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Chapter 1

Introduction

Econometrics is the study of estimation and inference for economic models using economic data.
Econometric theory concerns the study and development of tools and methods for applied econo-
metric applications. Applied econometrics concerns the application of these tools to economic
data.

1.1 Economic Data

An econometric study requires data for analysis. The quality of the study will be largely determined
by the data available. There are three major types of economic data sets: cross-sectional, time-
series, and panel. They are distinguished by the dependence structure across observations.

Cross-sectional data sets are characterized by mutually independent observations. Surveys are
a typical source for cross-sectional data. The individuals surveyed may be persons, households, or
corporations.

Time-series data is indexed by time. Typical examples include macroeconomic aggregates,
prices and interest rates. This type of data is characterized by serial dependence.

Panel data combines elements of cross-section and time-series. These data sets consist surveys
of a set of individuals, repeated over time. Each individual (person, household or corporation) is
surveyed on multiple occasions.

1.2 Observational Data

A common econometric question is to quantify the impact of one set of variables on another
variable. For example, a concern in labor economics is the returns to schooling — the change in
earnings induced by increasing a worker’s education, holding other variables constant. Another
issue of interest is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns
to schooling, an experiment might randomly divide children into groups, mandate different levels
of education to the different groups, and then follow the children’s wage path as they mature and
enter the labor force. The differences between the groups could be attributed to the different levels
of education. However, experiments such as this are infeasible, even immoral!

Instead, most economic data is observational. To continue the above example, what we
observe (through data collection) is the level of a person’s education and their wage. We can
measure the joint distribution of these variables, and assess the joint dependence. But we cannot
infer causality, as we are not able to manipulate one variable to see the direct effect on the other.
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For example, a person’s level of education is (at least partially) determined by that person’s choices
and their achievement in education. These factors are likely to be affected by their personal abilities
and attitudes towards work. The fact that a person is highly educated suggests a high level of
ability. This is an alternative explanation for an observed positive correlation between educational
levels and wages. High ability individuals do better in school, and therefore choose to attain higher
levels of education, and their high ability is the fundamental reason for their high wages. The point
is that multiple explanations are consistent with a positive correlation between schooling levels and
education. Knowledge of the joint distibution cannot distinguish between these explanations.

This discussion means that causality cannot be infered from observational data alone. Causal
inference requires identification, and this is based on strong assumptions. We will return to a
discussion of some of these issues in Chapter 11.

1.3 Random Sample

Typically, an econometrician has data

{(y1, x1) , (y2, x2) , ..., (yi, xi) , ..., (yn, xn)} = {(yi, xi) : i = 1, ..., n}

where each pair {yi, xi} ∈ R × Rk is an observation on an individual (e.g., household or firm).
We call these observations the sample.

If the data is cross-sectional (each observation is a different individual) it is often reasonable
to assume they are mutually independent. If the data is randomly gathered, it is reasonable to
model each observation as a random draw from the same probability distribution. In this case the
data are independent and identically distributed, or iid. We call this a random sample.
Sometimes the independent part of the label iid is misconstrued. It is not a statement about the
relationship between yi and xi. Rather it means that the pair (yi, xi) is independent of the pair
(yj , xj) for i 6= j.

The random variables (yi, xi) have a distribution F which we call the population. This
“population” is infinitely large. This abstraction can a source of confusion as it does not correspond
to a physical population in the real world. The distribution F is unknown, and the goal of statistical
inference is to learn about features of F from the sample.

At this point in our analysis it is unimportant whether the observations yi and xi come from
continuous or discrete distributions. For example, many regressors in econometric practice are
binary, taking on only the values 0 and 1, and are typically called dummy variables.

1.4 Economic Data

Fortunately for economists, the development of the internet has provided a convenient forum for
dissemination of economic data. Many large-scale economic datasets are available without charge
from governmental agencies. An excellent starting point is the Resources for Economists Data
Links, available at http://rfe.wustl.edu/Data/index.html.

Some other excellent data sources are listed below.
Bureau of Labor Statistics: http://www.bls.gov/
Federal Reserve Bank of St. Louis: http://research.stlouisfed.org/fred2/
Board of Governors of the Federal Reserve System: http://www.federalreserve.gov/releases/
National Bureau of Economic Research: http://www.nber.org/
US Census: http://www.census.gov/econ/www/

2



Current Population Survey (CPS): http://www.bls.census.gov/cps/cpsmain.htm
Survey of Income and Program Participation (SIPP): http://www.sipp.census.gov/sipp/
Panel Study of Income Dynamics (PSID): http://psidonline.isr.umich.edu/
U.S. Bureau of Economic Analysis: http://www.bea.doc.gov/
CompuStat: http://www.compustat.com/www/
International Financial Statistics (IFS): http://ifs.apdi.net/imf/

3



Chapter 2

Matrix Algebra

This chapter reviews the essential components of matrix algebra.

2.1 Terminology

A scalar a is a single number.
A vector a is a k × 1 list of numbers, typically arranged in a column. We write this as

a =

⎛⎜⎜⎜⎝
a1
a2
...
ak

⎞⎟⎟⎟⎠
Equivalently, a vector a is an element of Euclidean k space, hence a ∈ Rk. If k = 1 then a is a
scalar.

A matrix A is a k × r rectangular array of numbers, written as

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
...

ak1 ak2 · · · akr

⎤⎥⎥⎥⎦ = [aij ]
By convention aij refers to the i0th row and j0th column of A. If r = 1 or k = 1 then A is a vector.
If r = k = 1, then A is a scalar.

A matrix can be written as a set of column vectors or as a set of row vectors. That is,

A =
£
a1 a2 · · · ar

¤
=

⎡⎢⎢⎢⎣
α01
α02
...
α0k

⎤⎥⎥⎥⎦
where

ai =

⎡⎢⎢⎢⎣
a1i
a2i
...
aki

⎤⎥⎥⎥⎦
4



are column vectors and
α0j =

£
aj1 aj2 · · · ajr

¤
are row vectors.

The transpose of a matrix, denoted B = A0, is obtained by flipping the matrix on its diagonal.

B = A0 =

⎡⎢⎢⎢⎣
a11 a21 · · · ak1
a12 a22 · · · ak2
...

...
...

a1r a2r · · · akr

⎤⎥⎥⎥⎦
Thus bij = aji for all i and j. Note that if A is k × r, then A0 is r × k. If a is a k × 1 vector, then
a0 is a 1× k row vector.

A matrix is square if k = r. A square matrix is symmetric if A = A0, which implies aij = aji.
A square matrix is diagonal if the only non-zero elements appear on the diagonal, so that aij = 0
if i 6= j. A square matrix is upper (lower) diagonal if all elements below (above) the diagonal
equal zero.

A partitioned matrix takes the form

A =

⎡⎢⎢⎢⎣
A11 A12 · · · A1r
A21 A22 · · · A2r
...

...
...

Ak1 Ak2 · · · Akr

⎤⎥⎥⎥⎦
where the Aij denote matrices, vectors and/or scalars.

2.2 Matrix Multiplication

If a and b are both k × 1, then their inner product is

a0b = a1b1 + a2b2 + · · ·+ akbk =
kX

j=1

ajbj

Note that a0b = b0a.
If A is k × r and B is r × s, then we define their product AB by writing A as a set of row

vectors and B as a set of column vectors (each of length r). Then

AB =

⎡⎢⎢⎢⎣
a01
a02
...
a0k

⎤⎥⎥⎥⎦ £ b1 b2 · · · bs
¤

=

⎡⎢⎢⎢⎣
a01b1 a01b2 · · · a01bs
a02b1 a02b2 · · · a02bs
...

...
...

a0kb1 a0kb2 · · · a0kbs

⎤⎥⎥⎥⎦
When the number of columns of A equals the number of rows of B, we say that A and B, or the
product AB, are conformable, and this is the only case where this product is defined.
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An alternative way to write the matrix product is to use matrix partitions. For example,

AB =

∙
A11 A12
A21 A22

¸ ∙
B11 B12
B21 B22

¸
=

∙
A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

¸
and

AB =
£
A1 A2 · · · Ar

¤
⎡⎢⎢⎢⎣

B1
B2
...
Br

⎤⎥⎥⎥⎦
= A1B1 +A2B2 + · · ·+ArBr

=
rX

j=1

ArBr

An important diagonal matrix is the identity matrix, which has ones on the diagonal. A
k × k identity matrix is denoted as

Ik =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...
...

...
0 0 · · · 1

⎤⎥⎥⎥⎦
Important properties are that if A is k × r, then AIr = A and IkA = A.

We say that two vectors a and b are orthogonal if a0b = 0. The columns of a k × r matrix A,
r ≤ k, are said to be orthogonal if A0A = Ir. A square matrix A is called orthogonal if A0A = Ik.

2.3 Trace

The trace of a k × k square matrix A is the sum of its diagonal elements

tr (A) =
kX
i=1

aii

Some straightforward properties for square matrices A and B are

tr (cA) = c tr (A)

tr
¡
A0
¢
= tr (A)

tr (A+B) = tr (A) + tr (B)

tr (Ik) = k.

Also, for k × r A and r × k B we have

tr (AB) = tr (BA)
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The can be seen since

tr (AB) = tr

⎡⎢⎢⎢⎣
a01b1 a01b2 · · · a01bk
a02b1 a02b2 · · · a02bk
...

...
...

a0kb1 a0kb2 · · · a0kbk

⎤⎥⎥⎥⎦
=

kX
i=1

a0ibi

=
kX
i=1

b0iai

= tr (BA) .

2.4 Inverse

A k× k matrix A has full rank, or is nonsingular, if there is no c 6= 0 such that Ac = 0. In this
case there exists a unique matrix B such that AB = BA = Ik. This matrix is called the inverse
of A and is denoted by A−1. For non-singular A and C, some properties include

AA−1 = A−1A = Ik¡
A−1

¢0
=

¡
A0
¢−1

(AC)−1 = C−1A−1

(A+C)−1 = A−1
¡
A−1 + C−1

¢−1
C−1

A−1 − (A+C)−1 = A−1
¡
A−1 + C−1

¢
A−1

(A+BCD)−1 = A−1 −A−1BC
¡
C +CDA−1BC

¢
CDA−1 (2.1)

Also, if A is an orthogonal matrix, then A−1 = A.
The following fact about inverting partitioned matrices is sometimes useful. If A − BD−1C

and D − CA−1B are non-singular, then∙
A B
C D

¸−1
=

" ¡
A−BD−1C

¢−1 −
¡
A−BD−1C

¢−1
BD−1

−
¡
D −CA−1B

¢−1
CA−1

¡
D − CA−1B

¢−1
#
. (2.2)

Even if a matrix A does not possess an inverse, we can still define a generalized inverse A−

as a matrix which satisfies
AA−A = A. (2.3)

The matrix A− is not necessarily unique. TheMoore-Penrose generalized inverse A− satisfies
(2.3) plus the following three conditions

A−AA− = A−

AA− is symmetric

A−A is symmetric

For any matrix A, the Moore-Penrose generalized inverse A− exists and is unique.

7



2.5 Eigenvalues

The characteristic equation of a square matrix A is

det (A− λIk) = 0.

The left side is a polynomial of degree k in λ so it has exactly k roots, which are not necessarily
distinct and may be real or complex. They are called the latent roots or characteristic roots
or eigenvalues of A. If λi is an eigenvalue of A, then A−λiIk is singular so there exists a non-zero
vector hi such that

(A− λiIk)hi = 0

The vector hi is called a latent vector or characteristic vector or eigenvector of A corre-
sponding to λi.

We now state some useful properties. Let λi and hi, i = 1, ..., k denote the k eigenvalues and
eigenvectors of a square matrix A. Let Λ be a diagonal matrix with the characteristic roots in the
diagonal, and let H = [h1 · · ·hk].

• det(A) =
Qk

i=1 λi

• tr(A) =
Pk

i=1 λi

• A is non-singular if and only if all its characteristic roots are non-zero.

• If A has distinct characteristic roots, there exists a nonsingular matrix P such that A =
P−1ΛP and PAP−1 = Λ.

• If A is symmetric, then A = HΛH 0 and H 0AH = Λ, and the characteristic roots are all real.

• The characteristic roots of A−1 are λ−11 , λ−12 , ..., λ−1k .

The decomposition A = HΛH 0 is called the spectral decomposition of a matrix.

2.6 Rank and Positive Definiteness

The rank of a square matrix is the number of its non-zero characteristic roots.
We say that a square matrix A is positive semi-definite if for all non-zero c, c0Ac ≥ 0. This

is written as A ≥ 0. We say that A is positive definite if for all non-zero c, c0Ac > 0. This is
written as A > 0.

If A = G0G, then A is positive semi-definite. (For any c 6= 0, c0Ac = α0a ≥ 0 where α = Gc.)
If A is positive definite, then A is non-singular and A−1 exists. Furthermore, A−1 > 0.
We say that X is n× k, k < n, has full rank k if there is no non-zero c such that Xc = 0. In

this case, X 0X is symmetric and positive definite.
If A is symmetric, then A > 0 if and only if all its characteristic roots are positive.
If A > 0 we can find a matrix B such that A = BB0. We call B a matrix square root of A.

The matrix B need not be unique. One way to construct B is to use the spectral decomposition
A = HΛH 0 where Λ is diagonal, and then set B = HΛ1/2.

A square matrix A is idempotent if AA = A. If A is also symmetric (most idempotent matrices
are) then all its characteristic roots equal either zero or one. To see this, note that we can write
A = HΛH 0 where H is orthogonal and Λ contains the (real) characteristic roots. Then

A = AA = HΛH 0HΛH 0 = HΛ2H 0.
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By the uniqueness of the characteristic roots, we deduce that Λ2 = Λ and λ2i = λi for i = 1, ..., k.
Hence they must equal either 0 or 1. It follows that the spectral decomposition of A takes the
form

M = H

∙
In−k 0
0 0

¸
H 0 (2.4)

with H 0H = In. Additionally, tr(A) = rank(A).

2.7 Matrix Calculus

Let x = (x1, ..., xk) be k × 1 and g(x) = g(x1, ..., xk) : R
k → R. The vector derivative is

∂

∂x
g(x) =

⎛⎜⎝
∂
∂x1

g(x)
...

∂
∂xk

g(x)

⎞⎟⎠
and

∂

∂x0
g(x) =

³
∂
∂x1

g(x) · · · ∂
∂xk

g(x)
´
.

Some properties are now summarized.

• ∂
∂x (a

0x) = ∂
∂x (x

0a) = a

• ∂
∂x0 (Ax) = A

• ∂
∂x (x

0Ax) = (A+A0)x

• ∂2

∂x∂x0 (x
0Ax) = A+A0

2.8 Determinant

The determinant is defined for square matrices.
If A is 2× 2, then its determinant is detA = a11a22 − a12a21.
For a general k × k matrix A = [aij ] , we can define the determinant as follows. Let π =

(j1, ..., jk) denote a permutation of (1, ..., k) . There are k! such permutations. There is a unique
count of the number of inversions of the indices of such permutations (relative to the natural order
(1, ..., k)), and let επ = +1 if this count is even and επ = −1 if the count is odd. Then

detA =
X
π

επa1j1a2j2 · · · akjk

Some properties include

• detA = detA0

• det (αA) = αk detA

• det(AB) = (detA) (detB)

• det
¡
A−1

¢
= (detA)−1
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• det
∙
A B
C D

¸
= (detD) det

¡
A−BD−1C

¢
if detD 6= 0

• detA 6= 0 if and only if A is nonsingular.

• If A is triangular (upper or lower), then detA =
Qk

i=1 aii

• If A is orthogonal, then detA = ±1

2.9 Kronecker Products and the Vec Operator

Let A = [a1 a2 · · · an] = [aij ] be m× n. The vec of A, denoted by vec (A) , is the mn× 1 vector

vec (A) =

⎛⎜⎜⎜⎝
a1
a2
...
an

⎞⎟⎟⎟⎠ .

Let B be any matrix. The Kronecker product of A and B, denoted A⊗B, is the matrix

A⊗B =

⎡⎢⎢⎢⎣
a11B a12B a1nB
a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

⎤⎥⎥⎥⎦ .
Some important properties are now summarized. These results hold for matrices for which all
matrix multiplications are conformable.

• (A+B)⊗ C = A⊗ C +B ⊗ C

• (A⊗B) (C ⊗D) = AC ⊗BD

• A⊗ (B ⊗C) = (A⊗B)⊗ C

• (A⊗B)0 = A0 ⊗B0

• tr (A⊗B) = tr (A) tr (B)

• If A is m×m and B is n× n, det(A⊗B) = (det (A))n (det (B))m

• (A⊗B)−1 = A−1 ⊗B−1

• If A > 0 and B > 0 then A⊗B > 0

• vec (ABC) = (C 0 ⊗A) vec (B)

• tr (ABCD) = vec (D0)0 (C 0 ⊗A) vec (B)
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Chapter 3

Regression and Projection

The most commonly applied econometric tool is regression. This is used when the goal is to
quantify the impact of one set of variables on another variable. In this context we partition the
observations into the pair (yi, xi) where yi is a scalar (real-valued) and xi is a vector. We call yi
the dependent variable. We call xi alternatively the regressor, the conditioning variable,
or the covariates. We list the elements of xi in the vector

xi =

⎛⎜⎜⎜⎝
x1i
x2i
...
xki

⎞⎟⎟⎟⎠ . (3.1)

3.1 Conditional Mean

To study how the distribution of yi varies with the variables xi in the population, we can focus on
f (y | x) , the conditional density of yi given xi.

To illustrate, Figure 3.1 displays the density1 of hourly wages for men and women, from the
population of white non-military wage earners with a college degree and 10-15 years of potential
work experience. These are conditional density functions — the density of hourly wages conditional
on race, gender, education and experience. The two density curves show the effect of gender on
the distribution of wages, holding the other variables constant.

While it is easy to observe that the two densities are unequal, it is useful to have numerical
measures of the difference. An important summary measure is the conditional mean

m(x) = E (yi | xi = x) =

Z ∞

−∞
yf (y | x) dy. (3.2)

In general, m(x) can take any form, and exists so long as E |yi| <∞. In the example presented in
Figure 3.1, the mean wage for men is $27.22, and that for women is $20.73. These are indicated
in Figure 3.1 by the arrows drawn to the x-axis.

Take a closer look at the density functions displayed in Figure 3.1. You can see that the right
tail of then density is much thicker than the left tail. These are asymmetric (skewed) densities,
which is a common feature of wage distributions. When a distribution is skewed, the mean is
not necessarily a good summary of the central tendency. In this context it is often convenient

1These are nonparametric density estimates using a Gaussian kernel with the bandwidth selected by cross-
validation. See Chapter 16. The data are from the 2004 Current Population Survey
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Figure 3.1: Wage Densities for White College Grads with 10-15 Years Work Experience

to transform the data by taking the (natural) logarithm. Figure 3.2 shows the density of log
hourly wages for the same population, with mean log hourly wages drawn in with the arrows. The
difference in the log mean wage between men and women is 0.30, which implies a 30% average wage
difference for this population. This is a more robust measure of the typical wage gap between men
and women than the difference in the untransformed wage means. For this reason, wage regressions
typically use log wages as a dependent variable rather than the level of wages.

The comparison in Figure 3.1 is facilitated by the fact that the control variable (gender) is
discrete. When the distribution of the control variable is continuous, then comparisons become
more complicated. To illustrate, Figure 3.3 displays a scatter plot2 of log wages against education
levels. Assuming for simplicity that this is the true joint distribution, the solid line displays the
conditional expectation of log wages varying with education. The conditional expectation function
is close to linear; the dashed line is a linear projection approximation which will be discussed in
the Section 3.5. The main point to be learned from Figure 3.3 is how the conditional expectation
describes an important feature of the conditional distribution. Of particular interest to graduate
students may be the observation that difference between a B.A. and a Ph.D. degree in mean log
hourly wages is 0.36, implying an average 36% difference in wage levels.

3.2 Regression Equation

The regression error ei is defined to be the difference between yi and its conditional mean (3.2)
evaluated at the observed value of xi:

ei = yi −m(xi).

By construction, this yields the formula

yi = m(xi) + ei. (3.3)
2White non-military male wage earners with 10-15 years of potential work experience.
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Figure 3.2: Log Wage Densities

Theorem 3.2.1 Properties of the regression error ei

1. E (ei | xi) = 0.

2. E(ei) = 0.

3. E (h(xi)ei) = 0 for any function h (·) .

4. E(xiei) = 0.

To show the first statement, by the definition of ei and the linearity of conditional expectations,

E (ei | xi) = E ((yi −m(xi)) | xi)
= E (yi | xi)−E (m(xi) | xi)
= m(xi)−m(xi)

= 0.

The remaining parts of the Theorem are left as an exercise.
The equations

yi = m(xi) + ei

E (ei | xi) = 0.

are often stated jointly as the regression framework. It is important to understand that this is a
framework, not a model, because no restrictions have been placed on the joint distribution of the
data. These equations hold true by definition. A regression model imposes further restrictions on
the joint distribution; most typically, restrictions on the permissible class of regression functions
m(x).
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Figure 3.3: Conditional Mean of Wages Given Education

The conditional mean also has the property of being the the best predictor of yi, in the sense
of achieving the lowest mean squared error. To see this, let g(x) be an arbitrary predictor of yi
given xi = x. The expected squared error using this prediction function is

E (yi − g(xi))
2 = E (ei +m(xi)− g(xi))

2

= Ee2i + 2E (ei (m(xi)− g(xi))) +E (m(xi)− g(xi))
2

= Ee2i +E (m(xi)− g(xi))
2

≥ Ee2i

where the second equality uses Theorem 3.2.1.3. The right-hand-side is minimized by setting
g(x) = m(x). Thus the mean squared error is minimized by the conditional mean.

3.3 Conditional Variance

While the conditional mean is a good measure of the location of a conditional distribution, it does
not provide information about the spread of the distribution. A common measure of the dispersion
is the conditional variance

σ2(x) = V ar (yi | xi = x) = E
¡
e2i | xi = x

¢
.

Generally, σ2(x) is a non-trivial function of x, and can take any form, subject to the restriction
that it is non-negative. The conditional standard deviation is its square root σ(x) =

p
σ2(x).

Given the random variable xi, the conditional variance of yi is σ2i = σ2(xi). In the general case
where σ2(x) depends on x we say that the error ei is heteroskedastic. In contrast, when σ2(x)
is a constant so that

E
¡
e2i | xi

¢
= σ2 (3.4)
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we say that the error ei is homoskedastic.
Some textbooks inappropriately describe heteroskedasticity as the case where “the variance of

ei varies across observation i”. This concept is less helpful than defining heteroskedasticity as the
dependence of the conditional variance on the observables xi.

As an example, take the conditional wage densities displayed in Figure 3.1. The conditional
standard deviation for men is 12.1 and that for women is 10.5. So while men have higher average
wages, they are also somewhat more dispersed.

3.4 Linear Regression

An important special case of (3.3) is when the conditional mean function m(x) is linear in x (or
linear in functions of x). Notationally, it is convenient to augment the regressor vector xi by listing
the number “1” as an element. We call this the “constant” or “intercept”. Equivalently, we assume
that x1i = 1, where x1i is the first element of the vector xi defined in (3.1). Thus (3.1) has been
redefined as the k × 1 vector

xi =

⎛⎜⎜⎜⎝
1
x2i
...
xki

⎞⎟⎟⎟⎠ . (3.5)

When m(x) is linear in x, we can write it as

m(x) = x0β = β1 + x2iβ2 + · · ·+ xkiβk (3.6)

where

β =

⎛⎜⎝ β1
...
βk

⎞⎟⎠ (3.7)

is a k × 1 parameter vector.
In this case (3.3) can be writen as

yi = x0iβ + ei (3.8)

E (ei | xi) = 0. (3.9)

Equation (3.8) is called the linear regression model,
An important special case is homoskedastic linear regression model

yi = x0iβ + ei

E (ei | xi) = 0

E
¡
e2i | xi

¢
= σ2.

3.5 Best Linear Predictor

While the conditional mean m(x) = E (yi | xi = x) is the best predictor of yi among all functions
of xi, its functional form is typically unknown, and the linear assumption of the previous section is
empirically unlikely to accurate. Instead, it is more realistic to view the linear specification (3.6)
as an approximation, which we derive in this section.
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In the linear projection model the coefficient β is defined so that the function x0iβ is the
best linear predictor of yi. As before, by “best” we mean the predictor function with lowest mean
squared error. For any β ∈ Rk a linear predictor for yi is x0iβ with expected squared prediction
error

S(β) = E
¡
yi − x0iβ

¢2
= Ey2i − 2E

¡
yix

0
i

¢
β + β0E

¡
xix

0
i

¢
β.

which is quadratic in β. The best linear predictor is obtained by selecting β to minimize S(β).
The first-order condition for minimization (from Section 2.7) is

0 =
∂

∂β
S(β) = −2E (xiyi) + 2E

¡
xix

0
i

¢
β.

Solving for β we find
β =

¡
E
¡
xix

0
i

¢¢−1
E (xiyi) . (3.10)

It is worth taking the time to understand the notation involved in this expression. E (xix0i) is a ma-
trix andE (xiyi) is a vector. Therefore, alternative expressions such as

E(xiyi)

E(xix0i)
orE (xiyi) (E (xix0i))

−1

are incoherent and incorrect.
The vector (3.10) exists and is unique as long as the k×k matrix E (xix0i) is invertible. Observe

that for any non-zero α ∈ Rk, α0E (xix0i)α = E (α0xi)
2 ≥ 0 so the matrixE (xix0i) is by construction

positive semi-definite. It is invertible if and only if it is positive definite, written E (xix
0
i) > 0,

which requires that for all non-zero α, α0E (xix0i)α = E (α0xi)
2 > 0. Equivalently, there cannot

exist a non-zero vector α such that α0xi = 0 identically. This occurs when redundant variables are
included in xi. In order for β to be uniquely defined, this situation must be excluded.

Given the definition of β in (3.10), x0iβ is the best linear predictor for yi. The error is

ei = yi − x0iβ. (3.11)

Notice that the error from the linear prediction equation ei is equal to the error from the regression
equation when (and only when) the conditional mean is linear in xi, otherwise they are distinct.

Rewriting, we obtain a decomposition of yi into linear predictor and error

yi = x0iβ + ei. (3.12)

This completes the derivation of the linear projection model. We now summarize the assumptions
necessary for its derivation and list the implications in Theorem 3.5.1.

Assumption 3.5.1

1. xi contains an intercept;

2. Ey2i <∞;

3. E (x0ixi) <∞;

4. E (xix0i) is invertible.
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Theorem 3.5.1 Under Assumption 3.5.1, (3.10) and (3.11) are well defined. Furthermore,

E (xiei) = 0 (3.13)

and
E (ei) = 0. (3.14)

Proof. Assumption 3.5.1.2 and 3.5.1.3 ensure that the moments in (3.10) are defined. Assumption
3.5.1.4 guarantees that the solution β exits. Using the definitions (3.11) and (3.10)

E (xiei) = E
¡
xi
¡
yi − x0iβ

¢¢
= E (xiyi)−E

¡
xix

0
i

¢ ¡
E
¡
xix

0
i

¢¢−1
E (xiyi)

= 0.

Equation (3.14) follows from (3.13) and Assumption 3.5.1.1. ¥

The two equations (3.12) and (3.13) summarize the linear projection model. Let’s compare
it with the linear regression model (3.8)-(3.9). Since from Theorem 3.2.1.4 we know that the
regression error has the property E (xiei) = 0, it follows that linear regression is a special case of
the projection model. However, the converse is not true as the projection error does not necessarily
satisfy E (ei | xi) = 0. For example, suppose that for xi ∈ R that Ex3i = 0 and ei = x2i . Then
Exie

2
i = Ex3i = 0 yet E (ei | xi) = x2i 6= 0.
Since E (xiei) = 0 we say that xi and ei are orthogonal. This means that the equation

(3.12) can be alternatively interpreted as a projection decomposition. By definition, x0iβ is the
projection of yi on xi since the error ei is orthogonal with xi. Since ei is mean zero by (3.14), the
orthogonality restriction (3.13) implies that xi and ei are uncorrelated.

Figure 3.4: Hourly Wage as a Function of Experience

The conditions listed in Assumption 3.5.1 are weak. The finite variance Assumptions 3.5.1.2
and 3.5.1.3 are called regularity conditions. Assumption 3.5.1.4 is required to ensure that β is
uniquely defined. Assumption 3.5.1.1 is employed to guarantee that (3.14) holds.
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We have shown that under mild regularity conditions, for any pair (yi, xi) we can define a linear
projection equation (3.12) with the properties listed in Theorem 3.5.1. No additional assumptions
are required. However, it is important to not misinterpret the generality of this statement. The
linear equation (3.12) is defined by projection and the associated coefficient definition (3.10). In
contrast, in many economic models the parameter β may be defined within the model. In this case
(3.10) may not hold and the implications of Theorem 3.5.1 may be false. These structural models
require alternative estimation methods, and are discussed in Chapter 11.

Returning to the joint distribution displayed in Figure 3.3, the dashed line is the linear pro-
jection of log wages on eduction. In this example the linear projection is a close approximation
to the conditional mean. In other cases the two may be quite different. Figure 3.4 displays the
relationship3 between mean log hourly wages and labor market experience. The solid line is the
conditional mean, and the straight dashed line is the linear projection. In this case the linear
projection is a poor approximation to the conditional mean. It over-predicts wages for young and
old workers, and under-predicts for the rest. Most importantly, it misses the strong downturn in
expected wages for those above 35 years work experience (equivalently, for those over 53 in age).

This defect in linear projection can be partially corrected through a careful selection of re-
gressors. In the example just presented, we can augment the regressor vector xi to include both
experience and experience2. A projection of log wages on these two variables can be called a
quadratic projection, since the resulting function is quadratic in experience. Other than the rede-
finition of the regressor vector, there are no changes in our methods or analysis. In Figure 1.4 we
display as well this quadratic projection. In this example it is a much better approximation to the
conditional mean than the linear projection.

Figure 3.5: Conditional Mean and Two Linear Projections

Another defect of linear projection is that it is sensitive to the marginal distribution of the
regressors when the conditional mean is non-linear. We illustrate the issue in Figure 3.5 for a

3 In the population of Caucasian non-military male wage earners with 12 years of education.
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constructed4 joint distribution of yi and xi. The solid line is the non-linear conditional mean of
yi given xi. The data are divided in two — Group 1 and Group 2 — which have different marginal
distributions for the regressor xi, and Group 1 has a lower mean value of xi than Group 2. The
separate linear projections of yi on xi for these two groups is displayed in the Figure with the
dashed lines. These two projections are distinct approximations to the conditional mean. A defect
with linear projection is that it leads to the incorrect conclusion that the effect of xi on yi is
different for individuals in the two Groups. This conclusion is incorrect because is fact there is no
difference in the conditional mean between the two groups. The apparant difference is a by-product
of a linear approximation to a non-linear mean, combined with different marginal distributions for
the conditioning variables.

4The xi in Group 1 are N(2, 1) and those in Group 2 are N(4, 1), and the conditional distriubtion of yi given xi
is N(m(xi), 1) where m(x) = 2x− x2/6.
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3.6 Exercises

1. Prove parts 2, 3 and 4 of Theorem 3.2.1.

2. Suppose that Y and X only take the values 0 and 1, and have the following joint probability
distribution

X = 0 X = 1

Y = 0 .1 .2
Y = 1 .4 .3

Find E(Y | X = x), E(Y 2 | X = x) and V ar(Y | X = x).

3. Suppose that yi is discrete-valued, taking values only on the non-negative integers, and the
conditional distribution of yi given xi is Poisson:

P (yi = k | xi = x) =
e−x

0β (x0β)j

j!
, j = 0, 1, 2, ...

Compute E(yi | xi = x) and V ar(yi | xi = x). Does this justify a linear regression model of
the form yi = x0iβ + εi?

Hint: If P (Y = j) = e−λλj

j! , then EY = λ and V ar(Y ) = λ.

4. Let xi and yi have the joint density f(x, y) = 3
2

¡
x2 + y2

¢
on 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Compute

the coefficients of the linear projection yi = β0 + β1xi + ei. Compute the conditional mean
m(x) = E (yi | xi = x) . Are they different?

5. Take the bivariate linear projection model

yi = β0 + β1xi + ei

E (ei) = 0

E (xiei) = 0

Define µy = Eyi, µx = Exi, σ
2
x = V ar(xi), σ

2
y = V ar(yi) and σxy = Cov(xi, yi). Show that

β1 = σxy/σ
2
x and β0 = µy − β1µx.

6. True or False. If yi = xiβ + ei, xi ∈ R, and E(ei | xi) = 0, then E(x2i ei) = 0.

7. True or False. If yi = x0iβ + ei and E(ei | xi) = 0, then ei is independent of xi.

8. True or False. If yi = x0iβ + ei, E(ei | xi) = 0, and E(e2i | xi) = σ2, a constant, then ei is
independent of xi.

9. True or False. If yi = xiβ + ei, xi ∈ R, and E(xiei) = 0, then E(x2i ei) = 0.

10. True or False. If yi = x0iβ + ei and E(xiei) = 0, then E(ei | xi) = 0.

11. Let X be a random variable with µ = EX and σ2 = V ar(X). Define

g
¡
x, µ, σ2

¢
=

µ
x− µ

(x− µ)2 − σ2

¶
.

Show that Eg (X,m, s) = 0 if and only if m = µ and s = σ2.
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Chapter 4

Least Squares Estimation

This chapter explores estimation and inference in the linear projection model

yi = x0iβ + ei (4.1)

E (xiei) = 0 (4.2)

β =
¡
E
¡
xix

0
i

¢¢−1
E (xiyi) (4.3)

In Sections 4.7 and 4.8, we narrow the focus to the linear regression model, but for most of the
chapter we retain the broader focus on the projection model.

4.1 Estimation

Equation (4.3) writes the projection coefficient β as an explicit function of population moments
E (xiyi) and E (xix

0
i) . Their moment estimators are the sample moments

Ê (xiyi) =
1

n

nX
i=1

xiyi

Ê
¡
xix

0
i

¢
=

1

n

nX
i=1

xix
0
i.

It follows that the moment estimator of β replaces the population moments in (4.3) with the
sample moments:

β̂ =
³
Ê
¡
xix

0
i

¢´−1
Ê (xiyi)

=

Ã
1

n

nX
i=1

xix
0
i

!−1
1

n

nX
i=1

xiyi

=

Ã
nX
i=1

xix
0
i

!−1 nX
i=1

xiyi. (4.4)

Another way to derive β̂ is as follows. Observe that (4.2) can be written in the parametric
form g(β) = E (xi (yi − x0iβ)) = 0. The function g(β) can be estimated by

ĝ(β) =
1

n

nX
i=1

xi
¡
yi − x0iβ

¢
.
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This is a set of k equations which are linear in β. The estimator β̂ is the value which jointly sets
these equations equal to zero:

0 = ĝ(β̂) (4.5)

=
1

n

nX
i=1

xi

³
yi − x0iβ̂

´
=

1

n

nX
i=1

xiyi −
1

n

nX
i=1

xix
0
iβ̂

whose solution is (4.4).
To illustrate, consider the data used to generate Figure 3.3. These are white male wage earners

from the March 2004 Current Population Survey, excluding military, with 10-15 years of potential
work experience. This sample has 988 observations. Let yi be log wages and xi be an intercept
and years of education. Then

1

n

nX
i=1

xiyi =

µ
2.95
42.40

¶
1

n

nX
i=1

xix
0
i =

µ
1 14.14

14.14 205.83

¶
.

Thus

β̂ =

µ
1 14.14

14.14 205.83

¶−1µ
2.95
42.40

¶
=

µ
34.94 −2. 40
−2. 40 0.170

¶µ
2.71
37.37

¶
=

µ
1. 30
0.117

¶
.

We often write the estimated equation using the format

\log(Wagei) = 1.30 + 0.117 Educationi.

An interpretation of the estimated equation is that each year of education is associated with an
11.7% increase in mean wages.

4.2 Least Squares

There is another classic motivation for the estimator (4.4). Define the sum-of-squared errors
(SSE) function

Sn(β) =
nX
i=1

¡
yi − x0iβ

¢2
=

nX
i=1

y2i − 2β0
nX
i=1

xiyi + β0
nX
i=1

xix
0
iβ.

This is a quadratic function of β.
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The Ordinary Least Squares (OLS) estimator is the value of β which minimizes Sn(β).
Matrix calculus (see Appendix 2.7) gives the first-order conditions for minimization:

0 =
∂

∂β
Sn(β̂)

= −2
nX
i=1

xiyi + 2
nX
i=1

xix
0
iβ̂

whose solution is (4.4). Following convention we will call β̂ the OLS estimator of β.
To visualize the sum-of-squared errors function, Figure 4.1 displays an example sum—of-squared

errors function Sn(β) for the case k = 2. Figure 4.2 displays the contour lines of the same function
— horizontal slices at equally spaced heights. Since the function Sn(β) is a quadratic function of
β, the contour lines are ellipses.

Figure 4.1: Sum-of-Squared Errors Function

As a by-product of OLS estimation, we define the predicted value

ŷi = x0iβ̂

and the residual

êi = yi − ŷi

= yi − x0iβ̂.

Note that yi = ŷi + êi. It is important to understand the distinction between the error ei and the
residual êi. The error is unobservable, while the residual is a by-product of estimation. These two
variables are frequently mislabeled, which can cause confusion.
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Figure 4.2: Sum-of-Squared Error Function Contours

Equation (4.5) implies that
1

n

nX
i=1

xiêi = 0.

Since xi contains a constant, one implication is that

1

n

nX
i=1

êi = 0.

Thus the residuals have a sample mean of zero and the sample correlation between the regressors
and the residual is zero. These are algebraic results, and hold true for all linear regression estimates.

The error variance σ2 = Ee2i is also a parameter of interest. It measures the variation in the
“unexplained” part of the regression. Its method of moments estimator is the sample average

σ̂2 =
1

n

nX
i=1

ê2i . (4.6)

An alternative estimator uses the formula

s2 =
1

n− k

nX
i=1

ê2i . (4.7)

A justification for the latter choice will be provided in Section 4.7.
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A measure of the explained variation relative to the total variation is the coefficient of de-
termination or R-squared.

R2 =

Pn
i=1 ŷ

2
iPn

i=1 (yi − y)2
= 1− σ̂2

σ̂2y

where

σ̂2y =
1

n

nX
i=1

(yi − y)2

is the sample variance of yi. The R2 is frequently mislabeled as a measure of “fit”. It is an
inappropriate label as the value of R2 does not help interpret the parameter estimates β̂ or test
statistics concerning β. Instead, it should be viewed as an estimator of the population parameter

ρ2 =
V ar (x0iβ)

V ar(yi)
= 1− σ2

σ2y

where σ2y = V ar(yi). An alternative estimator of ρ2 proposed by Theil called “R-bar-squared” is

R
2
= 1− s2

σ̃2y

where

σ̃2y =
1

n− 1

nX
i=1

(yi − y)2 .

Theil’s estimator R
2
is a ratio of adjusted variance estimators, and therefore is expected to be a

better estimator of ρ2 than the unadjusted estimator R2.

4.3 Normal Regression Model

Another motivation for the least-squares estimator can be obtained from the normal regression
model. This is the linear regression model with the additional assumption that the error ei is
independent of xi and has the distribution N(0, σ2). This is a parametric model, where likelihood
methods can be used for estimation, testing, and distribution theory.

The log-likelihood function for the normal regression model is

Ln(β, σ
2) =

nX
i=1

log

Ã
1

(2πσ2)1/2
exp

µ
− 1

2σ2
¡
yi − x0iβ

¢2¶!
= −n

2
log
¡
2πσ2

¢
− 1

2σ2
Sn(β)

The MLE (β̂, σ̂2) maximize Ln(β, σ
2). Since Ln(β, σ

2) is a function of β only through the sum of
squared errors Sn(β), maximizing the likelihood is identical to minimizing Sn(β). Hence the MLE
for β equals the OLS estimator.

Plugging β̂ into the log-likelihood we obtain

Ln(β̂, σ
2) = −n

2
log
¡
2πσ2

¢
− 1

2σ2

nX
i=1

ê2i
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Maximization with respect to σ2 yields the first-order condition

∂

∂σ2
Ln(β̂, σ̂

2) = − n

2σ̂2
+

1

2
¡
σ̂2
¢2 nX

i=1

ê2i = 0.

Solving for σ̂2 yields the method of moments estimator (4.6). Thus the MLE (β̂, σ̂2) for the normal
regression model are identical to the method of moment estimators. Due to this equivalence, the
OLS estimator β̂ is frequently referred to as the Gaussian MLE.

4.4 Model in Matrix Notation

For many purposes, including computation, it is convenient to write the model and statistics in
matrix notation. We define

Y =

⎛⎜⎜⎜⎝
y1
y2
...
yn

⎞⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎝
x01
x02
...
x0n

⎞⎟⎟⎟⎠ , e =

⎛⎜⎜⎜⎝
e1
e2
...
en

⎞⎟⎟⎟⎠ .

Observe that Y and e are n× 1 vectors, and X is an n× k matrix.
The linear equation (3.12) is a system of n equations, one for each observation. We can stack

these n equations together as

y1 = x01β + e1

y2 = x02β + e2
...

yn = x0nβ + en.

or equivalently
Y = Xβ + e.

Sample sums can also be written in matrix notation. For example
nX
i=1

xix
0
i = X 0X

nX
i=1

xiyi = X 0Y.

Thus the estimator (4.4), residual vector, and sample error variance can be written as

β̂ =
¡
X 0X

¢−1 ¡
X 0Y

¢
ê = Y −Xβ̂

σ̂2 = n−1ê0ê.

A useful result is obtained by inserting Y = Xβ + e into the formula for β̂ to obtain

β̂ =
¡
X 0X

¢−1 ¡
X 0 (Xβ + e)

¢
=

¡
X 0X

¢−1
X 0Xβ +

¡
X 0X

¢−1 ¡
X 0e

¢
= β +

¡
X 0X

¢−1
X 0e. (4.8)

26



4.5 Projection Matrices

Define the matrices
P = X

¡
X 0X

¢−1
X 0

and

M = In −X
¡
X 0X

¢−1
X 0

= In − P

where In is the n× n identity matrix. They are called projection matrices due to the property
that for any matrix Z which can be written as Z = XΓ for some matrix Γ, (we say that Z lies in
the range space of X) then

PZ = PXΓ = X
¡
X 0X

¢−1
X 0XΓ = XΓ = Z

and
MZ = (In − P )Z = Z − PZ = Z − Z = 0.

As an important example of this property, partition the matrix X into two matrices X1 and
X2, so that

X = [X1 X2] .

Then PX1 = X1 andMX1 = 0. It follows thatMX = 0 andMP = 0, soM and P are orthogonal.
The matrices P and M are symmetric and idempotent1. To see that P is symmetric,

P 0 =
³
X
¡
X 0X

¢−1
X 0
´0

=
¡
X 0¢0 ³¡X 0X

¢−1´0
(X)0

= X
³¡
X 0X

¢0´−1
X 0

= X
³
(X)0

¡
X 0¢0´−1X 0

= P.

To establish that it is idempotent,

PP =
³
X
¡
X 0X

¢−1
X 0
´³

X
¡
X 0X

¢−1
X 0
´

= X
¡
X 0X

¢−1
X 0X

¡
X 0X

¢−1
X 0

= X
¡
X 0X

¢−1
X 0

= P,

and

MM = M (In − P )

= M −MP

= M

1A matrix A is idempotent if AA = A.
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since MP = 0.
Another useful property is that

trP = k (4.9)

trM = n− k (4.10)

where the trace operator

trA =
rX

j=1

ajj

is the sum of the diagonal elements of the matrix A.
To show (4.9) and (4.10),

trP = tr
³
X
¡
X 0X

¢−1
X 0
´

= tr
³¡
X 0X

¢−1
X 0X

´
= tr (Ik)

= k,

and
trM = tr (In − P ) = tr (In)− tr (P ) = n− k.

Given the definitions of P and M, observe that

Ŷ = Xβ̂ = X
¡
X 0X

¢−1
X 0Y = PY

and
ê = Y −Xβ̂ = Y − PY =MY. (4.11)

Furthermore, since Y = Xβ + e and MX = 0, then

ê =M (Xβ + e) =Me. (4.12)

Another way of writing (4.11) is

Y = (P +M)Y = PY +MY = Ŷ + ê.

This decomposition is orthogonal, that is

Ŷ 0ê = (PY )0 (MY ) = Y 0PMY = 0.

4.6 Residual Regression

Partition
X = [X1 X2]

and

β =

µ
β1
β2

¶
.

Then the regression model can be rewritten as

Y = X1β1 +X2β2 + e. (4.13)
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Observe that the OLS estimator of β = (β01, β
0
2)
0 can be obtained by regression of Y on X = [X1

X2]. OLS estimation can be written as

Y = X1β̂1 +X2β̂2 + ê. (4.14)

Suppose that we are primarily interested in β2, not in β1, so are only interested in obtaining
the OLS sub-component β̂2. In this section we derive an alternative expression for β̂2 which does
not involve estimation of the full model.

Define
M1 = In −X1

¡
X 0
1X1

¢−1
X 0
1.

Recalling the definition M = I −X (X 0X)−1X 0, observe that X 0
1M1 = 0 and thus

M1M =M −X1
¡
X 0
1X1

¢−1
X 0
1M =M

It follows that
M1ê =M1Me =Me = ê.

