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Teacher’s Preface

Why another textbook? The statistical community generally agrees that at the
upper undergraduate level, or the beginning master’s level, students of statistics
should begin to study the mathematical methods of the field. We assume that by
then they will have studied the usual two-year college sequence, including calculus
through multiple integrals and the basics of matrix algebra. Therefore, they are
ready to learn the foundations of their subject, in much more depth than is usual
in an applied, “cookbook,” introduction to statistical methodology.

There are a number of well-written, widely used textbooks for such a course.
These seem to reflect a consensus for what needs to be taught and how it should
be taught. So, why do we need yet another book for this spot in the curriculum?

I learned mathematical statistics with the help of the standard texts. Since then,
I have taught this course and similar ones many times, at several different universi-
ties, using well-thought-of textbooks. But from the beginning, | felt that something
was wrong. It took me several years to articulate the problem, and many more to
assemble my solution into the book you have in your hand.

You see, | spend the rest of my day in statistical consulting and statistical re-
search. | should have been preparing my mathematical statistics students to join
me in this exciting work. But from seeing what the better graduating seniors and
beginning graduate students usually knew, I concluded that the standard curricu-
lum was not teaching them to be sophisticated citizens of the statistical community.
These able students seemed to be well informed about a set of narrow, technical
issues and at the same time embarrassingly lacking in any understanding of more
fundamental matters. For example, many of them could discourse learnedly on
which sources of variation were testable in complicated linear models. But they
became tongue-tied when asked to explain, in English, what the presence of some
interaction meant for the real-world experiment under discussion!
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What went wrong? | have come to believe that the problem lies in our history.
The first modern textbooks were written in the 1950s. This was at the end of
the Heroic Age of statistics, roughly, the first half of the twentieth century. Two
bodies of magnificent achievements mark that era. The first, identified with Student,
Fisher, Neyman, Pearson, and many others, developed the philosophy and formal
methodology of what we now call classical inference. The analysis of scientific
experiments became so straightforward that these techniques swept the world of
applications. Many of our clients today seem to believe that these methods are
statistics.

The second, associated with Liapunov, Kolmogorov, and many others, was the
formal mathematicization of probability and statistics. These researchers proved
precise central limittheorems, strong laws of large numbers, and laws of the iterated
logarithm (let me call these advanced asymptotics). They axiomatized probability
theory and placed distribution theory on a rigorous foundation, using Lebesgue
integration and measure theory.

By the 1950s, statisticians were dazzled by these achievements, and to some
extent we still are. The standard textbooks of mathematical statistics show it.
Unfortunately, this causes problems for teachers. Measure theory and advanced
asymptotics are still well beyond the sophistication of most undergraduates, so we
cannot really teach them at this level. Furthermore, too much classical inference
leads us to neglect the preceding two centuries of powerful but less formal meth-
ods, not to mention the broad advances of the last 50 years: Bayesian inference,
conditional inference, likelihood-based inference, and so forth.

So the standard textbooks start with long, dry, introductions to abstract probabil-
ity and distribution theory, almost devoid of statistical motivations and examples
(poker problems?!). Then there isa frantic rush, again largely unmotivated, to intro-
duce exactly those distributions that will be needed for classical inference. Finally,
two-thirds of the way through, the first real statistical applications appear—means
tests, one-way ANOVA, etc.—but rigidly confined within the classical inferential
framework. (An early reader of the manuscript called this “the cult of the ¢-test.”)
Finally, in perhaps Chapter 14, the books get to linear regression. Now, regression
is 200 years old, easy, intuitive, and incredibly useful. Unfortunately, it has been
made very difficult: “conditioning of multivariate Gaussian distributions” as one
cultist put it. Fortunately, it appears so late in the term that it gets omitted anyway.

We distort the details of teaching, too, by our obsession with graduate-level
rigor. Large-sample theory is at the heart of statistical thinking, but we are afraid
to touch it. “Asymptotics consists of corollaries to the central limit theorem,” as
another cultist puts it. We seem to have forgotten that 200 years of what | shall
call elementary asymptotics preceded Liapunov’s work. Furthermore, the fear of
saying anything that will have to be modified later (in graduate classes that assume
measure theory) forces undergraduate mathematical statistics texts to include very
little real mathematics.

As aresult, most of these standard texts are hardly different from the cookbooks,
with a few integrals tossed in for flavor, like jalapefio bits in cornbread. Others are
spiced with definitions and theorems hedged about with very technical conditions,
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which are never motivated, explained, or applied (remember “regularity condi-
tions”?). Mathematical proofs, surely a basic tool for understanding, are confined
to a scattering of places, chosen apparently because the arguments are easy and
“elegant.” Elsewhere, the demoralizing refrain becomes “the proof is beyond the
scope of this course.”

How is this book different? In short, this book is intended to teach students to
do mathematical statistics, not just to appreciate it. Therefore, | have redesigned the
course from first principles. If you are familiar with a standard textbook on the sub-
ject and you open this one at random, you are very likely to find either a surprising
topic or an unexpected treatment or placement of a standard topic. But everything
is here for a reason, and its order of appearance has been carefully chosen.

First, as the subtitle implies, the treatment in unified. You will find here no
artificial separation of probability from statistics, distribution theory from infer-
ence, or estimation from hypothesis testing. | treat probability as a mathematical
handmaiden of statistics. It is developed, carefully, as it is needed. A statistical
motivation for each aspect of probability theory is therefore provided.

Second, | have updated the range of subjects covered. You will encounter in-
troductions to such important modern topics as loglinear models for contingency
tables and logistic regression models (very early in the book!), finite population
sampling, branching processes, and small-sample asymptotics.

More important are the matters | emphasize systematically. Asymptotics is a
major theme of this book. Many large-sample results are not difficult and quite
appropriate to an undergraduate course. For example, | had always taught that with
“large n, small p” one may use the Poisson approximation to binomial probabil-
ities. Then | would be embarrassed when a student asked me exactly when this
worked. So we derive here a simple, useful error bound that answers this question.
Naturally, a full modern central limit theorem is mathematically above the level of
this course. But a great number of useful yet more elementary normal limit results
exist, and many are derived here.

I emphasize those methods and concepts that are most useful in statistics in
the broad sense. For example, distribution theory is motivated by detailed study
of the most widely useful families of random variables. Classical estimation and
hypothesis testing are still dealt with, but as applications of these general tools.
Simultaneously, Bayesian, conditional, and other styles of inference are introduced
as well.

The standard textbooks, unfortunately, tend to introduce very obscure and ab-
stract subjects “cold” (where did a horrible expression like %e*xz/z come from?),
then only belatedly get around to motivating them and giving examples. Here we
insist on concreteness. The book precedes each new topic with a relevant statistical
problem. We introduce abstract concepts gradually, working from the special to
the general. At the same time, each new technique is applied as widely as possible.
Thus, every chapter is quite broad, touching on many connections with its main
topics.

The book’s attitude toward mathematics may surprise you: We take it seriously.
Our students may not know measure theory, but they do know an enormous amount
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of useful mathematics. This text uses what they do know and teaches them more.
We aim for reasonable completeness: Every formula is derived, every property
is proved (often, students are asked to complete the arguments themselves as
exercises). The level of mathematical precision and generality is appropriate to a
serious upper-level undergraduate course.

At the same time, students are not expected to memorize exotic technicalities,
relevant only in graduate school. For example, the book does not burden them with
the infamous “triple” definition of a random variable; a less obscure definition is
adequate for our work here. (Those students who go on to graduate mathematical
statistics courses will be just the ones who will have no trouble switching to
the more abstract point of view later.) Furthermore, we emphasize mathematical
directness: Those short, elegant proofs so prized by professors are often here
replaced by slightly longer but more constructive demonstrations. Our goal is to
stimulate understanding, not to dazzle with our brilliance.

What is in the book? These pedagogical principles impose an unconventional
order of topics. Let me take you on a brief tour of the book:

The “Getting Started” chapter motivates the study of statistics, then prepares
the student for hands-on involvement: completing proofs and derivations as well
as working problems.

Chapter 1 adopts an attitude right away: Statistics precedes probability. That
is, models for important phenomena are more important than models for mea-
surement and sampling error. The first two chapters do not mention probability.
We start with the linear data-summary models that make up so much of statisti-
cal practice: one-way layouts and factorial models. Fundamental concepts such as
additivity and interaction appear naturally. The simplest linear regression models
follow by interpolation. Then we construct simple contingency-table models for
counting experiments and thereby discover independence and association. Then
we take logarithms, to derive loglinear models for contingency tables (which are
strikingly parallel to our linear models). Again, logistic regression models arise
by interpolation. In this chapter, of course, we restrict ourselves to cases for which
reasonable parameter estimates are obvious.

Chapter 2 shows how to estimate ANOVA and regression models by the ancient,
intuitive method of least squares. We emphasize geometrical interpolation of the
method—shortest Euclidean distance. This motivates sample variance, covariance,
and correlation. Decomposition of the sum of squares in ANOVA and insight into
degrees of freedom follow naturally.

That is as far as we can go without models for errors, so Chapter 3 begins
with a conventional introduction to combinatorial probability. It is, however, very
concrete: We draw marbles from urns. Rather than treat conditional probability
as a later, artificially difficult topic, we start with the obvious: All probabilities
are conditional. 1t is just that a few of them are conditional on a whole sample
space. Then the first asymptotic result is obtained, to aid in the understanding of
the famous “birthday problem.” This leads to insight into the difference between
finite population and infinite population sampling.
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Chapter 4 uses geometrical examples to introduce continuous probability mod-
els. Then we generalize to abstract probability. The axioms we use correspond to
how one actually calculates probability. We go on to general discrete probability,
and Bayes’s theorem. The chapter ends with an elementary introduction to Borel
algebra as a basis for continuous probabilities.

Chapter 5 introduces discrete random variables. We start with finite popula-
tion sampling, in particular, the negative hypergeometric family. You may not
be familiar with this family, but the reasons to be interested are numerous: (1)
Many common random variables (binomial, negative binomial, Poisson, uniform,
gamma, beta, and normal) are asymptotic limits of this family; (2) it possesses
in transparent ways the symmetries and dualities of those families; and (3) it be-
comes particularly easy for the student to carry out his own simulations, via urn
models. Then the Fisher exact test gives us the first example of an hypothesis test,
for independence in the 2 x 2 tables we studied in Chapter 1. We introduce the
expectation of discrete random variables as a generalization of the average of a
finite population. Finally, we give the first estimates for unknown parameters and
confidence bounds for them.

Chapter 6 introduces the geometric, negative binomial, binomial, and Poisson
families. We discover that the first three arise as asymptotic limits in the negative
hypergeometric family and also as sequences of Bernoulli experiments. Thus,
we have related finite and infinite population sampling. We investigate just when
the Poisson family may be used as an asymptotic approximation in the binomial
and negative binomial families. General discrete expectations and the population
variance are then introduced. Confidence intervals and two-sided hypothesis tests
provide natural applications.

Chapter 7 introduces random vectors and random samples. Here is where
marginal and conditional distributions appear, and from these, population covari-
ance and correlation. This tells us some things about the distribution of the sample
mean and variance, and leads to the first laws of large numbers. The study of con-
ditional distributions permits the first examples of parametric Bayesian inference.

Chapter 8 investigates parameter estimation and evaluation of fit in complicated
discrete models. We introduce the discrete likelihood and the log-likelihood ratio
statistic. This turns out often to be asymptotically equivalent to Pearson’s chi-
squared statistic, but it is much more generally useful. Then we introduce maximum
likelihood estimation and apply it to loglinear contingency table models; estimates
are computed by iterative proportional fitting. We estimate linear logistic models
by maximum likelihood, evaluated by Newton’s method.

Chapter 9 constructs the Poisson process, from which we obtain the gamma
family. Then a Dirichlet process is constructed, from which we get the beta family.
Connections between these two families are explored. The continuous version of
the likelihood ratio is introduced, and we use it to establish the Neyman—Pearson
lemma.

Chapter 10 defines the general quantile function of a random variable, by asking
how we might simulate it. Then we may define the expectation of any random
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variable as the integral of that quantile function, using only elementary calculus.
Next, we derive the standard normal distribution as an asymptotic limit of the
gamma family. Stirling’s formula is a wonderful bit of gravy from this argument.
By duality, the normal distribution is also an asymptotic limit in the Poisson family.

Chapter 11 develops multivariate absolutely continuous random variable theory.
The first family we study is the joint distribution of several uniform order statistics.
We then find the chi-squared distribution and show it to be a large-sample limit of
the chi-squared statistic from categorical data analysis. Duality and conditioning
arguments lead to bivariate normal distributions and to asymptotic normality of
several common families.

Chapter 12 derives the null distributions of the R-squared and F statistics from
least-squares theory, on the surprisingly weak assumption that errors are spheri-
cally distributed. We notice then that maximum likelihood estimates for normal
error models are least-squares. Parameter estimates for the general linear model
and their variances are obtained. We show that these are best linear unbiased via
the Gauss-Markov theorem. The information inequality is then derived as a first
step to understanding why maximum likelihood estimates are so often good.

Chapter 13 begins to view random variables from alternative mathematical rep-
resentations. First, we study the probability generating function, using the concrete
motivation of finding the compound distributions that appear in branching pro-
cesses. The moment generating function may now be motivated concretely, for
positive random variables, by comparison with negative exponential variables. We
then suggest (incompletely, of course) how it may be used to derive some limit
theorems. We then introduce exponential families, emphasizing how they capture
common features and calculations for many of our favorite families. We finish
with an introduction to a lively modern topic: probability approximation by small-
sample asymptotics. This applies beautifully all the tools developed earlier in the
chapter.

Fitting the book to your course. There are, of course, alternative paths through
the material if you have different goals for your students. A shorter course in
probability and distribution theory may be taught by skipping lightly over those
chapters that emphasize data modeling and estimation: Chapters 1, 2,and 8, and 12.
Later sections in other chapters, which investigate methods of statistical inference,
might also be deemphasized.

At the opposite extreme, a sophisticated sequence in applied statistics may start
with this material. Early parts of Chapter 1 could be supplemented by a lecture on
statistical graphics and exploratory data analysis. Chapter 8 might be followed by
the study of more complicated contingency table models. Then Chapter 12 leads
naturally into a fuller treatment of inference in the linear model. The course may
be supplemented throughout with tutorials on how to use computer packages to
draw better graphs and carry out computations with more elaborate models and
larger data sets.

Certain sections, marked with an asterisk (*), may be delayed until later if the
instructor wishes at relatively little cost to continuity. The Time to Review list at



Teacher’s Preface xi

the beginning of each chapter should serve to warn you when to return to these
matters.
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Getting Started

Why Study Statistics?

We have all been exposed to the popular notion that statistics is about numbers that
are deadly-dull, and perhaps intentionally misleading. You will quickly discover
in this course that the opposite is the case: Statistics is the science of extracting
useful (and therefore interesting) numbers from the world; and the statistician is
committed to forcing these numbers to reveal the truth. Therefore, statistics has
become an essential tool of modern civilization. For example:

(1) In the early nineteenth century, astronomers observed their first asteroid,
Ceres. It then quickly disappeared into the sun’s glare, and there was some doubt
that it could be found again in the foreseeable future, since it would have moved
along in its (unknown) orbit. But the great mathematician Carl Friedrich Gauss
managed to compute the orbit of Ceres, using those observations that had been
made before it disappeared. He then told observers where to look for it some
months hence. The asteroid was found where he had predicted it would be, and
Gauss became one of the most respected scientists of his day.

Historians have emphasized Gauss’s mathematical achievement in using a few
accurately observed positions of Ceres to discover its overall orbit, using the com-
plicated equations of celestial mechanics. But that is not all that Gauss did. He
started with a somewhat larger number of not-very-accurate observations of the
positions of Ceres. Telescopes, observers, and especially clocks were not as reli-
able in those days as we would now expect them to be. So the observations he had
to work with, if plotted on a chart of the sky, do not show a realistically smooth
orbit, but instead bounce around a bit. Fortunately, Gauss was one of the inventors
of a marvelous new statistical technique, the method of least squares, that takes a
number of imperfect observations and reduces them to a few, more precise, num-
bers characterizing the orbit. So Gauss’s technical achievement was twofold; and
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one aspect of it was a statistical method that has been enormously valuable ever
since, throughout science.

(2) In his biography of Richard Feynman, James Gleick observed that we would
now be amazed, and perhaps appalled, that after Alexander Fleming’s discovery of
the first antibiotic, penicillin, it took most of a generation before the drug became a
standard treatment for deadly diseases. The process started with Fleming’s report
about bacteria in petri dishes, which led to an attempt to use penicillin on a sick
human being, and evolved into the reports by a number of physicians on how well
penicillin seemed to have worked for their patients. Finally, the reputation of the
drug in the medical community had become so overwhelmingly favorable that
pharmaceutical companies took the risk of gearing up for mass production.

This process was so slow because there was no agreement in the scientific com-
munity on what a sensible, orderly way to evaluate new drugs might be. After
all, worthless drugs are being invented all the time. Because some people recover
spontaneously, while others fail to respond to even the most promising drugs,
good and bad drugs are always difficult to tell apart. In the same years medical re-
searchers were studying penicillin, though, statisticians were inventing techniques
of experimental design, inspired by agricultural research. These were precisely the
disciplined, reliable methods that drug-testing needed. Today, new drugs are ex-
pected to submit to controlled, randomized experiments that will, in a reasonably
short time, lead to sensible decisions about their clinical value.

(3) Every ten years, the United States carries out a national census. Believe it
or not, this process at its heart has very little to do with modern statistics. Since
the idea is to collect and organize a basic set of facts about everybody, the main
skills involved are those of librarians and geographers. However, there are known
imperfections in the census: For example, despite its ambitions, it always misses a
certain modest percentage of the American population. People would like to have
some idea how large this undercount is; both so we can estimate the true totals,
and also discover how to make future censuses more accurate.

If you think about it, the census itself tells you nothing about its own accuracy
(how can it possibly include the information that so-and-so was missed?). But
statisticians have developed techniques for parallel, smaller experiments, called
sample surveys, that can provide such information. These are ways of collecting
information about relatively small numbers of people that allow reasonable state-
ments to be made about people in general. Such conclusions are not perfectly
accurate, of course, but our statistical methods include ways of estimating just
how accurate the conclusions probably are. If you know how good a number is,
you can use it with proper care.

One simple way to estimate the undercount would be to do a very thorough
recount in a set of small areas chosen somehow to be representative of the country
at large. By comparing the results to the original census, you could see what portion
of the people were missed the first time. Then you would conjecture that this might
be close to the national undercount rate. I am sure you can see problems with this
approach; but more sophisticated surveys of this sort have promise, and are in fact
used to estimate the undercount.
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So statistics today provides a set of valuable tools for dealing with some of the un-
certainties of life. You will not be surprised to hear that statistics is a mathematical
subject: Mathematics was used to invent these methods and is therefore necessary
for any deep understanding of them. Furthermore, new statistical techniques must
be developed all the time to deal with new problems. Again, mathematics is re-
quired. Statistics courses more elementary than this one often try to avoid such
matters, hoping that the student will never encounter a statistical problem that
requires novel insights or methods.

But this book is for students who will be the masters of statistical technology,
not its slaves. Its subject is “mathematical statistics,” or sometimes “theoretical
statistics.” The methods of mathematics will be in constant use. We assume that
you have had a standard calculus sequence, including an introduction to multi-
ple integrals, and the rudiments of matrix algebra. You may find that you do not
really know these subjects as well as you thought you did, through lack of inter-
esting applications. Taking this course will solve that problem, since there is no
substitute for incisive examples, and for practice. Each chapter begins with some
recommendations of topics to review.

How to Read This Book

Now that you have decided to study mathematical statistics, you are probably
wondering what you will have to do to master the course. If you have had other
applied mathematics courses, you have probably come to realize that the experience
is not much like studying history, and even less like studying a foreign language.
Let me illustrate:

Example. In 1900, the English mathematical biologist Karl Pearson proposed the
formula x2 = Y, M It is now called Pearson’s chi-squared, because, fol-

1
lowing an old convention, the Greek letter chi is to the left of the equal sign. It
is a measure of the difference between a set of counts O; observed in a survey or
experiment and a corresponding set of counts E; expected under some hypothesis
about how the survey or experiment should come out. Several years ago, Pear-
son’s formula was on a widely publicized list of the 100 most important scientific

discoveries of the twentieth century.

Everything here is useful knowledge, and | would hope that at the end of your
statistical education you would know most of the information in the preceding
paragraph. But so far this is the sort of thing you get from history classes (the
when, where, and who in the first sentence, and the comment about its significance
in the last sentence) and from foreign language classes (the formula to memorize,
and the definitions of the parts).

But since this is an applied mathematics course, | am sure you realize that there
are other things about Pearson’s chi-squared that you need to learn. To start with,
how do you apply this formula to the real world? For example, | want to know
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whether a coin that is to be used to choose goals in football games is fair. | toss
it 100 times; it lands “heads” 43 times and “tails” 57 times. But my idea of a fair
coin would land heads about 50 times and tails 50 times. Were my counts so far
from fair that | now have evidence against the coin being balanced? This, you
will learn, is a typical application of Pearson’s chi-squared; it is the procedure
described so abstractly in the sentence about observed and expected counts. The
0;’s are 43 and 57, and the E;’s are 50 and 50 You learned in earlier courses that
¥ (capital sigma) means “add up the cases,” so x? (43550)2 + (57550) = 1.96.
In very elementary statistical courses you then learn to consult a table or computer
program and report on its authority that this is not a very big value; and so there is
little reason to doubt that your coin is fair.

Throughout this book, you will encounter worked numerical examples of what to
do with proposed procedures, under the heading Example. | have tried to illustrate
in this way almost every method discussed, some several times. You should realize
that these are not just motivational: They are intended to begin your process of
learning how to perform statistical analyses for yourself. Every time you encounter
an example you should first read it carefully to try to understand why the given
method may be appropriate to the real-world situation. Then you should try to
reproduce my mathematics, and my arithmetic, for yourself. (If you find a mistake,
please write to me.) In this way, you get the flavor of how the method is applied.

Then you will turn to the Exercises at the end of that chapter and try some
problems, with numerical data, that use the same method. This may be harder than
you expect, because you may not recognize immediately what the new application
has to do with the method you are learning. Instead of coin-tossing, it might involve,
for example, a consumer survey about lipstick preferences. The fact that this still
involves comparing observed to expected counts, and so Pearson’s chi-squared
applies, is a subtle one. Doing problems on your own is the best way to gain
experience at making such judgments.

The exercises, by the way, are in two sections in each chapter. The first set
consists of fairly straightforward applications and chances to fill in omitted details.
There are some hints and numerical answers to these in an appendix. It is important
not to look at these answers until you have an answer you are happy with and wish
to double-check; or until you are thoroughly stuck. Working backwards from a
known answer teaches you much, much less than doing it the right way. The next
section, called Supplementary Exercises, consists of additional problems of the
same kind, for valuable extra practice plus opportunities to develop for yourself
interesting and useful extensions of the ideas you have been studying.

If this were a more elementary course, and one that concentrated on applications,
this would be all there was to learning the material. But we have ducked some
important questions, such as, where in the world did Pearson get that formula?
The answer is, he derived it, from statistical methods he already knew, using
ingenuity and mathematics. You might think that such questions are of mainly
historical interest. Remember, though, that it is not obvious why anyone would
propose the chi-squared method. The question should perhaps be, why would a
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reasonable person use that formula? In this book you will find not one, but three
mathematical derivations of the formula (none of them exactly like Pearson’s).
That might seem very odd, a waste of time. | suppose it would be, if the purpose
of the derivation were just to reassure you that somebody, somewhere (the author,
perhaps), knows why we use Pearson’s formula. However, the real reason is to
learn the ways of thinking that inspire our use of the method. The three derivations
show three different aspects of that thinking. My hope is that after studying all
three, you will have a pretty good idea of when you might want to use Pearson’s
formula.

