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Preface

This is an introductory textbook dealing with the design and analysis of experiments. It
is based on college-level courses in design of experiments that I have taught for over 25
years at Arizona State University, the University of Washington, and the Georgia Institute
of Technology. 1t also reflects the methods that I have found useful in my own profes-
sional practice as an engineering and statistical consultant in the general areas of product
and process design, process improvement, and quality engineering.

The book is intended for students who have completed a first course in statistical
methods. This background course should include at least some techniques of descriptive
statistics, the normal distribution, and an introduction to basic concepts of confidence
intervals and hypothesis testing for means and variances. Chapters 10 and 11 require
some familiarity with matrix algebra.

Because the prerequisites are relatively modest, this book can be used in a second
course on statistics focusing on statistical design of experiments for undergraduate stu-
dents in engineering, the physical and chemical sciences, mathematics, and other fields
of science. For many years I have taught a course from the book at the first-year graduate
level in engineering. Students in this course come from all the traditional fields of en-
gineering, physics, chemistry, mathematics, operations research, and statistics. I have
also used this book as the basis of an industrial short course on design of experiments
for practicing technical professionals with a wide variety of backgrounds. There are
numerous examples iflustrating all of the design and analysis techniques. These examples
are based on real-world applications of experimental design and are drawn from many
different fields of engineering and the sciences. This adds a strong applications flavor to
an academic course for engineers and scientists and makes the book useful as a reference
tool for experimenters in a variety of disciplines.

ABOUT THE BOOK

The fifth edition is a major revision of the book. I have tried to maintain the balance
between design and analysis topics of previous editions; however, there are many new
topics and examples, and I have reorganized much of the material. There is much more
emphasis on the computer in this edition. During the last few years a number of excellent
software products to assist experimenters in both the design and analysis phases of this
subject have appeared. I have included output from two of these products, Minitab and
Design-Expert, at many points in the text. Minitab is a widely available general-purpose
statistical software package that has good data analysis capabilities, and which handles
the analysis of experiments with both fixed and random factors (including the mixed
model) quite nicely. Design-Expert is a package focused exclusively on experimental
design. It has many capabilities for construction and evaluation of designs and extensive
analysis features. A student version of Design-Expert is available with this book, and its
use is highly recommended. I urge all instructors who use this book to incorporate com-
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v PREFACE

puter software into your course. (In my course, I bring a laptop computer and an overhead
display panel to every lecture, and every design or analysis topic discussed in class is
illustrated with the computer.)

I have increased the emphasis on the connection between the experiment and the
model that the experimenter can develop from the results of the experiment. Engineers
(and physical and chemical scientists to a large extent) learn about physical mechanisms
and their underlying mechanistic models early in their academic training, and throughout
much of their professional careers they are involved with manipulation of these models.
Statistically designed experiments offer the engineer a valid basis for developing an
empirical model of the system being investigated. This empirical model can then be
manipulated (perhaps through a response surface or contour plot, or perhaps mathemat-
ically) just as any other engineering model. I have discovered through many years of
teaching that this viewpoint is very effective in creating enthusiasm in the engineering
community for statistically designed experiments. Therefore, the notion of an underlying
empirical model for the experiment and response surfaces appears early in the book and
receives much more emphasis.

I have also made an effort to get the reader to the critical topics involving factorial
designs much faster. To facilitate this, the introductory material on completely random-
ized single-factor experiments and the analysis of variance has been condensed into a
single chapter (Chapter 3). I have expanded the material on factorial and fractional fac-
torial designs (Chapters 5-9) in an effort to make the material flow more effectively
from both the reader’s and the instructor’s viewpoint and to place more emphasis on the
empirical model. The chapter on response surfaces (Chapter 11) immediately follows the
material on factorial and fractional factorial designs and regression modeling. I have
expanded this chapter, adding new material on alphabetically optimal designs, experi-
ments with mixtures, and the robust parameter design problem. Chapters 12 and 13
discuss experiments involving random effects and some applications of these concepts
to nested and split-plot designs. Chapter 14 is an overview of important design and
analysis topics: nonnormality of the response, the Box—Cox method for selecting the
form of a transformation, and other alternatives; unbalanced factorial experiments; the
analysis of covariance, including covariates in a factorial design, and repeated measures.

Throughout the book I have stressed the importance of experimental design as a tool
for practicing engineers to use for product design and development as well as process
development and improvement. The use of experimental design in developing products
that are robust to environmental factors and other sources of variability is illustrated. I
believe that the use of experimental design early in the product cycle can substantially
reduce development lead time and cost, leading to processes and products that perform
better in the field and have higher reliability than those developed using other approaches.

The book contains more material than can be covered comfortably in one course,
and I hope that instructors will be able to either vary the content of each course offering
or discuss some topics in greater depth, depending on class interest. There are problem
sets at the end of each chapter (except Chapter 1). These problems vary in scope from
computational exercises, designed to reinforce the fundamentals, to extensions or elab-
oration of basic principles.

My own course focuses extensively on factorial and fractional factorial designs.
Consequently, I usually cover Chapter 1, Chapter 2 (very quickly), most of Chapter 3,
Chapter 4 (excluding the material on incomplete blocks and only mentioning Latin
squares briefly), and I discuss Chapters 5 through 8 on factorials and two-level factorial
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and fractional factorial designs in detail. To conclude the course, 1 introduce response
surface methodology (Chapter 11) and give an overview of random effects models (Chap-
ter 12) and nested and split-plot designs (Chapter 13). I always require the students to
complete a term project that involves designing, conducting, and presenting the results
of a statistically designed experiment. I require them to do this in teams, because this is
the way that much industrial experimentation is conducted. They must present the results
of this project, both orally and in written form.

THE SUPPLEMENTAL TEXT MATERIAL

For the fifth edition I have prepared supplemental text material for each chapter of the
book. Often, this supplemental material elaborates on topics that could not be discussed
in greater detail in the book. I have also presented some subjects that do not appear
directly in the book, but an introduction to them could prove useful to some students and
professional practitioners. Some of this material is at a higher mathematical level than
the text. I realize that instructors use this book with a wide array of audiences, and some
more advanced design courses could possibly benefit from including several of the sup-
plemental text material topics. This material is in electronic form on the Instructor’s
CD/ROM and is on the World Wide Web site for this book.

WEB SITE

Current supporting material for instructors and students is available at the Web site
www.wiley.com/college/montgomery. This site will be used to communicate information
about innovations and recommendations for effectively using this text. The supplemental
text material described above is available at the site, along with electronic versions of
data sets used for examples and homework problems, a course syllabus, a complete set
of Power Point lecture slides created by the author, and student term projects from the
course at Arizona State University.
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& Sons, Prentice-Hall, The American Statistical Association, The Institute of Mathe-
matical Statistics, and the editors of Biometrics for permission to use copyrighted ma-
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Introduction

1-1 STRATEGY OF EXPERIMENTATION

Experiments are performed by investigators in virtually all fields of inquiry, usually to
discover something about a particular process or system. Literally, an experiment is a
test. More formally, we can define an experiment as a test or series of tests in which
purposeful changes are made to the input variables of a process or system so that we may
observe and identify the reasons for changes that may be observed in the output response.

This book is about planning and conducting experiments and about analyzing the
resulting data so that valid and objective conclusions are obtained. Our focus is on ex-
periments in the engineering, physical, and chemical sciences. In engineering, experi-
mentation plays an important role in new product design, manufacturing process
development, and process improvement. The objective in many cases may be to develop
a robust process, that is, a process affected minimally by external sources of variability.

As an example of an experiment, suppose that a metallurgical engineer is interested
in studying the effect of two different hardening processes, oil quenching and saltwater
quenching, on an aluminum alloy. Here the objective of the experimenter is to determine
which quenching solution produces the maximum hardness for this particular alloy. The
engineer decides to subject a number of alloy specimens or test coupons to each quench-
ing medium and measure the hardness of the specimens after quenching. The average
hardness of the specimens treated in each quenching solution will be used to determine
which solution is best.

As we consider this simple experiment, a number of important questions come to
mind:

1. Are these two solutions the only quenching media of potential interest?

2. Are there any other factors that might affect hardness that should be investigated
or controlled in this experiment?

3. How many coupons of alloy should be tested in each quenching solution?

4. How should the test coupons be assigned to the quenching solutions, and in what

order should the data be collected?
1



2 CHAPTER 1 INTRODUCTION

5. 'What method of data analysis should be used?

6. What difference in average observed hardness between the two quenching media
will be considered important?

All of these questions, and perhaps many others, will have to be answered satisfactorily
before the experiment is performed.

In any experiment, the results and conclusions that can be drawn depend to a large
extent on the manner in which the data were collected. To illustrate this point, suppose
that the metallurgical engineer in the above experiment used specimens from one heat
in the oil quench and specimens from a second heat in the saltwater quench. Now, when
the mean hardness is compared, the engineer is unable to say how much of the observed
difference is the result of the quenching media and how much is the result of inherent
differences between the heats.! Thus, the method of data collection has adversely affected
the conclusions that can be drawn from the experiment.

In general, experiments are used to study the performance of processes and systems.
The process or system can be represented by the model shown in Figure 1-1. We can
usually visualize the process as a combination of machines, methods, people, and other
resources that transforms some input (often a material) into an output that has one or
more observable responses. Some of the process variables x;, x,, . . . , X, are controllable,
whereas other variables z,, z,, . . ., z, are uncontrollable (although they may be control-
lable for purposes of a test). The objectives of the experiment may include the following:

1. Determining which variables are most influential on the response y

2. Determining where to set the influential x’s so that y is almost always near the
desired nominal value

3. Determining where to set the influential x’s so that variability in y is small.

4. Determining where to set the influential x’s so that the effects of the
uncontrollable variables z;, z,, . . . , z, are minimized.

As you can see from the foregoing discussion, experiments often involve several
factors. Usually, an objective of the person conducting the experiment, called the ex-
perimenter, is to determine the influence that these factors have on the output response

Controllable factors

Xy X, xp

Inputs Output
—_— Process —>y
21 22 Zq

Uncontrollable factors

Figure 1-1 General model of a process or
system.

! A specialist in experimental design would say that the effects of quenching media and heat were confounded; that
is, the effects of these two factors cannot be separated.



1-1 STRATEGY OF EXPERIMENTATION 3

of the system. The general approach to planning and conducting the experiment is called
the strategy of experimentation. There are several strategies that an experimenter could
use. We will illustrate some of these with a very simple example.

The author really likes to play golf. Unfortunately, he does not enjoy practicing, so
he is always looking for a simpler solution to lowering his score. Some of the factors
that he thinks may be important, or that may influence his golf score, are as follows:

The type of driver used (oversized or regular-sized)

The type of ball used (balata or three-piece)

Walking and carrying the golf clubs or riding in a golf cart
Drinking water or drinking beer while playing

Playing in the morning or playing in the afternoon

Playing when it is cool or playing when it is hot

The type of golf shoe spike worn (metal or soft)

NN R W

Playing on a windy day or playing on a calm day

There are obviously many other factors that could be considered, but let’s assume that
these are the ones of primary interest. Furthermore, based on long experience with the
game, he decides that factors 5 through 8 can be ignored; that is, these factors are not
important because their effects are so small that they have no practical value. Engineers
and scientists often must make these types of decisions about some of the factors they
are considering in real experiments.

Now, let’s consider how factors 1 through 4 could be experimentally tested to de-
termine their effect on the author’s golf score. Suppose that a maximum of eight rounds
of golf can be played over the course of the experiment. One approach would be to select
an arbitrary combination of these factors, test them, and see what happens. For example,
suppose the oversized driver, balata ball, golf cart, and water combination is selected,
and the resulting score is 87. During the round, however, the author noticed several
wayward shots with the big driver (long is not always good in golf), and, as a result, he
decides to play another round with the regular-sized driver, holding the other factors at
the same levels used previously. This approach could be continued almost indefinitely,
switching the levels of one (or perhaps two) factors for the next test, based on the outcome
of the current test. This strategy of experimentation, which we call the best-guess ap-
proach, is used frequently in practice by engineers and scientists. It often works reason-
ably well, too, because the experimenters often have a great deal of technical or
theoretical knowledge of the system they are studying, as well as considerable practical
experience. There are, however, at least two disadvantages of the best-guess approach.
First, suppose the initial best-guess does not produce the desired results. Now the ex-
perimenter has to take another guess at the correct combination of factor levels. This
could continue for a long time, without any guarantee of success. Second, suppose the
initial best-guess produces an acceptable result. Now the experimenter is tempted to stop
testing, although there is no guarantee that the best solution has been found.

Another strategy of experimentation that is used extensively in practice is the one-
factor-at-a-time approach. This method consists of selecting a starting point, or baseline
set of levels, for each factor, then successively varying each factor over its range with
the other factors held constant at the baseline level. After all tests are performed, a series
of graphs are usually constructed showing how the response variable is affected by vary-
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Figure 1.2 Results of the one-factor-at-a-time strategy for the golf experiment.

ing each factor with all other factors held constant. Figure 1-2 shows a set of these graphs
for the golf experiment, using the oversized driver, balata ball, walking, and drinking
water levels of the four factors as the baseline. The interpretation of this graph is straight-
forward; for example, because the slope of the mode of travel curve is negative, we
would conclude that riding improves the score. Using these one-factor-at-a-time graphs,
we would select the optimal combination to be the regular-sized driver, riding, and drink-
ing water. The type of golf ball seems unimportant.

The major disadvantage of the one-factor-at-a-time strategy is that it fails to consider
any possible interaction between the factors. An interaction is the failure of the one
factor to produce the same effect on the response at different levels of another factor.
Figure 1-3 shows an interaction between the type of driver and the beverage factors for
the golf experiment. Notice that if the author uses the regular-sized driver, the type of
beverage consumed has virtually no effect on his score, but if he uses the oversized
driver, much better results are obtained by drinking water instead of beer. Interactions
between factors are very common, and if they occur, the one-factor-at-a-time strategy
will usually produce poor results. Many people do not recognize this, and, consequently,
one-factor-at-a-time experiments are run frequently in practice. (Some individuals actu-
ally think that this strategy is related to the scientific method or that it is a ‘‘sound”’
engineering principle.) One-factor-at-a-time experiments are always less efficient than
other methods based on a statistical approach to design. We will discuss this in more
detail in Chapter 5. _

The correct approach to dealing with several factors is to conduct a factorial ex-
periment. This is an experimental strategy in which factors are varied together, instead
of one at a time. The factorial experimental design concept is extremely important, and
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Figure 1-3 Interaction betweentype  Figure 1-4 A two-factor factorial exper-
of driver and type of beverage for the  iment involving type of driver and type of
golf experiment. ball.



1-1 STRATEGY OF EXPERIMENTATION 5

several chapters in this book are devoted to presenting basic factorial experiments and a
number of useful variations and special cases.

To illustrate how a factorial experiment is conducted, consider the golf experiment
and suppose that only two factors, type of driver and type of ball, are of interest. Figure
1-4 shows a two-factor factorial experiment for studying the joint effects of these two
factors on the author’s golf score. Notice that this factorial experiment has both factors
at two levels and that all possible combinations of the two factors across their levels are
used in the design. Geometrically, the four runs form the corners of a square. This
particular type of factorial experiment is called a 22 factorial design (two factors, each
at two levels). Because the author can reasonably expect to play eight rounds of golf to
investigate these factors, a reasonable plan would be to play two rounds of golf at each
combination of factor levels shown in Figure 1-4. An experimental designer would say
that we have replicated the design twice. This experimental design would enable the
experimenter to investigate the individual effects of each factor (or the main effects) and
to determine whether the factors interact.

Figure 1-5a shows the results of performing the factorial experiment in Figure 1-4.
The scores from each round of golf played at the four test combinations are shown at
the comers of the square. Notice that there are four rounds of golf that provide infor-
mation about using the regular-sized driver and four rounds that provide information
about using the oversized driver. By finding the average difference in the scores on the
right- and left-hand sides of the square (as in Figure 1-5b), we have a measure of the
effect of switching from the oversized driver to the regular-sized driver, or
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Figure 1-5 Scores from the golf experiment in Figure 1-4 and calculation of the factor effects.
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That is, on average, switching from the oversized to the regular-sized driver increases
the score by 3.25 strokes per round. Similarly, the average difference in the four scores
at the top of the square and the four scores at the bottom measure the effect of the type
of ball used (see Figure 1-5¢):

88 +91 +92+94 88+ 90+ 93+ 91

Ball Effect =
a ec 1 2

= 0.75

Finally, a measure of the interaction effect between the type of ball and the type of driver
can be obtained by subtracting the average scores on the left-to-right diagonal in the
square from the average scores on the right-to-left diagonal (see Figure 1-5d), resulting
in

92 + 94 + 8 +90 88 + 91 +93 + 91
4 4

Ball-Driver Interaction Effect =

= 0.25

The results of this factorial experiment indicate that driver effect is larger than either
the ball effect or the interaction. Statistical testing could be used to determine whether
any of these effects differ from zero. In fact, it turns out that there is reasonably strong
statistical evidence that the driver effect differs from zero and the other two effects do
not. Therefore, perhaps the author should always play with the oversized driver.

One very important feature of the factorial experiment is evident from this simple
example; namely, factorials make the most efficient use of the experimental data. Notice
that this experiment included eight observations, and all eight observations are used to
calculate the driver, the ball, and interaction effects. No other strategy of experimentation
makes so efficient use of the data. This is an important and useful feature of factorials.

We can extend the factorial experiment concept to three factors. Suppose that the
author wishes to study the effects of type of driver, type of ball, and the type of beverage
consumed on his golf score. Assuming that all three factors have two levels, a factorial
design can be set up as shown in Figure 1-6. Notice that there are eight test combinations
of these three factors across the two levels of each and that these eight trials can be
represented geometrically as the corners of a cube. This is an example of a 2* factorial
design. Because the author only wants to play eight rounds of golf, this experiment would
require that one round be played at each combination of factors represented by the eight
corners of the cube in Figure 1-6. However, if we compare this to the two-factor factorial
in Figure 1-4, the 2° factorial design would provide the same information about the factor
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Figure 1-6 A three-factor factorial experiment involving
type of driver, type of ball, and type of beverage.
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Figure 1-7 A four-factor factorial experiment involving type of driver, type of
ball, type of beverage, and mode of travel.

effects. For example, in both designs there are four tests that provide information about
the regular-sized driver and four tests that provide information about the oversized driver,
assuming that each run in the two-factor design in Figure 1-4 is replicated twice.

Figure 1-7 illustrates how all four factors—driver, ball, beverage, and mode of travel
(walking or riding)—could be investigated in a 2* factorial design. As in any factorial
design, all possible combinations of the levels of the factors are used. Because all four
factors are at two levels, this experimental design can still be represented geometrically
as a cube (actually a hypercube).

Generally, if there are k factors, each at two levels, the factorial design would require
2* runs. For example, the experiment in Figure 1-7 requires 16 runs. Clearly, as the
number of factors of interest increases, the number of runs required increases rapidly;
for instance, a 10-factor experiment with all factors at two levels would require 1024
runs. This quickly becomes infeasible from a time and resource viewpoint. In the golf
experiment, the author can only play eight rounds of golf, so even the experiment in
Figure 1-7 is too large.

Fortunately, if there are four to five or more factors, it is usually unnecessary to run
all possible combinations of factor levels. A fractional factorial experiment is a vari-
ation of the basic factorial design in which only a subset of the runs are made. Figure
1-8 shows a fractional factorial design for the four-factor version of the golf experiment.
This design requires only 8 runs instead of the original 16 and would be called a one-
half fraction. If the author can only play eight rounds of golf, this is an excellent design
in which to study all four factors. It will provide good information about the main effects
of the four factors as well as some information about how these factors interact.

Fractional factorial designs are used extensively in industrial research and devel-
opment, and for process improvement. These designs will be discussed in Chapter 8.
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Figure 1-8 A four-factor fractional factorial experiment involving type of driver,
type of ball, type of beverage, and mode of travel.
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1-2 SOME TYPICAL APPLICATIONS OF EXPERIMENTAL DESIGN

Experimental design methods have found broad application in many disciplines. In fact,
we may view experimentation as part of the scientific process and as one of the ways
we learn about how systems or processes work. Generally, we learn through a series of
activities in which we make conjectures about a process, perform experiments to generate
data from the process, and then use the information from the experiment to establish new
conjectures, which lead to new experiments, and so on.

Experimental design is a critically important tool in the engineering world for im-
proving the performance of a manufacturing process. It also has extensive application in
the development of new processes. The application of experimental design techniques
early in process development can result in

1. Improved process yields

2. Reduced variability and closer conformance to nominal or target requirements
3. Reduced development time

4. Reduced overall costs

Experimental design methods also play a major role in engineering design activities,
where new products are developed and existing ones improved. Some applications of
experimental design in engineering design include

1. Evaluation and comparison of basic design configurations
2, Evaluation of material alternatives

3. Selection of design parameters so that the product will work well under a wide
variety of field conditions, that is, so that the product is robust

4. Determination of key product design parameters that impact product
performance

The use of experimental design in these areas can result in products that are easier to
manufacture, products that have enhanced field performance and reliability, lower prod-
uct cost, and shorter product design and development time. We now present several
examples that illustrate some of these ideas.

EXAMPLE 1-1 ccccvettscosesaaesstocacnnnasns

Characterizing a Process
A flow solder machine is used in the manufacturing process for printed circuit boards.
The machine cleans the boards in a flux, preheats the boards, and then moves them along
a conveyor through a wave of molten solder. This solder process makes the electrical
and mechanical connections for the leaded components on the board.

The process currently operates around the 1 percent defective level. That is, about
1 percent of the solder joints on a board are defective and require manual retouching.
However, because the average printed circuit board contains over 2000 solder joints,
even a 1 percent defective level results in far too many solder joints requiring rework.
The process engineer responsible for this area would like to use a designed experiment
to determine which machine parameters are influential in the occurrence of solder defects
and which adjustments should be made to those variables to reduce solder defects.
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The flow solder machine has several variables that can be controlled. They include

. Solder temperature
Preheat temperature
Conveyor speed
Flux type

.

Flux specific gravity

S M AW N

Solder wave depth
7. Conveyor angle

In addition to these controllable factors, there are several other factors that cannot be
easily controlled during routine manufacturing, although they could be controlled for the
purposes of a test. They are

1. Thickness of the printed circuit board
2. Types of components used on the board
3. Layout of the components on the board
4. Operator

5. Production rate

In this situation, the engineer is interested in characterizing the flow solder machine;
that is, he wants to determine which factors (both controllable and uncontrollable) affect
the occurrence of defects on the printed circuit boards. To accomplish this, he can design
an experiment that will enable him to estimate the magnitude and direction of the factor
effects; that is, how much does the response variable (defects per unit) change when each
factor is changed, and does changing the factors together produce different results than
are obtained from individual factor adjustments—that is, do the factors interact? Some-
times we call an experiment such as this a screening experiment. Typically, screening
or characterization experiments involve using fractional factorial designs, such as in the
golf example in Figure 1-8.

The information from this screening or characterization experiment will be used to
identify the critical process factors and to determine the direction of adjustment for these
factors to reduce further the number of defects per unit. The experiment may also provide
information about which factors should be more carefully controlled during routine man-
ufacturing to prevent high defect levels and erratic process performance. Thus, one result
of the experiment could be the application of techniques such as control charts to one or
more process variables (such as solder temperature), in addition to control charts on
process output. Over time, if the process is improved enough, it may be possible to base
most of the process control plan on controlling process input variables instead of control
charting the output.
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EXAMPLE 1.2 +vv--- Ceteteeesicecieattttatetttacanessoraas
Optimizing a Process

In a characterization experiment, we are usually interested in determining which process
variables affect the response. A logical next step is to optimize, that is, to determine the
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region in the important factors that leads to the best possible response. For example, if
the response is yield, we would look for a region of maximum yield, whereas if the
response is variability in a critical product dimension, we would seek a region of mini-
mum variability.

Suppose that we are interested in improving the yield of a chemical process. We
know from the results of a characterization experiment that the two most important
process variables that influence the yield are operating temperature and reaction time.
The process currently runs at 145°F and 2.1 hours of reaction time, producing yields of
around 80 percent. Figure 1-9 shows a view of the time—temperature region from above.
In this graph, the lines of constant yield are connected to form response contours, and
we have shown the contour lines for yields of 60, 70, 80, 90, and 95 percent. These
contours are projections on the time—temperature region of cross sections of the yield
surface corresponding to the aforementioned percent yields. This surface is sometimes
called a response surface. The true response surface in Figure 1-9 is unknown to the
process personnel, so experimental methods will be required to optimize the yield with
respect to time and temperature.

To locate the optimum, it is necessary to perform an experiment that varies time and
temperature together, that is, a factorial experiment. The results of an initial factorial
experiment with both time and temperature run at two levels is shown in Figure 1-9. The
responses observed at the four comers of the square indicate that we should move in the
general direction of increased temperature and decreased reaction time to increase yield.
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Figure 1-9 Contour plot of yield as a function of reaction time
and reaction temperature, illustrating experimentation to optimize a
process.
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A few additional runs would be performed in this direction, and this additional experi-
mentation would lead us to the region of maximum yield.

Once we have found the region of the optimum, a second experiment would typically
be performed. The objective of this second experiment is to develop an empirical model
of the process and to obtain a more precise estimate of the optimum operating conditions
for time and temperature. This approach to process optimization is called response sur-
face methodology, and it is explored in detail in Chapter 11. The second design illus-
trated in Figure 1-9 is a central composite design, one of the most important
experimental designs used in process optimization studies.

EXAMPLE 1.3 vvvcccscccascccctocccsccannss B

A Product Design Example

Experimental design methods can often be applied to the product design process. To
illustrate, suppose that a group of engineers is designing a door hinge for an automobile.
The quality characteristic of interest is the check effort, or the holding ability of the door
latch that prevents the door from swinging closed when the vehicle is parked on a hill.
The check mechanism consists of a leaf spring and a roller. When the door is opened,
the roller travels through an arc, causing the leaf spring to be compressed. To close the
door, the spring must be forced aside, and this creates the check effort. The engineering
team thinks that check effort is a function of the following factors:

Roller travel distance

Spring height from pivot to base
Horizontal distance from pivot to spring
Free height of the reinforcement spring

Nk wh =

Free height of the main spring

The engineers can build a prototype hinge mechanism in which all of these factors
can be varied over certain ranges. Once appropriate levels for these five factors have
been identified, an experiment can be designed consisting of various combinations of the
factor levels, and the prototype hinge can be tested at these combinations. This will
produce information concerning which factors are most influential on the latch check
effort, and through analysis of this information, the latch design can be improved.

1-3 BASIC PRINCIPLES

If an experiment such as the ones described in Examples 1-1 through 1-3 is to be per-
formed most efficiently, a scientific approach to planning the experiment must be em-
ployed. Statistical design of experiments refers to the process of planning the
experiment so that appropriate data that can be analyzed by statistical methods will be
collected, resulting in valid and objective conclusions. The statistical approach to exper-
imental design is necessary if we wish to draw meaningful conclusions from the data.
When the problem involves data that are subject to experimental errors, statistical meth-
odology is the only objective approach to analysis. Thus, there are two aspects to any
experimental problem: the design of the experiment and the statistical analysis of the
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data. These two subjects are closely related because the method of analysis depends
directly on the design employed. Both topics will be addressed in this book.

The three basic principles of experimental design are replication, randomization,
and blocking. By replication we mean a repetition of the basic experiment. In the met-
allurgical experiment discussed in Section 1-1, replication would consist of treating a
specimen by oil quenching and treating a specimen by saltwater quenching. Thus, if five
specimens are treated in each quenching medium, we say that five replicates have been
obtained. Replication has two important properties. First, it allows the experimenter to
obtain an estimate of the experimental error. This estimate of error becomes a basic unit
of measurement for determining whether observed differences in the data are really sta-
tistically different. Second, if the sample mean (e.g., y) is used to estimate the effect of
a factor in the experiment, replication permits the experimenter to obtain a more precise
estimate of this effect. For example; if o is the variance of an individual observation
and there are n replicates, the variance of the sample mean is

0.2
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a

The practical implication of this is that if we had n = 1 replicates and observed
y1 = 145 (oil quench) and y, = 147 (saltwater quench), we would probably be unable
to make satisfactory inferences about the effect of the quenching medium—that is, the
observed difference could be the result of experimental error. On the other hand, if n
was reasonably large, and the experimental error was sufficiently small and if we ob-
served y; < y,, we would be reasonably safe in concluding that saltwater quenching
produces a higher hardness in this particular aluminum alloy than does oil quenching.

There is an important distinction between replication and repeated measurements.
For example, suppose that a silicon wafer is etched in a single-wafer plasma etching
process, and a critical dimension on this wafer is measured three times. These measure-
ments are not replicates; they are a form of repeated measurements, and in this case, the
observed variability in the three repeated measurements is a direct reflection of the in-
herent variability in the measurement system or gauge. As another illustration, suppose
that as part of an experiment in semiconductor manufacturing, four wafers are processed
simultaneously in an oxidation furnace at a particular gas flow rate and time and then a
measurement is taken on the oxide thickness of each wafer. Once again, the measurement
on the four wafers are not replicates but repeated measurements. In this case they reflect
differences among the wafers and other sources of variability within that particular fur-
nace run. Replication reflects sources of variability both between runs and (potentially)
within runs.

Randomization is the cornerstone underlying the use of statistical methods in ex-
perimental design. By randomization we mean that both the allocation of the experi-
mental material and the order in which the individual runs or trials of the experiment are
to be performed are randomly determined. Statistical methods require that the observa-
tions (or errors) be independently distributed random variables. Randomization usually
makes this assumption valid. By properly randomizing the experiment, we also assist in
“‘averaging out’’ the effects of extraneous factors that may be present. For example,
suppose that the specimens in the above experiment are of slightly different thicknesses
and that the effectiveness of the quenching medium may be affected by specimen thick-
ness. If all the specimens subjected to the oil quench are thicker than those subjected to
the saltwater quench, we may be introducing systematic bias into the experimental results.
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This bias handicaps one of the quenching media and consequently invalidates our results.
Randomly assigning the specimens to the quenching media alleviates this problem.

Computer software programs are widely used to assist experimenters in selecting
and constructing experimental designs. These programs often present the runs in the
experimental design in random order. This random order is usually created by using a
random number generator. Even with such a computer program, it is still often necessary
to assign experimental material (such as the wafers in the semiconductor examples men-
tioned above), operators, gauges or measurement devices, and so forth, for use in the
experiment. Tables of random numbers can be used to ensure that random assignments
are made.

Sometimes experimenters encounter situations where randomization of some aspect
of the experiment is difficult. For example, in a chemical process, temperature may be a
very hard-to-change variable, making complete randomization of this factor almost
impossible. There are statistical design methods for dealing with restrictions on random-
ization. Some of these approaches will be discussed in subsequent chapters (see in par-
ticular, Chapter 13).

Blocking is a design technique used to improve the precision with which compari-
sons among the factors of interest are made. Often blocking is used to reduce or eliminate
the variability transmitted from nuisance factors; that is, factors that may influence the
experimental response but in which we are not directly interested. For example, an ex-
periment in a chemical process may require two batches of raw material to make all the
required runs. However, there could be differences between the batches due to supplier-
to-supplier variability, and if we are not specifically interested in this effect, we would
think of the batches of raw material as a nuisance factor. Generally, a block is a set of
relatively homogeneous experimental conditions. In the chemical process example, each
batch of raw material would form a block, because the variability within a batch would
be expected to be smaller than the variability between batches. Typically, as in this
example, each level of the nuisance factor becomes a block. Then the experimenter
divides the observations from the statistical design into groups that are run in each block.
We study blocking in detail in several places in the text, including Chapters 4, 5, 7, 8,
9, 11, and 13. A simple example illustrating the blocking principal is given in Chapter
2, Section 2-5.1.

The three basic principles of experimental design, randomization, replication, and
blocking are part of every experiment. We will illustrate and emphasize them repeatedly
throughout this book.

1-4 GUIDELINES FOR DESIGNING EXPERIMENTS

To use the statistical approach in designing and analyzing an experiment, it is necessary
for everyone involved in the experiment to have a clear idea in advance of exactly what
is to be studied, how the data are to be collected, and at least a qualitative understanding
of how these data are to be analyzed. An outline of the recommended procedure is shown
in Table 1-1 on the next page. We now give a brief discussion of this outline and elaborate
on some of the key points. For more details, see Coleman and Montgomery (1993), and
the references therein. The supplemental text material for this chapter is also useful.

1. Recognition of and statement of the problem. This may seem to be a rather obvious
point, but in practice it is often not simple to realize that a problem requiring experi-
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Table 1-1 Guidelines for Designing an Experiment

Pre-experimental

. Choice of factors, levels, and ranges.” .
planning

. Selection of the response variable.”
. Choice of experimental design.

. Performing the experiment.

. Statistical analysis of the data.

. Conclusions and recommendations.

. Recognition of and statement of the problem. :l
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“In practice, steps 2 and 3 are often done simultaneously or in reverse order.

mentation exists, nor is it simple to develop a clear and generally accepted statement of
this problem. It is necessary to develop all ideas about the objectives of the experiment.
Usually, it is important to solicit input from all concerned parties: engineering, quality
assurance, manufacturing, marketing, management, the customer, and operating person-
nel (who usually have much insight and who are too often ignored). For this reason a
team approach to designing experiments is recommended.

It is usually helpful to prepare a list of specific problems or questions that are to be
addressed by the experiment. A clear statement of the problem often contributes sub-
stantially to better understanding of the phenomenon being studied and the final solution
of the problem. It is also important to keep the overall objective in mind; for example,
is this a new process or system—in which case the initial objective is likely to be char-
acterization or factor screening—or is it a mature or reasonably well-understood system
that has been previously characterized—in which case the objective may be optimiza-
tion? There are many possible objectives of an experiment, including confirmation (is
the system performing the same way now that it did in the past?), discovery (what
happens if we explore new materials, variables, operating conditions, etc.?), and stability
(under what conditions do the response variables of interest seriously degrade?). Obvi-
ously, the specific questions to be addressed in the experiment relate directly to the overall
objectives. Often at this stage of problem formulation many engineers and scientists
realize that one large comprehensive experiment is unlikely to answer the key questions
and that a sequential approach using a series of smaller experiments is a better strategy.

2. Choice of factors, levels, and range. (As noted in Table 1-1, steps 2 and 3 are often
done simultaneously, or in the reverse order.) When considering the factors that may
influence the performance of a process or system, the experimenter usually discovers that
these factors can be classified as either potential design factors or nuisance factors. The
potential design factors are those factors that the experimenter may wish to vary in the
experiment. Often we find that there are a lot of potential design factors, and some further
classification of them is helpful. Some useful classifications are design factors, held-
constant factors, and allowed-to-vary factors. The design factors are the factors actually
selected for study in the experiment. Held-constant factors are variables that may exert
some effect on the response, but for purposes of the present experiment these factors are
not of interest, so they will be held at a specific level. For example, in an etching ex-
periment in the semiconductor industry there may be an effect that is unique to the
specific plasma etch tool used in the experiment. However, this factor would be very
difficult to vary in an experiment, so the experimenter may decide to perform all exper-
imental runs on one particular (ideally ‘‘typical’’) etcher. Thus this factor has been held
constant. As an example of allowed-to-vary factors, the experimental units or the ‘‘ma-
terials’’ to which the design factors are applied are usually nonhomogeneous, yet we
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often ignore this unit-to-unit variability and rely on randomization to balance out any
material or experimental unit effect. We often assume that the effects of held-constant
factors and allowed-to-vary factors are relatively small.

Nuisance factors, on the other hand, may have large effects that must be accounted
for, yet we may not be interested in them in the context of the present experiment.
Nuisance factors are often classified as controllable, uncontrollable, or noise factors.
A controllable nuisance factor is one whose levels may be set by the experimenter. For
example, the experimenter can select different batches of raw material or different days
of the week when conducting the experiment. The blocking principal, discussed in the
previous section, is often useful in dealing with controllable nuisance factors. If a nui-
sance factor is uncontrollable in the experiment, but it can be measured, an analysis
procedure called the analysis of covariance can often be used to compensate for its
effect. For example, the relative humidity in the process environment may affect process
performance, and if the humidity cannot be controlled, it probably can be measured and
treated as a covariate. When a factor that varies naturally and uncontrollably in the
process can be controlled for purposes of an experiment, we often call it a noise factor.
In such situations, our objective is usually to find the settings of the controllable design
factors that minimize the variability transmitted from the noise factors. This is sometimes
called a process robustness study or a robust design problem. Blocking, analysis of
covariance, and process robustness studies are discussed later in the text.

Once the experimenter has selected the design factors, he or she must choose the
ranges over which these factors will be varied, and the specific levels at which runs will
be made. Thought must also be given to how these factors are to be controlled at the
desired values and how they are to be measured. For instance, in the flow solder exper-
iment, the engineer has defined 12 variables that may affect the occurrence of solder
defects. The engineer will also have to decide on a region of interest for each variable
(that is, the range over which each factor will be varied) and on how many levels of each
variable to use. Process knowledge is required to do this. This process knowledge is
usually a combination of practical experience and theoretical understanding. It is impor-
tant to investigate all factors that may be of importance and to not be overly influenced
by past experience, particularly when we are in the early stages of experimentation or
when the process is not very mature.

When the objective of the experiment is factor screening or process characterization,
it is usually best to keep the number of factor levels low. Generally, two levels work
very well in factor screening studies. Choosing the region of interest is also important.
In factor screening, the region of interest should be relatively large—that is, the range
over which the factors are varied should be broad. As we learn more about which vari-
ables are important and which levels produce the best results, the region of interest will
usually become narrower.

3. Selection of the response variable. In selecting the response variable, the experi-
menter should be certain that this variable really provides useful information about the
process under study. Most often, the average or standard deviation (or both) of the mea-
sured characteristic will be the response variable. Multiple responses are not unusual.
Gauge capability (or measurement error) is also an important factor. If gauge capability
is inadequate, only relatively large factor effects will be detected by the experiment or
perhaps additional replication will be required. In some situations where gauge capability
is poor, the experimenter may decide to measure each experimental unit several times
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and use the average of the repeated measurements as the observed response. It is usually
critically important to identify issues related to defining the responses of interest and
how they are to be measured before conducting the experiment. Sometimes designed
experiments are employed to study and improve the performance of measurement sys-
tems. For an example, see Chapter 12.

We reiterate how crucial it is to bring out all points of view and process information
in steps 1 through 3 above. We refer to this as pre-experimental planning. Coleman
and Montgomery (1993) provide worksheets that can be useful in pre-experimental plan-
ning. Also see the supplemental text information for more details and an example of
using these worksheets. It is unlikely that one person has all the knowledge required to
do this adequately in many situations. Therefore, we argue strongly for a team effort
in planning the experiment. Most of your success will hinge on how well the pre-
experimental planning is done.

4. Choice of experimental design. If the pre-experimental planning activities above
are done correctly, this step is relatively easy. Choice of design involves the consideration
of sample size (number of replicates), the selection of a suitable Tun order for the ex-
perimental trials, and the determination of whether or not blocking or other randomization
restrictions are involved. This book discusses some of the more important types of ex-
perimental designs, and it can ultimately be used as a catalog for selecting an appropriate
experimental design for a wide variety of problems.

There are also several interactive statistical software packages that support this phase
of experimental design. The experimenter can enter information about the number of
factors, levels, and ranges, and these programs will either present a selection of designs
for consideration or recommend a particular design. (We prefer to see several alternatives
instead of relying on a computer recommendation in most cases.) These programs will
usually also provide a worksheet (with the order of the runs randomized) for use in
conducting the experiment.

In selecting the design, it is important to keep the experimental objectives in mind.
In many engineering experiments, we already know at the outset that some of the factor
levels will result in different values for the response. Consequently, we are interested in
identifying which factors cause this difference and in estimating the magnitude of the
response change. In other situations, we may be more interested in verifying uniformity.
For example, two production conditions A and B may be compared, A being the standard
and B being a more cost-effective alternative. The experimenter will then be interested
in demonstrating that, say, there is no difference in yield between the two conditions.

5. Performing the experiment. When running the experiment, it is vital to monitor the
process carefully to ensure that everything is being done according to plan. Errors in
experimental procedure at this stage will usually destroy experimental validity. Up-front
planning is crucial to success. It is easy to underestimate the logistical and planning
aspects of running a designed experiment in a complex manufacturing or research and
development environment.

Coleman and Montgomery (1993) suggest that prior to conducting the experiment a
few trial runs or pilot runs are often helpful. These runs provide information about con-
sistency of experimental material, a check on the measurement system, a rough idea of
experimental error, and a chance to practice the overall experimental technique. This
also provides an opportunity to revisit the decisions made in steps 1-4, if necessary.
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6. Statistical analysis of the data. Statistical methods should be used to analyze the
data so that results and conclusions are objective rather than judgmental in nature. If the
experiment has been designed correctly and if it has been performed according to
the design, the statistical methods required are not elaborate. There are many excellent
software packages designed to assist in data analysis, and many of the programs used in
step 4 to select the design provide a seamless, direct interface to the statistical analysis.
Often we find that simple graphical methods play an important role in data analysis and
interpretation. Because many of the questions that the experimenter wants to answer can
be cast into an hypothesis-testing framework, hypothesis testing and confidence interval
estimation procedures are very useful in analyzing data from a designed experiment. It
is also usually very helpful to present the results of many experiments in terms of an
empirical model, that is, an equation derived from the data that expresses the relationship
between the response and the important design factors. Residual analysis and model
adequacy checking are also important analysis techniques. We will discuss these issues
in detail later.

Remember that statistical methods cannot prove that a factor (or factors) has a partic-
ular effect. They only provide guidelines as to the reliability and validity of results.
Properly applied, statistical methods do not allow anything to be proved experimentally,
but they do allow us to measure the likely error in a conclusion or to attach a level of
confidence to a statement. The primary advantage of statistical methods is that they add
objectivity to the decision-making process. Statistical techniques coupled with good en-
gineering or process knowledge and common sense will usually lead to sound
conclusions.

7. Conclusions and recommendations. Once the data have been analyzed, the exper-
imenter must draw practical conclusions about the results and recommend a course of
action. Graphical methods are often useful in this stage, particularly in presenting the
results to others. Follow-up runs and confirmation testing should also be performed to
validate the conclusions from the experiment.

Throughout this entire process, it is important to keep in mind that experimentation
is an important part of the learning process, where we tentatively formulate hypotheses
about a system, perform experiments to investigate these hypotheses, and on the basis
of the results formulate new hypotheses, and so on. This suggests that experimentation
is iterative. It is usually a major mistake to design a single, large, comprehensive ex-
periment at the start of a study. A successful experiment requires knowledge of the
important factors, the ranges over which these factors should be varied, the appropriate
number of levels to use, and the proper units of measurement for these variables. Gen-
erally, we do not perfectly know the answers to these questions, but we learn about them
as we go along. As an experimental program progresses, we often drop some input
variables, add others, change the region of exploration for some factors, or add new
response variables. Consequently, we usually experiment sequentially, and as a general
rule, no more than about 25 percent of the available resources should be invested in the
first experiment. This will ensure that sufficient resources are available to perform con-
firmation runs and ultimately accomplish the final objective of the experiment.

1-5 A BRIEF HISTORY OF STATISTICAL DESIGN

There have been four eras in the modern development of statistical experimental design.
The agricultural era was led by the pioneering work of Sir Ronald A. Fisher in the 1920s
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and early 1930s. During this time, Fisher was responsible for statistics and data analysis
at the Rothamsted Agricultural Experimental Station near London, England. Fisher rec-
ognized that flaws in the way the experiment that generated the data had been performed
often hampered the analysis of data from systems (in this case agricultural systems). By
interacting with scientists and researchers in many fields he developed the insights that
led to the three basic principles of experimental design that we discussed in Section 1-3:
randomization, replication, and blocking. Fisher systematically introduced statistical
thinking and principles into designing experimental investigations, including the factorial
design concept and the analysis of variance. His two books [Fisher (1958, 1966)] had
profound influence on the use of statistics, particularly in agricultural and related life
sciences. For an excellent biography of Fisher, see Box (1978).

Although applications of statistical design in industrial settings certainly began in
the 1930s, the second, or industrial, era was catalyzed by the development of response
surface methodology (RSM) by Box and Wilson (1951). They recognized and exploited
the fact that many industrial experiments are fundamentally different from their agricul-
tural counterparts in two ways: (1) the response variable can usually be observed (nearly)
immediately, and (2) the experimenter can quickly learn crucial information from a small
group of runs that can be used to plan the next experiment. Box (1999) calls these two
features of industrial experiments immediacy and sequentiality. Over the next 30 years,
RSM and other design techniques spread throughout the chemical and the process in-
dustries, mostly in research and development work. George Box was the intellectual
leader of this movement. However, the application of statistical design at the plant or
manufacturing process level was still not extremely widespread. Some of the reasons for
this include inadequate training in basic statistical concepts and methods for engineers
and other process specialists and the lack of computing resources and user-friendly sta-
tistical software to support the application of statistically designed experiments.

The increasing interest of Western industry in quality improvement that began in the
late 1970s ushered in the third era of statistical design. The work of Genichi Taguchi
[Taguchi and Wu (1980), Kackar (1985), and Taguchi (1987, 1991)] had a significant
impact on expanding the interest in and use of designed experiments. Taguchi advocated
using designed experiments for what he termed robust parameter design, or

1. Making processes insensitive to environmental factors or other factors that are
difficult to control

2. Making products insensitive to variation transmitted from components

3. Finding levels of the process variables that force the mean to a desired value
while simultaneously reducing variability around this value

Taguchi suggested highly fractionated factorial designs and other orthogonal arrays along
with some novel statistical methods to solve these problems. The resulting methodology
generated much discussion and controversy. Part of the controversy arose because Tag-
uchi’s methodology was advocated in the West initially (and primarily) by entrepreneurs,
and the underlying statistical science had not been adequately peer-reviewed. By the late
1980s the results of peer review indicated that although Taguchi’s engineering concepts
and objectives were well-founded, there were substantial problems with his experimental
strategy and methods of data analysis. For specific details of these issues, see Box (1988),
Box, Bisgaard, and Fung (1988), Hunter (1985, 1989), Myers and Montgomery (1995),
and Pignatiello and Ramberg (1992). Many of these concerns are also summarized in
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the extensive panel discussion in the May 1992 issue of Technometrics [see Nair et al.
(1992)].

There were at least three positive outcomes of the Taguchi controversy. First, de-
signed experiments became more widely used in the discrete parts industries, including
automotive and aerospace manufacturing, electronics and semiconductors, and many
other industries that had previously made little use of the technique. Second, the fourth
era of statistical design began. This era has included a renewed general interest in sta-
tistical design by both researchers and practitioners and the development of many new
and useful approaches to experimental problems in the industrial world, including alter-
natives to Taguchi’s technical methods that allow his engineering concepts to be carried
into practice efficiently and effectively. Some of these alternatives will be discussed and
illustrated in subsequent chapters, particularly Chapter 11. Third, formal education in
statistical experimental design is becoming part of many engineering programs in uni-
versities, at both undergraduate and graduate levels. The successful integration of good
experimental design practice into engineering and science is a key factor in future in-
dustrial competitiveness.

1-6 SUMMARY: USING STATISTICAL TECHNIQUES
IN EXPERIMENTATION

Much of the research in engineering, science, and industry is empirical and makes ex-
tensive use of experimentation. Statistical methods can greatly increase the efficiency of
these experiments and often strengthen the conclusions so obtained. The proper use of
statistical techniques in experimentation requires that the experimenter keep the follow-
ing points in mind:

1. Use your nonstatistical knowledge of the problem. Experimenters are usually
highly knowledgeable in their fields. For example, a civil engineer working on a problem
in hydrology typically has considerable practical experience and formal academic train-
ing in this area. In some fields there is a large body of physical theory on which to draw
in explaining relationships between factors and responses. This type of nonstatistical
knowledge is invaluable in choosing factors, determining factor levels, deciding how
many replicates to run, interpreting the results of the analysis, and so forth. Using sta-
tistics is no substitute for thinking about the problem.

2. Keep the design and analysis as simple as possible. Don’t be overzealous in the
use of complex, sophisticated statistical techniques. Relatively simple design and analysis
methods are almost always best. This is a good place to reemphasize step 4 of the
procedure recommended in Section 1-4. If you do the design carefully and correctly, the
analysis will almost always be relatively straightforward. However, if you botch
the design badly, it is unlikely that even the most complex and elegant statistics can save
the situation.

3. Recognize the difference between practical and statistical significance. Just be-
cause two experimental conditions produce mean responses that are statistically different,
there is no assurance that this difference is large enough to have any practical value. For
example, an engineer may determine that a modification to an automobile fuel injection
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system may produce a true mean impprovement in gasoline mileage of 0.1 mi/gal. This
is a statistically significant result. However, if the cost of the modification is $1000, the
0.1 mi/gal difference is probably too small to be of any practical value.

4. Experiments are usually iterative. Remember that in most situations it is unwise to
design too comprehensive an experiment at the start of a study. Successful design requires
knowledge of the important factors, the ranges over which these factors are varied, the
appropriate number of levels for each factor, and the proper methods and units of mea-
surement for each factor and response. Generally, we are not well-equipped to answer
these questions at the beginning of the experiment, but we learn the answers as we go
along. This argues in favor of the iterative, or sequential, approach discussed previously.
Of course, there are situations where comprehensive experiments are entirely appropriate,
but as a general rule, most experiments should be iterative. Consequently, we usually
should not invest more than about 25 percent of the resources of experimentation (runs,
budget, time, etc.) in the initial experiment. Often these first efforts are just learning
experiences, and some resources must be available to accomplish the final objectives of
the experiment.



Simple Comparative

Experiments

In this chapter, we consider experiments to compare two conditions (sometimes called
treatments). These are often called simple comparative experiments. We begin with
an example of an experiment performed to determine whether two different formulations
of a product give equivalent results. The discussion leads to a review of several basic
statistical concepts, such as random variables, probability distributions, random samples,
sampling distributions, and tests of hypotheses.

2-1 INTRODUCTION

The tension bond strength of portland cement mortar is an important characteristic of the
product. An engineer is interested in comparing the strength of a modified formulation
in which polymer latex emulsions have been added during mixing to the strength of the
unmodified mortar. The experimenter has collected 10 observations on strength for
the modified formulation and another 10 observations for the unmodified formulation.
The data are shown in Table 2-1 on the next page. We could refer to the two different
formulations as two treatments or as two levels of the factor formulations.

The data from this experiment are plotted in Figure 2-1 on the next page. This display
is called a dot diagram. Visual examination of these data give the immediate impression
that the strength of the unmodified mortar is greater than the strength of the modified
mortar. This impression is supported by comparing the average tension bond strengths,
¥, = 16.76 kgf/cm? for the modified mortar and y, = 17.92 kgf/cm? for the unmodified
mortar. The average tension bond strengths in these two samples differ by what seems
to be a nontrivial amount. However, it is not obvious that this difference is large enough
to imply that the two formulations really are different. Perhaps this observed difference
in average strengths is the result of sampling fluctuation and the two formulations are
really identical. Possibly another two samples would give opposite results, with the
strength of the modified mortar exceeding that of the unmodified formulation.

A technique of statistical inference called hypothesis testing (some prefer signifi-

cance testing) can be used to assist the experimenter in comparing these two formula-
21
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Table 2-1 Tension Bond Strength Data
for the Portland Cement
Formulation Experiment

Modified Unmodified
Mortar Mortar
J Vi Y2y
1 16.85 17.50
2 16.40 17.63
3 17.21 18.25
4 16.35 18.00
5 16.52 17.86
6 17.04 17.75
7 16.96 18.22
8 17.15 17.90
9 16.59 17.96
10 16.57 18.15

tions. Hypothesis testing allows the comparison of the two formulations to be made on
objective terms, with a knowledge of the risks associated with reaching the wrong con-
clusion. Before presenting procedures for hypothesis testing in simple comparative ex-
periments, we will briefly summarize some elementary statistical concepts.

2-2 BASIC STATISTICAL CONCEPTS

Each of the observations in the portland cement experiment described above would be
called a run. Notice that the individual runs differ, so there is fluctuation, or noise, in
the results. This noise is usually called experimental error or simply error. It is a
statistical error, meaning that it arises from variation that is uncontrolled and generally
unavoidable. The presence of error or noise implies that the response variable, tension
bond strength, is a random variable. A random variable may be either discrete or
continuous. If the set of all possible values of the random variable is either finite or
countably infinite, then the random variable is discrete, whereas if the set of all possible
values of the random variable is an interval, then the random variable is continuous.

Graphical Description of Variability

We often use simple graphical methods to assist in analyzing the data from an experiment.
The dot diagram, illustrated in Figure 2-1, is a very useful device for displaying a small
body of data (say up to about 20 observations). The dot diagram enables the experimenter
to see quickly the general location or central tendency of the observations and their
spread. For example, in the portland cement tension bond experiment, the dot diagram

L | 00000 00000 O 00 0P OO 1. J
15 16 17 18 19 20
Strength
(kgf/cm?2) e = Modified mortar
¥y1=16.76 ¥ =17.92 o = Unmodified mortar

Figure 2-1 Dot diagram for the tension bond strength data in Table 2-1.
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Figure 2-2 Histogram for 200 observations on metal recovery (yield) from a smelting process.

reveals that the two formulations probably differ in mean strength but that both formu-
lations produce about the same variation in strength.

If the data are fairly numerous, the dots in a dot diagram become difficult to distin-
guish, and a histogram may be preferable. Figure 2-2 presents a histogram for 200 ob-
servations on the metal recovery, or yield, from a smelting process. The histogram shows
the central tendency, spread, and general shape of the distribution of the data. Recall that
a histogram is constructed by dividing the horizontal axis into intervals (usually of equal
length) and drawing a rectangle over the jth interval with the area of the rectangle pro-
portional to #;, the number of observations that fall in that interval.

The box plot (or box and whisker plot) is a very useful way to display data. A box
plot displays the minimum, the maximum, the lower and upper quartiles (the 25th per-
centile and the 75th percentile, respectively), and the median (the 50th percentile) on a
rectangular box aligned either horizontally or vertically. The box extends from the lower
quartile to the upper quartile, and a line is drawn through the box at the median. Lines
(or whiskers) extend from the ends of the box to (typically) the minimum and maximum
values. [There are several variations of box plots that have different rules for denoting
the extreme sample points. See Montgomery and Runger (1999) for more details.]

Figure 2-3 (page 24) presents the box plots for the two samples of tension bond
strength in the portland cement mortar experiment. This display clearly reveals the dif-
ference in mean strength between the two formulations. It also indicates that both for-
mulations produce reasonably symmetric distributions of strength with similar variability
or spread.

Dot diagrams, histograms, and box plots are useful for summarizing the information
in a sample of data. To describe the observations that might occur in a sample more
completely, we use the concept of the probability distribution.

Probability Distributions
The probability structure of a random variable, say y, is described by its probability
distribution. If y is discrete, we often call the probability distribution of y, say p(y), the



24 CHAPTER 2 SIMPLE COMPARATIVE EXPERIMENTS

Box-and-whisker plots
18.4 ' ‘

—
o

-
~
)

-
bt
©

-
B
'S

Tension bond strength (kgf/cm?)

-
o2

-
~
N
[TT T T T[T I T[T [ TIT[TTT]
vl g b by bl

1 |
Modified Unmodified
Mortar formulation

Figure 2-3 Box plots for the portland cement tension bond strength
experiment.

probability function of y. If y is continuous, the probability distribution of y, say f(y), is
often called the probability density function for y.

Figure 2-4 illustrates hypothetical discrete and continuous probability distributions.
Notice that in the discrete probability distribution, it is the height of the function ()
that represents probability, whereas in the continuous case, it is the area under the curve

Py =y;) =p(y;)
5
| ‘ ,
Y1 ¥3 s y7 Y9 Y11 Y13
¥2 Ya Ye Y8 Y10 Y12 Ya
(a) A discrete distribution
= <ys
% Pla s y<b)
y

a b
(b) A continuous distribution

Figure 2-4 Discrete and continuous probability distributions.
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f(y) associated with a given interval that represents probability. The properties of prob-
ability distributions may be summarized quantitatively as follows:

y discrete: 0=piy) =1 all values of y;
P(y=y) =p(y)  all values of y,
> pyy =1

all values
of ¥y

Y continuous: 0=f(

b
Plas<ysb) = L f) dy

1

f _ww f(y) dy

Mean, Variance, and Expected Values
The mean, u, of a probability distribution is a measure of its central tendency or location.
Mathematically, we define the mean as

f yf(y) dy y continuous
S 2-1)
>, ) y discrete

all y

We may also express the mean in terms of the expected value or the long-run average
value of the random variable y as

f () dy y continuous
m=EQy ={g"
E wp(y) y discrete

all y

(2-2)

where E denotes the expected value operator.
The variability or dispersion of a probability distribution can be measured by the
variance, defined as

f (y — W) dy y continuous
o =\g (2-3)

> (= wPpk) y discrete

alt y

Note that the variance can be expressed entirely in terms of expectation because
o? = E[(y — w7l 2-4)

Finally, the variance is used so extensively that it is convenient to define a variance
operator V such that

V(y) = El(y — p] = o” (2-5)
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The concepts of expected value and variance are used extensively throughout this
book, and it may be helpful to review several elementary results concerning these op-
erators. If y is a random variable with mean u and variance o and c is a constant, then

1. E(¢o)=c

2. Ey)=p

3. E(cy) =cE(y) =cp
4. Vie)=0

5 V(y)=o?

6. Vicy) = c*V(y) = c*a?

If there are two random variables, for example, y, with E(y;) = w, and V(y,) =
0% and y, with E(y,) = u, and V(y,) = a3, we have

7. E(yy +y2) = E(y) + E(y2) = s + 2
It is possible to show that

8. V(3 + y2) = V(y) + V(y2) + 2 Cov(ys, y2)
where

Cov(y1, y2) = E[(y1 — p)(y2 = m2)] (2-6)

is the covariance of the random variables y, and y,. The covariance is a measure of the
linear association between y; and y,. More specifically, we may show that if y, and y,
are independent,' then Cov(y,, y,) = 0. We may also show that

9. V(yi — y2) = V(y) + V(y2) — 2Cov(yy, y2)
If y, and y, are independent, we have

10. V(y, = y)) = V(y) + V(y) = 01 + 03
and

11. E(y,-y2) = E(y) E(y2) = py* m

However, note that, in general,

Vi E(y,)
12. E|=—=| # —
<)’2> E(y,)

regardless of whether or not y; and y, are independent.

2-3 SAMPLING AND SAMPLING DISTRIBUTIONS

Random Samples, Sample Mean, and Sample Variance
The objective of statistical inference is to draw conclusions about a population using a
sample from that population. Most of the methods that we will study assume that random

! Note that the converse of this is not necessarily so; that is, we may have Cov(y,, y,) = 0 and yet this does not
imply independence. For an example, see Hines and Montgomery (1990, pp. 128-129).



2-3 SAMPLING AND SAMPLING DISTRIBUTIONS 27

samples are used. That is, if the population contains N elements and a sample of n of
them is to be selected, and if each of the NY/(N — n)!n! possible samples has an equal
probability of being chosen, then the procedure employed is called random sampling.
In practice, it is sometimes difficult to obtain random samples, and tables of random
numbers, such as Table XI in the Appendix, may be helpful.

Statistical inference makes considerable use of quantities computed from the obser-
vations in the sample. We define a statistic as any function of the observations in a
sample that does not contain unknown parameters. For example, suppose that y,, y», . . .,
v, represents a sample. Then the sample mean

;yi

n

y= 2-7)

and the sample variance

;m—w

§P= —m —— (2-8)
n—1

are both statistics. These quantities are measures of the central tendency and dispersion
of the sample, respectively. Sometimes § = V/§?, called the sample standard devia-
tion, is used as a measure of dispersion. Engineers often prefer to use the standard de-
viation to measure dispersion because its units are the same as those for the variable of
interest y.

Properties of the Sample Mean and Variance
The sample mean y is a point estimator of the population mean g, and the sample variance
S$? is a point estimator of the population variance ¢”. In general, an estimator of an
unknown parameter is a statistic that corresponds to that parameter. Note that a point
estimator is a random variable. A particular numerical value of an estimator, computed
from sample data, is called an estimate. For example, suppose we wish to estimate the
mean and variance of the breaking strength of a particular type of textile fiber. A random
sample of n = 25 fiber specimens is tested and the breaking strength is recorded for each.
The sample mean and variance are computed according to Equations 2-7 and 2-8, re-
spectively, and are y = 18.6 and S> = 1.20. Therefore, the estimate of w is y = 18.6 and
the estimate of o is $* = 1.20.

There are several properties required of good point estimators. Two of the most
important are the following:

1. The point estimator should be unbiased. That is, the long-run average or
expected value of the point estimator should be the parameter that is being
estimated. Although unbiasedness is desirable, this property alone does not
always make an estimator a good one.

2. An unbiased estimator should have minimum variance. This property states
that the minimum variance point estimator has a variance that is smaller than
the variance of any other estimator of that parameter.
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We may easily show that y and S are unbiased estimators of x and o2, respectively.
First consider y. Using the properties of expectation, we have

Zl)’i

n

(i)

2 E(y)

EQy) =E

I
T RI= X=X

1!

Tl.

because the expected value of each observation y; is w. Thus, ¥ is an unbiased estimator
of w.
Now consider the sample variance S2. We have

n

2 00— 3
ES? = E| =
n-—1

1 n
= E[Z i — 'y‘)z]

n—1

1
—— E(SS)
n—1

where SS = Z/_,(y; — ¥)* is the corrected sum of squares of the observations y;. Now

E(SS) = E[E O — W] (2-9)

=D (W + 0% — n(u? + o*n)
1

=(n— o’ (2-10)
Therefore,
N 1
E(S9) = —— E(SS)
n—1

and we see that S? is an unbiased estimator of o2,
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Degrees of Freedom

The quantity n — 1 in Equation 2-10 is called the number of degrees of freedom of the
sum of squares SS. This is a very general result; that is, if y is a random variable with
variance o and S§ = =(y; — y)* has v degrees of freedom, then

E<§§> = o? (2-11)

v

The number of degrees of freedom of a sum of squares is equal to the number of inde-
pendent elements in that sum of squares. For example, S§ = 2 ,(y; — y)? in Equation
2-9 consists of the sum of squares of the n elements y, — ¥,y — ¥,..., Yy, — y. These
elements are not all independent because 27 ,(y, — ¥) = 0; in fact, only n — 1 of them
are independent, implying that SS has n — 1 degrees of freedom.

The Normal and Other Sampling Distributions
Often we are able to determine the probability distribution of a particular statistic if we
know the probability distribution of the population from which the sample was drawn.
The probability distribution of a statistic is called a sampling distribution. We will now
briefly discuss several useful sampling distributions.

One of the most important sampling distributions is the normal distribution. If y is
a normal random variable, the probability distribution of y is

oG =il —o <y < (2-12)

f» o
where —o < u < o is the mean of the distribution and o? > 0 is the variance. The
normal distribution is shown in Figure 2-5.

Because sample runs that differ as a result of experimental error often are well
described by the normal distribution, the normal plays a central role in the analysis of
data from designed experiments. Many important sampling distributions may also be
defined in terms of normal random variables. We often use the notation y ~ N(u, %) to
denote that y is distributed normally with mean u and variance o’

An important special case of the normal distribution is the standard normal dis-
tribution; that is, . = 0 and o> = 1. We see that if y ~ N(u, 0*), the random variable

7 = y_— ¢ (2-13)
ag

n
Figure 2-5 The normal distribution.
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follows the standard normal distribution, denoted z ~ N(0, 1). The operation demon-
strated in Equation 2-13 is often called standardizing the normal random variable y. The
cumulative standard normal distribution is given in Table I of the Appendix.

Many statistical techniques assume that the random variable is normally distributed.
The central limit theorem is often a justification of approximate normality.

THEOREM 2.1 ccceveveeoens C et eaas it eaeaeeerreseteseennostarnnonnos
The Central Limit Theorem
If y), y2,. .., y. is a sequence of n independent and identically distributed random vari-

ables with E(y;) = u and V(y;) = o (both finite) and x = y, + y, + - - - + y,, then

X — np

na?

Z, =

has an approximate N(0, 1) distribution in the sense that, if F (z) is the distribution
function of z, and ®(z) is the distribution function of the N(0, 1) random variable, then
lim, . [F.(2)/®(z)] = 1.

This result states essentially that the sum of n independent and identically distributed
random variables is approximately normally distributed. In many cases this approxima-
tion is good for very small n, say n < 10, whereas in other cases large » is required, say
n > 100. Frequently, we think of the error in an experiment as arising in an additive
manner from several independent sources; consequently, the normal distribution becomes
a plausible model for the combined experimental error.

An important sampling distribution that can be defined in terms of normal random
variables is the chi-square or y? distribution. If z,, z,,. .., 2z, are normally and
independently distributed random variables with mean 0 and variance 1, abbreviated
NID(0, 1), then the random variable

x=zn+2B+ -+

follows the chi-square distribution with k degrees of freedom. The density function of
chi-square is

1
fx) = ———— xW2=1,=x2 x>0 2-14)

k
2+ 2
y

Several chi-square distributions are shown in Figure 2-6. The distribution is asym-
metric, or skewed, with mean and variance

M=k
o’ =2k

respectively. Percentage points of the chi-square distribution are given in Table III of the
Appendix.
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Figure 2-6 Several chi-square distributions.

As an example of a random variable that follows the chi-square distribution, suppose

that y,, ¥», . . . , ¥, is a random sample from an N(u, o?) distribution. Then
2
< 2 0= 2
P = o2 ~ Xn-1 (2-15)

That is, SS/o? is distributed as chi-square with n — 1 degrees of freedom.

Many of the techniques used in this book involve the computation and manipulation
of sums of squares. The result given in Equation 2-15 is extremely important and occurs
repeatedly; a sum of squares in normal random variables when divided by o follows
the chi-square distribution.

Examining Equation 2-8, we see that the sample variance can be written as

S
§? = S (2-16)
n—1

If the observations in the sample are NID(u, o?), then the distribution of $* is
[0?/(n — D]x>2_,. Thus, the sampling distribution of the sample variance is a constant
times the chi-square distribution if the population is normally distributed.

If z and x; are independent standard normal and chi-square random variables, re-
spectively, the random variable

2-17)

follows the ¢ distribution with k degrees of freedom, denoted ¢,. The density function
of tis

Ttk + 1)/2] 1
Vil (k/2) (k) + 114702
and the mean and variance of ¢ are = 0 and o = k/(k — 2) for k > 2, respectively.

Several ¢ distributions are shown in Figure 2-7 on page 32. Note that if £ = o, the ¢
distribution becomes the standard normal distribution. The percentage points of the ¢

f@® —oo < t < (2-18)
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k = o (normal)

0
Figure 2-7 Several ¢ distributions.

distribution are given in Table II of the Appendix. If y,, y,, . . ., ¥, is a random sample
from the N(u, o) distribution, then the quantity

_Y M
SIVn

is distributed as ¢ with n — 1 degrees of freedom.

The final sampling distribution that we will consider is the F distribution. If y2 and
X+ are two independent chi-square random variables with u and v degrees of freedom,
respectively, then the ratio

t (2-19)

_ Xilu
wu X%/U

(2-20)

follows the F distribution with u numerator degrees of freedom and v denominator
degrees of freedom. If x is an F random variable with ¥ numerator and v denominator
degrees of freedom, then the probability distribution of x is

+ u/2
U v u
r hid (u/2)—1

h(x) = wr 0<x<w @2-21)
u v u
r(=)r(= )| (Z)x + 1
1 T T T T T T T
————u=4,0=10
0.8 . Z=4,v=30
A~y ememaaa v=10,v=10

—— u=10,v =30

g
)

e
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Figure 2-8 Several F distributions.
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Several F distributions are shown in Figure 2-8 on the preceding page. This distribution
is very important in the statistical analysis of designed experiments. Percentage points
of the F distribution are given in Table IV of the Appendix.

As an example of a statistic that is distributed as F, suppose we have two independent

normal populations with common variance 0. If y11, Y12, . . - , Yin, is @ random sample
of n, observations from the first population, and if y,1, ¥22, . . . , Y2n, is a random sample
of n, observations from the second, then

53

ST% ~ Fnl—l,nrl (2-22)

where S? and SZ are the two sample variances. This result follows directly from Equations
2-15 and 2-20.

2-4 INFERENCES ABOUT THE DIFFERENCES
IN MEANS, RANDOMIZED DESIGNS

We are now ready to return to the portland cement mortar problem posed in Section 2-1.
Recall that two different formulations of mortar were being investigated to determine if
they differ in tension bond strength. In this section we discuss how the data from this
simple comparative experiment can be analyzed using hypothesis testing and confidence
interval procedures for comparing two treatment means.

Throughout this section we assume that a completely randomized experimental
design is used. In such a design, the data are viewed as if they were a random sample
from a normal distribution.

2-4.1 Hypothesis Testing

We now reconsider the portland cement experiment introduced in Section 2-1. Recall
that we are interested in comparing the strength of two different formulations: an un-
modified mortar and a modified mortar. In general, we can think of these two formulations
as two levels of the factor ‘‘formulations.”” Let y,1, Y12, . . . , Y1, Tepresent the n, ob-
servations from the first factor level and y,i, ya2, . - . , Y2, TEpresent the n, observations
from the second factor level. We assume that the samples are drawn at random from two
independent normal populations. Figure 2-9 illustrates the situation.

Ny, 62 Nip,, 6,2
o, S,
| |
By M
Sample 1:yyy, ¥ypreer Y1, Sample 2:y,y, ¥ 900 Vo,
Factor level 1 Factor level 2

Figure 2-9 The sampling situation for the two-sample ¢-test.
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A Model for the Data
We often describe the results of an experiment with a model. A simple statistical model
that describes the data from an experiment such as we have just described is

i =
Yy = M T sij{j =1,2,... (2-23)

where y;; is the jth observation from factor level i, u; is the mean of the response at
the ith factor level, and ¢; is a normal random variable associated with the ijth obser-
vation. We assume that g; are NID(0, o)), i=1,2.Ttis customary to refer to g as the
random error component of the model. Because the means w, and w, are constants, we
see directly from the model that y; are NID(u;, o), i =1, 2, just as we previously
assumed. For more information about models for the data, refer to the supplemental text
material.

Statistical Hypotheses

A statistical hypothesis is a statement either about the parameters of a probability dis-
tribution or the parameters of a model. The hypothesis reflects some conjecture about
the problem situation. For example, in the portland cement experiment, we may think
that the mean tension bond strengths of the two mortar formulations are equal. This may
be stated formally as

Hy:py = o
Hy:py #

where u, is the mean tension bond strength of the modified mortar and u, is the mean
tension bond strength of the unmodified mortar. The statement Hy: p, = u, is called the
null hypothesis and H,: ., # u, is called the alternative hypothesis. The alternative
hypothesis specified here is called a two-sided alternative hypothesis because it would
be true if p; < w, orif w; > u,.

To test a hypothesis we devise a procedure for taking a random sample, computing
an appropriate test statistic, and then rejecting or failing to reject the null hypothesis H,,.
Part of this procedure is specifying the set of values for the test statistic that leads to
rejection of H,. This set of values is called the critical region or rejection region for
the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypoth-
esis is rejected when it is true, a type I error has occurred. If the null hypothesis is not
rejected when it is false, a type II error has been made. The probabilities of these two
errors are given special symbols:

a = P(type 1 error) = P(reject Hy|H, is true)
B = P(type II error) = P(fail to reject Hy|H, is false)

Sometimes it is more convenient to work with the power of the test, where
Power = 1 — B = P(reject Hy|H, is false)

The general procedure in hypothesis testing is to specify a value of the probability of
type I error «, often called the significance level of the test, and then design the test
procedure so that the probability of type II error 8 has a suitably small value.
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The Two-Sample t-Test )
Suppose that we could assume that the variances of tension bond strengths were identical
for both mortar formulations. Then the appropriate test statistic to use for comparing two
treatment means in the completely randomized design is

o = DA - (2-24)

S, |— + —
? ny 153

where ¥, and y, are the sample means, n, and n, are the sample sizes, S§ is an estimate
of the common variance o7 = o3 = ¢ computed from
§2 = (n; — 1)S% + (np — I)S%
r ny + Ry — 2

(2-25)

and S? and S? are the two individual sample variances. To determine whether to reject
Ho:py = Mo, we would compare 4, to the ¢ distribution with n, + n, — 2 degrees of
freedom. If | £5| > tay20, +n,—2> WHETE L4/2.4, +n,—2 18 the upper /2 percentage point of the
¢ distribution with n, + n, — 2 degrees of freedom, we would reject H, and conclude
that the mean strengths of the two formulations of portland cement mortar differ. This
test procedure is usually called the two-sample #-test.

This procedure may be justified as follows. If we are sampling from independent
normal distributions, then the distribution of y; — ¥, is N[y, — U, o*(Un, + 1/n)).
Thus, if o> were known, and if Hy: u; = p, were true, the distribution of

Zy = N Ty (2-26)

1 1
ol—+—
ny ny

would be N(0, 1). However, in replacing o in Equation 2-26 by S, the distribution of
Z, changes from standard normal to ¢ with n; + n, — 2 degrees of freedom. Now if H,
is true, f, in Equation 2-24 is distributed as #, .,,—, and, consequently, we would expect
100(1 — a) percent of the values of 1, to fall between —fa/2,,+n,—2 and o0, 4ny-2- A
sample producing a value of £, outside these limits would be unusual if the null hypothesis
were true and is evidence that H, should be rejected. Thus the ¢ distribution with n, +
n, — 2 degrees of freedom is the appropriate reference distribution for the test statistic
to. That is, it describes the behavior of #, when the null hypothesis is true. Note that a is
the probability of type I error for the test.

In some problems, one may wish to reject H, only if one mean is larger than the
other. Thus, one would specify a one-sided alternative hypothesis H,:u, > p, and
would reject Hy only if 2o > 1,,,+n,-2. If one wants to reject Hy only if u, is less
than w,, then the alternative hypothesis is H;:u; < fo, and one would reject Ho if
to < —lon +ny—2:

To illustrate the procedure, consider the portland cement data in Table 2-1. For these
data, we find that

Modified Mortar  Unmodified Mortar
y, = 16.76 kgflem®>  j, = 17.92 kgf/fem’
5% = 0.100 §3 = 0.061
S, = 0.316 S, = 0.247
n, = 10 n, = 10
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Because the sample standard deviations are reasonably similar, it is not unreasonable to
conclude that the population standard deviations (or variances) are equal. Therefore, we
can use Equation 2-24 to test the hypotheses

Hy:ip = o

Hip #
Furthermore, n; + n, — 2 = 10 + 10 — 2 = 18, and if we choose & = 0.05, then we
would reject Hy: i, = u, if the numerical value of the test statistic 7, > fo.025.18 = 2.101,
or if 1y < —t02515 = —2.101. These boundaries of the critical region are shown on the

reference distribution (¢ with 18 degrees of freedom) in Figure 2-10.
Using Equation 2-25 we find that

(n; — DS + (n, — 1)S3
n+n ~2
_9(0.100) + 9(0.061)

10+ 10 -2
= 0.081
S, = 0.284

s2=

and the test statistic is

S, |—+—
’\n, o ony

_16.76 — 17.92
0.284V 15 + 15
= —9.13
Because fp = —9.13 < —t005,5 = —2.101, we would reject H, and conclude that the

mean tension bond strengths of the two formulations of portland cement mortar are
different.
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Figure 2-10 The ¢ distribution with 18 degrees of freedom with the critical
region *tg55.15 = +2.101.
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The Use of P-Values in Hypothesis Testing

One way to report the results of a hypothesis test is to state that the null hypothesis was
or was not rejected at a specified a-value or level of significance. For example, in the
portland cement mortar formulation above, we can say that Hy: u, = w, was rejected at
the 0.05 level of significance. This statement of conclusions is often inadequate because
it gives the decision maker no idea about whether the computed value of the test statistic
was just barely in the rejection region or whether it was very far into this region. Fur-
thermore, stating the results this way imposes the predefined level of significance on
other users of the information. This approach may be unsatisfactory because some de-
cision makers might be uncomfortable with the risks implied by a = 0.05.

To avoid these difficulties, the P-value approach has been adopted widely in prac-
tice. The P-value is the probability that the test statistic will take on a value that is at
least as extreme as the observed value of the statistic when the null hypothesis H, is true.
Thus, a P-value conveys much information about the weight of evidence against H,, and
so a decision maker can draw a conclusion at any specified level of significance. More
formally, we define the P-value as the smallest level of significance that would lead to
rejection of the null hypothesis H.

It is customary to call the test statistic (and the data) significant when the null hy-
pothesis H, is rejected; therefore, we may think of the P-value as the smallest level « at
which the data are significant. Once the P-value is known, the decision maker can de-
termine how significant the data are without the data analyst formally imposing a pre-
selected level of significance.

It is not always easy to compute the exact P-value for a test. However, most modern
computer programs for statistical analysis report P-values, and they can be obtained on
some handheld calculators. We will show how to approximate the P-value for the port-
land cement mortar experiment. From Appendix Table II, for a ¢ distribution with 18
degrees of freedom, the smallest tail area probability is 0.0005, for which #;009s5.18 =
3.922. Now |fo| = 9.13 > 3.922, so because the alternative hypothesis is two-sided, we
know that the P-value must be less than 2(0.0005) = 0.001. Some handheld calculators
have the capability to calculate P-values. One such calculator is the HP-48. From this
calculator, we obtain the P-value for the value #, = —9.13 in the portland cement mortar
formulation experiment as P = 3.68 X 107 Thus the null hypothesis Hy: pt, = u,
would be rejected at any level of significance @ = 3.68 X 1072

Computer Solution

There are many statistical software packages that have capability for statistical hypothesis
testing. The output from the Minitab two-sample ¢-test procedure applied to the portland
cement mortar formulation experiment is shown in Table 2-2 on the next page. Notice
that the output includes some summary statistics about the two samples (the abbreviation
““SE mean’’ refers to the standard error of the mean, s/\/ﬁ) as well as some information
about confidence intervals on the difference in the two means (which we will discuss in
Sections 2-4.3 and 2-6). The program also tests the hypothesis of interest, allowing the
analyst to specify the nature of the alternative hypothesis (‘‘not ="’ implies H,: u, #
) and the choice of a (here a = 0.05).

The output includes the computed value of t,, the P-value (called the significance
level), and the decision that should be made given the specified value of a. Notice that
the computed value of the ¢ statistic differs slightly from our manually calculated value
and that the P-value is reported to be P = 0.0000. Many software packages will not
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Table 2-2 Minitab Two-Sample t-Test for the Portland Cement Mortar Experiment

Two Sample #-Test and Confidence Interval

Two sample T for Modified vs Unmod

N Mean StDev SE Mean
Modified 10 16.774 0.309 0.098
Unmod 10 17.922 0.248 0.078

95% CI for mu Modified - mu Unmod: ( -1.411, -0.885)
t-Test mu Modified = mu Unmod (vs not =): T = —-9.16

P = 0.0000 DF = 18

Both use Pooled Stbev = 0.280

report an actual P-value less than 0.0001 and instead return a ‘‘default’” value. That is
the case here.

Checking Assumptions in the t-Test

In using the #-test procedure we make the assumptions that both samples are drawn from
independent populations that can be described by a normal distribution, that the standard
deviation or variances of both populations are equal, and that the observations are in-
dependent random variables. The assumption of independence is critical, and if the run
order is randomized (and, if appropriate, other experimental units and materials are se-
lected at random), this assumption will usually be satisfied. The equal-variance and nor-
mality assumptions are easy to check using a normal probability plot.

Generally, probability plotting is a graphical technique for determining whether sam-
ple data conform to a hypothesized distribution based on a subjective visual examination
of the data. The general procedure is very simple and can be performed quickly with
most statistics software packages. The supplemental text material discusses manual con-
struction of normal probability plots.

To construct a probability plot, the observations in the sample are first ranked from
smallest to largest. That is, the sample y;, y,, ..., y, is arranged as Y.y, Y2y - - - » Yo
where y, is the smallest observation, y,, is the second smallest observation, and so forth,
with y,,, the largest. The ordered observations y ;, are then plotted against their observed
cumulative frequency (j — 0.5)/n. The cumulative frequency scale has been arranged so
that if the hypothesized distribution adequately describes the data, the plotted points will
fall approximately along a straight line; if the plotted points deviate significantly from a
straight line, the hypothesized model is not appropriate. Usually, the determination of
whether or not the data plot as a straight line is subjective.

To illustrate the procedure, suppose that we wish to check the assumption that tension
bond strength in the portland cement mortar formulation experiment is normally distrib-
uted. We initially consider only the observations from the unmodified mortar formulation.
A computer-generated normal probability plot is shown in Figure 2-11a. Most normal
probability plots present 100(j — 0.5)/n on the left vertical scale (and occasionally
100[1 — (j — 0.5)/n] is plotted on the right vertical scale), with the variable value plotted
on the horizontal scale. Some computer-generated normal probability plots convert the
cumulative frequency to a standard normal z score. A straight line, chosen subjectively,
has been drawn through the plotted points. In drawing the straight line, you should be
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Figure 2-11 Normal probability plots of tension bond strength in the portland
cement experiment.

influenced more by the points near the middle of the plot than by the extreme points. A
good rule of thumb is to draw the line approximately between the 25th and 75th percentile
points. This is how the line in Figure 2-11a was determined. In assessing the ‘‘closeness™
of the points to the straight line, imagine a fat pencil lying along the line. If all the points
are covered by this imaginary pencil, a normal distribution adequately describes the data.
Because the points in Figure 2-11a would pass the fat pencil test, we conclude that the
normal distribution is an appropriate model for tension bond strength for the unmodified
mortar. Figure 2-115 presents the normal probability plot for the 10 observations on
tension bond strength for the modified mortar. Once again, we would conclude that the
assumption of a normal distribution is reasonable.

