; thus 

Since gravity is the same the velocity ratio varies as the square root of the 
scale ratio X = lp/1,, 

v, = v, dj; 
The corresponding times for events to take place (as time for passage 

of a particle through a transition) are related, thus 

and 

The discharge ratio Q p / & m  is 

Force ratios, e.g., on gates, F p / F m ,  are 

In a similar fashion other pertinent ratios may be derived so that model 
results can be interpreted as prototype performance. 

Ship's Resistance. Thc resistance to motion of a. ship through wat.er 
is composed of pressure drag, skin friction, and wave resistance. Model 



168 FUNDAMENTALS OF FLUID MECHANICS [Chap. 4 

studies are complicated by the three types of forces that are important, 
inertia, viscosity, and gravity. Skin-friction studies should be based on 
equal Reynolds numbers in model and prototype, but wave resistance 
depends upon the Froude number. To satisfy both requirements, model 
and prototype have to be the same size. 

The difficulty is surmounted by using a small model and measuring the 
total drag on it  when towed. The skin friction is then computed for 
the model and subtracted from the total drag. The remainder is stepped 
up to prototype size by Froude's law, and the prototype skin friction is 
computed and added to yield total Eesistance due to the water. 

Hydraulic Machinery. Due to the moving parts in a hydraulic 
machine, an extra parameter is required to ensure that t.he streamline 
patterns are similar in model and prototype. This parameter must 
relate the throughflow (discharge) to the speed of moving parts. For 
geometrically similar machines if the vector diagrams of velocity entering 
or leaving the moving parts are similar, the units are homotogous; i.e., for 
practical purposes dynamic similitude exists. The Froude number is 
unimportant, but the Reynolds number effects (called scale eflects because 
it is impossible to maintain t.he same Reynolds number in homologous 
units) may cause a discrepancy of 2 or 3 per cent in efficiency between 
model and prototype. The Mach number 'is also of importance in 
axial-flo w compressors and gas turbines. 

PROBLEMS 

4.1. Show that Eqs. (3.6.4), (3.73, and (3.9.15) are dimensionally homo- 
geneous. 

4.2. Arrange the following groups into dimensionless parameters: 

4.3. By inspection, arrange the following groups into dimensionless parameters: 

4.4. Derive the unit of mass consistent with the units inches, minutes, tons. 
4.5. In terms of M, L, T, determine the dimensions of radians, angular velocity, 

pon.cr, work, torque, and moment of momentum. 
4.6. Find the dimensions of the quantities in Prob. 4.5 in the F, L, T-system. 
4.7. Work Example 4.2 using Q and H as repeating variables. 
4.8. Using the variables Q, D, Ah/l, p, p, g as pertinent to smooth pipe flow, 

arrange them into dimensionless parameters with Q, p, p as xepeating variables. 
4.9. If the shear stress T is known to depend upon viscosity and rate of angular 

cleformation du/dy in one-dimensional laminar flow, determine the form of 
Newton's law of viscosity by dimensional reasoning. 

4.10. The variation of pressure Ap in static liquids is known to depend upon 
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syrcific weight y and clevstion difference Az. By clirnensional reasoning deter- 
mine the form of the hydrostatic law of variation of pressure. 

4.11. Neglecting viscous and surface-tension effects, the velocity V of efflux 
of liquid from a reservoir is thought to depend upon the pressure drop A p  of the 
liquid and its density p. Determine the form of expression for I.'. 

4.12. The buoyant force FB on a bady is thought to depend upon its volume 
submerged V and upon gravity g and fluid density p. Determine the form of 
t.he buoyant-force squa.tion. 

4.13. ln a fluid rotated a.s a solid about a vertical axis with angrrlsr velocity w, 
the prc3ssure rise p in a radial direction depends upon speed a, radius r,  and fl uitl 
density p. Obtain the form of equation for p. 

4.14. In Example 4.3, work out two oihcr sets of dimensionless parameters by 
recombination of the dimensionless parameters given. 

4.16. Find the dirnensionl~ss parltmetrrs of Example 4.4 using Ap, p, and 1 as 
repeating variables. 

4.16. The Mach number M for flow of a perfect gas in a pipe depends upon the 
specific heat ratio k (dimensionless), the pressure p ,  the density p, and the 
velocity 17. Obtain by dimensional reasoning the form of the Mach number 
expression. 

4.17. IlTork out the scaling ratio for torque T on a disk of radius r that rotates 
in fluid of viscosity p with angular velocity o and clearance y between disk and 
fixed plate. 

4.18. The velocity a t  a point in a model of a spillway for a dam is 4.3 ft/sec. 
For a ratio of prototype to model of 10: 1 what is the velocity a t  the corresponding 
point in the prototype under similar conditions? 

4.19. The power input to a pump depends upon discharge &, head H ,  specific 
weight y, and efficiency e. Find the expression for power by use of dimensional 
reasoning. 

4.20. The torque delivered by a water turbine depends upon discharge &, head 
I [ ,  specific weight y, angular velocity o, a ~ d  efficiency e. Determine the form of 
equation for torque. 

4.21. A model of a venturi meter has linear dimensions one-fourth those of the 
prototype. The prototype operates on water at 6S°F, and the model on water 
at 200°F. For a throat diameter of 24 in. and a velocity at the throat of 20 ft/sec 
in the prototype, what discharge is needed through the model for similitude? 

4.22. The drag F on a high-velocity projectile depends upon speed V of pro- 
jectile, density of fluid p, acoustic velocity c, diameter of projectile D, and vis- 
coslty p. Develop an cxpression for the drag. 

4.23. The wave drag on a model of a ship is 2.35 Ib at n speed of 8 ft/sec. For 
a prototype fifteen times as long what would bc the corresponding speed and wave 
drag if the liquid is the same in each case? 

4.24. A small spherical droplet of radius ro and dcnsity po settles a t  velocity 
in another Iiquid of density p and viscosity p. Determine an expression for 
drag F on the droplet and for its terminal velocity U .  (NOTE: Drag on an 
object a t  small Reynolds number is independent of density of fluid.) 

4.26. The losses in a Y in a 48-in.diametcr pipe system carrying gas ( p  = 

0.08 slug/ft', p = O.O02'poise, V = 75 ft/sec) are to  be determined by testing a 
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model with prater a t  70°F. The laboratory has a water capacity of 1000 gpm. 
What model scale should be used, and how are the results converted into proto- 
type losses? 

4.26. A one-fifth scde model of s water pumping station piping system is to 
be tested to determine over-all head losses. Air a t  80°F, 14 psia is available. 
For a prototype velocity of 1.0 ft/sec in a 14-ft-diameter section with water a t  
60°F, determine the air velocity and quantity needed and how losses determined 
from the model are converted to prototype losses. 

4.27. Full-scale wind-tunnel tests of the lift and drag on hydrofoils for a boat 
are to be made. The boat will travel a t  30 mph through water a t  60°F. What 
velocity of air (p = 30 psia, t = 90°F) is required to determine the lift and drag? 
(NOTE : The lift coefficient CL is dimensionless. . Lift = CdpV2/2 . )  

4.28. The resistance to ascent of a balloon is to be determined by studying the 
ascent of a 1 :50 scale model in water. How would such a model study be con- 
ducted and the results converted to prototype behavior? 

4.29. The moment exerted on a submarine by its rudder is to be studied with 
a 1 : 100 scale model in a water tunnel. If the torque measured on the model is 
3.50 lb-ft for a tunnel velocity of 50 ft/sec, what are the corresponding torque and 
speed for the prototype? 

4.30. For two hydraulic machines to be homologous they must (a) be geo- 
metrically similar; (b) have the same discharge coefficient when viewed as an 
orifice, Q1/(AI  . . \ / ~ ~ J H J  = Q J ( A 2  4-i) ; and ( c )  have the same ratio of periph- 
eral speed to fluid velocity, oD/ (Q/A) .  Show that the scaling ratios may be 
expressed as Q/ND3 = constant and H / ( N D ) z  = constant. 

4.31. By use of the scaling ratios of Prob. 4.30, determine the head and dis- 
charge of a 1 :4 model of a centrifugal pump that produces 200 cfs a t  96 ft head 
when turning 240 rpm. The model operates a t  1200 rpm. 

4.32. An incowect arbitrary recombination of the II-parameters 

(e) none of these answers 

4.33. The repeating variables in a dimensional analysis should 

(a) include the dependent variable 
(b) have two variables with the same dimensions if possible 
( c )  exclude one of the dimensions from each variable if possible 
(d) include those variables not considered very important factors 
(e) satisfy none of these answers 
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4.34. Select a common dimensionless parameter in fluid mechanics from the 
foIlon*ing: 

(a)  angular velocity (b)  kinematic viscosity (c) specific gravity 
(d) specific weight (e) none of these answers 

4.36. Select the quantity in the following that is not a dimensionless parameter: 

(a) pressure coefficient (b) Froude number (c) Darcy-Weisbach 
friction factor (d) kinematic viscosity (e) Weber number 

4.36. Which of the following has the form of a Reynolds number? 

(a) ul/v (b) V D d p  (c) uwpIz (4 V/gD (4 A p / p V 2  

4.37. Reynolds number may be defined as the ratio of 

(a) viscous forces to inertial forces 
(b) viscous forces to gravity forces 
(c) gravity forces to inertial forces 
(d) elastic forces to pressure forces 
(e) none of these answers 

4.38. The pressure coefficient may take the form 

(4 Ap/ , f l l  (6) Ap/(pV2/2) (4 A P / ~  (4' A P P / P ~ ~ ~  
(e) none of these answers 

4.39. Select the correct answer. The pressure coefficient is a ratio of pressure 
forces to 

(a) viscous forces 
(b) inertial forces 
(c)  gravity forces 
(d)  surface-tension forces 
( e )  elastic-energy forces 

4.40. How many Il-parameters are needcd to express the function F(a, V,t, v,L) 
= 01 

4.41. Which of the following could be a TI-parameter .of the function F(Q,fl,g, 
VO,+) = 0 when & and g are taken as repeating variables? 

(a)  Q 2 / g H 4  (b)  Vo2/g2& (c)  Q/pP2 (4 Q/m ( e )  ,One 

of these answers 

4.42. Select the situation in which inertial forces would be unimportant: 

(a) flow over a spillway crest 
(b) flow through an open-channel transition 
(c) waves breaking against a sea wall 
(d) flow through a long capillary tube 
(e) flow through a half-opened valve 
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4.43. WThich two forces are most important in laminar flow between closely 
spaced parallel plates: 

( a )  inertial, viscous (b)  pressure, inertial (c )  gravity, pressure 
( d )  viscous, pressure (e) none of these answers 

4.44. A dimensionIcss combination of Ap, p, I ,  Q is 

4.45. What velocity of oil, p = 1.6 slugs/ft3, p = 0.20 poise, must occur in a 
I-in.-diameter pipe to be dynamically similar to 10 ft/sec water velocity a t  6g°F 
in a i-in.diameter tube? 

(a )  0.60 ft/sec (b)  9.6 ft/sec (c)  4.0 ft/sec ( d )  60 ft/sec 
(e)  none of these answers 

4.46. The velocity a t  a point on a model dam crest was measured to be 2.5 
ft/sec. The corresponding prototype velocity for X = 25 is, in ft/sec, 

(a) 62.5 (b)  12.5 (c )  0.5 ( d )  0.10 ( e )  noneofthese 
answers 

4.47. The height of a, hydraulic jump in a stilling pool was found to be 4.0 in. 
in a model, X = 36. The prototype jump height is 

( a )  12 ft (b )  2 ft (c) not determinable from data givtn 
( d )  less than 4 in. (e )  none of these answers 

4.48. A ship's model, scale f : 100, had a wave resistance of 2.5 lb a t  its design 
speed. The corresponding prototype wave resistance is, in lb, 

(a) 2500 (b)  25,000 (c )  250,000 ( d )  2,500,000 (e)  none 
of these answers 

4.49. A 1 : 5 scale model of a projectile has a drag coeficient of 3.5 at M = 2.0. 
How many times greater would the prototype resistance be when fired a t  the 
same Mach number in air of the same temperature and half the density? 

(a) 3.12 (b) 12.5 (c) 25 ( d )  100 (e) noneofthese 
ans\s7ers 

4.60. If the capillary rise Ah of a liquid in a circular tube of diameter D depends 
upon surface tension a, and specific weight y, the formula for capillary rise could 
take the form, 

(e) none of these answers 
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VISCOUS EFFECTS-FLUID RESISTANCE 

1n Chap. 3 the basic equations used in the analysis of fluid-flow situa- 
tions were discussed. The fluid was considered frictionless, or in some 
cases, losses were assumed or computed without probing into their under- 
lying causes. This chapter deals with real fluids, i.e., with situations in 
which irreversibilities are important. Viscosity is the fluid property that 
causes shear stresses in a moving fluid; i t  is also one means by which 
irreversibilities or losses are developed. Without viscosity in a .fluid 
there is no fluid resistancc. Simple cases of laminar incompressible flow 
are first developed in this chapter, since in thcse cases the losses may be 

FIG. 5.1. Flow between parallel plates with upper plate in motion. 

computed. The concept of Reynolds number, introduced in Chap. 4, is 
then further developed. Turbulent-flow shear relationships are intro- 
duced by use of the Prandtl mixing-1engt.h theory and are applied to 
turbulent velocity distributions. This is followed by boundary-layer 
concepts and by drag on immersed bodies. Resistance to steady, 
uniform, incompressible, turbulent flow is then examined for open and 
closed  conduit.^, with a section devoted to open channels and to pipe flow. 
The chapter closes with a section on lubrication mechanics. 

5.1. Laminar, lncompressi ble Flow between Parallel Plates. Flow 
between parallel plates when one plate moves with velocity U in its own 
plane is first developed. Flow between fixed parallel plates is a special 

1 74 
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case obtained by letting Li = 0. In Fig. 5.1 the upper plate moves with 
velocity U in the I-direction arid there is a pressure variation in the 
2-direction. The flow is analyzed by taking a thin lamina of unit width 
as a free body. The equation of motion for the lamina in steady motion 
in the 1-direction is 

After dividing through by the volume of the elemellt and after simplifying, 

Since dp/dl  is independent of y, this integrates a t  once with respect to y, 

The direction of the shear forces on t.he free body is that for the case in 
which .u int:reascs as y increases; hence, from Eq. (1.1. I) 

7 = p -  
d?/ 

After substituting for T ,  

By integrating again with respect to y ,  

in which A,  B are constants of integration and may be selected to make 
the velocity of fluid at the boundary equal to the velocity of the boun&ry; 
that is, u = U when 1~ = a and u = 0 when y = 0. Substitution in turn 
produces 

After eliminating A and B, 
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For d p / d l  = 0 there is no pressure drop, and the velocity has a straight- 
line distribution. When bT = 0, the velocity distribution for flow 

between fixed parallel plates is ob- 
tained. The discharge is calculated 
with Eq. (5.1.2) by integration, 

Ua 1 d p  a, 
Q = l u d y  = - -- 

12p d l  
(5.1.3) 

The maximum velocity is generally at 
some point other than the midplane. 

Example 5.1 : In F'ig. 5.2 one plate moves 
1 relative to the other as shown. p = 0.80 

poise, p = 1.7 slugs/ft3. Determine the 
FIG. 5.2. Flow between inclined flat 
plates. velocity distribution, the discharge, and 

the shear stress exerted on the upper plate. 
In  Eq. (5.1.2) dp/d2 must be replaced by d(p + yz) /dl  to account for the weight 

component. A t  the upper point 

and at  the loivcr point 

to the same datum. Hence 

From the figure a = 0.24/12 = 0.02 ft, U = -3.0 ft,/sclc, utltl from Eq. (5.1.2) 

After simplifying 
.u = 566y - 35,800y2 

the maximum velocity occurs where du/dy = 0, or y = 0.0079 ft. It is u,,, = 
2.24 ft/sec, so the minimum velocity occurs at the upper plate. 

The discharge is 

and is downward. 
To find the shear stress on the upper plate 
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 his is the fluid shear at the plate; hence, the shear force on the plate is 1.45 Ib/ft2 
resisting the motion of the plate. 

Losses in Laminar Flow. An expression for the irreversibilities is 
developed for one-dimensionaI, incompressible, steady, Iaminar flow, in 
which the equation of motion and the principle of work and energy are 
utilized. There is no increase in kinetic energy in steady flow in a tube or 
between parallel plates. The pressure drop in horizontal flow, which 
represents work done on the fluid per unit volume, is converted into 
irreversibilities by the action of viscous shear. The losses in the length 
L are Q Ap per unit time, in which A p  is the pressure drop. 

FIG. 5.3. Forces on a fluid element. 

After examination of the work done on the fluid in one-dimensional 
flow, an expression for the losses can be developed. First., the equation 
of motion applied to an element (Fig. 5.3) relates the shear stress and 
pressure drop. There is no acceleration; hence, Zf, = 0, and 

After simplifying, 

which implies that the rate of change of pressure in the z-direction must 
equal the rate of change of shear in the y-direction. Clearly, d p / d ~  
is independent of y, and d r / d y  is independent of x. 

The work done per unit time, or power input, to a fluid element (Fig. 
5.4) for one-dimensional flow consists in the work done on the element by 
pressure and by shear stress, miGus the work that the element does on 
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the surrounding fluid, or 

After simplifying, 
Ket power input d dl, 

= - (ru). - u - Unit volume d~ dx (5.1.5) 

By expanding Eq. (5.1.5) and substituting Eq. (5.1.4) 

Ket power input du dr d p  du 
= r - + u -  - u- = 7 -  

17nit. volume dx dy 
(5.1.6) 

dy * dy 

With Kcwton's law of viscosity, 

h'et power input du 
. (5.1.7) 

Unit volume ~r 

This power is used up by viscous friction and is converted into 
irreversibilities. 

d Power inrru6r+z~ru) 6y 6x 
5 

I U - ,--Power out 1 

FIG. 5.4. Work done on a fluid element in one-dimensional motion. 

By integrating the expression over a length L between two fixed 
parallel plates, with Eq. (5.1.2) for U = 0 and with Eq. (5.1.7), 

Net power input = ~ d y  = p~ [ [L* 2 p  dl (2y - a) l (dy  

By substituting for Q from Eq. (5.1.3) for U = 0, 

Ilosses = net power input = -Q$ L = Q ~ p  
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in which Ap is the pressure drop in the length L. The expression for 
power input per unit volume [Eq. (5.1.7)] is also applicable to cases of 
laminar Aow in a tube. The irreversibilities are greatest when duldy is 
greatest. The distribution of shear stress, velocity, and losses is shown 
in Fig. 5.5 for a round tube. 

r Energy dissipation 

F a. 5.5. Distribution of velocity, shear, and losses for a round tube. / 
' -4-2. Laminar Flow through Circular Tubes and Circular Annuli. Flow 
through Circular Tubes. For steady, incompressible, laminar flow through 
a straight, round tube, the velocity distribution, discharge, and pressure 
drop can be determined analytically. In  a hor&ontal tube (Fig. 5.6) 
with a concentric cylinder of fluid as a free body, the flow is steady and, 
since the size of the cross section does not change, every partide of fluid 
moves without acceleration. Therefore, the summation of forces on 
the free body must equal zero. When the component of forces is taken 

FIG. 5.6. Free-body diagram for steady flow through a round tube. 

in the I-direction, there are normal pressure forces over the end areas and 
shear forces over the curved surface of the cylinder. In  the 'figure, 

or, after dividing through by the volume r r 2  61 and simplifying, 
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The term dp/dE depends upon I only for a given flow. This equation 
shows that. the shear stress is zero a t  the tube axis and increases linearly 
with r to its maximum value TO at the wall of the tube. The pressure 
must decrease in the direction of flow in a horizontal tube in that pressure 
force is the only means available to overcome resistance to flow; the 
potential and kinetic energies remain constant. The term - d p / d l  is 
positive. Equation (5.2.1) holds for turbulent flow as well as for laminar 
flow since in deriving it no assumptions were made as to the nature of the 
flow. 

For one-dimensional laminar flow the shear stress is related to the 
velocity by Kewton's law of viscosity, 

into which the minus sign is introduced because du/dr is negative for the 
particular choice of coordinates; that is, u decreases as r increases. By 
substituting for T in Eq. (5.2.1), 

The term - d p / d l  is the drop in pressure per unit length of tube and is 
not a function of r. By integrating with respect to T, if u and r are the 
only variables in the equation, a 

The velocity of a real fluid is always zero at  a fixed boundary; hence, 
u = 0 for r - r ~ .  After substituting this boundary condition into the 
equation, 

To eliminate the constant of integration c, the difference between the 
last two equations is taken, so 

which is the equation for velocity distribution. The velocity varies para- 
bolically, and the velocity distribution surface is a paraboloid of revolu- 
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F-? 

~ h .  5.7. Velocity distribution and shear-stress distribution in laminar flow in a round 
tube. 

FIG. 5.8. Ring element of area used to compute discharge. 

tion. It is shown, together with the shear-stress distribution, in Fig. 5.7. 
The maximum velocity u,., occurs at the axis and is 

The discharge is the quantity within the velocity distribution surface 

in which the ring element of area (Fig. 5.8) has been used. By sub- 
stituting for u from Eq. (5.2.2) and performing the integration, 

The, term -dp/dl  may be written ApplL, in which Ap is the pressure 
drop in the length L. Equation (5.2.4) then becomes 

In terms of the tube diameter D, 
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The average velocity V is Q/rrO2,  or 

which is one-half of the maximum velocity. 
Equation (5.2.6) can then be solved for pressure drop, which represents 

losses per unit volume, 

The bsses are seen to vary directly as the viscosity, the length, and 
the discharge, and to vary inversely as the fourth power of the diameter. 

FIG. 5.9. Free-body diagram for steady flow through an inclined tube. 

It should be noted that tube roughness does not enter into theequations. 
Equation (5.2.6) is known as the Hagen-Poiseuilk equation; it was deter- 
mined experimentally by Hagen in 1839 and independently by Poiseuille 
in 1840. The analytical derivation was made by Wiedemann in 1856. 

The results as given by Eqs. (5.2.2) to (5.2.8) are not valid near the 
entrance of a pipe. If the flow enters the pipe from a reservoir through a 
weU-rounded entrance, the velocity at first is almost uniform over the 
cross section. The action of wall shear stress (as the velocity must be 
zero at the wall) is to slow down the fluid near the wall. As a con- 
sequence of continuity the velocity must then increase in the central 
region. The transition length L' for the characteristic parabolic velocity 
distribution to develop is a function of the Reynolds number. Langhaar' 

H. L. Langhaar, Steady Flow in the Transition Length of a Straight Tube, 
J. Appl. Mechanics, vol. 9, pp. 55-58, 1942. 
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developed the theoretical formula 

which agrees well with observation. 
When the tube is inclined, as in Fig. 5.9, the losses can come from 

potential energy as well as from flow energy. An additional term comes 
into the equat.ion due to the weight component y?rr2 81 cos 0. If z is 
measured vertically upward, a change bz corresponds to  a change -81. 
In Fig. 5.9 

When the weight component is included in  Eq. (5.2.1) 

and Eq. (5.2.4) becomes 

The losses per unit volume per unit length of tube are - d ( p  + ?*)/dl. 

p2 = 30 psi 

FIG. 5.10. Flow through an inclined tube. 

Example 5.2: Determine the direction of flow through the tube shown in Fig. 
5.10, in which y = 50 ib/ft3, p = 0.40 &so. Find the quantity flowing in gallons 
per minute, and compute the Reynolds number for the flow. 

At section 1 

p + yz = 20 X 144 + 50 X 15 = 3630 lb/ft2 

and a t  section 2 
p + yz = 30 X 144 = 4320 Ib/ft2 

if datum for z is taken through section 2. The flow is from 2 to 1 since the energy 
is greater a t  2 (kinetic energy must be the same at both sections) than at 1. 
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To determine the quantity flowing, the expression is written 

- -d ( p  + 7e) = - 3630 - 4230 = 23 lb,ft" 
dl 30 

[Chap. 5 

After substituting into Eq. (5.2.10), 

2 3 ~  (i) 
= 6?-(m4w40/479) 

= 0.00203 cfs 

By converting to gallons per minute, 

Q = 0.00203 X 7.46 X 60 = 0.91 gprn 

The average velocity is Q/ur02, or 

and the Reynolds number is (Sec. 4.4) 

Jf the Reynolds number had 'been above 2000, the Hagen-Poiseuille equation 
would no longer apply, as discussed in Sec. 5.3. 

The kinetic-cnergy correction factor [Eq. (3.6.7)] may be determined 
for laminar flow in a tube by use of Eqs. (5.2.2) and (5.2.3), 

By substituting into the expression for a, 

There is twice as much kinetic energy in the flow as in uniform flow at 
the same average velocity. 

Flow through an Annulus. Steady laminar flow through the annular 
space between two concentric round tubes can be determined analytically. 
I n  place of the solid cylinder of Fig. 5.6, a cylindrical sleeve is taken as 
free body. The forces acting on i t  axe shown in Fig. 5.11. Again the 
flow is steady, and the summation of forces on the free body in the axial 
direction must be zero. The equation may be written 
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FIG. 5.11. Free-body diagram for flow through an annulus. 

After dividing through by the volume of the element 2 r r  6r 6l and drop- 
ping the term containing the infinitesimal, 

Jn this expression r is a function of r only, and p is a function of 1 only. 
The last two' terms may be combined, so 

Since d p / d l  is not a function of r, the equation can be integrated with 
respect to r ,  

in which A is the constant. of integration. By substituting for T from 
r = . - p d u l d r  and multiplying through by dr/r, the equation can be 
i r ~  tegrated again, 

B is the second constant of integration. The velocity must be zero a t  the 
outer wall, u = 0, r = a ;  and at the inner wall, u = 0, r = b. After 
substituting in turn, 

Eliminating the cotlstnnts A ,  B in the three equations and solvjng for u, 
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The discharge Q is 

For sloping tubes dp ld l  may be replaced by d(p + r z ) / d l  as in Eq. 
(5.2.10). 

5.3. Reynolds Number. Laminar flow is defined as flow in which the 
fluid moves in layers, or laminas, one layer gliding smoothly over an 
adjacent layer with only a molecular interchange of momentum. Any 
tendencies toward instability and turbulence are damped out by viscous 
shear forces that resist relative motion of adjacent fluid layers. Turbu- 
Ient flow, however, has very erratic motion of fluid particles, with a 
violent transverse interchange of momentum. The nature of the flow, 
i.e., whether laminar or turbulent, and its relative position along a scale 
indicating the relative importance of turbulent to laminar tendencies are 
indicated by Reynolds number. The concept of Reynolds number and its 
interpretation are discussed in this section. In Sec. 3.5 an equation of 
motion was developed with the assumption that the fluid is frictionless, 
i.e., that the viscosity is zero. More general equations have been devel- 
oped that include viscosity, by including shear stresses. These equations 
(Navier-Stokes) are complicated, nonlinear, partial differential equations 
for which no genera1 solution has been obtained. In the last century 
Osborne Reynolds1 studied these equations to try to determine when two 
different flow situations would be similar. 

Two flow cases are said to be dynamically similar when 

a. they are geometrically similar, i.e., corresponding linear dimensions 
have a constant ratio and 

b. the corresponding streamlines are geometrically similar, or pressures 
at  corresponding points have a constant ratio. 

In considering two geometrically similar flow situations, Reynolds 
deduced that they would be dynamically similar if the general differ- 
ential equations describing their flow were identical. By changing the 
units of mass, length, and time in one set of equations and determining 
the conditions that must he satisfied to make them identical to the 
original equations, Heynolds found that the dimensionless group ulp/p 
must be the same for both cases. Of these, u is a, characteristic velocity, 
1 a characteristic length, p the mass density, and p the viscosity. This 
group, or parameter, is now called the Reynolds number R, 

0. Reynolds, An Experimental Investigation of the Circumstances Which Deter- 
mine whether the Motion of Water Shall Be Direct or Sinuous, and of the  law^ of 
Resietance in Parallel Channels, Tram. Roy. Soc. (Ltmcbn), vol. 174, 1883. 
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To determine the significance of the dimensionless group, Reynolds 
conducted his experiments on flow of water through glass tubes, illus- 
trated in Fig. 5.12. A glass tube was mounted horizontally with one 
end in a tank and a valve on the opposite end. A smooth bellmouth 
entrance was attached to the upstream end, with a dye jet arranged so 
that a fine stream of dye could be ejected at any point in front of the 
bellmouth. Reynolds took the average velocity V as characteristic 
velocity and the diameter of tube D as characteristic length, so that 
R = ~ D P / P .  

For small flows the dye stream moved a straight line through the 
tube, showing that the fiow was laminar. As the flow rate increased, the 
Reynolds number increased, since D, p, p were constant, and V was 
directly proportional to the rate of flow. With increasing discharge a 

FIG. 5.12. Reynolds apparatus. 

condition was reached at  which the dye stream wavered and then sud- 
denly broke up and was diffused throughout the tube. The flow had 
changed to turbulent flow with its violent interchange of momentum 
that had completely disrupted the orderly movement of laminar flow. 
By careful manipulation Reynolds was able to obtain a value R = 12,000 
before turbulence set in. A later investigator, using Reynolds' original 
equipment, obtained a value of 40,000 b allowing the water to stand in 
the tank for several days before the e 2 , eriment and by taking precau- 
'ions to avoid vibration of the water or equipment. These numbers, 
referred to as the Reynolds upper critical numbers, have no practical 
significance in that the ordinary pipe installation has irregularities that 
cause turbulent flow at a much smaller value of the Reynolds number. 

Starting with turbulent flow in the glass tube, Reynolds found that it 
would always become laminar when the vebcity was reduced to make R 
less than 2000. This is the Reynolds lower crdtieal number for pipe flow 
and is of practical importance. With the usual piping installation, the 
flow will change from laminar to turbulent in the range of the Reynolds 
numbers from 2000 to 4000. For the purpose of this treatment it is 
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assumed that the change occurs at R = 2000. In  laminar flow the losses 
are directly proportional to the average velocity, while in turbulent flow 
the losses are proportional to the ve16city to a power varying from 1.7 
to 2.0. 

There are many Reynolds numbers in use today in addition to the one 
for straight, round tubes. Iior example, the motion of a sphere through 

a fluid may be characterized by U D p I p ,  in 
which Li is the velocity of sphere, D is the 

' diameter of sphere, and p and p are the fluid 
/ density and viscosity. 

..?a 
The Reynolds' number may be viewed as $> 

I a ratio of shear stress rt due to turbulence to 
1.- shear stress Tv due to viscosity. Uy applying 

A- 
the momentum equation 1.0 the flow through an 

F1n. 5.13. for shear element of area 64 (I:ig. 5.13) the apparent 
stress due to turbulent flow. 

shear stress due to turbulence can be deter- 
mined. If v' is the velocity normal t.o 6A and u' is the difference in 
velocity, or the velocity fluctuation, on the two sides of the area, then, 
with Eq. (3.9.10), the shear force 6F acting is computed to be 

in which pv' &A is the mass per second having its momentum changed 
and u' is the final velocity minus the initial velocity in t.he s-direct.ion. 
By dividing through by 6 A ,  the shear strcss rt due to turbulent fluct.urt- 
tions is obtained, 

I I 
rt = PU u (5.3.2) 

The shear stress due to viscosit.y may be written 

in which u' is interpreted as the change in velocity in the distance l ,  
measured normal to the velocity. Then the ratio, 

has the form of :t lteynoids number. 
Although this method of vitwing the ltcynolds number is not exact, 

i t  does indicate that for large Reynolds numI>crs the numerator is much 
more important than the denominator or that the vjsraus shear may be 
neglected because it  is very smalI compared with the shear due to tur- 
bulence. On the other hand s smaH Reynolds number indicates thah the 
denominator is much more important than tke numerator, or that the 
viscous shear is much greater than - turbulent shear. 
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The nature of a given flow of an incompressible fluid is characterized 
by its Reynolds number. For large values of R one or all of the terms 
in the numerator are large compared with the, denominator. This 
implies a large expanse of fluid, high velocity, great density, extremely 
small viscosity, or combinations of these extremes. The numerator 
terms are related to inertial forces, or to forces set up by acceleration 
or deceleration of the Auid. The denominator term is the cause of 
viscous shear forces. Thus, the Reynolds number parameter may also 
be considered as a ratio of inertial to viscous forces. A large R indicates 
a highly turbulent flow with losses proportional to the square of the 
velocity. The turbulence may be fine scale, composed of a great many 
small eddies that rapidly convert mechanical energy into irreversibilities 
through viscous action; or it may be large scale, like the huge vortices 
and swirls in a river or gusts in the atmosphere. The large eddies gen- 
erate smaller eddies, which in turn create fine-scale turbulence. Tur- 
bulent flow may be thought of as a smooth, possibly uniform flow, with a 
secondary flow superposed on it. A fine-scale turbulent flow has small 
fluctuations in velocity that occur with high frequency. The root-mean- 
square value of the fluctuations and the frequency of change of sign of 
the fluctuations are quantitative measures of turbulence. In general 
the intensity of turbulence increases as the Reynolds number increases. 

For intermediate values of R both viscous and inertial effects are 
important, and changes in viscosity change the velocity distribution and 
the resistance to flow. 

For the sa.me R, two geometrically similar closed-conduit systems (one, 
say, twice the size of the other) will have the same ratio of losses to 
velocity head. The use of Reynolds number provides a means for using 
experimental results with one fluid for predicting results in a similar case 
with another fluid. 

5.4. Prandtl Mixing length. Velocity Distribution ip Turbulent Flow. 
Pressure drop and velocity distribution for several cases of laminar flow 
u7ere worked out in the preceding section. In this section the mixing- 
length theory of turbulence is developed, including its application to 
several flow situations. The apparent shear stress in turbulent flow is 
expressed by [Eq. (3.2.2)) 

including direct viscous effects. Prandtll has developed a most useful 
theory of turbulence called the mixing-length theory. In See. 5.3 the 

For an account of the development of turbulence theory the reader is referred 
to I,. Prandtl, "Essentials of Fluid Ilynamics," pp. 105-145, Hafner Publishing Com- 
pany, New York, 1952. 
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shear stress r ,  due to turbulence, was shown to be 

T = pu'v' (5.3.2) 

in which u', u' are the velocity fluctuations at a point. In Prandtl'sl 
theory, expressions for u' and v' are obtained in terms of a mixing-length 
distance 1 and the velocity gradient du/dy, in which u is the temporal 
mean velocity a t  a point and y is the distance normal to u, usually 
measured from the boundary. I n ' a  gas, one molecule, before striking 
another, travels an average distance known as the mean free path of the 
gas. Using this as an analogy (Fig. 5.14a), Prandtl assumed that a 

FIG. 5.14. Notation for mixing-length theory. 

particle of fluid is displaced a distance I before its momentum is changed 
by the new environment. The fluctuation u' is then related to 1 by 

which means that the amount of the change in velocity depends upon 
the change in temporal mean velocity at two points distant 1 apart in 
the y-direction. From the continuity equation, he reasoned that there 
must be a correlation between u' and v' (Fig. 5.14b), so that v' is pro- 
portional to u', 

By substituting for u' and v' in Eq. (5.3.2) and by letting 1 absorb the 
proportionality factor, the defining equation for mixing length is obtained: 

L. Prandtl, Bericht iiber Untersuchungen zur ausgebildeten Turbulcnz, 2. angew. 
Math. u. Mech., vol. 5, no. 2, p. 136, 1925. 
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more uniform. When Eq. (5.4.2) is compared with Eq. (3.2.1) it is found 
that 

 at q is not a fluid property as is dynamic viscosity. Rather, 7 dependa 
upon the density; the velocity gradient and the mixing length I. I n  
turbulent flow there is a violent interchange of globules of fluid except 
at a boundary, or very near to it, where this interchange is reduced to 
zero; hence, 1 must approach zero at  a fluid boundary. The particular 
relationship of Z to wall distance y is not given by Prandtl's derivation. 
Von K4rm6n1 suggested, after considering similitude relationships in a 
turbulent fluid, that 

in which K is- a universal constant in turbulent flow, regardless of the 
boundary configuration or value of Reynolds number. 

In turbulent flows, q, sometimes referred to as the eddy viscosity, is 
generally much larger than p. It may be considered as a coefficient of 
momentum transfer, expressing the transfer of momentum from points 
where the concentration is high to points where it is lower. It is con- 
venient to utilize a kinematic eddy viscosity t = 7 / p  which is a property 
of the flow alone and is analogous to kinematic viscosity. 

The violent interchange of fluid globules in turbulence also tends to 
transfer any uneven concentration within the. fluid,. such as salinity, 
temperature, dye coloring, or sediment concentration. Studies2 indi- 
cate that the transfer coefficient is roughly proportional to, but probably 
larger than, the eddy viscosity for turbulent diffusions of concentrations 
other than mokentum. 

If T is the temperature, H the heat transfer per unit area per unit, 
time, and c, the specific heat at  constant pressure (Btu per unit of temper- 
ature per unit of mass), then 

in which c,r] is the eddy conductivity. For transfer of material sub- 
stances, such as salinity, dye, or sediment, if C is the'concentration per 
unit volume (e.g., pounds of salt per cubic foot, number of particles per 
cubic foot) and c the rate of transfer per unit area per unit time (e.g., 

Th. von Ktirrnb, Turbulence and Skin Friction, J .  Aermut .  Sci., vol. I, no. 1, 
p. 1, 1934. 

2 See footnote, p. 189. 
/ 
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pounds of salt per square foot per second, number of sediment particles 
per square foot per second), then 

and 6, is proportional to c. 

Example 5.3: A tank of liquid containing fine solid particles of uniform sixe is 
agitates so that the kinematic eddy viscosity may be considered constant. If the 
fall velocity of the particles in still liquid is vf and the concentration of particles is 
Co at y = yo (y measured from the bottom), find thc distribution of solid particles 
vertically throughout the liquid. 

By using Eq. (5.4.6) to determine the rate per second carried upward by turbu- 
lence per square foot of area at  the level y, the amount per second falling across 
this surface by settling is equated to it  for steady conditions. T h ~ s e  particles in 
the height I:, above the unit area will fall out in a second, i.c., Cuf particles cross 
the level downward per second per square foot. From Eq. (5.4.6) -ec  dC/dy 
particles are carried upward due to the turbulence and the higher concentration 
below ; hence 

,ifter integrating 

In C = - 9 y + constant 
ec , 

For C = Co, y = yo, 
C , Coe-(~fl re) (v-u I)  

17elocity Distributions. Utilizing the mixing-length concept, turbulent 
velocity distributions are discussed for the flat plate, the pipe, and for 
spreading of a fluid jet. For turbulent flow over a smooth plane surface 
(such as the wind blowing over smooth ground) the shear stress in the 
fluid is constant, say 7 0 .  Equation (5.4.1) is applicable, but q approaches 
zero at the surface and p becomes negligible away from the surface. If 
11 is negligible for the film thickness y = 6, in which p predominates, 
Eq. (5.4.1) becomes 

- 
The term & o / P  has the dimensions of a velocity and is called the shear- 
stress velocity u,. Hence 

shows a linear relation between u and y in the laminar film. For y > 6, 
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Since I has t hc dirncnsions of a le~lgth and from dimensional considcra- 
tior~s woulri t)e p~.oportional to y (the o11Iy significant linear dimension), 
assume 1 = MY. 13y substituting into Eq. (5.4.9) and rearranging, 

;if t.er in t egrat i lg ,  
14 1 - = - In + constant 

?I* K 

It is to be noted that this  value of u subst.it.utcd in Eq. (5.4.4) also deter- 
mines I proportional to 11 (d2u/dy2 is ncg:itive sincc the \relocity gradient 
decreases as y i11cre:lsrs). Equation (5.4. I 1 )  agrees well with experiment 
and, in fact., is also useful when T is a f!ll~(af ion of y, because most of the 
velocity change occurs near the wall ~vherc! T is substantially constant. 
I t is quite sat isfactory to apply to turbulent flow in pipes. 

Example 5.4: I3y intttgratiorl of Eq. (5.4.1 1) find thc relation bctween the aver- 
agr velocity T' and the rnaximun~ velot:ity u, in tur1)ulcnt flow in a pipe. 

'I'hc discharge Vxro2 is obtained by integrating the velocity distribution 
7-83 - B 

ur dr = 27r / r0 (s,, + Ilr In 2)  (TO - y) dg 
6 K T O  

'l'hc intogration cannot bc carried out to y = 0, sincc the equation holds in the 
turbulent zone only. The volume pcr socond flowing in the laminar zone is so 
srriall that it may be neglected. Thcn 

in which the variable of ink~gration is gjro. By integrating, 

Since djro is very small, such terms as 6/ro and (6/ro)  In 6/ro are negligible 
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In evaluating the constant in Eq. (5.4.11), following the methods of 
Bakhmeteff,' u = u,, the "wall velocity," when y = 6. According to  
Eq. (5.4.8) 

from which it is reasoned that u * S / v  should have a critical value N at 
which flow changes from laminar to turbulent, since it is s Reynolds 
number in form. By substituting u = u, when y = 6 into Eq. (5.4.11) 
and by using Eq. (5.4.12), 

uw 1 1 NU - = N = - In 6 + constant = - In - + constant 
u* K K u* 

After eliminating the constant 

1 in which A = N - - In N has been found experimentally by plotting 
K .  

u/u, against In gu,/v. For flat plates K = 0.417, A =. 5.84, but for 
smooth wall pipes Nikuradse2 experiments yield K = 0.40 and A = 5.5. 

Prandtl has developed a convenient exponential velocity distribution 
formula for turbulent pipe flow, 

in which n varies with Reynolds number. This empirical equation is 
valid only at some distance from the wall. For R less than 100,000, 
rz = I/?, and for greater values of R, n decreases. The veIocity distribu- 
tion equations; Eqs. (5.4.13) and (5.4.141, both have the fault of a nonzero 
value of.du/dy at the center of the pipe. 

Example 5.5: Find an approximate expression for mixing-length distribution'in 
turbulent flow in a pipe from' Prandtl's one-seventh-power law. 

By applying Eq. (5.2.1) to the pipe wall, TO = d p  5. Dividing into Eq. (5.2.1) 

and using-Eq. (5.4.2), 

B. A. Bakhmeteff, "The Mechanics of Turbulent Blow," Princeton University 
Prem, Princeton, N.J., 1941. 

J. Nikuradse, Gesetzmhsigkeiten der turbulenten Stromung in glatten Rohrea 
VDI Forech. 356, 1932. 
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in solving for 1, 

VISCOUS EFFECTbFLUID RESISTANCE 

From Eq. (5.4.14) 

the approximate velocity gradient is obtained 

and 

The dimensionless velocity defiiency, (u, - u)/u,, is a function of 
y/ro only for large Reynolds numbers (Example 5.4) whether the pipe 
surface is smooth or rough. From Eq. (5.4.11), by evaluating the 
constant for u = u, when y = ro, 

For rough pipes, the velocity may be assumed to be u, at the wall 
distance y, = me, in which E is a typical height of the roughness projec- 
tions and m is a form coefficient depending upon the nature of the rough- 
ness. By substituting into Eq. (5.4.15)) then by eliminating uJu, 
between the two equations 

in which the last two terms on the right-hand side are constant for a 
given type of roughness, 

In Nikuradse's experiments with sand-roughened pipes constant-size sand 
particles (those passing a given screen and being retained on a slightly 
finer screen) were glued to the inside pipe walls. If E represents the 
diameter of sand grains, experiment shows that K = 0.40, B =- 8.48. 

Spreading of a Fluid Jet. A free jet of fluid issuing into a large space 
containing the same fluid otherwise a t  rest is acted upon by frictional 
forces between the jet and the surrounding fluid. The jet velocity 
reduces and additional fluid is set in motion in the axial direction. The 
pressure is substantially constant throughout the jet and surroundings 
so that the momentum in the axial direction remains constant. The 
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tur1)ulent mixing length within the jct ct:l11 bc taken as pn)port.ional to 
its breadth b (Fig. 5.15) 1 = arb. Experiments show that a = 8. A 
conclusion from the constancy of momentum within the jet is that the 
maximum velocity (at the center line) varies inversely as the axial 
distance x along the jet. Both theory1 and experiment show that the 
breadth varies linearly with axial distance, b = x/8.  Turbulent shear 
forces reduce the jet velocit.y'withi11 the central cone, and equal turbulent 
shear forces act to increase velocity in the outer portions of the jet. 

FIG. 5.15. Fluid jet issuing into same fluid medium. 

- 5.5. Boundary-layer Concepts. In  1904 Praildt12 developed the con- 
cept of the boundary layer. It. provides an important link between 
ideal fluid. flow and real fluid flow. For jeuids hauing relatirely small cis- 
cosity, the e$ect of internal jriction in a fluid is  appreciable only in a.narrow 
region surrounding the fluid boundaries. lcrom this hypothesis? the flow 
outside of the narrow region near thc solid boundaries may be considered 
as ideal flow or potential flow. Relations within the boundary-layer 
region may be computed from thc general equations for viscous fluids, but 
use of the momellturn eqrlation permits the developing of approximate 
equations for boundary-layer growth and drag. In this section the 
t~oundary layer is described and the momentum equation applied to it. 
Two-dimensional flow along a flat plate is studied by meails of t.he momen- 
t unl relationships for both the laminar and thc turbulcilt bourldary layer. 
The phenomenon of separat.ion o f  the boundary laycr and formatior1 of 
the  wake is described. 

Ifescription clf the Bouncl'ar!l I1aysr. When mot.ioil is started in a ffuid 
lli~\.i~lg very sn~:tll viscosity, the flow is essentially irrotational in the 

' W. Tollmien, Berechnung turbulerltcr Ausbreitungsvorg-aange, 2. angew. Math. u. 
J f  cch., vol. 6, p. 468, 1926. 

L. I'randt.1, Ul)er Flussigkeitsbe\v\-egung hei sehr kleincr Reihnng, t'erhandl. I I I  
Intern. Math.-Konyr., IIcklelherg, 1904. 
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first instants. Since the fluid a t  the boundaries has zero velocity relative 
to the boundaries, there is a steep velocity gradient from the boundary 
into the flow. This velocity gradient in a real fluid sets up near the 
boundary shear forces that reduce the flow relative to the boundary. , 

That fluid layer which has had its velocity affected by the boundary 
shear is called the boundary layer. The velocity in the boundary layer 
approaches the velocity in the main flow asymptotichlly. The boundary 
Iayer is very thin a t  the upstream end of a streamlined body a t  rest in 
an otherwise uniform flow. As this layer moms along the body, the 
continual action of shear stress tends to slow down additional fluid 
particles, causing the thickness of the boundary layer to increase with 
distance from the upstream point. The fluid in the layer is also sub- 
jected to a pressure gradient, determined from the potential flow, that 
increases the momentum of the layer if the prcssure decreases downstream 
and decreases its momentum if the pressure increases downstream 
(adcerse pressure gradient). The flow outside the boundary layer may 
also bring momentum into the layer. 

For smoot.h upstream boundaries, the boundary layer starts out as a, 

laminar boundary lager in which the fluid particles move in smooth layers. 
As the thickness of the laminar boundary - 
layer increases, it becomes unstable and 
finally transforms into a turbulent boundary 
layer in which the fluid particles move irl 

haphazard paths, although their velocity 
has been reduced by the action of viscosity 
at the boundary. When the boundary 
layer has become turbulent, there is still ( 0 )  

a very thin layer next to the FIG. 5.16. Definitions bound- 
that has laminar motion. It is called the ,-y-layer thickneas. 
laminar sub-layer. 

Various definitions of boundary-layer thickness have been suggested. 
The most basic definition refers to the displacement of the main ~IOIT 
due to slo~ving domri of fluid particles in the boundary zone. This thick- 
ness 61, called the displacement th.ickness, is expressed by 

in wllich B is that value of y at which u = U. In Fig. 5 . 1 6 ~ ~  the line 
y = 61 is drawn so that the shaded areas are equal. . This distance is, in 
itself, not the distance that is strongly affected by the boundary. In 
fact, that region is frequently taken as 3&. Another definition, expressed 
by Fig. S.lCib, is the distance to the point where u./ U = 0.99. 
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-% Momentum Equation Applied to the 
Boundary Layer. By following Von 

+*zP+adx) 1.4-rltixL a KArrnhn's method,l the principle of mo- 
menturn may be applied directly to the 

a boundary in steady flow. In a small 
TO segment of the layer (Fig. 5.17) where 

F1o. 5.17- Segment of boundary abed is fixed, the resultant force in the 
layer. 

x-direction must equal the net efflux of 
momentum across the surface of the element in unit time. The resultant 
force on the element is, for unit breadth, 

The net mass outflow through cd and ab is 

This mass must be entering through bc and, hence, brings into the element 
in unit time the moment.um 

The excess of momentum per unit time leaving cd over that entering ab is 

When the force and momentum terms are assembled and dx is divided out, 

For a flat plate, a p / d x  = 0, and U is constant. The equation reduces to 

Two-dimensional Flow along a Flat Plate. Calculations of boundary- 
layer growth, in general, are very complex and require advanced mathe- 
matical treatment. As a simple example, the case of steady flow parallel 
to a flat plate is worked out by use of the momentum relationship. 

Laminar Boundary Layer. Equation (5.5.3) may be written 

Th. von KPirmBn, On Laminar and Turbulent Friction, 2. angew. Math. u. Mech., 
vol. 1, pp. 235-236, 1921. 
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in which h is greater than 6 but is independent of x. This is perdssible 
because the integrand is zero for y > 6, as u = U. The momentum 
equation gives no information regarding the velocity distribution in the 
boundary layer. For an assumed distribution, which satisfies the bundo 
ary conditions u = 0, y = 0 and u = U, y = 6, the boundary-layer 
thickness as well as the shear at the boundary can be determined. The 
velocity distribution is assumed to have the same form at each value of X, 

when 6 is unknown. Prandtl assumed that 

and 
F = l  6 5 y  

which satisfies the boundary conditions. Equation (5.5.4) may he 
rewritten 

and 

At the boundary 

In equating the two expressions for TO, 

By rearranging, 

since 6 is a function of a: only in this equation. After integrating, 

a2 Y - = 10.78 x + constant 
2 

If 6 = 0, for z = 0, the constant of integration is zero. In solving for 
a/$, 
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in which R, = U x / v  is a Iieyilolds number based on the distance s from 
the leading edge of the plate. This equation for boundary-layer thickness 
i l l  laminar flow shows that 6 increases as the square root of the distance 
from the leading edge. 

substituting the value of 6 into Eq. (5.5.5), 

The shear stress varies inversely as the square root of s and directly as 
the three-halves power of the velocity. The drag on one side of the plate, 
of unit width, is 

Drag = /: ro dx = 0.644 drpU4 

The selecting of other velocity distributions docs not radically alter these 
results. The exact solution, worked out by Blasius from the gcneral 
equations of viscous motion, yields the coefficients 0.332 and 0.664 for 
Eqs. (5.5.7) and (5.5.8), respectively. 

. The drag can be expressed in terms of a drag coefficient CD timcs the 
stagnation press'ure pU2/2 and the area of plate I (per unit breadth), 

p U' Drag = C D  -, 1 
2 

in which, for the laminar3oundary layer, 

1.328 C D  = - 
V'K 

(5.5.9) 

:~nd RI = U l / v .  
When the Reynolds number for the plate reaches a value between 

500,000 and 1,000,000, the boundary layer becomes turbulent. Figure 
5.18 indicates the growth and 

W-C transition from laminar to turbu- 
lent boundary layer. The critical 
Reynolds number depends upon 

C - +  
/ - the initial turbulence of the fluid 

/ 
/ ..' stream, upon the upstream edge of 
Laminar k ~riiicai I Turbulent the plate, and. upon the plate 

roughness. 
FIG. 5.18. Boundary-layer growth. (The 
vertical scale is greatly enlarged.) Turbulent Boundary Layer. The 

momentum equation can be used to 
determine turbulent boundary-layer growth and shear stress along a 
smooth plate in a manner analogous to the treatment of the laminar 
boundary layer. The uni~-ctrs:il velocity-distribution law for smooth 
pipes, Eq. ( 4 .  provides the best basis but tho calculations are 
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involved. A simpler approach is to use Prandtl's one-seventh-power law. 
It is ulu, = in which is measured from the wall of the pipe 
and ro is the pipe radius. Applying it to Aat plates produces 

arid 

U . = - u = (f)' = ,,' 
ro = 0.0228pC*? (&)t 

in which thc 1at.t.er expression is the shear stress at. the wall of a smooth 
plate with a turbulent boundary layer. With the same rncthod as that 
used to calculate the laminar boundary layer, 

Hy equating the expressions for shear stress, t-he differentid equation for 
boundary-Iayer thickness 6 is obtained, 

After integrating, and then by assuming that the' boundary layer is 
turbulent over the whole length of the plate so that thc initial conditions 
.r = 0, 6 = 0 can be used, 

After solving for 6, 

The thickness increases more rapidly in the turbulent boundary layer. 
In it the thickness increases as $2, but in the laminar boundary layer 6 
varies ns xi. 

To determine the drag on a smooth, flat plate, S is cIiminated in Eqs. 
(5.5.101 and (5.5.12), and 

The drag for unit width on one side of the plate is 

Drag = r o  dl: = 0.036pU2Z 
0.036pLr21 (5.5. f 4) 

I n  terms of the drag coefficient 
1 C D  = 0.072Rl-5 (5.5.15) 

i l l  which RI is the Reynolds number based on the length of plate. 
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The above equations are valid only for the range in which the Blasius 
resistance equation holds. For larger Reynolds numbers in smooth-pip 
flow, the exponent in the velocity-distribution law is reduced. At 
R = 400,000, n = +, and for R = 4,000,000, 7a = &. The drag law, 
Eq. (5.5.14), is valid for a range 

5 X lo5 < Rr < lo7 

Experiment shows that the drag is slightly higher than is predicted by 
Eq. (5.5.15), 

Cn = 0.074~~1 (5.5.16) 

The boundary layer is actually .laminar along the upstream part of the 

Laminar CD- 0.074 transition cD-%-F, turbulent C,=- X' Rl 1 R;" 

FIG. 5.19. The drag law for smooth plates. 

plate. Prandtll has subtracted the laminar portion, producing the 
equation 

In Fig. 5.19 a log-log plot of C D  vs. I4 shows the trend of-the drag coeffi- 
cients. 
Use of the logarithmic velocity distribution for pipes produces 

in which the constant term has been selected for best agreement with 
experimental results. 

1 L. Prandtl, ttber den Reibungawiderstand stromender Luft, Resub Aetodpumic 
Test Inst. (Gottingen), 111. Lieferung, 1927. 
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Example 5.6: A smooth, flat plate 10 f t  wide and 100 ft Iong is towed through 
still water at 68OF with a speed of 20 ft/sec. Determine the drag on one side of 
the plate and the drag on the first 10 ft of the pIate. 

For the whole plate 

From Eq. (5.5.18) 

The drag on one side is 

pU2 1.935 Drag = C d l x  = 0.00196 X 10 X 100 X X == 7601b 

in which b is the plate width. If the critical Reynolds number occurs at 5 X 106, 
the length lo to the transition is 

For the first 10 ft of the plate, Rl = 1.85 X lo7, CD = 0.00274, and 

Drag = 0.00274 X 10 X 10 X 2 X B2 = 1061b 

Calculation of the turbulent boundary layer over rough plates proceeds 
in similar fashion, starting with the rough-pipe tests using sand rough- 
nesses. At  the upstream end of the flat plate, the flow may be laminar; 
then, in the turbulent boundary layer where the boundary layer is still 

' thin and the ratio of roughness height to boundary-layer thickness e/6 
is significant, the regibn of fully developed roughness occurs, and the 
drag is proportional to the square of the velocity. For long plates, this 
region is followed by a transition region where c /8  becomes increasingly 
smaller, and eventually the plate becomes hydraulically smooth, i.e., the 
loss would not be reduced by reducing the roughness. Prandtl and 
SchIichtingl have carried through these calculations, which are too com- 
plicated for reproduction here. 

Separation. Wake. Along a flat plate the boundary layer continues 
to grow in the downstream direction, regardless of the length of the plate, 
when the pressure gradient remains zero. With the pressure decreasing 
in the downstream direction, as in a conical reducing section, the bound- 
ary layer tends to be reduced in thickness. 

For adverse pressure gradients, i.e., with pressure increasing in the 
downstream direction, the boundary layer thickens rapidly. The adverse 

L. Prttndtl and E. Schlichting, Das Widerstandqg;esetz rauher Platten, We$, 
Reederei, Htzfm, p. 1, 1934. See aka NACA Tech. Mm. 1218, part 11. 
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gradie~lt plus the boundary shear decrease the momentum in the bound- 
ary layer, and if 'hey both act over a sufficient distance, they cause the 
boundary layer to come to rest.. This phenomenon is called separation. 
Figure 5.20 illustrates this case. The boundary streamline must leave 
the boundary at the separation point, and downstream from this point 
the adverse pressure gradient causes backflow near the wall. This 

FIG. 5.20. Effect of adverse pressure gradient on boundary layer. Separation. 

region downstream from the streamline that separates from the boundary 
is known as the wake. The effect of separation is to decrease the net 
amount of flow work that can be done by a fluid elcrnent on the surround- 
ing fluid at the expense of its kinetic energy, with the net iesult that 
pressure recovery is incomplete and flow losses (drag) increase. 

Streamlined bodies (Fig. 5.21) are designed so that the separation point 
occurs as far downstream along the body as possible. If separation can 

be avoided, the boundary layer re- 
mains thin, and the pressure is almost 

ake recovered downstream along the 
body. The only loss or drag is due 

FIG. 5.21. Streamlined body. to shear stress in the boundary Isyer, 
called skin friction. In  the wake, the 

pressure is not recovered and .a pressure drug results, Reduction of wake 
reduces the pressure drag on a body. In general, the drag is caused by 
both skin friction and pressure drag. 

Flow around a sphere is an execllent example of the effect of separation 
on drag. For very small Reynolds numbers, V D / V  < 1, the flow ig 

everywhere nonturbulent, and the drag is referred to as deformation drag. 
Stokes' lawL gives the drag force for this case. For large Reynolds 
numbers, the flow may be considered potential flow except in the bound- 
ary layer and the wake. The boundary layer forms at the forward 
stagnation point and is generally laminar. In the laminar boundary 
layer, an adverse pressure gradient causes separation more readily than 
in a turbulent boundary layer, because of the small amount of momentum 

1 See Sec. 5.6. 
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brought into the laminar layer. If separation occurs in the la&ar 
boundary layer, the location is farther upstream on the sphere than it is 
when the boundary layer becomes turbulent first and then separation 
occurs. 

In Fig. 5.22 this is graphically portrayed by the photographs of 
the two spheres dropped into water at  25 ft/sec. In a, separation 
occurs in the laminar boundary layer that forms along the smooth sur- 
face and causes a very large wake with a resulting large pressure drag. 
In b, the nose of the sphere. rourrhened by sand glued to it. induced an 

FIG. 5.22. Shift in separation point due to induced turbulence. (a) 8.5-in. bowling 
ball, emooth surface, 25 ft/sec entry velocity into water. (b )  Same except for &in.- 
diameter patch of sand on nose. (Oficial U.S. Navp photograph made at Navy Ord- 
nance Test Station, Pasadena Annex.) 

early transition to turbulent boundary layer before separation occurred. 
The high momentum transfer in the turbulent boundary layer delayed 
the separation so that the wake is substantially reduced, resulting in a 
total arag on the sphere less than half that occurring in a. 

A plot of drag coefficient against Reynolds number, (Fig. 5.23) for 
smooth spheres shows that the shift to turbulent boundary layer (before 
separation) occurs by itself at a sufficiently high Reynolds number, as 
evidenced by the sudden drop in drag coefficient. The exact Reynolds 
number for the sud'den shift depends upon the smoothness of the sphere 
and upon the turbulence in the fluid stream. In fact, the sphere is 
frequently used as a turbulence meter by determining the Reynolds 
number at which the drag coeficient is 0.30, a point located in the center 
of the sudden drop (Fig. 5.23). By use of the hot-wire anemometer, 
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Dxyden1 has correlated the turbulence level of the fluid stream to the 
Reynolds number for the sphere at C D  = 0.30. The greater the turbu- 
lence of the fluid stream, the smaller the Reynolds number for shift in 
separation point. 

5.6. Drag on Immersed Bodies. The principles of potential flow 
around bodies are developed in Chap. 7, and principles of the boundary 
layer, separation, and wake in the section preceding this one (Sec. 5.5). 

FIG. 5.23. Drag coefficients for spheres and circular disks. 

In this section drag is defined, some experimental drag coefficients are 
listed, the effect of compressibility on drag is discussed, and Stokes' law 
is presented. Lift is defined and the lift and drag coefficients for an 
airfoil are given. 

Drsg is defined as the force component, parallel to the relative approach 
velocity, exerted on the body by the moving fluid. The drag-coefficient 
curves for spheres and circular disks are shown in Fig. 5.23. In Fig. 5.24 
the drag coefficient for an infinitely long circular cylinder (two-dimen- 
sional case) is plotted against Reynolds number. This case also has 
the sudden shift in separation point as in the case of the sphere. Iq 
each case, the drag coefficient C o  is defined by 

pU2 Drag = CDA - 2 

in which A is the projected area of the body on a plane normal to the flow.' 
E. Dryden, Reduction of Turbulehee in Wind Tunnels, NACA Tech. Repb. 392, 

1931. 
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FIG. 5.24. Drag coefficients for circular cylinders. 

TABLE 5.1. TYPICAI, DRAG COEFFICIENTS FOR VARIQUS CYI~INDERS IN 

7 Data from W. F. Lhidsey, KACA Tech. Rept. 619, 1938. 

In Table 5.1 typical drag coefficients are shown for several cylindem 
In general, the values given are for the range of Reynolds number in 
which the coefficient changes little with Reynolds number. 

A typical lift and drag curve for an airfoil section is shown in Fig. 5.25. 
Lift is the fluid-force component on a body at right angles to the relative 
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approach veloeit,y. Thc lift coefficient C L  is defined by 

pU2 Lift = CLA 

in which A refers to the chord length times the wing length for lift and 
drag for airfoil sections. 

Efect of Comprissibility on Drag. To determine drag in gas flow the . 
effects of compressihiIit.y, as expressed by the illach number, are more 
importaiit than Reynolds number. Thc Mach number M is defined as 

Angle of attack, a (degrees) 

FIG. 5.25. Typical lift and drag coefficients for an airfoil. 

the ratio of fluid velocity to velocity of sound in the fluid medium. When 
flow is at the critical velocity c, it has exactly the speed of the sound wave 
so small pressure waves cannot travel upstream. For this condit.ion 
M = 1. When M is greater than unity, the flow is supersonic; and 
when M is less than unity, it is subsonic. 

Any small disturbance is propagated with the speed of sound, Sec. 6.2. 
For example, a disturbance in still air travels outward as a spherical pres- 
sure wave. When the source of the disturbance moves with a velocity 
less than c, as in Fig. 5.26&, the wave travels ahead of the disturbing body 
and gives the fluid a chance to adjust it.self to the oncoming body. . By 
the time the particle has moved a distance Vt, the disturbance wave has 
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n ~ o \ ~ ~ d  out as far :IS r = ct from the point 0. As the disturbing body 
nloves aloag, ile\v spherical waves are sent out, but in all subsonic cases 

FIG. 5.26. IVavc propagatiot~ produced by a particle moving at (a)  subsonic velocity 
and (b)  supersonic velocity. 

they are contained within the initial spherical wave shown. I n  super- 
sonic motion of a particle (Fig. 5.26b) the body moves faster than the 
spherical waves emitted from it, yielding a cone-shaped wave front with 
vertex at the body, us shown. The 
h:Jf angle of cone a! is called thr  
Jlach angle, 6 

The conical pressure front extends out, CD 

behind the body and is called a Mach 2 - 

wwa, Sec. 6.4. There is a sudden 
small change in velocity and pressure OO 
across a Mach wave. 

The drag on bodies varies greatly 
with the Mach number and becomes 

. . .  relatively independent of the Reynolds 4Qo .... ......... . ... .: ...... ...... ....... . ...;.:. ._. . 

number when compressibility effects . . .  . - ... . . . . . . . .  ....:.: 
. . ..;.. .... . . . . . . . . . . .  . . ...... .. , , - .. .... become import.ant. I n  Fig. 5.27 the . . ... .:.. . .:: 

drag coefficients for four projectiles arc u b ~ d  

plotted against Mach number. FTG. 5.27. ?)rag coefficients for pro- - \, 

For low Mach numbers, a body jectiles as a function of Mach number. 

should be rounded in front, with a blunt (From L. Prundll, "Abriss der Strii- 
mungslehre," Friedrig Yieweg und 

'lose and a long, afterbody @hne, B m s w i c k ,  Germany, 1935.) 
for minimum drag. For high Mach 
~iumbers  (0.7 and over), the drag rises very rapidly owing to formation of 
the vortices behind the projectile and to formation of the shock waves; - - 

the body should have a tapered nose or thin forward edge. As the Mach 
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numbers increase, the curves tend'to drop and to approach a constant 
value asymptotically. This appears to be due to the fact that the reduc- 
tion of pressure behind the projectile is limited to absolute zero, and 
hence its contribution to the total drag tends to become constant. The 
pointed projectile creates a narrower shock front that tends to reduce the 
limiting value of the drag coefficient. 

Stokes' Law. The flow of a viscous incompressible fluid around a 
sphere has been solved by Stokes1 for values of Reynolds number U D / v  
less than 1. The derivation is beyond the scope of this treatment; the 
results, however, are of value in such problems as the settling of dust 
particles. Stokes found the drag (force exerted on the sphere by flow of 
fluid around it) to be 

Drag = &apU 

in which a is the radius of sphere and U the velocity of sphere relative to 
the fluid at a great distance. To find the terminal velocity for a sphere, 
dropping through a fluid that is otherwise at rest, the buoyant force plus 
the drag force must just equal its weight, or 

in which y is the specific weight of liquid and 7, is the specific weight of the 
sphere. By solving for U, the terminal velocity is found to be 

aight-line portion of Fig. 5.23 represents Stokes' law. 
Resistance to Turbulent Flow in Open and Closed Conduits. In * 

steady turbulent incompressible flow in conduits of constant cross section 
(steady uniform flow) the wall shear stress varies closely proportional to 
the square of the velocity, 

in which X is a dimensionless coefficient. For open channels and non- 
circular closed conduits the shear stress is not constant over the surface. 
In these cases, 7 0  is used as the average wall shear stress. Secondary 
flows2 occurring in noncircular conduits act to equalize the wall shear 
stress. The wall shear-stress forces in steady flow are balanced either 
by pressure forces, by the axial weight component of fluid in the conduit, 
or by both forces (Fig. 5.28). The equilibrium expression, written in 

G. Stokes, Trans. Cambridge Phil. Soc., vol. 8, 1845; vol. 9, 1851. 
* Secondary flows, not wholly understood, are transverse components that cause the 

main central flow to spread out into corners or near walls. 
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the axial direction, is 

( P I  - p2)A + yA AZ = r0LP 
in which Az = L sin 8 and P is the wetted pimeter of the conduit, i.e., the 
portion of the perimeter where the wall is in contact with the fluid (free 

FIG. 5.28. Axial forces on free body of fluid in a conduit. 

liquid surface excluded). The ratio A / P  is called the hydraulic radius 
of the conduit R. If pl - pz = Ap, 

or, when divided through by y, if hf = (Ap + 7 Az)/y be the losses per 
unit weight, 

in which S represents the losses per unit weight per unit length. After 
solving for V 

(5.7.3) 

This is the Chbzy formula, in which originally the ChCzy coefficient C 
was thought to be a constant for any size conduit or wall surface condi- 

- 

tion. Various formulas for C are now generally used. 
For pipes, when X = f/4, and R = D/4 the Darcy-Weisbach equation 

is obtained, 

in which D ia the inside pipe diameter. This equation may be applied 
to open channels in the form 

with value0 off determined from pipe experimente. 
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Steady Uniform Flow in Open Channels. For incompressible, 
steady flow a t  constant depth in a prismatic open channel, the Manning 
formula is widely used. It can be obtained from the C h h y  formula 
[Eq. (5.7.3)] by setting 

which is the Manning formula. V is the average velocity at a cross see- 
tion, R the hydraulic radius (Sec. 5.7), and S the losses per unit weight 
per unit length of channel or the slope of the bottom of the channel. It 
is also the slope of the water surface, which is paralIel to the channel 
bottom. The coefficient ?L was thought to be an absolute roughness 
coefficient, i.e., depcndeilt upon surface roughness only, but actually 
depends uporr the size and shape of chanael cross section in some unknown 
manner. Values of the coefficient n, determined by many tests on actual 
canals, are given in Table 5.2. Equation (5.8.2) must have velocity in 
feet per second and R in feet for use wit.h the values in Table 5.2. 

TABLE 5.2. AVERAGE VALUES OF THE MARXIKG ROUQHRESS FACTOR FOR 

V ~ ~ r o r r s  BOCNDARY MATERIALS 
Boundary material Manning n 

Planed ~ ~ o o d .  . .  , . . . . . . . . . . . . . . . . . . .  0.012 
ITnplaned wood. . . . . . . . . . . . . . . . . . . . . .  0.013 
Finished concrete. . . . . . . . . . . . . . . . . . . . .  0.012 
Unfinished concrete. . . . . . . . . . . . . .  . 0.014 
Cast iron. . . . . . . . . . . . . . . . . . . . . . . . . . .  0.01 5 
Brick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.016 
Riveted steel. . . . . . . . . . . . . . . . . . . . . . . . .  0.018 
Corrugated metal. . . . . . . . . . . . . . . . . . . . .  0.022 
Itubble.. . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.025 
Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.025 
Earth, with stones or weeds. . . . . . . . . . . .  0.035 
Gravel.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.029 

When Eq. (5.8.2) is multiplied by the cross-sectional area A, the 
Manning formula takes the form 

When the cross-sectional area is known, any one of the other quantities 
can be obtained from Eq. (5.8.3) t,y direct solution. 

Ezample 5.7 : Determine the discharge for a trapezoidal cllanncl (Fig. 5.29) with 
a bottom width b = 8 ft and side slopes 1 on 1. The depth is 6 ft, and the slope 
of the bottom is 0.0009. The channei has a finished concrete lining. 
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From Table 5.2, n = 0.012. The area is 

and the wetted perimeter i s  

By substituting into Eq. (5.8.3), 

1.49 Q=- 84 
0.012 84 (rn6)' (0.0009) 9 = 703 cfs 

Trial solutions are required in some instances when the cross-sectional 
area is unknown. Expressions for both the hydraulic radius and the 
area contain the depth in a form that cannot be solved explicitly. 

Example 5.8: What depth is required for 150 cfs flow in a rectangular planed- 
wood channel 5 ft wide with a bottom slope of 0.002? 

If the depth is y, A = 5y, Y = 5 + 2y, and n = 0.012. By substituting in 
Eq. (5.8.3), 

Assume y = 4 ft; then f(y) = 5.332. Assume y = 4.05; then f(y) = 5.41. The 
correct depth then is about 4.05 ft. 

More general cases of open-channel flow are considered in Chap. 11. 

FIG. 5.29. ru'otation for trapezoidal FIG. 5.30. Equilibrium conditions 
cross section. for steady flow in a pipe. 

:5;9. Steady, lncompressible Flow through Simple Pipe Systems. 
Cotebrook Formula; A force balance for steady flow (no acceleration) in a 
pipe (Fig. 5.30) yields 

or simplifying, 
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which holds for laminar or turbulent flow. The Darcy-Weisbach equa- 
tion (5.7.4) may be written 

After eliminating Ap in the two equations and simplifying, 

which relates wall shear stress, friction factor, and average velocity. 
The average velocity V may be obtained from Eq. (5.4.13) by integrating 
over the cross section. Substituting for V in Eq. (5.9.2.) and simplifying 
produces the equation for friction factor in smooth-pipe flow, 

with the Nikuradsel data for smooth pipes, the equation becomes 

For rough pipes in the complete turbulence zone, 

in which Fz is;in general, a constant for a given form and spacing of the 
roughness elements. For the Nikuradse sand-grain roughness (Fig. 5.33) 
Eq. (5.9.5) becomes 

The roughness height e for sand-roughened pipes may be used as a 
measure. of the roughness of commercial pipes. If the value of f is 
known for a commercial pipe in the fully-developed wall turbulence zone, 
i.e., large Reynolds numbers and the loss proportional to the square of the 
velocity, the value of c may be computed by Eq. (5.9.6) In the transi- 

tion region where f depends upon both 5 and R sand-roughened pipes pro- D 
duce different results than commercial pipes This is made evident by a 
graph based on Eqs. (5.9.4) and (5.9.6) with both sand-roughened and 
commercial-pipe-test results shown. By rearranging Eq. (5.9.6) 

J. Nikuradse, Gesetzmassigkeiten der turbulenten Stromung in glatteo Rohren, 
VDI Forsch. 356, 1932. 
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and by adding 0.86 In r / D  to each side of Eq. (5.9.4) 

By selecting l/.\/j + 0.86 in c/D as ordinate and in ( R g f  JD) a8 
abscissa (Fig. 5.31) smooth-pipe-test results plot as a straight line with 
slope +0.86 and rough-pipe-test results in the complete turbulence zone 
plot as the horizontal line. Nikuradse sand-roughness-test results plot 
along the dashed line in the transition region and commercial-pipe-test 

+3.  1 
Nikuradse said 

roughness 

+2 /=-- -\- 

/ 
# 

'. 
\ 
\ 

4 .  

+ Rough 
pipe 

4 .  5 6 7 

FIG. 5.35. Colebrook transition function. 

results plot along the lower curved line. An empirical transition func- 
tion for commercial pipes for the region between smooth pipes and the 
complete turbule'nce zone has been developed by Colebrook,l 

which is the basis for the Moody diagram (Fig. 5.34). 
P i p e  Flow. In steady incompressible flow in a pipe the irreversibilities 

are expressed in terms of a head loss, or drop in hydraulic grade line (Sec. 
10.1). The hydraulic grade line is p/-y above the center of the pipe, and if 
2 is the elevation of the center of the pipe, then z + p / ~  i s  the elevation 
of a point on the hydraulic grade line. The locus of values of z + p / r  
along the pipeline gives the hydraulic grade line. Losses, or irreversi- 

l C. F. Colebrook, Turbulent Flow in Pipes, with Particular Reference to the Transi- 
tion Region between the Smooth and Rough Pipe Laws, J. Inst. Civil Engs. (London), 
vol. 11, pp. 133-156, 1938-1939. 
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bilities, cause this line to drop in the direction of flow. The Ilarcy- 
Weisbach equation (5.7.4) 

is generally adopted for pipe-flow calculations. hf is the head loss, or 
drop in hydraulic grade line, in the pipe length L ,  having an inside 
diameter D and an average velocity V. hf has the dimension length 
and is expressed in terms of foot-pounds per pound or feet. The friction 
factor f is a dimensionless factor that is required to make the cquation 
produce the correct value for losses. All quantities in Eq. (5.7.4) except f 
may be measured experimentally. A typical setup is shown in Fig. 5.32. 
By measuring the discharge and inside diamet,er, the average trelocity can 
be computed. The head loss hf is measured by a differential manometer 

Fra. 5.32. Experimental arrangement for determination of head loss in a pipe. 

.attached to piezometer openings a t  sections ]--'and 2, distance L apart. 
Experimentation shows the following to be true in turbulent flow: 
a. The head loss varies directly as the length of the pipe. 
b. The head loss varies almost as the square of the velocity. 
c. The head loss varies almost inversely as the diameter. 
d. The head loss depends upon the surface roughness of the interior pipe 

wall. 
e. The head loss depends upon the fluid properties of density and 

v~scosity. 
f .  The head loss is independent of the pressure. 
The friction factor f must be selected in a manner so that Eq. (5.7.4) 

correctly yields the head loss; hence, f cannot be a constant but must 
depend upon velocity V, diameter D, density p, viscosity p, and certain 
characteristics of the wall roughi~ess t,hat are signified by e, e', and m. 
These symbols are defined thus: c is a measure of the size of the roughness 
projections and has the dimensions of a length; c' is a measure of the 
arrangement or spacing of the roughness elements and also has the dimen- 
sions of a length; m is a form factor, depending upon the shape of the 
iildividllal roughness elements, and is dimensionless. The term f ,  
instead of being a simple constant, turns out to be a factor that depends 
upon seven quantities 

f = f(V,D,~t~l,%e',m) (5.9.8) 
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Since f is a dimensionless factor, it must depend upon the grouping 
of t-hese quantities into dimensionless pararnct.ers. For smooth pipe 
e = e' = m = 0, leaving f dependent upon the first four quantities. 
They can bc arranged in only one way to make them dimensionless, 
i~smely, VDpllc, which is the Reynolds number. For rough pipes the 
terms e, e' may he made dimensionless by dividing by D. Therefore, 
in geneial, 

The proof of this rc,lat.ionship is left to experimentation. For smooth 
pipes a plot of all experimental results shows the functional relationship, 
subject to a scattering of f 5 per cent. The plot of friction factor against 
Itcynolds number on a log-log chart is called a Stanton diagram. Blasiusl 
was the first to correlate the smooth-pipe experiments in turbulent flow. 
He presented the results by an empirical formula that is valid up to about 
R = 100,000. The Hlasius formula is 

In  rough pipes t.hc term e /D  is called the relative roughness. Xikuradse2 
proved t.he validity of the relative roughness concept by his tests on sand- 
roughened 'pipes. He used three sizes of pipes and glued sand grains 
( 6  = diameter of the sand grains) of practically constant size to the 
intcrior \VLLIIS so that he had the same values of E / L )  for the different 
pipes. Thcsc experiments (Fig. 5.33) show that for one value of E / D  
the f ,  R curve is smoothly connected regardless of the act.ual pipe diam- 
eter. These test.s did not permit variation of e'/D or m but proved the 
validity of the eql~ation 

for one type of roughness. 
Because of the extreme complexity of naturally rough surfaces, most 

of the .advances in understanding the basic relationships have beer1 
developed around experiments on artificially roughened pipes. Moody3 
has constructed one of the most convenient charts for determining fric- 
tion factors in clean, commercial pipes. This chart, presented in Fig. 
5.34, is the basis for pipe-flow calcuJations in this chapter. The chart 

H. Blasius, 1)as Aehr~lichkeitsgesetz bci Reihungsvorgangen in Fliissigkeiten, VDI 
Forsch. 131, 1913. 

J. Kikuradse, Stromungsgesetze in rauhen Rohren, VDI Forsch. 361, 1933. 
a 1,. F. Moody, Friction Factors for Pipe Flow, Trans. ASME, November, 1944. 
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is a Stanton diagram that expresses f as a function of relative roughness 
and Reynolds number. The values of absolute roughness of the com- 
mercial pipes are determined by experiment in which f and R are found 
and substituted into the Colebrook formula Eq. (5.9.7), which closely 
represents natural pipe trends. These are listed in the table in the lower 
left-hand corner of Fig. 5.34. The 'CoColebrook formula provides the shape 
of the r / D  = constant curves in the transition region. 