Using this result, if we premultiply (4.14) by M1 we obtain

M1Y = M1X1β̂1 +M1X2β̂2 +M1ê

= M1X2β̂2 + ê (4.15)

the second equality since M1X1 = 0. Premultiplying by X 0
2 and recalling that X

0
2ê = 0, we obtain

X 0
2M1Y = X 0

2M1X2β̂2 +X 0
2ê = X 0

2M1X2β̂2.

Solving,
β̂2 =

¡
X 0
2M1X2

¢−1 ¡
X 0
2M1Y

¢
an alternative expression for β̂2.

Now, define

X̃2 = M1X2 (4.16)

Ỹ = M1Y, (4.17)

the least-squares residuals from the regression of X2 and Y, respectively, on the matrix X1 only.
Since the matrix M1 is idempotent, M1 =M1M1 and thus

β̂2 =
¡
X 0
2M1X2

¢−1 ¡
X 0
2M1Y

¢
=

¡
X 0
2M1M1X2

¢−1 ¡
X 0
2M1M1Y

¢
=

³
X̃ 0
2X̃2

´−1 ³
X̃ 0
2Ỹ
´

This shows that β̂2 can be calculated by the OLS regression of Ỹ on X̃2. This technique is called
residual regression.

Furthermore, using the definitions (4.16) and (4.17), expression (4.15) can be equivalently
written as

Ỹ = X̃2β̂2 + ê.

Since β̂2 is precisely the OLS coefficient from a regression of Ỹ on X̃2, this shows that the residual
from this regression is ê, numerically the same residual as from the joint regression (4.14). We
have proven the following theorem.
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Theorem 4.6.1 (Frisch-Waugh-Lovell). In the model (4.13), the OLS estimator of β2 and the
OLS residuals ê may be equivalently computed by either the OLS regression (4.14) or via the
following algorithm:

1. Regress Y on X1, obtain residuals Ỹ ;

2. Regress X2 on X1, obtain residuals X̃2;

3. Regress Ỹ on X̃2, obtain OLS estimates β̂2 and residuals ê.

In some contexts, the FWL theorem can be used to speed computation, but in most cases
there is little computational advantage to using the two-step algorithm. Rather, the primary use
is theoretical.

A common application of the FWL theorem, which you may have seen in an introductory
econometrics course, is the demeaning formula for regression. Partition X = [X1 X2] where
X1 = ι is a vector of ones, and X2 is the vector of observed regressors. In this case,

M1 = I − ι
¡
ι0ι
¢−1

ι0.

Observe that

X̃2 = M1X2 = X2 − ι
¡
ι0ι
¢−1

ι0X2

= X2 −X2

and

Ỹ = M1Y = Y − ι
¡
ι0ι
¢−1

ι0Y

= Y − Y ,

which are “demeaned”. The FWL theorem says that β̂2 is the OLS estimate from a regression of
Ỹ on X̃2, or yi − y on x2i − x2 :

β̂2 =

Ã
nX
i=1

(x2i − x2) (x2i − x2)
0
!−1Ã nX

i=1

(x2i − x2) (yi − y)

!
.

Thus the OLS estimator for the slope coefficients is a regression with demeaned data.

4.7 Bias and Variance

In this and the following section we consider the special case of the linear regression model (3.8)-
(3.9). In this section we derive the small sample conditional mean and variance of the OLS
estimator.

By the independence of the observations and (3.9), observe that

E (e | X) =

⎛⎜⎜⎝
...

E (ei | X)
...

⎞⎟⎟⎠ =

⎛⎜⎜⎝
...

E (ei | xi)
...

⎞⎟⎟⎠ = 0. (4.18)
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Using (4.8), the properties of conditional expectations, and (4.18), we can calculate

E
³
β̂ − β | X

´
= E

³¡
X 0X

¢−1
X 0e | X

´
=

¡
X 0X

¢−1
X 0E (e | X)

= 0.

We have shown that
E
³
β̂ | X

´
= β (4.19)

which implies
E
³
β̂
´
= β

and thus the OLS estimator β̂ is unbiased for β.
Next, for any random vector Z define the covariance materix

V ar(Z) = E (Z −EZ) (Z −EZ)0

= EZZ 0 − (EZ) (EZ)0 .

Then given (4.19) we see that

V ar
³
β̂ | X

´
= E

µ³
β̂ − β

´³
β̂ − β

´0
| X
¶

=
¡
X 0X

¢−1
X 0DX

¡
X 0X

¢−1
where

D = E
¡
ee0 | X

¢
.

The i’th diagonal element of D is

E
¡
e2i | X

¢
= E

¡
e2i | xi

¢
= σ2i

while the ij0th off-diagonal element of D is

E (eiej | X) = E (ei | xi)E (ej | xj) = 0.

Thus D is a diagonal matrix with i’th diagonal element σ2i :

D = diag{σ21, ..., σ2n} =

⎛⎜⎜⎜⎝
σ21 0 · · · 0
0 σ22 · · · 0
...

...
. . .

...
0 0 · · · σ2n

⎞⎟⎟⎟⎠ . (4.20)

In the special case of the linear homoskedastic regression model, σ2i = σ2 and we have the simpli-
fications D = Inσ

2, X 0DX = X 0Xσ2, and

V ar
³
β̂ | X

´
=
¡
X 0X

¢−1
σ2.

We now calculate the finite sample bias of the method of moments estimator σ̂2 for σ2, under the
additional assumption of conditional homoskedasticity E

¡
e2i | xi

¢
= σ2. From (4.12), the properties

of projection matrices, and the trace operator observe that.

σ̂2 =
1

n
ê0ê =

1

n
e0MMe =

1

n
e0Me =

1

n
tr
¡
e0Me

¢
=
1

n
tr
¡
Mee0

¢
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Then

E
¡
σ̂2 | X

¢
=

1

n
tr
£
E
¡
Mee0 | X

¢¤
=

1

n
tr
£
ME

¡
ee0 | X

¢¤
=

1

n
tr
£
Mσ2

¤
= σ2

n− k

n
,

the final equality by (4.10). Thus σ̂2 is biased towards zero. As an alternative, the estimator
s2 defined (4.7) is unbiased for σ2 by this calculation. This is the justification for the common
preference of s2 over σ̂2 in empirical practice. It is important to remember, however, that this
estimator is only unbiased in the special case of the homoskedastic linear regression model. It is
not unbiased in the absence of homoskedasticity, or in the projection model.

4.8 Gauss-Markov Theorem

In this section we restrict attention to the homoskedastic linear regression model, which is (3.8)-
(3.9) plus E

¡
e2i | xi

¢
= σ2. Now consider the class of estimators of β which are linear functions of

the vector Y, and thus can be written as

β̃ = A0Y

where A is an n × k function of X. The least-squares estimator is the special case obtained by
setting A = X(X 0X)−1.What is the best choice of A? The Gauss-Markov theorem, which we now
present, says that the least-squares estimator is the best choice, as it yields the smallest variance
among all unbiased linear estimators.

By a calculation similar to those of the previous section,

E
³
β̃ | X

´
= A0Xβ,

so β̃ is unbiased if (and only if) A0X = Ik. In this case, we can write

β̃L = A0Y = A (Xβ + e) = β +Ae.

Thus since V ar (e | X) = Inσ
2 under homoskedasticity,

V ar
³
β̃ | X

´
= A0V ar (e | X)A = A0Aσ2.

The “best” linear estimator is obtained by finding the matrix A for which this variance is the
smallest in the positive definite sense. The following result, known as the Gauss-Markov theorem,
is a famous statement of the solution.

Theorem 4.8.1 Gauss-Markov. In the homoskedastic linear regression model, the best (minimum-
variance) unbiased linear estimator is OLS.
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Proof. Let A be any n×k function of X such that A0X = Ik. The variance of the least-squares
estimator is (X 0X)−1 σ2 and that of A0Y is A0Aσ2. It is sufficient to show that the difference
A0A− (X 0X)−1 is positive semi-definite. Set C = A−X (X 0X)−1 . Note that X 0C = 0. Then we
calculate that

A0A−
¡
X 0X

¢−1
=

³
C +X

¡
X 0X

¢−1´0 ³
C +X

¡
X 0X

¢−1∗´− ¡X 0X
¢−1

= C 0C + C 0X
¡
X 0X

¢−1
+
¡
X 0X

¢−1
X 0C +

¡
X 0X

¢−1
X 0X

¡
X 0X

¢−1 − ¡X 0X
¢−1

= C 0C

The matrix C 0C is positive semi-definite (see Appendix 2.5) as required. ¥

The Gauss-Markov theorem is an efficiency justification for the least-squares estimator, but it is
quite limited in scope. Not only has the class of models has been restricted to homoskedastic linear
regressions, the class of potential estimators has been restricted to linear unbiased estimators.
This latter restriction is particularly unsatisfactory, as the theorem leaves open the possibility
that a non-linear or biased estimator could have lower mean squared error than the least-squares
estimator.

4.9 Semiparametric Efficiency

In the previous section we presented the Gauss-Markov theorem as a limited efficiency justification
for the least-squares estimator. A broader justification is provided in Chamberlain (1987), who
established that in the projection model the OLS estimator has the smallest asymptotic mean-
squared error among feasible estimators. This property is called semiparametric efficiency, and
is a strong justification for the least-squares estimator. We discuss the intuition behind his result
in this section.

Suppose that the joint distribution of (yi, xi) is discrete. That is, for finite r,

P
¡
yi = τ j , xi = ξj

¢
= πj , j = 1, ..., r

for some constant vectors τ j , ξj , and πj . Assume that the τ j and ξj are known, but the πj are
unknown. (We know the values yi and xi can take, but we don’t know the probabilities.)

In this discrete setting, the definition (4.3) can be rewritten as

β =

⎛⎝ rX
j=1

πjξjξ
0
j

⎞⎠−1⎛⎝ rX
j=1

πjξjτ j

⎞⎠ (4.21)

Thus β is a function of (π1, ..., πr) .
As the data are multinomial, the maximum likelihood estimator (MLE) is

π̂j =
1

n

nX
i=1

1 (yi = τ j) 1
¡
xi = ξj

¢
for j = 1, ..., r, where 1 (·) is the indicator function. That is, π̂j is the percentage of the observations
which fall in each category. The MLE β̂mle for β is then the analog of (4.21) with the parameters
πj replaced by the estimates π̂j :

β̂mle =

⎛⎝ rX
j=1

π̂jξjξ
0
j

⎞⎠−1⎛⎝ rX
j=1

π̂jξjτ j

⎞⎠ .
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Substituting in the expressions for π̂j ,

rX
j=1

π̂jξjξ
0
j =

rX
j=1

1

n

nX
i=1

1 (yi = τ j) 1
¡
xi = ξj

¢
ξjξ

0
j

=
1

n

nX
i=1

rX
j=1

1 (yi = τ j) 1
¡
xi = ξj

¢
xix

0
i

=
1

n

nX
i=1

xix
0
i

and

rX
j=1

π̂jξjτ j =
rX

j=1

1

n

nX
i=1

1 (yi = τ j) 1
¡
xi = ξj

¢
ξjτ j

=
1

n

nX
i=1

rX
j=1

1 (yi = τ j) 1
¡
xi = ξj

¢
xiyi

=
1

n

nX
i=1

xiyi

Thus

β̂mle =

Ã
1

n

nX
i=1

xix
0
i

!−1Ã
1

n

nX
i=1

xiyi

!
= β̂ols

In other words, if the data have a discrete distribution, the maximum likelihood estimator is
identical to the OLS estimator. Since this is a regular parametric model the MLE is asymptotically
efficient (see Appendix A.9), and thus so is the OLS estimator.

Chamberlain (1987) extends this argument to the case of continuously-distributed data. He
observes that the above argument holds for all multinomial distributions, and any continuous
distribution can be arbitrarily well approximated by a multinomial distribution. He proves that
generically the OLS estimator (4.4) is an asymptotically efficient estimator for the parameter β
defined in (3.10) for the class of models satisfying Assumption 3.5.1.

4.10 Omitted Variables

Let the regressors be partitioned as

xi =

µ
x1i
x2i

¶
.

Suppose we are interested in the coefficient on x1i alone in the regression of yi on the full set xi.
We can write the model as

yi = x01iβ1 + x02iβ2 + ei (4.22)

E (xiei) = 0

where the parameter of interest is β1.
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Now suppose that instead of estimating equation (4.22) by least-squares, we regress yi on x1i
only. This is estimation of the equation

yi = x01iγ1 + ui (4.23)

E (x1iui) = 0

Notice that we have written the coefficient on x1i as γ1 rather than β1, and the error as ui rather
than ei. This is because the model being estimated is different than (4.22). Goldberger (1991) calls
(4.22) the long regression and (4.23) the short regression to emphasize the distinction.

Typically, β1 6= γ1, except in special cases. To see this, we calculate

γ1 =
¡
E
¡
x1ix

0
1i

¢¢−1
E (x1iyi)

=
¡
E
¡
x1ix

0
1i

¢¢−1
E
¡
x1i
¡
x01iβ1 + x02iβ2 + ei

¢¢
= β1 +

¡
E
¡
x1ix

0
1i

¢¢−1
E
¡
x1ix

0
2i

¢
β2

= β1 + Γβ2

where
Γ =

¡
E
¡
x1ix

0
1i

¢¢−1
E
¡
x1ix

0
2i

¢
is the coefficient from a regression of x2i on x1i.

Observe that γ1 6= β1 unless Γ = 0 or β2 = 0. Thus the short and long regressions have the
same coefficient on x1i only under one of two conditions. First, the regression of x2i on x1i yields
a set of zero coefficients (they are uncorrelated), or second, the coefficient on x2i in (4.22) is zero.
In general, least-squares estimation of (4.23) is an estimate of γ1 = β1 + Γβ2 rather than β1. The
difference Γβ2 is known as omitted variable bias. It is the consequence of omission of a relevant
correlated variable.

To avoid omitted variables bias the standard advice is to include potentially relevant variables
in the estimated model. By construction, the general model will be free of the omitted variables
problem. Typically there are limits, as many desired variables are not available in a given dataset.
In this case, the possibility of omitted variables bias should be acknowledged and discussed in the
course of an empirical investigation.

4.11 Multicollinearity

If rank(X 0X) < k + 1, then β̂ is not defined. This is called strict multicollinearity. This
happens when the columns of X are linearly dependent, i.e., there is some α such that Xα = 0.
Most commonly, this arises when sets of regressors are included which are identically related. For
example, if X includes both the logs of two prices and the log of the relative prices, log(p1),
log(p2) and log(p1/p2). When this happens, the applied researcher quickly discovers the error as
the statistical software will be unable to construct (X 0X)−1. Since the error is discovered quickly,
this is rarely a problem for applied econometric practice.

The more relevant issue is near multicollinearity, which is often called “multicollinearity”
for brevity. This is the situation when the X 0X matrix is near singular, when the columns of X are
close to linearly dependent. This definition is not precise, because we have not said what it means
for a matrix to be “near singular”. This is one difficulty with the definition and interpretation of
multicollinearity.
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One implication of near singularity of matrices is that the numerical reliability of the calcula-
tions is reduced. In extreme cases it is possible that the reported calculations will be in error due
to floating-point calculation difficulties.

A more relevant implication of near multicollinearity is that individual coefficient estimates
will be imprecise. We can see this most simply in a homoskedastic linear regression model with
two regressors

yi = x1iβ1 + x2iβ2 + ei,

and
1

n
X 0X =

µ
1 ρ
ρ 1

¶
In this case

V ar
³
β̂ | X

´
=

σ2

n

µ
1 ρ
ρ 1

¶−1
=

σ2

n (1− ρ2)

µ
1 −ρ
−ρ 1

¶
.

The correlation ρ indexes collinearity, since as ρ approaches 1 the matrix becomes singular. We can
see the effect of collinearity on precision by observing that the asymptotic variance of a coefficient
estimate σ2

¡
1− ρ2

¢−1 approaches infinity as ρ approaches 1. Thus the more “collinear” are the
regressors, the worse the precision of the individual coefficient estimates.

What is happening is that when the regressors are highly dependent, it is statistically difficult
to disentangle the impact of β1 from that of β2. As a consequence, the precision of individual
estimates are reduced.

4.12 Influential Observations

The i’th observation is influential on the least-squares estimate if the deletion of the observation
from the sample results in a meaningful change in β̂. To investigate the possibility of influential
observations, define the leave-one-out least-squares estimator of β, that is, the OLS estimator
based on the sample excluding the i’th observation. This equals

β̂(−i) =
³
X 0
(−i)X(−i)

´−1
X(−i)Y(−i) (4.24)

where X(−i) and Y(−i) are the data matrices omitting the i’th row. A convenient alternative
expression is

β̂(−i) = β̂ − (1− hi)
−1 ¡X 0X

¢−1
xiêi (4.25)

where
hi = x0i

¡
X 0X

¢−1
xi

is the i’th diagonal element of the projection matrix X (X 0X)−1X 0. We derive expression (4.25)
below.

We can also define the leave-one-out residual

êi,−i = yi − x0iβ̂(−i) = (1− hi)
−1 êi. (4.26)

A simple comparison yields that

êi − êi,−i = (1− hi)
−1 hiêi. (4.27)

As we can see, the change in the coefficient estimate by deletion of the i’th observation depends
critically on the magnitude of hi. The hi take values in [0, 1] and sum to k. If the i’th observation
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has a large value of hi, then this observation is a leverage point and has the potential to be
an influential observation. Investigations into the presence of influential observations can plot the
values of (4.27), which is considerably more informative than plots of the uncorrected residuals êi.

We now derive equation (4.25). The key is equation (2.1) in Section 2.4 which states that

(A+BCD)−1 = A−1 −A−1BC
¡
C + CDA−1BC

¢
CDA−1.

This implies ¡
X 0X − xix

0
i

¢−1
=
¡
X 0X

¢−1
+
¡
X 0X

¢−1
xi (1− hi)

−1 x0i
¡
X 0X

¢−1
and thus

β̂(−i) =
¡
X 0X − xix

0
i

¢−1 ¡
X 0Y − xiyi

¢
=

¡
X 0X

¢−1 ¡
X 0Y − xiyi

¢
+ (1− hi)

−1 ¡X 0X
¢−1

xix
0
i

¡
X 0X

¢−1 ¡
X 0Y − xiyi

¢
= β̂ − (1− hi)

−1 ¡X 0X
¢−1

xiêi.
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4.13 Exercises

1. Let X be a random variable with µ = EX and σ2 = V ar(X). Define

g
¡
x, µ, σ2

¢
=

µ
x− µ

(x− µ)2 − σ2

¶
.

Let (µ̂, σ̂2) be the values such that gn(µ̂, σ̂
2) = 0 where gn(m, s) = n−1

Pn
i=1 g

¡
Xi, µ, σ

2
¢
.

Show that µ̂ and σ̂2 are the sample mean and variance.

2. Consider the OLS regression of the n × 1 vector y on the n × k matrix X. Consider an
alternative set of regressors Z = XC, where C is a k × k non-singular matrix. Thus, each
column of Z is a mixture of some of the columns of X. Compare the OLS estimates and
residuals from the regression of Y on X to the OLS estimates from the regression of Y on Z.

3. Let ê be the OLS residual from a regression of Y on X = [X1 X2]. Find X 0
2ê.

4. Let ê be the OLS residual from a regression of Y on X. Find the OLS coefficient estimate
from a regression of ê on X.

5. Let ŷ = X(X 0X)−1X 0y. Find the OLS coefficient estimate from a regression of ŷ on X.

6. Prove that R2 is the square of the simple correlation between y and ŷ.

7. Explain the difference between 1
n

Pn
i=1 xix

0
i and E (xix

0
i) .

8. Let β̂n = (X
0
nXn)

−1X 0
nYn denote the OLS estimate when Yn is n×1 and Xn is n×k. A new

observation (yn+1, xn+1) becomes available. Prove that the OLS estimate computed using
this additional observation is

β̂n+1 = β̂n +
1

1 + x0n+1 (X
0
nXn)

−1 xn+1

¡
X 0
nXn

¢−1
xn+1

³
yn+1 − x0n+1β̂n

´
.

9. True or False. If yi = xiβ + ei, xi ∈ R, E(ei | xi) = 0, and êi is the OLS residual from the
regression of yi on xi, then

Pn
i=1 x

2
i êi = 0.

10. A dummy variable takes on only the values 0 and 1. It is used for categorical data, such as
an individual’s gender. Let D1 and D2 be vectors of 1’s and 0’s, with the i0th element of D1

equaling 1 and that of D2 equaling 0 if the person is a man, and the reverse if the person is
a woman. Suppose that there are n1 men and n2 women in the sample. Consider the three
regressions

Y = µ+D1α1 +D2α2 + e (4.28)

Y = D1α1 +D2α2 + e (4.29)

Y = µ+D1φ+ e (4.30)

(a) Can all three regressions (4.28), (4.29), and (4.30) be estimated by OLS? Explain if not.

(b) Compare regressions (4.29) and (4.30). Is one more general than the other? Explain
the relationship between the parameters in (4.29) and (4.30).
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(c) Compute ι0D1 and ι0D2, where ι is an n× 1 is a vector of ones.
(d) Letting α = (α01 α

0
2)
0, write equation (4.29) as Y = Xα + e. Consider the assumption

E(xiei) = 0. Is there any content to this assumption in this setting?

11. Let D1 and D2 be defined as in the previous exercise.

(a) In the OLS regression
Y = D1γ̂1 +D2γ̂2 + û,

show that γ̂1 is sample mean of the dependent variable among the men of the sample
(Y 1), and that γ̂2 is the sample mean among the women (Y 2).

(b) Describe in words the transformations

Y ∗ = Y −D1Y 1 +D2Y 2

X∗ = X −D1X1 +D2X2.

(c) Compare β̃ from the OLS regresion

Y ∗ = X∗β̃ + ẽ

with β̂ from the OLS regression

Y = D1α̂1 +D2α̂2 +Xβ̂ + ê.

12. The data file cps85.dat contains a random sample of 528 individuals from the 1985 Cur-
rent Population Survey by the U.S. Census Bureau. The file contains observations on nine
variables, listed in the file cps85.pdf.

V1 = education (in years)
V2 = region of residence (coded 1 if South, 0 otherwise)
V3 = (coded 1 if nonwhite and non-Hispanic, 0 otherwise)
V4 = (coded 1 if Hispanic, 0 otherwise)
V5 = gender (coded 1 if female, 0 otherwise)
V6 = marital status (coded 1 if married, 0 otherwise)
V7 = potential labor market experience (in years)
V8 = union status (coded 1 if in union job, 0 otherwise)
V9 = hourly wage (in dollars)

Estimate a regression of wage yi on education x1i, experience x2i, and experienced-squared
x3i = x22i (and a constant). Report the OLS estimates.

Let êi be the OLS residual and ŷi the predicted value from the regression. Numerically
calculate the following:

(a)
Pn

i=1 êi

(b)
Pn

i=1 x1iêi

(c)
Pn

i=1 x2iêi

(d)
Pn

i=1 x
2
1iêi

(e)
Pn

i=1 x
2
2iêi
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(f)
Pn

i=1 ŷiêi

(g)
Pn

i=1 ê
2
i

(h) R2

Are the calculations (i)-(vi) consistent with the theoretical properties of OLS? Explain.

13. Use the data from the previous problem, restimate the slope on education using the residual
regression approach. Regress yi on (1, x2i, x22i), regress x1i on (1, x2i, x

2
2i), and regress the

residuals on the residuals. Report the estimate from this regression. Does it equal the value
from the first OLS regression? Explain.

In the second-stage residual regression, (the regression of the residuals on the residuals),
calculate the equation R2 and sum of squared errors. Do they equal the values from the
initial OLS regression? Explain.
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Chapter 5

Asymptotic Theory

This chapter reviews the essential components of asymptotic theory.

5.1 Inequalities

Asymptotic theory is based on a set of approximations. These approximations are bounded through
the use of mathematical inequalities. We list here some of the most critical definitions and in-
equalities.

The Euclidean norm of an m× 1 vector a is

|a| =
¡
a0a
¢1/2

=

Ã
mX
i=1

a2i

!1/2
.

If A is a m× n matrix, then its Euclidean norm is

|A| = tr
¡
A0A

¢1/2
=

⎛⎝ mX
i=1

nX
j=1

a2ij

⎞⎠1/2 .
The following are an important set of inequalities which are used in asymptotic distribution theory.

Triangle inequality
|X + Y | ≤ |X|+ |Y | .

Jensen’s Inequality. If g(·) : R→ R is convex, then

g(E(X)) ≤ E(g(X)). (5.1)

Cauchy-Schwarz Inequality.

E |XY | ≤
³
E |X|2

´1/2 ³
E |Y |2

´1/2
(5.2)

Holder’s Inequality. If p > 1 and q > 1 and 1
p +

1
q = 1, then

E |XY | ≤ (E |X|p)1/p (E |Y |q)1/q . (5.3)

41



Markov’s Inequality. For any strictly increasing function g(X) ≥ 0,

P (g(X) > α) ≤ α−1Eg(X). (5.4)

Proof of Jensen’s Inequality. Let a + bx be the tangent line to g(x) at x = EX. Since g(x)
is convex, tangent lines lie below it. So for all x, g(x) ≥ a + bx yet g(EX) = a+ bEX since the
curve is tangent at EX. Applying expectations, Eg(X) ≥ a+ bEX = g(EX), as stated. ¥

Proof of Holder’s Inequality. Let U = |X|p /E |X|p and V = |Y |q /E |Y |q . Note EU = EV =
1. Since 1

p +
1
q = 1 an application of Jensen’s inequality shows that

U1/pV 1/q = exp

∙
1

p
lnU +

1

q
lnV

¸
≤ 1

p
exp (lnU) +

1

p
exp (lnV ) =

U

p
+

V

q
.

Then
E |XY |

(E |X|p)1/p (E |Y |q)1/q
= E

³
U1/pV 1/q

´
≤ E

µ
U

p
+

V

q

¶
=
1

p
+
1

q
= 1,

which is (5.3). ¥

Proof of Markov’s Inequality. Set Y = g(X) and let f denote the density function of Y. Then

P (Y > α) = α−1
Z ∞

α
αf(y)dy

≤ α−1
Z ∞

α
yf(y)dy

≤ α−1
Z ∞

−∞
yf(y)dy = α−1E(Y )

the second-to-last inequality using the region of integration {y > α}. ¥

5.2 Weak Law of Large Numbers

Let Zn ∈ Rk be a random vector. We say that Zn converges in probability to Z as n → ∞,
denoted Zn →p Z as n→∞, if for all δ > 0,

lim
n→∞

P (|Zn − Z| > δ) = 0.

This is a probabilistic way of generalizing the mathematical definition of a limit. The WLLN shows
that sample averages converge in probability to the population average.

Theorem 5.2.1 Weak Law of Large Numbers (WLLN). If Xi ∈ Rk is iid and E |Xi| <∞,
then as n→∞

Xn =
1

n

nX
i=1

Xi →p E(X).
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Proof: Without loss of generality, we can set E(X) = 0 (by recentering Xi on its expectation).
We need to show that for all δ > 0 and η > 0 there is some N < ∞ so that for all n ≥ N,
P
¡¯̄
Xn

¯̄
> δ

¢
≤ η. Fix δ and η. Set ε = δη/3. Pick C <∞ large enough so that

E (|X| 1 (|X| > C)) ≤ ε (5.5)

(where 1 (·) is the indicator function) which is possible since E |X| <∞. Define the random vectors

Wi = Xi1 (|Xi| ≤ C)−E (Xi1 (|Xi| ≤ C))

Zi = Xi1 (|Xi| > C)−E (Xi1 (|Xi| > C)) .

By the triangle inequality, Jensen’s inequality (5.1) and (5.5),

E
¯̄
Zn

¯̄
≤ E |Zi|
≤ E |Xi| 1 (|Xi| > C) + |E (Xi1 (|Xi| > C))|
≤ 2E |Xi| 1 (|Xi| > C)

≤ 2ε. (5.6)

By Jensen’s inequality (5.1), the fact that theWi are iid and mean zero, and the bound |Wi| ≤ 2C,¡
E
¯̄
Wn

¯̄¢2 ≤ EW
2
n

=
EW 2

i

n

≤ 4C2

n
≤ ε2 (5.7)

the final inequality holding for n ≥ 4C2/ε2 = 36C2/δ2η2.
Finally, by Markov’s inequality (5.4), the fact that Xn = Wn + Zn, the triangle inequality,

(5.6) and (5.7),

P
¡¯̄
Xn

¯̄
> δ

¢
≤

E
¯̄
Xn

¯̄
δ

≤
E
¯̄
Wn

¯̄
+E

¯̄
Zn

¯̄
δ

≤ 3ε
δ
= η,

the equality by the definition of ε. We have shown that for any δ > 0 and η > 0 then for all
n ≥ 36C2/δ2η2, P

¡¯̄
Xn

¯̄
> δ

¢
≤ η, as needed. ¥

5.3 Convergence in Distribution

Let Zn be a random variable with distribution Fn(x) = P (Zn ≤ x) . We say that Zn converges
in distribution to Z as n→∞, denoted Zn →d Z, where Z has distribution F (x) = P (Z ≤ x) ,
if for all x at which F (x) is continuous, Fn(x)→ F (x) as n→∞.

Theorem 5.3.1 Central Limit Theorem (CLT). If Xi ∈ Rk is iid and E |Xi|2 <∞, then as
n→∞

√
n
¡
Xn − µ

¢
=

1√
n

nX
i=1

(Xi − µ)→d N (0, V ) .

where µ = EX and V = E (X − µ) (X − µ)0 .
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Proof: Without loss of generality, it is sufficient to consider the case µ = 0 and V = Ik. For
λ ∈ Rk, let C(λ) = E exp

¡
iλ0X

¢
denote the characteristic function of X and set c(λ) = lnC(λ).

Then observe

∂

∂λ
C(λ) = iE

¡
X exp

¡
iλ0X

¢¢
∂2

∂λ∂λ0
C(λ) = i2E

¡
XX 0 exp

¡
iλ0X

¢¢
so when evaluated at λ = 0

C(0) = 1

∂

∂λ
C(0) = iE (X) = 0

∂2

∂λ∂λ0
C(0) = −E

¡
XX 0¢ = −Ik.

Furthermore,

cλ(λ) =
∂

∂λ
c(λ) = C(λ)−1

∂

∂λ
C(λ)

cλλ(λ) =
∂2

∂λ∂λ0
c(λ) = C(λ)−1

∂2

∂λ∂λ0
C(λ)−C(λ)−2

∂

∂λ
C(λ)

∂

∂λ0
C(λ)

so when evaluated at λ = 0

c(0) = 0

cλ(0) = 0

cλλ(0) = −Ik.

By a second-order Taylor series expansion of c(λ) about λ = 0,

c(λ) = c(0) + cλ(0)
0λ+

1

2
λ0cλλ(λ

∗)λ =
1

2
λ0cλλ(λ

∗)λ (5.8)

where λ∗ lies on the line segment joining 0 and λ.
We now compute Cn(λ) = E exp

¡
iλ0
√
nXn

¢
the characteristic function of

√
nXn. By the

properties of the exponential function, the independence of the Xi, the definition of c(λ) and (5.8)

lnCn(λ) = logE exp

⎛⎝i
1√
n

nλ0X
j=1

Xj

⎞⎠
= logE

nY
j=1

exp

µ
i
1√
n
λ0Xj

¶

= log
nY
i=1

E exp

µ
i
1√
n
λ0Xj

¶
= nc

µ
λ√
n

¶
=

1

2
λ0cλλ(λn)λ
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where λn → 0 lies on the line segment joining 0 and λ/
√
n. Since cλλ(λn)→ cλλ(0) = −Ik, we see

that as n→∞,

Cn(λ)→ exp

µ
−1
2
λ0λ

¶
the characteristic function of the N(0, Ik) distribution. This is sufficient to establish the theorem.
¥

5.4 Asymptotic Transformations

Theorem 5.4.1 Continuous Mapping Theorem 1 (CMT). If Zn →p c as n→∞ and g (·) is
continuous at c, then g(Zn)→p g(c) as n→∞.

Proof: Since g is continuous at c, for all ε > 0 we can find a δ > 0 such that if |Zn − c| < δ
then |g (Zn)− g (c)| ≤ ε. Recall that A ⊂ B implies P (A) ≤ P (B). Thus P (|g (Zn)− g (c)| ≤ ε) ≥
P (|Zn − c| < δ)→ 1 as n→∞ by the assumption that Zn →p c. Hence g(Zn)→p g(c) as n→∞.

Theorem 5.4.2 Continuous Mapping Theorem 2. If Zn →d Z as n → ∞ and g (·) is
continuous, then g(Zn)→d g(Z) as n→∞.

Theorem 5.4.3 Delta Method: If
√
n (θn − θ0)→d N (0,Σ) , where θ is m×1 and Σ is m×m,

and g(θ) : Rm → Rk, k ≤ m, then

√
n (g (θn)− g(θ0))→d N

¡
0, gθΣg

0
θ

¢
where gθ(θ) = ∂

∂θ0
g(θ) and gθ = gθ(θ0).

Proof : By a vector Taylor series expansion, for each element of g,

gj(θn) = gj(θ0) + gjθ(θ
∗
jn) (θn − θ0)

where θnj lies on the line segment between θn and θ0 and therefore converges in probability to θ0.
It follows that ajn = gjθ(θ

∗
jn)− gjθ →p 0. Stacking across elements of g, we find

√
n (g (θn)− g(θ0)) = (gθ + an)

√
n (θn − θ0)→d gθN (0,Σ) = N

¡
0, gθΣg

0
θ

¢
.
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Chapter 6

Inference

6.1 Sampling Distribution

The least-squares estimator is a random vector, since it is a function of the random data, and
therefore has a sampling distribution. In general, its distribution is a complicated function of the
joint distribution of (yi, xi) and the sample size n.

Figure 6.1: Sampling Density of β̂2

To illustrate the possibilities in one example, let yi and xi be drawn from the joint density

f(x, y) =
1

2πxy
exp

µ
−1
2
(ln y − lnx)2

¶
exp

µ
−1
2
(lnx)2

¶
and let β̂2 be the slope coefficient estimate computed on observations from this joint density. Using
simulation methods, the density function of β̂2 was computed and plotted in Figure 6.1 for sample
sizes of n = 25, n = 100 and n = 800. The verticle line marks the true value of the projection
coefficient.
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From the figure we can see that the density functions are dispersed and highly non-normal.
As the sample size increases the density becomes more concentrated about the population coeffi-
cient. To characterize the sampling distribution more fully, we will use the methods of asymptotic
approximation.

6.2 Consistency

As discussed in Section 6.1, the OLS estimator β̂ is has a statistical distribution which is unknown.
Asymptotic (large sample) methods approximate sampling distributions based on the limiting ex-
periment that the sample size n tends to infinity. A preliminary step in this approach is the
demonstration that estimators are consistent — that they converge in probability to the true para-
meters as the sample size gets large. This is illustrated in Figure 6.1 by the fact that the sampling
densities become more concentrated as n gets larger.

Theorem 6.2.1 Under Assumption 3.5.1, β̂ →p β as n→∞.

Proof. Equation (4.8) implies that

β̂ − β =

Ã
nX
i=1

xix
0
i

!−1 nX
i=1

xiei. (6.1)

We now deduce the consistency of β̂. First, Assumption 3.5.1 and the WLLN (Theorem 5.2.1)
imply that

1

n

nX
i=1

xix
0
i →p E

¡
xix

0
i

¢
= Q (6.2)

and
1

n

nX
i=1

xiei →p E (xiei) = 0. (6.3)

From (6.1), (6.2), (6.3), and the continuous mapping theorem (Theorem 5.4.1), we can conclude
that β̂ →p β. For a complete argument, using (6.1), we can write

β̂ − β =

Ã
1

n

nX
i=1

xix
0
i

!−1Ã
1

n

nX
i=1

xiei

!

= g

Ã
1

n

nX
i=1

xix
0
i,
1

n

nX
i=1

xiei

!

where g(A, b) = A−1b is a continuous function of A and b at all values of the arguments such
that A−1 exist. Assumption 3.5.1.4 implies that Q−1 exists and thus g(·, ·) is continuous at (Q, 0).
Hence by the continuous mapping theorem (Theorem 5.4.1),

β̂ − β = g

Ã
1

n

nX
i=1

xix
0
i,
1

n

nX
i=1

xiei

!
→p g (Q, 0) = Q−10 = 0

which implies β̂ →p β as stated. ¥

We can similarly show that the estimators σ̂2 and s2 are consistent for σ2.
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Theorem 6.2.2 Under Assumption 3.5.1, σ̂2 →p σ
2 and s2 →p σ

2 as n→∞.

Proof. Note that

êi = yi − x0iβ̂

= ei + x0iβ − x0iβ̂

= ei − x0i

³
β̂ − β

´
.

Thus
ê2i = e2i − 2eix0i

³
β̂ − β

´
+
³
β̂ − β

´0
xix

0
i

³
β̂ − β

´
(6.4)

and

σ̂2 =
1

n

nX
i=1

ê2i

=
1

n

nX
i=1

e2i − 2
Ã
1

n

nX
i=1

eix
0
i

!³
β̂ − β

´
+
³
β̂ − β

´0Ã1
n

nX
i=1

xix
0
i

!³
β̂ − β

´
→p σ

2

the last line using the WLLN, (6.2), (6.3) and Theorem (6.2.1). Thus σ̂2 is consistent for σ2.
Finally, since n/(n− k)→ 1 as n→∞, it follows that

s2 =
n

n− k
σ̂2 →p σ

2.

¥

6.3 Asymptotic Normality

We now establish the asymptotic distribution of β̂ after normalization. We need a strengthening
of the moment conditions.

Assumption 6.3.1 In addition to Assumption 3.5.1, Ee4i <∞ and E |xi|4 <∞.

Now define
Ω = E

¡
xix

0
ie
2
i

¢
.

Assumption 6.3.1 guarantees that the elements of Ω are finite. To see this, by the Cauchy-Schwarz
inequality (5.2),

E
¯̄
xix

0
ie
2
i

¯̄
≤
³
E
¯̄
xix

0
i

¯̄2´1/2 ¡
E
¯̄
e4i
¯̄¢1/2

=
³
E |xi|4

´1/2 ¡
E
¯̄
e4i
¯̄¢1/2

<∞. (6.5)

Thus xiei is iid with mean zero and has covariance matrix Ω. By the central limit theorem
(Theorem 5.3.1),

1√
n

nX
i=1

xiei →d N (0,Ω) . (6.6)
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Then using (6.1), (6.2), and (6.6),

√
n
³
β̂ − β

´
=

Ã
1

n

nX
i=1

xix
0
i

!−1Ã
1√
n

nX
i=1

xiei

!
→d Q

−1N (0,Ω)

= N
¡
0, Q−1ΩQ−1

¢
.

Theorem 6.3.1 Under Assumption 6.3.1, as n→∞
√
n
³
β̂ − β

´
→d N (0, V )

where V = Q−1ΩQ−1.

As V is the variance of the asymptotic distribution of
√
n
³
β̂ − β

´
, V is often referred to as

the asymptotic covariance matrix of β̂. The expression V = Q−1ΩQ−1 is called a sandwich
form.

Theorem 6.3.1 states that the sampling distribution of the least-squares estimator, after rescal-
ing, is approximately normal when the sample size n is sufficiently large. This holds true for all
joint distibutions of (yi, xi) which satisfy the conditions of Assumption 6.3.1. However, for any
fixed n the sampling distribution of β̂ can be arbitrarily far from the normal distribution. In Figure
6.1 we have already seen a simple example where the least-squares estimate is quite asymmetric
and non-normal even for reasonably large sample sizes.

There is a special case where Ω and V simplify. We say that ei is a Homoskedastic Projec-
tion Error when

Cov(xix
0
i, e

2
i ) = 0. (6.7)

Condition (6.7) holds, for example, when xi and ei are independent, but this is not a necessary
condition. Under (6.7) the asymptotic variance formulas simplify as

Ω = E
¡
xix

0
i

¢
E
¡
e2i
¢
= Qσ2 (6.8)

V = Q−1ΩQ−1 = Q−1σ2 ≡ V 0 (6.9)

In (6.9) we define V 0 = Q−1σ2 whether (6.7) is true or false. When (6.7) is true then V = V 0,
otherwise V 6= V 0. We call V 0 the homoskedastic covariance matrix.

The asymptotic distribution of Theorem 6.3.1 is commonly used to approximate the finite
sample distribution of

√
n
³
β̂ − β

´
. The approximation may be poor when n is small. How large

should n be in order for the approximation to be useful? Unfortunately, there is no simple answer
to this reasonable question. The trouble is that no matter how large is the sample size, the
normal approximation is arbitrarily poor for some data distribution satisfying the assumptions.
We illustrate this problem using a simulation. Let yi = β0 + β1xi + εi where xi is N(0, 1), and
εi is independent of xi with the Double Pareto density f(ε) = α

2 |ε|
−α−1 , |ε| ≥ 1. If α > 2 the

error εi has zero mean and variance α/(α− 2). As α approaches 2, however, its variance diverges
to infinity. In this context the normalized least-squares slope estimator

q
nα−2

α

³
β̂2 − β2

´
has

the N(0, 1) asymptotic distibution. In Figure 6.2 we display the finite sample densities of the

normalized estimator
q
nα−2

α

³
β̂2 − β2

´
, setting n = 100 and varying the parameter α. For
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Figure 6.2: Density of Normalized OLS estimator

α = 3.0 the density is very close to the N(0, 1) density. As α diminishes the density changes
significantly, concentrating most of the probability mass around zero.

Another example is shown in Figure 6.3. Here the model is yi = β1 + εi where

εi =
uki −Euki³

Eu2ki −
¡
Euki

¢2´1/2
and ui ∼ N(0, 1). We show the sampling distribution of

√
n
³
β̂1 − β1

´
setting n = 100, for k = 1,

4, 6 and 8. As k increases, the sampling distribution becomes highly skewed and non-normal. The
lesson from Figures 6.2 and 6.3 is that the N(0, 1) asymptotic approximation is never guaranteed
to be accurate.

6.4 Covariance Matrix Estimation

Let

Q̂ =
1

n

nX
i=1

xix
0
i

be the method of moments estimator for Q. The homoskedastic covariance matrix V 0 = Q−1σ2 is
typically estimated by

V̂ 0 = Q̂−1s2. (6.10)

Since Q̂→p Q and s2 →p σ
2 (see (6.2) and Theorem 6.2.1) it is clear that V̂ 0 →p V

0. The estimator
σ̂2 may also be substituted for s2 in (6.10) without changing this result.

To estimate V = Q−1ΩQ−1, we need an estimate of Ω = E
¡
xix

0
ie
2
i

¢
. The MME estimator is

Ω̂ =
1

n

nX
i=1

xix
0
iê
2
i (6.11)
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Figure 6.3: Sampling distribution

where êi are the OLS residuals. The estimator of V is then

V̂ = Q̂−1Ω̂Q̂−1

This estimator was introduced to the econometrics literature by White (1980).
The estimator V̂ 0 was the dominate covariance estimator used before 1980, and was still the

standard choice for much empirical work done in the early 1980s. The methods switched during
the late 1980s and early 1990s, so that by the late 1990s White estimate V̂ emerged as the standard
covariance matrix estimator. When reading and reporting applied work, it is important to pay
attention to the distinction between V̂ 0 and V̂ , as it is not always clear which has been computed.
When V̂ is used rather than the traditional choice V̂ 0, many authors will state that their “standard
errors have been corrected for heteroskedasticity”, or that they use a “heteroskedasticity-robust
covariance matrix estimator”, or that they use the “White formula”, the “Eicker-White formula”,
the “Huber formula”, the “Huber-White formula” or the “GMM covariance matrix”. In most
cases, these all mean the same thing.

The variance estimator V̂ is an estimate of the variance of the asymptotic distribution of β̂.
A more easily interpretable measure of spread is its square root — the standard deviation. This
motivates the definition of a standard error.

Definition 6.4.1 A standard error s(β̂) for an estimator β̂ is an estimate of the standard
deviation of the distribution of β̂.

When β is scalar, and V̂ is an estimator of the variance of
√
n
³
β̂ − β

´
, we set s(β̂) = n−1/2

p
V̂ .

When β is a vector, we focus on individual elements of β one-at-a-time, vis., βj , j = 0, 1, ..., k.
Thus

s(β̂j) = n−1/2
q
V̂jj .

Generically, standard errors are not unique, as there may be more than one estimator of the
variance of the estimator. It is therefore important to understand what formula and method is
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used by an author when studying their work. It is also important to understand that a particular
standard error may be relevant under one set of model assumptions, but not under another set of
assumptions, just as any other estimator.

From a computational standpoint, the standard method to calculate the standard errors is to
first calculate n−1V̂ , then take the diagonal elements, and then the square roots.

To illustrate, we return to the log wage regression of Section 4.1. We calculate that s2 = 0.20
and

Ω̂ =

µ
0.199 2.80
2.80 40.6

¶
.

Therefore the two covariance matrix estimates are

V̂ 0 =

µ
1 14.14

14.14 205.83

¶−1
0.20 =

µ
6.98 −0.480
−0.480 .039

¶
and

V̂ =

µ
1 14.14

14.14 205.83

¶−1µ
.199 2.80
2.80 40.6

¶µ
1 14.14

14.14 205.83

¶−1
=

µ
7.20 −0.493
−0.493 0.035

¶
.

In this case the two estimates are quite similar. The standard errors for β̂0 are
p
7.2/988 = .085

and that for β̂1 is
p
.35/988 = .020. We can write the estimated equation with standards errors

using the format

\log(Wagei) = 1.30
(.085)

+ 0.117
(.020)

Educationi.