So, when you encounter one of the many derivations in the text, read it, slowly
and repeatedly, until you believe you understand in detail how it works. Then
close your book, and try to carry out that derivation yourself in your own manner.
After you have succeeded, turn again to the exercises. There you may be asked
to discover for yourself yet another way of obtaining that same method. Or you
may be asked to derive a related formula. After you have done all this (it will
often take quite a while), you will find that you understand far better than before
why statisticians do what they do. In fact, those applied problems involving data
and numbers will have become much easier to connect to mathematical methods.
Furthermore, you will find that complicated equations, because they are no longer
in a foreign language, are much easier to remember than they used to be.

The exercises that require you to derive new formulas give away an impor-
tant secret: Statisticians do not yet know the answer to every statistical question.
Therefore, competent working statisticians spend a good deal of their time invent-
ing new methods, inspired by methods they already know (just as Pearson did).
So you should tackle with gusto those exercises that lead you to develop methods
new to you, because they give you practice with the creative aspect of statistics.

For example, many Pearson-type problems have the property that the total of all
the observed counts in the problem is equal to the total of all the expected counts.
In the coin-tossing problem, they both summed to 100. This is usually no accident:
When we decided what it meant for a coin to be fair, we split the known total of
100 evenly between heads and tails. The general mathematical statement of this
fact says that ), O; = >, E; = n, where n is just a convenient symbol for the
total count. We are going to show that Pearson’s chi-squared reduces to a simpler
formula in this case. First, we expand the square in the numerator:

2 (0 —E)Y (0} —20E; + E?
=2 E; =2 E; '

Now, remembering that the summation sign just means “add up all the cases,”
let us sum each of the three terms in the numerator separately (since the order of
addition in a finite sum never matters):

2~ (02=20,E;+E}) < OF O:E; E?
X _,Z Eli _Zfi_zlz E; +ZE

i
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In the last two terms, E’s in the numerator and denominator cancel, so we get

2=y, %"2 —23,0; +); E;. Butwe have decided to concentrate on the case
where the total of observed and expected counts are both n, so

2 2
XZ:Z%_ZR_’_HZZ(‘;_”

l

This last is a new, simplified formula for Pearson’s chi-squared, which works in
an important special case. (It is a formula that every statistician used to know; but
for some reason it is rarely mentioned in modern applied statistics books.)

I hope you have checked my algebra carefully here. The earliest derivations in
the book are explained in about this much detail. Later on, as you become more
skilled, easy steps are skipped, so that there will be a bit more work for you to do.
It will continue to be important that you check all the math for yourself. In fact,
omitted steps are often left as exercises.

The last comment | made in working with the coin-tossing experiment was that
we would probably decide that 1.96 was not a very large value of chi-squared.
Why? This happens to be the hardest question we have yet dealt with. To inter-
pret that number, we will need to investigate deep mathematical properties of the
chi-squared statistic. A large percentage of our effort in this course, thoroughly
entangled with deriving statistical methods, will be to use mathematics to discover
important working characteristics of those methods. When we have found some
properties that will be used later in a chapter, we distinguish them as Propositions,
as is often done in mathematics texts. If the properties are so important that they
will be extensively used in later chapters, we call them Theorems. We will use
here a convention rigorously obeyed by working mathematicians (but not by math
books): Theorems are given a name, and are later referred to by that name. (A
famous example is Fermat’s last theorem.)

Just as we will derive all our methods, we will prove all our propositions and
theorems. Usually, the proof will be in the discussion leading up to the statement of
the result; but sometimes it will be immediately following, labeled Proof. Often,
students have painful memories of proving things from earlier math courses. You
might have come away with the idea that you are supposed to provide a tangle of
words like “therefore,” “without loss of generality,” and “by induction”; then at the
end you complete the ritual by invoking the magical formula “QED.” Actually, a
mathematical proof is nothing more than an explanation of why something is true,
which is supposed to be clear enough to convince an intelligent, skeptical listener.
We have proofs for the same reason we have derivations of formulas: so you will
understand where the theorem comes from and have some idea how to find for
yourself similar but novel facts that you may need later.

You should study the mathematical proofs just as you study the derivations.
When you encounter a proposition, you should read carefully through my argument
until you are convinced that the statement is true. Then close the book, and convince
someone else. At that point, turn to the exercises, and work on related problems
that say something like “show” or “demonstrate” or “prove” (which all mean the
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same thing). Your job will again be, first, to persuade yourself that the claim is
valid (if it is not, please write to me), and, second, to write down an explanation
clear enough to convince other people.

As you begin to tackle the exercises in this book, you will surely begin to won-
der how much electronic computing help you should use. The general principle
will be this: When you are first learning any subject, you should get your hands
very dirty. In the Exercises, | am imagining that you have an ordinary scientific
calculator or a fairly low-level mathematics program on your computer handy at
all times. A few of the Supplementary Exercises are better tackled by using more
sophisticated computing tools—Fortran, Basic, Pascal, C, a spreadsheet program,
or Mathematica, for example. At this point you should avoid using any tool that
incorporates the statistical procedures you are trying to understand—such as sta-
tistical functions in a calculator or spreadsheet, or statistical packages. There will
be plenty of time for learning these wonderful timesavers later, after you have
mastered mathematical statistics.

You may have noticed that this course has an important characteristic in common
with other math and science courses. In many other fields, your job seems to be
to believe everything the professor or textbook says; the best student is the most
gullible. In this course, the best students are the most skeptical—so long as they
are willing to check things for themselves.

So how are you to read this book? As you would read a book on baking bread:
If you do not spend much of the time with your hands covered with flour, you are
doing it wrong. In the same way, study this book with pencil, pen, paper, calculator,
and perhaps computer at your fingertips, and use them to try out every new idea
you encounter.



CHAPTER 1

Structural Models for Data

1.1 Introduction

You probably think that statistics has to do with managing lots of numbers. But
the basic goal of scientific research (which may well be the reason you collected
all those numbers) is to understand them. You will find that statisticians are called
in when a scientist, engineer, or planner decides that some survey or experiment
has produced too many numbers for a mere human being to comprehend. We
statisticians believe that it may still be possible to describe the most important
features of those numbers with comparatively simple mathematical models. This
chapter will give an overview of some of the most useful models that belong in
the tool kit of any aspiring statistician.

At least two sorts of models will be required, depending on the experiments
we have performed. First, we will study experiments whose results are measured
numbers, such as a temperature or pressure. We will try to summarize how those
numbers seem to have been affected by experimental conditions. Second, we will
consider experiments whose result is a count of how many subjects fell in certain
categories, such as male/female or alive/dead. Again, we will want to see how
those counts change according to conditions under which the count was taken.

Time to Review

Summation notation
Natural logarithms and exponential functions



10 1. Structural Models for Data

1.2 Summarizing Multiple Measurements That Show
Variability

1.2.1 Plotting Data

Very often, a scientist finds herself measuring carefully some natural quantity, like
a length or weight, in hopes that it will help her understand some phenomenon. But
then, showing the care that scientists must show, she takes a second measurement
of the same thing. Sometimes the answer will be identical, up to the accuracy
of her instruments. In many cases, though, it will be substantially different; and
there will be no reason to think a blunder has been made. So she does a series of
these comparable measurements, as many as she has time, patience, and resources
for. And she may well find that she has obtained an incomprehensible variety of
numerical answers to a simple question.

Example. In 1882 Albert Michelson made 23 measurements of the velocity of
light in air, in kilometers per second above 299,000:

883 711 578 696 851
816 611 796 573 809
778 599 774 748 723
796 1051 820 748
682 781 772 797

(That is, 711 means he measured a velocity of 299,711 kilometers per second on
his sixth try. Do you see what 1051 must mean?)

We need some notation for this situation. Call each of the n observations x;,
where i = 1,...,n. Then, for example in the velocity data, n = 23 and x17 =
(299,)573. Probably the first thing you would want in this situation is some way
of organizing these numbers. Let us try a geometrical representation; for example,
draw a horizontal number line whose range encompasses our measurements. Then
place a thin vertical line at the value representing each of the observations. This is
called a hairline plot (Figure 1.1).

When two observations are the same, we simply double the thickness of the
line. (In other books you may see a similar display called a dot plot.)

Strictly speaking, the art of drawing such useful pictures belongs to a field called
statistical graphics; and that is not the subject of this textbook on mathematical
methods. But statisticians find some kinds of pictures so enormously useful that
we can hardly imagine doing without them. Besides, there is a mathematical prin-
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FIGURE 1.1. Measured speed of light in km/s above 299,000
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ciple hidden in this diagram: We have represented a numerical measurement by a
coordinate of a geometrical position on a line. The number did not start out as a
point on the line, but we have felt free to put it there. We will see later that this
simple step lets all the powerful tools of geometry fall into the statistician’s tool
kit.

1.2.2  Location Models

In our example, the numbers fell haphazardly in some region of the line. The
scientist will tell you that she was trying to measure a constant of nature; but the
measurements were so difficult to do well that they vary unpredictably by various
amounts above and below the correct value. We have represented the modern
accepted value of the speed of light in air, (299,)710.5 km/s, by an x on the plot.

This is called a (simple) location model for how the numbers came about. We
hope to simplify the collection down to a single important quantity (that we often
denote by the Greek letter 1) that we believe to be the center of our cluster of
points. But to be honest, we carefully record the errors that cropped up in each of
our observations. These are the n quantities x; — u.. For example, for observation 17
above, thiserroris 573—710.5 = —137.5. We have called them errors; but a better
word is model residuals. After all, with deeper understanding of the science, we
may realize why some of the measurements were different from w. The residuals
are positive if the measurement is larger than the experimenter thinks it should
have been, and negative if it is smaller.

Of course, usually our scientist does not know the value of w; she did the exper-
iment in order to find out. Perhaps she consulted a statistician, so we could provide
her with an intelligent guess that she could report to her fellow scientists. So a
statistician needs to be able to determine a number in the middle of the cluster,
called an estimate, often denoted by /i, to report as a plausible value of w. With
luck, this summary of many measurements will be better than a single measure-
ment. Of course, you could just stare at the hairline plot and make an educated
guess of the center of the data; with practice, this could be a very good method. But
it has one fatal flaw as far as a scientist is concerned: It is not repeatable—no two
statisticians would report the same estimate. This immediately undermines much
of the trust her colleagues may have in her proposal. So we ask an important ques-
tion: What are good ways of making repeatable estimates of unknown quantities,
and how good can we expect them to be?

There is one standard method of estimation that is so popular that you should see
itrightaway. Imagine that the hairlines in our plot are equal, physical weights sitting
on a (weightless) bar that is our number line. A natural center of those weights
would be the point at which we would place a fulcrum so that the bar balances.
(Notice the little picture of a fulcrum on the hairline plot of light velocities.) You
may remember from high-school physics that the weights times distances must
sum to the same value on each side of the fulcrum (so that the torque is zero). This
says that the sum of the distances x; — u (their residuals) for observations greater
than u must equal the sum of the distances . — x; (the negatives of their residuals)
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for observations less than i, because the weights are the same. If, for example,

we number the observations so that the firsti = 1, ..., k were less than u and the
remaining i = k + 1, ..., n were u or greater, then the balance condition looks
like

(= x1) +(p—x2) + -+ (—xx) = (g1 — ) + (a2 — ) + - - -+ (o — ).

If we move the pieces on the left of the equal sign to the right side (changing signs
as we do so), then we see that the positive and negative residuals together must
sum to zero. We write that condition in summation notation (which you should
review): > ', (x; — u) = 0.

We will find our estimate & by solving this equation (called the normal equation)
for w. First, we can always split the sum into two pieces around the minus sign:
Yo xi — iy = 0. But that second sum just means that you are adding the
constant u to itself n times: > "_; x; — nu = 0. Moving it to the other side of the
equation and dividing by n, we obtain & = %Z;’Zl x;. This is just the familiar
arithmetic average of the observations; the summation notation just says that we
add them all up, and divide by how many there are: (x1 + x2 + --- + x,,)/n.
Statisticians call this the sample mean, written i = x. (In the speed of light
example, x = (299,)756.2 km/s, as you should check; this is not exactly at the
true value, but it is closer than most of the individual measurements.) There are,
of course, many other ways to estimate the center of the data w; one of these is
illustrated in your exercises.

I am willing to guess that when you were checking my sample mean calculation,
you did not do it precisely the way the formula says to. When | was taking the mean
of the speeds of light, | did not calculate (299,883 + 299,816 + - - - +299,723)/23.
Rather, | saved time by calculating (883+816+- - - +-723)/23+-299,000. To show
the mathematical principle, let v stand for any convenient value on the scale of
measurement. Subtract and then add it to each term in the formula for the sample
mean: ¥ = 137 x = 13" (i — v + v). Sum those last v’s separately:
=137 (i —v)+ 137, v. When we add a constant to itself n times, that
just multiplies it by n, canceling the n in the denominator. We get a new formula,
X = % > 4(xi —v) 4 v. lused v = 299,000 in our new expression. Some such
choice will often be convenient.

1.3 The One-Way Layout Model

1.3.1 Data from Several Treatments

Often a scientist faces a set of measurements obtained in more than one
experimental situation.

Example. In 1974 Till reported several samples of the salt content in parts per
thousand of three separate water masses in the Bimini Lagoon:
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FIGURE 1.2. Salt in parts per thousand in sea water

Mass I: 37.54, 37.01, 36.71, 37.03, 37.32, 37.01, 37.03, 37.70, 37.36, 36.75,
37.45, 38.85

Mass II: 40.17, 40.80, 39.76, 39.70, 40.79, 40.44, 39.79, 39.38

Mass III: 39.04, 39.21, 39.05, 38.24, 38.53, 38.71, 38.89, 38.66, 38.51, 40.08

Figure 1.2 gives hairline plots of these numbers.

If we are lucky, the results in the various situations will be so different that we
are obviously measuring completely distinct constants w. But very often, as in the
example, the groups will overlap considerably. Is it just a matter of opinion, or
judgment, that one group (the second) seems usually saltier? We would like to
say that there are three different typical levels of salt, w;, i and wy, and, for
example, that u;; > . In practice, we have to estimate the salinity in the two
masses and check that &, > [,. Since these estimates are imperfect, we become
more confident of our conclusion as the estimated separation fi; — ft; becomes
larger.

The general setup for this model, called a one-way layout, is as follows: We
have k levels of the treatment numberedi = 1, ..., k. In our example, the various
levels are the different water masses of the lagoon where we found the samples, so
k = 3. The ith level has n; separate observations x;;, numbered j =1, ..., n;. In
our salinity data, n; = 12; and x5 = 40.79, the fifth measurement in the second
water mass. We write for the total number of observations n = Zl;:l n; (n =30
measurements in our data set). Our model then says that the true value for the ith
level is ;. We call these unknown but important constants the parameters of the
model. If our estimates are /i;, then the estimated residuals, representing the failure
of our estimated model to describe the observations completely, are x;; — fi;.

We have standard estimates for our parameters: just take the sample mean of

n;

the observations in each level of the treatment: i; = ¥; = + > g i

Example (cont). Though the measurements at the sites overlap considerably,
there seem to be characteristic salinities at each. The group means are i, = 37.31,
= 40.10, and [, = 38.89; these are marked x on the plot.

We often think of a statistical model as making predictions of some future
observation taken under conditions similar to some of the old ones; in the one-way
layout, the prediction would just be the center for that level, x;; = ;. Of course,
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in the example we did not know what the true center is, so we replace it with its
standard estimate [i;. Then, for example, we predict what the 5th observation in
group Il “should have been” by using its estimated group center x5 = 40.10.
Then the estimated residuals are just the actual minus the predicted value for each
observation: x;; — %;;. (In our case, xys — X5 = 40.79 — 40.10 = 0.69.) This
formula will hold true no matter what model we are using for prediction.

1.3.2 Centered Models

Since comparisons between the treatment levels are usually our primary interest,
we have a different way to parametrize our model, called the centered model.
With two levels, we start with a common center w for all our observations and
then compute how much the higher group is above center: b; = p, — . Similarly,
we compute the (negative) amount by which the second group is below the center
by b, = u, — u. Now we can write the predictions for each of the two groups
as iy = u + by and uy = w + by. This is the first of many examples of linear
models: We start our prediction with a common value, then add an adjustment
corresponding to the particular treatment level (see Figure 1.3).

Generally, the centered model for the one-way layout looks like X;; = u; =
wu + b;. You might have noticed a problem with this: It is ambiguous. You could
use any value of y at all and then calculate the 4’s by subtraction. For example,
if our level means are 30 and 40, we might use a common p of 20, then add b’s
of 10 and 20. On the other hand, we could let 1« be 35 and the b’s be -5 and 5. To
limit ourselves to one possibility, we need a restriction on the parameters.

We will borrow the restriction from a nice property of sample means, which are
the most common estimates. Let i have the obvious estimate, the overall sample
mean of all the measurements i = ¥ = 1 S "1 Xij (a double summation
tells us to add the values for all possible combinations of the indices i and j). Then
we would just estimate the 5°s by b = i — o =Xx —X.

Example (cont.). For the three sections of Bimini Lagoon, we find 4 = x =
38.58 for the typical salinity in our sample. Then b = x; — x = 37.31 — 38.58 =

br
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FIGURE 1.3. A centered model for salinity
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—1.27 parts per thousand measures how atypical the sample from section I is.
Similarly, b, = 1.52 and b);; = 0.31.

Now | want to ask, what is the average value of these predicted adjustments
b? It will, of course, just be the difference of the average of all the x; and the
average of the x. Obviously, the average of all the x, because they are all the same,
is still x. To average the level means, we calculate % Zle Z’]’f:l X;. But this way
of writing the double summation means that we should do the second, inner, sum

first. This inner sum Z;"zl X; just tells us to add the same number #n; times, to
get n;x;. But n;x; = n,ni Z’}'Zl xij = Z;‘Zl x;j. Then going to the outer sum,
the average of the level means is S > Ly xij = X, the same as the overall
average. By subtraction, x —x: The average of the b’s is zero. Our adjustments from
the common mean are on average the same in the positive and negative directions.
(Remember the related fact, that the sum of residuals about a sample mean is zero.)

This is such a plausible property that we will require it of any centered model:

Definition. A location model for the one-way layout %;; = wu;, = p + b; is
centered if the average of the b’s over all observations is zero.

Then our algebra gives us the following mathematical result:

Proposition. The sample mean estimates for the one-way layout parameters
create a centered model.

You should check that this is actually true for the salinity estimates.

1.3.3 Degrees of Freedom

Now we should stop and do a little bookkeeping. We prefer simple models, when we
can get away with them; so we need an index of how complicated our model is. An
obvious criterion is, the more parameters, the more complicated the model. In the
one-way layout, we measure n observations, then try to predict them as well as we
can with only k treatment means. We say that the model has k degrees of freedom.
For example, in the saltwater problem we try to represent 30 measurements by just
3 water-mass averages.

At first glance, it may seem that in the centered model we must estimate a single
w and k different b;’s, for a total of k + 1 parameters. But remember that the 5’s
average is 0, which means that the grand total of the b’s for all observations is
zero: % Zle n;b; = 0. This means that after computing the first k — 1 parameters
b;, we can compute the last one without doing any more estimating by just solving
this equation: b, = —% Zf.‘;ll n;b;. So we really have only one p and k — 1
algebraically independent b’s to estimate. For the salinity data, this comes to 1
overall average w, plus the fact that 2 (out of 3) adjustments b are algebraically
independent. In a similar manner, as an exercise you should discover that the n
estimated residuals x;; — X;; actually involve only n — k algebraically independent
quantities (27 independent residuals in the salinity data).
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The way statisticians say this is that the original experiment has n degrees of
freedom, and we have broken them down into 1 degree of freedom for the center
wu, k — 1 degrees of freedom for the adjustments b;, so that the model has a total
of k degrees of freedom. Then we are left with n — k degrees of freedom for the
estimated residuals. That is, n = 1 + (k — 1) + (n — k). We blame the loss of
those & degrees of freedom on the fact that we had to estimate k parameters using
our n pieces of data. This check-sum bookkeeping will turn out to be increasingly
important as our models and their analyses become more complicated.

1.4 Two-Way Layouts

1.4.1 Cross-Classified Observations

Very often our scientist will want to allow for the possibility that some further dis-
tinction among the measurements affects the comparisons he is primarily interested
in.

Example. Educational psychologists are excited about a new way of teaching
arithmetic to third graders. Obviously, we would test whether it is really an im-
provement by trying it out on a collection of children, while at the same time
having a similar sample of children use the old lessons (this second group is called
a control group). At the end, we give both groups a test to see how they do; this is
just the sort of one-way layout we talked about earlier.

But some teachers claim that the new curriculum seems to work better with girls
than with boys. From our own experience, we do not believe this claim, but if we
are to convince our fellow teachers, we must allow for this possibility somehow.
We clearly want to give each of the curricula to both boys and girls. The results
may be displayed in a table of test scores:

Arithmetic Test Scores

Boys Girls
New | 1518 26 | 13 17 21
28 30 25 29
Old | 11 14 16 | 9 10 18
22 23 19 24

This is an example of a two-way layout. It will require an impressive triple-
index notation, but which fortunately will be easy to decode. Generally, we have
a collection of observations denoted by x;;, where i = 1, ...,/ keeps track of
the levels of the first (row) factor, and j = 1, ..., m keeps track of the levels
of the second (column) factor. Then the pair of indices ij determine a particular
cell, a box in a table like the one in the example, in which all subjects receive the
same levels of the treatments. That third index just keeps track of the observations
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in the ijth cell, so that k = 1,..., n;;, where we had n;; observations in that
cell. Then the total number of subjects receiving the ith level of the first factor
must be n;, = Z;":l n;; (summing over columns); and the number receiving the

jth level from the second factor is n,; = Zﬁzl nij (summing over rows). The
dot keeps track of the missing index, so we can tell whether the letter is a row
or column index. Then the total number of subjects for the experiment must be
S nie = > i Nej = Nee = n. In the example above, xz13 = 16, ny = 5,
ne; = 10, and n = 20.

As usual, we want to summarize these results so we can tell people simple
and useful things about the treatments we have carried out. The easiest model to
construct just ignores the table organization and lets every pair of factor levels,
every cell, be a single level of treatment. Then the location model prediction just
says X;jx = pij; presumably, the estimate of the typical value for, say, girls learning
arithmetic the old way will be based only on the result for the five girls in that part
of the experiment. This is called the full model, because we are making the finest
distinctions possible among our subjects. The model has, of course, I x m degrees
of freedom, one for each cell.

The standard estimate will be simply the sample mean of the observations in
that cell: ,&ij = )E[j = % Zilx,jk.

Example (cont). In the arithmetic-teaching example, we estimate x;; = 23.4,
x12 = 21.0, x12 = 17.2, xp = 16.0. That is complicated enough that a picture
should help (see Figure 1.4).

Hairlines are individual test scores, and they show that, as usually happens in
experiments with people as subjects, the peculiarities of children and tests seem to
matter much more than the groups we are distinguishing. We can still see possible
patterns: The solid lines show that for each gender, the new teaching method

Boys-0Old | | | | |
Girls-Old | | L] |

Boys-New | ) | | |

Girls-New | | >|z' | |

10 15 20 25

FIGURE 1.4. Arithmetic test scores: full model
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averaged higher scores than the old. The dotted lines show that in each curriculum
group, the boys’ scores were on average slightly higher than the girls’.

1.4.2 Additive Models

What about the complaint that led to this analysis, that the curriculum is more
of an improvement for girls than for boys? Actually, in our little experiment, the
boys’ average improvement (6.2) was slightly more than the girls’ improvement
(5.0); so our results provide no evidence for the claim. The similarity of these two
improvements supports the idea that the two improvements were in fact the same.
We can write a simple model for this situation: We imagine that there is an overall
test-performance center, then add or subtract some amount for each curriculum;
next we add or subtract some other amount for each gender. The sample mean
estimates are easy to get: For the center, the overall mean is just 19.4. Since the
mean for the new curriculum is 22.2, then its improvement is 22.2 — 19.4 = 2.8
on average. The boys’ mean is 20.3; so their edge is 20.3 — 19.4 = 0.9. The
disadvantages of the old curriculum and of being a girl are expressed by adding the
negatives of these differences. Such numbers answer the most obvious questions
about test performance.