FIG. 5.33. Kikuradse's sand-roughened-pipe tests. 

The straight line marked "laminar flow" is the Hagen-Poiseuille equa- 
tion. Equation (5.2.7) 

may be transformed into Eq. (5.7.4) with dp = rhr and by solving for fin 

or 
L V2 64 L V 2  h, = f D %  = --- 

R D 2g 
from which 
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This equation, which plots as a straight line with slope - 1 on a log-log 
chart, may be used for the solution of laminar flow problems in pipes. It 
applies to all roughnesses, as the head loss in laminar flow is independent 
of wall roughness. The Reynolds critical number is about 2000, and the 
critical zone, where the flow may be either laminar or turbulent, is about 
2000 to 4000.. 

It should be noted that the relative-roughness curves E / D  = 0.001 and 
smaller .approach the .smooth-pipe curve for decreasing Reynolds num- 
bers. This can be explained by the presence of a laminar film at the wall 
of the pipe that decreases in thickness as the Reynolds number increases. 
For certain ranges of Reynolds number in the transition zone, the film 
completely covers small roughness projections, and the pipe has a friction 
factor the same as that of a smooth pipe. For larger Reynolds numbem, 
projections protrude through the laminar film, and each projection 
causes extra turbulence that increases the head loss. For the zone 
marked "complete turbulence, rough pipes," the film thickness is negli- 
gible compared with the height of roughness projections, and each projec- 
tion contributes fully to the turbulence. Viscosity does not affect the 
head loss in this zone, as evidenced by the fact that the friction factor 
does not change with Reynolds number. In this zone the loss follows the 
V2 law, i.e., it varies directly as the square of the velocity. 

Two auxiliary scales are given along the top of the Moody diagram. 
One is for water at 60°.F, and the other is for air at standard atmospheric 
pressure and 60°F. Since the kinematic viscosity is constant in each case, 
the Reynolds number is a function of VD. For these two scales only, D 
must be expressed in inches. 
Simple Pipe Problems. The three simple he-flow cases that are 

basic to solutions of the more complex problems are 

Given To $find 
1' &, L, D, v, hf 

11. hf, L, D, Y ,  E Q 
111. hf, &, L, v, D 

In each of these cases the Darcy-Weiabach equation, the continuity equa- 
tion, and the Moody diagram are used to determine the unknown quantity. 

In the first case the Reynolds number and the relative roughness 
are readily determined from the data given, and h j  is found by deter- 
mining f from the Moody diagram and substituting into the Darcy- 
Weisbach equation. 

Example 5.9: Determine the head loss due to the flow of 2000 gpm of oil, 
v = 0.0001 ftZ/sec, through 1000 ft of 8-in.diameter cast-iron pipe. 
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The relative roughriess is E / D  = 0.00085/0.667 = 0.0013. From Fig. 5.34, by 
interpolation, j = 0.024; hence 

In the second case, V and f are unknowns, and the Darcy-Weisbach 
equation and Moody diagram must be used simultaneously to find their 
values. Since E / D  is known, a value off may be assumed by inspection 
of the hfoody diagram. Substitution of this trial $ into the Ilarcy- 
Weisbzlch equation produces a trial value of T', from which ,z trial Reyn- 
olds number is computed. With the Rcyrlolds number an improved 
value of f i$ found from the Moody diagram. Whctl ,f has hecil found 
correct to two significant figures, the correspo~lcling I' is the valuc sought., 
and Q is determined by multiplyiilg by the :ma. 

Example 5.10: Water at 60°F Aows through a 12-in.-diameter riveted-steel 
pipe, E = 0.01, with a head loss of 20 ft in 1000 ft. DeDtbrrninrt the flow. 

The relative roughness is E / D  = 0.01, and from Fig. 5.33 n trial f is taken as 
0.040. Ry substit.uting into Eq. (5.7.4), 

and VD" = 68 for ust: with the scale at the top of Fig. 5.34, which shows f = 
0.038. With this f in place of 0.040 in the above  quati ti on, V = 5.81, I7D" = 
69.8, and f remains 0.038. The discharge is 

f & =. 5.81 - = 4.56 cfs = 2044 gpm 4 

In the third case, with 11 unknown, there are three ui~knowns in 
Eg. (5.7.41, f, V, D ;  two in the continuity equation, V, D; and thrce in 
the Reynolds number equation, V, I),  R. The relative roughness is 
also unknown. Using the continuity equation to eliminate the velocity 
in Eq. (5.7.4) and in the expression for R, simplifies t.he problem. Equa- 
tion (5.7.4) becomes 

in which C1 is the known quantity 8LQ2/hfg?r2. As V D 2  = 4Qja  from 
continuity, 



Values of ( VD") for water at  60°F (velocily in ft/sec x diameter in inches 

Reynolds number R= ( Vin A/ sec, D in ft, u in ft2/sec) 

PIG. 6.34. Moody diagram. 



in which C:! is t.he known quantity 4&/rv. The solution is now effected 
by the following procedure : 

1. Assume a value of J. 
2. Solve Eq. (5.9.13) for D. 
3. Solve Eq. (5.9.14) for R. 
4. Find the relative roughness c/D.  
5. With R and e/D,  look up a new ffrom Fig. 5.34. 
6. ITse the new .f, and repeat the procedure. 
7. When the vaIue off does not change, all equations are satisfied and 

the problem is solved. 
Normally only one or two trials are required. Since standard pipe 

sizes are usually selected, the next- larger size of pipe from that given by 
the computation is taken. Nominal standard pipe sizes are B? 1 1 3 1 3  3-9 T! f r  

1, la, 19, 2, 2$, 3, 34, 4, 5, 6, 8, 10, 12, 14, 18, 18, 24, and 30 in. The 
inside diameters are larger than the nominal up to 12 in. Above the 
12-in. size the actual inside diameter depends upon the "schedule" of 
the pipe, and manufacturer's tables should be consulted. Throughout 
this chapter the nominal size is taken as the actual inside diameter. 

Example 5.1 1 : Determine the size of clean wrought-iron pipe required to convey 
4000 gpm oil, v = 0.0001 fta/sec, 10,000 ft with a head loss of 75 ft-lb/lb. 

The discharge is 

From Eq. (5.9.13) 

and from Eq. (5.9.14) 

and from Fig. 5.34, e = 0.00015 ft. 
I f f  = 0.02, D = 1.398 ft, R = 81,400, e /D = 0.00011 and from Fig. 5.34, 

f = 0.019. In repeating the ,procedure, D = 1.382, R = 82,300, f = 0.019. 
Therefore, L) = 1.382 X 12 = 16.6 in. If a 75-ft head loss is the maximum 
allowable, an 18-in. pipe is required. 

In  each of the cases considered, the loss has been expressed in feet of 
head or in foot-pounds per pound. For horizontal pipes, this loss shows 
up as a gradual reduction in pressure along the line. For nonhorizontal 
cases, Bernoulli's equation is applied to the two end sections of the pipe, 
and the loss term is included, thus 
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in which the kinetic-energy correction factors have been taken as unity. 
The upstream section is given the subscript 1 and the downstream sect.ion 
the subscript 2. The total head at section 1 is equal to the sum of the 
total head at section 2 and all the head losses between the two sections. 

Example 5.12: In the preceding example, for D = 16.6 in., if the specific gravity 
is 0.85, pl = 40 psi, zl = 200 ft, and zz = 50 ft, determine the pressure at section 2. 
In Eq. (5.9.15) V1 = Vz; hence, 

and P 

p2  = 67.6 psi 4:: ~OSS€!J. Those losses which oecur in pipelines due to bends, 
elbows, joints, valves, etc., are called minor tosses. This is a misnomer, 
because in many situations they are more important than the losses 
due to pipe friction considered in the preceding section, but it is the 
conventional name. In almost all cases the minor loss is determined by 
experiment. However, one important exception is the head loss due to a 
sudden expansion in a pipeline (Sec. 3.9). 

Equation (3.9.33) may also be written 

in which 

From Eq. (5.9.16) it is obvious that the head loss varies as the square of 
the velocity. This is substantially true for all * * minor losses in turbulent flow. A convenient 

[ 
1 2 ~  

method of expressing the minor losses in Row is 
I ! --:---- 1- 

! by means of the coefficient K, usually determined 
I ! I*-:---- ; by experiment. 

If the sudden expansion is from a pipe to a 
reservoir, D1/Dz = 0 and the loss becomes. 

5.35. Sudden 'On- V12/2g, that is, the complete kinetic energy in the 
traction in a pipeline. 

flow is converted into thermal energy. 
The head loss kc due to a sudden contraction in the pipe cross section, 

illustrated in Fig. 5.35, is subject to .the same analysis as the sudden 
expansion, provided that the amount of contraction of the jet is known. 
The process of converting pressure head into veIocity head is very 
efficient; hence, the head loss from section 1 to the vena contractal is smau 
compared with the loss from section O to sectiop 2, where velocity head 

\ 
' The vena contractu is the section of greatest contraction of the jet. 
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is being reconverted into pressure head. By applying Eq. (3.9.33) to 
this expansion, the head loss is computed to be 

With the continuity equation VoC,A2 = V2A2, in which C, is the con- 
traction coefficient (i.e., the area of jet at section 0 divided by the area 
of section O), the head loss is computed to be 

The contraction coefficient for water C,, determined by Weisbach,' is 
presented in the tabulation. 

The head loss at the entrance to a pipeline from a reservoir is usually 
taken as 0.5V2/2g, if the opening is square-edged. For well-rounded 

FIG. 5.36. Loss coefficients for gradual conical expansions. 

entrances, the loss is between 0.01 V2/2g and 0.05V2/2g and Inay usuallj- 
be neglected. For re-entrant openings, as with the pipe estciiding into 
the reservoir beyond the wall, t.he loss is taken as I.OV',Qg, for thin pipe 
walls. 

Julius Weisbach, "Die Experimental-HydrauIik," p. 133, J. S. Englehardt, Frei- 
berg, 1855. 
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'rhe head loss due to gradual expansions has been investigated experi- 
mentally by Gibson,' whose results are given in Fig. 5.36. 

h summary of representative head loss coefficients K for typical fittings, 
published by the Crane Company,' is given in Table 5.3. 

TABI.E 5.3. HEAD LOSS COEFFICIENTS K FOR VARIOUS FITTINGS 

K 
Globe valve (fully open). . . . . . . . . . . . . . . . . . .  
Angle valve (fully open). . . . . . . . . . . . . . . . . . .  
Swing check valve (fully open). . . . . . . . . . . . .  
Gate valve (fully open). . . . . . . . . . . . . . . . . . . .  
Close return hend.. . . . . . . . . . . . . . . . . . . . . . . .  
Standard tee. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Standard elbow.. . . . . . . . . . . . . . . . . . . . . . . . . . .  
Medium sweep elbow.. . . . . . . . . . .  . . . . . . . . .  
Long sweep elbow.. . . . . . . . . . . . . . . . . . . . . . . .  

Minor losses may be expressed in terms of the equivalent length of pipe 
I,, that has the'same head loss in foot-pounds per pound for the same 
discharge, thus, 

in which K may refer to one minor head loss or to the sum of several losses. 
After solving for L,, 

For example, if the minor losses in a 12-in. pipeline add to K = 20 and ,if 
f = 0.020 for the line, then to the actual length of line may be added 
20 X 1/0.020 = 1000 f t ,  and this additional or equivalent length causes 
the same resistance to flow as the minor losses. 

Example 5.13: Find the discharge through the pipeline in Fig. 5.37 for If = 
30 ft, and determine the head loss H for Q = 2.0 cfs. 

Bernoulli's equation app-ied to points 1 and 2, including all the losses, may be 
writ ten 

After simplifying 

A. H. Gibson, The Conversion of Kinetic Pressure Energy in the Flow of Water 
through Passages Having Divergent Bounda ? ies, Engineering, vol. 93, p. 205, 1912. 

Crane Company, "Flow of Fluids," Tech. Paper 409, May, 1942. 
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jj'hcn t h r  hrad is given, this problrm is solved as the second type of simple pipe 
problcm. I f f  = 0.02, thcn 

and 1' = 8.46 ft/sec. e /D  = 0.00085/0.5 = 0.0017; VI)" = 8.46 X 6 = 50.7. 
From Fig. 5.34, f = 0.023. By solving again for the vc~locitr, i.' = 8.16 ft/sec, 

6 in. diam clean cast iron pipe 

Standard elbows 

Square - edged entrance 

FIG. 5.37. Pipeline with minor losses. 

&-dv - - ;- c'i-m clean cast iron pipe 
------- 2 
water%:-3 
f p o  c-----~- 

~ l o b e  valve 

Standard elbows 

VD" = 8.16 X 6 = 49, iind f docs not change. The discharge is 

7r Q = 8 . 1 6 ~  = 1.60 cfs 

For the second part, with C;2 known, the solution is straightforward, 

2 
V = - X 16 = 10.28 ft/sec VD" = 62.1 j = 0.023 ?r 

H Z -  I:::1 (13.3 + 680 X 0.023) = 46.5 ft  

With equivalent lengths [Eq. (5.9.19)], the value of f  is approximated, say 
f = 0.020. The sum of minor losses is K = 13.3, in which the kinetic energy a t  
2 is included as a minor loss, 

Hence, the total length of pipe is 332 + 340 = 672 ft. The first part of the 
problem .is solved by this method, 

If f = 0.02, V = 8.47, VL)" = 50.8, j = 0.023; thcn V = 7.9, VD" = 47.4, 
f = 0.023, Q = 1.65 cfs. Xormally it is not necessary to use the new value off in 
Eq. (5.9.19). 

Minor losses may be neglected in those situations where they compose 
only 5 per cent or less of the head losses due to pipe friction. The fric- 
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tion factor, at best, is subject to about 5 per cent error, and it is meaning- 
less to select values to more than two significant figures. In general, 
minor losses may be neglected when, on the average, there is a length of 
1000 diameters between each minor 10~s.  

FIG. 5.38. Sliding bearing. 

Compressible flow in pipes is treated in Chap., 6. Complex pipe-flow 
situations are treated in Chap. 10. 

5.10. Lubrication Mechanics. The effect of viscosity on flow and its 
effect on head losses have been examined in the preceding sections of 

.this chapter. A laminar-flow case of 
great practical importance is the hy- 
drodynamic theory of lubrication. 
Simple aspects of t h i s  theory are 
developed in this section. 

Large forces are developed in small 
clearances when the surfaces are 
slightly inclined and one is in motion 
so that fluid is "wedged" into the 
decreasing space. The slipper bear- 
ing, which operates on this principle, is 
illustrated in Fig. 5.38. The journal 
bearing (Fig. 5.39) develops its force 

FIG. 5.39. Journal bearing. by the same action, except that the 
surfaces are curved. 

The laminar-flow equations may be used to develop the theory of 
lubrication. The assumption is made that there is no flow out of the 
ends of the bearing, normal to the plane of Fig. 5.38. Starting with 
Eq. (5.1.4), which relates pressure drop and shear stress, the equation 
for the force P that the bearing will support is worked out, and the h a g  
on the bearing is computed. 

Substituting Newton's law of viscosi~y into Eq. (5.1.4) produces 
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Since the inclination of the upper portion of the bearing (Fig. 5.38) is 
very slight, i t  is assumed that the velocity distribution is the same if 
the plates were parallel and that p is independent of y. Integrating 
Eq. (5.10.1) twice with respect to y, with dp/dx constant, produces 

and the second time 

The constants of integration A,  B are determined from the conditions 
u = 0, y = b;  u = U, y = 0. Substituting in turn produces 

Eliminating A and B and solving for u results in 

The discharge Q must .be the same at  each cross section. By integrat- 
ing over a typical section, again with d p / d x  constant, 

Now, since Q cannot vary with x, 6 may be expressed in terms of x, 
b = bl -- ax, in which a = (bl  - bt)/L and the equation is integrated 
with respect to x to determine the pressure distribution. Solving Eq. 
(5.10.3) for d p / d x  produces 

Hy integrating, 

/*dx dx = fjrU/ dx - 1 % ~  G?X 
(bl - ax)2 (bl - ax)' + C 
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In this equation Q and C are unknowns. Since the pressure must be the 
same, say zero, at the ends of the bearing, namely, p = 0, x = 0; p = 0, 
x = L, the constants may be determined, 

With these values inserted, the equation for pressure distribution becomes 

This equation shows that p is positive between x = 0 and x = L if 
b > b2. I t  is plotted in Fig. 5.38 to show the distribution of pressure 
throughout the bearing. With this one-dimensional method of analysis 
the very slight change in pressure along a vertical line s = constant is 
neglected. 

The total force I' tha t  the bearing will sustain, per unit width, is 

After substitut.ing tho value of b in terms of z and performing the intcgra- 

The drag force D required to move t.he lower surface at speed U is 
expressed by 

D = du I d.$ 
0 l y = ~  

By evaluating duldy from Eq. (5.10.2), for y = 0, 

With this value in the integral, along with the value of d p / d x  from Eq. 
. (5.10.4), 

2 p U I ,  D = .  b l  - b2 3'1-b) 
111 -t b2 

(5.10.7) 

The maximum load P is computed with Eq. (5.10.6) when bl  = 2.2b2. 
With this ratio, 

The ratio of load to drag for optimum load is 

which can be very large since b2 can be very small. 
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Example 5.14: A vertical turbine shaft carries a load of 80,000 Ib on a thrust 
bearing consisting of 16 flat rocker plates, 3 in. by 9 in., arranged with their long 
dimensions radial from the shaft and with their 
centers on a circle of radius 1.5 f t .  The shaft 
turns a t  120 rpm; JL = 0.002 Ib-sec/ft2. If the 
plates take the angle for maximum load, neglect- 
ing effects of curvature of path and radial 
lubricant flow, find (a) the clearance between 
rocker plate and fixed plate; (b) the torque loss 
due to the bearing. 

a. Since the motion is considered straight- 
line, 

FIG. 5.40. Hydrostatic lubrica- 
tion by high-pressure pumping 
of oil. 

The load is 5000 Ib for each plate, which is 
5000L0.75 = 6667 lb for unit width. Ry solving for the clearance bB, from Eq. 
(5.10.8), 

0.16pULz 
h=,/ = 0.4 X 0.25 ~ 0 . 0 0 ~ 6 ~ g ~ 8 . 8 5  - = 2.38 X loy4 ft = 0.0029 in. 

(b) The drag due to one rocker plate is, per foot of width, 

For a 9-in. plate, D = 29.6 X 0.75 = 22.2 lb. Tho torque loss due to the 16 
rocker plates is 

16 X 22.2 X 1.5 = 533 ft-lb 

Another form of lubrication, called hydrostatic lub~ication,~ has many 
important applications. It involves the continuous pumping of high- 
pressure oil under a step bearing, as illustrated in Fig. 5.40. The load 
may be lifted by the lubrication before rotation starts, which greatly 
reduces starting friction. 

PROBLEMS 

6.1. Derive Eq. (5.1.1) for the case of the plates making an angle 9 with the 
horizontal, showing that in the equation p may be replaced by p + yz. z is the 
change in elevation in Icngth I .  

6.2. Derive Eq. (5.1.3) for two fixed plates by starting with Eq. (5.1.1). 

For further information on hydrostatic lubrication see D. D. Fuller, Lubrication 
Mechanics, in "Handbook of Fluid I)ynamics," ed. by V. L. Streeter, pp. 2!k21 
to 22-30, McGraw-Hi11 Book Company, Inc., ?Sew York, 1961. 

I 
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6.3. Determine the formulas for shear stress on each plate and for the velocity 
distribution for flow in Fig. 5.1 when an adverse pressure gradient exists such 
that Q = 0. 

6.4. In Fig. 5.1, with U positive as shown, find the expression for dp/dl  such 
that the shear is zero a t  the fixed plate. What is the discharge for this case? 

6.6. In Fig. 5.4 la, U = 2 ft/sec. Find the rate at which ail is carried into the 
pressure chamber by the piston and the shear force and total force F acting. 

6.6. Determine the force on the piston of Fig. 5 . 4 1 ~  due to shear and the leak- 
age from the pressure chamber for U = 0. 

6.7. Find F and U in Fig. 5.41a such that no oil is lost through the clearance 
from the pressure chamber. 

6.8. Derive an expression for the flow past a fixed cross section of Fig. 5.41b 
for laminar flow between the two moving plates. 

. 6.9. In Fig. 5.41b, for pl = pt = 10 psi, U = 2V = 10 ft/sec, a = 0.005 ft, 
p = 0.5 poise, find the shear stress a t  each plate. 

6.10. Compute the kinetic-energy and momentum correction factors for 
laminar flow between fixed parallel plates. 

6.11. Determine the formula for sbngle 8 for fixed parallel plates so that laminar 
flow a t  constant pressure takes place. 

4.12. With a free body, as in Fig. 5.42, for uniform flow of a thin lamina of 
liquid down an inclined plane, show that the velocity distribution is 

u = -  ' (6' - s2) sin 0 
2~ 
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and that the discharge per unit width is 

Y Q = - b2 sin 8 
3cl 

5.13. Derive the velocity distribution of Yrob. 5.12 by inserting the condition 
that the shear a t  the moving plate must bc zero from Eq. (5.1.2) when p is 
replaced by p + yz. 

5.14. In Fig. 5.43, pl = 5 psi, pz = 8 psi, I = 4 ft, a = 0.005 ft? 6 = 30°? 
U = 3 ft/sec, y = 50 lb/ft3, and p = 0.8 poise. Determine the forcct per square 
foot exerted on the upper plate and its direction. 

6.16. For i) = 90' in Fig. 5.43, what speed U is required for no discharge? 
y = 55 lb/ftq a = 0.02 ft ,  pl = p2, and p = 0,004 Ib-sec/ft2. 

6.16. The belt conveyor (Fig. 5.44) is of sufficient length that the velocity on 
the free fiquid surface is zero. By considering only the work done by tho belt on 
the fluid in shear, how efficient is this device in transferring energy to the fluid? 

6.17. A film of fiuid 0.005 ft thick flows down a fixed vertical surface with tt 
surface velocity of 2 ft/sec. Determine the fluid viscosity. y = 60 Ib/ft3. 

5.18. Determine the momentum correction factor for laminar flow in a round 
tube. 

6.19. What are the losses per pound per foot of tubing for flow of rncrcury a t  
60°F through 0.002 f t  diameter at a Reynolds number of 18001 

6.20. Determine the shear stress a t  the wall of a &+.-diameter tube whcn 
water a t  50°F flows through it  with a velocity of 1 ft/sec. 

5.21. Determine the pressure drop .per 100 ft of +-in. ID tubing for flow of 
liquid, p = 60 centipoises, sp gr = 0.83, a t  a Reynolds number of 20. 

6.22. Glycerin a t  80°F flows through a $-in.-diameter pipe with a pressure drop 
of 5 psi/ft. Find the discharge and the R.cyno1ds number. 

6.23. Calculate the diameter of vertical pipe needed for flow of liquid a t  a 
Reynolds number of 1800 when the pressure remains constant. v = 1.5 X lo-' 
f t2/sec. 

6.24. ,Calculate the discharge of the system in Fig. 5.45, neglecting all losses 
except through the pipe. 
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6.26. In Fig. 5.46, H = 30 ft, L = 60 ft, 9 = 30°, 13 = 3 in., y = 64 lb/ft3, 
and p = 0.001736 lb-sec/ft2. Find the head loss per unit length of pipe and the 
distrhnrgt? in gallons per minute. 

6.26. In Fig. 5.46 and Prob. 5.25, find I! if the velocity is 10 ft/see. 
6.27. At n hat distance r from the center of a tube of radius ro does the average 

vcloeity occur in laminar flow? 
6.28. Determine the maximum wall shear stress for laminar flow in a tube of 

diameter I) with fluid properties C( and p given. . 
6.29. Show that laminar flow -between parall~l plates may be used in place of 

flow through an annulus for 1 per cent accuracy if the clearance is no more than 
4 per cent of the inner radius. 

6.30. Oil, sp gr 0.85, p = 0.50 poise, flows through an annulus a = 0.60 in., 
b = 0.30 in. When the shear stress a t  the outer wall is 0.25 lb/ft2, caIculate 
(a) the pressure drop per foot for a horizontal system, @)*the discharge in galons 
per hour, and (c) the axial force exerted on the inner tube per foot of length. 

6.31. What is the Reynolds number for flow of 4000 gpm oil, sp gr 0.86, 
p = 0.27 poise, through an 18-in.diameter pipe? 

6.32. Calculate the flow of crude oil, sp gr 0.86, at 80°F in a $-in.-diameter 
tube to yield a Reynolds number of 700. 

5.33. Determine the velocity of kerosene a t  90°F in a 3-in. pipe to be dynami- 
cally similar to the flow of 6000 cfm air a t  20 psia and 60°F through a 24-in. duct.. 

6.34. W-hat is the Reynolds number for a sphere 0.004 ft in diameter fafling 
through water a t  100°F a t  0.5 ft/sec? 

5.36. Show that the power input for laminar flow in a round tube is Q Ap by 
integration of -F:q. (5.1.7). 

5.36. By use of the one-seventh-power law of velocity distribution u/u,, = 
(y/r3$, determine the mixing-length distribution l/ro in terms of y/ro from 
Eq. (5.4.4). 

6.37. A fluid is agitated so that the kinematic eddy viscosity increases linearly 
from y = 0 a t  the bottom of the tank to 2.0 ft*/see at y = 2 ft. For uniform 
particles with fall velocities of 1 ft/sec in still fluid, find the concentration at 
y = 1 if i t  is 200/ft3 a t  y = 2. 

5.38. f lot a curve of e/u*ro as a function of y/ro using Eq. (5.4.1 1) for velocity 
distribution in a pipe. 
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6.39, Find the wlue of y / r o  in a 1)il)c whrre the velocity equals the average 
velocity. 

5.40. A 3-in.-diameter pipe discharges water (submerged) into a reservoir. 
The average velocity in the pipe is 40 ft/sec. A t  what distance is the velocity 

reduced to 1.0 ft/sec? {svooEsTroxv: Assume a velocity distribution u = 

67r 
urn [I - 3 ( i )2 - 2 (:)'I- The momentum per second is then , pb2u,r. 

33 
5.41. Estin1:tt.c the skin-friction drag on a.n airship 400 ft long, average diame- 

ter 60 ft, with vclocity of 80 rnph tr:ivcling through air at 13 psia and 80°F. 
6.42. The vclocitj- distribution in a boundary laycr is given by u/T/ = 3(y/6) - 

2(y/6)2. Show that the displaccmctn t thickness of the boundary layer is = S/6. 
5.43. 'C'sing the velocity distribution u /  = sin q / 2 6 ,  determine the equation 

for growth of the laminar boundary laycr and for shear stress along s smooth, 
flat plstr in two-dimensional floiv. 

6.44. Work out the equations for growth of the turbulent boundary layer, 
based on the exponential law u /U  = (y/6) A and f = 0.185/R:. (7,) = pfV2/8.) 

5.45. Air a t  70°F, 14.2 psia, flows along a smooth plate with a velocity of 
100 rnph. How long does the plate have to be to obtain a boundary-layer 
thickness of in.? 

5.46. What is the terminal velocity of a 2-in.-diameter metal ball, sp gr 3.5, 
dropped in oil, sp gr 0.80, p = 1 poise? 

5.47. A t  what speed must a 4-in. sphere tra.ve1 through water a t  50°F to have 
a drag of 1 Ib? 

5.48. A spherical balloon contains helium and ascends through air a t  14 psia, 
40°F. Balloon and pay. load \vpighn300 Ib: What is its diamt:tcr to be able to 
ascend at 10 ft/sec-? C n  .= 0.21. 

6.49. How many 100-ft-diameter parachutes (Cn = 1.2) should be used to 
drop a bulldozer weighing 11,000 Ib a t  a terminal speed of 32 ft/sec through air 
at 14.5 psia, 70°F? 

5.60. An objtwt weighing 300 Ib is attached to a circular disk and dropped from 
a plane. IYhat diameter should the disk be to have the object strike the ground 
a t  72 ft/sec? The disk is attached so that it is normal to direction of motion. 
p = 14.7 psia; t = 70°F. 

6.61. A circular disk 10 ft in diameter is held normal to a 60-mph air stream 
(p = 0.0024 slug/ftZ). What force is required to hold i t  a t  rest. 

5.62. A semitubular cylinder of 3-in. radius with concave side upstream is 
submerged in water 'floiving 2 ft/st?c. Calculate thc drag for a cylinder 24 ft long. 

6.63. A projectile of the form of (a), Fig. 5.27, is 108 mm in diameter and travels 
a t  3000 ft/sec through air. p = 0.002 slug/ft" c = 1000 ftjsec. What is its 
drag? 

8.64. If an airplane 1 mile above the earth passes over an observer and the 
obsrrvcr does not htrw the plane until it has traveleti 1.6 miles farther, what is 
its spt?ed? Sountl velocity is 1080 ft/sec. What is its Mach angle? 

6.65. What is the ratio of lift to drag for the airfoil section of Fig. 5.25 for an 
mgle of attack of 2"? 

5.56. Iltttermine thc settling velocity of small metal spheres, sp gr 4.5, 0.004: in. 
diameter, in crude oil a t  80°F. 
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6.67. How large a spherical particle of dust, sp gr 2.5, will settle in atmospheric 
air at 70°F in obedience to Stokes' law? What is the settling velocity? 

6.68, The Ch6zy coefficient is 127 for flow in a rectangular channel 6 f t  wide, 
2 f t  deep, with bottom slope of 0.0016. What is the discharge? 

5.69. A rectangular channel 4 ft  wide, Ch6zy C = 60, S = 0.0064, carries 
40 cfs. Determine the velocity. 

5.60. What is the value of the Manning roughness factor n in Prob. 5.59? 
5.61. A rectangular, brick-lined channel 6 ft  wide and 5 ft deep carries 210 cfs, 

What slope is required for the channel? 
6.62. The channel cross section shown in Fig. 5.47 is made of unplaned wood 

and has a slope of 0.0009. What is the discharge? 

Fra. 5.47 

5.63. A trapezoidal, unfinished concrete channel carries water a t  a depth of 
6 ft. Its bottom width is 8 f t  and side slope I horizontal to I$ vertical. For a 
bottom slope of 0.004 what is the discharge? 

5.64. A trapezoidal channel with bottom slope 0.003, bottom width of 4 f t ,  and 
side slopes 2 horizontal to 1 vertical carries 220 cfs a t  a depth of 4 ft. What is 
the Manning roughness factor? 

6.66. A trapezoidal earth canal, bottom width 8 f t  and side slope 2 on 1 (2 hori- 
zontal to 1 vertical), is to be constructed to carry 280 cfs. The best velocity for 
nonscouring is 2.8 ft/sec with this material. What is the bottom slope required? 

6.66. What diameter is required of a semicircular corrugated-metal channel 
to carry 50 cfs when its slope is 0.01? 

6.67. A semicircular corrugated-metal channel 10 ft in diameter has a bottom 
slope of 0.004. What is its capaclty when flowing full? 

6.68. Calculate the depth of flow of 2000 cfs in a gravel trapezoidal channel 
with bottom width of 12 ft, side slopes of 3 horizontal to 1 vertical, and bottom 
slope of 0.001. 

6.69. What is the velocity of flow of 260 cfs in a rectangular channel 12 ft 
wide? S .= 0.0049; n = 0.016. 

6.70. A trapezoidal channel, brick-lined, is to be constructed to carry 1200 cfa 
5 miles with a head loss of 12 ft. The bottom width is 16 ft, the side slopes 1 on 1. 
What is the velocity? 

6.72. How does the discharge vary with depth in Fig. 5.48? 
5-72, How does the velocity vary with depth in Fig. 5.48? 
6.73. Determine the depth of flow in Fig. 5.48 for discharge of 12 cfs. It is 

made of riveted steel with bottom slope 0.02. 
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5.74. Determine the depth y (Fig. 5.49) for maximum velgcity for given n 
and S. 

6.76. Determine the depth y (Fig. 5.49) for maximum discharge for given n 
and S. 

5.76. A test on a 12-in.diarneter pipe with water showed a gage difference of 
13 in. on a mercury-water manometer connected to two piezometer rings 400 f t  
apart. The flow was 8.24 cfs. What is the friction factor? 

5.77. By using the Blasius equation for determination of friction factor, 
determine the horsepower per mile required to pump 3.0 cfs liquid, v = 3.3 X 
10-"t2/sec, y = 55 1b/ft3, through a 12-in. pipeline. 

6.78. Determine the head loss per 1000 ft required to maintain a velocity of- 
14 ft/sec in a 0.50-in.-diameter pipe. u = 4 X ftZ/sec. 

6.79. Fluid flows through a &in.-diameter tube a t  a Reynolds number of 1600. 
The head loss is 30 f t  in 100 f t  of tubing. Calculate the discharge in gallons per 
minute. 

5.80. What size galvanized-iron pipe is needed to be "hydraulically smooth" 
at R = 3.5 X lo6? (A pipe is said to be hydraulically smooth when i t  has the 
same losses as a smoother pipe under the same conditions.) 

5.81. Above what Reynolds number is the flow through an 8-ft-diameter 
riveted steel pipe, e = 0.01, independent of the viscosity of the fluid? 

5.82. Determine the absolute roughness of a 2-ft-diameter pipe that has a 
friction factor f = 0.03 for R = 1,000,000. 

6.83. What diameter clean galvanized-iron pipe has the same friction factor 
for R = 100,000 as a 12-in.-diameter cast-iron pipe? 

6.84. Under what conditions do the losses in a pipe vary as some power of the 
velocity greater thap the second? 

6.86. Why does the friction factor increase as the velocity decreases in laminar 
flow in a pipe? 

6.86. Look up the friction factor for atmospheric air at 60°F traveling 80 ft/sec 
through a 3-ft-diameter galvanized pipe. 

6.87. Water a t  70°F is to be pumped through 1200 ft of 8-in.diameter wrought- 
iron pipe at the rate of 1000 gpm. Compute the head loss and horsepower 
required. 

5-88. 16,000 fti/min atmospheric air a t  90°F is conveyed 1000 ft t h r o ~ h  a 
4-fMiameter galvanized pipe. What is the head loss in inches of water? 
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5.89. 2.0 cfs oil, p = 0.16 poise, .y = 53 lb/ft3, is l)urnptd througll s 12-in. 
pipeline of cast iron. If ear11 pump produc~s 80 psi, how far apart may they be 
placed? 

5.90. A 2.5-iu.-diameter smooth pipe 500 f t  long conyeys 200 gprn water a t  
80'1' from a water main, p = 100 psi, to the top of a building 85 ft above the 
main. What pressure can be maintained a t  the top of the building'? 

6.91. For water a t  150°F, calculate the discharge for the pipe of Fig. 5.50. 
5.92. In Fig. 5.50, how much power would be required to pump 160 gpm from 

a reservoir at the bottom of the yip(! to the reservoir shown? 
b -.-------- --------- . - - - - - - - - - 
-A* - - - - - -  ---------- --------- - - - - - - - - - - --------- 

- 
- 

p A T  

- I - 

2 in. diam 
wrought iron'-. 111u E'Y" 

FIG. 5.50 

. 6.93. A &-in.-diameter commercial steel pip(? 40 h long is used to drain an oil 
tank. IIt.termine the discharge when the oil 1cvt.l in the tank is 6 ft above the 
exit end of the pipe. p = 0.10  poise;.^ = 50 lb/ft3. 

6.94. Two liquid reservoirs are connected by 200 ft  of 2-in.-diameter smooth 
tubing. What is the flow rate when the diffcrrnce in elevation is 50 ft? v = 
0.001 ft2/sec. 

5.96. For a head loss of 2-in. water in a length of 600 ft for flow of atmospheric 
air a t  60°F through a 4-ft-diameter duct, E = 0.003 f t ,  calculntc the flow in 
gallons per minute. 

5.96. A gas of molecular weight 37 flows through a galvanizrd 24-,in.-diameter 
duct a t  a pressure of 90 psia and 10O0F. The head loss per 100 ft of duct is 2 in. 
water. What is the mass flow in slugs per hour? 

5.97. IYhat. is the horsepo\~-er per mile rt:quired for a 70 per cent efficient blower 
to maintain the Aow of I'rob. 5.9G? 

5.98. 100 lb,/min air is required to vcmtilatc a mine. I t  is admitted through 
2000 ft of 12-in.-diameter galvanized pipe. Xeglecting minor losses, what head 
in inches of \vater does a blower have to produce to furnish this flow? p = 14 
psih; t = 90°F. 

6.99. InFig .  5.46 fi = 60f t ,  L = 500ft, U = Zin., y = 551b/ft3, p = 0.04 
poise, E = 0.003 f't. Find the pouncls per second flowing. 

5.100. I n  a ilroucss 10,000 Ib/hr of (Iistilled water a t  70°F is ctontfucted through 
ft smooth tubt! between two reservoirs having a d i s t s ~ ~ c c  bct\v(.cn tllem of 40 ft 
and a difference in elevation of 4 ft. IYhat size tubing is netded:' 

5.101. \\'hat size of new cast-iron pipe is neetlrd to transport 10 cfs water at 
80°F 1 mile with head loss of 6 ft? 
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6.102. Two types of she1 plate, having surface roughnesses of e l  = 0 .003  f t  
and EZ = 0.001 ft, have a cost differential of 10 per cent more for the smoother 
plate. V'itli an allowable stress in rach of 10,000 psi, which plate should be 
selected to convey 100 cfs water a t  200 psi uith a head loss of 6 ft/rnile? 
5.103. An old pipe 48 in. in diameter has a roughness of r = 0.1 f t .  A &in.- 

thick lining would reduce the roughness to e = 0.0004. How much in pumping 
costs ~ o u l d  be saved per year per 1000 ft of pipe for water at 70°F with velocity 
of 8 ft/sec? The pumps and motors are 80 per cent efficient Lntl power costs 
1 cent per kilowatthour. 

6.104. Calculate the diameter of new wood-stove pipe in excellent conditior: 
needed to convey 300 cfs water at 60°F with a head loss of 1 f t  per 1000 ft of pipe. 
5.106. Two oil reservoirs with difference in elevation of 12 ft are connected by 

1000 ft of commercial steel pipc. What size must the pipe be to convey 1000 
gpm? p = 0.001 slug/ft-sec; y = 55 Ib/ft3. 

5.106. 200 cfs air, p = 16 psia, t = 90°F, is to be delivered to a mine with a 
head loss of 3 n. water per 1000 f t .  What size galvanized pipe is needed? 

6.107. Compute the losses in foot-pounds per pound due to flow of 600 cfnl 
air, p = 14.7 psia, t = 30°F, through a sudden expansion from 12- to 36-in. pipe. 
How much head would be saved by using a 10' conical diffuser? 

6.108. Calculate the value of I1 in Fig. 5.51 for 6 cfs water a t  60°F through 
commercial steel pipe. Include minor losscs. 

6.109. In Fig. 5.51 for 11 = 10 f t ,  calculate the discharge of oil, y = 55 lb/fts, 
P = 0.67 poise, through smooth pipe. Include minor losses. 

6.110. If a valve is placed in the line in Prob. 5.109 and adjusted to reduce the 
discharge by one-half, what is K for the valve and what is its equivalent length of 
pipe at this setting? 

6.111. A water line connecting two  reservoirs a t  70°F has 4000 ft of 24-in.- 
diameter steel pipc, three ,standard elbows, a globe valve, and a re-entrant pipe 
entrance. What is the difference in reservoir elevations for 20 cfs? 

6.112. Determine the discharge in Prob. 5.1 11 if the difference in elevation 
is 40 ft. 

6.113. Compute the losses in horsepower due to flow of 100 cfs water through 
a sudden contraction from 6- to 4-ft-diameter pipe. 

5.114. What is the equivalent length of 2-in.-diameter pipe, f = 0.022, for 
(a) a re-entrant pipe entrance, (b) a sudden expansion from 2 to 4 in. diameter, 
(c) a globe valve and a standard tee? 

6.116. Find H in Fig. 5.52 for 100-gpm oil flow, p = 0.1 poise, 7 = 60 lb/ft: 
for the angle valve wide open. 
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190 ft 3 in. diam 

- - 

5.116. Find K for the angle valve in Prob. 5.115 for flow of 60 gpm at the 
same H .  4 

6.117. What is the discharge through the system of Fig. 5.52 for water at  
80°F when H = 16 ft? 
6.118. Compare the smooth-pipe curve on the Moody diagram with Eq. 

(5.9.4). for R = lo5, 10" lo7. 
6.119. Check the location of line E / D  = 0.0002 on the Moody diagram with 

Eq. (5.9.7). 
5.120. In Eq. (5.9.7) show that when e = 0, i t  reduces to Eq. (5.9.4) and that, 

when R is very large, i t  reduces to Eq. (5.9.6). 
6.121. In Fig. 5.53 the rocker plate has a width of 1 ft. Calculate (a) the load 

the bearing will sustain, ( b )  the drag on the bearing. ~issume no flow normal to 
the paper. 

4 ftf sec -- -6 in JL = 0.70 poise 

6.122. Find the maximum pressure in the fluid of Yrob. 5.121, and determine 
its location. 
6.123. Determine the pressure center for the rocker plate of Prob. 5.121. 
6.124. Show that a shaft concentric with a bearing can sustain no load. 
6.126. The shear stress in a fluid flowing between two fixed parallel plates 

(a) is constant over the cross section 
(6 )  is zero at the plates and increases linearly to the mid-point 
(c) varies parabolically across the section 
(d )  is zero a t  the midplane and varies linearly with distance from the 

mid plane 
(e) is none of these answers 

5.126. The velocity distribution for flow between two fixed parallel plates 

(a) is constant over the cross section 
(b)  is zero a t  the plates and increases linearly to the midplane 
(c) varies parabolically across the section 
(d)  varies as the three-halves power of the distance from the mid-point 
(e) is none of these answers 
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5.127. The discharge between two parallel plates, distant uapart, when one has 
t,he velccity li' and the shear stress is zero a t  the fixed plate, is 

(a) bTa/3 (b )  U a / 2  ( c r  2Ua/3 (d)  Ua (e) none of these 
answers 

5.128. Fluid is in laminar motion between two parallel plates, with one plate in 
motion and is under the action of a pressure gradient so that the discharge through 
any fixed cross section is zero. The minimum velocity occurs a t  a point which is 
distant from the fixed plate 

(a )  a/6 (b )  a / 3  (c )  a / 2  (d)  2a /3  (e )  none of these answers 

6.129. In Prob. 5.128 the value of the minimum velocity is 

(a )  -3U/4 (b)  - 2 U / 3  (c) - U/2 (d)  - U / 3  (e) - U / 6  

6.130. The relation between pressure and shear stress in one-dimensional 
laminar flow in the x-direction is given by 

(a) dp/dx = p d ~ / d y  (b)  dp/dy = dr/dx (c)  dp/dy = p'dr/dx 
(d) d p / h  = dr/dy (e) none of these answers 

5.131. The expression for power input per unit volume to a fluid in one-dirnen- 
sional laminar motion in the x-direction is 

(a) du/dy (b)  7 /p2  (4 P du/dy ( 4  r ( d u / d ~ ) ~  
(e) none of these answers 

5.132. When liquid is in laminar motion a t  constant depth in flowing down an 
inclined plate (y measured normal to surface), 

(a) the shear is zero throughout the liquid 
(b) dr/dy = 0 a t  the plate 
(c) T = 0 a t  the surface of the liquid 
(d)  the velocity is constant throughout tho liquid 
(e) there are no losses 

5.133. The shear stress 'in a fluid flowing in a round pipe 

(a) is constant over the cross section 
(b) is zero at the wall and increases linearly to the center 
(c )  varies parabolically across the section 
(d) is zero a t  the center and varies linearly with the radius 
(e) is none of these answers 

5.134. When the pressure drop in a 24-in.-diameter pipeline is 10 psi in 100 ft, 
the wall shear stress in pounds per square foot is 

(a )  0 (b) 7.2 ( c )  14.4 (d)  720 (e) none of these answers 

6.136. In laminar flow through a round tube the discharge varies 

(a )  linearly as the viscosity 
(b) as the square of the radius 
(c) inversely as the pressure drop 
(d) inversely as the viscosity 
(e) as the cube of the diameter 
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5.136. IYhen a tube is inclined, the term -dp/dE is replaced by 

(a) -d t /d l  (b )  - y d . ~ i d l  ( c )  - d ( p  + 
( d )  - d ( p  + pz)/dl  ( e )  - d ( p  f ~ z ) / d l  

6.137. The upper critical Reynolds number is 

(a) important from a design viewpoint 
(b) the number a t  n.l.lich turbulent flow changes to laminar flow 
(c) about 2000 
( d )  not more than 2000 
( e )  of no practical importance iri pipe-flow problems 

5.138. The Reynolds number for pipe flow is given by 

( a )  V D/ v (b)  VDplp (c)  V D p l v  ( d )  VL)/lr (e) none of 
these answers 

5.139. Tht. lower critical Reynolds number has the valuc 

( a )  200 (b )  1200 ( c )  12,000 (d) 40,000 (e) none of these 
&lISWf'rs 

6.140. The Ticynolcls number for a 1.0-in.-diameter splwe moving 10 ft/sec 
through oil, sy gr 0.90, p = 0.002 lb-stc/ft2, is 

( a )  375 (b )  725 (c)  806 ( d )  8700 ( e )  none of these 
answers 

6.14i. The Reynolds number for 10 cfs discharge of water at 68°F through a 
12-in.diamter pipe is 

(a) 2460 ( b )  980,000 (c)  1,178,000 ( d )  14,120,000 
( e )  none of these answers 

5.14a. The Prandtl nlixi~lg length is 

(a) independent of radial distance from pipe axis 
(b )  independent of the shear stress 
(c) zero a t  the pipe wall 
(d) a univ(xrsa1 constant 
( e )  useful for computing laminar-flow problems 

5.143. In a fluid stream of lo\\- ~iscosity 

(a )  the effect of viscosity does not appreciably increase the drag on a 
body 

(b )  the potential theory yields the drag force on a bod)- 
(c) the effect of viscosity is limited t.0 a narrow r~g ion  su~munding a 

body 
(d )  the deformation drag on a body always predominates 
( e )  the potential theory c0ntribut.e~ nothing of value regarding flow 

around bodies 

5.144. The lift on a body immersed in a fluid stream is 

( 0 )  clue to buoyant force 
( b )  always in the opposite direction to  gravity 
(c) the resultant fluid force on the body 
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(d) the dynamic fluid-force component exrrtcd on the body normal to 
the approach velocity 

(e) the dynamic fl uid-force component exerted on the body parallel to 
the approach velocity 

5.146. The displacement thickness of the boundary layer is 

(a) the distance from the boundary affected by boundary shear 
(h)  one-half the actual thickness of the boundary layer 
[ r )  thv distance t.o thc point ~vhtlre ?i/l' = 0.99 
( d )  thr: distance the main flow is shifted 
(P) none of these ansn*crs 

6.146. 'I'hr shear stress at the boundary of a flat plate is 

( a )  d p / l a r  (b )  p du/ayl,=o ( c )  P ar/ /d?j ( , ,=~ ( d )  P ~ l ~ / ~ ! / l u a a  

(4) none of thcse ans~vcrs 

5.147. Khich of the following velocity distributions u/L' satisfy the bountiary 
contiitions for flow along a flat plate? ./I = y/6. 

( a )  eq (b )  cos r7/2 ( c )  q - v2 (d )  271 - q3 
(e )  none of these answers 

6.148. The drag coefficient for a flat plate is ( L )  = drag) 

(a> 2.U/p1i21 ' (b)  pU1/13 (c) pU1/2D (d)  pU21/21) 
(e) none of these answers 

5.149. The average vcloc*ity divided by the maximum vfbloc!ity, : ~ s  given by the 
one-seventh-power Inw, is 

(a) (b )  h ( 0 )  -$ (dl &% (e) 11011c~~ of t.Iiost~ answers 

5.160. The laminar-boundary-layver thickness varirs :is 

6.161. Tho turbulent-boundary-layer thickness ~ : ~ r i t l s  :is 

1 (a) l / x :  (b)  x :  2 ( ( j )  J :  (4) 1101lt: of tllt1st! ~ D S S V C ~ S  

5.152. In flow along a rough  plat^, tlltk order of flow type from upstream to 
downstream is 

(a) laminar, fully dt~vt~lolw~d \va.lI roughness, transition region, hydrau- 
licalIy smooth 

(b) lnmin:lr, tra~~sition region, hy~lrau1icaHy smooth, fully developed 
\v:rll rouKl~~lt.ss 

( r )  1alnin:ir. hytlraulic*tiIIy srnootll, trarlsition region, ully developed 
\v:r 11 r.ough n ~ s s  

((1) l:tn~itiar, I~ydrarrlicall?; smooth, fully developed ~val l  roughness, 
tr:insition region 

( e )  lnrn i 1x1 r. fully clrrploped wnnl l roughness, hydmulieally smooth, 
transition region . 
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6.163. Separation is caused by w 

(a )  reduction of pressure to vapor pressure 
(b )  reduction of pressure gradient to zero 
(c)  an adverse pressure gradient . 

( d )  the boundary-layer thickness reducing to zero 
(e) none of these answers 

6.164. Separation occurs when 

( a )  the cross section of a channel is reduced 
(b )  the boundary layer comes to rest 
(c) the velocity of sound is reached 
(d) the pressure reaches a minimum 
(e) a valve is closed 

6.166. The wake 

( a )  is a region of high pressure 
(h) is the principal cause of skin friction 
(c)  always ockrs when deformation drag predominates 
(d) always occura after a separation point 
(e) is none of these answers 

6.166. Pressure drag results from 

(a) skin friction 
(b) deformation drag 
(c) breakdown of potential %ow near the forward stagnation point 
(d )  occurrence of a wake 
(e)  none of these answers 

6.167. A body with a rounded nose and long, tapering tail is usually best suited 
for 

(a) laminar flow 
(b)  turbulent subsonic flow 
(c)  supersonic flow 
(d )  flow at  speed of sound - 
( e )  none of these answers 

6.168. A sudden change in position of the separation point in flow around a 
sphere occurs a t  a Reynolds number of about 

( a )  1 (b)  300 (c) 30,000 (d) 3,000,000 (e) none of these 
answers 

6.169. The effect of compressibility on the drag force is to 

(a) greatly increase it near the speed of sound 
(b) decrease i t  near the speed of sound 
(c) cause i t  to asymptotically approach a constant value for large Mach 

numbers 
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(d) cause it to increase more rapidly than the square of the speed at high 
Mach numbers 

(e) reduce it throughout the whole flow range 

5.160. The terminal velocity of a small sphere settling in a viscous fluid varies 
as the 

(a) first power of its diameter 
(b) inverse of the fluid viscosity 
(c) inverse square of the diameter 
( d )  inverse of the diameter 
(e) square of the difference in specific weights of solid and fluid 

5.161. The losses in open-channel flow generally vary as the 

(a) first power of the roughness 
(b) inverse of the roughness 
(c) square of the velocity 
(d) inverse square of the hydraulic radius 
(e) velocity 

6.162. The most simple form of open-channel-flow computation is 

(a) steady uniform 
' (b) steady nonuniform 

(c) unsteady uniform 
(d) unsteady nonuniform 
(e) gradually varied 

6.163. In  an open channel of great width the hydraulic radius equals 

(a) y/3 (b)  y/2 (c) 2y/3 (d)  y (e)  none of these 
answers 

6.164. The Manning roughness coefficient for finished concrete is 

(a) 0.002 (b) 0.020 (c) 0.20 (d) dependent upon hydraulic 
radius (e) none of these answers 

6.166. In turbulent flow a rough pipe has the same friction factor as a smooth 
pipe 

(a) in the zone of complete turbulence, rough pipes 
(b) when the friction factor is independent of Reynolds number 
(c) when the roughness projections'are much smaller than the thickness 

of the boundary layer 
(d) everywhere in the transition zone 
(e) when the friction factor is constant 

8.166, The friction factor in turbulent flow in smooth pipes depends upon the 
following : 
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5.167. In a giren rough pipe, the lo&cs depend upon 

(4 f ,  1' 
(b)  P, P 
(4 R 
(4 Q only 
(e) none of these answers 

6.168. In the complete-turbulence Bone, rough pipes, 

(a) rough and smooth pipes have the same friction factor 
(b) the laminar film covers the roughness projections 
(c) the friction factor depends upon Reynolds number only 
(d) the head loss varies as the square of the velocity 
(e) the friction factor is independent of the relative roughness 

6.169. The friction factor for flow of water a t  60°F through a 2-ft-diameter 
cast-iron pipe with a velocity of 5 ft/sec is 

(a) 0.013 . ( b )  0.017 ( c )  0.019 (d) 0.021 (e) none of these 
answer8 

6.170. The procedure to follow in solving for losses when Q, L, D, v, and r are 
given is to 

(a) assume an j, look up R on Moody diagram, etc. 
(b) assume an hz, solve for f ,  check against R on Moody diagram 
( c )  assume an f, solve for hf, compute R, etc. 
(d) compute R, look up f for r/D, solve for hl 
(e) assume an R, compute V, look up f, solve for hf 

6.171. The procedure to follow in solving for discharge when hn L, D, v, and e 
are given is to 

(a) assunle an f, compute V, R, r/D, Iook up f ,  and repeat if necessary 
(b) assume an R, compute j, check E / D ,  etc. 
( c )  assume a V ,  compute R, look up f, compute V again, etc. 
(d) solve Darcy-Weisbach for V, compute Q 
(e) assume a &, compute V ,  R, look up j, etc. 

6.172. The procedure to follow in solving for pipe diameter when h,, Q, L, u, 
and e are given is to 

(a) assume a L), compute V, R, r/D, look up f ,  and repeat 
(b) compute V from continuity, assume an f, solve for D 
( c )  eliminate V in R and Darcy-Weisbach, using continuity, assume an 

j, solve for D, R, look up f, and repeat 
(d) assume an R and an c / l ) ,  look up f, solve Darcy-Weisbach for 

v'*/O, and solve simultaneously with continuity for V and D, com- 
pute new R, etc. 

(e) assume s V, solve for D, R, c/D, look up j, and repent 
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6.173. The losses d l ~ c  to a sudden contraction are given by 

\T"z 
(d)  (Cr - 1 )  5; (e) none of these answers 

5.174. The losses a t  the exit of a submerged pipe in a reservoir are 

(a) negligible (b) 0.05(1T2/2g) ( c )  0.5(V2/2g) (d )  V2/2g 
(e) nonc of these answers 

6.175. Mi nor losses~ usually may be neglcctcd when 

(a)  there are 100 ft. of pipe bctween sl)ct!ial fit.tingr: 
(b) their loss is-5 17cr cent or less of the friction Ioss 
(c) thrrt! are 500 diameters of pipe between minor losses 
(d) there are no globe va lv~s  in the Iine 
(e) rough pipe is usetI 

6.176. The length of pipe (f = 0.025) in diameters, equiva.lent to a globe 
valve, is 

(4 40 (b )  200 . (c)  300 (4 400 (e) not determinable; 
insufficient data 

6.177. The hydraulic radius is given by 

(a) wetted perimeter divided by area 
(13) area divided by square of wetted perimeter 
(c) square root of area 
(d) area divided by wetted perimeter . 
(e) none of these answers 

5.178. The hydraulic radius of a 6-in. by 12-in. cross section is, in feet, 

(a)  (b)  $ (c) $ (d) $ (e) none of these answers 

6.179. In the theory of lubrication the assumption is made that 

(a) the velocity distribution is the same a t  all cross sections 
(b) the velocity distribution a t  any section is the same as if the plates 

were parallel 
(c) the pressure variation along the bearing is the same as if the plates 

were prtralle? 
(d) the shear stress varies linearly between the two surfacer; 
(e) the velocity varies linearly between the two surfaces 

6.189. A 4-in.-diameter shaft rotates at 240 rprn in a bearing with a radial clear- 
ance of 0.006 in. The shear stress in an oil film, p = 0.1 poise, is, in pounds per 
square foot, 

(a) 0.15 (b)  1.75 (c) 3.50 (d) 16.70 (e) noneofthese 
answers 



COMPRESSIBLE FLOW 

In  Chap. 5 viscous incompressible-fluid-flow situations were mainly 
considered. In  this chapter on compressible flow, one new variable 
enters, the density, and one extra equation is available, the equation of 
state, which relates pressure and density. The other equations-con- 
tinuity, momentum, and the first and second laws of thermodynamics- 
are also needed in the analysis of compressible-fluid-flow situations. 
In this chapter topics in steady one-dimensional flow of a perfect gas 
are discussed. The one-dimensional approach is limited to those applica- 
tions in which the velocity and density may be considered constant over 
any cross section. When density changes are gradual and do not change 
by more than a few per cent, the flow may be treated as incompressible 
with the use of an average density. 

The following topics are discussea in this chapter: perfect-gas relation- 
ships, speed of a sound wave, Mach number, isentropic flow, shock waves, 
Fanno and Rayleigh lines, adiabatic flow, flow with heat transfer, iso- 
thermal flow, high-speed flight, and the analogy between shock waves. 
and open-channel waves. 

6.1. Perfect-gas Relationships. In Sec. 1.6 [Eq. (1.6.2)j a perfect gas 
is defined as a fluid that has constant specific heats and that follows the 
law 

in which p and T are the absolute pressure and absolute temperature, 
respectively, p is the density, and R the gas constant. In this section 
specific heats are defined, the specific hest ratio is introduced and 
related to specific heats and the gas constant, internal energy and 
enthalpy are related to temperature, entropy relations are established, 
and the isentropic and reversible polytropic processes are introduced. 

In general, the specific heat at constant volume c, is defined by 
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in which u is the internal energy per unit mass. In  words, c, is thc 
amount of internal energy increase required by a unit mass of gas to 
increase its temperature by one degree when its volume is held constant. 
I n  thermodynamic theory it is proved that u is a function only of tempera- 
t.ure for a perfect gas. 

The specific. heat a t  constant pressure c, is defined by 

in which h is the enthalpy per unit mass given by h = u + p /p .  Since 
p / p  is equal to R T  and u is a function only of temperature for A 

perfect gas, h depends only on temperature. Many of the common 
gases, such as water vapor, hydrogen, oxygen, carbon monoxide, and 
air, have a fairly small change in specific heats over the temperature 
range 500 to 1000°It, and an intermediate value is taken for their use as 
perfect gases. Table C.2 of Appendix C lists same common gases with 
values of specific heats at 80°1<. 

For perfcct gases Eq. (6.1.2) becomes 

du = c, dT 
and Eq. (6.1.3) becomes 

dh = c, dT 
Then, from 

P ~ = I L + - - = u + R T  
P 

differentiating 
dh = d u + R d T  

and by substitution of Eqs. (6.1.4) and (6.1.5) 

which is valid for any gas obeying Eq. (1.6.2) (even when c, and c, arc 
changing with tempel-ature). If c, and c, are given in heat units per 
unit mass (i.e., Btu per pound mass per degree Rankine or Btu per 
slug per degree Rankine), then R must be in heat units also (i.e., Btu per 
pound mass per degree Rankine or Btu per slug per degree Rankine). 
The conversion factor is 1 Btu = 778 ft-lb if i t  is desired to express units 
in the foot-pound-second system. 

The specific-heat ratio k is defined as the ratio 

k = 5 
Cv 

By solving with Eq. (6.1.6) 
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Iyntropy Relationships. The iilterilal energy change for a perfect gas is 

UP - UI = cr(T2 - TI) (6.1.9) 
alld the ei~t~halpy change 

h:! - hi = ~ ~ ( 2 ' 2  - TI) (6.1.10) 
From Eq. (3.6.15) 

which is u relationship among t.hrrrnodynamic properties and must hold 
for all pure subst.rnces; the chungc i t 1  cntropy s may be obtained 

from XI:qs. (6.1.4) and (6.1.1). After integrating, 

By use of Eqs. (6.1.8) and (6.1. I), Eq. (6.1.12) becomes 

and 

These equations are forms of the second law of thermodynamics. 
An isentropic process is a reversible adiabatic process. Equation 

(3.8.3) 
T ds = d q ~  + d (losses) (3.8.3) 

shows that cis = 0 for an isentropic process, since there is no heat transfer; 
d q ~  = 0; and there are no losses. Then, from Eq. (6.1.14) for 82 = $1 

Equation (6.1.16) combined with the general gas lay yields 

The enthalpy change for an isentropic process is 
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'The polytropic process i s  defined by 

P -- = constant (6.1.19) 
P" 

and is an approximation to certain actual processes in which p would 
plot substantially as a straight line against p on log-log paper. This 
relationship is frequently used to calculate the work when the polytropic 
pmcess is reversible, by substitution into the relation w = $ p  dbt. Heat 
transfer occurs in a reversible polytropic process except when n = k, the 
isentropic case. 

Example 6.1 : Express R in Btu per slug per degree Rankine for helium. 
A conversion from 1 ft-lb/lb, O R  to the Btu per slug per degree Rankine is 

made first. Since 1 Btu = 778 ft-lb and 1 slug -. 32.17 Ib,, 

I ft-lb Btu 32.17 Btu 
Ib, OR = 1 - -  778 slug OR = 0.0414 slug OR 

Then, for helium, from Table C.2 

ft-lb Btu 
R = 386 = 386 X 0.0414 slug OR - Btu 

lb, R - 16*0 slug O R  

Example 6.2: Compute the value of R from the values of k and c, for air and 
check in Table C.2. - 

From Eq. (6.1.8) 

k - 1  R = - 1.40 - 1.0 Btu 
k CP = 1.40 X 0.240 = 0.0686 - lb, O R  

By converting from Btu to foot-pounds, 

ft-lb R = 0.0686 X 778 = 53.3 ibm OR 

which checks the value in Table C.2. 
Example 6.3: Compute the enthalpy change in 7.0 lb, of oxygen when the 

initial conditions are pt = 20 psia, l1 = 50°F and final conditions pz  = 80 psia, 
t z  = 200°F. - 

Enthalpy is a function of temperature only. By use of Eq. (6.1.10), the 
enthalpy change per pound mass is 

Btu 
- TI) = 0.219(200 - 50) = 32.9 1j;;. 

and the enthalpy change.for 7.0 lb, 

Exampb 6.4: Determine the entropy change in 4.0 slugs of water vapor when 
the initial conditions are p ,  = 6 psia, t ,  = llO°F and the final conditions are 
~2 = 40 psia and t2 = 38°F. 
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From Eq. (6.1.15) and Table C.2 
-0.33 Btu 

~ , - ~ , = 0 . 3 3 5 1 n [ ( ~ ~ , " ~ ~ ~ ~ ) ~ ~ ~ ~ ( ~ )  ] = -0.271 lbm.R 

Btu 
S2 - 81 = -0.271 X 4.0 X 32.17 = 34.9 

Example 6.5: A cylinder containing 3.5 lb, nitrogen at  20 psia and 40°F is 
compressed isentropically to 45 psia. Find the final temperature and the work 
required. 

From the principle of conservation of energy, the work done on the gas must 
equal its increase in internal energy, since there is no heat transfer in an isentropic 
process; i.e., 

U r  - U I  = co(T2 - TI) = work 
By Eq. (6.1.17) 

and 
Work = 0.177(630 - 500) X 3.5 = 80.6 Btu 

Example 6.6: 3.0 slugs of air are involved in -a reversible polytropic process is 
which the initial conditions pl = 12 psia, tl = 60°F change to p2 =. 20 psia, and 
volume V = 1011 fts. Determine (a) the formula for the process, (b) the work 
done on the air, (c) the amount of heat transfer, and (d) the entropy change. 

P 1 12 X 144 slug = 
= 53.3 X 32.17(460 + 60) = 0.00194 -ftj. 

R was converted to foot-pounds per slug degree Rankine by multiplying by 32.17. 
Also 

3 slug 
p, = - = 0.002965 101 1 

From Eq. (6.1.19) 
Pl P2 - = -  

pln ~2~ 

hence 
P - = constant p1.2 

describes the polytropic process. 
b. Work of expansion is 

This is the work .done by the gas on its surroundings. Since 
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by substituting into the integral, 

if rn is the mass of gas. V 2  = 1011 f t a  and 

Then 

W = 
20 X 144 X 1011 - 12 X 144 X 1548 

= -1,183,000 ft-lb 1 - 1.2 

Hence the work done on the gas is 1,183,000 ft-lb. 
c. From the conservation of energy the heat added minus the work done by 

the gas must equal the increase in internal energy; i.e., 

QH - W = U2 - U1 = c,m(T; - TI) 
First 

Then 

QH = - 1'1839000 + 0.171 X 32.17 X 3(666 - 520) 778 

. 760 Btu were transferred from the mass of air. 
d. From Eq. (6.1.14) the entropy change is computed : 

20 0.00194 1.' Btu 
s2 - sl = 0.171 In [- (0T002965) ] = -0.01441 lhm OR 

and 
Btu Sa - S1 = -0.01441 X 3 X 32.17, = - 1.392 - OR 

A rough check on the heat transfer may be made by using Eq. (3.6.18), by using 
an average temperature T = (520 $- 566)/2 = 543, and by remembering that 
the losses are zero in a reversible process. 

QH = T(Sz - 81) = 543 X (-1.392) = -756 Btu 

6.2. Speed of a Sound Wave. Mach Number. The speed of a small 
disturbance in a channel may be determined by application of the 
momentum equation and the continuity equation. The question is first 
raised as to whether a-,stationary small change in velocity, pressure, and 
density can occur in a channel. By referring to Fig. 6.1, the continuity 
equation can be written 
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in which A is the cross-sectional area of channel. The equation car1 be 
reduced to 

pdV + V d p  = 0 

When the momentum equation [Eq. (3.9.10)] is applied to the control 
volume within the dotted lines, 

If p dV is eliminated between the two equations, 

1 1  I propagated through a fluid'at rest. 
P P + ~ P  This is called the speed of sound c 
P P +&P in the medium. The disturbance 

So, a small disturbance or sudden change in conditions in steady flow 
can occur only when a particular velocity V = d d p / d p  exists in the 
channel. Now, if .a uniform velocity V = d d p / d p  is assumed to the 

left in Fig. 6.1, the cont.inuity and' 

A A 
from a point source would cause a 

FIG. 6.1. Steady flow in prismatic channel wave to emanate, but a t  
with sudden 'mall change in velocity, some distance from the source the 
pressure, and density. 

wave front would be essentially 

I 

V I - ' 
! 

linear or one-dimensional. Large disturbances may travel faster than the 

' 
I V+dV momentum equations apply as be- 
I * 
I fore, and the small disturbance: is 

speed of sound, e.g., a bomb explosion. 
The equation for speed of sound 

1. 

may be expressed in several useful forms. The bulk modulus of elasticity 
can be introduced: 

in which V is the volume of fluid subjected to the pressure change dp. 
Since 

K may be expressed as 
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Then, from Eq. (6.2.2), 

This cquation applies to liquids as well as gases. 

Example 6.7: Carbon tetrachloride has a bulk modulus of elasticity of 163,000 
psi and a density of 3.09 slugs/ft8. What is the speed of sound in the medium? 

The rapid thermodynamic changes resulting from passage of a sound 
wave are isentropic for all practical purposes. Then 

pp" = constant, d p  I ~ P  
& = -  P 

and 

or, from the perfect-gas law p = pRT, 

which shows that the speed of sound in a perfect gas is a function of its 
absolute temperature only. In flow of gas through a channel, the speed 
of sound generally changes from section to section as the temperature is 
changed by density changes and friction effects. In isothermal flow the 
speed of sound remains constant. 

The Mach number has been defined as the ratio of velocity of a fluid 
to the local velocity of sound in the medium, 

Squaring the Mach number produces V2/c2 ,  which may be interpreted 
as the ratio of kinetic energy of the fluid to its thermal energy, since 
kinetic energy is proportional to V2 and thermal energy is proportional 
to T. The Mach number is a measure of the importance of compressibil- 
ity. In an incompressible fluid K is infinite and M = 0. For perfect 
gases 

K = kp (6.2.7) 

when the compression is isentropic. 

Example 6.8: Tfrhat is the speed of sound in dry air at sea level when t = 6g°F, 
and in the stratosphere when t = -07"F? 



254 FUNDAMENTALS OF FLUID MECHANICS 

~t sea level, from Eq. (6.2.5) 
. . 

c = di .4  x 32.2 x 53.3(460 + 6tfj = 1i25.ft/scc 

[Chap. 6 

and in the strrttosphcrct 
------- 

c = d1.4  X 32.2 X 53.3(460 - 67) = 972 ft/aec 

6.3. Isentropic Flow. Frictionless adiabatic, or isentropic, flow is an 
ideal that cannot be reached in the Row of real gases. I t  is approached, 
however, in flow through transitions, nozzles, and venturi meters where 
friction effects are minor, owing to the short distances traveled, and heat 
transfer is minor because the changes that a particle undergoes are slow 
enough to keep the velocity and temperature gradients sma1l.l The 
performance of fluid machines is frequently compared with the perform- 
ance assuming the flow were isentropic. In this section one-dimensional 
steady flow of a perfect gas through converging and converging-diverging 
ducts is studied. 

Some very general results may be obtained by use of Euler's equation 
(3.5.5)' neglecting elevation changes, 

. . and the continuity equation 

pAV = constant 

By differentiating pAV, then dividing through by pAV, 

From Eq. (6.2.2) dp may be obtained and substituted into Eq. (6.3.1) 
yielding 

d p  V d V  + c2- = 0 
P  

Ry eliminating dp/p in the last two equations and rearranging, 

The assumptions underlying this equation are t h 3  the flow is steady and 
frictionless. No restrictions as to heat transfer have been imposed. 
Equation (6.3.5) shows that for subsonic flow (M < I), dA/dV is 
always negative; i.e., the channel area must decrease for increasing 

H. W. Liepmann and A. Roshko, "Elements of Gas I'lynarni~s,~' p. 51, John 
m7iley & Sons, Inc., New York, 1957. 
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velocity. As dA/dV is zero for M = 1 only, the velocity keeps incrcas- 
ing until the minimum section or throat is reached, and that is the only 
section a t  which sonic flow may occur. Also, for Mach numbers greatcis 
than unity (supersonic flow) dA/dV is positive and the area must. 
increase for an increase in velocity. IIence to obtain supersonic steady 
flow from a fluid a t  rest in a reservoir, i t  must first. pass through a coil- 
verging duct and than a diverging duct. 

When the analysis is restricted to isentropic flow, Eq. (6.1.16) may 
written 

-k k P = P l ~ l  P (6.3.6) 
After differentiating and substituting for dp in Eq. (6.3.1), 

Integration yields 
v 2  k 
2 

= constant - + F--l 2 P 

This equation is useful when expressed in terms of temperature; from 
p = pRT 

For adiabatic flow from a reservoir where conditioils are given by 
po, po, TO, at any other section 

V2 kR - = -  
2 I c - 1  (To - T) 

In terms of t.he local Mach number V / c ,  with c2 = kRT,  

From Eqs. (6.1.10) and (6.3.17), which now restrict the following etlua- 
tions to isentropic flow, 

I 

and 
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Iq'loiv conditions arc termed critical a t ,  t.he throat section when the 
\-eIocity there is sonic. Sonic conditioris are marked with an asterisk. 
M = 1 ;  c* = V* = dm*'. By applying Eqs. (6.3.10) to (6.3.12) to 
the throat sect.ion for critical conditions (for k = 1.4 in the numerical 
portion), 

T* 2 - = - =  
To k + l  

0.833 k = 1.40 (6.3.13) 

These relatioils show that for air flow, the absolute temperature drops 
about 17 per cent from reservoir to throat, the critical pressure is 52.8 per 
cent of the reservoir pressure, and the density is reduced by about 
37 per cent. 

The variation of area with the Mach number for the critical case is 
obtained by use of the continuity equation and Eqs. (6.3.10) to (6.3.15). 
First 

pAV = p*A*V* (6.3.16) 

in which A* is the minimum, or throat, area. Then 

- 
V* = c* = d k ~ ~ * ,  and V = cM = M d k ~ ~ ,  so 

'.by use of Eqs. (6.3.13) and (6.3.10). In a similar manner 

P* 
-=I---. 

1 + [(k - 1)/2]M2 P* 

- [ ( h  + 1)/2 P Po P 

By substituting the last two equations into Eq. (6.3.17), 

which yields the variation of area of duct in terms of Mach number. 
A / A *  is never less than unity, and for any value greater than unity 
there wil1,be two vaiues of Mach number, one less than and one greater 
than unity. For gases with k = 1.40, Eq. (6.3.20) reduces to 
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Thc maximum mass flow rate riz,, can be expressed in terms of the 
throat area and reservoir conditions: 

by use of Eqs. (6.3.15) and (6.3.13). By replacing po by po/RTo, 

For k = 1.40 this reduces to 

For rh,,, in slugs per second, with air, R = 53.3 X 32.2 ft-lb/slug OR, 
A * is in square feet, po in pounds per square foot absolute, and To in 
degrees Rankine. Equation (6.3.23) shows that the mass flow rate 
varies Iinearly as A* and po and varies inversely as the absolute 
temperature. 

For subsonic flow throughout a converging-diverging duct, the velocity 
a t  the throat must be less than sonic velocity, or Mt < 1 with subscript t 
indicating the throat section. The mass rate of flow lia is obtained from 

which is derived from Eqs. (6.3.9) and (6.3.6) and the perfect-gas law. 
This equation holds for any section and is applicable as long as the 
velocity a t  the throat is subsonic. It may be applied to the throat 
section, and for this section, from Eq. (6.3.14)) 

pt is the throat pressure. When the equal sign is used in the expression, 
Eq. (6.3.24) reduces to Eq. (6.3.22). 

For maximum mass flow rate, the flow downstream from the throat 
may be either supersonic or subsonic, depending upon the downstream 
pressure. After substituting Eq. (6.3.22) for ni in Kq. (6.3.24) and 
simplifying, 

-4 may be taken as the outlet area and p as the outlet pressure. For a 
given A*/A (less than unity) there will be two values of p/po between 
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zero and unity, the upper value for subsonic flow through the diverging 
duct and the lower value for supersonic flow through the diverging duct. 
For all other pressure ratios less than the upper value complete isentropic 
flow is impossible and shock waves form in or just downstream from 
the diverging duct. They are briefly discussed in the following section.. 

Example 6.9: A preliminary design of a wind-tunnel duct to produce Mach 
number 3.0 a t  the exit is desired. The mass flow rate is 2.0 lb,/sec a t  po = 12.0 
psia, to = 80°F. Determine: (a) the throat area, (b )  the outlet area, and (c) the 
velocity, pressure, temperature, and density at the outlet. 

a. The throat area is determined from Eq. (6.3.23) : 

b. The area of outlet may be determined from Eq. (6.3.21) : 

c. From Eq. (6.3.11) 

P 0 - 12 = 0.326 psis - 
p = [I + (k - l)M2/2]k'(*l) [l + (1.4 - 1)32/2]1.41(1.4-1) 

From Eq. (6.3.12) 

From Eq. (6.3.10) 

The velocity is 

V = cM = a~ 3 = 3 y' 1.4 X 53.3 X 32.17 X 192.7 = 2040 ft/sec 

Example 6.10: A converging-diverging air duct has a throat cross section of 
0.40 ft2 and an exit cross section of 1.0 ft2. Reservoir pressure is 30 psia, and 
temperature is 60°F. Determine the range of Mach numbers and the pressure 
range a t  the exit for isentropic flow. Find the maximum flow rate. 

Equation (6.3.21) 

when solved by trial yields M = 2.44 and 0.24. Each of these values of Mach 
number a t  the exit is for critical conditions; hence the Mach number range for 
isentropic %ow is 0 to 0.24 and the one value 2.44. 

From Eq. (6.3.11) 



Sac. 6.41 COMPRESSIBLE FLOW 259 

for M = 2.44, p = 30/15.55 = 1.929 psia, and for M = 0.24, p = 30/1.041 = 

28.8 psia. The downstream pressure range is then from 28.8 to 30 psia, and the 
isolated point 1.929 psia. 

The maximum mass flow rate is determined from Eq. (6.3.23) : 

m,, = 0.686 X 0.40 X 30 X 144 I b m  = 1-28 ? k g  = 40.6 - 
4 5 3 . 3  X 32.17(460 + 60) sec sec 

Exumpk 6.1 1 : A converging-diverging duct in an air line downstream from a 
reservoir has a 2.0-in.diameter throat. Determine the mass rate of flow when 
po = 120 psia, t o  = 90°F, and pr = 80 psia. 

