
Computer Architecture & Organization

Chapter 11

Cache Memory

Key Characteristics of Computer Memory
Systems

Table 4.1 Key Characteristics of Computer Memory Systems

Characteristics of Memory Systems
• Location

• Refers to whether memory is internal and external to the computer
• Internal memory is often equated with main memory
• Processor requires its own local memory, in the form of registers
• Cache is another form of internal memory
• External memory consists of peripheral storage devices that are accessible to the processor via I/O

controllers

• Capacity
• Memory is typically expressed in terms of bytes

• Addressable units
• In some systems, the addressable unit is the word. However, many systems allow addressing at the byte

level. In any case, the relationship between the length in bits A of an address and the number N of
addressable units is 2A = N.

• Unit of transfer
• For internal memory the unit of transfer is equal to the number of electrical lines into and out of the

memory module. The unit of transfer need not equal a word or an addressable unit. For external
memory, data are often transferred in much larger units than a word, and these are referred to as
blocks

Method of Accessing Units of Data
Sequential

access

Memory is organized into
units of data called records

Access must be made in a
specific linear sequence

Access time is variable

E.g. Tape units

Direct access

Involves a shared read-write
mechanism

Individual blocks or records
have a unique address based

on physical location

Access time is variable

E.g. Disk units

Random access

Each addressable location in
memory has a unique,

physically wired-in
addressing mechanism

The time to access a given
location is independent of

the sequence of prior
accesses and is constant

Any location can be selected
at random and directly

addressed and accessed

E.g. Main memory and some
cache systems are random

access

Associative

A word is retrieved based on
a portion of its contents
rather than its address

Each location has its own
addressing mechanism and

retrieval time is constant
independent of location or

prior access patterns

E.g. Cache memories may
employ associative access

Capacity and Performance:

Capacity and performance are the two most important
characteristics of memory

Three performance parameters are used:

Access time (latency)

• For random-access memory it is
the time it takes to perform a
read or write operation

• For non-random-access memory
it is the time it takes to position
the read-write mechanism at the
desired location

Memory cycle time

• Access time plus any additional time
required before second access can
commence

• Additional time may be required for
transients to die out on signal lines or
to regenerate data if they are read
destructively

• Concerned with the system bus, not
the processor

Transfer rate

• The rate at which data can be
transferred into or out of a
memory unit

• For random-access memory it is
equal to 1/(cycle time)

Memory
• The most common forms are:

• Semiconductor memory
• Magnetic surface memory
• Optical
• Magneto-optical

• Several physical characteristics of data storage are important:
• Volatile memory

• Information decays naturally or is lost when electrical power is switched off
• Nonvolatile memory

• Once recorded, information remains without deterioration until deliberately changed
• No electrical power is needed to retain information

• Magnetic-surface memories
• Are nonvolatile

• Semiconductor memory
• May be either volatile or nonvolatile

• Nonerasable memory
• Cannot be altered, except by destroying the storage unit
• Semiconductor memory of this type is known as read-only memory (ROM)

• For random-access memory the organization is a key design issue
• Organization refers to the physical arrangement of bits to form words

Memory Hierarchy

• Design constraints on a computer’s memory can be
summed up by three questions:
• How much, how fast, how expensive

• There is a trade-off among capacity, access time, and
cost
• Faster access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, slower access time

• The way out of the memory dilemma is not to rely on
a single memory component or technology, but to
employ a memory hierarchy

Memory Hierarchy - Diagram
A typical hierarchy is illustrated in

Figure 4.1. As one goes down the

hierarchy, the following occur:

a. Decreasing cost per bit

b. Increasing capacity

c. Increasing access time

d. Decreasing frequency of access of

the memory by the processor

Cache and Main Memory

• Figure 4.3b depicts the use of multiple levels

of cache. The L2 cache is slower and typically

larger than the L1 cache, and the L3 cache is

slower and typically larger than the L2 cache.

• If the word the processors is looking for is not

in the cache, a block of main memory is read

into the cache. Because of the phenomenon of

locality of reference, when a block of data is

fetched into the cache to satisfy a single

memory reference, it is likely that there will

be future references to that same memory

location or to other words in the block.

Cache/Main Memory Structure

Cache Read Operation

Figure 4.5 illustrates the read operation.

The processor generates the read address

(RA) of a word to be read. If the word is

contained in the cache, it is delivered to the

processor. Otherwise, the block containing

that word is loaded into the cache, and the

word is delivered to the processor.