We can obtain an estimate of the mean and standard deviation directly from the
normal probability plot. The mean is estimated as the 50th percentile on the probability
plot, and the standard deviation is estimated as the difference between the 84th and 50th
percentiles. This means that we can verify the assumption of equal population variances
in the portland cement experiment by simply comparing the slopes of the two straight
lines in Figure 2-11a and 2-11b. Both lines have very similar slopes, and so the as-
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sumption of equal variances is a reasonable one. If this assumption is violated, you should
use the version of the #-test described in Section 2-4.4. The supplemental text material
has more information about checking assumptions on the #-test.

When assumptions are badly violated, the performance of the #-test will be affected.
Generally, small to moderate violations of assumptions are not a major concern, but any
failure of the independence assumption and strong indications of nonnormality should
not be ignored. Both the significance level of the test and the ability to detect differences
between the means will be adversely affected by departures from assumptions. Trans-
formations are one approach to dealing with this problem. We will discuss this in more
detail in Chapter 3. Nonparametric hypothesis testing procedures can also be used if the
observations come from nonnormal populations. Refer to Montgomery and Runger
(1999) for more details.

An Alternate Justification to the t-Test

The two-sample z-test we have just presented depends in theory on the underlying as-
sumption that the two populations from which the samples were randomly selected are
normal. Although the normality assumption is required to develop the test procedure
formally, as we discussed above, moderate departures from normality will not seriously
affect the results. It can be argued [e.g., see Box, Hunter, and Hunter (1978)] that the
use of a randomized design enables one to test hypotheses without any assumptions
regarding the form of the distribution. Briefly, the reasoning is as follows. If the treat-
ments have no effect, all [20!/(10!10!)] = 184,756 possible ways that the 20 observations
could occur are equally likely. Corresponding to each of these 184,756 possible arrange-
ments is a value of #,. If the value of ¢, actually obtained from the data is unusually large
or unusually small with reference to the set of 184,756 possible values, it is an indication
that p; #* W,.

This type of procedure is called a randomization test. It can be shown that the ¢-test
is a good approximation of the randomization test. Thus, we will use ¢-tests (and other
procedures that can be regarded as approximations of randomization tests) without ex-
tensive concern about the assumption of normality. This is one reason a simple procedure
such as normal probability plotting is adequate to check the assumption of normality.

2-4.2 Choice of Sample Size

Selection of an appropriate sample size is one of the most important aspects of any
experimental design problem. The choice of sample size and the probability of type II
error (3 are closely connected. Suppose that we are testing the hypotheses

Ho:py = o
Hyip # o

and that the means are not equal so that 8 = w, — w,. Because Hy: u, = u, is not true,
we are concerned about wrongly failing to reject Hy. The probability of type II error
depends on the true difference in means 8. A graph of 3 versus & for a particular sample
size is called the operating characteristic curve, or O.C. curve for the test. The 8 error
is also a function of sample size. Generally, for a given value of §, the B error decreases
as the sample size increases. That is, a specified difference in means is easier to detect
for larger sample sizes than for smaller ones.
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A set of operating characteristic curves for the hypotheses

Hy:py = po
Hitpy # o

for the case where the two population variances o3 and o3 are unknown but equal
(03 = 03 = ¢?) and for a level of significance of @ = 0.05 is shown in Figure 2-12.
The curves also assume that the sample sizes from the two populations are equal; that
is, ny = n, = n. The parameter on the horizontal axis in Figure 2-12 is

gl pal _ 18]
20 20

Dividing | 8| by 20 allows the experimenter to use the same set of curves, regardless of

the value of the variance (the difference in means is expressed in standard deviation

units). Furthermore, the sample size used to construct the curves is actually #* = 2n — 1.
From examining these curves, we note the following:

1. The greater the difference in means, u, — u,, the smaller the probability of type
IT error for a given sample size and «. That is, for a specified sample size and
a, the test will detect large differences more easily than small ones.

2. As the sample size gets larger, the probability of type II error gets smaller for a
given difference in means and «. That is, to detect a specified difference 8, we
may make the test more powerful by increasing the sample size.

Operating characteristic curves are often helpful in selecting a sample size to use in
an experiment. For example, consider the portland cement mortar problem discussed
previously. Suppose that if the two formulations differ in mean strength by as much as
0.5 kgf/cm? we would like to detect it with a high probability. Thus, because u, — p, =

1.0
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Figure 2-12 Operating characteristic curves for the two-sided #-test with
a = 0.05. (Reproduced with permission from *‘Operating Characteristics
for the Common Statistical Tests of Significance,”” C. L. Ferris, F. E.
Grubbs, and C. L. Weaver, Annals of Mathematical Statistics, June 1946.)
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0.5 kgf/cm? is the *‘critical”” difference in means we wish to detect, we find that d, the
parameter on the horizontal axis of the operating characteristic curve in Figure 2-12, is

_lm— | 05 _ 025

d
20 20 a

Unfortunately, d involves the unknown parameter . However, suppose that we think on
the basis of prior experience that it is very unlikely that the standard deviation of any
observation on strength would exceed 0.25 kgf/cm”. Then using o = 0.25 in the above
expression for d yields d = 1. If we wish to reject the null hypothesis 95 percent of the
time when u; — w, = 0.5, then B = 0.05, and Figure 2-12 with 8 = 0.05 and d = 1
yields n* = 16, approximately. Therefore, because n* = 2n — 1, the required sample
size is

on*+1 16+ 1

= 8.5 =
2 2 ?

n

and we would use sample sizes of n, = n, = n = 9.

In our example, the experimenter actually used a sample size of 10. Perhaps the
experimenter elected to increase the sample size slightly to guard against the possibility
that the prior estimate of the common standard deviation o was too conservative and
was likely to be somewhat larger than 0.25.

Operating characteristic curves often play an important role in the choice of sample
size in experimental design problems. Their use in this respect is discussed in subsequent
chapters. For a discussion of the uses of operating characteristic curves for other simple
comparative experiments similar to the two-sample #-test see Montgomery and Runger
(1999).

2-4.3 Confidence Intervals

Although hypothesis testing is a useful procedure, it sometimes does not tell the entire
story. It is often preferable to provide an interval within which the value of the parameter
or parameters in question would be expected to lie. These interval statements are called
confidence intervals. In many engineering and industrial experiments, the experimenter
already knows that the means w, and u, differ; consequently, hypothesis testing on
W, = M, is of little interest. The experimenter would usually be more interested in a
confidence interval on the difference in means w; — .

To define a confidence interval, suppose that 6 is an unknown parameter. To obtain
an interval estimate of 0, we need to find two statistics L and U such that the probability
statement

PL=so0=sU)=1—-« 2-27)
is true. The interval
L=s06<sU (2-28)

is called a 100(1 — «) percent confidence interval for the parameter 6. The interpre-
tation of this interval is that if, in repeated random samplings, a large number of such
intervals are constructed, 100(1 — «) percent of them will contain the true value of 6.
The statistics L and U are called the lower and upper confidence limits, respectively,
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and 1 — « is called the confidence coefficient. If « = 0.05, Equation 2-28 is called a
95 percent confidence interval for 6. Note that confidence intervals have a frequency
interpretation; that is, we do not know if the statement is true for this specific sample,
but we do know that the merhod used to produce the confidence interval yields correct
statements 100(1 — «) percent of the time.

Suppose that we wish to find a 100(1 — «) percent confidence interval on the true
difference in means u; — u, for the portland cement problem. The interval can be derived
in the following way. The statistic

Y~ Y2~ (Mg — M)

1 1
S, [—+ —
i ny ny
is distributed as #,, +,,-». Thus, ,
T = = ()
P _ta/2,n1+n2—2 = yl y2 1 Mll #2 = ta/2,n1+n2—2 = 1 - a
S, [—+ —
P n Ny
or
P(i - J’2 - a/2 n1+n2—2S ’
1 1
- y2 + ta/2n1+n2 2S + — =1—-a (2—29)
n n;
Comparing Equations 2-29 and 2-27, we see that
_ _ 1 1 -
Vi = Y2 = tapntn—25p ’l_1 + n_z = M
— _ 1 1
= i = )2 + tcz/2,n1+n2~2Sp —+ — (2_30)
n, n;

is a 100(1 — «) percent confidence interval for p, — ..

The actual 95 percent confidence interval estimate for the difference in mean tension
bond strength for the formulations of portland cement mortar is found by substituting in
Equation 2-30 as follows:

16.76 — 17.92 — (2.101)0.284 +Ek=pu
< 16 76 - 17 92 + (2.101)0.284V 15 + 15
—1.16 — 027 < u, — wp, < —1.16 + 027
—143 < p, — p, < —0.89

Thus, the 95 percent confidence interval estimate on the difference in means extends
from —1.43 kgf/em® to —0.89 kgf/cm?®. Put another way, the confidence interval is

, — M2 = —1.16 kgffem® = 0.27 kgf/cm?, or the difference in mean strengths is
—1.16 kgf/cm?, and the accuracy of this estimate is +0.27 kgf/cm®. Note that because
M — M = 0 is not included in this interval, the data do not support the hypothesis that
1 = Mo at the 5 percent level of significance. It is likely that the mean strength of the
unmodified formulation exceeds the mean strength of the modified formulation. Notice
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from Table 2-2 that Minitab also reported this confidence interval when the hypothesis
testing procedure was conducted. :

2-4.4 The Case Where o} # o3

If we are testing

Hy:py, = o
Hytpy # @y

and cannot reasonably assume that the variances o7 and o3 are equal, then the two-
sample t-test must be modified slightly. The test statistic becomes

th = LT Y2 (2-31)

0
St 55
ny 5]

This statistic is not distributed exactly as t. However, the distribution of #, is well-
approximated by ¢ if we use
2
St 52
ny Ry

v =
(Si/m)? + (83/n2)°
n, — 1 Ry — 1

(2-32)

as the degrees of freedom. A strong indication of unequal variances on a normal prob-
ability plot would be a situation calling for this version of the -test. You should be able
to develop an equation for finding that confidence interval on the difference in mean for
the unequal variances case easily.

2-4.5 The Case Where ¢? and 0% Are Known

If the variances of both populations are known, then the hypotheses

Hoipy = 2
Hyip # po

may be tested using the statistic

Zo = % (2-33)
g1, 9
ny 1

If both populations are normal, or if the sample sizes are large enough so that the central
limit theorem applies, the distribution of Z, is N(0, 1) if the null hypothesis is true. Thus,
the critical region would be found using the normal distribution rather than the ¢. Spe-
cifically, we would reject H, if | Zy| > Z, ., where Z,,, is the upper a/2 percentage point
of the standard normal distribution.
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Unlike the r-test of the previous sections, the test on means with known variances
does not require the assumption of sampling from normal populations. One can use the
central limit theorem to justify an approximate normal distribution for the difference in
sample means y; — y,.

The 100(1 — ) percent confidence interval on w, — u, where the variances are
known is

2 2 2 2

L o o _ lo o
Vo=V = Zap | — F =S — SV N+ Zap | — + —  (2:34)

ny 1473 n, ny

As noted previously, the confidence interval is often a useful supplement to the hypothesis
testing procedure.

2-4.6 Comparing a Single Mean to a Specified Value

Some experiments involve comparing only one population mean u to a specified value,
say, io. The hypotheses are

Ho:pp = o
Hy:p # po

If the population is normal with known variance, or if the population is nonnormal but
the sample size is large enough so that the central limit theorem applies, then the hy-
pothesis may be tested using a direct application of the normal distribution. The test
statistic is

_ Y " ko

o/NV'n
If Hy: . = py is true, then the distribution of Z, is N(0, 1). Therefore, the decision rule
for Hy: 0 = o is to reject the null hypothesis if | Z,| > Z,. The value of the mean o
specified in the null hypothesis is usually determined in one of three ways. It may result
from past evidence, knowledge, or experimentation. It may be the result of some theory
or model describing the situation under study. Finally, it may be the result of contractual
specifications.

The 100(1 — «) percent confidence interval on the true population mean is

Y= Zapo/Nn< u<3y+ Zypo/Nn (2-36)

Zs (2-35)

EXAMPLE 2.1 cvvveevereaseacsoseesatosacencesssessssassssssansessennss

A vendor submits lots of fabric to a textile manufacturer. The manufacturer wants to
know if the lot average breaking strength exceeds 200 psi. If so, she wants to accept the
lot. Past experience indicates that a reasonable value for the variance of breaking strength
is 100(psi)®. The hypotheses to be tested are

Ho:pn = 200
Hy:p > 200

Note that this is a one-sided alternative hypothesis. Thus, we would accept the lot only
if the null hypothesis Hy: . = 200 could be rejected (i.e., if Z, > Z,).
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Four specimens are randomly selected, and the average breaking strength observed
is y = 214 psi. The value of the test statistic is

_y—M0_214—200_280
a/\V'n 10/\V4 '

If a type I error of o = 0.05 is specified, we find Z, = Z;os = 1.645 from Appendix
Table 1. Thus H, is rejected, and we conclude that the lot average breaking strength
exceeds 200 psi.

Zy

If the variance of the population is unknown, we must make the additional assump-
tion that the population is normally distributed, although moderate departures from nor-
mality will not seriously affect the results.

To test Hy: . = g in the variance unknown case, the sample variance S” is used to
estimate o%. Replacing o with S in Equation 2-35, we have the test statistic

= Y — Mo
°" SWVn
The null hypothesis Hy: . = o would be rejected if | to| > 2,5, 1, Where 1,5, denotes

the upper a/2 percentage point of the ¢ distribution with n — 1 degrees of freedom. The
100(1 — «) percent confidence interval in this case is

;—y— - ta/2’n,1S/\/;l = M = y + ta,z,,,ﬂS/\/;l (2-38)

(2-37)

2-4.7 Summary

Tables 2-3 and 2-4 summarize the test procedures discussed above for sample means.
Critical regions are shown for both two-sided and one-sided alternative hypotheses.

Table 2-3 Tests on Means with Variance Known

Hypothesis Test Statistic Criteria for Rejection
Hop = pio
Zy\ > Z,
Hy:p # po 126> Zor
Hoip = o Y T o
Zy="—— Zy < —Z,
Hytp < g °" o/Vn °
Hoip = po Zo> 7.,
Hyip > po
Ho:py = po
Zy| > Z,
Hyp # l 0| &
Hoipy = po 7 = V1= Zy < ~Z,
Hyip < o 0 o N o3
no
Ho:py = pp

Zy > Z,
Hypy >y o
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Table 2-4 Tests on Means of Normal Distributions,
Variance Unknown

Hypothesis Test Statistic Criteria for Rejection
Hoip = po
o] >t
H1ZI~‘«¢IJ«0 |0| af2,n—1
Hoip = po Y ~ Mo
ty ="—"F— ty < —lgu-
Hyip < po * SWVn ° o
Hy:p =
0 = Ho to> funos
Hiip > po
if 07 = o3
Hy:tpy = po = Y=Y lto] > tapo
Hiipy # o 0 1 1
S, [—+—
n ny

v=n+n —2

if o7 # o3

Hoipy = po _ B 1o < —layp
Hi:p < p, fy = Y1~ )

S5

ny Ny

= 2 2\ 2

Ho:p = po St n &) fo > tay
H:p >, n N

UGy, S

n -1 n, — 1

2.5 INFERENCES ABOUT THE DIFFERENCES IN MEANS,
PAIRED COMPARISON DESIGNS

2.5.1 The Paired Comparison Problem

In some simple comparative experiments we can greatly improve the precision by making
comparisons within matched pairs of experimental material. For example, consider a
hardness testing machine that presses a rod with a pointed tip into a metal specimen with
a known force. By measuring the depth of the depression caused by the tip, the hardness
of the specimen is determined. Two different tips are available for this machine, and
although the precision (variability) of the measurements made by the two tips seems to
be the same, it is suspected that one tip produces different hardness readings than the
other.

An experiment could be performed as follows. A number of metal specimens (e.g.,
20) could be randomly selected. Half of these specimens could be tested by tip 1 and the
other half by tip 2. The exact assignment of specimens to tips would be randomly de-
termined. Because this is a completely randomized design, the average hardness of the
two samples could be compared using the t-test described in Section 2-4.

A little reflection will reveal a serious disadvantage in the completely randomized
design for this problem. Suppose the metal specimens were cut from different bar stock
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that were produced in different heats or that were not exactly homogeneous in some other
way that might affect the hardness. This lack of homogeneity between specimens will
contribute to the variability of the hardness measurements and will tend to inflate the
experimental error, thus making a true difference between tips harder to detect.

To protect against this possibility, consider an alternative experimental design. As-
sume that each specimen is large enough so that rwo hardness determinations may be
made on it. This alternative design would consist of dividing each specimen into two
parts, then randomly assigning one tip to one-half of each specimen and the other tip to
the remaining half. The order in which the tips are tested for a particular specimen would
also be randomly selected. The experiment, when performed according to this design
with 10 specimens, produced the (coded) data shown in Table 2-5.

We may write a statistical model that describes the data from this experiment as

y'7:Mi+Bj+€’j{j=1,2,...,10 @39
where y;; is the observation on hardness for tip i on specimen j, u; is the true mean
hardness of the ith tip, B; is an effect on hardness due to the jth specimen, and ¢ is a
random experimental error with mean zero and variance o?. That is, o7 is the variance
of the hardness measurements from tip 1 and o3 is the variance of the hardness mea-
surements from tip 2.

Note that if we compute the jth paired difference

d=y;=yy Jj=12...,10 (2-40)
the expected value of this difference is
Ma = E(dj)
= E(y,; — y2)

= E(yi;)) — E(y)

:I»‘«1+Bj_(l~’«2+Bj)

= BT Mn
That is, we may make inferences about the difference in the mean hardness readings of
the two tips @, — i, by making inferences about the mean of the differences w,. Notice

Table 2-5 Data for the Hardness
Testing Experiment

Specimen Tip 1 Tip 2
6

—
~J

O 0 O AW
B D W00 R W oW
|9, VR N R R SO O V)

—
<
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that the additive effect of the specimens S, cancels out when the observations are paired
in this manner.
Testing Hy: g = p, is equivalent to testing

HO:,J'd = 0
H1 oy o # 0
The test statistic for this hypothesis is
d
to = S (2-41)
d
where
- 1
d=;2¢ (2-42)
j=1
is the sample mean of the differences and
n 12 n 1 n 27]1/2
Sa-a| [Za-1(Sa)
s,= |2 = [2—2 2.43
¢ n—1 a n—1 (2-43)

is the sample standard deviation of the differences. Hy: u, = 0 would be rejected if
|to| > tup.—1- Because the observations from the factor levels are ‘‘paired” on each
experimental unit, this procedure is usually called the paired ¢-test.

For the data in Table 2-5, we find

d=7-6=1 de=3-2=1
d=3-3=0 d;=2—-4=-2
dy=3-5=-2 dg=9—-9=0
d,=4-3=1 dy=5—-4=1
d;=8—-8=0 do=4—-5=—1

Thus,

T =120

n 1 n 271172
2 Z .
2 dj (2 dj) _ [13 _ T1(_)(_1)2]1/2

Suppose we choose a = 0.05. Now to make a decision, we would compute ¢, and reject
HO if |t0| > l‘04025’9 = 2.262.
The computed value of the paired #-test statistic is

d
o = ——
° " s/Nn
~0.10

1.20/V10
—0.26
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Figure 2-13 The reference distribution (¢ with 9 degrees of freedom) for the

hardness testing problem.

and because |t = 0.26 P #5050 = 2.262, we cannot reject the hypothesis Hy: u, = 0.
That is, there is no evidence to indicate that the two tips produce different hardness
readings. Figure 2-13 shows the ¢, distribution with 9 degrees of freedom, the reference
distribution for this test, with the value of ¢, shown relative to the critical region.

Table 2-6 shows the computer output from the Minitab paired #-test procedure for
this problem. Notice that the P-value for this test is P = 0.80, implying that we cannot
reject the null hypothesis at any reasonable level of significance.

2-5.2 Advantages of the Paired Comparison Design

The design actually used for this experiment is called the paired comparison design,
and it illustrates the blocking principle discussed in Section 1-3. Actually, it is a special
case of a more general type of design called the randomized block design. The term
block refers to a relatively homogeneous experimental unit (in our case, the metal spec-
imens are the blocks), and the block represents a restriction on complete randomization
because the treatment combinations are only randomized within the block. We look at
designs of this type in Chapter 4. In that chapter the mathematical model for the design,
Equation 2-39, is written in a slightly different form.

Table 2-6 Minitab Paired t-Test Results for the Hardness Testing Example

Paired 7-Test and Confidence Interval
Paired T for Tip 1 - Tip 2

N Mean Sthev SE Mean
Tip 1 10 4.800 2.394 0.757
Tip 2 10 4.900 2.234 0.706
Difference 10 -0.100 1.197 0.379

95% CI for mean difference: (-0.956, 0.756)
t-Test of mean difference = 0 (vs not = 0):
T-vValue = -0.26 P-Value = 0.798
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Before leaving this experiment, several points should be made. Note that, although
2n = 2(10) = 20 observations have been taken, only n — 1 = 9 degrees of freedom are
available for the ¢ statistic. (We know that as the degrees of freedom for ¢ increase the
test becomes more sensitive.) By blocking or pairing, we have effectively ‘‘lost”” n — 1
degrees of freedom, but we hope we have gained a better knowledge of the situation by
eliminating an additional source of variability (the difference between specimens). We
may obtain an indication of the quality of information produced from the paired design
by comparing the standard deviation of the differences S; with the pooled standard de-
viation §, that would have resulted had the experiment been conducted in a completely
randomized manner and the data of Table 2-5 been obtained. Using the data in Table 2-
5 as two independent samples, we compute the pooled standard deviation from Equation
2-25to be §, = 2.32. Comparing this value to S; = 1.20, we see that blocking or pairing
has reduced the estimate of variability by nearly 50 percent. We may also express this
information in terms of a confidence interval on w, — w,. Using the paired data, a 95
percent confidence interval on w; — u, is

d=* t04025,9Sd/\/;

—0.10 = (2.262)(1.20)/V 10
—0.10 = 0.86

Conversely, using the pooled or independent analysis, a 95 percent confidence interval
on p; — Mo is

_ - 1 1
Yi = Y2 ¥ toosasS, [— F —
ny n,
4.80 — 4.90 + (2.101)2.32)V 15 + 15
—0.10 = 2.18

The confidence interval based on the paired analysis is much narrower than the confi-
dence interval from the independent analysis. This illustrates the noise reduction prop-
erty of blocking.

Blocking is not always the best design strategy. If the within-block variability is the
same as the between-block variability, the variance of y, — ¥, will be the same regardless
of which design is used. Actually, blocking in this situation would be a poor choice of
design because blocking results in the loss of n — 1 degrees of freedom and will actually
lead to a wider confidence interval on @, — u,. A further discussion of blocking is given
in Chapter 4.

2-6 INFERENCES ABOUT THE VARIANCES
OF NORMAL DISTRIBUTIONS

In many experiments, we are interested in possible differences in the mean response for
two treatments. However, in some experiments it is the comparison of variability in the
data that is important. In the food and beverage industry, for example, it is important
that the variability of filling equipment be small so that all packages have close to the
nominal net weight or volume of content. In chemical laboratories, we may wish to
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compare the variability of two analytical methods. We now briefly examine tests of
hypotheses and confidence intervals for variances of normal distributions. Unlike the
tests on means, the procedures for tests on variances are rather sensitive to the normality
assumption. A good discussion of the normality assumption is in Appendix 2A of Davies
(1956).

Suppose we wish to test the hypothesis that the variance of a normal population
equals a constant, for example, o3. Stated formally, we wish to test

H0:0'2 = 0'(2)
Hy:o® # 0§ (2-44)

The test statistic for Equation 2-44 is

, SS_(n— DS
X0 ™ 52 o}

(2-45)
where SS = = (y; — y)* is the corrected sum of squares of the sample observations.
The appropriate reference distribution for x§ is the chi-square distribution with n — 1
degrees of freedom. The null hypothesis is rejected if x& > xZp.-1 or if x3 <
X3 (a/yn—1, Where x2,—; and X7 (a2 .—1 are the upper a/2 and lower 1 — (a/2)
percentage points of the chi-square distribution with » — 1 degrees of freedom, respec-
tively. Table 2-7 (on the facing page) gives the critical regions for the one-sided alter-
native hypotheses. The 100(1 — @) percent confidence interval on o is

2 o n — 1)S?

_ 2
(n DS < "
X1=(a/2)n—1

2
Xa/2,n—1

o (2-46)

Now consider testing the equality of the variances of two normal populations. If
independent random samples of size n; and n, are taken from populations 1 and 2,
respectively, the test statistic for

[ 2
H0.0'1 = 03

H,:0% # 03 (2-47)
is the ratio of the sample variances
S2
Fo=3 (2-48)
S2

The appropriate reference distribution for F is the F distribution with #n, — 1 numerator
degrees of freedom and n, — 1 denominator degrees of freedom. The null hypothesis
would be rejected if Fo > Fop 0, —10,—1 0F if Fo < Fi_(a/2)n,~1.n,—1, Whete Fopp p —1 5,1
and F_(a/2),n,—1,n,—1 denote the upper a/2 and lower 1 — (a/2) percentage points of the
F distribution with n, — 1 and n, — 1 degrees of freedom. Table IV of the Appendix
gives only upper-tail percentage poins of F'; however, the upper- and lower-tail points
are related by

1
Fl—a,vl,vz = Fa,vz,vl (2‘49)




2-6 INFERENCES ABOUT THE VARIANCES OF NORMAL DISTRIBUTIONS 53

Table 2-7 Tests on Variances of Normal Distributions

Hypothesis Test Statistic Criteria for Rejection
Hy:o? = o3 X(Z) > X§/2,n*l or
H, :0% + o2 Xo < Xl-a/2n—1
Hy:0? = o} @ = n — 1)§? <
HI:(TZ < (T% o) 0_(2) ¢} 1-an—1
Hy:0? = o3 N N
HI.O.Z > O'g Xo > Xa,n*l
Hy:o? = o3 F.o= S_% Fo > Fopp~1ny—1 01
H,:0? #+ o7 0 g2 Fo < Fiapzn—1m-1
Hy:0? = 03 2

Fo=— Fo>F,p, in—
H,:0? < 0% 0T s 0 ylm
Hy:of = o3 i
H1:0%>0'% Fozs_g F0>Fa.nl‘l,n2~l

Test procedures for more than two variances are discussed in Chapter 3, Section 3-4.3.
We will also discuss the use of the variance or standard deviation as a response variable
in more general experimental settings.

EXAMPLE 2.2 cccvvevcecseaascnncensannns

A chemical engineer is investigating the inherent variability of two types of test equip-
ment that can be used to monitor the output of a production process. He suspects that
the old equipment, type 1, has a larger variance than the new one. Thus, he wishes to
test the hypothesis

Hy:0} = o3
L2 2
H:o1 > o3

Two random samples of n, = 12 and n, = 10 observations are taken, and the sample
variances are S7 = 14.5 and S5 = 10.8. The test statistic is
ST 145

Fo=—w=—=134
° 82 108

From Appendix Table IV we find that F 55 ;, 9 = 3.10, so the null hypothesis cannot be

rejected. That is, we have found insufficient statistical evidence to conclude that the

variance of the old equipment is greater than the variance of the new equipment.

The 100(1 — ) confidence interval for the ratio of the population variances o1/03
is
._S'_f oc? 52

2 Fl—a/2,n2—1,n]—l = 2 = 2 Fa/2,n2—1,n1—1 (2'50)
$2 S5

g3
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To illustrate the use of Equation 2-50, the 95 percent confidence interval for the ratio of

variances o1/o3 in Example 2-2 is, using Fy 5011 = 3.59 and Fog75011 = 1/Fo02s.11.0
= 1/3.92 = 0.255,

14.5 o? 145

— (0255 = — = —(3.59

10.8 ( ) o3 108 ( )

2-7 PROBLEMS
2-1.

2-3.

2-4.

2-5.

N

034 < L < 481

2

S
N

The breaking strength of a fiber is required to be at least 150 psi. Past experience has
indicated that the standard deviation of breaking strength is & = 3 psi. A random sample
of four specimens is tested, and the results are y, = 145, y, = 153, y; = 150, and y, =
147.

(a) State the hypotheses that you think should be tested in this experiment.

(b) Test these hypotheses using & = 0.05. What are your conclusions?

(¢) Find the P-value for the test in part (b).

(d) Construct a 95 percent confidence interval on the mean breaking strength.

The viscosity of a liquid detergent is supposed to average 800 centistokes at 25°C. A
random sample of 16 batches of detergent is collected, and the average viscosity is 812.
Suppose we know that the standard deviation of viscosity is o = 25 centistokes.

(a) State the hypotheses that should be tested.

(b) Test these hypotheses using o = 0.05. What are your conclusions?

(c) What is the P-value for the test?

(d) Find a 95 percent confidence interval on the mean.

The diameters of steel shafts produced by a certain manufacturing process should have a
mean diameter of 0.255 inches. The diameter is known to have a standard deviation of
o = 0.0001 inch. A random sample of 10 shafts has an average diameter of 0.2545 inch.
(a) Set up appropriate hypotheses on the mean u.

(b) Test these hypotheses using a« = 0.05. What are your conclusions?

(c) Find the P-value for this test.

(d) Construct a 95 percent confidence interval on the mean shaft diameter.

A normally distributed random variable has an unknown mean u and a known variance
o? = 9. Find the sample size required to construct a 95 percent confidence interval on
the mean that has total width of 1.0.

The shelf life of a carbonated beverage is of interest. Ten bottles are randomly selected
and tested, and the following results are obtained:

Days
108 138
124 163
124 159
106 134

115 139

(a) We would like to demonstrate that the mean shelf life exceeds 120 days. Set up
appropriate hypotheses for investigating this claim.
(b) Test these hypotheses using « = 0.01. What are your conclusions?
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(¢) Find the P-value for the test in part (b).

(d) Construct a 99 percent confidence interval on the mean shelf life.

Consider the shelf life data in Problem 2-5. Can shelf life be described or modeled ade-
quately by a normal distribution? What effect would violation of this assumption have on
the test procedure you used in solving Problem 2-57

The time to repair an electronic instrument is a normally distributed random variable
measured in hours. The repair times for 16 such instruments chosen at random are as
follows:

Hours
159 280 101 212
224 379 179 264
222 362 168 250
149 260 485 170

(a) You wish to know if the mean repair time exceeds 225 hours. Set up appropriate
hypotheses for investigating this issue.

(b) Test the hypotheses you formulated in part (a). What are your conclusions? Use
a = 0.05.

(¢) Find the P-value for the test.

(d) Construct a 95 percent confidence interval on mean repair time.

Reconsider the repair time data in Problem 2-7. Can repair time, in your opinion, be

adequately modeled by a normal distribution?

Two machines are used for filling plastic bottles with a net volume of 16.0 ounces. The

filling processes can be assumed to be normal, with standard deviations of oy = 0.015

and o, = 0.018. The quality engineering department suspects that both machines fill to

the same net volume, whether or not this volume is 16.0 ounces. An experiment is per-

formed by taking a random sample from the output of each machine.

Machine 1 Machine 2
16.03 16.01 16.02 16.03
16.04 15.96 15.97 16.04
16.05 15.98 15.96 16.02
16.05 16.02 16.01 16.01
16.02 15.99 15.99 16.00

(a) State the hypotheses that should be tested in this experiment.

(b) Test these hypotheses using @ = 0.05. What are your conclusions?

(c) Find the P-value for this test.

(d) Find a 95 percent confidence interval on the difference in mean fill volume for the
two machines.

Two types of plastic are suitable for use by an electronic calculator manufacturer. The

breaking strength of this plastic is important. It is known that oy = o, = 1.0 psi. From

random samples of n;, = 10 and n, = 12 we obtain y; = 162.5 and y, = 155.0. The

company will not adopt plastic 1 unless its breaking strength exceeds that of plastic 2 by

at least 10 psi. Based on the sample information, should they use plastic 1? In answering

this question, set up and test appropriate hypotheses using o = 0.01. Construct a 99 percent

confidence interval on the true mean difference in breaking strength.
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2-11.

2-12.

2-13.

CHAPTER 2 SIMPLE COMPARATIVE EXPERIMENTS

The following are the burning times of chemical flares of two different formulations. The
design engineers are interested in both the mean and variance of the burning times.

Type 1 Type 2
65 82 64 56
81 67 71 69
57 59 83 74
66 75 59 82
82 70 65 79

(a) Test the hypothesis that the two variances are equal. Use o = 0.05.

(b) Using the results of (a), test the hypothesis that the mean burning times are equal.
Use a = 0.05. What is the P-value for this test?

(c) Discuss the role of the normality assumption in this problem. Check the assumption
of normality for both types of flares.

An article in Solid State Technology, ‘‘Orthogonal Design for Process Optimization and

Its Application to Plasma Etching’’ by G. Z. Yin and D. W. Jillie (May, 1987) describes

an experiment to determine the effect of the C,F4 flow rate on the uniformity of the etch

on a silicon wafer used in integrated circuit manufacturing. Data for two flow rates are as

follows:

Uniformity Observation

C2F6 Flow
(SCCM) 1 2 3 4 5 6
125 2.7 4.6 26 3.0 32 3.8
200 4.6 34 29 35 4.1 5.1

(a) Does the C,F¢ flow rate affect average etch uniformity? Use o = 0.05.

(b) What is the P-value for the test in part (a)?

(c) Does the C,F¢ flow rate affect the wafer-to-wafer variability in etch uniformity? Use
a = 0.05.

(d) Draw box plots to assist in the interpretation of the data from this experiment.

A new filtering device is installed in a chemical unit. Before its installation, a random

sample yielded the following information about the percentage of impurity: y, = 12.5,

§% = 101.17, and n, = 8. After installation, a random sample yielded 5, = 10.2,

83 =9473,n, = 9.

(a) Can you conclude that the two variances are equal? Use a = 0.05.

(b) Has the filtering device reduced the percentage of impurity significantly? Use
a = 0.05.

Twenty observations on etch uniformity on silicon wafers are taken during a qualification

experiment for a plasma etcher. The data are as follows:

5.34 6.65 4.76 5.98 7.25
6.00 7.55 5.54 5.62 6.21
5.97 7.35 5.44 4.39 4.98
5.25 6.35 4.61 6.00 5.32

(a) Construct a 95 percent confidence interval estimate of o~
(b) Test the hypothesis that 0 = 1.0. Use a = 0.05. What are your conclusions?
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(c) Discuss the normality assumption and its role in this problem.
(d) Check normality by constructing a normal probability plot. What are your
conclusions?
2-15. The diameter of a ball bearing was measured by 12 inspectors, each using two different
kinds of calipers. The results were

Inspector Caliper 1 Caliper 2
1 0.265 0.264
2 0.265 0.265
3 0.266 0.264
4 0.267 0.266
5 0.267 0.267
6 0.265 0.268
7 0.267 0.264
8 0.267 0.265
9 0.265 0.265

10 0.268 0.267
11 0.268 0.268
12 0.265 0.269

(a) Isthere a significant difference between the means of the population of measurements
from which the two samples were selected? Use a = 0.05.

(b) Find the P-value for the test in part (a).

(c) Construct a 95 percent confidence interval on the difference in mean diameter mea-
surements for the two types of calipers.

2-16.  An article in the Journal of Strain Analysis (vol. 18, no. 2, 1983) compares several pro-
cedures for predicting the shear strength for steel plate girders. Data for nine girders in
the form of the ratio of predicted to observed load for two of these procedures, the Karls-
ruhe and Lehigh methods, are as follows:

Girder Karlsruhe Method Lehigh Method
S1/1 1.186 1.061
S2/1 1.151 0.992
S3/1 1.322 1.063
S4/1 1.339 1.062
S5/1 1.200 1.065
S2/1 1.402 1.178
S2/2 1.365 1.037
S2/3 1.537 1.086
S2/4 1.559 1.052

(a) Is there any evidence to support a claim that there is a difference in mean perfor-
mance between the two methods? Use o = 0.05.

(b) What is the P-value for the test in part (a)?

(c) Construct a 95 percent confidence interval for the difference in mean predicted to
observed load.

(d) Investigate the normality assumption for both samples.

(e) Investigate the normality assumption for the difference in ratios for the two methods.

(f) Discuss the role of the normality assumption in the paired z-test.
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2-17.

2-20.

2-21.

2-22.

CHAPTER 2 SIMPLE COMPARATIVE EXPERIMENTS

The deflection temperature under load for two different formulations of ABS plastic pipe

is being studied. Two samples of 12 observations each are prepared using each formulation
and the deflection temperatures (in °F) are reported below:

Formulation 1 Formulation 2
206 193 192 177 176 198
188 207 210 197 185 188
205 185 194 206 200 189
187 189 178 201 197 203

(a) Construct normal probability plots for both samples. Do these plots support as-
sumptions of normality and equal variance for both samples?

(b) Does the data support the claim that the mean deflection temperature under load for
formulation 1 exceeds that of formulation 27 Use o = 0.05.

(¢) What is the P-value for the test in part (a)?

Refer to the data in Problem 2-17. Do the data support a claim that the mean deflection

temperature under load for formulation 1 exceeds that of formulation 2 by at least 3°F?

In semiconductor manufacturing wet chemical etching is often used to remove silicon

from the backs of wafers prior to metalization. The etch rate is an important characteristic

of this process. Two different etching solutions are being evaluated. Eight randomly se-

lected wafers have been etched in each solution and the observed etch rates (in mils/min)

are shown below.

Solution 1 Solution 2
9.9 10.6 10.2 10.6
94 10.3 10.0 10.2

10.0 9.3 10.7 104
10.3 9.8 10.5 10.3

(a) Do the data indicate that the claim that both solutions have the same mean etch rate
is valid? Use @ = 0.05 and assume equal variances.

(b) Find a 95 percent confidence interval on the difference in mean etch rates.

(c) Use normal probability plots to investigate the adequacy of the assumptions of nor-
mality and equal variances.

Two popular pain medications are being compared on the basis of the speed of absorption

by the body. Specifically, tablet 1 is claimed to be absorbed twice as fast as tablet 2.

Assume that o7 and &3 are known. Develop a test statistic for

Hy:2py = po
H1:2,u1 * Mo

Suppose we are testing

Hoippy = p
Hy:py # p

where o7 and o3 are known. Our sampling resources are constrained such that
n; + n, = N. How should we allocate the N observations between the two populations
to obtain the most powerful test?

Develop Equation 2-46 for a 100(1 — a) percent confidence interval for the variance of
a normal distribution.



2-23.

2-24.
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Develop Equation 2-50 for a 100(1 — a) percent confidence interval for the ratio o3/03,
where o7 and o7 are the variances of two normal distributions.

Develop an equation for finding a 100(1 — «) percent confidence interval on the difference
in the means of two normal distributions where o7 # o5. Apply your equation to the
portland cement experiment data, and find a 95 pecent confidence interval.

Construct a data set for which the paired #-test statistic is very large, but for which the
usual two-sample or pooled #-test statistic is small. In general, describe how you created
the data. Does this give you any insight regarding how the paired ¢-test works?



Experiments

with a Single
Factor: The Analysis
of Variance

In Chapter 2 we discussed methods for comparing two conditions or treatments. For
example, the portland cement tension bond experiment involved two different mortar
formulations. Another way to describe this experiment is as a single-factor experiment
with two levels of the factor, where the factor is mortar formulation and the two levels
are the two different formulation methods. Many experiments of this type involve more
than two levels of the factor. In this chapter we present methods for the design and
analysis of single-factor experiments with a levels of the factor (or a treatments). We
will assume that the experiment has been completely randomized.

3-1 AN EXAMPLE

A product development engineer is interested in investigating the tensile strength of a
new synthetic fiber that will be used to make cloth for men’s shirts. The engineer knows
from previous experience that the strength is affected by the weight percent of cotton
used in the blend of materials for the fiber. Furthermore, she suspects that increasing the
cotton content will increase the strength, at least initially. She also knows that cotton
content should range between about 10 and 40 percent if the final product is to have
other quality characteristics that are desired (such as the ability to take a permanent-press
finishing treatment). The engineer decides to test specimens at five levels of cotton weight
percent: 15, 20, 25, 30, and 35 percent. She also decides to test five specimens at each
level of cotton content.

This is an example of a single-factor experiment with a = 5 levels of the factor and
n = 5 replicates. The 25 runs should be made in random order. To illustrate how the

run order may be randomized, suppose that we number the runs as follows:
60
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Cotton
Weight
Percentage Experimental Run Number

15 1 2 3 4 5
20 6 7 8 9 10
25 11 12 13 14 15
30 16 17 18 19 20
35 21 22 23 24 25

Now we select a random number between 1 and 25. Suppose this number is 8. Then the
number 8 observation (20 percent cotton) is run first. This process would be repeated
until all 25 observations have been assigned a position in the test sequence.! Many
computer software packages for assisting experimenters in selecting and constructing a
design randomize the run order by using random numbers in this fashion.

Suppose that the test sequence obtained is

Test Sequence Run Number Cotton Weight Percentage
1 8 20
2 18 30
3 10 20
4 23 35
5 17 30
6 5 15
7 14 25
8 6 20
9 15 25

10 20 30
11 9 20
12 4 15
13 12 25
14 7 20
15 1 15
16 24 35
17 21 35
18 11 25
19 2 15
20 13 25
21 22 35
22 16 30
23 25 35
24 19 30
25 3 15

This randomized test sequence is necessary to prevent the effects of unknown nuisance
variables, perhaps varying out of control during the experiment, from contaminating the

' The only restriction on randomization here is that if the same number (e.g., 8) is drawn again, it is discarded. This
is a minor restriction and is ignored.
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Table 3-1 Data (in Ib/in®) from the Tensile Strength Experiment

\%(:g}i Observations
Percentage 1 2 3 4 5 Total Average
15 7 7 15 11 9 49 9.8
20 12 17 12 18 18 77 154
25 14 18 18 19 19 88 17.6
30 19 25 22 19 23 108 21.6
35 7 10 11 15 11 54 10.8

376 15.04

results. To illustrate, suppose that we were to run the 25 test specimens in the original
nonrandomized order (that is, all five 15 percent cotton specimens are tested first, all five
20 percent cotton specimens are tested next, and so on). If the tensile strength testing
machine exhibits a warm-up effect such that the longer it is on, the lower the observed
tensile strength readings will be, the warm-up effect will potentially contaminate the
tensile strength data and destroy the validity of the experiment.

Suppose that the engineer runs the test in the random order we have determined.
The observations that she obtains on tensile strength are shown in Table 3-1.

It is always a good idea to examine experimental data graphically. Figure 3-1 pre-
sents box plots for tensile strength at each level of cotton weight percent, and Figure 3-2
(on the facing page) is a scatter diagram of tensile strength versus cotton weight per-
centage. In Figure 3-2, the solid dots are the individual observations and the open circles
are the average observed tensile strengths. Both graphs indicate that tensile strength
increases as cotton content increases, up to about 30 percent cotton. Beyond 30 percent
cotton, there is a marked decrease in tensile strength. There is no strong evidence to
suggest that the variability in tensile strength around the average depends on the cotton
weight percentage. Based on this simple graphical analysis, we strongly suspect that (1)
cotton content affects tensile strength and (2) around 30 percent cotton results in maxi-
mum strength.

Suppose that we wish to be more objective in our analysis of the data. Specifically,

30—
< 1
£
)
:—E— 20— [—’—I
2 L ]
o
2 ] |
2
‘B
&
2 10—
0 | ] ] ] | I
15 20 25 30 35 40

Cotton weight percentage

Figure 3-1 Box plots of tensile strength versus cotton weight
percentage.
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Figure 3-2 Scatter diagram of tensile strength versus
cotton weight percentage.

suppose that we wish to test for differences between the mean strengths at all @ = 5
levels of cotton weight percentage. Thus, we are interested in testing the equality of all
five means. It might seem that this problem could be solved by performing a t-test for
all the possible pairs of means. However, this is not the best solution to this problem
because it would lead to considerable distortion in the type I error. For example, suppose
we wish to test the equality of the five means using pairwise comparisons. There are 10
possible pairs, and if the probability of correctly accepting the null hypothesis for each
individual test is 1 — a = .95, the probability of correctly accepting the null hypothesis
for all 10 tests is (.95)!° = .60 if the tests are independent. Thus, a substantial increase
in the type I error has occurred.

The appropriate procedure for testing the equality of several means is the analysis
of variance. However, the analysis of variance has a much wider application than the
problem above. It is probably the most useful technique in the field of statistical inference.

3.2 THE ANALYSIS OF VARIANCE

Suppose we have a treatments or different levels of a single factor that we wish to
compare. The observed response from each of the a treatments is a random variable. The
data would appear as in Table 3-2. An entry in Table 3-2 (e.g., y;) represents the jth
observation taken under factor level or treatment i. There will be, in general, n obser-

Table 3-2 Typical Data for a Single-Factor Experiment

Treatment
(level) Observations Totals Averages
- Yu Yiz o Yin Y Y
2 Y21 Y22 e Yan Y. ¥a.
a Va1 )’ a2 y an yu ya
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vations under the ith treatment. Notice that Table 3-2 is the general case of the data from
the tensile strength experiment in Table 3-1.

Models for the Data
We will find it useful to describe the observations from an experiment with a model.
One way to write this model is

{i= 1,2,...,a
Vi = M T o€py L (3-1)
j=
where y;; is the ijth observation, u, is the mean of the ith factor level or treatment, and
€, is a random error component that incorporates all other sources of variability in the
experiment including measurement, variability arising from uncontrolled factors, differ-
ences between the experimental units (such as test material, etc.) to which the treatments
are applied, and the general background noise in the process (such as variability over
time, effects of environmental variables, and so forth). It is convenient to think of the
errors as having mean zero, so that E(y;) = u,.

Equation 3-1 is called the means model. An alternative way to write a model for
the data is to define

W= M+ T, i=1,2,...,a

so that Equation 3-1 becomes
i= ...
Yyy=ptmn+ Eij{. (3-2)
j= c.., R

In this form of the model, u is a parameter common to all treatments called the overall
mean, and 7; is a parameter unique to the ith treatment called the ith treatment effect.
Equation 3-2 is usually called the effects model.

Both the means model and the effects model are linear statistical models; that is,
the response variable y,; is a linear function of the model parameters. Although both
forms of the model are useful, the effects model is more widely encountered in the
experimental design literature. It has some intuitive appeal in that w is a constant and
the treatment effects 7; represent deviations from this constant when the specific treat-
ments are applied.

Equation 3-2 (or 3-1) is also called the one-way or single-factor analysis of vari-
ance model because only one factor is investigated. Furthermore, we will require that
the experiment be performed in random order so that the environment in which the
treatments are applied (often called the experimental units) is as uniform as possible.
Thus, the experimental design is a completely randomized design. Our objectives will
be to test appropriate hypotheses about the treatment means and to estimate them. For
hypothesis testing, the model errors are assumed to be normally and independently dis-
tributed random variables with mean zero and variance 0. The variance o~ is assumed
to be constant for all levels of the factor. This implies that the observations

Yij ™~ N + 7, 0'2)

and that the observations are mutually independent.
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Fixed or Random Factor?

The statistical model, Equation 3-2, describes two different situations with respect to the
treatment effects. First, the a treatments could have been specifically chosen by the
experimenter. In this situation we wish to test hypotheses about the treatment means,
and our conclusions will apply only to the factor levels considered in the analysis. The
conclusions cannot be extended to similar treatments that were not explicitly considered.
We may also wish to estimate the model parameters (u, 7;, o). This is called the fixed
effects model. Alternatively, the a treatments could be a random sample from a larger
population of treatments. In this situation we should like to be able to extend the con-
clusions (which are based on the sample of treatments) to all treatments in the population,
whether they were explicitly considered in the analysis or not. Here the 7; are random
variables, and knowledge about the particular ones investigated is relatively useless.
Instead, we test hypotheses about the variability of the 7; and try to estimate this vari-
ability. This is called the random effects model or components of variance model. We
will defer discussion of experiments with random factors to Chapter 12.

3-3 ANALYSIS OF THE FIXED EFFECTS MODEL

In this section, we develop the single-factor analysis of variance for the fixed effects
model. Recall that y; represents the total of the observations under the ith treatment. Let
y.. represent the average of the observations under the ith treatment. Similarly, let y_
represent the grand total of all the observations and y_ represent the grand average of all
the observations. Expressed symbolically,

=

Yi. Yijs yi. = yi./n i = 1, 2,...,a
1

<
II

(3-3)

n

~<
I
INZE
<
S

1
—_
~.

If
—_

y.=y.IN

where N = an is the total number of observations. We see that the ‘‘dot’’ subscript
notation implies summation over the subscript that it replaces.

We are interested in testing the equality of the @ treatment means; that is, E(y;) =
w+ T =pwu,i=1,2,...,a The appropriate hypotheses are

HO:I'L1=M2:“.=,‘L(Z
Hyip # py for at least one pair (i, j)

In the effects model, we break the ith treatment mean u, up into two components such
that u; = u + 7,. We usually think of u as an overall mean so that

M

M

i=1

a

This definition implies that
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That is, the treatment or factor effects can be thought of as deviations from the overall
mean.” Consequently, an equivalent way to write the above hypotheses is in terms of the
treatment effects 7;, say

H:mn=7n=---7,=0
H:m+0 for at least one i

Thus, we speak of testing the equality of treatment means or testing that the treatment
effects (the 7;) are zero. The appropriate procedure for testing the equality of a treatment
means is the analysis of variance.

3-3.1 Decomposition of the Total Sum of Squares

The name analysis of variance is derived from a partitioning of total variability into its
component parts. The total corrected sum of squares

is used as a measure of overall variability in the data. Intuitively, this is reasonable
because, if we were to divide SS; by the appropriate number of degrees of freedom (in
this case, an — 1 = N — 1), we would have the sample variance of the y’s. The sample
variance is, of course, a standard measure of variability.

Note that the total corrected sum of squares SS7 may be written as

2 2 0y =3 = 2 2 Gk =5+ Oy~ IF (3-4)
i j i=1 j=1
or
22—y =n 21 3. =y + E 21 oy = V)
i= =1 j=
22 2 Gi = 505 = ) (3-5)
i=1 j=1
However, the cross-product term in Equation 3-5 is zero, because
Z Yi — V) =Y. T ny, =y — n(y./n) =0
Therefore, we have
22— I =l G oI+ 2 Gy ) (3-6)
i=1 j=1 i=1 i=1 j=1
Equation 3-6 states that the total variability in the data, as measured by the total corrected
sum of squares, can be partitioned into a sum of squares of the differences between the

treatment averages and the grand average, plus a sum of squares of the differences of
observations within treatments from the treatment average. Now, the difference between

2 For more information on this subject, refer to the supplemental text material for Chapter 3.
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the observed treatment averages and the grand average is a measure of the differences
between treatment means, whereas the differences of observations within a treatment
from the treatment average can be due only to random error. Thus, we may write Equation
3-6 symbolically as

SST = SSTreatments + SSE

where SSTreamments 15 called the sum of squares due to treatments (i.e., between treatments),
and SSg is called the sum of squares due to error (i.e., within treatments). There are an =
N total observations; thus, SS7has N — 1 degrees of freedom. There are a levels of the
factor (and a treatment means), SO SStreaments Nas @ — 1 degrees of freedom. Finally,
within any treatment there are n replicates providing n — 1 degrees of freedom with
which to estimate the experimental error. Because there are a treatments, we have a(n —
1) = an — a = N — a degrees of freedom for error.

It is helpful to examine explicitly the two terms on the right-hand side of the fun-
damental analysis of variance identity (Equation 3-6). Consider the error sum of squares

SSp = 21 E Oy — V) = E [2 Oy — w]
=1 j= = j=

In this form it is easy to see that the term within square brackets, if divided by n — 1, is
the sample variance in the ith treatment, or

> Oy — Yo

S2
! n—1

i=12,...,a

Now a sample variances may be combined to give a single estimate of the common
population variance as follows:

i [2 Oy — i,-.)z]

(n — I)S%'l‘(n— l)S%—I— oo+ (n— 1)S§=i:1 =1
m—-D+@-D+---+m—-1) S - 1)

i=1

_SSg

(N -a)

Thus, SSz/(N — a) is a pooled estimate of the common variance within each of the a
treatments.

Similarly, if there were no differences between the a treatment means, we could use
the variation of the treatment averages from the grand average to estimate o”.
Specifically,

n G. — 3.
SSTreatments _ l:}:l Y Y

a—1 a—1

is an estimate of ¢ if the treatment means are equal. The reason for this may be intui-
tively seen as follows: The quantity ¢ ,(y; — y.)*/(a — 1) estimates o”*/n, the variance
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of the treatment averages, so n2 (¥, — y.)*/(a — 1) must estimate ¢ if there are no
differences in treatment means.

We see that the analysis of variance identity (Equation 3-6) provides us with two
estimates of o>—one based on the inherent variability within treatments and one based
on the variability between treatments. If there are no differences in the treatment means,
these two estimates should be very similar, and if they are not, we suspect that the
observed difference must be caused by differences in the treatment means. Although we
have used an intuitive argument to develop this result, a somewhat more formal approach
can be taken.

The quantities

M _ SSTreatmems
STreatments - a— 1

and

SSe

MS, = ——
£ N-a

are called mean squares. We now examine the expected values of these mean squares.
Consider

M=
M=

N —a i

J

1
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Substituting the model (Equation 3-1) into this equation, we obtain

a n 2
E <2 yia + Ti + Eij) :I
i=1 \j=1

Now when squaring and taking expectation of the quantity within the brackets, we see
that terms involving €/ and €} are replaced by o? and no?, respectively, because
E(e;;) = 0. Furthermore, all cross-products involving €;; have zero expectation. Therefore,
after squaring and taking expectation, the last equation becomes

S | =

1 a n
EMSp) = v— E[El 21 (w+ 7+ €) —
=1 j=

1 a a
EMS;) = N—a |:N[.L2 +n 21 77+ No? — Nu> — n 21 - a02:|

or

EMSg) = o
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By a similar approach, we may also show that’

a
nz,z

T
i=1
1

E(MSTreatments) = 02 +

a —

Thus, as we argued heuristically, MS; = SSz/(N — a) estimates ¢, and, if there are no

differences in treatment means (which implies that 7, = 0), MStrcaiments = S Treamments/

(a — 1) also estimates o°. However, note that if treatment means do differ, the expected
value of the treatment mean square is greater than o2,

It seems clear that a test of the hypothesis of no difference in treatment means can

be performed by comparing MStcaumens and MSz. We now consider how this comparison

may be made.

3-3.2 Statistical Analysis

We now investigate how a formal test of the hypothesis of no differences in treatment
means (Ho: b, = o = +++ = M, or equivalently, Hy:my = 7, = - -+ 7, = 0) can be
performed. Because we have assumed that the errors €; are normally and independently
distributed with mean zero and variance o, the observations y;; are normally and inde-
pendently distributed with mean u + 7, and variance o. Thus, SS7 is a sum of squares
in normally distributed random variables; consequently, it can be shown that $S7/c is
distributed as chi-square with N — 1 degrees of freedom. Furthermore, we can show that
SSk/a? is chi-square with N — a degrees of freedom and that SS1eaiments/0 18 chi-square
with @ — 1 degrees of freedom if the null hypothesis Hy:7; = 0 is true. However, all
three sums of squares are not necessarily independent because SS- earmens and SSg add to
SSr. The following theorem, which is a special form of one attributed to William Coch-
ran, is useful in establishing the independence of SSy and SStreaments-

THEOREM 3-1 ccccrsececccctccscsccsroceersrsssssssssssssssssscsscccccncs

Cochran’s Theorem
Let Z, be NID(O, 1) fori = 1,2,..., vand

D=0+t 0,
i=1
where s < v, and Q; has v; degrees of freedom (i = 1, 2,..., s). Then Oy, Qa, ..., O,

are independent chi-square random variables with v, v, ..., v, degrees of freedom,
respectively, if and only if

Because the degrees of freedom for SSreaiments and SSg add to N — 1, the total number
of degrees of freedom, Cochran’s theorem implies that SStreatmens/T> and SSz/o* are

3 Refer to the supplemental text material for Chapter 3.
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Table 3-3 The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fo
SS Teatments
Between treatments ' " ., a—1 MSrwmene  Fo = MStveatments
=n E O —y) : MS,
Error (within _ _ 3
treatmennts) S8k = SSr = SStrcatments N-a MSg
Total =22 0pmyR N-d

independently distributed chi-square random variables. Therefore, if the null hypothesis
of no difference in treatment means is true, the ratio

Fy = SSTceatmenss/(@ — 1) _ MS trcaments (3-7)
SSe/(N — a) MSg
is distributed as F with a — 1 and N — a degrees of freedom. Equation 3-7 is the test
statistic for the hypothesis of no differences in treatment means.

From the expected mean squares we see that, in general, MS;; is an unbiased estimator
of o%. Also, under the null hypothesis, MStreauments iS an unbiased estimator of o-2. How-
ever, if the null hypothesis is false, the expected value of MS-reaments 1S greater than o2,
Therefore, under the alternative hypothesis, the expected value of the numerator of the
test statistic (Equation 3-7) is greater than the expected value of the denominator, and
we should reject H,; on values of the test statistic that are too large. This implies an upper-
tail, one-tail critical region. Therefore, we should reject H, and conclude that there are
differences in the treatment means if

FO > Fa,aAl,N—a
where Fj is computed from Equation 3-7. Alternatively, we could use the P-value ap-
proach for decision making.

Computing formulas for the sums of squares may be obtained by rewriting and
simplifying the definitions of MSt.caumens and SS7 in Equation 3-6. This yields

Z Z yi— = (3-8)

and

(3-9)

S S Treatments

2]?%

The error sum of squares is obtained by subtraction as

SSE = SST - SSTreatments (3'10)

The test procedure is summarized in Table 3-3 above. This is called an analysis of
variance table.

:I*—‘

EXAMPLE 3.1 ccvvvvocecooasoctansssssoanscssssoossssessscsnnnssns
The Tensile Strength Experiment

To illustrate the analysis of variance, return to the example first discussed in Section 3-1.
Recall that the development engineer is interested in determining if the cotton weight
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percentage in a synthetic fiber affects the tensile strength, and she has run a completely
randomized experiment with five levels of cotton weight percentage and five replicates.
For convenience, we repeat the data from Table 3-1 here:

Observed Tensile Strength

Weight ;
Percer%tage (Ib/in) Totals Averages
of Cotton 1 2 3 4 5 Yi. yi.
15 7 7 15 11 9 49 9.8
20 12 17 12 18 18 77 15.4
25 14 18 18 19 19 88 17.6
30 19 25 22 19 23 108 21.6
35 7 10 11 15 11 54 10.8
y. =376 y. = 15.04

We will use the analysis of variance to test Hy:pty = pp = M3 = Ma = Ms against
the alternative H, : some means are different. The sums of squares required are computed
as follows:

5 5 y2
=2 20y
3 2
= (7)2 + (7)2 + (15)2 + .-+ (15)2 + (11)2 - S2L56)— = 636.96
12 y2
SSTrea&mems - n Z N
1 6)*
S1697 + -+ (547) = S = 47576

SSE = SST - SSTrealments
= 636.96 — 475.76 = 161.20

Usually, these calculations would be performed on a computer, using a software package
with the capability to analyze data from designed experiments.

The analysis of variance is summarized in Table 3-4. Note that the between-treatment
mean square (118.94) is many times larger than the within-treatment or error mean square
(8.06). This indicates that it is unlikely that the treatment means are equal. More formally,
we can compute the F ratio F, = 118.94/8.06 = 14.76 and compare this to an appropriate
upper-tail percentage point of the F, », distribution. Suppose that the experimenter has
selected & = 0.05. From Appendix Table IV we find that Fogs.4,0 = 2.87. Because
F, = 14.76 > 2.87, we reject H, and conclude that the treatment means differ; that is,

Table 3-4 Analysis of Variance for the Tensile Strength Data

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fo P-Value
Cotton weight percentage 475.76 4 118.94 F, = 14.76 <0.01
Error 161.20 20 8.06

Total 636.96 24
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Figure 3-3  The reference distribution (¥, »0) for the test statistic Fy in Example
3-1.

the cotton weight percentage in the fiber significantly affects the mean tensile strength.
We could also compute a P-value for this test statistic. Figure 3-3 shows the reference
distribution (F, ,,) for the test statistic F,. Clearly, the P-value is very small in this case.
Because Fo 1420 = 4.43 and Fy > 4.43, we can conclude that an upper bound for the
P-value is 0.01; that is, P < 0.01 (the exact P-value is P = 9.11 X 1079).

Manual Computations
The reader has likely noted that we defined sum of squares in terms of averages; that is,
from Equation 3-6,

SSTreatmems =n 2 (yl - y)z
i=1

but we developed the computing formulas using totals. For example, to compute
S8 Treatmentss W€ would use Equation 3-9:

1< y?
SS reatments . 12__
Treatment ni;)’. N

The primary reason for this is convenience; furthermore, the totals y; and y_ are not as
subject to rounding error as are the averages y, and y_.

Generally, we need not be too concerned with computing, because there are many
widely available computer programs for performing the calculations. These computer
programs are also helpful in performing many other analyses associated with experi-
mental design (such as residual analysis and model adequacy checking). In many cases,
these programs will also assist the experimenter in setting up the design.

When hand calculations are necessary, it is sometimes helpful to code the observa-
tions. This is illustrated in the next example.

EXAMPLE 3.2 ceccecccacsocsscccenncsscssacsssscssssssssscsccsssssssssssss

Coding the Observations
The calculations in the analysis of variance may often be made more accurate or sim-
plified by coding the observations. For example, consider the tensile strength data in
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Table 3-5 Coded Tensile Strength Data for Example 3-2

Cotton .
Weight Observations Totals
Percentage 1 2 3 4 5 yi

15 -8 -8 0 -4 -6 —26
20 -3 2 -3 3 3 2
25 -1 3 3 4 4 13
30 4 10 7 4 8 33
35 -8 =5 -4 0 —4 —21

Example 3-1. Suppose we subtract 15 from each observation. The coded data are shown
in Table 3-5. It is easy to verify that

1 2

SSr = (=8 + (-8 + -+ + (—4)?* — % = 636.96
—26)° + (2> + -+ + (—21) >

SSTreatments = ( ) ( ) 5 ( ) - '(2% = 475.76

and
SSgz = 161.20

Comparing these sums of squares to those obtained in Example 3-1, we see that sub-
tracting a constant from the original data does not change the sums of squares.

Now suppose that we multiply each observation in Example 3-1 by 2. It is easy to
verify that the sums of squares for the transformed data are SS; = 2547.84, SStreatments
= 1903.04, and SS; = 644.80. These sums of squares appear to differ considerably from
those obtained in Example 3-1. However, if they are divided by 4 (i.e., 27), the results
are identical. For example, for the treatment sum of squares 1903.04/4 = 475.76. Also,
for the coded data, the F ratio is F = (1903.04/4)/(644.80/20) = 14.76, which is identical
to the F ratio for the original data. Thus, the analyses of variance are equivalent.

...........................................................................

Randomization Tests and Analysis of Variance

In our development of the F test analysis of variance, we have used the assumption that
the random errors €;; are normally and independently distributed random variables. The
F test can also be justified as an approximation to a randomization test. To illustrate,
suppose that we have five observations on each of two treatments and that we wish to
test the equality of treatment means. The data would look like this:

Treatment 1 Treatment 2

Yu Y21
Y12 Y22
Y13 Y23
Yia Y24
Yis Ya2s

We could use the F test analysis of variance to test Hy: i, = u,. Alternatively, we could
use a somewhat different approach. Suppose we consider all the possible ways of allo-
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cating the 10 numbers in the sample above to the two treatments. There are 10!/5!5! =
252 possible arrangements of the 10 observations. If there is no difference in treatment
means, all 252 arrangements are equally likely. For each of the 252 arrangements, we
calculate the value of the F statistic using Equation 3-7. The distribution of these F
values is called a randomization distribution, and a large value of F indicates that the
data are not consistent with the hypothesis Hy: u; = u,. For example, if the value of
F actually observed was exceeded by only 5 of the values of the randomization distribu-
tion, this would correspond to rejection of Hy: i, = u, at a significance level of a =
5/252 = .0198 (or 1.98 percent). Notice that no normality assumption is required in this
approach.

The difficulty with this approach is that, even for relatively small problems, it
is computationally prohibitive to enumerate the exact randomization distribution. How-
ever, numerous studies have shown that the exact randomization distribution is well-
approximated by the usual normal-theory F distribution. Thus, even without the
normality assumption, the F test can be viewed as an approximation to the randomization
test. For further reading on randomization tests in the analysis of variance, see Box,
Hunter, and Hunter (1978).

3.3.3 Estimation of the Model Parameters

We now present estimators for the parameters in the single-factor model
Y =pt T te

and confidence intervals on the treatment means. We will prove later that reasonable
estimates of the overall mean and the treatment effects are given by

|

/_2:

. (3-11)
i\-l:j;—l_y9 i=1,2,'-'9a

These estimators have considerable intuitive appeal; note that the overall mean is esti-
mated by the grand average of the observations and that any treatment effect is just the
difference between the treatment average and the grand average.

A confidence interval estimate of the ith treatment mean may be easily determined.
The mean of the ith treatment is

Ll
A point estimator of w; would be &i; = 4 + % = y,. Now, if we assume that the errors
are normally distributed, each y, is NID(w;, o*/n). Thus, if o> were known, we could
use the normal distribution to define the confidence interval. Using the MS,. as an esti-
mator of o2, we would base the confidence interval on the ¢ distribution. Therefore, a
100(1 — ) percent confidence interval on the ith treatment mean w; is

_ MS _ IMS
Yi. = tappN-a TE m =Yy, t topna TE (3-12)

A 100(1 — «) percent confidence interval on the difference in any two treatments means,
say w; — My, would be

_ _ [2MS _ _ 2MS
Y. = Y. — lapN-a " £ < i = =Y. — Y. T tappn-a TE (3-13)

I
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EXAMPLE 3-3 ++ccvceeecetesoasecannsosansssssstsscsasasssssssnassssnns

Using the data in Example 3-1, we may find the estimates of the overall mean and the
treatment effects as 4 = 376/25 = 15.04 and

1=y — ). 9.80 — 15.04 = —5.24
% =y, —y.= 1540 — 15.04 = +0.36
#3=y; —y.=17.60 — 15.04 = —2.56
=7y, —y. = 2160 — 15.04 = +6.56
s =ys. — y. = 10.80 — 15.04 = —4.24

A 95 percent confidence interval on the mean of treatment 4 (30 percent cotton) is
computed from Equation 3-12 as

8.06 /8.06
21.60 — 2.086 wa = uy =< 21.60 + 2.086 e

or
21.60 — 2.65 = u, < 21.60 + 2.65
Thus, the desired 95 percent confidence interval is 18.95 < u, =< 24.25.

Simultaneous Confidence Intervals

The confidence interval expressions given in Equations 3-12 and 3-13 are one-at-a-time
confidence intervals. That is, the confidence level 1 — « applies to only one particular
estimate. However, in many problems, the experimenter may wish to calculate several
confidence intervals, one for each of a number of means or differences between means.
If there are r such 100(1 — «) percent confidence intervals of interest, the probability
that the r intervals will simultaneously be correct is at least 1 — ra. The probability ra
is often called the experimentwise error rate or overall confidence coefficient. The
number of intervals » does not have to be large before the set of confidence intervals
becomes relatively uninformative. For example, if there are r = 5 intervals and o = 0.05
(a typical choice), the simultaneous confidence level for the set of five confidence inter-
vals is at least 0.75, and if r = 10 and « = 0.05 the simultaneous confidence level is at
least 0.50.

One approach to ensuring that the simultaneous confidence level is not too small is
to replace a/2 in the one-at-a-time confidence interval Equations 3-12 and 3-13 with
af/(2r). This is called the Bonferroni method, and it allows the experimenter to construct
a set of r simultaneous confidence intervals on treatment means or differences in treat-
ment means for which the overall confidence level is at least 100(1 — «) percent. When
r is not too large, this is a very nice method that leads to reasonably short confidence
intervals. For more information refer to the supplemental text material for Chapter 3.

3.3.4 Unbalanced Data

In some single-factor experiments the number of observations taken within each treat-
ment may be different. We then say that the design is unbalanced. The analysis of
variance described above may still be used, but slight modifications must be made in the
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sum of squares formulas. Let #; observations be taken under treatment i ({ = 1,2, ...,
a) and N = Z.| n;. The manual computational formulas for SS; and SSreaments bECOme

i=1 j=1

n; 2

\N

(3-14)
and

S STreaLmems Z (3 -1 5)

= |‘<
Zlk<

No other changes are required in the analysis of variance.

There are two advantages in choosing a balanced design. First, the test statistic is
relatively insensitive to small departures from the assumption of equal variances for the
a treatments if the sample sizes are equal. This is not the case for unequal sample sizes.
Second, the power of the test is maximized if the samples are of equal size.

3-4 MODEL ADEQUACY CHECKING

The decomposition of the variability in the observations through an analysis of variance
identity (Equation 3-6) is a purely algebraic relationship. However, the use of the par-
titioning to test formally for no differences in treatment means requires that certain as-
sumptions be satisfied. Specifically, these assumptions are that the observations are
adequately described by the model

ylj=#+Ti+€ij

and that the errors are normally and independently distributed with mean zero and con-
stant but unknown variance o2. If these assumptions are valid, the analysis of variance
procedure is an exact test of the hypothesis of no difference in treatment means.

In practice, however, these assumptions will usually not hold exactly. Consequently,
it is usually unwise to rely on the analysis of variance until the validity of these as-
sumptions has been checked. Violations of the basic assumptions and model adequacy
can be easily investigated by the examination of residuals. We define the residual for
observation j in treatment i as

eij = yij - ytj (3'16)
where ;; is an estimate of the corresponding observation y;; obtained as follows:
y=f+ F
=y.+G.—y)
=Y. 3-17)

Equation 3-17 gives the intuitively appealing result that the estimate of any observation
in the ith treatment is just the corresponding treatment average.

Examination of the residuals should be an automatic part of any analysis of variance.
If the model is adequate, the residuals should be structureless; that is, they should
contain no obvious patterns. Through a study of residuals, many types of model inade-
quacies and violations of the underlying assumptions can be discovered. In this section,
we show how model diagnostic checking can be done easily by graphical analysis of
residuals and how to deal with several commonly occurring abnormalities.
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3-4.1 The Normality Assumption

A check of the normality assumption could be made by plotting a histogram of the
residuals. If the NID(0, o%) assumption on the errors is satisfied, this plot should look
like a sample from a normal distribution centered at zero. Unfortunately, with small
samples, considerable fluctuation often occurs, so the appearance of a moderate departure
from normality does not necessarily imply a serious violation of the assumptions. Gross
deviations from normality are potentially serious and require further analysis.

An extremely useful procedure is to construct a normal probability plot of the resid-
uals. Recall that in Chapter 2 we used a normal probability plot of the raw data to check
the assumption of normality when using the #-test. In the analysis of variance, it is usually
more effective (and straightforward) to do this with the residuals. If the underlying error
distribution is normal, this plot will resemble a straight line. In visualizing the straight
line, place more emphasis on the central values of the plot than on the extremes.

Table 3-6 shows the original data and the residuals for the tensile strength data in
Example 3-1. The normal probability plot is shown in Figure 3-4 on the next page. The
general impression from examining this display is that the error distribution may be
slightly skewed, with the right tail being longer than the left. The tendency of the normal
probability plot to bend down slightly on the left side implies that the left tail of the error
distribution is somewhat thinner than would be anticipated in a normal distribution; that
is, the negative residuals are not quite as large (in absolute value) as expected. This plot
is not grossly nonnormal, however.

In general, moderate departures from normality are of little concern in the fixed
effects analysis of variance (recall our discussion of randomization tests in Section
3-3.2). An error distribution that has considerably thicker or thinner tails than the normal
is of more concern than a skewed distribution. Because the F test is only slightly affected,
we say that the analysis of variance (and related procedures such as multiple comparisons)
is robust to the normality assumption. Departures from normality usually cause both the
true significance level and the power to differ slightly from the advertised values, with

Table 3-6 Data and Residuals from Example 3-1¢

Weight . .
Percentage of Observations (j)
Cotton 1 2 3 4 5 Vi =¥
|-2.8 |28 | 52 [ 12 |-038
15 7 (15 719 | 15 @) | 11 (12 9 (6 9.8
|-3.4 | 16 |-3.4 | 26 | 26
20 2 ® |17 14 | 12 @® |18 dH | 19 3 154
|-3.6 | 04 | 04 | 14 | 14
25 14 (18) | 18 (13) | 18 20) | 19 ™D | 19 9 17.6
|-26 | 34 | 04 |26 | 14
30 19 2 |25 & | 2 @ | 19 @ | 23 (10 216
|-38 |-0s8 | 02 | 42 | 02
35 70D |10 @) | 11 @ | 15 (16 | 11 (23) 10.8

“ The residuals are shown in the box in each cell. The numbers in parentheses indicate the order of data
collection.
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Figure 3-4 Normal probability plot of residuals for Example 3-1.

the power generally being lower. The random effects model that we will discuss in
Chapter 12 is more severely affected by nonnormality.

A very common defect that often shows up on normal probability plots is one residual
that is very much larger than any of the others. Such a residual is often called an outlier.
The presence of one or more outliers can seriously distort the analysis of variance, so
when a potential outlier is located, careful investigation is called for. Frequently, the
cause of the outlier is a mistake in calculations or a data coding or copying error. If this
is not the cause, the experimental circumstances surrounding this run must be carefully
studied. If the outlying response is a particularly desirable value (high strength, low cost,
etc.), the outlier may be more informative than the rest of the data. We should be careful
not to reject or discard an outlying observation unless we have reasonably nonstatistical
grounds for doing so. At worst, you may end up with two analyses; one with the outlier
and one without.

There are several formal statistical procedures for detecting outliers [e.g., see Barnett
and Lewis (1994), John and Prescott (1975), and Stefansky (1972)]. A rough check for
outliers may be made by examining the standardized residuals

dy = —— (3-18)
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If the errors €, are N(0, o), the standardized residuals should be approximately normal
with mean zero and unit variance. Thus, about 68 percent of the standardized residuals
should fall within the limits *1, about 95 percent of them should fall within =2, and
virtually all of them should fall within *+3. A residual bigger than 3 or 4 standard de-
viations from zero is a potential outlier.

For the tensile strength data of Example 3-1, the normal probability plot gives no
indication of outliers. Furthermore, the largest standardized residual is

e _ 52 52
VMS; V3806 2.84

which should cause no concern.

diz = 1.83

3-4.2 Plot of Residuals in Time Sequence

Plotting the residuals in time order of data collection is helpful in detecting correlation
between the residuals. A tendency to have runs of positive and negative residuals indi-
cates positive correlation. This would imply that the independence assumption on the
errors has been violated. This is a potentially serious problem and one that is difficult to
correct, so it is important to prevent the problem if possible when the data are collected.
Proper randomization of the experiment is an important step in obtaining independence.

Sometimes the skill of the experimenter (or the subjects) may change as the exper-
iment progresses, or the process being studied may ‘‘drift’’ or become more erratic. This
will often result in a change in the error variance over time. This condition often leads
to a plot of residuals versus time that exhibits more spread at one end than at the other.
Nonconstant variance is a potentially serious problem. We will have more to say on the
subject in Sections 3-4.3 and 3-4.4.

Table 3-6 displays the residuals and the time sequence of data collection for the
tensile strength data. A plot of these residuals versus time is shown in Figure 3-5. There
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Figure 3-5 Plot of residuals versus time.
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is no reason to suspect any violation of the independence or constant variance
assumptions.

3-4.3 Plot of Residuals Versus Fitted Values

If the model is correct and if the assumptions are satisfied, the residuals should be struc-
tureless; in particular, they should be unrelated to any other variable including the pre-
dicted response. A simple check is to plot the residuals versus the fitted values J;;. (For
the single-factor experiment model, remember that §; = y,, the ith treatment average.)
This plot should not reveal any obvious pattern. Figure 3-6 plots the residuals versus the
fitted values for the tensile strength data of Example 3-1. No unusual structure is apparent.

A defect that occasionally shows up on this plot is nonconstant variance. Sometimes
the variance of the observations increases as the magnitude of the observation increases.
This would be the case if the error or background noise in the experiment was a constant
percentage of the size of the observation. (This commonly happens with many measuring
instruments—error is a percentage of the scale reading.) If this were the case, the resid-
uals would get larger as y;; gets larger, and the plot of residuals versus y;; would look
like an outward-opening funnel or megaphone. Nonconstant variance also arises in cases
where the data follow a nonnormal, skewed distribution because in skewed distributions
the variance tends to be a function of the mean.

If the assumption of homogeneity of variances is violated, the F test is only slightly
affected in the balanced (equal sample sizes in all treatments) fixed effects model. How-
ever, in unbalanced designs or in cases where one variance is very much larger than the
others, the problem is more serious. Specifically, if the factor levels having the larger
variances also have the smaller sample sizes, the actual type I error rate is larger than
anticipated (or confidence intervals have lower actual confidence levels than were spec-
ified). Conversely, if the factor levels with larger variances also have the larger sample
sizes, the significance levels are smaller than anticipated (confidence levels are higher).
This is a good reason for choosing equal sample sizes whenever possible. For random
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Figure 3-6 Plot of residuals versus fitted values.
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effects models, unequal error variances can significantly disturb inferences on variance
components even if balanced designs are used.

The usual approach to dealing with nonconstant variance when it occurs for the above
reasons is to apply a variance-stabilizing transformation and then to run the analysis
of variance on the transformed data. In this approach, one should note that the conclusions
of the analysis of variance apply to the transformed populations.

Considerable research has been devoted to the selection of an appropriate transfor-
mation. If experimenters know the theoretical distribution of the observations, they may
utilize this information in choosing a transformation. For example, if the observations
follow the Poisson distribution, the square root transformation y; = VY, or
yi = V1 + y; would be used. If the data follow the lognormal distribution, the loga-
rithmic transformation y; = log y;; is appropriate. For binomial data expressed as frac-
tions, the arcsin transformation y} = arcsin\Vy; is useful. When there is no obvious
transformation, the experimenter usually empirically seeks a transformation that equal-
izes the variance regardless of the value of the mean. We offer some guidance on this at
the conclusion of this section. In factorial experiments, which we introduce in Chapter
5, another approach is to select a transformation that minimizes the interaction mean
square, resulting in an experiment that is easier to interpret. In Chapter 14, we discuss
in more detail methods for analytically selecting the form of the transformation. Trans-
formations made for inequality of variance also affect the form of the error distribution.
In most cases, the transformation brings the error distribution closer to normal. For more
discussion of transformations, refer to Bartlett (1947), Box and Cox (1964), Dolby
(1963), and Draper and Hunter (1969).

Statistical Tests for Equality of Variance

Although residual plots are frequently used to diagnose inequality of variance, several
statistical tests have also also been proposed. These tests may be viewed as formal tests
of the hypotheses

.22 2 —
Ho.0'1—0'2—---—0'a

H, :above not true for at least one o7

A widely used procedure is Bartlett’s test. The procedure involves computing a
statistic whose sampling distribution is closely approximated by the chi-square distri-
bution with a — 1 degrees of freedom when the a random samples are from independent
normal populations. The test statistic is

> _ q
X5 = 2.3026 = (3-19)
c
where

g =N — a)log;p 2 — > (n; — Dlog,o S?
i=1

c=1+¥<2(ni—l)_l—(N—a)_l>

3a—1
> (= 1)S?
2 _ i=1
Sr N —a

and S? is the sample variance of the ith population.
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The quantity g is large when the sample variances S7 differ greatly and is equal to
zero when all S7 are equal. Therefore, we should reject H, on values of x3 that are too
large; that is, we reject H, only when

X % > X i,afl
where x.,—; is the upper a percentage point of the chi-square distribution with a — 1
degrees of freedom. The P-value approach to decision making could also be used.

Bartlett’s test is very sensitive to the normality assumption. Consequently, when the
validity of this assumption is doubtful, Bartlett’s test should not be used.

EXAMPLE 3.4 +-cvvveeeeeseecennoscsssossscesosssnassssssnsaasssssossnns
Because the normality assumption is not in question, we can apply Bartlett’s test to the
tensile strength data from the cotton weight percentage experiment in Example 3-1. We

first compute the sample variances in each treatment and find that $7 = 11.2, §3 = 9.8,
53 = 4.3, 5% = 6.8, and S2 = 8.2. Then

_ 4(11.2) + 4(9.8) + 4(4.3) + 4(6.8) + 4(8.2) _

s2 o = 8.06
g = 20 log,o(8.06) — 4[logis11.2 + log;9.8 + logo 4.3 + log06.8 + 10g,48.2]
= 0.45

1 (5 1
1+ —{2- =) =11
¢ 3(4)(4 20) 0

and the test statistic is

0.45)
§ = 23026 ——— = 0.93
Xo (1.10)
Because x50s4 = 9.49, we cannot reject the null hypothesis and conclude that all five
variances are the same. This is the same conclusion reached by analyzing the plot of
residuals versus fitted values.