From Eq. (6.3.24) 

slug 
= 0.254 - 

sec 

Tables which greatly simplify isentropic flow calculations are avaiIable 
in the books by Cambel and .Jennings and by Shapiro et al., listed a t  the 
end of the chapter. 

6.4. Shock Waves. In one-dimensional flow the only type of shock 
wave that can occur is a normal com- 
pression shock wave, as illustrated in 
Fig. 6.2. For a complete discussion of 
converging-diverging flow for all down- 

. . -. ------------ p. -tp ------ ------ stream pressure ranges1 oblique shock c-:-17----------I-~-:fiE-E4 2:--------:---:-.-:-:-:: 
------- ------ -- ----------- 

waves must be taken into account as 
they occur at the exit. In the preced- 
ing section isentropic flow was shown 
to occur throughout a converging- 
diverging tube for a range of down- 
stream pressures in which the flow was 
subsonic throughout and for one down- 
stream pressure for supersonic flow 
through the diffuser (diverging por- 
tion). In this section the normal 
shock wave in a diffuser is studied, FIG. 6.2. Normal compression shock 

with isentropic flow throughout the wave. 

tube, except for the shock-wave surface. The shock wave occurs in 
supersonic flow and reduces the flow to subsonic flow, as proved in the 

' H. W. Liepmann and A. Roshko, "Elements of Gas Dynamics," John Wiley & 
Sons, Inc., New York, 1957. 
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follo~ving section. I t  has very little thickness, of the order of the molecular 
mean free path of the gas. The controlling equations are (Fig. 6.2) for 
adiabatic flow 

Continuity: 

Energy : 
V12 Vz2 - + h l = -  

v 2  
+ h 2 = h o = -  k P  2 2 .2  +-- k - l p  

which are obtained from Eq. (3.6.10) for no change in elevation, no 
heat transfer, and no work done. h = u + p/p = c,T is the enthalpy, 
and ho is the value of stagnation enthalpy, i.e., its value in the reservoir 
or where the fluid is a t  rest. Equation (6.4.2) holds for real fluids and is 
valid both upstream and downstream from a shock wave. The mornen- 
turn equation, (3.9.10) for a control volume between sections 1 and 2 
becomes 

(PI - p2)A = p2A V 2 2  - piAV12 

For given upstream conditions hl,  p l ,  V1, pr, the three equations are to 
be solved for p2, p2, V,.  The equation of st.ate for a perfect gas is also 
available for use, p = pRT. The value of p 2  is 

Once p2 is determined by combinat.ion of the continuity and momentum 
equations 

p1 + p1vl2. = p2 + p1V1V2 

Vz is readily obtained. Finally p2 is obtained from the continuity 
equation. 

For given upstream conditions, with M1 > 1, the values of pz, V2, p2, 

and Mt = li2/dm2 exist and MI < 1. By eliminating V l  and Vz 
among Eqs. (6.4.1)) (6.4.2), and (6.4.3) the Rankine-Hugoniot equations 
are obtained: 

Thcse eqristions, relating conditiorls on either side 04 the shock wave, 
t.akc the place of the isentropic relation, Eq. (6.1.16), = constant. 

From Elq. (6.4.2), the energy equation, 

V 2  k p c*" -- + -- - - - -  c * ~  k + 1 c*' +-=-- 
2 k - l p  2 I ; - I  k - 1 2  
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since the equation holds for all points in adiabatic flow without chrtnge in 
elevation, and c* = dkp*/p* is the velocity of sound. . After dividing 
Eq. (6.4.3) by Eq. (6.4.1), 

and by eliminating pp/pa and pl/pl by use of Eq. (6.4.8), 

which is satisfied by V1 = Vz (no shock wave) or by 

It may be written 

When V1 is greater than c*, the upstream Mach number is greater than 
unity and V2 is less than c*, so the final Mach number is less than unity, 
and vice versa. I t  is shown in the following section that the process 
can occur only from supersonic 'upstream to subsonic downstream. 

By use of Eq. (6.1.14), together with Eqs. (6.4.4), (6.4.6), and (6.4.7), 
an expression for change of entropy across a normal shock wave may be 
obtained in terms of M 1 and k. From Eq. (6.4.4) 

Since CI* = k p 1 / ~ 1  and M1 = VI/cl, from Eq. (6.4.12), 

I'lacing this value of pz/pl in Eq. (6.4.7) yields 

Sow, after substituting these pressure and density ratios into Eq. (6.1.14), 

By substitution of MI > 1 into this equation for the appropriate value of 
k ,  the entropy may be shown to increase across the shock wave, showing 
that the normal shock may proceed from supersonic flow upstream to 
subsonic flow downstream. Substitution of values of M1 < 1 into 
Eq. (6.4.14) has no meaning, since Eq. (6.4.13) yields a negative value 
of the ratio p2/p , .  
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In the next section the shock wave is examined further by introduction 
of Fanno and Rayleigh lines. 

Example 6.12: If a normal shock wave occurs in the flow of helium, pl = 1 psia, 
t1 = 40°F, Vl = 4500 ft/sec, find pz, pt, Vz, and tz.  

From Table C.2, R = 386, k = 1.66, and 

From Eq. (6.4.4) 

12 X 0.0000232 X (4500)' - (1.66 - 1) X 144 X 11 
P2 = 1.66 + 1 

= 317 lb/ft2 abs 
From Eq. (6.4.5) 

I 

From Eq. (6.4.1) 

and 

6.5. Fanno and Rayleigh Lines. To examine more closely the nature 
of the flow change in the short distance across a shock'wave, where the 
area may be considered constant, the contin~it~y and energy equations 
are combined for steady, frictional, adiabatic flow. By considering 
upstream conditior~s fixed, that is, pl ,  V1, pl,  a plot may be made of 
all possible condit.ions at section 2, Fig. 6.2. The lines on such a plot 
for const.ant, mass flow per unit area G are called Fanno lines. The most 
revealing plot is that of enthalpy against entropy, i.c., an hs diagram. 

The entropy equat.ion for a perfect gas, Eq. (6.1.14), is 

The energy equation for adiabatic flow with no change in elevation, 
from Kq. (6.4.2) is 

and the continuity equation for no change in area, from Eq. (6.4.1), is 

The equation of state, linking h, p, and P, is > 
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By eliminating p, p, and V from the four equations, 

which is shown on Fig. 6.3 (not to scale). To find the corlditions for 
maximum entropy, Eq. (6.5.5) is differentiated with respect to h and 
ds/dh set equal to zero. By indicating by subscript a values at the 
maximum entropy point, 

After substituting this into Eq. (6.5.2) t.0 find V., 

and 

conditions and constant area, Eqs. 
FIG. 6.3. Fanno and Itayleigh lines. 

(6.6.1), (6.5.3), (6.5.41, and (6.4.1) 
are used to  determine the RayZeigh line. Eliminating V in the continuity 

Hence the ma.ximurn entropy at  point a is for M = 1 ,  or sonic conditions. 
For h > ha the flow is subsonic, and 

and momentum equations, 

for h < ha the flow is  supersonic. 
The two conditions, before and after 
the shock, must lie on t.hc proper 
Fanno line for the area at which the 
shock wave occurs. The momentum 
equation was not used to  det.erminc 
t.he Fanno line, so the complete solu- 
tion is not determined yet. 

Rayleigh Ikne. Conditions before 
and after the shock must also satisfy 
the momentum and coi~tinuity equa- 
tions. Assuming constant upstream 

G2 
p + - = constant = B 

P 

Ah 

----- h01= h02 

Fa, 
Subsonic 

G = p ~ =  constant 

* a  
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Next, by eliminating p from this equation and the entropy equation, 

Enthalpy may be expressed as a function of p and upstream conditions, 
from Eq. (6.5.7) : 

The last two equations determine a and h in terms of the parameter p 
and plot on the hs diagram as indicated in Fig. 6.3. This is s Raylagh 
line. The value of maximum entropy is found by taking ds/dp and 
dh/dp from the equations, then by division and equating to zero, using 
subscript b for maximum point: 

To satisfy this equation, the numerator must be zero and the denominator 
not zero. The numerator, set equal to zero, yields 

that is, M = 1. For this value the denominator is not zero. Again, as 
with the Fanno line, sonic conditions occur at the point of maximum 
entropy. Since the flow conditions must be on both curves, just before and 
just after- the shock wave, it must suddenly change from one point of 
intersection to the other. The entropy cannot decrease, as no heat i s  
being transferred from the flow, so the upstream point must be the inter- 
section with least entropy. In all gases investigated the intersection in 
the subsonic flow has the greater entropy. Thus the shock occurs from 
super~onic to subsonic. 

The Fanno and Raylcigh lines are of value in analyzing flow in con- 
stant-area ducts. These are treated in the following sections. 
6.6. Adiabatic Flow with Friction in Conduits. Gas flow through a 

pipe or constant-area duct is analyzed in this section subject to the 
following assumptions: 

1. Perfect gas (constant specific heats). 
2. Steady, one-dimensional flow. 
3. Adiabatic flow (no heat transfer through walls). 
4. Constant friction factor over length of conduit. 
5. Effective conduit diameter D is four times hydraulic radius (cross- 

sectioned area divided by perimeter). 
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ti. Kleva!tion changes are unimportant as compared with f~c t ion  effects. 
7. No work added to or extracted from the flow. 
The controlling equations are continuity, energy, momentum, and the 

equation of state. The Fanno line, developed in Sec. 6.5 and shown in 
Fig. 6.3, was for constant area and used the continuity and energy 
equations; hence, it.applies to adiabatic flow in a duct of constant area. 
A particle of gas at the upstream end of the duct may be represented by a 
point on the appropriate Fanno line for proper stagnation enthalpy h,, 
and mass flolv rate G per unit area. As the part:icle moves downstream, 
its properties change, owing to friction or irreversibilities such that the 
entropy always increases in adiabatic flow. Thus the point, representing 
these properties moves along the Fanno line toward the maximum s 
point, where M = 1 .  If the duct is fed by a converging-diverging 
~lozzle, the flow may originally be supersonic; the velocity must then 
decrease downstream. If the flow is subsonic at the upstream end, the 
velocity must increase in the downstream direction. 

For exactly one length of pipe, depending upon upstream conditions, 
the flow is just sonic (M = 1) at the downstream end. For shorter 
lengths of pipe, the flow will not have reached sonic conditio~s a t  the 
outlet, but for longer lengths of pipe, there must be shock waves (and 
possibly choking) if su&-sonic and choking effects if subsonic. By 
choking, one means t.hat the mass flow rate specified cannot take place 
in  this situation and less flow will occur. The following chart indicat.es 
the trends in propert.ies of a gas in adiabatic flow through a constant- 
area duct, as can be shown from the equations in this section. 

Property / Subsonic Row 1 Supersonic flow 

I Velocity V .  . . . . . . . . . . . . . . . . .  I Increases 
Mach number M.. . . . . . . . . . . .  Increases 
Pressure p . . . . . . . . . . . . . . . . .  i 1.1ecreases 
Temperature 1'. . . . . . . . . . . . .  i Decreases 
Density p .  . . . . . . . . . . . . . . . . . .  ' Decreases I Stagnation enthalpy . . . . . . . . . .  i Constant 
Entropy . . . . . . . . . . . . . . . . . . . .  ! Increases 

Ilecreases 
1)ecreascu 
Increases 
Increases 
Increases 
Constant 
Increa$es 

The gas cannot change gradually from subsonic to supersonic or vice 
ntrsa in a constant-area duct. 

The momentl~m equation must now include the effects of wall shear 
stress and is rorir7enient.ly written for a segment. of duct of length 6 . ~  
(Fig* 6.4): 
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U-pon simplification, 

By use of Eq. (5.9.2) T O  = pjV2/8, i~ which f is the Darcy-Weisbach 
friction factor, 

For constant f, or average value over the length of reach, this equation 
may be transformed into an equation for x as a function of Mach number. 

FIG. 6.4. Notation for application -of momentum equation. 

By dividing Eq. (6.6.2) by p, 

each term is now developed in terms of M. By definition V / c  = M 

for the middle term of the momentum equation. By rearranging Eq. 
(6.6.4) 

Now to express dV/V in terms of M, from the energy equation 

Differentiating, 
c p d T +  V d V =  0 

By dividing through by V2 = M2kRT, 
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Since c,lR = k/(k - I), 

Differentiating V2 M2kRT and dividing by the equation, 

Eliminating dT/T in Eqs. (6.6.9) and (6.6.10) and simplifying, 

.which permits elimination of dV/V from Eq. (6.6.6), yielding 

And finally, to express d p / p  in terms of M, from p = pRT and G = pV, 

pV = GRT 
By differentiation 

d p  dl' dV 
I=--- 

P T  v 
Equations (6.6.9) and (6.6.11) are used to eliminate dT/T and d V / V :  

*= -  (k - 1)M2 + 1 dM 
[(k - 1)/2]M2 + 1 %f (6.6.14) 

23 

Equations (6.6.5), (6.6.12), and (6.6.14) are now substituted into the 
momentum equation (6.6.3). After rearranging, 

which may be integrated directly. By using the limits x = 0, M = Mo, 
z =  1,M = M, 

For k = 1.4, this reduces to 
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If Mo is greater than 1 ,  then M cannot be less than 1, and if MI, is less 
than 1, then M cannot be greater then 1. For the limiting condition 
M = 1 and k = 1.4, 

Experiments by Keenan and Neumannl show apparent friction factors 
for supersonic flow of about half the value for subsonic flow. 

Example 6.13: L)etermine the maximum length of 2.0-in. ID pipe, f = 0.02 for 
flow of air, whrn the Mach number at the entrance to the pipe is 0.30. 

From Eq. (6.6.19) 

L,,, = 44.17 ft. 
The pressure, velocity, and temperature may :tiso be expressed in 

integral form in terms of the Mach number. To simplify the equations 
that folIow they will be integrated from upstream conditions to condi- 
tions at M = 1, indicated by p", Tr",  and T*. t'rorn Eq. (6.6.14) 

From Eq. (6.6.11) 

From Eqs. (6.6.9) and (6.6.1 1) 

dl' - = - ( k  - 1 ) .  M dM 
T I(k - 1)/21M2 + 1 

which, when integrated, yields 

Example 6.14: 4.0-in. I D  pipe, f = 0.010, has air at 14.7 psia and at t = 60°F 
flowing at the upstream end with Mach number 3.0. Determine L,, p*, V*, 
T*, and values of p, F, T, and L at M = 2.0 

From Eq. (6.6.19) 

J. H. Keenan and E. P. Xeumann, 3Zeasurernents of Friction in a Pipe for Sub- 
sonic and Supersonic Flow of Air, J .  App l .  Mech., vol. 13, no. 2, p. A-91, 1946. 
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from which L,. = 17.33 ft. If the flow originated at Ib = 2, the length L, 
is given by the same equation: 

Hence the length from the upstream section at M = 3 to the section where 
M = 2 is 17.33 - 10.14 = 7.19 ft. 

The velocity at the entrance is 0 

From Eqs. (6.6.20) to (6.6.22) 

So p* = 67.4 psia, V* = 1707 ft/sec, T* = 1213"R. For M = 2 the same 
equations are now solved for pL,  v;, and T:: 

So = 27.5 psia, v', = 2790 ft/sec, and T: = 80g0R. 

6.7. Frictionless Flow through Ducts with Heat Transfer. The steady 
flow of a perfect gas (with constant specific heats) through a constant-area 
duct is considered in this section. Friction is neglected, and no work is 
done on or by the flow. 

The appropriate equations for analysis of this case are 

Continuity : 

1.1omentum : p + pV2 = constant (6.7.2) 

Energy: ql, = h2 - hl + Vaz - VI2 - V12 

2 = cP(Tz - TI) + 
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Tol and To, are the isentropic stagnation temperatures, i.e., the tempera- 
ture produced at a section by bringing the flow isentropically to rest. 

The Rayleigh line, obtained from the solution of momentum and 
continuity for a constant cross section by neglecting friction, is very 
helpful in examining the flow. First, by eliminating V in Eqs. (6.7.1) 
and (6.7.2), 

constant 

which is Eq. (6.5.7). Equations (6.5.8) and (6.5.9) express the entropy s 
and enthalpy h in terms of the 

~h parameter p for the assumptions of 
this section, as in Fig. 6.5. 

Since, by Eq. (3.8.3)) for no losses, 
entropy can increase only when heat 
is added, the properties of the gas 
must change as indicated in Fig. 6.5, 
moving toward the maximum en- 
tropy point as heat is added. At 
the maximum s point there is no 

G=pV= constant 
change in entropy for a small change 

I + in h ,  and isentropic conditions apply 

FIG. 6.5. RayIeigh line. t,o the point. The speed of sound 
under isentropic conditions is given 

by e = Z / d p / d p  as given by Eq. (6.2.2). From Eq. (6.7.4), by 
differentiation 

using Eq. (6.7.1). Hence at the maximum s point of the Rayleigh line 
V = 4- also and M = 1, or sonic conditions, prevail. The addi- 
tion of heat to supersonic flow causes the Mach number of the flow to 
decrease toward M = 1, and if just the proper amount of heat is added, 
M becomes 1. If more heat is added, choking results and conditions a t  
the upstream end are altered to reducc the mass rate of flow. The addi- 
tion of heat to subsorlic flow causes an increase in the Mach number 
toward M = 1, and again, too much heat transfer causes choking with 
an upstream adjustment of mass flow rate to a smaller value. 

From Eq. (6.7.3) it is noted that the increase in isentropic stagnation 
pressure is a measure of the heat added. From V2 = M2kRT,  p = pRT, 
and continuity, 

pV = GRT 
and 

pV2 = kpM2 
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Kow, from the momentum equation 

pi + kp,M12 = p2 + k~2M2~ 
and 

By writing this equation for the limiting case p2 = p* when M2 = 1, 

with p the pressure at any point in the duct where M is the correspoilding 
Mach number. For the subsonic case, with M increasing to the right 
(Fig. 0.5), p must decrease, und for the sllpersonic case, as M decreases 
toward the right, p must increase. 

To develop the other pertinent relations, the energy cquution (6.7.3) 
is used 

in which To is the isent.ropic stagnation temperature and T the free 
stream temperature at the same section. By applying this to section 1 .  
after dividing through by kRTl/(k - I), 

and for section 2 

Dividing Eq. (6.7.7) by Eq. (6.7.8) 

The ratio T1/T2 is determined in terms of the Mach numbers as foIlows: 
From the perfect-gas law, pl = plRT1, pg = p2RT2? 

From continuity ps/pl = V1/V,, and by definition, 
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NOW, by substituting Eqs. (6.7.5) and (6.7.1 1) into Eq. (6.7.10) and 
simplifying, 

TI (MMl +kMZ2)~ - =  
T2 M2 l + kMI2 

(6.7.12) 

With this equation substituted into Eq. (G.7.9), 

By applying this equation to the downstream section where To2 = T: 
and Mz = 1, by dropping the subscripts for the upstream section, 

All the necessary equations for determination of frictionless flow with 
heat transfer in a constant-area duct are now available. Heat transfer 
per unit mass is given by q11 = c,(T,* - To) for = 1 st the exit. Use 
of the equations is illustrated in the following example. 

Example 6.15: Air a t  Vl = 300 ft/sec, p = 40 psia, t = 60°F flo\vs into a 
4.0-in.diameter duct. How much heat transfer pcr unit mass is needed for sonic 
conditions at the exit? Determine pressure, temperatur~, and velocity a t  the 
exit and a t  the section whcre M = 0.70. 

The is~ntropic stagnation t~nlpchrature at the entrance, from Eq. (6.7.7), is 

The isentropic stagnation temperature at the exit, from Eq. (6.7.14), is 

The heat transfer per slug of air flowing is 
Btu 

q~ = c ~ ( T :  - TOl) = 0.24 X 32.17(1827 - 527) = 10,050 - 
slug 

The pressure at the exit, Eq. (6.7.6), is 

1 + kM2 40 
P* = PTT = a ( 1  + 1.4 X 0.268') = 18.35 psia 
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and the tc~mpcraturt~, from K q .  (6.7.12), 

A t  t.he exit., 
V*  = c* = dm = 4 1 . 4  X 53.3 X 32.17 X 1x23 = 1910 ft/sec 

At  the section where M = 0.7, from Eq. (6.7.6), 

From Eq. (6.7.12) 

and 

The trends in flow properties are shown in the following table: 

For curves and tables tabulating the various equations, consult the 
books by Cambel and Jennings, Shapiro, and Shapiro et  al., listed in the 
references at the end of the chapter. 

I'ressu re p . . . . . . . . . . . . . . . .  
Velocity V .  . . . . . . . . . . . . . . .  
Isentropic stagntttiou temper- 

ature To. . . . . . . . . . . . . . . . .  
Ilensity p ,  . . . , . . . . . . . . . . . . .  

6.8. Steady, Isothermal Flow in Long Pipelines. In the analysis of 
isothermal flow of a perfect gas through long ducts, neither the Fanno nor 
Rayleigh lines are applicable, since the Fanno line applies to adiabatic 
flow and the Rayleigh line to frictionless flow. An analysis somewhat 
similar to those of the previous two sections is carried out to show the 
trend in properties with Mach number. 

The appropriate equations are 

d p  'f pV2 Momentum [Eq. (6.6.3)J: - + - - d z + c d ~  = 0 
P 2 0  P P 

Heating 

M > I 

Increases 
Decreases 

Increases 
Increases 

Temperature I'. . . . . . . . . . . . .  I Increases 

1 ' 

i 
I 
I 

Cooling 

M < l  

Ilecreaues 
Increases 

Increases 
Decreases 
Increases for 

M < l /k  
Decreases for 

M > l / k  

M > 1  

Decreases 
Increases 

I>ecreascs 
Decreases 
Decreases 

, 

M < 1  

Increases 
Decreases 

Tlecreases 
Increases 
Ilecreases for 

M < l / k  
Increases for 

M > l / k  
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Equation of state: = constant d p  - = -  d p  
P P P 

Continuity : pV = constant dp dV - =  - -  
P v (6.8.3) 

Energy [Eq. (6.7.7)] : T o  = T 2 

in which To is the isentropic stagnation temperature at the section where 
the free-stream static temperature is T and the Mach number is M. 

k/(k-1) 
Stagnation pressure [Eq. (6.3.1 I)] : po = p (1 + k-l ~ 2 )  

2 
(6.8.5) 

in which p ,  is the pressure (at the section of p and M) obtained by 
reducing the velocity to zero isentropically. 

From definitions and use of the above equations, 

- dv - dM dM2 V = C M = & T M  - - - =  - V M 2M2 
V d V  c2 c d V = =  
RT -MdM = kMdM P RT 

pV2 c2M2 kM2 - = =  
P RT 

By substituting into the momentum equation, using the relations, 

d p  dV 1 dM2 dp = - = - - = - - - = - kM2 f d x  
P P V 2 M2 1 - l c M 2 m  

(6.8.6) 

The differential dx is positive in the downstream direction, so one may 
conclude that the trends in properties vary depending upon whether M is 
less than l/& or greater than For M < I/&, the pressure 
and density decrease and velocity and Mach number increase, with the 
opposite trends for M-> l/dK; hence, 'the Mach number always 
approaches l/.\/E, in place of unity for adiabatic flow in pipelines. 

To determine the direction of heat transfer, by differentiation of Eq.' 
(6.8.4) then division by it, remembering that T is constant, 

By eliminating dM2 in this equation and Eq. (6.8.6), 
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which shows that the isentropic stagnation temperature increases for 
M < I/&, indicating that heat is transferred to the fluid. For 
M > l / t / R  heat transfer is from the fluid. 

From Eqs. (6.8.5) and (6.8.6) 

The following tabulation shows the trends of fluid properties. 
' 

By integration of the various Eqs. (6.8.6) in terms of M, the change 
with Mach number is found. The last two terms yield 

f - - "Mf + In (IcM2) 
+r,* - kM' 

M > 
subsonic or supersonic . 

Increases 
Increases 
Decreases 
Decreases 
Decreases 
Increases for M < 4 2 / ( k  + 1) 
Decreases for M > . \ /2 / (k+l )  

Pressure p . . . . . . . . . . . . . . . . . . . . . .  
Density p .  . . . . . . . . . . . . . . . . . . . . . .  
VeIocity Y . .  . . . . . . . . . . . . . . . . . . . .  
Mach Number M.. . . . . . . . . . . . . . .  
Stagnation temperature TO.. . . . . . .  

Stagnation pressure PO.. . . . . . . . . . .  

in which L,, as before, represents the maximum length of duct. For 
greater lengths choking occurs and the mass rate is decreased. To find 

M < 
subsonic 

Decreaees 
Decreases 
Increases 
Increases 
Increases 

Decreaeee 

the pressure change 

and 

The superscript *t indicates conditions at M = l/dE, and M and P 
represent values at any upstream section. 

Ex~mple  6.16: Helium enters a 4.0-in. ID pipe from a converb-diverd% . 
nozzle at M = 1.30, p = 2.0 p~ia, T = 400°R. Determine for i s o f h e d  flow: 
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(a) the maximum length of pipe for no choking, (b )  the downstream conditions, 
and (c) the length from the exit to the section where M = 1.0. f = 0.006. 

a. From Eq. (6.8.10) for k: = 1.66 

L,,, = 21.54 ft. 
b.  From Eq. (6.8.11) 

p*l = p dk M = 2.0 d m 6  1.3 = 3.35 psis 

The Mach number at the exit is l / n 6  = 0.756. From Eqs. (6.8.6) 

At the upstream section 

P = M  KT = 1.3 d m  3586 X 32.17 X 400 = 3740 ft/sec 
and 

c. From Eq. (6.8.10) for M = 1 

or L:,, = 6.0 ft. M = 1 occurs 6.0 ft from the exit. 

6.9. High-speed Flight. This section on high-speed flight deals with 
five aspects of the problem: effect of shock waves and stalling on airfoil 
lift and drag, sonic boom, wave drag, area rule, and aerodynamic heating. 
The last four of these topics are reproduced with minor changes from 
"Supplementary Kotes, Aerodynamics and Gas Dynamics," Department 
of Mechanics, United States Military Academy, -West Point, New York. 

Efect of Shock Waves and Stalling on Airfoil L<ft and Drag. The lift 
coefficient CL of the usual airfoil profile in subsonic flow tends to increase 
almost linearly (Fig. 5.25) with the angle of attack. CL reaches a 
maximum value between 1.2 and 1.8, which is limited by separation of 
the boundary layer (Sec. 5.5) from the upper airfoil surface. When the 
bounding streamline becomes detached, as in Fig. 6.6, the pressure over 
the airfoil in the detached region becomes about equal to the undisturbed 
pressure in the fluid stream. Since most of the lift is normally produced 
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by underpressure on the upper surface rather than overpressure on the 
lower surface, the lift coefficient drops sharply. This formation of s 
large, turbulent zone over most of the upper surf ace is known as stalling, 
and is also accompanied by a sharp increase in drag coefficient. At  small 
angles of attack (Fig. 6 . 6 ~ )  the flow separates near the trailing edge, but 
this does not materially affect the lift. 

As the airfoil speed approaches that of the speed of sound in the air, 
compressibility effects become important. A thin airfoil in subsonic 

FIG. 6.6. Airfoil in subsonic Bow. (a) Flow without stalling; (b )  flow with stalling. 

flow has a lift coefficient that is related to the lift coefficient for incom- 
pressible flow C L ~ ,  by the Prandtl-Glauert transformation 

in which M, is the Mach number of the approaching velocity relative to 
the airfoil. Hence, the lift coefficient increases as Mach number increases 
up to the transonic range. The drag coefficient increases greatly in this 
range (Fig. 5.27). 

The transonic range is defined as the Mach-number range of approach 
velocity when both supersonic and subsonic flow occur around the airfoil 
(Fig. 6.7). By considering slowly increasing approach velocity (or 
speed of airfoil through still air), a region of supersonic flow first occurs 
over a small zone of the upper airfoil surface where the local velocity is 
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highest. Oblique shock waves form and there is a decrease in lift coef- 
ficient and an increase in drag coefficient. The adverse pressure gradient - across the shock waves undoubtedly - affects the boundary layer and may 

(a) Subsonic seriously influence separation. At 
slightly larger Mach numbers, shock 
waves occur along the undersurface 
too, as in Fig. 6.7b. In  Fig. 6.8, * for some airfoils, the lift coefficient 
starts to decrease as the upper shock 

. waves form (point A), and then - starts to increase when the ' lower 
( b )  Transonic 

shock waves occur (point B). 

#-==+(&( 
For higher approach velocities in 

the transonic range, a detached shock 
wave forms ahead of the airfoil, with 
subsonic flow between it and the 
forward portion of the airfoil (Fig. 

(c) Transonic 6 . 7 ~ ) .  For increasing M, the de- 
tached shock wave approaches the 

( d )  Supersonic 

(e) Hypersonic I M- 

FIG. 6.7. Shock waves on thin airfoil. FIG. 6.8. Variation of CL through the 
(With permission, from "Elemenls of transonic range. 
Gas Dynamics," by H .  W .  Liepmann 
and A. Roshko, John Wiley & Sons, 
Inc., New York, 1957.) 

airfoil leading edge. When it becomes attached, the flow is everywhere 
supersonic (Fig. 6.7d). Figure 6.7e indicates the shock-wave formation 
for the hypersonic range. 

Sonic Boom. Sound is caused by a pressure wave striking the ear. 
A very Ioud sound, where a very great difference in pressure occurs across 
the wave, is interpreted by the ear as an explosion. This type of pressure 
wave is called a shock wave. 

When an aircraft flies a t  a speed faster than sound, it creates shock 
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waves in the air. Under certain atmospheric conditions these shoc:k 
waves reach the ground and are heard as explosions, or "sonic booms." 
Most booms heard are the strong shock waves caused by aircraft accel- 
erating from below to above the speed of sound in a dive. In so doing, 
many shock waves are formed on the aircraft, with the strongest (greatest 
pressure difference) occurring at  the nose*and tail. Then, as the pilot, 
pulls out of the dive, the aircraft slows down and the shock wave eon- 
tinues on, skriking the listener's ear and causing him to hear either one or 
two booms, depending on atmospheric conditions, direction of dive, et.c. 
The loudness will depend on the aircraft. speed, its rate of pull-out, and its 
altitude at the bottom of the dive. In low-altitude, level flight at super- 
sonic speeds the boom will be heard, hut not until after the aircraft has 
flown past the listener. 

Wave Drag. The occurrence of shock waves is detrimental to the 
performance of an aircraft for two reasons. The sudden pressure increase 
through a shock wave produces an adverse pressure gradient in the 
boundary layer, promoting separation and the usual effects on lift and 
drag (a decrease and an increase, respectively). Also, additional dra.g 
results because energy is made unavailable by the shock waves. 

The drag resulting from compressibility effects (called ware drag) begins 
to affect an aircraft at flight velocities slightly below the speed of sound 
owing to the presence of regions of supersonic flow on the aircraft surfaces 
a t  these speeds. The lowest Mach number a t  which such regions and the 
accompanying shock waves will occur is called the critical Mach number 
(MmiJ. The rapid increase in drag and decrease in lift and propeller 
efficiency occurring a t  about Merit = 0.7 convinced a large number of 
people in the 1930s that there existed a "sonic barrier," a limiting speed 
beyond which aircraft would never fly. The aircraft propulsion systems 
in use a t  that time simply could not produce sufficient thrust to accelerate 
past this velocity. Even by the early 1940s, aerodynamic refinements 
had extended this "drag divergence" speed only up to speeds in the 
vicinity of M,,,, = 0.8. Then in 1945, North American Aviation com- 
bined a sweptback wing and a jet engine and the sonic barrier was 
overcome. 

Probably the two most effective methods for delaying compressibility 
effects on airfoils are the use of'thin airfoils and sweepback. A-swept- 
back wing is one whose mean chord line (see Fig. 6.9) is not perpendicular 
to the relative air velocity. To understand the physical concept of this 
design consider a uniform wing of infinite span with its leading edge swept 
back a t  an angle u from the normal to the relative air velocity V. The 
%ow normal to the leading edge has the velocity V cos C. The tangential 
velocity V sin a of the original flow does not influence the lift on the wing 
but is important only in the determination of frictional stresses. Since 
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ollly the normal component of velocity is significant, the effective hI ach 
number is M cos u. Therefore, even though the flight Mach number may 
be 1 or greater, the effective Mach number M cos a may, through suffi- 
vien t sweepback, be made small enough to postpone and 'lessen the adverse 
effcct of shocks (shock stall). 

Sweepback does have two major disadvantages. First, the lift is 
decreased by reducing the normal component of velocity from V to V cos U, 

thus requiring larger wing areas. Second, severe structural problems are 
associated with swcptback wings, 
which must be made longer to provide 
additional area. The above disad- 
vantages of sweepback are overcome 
in the transonic regime by the use of 
delta wings (for example, the F-102 or 
33-58)? which do, however, possess 
problems of stability and control. On 
the other hand, the inherent advan- 

/ / /  tages of sweptback wings can be 
4!-/ utilized in the regime of supersonic 

flight. Here the velocities are suffi- 
FIG. 6.9. Sweptback wing. 

ciently large that the wing area is rela- 
tively unimportant in the generation of lift (L = CL+pAV2) and strong, 
stubby wings of this design are sufficient for flight (examples include the 
F-101 and 1;-105). 

In addition to the major disadvantages of sweepback stated above, 
there is also a decrease in dCL/da at low speeds, thereby requiring a high 
angle of attack in landing. Also, difficulty in control occurs near the 
stall owing to a tendency for early stall at the tips. Vertical strips 
parallel to the direction of flight placed just inboard of the ailerons are 
useful in preventing the boundary-Iayer flow responsible for the tip-stall 
phenomenon. 

Area Rule. Another method of reducing the drag rise which occurs as 
an aircraft enters the transonic zone is the use of the area rule in aircraft 
design. Experiments have shown that the drag rise in this zone is 
primarily a function of the axial distribution of the cross-sectional area 
of the aircraft normal to the air stream.' In  other words, if the change in 
cross-sectional area (slope of curve, Fig. 6.10) is gradual from nose to tail, 
the drag will be small. The addition of wing and tail to a body of 
revolution, however, causes an abrupt increase in the effective cross- 
sectional area- (Fig. 6,lO) and therefore a large transonic drag. The area 
rule prescribes that the entire aircraft be designed to provide a gradual 
change in area from nose to tail (solid line, Fig. 6.11). This could be 
accomplished by indentation of the fuselage at the wing and tail roots. 
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However, the volume requirements for engine, fuel, instruments, pay load, 
etc., remain the same, so the gradual change is effected by building up the 
body fore and aft of the wing, giving the aircraft a "coke-bottle" shape. 
By means of this rule, 90 per cent of the drag rise can be eliminated in the 
region of 1.00 < M < 1.05. At higher Mach numbers the drag on an 
aircraft using the area rule approaches the drag of a conventional aircrsft. 

Aerodynamic Heating. One of the problems of very high-speed (hyper- 
sonic) flight is aerodynamic heating. If heat conduction is neglected 

Area 
xxx  Regions of 

high drag 

Body 

Area 

FIG. 6.10. Variation in cross-sectional FIG. 6.11. Variation in area with area rule 
area of airplane. design. 

(adiabatic flow), the temperature of a stagnation point is found from Eq. 
(6.6.7) by replacing ha by cPTo; then 

in which T is the free-stream static temperature of the fluid a t  velocity V 
relative to a body immersed in the fluid. To is the stagnation tempera- 
ture. From Eq. (6.1.8) and c = ~ L R T  

and 
c = d c , ( k  - 1)T . (6.9.2) 

By eliminating c, in Eqs. (6.9.1) and. (6.9.2), 

For air, k = 1.4, 
To = T(l  + 0.2M2) (6.9.4) 
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A Mach number of 5 results in a stagnation temperature six times the 
free-stream static temperature. 

In a real fluid, because of viscous action, the velocity a t  a solid bound- 
ary is zero relative to the boundary, and it  may be shown1 that the fric- 
tional heating in the boundary layer causes about the same temperature 
rise as the adiabatic compression given by Eq. (6.9.3). The severity of 
this aerodynamic heating is one of the dominant considerations in all 
advanced aircraft design. 

The aerodynamic heating problem can be solved in several ways, some 
of which are demonstrated in the design of current high-velocity missiles. 

One, the heat-sink approach, uses sufficient mass or coolant to absorb 
all the incoming heat without exceeding the temperature limits of the 
materials. A second method, ablation, is to make the leading edges out 
of a material that is a poor conductor so that the outer surface melts or 
sublimes while the inner surface remains cool. Both of these methods, 
particularly ablation, would not be suited for long flight (re-entry) times. 
Another attempt at a solution is by the use of transpiration, or "sweat 
cooling," in which a liquid, gas, or vapor is pumped through a porous 
surface, absorbing the heat and cooling by evaporation. This method 
works for flights of both long and short duration but has two principal 
disadvantages: (1) a materials problem and (2) a strong tendency to 

- cause transition from laminar to turbulent boundary-layer flow, the 
latter having the undesirable characteristic of transferring several times 
as much heat to the surface as the former. 

The. heat-sink design is best, exemplified by the blunt nose cones 
presently employed on intercontinental ballistic missiles (ICBM's). The 
blunt-nosed body is surrounded by a boundary layer of high-temperature 
air which will be partly dissociated (broken down into constituent 
elements or dissociation of a single element, e.g., Hz, 2H) and, to a 
lesser extent, ionized and will be a t  temperatures of 15,000°F at  ICBM 
velocities (M = 24). This hot gas c h  transfer heat to the body by 
convection and by radiation. The former is the prime contributor of 
heat, which the body can then dissipate by conduction and radiation. 
The convective heat transfer to the stagnation point of a blunt body is 
inversely proportional to the square root of the nose radius I/&. Thus 
a large nose radius, i.e., blunt rather than pointed, results in less con- 
vective heat transfer from the air to the surface, This design also 
provides more nose-cone material immediately adjacent to the highest 
temperature (the stagnation point), thus facilitating the conduction of 
heat away from this point. of the boundary layer from 
laminar to turbulent with the accompanying rise in convectiye heat 
H. Schlichting, "Boundary Lttyer Theory," 4th ed., chap. 15, .McGraw-Hill Book 

Company, Inc., New York, 1961. 
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transfer to the nose cone is prevented by giving the nose cone s highly 
polished surface. 

The use of the heat-sink design has a limitation imposed by the thermal 
conductivity of the heat-sink material. For the larger peak heat transfer 
associated with the highest speed missiles, the heat cannot be conducted 
away from the exposed face of the heat sink into the interior rapidly 
enough, and catastrophic melting occurs. This process of melting during 
re-entry is called ablation and is actually a type of self-regulating heat 
transfer by vaporization. 

Slow satellite re-entry usually requires additional insulating materia1 
behind the ablating skin to keep inner surface temperatures within limits 
which can be tolerated by tohe pay load. However, in the re-entry of a 
ballistic nose cone, involving much more severe heat transfer, the surface 
of the ablating material recedes a t  the same rate that the heat penetrates 
info the interior. Ablating materials that have been or are being studied 
include pure plastics, plastics reinforced with organic or inorganic fibers, 
silica and other oxides, carbon or graphite, gypsum, magnesium nitride, 
and' ceramics. 

The problem of aerodynamic heating is still far from being completely 
solved and will constitute a challenge in the field of aerophysics for years 
to come. However, the progress made toward a solution in the few short 
years since the problem has become important is positive proof that 

' 

better and better methods of reducing heat input and transferring more 
heat tq the surrounding space will be discovered in the very near future. 

6.10. Analogy of Shock Waves to Open-channel Waves. Both the 
oblique and normal shock waves in a gas have their counterpart in 
open-channel flow., An elementary surface wave has a speed in still 
liquid of dG, in which y is the depth in a wide, open' channel. When 
flow in the channel is such that V = V .  = 4 ,  the Froude number is 
unity and flow is said to be critical, i.e., a smdl  disturbance cannot be 
propagated upstream. This is analogous to sonic flow at the throat of a 
tube, with Mach number unity. For liquid velocities greater than 
Ve = fi the Froude number is greater than unity and the velocity 
is supercritical, analogous to supersonic gas flow. Changes in depth are 
analogous to changes in density in gas flow. 

The continuity equation in an open channel of constant width is 

Vy = constant 

and the continuity equation for compressible flow in a tube of constant 
cross section is 

Vp = constant 

Compressible fluid density p and open-channel depth y are analogous. 
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The same analogy is also present in the energy equation. The energy 
equation for a horizontal open channel of constant width, neglecting 
friction, is 

v* - 4- y = constant 
29 

After differentiating 
V d V + g d y = O  

By substitution from V .  = fi to eliminate g, 

d y  VdV + Vc2- = 0 
Y 

which is to be compared with the energy equation for compressible flow 
[Eq. (6.3.4)] 

dp  V d V + c 2 - -  = 0 (6.3.4) 
P 

The two critical velocities V ,  and c are analogous, and, hence, y and p 
are analogous. 

By applying the momentum equation to a small depth change in 
horizontal open-channel flow, and to a sudden density change in corn- 
pressible flow, the density and the open-channel depth can again be 
shown to be analogous. In effect, the analogy is between the Froude 
number and the Mach number. 

Analogous to the normal shock wave is the hydraulic jump, which 
causes a sudden change in velocity and depth, and a change in Froude 
number from greater than unity to less than unity. Analogous to the 
oblique shock-and rarefaction waves in gas flow are oblique liquid waves 
produced in a channel by changes in the direction of the channel walls, or 
by changes in floor elevation. 

A body placed in an open channel with flow at Froude number greater 
than unity causes waves on the surface that are analogous to shock and 
rarefaction waves on a similar (two-dimensional) body in a supersonic 
wind tunnel. Changes to greater depth are analogous to compression 
shock, and changes to lesser depth to rarefaction waves. Shallow water 
tanks, called ripple tanks, have been. used to study supersonic flow 
situations. 

PROBLEMS 

6.1. 3 lb, of a perfect gas, molecular weight 36, had its temperature increased 
3.2"F when 2000 ft-lb of work was done on it in an insulated constant-volume 
chamber. Determine c, and c,. 

6.2. A gas of molecular weight 48 has a c, = 0.372. What is c, for this gm? 
6.3. Calculate the specific heat ratio k for Probs. 6.1 and 6.2. 
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6.4. The enthalpy .of a gas is increased by 0.4 Btu/lb, OR when heat is added 
at constant pressure, and the internal energy is increased by 0.3 Btu/lb, OR 
when the volume is maintained constant and heat is added. Calculate the 
molecular weight. 

6.6. Calculate the enthalpy change of 3 Ib, carbon monoxide from pl = 20 
psia, TI = 40°F to pt = 60 psia, Ti! = 340°F 
6.6. Calculate the entropy changt: in Prob. 6.5. 
6.7. From Eq. (6.1.13) and the perfect-gas lam7, derive the equation of state for 

isentropic flow. 
6.8. Compute the enthalpy change per slug for helium from TI = O°F, pl = 

20 psia, to Ti = 100°F in an isentropic process. 
6.9. In an isentropic process 3 lb, oxygen with a volume of 4.0 f t 3  a t  60°F has 

its absolute pressure doubled. What is the final temperature? 
6.10. Work out the expression for density change with temperature for a 

reversible polytropic proceers. 
6.11. Hydrogen at  40 psia, 30°F, has its temperature increased to 100°F by s 

reversible polytropic process with n = 1.20. Calculate the final pressure. 
6.12. A gas has a density decrease of 13 per cent in a reversible polytropic 

process when the temperature decreases .from 115 to 40'2'. Compute the expo- 
nent n for the process. 

6.13. A projectile moves through water a t  60°F a t  3000 ft/see. What is its 
Mach number? 

6.14. If an airplane travels a t  500 mph at  sea level p = 14.7 psia, t = 6S°F, 
and .at the same speed in the stratosphere where t = -67OF, how much greater 
is the Mach number in the latter case? 

6.16. What is the speed of sound through hydrogen a t  100°F? 
6.16. Derive the equation for speed of a small liquid wave in an open channel 

by using the methods of Sec. 6.2 for determination of speed of sound (Fig. 6.12): 

6.17. By using the Euler equation with a loss term 

dp  V dV + p, + d (losses) = 0 

the continuity equation pV = constant, and c = show that for sub- 
sonic flow in a pipe the velocity must increase in the downstream direction. 

6.18. Isentropic flow of air occurs a t  a section of a pipe where p = 40 psi&, . 
t = 90°F, and V = 430 ft/sec. An object is immersed in the flow which brings 
the velocity to zero. What are the temperature and pressure a t  the stamation 
Point? 

6.19. What is the Mach number for the flow of Prob. 6-18? 
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6.20. How does the temperature and pressure a t  the 'stagnation point in isen- 
tropic flow compare with reservoir conditions? 

6.21. Air flows from a reservoir a t  160°F, 80 psia. Assuming isentropic flow, 
the velocity, temperature, pressure, and density at  a section where 

M = 0.60. 
6.22. Oxygen flows from a reservoir po = 100 psia, to = 80°F, to a 6-in.- 

diameter section where the velocity is 600 ft/sec. ~alculake the mass rate of 
flow (isentropic) and the Mach number, pressure, and temperature at  the &in. 
section. 

6.23. Helium discharges from a +in.diameter converging nozzle at  its maxi- 
mum rate for reservoir conditions of p  = 60 psia, t = 72°F. What restrictione 
are placed on the downstream pressure? Calculate the mass flow rate and 
velocity of the gas at  the nozzle. - 6.24. Air in a reservoir at 400 psi, t = 290°F, flows through a 2-in.-diameter 

.throat in a converging-diverging nozzle. For M = 1 at  the throat, calculate p, 
p, and T there. 

6.26, What must be the velocity, pressure, density, temperature, and diameter 
a t  a cross section of the aozale of Prob. 6.24 where M = 2.41 

6.26. Nitrogen in sonic flow at a 1-in.-diameter throat section has a pressure 
of 10 psia, t = 0°F. Determine the mass flow rate. 

6.27. What is the Mach number for Prob. 6.26 at a l&in.-diameter section in 
supersonic and in subsonic flow? 
-6.28. What diameter throat section is needed for critical flow of 0.6 lb,/sec 

carbon monoxide from a reservoir where p = 300 psia, t = 100°F? 
6.29, A supersonic nozzle is to be designed for air flow with M = 3 a t  the exit 

section, which is 6 in. in diameter and has a pressure of 1 psia and temperature of 
- 120°F. . Calculate the throat area and reservoir conditions. 

w g  6.30. In Prob. 6.29 calculate the diameter of cross section for M = 1.5, 2.0, 
- and 2.5. 

6.31. For reservoir conditions po = 120 psia, to = 120°F, air fiows through a 
converging-diverging tube with a 3.0-in.-diameter throat with a maximum Mach 
number of 0.80. Determine the mass rate of flow and the diameter, pressure, 

. velocity, and temperature a t  the exit where M = 0.50. 
--6,32. Calculate the exit velocity and the mass rate of flow of nitrogen from a 
reservoir p = 60 psia, 1 = 50°F) through a converging nozzle of 2 in. diameter 
discharging to atmosphere. 

6.33. Reduce Eq. (6.3.25) to i te  form for air flow. Plot p / p o  vs. A*/A for the 
range of p/po from 0.98 to 0.02. 

6.34. By utilizing the plot of Prob. 6.33, find the two pressure ratios for 
A*/A = 0.50. 

6.35. In a converging-diverging duct in supersonic flow of hydrogen, the 
throat diameter is 2.0 in. Determine the pressure ratios p / p o  in the converging 
and diverging ducts where the diameter is 2.5 in. 
- - 6.36. A shock wave occurs in a duct carrying air where the upstream Mach 
number is 2.0 and upstream temperature and pressure are 60°F and 2 psis. 
Calculate the Mach number, pressure, temperature, and velocity after the shock 
wave. 
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6.37. Show that entropy has increased across the shock wave of Prob. 6.36. . 6.38. Conditions immediately before a normal shock wave ih air flow are 
p ,  = 8 psia, ttl = 100°F, Vu = 1800 ft/sec. Find Mu, Md, pd, and ta, where the 
subscript d refers to conditions just downstream from the shock wave. 

6.39. For A = 0.16 ft2 in Yrob. 6.38, calculate the entropy increase acrorJs the 
shock wave in Btu per second per degree Rankine. 

6.40. Show, from thk equations of See. 6.6, that temperature, pressure, and 
density decrease in real, adiabatic duct flow for subsonic conditions and increase 
for supersonic conditions. 

6.41. What length of 2-in.diameter insulated duct, f = 0.012, is needed when 
oxygen enters a t  M = 3.0 and leaves a t  M = 2.0? 

6.42. Air enters an insulated pipe a t  M = 0.3 and leaves a t  M = 0.7. What 
portion of the duct length is required for the flow to occur a t  M = 0.5? 

6.43. Determine the maximum length, without choking, for the adiabatic flow 
of air in a 4-in.-diameter duct, f = 0.025, when upstream conditions are t = 
120°F, V = 700 ft/sec, p = 30 psia. What are the pressure and temperature a t  
the exit? 
46.44, What minimum size insulated duct is required to transport 2 fb,/sec 
nitrogenblOOO ft? The upstream temperature is 90°F) and the velocity there is 
200 ft/sec. j = 0.020. 

6.46. Find the upstream and downstream pressures in Prob. 6.44. 
4.46. N7hat is the maximum mass rate of flow of air from a reservoir, t = 60°F, 

through 19.15 ft of insulated 1-in.-diameter pipe, f = 0.020, discharging to 
atmosphere? p = 14.7 psia. 

6.47. In frictionless oxygen flow through a duct the following conditions pre- 
vail a t  inlet and outlet: V1 = 300 ft/sec; tl = -60°F; M2 = 0.4. Find the heat 
added per slug and the pressure ratio p l / p z .  
-6.48. In frictionless air flow through a 4-in.-diameter duct 0.4 lb,/sec enters 

at t = 30°F, p = 10 psia. How much heat, in Btu per pound mass, can be 
added without choking the flow? 

6.49. Frictionless flow through a duct with heat transfer causes the Mach 
number to decrease from 2 'to 1.8. k = 1.4. Determine the temperature, 
velocity, pressure, and density ratios. 

6.60. In Prob. 6.49 the duct is 2 in. square, p l  = 10 psia, and V 1  = 2000 ft/aec. 
Calculate the mass rate of flow for air flowing. 

6.61. How much heat must be transferred per pound mass to cause the Mach 
number to increase from 2 to 2.8 in a frictionless duct carrying air? VI = 

2000 ft/sec. 
), 6.62. Oxygen a t  VI = 1600 ft/scc, p = 12 psia, t = O°F flows in a 2-in-- 
diameter frictionIess duct. How much heat transfer per pound mass is neerled 
for sonic conditioni at the exit? 

6.63. Prove the density, pressure, and velocity trends given in Sec. 6.8 in the 
table of trends in flow properties. 

6 . M  Apply the first law of thermodynamics, Eq. (3.7.11, to isothermal flow- 
of a perfect gas in a horisontal pipeline, and develop an expression for the heat 
added per slug flowieg. 

6.66. Air is flowing a t  constant temperature through a 3-in.-diameter hori- 
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sontal pipe, j = 0.02. At the entrance 1'1 = 300 ft/sec, 1 = 100°F, pl = 30 psia. 
What is the maximum pipe length for this flow, and how much heat is transferred 
to the air per pound mass? 

6.56. Air a t  60°F flaws through a 1-in.diametc-r pipe at  constant temperature. 
At  the entrance V1 = 200 ft/sec, and a t  the exit Vz = 400 ft/sec. f = 0.016. 
What is the length of the pipe? 

6.67. 1 i  the pressure a t  the entrance of the pipe of Prob. 6.56 is 20 psia, what 
is the pressure at  the exit and what is the heat transfer to the pipe per second? 

6.68. Hydrogen enters a pipe from a converging nozzle a t  M = 1, p = 1 
psia, t = 0°F. Determine for isothermal fl6w the maximum length of pipe, in 
diameters, and the pressure change over this length. f = 0.010. 

6.69. Oxygen flows a t  constant temperature of 68°F from a pressure tank, 
p = 2000 psia, through 10 f t  of 0.01-ft ID tubing to another tank where p = 
1600 psia. f = 0.010. Determine the mass rate of flow. 

6.60. In isothermal flow of nitrogen a t  90°F, 2 lb,/sec is to be transferred 
100 f t  from a tank p = 200 psia to a tank p = 160 psia. What is the minimum 
size tubing, f = 0.016, that is needed? 

6.61. Specific heat a t  constant volume, is defined by 

(a)  k c p  @I (2) P ((c (g)m ( d )  ($,) (el none of 

these answers 

6.63. Specific heat at  constant pressure, for a perfect gas, is not given by 

(a) kcv (b)  (War), (c )  (ha - h l ) / ( T z  - TI) 
( d )  [Au + A(p/p) j /At  (e) any of these answers 

6.63. For a perfect gas, the enthalpy 

( a )  always increases owing to losses 
(b) depends upon the pressure only 
(c)  depends upon the temperature only 
(d) may increase while the internal energy decreases 
(e)  satisfies none of these answers 

6.64. The following classes of substances may be considered perfect gasw: 

(a) ideal fluids 
(b) saturated steam, water vapor, and air 
(c)  fluids with a constant bulk modulus of elasticity 
( d )  water vapor, hydrogen, and nitrogen at  low pressure 
(e) none of these answers 

6.65. c, and c, are related by 

(a) k = c,/c, (b)  k = C ~ C V  (c) k = CJC, ( d )  c, = cVk 
(e) none of these answers 

6.66. If c ,  = 0.30 Btu/lb, "R and k = 1.66, in foot-pounds per slug degree 
Fahrenheit, c, equals 
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( a )  0.582 (b)  1452 (c )  4520 (d) 7500 (e) none of these 
answers 

6.67. If c, = 0.30 Btu/lb, OR and k = 1.33, the gas constant in Btu per 
mass per degree Rankine is 

(a) 0.075 (b)  0.099 (c) 0.399 (d) 0.699 (e) none of these 
answers 

6.68. R = 62 ft-lb/lb, OR and c, = 0.279 Btu/lb, O F .  The isentropic 
exponent k is 

(a) 1.2 (b) 1.33 (cj 1.66 (d) 1.89 (el none of these 
answers 

6.69. The specific heat ratio is given by 

1 1 
(d ~ R F ~  (b )  1 + 2 (c) ' f R 1 - ev /R  c ,. 
( e )  nonc of these answers 

6.70. The entropy change for a perfectt gas is 

(a) always positive 
(b) a function of tenlperaturc only 
(c) ( A q ~ / T ) r e a  
(d) a thermodynamic property tlcpcnding upon temperature and pressure 
( e )  a function of internal energy only 

6.71. ;in isentropic process is always 

(a) irrrvcrsiblr and adiabatic 
(b) revcrsihlc :ind isothermal 
( c )  frictionless and adiabatic 
(d) frictionless and irreversible 
(e) nono of thcsc answers 

6.72. ' I ' h t x  rrlntion p = (*onstant pk holds only for those processes that are 

(a)  reversibIc poly tropic 
(b) iscntr~pic 
(c) frictionless isoth~rmal 
(d) adiabatic irreversible 
(e) nonc of those answers 

6.73. Tltc rc~vi~rsiblc polytropic process is 

(a) :icliabatic fric!tionless 
(b) given by p,/p = constant 
( c )  given by ppk = constant 
(d) given by p / p n  = constant 
(e) none of these answers 
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6.74. A reversible polytropic process could be given by 

TI 
(a) = (:yl (b) = (Er (c) 2 = (?$I 

(n- l ) ln 

(e) none of these answers 

6.76. In a reversible polytropic process 

(a) some heat transfer occurs 
(b) the entropy remains constant 
(c) the enthalpy remains constant 
(d) the internal energy remains constant 
(e) the temperature remains constant 

6.76. The differential equation for energy in isentropic %ow may take the form 

dl, (d )  V d V + p = O  

(e) none of these answers 

6.77. Select the expression that does not give the speed of a sound wave: 

6.78. The speed of a sound nave in a gas is analogous to 

(a) the speed of flow in an open channel 
(b) the speed of an elementary wave in an open channel 
(c )  the change in depth in an open channel 
(d) the speed of a disturbance traveling upstream in moving liquid 
(e) none of these answers 

6.79. The speed of sound in water, in feet per second, under ordinary condi- 
tions is about 

(a) 460 (b)  1100 (c) 4600 (d) 11,000 (e) noneofthese 
answers 

6.80. The speed of sound in an ideal gas varies directly as 

(a) the density 
( b )  the absolute pressure 
(c) the absolute temperature 
(d) the bulk modulus of elasticity 
(e) none of these anewers 
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6.81. Select the correct statement regarding frictionless flow: 

(a) In diverging conduits the velocity always decreases. 
(b )  The velocity is always sonic a t  the throat of s converging-diverging 

tube. 
(c) In supersonic flow the area decreases for increasing velocity. 
(d)  Sonic velocity cannot be exceeded a t  the throat of a converging- 

diverging tube. 
(e)  At Mach zero the velocity is sonic. 

6.82. In isentropic flow the temperature 

(a) cannot exceed the reservoir temperature 
(b) cannot drop, then increase again downstream 
(c) is independent of the Mach number 
(d) is a function of Mach number only 
( e )  remains constant in duct flow 

6.83. The critical pressure ratio for isentropic flow of carbon monoxide is 

(a) 0.528 (b)  0.634 (c) 0.833 (d) 1.0 (e) none of these 
answers 

6.84. Select the correct statement regarding flow through a converging-diverg- 
ing tube. 

(a) When the Mach number a t  exit is greator than unity no shock wave 
has developed in the tube. 

(b)  When the critical pressure ratio is exceeded, Mach number at the 
throat is greater than unity. 

(c) For sonic velocity at the throat, one and only one pressure or velocity 
can occur at a given section downstream. 

(d) The Mach number a t  the throat is always unity. 
(e) The density increases in the downstream direction throughout the 

converging portion of the tube. 

6.85. In  a normal shock wave in one-dimensional flow the 

(a) velocity, pressure, and density increase 
(b) pressure, density, and temperature increase 
(c) velocity, teiperature, and density increase 
(d) pressure, density, and momentum per unit time increase 
(e) entropy remains constant 

6.86. A normal shock wave 

(a) is reversible 
(b) may occur in a converging tube 
(c) is irreversible 
(d) is isentropic 
(e) is none of these answers 
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6.87. A normal shock wave is analogous to 

(a) an elementary wave in still liquid 
(b) the hydraulic jump 
(c) open-channel conditions with F < 1 
(d) flow of liquid through an expanding nozzle 
(e) none of these answers . 

6.88. Across a normal shock wave in a converging-diverging nozzle for adiabatic 
flow the following relationships are valid: 

(a) continuity and energy equations, equatioli of .state, isentropic 
relationship 

(b) energy and momentum equations, equation of state, isentropic 
reIationship 

(c )  continuity, energy, and momentum equations; equation of state 
( d )  equation of state, isentropic relationship, momentum equation, 

mass-conservation principle 
(e )  none of these answers 

6.89. Across a normal shock wave there is an increase in 

( a )  p, M ,  8 (b) p, s; decrease in M (c )  p ;  decrease in s, M 
( d )  p, M ;  no change in s ( e )  p, M ,  T 

6.90. A Fanno line is developed from the following equations: 

(a) momentum and continuity 
(b) energy and continuity 
(c )  momentum and energy 
(d) momentum, continuity, and energy 
( e )  none of these answers 

6.91. A Rayleigh line is developed from the following equations: 

( a )  momentum and continuity 
(b) energy and continuity 
(c )  momentum and energy 
(d) momentum, continuity, and energy 
(e) none of these answers 

6.92. Select the correct statement regarding a Fanno or Rayleigh line: 

(a) Two points having the same value of entropy represent conditions 
before and after a shock wave. 

(b) pV is held constant along the line. 
(c) Mach number always increases with entropy. 
(d) The subsonic portion of the curve is at higher enthalpy than the 

supersonic portion. 
(e) Mach 1 is located a t  the maximum enthalpy point. 
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6.93. Choking in pipe flow means that 

(a) a valve is closed in the line 
(b) a restriction in flow area occurs 
(c) the specified mass flow rate cannot occur 
(d) shock waves dways occur 
(e)  supersonic flow occurs somewhere in the line 

6.94. In  subsonic adiabatic flow with friction in a pipe 

(a)  V ,  M ,  s increase; p, T, p decrease. 
(b)  p, V ,  M ,  increase; T ,  p decrease. 
(c) p, M, s increase; V ,  T ,  p decrease. 
( d )  p, M, s increase; V ,  T ,  p decrease. 
(e)  T,  V ,  s increase; M ,  p, p decrease. 

6.96. In  supersonic adiabatic flow with friction in a pipe 

(a) V, M, s increase; p, T ,  p decrease. 
(b) p, T, s increase; p, V ,  M decrease. 
(c )  p, M, s increase; V, T ,  p decrease. 
( d )  p, T ,  p, s increase; V ,  M decrease. 
(e) p, p, s increase; V ,  M, T decrease. . 

6.96, Select the correct statement regarding frictionless duct flow with heat 
transfer: 

(a) Adding heat to supersonic flow increases the Mach number. 
(b) Adding heat to subsonic flow increases the Mach number. 
(c)  Cooling supersonic flow decreases the Mach number. 
(d) The Fanno line is valuable in analyzing .the flow. 
(e) The isentropic stagnation temperature remains constant along the 

pipe. 

6.97. Select the correct trends in flow properties for frictionless duct flow with 
heat transferred to the pipe, M < 1: 

(a) p, V  increase; p, T, To decrease. 
(b) V, To increase; p, p decrease. 
(c) p, p, T increase; V ,  TO decrease. 
( d )  V ,  T increase; p, p ,  To decrease. 
(e)  TO, V ,  p increase; p, T decrease. 

6.98. Select the correct trends for cooling in frictionless duct flow, M > 1 : 

(a) v increases; p, p, T,  To  decrease. 
( b )  p, V increase; p, T, To decrease. 
(c) p, p, V increase; T, T o  decrease. 
( d )  P ,  P increase; V ,  T ,  To decrease. 
(e)  V ,  T, TO increase; p, p decrease. 
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6.99. In  steady, isothermal flow in long pipelines, the significant value of M for 
determining trends in flow properties is 

( a ) l / k  1 ( d l  (44 ( e l k  

6,100. Select the correct trends in fluid properties for isothermal flow in du'ets 
for M < 0.5: 

(a> V increases; M,  To, p, po, p decrease. 
(b)  v, &I increase; To, p, PO, p decrease. 
(c) V, M, To increase; p, po, p decrease. 
(4 'v, To increase; M, p, po, p decrease. 
(e) V, M, PO, To increase; p, p decrease. 
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IDEAL-FLUID FLOW 

In the preceding chapters most of the relationships have been developed 
for one-dimensional flow, i.e., flow in which the average velocity a t  each 
cross section is used and variations across the section are neglected. 
Many design problems in fluid flow, however, require more exact knowl- 
edge of velocity and pressure distributions, such as in flow over curved 
boundaries along an airplane wing, through t.he passages of a pump or 
compressor, or over the crest of a dam. An understanding of two- and 
three-dimensional flow of a nonviscous, incompressible fluid provides the 
student with a much broader approach to many rcal fluid-flour ~it~uations. 
There are also analogies that permit. the same methods to apply to flow 
t h rough porous media. 

In  this chapter the prirlciples of irrot.at.iona1 flow of an ideal fluid are 
developed and applied to elementary flow cases. Aft.er the flow rcquire- 
ments are established, the vector operator V is introduced, Euler's equa- 
tion is derived, and the velocity potential is defined. Eulcr's cquation is 
t hcr~ integrated to obtain Bernoulli's equation, and stream functions and 
boundary conditions are developed. Iplow cases are then studied in 
three and two dimensions. 

7.1. Requirements for Ideal-fluid Flow. The Prandtl hypothesis, 
Scc. 5.5, states that., for fluids of low viscosity, the effects of viscosity are 
appreciable only in a narrow region surro~mding the fluid boundaries. 
For incompressible flow situations in which the boundary layer remains 
thin,  ideal-fluid results may be applied to Aow of a real fluid to a satis- 
factory degree of approximation. Converging or accelerating flow 
situations generally have thin boundary layers, but decelerating flow may 
have separation of the boundary layer and development of a large wake 
that is difficult to predict analytically. 

i in  ideal fluid must satisfy the following requirements: 
a. The continuity equation, Sec. 3.4, div q = 0, or 
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b. Newton's second law of motion at every point a t  every instant. 
c. Xeither penet.ration of fluid into nor gaps between fluid and bound- 

ary a t  Any solid boundary. 
If, in addition to requirements a, b, and c, the assumption of irrota- 

tional flow is made, the resulting fluid motion closely resembles real fluid 
motion for fluids of low viscosity, outside boundary layers. 

Using the above conditions, the application of Newton's second law to s 
fluid particle leads to the Euler equation which, together with the assump 
tion of irrotational flow, may be integrated to obtain the Bernoulli 
equation. The unknowns in a fluid-flow situation with given boundsries 

are velocity and pressure a t  every point. 
Unfortunately, in most cases it is impossible 
to proceed directly to equations for velocity 
and pressure distribution from the boundary 
conditions. 

7.2. The Vector Operator V. The vec- 
tor operator V (pronounced "del"), which 
may act on a vector as a scalar or vector 

F I G *  7.1- Notation for unit product or may act on a scalar function, 
n1 to area is most useful in developing ideal-fluid-flow 

dB. 
theory. 

Let U be the quantity acted upon by the operator. The operator V is 
defined by 

U may be interpreted as a, X a, where a is any vector, or as a scalar, 
say 4. Consider a small volume V with surface S and surface element 
dS. nl is a unit vector in the direction of the outwardly drawn normal 
n of the surface element dS (Fig. 7.1). This definition of the operathr is 
now examined to develop the concepts of gradient, divergence, and curl. 

When U is a scalar, say 4, the gradient of C#J is 

To interpret grad 4, the volume element is taken as a small prism of 
cross-sectional area dS, of height dn, with one end area in the surface 
+(x,y,z) = c and the other end area in the surface 

+ + (2) dn = constant 

(Fig. 7.2). As there is no change in 4 in surfaces parallel to the end faces, 
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by symmetry In1# dS over the curved surface of the element vanishes. 
Then 

and the right-hand side of Eq. (7.2.2) becomes 

and 

1 a4 lim - - a4 dndS = nl- 
v-0 dS dn dn an 

84 grad # = V+ = nl- an 

in which nl is the unit vector, drawn normal to the surface over which + is 
constant, positive in the direction of increasing 4.  grad 4 is a vector. 

FIG. 7.2. Surfaces of constant scalar +. 

By interpreting U as the scalar (dot) product with V, the di~ergence 
is obtained. Let U be q; then 

This expression has been used (in somewhat different form) in deriving 
the general continuity equation in Sec. 3.4. It is the volume flux per 
unit volume a t  a point and is a scalar. 

The curl V )( q is a more difficult concept that deals with the vorticity or 
rotation of a fluid element: 

With reference to Fig. 7.3, nl X q is the velocity component tangent to 
thc surfrice element dS at a point, since the vector product is a vector at 
right angles to the plane of the two constituent vectors, with magnitude 
P sin 8, as nl = 1. Then nl X q dS is an elemental vector that is the 
product of tangential velocity by the surface area element. Summed UP 
over the surface, then divided by' the volume, and the limit taken as 
V'+ 0 yields the curl q at a point. 
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A special type of fluid motion is examined to demonstrate the con- 
nection between curl and rotation. Let a small circular cylinder of fluid 
be rotating about its axis-as if i t  were a solid (Fig. 7.4), with angular 
velocity t, which is a vector parallel to the axis of rotation. The radius 
of the cylinder is r and the length 1. n~ x ' ~  a t  every point on the curved 
surface is a vector parallel to the axis having the magnitude = ~ r .  
Over the end areas the vector nl X q is equal and opposite at correspond- 

FIG. '1.3. Piotation for curl of the velocity Plo. 7.4. ~ m a i  RGid cylinder rotating as 
vector. .a kiid. 

ing points on each end and contributes nothing to the curl. Then, since 
ds = Zr da, 

/ 

Equation (7.2.5) now yields 
1 

curl q = lim - %r*h = 20 
v + ~  ar22 

showing that for solid-body rotation the curl of the velocity a t  a point is 
twice the rotation vector. If one considers the pure translation of a small 
element moving as a solid, then the curl q is always zero. As any rigid 
body motion is a combination of a translation and a rotation, it  is noted 
that  the curl of 'the velocity vector is always twice the rotation vector. 

A fiuid, however, not only may translate and rotate but may also 
deform. The definition of curl q applies, and hence the rotation of or fluid 
a t  a point is defined by 

When o = 0 throughout certain portions of a fluid, the motion there is 
described as irrotational. The vorticity vector curl q has certain charac- 
teristics similar to the velocity vector q. Vortex lines are everywhere 
tangent to the vorticity vector, and vortex tubes, comprised of the vortex 
lines through a small closed curve, follow certain continuity principles; 
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viz., the product of vorticity by area of the tube must remain constant 
along the vortex t.ube, or div (curl q) = V (v X q) = 0. 

-. / 
The operator V acts like a vector but 

must be applied to a scalar or a vector 
t.o have physical significance. 

Scalar Components of Vector Relatwn- 
ships. Any vector may be decomposed 
into three components along mutually 
perpendicular axes, say the x, y, x-axes. 
The component is a scalar, as only 
magnitude and sign (sense) is needed 
to specify it;  f, = - 3 indicates the 
x-component of a vector f acting in the 
- x-direction. FIG. 7.5. Change of vector a corre- 

The vector may be expressed in sponding to change in normal direc- 
tion. 

terms of its scalar components by use 
of the fixed unit vectors i, j, k parallel to the x, y, x-axes, respectively: 

a = ia, + ja, + ka, 

The unit vectors combine as follows: 

i . i =  j . j = k . k =  1 i .  j  = j . k  = k . i  = 0 
i x j = . k  j X k = i  k X i = j =  - i X k  etc. 

The scalar product of two vectors a b is 

a b = (ia. + j h  + ka.) (ib, + jb. + kb.) 
= asbe + a$, + a,b, 

The vector product of two vectors a X b is 

a X b = (ia, + ja, + ka,) X (ib, + jb, + kb,) 
= i(%bz - a&,) + j(uzb, - a&,) + k(a,b, - a&,) 

I t  is conveniently written in determinant form: 

To find the scalar components of V+, first consider a V4 (Fig. 7.5) 
in which a is any vector. By Eq. (7.2.3) 

a X b = 

a8 0 is the angle between a and nl and nl = 1. A change do in magnitude 

i j k  
a, a, a, 
b, b, b, 
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of a corresponds to a change in n, given by da cos B = dn, hence 

and 

The scalar components of V+ are 

and 

The operator V, in terms of its scalar components, is 

The scalar product, say V q, becomes 

as in Sec. 3.4. 
The vector V X q, in scalar components, is 

The quantities in parentheses are vorticity components, which are twice 
the value of rotation components, w,, w,, w,, so 

7.3. Euler's Equation of Motion. In Sec. 3.5 Euler's equation was 
derived for steady flow of a frictionless fluid along a streamline. The 
assumption is made here that the flow is frictionless, and a continuum is 
assumed. Kewton's second law of motion is applied to a fluid partide of 
mass p 8 f .  Three terms enter, the body force, the surface force, and 
mass times acceleration. Let F be the body force (such as gravity) per 
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unit mass acting on the particle. Then Fp6V is the body-force -vector. 

The surface force, from the preceding section, is - alp dS if the fluid is Is 
frictionless or nonviscous, so only normal forces act. The mass times 
acceleration term is p6V dqldt.. After assembling these terms, 

Now, dividing through by the mass of the element and taking the limit a.s 
6F + 0, 

1 dq F -  - lim 1h nlpd8 = 
P sv-.o 

By use of the operator V 

This is Euler's equation of motion in vector notation. By forming the 
scalar product of each term with i, then j, then k, the following scalar 
component equations are obtained 

in which X, Y, Z are the body force components per unit mass. The 
acceleration terms may be expanded. In  general u = u(x,y,z,t) ,  so 
(see Appendix B) 

For du/dt to be the acceleration component of a particle in the x-direc- 
tion, the x, y, z-coordinates of the moving particle become functions of 
time, and du may be divided by dt, yielding 

du au d~ au dy au dz au a , = -  =-, 
dt ax d t + % ; i i t  Z Z +  x 

But 

and 
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Similarly 

If the extraneous force is conservative, i t  may be derived from a potential 
(F = - gradQ): 

an x = - -  an y = - -  an z =  -- 
ax a~ a~ (7.3.6) 

In  particular, if gravity is the only body force acting, 0 = gh, with h a 
direction measured vertically upward; thus 

Remembering that p is constant for an ideal fluid, substituting Eqs. 
(7.3.3) to (7.3.7) into Eqs. (7.3.2), 

The first three terms on the right-hand side of the equations are "con- 
vective acceIerationV terms, depending upon changes of velocity with 
space. The last term is the "local acceleration,'' depending upon velocity 
change with time at a point. 

Natural Coordinates in Two-dimensional Flow. Euler's equations in 
two dimensions are obtained from the general component equations by 
setting w = 0 and d / d x  = 0; thus 

By taking particular directions for the x- and y-axes, they may be reduced 
to a form that aids in understanding them. If the x-axis, called the 
s-axis, is taken parallel to the velocity vector a t  a point (Fig. 7.6)) it is 
then tangent to the streamIine through the point. The y-axis, called the 
n-axis, is drawn toward the center of curvature of the streamline. The 
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velocity component u is u,, and t.he component v is v,. Asv, is zero at fhe 
point, Eq. (7.3.1 1) becomes 

i a av, av, - - - ( p  + yh) = us- +- 
P as  as at 

Although u, is zero at the point (s,n), its rates of change with respect to s 
and t are not necessarily zero. Equation (7.3.12) bccomes 

By considering the velocity at s and at  s + 6s along the streamline, v, 

4h 

FIG. 7.6. Notation for natural coordinates. 

changes from zero to Sv,. With T the radius of curvature of the stream- 
line a t  s, from similar triangIes (Fig. 7.6) 

By substituting into Eq. (7.3.14) 

For steady flow of an incompressible fluid Eqs. (7.3.11) and (7.3.15) 
may be written 

and 
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Equation (7.3.16) may be integrated with respect to s to produce Eq. 
(3.6.2), with the constant of integration varying with n, i.e., from one 
streamline to another. Equation (7.3.17) shows how pressure head varies 
across streamlines. With v. and r known functions of n, Eq. (7.3.17) may 
be integrated. 

Example 7.1 : A container of liquid is rotated with angular velocity o about a 
vertical axis as a solid. Determine the variation of pressure intensity in the 
liquid. 

n is the radial distance, measured inwardly, n = -r, dn = -dr, and u, = or. 
By integrating Eq. (7.3.17) 

1 
- - ( p  + rh) = - / + constant 

P 

1 w?r2 - (P + ~ h )  = + constant 
P 

To evaluate the constant, if p = po when T = 0 and h = 0, then 

which shows that the pressure is hydrostatic along a vertical line and increases 
as the square of the radius. Integration of Eq. (7.3.16) shows that the pressure 
is constant for a given h and v,, i.e., along a streamline. 

7.4. Irrotational Flow. Velocity Potential. In this section i t  is shown 
that the assumption of irrotational flow leads to the existence of a velocity 
potential. By use of these relations and the assumption of a conservative 
body force, the Euler equations may be integrated. 

The individual particles of a frictionless incompressible fluid initially at 
rest cannot be caused to rotate. This may be visualized by considering a 
small free body of fluid in the shape of a sphere. Surface forces act nor- 
mal to its surface, since the fluid is frictionless, and therefore act through 
the center of the spbere. Similarly the body force acts at the mass center. 
Hence no. torque can be exerted on the sphere, and it 'remains without 
rotation. Likewise, once an ideal fluid has rotation, there is .no way of 
altering it, a4 no torque can be exerted on an elementary sphere of the 
fluid. 

By aesuming that the fluid has no rotation, i-e., i t  is irrotational, 
curl q = 0, or from Eq. (7.2.11) 

These restrictions on the velocity must hold a t  every point (except special 
singular points or lines). The first equa.tion is the irrotational condition 
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for two-dimensional flow. It is the condition that the differential 
expression 

is exact, say 

The minus sign is arbitrary. It is a convention that causes the value of C$ 
to decrease in the direction of the velocity. By comparing terms in 
Eq. (7.4.2), u = -&+/ax, v = -a+/ay. This proves ,the existence, in 
two-dimensional flow, of a function # such that its negative derivative 
with respect to any direction is the velocity component in that direction. 
It may also be demonstrated for three-dimensional flow. In vector form 

q = - grad + = -V#J 
is equivalent to 

The assumption of a velocity potential is equivalent to the assumption of 
irro tational flow, as 

curl (- grad +) = -V X V$ = 0 (7.4.5) 

because V X V .= 0. This is shown from Eq. (7.4.4) by cross differentia- 
tion : 

au . aa4 at) az4 - = - -  - = - -  
a~ ax ay ax a y  ax 

proving a v / a ~  = a u / a y ,  etc. 
S ~ b s t i t u t i o ~  of Eqs. (7.4.4) into the continuity equation 

yields 

In vector form this is . 

and is written V2# = 0. Equation (7.4.6) or (7.4.7) i s  the Loplace 
equation. Any function + that satisfies the Laplace equation is a possible 
irrotational fluid-flow case. As there are an infinite number of solutions 
to the Laplace equation, each of which satisfies certain flow-bund~ries, 
the main problem is the selection of the proper function for the particular 
flow case. 
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Bceause 4 appears to the first power in each term of Eq. (7.4.6), it is a 
linear equation, and the sum of two solutions is also a solution; e.g., if 
and are solutions of Eq. (7.4.6), then 41 + $2 is a solution; thus 

then 
v2(+1 + 42) = v241 + V2#2 = 0 

Similarly if +I is a solution, C+1 is a solution if C is constant. 
7.5. Integration of Euler's Equations. Bernoulli Equation. Equation 

(7.3.8) may be &arranged so that every term contains a partial deriva- 
tive with respect to x. From Eq. (7.4.1) 

and from Eq. (7.4.4) 
au a a4 
-r = --- 
at ax at 

Making these substitutions into Eq. (7.3.8) and rearranging, 

Similarly for the y- and z-directions 

The quantities within the parentheses are the same in Eqs. (7.5.1) to 
(7.5.3). Equation (7.5.1) states that the quantity is not a function of X, 
since the derivative with respect to x is zero. Similarly the other equ* 
tions show that the quantity is not n funct.ion of y or z. Therefore it 
can be a function of t only, say F( t )  : 

In  steady flow a4//at = 0 and F ( t )  becomes a constant E: 
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The available energy is everywhere constant throughout the fluid. This 
is Bernoulli's equation for an irrotational fluid. 