Typical Cache Organization

When a cache hit occurs, the data and address

buffers are disabled and communication is only

between processor and cache, with no system bus

traffic. When a cache miss occurs, the desired

address is loaded onto the system bus and the data

are returned through the data buffer to both the

cache and the processor.

Elements of Cache Design

Table 4.2 Elements of Cache Design

Although there are a large number of cache

implementations, there are a few basic design

elements that serve to classify and differentiate

cache architectures. Table 4.2 lists key elements.

+ Cache Addresses

• Virtual memory
• Facility that allows programs to address memory from a logical point of

view, without regard to the amount of main memory physically available

• When used, the address fields of machine instructions contain virtual
addresses

• For reads to and writes from main memory, a hardware memory
management unit (MMU) translates each virtual address into a physical
address in main memory

Logical and Physical
Caches

Table 4.3

Cache Sizes of
Some

Processors

a Two values separated by
a slash refer to instruction
and data caches.

b Both caches are
instruction only; no data
caches.

Mapping Function
• Because there are fewer cache lines than main memory blocks, an

algorithm is needed for mapping main memory blocks into cache lines

• Three techniques can be used:

Direct

• The simplest technique

• Maps each block of main
memory into only one
possible cache line

Associative

• Permits each main memory block
to be loaded into any line of the
cache

• The cache control logic interprets
a memory address simply as a
Tag and a Word field

• To determine whether a block is
in the cache, the cache control
logic must simultaneously
examine every line’s Tag for a
match

Set Associative

• A compromise that exhibits
the strengths of both the
direct and associative
approaches while reducing
their disadvantages

_

Solution:

Direct Mapping

The mapping is expressed as

i = j modulo m

where

i = cache line number

j = main memory block number

m = number of lines in the cache

Figure 4.8a shows the mapping for the first m

blocks of main memory. Each block of main

memory maps into one unique line of the

cache. The next m blocks of main memory map

into the cache in the same fashion; that is, block

Bm of main memory maps into line L0 of cache,

block Bm+1 maps into line L1, and so on.

Direct Mapping Cache Organization

The mapping function is easily

implemented using the main

memory address.

Figure 4.9 illustrates the general

mechanism.

Homework

Do example 4.2a again for
m=4K=212. Assuming the address
bit length (s+w) remains 24 and
Block size =4 byte:

a) Calculate starting Memory
Address of Block for each cache
line as shown in the example.

b) what will be bit size of Tag (s-r),

Line (r), word (w) fields of the
physical adrress?

c) Calculate number of
addressable units on the main
RAM, number of blocks in RAM
and number of lines in cache

Direct Mapping Example

The effect of direct mapping is that blocks of main

memory are assigned to lines of the cache as follows:

Direct Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or
bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+ w/2w = 2s

• Number of lines in cache = m = 2r

• Size of tag = (s – r) bits

Victim Cache
• Main disadvantage of the direct mapping is that there is a fixed cache

location for any given block. Thus, if a program happens to reference
words repeatedly from two different blocks that map into the same
cache line, then the blocks will be continually swapped in the cache,
and the hit ratio will be low (a phenomenon known as thrashing).

• Victim Cache is originally proposed as an approach to reduce the
conflict misses of direct mapped caches without affecting its fast
access time

• Victim cache is a fully associative cache, whose size is typically 4 to 16
cache lines, residing between a direct mapped L1 cache and the next
level of memory.

Fully Associative Cache Organization

• Associative mapping overcomes

the disadvantage of direct

mapping by permitting each main

memory block to be loaded into

any line of the cache (Figure

4.8b).

• In this case, the cache control

logic interprets a memory address

simply as a Tag and a Word field.

• The Tag field uniquely identifies

a block of main memory.

• To determine whether a block is in

the cache, the cache control logic

must simultaneously examine

every line’s tag for a match.

Associative Mapping
Example

Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+ w/2w = 2s

• Number of lines in cache = undetermined

• Size of tag = s bits

Cons and prones:
• With associative mapping, there is flexibility as to which block to replace when a new block is read into

the cache. Replacement algorithms, discussed later in this section, are designed to maximize the hit ratio.

• The principal disadvantage of associative mapping is the complex circuitry required to examine the tags of

all cache lines in parallel.