What does this model say, for example, about girls who take the new curriculum?
We predict a score of 19.4 + 2.8 — 0.9 = 21.3. This is clearly not the same as the
prediction of the full model using cell estimates, 21.0 (though in this particular
experiment they chanced to be very close).

Our new model is called the additive model for the two-way layout, and the
notation isas follows: X;jx = w+b; +c;, where b; is the adjustment for the ith level
of the row factor, and ¢; is the adjustment for the jth level of the column factor.
These were estimated by adding or subtracting from the overall mean; so once
again we want a centered model. We impose the restriction that on average, the ’s
must be zero: % Zﬁzl py >, by = 0. As threatening as a triple summation
looks, it just tells us to add up over all possible combinations of the three indices.
Notice that the innermost (third) summation just adds the same thing each time, so
this is the same as writing S, Y1 nijbi = 0. Then b; does not change over
the next inner sum, so we can factor it out of that sum: 1 S b > ini; =0
We already have a notation for that inner sum, the total number of observations
in the ith row; so we finally get a simple way of expressing our restriction on the
b’s: % 25:1 n;.b; = 0. In the same way, we will require that the average value of
the column adjustments be zero; we will let you show as an easy exercise that this
restriction reduces to > ignejc; =0.

We still have our bookkeeping to do. There is, of course, 1 degree of freedom for
the . parameter. Since there are [ different b’s, and we have placed one restriction
on their average (so we can always compute the last one), we have [ — 1 degrees
of freedom for the row factor. Similarly, there are m — 1 degrees of freedom for
the column factor. Adding these together, wehave 1+ —14+m—1=1+m—1
degrees of freedom for the additive model for the two-way layout. The residuals
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in our predictions of how each child will do, x;;x — %;jx, of which there are n,
must then have n — I — m + 1 degrees of freedom, because we had to estimate
our ! + m — 1 parameters from the n observations. That is, we have a checksum
n=14+(0(-1)+m-D+@n—-1—-—m+1).

Standard estimates of the parameters are obtained just as in our example.
The overall center may be estimated using the mean of everybody, i = x =
i >y ity Xije- Then we estimate the column adjustment b; by find-
ing the column sample mean x;, = ni > 3071 xijx and then subtracting the
overall mean: b; = x;,, — x. In the same way, we estimate the column adjust-
ments by ¢; = X,; — x. The estimated prediction of the model then looks like

Rk =fi4bi + ¢ =%+ Fie — %) + (Roj — X) = io + %oj — X.

1.4.3  Balanced Designs

Our standard estimate of the additive model seems quite reasonable; but that is
a little bit of an accident, because in our example we had the same number of
observations in each cell. The additive model would still be interesting in other
cases. But if the numbers of observations in the cells of different rows vary, our
estimates of the column adjustments ¢; using the sample average of each column
are no longer entirely convincing. For example, if the counts of observations are

36

52
(5 observations versus 3); but in the second column the average is based mostly
on the first row (6 observations versus 2). Intuitively, this is not fair; so we will
single out a class of designs that do not have this problem:

, the sample average of the first column is based mostly on the second row

Definition. A two-way layout has a balanced design whenever the numbers of
observations in the cells of each row are proportional; that is, (n;;/n;s) = (n4;/n)
foreachi =1,...,mandeach j =1,...,1.

Any design (like our example) in which all the n;;’s are the same, is of course,
balanced. Another example of a balanced design is one where the counts of ob-

12 . .
5 4 | since 1 =2 =3 vou should prove as an exercise that we

could equally as well have said that the cells of each column are proportional.

The only significance of balanced designs is that the standard estimates of pa-
rameters make sense. Lazy statisticians have made themselves very unpopular
with scientists by telling them that their experiments were bad if they were not
balanced. This is false; we can, with slightly more sophisticated estimates, extract
just as much information from an unbalanced experiment. We will see how in
Chapter 2.

We will let you show off your skill with summation signs by proving the
following as an exercise:

servations are

Proposition. The standard estimates for the additive model are centered.
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FIGURE 1.5. Arithmetic test scores: additive model
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FIGURE 1.6. Parallelogram of additive model

We draw a picture of the additive model for the math test in Figure 1.5. Because
in this instance the additive model is similar to the full model, you may have to
stare at Figures 1.4 and 1.5 a moment to see the difference. In the additive model,
opposite edges of the quadrilateral go over and down by the same amount (when
you add your row or column corrections); therefore, opposite edges are parallel and
of the same length. The figure is now a parallelogram, and not just any quadrilateral
(see Figure 1.6).

Generally, the graph for any two-by-two experiment with an additive model will
be a parallelogram. If there are more than two levels of a factor, the picture is more
complicated; but the solid lines connecting equivalent levels of the first factor are
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still parallel. In the same way, dotted lines connecting the equivalent levels of the
second factor are parallel.

1.4.4 Interaction

Just how different are the full and the additive models for the two-way layout?
Our geometrical analysis suggests that additive models are more restricted in what
they can predict—they must form parallelograms, while full models may (or may
not) form parallelograms. This suggests that the full models have the freedom to
follow the sample observations better, leading to generally smaller residuals. Let
us quantify the difference by subtracting the degrees of freedom for the additive
model from those for the full model: I x m — (I + m — 1). Factor that expression
to conclude that the latter requires us to estimate (I — 1)(m — 1) more parameters
than the former ((2 — 1) x (2 — 1) = 1 more parameter in the case of our 2 rows
by 2 columns experiment).

Now let us quantify the difference in the predictions made by the full model and
the additive model: Of course, the standard estimated prediction for the full model
was just X;;x = X;;. The difference between the two is then x;; — xjs — X.; + X.
In our example, for boys in the old curriculum, it is —0.3. You should notice that
for every cell in our example, it is either plus or minus that same quantity. This is
what we meant when we said that the full model had exactly one more degree of
freedom; only that one amount is available to improve the predictions. In general,
these quantities measure a very important feature of the full model, the interaction.
It is the amount by which you cannot say that the result of a two-way experiment
is just a common value plus a column adjustment plus a row adjustment. In our
example, it is the amount by which the girls in the class were helped more than
the boys by the new curriculum.

There is no reason for interactions to be small; In Figure 1.7 are plots of the cell
averages (full models) for three different two-by-two experiments

cell 11 X X
/ \
/ \
/ \
/I \
/ AN
cell 12 % %
cell 21 XX
~N
/ N
/ N
/ N
/ N
[ ~N
I N,
cell22 X X

FIGURE 1.7. Three degrees of interaction
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The horizontal axis (whatever you measured in each experiment) and the raw
data have been left out so that you can see the qualitative features of the models.
In the leftmost example, the figure is just about a parallelogram; this means that
an additive model seems to explain the cell centers satisfactorily.

In the middle example, there are consistent and perhaps noteworthy row and
column adjustments; row 1 is higher than row 2, and column 2 is higher than
column 1. But these adjustments are enough different in the different cells that we
have nothing like a parallelogram. In this case, interaction will be substantial.

In the rightmost example, we see no common row or column adjustments; the
factors seem to lack any consistent effects. This time, there is a great deal of
interaction, and little else going on. We might see such a picture, for example,
when experimenting with one of those drugs that is a tranquilizer when given
to children and a stimulant when given to adults; therefore, its effect on level of
activity is opposite for the two groups.

1.4.5 Centering Full Models

We can now provide a centered parametrization of the full model. We just append
an interaction term to the additive model: X;; = u = b; + ¢; + d;;. The d’s are
just those corrections whose standard estimates were d; = Xjj — Xje — Xej + X,
calculated above. The restrictions that make this a centered model are as before:
% Zé:l nieb; =0 and % Z?:l NejCj = 0.

What restrictions do the interaction terms require? Of course, as corrections we
want them to be zero on average; but even more, we want the set of corrections
to each level of the row factor to average zero. This is because if the average
interaction in that row is not zero, we should have added that average adjustment
to the corresponding row adjustment b; in the first place. Then the additive part of
the model would be that much more accurate in its predictions. So our restriction for
row i looks like .- >, n;;d;; = 0. There are [ of these restrictions. In the same
way, the interactions for each column j should average zero: le Zﬁzl nijdij =0,
for a total of m restrictions.

There seem to be m of these restrictions, but not all of them are new. Notice that
the first set of restrictions already tells us that all the interactions taken together
average zero (exercise). Therefore, when we get to the last of the second set of
restrictions, we already know it must be so, because the grand average has to
be zero. Therefore, we really only have m — 1 algebraically independent new
restrictions, and the number of restrictions to impose centering is I + m — 1.
Therefore, the number of degrees of freedom for interactionis! xm —(I+m—1) =
({ — 1)(m — 1). This is the same as the extra degrees of freedom in the full model
over the additive model, and it is no coincidence: We built it that way. We now
have that the total degrees of freedom for the centered form of the full model is
1+1+m+ (I —21)(m—1) =1 x m,which is, of course, exactly the degrees of
freedom in the uncentered form of the full model. After all, these are just two ways
of writing the same thing. You should now prove the following as an exercise:
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Proposition. The standard estimates of |1, the b’s, and the c’s plus the standard
estimates of the interactions d;; = X;j — Xis — Xej + X form a centered full model.

Of course, our standard estimates of the full centered model are satisfactory
only if the experiment is balanced. The cell averages still give the right predictions
for any full two-way layout, though, because they come from the one-way layout,
where there was never a problem with balance.

The style of statistical analysis we have been studying in this chapter was first
explored in depth in the 1920s by R. A. Fisher; and it has revolutionized scientific
research throughout biology, medicine, and the social sciences. You may explore its
many variations in advanced courses called something like “experimental design.”
For example, a number of new possibilities arise when there are three factors.

Of course, we have not yet addressed a fundamental issue: How do we tell how
well a model matches (statisticians say fits) the data? It is perfectly possible to
estimate the parameters of a truly stupid model, such as an additive model in cases
where a great deal of interaction seems to be present. In other cases, it may seem
to the eye that an additive model is adequate in a particular application, or even
that we can ignore one of the factors. But is there some more objective way to
decide whether we are doing the right thing? We will tackle such matters later in
this book.

1.5 Regression

1.5.1 Interpolating Between Levels

Sometimes, if the levels of our treatment have a numerical meaning, we can extract
still more information from the observations in even a one-way layout.

Example. Twelve subjects whose blood pressure is disturbingly high are given
an eight-week regimen of a new pressure-lowering drug. At the end of that time,
the change in their diastolic pressures is measured (a negative number is good).
The patients were arbitrarily divided into two groups: One got 100 milligrams a
day, the other, 200 milligrams. The results were

100 mg : —40, —30, —25, —10, 0, 15;
200 mg : —50, —35, —30, —20, —15, 10.

You might draw parallel hairline plots to see what is going on here. The sample
means of the two dosage groups are —15 and —23.33, with an overall mean —19.17.
Then the standard estimates of the centered model are it = —19.17, 13100 =4.17,
and byoo = —4.17. On average, the group who received the larger dose did better.

There is nothing new here, but what if the investigators notice something else:
The higher-dose group are just beginning to show signs of an unpleasant (but
not deadly) side effect? The lower-dose group has no problems. From experience
with similar drugs, it is suggested that a relatively modest drop in the dosage
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may alleviate the side effects. So a new series of experiments is proposed, with
doses like 175 mg per day included. Since these new experiments take time and
money, it would be nice to make intelligent guesses in advance of their effect on
blood pressure, using what we have already learned. Unfortunately, we did not give
anybody 175 mg per day. You will probably have thought of a reasonable thing to
do: interpolate. The halfway point between the doses, 150 mg, should correspond in
this case to the overall mean, —19.17 mm. A dose of 175 mg is (175—150) /(200 —
150) of the way from the middle to the upper dose, which corresponded to an
increase blood pressure of —4.17 mm. So our predicted response to a dose of 175
mg is —19.17 — 4.17(175 — 150) /(200 — 150) = —21.25 mm. That was certainly
easier than doing the whole experiment again.
Notice that this interpolation procedure works for any new dose:
d — 150

5= 1917 —4.17-2 7> _ _19.17 — 0.0833(d — 150
p 200 — 150 (@ )

(where p is change in blood pressure and d is drug dose). You should check that
this is just a novel way of writing the usual one-way model—it makes the same
predictions at 100 and at 200 mg. It is called the linear regression model for this
experiment.

Let us draw a picture of our situation (Figure 1.8).

We have turned the picture on its side; this is the conventional way to draw a
regression model. The x’s represent the sample means of the changes for our two
dosage groups. Notice that a linear regression model was the equation of a straight
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FIGURE 1.8. Pressure change as a function of dose
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line, which we have drawn on the graph. This sloped line represents our various
possible interpolations. The dotted line shows how to make such a prediction: start
at 175 mg, go up until you hit the solid line, then go across to read off the prediction
on the vertical scale.

How seriously should we take such predictions at interpolation points like 175?
There are two limitations to this method:

(1) The predictions are unlikely to be much better than the means at the original
doses. Remember that the 6 people in the 100 mg dose group varied from —40
to 15, and the 6 people in the 200 mg dose group varied from —50 to 10; so the
predictions at 100 and 200 mg are not likely to be wonderfully accurate anyway. In
between, at, say, 150 mm, there may be a slight improvement because 12 people
rather than 6 contributed to the calculation. But notice that outside the actual
experimental range, at, say, 0 or 300 mg, the prediction would likely be quite a
bit worse: Errors in one sample mean or the other will swing the line wildly by a
sort of lever effect (see the graph in Figure 1.9). That is why we should rarely trust
such extrapolated rather than merely interpolated estimates.

(2) Are we at all sure that the actual pattern of response to the various doses is
a straight line? Laws of nature can take a great many mathematical forms. Since
pharmacology provides no helpful general theory about what sort of equation to
use, we guessed the simplest continuous function we knew of, a straight line. If the
line in our picture should really be curved, our predictions will be systematically
wrong (biased is the statistician’s word). Furthermore, they are likely to be, again,
even worse for extrapolated than for interpolated doses.

Example. If the true connection between dose and blood pressure follows the
dotted line in Figure 1.9, so that our estimates were only slightly off at the exper-
imental doses, notice how far off our extrapolations are near 0 and 300 mg. On
the other hand, if the true connection is the dashed, curved line, our experimental
estimates were just about right; but our extrapolated straight line still goes quickly
wildly wrong for extreme doses. In the exercises you will see an example of how
to make predictions with curved models (if you know you need one).

1.5.2  Simple Linear Regression

If we remember to be cautious, regression can be a widely useful tool. Generally,
a simple linear regression model works as follows: We measure the numerical
responses of our subjects, y;, fori = 1, ..., n. The responses to the experiment are
values of the dependent variable (the blood pressure changes in our example). For
each subject we have anumerical value describing the conditions of the experiment,
x;, which are values of the independent variable (in our example, drug dosages of
100 or 200 mg). Then we make predictions y; = u + b(x; — x) where x is the
average independent variable value at all the observations (here, 150 mg). (This
is a centered model, as you will check in an exercise.) You should remember
from analytic geometry that b is the slope of the line we have drawn. The model
possesses two degrees of freedom, one each for x and for b.
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FIGURE 1.9. Erroneous and nonlinear regression

Example. Our example had only two values of the dependent variable, the drug
dosage; but a simple linear regression model allows for any number. Figure 1.10
shows the weights of purebred beagles at four different ages, 6, 8, 10, and 12, with
four puppies of each age.

The diamonds mark the cell-mean estimates of a one-way layout; the crosses,
the weights of individual dogs. To interpolate for other ages, the obvious device
is to connect the crosses with straight segments, as in our dotted path. This is an
example of a nonparametric regression estimator, which you may see again in
advanced courses.

In our example, it is interesting how the crosses fall near a single straight line
(though not exactly); a possible line is the solid segment. Such a simple linear
regression prediction has the advantage of being much simpler than the broken
line. (2 degrees of freedom instead of the 4 for the one-way-layout estimates). The
predictions are obviously nearly the same. Of course, we do not expect the curve
to continue to follow closely a straight line, or we would have 50-pound beagles
at the end of a year. On the other hand, our prediction for a puppy age 7 weeks
(about 6.5 pounds) is quite plausible.

You have no doubt noticed a problem. Since | did not find the line by interpolation
of level means, how do | draw that straight line, that is, estimate . and b? We are
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FIGURE 1.10. Weight as a function of four ages

stuck: There is no longer an obvious choice for the standard estimator. A powerful
general method for obtaining such estimates will be introduced in the next chapter.

Simple linear regression models may be useful for summarizing the results of
many other experiments. For example, instead of selecting puppies of a few specific
ages, we might have simply taken a variety of puppies, recorded each of their ages,
then weighed them. There might then be as many independent variable values
(ages) as there are dogs. The results are captured in the Figure 1.11.

We use x’s to mark the points whose coordinates are the age and weight of a
particular dog. This kind of diagram, one of the most useful in all of statistical
graphics, is called a scatter plot. We use it to compare any two distinct measure-
ments we take on each of a number of different subjects. In this example, though
the x’s for the puppies are widely scattered, we see a pattern that might be stated
as follows: The average weights of the puppies of approximately the same age
follow a linear upward trend. The solid line is a proposed simple linear regression
model, w; = u + b(a; — a) (w is a weight and « is an age). Once again, we shall
have to wait until Chapter 2 to find good estimates of . and b.

1.6 Multiple Regression*

1.6.1 Double Interpolation

In factorial experiments, we split up our subjects among several levels of two
or more treatments. We successfully interpolated numerical levels in the one-
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FIGURE 1.11. Weight as a function of many ages

way layout; perhaps something similar might work when each of the factors has
numerical levels.

Example. We study the effect of cooking time and temperature on a standard
cake recipe. Three cakes are baked at each of 350 and 375 degrees, and for 20 and
25 minutes. At the end we measure the percentage of the original moisture that
remained in the cake:

Time
20 25
Temperature 350 | 403641 | 2827 32
375 | 323730 | 192425

When we compute the standard estimates of an additive model, we get & =
30.917 and that the adjustment for going to the higher temperature is —3.083
and the increment for going to the longer time is —5.083. (You should check my
calculations as an exercise.) A graph looks like that shown in Figure 1.12.

The two baking times correspond to the lines that go from lower left to upper
right, and the two temperatures to the lines at right angles to them. You can see
from the observations that the additive model works fairly well.

Now we can carry out a double interpolation to predict, for example, how much
moisture will remain in a cake left in a 360 degree oven for 23 minutes. The center
of the experiment is at 22.5 minutes and 362.5 degrees. We would, of course,
predict that the percentage of moisture in cakes cooked in that way would be the
overall average of all our cakes, 30.917%. Now adjust for the distance from that
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FIGURE 1.12. Cake moisture as a function of time and temperature

center by computing

23225 360 — 362.5
h =30.917 — 508352 “ _ 30832 % _ 30517,
" 25225 375 — 362.5

You can read this in a rough way off the plot: Interpolate between 20 and 25 to
get one dotted line, and between 350 and 375 to get the other; then find their
intersection. That position on the vertical scale gives an estimate of their moisture
level. (We felt free to use the standard estimates of the parameters in this model
because it was based on a balanced two-way layout.)

1.6.2  Multiple Linear Regression

Generally, a linear regression model for a dependent variable y using two
independent variables x; and x; looks like

Vi =+ (x1; — X1)b1 + (x2; — X2)by

in centered form, where j keeps track of the settings for a single observation. The
model has 3 degrees of freedom, one each for u, b1, and b,. We noticed from our
example that it corresponds to a two-by-two additive factorial model when there are
two levels of each independent variable. Therefore, the standard estimates could
be obtained in the obvious way from row and column means.

If there are more than two levels of either variable, the regression model is no
longer equivalent to a factorial design, as you may see by counting degrees of
freedom. The regression model is a simplification of the factorial model, and we
do not yet know a standard estimator for it, whether the design is balanced or not.
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Nevertheless, we can plot the model just as we did above, with a parallel coordinate
grid for each variable. We will let you graph one as an exercise. Furthermore, there
are obviously multiple linear regression models for any number of independent
variables, which look just like the two-variable model.

1.7 Independence Models for Contingency Tables

1.7.1 Counted Data

It may have occurred to you that there are other sorts of statistical experiments
than those that provide us with repeated, varied measurements. What about the
results of surveys?

Example. A political polls asks a (we hope) representative assortment of potential
voters for whom they expect to vote for President. Of the 100 people they ask, 43
say Smith, 35 say Chan, and 22 insist that they are undecided.

Results of experiments of this kind may be summarized as counts of the numbers
of subjects who fall into various categories. The most common model for these
counts is the proportions model, which is what we are doing when we summarize
our survey as 43% Smith, and so forth.

Formally, we have a set of counts of the numbers of subjects falling in distinct
categories x; fori =1, ..., k, where Zf;l x; = x, = n. In the example above,
k = 3, n = 100, and, for example, x, = 35. We imagine that these subjects are
representative of a much larger class of potential subjects, called a population.
The multinomial proportions model asserts that a true proportion p; of potential
subjects from that population falls into the ith category, so that Zf.‘:l pi=pe=1
(as we expect proportions to behave). The predicted counts in the category for our
experiment are then, of course, X; = np;.

Example. Genetic theory predicts that in a third-generation crossbreeding exper-
iment there should be population proportion of 25% individuals of type AA, 50%
of type AB, and 25% of type BB. In the notation for the multinomial proportions
model, paa = 0.25, pag = 0.50, and pgg = 0.25. If we do the experiment with
40 individuals arising in the third generation, then our predicted counts (we some-
times say expected counts) are xaa = 0.25 x 40 = 10, xag = 20, and xgg = 10.
But of course, when the experiment is carried out, the recombinations are not pre-
cisely predictable, and we get actual counts like xaa = 11, xag = 22,and xgg = 7
(called the observed counts). Later in the book we will learn something about just
how large a difference between observed and expected counts might reasonably
be accepted as ordinary variation.

Of course, in the political polling example we do not know the true proportions
to expect. You will surely have guessed the standard estimates of the population
proportions: p; = x;/n, the sample proportions. In our example, we estimate that
candidate Chan has 0.35 of the vote, since n = 100. If we do use the sample
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proportion estimate for this model, notice that the actual and estimated counts
always coincide: x; = np; = x;. This time, we have nothing like residuals with
which to evaluate the quality of the model.

As with measurement experiments, counting experiments become much more
interesting when the subjects are classified by the levels of two or more factors:

Example. A Hollywood studio is test-marketing a new film; and viewers are
simply asked whether or not they liked the movie enough to recommend it to
friends. An executive voices concerns that its market may be limited if substantially
smaller proportions of either men or women like it; so responders are classified by
gender:

Observed Counts
Male Female

Like 51 83 134
Dislike 42 24 66
93 107 200

The survey counts appear in the middle of the table. The other numbers are row
and column totals, and the grand total of 200 subjects. This is called a contingency
table.

Generally, we will denote a two-way classification by an array of counts x;;, for
i=1,....kandj=1,.. . [;thenwrite Y, x;; = xo;, Y4 X;j = x;0 and

In our movie example, x12 = x,r = 83, x2, = xp = 66, and n = 200.

The multinomial, or saturated, model consists of population proportions for the
individual cells p;;, with column proportions Zf:l Pij = Pej, FTOW proportions
> 1 pij = Pis, and, of course,

!

Xk:ZPu =Zpi-=2k:p.j = pa=1

!
i=1 j=1 j=1 i=1

It corresponds to the full model for a two-way layout.