The pressure term may be separated into two parts, the hydrostatic 
pressure p. and the dynamic pressure p d ,  so that. p = pa + p,. 
inserting in Eq. (7.5.5), 

The first two terms may be written 

with h mehured vertically upward. The expression is a constant, since 
it expresses the hydrostatic law of variation of pressure. These two 
terms may be included in the constant E. After dropping the sub- 
script on the dynamic pressure, there remains 

This simple equation permits the variation in pressure to be determined 
if the velocity is known, or vice versa. Assuming both the velocity qo 
and the dynamic pressure po to be known at one point, 

Example 7.2: A submarine moves through water a t  a speed of 30 ft/sec. At tt 
point A on the submarine 5 f t  above the nose, the velocity of submarine relative 
to the water is 50 ft/sec. Determine the dynamic pressure difference between 
this point and the nose, and determine the difference in total pressure between 
the two points. 

If the submarine is stationary and the water is moving past it, the velocity at 
the nose is zero, and the velocity at A is 50 ft/sec. By selecting the dynamic 
pressure a t  infinity as zero, from Eq. (7.5.6) 

For the nose 

For point A 
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and 

Therefore the difference in dynamic pressure ia 

The difference in total pressure may be obtained by applying Eq. (7.5.5) to 
point A and to the nose n, 

\ 

Hence 
- 

pl - p,, = p - ghA + qn2 - "') = 1.935 ( -50 - 50') = - 2740 lb/ftz 
2 2 

It may also be reasoned that the actual pressure difference varies by 5y from the 
dynamic pressure difference since A is 5 ft above the nose, or -2418 - 5 X 62.4 
= - 2740 1b/ft2. 

7.6. Stream Functions. Boundary Conditions. Two stream functions 
are defined: one for two-dimensional flow, where all lines of motion are 

FIG. 7.7. Fluid region showing the posi- FIG. 7.8. Flow between two points in a 
five flow direction used in the definition fluid region. 
of a stream function. 

parallel to a fixed plane, say the xy-plane, and the flow is identical in 
each of these planes, and the other for three-dimensional flow with axial 
symmetry, i.e., a11 flow lines are in planes intersecting the same line or 
axis, and the flow is identical in each of these planes. 

Two-dimensional Stream Function. If A , .  P represent two points in 
one of the flow planes, e.g., the xy-plane (Fig. 7.7)) and if the plane has 
unit thickness, the rate of flow across any two lines ACP, ABP must 
be the same, if the density is constant and no fluid is created or destroyed 
within the region,. as a consequence of continuity. Now, if A is a bed 
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point and P a movable point, the flow rate across any line connecting 
the two points is a function of the position of P. If this function is $, 
and if it  is taken as a sign convention that it denotes the flow rate from 
right to left as the observer views the line from A looking toward P, then 

is defined as the stream function. 
If $1, $2 represent the values of stream function at points P I ,  P2 

(Fig. 7.8), respectively, then $2 - $1 is the flow across PIPa and is 
independent of the location of A. Taking another point 0 in the place 
of A ,changes the values of $1, 92 -by the same amount, viz., the flow 
across OA. Then $ is indeterminate to the extent of an arbitrary 
constant. 

FIG. 7.9. Selection of path to show relation of velocity'componente to stream function. 

The velocity components u, v in the x-, y-directions may be obtained - 
from the stream function. In Fig. 7.9a, the flow 6# across A P  = 6y, 
from right to left, is -u dy, or 

and similarly 

In  words, the partial derivative of the stream function with respect to any 
direction gives the velocity component + 90' (counterclockwise) to that 
direction. In plane polar coordinates 

1 a9 2),= --- a# 
r ae V 8  = - 

dr 
from Fig. 7.9b. 

When the two points PI, P2 of Fig. 7.8 lie on the same streamline, 
~i - $2 = 0 as there is no flow across a streamline. Hence, a streamline 
is dven by $ = constant. By comparing Eqs. (7.4.4) with Eqs. (7.6.1) 
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and (7.6.2)) 

Eqs. (7.6.3) a stream function may be found for each velocity 
potential. If the velocity potential satisfies the haplace equation, then 
the stream function also satisfies it. Hence, the stream function may be 
considered as velocity potential for another flow case. 

Stokes' Stream Function for Axially Symmetric Flow. In any one of the 
planes through the axis of symmetry select two points A, P, such that A 
is fixed and P is variable. Draw a line connecting A P ,  The flow through 
the surface generated by rotating AP about the axis of symmetry is a 
function of the position of P. Let this function be 2 4 ,  and let the axis 
of symmetry be the x-axis of a cartesistn system of reference. Then @ is 
a function of x ~ n d  G, where 

is the distance from P to the x-axis. The surfaces rC, = constant are 
stream surfaces. 

To find the relation between $ and the velocity components u, vf 
parallel to the x-axis and the &-axis (perpendicular to x-axis), respectively, 
a similar procedure is employed to that for two-dimensional flow. Let 
PP' be an infinitesimal step first parallel to ij and then to x ;  i.e., PP' = 6 8  
and then PP' = Sx. The resulting relations between stream function 
and velocity are given by 

- 2 ~ i j  Sij u = 2 ~  6# and 2 ~ i j  Sx v' = 2 ~ 6 $  

Solving for u, v', 
1 a$ a ,  v, =- -  u = - -- a az, ij ax 

The same sign convention is used as in the two-dimensional case. 
The relations between stream function and potential function are 

I n  three-dimensional flow with axial symmetry 6 has the dimensions 
L3T-l, or volume per unit time. 

The stream function is used for flow about bodies of revolution that 
are frequently expressed most readily in spherical polar coordinates. 
Let r be the distance from the origin and 8 be the polar angle; the meridian 
angle is not needed because of axial symmetry. Referring to Fig. 7.10a 
and b, 

2n-r sin 8  ST ve = 2r && 
- 3 ; l r t . s i n 8 r 8 8 v r =  2 ~ 8 9  
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from which 

ve = ' 3 vr = - 1 a$ 
r sin 9 ar r2 sin 8 de 

and 

--- a@ a$ w-r2-  - = - s ine -  a@ 
sin 8 a9 dr ar a 

These expressions are useful in dealing with flow about spheres, ellipsoids, 
and disks and through apertures. 

FIG. 7.10. Displacement of P to show the relation between velocity components and 
Stokes' stream function. 

FIG. 7.11. Notation for boundary condi- FIG. 7.12. Notation for boundary condi- 
tion at a fixed boundary. tion at a moving boundary. 

Boundary Conditions. At a fixed boundary the velocity component 
normal to the boundary must be zero at  every point on the boundary 
(Fig. 7.11): 

qenl = 0 (7.6.8) 

nl is a unit vector normal to the boundary. In scalar notation this is 
easily expressed in terms of the velocity potential 

at all points on the boundary. For a moving boundary (Fig. 7.12), 
where the boundary point has the velocity V, the fiuid-velocity component 
normal to the boundary must equal the velocity of the boundary normal 
to the boundary; thus 

q*nl  = V*nl  (7.6.10) 
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For two fluids in contact, a dynamical boundary condition is required; 
viz., the pressure must be continuous across the interface. 

A stream surface in steady flow (fixed boundaries) satisfies the condi- 
tion for a boundary and may be taken as a solid boundary. 

7.7. The Flow Net. In t.w-o-dimensional flow the flow net is of great 
benefit; it is taken up in this section. 

The line given by b(x,y) = constant. is called an equipotential line: 
It is a line along which the value of (the ve1ocit.y potential) does not 
change. Since velocity v, in any direction s is given by 

v g =  - - =  - A 4  lim - 
a s  A-o AS 

and A+ is zero for two closely spaced points on an equipotential line, the 
velocity vector has no component in the direction defined by the line 
through the two points. I n  the limit as As -+ 0 this proves that there 
is no velocity component tangent to an equipotentiaI line and, therefore, 

the velocity vector must be every- 
where normal to an equipotential line 
(except at singuIar points where the 
velocity is zero or infinite). 

The line #(x,y) = constant is a 
st reamlinc; and is everywhere tangent 
to the velocity vector. Streamlines 
and cquipotential lines are therefore 
orthogonal, i.e., they intersect a t  right 
angles, except at singular points. A 
$ow net is composed of a family of 
equipo tcntial lines and a correspond- 

FIG. 7.13. Ele~nents of a flow net. 
ing family of streamlines with the 
constants varying in arithmetical pro- 

gression. It is customary to let the change in constant between adjacent 
equipotential lines and adjacent streamlines be the same, e.g., Ac. In 
Fig. 7.13, if the distance between streamlines be An and the distance 
between equipotential lines be As  a t  some small region in the flow net, 
the approximate velocity zt, is then given in terms of t.he spacing of the 
equipotential lines [Eq. (7.4.4)] 
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or in terms of the spacing of streamlines [Eqs. (7.6.1) and (7.6.2)j 

These expressions are approximate when Ac is finite, but when Ac becomes 
very small the expressions become exact and yield velocity a t  a point. 
As both velocities 'referred to are the same, the equations show that 
As = An, or that the flow net consists of an orthogonal grid that reduces 
to perfect squares in the limit as the grid size approaches zero. 

Once a flow net has been found by any means to satisfy the boundary 
conditions and to form an orthogonal net reducing to perfect squares 
in the limit as the number of lines is increased, the flow net is the only 
solution for the particular boundaries as uniqueness theorems in hydro- 
dynamics prove. In steady flow when the boundaries are stationary, the 
boundaries themselves become part of the flow net as they are stream- 
lines. The problem of finding the flow net to satisfy given fixed bound- 
aries may be considered purely as a graphical exercise, i.e., the construc- 
tion of an orthogonal system of lines that compose the boundaries and' 
that reduce to perfect squares in the limit as the number of lines increase. 
This is one of the practical methods employed in two-dimensional- 
flow analysis, although it  usually requires many attempts and much 
erasing. 

Another practical method of obtaining a flow net for a particular set 
of fixed boundaries is the e b c t ~ i c  andogy. The boundaries in a model are 
formed out of strips of nonconducting material mounted on a flat non- 
conducting surface, and the end equipotential lines are formed out of a 
conducting strip, e.g., brass or copper. An electrolyte (conducting 
liquid) is placed a t  uniform depth in the flow space and a voltage potential 
applied to the two end conducting strips. By means of a probe and a 
voltmeter, lines with constant drop in voltage' from one end are mapped 
out and plotted. These arc equipotential lines. By reversing the process 
and making the flow boundaries out of conducting material and the end 
equipotential lines from nonconducting material, the streamlines are 
mapped. 

The relaxation method1 numerically determines the value of potential 
function at points throughout the Row, usually located a t  the intersections 
of a square grid. The Laplace equation is written as a difference equa- 
tion, and i t  is shown that the value of potential function at  a grid point 
is the average of the four values at the neighboring grid points. Near 
the boundaries special formulas are required. With values known at 

C.-S. Yih, Ideal-fluid Flow, p.4-67 in "&ndbook of Fluid Dynamics," ed. by 
V. L. Streeter, McGraw-Hill Book Company, Inc., New York, 1961. 
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the bounciaries, each grid point is computed based on the assumed values 
at the neighboring grid points, then these values are improved by repeat- 
ing the process until the changes are within the desired accuracy. This 
method is particularly convenient for solution with high-speed digital 
computers. 

Use 01 the Flow Net. After a flow net for a given boundary configura- 
tion has been obtained, it may be used for all irrotational flows with 
geometrically similar boundaries. It is necessary to know the velocity 
a t  a single point and the pressure a t  one point. Then, by use of the 
flow net, the velocity can be determined at every other point. AppIi- 
cation of the Bernoulli equation [Eq. (7.5.7)] produces the dynamic 
pressure. If the velocity is known, e.g., at A (Fig. 7-13), An or A s  may 
be scaled from the adjacent lines. Then Ac " An v,  " As v,. With the 
constant Ac determined for the whole grid in this manner, measurement 
of As or An a t  any other point permits the velocity to be computed there, 

7.8. Three-dimensional Flow Cases. Because of space limitations 
only a few three-dimensional cases are considered. They are sources and 
sinks, the doublet, and uniform flow singly or combined. 

Three-dimensional Sources and Sinks. A source in three-dimensional 
flow is a point from which fluid issues at a uniform rate in all directions. 
It is entirely fictitious, as there is nothing resembling it  in nature. That 
does not, however, reduce its usefulness in obtaining flow patterns. 
The "strength" of the source rn is the rate of flow passing through any 
surface enclosing the source. 

As the flow is outward and is uniform in all directions, the velocity, a 
distance r from the 'source, is the strength divided by the area of the 
sphere through the point with center at the source, or 

Since v ,  = -atp/ar and ve = 0, hence a+/dO = 0, and the velocity 
potential can be found. 

and 

A negative source is a sink. Fluid is assumed to flow uniformly into a 
sink and there disappear. 
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ThreedimensimI Doublets. A doublet, or double source, is a combina- 
tion of a source and a sink of equal strength, which are allowed to approach 
each other in such a manner that the product of their strength and the 
distance between them remains a constant in the limit. , 

Rct. 7.14. Auxiliary coordinate systems used for Rankine body. 

Referring to Fig. 7.14, a source of strength m is located at (a,O) and 
a sink of the same strength a t  (-a,O). Since each satisfies the Laplace 
equation, their sum also satisfies it : 

By the law of sines and Fig. 7.14, 

f 1 T 2  - - = - -  2a 
sin 0 2  sin el sin (el - e2) 

- - 2a 
2 sin +(el - e2) cos +(el  - e2) 

m the angle between r2 and rl at  P is el - 02. Solving for TZ - r l ,  

a(sin O1 - sin 194 
7 2  - T i  = 

sin +(el - e2)  cos $(el - e2) 
- - 2a cos +(01 + e2) 

cos +(el - e,) 
From Eq. (7.8.2) 

m rz - rl 2am cos +(el + 8 2 )  # = -  - - 
r1r2 h l r 2  cos ;(el - 0,) 

- - -  P cos $(el + 8 2 )  
rlr2 cos +(el - 02)  

In the limit as a approaches zero, e2 = o1 = 8, r2 = rl = r, and 

P 4 = cos e (7.8.3) 
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which is the velocity potential for a. doublet1 st t.he origin with axis 
in the positive 2-direction. Equat.iolr (7.8.3) may be converted into t.he 
stream function by Eqs. (7.6.7). The stream function is 

Streamlines and equipotential lines for the doublet are drawn in 
Fig. 7.15. 

FIG. 7,15. Streamlines and equipotential lines for a three-dimensional doublet. , 

Source in a i?nijonn Stream. The radial velocity v, due to a source 
at the origin , 

L. M. ~ i l n c ~ h o m ~ s o n ,  "Theoretical Hydrodynamics," p. 414, Macmillan dc 
Co., Ltd., London, 1938. 
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which, when multiplied by the surface area of the sphere concentric 
with it, gives the strength rn. Since the flow from the source has axial 
symmetry, Stokes' stream function is defined. For spherical polar 
coordinates, from Eqe. (7.6.7), 

with Eq. (7.8.1) 
w m - s o  - = - -  
a# sin # 

ar 
Integrating, 

is the stream function for a source at the origin. Equipotential lines and 
streamlines are shown in Fig. 7.16 for constant increments of 4 and $. 

FIG. 7.16. Streamlines and'equipotential lines for a source. 

A uniform stream of fluid having a velocity U in the negative 2-direc- 
tion throughout space is given by 

Integrating, 
4 = Ux = Ur cos 6 
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The &ream function is found in the same manner as above to be 

The flow network is shown in Fig. 7.17. 

[Chap. 7 

FIG. 7.17. Streamlines and equipotcntial lines for uniform flow in negative xdirection. 

Combining the uniform flow and the source flow, which may be 
accomplished by adding the two velocity potentials and the two stream 
functions, gives 

m 
Q,=- 

4n.T 
+ Ur cos 8 

The resulting flow is everywhere the same as if the separate velocity 
vectors were added for each point in space. 

A stagnation point is a point in the fluid where the velocity is zero. 
The conditions for stagnation point, where spherical polar coordinates 
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are used and when the flow has axial symmetry, are 

u r =  --- d 4 - 0  u , = - - - =  1 8 4  0 
dr r de 

Use of these expressions with Eqs. (7.8.8) gives 

m eCr,- U cos 8 = 0 U sin 8 = 0 

which are satisfied by only one point in space, viz., 

Substituting this point back into the stream function gives IL. = m / k ,  

FIG. 7.18. Streamlines and equipotentiaI lines for a half body. 

which is the stream surface through the stagnation point. The equation 
of this surface is found from Eqs. (7.8.8) : 

27r U cos 8 + - r2  sinZ 8 = 1 
rn 

The flow under consideration is steady, as the velocity potential does 
not change with the time. Therefore, any stream surface satisfies the 
conditions for a boundary: The velocity component normal to the stream 
surface in steady flow is always zero. Since stream surfaces through 
stagnation points usually split the flow, they are frequently the most 
interesting possible boundary. This stream surface is plotted in Fig. 
7.18. Substituting oi = r sin 0 in Eq. (7.8.9), the distance of a point 
(+,O) from the x-axis is given by 
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which shows that 3 has a maximum value as 8 approaches T ,  

i.e., as r approaches infinity. Hence, G = d m / r ~  is an asymptotic 
surface to the dividing stream surface. Equation (7.8.9) may be 
expressed in the form 

f'ro~n which the surface is easily plotted. Such a figure of revolution is 
v:~Ilcd u half C.cd?y, as it. extends to negative infinity, surrounding the 
I iclgtlt ivc .r-axis. 

The pressure at, ally point, i-e., the dynamic pressure from Eq. (7.5.7) 
15 

whr~re the dynamic pressurc at infinity is taken as zero. q ia the speed 
:it any point. Evaluating q from Ecls. (7.8.8), 

1 a+ m2 m u cos e 
q 2 ( ( )  = u 2 + - -  1 h 2 r 2  2rr2 

and 

p = p2( m cos 0 - 2rr u 1 h 2 r 4  "' u2 > 
from which the pressure can he found for any point except the origin, 
~vhich is a singular point. Substitluting Eq. (7.8.10) into Eq. (7.8.11), 
t h t h  pressure is given in terms of r for any point on the half body; thus 

This shows that the dynamic pressure approaches zero as r increases 
downstream along the body. 

Source and Sink of Equal Strength in a Uniform Stream. Rankim! 
Bodies. h sourcc of strength m, located at (a,@, has the velocity potential 
: k t .  any point I' given by 

whvrc r l  is the distance from (a,O) to P ,  as shown in I'ig. 7.14. Similarly, 
the potential function for a sink of strength m at (-a,O) is 
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Since both and #z satisfy the Laplace 
equation, their sum will a.lso be a 
mlu tion, 

Because rl ,  r2 are measured from 
different points, this expression must 
be handled differently from the usual 
algebraic equation. 

The stream functions for the source 
and sink may also be added to give 
the stream function for the combined 
flow 

The stream surfaces and equipotential 
surfaces take the form shown in Fig. 
7.19, which is plotted from Eqs. 
(7.8.13) and (7.8.14) by taking con- 

FIG. 7.19. Streamlines and squipoten- 
stant values of + and 9. tial lines for a source and sink of equal 

Superposing a .uniform flow of ve- strength. 
locity U in the negative x-direction, 
# = Ux, # = +UG2, the potential and stream functions for source and 
sink of equal strength in a uniform flow (in direction of source to sink) 
are 

m /1, = +Ur2 sin2 9 + - (cos 81 - cos 02)  
4T 

(7.8.16) 

As any stream surface may be taken as a solid boundary in steady 
flow, the location of a closed surface for this flow case will represent flow 
of a uniform stream around a body. Examining the stream function, for 
x > a and 81 = 8 2  = 0 = 0, $ = 0. For x < -a and el = 92 = 6 = r ,  
rL = 0. Therefore, /1, = 0 must be the dividing streamline, since the 
x-axis is the axis of symmetry. The equation of the dividing stream- 
line is, from Eq. (7.8.16) 
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where ij = r sin 8 is the distance of a point on the dividing stream surface 
from the x-axis. Since cos 91 and cos 62 are never greater than unity, 

cs~lnot exceed dm/n~, which shows that the surface is closed and 
hence can be replaced by a solid body of exactly the same shape. By 
changing the signs of m and U the flow is reversed and the body should 
change end for end. From Eq. (7.8.17) it is seen that the equation is 
unaltered; hence, the body has symmetry with respect to the plane 

- 

x = 0. It is necessarily a body of revolution because of axial symmetry 
of the equations. 

FIG. 7.20. Rankine body. 

To locate the stagnation points C, D (Fig. 7.20), ~vhicah must bc on the 
x-axis, i t  is known that the velocity is along the x-axis (it is a streamline). 
From Eq. (7.8.15) the velocity potential +, for points on the x-axis is 
given by 

since 

Differentiating with respect. to x and setting the result equal to zero, 

where xo is the x-coordinate of the stagnation point. This gives the 
point C(xo,O) (a trial solution). The half breadth h is determined as 
follows: From Fig. 7.20 

d I = ? r - a  0 2  = a! 
where 

a 
cos a! = 

d h 2  4- a2 
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Substituting into Eq. (7.8.17), 

from which h may be determined (also by trial solution). 
Eliminating m/ U between Eqs. (7.8.18) and (7.8.19) 

the value of a may be obtained for a predetermined body (so, h, specified). 
Hence, U can be given any positive value and the pressure and velocity 
distribution can be determined. . 

I n  determining the velocity a t  points throughout the region it  is 
convenient to find the velocity a t  each point due to each component of 
the flow, i.e., due to the source, the sink, and the uniform flow, separately, 
and add the components graphically or by ij- and x-components. 

Bodies obtained from source-sink combinations with uniform flow are 
called Rankine bodies. 

Translation of a Sphere in an Infinite Fluid. The velocity potential for 
a solid moving through an infinite Az 
fluid otherwise at rest must satisfy 
the following ~ondit ions:~ 

1. The Laplace equation, V2d = 0 . 

everywhere except singular points. 
2. The fluid must remain at  rest 

at infinity; hence, the space deriva- 
tives s f  4 must vanish at. infinity. 

3. The boundary conditions at the 
surface of the solid must be satisfied. 

For a sphere of radius a with center u .- 

at the origin moving with velocity 
U in the positive x-direction, the FIG. 7.21. Sphere translating in the 

positive z-direc tion. 
velocity of the surface normal to 
itself is U cos 8, from Fig. 7.21. The fluid velocity normal to the surface 
is -a+/&; hence the boundary condition is 

The velocity potential for the doublet [Eq. (7.8.3)] 

p cos 9 
# = r2 

' C .  C. Stokes, "Mathematical and Physical Papers," vol. 1, pp. 38-43, Cambridge 
'Cniversity P~*ess, London, 1880. 
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satisfies ~ 2 +  9 0 for any constant value of r .  Substituting it into the 
boundary condition 

which is satisfied for r = a if p = Ua3/Z. It may also be noted that the 
velocity components, -a+/& and - (l/r) (a#/aee), are zero at infinity. 
Therefore, 

satisfies all the conditions for translation of a sphere in an infinite fluid. 
This case is ollc o f  unsteady Row, solved for the instant when the center 

of the sphere is a t  the origin. Be- 
cause this equation has been special- 
ized for a particular instant, the. 
pressure distribution cannot be found 
from it by use of Eq. (7.5.7). Stream- 
lines and equipotential lines for the 
sphere are shown in Fig. 7.22. 

The stream function for this flow 
case is 

Ua3 + =  -- 
2r sin2 0 (7.8.21) 

Steady Flow of an Infinite Fluid 
around a Sphere. The unsteady-flow 

FIG. 7.22. Streamlines and equipoten- case in the preceding section may be 
tial lines for a sphere moving through converted into a steady-flow case by 
fluid. superposing upon the flow a uniform 
stream of magnitude U in the negative z-direction. To prove this, add 
4 = Ux = UT cos B to the potential function [Eq. (7.8.20)l; thus 

Ua3 # = - cos 8 + ur cos 8 2r2 

The stream function corresponding to this is 

Then from Eq. (7.8.23), # = 0 when 8 = 0 and when T = a. Hence, the 
stream surface $ = 0 is the sphere r = a, which may be taken as a 
solid, fixed boundary. Streamlines and equipotential lines are shown 
in Fig. 7.23. Perhaps mention should be made that the equations give 8 

flow pattern for the interior portion of the sphere ati well. No fluid passes 
through the surface of the sphere, however. 
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The velocity at any point on the surface of the sphere is 

The stagnation points are at e = 0, 8 = r. The maximum velocity )U 

FIG. 7.23. Streamlines and equipotential lines for uniform flow about a sphere at rest. 

occurs a t  8 = u/2. The dynamic pressure distribution over the surface 
of the sphere is 

pU2 p = - (1 - 3 sin2 8)  2 

for dynamic pressure of zero at infinity. 
7.9. Two-dimensional Flow Cases. Two simple flow cases that may be 

interpreted for flow along straight boundaries are first examined, then the 
source, vortex, doublet, uniform flow, 
and flow around a cylinder, with and 
without circulation, are discussed. ? 

\ 

Flow around a Corner. The po- , 
tential function 

+ = A(x2 - y2) 

has as its stream function 

@ = 2Axy = Ar2 sin 20 . 
in which r and 6 are polar coordinates. i 

I t  is plotted for equal increment : 
changes in + and# in Fig. 7.24. Con- ; - - .  
ditions at t.he origin are not defined, 
as it is a stagnation point. As any FIG. 7.24. Flow net for flow around 90" 

bend. 
of the streamlines may be taken as 
fixed boundaries, the plus axes may be taken as walls, yielding flow into a . - - 

90' corner. The equipotential lines are hyperbolas having axes coincident 
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with the coordinate axes and asymptotes given by y = 3- x. The stream- 
lines are rectangular hyperbolas, having y = f n: as axes and the coordi- 
nate axes as asymptotes. From the polar form of the stream function it 
is noted that the two lines 6 = 0 and 6 = ?r/2 are the streamline $ = 0. 
' 

This case may be generalized to yield flow around a corner with angle a. 
By examining 

r e  r e  4 = Ar*la cos - 9 = Ar*Ia sin - 
a tr! 

i t  is noted the streamline @ = 0 is now given by 8 = 0 and 8 = a. Two 
flow nets are shown in Fig. 7.25, for the cases a = 225" and a = 45". 

FIG. 7.25. Flow net for flow'along two inclined surfaces. 

,Source. A line .normal to the xg-plane, from which fluid is imagined to 
flow uniformly in all directions at right angles to it, is a sijiirce. It 
appears as a point in the customary two-dimensional flow diagram. The 
total flow per unit time .per unit length of line is called the strength of 
the source. As the flow is in radial lines from the source, the velocity 
a distance r from the source is determined by the strength divided by the 
flow area of the cylinder, or 2 4 2 ~ 7 ,  in which the strength is 2rp Then, 
since by Eq. (7.4.4) the velocity in any direction is given by the negative 
derivative of the velocity potential with respect to the direction, 

and 

is the velocity potential, in which in indicates the natural logarithm 
and r is the distance from the source. This value of 4 satisfies the 
Laplace equation in two dimensions. 
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The streamlines are radial lines from the source, i.e., 

From the second equation 
$ = -ps  

Lines of. constant + (equipotential lines) -and constant $ are shown in 
Fig. 7.26. A sink is a negative source, a line into which fluid is flowing. 

FIG. 7.26. Flow net for source or vortex. 

Vortex. In examining the flow case given by selecting the stream 
function for the source as a velocity potential, 

which also satisfies the Laplace equation, it is seen that the equipotential 
lines are radial lines and the streamlines are circles.   he velocity is in a 
tangential direction only, since a4/at = 0. It is q = - ( l / r )a+/M = ~ / r ,  
since r 68 is the length element in the tangential direction. 

In referring to Fig. 7.27, the flow along a closed curve is called the circula- 
t h .  The flow along an element of the curve is defined as the product 
of the length element 68 of the curve and the component of the,i'elocity 
tangent to the curve, q cos a. Hence the circulation I? around' a closed 
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path C is 
r = Ic cos a (18 = 9 .  ds 

The distribution given by the equation 4 = -pB is for the 
portex and is such that the circulation around any closed path that con- 
tains the vortex is constant. The value of the circulation is the strength 
of the vortex. By selecting any circular path of radius r to determine 
the circulation, a = 0°, q = p / r ,  and ds = r  do; hence, 

the point T = 0, q = p / r  goes to infinity; hence, this point is called a 
singular point. Figure 7.26 shows the equipotential lines and streamlines 
for the vortex. 

FIG. 7.27. Sotation for definition of FIG. 7.28. Kotation for derivation of two- 
circulation. dimensional doublet. 

Doublet. The two-dimensional doublet is defined as the limiting case 
as a source' and sink of equal strength approach each other so that the 
product of their strength and the distance between t.hem remains a 
constant p, called the strength of the doublet. The axis of the doublet 
is from the sink toward the source, i.e., the line along which they approach 
each other. 

In Fig. 7.28 a source is located at (u,O) and a sink of equal strength 
at  (-  a,O). The velocity potential for both, at some point P, is 

with r l ,  ra measured from source and sink, respectively, to thc point P. 
Thus, 2nm is the strength of source and sink. To take the limit as a 
:~pproaches zero for 2am = p.  the form of the expression for 4 must be 
altered. The terms rl and r2 may bc expressed in terms of the polar 
coordinates r, 0 by the cosine law, as follo~vs: 

2 a 
r12 = r2 + a2 - 2ar eos B - r2  [ I  + (:) - 2 - C O S ~  

r  I 
a 

rp2 = r2 $- a2 + 2ar cos 8 = r2 I 
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After rewriting the expression for 9, with these relations, 

?n 4 = - - (In r12 - lnr2" = - - a 
2 2 ( 1  r2 + 1 [ I  + ( )  - 2 - r ,,. , I 

By using the series expression, 
x2 x3 x4 l n ( l + x ) = x - - + - - -  + . . .  
2 3 4  

= - ' 2 (($ - 2 (;) cos 0 - ; [(;Y - 2(;) cos e l 2  

[(')' - 2 (;) cos *I3 - - [(y + 2 (;) C 0 8  s] + f  r 
1 a + : [($ + 2 (:) cos t9I2 - - 3 [ (  r + 2 (:) cos 61' + - -1 

After simplifying, 

cos e cos e cos e 4 a 2 C O S ~  e 
0 = 2am[l + (:)ly - (;yT - 7 

Now, if 2am = p and if the limit is taken as a approaches zero, 

p cos 6 
@ = 

T 

which is the velocity potential for a two-dimensional doublet at the origin, 
with axis in the +xrdirectian. 

By using the relations 

84 1 a+ o r =  - - =  ---.I 

a a# 
a?- T ae U e =  - - = -  r ae ar 

for the doublet 
w = -  p ~ 0 s  0 a+ 
ae - = - sin 8 

T r r2 
After integrating, 

f i=  - p sin 0 
r 

is the stream function for the doublet. The equations in cartesian 
coordinates are 

After rearranging, 
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The lines of constant 4 are circles through the origin with centers on the 
and the streamlines are circles through the origin with centers on 

the y-axis, as shown in Fig. 7.29. The origin is a singular point where 
the velocity goes to infinity. 

FIG. 7.29. Equipotential lines and streamlines for the two-dimensional doublet. 

Uniform Flow. Uniform flow in the'  -x-direction, u = - U ,  is 
expressed by 

a $ =  ux $ =  Uy 
In  polar coordinates, 

4 = Ur cos 8 $ = Ur sin 8 

Flow around a Circular Cylinder. The addition of the flow due to a 
doublet and a uniform flow results in flow around a circular cylinder; thus 

cos 8 p sin 8 4 = Ur cos 8 + $ = Ur sin 8 - 
T r 

As a streamlir~e in steady flow is a possible boundary, the streamline 
rL. = 0 is given by 

which is satisfied by 0 = 0, r ,  or by the value of r that makes 
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If this value is r = a, which is a circular cylinder, then 

p = Uag 

and the streamline $ = 0 is the x-axis and the circle r = a. The potential 
and stream functions for uniform flow around a circular cylinder of 
radius a are, by substitution of the value of p, 

+ =  ~ ( r + : ) o o s ~  $ =  (I ( r - -  :) sin B 

for the uniform flow in the -x-direction. The equipotential lines and 
streamlines for this case are shown in Fig. 7.30. 

FIG. 7.30. Equipotentisl lines and streamlines for flow around a circular cylinder. 

The velocity a t  any point in the flow can be obtained from either the 
velocity potential or the stream function. On the surface of the cylinder 
the velocity is necessarily tangential and is expressed by W/dr for 
r = a; thus 

Thc velocity is zero (stagnation point) a t  8 = 0, ?r and has maximum 
values of 2U at 6 = =/2,31/2. For the dynamic pressure zero a t  infinity, 
with Eq. (7.5.7) for po = 0, q o  * -  - U, 

which holds for any point in the plane except the origin. For points on 
the cylinder 

The maximum pressure, which occurs at the stagnation points, pU2/2; 
and the minimum pressure, at e = r / 2 ,  h / 2 ,  i s  -3pU2/2. The points 
of zero dynamic pressure are given by sin 9 = f x, or 0 f */6) f &/6- 
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A pitot-static tube is made by providing three openin@ in a 
cylinder, at 0° and ?3O0, as the difference in pressure between o0 and 

30' is the dynamic pressure U2/2. 
The drag on the cylinder is shown to be zero by integration of the 

z-component of the pressure force over the cylinder; thus 

Similarly, the lift force on the cylinder is zero. 
Fbw around a Circular Cylinder with Circulation. The addition of a 

vortex to the doublet and the uniform flow results in flow around a 
circular cylinder with circulation, 

The streamline I(, = (r/27r) In a is the circular cylinder r = a, and, at 
great distances from the origin, the velocity remains u = - U, showing 

FIG. 7.31. Streamlines for flow around a circular cylinder with circulation. 

that flow around a circular cylinder is maintained with addition of the 
vortex. Some of the streamlines are shown in Fig. 7.31. 
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The veloc'ity at the surface of the cylinder, necessarily tangent to the 
cylinder, is 

Stagnation points occur where q = 0 ;  that is, 

I 
sin 0 = - - 

47r Ua 

When the circulation is 4sUa, the two stagnation points coincide at r = a, 
8 = - ~ / 2 .  For larger circulation, the stagnation point moves away 
from the cylinder. 
The pressure a t  the surface of the cylinder is 

pU2 [I  - (2 sin B + Guy] P = T  

The drag again is zero. The lift. however, becomes 

Lift = - r p a s i n  Bdt? 

- - - - / g - [ I  p a  U2 - (2sinO+-)l]sin0d@ = piTC 
r 

2 o 2 ~ a  U 

showing that the lift is directly proportional to the density of fluid, the 
approach velocity U, and the circulation r. This thrust, which acts 
at right angles to the approach velocity, is referred to as the Magnus 
eflcct. The Flettner rotor ship was designed to utilize this principle by 
the mounting of circular cyIinders with axes vertical on a ship, and then 
mechanically rotating the cylinders to provide circulation. Air flowing 
around the rotors produces the thrust a t  right angles to the relative 
wind direction. The close spacing of streamlines along the upper side 
of Fig. 7.31 indicates that the velocity is high there and that the pressure 
must then be correspondingly low. 

The airfoil develops its lift by producing a circulation around it  due to 
its shape. I t  may be shown1 that the lift is pUr for any cylinder in two- 
dimensional flow. The angle of inclination of the airfoil relative to the 
approach velocity (angle of attack) greatly affects the circulation. For 
large angles of attack, the flow does not follow the wing profile, and the 
theory breaks down. 

Example 7.3: A source with strength 6 cfs/ft and a vortex with strength 12 ft2/ 
scc are located at the origin. Determine the equation for velocity potential and 
stream function. What are the velocity components at x = 2, y = 3? 

' V. L. Streeter, "Fluid Dynamics," pp. 137-155, McGraw-Hill Uook Company, 
Inc., New York, 1948. 
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The velocity potential for the source-is . 

[Chap. 7 

and the corresponding stream function is 

The velocity potential for the vortex is 

and the corresponding stream function is 

By adding the respective functions 

and 

The radial and tangential velocity components are 

PROBLEMS 

7.1. Compute the gradient of the following twodimensional scalar functions: 

(a) +=-fln(x9+y2) (b) + = U x + V y  (c) #=2xy - 

7.2. Compute the divergence of the gradients of # found in frob. 7.1. 
7.3. Compute the curl of the gradients of # found in Prob. 7.1. 
7.4. For q - i(x + y) + j(y + z) + k(x2 + yZ + z2) find the components of 

rotation a t  (1,1,1). 
7.6. Derive the equation of continuity for two-dimensional flow in polar coordi-. 

nates by equating the net efflux from a small polar element to zero (Fig. 7.32). 
It is 
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7.6. The z-component of velocity is u = x2 + z2, and the y-component is 
v = yZ + zZ. Find the simplest z-component of velocity that satisfies continuity. 

7.7. A velocity potential in two-dimensional flow is # = x + x2 - gS. Find 
the stream function for this flow. 

7.8. The twodimensional stream function for a flow is $ = 9 + 3x - 42/ + 
'ixy. Find the velocity potential. 

7.9. Derive the partial differential equations relating 4 and $ for twodimen- 
sional flow in plane polar coordinates. 

7.10. From the continuity equation in polar coordinates in Prob. 7.5, derive 
the Laplace equation in the same coordinate system. 

7.11. Does the function 4 = 1/r satisfy the Laplace equation in two dimen- 
sions? In threedimensional %ow is i t  satisfied? 

7.12. By use of the equations developed in Prob. 7.9 find the two-dimensional 
stream function for # = ln r. 

7.13. Find the Stokes stream function for t$ =. l / r .  
7.14. For the Stokes stream function $ = 13r2 sin2 8, find 9 in cartesian 

coordinates. 
7.15. In Prob. 7.14 what is the discharge between stream surfaces through the 

points r = 1, 8 '= 0 and r = 1, 8 = ~ / 4 ?  
7.16. Write the boundary conditions for steady flow around a sphere, of radius 

a, at it;s surface and a t  infinity. 
7.17. A circular cylinder of radius a has its center a t  the origin and is translat 

ing with velocity V in the y-direction, Write the boundary condition in terms 
of 4 that is to be satisfied at its surface and at  infinity.' 

7.18. A source of strength 40 cfs is located a t  the origin, and another.sburce of 
strength 20 cfs is located a t  (1,0,0). Find the velocity components u, U, w at 
( - 1 ,O,O) and (1,l) 1). 

7.19. If the dynamic pressure is zero a t  infinity in Prob. 7.18, for pq= 3-00 
slugs/ft3 calculate the dynamic pressure at ( - 1,0,0) and (1,l ,I). 

7.20. A source of strength m a t  the origin and a uniform flow of 10 ft/sec are 
combined in three-dimensional flow so that a stagnation point occurs a t  (1,O)o)- 

.Obtain the velocity potential and stream function for this flow case. 
7.21. By use of symmetry obtain the velocity potential for a three-dimensional 

sink of strength 50 cfs located 3 ft from a plane barrier. 
7.22. Equations are wanted for flow of a uniform stream of 10 ft/sec around a 

Rankine body 4 ft long and 2 f t  thick in a transverse direction. 
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7-83. A source of strength 10 cfs a t  (1,0,0) and a sink of the same strength a t  
(-1,0,0) are combined with a uniform flow of 30 ft/sec in the -x-direction. 
Determine the size of Rankine body formed by this flow. 

7.24. A sphere of radius 2 ft, with center a t  the origin, has a uniform flow of 
20 ft/sec in the -xdirection flowing around it. At (4,0,0) the dynamic pressure 
is 100 lb/ft2 and p = 1.935 slugs/ft3. Find the equation for pressure distribution 
over the surface of the sphere. 

7.26. By integration over the surface of the sphere of Yrob. 7.24 show that the 
drag on the sphere is zero. 

7.26. h two-dimensional flow what is the nature of the flow given by 4 = 
7s + 2 In r? 

7.27. A source discharging 20 cfs/ft is located at  (- 1,0), and a sink of twice 
the strength is located a t  (2,O). For dynamic pressure a t  the origin of 200 lb/ft2, 
p = 1.8 slugs/ft3, find the velocity and dynamic pressure a t  (0, I )  and (1 , l ) .  

7.28. Select the strength of doublet needed to portray a uniform flow of 
50 ft/sec around a cylinder of radius 2 ft. 

7.29. Develop the equations for flow around a "Rankine cylindet" formed by a 
source, an equal sink, and a uniform flow. 

7.30. In the Rankine cylinder of Prob. 7.29, if 2a is the distance between source 
and sink, their strength is 27rp, and U is the uniform velocity, develop an equation 
for length of the body. 

7.31. A circular cylinder 8 f t  in diameter rotates a t  600 rpm. When in an 
air stream, p = 0.002 slug/ft3, moving a t  400 ft/sec, what is the lift force per 
foot of cylinder, assuming 90 per cent efficiency in developing circulation from 
the rotation? 

7.32. An unsteady-flow case may be transformed into a steady-flow case 

(a) regardless of the nature of the problem 
(b) when two bodies are moving toward each other in an infinite fluid 
(c) when an unsymmetrical body is rotating in an infinite fluid 
(d), when a single body translates in an infinite fluid 
(e) under no circumstances 

7.33. Select the value of # that satisfies continuity. 

(a) x2 + y2 (b) sin s (c)  In (x + y) (dl x + y 
(e) none of these answers 

7.34. The units for Euler's equations of motion are given by * 
(a) force per unit mass 
(b) velocity 
(c) energy per unit weight 
(d) force per unit weight 
(e) none of these answers 

7.36. Euler's equations of motion can be integrated when it is assumed that 

(a) the continuity equation is satisfied 
(b) the fluid is incompressible 
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(c) a velocity potential exists and the density is constant 
( d )  the flow is rotational and incompressible 
( e )  the fluid is nonviscous 

7.36. Euler's equations of motion are a mathematical statement that a t  every 
point 

( a )  rate of mass i d o w  equals rate of mass outflow 
(b )  force per unit mass equals acceleration 
(c) the energy does not change with the time 
(d) Newton's third law of motion holds 
(e) the fluid momentum is constant 

7.37. In irrotational flow of an ideal fluid 

(a) a velocity potential exists 
(b)  all particles must move in straight lines 
(c) the motion must be uniform 
( d )  the flow is always steady 
(e) the velocity must be zero a t  a boundary 

7.38. . A  function t$ that satisfies the Laplace equation 

(a) must be linear in x and y 
(b)  is a possible case of rotational fluid flow 
(c) does not necessarily satisfy the continuity equation 
( d )  is a possible fluid-flow case 
( e )  is none of these answers 

7.39 If and 92 are each solutions of the Laplace 'equation, which of the 
following is also a solution? 

(a) 41 - 242 (b) 4142 (c)  # 1 / $ 2  (d) h2 (e) none of 
these answers 

7.40. Select the relation that must hold if the flow is irrotational. 

(a) h / a p  + a v / d x  = 0 (b)  d u / a ~  = dv /dy  
(c) a 2 ~ / a x 2  + a2v/ay2 = o (dl d ~ / a g  = av /ax  
(e) none of these answers 

7.41. The Bernoulli equation in steady ideal fluid flow states that 

( a )  the velocity is constant along a streamline 
(b)  the energy is constant along n streamline but may vary acrose 

streamlines 
(c) when the speed increases, the pressure increases 
(4 the energy is constant throughout the fluid 
(e)  the net flow rate into any small region must be zero 

7.42. The Stokes stream function applies to 

(a) all three-di qensiona1 ideal-ff uid-flow cases 
(b) ideal (nonviscous) fluids only 
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( c )  irrohtional flow only 
(d) cases of axial symmetry 
(e )  none of these cases 

7.43. The Stokes stream function has the value # = 1 a t  the origin and the 
value J/ = 2 a t  (1,1,1), The discharge through the surface between these 
points is 

( a )  1 (b)  .rr ( c )  2u ( d )  4 ( e )  none of these answers 

7.44. Select the relation that must hold in trio-dimensional, irrotational flow. 

( a )  a+/ax = a w a y  (b)  a # / a ~  = -a+iay (c) a+/ay = a + / a ~  
(d) d+/dx = a+/ay (e) none of these aqswers 

7.46. The two-dimensional stream function 

(a) is constant along an equipotential surface 
(b) is constant along a streamline 
(c) is defined for irrotational flow only 
(d) relates velocity and pressure 
(e) is none of these answers 

7.46. In two-dimensional flow $ = 4 ftZ/sec a t  (0,2) and + = 2 ft2/sec at  (0,l). 
The discharge between the two points is 

(a) fromlefttoright (b) k c f s / f t  ( c )  2cfs/ft (a) l/?rcfs/ft 
(e) none of these answers 

7.47. The boundary condition for steady flow of an ideal fluid is that the 

( a )  velocity is zero at  the boundary 
(b) velocity component normal to the boundary is zero 
(c)  velocity component tangent to the boundary is zero 
(d) boundary surface must be stationary 
( e )  continuity equation must be satisfied 

7.48. An equipotential surface 

(a) has no velocity component tangent to i t  
(b )  is composed of streamlines 
(c) is a stream surface 
(d) is a surface of constant dynamic pressure 
(e) is none of these answers 

7.49. A source in twodimensional flow 

(a) is a point from which fluid is imagined to flow outward uniformly in 
all directions 

(b )  is a line from which fluid is imagined to flow uniformly in all direc- 
tions at  right angles to it 

(c) has a strength defined as the speed a t  unit radius 
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( d )  has streamlines that are concentric circles 
(e) has a velocity potential independent of the radius 

7.60. The two-dimensional vortex 

(a) has a strength given by the circulation around a path enclosing the 
vortex 

(b)  has radial streamlines 
(c) ips a zero circulation around it 
( d )  has a velocity distribution that varies directly as the radial distance 

from the vortex 
(e) creates a velocity distribution that has rotation throughout the fluid 





P A R T  TWO 

Applications of Fluid Mechanics 

In Part One the fundamental concepts and equations have been 
developed and illustrated by many examples and simple applica- 
tions. Fluid resistance, dimensional analysis, compressible flow, 
and ideal fluid flow have been presented. In Part Two several of 
the important fields of application of fluid mechanics are explored: 
turbomachinery, measuring of flow, closed conduit, and open- 
channel flow. 





TURBOMACHINERY 

The turning of a Auid stream or the changing of the magnitude of its 
velocity requires that forces be applied. When a moving vane deflects a 
Auid jet and changes its momentum, forces are exerted between vane and 
jct and work is done by displacement of the vane. Turbomachines make 
use of this principle: The axial and centrifugal pumps, blowers, and 
compressors, by continuously doing work on the fluid, add to its energy; 
the impulse, Francis, and propeller turbines and steam and gas turbines 
continuously extract energy from the Auid and convert it into torque on a 
moving shaft; the fluid coupling and the torque converter, each con- 
sisting of a pump and a turbine built together, make use of the fluid b 
transmit power smoothly. The designing of efficient turbomachinea 
utilizes both theory and experimentation. A good design of given size 
and speed may be readiIy adapted to other speeds and other geometrically 
similar sizes by application of the theory of scaled models, as outlined in 
Sec. 4.5. 

Similarity relationships are first discussed in this chapter by considera- 
tion of homologouts units and specific speed. Elementary cascade theory 
is next taken up, before considering the theory of turbomachines. Water 
turbines and pumps are next considered, followed by blowers, centrifugal 
compressors, and fluid couplings and torque converters. The chapter 
closes with a discussion of cavitation. 

8.1. Homologous Units. Specific Speed. In utilizing scaled mode18 
in the designing of turbomachines, geometric similitude is required as 
well as geornetricaIly similar velocity vector diagrams at entrance to or 
exit from the impellers. Viscous effects must, unfortunately, be neg- 
lected, as it is generally impossible to satisfy the two above- conditions 
and have equal Reynolds numbers in model and prototype. TWO gee- 
metrically similar units having similar velocity vector diagrams are 
homologous. They will also have geometrically similar streamlines. 

Tbe velocity 'vector diagram in Fig. 8.1 at  exit from a pump impeller 
may be used to formulate the condition for similar streamline patterns. 

343 
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The blade angle is p, u is the peripheral speed of the impeller a t  the end 
of the vane or blade, t9 is the velocity of fluid relatitle to tho vane, and 
v is the absolute velocity leaving the impeller, the vector w m  of u and V ;  

IT, is t.he radial component of V and is proport.ional to the discharge; 
a is the angle which the ubsolr~te velocity makes with u, the tangentia.1 
dirccrtion. Accordii~g to geomrtric similitude, ,8 must be the same fol. 
two units, and for similar streamlines a! must also be the same in each 
C BSC. 

I t  is convei~ient to express t.he fact  that CY is to be the same in any 
o f  tt scries of turbomachines, culled homologous units, by relating the 
speed of rotation .IT, t hc imp~ l l c r  di:tmetcr (or other characteristic 

I 

FIG. 8.1. Velocity vector diagram for exit from a pump impeller. 

dimension) D, and the flow rate Q. For constant a, V, is proportional ' 

to V ( V ,  = V sin a) and u is proportional to V,. Hence the conditions 
for constant a in a homologous series of units may be expressed as 

The discharge & is proportional to V,D2, since any cross-sectional flow 
area is proportional to D2. The speed of rotation N is proportional to 
)LID. I3y inserting these values 

Q - =  
ND3 constant 

expresses the condit,ion in which geometrically similar units are homolo- 
gous. 

The discharge Q through homologous units may be related to head H 
and cross-sectional flow path A by the orifice formula 



in which C d ,  the discharge coefficient, varies slightly with Reynolds 
number and so actually causes a small change in efficiency with siR 
in a homologous series. The change in discharge with Reynolds number 
is referred to as "scale effect." The smaller machines, having smaller 
hydraulic radii of passages! will have lower Reynolds numbers and cor- 
respondingly higher friction factors; hence they are less efficient. The 
change in efficiency from model to prototype may be from 1 to 4 per cent. 
However, in the homologous theory, the scale effect must be neglected, 
so an empirical correction for change in efficiency with size is used [see 
Eq. (8.5.1)]. As A-D2, the discharge equation may be 

Q 
Dl .\/if = constant 

After eliminating Q between Eqs. (8.1.1) and (8.1.2) 

H m= constant 

Equations (8.1.1) and (8.1.3) are most useful in determining performance 
characteristics for one unit from those of a homologous unit of different 
size and speed.l 

Example 8.1: A prototype tcst of a mixed-flow pump with a 72-in.-diameter 
discharge opening, operating at 225 rpm, resulted in the following characteristics: 

lThe  homologous requirement Q / N P  is dimensionless; the other requirement 
(assuming geometric similitude) may be made dimensionless by retaining g. In 
Q * CA the dimensionless ratio is & / A  a or Q/Da GH. Elimination 
of & between this relation and Q / N P  yields H/(N*DZ/g)  as a second dimensionless 
requirement. The characteristic curve for a pump in dimensionless form is the plot 
of &/ND3 as abscissa against H / ( N 2 D 2 / g )  as ordinate. This curve, obtained from 
tests on one unit of the series, then applies to all homoIogous units, and may be 
converted to the usual characteristic curve by selecting desired values of N and D. 
As power is proportional to  r Q H ,  the dimensionless power term k 
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What size and svnchronous s p e d  of homologous pump should be used to produce 
200 cfs a t  60 it head at  point of best efficiency? Find the characteristic curves 
for this case. 

Subscript 1 refers to the 72-in. pump. For best efficiency H I  = 45, Q1 = 345, ' 
e = 88 per cent. With Eqs. (8.1.1) and (8.1.3) 

After solving for N and D, 
N = 3 6 6  D=51.1 

The nearest synchronous speed (3600 divided by number of pairs of poles) is 
360 rpm. To maintain the desired-head of 60 ft ,  a new D is necessary. Its size 
may be computed: 

D = T # x $ # x 7 2 = 5 2 i n .  

The discharge at best efficiency is then 

QIND' 360 52 3 
= N,D,3 = 345 X (;iZ) = 208 cfs 

. which is slightly more capacity than required. With N = 360 and D = 52, 
equations for transforming the corresponding values of H and Q for any efficiency 
may be obtained : 

and 

The characteristics of the new pump are 

The efficiency of the 52-in. pump might be a fraction of a per cent less than that 
of the 72-in. pump, as the hydraulic radii of flow passages are smaller, so Reynolds 
number would be less. 



Specific Speed. The specific speed of a homologous unit is a constant 
that is widely used in the selection of type of unit and in preliminary 
design. It is usually defined differently for a pump than for a turbine. 

The specific speed N,  of a homologous series of pumps is defined as 
the speed of some one unit of the series of such a size that it delitrers unit 
discharge at unit head. It is obtained as follows: By eliminating D in 
Eqs. (8.1.1) and (8.1.3), and rearranging 

~ . \ r &  
HS 

= constant 

By definition of specific speed, the constant is N., the speed of a unit 
for& = 1, H = 1: 

The specific speed of a series is usuaIly defined for the point of best 
efficiency, i.e., for the speed, discharge, and head that is most efficient. 

The specific speed of a homologous series of turbines is defined as the 
speed of a unit of the series of such a size that it produces unit horsepower 
with unit head. Since power P is proportional to QH, 

P - -  
&H 

- constant 

The terms D and Q may be eliminated from Hqs. (8.1. I ) ,  (8.1.3), and 
(8.1.6) to produce 

N 
H f  = co'nstant 

For unit power and unit head the constant of Eq. (8.1.7) becomes the 
speed, or the specific speed, N,, of the series, so 

The specific speed of a unit required for a given discharge and head 
can be estimated from Eqs (8.1.5) and (8.1.8). For pumps handling 
large discharges a t  low heads a high specific speed is indicated; for a high 
head turbine producing relatively low power (small discharge) the specific 
speed is low. Experience has shown that for best efficiency one par- 
ticular type of pump or turbine is usually indicated for a given specific 
speed. 

Centrifugal pumps have low specific speeds; mixed-flow pumps have 
medium specific speeds; and axial-flow pumps have high specific speeds. 
Impulse turbines have low specific speeds; Francis turbines have medium 
specific speeds; and propeller turbines have high specific speeds. 
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8.2. Elementary Cascade Theory. Turbomachines &ither do work on 
fluid or extract work from it  in a continuous manner by having it  flow 

through a series of moving (and possibly fixed) vanes. By examination 
. of flow through a series of similar blades or vanes, called 

a cascade, some of the requirements of an efficient 
system may be developed. Consider, first, flow 
through the simple fixed cascade system of Fig. 8.2. 
I t  is seen that the velocity vector representing the fluid 
has been turned through the angle 8 by the presence of  
the cascade system. A force has been exerted on the \ fluid, but neglecting friction effects and turhuience, no 

\ work is dono on the fluid. Section 3.9 deals with forces 
on a single vane. 

Since turbomachines are rot.ationa1 devices, the 
cascade system may be arranged symmetrically around 

R.2. the periphery of a circle, as in Fig. 8.3. If the fluid now 
cascade system. 

approaches the fixed cascade in a radial direction, it has 
moment of momentum changed from zero to a value dependent upon the 
mass per unit time , flowing, the tangential ' component of velocity Vt 
developed, and the radius, from Eq. (3.11.4), 

Again, no work is donc by the fixed-vane system. 

FIG. 8.3. Cascade arranged on the periph- PIG. 8.4. llovilig camado within fixed 
cry of a circle. cascade. 

Consider now another series of vanes (Fig. 8.4) that are rotating within 
the fised vane system a t  a speed w. For efficient operation of the system 
it  is important that the fluid flow onto the moving vanes with the least 
disturbance, i.e., in a tangential manner, as illustrated in Fig. 8.5. When 

1 
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the relative velocity is not tangent to the blade at it.s entrance, separation 
may occur, as shown in Fig. 8.6. The losses tend to increase rapidly 
(about as the square) with angle from the tangential and radically impair 
the efficiency of the machine. Separation also frequently occurs when 
the approaching relative vclocity is tangential to the vane, owing to 
curvature of the vanes or to expansion of the flow passages, which causes 
the boundary layer to thicken and come to rest.. These losses are called 
shock or turbulence losses. When the fluid exits from the moving cascade, 
it  will generally have its velocity altered in both magnitude and direction, 
thereby changing its moment of momentum and either doing work on the 
cascade or having work done on it by the moving cascade. I n  the case 
of a turbine it is desired to have the fluid leave with no moment of 

FIG. 8.5. Relative velocity tangent to FIG. 8.6. Flow separation, or "shock," 
blade. from blade with relative velocity not 

tangent to leading edge. 

momentum. An old saying in turbine design is "have the fluid enter 
without shock and leave without velocity.'' 

Turbomachinery design requires the proper arrangement and shaping 
of passages and vmes so that the purpose of the design can be most 
efficiently met. The particular design depends upon the purpose of the 
machine, the amount of work to be done per unit mass of fluid, and the 
fluid density. 

8.3. Theory of Turbomachines. Turbines extract useful work from 
fluid energy; and pumps, blowers, and turbocompressors add energy to 
fluids by means of a runner consisting of vanes rigidly attached to a shaft. 
Since the only displacement of the vanes is in the tangential direction, 
work is done by the displacement of the tangential components of force 
on the runner. The radial components of force on the runner have no 
displacement in a radial direction and, hence,'can do no work. 

In turbomachine theory, friction is neglected and the fluid is assumed 
to have perfect guidance through the machine, i.e., an infinite number of 
thin vanes, so the relative velocity of the fluid is always tangent to the 
vane. This yields circular symmetry and permits the mornent-of- 



350 APPLICATIONS OF FLUID MECHANICS [Chap. 8 

momentum equation; Sec. 3.11, to take the simple form of Eq. (3.11.4)~ 
for st.eady flow, 

T = ~Q[(rtlt)out - (rvt)in] (8.3. I )  

in which T is the t.orqne acting on the fluid within t.he control volume 

FIG. 8.7. Steady flow through control volume with circular symmetry. 

(Fig. 8.7) and pQ(rVJmt and p & ( r ~ ~ ) ~ ,  represent the moment of momentum 
leaving and entering the control volume, respectively. 

The polar vector diagram is generally used in studying vane relation- 
ships ( 8.8), with subscript 1 for entering fluid and subscript 2 for 

. Entrance Exit 

FIG. 8.8. Polar vector diagrams. 

exiting fluid. V is the absolute fluid velocity, u the peripheral velocity 
of the runner, and v the fluid velocity relative to the runner. The 
absolute velocities V, u are laid off from 0, and the relative velocity con- 
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nects them as shown. V ,  is designated as the component of absolute 
velocity in the tangential directio~l. a is the angle the absolute velocity 
V makes with the peripheral velocity u, and j3 is the angle the relative 
velocity makes 'with -u, or it is the blade angle, as perfect guidance is' 
assumed. V ,  is the absolute velocity component normal t.o the periphery. 
In this notation Eq. (8.3.1) becomes 

The mass per unit time flowing is m = p Q  = (PQ), ,~  = (pQ)in. In the 
form above, when 7' is posit,ive, the fluid moment of momentum increases 

1 1 
I a Wicket 
7 8 f t d i a m F  gates 

FIG. 8.9. Schematic view of propeller turbine. 

through the control volume, as for a pump. For T negative moment of 
momentum of the fluid is decreased as for a turbine runner. When T = 0, 
as in passages where there are no vanes, 

rV ,  = constant 

This is free-vortex motion, with the t.angentia1 component of velocity 
varying inversely with radius. I t  is discussed in Sec. 7.9 and compared 
with the forced vortex in Sec. 2.5. 

Example 8.2: The wicket gates of Fig. 8.9 are turned so that the flow makes an 
angle of 45" with a radial line at section 1, where the speed is 8 ft/sec. Determine 
the magnitude of tangential velocity component V ,  over section 2. 
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since no torque is exerted on the ffon- bet\\-een sections 1 and 2, the moment of 
n~omcnturn is constant and the motion follows the free-vortex law 

V,r = constant 
At sect.ion 1 

VV1 = 8 cos 45" = 5.65 ft/sec 
' 

Then 
Vulrl = 5.65 X 4 = 22.6 ft2/scc 

Across section 2 

at thc hub F7, = 22.6/0.75 = 30.1 ft/sec, and at the outer edge V ,  = 22.6/2 = 

1 1.3 ft/sec. 
Head and Energy Relations. By multiplying Eq. (8.3.2) -by the 

rot.at,ional speed of runner o, 

For no losses the power available from a turbine is & Ap = QrH, in 
which H is the head on the runner, since Q is the weight per unit time and 
N the potential energy per unit weight. Similarly a pump runner 
produces work QyH in which H is the pump head. The power exchange 
is 

T w  = QrH (8.3.4) 

By solving for H, using Eq. (8.3.3) to eliminate T, 

For turbines the sign is reversed in Eq. (8.3.5). 
For pumps the actual head H, produced is 

and for turbines the actual head Ht is 

in which e h  is the hydraulic efficiency of the machine and H L  represents all 
thc internal fluid loss in the machine. The over-a11 efficiency of the 
machines is further reduced by bearing friction, by friction caused by fluid 
between runner and housing, and by leakage or flow that passes around 
the runner without going through it. These losses do not affect the head 
relations. 
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Pumps are generally designed so that the anguIar momentum of fluid 
entering the runner (impeller) is zero. Then 

Turbines are designed so that the angular momentum is zero at the exit 
section of the runner for conditions a t  best efficiency; hence, 

111v1 COS Or1 H =  
Q 

In writing Bernoulli's equation for a pump, with Eqs. (8.3.5) and 
(8.3.6) of this section 

for which it  is assumed that all streamlines through the pump have the 
same total energy. With the relations among the absolute velocity V, 
the velocity relative t.0 the runner v, and the velocity of runner u, from the 
vector diagrams (Fig. 8.8) by the law .of cosines, 

uI2 + V12 - 2uxv1,cos a1 = vl2 
uz2 + v2-2 - 2u2V2 COS a2 = u2= 

. After eliminating the absolute velocities V I ,  V 2  in these relations and in 
Eq. (8.3.10) 

The losses arc the difference in centrifugal head, ( ~ 2 -  uUt2) j 2g ,  and 
in the head change in the relative flow. For no loss, the ir~crease in 
pressure head, from Eq. (8.3.1 I), is 

P:! - Pl U 2 5  - u12 - u 
- + 2 2 - 2 ,  = . - 

Y 29 2g 
(8.3.13) 

With no flow through the runner, cl, c2 are zero, and the head rise is as 
expressed in the relative equilibrium relationships [Eq. (2.5.6)]. When 
flow occurs, the head rise is equal to the centrifugal head minus the 
difference in relative velocity heads. 
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For the case of a turbine, exactly' the same equations result. 

Example 8.3: A centrifugal pump with a 24-in.-diameter impeller runs at 
1800 rpm. The water enters without whirl, and as = 60". The actual head 
produced by the pump is 50 ft. Find its hydraulic efficiency when V 2  = 20 ft/seC. 

Frem Eq. (8.3.8) the theoretical head is 

The actual head is 50.0 ft; hence, the hydraulic efficiency is 

50 
eh  = - = 85.4 per cent 58.6 

8.4. Impulse Turbines. The impulse turbine is one in which all 
available energy of the flow is converted by s nozzle into kinetic energy at 

Headwater 
Energy grade 

- .  - 

urge tan 

.line - 
I 

--- 
I 

r-7 
Pressure pipe 

t - I i 
I I 
I I- i 

Tailwater 
----A - ." - .. - k_.* _I _ . 

FIG. 8.10. Impuise turbine systeni. 

at.mospht?ric pressure before the fluid contaots the movillg blades. Losses 
occur in flow from the reservoir through the pressure pipe (penstock) to 
the base of the nozzle, which may be computed from pipe friction data. 
.4t th'e base of the nozzle the available energy, or total head, is 

from Fig. 8.10. With C, the nozzle cocfficierlt the jet velocity V:! is 

The head lost in the nozzle is 



and the efficiency of the nozzle is 

The jet, with velocity V 2 ,  strikes double cupped buckets (Figs. 8.11 
and 8.12) which split the flow and turn the relative velocity through the 
angle 8 (Fig. 8.12). 

FIG. 8.11, Southern California Edison, Rig Creek 2A, 1948. G-in.-diameter jet 
impulse buckets and disk in process of being reamed. 56,000 hp, 2200 ft head, 
300 rpm. (Allis-Chal~sers illfg. Co.) 

The x-component of momentum is changed by (Fig. 8.12) 

and the workadone by the vanes is 

To maximize the work done, theoretically, 8 = 180°, and uv, must be a 
maximum; i.e., u(V2 - u) must be a maximum. By differentiating with 
respect to u and equating to zero, 
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= v JZ. After making these substitutions into Eq. (8.4.5), 

i 
i 

which accounts for the total kinetic energy of the jet,. The velocjty 
diagram for these values shows 'hat the absolute velocity leaving the 
vanes is zero. 

Practically, when vanes are arranged on the periphery of a wheel 
(Fig. 8.11), i t  is necessary that the fluid retain enough velocity to move 

out of the way of the following 
bucket. Most of the practical im- 
pulse turbines are Pelton wheels. 

u horizontal plane, and half is dis- 
charged from each side to avoid any 
unbalanced thrust on the shaft. 

FIG. 8.12. Flow through bucket. There are losses due to the splitter 
and to 'friction between jet and 

bucket surface, which make the most economical speed somewhat less 
than V2/2.  It is expressed in terms of the speed factor 

For most efficient turbine operation + has been found to be dependent 
upon specific speed as shown in the table.' The angle 6 of the bucket 

is usually 173 to 176". If the diameter of the jet is d and the diameter of 
the wheel D a t  the center line of the buckets, it has been found in practice 
that the diameter ratio D/d  should be about 54/N, for maximum 
efficiency. 

In the majority of installations only one jet is used, which discharges 
horizontally against .the lower periphery of the wheel as shown in Fig. 8.10. 
The wheel speed is carefully regulated for the generation of electrical 
power. A governor operates a needle valve that controls the jet dis- 
charge by changing its area. So V o  remains practically constant for a 
wide range of positions of the needle valve. 

I J. W. Ilaily, Hydraulic Machinery, in "Engineering Hydraulics," p. 943, ed. by 
H. Rouse, John Wiley & Sons, hc., 1950. 
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\ The efficiency of the power conversion drops off rapidly with change 
i4 head (which changes VO), as is evident when power is plotted against 
VP for constant u in Eq. (8.4.5). Thc wheel operates in atmospheric air 
although it is enclosed by a housing. I t  is therefore essential that the 
wheel be placed above the maximum flood water level of the river into 
which it discharges. The head from nozzle to  tailwater is wasted. 
Because of their inefficiency at. other than the design head and because of 
the wasted head, Pelton wheels usually arc employed for high heads, e.g.? 
from 600 ft to more than a mile. For high heads, the efficiency of the com- 
plete installation, from headwater to tailwater, may be in the high 80's. 

Impulse wheels with a single nozzle are most efficient in the specific 
speed range of 2 to 6, when Y is in horscpower, H is in feet, and N is in 
revolutions per minute. Multiple nozzle units are designed in the specific 
speed range of 6 to 12. 

Example 8.4: -4 Pclton wheel is to be selected to drive a generator at 600 rpm. 
The water jet is 3 in. in diameter and has a velocity of 300 ft/sec. With the 
blade angle a t  170°, the ratio of vane. speed to initial jet speed a t  0.47, and neglect- 
ing losses, detcrminc (a)  diameter of wheel to center line of buckets (vanes), (b)  
horsepower devcloped, and (c) kinetic energy per pound remaining in the fluid. 

a. The peripheral speed of wheel is 

Then 

b. From Eq. (8.4.5) the power, in foot-pounds pc!r second, is computed to be 

and 

c. From Fig. 3.28, the absolute velocity components leaving the vane arc 
determined to be 

The kinetic energy remaining in the jet is 

Ezample 8.5: A small impulse wheel is to be used to drive a generator for 
60-cycle power. The head is 300 ft, and the discharge 1.40 cfs. Determine the 
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diameter of the wheel a t  the center line of the buckets a rd  the speed of the wheel. 
C, = 0.98 Assume efficiency of 80 per cent. 

The power is 
rQHe 62.4 X 1.4 X 300 X 0.80 p = - =  
550 550 = 38.2 hp 

Taking a trial value of X, of 4, 

N , H ~ ,  4 x 3004 N = - e  
dF 38.2 

= 809 rpm 

For 60-cycle power the speed must be 3600 divided by thc number of pairs of 
3 6 0 0  poles in the generator. For five pairs of poles the speed would be --s- = 720 

3 8 0 0  rpm and for four pairs of poles --xu = 900 rpm. The closer speed 720 is 
selected, although some engineers prefer an even number of pairs of poles in the 
generator. Then 

N ,  = 
N dF 720 - --- - = 3.56 rpm 

jyt 300; 

For N, = 3.56, take 4 = 0.455, 
- 

u = cg \:z~H = 0.455 ~ ' 2  X 32.2 X 300 = 03.2 ft/see 
and 

w = -7&?27r = 75.4 rad/sec 

The peripheral speed u and D and w are related: 

wD u = -  2u 2 X 63.2 D = - - ---- 
2 - 75.4 = 1.676 ft = 20.1 in. 

W 

The diameter d of the jet is obtained from the jet velocity V 2 ;  thus 

and 
1.482 - 1.375 in. 

Hence the diameter ratio D/d is 

The desired diameter ratio for best efficiency is 

which is satisfactory. Hence the wheel diameter is 20.1 in. and epeed 720 rpm 
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8.5. Reaction Turbines. In  the reaction turbine a portion of the energy 
of the fiuid is converted into kinetic energy by the fluid's passing through 
adjustable gates (Fig. 8.13) before entering the runner, and the remainder 
of the conversion takes place through the runner. All passages are 
filled with liquid including the passage (draft tube) from the runner 
the downstream liquid surface. The static fluid pressure occurs on both 
sides of the vanes and, hence, does no work. The work done is entirely 
due to the conversion to kinetic energy. 

FIG. 8.13. Stay ring and wicket gates for reaction turbine. (Allis-Chalmers Mfg. Co.) 

The reaction turbine is quite different from the impulse turbine dis- 
cussed in Sec. 8.4. In  an impulse turbine a11 the available energy of the 
fluid is converted into kinetic energy by a nozzle that forms a free jet. 
The energy is then taken from the jet by suitable flow through moving 
vanes. The vanes are partly filled, with the jet open to the atmosphere 
throughout its travel through the runner. 

In contrast, in the reaction turbine the kinetic energy is appreciable 
as the fluid leaves the runner and enters the draft tube. Theofunction 
of the draft tube is to reconvert the kinetic energy to flow energy by a 
gradual expansion of the flow cross section. Application of ~ernoulli's 
equation between the two ends of the draft tube shows that the action 
of the tube is to reduce the pressure a t  its upstream end to less 
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pressnre, thus increasing the effective head across the runner 
to the differenc:c in eTtkvation between headwater and tail water, less losses. 

By referring to Fig. 8.14, Bernoulli's equation from 1 to 2 yields 

V12 
2. + ;-- + = 0 + 0 + 0 + losses 

2g r 
The losses itwlrlde frirtion plus velocity head loss at the exit from the draft 

tube, both of which are quite small; 
hence 

V12 E =  - Z , - -  
2g + losses (8.5.1) r 

shows that. considerable vacuum is 
produced a t  section 1, which effec- 
tively increases the head across the 

FIG. 8.14. Ilruft tl~bc. turbine runner. The turbine setting 
may not be too high, or cavitation occurs in the runner and draft tube 
(see Sec. 8.9). 

Example 8.6: turbine has a veIoc.ity of 20 ft/set: a t  the entrance fo the draft 
tube and a veIocity of 4.0 ft/sec a t  its exit. For fric~tion losses of 0.3 f t  and atail- 
\vater 16 ft below the entrance to the draft tube, find the pressure head at the 
cn trance. 

From Eq. (8.5.1) 

as the kinetic. energy a t  the exit from the draft tube is lost. Hence a suction 
h a d  of 21.7 ft is produced by the Ircsence*of the draft tube. 

Thcre arc two forms of the reactiorl turbine in  common use, the Francis 
turbine (Fig. 8.15) and the propeller (axial-flow) turbine (Fig. 8.16). 
In  both, 2111 passages flow full, and energy is converted to useful work 
entirely by thc changing of t.hc moment of momentum of the liquid. 
The flow passcs first through the wickct gates, which impart a tangential 
 lid a radially inward velocity to the fluid. 2 1  space between the wicket 
gates and the rrlnner permits the flow to close behind the gates and move 
ns a free vortex, ~vithout external torque being applied. 

I n  the Francis turbine (Fig. 8.17) the fluid enters the runner so that  
the relative velocity is tangent to the leading edge of the vanes. The 
radial component is gradually changed to an  axial component, and the 
tangential component is reduced as t.he fluid traverses the vane, so tha t  
at  the runner exit the ffow is axial with very little whirl (tangential 
romponent) remaining. The pressure has been reduced t.0 Iess than 
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atmospheric and most of the remaining kinetic energy is reconverted to 
flow energy by the time it discharges from the draft tube. The Francis 
turbine is best suited to medium-head installations from 80 to 600 f t  and 
has an efficiency between 90 and 95 per cent for the larger installations. 
Francis turbines are designed in the specific speed range of 10 to 110 with 
best efficiency in the range 40 to 60 

FIG. 8.15. Section through'a hydroelectric unit installed and 'put in operation at 
Hoover Dam in 1952. The turbine is rated 115,000 hp at 180 rpm under 480 ft head. 
(Allis-Chalmers Mfg. Co.) 

In the propeller turbine (Fig. 8.9), after passing through the wicket 
gates, the flow moves as a free vortex and has its radial component 
changed to axial component by guidance from the fixed housing. The 
moment of momentum is constant, and the tangential component of 
velocity is insreased through the reduction in radius. The blades are 
few in number, relatively flat, with very little curvature, and placed 
so that the relative flow entering the runner is tangential to the leading 
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edge of the bludc. The relative velocity is high, as with the Pelton 
wheel, and changes slightly in traversing the blade. The vclocity dia- 
grams in Fig. 8.18 show how the tangential component of velocity is 
reduced. Propeller turbiiles are made with blades that pivot around 

FIG. 8.16. Fieltl view of installation of runner of 'L4,500 hp, 100 rpm, 41 ft hetid. 
fZaplan :~tljustal)le runner hydraulic turbine. Box Canyo11 l~roject, Public Utility 
District Yo.  1 of Pcnd Oreille County, Washington. Plant' placed in operation in 
1955. ( Allis-Chalnzers Ilffy. Co.) 

the hub, thus permitting the blade angle to he adjusted for different 
gate openings and for changes in head. They are particularly suited 
for low-head installations, up to 100 ft, arid have top efficiencies around 
94 per cent. Axial-flow turbines are designed in the specific speed range 
of 100 to 210 with best efficiency from 120 to 160. 



The windmill is a form of axial-flow turbine. I t  has no fixed vanes to 
give an initial tangential component to the air stream and hence must 
impart the tangential component to {he air wit.h the moving vanes. The 

14 ft - 4 in. diam . . 
' . 4  a * . 

330 ft hd 
120 rpm 

FIG. 8.17. Francis turbine for Grand Coulee, Columbia Basin Project. (Newpori 
News Shipbuilding and D r y  Dock Co.) 

FIG. 8.18. Velocity diagram for entrance and exit of a propeller turbine, hlatie a t  fixed 
radial distance. 

air stream expands in passing through the vanes with a reduction in its 
axial velocity. 

Example 8.7: Assuming uniform axial velocity over section 2 of Fig. 8.9 and 
using the data of Example 8.2, determine the angle of the leading edge of the 
propeller a t  T = 0.75; 1.50, and 2.0 f t ,  for a propeller speed of 240 rpm. 
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The discharge through the turbine is, from section 1, 

& = 2 X 4m X 2 X 8 cos45" = 284.5 cfs 

Hence, the axial.velocity at section 2 is 

Fig'ure 8.19 shows thc initial iPs l~c i  angle for thc thrcc j~ositions. 

[Chap. 8 

FIG. 8.19. Velocity diagrams for angle of leading edge of a propeller turbine blade. 

Moody1 has developed a formula to estimate the efficiency of a unit 
of a homologous series of turbines when the efficiency of one of the series 
is known : 

in which el and Dl are usually efficiency and diameter of a model. 
8.6. Pumps and Blowers, Pumps add energy to liquids and blowers to 

gases. The procedure for designing them is the same for both, except 
for those cases in which the density is appreciably increased. Turbo- 
pumps and -blowers are radial-flow, axial-flow, or a cornbinat.ion of the 
two, called mixed-flow. For high heads the radial (centrifugal) pump, 
frequently with two or more stages (two or more impellers in series), is 
best adapted. A double-suction general service centrifugal pump is 

Lewis F. Moody, The Propeller Type Turbine, Trans. A W E ,  vol. 89, p. 628,1926. 
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FIG. 8.20. Cross section of a single-stage double-suction centrifugal pump. (IngersoU- 
Rand Co.) 