6.5 Consistency of the White Covariance Matrix Estimate

We now show Ω̂→p Ω, from which it follows that V̂ →p V as n→∞. Using (6.4)

Ω̂ =
1

n

nX
i=1

xix
0
iê
2
i

=
1

n

nX
i=1

xix
0
ie
2
i −

2

n

nX
i=1

xix
0
i

³
β̂ − β

´0
xiei +

1

n

nX
i=1

xix
0
i

³
β̂ − β

´0
xix

0
i

³
β̂ − β

´
. (6.12)

We now examine each sum on the right-hand-side of (6.12) in turn. First, (6.5) and the WLLN
(Theorem 5.2.1) show that

1

n

nX
i=1

xix
0
ie
2
i →p E

¡
xix

0
ie
2
i

¢
= Ω.

Second, by Holder’s inequality (5.3)

E
³
|xi|3 |ei|

´
≤
³
E |xi|4

´3/4 ¡
E
¯̄
e4i
¯̄¢1/4

<∞,

so by the WLLN
1

n

nX
i=1

|xi|3 |ei|→p E
³
|xi|3 |ei|

´
,
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and thus since
¯̄̄
β̂ − β

¯̄̄
→p 0,¯̄̄̄

¯ 1n
nX
i=1

xix
0
i

³
β̂ − β

´0
xiei

¯̄̄̄
¯ ≤ ¯̄̄β̂ − β

¯̄̄ Ã 1
n

nX
i=1

|xi|3 |ei|
!
→p 0.

Third, by the WLLN
1

n

nX
i=1

|xi|4 →p E |xi|4 ,

so ¯̄̄̄
¯ 1n

nX
i=1

xix
0
i

³
β̂ − β

´0
xixi

³
β̂ − β

´¯̄̄̄¯ ≤ ¯̄̄β̂ − β
¯̄̄2 1
n

nX
i=1

|xi|4 →p 0.

Together, these establish consistency.

Theorem 6.5.1 As n→∞, Ω̂→p Ω and V̂ →p V.

6.6 Alternative Covariance Matrix Estimators

MacKinnon and White (1985) suggested a small-sample corrected version of V̂ based on the jack-
knife principle. Recall from Section 4.12 the definition of β̂(−i) as the least-squares estimator with
the i’th observation deleted. From equation (3.13) of Efron (1982), the jackknife estimator of the
variance matrix for β̂ is

V̂ ∗ = (n− 1)
nX
i=1

³
β̂(−i) − β̄

´³
β̂(−i) − β̄

´0
(6.13)

where

β̄ =
1

n

nX
i=1

β̂(−i).

Using formula (4.25), you can show that

V̂ ∗ =
n− 1
n

Q̂−1Ω̂∗Q̂−1 (6.14)

where

Ω̂∗ =
1

n

nX
i=1

(1− hi)
−2 xix

0
iê
2
i −

Ã
1

n

nX
i=1

(1− hi)
−1 xiêi

!Ã
1

n

nX
i=1

(1− hi)
−1 xiêi

!0

and hi = x0i (X
0X)−1 xi. MacKinnon and White (1985) present numerical (simulation) evidence

that V̂ ∗ works better than V̂ as an estimator of V . They also suggest that the scaling factor
(n− 1)/n in (??) can be omitted.

Andrews (1991) suggested an similar estimator based on cross-validation, which. is defined
by replacing the OLS residual êi in (6.11) with the leave-one-out estimator êi,−i = (1− hi)

−1 êi
presented in (4.26). Using this substitution, Andrews’ proposed estimator is

V̂ ∗∗ = Q̂−1Ω̂∗∗Q̂−1
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where

Ω̂∗∗ =
1

n

nX
i=1

(1− hi)
−2 xix

0
iê
2
i .

It is similar to the MacKinnon-White estimator V̂ ∗, but omits the mean correction. Andrews
(1991) argues that simulation evidence indicates that V̂ ∗∗ is an improvement on V̂ ∗.

6.7 Functions of Parameters

Sometimes we are interested in some lower-dimensional function of the parameter vector β =
(β1, ..., βk+1). For example, we may be interested in a single coefficient βj or a ratio βj/βl. In
these cases we can write the parameter of interest as a function of β. Let h : Rk → Rq denote this
function and let

θ = h(β)

denote the parameter of interest. The estimate of θ is

θ̂ = h(β̂).

What is an appropriate standard error for θ̂? Assume that h(β) is differentiable at the true
value of β. By a first-order Taylor series approximation:

h(β̂) ' h(β) +H 0
β

³
β̂ − β

´
.

where

Hβ =
∂

∂β
h(β) (k + 1)× q.

Thus
√
n
³
θ̂ − θ

´
=
√
n
³
h(β̂)− h(β)

´
' H 0

β

√
n
³
β̂ − β

´
→d H

0
βN(0, V )

= N(0, Vθ). (6.15)

where
Vθ = H 0

βV Hβ.

If V̂ is the estimated covariance matrix for β̂, then the natural estimate for the variance of θ̂ is

V̂θ = Ĥ 0
βV̂ Ĥβ

where

Ĥβ =
∂

∂β
h(β̂).

In many cases, the function h(β) is linear:

h(β) = R0β

for some k × q matrix R. In this case, Hβ = R and Ĥβ = R, so V̂θ = R0V̂ R.
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For example, if R is a “selector matrix”

R =

µ
I
0

¶
so that if β = (β1, β2), then θ = R0β = β1 and

V̂θ =
¡
I 0

¢
V̂

µ
I
0

¶
= V̂11,

the upper-left block of V̂ .
When q = 1 (so h(β) is real-valued), the standard error for θ̂ is the square root of n−1V̂θ, that

is, s(θ̂) = n−1/2
q
Ĥ 0
βV̂ Ĥβ.

6.8 t tests

Let θ = h(β) : Rk → R be any parameter of interest, θ̂ its estimate and s(θ̂) its asymptotic
standard error. Consider the studentized statistic

tn(θ) =
θ̂ − θ

s(θ̂)
. (6.16)

Theorem 6.8.1 tn(θ)→d N(0, 1)

Proof. By (6.15)

tn(θ) =
θ̂ − θ

s(θ̂)

=

√
n
³
θ̂ − θ

´
q
V̂θ

→d
N(0, Vθ)√

Vθ

= N(0, 1)

¥
Thus the asymptotic distribution of the t-ratio tn(θ) is the standard normal. Since the standard

normal distribution does not depend on the parameters, we say that tn(θ) is asymptotically
pivotal. In special cases (such as the normal regression model, see Section X), the statistic tn has
an exact t distribution, and is therefore exactly free of unknowns. In this case, we say that tn is an
exactly pivotal statistic. In general, however, pivotal statistics are unavailable and so we must
rely on asymptotically pivotal statistics.

A simple null and composite hypothesis takes the form

H0 : θ = θ0

H1 : θ 6= θ0

where θ0 is some pre-specified value, and θ = h(β) is some function of the parameter vector. (For
example, θ could be a single element of β).
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The standard test for H0 against H1 is the t-statistic (or studentized statistic)

tn = tn(θ0) =
θ̂ − θ0

s(θ̂)
.

Under H0, tn →d N(0, 1). Let zα/2 is the upper α/2 quantile of the standard normal distribution.
That is, if Z ∼ N(0, 1), then P (Z > zα/2) = α/2 and P (|Z| > zα/2) = α. For example, z.025 = 1.96
and z.05 = 1.645. A test of asymptotic significance α rejects H0 if |tn| > zα/2. Otherwise the test
does not reject, or “accepts” H0. This is because

P (reject H0 | H0 true) = P
¡
|tn| > zα/2 | θ = θ0

¢
→ P

¡
|Z| > zα/2

¢
= α.

The rejection/acceptance dichotomy is associated with the Neyman-Pearson approach to hypoth-
esis testing.

An alternative approach, associated with Fisher, is to report an asymptotic p-value. The
asymptotic p-value for the above statistic is constructed as follows. Define the tail probability, or
asymptotic p-value function

p(t) = P (|Z| > |t|) = 2 (1− Φ(|t|)) .

Then the asymptotic p-value of the statistic tn is

pn = p(tn).

If the p-value pn is small (close to zero) then the evidence against H0 is strong. In a sense,
p-values and hypothesis tests are equivalent since pn < α if and only if |tn| > zα/2. Thus an
equivalent statement of a Neyman-Pearson test is to reject at the α% level if and only if pn < α.
The p-value is more general, however, in that the reader is allowed to pick the level of significance
α, in contrast to Neyman-Pearson rejection/acceptance reporting where the researcher picks the
level.

Another helpful observation is that the p-value function has simply made a unit-free transfor-
mation of the test statistic. That is, under H0, pn →d U [0, 1], so the “unusualness” of the test
statistic can be compared to the easy-to-understand uniform distribution, regardless of the com-
plication of the distribution of the original test statistic. To see this fact, note that the asymptotic
distribution of |tn| is F (x) = 1− p(x). Thus

P (1− pn ≤ u) = P (1− p(tn) ≤ u)

= P (F (tn) ≤ u)

= P
¡
|tn| ≤ F−1(u)

¢
→ F

¡
F−1(u)

¢
= u,

establishing that 1− pn →d U [0, 1], from which it follows that pn →d U [0, 1].

6.9 Confidence Intervals

A confidence interval Cn is an interval estimate of θ, and is a function of the data and hence is
random. It is designed to cover θ with high probability. Either θ ∈ Cn or θ /∈ Cn. The coverage
probability is P (θ ∈ Cn).
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We typically cannot calculate the exact coverage probability P (θ ∈ Cn). However we often can
calculate the asymptotic coverage probability limn→∞ P (θ ∈ Cn). We say that Cn has asymptotic
(1− α)% coverage for θ if P (θ ∈ Cn)→ 1− α as n→∞.

A good method for construction of a confidence interval is the collection of parameter values
which are not rejected by a statistical test. The t-test of the previous setion rejects H0 : θ0 = θ if
|tn(θ)| > zα/2 where tn(θ) is the t-statistic (6.16) and zα/2 is the upper α/2 quantile of the standard
normal distribution. A confidence interval is then constructed as the values of θ for which this test
does not reject:

Cn =
©
θ : |tn(θ)| ≤ zα/2

ª
=

(
θ : −zα/2 ≤

θ̂ − θ

s(θ̂)
≤ zα/2

)
=

h
θ̂ − zα/2s(θ̂), θ̂ + zα/2s(θ̂)

i
. (6.17)

While there is no hard-and-fast guideline for choosing the coverage probability 1 − α, the
most common professional choice is 95%, or α = .05. This corresponds to selecting the confidence
interval

h
θ̂ ± 1.96s(θ̂)

i
≈
h
θ̂ ± 2s(θ̂)

i
. Thus values of θ within two standard errors of the estimated

θ̂ are considered “reasonable” candidates for the true value θ, and values of θ outside two standard
errors of the estimated θ̂ are considered unlikely or unreasonable candidates for the true value.

The interval has been constructed so that as n→∞,

P (θ ∈ Cn) = P
¡
|tn(θ)| ≤ zα/2

¢
→ P

¡
|Z| ≤ zα/2

¢
= 1− α.

and Cn is an asymptotic (1− α)% confidence interval.

6.10 Wald Tests

Sometimes θ = h(β) is a q× 1 vector, and it is desired to test the joint restrictions simultaneously.
In this case the t-statistic approach does not work. We have the null and alternative

H0 : θ = θ0

H1 : θ 6= θ0.

The natural estimate of θ is θ̂ = h(β̂) and has asymptotic covariance matrix estimate

V̂θ = Ĥ 0
βV̂ Ĥβ

where

Ĥβ =
∂

∂β
h(β̂).

The Wald statistic for H0 against H1 is

Wn = n
³
θ̂ − θ0

´0
V̂ −1θ

³
θ̂ − θ0

´
= n

³
h(β̂)− θ0

´0 ³
Ĥ 0
βV̂ Ĥβ

´−1 ³
h(β̂)− θ0

´
. (6.18)
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When h is a linear function of β, h(β) = R0β, then the Wald statistic takes the form

Wn = n
³
R0β̂ − θ0

´0 ³
R0V̂ R

´−1 ³
R0β̂ − θ0

´
.

The delta method (6.15) showed that
√
n
³
θ̂ − θ

´
→d Z ∼ N(0, Vθ), and Theorem 6.5.1 showed

that V̂ →p V. Furthermore, Hβ(β) is a continuous function of β, so by the continuous mapping
theorem, Hβ(β̂)→p Hβ. Thus V̂θ = Ĥ 0

βV̂ Ĥβ →p H
0
βV Hβ = Vθ > 0 if Hβ has full rank q. Hence

Wn = n
³
θ̂ − θ0

´0
V̂ −1θ

³
θ̂ − θ0

´
→d Z

0V −1θ Z = χ2q ,

by Theorem A.8.2. We have established:

Theorem 6.10.1 Under H0 and Assumption 6.3.1, if rank(Hβ) = q, then Wn →d χ2q , a chi-
square random variable with q degrees of freedom.

An asymptotic Wald test rejects H0 in favor of H1 if Wn exceeds χ2q(α), the upper-α quantile
of the χ2q distribution. For example, χ

2
1(.05) = 3.84 = z2.025. The Wald test fails to reject if Wn is

less than χ2q(α). The asymptotic p-value forWn is pn = p(Wn), where p(x) = P
¡
χ2q ≥ x

¢
is the tail

probability function of the χ2q distribution. As before, the test rejects at the α% level iff pn < α,
and pn is asymptotically U [0, 1] under H0.

6.11 F Tests

Take the linear model
Y = X1β1 +X2β2 + e

where X1 is n× k1 and X2 is n× k2 and k + 1 = k1 + k2. The null hypothesis is

H0 : β2 = 0.

In this case, θ = β2, and there are q = k2 restrictions. Also h(β) = R0β is linear with R =

µ
0
I

¶
a selector matrix. We know that the Wald statistic takes the form

Wn = nθ̂
0
V̂ −1θ θ̂

= nβ̂
0
2

³
R0V̂ R

´−1
β̂2.

What we will show in this section is that if V̂ is replaced with V̂ 0 = σ̂2
¡
n−1X 0X

¢−1
, the covariance

matrix estimator valid under homoskedasticity, then the Wald statistic can be written in the form

Wn = n

µ
σ̃2 − σ̂2

σ̂2

¶
(6.19)

where
σ̃2 =

1

n
ẽ0ẽ, ẽ = Y −X1β̃1, β̃1 =

¡
X 0
1X1

¢−1
X 0
1Y
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are from OLS of Y on X1, and

σ̂2 =
1

n
ê0ê, ê = Y −Xβ̂, β̂ =

¡
X 0X

¢−1
X 0Y

are from OLS of Y on X = (X1,X2).
The elegant feature about (6.19) is that it is directly computable from the standard output

from two simple OLS regressions, as the sum of squared errors is a typical output from statistical
packages. This statistic is typically reported as an “F-statistic” which is defined as

F =
n− k

n

Wn

k2
=

¡
σ̃2 − σ̂2

¢
/k2

σ̂2/(n− k)
.

While it should be emphasized that equality (6.19) only holds if V̂ 0 = σ̂2
¡
n−1X 0X

¢−1
, still this

formula often finds good use in reading applied papers. Because of this connection we call (6.19)
the F form of the Wald statistic.

We now derive expression (6.19). First, note that partitioned matrix inversion (2.2)

R0
¡
X 0X

¢−1
R = R0

µ
X 0
1X1 X 0

1X2
X 0
2X1 X 0

2X2

¶−1
R =

¡
X 0
2M1X2

¢−1
where M1 = I −X1(X

0
1X1)

−1X 0
1. Thus³

R0V̂ 0R
´−1

= σ̂−2n−1
³
R0
¡
X 0X

¢−1
R
´−1

= σ̂−2n−1
¡
X 0
2M1X2

¢
and

Wn = nβ̂
0
2

³
R0V̂ 0R

´−1
β̂2

=
β̂
0
2 (X

0
2M1X2) β̂2
σ̂2

.

To simplify this expression further, note that if we regress Y on X1 alone, the residual is
ẽ = M1Y. Now consider the residual regression of ẽ on X̃2 = M1X2. By the FWL theorem,
ẽ = X̃2β̂2 + ê and X̃ 0

2ê = 0. Thus

ẽ0ẽ =
³
X̃2β̂2 + ê

´0 ³
X̃2β̂2 + ê

´
= β̂

0
2X̃

0
2X̃2β̂2 + ê0ê

= β̂
0
2X

0
2M1X2β̂2 + ê0ê,

or alternatively,
β̂
0
2X

0
2M1X2β̂2 = ẽ0ẽ− ê0ê.

Also, since
σ̂2 = n−1ê0ê

we conclude that

Wn = n

µ
ẽ0ẽ− ê0ê

ê0ê

¶
= n

µ
σ̃2 − σ̂2

σ̂2

¶
,

as claimed.
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In many statistical packages, when an OLS regression is reported, an “F statistic” is reported.
This is

F =

¡
σ̃2y − σ̂2

¢
/ (k − 1)

σ̂2/(n− k)
.

where
σ̃2y =

1

n
(y − y)0 (y − y)

is the sample variance of yi, equivalently the residual variance from an intercept-only model. This
special F statistic is testing the hypothesis that all slope coefficients (other than the intercept) are
zero. This was a popular statistic in the early days of econometric reporting, when sample sizes
were very small and researchers wanted to know if there was “any explanatory power” to their
regression. This is rarely an issue today, as sample sizes are typically sufficiently large that this F
statistic is highly “significant”. While there are special cases where this F statistic is useful, these
cases are atypical.

6.12 Normal Regression Model

As an alternative to asymptotic distribution theory, there is an exact distribution theory available
for the normal linear regression model, introduced in Section 4.3. The modelling assumption that
the error ei is independent of xi and N(0, σ2) can be be used to calculate a set of exact distribution
results.

In particular, under the normality assumption the error vector e is independent of X and
has distribution N

¡
0, Inσ

2
¢
. Since linear functions of normals are also normal, this implies that

conditional on Xµ
β̂ − β
ê

¶
=

µ
(X 0X)−1X 0

M

¶
e ∼ N

µ
0,

µ
σ2 (X 0X)−1 0

0 σ2M

¶¶
where M = I − X (X 0X)−1X 0. Since uncorrelated normal variables are independent, it follows
that β̂ is independent of any function of the OLS residuals, including the estimated error variance
s2.

The spectral decomposition of M yields

M = H

∙
In−k−1 0
0 0

¸
H 0

(see equation (2.4)) where H 0H = In. Let u = σ−1H 0e ∼ N (0,H 0H) ∼ N (0, In) . Then

(n− k) s2

σ2
=

1

σ2
ê0ê

=
1

σ2
e0Me

=
1

σ2
e0H

∙
In−k 0
0 0

¸
H 0e

= u0
∙
In−k 0
0 0

¸
u

∼ χ2n−k,
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a chi-square distribution with n − k degrees of freedom. Furthermore, if standard errors are
calculated using the homoskedastic formula (6.10)

β̂j − βj

s(β̂j)
=

β̂j − βj

s

rh
(X 0X)−1

i
jj

∼
N

µ
0, σ2

h
(X 0X)−1

i
jj

¶
q

σ2

n−kχ
2
n−k

rh
(X 0X)−1

i
jj

=
N (0, 1)q

χ2n−k
n−k

∼ tn−k

a t distribution with n− k degrees of freedom.
We summarize these findings

Theorem 6.12.1 If ei is independent of xi and distributed N(0, σ2), and standard errors are
calculated using the homoskedastic formula (6.10) then

• β̂ ∼ N
³
0, σ2 (X 0X)−1

´
• (n−k)s2

σ2
∼ χ2n−k,

• β̂j−βj
s(β̂j)

∼ tn−k

In Theorem 6.3.1 and Theorem 6.8.1 we showed that in large samples, β̂ and t are approximately
normally distributed. In contrast, Theorem 6.12.1 shows that under the strong assumption of
normality, β̂ has an exact normal distribution and t has an exact t distribution. As inference
(confidence intervals) are based on the t-ratio, the notable distinction is between the N(0, 1) and
tn−k distributions. The critical values are quite close if n−k ≥ 30, so as a practical matter it does
not matter which distribution is used. (Unless the sample size is unreasonably small.)

Now let us partition β = (β1, β2) and consider tests of the linear restriction

H0 : β2 = 0

H1 : β2 6= 0

In the context of parametric models, a good testing procedure is based on the likelihood ra-
tio statistic, which is twice the difference in the log-likelihood function evaluated under the null
and alternative hypotheses. The estimator under the alternative is the unrestricted estimator
(β̂1, β̂2, σ̂

2) discussed above. The Gaussian log-likelihood at these estimates is

Ln(β̂1, β̂2, σ̂
2) = −n

2
log
¡
2πσ̂2

¢
− 1

2σ̂2
ê0ê

= −n
2
log
¡
σ̂2
¢
− n

2
log (2π)− n

2
.

The MLE of the model under the null hypothesis is (β̃1, 0, σ̃
2) where β̃1 is the OLS estimate from

a regression of yi on x1i only, with residual variance σ̃2. The log-likelihood of this model is

Ln(β̃1, 0, σ̃
2) = −n

2
log
¡
σ̃2
¢
− n

2
log (2π)− n

2
.

The LR statistic for H0 is

LR = 2
³
Ln(β̂1, β̂2, σ̂

2)− Ln(β̃1, 0, σ̃
2)
´

= n
¡
log
¡
σ̃2
¢
− log

¡
σ̂2
¢¢

= n log

µ
σ̃2

σ̂2

¶
.

61



By a first-order Taylor series approximation

LR = n log

µ
1 +

σ̃2

σ̂2
− 1
¶
' n

µ
σ̃2

σ̂2
− 1
¶
=Wn.

the F statistic.

6.13 Problems with Tests of NonLinear Hypotheses

While the t and Wald tests work well when the hypothesis is a linear restriction on β, they can
work quite poorly when the restrictions are nonlinear. This can be seen by a simple example
introduced by Lafontaine and White (1986). Take the model

yi = β + ei

ei ∼ N(0, σ2)

and consider the hypothesis
H0 : β = 1.

Let β̂ and σ̂2 be the sample mean and variance of yi. Then the standard Wald test for H0 is

Wn = n

³
β̂ − 1

´2
σ̂2

.

Now notice that H0 is equivalent to the hypothesis

H0(s) : β
s = 1

for any positive integer s. Letting h(β) = βs, and noting Hβ = sβs−1, we find that the standard
Wald test for H0(s) is

Wn(s) = n

³
β̂
s − 1

´2
σ̂2s2β̂

2s−2 .

While the hypothesis βs = 1 is unaffected by the choice of s, the statistic Wn(s) varies with s.
This is an unfortunate feature of the Wald statistic.

To demonstrate this effect, we have plotted in Figure 6.4 the Wald statisticWn(s) as a function
of s, setting n/σ2 = 10. The increasing solid line is for the case β̂ = 0.8. The decreasing dashed
line is for the case β̂ = 1.7. It is easy to see that in each case there are values of s for which the
test statistic is significant relative to asymptotic critical values, while there are other values of s
for which test test statistic is insignificant. This is distressing since the choice of s seems arbitrary
and irrelevant to the actual hypothesis.

Our first-order asymptotic theory is not useful to help pick s, as Wn(s) →d χ21 under H0 for
any s. This is a context where Monte Carlo simulation can be quite useful as a tool to study
and compare the exact distributions statistical procedures in finite samples. The method uses
random simulation to create an artificial dataset to apply the statistical tools of interest. This
produces random draws from the sampling distribution of interest. Through repetition, features
of this distribution can be calculated.

In the present context of the Wald statistic, one feature of importance is the Type I error
of the test using the asymptotic 5% critical value 3.84 — the probability of a false rejection,
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Figure 6.4: Wald Statistic as a function of s

P (Wn(s) > 3.84 | β = 1) . Given the simplicity of the model, this probability depends only on
s, n, and σ2. In Table 2.1 we report the results of a Monte Carlo simulation where we vary these
three parameters. The value of s is varied from 1 to 10, n is varied among 20, 100 and 500, and σ
is varied among 1 and 3. Table 4.1 reports the simulation estimate of the Type I error probability
from 50,000 random samples. Each row of the table corresponds to a different value of s — and
thus corresponds to a particular choice of test statistic. The second through seventh columns
contain the Type I error probabilities for different combinations of n and σ. These probabilities
are calculated as the percentage of the 50,000 simulated Wald statistics Wn(s) which are larger
than 3.84. The null hypothesis βs = 1 is true, so these probabilities are Type I error.

To interpret the table, remember that the ideal Type I error probability is 5% (.05) with
deviations indicating+ distortion. Typically, Type I error rates between 3% and 8% are considered
reasonable. Error rates avove 10% are considered excessive. Rates above 20% are unexceptable.
When comparing statistical procedures, we compare the rates row by row, looking for tests for
which rate rejection rates are close to 5%, and rarely fall outside of the 3%-8% range. For this
particular example, the only test which meets this criterion is the conventional Wn =Wn(1) test.
Any other choice of s leads to a test with unacceptable Type I error probabilities.

In Table 4.1 you can also see the impact of variation in sample size. In each case, the Type I
error probability improves towards 5% as the sample size n increases. There is, however, no magic
choice of n for which all tests perform uniformly well. Test performance deteriorates as s increases,
which is not surprising given the dependence of Wn(s) on s as shown in Figure 6.4.

Table 4.1
Type I error Probability of Asymptotic 5% Wn(s) Test
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σ = 1 σ = 3

s n = 20 n = 100 n = 500 n = 20 n = 100 n = 500

1 .06 .05 .05 .07 .05 .05
2 .08 .06 .05 .15 .08 .06
3 .10 .06 .05 .21 .12 .07
4 .13 .07 .06 .25 .15 .08
5 .15 .08 .06 .28 .18 .10
6 .17 .09 .06 .30 .20 .11
7 .19 .10 .06 .31 .22 .13
8 .20 .12 .07 .33 .24 .14
9 .22 .13 .07 .34 .25 .15
10 .23 .14 .08 .35 .26 .16

Note: Rejection frequencies from 50,000 simulated random samples

In this example it is not surprising that the choice s = 1 yields the best test statistic. Other
choices are arbitrary and would not be used in practice. While this is clear in this particular
example, in other examples natural choices are not always obvious and the best choices may in
fact appear counter-intuitive at first.

This point can be illustrated through another example. Take the model

yi = β0 + x1iβ1 + x2iβ2 + ei (6.20)

E (xiei) = 0

and the hypothesis

H0 :
β1
β2
= r

where r is a known constant. Equivalently, define θ = β1/β2, so the hypothesis can be stated as
H0 : θ = r.

Let β̂ = (β̂0, β̂1, β̂2) be the least-squares estimates of (6.20), let V̂ be an estimate of the
asymptotic variance matrix for β̂ and set θ̂ = β̂1/β̂2. Define

Ĥ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

β̂2

− β̂1
β̂
2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
so that the standard error for θ̂ is s(θ̂) =

³
n−1Ĥ 0

1V̂ Ĥ1

´1/2
. In this case a t-statistic for H0 is

t1n =

³
β̂1
β̂2
− r
´

s(θ̂)
.

An alternative statistic can be constructed through reformulating the null hypothesis as

H0 : β1 − rβ2 = 0.
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A t-statistic based on this formulation of the hypothesis is

t2n =

³
β̂1 − rβ̂2

´2
³
n−1H2V̂ H2

´1/2 .
where

H2 =

⎛⎝ 0
1
−r

⎞⎠ .

To compare t1n and t2n we perform another simple Monte Carlo simulation. We let x1i and
x2i be mutually independent N(0, 1) variables, ei be an independent N(0, σ2) draw with σ = 3,
and normalize β0 = 0 and β1 = 1. This leaves β2 as a free parameter, along with sample size n.
We vary β2 among .1, .25, .50, .75, and 1.0 and n among 100 and 500.

Table 4.2
Type I error Probability of Asymptotic 5% t-tests

n = 100 n = 500

P (tn < −1.645) P (tn > 1.645) P (tn < −1.645) P (tn > 1.645)

β2 t1n t2n t1n t2n t1n t2n t1n t2n
.10 .47 .06 .00 .06 .28 .05 .00 .05
.25 .26 .06 .00 .06 .15 .05 .00 .05
.50 .15 .06 .00 .06 .10 .05 .00 .05
.75 .12 .06 .00 .06 .09 .05 .00 .05
1.00 .10 .06 .00 .06 .07 .05 .02 .05

The one-sided Type I error probabilities P (tn < −1.645) and P (tn > 1.645) are calculated
from 50,000 simulated samples. The results are presented in Table 4.2. Ideally, the entries in the
table should be 0.05. However, the rejection rates for the t1n statistic diverge greatly from this
value, especially for small values of β2. The left tail probabilities P (t1n < −1.645) greatly exceed
5%, while the right tail probabilities P (t1n > 1.645) are close to zero in most cases. In contrast,
the rejection rates for the linear t2n statistic are invariant to the value of β2, and are close to the
ideal 5% rate for both sample sizes. The implication of Table 4.2 is that the two t-ratios have
dramatically different sampling behavior.

The common message from both examples is that Wald statistics are sensitive to the algebraic
formulation of the null hypothesis. In all cases, if the hypothesis can be expressed as a linear
restriction on the model parameters, this formulation should be used. If no linear formulation
is feasible, then the “most linear” formulation should be selected, and alternatives to asymptotic
critical values should be considered. It is also prudent to consider alternative tests to the Wald
statistic, such as the GMM distance statistic which will be presented in Section 9.7.

6.14 Monte Carlo Simulation

In the previous section we introduced the method of Monte Carlo simulation to illustrate the small
sample problems with tests of nonlinear hypotheses. In this section we describe the method in
more detail.
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Recall, our data consist of observations (yi, xi) which are random draws from a population
distribution F. Let θ be a parameter and let Tn = Tn(y1, x1..., yn, xn, θ) be a statistic of interest,
for example an estimator θ̂ or a t-statistic (θ̂ − θ)/s(θ̂). The exact distribution of Tn is

Gn(x, F ) = P (Tn ≤ x | F ) .

While the asymptotic distribution of Tn might be known, the exact (finite sample) distribution Gn

is generally unknown.
Monte Carlo simulation uses numerical simulation to compute Gn(x, F ) for selected choices

of F. This is useful to investigate the performance of the statistic Tn in reasonable situations
and sample sizes. The basic idea is that for any given F, the distribution function Gn(x, F ) can
be calculated numerically through simulation. The name Monte Carlo derives from the famous
Mediterranean gambling resort, where games of chance are played.

The method of Monte Carlo is quite simple to describe. The researcher chooses F (the dis-
tribution of the data) and the sample size n. A “true” value of θ is implied by this choice, or
equivalently the value θ is selected directly by the researcher, which implies restrictions on F .

Then the following experiment is conducted

• n independent random pairs (y∗i , x
∗
i ) , i = 1, ..., n, are drawn from the distribution F using

the computer’s random number generator.

• The statistic Tn = Tn(y
∗
1, x

∗
n..., y

∗
n, x

∗
n, θ) is calculated on this pseudo data.

For step 1, most computer packages have built-in procedures for generating U [0, 1] and N(0, 1)
random numbers, and from these most random variables can be constructed. (For example, a
chi-square can be generated by sums of squares of normals.)

For step 2, it is important that the statistic be evaluated at the “true” value of θ corresponding
to the choice of F.

The above experiment creates one random draw from the distribution Gn(x, F ). This is one
observation from an unknown distribution. Clearly, from one observation very little can be said.
So the researcher repeats the experiment B times, where B is a large number. Typically, we set
B = 1000 or B = 5000. We will discuss this choice later.

Notationally, let the b0th experiment result in the draw Tnb, b = 1, ..., B. These results are
stored. They constitute a random sample of sizeB from the distribution ofGn(x, F ) = P (Tnb ≤ x) =
P (Tn ≤ x | F ) .

From a random sample, we can estimate any feature of interest using (typically) a method of
moments estimator. For example:

Suppose we are interested in the bias, mean-squared error (MSE), or variance of the distribution
of θ̂ − θ. We then set Tn = θ̂ − θ, run the above experiment, and calculate

\Bias(θ̂) =
1

B

BX
b=1

Tnb =
1

B

BX
b=1

θ̂b − θ

\MSE(θ̂) =
1

B

BX
b=1

(Tnb)
2

\V ar(θ̂) = \MSE(θ̂)−
µ
\Bias(θ̂)

¶2
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Suppose we are interested in the Type I error associated with an asymptotic 5% two-sided
t-test. We would then set Tn =

¯̄̄
θ̂ − θ

¯̄̄
/s(θ̂) and calculate

P̂ =
1

B

BX
b=1

1 (Tnb ≥ 1.96) , (6.21)

the percentage of the simulated t-ratios which exceed the asymptotic 5% critical value.
Suppose we are interested in the 5% and 95% quantile of Tn = θ̂. We then compute the 10%

and 90% sample quantiles of the sample {Tnb}. The α% sample quantile is a number qα such that
α% of the sample are less than qα. A simple way to compute sample quantiles is to sort the sample
{Tnb} from low to high. Then qα is the N ’th number in this ordered sequence, where N = (B+1)α.
It is therefore convenient to pick B so that N is an integer. For example, if we set B = 999, then
the 5% sample quantile is 50’th sorted value and the 95% sample quantile is the 950’th sorted
value.

The typical purpose of a Monte Carlo simulation is to investigate the performance of a statistical
procedure (estimator or test) in realistic settings. Generally, the performance will depend on n
and F. In many cases, an estimator or test may perform wonderfully for some values, and poorly
for others. It is therefore useful to conduct a variety of experiments, for a selection of choices of n
and F.

As discussed above, the researcher must select the number of experiments, B. Often this is
called the number of replications. Quite simply, a larger B results in more precise estimates of
the features of interest of Gn, but requires more computational time. In practice, therefore, the
choice of B is often guided by the computational demands of the statistical procedure. Since the
results of a Monte Carlo experiment are estimates computed from a random sample of size B,
and therefore it is straightforward to calculate standard errors for any quantity of interest. If the
standard error is too large to make a reliable inference, then B will have to be increased.

In particular, it is simple to make inferences about rejection probabilities from statistical tests,
such as the percentage estimate reported in (6.21). The random variable 1 (Tnb ≥ 1.96) is iid
Bernoulli, equalling 1 with probability P = E1 (Tnb ≥ 1.96) . The average (6.21) is therefore an
unbiased estimator of P with standard error s

³
P̂
´
=
p
P (1− P ) /B. As P is unknown, this may

be approximated by replacing P with P̂ or with an hypothesized value. For example, if we are
assessing an asymptotic 5% test, then we can set s

³
P̂
´
=
p
(.05) (.95) /B ' .22/

√
B. Hence the

standard errors for B = 100, 1000, and 5000, are, respectively, s
³
P̂
´
= .022, .007, and .003.

6.15 Estimating a Wage Equation

We again return to our wage equation. We now expand the sample all non-military wage earners,
and estimate a multivariate regression. Again our dependent variable is the natural log of wages,
and our regressors include years of education, potential work experience, experience squared, and
dummy variable indicators for the following: married, female, union member, immigrant, and
hispanic. We separately estimate equations for white and non-whites.

For the dependent variable we use the natural log of wages, so that coefficients may be in-
terpreted as semi-elasticities. We us the sample of wage earners from the March 2004 Current
Population Survey, excluding military. For regressors we include years of education, potential
work experience, experience squared, and dummy variable indicators for the following: married,
female, union member, immigrant, hispanic, and non-white. Furthermore, we included a dummy

67



variable for state of residence (including the District of Columbia, this adds 50 regressors). The
available sample is 18,808 so the parameter estimates are quite precise and reported in Table 4.1,
excluding the coefficients on the state dummy variables.

Table 4.1
OLS Estimates of Linear Equation for Log(Wage)

β̂ s(β̂)
Intercept 1.027 .032
Education .101 .002
Experience .033 .001
Experience2 −.00057 .00002
Married .102 .008
Female −.232 .007
Union Member .097 .010
Immigrant −.121 .013
Hispanic −.102 .014
Non-White −.070 .010
σ̂ .4877
Sample Size 18,808
R2 .34

One question is whether or not the state dummy variables are relevant. Computing the Wald
statistic (6.18) that the state coefficients are jointly zero, we find Wn = 550. Alternatively, re-
estimating the model with the 50 state dummies excluded, the restricted standard deviation esti-
mate is σ̃ = .4945. The F form of the Wald statistic (6.19) is

Wn = n

µ
1− σ̂2

σ̃2

¶
= 18, 808

µ
1− .48772

.49452

¶
= 515.

Notice that the two statistics are close, but not equal. Using either statistic the hypothesis is easily
rejected, as the 1% critical value for the χ250 distribution is 76.

Another interesting question which can be addressed from these estimates is the maximal
impact of experience on mean wages. Ignoring the other coefficients, we can write this effect as

log(Wage) = β2Experience+ β3Experience
2 + · · ·

Our question is: At which level of experience θ do workers achieve the highest wage? In this
quadratic model, if β2 > 0 and β3 < 0 the solution is

θ = − β2
2β3

.

From Table 4.1 we find the point estimate

θ̂ = − β̂2

2β̂3
= 28.69.
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Using the Delta Method, we can calculate a standard error of s(θ̂) = .40, implying a 95% confidence
interval of [27.9, 29.5].

However, this is a poor choice, as the coverage probability of this confidence interval is one
minus the Type I error of the hypothesis test based on the t-test. In the previous section we
discovered that such t-tests had very poor Type I error rates. Instead, we found better Type I
error rates by reformulating the hypothesis as a linear restriction. These t-statistics take the form

tn(θ) =
β̂2 + 2β̂3θ³
h0θV̂ hθ

´1/2
where

hθ =

µ
−1
2θ

¶
and V̂ is the covariance matrix for (β̂2 β̂3).

In the present context we are interested in forming a confidence interval, not testing a hypoth-
esis, so we have to go one step further. Our desired confidence interval will be the set of parameter
values θ which are not rejected by the hypothesis test. This is the set of θ such that |tn(θ)| ≤ 1.96.
Since tn(θ) is a non-linear function of θ, there is not a simple expression for this set, but it can be
found numerically quite easily. This set is [27.0, 29.5]. Notice that the upper end of the confidence
interval is the same as that from the delta method, but the lower end is substantially lower.
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6.16 Exercises

For exercises 1-4, the following definition is used. In the model Y = Xβ + e, the least-squares
estimate of β subject to the restriction h(β) = 0 is

β̃ = argmin
h(β)=0

Sn(β)

Sn(β) = (Y −Xβ)0 (Y −Xβ) .

That is, β̃ minimizes the sum of squared errors Sn(β) over all β such that the restriction holds.

1. In the model Y = X1β1 + X2β2 + e, show that the least-squares estimate of β = (β1, β2)
subject to the constraint that β2 = 0 is the OLS regression of Y on X1.

2. In the model Y = X1β1 + X2β2 + e, show that the least-squares estimate of β = (β1, β2),
subject to the constraint that β1 = c (where c is some given vector) is simply the OLS
regression of Y −X1c on X2.

3. In the model Y = X1β1 +X2β2 + e, find the least-squares estimate of β = (β1, β2), subject
to the constraint that β1 = −β2.

4. Take the model Y = Xβ+ e with the restriction R0β = r where R is a known k×s matrix, r
is a known s×1 vector, 0 < s < k, and rank(R) = s. Explain why β̃ solves the minimization
of the Lagrangian

L(β, λ) =
1

2
Sn(β) + λ0

¡
R0β − r

¢
where λ is s× 1.

(a) Show that the solution is

β̃ = β̂ −
¡
X 0X

¢−1
R
h
R0
¡
X 0X

¢−1
R
i−1 ³

R0β̂ − r
´

λ̂ =
h
R0
¡
X 0X

¢−1
R
i−1 ³

R0β̂ − r
´

where
β̂ =

¡
X 0X

¢−1
X 0Y

is the unconstrained OLS estimator.

(b) Verify that R0β̃ = r.

(c) Show that if R0β = r is true, then

β̃ − β =

µ
Ik −

¡
X 0X

¢−1
R
h
R0
¡
X 0X

¢−1
R
i−1

R0
¶¡

X 0X
¢−1

X 0e.

(d) Under the standard assumptions plus R0β = r, find the asymptotic distribution of
√
n
³
β̃ − β

´
as n→∞.

(e) Find an appropriate formula to calculate standard errors for the elements of β̃.
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5. You have two independent samples (Y1,X1) and (Y2,X2) which satisfy Y1 = X1β1 + e1 and
Y2 = X2β2 + e2, where E (x1iei1) = 0 and E (x2ie2i) = 0, and both X1 and X2 have k
columns. Let β̂1 and β̂2 be the OLS estimates of β1 and β2. For simplicity, you may assume
that both samples have the same number of observations n.

(a) Find the asymptotic distribution of
√
n
³³

β̂2 − β̂1

´
− (β2 − β1)

´
as n→∞.

(b) Find an appropriate test statistic for H0 : β2 = β1.

(c) Find the asymptotic distribution of this statistic under H0.

6. The model is

yi = x0iβ + ei

E (xiei) = 0

Ω = E
¡
xix

0
ie
2
i

¢
.

(a) Find the method of moments estimators (β̂, Ω̂) for (β,Ω).

(b) In this model, are (β̂, Ω̂) efficient estimators of (β,Ω)?

(c) If so, in what sense are they efficient?

7. Take the model yi = x01iβ1 + x02iβ2 + ei with Exiei = 0. Suppose that β1 is estimated by
regressing yi on x1i only. Find the probability limit of this estimator. In general, is it
consistent for β1? If not, under what conditions is this estimator consistent for β1?

8. Verify that equation (6.13) equals (6.14) as claimed in Section 6.6.

9. Prove that if an additional regressor Xk+1 is added to X, Theil’s adjusted R
2
increases if

and only if |tk+1| > 1, where tk+1 = β̂k+1/s(β̂k+1) is the t-ratio for β̂k+1 and

s(β̂k+1) =
¡
s2[(X 0X)−1]k+1,k+1

¢1/2
is the homoskedasticity-formula standard error.

10. Let Y be n × 1, X be n × k (rank k). Y = Xβ + e with E(xiei) = 0. Define the ridge
regression estimator

β̂ =

Ã
nX
i=1

xix
0
i + λIk

!−1Ã nX
i=1

xiyi

!
where λ > 0 is a fixed constant. Find the probability limit of β̂ as n → ∞. Is β̂ consistent
for β?

11. Of the variables (y∗i , yi, xi) only the pair (yi, xi) are observed. In this case, we say that y
∗
i is

a latent variable. Suppose

y∗i = x0iβ + ei

E (xiei) = 0

yi = y∗i + ui
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where ui is a measurement error satisfying

E (xiui) = 0

E (y∗i ui) = 0

Let β̂ denote the OLS coefficient from the regression of yi on xi.

(a) Is β the coefficient from the linear projection of yi on xi?

(b) Is β̂ consistent for β as n→∞?

(c) Find the asymptotic distribution of
√
n
³
β̂ − β

´
as n→∞.

12. The data set invest.dat contains data on 565 U.S. firms extracted from Compustat for the
year 1987. The variables, in order, are

• Ii Investment to Capital Ratio (multiplied by 100).

• Qi Total Market Value to Asset Ratio (Tobin’s Q).

• Ci Cash Flow to Asset Ratio.

• Di Long Term Debt to Asset Ratio.

The flow variables are annual sums for 1987. The stock variables are beginning of year.

(a) Estimate a linear regression of Ii on the other variables. Calculate appropriate standard
errors.

(b) Calculate asymptotic confidence intervals for the coefficients.

(c) This regression is related to Tobin’s q theory of investment, which suggests that invest-
ment should be predicted solely by Qi. Thus the coefficient on Qi should be positive
and the others should be zero. Test the joint hypothesis that the coefficients on Ci

and Di are zero. Test the hypothesis that the coefficient on Qi is zero. Are the results
consistent with the predictions of the theory?

(d) Now try a non-linear (quadratic) specification. Regress Ii on Qi, Ci, Di, Q
2
i , C

2
i , D

2
i ,

QiCi, QiDi, CiDi. Test the joint hypothesis that the six interaction and quadratic
coefficients are zero.

13. In a paper in 1963, Marc Nerlove analyzed a cost function for 145 American electric compa-
nies. (The problem is discussed in Example 8.3 of Greene, section 1.7 of Hayashi, and the
empirical exercise in Chapter 1 of Hayashi). The data file nerlov.dat contains his data. The
variables are described on page 77 of Hayashi. Nerlov was interested in estimating a cost
function: TC = f(Q,PL, PF,PK).

(a) First estimate an unrestricted Cobb-Douglass specification

lnTCi = β1 + β2 lnQi + β3 lnPLi + β4 lnPKi + β5 lnPFi + ei. (6.22)

Report parameter estimates and standard errors. You should obtain the same OLS
estimates as in Hayashi’s equation (1.7.7), but your standard errors may differ.

(b) Using a Wald statistic, test the hypothesis H0 : β3 + β4 + β5 = 1.
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(c) Estimate (6.22) by least-squares imposing this restriction by substitution. Report your
parameter estimates and standard errors.

(d) Estimate (6.22) subject to β3+β4+β5 = 1 using the restricted least-squares estimator
from problem 4. Do you obtain the same estimates as in part (c)?