Because Bartlett’s test is sensitive to the normality assumption, there may be situa-
tions where an alternative procedure would be useful. Anderson and McLean (1974)
present a nice discussion of statistical tests for equality of variance. The modified Levene
test [see Levene (1960) and Conover, Johnson, and Johnson (1981)] is a very nice pro-
cedure that is robust to departures from normality. To test the hypothesis of equal vari-
ances in all treatments, the modified Levene test uses the absolute deviation of the
observations y,; in each treatment from the treatment median, say ¥;. Denote these de-
viations by

d_l _~I = ., a
A A T T

The modified Levene test then evaluates whether or not the mean of these deviations are
equal for all treatments. It turns out that if the mean deviations are equal, the variances
of the observations in all treatments will be the same. The test statistic for Levene’s test
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Table 3-7 Peak Discharge Data

Estimation
Method Observations .. ¥ S;
1 0.34 0.12 1.23 0.70 1.75 0.12 0.71 0.520 0.66
2 091 2.94 2.14 2.36 2.86 4.55 2.63 2,610 1.09
3 6.31 8.37 9.75 6.09 9.82 7.24 7.93 7.805 1.66
4 17.15 11.82 10.95 17.20 14.35 16.82 1472 15.59 2.77
Estimation
Method Deviations d;; for the Modified Levene Test
1 0.18 0.40 0.71 0.18 1.23 0.40
2 1.70 0.33 047 0.25 0.25 1.94
3 1.495 0.565 1.945 1.715 2.015 0.565
4 1.56 3.77 4.64 1.61 1.24 1.23

is simply the usual ANOVA F statistic for testing equality of means applied to the
absolute deviations.

A civil engineer is interested in determining whether four different methods of estimating
flood flow frequency produce equivalent estimates of peak discharge when applied to the
same watershed. Each procedure is used six times on the watershed, and the resulting
discharge data (in cubic feet per second) are shown in the upper panel of Table 3-7. The
analysis of variance for the data, summarized in Table 3-8, implies that there is a differ-
ence in mean peak discharge estimates given by the four procedures. The plot of residuals
versus fitted values, shown in Figure 3-7 (top of page 84), is disturbing because the
outward-opening funnel shape indicates that the constant variance assumption is not
satisfied.

We will apply the modified Levene test to the peak discharge data. The upper panel
of Table 3-7 contains the treatment medians J; and the lower panel contains the deviations
d;; around the medians. Levene’s test consists of conducting a standard analysis of vari-
ance on the d;;. The F test statistic that results from this is F, = 4.55, for which the P-
value is P = 0.0137. Therefore, Levene’s test rejects the null hypothesis of equal
variances, essentially confirming the diagnosis we made from visual examination of
Figure 3-7. The peak discharge data is a good candidate for data transformation.

D R R R R I R R I N I A A A A R R N N R es e e e s s s s e 0000000 nsss s 0

Empirical Selection of a Transformation
We observed above that, if experimenters knew the relationship between the variance of
the observations and the mean, they could use this information to guide them in selecting

Table 3-8 Analysis of Variance for Peak Discharge Data

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy P-Value
Methods 708.3471 3 236.1157 76.07 <0.001
Error 62.0811 20 3.1041

Total 770.4282 23
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Figure 3-7 Plot of residuals versus §; for Example 3-5.

the form of the transformation. We now elaborate on this point and show one method
for empirically selecting the form of the required transformation from the data.

Let E(y) = u be the mean of y, and suppose that the standard deviation of y is
proportional to a power of the mean of y such that

[+
g, X W

We want to find a transformation on y that yields a constant variance. Suppose that the
transformation is a power of the original data, say

=y (3-20)
Then it can be shown that
oy o prre! (3-21)

Clearly, if we set A = 1 — q, the variance of the transformed data y* is constant.
Several of the common transformations discussed previously are summarized in Ta-
ble 3-9. Note that A = 0 implies the log transformation. These transformations are ar-
ranged in order of increasing strength. By the strength of a transformation we mean the
amount of curvature it induces. A mild transformation applied to data spanning a narrow

Table 3-9 Variance-Stabilizing Transformations

Relationship
Between o, and u o A=1-a Transformation Comment
0, < constant 0 1 No transformation
o, o« u'? 1/2 12 Square root Poisson (count) data
o, < u 1 0 Log
o, o« pM? 3/2 -1/2 Reciprocal square root

o, oy’ 2 -1 Reciprocal
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Figure 3-8 Plot of log S; versus log y;. for the peak
discharge data from Example 3-5.

range has little effect on the analysis, whereas a strong transformation applied over a
large range may have dramatic results. Transformations often have little effect unless the
ratio Yoo/ Vmin 18 larger than 2 or 3.

In many experimental design situations where there is replication, we can empirically
estimate « from the data. Because in the ith treatment combination o, < w* = 6u?,
where 6 is a constant of proportionality, we may take logs to obtain

log o, = log 6 + a log u; (3-22)

Therefore, a plot of log o, versus log u; would be a straight line with slope . Because
we don’t know o, and u;, we may substitute reasonable estimates of them in Equation
3-22 and use the slope of the resulting straight line fit as an estimate of «. Typically, we
would use the standard deviation S; and the average y; of the ith treatment (or, more
generally, the ith treatment combination or set of experimental conditions) to estimate
g, and y,;.

To investigate the possibility of using a variance-stabilizing transformation on the
peak discharge data from Example 3-5, we plot log S; versus log ¥, in Figure 3-8. The
slope of a straight line passing through these four points is close to 1/2 and, from Table
3-9, this implies that the square root transformation may be appropriate. The analysis of
variance for the transformed data y* = \/§ is presented in Table 3-10, and a plot of

Table 3-10  Analysis of Variance for Transformed Peak Discharge Data, y* = Vy

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fo P-Value
Methods 32.6842 3 10.8947 76.99 <0.001
Error 2.6884 19 0.1415

Total 35.3726 22
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Figure 3-9 Plot of residuals from transformed data versus
)?,?'; for the peak discharge data in Example 3-5.

residuals versus the predicted response is shown in Figure 3-9. This residual plot is much
improved in comparison to Figure 3-7, so we conclude that the square root transformation
has been helpful. Note that in Table 3-10 we have reduced the error degrees of freedom
by 1 to account for the use of the data to estimate the transformation parameter a.

In practice, many experimenters select the form of the transformation by simply
trying several alternatives and observing the effect of each transformation on the plot of
residuals versus the predicted response. The transformation that produced the most sat-
isfactory residual plot is then selected.

3.4.4 Plots of Residuals Versus Other Variables

If data have been collected on any other variables that might possibly affect the response,
the residuals should be plotted against these variables. For example, in the tensile strength
experiment of Example 3-1, strength may be significantly affected by the thickness of
the fiber, so the residuals should be plotted versus fiber thickness. If different testing
machines were used to collect the data, the residuals should be plotted against machines.
Patterns in such residual plots imply that the variable affects the response. This suggests
that the variable should be either controlled more carefully in future experiments or
included in the analysis.

3.5 PRACTICAL INTERPRETATION OF RESULTS

After conducting the experiment, performing the statistical analysis, and investigating
the underlying assumptions, the experimenter is ready to draw practical conclusions about
the problem he or she is studying. Often this is relatively easy, and certainly in the simple
experiments we have considered so far, this might be done somewhat informally, perhaps
by inspection of graphical displays such as the box plots and scatter diagram in Figures
3-1 and 3-2. However, in some cases, more formal techniques need to be applied. We
will present some of these techniques in this section.
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3-5.1 A Regression Model

The factors involved in an experiment can be either quantitative or qualitative. A quan-
titative factor is one whose levels can be associated with points on a numerical scale,
such as temperature, pressure, or time. Qualitative factors, on the other hand, are factors
for which the levels cannot be arranged in order of magnitude. Operators, batches of raw
material, and shifts are typical qualitative factors because there is no reason to rank them
in any particular numerical order.

Insofar as the initial design and analysis of the experiment are concerned, both types
of factors are treated identically. The experimenter is interested in determining the dif-
ferences, if any, between the levels of the factors. If the factor is qualitative, such as
operators, it is meaningless to consider the response for a subsequent run at an inter-
mediate level of the factor. However, with a quantitative factor such as time, the exper-
imenter is usually interested in the entire range of values used, particularly the response
from a subsequent run at an intermediate factor level. That is, if the levels 1.0, 2.0, and
3.0 hours are used in the experiment, we may wish to predict the response at 2.5 hours.
Thus, the experimenter is frequently interested in developing an interpolation equation
for the response variable in the experiment. This equation is an empirical model of the
process that has been studied.

The general approach to fitting empirical models is called regression analysis, which
is discussed extensively in Chapter 10. See also the supplemental text material for this
chapter. This section briefly illustrates the technique using the tensile strength data of
Example 3-1.

Figure 3-10 presents a scatter diagram of tensile strength y versus the weight per-
centage of cotton x in the fabric for the experiment in Example 3-1. The open circles on
the graph are the mean tensile strengths at each value of cotton weight percentage x.
From examining the scatter diagram, it is clear that the relationship between tensile
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Figure 3-10 Scatter diagram for the tensile strength
data of Example 3-1.
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strength and weight percentage cotton is not linear. As a first approximation, we could
try fitting a quadratic model to the data, say

y=Bo+le+Bzx2+€

where B, Bi, and B, are unknown parameters to be estimated and € is a random error
term. The method often used to estimate the parameters in a model such as this is the
method of least squares. This consists of choosing estimates of the 8’s such that the sum
of the squares of the errors (the €’s) are minimized. The least squares fit in our example
is

$ = —39.9886 + 4.596x — 0.0886x>

(If you are unfamiliar with regression methods, see Chapter 10 and the supplemental text
material for this chapter.)

This quadratic model is shown in Figure 3-10. It does not appear to be very satis-
factory because it drastically underestimates the responses at x = 30 percent cotton and
overestimates the responses at x = 25 percent. Perhaps an improvement can be obtained
by adding a cubic term in x. The resulting cubic model fit is

$ = 62.6114 — 9.0114x + 0.4814x*> — 0.0076x>

This cubic fit is also shown in Figure 3-10. The cubic model appears to be superior to
the quadratic because it provides a better fit at x = 25 and x = 30 percent cotton.

In general, we would like to fit the lowest-order polynomial that adequately describes
the system or process. In this example, the cubic polynomial seems to fit better than the
quadratic, so the extra complexity of the cubic model is justified. Selecting the order of
the approximating polynomial is not always easy, however, and it is relatively easy to
overfit, that is, to add high-order polynomial terms that do not really improve the fit but
increase the complexity of the model and often damage its usefulness as a predictor or
interpolation equation.

In this example, the empirical model could be used to predict mean tensile strength
at values of cotton weight percentage within the region of experimentation. In other cases,
the empirical model could be used for process optimization, that is, finding the levels
of the design variables that result in the best values of the response. We will discuss and
illustrate these problems extensively later in the book.

3.5.2 Comparisons Among Treatment Means

Suppose that in conducting an analysis of variance for the fixed effects model the null
hypothesis is rejected. Thus, there are differences between the treatment means, but
exactly which means differ is not specified. Sometimes in this situation, further compar-
isons and analysis among groups of treatment means may be useful. The ith treatment
mean is defined as p; = u + 7, and w, is estimated by y; . Comparisons between treatment
means are made in terms of either the treatment totals {y;} or the treatment averages
{y:.}. The procedures for making these comparisons are usually called multiple com-
parison methods. In the next several sections, we discuss methods for making compar-
isons among individual treatment means or groups of these means.
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3.5.3 Graphical Comparisons of Means

It is very easy to develop a graphical procedure for the comparison of means following
an analysis of variance. Suppose that the factor of interest has a levels and that
Vi, Vs - - - » Vg are the treatment averages. If we know o, any treatment average would
have a standard deviation o/Vn. Consequently, if all factor level means are identical,
the observed sample means y; would behave as if they were a set of observations drawn
at random from a normal distribution with mean y_ and standard deviation o/ V. Vi-
sualize a normal distribution capable of being slid along an axis below which the
Vis Var - + - » Yo are plotted. If the treatment means are all equal, there should be some
position for this distribution that makes it obvious that the y; values were drawn from
the same distribution. If this is not the case, the y, values that appear not to have been
drawn from this distribution are associated with factor levels that produce different mean
responses.

The only flaw in this logic is that ¢ is unknown. However, we can replace o with
VMS; from the analysis of variance and use a ¢ distribution with a scale factor
VMSz/n instead of the normal. Such an arrangement for the tensile strength data of
Example 3-1 is shown in Figure 3-11.

To sketch the ¢ distribution in Figure 3-11, simply multiply the abscissa ¢ value by
the scale factor

VMSg/n = V8.06/5 = 1.27

and plot this against the ordinate of ¢ at that point. Because the ¢ distribution looks much
like the normal, except that it is a little flatter near the center and has longer tails, this
sketch is usually easily constructed by eye. If you wish to be more precise, there is a
table of abscissa ¢ values and the corresponding ordinates in Box, Hunter, and Hunter
(1978). The distribution can have an arbitrary origin, although it is usually best to choose
one in the region of the 3; values to be compared. In Figure 3-11, the origin is 15 Ib/in’.

Now visualize sliding the ¢ distribution in Figure 3-11 along the horizontal axis, and
examine the five means plotted in the figure. Notice that there is no location for the
distribution such that all five averages could be thought of as typical, randomly selected
observations from the distribution. This implies that all five means are not equal; thus,
the figure is a graphical display of the results of the analysis of variance. The figure does
indicate that 30 percent cotton produces much higher tensile strengths than would 20 or
25 percent cotton (which are about the same) or that either 15 or 35 percent cotton (which
are about the same) would result in even lower tensile strengths.

/\

| 15,35 20 2 | 0 |
5 “10 15 20 25
Average tensile strength
(Ibfin?)

Figure 3-11 Tensile strength averages from the cotton weight
percentage experiment in relation to a ¢ distribution with a scale

factor VMSg/n = V8.06/5 = 1.27.
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This simple procedure is a rough but effective technique for many multiple com-
parison problems. However, there are more formal methods. We now give a brief dis-
cussion of some of these procedures.

3.5.4 Contrasts

Many multiple comparison methods use the idea of a contrast. Consider the synthetic
fiber testing problem of Example 3-1. Because the null hypothesis was rejected, we know
that some cotton weight percentages produce different tensile strengths than others, but
which ones actually cause this difference? We might suspect at the outset of the exper-
iment that levels 4 and 5 cotton weight percentages (30 and 35 percent) produce the
same tensile strength, implying that we would like to test the hypothesis

Ho:ipy = s
Hytpy # ps
or equivalently,

Ho:ps — ps = 0 (3-23)
Hytpy — ps 70

If we had suspected at the start of the experiment that the average of the lowest levels
of cotton weight percentages (1 and 2) did not differ from the average of the highest
levels of cotton weight percentages (4 and 5), then the hypothesis would have been

Horpoy + po = pa + s
Hyipy + po # py + s
or
Hotpy + po — pa — s = 0 (3-24)
Hiipg + oy — g = s =0
In general, a contrast is a linear combination of parameters of the form

a

= 2 Cij;

i=1

where the contrast constant c,, c,, . . . , ¢, sum to zero; that is, 27, ¢; = 0. Both of the
hypotheses above can be expressed in terms of contrasts:

a

HO:E cu =0
izl (3-25)
H] . 2 Cil-‘l’i 7& O

i=1

The contrast constants for the hypotheses in Equation 3-23 arec; = ¢, = ¢3 =0,¢, = +1,
and ¢s = —1, whereas for the hypotheses in Equation 3-24 they are ¢; = ¢, = +1,
¢c;=0,and ¢, = ¢c5 = —1.
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Testing hypotheses involving contrasts can be done in two basic ways. The first
method uses a ¢-test. Write the contrast of interest in terms of the treatment totals, giving

C= 2 Ciyi.
i=1

The variance of C is
V(C) = no* D, ¢? (3-26)
i=1

when the sample sizes in each treatment are equal. If the null hypothesis in Equation
3-25 is true, the ratio

a
Ine? > ¢?
i=1

has the N(0, 1) distribution. Now we would replace the unknown variance o by its
estimate, the mean square error MSy and use the statistic

a

E Ciyi

i=1

fo = ————
InMS; >, ¢?
i=1

to test the hypotheses in Equation 3-25. The null hypothesis would be rejected if | #,| in
Equation 3-27 exceeds t,/5 v—a-

The second approach uses an F' test. Now the square of a ¢ random variable with v
degrees of freedom is an F random variable with 1 numerator and v denominator degrees
of freedom. Therefore, we can obtain

a 2
(E Ciyi.>
i=1

Fo=1t=—7F— (3-28)
nMSz . c?
i=1

(3-27)

as an F statistic for testing Equation 3-25. The null hypothesis would be rejected if
Fy > F, 1 n—o We can write the test statistic of Equation 3-28 as

_ MS: _ $Sci
MS;  MS;

where the single degree of freedom contrast sum of squares is

SSe =——F (3-29)

a
n E c?
i=1

i

Fo
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Confidence Interval for a Contrast

Instead of testing hypotheses about a contrast, it may be more useful to construct a
confidence interval. The contrast is then often written in terms of treatment averages ;.
Suppose that the contrast of interest is

r= 2 Cifk;
i=1
Replacing the treatment means with the treatment averages yields
c=2 cy.
i=1
and

2 a
V) = "3 o

i=

—

when the sample sizes are equal. If we use MS; to estimate o>, the 100(1 — a) percent

a

confidence interval on the contrast & c;u; is

2 CiYi. ~ tapaN—a 1% 2 S 2 Cil; = E ¢y T tappn-a A% 2 c; (3-30)
i=1 \ i=1 i=1 i=1 V i=1

Clearly if this confidence interval includes zero, we would be unable to reject the null
hypothesis in Equation 3-25.

Standardized Contrast

When more than one contrast is of interest, it is often useful to evaluate them on the
same scale. One way to do this is to standardize the contrast so that it has variance 2.
If the contrast 2 c;u; is written in terms of treatment totals as =& c;y;, dividing it by
VrZE c? will produce a standardized contrast with variance o> Effectively, then, the

standardized contrast is

where

C;

In > ¢?
i=1
Unequal Sample Sizes

When the sample sizes in each treatment are different, minor modifications are made in
the above results. First, note that the definition of a contrast now requires that

a
2 nc; =0
i=1
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Other required changes are straightforward. For example, the ¢ statistic in Equation 3-27
becomes

a

E CiYi.
i=1
fh =

a

MS: D nic?
=1

i=

and the contrast sum of squares from Equation 3-29 becomes

SSC = a
2 "iC?
i=1

3-5.5 Orthogonal Contrasts

A useful special case of the procedure in Section 3-5.4 is that of orthogonal contrasts.
Two contrasts with coefficients {c;} and {d;} are orthogonal if

> edi =0
i=1

or, for an unbalanced design, if

2 nc;d; = 0
i=1

For a treatments the set of a — 1 orthogonal contrasts partition the sum of squares due
to treatments into @ — 1 independent single-degree-of-freedom components. Thus, tests
performed on orthogonal contrasts are independent.

There are many ways to choose the orthogonal contrast coefficients for a set of
treatments. Usually, something in the nature of the experiment should suggest which
comparisons will be of interest. For example, if there are a = 3 treatments, with treatment
1 a control and treatments 2 and 3 actual levels of the factor of interest to the experi-
menter, appropriate orthogonal contrasts might be as follows:

Coefficients for

Treatment Orthogonal Contrasts
1 (control) -2 0
2 (level 1) 1 -1
3 (level 2) 1 1
Note that contrast 1 with ¢; = —2, 1, 1 compares the average effect of the factor with

the control, whereas contrast 2 with d; = 0, —1, 1 compares the two levels of the factor
of interest.

Generally, the method of contrasts (or orthogonal contrasts) is useful for what are
called preplanned comparisons. That is, the contrasts are specified prior to running the
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experiment and examining the data. The reason for this is that, if comparisons are selected
after examining the data, most experimenters would construct tests that correspond to
large observed differences in means. These large differences could be the result of the
presence of real effects or they could be the result of random error. If experimenters
consistently pick the largest differences to compare, they will inflate the type I error of
the test because it is likely that, in an unusually high percentage of the comparisons
selected, the observed differences will be the result of error. Examining the data to select
comparisons of potential interest is often called data snooping. The Scheffé method for
all comparisons, discussed in the next section, permits data snooping.

EXAMPLE 3.6 <cccccveccceteesscsssssccccccsssssssssscccscccsssssssssssss

Consider the data in Example 3-1: There are five treatment means and four degrees of
freedom between these treatments. Suppose that prior to running the experiment the
following set of comparisons among the treatment means (and their associated contrasts)
were specified:

Hypothesis Contrast
Hy: g = ps C = — Ya. T Ys.
Hy:py + ps = py + s C;= . T Y3. = Ya " Ys.
Hy: i = ps Ci= . Y.

Hotdpo = p + s+ g + s Co = =y 4y, — ¥z, — ya. — ys.

Notice that the contrast coefficients are orthogonal. Using the data in Table 3-4, we find
the numerical values of the contrasts and the sums of squares to be as follows:

(—54)*
C, = — 1(108) + 1(54) = =54 S8§¢, = 50) = 291.60
(—25)°
C, = +1(49) + 1(88) — 1(108) — 1(54) = =25 SS¢, = 54) = 31.25
(=397
Cy; = +1(49 - 1(88 = -39 SS., = —— = 152.10
3 (49) (88) = 50
O
C, = —1(49) + 4(77) — 1(88) — 1(108) — 1(54) = 9 SS¢c, = 5020) = 0.81
Table 3-11  Analysis of Variance for the Tensile Strength Data
Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fo P-Value
Cotton Weight Percentage 475.76 4 118.94 14.76 <0.001
orthogonal contrasts
Ciipy = s (291.60) 1 291.60 36.18 <0.001
Coipy + s = g + s (31.25) 1 31.25 3.88 0.06
Catpty = s (152.10) 1 152.10 18.87 <0.001
Cotdp, = uy + ps + g + s (0.81) 1 0.81 0.10 0.76
Error 161.20 20 8.06

Total 636.96 24
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These contrast sums of squares completely partition the treatment sum of squares. The
tests on such orthogonal contrasts are usually incorporated in the analysis of variance,
as shown in Table 3-11. We conclude from the P-values that there are significant dif-
ferences between levels 4 and 5 and 1 and 3 of cotton weight percent but that the average
of levels 1 and 3 does not differ from the average of levels 4 and 5 at the a = 0.05 level,
and that level 2 does not differ from the average of the other four levels.

3-5.6 Scheffé’s Method for Comparing All Contrasts

In many situations, experimenters may not know in advance which contrasts they wish
to compare, or they may be interested in more than a — 1 possible comparisons. In many
exploratory experiments, the comparisons of interest are discovered only after prelimi-
nary examination of the data. Scheffé (1953) has proposed a method for comparing any
and all possible contrasts between treatment means. In the Scheffé method, the type 1
error is at most « for any of the possible comparisons.

Suppose that a set of m contrasts in the treatment means

ru = CruMy + Coyllrn +-o+ Caufa u= 19 27 RN (] (3'31)
of interest have been determined. The corresponding contrast in the treatment averages
yi. is

Cu = Cluyl. + C2uy2. t e+ Cauya. u= 19 2, e, m (3'32)

and the standard error of this contrast is

Sc. = |MSy Y, (ciin) (3-33)
i=1

where #n; is the number of observations in the ith treatment. It can be shown that the
critical value against which C, should be compared is

Sa,u = SCu\/(a - I)Fa,a—l,N—a (3'34)

To test the hypothesis that the contrast I, differs significantly from zero, refer C,, to the
critical value. If |C,| > S,,,,, the hypothesis that the contrast I, equals zero is rejected.

The Scheffé procedure can also be used to form confidence intervals for all possible
contrasts among treatment means. The resulting intervals, say C, — S, <I, < C, +
Sa.> are simultaneous confidence intervals in that the probability is at least 1 — « that
all of them are simultaneously true.

To illustrate the procedure, consider the data in Example 3-1 and suppose that the
contrasts of interests are

Uy= o+ s — e — s
and
L= — s
The numerical values of these contrasts are
Ci =Y.+ Y. = Ya — Vs
= 9.80 + 17.60 — 21.60 — 10.80
= 5.00
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and

C, =Y, — Ya
= 9.80 — 21.60
= —11.80

and the standard errors are found from Equation 3-33 as

5
Se. = [MSg Y, (ci/n) = VB.O6(1 + 1 + 1 + 1)/S) = 2.54
i=1

5
Sc, = _[MSg >, (c/n) = V8.06(1 + 1)/5 = 1.80
i=1

and

From Equation 3-34, the 1 percent critical values are

Soor1 = Sc, V(@ — DFoo1a-1n-a = 2.54V4(4.43) = 10.69

and

Soor2 = S, V(@ — DFoora-1n-a = 1.80V4(4.43) = 7.58

Because |C; | < S01.1, we conclude that the contrast I'y = u, + us — py — ps equals
zero; that is, there is no strong evidence to conclude that the means of treatments 1 and
3 as a group differ from the means of treatments 4 and 5 as a group. However, because
|C| > So01.2, we conclude that the contrast I', = p; — u, does not equal zero; that is,
the mean strengths of treatments 1 and 4 differ significantly.

In many practical situations, we will wish to compare only pairs of means. Fre-
quently, we can determine which means differ by testing the differences between all
pairs of treatment means. Thus, we are interested in contrasts of the form I' = u; — w;
for all i # j. Although the Scheffé method could be easily applied to this problem, it is
not the most sensitive procedure for such comparisons. We now turn to a consideration
of methods specifically designed for pairwise comparisons between all a population
means.

3.5.7 Comparing Pairs of Treatment Means

Suppose that we are interested in comparing all pairs of a treatment means and that the
null hypotheses that we wish to test are Hy: u; = u; for all i # j. We now present four
methods for making such comparisons.

Tukey’s Test
Suppose that, following an analysis of variance in which we have rejected the null hy-
pothesis of equal treatment means, we wish to test all pairwise mean comparisons:

Ho:pi =
Hyipi #

for all { # j. Tukey (1953) proposed a procedure for testing hypotheses for which the
overall significance level is exactly « when the sample sizes are equal and at most «
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when the sample sizes are unequal. His procedure can also be used to contract confidence
intervals on the differences in all pairs of means. For these intervals, the simultaneous
confidence level is 100(1 — «) percent when the sample sizes are equal and at least
100(1 — «) percent when sample sizes are unequal. This is an excellent data snooping
procedure when interest focuses on pairs of means.

Tukey’s procedure makes use of the distribution of the studentized range statistic

— Ymax 7 Ymin

- \/MSE/n

where V.., and y,;, are the largest and smallest sample means, respectively, out of a
group of p sample means. Appendix Table VIII contains values of g.(p, f), the upper «
percentage points of ¢ where f is the number of degrees of freedom associated with the
MS;. For equal sample sizes, Tukey’s test declares two means significantly different if
the absolute value of their sample differences exceeds

MS
T, = qua, f) /TE (3-35)

Equivalently, we could construct a set of 100(1 — «) percent confidence intervals for all
pairs of means as follows:

- _ MS
V. = V. — qola )| nE < p - oW
L IMS:
<5y, - 3.+ q.af) —nf, i # . (3-36)

When sample sizes are not equal, Equations 3-35 and 3-36 become

q.(a, ) 11
T, = 22500 s = + = 3-37
V2 (n n (337
and
- q4af) (1 1)
Vi =V e MSel = o) S
! \?2 F\n, n; !
- -, 49da f) 11y . .
<y —y 4+ —== IMS:|—+ — #* 3-38
yz. yJ. \/E SE(I’li nj y 1 .] ( )

respectively. The unequal sample size version is sometimes called the Tukey—Kramer
procedure.

EXAMPLE 3.7 +tccveteevssesostecsatessascasasssasassasossssosssasassns
To illustrate Tukey’s test, we use the data from the cotton weight percentage experiment
in Example 3-1. With a = 0.05 and f = 20 degrees of freedom for error, Appendix Table
VIII gives ¢o.05(5, 20) = 4.23. Therefore, from Equation 3-35,

MSe _ 4.23 8% = 5.37

Toos = goos(5, 20)
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. Vs, Ya. ¥s. Ya.
9.8 10.8 15.4 17.6 21.6

Figure 3-12 Results of Tukey’s test.

Thus, any pair of treatment averages that differ in absolute value by more than 5.37
would imply that the corresponding pair of population means are significantly different.
The five treatment averages are

5.=98 §, =154 ¥, =176 7y, =216 ys =108

and the differences in averages are

V. — V. = 9.8 — 154 = -5.6*
.~ y5. = 98— 17.6 = —7.8*%
Vi — Vo= 9.8 —21.6 = —11.8%
y.— 5. = 98— 108 = —1.0
Vo — ¥5. = 154 — 17.6 = —22
Vo, — Yo = 154 — 216 = —6.2%
Yo — s, = 154 — 108 = 4.6
V5. — ys. = 17.6 — 21.6 = —4.0
V5. — ¥s. = 17.6 — 10.8 =  6.8%

Vo — ¥s. = 21.6 — 10.8 = 10.8%*

The starred values indicate pairs of means that are significantly different. It is usually
helpful to draw a graph, such as in Figure 3-12, underlining pairs of means that do not
differ significantly. This graph gives an indication that the treatment means form three
groups: u; and us, u, and ws, and w,. However, the membership in these groups is not
completely distinct.

When using any procedure for pairwise testing of means we occasionally find that
the overall F test from the analysis of variance is significant, but the pairwise comparison
of means fails to reveal any significant differences. This situation occurs because the F
test is simultaneously considering all possible contrasts involving the treatment means,
not just pairwise comparisons. That is, in the data at hand, the significant contrasts may
not be of the form u;, — u;.

Some computer software packages present pairwise comparisons with confidence
intervals. For the Tukey procedure, these intervals would be computed from either Equa-
tion 3-36 or 3-38, depending on whether or not the sample sizes are equal.

The derivation of the Tukey confidence interval of Equation 3-36 for equal sample
sizes is straightforward. For the studentized range statistic ¢ we have

P(max@,-. — ) — miny;, — p) _

e < qua, f)) =l-a
E
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If max(y,, — w,) — min(y; — w;) is less than or equal to g.(a, /) MSg/n, it must be true
that |(3. — m) — (. — m)| < qula@, f)NMSg/n for every pair of means. Therefore

IMS IMS
P(—qa(a,f) TE <Y Y~ (W~ ) S g, f) TE> =1-«

Rearranging this expression to isolate u; — w; between the inequalities will lead to the
set of 100(1 — «) percent simultaneous confidence intervals given in Equation 3-38.

The Fisher Least Significant Difference (LSD) Method
This procedure uses the F statistic for testing Hy: u; = g,

Yi. — i

1 1
noon

Assuming a two-sided alternative, the pair of means u, and u; would be declared sig-
nificantly different if |y, — ¥,.| > taon—oaVMSe(1/n; + 1/n)). The quantity

11
LSD - ta/Z,N—a MSE<- + —'> (3'40)
Y n n

is called the least significant difference. If the design is balanced, n, = n, = --. =

n, = n, and
2MS
LSD = tupy-u [—= (3-41)
n

To use the Fisher LSD procedure, we simply compare the observed difference be-
tween each pair of averages to the corresponding LSD. If |y, — ¥, | > LSD, we conclude
that the population means u; and u; differ.

(3-39)

Iy =

EXAMPLE 3-8 ++ccvevsettsanscetoaseccasancssaaannoncnncecssscasnnanssss

To illustrate the procedure, if we use the data from the experiment in Example 3-1, the
LSD at & = 0.05 is

[2MS 2(8.06
LSD = £42520, | — £ _ 5086 | s ) _ 375

Thus, any pair of treatment averages that differ in absolute value by more than 3.75
would imply that the corresponding pair of population means are significantly different.
The differences in averages are

V.= V.= 98 — 154 = —56*
Y. —¥s.= 98 —17.6 = —7.8*
V. — Y. = 98 — 216 = —11.8%
Y. —¥s.= 9.8 —-108= —1.0
Vo — V5. =154 — 176 = 22
Vo. — V4. = 154 — 21.6 = —6.2%
Yo — ¥s. =154 — 108 = 4.6*
¥3. — ¥4 = 17.6 — 21.6 = —4.0*
V3. — ¥5. = 176 — 108 =  6.8*

Va. — ¥s. = 21.6 — 10.8 = 10.8*
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¥ Ys. Y. Y. Y.
9.8 10.8 15.4 17.6 21.6

Figure 3-13 Results of the LSD procedure.

The starred values indicate pairs of means that are significantly different. Figure 3-13
summarizes the results. Clearly, the only pairs of means that do not differ significantly
are 1 and 5 and 2 and 3, and treatment 4 produces a significantly greater tensile strength
than the other treatments.

Note that the overall « risk may be considerably inflated using this method. Specif-
ically, as a gets larger, the type I error of the experiment (the ratio of the number of
experiments in which at least one type I error is made to the total number of experiments)
becomes large.

Duncan’s Multiple Range Test
A widely used procedure for comparing all pairs of means is the multiple range test
developed by Duncan (1955). To apply Duncan’s multiple range test for equal sample
sizes, the a treatment averages are arranged in ascending order, and the standard error
of each average is determined as

MSg

S5, = (3-42)
) n

For unequal sample sizes, replace n in Equation 3-42 by the harmonic mean n, of the
{n;}, where

Py = (3-43)
2 (Un)
i=1
Note that if n, = n, = - - - = n,, n, = n. From Duncan’s table of significant ranges

(Appendix Table VII), obtain the values r (p, f) forp = 2, 3,..., a, where « is the
significance level and f is the number of degrees of freedom for error. Convert these
ranges into a set of ¢ — 1 least significant ranges (e.g., R,) forp = 2, 3,..., a by
calculating

R, =rdp, f)S5, forp=2,3...,a (3-44)

Then, the observed differences between means are tested, beginning with largest versus
smallest, which would be compared with the least significant range R,. Next, the differ-
ence of the largest and the second-smallest is computed and compared with the least
significant range R, ,. These comparisons are continued until all means have been com-
pared with the largest mean. Finally, the difference between the second-largest mean and
the smallest is computed and compared against the least significant range R,_;. This
process is continued until the differences between all possible a(a — 1)/2 pairs of means
have been considered. If an observed difference is greater than the corresponding least
significant range, we conclude that the pair of means in question is significantly different.
To prevent contradictions, no differences between a pair of means are considered sig-
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nificant if the two means involved fall between two other means that do not differ
significantly.

EXAMPLE 3-9 ~ccevevteteecentaacaasatossansaassssescosassosssssososasss

We can apply Duncan’s multiple range test to the experiment of Example 3-1. Recall
that MS; = 8.06, N = 25, n = 5, and there are 20 error degrees of freedom. Ranking
the treatment averages in ascending order, we have

y.= 9.8
ys. = 10.8
y.. = 154
y;, = 17.6
y4. = 21.6

The standard error of each average is S5, = V8.06/5 = 1.27. From the table of signifi-
cant ranges in Appendix Table VII for 20 degrees of freedom and & = 0.05, we obtain
roos(2, 20) = 2.95, ro0s(3, 20) = 3.10, ryos(4, 20) = 3.18, and ry0s5(5, 20) = 3.25.
Thus, the least significant ranges are

R = roos(2, 2005, = (2.95)(1.27) = 3.75
Rs = roos(3, 20085, = (3.10)(1.27) = 3.94
Ry = roos(4, 20)S5, = (3.18)(1.27) = 4.04
Rs = roos(5, 20)S5, = (3.25)(1.27) = 4.13

I

The comparisons would yield

4vs.1:21.6 — 9.8 = 11.8 > 4.13(R5)
4 vs. 5:21.6 — 10.8 = 10.8 > 4.04(R,)
4vs.2:21.6 — 154 = 6.2 > 3.94(R5)
4vs.3:216 — 17.6 = 4.0 > 3.75(R,)

3vs.5:17.6 — 10.8 = 6.8 > 3.95(R;)
3vs. 2:17.6 — 15.4 = 2.2 < 3.75(R>)
2vs.1:154 — 98 = 5.6 > 3.94(R5)
2vs.5: 154 — 108 = 4.6 > 3.75(Ry)

1
5
2
3
3vs. 1: 176 — 9.8 = 7.8 > 4.04R,)
5
2
1
5
1

5vs. 1:10.8 — 9.8 = 1.0 < 3.75(R,)

From the analysis we see that there are significant differences between all pairs of means
except 3 and 2 and 5 and 1. A graph underlying those means that are not significantly
different is shown in Figure 3-14. Notice that, in this example, Duncan’s multiple range
test and the LSD method produce identical conclusions.

Y. ¥s. Y. Ya. Ya.
9.8 10.8 15.4 17.6 21.6

Figure 3-14 Results of Duncan’s multiple range test.
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Duncan’s test requires a greater observed difference to detect significantly different
pairs of means as the number of means included in the group increases. For instance, in
the above example R, = 3.75 (two means) whereas R; = 3.94 (three means). For two
means, the critical value R, will always exactly equal the LSD value from the ¢ test. The
values r,(p, f) in Appendix Table VII are chosen so that a specified protection level is
obtained. That is, when two means that are p steps apart are compared, the protection
levelis (1 — a)” ', where a is the level of significance specified for two adjacent means.
Thus, the error rate is 1 — (1 — a)”~' of reporting at least one incorrect significant
difference between two means when the group size is p. For example, if « = 0.05, then
1 — (1 — 0.05)! = 0.05 is the significance level for comparing the adjacent pair of
means, 1 — (1 — 0.05)*> = .10 is the significance level for means that are one step apart,
and so forth.

Generally, if the protection level is «, tests on means have a significance level that
is greater than or equal to «. Consequently, Duncan’s procedure is quite powerful; that
is, it is very effective at detecting differences between means when real differences exist.
For this reason, Duncan’s multiple range test is very popular.

The Newman-Keuls Test

This test was devised by Newman (1939). Because new interest in Newman'’s test was
generated by Keuls (1952), the procedure is usually called the Newman-Keuls test. Op-
erationally, the procedure is similar to Duncan’s multiple range test, except that the
critical differences between means are calculated somewhat differently. Specifically, we
compute a set of critical values

K,=q4p,f)S5. p=23...,a (3-45)

where g.(p, f) is the upper a percentage point of the studentized range for groups of
means of size p and f error degrees of freedom. Once the values K, are computed from
Equation 3-45, extreme pairs of means in groups of size p are compared with K, exactly
as in Duncan’s multiple range test.

Which Pairwise Comparison Method Do 1 Use?

Certainly a logical question at this point is Which one of these procedures should I use?
Unfortunately, there is no clear-cut answer to this question, and professional statisticians
often disagree over the utility of the various procedures. Carmer and Swanson (1973) have
conducted Monte Carlo simulation studies of a number of multiple comparison procedures,
including others not discussed here. They report that the least significant difference method
is a very effective test for detecting true differences in means if it is applied only after
the F test in the analysis of variance is significant at 5 percent. They also report good
performance in detecting true differences with Duncan’s multiple range test. This is not
surprising, because these two methods are the most powerful of those we have discussed.
However, these methods do not contain the experimentwise error rate. Because the Tukey
method does control the overall error rate, many statisticians prefer to use it.

The Newman—Keuls test is more conservative than Duncan’s test in that the type I
error rate is smaller. Specifically, the type I error of the experiment is « for all tests
involving the same number of means. Consequently, because « is generally lower, the
power of the Newman—Keuls test is generally less than that of Duncan’s test. To dem-
onstrate that the Newman—Keuls procedure leads to a less powerful test than Duncan’s
multiple range test, we note from a comparison of Tables VII and VIII of the Appendix
that for p > 2 we have q.{(p, f) > rp, f). That is, it is “‘harder’’ to declare a pair of
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means significantly different using the Newman—Keuls test than it is using Duncan’s
procedure. This is illustrated below for the case a = 0.01, @ = &, and f = 20:

p 2 3 4 5 6 7 8
roor(p, 20) 4.02 422 4.33 4.40 447 4.53 4.58
Goor(p, 20) 4.02 4.64 5.02 5.29 5.51 5.69 5.84

As indicated above, there are several other multiple comparison procedures. For
articles describing these methods, see Miller (1977), O’Neill and Wetherill (1971), and
Nelson (1989). The book by Miller (1991) is also recommended.

3.5.8 Comparing Treatment Means with a Control

In many experiments, one of the treatments is a control, and the analyst is interested in
comparing each of the other @ — 1 treatment means with the control. Thus, there are
only @ — 1 comparisons to be made. A procedure for making these comparisons has been
developed by Dunnett (1964). Suppose that treatment a is the control and we wish to
test the hypotheses

Ho:p; = pg
Hiip; # pg
fori = 1,2,...,a — 1. Dunnett’s procedure is a modification of the usual #-test. For
each hypothesis, we compute the observed differences in the sample means
9. = ¥.| i=12...,a-1
The null hypothesis Hy: w; = p, is rejected using a type I error rate « if

3 a

9. = Vol > dufa — 1, 1) MSEG + i) (3-46)

where the constant d(a — 1, f) is given in Appendix Table IX. (Both two- and one-
sided tests are possible.) Note that « is the joint significance level associated with all
a — 1 tests.

EXAMPLE 3510 cccvevereosenseensoncaansaasssosssnsosassosssnssoasanneas

To iltustrate Dunnett’s test, consider the experiment from Example 3-1 with treatment 5
considered the control. In this example, a = 5,a — 1 = 4,f=20,and n; = n = 5. At
the 5 percent level, we find from Appendix Table IX that dyo5(4, 20) = 2.65. Thus, the
critical difference becomes

2MS [2(8.06
dy05(4, 20) ——n“E‘ = 2.65 (—5—) =476

(Note that this is a simplification of Equation 3-46 resulting from a balanced design.)
Thus, any treatment mean that differs from the control by more than 4.76 would be
declared significantly different. The observed differences are
Ivs.5:y,. —y, = 98—108=-1.0
2vs. 5.y, —ys, =154 — 108 4.6
3vs.5:y;, —ys.= 176 — 108 = 6.8
5: 9, — ¥s. = 21.6 — 10.8 10.8

I
<
h

I

Il

4 vs.
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Only the differences y;, — ¥s, and y,, — s, indicate any significant difference when com-
pared to the control; thus, we conclude that us # s and ps # s.

When comparing treatments with a control, it is a good idea to use more observations
for the control treatment (say 7,) than for the other treatments (say n), assuming equal
numbers of observations for the remaining a — 1 treatments. The ratio n,/n should be
chosen to be approximately equal to the square root of the total number of treatments.
That is, choose n,/n = Va.

3.6 SAMPLE COMPUTER OUTPUT

Computer programs for supporting experimental design and performing the analysis
of variance are widely available. The output from one such program, Design-Expert,
is shown in Figure 3-15 (on the facing page), using the data from the single-factor
experiment in Example 3-1. The sum of squares corresponding to the ‘“Model”” is the
usual SSrreamments fOr a single-factor design. That source is further identified as ““A.”” When
there is more than one factor in the experiment, the model sum of squares will be de-
composed into several sources (4, B, etc.). Notice that the analysis of variance summary
at the top of the computer output contains the usual sums of squares, degrees of freedom,
mean squares, and test statistic Fy,. The column *‘Prob > F’’ is the P-value (actually, the
upper bound on the P-value, because probabilities less than 0.0001 are defaulted to
0.0001).

In addition to the basic analysis of variance, the program displays some additional
useful information. The quantity ‘‘R-squared’’ is defined as

 SSyeaa _ 47576
SStow 63696

R? = 0.746923

and is loosely interpreted as the proportion of the variability in the data ‘‘explained’” by
the analysis of variance model. Thus, in the synthetic fiber strength testing data, the
factor ‘‘cotton weight percentage’’ explains about 74.69 percent of the variability in
tensile strength. Clearly, we must have 0 < R® < 1, with larger values being more
desirable. There are also some other R*-like statistics displayed in the output. The *‘ad-
justed’’ R” is a variation of the ordinary R? statistic that reflects the number of factors in
the model. It can be a useful statistic for more complex experiments with several design
factors when we wish to evaluate the impact of increasing or decreasing the number of
model terms. ‘‘Std.Dev.”’ is the square root of the error mean square, V 8.060 = 2.839,
and ‘“‘C.V.”’ is the coefficient of variation, defined as (\VVMS:/y)100. The coefficient of
variation measures the unexplained or residual variability in the data as a percentage
of the mean of the response variable. ‘‘PRESS’’ stands for ‘‘Prediction Error Sum of
Squares,”” and it is a measure of how well the model for the experiment is likely to
predict the responses in a new experiment. Small values of PRESS are desirable. Alter-
natively, one can calculate an R* for predictions based on PRESS (we will show how to
do this later). This R2,.q in our problem is 0.6046, which is not unreasonable, considering
that the model accounts for about 75 percent of the variability in the current experiment.
The “‘Adequate Precision’” statistic is computed by dividing the difference between the
maximum predicted response and the minimum predicted response by the average stan-
dard deviation of all predicted responses. Large values of this quantity are desirable, and
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Response: Strength in psi
ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

Sum of Mean F

Source Squares DF Square Value Prob > F

Model 475.76 4 118.94 14.76 <0.0001 significant
A 475.76 4 118.94 14.76 <0.0001

Residual 161.20 20 8.06

Lack of Fit 0.000 0

Pure Error 161.20 20 8.06
Cor Total 636.96 24

The Model F-value of 14.76 implies the model is significant. There is only a 0.01% chance
that a “Model F-Value” this large could occur due to noise.

Values of “Prob > F” less than 0.0500 indicate madel terms are significant.

In this case A are significant model terms.

Values greater than 0.1000 indicate the model terms are not significant.

If there are many insignificant model terms (not counting those required to support hi-
erarchy), model reduction may improve your model.

Std. Dev. 2.84 R-Squared 0.7469
Mean 15.04 Adj R-Squared 0.6963
C.V. 18.88 Pred R-Squared 0.6046
PRESS 251.88 Adeq Precision 9.294

The "Pred R-Squared” of 0.6046 is in reasonable agreement with the "Adj R-Squared” of
0.6963. A difference greater than 0.20 between the "Pred R-Squared” and the "Adj R-
Squared” indicates a possible problem with your model and/or data.

"Adeq Precision” measures the signal to noise ratio. A ratio greater than 4 is desirable.
Your ratio of 9.294 indicates an adequate signal to use this model to navigate the design
space.

Treatment Means (Adjusted, if Necessary)

Estimated Standard
Mean Error

1-15 9.80 1.27

2-20 15.40 1.27

3-25 17.60 1.27

4-30 21.60 1.27

5-35 10.80 1.27

Mean Standard t for H,

Treatment Difference DF Error Coeff=0 Prob > |t|
Tvs 2 —5.60 1 1.80 -3.12 0.0054
Tvs3 -7.80 1 1.80 —-4.34 0.0003
Tvs 4 -11.80 1 1.80 —-6.57 <0.0001
1vsb -1.00 1 1.80 —0.56 0.5838
2vs 3 -2.20 1 1.80 -1.23 0.2347
2vs 4 -6.20 1 1.80 -3.45 0.0025
2vs5H 4.60 1 1.80 2.56 0.0186
3vs4 —-4.00 1 1.80 —-2.23 0.0375
3vsb 6.80 1 1.80 3.79 0.0012
4vsb 10.80 1 1.80 6.01 <0.0001

Values of "Prob > |t|” less than 0.0500 indicate the difference in the two treatment means
is significant.

Values of "Prob > |t|” greater than 0.1000 indicate the difference in the two treatment
means is not significant.

Figure 3-15 Design-Expert computer output for Example 3-1.
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Diagnostic Case Statistics

Standard Actual Predicted Student Cook’s

Order Value Value Residual Leverage Residual Distance Outliert
1 7.00 9.80 -2.80 0.200 -1.103 0.061 -1.109
2 7.00 9.80 —2.80 0.200 -1.103 0.061 -1.109
3 15.00 9.80 5.20 0.200 2.048 0.210 2.245
4 11.00 9.80 1.20 0.200 0.473 0.011 0.463
5 9.00 9.80 —0.80 0.200 -0.315 0.005 -0.308
6 12.00 15.40 -3.40 0.200 -1.339 0.090 —1.368
7 17.00 15.40 1.60 0.200 0.630 0.020 0.620
8 12.00 15.40 -3.40 0.200 -1.339 0.090 —1.368
9 18.00 15.40 2.60 0.200 1.024 0.052 1.025
10 18.00 15.40 2.60 0.200 1.024 0.052 1.025
11 14.00 17.60 —3.60 0.200 -1.418 0.100 —1.457
12 18.00 17.60 0.40 0.200 0.158 0.001 0.154
13 18.00 17.60 0.40 0.200 0.158 0.001 0.154
14 19.00 17.60 1.40 0.200 0.551 0.015 0.5642
15 19.00 17.60 1.40 0.200 0.551 0.015 0.542
16 19.00 21.60 -2.60 0.200 -1.024 0.052 —1.025
17 25.00 21.60 3.40 0.200 1.339 0.090 1.368
18 22.00 21.60 0.40 0.200 0.158 0.001 0.154
19 19.00 21.60 —2.60 0.200 —1.024 0.052 ~1.025
20 23.00 21.60 1.40 0.200 0.551 0.015 0.5642
21 7.00 10.80 —-3.80 0.200 —1.496 0.112 -1.548
22 10.00 10.80 —0.80 0.200 -0.315 0.005 -0.308
23 11.00 10.80 0.20 0.200 0.079 0.000 0.077
24 15.00 10.80 4.20 0.200 1.654 0.137 1.735
25 11.00 10.80 0.20 0.200 0.079 0.000 0.077

Proceed to Diagnostic Plots (the next icon in progression). Be sure to look at the:
1) Normal probability plot of the studentized residuals to check for normality of
residuals.
2) Studentized residuals versus predicted values to check for constant error.
3) Outlier t versus run order to look for outliers, i.e., influential values.
4) Box-Cox plot for power transformations.

if all the model statistics and diagnostic plots are OK, finish up with the Model Graphs
icon.

Figure 3-15 (Continued)

values that exceed four usually indicate that the model will give reasonable performance
in prediction.

Treatment means are estimated and the standard error (or sample standard deviation
of each treatment mean, V' MSg/n) is displayed. Differences between pairs of treatment
means are investigated by using the Fisher LSD method described in Section 3-5.7.

The computer program also calculates and displays the residuals, as defined in Equa-
tion 3-16. The program will also produce all of the residual plots that we discussed in
Section 3-4. There are also several other residual diagnostics displayed in the output.
Some of these will be discussed later.

Finally, notice that the computer program also has some interpretative guidance
embedded in the output. This ‘‘advisory’’ information is fairly standard in many PC-
based statistics packages. Remember in reading such guidance that it is written in very
general terms and may not exactly suit the report writing requirements of any specific
experimenter. This advisory output may be deleted by the user.
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3-7 DETERMINING SAMPLE SIZE

In any experimental design problem, a critical decision is the choice of sample size—
that is, determining the number of replicates to run. Generally, if the experimenter is
interested in detecting small effects, more replicates are required than if the experimenter
is interested in detecting large effects. In this section, we discuss several approaches to
determining sample size. Although our discussion focuses on a single-factor design, most
of the methods can be used in more complex experimental situations.

3-7.1 Operating Characteristic Curves

Recall that an operating characteristic curve is a plot of the type II error probability
of a statistical test for a particular sample size versus a parameter that reflects the extent
to which the null hypothesis is false. These curves can be used to guide the experimenter
in selecting the number of replicates so that the design will be sensitive to important
potential differences in the treatments.

We consider the probability of type II error of the fixed effects model for the case
of equal sample sizes per treatment, say

B = 1 — P{Reject Ho|H, is false}
=1 — P{Fy > Fou1n_a|Ho is false} (3-47)

To evaluate the probability statement in Equation 3-47, we need to know the distribution
of the test statistic Fy if the null hypothesis is false. It can be shown that, if H,, is false,
the statistic Fo = MS1 camens/MSg is distributed as a noncentral F random variable with
a — 1 and N — a degrees of freedom and the noncentrality parameter 6. If § = 0, the
noncentral F distribution becomes the usual (central) F distribution.

Operating characteristic curves given in Chart V of the Appendix are used to evaluate
the probability statement in Equation 3-47. These curves plot the probability of type II
error (3) against a parameter @, where

n E 72
P = —— (3-48)

ao

The quantity ®? is related to the noncentrality parameter 8. Curves are available for
a = 0.05 and « = 0.01 and a range of degrees of freedom for numerator and denominator.
In using the operating characteristic curves, the experimenter must specify the pa-
rameter @. This is often difficult to do in practice. One way to determine ® is to choose
the actual values of the treatment means for which we would like to reject the null
hypothesis with high probability. Thus, if w,, g,,..., g, are the specified treatment
means, we find the 7; in Equation 3-48 as 7, = u; — m, where @ = (1/a)2{-, w; is the
average of the individual treatment means. We also require an estimate of o>, Sometimes
this is available from prior experience, a previous experiment or a preliminary test (as
suggested in Chapter 1), or a judgment estimate. When we are uncertain about the value
of o?, sample sizes could be determined for a range of likely values of o to study the
effect of this parameter on the required sample size before a final choice is made.
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EXAMPLE 3-11 +vcevveeereteocossacesasetstsastoscasscasasancnsnsonananes
Consider the tensile strength experiment described in Example 3-1. Suppose that the
experimenter is interested in rejecting the null hypothesis with a probability of at least
0.90 if the five treatment means are

m1 = 11 Mo = 12 M3 = 15 K4 = 18 and Ms = 19

She plans to use & = 0.01. In this case, because S = 75, we have @ = (1/5)75 =
15 and

n=pm—um=11-15= -4
= —g=12—-15= -3
Bn=m—w=15-15= 0
W=y —p=18—-15= 3

s=us—pmp=19—-15= 4

Thus, =;_;77 = 50. Suppose the experimenter feels that the standard deviation of tensile
strength at any particular level of cotton weight percentage will be no larger than o = 3
psi. Then, by using Equation 3-48, we have

5
nZTf

27 o)
= = 111
ac’  53) "

We use the operating characteristic curve fora — 1 =5 — 1 =4 with N —a =
a(n — 1) = 5(n — 1) error degrees of freedom and o = 0.01 (see Appendix Chart
V). As a first guess at the required sample size, try n = 4 replicates. This yields
% = 1.11(4) = 4.44, ® = 2.11, and 5(3) = 15 error degrees of freedom. Consequently,
from Chart V, we find that 8 = 0.30. Therefore, the power of the test is approximately
1 — B =1 - 0.30 = 0.70, which is less than the required 0.90, and so we conclude that
n = 4 replicates are not sufficient. Proceeding in a similar manner, we can construct the
following display:

@ =

n P @ ain — 1) B Power (1 — B)
4 4.44 2.11 15 0.30 0.70
5 5.55 2.36 20 0.15 0.85
6 6.66 2.58 25 0.04 0.96

Thus, at least n = 6 replicates must be run to obtain a test with the required power.

---------------------------------------------------------------------------

The only problem with this approach to using the operating characteristic curves is
that it is usually difficult to select a set of treatment means on which the sample size
decision should be based. An alternate approach is to select a sample size such that if
the difference between any two treatment means exceeds a specified value the null hy-
pothesis should be rejected. If the difference between any two treatment means is as large
as D, it can be shown that the minimum value of ®? is

2
. (3-49)

2a0?
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Because this is a minimum value of ®?, the corresponding sample size obtained from
the operating characteristic curve is a conservative value; that is, it provides a power at
least as great as that specified by the experimenter.

To illustrate this approach, suppose that in the tensile strength experiment from
Example 3-1, the experimenter wished to reject the null hypothesis with probability at
least 0.90 if any two treatment means differed by as much as 10 psi. Then, assuming that
o = 3 psi, we find the minimum value of ®° to be

» _ m107 _
e = 2(5)(3%)

1.11n

and, from the analysis in Example 3-11, we conclude that n = 6 replicates are required
to give the desired sensitivity when o = 0.01.

3-7.2 Specifying a Standard Deviation Increase

This approach is occasionally helpful in choosing the sample size. If the treatment means
do not differ, the standard deviation of an observation chosen at random is o. If the
treatment means are different, however, the standard deviation of a randomly chosen

observation is
\/ o’ + <E T?/d)
i=1

If we choose a percentage P for the increase in the standard deviation of an observation
beyond which we wish to reject the hypothesis that all treatment means are equal, this
is equivalent to choosing

(&

o

=1+ 0.01P (P = percent)

or

>, m¥a

i=1
=V + 0.01P? — 1

so that

a

2 T?la

i=1

= — 2 [— -
® gy V(1 + 0.01P? — 1(Vn) (3-50)

Thus, for a specified value of P, we may compute ® from Equation 3-50 and then use
the operating characteristic curves in Appendix Chart V to determine the required sample
size.
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For example, in the tensile strength experiment from Example 3-1, suppose that we
wish to detect a standard deviation increase of 20 percent with a probability of at least
0.90 and a = 0.05. Then

® = V127 - 1(Vn) = 0.66Vn

Reference to the operating characteristic curves shows that n = 9 is required to give the
desired sensitivity.

3.7.3 Confidence Interval Estimation Method

This approach assumes that the experimenter wishes to express the final results in terms
of confidence intervals and is willing to specify in advance how wide he or she wants
these confidence intervals to be. For example, suppose that in the tensile strength exper-
iment from Example 3-1 we wanted a 95 percent confidence interval on the difference
in mean tensile strength for any two cotton weight percentages to be +5 psi and a prior
estimate of o is 3. Then, using Equation 3-13, we find that the accuracy of the confidence

interval is
2MSg
TapNoa |
n

Suppose that we try n = 5 replicates. Then, using o* = 3* = 9 as an estimate of MSg,
the accuracy of the confidence interval becomes

2
+2.086 % = *+3.96

which is more accurate than the requirement. Trying n = 4 gives

2
+2.132 %

i

*4.52

Trying n = 3 gives

2
+2.228 —%9—) = *+5.46

Clearly n = 4 is the smallest sample size that will lead to the desired accuracy.

The quoted level of significance in the above illustration applies only to one confi-
dence interval. However, the same general approach can be used if the experimenter
wishes to prespecify a set of confidence intervals about which a joint or simultaneous
confidence statement is made (see the comments about simultaneous confidence inter-
vals in Section 3-3.3). Furthermore, the confidence intervals could be constructed about
more general contrasts in the treatment means than the pairwise comparison illustrated
above.

3-8 DISCOVERING DISPERSION EFFECTS

We have focused on using the analysis of variance and related methods to determine
which factor levels result in differences among treatment or factor level means. It is
customary to refer to these effects as location effects. If there was inequality of variance



3-8 DISCOVERING DISPERSION EFFECTS 111

Table 3-12 Data for the Smelting Experiment

Cl({)zttlrcc))l Observations
Algorithm 1 2 3 4 5 6
1 4.93(0.05) 4.86(0.04) 4.75(0.05) 4.95(0.06) 4.79(0.03) 4.88(0.05)
2 4.85(0.04) 4.91(0.02) 4.,79(0.03) 4.85(0.05) 4.75(0.03) 4.85(0.02)
3 4.83(0.09) 4.88(0.13) 4.90(0.11) 4.75(0.15) 4.82(0.08) 4.90(0.12)
4 4.89(0.03) 4.77(0.04) 4.94(0.05) 4.86(0.05) 4.79(0.03) 4.76(0.02)

at the different factor levels, we used transformations to stabilize the variance to improve
our inference on the location effects. In some problems, however, we are interested in
discovering whether the different factor levels affect variability; that is, we are interested
in discovering potential dispersion effects. This will occur whenever the standard de-
viation, variance, or some other measure of variability is used as a response variable.

To illustrate these ideas, consider the data in Table 3-12, which resulted from a
designed experiment in an aluminum smelter. Aluminum is produced by combining alu-
mina with other ingredients in a reaction cell and applying heat by passing electric current
through the cell. Alumina is added continuously to the cell to maintain the proper ratio
of alumina to other ingredients. Four different ratio control algorithms were investigated
in this experiment. The response variables studied were related to cell voltage. Specifi-
cally, a sensor scans cell voltage several times each second, producing thousands of
voltage measurements during each run of the experiment. The process engineers decided
to use the average voltage and the standard deviation of cell voltage (shown in paren-
theses) over the run as the response variables. The average voltage is important because
it affects cell temperature, and the standard deviation of voltage (called *‘pot noise’’ by
the process engineers) is important because it affects the overall cell efficiency.

An analysis of variance was performed to determine if the different ratio control
algorithms affect average cell voltage. This revealed that the ratio control algorithm had
no location effect; that is, changing the ratio control algorithms does not change the
average cell voltage. (Refer to Problem 3-28.)

To investigate dispersion effects, it is usually best to use

log(s) or  log(s?)

as a response variable since the log transformation is effective in stabilizing variability
in the distribution of the sample standard deviation. Because all sample standard devia-
tions of pot voltage are less than unity, we will use

y = —In(s)

as the response variable. Table 3-13 presents the analysis of variance for this response,
the natural logarithm of ‘‘pot noise’.”” Notice that the choice of a ratio control algorithm

Table 3-13  Analysis of Variance for the Natural Logarithm of Pot Noise

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fy P-Value
Ratio Control Algorithm 6.166 3 2.055 21.96 <0.001
Error 1.872 20 0.094

Total 8.038 23
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AN

L 3 ] 4 2 |
200 300 4.00

Average log pot noise [-In {s)]

Figure 3-16 Average log pot noise [—In (s)] for four ratio control
algorithms relative to a scaled ¢ distribution with scale factor

VMSg/n = V0.094/6 = 0.125.

affects pot noise; that is, the ratio control algorithm has a dispersion effect. Standard
tests of model adequacy, including normal probability plots of the residuals, indicate that
there are no problems with experimental validity. (Refer to Problem 3-29.)

Figure 3-16 plots the average log pot noise for each ratio control algorithm and also
presents a scaled ¢ distribution for use as a reference distribution in discriminating
between ratio control algorithms. This plot clearly reveals that ratio control algorithm 3
produces greater pot noise or greater cell voltage standard deviation than the other al-
gorithms. There does not seem to be much difference between algorithms 1, 2, and 4.

3-9 THE REGRESSION APPROACH TO THE ANALYSIS
OF VARIANCE

We have given an intuitive of heuristic development of the analysis of variance. However,
it is possible to give a more formal development. The method will be useful later in
understanding the basis for the statistical analysis of more complex designs. Called the
general regression significance test, the procedure essentially consists of finding the
reduction in the total sum of squares for fitting the model with all parameters included
and the reduction in sum of squares when the model is restricted to the null hypotheses.
The difference between these two sums of squares is the treatment sum of squares with
which a test of the null hypothesis can be conducted. The procedure requires the least
squares estimators of the parameters in the analysis of variance model. We have given
these parameter estimates previously (in Section 3-3.3); however, we now give a formal
development.

3.9.1 Least Squares Estimation of the Model Parameters

We now develop estimators for the parameter in the single-factor model
Y= pt+ Tt

using the method of least squares. To find the least squares estimators of u and 7;, we
first form the sum of squares of the errors

L=> > &=

i=1 j=1 i

Oy — w— 7 (3-51)

1

a n

1J
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and then choose values of u and 7, say & and #,, that minimize L. The appropriate values
would be the solutions to the a + 1 simultaneous equations

oL

j— = O

I a.7;

JL

— =0 i=1,2, ,a
I; 0.7

Differentiating Equation 3-51 with respect to u and 7; and equating to zero, we obtain

and

which, after simplification, yield

Ng+nty +nty + .-+ 07, =y,

ni + n# =
n + n#, = Ya (3-52)
nﬂ/ + n'f-a = Ya.

The a + 1 equations (Equation 3-52) in @ + 1 unknowns are called the least squares
normal equations. Notice that if we add the last @ normal equations, we obtain the first
normal equation. Therefore, the normal equations are not linearly independent, and no
unique solution for u, 7, ..., 7, exists. This difficulty can be overcome by several
methods. Because we have defined the treatment effects as deviations from the overall
mean, it seems reasonable to apply the constraint

>4 =0 (3-53)
i=1
Using this constraint, we obtain as the solution to the normal equations

(3-54)

>
It
<l el

). i=1,2,...,a

This solution is obviously not unique and depends on the constraint (Equation 3-53)
that we have chosen. At first this may seem unfortunate because two different experi-
menters could analyze the same data and obtain different results if they apply different
constraints. However, certain functions of the model parameter are uniquely estimated,
regardless of the constraint. Some examples are 7, — 7;, which would be estimated by

A

% — % = y. — ¥,, and the ith treatment mean y; = u + 7, which would be estimated
by i = A+ F = Y.

Because we are usually interested in differences among the treatment effects rather
than their actual values, it causes no concern that the 7; cannot be uniquely estimated. In



114 CHAPTER 3 EXPERIMENTS WITH A SINGLE FACTOR: THE ANALYSIS OF VARIANCE

general, any function of the model parameters that is a linear combination of the left-
hand side of the normal equations (Equations 3-52) can be uniquely estimated. Functions
that are uniquely estimated regardless of which constraint is used are called estimable
functions. For more information, see the supplemental material for this chapter. We are
now ready to use these parameter estimates in a general development of the analysis of
variance.

3-9.2 The General Regression Significance Test

A fundamental part of this procedure is writing the normal equations for the model.
These equations may always be obtained by forming the least squares function and
differentiating it with respect to each unknown parameter, as we did in Section 3-9.1.
However, an easier method is available. The following rules allow the normal equations
for any experimental design model to be written directly:

RULE 1. There is one normal equation for each parameter in the model to be
estimated.

RULE 2. The right-hand side of any normal equation is just the sum of all obser-

vations that contain the parameter associated with that particular normal equation.

To illustrate this rule, consider the single-factor model. The first normal equa-

tion is for the parameter w; therefore, the right-hand side is y_because all obser-
vations contain L.

RULE 3. The left-hand side of any normal equation is the sum of all model param-
eters, where each parameter is multiplied by the number of times it appears in the
total on the right-hand side. The parameters are written with a circumflex (°) to
indicate that they are estimators and not the true parameter values.

For example, consider the first normal equation in a single-factor experiment. Ac-
cording to the above rules, it would be

Na +naty +nf +---+nf, =y,

because u appears in all N observations, 7, appears only in the »n observations taken
under the first treatment, 7, appears only in the n observations taken under the second
treatment, and so on. From Equation 3-52, we verify that the equation shown above is
correct. The second normal equation would correspond to 7, and is

n + nt =y,

because only the observations in the first treatment contain 7, (this gives y,_as the right-
hand side), u and 7, appear exactly » times in y, , and all other 7; appear zero times. In
general, the left-hand side of any normal equation is the expected value of the right-hand
side.

Now, consider finding the reduction in the sum of squares by fitting a particular
model to the data. By fitting a model to the data, we ‘‘explain’’ some of the variability;
that is, we reduce the unexplained variability by some amount. The reduction in the
unexplained variability is always the sum of the parameter estimates, each multiplied by
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the right-hand side of the normal equation that corresponds to that parameter. For ex-
ample, in a single-factor experiment, the reduction due to fitting the full model y; =
w7 toe;is

R(,‘L’ T) = /:Ly + 7A'1)’1. + 'f'z)’2 +---t )f.a a.

By + >ty (3-55)
i=1

The notation R(u, 7) means that reduction in the sum of squares from fitting the model
containing p and {7;}. R(u, 7) is also sometimes called the ‘‘regression’’ sum of squares
for the full model y; = u + 7; + €;. The number of degrees of freedom associated with
a reduction in the sum of squares, such as R(u, 7), is always equal to the number of
linearly independent normal equations. The remaining variability unaccounted for by the
model is found from

SSe =2, >, ¥yt — R(u, D (3-56)
i=1 j=1

This quantity is used in the denominator of the test statistic for Hy:1y = 7, = - -+ =
7, = 0.

We now illustrate the general regression significance test for a single-factor exper-
iment and show that it yields the usual one-way analysis of variance. The model is y; =
p + 7 + €, and the normal equations are found from the above rules as

Ng+nty +nty+---+nt, =y,

njp + n# =y
ni + nt, =y,
ni + nf, =y,

Compare these normal equations with those obtained in Equation 3-52.
Applying the constraint {4, = 0, the estimators for u and 7, are

ﬁ’zy-- é\-lzyt._y i=1’29'--9a

The reduction in the sum of squares due to fitting this full model is found from Equation
3-55 as

R(u, D) = gy, + > #y.
i=1

Gy + 2 3i. — 3y

2 a a
-+ ; yiyi. — ). ; Yi.

2
i

l'\<

=z

[
M=
<

T
= |
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which has a degrees of freedom because there are a linearly independent normal equa-
tions. The error sum of squares is, from Equation 3-56,

SSe = >, > ¥5 — R(u, 7

-3 é

=

M= T
S
bl N

=S

~.
I

and has N — a degrees of freedom.

To find the sum of squares resulting from the treatment effects (the { 7;}), we consider
the model to be restricted to the null hypothesis; that is, 7, = 0 for all i. The reduced
model is y; = p + ¢€;. There is only one normal equation for this model:

Ng =y,

and the estimator of w is i = y_. Thus, the reduction in the sum of squares that results
from fitting the reduced model containing only u is

2

R(w = F)0) = yﬁ

Because there is only one normal equation for this reduced model, R(w) has one degree
of freedom. The sum of squares due to the {t;}, given that w is already in the model, is
the difference between R(w, 7) and R(w), which is

R(7|m) = R(u, 7) — R(w)
R(Full Model) — R(Reduced Model)

a 2

EEﬁ—&

ni= 7" N

with @ — 1 degrees of freedom, which we recognize from Equation 3-9 as SSteamments:
Making the usual normality assumption, the appropriate statistic for testing Hy: 1 =
/Tz = s+ s s = Ta = 0 is

which is distributed as F,_, 5, under the null hypothesis. This is, of course, the test
statistic for the single-factor analysis of variance.

R(r|wla — 1)

2 — R(u, T)]/(N - a)

FOZ

nMa

3-10 NONPARAMETRIC METHODS IN THE ANALYSIS
OF VARIANCE

3.10.1 The Kruskal-Wallis Test

In situations where the normality assumption is unjustified, the experimenter may wish
to use an alternative procedure to the F test analysis of variance that does not depend on
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this assumption. Such a procedure has been developed by Kruskal and Wallis (1952).
The Kruskal-Wallis test is used to test the null hypothesis that the a treatments are
identical against the alternative hypothesis that some of the treatments generate obser-
vations that are larger than others. Because the procedure is designed to be sensitive for
testing differences in means, it is sometimes convenient to think of the Kruskal-Wallis
test as a test for equality of treatment means. The Kruskal-Wallis test is a nonparametric
alternative to the usual analysis of variance.

To perform a Kruskal-Wallis test, first rank the observations y,; in ascending order
and replace each observation by its rank, say R;;, with the smallest observation having
rank 1. In the case of ties (observations having the same value), assign the average rank
to each of the tied observations. Let R; be the sum of the ranks in the ith treatment. The
test statistic is

2 2
H = ;2 [2 R' ]_\_J(N—:l_)_:l (3-57)

where n; is the number of observations in the ith treatment, N is the total number of
observations, and

2 _ A NNV + 1)
S T [2112 R? - ] (3-58)

Note that S? is just the variance of the ranks. If there are no ties, S* = N(N + 1)/12, and
the test statistic simplifies to

a

N(N N ED ; — 3N+ 1) (3-59)

When the number of ties is moderate, there will be little difference between Equations
3-57 and 3-59, and the simpler form (Equation 3-59) may be used. If the n; are reasonably
large, say n; = 5, H is distributed approximately as x2_, under the null hypothesis.
Therefore, if

H > X(zx,afl

the null hypothesis is rejected. The P-value approach could also be used.

EXAMPLE 3-12 +vceorecececntecocatactetororatacnencnarasorscasssntasens

The data from Example 3-1 and their corresponding ranks are shown in Table 3-14 on
the next page. Because there is a fairly large number of ties, we use Equation 3-57 as
the test statistic. From Equation 3-58 we find

1 [& & NV + 1)
Sz=ﬁ[22R3———]
i=1 j=1

4

1 25(26)2
= — | 5497.79 -
4[ 97.79 ; ]

= 53.03
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Table 3-14 Data and Ranks for the Tensile Testing Experiment in Example 3-1

Weight Percentage of Cotton

15 20 25 30 35
Yy Ry; Yo Ry, Y3 Ry Yaj R, ¥sj Rs;
7 2.0 12 9.5 14 11.0 19 20.5 7 2.0
7 2.0 17 14.0 18 16.5 25 25.0 10 5.0
15 12.5 12 9.5 18 16.5 22 23.0 11 7.0
11 7.0 18 16.5 19 20.5 19 20.5 15 12.5
9 4.0 18 16.5 19 20.5 23 24.0 11 7.0
R, 27.5 66.0 85.0 113.0 335

and the test statistic is

1 [& R N+ 1)
H = — —_—
s? [,Zl n; 4

1 _25(26)°
= 503 [5245.0 ” ]

= 19.25

Because H > x3o1.4 = 13.28, we would reject the null hypothesis and conclude that the
treatments differ. (The P-value for H = 19.25 is P = 0.0002.) This is the same conclusion
given by the usual analysis of variance F test.

3.10.2 General Comments on the Rank Transformation

The procedure used in the previous section of replacing the observations by their ranks
is called the rank transformation. It is a very powerful and widely useful technique. If
we were to apply the ordinary F test to the ranks rather than to the original data, we
would obtain

B Hfta — 1)
(N—1-H)JN - a)

as the test statistic [see Conover (1980), p. 337]. Note that, as the Kruskal-Wallis statistic
H increases or decreases, F also increases or decreases, so the Kruskal-Wallis test is
equivalent to applying the usual analysis of variance to the ranks.

The rank transformation has wide applicability in experimental design problems for
which no nonparametric alternative to the analysis of variance exists. This includes many
of the designs in subsequent chapters of this book. If the data are ranked and the ordinary
F test is applied, an approximate procedure that has good statistical properties results
[see Conover and Iman (1976, 1981)]. When we are concerned about the normality
assumption or the effect of outliers or “‘wild’’ values, we recommend that the usual
analysis of variance be performed on both the original data and the ranks. When both
procedures give similar results, the analysis of variance assumptions are probably satis-
fied reasonably well, and the standard analysis is satisfactory. When the two procedures
differ, the rank transformation should be preferred because it is less likely to be distorted
by nonnormality and unusual observations. In such cases, the experimenter may want to

Fy

(3-60)
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investigate the use of transformations for nonnormality and examine the data and the
experimental procedure to determine if outliers are present and why they have occurred.

3-11 PROBLEMS
3-1.

3-2.

3-3.

3-4.

The tensile strength of portland cement is being studied. Four different mixing techniques
can be used economically. The following data have been collected:

(a)
(®)
©
@

(e)
)

(a)
®)

(©)

Mixing Technique Tensile Strength (lb/in®)
1 3129 3000 2865 2890
2 3200 3300 2975 3150
3 2800 2900 2985 3050
4 2600 2700 2600 2765

Test the hypothesis that mixing techniques affect the strength of the cement. Use
a = 0.05.

Construct a graphical display as described in Section 3-5.3 to compare the mean
tensile strengths for the four mixing techniques. What are your conclusions?

Use the Fisher LSD method with & = 0.05 to make comparisons between pairs of
means.

Construct a normal probability plot of the residuals. What conclusion would you
draw about the validity of the normality assumption?

Plot the residuals versus the predicted tensile strength. Comment on the plot.
Prepare a scatter plot of the results to aid the interpretation of the results of this
experiment.

Rework part (b) of Problem 3-1 using Duncan’s multiple range test with @ = 0.05.
Does this make any difference in your conclusions?

Rework part (b) of Problem 3-1 using Tukey’s test with a = 0.05. Do you get the
same conclusions from Tukey’s test that you did from the graphical procedure and/
or Duncan’s multiple range test?

Explain the difference between the Tukey and Duncan procedures.

Reconsider the experiment in Problem 3-1. Find a 95 percent confidence interval on the
mean tensile strength of the portland cement produced by each of the four mixing tech-
niques. Also find a 95 percent confidence interval on the difference in means for techniques
1 and 3. Does this aid you in interpreting the results of the experiment?

An experiment was run to determine whether four specific firing temperatures affect the
density of a certain type of brick. The experiment led to the following data:

(a)
(b

©
(@

Temperature Density
100 21.8 21.9 21.7 21.6 21.7
125 21.7 214 21.5 214
150 21.9 21.8 21.8 21.6 21.5
175 219 21.7 21.8 214

Does the firing temperature affect the density of the bricks? Use a = 0.05.

Is it appropriate to compare the means using Duncan’s multiple range test (for ex-
ample) in this experiment?

Analyze the residuals from this experiment. Are the analysis of variance assumptions
satisfied?

Construct a graphical display of the treatment as described in Section 3-5.3. Does
this graph adequately summarize the results of the analysis of variance in part (a)?
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Rework part (d) of Problem 3-4 using the Fisher LSD method. What conclusions can you
draw? Explain carefully how you modified the technique to account for unequal sample
sizes.

A manufacturer of television sets is interested in the effect on tube conductivity of four
different types of coating for color picture tubes. The following conductivity data are
obtained:

Coating Type Conductivity
1 143 141 150 146
2 152 149 137 143
3 134 136 132 127
4 129 127 132 129

(a) Is there a difference in conductivity due to coating type? Use a = 0.05.

(b) Estimate the overall mean and the treatment effects.

(¢) Compute a 95 percent confidence interval estimate of the mean of coating type 4.
Compute a 99 percent confidence interval estimate of the mean difference between
coating types 1 and 4.

(d) Test all pairs of means using the Fisher LSD method with « = 0.05.

(e) Use the graphical method discussed in Section 3-5.3 to compare the means. Which
coating type produces the highest conductivity?

(f) Assuming that coating type 4 is currently in use, what are your recommendations to
the manufacturer? We wish to minimize conductivity.

Reconsider the experiment from Problem 3-6. Analyze the residuals and draw conclusions

about model adequacy.

An article in the ACI Materials Journal (Vol. 84, 1987, pp. 213-216) describes several

experiments investigating the rodding of concrete to remove entrapped air. A 3-inch X

6-inch cylinder was used, and the number of times this rod was used is the design variable.

The resulting compressive strength of the concrete specimen is the response. The data are

shown in the following table:

Rodding Level Compressive Strength
10 1530 1530 1440
15 1610 1650 1500
20 1560 1730 1530
25 1500 1490 1510

(a) Is there any difference in compressive strength due to the rodding level? Use o =
0.05.

(b) Find the P-value for the F statistic in part (a).

(c) Analyze the residuals from this experiment. What conclusions can you draw about
the underlying model assumptions?

(d) Construct a graphical display to compare the treatment means as described in Section
3-5.3.

An article in Environment International (Vol. 18, No. 4, 1992) describes an experiment

in which the amount of radon released in showers was investigated. Radon-enriched water

was used in the experiment, and six different orifice diameters were tested in shower

heads. The data from the experiment are shown in the following table:
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Orifice
Diameter Radon Released (%)
0.37 80 83 83 85
0.51 75 75 79 79
0.71 74 73 76 77
1.02 67 72 74 74
1.40 62 62 67 69
1.99 60 61 64 66

(a) Does the size of the orifice affect the mean percentage of radon released? Use o =
0.05.

(b) Find the P-value for the F statistic in part (a).

(c) Analyze the residuals from this experiment.

(d) Find a 95 percent confidence interval on the mean percent of radon released when
the orifice diameter is 1.40.

(e) Construct a graphical display to compare the treatment means as described in Section
3-5.3 What conclusions can you draw?

The response time in milliseconds was determined for three different types of circuits that

could be used in an automatic valve shutoff mechanism. The results are shown in the

following table:

Circuit Type Response Time
1 9 12 10 8 15
2 20 21 23 17 30
3 6 5 8 16 7

(a) Test the hypothesis that the three circuit types have the same response time. Use
a = 0.01.

(b) Use Tukey’s test to compare pairs of treatment means. Use o = 0.01.

(c) Use the graphical procedure in Section 3-5.3 to compare the treatment means. What
conclusions can you draw? How do they compare with the conclusions from part
(b)?

(d) Construct a set of orthogonal contrasts, assuming that at the outset of the experiment
you suspected the response time of circuit type 2 to be different from the other two.

(e) If you were the design engineer and you wished to minimize the response time,
which circuit type would you select?

(f) Analyze the residuals from this experiment. Are the basic analysis of variance as-
sumptions satisfied?

The effective life of insulating fluids at an accelerated load of 35 kV is being studied.

Test data have been obtained for four types of fluids. The results were as follows:

Fluid Type Life (in h) at 35 kV Load
1 17.6 18.9 16.3 17.4 20.1 216
2 16.9 153 18.6 17.1 19.5 20.3
3 214 23.6 194 18.5 20.5 223
4

19.3 21.1 16.9 17.5 18.3 19.8
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(a) Is there any indication that the fluids differ? Use a = 0.05.

(b) Which fluid would you select, given that the objective is long life?