FIG. 8.21. Axial-flow pump. (Ingersoll- FIG. 8.22. Mixed-flow pump. ( Ingmotl -  
Rand Co.) Rand Co.) 

shown in Fig 8.20. For large flows under small heads the axial-flow 
pump or bIower (Fig. 8.21) is best suited. The mixed-flow pump (Fig. 
8.22) is used for medium head and medium discharge. 

The equations developed in Sec. 8.2 apply just as well to pumps and 
blowers as to turbines. The usual centrifugal pump has a suction, or 
inlet, pipe leading to the center of the impeller, a radial outward-flow 
runner, as in Fig. 8.23, and a collection pipe or spiral cssing that guides 
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FIG. 8.23. Velocity relationships for flow through a centrifugal pump impeller. 

- .  
FIG. 8.24. Sectiorlal elevation of Eagle Mountain and Hayfield pumps, Colorado R i v e  
Aqueduct. ( Worlhington Pump and ,%f achinery Corp.) 
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the fluid to the discharge pipe. Ordinarily, no fixed vanes are used, 
except for multistage units in which the flow is relatively srnaIl and the 
additional fluid friction is less than the additional gain in conversion of 
kinetic energy to pressure energy upon leaving the impeller. 

Frc:. 8.25. Impeller types used in pumps and hIowers. (Worth.ington Pu?rtp and 
. l fachin~ry Corp.) 

U. S. gallons per minute 

Fro. 8.26. Chart for selection of type of pump. (Fairbanks, hforse & Co.) 

Figure 8.24 shows a sectional elevation of a large centrifugal pump. 
For lower heads and greater discharges (relatively) the impellers vary 
as shown in Fig. 8.25, from high head at. left to low head a t  right with the 
axial-flow impeller. The specific speed increases from left to right. A 
chart for determining the types of pump for best efficiency is given in 
Fig. 8.26 for water. 
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centrifugal and mixed-flow pumps are designed in the specific speed 
500 to 6500 and axial pumps from 5000 to 1 1,000 ; speed is expressed 

in revolutions per minute, discharge in gallons per minute, and head in 
feet. - 

Characteristic curves showing head, efficiency, and brake horsepower 
as a function of discharge for a typical centrifugal pump with backward- 
curved vanes are given in Fig. 8.27. Pumps are not as eficient as turbines, 
ill general, owing to the inherently high losses that result from conversion 
of kinetic energy into flow energy. 

Gallons per minute 

FIG. 8.27. Characteristic curves for typical centrifugal pump. 10-in. impeller, 1750 
rpm. (Ingersoll- Rand Co.) 

Theoretical liead-discharge Curoe. A theoretical head-discharge curve 
may be obt.ained by use of Kq. (8.3.8) and the vector diagrams of Fig. 8.8. 
From the exit diagram of Fig. 8.8 

From the discharge, if 62 is the width of the impeller at r2 and vane thick- 
ness is negIect.ed, 

Q = -2~r2b2V~2 

Hy eliminating V,2 and substituting these last G'wo equations into Eq. 
(8.3.8), 

For a given pump and speed, H varies linearly with Q, as shown in Fig. 
8.28. The usual design of centrifugal pump has /?12 < 90°, which gives 
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subtraction is not an actual loss, 
but a failure of the finite number 
IQ 

of blades to impart the relative FIG. 8.28. Theorctir:tl Ilttud-discharge 
curves. 

velocity with angle pz of the blades. 
Without perfect guidance (infinite number of blades) the fluid actually 
is discharged as if the blades had an angle which is less than Bz 
(Fig. 8.29) for the same discharge. This inabi1it.y of the blades to 
impart proper guidance reduces V,g and hence decreases the actual 

decreasing head with increasing discharge. For blades radial a t  the 
exit, p2 = 90' and the thcoretical head is independent of discharge. 
For blades curved forward, f lz > 90' 
and the head rises with discharge. - q > 9 @  

Actual Ilead-discharge Curve. By  

head' produced. This is called circulatory flow and is shown in Fig. 
8.30. Fluid friction in flow through the fixed and moving passages 
causes losses that are proportional to the square of the discharge. They 

subtracting head losses from the 
theoretical head-discharge curve, 
the actual head-discharge curve is H 

obtained. The most important 

FIG. 8.29. Effect of circulatory flow. FIG. 8.30. Head-discharge relationships. 

R'=90° 
.o,<9u0 - 

are shown in Fig. 8.30. The final head loss to consider is that of turbu- 
lence, the loss due to improper relative-velocity angle a t  the blade inlet. 
The pump can be designed for one discharge (at a given speed) at which 
the relative velocity is tangent to the blade a t  the inlet. This is the 
point of best efficiency, and shock or txrbulence losses are negligible. 
For other discharges the loss varies about as the square of the discrepancy 
in a.pproach angle, as shown in Fig. 8.30. Thc final lower line then 
represents the actual head-discharge curve. Shutoff head is usually 
about uZ2/2g, or half of the theoretical shutoff head. 

In addition t.o the head losses and reductions, pumps and blowers have 
torque losses due to bearing and kcking friction and disk friction losses 
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fmm the fluid between 'he moving impeller and housing. Internal 
leakage is also an important power loss, in that fluid which has passed 
through the impeller, with i ts  energy increased, escapes through clear- 
ances and flows back to the suction side of the impeller. 

Example 8.8: A centrifugal water pump has an impeller (Fig. 8.23) with r2 = 
12 in., rl = 4 in., PI = 20°, 8 2  = 10'. The impeller is 2 in. wide at r = rt and 

in. wide a t  r = r2. FOP 1800 rpm, neglecting losses and vane thickness, deter- 
mine (a) the discharge for shockless entrance when a, = 90': (b) a2 and the 

-- 
u I - 62.8 
Entrance u p  188.5 

Exit 

FIG. 8.31. Vector diagrams for entrance and exit oi pump impeller. 

theoretical head H; (c) the horsepower required; and (d) the pressure rise through 
the impeller. 

a. The peripheral speeds are 

The vector diagrams are shown in Fig. 8.31. With ul and the angles al, P I  
known, the entrance diagram is determined, VI = ul tan 20' = 22.85 ft/sec; 
hence 

Q = 22.85 X .rr X g X & = 7.97 cfs 

b. A t  the exit the radial velocity Vr2 is 

By drawing ut (Fig, 8.31) -and a parallel line, distance Vrz from it, the vector 
triangle is determined when P2 is laid off. Thus 

vuz = 20.3 cot 10" = 115 Vu2 = 188.5 - 115 = 73.5 

From Eq. (8.3.8) 
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d .  By applying Bernoulli's equation from the entrance to exit of the impeller, 
including the energy H added (elevation change across impeller may be neglected), 

and 

or 
p2 - p1 = 348 X 0.433 = 151 psi 

8.7. Cen trif "gal Compressors. Centrifugal compressors operate 
according to the same principles as turbomachines for liquids. It is 
important for the fluid to enter the impeller without shock, i.e., with 
the relative velocity tangent to the blade. Work is done on the gas by 
rotation of the vanes, the moment-of-momentum equation relating 
torque to production of tangential velocity. At  the impeller exit the 
high-velocity gas must have its kinetic energy converted in part to flow 
energy by suitable expanding flow passages. For adiabatic compression 
(no cooling of the gas) the actual work of compression w. per unit mass 
is compared with the work wtb per unit mass to compress the gas to the 
same pressure isentropically. For cooled compressors the work wtc is 
based on the isothermal work of compression to the same pressure as 
the actual case. Hence 

is the formula for efficiency of a compressor. 
The efficiency formula for compression of a perfect gas is developed 

for the adiabatic compressor, assuming no internal leakage in the machine, 
i.e., no "short circuiting" of high-pressure fluid back to the low-pressure 
end of the impeller. Centrifugal compressors are usually multistage, 
with pressure ratios up to 3 across a single stage. From the moment-of- 
momentum equation (8.3.2) with inlet absolute velocity radial, a1 = 90°, 
the theoretical torque T t h  is 

T t h  = rizVuau2 (8.7.2) 

in which m is the mass per unit time being compressed, Vuz is the tangen- 
t,iaI component of the absolute velocity leaving the impeller, and rz is the 
impeller radius at exit. The actual applied torque T, is greater than the 
theoretical torque by the torque losses due to bearing and packing fric- 
tion plus disk friction; hence 

Tu = T a q m  (8.7.3) 

if rt, ie the mechanics1 eficiency of the compressor. 
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In addition to the torque losses, there are irreversibilities due to flow 
through the machine. The actual work of compression through the 
adiabatic machine is obtained from the first law of thermodynamics, 
~ q .  (3.7.1), neglecting elevation changes and replacing u + pip by h 

The isentropic work of compression may be obtained from Eq. (3.7.1) in 
differential form, neglecting the 2-terms, 

The last two terms are equal to T ds from Eq. (3.7.5), which is zero for 
isentropic flow, so 

d p  -dw, = V dV + - (8.7.5) 
P 

By integrating for p / p k  = constant between sections 1 and 2, 

( k - l l l k  

+ c [ (  - I]  (8.7.6) 

The efficiency may now be written as 

since h = cPT. In terms of Eqs. (8.7.2) and (8.7.3) 

then 

Cse of this equation is made in the following example. 

Example 8.9: An adiabatic turbocompressor has blades that are radial at the 
exit of its 6.0-in.-diameter impeller. It is compressing 1.0 lb,/sec air at 14.0 psirt, 
t = 60°F, to 42.0 psia. The entrance area is 0.07 ft2, and the exit area 0.04 ft2. 
q = 0.75; q ,  = 0.90. Determine the rotational speed of the impeller and the 
actual temperature of air at the exit. 

The density at the inlet is 
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and the velocity a t  the entrance is 

riz 1 .o 1 1 vl=-=- 
p1Al 32.17X800%6X0;@ = 196.4 ft/sec 

The theoretical density a t  the exit is 

and the thcoreticaal velocity a t  the exit 

r i a  - 1 
V't* = - - 

1 )( 1 
X - = 156.5 ft/sec 

~ 2 t h A 2  32.17 0.00496 0.04 

For radial vanes a t  the exit, VU2 = uz = ur2. From Eq. (8.7.9) - 

and zit = 1173 ft/sec. 
Then 

and 
w 4692 N = - 6 0 = -  
2~ 2~ = 44,800 rprn 

The theoretical work w,h is the term in the brackets in the expression for uz2. 
It is -w,h = 1.147 X lo6 ft-lb/slug. Then from Fq. (8.7.1) 

Since the kinetic energy term is small, Eq. (8.7.4) may be solved for hz - hl and 
a trial solution effected, 

As a first approximation, let V ,  = V2,, = 156.5, then 

For this temperature the density at the exit is 0.00454 s1ug/ft3 and the velocity 
is 171 ft/sec. Insertion of this value in place of 156.5 reduces the temperature 
by about 1"; hence Th = 775OR. 
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8.8. Fluid Couplings and Fluid Torque Converters. The fluid cou.pZing 
is a centrifugal pump and a turbine built together into a single housing to 
avoid losses by eliminating piping or channels that would otherwise 
be needed to connect them. There is no solid connection between the 
pump and the turbine (Fig. 8.32) ; the liquid, usualIy oil, transmits the 
torque by carrying moment of momentum across from pump to turbine. 
The coupling has two principal advantages: (a)  smoothness of operation, 
since torsional vibrations arc not transmitted through it; and (b )  the 
full torque is not developed until the unit is up t.o speed, which is desir- 
able for both electric motors and internal-combustion engines with 
heavy inertial loads. 

FIG. 8.32. Fluid coupling, Foettinger type. (David Taylor Model Basin, U.S. Navy 
Dept.) 

Application of the moment-of-momentum equation [Eq. (8.3.1)] pro- 
duces the relation between torque developed and change in moment of 
momentum for either the pump or the turbine. The torque must be 
the same for both when the operating conditions are steady, since there 
are no stationary members to absorb torque and no angular acceleration. 
When the coupling and a portion of the driven and driving shafts are 
considered as a free body, the angular acceleration is zero for steady 
conditions; hence, the summation of torques acting on the free body 
must be zero, and the torque in the driven shaft is exactly the same as the 
torque in the driving shaft. 

In  the operation of the coupling, consider that the driven member is 
first stationary and the driving member is rotating at its design speed., 
Liquid enters the pump near the shaft and is given moment of momentum 

I 



as i t  traverses radially outward and flows into the turbine. at its outer 
edge. The moment of momentum of the fluid is reduced to zero in the 
stationary turbine and the fluid exerts the torque supplied by thc driving 
shaft. As the driven shaft comes up to speed, centrifugal action in the 
turbine creates a resistancc to flow that reduces thc: amount of liqlrid 
pumped. No pumping takes place when both shafts rotate at the same 
speed and, hence, no torque is transmitted. Since the unit  is symmetri- 
cal, the driven shaft when turning a t  greater speed than thc driving 
shaft transmits a torque to the driving shaft that in effect provides n 
braking action. For normal steady operation there must always be :t 

difference in speed, or slip, if torque is to be transmitted. The cfh(tient:y 
e is work out divided by work in, or 

in which T is the torque, up the driving-shaft sped ,  wt the driven-shaft 
speed, and s the slip, or (up - o t ) /wp .  

The larger the diameter of coupling, the less the slip reqrlircd to trans- 
mit a given torque and, hence, 
the greater the efficiency of the 
coupling. Since efficiency can 
thus be increased by simply in- 
creasing diameter, no effort is 
made to curve the vanes or round 
their leading edges to dccrease 
turbulerice or fluid shock upon 
entering the vanes. Efficiencies 
are above 95 per cent. 

In some applications in which 
variable torque transmission is 
desired, the amount of oil in the 
coupling is varied. 

The Jluid torque converter (Fig. 
8.33) is in many ways similar to a 
fluid coupling. It has a $xed 
vane system, however, that trans- 
mits torque to the earth, and it 
always operates completely filled 
with liquid. FIG. 8.33. Torque converter 

For steady conditions of operation there is no angular acceleration, and 
the summation of all torques acting on the unit must be zero. Since there 
i s  a stationary vane system that requires an outside torque T, to hold it 
k e d ,  the torques in the driving and driven shafts are no longer equal. 
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For example, if the stationary vanes are curved so that the liquid acts to 
rotate them in the sense opposite to that of the driving shaft, there is a 
torque multiplication with the torque in the driven shaft equal to the sum 
of torque in driving shaft and torque on the fixed vanes, and with a cor- 
responding decrease in speed of driven shaft. 
By the proper designing of the fixed vane system there may be either a 

torque multiplication or a torque division. Since no work is done on the 
fixed vanes, the work ol~tput to the driven shaft must equal the work 

FIG. 8.34. Torque converter with two-stage turbine. (al) First-stage turbine; (an) 
second-stage turbine; ( b )  pump; (c) stationary guide vanes; (d) maximum diameter of 
circuit. (David Taylor Model Basin, U.S. Xavy Dept.) 1 

input to the driving shaft less the losses. A single-stage torque con- 
verter is shown in Fig. 8.33. Maximum efficiency is less than for a 
fluid coupling, usually between 80 and 90 per cent. 

As in the case of a reaction turbine, where fixed guide vanes create 
moment of moment.um that is reduced by moving vanes to create torque 
on a rotating shaft, the fixed vanes of a torque converter are curved to give 
the liquid moment of momentum. The pump adds to this moment of 
momentum, and the turbine, by proper design and a speed much less than 
the pump, takes the moment of momentum out of the liquid and thus has 
a large torque exerted on it. When large torque multiplication is desired, 
the torque converter usualIy is designed with two or more sets of turbine 
vanes with fixed vanes or pump vanes between them, as in Fig. 8.34. 
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By use of afreewheeling arrangement on the fixed guide vanes that per.. 
mit them to rotate in one direction when torque is applied in that direc- 
tion, the torque converter becomes a fluid coupling. When there is 8 

large difference in speed of pump and turbine, torque conversion is 
required and the reaction (fixed) vanes have a torque exerted on them 
that holds them stationary. As the pump and turbine speeds become 
nearly the same, the turbine moves so that the fluid discharged from 
it causes the reaction vanes to freewheel, or take no part in the process, 
resulting in a fluid coupling with better efficiency than the torque 
converter. 

8.9. Cavitation. When a Iiquid flows into a region where its pressure 
is reduced to vapor pressure, it boils and vapor pockets develop in the 
liquid. The vapor bubbles are carried along with the liquid until a 
region of higher pressure is reached, where they suddenly collapse. This 
process is called cavitation. If the vapor bubbles are near to (or in con- 
tact with) a solid boundary when they collapse, the forces exerted by 
the liquid rushing into the cavities create very high localized pressures 
that cause pit.ting of the solid surface. The phenomenon is accompanied 
by noise and vibrations that have been described as similar to gravel 
going through a centrifugal pump. 

In a flowing liquid, the cuz~itation parameter a is useful in characterizing 
the susceptibility of the system to cavitate. It is defined by 

in which p is the absolute pressure a t  the point of interest, p, is the vapor 
pressure of the liquid, p is the density of thc liquid, and V is the undis- 
turbed, or reference, ve1ocit.y. The cavitation parameter is a form of 
pressure coefficient. In two geome.trically similar systems, they would 
be equally likely to cavitate or would have the same degree of cavitation 
for the same value of U.  When a = 0, the pressure is reduced to vapbr 
pressure and boiling should occur. 

Tests made on chcrnically pure liquids show that they will sustain high 
tensile stresses, of the order of thousands of pounds per square inch, 
which is in contradiction to the concept of cavities forming when pressure 
is reduced to vapor pressure. Since there is generally spontaneous 
boiling when vapor pressure is reached with commercial or technical 
liquids, it is generally accepted that nuclei must be present around which 
the vapor bubbles form and grow. The nature of the nuclei is not 
thoroughly understood, but they may be microscopic dust particles or 
other contaminants, which are widely dispersed through technical 
liquids. 
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Cavitation bubbles may form on nuclei, grow, then move into an area 
of higher pressure and collapse, all in a few thousandths of a second in 
flow within a turbomachine. In  aerated water the bubbles have been 
~hotographed as they move through several oscillations, but this phenom- 
enon does not seem to occur in nonaerated liquids. Surface tension 
of the vapor bubbles appears to be an important property accounting 
for the high-pressure pulses resulting from collapse of a vapor bubble. 
Recent experiments indicate pressures of the order of 200,000 psi based 
on the analysis of strain waves in a photoelastic specimen exposed to 
cavitation.' Pressures of this magnitude appear to be reasonable, in line 
with the observed mechanical damage caused by cavitation. 

TABLE 8.1. WEIGHT IJoss IN MATERIAIS USED IN HYDRAULIC MACHINES 
Weight loss affet 

A llo y 2 hr, W 
Rolled stellitei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.6 
welded aluminum bronze3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 
Cast aluminum bronzes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.8 
Welded stainless steel (two layers, .17 Cr, 7% Ni) . . . . . . . . .  6.0 
Hot-rolled stainless steel (26 Cr, 13 % Ni) . . . . . . . . . . . . . . .  8.0  
Tempered, rolled stainless steel (12 % Cr) . . . . . . . . . . . . . . .  9.0 
Cast stainlcas steel (18 Cr, 8 % Ni) . . . . . . . . . . . . . . . . . . . . .  13.0 
Cast stainless steel (I2 % Cr) . . . . . . . . . . . . . . . . . . . . . . . . . .  20.0 
Cast manganese bronze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80.0 
Welded mild steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97.0 
Plate steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98.0 
Cast steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105.0 
Aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124.0 
Brass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156.0 
Cast iron.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224.0 

This material is not suitable for ordinary use, in spite of its high resistance, 
because of its high cost and difficulty in machining. 

$ Ampco-Trode 200: 83 Cu, 10.3 Al, 5.8% Fe. 
5 Ampco 20: 83.1 Cu, 12.4 Al, 4.1 % Fe. 

The formation and collapse of great numbers of bubbles on a surface 
subject that surface to intense local stressing, which appears to damage 
the surface by fatigue. Some ductile materials withstand battering 
for a period, called the incubation period, before damage is noticeable, 
while brittle materials may lose weight immediately. There may be 
certain electrochemical, corrosive, and thermal effects which hasten 
the deteiioration of exposed surfaces. Rheingans2 has collected a series 

G .  W. Sutton, A Photoelastic Study of Strain Waves Caused by Cavitation, 
J. Appl .  Mech., vol. 24, part 3, pp. 340-348, 1957. 
V.  J. Rheingans, Selecting Materials to  Avoid Cavitation Damage, M&risls in 

D e s i p  E*neering, 1958,. pp. 102-106. 
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of measurements made by magnetostriction-oscillator tests, showing 
weight losses of various metals used in hydraulic machines, 

Protection against cavitation should start with the hydraulic design 
of the system in order to avoid the low pressures if practicable. Other- 
wise, the use of special cavitation-resistant materials or coatings may be 
used. Small amounts of air entrained into water systems have markedly 
reduced cavitation damage, and recent studies indicate that cathodic 
protection is helpful. 

FIG. 8.35. Cavitation damage to  a Francis runncr. (Ingersoll-Rand Co.) 

The formation of vapor cavities decreases the useful channel space for 
liquid and thus decreases the efficiency of a fluid machine. Cavitation 
causes three undesirable conditions: lowered efficiency, damage to flow 
passages, and noise and vibrations. Curved vanes are particularly 
susceptible to cavitation on their convex sides and may have localized 
areas where cavitation causes pitting or failure, as in Fig. 8.35. All 
turbomachinery, ship propellers, and many hydraulic structures are 
subject to cavitation; hence, attention must be given to it in the design- 
ing of all of these. 
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A cwiht ion index LT' is useful in the proper selection of turbomachinery, 
and in its location with respect to suction or tail-water elevation. The 
minimum pressure in a pump or turbine generally occurs along the 
convex side of vanes near the suction side of the impeller. In Fig. 8.36, 
if e be the point of minimum pressure, Bernoulli's equation applied 

FIG. 8.36. Turbine or pump setting. 

between e and the downstream liquid surface, neglecting losses between 
the two points, may be written 

in which pa is atmospheric pressure and p, the absolute pressure. For 
cavitation to occur a t  e, the pressure must be equal to or less than p,, 
the vapor pressure. If p, = p,, 

is the ratio of energy available at e to total energy H, since the only 
energy is kinetic energy. The ratio U' is a cavitation index or number. 
The critical valuc p, may be determined by a test on a model of the 
homologous series. For cavitationless performance, the suction setting 
H ,  for an impeller installation must be so fixed that the resulting value 
of U' is greater than that of a,. 

Example 8.10: Tests on a pump model indicate a cr, = 0.10. A homologous 
unit is to be installed at a, 1oc:ation where p, = 13 psi and p, = 0.50 psi and is to 
pump water against a head of 80 ft. What is the maximum permissible suction 
head? 

By solving Eq. (8.9.2) for H,, and after substituting the values of u,, ti, pa, 
and p, 

The less the value of H,, the greater the value of the plant u', and the greater the 
assurance against cavitation. 



PROBLEMS 

8.1. By use of Eqs. (8.1.1) and (8.1.3) together with P = yQH for power, 
develop the homologous relationship for Y in terms of speed and diameter. 

8.2. A centrifugal pump is driven b?- an induction motor that reduces in speed 
as the pump load increases. A test detcr~nin~s  several sets of values of N ,  Q, H 
for the pump. How is a characteristic curve of the pump for a constant speed 
determined from these data? 

8.3. What is the specific speed of the pump of Esanlple 8.1 a t  point of best 
efficiency? 

8.4. Plot the dimensionless characteristic curve of the pump of Example 8.1. 
On this same curve plot several points from the characteristics of the new (52411;) 
pump. Why are they not exactly on thesame curve? 

8.5. Determine the size and syn~hronous speed of a pump homol~gous to the 
72-in. pump of Example 8.1 that will produce 120 cfs at 300 f t  head a t  its point 
of best efficiency. 

8.6. Develop the characteristic curve for a homologous pump of the series of 
Example 8.1 for 18-in. discharge and 1800 rpm. 
. 8.7. A pump with an 8-in.-diameter impcller discharges 2000 gpm at 1140 rpm 
and 30 ft head a t  its point of best eficiency. What is its specific speed? 

8.8. A hydroelectric site has a head of 300 ft and an average discharge of 
400 efs. For a generator speed of 200 rprn, what specific speed turbine is needed? 
Assume an efficiency of 92 per cent. 

8.9. A model turbine, N ,  = 36, with a 14-in.diarneter impeller develops 
27 hp at a head of 44 ft and an efficiency of 86 per cent. What are the discharge 
and speed of the model? 

8.10. What size and synchronous speed of homologous unit of Prob. 8.9 would 
be needed to discharge 600 cfs a t  260 ft of head? 

8.11. 800 cfs water flowing through the fixed vanes of a turbinc has a tangential 
component of 6 ft/sec a t  a radius of 4 f t .  The impeller, turning at 180 rpm, 
discharges in an axial direction. What torque is exerted on the impeller? 

8.12. In  I'rob. 8.11, neglecting losses, what is the head on the turbine? 
8.13.. A generator with speed R: = 240 rpm is to be used with a turbine at a 

site where II == 400 ft and & = 300 cfs. Neglecting losses, what tangential 
component must be given to the water a t  r = 3 ft by the fixetl vanes? What 
torque is exerted on the impeller? How much horsepower is produc!ed? 

8.14. A site for a Yelton wheel has a steady flow of 2 cfs with a nozzle velocity 
of 240 ft/sec. With a blade angle of 174", and C, = 0.98, for 60 cycle power, 
determine (a) the diameter of wheel, (b) the speed, (c) the horsepower, (d) the 
energy remaining in the water. Xeglcct losses. 

8.16. An inlpulse wheel is to be used to develop 50 cycle/sec power a t  a site 
where li = 400 f t  and Q = 2.7 cfs. Determine the diameter of the wheel and 
its speed. C, = 0.97; e = 82 per cent. 

8.16. At what angle should the wicket gates of a turbine be set to extract 
12,000 hp from a flow of 900 cfs? The diameter of the opening just inside the 
ivicket gates is 12 ft, and the height is 3 ft. The turbine runs at 200 rpm, and 
flow leaves the runner in an axia.1 direction. 
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8.17. For a given setting of wicket gates how does the moment of momentum 
vary with the discharge? 
8.18. Assuming constant axial velocity just above the runner of the propeller 

turbine of Prob. 8.16, calculate the tangential velocity components if the hub 
radius is 1 f t  and the outer radius is 3 ft. 
8.19. Determine the vane angles 01, 8 2  for entrance and exit from the propeller 

turbine of Prob. 8.18 ao that no angular momentum remains in the flow. (Com- 
pute the angles for inner radius, outer radius, and mid-point.) 

8.20. Neglecting losses, what is the head on the turbine of Prob. 8.161 
8.21. The hydraulic efficiency of a turbine is 95 per cent, and its theoretical 

head is 290 f t .  What is the actual head required? 
8.22. A turbine model test with 10-in.-diameter impeller showed an efficiency 

of 90 per cent. What efficiency could be expected from a 48-in.-diameter 
impeller? 

8.23. A turbine draft tube (Fig. 8.37) expands from 6 to 18 ft diameter. At 
section 1 the velocity is 30 ft/sec for vapor pressure of 1 ft and barometric pres- 
sure of 32 ft of water. Determine h, for incipient cavitation (pressure equal to 
vapor pressure a t  section 1). 

8.24. Construct a theoretical head-discharge curve for the following specifica- 
tions of a centrifugal pump: rl = 2 in., rz = 4 in., bl = 1 in., b2 = gin., 1200 rpm, 
and P2 = 30". 
8.25. A centrifugal water pump (Fig. 8.23) has an impeller rl = 2.6 in., bl = 

1; in., ~2 = 4.5 in., bz = 3 in., PI = 30°, B2 = 45" (bl, bz are impeller width a t  rl 

and rf, respectively,. Keglect thickness of 'vanes. For 1800 rpm, calculate 
(a) thtt design discharge for no prerotation of entering fluid, (b)  a2 and the theo- 
retical head a t  point of best efficiency, and (c) for hydraulic efficiency of 85 per 
cent and over-all efficiency of 78 per cent, the actual head produced, losses in 
foot-pounds per pound, and brake horsepower. 

8.26. ,4 centrifugal pump has an impeller with dimensions T I  = 3 in., T* = 6 in., 
b~ = 2.0 in., bz = 1.25 in., = p2 = 30'. For a discharge of 2 cfs and shockless 
entry to vanes compute (a) the speed, (b)  the head, ( c )  the torque, (d) the horse- 
lu)wer, and (e) the pressure rise aEross impeller. Neglect losses. crl = 90°. 



8.27. A centrifugal pump with impeller dimensions rl  = 2 in., r l  = 5 in., 
bl = 3.0 in., b2 = 1 in., pz = 60° is to pump 5 cfs a t  64 ft head. Determine 
(a) PI,  (b) the speed, (c) the horsepower, and (d) the pressure rise across the 
impeller. Neglect losses, and assume no shock a t  the entrance.. a1 = 90". 

8.28. Select values of TI, r2, 01, 62, bl, and b2 of a centrifugal impeller to take 
1 cfs water from a 4-in.diameter suction line and increase its energy by 40 ft-lb/ 
lb. N = 1200 rpm; a1 = 90'. Neglect losses. 

8.29. A pump has blade angles PI = P2; b, = 2bz = 1.0 in.; r l  = 4 3  = 2 in. 
For a theoretical head of 95.2 ft at a discharge a t  best efficiency of 1.052 cfs, 
determine the blade angles and speed of the pump. h'eglect thickness of vanes 
and assume perfect guidance. (HINT: Write down every relation you know con- 
necting @,, @*, bl, bz7 TI ,  rz, UI, UP, HI*, &, Vr2, Vu2, V1, o, and N from the two 
velocity vector diagrams, and by substitution reduce to one unknown.) 

8.30. A mercury-water differential manometer, R' = 26 in., is c0nnecte.d from 
the 4-in.-diameter suction pipe to the 3-in.-diameter discharge pipe of a pump. 
The center line of the suction pipe is 1 ft below the discharge pipe. For Q = 

900 gpm water, calculate the head developed by the pump. 
8.31. The impeller for a blower (Fig. 8.38) is 18 in. wide. I t  has straight blades 

and turns a t  1200 rpm. For 10,000 fta/min air, y = 0.08 lb/ft3, calculate (a) 
entrance and exit blade angles (a1 = 90°), (b) the head produced in inches of 
water, and (c) the theoretical horsepower required. 

8.32. An air blower is to be designed to produce 4-in. water pressure when 
operating a t  3600 rpm. y = 0.07 lb/ft3; r:! = 1 . 1 ~ ~ ;  p2 = PI;  width of impeller 
is 4 in.; al = 90°. Find r l .  

8.33. In Prob. 8.32 when PI = 30°, calculate the discharge in cubic feet 
per minute. 

8.34. Develop tho equation for efficiency of a cooled compressor, 
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8.36. Find the rotational speed in Example 8.9 for a cooled compressor, using 
results of Prob. 8.34, with the actual air temperature a t  exit 60°F. 

8.36. A fluid coupling transmits 60 hp when the driving shaft turns 1200 rpm, 
and the driven shaft speed is 1160 rpm. What is the torque in each shaft, and 
h o ~  efficient is the coupling? 

8.37. ?17hat is the cavitation parameter at a point in flowing water where 
t = 68"F, p = 2 psia, and the velocity is 40 ft/sec? 

8.38. A turbine with a, = 0.08 is to be installed a t  a site where H = 200 ft 
and s water barometer stands a t  27.6 ft. What is the maximum permissible 
impeller setting above tail water? 

8.39. Two units are homologous when they are geometrically similar and have 

(a) similar streamlines 
( b )  the same Reynolds number 
(c) the sam-e efficiency 
( d )  the same Froude number 
( e )  none of these answers 

8.40. The following two relationships are necessary for homologous units: 

(a) HIND3 = constant; Q/N2D2 = constant 
(b)  Q/D2 d = constant; H / N 3 D  = constant 
(c) P/QH = constant; H / N 2 D 2  = constant 
(ti) N ~ / H S  = constant; N ~ F / H :  = constant 
( e )  none of these answers 

8.41. The specific speed of a pump is defined as the speed of a unit 

(a) of unit size with unit discharge a t  unit head 
(b )  of such a size that it  requires unit power for unit head 
(c )  of such a size that  it  delivers unit discharge st unit head 
( d )  of such a size that it delivers unit discharge a t  unit power 
(e )  none of these answers 

8.42. An impulse turbine 

(a )  always operates submerged 
(b)  makes use of a draft tube 
(c) is most suited for low-head installations 
(d) converts pressure head into velocity head throughout the vanes 
(e) operates by initial complete conversion to kinetic energy 

8.43. A Pelton wheel 24 in. in diameter turns a t  400 rprn. Select from the fol- 
lowing the head, in feet, best suited for this wheel: 

(a) 7 (b )  30 ( c )  120 ( d )  170 ( e )  480 

8.44. ;1 shaft transmits 200 hp a t  600 rpm. The torque in pound-feet is 

(a) 19.2 (b)  183 (c )  1750 (d) 3500 (e) none of these 
answers 
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8.46. \That torque is required to give 100 cfs water a moment of momentum so 
that i t  has a tangential velocity of 10 ft/sec a t  n distance of 6 ft from the axis? 

(a) 116 lb-ft (b )  1935 1b-ft (c) 6000 1b-ft ( d )  11,610 lb-ft 
( e )  none of these answers 

8.46. The moment of rnon~entum of water is reduced by 20,000 lb-ft in flowing 
through vanes on a shaft turning 400 rpm. The horsepower dcvelopcd on the 
shaft is 

(a)  242 ( b )  1522 (c) 14,500 (d )  not determinable ; insufficient 
data (e )  none of these answers 

8.47. Liquid moving with constant angular momentum has a tangential veloc- 
ity of ,4.0 ft/scc 10 ft  from the axis of rotation. The tangential vclocity 5 ft 
from the axis is, in feet per second, 

(a)  2 (b )  4 ( c )  8 (d) 16 ( e )  none of these answers 

8.48. A reaction-type turbine discharges 1200 cfs undcr a hcad of 26 ft and with 
311 over-all efficiency of 91 per cent. The horsepower detrclopeii is 

(a) 3890 ( b )  3540 (c) .3220 (d) 100 (e) none of these 
answers 

8.49. The head developed by a punip with hydraulic efficiency of 80 per cent, 
for 9 4 ~  = 100 ft/si?c, V2 = 60 ft/sec, a2 = 4 j 0 ,  a1 = 90°, is 

(a)  52.6 ( b )  105.3 ( c )  132 ( d )  165 ( e )  noneofthese 
answers 

8.60. Select the correct relationship for pump vector diagrams 

(a) crl = 90'; vl  = u l  cot PI, 
( b )  ITu2 = 212 - Vr2 C O ~  / 3 2  

( r )  w~ = r2/212 

( d )   TIT.^^ = r2Vr2 

(e) 11orlc of thcse answers 

8.51. The cavitation parameter is defined by 

(e)  none of these answers 

8.52. Cavitation is caused by 

(a) high velocity (b )  Iow barornctric pressure , (c) high pressure 
(d) low pressure . (e )  low 1-clocity 
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FLUID MEASUREMENT 

Fluid measurements include the determination of pressure, velocity, 
dischargc, shock waves, density gradients, turbulence, and viscosity. 
There are many ways these measurements may be taken, sag., direct, 
indirect, gravimetric, volumetric, electronic, electromagnetic, and optical. 
Direct measurements for discharge consist in the determination of the 
volume or weight of fluid that passes a section in a given time interval. 
Indirect methods of discharge measurement require the determination 
of head, difference in pressure, or velocity a t  several points in a cross 
section, and with these the computing of discharge. The most precise 
methods are the gravimctric or voIumetric determinations, in which the 
weight or volume is measured by weigh scales or by a calibrated tank 
for a time interval that is measured by a stop watch. 

Pressure and velocity measurement is first undertakcn in this chapter, 
followed by optical-flow measurement, positive-displacement meters, 
rate meters, river-flow measurement, and electromagnetic flow devices, 
and concluding with turbulence and viscosity measurement. 

,9.1. Pressure Measurement, The measurement of pressure is required 
in many devices that determine the velocity of a fluid stream or its rate 
of flow, because of the relationship between velocity and pressure given 
by the Bernoulli equation. The static pressure of'a fluid in motion is its 
pressure when the velocity is undisturbed by the measurement. Figure 
9.1 indicates one method of measuring static pressure, the piezometer 
opening. When the flow is parallel, as indicated, the pressure variation 
is hydrostatic normal to the streamlines; hence, by measuring the pres- 
sure a t  the wall, the pressure a t  any other point in the cross section 
may be determined. The piezometer opening should be small, with 
length of opening a t  least twice its diameter, and should be normal to 
the surface, with no burrs a t  its edges because small eddies form and 
distort tho measurement. A small amount of rounding of the opening 
is permissible. Any slight misalignment or roughness a t  the opening 
rimy cause errors in measurement; therefore, it is advisable to use several 

387 
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piezometer openings connected together into a piezometer ring. When 
the surface is rough in tho vicinity of the opening the reading is unreli- 
able. For small irregularities it may be possible to smooth the surface 
around the opening. 

For rough surfaces, the static tube (Fig. 9.2) may be used. It consists 
of a tube that is directed upstream with the end closed. I t  has radial 
holes in the cylindrical portion downstream from the nose. The flow 

FIG. 9.1. Piezometer opening for measurement of static pressure. 

FIG. 9.2. Static tube. 

is presumed to be moving by the openings as if i t  were undisturbed. 
There are disturbances, however, due to both thc nose and the right- 
angled leg that is normal to the flow. The static tube should be cali- 
brated, as it may read too high or too low. If it does not read true 
static pressure, the discrepancy Ah normally varies as the square of the 
velocity of flow by the tube; i.e., 

in which C is determined by towing the tube in still fluid where pressu1.e 
and velocity are known or by inserting it into a smooth pipe that con- 
tains a piezometer ring. 
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The distribution of static pressure around the surface of n body may 
be determined by taking pressure readings from a series of piezometer 
openings, as in Fig. 9.3. With Bertloulli's equation the velocity dis- 
tribution is determined from the pressure distribution. 

Pressure may also be determined by making use of the piezoelectric 
properties of certain crystals, such as quartz or rochellr! salt. Pressure 

FIG. 9.3. Static pressure openings on a body sublnergcd in a Ruid. 

exerts a strain on the crystals that liberates s small elcctric charge that 
can be measured by electronic means. Anot.her method (Fig. 9.4) is 
the capacitance gage; the pressure distorts a diaphragm which varies the 
capacitance between plate and diaphragm. 

9.2. Velocity Measurement. Since t-he determining of velocity a t  a 
number of points in a cross section permits the evaluating of discharge, 
the measuring of velocity is an important. phase of measuring flow. 

The pitot tube is one of the most at:curate methods of messuriug veloc- 
ity. In Fig. 9.5 a glass tube with a right-angled bend is used to measure 

Fixed plate 
electrode 

FIG. 9.4. Capacitance gage. Frc. 9.5. Simple pitot tube. 

the velocity v in an open channel. The tube opening is directed upstream 
so that the fluid flows into the opening until the pressure builds up within 
the tube sufficiently to withstand the impact of velocity against it. 
Directly in front of the opening the fluid is a t  rest. The streamline 
through 1 leads to the point 2, called the stagnation point, where the fluid 
is at rest., and there divides and passes around the tube. The pressure at 
2 is lfnown from the liquid column within the tube. Bernoulli's equation 
applied between points 1 and 2, produces 
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since both points are a t  the same elevation. As PI/? = ho, the equation 
reduces to 

Practically, it is very difficult to read the height Ah from a free surface. 
The pitot tube measures the stagnation pressure, which is also referred 

to as the tobl  pressure. The total pressure is composed of two parts, 
the static pressure ho and the dynamic pressure Ah, expressed in length of 
a column of the flowing fluid (Fig. 9.5). The dynamic pressure is 
related to velooity head by Eq. (9.2.1). . 

l ~ p  gr-So 

Use of pitot tube and piezometer opening for measurement of velocity. 

By combining the static-pressure measurement and the total-pressure 
measurement, i.e., measuring each and connecting to opposite ends of a 
differential manometer, the dynamic pressure head is obtained. Figure 
9.6 illustrates one arrangement. Bernoulli's equation applied from 1 
to 2 is 

The equation for. the pressure through the manometer, in feet of 
water, is 

R y  simplifying, 
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After substitut.ing for ( p s  - pl)/y in Eq. (9.2.3) and solving for v, 

The static tube and pitot tube may be combined into one instrument, 
called a pitot-static tube (Fig. 9.7). Analyzing this system in a manner 
similar to that in Fig. 9.6 shows that the same relations hold; Eq. (9.2.5) 

FIG. 9.7. Pitot-static tube. 

expresses thc velocity, but, owing to the u11certaint.y of the measuremer~t 
of static pressure, a corrective coefficient C is applied, 

A particular form of pitot-static tube with a blunt nose, the Prandtl 
tube, has been dcsigncd so that the dist.urbances drie to nose and leg 
cancel, leaving C = 1 in the equation. For ot.her pitot-static t.ubes the 
constant C must be determined by calibration. 

Velocity and Temperature Measurement in Compressible Flow. The 
pitot-static tube may be used for velocity determinations in compressible 
Aow. In Fig. 9.7 the velocity reduetion from free-stream velocity at 1 
to zero a t  2 takes place very rapidly without significant heat transfer, 
and friction plays a very small part, so the compression may be assumed 
to be isentropic. By applying Rq. (65.7) to points 1 and 2 of Fig. 9.7, 
with V2 = 0, 
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The substitution of c p  is from Eq. (6.1.8). By use of Eq. (6.1.17) 

The static pressure pl may be obtained from the side openings of the 
pitot tube, and the stagnation pressure may be obtained from the impact 
opening leading-to a simple manometer, or p2 - pl may be found from 
the differential manometer. If the tube is not designed so that true 
static pressure is measured, it must be caIibrated and the true static 
pressure computed. 

Temperature measurement of undisturbed flow of a compressible gas 
must be made indirectly, by measurement of the velocity of flow and the 
stagnation temperature. By solving Eq. (9.2.7) for TI, 

V1 is obtained from pitot-static tube measurements. Tz, the true 
stagnation temperature, is difficult to obtain because of heat transfer 
to and from the temperature-sensing element. Devices1 comprising a 
thermocouple, with shielding such that true stagnation temperature is 
measured, have been developed. Otherwise correction factors must. be 
applied to t hc temperature readings, and the devices must be calibrated. 

The Hot-wire Anemometer. Gas velocities are successfully measured 
with the hot-wire anemometer. A short length of fine platinum wire is 
heated by an electric current. The resistance to flow of electricity 
through the wire is a function of its temperature. Flow of a gas around 
the hot wire cools it and thus changes its resistance. By holding constant 
either the voltage across the wire or the current through the wire by a 
suitable circuit, the change in amperes or voltage, respectively, becomes 
a function of the speed of gas flow by t-he hot wire. It may be calibrated 
by placing it in a gas stream of known velocity. The hot-wire anemom- 
eter has a very quick response to changes in gas velocity and is the 
best practical means for measuring the rapid fluctuations caused by turbu- 
lence a t  a point. 

In Figs. 9.8 and 9.9 circuits for the two systems are shown. A Wheat- 
stone-bridge circuit is utilized for both, with the ha wire forming one 
resistance and Rl ,  Rs, R3 the other resistances. In the constant-resist- 
ante circuit, t.he temperature of the wire is held constant and hence its 
resistance remains constant. The circuit is first adjusted so that the 
galvanometer reads zero. Then for a change in fluid flow over the wire, 
the variable resistance B is adjusted to bring the galvanometer reading 

-4. Franz, Pressure and Temperature 3.Ieasurements in Supercharger Investiga- 
tions, .VACA Tech. Mem. 953, 1'940. 
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back to zero, and the voltmeter reading has changed. By calibration 
in a stream of known velocity, voltmeter reading is related to fluid 
velocity. 

I n  the constant-voltage circuit (Fig. 9.9) the variable resistance B 
is first adjusted so that the galvanometer reads zero when the hot wire 
is exposed to fluid at rest. 1:Xow over the wire then cools the wire and 
varies its resistance, causing a change in galvanometer reading. CaIibra- 
tion relates velocity t.o galvanometer reading. 

B 

Variable 
resistance 

Variable 
Battery res~stance 

FIG. 9.8. Constant-resistance hot-wire FIG. 9.9. Constant-voltage hot-wire ane- 
anemometer. mometer. 

The current meter (Fig. 9.10) is used to measure the velocity of liquid 
flow in open channels. The cups are shaped so that the drag varies 
with orientation, causing a relatively slow rotation. With an eJectrical 
circuit and headphones, an audible signal is detected for a fixed number 
of revolutions. The number of signals in a given time period is a func- 
tion of the velocity. The meters are calibrated by towing them through 
liquid a t  known speeds. For measuring high-velocity flow a current 
meter with a propeller as rotating element is used, as it offers loss resist- 
ance to the flow. 

Air velocities are measured with cup-type or vane-(propeller) type 
anemometers (Fig. 9.11) which drive generators that indicate air velocity 
directly or drive counters that indicate the number of revolutions. 

9.3. Optical Flow Measurement. Three optical flow-measuring 
devices are described and illustrated in this section. The principal 
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of the optical techniques is that the flow is undisturbed by 
the measurement. Each method is based on the prinoiple that changes 
in density of a medium change the angle of refraction of light; i.e., the 
denser the medium, the larger the angle of refraction. The index of 
refraction- of a substance is defined as the ratio of the speed of light in 

FIG. 9.10. Price current meter. (W. and L. E. Gzlrleg.) 

a vacuum to the speed of light through the medium; hence n is always 
greater than unity. The index of refraction varies with the wavelength 
of the light and tends to increase linearly with the density. The relation- 
ship between angle of incidence i, angle of refraction r, and the two values 
of index of refraction n,, nb (Fig. 9.12) is given by Snell's taw: 

n, sin i = nb sin r 
When the light passes from a less dense medium to a more dense medium, 
the angle of refraction is less than the angle of incidence. If the index 
of refraction is very close to unity, as is the case for most gases, the 
empirical Gladstone-Dale equation may be used: 
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FIG. 9.11. Air anemometer. (Taylor Instrument Co.) 

The Schlieren Method. The Schlieren system is illustrated in Fig. 
9.13, where it is employed in flow across a two-dimensional test section. 
Light from a source is collimated by the first lens and 
passed through the test section to a second lens, which 
brings it to a focus and then projects it  on a screen or 
photographic plate. At the focal point a knife-edge is 
introduced which cuts off some of the light. For no 
flow in the test section the screen is uniformly illumi- 
nated. If the density within the test section is altered 
slightly by flow around a model, the light rays will be 
refracted in varying amounts. . Where it is refracted so 
the rays are intercepted. by the knife-edge, less light 
strikes the screen, and where it is refracted in the oppo- 
site direction, more light strikes the screen. It is to be FXQ. 9.12. Angles 

of incidence and 
noted that this system portrays changes in density. 
Figure 9.14 shows a Schlieren photograph of a shock 
wave cawed by propsgation of an explomve wave due to detonation 
of a gas. 
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The ,Shado4uBraph Method. The same setup aa the Schlieren system 
may be used fo.r shadowgraph studies, except that the knife-edge is not 
utilized. For a uniform change in density all light rays are refracted 
the same amount and illumination of the screen remains uniform and of 

FIG. 9.13. Schlieren system. 

FIG. 9.14. Schlieren photograph of shock wave formed by ignition of exp~osivemgas 
issuing from a tube. (From doctoral thesis by W .  P. Sommers, taken in Aeronautical 
and Aslronuutical Engineering Laboratories, The University of Michigan, 1961.) 

the same intensity. Changes in the density gradient, however, will 
cause uneven refraction of the light waves which will project a pattern on 
the screen. A shadowgraph view of a flame is shown in Fig. 9.15. 
Schlieren and shadowgraph methods are generally qualitative, in that 
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they aid in visualization of the flow. 
The intederometer is used for quan- 
titative measurement of density 
within the test section. 

The Interferometer Method. The 
interferometer makes use of a phase 
shift in the wave motion of light to 
obtain a pattern from which density 
changes may be read. In the 
Mach-Zehnder interferometer (Fig. 
9.16), light from a single source is 
split into two circuits, one including 
the test section, and is then recom- 
bined for projection onto a screen 
or photographic plate. The first 
mirror is silvered over half of its sur- 
face ; hence it  transmits half of the 
light and reflects half of the light, 
forming the two circuits. One cir- 
cuit passes through the test section, 
and the other circuit through com- 
pensating plates* . These circuits FIG, 9.1 5. shsdowgrTtph view of 
are recombined, as indicated in the air ,o,b,,ti,n. ~ 1 % ~ ~  is stabilized 
figure, by one being transmitted and  around +rin.-diameter spherical flame 
the other by the second holder at bottom. Jet velocity 77 ft/sec. 

half-silvered mirror and then pro- (Willozo Run Research Center, The Uni- 
versity of Michigan.) 

jected onto a screen. 

I 
Screen 

FIG. 9.16. Mach-Zehnder interferometer system. 



3- APPLICATIONS OF FLUID MECHANICS [Chap. 9 

When there is no flow through the test section and the fluid there has 
the same density as the surrounding fluid, the screen is uniformly bright, 
w both circuits have the same length and same light speed. Now, if the 
density within the test section is uniformly changed, the speed of trans- 
mission of light is changed and the two streams are out of phaw. If the 

FIG. 9.17. Interferometer photograph of flow through nozzles and one bucket of model 
of a, turbine. The density change across each band (black or white) is 3 per cent. 
(Photograph:laken in Aermaubical a d  Astronauticu~ Laboratories of Tk Univetaity of 
Michigan for the General Electric Co.) 

trough .of one Iight wave coincides with the crest of the wave from the 
other circuit, the screen will be uniformly dark; hence the amount of 
light on the screen depends on the phase shift. With flow around a 
model in the test section, the zones of uniform density will appear as 
bands on the screen, as shown in Fig. 9.17. 

9.4. Positive-displacement Meters. One volumetric meter is a posi- 
tive-displacement meter that has pistons or partitions which are dis- 
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placed by the flowing fluid and a counting mechanism that 'records the 
number of displacements in any convenient unit, such as gallons or cubic 
feet. 

A common meter is the disk meter, or wobble meter (Fig. 9.18), used 
on many domestic water-distribution systems. The disk oscillates in a 
passageway so that a known volume of fluid moves through the meter 
for *each oscillation. A stem normal to the disk operates a gear train, 

FIG. 9.18. Disk meter. (Neptune M&& Co.) 

which in turn operates a counter. When in good condition, these meters 
are accurate to within 1 per cent. When worn, the error may be very 
large for small flows, such as those caused by a leaky faucet. - 

The flow of domestic gas at low pressure is usually measured by a 
volumetric meter with a traveling partition. The partition is displaced 
by gas inflow to one end of the chamber in which i t  operates, and then, 
by a, change in valving, it  is displaced to the opposite end of the chamber. 
The oscillations operate a counting mechanism. 

Oil flow or high-pressure gas flow in a pipeline is frequently measured 
by a rotary meter in which cups or vanes ,move about an annular opening 
and displace a fixed volume of fluid for each revolution. Radial or 
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axial may be arranged so that the volume of a continuous flow 
through them is determined by rotations of a shaft. 

positive-displacement meters normally have no timing equipment that 
measures the rate of flow. The rate of steady flow may be determined 
with a stop watch to record the time for displacement of a given volume 
of fluid. 

9.5. Rate Meters. A rate meter is a device that determines, generally 
by a single measurement, the quantity (weight or volume) per unit 
time that passes a given cross section. Included among rate meters are 
the orifie, nozzle, centuri met&, rotameter, weir, and mass meter, which are 
discussed in this section. 

FIU. 9.19. ,Orifice in a reservoir. 

Orifice in a Reservoir. An orifice may be used for measuring the rate 
of flow out of a reservoir or through a pipe. An orifice in a reservoir 
or tank may be in the wall or in the bottom. It is an opening, usually 
round, through which the fluid flows, as in Fig. 9.19. It may be square- 
edged, as shown, or rounded, as in Fig. 3.12. The area of the orifice is 
the area of the opening. With the squareedged orifice, the fluid jet 
contracts during a short distance of about one-half diameter downstream 
from the opening. That portion of the flow that approaches along the 
wall cannot make a right-angled turn at the opening, so it maintains a 
radial velocity component that reduces the jet area. The cross section 
where the contraction is greatest is called the vena contraeta. The stream- 
lines are parallel throughout the jet at this section, and the pressure 
is atmospheric. 

The head on the orifice, H, is measured from the center of the orifice 
to the free surface. The head is assumed to be held constant. Ber- 
noulli's equation applied from a point 1 on the free surface to the center 
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of the cena contracta, point 2, with local atmospheric pressure as datum 
and point 2 as elevation datum, neglecting losses, is written 

By inserting the values, 

This is only the theoretical velocity because the losses between the two 
points iwrc neglected. The ratio of the actual velocity V ,  t,o the theo- 
retien1 velocity V t  is called the velocity coefi ient  C,, that is, 

Hence - 
v2a = C" d 2 g H  

The actual discharge from the orifice, Q,, is the product of the actual 
vclocity a t  the vena contracta and the area of the jet. Thc ratio of jet 
area A2 at z!e~~a contrclcta to area of orifice A. is symbolized by another 
coefficient, .called the coeficient .of contraction, C,, 

The area at the venancontructa is CcAo. The actual discharge is thus 

It is customary to combine the two coefficients into a discharge coefiient 
Cd, 

C d  = C,C, (9.5.6) 
from which 

Q. = C ~ A  0 dm (9.5.7) 

There is no way to compute the losses be tween points 1 and 2; hence, 
CJ, must be determined experimentally. It varies from 0.95 to 0.99 
for the square-edged or rounded orifice. Il'or most orifices, such as the 
square-edged one, the amount of contraction cannot be computed, and 
test results must be used. There are several methods for obtaining 
one or more of the coefficients. By measuring area Ao, the head H ,  
and the discharge Qa (by gravimetric or volumetric means), C d  is obtained 
from Eq. (9.5.7). Determinatton of either C, or C ,  then permits deter- 
mination of the other by Eq. (9.5.6). Several methods follow: 
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a. Traje<:to~'y nlet hod. By me:lsuring the position of a point on the 
trajectory of the free jet dowr l s t r ea~~  from the r:ena contracta (Fig. (3.19) 
the actual ~e loc i t~y  may be det.errninecl if air resistance is neglected. 
The x-companent of velocity does not. change; therefore, Vat = xo, in 
which t is thc time for a fluid particle to travel from the cena contracla to 
the point 3. The time for a part.icle to drop a distance yo under the 
action of gravit-y when it  has no initial velocity in that direction is 
expressed by = gtV.1'2. ;iftcr eliminating t- in the two relations, 

With IT2,  dotrrlni~~otl  hy 'Zt:y. (9.5.1 ) the ratio V,,,/ T.'t = C,, is known. 
b. I1irec:t n ~ r \ z r s ~ ~ r i ~ ~ g  of V,. With a pitot tube placcd at. the t!ena 

contracta, the act.~ial velocity V ,  is determined. 
c. Direct measuring of jet diameter. With outside calipers, the diam- 

eter of jet a t  the vena contracta may be approximated. This is not. a 
precise measurement and, in general, 
is less satisfactory than t.he other 
nit! t hods. 

d. Use of momentum equation. 
Weights When the rcscrvoir is of such size 

w& 1 hat it m:ty be suspended on knife- 
cdgcs, as irl I:ig. 9.20, it is possible to 
determine the force F that  creates 
the momentum in t.he jet. With thc 

I orifice opening closed, the tank is 

FIG. 9.20. Momentum method for levelcd by adding or  subtract.ing 
determination of C, and C,. weights. With the orifice discharg- 

ing, a force creates the momentum 
in the jet and an equal and opposite forcc F' acts against the tank. By 
addition of sufficient weights, W, t:hc t.ank is again Ievcled. From the 
figure, F' = Wxo/yo. With t.he momcrltlim equation, 

as V,,, is zero and V ,  is the final velocity. Since the actual discharge is 
measured, V, is the only unknown in the equation. 

Losses in Orijce Flow. The head Ioss in flow through an orifice is 
determined by applying Bernoulli's equation with a loss term for the 
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distance between points 1 and 2 (Fig. 9.14) 

By substituting the values for this case, 

in which Eq. (9.5.3) has been used to obtain the losses i~! terms of Ii and C, ,  
or V g a  and C,. 

Example 9.1 : A 3-in.-diameter orifier under a h w r l  of 16.0 ft dischargtls 2000 lb 
water in 32.6 sec. The trajectory was drterminsd by ~ywasuring xo = 15.62 ft 
for a drop of 4.0 ft. Determine C,, C,, Cd ,  the head loss per unit weight, and the 
horsepower loss. 

The theoretical velocity, V I ~  is 

The actual velocity is determined from the trajectory. T h e  time to drop 4 ft is 

t = 32.2 = 0.498 sec 

- 
and the velocity is expressed by 

Then 

The actual discharge Qu is 
2000 

' 654X323 = 0.984 cfs 

With Eq. (9.5.7) 

Hence, from Eq. (9.5.6), 

The head loss, from Eq. (9.5.8), is 

The horsepower loss is 
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The ~ o r d a  rnvuthpiecc (Fig. 9.21), a short, thin-walled tube about one 
diameter long that  projects into the reservoir (re-entrant), permits 

of the momentum equation, which yields one relation between 
C ,  and C d .  The velocity along the wall of the tank is almost zero at 
all points; hence, the pressure distribution is hydrostatic. With the 
c o ~ p o n e n t  of force exerted on the liquid by the tank parallel to  the 
axis of the tube, there is an unbalanced force due to the opening, which 

, FIG. 9.21. The Borda mouthpiece. 1 2 1 ~ .  9.22. Xotation f o r  falling i~cad. 

r v  is r H 9  o. 1 he final velocity is the i~litittl ve1ot:ity is zero, and Q, is 
'the actual discharge. Then 

hy substituting for Q, and and simplifying, 

In the orifice situations considered, the liquid surface in the reservoir 
has been assumed to be held c o n s t a ~ ~ t .  An unsteady-flow case of some 
practical interest is that  of deterrniniilg the time to lower the reservoir 
surface a given distance. Theoret.ically, Bernoulli's equation applies only 
t.o steady flow, but if the reservoir surface drops s1owIy enough, the error 
from- us'ing nernoulli's equation is negligible. The volume discharged 
from the orifice in time 6 t is Q at, which must  just. equal the reduction in  
volume in the reservoir in the same time increment (Fig. 9.22), A&( -  6y). 
in which A is the area of liquid surface at height y above the orifice. 
By equating the two expressions, 
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By solving for 6t and integrating between the limits y = yl, t = 0, and 

The orifice discharge Q is CdAo dFy. After substituting for Q, 

When A R  is known as a function of 9, the integral can be evaluated. 
Consistent with other English units, t is in seconds. For the special case 
of a tank with constant cross section, 

Example 9.2: A tank has a horizontal cross-sectional area of 20 ft2 at the eleva- 
tion of the orifice, and the area varies linearly with elevation so that it is 10 ft' 
at a horizontal cross section 10 ff above the orifice. For a 4-in.-diameter orifice, 
Cd = 0.65, compute the time in seconds to lower the surface from 8 ft to 4 ft 
above the orifice. 

AR = 20 - y ft2 
and 

.t = - - 1 4 1 (20 - y)y-: dy = 51.3 sec 
0.65(~/36) vf64.4 8 

Venturi Meter. The venturi meter is used to measure the rate of flow 
in a pipe. It is generally a casting (Fig. !I.?:<) consisting of an upstream 
section which is the same size as the \ 

pipe, has a bronze liner, and con- 
tains a piezometer ring for measur- 
ing static pressure; a converging 
conical section; a cylindrical throat 
with a bronze liner containing a 
piezome ter ring; and a gradually 
diverging conical section leading to 
a cylindrica~section the size of the 
pipe. A differential manometer is 
attached to the two piezometer L 
rings. The size of a venturi meter 
is specified by the pipe and throat 
diameter; e.g., a 6-in. by 4-in. ven- 
turi meter fits a 6-in.-diameter pipe FIG. 9.23. Venturi meter. 
and has a 4-in.-diameter throat. 
For accurate results the venturi meter should he preceded by at least 10 
diameters of straight pipe. In the flow from the pipe to the throat, the 
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velocity is greatly increased and the pressure correspo~ldingly decreased. 
The amoullt of discharge in irlcompressible flow is shown to be a function 
of the manometer reading. 

The pressures a t  the upst.ream section and throat are actual pressures, 
and the velocities from Bernoulli's equation without a loss term are 
theoretical velocities. When losses are considered ill I3ernoulli's equation, 
the velocities are ac.tual velocities. First, with the Ht:rnoulli equation 
without a head-loss term, the theoretical velocity a t  the throat is obtained. 
Then by multiplying this by the ve1ocit.y coefficient Cv,, the actual 
vc1ocit.y is obtained. The actual velocity times t.he actual area of the 
throat determines t.he actual discharge. 1:rom Fig. 9.23) 

in which elevation datum is taken through point 2. V1 and V2 are 
average velocities a t  sections 1 and 2, respectively; hence, al, a2 are 
assumed to be unity. -With the continuity equation V J A 2  = V2L)22, 

which holds for either the actual vclociti~s or the theoretical veloctities. 
Equation (9.5.9) may be solved for V21, 

and 

I3y int.roducing the velocit,y coefficient,, V2a = CvV2t, 

After multiplying by A*, the actual discharge Q is det.ermined t.o be: 

The gage difference R' may now be related to the pressure difference by 
writing the equation for the manometer. In  feet of water (SI is the 
specific gravity of flowing fluid and So the specific gravity of manometer 
liquid), 
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After simplifying, 

Ry substituting into Eq. (9.5.14), 

which is the venturi-meter equation for incompressible flow. The 
contraction coefficient is unity; hence, C, = Cd. It should he noted that 

%DIP Reynolds number, 7 

FIG. 9.24. Coefficient C, for venturi meters ("Fluid Meters: Their Theory and Applica- 
tion," American Society of Mechanical Engineers, 4th ed., 1937.) 

h has dropped out of the equation. The discharge depends upon the 
gage difference R' regardless of the orientation of the venturi meter; 
whether it is horizontal, vertical, or inclined, exactly the same equation 
holds. 

C, is determined by calibration, i.e., by measuring the discharge and 
the gage difference and solving for C,, which is usually plotted against the 
Reynolds number. Experimental results for venturi meters with throat 
diameters one-half the pipe diameters are given in Fig. 9.24. Where 
feasible, a venturi meter should be selected so that its coefficient is con-. 
stant over the range of Reynolds numbers for which it is to be used. 
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The cocfficier~t may be slightly greater t.han unity for venturi meters 
that  are unusually smooth inside. This does not mean that there are 
no losses but results from neglecting the kinetic-energy correction fac- 
tors al, an in the Rcrno~llli equation. Generally a,. is greater than a2 
since the reducing section acts to make t.hc velocity distribution uniforrn 
across section 2. 

Thc vcrituri meter has a lo\\- over-all loss, due to the gradlrally expand- 
ing conieal section, which aids in reconverting t.he high kinetic energy a t  
the throat, int.o prcssurc energy. The loss is nbol~t 10 to 1.5 per cent of 
the head change betmccl~ scctio~ls 1 :111d 2. 

Vc~~tzrr i  JIeler Ior ( ' o ? ~ ~ p r r s s i b l ~  Flolr. Thr t 1lcor.c t i c d  nltiss fioiv rate 
through a. 1-eiituri nicter in comprcssiblc flow is givcr~ by 1':q. (6.3.31.) for 
isentropic flow through a c!on~*ergi~lg-di~rerging duct when t.hc throat 
velocity is less than soriic velocity. When multiplied by C,,  the velocity 
coefficient, it yields the actual mass flow ratc n't. Equation (9.5.f3), for 
incompressihlo Aow, may be written i1.i tcrms of mass flow rate 

(h is dropped because it is negligible for gas flow). This equatioll may 
be modified by ii~sertion of an e;rpan-sion jactor Y, so that. it applies to 

. compressible flow: 

k' may be found by solving Kqs. (9.5.1'7) and (6.3.24) with coefficiellt C ,  
inserted and is shown to he a function of k ,  p2/pl ,  and A2/14 1. Values 
of I' are plotted in Fig. 9.25 for k = 1.40; hence, by the use of Eq. (9.5.17) 
and Fig. 9.25 ctompressible flow may be computcd for a vcntr~ri meter. 

Flow Noxxle. Thc Verein I1cutst:her Ingenielire (VIII) flow nozzlr?, 
(Fig. 9.26) has no co~ltraction of the jet. other t-han that  of t-he nozzle 
opening; therefore, the coefficient of (*ontraction is ~ ~ t l i t y .  Equations 
(0.5.13) and (9.,5.15) hold cquslly n.rll for the flow nozzle. For a hori- 
zoi~t.:il pipe (h  = 0), Eq. (9.5.1:3) ni:q hc writ,trl~ 

and A p  = p ,  - p,. The value of coefficient C' in Fig. (3.26 is for use in 
Eq. (9.5.18). When the coefficient given in the figure is to be used, it is 
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important that  the dimensions shown shall have beer1 closely adhered to, 
particularly in t.he location of the piezometer openings (two methods 
shown) for measuring pressure drop. A t  least 10 diameters of straight 
pipe should precede the nozzle. 

The flow nozzle is less costly than the ventmi meter. It has the dis- 
advantage that the over-all losses are much higher because of the lack 
of guidance of jet downstream from t.he nozzle opening. 

FIG. 9.25. Expansion factors. 

Compressible flow through a ~lozzle is found by Eq. (-9.5.17) and Fig. 
9.25, if k = 1.4. For other values of specific-heat ratio k, Eq. (6.3.24) 
may be used and then modified with the velocity coefficients. 

Example 9.3: Determine the flow through a 6-in.-diameter water line that 
contains a 4-in.-diameter flow nossle. The mercury-water differential manometer 
has a gage dzerence of 10 in. Water temperature is 60°F.' 
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FIG. 9.26. VDI flow nozzle and discharge coefficients. ( N A C A  Tech. Mem. 952, 
Reference 1 1 .) 

From the data given, So = 13.6, S1 = 1.0, R' = 8 = 0.833 ft, A2 = a/36 = 
0.0873 ft2, p = 1.935 slugs/ftF, p = 0.01/479 = 2.09 X 10-Vb-sec/ft2. By 
substituting Eq. (9.5.1 9) into Eq. (9.5.15), 

From Fig. 9.26, for A2/A1 = (i)2 = 0.444, assunle that  the horizontal region of 
the curves applies; hence, C = 1.056; then compute the flow and the Reynolds 
number. 

13.6 
Q = 1.056 X 0.0873 X 0.833 (l.d - 1.0) = 2.39 cfs 

Then 

and 

The chart shows the value of C to be correct; therefore, the discharge is 2.39 cfs. 
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Orifie in u Pipe .  The square-edged orifice in a pipe (Fig. 9.27) causes 
a contraction of the jet downstream from the orifice opening. For 

FIG. 9.27. Orifice in a pipe. 

incompressible flow Bernoulli's equation applied from section 1 to the jet 
at its vena contrmla, section 2, is 

The continuity equation relates Vl t  and Vzt with the contraction coeffi- 
cient C,  = Ai/A o, 

After eliminating V l t ,  

and by solving for Vzt, 

By multiplying by C ,  to obtain the actual velocity a t  t.hc tfena contracts, 

and, finally multiplying by the area of the jet, C,Ao, produces the actual 
discharge &, 
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in which Cd = Cucc. 111 terms of thc ISiiRF: ditfereiice R', Eq. (9.5.21) 
becomes 

Recausc of the difficulty in determining the two coefficients separately, n 
simplified formula is generally used, Eq. (9.5.18), 

or its equivalent 

Values of C are given i l l  Fig. 9.28 for the VI)I orificc. 

FIG. 9.28. VDI orifice and discharge coefficients. (NACA Tech. Mem. '352, Reference 
11.) 

I<xperimerltaI values of expansion factor, for 1; = 1.4, are given in 
Fig 9 . 2  I'quation (9.5.23) for actual mass flow rate in comprcssiblc 
flow bcc!onlcs 

-- 
riz = C Y A o  2 / 2 p ~  A~ (9.5.23) 

h'lbow Afeter. The elbow mctcr for itlcon~pressible flow is one of the 
sinlplest flow-rate measuring devices. I'iezometcr openings on the inside 
and on the outside of thc elbow are connected t.o a differential manom- 
eter. Because of centrifug:ll forw at t.tic: bend, the differenc.~ in prpssure 
intensities is related to the disrhargc. A straight calming length should 
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precede the elbow, and, for accurate results, the meter should be calibrated 
in place.' As most pipelines have an elbow, it may be used as the meter. 
After calibration the results arc as reliable 
as with a venturi meter or a flow nozzle. 

Rotameter. The rotameter (Fig. 9.29) is 
a variable-area meter that consists of an 
enlarging transparent tube and a metering 
"float" (actually heavier than the liquid) 
that is displaced upward by the upward 
flow of fluid through the tube. The tube 
is graduated to read the flow directly. 
Kotches in t.he float cause it to rotate and 
thus maintain a central position in thc t u b .  
Thc greater the flow, the higher the position 
that the float assumes. 

Weirs. Open-channel flow may be meas- 
ured by a weir, which is an obstruction in 
the channel that causes the liquid to back 
up behind it and to flow over it or through 
it. By measuring the height of upstream 
water surface, the rate of flow is determined. 
Weirs constructed from a sheet of metal or 
other material so that the jet, or nappe, 
springs free as i t  leaves the upstream face 
are caIled sharp-crested weirs. Ot.her weirs 
such as the broad-crested weir support the 
flow in a longitudinal direction. 

The sharp-crested, rectangular weir (Fig. FIG. 9.29. Rotameter. (Fischer 
& Porter Co.) 9.30) has a horizontal crest. The nappe is 

contracted at top and bottom as shown. An equation for discharge may 
be derived if the contractio~s are neglected. Without contractions the 
flow appears as in Fig. 9.31. The nappe has parallel streamlines with 
atmospheric pressure throughout. 

Bernoulli's equation applied betwcen 1 and 2 is 

in which the velocity head at  section 1 is neglected. By solving for v, 

W. h1. Lansford, The Use of an Elbow in a Pipe Line for Determining the Rate of 
Flow in a Pipe, Univ. of Illinois Eng. Exp .  Sta. Bull. 289, December, 1936. 
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The theoretical discharge Qt is 

in which L is the width of weir. Experiment shows that  the exponent of 
N is correct, hut. that  the coefficient is too great. The cont,ractions and 

FIG. 9.30. Sharp-crested rectangular weir. 

losses reduce the actual discharge to about, 60 per cent of the theoretical, 
o r  

(3 = 3.33~114 (9.5.26) 

in which Q is in cubic feet per second, L 2nd H are ill feet. 
When the weir does not extend completely across the width of the 

channel, it. has end contractions, illustrated in Fig. 9.32. An empirical 
ctorrcttt.ion for thc rcdlrc*tion of flow is accomplished hy sul)trattt.ing 0.1 H 

from L for each end contract.iori. 
The weir iri Fig. 9.30 is said t.o have 
its end contractions suppressed. 

The head H is mcaslxred upstream 
from the weir :I sufficierlt distanc:~ 

-------------- -------------- -------------- to avoid the: surface contract.ion. 
-------------- 
-----me------- 

A hook gage mounted i~z s stilling 
pot connet:ted to n piezume ter 
opening determines the water-surface 

FIG. 9.31. Weir nappe without contrac-. elevatiO,l from which the head is 
tions. 

determined. 
When the height of weir I' (I:ig. 9.30) is small, the velocity head a t  1 

cunnht be neglected. A corre~t~iorl may be added to the head, 

in which V is velocity arid cx is greater than unity, usually taken around 
I :I, which accounts for the nonliniform velocit,y dist.rihut.ion. Equatiorr 
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(9.5.27) must be solved for Q by trial since Q and V are both unknown. 
As a fimt trial, the term a V 2 / 2 g  may be neglected to approximate Q; 

FIG. 9.32. Weir with end contractions. 

FIG. 9.33. V-notch weir. 

then with this trial discharge a value of V is computed, since 

For small discharges the V-notch, weir is particularly convenient,. 
Neglecting contraction of the nappe, the theoretical discharge is com- 
puted (Fig. 9.33) as follows: - 

The velocity at  depth y is v = 4 2 g y ,  and the theoretical discharge 

By similar triangles, x may be related to y, 
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After substituting for v and x, 

By expressing L/H in terms of the angle 4 of the V-notch, 

Hence, 

''he exponent in the equation is approximately correct, but the coefficient 
must be reduced by about 40 per cent. An approximate equation for a 
90" V-notch weir is 

Q = 2.50H"50 (9.5.28) 

in which Q is in cubic feet per second and H is in feet. Experiments show 
that the coefficient is increased by roughening the upstream side of the 

FIG. 9.34. Broad-crested weir. 

weir plate, which causes the boundary layer to grow thicker. The greater 
amount of slow-moving liquid near the wall is more easily turned, and 
hence there is less contraction of the nappe. 

The broad-crested weir (Fig. 9.34a) supports the nappe so that the 
pressure variation is hydrostatic a t  section 2. 13ernoulli9s equation 
applied between points 1 and 2 can be used to find the velocity vz at 
height z,  neglecting the velocity of approach, 

In solving for vt, 
vt = d 2 g ( H  - y) 

z drops out; hence, v2 is constant at section 2. For a weir of width L 
normal to the plane of the figure, the theoretical discharge is 
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A plot of Q as abscissa against the depth y as ordinate, for conatant H ,  
is given in Fig. 9.34b. The depth is shown to be that which yields the 
maximum discharge, by the following reasoning: 

A gate or other obstruction placed a t  section 3 of Fig. 9.34a can Corn- 
pletely stop the flow by making y = H .  Now, if a small flow is per- 
mitted to pass section 3 (holding H constant), the depth y becomes & 

little less than H, and the discharge is, for example, as shown by point a 
on the depth-discharge curve. By further lifting of tho gate or obstruc- 
tion at section 3 the discharge-depth relationship follows the upper portion 
of the curve until the maximum discharge is reached. Any additional 
removal of downstream obstructions, however, has no effect upon the 
discharge, because the velocity of flow a t  section 2 is G, which is 
exactly the speed that an elementary wave can travel in still liquid of 
depth y. Hence, the effect of any additional lowering of the downstream 
surface elevation cannot travel upstream to affect further the value of y,  
and the discharge occurs at the maximum value. This depth y, called the 
critieol depth, is discussed in See. 11.4. The speed of an elementary wave 
is derived in Sec. 11.9. 

By taking dQ/dy and with the result set equal to zero, for constant H, 

and by solving for y, 
y = +H 

After inserting the value of H, that is, 3y/2, into the equation for velocity 

After substituting the value of y into Eq. (9.5.29), 

Experiments show that for a well-rounded u-pstream edge the discharge is 

which is within 2 per cent of the theoretical value. The flow, therefore, 
adjusts itself to discharge a t  the maximum rate. 

Viscosity and surface tension have a minor effect on the discharge 
coefficients of weirs. Therefore, a weir should be calibrated with the 
liquid that it will measure. 

Mass Meter. Most rate meters determine the volumetric flow rate, 
which requires a separate determination of density before the mass flow 
rate cm be found. By means of.the momentrof-momentum principle, 
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measurement of torque on an impeller may he related to the mass flow 
rate. Consider thc impeller of Fig. 9.35, in which fluid flows into the 
impeller without prerotation, i.e., with V.1 = 0. The impeller has many 

blades, which are radial a t  the exit 

7- section, so that V,z = r 2 ~ ,  with u the 
speed of rotation. Then, from Eq. 

.-. 
(3.1 1.4) 

l! 

T = tilVUzrt = mart3 (9.5.32) 

in which T is the torque applied and lia 
is the mass per unit time being dis- 

Fro. 9.35. Schematic view of impeller charged. By determination of torque, 
with 'lased 'lades for use as a speed, and radius the mass rate may 
mass meter. he computed. The torque must be 
corrected for torque losses due to bearings and disk friction. Practical 
details of mass meters are discussed in the literature. 

9.6. Electromagnetic Flow Devices. If a magnetic field is set up across 
a nonconducting tube and a conducting fluid flows through the tube, all 
induced voltage is produced across the flow wliicrh -may he..mctssured if 
electrodes are embedded in the tuba ~a1ls. l  The voltage is a linear 
function of the volume rate passing t,hrouigh thr! trual)r. Eit.her all alt.rl.- 

. nating- or a direct-current field may he used, with a corresponding signal 
gerieratttd at. the elect.rodes. A disadvantage of the method is t.he small 
signal received and the large amount of amplificilt.ioil needed. 'I'he device 
has been used to measure t.he flow i1.1 blood vessels. 

9.7. Measurement of River Flow. Daily records of the discharge of 
rivers over long periods of time are essential to economic planning for 
utilization of their water resources or for protection against. floods. The 
daily measurement of discharge hy determining velocity dist.ribution 
over a cross section of the river is costly. To avoid this and still 0bt~ai11 
daily records, control: sections are established where the river channel is 
stable, i.e., with little change in bottom or sides of the stream bed. 
The control section is f r~(~uent ly  a t  a break in s lop  of t.he river bottom 
where it becomes steeper downstream. 