Set Associative Mapping

• Compromise that exhibits the strengths of both the direct and
associative approaches while reducing their disadvantages

• Cache consists of a number of sets

• Each set contains a number of lines

• A given block maps to any line in a given set

• e.g. 2 lines per set
• 2 way associative mapping

• A given block can be in one of 2 lines in only one set

Mapping From Main Memory
to Cache:

k-Way Set Associative

Figure 4.13a

• For the first v blocks of main memory , with

set-associative mapping, each word maps into

all the cache lines in a specific set out of v sets,

so that main memory block B0 maps into set 0,

and so on.

• Thus, the set-associative cache can be

physically implemented as n associative caches.

Figure 4.13a

• It is also possible to implement the set-

associative cache as k direct-mapping caches.

k-Way Set Associative

Cache Organization

• Figure 4.14 illustrates the cache

control logic.

• With fully associative mapping, the

tag in a memory address is quite

large and must be compared to the

tag of every line in the cache.

• With k-way set-associative mapping,

the tag in a memory address is much

smaller and is only compared to the k

tags within a single set.

• The d set bits specify one of v = 2d

sets.

Set Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+w/2w=2s

• Number of lines in set = k

• Number of sets = v = 2d

• Number of lines in cache = m=kv = k * 2d

• Size of cache = k * 2d+w words or bytes

• Size of tag = (s – d) bits

Varying Associativity Over Cache Size

Replacement Algorithms

• Once the cache has been filled, when a new block is brought into the
cache, one of the existing blocks must be replaced

• For direct mapping there is only one possible line for any particular
block and no choice is possible

• For the associative and set-associative techniques a replacement
algorithm is needed

• To achieve high speed, an algorithm must be implemented in
hardware

The four most common replacement
algorithms are:
• Least recently used (LRU)

• Most effective
• Replace that block in the set that has been in the cache longest with no reference to it
• Because of its simplicity of implementation, LRU is the most popular replacement

algorithm

• First-in-first-out (FIFO)
• Replace that block in the set that has been in the cache longest
• Easily implemented as a round-robin or circular buffer technique

• Least frequently used (LFU)
• Replace that block in the set that has experienced the fewest references
• Could be implemented by associating a counter with each line

• Random
• A technique not based on usage, it picks a line at random from among the candidate lines
• Simulation studies have shown that random replacement provides only slightly inferior

performance to an algorithm based on usage

When a block that is resident in the
cache is to be replaced there are

two cases to consider:

If the old block in the cache has not been
altered then it may be overwritten with a new

block without first writing out the old block

If at least one write operation has been
performed on a word in that line of the cache

then main memory must be updated by
writing the line of cache out to the block of
memory before bringing in the new block

There are two problems to contend
with:

More than one device may have access to
main memory (when an I/O module uses
DMA and modify RAM cache word is

invalid and the vice versa)

A more complex problem occurs when
multiple processors are attached to the same

bus and each processor has its own local
cache - if a word is altered in one cache it

could conceivably invalidate a word in other
caches

Write Policy

Write Through
and Write Back

• Write through
• Simplest technique
• All write operations are made to main

memory as well as to the cache
• The main disadvantage of this

technique is that it generates
substantial memory traffic and may
create a bottleneck

• Write back
• Minimizes memory writes
• Updates are made only in the cache
• Portions of main memory are invalid

and hence accesses by I/O modules can
be allowed only through the cache

• This makes for complex circuitry and a
potential bottleneck

If more than one device (typically a processor) has a separate

cache but share main memory, a new problem is introduced. If

data in one cache are altered, even if a write-through policy is

used, the other caches may contain invalid data. A system that

prevents this problem is said to maintain cache coherency:

• Bus watching with write through: Each cache controller

monitors the address lines to detect write operations to

memory by other bus masters. If another master writes to a

location in shared memory that also resides in the cache

memory, the cache controller invalidates that cache entry.

• Hardware transparency: Additional hardware is used to

ensure that all updates to main memory via cache are

reflected in all caches.

• Non-cacheable memory: Only a portion of main memory is

shared by more than one processor, and this is designated as

non-cacheable.

Line Size
When a block of

data is retrieved and
placed in the cache
not only the desired
word but also some
number of adjacent
words are retrieved

As the block
size increases
the hit ratio
will at first
increase

because of the
principle of

locality

As the block
size increases
more useful

data are
brought into

the cache

The hit ratio will
begin to decrease as
the block becomes

bigger and the
probability of using
the newly fetched

information becomes
less than the

probability of reusing
the information that
has to be replaced

Two specific effects
come into play:

• Larger blocks reduce the
number of blocks that fit
into a cache

• As a block becomes larger
each additional word is
farther from the requested
word

A size of from 8 to 64 bytes

seems reasonably close to

optimum. For HPC systems,

64- and 128-byte cache line

sizes are most frequently used.