The standard estimates of these parameters are again the sample proportions
Dij = x;j/n, and, of course, p;s = x;o/n and p,; = x,;/n. In our example, the
proportion of moviegoers we wanted to survey who are female fans of the movie
we estimate to be p; r = 83/200 = 0.415. The proportion of females in the survey
population is about pr = 107/200 = 0.535.
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1.7.2  Independence Models

In our example, 51/93 = 0.548 of the men liked the movie, whereas 83/107 =
0.776 of the women did. This suggests that it is more of a women’s movie; but of
course, we have no idea whether this is an accident of our sample and perhaps not
a characteristic of people in general. To get a better idea, let us see how consistent
our survey is with another model, in which gender makes no difference at all.

If that were the case, then the important parameters would be a population
proportion of males p,, and a proportion p, of people who would like the movie.
If gender and taste are unrelated, then of the np,, males you would expect to find
in the survey, a proportion p; would like it, for a predicted count of favorable
male viewers np; py. We may estimate this by np; py = 200232 33 — 62.3 men
in the survey who might be expected to like the movie, if gender is irrelevant to
taste. Then we may ask ourselves whether this is different to an important degree
from the 51 men who actually liked it in our survey, and whether such a difference
might have been an accident of who we happened to pick for our sample. (Of
course, we do not know enough yet to come up with a sensible answer.) This sort
of model, in which row and column classification are assumed irrelevant to each
other (and so we calculate proportions of proportions by multiplication), is called
an independence model. The concept is one of the most useful in all of statistics.
The row and column proportions become the key parameters of the model, and we
predict counts by X;; = npiepe;.

In Figure 1.13, we have represented the moviegoing population by a square of
area one. The vertical subdivisions represent the proportions of males and females
in that population; the horizontal subdivisions represent the proportions of the
population who like and dislike the movie. Therefore, our model predicts that the
shaded area, p;, py, Will be the proportion of moviegoers who are male enthusiasts
for our movie.

Pu Pr
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o

FIGURE 1.13. The independence model
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You might notice (exercise) that if the independence model is exactly true, we
get a table of counts that, if it represented the numbers of observations in each cell
in a two-way layout, would be balanced. Therefore, when we design a two-factor
experiment to be balanced, we are arranging that the factors be independent of one
another.

To evaluate the model, we estimate the row and column proportions, then use
them to create a table of the counts we would have expected to see. For example,

Expected Counts
Male Female
Like 62.3 71.7 134
Dislike | 30.7 35.3 66
93 107 200

We called the original table, with the raw data, the observed counts; comparing
the two tables should tell us how good the independence model is. Notice, by the
way, that the difference between observed and expected counts, a sort of residual,
is plus or minus 11.3 in each of our four cells. Notice also that the row and column
totals are exactly the same in the two tables. As an exercise, you should check that
this is always true for independence models.

1.7.3  Loglinear Models

You probably noticed that our two-way contingency tables and two-way layouts
may both be displayed in rectangular tables. The similarity goes deeper. The ad-
ditive model for the layout involved adding adjustments for the row and column
factors, whereas the independence model for a contingency table required us to
multiply row and column proportions. But we can make the parallel clearer by
turning multiplication into addition. You know how to do that: take logarithms,
and use the standard fact that log ab = log a + log b. Starting with the multinomial
proportions model x; = np;, we get log x; = logn + log p;. (Time to start getting
used to a convention: In statistics, logarithm always means natural logarithm [base
e] unless you clearly state otherwise.) Read this as a linear predictive model for
the logarithms of cell counts.

So far nothing interesting has happened; but we found earlier that it helped to
create a centered version of the model, with a middle value plus a correction for
the particular category. This would look like log x; = p + b;, much like a one-way
layout. Then we required that the level effects, averaged over the observations, be
zero. In this model the individual numerical observations are cell counts; so we
will require that the averages of the b’°s over cells be zero: % Zf;l b; = 0. Now let
us connect the two ways we have written our models. Sum both versions over all
categories to get

k k k
> logi; =klogn+» logp; =ku+ Y b; = kp.
=1 =1 =1

J J
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The sum of the b’s disappeared because of the centering condition. Therefore,
w = logn + %Z’;zl log p;. Now substitute this back into the centered version

and solve for b; = logx; — u = logn + log p; — logn — %Z’J‘.Zl logp; =
log p; — % Zl;:l log p;.

Example. In the genetics example above with n = 40 individuals and £ = 3
genotypes, we obtain u = 2.534, baa = bgg = —0.231, and bag = 0.462 (so the
adjustments do sum to zero).

Sample estimates of the n’s and b’s can be gotten by using sample proportions
in the same way. We count degrees of freedom by starting with k categories and
letting « have 1 and the b’s have only k — 1, because we force them to average 0.

But what do the parameters in these new models mean? The parameter w is
just an average log count, but we can say more about the b’s. In the case where
there are only two categories, as in Like/Dislike (or Yes/No, or Male/Female) the
formula reduces to b, = 1/2(log p../pp) = 1/2(log p../(1 — p.)), by familiar
facts about logarithms and the fact that p;, + pp = 1. The quantity p./(1 — pr) is
called the odds ratio for someone liking the movie; and log p; /(1 — p;) is called
the log-odds, or the logiz. This is an alternative way of measuring the proportion
of a population. For example, 10% of Americans are left-handed; we might as
easily say that the odds ratio for being left-handed is 0.1/0.9 = % In horse-racing
parlance, this is 9:1 against a typical person being left-handed. The statistician
turns it into the logit for left-handedness Iog(%) = —2.197. Since a proportion of
% is an odds-ratio of 1 and so a logit of log(1) = 0, we conclude that a positive
logit refers to better than even odds, and a negative one to worse than even.

Definition. Corresponding to a population proportion p where (0 < p < 1), we
have its odds o0 = 1%1) and its logit / = logo = log ﬁ

In a case like this in which we have divided the population into two categories
such as Like/Dislike, notice that the odds ratio for disliking the movie pp/(1 —
pp) = (1— pr)/pr is one over the odds for liking it. But log(1/a) = — log(a). So
the logit for disliking the movie is the negative of the logit for liking it, and similarly,
for Male versus Female and any other division of a population into two parts. This
is just another way of remembering our centering condition b; + bp = 0.

For more than two categories, the b’s are called multiple logits; you may see
them again in advanced courses.

1.7.4  Loglinear Independence Models

Our problem becomes more interesting when we construct linear versions of our
independence models for two-way contingency tables. In the movie example

logx.y = lognpr py = logn + log pr + 109 py.

The centered version is log X,y = u + by + cp. We will require the row and
column effects each to average 0 over cells; so that in this case b; + bp = 0 and
cy +crp=0.
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We again need to connect the two models with the different parameters, for each
of the four cells:

logn +log p. + 109 py = + b + e,
logn +log pp + log pr =  + by + cF,
logn + log pp + 109 py = 1+ + bp + cm,
logn +log pp + 109 pr = i+ bp + cr.

Add together the four cell predictions under each of the two forms of the model to
get

4logn +2log pr +2log pp + 2log py + 2109 pr
:4/,L+2bL+2bD+26‘M+2CF =4Ma

since by the centering conditions, the 5°s and ¢’s cancel out. This gives us

1
u=logn + E(Iog pr + 109 pp + 109 py + 10g pr).
Now sum just the first row of predictions:

2logn + 2log pr + 109 py + 109 pr = 210 + 2by..

Substitute what we got for w in the previous expression and solve to get b; =
%(Iog pr —log pp). By a similar argument (exercise), ¢y = %(Iog pu —1og pr);
and of course, bp = —b; and cr = —cyy.

Example (cont). We will use the sample proportions to estimate the parameters
in our movie example:

1
i = 5.298 + (~0.400 — 1.109 — 0.766 — 0.625) ) = 4.473,

R 1 1

b= [400 — (~1.109)] 3 = 0.355, &y = [-0.766 — (~0.625)]; = —0.071

Wonderfully enough (though perhaps not surprisingly, given our motivation
for it), the row and column adjustments in this independence model are half the
separate logits for the row treatments and the column treatments. The u parameter,
though, has a slightly different meaning.

Generally, the loglinear independence model for a two-way contingency looks
likelog £;; = u+b;+c; with centering constraints Y ; b; = 0,and " _; ¢; = 0.
As an exercise, you should derive general formulas for the w, b’s, and ¢’s in terms
of the row and column p’s. We can do a degrees-of-freedom calculation identical
to the one for the additive two-way model: The saturated model has 4/ degrees of
freedom, and the independence model has k 4+ I — 1. Therefore, the residuals in
the cell counts have kIl — (k +1 — 1) = (k — 1)({ — 1) degrees of freedom. The
simple differences between raw counts and expected counts in our 2-by-2 table
had only one value, 11.3, because the saturated model had only one extra degree
of freedom.
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1.7.5 Loglinear Saturated Models*

Inspired by our success, we propose a loglinear form of the saturated model:
log%; = u + bi + ¢; + d;j, with the additional constraints >¥_, d;; = 0 for
each j and Z’j:l d;; = 0 for each i. The d’s are called measures of association,
or sometimes just interactions, as in the measurement models. We count the free
parameters just as we did for the corresponding argument for the full measurement
model, and the total 4/ is the same as for the saturated contingency table. Therefore,
we expect to be able to solve for the parameters using n and the cell proportions
Dij-

For example, in our movie experiment, the two versions look like log x;,;, =
lognpry = logn +log pryy = u + by + ¢y + dp . Now add these up over all
four cells to get 4 = 4logn + log pyr + 109 prr + 109 pyp + l0g prp (the
centering conditions have canceled all the b’s, ¢’s, and d’s).

Then sum the first row and substitute for x to get b, = %(Iog pim +10g prr—
log ppy —10g ppr). Similarly, for the first column, ¢y, = %(Iog pim — 109 prr+
log ppm — 109 ppr).

Something should strike you here: Unlike our measurement models for balanced
two-way layouts, these estimates are not the same as the ones for the independence
model. In fact, you might notice (exercise) that they are equal only if the indepen-
dence model is exactly true. The interpretation of b and ¢, as adjustments in the
predicted log-count as we change row or column, is still the same; but the amount
of that adjustment depends on the model.

Now back-substitute to get

1
diy = Z(|09 pem — 109 prr — 109 ppy + 109 ppr)

_ E log (pLMpDF> .
4 PLFPDM

The quantity pry por/(pLr ppay) is called the relative odds ratio, and it is perhaps
the most widely quoted measure of association in two-by-two tables. We may
rewrite it (pray/pom)/(PLr/PprF). The numerator py s/ ppa IS just an odds ratio
for liking the movie, when we restrict the population to men only; we call it a
conditional 0dds ratio. Similarly, the denominator p,r/ppr is the conditional
odds for liking the movie when we consider only women. The ratio compares the
two; the farther it is from 1, the more different are the tastes of men and women, and
the less appropriate the independence model must be. In our survey we estimate the
relative odds ratio to be (0.255/0.21)/(0.415/0.12) = (1.214)/(3.458) = 0.351.
Then d;y = log(0.351)/4 = —0.262. The fact that our relative odds ratio was
less than one (and so d was negative) says that in our sample, more women than
men liked the movie.

You should notice that as a reflection of the one degree of freedom available to
the d’s, their logarithms are all the same size with varying sign. Whenever the d’s
are all close to zero, we should probably conclude that we did not need them and
that the simpler independence model is appropriate.



1.8 Logistic Regression* 37

There are, of course, 3-way and higher contingency tables, with loglinear models
including various sorts of association with which to summarize them. We will study
some of these in exercises, and later in the book.

1.8 Logistic Regression*

1.8.1 Interpolating in Contingency Tables

You will recall that linear regression allowed us, whenever independent variables
corresponded to numerical settings, to predict what a measurement might be at
other settings. When our responses are counts, we can still, with ingenuity, do
something of the same thing.

Example. A studio wonders whether the popularity of its latest movie has more to
do with the age of the audience than anything else. They do a special screening for
a number of subjects, some of approximately age 20 and some of approximately
age 40; at the end they are each asked whether they like the movie.

Opinion
Like | Dislike
Age 20 42 19
40 13 51

All the methods of the last section apply. As an exercise, you should estimate
the independence model. When 1 did so, | was led to the conclusion that it was
not very appropriate here; there is indeed probably some association. This means
that age does have something to do with opinion: Younger people liked the movie
better.

We can put this as a prediction: If you know the ages of a collection of people,
what proportion of them will like the movie? Express this in terms of the saturated
loglinear model (since the independence model assumes that age makes no differ-
ence to opinion). Now, we have already noted that the natural quantity to predict
in a loglinear model is the logit for liking the movie, in particular, the conditional
logits o0 = log(pr20/ pp20) and lag = 109(prao/ ppao), €ach of which refers only
to the patrons of one age.

L20 npr20
P — |Og L
P D20 npp2o

lyo = Iog = |Og npr2o — |Og npp20

= log X120 — 109 Xp2o
=+ b +c+dr— (w+bp + co0 + dp2o)
= (br — bp) + (dr20 — dp20)-
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In the same way, 140 = 109 prao/ppao = (br — bp) + (drao — dpao). But going
back to the last section,

PL20P D40
dr20 — dpao = - log ———
2 PD20PL40
and
PL20P D40
dpao — dpao = —5 log ————.
2 PD20PL40

We have managed to write our predictions of a conditional logit as a centered
model with a middle liking level

1
bL—bD:*IOQM,
2 PD20P D40

to which we add or subtract a correction proportional to the log of the relative odds
ratio.

There are no new conclusions here; but what if you wanted to predict how popular
the movie would be in other age groups, besides those in the survey? We already
tried linear interpolation in the regression problem; that should work here, too. Let
the new age be x, and write its predicted logit as [ = l09(prx/ppx) = u+(x—X)b,
where ¥ = (204-40)/2 = 30 isthe average level of the independent variable. Match
this to one of the prediction equations in the last paragraph, to get u = b, — bp
and b = (dp40 — dpao)/(40 — 30).

Using the standard estimates, the cell proportions, we have p; 0 = % = 0.336,
Pp2o = 0.152, prao = 0.104, and ppso = 0.408. Then i = % 10g(0.336 x
0.104)/(0.152 x 0.408) = —0.287 and b = —2—10 log(0.336 x 0.408)/(0.152 x
0.104) = —0.108. Then we have a regression equation for predicting the logit,
[ =log ’LD = —0.287—-0.108(x —30). If thismodel is reasonable, what proportion
of 25-yearfolds would we expect to like our movie? The predicted logit, conditional
onage x = 25, is frs = l0g(pr2s/ pp2s) = 0.253.

The slashes in Figure 1.14 show the estimated logits at the two survey ages, 20
and 40. The dotted line shows how the regression equation estimates the logit at
age 25 by interpolation.

This does not answer our question about the proportion of favorable reactions;
but fortunately, that information can always be extracted from the logit. Notice that
(pLx)/(pLx + pr) = (pLx/pr)/(pLx/pr + 1) The |Og|tl is the Iogarithm of
these fractions; but we know that ¢'°9% = ;50 p;/pp. = ¢'. Thenthe proportion
favorable is p = ¢/ /(¢! + 1).

Proposition. Given a proportion p and its odds o and logitl, p = 0/(1 + 0) and
p=ce/ +1)=1/1+e".

Our estimate of the proportion of favorable patrons of age 25 would be
e0253 /(028 1 1) = 0.563. This is between the 69% of 20-year-olds and the
20% of 40-year-olds, as we intended.
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FIGURE 1.14. Logit for liking as a function of age

1.8.2 Linear Logistic Regression

The method illustrated above is an example of logistic regression, which may be
used to predict the proportion of “successes” in some experiment when there are
numerical settings to the independent variables that we can interpolate. It possesses
all the powers of linear regression and requires the same care—interpolate with
caution, extrapolate doubly so. We certainly need not restrict ourselves to the case
of only two settings for the independent variable.

Example. Three different concentrations of a new ant poison are applied to a
number of fire ant nests, and we record whether or not the nests are destroyed:

Concentration
100 mg/l 200 mg/l 300 mg/l
Destroyed Yes 15 20 25
No 17 11 8

We can estimate the conditional logits just from the ratios of the counts in each
column and plot them against the concentration (see Figure 1.15).

The x’s show the estimated logit at each concentration. They are, of course, not
exactly on a straight line, but they are plausibly close to the one we have drawn.
So a logistic regression equation of the form log py/pyxx = [ = u + (x — )b
is a plausible summary of our experiment, where x is the concentration of poison,
and so x = 200 mg/l is the center of our three concentrations.

Let us estimate this equation by the line drawn (by eye) on the plot, which
happens to be / = 0.538 + 0.00632(x — 200). We had a good bit of success with
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FIGURE 1.15. Logit for success as a function of poison concentration

300 mg/l; so we are tempted to try 400. Before we buy the poison, we may as
well use logistic regression to predict the result. Of course, this is extrapolation
(see Section 5.1), so we would be foolish to take the conclusion too seriously.
Anyway, /| = 1.802, and we translate that to a proportion of successful kills
p = e¥802/(£1802 1 1) = 0.858. You will have to decide whether that is a good
enough success rate to justify the experiment.

Of course, we have not told you how to find the line on the plot. Reliable methods
for estimating logistic regression equations will have to await a later chapter. There
are, of course, logistic regression models for far more complicated experiments.
Just as in ordinary regression of measured data, our experimental results may
consist of any number of values of one or several independent variables, so long
as the dependent variable records simply whether that experiment was a “success”
or a “failure” (like/dislike, male/female, or any other dichotomous outcome).

1.9 Summary

In this and subsequent chapter summary sections we will briefly review the key
technical terms and the most important mathematical expressions that should now
have meaning for you after studying the chapter. If any of these are at all fuzzy,
it is time for you to study those sections more carefully. When you see a notation
like (3.4) it will mean section 3, subsection 4 of the current chapter.

First we studied linear models for experiments where we try to measure some
important numbers (such as people’s blood pressure), but for some reason our
measurements are not all the same. We can estimate the “true” value p using
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the sample mean 1 = %Z?:l x; = x (2.2). Often, different subjects of your
experiment will undergo different levels of a treatment (such as types of drug).
In that case, the model that describes the experiment is called a one-way layout
(3.1). We try to discover whether the different levels lead to consistent differences
in our measurements, and we express the result as x;; = w; = pu + b; so that
the b’s tell us how different the ith level is from the average level n (3.2). If the
observations were subjected to more than one sort of treatment at the same time
(for example, bed rest or not, as well as drugs), we have a two-way (or more) layout
(4.1). Sometimes, these data may be described well enough by an additive model
Xijk = m+b; +c;, where the ¢’s tell us the effect of levels of the second treatment
(4.2). Often, though, that will not be sufficient, and we will need to add interaction
terms d;; that tell how differently the ;j levels affect the individual i levels (4.4).
When the experimental levels correspond to numerical settings (such as dosages
of a single drug), we may be able to predict the results of future measurements
using regression models (5.1). For a single predictor x of a measurement y, we
may start with a simple linear regression model that looks like y; = u + b(x; — x)
(5.2). The extension to several predictor variables gives us a multiple regression
model, such as §; = p + (x1; — *¥1)b1 + (x2; — X2)b2 (6.2).

On the other hand, our data may consist of categorized counts (as from a political
poll); we summarize the results with population proportions p;, which predict the
count in the ith category by x; = np;. We usually estimate these by the sample
proportion p1 = x;/n. When we have two ways of categorizing counts (such as
gender and party preference), we construct contingency tables (7.1). When it may
be that certain classifications have nothing to do with each other, independence
models provide an important simplification. These look like x;; = np;ep.; (7.2).
A powerful way to express many models for counted data will be as loglinear
models (7.3), for example in a two-way contingency table logx;; = u + b; +
c;j +d;;. The d;; measure the failure of the independence model, which we call the
association between the two kinds of categories (7.5). When we want to predict
proportions from numerical experimental settings x, we often use (simple linear)
logistic regression, which looks like log(py./pn:) = I=p+ (x — Xx)b for the
case of Yes or No categorization (8.2).

1.10 Exercises

1. Science magazine in 1978 announced that various American lunar probes had
obtained the following values for the ratio of the mass of the Earth to that
of the Moon: 81.3001, 81.3015, 81.3006, 81.3011, 81.2997, 81.3005, and
81.3021.

a. Draw a hairline plot or similar graphical display of these measurements.
b. Compute the sample mean & = x for these numbers, and mark it clearly
on your plot.
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c. Compute the residuals from this location model. Now compute the sum
of these residuals. Did you get the answer you were supposed to?

In 1982, Sternberg et al. reported in Science on the level of an enzyme called
DBH in the bloodstream of a number of schizophrenia patients. The pa-
tients were separated into groups that were judged by clinicians to be either
psychotic or nonpsychotic:

psychotic: 0.0150, 0.0204, 0.0208, 0.0222, 0.0226, 0.0245, 0.0270, 0.0275,
0.0306, 0.0320

nonpsychotic: 0.0104, 0.0105, 0.0112, 0.0116, 0.0130, 0.0145, 0.0154,
0.0156, 0.0170, 0.0180, 0.0200, 0.0210, 0.0230, 0.0252

a. Draw parallel hairline plots of the DBH levels for the two clinical groups.
What does this suggest to you about the effect of clinical status on enzyme
level?

b. Find the standard (sample mean) estimates of a one-way layout model.
Mark the group centers on your plot.

c. Find the standard estimates of a centered model for this experiment.

. Four different shrimp nets are under consideration for use on your shrimp

boat. On 16 days with acceptable weather conditions, you note the yield in
hundreds of pounds, using each net on 4 randomly chosen days:

InSein 75 | 82| 91 | 93
Crusty 51 | 58| 62 | 76
Hample 9 | 53| 56 | 84
NetProfit | 112 | 78 | 104 | 97

a. Draw parallel hairline plots of the performance of each net. Mark the
sample means on each.

b. Construct standard estimates of a centered one-way layout model for this
experiment.

. We claimed that the centered model %;; = u; = u + b; is determined unam-

biguously if we know the group centers ;, so long as we impose the centering
condition 3 S*_, nib; = 0. Show that we can always determine what 1 and
b; are if we know the u;, and vice versa.

. Show that the collection of all residuals in the standard estimate of the one-

way layout model, x;; — fi;, has n — k degrees of freedom. That is, even
though there are n residuals, you can specify n — k of them that would allow
you to compute the remaining k residuals.

. Nine 20-year-olds who are classified as moderately overweight are recruited

into a three-month weight-loss program. Some will go on a 2000-calorie diet,
some will enter a 30-minute-a-day vigorous aerobics program, and some
will be “controls.” At the end of the program, each weight loss in pounds is
recorded:
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none diet
none 2 2
7
exercise 4 610
8 1314

a. Is this experiment balanced? Why or why not?

b. Use the standard estimates to find values for the parameters of an additive
model. Plot the resulting model, and interpret it.

¢. Find standard estimates for the parameters of the full centered model. Plot
the resulting model. Explain why you do or do not believe this model
substantially superior to the additive model.

. Show that the standard estimates for an additive model turn out to be centered

in a two-way layout.

. Assume that a two-way layout has equal numbers of observations (call it 7) in

each cell. Show that the standard estimates of the parameters in a full model
for this two-way layout meet the centering conditions.

. You would like to know how much money a higher thermostat setting saves

you during a Houston summer. So for six years in a row you flip a coin to
decide whether to set the thermostat to 72°F or 78°F for all of August, with
the following bills:

72°: $178, $195, $201
78°: $180, $153, $164

a. Write down and estimate a simple linear regression model for predicting
monthly bills, given your thermostat setting.

b. If you set your thermostat to 76°F next August, use your model to predict
what your electric bill will be. Do you find this prediction plausible? Why
or why not?

¢. You decide that air conditioning is bad for you, so next August you set
your thermostat to 86°F. Use your model to predict your electric bill. Do
you find your prediction plausible? What practical aspects of the problem
might lead you to doubt your prediction?

A sociologist suspects that crowding and heat contribute to violent crime
rates, so she locates medium-size cities near 32 and 40 degrees latitude and
with population densities approximately 2000 and 6000 people per square
mile. Her 8 representative cities had the following crime rates in 1990 (in
crimes per 1000 population):

32 degrees N 40 degrees N

2000/sq mile 80 48 60 35
6000/sq mile 9779 63 83

a. Construct and estimate a multiple regression model for predicting crime
rate from density and latitude, using the standard estimates for an additive
two-way layout. Plot your model.
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b. | live in a town that is 37 degrees, 20 minutes north latitude, with a popu-
lation density of 2400 people per square mile. Use your model to predict
its crime rate.