A gage rod is mou~nt.ed at, t.he control section so that, the elevation of 
water surface is determined by reading the water line on the rod; in  some 
installat.ions float-controlled recording gages keep a c?ont.inuous rccwrd of 
rivrhr elevation. A gage height-discharge culrve is cst:thlishcd by t.:~kiilg 
' 

V. A. Olando and F. H. Jennings, Monlerltutl~ Principle >Ienxurc~s Mass 'tttite of 

I:lonr, Trans. ASAYE, vol. 7ti, p. 961, Augt~st, 1!)54. V. T. Li and S.  Y. Tee, .+ Fast 
Iiesponsive True Mass-rate Flowmeter, Trans. ASME', vol. 74, p. &35, July, 1953. 
H. G.  Elrod, Jr., and R. R. Fouse, An Investigation of Electronl~gnetic FIolv- 

meters, Tram. ASM E, vol. 74, p. 58!), May, 1952. 



Sey9.91 FLUID MEASUREMENT 41 9 

curht-meter  measurements from time to time as the river disehsrge 
changes and plotting the resulting discharge against the gage height* 

With a stable control section the gage height-discharge curve chw8 
very little, and current-meter measurements are infrequent. For 
unstable control sections the curve changes continuously, and discharge 
measurement must be made every few days to maintain an .accurate 
curve. 

Daily readings of gage height produce a daily record of tho river 
discharge. 

9.8. Measurement of Turbulence. Turbulence is a characteristic of 
the flow. I t  affects the calibration of measuring instruments and has an 
important effect upon heat transfer, evaporation, diffusion, and many 
other phenomena connected with fluid movement. 

Turbulence is generally specified by two quantities, the size and the 
intensity of the fluctuations. I n  steady flow the temporal mean velocity 
components a t  a point are constant. If these mean values be a, 5, z ~ ,  

and the velocity components a t  an instant be u, v ,  w, the fluctuations 
are given by u', v', w', in 

u=?Z+uUI 
v = @ + u '  

w=25 ,+w'  

The root-mean-square of measured values of the fluctuations (Fig. 9.36) 
is a measure of the intensity of the turbulence. These are dz, fi, 
d72 

The size of the fluctuation is an average measure of the size of eddy, or 
vortex, in the flow. When two velocity measuring instruments (hot-wire 
anemometers) are placed adjacent to each other in a flow, the velocity 
fluctuations are correlated, i.e., they tend to change in unison. Separat- 
ing these instruments reduces this correlation. The distance between 
instruments for zero correlation is a measure of the size of the fluctuation. 
Another method for determining turbuIence is discussed in Sec. 5.5. 

9.9. Measurement of Viscosity. This chapter on fluid measurement is 
concluded with a discussion of methods for determining viscosity. 
Viscosity may be measured in a number of ways: (a) by use of Newton's 
law of viscosity; (b) by use of the Hagen-Poiseuille equation; (c) by 
methods that require calibration with fluids of known viscosity. 

By measurement of ihe velocity gradient du/dy and the shear stress T,  

in Kewton's law of viscosity [Eq. (1.1 .I)], 

the dynamic or absolute viscosity can be computed. This is the most 
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basic as it determines all other quantities in the defining equation 
for visc0sit.y. By means of a. cylinder that rotates a t  s. known speed 
with respect to an inner concentric stationary cylinder, du/dy is deter- 
mined. By measurement of torque on the 
stationary cylinder, the shear stress may be 
computed. The ratio of shear stress to rate of 
change of velocity expresses the viscosity. 

A schematic view of a concentric-cylinder 
viscometcr is shown in Fig. 9.37. When the 

c Time t 

FIG. 9.36. Turbulent fluctuations in FIG. 9 -37. Concent riu-cylin- 
direction of flow. dcr viscometcr. 

speed of rotation is N rpm and the radius is rr  ftg the fluid velocity a t  the 
surface of the outer cylinder is 2rrzN/60. M7ith c~ic:~rnncc b f t  

The torque T, on the inner cylinder is rncasur~d i)y n. torsion wire from 
which it is suspended. Hy attaching a disk 
to the wirc, its rotation may be determined 
by a fixed pointer. If the torque due to 
fluid below the bot.t,om of the inner cylinder 
is neglected, the shcar stress is 

IZy substituting into Eq. (9.9.1) and solviilg 
for the viscosity, . 

FIG. 9.38. Sotation for determi- 
nation of torque on a disk. 

When the clearance a is so small that the torque contribution from the 
bottom is appreciable, it may be calculated in terms of tho viscosity. 
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~ e f e > r i n ~  to Fig. 9.38, 

in which the velocity change is or in the distance a ft. By integrating 
over the circular area of t.hc disk and letting o = 2nN/60, 

The torque due to disk and cylinder must equal the torque T in the torsion 
wire, so 

in which all quantities are known except p. The flow between the sur- 
faces must be laminar for Eqs. (9.9.2) to (9.9.4) to he valid. 

FIG. 9.39. Determination of viscosity by flow through a capillary tube. 

The measurement of all quan~ities in the Hagen-l'oiseuille equation, 
except p, by a suitable experimental arrangement, is another basic method 
for determination of viscosity. A setup as in Fig. 9.39 may be used. 
Some distance is required for the fluid to develop its characteristic velocity 
distribution after it, enters the tube; therefore, the head or pressure must 
be measured by some means at  a point along the tube. The valume f of 
flow can be measured over a time t where the reservoir surface is held at 
a constant level. This yields Q, and, by determining 7,  Ap may be com- 
puted. Then with I, and D known, from Eq. (5.2.6) 

Since it is difficult to measure the pressure in the tube and ta det-ermine 
its diameter and be sure it is uniform, an adaptat.ion of the capillary tube 



for industrial purposes is the Saybolt viae~met~er (Fig. 9.40). A short 
tube is utilized, and the time is measured for 60 em3 of fluid to 

flow. through. the tube under a falling head. The time in seconds is the 
saybolt reading. This device measures kinematic viscosity, evident 
from a rearrangemmt of Eq. (5.2.6). When A p  = pgh, Q = vol./t, and 

when the terms are separated that are 
the same regardless of the fluid, 

P - = ghsD4 
.pt 128(vol.) L = CI 

Although the head h varies during the 
test, i t  varies over the same range for 
all liquids; and the terms on the right- 
hand side may be considered as a con- 
stant of the particular instrument. 
Since p/p = V, the kinematic viscosity is 

v = Clt 

which shows that the kinematic vis- 
cosity varies directly as the time t. 
The capillary tube is quite short, 

FIG. 9.40. Schematic view of SnyI~olt so the velocity distribution is not 
viscometer . established. The flow tends to enter 

uniformly ; and then, owing to viscous 
drag a t  the walls, to slow down there and speed up in the center region. A 
correction in the above equation is needed, which is of the form C/t ;  hence 

The approximate relationship between vist:osity and Saybolt seconds is 
expressed by 

in which v is in stokes and t in seconds. 
For measuring viscosity there are many other illdustrial methods that 

generally have to be calibrated for each special case t-o convert to the 
absolute units. One consists of several tubes containing "standard" 
liquids of known graduated viscosities with a steel ball in each of the 
tubes. The time for the ball to fall the length of the tube depends upon 
the viscosity of the liquid. By placing the test sample in a similar tube, 
its viscosity may hc approximated by comparison with the other tubes. 



PROBLEMS 

9.1. A static tube (Fig. 9.2) indicates a static pressure that is 0.12 psi too low 
when liquid is flowing at  8 ft/sec. Calculate the correction to be applied to the 
indicated pressure for the liquid flowing a t  14 ft/sec. 

9.2. Four pieaometer openings in the same cross section of a castiron p i p  
indicate the following pressures: 4.30,4.26,4.24,3.7 psi for simultaneoue wadings. 
What value should be taken for the pressure? 

9.3. A simple pitot tube (Fig. 9.5) is inserted into a small stream of flowing 
oil, 7 = 55 lb/ft: = 0.65 poise, Ah = 2 in., ho = 5 in. What is the velocity 
a t  point 1 ? 

9.4. A stationary body immersed in a river has a maximum pressure of 10 psi 
exerted on i t  a t  a distance of 20 ft below the free surface. Calculate the river 
velocity a t  this depth. 

, 9.6. From Fig. 9.6 derive the equation for velocity a t  1. 
9.6. In Fig. 9.6 air is flowing (p '= 16 psia, t = 40°F) and water is in the 

manometer. For R' = 1.2 in., calculate the velocity of air. 
9.7. In Fig. 9.6 air is flowing (p = 16 psia, t l  = 40°F) and mercury is in the 

manometer. For R' = 6 in., calculate the velocity at 1 (a) for isentropic com- 
pression of air between 1 and 2 and (b) for air considered incompressible. 

9.8. A pitot-static tube directed into a 12 ft/sec water stream has a gage 
difference of 1.47 in. on rt water-mercury differential manometer. Determine 
the coefficient for the tube. 

9.9. A pitot-static tube, C = 2.32, has a gage difference of 2.7 in. on a water- 
mercury manometer when dirctcbted into a water stream. Calculate the velocity. 

9.10. A pitot-static tube of the Prandtl type has the following value of gage 
difference R' for the radial distance from center of a 3-ft-diameter pipe: 

Water is flowing, and the manometer fluid has a specific gravity of 2.93. Calcu- 
late the discharge. 

9.11. What would be the gage difference on a water-nitrogen manometer for 
flow of nitrogen at  600 ft/sec, using a pitot-static tube? The static pressure is 
18 psia, and corresponding temperature 80°F True static pressure is measured 
by the tube. 

9.12. Measurements in an air stream indicate that the stagnation pressure is 
12 psia, the static pressure is 10 psia, and the stagnation temperature is 102OF. 
Determine the temperature and velocity of the air stream. 

9.13. 0.1 lb,/sec nitrogen flows through a 2-in.-diameter tube with stagnation 
temperature of 90°F and .undisturbed temperature of 60°F. Find the wlocit). 
and static and stagnation pressures. 

r, f t  
R', in. 

0 . 0  1.48 0 
4 

0 . 3  
3.91 3.76 3 .46  1 2 I 2.40  

0 . 6  
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9.14, A disk meter has a volumetric displacement of 1.73 in.3 for one co d plete 
Calculate the flow in gallons per minute for 173 oscillations per 

minute. 
9.15. A disk water meter with volumetric displacement of 2.40 in.3 per oscil- 

lation requires 470 oscillations per minute to pass 5 gprn and 3840 oscillations per 
minute to pass 40 gpm. Calculate the per cent error, or slip, in the meter. 

9.16. A volumetric tank 4 ft in diameter and 5 ft high was filled with oil in 
16 min 32.4 sec. What is the avcrage discharge in gallons per minute? 

9.17. A weigh tank receives 13.6 lb liquid, sp gr 0.86, in 14.9 sec. What is 
the flow rate in gallons per minute? 

9.18. Determine the equation for trajectory of a jet discharging horizontally 
from a small orifice with head of 16 f t  and velocity coefficient of 0.96. Neglect 
air resistance. 

9.19. An orifice of area 0.03 ft2 in a vertical plate has a head of 3.6 ft of oil, 
sp gr 0.91. I t  discharges 1418 lb of oil in 79.3 sec. Trajectory measurements 
yield X = 7.38 f t ,  Y = 4.025 ft .  lletermine C,, C,, Cd .  

9.20. Calculate Y, the maximum rise of a jet from an inclinetl plate (Fig. 9.41) 
in terms of H and a. Neglect losses. 

9-21. In Fig. 9.41, for a! = 45", Y = 0.4811. Neglecting air resistance of the 
jet, find Cv for the orifice. 

9.22. Show that the locus of maximum points of the jet of Fig. 9.41 is given by 

when losses are neglected. 
9.23. A 3-in.diameter orifice discharges 64 i t 3  liquid, sp gr 1.07, in 82.2 sec 

under a 9 ft head. The velocity a t  the vena contracta is determined by a pitot- 
static tube with coefficient 1.17. The manometer liquid is acetylene tetra- 
bromide, sp gr 2.96, and the gage difference is R' = 3.35 ft.. Determine C,, C,, 
and Cd. 

9.24. A 4-in.diameter orifice discharges 1.575 cfs water under a head of 9 ft. 
A flat plate held normal to the jet just downstream from the vena contracts 
requires a force of 69.7 lb to resist impact of the jet. R n d  C d ,  C,, and C,. 

9.25. Compute the discharge from the tank shown in Fig. 9.42. 
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9.26. For Cv = O.9G in Fig. 9.42, calculate the losses in foot-pounds p r  pound 
and in foot-pounds per second. 

Air, 4 psi 

Air, 3 psi 

5ft 

c,= 0.85 
L 

9.27. Calculate the discharge through the orifice of 9.43. 
9.28. For C, = 0.93 in Fig. 9.43, determine the losses in foot-pounds per pound 

and in foot-pounds per second. 
9.29. A 4-in.diameter orifice discharges 1.60 cfs liquid under a head of 11.8 ft .  

The diameter of jet at  the vena contraeta is found by ealipering to be 3.47 in. 
Calculate C,, C d ,  and C,. 

9.30. A Borda mouthpiece 3 in. in diameter has a discharge coefficient of 0.51. 
What is the diameter of the issuing jet? 

9.31. A 3-in.diameter orifice, C d + =  0.82, is placed in the bottom of a vertical 
tank that has a diameter of 4 ft .  -How long does it take to draw the surface down 
from 8 to 4 ft? 

9.32. Select the size of orifice that permits a tank of horizontal cross section 
16 f t 2  to have the liquid surface drawn down a t  the rate of 0.6 ft/sec for 11 ft head 
on the orifice. Cd = 0.63. 

9.33. A 4-in.diameter orifice in the side of a 6-ftdiamehr tank draws the sur- 
face down from 8 to 4 ft pbove the orifice in 83.7 sec. Calculate the discharge 
coefficient. 

9.34. Select a reservoir of such size and shape that the liquid surface drops 3 f t /  
rnin over a 10-ft distance for Aow through-a 4-in.diameter orifice. C d  = 0.74. 

9.36. In Fig. 9.44 the truncated cone has an angle 8 = 30°. How long does 
it take to draw the liquid surface down from y = 12 f t  to y = 4 ft? 
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9.36. Calculate the dimensions of a tanksuch that the surface velocity varies 
inversely as the distance from the center line of an orifice draining the tank. 
When the head is 1 ft, the velocity of fall of the surface is 0.1 ft/sec. 0.5-in.- 
diameter orifice, Cd = 0.66. 

9.37. Determine the time required to raise the right-hand surface of Fig. 9.45 
by 2 ft. 

9.38. How long does it  take to raise the water surface of Fig. 9.46 6 ft? The 
left-hand surface is a large reservoir of constant water-surface elevation. 

9.39. Show that for incompressible ffow the losses per unit weight of fluid 
between the upstream section and throat of a venturi meter are KVZ2/2g if K = 
[(1/c")2 - 11[1 - (fi2/fil)*]. r. 

9.40. A 200- by 100-in. ventuii meter carries water a t  98OF. A water-air 
differential manometer has a gage difference of 2.4 in. What is the discharge? 

9.41. What is the pressure difference between the upstream section and 
throat of a 6- by 3-in. horizontal venturi meter carrying 600 gpm water at 120°F? 

9.42. A 12- by 6-in. venturi meter is mounted in a vertical pipe with the flow 
upward. 1000 gpm oil, sp gr 0.80, p = 1 poise, flows through the pipe. The 
throat section is 4 in. above the upstream .section. What is p,  - pz? 

9.43. Air flows through a vcnturi rneter in a 2-in.diameter pipe having a throat 
diameter of 1.25 in., C, = 0.97. Por p ,  = 120 psia, t l  = 60°F, p2 = 90 psia, 
calculate the mass per second Aowing. 

9.44. Oxygen, p ,  = 40 psia, tl  = 120°F, flows through a 1- by k in .  venturi 
meter with a prt:ssurc!'drop of 15 psia. Find the mass per second flowing and the ' 

throat veloeitjr. 
9.45. Air flows through a 3-in.-diameter VIII flow nozzle in a 4-in. diameter 

pipe. pl = 20 psia, t l  = 40°F, and a differential manometer with liquid, sp gr 
1.37, has a gage difference of 2.7 ft when connected between the pressure taps. 
Calculate the mass rate of flow. 

9.46. A 2.5-in.-diameter VDI nozzle is used to measure flow' of water a t  40°F 
in a 6-in.-diameter pipe. \\.hat gage difference on' a water-mercury manometer 
is required for 200 gpm? 
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9.47. Determine the discharge in an 8-in.diarneter line with a 5-in.diamctcr 
VDI orifice for water a t  M°F when the gage difference is 12 in. on an acetylene 
tetrabromide (sp gr 2.94)-water differential manometer. 

9.48. A &in.-diameter VDI orifice is installed in a 1-in.-diameter pipe carrying 
nitrogen at pl = 120 psia, t ,  = 120°F. For a pressure drop of 23 psi across the 
orifice, calculate the masa flow rate. 

9.49. Air at 14.7 psia, t = 72"F, flows through a 36in.-square duct that con- 
tains a n  18-in.diameter squareedged oiifice. With a 3 in. water head loss across 
the orifice, compute the flow in cubic feet per minute. 

9.60. A 4-in.dia,meter VDI orifice is installed in a 12-in.diameter oil line, 
p = 0.06 poise, y = 52 Ib/ft3. An oil-air differential manometer is used. For a 
gage differenpe of 27 in. determine the flow rate in gallons per minute. 
9k1. A rectangular sharp-crested weir 12 ft long with end contractions sup- 

pressed is 4 f t  high. Determine the discharge when the head is 0.76 ft. 
9.52. In Fig. 9.30, L = 10 ft, P = 1.5 ft, II = 0.80 ft. Estimate the discharge 

over the weir. C = 3.33. 
9.63. A rectangular sharpcrested weir wit11 end contractions is 4 ff, long. 

How high should it  be placed in s channel to maintain an ul)stream depth of 5 ft 
for 16 cfs flow? 

9.64. Determine the head on a 60" V-notch weir for discharge of 6 cfs. 
9.55. Tests on a 90° V-notch weir gave the following results: H = 0.60 ft, 

Q = 0.685 cfs; H = 1.35 ft, Q = 5.28 ft. Determine the formula for the weir. 
9.66. A sharp-crested rectangular weir 2.5 ft long with end contractions sup- 

- pressed and a 90" V-notch weir are placed in the same weir box, with the vertex 
of the 90" V-notch weir 6 in. below the rectangular weir crcst. Determine the 
head on the V-notch weir (a )  when the discharges arc. equal and (b) when the 
rectangular weir discharges its greatest nnlount above the tiischarge of the 
V-notch weir. 

9.67. A broad-crested weir 5 ft high and 10 ft long has s well-rounded upstream 
corner. What head is required for a flow of 100 cfs? 

9.68. A circular disk 6 in. in diameter has a t!learancc of 0.012 in. from a flat 
plate. What torque is required to rotate the disk 800 rpm when the clearance 
contains oil, p = 0.8 poise? 

9.69. The concentric-cylinder viscometer (Fig. 9.37) has the following dimen- 
aions: a = 0.012 in.; b = 0.02 in.; T I  = 2.8 in.; h = 6.0 in. The torque is 24 11)- 
in. when the speed is 160 rpm. What is the viscosity? 

9.60. With the apparatus of Fig. 9.39, U = 0.020 in., L = 36 in., H = 2.4 ft, 
and 60 cm3 was discharged in 1 hr 20 min, IYhat is the viscosity in poise? 
y = 52 Ib/fts. 

9.61. The piezoelectric properties of quarts are used to measure 

(a) temperature (b) density (c) velocity (d) pressure 
(e) none of these answers. . 

9.62. A static tube is used to measure 

(a) the pressure in a static fluid 
(b) the velocity in a flowing stream 
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(c) the total pressure 
(0 the dynamic pressure 
(e)  the undisturbed fluid pressure 

9.63. A piezomekr opening is used to measure 

(a) the pressure in a static fluid 
(b) the velocity .in a flowing stream 
(c) the total pressure 
(d) the dynamic pressure 
(e) tho undisturbed fluid pressure 

9.64. The simple pitot tube measures the 

(a)  static pressure 
(b)  dynamic pressure 
(c) total pressure 
(d) velocity a t  the stagnation point 
(e)  difference in total and dynamic pressure 

9.66. A pitot-static tube (C = 1) is used to measure air speeds. With water in 
the differential manometer and a gage difference of 3 in., the air speed for 7 = 

0.0624 lb/ft3, in feet per second, is 

( a ) 4 . 0 1  (b) 15.8 (c )24 .06  (d)  127 (e)  noneofthese 
answers 

9.66. The pitotstatic tube measures 

(a) static pressure 
(b) dynamic pressure 
(c)  total pressure 
(d)  difference in static and dynamic pressure 
(e) difference in total and dynamic pressure 

9.67. The temperature of a known %owing gas may be determined from 
measurement of 

(a)  static and stagnation pressure only 
(b) velocity and stagnation pressure only 
(c) velocity and dynamic pressure only . 
(d) velocity and stagnation temperature only 
(e) none of these answers 

9.68. The velocity of a known flowing gas may be determined from measure- 
ment of 

(a) static and stagnation pressure only 
(h) static pressure and temperature only 
(c) static and stagnation temperature only 
(d) stagnation temperature and stagnation pessuk only 
(e) none of these answers 
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9.69. The hot-wire anernonleter is used to measure 

(a) pressure in gases 
(b) pressure in liquids 
(c) wind velocities a t  airports 
(d) gas velocities 
( e )  liquid discharges 

9.70. Snell's law relates 

(a) pressure and density in optical measurements 
(b) angle of incidence, andc of refraction, and index of refraction 
(c )  velocity, pressurr, and piezoclcctric properties of crystals 
(d) density and indcx of refraction 
( e )  none of these nrmvers 

9.71. The Gladstone-Dale equation relates 

(a) pressure and density in optical measurements 
(b) angle of incidence, angle of refraction, and index of rcfraction 
(c) velocity, pressurc, and piezoelectric properties of crystals 
(d) density and index of refraction 
(e) none of these answers 

9.72. The Schlieren optical system portrays 

(a) temperature changes in gas flow 
(b)  pressure changes in gas flow 
(c) density changes in gas flow 
(d) density gradient changes in gas flow 
(e) none of these answers 

9.73. The shadowgraph optical system portray8 

( a )  temperature changes in gas flow 
(b) pressure changes in gas flow 
( c )  density changes in gas flow 
(a?) density gradient changes in gas flow 
(e) none of these answers 

9.74. The interferometer optical system 

(a) makes use of a knife-edge 
(b) requires two light sources 
(c) depends upon a phase shift in light wave motion 
(d) splits the light from a single source into three circuits 
(e) satisfies none of these answers 

9.76. A piston-type displacement meter has a volume displacement of 2.15 in.3 
per revolution of its shaft. The discharge in gallons per minute for 1000 rpm is 

( a )  0.497 (b)  1.23 ( c )  9.3 ( d )  10.72 (e) noneofthese 
answers 



9.76. Water for a pipeline mas diverted into a weigh tank for exactly 10 min. 
 he increased weight in the tank was 4765 lb. The average flow rate in gallons 
per minute was 

(a) 66.1 (b )  57.1 (c)  7.95 ( d )  0.13 (e)  none of these 
answers 

9.77. A rectangular tank with cross-sectional area of 90 ft2 was filled to a depth 
of 4.00 ft by a steady flow of liquid for 12 min. The rate of flow in cubic feet per 
second was 

(a) 0.50 (b) 30 (c) 31.2 (d) 224 (e)  none of these answers 

9.78. Which of the following measuring instruments is a rate meter? 

(a) current meter (b)  disk meter (c) hot-wire anemometer 
(d) pitot tube (e) venturi meter 

9.79. The actual velocity a t  the vena contracta for flow through an orifice from 
a reservoir is expressed by 

9.80. A fluid jet discharging from a 2-in.-diarneter orifice has a diameter 1.75 
in. a t  its vena contracta. The coefficient of contraction is 

(a)  1.31 (b)  1 .I4 ( c )  0.875 (d )  0.766 (e)  none of these 
answers & 

9.81. The ratio of actual discharge to theoretical discharge through an orifice is 

(a)  CECV (b )  CcCd (c) C v ( 7 d  (d)  CdICv (el Ca/Cc 
L 

9.82. The losses in orifice flow are 

v2t2 Vb4 
'b) -2i- - - 29 

(4 H ( C V L  -1) 

( d )  M - V2t2/2g (e) none of these answers 

9.83. For a liquid surface to lower a t  a constant rate, the area of reservoir AA 
must vary with head y on the orifice, as 

(a) Z/y (b)  (e) 1 / g Y  ( d )  1 /y (e)  none of these 
answers 

9.84. A 2-in.-diameter Borda mouthpiece discharges 0.268 efs under a head of 
9.0 ft. The velocity coefficient is 

(a) 0.96 ( b )  0.97 (c) 0.98 (d) 0.99 (e)  none of these 
answers 



9.86. The discharge coefficient for a 4-in. by %in. venturi meter at a Reynolds 
number of 200,000 is 

(a) 0.95 ( b )  0.96 (c) 0.97 (d)  0.98 (e) 0.99 

9.86. Select the correct statement: 

(a) The discharge through a venturi meter depends upon Ap only and 
is independent of orientation of the meter. 

(b) A venturi meter with. a given gage difference R' discharges at a 
greater rate when the flow is vertically downward through it than 
when the flow is vertically upward. 

(c) For a given pressure difference the equations show that the dis- 
charge of gas is greater through a venturi meter when compressibility 
is taken intm account than when it is neglected. 

(d) The coefficient of contraction of a venturi meter is unity. 
(e) The over-all loss is the same in a givcn pipeline whether a venturi 

meter or a nozzle with the same D2 is used. 

9.87. The expansion factor Y depends upon 

(a)  k, p ~ l p l ,  and fi2lA1 
(b )  R, pzlpl, and Az/A1 
( c )  k, R, and p d p l  
( d )  k, R, and A 2/A 1 

(e) none of these answers 

9.88. The discharge through a V-notch weir varies as 

(a)  ~ - i  (b)  tit ( e )  11; ( d )  I1 $ (e) none of these answers 

9.89. The discharge of a rectangular sharp-c:rc~st(~ci weir with end contractions 
is less than for the same weir with end contractions suppressed by 

(a) 5% (b )  10 % (c)  15 % (d) no fixed percentage 
(e) none of these answers 

9.90. A mass meter, with radius a t  exit of iml)elier of 6 in. turns a t  1200 rpm 
and has a torque applied of 36 lb-in. The mass per second flowing is, in pounds 

3 

mass per second, 

(a) 0.00796 (b) 0.096 (c) 0.478 (d) 3.08 (e) none of 
these answers 

9.91. A homemade viscornetttr of the Saybolt type is calibrated by two meas- 
urements with liquids of known kinematic viscosity. For v = 0.461 stoke, 
t = 97 sec, ancl for v = 0.18 stokc, t = 46  st^. The cbocfficicnts C1, Cz in v = 
Clt + C2/t are 

(a) Cl = 0.005 (b)  C1 = 0.0044 ( c )  CI = 0.0046 
Cq = -2.3 (I2 = 3.6 Cz = 1.55 

(4 CI = 0.00317 (e) none of these answers 
CS = 14.95 
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'I'hc basic procedures for solving problems in irlcompressible steady flow 
i t 1  closed conduits arc presented in Sec. 5.9, where simple pipe-flow 
situations arc discussed, including losses due to change in cross section or 
direction of flow. Compressible flow in ducts is treated in Secs. 6.6 to 6.8. 
Velocity distributions in turbulent flow are discussed in Sec. 5.4. This 
chapter deals with flow situations and applications mom complex than 
those in Chap. 6. It is divided intd two parts: the first part dealing with 
i t~compressible steady turbulent-flow situations, the second part intro- 
ducing some of the methods of analyzing unsteady flow in pipes. 

d 
STEADY FLOW IN CONDUITS 

10.1. ydraulic and Energy Grade Lines. The concepts of hydraulic 
and energy grade lines are useful in analyzing more complex flow problems. 
If, at each point along a pipc system, the term p / y  is determined and 
plotted as s vert,ical distance asove the center of the pipe, the locus of 
end points is the hydraulic grade line. More generally, the plot of the 
two terms 

for the flow, as ordinates, against length along the pipc as abscissas, 
produces the hydraulic grade line. The hydraulic grade line is the locus 
of heights to which liquid would rise in vertical glass tubes connected to 
piczomet.er openings ill the line. When the pressure in the line is less 
than atmospheric, p / y  is ncgative : ~ l t d  the hydraulic grade line is below 
the pipeline. 

The energy gwdc line is a line joining a series of points marking the 
available energy in foot.-pounds per pound for each point along the pipe as 
ordinate, against distance along the pipe as the abscissa. It 

433 
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coi~sists of the. plot of 
v2 p 
- + - + 2  , 
28 Y 

for each point along t.he line. By definition, the energy grade line is 
always vctrtically above the hydraulic grade line a distance of V2/2g, 
acglc:rt,ing thc kinetic-energy correction factor. 

The hydrauIic and energy grade lines are shown in Fig. 10.1 for a 
simple pipelilre containing il square-edgcd eritra~ice, a valve, and a 
nozzle at the end of the line. To construct these lines when the reservoir 
surface is given, it  is necessary first to apply I3ernoulliYs equation from 
the reservoir to the exit, including all minor losses as wcll as pipe friction, 
and to solve for the velocity head V2/2g .  Then, to find the elevation of 
hydraulic grade line a t  any point, Bernoulli's equation is appIied from 

tasr due to nozzle 0.10 2 
28 

FIG. 10.1. Hydraulic and energy grade lines. 

the reservoir to that point, including all losses between the two points. 
The equation is'solved for ( p / y )  + z, which is plotted above tho arbi- 
trary datum. To find the energy grade line at the same p ~ i n t  the equa- 
tion is solved for (V2/2g) + ( p / y )  + z, which is plotted above the 
arbitrary datum. 

The reservoir surface is the hydraulic grade line and is also the energy 
grade line. At the square+dged entrance the energy grade line drops 
by 0.5V2/2g because of the loss there, and the hydraulic grade line drops 
1.5 V2/2g. This is made obvious by applying Bernoulli's equation 
between the reservoir surface and a point just downstream from the pipe 
en trance : 

Solving for z + p / y ,  
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shows the drop of 1.5V2/2g. The head loss due to the sudden entrance 
does not actually occur at the entrance itself, but over a distance of 
10 or more diameters of pipe downstream. It is customary to show 
it at the fitting. 

Example 10.1 : Determine the elevation of hydraulic and energy grade lines at 
points A ,  B, C, D, and E of Fig. 10.1. 

If the arbitrary datum is selected as ce~lter line of the pipe, both grade lines 
start at elevation 60 ft. First, solving for the velocity head is accomplished by 
applying the Bernoulli equation from the reservoir to El 

From the continuity equation, V E  = 4V. After simplifying, 

and V2/2g = 1.66 ft. By applying BernoulIi's equation for the portion from the 
reservoir to A, 

Hence the hydraulic gradient a t  A is 

The energy grade line for A is 

For B, 

and 

the energy grade line is a t  52.19 + 1.66 = 53.85 ft. 
Across the valve the hydraulic grade line drops by 10V2/2g, or 16.6 ft. Hence, 

at  C the energy and hydraulic grade lines are a t  37.25 ft and 35.59 f t ,  respectively. 
At point D 

and 

with the energy grade line at 27.6 + 1.66 = 29.26 ft. 



436 APPUCATlONS OF FLUID MECHANICS [Chap. 10 

At point E the hydraulic gradc line is at zero elevation, and the energy grade 
line is 

vs2 V - = 16 - = 16 X 1.66 = 26.6 ft 
29 2g 

The hydmulic gradient is the slope of the hydraulic grade line if the 
conduit is horizontal; otherwise, it is 

The energ3 gradient is the slope of the energy grade line if the conduit is 
horizont.al; other-wise, it is 

In  many situations invoIving long pipelines the minor losscs may be 
neg1ected (when less than 5 per cent of the pipe friction losses) or they 

FIG. 10.2. Hydraulic grade line for long pipelines where minor losses are neglected or 
included as equivalent lengths of pipe. 

may be incIuded as equivalent lengths of pipe which are a d d 4  to 
actuaI lcngth in solving the problem. For these situations the value of 
the velocity head V2/2g is small compared with f (L/D)V2/2g and is 
neglected. The hydraulic gradc line is then utilized, as shown in Fig. 
10.2. No change in hydraulic grade line is shown for minor losscs. 
For these situations with long pipes the hydraulic gradient becomes 
h,/L, with hj given by the Damy-Weisbach' equation, 

Flow (except through a pump) is always in the direction of decreasing 
energy gradc line. 

I'umps add energy to the flow, a fact which may be expressed in the 
Bernoulli equation by including as a negative loss or by stating the energy 
per unit weight added as a positive term on the upstream side of the 
equation. The hydraulic grade line rises sharply a t  a pump. Figure 10.3 
shows the hydraulic and energy grade lines for a system with a pump 
and a siphon. The true slope of the grade lines can be shown only for 
horizontal lines. 
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Example 10.2: A pump with a shaft input of 10 hp and an efficiency of 70 per 
cent is connected in a water line carrying 3 cfs. The pump has a 6-in.diameter 
suction line and a 4in.diameter discharge line. The suction line enters the 
pump 3 f t  below the discharge line. For a suction pressure of 10 psi, calculate the 
pressure at the discharge flange and the rise in the hydraulic grade line across 
the pump. 

Loss due to bends and friction 
in vertical section 

FIG. 10.3. Hydraulic and energy grade lines for a system with pump and siphon. 

The energy added in foot-pounds pei-pound is symbdlized by E, 

Ryiapplying Bernoulli's equation from suction flange to discharge flange, 

in which the subscripts s and d refer to the suction and discharge conditions, 
respectively. From the continuity equation V, = 3 X 16/r = 15.3 ft/sec, 
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V d  = 3 X 3 6 i r  = 34.4 ft/sec. By solvillR for pd, 

and pd = 11.21 psi. 'I'he rise in hydraulic grade line is 

In this example almost all thc energy was addrrl in the form .of kinetic: energy, 
and the hydraulic grade line rises only 5.84 ft for a, risc of energy grade line of 
20.6 ft. 

A turbine takes energy from the flow and causcs a sharp drop in both 
the energy and the hydrar~lic grade lines. The energy removed per unit 

w e d t  of fluid may be treated as s loss in 
#mputing grade lines. 

10.2. The Siphon. A closed conduit, 
arranged as in Fig. 10.4, which lifts the 
liquid to an elevation higher than its frcc 
surface and then discharges it at a lower. 
elevation is a siphon. I t  has certain limi- 
tations to its performance due to the low 
pressures that occur near the summit s. 

Assuming that the siphon flows full, 

FIG. 10.4. Siphon. with a continuous liquid column through- 
out the siphon, the application of Ber- 

noulli's equation for the portion from 1 to 2 produces the equation 

in which K is the sum of all the minor-loss coefficients. After factoring 
out the velocity head, 

which is solved in the same fashion as the simple pipe problems of the 
first or second type. Wit.h the discharge known, the solution for II 
is straightforward, but the solution for velocity with H given is a trial 
solution started by assuming an f. 

The pressure at the summit s is found by applying Bernoulli's equation 
for the portion between 1 and s after Eq. (10.2.1) is solved. It is 
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in which K' is the sum of the minor-loss coefficients bet,ween the t i v r ~  
points and L' is the length of conduit upstream from s. By solving for 
the pressure, 

which shows that tho pressure is negative and that i t  deereases with ys 
and V2/2q .  If the solution of the equation should be a value of pJr 
equal to or less than the vapor pressnrcl of the liquid, then Eq. (10.2.1 ) 
is not valid because the vaporiz:ttion of portions of the fluid column 
invalidates the iilcbmpressibilit,y assumptioi~ used in deriving Rerno~illi's 
equat,ioi.l. 

Although Ery. (10.2.1) is not valid for this case theoretically there will 
be a discharge so long as y, plus the vapor pressure is less than local 
atmospheric pressure expressed in 1cngt.h of thc fluid column. When 
Eq. (10.2.2) yields a pressurc less t ha11 vapor pressrlrc at. s, the pressure 
a t  s may be taken as vapor pressure. Then, with this pressure known, 
Eq. (10.2.2) is solved for V2/2g ,  and the discharge is obtained therefrom. 
It is assumed that air docs not enter the siphon a t  2 and break at s t.hc 
vacuum that produces the flow. 

Practically a siphon docs not work satisfactorily when the pressurr 
intensity a t  the summit is close to vapor pressure. Air and other gascs - 

come out of solution at the low pressures and collect a t  the summit*, thus 
reducing the Iength of the right-hand column of liquid that produces thc 
low pressure at the summit. Large siphons that operate continuously 
have a t  the summits vacuum pumps to remove the gases. 

The lowest pressure may not occur a t  the summit, but somewhert! 
downstream from that  point, because friction and minor losses may 
reduce the pressure more than the decrease in elevation increases pressure. 

Example 10.3: Neglecting minor losscs and {!onsidering the lcngth of pipe equal 
to its horizontal distanrcl, dtattxrmine the point of minimum 1)rt:ssurt. in the siphon 
of Fig. 10.5. 

When minor losses are neglected the kinetic-energy terrn V2/2g is usually 
neglected also. Then the hydraulic grade line is a straight line connecting the 
two liquid surfaces. Coordinates of two points on the line are x = -100 ft, 
y = 10 ft;  x = 141.4 ft, y = 20 ft. The equation of the line is, by substitution 
into y = mx -+ b, 

A Iiquid boils when its pressure is reduced to its vapor pressure. The vapor 
pressure is a function of temperature for a particular liquid. Water has a vapor 
pressure of 0.203 ft of water abs at 32"F, 0.773 ft of water abs at M°F, 6.630 f t  of 
-water abs at 140°F, and 33.91 ft of water abs at 212OF. See Sec. 1.8. 
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The minimum pressure occurs where the distance between hydraulic grade line' 
and pipe is a maxinlum 

To find minimum p / y ,  set d ( p / y ) / &  = 0, which yields x = 20.75, and p / y  = 
- 14.58 ft of fluid flowing. The minimum point occurs where the slopes of the 
pipe and of the hydraulic grade line are equal. 

FIG, 10.5. Siphon connecting two reservoirs. 

A 

FIG. 10.6. Pipes connected in series. 

10.3. Pipes in Series. When two pipes of different sizes or roughnesses 
are connected so that fluid flows through one pipe and then through the 

' 

other pipe, they are said to be connected in series. A typical series-pipe 
problem, in which the head H may be desired for a given discharge or 
the discharge wanted for a given H, is illustrated in Fig. 10.6. By 
applying Bernoulli's equation from A to B, including a11 losses, 

in which thc subscripts refer to the two pipes. The last item is the head 
loss a t  exit from pipe 2. With the continuity equation 

Vt is eliminated from the equations, so 
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For known lengths and sizes of pipes this reduces to 

in which C1, C2, C3 are known. With the discharge given, the Reynolds 
number is readily computed, and the f's may be looked up in the Moody 
diagram. Then H is found by direct substitution. With H given, V1, 
f,, j2 are unknowns in Eq. (10.8.1). By assuming values of fl and fr 
(they may be assumed equal), a trial V ,  is found from which trial Reyn- 
olds numbem are determined and values of fl, f:! looked up. Using these 
new values, a better V1 is computed from Eq. (10.3.1). Since f varies so 
slightly with' Reynolds number, the trial solution converges very rapidly. 
The same procedures apply for more than two pipes in series. 

Example 10.4: In Fig. 10.6, K ,  = 0.5, L1 = 1000 ft, Dl = 2 ft, el = 0.005 ft, 
L2 = 800 ft, D2 = 3 ft, e2 = 0.001 f t ,  v = 0.00001 ft2/sec, and H = 20 ft. 1)eter- 
mine the discharge through the system. 
With Bernoulli's equation, 

After simplifying, 

From el/D1 = 0.0025, e2/D2 = 0.00033, and Fig. 5.34 values off's are assumed 
for the complete turbulence range, 

I 

f l  = 0.025 f 2  = 0.015 

Ry solving for V1, with these values, V 1  = 9.49 ft/sec, V z  = 4.21 ft/sec, 

and frbm Fig. 5.34, f k  = 0.025, f 2  = 0.016. By solving for V1 again, V1 = 9.46, 
and & = 9 . 4 6 ~  = 29.8 cfs. 

Equivalent Pipes. Series pipes may be solved by the method of equiva- 
lent lengths. Two pipe systems are said to be equivalent when the same 
head loss produces the same discharge in both systems. From Eq. 
(10.1.1) 

and for a second pipe 



442 APPLICATIONS OF FLUID MECHANICS [Chap. 10 

For the two pipes to be equivalent, 

After equating hil = hjz and simplifying, 

By solving for L2, 

which determines the length of a second pipe to be equivalent to  that  of 
the first pipe. For example, to replace 1000 f t  of 8-in. pipe with a n  
equivalent length of 6-in. pipe, the values of fl, j 2  must be approximated 
by selecting a discharge within the range intended for the pipes. Say 
fl  = 0.020, f 2  = 0.018; then 

For these assumed ~ondit~ions 264 f t  of 6-in. pipe is equivalent to 1000 f t  
of %in. pipe. 

Hypothetically two or more pipcs composing a system may also be 
replaced by a pipe which has the  s a h  discharge for the game over-all 
head loss. 

Example 10.5: Solvc example 10.4 by means of equivalent pipes. 
First, by exyrcssing the minor losscs in terms of equivalent lengths, for pipe 1 

and for pipe 2 

The values off, ,  f t  are selected for the fully turbulent range as an approximation. 
The problem is now reduced to 1065 f t  of 2-ft pipe and 1000 ft of 3-ft pipe. By 
expressing the 3-ft pipc in tcrrns of an equivaltmt length of 2-ft pipe, by Eq. 
(10.3.2) 

By adding to the 2-ft pipe, the problem is rctluced to the simple pipe problem of 
finding the discharge through 1065 + 79 = 1144 ft of 2-ft diameter pipe, r = 

0.005 f t ,  for a head loss of 20 ft, 
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Kith f = 0.025, Tr  = 9.5 ft/sec, R = 9.5 X 2/0.00001 = 1,900,000. For e / D  = 
0.0025,fl0.025, and Q = 9 . k  = 29.9 cfs. 

I rd4.  Piper in Parallel. A combination of two or more pipes connected 
as in Fig. 10.7, so that the flow is divided among the pipes and then is 
joined again, is a parallel-pipe system. In series pipes the same fluid 
flows through all the pipes, and the head losses are cumulative; hiowever, 
in parallel pipes the head losscs are t.hc same iii  any of the lines, and the 
discharges are cumulative. 

FIG. 10.7. ParaIIel-pipe system. 

In analyzing parallel-pipe systems, it is assumed that the minor losses 
are added into the lengths of each pipe as equivalent lengths. From Fig. 
10.7 the conditions to he satisfied are 

in which t ~ ,  ZH are elevations of points A and H, and & is the discharge 
through the approach pipe or tho exit pipe. 

Two types of problems occur: (1) with elevation of hydraulic grade line 
at A and B known, to find the discharge Q; (2) with Q known, tb find the 
distribution of flow and the head loss. Sizes of pipe, fluid properties, 
and roughnesses are assumed to be known. 

The first type is, in effect, the solution of simple pipe problems for 
discharge since the head loss is the drop in hydraulic grade line. These 
discharges are added to determine the total discharge. 

The second type of problem is more complex, as neither the head'loss 
nor the discharge for any one pipe is known. The recommended pro- 
cedure is as follows: 

1. Assume a discharge &: through pipe I .  
2. Solve for h;, using the assumed discharge. 
3. Using hi,, find Qt, Qi. 
4. With the three discharges for a common head loss, now assume 

that the given Q is ~ p l i t  up among the pipes in the same ~roportion as 
Q:, Q:, Q:; thus 
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5. Check the correctlless of these discharges by computing hf l ,  hfz ,  Af3 
for the computcd QI, Q2, Q3. 

This pracedure works for any number of pipes. By judicious choice of 
Q:, obtained by estimating the per cent of the total flow through the sys- 
tem that should pass through pipe 1 (based on diameter, length, and 
roughness), Eq. (10.4.2) produces values that check within a few per cent, 
wh'ich is well within the range of accuracy of the friction factors. 

Example 10.6: In Fig. 10.7, LI = 3000 ft, LI1 = 1 ft, el  = 0.001 ft; L2 = 2000 ft, 
Dz = 8 in., €2 = 0.0001 ft; La = 4000 ft, L.Ia = 16 in., € 3  = 0.0008 ft; p = 2.00 
slugs/ft3, v = 0.00003 ft2/sr?c, P A  = 80 psi, Z A  = 100 ft, ZB = 80 ft. For a tot81 
flow of 12 cfs, determine flow through each pipe and the pressure at B. 

Assume Q: = 3 cfs; then 1'; = 3.82, R: = 3.82 x 1/0.00003 = 127,000, = 

0.001, f = 0.022, and - 

For pipe 2 

Then d D 2  = 0.00015. ~ s sume  f; = 0.020; then V :  = 4.01 ft/scc, R; = 4.01 X 
X 1/0.00003 = 89,000, f: = 0.019, );: = 4.11 ft/sec:, Q; = 1.44 cfs. 
For pipe 3 

4000 vk2 
14.97 = f; - - 

1.333 2g 

Then s / D 3  = 0.0006. Assume f: = 0.020; then V ;  = 4.01 ft/sec, R: = 4.01 X 
1.333/0.00003 = 178,000, f; = 0.020, 0: = 5.60 cfs. 
The total discharge for the assumed conditions is 

ZQ' = 3.00 + 1.44 + 5.60 = 10.04 cfs 
Hence 

3.00 1.44 
= m4 X 12 = 3.58 cfs Q2 = X 12 = 1.72 cfs 

5.60 
Q3 = 3 1 4  X 12 = 6.70 cfs 

Checking the values of hl, h2, h3, 

f* is about midway between 0.018 and 0.019. If 0.018 had been selected, h2 
would be 20.4 ft. , 
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in which the average head loss was taken. Then 

183.5 X 2 X 32.2 
PB = 144 = 81.8 psi 

d r i i c h i n g  Piper. A simple branching-pipe system is shown in 
Fig. 10.8. In  this situation the flow through each pipe is wanted when 
the reservoir elevat-inns are given. The sizes and types of pipes and fluid 

FIG. 10.8. Three interconnected reservoirs. 

properties are assumed known. The Darcy-Weisbach equation must be 
satisfied for each pipe, and the continuity equation must be satisfied. It 
takes the form that the flow into the junction J must just equal the flow 
out of the junction. Flow must be out of the highest reservoir and into 
the lowest; hence, the continuity equation may bc either of the following, 

If the elevation of hydraulic grade line a t  the junction is above the eleva- 
tion of the intermediate reservoir, Aow is into it; but if the elevation of 
hydraulic grade line at J is below the intermediate reservoir, the flow is 
out of it. Minor losses may be expressed as equivalent lengths and added 
to the act-ual lengths of pipe. 

The solution is effected by assuming an elevation of hydraulic grade 
line at the junction, then computing Q1, Q2, Q3 and substituting into the 
continuity equation. If the flow into the junction is too great, a higher 
grade-line elevation, which will reduce the inflow and increase the out- 
flow, is assumed. 
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Example 10.7: In Fig. 10.8, find the discharges for water at  60°F and with the 
following pipe data and rcsrrvoir elevations: L1 = 10,000 ft, I l l  = 3 ft, el/L)l = 
0.0002; Lp = 2000 ft, D 2  = 1.5 ft, e 2 / D 2  = 0.002; L3 = 4000 ft, D3 = 2 ft,  tJlj3 
= 0.001; 21 = 100 ft, 22 = 60 ft, z3 = 30 ft. 

Assume ZJ + p ~ / y  = 65 ft; then 

so the inflow is greater than the. outflow by 

Assume ZJ + p ~ / y  = 80 ft ; then 

The outflow is now greater by 3.73 cfs. Taking a straight line interpolation, 
Z J  + p ~ / y  = 77.6 ft, and k 

and the outflow is 0.32 cfs greater. By extrapolating from the last two values, 
ZJ + P J / ?  = 77.4, &I  = 38.05, Q2 = 10.60, Q3 = 27.45. 

 more complex branching-pipe problems are solved by a similar method 
of taking a trial solution. It. is important that  only one independent 
assumption be made; otherwise convergence of the solution would be 
haphazard. Figure 10.9 illust.rat,es a four-reservoir problem with two 
junctions. By assuming the clevat.ion of tiydraulic grade line at one 
junction point, e.g., J1, the flow through-pipes 1 and 2 can be determined. 
Thus, by continuity, the flow between junctions is obtained, and the 
elevation of hydraulic grade line a t  J 2  is computed. The check on the 
:~ssumption is t:o see whether the flows in pipes 3 and 4 satisfy continuity 
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at J*. If 1101, L\ new ass~ impt i~n  a t  ~ J I  is made, and the pmccss is rrpmtetl. 
The directioil in which the shift is made is usually obvious. 

In  pumping from one reservoir to two or more other reservoirs, as ill 
Fig. 10.10, the charaet.eristicc; of the pump must be known. Assuming 

FIG. 10.0. Fottr rcservoirs with t \ ~ o  jr~nct.ions. 

FIG. 10.10. Pumping from one reservoir to t1.1~0 other rrservoirs. 

that the pump runs a t  constant speed, its head depends ripon the dis- 
charge. A suitable procedure is as follows: 

1. Assume a discharge through the pump. 
2. Compute the hydraulic-grade-line elevation a t  t,hn suction side of 

the pump. 
3. From the pump characteristic curve find the head produced, and add 

it  to suction hydraulic grade line. 
4. Compute drop in hydraulic gradc line to the junction J ,  and deter- 

mine elevation of hydraulic grade line t.herc.' 
5. For this elevation, computx flow into reservoirs 2 and 3. 
6. If flow into J equals flow oilt of .I, the problem is solved. If Boltw 

into J is too great., assume less flow t.hrough thc pump and repeat the 
procedure. 

10.6. Networks of Pipes. Intercollnected pipes through wvhich the 
flow to a given outlet may comc from several circuits are called a network 
of pipes, in many ways anaIogous to flow through electrical.networks. 
Problems on these in general are complicated and require trial soIutions 
in which the elementary circuits are balanced in turn until all conditioiis 
for the flow are satisfied. 
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The following conditions must be satisfied in a network of pipes: 
a. The algebraic sum of the pressure drops around each circuit must 

be zero. 
b. Flow into each junction must equal flow out of the junction. 
c. The Darcy-Weisbach equation must be satisfied for each pipe, i.e., 

the proper relation between head loss and discharge must be maintained 
for each pipe. 

The first condition states that the pressure drop between any two points 
in the circuit, e.g., A and G (Fig. 10.1 1) must be the same whether through 
the pipe A G or through A FEDG. The second condition is the continuity 
equation. 

FIG. 10.1 1. I'ipe network. 

An exponential equuation is usually developed to replace the Darcy- 
Weisbach equation. By expressing f as a function of V for a given pipe 
and a given fluid, the Darcy-Weisbach equation may be reduced to 

Example 10.8: Determine the exponential formula for flow of water at 60°F 
through a 6-in.&ameter clean cast-iron pipe for the velocity range 2 to 6 ft/sec. 

First, f is determined for 2 ft/sec and for 6 ft/sec. Using the Moody diagram, 
= 0.0017. For 2 ft/sec, f '= 0.025, and for 6 ft/sec, f = 0.023. Hence 

Substituting into 
f = aQb 

produces 
0.025=~(0.392)~ 0.023=~(1.180)~ 

By taking the ratio of the two equations, 
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Hence 
f = 0.0233&-0.076 

Substituting into the Darcg-Weisbach equation produces 

I f  the pipe is 1000 ft long, hi = 18.8&1.924. 

Since it is impractical to solve network problems analytically, methods 
of successive approximations are utilized. The Hardy Cross method1 is 
one in which flows are assumed for each pipe so that continuity is satisfied 
a t  every junction. A correction to thc flow in each circuit is. then com- 
puted in turn and applied to bring the circuits into closer balance. 

Minor losses are included as equivalent lengths in each pipe. With 
the head loss equation hf = T&", in which r and n am! determined for cach 
pipe, the method is applied as follows: 

a. Assume the best distribution of flows that satisfies continuity by 
careful examination of the network. 

b. Compute the head loss in each pipe h = rQn. Compute the net 
head loss around each elementary circuit: Zh = ZrQn (should be zero for n 
balanced circuit). 

c. Compute for each circuit: ZlnrQn-'1 (all teims are considered 
positive). 

d. Set up in each circuit a corrective flow AQ to balance the head in 
that circuit (for Zr&" A 0): 

e. Compute the revised flows in each pipe, and repeat the procedure 
until the desired accuracy is obtained. 

The solution is known to be correct when all the conditions arc satisfied 
for cach circuit. The source of the corrective term is obtained as follows: 

For any pipe 
Q = Qo + AQ 

in which Q is the C U A L ~ C ~  discharge, Qo the assumed discharge, and A& the 
correction. Then, for each pipe 

If A& is small compared with Qo, all terms of the series after the second 
one may be dropped. Now for a circuit, 

Hardy Cross, Analysis of Flow in Networks of Conduits or Conductors, Uniu. 
Illinois Bull. 286, November, 1946. 
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in which A& has been taken out of the summation as it is the same for all 
pipes in the circuit. After solving for AQ, 

When A& is applied to a circuit, it has the same sense in every pipe; i.e., 
i t  adds to flows in the counterclockwise direction and subtracts from flows 

FIG. 10.12. Solution of flow distribution in n simple network. 

in the clockwise dirertio~l. Sirlctc! the A Q  contains thc sign change, the 
dcrlominator of the corrcctiotl term is the sum of t,hc ahsolnte terms. 

Thc values of r occur in hot,h numerator and clc~iorninator; hence, values 
proportional to the actual 1. may be used to find the distribution. Sirni- - 
larly, the apportio~ime~~t of flows may he expressed as s per cent of the 
actual flows. To find :I pnrticdar he:~d loss, the actt11;tl v:~lucs of r ant1 () 
must be used after. the distril)ut.io~i has hcetr dcternlitied. 

Example 10.9: The distribution of flow through thc network of Fig. 10.12 is 
desired for the inflows and outflows as given. For simplicity n hits been given 
the value 2.0. 



Sec. 10.71 % ,  CLOSED-CONWIT FLOW 45 1 , 
\ 

The assumad distribution is shown in diagram a. A t  the uplwr left the terms 
ZtQt are eomhted for the lower circuit. By listing the clockwise terms first, an 
arrow a t  the ri&t drawn to the larger terms shows the direction of the cmnkr. 
balancing AQ. '%Text to the diagram on the left is the computation of ~ l e - l l .  
Diagram b gives: the distribution after both circuits have been corrected once. 
Diagram c shows the values correct to within about 1 per cent of the distribution, 
which is more accurate than the exponential equations for head loss. 

10.7. Conduits with Noncircular Cross Sections. In this chapter so 
far, only circular pipes have been considered. For cross sections that are 
noncircular, the Darcy-Weisbach equation may be applied if the term D 
can be interpreted in terms of the section. The concept of the hydraulic 
radius R. permits circular and. noncircular sections to be treated in the 
same manner. The hydraulic radius is defined as the cross-sectional area 
divided by the wetted perimeter. Hence, for a circular section, 

area R = - ----  ?rD2/4 - D 
perimeter aD 4 

and the diameter is equivalent to 4R. Assuming that the diameter may 
be replaced by 4R in the Darcy-Weisbach equation, in the Reynolds num- 
ber, and in the relative roughness, 

Noncircular sections may be handled in a similar manner. The Moody 
diagram applies as before. The assumptions in Eqs. (10.7.2) cannot be 
expected to hold for odd-shaped sections but should give reasonable 
values for square, oval, triangular, and similar types of sections. 

Example 10.10: Determine the head loss in inches of water required for flow 
of 10,000 ft3/min of air a t  60°F and 14.7 psia through a rectangular galvanised- 
iron section 2 ft wide, 1 f t  high, and 200 ft long. 

f = 0.017 
Then 

The speci6c weight of air is y = (14.7 x 144)/(53.3 x 520) = 0.0762 lb/ft3. In 
inches of water the head loss is 

2?5 X 0.0762 X 12 
62.4 

= 4.04 in. 
C 
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10.8. Aging of Pipes. The Moody diagram, with the values of abso- 
lute roughness shown there, is for new, clean pipe. with use, pipes 
become rougher, owing to corrosion, incrustations+. and deposition of 
material on the pipe walls. The speed with which the friction factor 
changes with time depends greatly on the fluid being 'handled. Cole- 
brook and White1 found that the absolute roughness s increases linearly 
with time, 

E = €0 + at (10.8.1) 

in which eo is the absolute roughness of the new surface. Tests on a pipe 
are required to determine a. 

Example 10.1 1 : An 18-in,-diameter wrought-iron pipe 12 years old has a pres- 
sure drop of 1.365 psi/1000 ft when carrying 7.08 cfs water at 60°F. Estimate 
the loss per thousand feet for 10 cfs water when the pipe is 20 years old. 

When new, EO = 0.00015 from Fig. 5.34. A t  12 years 

and 

from Fig. 5.34, E / D  = 0.00075, E = 0.00075 X 1.5 = 0.00112 ft. After-comput- 
ing a from Eq. (10.8.1), 

When 20 years old 

For 10 cfs, V = 5.65, VD" = 102,*e/D = 0.0012, f = 0.021, and 

UNSTEADY FLOW IN CONDUITS , 

In general, unsteady-flow situations are more difficult to analyze than 
steady-flow situations. The Bernoulli equation is not applicable and 
the equation of motion leads to differential equations for the velocity or 
pressure as a function of time. Xumerical and graphical methods arc 

' C. F. Colebrook and C.  M. White, The Reduction of Carrying Capacity of Pipes 
with Age, J .  Inst .  Civil Engs. (London), 1937. -, 
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frequently &sorted to, with the use of analog and digital computers to 
speed up th&,process of finding solutions. A few simple unsteady-flow 
situations are discussed as an introduction to 
the subject, bdcause of its increasing impor- 
tance in engineking. 

10.9. ~ s c i l l a t ~ n  of Liquid in a U-tube. 
Three cases of osjllations of liquid in a simple 
U-tube are of inteest: (a) frictionless liquid, 
(b) laminar resis&nce, and (c) turbulent 
resistance. 

a. Frictionless Liquid. If no appreciable 
friction occurs within a 'U-tube, the equation 
of motion for the liquid is easily formulated 
as a differential equation. In Fig. 10.13 the 
line z = 0 is drawn through the equilibrium 
position-of the menisci. The force accelerat- 
ing the liquid column is due to the unbalanced 

FIG. 10.13. OsciIlation of weight of liquid 2zA4 acting to reduce 2. The liquid in a U-tubc. 
mass is rAL/g in which L is the length of total 
liquid column and A is the cross-sectional area of tube, both considered to 
be constant. From Newton's second law 

in which d%/dt2 is the acceleration of liquid column. The minus sign is 
required because the acceleration term is negative when z is positive. 
After simplifying 

d'z 29 
- + z z = o  dt" 

The general solution of this equation is 
.- 

r = C~ cos 3.1 + CZ sin j2t 
in which C1 and C2 are arbitrary constants of integration. The solution 
is readily checked by differentiating twice and substituting into the 
differential equation. To evaluate the constants, if z = Z and dz/dt = 0 
when t = 0, then C1 = Z and Cz = 0, or 

2 =- z cos Bt 
This equation defines a simple harmonic - motion of a meniscus, with a 
period for a complete oscillation of 27 d1-//2g. Velocity of the column 
may be obtained by differentiating 2 with respect to t. 
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Ezampze 10.12: i\ frictionless fluid column 4.025 ft long has a sp ed of 4 ft/seo 
when z = 1 ft. Find (a) the maximum value of z, (b) the maxi m speed, and 
(c) the period. 

1 
/ 

(a) By differentiating Yq. (10.9.2), after substituting for L, / 
dz -- . = -4Z sin 4t 
dt 

If t l  is the time when z = 1 and dz/dt = 4, 

1 = Z cos 4tl 
- 4  = - 4 2  sin 4tl 

Dividing the second equation by the first equation 

tan' 4tl = 1 

or 4tl = 0.785 radians, t l  = 0.196 sec, sin 4t1 = 0.707, and cos 4tl = 0.707. Then 
Z = l/cos 4tl = 1/0.707 = 1.41 ft, the maximum value of z. 

(b) The maximum speed occurs when sin 4t = 1, or 42 = 4 X 1.41 = 5.64 
ft/sec. 

(c) The period is 

b. Laminar Resistance. By making the assumption that the resistance 
to laminar flow in an unsteady situation is exactly the same as for a 
similar steady flow at the same velocity, the differential equation is 
easily obtained. Equation (5.2.7), when solved for head h causing 
velocity V is 

h = 
32pLV 

yD3 

in which L) is the tube diameter and p the dynamic viscosity. With 
reference to Fig. 10.13, the force accelerating the column is 2zAr  as in 
the previous case. The resistance to motion is h A r ,  the mass is yAL/g, 
and the acceleration is d2z/dt2. If z is increasing in the figure, 

in which the kinematic viscosity v has replaced ~ g / y .  The assumption 
has been made that, &/dl  = V and that d2z/dt2 = dV/d t ,  or that the 
column moves as a solid wiih velocity V .  
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By substkution 
\ 2 = Cleot + C2@ 

can be shown",to be the general solution of Eq. (10.9.3) provided that 

and 

CI and Ct are arbitrary constants of integration that are determined by 
given values of t and dzldt a t  a given time. To keep a and b distinct, 
since the equations defining them are identical, they are taken with 
opposite signs before the radical terrn.in solution of the quadratics, thus 

and 

To simplify the formulas, if 

then 
= Cle-mt+nt + C2e-mt -n t  . 

When the initial condition is taken that t = 0, x = 0, dz/dt = Vo, the11 
by substitution C1 = - Cs, and 

2 = Cre-mt(ent - e-nt) 
Since 

,nt , 

2 = sinh nt 

Eq. (10.9.4) becomes 
z = 2Cle-"t sinh nt 

'By differentiating with respect to t 

dz - = 2C1(-me-mt 
dt sinh nt + neYmt cosh nt) 

and after setting dz/dt = Va for t = 0 
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since sinh 0 = 0 and C O S ~  0 = 1. Then / 

r = 3 eAmt sinh nl 

This equation gives the displacement z of one meniscus of the column 
as a function of time, starting with the meniscus at z = 0 when 1 = 0, 
and rising with velocity Vo.  

FIG. 10.14. Position of nlenkcus as a function of time for oscillation of liquid in a 
U-tube with laminar resistance. 

Two principal cases' are to be considered. When 

16v  
D 

n is a real number and the ~iscosity is so great that the motion is damped 

out in a partial cycle with z never becoming negative, Fig. 10.14 - - ( - 2)- 
The time .to for maximum z to occur is found by differentiating z[Eq. 
(10.9.5)j with respect to t and equating to zero, 

dz Vo - = O x C .  
dt 

sinh nt + mrrnt cosh nt) 
n 

' A third case, 16v/lP = must be treated separately, yielding z = Vote-'"'. 
The resulting oscillation is for a partial cycle only and is a limiting case of 
16r/D2 > dm: 
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n 
tanh nto = - 

\ m (10.9.6) 

Subst.itution of this value of t into Eq. (10.9.5) yields the maximum &s- 
placement 2. 

The second case, when 

results in a negative term within the radical 

in which i = d- 1 and n' is a real number. Replacing n by in' in 
Eq. (10.9.5) produces the real function 

vo V o  e-mt sinh in't = - e-mt sin n'l 2 = - 
in' n' 

since . 

1 
sin n't = - sinh in't 

i 

The resulting motion of z is an oscillation about x = 0 with decreasing 
amplitude, as shown in Fig. 10.14 for the case m/n' = $. The time t o  
of maximum or.minirnum displacement is obtained from Eq. (10.9.8) by 
equating dz/dt = 0, producing 

n' tan n'to = - 
rn 

There are an indefinite number of values of to  satisfying this expression, 
corresponding with all the maximum and minimum positions of a menis- 
cus. By substitution of t o  into Eq. (10.9.8) 

z = vo e-(m/n') tan-' (nt /m)  = vo & e-(m,n#l b n - 1  (nt/ml (10.9.10) 
dn'2 + m2 

Example 10.13: A 1.0-in.-diameter ,U-tube contains oil, v = 1 x lo-* ft2/sec, 
with a total column length of 120 in. Applying air pressure to one of the tubes 
makes the gage difference 16 in. By quickly releasing the air pressure the oil 
column is free to oscillate. Find the maximum velocity, the maximum Reynolds 
number, and the equation for position of one meniscus z, in terms of time. 
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The assumption is made that the flow is laminar, and Reynolds number will be 
computed on this basis. l'he constants nt and n are 

or 
n' = 2.527 

Equations (10.9.8), (10.9.91, and (10.9.10) apply to this case, as the liquid will 
oscillate above and below z = 0. l'he oscillation starts from the maximunl 
position, i.e., Z = 0.667 ft. By usc of I<q. (10.9.10) the velocity (fictitious) whim 
x = 0 a t  time to before the maximum is detcrminrd to be 

= 1.935 ft/sec 
and 

n' -1 
tan n'to = - to = - 

2.527 
2.527 tan-' - = 0.586 sec m 0,2302 

Hence by substitution into Eq. (10.9.8), 

z = 0.766 e-0-23U2(t+0.586)  sin 2.527(t + 0.586) 

in which z = Z a t  t = 0. The maximum velocity (actual) occurs for t > 0. 
Differentiating with respect to t to obtain the ~xpression for v~loc.it?r, 

dz . v = - -  - 
dt - 0.1763 e-0-2302(1+0-5n6) sin 2.527(t + 01586) + 

1.935 e-0-*330"l+*.5~6) cos 2.527(t + 0.586) 

Differentiating again with respect to t and equating to zero to obtain maximum 
V produces 

tan 2.527(t + 0.586) = -0.1837 

The solution in the second quadrant should produce the desired maximum, t = 
0.584 sec. Substituting this time into the exl~ression for V produces V = 

- 1.48 ft/sec. The corresponding Reynolds number is 

hence the assumption of laminar resistance is justified. 

c. Turbulent Resistance. In  the majority of practical cases of oscilla- 
tion, or surge, in pipe systems there is turbulent resistance. With large 
pipes and tunnels the Reynolds number is large except for those time 
periods when the velocity is very near to zero. The assumption of fluid . 

resistance proportional to the square of the average velocity is made 
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(constant f). It closely approximates true conditions, although it yields 
too small a resistance for slow motions, in which case resistance is almost 
negligible. The equations will be developed for f = constant for oscilla- 
tion within a simple U-tube. This case will then be extended to include 
oscillation of flow within a pipe or tunnel between. two reservoirs, taking 
into account the minor losses. The assumption is again made that 
resistance in unsteady flow is given by steady flow resistance a t  the same 
velocity. The resistance due to a column of liquid of length L is 

The equat.ion of motioil (Fig. 10.13) for x decreasing is 

After simplifying, 

The sign of the middle term becomes positive for motion in the +z-direc- 
tion. The cquation may he integrated once,' producing 

in which C is the constant, of illtegration. To cvttluate the constant, if 
x = z, for dz/dt .= 0 

and 

Although this equation cannot be integrated again, numerical integration 
of particular situations yields z as a function of 1. The equation, how- 
ever, may be used to det,e&ine the magnitude of successive oscillations. 

By substitution of 

then 

This equation rnay he made exact by multiplying by tl~c integrating. factor e-/'ID. 
For the detailed method see A. Cohen, "Differential Equations," p. 11, I). C. Heath & 
Co., Boston, 1906. 
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At the instants of maximum or minimum z, say z,,, and &+I, respectively, 
&/dl = 0 and Eq. (10.9.13) simplifies to 

Since the original equation, Eq. (10.9.1 I ) ,  holds only for decreasing x ,  
z, must be positive and z,+l negative. To find z,+z the other meniscus 
could be considered and zm+r as a positive number substituted into the 
left-hand side of the equation to determine a minus z,+2 in place of z , , ~  
on the right-hand side of the equation. 

ExampEe 10.14: A U-tube consisting of 2.0-ft-diameter pipe with j = 0.03 has a 
maximum oscillation (Fig. 10.13) of z, = 20 ft. Find the minimum position of 
the surface and the following maximum. 

From Eq. (10.9.14) 

which is satisfied by z,+l = -16.6 ft. Using z, =.16.6 in Eq. (10.9.14) 

which is satisfied by z,+l = - 14.2 ft. Hence, the minimum water surface is 
z = -16.6 ft and the next maximum is z = 14.2 ft. 

Equation (10.9.14) may be solved graphically: if # = f i /D,  then 

which is conveniently plotted with F ( 4 )  as ordinate and both - 4  and 
+ # on the same abscissa scale (Fig. 10.15). Successive values of + are 
found as indicated by the dotted stepped linc. 

Although z cannot be found as a function of t from Eq. (10.9.13), V is 
given as a function of z, since V = &/dt. The maximum value of V 
is found by equating dV2/dz = 0 to find its position z', thus 

dV2 - =  o = - -  f + ) e f i ~ l - ~ - H D  - 
dz D D 

After solving for z' 

and after substituting back into Eq. (10.9.13) 
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+$I of -4 
FIG. 10.15. Graphical solution of F(+)  = (1 + 4)e*. 

Oscillation of Two Reservoirs. The equation for oscillation of two 
reservoirs connected by a pipeline is the same as that for oscillation of a 
U-tube, except for value of constant - 
terms. If zl and zz represent dis- 
placements of the reservoir surfaces 
from their equilibrium positions (Fig. 
10.16) and if z represents displacc- 
rnent of a water particle within the 
connecting pipe from its equilibrium 
position, . 

Z A  = zlAl = z2A2 

in which A1 and Az are the reservoir 
areas, assumed to be constant in this 
derivation. Taking into account 

FIG. 10.16. Oscillation of two reservoirs. minor Iosses in the system by using 
the equivalent length L, of pipe and fittings plus other minor losses, the 
equation of motion is 

for z decreasing. After simplifying 
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After comparing with Kq. (10.9.1 I), j is replaced by jL./L, and 2g /L  by 
gA( i /A ,  + 1 / A 2 ) / L .  In Eq. (10.9.15) 

Example 10.15: In Fig. 10.16 a valve is opened suddenly in th t  pil~eline when 
= 40 ft .  L = 2000 ft, A ,  = 200 f t 2 ,  Az = 300 ft2, L) = 3.0 ft, f = 0.024, and 

minor losses are 3.50V2/2g. Determine the subsequent maximum negative ant1 
positive surges in the reservoir Al .  

The equivalent length of minor losses is 

The corresponding 4 is 

and 

F ( 4 )  = ( I  + 4 ) e 3  = ( I  + 1.1.04)e-t1-04 = 0.000193 

which is satisfied bj- 4 - 1 .O. l'htn 

. 
which is satisfied hy 4 = -0.593. The values of z, are, for 4 = -1 

and for + = 0.593 

The corresponding values of x l  art? 

and 

In  this example it  should be noted that the subsequent oscillations are almost 
independent of the original zl, so long as z ,  is greater than about 20 ft. 
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10.10. Establishment of Flow. The problem of determinatioil of time 
for flow to become established in a pipeline when a valve is suddenly 
opened is easily handled when friction and minor losses are taken into 
account. After a valve is opened (Fig. 10.17), the head H is available to 
accelerate the flow in the first instants, but as the velocity increases the 
accelerating head is reduced hy friction and minor losses. If L, is the 

FIG. 10.17. Notation for establishment of flow. 

equivalent length of the pipe system, the final velocity V o  is given by 
application of the Bernoulli equation 

The equation of motion is 

By solving for dt and rearranging, with Eq. (10.10. I ) ,  

After performing the integration 

The velocity V approaches V o  asymptotically; i-e., mathematically it  
takes infinite time for V to attain the value Vo.  Practically, for 1' to 
reach 0.99 Vo takes 
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V ,  must be determined by taking minor losses into account, but Eg. 
(10.10.2) does not contain L.. 

Ezample 10.16: In Fig. 10.17 the minor losses are 16V2/2g, f = 0.030, 1; = 
10,000 ft, D = 8.0 ft, and H = 60 ft. Determine the time, after the sudden 
opening of a valve, for velocity to attain nine-tenths of the final velocity. 

From Eq. (10.10.1) 

After substituting V = 0.9 Vo into Eq. (10.10.2) 

t = 
10,000 X 8.5 1.90 

In - = 64.8 sec 64.4 X 60 0.10 

10.1 1. Surge Control. The oscillation of flow in pipelines, when com- 
pressibility effects are not important, is referred to as surge. ' For sudden 

FIG. 10.18. Surge tank on a long pipeline. 

deceleration of flow due to closure of the flow passage, compressibility 
of the liquid and elasticity of the pipe walls must be considered; this 
phenomenon, known as water hammer, is discussed in Sec. 10.12. Oscilla- 
tions in a U-tube are special cases of surge. As one means of eliminating 
water hammer provision is made to permit the liquid to surge into a tank 
(Fig. 10.18). The valve a t  the end of a pipeline may be controlled by a 
turbine governor, and may rapidly stop the flow if the generator loses 
its load. To quickly destroy all momentum in the long pipe system 
would require high pressure which in turn would require a very costly 
pipeline. With a surge tank as near the valve as feasible, although surge 
will occur between the reservoir and surge tank, the developing of high 
pressure in this reach is prevented. It is still necessary to design the 
pipeline between surge tank and valve to withstand water hammer. 

Surge tanks may be classified as simple, orifice, and duerential. The 
simple surge tank has an unrestricted opening into it, and must be of 
adequate size so that it will not overflow (unless a spillway is provided) 
and so that it will ndt be emptied and air permitted to enter the pipeline. 
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It must also be of such size that it  wiI1 not fluctuate in resonance with thc 
governor action on the valve. The period of oscillation of a simple surge 
tank is relatively long. 

The orifice surge tank has a restricted opening or orifice between pipe- 
line and tank and, hence, allows more rapid pressure changes in the 
pipeline than the simple surge tank. The more rapid pressure change 
causes a more rapid adjustment of flow to the new valve setting and 
losses through the orifice aid in dissipating excess available encrgy result- 
ing from valve closure. 

The differential surge tank (Fig. 10.19) is in effect a combination 
of an orifice surge tank and a simple surge tank of small cross-sect.ional 
area. In case of rapid valve opening a limited amount of liquid is 

FIG. 10.19. Differential surge tank. 

directly available from the central riser and flow from the large tank 
supplements this flow. For sudden valve closures the central riser may 
bc designed so that it overflows into the outside tank. 

Surge tanks operating under air pressure are utilized in certain circum- 
stances, such as after a reciprocating pump. They are generally uneco- 
nomical for large pipelines. 

Detailed analysis of surge tanks entails a numerical integration of the 
equation of motion for the liquid in the pipeline, taking into account 
the particular rate of valve closure, together with the continuity equa- 
tion. The particular type of surge tank to be selected for a given situa- 
tion is dependent upon a detailed study of the economics of the pipeline 
system. High-speed digital computers are most helpful iri their design. 

Another means of controlling surge and water hammer is to supply 
a quick-opening bypass valve that opens when the control valve doses. 
The quick-opening valve has a controlled slow closure a t  such a rate 
that excessive pressure is not developed in the line. The bypass valve 
wastes Iiquid, however, and does not provide relief from surge due to 
opening of the control valve or starting of a pump. 
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10.12. Water Hammer. Water hammer may occur either upstresln 
or downstream from a valve in a pipeline. When sudden closure of a 
valve occurs, the upstream momentum must be reduced to zero very 
rapidly, which creates a high pressure at the valve and causes a wave of 
high pressure to move upstream from the valve. On the downstream side 
of the valve, momentum of the liquid causes it to continue downstream 
unless the static pressure is high enough to bring it to rest as pressure is 
reduced a t  the valve. Usually boiling (cttvitatioi~) occurs downstream. 
Eventually the liquid comes to rest and is then accelerated upstream 
toward the valve, condensing the vapor and permitting impact of the 
liquid column against the valve. This develops a high-pressure wave 
that moves downstream. 

Analysis of water hammer deals with two cases: rapid valve closure 
and slow valve closure. In  this treatment fluid friction is ignored an& 
the assumption of perfect elasticity of liquid and pipe walls is made, as . 

they greatly simplify the analysis. The only cases considered here are 
with the valve a t  the downstream end of a pipe. 

Rapid Valve Closure. The maximum pressure rise at the valve will be 
shown to be the same whether the valve is closed instantaneously or in 
any time less than that requiredafor the pressure wave to travel to the 
upstream end of the pipc and be reflected to the valve. If the speed of 
pressure wave is c and the pipe length L, rapid cIosure occurs when time 
bf closure t, is less than 2L/c. The case of instantaneous closure is first 
considered. 