(¢) Analyze the residuals from this experiment. Are the basic analysis of variance as-
sumptions satisfied?

Four different designs for a digital computer circuit are being studied to compare the

amount of noise present. The following data have been obtained:

Circuit Design Noise Observed
1 19 20 19 30 8
2 80 61 73 56 80
3 47 26 25 35 50
4 95 46 83 78 97

(a) Is the amount of noise present the same for all four designs? Use a = 0.05.

(b) Analyze the residuals from this experiment. Are the analysis of variance assumptions
satisfied?

(c) Which circuit design would you select for use? Low noise is best.

Four chemists are asked to determine the percentage of methyl alcohol in a certain chem-

ical compound. Each chemist makes three determinations, and the results are the

following:

Chemist Percentage of Methyl Alcohol
1 84.99 84.04 84.38
2 85.15 85.13 84.88
3 84.72 84.48 85.16
4 84.20 84.10 84.55

(a) Do chemists differ significantly? Use a = 0.05.

(b) Analyze the residuals from this experiment.

(c) If chemist 2 is a new employee, construct a meaningful set of orthogonal contrasts
that might have been useful at the start of the experiment.

Three brands of batteries are under study. It is suspected that the lives (in weeks) of the

three brands are different. Five batteries of each brand are tested with the following results:

Weeks of Life

Brand 1 Brand 2 Brand 3
100 76 108
96 80 100
92 75 96
96 84 98
92 82 100

(a) Are the lives of these brands of batteries different?

(b) Analyze the residuals from this experiment.

(c) Construct a 95 percent confidence interval estimate on the mean life of battery brand
2. Construct a 99 percent confidence interval estimate on the mean difference be-
tween the lives of battery brands 2 and 3.
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(d) Which brand would you select for use? If the manufacturer will replace without
charge any battery that fails in less than 85 weeks, what percentage would the com-
pany expect to replace?

Four catalysts that may affect the concentration of one component in a three-component

liquid mixture are being investigated. The following concentrations are obtained:

Catalyst
1 2 3 4
58.2 56.3 50.1 529
57.2 54.5 54.2 49.9
58.4 57.0 55.4 50.0
55.8 55.3 51.7

54.9

(a) Do the four catalysts have the same effect on the concentration?

(b) Analyze the residuals from this experiment.

(¢c) Construct a 99 percent confidence interval estimate of the mean response for cata-
lyst 1.

An experiment was performed to investigate the effectiveness of five insulating materials.

Four samples of each material were tested at an elevated voltage level to accelerate the

time to failure. The failure times (in minutes) are shown below:

Material Failure Time (minutes)
1 110 157 194 178
2 1 2 4 18
3 880 1256 5276 4355
4 495 7040 5307 10,050
5 7 5 29 2

(a) Do all five materials have the same effect on mean failure time?

(b) Plot the residuals versus the predicted response. Construct a normal probability plot
of the residuals. What information is conveyed by these plots?

(c) Based on your answer to part (b) conduct another analysis of the failure time data
and draw appropriate conclusions.

A semiconductor manufacturer has developed three different methods for reducing particle

counts on wafers. All three methods are tested on five wafers and the after-treatment

particle count obtained. The data are shown below:

Method Count
1 31 10 21 4 1
2 62 40 24 30 35
3 53 27 120 97 68

(a) Do all methods have the same effect on mean particle count?
(b) Plot the residuals versus the predicted response. Construct a normal probability plot
of the residuals. Are there potential concerns about the validity of the assumptions?

(c) Based on your answer to part (b) conduct another analysis of the particle count data

and draw appropriate conclusions.
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Consider testing the equality of the means of two normal populations, where the variances
are unknown but are assumed to be equal. The appropriate test procedure is the pooled ¢
test. Show that the pooled ¢ test is equivalent to the single-factor analysis of variance.
Show that the variance of the linear combination =2 ¢;y; is 0°2& n,c2.

In a fixed effects experiment, suppose that there are n observations for each of four

treatments. Let 0%, 03, O3 be single-degree-of-freedom components for the orthogonal

contrasts. Prove that SStcamens = 05 + 03 + 0.

Use Bartlett’s test to determine if the assumption of equal variances is satisfied in Problem

3-14. Use a = 0.05. Did you reach the same conclusion regarding equality of variances

by examining residual plots?

Use the modified Levene test to determine if the assumption of equal variances is satisfied

in Problem 3-14. Use o = 0.05. Did you reach the same conclusion regarding the equality

of variances by examining residual plots?

Refer to Problem 3-10. If we wish to detect a maximum difference in mean response times

of 10 milliseconds with a probability of at least 0.90, what sample size should be used?

How would you obtain a preliminary estimate of g?

Refer to Problem 3-14.

(a) If we wish to detect a maximum difference in battery life of 10 hours with a prob-
ability of at least 0.90, what sample size should be used? Discuss how you would
obtain a preliminary estimate of o for answering this question.

(b) If the difference between brands is great enough so that the standard deviation of an
observation is increased by 25 percent, what sample size should be used if we wish
to detect this with a probability of at least 0.90?

Consider the experiment in Problem 3-14. If we wish to construct a 95 percent confidence

interval on the difference in two mean battery lives that has an accuracy of £2 weeks,

how many batteries of each brand must be tested?

Suppose that four normal populations have means of u, = 50, w, = 60, u; = 50, and

M4 = 60. How many observations should be taken from each population so that the

probability of rejecting the null hypothesis of equal population means is at least 0.90?

Assume that @ = 0.05 and that a reasonable estimate of the error variance is o2 = 25.

Refer to Problem 3-26.

(a) How would your answer change if a reasonable estimate of the experimental error
variance were > = 36?

(b) How would your answer change if a reasonable estimate of the experimental error
variance were g? = 497

(c) Can you draw any conclusions about the sensitivity of your answer in this particular
situation about how your estimate of o affects the decision about sample size?

(d) Can you make any recommendations about how we should use this general approach
to choosing » in practice?

Refer to the aluminum smelting experiment described in Section 3-8. Verify that ratio

control methods do not affect average cell voltage. Construct a normal probability plot of

the residuals. Plot the residuals versus the predicted values. Is there an indication that any
underlying assumptions are violated?

Refer to the aluminum smelting experiment in Section 3-8. Verify the analysis of variance

for pot noise summarized in Table 3-13. Examine the usual residual plots and comment

on the experimental validity.

Four different feed rates were investigated in an experiment on a CNC machine producing

a component part used in an aircraft auxiliary power unit. The manufacturing engineer in

charge of the experiment knows that a critical part dimension of interest may be affected

by the feed rate. However, prior experience has indicated that only dispersion effects are
likely to be present. That is, changing the feed rate does not affect the average dimension,
but it could affect dimensional variability. The engineer makes five production runs at
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each feed rate and obtains the standard deviation of the critical dimension (in 10~ mm).
The data are shown below. Assume that all runs were made in random order.

Production Run

Feed Rate
(in/min) 1 2 3 4 5
10 0.09 0.10 0.13 0.08 0.07
12 0.06 0.09 0.12 0.07 0.12
14 0.11 0.08 0.08 0.05 0.06
16 0.19 0.13 0.15 0.20 0.11

(a) Does feed rate have any effect on the standard deviation of this critical dimension?

(b) Use the residuals from this experiment to investigate model adequacy. Are there any
problems with experimental validity?

Consider the data shown in Problem 3-10.

(a) Write out the least squares normal equations for this problem, and solve them for
£ and %, using the usual constraint (Z2.,% = 0). Estimate 1, — .

(b) Solve the equations in (a) using the constraint #; = 0. Are the estimators 7; and 4
the same as you found in (a)? Why? Now estimate 7, — 7, and compare your answer
with that for (a). What statement can you make about estimating contrasts in the 7,?

(c) Estimate w + 7, 27, — 7, — 75, and u + 7, + 7 using the two solutions to the
normal equations. Compare the results obtained in each case.

Apply the general regression significance test to the experiment in Example 3-1. Show

that the procedure yields the same results as the usual analysis of variance.

Use the Kruskal-Wallis test for the experiment in Problem 3-11. Compare the conclusions

obtained with those from the usual analysis of variance.

Use the Kruskal-Wallis test for the experiment in Problem 3-12. Are the results compa-

rable to those found by the usual analysis of variance?

Consider the experiment in Example 3-1. Suppose that the largest observation on tensile

strength is incorrectly recorded as 50. What effect does this have on the usual analysis of

variance? What effect does it have on the Kruskal-Wallis test?



Randomized Blocks,

Latin Squares, and
Related Designs

4-1 THE RANDOMIZED COMPLETE BLOCK DESIGN

In any experiment, variability arising from a nuisance factor can affect the results. Gen-
erally, we define a nuisance factor as a design factor that probably has an effect on the
response, but we are not interested in that effect. Sometimes a nuisance factor is un-
known and uncontrolled; that is, we don’t know that the factor exists and it may even
be changing levels while we are conducting the experiment. Randomization is the design
technique used to guard against such a ‘“‘lurking’’ nuisance factor. In other cases, the
nuisance factor is known but uncontrollable. If we can at least observe the value that
the nuisance factor takes on at each run of the experiment, we can compensate for it in
the statistical analysis by using the analysis of covariance, a technique we will discuss
in Chapter 14. When the nuisance source of variability is known and controllable, a
design technique called blocking can be used to systematically eliminate its effect on
the statistical comparisons among treatments. Blocking is an extremely important design
technique, used extensively in industrial experimentation, and is the subject of this
chapter.

To illustrate the general idea, suppose we wish to determine whether or not four
different tips produce different readings on a hardness testing machine. An experiment
such as this might be part of a gauge capability study. The machine operates by pressing
the tip into a metal test coupon, and from the depth of the resulting depression, the
hardness of the coupon can be determined. The experimenter has decided to obtain four
observations for each tip. There is only one factor—tip type—and a completely random-
ized single-factor design would consist of randomly assigning each one of the 4 X 4 =
16 runs to an experimental unit, that is, a metal coupon, and observing the hardness
reading that results. Thus, 16 different metal test coupons would be required in this
experiment, one for each run in the design.

There is a potentially serious problem with a completely randomized experiment in

this design situation. If the metal coupons differ slightly in their hardness, as might
126
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Table 4-1 Randomized Complete Block Design
for the Hardness Testing Experiment

Test Coupon
Type of Tip 1 2 3 4
1 9.3 9.4 9.6 10.0
2 9.4 9.3 9.8 9.9
3 9.2 9.4 9.5 9.7
4 9.7 9.6 10.0 10.2

happen if they are taken from ingots that are produced in different heats, the experimental
units (the coupons) will contribute to the variability observed in the hardness data. As a
result, the experimental error will reflect both random error and variability between
coupons.

We would like to make the experimental error as small as possible; that is, we would
like to remove the variability between coupons from the experimental error. A design
that would accomplish this requires the experimenter to test each tip once on each of
four coupons. This design, shown in Table 4-1, is called a randomized complete block
design (RCBD). The observed response is the Rockwell C scale hardness minus 40.
The word “‘complete’” indicates that each block (coupon) contains all the treatments
(tips). By using this design, the blocks, or coupons, form a more homogeneous experi-
mental unit on which to compare the tips. Effectively, this design strategy improves the
accuracy of the comparisons among tips by eliminating the variability among the cou-
pons. Within a block, the order in which the four tips are tested is randomly determined.
Notice the similarity of this design problem to the one of Section 2-5 in which the paired
t-test was discussed. The randomized complete block design is a generalization of that
concept. '

The RCBD is one of the most widely used experimental designs. Situations for which
the RCBD is appropriate are numerous. Units of test equipment or machinery are often
different in their operating characteristics and would be a typical blocking factor. Batches
of raw material, people, and time are also common nuisance sources of variability in an
experiment that can be systematically controlled through blocking.

Blocking may also be useful in situations that do not necessarily involve nuisance
factors. For example, suppose that a chemical engineer is interested in the effect of
catalyst feed rate on the viscosity of a polymer. She knows that there are several factors,
such as raw material source, temperature, operator, and raw material purity that are very
difficult to control in the full-scale process. Therefore she decides to test the catalyst feed
rate factor in blocks, where each block consists of some combination of these uncon-
trollable factors. In effect, she is using the blocks to test the robustness of her process
variable (feed rate) to conditions she cannot easily control. For more discussion of this,
see Coleman and Montgomery (1993).

4.1.1 Statistical Analysis of the RCBD

Suppose we have, in general, a treatments that are to be compared and b blocks. The
randomized complete block design is shown in Figure 4-1 on the next page. There is one
observation per treatment in each block, and the order in which the treatments are run
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Block 1 Block 2 Block b
Y1t Y12 Y
Yn Y22 Yo
Y3 Y32 oo Yap
Va1 yaZ Yab

Figure 4-1 The randomized complete block design.

within each block is determined randomly. Because the only randomization of treat-
ments is within the blocks, we often say that the blocks represent a restriction on
randomization.

The statistical model for the RCBD can be written in several ways. The traditional
model is an effects model:

i=1,2,...,a
yU_M+Ti+Bj+EU{f=1,2,...,b “-D

where u is an overall mean, 7 is the effect of the ith treatment, §8; is the effect of the jth
block, and €; is the usual NID (0, o?) random error term. We will initially consider
treatments and blocks to be fixed factors. Just as in the single-factor experimental design
model in Chapter 3, the effects model for the RCBD is an overspecified model. Conse-
quently, we usually think of the treatment and block effects as deviations from the overall
mean so that

a b
>7=0 ad X B=0
i=1 j=1

It is also possible to use a means model for the RCBD, say

i=1,2,...,a
= g 4 o€ 2L
Yij M Ezj{j: ,2,...,b

where w; = u + 7, + B,. However, we will use the effects model in Equation 4-1
throughout this chapter.

In an experiment involving the RCBD, we are interested in testing the equality of
the treatment means. Thus, the hypotheses of interest are

HO:M1=M2=.o-=Ma
H,:at least one w; # w;

Because the ith treatment mean u,; = (l/b)Ej’-’zl(,u + 7, + B) = pu + 7, an equivalent
way to write the above hypotheses is in terms of the treatment effects, say

HOZTl = 7'2: « s e = Ta=0
H,:7; # 0 at least one i
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Let y; be the total of all observations taken under treatment i, y ; be the total of all
observations in block j, y. be the grand total of all observations, and N = ab be the total
number of observations. Expressed mathematically,

b

)’z=2y,-j i=12,...,a (4-2)
=1

J=2yij Jj=12,...,b (4-3)
=1

and

a b a b
=2 2= L= 2y (4-4)

Similarly, y, is the average of the observations taken under treatment i, y; is the average
of the observations in block j, and y_ is the grand average of all observations. That is,
Yo =ylb  y;=yja yIN (4-5)

We may express the total corrected sum of squares as

IIMm
N7
15

Il

IMa

IMe-

[ —y.)

S o —w (4-6)
+ Gy = y)+ Oy =y — ¥, + ¥l

By expanding the right-hand side of Equation 4-6, we obtain

a b a b
D2 —IP=bD .~V t+a 2 ¥, — 3.7

i=1 j=1 i

=1
a b a b
SDIDINCIES A T A S SN A D CH D)
a b
22 2 G = Y0~ Y~ ¥+ )

=1 i=1
22 GV V) @7
represents a partition of the total sum of squares. Expressing the sums of squares in
Equation 4-7 symbolically, we have

SST = SSTreatments + SSBlocks + SSE (4_8)

Because there are N observations, SS; has N — 1 degrees of freedom. There are
a treatments and b blocks, $0 SSteaments AN SSpiocks have @ — 1 and b — 1 degrees
of freedom, respectively. The error sum of squares is just a sum of squares between
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cells minus the sum of squares for treatments and blocks. There are ab cells with
ab — 1 degrees of freedom between them, so SSzhasab — 1 —(a@—-1)— (b - 1) =
(a — 1)(b — 1) degrees of freedom. Furthermore, the degrees of freedom on the right-
hand side of Equation 4-8 add to the total on the left; therefore, making the usual nor-
mality assumptions on the errors, one may use Theorem 3-1 to show that SStreaments/T >
SSgiocks/T, and SSz/a* are independently distributed chi-square random variables. Each
sum of squares divided by its degrees of freedom is a mean square. The expected value
of the mean squares, if treatments and blocks are fixed, can be shown to be

a

by

i=1

E(MSTreatmems) = 0-2 +
a—1

b
a B
j=1

EMSgioas) = 0° + ———
MSpiocks) = @ h—1

EMSg) = o
Therefore, to test the equality of treatment means, we would use the test statistic

_ M STreatmcms

F,
0 MS,,

which is distributed as F,_ ¢,y if the null hypothesis is true. The critical region is
the upper tail of the F distribution, and we would reject Ho if Fo > F, 41 @0 1yp-1)-

We may also be interested in comparing block means because, if these means do not
differ greatly, blocking may not be necessary in future experiments. From the expected
mean squares, it seems that the hypothesis H,: 8; = 0 may be tested by comparing the
statistic Fo = MSgiocks/MSEg 10 Fi b1 (a—1)—1)- However, recall that randomization has
been applied only to treatments within blocks; that is, the blocks represent a restriction
on randomization. What effect does this have on the statistic F, = MSgocs/MS:? Some
differences in treatment of this question exists. For example, Box, Hunter, and Hunter
(1978) point out that the usual analysis of variance F test can be justified on the basis of
randomization only,' without direct use of the normality assumption. They further ob-
serve that the test to compare block means cannot appeal to such a justification because
of the randomization restriction; but if the errors are NID(0, o?), the statistic F, =
MSgi0cks/MSg can be used to compare block means. On the other hand, Anderson and
McLean (1974) argue that the randomization restriction prevents this statistic from being
a meaningful test for comparing block means and that this F ratio really is a test for the
equality of the block means plus the randomization restriction [which they call a restric-
tion error; see Anderson and McLean (1974) for further details].

In practice, then, what do we do? Because the normality assumption is often ques-
tionable, to view Fy = MSgocs/MSE as an exact F test on the equality of block means
is not a good general practice. For that reason, we exclude this F test from the analysis
of variance table. However, as an approximate procedure to investigate the effect of the
blocking variable, examining the ratio of MSgu to MSy is certainly reasonable. If this

' Actually, the normal-theory F distribution is an approximation to the randomization distribution generated by
calculating F, from every possible assignment of the responses to the treatments.
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Table 4-2  Analysis of Variance for a Randomized Complete Block Design

Source Degrees
of Variation Sum of Squares of Freedom Mean Square F,
Treatments S8 Treatments a—1 S8 Treaiments MSrecaiments
a—1 MS,
Blocks SSBlocks b—1 SSBlocks
b—1
Error SSg a@a—-Do-1 SSe
(@a—-DbHe -1
Total S8+ N-1

ratio is large, it implies that the blocking factor has a large effect and that the noise
reduction obtained by blocking was probably helpful in improving the precision of the
comparison of treatment means.

The procedure is usually summarized in an analysis of variance table, such as the
one shown in Table 4-2. The computing would usually be done with a statistical software
package. However, manual computing formulas for the sums of squares may be obtained
for the elements in Equation 4-7 by expressing them in terms of treatment and block
totals. These computing formulas are

a b 2
SSr=3 2% 4-9)
i=1 j=1
1 < y?
SS reaf ents =T 12 - = 4_10
Tramenss = 5 2 Vi T % (4-10)
12 y?
SSocs=_ Z—= 4-11
Block a le Y. N ( )
and the error sum of squares is obtained by subtraction as
SSE = SST - SSTreatments - SSBlocks (4'12)

EXAMPLE 4-1 ++vvcovceeossnoesnceesssossoasossssassassessssncsoscsnsos

Consider the hardness testing experiment described in Section 4-1. There are four tips
and four available metal coupons. Each tip is tested once on each coupon, resulting in a
randomized complete block design. The data obtained are repeated for convenience in
Table 4-3. Remember that the order in which the tips were tested on a particular coupon
was determined randomly. To simplify the calculations, we code the original data by

Table 4-3 Randomized Complete Block Design
for the Hardness Testing Experiment

Coupon (Block)

Type of Tip 1 2 3 4
1 9.3 9.4 9.6 10.0
2 94 9.3 9.8 9.9
3 9.2 94 9.5 9.7
4 9.7 9.6 10.0 10.2




132

Table 4-4 Coded Data for the Hardness Testing Experiment
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Coupon (Block)

Type of Tip 1 2 3 4 yi.
1 -2 -1 1 5 3
2 -1 -2 3 4 4
3 -3 -1 0 2 -2
4 2 1 5 7 15
v, —4 -3 9 18 20=y

subtracting 9.5 from each observation and multiplying the result by 10. This yields the
data in Table 4-4. The sums of squares are obtained as follows:

SSt

SSTreatments -

SSBlocks =

SSE =

4 4 y2
2 7
2 ,:21 YiTN
2
154.00 207 _ 129.00
16
liﬁ—ﬁ
b[:l " N
1 20)?
1 [B) + (4 + (—2)* + (15)%] — % = 38.50
liﬁ*ﬁ
a j=1 Y N
1 2
1 [(—4)* + (=3)* + (9)* + (18)?] — Qi% = 82.50

SST - SSTreatments - SSBlocks

= 129.00 — 38.50 — 82.50 = 8.00

The analysis of variance is shown in Table 4-5. Using a = 0.05, the critical value of F
is Foo530 = 3.86. Because 14.44 > 3.86, we conclude that the type of tip affects the
mean hardness reading. The P-value for the test is also quite small. Also, the coupons
(blocks) seem to differ significantly, because the mean square for blocks is large relative

to error.

It is interesting to observe the results we would have obtained had we not been aware
of randomized block designs. Suppose we used four coupons, randomly assigned the tips
to each, and (by chance) the same design resulted as in Table 4-3. The incorrect analysis
of these data as a completely randomized single-factor design is shown in Table 4-6.

Table 4-5 Analysis of Variance for the Hardness Testing Experiment

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fo P-Value
Treatments (type
of tip) 38.50 3 12.83 14.44 0.0009
Blocks (coupons) 82.50 3 27.50
Error 8.00 9 0.89
Total 129.00 15
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Table 4-6 Incorrect Analysis of the Hardness Testing Experiment
as a Completely Randomized Design

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F,
Type of tip 38.50 3 12.83 1.70
Error 90.50 12 7.54
Total 129.00 15

Because Fy 05312 = 3.49, the hypothesis of equal mean hardness measurements from the
four tips cannot be rejected. Thus, the randomized block design reduces the amount of
noise in the data sufficiently for differences among the four tips to be detected. This
illustrates a very important point. If an experimenter fails to block when he or she should
have, the effect may be to inflate the experimental error so much that important differ-
ences among the treatment means may be undetectable.

Sample Computer Output
Condensed computer output for the hardness testing data in Example 4-1, obtained from
Design-Expert, is shown in Figure 4-2 on page 134. Recall that the original analysis in
Table 4-5 used coded data. (The raw responses were coded by subtracting 9.5 and mul-
tiplying the result by 10.) The computer analysis used the raw responses. Consequently,
the sums of squares in Figure 4-2 are equal to those in Table 4-5 divided by 100 (note
that Design-Expert has rounded the sums of squares to two decimal places).

The residuals are listed at the bottom of the computer output. They are calculated as

e =Yy~ i
and, as we will later show, the fitted values are y; =y, + y, — ¥, so
e; =Y; — ¥ —y; T . (4-13)

In the next section, we will show how the residuals are used in model adequacy
checking.

Multiple Comparisons

If the treatments in an RCBD are fixed, and the analysis indicates a significant difference
in treatment means, the experimenter is usually interested in multiple comparisons to
discover which treatment means differ. Any of the multiple comparison procedures dis-
cussed in Chapter 3 (Section 3-5) may be used for this purpose. In the formulas of Section
3-5, simply replace the number of replicates in the single-factor completely randomized
design (n) by the number of blocks (b). Also, remember to use the number of error
degrees of freedom for the randomized block [(a — 1)(b — 1)] instead of those for the
completely randomized design [a(n — 1)].

The Design-Expert output in Figure 4-2 illustrates the Fisher LSD procedure. Notice
that if we use @ = 0.05, we would conclude that w, = ;. Now because y;, <y, <
¥, (that is, the means y, and y;, span some of the remaining means), we can immediately
conclude that u, = w, = u;. Furthermore, u, is different from all three other means.
Thus we conclude that tip type 4 produces a mean hardness that is significantly higher
than the mean hardness readings from the other three types of tips.

We can also use the graphical procedure of Chapter 3 (Section 3-5.1) to compare tip
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Response: Hardness in Rockwell C
ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

Sum of Mean F
Source Squares DF Square Value Prob > F
Block 0.82 3 0.27
Model 0.38 3 0.13 14.44 0.0009 significant
A 0.38 3 0.13 14.44 0.0009
Residuat 0.080 9 8.889E-003
Cor 1.29 15
Total
Std. Dev. 0.094 R-Squared 0.8280
Mean 9.63 Adj R-Squared 0.7706
C.V. 0.98 Pred R-Squared 0.4563
PRESS 0.25 Adeq Precision 15.635
Treatment Means (Adjusted, If Necessary)
Estimated Standard
Mean Error
1-A1 9.57 0.47
2-A2 9.60 0.47
3-A3 9.45 0.47
4-A4 9.88 0.47
Mean Standard t for H,
Treatment Difference DF Error Coeff=0 Prob > | t|
1vs 2 —0.025 1 0.067 -0.38 0.7163
Tvs3 0.13 1 0.067 1.87 0.0935
Tvs4 —0.30 1 0.067 —4.50 0.0015
2vs3 0.15 1 0.067 2,25 0.0510
2vsd -0.27 1 0.067 —4,12 0.0026
3vs4 -0.43 1 0.067 -~6.37 0.0001
Diagnostics Case Statistics
Standard Actual Predicted Student Cook’s  Outlier
Order Value Value Residual Leverage Residual Distance t
1 9.30 9.35 —0.050 0.438 —-0.707 0.056 —0.686
2 9.40 9.38 0.025 0.438 0.354 0.014 0.336
3 9.60 9.67 —0.075 0.437 -1.061 0.125 —1.069
4 10.00 9.90 0.100 0.438 1.414 0.222 1.512
5 9.40 9.38 0.025 0.438 0.354 0.014 0.336
6 9.30 9.40 —0.100 0.437 -1.414 0.222 -1.512
7 9.80 9.70 0.100 0.437 1.414 0.222 1.512
8 9.90 9.93 -0.025 0.437 —0.354 0.014 —0.336
9 9.20 9.22 -0.025 0.438 —0.354 0.014 —0.336
10 9.40 9.25 0.150 0.437 2.121 0.500 2.828
11 9.50 9.55 —0.050 0.437 -0.707 0.056 -0.686
12 9.70 9.78 —-0.075 0.437 -1.061 0.125 ~1.069
13 9.70 9.65 0.050 0.438 0.707 0.056 0.686
14 9.60 9.68 -0.075 0.437 —1.061 0.125 —1.069
15 10.00 9.97 0.025 0.437 0.354 0.014 0.336
16 10.20 10.20 0.000 0.437 0.000 0.000 0.000

Figure 4-2 Design-Expert output (condensed) for Example 4-1.
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Figure 4-3 Tip type means relative to a scaled ¢ distribution with a scale factor

VMSe/b = V0.89/4 = 0.47.

type means. Figure 4-3 plots the four tip type means from Example 4-1 relative to a
scaled ¢ distribution with a scale factor VMSz/b = V0.89/4 = 0.47. This plot indicates
that tips 1, 2, and 3 probably produce identical average hardness measurements but that
tip 4 produces a much higher mean hardness. This figure confirms the results from the
Fisher LSD test in the Design-Expert output in Figure 4-2.

4.1.2 Model Adequacy Checking

We have previously discussed the importance of checking the adequacy of the assumed
model. Generally, we should be alert for potential problems with the normality assump-
tion, unequal error variance by treatment or block, and block—treatment interaction. As
in the completely randomized design, residual analysis is the major tool used in this
diagnostic checking. The residuals for the randomized block design in Example 4-1 are
listed at the bottom of the Design-Expert output in Figure 4-2. The coded residuals would
be found by multiplying these residuals by 10. The observations, fitted values, and re-
siduals for the coded hardness testing data in Example 4-1 are as follows:

Yij Vi €
—2.00 —1.50 —0.50
—1.00 —1.25 0.25

1.00 1.75 -0.75

5.00 4.00 1.00
—1.00 —1.25 0.25
-2.00 -1.00 —1.00

3.00 2.00 1.00

4.00 4.25 —-0.25
—-3.00 —-2.75 —0.25
—1.00 -2.50 1.50

0.00 0.50 -0.50

2.00 2.75 —-0.75

2.00 1.50 0.50

1.00 1.75 —0.75

5.00 475 0.25

7.00 7.00 0.00

A normal probability plot and a dot diagram of these residuals are shown in Figure
4-4 on page 136. There is no severe indication of nonnormality, nor is there any evidence
pointing to possible outliers. Figure 4-5 (page 137) shows plots of the residuals by type
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Figure 4-4 Normal probability plot of residuals for Example 4-1.

of tip or treatment and by coupon or block. These plots could be, potentially, very
informative. If there is more scatter in the residuals for a particular tip, that could indicate
that this tip produces more erratic hardness readings than the others. More scatter in the
residuals for a particular test coupon could indicate that the coupon is not of uniform
hardness. However, in our example, Figure 4-5 gives no indication of inequality of vari-
ance by treatment or by block. Figure 4-6 (on the facing page) plots the residuals versus
the fitted values y;;. There should be no relationship between the size of the residuals
and the fitted values §,;. This plot reveals nothing of unusual interest.

Sometimes the plot of residuals versus y;; has a curvilinear shape; for example, there
may be a tendency for negative residuals to occur with low §;; values, positive residuals
with intermediate §;; values, and negative residuals with high J; values. This type of
pattern is suggestive of interaction between blocks and treatments. If this pattern occurs,
a transformation should be used in an effort to eliminate or minimize the interaction. In
Chapter 5 (Section 5-3.7), we describe a statistical test that can be used to detect the
presence of interaction in a randomized block design.

4-1.3 Some Other Aspects of the Randomized Complete Block Design

Additivity of the Randomized Block Model
The linear statistical model that we have used for the randomized block design

yp=ptTntpte
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Figure 4-5 Plot of residuals by tip type (treatment) and by
coupon (block) for Example 4-1.

is completely additive. This says that, for example, if the first treatment causes the
expected response to increase by five units (7; = 5) and if the first block increases the
expected response by 2 units (8, = 2), the expected increase in response of both treatment
1 and block 1 togetheris E(y;;)) = p+ 7+ B =p+ 5+ 2= pu + 7. In general,

1.50 |- L4
1.00 - [ ] [
0.50 - °
[ ] °
& 0.00 ] ] ] ] | | ]
-4 -2 0 2 4 6 8
° 5 °
Yy
-0.50 - [ * [
*» o
-1.00 [
-1.50 |~

Figure 4-6  Plot of residuals versus J;; for Example 4-1.
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treatment 1 always increases the expected response by 5 units over the sum of the overall
mean and the block effect.

Although this simple additive model is often useful, there are situations where it is
inadequate. Suppose, for example, that we are comparing four formulations of a chemical
product using six batches of raw material; the raw material batches are considered blocks.
If an impurity in batch 2 affects formulation 2 adversely, resulting in an unusually low
yield, but does not affect the other formulations, an interaction between formulations
(or treatments) and batches (or blocks) has occurred. Similarly, interactions between
treatments and blocks can occur when the response is measured on the wrong scale.
Thus, a relationship that is multiplicative in the original units, say

E(yy) = pmf;
is linear or additive in a log scale since, for example,
mhEy)=lnpu+Inr+np
or
EG) = p* + 17 + B7

Although this type of interaction can be eliminated by a transformation, not all interac-
tions are so easily treated. For example, transformations do not eliminate the formulation—
batch interaction discussed previously. Residual analysis and other diagnostic checking
procedures can be helpful in detecting nonadditivity.

If interaction is present, it can seriously affect and possibly invalidate the analysis
of variance. In general, the presence of interaction inflates the error mean square and
may adversely affect the comparison of treatment means. In sitvations where both factors,
as well as their possible interaction, are of interest, factorial designs must be used. These
designs are discussed extensively in Chapters 5 through 9.

Random Treatments and Blocks
Although we have described the test procedure considering treatments and blocks as
fixed factors, the same analysis procedure is used if either the treatments or blocks (or
both) are random. However, there are some changes in the interpretation of the results.
For example, if the blocks are random, which is quite often the case, we expect the
comparisons among the treatments to be the same throughout the population of blocks
from which those used in the experiment were randomly selected. There are also corre-
sponding changes in the expected mean squares. For example, if the blocks are indepen-
dent random variables with common variance, E(MSg o) = 0 + ao g, where o is the
variance component of the block effects. In any event, E(MStreaments) 1S always free of
any block effect, and the test statistic for between-treatment variability is always
FO = MSTreatmems/MSE~

In situations where the blocks are random, if treatment—block interaction is present,
the test on treatment means is unaffected by the interaction. The reason for this is that
the expected mean squares for treatments and error both contain the interaction effect;
consequently, the test for differences in treatment means may be conducted as usual by
comparing the treatment mean square to the error mean square. This procedure does not
yield any information on the interaction.
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Choice of Sample Size

Choosing the sample size, or the number of blocks to run, is an important decision
when using an RCBD. Increasing the number of blocks increases the number of replicates
and the number of error degrees of freedom, making the design more sensitive. Any of
the techniques discussed in Chapter 3 (Section 3-7) for selecting the number of replicates
to run in a completely randomized single-factor experiment may be applied directly to
the RCBD. For the case of a fixed factor, the operating characteristic curves in Appendix
Chart V may be used with

b E T
P = — (4-14)
ao

where there are ¢ — 1 numerator degrees of freedom and (¢ — 1)(b — 1) denominator
degrees of freedom.

EXAMPLE 4.2 ++cvceerseeceensesacesaceasesaseanscsnsassssssssnssannsons

Consider the hardness testing problem described in Example 4-1. Suppose that we wish
to determine the appropriate number of blocks to run if we are interested in detecting a
true maximum difference in mean hardness readings of 0.4 with a high probability and
a reasonable estimate of the standard deviation of the errors is o = 0.1. (These values
are given in the original units; recall that the analysis of variance was performed using
coded data.) From Equation 3-49, the minimum value of ® is (writing b, the number of
blocks, for n)

o = P’
2ac0?

where D is the maximum difference we wish to detect. Thus,

. b(0.4)?
T 2(4)(0.1)?

If we use b = 3 blocks, ® = V2.0b = V2.0(3) = 245, and thereare (a — )b — 1) =
3(2) = 6 error degrees of freedom. Appendix Chart Vwith v, =g — 1 = 3 and « = 0.05
indicates that the § risk for this design is approximately 0.10 (power = 1 — 8 = 0.90).
If we use b = 4 blocks, ® = V2.0b = V2.0(4) = 2.83, with (a — 1)(b — 1) =3(3) =
9 error degrees of freedom, and the corresponding S risk is approximately 0.03 (power =
1 — B =0.97). Either three or four blocks will result in a design having a high probability
of detecting the difference between the mean hardness readings considered important.
Because coupons (blocks) are inexpensive and readily available and the cost of testing
is low, the experimenter decides to use four blocks.

= 2.0b

Estimating Missing Values

When using the RCBD, sometimes an observation in one of the blocks is missing. This
may happen because of carelessness or error or for reasons beyond our control, such as
unavoidable damage to an experimental unit. A missing observation introduces a new
problem into the analysis because treatments are no longer orthogonal to blocks; that



140 CHAPTER 4 RANDOMIZED BLOCKS, LATIN SQUARES, AND RELATED DESIGNS

Table 4-7 Randomized Complete Block Design for the Hardness
Testing Experiment with One Missing Value

Coupon (Block)

Type of Tip 1 2 3 4
1 -2 -1 1 5
2 -1 -2 x 4
3 -3 -1 0 2
4 2 1 5 7

is, every treatment does not occur in every block. There are two general approaches to
the missing value problem. The first is an approximate analysis in which the missing
observation is estimated and the usual analysis of variance is performed just as if the
estimated observation were real data, with the error degrees of freedom reduced by 1.
This approximate analysis is the subject of this section. The second is an exact analysis,
which is discussed in Section 4-1.4.

Suppose the observation y;; for treatment i in block j is missing. Denote the missing
observation by x. As an illustration, suppose that in the hardness testing experiment of
Example 4-1 coupon 3 was broken while tip 2 was being tested and that data point could
not be obtained. The data might appear as in Table 4-7.

In general, we will let y' represent the grand total with one missing observation,
y}. represent the total for the treatment with one missing observation, and y!; be the total
for the block with one missing observation. Suppose we wish to estimate the missing
observation x so that x will have a minimum contribution to the error sum of squares.
Because SS; = ?=12§’=1(y,-j -y -y, T y.)?, this is equivalent to choosing x to
minimize

w85 (5 1550

i=

+ ib (i > yl,>2

i=1 j=1

or
2 1 ' 2 1 ! 2 1 ! 2
SSe=x" =L+ ==, +0)+ —Q.+x"+R (4-15)
b a ab

where R includes all terms not involving x. From dSS./dx = 0, we obtain

ay;. + by, — y.
= 4-16
*TE-ne-1D (4-16)
as the estimate of the missing observation.
For the data in Table 4-7, we find that y, = 1, y's = 6, and y’ = 17. Therefore,

from Equation 4-16,

4(1) + 4(6) — 17
33

The usual analysis of variance may now be performed using y,; = 1.22 and reducing
the error degrees of freedom by 1. The analysis of variance is shown in Table 4-8 on the
facing page. Compare the results of this approximate analysis with the results obtained
for the full data set (Table 4-5).

X = Y3 = =1.22
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Table 4-8 Approximate Analysis of Variance for Example 4-1 with One Missing Value

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fo P-Value
Type of tip 39.98 3 13.33 17.12 0.0008
Specimens (blocks) 79.53 3 26.51
Error 6.22 8 0.78
Total 125.73 14

If several observations are missing, they may be estimated by writing the error sum
of squares as a function of the missing values, differentiating with respect to each missing
value, equating the results to zero, and solving the resulting equations. Alternatively, we
may use Equation 4-16 iteratively to estimate the missing values. To illustrate the iterative
approach, suppose that two values are missing. Arbitrarily estimate the first missing
value, and then use this value along with the real data and Equation 4-16 to estimate the
second. Now Equation 4-16 can be used to re-estimate the first missing value, and fol-
lowing this, the second can be re-estimated. This process is continued until convergence
is obtained. In any missing value problem, the error degrees of freedom are reduced by
one for each missing observation.

4-1.4 Estimating Model Parameters
and the General Regression Significance Test

If both treatments and blocks are fixed, we may estimate the parameters in the RCBD
model by least squares. Recall that the linear statistical model is

i=1,2,...,a
yij_l"+Ti+Bj+€ij{j=1,2,“.,b 4-17)

Applying the rules in Section 3-9.2 for finding the normal equations for an experimental
design model, we obtain

woabfi + b3 + bt + -+ bi, +aB +aPs+ -+ aB, = y.

T: b + bh + Bt ,32 + .-t Bh =)
T. b/l + b'f'z + Bl + BZ + -t Bh = Yo
1. bf +bh,+ Bt B+t B=y. (418
Bi: ap+ H + H+ -+ ’f-a+aBI =Ya
B ap+ H+ HA--+ 7 + af3, = ya
By ap+ H+ H+---+ F +a[§h=y_,,

Notice that the second through the (¢ + 1)st equations in Equation 4-18 sum to the
first normal equation, as do the last b equations. Thus, there are two linear dependencies
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in the normal equations, implying that two constraints must be imposed to solve Equation
4-18. The usual constraints are

a b
2 H=0 XpB=0 (4-19)
i=1 j=1

Using these constraints, the normal equations simplify considerably. In fact, they become
abpp =y

b + b% =y, i=1,2,...,a (4-20)

whose solution is

A=y,
%=73.— 7. i=1,2...,a (4-21)
Bj Y, — Y j=12,...,b

Using the solution to the normal equation in Equation 4-21, we may find the estimated
or fitted values of y;; as

yAij = ,lfL T+ :BJ

y. +(yl —y)+0G,-3)

=Y.t y; 0.

This result was used previously in Equation 4-13 for computing the residuals from a
randomized block design.

The general regression significance test can be used to develop the analysis of vari-
ance for the randomized complete block design. Using the solution to the normal equa-
tions given by Equation 4-21, the reduction in the sum of squares for fitting the full
model is

U
>

Ru, 7, B) = fiy. + 2 2y, +
a b

=yy. t 2 Gi. — ¥y + 231 @j - i.)}’.j
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2
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with @ + b — 1 degrees of freedom, and the error sum of squares is

SSe — R(u, 1, B)
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with (a — 1)(b — 1) degrees of freedom. Compare this last equation with SS in Equation
4-7.
To test the hypothesis Hy: 7; = 0, the reduced model is
yij=/‘(‘+Bj+€ij

which is just a single-factor analysis of variance. By analogy with Equation 3-5, the
reduction in the sum of squares for fitting the reduced model is

Ru, B = 3 2

j=1 4

LN

which has b degrees of freedom. Therefore, the sum of squares due to {7;} after fitting
pand {B;} is

R(T|IJ” B) = R(M’ T, ,B) - R(Iu" B)
= R(Full Model) — R(Reduced Model)

a 12 by% 2 by,2'
=§%+24_L_24

j=1 4 ab j=1 4

L

wli%

which we recognize as the treatment sum of squares with @ — 1 degrees of freedom
(Equation 4-10).
The block sum of squares is obtained by fitting the reduced model

Q“

yp=ptmnte

which is also a single-factor analysis. Again, by analogy with Equation 3-5, the reduction
in the sum of squares for fitting this model is

R(p, 7) 2

with a degrees of freedom. The sum of squares for blocks {8;} after fitting x and {7}
is

@IT&,

Mmmﬂ=Rmm13—m%ﬂ
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with b — 1 degrees of freedom, which we have given previously as Equation 4-11.

We have developed the sums of squares for treatments, blocks, and error in the
randomized complete block design using the general regression significance test. Al-
though we would not ordinarily use the general regression significance test to actually
analyze data in a randomized complete block, the procedure occasionally proves useful
in more general randomized block designs, such as those discussed in Section 4-4.
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Exact Analysis of the Missing Value Problem

In Section 4-1.3 an approximate procedure for dealing with missing observations in the
RCBD was presented. This approximate analysis consists of estimating the missing value
so that the error mean square is minimized. It can be shown that the approximate analysis
produces a biased mean square for treatments in the sense that E(MStreaments) 1S larger
than E(MSg) if the null hypothesis is true. Consequently, too many significant results are
reported.

The missing value problem may be analyzed exactly by using the general regression
significance test. The missing value causes the design to be unbalanced, and because
all the treatments do not occur in all blocks, we say that the treatments and blocks are
not orthogonal. This method of analysis is also used in more general types of randomized
block designs; it is discussed further in Section 4-4. Problem 4-26 asks the reader to
perform the exact analysis for a randemized complete block design with one missing
value.

4-2 THE LATIN SQUARE DESIGN

In Section 4-1 we introduced the randomized complete block design as a design to reduce
the residual error in an experiment by removing variability due to a known and control-
lable nuisance variable. There are several other types of designs that utilize the blocking
principle. For example, suppose that an experimenter is studying the effects of five dif-
ferent formulations of a rocket propellant used in aircrew escape systems on the observed
burning rate. Each formulation is mixed from a batch of raw material that is only large
enough for five formulations to be tested. Furthermore, the formulations are prepared by
several operators, and there may be substantial differences in the skills and experience
of the operators. Thus, it would seem that there are two nuisance factors to be ‘‘averaged
out” in the design: batches of raw material and operators. The appropriate design for
this problem consists of testing each formulation exactly once in each batch of raw
material and for each formulation to be prepared exactly once by each of five operators.
The resulting design, shown in Table 4-9, is called a Latin square design. Notice that
the design is a square arrangement and that the five formulations (or treatments) are
denoted by the Latin letters A, B, C, D, and E; hence the name Latin square. We see that
both batches of raw material (rows) and operators (columns) are orthogonal to treatments.

The Latin square design is used to eliminate two nuisance sources of variability; that
is, it systematically allows blocking in two directions. Thus, the rows and columns ac-
tually represent two restrictions on randomization. In general, a Latin square for p factors,
or a p X p Latin square, is a square containing p rows and p columns. Each of the

Table 4-9 Latin Square Design for the Rocket Propellant Problem

Batches of Operators

Raw Material 1 2 3
1 A =24 B =20 c=19 D =24 E=24
2 B =17 cC=24 D =130 E =27 A=136
3 C=18 D =38 E =26 A=27 B =21
4 D =26 E =31 A =26 B =23 Cc=22
5 E=22 A =30 B =20 Cc=29 D =31
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resulting p* cells contains one of the p letters that corresponds to the treatments, and each
letter occurs once and only once in each row and column. Some examples of Latin squares
are

4 %4 5x5§ 6 X6
ABDC ADBEC ADCEBF
BCAD DACBE BAECFD
CDBA CBEDA CEDFAB
DACB BEACD DCFBEA
ECDAB FBADCE

EFBADC
The statistical model for a Latin square is
i=1,2,...,p
y,jk=[.L+ai+Tj+,3k+€ijkj:1,2,...,p (4'22)
k=1,2,...,p

where y,; is the observation in the ith row and kth column for the jth treatment, u is the
overall mean, «; is the ith row effect, 7; is the jth treatment effect, 8, is the kth column
effect, and €;; is the random error. Note that this is an effects model. The model is
completely additive; that is, there is no interaction between rows, columns, and treat-
ments. Because there is only one observation in each cell, only two of the three subscripts
i, j, and k are needed to denote a particular observation. For example, referring to the
rocket propellant problem in Table 4-9, if i = 2 and k = 3, we automatically find j = 4
(formulation D), and if i = 1 and j = 3 (formulation C), we find £ = 3. This is a
consequence of each treatment appearing exactly once in each row and column.

The analysis of variance consists of partitioning the total sum of squares of the N =
p® observations into components for rows, columns, treatments, and error, for example,

SST = SSRows + SSColumns + SSTreatmems + SSE (4'23)

with respective degrees of freedom
pP-1l=p-1+p-1+p-1+(@-2p-D

Under the usual assumption that €;; is NID (0, 0?), each sum of squares on the right-

hand side of Equation 4-23 is, upon division by ¢, an independently distributed chi-

square random variable. The appropriate statistic for testing for no differences in
treatment means is

_ MSTreatments

MSg

which is distributed as F,_; (,—2),—1, under the null hypothesis. We may also test for no
row effect and no column effect by forming the ratio of MSgyws 0r MScowmns 10 MSk.
However, because the rows and columns represent restrictions on randomization, these
tests may not be appropriate.

The computational procedure for the analysis of variance is shown in Table 4-10 on
page 146. From the computational formulas for the sums of squares, we see that the
analysis is a simple extension of the RCBD, with the sum of squares resulting from rows
obtained from the row totals.

Fo
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Table 4-10 Analysis of Variance for the Latin Square Design

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fy
12 ¥ SSt MS+,
T t t SS reatments = — 2 _ e . 1 reatments F — reatments
reatments Treatment: p,;y"' N )4 -1 o MS,
1 2 SSrows
Rows SSrows = = D 37 — = p—1 2 Rows
P i=1 N p—1
12 ¥? SSco
Col S8 “olumns 2 — = -1 e
olumns Col p;::l)’..k N P -1
Error S$S (by subtraction) @-2p-1 S5
e P » -2 - D
2
Total SST=EEZy,?jk—X‘: pr-1
ik N
EXAMPLE 4.3 crccostroovercstoacncessncasssasssssonsonsssasssnannnassns

Consider the rocket propellant problem previously described, where both batches of raw
material and operators represent randomization restrictions. The design for this experi-
ment, shown in Table 4-9, is a 5 X 5 Latin square. After coding by subtracting 25 from
each observation, we have the data in Table 4-11. The sums of squares for the total,
batches (rows), and operators (columns) are computed as follows:

2
=23 S
i J k

10y
= 680 — 10 = 676.00
l P y2
SS atches = - 12 - =
Batch » ; Yi. N
1 10)*
=3 [(—14 + 9 + 52 + 3* + 7°] —- 49" _ .00
1 14 y2
SS erators — 2 — =
Op » 1;1 Y.k N
1 10 2
=—[(—18) + 18> + (—4)> + 5> + 9°] — dor _ 150.00
5 25
Table 4-11 Coded Data for the Rocket Propellant Problem
Batches of Operators
Raw Material 1 2 3 4 5 Yi.
1 A=-—1 B=-5 C=-6 D=-1 E=-1 —14
2 B=- C=- = 5 E= = 11 9
3 CcC=-7 D= 13 = 1 A= 2 = —4 5
4 = 1 E= 6 = 1 B=-2 CcC=-3 3
5 E=-3 A 5 B=-5 C 4 D= 6 7

Yok —18 18 —4 5 9 10=y._
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Table 4-12  Analysis of Variance for the Rocket Propellant Experiment

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Formulations 330.00 4 82.50 7.73 0.0025
Batches of raw material 68.00 4 17.00
Operators 150.00 4 37.50
Error 128.00 12 10.67
Total 676.00 24

The totals for the treatments (Latin letters) are

Latin Letter Treatment Total

A yi= 18
B Yo = —24
C y3. = —13
D ya.= 24
E Vs = 5

The sum of squares resulting from the formulations is computed from these totals as
1< ¥
SSFormulations = ;; )’3 - —ﬁ

182 + (=24 + (—13) + 24 + 57 _ 10y
5 25

= 330.00

The error sum of squares is found by subtraction:

SSE = SST - SSBalches - SSOperators - SSFormulations
= 676.00 — 68.00 — 150.00 — 330.00 = 128.00

The analysis of variance is summarized in Table 4-12. We conclude that there is a
significant difference in the mean burning rate generated by the different rocket propellant
formulations. There is also an indication that there are differences between operators, so
blocking on this factor was a good precaution. There is no strong evidence of a difference
between batches of raw material, so it seems that in this particular experiment we were
unnecessarily concerned about this source of variability. However, blocking on batches
of raw material is usually a good idea.

As in any design problem, the experimenter should investigate the adequacy of the
model by inspecting and plotting the residuals. For a Latin square, the residuals are given

by
eijk = yijk - yAijk
= Yge T Yio ~ Vg~ Y T 2y
The reader should find the residuals for Example 4-4 and construct appropriate plots.
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Table 4-13 Standard Latin Squares and Number of Latin Squares of Various Sizes®

Size 3X3 4 X4 5X5 6 X6 7X7 pXp
Examples of ABC ABCD ABCDE ABCDEF ABCDEFG ABC...P
standard squares BCA BCDA BAECD BCFADE BCDEFGA BCD ... A
CAB CDAB CDAEB CFBEAD CDEFGAB CDE...B

DABC DEBAC DEABFC DEFGABC
ECDBA EADFCRB EFGABCD .
FDECBA FGABCDE PAB...(P—1)

GABCDEF
Number of 1 4 56 9408 16,942,080 —
standard squares
Total number of 12 576 161,280 818,851,200  61,479,419,904,000 plp — DY X
Latin squares (number of

standard squares)

“ Some of the information in this table is found in Statistical Tables for Biological, Agricultural and Medical Research, 4th edition, by R. A. Fisher and
F. Yates, Oliver and Boyd, Edinburgh, 1953. Little is known about the properties of Latin squares larger than 7 X 7.

A Latin square in which the first row and column consists of the letters written in
alphabetical order is called a standard Latin square, which is the design used in Ex-
ample 4-4. A standard Latin square can always be obtained by writing the first row in
alphabetical order and then writing each successive row as the row of letters just above
shifted one place to the left. Table 4-13 summarizes several important facts about Latin
squares and standard Latin squares.

As with any experimental design, the observations in the Latin square should be
taken in random order. The proper randomization procedure is to select the particular
square employed at random. As we see in Table 4-13, there are a large number of Latin
squares of a particular size, so it is impossible to enumerate all the squares and select
one randomly. The usual procedure is to select a Latin square from a table of such designs,
as in Fisher and Yates (1953), and then arrange the order of the rows, columns, and
letters at random. This is discussed more completely in Fisher and Yates (1953).

Occasionally, one observation in a Latin square is missing. For a p X p Latin square,
the missing value may be estimated by

PO Ty Ty — 2yl
Vi »-2p D

where the primes indicate totals for the row, column, and treatment with the missing
value, and y’_is the grand total with the missing value.

Latin squares can be useful in situations where the rows and columns represent
factors the experimenter actually wishes to study and where there are no randomization
restrictions. Thus, three factors (rows, columns, and letters), each at p levels, can be
investigated in only p” runs. This design assumes that there is no interaction between the
factors. More will be said later on the subject of interaction.

(4-24)

Replication of Latin Squares
A disadvantage of small Latin squares is that they provide a relatively small number of
error degrees of freedom. For example, a 3 X 3 Latin square has only two error degrees
of freedom, a 4 X 4 Latin square has only six error degrees of freedom, and so forth.
When small Latin squares are used, it is frequently desirable to replicate them to increase
the error degrees of freedom.

There are several ways to replicate a Latin square. To illustrate, suppose that the
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Table 4-14  Analysis of Variance for a Replicated Latin Square, Case 1
Source of
Variation Sum of Squares Degrees of Freedom Mean Square Fo
Treatments l Ep: 2 i p— 1 SSTrealmems MSTreatmenls

np = Yie TN p—1 MSg
Rows 1 i _ )i p—1 SSRows

np i= N p—1
Columns i i _ i p— 1 SSColumns

np & Yok N p— 1
Replicates 1 i YA n—1 SSkeplicates

= N n—1
Error Subtracuon (p — Dinp + 1) — 3] SSe

@ - Dlrp + 1) — 3]

Total np® — 1

2222)’5‘”_%

5 X 5 Latin square used in Example 4-4 is replicated # times. This could have been done
as follows:

1. Use the same batches and operators in each replicate.

2. Use the same batches but different operators in each replicate (or, equivalently,
use the same operators but different batches).

3. Use different batches and different operators.

The analysis of variance depends on the method of replication.

Consider case 1, where the same levels of the row and column blocking factors are
used in each replicate. Let y,;, be the observation in row i, treatment j, column £, and
replicate . There are N = np? total observations. The analysis of variance is summarized
in Table 4-14.

Now consider case 2 and assume that new batches of raw material but the same
operators are used in each replicate. Thus, there are now five new rows (in general, p
new rows) within each replicate. The analysis of variance is summarized in Table 4-15.

Table 4-15 Analysis of Variance for a Replicated Latin Square, Case 2
Source of Degrees of Mean
Variation Sum of Squares Freedom Square Fy
l z 2 SS reatments MS reatments
Treatments — >y - Y p-—1 Treaunent Treat
np j=1 N p—1 MSe
1a & 5y SSr
Rows - 2, - Q= np - 1) —
PR AT Ay ? np — 1)
1 & )’2 SScol
C 1 = 2 e -1 ‘olumns
olumns P 1;1 Yk N p p— 1
. 18 y2 SSReplicates
Repl t o 2 L -1 cplicates
eplicates 7 1:21 Y TN n ——P——n _—
Error Subtraction (p — 1) 1) 8
— D(np —
Y > — Dow — 1)
2
Y...
Total 2 2 2 E Vi — 5 np* — 1
T 7 k1 N
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Table 4-16 Analysis of Variance for a Replicated Latin Square, Case 3

Source of Sum of Degrees of
Variation Squares Freedom Mean Square Fy
1 & yz SST tment: MST 1
T t t - 2 e . 1 reatments Teatments
reatments w2 Yie TN D —p —— —_—MSE
1 n p n y2[ SSR
Rows - 2= D, = np — 1 —
p[glglyl lzlp2 P ) n(p — 1)
14 <& oY S8 Cotamns
Columns  — 2y — == n(p — 1) e
P22 P " = 1)
- LS b SSiepicar
Repl t 2 2 e -1 eplicates
eplicates P2/:1y 1 TN n —
SS
Error Subtraction (p—Dia(p—1 — 1] £

(p — Dinp — D — 1]
Total PR L np? — 1
i j k 1 N

‘ J

Note that the source of variation for the rows really measures the variation between rows
within the n replicates.

Finally, consider case 3, where new batches of raw material and new operators are
used in each replicate. Now the variation that results from both the rows and columns
measures the variation resulting from these factors within the replicates. The analysis of
variance is summarized in Table 4-16.

There are other approaches to analyzing replicated Latin squares that allow some
interactions between treatments and squares (refer to Problem 4-19).

Crossover Designs and Designs Balanced for Residual Effects
Occasionally, one encounters a problem in which time periods are a factor in the exper-
iment. In general, there are p treatments to be tested in p time periods using np experi-
mental units. For example, a human performance analyst is studying the effect of two
replacement fluids on dehydration in 20 subjects. In the first period, half of the subjects
(chosen at random) are given fluid A and the other half fluid B. At the end of the period,
the response is measured, and a period of time is allowed to pass in which any physio-
logical effect of the fluids is eliminated. Then the experimenter has the subjects who took
fluid A take fluid B and those who took fluid B take fluid A. This design is called a
crossover design. It is analyzed as a set of 10 Latin squares with two rows (time periods)
and two treatments (fluid types). The two columns in each of the 10 squares correspond
to subjects.

The layout of this design is shown in Figure 4-7. Notice that the rows in the
Latin square represent the time periods and the columns represent the subjects. The 10

Latin Squares

I I I v v VI vl VI IX X
Subject 1 2 3 4 5 6 7 8 9 10 1112 1314 1516 1718 1920
Peiord1 A B B A B A A B A B B A A B A B A B A B
Period2 B A A B A B B A B A A B B A B A B A B A

Figure 4-7 A crossover design.

O ——
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Table 4-17 Analysis of Variance
for the Crossover Design

in Figure 4-7

Source of Degrees of

Validation Freedom
Subjects (columns) 19
Periods (rows) 1
Fluids (letters) 1
Error 18
Total 39

subjects who received fluid A first (1, 4, 6, 7, 9, 12, 13, 15, 17, and 19) are randomly
determined.

An abbreviated analysis of variance is summarized in Table 4-17. The subject sum
of squares is computed as the corrected sum of squares among the 20 subject totals, the
period sum of squares is the corrected sum of squares among the rows, and the fluid sum
of squares is computed as the corrected sum of squares among the letter totals. For further
details of the statistical analysis of these designs, see Cochran and Cox (1957), John
(1971), and Anderson and McLean (1974).

It is also possible to employ Latin square type designs for experiments in which the
treatments have a residual effect—that is, for example, if the data for fluid B in period
2 still reflected some effect of fluid A taken in period 1. Designs balanced for residual
effects are discussed in detail by Cochran and Cox (1957) and John (1971).

4.3 THE GRAECO-LATIN SQUARE DESIGN

Consider a p X p Latin square, and superimpose on it a second p X p Latin square in
which the treatments are denoted by Greek letters. If the two squares when superimposed
have the property that each Greek letter appears once and only once with each Latin
letter, the two Latin squares are said to be orthogonal, and the design obtained is called
a Graeco—Latin square. An example of a 4 X 4 Graeco—Latin square is shown in Table
4-18.

The Graeco—Latin square design can be used to control systematically three sources
of extraneous variability, that is, to block in three directions. The design allows inves-
tigation of four factors (rows, columns, Latin letters, and Greek letters), each at p levels
in only p* runs. Graeco—Latin squares exist for all p = 3 except p = 6.

Table 4-18 4 X 4 Graeco—Latin Square Design

Column
Row 1 2 3 4
1 Aa BB Cy Dé
2 Bé Ay DB Ca
3 cB Do Ad By
4 Dy Cé Ba AB
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Table 4-19 Analysis of Variance for a Graeco-Latin Square Design

Source of Variation Sum of Squares Degrees of Freedom
1 P y2
Latin letter treatments SS;, = — E yi - p—1
pia N
1 14 y2
Greek letter treatments S8 = - E Vi — = p—1
P k=1 N
1 P y2
Row SSrows = — 2 — == -1
S R P l; Yi... N 14
1 b y2
Col SSuumns:_ W e -1
olumns Col 7 1=21 Yiu N p
Error SSg (by subtraction) p—3p-—-1
2
Total SST = 2 22 2 yizjkl - % p2 -1
i Jj ok 1

The statistical model for the Graeco—Latin square design is

i N/

A l:
4'25

.

2

-

NN DN

yijk1=l-1’+6i+7j+wk+\lfl+€zjkl ’

’

—_— A
It
e

’

where y,;, is the observation in row i and column / for Latin letter j and Greek letter £,
6, is the effect of the ith row, 7; is the effect of Latin letter treatment j, w, is the effect
of Greek letter treatment k, ¥, is the effect of column /, and €3, is an NID (0, %) random
error component. Only two of the four subscripts are necessary to completely identify
an observation.

The analysis of variance is very similar to that of a Latin square. Because the Greek
letters appear exactly once in each row and column and exactly once with each Latin
letter, the factor represented by the Greek letters is orthogonal to rows, columns, and
Latin letter treatments. Therefore, a sum of squares due to the Greek letter factor may
be computed from the Greek letter totals and the experimental error is further reduced
by this amount. The computational details are illustrated in Table 4-19. The null hy-
potheses of equal row, column, Latin letter, and Greek letter treatments would be tested
by dividing the corresponding mean square by mean square error. The rejection region
is the upper-tail point of the F,_; (,_3),—, distribution.

EXAMPLE 4-4 ++vcccveecncasnncs

Suppose that in the rocket propellant experiment of Example 4-3 an additional factor,
test assemblies, could be of importance. Let there be five test assemblies denoted by the
Greek letters a, B, ¥, 6, and €. The resulting 5 X 5 Graeco—Latin square design is shown
in Table 4-20 on the facing page.

Notice that, because the totals for batches of raw material (rows), operators (columns)
and formulations (Latin letters) are identical to those in Example 4-3, we have

SSBatches = 6800 SSOperators = 15000 and SSFormulations = 33000
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Table 4-20 Graeco-Latin Square Design for the Rocket Propellant Problem

Batches of Operators

Raw Material 1 2 3 4 5 Vi

1 Aa = -1 By= -5 Ce = —6 DB = -1 Eé=—1 -14

2 BB = -8 Cé = - Da= 5 Ey= 2 Ae = 11 9

3 Cy= -7 De = 13 Eg= 1 As= 2 Ba= -4 5

4 Dé6= 1 Ea= 6 Ay= 1 Be = -2 CB=— 3

5 Ee = -3 AB= 5§ Bé6= -5 Ca= 4 Dy= 6 7
Y. ~18 18 —4 5 9 0=y

The totals for the test assemblies (Greek letters) are

Greek Letter Test Assembly Total

a ya.= 10
B Y2.=—6
Y ya=—73
8 Ya = — 4
€ ys.= 13

Thus, the sum of squares due to the test assemblies is
13 ya.
SSAssemblies = - 2 y2k - =7
P k=1 N

ao?
25

The complete analysis of variance is summarized in Table 4-21. Formulations are sig-
nificantly different at 1 percent. In comparing Tables 4-21 and 4-12, we observe that
removing the variability due to test assemblies has decreased the experimental error.
However, in decreasing the experimental error, we have also reduced the error degrees
of freedom from 12 (in the Latin square design of Example 4-3) to 8. Thus, our estimate
of error has fewer degrees of freedom, and the test may be less sensitive.

= é [10* + (—6)* + (=3)* + (—4)* + 13°] - = 62.00

Table 4-21  Analysis of Variance for the Rocket Propellant Problem

Sum of Degrees of
Source of Variation Squares Freedom Mean Square Fo P-Value
Formulations 330.00 4 82.50 10.00 0.0033
Batches of raw material 68.00 4 17.00
Operators 150.00 4 37.50
Test assemblies 62.00 4 15.50
Error 66.00 8 8.25

Total 676.00 24
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The concept of orthogonal pairs of Latin squares forming a Graeco-Latin square can
be extended somewhat. A p X p hypersquare is a design in which three or more or-
thogonal p X p Latin squares are superimposed. In general, up to p + 1 factors could
be studied if a complete set of p — 1 orthogonal Latin squares is available. Such a design
would utilize all (p + 1)}(p — 1) = p* — 1 degrees of freedom, so an independent
estimate of the error variance is necessary. Of course, there must be no interactions
between the factors when using hypersquares.

4-4 BALANCED INCOMPLETE BLOCK DESIGNS

In certain experiments using randomized block designs, we may not be able to run all
the treatment combinations in each block. Situations like this usually occur because of
shortages of experimental apparatus or facilities or the physical size of the block. For
example, in the hardness testing experiment (Example 4-1), suppose that because of their
size each coupon can be used only for testing three tips. Therefore, each tip cannot be
tested on each coupon. For this type of problem it is possible to use randomized block
designs in which every treatment is not present in every block. These designs are known
as randomized incomplete block designs.

When all treatment comparisons are equally important, the treatment combinations
used in each block should be selected in a balanced manner, that is, so that any pair of
treatments occur together the same number of times as any other pair. Thus, a balanced
incomplete block design (BIBD) is an incomplete block design in which any two treat-
ments appear together an equal number of times. Suppose that there are a treatments and
that each block can hold exactly k (k < @) treatments. A balanced incomplete block
design may be constructed by taking () blocks and assigning a different combination of
treatments to each block. Frequently, however, balance can be obtained with fewer than
(%) blocks. Tables of BIBDs are given in Fisher and Yates (1953), Davies (1956), and
Cochran and Cox (1957).

As an example, suppose that a chemical engineer thinks that the time of reaction for
a chemical process is a function of the type of catalyst employed. Four catalysts are
currently being investigated. The experimental procedure consists of selecting a batch of
raw material, loading the pilot plant, applying each catalyst in a separate run of the pilot
plant, and observing the reaction time. Because variations in the batches of raw material
may affect the performance of the catalysts, the engineer decides to use batches of raw
material as blocks. However, each batch is only large enough to permit three catalysts

Table 4-22 Balanced Incomplete Block Design
for Catalyst Experiment

Block (Batch of Raw Material)

Teratment
(Catalyst) 1 2 3 4 ¥
1 73 74 — 71 218
2 — 75 67 72 214
3 73 75 68 — 216
4 75 — 72 75 222

v, 221 224 207 218 870 =y,
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to be run. Therefore, a randomized incomplete block design must be used. The balanced
incomplete block design for this experiment, along with the observations recorded, is
shown in Table 4-22 at the bottom of the previous page. The order in which the catalysts
are run in each block is randomized.

4-4.1 Statistical Analysis of the BIBD

As usual, we assume that there are a treatments and b blocks. In addition, we assume
that each block contains k treatments, that each treatment occurs r times in the design
(or is replicated  times), and that there are N = ar = bk total observations. Furthermore,
the number of times each pair of treatments appears in the same block is

_ rtk — 1)

A
a-—1

If a = b, the design is said to be symmetric.

The parameter A must be an integer. To derive the relationship for A, consider any
treatment, say treatment 1. Because treatment 1 appears in r blocks and there are £k — 1
other treatments in each of those blocks, there are r(k — 1) observations in a block
containing treatment 1. These r(k — 1) observations also have to represent the remaining
a — 1 treatments A times. Therefore, A(a — 1) = r(k — 1).

The statistical model for the BIBD is

where y;; is the ith observation in the jth block, w is the overall mean, 7; is the effect of
the ith treatment, S3; is the effect of the jth block, and €;; is the NID (0, o?) random error
component. The total variability in the data is expressed by the total corrected sum of
squares:

2
ssr=2 3% (4-27)
i

Total variability may be partitioned into
SST = SSTreatments(adjusted) + SS Blocks + SSE

where the sum of squares for treatments is adjusted to separate the treatment and the
block effects. This adjustment is necessary because each treatment is represented in a
different set of r blocks. Thus, differences between unadjusted treatment totals y, ,
Y2, - - - » Ya. are also affected by differences between blocks.
The block sum of squares is
b
SSooss = 7 2 ¥ = 2 (4-28)

where y ; is the total in the jth block. SSpiocks has b — 1 degrees of freedom. The adjusted
treatment sum of squares is

SS Treatments(adjusted) — _—/i_ (4'29)
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Table 4-23  Analysis of Variance for the Balanced Incomplete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square Fy
Treatments k 2 Q12 SSTrealmenls(adjusled) MSTrealmen[s(adjusled)
: a-—1 _ =
(adjusted) \a a—1 MS;
1 y? SSBiocks
Blocks %Eyzj_ﬁ b—1 ‘b—j
E $S: (by subtraction) N b+1 S5
rror i1 —a— _—
S ¢ N-—a—b+1
y2
Total EZy;-‘}—ﬁ N-1
where Q; is the adjusted total for the ith treatment, which is computed as
1 &
Q=y—7Zmy, i=12...a (4-30)
=1

with n;; = 1 if treatment 7 appears in block j and n;; = 0 otherwise. The adjusted treatment
totals will always sum to zero. SStrcamentscadjustea) Nas @ — 1 degrees of freedom. The error
sum of squares is computed by subtraction as

SSE = SST - SSTreaLmems(adjusted) - SSBlocks (4'31)

and has N — a — b + 1 degrees of freedom.
The appropriate statistic for testing the equality of the treatment effects is

M S Treatments(adjusted)

MSg

Fy

The analysis of variance is summarized in Table 4-23.

EXAMPLE 4.5 ++ccctseectsocatosetsosstsosssssesssssnseecnssossssssnaces

Consider the data in Table 4-22 for the catalyst experiment. This is a BIBD with a = 4,
b=4,k=3,r=3 A=2,and N = 12. The analysis of this data is as follows. The
total sum of squares is

y2
= 2 L
SST Z ; yz] 12

(870)*

= 63,156 — = 81.00

The block sum of squares is found from Equation 4-28 as

SSBlocks =

(8707
12

= 55.00
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Table 4-24  Analysis of Variance for Example 4-5

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F, P-Value
Treatments (adjusted 2275 3 7.58 11.66 0.0107
for blocks)
Blocks 55.00 3 —
Error 325 5 0.65
Total 81.00 11

To compute the treatment sum of squares adjusted for blocks, we first determine the
adjusted treatment totals using Equation 4-30 as

0, = (218) — 3(221 + 224 + 218) = —9/3
0, = (214) — 3(207 + 224 + 218) = —7/3
Qs = (216) — 3(221 + 207 + 224) = —4/3
0, = (222) — (221 + 207 + 218) = 20/3

The adjusted sum of squares for treatments is computed from Equation 4-29 as
4
k2 0
i=1
SSTreatments(adjusted) = Aa

_ 393 + (=7/3)° + (—4/3)” + (20/3)°]
@@

The error sum of squares is obtained by subtraction as

= 22775

SSE = SST - SSTreatmems(adjusted) - SSBlocks
= 81.00 — 22.75 — 55.00 = 3.25

The analysis of variance is shown in Table 4-24. Because the P-value is small, we
conclude that the catalyst employed has a significant effect on the time of reaction.

---------------------------------------------------------------------------

If the factor under study is fixed, tests on individual treatment means may be of
interest. If orthogonal contrasts are employed, the contrasts must be made on the adjusted
treatment totals, the {Q,} rather than the {y,}. The contrast sum of squares is

a 2
k(E ciQi)
i=1
Aa Y, ¢?
i=1

where {c;} are the contrast coefficients. Other multiple comparison methods may be
used to compare all the pairs of adjusted treatment effects, which we will find in Section

SSC =
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4-4.2, are estimated by #, = kQ/(Aa). The standard error of an adjusted treatment effect

is
kM,
S = —SE 4-32)
Aa

In the analysis that we have described the total sum of squares has been partitioned
into an adjusted sum of squares for treatments, an unadjusted sum of squares for blocks,
and an error sum of squares. Sometimes we would like to assess the block effects. To
do this, we require an alternate partitioning of SS7, that is,

SS7 = SStreatmens T SSBlocks(adjusted) + SSe

Here SStreamens is unadjusted. If the design is symmetric, that is, if @ = b, a simple
formula may be obtained for SSgjocks(adjustea)- The adjusted block totals are

1 & .
0; =y.,-—;;ni,-y,-. j=1,2,...,b (4-33)

and

b
r Zl )’
SSBlocks(adjusted) = —j—/\l’)_ (4-34)
The BIBD in Example 4-5 is symmetric because a = b = 4. Therefore,
0, = (221) — (218 + 216 + 222) = 7/3
Q5 = (224) — (218 + 214 + 216) = 24/3
05 = (207) — 3(214 + 216 + 222) = —31/3
Q.= (218) — 3218 + 214 + 222) = 0

and

3[(7/3)* + (24/3)% + (—31/3)* + (0)?
SSBlocksadjusted)y = (@73 @24 )(2)(4)( L) o1 = 66.08

Also,

218)2 + (214)* + (216)* + (222)* 870)°
SSTreatments = ( ) ( ) 3 ( ) ( ) - ( 12) = 11.67

Table 4-25 Analysis of Variance for Example 4-5, Including Both Treatments and Blocks

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F, P-Value
Treatments (adjusted) 22.75 3 7.58 11.66 0.0107
Treatments (unadjusted) 11.67 3
Blocks (unadjusted) 55.00 3
Blocks (adjusted) 66.08 3 22.03 33.90 0.0010
Error 3.25 5 0.65
Total 81.00 11
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A summary of the analysis of variance for the symmetric BIBD is given in Table
4-25 at the bottom of the previous page. Notice that the sums of squares associated with
the mean squares in Table 4-25 do not add to the total sum of squares, that is,

SST 7& SSTreatments(adjusted) + SSBlocks(adjusted) + SSE

This is a consequence of the nonorthogonality of treatments and blocks.

Computer Output

There are several computer packages that will perform the analysis for a balanced in-
complete block design. The SAS General Linear Models procedure is one of these,
and Minitab, a widely used PC statistics package, is another. The upper portion of Table
4-26 (page 160) is the Minitab General Linear Model output for Example 4-5. Comparing
Tables 4-26 and 4-25, we see that Minitab has computed the adjusted treatment sum of
squares and the adjusted block sum of squares (they are called ‘‘Adj SS’’ in the Minitab
output).

The lower portion of Table 4-26 is a multiple comparison analysis, using the Tukey
method. Confidence intervals on the differences in all pairs of means and the Tukey test
are displayed. Notice that the Tukey method would lead us to conclude that catalyst 4 is
different from the other three.

4.4.2 Least Squares Estimation of the Parameters

Consider estimating the treatment effects for the BIBD model. The least squares normal
equations are

a b
mNg + er 1",-+k213j=y__
. J
i+ o=y, i=1,2,...,a (4-35)
j=1
Bk + Zln,ﬁ',- +kB=y, Jj=12,...,b

Imposing 24, = EBj = 0, we find that 4 = y . Furthermore, using the equations for
{B;] to eliminate the block effects from the equations for {7;}, we obtain

p=
p

b a b
rk® — ri; — Z 2 Ry, = ky, — 2 ngy.; (4-36)
j=1 j=1
#*

~ -

Note that the right-hand side of Equation 4-36 is kQ;, where Q; is the ith adjusted treat-
ment total (see Equation 4-29). Now, because =_nyn,; = A if p # i and n; = ny,
(because n,; = 0 or 1), we may rewrite Equation 4-36 as

rk—DH —A > 8, =kQ;, i=12,...,a (4-37)
p=1

p#i



Table 4-26 Minitab (General Linear Model) Analysis for Example 4-5

General Linear Model

Factor Type Levels Values
Catalyst fixed 4 1 2 3 4
Block fixed 4 1 2 3 4

Analysis of Variance for Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Catalyst 3 11.667 22.750 7.583 11.67 0.011
Block 3 66.083 66.083 22.028 33.89 0.001
Error 5 3.250 3.250 0.650

Total ™" 81.000

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable Time
ALL Pajrwise Comparisons among Levels of Catalyst

Catalyst = 1 subtracted from:

Catalyst Lower Center Upper ——===—=—=—--- Fm——————— pm———————— Fm——--
-2.327 0.2500 2.827 (—————===- e )

3 -1.952 0.6250 3.202 (- Homm e )

4 1.048 3.6250 6.202 (o= e )
0.0 2

Catalyst = 2 subtracted from:

Catalyst Lower Center Upper —--—-—-—-—-===-= F———————— Fomm—————— +———

3 -2.202 0.3750 2.952 (—————=-—- e )

4 0.798 3.3750 5.952 (-——————=-- Hmm e )
0.0 2

Catalyst = 3 subtracted from:

Catalyst Lower Center Upper ==—=—=—=—-=-- Frm———————— L F=——

4 0.4228 3.000 5.577 (————————- Hommmm )
0.0 2

Tukey Simultaneous Tests
Response Variable Time
ALl Pairwise Comparisons among Levels of Catalyst

Catalyst = 1 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
2 0.2500 0.6982 0.3581 0.9825
3 0.6250 0.6982 0.8951 0.8085
4 3.6250 0.6982 5.1918 0.0130
Catalyst = 2 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
3 0.3750 0.6982 0.5371 0.9462
4 3.3750 0.6982 4.8338 0.0175
Catalyst = 3 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value

4 . 3.000 0.6982 4.297 0.0281
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Finally, note that the constraint 2;_ %, = 0 implies that Ep 17,, = —#; and recall that
r(k — 1) = Ala — 1) to obtain

Aat = kQ; i=1,2,...,a (4-38)

Therefore, the least squares estimators of the treatment effects in the balanced incomplete
block model are

kO,
1A',~=g i=12,...,a (4-39)
Aa
As an illustration, consider the BIBD in Example 4.5. Because O, = —9/3, @, =
=7/3, Q5 = —4/3, and Q, = 20/3, we obtain
3(—9/3) 3(—7/3)
H=——"=-9/8 g = = —7/8
Q@ O
3(—4/3) 3(20/3)
Ty = = —4/8 F= = 20/8
) O

as we found in Section 4-4.1.

4.4.3 Recovery of Interblock Information in the BIBD

The analysis of the BIBD given in Section 4-4.1 is usually called the intrablock analysis
because block differences are eliminated and all contrasts in the treatment effects can be
expressed as comparisons between observations in the same block. This analysis is ap-
propriate regardless of whether the blocks are fixed or random. Yates (1940) noted that,
if the block effects are uncorrelated random variables with zero means and variance a'f;,
one may obtain additional information about the treatment effects 7;. Yates called the
method of obtaining this additional information the interblock analysis.

Consider the block totals y ; as a collection of b observations. The model for these
observations [following John (1971)] is

v =ku+ X ngm + (kﬂj + > el.,> (4-40)
i=1 i=1

where the term in parentheses may be regarded as error. The interblock estimators of u
and 7; are found by minimizing the least squares function

b a 2
= 21 <y/ - kﬂ' - E] nijﬂ)
J= =

This yields the following least squares normal equations:

pNQ +r ES T = .
=1 . 4-41)
T,~:krﬂ+r7",-+)\27"p=2n,-jy_j i=1,2,...,a

p=1 j=1
p#i
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where (i and 7; denote the interblock estimators. Imposing the constraint 2_;7; = 0,
we obtain the solutions to Equations 4-41 as

~

A=). (4-42)

Ff=— i=12,...,a (4-43)

It is possible to show that the interblock estimators {7} and the intrablock estimators
{#;} are uncorrelated.

The interblock estimators {%;} can differ from the intrablock estimators {7;}. For
example, the interblock estimators for the BIBD in Example 4-5 are computed as follows:

. _ 663 — 3)3)(72.50) _

7 3 -2 10.50
5 = 649 — (3)(3)(72.50) _ _350
3-2

652 — (3)(3X(72.50)
T, = = —0.50
75 3- 2 0

46 — (3)(3)(72.
1Yo DR

Note that the values of 27 n,y ; were used previously on page 157 in computing the
adjusted treatment totals in the intrablock analysis.

Now suppose we wish to combine the interblock and intrablock estimators to obtain
a single, unbiased, minimum variance estimate of each 7;. It is possible to show that both
%, and 7; are unbiased and also that

Ka—1) ,

V(s) = Ve (intrablock)
and
k(a — 1
V(T) = %—_—_T; (0% + kop) (interblock)

We use a linear combination of the two estimators, say
F= o f + ah (4-44)

to estimate 7;. For this estimation method, the minimum variance unbiased combined
estimator 7 should have weights @, = u,/(u, + u,) and @, = u/(u;, + u,), where u; =
1/V(%) and u, = 1/V(%). Thus, the optimal weights are inversely proportional to the
variances of #; and 7. This implies that the best combined estimator is

ka — 1 ka — 1
207D 2y ke + £ M0 D
N ) Aa i=1,2,...,a
{ _ _ 1 b LA
Ma— D o Moz oy 4o

2 0 T ar =N

e —
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which can be simplified to

b
kQ(a? + kap) + (2 ny; — k@..)oz

(r — Ao? + ra(a? + kap)

*
;=

T i=1,2,...,a (445

Unfortunately, Equation 4-45 cannot be used to estimate the 7, because the variances
o and o3 are unknown. The usual approach is to estimate o2 and o' from the data and
replace these parameters in Equation 4-45 by the estimates. The estimate usually taken
for o2 is the error mean square from the intrablock analysis of variance, or the intrablock
error. Thus,

(/7\'2 = MSE

The estimate of o3 is found from the mean square for blocks adjusted for treatments. In
general, for a balanced incomplete block design, this mean square is

MSgsiocksadjustedy = ) (4-46)

and its expected value [which is derived in Graybill (1961)] is

ar — 1) o2

E[MSBlocks(adjusled)] =0’ + h—1 B

Thus, if MSgiockscadjusteay > Mz, the estimate of 65 is
[MSB]ocks(adjusted) - MSE](b -1

A2
6% = prrm (4-47)

and if MSgjockscadjusiesy < MSE, we set &f; = (. This results in the combined estimator

b
kQ.(62 + ko) + (21 ny, — k@__){ﬁ
=
(r — N> + Aa(6? + kdd)

Yi ~ il/a)}’..’ 62 =0  (4-48b)

., 63>0  (4-48a)

We now compute the combined estimates for the data in Example 4-5. From Table
4-25 we obtain 62 = MS; = 0.65 and MSgccisqaajusteay = 22.03. (Note that in computing
MSpiocks(adjusteay W€ make use of the fact that this is a symmetric design. In general, we
must use Equation 4-46.) Because MSgiocks(adusteay > MSe, We use Equation 4-47 to
estimate o3 as

(22.03 — 0.65)(3)

52 = = 8.02
I8 43 - 1)

Therefore, we may substitute 6> = 0.65 and 63 = 8.02 into Equation 4-48a to obtain
the combined estimates listed below. For convenience, the intrablock and interblock
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estimates are also given. In this example, the combined estimates are close to the intra-
block estimates because the variance of the interblock estimates is relatively large.