.
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Chapter 7

Additional Regression Topics

7.1 Generalized Least Squares

In the projection model, we know that the least-squares estimator is semi-parametrically efficient
for the projection coefficient. However, in the linear regression model

yi = x0iβ + ei

E (ei | xi) = 0,

the least-squares estimator is inefficient. The theory of Chamberlain (1987) can be used to show
that in this model the semiparametric efficiency bound is obtained by the Generalized Least
Squares (GLS) estimator

β̃ =
¡
X 0D−1X

¢−1 ¡
X 0D−1Y

¢
(7.1)

where D = diag{σ21, ..., σ2n} and σ2i = σ2(xi) = E
¡
e2i | xi

¢
. The GLS estimator is sometimes called

the Aitken estimator. The GLS estimator (7.1) infeasible since the matrix D is unknown. A
feasible GLS (FGLS) estimator replaces the unknown D with an estimate D̂ = diag{σ̂21, ..., σ̂2n}.
We now discuss this estimation problem.

Suppose that we model the conditional variance using the parametric form

σ2i = α0 + z01iα1

= α0zi,

where z1i is some q × 1 function of xi. Typically, z1i are squares (and perhaps levels) of some (or
all) elements of xi. Often the functional form is kept simple for parsimony.

Let ηi = e2i . Then
E (ηi | xi) = α0 + z01iα1

and we have the regression equation

ηi = α0 + z01iα1 + ξi (7.2)

E (ξi | xi) = 0.

The error ξi in this regression error ξi is generally heteroskedastic and has the conditional variance

V ar (ξi | xi) = V ar
¡
e2i | xi

¢
= E

³¡
e2i −E

¡
e2i | xi

¢¢2 | xi´
= E

¡
e4i | xi

¢
−
¡
E
¡
e2i | xi

¢¢2
.
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Suppose ei (and thus ηi) were observed. Then we could estimate α by OLS:

α̂ =
¡
Z 0Z

¢−1
Z 0η →p α

and √
n (α̂− α)→d N (0, Vα)

where
Vα =

¡
E
¡
ziz

0
i

¢¢−1
E
¡
ziz

0
iξ
2
i

¢ ¡
E
¡
ziz

0
i

¢¢−1
. (7.3)

While ei is not observed, we have the OLS residual êi = yi − x0iβ̂ = ei − x0i(β̂ − β). Thus

η̂ − ηi = ê2i − e2i

= −2eix0i
³
β̂ − β

´
+ (β̂ − β)0xix

0
i(β̂ − β)

= φi,

say. Note that

1√
n

nX
i=1

ziφi =
−2
n

nX
i=1

zieix
0
i

√
n
³
β̂ − β

´
+
1

n

nX
i=1

zi(β̂ − β)0xix
0
i(β̂ − β)

√
n

→p 0

Let
α̃ =

¡
Z 0Z

¢−1
Z 0η̂ (7.4)

be from OLS regression of η̂i on zi. Then

√
n (α̃− α) =

√
n (α̂− α) +

¡
n−1Z 0Z

¢−1
n−1/2Z 0φ

→d N (0, Vα) (7.5)

Thus the fact that ηi is replaced with η̂i is asymptotically irrelevant. We may call (7.4) the
skedastic regression, as it is estimating the conditional variance of the regression of yi on xi. We
have shown that α is consistently estimated by a simple procedure, and hence we can estimate
σ2i = z0iα by

σ̃2i = α̃0zi. (7.6)

Suppose that σ̃2i > 0 for all i. Then set

D̃ = diag{σ̃21, ..., σ̃2n}

and
β̃ =

³
X 0D̃−1X

´−1
X 0D̃−1Y.

This is the feasible GLS, or FGLS, estimator of β. Since there is not a unique specification for
the conditional variance the FGLS estimator is not unique, and will depend on the model (and
estimation method) for the skedastic regression.

One typical problem with implementation of FGLS estimation is that in a linear regression
specification, there is no guarantee that σ̃2i > 0 for all i. If σ̃2i < 0 for some i, then the FGLS
estimator is not well defined. Furthermore, if σ̃2i ≈ 0 for some i, then the FGLS estimator will force
the regression equation through the point (yi, xi), which is typically undesirable. This suggests
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that there is a need to bound the estimated variances away from zero. A trimming rule might
make sense:

σ2i = max[σ̃
2
i , σ

2]

for some σ2 > 0.
It is possible to show that if the skedastic regression is correctly specified, then FGLS is

asymptotically equivalent to GLS, but the proof of this can be tricky. We just state the result
without proof.

Theorem 7.1.1 If the skedastic regression is correctly specified,

√
n
³
β̃GLS − β̃FGLS

´
→p 0,

and thus √
n
³
β̃FGLS − β

´
→d N(0, V ),

where
V =

¡
E
¡
σ−2i xix

0
i

¢¢−1
.

Examining the asymptotic distribution of Theorem 7.1.1, the natural estimator of the asymp-
totic variance of β̂ is

Ṽ 0 =

Ã
1

n

nX
i=1

σ̃−2i xix
0
i

!−1
=

µ
1

n
X 0D̃−1X

¶−1
.

which is consistent for V as n→∞. This estimator Ṽ 0 is appropriate when the skedastic regression
(7.2) is correctly specified.

It may be the case that α0zi is only an approximation to the true conditional variance σ2i =
E(e2i | xi). In this case we interpret α0zi as a linear projection of e2i on zi. β̃ should perhaps be
called a quasi-FGLS estimator of β. Its asymptotic variance is not that given in Theorem 7.1.1.
Instead,

V =
³
E
³¡
α0zi

¢−1
xix

0
i

´´−1 ³
E
³¡
α0zi

¢−2
σ2ixix

0
i

´´³
E
³¡
α0zi

¢−1
xix

0
i

´´−1
.

V takes a sandwich form√, similar to the covariance matrix of the OLS estimator. Unless σ2i = α0zi,

Ṽ 0 is inconsistent for V .
An appropriate solution is to use a White-type estimator in place of Ṽ 0. This may be written

as

Ṽ =

Ã
1

n

nX
i=1

σ̃−2i xix
0
i

!−1Ã
1

n

nX
i=1

σ̃−4i ê2ixix
0
i

!Ã
1

n

nX
i=1

σ̃−2i xix
0
i

!−1
= n

³
X 0D̃−1X

´−1 ³
X 0D̃−1D̂D̃−1X

´³
X 0D̃−1X

´−1
where D̂ = diag{ê21, ..., ê2n}. This is an estimator which is robust to misspecification of the condi-
tional variance, and was proposed by Cragg (Journal of Econometrics, 1992).

In the linear regression model, FGLS is asymptotically superior to OLS. Why then do we not
exclusively estimate regression models by FGLS? This is a good question. There are three reasons.

First, FGLS estimation depends on specification and estimation of the skedastic regression.
Since the form of the skedastic regression is unknown, and it may be estimated with considerable
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error, the estimated conditional variances may contain more noise than information about the true
conditional variances. In this case, FGLS will do worse than OLS in practice.

Second, individual estimated conditional variances may be negative, and this requires trimming
to solve. This introduces an element of arbitrariness which is unsettling to empirical researchers.

Third, OLS is a more robust estimator of the parameter vector. It is consistent not only in
the regression model, but also under the assumptions of linear projection. The GLS and FGLS
estimators, on the other hand, require the assumption of a correct conditional mean. If the equation
of interest is a linear projection, and not a conditional mean, then the OLS and FGLS estimators
will converge in probability to different limits, as they will be estimating two different projections.
And the FGLS probability limit will depend on the particular function selected for the skedastic
regression. The point is that the efficiency gains from FGLS are built on the stronger assumption
of a correct conditional mean, and the cost is a reduction of robustness to misspecificatio

7.2 Testing for Heteroskedasticity

The hypothesis of homoskedasticity is that E
¡
e2i | xi

¢
= σ2, or equivalently that

H0 : α1 = 0

in the regression (7.2). We may therefore test this hypothesis by the estimation (7.4) and con-
structing a Wald statistic.

This hypothesis does not imply that ξi is independent of xi. Typically, however, we impose
the stronger hypothesis and test the hypothesis that ei is independent of xi, in which case ξi is
independent of xi and the asymptotic variance (7.3) for α̃ simplifies to

Vα =
¡
E
¡
ziz

0
i

¢¢−1
E
¡
ξ2i
¢
. (7.7)

Hence the standard test of H0 is a classic F (or Wald) test for exclusion of all regressors from the
skedastic regression (7.4). The asymptotic distribution (7.5) and the asymptotic variance (7.7)
under independence show that this test has an asymptotic chi-square distribution.

Theorem 7.2.1 Under H0 and ei independent of xi, the Wald test of H0 is asymptotically χ2q .

Most tests for heteroskedasticity take this basic form. The main differences between popular
“tests” is which transformations of xi enter zi. Motivated by the form of the asymptotic variance
of the OLS estimator β̂, White (1980) proposed that the test for heteroskedasticity be based on
setting zi to equal all non-redundant elements of xi, its squares, and all cross-products. Breusch-
Pagan (1979) proposed what might appear to be a distinct test, but the only difference is that they
allowed for general choice of zi, and replaced E

¡
ξ2i
¢
with 2σ4 which holds when ei is N(0, σ2). If

this simplification is replaced by the standard formula (under independence of the error), the two
tests coincide.

7.3 Forecast Intervals

In the linear regression model the conditional mean of yi given xi = x is

m(x) = E (yi | xi = x) = x0β.
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In some cases, we want to estimate m(x) at a particular point x. Notice that this is a (linear)
function of β. Letting h(β) = x0β and θ = h(β), we see that m̂(x) = θ̂ = x0β̂ and Hβ = x, so

s(θ̂) =
p
n−1x0V̂ x. Thus an asymptotic 95% confidence interval for m(x) ish

x0β̂ ± 2
p
n−1x0V̂ x

i
.

It is interesting to observe that if this is viewed as a function of x, the width of the confidence set
is dependent on x.

For a given value of xi = x, we may want to forecast (guess) yi out-of-sample. A reasonable
rule is the conditional mean m(x) as it is the mean-square-minimizing forecast. A point forecast
is the estimated conditional mean m̂(x) = x0β̂. We would also like a measure of uncertainty for
the forecast.

The forecast error is êi = yi − m̂(x) = ei − x0
³
β̂ − β

´
. As the out-of-sample error ei is

independent of the in-sample estimate β̂, this has variance

Eê2i = E
¡
e2i | xi = x

¢
+ x0E

³
β̂ − β

´³
β̂ − β

´0
x

= σ2(x) + n−1x0V x.

Assuming E
¡
e2i | xi

¢
= σ2, the natural estimate of this variance is σ̂2 + n−1x0V̂ x, so a standard

error for the forecast is ŝ(x) =
p
σ̂2 + n−1x0V̂ x. Notice that this is different from the standard

error for the conditional mean. If we have an estimate of the conditional variance function, e.g.

σ̃2(x) = α̃0z0 from (7.6), then the forecast standard error is ŝ(x) =
q
σ̃2(x) + n−1x0V̂ x

It would appear natural to conclude that an asymptotic 95% forecast interval for yi ish
x0β̂ ± 2ŝ(x)

i
,

but this turns out to be incorrect. In general, the validity of an asymptotic confidence interval is
based on the asymptotic normality of the studentized ratio. In the present case, this would require
the asymptotic normality of the ratio

ei − x0
³
β̂ − β

´
ŝ(x)

.

But no such asymptotic approximation can be made. The only special exception is the case where
ei has the exact distribution N(0, σ2), which is generally invalid.

To get an accurate forecast interval, we need to estimate the conditional distribution of ei given
xi = x, which is a much more difficult task. Given the difficulty, many applied forecasters focus
on the simple approximate interval

h
x0β̂ ± 2ŝ(x)

i
.

7.4 NonLinear Least Squares

In some cases we might use a parametric regression function m(x, θ) = E (yi | xi = x) which is
a non-linear function of the parameters θ. We describe this setting as non-linear regression.
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Examples of nonlinear regression functions include

m(x, θ) = θ1 + θ2
x

1 + θ3x

m(x, θ) = θ1 + θ2x
θ3

m(x, θ) = θ1 + θ2 exp(θ3x)

m(x, θ) = G(x0θ), G known

m(x, θ) = θ1 + θ2x1 + (θ3 + θ4x1)Φ

µ
x2 − θ5

θ6

¶
m(x, θ) = θ1 + θ2x+ θ4 (x− θ3) 1 (x > θ3)

m(x, θ) = (θ1 + θ2x1) 1 (x2 < θ3) + (θ4 + θ5x1) 1 (x2 > θ3)

In the first five examples, m(x, θ) is (generically) differentiable in the parameters θ. In the final
two examples, m is not differentiable with respect to θ3, which alters some of the analysis. When
it exists, let

mθ(x, θ) =
∂

∂θ
m(x, θ).

Nonlinear regression is frequently adopted because the functional form m(x, θ) is suggested
by an economic model. In other cases, it is adopted as a flexible approximation to an unknown
regression function.

The least squares estimator θ̂ minimizes the sum-of-squared-errors

Sn(θ) =
nX
i=1

(yi −m(xi, θ))
2 .

When the regression function is nonlinear, we call this the nonlinear least squares (NLLS)
estimator. The NLLS residuals are êi = yi −m(xi, θ̂).

One motivation for the choice of NLLS as the estimation method is that the parameter θ is
the solution to the population problem minθ E (yi −m(xi, θ))

2

Since sum-of-squared-errors function Sn(θ) is not quadratic, θ̂ must be found by numerical
methods. See Appendix E. When m(x, θ) is differentiable, then the FOC for minimization are

0 =
nX
i=1

mθ(xi, θ̂)êi. (7.8)

Theorem 7.4.1 If the model is identified and m(x, θ) is differentiable with respect to θ,

√
n
³
θ̂ − θ0

´
→d N(0, V )

V =
¡
E
¡
mθim

0
θi

¢¢−1 ¡
E
¡
mθim

0
θie

2
i

¢¢ ¡
E
¡
mθim

0
θi

¢¢−1
where mθi = mθ(xi, θ0).

Sketch of Proof. First, it must be shown that θ̂ →p θ0. This can be done using arguments
for optimization estimators, but we won’t cover that argument here. Since θ̂ →p θ0, θ̂ is close to
θ0 for n large, so the minimization of Sn(θ) only needs to be examined for θ close to θ0. Let

y0i = ei +m0
θiθ0.

79



For θ close to the true value θ0, by a first-order Taylor series approximation,

m(xi, θ) ' m(xi, θ0) +m0
θi (θ − θ0) .

Thus

yi −m(xi, θ) ' (ei +m(xi, θ0))−
¡
m(xi, θ0) +m0

θi (θ − θ0)
¢

= ei −m0
θi (θ − θ0)

= y0i −m0
θiθ.

Hence the sum of squared errors function is

Sn(θ) =
nX
i=1

(yi −m(xi, θ))
2 '

nX
i=1

¡
y0i −m0

θiθ
¢2

and the right-hand-side is the SSE function for a linear regression of y0i on mθi. Thus the NLLS
estimator θ̂ has the same asymptotic distribution as the (infeasible) OLS regression of y0i on mθi,
which is that stated in the theorem. ¥

Based on Theorem 7.4.1, an estimate of the asymptotic variance V is

V̂ =

Ã
1

n

nX
i=1

m̂θim̂
0
θi

!−1Ã
1

n

nX
i=1

m̂θim̂
0
θiê

2
i

!Ã
1

n

nX
i=1

m̂θim̂
0
θi

!−1

where m̂θi = mθ(xi, θ̂) and êi = yi −m(xi, θ̂).
Identification is often tricky in nonlinear regression models. Suppose that

m(xi, θ) = β01zi + β02xi(γ).

The model is linear when β2 = 0, and this is often a useful hypothesis (sub-model) to consider.
Thus we want to test

H0 : β2 = 0.

However, under H0, the model is
yi = β01zi + εi

and both β2 and γ have dropped out. This means that under H0, γ is not identified. This renders
the distribution theory presented in the previous section invalid. Thus when the truth is that
β2 = 0, the parameter estimates are not asymptotically normally distributed. Furthermore, tests
of H0 do not have asymptotic normal or chi-square distributions.

The asymptotic theory of such tests have been worked out by Andrews and Ploberger (1994)
and B. Hansen (1996). In particular, Hansen shows how to use simulation (similar to the bootstrap)
to construct the asymptotic critical values (or p-values) in a given application.

7.5 Least Absolute Deviations

We stated that a conventional goal in econometrics is estimation of impact of variation in xi on
the central tendency of yi.We have discussed projections and conditional means, but these are not
the only measures of central tendency. An alternative good measure is the conditional median.
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To recall the definition and properties of the median, let Y be a continuous random variable.
The median θ0 = Med(Y ) is the value such that P (Y ≤ θ0) = P (Y ≥ θ0) = .5. Two useful facts
about the median are that

θ0 = argmin
θ

E |Y − θ| (7.9)

and
E sgn (Y − θ0) = 0

where

sgn (u) =

½
1 if u ≥ 0
−1 if u < 0

is the sign function.
These facts definitions motivate three estimators of θ. The first definition is the 50th empirical

quantile. The second is the value which minimizes 1n
Pn

i=1 |yi − θ| , and the third definition is the
solution to the moment equation 1

n

Pn
i=1 sgn (yi − θ) . These distinctions are illusory, however, as

these estimators are indeed identical.
Now let’s consider the conditional median of Y given a random variable X. Let m(x) =

Med (Y | X = x) denote the conditional median of Y given X = x, and let Med (Y | X) = m(X)
be this function evaluated at the random variable X. The linear median regression model takes
the form

yi = x0iβ + ei

Med (ei | xi) = 0

In this model, the linear function Med (yi | xi = x) = x0β is the conditional median function, and
the substantive assumption is that the median function is linear in x.

Conditional analogs of the facts about the median are

• P (yi ≤ x0β0 | xi = x) = P (yi > x0β | xi = x) = .5

• E (sgn (ei) | xi) = 0

• E (xi sgn (ei)) = 0

• β0 = minβ E |yi − x0iβ|

These facts motivate the following estimator. Let

Ln(β) =
1

n

nX
i=1

¯̄
yi − x0iβ

¯̄
be the average of absolute deviations. The least absolute deviations (LAD) estimator of β
minimizes this function

β̂ = argmin
β

Ln(β)

Equivalently, it is a solution to the moment condition

1

n

nX
i=1

xi sgn
³
yi − x0iβ̂

´
= 0. (7.10)

The LAD estimator has the asymptotic distribution
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Theorem 7.5.1
√
n
³
β̂ − β0

´
→d N(0, V ), where

V =
1

4

¡
E
¡
xix

0
if (0 | xi)

¢¢−1 ¡
Exix

0
i

¢ ¡
E
¡
xix

0
if (0 | xi)

¢¢−1
and f (e | x) is the conditional density of ei given xi = x.

The variance of the asymptotic distribution inversely depends on f (0 | x) , the conditional
density of the error at its median. When f (0 | x) is large, then there are many innovations near
to the median, and this improves estimation of the median. In the special case where the error is
independent of xi, then f (0 | x) = f (0) and the asymptotic variance simplifies

V =
(Exix

0
i)
−1

4f (0)2
(7.11)

This simplification is similar to the simplification of the asymptotic covariance of the OLS estimator
under homoskedasticity.

Computation of standard error for LAD estimates typically is based on equation (7.11). The
main difficulty is the estimation of f(0), the height of the error density at its median. This can
be done with kernel estimation techniques. See Chapter 16. While a complete proof of Theorem
7.5.1 is advanced, we provide a sketch here for completeness.

Proof of Theorem 7.5.1: Since sgn (a) = 1 − 2 · 1 (a ≤ 0) , (7.10) is equivalent to gn(β̂) = 0,
where gn(β) = n−1

Pn
i=1 gi(β) and gi(β) = xi (1− 2 · 1 (yi ≤ x0iβ)) . Let g(β) = Egi(β). We need

three preliminary result. First, by the central limit theorem (Theorm 5.3.1)

√
n (gn(β0)− g(β0)) = −n−1/2

nX
i=1

gi(β0)→d N(0, Exix
0
i)

since Egi(β0)gi(β0)
0 = Exix

0
i. Second using the law of iterated expectations and the chain rule of

differentiation,

∂

∂β0
g(β) =

∂

∂β0
Exi

¡
1− 2 · 1

¡
yi ≤ x0iβ

¢¢
= −2 ∂

∂β0
E
£
xiE

¡
1
¡
ei ≤ x0iβ − x0iβ0

¢
| xi
¢¤

= −2 ∂

∂β0
E

"
xi

Z x0iβ−x0iβ0

−∞
f (e | xi) de

#
= −2E

£
xix

0
if
¡
x0iβ − x0iβ0 | xi

¢¤
so

∂

∂β0
g(β0) = −2E

£
xix

0
if (0 | xi)

¤
.

Third, by a Taylor series expansion and the fact g(β0) = 0

g(β̂) ' ∂

∂β0
g(β0)

³
β̂ − β0

´
.
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Together

√
n
³
β̂ − β0

´
'
µ

∂

∂β0
g(β0)

¶−1√
ng(β̂)

=
¡
−2E

£
xix

0
if (0 | xi)

¤¢−1√
n
³
g(β̂)− gn(β̂)

´
' 1

2

¡
E
£
xix

0
if (0 | xi)

¤¢−1√
n (gn(β0)− g(β0))

→d
1

2

¡
E
£
xix

0
if (0 | xi)

¤¢−1
N(0, Exix

0
i)

= N(0, V ).

The third line follows from an asymptotic empirical process argument. ¥

7.6 Quantile Regression

The method of quantile regression has become quite popular in recent econometric practice. For
τ ∈ [0, 1] the τ ’th quantile Qτ of a random variable with distribution function F (u) is defined as

Qτ = inf {u : F (u) ≥ τ}

When F (u) is continuous and strictly monotonic, then F (Qτ ) = τ , so you can think of the quantile
as the inverse of the distribution function. The quantile Qτ is the value such that τ (percent) of
the mass of the distribution is less than Qτ . The median is the special case τ = .5.

The following alternative representation is useful. If the random variable U has τ ’th quantile
Qτ , then

Qτ = argmin
θ

Eρτ (U − θ) . (7.12)

where ρτ (q) is the piecewise linear function

ρτ (q) =

½
−q (1− τ) q < 0

qτ q ≥ 0 (7.13)

= q (τ − 1 (q < 0)) .

This generalizes representation (7.9) for the median to all quantiles.
For the random variables (yi, xi) with conditional distribution function F (y | x) the conditional

quantile function qτ (x) is
Qτ (x) = inf {y : F (y | x) ≥ τ} .

Again, when F (y | x) is continuous and strictly monotonic in y, then F (Qτ (x) | x) = τ . For
fixed τ , the quantile regression function qτ (x) describes how the τ ’th quantile of the conditional
distribution varies with the regressors.

As functions of x, the quantile regression functions can take any shape. However for computa-
tional convenience it is typical to assume that they are (approximately) linear in x (after suitable
transformations). This linear specification assumes that Qτ (x) = β0τx where the coefficients βτ
vary across the quantiles τ . We then have the linear quantile regression model

yi = x0iβτ + ei

83



where ei is the error defined to be the difference between yi and its τ ’th conditional quantile x0iβτ .
By construction, the τ ’th conditional quantile of ei is zero, otherwise its properties are unspecified
without further restrictions.

Given the representation (7.12), the quantile regression estimator β̂τ for βτ solves the mini-
mization problem

β̂τ = argmin
β∈Rk

Lτ
n(β)

where

Lτ
n(β) =

1

n

nX
i=1

ρτ
¡
yi − x0iβ

¢
and ρτ (q) is defined in (7.13).

Since the quanitle regression criterion function Lτ
n(β) does not have an algebraic solution,

numerical methods are necessary for its minimization. Furthermore, since it has discontinuous
derivatives, conventional Newton-type optimization methods are inappropriate. Fortunately, fast
linear programming methods have been developed for this problem, and are widely available.

A asymptotic distribution theory for the quantile regression estimator can be derived using
similar arguments as those for the LAD estimator in Theorem 7.5.1.

Theorem 7.6.1
√
n
³
β̂τ − βτ

´
→d N(0, Vτ ), where

Vτ = τ (1− τ)
¡
E
¡
xix

0
if (0 | xi)

¢¢−1 ¡
Exix

0
i

¢ ¡
E
¡
xix

0
if (0 | xi)

¢¢−1
and f (e | x) is the conditional density of ei given xi = x.

In general, the asymptotic variance depends on the conditional density of the quantile regression
error. When the error ei is independent of xi, then f (0 | xi) = f (0) , the unconditional density of
ei at 0, and we have the simplification

Vτ =
τ (1− τ)

f (0)2
¡
E
¡
xix

0
i

¢¢−1
.

A recent monograph on the details of quantile regression is Koenker (2005).

7.7 Testing for Omitted NonLinearity

If the goal is to estimate the conditional expectation E (yi | xi) , it is useful to have a general test
of the adequacy of the specification.

One simple test for neglected nonlinearity is to add nonlinear functions of the regressors to
the regression, and test their significance using a Wald test. Thus, if the model yi = x0iβ̂ + êi has
been fit by OLS, let zi = h(xi) denote functions of xi which are not linear functions of xi (perhaps
squares of non-binary regressors) and then fit yi = x0iβ̃+z0iγ̃+ ẽi by OLS, and form a Wald statistic
for γ = 0.

Another popular approach is the RESET test proposed by Ramsey (1969). The null model is

yi = x0iβ + εi
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which is estimated by OLS, yielding predicted values ŷi = x0iβ̂. Now let

zi =

⎛⎜⎝ ŷ2i
...
ŷmi

⎞⎟⎠
be an (m− 1)-vector of powers of ŷi. Then run the auxiliary regression

yi = x0iβ̃ + z0iγ̃ + ẽi (7.14)

by OLS, and form the Wald statistic Wn for γ = 0. It is easy (although somewhat tedious) to
show that under the null hypothesis, Wn →d χ

2
m−1. Thus the null is rejected at the α% level if Wn

exceeds the upper α% tail critical value of the χ2m−1 distribution.
To implement the test, m must be selected in advance. Typically, small values such as m = 2,

3, or 4 seem to work best.
The RESET test appears to work well as a test of functional form against a wide range of

smooth alternatives. It is particularly powerful at detecting single-index models of the form

yi = G(x0iβ) + εi

where G(·) is a smooth “link” function. To see why this is the case, note that (7.14) may be
written as

yi = x0iβ̃ +
³
x0iβ̂
´2

γ̃1 +
³
x0iβ̂
´3

γ̃2 + · · ·
³
x0iβ̂
´m

γ̃m−1 + ẽi

which has essentially approximated G(·) by a m’th order polynomial.

7.8 Irrelevant Variables

In the model

yi = x01iβ1 + x02iβ2 + ei

E (xiei) = 0,

x2i is “irrelevant” if β1 is the parameter of interest and β2 = 0. One estimator of β1 is to regress
yi on x1i alone, β̃1 = (X 0

1X1)
−1 (X 0

1Y ) . Another is to regress yi on x1i and x2i jointly, yielding
(β̂1, β̂2). Under which conditions is β̂1 or β̃1 superior?

It is easy to see that both estimators are consistent for β1. However, they will (typically) have
difference asymptotic variances.

The comparison between the two estimators is straightforward when the error is conditionally
homoskedastic E

¡
e2i | xi

¢
= σ2. In this case

lim
n→∞

nV ar( β̃1) =
¡
Ex1ix

0
1i

¢−1
σ2 = Q−111 σ

2,

say, and

lim
n→∞

nV ar(β̂1) =
¡
Ex1ix

0
1i −Ex1ix

0
2i

¡
Ex2ix

0
2i

¢
Ex2ix

0
1i

¢−1
σ2 =

¡
Q11 −Q12Q

−1
22 Q21

¢−1
σ2,

say. If Q12 = 0 (so the variables are orthogonal) then these two variance matrices equal, and
the two estimators have equal asymptotic efficiency. Otherwise, since Q12Q

−1
22 Q21 > 0, then

Q11 > Q11 −Q12Q
−1
22 Q21, and consequently

Q−111 σ
2 <

¡
Q11 −Q12Q

−1
22 Q21

¢−1
σ2.
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This means that β̃1 has a lower asymptotic variance matrix than β̂1.We conclude that the inclusion
of irrelevant variable reduces estimation efficiency if these variables are correlated with the relevant
variables.

For example, take the model yi = β0 + β1xi + ei and suppose that β0 = 0. Let β̂1 be the
estimate of β1 from the unconstrained model, and β̃1 be the estimate under the constraint β0 = 0.
(The least-squares estimate with the intercept omitted.). Let Exi = µ, and E (xi − µ)2 = σ2x.
Then under (6.7),

lim
n→∞

nV ar( β̃1) =
σ2

σ2x + µ2

while

lim
n→∞

nV ar( β̂1)
−1 =

σ2

σ2x
.

When µ 6= 0, we see that β̃1 has a lower asymptotic variance.
However, this result can be reversed when the error is conditionally heteroskedastic. In the

absence of the homoskedasticity assumption, there is no clear ranking of the efficiency of the
restricted estimator β̃1 versus the unrestricted estimator.

7.9 Model Selection

In earlier sections we discussed the costs and benefits of inclusion/exclusion of variables. How
does a researcher go about selecting an econometric specification, when economic theory does not
provide complete guidance? This is the question of model selection. It is important that the model
selection question be well-posed. For example, the question: “What is the right model for y?”
is not well posed, because it does not make clear the conditioning set. In contrast, the question,
“Which subset of (x1, ..., xK) enters the regression function E(yi | x1i = x1, ..., xKi = xK)?” is well
posed.

In many cases the problem of model selection can be reduced to the comparison of two nested
models, as the larger problem can be written as a sequence of such comparisons. We thus consider
the question of the inclusion of X2 in the linear regression

Y = X1β1 +X2β2 + ε,

where X1 is n× k1 and X2 is n× k2. This is equivalent to the comparison of the two models

M1 : Y = X1β1 + ε, E (ε | X1,X2) = 0

M2 : Y = X1β1 +X2β2 + ε, E (ε | X1,X2) = 0.

Note thatM1 ⊂M2. To be concrete, we say thatM2 is true if β2 6= 0.
To fix notation, models 1 and 2 are estimated by OLS, with residual vectors ê1 and ê2, estimated

variances σ̂21 and σ̂22, etc., respectively. To simplify some of the statistical discussion, we will on
occasion use the homoskedasticity assumption E

¡
e2i | x1i, x2i

¢
= σ2.

A model selection procedure is a data-dependent rule which selects one of the two models. We
can write this as cM. There are many possible desirable properties for a model selection procedure.
One useful property is consistency, that it selects the true model with probability one if the sample
is sufficiently large. A model selection procedure is consistent if

P
³cM =M1 | M1

´
→ 1

P
³cM =M2 | M2

´
→ 1
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However, this rule only makes sense when the true model is finite dimensional. If the truth is
infinite dimensional, it is more appropriate to view model selection as determining the best finite
sample approximation.

A common approach to model selection is to base the decision on a statistical test such as
the Wald Wn. The model selection rule is as follows. For some critical level α, let cα satisfy
P
¡
χ2k2 > cα

¢
. Then selectM1 if Wn ≤ cα, else selectM2.

A major problem with this approach is that the critical level α is indeterminate. The rea-
soning which helps guide the choice of α in hypothesis testing (controlling Type I error) is not

relevant for model selection. That is, if α is set to be a small number, then P
³cM =M1 | M1

´
≈

1 − α but P
³cM =M2 | M2

´
could vary dramatically, depending on the sample size, etc. An-

other problem is that if α is held fixed, then this model selection procedure is inconsistent, as
P
³cM =M1 | M1

´
→ 1− α < 1.

Another common approach to model selection is to to a selection criterion. One popular choice
is the Akaike Information Criterion (AIC). The AIC for model m is

AICm = log
¡
σ̂2m
¢
+ 2

km
n
. (7.15)

where σ̂2m is the variance estimate for model m, and km is the number of coefficients in the model.
The AIC can be derived as an estimate of the KullbackLeibler information distance K(M) =
E (log f(Y | X)− log f(Y | X,M)) between the true density and the model density. The rule is
to selectM1 if AIC1 < AIC2, else selectM2. AIC selection is inconsistent, as the rule tends to
overfit. Indeed, since underM1,

LRn = n
¡
log σ̂21 − log σ̂22

¢
'Wn →d χ

2
k2 , (7.16)

then

P
³cM =M1 | M1

´
= P (AIC1 < AIC2 | M1)

= P

µ
log(σ̂21) + 2

k1
n

< log(σ̂22) + 2
k1 + k2

n
| M1

¶
= P (LRn < 2k2 | M1)

→ P
¡
χ2k2 < 2k2

¢
< 1.

While many modifications of the AIC have been proposed, the most popular to be one proposed
by Schwarz, based on Bayesian arguments. His criterion, known as the BIC, is

BICm = log
¡
σ̂2m
¢
+ log(n)

km
n
. (7.17)

Since log(n) > 2 (if n > 8), the BIC places a larger penalty than the AIC on the number of
estimated parameters and is more parsimonious.

In contrast to the AIC, BIC model selection is consistent. Indeed, since (7.16) holds under
M1,

LRn

log(n)
→p 0,
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so

P
³cM =M1 | M1

´
= P (BIC1 < BIC2 | M1)

= P (LRn < log(n)k2 | M1)

= P

µ
LRn

log(n)
< k2 | M1

¶
→ P (0 < k2) = 1.

Also underM2, one can show that
LRn

log(n)
→p ∞,

thus

P
³cM =M2 | M2

´
= P

µ
LRn

log(n)
> k2 | M2

¶
→ 1.

We have discussed model selection between two models. The methods extend readily to the
issue of selection among multiple regressors. The general problem is the model

yi = β1x1i + β2x1i + · · ·+ βKxKi + εi, E (εi | xi) = 0

and the question is which subset of the coefficients are non-zero (equivalently, which regressors
enter the regression).

There are two leading cases: ordered regressors and unordered.
In the ordered case, the models are

M1 : β1 6= 0, β2 = β3 = · · · = βK = 0

M2 : β1 6= 0, β2 6= 0, β3 = · · · = βK = 0

...

MK : β1 6= 0, β2 6= 0, . . . , βK 6= 0.

which are nested. The AIC selection criteria estimates the K models by OLS, stores the residual
variance σ̂2 for each model, and then selects the model with the lowest AIC (7.15). Similarly for
the BIC, selecting based on (7.17).

In the unordered case, a model consists of any possible subset of the regressors {x1i, ..., xKi},
and the AIC or BIC in principle can be implemented by estimating all possible subset models.
However, there are 2K such models, which can be a very large number. For example, 210 = 1024,
and 220 = 1, 048, 576. In the latter case, a full-blown implementation of the BIC selection criterion
would seem computationally prohibitive.
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7.10 Exercises

1. For any predictor g(xi) for y, the mean absolute error (MAE) is

E |yi − g(xi)| .

Show that the function g(x) which minimizes the MAE is the conditional median M(x).

2. Define
g(u) = τ − 1 (u < 0)

where 1 (·) is the indicator function (takes the value 1 if the argument is true, else equals
zero). Let θ satisfy Eg(Yi − θ) = 0. Is θ a quantile of the distribution of Yi?

3. Verify equation (7.12).

4. In the homoskedastic regression model Y = Xβ + e with E(ei | xi) = 0 and E(e2i | xi) = σ2,
suppose β̂ is the OLS estimate of β with covariance matrix V̂ , based on a sample of size n.
Let σ̂2 be the estimate of σ2. You wish to forecast an out-of-sample value of y given that
X = x. Thus the available information is the sample (Y,X), the estimates (β̂, V̂ , σ̂2), the
residuals ê, and the out-of-sample value of the regressors, x.

(a) Find a point forecast of y.

(b) Find an estimate of the variance of this forecast.

5. In a linear model

Y = Xβ + e, E(e | X) = 0, V ar(e | X) = σ2Ω

with Ω known, the GLS estimator is

β̃ =
¡
X 0Ω−1X

¢−1 ¡
X 0Ω−1Y

¢
.

the residual vector is ê = Y −Xβ̃, and an estimate of σ2 is

s2 =
1

n− k
ê0Ω−1ê.

(a) Why is this a reasonable estimator for σ2?

(b) Prove that ê =M1e, where M1 = I −X
¡
X 0Ω−1X

¢−1
X 0Ω−1.

(c) Prove that M 0
1Ω
−1M1 = Ω

−1 − Ω−1X
¡
X 0Ω−1X

¢−1
X 0Ω−1.

6. Let (yi, xi) be a random sample with E(Y | X) = Xβ. Consider the Weighted Least Squares
(WLS) estimator of β

β̃ =
¡
X 0WX

¢−1 ¡
X 0WY

¢
where W = diag(w1, ..., wn) and wi = x−2ji , where xji is one of the xi.

(a) In which contexts would β̃ be a good estimator?

(b) Using your intuition, in which situations would you expect that β̃ would perform better
than OLS?
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7. Suppose that yi = g(xi, θ) + ei with E (ei | xi) = 0, θ̂ is the NLLS estimator, and V̂ is the

estimate of V ar
³
θ̂
´
. You are interested in the conditional mean function E (yi | xi = x) =

g(x) at some x. Find an asymptotic 95% confidence interval for g(x).

8. The model is

yi = xiβ + ei

E (ei | xi) = 0

where xi ∈ R. Consider the two estimators

β̂ =

Pn
i=1 xiyiPn
i=1 x

2
i

β̃ =
1

n

nX
i=1

yi
xi
.

(a) Under the stated assumptions, are both estimators consistent for β?

(b) Are there conditions under which either estimator is efficient?

9. In Chapter 6, Exercise 13, you estimated a cost function on a cross-section of electric com-
panies. The equation you estimated was

lnTCi = β1 + β2 lnQi + β3 lnPLi + β4 lnPKi + β5 lnPFi + ei. (7.18)

(a) Following Nerlove, add the variable (lnQi)
2 to the regression. Do so. Assess the merits

of this new specification using (i) a hypothesis test; (ii) AIC criterion; (iii) BIC criterion.
Do you agree with this modification?

(b) Now try a non-linear specification. Consider model (7.18) plus the extra term a6zi,
where

zi = lnQi (1 + exp (− (lnQi − a7)))
−1 .

In addition, impose the restriction a3 + a4 + a5 = 1. This model is called a smooth
threshold model. For values of lnQi much below a7, the variable lnQi has a regression
slope of a2. For values much above a7, the regression slope is a2 + a6, and the model
imposes a smooth transition between these regimes. The model is non-linear because
of the parameter a7.
The model works best when a7 is selected so that several values (in this example, at
least 10 to 15) of lnQi are both below and above a7. Examine the data and pick an
appropriate range for a7.

(c) Estimate the model by non-linear least squares. I recommend the concentration method:
Pick 10 (or more or you like) values of a7 in this range. For each value of a7, calculate zi
and estimate the model by OLS. Record the sum of squared errors, and find the value
of a7 for which the sum of squared errors is minimized.

(d) Calculate standard errors for all the parameters (a1, ..., a7).
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10. The data file cps78.dat contains 550 observations on 20 variables taken from the May 1978
current population survey. Variables are listed in the file cps78.pdf. The goal of the exercise
is to estimate a model for the log of earnings (variable LNWAGE) as a function of the
conditioning variables.

(a) Start by an OLS regression of LNWAGE on the other variables. Report coefficient
estimates and standard errors.

(b) Consider augmenting the model by squares and/or cross-products of the conditioning
variables. Estimate your selected model and report the results.

(c) Are there any variables which seem to be unimportant as a determinant of wages? You
may re-estimate the model without these variables, if desired.

(d) Test whether the error variance is different for men and women. Interpret.

(e) Test whether the error variance is different for whites and nonwhites. Interpret.

(f) Construct a model for the conditional variance. Estimate such a model, test for general
heteroskedasticity and report the results.

(g) Using this model for the conditional variance, re-estimate the model from part (c) using
FGLS. Report the results.

(h) Do the OLS and FGLS estimates differ greatly? Note any interesting differences.

(i) Compare the estimated standard errors. Note any interesting differences.
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Chapter 8

The Bootstrap

8.1 Definition of the Bootstrap

Let F denote a distribution function for the population of observations (yi, xi) . Let

Tn = Tn(y1, x1,..., yn, xn, F )

be a statistic of interest, for example an estimator θ̂ or a t-statistic
³
θ̂ − θ

´
/s(θ̂). Note that we

write Tn as possibly a function of F . For example, the t-statistic is a function of the parameter θ
which itself is a function of F.

The exact CDF of Tn when the data are sampled from the distribution F is

Gn(x, F ) = P (Tn ≤ x | F )

In general, Gn(x, F ) depends on F, meaning that G changes as F changes.
Ideally, inference would be based on Gn(x, F ). This is generally impossible since F is unknown.
Asymptotic inference is based on approximating Gn(x, F ) with G(x, F ) = limn→∞Gn(x, F ).

When G(x, F ) = G(x) does not depend on F, we say that Tn is asymptotically pivotal and use the
distribution function G(x) for inferential purposes.

In a seminal contribution, Efron (1979) proposed the bootstrap, which makes a different ap-
proximation. The unknown F is replaced by a consistent estimate Fn (one choice is discussed in
the next section). Plugged into Gn(x, F ) we obtain

G∗n(x) = Gn(x,Fn). (8.1)

We call G∗n the bootstrap distribution. Bootstrap inference is based on G∗n(x).
Let (y∗i , x

∗
i ) denote random variables with the distribution Fn. A random sample from this

distribution is call the bootstrap data. The statistic T ∗n = Tn(y
∗
1, x

∗
1,..., y

∗
n, x

∗
n, Fn) constructed on

this sample is a random variable with distribution G∗n. That is, P (T
∗
n ≤ x) = G∗n(x). We call T

∗
n

the bootstrap statistic. The distribution of T ∗n is identical to that of Tn when the true CDF of Fn
rather than F.

The bootstrap distribution is itself random, as it depends on the sample through the estimator
Fn.

In the next sections we describe computation of the bootstrap distribution.
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8.2 The Empirical Distribution Function

Recall that F (y, x) = P (yi ≤ y, xi ≤ x) = E (1 (yi ≤ y) 1 (xi ≤ x)) , where 1(·) is the indicator
function. This is a population moment. The method of moments estimator is the corresponding
sample moment:

Fn (y, x) =
1

n

nX
i=1

1 (yi ≤ y) 1 (xi ≤ x) . (8.2)

Fn (y, x) is called the empirical distribution function (EDF). Fn is a nonparametric estimate of F.
Note that while F may be either discrete or continuous, Fn is by construction a step function.

The EDF is a consistent estimator of the CDF. To see this, note that for any (y, x), 1 (yi ≤ y) 1 (xi ≤ x)
is an iid random variable with expectation F (y, x).Thus by theWLLN (Theorem 5.2.1), Fn (y, x)→p

F (y, x) . Furthermore, by the CLT (Theorem 5.3.1),

√
n (Fn (y, x)− F (y, x))→d N (0, F (y, x) (1− F (y, x))) .

To see the effect of sample size on the EDF, in the Figure below, I have plotted the EDF and
true CDF for three random samples of size n = 25, 50, and 100. The random draws are from the
N(0, 1) distribution. For n = 25, the EDF is only a crude approximation to the CDF, but the
approximation appears to improve for the large n. In general, as the sample size gets larger, the
EDF step function gets uniformly close to the true CDF.

Figure 8.1: Empirical Distribution Functions

The EDF is a valid discrete probability distribution which puts probability mass 1/n at each
pair (yi, xi), i = 1, ..., n. Notationally, it is helpful to think of a random pair (y∗i , x

∗
i ) with the

distribution Fn. That is,
P (y∗i ≤ y, x∗i ≤ x) = Fn(y, x).
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We can easily calculate the moments of functions of (y∗i , x
∗
i ) :

Eh (y∗i , x
∗
i )) =

Z
h(y, x)dFn(y, x)

=
nX
i=1

h (yi, xi)P (y
∗
i = yi, x

∗
i = xi)

=
1

n

nX
i=1

h (yi, xi) ,

the empirical sample average.

8.3 Nonparametric Bootstrap

The nonparametric bootstrap is obtained when the bootstrap distribution (8.1) is defined using
the EDF (8.2) as the estimate Fn of F.

Since the EDF Fn is a multinomial (with n support points), in principle the distribution G∗n
could be calculated by direct methods. However, as there are 2n possible samples {(y∗1, x∗1) , ..., (y∗n, x∗n)},
such a calculation is computationally infeasible. The popular alternative is to use simulation to ap-
proximate the distribution. The algorithm is identical to our discussion of Monte Carlo simulation,
with the following points of clarification:

• The sample size n used for the simulation is the same as the sample size.

• The random vectors (y∗i , x
∗
i ) are drawn randomly from the empirical distribution. This is

equivalent to sampling a pair (yi, xi) randomly from the sample.

The bootstrap statistic T ∗n = Tn(y
∗
1, x

∗
i , ..., y

∗
n, x

∗
n, Fn) is calculated for each bootstrap sample.

This is repeated B times. B is known as the number of bootstrap replications. A theory for
the determination of the number of bootstrap replications B has been developed by Andrews
and Buchinsky (2000). It is desireable for B to be large, so long as the computational costs are
reasonable. B = 1000 typically suffices.

When the statistic Tn is a function of F, it is typically through dependence on a parameter.
For example, the t-ratio

³
θ̂ − θ

´
/s(θ̂) depends on θ. As the bootstrap statistic replaces F with

Fn, it similarly replaces θ with θn, the value of θ implied by Fn. Typically θn = θ̂, the parameter
estimate. (When in doubt use θ̂.)

at the sample estimate θ̂.
Sampling from the EDF is particularly easy. Since Fn is a discrete probability distribution

putting probability mass 1/n at each sample point, sampling from the EDF is equivalent to random
sampling a pair (yi, xi) from the observed data with replacement. In consequence, a bootstrap
sample {y∗1, x∗1, ..., y∗n, x∗n} will necessarily have some ties and multiple values, which is generally
not a problem.