With h the head rise at, the valve due to closure, application of the 
momentum equation 

supplies one relation between head h, initial velocity Vo, and wave speed 
c. The only unbalanced force acting on the liquid in the axial direction 
is -7hA if friction is neglected. The term pQ,  the mass per second 
having its momentum changed, is pAc, as the pressure wave reduces the 
velocity from Vo to 0 as -it passes, and it travels a distance c in unit time. 
Thus 

- yhA = pAc(0  - Vo) 
or 

This equation applies to any length of pipe. 
To determine the vaIue of the speed c of the pressure wave, the principle 

of work and energy is applied. For a length L of pipe, the kinetic 
energy rALVo2/2g before the pressure wave occurs must be converted 
into elastic energy in compressing the liquid and in stretching the pipc 
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walls. The compressibility of liquid is given by K = - bC A p / A f ,  in 
which f is the volume of liquid subjected to pressure Ap [Eq. (1.7.1)J. 
Since d p  = ~ h ,  the volume reduction AV is V r h / K ,  or for length L, 
ALyh/K.  The volume reduction multiplied by average pressure is the 
work of compression 

yh A Lyh -- 
2 K  

The work done in stretching the pipe walls is the product of the 
average force exerted in the pipe wall and the additionat strain, or 
extension of pipe-wall circumference. From the formuIa for pipe ten- 
sion, T = pr = yhD/2, in which T is the force per unit length of pipe 
wall and D is the pipe diameter. The unit stress is T/t' in which t' is 
the wall thickness. The unit strain is T/ t rE and the strain rDT/t'iY, 
in which E is the modulus of elasticity of pipe-wall material. The aver- 
age force in the pipe wall due to water hammer is L T / 2  = 7hLD/4.  
Hence, the work done in expanding the pipe wall is 

The expression for conversion of kinetic! energy to work of compression 
of liquid and expansion of pipe wall is 

After simplifying and after eolvillg for h, 

By comparison with Eq. (10.12.1) 

For .the case of very rigid pipes, when KD/Et' is small compared with - 
unity, c = d ~ / ~ ,  which is Eq. (6.2.3). The speed of sound in water at 
ordinary temperatures is about 

Hence, for water in a.,pipe 
4720 
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in which K/Epand D/t' are dimensionless. The effect of elasticity of the 
pipe walls is to reduce the speed of the pressure wave. As an extreme 
example, for rubber E 800 psi and for D / t  = 8 the value of c is about 
86 ft/sec. For steel B = 3 X lo7 psi and for D/t' = 100 the value of c 
is about 3340 ft/sec. 

Example 10.17: A valve is suddenly closed in a water main in which the velocity 
is 3.50 ft/sec and c = 3800 ft/sec. What is the pressure rise at the valve? 

VOC 3.5 X 3800 h = - - --- 
- 32.2 = 413 ft, or 179 psi 

g 

It is important that the sequence of events taking place in a pipe 
after instantaneous closure is thoroughly understood. At the instant 
of valve closure the fluid nearest the valve is compressed, brought to 
rest, and the pipe wall stretched. As soon as the first layer is compressed 
the process is repeated for the next layer. The fluid upstream from the 
valve continues to move downstream with undiminished speed until 
successive layers have been compressed back to the source. The high 
pressure moves upstream aa a wave, bringing the fluid to rest as it 
passes, compressing it, and expanding the pipe. When the wave reaches 
the upstream end of the pipe, all the fluid is under the extra head h, all 
the momentum has been lost, and all the kinetic energy has been con- 
verted into elastic energy. 

There is an unbalanced condition a t  the upstream (reservoir) end at 
the instant of arrival of the pressure wave, as the reservoir pressure 
is unchanged. The fluid starts to flow backward, beginning at  the 
'upstream end. This flow returns the pressure to the value which was 
normal before closure, the pipe wall returns to normal, and the fluid 
has a velocity Vo in the backward sense. This process of conversion 
travels downstream toward the valve a t  the speed of sound c in the pipe. 
At the instant 2L/c  the wave arrives a t  the valve, pressures arc back to 
normal along the pipe, and velocity is everywhere Vo in the backward 
direction. 

Since the valve is closed no fluid is available to maintain the flow a t  
the valve and a low pressure develops ( - h )  such that the fluid is brought 
to rest. This low-pressure wave travels upstream a t  speed c and every- 
where brings the fluid to rest, causes it to expand because of the lower 
pressure, and allows the pipe walls to contract. (If the static pressure in 
the pipe is not sufficiently high to sustain head, - h, above vapor pressure, 
the liquid vaporizes in part and continues to move backward. over a 
longer period of time.) 

At the instant the negative pressure wave arrives at the upstream 
end of the pipe, 3L/c sec after closure, the fluid is a t  rest, but uniformly 
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at head -h less than before closure. This leaves an unbalanced condi- 
tion a t  the reservoir, and fluid flows into the pipe, acquiring a velocity 
V,-, forward and returning the pipe and fluid to normal conditions as the 
wave progresses downstream a t  speed c. At the instant this wave 
reaches the valve, conditions are exactly the same as at the instant of 
closure, 4L/c sec earlier. 

This process is then repreated every 4L/c sec. The action of fluid 
friction and imperfect elasticity of fluid and pipe wall, neglected hereto- 
fore, is to damp out the vibration and eventually cause the fluid to come 
permanently to rest. 

The sequence of events taking place in a pipe may be compared with 
the sudden stopping of a freight train by the engine hitting an immovable 
object. The car behind the engine compresses the spring in its forward 
coupling and stops as it  exerts a force against the engine, and each car 
in turn keeps moving at its original speed until the preceding one 
suddenly comes to rest. When the caboose is at rest all the energy is 
stored in compressing the coupling springs (neglecting losses). The 
caboose has an unbalanced force exerted on it, and starts to move back- 
ward, which in turn causes an unbalanced force. on the next car setting 
it in backward motion. This action proceeds as a wave toward the ' 

engine, causing each car to move a t  its original speed in a backward 
direction. If the engine is immovable the car nest to it is stopped by a 
tensile force in the coupling between it and the engine, analogous to the 
low-pressure wave in water hammer. The process repeats itself car by 
car until the train is again a t  rest, with all couplings in tension. The 
caboose is then acted upon by the unbalanced te~lsilc force in its coupling 
and is set into forward motion, followed in turn by the rest of the cars. 
When this wave reaches the engine all cars are in motion as before the 
original impact. Then the whole cycle is repeated again. Friction acts 
to reduce the energy to zero in a very few cycles. 

Closure of a valve a t  any time before 2L/c sec causes the pressure 
at the valve to rise to the same peak Voc/g as in the case of instantaneous 
closure. As the valve is being closed, conveniently analyzed as if in 
discrete steps with instantaneous partial closure, the pressure rise a t  each 
step is, from Eq. (10.12. I)? 

At the instant of complete closure, when no reflected negative waves 
have had time to return to the valve, 
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and the full pressure rise is developed. The full head a t  the valve then 
lasts only from the instant of complete closure to time 2L/c  from start 
of first closure, since a negative wave arrives a t  this time with successive 
negative waves following. 

- .------ ------- -------------- 
. - - . - - - - - - - - -em- ------ -------- .---------- ---- 
-___.-------i-- .-------------- 

Time for reflected Time for peak pressure 
. - - + - - - - - - - - - A - - - - - - - - - - - - - - - wave to reach x . to reach x 
.------ -------- -------------- .-------------- --- .---- ------ 
. - - - - - - - - - - - - 7 -  

L L-x = 5 + c  L X 

-------------- = t c f  7 .-------------- -------------- .-------------- -------------- .-------------- -------- .-------------- L-x.xL1 

FIG. 10.20. Notation for meeting of peak pressure wave and reflected wave. 

For time of closure t, between 0 and 2L/c ,  the length z of pipe, Fig. . 
10.20, over which the peak head cVdg acts, is found by equating the 
times for the waves to meet, 

For t. = 0; x = L, and all the pipe is subjected to peak head. For 
t c  = L/c )  x = L/2. 

To compute the pressure rise at the valve as a function of time for 
rapid clmure a numerical process is utilized. The valve is treated as an 
orifice with a constant coefficient C d  and variable ares, A,, 

in which V is velocity in the pipe, A the pipe area, and h the head acting 
across the valve. With ho the head across the valve when V = V O  and 
A* = Avo, 

VoA = GAVo 4 2 3 0  
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IVhen this equation is divided into Eq. (10.12.7), 

Equation (10.12.5) may be placed in to dime~~sioliless form, 

Ah cVOAV - = . . / -  
ho gho V" 

The fract.ioni1 part of the valve area, expresscd hy A,, /A, ,o ,  is a function 
of time, hut. will be considered as a series of sudden partial closures. 
For one step at time t l ,  

and may be solved simuItancously wit.h Eq. (10.12.9) to find Ah/ho and 
A V / V ,  for t = tl. The new values of V, h, and ( A , / A , o ) t ,  are then 
inserted and Eqs. (10.12.9) and (10.12.10) solved agaitl for Ah/ho and 
AV/VO. 

Bxample 10.18: A 60-in.-diameter steel pipeline 1.0 in. thick and 3730 ft long 
carries water a t  2 ft/sec. A valve a t  the downstream end of the pipe hits tz. head 
of 200 .ft across it  initially. For valve area closure in timr t ,  = 2.0 see, as given, 
find the pressure a t  the valve for the first 4 seconds. 

The speed of the pressure wave is, according to Eq. (10.12.4), 

The time for the wave to be reflected is 

2L 2 x 3 7 3 0  - =  
3730 

- = 2 sec 
C 

Equation (10.12.9) becomes 

The valve is assumed to stay open the first 0.40 sec and then suddenly to close to 
A,/A,o = 0.85. 
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Results of the numerical computation are conveniently tabulated. The first 
three columns are initially filled in, as well as the first row. 

For f / t ,  = 0.20, from Eq. (10.12.10) 

By solving the last two equations by trial or by solving a quadratic, AV/Vo = 
'0.101, Ah/ho = 0.12. These values are entered into the table and V / V o  and 
h/ho computed. For t / t ,  = 0.40 - -. 

A l7 Ah- 0.899 - - - vo 

which is satisfied by Ah/ho = 0.23, AV/Vo  = 0.202. The table is completed in 
this manner down to t / t ,  = 1.0.- At t i t ,  = 1.0 the valve is closed completely and 
the head rise Ah/ho is that necessary to reduce the velocity to zero, or 1.16 X 0.141 
= 0.16. At l / t ,  = 1.2 the pressure wave generated a t  t / t ,  = 0.2 returns to the 
valve as a reflected negative wave 2Ah/h0 = -0.23. Similarly a t  t / tc  = 1.4 
the wave 2Ah/ho = -0.47 arrives and reduces the head. These waves continue 
to reduce the head until h/ho = -0.16 at t / tc = 2.0. 

Slow Valve Closure. When the time of closure is greater than 2L/c, 
reflected waves have time to arrive at the valve before it is completely 
closed and to reduce the pressure rise. Development of the general 
different.ia1 equations of water hammer is beyond the scope of this 
treatment, but the general principles may be comprehended by a numer- 
ical study with the valve considered as closing by sudden increments. 
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Equations (10.12.9) and (10.12.10) are applicable for determination of 
pressure rise when the reflected waves are taken into account. To assist 
in the numerical calculation it is convenient to consider valve-closure- 
time increments as a multiple or simple fraction of 2L/c.  The method 
of handling the reflections is best illustrated by an example. 

Example 10.19: Find the maximum pressure rise in the pipeline of Example 
110.18 when the time of closure is 10 sec. 

The first three columns of the table may be filled in first. The valve is con- 
sidered to remain open the first 2 sec, then to close to A,/AVo = 0.85 instantane- 
ously. The row for t / t ,  = 0.2 is the same as before, as the first reflection does not 
arrive until t /t ,  = 0.4. ,4t this time 

as the head h/ho is reduced b y  the first reflected wave. After solving with 

AV/Vo = 0.249 and Ah/ho = 0.29. Under the column heading Z Ah/ho the 
difference of 0.29 and 0.12 is taken for value of the reflected wave a t  t / t ,  = 0.6. 
The 0.12 value becomes positive at this time and the 0.29 is negative. 

For t / t ,  = 0.6, 

which produces AV/Vo = 0.274 and Ah/ho = 0.32, with total head 1 - 0.17 + 
0.32 = 1.15. 

For t / t ,  = 0.8, 

which determi- AV/Vo = 0.268, Ah/ho = 0.31, and h/ho = 1.16. 
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For eomplctG closure, t / t ,  = 1 .O, AV/Vo must be 0.108, and Ah/ho = 0.108 X 
1-16 = 0.12. The cumulative reflected head is 0.16, and the head h/ho = I - 
0.16 + 0.12 = 0.96. The peak pressure is 

p = 1.17 X 200 X 0.433 = 102 psi 

a reduction of about 86 psi from the case of rapid closure. 

Solving the water-hammer problem may take the form of finding the 
rate of valve closure such that the pressure in the pipe is maintained a t  a 
fixed maximum during the closing cycle. Equations (10.12.9) and 
(10.12.10) are utilized; taking reflections into account. It is again con- 
venient to consider sudden incremental cfosures a t  periods that coincide 
with the return to the valve of the reflected pressure waves. The value 
of Ah/ho is found for the instant the reflected wave arrives such that the 
head remains constant a t  the allowable maximum at  the valve. Then 
AV/Vo is found for each Ah/ho from Eq. (10.12.9) and &/Avo from Eq. 
(10.12.10). 

. 
Example 10.20: A pipeline 1610 ft long has an initial velocity of flow of 12 ft/sec 

and an initial head ho of 100 ft across a valve at its downstream end. c = 3220 
ft/sec. Ileterrnine the valve closurc? as a function of time so that the head in the 
pipe does not. exceed 180 ft. 

and 

The reflected wave returns in f st:(:. A t  t = 1 the valve is assumed to make its 
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first sudden partial closure such that Ah/ho = 0.8. Hence 

From Eq. (10.12.10) 

and A,/A,o = 0.696. At t = 2, the first pressure wave reflects a t  the valve and 
Ah/ho must satisfy the following condition if the head is to remain h/ho = 1.8 

or Ah/ho = 1.6, AV/Vo = 0.1333. Then 

and Av/Avo = 0.597, as shown in the above table. At t = 3 

with Av/A,o = 0.505. This process is repeated with constant reductions in 
valve area until t = 9. At this time a Ah/ho of 0.134 is all that is required to stop 
t h e 3  ow. The head is maintained a t  180 ft until then, but drops to 0.334 X 100 
= 33.4 ft at  t = 9. Keglecting friction the head a t  the valve \vould continue to 
oscillate between 33.4 ft and 166.6 f t .  T f  the head is built up by Ah/ho = 0.4 a t  
t = 0.50 and by another Ah/ho = 0.4 a t  t = 1.0, the calculation may be carried 
out on a &-sec basis, yielding the same answer. 

With motorized valves, i.e., valves operated by electric motor or by 
air or hydraulic cylinders or diaphragms, any practical law of closure 
may be obtained with use of a valpe positioner. The valve positioner is a 
control device acting on the motor to move the valve stem to any positioll 
indicated by a control signal, and to hold it there accurately regardless 
of flow, pipe pressure, or air or hydraulic supply pressure. A profiled 
cam moving a t  constant speed may he used to convey the desired signal 
to the positioner'80 that any reasouabfe stem motion is obtained. 
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PROBLEMS 

10.1, Sketch the hydraulic and energy grade lines for Fig. 10.21. H = 24 ft. 
10.2. Calculate the value of K for the valve of Fig. 10.21 so that the discharge 

of Prob. 10.1 is reduced by one-half, Sketch the hydraulic and energy grade lines, 

. -  ----__I- 

- -- - - -  - t 
H 

Water 
60° F 

12 in. diam -- - - - -  

Valve Kz3.5 I 

10.3. Compute the discharge of the system in Fig. 10.22. Draw the hydraulic 
and energy grade lines. 

10.4. What head is needed in Fig. 10.22 to produce a discharge of 10 cfs? 

10.5. Calculate the discharge through the siphon of Fig. 10.23 with the conical 
diffuser removed. f1 = 4 ft. 
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10.6. Calculate the discharge in the siphon of Fig. 10.23 for H = 8 ft. What 
is the minimum pressure in the system? - 

10.7. Find the dischrtrge through the siphon of Fig. 10.24. What is the pres- 
sure a t  A ?  Estimate the minimum pressure in the system. 

Close return bend 

10.8. Neglecting minor losses other than the valve, sketch the hydraulic grade 
line for Fig. 10.25. The globe valve has a loss coefficient K = 4.5. 

10.9. What is the maximum height of point A (Fig. 10.25) for no cavitation? 
Barometer reading 29.5 in. mercury. 

r Globe valve 
1 

8 in. diam smooth pipe 
Water at 60'F 

10.10. Two reservoirs are conuected by three con~mercial steel pipes in series, 
LI = 1000 ft, Dl = 8 in.; Lz = 1200 ft, D2 = 1 ft; La = 4000 ft, Ds = 18 in. 
When & = 3 cfs water a t  70°F, determine the difference in elevation of the 
reservoirs. 

10.11. Solve Prob. 10.10 by the method of equivalent lengths. 
10.12. For a difference in elevation of 30 f t  in Prob. 10.10, find the discharge 

by determining the friction factors. 
10.13. For a difference in elevation of 40 f t  in Prob. 10.10, determine the dis- 

charge by the method of equivalent lengths. 
10.14. What diameter smooth pipe is required to convey 100 gpm kerosene a t  

90°F 500 ft with a head of 16 ft? There are a valve and other minor losses with 
btrtl K of 7.6. 
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10.16. Air a t  atmosphrric pressure and 60°F is carried through two horizontal 
pipes (c = 0.06) in srritbr. The upstream pipe is 400 ft of 21 In. dinmvtcr, and 
the downstream pipe is 100 ft. of 36 in. diameter. Estimate the equivnlcnt length 
of 18-in. smooth pipe. Neglect minor losses. 

10.16. What prcssurc drop, in inches of wat.cr, is required for flow of GOO0 cfrn 
in prob. 10.151 Include losses due to sudden cxl>snsion. 

10.17. Two pipes are connected in parallel bctn.ocn two reservoirs; Ll = 
8000 ft, = 48-in.-diameter old csst-iron pipr, f = 0.026; L2 = 8000 ft, 

= 42 in., E? = 0.003. For :I difference in elovation of 12.ft, tlctermir~e the 
total flow of water a t  70°F. 

10.18, For 160 cfs flow in the system of Prob. 10.17, (letermine the difference 
in elevation of reservoir surfaces. 

10.19. Three smooth tubes are connected in yarallcl: LI = 40 ft, I l l  = $ in.; 
Lz = 60 ft ,  1 ) 2  = 1 in.; La = 50 ft, LI3 = in. For total flow of 30 gprn oil, 
y = 55 lb/ft3, C( = 0.65 poise, what is the drop in hydraulic grade line between 
junctions? 

10.20. Det.errnine the discharge of the system of Fig. 10.26 for L = 2000 ft, 
W = 18 in., E = 0.0015, and If = 25 ft, with the pump characteristics given. 

10.21. Determine the discharge through the system of Fig. 10.26 for L =. 

4000 ft, D = 24411. smooth pipe, I1  = 40 ft, with pump B characteristics. 
10.22. Construct a head-discharge-eficiency table for pumps A and B (Fig. 

10.26) connected in series. 
10.23. Construct a head-dischargc-e&rion(:y table for pumps A and B (Fig. 

10.26) connected in p:irallrll. 
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10.24. Find the discharge through the system of Fig. 10.26 for pumps A and B 
in series; 5000 f t  of 12-in. clean cast-iron pipe, H = 100 f t .  
10.26. Determine the horsepower needed to drive pumps A and B in Prob. 

10.24. 
10.26. Find the discharge through the system of Fig. 10.26 for pumps A and B 

in parallel; 5000 ft of 18-in. steel pipe, H = 30 ft. 
10.27. Determine the horsepower needed to drive the pumps in .Prob. 10.26. 
10.28. For H = 40 ft in Fig. 10.27, find t h ~  discharge through each pipe. 

p = $8 poise; y = 60 1b/ft3. 

10.29. Find H in Fig. 10.27 for 1 cfs flowing. p = 0.05 poise; p = 1.8 slugs/ft3. 
10.30. Find the equivalent length of 12-in.-diameter clean cast-iron pipe to 

replace the system of Fig, 10.28. For H = 30 ft, what is the discharge? 
10.31. With velocity of 4 ft/sec in the 8-in.-diameter pipe of Fig. 10.28, calcu- 

Iate the flow through the system and the head tf required. 

t 
- -. -- -- - - -  - -  

zoo 
t 

H 

1,000 ft 18 in. diam Water 2,000 ft 12 in. diarn 

400 ft 4 in. diam 

300 ft 3 in. diam ~=0 .04 '  
€=0.03' 

Clean cast iron pipes 

- - - - - - -- - 
- -  - - 

10.32. In Fig. 10.29 find the flow through the system when the pump is 
removed. 
10.33. If the pump of Fig. 10.29 is delivering 3 cfs toward J, find the flow into 

A and B and the elevation of the hydraulic grade line a t  J .  
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10.34. The pump is adding 10 fluid horsepower to the flow (toward J) in Fig. 
10.29. Find &A and QB. 

20.36. With pump A of Fig. 10.26 in the system of Fig. 10.29, find QA, QB, and 
the elevation of the hydraulic grade line a t  J. 

10.36. With pump B of Fig. 10.26 in the system of Fig. 10.29, find the flow into 
B and the elevation of the hydraulic grade line a t  J. 

10.37. For flow of 1 cfs into B of Fig. 10.29, what head is produced by the 
pump? For pump efficiency of 70 per cent, how much power is required? 

10.38. Find the flow through the system of Fig. 10.30 for no pump in the 
system. 

10.39. With pumps A and B of Fig. 10.26 in parallel in the system of Fig. 10.30, 
find the flow into B, C, and D and the elevation of the hydraulic grade line a t  Jr 
and Jz. 

10.40. Calculate the flow through each of the pipes of the net!vork shown in 
Fig. 10.31. n = 2. 

10.41. Determine the flow through each line of Fig. 10.32. n = 2. 
10.42. Find the distribution through the network of Fig. 10.31 for n = 1. 
10.83. Find the.diatribution through the network of Fig. 10.32 for n = 1. 
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10.44. Iletermine the slope of the hydraulic grade line for flow of atmospheric 
air a t  80°F through a rectangular 18- by 6-in. galvanized-iron conduit. V = 
30 ft/sec. 

10.46. What size square conduit is needed to convey 10 cfs water a t  60°F with 
slope of hydraulic grade line of 0.001 ? r = 0.003. 

10.46. Calctulate the discharge of oil, sp gr 0.85, p = 0.04 paise, through 100 ft 
of 2- by 4-in, sheet-metal conduit whe'n the head loss is 2 ft. E = 0.0005. 

10.47. A duct, with cross section an equilateral triangle 1 ft on a side, conveys 
6 cfs water a t  60°F. E = 0.003. Calculate the slope of the hydraulic grade line. 

10.48, A clean cast-iron \stater pipe 24 in. in diameter has its absolute roughness 
double in 6 years of service. Estimatr the head loss per 1000 ft for a flow of 
15 cfs when the pipe is 25 years old. 

10.49. An 18-in.-diameter pipe has an f of 0.020 when new for 5 ft/sec water 
flow a t  60°F. In 10 years f = 0.029 for V = 3 ft/sec. Find f for 4 ft/sec a t  
end of 20 years. - .  

10.50. Determine the period of oscillation of a U-tube containing one pint of 
water. The cross-sectional area is 0.50 inB2. Keglect friction. 

10.61. A U-tube containing alcohol is oscillating with maximum displacement 
from equilibrium position of 6.0 in.  he total column length is 40 in. Deter- 
mine the maximum fluid velocity and the period of oscillation. Neglect friction. 

10.52. A liquid, v = 0.002 ft2/sec, is in a L7-tube 0.50 in. in diameter. The 
total liquid column is 60 in. long. If one 'meniscus is 12 in. above the other 
meniscus when the column is a t  rest, determine the time for one meniscus to 
move to within 1.0 in. of its equilibrium position. 

10.53. Develop the equations for motion of a liquid in a C-tube for laminar 
resistance when 16v/D2 = I/&~/L. SUGGESTION: Try r = e - l t ( c l  + c l t ) .  

10.64. A U-tube contains liquid oscillating with a velocity 6 ft/sec at the 
instant the menisci are a t  the same elevation. Find the time to the instant the 
menisci are next a t  the same elevation, and determine the velocity then. v = 

1 X ft2/sec:, I) = in., L = 30 in. 
10.66. A 10-ft-diamrter horizontal tunnel has 10-ft-diameter vertical shafts 

spaced one mile apart. \\;'hen valves are closed isolating this reach of tunnel, the 
water surges to a depth of 50 ft in one shaft when it is 20 ft in the other shaft. 
For f = 0.022 find the height of the next two surges. 

10.66. Two standpipes 20 ft in diameter are ,connected by 3000 ft of 8.0-ft- 
diameter pipe, f = 0.020 and minor losses are 4.5 velocity heads. One reservoir 
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level is 30 ft above the other one when a valve is rapidly opened in the pipeline. 
Find the maximum fluctuation in water level in the standpipe. 

10.67. A valve is quickly opened in a pipe 4000 ft long, D = 2.0 f t ,  with a 
I-ft-diameter nozzle: on the downstream end. Minor losses are 4Va/2g, with 
V the velocity in the pipe, f = 0.024, I! = 30 ft. Find the time to attain 95 per 
cent of the steady-state discharge. 

10.68. A globe valve (K = 10) a t  the end of a pipe 2000 ft long is rapidly 
opened. D = 3.0 f t ,  f = 0.018, minor losses 2V2/2g, and H = 75 f t .  How 
long does it take for the discharge to attain 80 per cent of its steady state value? 

10.69. A steel pipeline is 36 in. in diametei and has a +-in. wall thickness. 
When it  is carrying water, determine the speed of a pressure wave. 

10.60. Benzine (K = 150,000 psi, S = 0.88) flows through $-in. ID steel tubing 
with &-in. wall thickness. Determine the speed of a pressure wave. . . 

10.61. Determine the maximum time for rapid valve closure on the pipeline: 
L = 3000 ft, L) = 4 ft, 1' = $ in., steel pipe, V o  = 10 ft/sec, water flowing. 

10.62. X valve is closed in 5 sec a t  the downstream end of a ~10,000-ft pipe- 
line carrying water a t  6 ft/sec. c = 3400 ft/sec. What is the peak pressure 
developed by the closure? 

10.63. Determine the length of pipe in Yrob. 10.62 subjected to the peak 
pressure. 

10.64. A valvo is closed a t  the tiownstream end of a pipeline in such a manner 
that only one-third of thc line is subjected to mctxirnum preasure. At what pro- 
portion of the time 2Ljc is it closrtl? 

- 10.66. A pipeline, L = 6000 ft, c = 3000 ft/sec!, has a valve on its downstream 
end, V o  = 8 ft/scc and ho = 60 ft. it closes in 3 increments, spaced 1 sccr apart, 
each area reduction being onc-third of the original opening. Find thr prcassure 
a t  the gate and a t  the midpoint of thc piptaline a t  1 scc intervals for 5 s t ~ r  aftctr 
initial closure. 

10.66, A pipeline, L = 2000 ft, r = 4000 ft/sett, has a valve a t  its downstream 
end, V o  = 6 ft/sec %nd ho = 100 ft. Determine' the pressure a t  the valve for 
the closure : 

10.67. In Yrok. 10.66 determine the peak I)ressurcB at  the valve for uniform area 
reduction in 3.0 sec. 

10.68. Find the maximum area -reduction for $-see intervals for the pipeline 
of I'rob. 10.66 when the maximum he:d :it tht! valvt! is not to exceed 160 ft. 

10.69. 'I'he hydraulic grade line is 

(a) always above the energy grade line 
(b) al~vsys above tllc vloscd conduit 
(c) always sloping downward in the direction of flow 
( d )  the velocity head below the energy grade line 
(e) upward in direction of flow when pipe is inclined downward 

.- 

t ,  sec 
0.75 
0 .5  

0.60 
1 . O  

0 .30 
2 . 0  

0.45 
1 . 5  

0.15 
2 .5  

0 
3 . 0  
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10.70. In solving a ~ h r i e s - ~ i ~ e  problem for discharge, Bernoulli's equation is 
used along with the continuity erluation to obtain an exl~ression that contains a 
V2/2g and fl, fz, etc. The next step in the solution is to assume 

(a) Q (b) V (c) R ( d )  f l ,  f2 ,  . . ( 4  none of these 
quantities 

10.71. One pipe sjrstenl is said to be cquiva1t:nt to anothcr pipe systern when 
the following two quantities are the kame: 

10.72. In parallel-pipe problems 

(a)  the head losses through each pipe are added to obtain the total 
head loss 

(b) the discharge is the same through all the pipes 
(c) the head loss is the same through each pipe 
(d) a direct solution gives the flow through each pipe when the total flow 

is known 
(e) a trial solution is not noedrtd 

10.73. Branching-pipe problems are solved 

(a) analytically by using as many equations as unknowns 
(b) by the Hardy Cross method of correcting assumrd Ao\vs 
(c) by equivalent lengths 
(d) by assuming a tlistribution ivhich satisfies continuity and computing 

a correction 
(e) by assuming the elevation of hydraulic grade line a t  the junction 

point and trying to satisfy continuity 

10.74. In  networks of pipes 
" 

(a) the head loss around each elementary circuit must be zero 
(b) the (horsepower) loss in all circuits is the same 
(c) the elevation of hydraulic grade line is assumed for each junction 
(d) elementary circuits are replaced by equivalent pipes 
(e) friction factors are assumed for each pipe 

10.75. The following quantities are computed by using 4R in place of diarn- 
eter, for noncircular sections: 

(a) velocity, relative roughness 
(b) velocity, head loss 
(c) Reynolds number, relative roughness, head loss 
(d) velocity, Reynolds number, friction factor 
(e) none of these answers 
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10.76. Experiments s h o ~  that in the aging of pipes 

(a) the friction factor increases linearly with time 
(b)  a pipe becomes smoother with use 
( c )  the absolute roughness increases linearly with time 
( d )  no appreciable trends can be found 
( e )  the absolute roughness decreases with time 

10.77. In the analysis of unsteady-flow situations the following formulas may 
be utilized : 

(a)  equation of motion, Bernoulli equation, momentum equation 
(b )  equation of motion, continuity equation, momentum equation 
(c )  equation of motion, continuity equation, Bernoulli equation 
(d) momentum equation, continuity equation, Bernoulli equation 
(e) none of these answers 

10.78. Keglecting friction, the maximum difference in elevation of %he two 
menisci of an oscillating C-tube is 1.0 ft, L = 3.0 ft. The period of oscillation is, 
in seconds, 

(a) 0.52 (b)  1.92 (c) 3.27 (d) 20.6 (e) none of these 
answers 

10.79. The maximum speed of the liquid column in Prob. 10.78 is, in feet per 
second, 

(a) 0.15 (b)  0.31 (c) 1.64 ( d )  3.28 (e) none of these 
answers 

10.80. In frictionless oscillation of a U-tube, L = 4.0 ft, z = 0, V = 6 ft/sec. 
The maximum value of z is, in feet, 

(a) 0.75 (b)  1.50 (c )  6.00 ( d )  24.0 ( e )  none of these 
answers 

10.81. In analyzing the, oscillation of a U-tube ~vith laminar resistance, the 
assumption is made that the 

(a) motion is steady 
( b )  resistance is constant 
(c) Ilarcy-Wcisbach equation applies 
(d) resistance is a linear function of the displacement 
(e) resistance is the same a t  any instant as if the motion were steady 

10.82. When 16v/IP = 5 and 2g/L = 12 in oscillation of a U-tube with 
laminar resistance, 

(a)  the resistance is so srnall that i t  may be neglected 
( b )  the menisci oscillate about the 2 = 0 axis 
(c )  the velocity is a maximum when z = 0 
(d )  the velocity is zero when z = 0 
(e) the speed of column is a linear function of t 
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10.83. In laminar resistance to oscillation in a U-tube, m = 1, n = 6, V,, 
3 ft/sec when t = 0 and z = 0. The time of maximum displacement of meniscus 
is, in seconds, 

( a )  0.46 (b)  0.55 (c) 0.93 ( d )  1.1 (e) none of these 
answers. 

10.84. In Prob. 10.83 the maximum displacement, in feet, is 

( a )  0.53 (b)  1.06 (c)  1.16 (d) 6.80 (e) none of these 
answers 

10.85. In analyzing the oscillation of a U-tube with turbulent resistance, the 
assumption is made that 

(a) the Darcy-Weisbach equation applies 
(b) the Hagen-Poiseuille equation appf es 
(c)  the motion is steady 
(d) the resistance is a linear function of velocity 
(e) the resistance varies as the square of the displacement 

10.86. The maximum displacement is z, = 20 f t  for f = 0.020, D = 1.0 ft in 
oscillation of a U-tube with turbulent flow. The minimum displacement, 
( - z , + ~ )  of the same fluid column is 

( a )  -13.3 (b )  -15.7 (c) -16.5 ( d )  -20 (e)  noneof 
these answers 

10.87. When a valve is suddenly opened a t  the downstream end of a long pipe 
connected a t  its upstream end with a water reservoir, 

(a) the velocity attains its final value instantaneously if friction is 
neglected 

(b) the time to attain nine-tenths of its final velocity is less with friction 
than without friction 

(c) the value off does not affect the time to acquire a given velocity 
( d )  the velocity increases exponentially with time 
( e )  the final velocity is attained in less than 2L/c sec 

10.88. Surge may be differentiated from water hammer by 

(a) the time for a pressure wave to traverse the pipe 
(b )  the presence of a reservoir a t  one end of the pipe 
(c)  the rate of deceleration of flow 
(d) the relative compressibility of liquid to expansion of pipe walls 
(e) the length-diameter ratio of pipe 

10.89. UTater hammer occurs only when 

( a )  2L/c  > 1 (b)  V o  > c  (c)  2L/c = 1 (d )  KIE < I 
(e) compressibility effects are important 
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10.90. Valve closure is rapid only whc.11 

(a) 2Llc > t, ) (c) L/2c 2 t, (d) t, = 0 
(e) none of thcst? :tnswcrs 

10.91. The head rise at a valve due to sutldcn closure is 

(a)  c2/2g (b) Voc/g ( c )  V O C / ~ Q  (4 Vo2/2g ( e )  none of 
these answers 

10.92. The speed of a pressure wave through a pipe depends upon 

(a) the length of pipe 
(b) the original head a t  the valve 
(c) the viscosity of fluid 
(d )  the initial velocity 
(e) nonc! of these answers 

10.93. When the velocity in a pipe is suddenly reduced frorn 10 ft./st:c t-o 
6 ft/sec by downstream valve closure, for c = 3220 ft/se(:, the head rise in feet is 

(e) 1000 (b)  600 (c) 400 ( d )  300 ( e )  none of these 
answers 

10.94. When t,  = L/2c the proportion of pipe length subjected to maximum 
head is, i n  per cent, 

(a) 25 ( b )  50 (c) 75 (d) 100 (e) none of these answers 

10.95. When the steady-state value of head a t  a valve is 120 ft the valve is 
given a sutlden partial closure such that Ah = 80 ft. The head a t  the valve a t  
the instant this reflected wave returns is 

(a) -80 (b) 40 (c) 80 (d) 200 (e) nonc of these 
answers 
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FLOW IN OPEN CHANNELS 

A broad coverage of t.opics in open-channel flow, including both steady 
and unsteady flows, has heen selecltcd for this chapter. Steady uniform 
flow was discussed in Scc. 5.8, and application of t,he momentum equation 
to the hydraulic jump in Scc. 3.9. ifTrirs \wre int,roduccd in Sec. 9.5. 
In  this chapter open-channel flow is first classified and then the shapc 
of optimum canal cross secttioils is disclrsscd followed by a section on flow 
through a floodway. Thr hydraulic junlp and its appli(tat,ion to stilliilg 
basins is then treaicd, folloivod t)y a discussion of specific: energy and 
critical depth whic*h leads into gr:~cirt:~lly varied flow. Water surfact(? 

r i  profiles arc classified and related t.o c.h:ltlllel control se(ttions. 1 ransitiotls 
are next disrussrd, with one  spc?cial appliration to the critical-depth meter. 
The closing section drals with i ~ r ~ s t ( ~ ~ d y  flow in t.he form of positive and 
negat ivr surge waves. 

The mecthanic*~ of flo\tr in ope11 cthannels is rnorc! complicated than 
closed-ctondrri t flow owing f.o the presentc of ,z free surfac!e. The hydraulic 
grade line coincides with the frec surf:~ce, and, i t 1  gt?nc?r,zl, its position is 
unknown. 

For lan~inar flow to occur, the (cross sctctiol~ milst I)(? extrenlely small, 
the volocity very small, or the kinematic viscosity extremely high. On(? 
example of laminar flow is given by a t.hin film of liquid flowil.ig down a n  
inclined or vertical planr. This case is treated by the methods developed 
in Chap. 5 ( w e  I'rob. 5.12). Pipe flo~v has a lower c:raitic:c21 ILXeynolds 
number of 2000, and this samo vnlr~e may he applied t.o an ope11 chnrmrl 
when the diameter is replaced by 4R.  It is thc hydraulic! 1-adins, which 
is defined as the c*ross-sect ionid arcs of the clh:lll t l r l  tlivideti hy t.hc wcbt,cd 
pcrimetcr. I n  the range of Ilcy~lolds ~l~lrnl~ct- ,  hased 011 /< it1 pIacrt of I), 
R - l 'K,!v < 500 flow is Iiinlirlar, 500 < R < 2000 flow is frmcxrtsiliorl.u/ arid 
may be e i t h ~ r  lamit~ar or turbulent, and R > 2000 flow is gctlerally 
turbulent. 
. Most. open-c!!~:ttlnel flows :ire t r~rht~lrtllt, ~isually with water :LS t h ~  
licloid. The methods for unalyzi~~g opcll-channel flo\v are not drvc.lop(?cl 

487 
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to the extent of those for closed conduits. The equations in use assume 
complete turbulence, with the head loss proportional to the square of the 
velocity. Although practically all data on open-channel flow have been 
obtained from experiments on the flow of water, the equations should 
yield reasonable values for other liquids of low viscosity. The material 
in this chapter applies to turbulent flow only. 

11.1. Classification of Flow. Open-channel flow occurs in a large 
variety of forms, from flow of water over the surface of a plowed field 
during a hard rain to the flow at constant depth through a large prismatic 
channel. It may be classified as steady or unsteady, uniform or non- 
uniform. Steady uniform flow occurs in very long inclined channels of 
constant cross section, in those regions where "terminal velocity" has 
been reached, i.e., where the head loss due to turbulent flow is exactly 
supplied by the reduction in potential energy due to the uniform decrease 
in elevation. of the bottom of the channel. The depth for steady uniform 
flow is called the normal depth. In steady uniform flow the discharge 
is constant, and the depth is everywhere constant along the length of the 
channel. Several equations are in common use for determining the 
relation among the average velocity, the shape of the cross section, its 
size and roughness, and the slope, or.inclination, of the channel bottom 
(Sec. 5.8). 
- Steady nonuniform $ow occurs in any irregular channel in which the 
discharge does not change with the time; it also occurs in regular channels 
when the flow depth and, hence, the average velocity change from one 
cross section to another. , For gradual changes in depth or section, caIled 
gradually va&d flow, methods are available, by numerical integration or 
step-by-step means, for computing flow depths for known discharge, 
channel dimensions and roughness, and given conditions a t  one cross 
section. For those reaches of a channel where pronounced changes in 
velocity and depth occur in a short distance, as in a transition from one 
cross section to another, model studies are frequently made. The 
hydraulic jump is one example of steady nonuniform flow; it is discussed 
in Secs. 3.9 and 11.4. 

I Unsteady uniform flow rarely occurs in open-channel flow. Unsteudy 
nonuniform $ow is common but is extremely difficult to analyze. Wave 
motion is an example of this type of flow, and its analysis is complex 
when friction is taken into account. The positive and negative,surge 
wave in a rectangular channel is analyzed, neglecting effects of friction, 
in Sec. 11.10. 

Flow is also classified as tranquil or rapid. When flow occurs a t  low 
velocities so that a small disturbance can travel upstream and thus change 
upstream conditions, it. is said to be t.ranqui1 flow1 (F < 1). Conditions 

See Sec. 4.4 for definition and discussion of the Froude number F. 
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upstream are affected by downstream conditions, and the flow is can- 
trolled by the downstream cotlditions. When flow occurs at such high 
velocities that a small disturbance, such as an elementary wave, is swept 
downstream, the flow is described as shooting or rapid ( F  > 1). small 
changes in downstream conditions do not effect any change in upstream 
conditions; hence, the flow is controlled by upstream conditions. When 
flow is such that its velocity is just equal to the velocity of an elementary 
wave, the flow is said to be critical (F = 1). 

Velocity Distribution. The velocity a t  a solid boundary must be zero, 
and in open-channel flow it  generally increases with distance from the 
boundaries. The maximum velocity does not occur a t  the free surface 
but is usually below the free surface a distance of 0.05 to 0.25 of the depth. 
The average velocity dong a vertical line is sometimes determined by 
measuring the velocity a t  0.6 of the depth, but a more reliable method is 
to take the average of the velocities a t  0.2 and 0.8 of the depth, according 
to measurements of the U.S. Geological Survey. 

11.2. Best Hydraulic Channel Cross Sections. For the cross section 
of channel for conveying a given discharge for 
given slope and roughness factor, some shapes 
are more efficient t.han others. I n  general, 
when a channel is constructed, the excavation, 
and possibly the lining, must be paid for. 
Based on the Manning formula it  is shown 
that when the area of cross section is a mini- 
mum, the wetted perimeter is also a minimum, 
so both lining and excavation approach their /c--- b---A 

minimum value for the same dimensions of 
FIG. 1 1.1. Rectangular cross 

channel. The best hydraulic section is one that scetion. 

has the least wetted perimeter, or its equiva- 
Ient, the least area for the type of section. The Manning formula is 

in which Q is the discharge (cubic feet per second), A the cross-sec- 
tional flow area (square feet), R (area divided by wetted perimeter P) 
the hydraulic radius (feet), S the slope of energy grade line, and n the 
Manning roughness factor (Table 5.2, Sec. 5.8). With (2, n, and S 
known, Eq. (11.2.1) may be written 

in which c is known. This equation'shows that P is a minimum when A 
is a minimum. To find the best hydraulic section for a rectangular 
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channel (Fig. 11.1) P = b + 211, and -4 = b!!. Then 

A = ( P -  2y)y = cp! 

by elimination of b. The value of y is sought for which P is a minimum. 
Differentiating with respect to y 

After setting d l ' / dy  = 0, Y = 4y: or since P = b + 2y; 

Therefore, the depth is one-half the bottom width, independent of the 
size of rectangular section. 

FIG. 11.2. Trapezoidal cross section. 

To find the best -- hydraulic trapezoidalsect.ion (Fig. 11.2) A = by + my2, 
P = b + 2y -\/I + m2. After eliminating b and A in these equations 
and Eq. (11.2.2), 

A = by + my2 = (P - 2y .\/I + m2)y + my2 = C P ~  (11.2.4) 

By holding m constant and by differentiating with respect to y, d P / a y  
is set equal to zero, thus 

P = 4y -\/I + m2 - 2my (1 1.2.5) 

Again, by holding y constant, Eq. (11.2.4) is differentiated with respect 
to m, and aY/dm is set equal to zero, producing 

After solving for m 

and after substituting for m in Eq. (1 1.2.5) 
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which shows that b = Y / 3  and, hence, the sloping sides have the same 
length tts the bottom. As tan-" m = 30°, the best hydraulic section 
is one-half a hexagon. For trapezoidal sections with m specified (maxi- 
mum slope a t  which wet earth will stand) Eq. (1 1.2.5) is used to find the 
best bottom width-to-depth ratio. 

The semicircle is the best hydraulic section of all possible open-channel 
cross sections. 

Example 11.1: Determine the dimensions of the most economical trapezoidal 
brick-lined channel to carry 8000 cfs with a slope of 0.0004. , 

With Eq. (11.2.6), 

and 'by substituting into Eq. (1 1.2.1) 

and from Eq. ( I  1.2.6), b = 25.8 ft. 

1 1.3. Steady Uniform Flow in a Floodway. A practical open-channel 
problem of importance is the computation of discharge t.hrough a flood- 

- way (Fig. 11.3). In general the floodway is much rougher than the 

FIG. 1 1.3. Floodway cross section. 

river channel, and its depth (and hydraulic radius) is much less. The 
slope of energy grade line must be the same for both portions. The 
discharge for each portion is determined separately, using the dotted line 
of Fig. 11.3 as the separation line for the two sections (but not as solid 
boundary), and then the clischargcs are added to determine the total 
capacity of the system. 

Since both portions have the same slope, the discharge may be expressed 
Its 

Ql = K l J 3  Q2 = Kn fl 
or 

& = (K1-t- K2) 4 
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in which the value of K is 

from Manning's formula and is a function of dcpth only for a given 
channel with fixed roughness. By computing K 1  and K 2  for different 
elevations of water surface, t.heir sum may be taken and plotted against 
elevation. From this plot it is easy to determine the slope of energy 
grade line for a given depth and discharge from Eq. (11.3.1). 

1 1.4. Hydraulic Jump. Stilling Basins. The relations among the 
variables V1, yl, V 2 ,  y2 for a hydraulic jump to occur in a horizontal 
rectangular channel arc developed in Sec. 3.0. Another way o f  dctermin- 
i r~g  the cot~jligat.c! depths for a given discharge is the F + .If-method. 

FIG. 11.4. Ilydraulic jump in horizontal rectangular channel. 

The momentum equation applied to the free body of liquid between y~ 
and Y P  (Fig. 11.4) is, for unit width ( V l y l  = V2y2 = q), 

By rearranging 

in which F is the hydrostatic force a t  the section and M is the momentum 
per second passing the section. By writing F + M for a given discharge 
q per unit width 

a plot is made of F + M as abscissa against y as ordinate, Fig. 11.5, for 
q = 10 cfs/ft. Any vertical line intersecting thc curve cuts it a t  two 
points having the same value of F + M; hence, they are conjugate depths. 
The value of y for minimum F + ill [by differentiation of Eq. (11.4.3) 
with respect to y and sett.ing d(F + Af)/dy equal to zero], is 
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The jump must always occur from a depth less than this value to a depth 
greater than this value. This depth is the critical depth, which is shown 
in the following section to be the depth of minimum energy. Therefore, 
the jump always occurs from rapid flow to tranquil flow. The fact 
that mechanical energy is lost in the jump prevents any possibility that 
it could suddenly change from the higher conjugate depth to the lower 
conjugate depth. 

FIG. 11.5. F + M curve for hydraulic jump. 

The conjugate depths are directly related to the Froude numbers before 
and after the jump, 

From the continuity equation 

From Eq. (1 1.4.1) ' 

After substituting from Eqs. (1 1.4.5) and (11.4.6) 

The value of F2 in terms of FI is obtained from the hydraulic jump 
equation [Eq. (3.9.34)3 
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Ry using Eqs. (1 1.4.5) and (1 1.4.6) 

The Froude number bc?fore the jump is always greater t,han ~lnity,  
2nd a f t ~ r  the jump it is always less t.han unity. 

Stilling Hasins. A st.iIling basin is a structlire for dissipating avsi1aI)le 
ctlrrgy of flo\v below a spillway, outlet works, chute, or canal structure. 
In the majority of existiilg installations a hydraulic jump is housed within 
t,hc stilling basin and is used as thc encrgy. dissipator. This discussion is 
limited t.o rect.angulttr basills with horizontal .floors although slopiilg 
floors are used in some cases to save exca\*at.ion. An authoritative and 
comprtthensivc work1 by personnel of the Bureau of Reclarnatiorl classi- 
fied the hydraulic jump as an effective energy dissipator in terms of the 
Froudc number F1 (1''l2/gyI) entering the basin as follows : 

At F1 = 1 to 3. Standing wave. There is oi~ly a slight difference in 
conjugate depths. Kear FI = 3 a serics of small rollers develop. 

At F1 = 3 to 6. Pre-jump. The water surface is quite smooth, the 
velocity is fairly uniform, and the head loss is low. l;o baffles required 
if proper 1engt.h of pool is provided. 

At FI = 6 to 20. Transit.ion. 0st:illat.ing action of entering jet, from 
bottom of basin to surface. Each osrillat.ion produces a large wave of 
irregular period that car1 travel downstream for miles and damage earth 
banks and riprap. If possible, it is advantageous to avoid this range 
of Froude numbers in st.il1ing-basin design. 

At F1 = 20 to 80. Rangc of good jumps. Thc jump is well-balanced 
and the action is at i t.s best*. Energy absorption (irreversibilitics) range 
from 45 to 70 per cent. Baffles and sills may bc utilized to reduce length 
of basin. 

At Fl = 80 upward. Effectlive but rough. Energy dissipation up to 
85 per cent. Other types of stilling basins-may be more ecotlomical. 

Baffle hlocks are frequently. used at ent.rance to a basin to corrugate 
the flow. They are usually regularly spaced with gaps about equal to 
block widt.hs. Sills, either triangular or dentated, arc frequently 
employed at  the downstream end of a basin to aid in holding the- jump 
within the basin and to prrrnit. some short.ci~illg of the basin. 

' Hydrazt lic Laboratory Report no. Hyd-399, Itescarch Study on Stilling Basins, 
Energy I)issipators, and Associated Appurtenances, progress report 11, U.S. Bur. 
Reclamation, Ilcnver, Junc 1, 1!155. 1n this report the Froude number was defined 
as v/-\/gy. 
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The basin shor~ld he paved with high qr~ality concart?tc to PI'CV(:II t. 
erosioll nild c'tlvi t ation damage. S o  irrcgn1,zrit ics in floor or. trainitlg 
~valIs s h o ~ ~ i d  he permitted. The irngth of the jump, abor~t  fiys, should 
be within the paved basin, with good riprap downstream if the material 
is easily eroded. 

Exantple 11.2: :\ hydraulic jump occurs downstrraln from a 50-ft-1vitl~ s1uir.e 
gate. The depth is 5.0 ft and the uclocbity is 60 ft/scc.. Deternlintb (a )  the I~rouclc? 
numbc?r and the Froude number  orr responding to thit conjugate tlcq)th; ( b )  the 
depth and veloctity :iftcr thc jump; allti (c) thc horsepo\\.cbr tiissipatrktl by the jump. 

From Eq. (1 1.4.8) 

and V 2  = 9.67, !i2 = 31.0 ft 
(c) From Eq. (3.9.35), the head loss in the jump, hi, is 

'J'he horsepower dissil)tltc.rl is 

1 1.5. Specific Energy, Critical Depth. The energy per. w i t  'weight, 
", with elevat.ion datum takcn as t.he t~ot tom of the challncl, is called the 
specific energy. It is :t convenient. 
quantity to 'use in studying open- 
(:ha.nnel flow and was introduced by 
Hakhmetefl in 191 1. It  is plotted 
vertically above f,hc channel floor; 

y2 

1; = y + ( 1  1.5. 1) 
29 

-4 plot of sprc~ific ctlcrgy for u part iv- FIG. 11.6. ICx:tmple of spct:ifir: energy. 
111ar caasc is shown i t \  Fig. 1 1.6. 111 :t 

rectangular channel, in whitrh q is the discharge per un i t  width, with 
VY = Qt 
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~t is of interest to note how the specific energy varies with the depth 
for a constant discharge (Fig. 11.7). For small values of y the curve 
goes to infinity along the E-axis, while for large values of y the velocity- 
head term is negligible and the curve approaches the 45" line E = y 
asymptotically. The specific energy has a minimum value beIow which 

FIG. 11.7. Specific energy required for flow of a given discharge at various depths. 

the given q cannot occur. The value of y for minimum E is obtained by 
setting dE/dy  equal to zero, from Eq. (11.5.2), holding q constant, 

The depth for minimum energy y, is called critical depth. By eliminating 
q2 in Eqs. (11.5.2) and (11.5.3), 

showing that the critical depth is two-thirds of the specific energy. By 
eliminating E in Eqs. (1 1.5.1) and (11.5.4), 

The velocity of flow at critical condition V c  is dz, which was used in 
Sec. 9.5 in connection with the broad-crested weir. Another method 
of arriving a t  the critical condition is to determine the maximum discharge 
q that could occur for a given specific energy. The resulting equations 
are the same as Eqs. (1 1.5.3) to (1 1.5.5). 
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For nonrectangular cross sections, as illustrated in Fig. 11.8, the 
specific-energy equation takes the form 

in which -4 is the cross-sectional area. To find the critical depth, 

From Fig. 11.8, the relation between d A  and dy is expressed by 

dA = T dy 

in which T is the width of the cross section at  the liquid surface. With 
this reIation, 

The critical depth must satisfy this 
equation. By eliminating Q in Eqs. 
(11.5.6) and (11.5.7), 

This eauation shows that 'the mini- 
mum energy occurs when the velocity FIG. 11.8. Specific energy for a non- 

rectangular section. 
head is one-half the average depth 
A /  T. Equation (1 i.5.7) may be solved hy trial for irregular sections, 
by plotting 

Critical depth occurs for that value of y which makes f(y) = 1. 

Example 11.3.: Determine the critical depth for 300 cfs flowing in a trapezoidal 
channel with bottom width 8 ft and s i t l i b  slopes one horizontal to two vertical 
(1 on 2). 

Hence 

I3 y trial t 

The critical depth is 3.28 ft. 
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In uniform Bow in an open channel, the energy grade line slopes down- 
ward parallel to tllr ix~t  tom of thc channel, thus showing a steady decrease 
in available energy. The specific energy, however, remains constant 
along the channel, since y + V2/2g  does not change. ' I n  nonuniform 
flow, the energy grade line always slopes downward, or the available 
energy is der:reased. The specific energy may either increase or decrease, 
depending upon thr? sIope of the  channel bottom, the discharge, the depth 
of flow, properties of the cross sc?ctio~l, strld channel roughness. ~h 
Fig. 11.6 the specific energy increases duril~g flow down the steep portion - 
of the channel and decreases along the horizontal channel floor. 

The specific-energy and critical-depth relationships are essential in. 
studying gradually varied flow and in determining control sections in 
open-channel flow. 

By compariilg Figs. 11.5 and 11.7, which are both drawn for q = 10 cfs, 
it is easy to show the head loss that results from the hydraulic jump. 
Taking the two values of y on a vertical line from thc momentum curve 
and plotting these points on the specific energy curve shows that the 
jump is always to a depth of less available energy. 

11.6. Gradually Varied Flow. Gradually varied flow is steady non- 
uniform flow of a special class. The depth, area, roughness, hottom 
slope, and hydraulic radius change very slowly (if a t  all) along the 
channel. The basic assumption required is that the head-loss rate 

at a given section is given by the 
Manning formula for the' same dept.h 
and discharge, regardless of trends in 
the depth. Solviilg Eq. (1 1.2.1) for 
the head loss per unit length of channel 
produces 

AE - n2Q2 S =  - - - -  ( I  1.6.1) 
AL 2 . 2 2 ~ ~ ~ :  

. . 

in which S is now the slope of the 
FIG. 11.9. Gradually varied flow energy grade line, or, more specifically, 

the sine of the angle the energy grade line makes with the horizontal. In  
gradually varied flow the slopes of erlergy grade line, hydraulic grade line, 
and bottom are all different. Computations of gradually varied flow 
Insty be carried out either by the standard slap method or by ~~urnericill 
integralion. Horizontal channels of great width are treated as u speci:tl 
vase that may be integrated. 

Standard S k p  Method. By applying Bernoulli's equation het.ween t.wo 
sections a finite distance apart*, A?,, I:ig,.. 1 1.9, includirlg .the loss term 
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After solving for the length of reach - 

If conditions are known at one section, e.g., section 1, and the depth y, 
is wanted a distance AL away, a trial solution is required. The pro- 
cedure is; 

a. Assume a depth ya; then compute A*, V Z ;  
b. For the assumed yz find an average y, P, and A for the reach [for 

prismatic channels y = (yl + yz)/2 with A and R computed for this 
depth] 'and compute S; 

c. Substitute in Eq. (11.6.3) to compute AL; 
d. If AL is not correct, assume a new y2 and  repeat the procedure. 

Example 11.4: At section 1 of a canal the cross section is trapezoidal, bl = 40 ft., 
ml = 2, y, = 20 ft, V ,  = 3 ft/sec and a t  section 2, 500 ft downstream, the 
bottom is 0.20 ft higher than at  section 1, b2 = 50 ft, and m2 = 3. n = 0.035. 
Determine the depth of water at  section 2. 

Since the bottom has an adverse slope, i.c., it is rising in the downstream direction, 
and since section 2 is larger than section 1, y2 -is probably less than yl for AL 
to be positive. Assume yt = 19.8; then 

A2 = 19.8 X 50 + 3 X (19.8)2 = 2166 ft2 
and 

Pf = 50 + 2 X 19.8 fl = 175 ft 

The average area A = 1883 and average wetted perimeter P = 152.3 are used to 
find an average hydraulic radius for the reach, R = 12-36. Then 

and 

By substituting into Iqq. (1 1.6.3) 

The value of y2 should be alightly greater, e.g., 19.81 ft. 
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Numerical Integration Method. A more satisfactory procedure, par- 
ticularly for ffow through channels having a constant shape of cross 
section and constant bottom slope, is to obtain a differential equation in 
terms of y and Land then to perform the integration'numerically. Con- 
sidering AL an infinitesimal in Fig. 11.9, the rate of change of available 
energy is equal to the rate of head loss - AE/AL given by Eq. (11.6.1)) or 

In which 20 - SOL 'is the elevation of bottom of channel at L, zo is the 
elevation of bottom at L = 0, and L is measured positive in the down- 
stream direction. After performing the differentiation, 

By using the continuity equation VA = Q to eliminate V, 

After expressing d A  = T dy ,  in which T is the liquid surface width of the 
cross section 

By substituting for V in Eq. (11.6.5) 

and by solving for dL, 

After integrating, 

in which L is the distance between the two sections having depths yl 
and y2. 

When the numerator of the integrand is zero, critical flow prevails; 
there is no change in L for a change in y (neglecting curvature of the 
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flow and nonhydrostatic pressure distribution a t  this section). This 
is not a case of gradual change in depth, and, hence, the equations are not 
accurate near critical depth. When the denominator of the integrand 
is zero, uniform flow prevails, and there 
is no change in depth along the channel. 
The flow is at  normal depth. 

For a channel of fixed cross section, ~ ( ~ 1  
constant n and So, the integrand becomes 

I a function of y only, 

1 - Q2T/gA3 "1 Yr 
F(Y) = 

So - n'~~/2.22.4 Z R ~  FIG. 1 1.10. Kumerieal integration - .  
of gradually varied flow equation. 

and the equation may be integrated 
numerically by plotting F(y) as ordinate against y as abscissa. The 
area under the curve (Fig. 11.10) between two values of y is the length 
L between the sections, since 

has exactly the same form as the area integral Jy dx. 

Ezample 11.5: A trapezoidal channel, b = 10 ft, m = 1, n = 0.014, SO = 0.001 
carries 1000 cfs. If the depth is 10 f t  at  section 1, determine the wafer surface 
profile for the next 2000 f t  downstream. 

To determine whether the depth increases or decreases, the slope of energy 
grade line a t  section 1 is computed, Eq. f 11.6.1) 

and 

Then 

The depth is greater than critical and S < So, hence, the specific energy is increas- 
ing and this can be accomplished only by increasing the depth downstream. 
After substituting into Eq. ( 1  1.6.7) 
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The follo\ving table evaluates the terms in the intcgrand: 

[Chap. 11 

The integral JF(y)dy may be evaluated by plotting thc curve and taking the 
area under it between y = 10 and the following values of y. As F(y) does nof 
vary greatly in this example, the average of F(y) may be used for each reach and, 
when multiplied by Ay thc length of reach is obtained. Between y = 10 and 
y = 10.5 

Between y = 10.5 and y = 11.0 

and so on. Five points on the water surface arc! known so that i t  may be plotted. 

F ( Y )  

.--. - . - 

1167 
I129 
1101 
3 082 
1067 

Horizontal Channels of Great Width. For channels of great ,width the 
hydraulic radius equals the depth; and for horizontal channel floors 
So = 0; hence, Eq. (1 1.6.7) may bc simplified. The width may he con- 
sidered as unity, i.e., T = 3 ,  & = q and A = y, R = y, thus 

Num. I, 

0 
574 

1131 
1677 
2214 

Y 

or, after performing the integration, 

10' 
X 

Den. 

I 

Example 11.6: After contracting below a sluice gate water flows onto a wide 
horizontal floor with a velocity of 40 ft/sec and a depth of 2.0 ft. Find the 
equation for water-surface profile, n = 0.015. 

From Eq. (1 1.6.91, with x replacing L as distance from section 1, where yr = 2, 

757 
800 
836 
862 
884 

A R 

10.0 
10.5 
11.0 

P T 

---_- 

5.24 
5.41 

11.5 
12.0 

200 
215.2 
232 
247.2 5 .82 1 33 0.9323 
264 4 3 . 9  6.01 1 34 / 0.!1426 

I 
I 

38.2 
39.8 
41.1 

i - . . .-_-_ 
30 
3 1 

5.64 32 

0.8836 
0.90'37 
0.9204 
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Criticla1 depth occurs at Eq. ( 1  1.5.3), 

The depth must increase downstream, since, the specific energy decreases, and the 
depth must move toward the critical value for less sperific energy. The equation 
does not hold near the critical depth because of vertical accelerations that have 
been neglected in the derivation of gradually varied flow. 

The various types of water-surface profile obtained in gradually varied 
flow are disclrssed i n  the following section. 

Horizontal 

\s2h. Horizontal 

FIG. 1 1.1 1. The various typical liquld-surface profiles. 

11.7. Classification of Surface Proflles A study of Eq. (1 1.6.7) re- 
veals many types of surface profiles, each of which has its definite character- 
istics. The bottom slope is classified as adverse, horizontal, mild, critical, 
and steep; and, in general, the flow can be above the normal depth or 
below the normal depth, and it can be above critical depth or below 
critical depth. 

The various profiles are plotted in Fig. 1 I .  1 1 ; the procedures used are 
discussed for the various classifications in the following paragraphs. A 
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very wide channel is assumed in the reduced equations which follow, 
with R = y. 

Adverse-slope Profiles. When the channel bottom rises in the direc- 
tion of flow, the resulting surface profiles are said to be adverse. There 
is no normal depth, but the flow may be either below critical depth or 
above 'critical depth. Thus, So is negative. Below critical depth the 
numerator is negative, and Eq. (1 1.6.6) has the form 

Here, F(y) is posit.ive, and the depth increases downstream. This curve 
is labeled As and shown in Fig. 11.11. For depths greater than critical 
depth, the numerator is positive, and F ( y )  is negative, i.e., the depth 
decreases in the downstream direction. For y very large, dL/dy = l / S o ,  
which is a horizontal asymptote for the curve. At y  = y,, dL/dy is 0, 
and the curve is perpendicular to the critical-depth line. This curve is 
labeled A2. 

Horizontal-slope Profiles. For a horizontal channel So = 0, the normal 
depth is infinite and flow may be either below critical depth or above 
critical depth. The equation has the form 

For y less than critical, dL/dy  is positive, and the depth increases down- 
stream. It. is labeled Ha. For y greater than critical (Hz-curve) d L / d y  
is negative, and the depth decreases downstream. These equations are 
integrable analytically for very wide channels. 

~Tfild-slope Profiles. A mild slope is one on which the normal flow is 
tranquil, i.e., where normal depth yo is greater than critical depth. 
Three profiles may occur, MI, Mz, M3 for depth above normal, below 
normal and above critical, and below critical, respectively. For the 
M l-curve, dL!dy is positive and approaches 1 /So for very large y ; hence, 
the MI-curve has a horizontal asymptote downstream. As the denom- 
inator approaches zero as y approaches yo, the normal depth is an asymp- 
tote a t  the upstream end of the curve. Thus, d L / d y  is negative for the 
M2-curve, with the upstream asymptote the normal depth, and d L / d y  = 0 
a t  critical. The Ma-curve has an illcreasing depth downstream, as shown. 

Critical-slope I'rojles. When the normal depth and the critical depth 
are equal, the resulting profiles are labeled C1 and Cs for depth above and 
below critical: respectively. The equation has the form 
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with both numerator and denominator positive for C1 and negative for 
C1. Therefore the depth increases downstream for both. For large y, 
d L / d y  approaches l/So; hence, a horizontal line is an asymptote. The 
value of dL/dy  a t  critical depth is 0.9/~!0; hence, curve C1 is convex 
upward. Curve C3 is also convex upward, as shown. 

Steep-slope Profiles. When the normal flow is rapid in a channel 
(normal depth less than critical depth), 'he resulting profiles S1, $2, S3 
are referred to as steep profiles: S1 is above the normal and critical, Sz 
between critical and normal, and Sj below normal depth. For curve 
S1 both numerator and denominator are positive, and the depth increases 
downstream approaching a horizontal asymptote. For curve S2 the 
numerator is negative, and the denominator positive but approaching 
zero at  y = yo. The curve approaches the normal depth asymptotically. 
The S3-curve has a positive d L / d y  as both numerator and denominator 
are negative. It plots as shown on Fig. 11.11. 

It should be noted that a given channel may be classified as mild for 
one discharge, critical for another discharge, and steep for a third dis- 
charge, since normal depth and critical depth depend upon different 
functions of the discharge. The use of the various surface profiles is 
discussed in the next section. 

1 1.8. Control Sections. A small change in downstream conditions can- 
not be relayed upstream when thc depth is critical or less than critical; 
hence, downstream conditions do not control the flow. All rapid flows 
are controlled by upstream conditions, and computations of surface pro- 
files must be started at  the upstream end of a channel. 

Tranquil flows are rtff ected by small changes in downstream conditions 
and, therefore, are controlled by them. Tranquil-flow computat.ions 
must start at the downstream end of a reach and be carried upstream. 

Control sections occur at entrances and exits to channels and a t  
changes in channel slopes, under certain conditions. A gate in a channel 
can be a control for both the upstream and downstream reaches. Three 
control sections are illustrated in Fig. 11.12. In a the flow passes 
through critical at the entrance to a channel, and the depth can be com- 
puted there for a given discharge. The channel is steep; therefore, com- 
putations proceed downstream. In b a chilnge in channel slope from mild 
to steep causes the flow to pass through critical a t  the break in grade. 
Computations proceed both upstream and downstream from the control 
wction a t  the break in grade. In c a gate in a horizontal channel provides 
controls both upstream and downstream from it. The various curves 
are labeled according to the classification in Fig. 11.11. 

The hydraulic jump occurs whenever the conditions required by the 
momentum equation are ptisfied. In Fig. 11.13, liquid issues from under 
a. gate in rapid flow along s horizontal channel. If the channel were short 
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enough, the flow could discharge over the end of the channel as an 
He-curve. With a longer channel, however, the jump occurs and the 
resulting profile consists of pieces of Ha- and Hrcurves with the jump in 
between. In computing these profiles for a known discharge, the 
Ha-curve is computed, starting a t  the gate (contraction coefficient must 
he known) and proceeding downstream until it is clear that the depth 
will reach critical before the end of the channel is reached. Then t.he 

FIG. 11.12. Channel control sections. 

FIG. 11.13. Hydraulic jump between two control sect' 1 ~ons.  

H2-curve is computed, starting with critical depth at the end of the chan- 
nel and proceeding upstream. The depths conjugate to those along HQ 
are comput.ed and plotted as shown. The intersection of the conjugate 
depth curve and the Hz-crlrve locates the position of the jump. The 
channel may be $5 long that the Hz-curve is everywhere greater than the 
depth conjugate to Hf. A "drowned jump" then occurs, with Hz extend- 
ing to t.hc gate. 

All sketches are drawn to a greatly exaggerated vertical scale, since 
usual chailnels have small bottom slopes. 

- 11.9. Transitions. At entrances to channels and a t  changes in cross 
section and bottom slope, the structure that  conducts the liquid from 
the upstream section t o  the new section is a transition. Its purpose is to  
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change the shape of flow and surface profile in-such a manner that mini- 
mum losses result. A transition for tranquil flow from a rectangular 
channel to a trapezoidal channel is illustrated in Fig. 11.14. By applying 
Bernoulli's equation from section 1 to 
section 2, 

In  general, the sections and depths are 
I determined by other considerations, E,+===+ 

and z must be determined for the I I ------- ------ 
expected available energy loss El. By -------- t I ------- ------- ----- -------- ----- -------- ----- -------- -------- good design, i.e., with slowly tapering ::-:-I-:+ - - - - - - - - - 

walls and flooring with no sudden 
changes in cross-sectional area, the 
losses can be held to about one-tenth FIG. 11.14. Transition from rectangu- 

of the difference between velocity lar channel to trapezoidal channel for 
tranquil flow. 

heads for accelerated flow and to 
about three-tenths of the difference between velocity heads for retarded 
flow. For rapid flow, wave mechanics is required in designing the 
transitions. 

Example 1 1.7: In Fig. 11.14, 400 cfs flows through the transition; the rectangu- 
lar section is 8 ft wide; and yl = 8 ft. ' The trapezoidal section is 6 ft wide at the 
bottom with side slopes 1 : I ,  and y2 = 7.5 ft. Determine the rise z in the bottom 
through the transition 

After substituting into Eq. ( 1  1.9.1) 

The critical-depth meter2 is an excellent device for measuring discharge 
in an open channel. The relat.ionships for determination of discharge 
are worked out for a rectangular channel of constant width, Fig. 11.15, 
with a raised floor over a reach of channel about 3y, long. The raised 
floor is of such height that the restricted section becomes a control section 

A. T. Ippen, Channel Transitions and Controls, in "Engineering Hydraulics," ed. 
by H. Rouse, John Wiley & Sons, Inc., New York, 1950. 
' H. W. King, "Handbook of Hydraulics," pp. 8-14 to 8-16, McGraw-Hill Book 

Company, lac., New York, 1954. 
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with critical velocity occurring over it. By measuring only the upstream 
depth yl,  the discharge per foot of width is accurately determined. By 

FIG. 1 1.15. Critical-depth meter. 

applying Bernoulli's equation from section 1 to the critical section (exact 
location unimportant), including the transition loss term, thus : 

Since 

in which ITc is the specific energy a t  critical depth 

From Eq. (13.,5.3) 

In  Eqs. (11.9.2) and (11.9.3) Ec is eliminated and the resulting equation 
solved for q, 

Since q = Vly1, V1 may be eliminated, 

The equation is solved by trial. As yl and z are known, and the right- 
hand term containing y is small, it may first he neglected for an appmxi- 
mate q. A value a little larger than the approximate q may be substituted 
on the right-hand side. When the two q's are the same thc equation is 
solved. Once z and the width of channel are known, a chart or table 
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may be prepared yielding Q for any yl. Experiments indicate that 
accuracy within 2 to 3 per cent may be expected. 

With tranquil flow a jump occurs downstream from t.he meter and 
with rapid flow a jump occurs upstream from the meter. 

Example 11.8: In a critical-depth meter 6 ft wide with t = 1.0 ft the depth y I is 
measured to be 2.40 ft. Find the discharge. 

In Eq. (11.9.4) as a first approximation 
3 

q = 2.94(1.4)E = 4.87 

As a second approximation let q be 5.00, 

and as a third approximation 5.32 
- 

q = 2.94(1.4 4- 0.00297 x 5.322); = 5.32 
Then 

Q = 6. X 5.32 = 31.92 cfs 

1 1 . I  0. Surge Waves. In the preceding portion of this chapter steady- 
flow situations have been considered. I n  this section an introduction to 

FIG. 11.16. Positive surge wave in a rectangular channel. 

unsteady flow in open channels is made by studying positice and negative 
surge waves. When flow along a channel is decreased or increased by the 
closing or opening of a gate, surge waves form and t-ravel up  and down 
the channel. A positive surge wave results when the change causes an 
increase in depth, and a negative surge wavc is set up by a decrease in 
depth. The positive surge wave may travel either upstream or down- 
stream, depending upon the conditions, and is, in zffect, a traveling 
hydraelic jump. The negative surge wave is unstable in that the higher 
portions of the wavc travel more rapidly and cause a gradual decrease in 
depth along the channel. 

Positive Surge. The equations for the positive surge wave are devel- 
oped for ahorisontal rectangular channel (assume unit width), , neglecting 
the effects of friction. In Fig. 11.16, the velocity VI and depth yl have 
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been disturbed by a closing of tl 
upstream with height y2 - yl and 

le gate so that a surge wave moves 
velocity c. The continuity equation, 

stating that the flow rate into section 
1 equals the flow rate out of section 
2 plus the storage rate between the 
two sections, is 

v l y l  = v2y2 + c(y2 - y1) (1 1.10.1) 

Yeglecting the shear force on the 
FIG. 1 1.17. Propagation of an elementary bottom and sides between the two 
wave through still liquid. sections, the momen tum equation 

may be applied. The mass per unit 
time having its momentum changed is that portion of the flow a t  depth 
y1 that is covered by the surge wave in unit time, which is (c + Vl)(yly/g). 
The momentum equation is 

After eliminating Vz in the two equations, 

.By solving for the propagation of the wave relative to the undisturbed 
flow, V1 4- c, 

The speed of an elementary wave computed with this equation by 1ettin.g 
y2 approach y I,  is 

v 1 + c = 4 G  
By imposing a velocity - V1 on the flow shown by Fig. 11.16 the ele- 
mentary wave speed becomes evident, as shown in Fig. 1 1.17, c = dz. 

Ry letting c equal zero in Eq. (11.10.4)i the hydraulic-jump formula is 
obtained. The equations for the surge wave are conveniently obtained 
by making a steady-flow case out of the sit.uat.ion described in Fig. 11-16 
by adding V = c to each of the flows. The hydraulic-jump formula 
applies when V, is replaced by V1 + c, and V2 by V2 + C. 

Example 11.9: A rectangular channel 10 ft wide and 6 ft deep, discharging 
600 cfs, suddenly has the discharge reduced to 400 cfs at the cio\vnstrettm end. 
Compute the height and speed of the surge wave. 

'C71 = 10, y, = 6, V2y2 = 40. With Hqs. (11.10.1) and (11.10.2), 
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and 

By eliminating c and V z ,  

After solving for 32 by trial, 92 = 8.47 ft. Hence V 2  = 40/8.47 = 4.72 ft/sec. 
The height of surge wave is 2.47 ft, and the speed of the wave is 

Negative Surge Wave. The negative surge wave appears as a gradual 
flattening and lowering of a liquid surface. I t  occurs, for example, in a 
channel downstream from a gate 

a 

that is being closed, or upstream 
from a gate that is being opened. 
Its propagation is accomplished by 
a series of elementary negative 
waves superposed on the existing 
velocity, with each wave traveling 
a t  less speed than the one at next 
greater depth. Application of the 
momentum equation and the con- 
tinuity equation to a small depth 
change produces simple differential 
expressions relating wave speed c, 
velocity V, and depth y. Integra- 
tion of the equations yields liquid 
surface profile as a function of time, 
and velocity as a fu~lction of depth 

-- :-$ v-fiv;------------t=---------: -- .------, ------ v, ------- -.------ * - - - - - - -  -.------ ----- y - 6y I-:--------- - - - -. - - - - - - - ----------.--.--- 
.-A - --- - - ---- - - - - - - I?: - - - - I 

(a) 

( b )  

Frc;. 1 1.18. PSlementary wave. 

or as a function of position along the channel and time ( x  and t). 
The assumptions are made that the fluid is frictionless and that vert,ical 
accelerations are neglected. 

In Fig. 11.18a an  elementary disturbance is indicated in which the flow 
upstream has been slightly reduced. For application of the momentum 
and continuity equations it is convenient to reduce the motion to a 
steady one, as in Fig. 11.18b, by imposing a uniform velocity c to the left. 
The continuity equation is 
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or, by neglecting the product of small quantities, 

(c - 1/') 6y = y 6 V  

The momentum equation produces 

After simplifying 

By equating 6V/6y in Eqs. (1 1.10.6) and (1 1.10.7) 

The speed of an clcmentary wave in still liquid at depth y is d E  and 
with flow the wave travels at the speed dz relatire to the flowing liquid. 

By eliminating c from Eqs. (1 1.10.6) and (11.10.7) 

After irltegrating 
V = 2 fiy + constant 

For the ease of a negative itrave forming do~vnstrca~rn from a gate, Fig. 
11.19, after an instantaneous partial closure, V = Vo when y = yo, and 

V, = 2 4% + constant 

After eliminat.ing the constant 

V = Vo- 2.\/9(4G - .\/GI (11.10.9) 

The wave travels in the +x-direction, so 

If the gate motion occurs at t = 0, the liquid surface position is expressed 
by x = ct, or 

x = (Va - 2 6 0  + 3 ~ ' Z ) t  (I  I. 10. 11) 

By climi~lating ?/ from Nqs. (11.10.10) and (12.10.11) 

which is the velocity in terms of x and t. 
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Example 1 1 .lo: In Fig, 11.19 find the Froude uurnbrl. of the undisturbed flow 
such that the tlri)tli 0, :tt thc gate is just zero when thc gatc is suddenly closed. 
For 1;" = 20 ft,!stbc, find tht. liquitI-surfactc equation. 

FIG. 1 1.19. Xegiitivt: wave after gate closure. 

I t  is 1-trquirctl that V1 = 0 \vht~n = 0 a t  s = 0 for any time after t = 0. 
In Eq. (11.10.9), with V = 0, !/ = 0 

or 

For V o  = 20, 

By use of Eq. (11.10.11) 

The liquid surface is a parabola with vertex a t  the origin and surface concave 
upward. 

Example 11.11 : In Fig. 1 1.19 thc gate is partially closed a t  the instant t = 0 so 
that the discharge is reduced by .5O per cent. Vo = 20 ft/scc, yo = 8 ft. Find 
VI, yl and the surface profile. 

The new discharge is 

By use of Eq. (11.10.9) 
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Then V1 and yl are found by trial from the last two equations, Vl = 14.5 ft/sec, 
yl  = 5.52 ft. The liquid-surfact? equation, from Eq. (11.10.11), is 

which holds for the range of values of y between 5.52 and 8.0. 

Dam Break. An idealized dam-break water-surface profile, Fig. 11.20, 
may be obtitirled from iqs .  (1 1.10.9) to (11.10.12). ltrom n frictionless, 
horizontal channel with depth of water yo on one side of a gate and 110 

water on the ot.her side of the gate, the -gate is suddenly ren~oved. Ver- 
tical accelcrations are neglected. Vo = 0 in the equat,ions and y varies 
from yo to 0. The velocity a t  any scction, Eq. (1 1.10.0), is 

always in the downstream direction. The water-surface profile is, Eq. 
(ll.lO.ll), 

x = (3 d G  - 2 &G)t (1 1.10.14) 

At x = 0, y = 4y0/9, the depth remains constant and t.he velocity past 
the sect.ion x = 0 is, from Eq. (1 1.10.13), 

also independent of time. The leading edge of the wave feathers out to 
zero height and moves downstream at V = c = - 2  6. The water 
surface is a parabola with vertex a t  the leading edge, concave upward. 