Without telling them what you are doing, you issue some (arbitrarily selected)
soldiers a 25-pound backpack for a strenuous field exercise: 13 out of 49
complain afterwards of muscle or joint pain. The other soldiers on the same
exercise have a 30-pound pack: 23 out of 52 complain of muscle or joint pain.
If in fact there is no connection between pack size and complaints, how many
soldiers in each group would you expect to complain?

A political polling organization would like to know whether upper, middle,
or lower socioeconomic status (SES) has anything to do with whether a voter
considers himself or herself libertarian, conservative, or liberal in political
philosophy. Two hundred voters picked at random were classified on standard
scales into the possible combinations; the counts were as follows:

SES\Phil.  Libertarian Conservative Liberal

Upper 17 20 17
Middle 12 45 17
Lower 5 18 49

Under the hypothesis that status and philosophy are independent of one

another, construct a table of the predicted counts for each table entry.

For the expected table in an independence model, you of course compute

Xij = npjePaj, Where you use the standard estimate for the p’s. Show that

the row and column sums in this table are always the same as the row and

column sums x;, and x,; in the observed table.

For the political poll data of Section 7.1, estimate the parameters of a centered

loglinear model.

a. For a general two-way contingency table, derive formulas for w, the b’s,
and the ¢’s of a centered parametrization of the independence model, in
terms of n and the p’s.

b. Derive formulas for u and the b°s, ¢’s, and d’s of the saturated model, in
terms of n and the p’s.

For the experiment of Exercise 12 (political philosophy),

a. Compute standard estimates for w, the b’s, and the ¢’s of a centered
parametrization of the independence model.

b. Compute standard estimates for , and the b’s, ¢’s, and d’s of the saturated
model. Interpret the values you get in words.

For the experiment of Exercise 11 (soldier’s backpacks),

a. Compute standard estimates for w, the b’s, and the ¢’s of a centered
parametrization of the independence model.

b. Compute standard estimates for i« and the b’s, ¢’s, and d’s of the saturated
model. Interpret the values you get in words.
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In Exercise 11, use linear logistic regression to predict the proportion of
soldiers who would complain with a 28-pound pack.

1.11 Supplementary Exercises

19.

20.

21.

22,

23.

A common alternative to the sample mean to estimate w in a location model
is the sample median: Sort the observations in ascending order x(1y < x(z) <
- < X(u. The median is then in the middle of that list: (i) if » is an odd
number, then the median is the middle number & = x ns1);} and (ii) if n isan
even number, the median is conventionally the average of the two numbers
flanking the middle /i = (x(:/2) + x(u/241))/2.
Find the sample median of the mass ratios from Exercise 1. How does it
compare to the sample mean?
Three long-distance telephone companies, BSS, CMI, and DWP, are compet-
ing for your business. To evaluate the impacts of their rates, you test them on
15 quite similar branch offices of your company, randomly assigning 5 offices
to each carrier. Here are their phone bills for the same month, in thousands
of dollars:

BSS | 20 | 23| 25|32 | 21
CMI |39 | 21|22 |36 |23
DWP | 50 | 33 | 46 | 42 | 38

a. Draw parallel hairline plots of the observations for the three carriers. Mark
on them the sample means for each level.
b. Estimate the parameters of a centered one-way layout model.

a. Use the sample median of each group to estimate the one-way layout
model in the schizophrenia data from Exercise 2.
b. Use the results from (a) to estimate a centered model for this experiment.
Compare your estimates to what you got in Exercise 2 (b) and (c).
Demonstrate that we could just as well have defined a balanced design to be
one in which the numbers of observations in each cell in each column were
proportional to those in the other columns.
You want to compare, over the year 1995, how the three locations of your
identically sized pizza restaurant are doing. Somebody points out that because
of weather, school, and so forth, the time of year affects sales. So you record
the total dollar sales (in units of $10,000) at each location in each season to
get the following data: for Price’s Fork, Sp(ring) 34, Su(mmer) 30, Au(tumn)
34, Wi(nter) 34; for North Main, Sp 34, Su 14, Au 26, Wi 21; and South Main,
Sp 44, Su 27, Au 37, and Wi 30.

a. Estimate the parameters of an additive model in this two-way design.
b. Estimate the parameters of the full model in this design. Comment on the
differences between the two.
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Show that in any balanced two-way layout, the standard estimates for the
parameters of the full model are centered.
An example of a balanced incomplete block design for a two-way layout is

1 2 3
1] x| x2
2 | xa X23
3 X3 | X33

where we have taken only six observations, yet we can still estimate a centered
additive model %;; = n + b; + ¢;. We might wish to do this if observations
are very expensive.

The standard estimates are i = %, by = T(c11 + x12) — glar + x5 +
X32 + x33), and l;z = %(Xu + x23) — %(xll + x12 + x32 + x33). Find the
corresponding estimate for b3. Assuming column corrections are estimated
just as row corrections are, find standard estimates for the ¢’s.

For a balanced incomplete block experiment (see Exercise 25) to estimate the
breaking strength of three beam cross-sections (A, B, C) made of three steel

allays (1, 11, 1), we got, in thousands of pounds,
| ] 11
A | 352 | 281
B | 18.7 40.3
C 316 | 605

What does an additive model predict for the typical breaking strength of a
beam with cross-section B made from alloy 1? Compare it to the actual result.
How many degrees of freedom for residuals does this model have? What does
your model predict for the untried case of cross-section A and alloy 111?
There is a more complicated linear regression problem for which a standard
estimate is easy to guess. We will assume that there are three distinct values
of the independent variable, equally spaced (for example, 10, 20, 30). Fur-
thermore, the number of observations at the highest and lowest levels of the
independent variable must be the same. Then the average of all observations
should give you a predicted value for the middle level of the independent
variable. Furthermore, the slope of the regression line should be the slope of
the line connecting the averages of the observations at the highest and lowest
levels (because the slope does not affect your middle-level prediction, which
is at the fulcrum around which the line is free to rock).

a. Write down a precise notation for such an experiment and for a simple
linear regression model for predicting it.
b. Write down the standard estimate of your regression model.

The highest-volume item at your beach supply store is a certain brand of
sunscreen lotion. You would like to know how your price affects your weekly
sales volume. You try three different prices for various weeks during the
summer, with the following unit sales:
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$2.50: 82, 74, 83
$3.00: 55, 54, 61, 58
$3.50: 40, 46, 37

a. Construct a plot of these numbers, marking also the sample mean of each
group.

b. Calculate the standard estimate of a simple linear regression model for
predicting unit sales from price (see Exercise 27). Draw the prediction
line on your plot. Does the model seem plausible? Why or why not?

c. Predict unit sales for a week in which your price is $2.79. Now predict the
number of units you would get rid of if you gave sunscreen away for free.
Comment on the plausibility of your predictions.

You have surely noticed that in our two-by-two examples of regression we
insisted on using an additive model. What would have happened if we had
used the full model instead?

a. Write down a model that looks like
Vi =+ (xi1 — X0)bi + (xi2 — X2)b2 + (xi1 — ¥1)(xi2 — X2)b12

in Exercise 10, and estimate the new parameter b1, by setting the last term
equal to one of the interactions in the full model. Recalculate the prediction
in (b). (The new model, which makes sense for any number of levels of
each of the independent variables, is called a bilinear model because it is
linear in each independent variable if the other is held fixed. Here it has
four degrees of freedom.)

b. Write down what a multilinear model in some larger number of
independent variables would look like.

Young people on the lookout for prospective husbands or wives often claim
that certain cities have more women or more men. To study this issue, you
sample the voter rolls in three cities looking for people who are between 20
and 30 years of age and single. Here are the numbers of those you find, by
gender:

New York Chicago Houston
Males 230 211 297
Females 312 225 255

Your question might be addressed in the following way: An independence
model would mean that the proportions of men and women did not depend on
which city you looked in. So you should define and find standard estimates
for an independence model. Then build a table of expected values. Comment
on what the comparison between the two tables says about the question you
began with.

For the survey of Exercise 30,
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a. Compute standard estimates for w, the b’s, and the ¢’s of a centered
parametrization of the independence model.

b. Compute standard estimates for ,« and the b’s, ¢’s, and d’s of the saturated
model. Interpret the values you get in words.

Sometimes in a two-by-two contingency table experiment, the count in one
of the cells is unobservable. We believe that there is a count, but we do not
know what it is:

1 2
1| ny | np
2 noy ?

a. It is still possible in this experiment to estimate the parameters of an
independence model 71;; = np;. p.;. Thenwe could, with a little ingenuity,
predict the unknown count 75. Find standard estimates, using all the
available information, of the parameters of the independence model in
this experiment. (Do not forget that » is also an unknown parameter in this
case.)

b. This method may be used to correct census undercounts. The people in
a census tract are counted by two methods we believe to be independent
(say, mail and visit). Then n1; = people counted by both methods, n1, =
people counted by mail but not by visit, n,; = people counted by visit
but not by mail, and n,, = people counted by neither method (obviously
unobservable). Use the model from (a) to estimate the total population of
a certain census tract if n11 = 12,384, n1» = 589, ny; = 1466.

Ultrapasteurization of cream requires it to be heated to a very high temperature
for a short time. We count how many pints have spoiled under refrigeration
for two weeks after ultrapasteurization at two temperatures:

170°F 180°F
Spoiled 9 3
Good 21 27

a. Write down and estimate a linear logistic regression model for the rate of
spoilage at various temperatures. Plot your equation.

b. Use your model to predict the proportion of pints of cream that would
spoil within two weeks if they were originally heated to 176°F. Do the
same for a temperature of 160°F. How confident are you about these two
predictions?

A three-way contingency table consists of counts resulting from an ex-
periment x;;r, where there are i = 1,...,[ levels of the first treatment,
j = 1,...,m levels of the second treatment, and k = 1, ..., ¢ levels of
the third treatment. The complete independence model of this experiment
looks like )Eijk = NPieePejePosk-

a. What does this model say about your experiment? Write down standard
estimates of the parameters in the complete independence model.
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b. Invent a notation for the centered, loglinear parametrization of this model.
Be sure to specify your centering conditions. Hint: You need four kinds
of parameters.

You want to find out how many people in various walks of life still smoke
cigarettes. You note during your poll whether the responder is male or female,
and whether he or she lives in a rural or urban area. Your results are as follows:

Rural Urban

Male 23 43
Female 27 52
Smokers

Rural Urban

Male 43 135
Female 32 118
Nonsmokers

a. Define and estimate a complete independence model for this experiment.
b. Write down a table of expected counts under this model. How well does
the model match the facts?

With three-way contingency tables we can propose a great variety of models
for the results of an experiment. For example, a conditional independence
model would be one that says something like this: the second and third
treatments are independent of each other, for each level of the first treat-
ment. That would require us to say, about our proportions, pijr/pies =
(pi,-./pi..) (pier/ Pies). After cancellation, we see that our predictions must
be Xijx = n(pijePiek)/ Piee-

a. Write down standard estimates for the parameters in this model.
b. Write down a centered loglinear version of this model, including centering
conditions. Hint: There should be six kinds of parameters.

Estimate the p’s of a conditional independence model for the survey in
Exercise 36, where you assume that gender and location are conditionally
independent of one another for each of smokers and nonsmokers. Construct
a table of expected counts under this model. In words, what does this model
say about your experiment? How well does it match the facts?

Linear regression can be generalized to polynomial regression by making
terms that involve the square, the cube, etc. of the independent variable into
additional independent variables. To illustrate this, estimate a model for the
case of Exercise 27 (three equally spaced design points) with

$=pu+b(x — %)+ clx — )2,

by interpolating the sample means at each design point. Apply it to the data
of Exercise 28 and redo part (c) with your new model. Do you find the results
more or less convincing than before?



CHAPTER 2

Least Squares Methods

2.1 Introduction

In the last chapter we considered models that summarized the measurements that
we obtained in several kinds of experiments. We ran into two sorts of difficulties.
First, we had nothing but our practical intuition to tell us how good a job we had
done when we summarized our data. Sometimes our averages and our regression
lines nearly equaled each data point; the difference could be attributed to mea-
surement “noise.” At other times our numbers were all over the plot, and only our
faith in the simplicity of nature led us to take our elementary mathematical models
seriously. We need some sort of index to score how well we do when we reduce
the data to these expressions.

Second, we found for most of our regression models no good way to estimate
the parameters. We need reasonable, repeatable estimators for regression models.

Fortunately, in 1805 the French mathematician Adrien Marie Legendre pro-
posed a beautiful solution for both of our problems: the method of least squares.
This simple idea based on coordinate geometry will give us a powerful, unified
way to deal with all the measurement problems discussed in the last chapter (and
many more).

Time to Review

Vector algebra
Matrix algebra
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2.2 Euclidean Distance

2.2.1 Multiple Observations as Vectors

We pointed out at the beginning that our measured responses x; could be thought
of as points on a number line. In a similar way, our regression scatter plots were
graphs of pairs of coordinates (x;, y;) for points in the plane; we again translated
numbers into geometrical objects. We can take this idea one radical step further
and pretend that an entire sample of observations x; for i = 1,...,n are the
coordinates of a single vector in n-dimensional space, this despite the fact that
we cannot readily visualize figures or plot points in a space of more than three
dimensions. Nevertheless, it will turn out that we can use methods from analytic
geometry to work with these sample vectors.

We need to translate our measurements into vector and matrix notation. First of
all, we will follow the convention that a vector is written as a boldface, lowercase
letter, such as x. When we expand the vector into its component coordinates, we
will use matrix notation. A vector is conventionally an n x 1 matrix, a column, of
coordinates:

Xi

Xn

This is a bit inconvenient when we are writing text in a line, so we will often use the
transpose operator (which interchanges rows and columns of a matrix) to change
a row vector to a column vector: x = (x;, ..., x,)T.

Example. On Monday through the following Sunday, | note how long I have to
wait for my hamburger at my favorite local lunch counter. The answers, in minutes,
are x = (12, 15, 9, 10, 14, 16, 14)T.

The usual situation when we are analyzing multiple measurements of the same
sort is that we have some theory that says that the ith number ought to be u;;
but when we actually did our error-prone experiment, we got x;. So we ask how
far apart the sample vector x and the theoretical vector = (i1, ..., u,)" are.
Analytic geometry suggests that we find the length of the vector x — p from the
hypothesis to the experiment, called the Euclidean distance from x to p. Notice
that the ith coordinate of this vector is x; — u;, the residual defined in 1.2.2 (when
we say this, we mean that you can look for the earlier discussion in Chapter 1,
Section 2.2).

Example (cont). The manager of the lunch counter announces that typically
one should have to wait about 10 minutes on weekdays and 15 minutes on
weekends. His theory (we usually call it a model, or hypothesis) says that
p = (10, 10, 10, 10, 10, 15, 15)7. Then the residual between our data and his
model isx — = (2,5, -1,0,4,1, —1)T.
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FIGURE 2.1. Pythagorean theorem

FIGURE 2.2. 3-D Pythagorean theorem

To remind you how to calculate this length. Let us look at the graphable case of
two measurements (Figure 2.1): The Pythagorean theorem tells us that the length of

the residual vector, the hypotenuse of the triangle, is /(x1 — 1) + (x2 — 12)2.
You will probably have seen the corresponding expression, with three squared
coordinate differences under the square root, for the length of a vector in three-
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dimensional analytic geometry (Figure 2.2): We proceed to define fearlessly, for
the case of any number n of measurements:

Definition. The Euclidean distance from an n-dimensional vector w to an n-
dimensional vector x is

. 12
V0 — ) + (o — a2+ + (v — )2 = |:Z(Xi - Mi)21| :
i1

2.2.2 Distances as Errors

How do statisticians use the length of the residual vector? The basic idea is that
if we have two competing theories or models «® and 1@, then the experimental
results tend to favor one or the other if the observed vector x is closer to the
theoretical vector, that is, if the residual vector for that model is shorter. Since
we are usually only checking which length is less, statisticians most often save
themselves calculation by not bothering to take the square root:

Definition. The sum-squared error in a sample x for a model p is SSE =
" (xi — u;)?, the square of the Euclidean distance from p to x.

Example. In the speed-of-light data from Chapter 1 (see 1.2.1) we know that the
true speed is (299,)710.5. If we let each of the 23 coordinates in the model vector
p be equal to this value, then you may compute that

SSE = (883 — 710.5)> 4 - - - + (723 — 710.5)? = 289,478.
In the lunch-counter data, SSE = 48.

Even though this is the single most useful measure of closeness in statistics, we
find certain variations handy at times. Since we tend to repeat our measurements
as many times as we can afford, hoping that we will get a bit more accuracy, the
sample size n usually has nothing to do with the scientific issues we are studying.
But the SSE obviously grows with sample size as we add more squared coordinate
differences. This has led us to define an averaged version of the squared error:

Definition. The mean-squared error in a sample x for a model p (proposed
before the experiment is carried out) is MSE = % S — )2

Example (cont.). In the speed-of-light data, MSE = 12,586. In the lunch-
counter data, MSE = 6.86.

This gives us a rough idea of the quality of a typical observation from the point
of view of the model. It has, however, one obvious failing that is clearly our fault:
If the measurements are in some units such as, say, grams, then the MSE s in units
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of grams-squared. These are likely to have no meaning for us. So we sometimes
repair an earlier adjustment and take the square root of the mean-squared error:

Definition. The root-mean-squared error in a sample x for a model p is

1/2
1 n

RMSE = +/MSE = [ > (i — Mi)z} .
n

i=1

Example (cont.). In the speed-of-light data, RMSE = 112.2 km/sec. In the
lunch-counter data, RMSE = 2.62 minutes.

The RMSE, and its many special cases depending on the sort of model we are
studying, is perhaps the single most intuitively useful summary of how well our
experimental setup seems to be matching the model. It is a sort of typical absolute
difference between an observed and a predicted value.

2.3 The Principle of Least Squares

2.3.1 Simple Proportion Models

Often we have only a partial idea about what sort of simple model does the best
job of matching our data approximately. We noted earlier that Euclidean distance
could be used to pick from among several alternative models, according to how
close they are to the observations.

Example. In the lunch-counter problem, my personal opinion was that it takes
about 15 minutes to be fed every day. Therefore, | proposed another model, p® =
(15, 15, 15, 15, 15, 15, 15)7. Its SSE is 73. The manager’s claim looks slightly
better, because its SSE is smaller.

But can we apply this approach when there is an infinity of choices?

Example. In the early decades of the twentieth century, astronomers had found
that they could tell how fast objects in the sky were moving toward us or away
from us by using the Doppler shift in the color of their light (just like a traffic cop
catching speeders using radar). With much more difficulty, they had also found
ways to tell how far away some objects were. In 1927, Edwin Hubble juxtaposed
those two facts about 24 galaxies:
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velocity
(km/sec)

170
290
—130
—70
—185
—220
200
290
270
200
300
-30

distance
(1,000,000

parsecs)
0.032
0.034
0.214
0.263
0.275
0.275
0.45
0.5
0.5
0.63
0.8
0.9

He of course drew a scatter plot (Figure 2.3):

After staring at this a while, you will probably come to the same conclusion
Hubble did: The faster a galaxy is moving away from us, the farther off it is (with
quite a bit of variation in the peculiar motions of each galaxy). If this is a general
law, then we see a way to exploit it: Since it is easy to observe the outward velocity
of a distant galaxy, we can use some simple law like d = kv to estimate roughly
the distance d, where k is our hypothesized proportionality constant. (One possible
such relation is given by the sloped line on the plot.) To this day, this is the most

velocity
(km/sec)

650
150
500
920
450
500
500
960
500
850
800
1090

distance

(1,000,000

parsecs)

0.9
0.9
0.9
1.0
11
11
14
1.7
2.0
2.0
2.0
2.0

common way to estimate the distance of newly discovered galaxies.

1.5 +

Distance (1,000,000 parsecs)

ﬂ) 200

Velocity (km/sec)

FIGURE 2.3. Distance as a function of velocity

1000
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Astronomers soon suggested an implication of our model: Perhaps the universe
is expanding. The expansion rate is measured by the Hubble constant 1/k. This
eventually led to the famous big bang hypothesis for the evolution of our universe.

2.3.2 Estimating the Constant

Butwhat is k? If we knew some physical mechanism for expansion of the universe,
maybe that would tell us; but at this time we do not. Instead, we shall try to estimate
our k by assuming a regression model d = kv similar to those of the last chapter
(see 1.5.2), but with only the one parameter k. Unfortunately, Chapter 1 gave us
no clue as to how to estimate k, except by eye. Now to Legendre’s great step: We
may phrase the problem as one of Euclidean distance. We want to choose & such
that the vector of distances d is as close as possible to the vector predicted by the
Hubble model d = kv. Equivalently, we want somehow to pick out a k that makes
SSE = Y "' (di — d;)? as small as possible (since making the squared distance
small is just the same as making the distance small, if all we want is the right k).
We have a name for this:

Definition. If we choose the parameters of a model for predicting observed mea-
surements by making the Euclidean distance from the observed vector to the
predicted vector as small as possible, we are applying the method of least squares
(because we are minimizing the SSE).

How is it possible to find k, since there is an infinite number of possible values
to compare? We shall use some ingenuity: Let / stand for any other possible value
of the proportionality constant in the Hubble model, besides k. Then if k is the
least-squares estimate, we know that always Y7, (d; — [v;)? > Y1_,(d; — kv;)?.
Here comes the first trick: Subtract and add & to / on the left-hand side to get

Z(d, — lU,’)z = Z(d, — kv,» + kU,‘ — lv,»)z.
i=1 i=1

Now expand the square in the second expression, using the first two and last two
terms:

n n

Z(d, — lv,»)z = Z(dl — kv,-)z + 2 i(kvi — lvi)(di — kl)i) =+ Xn:(kvi — lU,‘)Z
i=1 i=1

P i—1
> ) (di — kv;)%.
i—1

We can cancel out the identical sums on the two sides of the inequality and factor
out some constants from sums to get

n

2(k — Z)Xn:vi(di —kv;) + (k —l)zzuf > 0.
i=1

i=1
To review, this inequality must always be true, no matter what / is, if k is the
least-squares estimate. But the second term must always be at least zero, because
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it is a sum of squares. The first term is more of a problem: Since [ is free to be
anything, the term can obviously be either positive or negative. One more bit of
ingenuity: We can make the first term zero, and therefore never negative, without
paying attention to /, by setting >, v;(d; — kv;) = 0. This is called the normal
equation for this least-squares problem. To solve it, split the sum and move the
minus sign to the other side of the equation to get Y7, vid; = k Y_;_; v2. We can
solve this for k whenever we do not have to divide by zero, that is, when all the
v’s are not zero. In that case we have an estimate k = Y7, v;di/ Y, v?.

This estimate gets rid of the middle term in the big equation above, leaving
Saldi — v)? = Y (di — kvi)? + (k — 1) Y7, v2. Now we know we have
succeeded; since our k meets the normal equation, it always has the smallest SSE:
In any other case of /, we have to add that positive last term, which makes the SSE
larger.

This equation has a practical application; if we are curious about what happens if
we use another value of k than the least squares value, we may use it to calculate how
much further away the prediction vector is from the observation vector. Another
use of it comes about when [ (which, remember, can be anything) is set equal to
zero. Then Y/_  d? = >, (di — Iv;)? + k? Y__, v?. The Pythagorean theorem
has appeared once again: You can read this as a relationship between the squared
length of the observed vector d, the squared length of the vector of residuals, and
the squared length of the vector of predictions vk. We do this so often in statistics
that we have names for the terms: ", d? is called the (total) sum of squares,
TSS; the next term we already know as the sum of squares for error, SSE; and
Yo vl.2 is called the sum of squares for regression, SSR.