Multilevel Caches
• As logic density has increased it has become possible to have a cache on the

same chip as the processor

• The on-chip cache reduces the processor’s external bus activity and speeds
up execution time and increases overall system performance
• When the requested instruction or data is found in the on-chip cache, the bus access is

eliminated
• On-chip cache accesses will complete appreciably faster than would even zero-wait state

bus cycles
• During this period the bus is free to support other transfers

• Two-level cache:
• Internal cache designated as level 1 (L1)
• External cache designated as level 2 (L2)

• Potential savings due to the use of an L2 cache depends on the hit rates in
both the L1 and L2 caches

• The use of multilevel caches complicates all of the design issues related to
caches, including size, replacement algorithm, and write policy

Hit Ratio (L1 & L2) For 8 Kbyte and 16 Kbyte L1

• With the increasing availability of on-chip area,
most contemporary microprocessors have
moved the L2 cache onto the processor chip
and added an L3 cache accessible over the
external bus.

• More recently, most microprocessors have
incorporated an on-chip L3 cache. In either
case, there appears to be a performance
advantage to adding the third level. Further,
large systems now incorporate 3 on-chip cache
levels and a fourth level of cache shared across
multiple chips

• The need for the L2 cache to be larger than the

L1 cache to affect performance makes sense. If

the L2 cache has the same line size and

capacity as the L1 cache, its contents will more

or less mirror those of the L1 cache.

Unified Versus Split Caches

• Has become common to split cache:
• One dedicated to instructions
• One dedicated to data
• Both exist at the same level, typically as two L1 caches

• Advantages of unified cache:
• Higher hit rate

• Balances load of instruction and data fetches automatically
• Only one cache needs to be designed and implemented

• Trend is toward split caches at the L1 and unified caches for higher levels

• Advantages of split cache:
• Eliminates cache contention between instruction fetch/decode unit and execution

unit
• Important in pipelining

Pentium 4
Cache

Table 4.4 Intel Cache Evolution

Pentium 4 Block Diagram
• Fetch/decode unit: Fetches program

instructions from L2, decodes and stores

the results in the L1 instruction cache.

• Out-of-order execution logic: Schedules

execution of the decoded micro-

operations subject to data dependencies

and resource availability. As time

permits, this unit schedules speculative

execution of micro-operations that may

be required in the future.

• Execution units: These units executes

micro-operations, fetching the required

data from the L1 data cache and

temporarily storing results in registers.

• Memory subsystem: This unit includes

the L2 and L3 caches and the system bus,

which is used to access main memory

when the L1 and L2 caches have a cache

miss and to access the system I/O

resources.

Pentium 4 Cache Operating Modes

Table 4.5 Pentium 4 Cache Operating Modes

• The L1 data cache is controlled by two bits in one of the control registers, labeled the CD (cache disable) and

NW (not write-through) bits.

• There are two Pentium 4 instructions that can be used to control the data cache:

• INVD: invalidates (flushes) the internal cache memory and signals the external cache to invalidate.

• WBINVD writes back and invalidates internal cache and then writes back and invalidates external cache.

• Both the L2 and L3 caches are eight-way set-associative with a line size of 128 bytes.

ARM Cache Features

Table 4.6 ARM Cache Features

ARM Cache and Write Buffer Organization

• An interesting feature of the ARM

architecture is the use of a small first-in-

first-out (FIFO) write buffer to enhance

memory write performance.

• When the processor performs a write to

a bufferable area, the data are placed in

the write buffer at processor clock speed

and the processor continues execution.

• A write occurs when data in the cache

are written back to main memory

Summary

• Characteristics of
Memory Systems
• Location
• Capacity
• Unit of transfer

• Memory Hierarchy
• How much?

• How fast?

• How expensive?

• Cache memory
principles

• Elements of cache design
• Cache addresses
• Cache size
• Mapping function
• Replacement algorithms
• Write policy
• Line size
• Number of caches

• Pentium 4 cache
organization

• ARM cache organization

Chapter 4 Cache Memory

+

William Stallings

Computer Organization

and Architecture

9th Edition