With an actual dam break, ground roughness causes a positive surge, 
or wall of water, t:o move downstream; LC., the feathered edge is retarded 
t)y f ric t.iotz. 

PROBLEMS 

11.1. Show that for laminar flow to be assured down an inclined surface, the 
discharge per unit width cannot be greater than 500v. (See Frob. 5.12.) 
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11.2. Calculate the depth of laminar flow of water a t  70°F down a plane sur- 
face making an angle of 30" with the Ilorizontal for the tower critical Reynolds 
number. (See Prob. 5.12.) 

11.3. Calculate the dGpth of turbulent flow a t  R = V R / v  = 500 for flow of 
water at 70°F down a plane surface making an angle 0 of 30' with the horizontal. 
Use Manning's formula. n = 0.01 ; S = sin 0. 

11.4. A rectangular channel is to carry 40 cbfa a t  a slope o f  0.009. If the chan- 
nel is lined with galvanized iron, n = 0.01 1 ,  what is the minimum number of 
square feet of metal needed for ~ a c h  100 ft of channel? Kegltct freeboard. 

11.5. A trapezoidal channel, with side slopes 2 on 1 12 horizontal to 1 vertical), 
is to carry 600 cfs with a bottom slope of 0.0009. Determine the bottom, width, 
depth, and velocity for the best hydraulic section. n = 0.025. 

11.6. A trapezoidal channel made out of brick, with bottom. width 6 ft and with 
bottom slope 0.001, is to carry 600 cfs. What should the side slopes and depth 
of channel be for the least number of bricks? 

11.7. What radius semicircular corrugated-metal channel is needed to convey 
90 cfs 1 mile with a head loss of 7 ft? Can you find another cross section that 
requires less perimeter? 

11.8, Determine the best hydraulic trapezoidal section to convey 3000 cfs 
with a bottom slope of 0.001. The lining is finished concrete. 

11.9. Calculate the discharge through the channel and floodmay of.Fig. 11.21 
for steady uniform flow, with S = 0.0009 and y = 8 ft. 

11.10. For 7000 cfs flow in the section of Fig. 11.21 when the depth over the 
floodway is 4 ft, calculate the energy gradient. 

11.11. For 25,000 cfs flow through the section of Fig. 11.21, find the depth of 
flow in the floodway when the slope of the energy grade line is 0.0004. 

11.12. Draw an F + M-curve for 80 cfs/ft of width. 
11.13. Draw the specific-energy curve for 80 cfs/ft of width on the same chart 

ss Prob. 11.12. 
11.14. Prepare a plot of Eq. (11.4.7). 
11.16. With q = 100 cfs/ft and F1. = 12, determine v l ,  yl, and the conjugate 

depth y2. 
11.16. Determine the two depths having s specific energy of 6 ft for 30 cfs/ft. 
11.17. What is the critical depth for flow of 18 cfs/ft of width? 
11.18. What is the critical depth for flow of 10 cfs through the cross section of 

Fig. 5.481 
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11.19. Detcrrnine tllo critical depth for flow of 300 cfs thiough a trapezoidal 
channel with a bottom width of 8 f t  and sidc slopes of 1 on 1 .  

11.20. =In unfinished concrete rcctangu1:ir clhannel 12 ft wide has a slope of 
0.0009. It carries 480 cfs and has a depth of 7 f t  a t  one section. By using the 
step method and taking one step only, compute the depth 1000 f t  downstream. 
11.21. Solve Prob. 11.20 by taking two equal steps. What is the classification 

of this water-surface profile? 
11.22. A very widc gate (Fig. 11.22) admits water to a horizontal channel. 

Considering the prcssurc distribution hydrostatic at section 0, compute the 
depth at section 0 and the discharge per foot of width, when y = 3.0 ft. 

Gate Cc = 0.86 
Cc = 0.96 

11.23. If the depth a t  section 0 of Fig. 11.22 is 2 ft and the discharge pcr foot 
of witlth is 65.2 vfs, compute thc wfttcr surface curve downstream from the gate. 
11.24. Draw the curve of conjugate depths for the surface profile of Prob. 11 2 3 .  
11.25. I f  the vcry'wide channel in Fig. 11.22 extends downstream 2000 ft and 

then has a sudden drop off, compute the flow profile upstream from the end of tht: 
(:I-lannel for q = 65.2 cfs/ft by integrating the equation for gradually varied flow. 
11.26. Using the results of Probs. 11.24 and 11.25, dctcrmine the position of a 

hydraulic jump in the channel. 
11.27. In Fig. 11.23 the depth downstream from the gate is 2 ft, ant1 tIlc 

velocity is 40 ft/sec. For a very wide channel, compute the depth at the down- 
stream end of the adverse slope. 



FLOW IN OPEN CHANNELS 51 7 

11.28. Sketch (without computation) and label all the liquid-surface pmfib  
that can be obtained from Fig. 11.24 by varying zt, 2 2  and the lengths of the &an- 

'nels, for z2 < ZI and with a steep, inclined channel. 
11.29. In Fig. 11.24 determine the possible combinations of control sections 

for various values of 21, z2 and various channcl lengths, for zt > 22, and with the 
inclined channel always steep. 

11.30. Sketch the various liquid surface profiles and control sections for 
Fig. 11.24 obtained by varying channel length for 2 2  > 21. 

11.31. Show an example of a channel that is mild for one dischargc and steep 
for another dischargc. What discharge is required for it  to be critical? 
11.32. Sketch the various combinations of liquid profiles obtainable from the 

channcl profile of Fig. 11.25 for various values of 21, 22. 

11.33. Ilesign a transition from a trapezoidal section, 8 ft bottom width and 
side slopes 1 on 1, depth 4 ft, to a rectangular section, 6 ft wide and 6 ft deep, for 
a flow of 250 cfs. The transition is to be 20 f t  long, and the loss is one-tenth 
of the difference between veIocity heads. Show the bottom profile, and do not 
make any sudden changes in cross-sectional area. 
11.34. A transition from a rectangular channel, 8 ft wide and 6 f t  deep, to  a 

trapezoidal channel, bottom width 12 ft and side slopes 2 on 1, with depth 4 ft, 
has a loss of four-tenths of the difference between velocity heads. The discharge 
is 200 cfs. Determine the difference between elevations of channel bottoms. 
11.35. A critical-depth meter 20 ft wide has a rise in bottom of 2.0 ft. For an 

upstream depth of 3.52 ft determine the flow through the meter. 
11.36. With flow approaching a criticaldepth meter site a t  20 ft/sec and a 

Froude number of 10, what is the minimum amount the floor must be raised? 
11.37. Derive the equations for surge waves in a rectangular channel by 

reducing the problem to a steady-flow case. 
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11.38. Ilerive the equation for propagation of an elementary wave through 
still liquid by applying the momentum and continuity equations to the case shown 
in Fig. 1 1.26. 

11.39. A rectangular channel is discharging 50 cfs per foot of width a t  a depth 
of 10 f t  when the discharge upstream is suddenly increased to 70 cfs/ft. Deter- 
mine the speed and height of the surge wave. 

11.40. In a rectangular channel with velocity 6 ft/sec: flowing a t  a depth of 6 ft 
a surge wave 1.0 ft high travels upstream. f hat is the speed of the wave, and 
how much is the discharge reduced per foot of width? 

11.41. A rectangular channel 10 ft wide and 6 ft deep discharges 1000 cfs 
when the flow.is completely stopped downstream by closure of a gate. Compute 
the height and speed of the resulting positive surge wave. 

11.42. Ileterrnine the depth downstream from the gate of Prob. 11.41 after 
it closes. 

11.43. Find the downstream water surface of Prob. 11.41 3 sec after closure. 
11.44. Iletermine the water surface 2 sec after an ideal dam breaks. Original 

depth is 100 ft. 
11.46. In open-channel flow 

(a) the hydraulic grade line is always parallel to the energy grade line 
(b) the energy gradc line coincides with the free surface 
(c) the energy and hydraulic grade lines coincide 
(d) the hydraulic gradc line can never rise 
(e) the hydraulic grade line and free surface coincide 

11.46. Gradually varied flow is 

(a) steady uniform flow 
(b) steady nonuniform flow 
(c) unsteady uniform flow 
(d) unsteady nonuniform Aow 
(e) none of these answers 

11.47. Tranquil flow must alupays occur 

(a) above normal depth 
(b) below normal depth 
(c) above critical depth 
(d) below critical depth 
(e) on adverse slopes 
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11.48. Shooting flow can never occur 

(a) directly after a hydraulic jump 
(b) in a mild channel 
(c) in an adverse channel 
(d) in a horizontal channel 
(e) in a steep channel 

11.49. Flow at critical depth occurs when 

(a) changes in upstream resistance alter downstream conditions 
(b) the specific energy is a maximum for a given discharge 
(c) any change in depth requires more specific energy 
(d) the normal depth and critical depth coincide for a channel 
(e) the velocity is given by 4% 

11.60. The best hydraulic rectangular cross section occurs when (b = bottom 
width, y = depth) 

(a)  g~ = 2b (b)  y = b (c) p = b/2  (4 y = b2 
(4 Y = b/5 

11.61. The best hydraulic canal cross section is defined as 

(a) the least expensive canal cross section 
(b) the section with minimum roughness coefficient 
(c) the section that has a maximum area for a given flow 
(d) the one that has a minimum perimeter 
(e) none of these answers 

11.62. The hydraulic Jump always occurs from 

(a) an Mt-curve to an 1VI I-curve 
(b) an Hs-curve to an Hrcurve 
(c) an Ss-curve to an S1-curve 
(d) betow normal depth to above normal depth 
(e) below critical depth to above critical depth 

11.53. Critical depth in a rectangular channel is expressed by 

11.64 Critical depth in a nonrectanguIar channel is expressed by 

(a) Q2T/gA3 = 1 (b) QT2/gA2 = 1 ( c )  Q2A3/gT2 = 1 
(d )  Q2/gA3 = 1 (e) none of these answers 

11.66. The specific energy for the flow expressed by V = 8.02 ft/sec, y = 2 ft 
is, in foot-pounds per pound, 

(a) 3 (b)  4 (c) 6.02 (d) 10.02 (e) none of thew answem 



520 APPLICATIONS OF FLUID MECHANICS [Chap. 11 

11.66. The minimum possible specific energy for a flow is 2.475 ft-lb/lb. The 
discharge per foot of width, in cubic feet prr second, is 

(a) 4.26 (b) 12.02 (c )  17 (d )  22.15 (e) none of these 
answers 

11.67. The profile resulting from flow under the gate in Fig. 11.27 is classified as 

11.68. The number of different possible surface profiles that can occtlr for irny 
variations of zt, zz and length of channel in Fig. 11.28 is (zl # zZ) 

11.69. The loss through a diverging transition is ahout 

(a) 0.1 ( V ,  - V2)2 .- - (V12 - Vz2) (b)  0.1 ..-.-. -.-- (c) 0.3 
(V l  - V d 2  

2g 29 2g 
vr2 - J'22 (d) 0.3 -.------. - -  

2g 
(e) none of these answers 

11.60. A critical-depth meter 

(a) measures the depth at the critical section 
(b) is always preceded by a hydraulic jump 
(c) must have tranquil flow immediately upstream 
(d) always has a hydraulic jump downstream 
(e) always has a hydraulic jump associated with it 

11.61. An elementary wave can travel upstream in a channel, y = 4 ft, V = 
8 ft/sec, with a velocity of 

(a) 3.35 ft/sec (b) 1 f .35 ft/sec (c) 16.04 ft/sec (d) 19.35 
ft/sec (e) none of these answers 
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11.62. The speed of an elementary wave in a still liquid is given by 

(a) (gy2)t (6) 21//3 (c) . (4 v'E (c) none of 
these ansii-ars 

11.63. X negative surge wave 

(a) is a positive surge wave moving backwards 
(b) is an inverted positive surge wave 
(c) can never travel upstream 
(d) can never tmvr4 downstream 
(e) in none of the above 
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FORCE SYSTEMS, MOMENTS, 

AND CENTROIDS 

The material in this appendix has been assembled to aid in working 
with force systems. Simple force systems are briefly reviewed and first 
and second moments, including the product of inertia, are discussed. 
Centroids and centroidal axes are defined. 

Simple Force Systems. A free-body diagram for an object or portion 
of an object shows the action of all other bodies on it. The action of the 
earth on the object is called a body force and is proportional to the mass of 
the object. In  addition, forces and couples may act on the object by con- 
tact with its surface. When the free body is a t  rest or is moving in a 
straight line with uniform speed, it is said to be in equilibrium. By New- 
toll's second law of motion, since there is no acceleration of the free body, 
the summation of all force components in any direction must be zero and 
the summation of all moments about any axis must. be zero. 

Two force systems are equivalent if they have the same value for sum- 
mation of forces in every direction and the same value for summation of 
moments about every axis. The simp1est equivalent force system is 
called the resultant of the force system. Equivalent force systems always 
cause the same motion (or lack of motion) of a free body. 

In  coplanar force systems the resultant is either a force or a couple. I n  
noncoplanar pkrallel force systems the resultant is either a force or a 
couple. In general noncoplanar systems the resultant may be a force, 
a couple, or a force and a couple. 

The action of a fluid'on any surface may bc replaced by the resultant 
force system that causes the same ext.crna1 motion or reaction as the dis- 
tributed fluid force system. In  t.his situation the fluid may be considered 
to be completely removed, the resultant acting in its place. 

First and Second Moments. Centroids. The moment of an area, 
volume, weight, or mass may be determined in a manner analogous to 
that of determining the moments of a force about an axis. 

525 
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First Moments. The moment of an area A about. the y-axis (Fig. A. 1) 
is expressed by - 

in which the integration is carried out over the area. To determine the 
moment about a parallel axis, e.g., x = k, the moment becomes 

(A. 11) 

which shows that there will always be a parallel axis x = k = 2, about 

Y$ 
FIG. A.1. Notation for first and second moments. 

which the moment is zero. This axis is called a centroidal axis and is 
obtained from Eq. (A.1) by setting it equal to zero and solvirlg for 3, 

Another centroidal axis may be determined parallel to the x-axis, 

The point of intersection of centroidal axes is called the.centroid of the 
area. I t  may easily be shown, by rotation of axes, that the first moment 
of the area is zero about any axis through the centroid. When an area 
has an axis of symmetry, it is a centroidal axis, because the moments of 
corresponding area elements on each side of the axis are equal in magni- 
tude and opposite in sign. When location of the centroid is known, the 
first moment for any axis may be obtained without integration by taking 
the product of area and distance from centroid to the axis, 
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The centroidal axis of a triangle, parallel to one side, is one-third the 
altitude from that side; the centroid of a semicircle of radius a is 4 4 %  
from the diameter. 

By taking the first moment of a volume V about a plane, say the 
yz-plane, the distance to its centroid is similarly determined, 

The mass center of a body is determined by the same procedure, 

in which dm is an element of mass and M is the total mass of the body. 
For practical engineering purposes the center of gravity of a body is at its 
mass center. 

Second Moments. The second moment of an area A (Fig. A.l) about 
the y-axis is 

I ,  = x2 dA (A.7) 

It is called the moment of inertia of the area and is always positive since 
d A  is always considered positive. After transferring the axis to a parallel 
axis through the centroid C of the area, 

Since 

therefore 
1, = I, - 9 A  or I, = I ,  + z2A (A.8) 

In  words, the moment of inertia of an area about any axis is the sum of 
the moment of inertia about a parallel axis through the centroid and the 

Fra. A.2. Moments of inertia of airnple areas about centroidal axes. 

product of the area and square of distance between axes. Figure A.2 
shows moments of inertia for three simple areas. 
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The product of inertia I, of an area is expressed by 

'with the notation of Pig. A. 1. It may be positive or negative. Writing 
the expression for product of inertia f, about centroids1 axes parallel to 
the zy-axes produces 

After simplifying, and solving for I,, 

(A. 10) 

Whenever either axis is an axis of symmetry of the area, the product of 
inertia is zero. The product of inertia I, of a triangle having two sidea 
b and tt along the positive coordinate axis is. b2h2/24. 



PARTIAL DERIVATIVES AND 

TOTAL DIFFERENTIALS 

Partial Derivatives. A partial derivative is an expression of the rate 
of change of one variable with respect to another variable when all other 
variables are held constant. When one sees a partial derivative, he 
should determine which variables are considered constant. For example, 
the temperature T at any point throughout a plane might be expressed 
as an equation containing space coordinates and time, x, y, and t. To 
determine how the temperature changes at some point, e.g., XO, YO, 
with t.he time, the actual numbers for coordinates are substituted, and 
the equation becomes a relation between T and t only. The rate of 
change of temperature with respect to time is dT/dt, which is written 
as a total differential because T and t are. the only two variables in the 
equation. When one wants an expressi0.n for rate of change of ternpera- 
ture with time at  any point, x, y, then these are considered to be con- 
stants and the derivative of the equation with respect to t is taken. 
This is written d T / d  t, to indicate that the other variables x, :, have been 
held constant. Substitution of particular values of x, y into the expres- 
sion yields'aT/dt, in terms of t. As a specific case, if 

T = x2 + q t  + sin t 
then 

aT - =  
at xy + cos t 

For the point (1,2) 
aT - -. 
dt 

- 2 + cos t 

which could have been obtained by first substituting (1,2) into the 
equation for T, 

T = 1 + 2 t + s i n t  
529 
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and then by taking the total derivative 

If one wants to know the variation of temperature along any line 
parallel to the x-axis at a given instant of time, then aT/ax is taken and 
the specific y-coordinates of the line and the time are substituted later; 
thus 

in which y, t have been considered constant. For the line through y = 2, 
at time t = 3 

and the rate of change of T with respect to x at this instant can be found 
at any point x along the particular line. 

In the function 
= f (x,?)) 

x and y are indepe~ldent variables, and u is the dependent variable. If 
y is held constant, u becomes a furlction of z alone, and its derivative may 
b'e det.ermined as if u were a function of one variable. It is denoted by ' 

and is called the partial derivative of f wit,Ii respect to x or the partial 
derivative of u with respect to x. Similarly, if x is held constant, u 
becomes a function of y alone and is the partial of u with respect to 
y. These partials are defined by 

Examples: 

2. u = sin (ax + by2), 
aU - 2 tjg eos (az + by2) a" = a 00s (02 + bv2) - - 

ax 



PARTIAL DERIVATIVES AND TOTAL DIFFERENTIALS 53 1 

Total Differentials. When r is a function of one variable only, 
7.4 = f(d, 

and 

in which 
lim E = 0 

A-0 

After applying the limiting process to Au, t,hen 

is the differential du. 
When u = f(x,y), the differential du is defined in a similar manner. If 

x and y take on increments Ax, Ay, then 

i11 which Ax, AZJ may approach zero in any manner. If Au approaches zero 
regardless of the way in which Az and Ay approach zero, then u = f(x,y) 
is called a continuous funct.ion of z and y. In the following it i s  asslimed 
that jr(x,y) is c o n t i ~ u o u s  and t.hat ?f/a.r and afldy stre also co~ltinuous. 

Ry adding and subtracting ,f(x,y + by) to the expressiorl for Au, 

Then 

f(x + Ax,y + by) - f(x,y 4- Ay) = 
af(xl?l + Ail> - AX + €1 AX 

dx 

in which lirn E I  = 0, because 
AYAO 

Furthermore 
~ / ( x , Y + , A Y ) - ~ ~ ( x , Y )  lim - 

AYO dx ax 

as the derivative is continuous, and 

in which lim €2  = 0. Similarly 
AVO 
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in which lim EZ = 0. By substituting into the expression for AU, 
AFO 

If the limit is taken as Ax and Ay approach zero, the last two terms drop 
out since they are the product of two infinitesimals and, hence, are of a 
higher order of smallness. The total differential of u is obtained, 

If x and y in u = j(x,y) are functions of one independent variable, e.g., 
t, then u becomes a function of t alone and has a derivative with respect 
to t if the functions x = f l ( t ) ,  y = fz(t) are assumed differentiable. An 
increment in t results in increments Ax, Ay, Au which approach zero with 
At. By dividing the expression for Au by At, 

and by taking the limit as At approaches zero, 

The same general form results for additional variables, namely, 

u = f(x,y,t) 

in which x, y are functions of t ;  then 



PHYSICAL PROPERTIES OF FLUIDS 

t This table was compiled primarily from A.S.C.E. Manual of Engineering Practice, 
No. 25, Hydraulic Models, 1942. 

Temp 
OF 

32 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
212 

Bulk 
modulus at 
elasticity 

K 
Ib/in2 

10-8 K = 

293 
294 
305 
311 
320 
322 
323 
327 
33 1 
333 
334 
330 
328 
326 
322 
318 
3 13 
308 
300 

specific 
weight 

lb/ft3 

62.42 
62.43 
62.41 
62.37 
62.30 
62.22 
62.11 
62.00 
61.86 
61.71 
61.55 
61.38 
61.20 
61.00 
60.80 
60.58 
60.36 
60.12 
59.83 

Density 
P 

~Iugs/ft~ 

1.940 
1.940 
1.940 
1.938 
I .  936 
1.934 
1.931 
1.927 
1.923 
1.918 
1.913 
1.908 
1.902 ' 

1.896 
1 ,890 
1.883 
1.876 
1 .868 
1.860 

I 
Viscosity 

t 
Ib-8ec/ftq 

1O& p = 

3.746 
3.229 
2.735 ' 

2.359 
2.050 
1.799 
1.595 
1.424 
1 .284 
1.168 
1.069 
0.981 
0.905 
0.838 
0.780 
0.726 
0.678 
0.637 
0.593 

Vapor 
pressure 

head 
PV/T  

ft 

0.20 
0.28 
0.41 
0.59 
0.84 
1.17 
1.61 
2.19 
2.95 
3.91 
5.13 
6.67 
8.58 

10.95 
13.83 
17.33 
21.55 
26.59 
33.90 , 

Kinematic 
viscosity 

Y 

ft2/s,,c 

Surface 
tension 

Q 

Ib/ft 

106 P = 1 100 c = 

1.931 
1.664 
1.410 
1.217 
1 .059 
0.930 
0.826 
0.739 
0.667 
0.609 
0.558 
0.514 
0.476 
0.442 
0.413 
0.385 
0.362 
0.342 
0.319 

0.518 
0.514 
0.509 
0.504 
0.500 
0.492 
0.486 
0.480 
0.473 
0.465 
0.460 
0.454 
0.447 
0.441 
0.433 
0.426 
0.419 
0.412 
0.404 



APPENDIXES 

FIG. C. 1 .  Absolute viscosities of certain gases and liquids. 



Temperature, O F  

FIG. C.2. Kinematic viscosities of certain gases and liquids. The gases :ire at standard 
pressure. 

Gas Chemical 
formula 

Air. . . . . . . . . . . . . . . .  
. . .  Carbon monoxide. 

Helium. . . . . . . . . . . . .  
Hydrogen . . . . . . . . .  
Nitrogen. . . . . . . . . . . .  

. . . . . . . . . .  Oxygen. 
Water vapor. . . . . . . .  

- 

Specific heat, 
Rtu/lb, "It ular 

Specific- 
hc t~  t 
rn tio 
k 

&8 eon- 
stant R, 

weight 
M ft-lb/lb, OR 



NOTATION 

Symbol Quantity 

Constant 
Acceleration 
Acceleration vector 
Velocity 
Area 
Adverse slope . 

Distance 
Constant 
Speed of surge wave 
Speed of sound 
Specific heat, constant pressure 
Specific heat, constant volume 
Concentration 
Coefficient 
Stress 
Critical slope 
Volumetric displacement 
Diameter 
Efficiency 
Specific energy 
Losses per unit weight 
Modulus of elasticity 
Friction factor 
Force 
Force vector 
Froude number 
Buoyant force 
Acceleration of gravity 

Bo Gravitational constant 
G Mass flow rate per unit area 
h Head, vertical distance 
h Enthalpy per unit mass 
H Head 
H Horizontal slope 
1 Moment of inertia 

Units Dimensions 
(ft-lb-see) (M, L, T) 

f t /sec2 LT-2 
ft/secz 1, T-2 

ft/sec LT-I 
ft2 L2 
none 
f t  1, 

f t/sec 
ft/sec 
fblb/slug OR 
ft-lb/dug "It 
No./ftj 
none 
lb/f tt 
none 
f t S  
f f 
none 
ft-lb/lb 
ft-lb/lb 
lb/ft2 
none 
lb 
lb 
none 
Ib 
f tjsec' 
lb,-ft/lb-secf 
slug /set-f t't 
f t  
f t-lb/slug 
f t  
none 
f t4  



NOTATION 

Symbol Quantity 

J Junction point 
k Specific-heat ratio 
K Bulk modulus of elasticity 
K Minor loss coefficient 
L Length 
L Lit 
1 Length, mixing length 
In Natural logarithm 
m Mass 
m Form factor, constant 
m Strength of source 
riz Maw per unit time 
M Molecular weight 
M Momentum per unit time 
M Mild slope 
M Mach number 
G Metacentric height 
n Exponent, constant 

Normal direction n 
n Manning roughness factor 
n Number of moles 
n 1 Normal unit vector 
N Rotation speed 
P Pressure 
P Force 
P Height of weir 
P Wetted perimeter 
9 Discharge per unit width 
9 Velocity 
Q Velocity vector 
q~ Hest transfer per unit mass 
Q Discharge 
QH Heat transfer per unit time 
r Coefficient ' 
r Radial distance , 

r Position vector 
R Hydraulic radius 
R Gas constant 
R, R' Gage difference 
R Reynolds number 
8 Distance 
s Entropy per unit maw 
s Slip 
S Entropy 
S' Specific gravity, slope 
S Stroke ratio 
S Steep slope 
t Time 
t: t' Ilistance; thickness 

Units 
(f t-lb-sec) 

none 
none 
lb/ftf 
nonc 
f t  
lb 
f t  
none 
slug 
none 
ita/sec . 

slug /sec 

lb 
none 
none 
f t  
none 
it 

f t  
f t  
f t 
ft-lb/slug OR 
f t  
none 
f t  
ft-lb/slug OR 
none 
ft-lb/OR 
none 
none 
none 
sec 
f t  

Dimensions 
( M , L , T )  
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Symbol Quantity 

Temperature 
Torque 
Tensile force/ft 
Top width 
Velocity, velocity component 
Peripheral speed 
Internal energy 
Shear stres~l velocity 
Velocity 
Velocity, velocity component 
Specific volume 
Volume 
Velocity vector 
Velocity 
Velocity component 
Work per unit mass 
Work per unit time 
Work of expansion 
Weight 
Weber number 
Distance 
Distance to pressure center ' 
Body-force component per unit mass 
Distance, depth 
Distance to pressure center 
Expansion factor 
Body-force component per unit mass 
Vertical distance 
Vertical distance 
Body-force component per unit mass 
Kinetic-energy correction factor . 

Angle, coefficient 
Momentum correction factor 
Blade angle 
Circulation 
Vector operator 
Specific weight 
Boundary-layer thicknem 
Kinematic eddy viscosity 
Roughness height 
Eddy viscosity 
Hesd ratio 
Efficiency 
Angle 
Universal constant 
Scale ratio 
Viscosity 
Constant 
Kinematic viscosity 

Units 
( ft-tb-sec) 

OR 
Ib-ft 
lb/ft 
f t  
ft/sec 
ft/m 
ft-lb/dug 
f t/sec 
f t'/sec 
ft/sec 
ft8/dug 
ft" 
f t / e  
ft/sec 
ft/sec 
ft-lb/dug 
ft-lb/sec 
ft-lb 
lb 
none 
f t  - 
f t  
lb/slug 
ft 
f t  
none 
lb/slug 
f t  
f t  
lb/slug 
none 
none 
none 
none 
ftZ/sec 
l / f t  
lb/ft' 
f t  
ftl/sec 
f t  
Ib-sec/fts 
none 

none 
none 
none 
lb-8ec/ft1 

Dimensions 
(M,Zl ,T)  

M L'I'-z 
M T-2 
L 
LT-1 
LT-I 
L'T-2 
LT-I 
LT* 
L T-1 

M-'La 
L " 
LT-I 
LT-I 
LT-1 
Lz T-2 
ML'T-8 
ML* T-2 
MLT-' 



NOTATION 

Symbol Quantity 

4 Velocity potential 
+ Function 
r Constant 
n Dimensionless parameter 
P Density 
u Surface tension 
u Cavitation index 
7. Shear stress 
1L Stream function, two dimensions 
# Stokes stream function 
w Angular velocity 

Units 
(ft-lb-sec) 

none 
none 
slug/ft= 
tb/ft 
none 
1b/ftZ 
ft*/sec 
f tt/sec 
rad/sec 

Dimensions 
(M,L ,T)  





ANSWERS TO EVEN-NUMBERED 

PROBLEMS 

1.2. 10 ft/sec 1.4. 63.4 1b 
1.6. 0.001 slug-ftlkipsec" 1.8. 10.72 ft/secz 

1.10. 1.67 X 10-81b-sec/ft2 1.12. 0.000475 slup;/ft-sec 
1.14. 0.00346 lb-sec/ft2; 1.66 poise 1.16. 0.00249 poise 
1.18. 5.88; 5.66 1.20. v, = g/r 
1.22. p = 0.0036 slug/fta; 0.0144 slug 1.24. 0.000616 
1.26. 4468 psis 1.28. p s p o e ( ~ - ~ a ) l K  

1.30. 3000 psi 1.82. 15.53 psia 
1.34. 0.155 in. 

Chapter 2 

2.2. 187.2; - 62.4; -62.4; -312 2.4. -0.866; 0.866; 0.866; 3.20 

2.6, p = pl 
PI (To + yl 
(To + .II)'+"R@ 

2.8. 12.58 psia; 0.00205 slug/ft5 2.10. 2920 f t  
2.12. -4.62 f t  water; 4.08 in. mercury suction; 12.45 psia; 28.8 ft  water sbs; 0.847 

atmosphere; 25.42 in. mercury abs . 

2 . a  87.1 3.16. 1.096 psi 
2.18. 32.4 2.20. 0.515 
2.22. - 3.34 ft 2.24. -0.26 in. 
8.26. (a) 6.62 in.; ( b )  6.52 in. 2.28. 0.22312 
2.50. 11.71 ft/sec2 
2.83. -0.173 psi; -0.173 psi; 0.35 psi; 0.35 psi 
4.34. 0.51 psi; 2.24 psi; 0.51 psi 2.36. 32.3 ft/sec2 
2.38. PA = 0.52 psi; 140 ft/sec2 2.U. 3.27 radjsec 

2.U. W .  = 5.67 rad/sec 2.46. 2 
2 .M). Surface of sphere g/of below center 2.62. 1600 lb 
2.54. - 156.6 1b 2.66. 0.868 1b 
9-58. 1914 1b 2.60. 0.793 below A B  
4.62. 798 lb 2.84. 35,900 1b-ft 
2.66. 1 1.58 ft 2.68. 0.856 ft 
4.70. ybh*/3; 3h/4 2.72. yp a 4.313 f t  

541 
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8.74. (a) 2.47 f t  from top; ( b )  2.33 ft from top 
2.76. y, = 1.25(h - 4) + 6.67/(h - 4 )  2.78. y, = h/2; x, = b/4 
2.80. h = 0.77 f t  2.82. y = 1 f t  
2.86. ( a )  Z = 34.57 ft; ( b )  Cnmx = 12,870 Il)/ft" CC, = 11 10 Ib/ftS 
2.88. 3995 Ib-ft 2.90. 471 lb 
2.92. 235 lb; stable 

1 

2.94, (a) h = 6.605(sin2 8 cos 8)"; ( b )  stable, 9.49" < 0 < 54.78" 
2.96. Same steel required 2.98. 56'2 1b; 1685 Ib 

2.102. 649 lb 2.104. R = 1.567 f t  
2.106- 5120 1b-ft 
2.108. ( a )  99.8 lb; ( b )  548 ib/ft; (c) S = 0.699 
2.110. 16.22 f t 8  2.112. w = 0.00666 lb 
2.114. $ f t  2.116. 0.3 ft; 168.5 Ib 
2.118. 149.3 2.120. 6 < 1 < 15.9 
2.l22. No 2.124. Not stable 

Chapter 3 

3.2. 0.622 ft-lb/slug; 2.27 hp 
3.6. Turbulent 
3.10. 542 ft/sea 
3.14. Yes 
3.92. 20,060,000 ft-l b 
3-28. 1.0'35 
3.32. 1.80 ft; 12.78 f t  
.3.36. 4.02 ft; 11.99 f t  
3.40. B -* A 
3.44. 1.324 cfs 

3.48. 0.58 cfs; 6.64 psi 

3.4. z = 4; = 2 - 1 

3.8. 24 ft/sei:; 40 ft/sec 
3.12. 60 per cent 
3.20. No 
3.24. 100 ft 
3.30. 5.50 
3.34. 2.01 ft; 10.68 ft 
3.38. 27.8 ft/sec 
3.42. 0.63 cfs 
3.46. 16 f t  

3.62. 7.44 ft 3.64. -5.2 psi 
3.66. 2.43 cfs; pz = -4.35 psi; pa = 0.554 psi 
3.68. 1.365 cfs; 64.5 f t  3.60. 24.5 cfs; 26,280 Ib-ft 
3.62. 592 3.64. 719 
3.66. 6.1 3.68. 1.559 cfs; 0.3; 0.0544 hp 
3.70. H /6 3.72. 10.1 1 psi 
3.74. 0.02 ft-lb/slug OR 3.76. $ 
3.78. 1.183 3.82. 126 1b 
3.84. Tension 3.86. No change in magnitude of forces 
3.88. 6898 Ib; 1 1,330 lh 3.90. 13.05 Ib 
3.93. Efficiency = 59 per cent 3-94. 4335 Ih; 86.3 per cent; 404 hp 
3.96. 2009 lh 3.98. 27.5 per cent 
7.100. 19 cfs 3.102. 5420 ft/scc 
104. 86.55 ft/sec; 686.1 ft 3.106. 80 per cent ' 

78. 2610 ft/sec 3.110. 1 16,200 ft 
'. F, = 228.3 lb; F,  = 568 lb 3.114. pqo(a/Vo)(Vo + uI2 sinZ 0 

vo/3 3.120, = 4 9 O  - 50.5'; 8 2  = 4 f 0  - 12' 
", = 258 Ib ; F, = 89.4 1b 3.124. 143" - 2.5' 

3568 ft-lb/ib 3.128. 65.6 hp 
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3.136. 32.9 cfs 
3.140. 74.4 1b toward left 
3.1 44. 537 rpm 
3,148, 0363 Ib-ft 

3.134. 9.61 ft; 5-73 ft-lb/Ib 

3.138. 0.25 in. 
3.142. 78.6 ft/sec; 367 ft 
3.146. 68.8 rpm 

Chapter 4 

4.2. (a) P V ~ / A ~ ;  (6) Py2/pV6; ((c 4 ~ p / ~  4.4. 8G,100,OOO slug 

rD Q3p5g Ah 
4.6. Dimensionless; .T-1; FLT-I; FL; FL;  FL 4.8. j (zl 7. I - )  = 0 

4.26. 85 ft/scc; 524 ft3/sec; same when expressed in velocity heads 

Chapter 5 

6.4. d p / d l  = ZP(U/a2) ; Q = Ua/3 
6.6. 0.1884 lb; 0.188 X cfs 

6.14. 6.0575 lb/ft2 to right 
6.18. -$ - 
6.22. 0.017 cfs; 63 
6.26. 109.7 ft 
6.80. (a) 20 lb/ftf/ft; ( b )  35.5; (c) 0.0196,lb/ft 
6.34. 271 
6.38. c/zs*ro = ky / ro  
6.44. S 5 0.254s/RZ& 
6.48, 19.7 ft 

* 6.62. 107 1b 
6.66. 0.0568 ft/sec 
6.60. 0.025 
6.64. 0.0285 
6.68. .9.7 ft 
6.72. V -- y% 
6.76. 0.0215 
6.80. -50 ft 
6.86. 0.013 
6.90. 56.9 psi 
6.94. 0.149 cfs 
6.98. 7.44 

6.102. Smoother plate 
6.106. 2.31 ft diameter 
6.110. K = 9; 485 ft 

5 4 .  8 6-10. 35, 5 

. 6.16. Efficiency = $ 
6.20. 0.042 lb/ft2 
6.24. 0.00136 cfs 
6.28. 1600Op2/pD" 
6.34. 0,0059 cfs 
6.36. Z/ro = gk(y/ro) 
6.40. 41 ft 
6.46. 7.61 ft/sec 
5.60. 7.59 ft 
6.64. 2040 ft/scc; 32' 
6.68. 66.72 cfs 
6.62. 217.5 cfs 
6.66. 4.04 f t  
6.70. 6.25 
6.74. y = 0.348 
6.78. 321 ft 
6.82. 0.01 ft 
6.88. 0.352 
6.92. 14.8 hp 
6.96. 7680 

6.100. 0.10 ft  
6.104. 7.7 f t  
6,108. 2.68 f t  
5.112. 26 cfs 
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6.114. (a) 7.6 ft; ( b )  4.32 ft; (c) 89.4 ft .&116. 15.75 
6.122. 73.1 psi 

Chapter 6 

6.9. 0.331 Btu/lb, "R 6.4. 19.88 
6.6. 1.368 Btu/"R 6.8. 4020 Btu/slug 

6.10. p ~ / p s  = ( TI/.T~)"(~-') 6.12. 2 
6.14. 20 per cent 6.18. 105"F, 44.4 psia 
6.20. Same 6.29. 57.6 Ib,/sec; 0.54; 81.6 pma; 4S°F 
8.24. 211.2psia;0.9141b,/ft~;164"F 6.26. 0.3311b/sec 
6.28. 0.34 in. 6.30. 0.263 ft; 0.315 ft; 0.394 f t  
6.32. 1450 ft/sec; 3.55 lb,/sec 6.34. 0.065; 0.98 
6.36. 0.636; 9.88 psia; 822°F; 1 1 17 ft/sec 
6.38. M, = 1.55; Ma = 0.712; p d  = 20.4 psia; 312°F 
6.42. 17 per cent 6.44. 0.86 f t  
6.46. 0.1545 lb,/sec 6.48. 4,110 Btu/lb, 
6.60. 0.056 slug/sec 6.62. 197.1 Btu/lb, to .the system 
6.64. qiz = (VzZ - V12)/2 6.66. 80 f t  
6.68. 5.07.; Ap = 0.184 psi 6.60. 0.108 ft 

Chapter 7 

7 . 1  2 / = 0; q* finite 
ar ,,, 

1 OrS +-  sinZ 8 2 
7.24. p = 196.8 - 871 sint 8 lb/ft2 
7.26. Flow into a well 
7.28. 200 fta/rsec 7.30. Z2 - 4aa = ~ ~ T c ( Q / U  

Chapter 8 

8.2. Qc = Q(n/N);  He = H(n/N)2,  c = corrected, n = constant speed 
8.4. Synchronizing causes a discrepancy 8.6. Q, = 0.125Q1; H = 4H1 
8.8. 319 rpm 8.10, 89 in.; 300 rpm 
8.12. 14.05 ft 
8.14. ( a )  1.78 ft; (b) 1200 rpm; ( c )  202 hp; 1.45 hp 
8.16. 14.75" 
8.18. r = 3, V ,  = 61.4 ft/eec; r = 1, V ,  = 184.2 ft/sec 
8.20. 117.5 f t  8.22. 93.24 per cent 
8.24. H = 54.4 - 17.2Q 
8-26. (a) 506 rpm; (b) 13.0 ft; (c) 30.8 lb-ft; ( d )  2.97 hp; (e) 581 lb/ftz 
8.50. 50.22 8.32. 6.8 in. 
8.36. 272 Ib-ft; 96.6 per cent 8.88. 11.6 f t  
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Chapter 9 

9.2. 4.27 psi 9.4. 14.12 ft/m 
9.6. 68.1 ft/sec 9.8. 1.203 

9.10. 39.4 cfs 9.12. 584.5 ft/sec; 73.5OF 
9.14. 1.29 gpm 9.16. 28.35 gpm 
9.18. 3 = 0 . 0 1 7 ~ ~  9.20. Y H COS' a 
9.24. C,  = 0.95; Cd = 0.75; C, = 0.79 9.26. 0.713 ft-lb/lb; 35.8 ft-lb/= 
9.28. 5.31 ft-lb/lb; 464.5 ft-lb/sec 9.30. 2.16 in. 
9.32. 10.25 in. diameter 9.34. r = 1.815~f 
9.36. r = 0.1515yi 9.38. 89.3 sec 
9.40. 200 cfs 9.42. 0.875 psi 
9.44. 0.0108 slug/sec; 746 ft/sec 9.46. 3.06 in. 
9.48. 0.00787 slug/sec 9.80. 0.64 cfs 
9.62. 25 cfs 9.54. 1.72 f t  
9.56. (a) 2.32 ft; (b) 1.67 f t  9.68. 0.856 lb-ft 
9.60. l .f 9 X slug/ft-see 

Chapter 10 

10.2. 164.8 10.4. 44.8 f t  
10.6. 3.975 cfs; 9.94 psia 10.10. 31.9 f t  

10.12. 2.90 cfs 10.14. 0.25 f t  
10.16. 2.72 in. 10.18. 38.7 ft  
10.20. 4.46 cfs 10.24. 2.82 cfs 
10.26. 8.48 cfs 
10.28. Q I  = 0.0734 cfs; Q 2  = 0.165 cfs; Qt,,-I = 0.238 cfs 
10.30. 9225 f t  
10.32. QAJ = 1.27 C~S;  Qsr = 1.25 cfs; Qjc = 2.52 cfs 
10.34. &A = 0.42 cfs; QB = 2.02 cfs 10.36. 1.86 cfs; 106.0 f t  
10.38. Q B J ,  1 9.43; Q J , A  = 16.63; QJ,J ,  = 7.20; QCJ, = 5.68; Qoj, = 1.52 cfs 
10.40. 58.5, 41.5; 31; 44; 2.5 10.42. 61.5, 38.5; 31, 44; 5.5 
10.44. 0.391 10.46. 0.165 cfs 
10.48. 4.43 f t  10.60. 1.718 sec 
10.62.. 5.15 sec 30.6%. 0.901 sec; 0.217 ft/sec 
10.66. 27 f t  10.68. 12.9 sec 
10.60. 3493 ft/plec 10.62. 274 psi 
10.64. + 

11.2. 0.00219 ft 
11.6. m = fi/3; 7.1 1 f t  

11.10. 0.000165 
11.18. 1933 f t  
11.22. 1.72 ft; 56.6 cfs/ft 
11.34. 2.10 f t  rise 
11.40. 9.62 ft/sec; 9.61 cfs/ft 
11.44. y = 0.00345(~/2 + 644)~ 

Chapter 1 1 

11.4. 562 ft2 per 100 f t  
11.8. m = 4 i / 3 ;  b = 13.45 ft; y = 11.65 f t  

11.16. 1.825 ft; 5.54 f t  
11.20. 7.4 f t  
11.26. 385 f t  
11.36. 1.24 f t  
11.42. y ='0.031(~/31 + 3.71)' 
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Ablation, 282 
Addison, H., 432 
Adiabatic flow, 264-269 
Aerodynamic heating, 281-283 
Aging of pipes, 452 
Airfoil lift and drag, 207, 208 
Analogy, electric, 313 

shock waves to open-channel waves, 
283, 284 

Anemometer, air, 393, 395 
hot-wire, 392, 393 

Angular momentum, 128-1 30, 349-354 
Answers to problems, 541-545 
Area rule, 280, 281 
Artificially roughened pipes, 214-219 
Atmosphere, 27n. 

effect on plane areas, 46 
local, 25, 26 
standard, 25, 26 - 

Axial-flow pumps, 364-368 

Bakhmeteff, B. A., 194, 521 
Barometer, aneroid, 27 

mercury, 27 
Bearing, journal, 226 

sliding, 226 
Bends, forces on, 110, 11 1 
Bernoulli equation, 96-104, 306-308 

assumptions in, modification, 100, 
ioi 

Best hydraulic cross section, 489-491 
Binder, R. C., 432 
Blasius, H., 217 

Blasius formula, 217 
Blowers, 364-371 
Borda mouthpiece, 404 
Boundary conditions, 308-3 12 
Boundary layer, 196-206 

critical Reynolds number, 200 
definition of, 196-197 
laminar, 198-200 
momentum equation of, 198 
rough plates, 203 
smooth plates, 202 
turbulent, 200-203 

Rourdon gage, 25, 26 
Royle's law, 12 
Branching pipes, 445-447 
Bridgeman, P. W., 173 
Buckingham, E., 156 
Bulk modulus of elasticity, 13, 252, 

253, 467 
Buoyant force, 53-56 
Buzz bomb, 117, 118 

Cambel, A. B., 259, 273, 294 
Capacitance gage, 389 
Capillarity, 14, 15 
Capillary-tube viscometer, 421, 422 
Cascade theory, 348, 349 
Cavitation, 377-380 
Cavitation index, 380 
Cavitation parameter, 377 
Center of pressure, 4 2 4 5  
Centipoise, 9 
Centrifugal compressor, 371-373 

547 
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Centrifugal pumps, 364-37 1 Curved surfaces, horizontal, 48, 48' 
Centroids, 525-527 vertical, 49-53 
Charles' law, 12 Cylinder, circular, 330-334 
ChBzy formula, 21 1 drag coefficients, 206, 207 
Chick, -4. C., 173 
Chow, V. T., 521 
Church, A. H., 385 
Circular cyli'nder, flow around, 330-334 
Circulation, 327, 328, 332-334 
Classification, of open-channel flow, 

488, 489 
of surface profiles, 503-505 

Closed-conduit flow, 210, 213-226, 
433-475 

Cohen, A*, 459 
Colebrook, C. F., 2.15, 452 
Colebrook formula, 213, 215 
Compressibility, of gases, 11-13 

of liquids, 13 
Compressible flow, 246-284 

measurement of, 391-398, 408-413 
velocity, 391-393 

in pipes, '264-276 
Compressor, centrifugal, 371-373 
Concentric-cylinder viscorneter, 419- 

421 
Conduits, noncircular, 451 
Conical expansion, 223, 224 
Conjugate depth, 126 
Conservation of energy, 104 
Continuity equation, 90-94, 295, 297 
Continuum, 9 
Control section, 505-509 
Control volume, 83 
Converging-diverging flow, 257-259 
Conversion of energy, 177-1 79 
Convertor, torque, 374-377 
Coupling, fluid, 374-377 
Crane Company, 224 
Critical conditions, 256 
ckitical depth, 495-498 
Critical-depth meter, 507-509 
Cross, Hardy, 449 
Curl, 297-300 

Daily, J. W., 356n., 386 
Dam, gravity, 4648 
Dam-break profile, 514 
Darcy-Weisbach formula, 21 1, 216, 

264-269, 273-276 
Daugherty, R. L., 15 
Deformation drag, 204 
DeI, 93, 94, 296-300 
Density, 10 
Derivatives, partial, 529, 530 
Differentials, total, 531, 532 
Diffusion, 191, 192 
Dimensional analysis, 155-1 68 
Dimensionless parameters, 155-156 
Dimensions, 156, 157 
Discharge coefficient, 401 
Disk, drag on, 206 

torque on, 420, 421 
Disk meter, 399 
Divergence, 94, 297, 300 
Doublet, three-dimensional, 315, 316 

two-dimensional, 328-330 
Drag, airfoil, 207, 208 

bearing, 228 
circular disk, 206 
compressibility effect on, 208-210, 

276-281 
cylinder, 206, 207 
deformation, 204 
flat plate, 200, 203 
pressure, 204 
projectile, 209, 210 
skin friction, 204 
sphere, 205, 206, 210 
wave, 167, 168, 279,280 

Dryden, H. L., 206,432 
Dynamic pressure, 390 
Dynamic similitude, 155-168 

Current meter, 393,394 
Curved surfaces, force components, Eddy viscosity, 191, 192 

4-8-62 Edelman, G. M., 294 



EQciency, centrifugal compressor, 37 1- 
373 

centrifugal pump, 368 
hydraulic, 352 
over-all, 352 

Eisenberg, P., 386 
Elasticity, bulk modulus of, 13, 252, 

253, 467 
Elbow meter, 412, 413 
Elbows, forces on, 110, 1 1 1 
glectric analogy, 313 
Electromagnetic flow device, 418 
Elementary wave, 283, 511 
Elrod, H. G., Jr., 418n. 
Energy, available, 97 

conservation of, 104 
conversion of, 177-179 
flow, 97 
internal, 104, 246-248 
kinetic, 97 
potential, 97 
pregure, 97 
specific, 495-498 

Energy grade line, 433-438 
Energy gradient, 436 
Enthalpy, 107, 247-249 
Entropy, 105-107, 248-251 
Equations, Bernoulli, 9&104,306-308 

continuity, 90-94 
energy, 104-107 
Euler's, 94-96, 106, 107, 300-304, 

306-308 
Gladstone-Dale, 394 
Hagen-Poiseuille, 179-184, 218, 421 
Laplace, 305, 306 
momentum, 128-130 
of motion (see Euler 's, abore) 
Nrrvier-Stokes, 186 
of state, 11-13 

Equilibrium (A Relative equilibrium) 
Equipotential lines, 312-31 4 
Equivalent length, 224,44 1-443 
Establishment of flow, 182, 183, 463, 

464 
Euler's equation of motion, 94-96, 106, 

107, 300-304, 306-308 
Expansion factors, 408,409 

Expansion losses, conical, 223 
sudden, 124,. 125, 223, 224 

F + M curve, 492, 493 
Falling head, 404, 405 
Fanno lines, 262265 
Flettner rotor ship, 333 
Floodway, fiow in, 491, 492 
Flow, adiabatic, 86 

through annulus, 184-186 
boundary layer, 86, 196-206 
around circular cylinder, 33&334, 
through circular tubes, 179-184 
with circulation, 332-334 
classiiication of, 488, 489 
through closed conduit, 167, 213- 

226, 433-475 
compressible, 246-284 
establishment of, 182, 183, 463, 464 
along flat plate, 19&203 
in floodway, 491, 492 
frictionless, 94-100, 254-259, 295- 

334 
with -heat transfer, 269-273 

gradually varied, 488, 498-506 
ideal, 295-334 
irrotational, 298, 304-334 
isentropic, 254-259, 408-410 
isothermal, 273-276 
laminar (see Laminar flow) 
measurement of, 387-422 

optical, 393-398 
through noncircular section, 451 . 

nonuniform, 85, 87, 88, 488 
normal, 210-213 

open-channel, 21 2, 21 3, 488 
through nozzles, 254-264 
onedimensional, 88 
open-channel (see Open-channel 

flow) 
between parallel plates, 174-179 
pipe, 167, 213-226, 433475 
potential, 295-334 
rapid, 166, 488, 489 
reversible adiabatic (see isentropic, 

above) 
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Flow, separation, 203-206 
shooting, 489 
steady, 86, 88, 488 
three-dimensional, 88, 314-325 
tranquil, 166, 488 
transition, 182, 183, 506-509 
turbulent, 85 
two-dimensional, 88, 325-334 
types of, 85, 86 
uniform, 85,87,88,317-320,330, 

488 
unsteady (see Unsteady flow) 
varied, 498-505 

Flow cases, 31 4-334 
Flow energy, 97 
Flow net, 312-314 
Flow nozzle, 408410 
Flow work, 97 
Fluid, definition of, 3 

deformation of, 3-6 
Fluid coupling, 374-377 
Fluid flow, ideal, 295-334 
Fluid-flow concepts, 83-130 
Fluid jet, spreading, 196, 197 
Fluid measurement, 387-422 
Fluid meters, 400418 
Fiuid properties, 3-15 
Fluid resistance, 174-229 
Fluid statics, 21-62 
Fluid torque converter, 374-377 
Foett inger-type coupling, 374-377 
Force, buoyant, 53-56 

shear, 3, 4 
static pressure, 40-56 

Force systems, 525 
Forced vortex, 38 
Forces, on curved surfaces, 48-62 

on elbows, 110, 111 
on gravity darn, 46-48 
on plane areas, 40-48 

Fouse, R. R., 418n. 
Francis turbine, 359-364 
Franz, A., 392n. 
Free molecule flour, 10 
Free vortex, 38, 279-281, 351 
Friction factor, 21 0-219, 264-269,273- 

276 

Frictional resistance in pipes, 213-p6, 
264-269, 273-276, 433475 

Froudc number,. 162, 166168,493495 
Fuller, D. D., 229n. 8 

\ 

Gage, bourdon, 25, 26 
Gage height-discharge curve, 418, 419 
Gas constant, If 

universal, 12 
Gas dynamics, 10, 246-284 ' 

Gas law, perfect, 11-13, 246-251 
Gas meter, 399,400 
Gibson, A. H., 224 
Gladstone-Dale equation, 394 
Coldstein, S., 4n. 
Gradually varied flow, 498-505 

integration method, 500-503 
standard step method, 498, 499 

Gravity dam, 46-48 

Hagen, G. W., 182 
Hagcn-Poiseuille equation, 179-184, 

218, 421 
Half body, 318-320 
Hardy Cross method, 449 
Hawthorne, W. R., 294 
Head and energy relationships, 352-354 
Heat sink, 282 
Heat transfer, 269-273 
High-speed flight, 276-284 
Hinds, J., 521 
~ o l t ,  M., 173 
Homologous units, 343-347 
Horton, R. E., 432 
Hot-wire anemometer, 392, 393 
Hunsaker, J. C., 386 
Hydraulic cross sections, best, 489- 

491 
Hydraulic efficiency, 352 
Hydraulic grade lines, 103, 215, 433- 

438 
Hydraulic gradient, 436 
Hydraulic jump, 125127,492495, 506 
Hydraulic machinery, 1 68 343-380 
Hydraulic models, 166-1 68 



INMX 

Hf$raulic radius, 2 1 1 Laminar flow, 85, 174-189 
Hydraulic structures, 4648,  167, 168 through annulus, 184-186 
Hydrodynamic Iu brication, 226-229 losses in, -177-179 
Hydrometer, 55, 56 between parallel plates, 174-1 79 
Hydrostatic lubrication, 229 through tubes, 158, 159, 179-189 
Hydrostatics, 21-62 Langhaar, H. L., 173, 182 
Hypersonic flow, 276-278 Lansford, W. M., 413n. 

Laplace equation, 305, '306 
Lee, S. Y., 418n. 

ICBM, 282 Li, V. T., 418n. 
Ideal fluid, 5 Liepmann, H. W., 254n., 259n., 278, 
Ideal-fluid flow, 295-334 294 
Ideal plastic, 5 Lift, 207, 208, 333 
Imaginary free surface, 40, 50 Lindsey, FV. F., 207 
Impulse turbines, 354-359 1,inear momentum, 107-128 
Inertia, moment of, 527 Losses, 83-86, 106, 107 

product of, 528 conical expansion, 223 
Interferometer method, 397, 398 fittings, 224 
Internal energy, 104, 246-248 laminar flow, 177-179 
Tppen, -4. T., 507 ., minor, 222-226 
Ipsen, D. C., 173 sudden contraction, 222, 223 
Irreversibility, 83-85 sudden expansion, 124, 1'25 
1 rrotational f l o ~ ,  298, 304-334 1,ubrication mechanics, 226-229 
Isentropic flow, 254-259 

through nozzles, 254-259, 408-410 
Isentropic process, 248 hIach angle, 209 
isothermal flow, 273-276 hfach number, 162-163, 253 

A4acl.1 wave, 209 
Ma.c h-Zehnder interferometer, 396,397 

Jennings, B. ZI., 259, 273, 294 Mr:Nown, J .  S., 486 
Jennings, F. R., 41% Magnus effect, 333 
Jet propulsion, 114-1 18 Manning formula, 212 
Jets, fluid action of, 11 1-125 Manning roughness factors, 212 
Joukowsky, K., 486 Manometer, differential, 29-31 

inclined, 33, 34 
simple, 28, 31 

KapIan turbine, 359-364 Mass meter, 417, 418 
Keenan, J. H., 268n.? 294 Mean free path, 10 
Keulegan, G. H., 521 Measurement, of compressible flow, 
Keuthe, A. M., 432 391-398, 408-412 
Kindsvater, C. R., 521 of flow, 387-422 
Kinematic eddy viscosity, 19'1, 192 of river discharge, 418, 410 
Kinematic viscosity, 9 of static pressure, 387-391 

of water, 533 of temperature, 391, 392 
Kinetic energy, 97 of turbulence, 419, 420 

corection fact or, 98-10, 184 of velccity, 389-393 
King, H. W., 432, 486,507 of viscosity, 41W22 
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Metacenter, 58 
Metacentric height, 57-62 
Meters, criticaldepth, 507-509 

current, 393, 394 
disk, 399 
elbow, 412, 413 
fluid, 40M18 
gas, 399, 400 
mass, 417, 418 
orifice, 400405, 411, 412 
positive-displacement, 398-400 
rate, 400-418 
venturi, 101, 102,405-409 
wobble, 399 

Micromanometer, 31 -33 
Minor loases, 222-226 

equivalent length for, 224 
Mixed-flow pumps, 364-368 
Mixing-length theory, 189-196 
Model studies, 166-1 68 
Moment, of inertia, 525-528 

of momentum, 128-130, 34S354 
Momentum, angular, 128-130 
. correction factor, 109 

linear, 107-128 
unsteady, 127, 128 

molecular interchange of, 7, 8 
moment of, 128-130, 349-354 

Momentum equation, 107-128 
of boundary layer, 198 

- ~ 

Momentum theory for propellers, 112- 
'1 14 

Moody, L. F., 217, 364, 386 
Moody diagram, 217-21 9 
Moody formula, 364 
Motion, equation of, 94-96 

Euler's, 94-96, 106, f 07,300-304, 
306-308 

Murphy, G., 173 

Natural coordinates, 302, 304 
Navier-Stokes equations, 186 
Networks of pipes, 447451 
Neumann, E. P., 268n., 294 
Newtonian fluid, 5 
Newton's law of viscosity, 4, 5 

Nikuradse, J., 194, 214, 217, 218 
G 6  

Noncircular conduits, 451 
Non-Newtonian fluid, 5 
Normal depth, 488, 501 
Normal flow, 21CL213 
Notation, 536-539 
Nozzle, forces on, 111 . 

VDI flow, 408410 
Nozzle flow, 254-264 

Olsndo, V. A., 418n. 
One-seventh-power law, 99, 201 
Open-channel flow, 210-213, 487-514 

cladfication of, 488, 489 
gradually varied, 498-505 
steady uniform, 210-213 

Optical flow measurement, 393-398 
Orifice, falling head, 404, 405 

losses, 401403 
pipe, 411413 
in reservoir, 101,400-405 

determination of coefficients, 401- 
405 

VDI, 411 
Oscillation, of liquid in U tube, friction- 

less, 453, 454 
laminar resistance, 454458 
turbulent resistance; 458-461 

of reservoirs, 461, 462 

Parallel pipes, 443-445 
Parallel platea, 174-1 79 
Parameters, cavitation, 377 

dimensionless, 155-156 
Parmakian, J., 486 
Partial derivatives, 529, 530 
Path of particle, 88 
Paynter, H. M., '486 
Pelton turbine, 354-359 
Perfect gas, 11-13 

laws of, 11 
relationships, 24G25 1 

Physical properties, of fluids, 3-15,533- 
535 

of water, 533-535 
II-theorem, 15&164 
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,Edrometer opening, 388 
Pieeoheter ring, 388 
Pipe flow, 167, 213-226, 433-475 
Pipes, aging of, 452 

branching, 445-447 
compressible flow in, 246-284 

(See also Pipe flow) 
equivalent, 44 11443 
frictional resistance in, 213-226,264- 

269, 273-276,433-475 
networks of, 447451 
in parallel, 443445 
in series, 440-443 
tensile stress in, 52 

Pitot-static tube, 391, 392 
Pitot tube, 103, 389-392 
Poise, 9 
Polar vector diagram, 350, 351 
Polytropic process, 249-251 
Posey, C. J., 521 
PositivedispIacement meter, 398-400 
Potential, velocity, 304-306 
Potential energy, 97 
Potential flow, 295-334 
Prandtl, L., 189,190,196,202,203,209, 

294 
Prandtl hypothesis, 196,295 
Prandtl mixing length, 189-196 
Prandtl one-seventh-power law, 99 
Prandtl tube, 391 
Prandtl-Glauert transformation, 277 
Pressure, dynamic, 390 

stagnation, 389, 390 
static, 11, 21-28, 388, 390 
total, 389, 390 
vapor, 13, 14, 533 

Pressure center, 4245 
Pressure coefficient, 164, 165 
Pressure line, zero, 38 
Pressure measurement, 387-389 

units and scales of, 25-28 
Pressure prism, 4548 
Pressure. variation, compressible, 24,25 

incompressible, 21-24 
Price current meter, 393, 394 
Product of inertia, 528 
Propeller turbine, 359-364 

Propellers, momentum theory, 112-1 14 
thrust, 162, 163 

Properties, fluids, 3-15, 533-5135 
water, 533-535 

Pumps, axial-flow, 364-368 
centrifugal, 364-371 
characteristic curves for, 368,369 
mixed-flow, 364, 365 
radial-flow, 364-37 1 
selection chart for, 367 
theoretical head-discharge curve, 

368-370 
theory of, 348-354 

Radial-flow pumps, 36437 1 
Ram jet, 117, 118 
Rankine bodies, 320-323 
Rankine degrees, 11 
Rapid %ow, 166, 488, 489 
Rate meters, 400-418 
Rate processes, 191, 192 
Rayleigh lines 262-264, 270 
Reaction turbines, 35S364 
Relative equilibrium, 34-40 

pressure forces in, ' 46 
uniform linear acceleration, 34-37 
uniform rotation, 38-40 

Relative roughness, 214-2 19 
Reservoirs, oscillation in, 461, 462 

unsteady flow in, 404405 
Reversi_bility, 83-85 
Reynolds, Osborne, 186 
Reynolds apparatus, 187-189 
Reynolds number, 161-1 68 

critical, 186-189 
open-channel, 487 

Rheingans,' W. 3., 378n. 
Rheological diagram, 5 
Rightmire, 33. G., 386 
River flow measurement, 418, 419 
Rocket propulsion, 118, 119 
Roshko, A., 254, 259, 278,294 
Rotameter, 413 
Rotation, in fluid, 298 

uniform, 38-40 
Rotor ship, Flettner, 333 
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SateIlite, 283 Stah:  quation of, 11-13 
Saybolt viscometer, 421, 422 Static pressure, 1 1, 21-28, 388, 390 
Scalar components of vectors, 299, 300 measurement of, 387-391 
Schtichting, H., 203, 282 Static tube, 388 
Schlieren method, 395, 396 Stepanoff, A. J-, 386 
Secondary flow, 210 Stilling basins, 494, 495 
Sedov, L. I., 173 Stoke, 9 
Separation, 203-206, 349 Stokes, G., 210, 323n. 
Series pipes, 440-443 Stokes' law, 210 
Shadowgraph method, 396, 397 Stokes' stream function, 310, 31 1 
Shapiro, A. H., 259, 273, 294 Streak line, 89 
Shear stress, 3-7 Stream functions, 308-31 2 

distribution of, 181 Stream surface, 310, 31 1 
turbulent, 188, 189 Stream tube, 89 

Ship's resistance, 167, 168 Streamline, 88, 89, 31 2-314 
Shock waves, 259-264, 276-284 Streamlined body, 204 
Silt distribution, 192 Streeter, V. i d - ,  99n., 333n. 
Similitude, 166- i 68 Supersonic flow, 254-284 

dynamic, 155-1 68 Surface profiles, 603-505 
Simon, O., 486 Surface tension, 14, 15 
Sink, 316, 317, 326, 327 water, 533 
Siphon, 102, 103, 438-440 Surge control, 464, 465 
Skin friction, 204 Surge tank, differential, 464, 465 
Slip flow, 10 orifice, 464, 465 
Snell's law, 394 simple, 464, 465 
Sommers, W. P., 396 Surge waves, negative, 51 1-514 
Sonic boon-i, 278, 279 positive, 509-5 11 
Source, three-dimensional, 31 6, 31 7 Surroundings, 83 

two-dimensional, 326, 327 Sutton, G. I.'., 378n. 
Spannhake, W., 386 Sweptback wings, 280 
Specific energy, 495-498 System, closed, 83 
Specific gravity, 11 open, 83 
Specific heat, 246-249, 535 
Specific-heat ratio, 246, 247, 535 
Specific speed, 343-347 Temperature measuremenf, 391, 392 
Specific volume, 10 Tensile stress in pipe, 52 
Specific weight, 10 Thermodynamics, first law, 104-107 
Speed of sound, 251-254 second law, 106 
Sphere, translation of, 323, 324 Thixotropic substance, 5 

uniform flow around, 324, 325 Three-dimensional flow, 88, 3 14-325 
Spreading of jet, 195, 196 Time of emptying, 404, 405 
Stability, 56-62 Tollmien, W., 196 

rotational, 57-62 Torque on disk, 4?0, 421 
Stagnation pressure, 389, 390 Torque converter, 374-377 
Stalling, 276-278 Torricelli's theorem, 101 
Standing wave, 126 Trajectory method, 400-402 
stanton diagram, 217 Tranquil flow, 166, 488 
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Tys i t i ons ,  506509 velocity measurement, 389-393 
~u&nes ,  Francis, 359-364 Velocity potential, 304-306 

irn palse, 354-359 Vena contracts, 222 
Kaplan, 361-364 Venturi meter, 101, 102, 405-409 
Pelton, 354-359 Viscometer, capillary-tube, 421, 422 
propeller, 35+364 concentric-cylinder, 419-421 
reaction, 359-364 Saybolt, 421, 422 

Turbocompressor, 372, 373 Viscosity, 4-9 
Turbojet, 117 eddy, 191, 192 
Turbomachinery, 343-380 kinematic, 9 
Turbomachines, theory of, 349-354 kinematic eddy, 191, 192 
Turboprop, 1 17 measurement of, 419-422 
Turbulence, 188-192 Newton's law of, 4, 5 

level of, 205, 206 units and conversions, 8, 9 
measurctrnent of, 419, 420 Viscous effects, 174--229 

Two-dimensional flow, 325334 von KBrmBn, T., 191, 198 
Vortex, 38, 327, 328, 332-334 
Vorticity, 298-300 

Uniform flow, 85, 87, 88, 317-320, 330, 
488 

Units, forrac and mass, 6, 156 Wa kc, 203- 206 
I:'rliversal constant, 191, 193, 194 MTater, physical properties of, 533 
Tinsteady flow, clostd conduits, 85-88, Water hammer, 466-475 

452-475 valve closure, rapid, 466-472 
open channels, 509 -514 slo\c, 472-475 
reservoirs, 404, 405, 161, 462 ITavc c11'n.g~ 279, 280 

IVavt~s! cllcmt!ntary, 283, 51 1 
surge, 509-414 
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moving, 121-124 Weisbach, J., 223 
series of, 1 23, 1 24 White, C. AT., 452 

Vapor pressure, 13, 14 Wiedernann, C., 150 
of water, 533 Windmill, 1 14 

Varied flow, 498-505 JJ7islicenus, G. F., 386 
VDI flow nozzle, 408-410 Wobble meter, 399 
VDI orifice, 41 1 FIToodward, S. M., 521 
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A d d i t i o n a l  M c G r a w - H i l l  

INTERNATIONAL STUDENT EDITIONS 

Are  A v a i l a b l e  i n  the F o l t o w i n g  Subjects: 

Agriculture 
Biological Sc tences 

Business and Industrial Management 
Chemistry and Chemical Engineering 

Civil Engineering 
Economics 
Education 

Electrical Engineering 
Geology and Mineralogy 

Industrial Arts and Vocational Education 
Mathematics 

Mechanical Engineering 
Medicine 

Meteorology 
Physics 

Political Science 
Psychology 

Sociology 


	Fluid Mechanics, Third Edition, Streeter
	PREFACE
	CONTENTS
	PART ONE Fundamentals of Fluid Mechanics
	1 FLUID PROPERTIES AND DEFINITIONS
	1.1. Definition of a Fluid.
	1.2. Force and Mass Units.
	1.3. Viscosity.
	1.4. Continuum.
	1.5. Density, Specific Volume, Specific Weight, Specific Gravity, Pressure.
	1.6. Perfect Gas.
	1.7. Bulk Modulus of Elasticity.
	1.8. Vapor Pressure.
	1.9. Surface Tension. Capillarity.
	PROBLEMS

	2 FLUID STATICS
	2.1. Pressure at a Point.
	2.2. Pressure Variations in a Static Fluid.
	Basic Equation of Hydrostatics.
	Basic Equation qf Hydrostatics. Pressure variation in an Incompressible Fluid
	Pressure Variation in a Compressible Fluid.

	2.3. Units and Scales of Pressure Measurement.
	2.4. Manometers.
	2.5. Relative Equilibrium.
	Uniform Linear Acceleration.
	Uniform Rotation about a Vertical Axis.

	2.6. Forces on Plane Areas.
	Horizontal Surfaces.
	Inclined Surfaces.
	Center of Pressure.
	The Pressure Prism.
	Effect of Atmospheric Pressure

	2.7. Force Components on Curved Surfaces.
	2.8. Buoyant Force.
	2.9. Stability of Floating and Submerged Bodies.
	Determination of Rotational Stability of Floating Objects.
	Nonprismatic Cross Sections.

	PROBLEMS

	3 FLUID-FLOW CONCEPTS AND BASIC EQUATIONS
	3.1. The Concepts of Reversibility, Irreversibility, and Losses.
	3.2. Types of Flow.
	3.3. Definitions.
	3.4. Continuity Equagon.
	3.5. Euler's Equation of Motion along a Streamline.
	3.6. The Bernoulli Equation.
	3.7. Steady-flow Form of First Law of Thermodynamics. Entropy.
	3.8. Interrelationships between the First Law and Euler's Equation.
	3.9. Linear Momentum Equation for Steady Flow through a control Volume.
	Practical Formulations of Momentum Equation.
	The Momentum Theory for Propellers.
	Jet Propulsion.
	Jet Propulsion qf Aircraft or Missiles.
	Rocket Motors.
	Fixed and Moving Vanes.
	Losses Due to Sudden Expansion in a Pipe.
	Hydraulic Jump

	3.10. Linear Momentum Equation for Unsteady Flow through a Control Volume.
	3.11. The Moment-of-momentum Equation.
	PROBLEMS

	4 DIMENSIONAL ANALYSIS AND DYNAMIC SIMILITUDE
	4.1. Dimensional Homogeneity and Dimensionless Ratios.
	4.2. Dimensions and Units.
	4.3. The Pi-Theorem.
	4.4. Discussion of Dimensionless Parameters.
	4.5. Similitude-Model Studies.
	PROBLEMS
	REFERENCES

	5 VISCOUS EFFECTS-FLUID RESISTANCE
	5.1. Laminar, lncompressible Flow between Parallel Plates.
	5.2. Laminar Flow through Circular Tubes and Circular Annuli.
	5.3. Reynolds Number.
	5.4. Prandtl Mixing length.
	Velocity Distributions.

	5.5. Boundary-layer Concepts.
	Description of the Boundary Iayer.
	Momentum Equation Applied to theBoundary Layer.
	Two-dimensional Flow along a Flat Plate.
	Separation. Wake.

	5.6. Drag on Immersed Bodies.
	Effect of Compressibility on Drag.
	Stokes' Law.

	5.7. Resistance to Turbulent Flow in Open and Closed Conduits.
	5.8. Steady Uniform Flow in Open Channels.
	5.9. Steady, lncompressible Flow through Simple Pipe Systems.
	Pipe Flow.
	Simple Pipe Problems.
	Minor Losses

	5.10. Lubrication Mechanics.
	PROBLEMS

	6 COMPRESSIBLE FLOW
	6.1. Perfect-gas Relationships.
	Entropy Relationships.

	6.2. Speed of a Sound Wave. Mach Number.
	6.3. Isentropic Flow.
	6.4. Shock Waves.
	6.5. Fanno and Rayleigh Lines.
	Fanno lines.
	Rayleigh Iine.

	6.6. Adiabatic Flow with Friction in Conduits.
	6.7. Frictionless Flow through Ducts with Heat Transfer.
	6.8. Steady, Isothermal Flow in Long Pipelines.
	6.9. High-speed Flight.
	Effect of Shock Waves and Stalling on Airfoil Lift and Drag.
	Sonic Boom.
	Wave Drag.
	Area Rule.
	Aerodynamic Heating.

	6.10. Analogy of Shock Waves to Open-channel Waves.
	PROBLEMS
	REFERENCES

	7 IDEAL-FLUID FLOW
	7.1. Requirements for Ideal-fluid Flow.
	7.2. The Vector Operator 'del'.
	7.3. Euler's Equation of Motion.
	7.4. Irrotational Flow. Velocity Potential.
	7.5. Integration of Euler's Equations. Bernoulli Equation.
	7.6. Stream Functions. Boundary Conditions.
	Two-dimensional Stream Function.
	Stokes' Stream Function for Axially Symmetric Flow.

	7.7. The Flow Net.
	7.8. Three-dimensional Flow Cases.
	Three-dimensional Sources and Sinks.
	Three dimensionaI Doublets.
	Source in a Uniform Stream.
	Source and Sink of Equal Strength in a Uniform Stream.
	Translation of a Sphere in an Infinite Fluid.

	7.9. Two-dimensional Flow Cases.
	Flow around a Corner.
	Source.
	Vortex.
	Doublet.
	Uniform Flow.
	Flow around a Circular Cylinder.

	PROBLEMS


	PART TWO Applications of Fluid Mechanics
	8 TURBOMACHINERY
	8.1. Homologous Units. Specific Speed.
	Specific Speed.

	8.2. Elementary Cascade Theory.
	8.3. Theory of Turbomachines.
	8.4. Impulse Turbines.
	8.5. Reaction Turbines.
	8.6. Pumps and Blowers,
	Theoretical Head-discharge Curve.
	Actual Head-discharge Curve.

	8.7. Centrifugal Compressors.
	8.8. Fluid Couplings and Fluid Torque Converters.
	Fluid torque converter

	8.9. Cavitation.
	PROBLEMS
	REFERENCES

	9 FLUID MEASUREMENT
	9.1. Pressure Measurement.
	9.2. Velocity Measurement.
	pitot-static tube
	Velocity and Temperature Measurement in Compressible Flow.
	The Hot-wire Anemometer.
	The current meter

	9.3. Optical Flow Measurement.
	The Schlieren Method.
	The Shadowgraph Method.
	The Interferometer Method.

	9.4. Positive-displacement Meters.
	9.5. Rate Meters.
	Orifice in a Reservoir.
	Venturi Meter.
	Ventury Meter for Compressible Flow
	Orifie in a Pipe.
	Elbow Meter.
	Rotameter.
	Mass Meter.

	9.6. Electromagnetic Flow Devices.
	9.7. Measurement of River Flow.
	9.8. Measurement of Turbulence.
	9.9. Measurement of Viscosity.
	PROBLEMS
	REFERENCES

	10 CLOSED CONDUIT FLOW
	10.1. Hydraulic and Energy Grade Lines.
	10.2. The Siphon.
	10.3. Pipes in Series.
	10.4. Pipes in Parallel.
	10.5. Branching Pipes.
	10.6. Networks of Pipes.
	10.7. Conduits with Noncircular Cross Sections.
	10.8. Aging of Pipes.
	UNSTEADY FLOW IN CONDUITS

	10.9. Oscillation of Liquid in a U-tube.
	a. Frictionless Liquid.
	b. Laminar Resistance.
	c. Turbulent Resistance.
	Oscillation of Two Reservoirs

	10.10. Establishment of Flow.
	10.11. Surge Control.
	10.12. Water Hammer.
	Rapid Valve Closure.
	Slow Valve Closure.

	PROBLEMS
	REFERENCES

	11 FLOW IN OPEN CHANNELS
	11.1. Classification of Flow.
	Steady nonuniform Flow
	Unsteady uniform flow
	Velocity Distribution.

	11.2. Best Hydraulic Channel Cross Sections.
	11.3. Steady Uniform Flow in a Floodway.
	11.4. Hydraulic Jump. Stilling Basins.
	11.5. Specific Energy. Critical Depth.
	11.6. Gradually Varied Flow
	11.7. Classification of Surface Proflles
	Adverse-slope Profiles.
	Horizontal-slope Profiles.
	Mild-slope Profiles.
	Critical-slope Profiles.
	Steep-slope Profiles.

	11.8. Control Sections.
	11.9. Transitions.
	The critical-depth meter

	11.10. Surge Waves.
	Positive Surge.
	Negative Surge Wave.
	Dam Break.

	PROBLEMS
	REFERENCES


	Appendixes
	A FORCE SYSTEMS, MOMENTS, AND CENTROIDS
	Simple Force Systems.
	First and Second Moments. Centroids.

	B PARTIAL DERIVATIVES AND TOTAL DIFFERENTIALS
	Partial Derivatives.
	Total Differentials.

	C PHYSICAL PROPERTIES OF FLUIDS
	Table C.1. Physical Properties of Water
	FIG. C.1. Absolute viscosities of certain gases and liquids.
	FIG. C.2. Kinematic viscosities of certain gases and liquids. The gases aire at standard pressure.
	Table C.2. Properties of Gases an Low Pressure and 80 Deg F

	D NOTATION

	ANSWERS TO EVEN-NUMBERED PROBLEMS
	INDEX