8.4 Bootstrap Estimation of Bias and Variance

The bias of θ̂ is
τn = E(θ̂ − θ0).
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Let Tn(θ) = θ̂ − θ. Then
τn = E(Tn(θ0)).

The bootstrap counterparts are θ̂
∗
= θ̂(y∗1, x

∗
1..., y

∗
n, x

∗
n) and T ∗n = θ̂

∗ − θn = θ̂
∗ − θ̂. The bootstrap

estimate of τn is
τ∗n = E(T ∗n).

If this is calculated by the simulation described in the previous section, the estimate of τ∗n is

τ̂∗n =
1

B

BX
b=1

T ∗nb

=
1

B

BX
b=1

θ̂
∗
b − θ̂

= θ̂
∗ − θ̂.

If θ̂ is biased, it might be desirable to construct a biased-corrected estimator (one with reduced
bias). Ideally, this would be

θ̃ = θ̂ − τn,

but τn is unknown. The (estimated) bootstrap biased-corrected estimator is

θ̃
∗
= θ̂ − τ̂∗n

= θ̂ − (θ̂∗ − θ̂)

= 2θ̂ − θ̂
∗
.

Note, in particular, that the biased-corrected estimator is not θ̂
∗
. Intuitively, the bootstrap makes

the following experiment. Suppose that θ̂ is the truth. Then what is the average value of θ̂

calculated from such samples? The answer is θ̂
∗
. If this is lower than θ̂, this suggests that the

estimator is downward-biased, so a biased-corrected estimator of θ should be larger than θ̂, and

the best guess is the difference between θ̂ and θ̂
∗
. Similarly if θ̂

∗
is higher than θ̂, then the estimator

is upward-biased and the biased-corrected estimator should be lower than θ̂.
Let Tn = θ̂. The variance of θ̂ is

Vn = E(Tn −ETn)
2.

Let T ∗n = θ̂
∗
. It has variance

V ∗n = E(T ∗n −ET ∗n)
2.

The simulation estimate is

V̂ ∗n =
1

B

BX
b=1

³
θ̂
∗
b − θ̂

∗´2
.

A bootstrap standard error for θ̂ is the square root of the bootstrap estimate of variance,

s(β̂) =
q
V̂ ∗n .

While this standard error may be calculated and reported, it is not clear if it is useful. The
primary use of asymptotic standard errors is to construct asymptotic confidence intervals, which
are based on the asymptotic normal approximation to the t-ratio. However, the use of the boot-
strap presumes that such asymptotic approximations might be poor, in which case the normal
approximation is suspected. It appears superior to calculate bootstrap confidence intervals, and
we turn to this next.
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8.5 Percentile Intervals

For a distribution function Gn(x, F ), let qn(α,F ) denote its quantile function. This is the function
which solves

Gn(qn(α,F ), F ) = α.

[When Gn(x, F ) is discrete, qn(α,F ) may be non-unique, but we will ignore such complications.]
Let qn(α) = qn(α,F0) denote the quantile function of the true sampling distribution, and q∗n(α) =
qn(α,Fn) denote the quantile function of the bootstrap distribution. Note that this function will
change depending on the underlying statistic Tn whose distribution is Gn.

Let Tn = θ̂, an estimate of a parameter of interest. In (1−α)% of samples, θ̂ lies in the region
[qn(α/2), qn(1− α/2)]. This motivates a confidence interval proposed by Efron:

C1 = [q
∗
n(α/2), q∗n(1− α/2)].

This is often called the percentile confidence interval.
Computationally, the quantile q∗n(x) is estimated by q̂∗n(x), the x’th sample quantile of the

simulated statistics {T ∗n1, ..., T ∗nB}, as discussed in the section on Monte Carlo simulation. The
(1− α)% Efron percentile interval is then [q̂∗n(α/2), q̂∗n(1− α/2)].

The interval C1 is a popular bootstrap confidence interval often used in empirical practice.
This is because it is easy to compute, simple to motivate, was popularized by Efron early in the
history of the bootstrap, and also has the feature that it is translation invariant. That is, if we
define φ = f(θ) as the parameter of interest for a monotonic function f, then percentile method
applied to this problem will produce the confidence interval [f(q∗n(α/2)), f(q∗n(1−α/2))], which
is a naturally good property.

However, as we show now, C1 is in a deep sense very poorly motivated.
It will be useful if we introduce an alternative definition C1. Let Tn(θ) = θ̂ − θ and let qn(α)

be the quantile function of its distribution. (These are the original quantiles, with θ subtracted.)
Then C1 can alternatively be written as

C1 = [θ̂ + q∗n(α/2), θ̂ + q∗n(1− α/2)].

This is a bootstrap estimate of the “ideal” confidence interval

C01 = [θ̂ + qn(α/2), θ̂ + qn(1− α/2)].

The latter has coverage probability

P
¡
θ0 ∈ C01

¢
= P

³
θ̂ + qn(α/2) ≤ θ0 ≤ θ̂ + qn(1− α/2)

´
= P

³
−qn(1− α/2) ≤ θ̂ − θ0 ≤ −qn(α/2)

´
= Gn(−qn(α/2), F0)−Gn(−qn(1− α/2), F0)

which generally is not 1−α! There is one important exception. If θ̂−θ0 has a symmetric distribution,
then Gn(−x, F0) = 1−Gn(x,F0), so

P
¡
θ0 ∈ C01

¢
= Gn(−qn(α/2), F0)−Gn(−qn(1− α/2), F0)

= (1−Gn(qn(α/2), F0))− (1−Gn(qn(1− α/2), F0))

=
³
1− α

2

´
−
³
1−

³
1− α

2

´´
= 1− α
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and this idealized confidence interval is accurate. Therefore, C01 and C1 are designed for the case
that θ̂ has a symmetric distribution about θ0.

When θ̂ does not have a symmetric distribution, C1 may perform quite poorly.
However, by the translation invariance argument presented above, it also follows that if there

exists some monotonic transformation f(·) such that f(θ̂) is symmetrically distributed about f(θ0),
then the idealized percentile bootstrap method will be accurate.

Based on these arguments, many argue that the percentile interval should not be used unless
the sampling distribution is close to unbiased and symmetric.

The problems with the percentile method can be circumvented by an alternative method.
Let Tn(θ) = θ̂ − θ. Then

1− α = P (qn(α/2) ≤ Tn(θ0) ≤ qn(1− α/2))

= P
³
θ̂ − qn(1− α/2) ≤ θ0 ≤ θ̂ − qn(α/2)

´
,

so an exact (1− α)% confidence interval for θ0 would be

C02 = [θ̂ − qn(1− α/2), θ̂ − qn(α/2)].

This motivates a bootstrap analog

C2 = [θ̂ − q∗n(1− α/2), θ̂ − q∗n(α/2)].

Notice that generally this is very different from the Efron interval C1! They coincide in the special
case that G∗n(x) is symmetric about θ̂, but otherwise they differ.

Computationally, this interval can be estimated from a bootstrap simulation by sorting the
bootstrap statistics T ∗n =

³
θ̂
∗ − θ̂

´
, which are centered at the sample estimate θ̂. These are sorted

to yield the quantile estimates q̂∗n(.025) and q̂∗n(.975). The 95% confidence interval is then [θ̂ −
q̂∗n(.975), θ̂ − q̂∗n(.025)].

This confidence interval is discussed in most theoretical treatments of the bootstrap, but is not
widely used in practice.

8.6 Percentile-t Equal-Tailed Interval

Suppose we want to test H0 : θ = θ0 against H1 : θ < θ0 at size α. We would set Tn(θ) =³
θ̂ − θ

´
/s(θ̂) and reject H0 in favor of H1 if Tn(θ0) < c, where c would be selected so that

P (Tn(θ0) < c) = α.

Thus c = qn(α). Since this is unknown, a bootstrap test replaces qn(α) with the bootstrap estimate
q∗n(α), and the test rejects if Tn(θ0) < q∗n(α).

Similarly, if the alternative is H1 : θ > θ0, the bootstrap test rejects if Tn(θ0) > q∗n(1− α).
Computationally, these critical values can be estimated from a bootstrap simulation by sorting

the bootstrap t-statistics T ∗n =
³
θ̂
∗ − θ̂

´
/s(θ̂

∗
). Note, and this is important, that the bootstrap test

statistic is centered at the estimate θ̂, and the standard error s(θ̂
∗
) is calculated on the bootstrap

sample. These t-statistics are sorted to find the estimated quantiles q̂∗n(α) and/or q̂
∗
n(1− α).
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Let Tn(θ) =
³
θ̂ − θ

´
/s(θ̂). Then

1− α = P (qn(α/2) ≤ Tn(θ0) ≤ qn(1− α/2))

= P
³
qn(α/2) ≤

³
θ̂ − θ0

´
/s(θ̂) ≤ qn(1− α/2)

´
= P

³
θ̂ − s(θ̂)qn(1− α/2) ≤ θ0 ≤ θ̂ − s(θ̂)qn(α/2)

´
,

so an exact (1− α)% confidence interval for θ0 would be

C03 = [θ̂ − s(θ̂)qn(1− α/2), θ̂ − s(θ̂)qn(α/2)].

This motivates a bootstrap analog

C3 = [θ̂ − s(θ̂)q∗n(1− α/2), θ̂ − s(θ̂)q∗n(α/2)].

This is often called a percentile-t confidence interval. It is equal-tailed or central since the proba-
bility that θ0 is below the left endpoint approximately equals the probability that θ0 is above the
right endpoint, each α/2.

Computationally, this is based on the critical values from the one-sided hypothesis tests, dis-
cussed above.

8.7 Symmetric Percentile-t Intervals

Suppose we want to test H0 : θ = θ0 against H1 : θ 6= θ0 at size α. We would set Tn(θ) =³
θ̂ − θ

´
/s(θ̂) and reject H0 in favor of H1 if |Tn(θ0)| > c, where c would be selected so that

P (|Tn(θ0)| > c) = α.

Note that

P (|Tn(θ0)| < c) = P (−c < Tn(θ0) < c)

= Gn(c)−Gn(−c)
≡ Gn(c),

which is a symmetric distribution function. The ideal critical value c = qn(α) solves the equation

Gn(qn(α)) = 1− α.

Equivalently, qn(α) is the 1− α quantile of the distribution of |Tn(θ0)| .
The bootstrap estimate is q∗n(α), the 1− α quantile of the distribution of |T ∗n | , or the number

which solves the equation

G
∗
n(q

∗
n(α)) = G∗n(q

∗
n(α))−G∗n(−q∗n(α)) = 1− α.

Computationally, q∗n(α) is estimated from a bootstrap simulation by sorting the bootstrap t-

statistics |T ∗n | =
¯̄̄
θ̂
∗ − θ̂

¯̄̄
/s(θ̂

∗
), and taking the upper α% quantile. The bootstrap test rejects if

|Tn(θ0)| > q∗n(α).
Let

C4 = [θ̂ − s(θ̂)q∗n(α), θ̂ + s(θ̂)q∗n(α)],
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where q∗n(α) is the bootstrap critical value for a two-sided hypothesis test. C4 is called the sym-
metric percentile-t interval. It is designed to work well since

P (θ0 ∈ C4) = P
³
θ̂ − s(θ̂)q∗n(α) ≤ θ0 ≤ θ̂ + s(θ̂)q∗n(α)

´
= P (|Tn(θ0)| < q∗n(α))

' P (|Tn(θ0)| < qn(α))

= 1− α.

If θ is a vector, then to test H0 : θ = θ0 against H1 : θ 6= θ0 at size α, we would use a Wald
statistic

Wn(θ) = n
³
θ̂ − θ

´0
V̂ −1θ

³
θ̂ − θ

´
or some other asymptotically chi-square statistic. Thus here Tn(θ) =Wn(θ). The ideal test rejects
if Wn ≥ qn(α), where qn(α) is the (1−α)% quantile of the distribution of Wn. The bootstrap test
rejects if Wn ≥ q∗n(α), where q

∗
n(α) is the (1− α)% quantile of the distribution of

W ∗
n = n

³
θ̂
∗ − θ̂

´0
V̂ ∗−1θ

³
θ̂
∗ − θ̂

´
.

Computationally, the critical value q∗n(α) is found as the quantile from simulated values of W ∗
n .

Note in the simulation that the Wald statistic is a quadratic form in
³
θ̂
∗ − θ̂

´
, not

³
θ̂
∗ − θ0

´
.

[This is a typical mistake made by practitioners.]

8.8 Asymptotic Expansions

Let Tn be a statistic such that
Tn →d N(0, v

2). (8.3)

If Tn =
√
n
³
θ̂ − θ0

´
then v = V while if Tn is a t-ratio then v = 1. Equivalently, writing

Tn ∼ Gn(x, F ) then

lim
n→∞

Gn(x, F ) = Φ
³x
v

´
,

or
Gn(x,F ) = Φ

³x
v

´
+ o (1) . (8.4)

While (8.4) says that Gn converges to Φ
¡
x
v

¢
as n → ∞, it says nothing, however, about the rate

of convergence, or the size of the divergence for any particular sample size n. A better asymptotic
approximation may be obtained through an asymptotic expansion.

The following notation will be helpful. Let an be a sequence.

Definition 8.8.1 an = o(1) if an → 0 as n→∞

Definition 8.8.2 an = O(1) if |an| is uniformly bounded.

Definition 8.8.3 an = o(n−r) if nr |an|→ 0 as n→∞.

Basically, an = O(n−r) if it declines to zero like n−r.
We say that a function g(x) is even if g(−x) = g(x), and a function h(x) is odd if h(−x) =

−h(x). The derivative of an even function is odd, and vice-versa.
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Theorem 8.8.1 Under regularity conditions and (8.3),

Gn(x, F ) = Φ
³x
v

´
+

1

n1/2
g1(x, F ) +

1

n
g2(x, F ) +O(n−3/2)

uniformly over x, where g1 is an even function of x, and g2 is an odd function of x. Moreover, g1
and g2 are differentiable functions of x and continuous in F relative to the supremum norm on the
space of distribution functions.

We can interpret Theorem 8.8.1 as follows. First, Gn(x, F ) converges to the normal limit at
rate n1/2. To a second order of approximation,

Gn(x,F ) ≈ Φ
³x
v

´
+ n−1/2g1(x,F ).

Since the derivative of g1 is odd, the density function is skewed. To a third order of approximation,

Gn(x, F ) ≈ Φ
³x
v

´
+ n−1/2g1(x, F ) + n−1g2(x, F )

which adds a symmetric non-normal component to the approximate density (for example, adding
leptokurtosis).

8.9 One-Sided Tests

Using the expansion of Theorem 8.8.1, we can assess the accuracy of one-sided hypothesis tests
and confidence regions based on an asymptotically normal t-ratio Tn. An asymptotic test is based
on Φ(x).

To the second order, the exact distribution is

P (Tn < x) = Gn(x, F0) = Φ(x) +
1

n1/2
g1(x, F0) +O(n−1)

since v = 1. The difference is

Φ(x)−Gn(x, F0) =
1

n1/2
g1(x, F0) +O(n−1)

= O(n−1/2),

so the order of the error is O(n−1/2).
A bootstrap test is based on G∗n(x), which from Theorem 8.8.1 has the expansion

G∗n(x) = Gn(x,Fn) = Φ(x) +
1

n1/2
g1(x, Fn) +O(n−1).

Because Φ(x) appears in both expansions, the difference between the bootstrap distribution and
the true distribution is

G∗n(x)−Gn(x, F0) =
1

n1/2
(g1(x, Fn)− g1(x,F0)) +O(n−1).

Since Fn converges to F at rate
√
n, and g1 is continuous with respect to F, the difference

(g1(x, Fn)− g1(x, F0)) converges to 0 at rate
√
n. Heuristically,

g1(x, Fn)− g1(x,F0) ≈
∂

∂F
g1(x, F0) (Fn − F0)

= O(n−1/2),
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The “derivative” ∂
∂F g1(x,F ) is only heuristic, as F is a function. We conclude that

G∗n(x)−Gn(x, F0) = O(n−1),

or
P (T ∗n ≤ x) = P (Tn ≤ x) +O(n−1),

which is an improved rate of convergence over the asymptotic test (which converged at rate
O(n−1/2)). This rate can be used to show that one-tailed bootstrap inference based on the t-
ratio achieves a so-called asymptotic refinement — the Type I error of the test converges at a faster
rate than an analogous asymptotic test.

8.10 Symmetric Two-Sided Tests

If a random variable X has distribution function H(x) = P (X ≤ x), then the random variable |X|
has distribution function

H(x) = H(x)−H(−x)

since

P (|X| ≤ x) = P (−x ≤ X ≤ x)

= P (X ≤ x)− P (X ≤ −x)
= H(x)−H(−x).

For example, if Z ∼ N(0, 1), then |Z| has distribution function

Φ(x) = Φ(x)− Φ(−x) = 2Φ(x)− 1.

Similarly, if Tn has exact distribution Gn(x, F ), then |Tn| has the distribution function

Gn(x, F ) = Gn(x, F )−Gn(−x, F ).

A two-sided hypothesis test rejects H0 for large values of |Tn| . Since Tn →d Z, then |Tn| →d

|Z| ∼ Φ. Thus asymptotic critical values are taken from the Φ distribution, and exact critical
values are taken from the Gn(x, F0) distribution. From Theorem 8.8.1, we can calculate that

Gn(x, F ) = Gn(x, F )−Gn(−x, F )

=

µ
Φ(x) +

1

n1/2
g1(x, F ) +

1

n
g2(x, F )

¶
−
µ
Φ(−x) + 1

n1/2
g1(−x, F ) +

1

n
g2(−x, F )

¶
+O(n−3/2)

= Φ(x) +
2

n
g2(x, F ) +O(n−3/2), (8.5)

where the simplifications are because g1 is even and g2 is odd. Hence the difference between the
asymptotic distribution and the exact distribution is

Φ(x)−Gn(x, F0) =
2

n
g2(x, F0) +O(n−3/2) = O(n−1).

The order of the error is O(n−1).
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Interestingly, the asymptotic two-sided test has a better coverage rate than the asymptotic
one-sided test. This is because the first term in the asymptotic expansion, g1, is an even function,
meaning that the errors in the two directions exactly cancel out.

Applying (8.5) to the bootstrap distribution, we find

G
∗
n(x) = Gn(x, Fn) = Φ(x) +

2

n
g2(x, Fn) +O(n−3/2).

Thus the difference between the bootstrap and exact distributions is

G
∗
n(x)−Gn(x, F0) =

2

n
(g2(x, Fn)− g2(x, F0)) +O(n−3/2)

= O(n−3/2),

the last equality because Fn converges to F0 at rate
√
n, and g2 is continuous in F. Another way

of writing this is
P (|T ∗n | < x) = P (|Tn| < x) +O(n−3/2)

so the error from using the bootstrap distribution (relative to the true unknown distribution) is
O(n−3/2). This is in contrast to the use of the asymptotic distribution, whose error is O(n−1). Thus
a two-sided bootstrap test also achieves an asymptotic refinement, similar to a one-sided test.

A reader might get confused between the two simultaneous effects. Two-sided tests have better
rates of convergence than the one-sided tests, and bootstrap tests have better rates of convergence
than asymptotic tests.

The analysis shows that there may be a trade-off between one-sided and two-sided tests. Two-
sided tests will have more accurate size (Reported Type I error), but one-sided tests might have
more power against alternatives of interest. Confidence intervals based on the bootstrap can be
asymmetric if based on one-sided tests (equal-tailed intervals) and can therefore be more informa-
tive and have smaller length than symmetric intervals. Therefore, the choice between symmetric
and equal-tailed confidence intervals is unclear, and needs to be determined on a case-by-case basis.

8.11 Percentile Confidence Intervals

To evaluate the coverage rate of the percentile interval, set Tn =
√
n
³
θ̂ − θ0

´
. We know that

Tn →d N(0, V ), which is not pivotal, as it depends on the unknown V. Theorem 8.8.1 shows that
a first-order approximation

Gn(x, F ) = Φ
³x
v

´
+O(n−1/2),

where v =
√
V , and for the bootstrap

G∗n(x) = Gn(x, Fn) = Φ
³x
v̂

´
+O(n−1/2),

where V̂ = V (Fn) is the bootstrap estimate of V. The difference is

G∗n(x)−Gn(x, F0) = Φ
³x
v̂

´
− Φ

³x
v

´
+O(n−1/2)

= −φ
³x
v̂

´ x

v̂
(v̂ − v) +O(n−1/2)

= O(n−1/2)
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Hence the order of the error is O(n−1/2).
The good news is that the percentile-type methods (if appropriately used) can yield

√
n-

convergent asymptotic inference. Yet these methods do not require the calculation of standard
errors! This means that in contexts where standard errors are not available or are difficult to
calculate, the percentile bootstrap methods provide an attractive inference method.

The bad news is that the rate of convergence is disappointing. It is no better than the rate
obtained from an asymptotic one-sided confidence region. Therefore if standard errors are available,
it is unclear if there are any benefits from using the percentile bootstrap over simple asymptotic
methods.

Based on these arguments, the theoretical literature (e.g. Hall, 1992, Horowitz, 2002) tends to
advocate the use of the percentile-t bootstrap methods rather than percentile methods.

8.12 Bootstrap Methods for Regression Models

The bootstrap methods we have discussed have set G∗n(x) = Gn(x, Fn), where Fn is the EDF.
Any other consistent estimate of F0 may be used to define a feasible bootstrap estimator. The
advantage of the EDF is that it is fully nonparametric, it imposes no conditions, and works in
nearly any context. But since it is fully nonparametric, it may be inefficient in contexts where more
is known about F. We discuss some bootstrap methods appropriate for the case of a regression
model where

yi = x0iβ + εi

E (ei | xi) = 0.

The non-parametric bootstrap distribution resamples the observations (y∗i , x
∗
i ) from the EDF,

which implies

y∗i = x∗0i β̂ + ε∗i
E (x∗i ε

∗
i ) = 0

but generally
E (ε∗i | x∗i ) 6= 0.

The the bootstrap distribution does not impose the regression assumption, and is thus an inefficient
estimator of the true distribution (when in fact the regression assumption is true.)

One approach to this problem is to impose the very strong assumption that the error εi is
independent of the regressor xi. The advantage is that in this case it is straightforward to con-
struct bootstrap distributions. The disadvantage is that the bootstrap distribution may be a poor
approximation when the error is not independent of the regressors.

To impose independence, it is sufficient to sample the x∗i and ε
∗
i independently, and then create

y∗i = x∗0i β̂ + ε∗i . There are different ways to impose independence. A non-parametric method is
to sample the bootstrap errors ε∗i randomly from the OLS residuals {ê1, ..., ên}. A parametric
method is to generate the bootstrap errors ε∗i from a parametric distribution, such as the normal
ε∗i ∼ N(0, σ̂2).

For the regressors x∗i , a nonparametric method is to sample the x
∗
i randomly from the EDF

or sample values {x1, ..., xn}. A parametric method is to sample x∗i from an estimated parametric
distribution. A third approach sets x∗i = xi. This is equivalent to treating the regressors as fixed
in repeated samples. If this is done, then all inferential statements are made conditionally on the
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observed values of the regressors, which is a valid statistical approach. It does not really matter,
however, whether or not the xi are really “fixed” or random.

The methods discussed above are unattractive for most applications in econometrics because
they impose the stringent assumption that xi and εi are independent. Typically what is desirable
is to impose only the regression condition E (εi | xi) = 0. Unfortunately this is a harder problem.

One proposal which imposes the regression condition without independence is the Wild Boot-
strap. The idea is to construct a conditional distribution for ε∗i so that

E (ε∗i | xi) = 0

E
¡
ε∗2i | xi

¢
= ê2i

E
¡
ε∗3i | xi

¢
= ê3i .

A conditional distribution with these features will preserve the main important features of the
data. This can be achieved using a two-point distribution of the form

P

Ã
ε∗i =

Ã
1 +
√
5

2

!
êi

!
=

√
5− 1
2
√
5

P

Ã
ε∗i =

Ã
1−
√
5

2

!
êi

!
=

√
5 + 1

2
√
5

For each xi, you sample ε∗i using this two-point distribution.

8.13 Exercises

1. Let Fn(x) denote the EDF of a random sample. Show that
√
n (Fn(x)− F0(x))→d N (0, F0(x) (1− F0(x))) .

2. Take a random sample {y1, ..., yn} with µ = Eyi and σ2 = V ar(yi). Let the statistic of
interest be the sample mean Tn = yn. Find the population moments ETn and V ar(Tn). Let
{y∗1, ..., y∗n} be a random sample from the empirical distribution function and let T ∗n = y∗n be
its sample mean. Find the bootstrap moments ET ∗n and V ar(T ∗n).

3. Consider the following bootstrap procedure for a regression of yi on xi. Let β̂ denote the
OLS estimator from the regression of Y on X, and ê = Y −Xβ̂ the OLS residuals.

(a) Draw a random vector (x∗, e∗) from the pair {(xi, êi) : i = 1, ..., n} . That is, draw a
random integer i0 from [1, 2, ..., n], and set x∗ = xi0 and e∗ = êi0 . Set y∗ = x∗0β̂ + e∗.
Draw (with replacement) n such vectors, creating a random bootstrap data set (Y ∗,X∗).

(b) Regress Y ∗ on X∗, yielding OLS estimates β̂
∗
and any other statistic of interest.

Show that this bootstrap procedure is (numerically) identical to the non-parametric boot-
strap.

4. Consider the following bootstrap procedure. Using the non-parametric bootstrap, generate
bootstrap samples, calculate the estimate θ̂

∗
on these samples and then calculate

T ∗n = (θ̂
∗ − θ̂)/s(θ̂),
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where s(θ̂) is the standard error in the original data. Let q∗n(.05) and q∗n(.95) denote the 5%
and 95% quantiles of T ∗n , and define the bootstrap confidence interval

C =
h
θ̂ − s(θ̂)q∗n(.95), θ̂ − s(θ̂)q∗n(.05)

i
.

Show that C exactly equals the Alternative percentile interval (not the percentile-t interval).

5. You want to test H0 : θ = 0 against H1 : θ > 0. The test for H0 is to reject if Tn = θ̂/s(θ̂) > c
where c is picked so that Type I error is α. You do this as follows. Using the non-parametric
bootstrap, you generate bootstrap samples, calculate the estimates θ̂

∗
on these samples and

then calculate
T ∗n = θ̂

∗
/s(θ̂

∗
).

Let q∗n(.95) denote the 95% quantile of T ∗n . You replace c with q∗n(.95), and thus reject H0 if
Tn = θ̂/s(θ̂) > q∗n(.95). What is wrong with this procedure?

6. Suppose that in an application, θ̂ = 1.2 and s(θ̂) = .2. Using the non-parametric bootstrap,
1000 samples are generated from the bootstrap distribution, and θ̂

∗
is calculated on each

sample. The θ̂
∗
are sorted, and the 2.5% and 97.5% quantiles of the θ̂

∗
are .75 and 1.3,

respectively.

(a) Report the 95% Efron Percentile interval for θ.

(b) Report the 95% Alternative Percentile interval for θ.

(c) With the given information, can you report the 95% Percentile-t interval for θ?

7. The datafile hprice1.dat contains data on house prices (sales), with variables listed in the
file hprice1.pdf. Estimate a linear regression of price on the number of bedrooms, lot size,
size of house, and the colonial dummy. Calculate 95% confidence intervals for the regression
coefficients using both the asymptotic normal approximation and the percentile-t bootstrap.
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Chapter 9

Generalized Method of Moments

9.1 Overidentified Linear Model

Consider the linear model

yi = x0iβ + ei

= x01iβ1 + x02iβ2 + ei

E (xiei) = 0

where x1i is k × 1 and x2 is r × 1 with c = k + r. We know that without further restrictions, an
asymptotically efficient estimator of β is the OLS estimator. Now suppose that we are given the
information that β2 = 0. Now we can write the model as

yi = x01iβ1 + ei

E (xiei) = 0.

In this case, how should β1 be estimated? One method is OLS regression of yi on x1i alone. This
method, however, is not necessarily efficient, as their are c restrictions in E (xiei) = 0, while β1 is
of dimension k < c. This situation is called overidentified. There are c − k = r more moment
restrictions than free parameters. We call r the number of overidentifying restrictions.

This is a special case of a more general class of moment condition models. Let g(y, z, x, β) be
an c× 1 function of a k × 1 parameter β with c ≥ k such that

Eg(yi, zi, xi, β0) = 0 (9.1)

where β0 is the true value of β. In our previous example, g(y, x, β) = x(y−x01β). In econometrics,
this class of models are called moment condition models. In the statistics literature, these are
known as estimating equations.

As an important special case we will devote special attention to linear moment condition
models, which can be written as

yi = z0iβ + ei

E (xiei) = 0.

where the dimensions of zi and xi are k × 1 and c × 1 , with c ≥ k. If k = c the model is just
identified, otherwise it is overidentified. The variables zi may be components and functions of
xi, but this is not required. This model falls in the class (9.1) by setting

g(y, z, x, β0) = x(y − z0β) (9.2)

106



9.2 GMM Estimator

Define the sample analog of (9.2)

gn(β) =
1

n

nX
i=1

gi(β) =
1

n

nX
i=1

xi
¡
yi − z0iβ

¢
=
1

n

¡
X 0Y −X 0Zβ

¢
. (9.3)

The method of moments estimator for β is defined as the parameter value which sets gn(β) = 0,
but this is generally not possible when c > k. The idea of the generalized method of moments
(GMM) is to define an estimator which sets gn(β) “close” to zero.

For some c× c weight matrix Wn > 0, let

Jn(β) = n · gn(β)0Wngn(β).

This is a non-negative measure of the “length” of the vector gn(β). For example, if Wn = I, then,
Jn(β) = n · gn(β)0gn(β) = n · |gn(β)|2 , the square of the Euclidean length. The GMM estimator
minimizes Jn(β).

Definition 9.2.1 β̂GMM = argmin
β

Jn(β).

Note that if k = c, then gn(β̂) = 0, and the GMM estimator is the MME.
The first order conditions for the GMM estimator are

0 =
∂

∂β
Jn(β̂)

= 2
∂

∂β
gn(β̂)

0Wngn(β̂)

= −2 1
n
Z 0XWn

1

n
X 0
³
Y − Zβ̂

´
so

2Z 0XWnX
0Zβ̂ = 2Z 0XWnX

0Y

which establishes the following.

Proposition 9.2.1
β̂GMM =

¡
Z 0XWnX

0Z
¢−1

Z 0XWnX
0Y.

While the estimator depends on Wn, the dependence is only up to scale, for if Wn is replaced
by cWn for some c > 0, β̂GMM does not change.

9.3 Distribution of GMM Estimator

Assume that Wn →p W > 0. Let
Q = E

¡
xiz

0
i

¢
and

Ω = E
¡
xix

0
ie
2
i

¢
= E

¡
gig

0
i

¢
,

where gi = xiei. Then µ
1

n
Z 0X

¶
Wn

µ
1

n
X 0Z

¶
→p Q

0WQ
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and µ
1

n
Z 0X

¶
Wn

µ
1

n
X 0e

¶
→d Q

0WN (0,Ω) .

We conclude:

Theorem 9.3.1
√
n
³
β̂ − β

´
→d N (0, V ) , where

V =
¡
Q0WQ

¢−1 ¡
Q0WΩWQ

¢ ¡
Q0WQ

¢−1
.

In general, GMM estimators are asymptotically normal with “sandwich form” asymptotic vari-
ances.

The optimal weight matrix W0 is one which minimizes V. This turns out to be W0 = Ω
−1. The

proof is left as an exercise. This yields the efficient GMM estimator:

β̂ =
¡
Z 0XΩ−1X 0Z

¢−1
Z 0XΩ−1X 0Y.

Thus we have

Theorem 9.3.2 For the efficient GMM estimator,
√
n
³
β̂ − β

´
→d N

³
0,
¡
Q0Ω−1Q

¢−1´
.

This estimator is efficient only in the sense that it is the best (asymptotically) in the class of
GMM estimators with this set of moment conditions.

W0 = Ω
−1 is not known in practice, but it can be estimated consistently. For any Wn →p W0,

we still call β̂ the efficient GMM estimator, as it has the same asymptotic distribution.
We have described the estimator β̂ as “efficient GMM” if the optimal (variance minimizing)

weight matrix is selected. This is a weak concept of optimality, as we are only considering alter-
native weight matrices Wn. However, it turns out that the GMM estimator is semiparametrically
efficient, as shown by Gary Chamberlain (1987).

If it is known that E (gi(β)) = 0, and this is all that is known, this is a semi-parametric
problem, as the distribution of the data is unknown. Chamberlain showed that in this context,
no semiparametric estimator (one which is consistent globally for the class of models considered)
can have a smaller asymptotic variance than

¡
G0Ω−1G

¢−1
. Since the GMM estimator has this

asymptotic variance, it is semiparametrically efficient.
This results shows that in the linear model, no estimator has greater asymptotic efficiency than

the efficient linear GMM estimator. No estimator can do better (in this first-order asymptotic
sense), without imposing additional assumptions.

9.4 Estimation of the Efficient Weight Matrix

Given any weight matrix Wn > 0, the GMM estimator β̂ is consistent yet inefficient. For example,
we can set Wn = Ic. In the linear model, a better choice is Wn = (X

0X)−1 . Given any such first-
step estimator, we can define the residuals êi = yi−z0iβ̂ and moment equations ĝi = xiêi = g(wi, β̂).
Construct

gn = gn(β̂) =
1

n

nX
i=1

ĝi,

ĝ∗i = ĝi − gn,
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and define

Wn =

Ã
1

n

nX
i=1

ĝ∗i ĝ
∗0
i

!−1
=

Ã
1

n

nX
i=1

ĝiĝ
0
i − gng

0
n

!−1
. (9.4)

Then Wn →p Ω
−1 =W0, and GMM using Wn as the weight matrix is asymptotically efficient.

A common alternative choice is to set

Wn =

Ã
1

n

nX
i=1

ĝiĝ
0
i

!−1
which uses the uncentered moment conditions. Since Egi = 0, these two estimators are asymptot-
ically equivalent under the hypothesis of correct specification. However, Alastair Hall (2000) has
shown that the uncentered estimator is a poor choice. When constructing hypothesis tests, under
the alternative hypothesis the moment conditions are violated, i.e. Egi 6= 0, so the uncentered
estimator will contain an undesirable bias term and the power of the test will be adversely affected.
A simple solution is to use the centered moment conditions to construct the weight matrix, as in
(9.4) above.

Here is a simple way to compute the efficient GMM estimator. First, set Wn = (X 0X)−1,
estimate β̂ using this weight matrix, and construct the residual êi = yi − z0iβ̂. Then set ĝi = xiêi,
and let ĝ be the associated n× c matrix. Then the efficient GMM estimator is

β̂ =
³
Z 0X

¡
ĝ0ĝ − ngng

0
n

¢−1
X 0Z

´−1
Z 0X

¡
ĝ0ĝ − ngng

0
n

¢−1
X 0Y.

In most cases, when we say “GMM”, we actually mean “efficient GMM”. There is little point in
using an inefficient GMM estimator as it is easy to compute.

An estimator of the asymptotic variance of β̂ can be seen from the above formula. Set

V̂ = n
³
Z 0X

¡
ĝ0ĝ − ngng

0
n

¢−1
X 0Z

´−1
.

Asymptotic standard errors are given by the square roots of the diagonal elements of V̂ .
There is an important alternative to the two-step GMM estimator just described. Instead, we

can let the weight matrix be considered as a function of β. The criterion function is then

J(β) = n · gn(β)0
Ã
1

n

nX
i=1

g∗i (β)g
∗
i (β)

0
!−1

gn(β).

where
g∗i (β) = gi(β)− gn(β)

The β̂ which minimizes this function is called the continuously-updated GMM estimator,
and was introduced by L. Hansen, Heaton and Yaron (1996).

The estimator appears to have some better properties than traditional GMM, but can be
numerically tricky to obtain in some cases. This is a current area of research in econometrics.

9.5 GMM: The General Case

In its most general form, GMM applies whenever an economic or statistical model implies the c×1
moment condition

E (gi(β)) = 0.
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Often, this is all that is known. Identification requires l ≥ k = dim(β). The GMM estimator
minimizes

J(β) = n · gn(β)0Wngn(β)

where

gn(β) =
1

n

nX
i=1

gi(β)

and

Wn =

Ã
1

n

nX
i=1

ĝiĝ
0
i − gng

0
n

!−1
,

with ĝi = gi(β̃) constructed using a preliminary consistent estimator β̃, perhaps obtained by first
settingWn = I. Since the GMM estimator depends upon the first-stage estimator, often the weight
matrix Wn is updated, and then β̂ recomputed. This estimator can be iterated if needed.

Theorem 9.5.1 Under general regularity conditions,
√
n
³
β̂ − β

´
→d N

³
0,
¡
G0Ω−1G

¢−1´
, where

Ω = (E (gig
0
i))
−1 and G = E ∂

∂β0
gi(β). The variance of β̂ may be estimated by

³
Ĝ0Ω̂−1Ĝ

´−1
where

Ω̂ = n−1
P

i ĝ
∗
i ĝ
∗0
i and Ĝ = n−1

P
i

∂
∂β0

gi(β̂).

The general theory of GMM estimation and testing was exposited by L. Hansen (1982).

9.6 Over-Identification Test

Overidentified models (c > k) are special in the sense that there may not be a parameter value β
such that the moment condition

Eg(wi, β) = 0

holds. Thus the model — the overidentifying restrictions — are testable.
For example, take the linear model yi = β01x1i+β02x2i+ei with E (x1iei) = 0 and E (x2iei) = 0.

It is possible that β2 = 0, so that the linear equation may be written as yi = β01x1i + ei. However,
it is possible that β2 6= 0, and in this case it would be impossible to find a value of β1 so that
both E (x1i (yi − x01iβ1)) = 0 and E (x2i (yi − x01iβ1)) = 0 hold simultaneously. In this sense an
exclusion restriction can be seen as an overidentifying restriction.

Note that gn →p Egi, and thus gn can be used to assess whether or not the hypothesis that
Egi = 0 is true or not. The criterion function at the parameter estimates is

J = n g0nWngn

= n2g0n
¡
ĝ0ĝ − ngng

0
n

¢−1
gn.

is a quadratic form in gn, and is thus a natural test statistic for H0 : Egi = 0.

Theorem 9.6.1 (Sargan-Hansen). Under the hypothesis of correct specification, and if the weight
matrix is asymptotically efficient,

J = J(β̂)→d χ
2
c−k.
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The proof of the theorem is left as an exercise. This result was established by Sargan (1958)
for a specialized case, and by L. Hansen (1982) for the general case.

The degrees of freedom of the asymptotic distribution are the number of overidentifying re-
strictions. If the statistic J exceeds the chi-square critical value, we can reject the model. Based on
this information alone, it is unclear what is wrong, but it is typically cause for concern. The GMM
overidentification test is a very useful by-product of the GMM methodology, and it is advisable to
report the statistic J whenever GMM is the estimation method.

When over-identified models are estimated by GMM, it is customary to report the J statistic
as a general test of model adequacy.

9.7 Hypothesis Testing: The Distance Statistic

We described before how to construct estimates of the asymptotic covariance matrix of the GMM
estimates. These may be used to construct Wald tests of statistical hypotheses.

If the hypothesis is non-linear, a better approach is to directly use the GMM criterion function.
This is sometimes called the GMM Distance statistic, and sometimes called a LR-like statistic (the
LR is for likelihood-ratio). The idea was first put forward by Newey and West (1987).

For a given weight matrix Wn, the GMM criterion function is

J(β) = n · gn(β)0Wngn(β)

For h : Rk → Rr, the hypothesis is

H0 : h(β) = 0.

The estimates under H1 are
β̂ = argmin

β
J(β)

and those under H0 are
β̃ = argmin

h(β)=0
J(β).

The two minimizing criterion functions are J(β̂) and J(β̃). The GMM distance statistic is the
difference

D = J(β̃)− J(β̂).

Proposition 9.7.1 If the same weight matrix Wn is used for both null and alternative,

1. D ≥ 0

2. D→d χ
2
r

3. If h is linear in β, then D equals the Wald statistic.

If h is non-linear, the Wald statistic can work quite poorly. In contrast, current evidence
suggests that the D statistic appears to have quite good sampling properties, and is the preferred
test statistic.

Newey and West (1987) suggested to use the same weight matrix Wn for both null and alter-
native, as this ensures that D ≥ 0. This reasoning is not compelling, however, and some current
research suggests that this restriction is not necessary for good performance of the test.

This test shares the useful feature of LR tests in that it is a natural by-product of the compu-
tation of alternative models.
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9.8 Conditional Moment Restrictions

In many contexts, the model implies more than an unconditional moment restriction of the form
Egi(β) = 0. It implies a conditional moment restriction of the form

E (ei(β) | xi) = 0

where ei(β) is some s× 1 function of the observation and the parameters. In many cases, s = 1.
It turns out that this conditional moment restriction is much more powerful, and restrictive,

than the unconditional moment restriction discussed above.
Our linear model yi = z0iβ + ei with instruments xi falls into this class under the stronger

assumption E (ei | xi) = 0. Then ei(β) = yi − z0iβ.
It is also helpful to realize that conventional regression models also fall into this class, except

that in this case zi = xi. For example, in linear regression, ei(β) = yi − x0iβ, while in a nonlinear
regression model ei(β) = yi − g(xi, β). In a joint model of the conditional mean and variance

ei(β, γ) =

⎧⎨⎩
yi − x0iβ

(yi − x0iβ)
2 − f(xi)

0γ
.

Here s = 2.
Given a conditional moment restriction, an unconditional moment restriction can always be

constructed. That is for any c×1 function φ(xi, β), we can set gi(β) = φ(xi, β)ei(β) which satisfies
Egi(β) = 0 and hence defines a GMM estimator. The obvious problem is that the class of functions
φ is infinite. Which should be selected?

This is equivalent to the problem of selection of the best instruments. If xi is a valid instrument
satisfying E (ei | xi) = 0, then xi, x2i , x3i , ..., etc., are all valid instruments. Which should be used?

One solution is to construct an infinite list of potent instruments, and then use the first k
instruments. How is k to be determined? This is an area of theory still under development. A
recent study of this problem is Donald and Newey (2001).

Another approach is to construct the optimal instrument. The form was uncovered by Cham-
berlain (1987). Take the case s = 1. Let

Ri = E

µ
∂

∂β
ei(β) | xi

¶
and

σ2i = E
¡
ei(β)

2 | xi
¢
.

Then the “optimal instrument” is
Ai = −σ−2i Ri

so the optimal moment is
gi(β) = Aiei(β).

Setting gi (β) to be this choice (which is k×1, so is just-identified) yields the best GMM estimator
possible.

In practice, Ai is unknown, but its form does help us think about construction of optimal
instruments.

In the linear model ei(β) = yi − z0iβ, note that

Ri = −E (zi | xi)
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and
σ2i = E

¡
e2i | xi

¢
,

so
Ai = σ−2i E (zi | xi) .

In the case of linear regression, zi = xi, so Ai = σ−2i xi. Hence efficient GMM is GLS, as we
discussed earlier in the course.

In the case of endogenous variables, note that the efficient instrument Ai involves the estimation
of the conditional mean of zi given xi. In other words, to get the best instrument for zi, we need the
best conditional mean model for zi given xi, not just an arbitrary linear projection. The efficient
instrument is also inversely proportional to the conditional variance of ei. This is the same as the
GLS estimator; namely that improved efficiency can be obtained if the observations are weighted
inversely to the conditional variance of the errors.

9.9 Bootstrap GMM Inference

Let β̂ be the 2SLS or GMM estimator of β. Using the EDF of (yi, xi, zi), we can apply the
bootstrap methods discussed in Chapter 8 to compute estimates of the bias and variance of β̂,
and construct confidence intervals for β, identically as in the regression model. However, caution
should be applied when interpreting such results.

A straightforward application of the nonparametric bootstrap works in the sense of consistently
achieving the first-order asymptotic distribution. This has been shown by Hahn (1996). However,
it fails to achieve an asymptotic refinement when the model is over-identified, jeopardizing the
theoretical justification for percentile-t methods. Furthermore, the bootstrap applied J test will
yield the wrong answer.

The problem is that in the sample, β̂ is the “true” value and yet gn(β̂) 6= 0. Thus according to
random variables (y∗i , x

∗
i , z

∗
i ) drawn from the EDF Fn,

E
³
gi

³
β̂
´´
= gn(β̂) 6= 0.

This means that w∗i do not satisfy the same moment conditions as the population distribution.
A correction suggested by Hall and Horowitz (1996) can solve the problem. Given the bootstrap

sample (Y ∗,X∗, Z∗), define the bootstrap GMM criterion

J∗(β) = n ·
³
g∗n(β)− gn(β̂)

´0
W ∗

n

³
g∗n(β)− gn(β̂)

´
where gn(β̂) is from the in-sample data, not from the bootstrap data.

Let β̂
∗
minimize J∗(β), and define all statistics and tests accordingly. In the linear model, this

implies that the bootstrap estimator is

β̂
∗
=
¡
Z∗0X∗W ∗

nX
∗0Z∗

¢−1 ¡
Z∗0X∗W ∗

n

¡
X∗0Y ∗ −X 0ê

¢¢
.

where ê = Y − Zβ̂ are the in-sample residuals. The bootstrap J statistic is J∗(β̂
∗
).

Brown and Newey (2002) have an alternative solution. They note that we can sample from the
observations {w1, ..., wn} with the empirical likelihood probabilities {p̂i} described in Chapter X.
Since

Pn
i=1 p̂igi

³
β̂
´
= 0, this sampling scheme preserves the moment conditions of the model, so

no recentering or adjustments are needed. Brown and Newey argue that this bootstrap procedure
will be more efficient than the Hall-Horowitz GMM bootstrap.