Parameter Intrablock Estimate Interblock Estimate Combined Estimate

4-5 PROBLEMS

4-1.

4-2.

4-3.

4-5.

T —-1.12 10.50 —1.09
oS —0.88 —3.50 —0.88
T3 —0.50 —0.50 —0.50
T4 2.50 —6.50 2.47

A chemist wishes to test the effect of four chemical agents on the strength of a particular
type of cloth. Because there might be variability from one bolt to another, the chemist
decides to use a randomized block design, with the bolts of cloth considered as blocks.
She selects five bolts and applies all four chemicals in random order to each bolt. The
resulting tensile strengths follow. Analyze the data from this experiment (use o = 0.05)
and draw appropriate conclusions.

Bolt
Chemical 1 2 3 4 5
1 73 68 74 71 67

73 67 75 72 70
75 68 78 73 68
73 71 15 75 69

oW

Three different washing solutions are being compared to study their effectiveness in re-
tarding bacteria growth in 5-gallon milk containers. The analysis is done in a laboratory,
and only three trials can be run on any day. Because days could represent a potential
source of variability, the experimenter decides to use a randomized block design. Obser-
vations are taken for four days, and the data are shown here. Analyze the data from this
experiment (use o = 0.05) and draw conclusions.

Days
Solution 1 2 3 4
1 13 22 18 39
2 16 24 17 44
3 5 4 1 22

Plot the mean tensile strengths observed for each chemical type in Problem 4-1 and com-
pare them to an appropriately scaled ¢ distribution. What conclusions would you draw
from this display?

Plot the average bacteria counts for each solution in Problem 4-2 and compare them to a
scaled ¢ distribution. What conclusions can you draw?

An article in the Fire Safety Journal (‘“The Effect of Nozzle Design on the Stability and
Performance of Turbulent Water Jets,”” Vol. 4, August 1981) describes an experiment in
which a shape factor was determined for several different nozzle designs at six levels of

.




4-6.

4-7.

4.5 PROBLEMS 165

jet efflux velocity. Interest focused on potential differences between nozzle designs, with
velocity considered as a nuisance variable. The data are shown below:

Nozzle Jet Efflux Velocity (m/s)
Design 11.73 14.37 16.59 2043 23.46 28.74

1 0.78 0.80 0.81 0.75 0.77 0.78
0.85 0.85 0.92 0.86 0.81 0.83
0.93 0.92 0.95 0.89 0.89 0.83
1.14 0.97 0.98 0.88 0.86 0.83
0.97 0.86 0.78 0.76 0.76 0.75

[ - VAT ]

(a) Does nozzle design affect the shape factor? Compare the nozzles with a scatter plot
and with an analysis of variance, using @ = 0.05.

(b) Analyze the residuals from this experiment.

(c) Which nozzle designs are different with respect to shape factor? Draw a graph of
the average shape factor for each nozzle type and compare this to a scaled ¢ distri-
bution. Compare the conclusions that you draw from this plot to those from Duncan’s
multiple range test.

Consider the ratio control algorithm experiment described in Chapter 3, Section 3.8. The

experiment was actually conducted as a randomized block design, where six time periods

were selected as the blocks, and all four ratio control algorithms were tested in each time
period. The average cell voltage and the standard deviation of voltage (shown in paren-
theses) for each cell are as follows:

Ratio Time Period
Control
Algorithm 1 2 3 4 5 6
1 493 (0.05) 4.86 (0.04) 4.75(0.05) 4.95(0.06) 4.79 (0.03) 4.88 (0.05)
2 4.85(0.04) 4.91(0.02) 4.79 (0.03) 4.85(0.05) 4.75(0.03) 4.85(0.02)
3 4.83 (0.09) 4.88(0.13) 4.90(0.11) 4.75(0.15) 4.82(0.08) 4.90 (0.12)
4 4.89 (0.03) 4.77 (0.04) 494 (0.05) 4.86(0.05) 4.79(0.03) 4.76 (0.02)

(a) Analyze the average cell voltage data. (Use o = 0.05.) Does the choice of ratio
control algorithm affect the average cell voltage?

(b) Perform an appropriate analysis on the standard deviation of voltage. (Recall that
this is called ‘‘pot noise.’”) Does the choice of ratio control algorithm affect the pot
noise?

(c) Conduct any residual analyses that seem appropriate.

(d) Which ratio control algorithm would you select if your objective is to reduce both
the average cell voltage and the pot noise?

An aluminum master alloy manufacturer produces grain refiners in ingot form. The com-

pany produces the product in four furnaces. Each furnace is known to have its own unique

operating characteristics, so any experiment run in the foundry that involves more than
one furnace will consider furnaces as a nuisance variable. The process engineers suspect
that stirring rate affects the grain size of the product. Each furnace can be run at four
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different stirring rates. A randomized block design is run for a particular refiner and the
resulting grain size data is shown below:

Furnace
Stirring Rate (rpm) 1 2 3 4
5 8 4 5 6
10 14 5 6 9
15 14 6 9 2
20 17 9 3 6

(a) Is there any evidence that stirring rate affects grain size?

(b) Graph the residuals from this experiment on a normal probability plot. Interpret this
plot.

(c) Plot the residuals versus furnace and stirring rate. Does this plot convey any useful
information?

(d) What should the process engineers recommend concerning the choice of stirring rate
and furnace for this particular grain refiner if small grain size is desirable?

Analyze the data in Problem 4-2 using the general regression significance test.

Assuming that chemical types and bolts are fixed, estimate the model parameters 7; and

B, in Problem 4-1.

Draw an operating characteristic curve for the design in Problem 4-2. Does the test seem

to be sensitive to small differences in the treatment effects?

Suppose that the observation for chemical type 2 and bolt 3 is missing in Problem 4-1.

Analyze the problem by estimating the missing value. Perform the exact analysis and

compare the results.

Two missing values in a randomized block. Suppose that in Problem 4-1 the observations

for chemical type 2 and bolt 3 and chemical type 4 and bolt 4 are missing.

(a) Analyze the design by iteratively estimating the missing values, as described in
Section 4-1.3.

(b) Differentiate SS; with respect to the two missing values, equate the results to zero,
and solve for estimates of the missing values. Analyze the design using these two
estimates of the missing values.

(c) Derive general formulas for estimating two missing values when the observations
are in different blocks.

(d) Derive general formulas for estimating two missing values when the observations
are in the same block.

An industrial engineer is conducting an experiment on eye focus time. He is interested in

the effect of the distance of the object from the eye on the focus time. Four different

distances are of interest. He has five subjects available for the experiment. Because there
may be differences among individuals, he decides to conduct the experiment in a random-
ized block design. The data obtained follow. Analyze the data from this experiment (use

a = 0.05) and draw appropriate conclusions.

Subject
Distance (ft) 1 2 3 4 5
4 10 6 6 6 6
6 7 6 6 1 6
8 5 3 3 2 5
10 6 4 4 2 3
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The effect of five different ingredients (4, B, C, D, E) on the reaction time of a chemical
process is being studied. Each batch of new material is only large enough to permit five
runs to be made. Furthermore, each run requires approximately 15 hours, so only five runs
can be made in one day. The experimenter decides to run the experiment as a Latin square
so that day and batch effects may be systematically controlled. She obtains the data that
follow. Analyze the data from this experiment (use o = 0.05) and draw conclusions.

Day
Batch 1 2 3 4 5
1 A=28 B=17 D=1 c=17 E=3
2 CcC=11 E=2 A=7 D=3 B=238
3 B=4 A=9 c=10 E=1 D=
4 D=6 cC=38 E=6 B=6 A=10
5 E=4 D=2 B=3 A=28 c=38

An industrial engineer is investigating the effect of four assembly methods (A, B, C, D)
on the assembly time for a color television component. Four operators are selected for the
study. Furthermore, the engineer knows that each assembly method produces such fatigue
that the time required for the last assembly may be greater than the time required for the
first, regardless of the method. That is, a trend develops in the required assembly time.
To account for this source of variability, the engineer uses the Latin square design shown

below. Analyze the data from this experiment (o = 0.05) and draw appropriate
conclusions.
Order of Operator
Assembly 1 4
1 C=10 D=14 A=7 B=238
2 =17 cC=18 D=11 A=38
3 A=35 B=10 C =11 D=9
4 D=10 A=10 B=12 Cc=14

Suppose that in Problem 4-14 the observation from batch 3 on day 4 is missing. Estimate
the missing value from Equation 4-24, and perform the analysis using the value.
Consider a p X p Latin square with rows (o), columns (8,), and treatments (7;) fixed.
Obtain least squares estimates of the model parameters «;, B, and 7.

Derive the missing value formula (Equation 4-24) for the Latin square design.

Designs involving several Latin squares. {See Cochran and Cox (1957), John (1971).]
The p X p Latin square contains only p observations for each treatment. To obtain more
replications the experimenter may use several squares, say #. It is immaterial whether the
squares used are the same or different. The appropriate model is

i=12,....,p
j=1L2,...,p
Yijkn = M + ot ooyt Tt Bk(h) + (TP)jh + € k 1L,2....p
h=12,...,n
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where y;;, is the observation on treatment j in row 7 and column k of the 4th square. Note

that a;,, and B, are the row and column effects in the Ath square, p, is the effect of the

hth square, and (7p);, is the interaction between treatments and squares.

(a) Set up the normal equations for this model, and solve for estimates of the model
parameters. Assume that appropriate side conditions on the parameters are 2,4, =
0, Z;d;,y = 0, and Z,8;, = O for each h, 2,7, = 0, 2,(7p);, = 0 for each A, and
2,(#p); = 0 for each j.

(b) Write down the analysis of variance table for this design.

Discuss how the operating characteristics curves in the Appendix may be used with the

Latin square design.

Suppose that in Problem 4-14 the data taken on day 5 were incorrectly analyzed and had

to be discarded. Develop an appropriate analysis for the remaining data.

The yield of a chemical process was measured using five batches of raw material, five

acid concentrations, five standing times (A, B, C, D, E), and five catalyst concentrations

(o, B, v, 6, €). The Graeco—Latin square that follows was used. Analyze the data from

this experiment (use & = 0.05) and draw conclusions.

Acid Concentration

Batch 1 2 3 4 5
1 Aa = 26 BB =16 Cy=19 D& =16 Ee =13
2 By =18 Ccé=21 De =18 Ea =11 AB =21
3 Ce = 20 Da =12 EB =16 Ay =25 B6=13
4 DB =15 Ey=15 Ad =22 Be = 14 Ca=17
5 Es =10 Ae = 24 Ba =17 cpB=17 Dy=14

Suppose that in Problem 4-15 the engineer suspects that the workplaces used by the four
operators may represent an additional source of variation. A fourth factor, workplace («,
B, v, 6) may be introduced and another experiment conducted, yielding the Graeco—Latin
square that follows. Analyze the data from this experiment (use « = 0.05) and draw
conclusions.

Order of Operator

Assembly 1 2 3 4
1 CB=11 By=10 D&é6=14 Aa=38
2 Ba =28 Cé6=12 Ay=10 DB=12
3 A6=9 Da=11 BB=7 Cy=15
4 Dy=9 AB=8 Ca=18 B6=6

Construct a 5 X 5 hypersquare for studying the effects of five factors. Exhibit the analysis
of variance table for this design.

Consider the data in Problems 4-15 and 4-23. Suppressing the Greek letters in 4-23,
analyze the data using the method developed in Problem 4-19.

Consider the randomized block design with one missing value in Table 4-7. Analyze this
data by using the exact analysis of the missing value problem discussed in Section 4-1.4.
Compare your results to the approximate analysis of these data given in Table 4-8.

An engineer is studying the mileage performance characteristics of five types of gasoline
additives. In the road test he wishes to use cars as blocks; however, because of a time
constraint, he must use an incomplete block design. He runs the balanced design with the




4-28.

4-29.

4-30.
4-31.
4-32.

4-33.

4-34.
4-35.
4-36.
4-37.
4-38,

4.5 PROBLEMS 169

five blocks that follow. Analyze the data from this experiment (use @ = 0.05) and draw
conclusions.

Car
Additive 1 2 3 4 5
1 17 14 13 12
2 14 14 13 10
3 12 13 12 9
4 13 11 11 12
5 11 12 10 8

Construct a set of orthogonal contrasts for the data in Problem 4-27. Compute the sum of
squares for each contrast.

Seven different hardwood concentrations are being studied to determine their effect on
the strength of the paper produced. However, the pilot plant can only produce three runs
each day. As days may differ, the analyst uses the balanced incomplete block design that
follows. Analyze the data from this experiment (use a = 0.05) and draw conclusions.

Hardwood Days
Concentration (%) 1 2 3 4 5 6 7

2 114 120 117
4 126 120 119
6 137 117 134
8 141 129 149

10 145 150 143

12 120 118 123

14 136 130 127

Analyze the data in Example 4-6 using the general regression significance test.

Prove that k=% ,0%/(\a) is the adjusted sum of squares for treatments in a BIBD.

An experimenter wishes to compare four treatments in blocks of two runs. Find a BIBD
for this experiment with six blocks.

An experimenter wishes to compare eight treatments in blocks of four runs. Find a BIBD
with 14 blocks and A = 3.

Perform the interblock analysis for the design in Problem 4-27.

Perform the interblock analysis for the design in Problem 4-29.

Verify that a BIBD with the parameters a = 8, r = 8, k = 4, and b = 16 does not exist.
Show that the variance of the intrablock estimators {#:} is k(@ — 1)a*/(Ad®).

Extended incomplete block designs. Occasionally the block size obeys the relationship
a < k < 2a. An extended incomplete block design consists of a single replicate of
each treatment in each block along with an incomplete block design with k* = k — a.
In the balanced case, the incomplete block design will have parameters k* = k — q,
r* = r — b, and A*. Write out the statistical analysis. (Hint: In the extended incomplete
block design, we have A = 2r — b + A*.)
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Designs

5-1 BASIC DEFINITIONS AND PRINCIPLES

Many experiments involve the study of the effects of two or more factors. In general,
factorial designs are most efficient for this type of experiment. By a factorial design,
we mean that in each complete trial or replication of the experiment all possible com-
binations of the levels of the factors are investigated. For example, if there are a levels
of factor A and b levels of factor B, each replicate contains all ab treatment combinations.
When factors are arranged in a factorial design, they are often said to be crossed.

The effect of a factor is defined to be the change in response produced by a change
in the level of the factor. This is frequently called a main effect because it refers to the
primary factors of interest in the experiment. For example, consider the simple experi-
ment in Figure 5-1. This is a two-factor factorial experiment with both design factors at
two levels. We have called these levels ““low’’ and ‘‘high’’ and denoted them ‘‘—’’ and
““+,” respectively. The main effect of factor A in this two-level design can be thought
of as the difference between the average response at the low level of A and the average
response at the high level of A. Numerically, this is

_40+52 20+ 30 _

21
2 2

That is, increasing factor A from the low level to the high level causes an average
response increase of 21 units. Similarly, the main effect of B is

B—30+52~2O+40—

2 2 11

If the factors appear at more than two levels, the above procedure must be modified
because there are other ways to define the effect of a factor. This point is discussed more
completely later.

In some experiments, we may find that the difference in response between the levels
of one factor is not the same at all levels of the other factors. When this occurs, there is
170
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30 52 40 12

+ +
(High) (High)} [~

Factor B
Factor B

(Low) 20 40 (Low) 20 50
] ] ] |

- + - +
{Low) (High) {Low) (High)
Factor A Factor A

Figure 5-1 A two-factor factorial experi- Figure 5-2 A two-factor factorial experi-
ment, with the response (y) shown at the ment with interaction.
corners.

an interaction between the factors. For example, consider the two-factor factorial ex-
periment shown in Figure 5-2. At the low level of factor B (or B7), the A effect is

A=50—-20= 30
and at the high level of factor B (or B™), the A effect is
A=12—-40 = -28

Because the effect of A depends on the level chosen for factor B, we see that there is
interaction between A and B. The magnitude of the interaction effect is the average
difference in these two A effects, or AB = (—28 — 30)/2 = —29. Clearly, the interaction
is large in this experiment.

These ideas may be illustrated graphically. Figure 5-3 plots the response data in
Figure 5-1 against factor A for both levels of factor B. Note that the B~ and B™ lines are
approximately parallel, indicating a lack of interaction between factors A and B. Simi-
larly, Figure 5-4 plots the response data in Figure 5-2. Here we see that the B~ and B™
lines are not parallel. This indicates an interaction between factors A and B. Graphs such
as these are frequently very useful in interpreting significant interactions and in reporting
results to nonstatistically trained personnel. However, they should not be utilized as the
sole technique of data analysis because their interpretation is subjective and their ap-
pearance is often misleading.

There is another way to illustrate the concept of interaction. Suppose that both of
our design factors are quantitative (such as temperature, pressure, time, etc.). Then a

60 — B 60 -
g 501~ g 50~
€40 B 3 § 40—
@ 30| B § 30~
[+
« 20} 20}
o B 10}
| l ! |
- " -
Factor A Factor A

Figure 5-3 A factorial experiment without  Figure 5-4 A factorial experiment with
interaction. interaction.



172 CHAPTER 5 INTRODUCTION TO FACTORIAL DESIGNS

regression model representation of the two-factor factorial experiment could be writ-
ten as

y=PBot+ Bixy + Boxy + Biaxixy + €

where y is the response, the B’s are parameters whose values are to be determined, x, is a
variable that represents factor A, x; is a variable that represents factor B, and € is a random
error term. The variables x; and x, are defined on a coded scale from —1 to +1 (the low
and high levels of A and B), and x, x, represents the interaction between x; and x,.

The parameter estimates in this regression model turn out to be related to the effect
estimates. For the experiment shown in Figure 5-1 we found the main effects of A and
B tobe A =21 and B = 11. The estimates of B, and B, are one-half the value of
the corresponding main effect; therefore, B, = 21/2 = 10.5 and B, = 11/2 = 5.5. The
interaction effect in Figure 5-1 is AB = 1, so the value of interaction coefficient in the
regression model is B, = 1/2 = 0.5. The parameter B, is estimated by the average of
all four responses, or f30 = (20 + 40 + 30 + 52)/4 = 35.5. Therefore, the fitted regression
model is

¥ = 355 + 10.5x; + 5.5x, + 0.5x.x,

(a) The response surface

0.6

0.2

x2

-0.2

-0.6

LI L L L S B L LA INLONL

v b by g b by a

-1
-1 i 0.2

{b) The contour plot

Figure 5-5 Response surface and contour plot for the model = 35.5 + 10.5x,
+ 5.5x,.
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The parameter estimates obtained in the manner for the factorial design with all factors
at two levels (— and +) turn out to be least squares estimates (more on this later).

The interaction coefficient (f312 = (.5) is small relative to the main effect coefficients
[31 and ﬁz. We will take this to mean that interaction is small and can be ignored. There-
fore, dropping the term 0.5x,x, gives us the model

$ = 355 + 10.5x; + 5.5x,

Figure 5-5 presents graphical representations of this model. In Figure 5-5a we have a
plot of the plane of y-values generated by the various combinations of x, and x,. This
three-dimensional graph is called a response surface plot. Figure 5-5b shows the contour
lines of constant response y in the x;, x, plane. Notice that because the response surface
is a plane, the contour plot contains parallel straight lines.

Now suppose that the interaction contribution to this experiment was not negligible;
that is, the coefficient 8, was not small. Figure 5-6 presents the response surface and
contour plot for the model

§ =355 + 10.5x, + 5.5% + 8xx,

//
Z
ZF
62 ¢
52
42F
y o r
2 ==

22

0.2 .
. 0.6 1

(a) The response surface

/

1 [ I T T ‘ T T T T B
061 ]

L 49 ]

02l 6. N\ ]

- /% 43 N
o 0
~0.2F . \ —

|
4
!
o
=)
|
o
Mo
[}
o
=}
o
N

/

xq

{b) The contour plot

Figure 5-6 Response surface and contour plot for the model § = 35.5 +
10.5x, + 5.5x, + 8x1x5.
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(We have let the interaction effect be the average of the two main effects.) Notice that
the significant interaction effect ‘‘twists’’ the plane in Figure 5-6a. This twisting of the
response surface results in curved contour lines of constant response in the x,, x, plane,
as shown in Figure 5-6b. Thus, interaction is a form of curvature in the underlying
response surface model for the experiment.

The response surface model for an experiment is extremely important and useful.
We will say more about it in Section 5-5 and in subsequent chapters.

Generally, when an interaction is large, the corresponding main effects have little
practical meaning. For the experiment in Figure 5-2, we would estimate the main effect
of A to be

_50+12_20+40_
2 2

which is very small, and we are tempted to conclude that there is no effect due to A.
However, when we examine the effects of A at different levels of factor B, we see that
this is not the case. Factor A has an effect, but it depends on the level of factor B. That
is, knowledge of the AB interaction is more useful than knowledge of the main effect. A
significant interaction will often mask the significance of main effects. These points are
clearly indicated by the interaction plot in Figure 5-4. In the presence of significant
interaction, the experimenter must usually examine the levels of one factor, say A, with
levels of the other factors fixed to draw conclusions about the main effect of A.

5.2 THE ADVANTAGE OF FACTORIALS

The advantage of factorial designs can be easily illustrated. Suppose we have two factors
A and B, each at two levels. We denote the levels of the factors by A", A", B, and B”.
Information on both factors could be obtained by varying the factors one at a time, as
shown in Figure 5-7. The effect of changing factor A is given by A"B~ — A”B™ and the
effect of changing factor B is given by A”B™ — A" B™. Because experimental error is
present, it is desirable to take two observations, say, at each treatment combination and
estimate the effects of the factors using average responses. Thus, a total of six observa-
tions are required.

If a factorial experiment had been performed, an additional treatment combination,

AB*

Factor B

AB AB”

| |
+

Factor A

Figure 5-7 A one-factor-at-a-time
experiment.
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4.0 —

Relative efficiency

Number of factors

Figure 5-8 Relative efficiency of a factorial design to a one-
factor-at-a-time experiment (two factor levels).

A"B*, would have been taken. Now, using just four observations, two estimates of the
A effect can be made: A*YB~ — A"B~ and A"B™ — A"B". Similarly, two estimates of
the B effect can be made. These two estimates of each main effect could be averaged
to produce average main effects that are just as precise as those from the single-
factor experiment, but only four total observations are required and we would say that
the relative efficiency of the factorial design to the one-factor-at-a-time experiment is
(6/4) = 1.5. Generally, this relative efficiency will increase as the number of factors
increases, as shown in Figure 5-8.

Now suppose interaction is present. If the one-factor-at-a-time design indicated that
A"B* and A*B~ gave better responses than A™B™, a logical conclusion would be that
A*B™ would be even better. However, if interaction is present, this conclusion may be
seriously in error. For an example, refer to the experiment in Figure 5-2.

In summary, note that factorial designs have several advantages. They are more
efficient than one-factor-at-a-time experiments. Furthermore, a factorial design is nec-
essary when interactions may be present to avoid misleading conclusions. Finally, fac-
torial designs allow the effects of a factor to be estimated at several levels of the other
factors, yielding conclusions that are valid over a range of experimental conditions.

5.3 THE TWO-FACTOR FACTORIAL DESIGN
5.3.1 An Example

The simplest types of factorial designs involve only two factors or sets of treatments.
There are a levels of factor A and b levels of factor B, and these are arranged in a factorial
design; that is, each replicate of the experiment contains all ab treatment combinations.
In general, there are n replicates.

As an example of a factorial design involving two factors, an engineer is designing
a battery for use in a device that will be subjected to some extreme variations in tem-
perature. The only design parameter that he can select at this point is the plate material
for the battery, and he has three possible choices. When the device is manufactured and
is shipped to the field, the engineer has no control over the temperature extremes that
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Table 5-1 Life (in hours) Data for the Battery Design Example

Temperature (°F)

Material
Type 15 70 125

1 130 155 34 40 20 70

74 180 80 75 82 58

2 150 188 136 122 25 70
159 126 106 115 58 45

3 138 110 174 120 96 104
168 160 150 139 82 60

the device will encounter, and he knows from experience that temperature will probably
affect the effective battery life. However, temperature can be controlled in the product
development laboratory for the purposes of a test.

The engineer decides to test all three plate materials at three temperature levels—
15, 70, and 125°F—because these temperature levels are consistent with the product end-
use environment. Four batteries are tested at each combination of plate material and
temperature, and all 36 tests are run in random order. The experiment and the resulting
observed battery life data are given in Table 5-1.

In this problem the engineer wants to answer the following questions:

1. What effects do material type and temperature have on the life of the battery?

2. Is there a choice of material that would give uniformly long life regardless of
temperature?

This last question is particularly important. It may be possible to find a material alter-
native that is not greatly affected by temperature. If this is so, the engineer can make the
battery robust to temperature variation in the field. This is an example of using statistical
experimental design for robust product design, a very important engineering problem.

This design is a specific example of the general case of a two-factor factorial. To
pass to the general case, let y;;, be the observed response when factor A is at the ith level
(i=1,2,...,a) and factor B is at the jth level (j = 1, 2, ..., b) for the kth replicate
(k=1,2,..., n). In general, a two-factor factorial experiment will appear as in Table
5-2. The order in which the abn observations are taken is selected at random so that this
design is a completely randomized design.

Table 5-2 General Arrangement for a Two-Factor Factorial Design

Factor B
1 2 v b
1 Yi11 Y12, Y1215 Y1225 Yibts Yiv2s
-5 Y <5 Yi2n v Yibn
2
Factor A Y2115 Y2125 Y2215 Y2225 Vabis> Yab2s
"!y?.ln ---»)’22,1 "-’y2bn
a Yai1s Ya12, Ya21s Ya22, Yab1s Yab2s
"’yaln '--’ya2n '~-9_Yabn
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The observations in a factorial experiment can be described by a model. There are
several ways to write the model for a factorial experiment. The effects model is

i=12,...,a
yijk= I'L+ Ti+ Bj+ (TB)ij+ eijk J: 1,2,"'ab (5_1)
k=1,2,...,n

where u is the overall mean effect, 7; is the effect of the ith level of the row factor A, B;
is the effect of the jth level of column factor B, (78); is the effect of the interaction
between 7; and (3;, and € is a random error component. Both factors are assumed to be
fixed, and the treatment effects are defined as deviations from the overall mean, so
24,7 = 0 and Ej’;lﬁj = (. Similarly, the interaction effects are fixed and are defined
such that 2 ,(78),; = Ele(TB),-j = 0. Because there are n replicates of the experiment,
there are abn total observations.
Another possible model for a factorial experiment is the means model

i=1,2,...,a
yijk=,'l’ij+el‘jk j=1,2,...,b
k=1,2,...,n

where the mean of the ijth cell is

py = pt o1+ B+ (1B8)y

We could also use a regression model as in Section 5-1. Regression models are partic-
ularly useful when one or more of the factors in the experiment are quantitative. Through-
out most of this chapter we will use the effects model (Equation 5-1) with reference to
the regression model in Section 5-5.

In the two-factor factorial, both row and column factors (or treatments), A and B,
are of equal interest. Specifically, we are interested in testing hypotheses about the
equality of row treatment effects, say

H, 0TI =Th = =17, = 0
H,:at least one 7, # 0 (5-2a)
and the equality of column treatment effects, say
H : = = ... = = 0
0 B 1 BZ Bb (5_2b)

H,:at least one B; # 0

We are also interested in determining whether row and column treatments interact. Thus,
we also wish to test
Hy:(78); = 0 for all i, j

H,:at least one (78); # 0 (5-2¢)

We now discuss how these hypotheses are tested using a two-factor analysis of
variance.

5.3.2 Statistical Analysis of the Fixed Effects Model

Let y;. denote the total of all observations under the ith level of factor A, y ; denote the
total of all observations under the jth level of factor B, y;; denote the total of all obser-
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vations in the ijth cell, and y_ denote the grand total of all the observations. Define
Yi» ¥.j» Yiio and Y, as the corresponding row, column, cell, and grand averages. Ex-
pressed mathematically,

b n
- Yi..
i i i =T 1= 1, 29 , a
y FEI 2 Vi -
S < _ Y. .
= i ;= — =1,2,...,b
Y, Zl ;::1 Yiik Ja= 53)
_ 5 Yi. i=12...,a
yij. k§=:1 yzjk ylj n ] — 1, 2, . , b
a b n
= 2 E E Yijk Y. = L
S A E ij eos abn
The total corrected sum of squares may be written as
a b n a b n
222 O =¥l =22 2 G —3.) + G -3
i=1 j=1 k=1 i=1 j=1 k=1
+ (_ij. =¥~y ty. )+ (yijk - yij)]z
= bn 2 (3. — V) + an E G~ V) (5-4)

Mg II

=1

il

b
LIPS R VS A
i Jj=1

Z (}’Uk yq

I'Mn
|1MD~

because the six cross-products on the right-hand side are zero. Notice that the total sum
of squares has been partitioned into a sum of squares due to ‘‘rows,’” or factor A, (S5,);
a sum of squares due to ‘‘columns,’”” or factor B, (§5z); a sum of squares due to the
interaction between A and B, (SS,3); and a sum of squares due to error, (SSg). From the
last component on the right-hand side of Equation 5-4, we see that there must be at least
two replicates (n = 2) to obtain an error sum of squares.

We may write Equation 5-4 symbolically as

SST = SSA + SSB + SSAB + SSE (5-5)

The number of degrees of freedom associated with each sum of squares is

Effect Degrees of Freedom
A a—1
B b—1
AB interaction (a— Db-1)
Error ab(n — 1)

Total abn — 1
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We may justify this allocation of the abn — 1 total degrees of freedom to the sums of
squares as follows: The main effects A and B have a and b levels, respectively; therefore
they have @ — 1 and b — 1 degrees of freedom as shown. The interaction degrees of
freedom are simply the number of degrees of freedom for cells (which is ab — 1) minus
the number of degrees of freedom for the two main effects A and B; that is, ab—1—
(@— 1) — (b —1) = (a — 1)(b — 1). Within each of the ab cells, there are n — 1
degrees of freedom between the 7 replicates; thus there are ab(n — 1) degrees of freedom
for error. Note that the number of degrees of freedom on the right-hand side of Equation
5-5 adds to the total number of degrees of freedom.

Each sum of squares divided by its degrees of freedom is a mean square. The
expected values of the mean squares are

a

bn D, 7

EMS,) = E (aSEA1> =g+

b
E B LV an; o
MSe) =E\p )= Y51
a b
. n 2 2 (18]
_p| %0 ) ey P
EMSa) = E <(a - 1 - 1>> T e ne

and

_ $Se N\ _
EMS;) = E (a o 1)) o

Notice that if the null hypotheses of no row treatment effects, no column treatment
effects, and no interaction are true, then MS,, MSgz, MS,p, and MSg all estimate ol
However, if there are differences between row treatment effects, say, then MS, will be
larger than MS;. Similarly, if there are column treatment effects or interaction present,
then the corresponding mean squares will be larger than MSg. Therefore, to test the
significance of both main effects and their interaction, simply divide the corresponding
mean square by the error mean square. Large values of this ratio imply that the data do
not support the null hypothesis.

If we assume that the model (Equation 5-1) is adequate and that the error terms
€, are normally and independently distributed with constant variance o?, then each of
the ratios of mean squares MS,/MSg, MS3/MS;, and MS,p/MS are distributed as F with
a—1,b—1,and (@ — 1)(b — 1) numerator degrees of freedom, respectively, and
ab(n — 1) denominator degrees of freedom,' and the critical region would be the upper
tail of the F distribution. The test procedure is usually summarized in an analysis of
variance table, as shown in Table 5-3 on the next page.

Computationally, we usually employ a statistical software package to conduct an

' The F test may be viewed as an approximation to a randomization test, as noted previously.
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Table 5-3 The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model

Source of Sum of Degrees of
Variation Squares Freedom Mean Square Fy
SSA MSA
A treatment SS -1 MS, = —— Fo=—=
reatments A a e °= Ms,
SS MS,
B treatments 88y b—1 MS, = ﬁ Fy = M—SZ
. SS MS
Interaction SSag a—-DB-1 MS.p = m Fy= —M—f
Error SS ab(n — 1) MSg = —0F
£ £ ab(n — 1)
Total SSr abn — 1

analysis of variance. However, manual computing formulas for the sums of squares in
Equation 5-5 may be obtained easily. The total sum of squares is computed as usual by

SSr= 2 > > v~ 2= (5-6)

55, = L3 - 2 5-7)
AT & abn
and
1 2 y?
= 2 L 5-8
SSs an; i o (5-8)

It is convenient to obtain the SS,4z in two stages. First we compute the sum of squares
between the ab cell totals, which is called the sum of squares due to *‘subtotals’’:

IS, 2

SSsubtotals = ;2:1 ,2:1 Yi. — E
This sum of squares also contains SS,4 and S§S. Therefore, the second step is to compute
SS.4g as

8548 = SSsubtotats — 354 — SSi (5-9)
We may compute SS; by subtraction as

SSe = SS7 — SSap — SS4 — SSi (5-10)
or

SSe = SS7 — SSsubtotals

EXAMPLE 5-1 +cvvveetecesrouaceosssssansasssassonsaascessnnncessssnsass

The Battery Design Experiment

Table 5-4 presents the effective life (in hours) observed in the battery design example
described in Section 5-3.1. The row and column totals are shown in the margins of the
table and the circled numbers are the cell totals.
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Table 5-4 Life Data (in hours) for the Battery Design Experiment

Temperature (°F)

Material
Type 15 70 125 Vi
130 155 34 40 20 70
! 74 180 @ 80 75 @ 82 58 @ 998
150 188 136 122 25 70
2 159 126 @ 106 115 @ 58 45 @ 1300
138 110 174 120 96 104
3 168 160 @ 150 139 @ 82 60 @ 1501
.. 1738 1291 770 3799 =y

The sums of squares are computed as follows:

a b n
=22 2 i
i=1 j=1 k=1

2

bn
3799)*
= (130)* + (155)*> + (74)* + --- + (60)* — % = 77,646.97
_ 1 , Y
SSMaterial = bn 1221 Yi., abn
1 3799)
= m [(998)* + (1300)> + (1501)°] — ( 36) = 10,683.72
SS =
Temperature Z a bl’l
1 3799)
= (3)(4) [(1738)* + (1291)* + (770)*] — ( 36) = 39,118.72
1 a b y2
SSImeraction = ; E y )’5 - T - SSMatena.l - SSTemperature
=1 j=1 aon
1 2
[(539)2 + (2297 + -+ + (342)%] — % — 10,683.72

- 39,118.72 = 9613.78
and

SSE = SST - SSMateria.l - SSTemperature - SSInteraction
= 77,646.97 — 10,683.72 — 39,118.72 — 9613.78 = 18,230.75

The analysis of variance is shown in Table 5-5 on the next page. Because Fggs.4.27 = 2.73,
we conclude that there is a significant interaction between material types and temperature.
Furthermore, Fyos-27 = 3.35, so the main effects of material type and temperature are
also significant. Table 5-5 also shows the P-values for the test statistics.

To assist in interpreting the results of this experiment, it is helpful to construct a
graph of the average responses at each treatment combination. This graph is shown in
Figure 5-9 at the bottom the the next page. The significant interaction is indicated by the
lack of parallelism of the lines. In general, longer life is attained at low temperature,
regardless of material type. Changing from low to intermediate temperature, battery life
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Table 5-5 Analysis of Variance for Battery Life Data

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Material types 10,683.72 2 5,341.86 791 0.0020
Temperature 39,118.72 2 19,559.36 28.97 0.0001
Interaction 9,613.78 4 2,403.44 3.56 0.0186
Error 18,230.75 27 675.21
Total 77,646.97 35

with material type 3 actually increases, whereas it decreases for types 1 and 2. From
intermediate to high temperature, battery life decreases for material types 2 and 3 and is
essentially unchanged for type 1. Material type 3 seems to give the best results if we
want less loss of effective life as the temperature changes.

Multiple Comparisons

When the analysis of variance indicates that row or column means differ, it is usually of
interest to make comparisons between the individual row or column means to discover
the specific differences. The multiple comparison methods discussed in Chapter 3 are
useful in this regard.

We now illustrate the use of Tukey’s test on the battery life data in Example 5-1.
Note that in this experiment, interaction is significant. When interaction is significant,
comparisons between the means of one factor (e.g., A) may be obscured by the AB
interaction. One approach to this situation is to fix factor B at a specific level and apply
Tukey’s test to the means of factor A at that level. To illustrate, suppose that in Example
5-1 we are interested in detecting differences among the means of the three material
types. Because interaction is significant, we make this comparison at just one level of
temperature, say level 2 (70°F). We assume that the best estimate of the error variance
is the MS; from the analysis of variance table, utilizing the assumption that the experi-
mental error variance is the same over all treatment combinations.

175 |~
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Figure 5-9 Material type—temperature plot for Example 5-1.
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The three material type averages at 70°F arranged in ascending order are

Y. = 5725 (material type 1)
Y22. = 119.75 (material type 2)
Y3, = 145,75 (material type 3)

MS
Toos = Goos(3, 27) /TE

675.21
=350 [——
4

and

= 4547

where we obtained go05(3, 27) = 3.50 by interpolation in Appendix Table VIII. The
pairwise comparisons yield

3vs. Lt 145.75 — 57.25 = 88.50 > Tyo5s = 4547
3vs. 2 145.75 — 119.75 = 26.00 < Tpos = 4547
2vs. 1: 119.75 — 57.25 = 62.50 > Tyos = 4547

This analysis indicates that at the temperature level 70°F, the mean battery life is the
same for material types 2 and 3, and that the mean battery life for material type 1 is
significantly lower in comparison to both types 2 and 3.

If interaction is significant, the experimenter could compare all ab cell means to
determine which ones differ significantly. In this analysis, differences between cell means
include interaction effects as well as both main effects. In Example 5-1, this would give
36 comparisons between all possible pairs of the nine cell means.

Computer Output
Figure 5-10 (on the next page) presents condensed computer output from Design-Expert
for the battery life data in Example 5-1. Note that

SSModel = SSMaterial + SSTemperature + SSImeraction
10,683.72 + 39,118.72 + 9613.78
= 59,416.22

and that

7 = SSwoss _ 5941622
SStow  77,646.97

= (.7652

That is, about 77 percent of the variability in the battery life is explained by the plate
material in the battery, the temperature, and the material type—temperature interaction.
The residuals from the fitted model are also displayed on the computer output. We now
show how to use these residuals in model adequacy checking.
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Response: Life

in hours

ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]
Mean

Source
Model
A
B
AB
Residual
Lack of Fit
Pure Error
Cor Total

Std. Dev.
Mean
C.V.
PRESS

Sum of
Squares
59416.22
10683.72
39118.72
9613.78
18230.75
0.000
18230.75
77646.97

25.98
105.63
24.62
32410.22

Diagnostics Case Statistics
Standard Actual Predicted
Order Value Value

1 130.00 134.75

2 74.00 134.75

3 155.00 134.75

4 180.00 134.75

5 150.00 155.75

6 159.00 155.75

7 188.00 155.75

8 126.00 155.75

9 138.00 144.00
10 168.00 144.00
11 110.00 144.00
12 160.00 144.00
13 34.00 57.25
14 80.00 57.25
15 40.00 57.25
16 75.00 57.25
17 136.00 119.75
18 106.00 119.75
19 122.00 119.75
20 115.00 119.75
21 174.00 145.75
22 150.00 145.75
23 120.00 145.75
24 139.00 145.75
25 20.00 57.50
26 82.00 57.50
27 70.00 57.50
28 58.00 57.50
29 25.00 49.50
30 58.00 49.50
31 70.00 49.50
32 45.00 49.50
33 96.00 85.50
34 82.00 85.50
35 104.00 85.50
36 60.00 85.50

DF
8
2
2
4

27
0

27
35

INTRODUCTION TO FACTORIAL DESIGNS

F

Square Value Prob > F
7427.03 11.00 <0.0001
5341.86 7.91 0.0020
19559.36 28.97 <0.0001
2403.44 3.56 0.0186
675.21
675.21
R-Squared 0.7652
Adj R-Squared 0.6956
Pred R-Squared 0.5826
Adeq Precision 8.178

Residual Leverage

—4.75
—60.75
20.25
45.25
-5.75
3.25
32.25

17.75
16.25
—13.75
2.25
—-4.75
28.25
4.25
—25.75
—6.75
—37.50
24.50
12.50
0.50
—24.50
8.50
20.50
—4.50
10.50
—3.50
18.50
—25.50

Figure 5-10 Design-Expert output for Example 5-1.

Student Cook’s
Residual Distance

-0.211 0.002
—2.700 0.270
0.900 0.030
2.011 0.150
—0.256 0.002
0.144 0.001
1.433 0.076
-1.322 0.065
—0.267 0.003
1.066 0.042
-1.51 0.085
0.711 0.019
—1.033 0.040
1.011 0.038
—0.767 0.022
0.789 0.023
0.722 0.019
—0.611 0.014
0.100 0.000
-0.211 0.002
1.255 0.058
0.189 0.001
—1.144 0.048
—0.300 0.003
—1.666 0.103
1.089 0.044
0.655 0.011
0.022 0.000
—1.089 0.044
0.378 0.005
0.91 0.031
—0.200 0.001
0.467 0.008
—0.1566 0.001
0.822 0.025
-1.133 0.048

significant

Outlier
t
—-0.207
—3.100

0.897
2.140
—-0.251
0.142
1.463
-1.341
—0.262
1.069
—1.550
0.704
—1.035
1.011
-0.761
0.783
0.716
—0.604
0.098
—-0.207
1.269
0.185
—-1.151
—0.295
—1.726
1.093
0.548
0.022
-1.093
0.372
0.908
—0.196
0.460
—0.153
0.817
-1.139
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5.3.3 Model Adequacy Checking

Before the conclusions from the analysis of variance are adopted, the adequacy of the
underlying model should be checked. As before, the primary diagnostic tool is residual
analysis. The residuals for the two-factor factorial model are

€k = Yijx — yAijk (5-11)

and because the fitted value y,;, = ¥y, (the average of the observations in the ijth cell),
Equation 5-11 becomes
ik = Yix — Vi (5-12)

The residuals from the battery life data in Example 5-1 are shown in the Design-
Expert computer output (Figure 5-10) and in Table 5-6. The normal probability plot
of these residuals (Figure 5-11, page 186) does not reveal anything particularly trouble-
some, although the largest negative residual (—60.75 at 15°F for material type 1)
does stand out somewhat from the others. The standardized value of this residual is
=60.75/V675.21 = —2.34, and this is the only residual whose absolute value is larger
than 2.

Figure 5-12 (page 186) plots the residuals versus the fitted values ¥,;. This plot
indicates a mild tendency for the variance of the residuals to increase as the battery life
increases. Figures 5-13 and 5-14 (page 187) plot the residuals versus material types and
temperature, respectively. Both plots indicate mild inequality of variance, with the treat-
ment combination of 15°F and material type 1 possibly having larger variance than the
others.

From Table 5-6 we see that the 15°F-material type 1 cell contains both extreme
residuals (—60.75 and 45.25). These two residuals are primarily responsible for the in-
equality of variance detected in Figures 5-12, 5-13, and 5-14. Reexamination of the data
does not reveal any obvious problem, such as an error in recording, so we accept these
responses as legitimate. It is possible that this particular treatment combination produces
slightly more erratic battery life than the others. The problem, however, is not severe
enough to have a dramatic impact on the analysis and conclusions.

5-3.4 Estimating the Model Parameters

The parameters in the effects model for two-factor factorial
Yig = m 7+ B+ (1B); T € (5-13)

Table 5-6 Residuals for Example 5-1

Temperature (°F)

Material
Type 15 70 125
1 —4.75 20.25 —23.25 —17.25 —37.50 12.50
—60.75 45.25 22.75 17.75 24.50 0.50
2 —5.75 32.25 16.25 2.25 —24.50 20.50
3.25 —29.75 —13.75 —4.75 8.50 —4.50
3 —6.00 ~34.00 28.25 —25.75 10.50 18.50

24.00 16.00 4.25 —6.75 —3.50 —25.50
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Figure 5-11 Normal probability plot of residuals for Example 5-1.

may be estimated by least squares. Because the model has 1 + a + ab parameters to be
estimated, there are 1 + a + b + ab normal equations. Using the method of Section 3-9,
it is not difficult to show that the normal equations are

a b a b
w:abnp + bn D, % +an > B+ n > > (1B = . (5-14a)

i=1 Jj=1 i=1 j=1
80 —
60 |-

[ ]
a0
[ ]
[ ]
P 4 L4
20— ) ® ¢ °
o * L4
% 9 () | @ q e ]
® e50 ® 100® ®eq 0 200
° . ® 150
=20 o® . Yie
o *

-40 - d
-60 |- o
_80 —

Figure 5-12 Plot of residuals versus §,; for Example 5-1.
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60 |~
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Y
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° : [ ]
°
-40 — L4
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Figure 5-13 Plot of residuals versus material type for Example
5-1.

b b
Tibnf+bnt+n > Bt (B;=y. i=12...,a (514b)
j=1 Jj=1

Bianj +n Y % +anf+n> By =y, Jj=12...,b (5l4c)
i=1 i=1

=1,2,...,a

=1,2,...,b (5-14d)

. . A -~ i

(B): npp + n%; + nB; + n(7B); = y;. {J

For convenience, we have shown the parameter corresponding to each normal equation
on the left in Equations 5-14.

The effects model (Equation 5-13) is an overparameterized model. Notice that the a

60 —
.
40—
'y
®
20 . M $
'y ;
°
) * L4 o
LY
815 870 2125
: Temperature (°F)
_20 —
° s
hd 'y
-40 +—
60 [ .
80

Figure 5-14 Plot of residuals versus temperature for Example
5-1.
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equations in Equation 5-14b sum to Equation 5-14a and that the b equations of Equation
5-14¢ sum to Equation 5-14a. Also summing Equation 5-14d over j for a particular i will
give Equation 5-14b, and summing Equation 5-14d over i for a particular j will give
Equation 5-14c. Therefore, there are @ + b + 1 linear dependencies in this system of
equations and no unique solution will exist. In order to obtain a solution, we impose the
constraints

Ms
nu)
I
o

(5-15a)
i=1
b
> B=0 (5-15b)
j=1
E (;B)lj= 0 j = 19 2,"',b (S'ISC)
i=1
and
b ~
>@B; =0 i=12...,a (5-15d)
j=1

Equations 5-15a and 5-15b constitute two constraints, whereas Equations 5-15¢ and
5-15d form a + b — 1 independent constraints. Therefore, we have a + b + 1 total
constraints, the number needed.

Applying these constraints, the normal equations (Equations 5-14) simplify consid-
erably, and we obtain the solution

a=y.
T =Y. — Y. =12,...,a
= Y. " Y. j=12,...,b
-, = - - — i=1,2,...,a
By = Yy = Yi. = Vs T Y. . (5-16)
J=12,...,b

Notice the considerable intuitive appeal of this solution to the normal equations. Row
treatment effects are estimated by the row average minus the grand average; column
treatments are estimated by the column average minus the grand average; and the ijth
interaction is estimated by the ijth cell average minus the grand average, the ith row
effect, and the jth column effect.

Using Equation 5-16, we may find the fitted value y,; as

yAijk =4+ %+ ,Bj + (TB)ij
Vot G =30+ Op — 3D
+ (yij. — Y.~ Y.t y.)
= Y.
That is, the kth observation in the ijth cell is estimated by the average of the n observations
in that cell. This result was used in Equation 5-12 to obtain the residuals for the two-
factor factorial model.

Because constraints (Equations 5-15) have been used to solve the normal equations,
the model parameters are not uniquely estimated. However, certain important functions
of the model parameters are estimable, that is, uniquely estimated regardless of the
constraint chosen. An example is 7, — 7, + (768);, — (T_ﬁ)u., which might be thought of
as the “‘true’’ difference between the ith and the uth levels of factor A. Notice that the
true difference between the levels of any main effect includes an ‘average’” interaction
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effect. It is this result that disturbs the tests on main effects in the presence of interaction,
as noted earlier. In general, any function of the model parameters that is a linear com-
bination of the left-hand side of the normal equations is estimable. This property was
also noted in Chapter 3 when we were discussing the single-factor model. For more
information, see the supplemental text material for this chapter.

5-3.5 Choice of Sample Size

The operating characteristic curves in Appendix Chart V can be used to assist the ex-
perimenter in determining an appropriate sample size (number of replicates, n) for a two-
factor factorial design. The appropriate value of the parameter ®* and the numerator and
denominator degrees of freedom are shown in Table 5-7.

A very effective way to use these curves is to find the smallest value of ®* corre-
sponding to a specified difference between any two treatment means. For example, if the
difference in any two row means is D, then the minimum value of ® is

_ nbD?
2ac*?

@? (5-17)

whereas if the difference in any two column means is D, then the minimum value of ®°
is

2 _ naD?
2bo?

(5-18)

Finally, the minimum value of ®* corresponding to a difference of D between any two
interaction effects is

_ nD?
T 20%@ - DB -1+ 1]

2

(5-19)

To illustrate the use of these equations, consider the battery life data in Example
5-1. Suppose that before running the experiment we decide that the null hypothesis should
be rejected with a high probability if the difference in mean battery life between any two

Table 5-7 Operating Characteristic Curve Parameters for Chart V of the Appendix
for the Two-Factor Factorial, Fixed Effects Model

Numerator Denominator
Factor @ Degrees of Freedom Degrees of Freedom
b i
A n 2 a-1 ab(n — 1)
ao’®
b
2
B ‘”’,Zlﬁf b—1 ab(n — 1)
bo?
a b
2
4B "2 2 P @— 1o -1) ab(n — 1)
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temperatures is as great as 40 hours. Thus D = 40, and if we assume that the standard
deviation of battery life is approximately 25, then Equation 5-18 gives

_ naD?

" 2bo”

_ n(3)(40y°

- 2(3)(25)

= 1.28n

2

as the minimum value of ®*. Assuming that & = 0.05, we can now use Appendix Table
V to construct the following display:

v; = Numerator v, = Error Degrees
n P? d Degrees of Freedom of Freedom B
2 2.56 1.60 2 9 0.45
3 3.84 1.96 2 18 0.18
4 5.12 2.26 2 27 0.06

Note that n = 4 replicates give a B risk of about 0.06, or approximately a 94 percent
chance of rejecting the null hypothesis if the difference in mean battery life at any two
temperature levels is as large as 40 hours. Thus, we conclude that four replicates are
enough to provide the desired sensitivity as long as our estimate of the standard deviation
of battery life is not seriously in error. If in doubt, the experimenter could repeat the
above procedure with other values of ¢ to determine the effect of misestimating this
parameter on the sensitivity of the design.

5.3.6 The Assumption of No Interaction in a Two-Factor Model

Occasionally, an experimenter feels that a two-factor model without interaction is
appropriate, say

Yiu =t Tt B+ ey =

=1,2,...,a
,2,...,b (5-20)
1,2,...

, N

L o~

’ £

We should be very careful in dispensing with the interaction terms, however, because
the presence of significant interaction can have a dramatic impact on the interpretation
of the data.

The statistical analysis of a two-factor factorial model without interaction is straight-
forward. Table 5-8 presents the analysis of the battery life data from Example 5-1, as-

Table 5-8 Analysis of Variance for Battery Life Data Assuming No Interaction

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F,
Material types 10,683.72 2 5,341.86 5.95
Temperature 39,118.72 2 19,559.36 21.78
Error 27,844.52 31 898.21

Total 77,646.96 35
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suming that the no-interaction model (Equation 5-20) applies. As noted previously, both
main effects are significant. However, as soon as a residual analysis is performed for
these data, it becomes clear that the no-interaction model is inadequate. For the two-
factor model without interaction, the fitted values are 3, =y, + ¥, — y... A plot of
¥ii. — Vi (the cell averages minus the fitted value for that cell) versus the fitted value J;;
is shown in Figure 5-15. Now the quantities ¥,; — j,; may be viewed as the differences
between the observed cell means and the estimated cell means assuming no interaction.
Any pattern in these quantities is suggestive of the presence of interaction. Figure 5-15
shows a distinct pattern as the quantities y;, — ¥, move from positive to negative to
positive to negative again. This structure is the result of interaction between material
types and temperature.

5.3.7 One Observation per Cell

Occasionally, one encounters a two-factor experiment with only a single replicate, that
is, only one observation per cell. If there are two factors and only one observation per
cell, the effects model is

i =1, 2,
yi=pt T+ B+ ()t e {Jl - 1.2 (5-21)

] s

... a
..., b
The analysis of variance for this situation is shown in Table 5-9 on the next page, as-
suming that both factors are fixed.

From examining the expected mean squares, we see that the error variance o is not
estimable; that is, the two-factor interaction effect (7/3);; and the experimental error cannot
be separated in any obvious manner. Consequently, there are no tests on main effects
unless the interaction effect is zero. If there is no interaction present, then (78);; = 0 for
all i and j, and a plausible model is

— i=1,2,...,a
Vi =ptntpte {j=l,2,...,b (5-22)

If the model (Equation 5-22) is appropriate, then the residual mean square in Table 5-9
is an unbiased estimator of %, and the main effects may be tested by comparing MS,
and MSp to MSgesidual-

30~

30+ o

®

10 — [ J b o
> | e | | I
B2 50 100 150 200

10 Vi

[
-20 )
L .
-30

Figure 5-15 Plot of y;; — J versus ¥, battery life data.
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Table 5-9  Analysis of Variance for a Two-Factor Model, One Observation per Cell

Source of Sum of Degrees of Mean Expected Mean
Variation Squares Freedom Square Square
@ 22 b 7
1. y.. i
R A = - = -1 MS 2
ows (A) Z:l > 2 a " o? + p—
b 2 2 2
Yi oy a 2 B
Columns (B - — = b—1 MS 2
(B) le P ab B o+ b -1
. . 22 (B
Residual or AB Subtraction @a-nDB-1) MSResidual ot —
(a— DG -1
a b 2
Total EZyi—y— ab — 1
i=1 j=1 ab

A test developed by Tukey (1949a) is helpful in determining if interaction is present.
The procedure assumes that the interaction term is of a particularly simple form, namely,

By = vy7.B;

where v is an unknown constant. By defining the interaction term this way, we may use
a regression approach to test the significance of the interaction term. The test partitions
the residual sum of squares into a single-degree-of-freedom component due to nonad-
ditivity (interaction) and a component for error with (a — 1)(b — 1) — 1 degrees of

freedom. Computationally, we have
h 2
y.
[i ”Z Yiyiy, = ). ( 4 + SSp ab)]
Sy = 5-23
SSw abSSASS, (5-23)

Q

2

It

with one degree of freedom, and
SSError = SSResidual — SSn (5-24)

with (@ — 1)(b — 1) — 1 degrees of freedom. To test for the presence of interaction, we
compute

_ SSn
SSemodl(@ — (b — 1) — 1]

If Fy > F, .- 1w-1—1, the hypothesis of no interaction must be rejected.

Fo

(5-25)

EXAMPLE 5.2 crocversscccscsccccenaccnnns B

The impurity present in a chemical product is affected by two factors—pressure and
temperature. The data from a single replicate of a factorial experiment are shown in Table
5-10. The sums of squares are

1< y?
SS, =Sy — 2=
A b,;y ab
1 2 2 >
— 1324137 + 8] — —— = 2333
5 ©)S)
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Table 5-10 Impurity Data for Example 5-2

T Pressure
emperature
°F) 25 30 35 40 45 yi.
100 5 4 6 3 5 23
125 3 1 4 2 3 13
150 1 1 3 1 2 8
¥ 9 6 13 6 10 4 =y,
12 y2
SSp == )2 — =
B a le )’.j a
1 442
= [9* + 6> + 132 + 6> + 10%] — = 11.60
) (3)5)
a b y2
SSr=2 2~
i=1 j=1 ab
= 166 — 129.07 = 36.93
and

SSresidual = S8 — S84 — SSp
= 36.93 — 23.33 — 11.60 = 2.00

The sum of squares for nonadditivity is computed from Equation 5-23 as follows:

HMn

Z Yiyiys = (5)23)9) + (H(23)(6) + --- + (2)(8)(10) = 7236

> 2
[E > vy = Y. <SSA + 855 + j—bﬂ

i=1 j=1

SSN =

abSSASSB
_ [7236 — (44)(23.33 + 11.60 + 129.07)?
(3)(5)(23.33)(11.60)

_ [20.001
4059.42

and the error sum of squares is, from Equation 5-24,

SSError = SSResidual - SSN
= 2.00 — 0.0985 = 1.9015

The complete analysis of variance is summarized in Table 5-11 on the next page.
The test statistic for nonadditivity is F, = 0.0985/0.2716 = 0.36, so we conclude that

there is no evidence of interaction in these data. The main effects of temperature and
pressure are significant.

= 0.0985

...........................................................................

In concluding this section, we note that the two-factor factorial model with one
observation per cell (Equation 5-22) looks exactly like the randomized complete block
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Table 5-11 Analysis of Variance for Example 5-2

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fo P-Value
Temperature 23.33 2 11.67 42.97 0.0001
Pressure 11.60 4 2.90 10.68 0.0042
Nonadditivity 0.0985 1 0.0985 0.36 0.5674
Error 1.9015 7 0.2716
Total 36.93 14

model (Equation 4-1). In fact, the Tukey single-degree-of-freedom test for nonadditivity
can be directly applied to test for interaction in the randomized block model. However,
remember that the experimental situations that lead to the randomized block and fac-
torial models are very different. In the factorial model, all ab runs have been made in
random order, whereas in the randomized block model, randomization occurs only within
the block. The blocks are a randomization restriction. Hence, the manner in which the
experiments are run and the interpretation of the two models are quite different.

5.4 THE GENERAL FACTORIAL DESIGN

The results for the two-factor factorial design may be extended to the general case where
there are a levels of factor A, b levels of factor B, ¢ levels of factor C, and so on, arranged
in a factorial experiment. In general, there will be abc - - - n total observations if there
are n replicates of the complete experiment. Once again, note that we must have at least
two replicates (n = 2) to determine a sum of squares due to error if all possible inter-
actions are included in the model.

If all factors in the experiment are fixed, we may easily formulate and test hypotheses
about the main effects and interactions. For a fixed effects model, test statistics for each
main effect and interaction may be constructed by dividing the corresponding mean
square for the effect or interaction by the mean square error. All of these F tests will be
upper-tail, one-tail tests. The number of degrees of freedom for any main effect is the
number of levels of the factor minus one, and the number of degrees of freedom for an
interaction is the product of the number of degrees of freedom associated with the in-
dividual components of the interaction.

For example, consider the three-factor analysis of variance model:

Vi = M+ T F ,Bj + %t (TB)ij + (V)i t+ (ﬁ')’)jk

— ek
N NN
S Y

-

.

+ (TBY)ie + € (5-26)

-
-

~ A S
li

Assuming that A, B, and C are fixed, the analysis of variance table is shown in Table
5-12. The F tests on main effects and interactions follow directly from the expected mean
squares.
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Usually, the analysis of variance computations would be done using a statistics soft-

ware package. However, the manual computing formulas for the sums of squares in Table
5-12 are occasionally useful. The total sum of squares is found in the usual way as

a b c n
= 2 2 z 2 Yijpi —
i=1 j=1 k=1 I=1

(5-27)

abcn

The sums of squares for the main effects are found from the totals for factors A(y...),
B(y,.), and C(y..) as follows:

1
Sa = b_— (5-28)

abcn
2

2.
5

§S = Z = (5-29)
2

(5-30)

1
SSC:T

abcn

To compute the two-factor interaction sums of squares, the totals for the A X B,AXC,
and B X C cells are needed. It is frequently helpful to collapse the original data table
into three two-way tables to compute these quantities. The sums of squares are found
from

2

1 a b 2
= SSSubtotals(AB) SS — 88 (5-31)
2
_ Y _
SSac = b 121 ;: }’zk aben 8§84 — 88¢
= SSsubtotaiscacy — 84 — SS¢ (5-32)

and

2

_1 S 2 Ve _ _
SSpc = 2 ;::1 Y.jk. aben SSs SSc

= SSSubtotals(BC) — 88 — SS¢ (5-33)

Note that the sums of squares for the two-factor subtotals are found from the totals in
each two-way table. The three-factor interaction sum of squares is computed from the
three-way cell totals {y;;.} as

1 a c 2
SSasc =~ 21 21 kZl Vi — af)’;'n — 8S, — 8S5 — SSc — SSap — SSac — SSpc  (5-34a)
i=1 j= =
= SSsubtotaisancy — S84 — SSp — SS¢c — S84 — SSac — SSsc (5-34b)

The error sum of squares may be found by subtracting the sum of squares for each main
effect and interaction from the total sum of squares or by

S$Se = 887 — SSsubtotaiscaBo) (5-35)



5.4 THE GENERAL FACTORIAL DESIGN 197

EXAMPLE 5.3 -cccvcvvcecceeccassannsssccecrsnssssosssssnssssnsssncennns

The Soft Drink Bottling Problem

A soft drink bottler is interested in obtaining more uniform fill heights in the bottles
produced by his manufacturing process. The filling machine theoretically fills each bottle
to the correct target height, but in practice, there is variation around this target, and the
bottler would like to understand better the sources of this variability and eventually
reduce it.

The process engineer can control three variables during the filling process: the per-
cent carbonation (A), the operating pressure in the filler (B), and the bottles produced
per minute or the line speed (C). The pressure and speed are easy to control, but the
percent carbonation is more difficult to control during actual manufacturing because it
varies with product temperature. However, for purposes of an experiment, the engineer
can control carbonation at three levels: 10, 12, and 14 percent. She chooses two levels
for pressure (25 and 30 psi) and two levels for line speed (200 and 250 bpm). She decides
to run two replicates of a factorial design in these three factors, with all 24 runs taken
in random order. The response variable observed is the average deviation from the target
fill height observed in a production run of bottles at each set of conditions. The data that
resulted from this experiment are shown in Table 5-13. Positive deviations are fill heights
above the target, whereas negative deviations are fill heights below the target. The circled
numbers in Table 5-13 are the three-way cell totals y, .

The total corrected sum of squares is found from Equation 5-27 as

a b c n 2
Y....
SSr = i
T z=21 j=1 /;1 lZ Ykt abc
(75
=571 — = 336.625
24

Table 5-13  Fill Height Deviation Data for Example 5-3
Operating Pressure (B)
25 psi 30 psi
Percent Line Speed (€) Line Speed (C)
Carbonation (A) 200

250 200 250
v 20 0 10 O
2 0 O 0 @ o=
3010 1@ @ s
6 15 20

B X C Totals y 4. 34 15=y..
Y. 21 54
A X B Totals A X C Totals
Yij.. Yik.
B C
A | 25 30 A | 200 250
10 -5 1 10 -5 1
12 4 16 12 6 14

14 22 37 14 25 34
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and the sums of squares for the main effects are calculated from Equations 5-28, 5-29,
and 5-30 as

1 <& y?
SSCarbonation - b_ Z abcn
1 5)?
~ [(—4)* + (20)* + (59)°] — Q = 252.750
8 24
b 2
SSPressure = Z abcn
1 > ) (75)*
= — —+ —_ L e )
2 (21" + (54)] 2 45.375
and
1 < y?
SSSpeed - T Z abC}'l
(75
- L 26)* + (49)7] — —— = 22.
2 [(26)" + (49)] a 042

To calculate the sums of squares for the two-factor interactions, we must find the
two-way cell totals. For example, to find the carbonation-pressure or AB interaction, we
need the totals for the A X B cells {y,;. } shown in Table 5-13. Using Equation 5-31, we
find the sums of squares as

= _1_ S 2 )’2 _ _
SSan = o 2 ,=21 Vi = =SSy = 85
2
- élt (=57 + (1P + @7 + (167 + (22 + (377 — '(7254)

— 252750 — 45.375
= 5.250

The carbonation—speed or AC interaction uses the A X C cell totals {y;, } shown in Table
5-13 and Equation 5-32:

1 &S 32
SSac = 7= 2 2 ik = n—ssA—ssC
2
-2 7 (G5 + (D7 + (6 + (147 + (25)° + (34)] = ‘(7254)

— 252.750 — 22.042
= 0.583

The pressure—speed or BC interaction is found from the B X C cell totals {y ;. } shown
in Table 5-13 and Equation 5-33:

1 b y2
SSac = — 121 kE Vi = 22 = 885 = SSc
2 2 2 2 (75)2
=g[(6) + (57 + Q0P + (34)] — - — 45375 — 22.042

= 1.042
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The three-factor interaction sum of squares is found from the A X B X C cell totals
{ ¥4}, which are circled in Table 5-13. From Equation 5-34a, we find

1 a c 2
SSapc = ; 2 2 E ytjk - — 884 — S8z — SS¢ — SSap — SSac — SSze

i=1 j=1 k=

_1 2
SIEH + CDP+ (D2 + -+ (16 + QD - %

— 252,750 — 45.375 — 22.042 — 5.250 — 0.583 — 1.042

= 1.083
Finally, noting that
1 a b c 2
SSsubtotalscaBe) = " 2 Z Z Vi, = o = = 328.125

we have

SSE = SST - SSSubtotals(ABC)
= 336.625 — 328.125
= 8.500

The analysis of variance is summarized in Table 5-14. We see that the percentage
of carbonation, operating pressure, and line speed significantly affect the fill volume.
The carbonation—pressure interaction F ratio has a P-value of 0.0558, indicating some
interaction between these factors.

The next step should be an analysis of the residuals from this experiment. We leave
this as an exercise for the reader but point out that a normal probability plot of the
residuals and the other usual diagnostics do not indicate any major concerns.

To assist in the practical interpretation of this experiment, Figure 5-16 (page 200)
presents plots of the three main effects and the AB (carbonation—pressure) interaction.
The main effect plots are just graphs of the marginal response averages at the levels of
the three factors. Notice that all three variables have positive main effects; that is, in-
creasing the variable moves the average deviation from the fill target upward. The inter-
action between carbonation and pressure is fairly small, as shown by the similar shape
of the two curves in Figure 5-16d.

Because the company wants the average deviation from the fill target to be close to
zero, the engineer decides to recommend the low level of operating pressure (25 psi) and

Table 5-14  Analysis of Variance for Example 5-3

Sum of Degrees of Mean

Source of Variation Squares Freedom Square Fy P-Value
Percentage of carbonation (A) 252.750 2 126.375 178.412 <0.0001
Operating pressure (B) 45.375 1 45.375 64.059 <0.0001
Line speed (C) 22.042 1 22.042 31.118 0.0001
AB 5.250 2 2.625 3.706 0.0558
AC 0.583 2 0.292 0.412 0.6713
BC 1.042 1 1.042 1471 0.2485
ABC 1.083 2 0.542 0.765 0.4867

Error 8.500 12 0.708

Total 336.625 23
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Figure 5-16 Main effects and interaction plots for Example 6-3. (a)
Percentage of carbonation (A). (b) Pressure (B). (¢) Line speed (C). (d)
Carbonation-pressure interaction.

the high level of line speed (250 bpm, which will maximize the production rate). Figure
5-17 plots the average observed deviation from the target fill height at the three different
carbonation levels for this set of operating conditions. Now the carbonation level cannot
presently be perfectly controlled in the manufacturing process, and the normal distribu-
tion shown with the solid curve in Figure 5-17 approximates the variability in the car-

8 —
Be
&3 s
2 g Improved distribution of
(] percent carbonation
© g 4
=2
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Q
@
o 2
g%
[ =R
g 7]
56 O Distribution of
Z=E // \ percent carbonation
2 (N| ]
10 12 14

Percent carbonation (A)

Figure 5-17 Average fill height deviation at high speed
and low pressure for different carbonation levels.
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bonation levels presently experienced. As the process is impacted by the values of the
carbonation level drawn from this distribution, the fill heights will fluctuate considerably.
This variability in the fill heights could be reduced if the distribution of the carbonation
level values followed the normal distribution shown with the dashed line in Figure 5-17.
Reducing the standard deviation of the carbonation level distribution was ultimately
achieved by improving temperature control during manufacturing.

We have indicated that if all the factors in a factorial experiment are fixed, test
statistic construction is straightforward. The statistic for testing any main effect or inter-
action is always formed by dividing the mean square for the main effect or interaction
by the mean square error. However, if the factorial experiment involves one or more
random factors, the test statistic construction is not always done this way. We must
examine the expected mean squares to determine the correct tests. We defer a complete
discussion of experiments with random factors until Chapter 12.

5.5 FITTING RESPONSE CURVES AND SURFACES

We have observed that it can be useful to fit a response curve to the levels of a quan-
titative factor so that the experimenter has an equation that relates the response to the
factor. This equation might be used for interpolation, that is, for predicting the response
at factor levels between those actually used in the experiment. When at least two factors
are quantitative, we can fit a response surface for predicting y at various combinations
of the design factors. In general, linear regression methods are used to fit these models
to the experimental data. We illustrated this procedure in Section 3-5.1 for an experiment
with a single factor. We now present two examples involving factorial experiments. We
will use a computer software package to generate the regression models. For more in-
formation about regression analysis, refer to Chapter 10 and the supplemental text ma-
terial for this chapter.

Consider the experiment described in Example 5-1. The factor temperature is quantitative
and material type is qualitative. Furthermore, there are three levels of temperature. Con-
sequently, we can compute a linear and a quadratic temperature effect to study how
temperature affects the battery life. Table 5-15 (on the next page) presents condensed
output from Design-Expert for this experiment and assumes that temperature is quanti-
tative and material type is qualitative.

The analysis of variance in Table 5-15 shows that the ‘‘model’’ source of variability
has been subdivided into several components. The components ‘‘A’’ and *‘A*"’ represent
the linear and quadratic effects of temperature, and ‘‘B’’ represents the main effect of the
material type factor. Recall that material type is a qualitative factor with three levels.
The terms *‘AB’’ and ‘‘A’B’’ are the interactions of the linear and quadratic temperature
factor with material type.

The P-values indicate that A® and AB are not significant, whereas the A’B term is
significant. Often we think about removing nonsignificant terms or factors from a model
but in this case, removing A and AB and retaining A°B will result in a model that is not
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Table 5-15 Design-Expert Output for Example 5-4

Response: Life in hr

ANOVA for Response Surface Reduced Cubic Model
Analysis of variance table [Partial sum of squares]

Sum of Mean
Source Squares DF Square
Model 59416.22 8 7427.03
A 39042.67 1 39042.67
B 10683.72 2 5341.86
A? 76.06 1 76.06
AB 2315.08 2 1157.54
A2B 7298.69 2 3649.35
Residual 18230.75 27 675.21
Lack of Fit 0.000 0
Pure Error 18230.75 27 675.21
Cor Total 77646.97 35
Std. Dev. 25.98 R-Squared
Mean 105.53 Adj R-Squared
C.v. 24.62 Pred R-Squared
PRESS 32410.22 Adeq Precision
Coefficient Standard
Term Estimate DF Error
Intercept 107.58 1 7.50
A-Temp —-40.33 1 5.30
B[1] —50.33 1 10.61
B[2] 12.17 1 10.61
A? —-3.08 1 9.19
AB[1] 1.71 1 7.50
AB[2] -12.79 1 7.50
AZB[1] 41.96 1 12.99
A?B[2] -14.04 1 12.99
Final Equation in Terms of Coded Factors:
Life =
+107.58
—40.33 *A
—50.33 *B[1]
+12.17 *B[2]
—3.08 *A?
+1.71 *AB[1]
—12.79 *AB(2]

+41.96 *A%B[1]
—14.04 *A?B[2]

Final Equation in Terms of Actual Factors:

Material Type 1
Life =
+169.38017
—2.48860 *Temp
+0.012851 *Temp?

Material Type 2
Life =
+159.62397
—0.17901 *Temp
+0.41627 *Temp?

Material Type 3
Life =
+132.76240
+0.89264 *Temp
—0.43218 *Temp?

F
Value
11.00
57.82
7.91
0.11
1.71
5.40

Prob > F
<0.0001
<0.0001
0.0020
0.7398
0.1991
0.0106

0.7652
0.6956
0.5826

8.178

95% CI
Low
92.19
—-51.22
-72.10
—-9.60
—-21.93
—13.68
—28.18
15.30
—-40.70

significant

VIF
1.00

1.00
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hierarchical. The hierarchy principle indicates that if a model contains a high-order
term (such as A’B), it should also contain all of the lower-order terms that compose it
(in this case A* and AB). Hierarchy promotes a type of internal consistency in a model,
and many statistical model builders rigorously follow the principal. However, hierarchy
is not always a good idea, and many models actually work better as prediction equations
without including the nonsignificant terms that promote hierarchy. For more information,
see the supplemental text material for this chapter.

The computer output also gives model coefficient estimates and a final prediction
equation for battery life in coded factors. In this equation, the levels of temperature are
A= —1, 0, +1 respectively, when temperature is at the low, middle, and high levels (15,
70, 125°). The variables B[1] and B[2] are coded indicator variables that are defined as
follows:

Material Type

1 2 3
B[1] 1 0 -1
B[2] 0 1 -1

There are also prediction equations for battery life in terms of the actual factor levels.
Notice that because material type is a qualitative factor there is an equation for predicted
life as a function of temperature for each material type. Figure 5-18 shows the response

188 @

146 - Material type 3

&
= 104
62— Material type 1
®
20 ®
] | | | ]
15.00 42.50 70.00 97.50 125.00

Temperature

Figure 5-18 Predicted life as a function of temperature for the three material types,
Example 5-4.
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curves generated by these three prediction equations. Compare them to the two-factor
interaction graph for this experiment in Figure 5-9.

If several factors in a factorial experiment are quantitative a response surface may
be used to model the relationship between y and the design factors. Furthermore, the
quantitative factor effects may be represented by single-degree-of-freedom polynomial
effects. Similarly, the interactions of quantitative factors can be partitioned into single-
degree-of-freedom components of interaction. This is illustrated in the following
example.

EXAMPLE 5.5 +vcoee» Ceeeeereens cetennean Ceeeeerenrenns ceeeeeeenas

The effective life of a cutting tool installed in a numerically controlled machine is
thought to be affected by the cutting speed and the tool angle. Three speeds and three
angles are selected, and a factorial experiment with two replicates is performed. The
coded data are shown in Table 5-16. The circled numbers in the cells are the cell totals
{yi.}.

Condensed Design-Expert output for this example is shown in Table 5-17. The terms
A and A? are the linear and quadratic effects of tool angle, and B and B are the linear
and quadratic effects of speed. The terms AB, A’B, AB?, and A”B’ represent linear X
linear, quadratic X linear, linear X quadratic, and quadratic X quadratic components of
the two-factor interaction. Although there are some large P-values, all model terms have
been retained to ensure hierarchy. The prediction equation expressed in coded factors
uses the levels —1, 0, and +1 for A and B to represent the low, middle, and high levels
of these factors, respectively.

Figure 5-19 (page 206) presents a contour plot of the surface generated by the pre-
diction equation for tool life. Examination of this response surface indicates that max-
imum tool life is achieved at cutting speeds around 150 rpm and tool angles of 25°. The
three-dimensional response surface plot in Figure 5-20 (page 206) provides essentially
the same information, but it provides a different and sometimes more useful perspective
of the tool life response surface. Exploration of response surfaces is a very important
aspect of experimental design, which we will discuss in more detail in Chapter 11.

Table 5-16 Data for Tool Life Experiment
Cutting Speed (in/min)

Tool Angle
(degrees) 125 175 Yi..

150

. 20 0 »

20 g ©) ; O) ‘6" 16

s 4o ® o
-2 12

14 24 =y,

Y.
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Table 5-17 Design Expert Output for Example 5-5

Response: Life in Hours
ANOVA for Response Surface Reduced Order 4 Model
Analysis of variance table [Partial sum of squares]

Sum of Mean F
Source Squares DF Square Value Prob > F
Model 111.00 8 13.87 9.61 0.0013 significant
A 49.00 1 49.00 33.92 0.0003
B 16.00 1 16.00 11.08 0.0088
A? 0.000 1 0.000 0.000 1.0000
B? 1.33 1 1.33 0.92 0.3618
AB 8.00 1 8.00 5.54 0.0431
A?B 2.67 1 2.67 1.85 0.2073
AB? 42.67 1 42.67 29.54 0.0004
A?B? 8.00 1 8.00 5.54 0.0431
Residual 13.00 9 1.44
Lack of Fit 0.000 0
Pure Error 13.00 9 1.44
Cor Total 124.00 17
Std. Dev. 1.20 R-Squared 0.8952
Mean 1.33 Adj R-Squared 0.8020
C.v. 90.14 Pred R-Squared 0.5806
PRESS 52.00 Adeq Precision 8.237
Coefficient Standard 95% Cl 95% CI
Factor Estimate DF Error Low High VIF
Intercept 2.00 1 0.85 0.078 3.92
A-Tool Angle 3.50 1 0.60 2.14 4.86 3.00
B-Speed 2.00 1 0.60 0.64 3.36 3.00
A? 0.000 1 1.04 -2.35 2.35 3.00
B2 1.00 1 1.04 ~1.35 3.35 3.00
AB -1.00 1 0.42 —1.96 —0.039 1.00
AZB -1.00 1 0.74 ~2.66 0.66 3.00
AB? -4.00 1 0.74 —5.66 —-2.34 3.00
AZB? —-3.00 1 1.27 ~5.88 -0.12 5.00
Final Equation in Terms of Coded Factors:
Life =
+2.00
+3.50 *A
+2.00 *B
+0.000 *A?
+1.00 *B2
—1.00 *A *B
—1.00 *A? *B
—4.00 *A *B?
—3.00 *A? *B?
Final Equation in Terms of Actual Factors:
Life =
—1068.00000

+136.30000 *Tool Angle
+14.48000 *Speed
—4.08000 *Tool Angle?
~—0.049600 *Speed?
—1.86400 *Tool Angle *Speed
+0.056000 *Tool Angle? *Speed
+6.40000E—003 *Tool Angle *Speed?
—1.92000E—004 *Tool Angle? *Speed?
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Figure 5-19 Two-dimensional contour plot of the tool life response surface for Example 5-5.
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Figure 5-20 Three-dimensional tool life response surface for Example 5-5.

206


Administrador


5.6 BLOCKING IN A FACTORIAL DESIGN 207

5.6 BLOCKING IN A FACTORIAL DESIGN

We have discussed factorial designs in the context of a completely randomized exper-
iment. Sometimes, it is not feasible or practical to completely randomize all of the runs
in a factorial. For example, the presence of a nuisance factor may require that the ex-
periment be run in blocks. We discussed the basic concepts of blocking in the context
of a single-factor experiment in Chapter 4. We now show how blocking can be incor-
porated in a factorial. Some other aspects of blocking in factorial designs are presented
in Chapters 7, 8, 9, and 13.

Consider a factorial experiment with two factors (A and B) and »n replicates. The
linear statistical model for this design is

i=1,2,...,a
Yp=pt+ 7t Bj + (718); + € i=12,...,b (5-36)
k=1,2,...,n

k4

where 7;, 3;, and (78); represent the effects of factors A, B, and the AB interaction,
respectively. Now suppose that to run this experiment a particular raw material is re-
quired. This raw material is available in batches that are not large enough to allow all
abn treatment combinations to be run from the same batch. However, if a batch contains
enough material for ab observations, then an alternative design is to run each of the n
replicates using a separate batch of raw material. Consequently, the batches of raw ma-
terial represent a randomization restriction or a block, and a single replicate of a complete
factorial experiment is run within each block. The effects model for this new design is

i=1,2,...,a
Y = pt 7t Bj + (TB)ij+ O + €k j=1, 2 b (5-37)
k=1, )

where &, is the effect of the kth block. Of course, within a block the order in which the
treatment combinations are run is completely randomized.

The model (Equation 5-37) assumes that interaction between blocks and treatments
is negligible. This was assumed previously in the analysis of randomized block designs.
If these interactions do exist, they cannot be separated from the error component. In fact,
the error term in this model really consists of the (78), (86);, and (786),; interactions.
The analysis of variance is outlined in Table 5-18 on page 208. The layout closely
resembles that of a factorial design, with the error sum of squares reduced by the sum
of squares for blocks. Computationally, we find the sum of squares for blocks as the sum
of squares between the n block totals {y .}.