Example (cont). For Hubble’s model, you should check that k = 0.001922
where SSE = 5.469. This is the slope of the line we drew on the scatter plot.
Therefore, if we observe that a galaxy is moving away from us at 600 km/sec, we
would expect it to be about 600 x 0.001922 = 1.15 million parsecs distant.

Let us summarize all our mathematics as follows:

Proposition. To predict a vector of dependent variables y from a vector of
independent variables X using the regression model y = xb,

(i) the least squares estimate b is a solution of the normal equationy :_, x;y; =
by, xiz, because then
(1) Y (i —exi)? =X (i — bxi)? + (b — )2 Y__, x? for any parameter
value c;
(iii) in particular, if we choosec = 0, Y ", y2 =37 (yi —bx;)> + > 1, x2,
which we conventionally write TSS = SSE + SSR.

All that | have done here is to use generic letters for the special symbols from
the Hubble problem: y for d, x for v, and b for k.
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2.3.3 Solving the Problem Using Matrix Notation

The result above is so important that anything we can do to understand it better
will be useful. First we will translate it into matrix notation. Remember that xa
where x is a vector and «a is a constant is the vector we get by multiplying each
coordinate of x in turn by a. Second, an inner product of any two vectors x and
y, expressed in terms of their coordinates, is xey = >, x;y;. This can also be
written in terms of matrix products, which you should review:

Y1 n
x| ] =xy =D
y, i=1
n
In particular, this means that the squared length of a vector may be written x'x =

i xiz'

Now we retackle our problem, to find the b that makes (y — xb)"(y — xb), the
sum of squares of residuals, as small as possible. Again, let ¢ be any possible value
of the slope, and subtract and add x4 to get

(y—xc)(y—xc) = (y —xb+x[b—c])"(y — xb + x[b — ¢]).

Now we can expand this “square” just as before, because matrix multiplication
and addition distribute and associate just like the ordinary operations:

(y — x¢)"(y — xc) = (y — xb) " (y — xb) + [b — c]x" (y — xb)
+(y—xb)'x[b — ]+ [b — c]x"x[b — c].

This is not quite the same as before, because there are two middle terms. However,
these happen to be the same (they are just the inner product of two vectors, listing
the vectors in different orders). Our middle term is then just 2[b — c]x"(y — xb).
The new normal equation to get rid of this term is x' (y — xb) = 0, which can be
solved whenever x # 0 to get 5 = x"y/x" x. Our decomposition has become

(v — xc) (y — xc) = (y — xb) " (y — xb) + [b — c]*x"x.

(You should decode these last three expressions to check that we got the same
thing before, when we were using summation signs.)

Why have we done the same derivation twice? Because much later the matrix
notation will be essential for similar but harder derivations; and we have given
you some practice with it while you kept in mind what it really meant in terms of
summation. But there is something deeper here: Remember from vector geometry
that if two vectors x and y are both not zero, then their inner product x'y = 0
exactly when they are at right angles to each other. In fact, in n-dimensional
analytic geometry, this is the definition of a right angle. Therefore, our normal
equation (leaving the b in but with ¢ chosen to be zero) (xb)"(y — xb) = 0 may be
restated as follows: Choose the parameter b such that the vector of predictions (xb)
is at right angles to the vector of residuals (y — xb). (In fact, this is the meaning of
normal in geometry.) You can see from Figure 2.4 where the theorem of Pythagoras
comes in. Further, you can see that our whole argument is just a familiar theorem
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FIGURE 2.4. Geometry of least squares

from Euclidean geometry: To find the shortest distance from a point (y) to a line
(xc for any number c), drop a perpendicular. It hits the line at some point (xb),
and we call that value of the constant b our least-squares estimate b.

2.3.4 Geometric Degrees of Freedom

Now we will use our geometric pictures to reinterpret the idea of degrees of freedom
(see 1.3.3). Imagine that we have not carried out our regression experiment yet,
but we know which n values of the independent variable x we will use as settings
when we later observe our dependent y’s. Here is what we already know: The
vector y — xb, whatever it turns out to be, will be perpendicular to the predictions
xb. With two observations, it may turn out to be any point on a certain line through
the origin (imagine sliding the dotted line y — xb down to where the coordinate
axes intersect, as we have done in Figure 2.4).

With three observations, y — xb may be any point in a whole plane perpendicular
tothe vector xb, that is, atwo-dimensional subspace of our coordinate space (Figure
2.5).

Generally, our residual vector will be a point in the (n — 1)-dimensional Ayper-
plane through the origin and perpendicular to the vector of possible predictions.
(We need n coordinates to determine a point in the space of sample vectors. Let one
coordinate axis be at an angle, in the direction x. The remaining » — 1 coordinates
are needed to determine any vector at right angles to this one.) This turns out to be
the geometrical way of looking at an issue we discussed in the previous chapter:
When we say that the predictions have 1 degree of freedom, we mean that they
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lie in a 1-dimensional subspace (varying according to possible values of ). When
we say that this leaves n — 1 degrees of freedom for the errors, we mean that the
residual vectors lie in an (n — 1)-dimensional subspace of the data space. We will
greatly exploit this interpretation later.

We would now say that SSE = Y7, (y; — bx;)? is the squared length of the
vector of residuals y — xb, which lies in a known (n — 1)-dimensional subspace.
Somewhat conventionally, when we average the squared errors, we average over the
number of dimensions (degrees of freedom) rather than the number of observations
to get the mean squared error MSE= -1 3™ (y; — bx;)?. At the beginning of
this chapter (see 2.2) we divided by n because we assumed that the predictions p
were given in advance of observation, and so the residual vector y — p could lie
anywhere in n-dimensional space.

Example. In Hubble’s problem, MSE = 5.469/23 = 0.2378. Then the RMSE =
+/0.2378 = 0.4876; in this data set, we typically misestimated the distance by not
quite half a million parsecs.

2.3.5 Schwarz’s Inequality

One more interesting fact comes out of the least-squares method: Remember that
when we let ¢ = 0 in our proposition, we got 37, y2 = >0 (yi — bx;)? +
b? > x?. We can conclude from this that since the first term on the right
is at least zero, then Y7, y2 > b? 3", x2. Now substitute our least-squares

estimate b = Y, x;yi/ Yr_, x2, which makes the sum of squares of residu-
als (37—, (yi — bx;)?, the term we threw away) as small as possible. Then the
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inequality is as close to an equality as it can be, and we get

2
n n n
E yfz(E Xi)’i) /E xZ.
i=1 i=1 i=1

Moving the denominator to the left side, we get a result important enough to name:

Theorem (Schwarz’s inequality). (>, xiyi)z < Y a2 v and we
have equality just when'y and X are proportional (that is, when there is a b such
that each y; = bx;, and so all residuals are Q).

Mathematicians love this fact, because it applies to any vectors at all, is amaz-
ingly simple, and is not at all obvious. It is the first result we have called a theorem,
and not just a proposition. You will see an application of it later in the chapter,
others later in the book, and yet others throughout your study of mathematics. We
have followed the mathematician’s habit of giving it a name; that is how we will
remind you of it from now on.

2.4 Sample Mean and Variance

2.4.1 Least-Squares Location Estimation

Our first summary model for measurements in the last chapter was the location
model: We imagined that our n repeated measurements were unimportant errors in
measuring a common constant w.. We can estimate u by least squares: Let x be the
vector of measurements; then our vector of predictions is (i - - - )T, since every
prediction is the same. To write this as a regression problem, we use the notation
(1---1)T = 1 for a vector of all ones. Then (i - -- )" = 1 just multiplies each
1 by the constant x. Now we have a regression equation like Hubble’s: X = 1,
where y has been replaced by x, b has been replaced by p, and x has been replaced
by 1. Our least-squares estimateisthen o = 0, 1x;/ > 7, 12 =13 =X
Interestingly enough, the least-squares estimate for the location model is just the
sample mean, our standard estimate from the last chapter. So we see another reason
that the sample mean is important. Let us, as promised, list some of its properties:

Proposition (properties of the sample mean).

(i) x is the least-squares location estimate for the sample vector X.
(i) Add a constant to every observation: x; + a. Then x +a =X + a.
(ili) Multiply every observation by a constant: bx;. Then bx = bix.
(iv) The sum of the residuals y_;_;(x; — %) = 0.

We will let you show why (ii) and (iii) are true, as an easy exercise. We discovered
(iv) in Chapter 1 (see 1.2.2).
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2.4.2 Sample Variance

To measure how well the mean describes our observations we have SSE =
" (xi — X)?; and adjusted for the number of degrees of freedom, MSE =
L 2ol (xi — ¥)2. This last quantity tells us how spread out the results typically
are from their center. Statisticians have found it to be so enormously useful that
they have given it a special name and notation:

Definition. The sample variance of a sample vector x is the mean-squared error
about the sample mean s2 = L. ™" (x; — ¥)?. The standard deviation is its

square root s, = /s2, the root-mean-squared error about x.
X

Our Pythagorean law for location becomes Y7 (x; — v)2 = Y1, (x; — X)? +
n(x — v)? for any number v. Dividing by n — 1 and solving for the sample variance,
we have s2 = L[> (x; — v)? — n(¥ — v)?]. Letting v = 0, we get a famous
formula for simplified computation of the variance: s? = -1 (30, x2 — n¥?).
Judicious use of other values of v will often do much better; letting it be a round
number that is fairly close to .« will lead to a calculation of the variance that is easier
for pencil-and-paper computing, and less subject to round-off error in electronic

computing.

Example. You want to know how far it is from your apartment to your college.
You count your paces on five successive days, getting 1007, 998, 1023, 1025, and
1002 paces. You will use the sample mean as a summary measurement. To make
the calculation easy (see 1.2.2), subtract v = 1000 from each number, and average:
(7—2+23+25+2)/5=11. Thenitisabout x = 1000 4+ 11 = 1011 paces to
school. To get the sample variance, use this same value of v in the equation above:

1
s2 = [7* 4+ (—2) + 23° + 25* + 2* — 5 x 117] 7 = 1665.

Then the sample standard deviation is s, = +/166.5 = 12.9. It appears that you
varied about +13 paces from day to day as you walked to school.

We can use the mean and standard deviation to provide another kind of simple
summary of a set of measurements. Add and subtract twice the standard deviation
from the sample mean to get an interval in which a large majority of the numbers
should fall. In the walking example, the interval is 985 < x; < 1037. We call this
a 2-s interval. Our definition looks somewhat arbitrary, but we will see some sort
of justification later.

Let us summarize our results:

Proposition (properties of the sample variance).

(i) For any number v, s? = ﬁ [Zf':l(x,- —v)? —n(x — v)z].
(i) 52 o = s2 and sy, = s, for any constant a (location invariance).

(iii) s2. = b2s? and s, = |b|s for any constant b (scale equivariance).
You should discover the last two as an exercise. Together they say that the

standard deviation has nothing to do with where your measurements were centered
but is directly proportional to how spread out they are.
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2.4.3  Standard Scores

These measures of location and scale of our variable samples give us a way to com-
pare “atypicality” of observations that were originally evaluated in quite different
ways:

Example. On the first midterm exam in a statistics class, you make an 82; but on
the second you make only 65. However, the professor grades on the “curve,” by
which she seems to mean that your score will be compared to how your classmates
scored on the same test. You learn that on the first test, the class average was 75
with a standard deviation of 15. On the second test, the average was 51 with a
standard deviation of 12. On which one is your professor likely to conclude that
you did better?

We will, as in the 2-s interval, describe each observation as some number of
standard deviations above or below the mean. Letting # denote that number, we
write x; = X + #;s,; solving for ¢;, we get the following:

Definition. For a sample of n observations x;, the standardized measurements

—X

(or standard scores) are #; = ~—~

For example, 1007 paces becomes (1007 — 1011)/12.9 = —0.31. In words, 1007
is 0.31 standard deviations below the mean. Notice that the 2-s limits are always at
t = £2. A standardized measurement has lost the scale on which it was originally
measured:

Proposition (properties of standard scores).

(i) Under the changes of variable x + a and bx (for b > 0), t does not change.
(i) t=0ands, = 1.

You should show these as exercises.

Example (cont.). On that first exam, your standard score was (82 — 75)/15 =
0.47. On the second test, your standard score was (65 — 51)/12 = 1.17. It turns
out that you did relatively better on the second test, in the sense of being farther
above the class average if the test scores were similarly variable. Your professor
should be quite a bit more impressed with you the second time.

2.5 One-Way Layouts

2.5.1 Analysis of Variance

Remember that a one-way layout experiment splits up a number of observations
x;; among the levels i of a treatment (see 1.3.1). It may have occurred to you
that we have now established that the standard estimates for the one-way layout
Xi; = [t = %; are actually the least-squares estimates for the parameters u; of
that model. This is because the SSE is just the sum of squared deviations of each
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measurement about the center of its cell; and we have discovered that these are
made smallest for each cell in turn by using the cell means as centers.

What about the centered model x;; = u + b;? The least-squares estimates only
make the residuals small, and these are determined by the cell estimates x;;. The
centered model has exactly these same standard cell predictions (we just wrote them
in terms of different parameters), so the residuals x;; — ;; are still the same, and
as small as possible. Therefore, the standard estimates 2 = & = 1 > > iy xij

and b, = x; — x are also least-squares estimates.

The fact that the standard estimates are least-squares will teach us some-
thing important. The sum-squared error is SSE = Y&, > iy — %) =
D Z;":l(x,j — %;)%. But the inner sum Z:?_":l(x,»j — X;;)? is just the SSE
of the location model for the n; observations in the ith level by themselves.
Then the Pythagorean law in (4.2) letting v = x, the overall mean, gives us
Zn, (i —X)? = Z’;"zl(x,-j — X)? — n;(x; — X)2. Putting this back in the double
sum for the SSE, we get

ZZ(X’J i ZZ(XU _x) - Zn (xl —)C)

i=1 j= i=1 j=

Moving the negative part over to the other side yields Z, 12 (i — x)? =
>, PBRICHE %)2 4 ¥ ni(% — )2 Now remembering what these had to

do with the parameters of the centered model, & = x and & + b; = x;, we can
rewrite this last expression:

Z Z(XU /L)Z Z Z(xu f— b )2 + Zn b2

i=1 j= i=1 j=

Proposition. In the centered model for a one-way layout, with least-squares
estimates (I = X and b; = x; — X, we have
n;
ZZ(X,/ —¥)? = Zn (X —X)* + ZZ(x,, — %)%,
i=1 j= i=1 j=
or

This is so important that we have a shorthand notation to help us remember it.
The rightmost term was SSE. The term on the left is called the corrected sum of
squares and is denoted by SS. We call Zle n,l;,2 the sum of squares for treatment
(SST) (or sometimes the between-groups sum of squares). It is the total of the
squares of all the adjustments we have made for the level of treatment in the
individual observations. Therefore, our result may be written SS = SST + SSE.

The expansion can go one step further: Since SS = Zf.‘:l Zj":l(xij —x)?is just
the error sum of squares for a simple location model with only one location u for
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all the observations, apply the result from (4.2) with v = 0 to get

ZZ(XU -3 —ZZ%/

i=1 j= i=1 j=
Plugging this into the proposition yields an impressive result:

Theorem (analysis of variance for the one-way layout). In the centered model
for a one-way layout, with least-squares estimates i = X and by = X — x, we
have

k n;

ZZx”_nx —i—Zn(x,—x) +ZZ(}¢U Xi) .

i=1 j= i=1 j=
or

ni ni

k k k
Z xlzj =nj® + Z 5 Z (xij — = b2
i—1 i=1 j=1

i=1 j=1

We have now decomposed the total sum of squares of the measurements TSS =
S > x” into three pieces: The new one, nx?, is called the sum of squares for
the mean SSM. We then remember the analysis of variance theorem symbolically
as TSS = SSM + SST + SSE.

2.5.2 Geometric Interpretation

Looking at this model geometrically, let o = 112

T
b=|b;--b br- b |
—— — —
n;entries nyentries

and the residual vector € = x — 1 — b, where the observation vector is

T
X:(-xll"'xlnl-le"'Xan"'xkl"'-xknk) .

Each vector is n-dimensional. AYoAu should check as an exercise that our theorem
may be written x"x = 17 1 + b"b + &7&. But then we note some important facts:

Proposition.
() AT =0.
(i) pfe =0.

(iii) bTe =0.

These also should be verified, as an exercise. We say the vectors are orthogonal
to one another.

Perhaps now you can imagine the geometry of the theorem, which is a
three-dimensional version of the ubiquitous theorem of Pythagoras. Imagine a
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FIGURE 2.6. Geometry of ANOVA

rectangular box whose length, width, and height are our three estimated vectors,
which you have checked are at right angles to each other (Figure 2.6). Then the
observation vector x is the diagonal of that box. The various sums of squares are
the squared lengths of the edges, which sum to the squared length of the diagonal.

Once again we can use our picture (Figure 2.6) to interpret the degrees of freedom
in the one-way layout model. The vector [ lies in a one-dimensional subspace,
those vectors proportional to 1, which corresponds to the single degree of freedom
for the mean. The vector b is determined by the & different level adjustments, which
may each have any value at all (at least until you make your observations), except
of course for the centering constraint, which requires them to average zero. This
last statement, by the way, is just what our result £zb = 0 tells us: Our adjustments
must be at right angles to the constant vector. Therefore, b is determined byt -1
independent constants and necessarily lies in a (k — 1)-dimensional subspace of our
data space. This matches the degrees of freedom for the b’s. The residuals vector
may take on any n values at all, except that our results 17é = 0 and bTé = 0
say that it must be perpendicular to any mean vector and any adjustments vector.
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Therefore, it lies in an (n — k)-dimensional subspace, because that is how many
independent constants are needed to describe it. Again, these are the degrees of
freedom for error. Just as before, when we calculate mean squares corresponding
to these sums of squares, we divide by the degrees of freedom to average over the
available dimensions.

2.5.3 ANOVA Tables

By now you are finding this all to be bewilderingly complicated. So has everyone
else, so the analysis of variance (ANOVA) table was invented to organize all these
statistics:

Source Sum of Squares  Degrees of Freedom Mean Square
Mean nx? 1 nx?
Treatment SST k—1 MST = SST/(k — 1)
Error SSE n—k MSE = SSE/(n — k)
Total TSS n

Elaborations of this table are used for more complicated least-squares models. The
“total” cells give us a way to check our work—the analysis of variance theorem
says that TSS is indeed the column sum. Furthermore, we have just finished arguing
that the degrees of freedom add up to their column total.

Example. From the salinity data for the Bimini Lagoon (see 1.3.1), you should
check that the following values are correct:

Source Sum of Squares  Degrees of Freedom Mean Square
Mean 44654 1 44654
Wiater Mass 38.80 2 19.40
Error 7.934 27 0.2938
Total 44700.7 30

How shall we interpret the quantities in this table? In this problem (and often
in other ANOVA problems) we find ourselves uninterested in the overall mean
and its table entry. It is so large because the ocean is salty, and that is where the
water comes from. We are interested rather in the differences among samples. We
retreat to the proposition SS = SST + SSE, and the table simplifies to this more
commonly seen form:

Source Sum of Squares  Degrees of Freedom Mean Square
Treatment SST k—1 MST = SST/(k — 1)
Error SSE n—k SSE/(n — k)

Total SS n—1

To quantify the relative importance of the treatment level, we may compute the
following statistic:

iy . P 2 SST  _ sST
Definition. The coefficient of determination is given by R* = 775 = %5
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In our salinity example, the corrected sum of squares is 46.734, so R?> = 0.83.
We might interpret R? as the proportion of the sample variance that is “explained”
by systematic differences among the levels. As its name is a mouthful, most statis-
ticians just call it “R-squared.” You might remember from trigonometry that R? is
the square of the cosine of the angle between the vectors b and x — /1.

2.5.4 The F-Statistic

We might ask instead a somewhat harder question: Are the apparent differences
among treatment means just an accident? That is, did we just by bad luck pick
saltier samples in area Il and fresher samples in area 1? Given the variability of our
measurements, that certainly seems possible; but we can never tell with reasonable
certainty without doing a much more extensive set of measurements.

Since we are using the principle of least squares, we must think that the most
important fact about our random errors is the length of the error vector. Therefore,
if we rotate that error vector in any direction whatsoever, keeping it the same
length, we should get the same least-squares estimates of our model parameters.
This suggests that if least squares is indeed the right way to look at errors in
our experiment, the following assumption about what those errors look like is
plausible:

Assumption of Spherical Distribution. |f we repeat the whole experiment many
times, the scatter of sample vectors in n-dimensional space is much the same in
any direction from the vector of “true” values.

This says that the error, or residual, vectors tend to be of similar lengths in any
direction. In one dimension, this means that the scatter of numbers above the true
value looks much the same as the scatter of numbers below the true value, reversed
as if in a mirror. In two dimensions, this pattern is called circular symmetry; an
example is shown in Figure 2.7, where each triangle marks the error vector for one
repetition of the experiment. If you rotate this scatter plot through any number of
degrees, it still looks much the same. In three-dimensional space, the scatter plot
would look like what astronomers call a globular star cluster. The mathematical
word for such a pattern is spherical symmetry, hence the name of our assumption.

One implication of this assumption is that the order of the observations, the
indices j = 1, 2, ... that we gave them, is not scientifically important. This is
because changing the order just involves switching coordinate axes around; that
obviously has no effect on the general appearance of our spherical cloud of sample
vectors. This is often a desirable property of fair sampling practices. Much later in
the book you will discover that certain very common statistical models will imply
that our assumption is true.

Now assume in our centered model that if we actually knew the deep scientific
truth about what is going on, b = 0, so that the treatments should not matter, then
the vector whose squared length is SST, b, would consist of irrelevant peculiarities
about our data. Much later in the book we will discover the mathematical reasons
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FIGURE 2.7. Observations with circular symmetry

for an amazing and wonderful fact: If in the one-way layout model b = 0, and the
assumption of spherical distribution is true for this sort of experiment, then MST
and MSE will often be similar in size.

You have no obligation to believe me about this yet, or even understand what it
means. But it tells us why we like to calculate the following:

MST

Definition. The F-statistic is given by Fy_1, « = ;5.

Our justification suggests that when the true adjustments due to the experimental
levels should be zero, the F-statistic is somewhere near 1. On the other hand, if
the adjustments for level are substantially different from zero, MST increases, as
you may see by looking at its formula, and so does the F-statistic. In our salinity
example F, 27 = 66.03; this is so much greater than 1 that we are fairly confident
that the salinity does vary from site to site. If our statistic had been, say 0.7, we
would have to say that the evidence for the treatment mattering was weak, since
some number like this might have arisen by routine accident in an experiment with
no real treatment effect.
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We will see other F-statistics with which to evaluate the evidence for experi-
mental treatment effects in other least-squares models. Of course, we have nothing
but experience to guide us in how much bigger than 1.0 an F must be before we
jump to any conclusions about nontrivial effects; this will come later.

2.5.5 The Kruskal-Wallis Statistic

Another simple way to see whether several levels of a treatment show different
measurement values is to rank all the measurements from smallest to largest. For
example, in the salinity data, the value 36.71 gets a rank of 1, 36.75 gets a rank of
2, and the two 37.01s are tied for third, so we conventionally give each a rank of
3.5. We continue until 40.80 gets a rank of 30. The complete rankings are

MassI: 1035155735551182917
Mass II: 27 30 24 23 29 28 25 22
Mass ITII: 192120121416 18 151326

as you should check.

It seems reasonable to perform an analysis of variance on these ranks. The
notation we shall use is R;; for the rank in the whole sample of the jth observation
in the ith level; for example, R;3 = 24. In our example, the level means are
R, = 6.917, R;, = 26.0, and R);; = 17.40. This tells us much the same thing
as the level means of the original salinities: Mass Il is a bit saltier than 11l and
much saltier than 1. (Traditionally, if we are interested in only the question of
whether the ith level is peculiar, we compute its Wilcoxon rank-sum statistic
W, = Z;“zl Rij = n; R;. For example, Wy;; = 174. Of course, this is harder to
interpret than the level means.)