To date, there are very few empirical applications of bootstrap GMM, as this is a very new
area of research.
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9.10 Exercises

1. Take the model

yi = x0iβ + ei

E (xiei) = 0

e2i = z0iγ + ηi

E (ziηi) = 0.

Find the method of moments estimators (β̂, γ̂) for (β, γ).

2. Take the single equation

Y = Zβ + e

E(e | X) = 0

Assume E(e2i | xi) = σ2. Show that if β̂ is estimated by GMM with weight matrix Wn =
(X 0X)−1 , then √

n
³
β̂ − β

´
→d N(0, σ

2
¡
Q0M−1Q

¢−1
)

where Q = E(xiz
0
i) and M = E(xix

0
i).

3. Take the model yi = z0iβ + ei with E (xiei) = 0. Let êi = yi − z0iβ̂ where β̂ is consistent for
β (e.g. a GMM estimator with arbitrary weight matrix). Define the estimate of the optimal
GMM weight matrix

Wn =

Ã
1

n

nX
i=1

xix
0
iê
2
i

!−1
.

Show that Wn →p Ω
−1 where Ω = E

¡
xix

0
ie
2
i

¢
.

4. In the linear model estimated by GMM with general weight matrix W, the asymptotic vari-
ance of β̂GMM is

V =
¡
Q0WQ

¢−1
Q0WΩWQ

¡
Q0WQ

¢−1
(a) Let V0 be this matrix when W = Ω−1. Show that V0 =

¡
Q0Ω−1Q

¢−1
.

(b) We want to show that for any W, V − V0 is positive semi-definite (for then V0 is the
smaller possible covariance matrix and W = Ω−1 is the efficient weight matrix). From
matrix algebra, we know that V − V0 is positive semi-definite if and only if

V −10 − V −1 = A

is positive semi-definite. Write out the matrix A.

(c) Since Ω is positive definite, there exists a nonsingular matrix C such that C 0C = Ω−1.
Letting H = CQ and G = C 0−1WQ, verify that A can be written as

A = H 0
³
I −G

¡
G0G

¢−1
G0
´
H.

(d) Show that A is positive semidefinite.
Hint: The matrix I−G (G0G)−1G0 is symmetric and idempotent, and therefore positive
semidefinite.
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5. The equation of interest is

yi = g(xi, β) + ei

E (ziei) = 0.

The observed data is (yi, xi, zi). zi is l × 1 and β is k × 1, l ≥ k. Show how to construct an
efficient GMM estimator for β.

6. In the linear model Y = Xβ + e with E(xiei) = 0, the Generalized Method of Moments
(GMM) criterion function for β is defined as

Jn(β) =
1

n
(Y −Xβ)0XΩ̂−1n X (Y −Xβ) (9.5)

where êi are the OLS residuals and Ω̂n = 1
n

Pn
i=1 xix

0
iê
2
i . The GMM estimator of β, subject

to the restriction h(β) = 0, is defined as

β̃ = argmin
h(β)=0

Jn(β).

The GMM test statistic (the distance statistic) of the hypothesis h(β) = 0 is

D = Jn(β̃) = min
h(β)=0

Jn(β). (9.6)

(a) Show that you can rewrite Jn(β) in (9.5) as

Jn(β) =
³
β − β̂

´0
V̂ −1n

³
β − β̂

´
where

V̂n =
¡
X 0X

¢−1Ã nX
i=1

xix
0
iê
2
i

!¡
X 0X

¢−1
.

(b) Now focus on linear restrictions: h(β) = R0β − r. Thus

β̃ = argmin
R0β−r

Jn(β)

and hence R0β̃ = r. Define the Lagrangian L(β, λ) = 1
2Jn(β) + λ0 (R0β − r) where λ is

s× 1. Show that the minimizer is

β̃ = β̂ − V̂nR
³
R0V̂nR

´−1 ³
R0β̂ − r

´
λ̂ =

³
R0V̂nR

´−1 ³
R0β̂ − r

´
.

(c) Show that if R0β = r then
√
n
³
β̃ − β

´
→d N (0, VR) where

VR = V − V R
¡
R0V R

¢−1
R0V.

(d) Show that in this setting, the distance statistic D in (9.6) equals the Wald statistic.
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7. Take the linear model

yi = z0iβ + ei

E (xiei) = 0.

and consider the GMM estimator β̂ of β. Let

Jn = ngn(β̂)
0Ω̂−1gn(β̂)

denote the test of overidentifying restrictions. Define

Dn = Il − C 0
µ
1

n
X 0Z

¶µ
1

n
Z 0XΩ̂−1

1

n
X 0Z

¶−1 1
n
Z 0XΩ̂−1C 0−1

gn(β0) =
1

n
X 0e

R = C 0E
¡
xiz

0
i

¢
Show that Jn →d χ

2
l−k as n→∞ by demonstrating each of the following:

(a) Since Ω > 0, we can write Ω−1 = CC0 and Ω = C 0−1C−1

(b) Jn = n
³
C 0gn(β̂)

´0 ³
C 0Ω̂C

´−1
C 0gn(β̂)

(c) C 0gn(β̂) = DnC
0gn(β0)

(d) Dn →p Il −R (R0R)−1R0

(e) n1/2C 0gn(β0)→d N ∼ N (0, Il)

(f) Jn →d N
0
³
Il −R (R0R)−1R0

´
N

(g) N 0
³
Il −R (R0R)−1R0

´
N ∼ χ2l−k.

Hint: Il −R (R0R)−1R0 is a projection matrix..
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Chapter 10

Empirical Likelihood

10.1 Non-Parametric Likelihood

An alternative to GMM is empirical likelihood. The idea is due to Art Owen (1988, 2001) and
has been extended to moment condition models by Qin and Lawless (1994). It is a non-parametric
analog of likelihood estimation.

The idea is to construct a multinomial distribution F (p1, ..., pn) which places probability pi
at each observation. To be a valid multinomial distribution, these probabilities must satisfy the
requirements that pi ≥ 0 and

nX
i=1

pi = 1. (10.1)

Since each observation is observed once in the sample, the log-likelihood function for this multino-
mial distribution is

Ln(p1, ..., pn) =
nX
i=1

ln(pi). (10.2)

First let us consider a just-identified model. In this case the moment condition places no
additional restrictions on the multinomial distribution. The maximum likelihood estimator of
the probabilities (p1, ..., pn) are those which maximize the log-likelihood subject to the constraint
(10.1). This is equivalent to maximizing

nX
i=1

log(pi)− µ

Ã
nX
i=1

pi − 1
!

where µ is a Lagrange multiplier. The n first order conditions are 0 = p−1i − µ. Combined with
the constraint (10.1) we find that the MLE is pi = n−1 yielding the log-likelihood −n log(n).

Now consider the case of an overidentified model with moment condition

Egi(β0) = 0

where g is c× 1 and β is k× 1 and for simplicity we write gi(β) = g(yi, zi, xi, β). The multinomial
distribution which places probability pi at each observation (yi, xi, zi) will satisfy this condition if
and only if

nX
i=1

pigi(β) = 0 (10.3)
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The empirical likelihood estimator is the value of β which maximizes the multinomial log-
likelihood (10.2) subject to the restrictions (10.1) and (10.3).

The Lagrangian for this maximization problem is

L∗n (β, p1, ..., pn, λ, µ) =
nX
i=1

ln(pi)− µ

Ã
nX
i=1

pi − 1
!
− nλ0

nX
i=1

pigi (β)

where λ and µ are Lagrange multipliers. The first-order-conditions of L∗n with respect to pi, µ,
and λ are

1

pi
= µ+ nλ0gi (β)

nX
i=1

pi = 1

nX
i=1

pigi (β) = 0.

Multiplying the first equation by pi, summing over i, and using the second and third equations,
we find µ = n and

pi =
1

n
¡
1 + λ0gi (β)

¢ .
Substituting into L∗n we find

Rn (β, λ) = −n ln (n)−
nX
i=1

ln
¡
1 + λ0gi (β)

¢
. (10.4)

For given β, the Lagrange multiplier λ(β) minimizes Rn (β, λ) :

λ(β) = argmin
λ

Rn(β, λ). (10.5)

This minimization problem is the dual of the constrained maximization problem. The solution
(when it exists) is well defined since Rn(β, λ) is a convex function of λ. The solution cannot be
obtained explicitly, but must be obtained numerically (see section 6.5). This yields the (profile)
empirical log-likelihood function for β.

Ln(β) = Rn(β, λ(β))

= −n ln (n)−
nX
i=1

ln
¡
1 + λ(β)0gi (β)

¢
The EL estimate β̂ is the value which maximizes Ln(β), or equivalently minimizes its negative

β̂ = argmin
β

[−Ln(β)] (10.6)

Numerical methods are required for calculation of β̂. (see section 6.5)
As a by-product of estimation, we also obtain the Lagrange multiplier λ̂ = λ(β̂), probabilities

p̂i =
1

n
³
1 + λ̂

0
gi

³
β̂
´´ .

and maximized empirical likelihood

L̂n =
nX
i=1

ln (p̂i) . (10.7)
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10.2 Asymptotic Distribution of EL Estimator

Define

Gi (β) =
∂

∂β0
gi (β) (10.8)

G = EGi (β0)

Ω = E
¡
gi (β0) gi (β0)

0¢
and

V =
¡
G0Ω−1G

¢−1
(10.9)

Vλ = Ω−G
¡
G0Ω−1G

¢−1
G0 (10.10)

For example, in the linear model, Gi (, β) = −xiz0i, G = −E (xiz0i), and Ω = E
¡
xix

0
ie
2
i

¢
.

Theorem 10.2.1 Under regularity conditions,

√
n
³
β̂ − β0

´
→d N (0, V )

√
nλ̂→d Ω−1N (0, Vλ)

where V and Vλ are defined in (10.9) and (10.10), and
√
n
³
β̂ − β0

´
and
√
nλ̂ are asymptotically

independent.

The asymptotic variance V for β̂ is the same as for efficient GMM. Thus the EL estimator is
asymptotically efficient.

Proof. (β̂, λ̂) jointly solve

0 =
∂

∂λ
Rn(β, λ) = −

nX
i=1

gi

³
β̂
´

³
1 + λ̂

0
gi

³
β̂
´´ (10.11)

0 =
∂

∂β
Rn(β, λ) = −

nX
i=1

Gi

³
, β̂
´0
λ

1 + λ̂
0
gi

³
β̂
´ . (10.12)

Let Gn =
1
n

Pn
i=1Gi (β0) , gn =

1
n

Pn
i=1 gi (β0) and Ωn =

1
n

Pn
i=1i g (β0) gi (β0)

0 .
Expanding (10.12) around β = β0 and λ = λ0 = 0 yields

0 ' G0n

³
λ̂− λ0

´
. (10.13)

Expanding (10.11) around β = β0 and λ = λ0 = 0 yields

0 ' −gn −Gn

³
β̂ − β0

´
+Ωnλ̂ (10.14)

Premultiplying by G0nΩ
−1
n and using (10.13) yields

0 ' −G0nΩ−1n gn −G0nΩ
−1
n Gn

³
β̂ − β0

´
+G0nΩ

−1
n Ωnλ̂

= −G0nΩ−1n gn −G0nΩ
−1
n Gn

³
β̂ − β0

´
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Solving for β̂ and using the WLLN and CLT yields

√
n
³
β̂ − β0

´
' −

¡
G0nΩ

−1
n Gn

¢−1
G0nΩ

−1
n

√
ngn (10.15)

→d
¡
G0Ω−1G

¢−1
G0Ω−1N (0,Ω)

= N (0, V )

Solving (10.14) for λ̂ and using (10.15) yields

√
nλ̂ ' Ω−1n

³
I −Gn

¡
G0nΩ

−1
n Gn

¢−1
G0nΩ

−1
n

´√
ngn (10.16)

→d Ω−1
³
I −G

¡
G0Ω−1G

¢−1
G0Ω−1

´
N (0,Ω)

= Ω−1N (0, Vλ)

Furthermore, since
G0
³
I − Ω−1G

¡
G0Ω−1G

¢−1
G0
´
= 0

√
n
³
β̂ − β0

´
and
√
nλ̂ are asymptotically uncorrelated and hence independent. ¥

Chamberlain (1987) showed that V is the semiparametric efficiency bound for β in the overi-
dentified moment condition model. This means that no consistent estimator for this class of models
can have a lower asymptotic variance than V . Since the EL estimator achieves this bound, it is
an asymptotically efficient estimator for β.

10.3 Overidentifying Restrictions

In a parametric likelihood context, tests are based on the difference in the log likelihood functions.
The same statistic can be constructed for empirical likelihood. Twice the difference between the
unrestricted empirical likelihood −n log (n) and the maximized empirical likelihood for the model
(10.7) is

LRn =
nX
i=1

2 ln
³
1 + λ̂

0
gi

³
β̂
´´

. (10.17)

Theorem 10.3.1 If Eg(wi, β0) = 0 then LRn →d χ
2
c−k.

The EL overidentification test is similar to the GMM overidentification test. They are asymp-
totically first-order equivalent, and have the same interpretation. The overidentification test is a
very useful by-product of EL estimation, and it is advisable to report the statistic LRn whenever
EL is the estimation method.

Proof. First, by a Taylor expansion, (10.15), and (10.16),

1√
n

nX
i=1

g
³
wi, β̂

´
'
√
n
³
gn +Gn

³
β̂ − β0

´´
'

³
I −Gn

¡
G0nΩ

−1
n Gn

¢−1
G0nΩ

−1
n

´√
ngn

' Ωn
√
nλ̂.

120



Second, since ln(1 + x) ' x− x2/2 for x small,

LRn =
nX
i=1

2 ln
³
1 + λ̂

0
gi

³
β̂
´´

' 2λ̂
0

nX
i=1

gi

³
β̂
´
− λ̂

0
nX
i=1

gi

³
β̂
´
gi

³
β̂
´0
λ̂

' nλ̂
0
Ωnλ̂

→d N (0, Vλ)
0Ω−1N (0, Vλ)

= χ2c−k

where the proof of the final equality is left as an exercise. ¥

10.4 Testing

Let the maintained model be
Egi(β) = 0 (10.18)

where g is c × 1 and β is k × 1. By “maintained” we mean that the overidentfying restrictions
contained in (10.18) are assumed to hold and are not being challenged (at least for the test discussed
in this section). The hypothesis of interest is

h(β) = 0.

where h : Rk → Ra. The restricted EL estimator and likelihood are the values which solve

β̃ = argmax
h(β)=0

Ln(β)

L̃n = Ln(β̃) = max
h(β)=0

Ln(β).

Fundamentally, the restricted EL estimator β̃ is simply an EL estimator with c− k+ a overidenti-
fying restrictions, so there is no fundamental change in the distribution theory for β̃ relative to β̂.
To test the hypothesis h(β) while maintaining (10.18), the simple overidentifying restrictions test
(10.17) is not appropriate. Instead we use the difference in log-likelihoods:

LRn = 2
³
L̂n − L̃n

´
.

This test statistic is a natural analog of the GMM distance statistic.

Theorem 10.4.1 Under (10.18) and H0 : h(β) = 0, LRn →d χ
2
a.

The proof of this result is more challenging and is omitted.

10.5 Numerical Computation

Gauss code which implements the methods discussed below can be found at

http://www.ssc.wisc.edu/~bhansen/progs/elike.prc
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Derivatives
The numerical calculations depend on derivatives of the dual likelihood function (10.4). Define

g∗i (β, λ) =
gi (β)¡

1 + λ0gi (β)
¢

G∗i (β, λ) =
Gi (β)

0 λ

1 + λ0gi (β)

The first derivatives of (10.4) are

Rλ =
∂

∂λ
Rn (β, λ) = −

nX
i=1

g∗i (β, λ)

Rβ =
∂

∂β
Rn (β, λ) = −

nX
i=1

G∗i (β, λ) .

The second derivatives are

Rλλ =
∂2

∂λ∂λ0
Rn (β, λ) =

nX
i=1

g∗i (β, λ) g
∗
i (β, λ)

0

Rλβ =
∂2

∂λ∂β0
Rn (β, λ) =

nX
i=1

µ
g∗i (β, λ)G

∗
i (β, λ)

0 − Gi (β)

1 + λ0gi (β)

¶

Rββ =
∂2

∂β∂β0
Rn (β, λ) =

nX
i=1

⎛⎝G∗i (β, λ)G
∗
i (β, λ)

0 −
∂2

∂β∂β0
¡
gi (β)

0 λ
¢

1 + λ0gi (β)

⎞⎠
Inner Loop
The so-called “inner loop” solves (10.5) for given β. The modified Newton method takes a

quadratic approximation to Rn (β, λ) yielding the iteration rule

λj+1 = λj − δ (Rλλ (β, λj))
−1Rλ (β, λj) . (10.19)

where δ > 0 is a scalar steplength (to be discussed next). The starting value λ1 can be set to the
zero vector. The iteration (10.19) is continued until the gradient Rλ (β, λj) is smaller than some
prespecified tolerance.

Efficient convergence requires a good choice of steplength δ. One method uses the following
quadratic approximation. Set δ0 = 0, δ1 = 1

2 and δ2 = 1. For p = 0, 1, 2, set

λp = λj − δp (Rλλ (β, λj))
−1Rλ (β, λj))

Rp = Rn (β, λp)

A quadratic function can be fit exactly through these three points. The value of δ which minimizes
this quadratic is

δ̂ =
R2 + 3R0 − 4R1
4R2 + 4R0 − 8R1

.

yielding the steplength to be plugged into (10.19)..
A complication is that λ must be constrained so that 0 ≤ pi ≤ 1 which holds if

n
¡
1 + λ0gi (β)

¢
≥ 1 (10.20)
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for all i. If (10.20) fails, the stepsize δ needs to be decreased.
Outer Loop
The outer loop is the minimization (10.6). This can be done by the modified Newton method

described in the previous section. The gradient for (10.6) is

Lβ =
∂

∂β
Ln(β) =

∂

∂β
Rn(β, λ) = Rβ + λ0βRλ = Rβ

since Rλ (β, λ) = 0 at λ = λ(β), where

λβ =
∂

∂β0
λ(β) = −R−1λλRλβ,

the second equality following from the implicit function theorem applied to Rλ (β, λ(β)) = 0.
The Hessian for (10.6) is

Lββ = − ∂

∂β∂β0
Ln(β)

= − ∂

∂β0
£
Rβ (β, λ(β)) + λ0βRλ (β, λ(β))

¤
= −

¡
Rββ (β, λ(β)) +R0λβλβ + λ0βRλβ + λ0βRλλλβ

¢
= R0λβR

−1
λλRλβ −Rββ.

It is not guaranteed that Lββ > 0. If not, the eigenvalues of Lββ should be adjusted so that all are
positive. The Newton iteration rule is

βj+1 = βj − δL−1ββLβ

where δ is a scalar stepsize, and the rule is iterated until convergence.
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Chapter 11

Endogeneity

We say that there is endogeneity in the linear model y = z0iβ + ei if β is the parameter of interest
and E(ziei) 6= 0. This cannot happen if β is defined by linear projection, so requires a structural
interpretation. The coefficient β must have meaning separately from the definition of a conditional
mean or linear projection.

Example: Measurement error in the regressor. Suppose that (yi, x∗i ) are joint random
variables, E(yi | x∗i ) = x∗0i β is linear, β is the parameter of interest, and x

∗
i is not observed. Instead

we observe xi = x∗i + ui where ui is an k × 1 measurement error, independent of yi and x∗i . Then

yi = x∗0i β + ei

= (xi − ui)
0 β + ei

= x0iβ + vi

where
vi = ei − u0iβ.

The problem is that

E (xivi) = E
£
(x∗i + ui)

¡
ei − u0iβ

¢¤
= −E

¡
uiu

0
i

¢
β 6= 0

if β 6= 0 and E (uiu
0
i) 6= 0. It follows that if β̂ is the OLS estimator, then

β̂ →p β
∗ = β −

¡
E
¡
xix

0
i

¢¢−1
E
¡
uiu

0
i

¢
β 6= β.

This is called measurement error bias.
Example: Supply and Demand. The variables qi and pi (quantity and price) are determined

jointly by the demand equation
qi = −β1pi + e1i

and the supply equation
qi = β2pi + e2i.

Assume that ei =
µ

e1i
e2i

¶
is iid, Eei = 0, β1 + β2 = 1 and Eeie

0
i = I2 (the latter for simplicity).

The question is, if we regress qi on pi, what happens?
It is helpful to solve for qi and pi in terms of the errors. In matrix notation,∙

1 β1
1 −β2

¸µ
qi
pi

¶
=

µ
e1i
e2i

¶
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so µ
qi
pi

¶
=

∙
1 β1
1 −β2

¸−1µ
e1i
e2i

¶
=

∙
β2 β1
1 −1

¸µ
e1i
e2i

¶
=

µ
β2e1i + β1e2i
(e1i − e2i)

¶
.

The projection of qi on pi yields

qi = β∗pi + εi

E (piεi) = 0

where

β∗ =
E (piqi)

E
¡
p2i
¢ = β2 − β1

2

Hence if it is estimated by OLS, β̂ →p β∗, which does not equal either β1 or β2. This is called
simultaneous equations bias.

11.1 Instrumental Variables

Let the equation of interest be
yi = z0iβ + ei (11.1)

where zi is k × 1, and assume that E(ziei) 6= 0 so there is endogeneity. We call (11.1) the
structural equation. In matrix notation, this can be written as

Y = Zβ + e. (11.2)

Any solution to the problem of endogeneity requires additional information which we call
instruments.

Definition 11.1.1 The c×1 random vector xi is an instrumental variable for (11.1) if E (xiei) =
0.

In a typical set-up, some regressors in zi will be uncorrelated with ei (for example, at least the
intercept). Thus we make the partition

zi =

µ
z1i
z2i

¶
k1
k2

(11.3)

where E(z1iei) = 0 yet E(z2iei) 6= 0. We call z1i exogenous and z2i endogenous. By the above
definition, z1i is an instrumental variable for (11.1), so should be included in xi. So we have the
partition

xi =

µ
z1i
x2i

¶
k1
c2

(11.4)

where z1i = x1i are the included exogenous variables, and x2i are the excluded exogenous
variables. That is x2i are variables which could be included in the equation for yi (in the sense
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that they are uncorrelated with ei) yet can be excluded, as they would have true zero coefficients
in the equation.

The model is just-identified if c = k (i.e., if c2 = k2) and over-identified if c > k (i.e., if
c2 > k2).

We have noted that any solution to the problem of endogeneity requires instruments. This
does not mean that valid instruments actually exist.

11.2 Reduced Form

The reduced form relationship between the variables or “regressors” zi and the instruments xi is
found by linear projection. Let

Γ = E
¡
xix

0
i

¢−1
E
¡
xiz

0
i

¢
be the c× k matrix of coefficients from a projection of zi on xi, and define

ui = zi − x0iΓ

as the projection error. Then the reduced form linear relationship between zi and xi is

zi = Γ
0xi + ui. (11.5)

In matrix notation, we can write (11.5) as

Z = XΓ+ u (11.6)

where u is n× k.
By construction,

E(xiu
0
i) = 0,

so (11.5) is a projection and can be estimated by OLS:

Z = XΓ̂+ û

Γ̂ =
¡
X 0X

¢−1 ¡
X 0Z

¢
.

Substituting (11.6) into (11.2), we find

Y = (XΓ+ u)β + e

= Xλ+ v, (11.7)

where
λ = Γβ (11.8)

and
v = uβ + e.

Observe that
E (xivi) = E

¡
xiu

0
i

¢
β +E (xiei) = 0.

Thus (11.7) is a projection equation and may be estimated by OLS. This is

Y = Xλ̂+ v̂,

λ̂ =
¡
X 0X

¢−1 ¡
X 0Y

¢
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The equation (11.7) is the reduced form for Y. (11.6) and (11.7) together are the reduced
form equations for the system

Y = Xλ+ v

Z = XΓ+ u.

As we showed above, OLS yields the reduced-form estimates (λ̂, Γ̂)

11.3 Identification

The structural parameter β relates to (λ,Γ) through (11.8). The parameter β is identified,
meaning that it can be recovered from the reduced form, if

rank(Γ) = k. (11.9)

Assume that (11.9) holds. If c = k, then β = Γ−1λ. If c > k, then for any W > 0, β =
(Γ0WΓ)−1 Γ0Wλ.

If (11.9) is not satisfied, then β cannot be recovered from (λ,Γ). Note that a necessary (although
not sufficient) condition for (11.9) is c ≥ k.

Since X and Z have the common variables X1, we can rewrite some of the expressions. Using
(11.3) and (11.4) to make the matrix partitions X = [X1,X2] and Z = [X1, Z2], we can partition
Γ as

Γ =

∙
Γ11 Γ12
Γ21 Γ22

¸
=

∙
I Γ12
0 Γ22

¸
(11.6) can be rewritten as

Z1 = X1

Z2 = X1Γ12 +X2Γ22 + u2. (11.10)

β is identified if rank(Γ) = k, which is true if and only if rank(Γ22) = k2 (by the upper-
diagonal structure of Γ). Thus the key to identification of the model rests on the c2 × k2 matrix
Γ22 in (11.10).

11.4 Estimation

The model can be written as

yi = z0iβ + ei

E (xiei) = 0

or

Eg (wi, β) = 0

g (wi, β) = xi
¡
yi − z0iβ

¢
.

This a moment condition model. Appropriate estimators include GMM and EL. The estimators
and distribution theory developed in those Chapter 8 and 9 directly apply. Recall that the GMM
estimator, for given weight matrix Wn, is

β̂ =
¡
Z 0XWnX

0Z
¢−1

Z 0XWnX
0Y.
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11.5 Special Cases: IV and 2SLS

If the model is just-identified, so that k = c, then the formula for GMM simplifies. We find that

β̂ =
¡
Z 0XWnX

0Z
¢−1

Z 0XWnX
0Y

=
¡
X 0Z

¢−1
W−1

n

¡
Z 0X

¢−1
Z 0XWnX

0Y

=
¡
X 0Z

¢−1
X 0Y

This estimator is often called the instrumental variables estimator (IV) of β, where X is used
as an instrument for Z. Observe that the weight matrix Wn has disappeared. In the just-identified
case, the weight matrix places no role. This is also the MME estimator of β, and the EL estimator.
Another interpretation stems from the fact that since β = Γ−1λ, we can construct the Indirect
Least Squares (ILS) estimator:

β̂ = Γ̂−1λ̂

=
³¡
X 0X

¢−1 ¡
X 0Z

¢´−1 ³¡
X 0X

¢−1 ¡
X 0Y

¢´
=

¡
X 0Z

¢−1 ¡
X 0X

¢ ¡
X 0X

¢−1 ¡
X 0Y

¢
=

¡
X 0Z

¢−1 ¡
X 0Y

¢
.

which again is the IV estimator.

Recall that the optimal weight matrix is an estimate of the inverse of Ω = E
¡
xix

0
ie
2
i

¢
. In the

special case that E
¡
e2i | xi

¢
= σ2 (homoskedasticity), then Ω = E (xix

0
i)σ

2 ∝ E (xix
0
i) suggesting

the weight matrix Wn = (X
0X)−1 . Using this choice, the GMM estimator equals

β̂2SLS =
³
Z 0X

¡
X 0X

¢−1
X 0Z

´−1
Z 0X

¡
X 0X

¢−1
X 0Y

This is called the two-stage-least squares (2SLS) estimator. It was originally proposed by Theil
(1953) and Basmann (1957), and is the classic estimator for linear equations with instruments.
Under the homoskedasticity assumption, the 2SLS estimator is efficient GMM, but otherwise it is
inefficient.

It is useful to observe that writing

PX = X
¡
X 0X

¢−1
X 0,

Ẑ = PXZ = X
¡
X 0X

¢−1
X 0Z,

then

β̂ =
¡
Z 0PXZ

¢−1
Z 0PXY

=
³
Ẑ 0Ẑ

´
Ẑ 0Y.

The source of the “two-stage” name is since it can be computed as follows

• First regress Z on X, vis., Γ̂ = (X 0X)−1 (X 0Z) and Ẑ = XΓ̂ = PXZ.

• Second, regress Y on Ẑ, vis., β̂ =
³
Ẑ 0Ẑ

´−1
Ẑ 0Y.
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It is useful to scrutinize the projection Ẑ. Recall, Z = [Z1, Z2] and X = [Z1,X2]. Then

Ẑ =
h
Ẑ1, Ẑ2

i
= [PXZ1, PXZ2]

= [Z1, PXZ2]

=
h
Z1, Ẑ2

i
,

since Z1 lies in the span of X. Thus in the second stage, we regress Y on Z1 and Ẑ2. So only the
endogenous variables Z2 are replaced by their fitted values:

Ẑ2 = X1Γ̂12 +X2Γ̂22.

11.6 Bekker Asymptotics

Bekker (1994) used an alternative asymptotic framework to analyze the finite-sample bias in the
2SLS estimator. Here we present a simplified version of one of his results. In our notation, the
model is

Y = Zβ + e (11.11)

Z = XΓ+ u (11.12)

ξ = (e, u)

E (ξ | X) = 0

E
¡
ξξ0 | X

¢
= S

As before, X is n× l so there are l instruments.
First, let’s analyze the approximate bias of OLS applied to (11.11). Using (11.12),

E

µ
1

n
Z 0e

¶
= E (ziei) = Γ

0E (xiei) +E (uiei) = S21

and

E

µ
1

n
Z 0Z

¶
= E

¡
ziz

0
i

¢
= Γ0E

¡
xix

0
i

¢
Γ+E

¡
uix

0
i

¢
Γ+ Γ0E

¡
xiu

0
i

¢
+E

¡
uiu

0
i

¢
= Γ0QΓ+ S22

where Q = E (xix
0
i) . Hence by a first-order approximation

E
³
β̂OLS − β

´
≈

µ
E

µ
1

n
Z 0Z

¶¶−1
E

µ
1

n
Z 0e

¶
=

¡
Γ0QΓ+ S22

¢−1
S21 (11.13)

which is zero only when S21 = 0 (when Z is exogenous).
We now derive a similar result for the 2SLS estimator.

β̂2SLS =
¡
Z 0PXZ

¢−1 ¡
Z 0PXY

¢
.
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Let PX = X (X 0X)−1X 0. By the spectral decomposition of an idempotent matrix, P = HΛH 0

where Λ = diag(Il, 0). Let q = H 0ξS−1/2 which satisfies Eqq0 = In and partition q = (q01 q
0
2) where

q1 is l × 1. Hence

E

µ
1

n
ξ0PXξ

¶
=

1

n
S1/20E

¡
q0Λq

¢
S1/2

=
1

n
S1/20E

µ
1

n
q01q1

¶
S1/2

=
l

n
S1/20S1/2

= αS

where

α =
l

n
.

Using (11.12) and this result,

1

n
E
¡
Z 0PXe

¢
=
1

n
E
¡
Γ0X 0e

¢
+
1

n
E
¡
u0PXe

¢
= αS21,

and

1

n
E
¡
Z 0PXZ

¢
= Γ0E

¡
xix

0
i

¢
Γ+ Γ0E (xiui) +E

¡
uix

0
i

¢
Γ+

1

n
E
¡
u0PXu

¢
= Γ0QΓ+ αS22.

Together

E
³
β̂2SLS − β

´
≈

µ
E

µ
1

n
Z 0PXZ

¶¶−1
E

µ
1

n
Z 0PXe

¶
= α

¡
Γ0QΓ+ αS22

¢−1
S21. (11.14)

In general this is non-zero, except when S21 = 0 (when Z is exogenous). It is also close to zero
when α = 0. Bekker (1994) pointed out that it also has the reverse implication — that when
α = l/n is large, the bias in the 2SLS estimator will be large. Indeed as α → 1, the expression
in (11.14) approaches that in (11.13), indicating that the bias in 2SLS approaches that of OLS as
the number of instruments increases.

Bekker (1994) showed further that under the alternative asymptotic approximation that α is
fixed as n → ∞ (so that the number of instruments goes to infinity proportionately with sample
size) then the expression in (11.14) is the probability limit of β̂2SLS − β

11.7 Identification Failure

Recall the reduced form equation

Z2 = X1Γ12 +X2Γ22 + u2.

The parameter β fails to be identified if Γ22 has deficient rank. The consequences of identification
failure for inference are quite severe.
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Take the simplest case where k = l = 1 (so there is no X1). Then the model may be written as

yi = ziβ + ei

zi = xiγ + ui

and Γ22 = γ = E (xizi) /Ex
2
i . We see that β is identified if and only if Γ22 = γ 6= 0, which occurs

when E (zixi) 6= 0. Thus identification hinges on the existence of correlation between the excluded
exogenous variable and the included endogenous variable.

Suppose this condition fails, so E (zixi) = 0. Then by the CLT

1√
n

nX
i=1

xiei →d N1 ∼ N
¡
0, E

¡
x2i e

2
i

¢¢
(11.15)

1√
n

nX
i=1

xizi =
1√
n

nX
i=1

xiui →d N2 ∼ N
¡
0, E

¡
x2iu

2
i

¢¢
(11.16)

therefore

β̂ − β =

1√
n

Pn
i=1 xiei

1√
n

Pn
i=1 xizi

→d
N1
N2
∼ Cauchy,

since the ratio of two normals is Cauchy. This is particularly nasty, as the Cauchy distribution
does not have a finite mean. This result carries over to more general settings, and was examined
by Phillips (1989) and Choi and Phillips (1992).

Suppose that identification does not complete fail, but is weak. This occurs when Γ22 is full
rank, but small. This can be handled in an asymptotic analysis by modeling it as local-to-zero,
viz

Γ22 = n−1/2C,

where C is a full rank matrix. The n−1/2 is picked because it provides just the right balancing to
allow a rich distribution theory.

To see the consequences, once again take the simple case k = l = 1. Here, the instrument xi is
weak for zi if

γ = n−1/2c.

Then (11.15) is unaffected, but (11.16) instead takes the form

1√
n

nX
i=1

xizi =
1√
n

nX
i=1

x2i γ +
1√
n

nX
i=1

xiui

=
1

n

nX
i=1

x2i c+
1√
n

nX
i=1

xiui

→d Qc+N2

therefore

β̂ − β →d
N1

Qc+N2
.

As in the case of complete identification failure, we find that β̂ is inconsistent for β and the
asymptotic distribution of β̂ is non-normal. In addition, standard test statistics have non-standard
distributions, meaning that inferences about parameters of interest can be misleading.
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The distribution theory for this model was developed by Staiger and Stock (1997) and extended
to nonlinear GMM estimation by Stock andWright (2000). Further results on testing were obtained
by Wang and Zivot (1998).

The bottom line is that it is highly desirable to avoid identification failure. Once again, the
equation to focus on is the reduced form

Z2 = X1Γ12 +X2Γ22 + u2

and identification requires rank(Γ22) = k2. If k2 = 1, this requires Γ22 6= 0, which is straightforward
to assess using a hypothesis test on the reduced form. Therefore in the case of k2 = 1 (one RHS
endogenous variable), one constructive recommendation is to explicitly estimate the reduced form
equation for Z2, construct the test of Γ22 = 0, and at a minimum check that the test rejects
H0 : Γ22 = 0.

When k2 > 1, Γ22 6= 0 is not sufficient for identification. It is not even sufficient that each
column of Γ22 is non-zero (each column corresponds to a distinct endogenous variable in X2). So
while a minimal check is to test that each columns of Γ22 is non-zero, this cannot be interpreted
as definitive proof that Γ22 has full rank. Unfortunately, tests of deficient rank are difficult to
implement. In any event, it appears reasonable to explicitly estimate and report the reduced form
equations for X2, and attempt to assess the likelihood that Γ22 has deficient rank.
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11.8 Exercises

1. Consider the single equation model

yi = ziβ + ei,

where yi and zi are both real-valued (1× 1). Let β̂ denote the IV estimator of β using as an
instrument a dummy variable di (takes only the values 0 and 1). Find a simple expression
for the IV estimator in this context.

2. In the linear model

yi = z0iβ + ei

E (ei | zi) = 0

suppose σ2i = E
¡
e2i | zi

¢
is known. Show that the GLS estimator of β can be written as an

IV estimator using some instrument xi. (Find an expression for xi.)

3. Take the linear model
Y = Zβ + e.

Let the OLS estimator for β be β̂ and the OLS residual be ê = Y − Zβ̂.

Let the IV estimator for β using some instrument X be β̃ and the IV residual be ẽ = Y −Zβ̃.
If X is indeed endogeneous, will IV “fit” better than OLS, in the sense that ẽ0ẽ < ê0ê, at
least in large samples?

4. The reduced form between the regressors zi and instruments xi takes the form

zi = x0iΓ+ ui

or
Z = XΓ+ u

where zi is k× 1, xi is l× 1, Z is n× k, X is n× l, u is n× k, and Γ is l× k. The parameter
Γ is defined by the population moment condition

E
¡
xiu

0
i

¢
= 0

Show that the method of moments estimator for Γ is Γ̂ = (X 0X)−1 (X 0Z) .

5. In the structural model

Y = Zβ + e

Z = XΓ+ u

with Γ l × k, l ≥ k, we claim that β is identified (can be recovered from the reduced form)
if rank(Γ) = k. Explain why this is true. That is, show that if rank(Γ) < k then β cannot
be identified.

6. Take the linear model

yi = xiβ + ei

E (ei | xi) = 0.

where xi and β are 1× 1.
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(a) Show that E (xiei) = 0 and E
¡
x2i ei

¢
= 0. Is zi = (xi x2i ) a valid instrumental variable

for estimation of β?

(b) Define the 2SLS estimator of β, using zi as an instrument for xi. How does this differ
from OLS?

(c) Find the efficient GMM estimator of β based on the moment condition

E (zi (yi − xiβ)) = 0.

Does this differ from 2SLS and/or OLS?

7. Suppose that price and quantity are determined by the intersection of the linear demand and
supply curves

Demand : Q = a0 + a1P + a2Y + e1

Supply : Q = b0 + b1P + b2W + e2

where income (Y ) and wage (W ) are determined outside the market. In this model, are the
parameters identified?

8. The data file card.dat is taken from David Card “Using Geographic Variation in College Prox-
imity to Estimate the Return to Schooling” in Aspects of Labour Market Behavior (1995).
There are 2215 observations with 19 variables, listed in card.pdf. We want to estimate a
wage equation

log(Wage) = β0 + β1Educ+ β2Exper + β3Exper
2 + β4South+ β5Black + e

where Educ = Eduation (Years) Exper = Experience (Years), and South and Black are
regional and racial dummy variables.

(a) Estimate the model by OLS. Report estimates and standard errors.

(b) Now treat Education as endogenous, and the remaining variables as exogenous. Es-
timate the model by 2SLS, using the instrument near4, a dummy indicating that the
observation lives near a 4-year college. Report estimates and standard errors.

(c) Re-estimate by 2SLS (report estimates and standard errors) adding three additional
instruments: near2 (a dummy indicating that the observation lives near a 2-year col-
lege), fatheduc (the education, in years, of the father) and motheduc (the education,
in years, of the mother).

(d) Re-estimate the model by efficient GMM. I suggest that you use the 2SLS estimates
as the first-step to get the weight matrix, and then calculate the GMM estimator from
this weight matrix without further iteration. Report the estimates and standard errors.

(e) Calculate and report the J statistic for overidentification.

(f) Discuss your findings..
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Chapter 12

Univariate Time Series

A time series yt is a process observed in sequence over time, t = 1, ..., T . To indicate the dependence
on time, we adopt new notation, and use the subscript t to denote the individual observation, and
T to denote the number of observations.

Because of the sequential nature of time series, we expect that Yt and Yt−1 are not independent,
so classical assumptions are not valid.

We can separate time series into two categories: univariate (yt ∈ R is scalar); and multivariate
(yt ∈ Rm is vector-valued). The primary model for univariate time series is autoregressions (ARs).
The primary model for multivariate time series is vector autoregressions (VARs).

12.1 Stationarity and Ergodicity

Definition 12.1.1 {Yt} is covariance (weakly) stationary if

E(Yt) = µ

is independent of t, and
Cov (Yt, Yt−k) = γ(k)

is independent of t for all k.

γ(k) is called the autocovariance function.

Definition 12.1.2 {Yt} is strictly stationary if the joint distribution of (Yt, ..., Yt−k) is indepen-
dent of t for all k.

Definition 12.1.3 ρ(k) = γ(k)/γ(0) = Corr(Yt, Yt−k) is the autocorrelation function.

Definition 12.1.4 (loose). A stationary time series is ergodic if γ(k)→ 0 as k →∞.

The following two theorems are essential to the analysis of stationary time series. There proofs
are rather difficult, however.

Theorem 12.1.1 If Yt is strictly stationary and ergodic and Xt = f(Yt, Yt−1, ...) is a random
variable, then Xt is strictly stationary and ergodic.
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Theorem 12.1.2 (Ergodic Theorem). If Xt is strictly stationary and ergodic and E |Xt| < ∞,
then as T →∞,

1

T

TX
t=1

Xt →p E(Xt).

This allows us to consistently estimate parameters using time-series moments:
The sample mean:

µ̂ =
1

T

TX
t=1

Yt

The sample autocovariance

γ̂(k) =
1

T

TX
t=1

(Yt − µ̂) (Yt−k − µ̂) .

The sample autocorrelation

ρ̂(k) =
γ̂(k)

γ̂(0)
.

Theorem 12.1.3 If Yt is strictly stationary and ergodic and EY 2t <∞, then as T →∞,

1. µ̂→p E(Yt);

2. γ̂(k)→p γ(k);

3. ρ̂(k)→p ρ(k).

Proof. Part (1) is a direct consequence of the Ergodic theorem. For Part (2), note that

γ̂(k) =
1

T

TX
t=1

(Yt − µ̂) (Yt−k − µ̂)

=
1

T

TX
t=1

YtYt−k −
1

T

TX
t=1

Ytµ̂−
1

T

TX
t=1

Yt−kµ̂+ µ̂2.

By Theorem 12.1.1 above, the sequence YtYt−k is strictly stationary and ergodic, and it has a finite
mean by the assumption that EY 2t <∞. Thus an application of the Ergodic Theorem yields

1

T

TX
t=1

YtYt−k →p E(YtYt−k).

Thus
γ̂(k)→p E(YtYt−k)− µ2 − µ2 + µ2 = E(YtYt−k)− µ2 = γ(k).

Part (3) follows by the continuous mapping theorem: ρ̂(k) = γ̂(k)/γ̂(0)→p γ(k)/γ(0) = ρ(k). ¥
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12.2 Autoregressions

In time-series, the series {..., Y1, Y2, ..., YT , ...} are jointly random. We consider the conditional
expectation

E (Yt | It−1)
where It−1 = {Yt−1, Yt−2, ...} is the past history of the series.

An autoregressive (AR) model specifies that only a finite number of past lags matter:

E (Yt | It−1) = E (Yt | Yt−1, ..., Yt−k) .

A linear AR model (the most common type used in practice) specifies linearity:

E (Yt | It−1) = α+ ρ1Yt−1 + ρ2Yt−1 + · · ·+ ρkYt−k.

Letting
et = Yt −E (Yt | It−1) ,

then we have the autoregressive model

Yt = α+ ρ1Yt−1 + ρ2Yt−1 + · · ·+ ρkYt−k + et

E (et | It−1) = 0.

The last property defines a special time-series process.

Definition 12.2.1 et is a martingale difference sequence (MDS) if E (et | It−1) = 0.

Regression errors are naturally a MDS. Some time-series processes may be a MDS as a conse-
quence of optimizing behavior. For example, some versions of the life-cycle hypothesis imply that
either changes in consumption, or consumption growth rates, should be a MDS. Most asset pricing
models imply that asset returns should be the sum of a constant plus a MDS.

The MDS property for the regression error plays the same role in a time-series regression as
does the conditional mean-zero property for the regression error in a cross-section regression. In
fact, it is even more important in the time-series context, as it is difficult to derive distribution
theories without this property.

A useful property of a MDS is that et is uncorrelated with any function of the lagged information
It−1. Thus for k > 0, E(Yt−ket) = 0.

12.3 Stationarity of AR(1) Process

A mean-zero AR(1) is
Yt = ρYt−1 + et.

Assume that et is iid, E(et) = 0 and Ee2t = σ2 <∞.
By back-substitution, we find

Yt = et + ρet−1 + ρ2et−2 + ...

=
∞X
k=0

ρket−k.

Loosely speaking, this series converges if the sequence ρket−k gets small as k → ∞. This occurs
when |ρ| < 1.
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Theorem 12.3.1 If |ρ| < 1 then Yt is strictly stationary and ergodic.

We can compute the moments of Yt using the infinite sum:

EYt =
∞X
k=0

ρkE (et−k) = 0

V ar(Yt) =
∞X
k=0

ρ2kV ar (et−k) =
σ2

1− ρ2
.

If the equation for Yt has an intercept, the above results are unchanged, except that the mean
of Yt can be computed from the relationship

EYt = α+ ρEYt−1,

and solving for EYt = EYt−1 we find EYt = α/(1− ρ).

12.4 Lag Operator

An algebraic construct which is useful for the analysis of autoregressive models is the lag operator.

Definition 12.4.1 The lag operator L satisfies LYt = Yt−1.

Defining L2 = LL, we see that L2Yt = LYt−1 = Yt−2. In general, LkYt = Yt−k.
The AR(1) model can be written in the format

Yt − ρYt−1 + et

or
(1− ρL)Yt−1 = et.

The operator ρ(L) = (1 − ρL) is a polynomial in the operator L. We say that the root of the
polynomial is 1/ρ, since ρ(z) = 0 when z = 1/ρ. We call ρ(L) the autoregressive polynomial of Yt.