In the previous example, the randomization was restricted to within a batch of raw
material. In practice, a variety of phenomena may cause randomization restrictions, such
as time, operators, and so on. For example, if we could not run the entire factorial
experiment on one day, then the experimenter could run a complete replicate on day 1,
a second replicate on day 2, and so on. Consequently, each day would be a block.

EXAMPLE 5.6 cvccrteceeceacctasasnaacsnseaassnassessscaaaannsssssnnnns

An engineer is studying methods for improving the ability to detect targets on a radar
scope. Two factors she considers to be important are the amount of background noise,
or ‘‘ground clutter,”” on the scope and the type of filter placed over the screen. An
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Table 5-18 Analysis of Variance for a Two-Factor Factorial in a Randomized Complete Block

Source of Degrees of Expected
Variation Sum of Squares Freedom Mean Square F,
l 2
Blocks s g Y4 — i: n-1 o? + abo?
4 1., 2R a1 , 2w M,
bn = " abn a a-1 MSg
1 ) an X, B} MS,
B — 2 L b—1 2 e
an 2,: Vi ™ abn A — MS,
1 » n2 2 By MSu
AB = 2 -2 86, — 88y (@—DB-1) 2 &= T o4
n Z EJ: Vi ™ abn 4 ? TT@-ne-1n M
Error Subtraction (@b — D(n—1) o?
2
Y.
1 2, — 2 -1
Tota 2 ; g Yt T o abn

experiment is designed using three levels of ground clutter and two filter types. We will
consider these as fixed type factors. The experiment is performed by randomly selecting
a treatment combination (ground clutter level and filter type) and then introducing a signal
representing the target into the scope. The intensity of this target is increased until the
operator observes it. The intensity level at detection is then measured as the response
variable. Because of operator availability, it is convenient to select an operator and keep
him or her at the scope until all the necessary runs have been made. Furthermore, op-
erators differ in their skill and ability to use the scope. Consequently, it seems logical to
use the operators as blocks. Four operators are randomly selected. Once an operator is
chosen, the order in which the six treatment combinations are run is randomly deter-
mined. Thus, we have a 3 X 2 factorial experiment run in a randomized complete block.
The data are shown in Table 5-19.
The linear model for this experiment is

i=1,2,3
yzjk=M+Ti+,3j+(TB)ij+5k+€ijk j=1L2
k=1,2,3,4

where 7; represents the ground clutter effect, B; represents the filter type effect, (78); is
the interaction, &, is the block effect, and €, is the NID(0, o?) error component. The
sums of squares for ground clutter, filter type, and their interaction are computed in the

Table 5-19 Intensity Level at Target Detection

Operators (blocks) 1 2 3 ___f_
Filter Type 1 2 1 2 1 2 1 2
Ground clutter
Low 90 86 96 84 100 92 92 81
Medium 102 87 106 90 105 97 96 80

High 114 93 112 91 108 95 98 83
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Table 5-20  Analysis of Variance for Example 5-6

Sum of Degrees of Mean

Source of Variation Squares Freedom Square F, P-Value
Ground clutter (G) 335.58 2 167.79 15.13 0.0003
Filter type (F) 1066.67 1 1066.67 96.19 <0.0001

GF 77.08 2 38.54 3.48 0.0573
Blocks 402.17 3 134.06
Error 166.33 15 11.09
Total 2047.83 23

usual manner. The sum of squares due to blocks is found from the operator totals {y .}
as follows:

1 (2278)*
= ——[(572)* + (579)* + (597)* + (530)"] — ————
Q) [(572)" + (579)" + (597)" + (530)°] 3@

= 402.17

The complete analysis of variance for this experiment is summarized in Table 5-20.
The presentation in Table 5-20 indicates that all effects are tested by dividing their mean
squares by the mean square error. Both ground clutter level and filter type are significant
at the 1 percent level, whereas their interaction is significant only at the 10 percent level.
Thus, we conclude that both ground clutter level and the type of scope filter used affect
the operator’s ability to detect the target, and there is some evidence of mild interaction
between these factors.

In the case of two randomization restrictions, each with p levels, if the number of
treatment combinations in a k-factor factorial design exactly equals the number of re-
striction levels, that is, if p = ab . . . m, then the factorial design may beruninap X p
Latin square. For example, consider a modification of the radar target detection experi-
ment of Example 5-6. The factors in this experiment are filter type (two levels) and
ground clutter (three levels), and operators are considered as blocks. Suppose now that
because of the setup time required, only six runs can be made per day. Thus, days become
a second randomization restriction, resulting in the 6 X 6 Latin square design, as shown
in Table 5-21 on the next page. In this table we have used the lowercase letters f; and g;
to represent the ith and jth levels of filter type and ground clutter, respectively. That is,
f182 represents filter type 1 and medium ground clutter. Note that now six operators are
required, rather than four as in the original experiment, so the number of treatment
combinations in the 3 X 2 factorial design exactly equals the number of restriction levels.
Furthermore, in this design, each operator would be used only once on each day. The
Latin letters A, B, C, D, E, and F represent the 3 X 2 = 6 factorial treatment combinations
as follows: A = f1g;, B = f182, C = f183, D = f281, E = f282, and F = f)g3.

The five degrees of freedom between the six Latin letters correspond to the main
effects of filter type (one degree of freedom), ground clutter (two degrees of freedom),
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Table 5-21 Radar Detection Experiment Run in a 6 X 6 Latin Square

Operator
Day 1 2 3 4 5 6

A(fig: = 90) B(fig> = 106)  C(figs = 108)  D(fog, = 81)  F(fags = 90) E(fo8> = 88)
C(figs = 114) A(fig: = 96) B(fig. = 105) F(fyg: = 83) E(f.8, = 86) D(fg, = 84)
B(fig> = 102)  E(fo8, = 90) F(fog5 = 95) Afign = 92)  D(fog: = 85) C(figs = 104)
E(f,8. = 87)  D(f261 = 84) A(figr = 100)  B(fig =96) C(figz = 110)  F(f:8: = 9D
F(fog3 = 93) C(figs = 112)  D(fog1 = 92) E(fig. = 80)  A(figr = 90) B(fig> = 98)
D(f.8, = 86) F(f,8: = 91) E(f,8. = 97) C(figs = 98) B(fig2 = 100) A(fig1 = 92)

[= NV R S VU

and their interaction (two degrees of freedom). The linear statistical model for this design
is

)

b

-

’ * 3

Vi = T oot Tt B + (TB)jk + 0, + € (5-38)

B

— A L e
o
—_—— = -
[SSIN ST\ S

yeeey O

where 7, and B, are effects of ground clutter and filter type, respectively, and e, and 6,
represent the randomization restrictions of days and operators, respectively. To compute
the sums of squares, the following two-way table of treatment totals is helpful.

»

Ground Clutter Filter Type 1 Filter Type 2 Y.
Low 560 512 1072
Medium 607 528 1135

High 646 543 1189

Y. 1813 1583 3396 = y_.

Furthermore, the row and column totals are

Rows (y_ju): 563 568 568 568 565 564
Columns (y;;.): 572 579 597 530 561 557

The analysis of variance is summarized in Table 5-22. We have added a column to
this table indicating how the number of degrees of freedom for each sum of squares is
determined.

Table 5-22  Analysis of Variance for the Radar Detection Experiment Run as a 3 X 2 Factorial
in a Latin Square

General Formula

Source of Sum of  Degrees of for Degrees of Mean
Variation Squares Freedom Freedom Square Fy P-Value
Ground clutter, G 571.50 p) a—1 285.75 28.86  <0.0001
Filter type, F 1469.44 1 b—1 1469.44 14843  <0.0001
GF 126.73 2 @-DB-1 63.37 6.40 0.0071
Days (rows) 4.33 5 ab — 1 0.87
Operators 428.00 5 ab — 1 85.60
(columns)
Error 198.00 20 (ab — 1)(ab — 2) 9.90

Total 2798.00 35 (ab)® — 1
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5-7 PROBLEMS
5-1.  The yield of a chemical process is being studied. The two most important variables are
thought to be the pressure and the temperature. Three levels of each factor are selected,

and a factorial experiment with two replicates is performed. The yield data follow:

Pressure (psig)

Temperature (°C) 200 215 230
150 90.4 90.7 90.2
90.2 90.6 90.4
160 90.1 90.5 89.9
90.3 90.6 90.1
170 90.5 90.8 90.4
90.7 90.9 90.1

(a) Analyze the data and draw conclusions. Use o = 0.05.
(b) Prepare appropriate residual plots and comment on the model’s adequacy.
(c) Under what conditions would you operate this process?

5-2.  An engineer suspects that the surface finish of a metal part is influenced by the feed rate
and the depth of cut. He selects three feed rates and four depths of cut. He then conducts
a factorial experiment and obtains the following data:

Depth of Cut (in)
Feed Rate (in/min) 0.15 0.18 0.20 0.25
74 79 82 99
0.20 64 68 88 104
60 73 92 96
92 98 99 104
0.25 86 104 108 110
88 88 95 99
99 104 108 114
0.30 98 929 110 111
102 95 99 107

(a) Analyze the data and draw conclusions. Use a = 0.05.

(b) Prepare appropriate residual plots and comment on the model’s adequacy.
(c) Obtain point estimates of the mean surface finish at each feed rate.

(d) Find the P-values for the tests in part (a).

5-3.  For the data in Problem 5-2, compute a 95 percent confidence interval estimate of the
mean difference in response for feed rates of 0.20 and 0.25 in/min.

5-4.  An article in Industrial Quality Control (1956, pp. 5-8) describes an experiment to in-
vestigate the effect of the type of glass and the type of phosphor on the brightness of a
television tube. The response variable is the current necessary (in microamps) to obtain a
specified brightness level. The data are as follows:
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Glass Phosphor Type
Type 1 2 3
280 300 290
1 290 310 285
285 295 290
230 260 220
2 235 240 225
240 235 230

(a) Is there any indication that either factor influences brightness? Use a = 0.05.
(b) Do the two factors interact? Use o = 0.05.
(¢) Analyze the residuals from this experiment.

5-5. Johnson and Leone (Statistics and Experimental Design in Engineering and the Physical
Sciences, Wiley, 1977) describe an experiment to investigate warping of copper plates.
The two factors studied were the temperature and the copper content of the plates. The
response variable was a measure of the amount of warping. The data were as follows:

Copper Content (%)

Temperature (°C) 40 60 80 100
50 17, 20 16, 21 24,22 28, 27
75 12, 9 18, 13 17, 12 27,31
100 16, 12 18, 21 25,23 30, 23
125 21, 17 23,21 23,22 29, 31

(a) Is there any indication that either factor affects the amount of warping? Is there any
interaction between the factors? Use o = 0.05.

(b) Analyze the residuals from this experiment.

(c) Plot the average warping at each level of copper content and compare them to an
appropriately scaled ¢ distribution. Describe the differences in the effects of the
different levels of copper content on warping. If low warping is desirable, what level
of copper content would you specify?

(d) Suppose that temperature cannot be easily controlled in the environment in which
the copper plates are to be used. Does this change your answer for part (c)?

5-6. The factors that influence the breaking strength of a synthetic fiber are being studied. Four
production machines and three operators are chosen and a factorial experiment is run
using fiber from the same production batch. The results are as follows:

Machine
Operator 1 2 3 4
1 109 110 108 110
110 115 109 108
2 110 110 111 114
112 111 109 112
3 116 112 114 120

114 115 119 117
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(a) Analyze the data and draw conclusions. Use a= 0.05.
(b) Prepare appropriate residual plots and comment on the model’s adequacy.

5-7. A mechanical engineer is studying the thrust force developed by a drill press. He suspects
that the drilling speed and the feed rate of the material are the most important factors. He
selects four feed rates and uses a high and low drill speed chosen to represent the extreme
operating conditions. He obtains the following results. Analyze the data and draw con-
clusions. Use o = 0.05.

Feed Rate
Drill Speed 0.015 0.030 0.045 0.060
125 2.70 245 2.60 2.75
2.78 2.49 2.72 2.86
200 2.83 2.85 2.86 2.94
2.86 2.80 2.87 2.88

5-8.  An experiment is conducted to study the influence of operating temperature and three
types of face-plate glass in the light output of an oscilloscope tube. The following data
are collected:

Temperature
Glass Type 100 125 150
580 1090 1392
1 568 1087 1380
570 1085 1386
550 1070 1328
2 530 1035 1312
579 1000 1299
546 1045 867
3 575 1053 904
599 1066 889

(a) Use a = 0.05 in the analysis. Is there a significant interaction effect? Does glass
type or temperature affect the response? What conclusions can you draw?
(b) Fit an appropriate model relating light output to glass type and temperature.
(c) Analyze the residuals from this experiment. Comment on the adequacy of the models
you have considered.
5-9. Consider the experiment in Problem 5-1. Fit an appropriate model to the response data.
Use this model to provide guidance concerning operating conditions for the process.
5-10.  Use Tukey’s test to determine which levels of the pressure factor are significantly different
for the data in Problem 5-1.
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5-11.  An experiment was conducted to determine if either firing temperature or furnace position
affects the baked density of a carbon anode. The data are shown below:

Temperature (°C)

Position 800 825 850
570 1063 565

1 565 1080 510
583 1043 590

528 988 526

2 547 1026 538
521 1004 532

Suppose we assume that no interaction exists. Write down the statistical model. Conduct
the analysis of variance and test hypotheses on the main effects. What conclusions can be
drawn? Comment on the model’s adequacy.

5-12. Derive the expected mean squares for a two-factor analysis of variance with one obser-
vation per cell, assuming that both factors are fixed.

5-13.  Consider the following data from a two-factor factorial experiment. Analyze the data and
draw conclusions. Perform a test for nonadditivity. Use a = 0.05.

Column Factor

Row Factor 1 2 3 4
1 36 39 36 32
2 18 20 22 20
3 30 37 33 34

5-14. The shear strength of an adhesive is thought to be affected by the application pressure
and temperature. A factorial experiment is performed in which both factors are assumed
to be fixed. Analyze the data and draw conclusions. Perform a test for nonadditivity.

Temperature (°F)

Pressure
(Ib/in?) 250 260 270
120 9.60 11.28 9.00
130 9.69 10.10 9.57
140 8.43 11.01 9.03
150 9.98 10.44 9.80

5-15. Consider the three-factor model

i=12,...,a
Vr =M+ T+ B+ v+ (B + BVt € j=12...,b
k=1,2,...,¢

>

Notice that there is only one replicate. Assuming all the factors are fixed, write down the
analysis of variance table, including the expected mean squares. What would you use as
the ‘‘experimental error’’ to test hypotheses?
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The percentage of hardwood concentration in raw pulp, the vat pressure, and the cooking
time of the pulp are being investigated for their effects on the strength of paper. Three
levels of hardwood concentration, three levels of pressure, and two cooking times are
selected. A factorial experiment with two replicates is conducted, and the following data
are obtained:

Cooking Time 3.0 Hours Cooking Time 4.0 Hours
Percentage of Pressure Pressure
Hardwood
Concentration 400 500 650 400 500 650
2 196.6 197.7 199.8 198.4 199.6 200.6
196.0 196.0 199.4 198.6 200.4 200.9
4 198.5 196.0 198.4 197.5 198.7 199.6
197.2 196.9 197.6 198.1 198.0 199.0
8 197.5 195.6 1974 197.6 197.0 198.5
196.6 196.2 198.1 198.4 197.8 199.8

(a) Analyze the data and draw conclusions. Use a = 0.05.

(b) Prepare appropriate residual plots and comment on the model’s adequacy.

(c) Under what set of conditions would you operate this process? Why?

The quality control department of a fabric finishing plant is studying the effect of several
factors on the dyeing of cotton-synthetic cloth used to manufacture men’s shirts. Three
operators, three cycle times, and two temperatures were selected, and three small speci-
mens of cloth were dyed under each set of conditions. The finished cloth was compared
to a standard, and a numerical score was assigned. The results follow. Analyze the data
and draw conclusions. Comment on the model’s adequacy.

Temperature
300° 350°
Operator Operator

Cycle Time 1 2 3 1 2 3
23 27 31 24 38 34

40 24 28 32 23 36 36
25 26 29 28 35 39

36 34 33 37 34 34

50 35 38 34 39 38 36
36 39 35 35 36 31

28 35 26 26 36 28

60 24 35 27 29 37 26
27 34 25 25 34 24

In Problem 5-1, suppose that we wish to reject the null hypothesis with a high probability
if the difference in the true mean yield at any two pressures is as great as 0.5. If a
reasonable prior estimate of the standard deviation of yield is 0.1, how many replicates
should be run?

The yield of a chemical process is being studied. The two factors of interest are temper-
ature and pressure. Three levels of each factor are selected; however, only nine runs can
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be made in one day. The experimenter runs a complete replicate of the design on each
day. The data are shown in the following table. Analyze the data, assuming that the days
are blocks.

Day 1 Day 2
Pressure Pressure
Temperature 250 260 270 250 260 270
Low 86.3 84.0 85.8 86.1 85.2 87.3
Medium 88.5 87.3 89.0 894 89.9 90.3
High 89.1 90.2 91.3 91.7 93.2 93.7

Consider the data in Problem 5-5. Analyze the data, assuming that replicates are blocks.
Consider the data in Problem 5-6. Analyze the data, assuming that replicates are blocks.
An article in the Journal of Testing and Evaluation (Vol. 16, no. 2, pp. 508-515) inves-
tigated the effects of cyclic loading and environmental conditions on fatigue crack growth
at a constant 22 MPa stress for a particular material. The data from this experiment are
shown below (the response is crack growth rate):

Environment

Frequency Air H,0 Salt H,O
2.29 2.06 1.90
10 2.47 2.05 1.93
2.48 223 1.75
2.12 2.03 2.06
2.65 3.20 3.10
] 2.68 3.18 3.24
2.06 3.96 3.98
2.38 3.64 3.24
2.24 11.00 9.96
01 2.71 11.00 10.01
’ 2.81 9.06 9.36
2.08 11.30 10.40

(a) Analyze the data from this experiment (use & = 0.05).

(b) Analyze the residuals.

(c) Repeat the analyses from parts (a) and (b) using In (y) as the response. Comment on
the results.

An article in the IEEE Transactions on Electron Devices (Nov. 1986, pp. 1754) describes

a study on polysilicon doping. The experiment shown below is a variation of their study.

The response variable is base current.

Anneal Temperature (°C)

Polysilicon
Doping (ions) 900 950 1000
4.60 10.15 11.01
X 20
1< 10 4.40 10.20 10.58
2 % 102 3.20 9.38 10.81

3.50 10.02 10.60
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Is there evidence (with o = 0.05) indicating that either polysilicon doping level or
anneal temperature affect base current?

Prepare graphical displays to assist in interpretation of this experiment.

Analyze the residuals and comment on model adequacy.

Is the model

y = Bo+ Bixy + Boxy + Bzzx% + Bxix; + €

supported by this experiment (x; = doping level, x, = temperature)? Estimate the
parameters in this model and plot the response surface.



The 2* Factorial
Design

6-1 INTRODUCTION

Factorial designs are widely used in experiments involving several factors where it is
necessary to study the joint effect of the factors on a response. Chapter 5 presented
general methods for the analysis of factorial designs. However, there are several special
cases of the general factorial design that are important because they are widely used in
research work and also because they form the basis of other designs of considerable
practical value.

The most important of these special cases is that of & factors, each at only two levels.
These levels may be quantitative, such as two values of temperature, pressure, or time;
or they may be qualitative, such as two machines, two operators, the “*high’’ and *‘low”’
levels of a factor, or perhaps the presence and absence of a factor. A complete replicate
of such a design requires 2 X 2 X - - - X 2 = 2% observations and is called a 2 factorial
design.

This chapter focuses on this extremely important class of designs. Throughout this
chapter we assume that (1) the factors are fixed, (2) the designs are completely random-
ized, and (3) the usual normality assumptions are satisfied.

The 2* design is particularly useful in the early stages of experimental work, when
there are likely to be many factors to be investigated. It provides the smallest number of
runs with which k factors can be studied in a complete factorial design. Consequently,
these designs are widely used in factor screening experiments.

Because there are only two levels for each factor, we assume that the response is
approximately linear over the range of the factor levels chosen. In many factor screening
experiments, when we are just starting to study the process or system, this is often a
reasonable assumption. In Section 6-6, we will present a simple method for checking
this assumption, and discuss what action to take if it is violated.

218
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6-2 THE 22 DESIGN

The first design in the 2* series is one with only two factors, say A and B, each run at
two levels. This design is called a 2* factorial design. The levels of the factors may be
arbitrarily called “‘low’’ and ‘‘high.”” As an example, consider an investigation into the
effect of the concentration of the reactant and the amount of the catalyst on the conversion
(vield) in a chemical process. Let the reactant concentration be factor A, and let the two
levels of interest be 15 and 25 percent. The catalyst is factor B, with the high level
denoting the use of 2 pounds of the catalyst and the low level denoting the use of only
1 pound. The experiment is replicated three times, and the data are as follows:

Factor T Replicate
reatment
A B Combination I It I Total
- - A low, B low 28 25 27 80
+ - A high, B low 36 32 32 100
- + A low, B high 18 19 23 60
+ + A high, B high 31 30 29 90

The treatment combinations in this design are shown graphically in Figure 6-1. By
convention, we denote the effect of a factor by a capital Latin letter. Thus ‘‘A’’ refers to
the effect of factor A, ‘B’ refers to the effect of factor B, and ‘“AB’’ refers to the AB
interaction. In the 2> design the low and high levels of A and B are denoted by ““—’’ and
“+,” respectively, on the A and B axes. Thus, — on the A axis represents the low level
of concentration (15%), whereas + represents the high level (25%), and — on the B axis
represents the low level of catalyst, whereas + denotes the high level.

The four treatment combinations in the design are usually represented by lowercase
letters, as shown in Figure 6-1. We see from the figure that the high level of any factor
in the treatment combination is denoted by the corresponding lowercase letter and that
the low level of a factor in the treatment combination is denoted by the absence of the

b =60 ab =90
High (18 + 19 + 23) (31 + 30 + 29)
(2 pounds)+ T
5 A
E%®
32
Q
3
Low |
(Tpound) (1)~ g0 =100
(28 + 25 + 27) (36 + 32 + 32)
F !
- +
Low High
(15%) (25%)
Reactant
concentration,
A

Figure 6-1 Treatment combinations in the 2> design.
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corresponding letter. Thus, a represents the treatment combination of A at the high level
and B at the low level, b represents A at the low level and B at the high level, and ab
represents both factors at the high level. By convention, (1) is used to denote both factors
at the low level. This notation is used throughout the 2* series.

In a two-level factorial design, we may define the average effect of a factor as the
change in response produced by a change in the level of that factor averaged over the
levels of the other factor. Also, the symbols (1), @, b, and ab now represent the total of
all n replicates taken at the treatment combination, as illustrated in Figure 6-1. Now the
effect of A at the low level of B is [a — (1)]/n and the effect of A at the high level of B
is [ab —b]/n. Averaging these two quantities yields the main effect of A:

1
A=2—{[ab—b] + [a — (DI}
n
-1 [ab +a— b — (1)] (6-1)
2n

The average main effect of B is found from the effect of B at the low level of A (i.e.,
[6 — (1)}/n) and at the high level of A (i.e., [ab — al/n) as

1
B=;{[ab—a] + [b — (DI}
n
= L [ab+ b —a — (1)] (6-2)
2n

We define the interaction effect AB as the average difference between the effect of
A at the high level of B and the effect of A at the low level of B. Thus,

1
AB = n {lab — b] — [a — (D]}
n
= i [ab + (1) — a — b] (6-3)
2n

Alternatively, we may define AB as the average difference between the effect of B
at the high level of A and the effect of B at the low level of A. This will also lead to
Equation 6-3.

The formulas for the effects of A, B, and AB may be derived by another method.
The effect of A can be found as the difference in the average response of the two treatment
combinations on the right-hand side of the square in Figure 6-1 (call this average y,-,
because it is the average response at the treatment combinations where A is at the high
level) and the two treatment combinations on the left-hand side (or y4-). That is,

A=Y+ = Ya-
ab+a_b+(1)
2n 2n

il

i[ab+a—b—(1)]
2n

This is exactly the same result as in Equation 6-1. The effect of B, Equation 6-2, is
found as the difference between the average of the two treatment combinations on the
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top of the square (yz+) and the average of the two treatment combinations on the bottom
(¥s-), or

B = yg+ — yp-
ab + b _at ¢))
2n 2n

L[ab+b—a—(1)]
2n

Finally, the interaction effect AB is the average of the right-to-left diagonal treatment
combinations in the square [ab and (1)] minus the average of the left-to-right diagonal
treatment combinations (a and b), or

ab+ (1) a+b
2n 2n

AB =

Il

%[ab+(1)~a—b]

which is identical to Equation 6-3.
Using the experiment in Figure 6-1, we may estimate the average effects as

1
A =——-(90 + 100 — 60 — 80) = 8.33
2(3)( )

1
B =— + — 100 — 80) = —5.00
2G) (90 + 60 )

1
AB °G) (90 + 80 — 100 — 60) = 1.67
The effect of A (reactant concentration) is positive; this suggests that increasing A from
the low level (15%) to the high level (25%) will increase the yield. The effect of B
(catalyst) is negative; this suggests that increasing the amount of catalyst added to the
process will decrease the yield. The interaction effect appears to be small relative to the
two main effects.

In many experiments involving 2* designs, we will examine the magnitude and
direction of the factor effects to determine which variables are likely to be important.
The analysis of variance can generally be used to confirm this interpretation. There are
several excellent statistics software packages that are useful for setting up and analyzing
2" designs. There are also special time-saving methods for performing the calculations
manually.

Consider the sums of squares for A, B, and AB. Note from Equation 6-1 that a
contrast is used in estimating A, namely

Contrast, = ab + a — b — (1) (6-4)

We usually call this contrast the total effect of A. From Equations 6-2 and 6-3, we see
that contrasts are also used to estimate B and AB. Furthermore, these three contrasts are
orthogonal. The sum of squares for any contrast can be computed from Equation 3-29,
which states that the contrast sum of squares is equal to the contrast squared divided by
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the number of observations in each total in the contrast times the sum of the squares of
the contrast coefficients. Consequently, we have

=[ab+a—b-—(1)]2

SS4 (6-5)
4n
. — 2
SS, = [ab+ b —a— (1)] 6-6)
4n
and
_ _ 2
S8, = [ab + (1) — a — b] 67

4n

as the sums of squares for A, B, and AB.
Using the experiment in Figure 6-1, we may find the sums of squares from Equations
6-5, 6-6, and 6-7 as

_ 607 _
SS, = 3) = 208.33
_ (=307 _
SS; = 1G) = 75.00 (6-8)
and
_ a0y _
SSap = 2G3) = 8.33

The total sum of squares is found in the usual way, that is,
2 2 n y2
SSr=2 2 2 v~ 3 (6-9)
i=1 j=1 k=1 n

In general, SS; has 4n — 1 degrees of freedom. The error sum of squares, with 4(n — 1)
degrees of freedom, is usually computed by subtraction as

SSE = SST - SSA - SSB - SSAB (6‘10)
For the experiment in Figure 6-1, we obtain
2 2 3 y2
S8y = 2 ‘ yizjk - =

1 k=1 43
= 9398.00 — 9075.00 = 323.00

and

SSE = SST - SSA - SSB - SSAB
= 323.00 — 208.33 — 75.00 — 8.33
= 31.34

using 5S4, SSg, and SS,5 from Equations 6-8. The complete analysis of variance is
summarized in Table 6-1. Based on the P-values, we conclude that the main effects are
statistically significant and that there is no interaction between these factors. This con-
firms our initial interpretation of the data based on the magnitudes of the factor effects.

It is often convenient to write down the treatment combinations in the order (1), a,
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Table 6-1 Analysis of Variance for the Experiment in Figure 6-1

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fo P-Value
A 208.33 1 208.33 53.15 0.0001
B 75.00 1 75.00 19.13 0.0024
AB 8.33 1 8.33 2.13 0.1826
Error 31.34 8 3.92
Total 323.00 11

b, ab. This is referred to as standard order (or Yates’ order, for Dr. Frank Yates). Using
this standard order, we see that the contrast coefficients used in estimating the effects are

Effects 3} a b ab
A: -1 +1 -1 +1
B: -1 -1 +1 +1

AB: +1 -1 -1 +1

Note that the contrast coefficients for estimating the interaction effect are just the product
of the corresponding coefficients for the two main effects. The contrast coefficient is
always either +1 or —1, and a table of plus and minus signs such as in Table 6-2 can
be used to determine the proper sign for each treatment combination. The column head-
ings in Table 6-2 are the main effects (A and B), the AB interaction, and I, which rep-
resents the total or average of the entire experiment. Notice that the column corresponding
to I has only plus signs. The row designators are the treatment combinations. To find the
contrast for estimating any effect, simply multiply the signs in the appropriate column
of the table by the corresponding treatment combination and add. For example, to esti-
mate A, the contrastis —(1) + a — b + ab, which agrees with Equation 6-1.

The Regression Model

In a 2* factorial design, it is easy to express the results of the experiment in terms of a
regression model. Because the 2* is just a factorial design, we could also use either an
effects or a means model, but the regression model approach is much more natural and
intuitive. For the chemical process experiment in Figure 6-1, the regression model is

Y= PBo+ Bixy + Box, + €

where x; is a coded variable that represents the reactant concentration and x, is a coded
variable that represents the amount of catalyst and the B’s are regression coefficients.

Table 6-2 Algebraic Signs for Calculating Effects
in the 2% Design

Treatment Factorial Effect
Combination 1 A B AB
1) + - _ :
a + + - -
b + _ + _
ab + + + 4
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The relationship between the natural variables, the reactant concentration and the
amount of catalyst, and the coded variables is

_ Conc — (Concy,y, + Concpigy)/2
(Conchigh - COnClow)/2

X1

and

_ Catalyst — (Catalyst,,, + Catalystygn)/2
(Catalysty,,, — Catalyst,,,)/2

X2

When the natural variables have only two levels, this coding will produce the familiar
+1 notation for the levels of the coded variables. To illustrate this for our example, note
that

_ Conc — (15 + 25)/2

X1

25 — 15)2
_ Conc — 20
5
Thus, if the concentration is at the high level (Conc = 25%), then x, = +1; if the
concentration is at the low level (Conc = 15%), then x; = — 1. Furthermore,
Catalyst — (1 + 2)/2
x p—
’ Q- 2
_ Catalyst — 1.5
0.5

Thus, if the catalyst is at the high level (Catalyst = 2 pounds), then x, = +1; if the
catalyst is at the low level (Catalyst = 1 pound), then x, = —1.
The fitted regression model is

8.33 —5.00
§ =275+ (—2—~>x1 +< > )x2

where the intercept is the grand average of all 12 observations, and the regression co-
efficients 3, and B3, are one-half the corresponding factor effect estimates. The reason
that the regression coefficient is one-half the effect estimate is that a regression coefficient
measures the effect of a unit change in x on the mean of y, and the effect estimate is
based on a two-unit change (from —1 to +1). We will show later that this simple method
of estimating the regression coefficients is producing least squares parameter estimates.
Also see the supplemental material for this chapter.

Residuals and Model Adequacy

The regression model can be used to obtain the predicted or fitted value of y at the four
points in the design. The residuals are the differences between the observed and fitted
values of y. For example, when the reactant concentration is at the low level (x; = —1)
and the catalyst is at the low level (x; = —1), the predicted yield is

L 8.33) =500\
y—27.5+<2>( 1)+<—2 )( 1)
= 25.835
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There are three observations at this treatment combination, and the residuals are

e; = 28 — 25.835 = 2.165
e, =25 — 25.835 = —0.835
e; = 27 — 25.835 = 1.165

The remaining predicted values and residuals are calculated similarly. For the high level
of the reactant concentration and the low level of the catalyst,

L 8.33 —5.00\
y—27.5+<2>(+1)+< 5 )(1)

and

ey, = 36 — 34.165 = 1.835
es = 32 — 34.165 = —2.165
e = 32 — 34.165 = —2.165

For the low level of the reactant concentration and the high level of the catalyst,

L 833\ —5.00
y—27.5+<2 )( 1)+<—2 >(+1)

= 20.835

and

e; = 18 — 20.835 = —2.835
eg = 19 — 20.835 = —1.835
eg = 23 — 20.835 = 2.165

Finally, for the high level of both factors,

8. —5.00
$=275+ <ﬁ> (+1) + <—§—> (+1)
2 2
= 29.165

and

e = 31 — 29.165 = 1.835
e;; = 30 — 29.165 = 0.835
e, =29 — 29.165 = —0.165

Figure 6-2 (page 226) presents a normal probability plot of these residuals and a plot of
the residuals versus the predicted yield. These plots appear satisfactory, so we have no
reason to suspect problems with the validity of our conclusions.

The Response Surface
The regression model

8.33 —5.00
)7=27.5+<T>x1+< > >x2
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(b) Residuals versus predicted yield
Figure 6-2 Residual plots for the chemical process experiment.

can be used to generate response surface plots. If it is desirable to construct these plots
in terms of the natural factor levels, then we simply substitute the relationships between
the natural and the coded variables that we gave earlier into the regression model, yielding

_ 75 o (8:33)(Cone — 20) | (=5.00) (Catalyst - 1.5
2 5 2 05

= 18.33 + 0.8333Conc — 5.00Catalyst

A

Figure 6-3a presents the three-dimensional response surface plot of yield from this
model, and Figure 6-3b is the contour plot. Because the model is first-order (that is, it
contains only the main effects), the fitted response surface is a plane. From examining
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(b) Contour plot

Figure 6-3 Response surface plot and contour plot of yield from the chemical
process experiment.

the contour plot, we see that yield increases as reactant concentration increases and
catalyst amount decreases. Often, we use a fitted surface such as this to find a direction
of potential improvement for a process. A formal way to do this, called the method of
steepest ascent, will be presented in Chapter 11 when we discuss methods for system-
atically exploring response surfaces.
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6-3 THE 2° DESIGN

Suppose that three factors, A, B, and C, each at two levels, are of interest. The design is
called a 2* factorial design and the eight treatment combinations can now be displayed
geometrically as a cube, as shown in Figure 6-4a. Using the ‘‘+ and —’’ notation to
represent the low and high levels of the factors, we may list the eight runs in the 2°
design as in Figure 6-4b. This is sometimes called the design matrix. Extending the
label notation discussed in Section 6-2, we write the treatment combinations in standard
order as (1), a, b, ab, c, ac, bc, and abc. Remember that these symbols also represent
the rotal of all n observations taken at that particular treatment combination.

There are actually three different notations that are widely used for the runs in the 2*
design. The first is the + and — notation, often called the geometric notation. The
second is the use of lowercase letter labels to identify the treatment combinations. The
final notation uses 1 and 0 to denote high and low factor levels, respectively, instead of
+ and —. These different notations are illustrated below for the 2> design:

Run A B C Labels A B C
1 - - - ) 0 0 0
2 + - - a 1 0 0
3 - + - b 0 1 0
4 + + ab 1 1 0
5 - — + c 0 0 1
6 + — + ac 1 0 1
7 - + + bc 0 1 1
8 + + + abc 1 1 1

There are seven degrees of freedom between the eight treatment combinations in the
2? design. Three degrees of freedom are associated with the main effects of 4, B, and C.
Four degrees of freedom are associated with interactions; one each with AB, AC, and BC
and one with ABC.

Consider estimating the main effects. First, consider estimating the main effect A.
The effect of A when B and C are at the low level is [a — (1)]/n. Similarly, the effect of
A when B is at the high level and C is at the low level is [ab — b]/n. The effect of A

be 2 abc
|
|
i | Factor
High + —Yac acto
o | Run A B C
= 7 i — i
3 /) ab >+ High 1 ~ ~ ~
E /// o"?’ 2 + - -
- o 3 - + -
<<’b
Low — - Low 4 + + -
1 @ 5 - - +
f— 6 + - +
— + 7 —
Low High 8 . : N
Factor A
{a) Geometric view (b} The design matrix

Figure 6-4 The 2* factorial design.
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when C is at the high level and B is at the low level is [ac — c)/n. Finally, the effect of
A when both B and C are at the high level is [abc — bc]/n. Thus, the average effect of
A is just the average of these four, or

1
A=Z——[a—(1)+ab—b+ac-—c+abc—bc] (6-11)
n

This equation can also be developed as a contrast between the four treatment com-
binations in the right face of the cube in Figure 6-5a (where A is at the high level) and
the four in the left face (where A is at the low level). That is, the A effect is just the
average of the four runs where A is at the high level (y,+) minus the average of the four
runs where A is at the low level (3,-), or

A= Yar = Ya-
a+ab+ac+abc_(1)+b+c+bc
4n 4n

This equation can be rearranged as
1
A=E[a+ab+ac+abc—(1)—b—c—bc]

which is identical to Equation 6-11.

B
{a) Main effects

(b) Two-factor interaction

® =+ runs

O =-runs

(c) Three-factor interaction

Figure 6-5 Geometric presentation of contrasts corresponding to the main effects
and interactions in the 2° design.
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In a similar manner, the effect of B is the difference in averages between the four
treatment combinations in the front face of the cube and the four in the back. This yields

B = yg+ — yp-

1
=Z,;[b+ab+bc+abc—(1)—a—c—ac] (6-12)

The effect of C is the difference in averages between the four treatment combinations in
the top face of the cube and the four in the bottom, that is,

C =Yc+ = Yo
1
=4—[c+ac+bc+abc—(1)—-a—b—ab] (6-13)
n

The two-factor interaction effects may be computed easily. A measure of the AB
interaction is the difference between the average A effects at the two levels of B. By
convention, one-half of this difference is called the AB interaction. Symbolically,

B Average A Effect
High (+) [(abc — bc) + (ab — b)]
2n
Low (—) {(ac — ¢) + [a — (D]}
2n
Difference [abc — bc +ab — b — ac + ¢ — a + (1)]
2n

Because the AB interaction is one-half of this difference,

AB=[abc—bc+ab —b—ac+c—a+ (1)]

-14
4n ©-14)
We could write Equation 6-14 as follows:

_abc+ab+c+(1)_bc+b+ac+a
4n 4n

In this form, the AB interaction is easily seen to be the difference in averages between
runs on two diagonal planes in the cube in Figure 6-5b. Using similar logic and referring
to Figure 6-5b, the AC and BC interactions are

1
Acza[(l)—a+b—ab—c+ac—bc+abc] (6-15)

and

1
BC=E[(1)+a—b—ab—c—ac+bc+abc] (6-16)
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The ABC interaction is defined as the average difference between the AB interaction
for the two different levels of C. Thus,

ABC = Zl,; {labc = bc] — [ac — ¢] = [ab — b] + [a — (D]}

1
=4—[abc—bc—ac+c-—ab+b+a—(1)] 6-17)
n

As before, we can think of the ABC interaction as the difference in two averages. If the
runs in the two averages are isolated, they define the vertices of the two tetrahedra that
comprise the cube in Figure 6-5¢.

In Equations 6-11 through 6-17, the quantities in brackets are contrasts in the treat-
ment combinations. A table of plus and minus signs can be developed from the contrasts
and is shown in Table 6-3. Signs for the main effects are determined by associating a
plus with the high level and a minus with the low level. Once the signs for the main
effects have been established, the signs for the remaining columns can be obtained by
multiplying the appropriate preceding columns, row by row. For example, the signs in
the AB column are the product of the A and B column signs in each row. The contrast
for any effect can be obtained easily from this table.

Table 6-3 has several interesting properties: (1) Except for column /, every column
has an equal number of plus and minus signs. (2) The sum of the products of the signs
in any two columns is zero. (3) Column / multiplied times any column leaves that column
unchanged. That is, / is an identity element. (4) The product of any two columns yields
a column in the table. For example, A X B = AB, and

AB X B =AB*= A

We see that the exponents in the products are formed by using modulus 2 arithmetic.
(That is, the exponent can only be 0 or 1; if it is greater than 1, it is reduced by multiples
of 2 until it is either O or 1.) All of these properties are implied by the orthogonality of
the contrasts used to estimate the effects.

Sums of squares for the effects are easily computed, because each effect has a cor-
responding single-degree-of-freedom contrast. In the 2* design with n replicates, the sum
of squares for any effect is

Contrast)®
SS = (—-—)— (6-18)
8n
Table 6-3  Algebraic Signs for Calculating Effects in the 2> Design
Treatment Factorial Effect
Combination I A B AB C AC BC ABC
(1 + - - + - + +
a + + - - - - + +
b + - + - + - +
ab + + + + - - - -
¢ + - - + + - - +
ac + + - + + - -
be + - + + - + -
abc + + + + + + + +
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EXAMPLE Go1 +vvvcetesesesoeacasescetscssacnsneassssssusnsnsnsnasssssas

Recall Example 5-3, which presented a study on the effect of percentage of carbonation,
operating pressure, and line speed on the fill height of a carbonated beverage. Suppose
that only two levels of carbonation are used so that the experiment is a 23 factorial design
with two replicates. The data, deviations from the target fill height, are shown in Table
6-4, and the design is shown geometrically in Figure 6-6.

Using the totals under the treatment combinations shown in Table 6-4, we may
estimate the factor effects as follows:

1
A=E[a—(1)+ab—b+ac~c+abc—bc]

=%[1—(—4)+5—(—1)+3—(—1)+11—2]

1
= ~[24] = 3.00
g [24]

1
B=E[b+ab+bc+abc—(1)—a—c—ac]

=%[—1+5+2+11—(—4)—1—(—1)~3]

1
= —[18] = 2.25
g 18]

1
C=E[c+ac+bc+abc-(1)—a—b—ab]

=%[—1+3+2+11—(~4)—1——(—1)—5]

1
=-[14] = 1.
8[4] 75

i
AB=E[ab—a—b+(1)+abc—bc—ac+c]
1
=§[5-—1—(—1)+(—4)+11—-2—3+(—1)]
1

=3 [6] = 0.75

Table 6-4 The Fill Height Experiment, Example 6-1
Coded Factors Fill Height Deviation Factor Levels
Run A B C Replicate 1 Replicate 2 Low (-1) High (+1)
-1 -1 -1 -3 -1 A (%) 10 12
1 -1 -1 0 1 B (psi) 25 30
C (b/min) 200 250

0 AW R WN -
I
—_
|
—
—_
|
—

0
3
0
1
1
5
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be =2 abe =11

250 bpm| +

Speed (C)

+ 7 30 psi
200 bpm| - _/essure (B)
- +) 25 psi

10% 12%
Carbonation (4)

Figure 6-6 The 2° design for the fill height deviation experiment
for Example 6-1.

1
AC=Z;[(1)—a+b~ab—c+ac-—bc+abc]

4o tv -5 ne3-2411

8
—1[2]—025

3 .

1

BC=Z;[(1)+a—b—ab—c—ac+bc+abc]

=%[—4+1—(—1)—5—(—1)—3+2+11]
—1[4]—050

2 .

and

1
ABC=E[abc—bc—ac+c—ab+b+a—(1)]

=%[11—2—3+(—1)—5+(—1)+1—(—4)]
1
= g [41 =050

The largest effects are for carbonation (A = 3.00), pressure (B = 2.25), speed (C = 1.75)

and the carbonation—pressure interaction (AB = 0.75), although the interaction effect

does not appear to have as large an impact on fill height deviation as the main effects.
The sums of squares are calculated from Equation 6-18 as follows:

(24)
=2 =360

SS, T 36.00
(18)

SSp = ~—— = 20.25

57 16

2

$Sc = a4 _ 12.25

16


Administrador
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Table 6-5 Effect Estimate Summary for Example 6-1

Effect Sum of Percent
Factor Estimate Squares Contribution
A 3.00 36.00 46.1538
B 2.25 20.25 25.9615
C 1.75 12.25 15.7051
AB 0.75 2.25 2.88462
AC 0.25 0.25 0.320513
BC 0.50 1.00 1.28205
ABC 0.50 1.00 1.28205
Pure Error 5.00 6.41026
Total 78.00
(6)°
SSup = — = 2.25
AB 16
2y
SSac = — =0.25
AC 16
@y
SSgc = — = 1.00
BC 16
and
(4

SSABC = _1_6— = 1.00

The total sum of squares is SS; = 78.00, and by subtraction, $SSz = 5.00. Table 6-5
summarizes the effect estimates and sums of squares. The column labeled ‘‘percent
contribution’’ measures the percentage contribution of each model term to the total sum
of squares. The percentage contribution is often a rough but effective guide to the relative
importance of each model term. Note that the main effects really dominate this process,
accounting for over 87 percent of the total variability, whereas the AB interaction ac-
counts for less than 3 percent.

The analysis of variance in Table 6-6 may be used to confirm the magnitude of these
effects. From Table 6-6 we note that the main effects are highly significant (all have very

Table 6-6 Analysis of Variance for the Fill Height Data

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fo P-Value
Percent carbonation (A) 36.00 1 36.00 57.60 <0.0001
Pressure (B) 20.25 1 20.25 32.40 0.0005
Line speed (C) 12.25 1 12.25 19.60 0.0022
AB 2.25 1 2.25 3.60 0.0943
AC 0.25 1 0.25 040 0.5447
BC 1.00 1 1.00 1.60 0.2415
ABC 1.00 1 1.00 1.60 0.2415

Error 5.00 8 0.625

Total 78.00 15
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small P-values). The AB interaction is significant at about the 10 percent level; thus there
is some mild interaction between carbonation and pressure.

The reader may wish to refer to Example 5-3 for the practical interpretation of this
experiment. The process developers decided to run the process at low pressure and high
line speed and to reduce the variability in carbonation by controlling the temperature
more precisely. This resulted in a substantial reduction in the deviation of fill height from
the target value.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

The Regression Model and Response Surface
The regression model for predicting fill height deviation is

9= Bo+ Bixy + Boxa + Baxs + Brxixy

oo s (39, 4 (225) L (135) (07
. 5 X1 2 X> 5 X3 2 X1X2,

where the coded variables x,, x,, and x; represent A, B, and C, respectively. The x,x,
term is the AB interaction. Residuals can be obtained as the difference between observed
and predicted fill height deviations. We leave the analysis of these residuals as an exercise
for the reader.

Figure 6-7 (page 236) presents the response surface and contour plot for fill height
deviation obtained from the regression model, assuming that line speed is at the high
level (x; = 1). Notice that because the model contains interaction, the contour lines of
constant fill height deviation are curved (or the response surface is a ‘‘twisted’” plane).
It is desirable to operate this filling process so that fill deviation is as close to zero as
possible. The contour plot shows that if line speed is at the high level, then there are
several combinations of pressure and carbonation level that will satisfy this objective.
However, it will be necessary to control both of these variables very precisely.

Computer Solution

There are many statistics software packages that will set up and analyze two-level fac-
torial designs. The output from one of these computer programs, Design-Expert, is shown
in Table 6-7 (pages 237, 238). In the upper part of the table an analysis of variance for
the full model is presented. The format of this presentation is somewhat different from
the results given in Table 6-6. Notice that the first line of the analysis of variance is an
overall summary for the full model (all main effects and interactions), and the model
sum of squares is

SSModet = S84 + S8z + SS¢ + SSap + SSac + SSec + SSasc
=730

Thus the statistic

_ MSyeaa _ 1043

F =
0 MS; 0.63

= 16.69

is testing the hypotheses

Hy:Bi =B, =B=B2=Pi3 =P =B2us=0
H,:atleastone 8 # 0
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Figure 6-7 Response surface and contour plot of fill height deviation with

speed at the high level (250 bpm), Example 6-1.



Table 6-7 Design-Expert Output for Example 6-1

Response: Fill Deviation in Height
ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

Source
Model
A
B
Cc
AB
AC
BC
ABC
Residual
Lack of Fit
Pure Error
Cor Total

Std. Dev.
Mean
C.V.
PRESS

Factor
Intercept
A-Carbonation
B-Pressure
C-Speed

Sum of
Squares
73.00
36.00
20.25
12.25
225
0.25
1.00
1.00
5.00
0.000
5.00
78.00

0.79
1.00
79.06
20.00

Coefficient
Estimate

1.00

Mean F
DF Square Value Prob > F
7 10.43 16.69 0.0003 significant
1 36.00 57.60 <0.0001
1 20.25 32.40 0.0005
1 12.25 19.60 0.0022
1 2.25 3.60 0.0943
1 0.25 0.40 0.5447
1 1.00 1.60 0.2415
1 1.00 1.60 0.2415
8 0.63
0
8 0.63
15
R-Squared 0.9359
Adj R-Squared 0.8798
Pred R-Squared 0.7436
Adeq Precision 13.416
Standard 95% ClI 95% ClI
DF Error Low High VIF
1 0.20 0.54 1.46
1 0.20 1.04 1.96 1.00
1 0.20 0.67 1.58 1.00
1 0.20 0.42 1.33 1.00
1 0.20 —0.081 0.83 1.00
1 0.20 -0.33 0.58 1.00
1 0.20 -0.21 0.71 1.00
1 0.20 -0.21 0.71 1.00

Final Equation in Terms of Coded Factors:
Fill Deviation =

+1.00

+1.50 *A
+1.13 *B
+0.88 *C

+0.38 *A *B
+0.13 *A *C
+0.25 *B *C

+0.25 *A *B *C

Final Equation in Terms of Actual Factors:
Fill Deviation =
—225.50000

+21.00000
+7.80000
+1.08000
—0.75000
—0.10500
—0.040000
+4.00000E-00:

Reduced Model:

*Carbonation
*Pressure
*Speed
*Carbonation *Pressure
*Carbonation *Speed
*Pressure *Speed
*Carbonation *Pressure *Speed

Response: Fill Deviation in Height
ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

237



Table 6-7 (continued)

95% Cl
High
1.45
1.95
1.57
1.32

Sum of Mean F
Source Squares DF Square Value Prob>F
Model 70.75 4 17.69 26.84 <0.0001 significant
A 36.00 1 36.00 54.62 <0.0001
B 20.25 1 20.25 30.72 0.0002
(o 12.25 1 12.25 18.59 0.0012
AB 2.25 1 2.25 3.41 0.0917
Residual 7.25 11 0.66
Lack of Fit 2.25 3 0.75 1.20 0.3700 not significant
Pure Error 5.00 8 0.63
Cor Total 78.00 15
Std. Dev. 0.81 R-Squared 0.9071
Mean 1.00 Adj R-Squared 0.8733
c.v. 81.18 Pred R-Squared 0.8033
PRESS 15.34 Adeq Precision 15.424
Coefficient Standard 95% CI
Factor Estimate DF Error Low
Intercept 1.00 1 0.20 0.55
A-Carbonation 1.50 1 0.20 1.05
B-Pressure 1.13 1 0.20 0.68
C-Speed 0.88 1 0.20 0.43
AB 0.38 1 0.20 -0.072

Final Equation in Terms of Coded Factors:
Fill Deviation =

+1.00

+1.50 *A
+1.13 *B
+0.88 *C
+0.38 *A *B

Final Equation in Terms of Actual Factors:
Fill Deviation =
+9.62500
—2.62500 *Carbonation
—1.20000 *Pressure
+0.035000 *Speed
+0.15000 *Carbonation *Pressure

Diagnostics Case Statistics

Standard Actual

Order

Value
-3.00
—-1.00
0.000
1.00
—-1.00
0.000
2.00
3.00
—1.00
0.000
2.00
1.00
1.00
1.00
6.00
5.00

Predicted Student
Value Residual Leverage Residual
-2.13 —0.88 0.313 -1.300
—-2.13 1.13 0.313 1.671

0.12 -0.12 0.313 —0.186
0.12 0.88 0.313 1.300
—0.63 —0.38 0.313 —0.557
-0.63 0.63 0.313 0.928
3.13 -1.13 0.313 -1.671
3.13 -0.13 0.313 —-0.186
-0.37 —0.63 0.313 —-0.928
-0.37 0.37 0.313 0.557
1.88 0.13 0.313 0.186
1.88 -0.88 0.313 —1.300
1.13 -0.13 0.313 —0.186
1.13 -0.13 0.313 —0.186
4.88 1.13 0.313 1.671
4.88 0.13 0.313 0.186

0.82

Cook's
Distance
0.154
0.254
0.003
0.154

Outlier

t
—1.347
1.845
-0.177
1.347
—0.5639
0.922
—1.845
—0.177
—0.922
0.539
0.177
—1.347
-0.177
—0.177
1.845
0.177
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Because F) is large, we would conclude that at least one variable has a nonzero effect.
Then each individual factorial effect is tested for significance using the F statistic. These
results agree with Table 6-6.

Below the full model analysis of variance, several R statistics are presented. The
ordinary R? is
_ SSmoder _ 73.00

SSon 7800 093

R2
and it measures the proportion of total variability explained by the model. A potential
problem with this statistic is that it always increases as factors are added to the model,

even if these factors are not significant. The adjusted R? statistic, defined as

SSeldfy  _ . _ 5008

- = = (.8798
SSTotal/dfTotal 7800/15

Rig =1
is a statistic that is adjusted for the ‘‘size’’ of the model; that is, the number of factors.
The adjusted R? can actually decrease if nonsignificant terms are added to a model. The
PRESS statistic is a measure of how well the model will predict new data (PRESS is
actually an acronym for Prediction Error Sum of Squares, and it is computed from the
prediction errors obtained by predicting the ith data point with a model that includes all
observations except the ith one.). A model with a small value of PRESS indicates that
the model is likely to be a good predictor. The *‘Prediction R*’’ statistic is computed as

PRESS 20.00
=1-=""=0.7436
SS teral 78.00

RI2>red =1-

This indicates that the full model would be expected to explain about 74 percent of the
variability in new data.

The next portion of the output presents the regression coefficient for each model
term and the standard error of each coefficient, defined as

. _ Ims 10.625
se(B) = VV(B) = —nz—f =2 - 0.20

The 95 percent confidence intervals on each regression coefficient are computed from

B — thosn—pse(B) < BB+ t0.025,N~pse(B)

where the degrees of freedom on ¢ are the number of degrees of freedom for error; that
is, N is the total number of runs in the experiment (16), and p is the number of model
parameters (8). The full model in terms of both the coded variables and the natural
variables is also presented.

The last part of the display in Table 6-7 illustrates the output following removal of
the nonsignificant interaction terms. This reduced model now contains only the main
effects A, B, and C, and the AB interaction. The error or residual sum of squares is now
composed of a pure error component arising from the replication of the eight corners
of the cube, and a lack of fit component consisting of the sums of squares for the
interactions that were dropped from the model (BC, AC, and ABC). Once again, the
regression model representation of the experimental results is given in terms of both
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coded and natural variables. The proportion of total variability in fill height deviation
that is explained by this model is

SSuoqer _ 70.75
= SoMedd _ = = 09071
SStom 7800

R2
which is smaller than the R? for the full model. Notice, however, that the adjusted R? for
the reduced model has changed only slightly from the adjusted R> for the full model,
and PRESS for the reduced model is considerably smaller, leading to a larger value of
R34 for the reduced model. Clearly removing the nonsignificant terms from the full
model has produced a final model that is likely to function more effectively as a predictor
of new data. Notice that the confidence intervals on the regression coefficients for the
reduced model are slightly shorter than the corresponding confidence intervals for the
full model.

The last part of the output presents the residuals from the reduced model. Design-
Expert will also construct all of the residual plots that we have previously discussed.

Other Methods for Judging the Significance of Effects
The analysis of variance is a formal way to determine which factor effects are nonzero.
There are several other methods that are useful. Below, we show how to calculate the
standard error of the effects and use these standard errors to construct confidence
intervals on the effects. Another method, which we will illustrate in Section 6-5, uses
normal probability plots to assess the importance of the effects.

The standard error of an effect is easy to find. If we assume that there are n replicates
at each of the 2* runs in the design, and if y;, yio, . . . , yin are the observations at the ith
run, then

1 “ _ .
S?=n_1_2l(y,y—yi)2 l=l,2,...,2k
j=

is an estimate of the variance at the ith run. The 2* variance estimates can be combined
to give an overall variance estimate:
1 2 n
§? = vy — 3)* (6-19)
2 -DE A Y !
This is also the variance estimate given by the error mean square in the analysis of
variance. The variance of each effect estimate is

Contrast)

V(Effect) = V < v

= (nZTI)Z— V(Contrast)

Each contrast is a linear combination of 2* treatment totals, and each total consists of
observations. Therefore,

V(Contrast) = n2fg?
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and the variance of an effect is

1
V(Effect) = m n

The estimated standard error would be found by taking the square root of this last ex-
pression and replacing o by its estimate S*:

se(Effect) =

25 (6-20)
\V n2t

Notice that the standard error of an effect is twice the standard error of an estimated
regression coefficient in the regression model for the 2* design (see the Design-Expert
computer output for Example 6-1).

The 100(1 — a) percent confidence intervals on the effects are computed from
Effect * t,,, v, se(Effect), where the degrees of freedom on ¢ are just the error or residual
degrees of freedom (N — p = total number of runs — number of model parameters).

To illustrate this method, consider the fill height deviation experiment in Example
6-1. The mean square error is MS; = 0.625. Therefore, the standard error of each effect
is (using S* = MS;)

28
Vn2t
2V0.625
V22
= 0.40

Now tpmss = 2.31 and #5055 se(Effect) = 2.31(0.40) = 0.92, so approximate 95
percent confidence intervals on the factor effects are

se(Effect) =

A: 3.00 £ 092
B: 225 * 092
C: 175 £ 0.92

AB: 0.75 £ 092
AC: 025 *0.92
BC: 050 = 0.92
ABC: 0.50 £ 0.92

This analysis indicates that A, B, and C are important factors, because they are the only
factor effect estimates for which the approximate 95 percent confidence intervals do not
include zero.

Dispersion Effects
The process engineer working on the filling process was also interested in dispersion
effects; that is, do any of the factors affect variability in fill height deviation from run
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Figure 6-8 Ranges of fill height deviation for Example 6-1.

to run? One way to answer the question is to look at the range of fill height deviations
for each of the eight runs in the 2* design. These ranges are plotted on the cube in Figure
6-8. Notice that the ranges are about the same for all eight runs in the design. Conse-
quently, there is no strong evidence indicating that some of the process variables directly
affect the variability in fill height deviation in the process.

6-4 THE GENERAL 2* DESIGN

The methods of analysis that we have presented thus far may be generalized to the case
of a 2* factorial design, that is, a design with k factors each at two levels. The statistical
model for a 2* design would include k main effects, (§) two-factor interactions, (%) three-
factor interactions, . . . , and one k-factor interaction. That is, for a 2* design the complete
model would contain 2% — 1 effects. The notation introduced earlier for treatment com-
binations is also used here. For example, in a 2° design abd denotes the treatment com-
bination with factors A, B, and D at the high level and factors C and E at the low level.
The treatment combinations may be written in standard order by introducing the factors
one at a time, with each new factor being successively combined with those that precede
it. For example, the standard order for a 2* design is (1), a, b, ab, c, ac, bc, abc, d, ad,
bd, abd, cd, acd, bcd, and abcd.

The general approach to the statistical analysis of the 2* design is summarized in
Table 6-8. As we have indicated previously, a computer software package is usually
employed in this analysis process.

The sequence of steps in Table 6-8 should, by now, be familiar. The first step is to
estimate factor effects and examine their signs and magnitudes. This gives the experi-

Table 6-8 Analysis Procedure
for a 2* Design

1. Estimate factor effects

2. Form initial model

3. Perform statistical testing
4. Refine model

5. Analyze residuals

6. Interpret results
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menter preliminary information regarding which factors and interactions may be impor-
tant, and in which directions these factors should be adjusted to improve the response.
In forming the initial model for the experiment, we usually choose the full model, that
is, all main effects and interactions, provided that at least one of the design points has
been replicated (in the next section, we discuss a modification to this step). Then in step
3, we use the analysis of variance to formally test for significance of main effects and
interaction. Table 6-9 shows the general form of an analysis of variance for a 2* factorial
design with n replicates. Step 4, refine the model, usually consists of removing any
nonsignificant variables from the full model. Step 5 is the usual residual analysis to check
for model adequacy and to check assumptions. Sometimes model refinement will occur
after residual analysis, if we find that the model is inadequate or assumptions are badly
violated. The final step usually consists of graphical analysis—either main effect or
interaction plots, or response surface and contour plots.

Although the calculations described above are almost always done with a computer,
occasionally it is necessary to manually calculate an effect estimate or sum of squares
for an effect. To estimate an effect or to compute the sum of squares for an effect, we
must first determine the contrast associated with that effect. This can always be done by
using a table of plus and minus signs, such as Table 6-2 or Table 6-3. However, for large
values of k this is awkward, and we can use an alternate method. In general, we determine
the contrast for effect AB - - - K by expanding the right-hand side of

Contrastyp.x, = (@ D 1) --- (k= 1) (6-21)

Table 6-9 Analysis of Variance for a 2 Design

Source of Sum of Degrees of
Variation Squares Freedom
k main effects
A A 1
B SSg 1
K SSx 1
(%) two-factor interactions
AB SS4n 1
AC $Sac 1
JK 88k 1
(%) three-factor interactions
ABC SSanc
ABD SSasp 1
K SSux 1

(%) = 1 k-factor interaction
ABC---K SSupc.k 1
Error S, 2%n — 1)
Total SST n2" —1
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In expanding Equation 6-21, ordinary algebra is used with ‘‘1’’ being replaced by (1) in
the final expression. The sign in each set of parentheses is negative if the factor is included
in the effect and positive if the factor is not included.

To illustrate the use of Equation 6-21, consider a 2* factorial design. The contrast
for AB would be

Contrast,s = (@ — Db ~ I)(c + 1)
abc +ab+c+(1)—ac—bc—a-»>b

As a further example, in a 2° design, the contrast for ABCD would be

Contrastagep = (@ — 1) — 1)(c — )d — 1)(e + 1)
= abcde + cde +bde + ade + bce
+ ace + abe + e + abcd + cd + bd
+ad+bc+ac+ab+{Q)—a—-b-c
—abc — d — abd — acd — bcd — ae
— be — ce — abce — de — abde — acde — bcde

Once the contrasts for the effects have been computed, we may estimate the effects
and compute the sums of squares according to

2
AB---K = oY (Contrast,p..x) (6-22)
and
1 2
SSABmK = ;l‘i‘; (ContraStAB...K) (6-23)

respectively, where n denotes the number of replicates. There is also a tabular algorithm
due to Dr. Frank Yates that can occasionally be useful for manual calculation of the
effect estimates and the sums of squares. Refer to the supplemental text material for this
chapter.

6-5 A SINGLE REPLICATE OF THE 2* DESIGN

For even a moderate number of factors, the total number of treatment combinations in a
2% factorial design is large. For example, a 2° design has 32 treatment combinations, a
2° design has 64 treatment combinations, and so on. Because resources are usually lim-
ited, the number of replicates that the experimenter can employ may be restricted. Fre-
quently, available resources only allow a single replicate of the design to be run, unless
the experimenter is willing to omit some of the original factors.

An obvious risk when conducting an experiment that has only one run at each test
combination is that we may be fitting a model to noise. That is, if the response y is highly
variable, misleading conclusions may result from the experiment. The situation is illus-
trated in Figure 6-9a. In this figure, the straight line represents the true factor effect.
However, because of the random variability present in the response variable (represented
by the shaded band), the experimenter actually obtains the two measured responses rep-
resented by the dark dots. Consequently, the estimated factor effect is close to zero, and
the experimenter has reached an erroneous conclusion concerning this factor. Now if
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Figure 6-9 The impact of the choice of factor levels in an unreplicated
design.

there is less variability in the response, the likelihood of an erroneous conclusion will be
smaller. Another way to ensure that reliable effect estimates are obtained is to increase
the distance between the low (—) and high (+) levels of the factor, as illustrated in Figure
6-9b. Notice that in this figure, the increased distance between the low and high factor
levels results in a reasonable estimate of the true factor effect.

The single-replicate strategy is often used in screening experiments when there are
relatively many factors under consideration. Because we can never be entirely certain in
such cases that the experimental error is small, a good practice in these types of exper-
iments is to spread out the factor levels aggressively. You might find it helpful to re-read
the guidance on choosing factor levels in Chapter 1.

A single replicate of a 2 design is sometimes called an unreplicated factorial. With
only one replicate, there is no internal estimate of error (or ‘‘pure error’’). One approach
to the analysis of an unreplicated factorial is to assume that certain high-order interactions
are negligible and combine their mean squares to estimate the error. This is an appeal to
the sparsity of effects principle; that is, most systems are dominated by some of the
main effects and low-order interactions, and most high-order interactions are negligible.
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When analyzing data from unreplicated factorial designs, occasionally real high-
order interactions occur. The use of an error mean square obtained by pooling high-order
interactions is inappropriate in these cases. A method of analysis attributed to Daniel
(1959) provides a simple way to overcome this problem. Daniel suggests examining a
normal probability plot of the estimates of the effects. The effects that are negligible
are normally distributed, with mean zero and variance o* and will tend to fall along a
straight line on this plot, whereas significant effects will have nonzero means and will
not lie along the straight line. Thus the preliminary model will be specified to contain
those effects that are apparently nonzero, based on the normal probability plot. The
apparently negligible effects are combined as an estimate of error.

EXAMPLE 6-2 ++-+- Ceeeerecentanraesanans Ceeerereareantatsatttanananns .

A Single Replicate of the 2* Design
A chemical product is produced in a pressure vessel. A factorial experiment is carried
out in the pilot plant to study the factors thought to influence the filtration rate of this
product. The four factors are temperature (A), pressure (B), concentration of formalde-
hyde (C), and stirring rate (D). Each factor is present at two levels. The design matrix
and the response data obtained from a single replicate of the 2* experiment are shown
in Table 6-10 and Figure 6-10. The 16 runs are made in random order. The process
engineer is interested in maximizing the filtration rate. Current process conditions give
filtration rates of around 75 gal/h. The process also currently uses the concentration of
formaldehyde, factor C, at the high level. The engineer would like to reduce the form-
aldehyde concentration as much as possible but has been unable to do so because it
always results in lower filtration rates.

We will begin the analysis of this data by constructing a normal probability plot of
the effect estimates. The table of plus and minus signs for the contrast constants for the

Table 6-10 Pilot Plant Filtration Rate Experiment

Factor Filtration
Run Rate
Number A B C D Run Label (gal/h)

1 - - - - 1) 45

2 + — - - a 71

3 - + — - b 48

4 + + - - ab 65

5 - - + - ¢ 68

6 + - + - ac 60

7 - + + - bc 80

8 + + + - abc 65

9 - - - + d 43
10 + - + ad 100
11 - + — + bd 45
12 + + + abd 104
13 - - + + cd 75
14 + — + + acd 86
15 - + + + bed 70
16 + + + + abcd 96
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Figure 6-10 Data from the pilot plant filtration rate experiment for

Example 6-2.

2* design are shown in Table 6-11 (page 248). From these contrasts, we may estimate
the 15 factorial effects and the sums of squares shown in Table 6-12 (page 249).

The normal probability plot of these effects is shown in Figure 6-11 (page 249). All
of the effects that lie along the line are negligible, whereas the large effects are far from
the line. The important effects that emerge from this analysis are the main effects of A,
C, and D and the AC and AD interactions.

The main effects of A, C, and D are plotted in Figure 6-12a (page 250). All three
effects are positive, and if we considered only these main effects, we would run all three
factors at the high level to maximize the filtration rate. However, it is always necessary
to examine any interactions that are important. Remember that main effects do not have
much meaning when they are involved in significant interactions.

The AC and AD interactions are plotted in Figure 6-12b. These interactions are the
key to solving the problem. Note from the AC interaction that the temperature effect is
very small when the concentration is at the high level and very large when the concen-
tration is at the low level, with the best results obtained with low concentration and high
temperature. The AD interaction indicates that stirring rate D has little effect at low
temperature but a large positive effect at high temperature. Therefore, the best filtration
rates would appear to be obtained when A and D are at the high level and C is at the low
level. This would allow the reduction of the formaldehyde concentration to a lower level,
another objective of the experimenter.

Design Projection

Another interpretation of the effects in Figure 6-11 is possible. Because B (pressure) is
not significant and all interactions involving B are negligible, we may discard B from
the experiment so that the design becomes a 2° factorial in A, C, and D with two repli-
cates. This is easily seen from examining only columns A, C, and D in the design matrix
shown in Table 6-10 and noting that those columns form two replicates of a 2* design.
The analysis of variance for the data using this simplifying assumption is summarized
in Table 6-13 (page 250). The conclusions that we would draw from this analysis are
essentially unchanged from those of Example 6-2. Note that by projecting the single
replicate of the 2* into a replicated 2%, we now have both an estimate of the ACD inter-
action and an estimate of error based on what is sometimes called hidden replication.
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Table 6-11 Contrast Constants for the 2* Design

CD ACD BCD ABCD

ABD

BD

BC ABC

AC

ab
ac
be
abc
ad
bd
abd
cd
acd
bed

+

abcd
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Table 6-12  Factor Effect Estimates and Sums of Squares for the 2*

Factorial in Example 6-2

Model Effect Sum of Percent
Term Estimate Squares Contribution
A 21.625 1870.56 32.6397
B 3.125 39.0625 0.681608
C 9.875 390.062 6.80626
D 14.625 855.563 14.9288
AB 0.125 0.0625 0.00109057
AC —18.125 1314.06 22.9293
AD 16.625 1105.56 19.2911
BC 2.375 22.5625 0.393696
BD —0.375 0.5625 0.00981515
CD -1.125 5.0625 0.0883363
ABC 1.875 14.0625 0.245379
ABD 4.125 68.0625 1.18763
ACD —1.625 10.5625 0.184307
BCD —-2.625 27.5625 0.480942
ABCD 1.375 7.5625 0.131959
99 |-
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Figure 6-11 Normal probability plot of the effects for the 2* factorial in Example 6-2.
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Figure 6-12 Main effect and interaction plots for Example 6-2.

A

{b) Interaction plots

Table 6-13  Analysis of Variance for the Pilot Plant Filtration Rate Experiment in A, C, and D

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
A 1870.56 1 1870.56 83.36 <0.0001
C 390.06 1 390.06 17.38 <0.0001
D 855.56 1 855.56 38.13 <0.0001
AC 1314.06 1 1314.06 58.56 <0.0001
AD 1105.56 1 1105.56 49.27 <0.0001
CD 5.06 1 5.06 <1

ACD 10.56 1 10.56 <1

Error 179.52 8 22.44

Total 5730.94 15
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The concept of projecting an unreplicated factorial into a replicated factorial in fewer
factors is very useful. In general, if we have a single replicate of 2* design, and if
h (h < k) factors are negligible and can be dropped, then the original data correspond to
a full two-level factorial in the remaining £ — A factors with 2" replicates.

Diagnostic Checking

The usual diagnostic checks should be applied to the residuals of a 2 design. Our analysis
indicates that the only significant effects are A = 21.625, C = 9.875, D = 14.625,
AC = —18.125, and AD = 16.625. If this is true, the estimated filtration rates are given

by
21.625 9.875 14.625 18.125
oo () o (2552) o (129)  _ (152)

where 70.06 is the average response and the coded variables x;, x;, x4 take on values
between —1 and +1. The predicted filtration rate at run (1) is

5 = 70,06 + <21.2625> 1+ (9.2;75) -1+ (14.2625) 1)

. .62
- (%) =D(=D + (%) (=D(=D)

= 46.22

Because the observed value is 45, the residual ise = y — y = 45 — 46.22 = —1.22.
The values of y, §, and e = y — ¥ for all 16 observations follow.

y b e=y—J
(1) 45 46.22 —-1.22
a 71 69.39 1.61
b 48 46.22 1.78
ab 65 69.39 —4.39
c 68 74.23 —6.23
ac 60 61.14 -1.14
be 80 74.23 577
abc 65 61.14 3.86
d 43 44.22 —-1.22
ad 100 100.65 —0.65
bd 45 44.22 0.78
abd 104 100.65 3.35
cd 75 72.23 271
acd 86 92.40 -6.40
bcd 70 72.23 —2.23
abcd 96 92.40 3.60

A normal probability plot of the residuals is shown in Figure 6-13 on the next page. The
points on this plot lie reasonably close to a straight line, lending support to our conclusion
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Figure 6-13 Normal probability plot of residuals for Example 6-2.

that A, C, D, AC, and AD are the only significant effects and that the underlying as-
sumptions of the analysis are satisfied.

The Response Surface

We used the interaction plots in Figure 6-12 to provide a practical interpretation of the
results of this experiment. Sometimes we find it helpful to use the response surface for
this purpose. The response surface is generated by the regression model

21.625 9.875 14.625
ﬁ=7006+<—*§——)x1+<2>x3+< 2 >X4

_ (18.125 + 16.625
> X1X3 > X1 X4

Figure 6-14a shows the response surface contour plot when stirring rate is at the high
level (i.e., x, = 1). The contours are generated from the above model with x, = 1, or

38.25 9.875 18.125
yA = 773725 + <T> x; + <T> X3 — < 5 ) X1X3

Notice that the contours are curved lines because the model contains an interaction term.
Figure 6-14b is the response surface contour plot when temperature is at the high
level (i.e., x, = 1). When we put x;, = 1 in the regression model we obtain

8.25 1.2
_)’)‘ = 80.8725 — <—2""> x; + (3 5 5) X4
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Figure 6-14 Contour plots of filtration rate, Example 6-2.

These contours are parallel straight lines because the model contains only the main effects
of factors C (x3) and D (x,).

Both contour plots indicate that if we want to maximize the filtration rate, variables
A (x)) and D (x4) should be at the high level and that the process is relatively robust to
concentration C. We obtained similar conclusions from the interaction graphs.

The Half-Normal Plot of Effects

An alternative to the normal probability plot of the factor effects is the half-normal plot.
This is a plot of the absolute value of the effect estimates against their cumulative normal
probabilities. Figure 6-15 (page 254) presents the half-normal plot of the effects for
Example 6-2. The straight line on the half-normal plot always passes through the origin
and should also pass close to the fiftieth percentile data value. Many analysts feel that
the half-normal plot is easier to interpret, particularly when there are only a few effect
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Figure 6-15 Half-normal plot of the factor effects from Example 6-2.

estimates such as when the experimenter has used an eight-run design. Some software
packages will construct both plots.

Other Methods for Analyzing Unreplicated Factorials

The standard analysis procedure for an unreplicated two-level factorial design is the normal
(or half-normal) plot of the estimated factor effects. However, unreplicated designs are so
widely used in practice that many formal analysis procedures have been proposed to over-
come the subjectivity of the normal probability plot. Hamada and Balakrishnan (1998)
compared some of these methods. They found that the method proposed by Lenth (1989)
has good power to detect significant effects. It is also easy to implement, and as a result,
it is beginning to appear in some software packages for analyzing data from unreplicated
factorials. We give a brief description of Lenth’s method.

Suppose that we have m contrasts of interest, say ¢y, ¢, . . . , C,. If the design is an
unreplicated 2* factorial design, these contrasts correspond to the m = 2% — 1 factor
effect estimates. The basis of Lenth’s method is to estimate the variance of a contrast
from the smallest (in absolute value) contrast estimates. Let

so = 1.5 X median(|c;|)
and

PSE = 1.5 X median(]|¢;| :|¢;| < 2.5s0)




6-5 A SINGLE REPLICATE OF THE 2 DESIGN 255

PSE is called the “‘pseudo standard error,”” and Lenth shows that it is a reasonable
estimator of the contrast variance when there are not many active (significant) effects.
The PSE is used to judge the significance of contrasts. An individual contrast can be
compared to the margin of error

ME = t0.025,d X PSE

where the degrees of freedom are defined as d = m/3. For inference on a group of
contrasts Lenth suggests using the simultaneous margin of error

SME = t,, X PSE

where the percentage point of the ¢ distribution used is y = 1 — (1 + 0.95"")/2.
To illustrate Lenth’s method, consider the 2* experiment in Example 6-2. The cal-
culations result in s, = 1.5 X | ~2.625| = 3.9375 and 2.5 X 3.9375 = 9.84375, so

PSE = 1.5 X |1.75] = 2.625
ME = 2571 X 2.625 = 6.75
SME = 5219 X 2.625 = 13.70

Now consider the effect estimates in Table 6-12. The SME criterion would indicate that
the four largest effects (in magnitude) are significant, because their effect estimates ex-
ceed SME. The main effect of C is significant according to the ME criterion, but not with
respect to SME. However, because the AC interaction is clearly important, we would
probably include C in the list of significant effects. Notice that in this example, Lenth’s
method has produced the same answer that we obtained previously from examination of
the normal probability plot of effects.

Several authors [see Hamada and Balakrishnan (1998), Loughin (1998), Loughin
and Noble (1997), and Larntz and Whitcomb (1998)] have observed that Lenth’s method
fails to control type I error rates, and that simulation methods can be used to calibrate
his procedure. Larntz and Whitcomb (1998) suggest replacing the original ME and SME
multipliers with adjusted multipliers as follows:

Number of Contrasts 7 15 31

Original ME 3.764 2.571 2.218
Adjusted ME 2.295 2.140 2.082
Original SME 9.008 5.219 4218
Adjusted SME 4.891 4.163 4.030

These are in close agreement with the results in Ye and Hamada (2000).

In general, the Lenth method is a clever and useful procedure. However, we rec-
ommend using it as a supplement to the usual normal probability plot of effects, not as
a replacement for it.

Bisgaard (1998—1999) has provided a nice graphical technique, called a conditional
inference chart, to assist in interpreting the normal probability plot. The purpose of the
graph is to help the experimenter in judging significant effects. This would be relatively
easy if the standard deviation o were known, or if it could be estimated from the data.
In unreplicated designs, there is no internal estimate of o, so the conditional inference
chart is designed to help the experimenter evaluate effect magnitude for a range of
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standard deviation values. Bisgaard bases the graph on the result that the standard error
of an effect in a two-level design with N runs (for an unreplicated factorial, N = 2%) is

29
VN

where o is the standard deviation of an individual observation. Then *2 times the stan-
dard error of an effect is

4o
+
VN

Once the effects are estimated, plot a graph as shown in Figure 6-16, with the effect
estimates plotted along the vertical, or y-axis. In this figure, we have used the effect
estimates from Example 6-2.The horizontal, or x-axis, of Figure 6-16 is a standard de-
viation (o) scale. The two lines are at

_ A _ 4o
YT W R/
In our example, N = 16, so the lines are at y = + o and y = —o. Thus, for any given

value of the standard deviation o we can read off the distance between these two lines
as an approximate 95 percent confidence interval on the negligible effects.

In Figure 6-16, we observe that if the experimenter thinks that the standard deviation
is between 4 and 8, then factors A, C, D, and the AC and AD interactions are significant.
If he or she thinks that the standard deviation is as large as 10, factor C may not be
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Figure 6-16 A conditional inference chart for Example 6-2.
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Figure 6-17 Data from the drilling experiment of Example 6-3.

significant. That is, for any given assumption about the magnitude of o, the experimenter
can construct a ‘‘yardstick’” for judging the approximate significance of effects. The
chart can also be used in reverse. For example, suppose that we were uncertain about
whether factor C is significant. The experimenter could then ask whether it is reasonable
to expect that o could be as large as 10 or more. If it is unlikely that o is as large as 10,
then we can conclude that C is significant.

We now present three instructive examples of unreplicated 2* factorial designs.

Data Transformation in a Factorial Design
Daniel (1976) describes a 2* factorial design used to study the advance rate of a drill as
a function of four factors: drill load (A), flow rate (B), rotational speed (C), and the type
of drilling mud used (D). The data from the experiment are shown in Figure 6-17.

The normal probability plot of the effect estimates from this experiment is shown in
Figure 6-18. Based on this plot, factors B, C, and D along with the BC and BD interactions

— 99

[ X9
oty

J

Normal probability, (1 —P,) x 100

] | ] ] | |
0 1 2 3 4 5 6 7
Effect estimate

Figure 6-18 Normal probability plot of effects for Example 6-3.
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Figure 6-19 Normal probability plot of residuals for Example 6-3.

require interpretation. Figure 6-19 is the normal probability plot of the residuals and
Figure 6-20 is the plot of the residuals versus the predicted advance rate from the model
containing the identified factors. There are clearly problems with normality and equality
of variance. A data transformation is often used to deal with such problems. Because the
response variable is a rate, the log transformation seems a reasonable candidate.

Figure 6-21 presents a normal probability plot of the effect estimates following the

Residuals

L1 | | | |
2 5 8 11 14

Predicted advance rate
Figure 6-20 Plot of residuals versus predicted rate for Example 6-3.
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Figure 6-21 Normal probability plot of effects for Example 6-3 following log
transformation.
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transformation y* = In y. Notice that a much simpler interpretation now seems possible,
because only factors B, C, and D are active. That is, expressing the data in the correct
metric has simplified its structure to the point that the two interactions are no longer

required in the explanatory model.

Figures 6-22 and 6-23 present, respectively, a normal probability plot of the residuals

J

Normal probability, (1 — P)) x 100
P.x 100

| | |
-0.2 -0.1 0 0.1 0.2
Residuals

Figure 6-22 Normal probability plot of residuals for Example 6-3 following log
transformation.
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Figure 6-23 Plot of residuals versus predicted rate for Example 6-3 fol-
lowing log transformation.

and a plot of the residuals versus the predicted advance rate for the model in the log
scale containing B, C, and D. These plots are now satisfactory. We conclude that the
model for y* = In y requires only factors B, C, and D for adequate interpretation. The
analysis of variance for this model is summarized in Table 6-14. The model sum of
squares is
SSModel = SSB + SSC + SSD
= 5.345 + 1.339 + 0431
=17.115

and R? = SSwmoeae/SSr = 7.115/7.288 = 0.98, so the model explains about 98 percent of
the variability in the drill advance rate.