The new way of comparing the levels has two important disadvantages: first, it
no longer says anything at all about just how salty the water actually is. Second, it
loses some distinctions that were present in the original observations; for example,
the distinction between 19 and 20 was only 0.01%, but the difference between 11
and 12 is fully 0.54%.

On the other hand, the new statistic has an important advantage: If we attach
very little importance to the actual values on the scale of measurement, but only
trust it usually to tell us which sample has a larger value, then these comparisons
based on ranks seem plausibly to capture what we want to know. For example,
our salinity gauge might be poorly calibrated, so that the only thing we are sure of
is that it reads higher with saltier water. Or our scale may have been an arbitrary
one, designed just for this one experiment. The arithmetic test from (1.4.1) was a
collection of problems the teacher invented on the spur of the moment. A grade of
26 means nothing in itself; but the student who scored 26 is likely doing better in
the class than the one who scored 17. Therefore, analyzing this problem by ranks
might well tell us almost as much as using the grades.

The obvious statistic to summarize differences between water masses is the
sum of squares for treatment, which, remember (Section 5.2), compares these
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level means to the overall mean R = 15.5. Then SST = Y*_ (R, — R)?; in
our water example, SST = 1802.18. Notice that some simplification will turn
out to be possible, because R is just the average of the ranks 1,...,n; this is
exactly the same, no matter how the experiment came out. In fact, the average of
the first and last ranks is (1 + n)/2; the average of the second and next to last is
2+ (n—1))/2 = (1 +n)/2; infact, all such low and matching high pairs average
the same, (1 + n)/2. Therefore, it is always the case that R = (1 + n)/2.

It gets better; our corrected sum of squares SS depends only on all the ranks,
so it will be the same however the experiment comes out (if we ignore ties). You
will figure out a formula for SS in the next chapter as an exercise. But this fact has
an important implication: Earlier in this section we had to invent R-squared and F
to compare SST and SSE, because they were independent pieces of information.
Now SS = SST + SSE, with SS known in advance, says that they are no longer
independent; we need calculate only SST, and interpret it.

Definition. The Kruskal-Wallis statistic is K = 12/(n(n + 1))SST, where SST
is the sum of squares for treatment when the ranks of the observations are used as
the data.

In the water example, K = 23.25. The larger this is, the more different are
the water masses. In an exercise in a later chapter, you will discover that if there
are in fact no systematic differences among the levels, so there is no pattern to
which ranks are where, a typical value of K is somewhere in the neighborhood of
k — 1, the degrees of freedom for treatment. (This is why it is usual to multiply
by 12/(n(n + 1)); the interpretation will no longer depend on our sample size.) In
our example, 3 — 1 = 2 is so much smaller than 23.25 that we suspect we have
spotted a real salinity difference.

The Kruskal-Wallis statistic is an important example of a rank statistic, which
are of considerable historical interest in applied statistics. You will see another
example in a later chapter.

2.6 Least-Squares Estimation for Regression Models

2.6.1 Estimates for Simple Linear Regression

Finally, we come to an important estimation problem from the last chapter that the
method of least squares can solve for us. Remember the simple linear regression
model y; = w+ (x; —x)b? (See 1.5.2.) We were able to suggest standard estimates
of the parameters 1 and b in only the simplest case, where exactly two distinct
values of the independent variable x appeared in the data, so we could interpolate
between them. The method of least squares would suggest that we choose our
parameters to make Y ' [y; — pu — (x; — x)b]? as small as possible. This looks
harder than the problem we solved in Section 3; but fortunately, we have already
done most of the work.



2.6 Least-Squares Estimation for Regression Models 73

First, pretend we already knew the correct value of 5. Then the least-squares
problem just asks what constant value © makes 7 {[yi — (x; — X)b] — u}?
smallest. That is, what single w is closest to the known numbers [y; — (x; — x)b]?
We already solved this problem in Section 4: The least-squares estimate is just
their average

D N VRIS B S 3 )
i=1 i=1 i=1

The last term is zero, from a property of the sample mean, so i1 = y. This works
out so nicely because we used a centered model.

We get the same result for any b; to get the best b, we are left with the problem
of minimizing Y7, [vi — ¥ — (xi — X)b]?. That is, we want a least-squares pre-
diction of the values y; — y from the model (x; — x)b. This is the simple proportion
model from Section 3; s0 b = Y7 (i — y)(xi — %)/ Y1_,(x; — X)2. This is
important enough to make into a theorem.

Theorem (linear regression by least squares). Given a vector of independent
variable settings X and a vector of dependent measurements 'y, then the least-
squares estimates of the prediction model y; = u+ (x; — x)b are given by il = y
and

b= i =D =3/ Y (x — %)
i=1 i=1

whenever not all values of X are the same.

(Why did I have to put in that last quibble?) You should check as an exercise that
the estimates in the theorem are the same as our standard estimates from the last
chapter, in case there are only two different values of the independent variable.

Example. Mapes and Dajda in 1976 collected data on the percentage of the time
that ill British children of various ages were taken to the doctor:

age 0 1 2 3 4 5 6 7
percentage | 70 | 76 | 51 | 62 | 67 | 48 | 50 | 51

age 8 9 |10 |11 |12 | 13| 14
percentage | 65 | 70 | 60 | 40 | 55 | 45 | 38

It is plausible that a very crude prediction of a child’s likelihood of being taken
to the doctor might be made by a linear regression model: If p stands for the
percentage of time an age group has gone to the doctor, and a for their age, then
we predict p = u + (@ — a)b. Actually, since the raw data were individual cases
of a child either going or not going, | should be using logistic regression here (see
1.8.2); but I have no access to the raw data. We shall do the best we can with a
least-squares estimate of a linear regression model. We calculate a = 7 years,
L= p =56.53%, > (a; —a)® =280, and > |_ (a; — a)(pi — p) = —440.
Then b = —440/280 = —1.5714. (You should check my arithmetic.) We arrive
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FIGURE 2.8. Doctor visits as a function of age

at a prediction equation
p =56.53 — 1.5714(a — 7).

This line is displayed on the scatter plot in Figure 2.8. For example, we predict
that a child of 9.5 years of age will be taken to the doctor about 52.6% of the time.
From looking at the graph, this is a very crude estimate; on the other hand, I think
I would trust it better than just the data values for 9 and 10 years.

2.6.2 ANOVA for Regression

We partition the sum of squares as in Section 3 to get

Z(yl _y) = Z |:YI _y b(x, _x)] +b2 Z(xl _x)Z

and then decompose the left-hand side as in Section 4:

Theorem (analysis of variance for simple linear regression). For the least-
squares estimates for simple linear regression,

Zn:yl? :n,z2+1322n:(x,» —i)2+2n:[yi — 5 —b(xi —i)]z-
i=1 i-1 i-1

As an exercise, you should interpret this as a statement about vectors at right
angles to each other. The new term we call the sum of squares for regression:
SSR= h? Yo — ¥)?; it has one degree of freedom. So now we can write down
an analysis of variance table:
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Source Sum of Squares  Degrees of Freedom Mean Square
Mean ny? 1 ny?
Regression SSR 1 MSR = SSR
Error SSE n—2 MSE = SSE/(n — 2)
Total TSS n

Example (cont.). In the problem of rates of going to the doctor, we have the
following:

Source Sum of Squares Degrees of Freedom Mean Square

Mean 47940.0 1 47940.0

Age 691.429 1 691.429
Error 1202.305 13 92.485
Total 49834 15

That gives us R> = 691.43/(691.43 4+ 1202.3) = 0.3651. Only about 37% of

the variability in our rates of going to the doctor is explained by the linear trend

we have proposed. On the other hand, F1 15 = $%23 = 7.4761 is much bigger

than one, so that even though our predictions do not accomplish a great deal, the
downward trend may be real.

2.7 Correlation

2.7.1 Standardizing the Regression Line

To see some qualitative features of the least-squares regression equation, divide
both the numerator and denominator of the slope estimate by n — 1,

L3 (i — D) —X)
ﬁ Z?:l(xi — ¥)?

so that the denominator is just the sample variance of x. Let us give the numerator
a name:

l;:

)

Definition. The sample covariance of sample measurement vectors x and y is
1 n
Sy = ——= Y (v — ) — %)
n—1l

Then we can write compactly b = sxy/s2. Now our regression equation, with i =
moved back to the other side of the equation, looks like y — y = (x — )E)sxy/sf.
These subtractions may remind you of standard scores; we can force them to
appear by dividing both sides by s, and rearranging to get

()A) - }_])/Sy = ((X - )_C)/Sx)(sxy/(sxsy))-

Let us play a standard mathematician’s game by giving the messy part a name:
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Definition. The sample correlation between x and y is
S Xl = D)u — )
SxSy \/ZLl(y,- — )2 (e — )2

We have canceled out the (r — 1)’s. For example, in the age/doctor—visit problem,
r = —0.604.

Txy =

Giving obvious names to the parts that are standard scores, we have a remarkably
compact formulation of simple least-squares regression:

Proposition. 1; = r,y1,.

2.7.2  Properties of the Sample Correlation

This last equation is not terribly useful for doing predictions, and it will help our
understanding only if we develop some insight into what the correlation means.
It will turn out to be a dimensionless measure of the degree to which the two
variables change together. First, let us apply the Schwarz inequality (see Section
3.5)tox; —x and y; — y to get that

n 2 n n
|:Z(Yi = )i — i)} < Z(yi —j)? Z(x,- — %)
i=1 i=1 i=1

always holds, where all the quantities are familiar from earlier in this section.
Dividing by the right-hand side, we find

(a0 =D -0
DIl VWG

This is just the square of the correlation, so always rfy < 1, which gives us the
first part of the following:

Proposition (properties of the correlation).

() —1<ry, =L

(i) rey = ryx.
(iil) 7xta,y = Fxy for any constant a.
(iV) rex,y = ryy for any constant ¢ > 0.
(V) Fex,y = —ryy forc < Q.

Notice that (ii) is true because x and y may be switched in the defining formula.
You should prove (iii)—(v) as exercises.

Parts (iv) and (v) are what we mean by calling a quantity dimensionless: Think
of ¢ as the conversion factor that you need to change one of the variables from feet
into meters, for example. In the process » does not change.

Now go back to the statement of the Schwarz inequality: It becomes an equality
just when the vector of quantities y; — y is exactly proportional to the vector of
quantities x; — x. That is, there is some constant » such that y; — ¥ = b(x; — X).
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But then y; = ¥ + b(x; — X), and the regression prediction is exactly true. The
points in the scatter plot are lined up perfectly along this straight line, and SSE =
0. In this case, because the inequality has become an equality, necessarily r)f‘, =1,
S0 ryy, = 1(ifb > 0)orr,, = —=1(if b < 0). '

Now summarize what we can conclude from knowing the correlation:

1. If r,, = 1, then all pairs (x, y) fall on an upward-sloping line.

2. If rp, > 1, there is an upward-sloping regression line; the larger it is, the
more tightly the pairs cluster about the line (we call this a positive association
between x and y).

3. Ifr,, = 0, aregression line is flat, and it does not help you predict one variable
from the other (we say x and y are uncorrelated).

4. If r,y < 0, there is a downward-sloping regression line; the more negative it
is, the more tightly the pairs cluster about the line (x and y have a negative
association).

5. If r,, = —1, then all pairs (x, y) fall on a downward-sloping line.

You might notice that because of our properties of the correlation, it simply does
not matter in Figure 2.9 where the origin is, or what units our axes are in, or which
axis is x and which is y.

For the example where » = —0.604, there is a moderate degree of negative
association. You might notice that in this example »> = R2. You should show as
an exercise that this is always true for simple linear regression. Of course, r may
be either positive or negative, and so tell us also the direction of the association.
On the other hand R? makes sense for any model estimated by least squares.

a
A A A
A A A
L EN Bu A A Ay
A A L A A
A A A A A A A
A AA 4 A A
A A A
A A N A AA A
= A -«
A A A A
A A P A A A A
A A A
A A
- A
A A
A = AA A ;A
A
A A A A
- A
A A A
- A
1 A | 1 1 1 1
iy =.5 ey =—.8

FIGURE 2.9. Examples of correlation
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2.7.3 Regression to the Mean

The regression equation #; = r,t, tells us something interesting right away. Since
r is always no bigger in size than one, it follows that |#;| < |, |: The standard score
of the prediction is no bigger in size than the independent-variable standard score.
We always predict that our experimental result will be closer to average than our
experimental setting. This is called regression to the mean; it was so named by the
pioneering mathematical biologist Francis Galton in the late nineteenth century,
and is the origin of the statistical use of the word regression. His example was that
the sons of tall fathers tend to be taller than average, but less so than their fathers;
the reverse is true for sons of short fathers. This correlation is about 0.5; so on
average, children regress halfway to the mean height of their generation, by our
equation.

2.8 More Complicated Models*

2.8.1 ANOVA for Two-Way Layouts

The method of least squares should tell us how to estimate the parameters of models
for more elaborate experiments. For example, what about two-way layouts? In the
full model %;;; = w;;, we know what to do; as before, we get a least-squares
estimate for each cell separately: fi;; = X;;. This is the standard estimate. But
now consider the centered parametrization X;;, = u + b; + ¢; +d;;. What are the
least-squares estimates for the parameters, and do we have an analysis of variance
to rate their importance? In Chapter 1, we claimed that the standard estimates were
appropriate only for balanced designs, when the numbers of observations of the
cells of each row were proportional to each other (see 1.4.3). Now we shall see
why we need that condition.

The standard estimates were i = %, b = Xis — X, ¢; = Xj, and d;; =
Xij — Xie — Xoj + x. We will proceed, as we did earlier, to decompose the sum of
squares in stages. First, we work as if the entire collection of observations were
a one-way layout split by levels of the column treatment j. Then we have the
analysis of variance

n/j n,,

] m ] m
Zzzxuk = ni’ + Z”-J(X-J —x) ZZZ(’C% x.])

i=1 j= i=1 j=1k
For the next stage, we will predlct all the residuals x;;, — X, ; with another one-
way layout model, using the levels of the row treatment i. Notice that the grand
mean of these quantities is zero, because they are residuals in a centered model.
Now we need to figure out their mean for the ith row: = Z, T (i —Xaj) =
Xie — lel(n,j/n,.)x.j This would lead to a compllcated decomposition of the
sum of squares, and worse, one that would turn out different if we had looked at
rows first. But that ratio of numbers of observations in the last term, ;; /n;, does
not depend on i, because we are talking about balanced designs. Substituting its
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constant value n,;/n, we get

1 m  Nij

— ZZ(xijk — Xej) = Xia —

J=1 k=1

Nej _ _
Xej = Xie — X

n

~.
I Ms
N

(as an easy exercise, check my claim that Zf}’zl(n.j/n)i.j = Xx). This, then, is
the predicted value of these residuals x;;x — x,; by row. The sum of squares of
residuals can then be expanded, again by the analysis of variance theorem:

1 nij I m N
ZZZ(XI]k_xo/) - Znu(xu_x) ZZZ(xl]k X _iio +)E)2
i=1 j=1k= i=1 j=1 k=

The last stage in the decomposition will see us predicting the current residuals
Xijk —Xej — Xjo +X With a full model. The average residual over all the observations
in the ijth cell is obviously X;; — X, ; — X;s 4 %, because only the first term changes
inside that cell. This is, of course, the standard estimate of interaction. We get a
third decomposition of sum of squares

nij m

l m
ZZZ(XUI{_)_C./‘_)Eic"f‘)z)z_zznu(xu X xu +X)2

i=1 j=1 k=1 i=1 j=

1 m  Nij

+ Z Z(Xuk -xlj)

i=1 j=1k

Combining the three stages, we get a result that is impressive-looking, but easy
to interpret:

Theorem (analysis of variance for a balanced two-way layout). If the design is
balanced, then

m  Nij

ZZZ)C’/]‘ =nx +Zn‘/(x‘/ _x) +ano(xlo _x)2

1
i=1 j=1k

m m  Nij

Znu(xz] — Xoj — Xia +x)2 +ZZZ(xz]k xl])

i
i=1j i=1 j=1 k=

We see the familiar TSS term, the SSM term, and the final SSE term. Since
we now have two treatment sums of squares, we will name them sum of squares
for columns, SSC = 37 naj(%.; — ¥)?; and sum of squares for rows, SSR =
Zﬁzl nie(Xie — %)%. (We will not be confused by the latter, because it is not a
regression problem.) Finally, we need the sum of squares for interaction,

I m
ZZn,](x,, — Xaj — Xio + %)%

i=1 j=1

Our complicated theorem just says TSS = SSM + SSC + SSR + SSI + SSE. Notice
that nothing in our result depends on the fact that we decomposed by columns, and
then rows. We are ready to put the terms into an ANOVA table:

+
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Source Sum of Squares Degrees of Freedom Mean Square
Mean SSM 1 MSM
Rows SSR -1 MSR

Columns SSC m—1 MSC

Interaction SSI (—1m-1) MSI
Error SSE n—Im MSE
Total TSS n

Once again, because most applications are not concerned with the overall mean,
we commonly reduce it to a decomposition of the corrected sum of squares SS =
SSC + SSR + SSI + SSE:

Source Sum of Squares Degrees of Freedom Mean Square
Rows SSR -1 MSR
Columns SSC m—1 MSC
Interaction SSI (—1)(m-1) MSI
Error SSE n—Im MSE
Total SS n—1

Example. Returning to the third-grade arithmetic test (see 1.4.1), we compute the
ANOVA table for the full model:

Source Sum of Squares  Degrees of Freedom Mean Square
Curriculum 156.8 1 156.8
Gender 16.2 1 16.2
Interaction 1.8 1 1.8
Error 774.8 16 48.425
Total 949.6 19

We find ourselves interested in several different F-statistics here. Comparing the
mean square for interaction to that for error, we get a ratio of 0.037. This is much
less than 1 (in fact, surprisingly so; you will rarely encounter such a small value
in practice). This suggests that there is no evidence that the change of curriculum
treats boys and girls differently.

Now we know that it is at least plausible to imagine that we had two separate
experiments: one that looked at differences in the scores for different curricula
and the other that looked at the scores of girls versus boys. Comparing the gender
mean square to error, we get an F-statistic of 0.335; still less than 1. We have no
evidence that boys really tended to do better. Comparing the curriculum to error,
we get a ratio of 3.24. Experience will teach you that this is not amazingly larger
than 1; still, it is some evidence that the students using the new curriculum are
really doing better.

2.8.2 Additive Models

What about additive models like %;;x = u+ b; +¢; (that is, which neglect interac-
tions) for balanced two-way layouts? Going back to the ANOVA for full models,
simply combine the first two stages, skipping the decomposition involving the
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interaction:

n;j m 1

nZ% 4+ nej(Ee; — X+ Y mia(Fie — £)°
j=1 i=1

=
<IN
=~

|

This tells us that the decomposition of the observations
Xijk = X + (Xoj — X) + (Xja — X) + (Xijx — Xoj — Xia + X)

is, by the Pythagorean theorem, orthogonal. That is, the four n-dimensional vectors
consisting of each of the four terms on the right-hand side are at right angles to
one another. Remember that the additive model has standard estimates & = &,
B,- = Xis — X, ¢; = X,; — x. Therefore, our prediction is the sum of the first
three vectors, and it is at right angles to the fourth, residual, vector. Apparently,
the standard estimate consists of a perpendicular projection into the subspace of
additive predictions; therefore, the residual vector is as short as it could be. This
means that our estimate is least squares.

Proposition. The standard estimates of the centered, additive model for a
balanced two-way layout are least squares.

The ANOVA table looks just like the one for the full model, except that the
interaction and error rows have been summed into a single, error, row.

Example. We concluded earlier that the additive model worked quite adequately
in the arithmetic curriculum problem. Its ANOVA table for its corrected sum of
squares is as follows:

Source Sum of Squares Degrees of Freedom Mean Square
Curriculum 156.8 1 156.8
Gender 16.2 1 16.2
Error 776.6 17 45.68
Total 949.6 19

The method of least squares will still find the parameters for a centered, additive
model from an unbalanced experiment, but the answer is more complicated and
raises some questions better left for advanced courses. Furthermore, least-squares
estimation may be applied to estimating multiple-regression models. You will do
some important cases as exercises.

Unfortunately, the method of least-squares is not really appropriate for estimat-
ing loglinear contingency table models and logistic regression models, which must
wait for a later chapter.
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2.9 Summary

We first suggested that the ordinary idea of geometrical distance, applied to sample
vectors and their model predictions, gives us a way to tell a good model from
less good ones (2.1). Therefore, the failure of a model w to fit the data may be
measured by SSE = "7, (x; — u;)? (2.2). When we choose our model by making
this quantity as small as possible, we are applying the principle of least squares.
We then used this principle to find the best estimate in a simple proportionality
regression model y = xb and concluded that we must solve a normal equation
Y xivi = by x2 for b (3.2). This had an intriguing consequence: The
standard estimates, based on sample means, for the measurement models from
Chapter 1 are really least-squares estimates (4.1). The natural measure of how well
these means described a sample was the sample variance s = = 1 (i —x)?
(4.2). This led to a method for evaluating how well more general models are doing,
called the Analysis of Variance (ANOVA), based on generalizations of the theorem
of Pythagoras. For example, in a one-way layout we get

k  n;

ZZ 2 =njL —I—Zn bz—l—ZZ(xl] Q= b)),

i=1 j=1 i=1 j=
so that the second term on the right measures how important the levels of the
treatment were, and the last term is the SSE again (5.2). This allowed us to interpret
degrees of freedom geometrically, as the dimension of a subspace. We then applied
least squares to simple linear regression models y; = u + b(x; — x); the estimates
are i = y and

> i — )i — x)
il =%

To interpret these, we introduced the idea of the correlation between two
measurements,

b= (6.1).

R v RS ) Uty B -

Vo0 = 52 T — 22

Finally, we showed that several more sophisticated measurement models, involving
cross-classification, may also be estimated by least squares (8.2).

2.10 Exercises

1. The Fahrenheit boiling point of water is 212 degrees at sea level. You measure
the boiling point of water from six cheap thermometers, all from the same
manufacturer, getting 214.4, 211.8, 210.6, 212.4, 212.0, and 210.8. What are
the SSE and Euclidean distance of this sample from the correct value? What
are the MSE and RMSE?
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2. Draper and Smith in 1981 reported a study of the relationship between con-
centration of aflatoxin (parts per billion) and percentage of contaminated nuts
in batches of peanuts:

a.

b.

toxin % bad toxin % bad toxin % bad
3.0 0.029 18.8 0.058 46.8 0.189
4.7 0.021 18.9 0.068 58.1 0.123
8.3 0.018 21.7 0.092 62.3 0.202
9.3 0.029 21.9 0.030 70.6 0.145
9.9 0.043 22.8 0.015 71.1 0.212
11.0 0.039 24.2 0.067 71.3 0.179
12.3 0.044 25.8 0.142 83.2 0.170
125 0.028 30.6 0.013 83.6 0.282
12.6 0.111 36.2 0.042 99.5 0.358
15.9 0.039 39.8 0.091 | 111.2 0.342
16.7 0.018 44.3 0.141
18.8 0.025 46.8 0.137

Draw a scatter plot relating percentage of contaminated peanuts to
concentration of aflatoxin.

Since measuring the concentration of aflatoxin is much easier than
counting contaminated peanuts, we would like to predict the percent-
age contaminated, using the aflatoxin concentration, perhaps by simply
multiplying the concentration by some constant. Specify and estimate the
parameter of such a model, by the method of least squares, and graph the
line on your scatter plot.

. You measure a 50.0 parts per billion aflatoxin in a new batch of peanuts.

What prediction does your model provide for the percentage of contam-
inated peanuts in that batch? To get some idea of the accuracy of your
prediction, estimate the root-mean-squared error for predictions in general.

3. Compute both sides of the Schwarz inequality for the toxin and percentage
of bad peanut vectors in Exercise 2 and note how close it is to an equality.
Prove properties (ii) and (iii) of the sample mean x.