From Theorem 12.3.1, an AR(1) is stationary iff |ρ| < 1. Note that an equivalent way to say
this is that an AR(1) is stationary iff the root of the autoregressive polynomial is larger than one
(in absolute value).

12.5 Stationarity of AR(k)

The AR(k) model is
Yt = ρ1Yt−1 + ρ2Yt−1 + · · ·+ ρkYt−k + et.

Using the lag operator,
Yt − ρ1LYt − ρ2L

2Yt − · · ·− ρkL
kYt = et,

or
ρ(L)Yt = et

where
ρ(L) = 1− ρ1L− ρ2L

2 − · · ·− ρkL
k.

We call ρ(L) the autoregressive polynomial of Yt.
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The Fundamental Theorem of Algebra says that any polynomial can be factored as

ρ(z) =
¡
1− λ−11 z

¢ ¡
1− λ−12 z

¢
· · ·
¡
1− λ−1k z

¢
where the λ1, ..., λk are the complex roots of ρ(z), which satisfy ρ(λj) = 0.

We know that an AR(1) is stationary iff the absolute value of the root of its autoregressive
polynomial is larger than one. For an AR(k), the requirement is that all roots are larger than one.
Let |λ| denote the modulus of a complex number λ.

Theorem 12.5.1 The AR(k) is strictly stationary and ergodic if and only if |λj | > 1 for all j.

One way of stating this is that “All roots lie outside the unit circle.”
If one of the roots equals 1, we say that ρ(L), and hence Yt, “has a unit root”. This is a special

case of non-stationarity, and is of great interest in applied time series.

12.6 Estimation

Let

xt =
¡
1 Yt−1 Yt−2 · · · Yt−k

¢0
β =

¡
α ρ1 ρ2 · · · ρk

¢0
.

Then the model can be written as
yt = x0tβ + et.

The OLS estimator is
β̂ =

¡
X 0X

¢−1
X 0Y.

To study β̂, it is helpful to define the process ut = xtet. Note that ut is a MDS, since

E (ut | It−1) = E (xtet | It−1) = xtE (et | It−1) = 0.

By Theorem 12.1.1, it is also strictly stationary and ergodic. Thus

1

T

TX
t=1

xtet =
1

T

TX
t=1

ut →p E (ut) = 0. (12.1)

Theorem 12.6.1 If the AR(k) process Yt is strictly stationary and ergodic and EY 2t < ∞, then
β̂ →p β as T →∞.

Proof. The vector xt is strictly stationary and ergodic, and by Theorem 12.1.1, so is xtx0t. Thus
by the Ergodic Theorem,

1

T

TX
t=1

xtx
0
t →p E

¡
xtx

0
t

¢
= Q.

Combined with (12.1) and the continuous mapping theorem, we see that

β̂ = β +

Ã
1

T

TX
t=1

xtx
0
t

!−1Ã
1

T

TX
t=1

xtet

!
→p Q

−10 = 0.

¥
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12.7 Asymptotic Distribution

Theorem 12.7.1 MDS CLT. If ut is a strictly stationary and ergodic MDS and E(utu0t) = Ω <∞,
then as T →∞,

1√
T

TX
t=1

ut →d N (0,Ω) .

Since xtet is a MDS, we can apply Theorem 12.7.1 to see that

1√
T

TX
t=1

xtet →d N (0,Ω) ,

where
Ω = E(xtx

0
te
2
t ).

Theorem 12.7.2 If the AR(k) process Yt is strictly stationary and ergodic and EY 4t < ∞, then
as T →∞, √

T
³
β̂ − β

´
→d N

¡
0, Q−1ΩQ−1

¢
.

This is identical in form to the asymptotic distribution of OLS in cross-section regression. The
implication is that asymptotic inference is the same. In particular, the asymptotic covariance
matrix is estimated just as in the cross-section case.

12.8 Bootstrap for Autoregressions

In the non-parametric bootstrap, we constructed the bootstrap sample by randomly resampling
from the data values {yt, xt}. This creates an iid bootstrap sample. Clearly, this cannot work in a
time-series application, as this imposes inappropriate independence.

Briefly, there are two popular methods to implement bootstrap resampling for time-series data.

Method 1: Model-Based (Parametric) Bootstrap.

1. Estimate β̂ and residuals êt.

2. Fix an initial condition (Y−k+1, Y−k+2, ..., Y0).

3. Simulate iid draws e∗i from the empirical distribution of the residuals {ê1, ..., êT}.

4. Create the bootstrap series Y ∗t by the recursive formula

Y ∗t = α̂+ ρ̂1Y
∗
t−1 + ρ̂2Y

∗
t−2 + · · ·+ ρ̂kY

∗
t−k + e∗t .

This construction imposes homoskedasticity on the errors e∗i , which may be different than the
properties of the actual ei. It also presumes that the AR(k) structure is the truth.

Method 2: Block Resampling

1. Divide the sample into T/m blocks of length m.
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2. Resample complete blocks. For each simulated sample, draw T/m blocks.

3. Paste the blocks together to create the bootstrap time-series Y ∗t .

4. This allows for arbitrary stationary serial correlation, heteroskedasticity, and for model-
misspecification.

5. The results may be sensitive to the block length, and the way that the data are partitioned
into blocks.

6. May not work well in small samples.

12.9 Trend Stationarity

Yt = µ0 + µ1t+ St (12.2)

St = ρ1St−1 + ρ2St−2 + · · ·+ ρkSt−l + et, (12.3)

or
Yt = α0 + α1t+ ρ1Yt−1 + ρ2Yt−1 + · · ·+ ρkYt−k + et. (12.4)

There are two essentially equivalent ways to estimate the autoregressive parameters (ρ1, ..., ρk).

• You can estimate (12.4) by OLS.

• You can estimate (12.2)-(12.3) sequentially by OLS. That is, first estimate (12.2), get the
residual Ŝt, and then perform regression (12.3) replacing St with Ŝt. This procedure is some-
times called Detrending.

The reason why these two procedures are (essentially) the same is the Frisch-Waugh-Lovell
theorem.

Seasonal Effects

There are three popular methods to deal with seasonal data.

• Include dummy variables for each season. This presumes that “seasonality” does not change
over the sample.

• Use “seasonally adjusted” data. The seasonal factor is typically estimated by a two-sided
weighted average of the data for that season in neighboring years. Thus the seasonally
adjusted data is a “filtered” series. This is a flexible approach which can extract a wide
range of seasonal factors. The seasonal adjustment, however, also alters the time-series
correlations of the data.

• First apply a seasonal differencing operator. If s is the number of seasons (typically s = 4
or s = 12),

∆sYt = Yt − Yt−s,

or the season-to-season change. The series∆sYt is clearly free of seasonality. But the long-run
trend is also eliminated, and perhaps this was of relevance.
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12.10 Testing for Omitted Serial Correlation

For simplicity, let the null hypothesis be an AR(1):

Yt = α+ ρYt−1 + ut. (12.5)

We are interested in the question if the error ut is serially correlated. We model this as an AR(1):

ut = θut−1 + et (12.6)

with et a MDS. The hypothesis of no omitted serial correlation is

H0 : θ = 0

H1 : θ 6= 0.

We want to test H0 against H1.
To combine (12.5) and (12.6), we take (12.5) and lag the equation once:

Yt−1 = α+ ρYt−2 + ut−1.

We then multiply this by θ and subtract from (12.5), to find

Yt − θYt−1 = α− θα+ ρYt−1 − θρYt−1 + ut − θut−1,

or
Yt = α(1− θ) + (ρ+ θ)Yt−1 − θρYt−2 + et = AR(2).

Thus under H0, Yt is an AR(1), and under H1 it is an AR(2). H0 may be expressed as the
restriction that the coefficient on Yt−2 is zero.

An appropriate test of H0 against H1 is therefore a Wald test that the coefficient on Yt−2 is
zero. (A simple exclusion test).

In general, if the null hypothesis is that Yt is an AR(k), and the alternative is that the error
is an AR(m), this is the same as saying that under the alternative Yt is an AR(k+m), and this
is equivalent to the restriction that the coefficients on Yt−k−1, ..., Yt−k−m are jointly zero. An
appropriate test is the Wald test of this restriction.

12.11 Model Selection

What is the appropriate choice of k in practice? This is a problem of model selection.
One approach to model selection is to choose k based on a Wald tests.
Another is to minimize the AIC or BIC information criterion, e.g.

AIC(k) = log σ̂2(k) +
2k

T
,

where σ̂2(k) is the estimated residual variance from an AR(k)
One ambiguity in defining the AIC criterion is that the sample available for estimation changes

as k changes. (If you increase k, you need more initial conditions.) This can induce strange
behavior in the AIC. The best remedy is to fix a upper value k, and then reserve the first k as
initial conditions, and then estimate the models AR(1), AR(2), ..., AR(k) on this (unified) sample.
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12.12 Autoregressive Unit Roots

The AR(k) model is

ρ(L)Yt = µ+ et

ρ(L) = 1− ρ1L− · · ·− ρkL
k.

As we discussed before, Yt has a unit root when ρ(1) = 0, or

ρ1 + ρ2 + · · ·+ ρk = 1.

In this case, Yt is non-stationary. The ergodic theorem and MDS CLT do not apply, and test
statistics are asymptotically non-normal.

A helpful way to write the equation is the so-called Dickey-Fuller reparameterization:

∆Yt = µ+ α0Yt−1 + α1∆Yt−1 + · · ·+ αk−1∆Yt−(k−1) + et. (12.7)

These models are equivalent linear transformations of one another. The DF parameterization
is convenient because the parameter α0 summarizes the information about the unit root, since
ρ(1) = −α0. To see this, observe that the lag polynomial for the Yt computed from (12.7) is

(1− L)− α0L− α1(L− L2)− · · ·− αk−1(L
k−1 − Lk)

But this must equal ρ(L), as the models are equivalent. Thus

ρ(1) = (1− 1)− α0 − (1− 1)− · · ·− (1− 1) = −α0.

Hence, the hypothesis of a unit root in Yt can be stated as

H0 : α0 = 0.

Note that the model is stationary if α0 < 0. So the natural alternative is

H1 : α0 < 0.

Under H0, the model for Yt is

∆Yt = µ+ α1∆Yt−1 + · · ·+ αk−1∆Yt−(k−1) + et,

which is an AR(k-1) in the first-difference ∆Yt. Thus if Yt has a (single) unit root, then ∆Yt is a
stationary AR process. Because of this property, we say that if Yt is non-stationary but ∆dYt is
stationary, then Yt is “integrated of order d”, or I(d). Thus a time series with unit root is I(1).

Since α0 is the parameter of a linear regression, the natural test statistic is the t-statistic for
H0 from OLS estimation of (12.7). Indeed, this is the most popular unit root test, and is called
the Augmented Dickey-Fuller (ADF) test for a unit root.

It would seem natural to assess the significance of the ADF statistic using the normal table.
However, under H0, Yt is non-stationary, so conventional normal asymptotics are invalid. An
alternative asymptotic framework has been developed to deal with non-stationary data. We do
not have the time to develop this theory in detail, but simply assert the main results.
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Theorem 12.12.1 (Dickey-Fuller Theorem). Assume α0 = 0. As T →∞,

T α̂0 →d (1− α1 − α2 − · · ·− αk−1)DFα

ADF =
α̂0

s(α̂0)
→ DFt.

The limit distributions DFα and DFt are non-normal. They are skewed to the left, and have
negative means.

The first result states that α̂0 converges to its true value (of zero) at rate T, rather than the
conventional rate of T 1/2. This is called a “super-consistent” rate of convergence.

The second result states that the t-statistic for α̂0 converges to a limit distribution which is
non-normal, but does not depend on the parameters α. This distribution has been extensively
tabulated, and may be used for testing the hypothesis H0. Note: The standard error s(α̂0) is the
conventional (“homoskedastic”) standard error. But the theorem does not require an assumption
of homoskedasticity. Thus the Dickey-Fuller test is robust to heteroskedasticity.

Since the alternative hypothesis is one-sided, the ADF test rejects H0 in favor of H1 when
ADF < c, where c is the critical value from the ADF table. If the test rejects H0, this means that
the evidence points to Yt being stationary. If the test does not reject H0, a common conclusion is
that the data suggests that Yt is non-stationary. This is not really a correct conclusion, however.
All we can say is that there is insufficient evidence to conclude whether the data are stationary or
not.

We have described the test for the setting of with an intercept. Another popular setting includes
as well a linear time trend. This model is

∆Yt = µ1 + µ2t+ α0Yt−1 + α1∆Yt−1 + · · ·+ αk−1∆Yt−(k−1) + et. (12.8)

This is natural when the alternative hypothesis is that the series is stationary about a linear time
trend. If the series has a linear trend (e.g. GDP, Stock Prices), then the series itself is non-
stationary, but it may be stationary around the linear time trend. In this context, it is a silly
waste of time to fit an AR model to the level of the series without a time trend, as the AR model
cannot conceivably describe this data. The natural solution is to include a time trend in the fitted
OLS equation. When conducting the ADF test, this means that it is computed as the t-ratio for
α0 from OLS estimation of (12.8).

If a time trend is included, the test procedure is the same, but different critical values are
required. The ADF test has a different distribution when the time trend has been included, and
a different table should be consulted.

Most texts include as well the critical values for the extreme polar case where the intercept has
been omitted from the model. These are included for completeness (from a pedagogical perspective)
but have no relevance for empirical practice where intercepts are always included.
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Chapter 13

Multivariate Time Series

A multivariate time series Yt is a vector process m × 1. Let It−1 = (Yt−1, Yt−2, ...) be all lagged
information at time t. The typical goal is to find the conditional expectation E (Yt | It−1) . Note
that since Yt is a vector, this conditional expectation is also a vector.

13.1 Vector Autoregressions (VARs)

A VAR model specifies that the conditional mean is a function of only a finite number of lags:

E (Yt | It−1) = E (Yt | Yt−1, ..., Yt−k) .

A linear VAR specifies that this conditional mean is linear in the arguments:

E (Yt | Yt−1, ..., Yt−k) = A0 +A1Yt−1 +A2Yt−2 + · · ·AkYt−k.

Observe that A0 is m× 1,and each of A1 through Ak are m×m matrices.
Defining the m× 1 regression error

et = Yt −E (Yt | It−1) ,

we have the VAR model

Yt = A0 +A1Yt−1 +A2Yt−2 + · · ·AkYt−k + et

E (et | It−1) = 0.

Alternatively, defining the mk + 1 vector

xt =

⎛⎜⎜⎜⎜⎜⎝
1

Yt−1
Yt−2
...

Yt−k

⎞⎟⎟⎟⎟⎟⎠
and the m× (mk + 1) matrix

A =
¡
A0 A1 A2 · · · Ak

¢
,
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then
Yt = Axt + et.

The VAR model is a system of m equations. One way to write this is to let a0j be the jth row
of A. Then the VAR system can be written as the equations

Yjt = a0jxt + ejt.

Unrestricted VARs were introduced to econometrics by Sims (1980).

13.2 Estimation

Consider the moment conditions
E (xtejt) = 0,

j = 1, ...,m. These are implied by the VAR model, either as a regression, or as a linear projection.
The GMM estimator corresponding to these moment conditions is equation-by-equation OLS

âj = (X
0X)−1X 0Yj .

An alternative way to compute this is as follows. Note that

â0j = Y 0jX(X
0X)−1.

And if we stack these to create the estimate Â, we find

Â =

⎛⎜⎜⎜⎝
Y 01
Y 02
...

Y 0m+1

⎞⎟⎟⎟⎠X(X 0X)−1

= Y 0X(X 0X)−1,

where
Y =

¡
Y1 Y2 · · · Ym

¢
the T ×m matrix of the stacked y0t.

This (system) estimator is known as the SUR (Seemingly Unrelated Regressions) estimator,
and was originally derived by Zellner (1962)

13.3 Restricted VARs

The unrestricted VAR is a system ofm equations, each with the same set of regressors. A restricted
VAR imposes restrictions on the system. For example, some regressors may be excluded from some
of the equations. Restrictions may be imposed on individual equations, or across equations. The
GMM framework gives a convenient method to impose such restrictions on estimation.
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13.4 Single Equation from a VAR

Often, we are only interested in a single equation out of a VAR system. This takes the form

Yjt = a0jxt + et,

and xt consists of lagged values of Yjt and the other Y 0lts. In this case, it is convenient to re-define
the variables. Let yt = Yjt, and Zt be the other variables. Let et = ejt and β = aj . Then the single
equation takes the form

yt = x0tβ + et, (13.1)

and
xt =

h¡
1 Yt−1 · · · Yt−k Z 0t−1 · · · Z 0t−k

¢0i
.

This is just a conventional regression, with time series data.

13.5 Testing for Omitted Serial Correlation

Consider the problem of testing for omitted serial correlation in equation (13.1). Suppose that et
is an AR(1). Then

yt = x0tβ + et

et = θet−1 + ut (13.2)

E (ut | It−1) = 0.

Then the null and alternative are

H0 : θ = 0 H1 : θ 6= 0.

Take the equation yt = x0tβ + et, and subtract off the equation once lagged multiplied by θ, to get

yt − θyt−1 =
¡
x0tβ + et

¢
− θ

¡
x0t−1β + et−1

¢
= x0tβ − θxt−1β + et − θet−1,

or
yt = θyt−1 + x0tβ + x0t−1γ + ut, (13.3)

which is a valid regression model.
So testing H0 versus H1 is equivalent to testing for the significance of adding (yt−1, xt−1) to

the regression. This can be done by a Wald test. We see that an appropriate, general, and simple
way to test for omitted serial correlation is to test the significance of extra lagged values of the
dependent variable and regressors.

You may have heard of the Durbin-Watson test for omitted serial correlation, which once was
very popular, and is still routinely reported by conventional regression packages. The DW test is
appropriate only when regression yt = x0tβ+ et is not dynamic (has no lagged values on the RHS),
and et is iid N(0, 1). Otherwise it is invalid.

Another interesting fact is that (13.2) is a special case of (13.3), under the restriction γ = −βθ.
This restriction, which is called a common factor restriction, may be tested if desired. If valid,
the model (13.2) may be estimated by iterated GLS. (A simple version of this estimator is called
Cochrane-Orcutt.) Since the common factor restriction appears arbitrary, and is typically rejected
empirically, direct estimation of (13.2) is uncommon in recent applications.
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13.6 Selection of Lag Length in an VAR

If you want a data-dependent rule to pick the lag length k in a VAR, you may either use a testing-
based approach (using, for example, the Wald statistic), or an information criterion approach. The
formula for the AIC and BIC are

AIC(k) = log det
³
Ω̂(k)

´
+ 2

p

T

BIC(k) = log det
³
Ω̂(k)

´
+

p log(T )

T

Ω̂(k) =
1

T

TX
t=1

êt(k)êt(k)
0

p = m(km+ 1)

where p is the number of parameters in the model, and êt(k) is the OLS residual vector from the
model with k lags. The log determinant is the criterion from the multivariate normal likelihood.

13.7 Granger Causality

Partition the data vector into (Yt, Zt). Define the two information sets

I1t = (Yt, Yt−1, Yt−2, ...)

I2t = (Yt, Zt, Yt−1, Zt−1, Yt−2, Zt−2, , ...)

The information set I1t is generated only by the history of Yt, and the information set I2t is
generated by both Yt and Zt. The latter has more information.

We say that Zt does not Granger-cause Yt if

E (Yt | I1,t−1) = E (Yt | I2,t−1) .

That is, conditional on information in lagged Yt, lagged Zt does not help to forecast Yt. If this
condition does not hold, then we say that Zt Granger-causes Yt.

The reason why we call this “Granger Causality” rather than “causality” is because this is not
a physical or structure definition of causality. If Zt is some sort of forecast of the future, such as a
futures price, then Zt may help to forecast Yt even though it does not “cause” Yt. This definition
of causality was developed by Granger (1969) and Sims (1972).

In a linear VAR, the equation for Yt is

Yt = α+ ρ1Yt−1 + · · ·+ ρkYt−k + Z 0t−1γ1 + · · ·+ Z 0t−kγk + et.

In this equation, Zt does not Granger-cause Yt if and only if

H0 : γ1 = γ2 = · · · = γk = 0.

This may be tested using an exclusion (Wald) test.
This idea can be applied to blocks of variables. That is, Yt and/or Zt can be vectors. The

hypothesis can be tested by using the appropriate multivariate Wald test.
If it is found that Zt does not Granger-cause Yt, then we deduce that our time-series model of

E (Yt | It−1) does not require the use of Zt. Note, however, that Zt may still be useful to explain
other features of Yt, such as the conditional variance.
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13.8 Cointegration

The idea of cointegration is due to Granger (1981), and was articulated in detail by Engle and
Granger (1987).

Definition 13.8.1 The m × 1 series Yt is cointegrated if Yt is I(1) yet there exists β, m × r, of
rank r, such that zt = β0Yt is I(0). The r vectors in β are called the cointegrating vectors.

If the series Yt is not cointegrated, then r = 0. If r = m, then Yt is I(0). For 0 < r < m, Yt is
I(1) and cointegrated.

In some cases, it may be believed that β is known a priori. Often, β = (1 −1)0. For example,
if Yt is a pair of interest rates, then β = (1 − 1)0 specifies that the spread (the difference in
returns) is stationary. If Y = (log(Consumption) log(Income))0, then β = (1 − 1)0 specifies
that log(Consumption/Income) is stationary.

In other cases, β may not be known.
If Yt is cointegrated with a single cointegrating vector (r = 1), then it turns out that β can

be consistently estimated by an OLS regression of one component of Yt on the others. Thus Yt =
(Y1t, Y2t) and β = (β1 β2) and normalize β1 = 1. Then β̂2 = (Y

0
2Y2)

−1Y2Y1 →p β2. Furthermore
this estimation is super-consistent: T (β̂2 − β2) →d Limit, as first shown by Stock (1987). This
is not, in general, a good method to estimate β, but it is useful in the construction of alternative
estimators and tests.

We are often interested in testing the hypothesis of no cointegration:

H0 : r = 0

H1 : r > 0.

Suppose that β is known, so zt = β0Yt is known. Then under H0 zt is I(1), yet under H1 zt is
I(0). Thus H0 can be tested using a univariate ADF test on zt.

When β is unknown, Engle and Granger (1987) suggested using an ADF test on the estimated
residual ẑt = β̂

0
Yt, from OLS of Y1t on Y2t. Their justification was Stock’s result that β̂ is super-

consistent under H1. Under H0, however, β̂ is not consistent, so the ADF critical values are not
appropriate. The asymptotic distribution was worked out by Phillips and Ouliaris (1990).

When the data have time trends, it may be necessary to include a time trend in the estimated
cointegrating regression. Whether or not the time trend is included, the asymptotic distribution
of the test is affected by the presence of the time trend. The asymptotic distribution was worked
out in B. Hansen (1992).

13.9 Cointegrated VARs

We can write a VAR as

A(L)Yt = et

A(L) = I −A1L−A2L
2 − · · ·−AkL

k

or alternatively as
∆Yt = ΠYt−1 +D(L)∆Yt−1 + et

where

Π = −A(1)
= −I +A1 +A2 + · · ·+Ak.
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Theorem 13.9.1 (Granger Representation Theorem). Yt is cointegrated with m× r β if and only
if rank(Π) = r and Π = αβ0 where α is m× r, rank(α) = r.

Thus cointegration imposes a restriction upon the parameters of a VAR. The restricted model
can be written as

∆Yt = αβ0Yt−1 +D(L)∆Yt−1 + et

∆Yt = αzt−1 +D(L)∆Yt−1 + et.

If β is known, this can be estimated by OLS of ∆Yt on zt−1 and the lags of ∆Yt.
If β is unknown, then estimation is done by “reduced rank regression”, which is least-squares

subject to the stated restriction. Equivalently, this is the MLE of the restricted parameters under
the assumption that et is iid N(0,Ω).

One difficulty is that β is not identified without normalization. When r = 1, we typically just
normalize one element to equal unity. When r > 1, this does not work, and different authors have
adopted different identification schemes.

In the context of a cointegrated VAR estimated by reduced rank regression, it is simple to
test for cointegration by testing the rank of Π. These tests are constructed as likelihood ratio
(LR) tests. As they were discovered by Johansen (1988, 1991, 1995), they are typically called
the “Johansen Max and Trace” tests. Their asymptotic distributions are non-standard, and are
similar to the Dickey-Fuller distributions.
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Chapter 14

Limited Dependent Variables

A “limited dependent variable” Y is one which takes a “limited” set of values. The most common
cases are

• Binary: Y = {0, 1}

• Multinomial: Y = {0, 1, 2, ..., k}

• Integer: Y = {0, 1, 2, ...}

• Censored: Y = {x : x ≥ 0}

The traditional approach to the estimation of limited dependent variable (LDV) models is
parametric maximum likelihood. A parametric model is constructed, allowing the construction of
the likelihood function. A more modern approach is semi-parametric, eliminating the dependence
on a parametric distributional assumption. We will discuss only the first (parametric) approach,
due to time constraints. They still constitute the majority of LDV applications. If, however, you
were to write a thesis involving LDV estimation, you would be advised to consider employing a
semi-parametric estimation approach.

For the parametric approach, estimation is by MLE. A major practical issue is construction of
the likelihood function.

14.1 Binary Choice

The dependent variable Yi = {0, 1}. This represents a Yes/No outcome. Given some regressors xi,
the goal is to describe P (Yi = 1 | xi) , as this is the full conditional distribution.

The linear probability model specifies that

P (Yi = 1 | xi) = x0iβ.

As P (Yi = 1 | xi) = E (Yi | xi) , this yields the regression: Yi = x0iβ+ei which can be estimated by
OLS. However, the linear probability model does not impose the restriction that 0 ≤ P (Yi | xi) ≤ 1.
Even so estimation of a linear probability model is a useful starting point for subsequent analysis.

The standard alternative is to use a function of the form

P (Yi = 1 | xi) = F
¡
x0iβ
¢

where F (·) is a known CDF, typically assumed to be symmetric about zero, so that F (z) =
1− F (−z). The two standard choices for F are
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• Logistic: F (u) = (1 + e−u)−1 .

• Normal: F (u) = Φ(u).

If F is logistic, we call this the logit model, and if F is normal, we call this the probit model.
This model is identical to the latent variable model

Y ∗i = x0iβ + ei

ei ∼ F (·)

Yi =

½
1 if Y ∗i > 0
0 otherwise

.

For then

P (Yi = 1 | xi) = P (Y ∗i > 0 | xi)
= P

¡
x0iβ + ei > 0 | xi

¢
= P

¡
ei > −x0iβ | xi

¢
= 1− F

¡
−x0iβ

¢
= F

¡
x0iβ
¢
.

Estimation is by maximum likelihood. To construct the likelihood, we need the conditional
distribution of an individual observation. Recall that if Y is Bernoulli, such that P (Y = 1) = p
and P (Y = 0) = 1− p, then we can write the density of Y as

f(y) = py(1− p)1−y, y = 0, 1.

In the Binary choice model, Yi is conditionally Bernoulli with P (Yi = 1 | xi) = pi = F (x0iβ) . Thus
the conditional density is

f(yi | xi) = pyii (1− pi)
1−yi

= F
¡
x0iβ
¢yi (1− F

¡
x0iβ
¢
)1−yi .

Hence the log-likelihood function is

ln(β) =
nX
i=1

log f(yi | xi)

=
nX
i=1

log
¡
F
¡
x0iβ
¢yi (1− F

¡
x0iβ
¢
)1−yi

¢
=

nX
i=1

£
yi logF

¡
x0iβ
¢
+ (1− yi) log(1− F

¡
x0iβ
¢
)
¤

=
X
yi=1

logF
¡
x0iβ
¢
+
X
yi=0

log(1− F
¡
x0iβ
¢
).

The MLE β̂ is the value of β which maximizes ln(β). Standard errors and test statistics are
computed by asymptotic approximations. Details of such calculations are left to more advanced
courses.
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14.2 Count Data

If Y = {0, 1, 2, ...}, a typical approach is to employ Poisson regression. This model specifies that

P (Yi = k | xi) =
exp (−λi)λki

k!
, k = 0, 1, 2, ...

λi = exp(x0iβ).

The conditional density is the Poisson with parameter λi. The functional form for λi has been
picked to ensure that λi > 0.

The log-likelihood function is

ln(β) =
nX
i=1

log f(yi | xi) =
nX
i=1

¡
− exp(x0iβ) + yix

0
iβ − log(yi!)

¢
.

The MLE is the value β̂ which maximizes ln(β).
Since

E (Yi | xi) = λi = exp(x
0
iβ)

is the conditional mean, this motivates the label Poisson “regression.”
Also observe that the model implies that

V ar (Yi | xi) = λi = exp(x
0
iβ),

so the model imposes the restriction that the conditional mean and variance of Yi are the same.
This may be considered restrictive. A generalization is the negative binomial.

14.3 Censored Data

The idea of “censoring” is that some data above or below a threshold are mis-reported at the
threshold. Thus the model is that there is some latent process y∗i with unbounded support, but
we observe only

yi =

½
y∗i if y∗i ≥ 0
0 if y∗i < 0

. (14.1)

(This is written for the case of the threshold being zero, any known value can substitute.) The
observed data yi therefore come from a mixed continuous/discrete distribution.

Censored models are typically applied when the data set has a meaningful proportion (say 5%
or higher) of data at the boundary of the sample support. The censoring process may be explicit
in data collection, or it may be a by-product of economic constraints.

An example of a data collection censoring is top-coding of income. In surveys, incomes above
a threshold are typically reported at the threshold.

The first censored regression model was developed by Tobin (1958) to explain consumption of
durable goods. Tobin observed that for many households, the consumption level (purchases) in a
particular period was zero. He proposed the latent variable model

y∗i = x0iβ + ei

ei ∼ iid N(0, σ2)

with the observed variable yi generated by the censoring equation (14.1). This model (now called
the Tobit) specifies that the latent (or ideal) value of consumption may be negative (the household
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would prefer to sell than buy). All that is reported is that the household purchased zero units of
the good.

The naive approach to estimate β is to regress yi on xi. This does not work because regression
estimates E (Yi | xi) , not E (Y ∗i | xi) = x0iβ, and the latter is of interest. Thus OLS will be biased
for the parameter of interest β.

[Note: it is still possible to estimate E (Yi | xi) by LS techniques. The Tobit framework pos-
tulates that this is not inherently interesting, that the parameter of β is defined by an alternative
statistical structure.]

Consistent estimation will be achieved by the MLE. To construct the likelihood, observe that
the probability of being censored is

P (yi = 0 | xi) = P (y∗i < 0 | xi)
= P

¡
x0iβ + ei < 0 | xi

¢
= P

µ
ei
σ
< −x

0
iβ

σ
| xi
¶

= Φ

µ
−x

0
iβ

σ

¶
.

The conditional distribution function above zero is Gaussian:

P (yi = y | xi) =
Z y

0
σ−1φ

µ
z − x0iβ

σ

¶
dz, y > 0.

Therefore, the density function can be written as

f (y | xi) = Φ
µ
−x

0
iβ

σ

¶1(y=0) ∙
σ−1φ

µ
z − x0iβ

σ

¶¸1(y>0)
,

where 1 (·) is the indicator function.
Hence the log-likelihood is a mixture of the probit and the normal:

ln(β) =
nX
i=1

log f(yi | xi)

=
X
yi=0

logΦ

µ
−x

0
iβ

σ

¶
+
X
yi>0

log

∙
σ−1φ

µ
yi − x0iβ

σ

¶¸
.

The MLE is the value β̂ which maximizes ln(β).

14.4 Sample Selection

The problem of sample selection arises when the sample is a non-random selection of potential
observations. This occurs when the observed data is systematically different from the population
of interest. For example, if you ask for volunteers for an experiment, and they wish to extrapolate
the effects of the experiment on a general population, you should worry that the people who
volunteer may be systematically different from the general population. This has great relevance
for the evaluation of anti-poverty and job-training programs, where the goal is to assess the effect
of “training” on the general population, not just on the volunteers.
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A simple sample selection model can be written as the latent model

yi = x0iβ + e1i

Ti = 1
¡
z0iγ + e0i > 0

¢
where 1 (·) is the indicator function. The dependent variable yi is observed if (and only if) Ti = 1.
Else it is unobserved.

For example, yi could be a wage, which can be observed only if a person is employed. The
equation for Ti is an equation specifying the probability that the person is employed.

The model is often completed by specifying that the errors are jointly normalµ
e0i
e1i

¶
∼ N

µ
0,

µ
1 ρ
ρ σ2

¶¶
.

It is presumed that we observe {xi, zi, Ti} for all observations.
Under the normality assumption,

e1i = ρe0i + vi,

where vi is independent of e0i ∼ N(0, 1). A useful fact about the standard normal distribution is
that

E (e0i | e0i > −x) = λ(x) =
φ(x)

Φ(x)
,

and the function λ(x) is called the inverse Mills ratio.
The naive estimator of β is OLS regression of yi on xi for those observations for which yi is

available. The problem is that this is equivalent to conditioning on the event {Ti = 1}. However,

E (e1i | Ti = 1, Zi) = E
¡
e1i | {e0i > −z0iγ}, Zi

¢
= ρE

¡
e0i | {e0i > −z0iγ}, Zi

¢
+E

¡
vi | {e0i > −z0iγ}, Zi

¢
= ρλ

¡
z0iγ
¢
,

which is non-zero. Thus
e1i = ρλ

¡
z0iγ
¢
+ ui,

where
E (ui | Ti = 1, Zi) = 0.

Hence
yi = x0iβ + ρλ

¡
z0iγ
¢
+ ui (14.2)

is a valid regression equation for the observations for which Ti = 1.
Heckman (1979) observed that we could consistently estimate β and ρ from this equation, if γ

were known. It is unknown, but also can be consistently estimated by a Probit model for selection.
The “Heckit” estimator is thus calculated as follows

• Estimate γ̂ from a Probit, using regressors zi. The binary dependent variable is Ti.

• Estimate
³
β̂, ρ̂

´
from OLS of yi on xi and λ(z0iγ̂).

• The OLS standard errors will be incorrect, as this is a two-step estimator. They can be
corrected using a more complicated formula. Or, alternatively, by viewing the Probit/OLS
estimation equations as a large joint GMM problem.
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The Heckit estimator is frequently used to deal with problems of sample selection. However,
the estimator is built on the assumption of normality, and the estimator can be quite sensitive
to this assumption. Some modern econometric research is exploring how to relax the normality
assumption.

The estimator can also work quite poorly if λ (z0iγ̂) does not have much in-sample variation. This
can happen if the Probit equation does not “explain” much about the selection choice. Another
potential problem is that if zi = xi, then λ (z0iγ̂) can be highly collinear with xi, so the second
step OLS estimator will not be able to precisely estimate β. Based this observation, it is typically
recommended to find a valid exclusion restriction: a variable should be in zi which is not in xi. If
this is valid, it will ensure that λ (z0iγ̂) is not collinear with xi, and hence improve the second stage
estimator’s precision.
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Chapter 15

Panel Data

A panel is a set of observations on individuals, collected over time. An observation is the pair
{yit, xit}, where the i subscript denotes the individual, and the t subscript denotes time. A panel
may be balanced :

{yit, xit} : t = 1, ..., T ; i = 1, ..., n,

or unbalanced :
{yit, xit} : For i = 1, ..., n, t = ti, ..., ti.

15.1 Individual-Effects Model

The standard panel data specification is that there is an individual-specific effect which enters
linearly in the regression

yit = x0itβ + ui + eit.

The typical maintained assumptions are that the individuals i are mutually independent, that ui
and eit are independent, that eit is iid across individuals and time, and that eit is uncorrelated
with xit.

OLS of yit on xit is called pooled estimation. It is consistent if

E (xitui) = 0 (15.1)

If this condition fails, then OLS is inconsistent. (15.1) fails if the individual-specific unobserved
effect ui is correlated with the observed explanatory variables xit. This is often believed to be
plausible if ui is an omitted variable.

If (15.1) is true, however, OLS can be improved upon via a GLS technique. In either event,
OLS appears a poor estimation choice.

Condition (15.1) is called the random effects hypothesis. It is a strong assumption, and most
applied researchers try to avoid its use.

15.2 Fixed Effects

This is the most common technique for estimation of non-dynamic linear panel regressions.
The motivation is to allow ui to be arbitrary, and have arbitrary correlated with xi. The goal

is to eliminate ui from the estimator, and thus achieve invariance.
There are several derivations of the estimator.
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First, let

dij =

⎧⎨⎩
1 if i = j

0 else
,

and

di =

⎛⎜⎝ di1
...
din

⎞⎟⎠ ,

an n× 1 dummy vector with a “1” in the i0th place. Let

u =

⎛⎜⎝ u1
...
un

⎞⎟⎠ .

Then note that
ui = d0iu,

and
yit = x0itβ + d0iu+ eit. (15.2)

Observe that
E (eit | xit, di) = 0,

so (15.2) is a valid regression, with di as a regressor along with xi.
OLS on (15.2) yields estimator (β̂, û). Conventional inference applies.
Observe that

• This is generally consistent.

• If xit contains an intercept, it will be collinear with di, so the intercept is typically omitted
from xit.

• Any regressor in xit which is constant over time for all individuals (e.g., their gender) will
be collinear with di, so will have to be omitted.

• There are n+ k regression parameters, which is quite large as typically n is very large.

Computationally, you do not want to actually implement conventional OLS estimation, as the
parameter space is too large. OLS estimation of β proceeds by the FWL theorem. Stacking the
observations together:

Y = Xβ +Du+ e,

then by the FWL theorem,

β̂ =
¡
X 0 (1− PD)X

¢−1 ¡
X 0 (1− PD)Y

¢
=

¡
X∗0X∗¢−1 ¡X∗0Y ∗

¢
,

where

Y ∗ = Y −D(D0D)−1D0Y

X∗ = X −D(D0D)−1D0X.
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Since the regression of yit on di is a regression onto individual-specific dummies, the predicted
value from these regressions is the individual specific mean yi, and the residual is the demean
value

y∗it = yit − yi.

The fixed effects estimator β̂ is OLS of y∗it on x
∗
it, the dependent variable and regressors in deviation-

from-mean form.
Another derivation of the estimator is to take the equation

yit = x0itβ + ui + eit,

and then take individual-specific means by taking the average for the i0th individual:

1

Ti

tiX
t=ti

yit =
1

Ti

tiX
t=ti

x0itβ + ui +
1

Ti

tiX
t=ti

eit

or
yi = x0iβ + ui + ei.

Subtracting, we find
y∗it = x∗0itβ + e∗it,

which is free of the individual-effect ui.

15.3 Dynamic Panel Regression

A dynamic panel regression has a lagged dependent variable

yit = αyit−1 + x0itβ + ui + eit. (15.3)

This is a model suitable for studying dynamic behavior of individual agents.
Unfortunately, the fixed effects estimator is inconsistent, at least if T is held finite as n→∞.

This is because the sample mean of yit−1 is correlated with that of eit.
The standard approach to estimate a dynamic panel is to combine first-differencing with IV or

GMM. Taking first-differences of (15.3) eliminates the individual-specific effect:

∆yit = α∆yit−1 +∆x
0
itβ +∆eit. (15.4)

However, if eit is iid, then it will be correlated with ∆yit−1 :

E (∆yit−1∆eit) = E ((yit−1 − yit−2) (eit − eit−1)) = −E (yit−1eit−1) = −σ2e.

So OLS on (15.4) will be inconsistent.
But if there are valid instruments, then IV or GMM can be used to estimate the equation.

Typically, we use lags of the dependent variable, two periods back, as yt−2 is uncorrelated with
∆eit. Thus values of yit−k, k ≥ 2, are valid instruments.

Hence a valid estimator of α and β is to estimate (15.4) by IV using yt−2 as an instrument for
∆yt−1 (which is just identified). Alternatively, GMM using yt−2 and yt−3 as instruments (which
is overidentified, but loses a time-series observation).

A more sophisticated GMM estimator recognizes that for time-periods later in the sample, there
are more instruments available, so the instrument list should be different for each equation. This is
conveniently organized by the GMM principle, as this enables the moments from the different time-
periods to be stacked together to create a list of all the moment conditions. A simple application
of GMM yields the parameter estimates and standard errors.
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Chapter 16

Nonparametrics

16.1 Kernel Density Estimation

Let X be a random variable with continuous distribution F (x) and density f(x) = d
dxF (x). The

goal is to estimate f(x) from a random sample (X1, ...,Xn} While F (x) can be estimated by the
EDF F̂ (x) = n−1

Pn
i=1 1 (Xi ≤ x) , we cannot define d

dx F̂ (x) since F̂ (x) is a step function. The
standard nonparametric method to estimate f(x) is based on smoothing using a kernel.

While we are typically interested in estimating the entire function f(x), we can simply focus
on the problem where x is a specific fixed number, and then see how the method generalizes to
estimating the entire function.

Definition 1 K(u) is a second-order kernel function if it is a symmetric zero-mean density
function.

Three common choices for kernels include the Gaussian

K(x) =
1√
2π
exp

µ
−x

2

2

¶
the Epanechnikov

K(x) =
3
4

¡
1− x2

¢
, |x| ≤ 1

0 |x| > 1
and the Biweight or Quartic

K(x) =
15
16

¡
1− x2

¢2
, |x| ≤ 1

0 |x| > 1

In practice, the choice between these three rarely makes a meaningful difference in the estimates.
The kernel functions are used to smooth the data. The amount of smoothing is controlled by

the bandwidth h > 0. Let

Kh(u) =
1

h
K
³u
h

´
.

be the kernel K rescaled by the bandwidth h. The kernel density estimator of f(x) is

f̂(x) =
1

n

nX
i=1

Kh (Xi − x) .
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This estimator is the average of a set of weights. If a large number of the observations Xi are near
x, then the weights are relatively large and f̂(x) is larger. Conversely, if only a few Xi are near x,
then the weights are small and f̂(x) is small. The bandwidth h controls the meaning of “near”.

Interestingly, f̂(x) is a valid density. That is, f̂(x) ≥ 0 for all x, andZ ∞

−∞
f̂(x)dx =

Z ∞

−∞

1

n

nX
i=1

Kh (Xi − x) dx =
1

n

nX
i=1

Z ∞

−∞
Kh (Xi − x) dx =

1

n

nX
i=1

Z ∞

−∞
K (u) du = 1

where the second-to-last equality makes the change-of-variables u = (Xi − x)/h.
We can also calculate the moments of the density f̂(x). The mean isZ ∞

−∞
xf̂(x)dx =

1

n

nX
i=1

Z ∞

−∞
xKh (Xi − x) dx

=
1

n

nX
i=1

Z ∞

−∞
(Xi + uh)K (u) du

=
1

n

nX
i=1

Xi

Z ∞

−∞
K (u) du+

1

n

nX
i=1

h

Z ∞

−∞
uK (u) du

=
1

n

nX
i=1

Xi

the sample mean of the Xi, where the second-to-last equality used the change-of-variables u =
(Xi − x)/h which has Jacobian h.

The second moment of the estimated density isZ ∞

−∞
x2f̂(x)dx =

1

n

nX
i=1

Z ∞

−∞
x2Kh (Xi − x) dx

=
1

n

nX
i=1

Z ∞

−∞
(Xi + uh)2K (u) du

=
1

n

nX
i=1

X2
i +

2

n

nX
i=1

Xih

Z ∞

−∞
K(u)du+

1

n

nX
i=1

h2
Z ∞

−∞
u2K (u) du

=
1

n

nX
i=1

X2
i + h2σ2K

where

σ2K =

Z ∞

−∞
x2K (x) dx

is the variance of the kernel. It follows that the variance of the density f̂(x) isZ ∞

−∞
x2f̂(x)dx−

µZ ∞

−∞
xf̂(x)dx

¶2
=

1

n

nX
i=1

X2
i + h2σ2K −

Ã
1

n

nX
i=1

Xi

!2
= σ̂2 + h2σ2K

Thus the variance of the estimated density is inflated by the factor h2σ2K relative to the sample
moment.
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16.2 Asymptotic MSE for Kernel Estimates

For fixed x and bandwidth h observe that

EKh (X − x) =

Z ∞

−∞
Kh (z − x) f(z)dz =

Z ∞

−∞
Kh (uh) f(x+ hu)hdu =

Z ∞

−∞
K (u) f(x+ hu)du

The second equality uses the change-of variables u = (z − x)/h. The last expression shows that
the expected value is an average of f(z) locally about x.

This integral (typically) is not analytically solvable, so we approximate it using a second order
Taylor expansion of f(x+ hu) in the argument hu about hu = 0, which is valid as h→ 0. Thus

f (x+ hu) ' f(x) + f 0(x)hu+
1

2
f 00(x)h2u2

and therefore

EKh (X − x) '
Z ∞

−∞
K (u)

µ
f(x) + f 0(x)hu+

1

2
f 00(x)h2u2

¶
du

= f(x)

Z ∞

−∞
K (u) du+ f 0(x)h

Z ∞

−∞
K (u)udu+

1

2
f 00(x)h2

Z ∞

−∞
K (u)u2du

= f(x) +
1

2
f 00(x)h2σ2K .

The bias of f̂(x) is then

Bias(x) = Ef̂(x)− f(x) =
1

n

nX
i=1

EKh (Xi − x)− f(x) =
1

2
f 00(x)h2σ2K .

We see that the bias of f̂(x) at x depends on the second derivative f 00(x). The sharper the derivative,
the greater the bias. Intuitively, the estimator f̂(x) smooths data local to Xi = x, so is estimating
a smoothed version of f(x). The bias results from this smoothing, and is larger the greater the
curvature in f(x).