---------------------------- P R R R R R R R R R R R R R

EXAMPLE 6-4 +cvvvecvoeeceseecnetssassasastaanassosassossscstessasnoncs
Location and Dispersion Effects in an Unreplicated Factorial

A 2* design was run in a manufacturing process producing interior side-wall and window
panels for commercial aircraft. The panels are formed in a press, and under present

Table 6-14 Analysis of Variance for Example 6-3 Following
the Log Transformation

Source of Sum of  Degrees of Mean

Variation Squares Freedom Square F, P-Value
B (Flow) 5.345 1 5.345 381.79 <(.0001
C (Speed) 1.339 1 1.339 95.64 <0.0001
D (Mud) 0.431 1 0.431 30.79 <0.0001
Error 0.173 12 0.014

Total 7.288 15
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Factors Low (-) High {+)
A = Temperature (°F) 295 325
B = Clamp time (min) 7 9
C = Resin flow 10 20
D = Closing time (s) 15 30
D
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Figure 6-24 Data for the panel process experiment of Example 6-4.

conditions the average number of defects per panel in a press load is much too high.
(The current process average is 5.5 defects per panel.) Four factors are investigated using
a single replicate of a 2* design, with each replicate corresponding to a single press load.
The factors are temperature (4), clamp time (B), resin flow (C), and press closing time
(D). The data for this experiment are shown in Figure 6-24.

A normal probability plot of the factor effects is shown in Figure 6-25. Clearly the
two largest effects are A = 5.75 and C = —4.25. No other factor effects appear to be
large, and A and C explain about 77 percent of the total variability, so we conclude that
lower temperature (A) and higher resin flow (C) would reduce the incidence of panel
defects.

Careful residual analysis is an important aspect of any experiment. A normal prob-
ability plot of the residuals showed no anomalies, but when the experimenter plotted the
residuals versus each of the factors A through D, the plot of residuals versus B (clamp

1 T T 99
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10— — 90
3 o 80
éﬁao— —70
R ]
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2 80 — 20
%
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| | |
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Factor effects

Figure 6-25 Normal probability plot of the factor effects for the panel process ex-
periment of Example 6-4.
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Figure 6-26 Plot of residuals versus clamp time for Example
6-4.

time) presented the pattern in Figure 6-26. This factor, which is unimportant insofar as
the average number of defects per panel is concerned, is very important in its effect on
process variability, with the lower clamp time resulting in less variability in the average
number of defects per panel in a press load.

The dispersion effect of clamp time is also very evident from the cube plot in Figure
6-27, which plots the average number of defects per panel and the range of the number
of defects at each point in the cube defined by factors A, B, and C. The average range
when B is at the high level (the back face of the cube in Figure 6-27) is Rz+ = 4.75, and
when B is at the low level it is Rg- = 1.25.

As a result of this experiment, the engineer decided to run the process at low tem-
perature and high resin flow to reduce the average number of defects, at low clamp time
to reduce the variability in the number of defects per panel, and at low press closing time
(which had no effect on either location or dispersion). The new set of operating conditions
resulted in a new process average of less than one defect per panel.

R R R R AR R R A A R LR A A

The residuals from a 2* design provide much information about the problem under
study. Because residuals can be thought of as observed values of the noise or error, they
often give insight into process variability. We can systematically examine the residuals
from an unreplicated 2* design to provide information about process variability.

|
R=05 R- /
20 g 750e——l——

C = Resin flow

10—

A = Temperature {°F)

Figure 6-27 Cube plot of temperature, clamp time, and resin flow for Example
6-4.
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Consider the residual plot in Figure 6-26. The standard deviation of the eight resid-
uals where B is at the low level is S(B™) = 0.83, and the standard deviation of the eight
residuals where B is at the high level is S(B¥) = 2.72. The statistic

S*B™)
F}{=1In
U sB)
has an approximate normal distribution if the two variances o*(B*)and 0*(B™) are equal.
To illustrate the calculations, the value of F} is
SZ( B+)
S*B")
@2y
(0.83)°
= 2.37

Table 6-15 (on the previous page) presents the complete set of contrasts for the 24
design along with the residuals for each run from the panel process experiment in Ex-
ample 6-4. Each column in this table contains an equal number of plus and minus signs,
and we can calculate the standard deviation of the residuals for each group of signs in
each column, say SG*) and S(G7),i =1,2,..., 15. Then

S2G")
n—5—
S°GT)
is a statistic that can be used to assess the magnitude of the dispersion effects in the
experiment. If the variance of the residuals for the runs where factor i is positive equals
the variance of the residuals for the runs where factor i is negative, then F;* has an

approximate normal distribution. The values of F * are shown below each column in
Table 6-15.

Figure 6-28 is a normal probability plot of the dispersion effects F ¥ Clearly, B is
an important factor with respect to process dispersion. For more discussion of this pro-

(6-24)

Fz=1In

Ff=1

i=1,2,...,15 (6-25)
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Figure 6-28 Normal probability plot of the dispersion effects F * for Ex-
ample 6-4.
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cedure, see Box and Meyer (1986) and Myers and Montgomery (1995). Also, in order
for the model residuals to properly convey information about dispersion effects, the
location model must be correctly specified. Refer to the supplemental text material for
this chapter for more details and an example.

Duplicate Measurements on the Response

A team of engineers at a semiconductor manufacturer ran a 2* factorial design in a vertical
oxidation furnace. Four wafers are ‘‘stacked’’ in the furnace, and the response variable
of interest is the oxide thickness on the wafers. The four design factors are temperature
(A), time (B), pressure (C), and gas flow (D). The experiment is conducted by loading
four wafers into the furnace, setting the process variables to the test conditions required
by the experimental design, processing the wafers, and then measuring the oxide thick-
ness on all four wafers. Table 6-16 presents the design and the resulting thickness mea-
surements. In this table, the four columns labeled ‘‘Thickness’’ contain the oxide
thickness measurements on each individual wafer, and the last two columns contain the
sample average and sample variance of the thickness measurements on the four wafers
in each run.

The proper analysis of this experiment is to consider the individual wafer thickness
measurements as duplicate measurements, and not as replicates. If they were really
replicates, each wafer would have been processed individually on a single run of the
furnace. However, because all four wafers were processed together, they received the
treatment factors (that is, the levels of the design variables) simultaneously, so there is
much less variability in the individual wafer thickness measurements than would have
been observed if each wafer was a replicate. Therefore, the average of the thickness
measurements is the correct response variable to initially consider.

Table 6-17 (page 266) presents the effect estimates for this experiment, using the
average oxide thickness y as the response variable. Note that factors A and B and the AB
interaction have large effects that together account for nearly 90 percent of the variability

Table 6-16 The Oxide Thickness Experiment
Standard Run

Order Order A B C D Thickness y 52
1 10 -1 -1 -1 —1 378 376 379 379 378 2
2 7 1 -1 -1 -1 415 416 416 417 416 0.67
3 3 -1 1 -1 -1 380 379 382 383 381 3.33
4 9 1 1 -1 -1 450 446 449 447 448 3.33
5 6 -1 -1 1 -1 375 371 373 369 372 6.67
6 2 1 -1 1 -1 391 390 388 391 390 2
7 5 -1 1 1 -1 384 385 386 385 385 0.67
8 4 1 1 1 -1 426 433 430 431 430 8.67
9 12 -1 -1 -1 1 381 381 375 383 380 12.00
10 16 1 -1 -1 1 416 420 412 412 415 14.67
11 8 -1 1 -1 1 371 372 371 370 371 0.67
12 1 1 1 -1 1 445 448 443 448 446 6
13 14 -1 ~1 1 1 377 377 379 379 378 1.33
14 15 1 -1 1 1 391 391 386 400 392 34
15 11 -1 1 1 1 375 376 376 377 376 0.67
16 13 1 1 1 1 430 430 428 428 429 1.33
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Table 6-17 Effect Estimates for Example 6-5, Response Variable Is

Average Oxide Thickness
Model Effect Sum of Percent
Term Estimate Squares Contribution
A 43.125 7439.06 67.9339
B 18.125 1314.06 12.0001
C —10.375 430.562 393192
D —1.625 10.5625 0.0964573
AB 16.875 1139.06 10.402
AC —10.625 451.563 4.12369
AD 1.125 5.0625 0.046231
BC 3.875 60.0625 0.548494
BD —3.875 60.0625 0.548494
CD 1.125 5.0625 0.046231
ABC —0.375 0.5625 0.00513678
ABD 2.875 33.0625 0.301929
ACD —0.125 0.0625 0.000570753
BCD —0.625 1.5625 0.0142688
ABCD 0.125 0.0625 0.000570753

in average oxide thickness. Figure 6-29 is a normal probability plot of the effects. From
examination of this display, we would conclude that factors A, B, and C and the AB and
AC interactions are important. The analysis of variance display for this model is shown
in Table 6-18.

The model for predicting average oxide thickness is

$ = 399.19 + 21.56x; + 9.06x, — 5.19x; + 8.44x.x, — 5.31x,x;

The residual analysis of this model is satisfactory.

The experimenters are interested in obtaining an average oxide thickness of 400 A,
and product specifications require that the thickness must lie between 390 and 410 A.
Figure 6-30 (page 268) presents two contour plots of average thickness, one with factor
C (or x3), pressure, at the low level (that is, x3 = —1) and the other with C (or x3) at the
high level (that is, x; = +1). From examining these contour plots, it is obvious that there
are many combinations of time and temperature (factors A and B) that will produce
acceptable results. However, if pressure is held constant at the low level, the operating
<“window’” is shifted toward the left, or lower, end of the time axis, indicating that lower
cycle times will be required to achieve the desired oxide thickness.

It is interesting to observe the results that would be obtained if we incorrectly
consider the individual wafer oxide thickness measurements as replicates. Table 6-19
(page 269) presents a full model analysis of variance based on treating the experiment
as a replicated 2* factorial. Notice that there are many significant factors in this analysis,
suggesting a much more complex model than we found when using the average oxide
thickness as the response. The reason for this is that the estimate of the error variance in
Table 6-19 is too small (6> = 6.12). The residual mean square in Table 6-19 reflects the
variability between wafers within a run and variability between runs. The estimate of
error obtained from Table 6-18 is much larger, 6° = 17.61, and it is primarily a measure
of the between-run variability. This is the best estimate of error to use in judging the
significance of process variables that are changed from run to run.

A logical question to ask is: What harm results from identifying too many factors as
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Figure 6-29 Normal probability plot of the effects for the average oxide thickness
response, Example 6-5.
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Table 6-18 Analysis of Variance (From Design-Expert) for the Average Oxide Thickness
Response, Example 6-5
Sum of Mean F
Source Squares DF Square Value Prob > F
Model 10774.31 5 2154.86 122.35 <0.000
A 7439.06 1 7439.06 422.37 <0.000
B 1314.06 1 1314.06 74.61 <0.000
c 430.56 1 430.56 24.45 0.0006
AB 1139.06 1 1139.06 64.67 <0.000
AC 451.56 1 451.56 25.64 0.0005
Residual 176.12 10 17.61
Cor Total 10950.44 15
Std. Dev. 4.20 R-Squared 0.9839
Mean 399.19 Adj. R-Squared 0.9759
C.V. 1.05 Pred. R-Squared 0.9588
PRESS 450.88 Adeq. Precision 27.967
Coefficient Standard 95% CI 95% Cl
Factor Estimate DF Error Low High
Intercept 399.19 1 1.05 396.85 401.53
A-Time 21.56 1 1.05 19.22 23.90
B-Temp 9.06 1 1.05 6.72 11.40
C-Pressure —5.19 1 1.05 -7.53 -2.85
AB 8.44 1 1.05 6.10 10.78
AC -5.31 1 1.05 —7.65 —-2.97
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Figure 6-30 Contour plots of average oxide thickness with pressure (x3)
held constant.

important? as the incorrect analysis in Table 6-19 would certainly do. The answer is that
trying to manipulate or optimize the unimportant factors would be a waste of resources,
and it could result in adding unnecessary variability to other responses of interest.
When there are duplicate measurements on the response, there is almost always
useful information about some aspect of process variability contained in these observa-
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Table 6-19  Analysis of Variance (From Design-Expert) of the Individual Wafer Oxide

Thickness Response
Sum of Mean F

Source Squares DF Square Value Prob > F
Model 43801.75 16 2920.12 476.75 <0.0001
A 29756.25 1 29756.25 4858.16 <0.0001
B 5256.25 1 5256.25 858.16 <0.0001
( 1722.25 1 1722.25 281.18 <0.0001
D 42.25 ) 42.25 6.90 0.0115
AB 4556.25 1 4556.25 743.88 <0.0001
AC 1806.25 1 1806.25 294.90 <0.0001
AD 20.25 ) 20.25 3.31 0.0753
BC 240.25 1 240.25 39.22 <0.0001
BD 240.25 1 240.25 39.22 <0.0001
CcD 20.25 1 20.25 3.31 0.0753
ABD 132.25 1 132.25 21.59 <0.0001
ABC 2.25 1 2.25 0.37 0.5473
ACD 0.25 1 0.25 0.041 0.8407
BCD 6.25 1 6.25 1.02 0.3175
ABCD 0.25 ) 0.25 0.041 0.8407
Residual 294.00 48 6.12
Lack of Fit 0.000 0
Pure Error 294.00 48 6.13
Cor. Total 44095.75 63

tions. For example, if the duplicate measurements are multiple tests by a gauge on the
same experimental unit, then the duplicate measurements give some insight about gauge
capability. If the duplicate measurements are made at different locations on an experi-
mental unit, they may give some information about the uniformity of the response variable
across that unit. In our example, because we have one observation on each of four
experimental units that have undergone processing together, we have some information
about the within-run variability in the process. This information is contained in the vari-
ance of the oxide thickness measurements from the four wafers in each run. It would be
of interest to determine if any of the process variables influence the within-run variability.

Figure 6-31 (page 270) is a normal probability plot of the effect estimates obtained
using In(s?) as the response. Recall from Chapter 3 that we indicated that the log trans-
formation is generally appropriate for modeling variability. There are not any strong
individual effects, but factor A and the BD interaction are the largest. If we also include
the main effects of B and D to obtain a hierarchical model, then the model for In (s?) is

S
In (s?) = 1.08 + 0.41x, — 0.40x, + 0.20x, — 0.56x,x,

The model accounts for just slightly less than half of the variability in the In (s) response,
which is certainly not spectacular as empirical models go, but it is often difficult to obtain
exceptionally good models of variances.

Figure 6-32 (page 270) is a contour plot of the predicted variance (not the log of the
predicted variance) with pressure x; at the low level (recall that this minimizes cycle
time) and gas flow x, at the high level. This choice of gas flow gives the lowest values
of predicted variance in the region of the contour plot.

The experimenters here were interested in selecting values of the design variables
that gave a mean oxide thickness within the process specifications and as close to 400
A as possible, while simultaneously making the within-run variability small, say s> < 2.
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Figure 6-31 Normal probability plot of the effects using In (s?) as the response, Ex-
ample 6-5.
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Figure 6-32 Contour plot of s* (within-run variability) with pressure at
the low level and gas flow at the high level.
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Figure 6-33 Overlay of the average oxide thickness and s> responses with
pressure at the low level and gas flow at the high level.

One possible way to find a suitable set of conditions is to overlay the contour plots in
Figures 6-30 and 6-32. The overlay plot is shown in Figure 6-33, with the specifications
on mean oxide thickness and the constraint s* < 2 shown as contours. In this plot,
pressure is held constant at the low level and gas flow is held constant at the high level.
The open region near the upper left center of the graph identifies a feasible region for
the variables time and temperature.

This is a simple example of using contour plots to study two responses simulta-
neously. We will discuss this problem in more detail in Chapter 11.
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6-6 THE ADDITION OF CENTER POINTS TO THE 2* DESIGN

A potential concern in the use of two-level factorial designs is the assumption of linearity
in the factor effects. Of course, perfect linearity is unnecessary, and the 2* system will
work quite well even when the linearity assumption holds only very approximately. In
fact, we have noted that if interaction terms are added to a main effects or first-order
model, resulting in

k

y=B+t 2 Bix; + 22 Byx:x; + € (6-26)
j=1 i<j

then we have a model capable of representing some curvature in the response function.

This curvature, of course, results from the twisting of the plane induced by the interaction

terms B;:x,x;.
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There are going to be situations where the curvature in the response function is not
adequately modeled by Equation 6-26. In such cases, a logical model to consider is

i<j

k k
y =B+ 21 Bx; + > Byxix; + 21 B,x + € (6-27)
j= Jj=

where the 3, represent pure second-order or quadratic effects. Equation 6-27 is called
a second-order response surface model.

In running a two-level factorial experiment, we usually anticipate fitting the first-
order model in Equation 6-26, but we should be alert to the possibility that the second-
order model in Equation 6-27 is really more appropriate. There is a method of replicating
certain points in a 2° factorial that will provide protection against curvature from second-
order effects as well as allow an independent estimate of error to be obtained. The method
consists of adding center points to the 2* design. These consist of » replicates run at the
points x; = 0 (i = 1,2, ..., k). One important reason for adding the replicate runs at the
design center is that center points do not affect the usual effect estimates in a 2% design.
When we add center points, we assume that the & factors are quantitative.

To illustrate the approach, consider a 2° design with one observation at each of the
factorial points (—, —), (+, =), (—, +) and (+, +) and n¢ observations at the center
point (0, 0). Figure 6-34 illustrates the situation. Let yr be the average of the four runs
at the four factorial points and let y be the average of the n¢ runs at the center point. If
the difference y» — y is small, then the center points lie on or near the plane passing
through the factorial points, and there is no quadratic curvature. On the other hand, if
¥r — yc is large, then quadratic curvature is present. A single-degree-of-freedom sum
of squares for pure quadratic curvature is given by

< = 32

S qvarase = NI IO, (6-28)
ng + nc

where, in general, n, is the number of factorial design points. This quantity may be

compared to the error mean square to test for pure quadratic curvature. More specifically,

X2

+1

Figure 6-34 A 27 design with center points.
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when points are added to the center of the 2* design, then the test for curvature (using
Equation 6-28) actually tests the hypotheses

k
Hy: El B; =0
=

k
H1: 2 Bjj #0
j=1

Furthermore, if the factorial points in the design are unreplicated, one may use the nc
center points to construct an estimate of error with no — 1 degrees of freedom.

A chemical engineer is studying the yield of a process. There are two variables of interest,
reaction time and reaction temperature. Because she is uncertain about the assumption
of linearity over the region of exploration, the engineer decides to conduct a 2* design
(with a single replicate of each factorial run) augmented with five center points. The
design and the yield data are shown in Figure 6-35.

Table 6-20 summarizes the analysis of variance for this experiment. The mean square
error is calculated from the center points as follows:

SSe
ne — 1 (6-29)
> i -y

Center points

MSE =

Ae — 1
Thus, in Table 6-20 (page 274),

5
> (y: — 40.46)>
i=1

MSe =
4
01720
4
= 0.0430
40.0 415
160~ 1
g
[ 40.3
g 40.5
® 155 O e« 40.7
E‘ 40.2
2 40.6
1
a 39.3 40.9
150 1L
| | J
=1 0 +1
| I J
30 35 40

A = Reaction time {min)

Figure 6-35 The 2° design with five center
points for Example 6-6.
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Table 6-20 Analysis of Variance for Example 6-6

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
A (Time) 2.4025 1 2.4025 55.87 0.0017
B (Temperature) 0.4225 1 0.4225 9.83 0.0350
AB 0.0025 1 0.0025 0.06 0.8185
Pure quadratic 0.0027 1 0.0027 0.06 0.8185
Error 0.1720 4 0.0430
Total 3.0022 8

The average of the points in the factorial portion of the design is y» = 40.425, and the
average of the points at the center is yo = 40.46. The difference yr — yc = 40.425 —
40.46 = —0.035 appears to be small. The pure quadratic curvature sum of squares in the
analysis of variance table is computed from Equation 6-28 as follows:
_ nenc(yr — yc)2
SSPure quadratic e i e

_ (4)(5)(—0.035)*

4+5
= 0.0027

The analysis of variance indicates that both factors exhibit significant main effects, that
there is no interaction, and that there is no evidence of second-order curvature in the
response over the region of exploration. That is, the null hypothesis Hy: 811 + B = 0
cannot be rejected.

In Example 6-6, we concluded that there was no indication of quadratic effects; that
is, a first-order model

y=Bot+ Bixi + Box; + Broxix; + €

is appropriate (although we probably don’t need the interaction term). There will be
situations where the quadratic terms will be required. That is, we will now have to assume
a second-order model such as

Y= Bot+ Bixi + Boxy + Boxixx + Bux% + Bzzx% + €

Unfortunately, we cannot estimate the unknown parameters (the 3’s) in this model be-
cause there are six parameters to estimate and the 2> design plus center points in Figure
6-35 only has five independent runs.

A simple and highly effective solution to this problem is to augment the 2> design
with four axial runs, as shown in Figure 6-36a. The resulting design, called a central
composite design, can now be used to fit the second-order model. Figure 6-36b shows
a central composite design for k = 3 factors. This design has 14 + nc runs (usually
3 < no < 5), and is a very efficient design for fitting the 10-parameter second-order
model in £ = 3 factors.

Central composite designs are used extensively in building second-order response
surface models. These designs will be discussed in more detail in Chapter 11.
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Figure 6-36 Central composite designs.

We conclude this section with a few additional useful suggestions and observations
concerning the use of center points.

1.

When a factorial experiment is conducted in an ongoing process, consider using
the current operating conditions (or recipe) as the center point in the design.
This often assures the operating personnel that at least some of the runs in the
experiment are going to be performed under familiar conditions, and so the
results obtained (at least for these runs) are unlikely to be any worse than are
typically obtained.

When the center point in a factorial experiment correspond to the usual operating
recipe, the experimenter can use the observed responses at the center point to
provide a rough check of whether anything ‘‘unusual’’ occurred during the
experiment. That is, the center point responses should be very similar to responses
observed historically in routine process operation. Often operating personnel will
maintain a control chart for monitoring process performance. Sometimes the
center point responses can be plotted directly on the control chart as a check of
the manner in which the process was operating during the experiment.

Consider running the replicates at the center point in nonrandom order.
Specifically, run one or two center points at or near the beginning of the
experiment, one or two near the middle, and one or two near the end. By
spreading the center points out in time, the experimenter has a rough check on
the stability of the process during the experiment. For example, if a trend has
occurred in the response while the experiment was performed, plotting the center
point responses versus time order may reveal this.

Sometimes experiments must be conducted in situations where there is little or
no prior information about process variability. In these cases, running two or
three center points as the first few runs in the experiment can be very helpful.
These runs can provide a preliminary estimate of variability. If the magnitude
of the variability seems reasonable, continue; on the other hand, if larger than
anticipated (or reasonable!) variability is observed, stop. Often it will be very
profitable to study the question of why the variability is so large before
proceeding with the rest of the experiment.

Usually, center points are employed when all design factors are quantitative.
However, sometimes there will be one or more qualitative or categorical variables
and several quantitative ones. Center points can still be employed in these cases.
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Figure 6-37 A 23 factorial design with one qualitative factor and
center points.

6-7 PROBLEMS
6-1.

6-2.

6-3.

To illustrate, consider an experiment with two quantitative factors, time and
temperature, each at two levels, and a single qualitative factor, catalyst type, also
with two levels (organic and nonorganic). Figure 6-37 shows the 2° design for
these factors. Notice that the center points are placed in the opposed faces of the
cube which involve the quantitative factors. In other words, the center points can
be run at the high and low level treatment combinations of the qualitative factors,
just so long as those subspaces involves only quantitative factors.

An engineer is interested in the effects of cutting speed (4), tool geometry (B), and cutting
angle (C) on the life (in hours) of a machine tool. Two levels of each factor are chosen,
and three replicates of a 2° factorial design are run. The results follow:

Treatment Replicate
A B C Combination I II I
- - - 1) 22 31 25
+ - — a 32 43 29
— + - b 35 34 50
+ + - ab 55 47 46
— - + c 44 45 38
+ - + ac 40 37 36
— + + be 60 50 54
+ + + abc 39 41 47

(a) Estimate the factor effects. Which effects appear to be large?

(b) Use the analysis of variance to confirm your conclusions for part (a).

(c) Write down a regression model for predicting tool life (in hours) based on the results
of this experiment.

(d) Analyze the residuals. Are there any obvious problems?

(e) Based on an analysis of main effect and interaction plots, what levels of A, B, and
C would you recommend using?

Reconsider part (c) of Problem 6-1. Use the regression model to generate response surface

and contour plots of the tool life response. Interpret these plots. Do they provide insight

regarding the desirable operating conditions for this process?

Find the standard error of the factor effects and approximate 95 percent confidence limits

for the factor effects in Problem 6-1. Do the results of this analysis agree with the con-

clusions from the analysis of variance?
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Plot the factor effects from Problem 6-1 on a graph relative to an appropriately scaled ¢
distribution. Does this graphical display adequately identify the important factors? Com-
pare the conclusions from this plot with the results from the analysis of variance.

A router is used to cut locating notches on a printed circuit board. The vibration level at
the surface of the board as it is cut is considered to be a major source of dimensional
variation in the notches. Two factors are thought to influence vibration: bit size (A) and
cutting speed (B). Two bit sizes (75 and 3 inch) and two speeds (40 and 90 rpm) are
selected, and four boards are cut at each set of conditions shown below. The response
variable is vibration measured as the resultant vector of three accelerometers (x, y, and z)
on each test circuit board.

Treatment Replicate
A B Combination ) I I v
- - 1) 18.2 18.9 12.9 14.4
+ - a 27.2 24.0 22.4 22.5
- + b 15.9 14.5 15.1 14.2
+ + ab 41.0 439 36.3 39.9

(a) Analyze the data from this experiment.

(b) Construct a normal probability plot of the residuals, and plot the residuals versus the
predicted vibration level. Interpret these plots.

(c) Draw the AB interaction plot. Interpret this plot. What levels of bit size and speed
would you recommend for routine operation?

Reconsider the experiment described in Problem 6-1. Suppose that the experimenter only

performed the eight trials from replicate 1. In addition, he ran four center points and

obtained the following response values: 36, 40, 43, 45.

(a) Estimate the factor effects. Which effects are large?

(b) Perform an analysis of variance, including a check for pure quadratic curvature. What
are your conclusions?

(c) Write down an appropriate model for predicting tool life, based on the results of this
experiment. Does this model differ in any substantial way from the model in Problem
6-1, part (c)?

(d) Analyze the residuals.

(e) What conclusions would you draw about the appropriate operating conditions for
this process?

An experiment was performed to improve the yield of a chemical process. Four factors

were selected, and two replicates of a completely randomized experiment were run. The

results are shown in the following table:

Treatment __Replicatc Treatment M
Combination I I Combination I I
(1) 90 93 d 98 95
a 74 78 ad 72 76
ab 83 80 abd 85 86
c 77 78 cd 99 90
ac 81 80 acd 79 75
be 88 82 bed 87 84

abc 73 70 abcd 80 80
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(a) Estimate the factor effects.

(b) Prepare an analysis of variance table, and determine which factors are important in
explaining yield.

(c) Write down a regression model for predicting yield, assuming that all four factors
were varied over the range from —1 to +1 (in coded units).

(d) Plot the residuals versus the predicted yield and on a normal probability scale. Does
the residual analysis appear satisfactory?

(¢) Two three-factor interactions, ABC and ABD, apparently have large effects. Draw a
cube plot in the factors A, B, and C with the average yields shown at each cormner.
Repeat using the factors A, B, and D. Do these two plots aid in data interpretation?
Where would you recommend that the process be run with respect to the four
variables?

A bacteriologist is interested in the effects of two different culture media and two different

times on the growth of a particular virus. She performs six replicates of a 2% design, making

the runs in random order. Analyze the bacterial growth data that follow and draw appro-
priate conclusions. Analyze the residuals and comment on the model’s adequacy.

Culture Medium

Time, h 1 2
21 22 25 26
12 23 28 24 25
20 26 29 27
37 39 31 34
18 38 38 29 33
35 36 30 35

An industrial engineer employed by a beverage bottler is interested in the effects of two
different types of 32-ounce bottles on the time to deliver 12-bottle cases of the product.
The two bottle types are glass and plastic. Two workers are used to perform a task con-
sisting of moving 40 cases of the product 50 feet on a standard type of hand truck and
stacking the cases in a display. Four replicates of a 2° factorial design are performed, and
the times observed are listed in the following table. Analyze the data and draw appropriate
conclusions. Analyze the residuals and comment on the model’s adequacy.

Worker
Bottle Type 1 2
Glass 5.12 4.89 6.65 6.24
4.98 5.00 5.49 5.55
Plastic 4.95 443 5.28 491
427 4.25 4.75 471

In Problem 6-9, the engineer was also interested in potential fatigue differences resulting
from the two types of bottles. As a measure of the amount of effort required, he measured
the elevation of the heart rate (pulse) induced by the task. The results follow. Analyze the
data and draw conclusions. Analyze the residuals and comment on the model’s adequacy.
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Worker
Bottle Type 1 2
Glass 39 45 20 13
58 35 16 11
Plastic 44 35 13 10
42 21 16 15

Calculate approximate 95 percent confidence limits for the factor effects in Problem 6-
10. Do the results of this analysis agree with the analysis of variance performed in Problem
6-10?

An article in the AT&T Technical Journal (March/April 1986, Vol. 65, pp. 39-50) de-
scribes the application of two-level factorial designs to integrated circuit manufacturing.
A basic processing step is to grow an epitaxial layer on polished silicon wafers. The wafers
mounted on a susceptor are positioned inside a bell jar, and chemical vapors are intro-
duced. The susceptor is rotated and heat is applied until the epitaxial layer is thick enough.
An experiment was run using two factors: arsenic flow rate (4) and deposition time (B).
Four replicates were run, and the epitaxial layer thickness was measured (in um). The
data are shown below:

Replicate Factor Levels
A B I I 11 v Low (—) High (+)
- - 14.037 16.165 13.972 13.907 A 55% 59%
+ - 13.880 13.860 14.032 13.914
- + 14.821 14.757 14.843 14.878 B Short Long
+ + 14.888 14.921 14.415 14.932 (10 min) (15 min)

(a) Estimate the factor effects.

(b) Conduct an analysis of variance. Which factors are important?

(c) Write down a regression equation that could be used to predict epitaxial layer thick-
ness over the region of arsenic flow rate and deposition time used in this experiment.

(d) Analyze the residuals. Are there any residuals that should cause concern?

(e) Discuss how you might deal with the potential outlier found in part (d).

Continuation of Problem 6-12. Use the regression model in part (c) of Problem 6-12 to

generate a response surface contour plot for epitaxial layer thickness. Suppose it is criti-

cally important to obtain layer thickness of 14.5 um. What settings of arsenic flow rate

and decomposition time would you recommend?

Continuation of Problem 6-13. How would your answer to Problem 6-13 change if arsenic

flow rate was more difficult to control in the process than the deposition time?

A nickel-titanium alloy is used to make components for jet turbine aircraft engines. Crack-

ing is a potentially serious problem in the final part, because it can lead to nonrecoverable

failure. A test is run at the parts producer to determine the effect of four factors on cracks.

The four factors are pouring temperature (A), titanium content (B), heat treatment method

(C), and amount of grain refiner used (D). Two replicates of a 2* design are run, and the

length of crack (in mm X 10 ?) induced in a sample coupon subjected to a standard test

is measured. The data are shown in the following table:
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Treatment Replicate

A B C D Combination I I

- - - - 1) 7.037 6.376
+ - - - a 14.707 15.219
- + - - b 11.635 12.089
+ + - - ab 17.273 17.815
— - + - c 10.403 10.151
+ - + - ac 4.368 4.098
- + + - bc 9.360 9.253
+ + + - abc 13.440 12.923
- - - + d 8.561 8.951
+ - - + ad 16.867 17.052
- + + bd 13.876 13.658
+ + + abd 19.824 19.639
- — + + cd 11.846 12.337
+ - + + acd 6.125 5.904
- + + + bcd 11.190 10.935
+ + + + abcd 15.653 15.053

(a) Estimate the factor effects. Which factor effects appear to be large?

(b) Conduct an analysis of variance. Do any of the factors affect cracking? Use a =
0.05.

(c) Write down a regression model that can be used to predict crack length as a function
of the significant main effects and interactions you have identified in part (b).

(d) Analyze the residuals from this experiment.

(e) Is there an indication that any of the factors affect the variability in cracking?

(f) What recommendations would you make regarding process operations? Use inter-
action and/or main effect plots to assist in drawing conclusions.

6-16. Continuation of Problem 6-15. One of the variables in the experiment described in Prob-
lem 6-15, heat treatment method (C), is a categorical variable. Assume that the remaining
factors are continuous.

(a) Write two regression models for predicting crack length, one for each level of the
heat treatment method variable. What differences, if any, do you notice in these two
equations?

(b) Generate appropriate response surface contour plots for the two regression models
in part (a).

(c) What set of conditions would you recommend for the factors A, B, and D if you use
heat treatment method C = +?

(d) Repeat part (c) assuming that you wish to use heat treatment method C = —.

6-17. An experimenter has run a single replicate of a 2* design. The following effect estimates
have been calculated:

>
|

76.95 AB = —51.32 ABC = —2.82

B = —67.52 AC = 11.69 ABD = —6.50

C= -784 AD = 978 ACD = 10.20

D = -18.73 BC = 20.78 BCD = —7.98
BD = 1474 ABCD = —6.25
CD = 1.27

(a) Construct a normal probability plot of these effects.
(b) Identify a tentative model, based on the plot of the effects in part (a).
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An article in Solid State Technology (*‘Orthogonal Design for Process Optimization and
Its Application in Plasma Etching,”” May 1987, pp. 127-132) describes the application
of factorial designs in developing a nitride etch process on a single-wafer plasma etcher.
The process uses C,Fs as the reactant gas. Four factors are of interest: anode—cathode gap
(A), pressure in the reactor chamber (B), C,F4 gas flow (C), and power applied to the
cathode (D). The response variable of interest is the etch rate for silicon nitride. A single
replicate of a 2* design is run, and the data are shown below:

Run Alglt:;al gtaig Factor Levels
Number Order A B C D  (A/min) Low (—) High (+)
1 13 - - - = 550 A (cm) 0.80 1.20
2 8 + - - = 669 B (mTorr) 450 550
3 12 - + - = 604 C (SCCM) 125 200
4 9 + o+ - 650 D W) 275 325
5 4 S 633

6 15 + -+ 642

7 16 -+ o+ = 601

8 3 + + o+ = 635

9 1 - - - 4+ 1037

10 14 + - + 749

11 5 -+ + 1052

12 10 + o+ + 868

13 11 - - 4+ o+ 1075

14 2 + -+ o+ 860

15 7 -+ o+ o+ 1063

16 6 + + o+ 729

(a) Estimate the factor effects. Consider a normal probability plot of the factor effects.
Which effects appear large?

(b) Conduct an analysis of variance to confirm your findings for part (a).

(c) What is the regression model relating etch rate to the significant process variables?

(d) Analyze the residuals from this experiment. Comment on the model’s adequacy.

(e) If not all the factors are important, project the 2* design into a 2* design with k < 4
and conduct the analysis of variance.

(f) Draw graphs to interpret any significant interactions.

(g) Plot the residuals versus the actual run order. What problems might be revealed by
this plot?

Continuation of Problem 6-18. Consider the regression model obtained in part (¢) of

Problem 6-18.

(a) Construct contour plots of the etch rate using this model.

(b) Suppose that it was necessary to operate this process at an etch rate of 800 A/min.
What settings of the process variables would you recommend?

Consider the single replicate of the 2* design in Example 6-2. Suppose we had arbitrarily

decided to analyze the data assuming that all three- and four-factor interactions were

negligible. Conduct this analysis and compare your results with those obtained in the

example. Do you think that it is a good idea to arbitrarily assume interactions to be

negligible even if they are relatively high-order ones?

An experiment was run in a semiconductor fabrication plant in an effort to increase yield.

Five factors, each at two levels, were studied. The factors (and levels) were A = aperture

setting (small, large), B = exposure time (20% below nominal, 20% above nominal),
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C = development time (30 s, 45 s), D = mask dimension (small, large), and E = etch
time (14.5 min, 15.5 min). The unreplicated 2% design shown below was run.

(H=7 d=28 e=8 de =6
a=9 ad = 10 ae =12 ade = 10
b =34 bd = 32 be = 35 bde = 30
ab = 55 abd = 50 abe = 52 abde = 53
c=16 cd = 18 ce =15 cde = 15
ac =20 acd = 21 ace = 22 acde = 20
bc = 40 bed = 44 bce = 45 bede = 41
abc = 60 abed = 61 abce = 65 abcde = 63

(a) Construct a normal probability plot of the effect estimates. Which effects appear to
be large?

(b) Conduct an analysis of variance to confirm your findings for part (a).

(¢) Write down the regression model relating yield to the significant process variables.

(d) Plot the residuals on normal probability paper. Is the plot satisfactory?

(e) Plot the residuals versus the predicted yields and versus each of the five factors.
Comment on the plots.

(f) Interpret any significant interactions.

(g) What are your recommendations regarding process operating conditions?

(h) Project the 2° design in this problem into a 2* design in the important factors. Sketch
the design and show the average and range of yields at each run. Does this sketch
aid in interpreting the results of this experiment?

Continuation of Problem 6-21. Suppose that the experimenter had run four center points

in addition to the 32 trials in the original experiment. The yields obtained at the center

point runs were 68, 74, 76, and 70.

(a) Reanalyze the experiment, including a test for pure quadratic curvature.

(b) Discuss what your next step would be.

In a process development study on yield, four factors were studied, each at two levels:

time (A), concentration (B), pressure (C), and temperature (D). A single replicate of a 2°

design was run, and the resulting data are shown in the following table:

Run e Yield Factor Levels
Number Order A B C D (Ibs) Low (—) High (+)

1 5 - - - - 12 A (h) 2.5 3
2 9 + - - - 18 B (%) 14 18
3 8 - + - - 13 C (psi) 60 80
4 13 + + — 16 D (°C) 225 250
5 3 - - + - 17
6 7 + - + - 15
7 14 - + + - 20
8 1 + + + - 15
9 - - + 10

10 11 + — - + 25

11 — + — + 13

12 15 + + - + 24

13 4 - - + + 19

14 16 + - + + 21

15 10 - + + + 17

16 12 + + + 23
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(a) Construct a normal probability plot of the effect estimates. Which factors appear to
have large effects?

(b) Conduct an analysis of variance using the normal probability plot in part (a) for
guidance in forming an error term. What are your conclusions?

(c) Write down a regression model relating yield to the important process variables.

(d) Analyze the residuals from this experiment. Does your analysis indicate any potential
problems?

(e) Can this design be collapsed into a 2* design with two replicates? If so, sketch the
design with the average and range of yield shown at each point in the cube. Interpret
the results.

Continuation of Problem 6-23. Use the regression model in part (c) of Problem 6-23 to

generate a response surface contour plot of yield. Discuss the practical value of this re-

sponse surface plot.

The scrumptious brownie experiment. The author is an engineer by training and a firm

believer in learning by doing. I have taught experimental design for many years to a wide

variety of audiences and have always assigned the planning, conduct, and analysis of an
actual experiment to the class participants. The participants seem to enjoy this practical
experience and always learn a great deal from it. This problem uses the results of an
experiment performed by Gretchen Krueger at Arizona State University.

There are many different ways to bake brownies. The purpose of this experiment was
to determine how the pan material, the brand of brownie mix, and the stirring method
affect the scrumptiousness of brownies. The factor levels were

Factor Low (—) High (+)
A = pan material Glass Aluminum
B = stirring method Spoon Mixer
C = brand of mix Expensive Cheap

The response variable was scrumptiousness, a subjective measure derived from a ques-
tionnaire given to the subjects who sampled each batch of brownies. (The questionnaire
dealt with such issues as taste, appearance, consistency, aroma, and so forth). An eight-
person test panel sampled each batch and filled out the questionnaire. The design matrix
and the response data are shown below:

Test Panel Results

Brownie
Batch A B C 1 2 3 4 5 6 7 8
1 - - - 11 9 10 10 11 10 8 9
2 + - - 15 10 16 14 12 9 6 15
3 - + - 9 12 11 11 11 11 11 12
4 + + - 16 17 15 12 13 13 11 11
5 - - + 10 11 15 8 6 8 9 14
6 + - + 12 13 14 13 9 13 14 9
7 - + + 10 12 13 10 7 7 17 13
8 + + 15 12 15 13 12 12 9 14

(a) Analyze the data from this experiment as if there were eight replicates of a 2° design.
Comment on the results.
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(b) Is the analysis in part (a) the correct approach? There are only eight batches; do we
really have eight replicates of a 2° factorial design?

(c) Analyze the average and standard deviation of the scrumptiousness ratings. Com-
ment on the results. Is this analysis more appropriate than the one in part (a)? Why
or why not?

An experiment was conducted on a chemical process that produces a polymer. The four

factors studied were temperature (A), catalyst concentration (B), time (C), and pressure

(D). Two responses, molecular weight and viscosity, were observed. The design matrix

and response data are shown below:

Run Afgxl;al Molecular Factor Levels
Number Order A B C D Weight Viscosity  Low (—)  High (+)
1 8 - - - - 2400 1400 A (°C) 100 120
2 9 + - - - 2410 1500 B (%) 4 8
3 13 - + - - 2315 1520  C (min) 20 30
4 8 + + - - 2510 1630 D (psi) 60 75
5 3 - =+ - 2615 1380

6 11 + - 4+ - 2625 1525

7 14 - + 4+ - 2400 1500

8 17 + 4+ + - 2750 1620

9 6 - - + 2400 1400

10 7+ - - o+ 2390 1525

11 2 - 4+ - o+ 2300 1500

12 0 + + - + 2520 1500

13 4 - - + + 2625 1420

14 9 + - + + 2630 1490

15 5 - 4+ + o+ 2500 1500

16 20 + + + + 2710 1600

17 1 0 0 0 O 2515 1500

18 5 0 0 0 0 2500 1460

19 16 0 0 0 0 2400 1525

20 12 0 0 0 0 2475 1500

(a) Consider only the molecular weight response. Plot the effect estimates on a normal
probability scale. What effects appear important?

(b) Use an analysis of variance to confirm the results from part (a). Is there indication
of curvature?

(c) Write down a regression model to predict molecular weight as a function of the
important variables.

(d) Analyze the residuals and comment on model adequacy.

(e) Repeat parts (a)—(d) using the viscosity response.

Continuation of Problem 6-26. Use the regression models for molecular weight and vis-

cosity to answer the following questions.

(a) Construct a response surface contour plot for molecular weight. In what direction
would you adjust the process variables to increase molecular weight?

(b) Construct a response surface contour plot for viscosity. In what direction would you
adjust the process variables to decrease viscosity?
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(c) What operating conditions would you recommend if it was necessary to produce a
product with molecular weight between 2400 and 2500, and the lowest possible
viscosity?

Consider the single replicate of the 2* design in Example 6-2. Suppose that we ran five

points at the center (0, 0, 0, 0) and observed the following responses: 73, 75, 71, 69, and

76. Test for curvature in this experiment. Interpret the results.

A missing value in a 2* factorial. It is not unusual to find that one of the observations in

a 2* design is missing due to faulty measuring equipment, a spoiled test, or some other

reason. If the design is replicated # times (n > 1) some of the techniques discussed in

Chapter 5 can be employed. However, for an unreplicated factorial (n = 1) some other

method must be used. One logical approach is to estimate the missing value with a number

that makes the highest-order interaction contrast zero. Apply this technique to the exper-
iment in Example 6-2 assuming that run ab is missing. Compare the results with the results

of Example 6-2.

An engineer has performed an experiment to study the effect of four factors on the surface

roughness of a machined part. The factors (and their levels) are A = tool angle (12, 15°),

B = cutting fluid viscosity (300, 400), C = feed rate (10, 15 in/min), and D = cutting

fluid cooler used (no, yes). The data from this experiment (with the factors coded to the

usual —1, +1 levels) are shown below.

Run A B C D Surface Roughness
1 - - - - 0.00340
2 + - - - 0.00362
3 - + - - 0.00301
4 + + - - 0.00182
5 - - + - 0.00280
6 + - + - 0.00290
7 - + + - 0.00252
8 + + + 0.00160
9 - - - + 0.00336

10 + - + 0.00344
11 - + - + 0.00308
12 + + - + 0.00184
13 - - + + 0.00269
14 + - + + 0.00284
15 - + + + 0.00253
16 + + + + 0.00163

(a) Estimate the factor effects. Plot the effect estimates on a normal probability plot and
select a tentative model.

(b) Fit the model identified in part (a) and analyze the residuals. Is there any indication
of model inadequacy?

(c) Repeat the analysis from parts (a) and (b) using 1/y as the response variable. Is there
an indication that the transformation has been useful?

(d) Fit a model in terms of the coded variables that can be used to predict the surface
roughness. Convert this prediction equation into a model in the natural variables.

Resistivity on a silicon wafer is influenced by several factors. The results of a 2* factorial

experiment performed during a critical processing step is shown in the following table:
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Run A B C D Resistivity
1 - - - - 1.92
2 + - - - 11.28
3 - + - -~ 1.09
4 + + - - 5.75
5 - - + - 2.13
6 + - + - 9.53
7 - + + — 1.03
8 + + + - 5.35
9 - - - + 1.60

10 + - - + 11.73
11 - + + 1.16
12 + + - + 4.68
13 - - + + 2.16
14 + - + + 9.11
15 — + + + 1.07
16 + + + + 5.30

(a) Estimate the factor effects. Plot the effect estimates on a normal probability plot and
select a tentative model.

(b) Fit the model identified in part (a) and analyze the residuals. Is there any indication
of model inadequacy?

(c) Repeat the analysis from parts (a) and (b) using In (y) as the response variable. Is
there an indication that the transformation has been useful?

(d) Fit a model in terms of the coded variables that can be used to predict the resistivity.

Continuation of Problem 6-31. Suppose that the experimenter had also run four center

points along with the 16 runs in Problem 6-31. The resistivity measurements at the center

points are 8.15, 7.63, 8.95, and 6.48. Analyze the experiment again incorporating the
center points. What conclusions can you draw now?

Often the fitted regression model from a 2* factorial design is used to make predictions

at points of interest in the design space.

(a) Find the variance of the predicted response ¥ at a point x;, X, . . . , X in the design
space. Hint: Remember that the x’s are coded variables, and assume a 2* design with
an equal number of replicates n at each design point so that the variance of a re-
gression coefficient f} is d?/(n2*) and that the covariance between any pair of re-
gression coefficients is zero.

(b) Use the result in part (a) to find an equation for a 100(1 — «) percent confidence
interval on the true mean response at the point x;, x», . . . , X in design space.
Hierarchial models. Several times we have used the hierarchy principle in selecting a
model; that is, we have included nonsignificant lower-order terms in a model because they
were factors involved in significant higher-order terms. Hierarchy is certainly not an ab-
solute principle that must be followed in all cases. To illustrate, consider the model re-
sulting from Problem 6-1, which required that a nonsignificant main effect be included to

achieve hierarchy. Using the data from Problem 6-1,

(a) Fit both the hierarchial and the nonhierarchial model.

(b) Calculate the PRESS statistic, the adjusted R2, and the mean square error for both
models.

(c) Find a 95 percent confidence interval on the estimate of the mean response at a cube
corner (x; = x, = x3 = *1). Hint: Use the results of Problem 6-33.

(d) Based on the analyses you have conducted, which model do you prefer?




Blocking

and Confounding
in the 2* Factorial
Design

7-1 INTRODUCTION

There are many situations in which it is impossible to perform all of the runs in a 2*
factorial experiment under homogeneous conditions. For example, a single batch of raw
material might not be large enough to make all of the required runs. In other cases, it
might be desirable to deliberately vary the experimental conditions to ensure that the
treatments are equally effective (that is, are robust) across many situations that are likely
to be encountered in practice. For example, a chemical engineer may run a pilot plant
experiment with several batches of raw material because he knows that different raw
material batches of different quality grades are likely to be used in the actual full-scale
process.

The design technique used in these situations is blocking. In this chapter, we will
concentrate on some special techniques for blocking in the 2* factorial design.

7-2 BLOCKING A REPLICATED 2* FACTORIAL DESIGN

Suppose that the 2* factorial design has been replicated n times. This is identical to the
situation discussed in Chapter 5, where we showed how to run a general factorial design
in blocks. If there are n replicates, then each set of nonhomogeneous conditions defines
ablock, and each replicate is run in one of the blocks. The runs in each block (or replicate)

Table 7-1 Chemical Process Experiment in Three Blocks

Block 1 Block 2 Block 3

(1) = 28 (1)=25 (1) = 27

a =36 a=32 a=32

b =18 b=19 b =23

ab =31 ab = 30 ab =29

Block totals: B, =113 B, = 106 B; =111

287
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Table 7-2  Analysis of Variance for the Chemical Process Experiment in Three Blocks

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fy P-Value
Blocks 6.50 2 3.25
A (concentration) 208.33 1 208.33 50.32 0.0004
B (catalyst) 75.00 1 75.00 18.12 0.0053
AB 8.33 1 8.33 2.01 0.2060
Error 24.84 6 4.14
Total 323.00 11

would be made in random order. The analysis of the design is similar to that of any
blocked factorial experiment; for example, see the discussion in Section 5-6.

EXAMPLE 7-1 +cvvvreesveceseetastaceasasnatuotsnotoccstascsasccinsns
Consider the chemical process experiment first described in Section 6-2. Suppose that
only four experimental trials can be made from a single batch of raw material. Therefore,
three batches of raw material will be required to run all three replicates of this design.
Table 7-1 (on the previous page) shows the design, where each batch of raw material
corresponds to a block.

The analysis of variance for this blocked design is shown in Table 7-2. All of the
sums of squares are calculated exactly as in a standard, unblocked 2% design. The sum
of squares for blocks is calculated from the block totals. Let By, B;, and B; represent the
block totals (see Table 7-1). Then

3 2 2
_ B; Y.
SSBlocks - “ 4 12
_ (113> + (106)* + (111)? _ (330
4 12
= 6.50

There are two degrees of freedom among the three blocks. Table 7-2 indicates that the
conclusions from this analysis, had the design been run in blocks, are identical to those
in Section 6-2 and that the block effect is relatively small.

7.3 CONFOUNDING IN THE 2* FACTORIAL DESIGN

There are many problems for which it is impossible to perform a complete replicate of
a factorial design in one block. Confounding is a design technique for arranging a
complete factorial experiment in blocks, where the block size is smaller than the number
of treatment combinations in one replicate. The technique causes information about cer-
tain treatment effects (usually high-order interactions) to be indistinguishable from, or
confounded with, blocks. In this chapter we concentrate on confounding systems for
the 2* factorial design. Note that even though the designs presented are incomplete block
designs because each block does not contain all the treatments or treatment combinations,
the special structure of the 2* factorial system allows a simplified method of analysis.

We consider the construction and analysis of the 2* factorial design in 27 incomplete
blocks, where p < k. Consequently, these designs can be run in two blocks, four blocks,
eight blocks, and so on.
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7-4 CONFOUNDING THE 2* FACTORIAL DESIGN
IN TWO BLOCKS

Suppose that we wish to run a single replicate of the 2* design. Each of the 2% = 4
treatment combinations requires a quantity of raw material, for example, and each batch
of raw material is only large enough for two treatment combinations to be tested. Thus,
two batches of raw material are required. If batches of raw material are considered as
blocks, then we must assign two of the four treatment combinations to each block.

Figure 7-1 shows one possible design for this problem. The geometric view, Figure
7-1a, indicates that treatment combinations on opposing diagonals are assigned to dif-
ferent blocks. Notice from Figure 7-15 that block 1 contains the treatment combinations
(1) and ab and that block 2 contains a and b. Of course, the order in which the treatment
combinations are run within a block is randomly determined. We would also randomly
decide which block to run first. Suppose we estimate the main effects of A and B just as
if no blocking had occurred. From Equations 6-1 and 6-2, we obtain

A=1Lab+a-b- ()]
B=1Lab+b—a- Q)

Note that both A and B are unaffected by blocking because in each estimate there is one
plus and one minus treatment combination from each block. That is, any difference
between block 1 and block 2 will cancel out.

Now consider the AB interaction

AB = 3[ab + (1) — a — b]

Because the two treatment combinations with the plus sign [ab and (1)] are in block 1
and the two with the minus sign (a and b) are in block 2, the block effect and the AB
interaction are identical. That is, AB is confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22
design. This was originally given as Table 6-2, but for convenience it is reproduced as
Table 7-3 on the next page. From this table, we see that all treatment combinations that
have a plus sign on AB are assigned to block 1, whereas all treatment combinations that

® = Run in block 1

O =Run in block 2

- +

A
{a) Geometric view

Block 1 Block 2
(1 a
ab b

(b} Assignment of the four
runs to two blocks

Figure 7-1 A 22 design in two blocks.
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Table 7-3 Table of Plus and Minus Signs for the 2? Design

Treatment Factorial Effect
Combination I A B AB
(1) + - - +
a + + - -
b + - + -
ab + + + +

have a minus sign on AB are assigned to block 2. This approach can be used to confound
any effect (A, B, or AB) with blocks. For example, if (1) and b had been assigned to
block 1 and @ and ab to block 2, the main effect A would have been confounded with
blocks. The usual practice is to confound the highest-order interaction with blocks.

This scheme can be used to confound any 2* design in two blocks. As a second
example, consider a 2° design run in two blocks. Suppose we wish to confound the three-
factor interaction ABC with blocks. From the table of plus and minus signs shown in
Table 7-4, we assign the treatment combinations that are minus on ABC to block 1 and
those that are plus on ABC to block 2. The resulting design is shown in Figure 7-2. Once
again, we emphasize that the treatment combinations within a block are run in random
order.

Other Methods for Constructing the Blocks
There is another method for constructing these designs. The method uses the linear
combination

L=ax +ax+- -+ ax a-n

where x; is the level of the ith factor appearing in a particular treatment combination and
a; is the exponent appearing on the ith factor in the effect to be confounded. For the 2¢
system, we have a; = 0 or 1 and x; = 0 (low level) or x; = 1 (high level). Equation 7-1
is called a defining contrast. Treatment combinations that produce the same value of L
(mod 2) will be placed in the same block. Because the only possible values of L (mod
2) are 0 and 1, this will assign the 2* treatment combinations to exactly two blocks.

To illustrate the approach, consider a 2* design with ABC confounded with blocks.

Table 7-4 Table of Plus and Minus Signs for the 2% Design

Treatment Factorial Effect
Combination 1 A B AB C AC BC ABC
1) + - - + - + + -
a + + - - - - + +
b + - + - - + - +
ab + + + + - - -
c + - - + + - - +
ac + + — - + + - -
be + - + - + - + -
abc + + + + + + +
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@ = Runin block 1

©O =Runin block 2

(a) Geometric view

Block 1 Block 2
(1
ab b
ac c
be abe

(b} Assignment of the eight
runs to two blocks

Figure 7-2 The 2° design in two blocks with ABC
confounded.

Here x; corresponds to A, x, to B, x3 to C, and o) = a, = a3 = 1. Thus, the defining
contrast corresponding to ABC is

L=x+x+ x
The treatment combination (1) is written 000 in the (0, 1) notation; therefore,
L=10) + 1(0) + 1(0) = 0 = 0 (mod 2)
Similarly, the treatment combination a is 100, yielding
L=11)+ 1(0) + 1(0) = 1 = 1 (mod 2)

Thus, (1) and a would be run in different blocks. For the remaining treatment combi-
nations, we have

b: L=10)+ 1(1) + 1(0) = 1 = 1 (mod 2)
ab: L=1(1)+ 1(1) + 1(0) = 2 = 0 (mod 2)
c: L=10)+ 10) + 1(1) =1 =1 (mod 2)
ac: L=11)+ 10) + 1(1) = 2 = 0 (mod 2)
be: L=10)+ I(1) + 1(1) =2 =0 (mod 2)
abc: L=1(1)+ 1(1) + 1(1) = 3 = 1 (mod 2)

Thus (1), ab, ac, and bc are run in block 1 and a, b, ¢, and abc are run in block 2. This
is the same design shown in Figure 7-2, which was generated from the table of plus and
minus signs.

Another method may be used to construct these designs. The block containing the
treatment combination (1) is called the principal block. The treatment combinations in
this block have a useful group-theoretic property; namely, they form a group with respect
to multiplication modulus 2. This implies that any element [except (1)] in the principal
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block may be generated by multiplying two other elements in the principal block modulus
2. For example, consider the principal block of the 2° design with ABC confounded, as
shown in Figure 7-2. Note that

ab « ac = a*bc = bc
ab « bc = ab’c = ac
ac + bc = abc? = ab

Treatment combinations in the other block (or blocks) may be generated by multiplying
one element in the new block by each element in the principal block modulus 2. For the
23 with ABC confounded, because the principal block is (1), ab, ac, and bc, we know
that b is in the other block. Thus, the elements of this second block are

b- (1) =p
b-ab=ab*=a
b-ac = agbc

b-bc="bc=c

This agrees with the results obtained previously.

Estimation of Error

When the number of variables is small, say k = 2 or 3, it is usually necessary to replicate
the experiment to obtain an estimate of error. For example, suppose that a 2° factorial
must be run in two blocks with ABC confounded, and the experimenter decides to rep-
licate the design four times. The resulting design might appear as in Figure 7-3. Note
that ABC is confounded in each replicate.

The analysis of variance for this design is shown in Table 7-5. There are 32 obser-
vations and 31 total degrees of freedom. Furthermore, because there are eight blocks,
seven degrees of freedom must be associated with these blocks. One breakdown of those
seven degrees of freedom is shown in Table 7-5. The error sum of squares actually
consists of the two-factor interactions between replicates and each of the effects (4, B,
C, AB, AC, BC). 1t is usually safe to consider the interactions to be zero and to treat the
resulting mean square as an estimate of error. Main effects and two-factor interactions
are tested against the mean square error. Cochran and Cox (1957) observe that the block
or ABC mean square could be compared to the error for the ABC mean square, which is
really replicates X blocks. This test usually is very insensitive.

If resources are sufficient to allow the replication of confounded designs, it is gen-
erally better to use a slightly different method of designing the blocks in each replicate.
This approach consists of confounding a different effect in each replicate so that some

Replicate I Replicate I Replicate IIT Replicate IV
Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2
(1) abe (1 abe (1) abc N abe

ac a ac a ac a ac
ab b ab b ab b ab
be c be ¢ be ¢ be c

Figure 7-3 Four replicates of the 2° design with ABC confounded.
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Table 7-5 Analysis of Variance for Four Replicates
of a 2° Design with ABC Confounded

Degrees of
Source of Variation Freedom
Replicates 3
Blocks (ABC) 1
Error for ABC (replicates X blocks) 3
A 1
B 1
C 1
AB 1
AC 1
BC 1
Error (or replicates X effects) 18
Total 31

information on all effects is obtained. Such a procedure is called partial confounding
and is discussed in Section 7-7. If k is moderately large, say k = 4, we frequently can
afford only a single replicate. The experimenter usually assumes higher-order interactions
to be negligible and combines their sums of squares as error. The normal probability plot
of factor effects can be very helpful in this regard.

EXAMPLE 7-2 +oovvvesossseecennossaeseansssesssansasssssssssssasssnnnnns

Consider the situation described in Example 6-2. Recall that four factors—temperature
(A), pressure (B), concentration of formaldehyde (C), and stirring rate (D)—are studied
in a pilot plant to determine their effect on product filtration rate. We will use this
experiment to illustrate the ideas of blocking and confounding in an unreplicated design.
We will make two modifications to the original experiment. First, suppose that the 2* =
16 treatment combinations cannot all be run using one batch of raw material. The ex-
perimenter can run eight treatment combinations from a single batch of material, so a 2*
design confounded in two blocks seems appropriate. It is logical to confound the highest-
order interaction ABCD with blocks. The defining contrast is

L=x+x+x+x

and it is easy to verify that the design is as shown in Figure 7-4 (on the next page).
Alternatively, one may examine Table 6-11 and observe that the treatment combinations
that are + in the ABCD column are assigned to block 1 and those that are — in ABCD
column are in block 2.

The second modification that we will make is to introduce a block effect so that the
utility of blocking can be demonstrated. Suppose that when we select the two batches of
raw material required to run the experiment, one of them is of much poorer quality and,
as a result, all responses will be 20 units lower in this material batch than in the other.
The poor quality batch becomes block 1 and the good quality batch becomes block 2 (it
doesn’t matter which batch is called block 1 or which batch is called block 2). Now all
the tests in block 1 are performed first (the eight runs in the block are, of course, per-
formed in random order), but the responses are 20 units lower than they would have been
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D

B
e =Runs in block 1 c
o = Runs in block 2
A

{e) Geometric view

Block 1 Block 2
(1)=25 a=71
ab=145 b=48
ac =40 ¢ =68
be = 60 d=43
ad =80 abc = 65
bd =25 bed =70
cd =55 acd = 86

abed =76 abd = 104

(b} Assignment of the 16 runs
to two blocks

Figure 7-4 The 2* design in two blocks for Example 7-2.

if good quality material had been used. Figure 7-4b shows the resulting responses—note
that these have been found by subtracting the block effect from the original observations
given in Example 6-2. That is, the original response for treatment combination (1) was
45, and in Figure 7-4b it is reported as (1) = 25 (= 45 — 20). The other responses in
this block are obtained similarly. After the tests in block 1 are performed, the eight tests
in block 2 follow. There is no problem with the raw material in this batch, so the responses
are exactly as they were originally in Example 6-2.

The effect estimates for this ‘‘modified’’ version of Example 6-2 are shown in Table
7_6. Note that the estimates of the four main effects, the six two-factor interactions, and
the four three-factor interactions are identical to the effect estimates obtained in Example
6-2 where there was no block effect. When a normal probability of these effect estimates
is constructed, factors A, C, D and the AC and AD interactions emerge as the important
effects, just as in the original experiment. (The reader should verify this.)

What about the ABCD interaction effect? The estimate of this effect in the original
experiment (Example 6-2) was ABCD = 1.375. In the present example, the estimate of
the ABCD interaction effect is ABCD = —18.625. Because ABCD is confounded with
blocks, the ABCD interaction estimates the original interaction effect (1.375) plus the
block effect (—20), so ABCD = 1.375 + (—20) = —18.625. (Do you see why the block
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Table 7-6  Effect Estimates for the Blocked 2* Design in Example 7-2

Regression Effect Sum of Percent
Model Term Coefficient Estimate Squares Contribution

A 10.81 21.625 1870.5625 26.30
B 1.56 3.125 39.0625 0.55
C 4.94 9.875 390.0625 5.49
D 7.31 14.625 855.5625 12.03
AB 0.062 0.125 0.0625 <0.01
AC —9.06 —18.125 1314.0625 18.48
AD 8.31 16.625 1105.5625 15.55
BC 1.19 2.375 22.5625 0.32
BD ~0.19 —0.375 0.5625 <0.01
CD -0.56 —1.125 5.0625 0.07
ABC 0.94 1.875 14.0625 0.20
ABD 2.06 4.125 68.0625 0.96
ACD —0.81 —1.625 10.5625 0.15
BCD —-1.31 —2.625 27.5625 0.39
Blocks (ABCD) —18.625 1387.5625 19.51

295

effect is —207?) The block effect may also be calculated directly as the difference in
average response between the two blocks, or

Block Effect = Ygiock 1 — YBiock 2

406

555

8

—149

8

8

—18.625

Of course, this effect really estimates Blocks + ABCD.
Table 7-7 summarizes the analysis of variance for this experiment. The effects with
large estimates are included in the model, and the block sum of squares is

_ (406)” + (555)° _ 961y

SSsiocks = = 1387.5625
16

Table 7-7 Analysis of Variance for Example 7-2

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy P-Value
Blocks (ABCD) 1387.5625 1
A 1870.5625 1 1870.5625 89.76 <0.0001
C 390.0625 1 390.0625 18.72 0.0019
D 855.5625 1 855.5625 41.05 0.0001
AC 1314.0625 1 1314.0625 63.05 <0.0001
AD 1105.5625 1 1105.5625 53.05 <0.0001
Error 187.5625 9 20.8403
Total 7111.4375 15
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The conclusions from this experiment exactly match those from Example 6-2, where no
block effect was present. Notice that if the experiment had not been run in blocks, and
if an effect of magnitude —20 had affected the first 8 trials (which would have been
selected in a random fashion, because the 16 trials would be run in random order in an
unblocked design), the results could have been very different.

7-5 CONFOUNDING THE 2* FACTORIAL DESIGN
IN FOUR BLOCKS

It is possible to construct 2* factorial designs confounded in four blocks of 272 obser-
vations each. These designs are particularly useful in situations where the number of
factors is moderately large, say & = 4, and block sizes are relatively small.

As an example, consider the 2° design. If each block will hold only eight runs, then
four blocks must be used. The construction of this design is relatively straightforward.
Select rwo effects to be confounded with blocks, say ADE and BCE. These effects have
the two defining contrasts

Li=x + x4+ x5
L2=X2+X3+X5

associated with them. Now every treatment combination will yield a particular pair of
values of L; (mod 2) and L, (mod 2), that is, either (L,, L,) = (0, 0), (0, 1), (1, 0), or
(1, 1). Treatment combinations yielding the same values of (L, L,) are assigned to the
same block. In our example we find

L,=0,L,=0 for (1), ad, bc, abcd, abe, ace, cde, bde
L,=1L,=0 for a, d, abc, bcd, be, abde, ce, acde
L,=0L,=1 for b, abd, c, acd, ae, de, abce, bcde
L,=1L,=1 for e, ade, bce, abcde, ab, bd, ac, cd

These treatment combinations would be assigned to different blocks. The complete de-
sign is as shown in Figure 7-5.

With a little reflection we realize that another effect in addition to ADE and BCE
must be confounded with blocks. Because there are four blocks with three degrees of
freedom between them, and because ADE and BCE have only one degree of freedom
each, clearly an additional effect with one degree of freedom must be confounded. This
effect is the generalized interaction of ADE and BCE, which is defined as the product

Block 1 Block 2 Block 3 Block 4
L,=0 L =1 L =0 L,=1
L,=0 L,=0 L,=1 L,=1
(1) abe a be b abce e abcde
ad ace d abde abd ae ade bd
bc  cde abe ce ¢ bede bee ac
abed bde bed acde acd de ab cd

Figure 7-5 The 2° design in four blocks with ADE,
BCE, and ABCD confounded.
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of ADE and BCE modulus 2. Thus, in our example the generalized interaction
(ADE)(BCE) = ABCDE* = ABCD is also confounded with blocks. It is easy to verify
this by referring to a table of plus and minus signs for the 2° design, such as in Davies
(1956). Inspection of such a table reveals that the treatment combinations are assigned
to the blocks as follows:

Treatment Combinations in Sign on ADE  Signon BCE  Sign on ABCD

Block 1 - - +
Block 2 + - -
Block 3 - + -
Block 4 + + +

Notice that the product of signs of any two effects for a particular block (e.g., ADE and
BCE) yields the sign of the other effect for that block (in this case, ABCD). Thus, ADE,
BCE, and ABCD are all confounded with blocks.

The group-theoretic properties of the principal block mentioned in Section 7-4 still
hold. For example, we see that the product of two treatment combinations in the principal
block yields another element of the principal block. That is,

ad + bc = abcd and abe * bde = ab’de® = ad

and so forth. To construct another block, select a treatment combination that is not in
the principal block (e.g., b) and multiply » by all the treatment combinations in the
principal block. This yields

b-(1)=5» b-ad = abd b bc=bc=c b+ abed = ab’cd = acd

and so forth, which will produce the eight treatment combinations in block 3. In practice,
the principal block can be obtained from the defining contrasts and the group-theoretic
property, and the remaining blocks can be determined from these treatment combinations
by the method shown above.

The general procedure for constructing a 2* design confounded in four blocks is to
choose two effects to generate the blocks, automatically confounding a third effect that
is the generalized interaction of the first two. Then, the design is constructed by using
the two defining contrasts (L,, L,) and the group-theoretic properties of the principal
block. In selecting effects to be confounded with blocks, care must be exercised to obtain
a design that does not confound effects that may be of interest. For example, in a 2°
design we might choose to confound ABCDE and ABD, which automatically confounds
CE, an effect that is probably of interest. A better choice is to confound ADE and BCE,
which automatically confounds ABCD. It is preferable to sacrifice information on the
three-factor interactions ADE and BCE instead of the two-factor interaction CE.

7.6 CONFOUNDING THE 2% FACTORIAL DESIGN IN 27 BLOCKS

The methods described above may be extended to the construction of a 2* factorial design
confounded in 27 blocks (p < k), where each block contains exactly 2* 7 runs. We select
p independent effects to be confounded, where by ‘‘independent’’ we mean that no effect
chosen is the generalized interaction of the others. The blocks may be generated by use
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of the p defining contrasts L,, L,, . . . , L, associated with these effects. In addition, exactly
27 — p — 1 other effects will be confounded with blocks, these being the generalized
interactions of those p independent effects initially chosen. Care should be exercised in
selecting effects to be confounded so that information on effects that may be of potential
interest is not sacrificed.

The statistical analysis of these designs is straightforward. Sums of squares for all
the effects are computed as if no blocking had occurred. Then, the block sum of squares
is found by adding the sums of squares for all the effects confounded with blocks.

Obviously, the choice of the p effects used to generate the block is critical because
the confounding structure of the design directly depends on them. Table 7-8 (on the
facing page) presents a list of useful designs. To illustrate the use of this table, suppose
we wish to construct a 2° design confounded in 2* = 8 blocks of 2* = 8 runs each. Table
7-8 indicates that we would choose ABEF, ABCD, and ACE as the p = 3 independent
effects to generate the blocks. The remaining 2° — p — 1 = 2> — 3 — 1 = 4 effects that
are confounded are the generalized interactions of these three; that is,

(ABEFYABCD) = A’B°CDEF = CDEF
(ABEF)(ACE) = A’BCE°’F = BCF
(ABCD)(ACE) = A’BC’ED = BDE

(ABEF)(ABCD)ACE) = A’B*C*DE*F = ADF

The reader is asked to generate the eight blocks for this design in Problem 7-11.

7.7 PARTIAL CONFOUNDING

We remarked in Section 7-4 that, unless experimenters have a prior estimate of error or
are willing to assume certain interactions to be negligible, they must replicate the design
to obtain an estimate of error. Figure 7-3 shows a 2° factorial in two blocks with ABC
confounded, replicated four times. From the analysis of variance for this design, shown
in Table 7-5, we note that information on the ABC interaction cannot be retrieved because
ABC is confounded with blocks in each replicate. This design is said to be completely
confounded.

Consider the alternative shown in Figure 7-6. Once again, there are four replicates
of the 2° design, but a different interaction has been confounded in each replicate. That
is, ABC is confounded in replicate I, AB is confounded in replicate II, BC is confounded
in replicate III, and AC is confounded in replicate IV. As a result, information on ABC

Replicate I Replicate II Replicate 11T Replicate IV
ABC Confounded AB Confounded BC Confounded AC Confounded
(1) a (1) a (1) b (1) a
ab b 4 b a c b c
ac ¢ ab ac be ab ac ab
be abc abe be abe ac abe be

Figure 7-6 Partial confounding in the 2° design.
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Table 7-9  Analysis of Variance for a Partially Confounded 2° Design

Degrees of
Source of Variation Freedom

Replicates 3
Blocks within replicates {or ABC (rep. I) + AB (rep. II)

+ BC (rep. III) + AC (rep. IV)] 4
A 1
B 1
C 1
AB (from replicates I, III, and IV) 1
AC (from replicates I, II, and IIT) 1
BC (from replicates I, II, and IV) 1
ABC (from replicates II, III, and IV) 1
Error 17
Total 31

can be obtained from the data in replicates II, III, and IV; information on AB can be
obtained from replicates I, I1I, and IV; information on AC can be obtained from replicates
I, I1, and III; and information on BC can be obtained from replicates I, II, and IV. We
say that three-quarters information can be obtained on the interactions because they are
unconfounded in only three replicates. Yates (1937) calls the ratio 3/4 the relative in-
formation for the confounded effects. This design is said to be partially confounded.

The analysis of variance for this design is shown in Table 7-9. In calculating the
interaction sums of squares, only data from the replicates in which an interaction is
unconfounded are used. The error sum of squares consists of replicates X main effect
sums of squares plus replicates X interaction sums of squares for each replicate in which
that interaction is unconfounded (e.g., replicates X ABC for replicates II, III, and IV).
Furthermore, there are seven degrees of freedom among the eight blocks. This is usually
partitioned into three degrees of freedom for replicates and four degrees of freedom for
blocks within replicates. The composition of the sum of squares for blocks is shown in
Table 7-9 and follows directly from the choice of the effect confounded in each replicate.

EXAMPLE 7-3 +cveceeenttecettoseontsseassssassseasssoassssassssasssnasas

A 2° Design with Partial Confounding

Consider Example 6-1, in which a study was performed to determine the effect of per-
centage of carbonation (A), operating pressure (B), and line speed (C) on the fill height
of a carbonated beverage. Suppose that each batch of syrup is only large enough to test
four treatment combinations. Thus, each replicate of the 23 design must be run in two
blocks. Two replicates are run, with ABC confounded in replicate I and AB confounded
in replicate II. The data are as follows:

Replicate 1 Replicate I
ABC Confounded AB Confounded
1 =-3 a= 0 1) = -1 a=1
ab= 2 b= -1 c= 0 b=0
ac= 12 c=—1 ab= 3 ac =1
bc= 1 abc = 6 abc = 5 bc=1
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Table 7-10  Analysis of Variance for Example 7-3

Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fo P-Value
Replicates 1.00 1 1.00 —
Blocks within replicates 2.50 2 1.25 —
A 36.00 1 36.00 48.00 0.0001
B 20.25 1 20.25 27.00 0.0035
C 12.25 1 12.25 16.33 0.0099
AB (rep. I only) 0.50 1 0.50 0.67 0.4503
AC 0.25 1 0.25 0.33 0.5905
BC 1.00 1 1.00 1.33 0.3009
ABC (rep. IT only) 0.50 1 0.50 0.67 0.4503
Error 3.75 5 0.75 —
Total 78.00 15 — —_

The sums of squares for A, B, C, AC, and BC may be calculated in the usual manner,
using all 16 observations. However, we must find SS,5¢ using only the data in replicate
II and SS,45 using only the data in replicate I as follows:

[a+ b+ c+abc —ab — ac — bc — (D

SSapc =

n2*
[1+0+0+5-3-1-1—-(-DP
= = (.50
(D(®)
[(1) +abc —ac +c—a— b+ ab ~ bc]?
Sap = %
n2
[-3+6—-2+(CD-0—-(C—1+2-17
= = 0.50
(DHE®)

The sum of squares for the replicates is, in general,

"RZ 2
SSkep = D o — 2=

h=1 2k N
_ (6> + (10> (6)®
= g 6 - 1.00

where R, is the total of the observations in the /th replicate. The block sum of squares
is the sum of S,z from replicate I and SS,; from replicate II, or $Sg0es = 2.50.

The analysis of variance is summarized in Table 7-10. All three main effects are
important.

7-8 PROBLEMS

7-1. Consider the experiment described in Problem 6-1. Analyze this experiment assuming that
each replicate represents a block of a single production shift.

7-2.  Consider the experiment described in Problem 6-5. Analyze this experiment assuming that
each one of the four replicates represents a block.

7-3.  Consider the alloy cracking experiment described in Problem 6-15. Suppose that only 16
runs could be made on a single day, so each replicate was treated as a block. Analyze the
experiment and draw conclusions.
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7-1.
7-8.

7-9.

7-12.

7-13.

7-15.
7-16.

7-17.
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Consider the data from the first replicate of Problem 6-1. Suppose that these observations
could not all be run using the same bar stock. Set up a design to run these observations
in two blocks of four observations each with ABC confounded. Analyze the data.
Consider the data from the first replicate of Problem 6-7. Construct a design with two
blocks of eight observations each with ABCD confounded. Analyze the data.

Repeat Problem 7-5 assuming that four blocks are required. Confound ABD and ABC (and
consequently CD) with blocks.

Using the data from the 2° design in Problem 6-21, construct and analyze a design in two
blocks with ABCDE confounded with blocks.

Repeat Problem 7-7 assuming that four blocks are necessary. Suggest a reasonable con-
founding scheme.

Consider the data from the 2° design in Problem 6-21. Suppose that it was necessary to
run this design in four blocks with ACDE and BCD (and consequently ABE) confounded.
Analyze the data from this design.

Design an experiment for confounding a 2° factorial in four blocks. Suggest an appropriate
confounding scheme, different from the one shown in Table 7-8.

Consider the 2° design in eight blocks of eight runs each with ABCD, ACE, and ABEF as
the independent effects chosen to be confounded with blocks. Generate the design. Find
the other effects confounded with blocks.

Consider the 2° design in two blocks with AB confounded. Prove algebraically that
SSap = SSmiocks:

Consider the data in Example 7-2. Suppose that all the observations in block 2 are in-
creased by 20. Analyze the data that would result. Estimate the block effect. Can you
explain its magnitude? Do blocks now appear to be an important factor? Are any other
effect estimates impacted by the change you made to the data?

Suppose that in Problem 6-1 we had confounded ABC in replicate I, AB in replicate II,
and BC in replicate III. Calculate the factor effect estimates. Construct the analysis of
variance table.

Repeat Problem 6-1 assuming that ABC was confounded with blocks in each replicate.
Suppose that in Problem 6-7 ABCD was confounded in replicate I and ABC was con-
founded in replicate II. Perform the statistical analysis of this design.

Construct a 2° design with ABC confounded in the first two replicates and BC confounded
in the third. Outline the analysis of variance and comment on the information obtained.




Two-Level Fractional

Factorial Designs

8-1 INTRODUCTION

As the number of factors in a 2* factorial design increases, the number of runs required
for a complete replicate of the design rapidly outgrows the resources of most experi-
menters. For example, a complete replicate of the 2° design requires 64 runs. In this
design only 6 of the 63 degrees of freedom correspond to main effects, and only 15
degrees of freedom correspond to two-factor interactions. The remaining 42 degrees of
freedom are associated with three-factor and higher interactions.

If the experimenter can reasonably assume that certain high-order interactions are
negligible, information on the main effects and low-order interactions may be obtained
by running only a fraction of the complete factorial experiment. These fractional fac-
torial designs are among the most widely used types of designs for product and process
design and for process improvement.

A major use of fractional factorials is in screening experiments. These are experi-
ments in which many factors are considered and the objective is to identify those factors
(if any) that have large effects. Screening experiments are usually performed in the early
stages of a project when it is likely that many of the factors initially considered have
little or no effect on the response. The factors that are identified as important are then
investigated more thoroughly in subsequent experiments.

The successful use of fractional factorial designs is based on three key ideas:

1. The sparsity of effects principle. When there are several variables, the system
or process is likely to be driven primarily by some of the main effects and low-
order interactions.

2. The projection property. Fractional factorial designs can be projected into
stronger (larger) designs in the subset of significant factors.

3. Sequential experimentation. It is possible to combine the runs of two (or more)
fractional factorials to assemble sequentially a larger design to estimate the factor
effects and interactions of interest.

303
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We will focus on these principles in this chapter and illustrate them with several
examples.

8-2 THE ONE-HALF FRACTION OF THE 2* DESIGN

Consider a situation in which three factors, each at two levels, are of interest, but the
experimenters cannot afford to run all 2*> = 8 treatment combinations. They can, however,
afford four runs. This suggests a one-half fraction of a 2* design. Because the design
contains 2>~! = 4 treatment combinations, a one-half fraction of the 2° design is often
called a 2>~ design.

The table of plus and minus signs for the 2* design is shown in Table 8-1. Suppose
we select the four treatment combinations a, b, ¢, and abc as our one-half fraction. These
runs are shown in the top half of Table 8-1 and in Figure 8-1a.

Notice that the 2° ! design is formed by selecting only those treatment combinations
that have a plus in the ABC column. Thus, ABC is called the generator of this particular
fraction. Sometimes we will refer to a generator such as ABC as a word. Furthermore,
the identity column / is also always plus, so we call

1 = ABC

the defining relation for our design. In general, the defining relation for a fractional
factorial will always be the set of all columns that are equal to the identity column /.
The treatment combinations in the 2°~! design yield three degrees of freedom that
we may use to estimate the main effects. Referring to Table 8-1, we note that the linear
combinations of the observations used to estimate the main effects of A, B, and C are

€, =3%(a— b — c+ abc)
€y =3(—a + b — c + abc)
€c =3(—a — b+ ¢ + abc)

It is also easy to verify that the linear combinations of the observations used to estimate
the two-factor interactions are

eBC=%(a—b_C+abC)
€ac = 3(—a + b — c + abc)
€4 = 3(—a — b + ¢ + abc)

Table 8-1 Plus and Minus Signs for the 2° Factorial Design
Factorial Effect

Treatment
Combination 1 A B C AB AC BC ABC
a + + - - - - + +
b + - + - - + - +
c + - - + + - - +
abc + + + + + + + +
ab + + + - + - - -
ac + + - + - + - -
be + - + + - - + -
(1 + - - - + + + -
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Figure 8-1 The two one-half fractions of the 2°
design.