For the 7 measured ratios of the mass of the earth and moon from Exercise 1
of Chapter 1:

=

a.

b.

Calculate the sample variance and sample standard deviation using the
defining formula s? = -2 3" (x; — X)%.

Now redo your calculation of the sample variance using the computational
formulas? = ;15 377 (v —v)* — ;%3 (¥ — v)? first using the traditional
value v = 0, then using an intelligent choice v = 81.3. Be sure to
use exactly six significant figures for every step in your calculations.
Compare your answers to each other and to (a).

In recent years, many alternative methods of estimating the center of a sample
of measurements have been proposed. For a newly discovered subatomic par-
ticle, 15 measurements of its mass have been carried out. Being old fashioned,
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10.

11.

12.

13.

14.

15.
16.

17.
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you find the sample mean, 124 Mev, and its sum-squared error, SSE = 1570.
Three new methods have been proposed: From the same data, Larry comes
up with a center estimate for which he claims SSE = 1625; Moe suggests
one for which he claims SSE = 1528; and Curly proposes one for which he
claims SSE = 1591.

a. At least one of the three has made an arithmetic error. Which one, and
why?

b. Assuming that the other two made no mistakes, what are the possible
values of the estimates they might have made of the particle’s mass?

. Prove properties (ii) and (iii) of the sample variance s2 and the sample standard

deviation s,.

. Prove the properties of standardized measurements.
. Show that for the one-way layout model, the vector form of the analysis of

variance for the one-way layout indeed says exactly the same thing as the
theorem. Then prove the proposition about the mutual orthogonality of the
three vectors f, b, and é.

Construct the analysis of variance table for the one-way-layout model for the
DBH level data from Exercise 2 from Chapter 1. Calculate the F-statistic for
treatment. Does it suggest that clinical state made a real difference in patient
DBH level?

Construct the analysis of variance table for the one-way-layout model for the
shrimp-net data from Exercise 3 of Chapter 1. Calculate the F-statistic for
brand of net. What do you conclude about the importance of which net you
use?

Calculate the Kruskal-Wallis statistic K for the shrimp-net data from Exercise
3 of Chapter 1. What do you conclude about the importance of which brand
of net to use?

Prove that our least-squares estimates for a simple linear regression model
are exactly the same as the standard estimates, in case (as in 1.5.1) there are
exactly two different values of the independent variable.

In the data of Exercise 2 estimate a two-parameter simple linear regression
model p = u+ (r — )b, where p is the percentage of bad peanuts and 7 is the
parts per billion of aflatoxin. Predict once again the percentage of bad peanuts
you would expect to find in a batch with 50.0 parts per billion aflatoxin.

a. Construct the ANOVA table for this regression problem. Compute the
RMSE for predictions under this model. Compare it to the RMSE for the
simpler model of Exercise 2. What do you conclude?

b. Calculate the correlation r between percentage of contaminated nuts and
concentration of aflatoxin.

Prove parts (iii)—(v) of the properties of sample correlations.

Show that for least-squares estimates of simple linear regression we always

have 2 = R?

a. Forthe experimental data of Exercise 6 in Chapter 1, construct the ANOVA
table for the additive model. Now do the same for the full model.
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b. Compute F-statistics for the presence of interaction, a diet effect, and an
exercise effect. What do you conclude?

2.11 Supplementary Exercises

18.

19.

20.

You extract a sample of 25 resistors from a batch that are supposed to be 100
ohms. Here are their actual resistances:

83 8 109 100 89
82 97 83 107 87
105 107 94 96 85
96 97 100 83 96
92 91 89 97 84

a. Find the sample mean and sample standard deviation for these numbers.
b. Construct a 2-s interval for this sample. Find the standard score for a
resistance of 83 ohms.

One alternative to using the principle of least squares to estimate linear models
is the principle of least total error, which just says to choose parameter
values that make the sum of the absolute values of the residuals as small as
possible. We will do this for the simple location model, which finds a center
w for a collection of n measurements x; by minimizing TE = Y, |x; — ul.
We will proceed in stages, for the special case that » is odd. First, sort your
observations in ascending order, and write the results x(;) < x2) < -+ < x(n).
Now write the total error as the sum of the first and last term, then the second
and next-to-last, and so forth, until only the middle term is unpaired:

(n—1)/2
TE= Y (Ix¢) — il + Xe1-iy — l) + X[z — 1.
i=1

a. Prove the triangle inequality |a — b| + |c — b| > |c — a| for any three
numbers a, b, ¢, noting that it is an equality exactly when b is between a
and c.

b. Use (a) to conclude that TE > Zf”:_ll)/z(x(n+1_,-) — X)) + 1X[t2)/2] — Ml
For what value of u is this an equality, which also makes TE as small as
possible? This is our least total error location estimator ji; have you seen
it before?

¢. Compute & and TE for the mass ratios of Exercise 5. (Notice that you
found a formula for TE in (b) that does not directly mention the value ().

As yet another way of measuring the error in a collection of n measurements
x;, perhaps we should just average the squared differences between them,
(x; —x;)2. Using the algebraic fact that there are n(n — 1)/2 pairs of different
observations, this would be d* = -2 3", (xi — x;)°.

a. Compute d? using this formula for the water temperatures of Exercise 1.
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21.

22,

23.

24.

25.

26.

27.
28.
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b. Show thatalwaysd? = 2. 3" (x;—)? = 2s%; 50 we have nothing very
new here. (However, this provides our first insight into why we usually
divide by n — 1 in computing variances. It comes from the formula for
counting pairs, to which we will return.)

In Exercise 20 from Chapter 1, the telephone bill problem, construct an
ANOVA table. Now compute the F-statistic for the effect of choice of carrier.
What do you conclude?

In Exercise 23 from Chapter 1, the pizza problem:

a. Construct an ANOVA table for the additive model. Calculate an F-statistic
for the importance of location. What do you conclude?
b. Is it possible to carry out (a) for the full model? Why or why not?

Show that for the situation of Exercise 27, Chapter 1 (three equally spaced
values of the independent variable, equal numbers of observations at the
smallest and largest value), the standard estimate you proposed for the simple
linear regression model was in fact the least-squares estimate.

The pressure and volume of a fixed mass of an ideal gas follow the law
PVY = C under adiabatic (insulated) compression, where C and y are
constants. We get the following results for a quantity of real gas:

P (Ib/sq.in) V (cu. in.)

212 10
111 15
64 20
46 25
36 30
25 35

a. Estimate the constants C and y by simple linear regression by predicting
pressure from the volume to which you have compressed your gas. Hint:
our law is not linear, so you will have to take logarithms of both sides first
to make it so.

b. Thoughwe do not like to extrapolate, our apparatus will not let us compress
the gas to 5 cubic inches. Use the results in (a) to estimate the pressure in
that case.

Using the theorem of the analysis of variance for simple linear regression,
define the three mutually orthogonal vectors that sum to y, and prove that
they are indeed orthogonal.

Find the parameter estimate for the simple proportions regression model y; =
bx; using the principle of least total error (Exercise 19).

Use the method of Exercise 26 to estimate the Hubble parameter .

Given an observation vector x and a model vector u:

a. Find an inequality connecting the SSE and the total error TE defined in
Exercise 19. Hint: Apply the Schwarz inequality to the vector 1 (all ones)
and the vector whose coordinates are |x; — ;|-
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b. Translate it into a more useful relationship between the RMSE and the
mean absolute error MAE = TE/n.

To estimate a multiple regression model 3 = u + (x1 — x1)b1 + (x2 — X2)by,
we might naively hope that the estimates would be 1 = ¥, by = sm/s_fl,
by = sm/sfz. This is usually false, but for one important sort of experiment it
works. We say that the design is orthogonal if s,,,, = 0. Show, by reasoning
in stages, that in this case the naive estimates are the least-squares estimates.
We measure the efficiency of a polymerization reaction for various vessel
temperatures and pressures:

efficiency (%) temperature (F) pressure (Ib/sq in.)

74 250 100
81 300 100
85 350 100
76 250 120
85 300 120
88 350 120
76 250 140
82 300 140
91 350 140

a. Using the method of Exercise 29, show that this design is orthogonal, and
find a linear prediction equation for efficiency in terms of temperature and
pressure.

b. Plot your model, using the method of Chapter 1, Section 6. How well does
the linear equation seem to describe your data?

c. At 320 degrees and 115 pounds per square inch, what would you expect
the percent efficiency of this reaction to be? Find the RMSE , to get some
idea how good your prediction is likely to be.

a. Since we already know that the least-squares estimate for centered simple
linear regression is ;1 = ¥, estimate b instead by calculus: That is, mini-
mize Y7, [yi — § — b(x; — X)]? as a function of b by differentiating to
find an extremum and differentiating again to see whether you have found
a minimum.

b. Do the same thing to estimate the slopes (4’s) in the multiple regression
model y = p + (x1 — X1)b1 + (x2 — X2)bo, Where still & = y. Do not
assume that the design is orthogonal. Take partial derivatives of the sums
of squares for each b in turn to get a system of normal equations, two linear
equations in two unknowns. (You need not take second derivatives here.)

Use calculus as in Exercise 31 to find the normal equations for estimating

the model $ = u + b(x — x) + c(x — x)? in a regression problem with one

independent variable. (This is called polynomial regression. You can imagine
how to generalize it to polynomials of higher degree.) Solve them for the
aflatoxin data of Exercise 2. Repeat the prediction and error estimate of part

(c), and compare.



CHAPTER 3

Combinatorial Probability

3.1 Introduction

We have seen useful ways of summarizing complicated data sets in the last two
chapters. We have taken that process about as far as we can without developing
ways of deciding whether our models are reasonable and how accurate our param-
eter estimates are, a process called statistical inference. The great breakthrough on
this problem came about when people realized that we needed mathematical mod-
els for the origin of our variability, as well as for the important natural processes
they were studying. The statistician’s favorite mathematical tool for doing this is
probability. An example will introduce one application of probability to statistical
inference:

Example. The great statistician R. A. Fisher described a party he attended in
which the hostess was serving tea with milk (this was England). She claimed that
she could tell whether her maid had poured tea or milk into the cup first, just by
tasting. Fisher was skeptical. He proposed an experiment to test her claim: He
would put the tea first in some cups, and the milk first in the others, stir up the
contents, scramble the cups, then let her taste them all and announce which ones
had tea poured first. The more she got right, the more impressed he would be with
her claim. This is a statistical experiment because we use replication; we pour a
number of cups. After all, few of us would be impressed if she guessed correctly
what had happened with a single cup.

How do we interpret the results? Fisher’s approach, called classical or frequen-
tist inference, starts before the experiment. We specify all possible outcomes. For
example, with six cups we might write the numbers 1, 2, 3 on the bottom of those
cups that are to get tea first and 4, 5, 6 on those that will get milk first. Then we
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pour the beverages: Let the lady taste and tell us which three she believes got tea
first. Here are her possible choices of the cups that perhaps got tea first:

123 | three correct | 145

124 146

125 156

126 245 | one correct
134 | two correct 246

135 256

136 345

234 346

235 356

236 456 | none correct

Fisher suspected that she was just guessing; so just by accident any of these
possibilities might have arisen. If she gets all three cups right, that would happen
only one time in twenty; because we have listed twenty different things she could
have said. The statistician would conclude that either she had been fairly lucky, or
there is some substance to her claim. On the other hand, if she gets two cups out
of three, she might say that this supported her claim. But Fisher would point out
that fully ten of our twenty cases, or half the time, she would get at least some two
of the three cups right by luck. No doubt he would remain a skeptic.

In the next several chapters, this kind of reasoning will help us evaluate some
of our models for counted data. Eventually, it will do the same for measurement
models.

Time to Review

Set notation
Integration

3.2 Probability with Equally Likely Outcomes

3.2.1 What Is Probability?

In the example above, we invented a measure of how rare or surprising various
possible results of our experiment are, in light of an opinion about what is really
going on. Intuitively, the probability will be the proportion of times we expect the
results to come out in some particular way, when the experiment has yet to be done.
The calculation in this case was particularly simple but widely useful. When we
believe that a number of possible outcomes are equally likely, then the probability
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of some event is
number of outcomes leading to event

robability of event = -
P 4 number of outcomes possible

Therefore, the lady’s probability of two of three cups or better was 10/20, or 0.5.
Let us turn this into some formal notation:

Definition. An event is a set whose elements are distinct outcomes.

Intuitively, an event is a collection of interest to us of the individual things that
we believe might happen in some experiment not yet performed.

At this point, you should review the basic concepts and the notation of mathe-
matical set theory. Events are often represented by capital letters (A, B, ...). The
number of outcomes in a finite event will be denoted by |A|. We will talk about
the probability that an event A will happen when the set of outcomes we believe
possible is B, calling it the probability of A relative to B (or given B, or condi-
tioned on B); we denote it by P(A | B). Remembering that A N B, the intersection
of A and B, is the set of outcomes in B that are also in the event A, our ratio above
suggests the following:

Definition. A probability space with equally likely outcomes, has
|ANB|
Bl
where A and B are events, and B is not empty and has a finite number of outcomes.

P(A | B) =

Ifitis obvious what the set of possibilities B should be in a particular problem, we
will often use the shorthand P(A) for P(A | B), called an unconditional probability.
Notice that in a way, equally likely is being defined here; it is any circumstance in
which the probability of an event may be determined by the simple proportion of
outcomes from that event.

3.2.2 Probabilities by Counting

Probabilists (mathematicians who study probability) traditionally use urns, which
are just opaque jars containing a number of marbles of the same size, weight,
and surface texture, to construct probability models. Our favorite urn, which will
appear through much of the rest of the course, will contain some number W of
white marbles and some number B of black marbles (Figure 3.1).

Our experiment is performed by stirring up the marbles so well that we have no
idea which marbles are where. Then someone reaches in without looking and
removes a marble. Is it black or white? This procedure matches our intuitive notion
that all the marbles are equally likely to be chosen. The probability that the marble
will be white is then

|white marble and fromjar| W
[from jar| ~ W+B’

P(white marble | from jar) =



92 3. Combinatorial Probability

FIGURE 3.1. Anurn

Even though we will use urns mainly as simple models for probabilistic experi-
ments, they have practical applications. For example, what if we had decided to
test a new medical procedure on a certain number of patients? It is considered
good policy also to use the standard medical regimen on a similar set of patients,
called controls. A simple way to help ensure that the controls are a group of pa-
tients similar to the ones who get treated, randomization, might work as follows:
If we decide to test the procedure on W patients and have B controls, simply put
those numbers of white and black marbles in the urn and stir it up. Now as each
qualified patient appears at the hospital, we draw out a marble. If it is white, the
patient gets the new treatment, if black, the old treatment. By the time the urn
is empty, we have our full complement of subjects. The very unpredictability of
patient assignments is the great virtue of this method: It makes it very difficult for
experimenters, consciously or unconsciously, to bias the choice of patients either
for or against the new procedure.

One nice feature of the basic urn experiment is that it can be arranged so that
the probability of a white marble is any fraction (rational number) between 0
and 1. However, as we shall see, there is a famous geometrical experiment (the
Buffon needle problem) in which the probability of an event is 2/7. (This number
is known to be irrational; so it is not a fraction, and the decimal representation
begins 0.63661977. . ..) We cannot construct an urn to give this exact probability.
However, we can construct a sequence of urn models that gives probabilities as
close as we please to 2/7r: 6 white marbles and 4 black marbles gives probability
0.6 for drawing a white marble; 64 and 36 gives probability 0.64; 637 and 363
gives probability 0.637; 6366 and 3634 gives probability 0.6366; and so forth. For
reasons we shall discover, it would take several million sets of draws from the
urn before we were likely to notice that even the third of our sequence of models
had the wrong probability. This process, constructing a sequence of models whose
probabilities approach that of another experiment, will be one of our mostimportant
mathematical tools. (It will be called convergence in distribution.)

So calculating probabilities is trivial so far, because all we have to do is count.
But that is not as easy as it sounds. In Fisher’s actual tea-tasting experiments, there
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were four cups with tea first and four with milk first. To proceed with our analysis
we would have to list all sets of four out of eight cups his hostess might guess:
1234,1235, 1236, . . .. This would take much longer than before—you should do it
as an exercise. Fortunately, there is a branch of mathematics, called combinatorics,
that studies counting. Some of its results will make life much easier for us.

3.3 Combinatorics

3.3.1 Basic Rules for Counting

The counting methods we need will be based on only two simple principles. The
first notes that if you want a complete count of the outcomes in two events that do
not overlap, you may count them separately and add the two counts. In our formal
notation, A N B = ¢, where ¢ is the event with no outcomes, means that the two
events have no outcome in common. The union of A and B, A U B, is, of course,
the event that the outcome is either in A or in B.

Addition Rule. Inthecase ANB = ¢, |AUB| = |A| + |B|.

This rule is obvious enough, though we will use it very often. For example, in a
poll of candidates for a political office, candidate DiBiasi might drop out of the race
between the time of the poll and the time of the statistical analysis. Then it would
make sense to combine the formerly distinct categories DiBiasi and Undecided
into a single category and sum the numbers of subjects in the two old categories.

The second of our two principles is less obvious. We will illustrate with an
example:

Example. The menu for a Chinese restaurant has on it three appetizers: hot and
sour soup, egg rolls, and steamed dumplings. There are four main courses: pepper
beef, lemon chicken, sweet and sour pork, and shrimp stir-fry. A meal consists of
one appetizer and one main course; how many meals are possible? It would be
easy to list them, but there is a shortcut: Construct a table.

Main Course

beef chicken pork shrimp
soup
Appetizer egg rolls X
dumplings

Each cell (rectangle) corresponds to a distinct meal; for example, the marked
cell corresponds to a lunch of egg rolls followed by sweet and sour pork. The
number of cells is just rowsxcolumns, 3 x 4 = 12 meals.

This should remind you of the number of distinct treatment levels in a two-way
layout with / rows and m columns, which was of course Im (see 1.4.1). To formalize
this idea, recall from mathematics that A x B, the Cartesian product of the sets
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A and B, is the set of all ordered pairs (a, ) in whicha € A and b € B. In the
restaurant example, we would write our meal (egg rolls, sweet and sour pork).

Multiplication Rule. |A x B| = |A| - | B|

Example. Your daughter’s best friend was assigned to the most popular teacher
in their elementary school grade level, supposedly by random assignment, in each
of the first four grades. This makes you suspicious that the assignments were not
done honestly. There are five teachers in each grade. You reason, by using the
multiplication rule three times, that there are 5 x 5 x 5 x 5 = 625 different teacher
assignments possible, one factor per grade. Therefore, the probability that the girl
would be this lucky is 1/625 = 0.0016, which sounds very lucky indeed.

3.3.2 Counting Lists

We will now use these principles to derive three special formulas that will, with
ingenuity, solve most of the counting problems faced by statisticians. Imagine that
we have an urn with n marbles in it; but now all the marbles have labels, so we
can tell them apart once they are out of the jar.

Example. Let the 26 marbles correspond to the letters of the Roman alphabet.
We could create all six-letter “words” by removing letters from the jar, such as
GXNGEK. Notice that we allowed G to appear twice, as often happens with real
words, by replacing its marble after it was used the first time.

We could potentially make all such words by the following procedure:

Urn Problem 1. Remove a marble, write down its label, and put it back. Now
remove a second marble, write down its label below the first one, and put it back.
Continue until the list has k entries in it. How many lists are possible? We call this
counting ordered lists with replacement.

The teacher assignment problem was an instance of this; the same solution
technique works. We have n choices for each of the k stages, so the multiplication
rule tells us that we have

n-n-n---n=nk
N——————
k copies
We have established the following result:

Proposition. The number of ordered lists of k objects taken with replacement from

a set of n objects is n*.

Example (cont.). In the six-letter word problem, n = 26 and k = 6; therefore,
we could get 26° = 308,915,776 different words.

Example. Eight swimmers are about to race in the Olympic games. The first to
finish will get a gold medal, the second a silver medal, and the third a bronze. How
many distributions of medals are possible? The gold medal can go to one of eight
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competitors. But then the silver medal can go to only one of seven swimmers,
because no one may receive two. Finally, the bronze can go to one of the six
remaining swimmers. By the multiplication rule, there are 8 - 7 - 6 = 336 placing
orders.

Our most recent formula does not apply; this is an instance of

Urn Problem 2. Choose a marble, write it down, leave it out, and repeat until you
have a list of kK marbles. How many lists are possible? This is counting ordered
lists without replacement; we call them permutations of n taken k at a time. The
mathematical symbol for the number of lists is (r)y.

The Olympic example, which is counted by (8)3, shows us how to do this:
Proposition. (n)y =n-n—-1)-n—-2)---(n — k + 1).

The last factor appears because before the selection of the last marble, we have
removed k — 1 of the n marbles, leaving n — (k — 1) to choose among.

Example. Of the 50 United States, 15 have an Atlantic coastline. A researcher
picks 6 states at random for a detailed study of their emergency preparedness for
severe wind storms. Obviously, it would be a poor sample group that did not include
any Atlantic coastal states, which are subject to hurricanes and nor’easters. What
is the probability that her sample, by accident, will include no Atlantic coastal
states?

First notice that if she picks her states in some sequence, then she essentially has
Urn Problem 2, and there are (50)¢ = 50 - 49 - 48 - 47 - 46 - 45 = 11,441,304,000
possible sequences of choices. That will be the denominator, if we assume that
they are all equally likely. If we consider the event that they are all chosen from
among the 50 — 15 = 35 non-Atlantic states, these peculiar sample sequences may
be chosen in

(35)g =35-34-33-32-31-30=1,168,675,200
ways. Therefore, the probability of getting a bad sample is

. 1,168,675,200
P (6 non-Atlantic|6 states) = 11441304000 = 0.102.

Unfortunately, this is rather likely; about one time in 10.

Example. A product testing lab wants to evaluate 5 new automobiles. Each driver
will try all the cars. There may be an order effect; for example, there may be an
unconscious bias in favor of the first car driven. Therefore, different drivers are
to test the 5 cars in different orders. How many such orders are possible? This is
like drawing the names of the cars from a jar without replacement; so we have
(5)s =5-4-3-2-1 =120 sequences.

This last should be familiar: (n), = n! (n factorial), which we call simply
the permutations of » things. This leads to a useful alternative formula for per-
mutations: To find the total number of complete lists (n!), we arrange the first k
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marbles in (n); ways, then the remaining n — k in (n — k)! ways. Therefore, by the
multiplication rule, n! = (n);(n — k)!. We may then solve for the unknown term:

Proposition. (n); = n!/(n — k)!

For example, in the medal problem, we could have calculated (8); = 8!/5! =
40320/120 = 336. Notice that our new formula is rarely convenient for compu-
tation: The numbers stay much smaller if we use the original formula. It will be
useful, however, for algebraic manipulation.

3.3.3 Combinations

You may have complained that the Atlantic states problem was not explained
realistically. We talked about selecting our sample in order; but you may know
that for purposes of the study of emergency planning, the order of choice simply
did not matter. It was just a set of 6 states. Therefore, we have counted far too
many samples, because we have counted (Maine, Oregon, Nebraska, Rhode Island,
Texas, West Virginia) separately from (Oregon, Texas, Nebraska, West Virginia,
Rhode Island, Maine). We need another counting formula:

Urn Problem 3. Remove a handful (set) of k marbles from a jar containing . How
many sets are possible? This is counting unordered sets, without replacement; we
call them combinations of n things taken k at a time. The mathematical symbol
for the number of sets is (Z) sometimes read “n choose k.”

Some ingenuity will be required to find the number of combinations. | propose
that we do it by counting the number of permutations in Urn Problem 2 by a slightly
different procedure: (1) Remove a handful of k marbles from the jar of ; then (2)
place the unordered handful in an ordered row on the table. We can construct every
permutation in this way. The multiplication rule says that we multiply the number
of ways each of the two steps was performed to get the total number of possible
lists. Therefore, (n);, = (’;) - (k)x. The first and third counts are known, 