We now examine the variance of f̂(x). Since it is an average of iid random variables, using
first-order Taylor approximations and the fact that n−1 is of smaller order than (nh)−1

V ar (x) =
1

n
V ar (Kh (Xi − x))

=
1

n
EKh (Xi − x)2 − 1

n
(EKh (Xi − x))2

' 1

nh2

Z ∞

−∞
K

µ
z − x

h

¶2
f(z)dz − 1

n
f(x)2

=
1

nh

Z ∞

−∞
K (u)2 f (x+ hu) du

' f (x)

nh

Z ∞

−∞
K (u)2 du

=
f (x)R(K)

nh
.

where R(K) =
R∞
−∞K (x)2 dx is called the roughness of K.
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Together, the asymptotic mean-squared error (AMSE) for fixed x is the sum of the approximate
squared bias and approximate variance

AMSEh(x) =
1

4
f 00(x)2h4σ4K +

f (x)R(K)

nh
.

A global measure of precision is the asymptotic mean integrated squared error (AMISE)

AMISEh =

Z
AMSEh(x)dx =

h4σ4KR(f
00)

4
+

R(K)

nh
. (16.1)

where R(f 00) =
R
(f 00(x))2 dx is the roughness of f 00. Notice that the first term (the squared bias)

is increasing in h and the second term (the variance) is decreasing in nh. Thus for the AMISE to
decline with n, we need h → 0 but nh → ∞. That is, h must tend to zero, but at a slower rate
than n−1.

Equation (16.1) is an asymptotic approximation to the MSE. We define the asymptotically
optimal bandwidth h0 as the value which minimizes this approximate MSE. That is,

h0 = argmin
h

AMISEh

It can be found by solving the first order condition

d

dh
AMISEh = h3σ4KR(f

00)− R(K)

nh2
= 0

yielding

h0 =

µ
R(K)

σ4KR(f
00)

¶1/5
n−1/2. (16.2)

This solution takes the form h0 = cn−1/5 where c is a function of K and f, but not of n. We
thus say that the optimal bandwidth is of order O(n−1/5). Note that this h declines to zero, but
at a very slow rate.

In practice, how should the bandwidth be selected? This is a difficult problem, and there is a
large and continuing literature on the subject. The asymptotically optimal choice given in (16.2)
depends on R(K), σ2K , and R(f 00). The first two are determined by the kernel function. Their
values for the three functions introduced in the previous section are given here.

K σ2K =
R∞
−∞ x2K (x) dx R(K) =

R∞
−∞K (x)2 dx

Gaussian 1 1/(2
√
π)

Epanechnikov 1/5 1/5
Biweight 1/7 5/7

An obvious difficulty is that R(f 00) is unknown. A classic simple solution proposed by Silverman
(1986)has come to be known as the reference bandwidth or Silverman’s Rule-of-Thumb.
It uses formula (16.2) but replaces R(f 00) with σ̂−5R(φ00), where φ is the N(0, 1) distribution
and σ̂2 is an estimate of σ2 = V ar(X). This choice for h gives an optimal rule when f(x) is
normal, and gives a nearly optimal rule when f(x) is close to normal. The downside is that if the
density is very far from normal, the rule-of-thumb h can be quite inefficient. We can calculate that
R(φ00) = 3/ (8

√
π) . Together with the above table, we find the reference rules for the three kernel

functions introduced earlier.
Gaussian Kernel: hrule = 1.06n−1/5
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Epanechnikov Kernel: hrule = 2.34n−1/5

Biweight (Quartic) Kernel: hrule = 2.78n−1/5

Unless you delve more deeply into kernel estimation methods the rule-of-thumb bandwidth is
a good practical bandwidth choice, perhaps adjusted by visual inspection of the resulting estimate
f̂(x). There are other approaches, but implementation can be delicate. I now discuss some of these
choices. The plug-in approach is to estimate R(f 00) in a first step, and then plug this estimate into
the formula (16.2). This is more treacherous than may first appear, as the optimal h for estimation
of the roughness R(f 00) is quite different than the optimal h for estimation of f(x). However, there
are modern versions of this estimator work well, in particular the iterative method of Sheather
and Jones (1991). Another popular choice for selection of h is cross-validation. This works by
constructing an estimate of the MISE using leave-one-out estimators. There are some desirable
properties of cross-validation bandwidths, but they are also known to converge very slowly to
the optimal values. They are also quite ill-behaved when the data has some discretization (as is
common in economics), in which case the cross-validation rule can sometimes select very small
bandwidths leading to dramatically undersmoothed estimates. Fortunately there are remedies,
which are known as smoothed cross-validation which is a close cousin of the bootstrap.

164



Appendix A

Probability

A.1 Foundations

The set S of all possible outcomes of an experiment is called the sample space for the experiment.
Take the simple example of tossing a coin. There are two outcomes, heads and tails, so we
can write S = {H,T}. If two coins are tossed in sequence, we can write the four outcomes as
S = {HH,HT, TH, TT}.

An event A is any collection of possible outcomes of an experiment. An event is a subset of S,
including S itself and the null set ∅. Continuing the two coin example, one event is A = {HH,HT},
the event that the first coin is heads. We say that A and B are disjoint or mutually exclusive
if A ∩ B = ∅. For example, the sets {HH,HT} and {TH} are disjoint. Furthermore, if the sets
A1, A2, ... are pairwise disjoint and ∪∞i=1Ai = S, then the collection A1, A2, ... is called a partition
of S.

The following are elementary set operations:
Union: A ∪B = {x : x ∈ A or x ∈ B}.
Intersection: A ∩B = {x : x ∈ A and x ∈ B}.
Complement: Ac = {x : x /∈ A}.
The following are useful properties of set operations.
Communtatitivity: A ∪B = B ∪A; A ∩B = B ∩A.
Associativity: A ∪ (B ∪C) = (A ∪B) ∪C; A ∩ (B ∩ C) = (A ∩B) ∩ C.
Distributive Laws: A∩(B ∪C) = (A ∩B)∪(A ∩ C) ; A∪(B ∩C) = (A ∪B)∩(A ∪C) .
DeMorgan’s Laws: (A ∪B)c = Ac ∩Bc; (A ∩B)c = Ac ∪Bc.
A probability function assigns probabilities (numbers between 0 and 1) to events A in S.

This is straightforward when S is countable; when S is uncountable we must be somewhat more
careful.A set B is called a sigma algebra (or Borel field) if ∅ ∈ B , A ∈ B implies Ac ∈ B, and
A1, A2, ... ∈ B implies ∪∞i=1Ai ∈ B. A simple example is {∅, S} which is known as the trivial sigma
algebra. For any sample space S, let B be the smallest sigma algebra which contains all of the
open sets in S. When S is countable, B is simply the collection of all subsets of S, including ∅ and
S. When S is the real line, then B is the collection of all open and closed intervals. We call B the
sigma algebra associated with S. We only define probabilities for events contained in B.

We now can give the axiomatic definition of probability. Given S and B, a probability function
P satisfies P (S) = 1, P (A) ≥ 0 for all A ∈ B, and if A1, A2, ... ∈ B are pairwise disjoint, then
P (∪∞i=1Ai) =

P∞
i=1 P (Ai).

Some important properties of the probability function include the following

• P (∅) = 0
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• P (A) ≤ 1

• P (Ac) = 1− P (A)

• P (B ∩Ac) = P (B)− P (A ∩B)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• If A ⊂ B then P (A) ≤ P (B)

• Bonferroni’s Inequality: P (A ∩B) ≥ P (A) + P (B)− 1

• Boole’s Inequality: P (A ∪B) ≤ P (A) + P (B)

For some elementary probability models, it is useful to have simple rules to count the number
of objects in a set. These counting rules are facilitated by using the binomial coefficients which
are defined for nonnegative integers n and r, n ≥ r, asµ

n

r

¶
=

n!

r! (n− r)!
.

When counting the number of objects in a set, there are two important distinctions. Counting
may bewith replacement orwithout replacement. Counting may be ordered or unordered.
For example, consider a lottery where you pick six numbers from the set 1, 2, ..., 49. This selection is
without replacement if you are not allowed to select the same number twice, and is with replacement
if this is allowed. Counting is ordered or not depending on whether the sequential order of the
numbers is relevant to winning the lottery. Depending on these two distinctions, we have four
expressions for the number of objects (possible arrangements) of size r from n objects.

Without With
Replacement Replacement

Ordered n!
(n−r)! nr

Unordered
¡n
r

¢ ¡
n+r−1

r

¢
In the lottery example, if counting is unordered and without replacement, the number of

potential combinations is
¡49
6

¢
= 13, 983, 816.

If P (B) > 0 the conditional probability of the event A given the event B is

P (A | B) = P (A ∩B)
P (B)

.

For any B, the conditional probability function is a valid probability function where S has been
replaced by B. Rearranging the definition, we can write

P (A ∩B) = P (A | B)P (B)
which is often quite useful. We can say that the occurrence of B has no information about the
likelihood of event A when P (A | B) = P (A), in which case we find

P (A ∩B) = P (A)P (B) (A.1)

We say that the events A and B are statistically independent when (A.1) holds. Furthermore,
we say that the collection of events A1, ..., Ak are mutually independent when for any subset
{Ai : i ∈ I},

P

Ã\
i∈I

Ai

!
=
Y
i∈I

P (Ai) .
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Theorem 2 (Bayes’ Rule). For any set B and any partition A1, A2, ... of the sample space, then
for each i = 1, 2, ...

P (Ai | B) =
P (B | Ai)P (Ai)P∞
j=1 P (B | Aj)P (Aj)

A.2 Random Variables

A random variable X is a function from a sample space S into the real line. This induces a
new sample space — the real line — and a new probability function on the real line. Typically,
we denote random variables by uppercase letters such as X, and use lower case letters such as
x for potential values and realized values. For a random variable X we define its cumulative
distribution function (CDF) as

F (x) = P (X ≤ x) . (A.2)

Sometimes we write this as FX(x) to denote that it is the CDF of X. A function F (x) is a CDF
if and only if the following three properties hold:

1. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

2. F (x) is nondecreasing in x

3. F (x) is right-continuous

We say that the random variable X is discrete if F (x) is a step function. In the latter case,
the range of X consists of a countable set of real numbers τ1, ..., τ r. The probability function for
X takes the form

P (X = τ j) = πj , j = 1, ..., r (A.3)

where 0 ≤ πj ≤ 1 and
Pr

j=1 πj = 1.
We say that the random variableX is continuous if F (x) is continuous in x. In this case P (X =

τ) = 0 for all τ ∈ R so the representation (A.3) is unavailable. Instead, we represent the relative
probabilities by the probability density function (PDF)

f(x) =
d

dx
F (x)

so that

F (x) =

Z x

−∞
f(u)du

and

P (a ≤ X ≤ b) =

Z b

a
f(x)dx.

These expressions only make sense if F (x) is differentiable. While there are examples of continuous
random variables which do not possess a PDF, these cases are unusual and are typically ignored.

A function f(x) is a PDF if and only if f(x) ≥ 0 for all x ∈ R and
R∞
−∞ f(x)dx.
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A.3 Expectation

For any measurable real function g, we define the mean or expectation Eg(X) as follows. If X
is discrete,

Eg(X) =
rX

j=1

g(τ j)πj ,

and if X is continuous

Eg(X) =

Z ∞

−∞
g(x)f(x)dx.

The latter is well defined and finite ifZ ∞

−∞
|g(x)| f(x)dx <∞. (A.4)

If (A.4) does not hold, evaluate

I1 =

Z
g(x)>0

g(x)f(x)dx

I2 = −
Z
g(x)<0

g(x)f(x)dx

If I1 = ∞ and I2 < ∞ then we define Eg(X) = ∞. If I1 < ∞ and I2 = ∞ then we define
Eg(X) = −∞. If both I1 =∞ and I2 =∞ then Eg(X) is undefined.

Since E (a+ bX) = a+ bEX, we say that expectation is a linear operator.
For m > 0, we define the m0th moment of X as EXm and the m0th central moment as

E (X −EX)m .
Two special moments are the mean µ = EX and variance σ2 = E (X − µ)2 = EX2−µ2.We

call σ =
√
σ2 the standard deviation of X. We can also write σ2 = V ar(X). For example, this

allows the convenient expression V ar(a+ bX) = b2V ar(X).
The moment generating function (MGF) of X is

M(λ) = E exp (λX) .

The MGF does not necessarily exist. However, when it does and E |X|m <∞ then

dm

dλm
M(λ)

¯̄̄̄
λ=0

= E (Xm)

which is why it is called the moment generating function.
More generally, the characteristic function (CF) of X is

C(λ) = E exp (iλX) .

where i =
√
−1 is the imaginary unit. The CF always exists, and when E |X|m <∞

dm

dλm
C(λ)

¯̄̄̄
λ=0

= imE (Xm) .

The Lp norm, p ≥ 1, of the random variable X is

kXkp = (E |X|
p)1/p .
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A.4 Common Distributions

For reference, we now list some important discrete distribution function.
Bernoulli

P (X = x) = px(1− p)1−x, x = 0, 1; 0 ≤ p ≤ 1
EX = p

V ar(X) = p(1− p)

Binomial

P (X = x) =

µ
n

x

¶
px (1− p)n−x , x = 0, 1, ..., n; 0 ≤ p ≤ 1

EX = np

V ar(X) = np(1− p)

Geometric

P (X = x) = p(1− p)x−1, x = 1, 2, ...; 0 ≤ p ≤ 1

EX =
1

p

V ar(X) =
1− p

p2

Multinomial

P (X1 = x1,X2 = x2, ...,Xm = xm) =
n!

x1!x2! · · ·xm!
px11 px22 · · · pxmm ,

x1 + · · ·+ xm = n;

p1 + · · ·+ pm = 1

EX =

V ar(X) =

Negative Binomial

P (X = x) =

µ
r + x− 1

x

¶
p(1− p)x−1, x = 1, 2, ...; 0 ≤ p ≤ 1

EX =

V ar(X) =

Poisson

P (X = x) =
exp (−λ)λx

x!
, x = 0, 1, 2, ..., λ > 0

EX = λ

V ar(X) = λ

We now list some important continuous distributions.
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Beta

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1; α > 0, β > 0

µ =
α

α+ β

V ar(X) =
αβ

(α+ β + 1) (α+ β)2

Cauchy

f(x) =
1

π (1 + x2)
, −∞ < x <∞

EX = ∞
V ar(X) = ∞

ExponentiaI

f(x) =
1

θ
exp

³x
θ

´
, 0 ≤ x <∞; θ > 0

EX = θ

V ar(X) = θ2

Logistic

f(x) =
exp (−x)

(1 + exp (−x))2
, −∞ < x <∞;

EX = 0

V ar(X) =R 1
0 x

−2dx Z ∞

0

exp (−x)
(1 + exp (−x))2

dx

Lognormal

f(x) =
1√
2πσx

exp

Ã
−(lnx− µ)2

2σ2

!
, 0 ≤ x <∞; σ > 0

EX = exp
¡
µ+ σ2/2

¢
V ar(X) = exp

¡
2µ+ 2σ2

¢
− exp

¡
2µ+ σ2

¢
Pareto

f(x) =
βαβ

xβ+1
, α ≤ x <∞, α > 0, β > 0

EX =
βα

β − 1 , β > 1

V ar(X) =
βα2

(β − 1)2 (β − 2)
, β > 2
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Uniform

f(x) =
1

b− a
, a ≤ x ≤ b

EX =
a+ b

2

V ar(X) =
(b− a)2

12

Weibull

f(x) =
γ

β
xγ−1 exp

µ
−x

γ

β

¶
, 0 ≤ x <∞; γ > 0, β > 0

EX = β1/γΓ

µ
1 +

1

γ

¶
V ar(X) = β2/γ

µ
Γ

µ
1 +

2

γ

¶
− Γ2

µ
1 +

1

γ

¶¶

A.5 Multivariate Random Variables

A pair of bivariate random variables (X,Y ) is a function from the sample space into R2. The joint
CDF of (X,Y ) is

F (x, y) = P (X ≤ x, Y ≤ y) .

If F is continuous, the joint probability density function is

f(x, y) =
∂2

∂x∂y
F (x, y).

For a Borel measurable set A ∈ R2,

P ((X < Y ) ∈ A) =

Z Z
A
f(x, y)dxdy

For any measurable function g(x, y),

Eg(X,Y ) =

Z ∞

−∞

Z ∞

−∞
g(x, y)f(x, y)dxdy.

The marginal distribution of X is

FX(x) = P (X ≤ x)

= lim
y→∞

F (x, y)

=

Z x

−∞

Z ∞

−∞
f(x, y)dydx

so the marginal density of X is

fX(x) =
d

dx
FX(x) =

Z ∞

−∞
f(x, y)dy.
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Similarly, the marginal density of Y is

fY (y) =

Z ∞

−∞
f(x, y)dx.

The random variables X and Y are defined to be independent if f(x, y) = fX(x)fY (y).
Furthermore, X and Y are independent if and only if there exist functions g(x) and h(y) such that
f(x, y) = g(x)h(y).

If X and Y are independent, then

E (g(X)h(Y )) =

Z Z
g(x)h(y)f(y, x)dydx

=

Z Z
g(x)h(y)fY (y)fX(x)dydx

=

Z
g(x)fX(x)dx

Z
h(y)fY (y)dy

= Eg (X)Eh (Y ) . (A.5)

if the expectations exist. For example, if X and Y are independent then

E(XY ) = EXEY.

Another implication of (A.5) is that if X and Y are independent and Z = X + Y, then

MZ(λ) = E exp (λ (X + Y ))

= E (exp (λX) exp (λY ))

= E exp
¡
λ0X

¢
E exp

¡
λ0Y

¢
= MX(λ)MY (λ). (A.6)

The covariance between X and Y is

Cov(X,Y ) = σXY = E ((X −EX) (Y −EY )) = EXY −EXEY.

The correlation between X and Y is

Corr(X,Y ) = ρXY =
σXY

σxσY
.

The Cauchy-Schwarz Inequality implies that |ρXY | ≤ 1.The correlation is a measure of linear
dependence, free of units of measurement.

If X and Y are independent, then σXY = 0 and ρXY = 0. The reverse, however, is not true.
For example, if EX = 0 and EX3 = 0, then Cov(X,X2) = 0.

A useful fact is that

V ar (X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ).

An implication is that if X and Y are independent, then

V ar (X + Y ) = V ar(X) + V ar(Y ),

the variance of the sum is the sum of the variances.
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A k × 1 random vector X = (X1, ...,Xk)
0 is a function from S to Rk. Letting x = (x1, ..., xk)0,

it has the distribution and density functions

F (x) = P (X ≤ x)

f(x) =
∂k

∂x1 · · · ∂xk
F (x).

For a measurable function g : Rk → Rs, we define the expectation

Eg(X) =

Z
Rk

g(x)f(x)dx

where the symbol dx denotes dx1 · · · dxk. In particular, we have the k × 1 multivariate mean

µ = EX

and k × k covariance matrix

Σ = E
¡
(X − µ) (X − µ)0

¢
= EXX 0 − µµ0

If the elements of X are mutually independent, then Σ is a diagonal matrix and

V ar

Ã
kX
i=1

Xi

!
=

kX
i=1

V ar (Xi)

A.6 Conditional Distributions and Expectation

The conditional density of Y given X = x is defined as

fY |X (y | x) =
f(x, y)

fX(x)

if fX(x) > 0. One way to derive this expression from the definition of conditional probability is

fY |X (y | x) =
∂

∂y
lim
ε→0

P (Y ≤ y | x ≤ X ≤ x+ ε)

=
∂

∂y
lim
ε→0

P ({Y ≤ y} ∩ {x ≤ X ≤ x+ ε})
P (x ≤ X ≤ x+ ε)

=
∂

∂y
lim
ε→0

F (x+ ε, y)− F (x, y)

FX(x+ ε)− FX(x)

=
∂

∂y
lim
ε→0

∂
∂xF (x+ ε, y)

fX(x+ ε)

=

∂2

∂x∂yF (x, y)

fX(x)

=
f(x, y)

fX(x)
.
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The conditional mean or conditional expectation is the function

m(x) = E (Y | X = x) =

Z ∞

−∞
yfY |X (y | x) dy.

The conditional mean m(x) is a function, meaning that when X equals x, then the expected value
of Y is m(x).

Similarly, we define the conditional variance of Y given X = x as

σ2(x) = V ar (Y | X = x)

= E
³
(Y −m(x))2 | X = x

´
= E

¡
Y 2 | X = x

¢
−m(x)2.

Evaluated at x = X, the conditional mean m(X) and conditional variance σ2(x) are random
variables, functions of X. We write this as E(Y | X) = m(X) and V ar (Y | X) = σ2(X). For
example, if E (Y | X = x) = α+ βx, then E (Y | X) = α+ βX, a transformation of X.

The following are important facts about conditional expectations.
Simple Law of Iterated Expectations:

E (E (Y | X)) = E (Y ) (A.7)

Proof :

E (E (Y | X)) = E (m(X))

=

Z ∞

−∞
m(x)fX(x)dx

=

Z ∞

−∞

Z ∞

−∞
yfY |X (y | x) fX(x)dydx

=

Z ∞

−∞

Z ∞

−∞
yf (y, x) dydx

= E(Y ).

Law of Iterated Expectations:

E (E (Y | X,Z) | X) = E (Y | X) (A.8)

Conditioning Theorem. For any function g(x),

E (g(X)Y | X) = g (X)E (Y | X) (A.9)

Proof : Let

h(x) = E (g(X)Y | X = x)

=

Z ∞

−∞
g(x)yfY |X (y | x) dy

= g(x)

Z ∞

−∞
yfY |X (y | x) dy

= g(x)m(x)

where m(x) = E (Y | X = x) . Thus h(X) = g(X)m(X), which is the same as E (g(X)Y | X) =
g (X)E (Y | X) .
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A.7 Transformations

Suppose that X ∈ Rk with continuous distribution function FX(x) and density fX(x). Let Y =
g(X) where g(x) : Rk → Rk is one-to-one, differentiable, and invertible. Let h(y) denote the
inverse of g(x). The Jacobian is

J(y) = det

µ
∂

∂y0
h(y)

¶
.

Consider the univariate case k = 1. If g(x) is an increasing function, then g(X) ≤ Y if and
only if X ≤ h(Y ), so the distribution function of Y is

FY (y) = P (g(X) ≤ y)

= P (X ≤ h(Y ))

= FX (h(Y ))

so the density of Y is

fY (y) =
d

dy
FY (y) = fX (h(Y ))

d

dy
h(y).

If g(x) is a decreasing function, then g(X) ≤ Y if and only if X ≥ h(Y ), so

FY (y) = P (g(X) ≤ y)

= 1− P (X ≥ h(Y ))

= 1− FX (h(Y ))

and the density of Y is

fY (y) = −fX (h(Y ))
d

dy
h(y).

We can write these two cases jointly as

fY (y) = fX (h(Y )) |J(y)| . (A.10)

This is known as the change-of-variables formula. This same formula (A.10) holds for k > 1,
but its justification requires deeper results from analysis.

As one example, take the case X ∼ U [0, 1] and Y = − ln(X). Here, g(x) = − ln(x) and
h(y) = exp(−y) so the Jacobian is J(y) = − exp(y). As the range of X is [0, 1], that for Y is [0,∞).
Since fX (x) = 1 for 0 ≤ x ≤ 1 (A.10) shows that

fY (y) = exp(−y), 0 ≤ y ≤ ∞,

an exponential density.

A.8 Normal and Related Distributions

The standard normal density is

φ(x) =
1√
2π
exp

µ
−x

2

2

¶
, −∞ < x <∞.
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This density has all moments finite. Since it is symmetric about zero all odd moments are zero. By
iterated integration by parts, we can also show that EX2 = 1 and EX4 = 3. It is conventional to
write X ∼ N(0, 1), and to denote the standard normal density function by φ(x) and its distribution
function by Φ(x). The latter has no closed-form solution.

If Z is standard normal and X = µ + σZ, then using the change-of-variables formula, X has
density

f(x) =
1√
2πσ

exp

Ã
−(x− µ)2

2σ2

!
, −∞ < x <∞.

which is the univariate normal density. The mean and variance of the distribution are µ and
σ2, and it is conventional to write X ∼ N(µ, σ2).

For x ∈ Rk, the multivariate normal density is

f(x) =
1

(2π)k/2 det (Σ)1/2
exp

µ
−(x− µ)0Σ−1 (x− µ)

2

¶
, x ∈ Rk.

The mean and covariance matrix of the distribution are µ and Σ, and it is conventional to write
X ∼ N(µ,Σ).

It useful to observe that the MGF and CF of the multivariate normal are exp
¡
λ0µ+ λ0Σλ/2

¢
and exp

¡
iλ0µ− λ0Σλ/2

¢
, respectively.

If X ∈ Rk is multivariate normal and the elements of X are mutually uncorrelated, then
Σ = diag{σ2j} is a diagonal matrix. In this case the density function can be written as

f(x) =
1

(2π)k/2 σ1 · · ·σk
exp

Ã
−
Ã
(x1 − µ1)

2 /σ21 + · · ·+ (xk − µk)
2 /σ2k

2

!!

=
kY

j=1

1

(2π)1/2 σj
exp

Ã
−
¡
xj − µj

¢2
2σ2j

!

which is the product of marginal univariate normal densities. This shows that if X is multivariate
normal with uncorrelated elements, then they are mutually independent.

Another useful fact is that if X ∼ N(µ,Σ) and Y = a+BX with B an invertible matrix, then
by the change-of-variables formula, the density of Y is

f(y) =
1

(2π)k/2 det (ΣY )
1/2
exp

Ã
−(y − µY )

0Σ−1Y (y − µY )

2

!
, x ∈ Rk.

where µY = a+Bµ andΣY = BΣB0, where we used the fact that det (BΣB0)1/2 = det (Σ)1/2 det (B) .
This shows that linear transformations of normals are also normal.

Theorem A.8.1 Let X ∼ N(0, Ir) and set Q = X 0X. Q has the density

f(y) =
1

Γ
¡
r
2

¢
2r/2

yr/2−1 exp (−y/2) , y ≥ 0. (A.11)

and is known as the chi-square density with r degrees of freedom, denoted χ2r. Its mean and
variance are µ = r and σ2 = 2r.

Theorem A.8.2 If Z ∼ N(0, A) with A > 0, q × q, then Z 0A−1Z ∼ χ2q .
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Theorem A.8.3 Let Z ∼ N(0, 1) and Q ∼ χ2r be independent. Set

tr =
Zp
Q/r

.

The density of tr is

f(x) =
Γ
¡
r+1
2

¢
√
πrΓ

¡
r
2

¢ ³
1 + x2

r

´ r+1
2

(A.12)

and is known as the student’s t distribution with r degrees of freedom.

Proof of Theorem A.8.1. The MGF for the density (A.11) is

E exp (tQ) =

Z ∞

0

1

Γ
¡
r
2

¢
2r/2

yr/2−1 exp (ty) exp (−y/2) dy

= (1− 2t)−r/2 (A.13)

where the second equality uses the fact that
R∞
0 ya−1 exp (−by) dy = b−aΓ(a), which can be found

by applying change-of-variables to the gamma function. For Z ∼ N(0, 1) the distribution of Z2 is

P
¡
Z2 ≤ y

¢
= 2P (0 ≤ Z ≤ √y)

= 2

Z √
y

0

1√
2π
exp

µ
−x

2

2

¶
dx

=

Z y

0

1

Γ
¡
1
2

¢
21/2

s−1/2 exp
³
−s
2

´
ds

using the change—of-variables s = x2 and the fact Γ
¡
1
2

¢
=
√
π. Thus the density of Z2 is (A.11)

with r = 1. From (A.13), we see that the MGF of Z2 is (1− 2t)−1/2. Since we can write Q =
X 0X =

Pr
j=1 Z

2
j where the Zj are independent N(0, 1), (A.6) can be used to show that the MGF

of Q is (1− 2t)−r/2 , which we showed in (A.13) is the MGF of the density (A.11). ¥

Proof of Theorem A.8.2. The fact that A > 0 means that we can write A = CC0 where C is
non-singular. Then A−1 = C−10C−1 and

C−1Z ∼ N(0, C−1AC−10) = N(0, C−1CC 0C−10) = N(0, Iq).

Thus
Z 0A−1Z = Z 0C−10C−1Z =

¡
C−1Z

¢0 ¡
C−1Z

¢
∼ χ2q .

¥

Proof of Theorem A.8.3. Using the simple law of iterated expectations, tr has distribution

177



function

F (x) = P

Ã
Zp
Q/r

≤ x

!

= E

(
Z ≤ x

r
Q

r

)

= E

"
P

Ã
Z ≤ x

r
Q

r
| Q
!#

= EΦ

Ã
x

r
Q

r

!

Thus its density is

f (x) = E
d

dx
Φ

Ã
x

r
Q

r

!

= E

Ã
φ

Ã
x

r
Q

r

!r
Q

r

!

=

Z ∞

0

µ
1√
2π
exp

µ
−qx

2

2r

¶¶r
q

r

Ã
1

Γ
¡
r
2

¢
2r/2

qr/2−1 exp (−q/2)
!
dq

=
Γ
¡
r+1
2

¢
√
rπΓ

¡
r
2

¢ µ1 + x2

r

¶−( r+12 )
.

¥

A.9 Maximum Likelihood

If the distribution of Yi is F (y, θ) where F is a known distribution function and θ ∈ Θ is an
unknown m× 1 vector, we say that the distribution is parametric and that θ is the parameter
of the distribution F. The space Θ is the set of permissible value for θ. In this setting the method
of maximum likelihood is the appropriate technique for estimation and inference on θ.

If the distribution F is continuous then the density of Yi can be written as f(y, θ) and the joint
density of a random sample Ỹ = (Y1, ..., Yn) is

fn

³
Ỹ , θ

´
=

nY
i=1

f (Yi, θ) .

The likelihood of the sample is this joint density evaluated at the observed sample values, viewed
as a function of θ. The log-likelihood function is its natural log

Ln(θ) =
nX
i=1

ln f (Yi, θ) .

If the distribution F is discrete, the likelihood and log-likelihood are constructed by setting
f (y, θ) = P (Y = y, θ) .
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Define the Hessian

H = −E ∂2

∂θ∂θ0
ln f (Yi, θ0) (A.14)

and the outer product matrix

Ω = E

µ
∂

∂θ
ln f (Yi, θ0)

∂

∂θ
ln f (Yi, θ0)

0
¶
. (A.15)

Two important features of the likelihood are

Theorem A.9.1
∂

∂θ
E ln f (Yi, θ)

¯̄̄̄
θ=θ0

= 0 (A.16)

H = Ω ≡ I0 (A.17)

The matrix I0 is called the information, and the equality (A.17) is often called the informa-
tion matrix equality.

Theorem A.9.2 Cramer-Rao Lower Bound. If θ̃ is an unbiased estimator of θ ∈ R, then
V ar(θ̃) ≥ (nI0)−1 .

The Cramer-Rao Theorem gives a lower bound for estimation. However, the restriction to
unbiased estimators means that the theorem has little direct relevance for finite sample efficiency.

The maximum likelihood estimator or MLE θ̂ is the parameter value which maximizes
the likelihood (equivalently, which maximizes the log-likelihood). We can write this as

θ̂ = argmax
θ∈Θ

Ln(θ).

In some simple cases, we can find an explicit expression for θ̂ as a function of the data, but these
cases are rare. More typically, the MLE θ̂ must be found by numerical methods.

Why do we believe that the MLE θ̂ is estimating the parameter θ? Observe that when stan-
dardized, the log-likelihood is a sample average

1

n
Ln(θ) =

1

n

nX
i=1

ln f (Yi, θ)→p E ln f (Yi, θ) ≡ L(θ).

As the MLE θ̂ maximizes the left-hand-side, we can see that it is an estimator of the maximizer
of the right-hand-side. The first-order condition for the latter problem is

0 =
∂

∂θ
L(θ) =

∂

∂θ
E ln f (Yi, θ)

which holds at θ = θ0 by (A.16). In fact, under conventional regularity conditions, θ̂ is consistent
for this value, θ̂ →p θ0 as n→∞.

Theorem A.9.3 Under regularity conditions,
√
n
³
θ̂ − θ0

´
→d N

¡
0, I−10

¢
.
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Thus in large samples, the approximate variance of the MLE is (nI0)
−1 which is the Cramer-

Rao lower bound. Thus in large samples the MLE has approximately the best possible variance.
Therefore the MLE is called asymptotically efficient.

Typically, to estimate the asymptotic variance of the MLE we use an estimate based on the
Hessian formula (A.14)

Ĥ = − 1
n

nX
i=1

∂2

∂θ∂θ0
ln f

³
Yi, θ̂

´
(A.18)

We then set Î−10 = Ĥ−1. Asymptotic standard errors for θ̂ are then the square roots of the diagonal
elements of n−1Î−10 .

Sometimes a parametric density function f(y, θ) is used to approximate the true unknown
density f(y), but it is not literally believed that the model f(y, θ) is necessarily the true density.
In this case, we refer to Ln(θ̂) as a quasi-likelihood and the its maximizer θ̂ as a quasi-mle or
QMLE.

In this case there is not a “true” value of the parameter θ. Instead we define the pseudo-true
value θ0 as the maximizer of

E ln f (Yi, θ) =

Z
f (y) ln f (y, θ) dy

which is the same as the minimizer of

KLIC =

Z
f (y) ln

µ
f(y)

f (y, θ)

¶
dy

the Kullback-Leibler information distance between the true density f(y) and the parametric density
f(y, θ). Thus the QMLE θ0 is the value which makes the parametric density “closest” to the true
value according to this measure of distance. The QMLE is consistent for the pseudo-true value,
but has a different covariance matrix than in the pure MLE case, since the information matrix
equality (A.17) does not hold. A minor adjustment to Theorem (A.9.3) yields the asymptotic
distribution of the QMLE:

√
n
³
θ̂ − θ0

´
→d N (0, V ) , V = H−1ΩH−1

The moment estimator for V is
V̂ = Ĥ−1Ω̂Ĥ−1

where Ĥ is given in (A.18) and

Ω̂ =
1

n

nX
i=1

∂

∂θ
ln f

³
Yi, θ̂

´ ∂

∂θ
ln f

³
Yi, θ̂

´0
.

Asymptotic standard errors (sometimes called qmle standard errors) are then the square roots of
the diagonal elements of n−1V̂ .
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Proof of Theorem A.9.1. To see (A.16),

∂

∂θ
E ln f (Yi, θ)

¯̄̄̄
θ=θ0

=
∂

∂θ

Z
ln f (y, θ) f (y, θ0) dy

¯̄̄̄
θ=θ0

=

Z
∂

∂θ
f (y, θ)

f (y, θ0)

f (y, θ)
dy

¯̄̄̄
θ=θ0

=
∂

∂θ

Z
f (y, θ) dy

¯̄̄̄
θ=θ0

=
∂

∂θ
1

¯̄̄̄
θ=θ0

= 0.

Similarly, we can show that

E

Ã
∂2

∂θ∂θ0
f (Yi, θ0)

f (Yi, θ0)

!
= 0.

By direction computation,

∂2

∂θ∂θ0
ln f (Yi, θ0) =

∂2

∂θ∂θ0
f (Yi, θ0)

f (Yi, θ0)
−

∂
∂θf (Yi, θ0)

∂
∂θf (Yi, θ0)

0

f (Yi, θ0)
2

=
∂2

∂θ∂θ0
f (Yi, θ0)

f (Yi, θ0)
− ∂

∂θ
ln f (Yi, θ0)

∂

∂θ
ln f (Yi, θ0)

0 .

Taking expectations yields (A.17). ¥

Proof of Theorem A.9.2.

S =
∂

∂θ
ln fn

³
Ỹ , θ0

´
=

nX
i=1

∂

∂θ
ln f (Yi, θ0)

which by Theorem (A.9.1) has mean zero and variance nH. Write the estimator θ̃ = θ̃(Ỹ ) as a
function of the data. Since θ̃ is unbiased for any θ,

θ = Eθ̃ =

Z
θ̃(ỹ)f (ỹ, θ) dỹ

where ỹ = (y1, ..., yn). Differentiating with respect to θ and evaluating at θ0 yields

1 =

Z
θ̃(ỹ)

∂

∂θ
f (ỹ, θ) dỹ =

Z
θ̃(ỹ)

∂

∂θ
ln f (ỹ, θ) f (ỹ, θ0) dỹ = E

³
θ̃S
´
.

By the Cauchy-Schwarz inequality

1 =
¯̄̄
E
³
θ̃S
´¯̄̄2
≤ V ar (S)V ar

³
θ̃
´

so
V ar

³
θ̃
´
≥ 1

V ar (S)
=

1

nH
.

¥

181



Proof of Theorem A.9.3 Taking the first-order condition for maximization of Ln(θ), and making
a first-order Taylor series expansion,

0 =
∂

∂θ
Ln(θ)

¯̄̄̄
θ=θ̂

=
nX
i=1

∂

∂θ
ln f

³
Yi, θ̂

´
'

nX
i=1

∂

∂θ
ln f (Yi, θ0) +

nX
i=1

∂2

∂θ∂θ0
ln f (Yi, θn)

³
θ̂ − θ0

´
,

where θn lies on a line segment joining θ̂ and θ0. (Technically, the specific value of θn varies by
row in this expansion.) Rewriting this equation, we find

³
θ̂ − θ0

´
=

Ã
−

nX
i=1

∂2

∂θ∂θ0
ln f (Yi, θn)

!−1Ã nX
i=1

∂

∂θ
ln f (Yi, θ0)

!
.

Since ∂
∂θ ln f (Yi, θ0) is mean-zero with covariance matrix Ω, an application of the CLT yields

1√
n

nX
i=1

∂

∂θ
ln f (Yi, θ0)→d N (0,Ω) .

The analysis of the sample Hessian is somewhat more complicated due to the presence of θn. Let
H(θ) = − ∂2

∂θ∂θ0
ln f (Yi, θ) . If it is continuous in θ, then since θn →p θ0 we find H(θn) →p H and

so

− 1
n

nX
i=1

∂2

∂θ∂θ0
ln f (Yi, θn) =

1

n

nX
i=1

µ
− ∂2

∂θ∂θ0
ln f (Yi, θn)−H(θn)

¶
+H(θn)

→p H

by an application of a uniform WLLN. Together,

√
n
³
θ̂ − θ0

´
→d H

−1N (0,Ω) = N
¡
0,H−1ΩH−1¢ = N

¡
0,H−1¢ ,

the final equality using Theorem A.9.1 . ¥
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Appendix B

Numerical Optimization

Many econometric estimators are defined by an optimization problem of the form

θ̂ = argmin
θ∈Θ

Q(θ) (B.1)

where the parameter is θ ∈ Θ ⊂ Rm and the criterion function is Q(θ) : Θ → R. For example
NLLS, GLS, MLE and GMM estimators take this form. In most cases, Q(θ) can be computed
for given θ, but θ̂ is not available in closed form. In this case, numerical methods are required to
obtain θ̂.

B.1 Grid Search

Many optimization problems are either one dimensional (m = 1) or involve one-dimensional op-
timization as a sub-problem (for example, a line search). In this context grid search may be
employed.

Grid Search. Let Θ = [a, b] be an interval. Pick some ε > 0 and set G = (b − a)/ε
to be the number of gridpoints. Construct an equally spaced grid on the region [a, b] with G
gridpoints, which is {θ(j) = a + j(b − a)/G : j = 0, ..., G}. At each point evaluate the criterion
function and find the gridpoint which yields the smallest value of the criterion, which is θ(ĵ)
where ĵ = argmin0≤j≤GQ(θ(j)). This value θ(ĵ) is the gridpoint estimate of θ̂. If the grid is
sufficiently fine to capture small oscillations in Q(θ), the approximation error is bounded by ε,

that is,
¯̄̄
θ(ĵ)− θ̂

¯̄̄
≤ ε. Plots of Q(θ(j)) against θ(j) can help diagnose errors in grid selection. This

method is quite robust but potentially costly.
Two-Step Grid Search. The gridsearch method can be refined by a two-step execution. For

an error bound of ε pick G so that G2 = (b − a)/ε For the first step define an equally spaced
grid on the region [a, b] with G gridpoints, which is {θ(j) = a + j(b − a)/G : j = 0, ..., G}.
At each point evaluate the criterion function and let ĵ = argmin0≤j≤GQ(θ(j)). For the second
step define an equally spaced grid on [θ(ĵ− 1), θ(ĵ+ 1)] with G gridpoints, which is {θ0(k) =
θ(ĵ − 1) + 2k(b − a)/G2 : k = 0, ..., G}. Let k̂ = argmin0≤k≤GQ(θ0(k)). The estimate of θ̂ is
θ0(k̂). The advantage of the two-step method over a one-step grid search is that the number of
function evaluations has been reduced from (b − a)/ε to 2

p
(b− a)/ε which can be substantial.

The disadvantage is that if the function Q(θ) is irregular, the first-step grid may not bracket θ̂
which thus would be missed.
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B.2 Gradient Methods

Gradient Methods are iterative methods which produce a sequence θi : i = 1, 2, ... which are de-
signed to converge to θ̂. All require the choice of a starting value θ1, and all require the computation
of the gradient of Q(θ)

g(θ) =
∂

∂θ
Q(θ)

and some require the Hessian

H(θ) =
∂2

∂θ∂θ0
Q(θ).

If the functions g(θ) andH(θ) are not analytically available, they can be calculated numerically.
Take the j0th element of g(θ). Let δj be the j0th unit vector (zeros everywhere except for a one in
the j0th row). Then for ε small

gj(θ) '
Q(θ + δjε)−Q(θ)

ε
.

Similarly,

gjk(θ) '
Q(θ + δjε+ δkε)−Q(θ + δkε)−Q(θ + δjε) +Q(θ)

ε2

In many cases, numerical derivatives can work well but can be computationally costly relative to
analytic derivatives. In some cases, however, numerical derivatives can be quite unstable.

Most gradient methods are a variant of Newton’s method which is based on a quadratic
approximation. By a Taylor’s expansion for θ close to θ̂

0 = g(θ̂) ' g(θ) +H(θ)
³
θ̂ − θ

´
which implies

θ̂ = θ −H(θ)−1g(θ).

This suggests the iteration rule
θ̂i+1 = θi −H(θi)

−1g(θi).

where
One problem with Newton’s method is that it will send the iterations in the wrong direction if

H(θi) is not positive definite. One modification to prevent this possibility is quadratic hill-climbing
which sets

θ̂i+1 = θi − (H(θi) + αiIm)
−1 g(θi).

where αi is set just above the smallest eigenvalue of H(θi) if H(θ) is not positive definite.
Another productive modification is to add a scalar steplength λi. In this case the iteration

rule takes the form
θi+1 = θi −Digiλi (B.2)

where gi = g(θi) and Di = H(θi)
−1 for Newton’s method and Di = (H(θi) + αiIm)

−1 for quadratic
hill-climbing.

Allowing the steplength to be a free parameter allows for a line search, a one-dimensional
optimization. To pick λi write the criterion function as a function of λ

Q(λ) = Q(θi +Digiλ)
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a one-dimensional optimization problem. There are two common methods to perform a line search.
A quadratic approximation evaluates the first and second derivatives of Q(λ) with respect to
λ, and picks λi as the value minimizing this approximation. The half-step method considers the
sequence λ = 1, 1/2, 1/4, 1/8, ... . Each value in the sequence is considered and the criterion
Q(θi +Digiλ) evaluated. If the criterion has improved over Q(θi), use this value, otherwise move
to the next element in the sequence.

Newton’s method does not perform well if Q(θ) is irregular, and it can be quite computationally
costly if H(θ) is not analytically available. These problems have motivated alternative choices for
the weight matrix Di. These methods are called Quasi-Newton methods. Two popular methods
are do to Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS).

Let

∆gi = gi − gi−1

∆θi = θi − θi−1

and . The DFP method sets

Di = Di−1 +
∆θi∆θ

0
i

∆θ0i∆gi
+

Di−1∆gi∆g0iDi−1
∆g0iDi−1∆gi

.

The BFGS methods sets

Di = Di−1 +
∆θi∆θ

0
i

∆θ0i∆gi
− ∆θi∆θ

0
i¡

∆θ0i∆gi
¢2∆g0iDi−1∆gi +

∆θi∆g
0
iDi−1

∆θ0i∆gi
+

Di−1∆gi∆θ
0
i

∆θ0i∆gi
.

For any of the gradient methods, the iterations continue until the sequence has converged in
some sense. This can be defined by examining whether |θi − θi−1| , |Q (θi)−Q (θi−1)| or |g(θi)|
has become small.

B.3 Derivative-Free Methods

All gradient methods can be quite poor in locating the global minimum when Q(θ) has several
local minima. Furthermore, the methods are not well defined when Q(θ) is non-differentiable. In
these cases, alternative optimization methods are required. One example is the simplex method
of Nelder-Mead (1965).

A more recent innovation is the method of simulated annealing (SA). For a review see
Goffe, Ferrier, and Rodgers (1994). The SA method is a sophisticated random search. Like the
gradient methods, it relies on an iterative sequence. At each iteration, a random variable is drawn
and added to the current value of the parameter. If the resulting criterion is decreased, this new
value is accepted. If the criterion is increased, it may still be accepted depending on the extent of
the increase and another randomization. The latter property is needed to keep the algorithm from
selecting a local minimum. As the iterations continue, the variance of the random innovations
is shrunk. The SA algorithm stops when a large number of iterations is unable to improve the
criterion. The SA method has been found to be successful at locating global minima. The downside
is that it can take considerable computer time to execute.
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