Thus, €4 = €gc, € = €ac, and € = €,5; consequently, it is impossible to differentiate
between A and BC, B and AC, and C and AB. In fact, when we estimate A, B, and C we
are really estimating A + BC, B + AC, and C + AB. Two or more effects that have this
property are called aliases. In our example, A and BC are aliases, B and AC are aliases,
and C and AB are aliases. We indicate this by the notation €, — A + BC, {3 —> B +
AC, and £ — C + AB.

The alias structure for this design may be easily determined by using the defining
relation I = ABC. Multiplying any column (or effect) by the defining relation yields the
aliases for that column (or effect). In our example, this yields as the alias of A

A-1=A-ABC = A’BC
or, because the square of any column is just the identity 7,
A =BC
Similarly, we find the aliases of B and C as
B-I=B-ABC
B = AB*C = AC
and
C-1=C-ABC
C = ABC* = AB
This one-half fraction, with / = +ABC, is usually called the principal fraction.

Now suppose that we had chosen the other one-half fraction, that is, the treatment
combinations in Table 8-1 associated with minus in the ABC column. This alternate, or
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complementary, one-half fraction (consisting of the runs (1), ab, ac, and bc) is shown
in Figure 8-1b. The defining relation for this design is

I = —ABC

The linear combination of the observations, say €4, €5, and € £, from the alternate fraction
gives us

£, — A — BC
£y, —> B — AC
£ — C — AB

Thus, when we estimate A, B, and C with this particular fraction, we are really estimating
A — BC,B — AC,and C — AB.

In practice, it does not matter which fraction is actually used. Both fractions belong
to the same family; that is, the two one-half fractions form a complete 2’ design. This
is easily seen by reference to parts a and b of Figure 8-1.

Suppose that after running one of the one-half fractions of the 2° design, the other
one was also run. Thus, all eight runs associated with the full 2° are now available. We
may now obtain de-aliased estimates of all the effects by analyzing the eight runs as a
full 2° design in two blocks of four runs each. This could also be done by adding and
subtracting the linear combination of effects from the two individual fractions. For ex-
ample, consider £, — A + BC and £, — A — BC. This implies that

Ly + €) =2XA+BC+A—-BC)— A
and that
L€, — €4) = 3A + BC — A + BC) > BC

Thus, for all three pairs of linear combinations, we would obtain the following:

i From 3(£; + €) From 3(¢; — €})
A A BC
B B AC
C C AB

Design Resolution
The preceding 2°~' design is called a resolution IIT design. In such a design, main
effects are aliased with two-factor interactions. A design is of resolution R if no p-factor
effect is aliased with another effect containing less than R — p factors. We usually employ
a Roman numeral subscript to denote design resolution; thus, the one-half fraction of the
2 design with the defining relation I = ABC (or [ = —ABC) is a 277" design.

Designs of resolution III, IV, and V are particularly important. The definitions of
these designs and an example of each follow:

1. Resolution III designs. These are designs in which no main effects are aliased
with any other main effect, but main effects are aliased with two-factor
interactions and two-factor interactions may be aliased with each other. The 23!
design in Table 8-1 is of resolution o1 i hH.

2. Resolution IV designs. These are designs in which no main effect is aliased
with any other main effect or with any two-factor interaction, but two-factor
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interactions are aliased with each other. A 2*~! design with / = ABCD is a
resolution IV design (25 ).

3. Resolution V designs. These are designs in which no main effect or two-factor
interaction is aliased with any other main effect or two-factor interaction, but
two-factor interactions are aliased with three-factor interactions. A 2°~! design
with I = ABCDE is a resolution V design (23 ).

In general, the resolution of a two-level fractional factorial design is equal to the
smallest number of letters in any word in the defining relation. Consequently, we could
call the preceding design types three-, four-, and five-letter designs, respectively. We
usually like to employ fractional designs that have the highest possible resolution con-
sistent with the degree of fractionation required. The higher the resolution, the less re-
strictive the assumptions that are required regarding which interactions are negligible to
obtain a unique interpretation of the data.

Constructing One-Half Fractions

A one-half fraction of the 2 design of the highest resolution may be constructed by
writing down a basic design consisting of the runs for a full 2°~' factorial and then
adding the kth factor by identifying its plus and minus levels with the plus and minus
signs of the highest-order interaction ABC - - - (K — 1). Therefore, the 23; ' fractional
factorial is obtained by writing down the full 22 factorial as the basic design and then
equating factor C to the AB interaction. The alternate fraction would be obtained by
equating factor C to the —AB interaction. This approach is illustrated in Table 8-2. Notice
that the basic design always has the right number of runs (rows), but it is missing one
column. The generator / = ABC - - - K is then solved for the missing column (X) so that
K = ABC - - - (K — 1) defines the product of plus and minus signs to use in each row to
produce the levels for the kth factor.

Note that any interaction effect could be used to generate the column for the kth
factor. However, using any effect other than ABC - - - (K — 1) will not produce a design
of the highest possible resolution.

Another way to view the construction of a one-half fraction is to partition the runs
into two blocks with the highest-order interaction ABC - - - K confounded. Each block is
a 27! fractional factorial design of the highest resolution.

Projection of Fractions into Factorials

Any fractional factorial design of resolution R contains complete factorial designs (pos-
sibly replicated factorials) in any subset of R — 1 factors. This is an important and useful
concept. For example, if an experimenter has several factors of potential interest but

Table 8-2 The Two One-Half Fractions of the 2° Design

Full 22
Factorial
(Basic
Design) 2374, 1= ABC 2L 1= —ABC
Run A B A B C =AB A B C = —AB

B S
|

+

|

+

|

|

+
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Figure 8-2 Projection of a 27y ' design
into three 27 designs.

believes that only R — 1 of them have important effects, then a fractional factorial design
of resolution R is the appropriate choice of design. If the experimenter is correct, the
fractional factorial design of resolution R will project into a full factorial in the R — 1
significant factors. This process is illustrated in Figure 8-2 for the 2j;; ' design, which
projects into a 22 design in every subset of two factors.

Because the maximum possible resolution of a one-half fraction of the 2* design is
R = k, every 2¢7 design will project into a full factorial in any (k — 1) of the original
k factors. Furthermore, a 2¢~! design may be projected into two replicates of a full
factorial in any subset of k — 2 factors, four replicates of a full factorial in any subset

of k — 3 factors, and so on.

EXAMPLE 8.1 crrececccnes teessescessssencesssseserrsee e et ese o

Consider the filtration rate experiment in Example 6-2. The original design, shown in
Table 6-10, is a single replicate of the 2* design. In that example, we found that the main
effects A, C, and D and the interactions AC and AD were different from zero. We will
now return to this experiment and simulate what would have happened if a half-fraction
of the 2* design had been run instead of the full factorial.

We will use the 2* 7! design with / = ABCD, because this choice of generator will
result in a design of the highest possible resolution (IV). To construct the design, we first
write down the basic design, which is a 2* design, as shown in the first three columns of
Table 8-3. This basic design has the necessary number of runs (eight) but only three
columns (factors). To find the fourth factor levels, solve I = ABCD for D, or D = ABC.
Thus, the level of D in each run is the product of the plus and minus signs in columns

Table 8-3 The 2% ! Design with the Defining Relation | = ABCD

Basic Design

Treatment Filtration
Run A B C D = ABC Combination Rate
1 - - - - ) 45
2 + - - + ad 100
3 - + - + bd 45
4 + + - - ab 65
5 - - + + cd 75
6 + - + - ac 60
7 - + + - bc 80
8 + + + + abcd 96
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bec =80 | l abed = 96

cd =75

|
ac = 60 t
|
|
|

bd = 451
P ab =65 e B
- - C
- P
pd

(1) =45 ad =100 A

Figure 8-3 The 2{; ' design for the filtration rate experiment of Example 8-1.

A, B, and C. The process is illustrated in Table 8-3. Because the generator ABCD is
positive, this 2{v'' design is the principal fraction. The design is shown graphically in
Figure 8-3.

Using the defining relation, we note that each main effect is aliased with a three-
factor interaction; that is, A = A?’BCD = BCD, B = AB*CD = ACD, C = ABC*D =
ABD, and D = ABCD? = ABC. Furthermore, every two-factor interaction is aliased with
another two-factor interaction. These alias relationships are AB = CD, AC = BD, and
BC = AD. The four main effects plus the three two-factor interaction alias pairs account
for the seven degrees of freedom for the design.

At this point, we would normally randomize the eight runs and perform the exper-
iment. Because we have already run the full 2* design, we will simply select the eight
observed filtration rates from Example 6-2 that correspond to the runs in the 27, ' design.
These observations are shown in the last column of Table 8-3 and are also shown in
Figure 8-3.

The estimates of the effects obtained from this 2{y ' design are shown in Table 8-4.
To illustrate the calculations, the linear combination of observations associated with the
A effect is

€4 = 3(—45+ 100 — 45 + 65 — 75 + 60 — 80 + 96) = 19.00 - A + BCD
whereas for the AB effect, we would obtain
EAB=%(45 - 100 —45+65+75—-60 — 80 +96) = —~1.00 > AB + CD

From inspection of the information in Table 8-4, it is not unreasonable to conclude that
the main effects A, C, and D are large. Furthermore, if A, C, and D are the important
main effects, then it is logical to conclude that the two interaction alias chains AC + BD

Table 8-4 Estimates of Effects and
Aliases from Example 8-1¢

Estimate Alias Structure
€, = 19.00 £,—> A + BCD
€= 150 €; — B + ACD
{c= 14.00 €-— C + ABD
€, = 1650 €, — D + ABC

€= —1.00 €4 — AB + CD
€4c = —18.50 €4 — AC + BD
i = 19.00 €., — AD + BC

“ Significant effects are shown in boldface type.
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Figure 8-4 Projection of the 2{; ' design into a 2> design in A, C, and
D for Example 8-1.

and AD + BC have large effects because the AC and AD interactions are also significant.
In other words, if A, C, and D are significant then the significant interactions are most
likely AC and AD. This is an application of Ockham’s razor (after William of Ockham),
a scientific principle that when one is confronted with several different possible inter-
pretations of a phenomena, the simplest interpretation is usually the correct one. Note
that this interpretation agrees with the conclusions from the analysis of the complete 24
design in Example 6-2.

Because factor B is not significant, we may drop it from consideration. Consequently,
we may project this 2y ' design into a single replicate of the 2% design in factors A, C,
and D, as shown in Figure 8-4. Visual examination of this cube plot makes us more
comfortable with the conclusions reached above. Notice that if the temperature (A) is at
the low level, the concentration (C) has a large positive effect, whereas if the temperature
is at the high level, the concentration has a very small effect. This is probably due to an
AC interaction. Furthermore, if the temperature is at the low level, the effect of the stirring
rate (D) is negligible, whereas if the temperature is at the high level, the stirring rate has
a large positive effect. This is probably due to the AD interaction tentatively identified
previously.

Based on the above analysis, we can now obtain a model to predict filtration rate
over the experimental region. This model is

$= Bo+ Bixy + Bsxs + Baxs + Pisxixs + PBraxixg

where x,, x5, and x, are coded variables (—1 < x; < + 1) that represent A, C, and D,
and the 3’s are regression coefficients that can be obtained from the effect estimates as
we did previously. Therefore, the prediction equation is

. 19.00 14.00 16.50 —18.50 19.00
$=70.75+ - X + 2 x; + — x4 + > XX + > Xy Xy

Remember that the intercept J, is the average of all responses at the eight runs in the
design. This model is very similar to the one that resulted from the full 2% factorial design
in Example 6-2.
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EXAMPLE 8,2 ccccccteccccscerscascsssascssssccnccsessssssscscsnscssassnns

A 257! Design Used for Process Improvement

Five factors in a manufacturing process for an integrated circuit were investigated in a
2°7! design with the objective of improving the process yield. The five factors were
A = aperture setting (small, large), B = exposure time (20 percent below nominal, 20
percent above nominal), C = develop time (30 s, 45 s), D = mask dimension (small,
large), and E = etch time (14.5 min, 15.5 min). The construction of the 2°~! design is
shown in Table 8-5. Notice that the design was constructed by writing down the basic
design having 16 runs (a 2* design in A, B, C, and D), selecting ABCDE as the generator,
and then setting the levels of the fifth factor E = ABCD. Figure 8-5 (on page 312) gives
a pictorial representation of the design.

The defining relation for the design is / = ABCDE. Consequently, every main effect
is aliased with a four-factor interaction (for example, €, — A + BCDE), and every two-
factor interaction is aliased with a three-factor interaction (for example, €45 — AB +
CDE). Thus, the design is of resolution V. We would expect this 2°~' design to provide
excellent information concerning the main effects and two-factor interactions.

Table 8-6 (on page 312) contains the effect estimates, sums of squares, and model
regression coefficients for the 15 effects from this experiment. Figure 8-6 (on page 313)
presents a normal probability plot of the effect estimates from this experiment. The main
effects of A, B, and C and the AB interaction are large. Remember that, because of
aliasing, these effects are really A + BCDE, B + ACDE, C + ABDE, and AB + CDE.
However, because it seems plausible that three-factor and higher interactions are negli-
gible, we feel safe in concluding that only A, B ,C, and AB are important effects.

Table 8-7 (page 313) summarizes the analysis of variance for this experiment. The
model sum of squares i SSyoget = SS4 + SS5 + SS¢ + SS4p = 5747.25, and this accounts
for over 99 percent of the total variability in yield. Figure 8-7 (paged 313) presents a

Table 8-5 A 2°~! Design for Example 8-2

Basic Design

Treatment
Run A B C D E = ABCD Combination Yield
1 - - - - + e 8
2 + - - - - a 9
3 - + - - - b 34
4 + + - + abe 52
5 - - + - - c 16
6 + - + - + ace 22
7 - + + - + bee 45
8 + + + - abc 60
9 - - - + - d 6
10 + - - + + ade 10
11 - + - + + bde 30
12 + + - + - abd 50
13 - - + + + cde 15
14 + - + + acd 21
15 - + + + bcd 44
16 + + + + + abcde 63
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Figure 8-5 The 23 ' design for Example 8-2.

Table 8-6 Effects, Regression Coefficients, and Sums of Squares for Example 8-2

Variable Name —1 Level +1 Level

A Aperture —1.000 1.000

B Develop time —1.000 1.000

C Exposure time —1.000 1.000

D Mask dimension —1.000 1.000

E Etch time —1.000 1.000

Variable Regression Coefficient Estimated Effect Sum of Squares
Overall Average 30.3125

A 5.5625 11.1250 495.062
B 16.9375 33.8750 4590.062
C 5.4375 10.8750 473.062
D —0.4375 —0.8750 3.063
E 0.3125 0.6250 1.563
AB 3.4375 6.8750 189.063
AC 0.1875 0.3750 0.563
AD 0.5625 1.1250 5.063
AE 0.5625 1.1250 5.063
BC 0.3125 0.6250 1.563
BD —0.0625 —0.1250 0.063
BE —0.0625 -0.1250 0.063
CD 0.4375 0.8750 3.063
CE 0.1875 0.3750 0.563
DE —0.6875 —1.3750 7.563

312
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Figure 8-6 Normal probability plot of effects for Example 8-2.
Table 8-7 Analysis of Variance for Example 8-2
Sum of Degrees of Mean
Source of Variation Squares Freedom Square F P-Value
A (Aperture) 495.0625 1 495.0625 193.20 <0.0001
B (Exposure time) 4590.0625 1 4590.0625 1791.24 <0.0001
C (Develop time) 473.0625 1 473.0625 184.61 <0.0001
AB 189.0625 1 189.0625 73.78 <0.0001
Error 28.1875 11 2.5625
Total 5775.4375 15
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Figure 8-7 Normal probability plot of the residuals for Example 8-2.
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Figure 8-8 Plot of residuals versus predicted yield for Example 8-2.

normal probability plot of the residuals, and Figure 8-8 is a plot of the residuals versus
the predicted values. Both plots are satisfactory.

The three factors A, B, and C have large positive effects. The AB or aperture exposure
time interaction is plotted in Figure 8-9. This plot confirms that the yields are higher
when both A and B are at the high level.

63—

B+

Yield

S

Low High

Figure 8-9 Aperture—exposure time interaction for Example 8-2.
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Figure 8-10 Projection of the 25! design in Ex-
ample 8-2 into two replicates of a 2° design in the
factors A, B, and C.

The 2° ' design will collapse into two replicates of a 2° design in any three of the
original five factors. (Looking at Figure 8-5 will help you visualize this.) Figure 8-10 is
a cube plot in the factors A, B, and C with the average yields superimposed on the eight
corners. It is clear from inspection of the cube plot that highest yields are achieved with
A, B, and C all at the high level. Factors D and F have little effect on average process
yield and may be set to values that optimize other objectives (such as cost).

Sequences of Fractional Factorials

Using fractional factorial designs often leads to great economy and efficiency in exper-
imentation, particularly if the runs can be made sequentially. For example, suppose that
we are investigating k = 4 factors (2* = 16 runs). It is almost always preferable to run
a 2y ! fractional design (eight runs), analyze the results, and then decide on the best set
of runs to perform next. If it is necessary to resolve ambiguities, we can always run the
alternate fraction and complete the 2* design. When this method is used to complete the
design, both one-half fractions represent blocks of the complete design with the highest-
order interaction confounded with blocks (here ABCD would be confounded). Thus,
sequential experimentation has the result of losing information only on the highest-order
interaction. Its advantage is that in many cases we learn enough from the one-half fraction
to proceed to the next stage of experimentation, which might involve adding or removing
factors, changing responses, or varying some of the factors over new ranges. Some of
these possibilities are illustrated graphically in Figure 8-11 on the following page.

EXAMPLE 8-3 +cvvceveterteentenacensancasaasosssacancsannacnssnsossonss
Reconsider the experiment in Example 8-2. We have used a 2, ' design and tentatively
identified three large main effects—A, C, and D. There are two large effects associated
with two-factor interactions, AC + BD and AD + BC. In Example 8-2, we used the fact
that the main effect of B was negligible to tentatively conclude that the important inter-
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Figure 8-11 Possibilities for follow-up experimentation after a fractional factorial experiment
(adapted from Box (1992—1993), with permission of the publisher).

actions were AC and AD. Sometimes the experimenter will have process knowledge that
can assist in discriminating between interactions likely to be important. However, we
can always isolate the significant interaction by running the alternate fraction, given by
I = —ABCD. 1t is straightforward to show that the design and the responses are as
follows:

Basic Design

Treatment Filtration

Run A B C D = —ABC Combination Rate

1 - - - + d 43

2 + - - - a 71

3 — + — - b 48

4 + + + abd 104

5 - — + — c 68

6 + — + + acd 86

7 — + + + bed 70

8 + + + — abc 65
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The linear combinations of observations obtained from this alternate fraction are

£, = 2425 -—->A — BCD

£, = 475 — B — ACD
£l = 575 — C — ABD
£, = 1275 > D — ABC
€ip = 125 —>AB ~ CD

£ic = —17.75 — AC — BD
€ip = 1425 —- AD — BC

These estimates may be combined with those obtained from the original one-half fraction
to yield the following estimates of the effects:

i From 3(€; + €}) From 3(¢; — €)
A 21.63 = A —2.63 — BCD
B 3138 —1.63 — ACD
C 9.88 > C 4.13 — ABD
D 14.63 —> D 1.88 — ABC
AB 0.13 —> AB -1.13—>CD
AC —18.13 — AC —0.38 — BD
AD 16.63 — AD 2.38 —> BC

These estimates agree exactly with those from the original analysis of the data as a single
replicate of a 2* factorial design, as reported in Example 6-2. Clearly, it is the AC and
AD interactions that are large.

Adding the alternate fraction to the principal fraction may be thought of as a type
of confirmation experiment in that it provides information that will allow us to
strengthen our initial conclusions about the two-factor interaction effects. We will in-
vestigate some other aspects of combining fractional factorials to isolate interactions in
Section 8-5. Sometimes a confirmation experiment is not this elaborate. For example,
one could use the model equation to predict the response at a point of interest within the
design space (not one of the points in the current design), then actually run that trial
(perhaps several times) and use the comparison between predicted and observed response
to confirm the results.

8-3 THE ONE-QUARTER FRACTION OF THE 2* DESIGN

For a moderately large number of factors, smaller fractions of the 2* design are frequently
useful. Consider a one-quarter fraction of the 2* design. This design contains 22 runs
and is usually called a 2*~2 fractional factorial.

The 2“~2 design may be constructed by first writing down a basic design consisting
of the runs associated with a full factorial in k¥ — 2 factors and then associating the two
additional columns with appropriately chosen interactions involving the first & — 2 fac-
tors. Thus, a one-quarter fraction of the 2* design has two generators. If P and Q represent
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the generators chosen, then / = P and I = Q are called the generating relations for the
design. The signs of P and Q (either + or —) determine which one of the one-quarter
fractions is produced. All four fractions associated with the choice of generators =P
and =0 are members of the same family. The fraction for which both P and Q are
positive is the principal fraction.

The complete defining relation for the design consists of all the columns that are
equal to the identity column /. These will consist of P, Q, and their generalized inter-
action PQ; that is, the defining relation is / = P = Q = PQ. We call the elements P,
0, and PQ in the defining relation words. The aliases of any effect are produced by the
multiplication of the column for that effect by each word in the defining relation. Clearly,
each effect has three aliases. The experimenter should be careful in choosing the gen-
erators so that potentially important effects are not aliased with each other.

As an example, consider the 2%~ design. Suppose we choose / = ABCE and I =
BCDF as the design generators. Now the generalized interaction of the generators ABCE
and BCDF is ADEF; therefore, the complete defining relation for this design is

I = ABCE = BCDF = ADEF

Consequently, this is a resolution IV design. To find the aliases of any effect (e.g., A),
multiply that effect by each word in the defining relation. For A, this produces

A = BCE = ABCDF = DEF

It is easy to verify that every main effect is aliased by three- and five-factor interactions,
whereas two-factor interactions are aliased with each other and with higher-order inter-
actions. Thus, when we estimate A, for example, we are really estimating A + BCE +
DEF + ABCDF. The complete alias structure of this design is shown in Table 8-8. If
three-factor and higher interactions are negligible, this design gives clear estimates of
the main effects.

To construct the design, first write down the basic design, which consists of the 16
runs for a full 2672 = 2* design in A, B, C, and D. Then the two factors E and F are
added by associating their plus and minus levels with the plus and minus signs of the
interactions ABC and BCD, respectively. This procedure is shown in Table 8-9.

Another way to construct this design is to derive the four blocks of the 2° design
with ABCE and BCDF confounded and then choose the block with treatment combina-
tions that are positive on ABCE and BCDF. This would be a 2°7* fractional factorial
with generating relations I = ABCE and I = BCDF, and because both generators ABCE
and BCDF are positive, this is the principal fraction.

There are, of course, three alternate fractions of this particular 2%, > design. They

Table 8-8 Alias Structure for the 2&,? Design with I = ABCE =
BCDF = ADEF

A = BCE = DEF = ABCDF
B = ACE = CDF = ABDEF
C = ABE = BDF = ACDEF
D = BCF = AEF = ABCDE
E = ABC = ADF = BCDEF
F = BCD = ADE = ABCEF

ABD = CDE = ACF = BEF
ACD = BDE = ABF = CEF

AB = CE = ACDF = BDEF
AC = BE = ABDF = CDEF
AD = EF = BCDE = ABCF
AE = BC = DF = ABCDEF
AF = DE = BCEF = ABCD
BD = CF = ACDE = ABEF
BF = CD = ACEF = ABDE
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Table 8-9 Construction of the 287 * Design with the Generators I = ABCE and I = BCDF

Basic Design

Run A B C D E = ABC F =BCD
1 — — — — — —
2 + - - - + -
3 - + - - + +
4 + + - - - +
5 - - + - + +
6 + - + - +
7 - + + - - -
8 + + + - + -
9 - - - + - +

10 + - - + + +
11 — + - + + -
12 + + - + - -
13 - - + + + -
14 + - + + - -
15 - + + + +
16 + + + + + +

are the fractions with generating relationships / = ABCE and I = —BCDF'; I = —ABCE
and / = BCDF; and I = —ABCE and I = —BCDF. These fractions may be easily
constructed by the method shown in Table 8-9. For example, if we wish to find the
fraction for which I = ABCE and I = —BCDF, then in the last column of Table 8-9 we
set F = —BCD, and the column of levels for factor F becomes

th————t -t

The complete defining relation for this alternate fraction is / = ABCE = —BCDF =
~ADEF. Certain signs in the alias structure in Table 8-9 are now changed; for instance,
the aliases of A are A = BCE = —DEF = —ABCDF. Thus, the linear combination of
the observations €, actually estimates A + BCE — DEF — ABCDF.

Finally, note that the 2%; > fractional factorial will project into a single replicate of a
2* design in any subset of four factors that is not a word in the defining relation. It also
collapses to a replicated one-half fraction of a 2* in any subset of four factors that is a
word in the defining relation. Thus, the design in Table 8-9 becomes two replicates of a
2*~!in the factors ABCE, BCDF, and ADEF , because these are the words in the defining
relation. There are 12 other combinations of the six factors, such as ABCD, ABCF, and
so on, for which the design projects to a single replicate of the 2*. This design also
collapses to two replicates of a 2* in any subset of three of the six factors or four replicates
of a 2% in any subset of two factors.

In general, any 27 fractional factorial design can be collapsed into either a full
factorial or a fractional factorial in some subset of » < k — 2 of the original factors.
Those subsets of variables that form full factorials are not words in the complete defining
relation.

EXAMPLE 8-4 +cvvceevoosorasconans Ceteseetteatssenetettaannoanesnanann
Parts manufactured in an injection molding process are showing excessive shrinkage.
This is causing problems in assembly operations downstream from the injection molding
area. A quality improvement team has decided to use a designed experiment to study the
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injection molding process so that shrinkage can be reduced. The team decides to inves-
tigate six factors—mold temperature (A), screw speed (B), holding time (C), cycle time
(D), gate size (E), and holding pressure (F)—each at two levels, with the objective of
learning how each factor affects shrinkage and also, something about how the factors
interact.

The team decides to use the 16-run two-level fractional factorial design in Table 8-9.
The design is shown again in Table 8-10, along with the observed shrinkage (X 10) for
the test part produced at each of the 16 runs in the design. Table 8-11 (on the next page)
shows the effect estimates, sums of squares, and the regression coefficients for this
experiment.

A normal probability plot of the effect estimates from this experiment is shown in
Figure 8-12 (on the facing page). The only large effects are A (mold temperature), B
(screw speed), and the AB interaction. In light of the alias relationships in Table 8-8, it
seems reasonable to adopt these conclusions tentatively. The plot of the AB interaction
in Figure 8-13 (on page 322) shows that the process is very insensitive to temperature if
the screw speed is at the low level but very sensitive to temperature if the screw speed
is at the high level. With the screw speed at the low level, the process should produce
an average shrinkage of around 10 percent regardless of the temperature level chosen.

Based on this initial analysis, the team decides to set both the mold temperature and
the screw speed at the low level. This set of conditions will reduce the mean shrinkage
of parts to around 10 percent. However, the variability in shrinkage from part to part is
still a potential problem. In effect, the mean shrinkage can be adequately reduced by the
above modifications; however, the part-to-part variability in shrinkage over a production
run could still cause problems in assembly. One way to address this issue is to see if any
of the process factors affect the variability in parts shrinkage.

Figure 8-14 (on page 322) presents the normal probability plot of the residuals. This
plot appears satisfactory. The plots of residuals versus each factor were then constructed.

Table 8-10 A 2872 Design for the Injection Molding Experiment in Example 8-4

Basic Design ght;?ﬁll'(‘;(;de
Run A B ¢ D E = ABC F = BCD (x 10)
! N - - - - - 6
2 " - - - + - 10
3 N + - - + + 32
4 + + - - - 4 €0
5 — - + + n 4
6 + - + - - + 15
! N + + - - - 26
8 + + + - + _ 60
9 - - _ . _ N .
10 + — — + + + 12
1 N * - + + - 34
12 + + — + _ _ 60
13 N N + + + = 16
14 + - + + - - 5
15 N + + + + 37
16 + + + + + 5
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Table 8-11 Effects, Sums of Squares, and Regression Coefficients for Example 8-4

321

Variable Name —1 Level +1 Level
A mold__temp —1.000 1.000
B screw__spd —1.000 1.000
C hold__time —1.000 1.000
D cycle__time -1.000 1.000
E gate___size -1.000 1.000
F hold__press —1.000 1.000
Variable® Regression Coefficient Estimated Effect Sum of Squares
Overall Average 27.3125
A 6.9375 13.8750 770.062
B 17.8125 35.6250 5076.562
C —0.4375 —0.8750 3.063
D 0.6875 1.3750 7.563
E 0.1875 0.3750 0.563
F 0.1875 0.3750 0.563
AB + CE 5.9375 11.8750 564.063
AC + BE —0.8125 —1.6250 10.562
AD + EF —2.6875 —5.3750 115.562
AE + BC + DF —0.9375 —1.8750 14.063
AF + DE 0.3125 0.6250 1.563
BD + CF —0.0625 —0.1250 0.063
BF + CD —0.0625 —0.1250 0.063
ABD 0.0625 0.1250 0.063
ABF —2.4375 —4.8750 95.063
¢ Only main effects and two-factor interactions.
| | | I l
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Figure 8-12 Normal probability plot of effects for Example 8-4.
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Figure 8-13 Plot of AB (mold temperature—screw speed) interaction
for Example 8-4.

One of these plots, that for residuals versus factor C (holding time), is shown in Figure
8-15. The plot reveals that there is much less scatter in the residuals at the low holding
time than at the high holding time. These residuals were obtained in the usual way from
a model for predicted shrinkage:

y= Bo + lel + Bzxz + Bllexz
27.3125 + 6.9375x; + 17.8125x, + 5.9375x,x,

T T T
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E Y
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Residuals
Figure 8-14 Normal probability plot of residuals for Example 8-4.
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Figure 8-15 Residuals versus holding time (C) for Example 8-4.

where x;, x,, and x,x, are coded variables that correspond to the factors A and B and the
AB interaction. The residuals are then

e=y-7
The regression model used to produce the residuals essentially removes the location
effects of A, B, and AB from the data; the residuals therefore contain information about
unexplained variability. Figure 8-15 indicates that there is a partern in the variability and
that the variability in the shrinkage of parts may be smaller when the holding time is at
the low level (please recall that we observed in Chapter 6 that residuals only convey
information about dispersion effects when the location or mean model is correct).

This is further amplified by the analysis of residuals shown in Table 8-12 (on page
324). In this table, the residuals are arranged at the low (—) and high (+) levels of each
factor, and the standard deviation of the residuals at the low and high levels of each
factor have been calculated. Note that the standard deviation of the residuals with C at
the low level [S(C ™) = 1.63] is considerably smaller than the standard deviation of the

residuals with C at the high level [S(C*) = 5.70].
The bottom line of Table 8-12 presents the statistic

—In S2(i™)

F* =
' §2G7)

Recall that if the variances of the residuals at the high (+) and low (—) levels of factor
i are equal, then this ratio is approximately normally distributed with mean zero, and it
can be used to judge the difference in the response variability at the two levels of factor
i. Because the ratio F ¢ is relatively large, we would conclude that the apparent dispersion
or variability effect observed in Figure 8-15 is real. Thus, setting the holding time at its
low level would contribute to reducing the variability in shrinkage from part to part



L0 I€0— €270 150 650 61°0— w0 [0 +0°0— £T0— wo— 05T 110 61'0— 8£'0— o

or'e wy (A3 co'e 16°¢ 1844 SLC 65 STV £y eSy £€9°1 orv Iy 09y (_Ds§

L8V 88°¢ 0s'e Iy oy 10y 6¢°¢ Yov LIV 68'¢ 89°¢ oLs ey 10y 08¢ (DS

009— + + + + + + + + + + + + + + + 91
Ly - + - + —~ + - + - + - + — + — ST
0SS~ - - + + - - + + - - + + - - + 4!
0S°L + - - + + - - + + - - + + - - €1
00T - — - - + + + + - - - - + + + 4
SLT + - + - - + - + + - + - - + - 11

0S'1 + + - - - - + + + + - - - - + o1
05°0— - + + - + - - + - + + - + - - 6
00T - — - - - - - - + + + + + + + 8
§T9— + - + - + - + - - + - + - + - L
0Sy + + - - + + - - - + + - - + 9
0Sv— - + + - - + + - + - - + + - - S
00T + + + + - - - — - - - - + + + 14
ST0— - + - + + - + - + - + - - + - 3
05°0— - - + + + + - -+ + - - - - + z
0S'CT— + - - + - + + - - + + - + - - I
[EnpIsay  Hd = 4V A4 ajdy ddx =49 aqv 40 =d4 A4=d4v d q Ad=08=3v A4=0V O HO =48V q 14 uny

$-g s1dwexy 105 s109y7 uoisiadsi(] jo uone[nd[E)  Z1-8 qeL

324



8-3 THE ONE-QUARTER FRACTION OF THE 2* DESIGN 325

01 ’ T TT | T T I UL I T T 17T I T | L |_ 99.9
1 — 99

8 Ce
= 5 — 95
x
Q.'.’\

' 20 — 80
5 g
= =
= 50 —50 x
© [
L2
[
c 80 —120
=
£
] 95 —5

99 — —1
99 AR NN RN N A
-0.4 0.1 0.6 1.1 1.6 2.1 2.6

F;!

i

Figure 8-16 Normal probability plot of the dispersion effects F;* for Example 8-4.

during a production run. Figure 8-16 presents a normal probability plot of the F* values
in Table 8-12; this also indicates that factor C has a large dispersion effect.

Figure 8-17 shows the data from this experiment projected onto a cube in the factors
A, B, and C. The average observed shrinkage and the range of observed shrinkage are
shown at each corner of the cube. From inspection of this figure, we see that running the
process with the screw speed (B) at the low level is the key to reducing average parts
shrinkage. If B is low, virtually any combination of temperature (A) and holding time
(C) will result in low values of average parts shrinkage. However, from examining the
ranges of the shrinkage values at each corner of the cube, it is immediately clear that
setting the holding time (C) at the low level is the only reasonable choice if we wish to
keep the part-to-part variability in shrinkage low during a production run.

a y =56.0
1¥=315 E=8
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i
+r 3 =330 ; y; 600.0
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£ 3 7=1001 Y
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\ /

Y
~ A, mold temperature *

Figure 8-17 Average shrinkage and range of shrinkage in factors
A, B, and C for Example 8-4.
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8-4 THE GENERAL 2% ? FRACTIONAL FACTORIAL DESIGN

A 2* fractional factorial design containing 2“7 runs is called a 1/2° fraction of the 2*
design or, more simply, a 2“7 fractional factorial design. These designs require the
selection of p independent generators. The defining relation for the design consists of
the p generators initially chosen and their 2° — p — 1 generalized interactions. In this
section we discuss the construction and analysis of these designs.

The alias structure may be found by multiplying each effect column by the defining
relation. Care should be exercised in choosing the generators so that effects of potential
interest are not aliased with each other. Each effect has 27 — 1 aliases. For moderately
large values of k, we usually assume higher-order interactions (say, third- or fourth-order
and higher) to be negligible, and this greatly simplifies the alias structure.

It is important to select the p generators for a 2“7 fractional factorial design in such
a way that we obtain the best possible alias relationships. A reasonable criterion is to
select the generators such that the resulting 2“77 design has the highest possible reso-
lution. To illustrate, consider the 2% 2 design in Table 8-9, where we used the generators
E = ABC and F = BCD, thereby producing a design of resolution IV. This is the
maximum resolution design. If we had selected E = ABC and F = ABCD, the complete
defining relation would have been I = ABCE = ABCDF = DEF, and the design would
be of resolution III. Clearly this is an inferior choice because it needlessly sacrifices
information about interactions.

Sometimes resolution alone is insufficient to distinguish between designs. For ex-
ample, consider the three 27y % designs in Table 8-13. All of these designs are of resolution
IV, but they have rather different alias structures (we have assumed that three-factor and
higher interactions are negligible) with respect to the two-factor interactions. Clearly
design A has more aliasing and design C the least, so design C would be the best choice
for a 2}y 2.

The three word lengths in design A are all 4; that is, the word length pattern is {4,
4, 4}. For design B it is {4, 4, 6}, and for design C it is {4, 5, 5}. Notice that the defining
relation for design C has only one four-letter word, whereas the other designs have two
or three. Thus, design C minimizes the number of words in the defining relation that are
of minimum length. We call such a design a minimum aberration design. Minimizing
aberration in a design of resolution R ensures that the design has the minimum number
of main effects aliased with interactions of order R — 1, the minimum number of two-

Table 8-13 Three Choices of Generators for the 27;* Design

Design A Generators: Design B Generators: Design C Generators:
F = ABC,G = BCD F =ABC,G = ADE F = ABCD, G = ABDE
I = ABCF = BCDG = ADFG I = ABCF = ADEG = BCDEFG I = ABCDF = ABDEG = CEFG

Aliases (Two-Factor Interactions) ~ Aliases (Two-Factor Interactions)  Aliases (Two-Factor Interactions)

AB = CF AB = CF CE = FG
AC = BF AC = BF CF = EG
AD = FG AD = EG CG = EF
AG = DF AE = DG

- AF = BC
BD = CG AG = DE
BG = CD

AF = BC = DG
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factor interactions aliased with interactions of order R — 2, and so forth. Refer to Fries
and Hunter (1980) for more details.

Table 8-14 (pages 328-330) presents a selection of 2“7 fractional factorial designs
for k =< 15 factors and up to n =< 128 runs. The suggested generators in this table will
result in a design of the highest possible resolution. These are also the minimum aber-
ration designs.

The alias relationships for all of the designs in Table 8-14 for which n < 64 are
given in Appendix Table XII(a—w). The alias relationships presented in this table focus
on main effects and two- and three-factor interactions. The complete defining relation is
given for each design. This appendix table makes it very easy to select a design of
sufficient resolution to ensure that any interactions of potential interest can be estimated.

EXAMPLE 8.5 +vcceveevecenteaacoancasesassnsesnssncssnsssnssnsanssnnes

To illustrate the use of Table 8-14, suppose that we have seven factors and that we are
interested in estimating the seven main effects and getting some insight regarding the
two-factor interactions. We are willing to assume that three-factor and higher interactions
are negligible. This information suggests that a resolution IV design would be
appropriate.

Table 8-14 shows that there are two resolution IV fractions available: the 2/, 2 with
32 runs and the 2/ with 16 runs. Appendix Table XII contains the complete alias
relationships for these two designs. The aliases for the 2{y > 16-run design are in Appendix
Table XII(i). Notice that all seven main effects are aliased with three-factor interactions.
The two-factor interactions are all aliased in groups of three. Therefore, this design will
satisfy our objectives; that is, it will allow the estimation of the main effects, and it will
give some insight regarding two-factor interactions. It is not necessary to run the 2]y >
design, which would require 32 runs. Appendix Table XII(j) shows that this design would
allow the estimation of all seven main effects and that 15 of the 21 two-factor interactions
could also be uniquely estimated. (Recall that three-factor and higher interactions are
negligible.) This is more information about interactions than is necessary. The complete
design is shown in Table 8-15 (page 330). Notice that it was constructed by starting with
the 16-run 2* design in A, B, C, and D as the basic design and then adding the three
columns £ = ABC, F = BCD, and G = ACD. The generators are [ = ABCE, I = BCDF,
and I = ACDG (Table 8-14). The complete defining relation is I = ABCE = BCDF =
ADEF = ACDG = BDEG = CEFG = ABFG.

Analysis of 2*? Fractional Factorials
There are many computer programs that can be used to analyze the 2* 7 fractional fac-
torial design. For example, the Design-Expert program illustrated in Chapter 6 has this
capability.

The design may also be analyzed by resorting to first principles; the ith effect is
estimated by

2(Contrast) _ Contrast;
N (N/2)

where the Contrast; is found using the plus and minus signs in column i and N = 2¢7”
is the total number of observations. The 277 design allows only 277 — 1 effects (and
their aliases) to be estimated.

¢ =
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Table 8-14 Selected 2%~ Fractional Factorial Designs

Number of
Factors, k

Number of
Fraction Runs

Design

Generators

3
4
5

10

2! 4

v 8
257! 16
2 8

285! 32

28,2 16

2873 8

204 64

272 32

273 16

2t 8

25 64

283 32

pXn 16

22 128

257 64

2754 32

2053 16

23 128

= *AB

*ABC
*ABCD
*AB
*AC
*ABCDE
*ABC
*BCD
*AB
*+AC
*BC
+*ABCDEF
*+ABCD
+ABDE
*ABC
*BCD
*ACD
+*AB
+AC
*BC
*ABC
*ABCD
+ABEF
*ABC
*ABD
*+*BCDE
*BCD
*ACD
*ABC
*ABD
+*ACDFG
*BCEFG
+ABCD
+ACEF
*CDEF
*BCDE
*ACDE
*ABDE
+ABCE
+ABC
*BCD
*ACD

= *ABD

*+ABCD
*ABCG
+ACDE

= *ACDF
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Table 8-14 (continued)

Number of Number of Design
Factors, k Fraction Runs Generators
21074 64 G = *BCDF
H = *ACDF
J = *ABDE
K = +ABCE
21972 32 F = *ABCD
G = *ABCE
= *ABDE
= *ACDE
= *BCDE
215°° 16 = *ABC
= *BCD
= +ACD
= *ABD
= *=ABCD
K = *AB
11 2873 64 = =CDE
= *ABCD
J = *ABF
= *=BDEF
= *ADEF
215 32 F = £ABC
= *BCD
= *CDE
= *ACD
= *ADE
= *BDE
287 16 E = *ABC
= *BCD
= *ACD
H = *ABD
= *ABCD
= *+AB
= +AC
12 2128 16 E = *ABC
= *+ABD
= +*ACD
= *BCD
= *ABCD
= *AB
= *AC
= +AD
13 27 16 = *ABC
= *ABD
= *ACD
= *BCD
= * ABCD
K = *AB
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Table 8-14 (continued)

Number of Number of Design
Factors, k Fraction Runs Generators
21074 64 G = *BCDF
H = *ACDF
J = *ABDE
K = +ABCE
21972 32 F = *ABCD
G = *ABCE
= *ABDE
= *ACDE
= *BCDE
215°° 16 = *ABC
= *BCD
= +ACD
= *ABD
= *=ABCD
K = *AB
11 2873 64 = =CDE
= *ABCD
J = *ABF
= *=BDEF
= *ADEF
215 32 F = £ABC
= *BCD
= *CDE
= *ACD
= *ADE
= *BDE
287 16 E = *ABC
= *BCD
= *ACD
H = *ABD
= *ABCD
= *+AB
= +AC
12 2128 16 E = *ABC
= *+ABD
= +*ACD
= *BCD
= *ABCD
= *AB
= *AC
= +AD
13 27 16 = *ABC
= *ABD
= *ACD
= *BCD
= * ABCD
K = *AB
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Table 8-14 (continued)

Number of Number of Design
Factors, k Fraction Runs Generators

L = *AC
M= *AD
= *BC
14 2471 16 = *ABC
= *ABD
= *ACD
H = *£BCD
= *ABCD
= *AB
= *AC
M= *AD
= *BC
= *BD
15 2" 16 = *ABC
F = =ABD
= *ACD
H = *BCD
J = *ABCD
= *AB
L ==*AC
= *AD
N = %BC
= *BD
P==CD

Table 8-15 A 2[? Fractional Factorial Design

Basic Design
Run A B C D E = ABC F =BCD G = ACD
1 — — —_ —_ —_ —_ —
2 + - - - + +
3 - + - - + + -
4 + + - - - + +
5 - - + - + + +
6 + - + - - + -
7 - + + - - - +
8 + + + - + - -
9 - - - + - + +
10 + - - + + + -
11 - + - + + - +
12 + + - + - - -
13 - - + + + - -
14 + - + + - - +
15 - + + + - + -
16 + + + + + + +
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Projection of the 2*~* Fractional Factorial

The 277 design collapses into either a full factorial or a fractional factorial in any subset
of r < k — p of the original factors. Those subsets of factors providing fractional factorials
are subsets appearing as words in the complete defining relation. This is particularly
useful in screening experiments when we suspect at the outset of the experiment that
most of the original factors will have small effects. The original 2* 7 fractional factorial
can then be projected into a full factorial, say, in the most interesting factors. Conclusions
drawn from designs of this type should be considered tentative and subject to further
analysis. It is usually possible to find alternative explanations of the data involving
higher-order interactions.

As an example, consider the 2/, design from Example 8-5. This is a 16-run design
involving seven factors. It will project into a full factorial in any four of the original
seven factors that is not a word in the defining relation. There are 35 subsets of four
factors, seven of which appear in the complete defining relation (see Table 8-15). Thus,
there are 28 subsets of four factors that would form 2* designs. One combination that is
obvious upon inspecting Table 8-15 is A, B, C, and D.

To illustrate the usefulness of this projection properly, suppose that we are con-
ducting an experiment to improve the efficiency of a ball mill and the seven factors are
as follows:

1. Motor speed
Gain

Feed mode
Feed sizing
Material type

St B W

Screen angle
7. Screen vibration level

We are fairly certain that motor speed, feed mode, feed sizing, and material type will
affect efficiency and that these factors may interact. The role of the other three factors
is less well-known, but it is likely that they are negligible. A reasonable strategy would
be to assign motor speed, feed mode, feed sizing, and material type to columns A, B, C,
and D, respectively, in Table 8-15. Gain, screen angle, and screen vibration level would
be assigned to columns E, F, and G, respectively. If we are correct and the ‘‘minor
variables”” E, F, and G are negligible, we will be left with a full 2* design in the key
process variables.

Blocking Fractional Factorials

Occasionally, a fractional factorial design requires so many runs that all of them cannot
be made under homogeneous conditions. In these situations, fractional factorials may be
confounded in blocks. Appendix Table XII contains recommended blocking arrange-
ments for many of the fractional factorial designs in Table 8-14. The minimum block
size for these designs is eight runs.

To illustrate the general procedure, consider the 2§, 2 fractional factorial design with
the defining relation / = ABCE = BCDF = ADEF shown in Table 8-10. This fractional
design contains 16 treatment combinations. Suppose we wish to run the design in two
blocks of eight treatment combinations each. In selecting an interaction to confound with
blocks, we note from examining the alias structure in Appendix Table XII(f) that there
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Block 1 Block 2
(1) ae
abf acf
cef bef
abee be
abef df
bde abd
acd cde
bedf abcedef

Figure 8-18 The 2%, design in
two blocks with ABD
confounded.

are two alias sets involving only three-factor interactions. The table suggests selecting
ABD (and its aliases) to be confounded with blocks. This would give the two blocks
shown in Figure 8-18. Notice that the principal block contains those treatment combi-
nations that have an even number of letters in common with ABD. These are also the
treatment combinations for which L = x; + x, + x4 = 0 (mod 2).

EXAMPLE 86 ++vveccocccccnss

A five-axis CNC machine is used to machine an impeller used in a jet turbine engine.
The blade profiles are an important quality characteristic. Specifically, the deviation of
the blade profile from the profile specified on the engineering drawing is of interest. An
experiment is run to determine which machine parameters affect profile deviation. The
eight factors selected for the design are as follows:

Factor Low Level (—) High Level (+)
A = x-Axis shift (0.001 in) 0 15
B = y-Axis shift (0.001 in) 0 15
C = z-Axis shift (0.001 in) 0 15
D = Tool vendor 1 2
E = a-Axis shift (0.001 deg) 0 30
F = Spindle speed (%) 90 110
G = Fixture height (0.001 in) 0 15
H = Feed rate (%) 90 110

One test blade on each part is selected for inspection. The profile deviation is measured
using a coordinate measuring machine, and the standard deviation of the difference be-
tween the actual profile and the specified profile is used as the response variable.

The machine has four spindles. Because there may be differences in the spindles,
the process engineers feel that the spindles should be treated as blocks.

The engineers feel confident that three-factor and higher interactions are not too
important, but they are reluctant to ignore the two-factor interactions. From Table 8-14,
two designs initially appear appropriate: the 2§y * design with 16 runs and the 25, > design
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with 32 runs. Appendix Table XII(1) indicates that if the 16-run design is used, there
will be fairly extensive aliasing of two-factor interactions. Furthermore, this design can-
not be run in four blocks without confounding four two-factor interactions with blocks.
Therefore, the experimenters decide to use the 28 design in four blocks. This confounds
one three-factor interaction alias chain and one two-factor interaction (EH) and its three-
factor interaction aliases with blocks. The EH interaction is the interaction between the
a-axis shift and the feed rate, and the engineers consider an interaction between these
two variables to be fairly unlikely.

Table 8-16 contains the design and the resulting responses as standard deviation X
10 in. Because the response variable is a standard deviation, it is often best to perform

Table 8-16 The 2* > Design in Four Blocks for Example 8-6

Standard

Basic Design Actual Run  Deviation

Run A B C D E F=ABC G=ABD H =BCDE Block Order (X 10% in)
1 - - - - = - - + 3 18 2.76
2+ - - - = + + + 2 16 6.18
3 - + - = = + + - 4 29 2.43
4 + + - - - - - 1 4 4.01
5 - - + - = + - - 1 6 248
6 + — + - - - + - 4 26 591
7 - + + - = - + + 2 14 2.39
8§ + + + - + - + 3 22 3.35
9 - - - + = - + - 1 8 4.40

0 + - + - + - 4 32 4.10
n - + - + - + + 2 15 322
12 + + + - - + + 3 19 3.78
B - - + + = + + + 3 24 5.32
4 + - + + - - + 2 11 3.87
5 - + + + - - - 4 27 3.03
6 + + + + + + - 1 3 295
7 - - - + - - - 2 10 2.64
18 + - - + + + - 3 21 5.50
9 - + - + + + + 1 7 2.24
20 + + - 4+ - - + 4 28 4.28
21 - - + - + + - + 4 30 2.57
2+ - + - + + + 1 2 5.37
23 - + + - + - + - 3 17 2.11
24 + + + + + - - 2 13 4.18
25 - = + + - + + 4 25 3.96
26 + - + + + + 1 1 3.27
21 - 4+ + + + - 3 23 3.41
28 + + + + - + - 2 12 4.30
29 - - 4+ + + + + - 2 9 4.44
36 + - + + + - - - 3 20 3.65
31 - + + 4+ + - - + 1 5 441
2 + + + + 0+ + + + 4 31 3.40




334 CHAPTER 8 TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS

Table 8-17 Effect Estimates, Regression Coefficients, and Sums of Squares for Example 8-6

Variable Name —1 Level +1 Level
A x-Axis shift 0 15
B y-Axis shift 0 15
C z-Axis shift 0 15
D Tool vendor 1 2
E a-Axis shift 0 30
F Spindle speed 90 110
G Fixture height 0 15
H Feed rate 90 110
Variable® Regression Coefficient Estimated Effect Sum of Squares
Overall Average 1.28007
A 0.14513 0.29026 0.674020
B —0.10027 —0.20054 0.321729
C —0.01288 —0.02576 0.005310
D 0.05407 0.10813 0.093540
E —2.531E-04 —5.063E-04 2.050E-06
F —0.01936 -0.03871 0.011988
G 0.05804 0.11608 0.107799
H 0.00708 0.01417 0.001606
AB + CF + DG —0.00294 ~0.00588 2.767E-04
AC + BF —0.03103 —0.06206 0.030815
AD + BG —0.18706 —0.37412 1.119705
AE 0.00402 0.00804 5.170E-04
AF + BC —0.02251 —0.04502 0.016214
AG + BD 0.02644 0.05288 0.022370
AH —0.02521 —0.05042 0.020339
BE 0.04925 0.09851 0.077627
BH 0.00654 0.01309 0.001371
CD + FG 0.01726 0.03452 0.009535
CE 0.01991 0.03982 0.012685
CG + DF —0.00733 —0.01467 0.001721
CH 0.03040 0.06080 0.029568
DE 0.00854 0.01708 0.002334
DH 0.00784 0.01569 0.001969
EF ~-0.00904 —0.01808 0.002616
EG —0.02685 —0.05371 0.023078
EH —0.01767 —0.03534 0.009993
FH —0.01404 —0.02808 0.006308
GH 0.00245 0.00489 1.914E-04
ABE 0.01665 0.03331 0.008874
ABH —0.00631 —0.01261 0.001273
ACD -0.02717 —0.05433 0.023617

“ Only main effects and two-factor interactions.
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Figure 8-19 Normal probability plot of the effect estimates for Example 8-6.

the analysis following a log transformation. The effect estimates are shown in Table
8-17. Figure 8-19 is a normal probability plot of the effect estimates, using In (standard
deviation X 10°) as the response variable. The only large effects are A = x-axis shift,
B = y-axis shift, and the alias chain involving AD + BG. Now AD is the x-axis shift-
tool vendor interaction, and BG is the y-axis shift-fixture height interaction, and since
these two interactions are aliased it is impossible to separate them based on the data from
the current experiment. Since both interactions involve one large main effect it is also
difficult to apply any ‘‘obvious’’ simplifying logic to the situation either. If there is some
engineering knowledge or process knowledge available that sheds light on the situation,
then perhaps a choice could be made between the two interactions; otherwise, more data
will be required to separate these two effects (the problem of adding runs to a fractional
factorial to de-alias interactions is discussed in Section 8-5 and in the Supplemental
Material for this chapter).

Suppose that process knowledge suggests that the appropriate interaction is likely to
be AD. Table 8-18 is the resulting analysis of variance for the model with factors A, B,

Table 8-18 Analysis of Variance for Example 8-6

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy P-Value
A 0.6740 1 0.6740 39.42 <0.0001
B 0.3217 1 0.3217 18.81 0.0002
D 0.0935 1 0.0935 5.47 0.0280
AD 1.1197 1 1.1197 65.48 <0.0001
Blocks 0.0201 3 0.0067
Error 0.4099 24 0.0171
Total 2.6389 31
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Figure 8-22 The 2§, design in Example 8-6 projected into four
replicates of a 2° design in factors A, B, and D.

D and AD (factor D was included to preserve the hierarchy principle). Notice that the
block effect is small, suggesting that the machine spindles are not very different.

Figure 8-20 (on the facing page) is a normal probability plot of the residuals from
this experiment. This plot is suggestive of slightly heavier than normal tails, so possibly
other transformations should be considered. The AD interaction plot is in Figure 8-21
(on the facing page). Notice that tool vendor (D) and the magnitude of the x-axis shift
(A) have a profound impact on the variability of the blade profile from design specifi-
cations. Running A at the low level (0 offset) and buying tools from vendor 1 gives the
best results. Figure 8-22 shows the projection of this 2§, > design into four replicates of
a 2’ design in factors A, B, and D. The best combination of operating conditions is A at
the low level (O offset), B at the high level (0.015 in offset), and D at the low level (tool
vendor 1).

8-5 RESOLUTION III DESIGNS

As indicated earlier, the sequential use of fractional factorial designs is very useful, often
leading to great economy and efficiency in experimentation. We now illustrate these
ideas using the class of resolution III designs.

It is possible to construct resolution III designs for investigating up to k = N — 1
factors in only N runs, where N is a multiple of 4. These designs are frequently useful
in industrial experimentation. Designs in which N is a power of 2 can be constructed by
the methods presented earlier in this chapter, and these are presented first. Of particular
importance are designs requiring 4 runs for up to 3 factors, 8 runs for up to 7 factors and
16 runs for up to 15 factors. If £ = N — 1, the fractional factorial design is said to be
saturated.

A design for analyzing up to three factors in four runs is the 2{; ' design, presented
in Section 8-2. Another very useful saturated fractional factorial is a design for studying
seven factors in eight runs, that is, the 2/ * design. This design is a one-sixteenth fraction
of the 27. It may be constructed by first writing down as the basic design the plus and
minus levels for a full 2° design in A, B, and C and then associating the levels of four
additional factors with the interactions of the original three as follows: D = AB,
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Table 8-19 The 2%;* Design with the Generators I = ABD, I = ACE, | = BCF, and I = ABCG

Basic Design

Run A B c D =AB E=AC F =BC G = ABC
1 - - - + + + - def
2 + - - - - + + afg
3 - + - - + - + beg
4 + + + - - - abd
5 - - + + - + cdg
6 + - + - + - - ace
7 - + + - - + - bef
8 + + + + + + abcdefg

E = AC, F = BC, and G = ABC. Thus, the generators for this design are I = ABD,
I = ACE, I = BCF, and I = ABCG. The design is shown in Table 8-19.

The complete defining relation for this design is obtained by multiplying the four
generators ABD, ACE, BCF, and ABCG together two at a time, three at a time, and four
at a time, yielding

I = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG
= ABEF = BEG = AFG = DEF = ADEG = CEFG = BDFG = ABCDEFG

To find the aliases of any effect, simply multiply the effect by each word in the defining
relation. For example, the aliases of B are

B = AD = ABCE = CF = ACG = CDE = ABCDF = BCDG = AEF = EG
= ABFG = BDEF = ABDEG = BCEFG = DFG = ACDEFG

This design is a one-sixteenth fraction, and because the signs chosen for the gener-
ators are positive, this is the principal fraction. It is also of resolution III because the
smallest number of letters in any word of the defining contrast is three. Any one of the
16 different 27 * designs in this family could be constructed by using the generators with
1 of the 16 possible arrangements of signs in / = *ABD, I = *ACE, I = *BCF,I =
+ABCG.

The seven degrees of freedom in this design may be used to estimate the seven main
effects. Each of these effects has 15 aliases; however, if we assume that three-factor and
higher interactions are negligible, then considerable simplification in the alias structure
results. Making this assumption, each of the linear combinations associated with the
seven main effects in this design actually estimates the main effect and three two-factor
interactions:

£4— A+ BD + CE+FG
£z — B + AD + CF + EG
{-— C + AE + BF + DG
{p — D + AB + CG + EF 8-1)
£ — E + AC + BG + DF
£ — F + BC + AG + DE
{; =G + CD + BE + AF
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These aliases are found in Appendix Table XII(h), ignoring three-factor and higher
interactions.

The saturated 2{;* design in Table 8-19 can be used to obtain resolution III designs
for studying fewer than seven factors in eight runs. For example, to generate a design
for six factors in eight runs, simply drop any one column in Table 8-19, for example,
column G. This produces the design shown in Table 8-20.

It is easy to verify that this design is also of resolution III; in fact, it is a 2{; >, or a
one-eighth fraction, of the 2° design. The defining relation for the 23, * design is equal
to the defining relation for the original 2], * design with any words containing the letter
G deleted. Thus, the defining relation for our new design is

I = ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF

In general, when d factors are dropped to produce a new design, the new defining relation
is obtained as those words in the original defining relation that do not contain any dropped
letters. When constructing designs by this method, care should be exercised to obtain the
best arrangement possible. If we drop columns B, D, F, and G from Table 8-19, we
obtain a design for three factors in eight runs, yet the treatment combinations correspond
to two replicates of a 2° design. The experimenter would probably prefer to run a full 2°
design in A, C, and E.

It is also possible to obtain a resolution III design for studying up to 15 factors in
16 runs. This saturated 2j; '' design can be generated by first writing down the 16
treatment combinations associated with a 2* design in A, B, C, and D and then equating
11 new factors with the two-, three-, and four-factor interactions of the original four. In
this design, each of the 15 main effects is aliased with seven two-factor interactions. A
similar procedure can be used for the 23] % design, which allows up to 31 factors to be
studied in 32 runs.

Sequential Assembly of Fractions to Separate Effects
By combining fractional factorial designs in which certain signs are switched, we can
systematically isolate effects of potential interest. This type of sequential experiment is
called a fold ever of the original design. The alias structure for any fraction with the
signs for one or more factors reversed is obtained by making changes of sign on the
appropriate factors in the alias structure of the original fraction.

Consider the 2/ design in Table 8-19. Suppose that along with this principal frac-

Table 8-20 A 287> Design with the GeneratorsI = ABD, I = ACE, and I = BCF

Basic Design

Run A B c D = AB E=AC F =BC

1 - - - + + + def

2 + - - - - + af

3 - + - - + - be

4 + + - + - - abd

5 - - + + - - cd

6 + - + - + - ace

7 - + + - - + bef

8 + + + + + + abcdef
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tion a second fractional design with the signs reversed in the column for factor D is also
run. That is, the column for D in the second fraction is

—++——++-

The effects that may be estimated from the first fraction are shown in Equation 8-1, and
from the second fraction we obtain

¢, —> A — BD + CE + FG
¢, — B — AD + CF + EG
¢.— C + AE + BF — DG
¢, — D — AB — CG — EF
ie., ¢',— —D + AB + CG + EF (8-2)
¢, — E + AC + BG — DF
¢, — F + BC + AG — DE
¢, — G — CD + BE + AF

assuming that three-factor and higher interactions are insignificant. Now from the two
linear combinations of effects 1(£; + €1) and 3(¢; — €}) we obtain

i From $(¢; + €}) From (¢, — €1)
A A+ CE + FG BD
B B + CF + EG AD
C C + AE + BF DG
D D AB + CG + EF
E E + AC + BG DF
F F + BC + AG DE
G G + BE + AF CD

Thus, we have isolated the main effect of D and all of its two-factor interactions. In
general, if we add to a fractional design of resolution III or higher a further fraction with
the signs of a single factor reversed, then the combined design will provide estimates of
the main effect of that factor and its two-factor interactions.

Now suppose we add to a resolution III fractional a second fraction in which the
signs for all the factors are reversed. This type of fold over (sometimes called a full fold
over or a reflection) breaks the alias links between main effects and two-factor interac-
tions. That is, we may use the combined design to estimate all the main effects clear of
any two-factor interactions. The following example illustrates the technique.

EXAMPLE 8-7 vvevveestsscesscestsscssncssatsascsassnccssscssconssans .

A human performance analyst is conducting an experiment to study eye focus time and
has built an apparatus in which several factors can be controlled during the test. The
factors he initially regards as important are acuity or sharpness of vision (A), distance
from target to eye (B), target shape (C), illumination level (D), target size (E), target
density (F), and subject (G). Two levels of each factor are considered. He suspects that
only a few of these seven factors are of major importance and that high-order interactions
between the factors can be neglected. On the basis of this assumption, the analyst decides
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Table 8-21 A 2[7* Design for the Eye Focus Time Experiment

Basic Design
Run A B C D =AB E=AC F =BC G = ABC Time

1 - - - + + + - def 855
2 + - - - - + + afg 751
3 - + - - + - + beg 93.2
4 + + + - - - abd 1454
5 - - + + — — + cdg 83.7
6 + - + - + - - ace 77.6
7 — + + - - + - bef 95.0
8 + + + + + + + abcdefg 141.8

to run a screening experiment to identify the most important factors and then to concen-
trate further study on those. To screen these seven factors, he runs the treatment com-
binations from the 2{;;* design in Table 8-19 in random order, obtaining the focus times
in milliseconds, as shown in Table 8-21.

Seven main effects and their aliases may be estimated from these data. From Equa-
tion 8-1, we see that the effects and their aliases are

€4 =2063—> A+ BD + CE + FG
£ = 3838 — B + AD + CF + EG
£ = -028 — C + AE + BF + DG

€, =2888 — D + AB + CG + EF
€z = —0.28 — E + AC + BG + DF
= —-0.63 - F + BC + AG + DE

£; = —243 - G + CD + BE + AF
For example,
€y = 3(—855 + 75.1 — 932 + 1454 — 83.7 + 77.6 — 95.0 + 141.8) = 20.63

The three largest effects are €4, €5, and €. The simplest interpretation of the data is that
the main effects of A, B, and D are all significant. However, this interpretation is not
unique, because one could also logically conclude that A, B, and the AB interaction, or
perthaps B, D, and the BD interaction, or perhaps A, D, and the AD interaction are the
true effects.

Notice that ABD is a word in the defining relation for this design. Therefore, this
2{7* design does not project into a full 2° factorial in ABD; instead, it projects into two
replicates of a 2° ' design, as shown in Figure 8-23 (on the next page). Because the 2° !
design is a resolution III design, A will be aliased with BD, B will be aliased with AD,
and D will be aliased with AB, so the interactions cannot be separated from the main
effects. The analyst here may have been unlucky. If he had assigned illumination level
to C instead of D, the design would have projected into a full 2* design, and the inter-
pretation could have been simpler.

To separate the main effects and the two-factor interactions, a second fraction is run
with all the signs reversed. This fold-over design is shown in Table 8-22 (on the next
page) along with the observed responses. Notice that when we fold over a resolution III
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Figure 8-23 The 2{7* design projected into
two replicates of a 237 ' design in A, B, and D.

design in this manner, we (in effect) change the signs on the generators that have an odd
number of letters. The effects estimated by this fraction are

€i=—-1768—>A — BD — CE — FG

€5 3773 - B — AD — CF — EG

€= —-333—->C— AE — BF — DG
€, = 2988 — D — AB — CG — EF
€= 053 —E - AC — BG — DF
{r = 1.63 - F — BC — AG — DE
€= 268 -G — CD — BE — AF

By combining this second fraction with the original one, we obtain the following esti-
mates of the effects:

i From (¢; + £€7) From 3(¢;, — €0

A A= 148 BD + CE + FG = 19.15
B B = 38.05 AD + CF + EG= 033
C C = —180 AE +BF + DG = 153
D D = 29.38 AB + CG + EF = —0.50
E E= 0.13 AC + BG + DF = —0.40
F F= 1050 BC + AG + DE = —1.53
G G= 0.13 CD + BE + AF = =255

Table 8-22 A Fold-Over 2{;;* Design for the Eye Focus Time Experiment

Basic Design

Run A B C D=-AB E=-AC F=-BC G=ABC Time
1 + + + - - - + abcg 913
2 - + + + + - - bede 136.7
3 + - + + - + acdf 824
4 — - + - + + + cefg 734
5 + o+ - - + + - abef 94.1
6 - + - + - + + bdfg 143.8
7 + - - + + - + adeg 87.3
8 - - - - - - - n 71.9
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The two largest effects are B and D. Furthermore, the third largest effect is BD +
CE + FG, so it seems reasonable to attribute this to the BD interaction. The analyst used
the two factors distance (B) and illumination level (D) in subsequent experiments with
the other factors A, C, E, and F at standard settings and verified the results obtained here.
He decided to use subjects as blocks in these new experiments rather than ignore a
potential subject effect because several different subjects had to be used to complete the
experiment.

The Defining Relation for a Fold-Over Design
Combining fractional factorial designs via fold over as demonstrated in Example 8-7 is
a very useful technique. It is often of interest to know the defining relation for the
combined design. It can be easily determined. Each separate fraction will have L + U
words used as generators: L words of like sign and U words of unlike sign. The combined
design will have L + U — 1 words used as generators. These will be the L words of like
sign and the U — 1 words consisting of independent even products of the words of unlike
sign. (Even products are words taken two at a time, four at a time, and so forth.)

To illustrate this procedure, consider the design in Example 8-7. For the first fraction,
the generators are

1 = ABD, I = ACE, I = BCF, and I = ABCG
and for the second fraction, they are
I = —ABD, I = —ACE, I = —BCF, and I = ABCG

Notice that in the second fraction we have switched the signs on the generators with an
odd number of letters. Also, notice that L + U = 1 + 3 = 4. The combined design will
have I = ABCG (the like sign word) as a generator and two words that are independent
even products of the words of unlike sign. For example, take I = ABD and I = ACE;
then I = (ABD)(ACE) = BCDE is a generator of the combined design. Also, take I =
ABD and I = BCF; then I = (ABD)(BCF) = ACDF is a generator of the combined
design. The complete defining relation for the combined design is

I = ABCG = BCDE = ACDF = ADEG = BDFG = ABEF = CEFG

Plackett—Burman Designs

These designs, attributed to Plackett and Burman (1946), are two-level fractional factorial
designs for studying kK = N — 1 variables in N runs, where N is a multiple of 4. If N is
a power of 2, these designs are identical to those presented earlier in this section. How-
ever, for N = 12, 20, 24, 28, and 36, the Plackett-Burman designs are sometimes of
interest. Because these designs cannot be represented as cubes, they are sometimes called
nongeometric designs.

The upper half of Table 8-23 (on the next page) presents rows of plus and minus
signs that are used to construct the Plackett—Burman designs for N = 12, 20, 24, and
36, whereas the lower half of the table presents blocks of plus and minus signs for
constructing the design for N = 28. The designs for N = 12, 20, 24, and 36 are obtained
by writing the appropriate row in Table 8-23 as a column (or row). A second column (or
row) is then generated from this first one by moving the elements of the column (or row)
down (or to the right) one position and placing the last element in the first position. A
third column (or row) is produced from the second similarly, and the process is continued
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Table 8-23 Plus and Minus Signs for the Plackett—Burman Designs

k=11, N=124++—+++-———+—

k=19 N=20++——++++—+—+————++—

k=23, N=24 +4++++—+—+t+——++——+—F+————

k=35N=36—+—+++———+++++—+++——F+————+—~+~++——+—

k=27,N=28

+—t+++——= e e ++—+—t++—+
++-t++——= ——tt——t—— —t+++—t++-
—4+ A+t F———t——t— +—t+—t++—++
———t—t+t+++ ——t—t———t +—t++—+—+
———t++—+++ Fm———tt+—— ==ttt =
————+++++ T e —tt+t—t—++
4=t —— et =t +—t++—+++-
FA -ttt F——t————t +4+—++——++
+tt————++ —t——t—t—— — -ttt =+

until column (or row) k is generated. A row of minus signs is then added, completing
the design. For N = 28, the three blocks X, Y, and Z are written down in the order

XY Z
Z XY
Y Z X

and a row of minus signs is added to these 27 rows. The design for N = 12 runs and
k = 11 factors is shown in Table 8-24.

The nongeometric Plackett—-Burman designs for N = 12, 20, 24, 28, and 36 have
very messy alias structures. For example, in the 12-run design every main effect is par-
tially aliased with every two-factor interaction not involving itself. For example, the AB
interaction is aliased with the nine main effects C, D, . .., K. Furthermore, each main
effect is partially aliased with 45 two-factor interactions. In the larger designs, the
situation is even more complex. We advise the experimenter to use these designs very
carefully.

Table 8-24 Plackett—Burman Design for N = 12, k = 11

Run A B C D E F G H 1 J

1 + - + - - - + + + - +
2 + + - + - - - + + + -
3 - + + - + - - - + + +
4 + - + + + - - - + +
5 + + - + + - + - - - +
6 + + + - + + - + - -
7 - + + + - + + - + - -
8 - - + + + ~ + + - + -
9 - - - + + + - + + - +
10 + - - + + + - + + -
11 - + - - - + + + - + +

._.
%)
I
I
|
I
|
I
|
|
|
I
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(a) Projection into three factors

(b) Projection into four factors

Figure 8-24 Projection of the 12-run Plackett—Burman design into three-
and four-factor designs.

The projective properties of the nongeometric Plackett—Burman designs are not ter-
ribly attractive. For example, consider the 12-run design in Table 8-24. This design will
project into three replicates of a full 2% design in any two of the original 11 factors.
However, in three factors, the projected design is a full 2* factorial plus a 27! fractional
factorial (see Figure 8-24a). Thus, the resolution III Plackett—Burman design has pro-
jectivity 3, meaning it will collapse into a full factorial in any subset of three factors.
The 2{;;” design only has projectivity 2. The four-dimensional projections are shown in
Figure 8-24b. Notice that these three- and four-factor projections are not balanced
designs.

EXAMPLE 8-8 ccvvvevetenseneeaueasuenatsassonsesssonssonssssssnsasnses

We will illustrate some of the potential difficulties associated with the Plackett—Burman
designs by using the 11-variable, 12-run design and a set of simulated data. We will
assume that the process has three significant main effects (A, B, D) and two significant
two-factor interactions (AB and AD). The model is

y =200 + 8x; + 10x, + 12x, — 12xx, + 9xyx, + €

where each x; is a coded variable defined on the —1, +1 interval and € is an NID(0, 9)
random error term. Therefore, three of the £ = 11 factors are large, and there are two
large interactions; not an unreasonable situation.

Table 8-25 (page 346) presents the 12-run Plackett—Burman design and the simulated
responses. This design looks different from the 12-run design in Table 8-24 because it
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Table 8-25 Plackett—Burman Design for Example 8-8
Run A B C D E F G H J K L Response

1 + o+ -+ o+ o+ = = =+ - 231
2 -+ o+ -+ o+ o+ === 207
3 + - o+ o+ -+ o+ o+ == = 230
4 -+ -+ o+ -+ 4+ o+ = - 217
5 - -+ -+ o+ =4+ - 175
6 - - -+ = 4+ o+ -+ 4+ 176
7 e T S -+ o+ 183
8 + o+ - - -+ =+ o+ = F 185
9 + o+ o+ - -+ -+ o+ - 181
10 - + o+ 4+ - = =+ =+ 4+ 220
11 + -+ o+ o+ - -+ -+ 229
12 - - - - == === 168

was constructed using the row of signs for k = 11, N = 12 in Table 8-23 as a row. The
effect estimates are shown in Table 8-26. Notice that there are seven large effects; A, B,
C, D, E, J, and K (and, of course, their aliases). It is not immediately obvious that some
of these effects could be interactions. Some of this ambiguity could be resolved by folding
over the design. This will generally resolve the main effects, but it often still leaves the
experimenter uncertain about interaction effects.

The difficulty in interpretation in a Plackett-Burman design, illustrated in the above
example, occurs fairly often in practice. If your choice is between a geometric 2y
design with 16 runs or a 12-run Plackett—-Burman design that may have to be folded over
(thereby requiring 24 runs), the geometric design may turn out to be a better choice. For
more details, see Montgomery, Borror, and Stanley (1997-98). Under some conditions,

Table 8-26 Effect Estimates, Regression Coefficients, and Sums of Squares for Example 8-8

Variable” Regression Coefficient Estimated Effect Sum of Squares
Overall Average 200.167
A 6.333 12.667 481.333
B 6.667 13.333 533.333
C 6.833 12.667 560.333
D 17.000 34.000 3468.000
E 6.833 13.667 560.333
F 0.500 1.000 3.000
G —1.167 —2.333 16.333
H 1.500 3.000 27.000
J —6.333 —12.667 481.333
K —5.833 —11.667 408.333
L —0.167 —0.333 0.333

“ Every main effect is partially aliased with 45 two-factor interactions.
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we can untangle the aliases in a nongeometric Plackett—Burman design by using regres-
sion model-building techniques. This is discussed by Hamada and Wu (1992).

8-6 RESOLUTION IV AND V DESIGNS

A 277 fractional factorial design is of resolution IV if the main effects are clear of two-
factor interactions and some two-factor interactions are aliased with each other. Thus, if
three-factor and higher interactions are suppressed, the main effects may be estimated
directly in a 25,7 design. An example is the 23, * design in Table 8-10. Furthermore, the
two combined fractions of the 2{; * design in Example 8-7 yields a 2{y * design.

Any 2f;” design must contain at least 2k runs. Resolution IV designs that contain
exactly 2k runs are called minimal designs. Resolution IV designs may be obtained from
resolution IIT designs by the process of fold over. Recall that to fold over a 2{;” design,
simply add to the original fraction a second fraction with all the signs reversed. Then the
plus signs in the identity column 7 in the first fraction could be switched in the second
fraction, and a (k + 1)st factor could be associated with this column. The result is a
25517 fractional factorial design. The process is demonstrated in Table 8-27 for the
237! design. It is easy to verify that the resulting design is a 2{y ' design with defining
relation I = ABCD.

It is also possible to fold over resolution IV designs to separate two-factor interac-
tions that are aliased with each other. Montgomery and Runger (1996) observe that an
experimenter may have several objectives in folding over a resolution IV design, such
as (1) break as many two-factor interaction alias chains as possible, (2) break the two-
factor interactions on a specific alias chain, or (3) break the two-factor interactions in-
volving a specific factor. One way to fold over a resolution IV design is to run a second
fraction in which the sign is reversed on every design generator that has an even number
of letters. To illustrate, consider the 20y % design used for the injection molding experiment
in Example 8-4. The generators for the design in Table 8-10 are I = ABCE and [ =
BCDF . The second fraction would use the generators I = —ABCE and I = —BCDF, and

Table 8-27 A 2! Design Obtained

by Fold Over
D
1 A B C
Original 2{; ' I = ABC
+ - - +
+ + —~ -
+ - + -
+ + + +
Second 27 ! with Signs Switched
- - + +
- + - +
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the single generator for the combined design would be / = ADEF. Thus, the combined
design is still a resolution IV fractional factorial design. However, the alias relationships
will be much simpler than in the original 28, design. In fact, the only two-factor inter-
actions that will be aliased are AD = EF, AE = DF, and AF = DE. All the other two-
factor interactions can be estimated from the combined design.

As another example, consider the 28, ? design with 32 runs. Table 8-14 indicates that
the best set of generators for this design is I = ABCF, I =ABDG, and I = BCDEH.
Appendix Table XII(m) shows the aliases for this design. Notice that there are six pairs
of two-factor interactions and one group of three two-factor interactions that are aliases.
If we fold over this design, the second fraction would have the generators I = —ABCF,
I = —ABDG, and I = BCDEH. The combined design has the generators / = CDFG and
I = BCDEH, and the complete defining relation is

I = CDFG = BCDEH = BEFGH

The combined design is of resolution IV, but the only two-factor interactions that are
still aliased are CD = FG, CF = DG, and CG = DF. This is a considerable simplification
of the aliasing in the original fraction.

Notice that when we start with a resolution III design, the fold-over procedure guar-
antees that the combined design will be of resolution IV, thereby ensuring that all the
main effects can be separated from their two-factor interaction aliases. When folding
over a resolution IV design, we will not necessarily separate all the two-factor interac-
tions. In fact, if the original fraction has an alias structure with more than two two-factor
interactions in any alias chain, folding over will not completely separate all the two-
factor interactions. Both of the foregoing examples, the 28, > and the 2{y >, have at least
one such two-factor interaction alias chain. Montgomery and Runger (1996) give a table
of recommended fold-over designs for resolution IV fractions with 6 < k < 10 factors.

Resolution V designs are fractional factorials in which the main effects and the two-
factor interactions do not have other main effects and two-factor interactions as their
aliases. These are very powerful designs, allowing the unique estimation of all the main
effects and two-factor interactions, provided that all the three-factor and higher interac-
tions are negligible. The smallest word in the defining relation of such a design must
have five letters. The 2° ! design with the generating relation / = ABCDE is of resolution
V. Another example is the 25> design with the generating relations / = ABCDG and
[ = ABEFH. Further examples of these designs are given by Box and Hunter (1961b).

Because the standard resolution V designs are large designs when the number of
factors is moderately large, there is some practical interest in irregular resolution V
fractional factorials. These are useful designs for 4 < k < 9 factors. The 24-run design
for k = 5 factors is shown in Table 8-28. Because this is a resolution V design, all five
main effects and all 10 two-factor interactions can be estimated, assuming that three-
factor and higher interactions are negligible. The design for k = 4 factors has 12 runs
and is discussed in Problem 8-22. For k = 6, 7, and 8 these designs have 48 runs, and
the nine-factor design has 96 runs. The Design-Expert software package contains all of
these designs.

Finally, we point out that a complete fold over of a resolution IV or V design is
usually unnecessary. Generally, there are only one or two (or a very few) aliased inter-
actions that are potentially of interest. These interactions can usually be de-aliased by
adding a smaller number of runs to the original fraction. This technique is sometimes
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Table 8-28 The Irregular Resolution V
Fraction for Five Factors

in 24 Runs

A B C D E
— + — — —
+ + - - -
— —_ + —_
+ - + - -
— — — + —
+ - —~ + -
+ + - + -
+ - + +

- + + + ~
+ + + + -
- - - - +
+ - - - +
+ + - - +
+ - + ~ +
- + + —~ +
+ + + - +
- ~ - + +
- + - + +
+ + - + +
- - + + +
+ - + + +
- + + + +

called a partial fold over. Refer to Example 10-5 and the supplemental text material for
this chapter for some insight regarding how this is done.

8-7 SUMMARY

This chapter has introduced the 2°~7 fractional factorial design. We have emphasized the
use of these designs in screening experiments to quickly and efficiently identify the subset
of factors that are active and to provide some information on interaction. The projective
property of these designs makes it possible in many cases to examine the active factors
in more detail. Sequential assembly of these designs via fold over is a very effective way
to gain additional information about interactions that an initial experiment may identify
as possibly important.

In practice, 2¢ 7 fractional factorial designs with N = 4, 8, 16, and 32 runs are highly
useful. Table 8-29 (page 350) summarizes these designs, identifying how many factors
can be used with each design to obtain various types of screening experiments. For
example, the 16-run design is a full factorial for 4 factors, a one-half fraction for 5 factors,
aresolution IV fraction for 6 to 8 factors, and a resolution III fraction for 9 to 15 factors.
All of these designs may be constructed using the methods discussed in this chapter, and
many of their alias structures are shown in Appendix Table XII.
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Table 8-29 Useful Factorial and Fractional Factorial Designs
from the 2*7? System. The Numbers in the Cells
are the Number of Factors in the Experiment

Number of Runs

Design Type 4 8 16 32
Full factorial 2 3 4 5
Half-fraction 3 4 5 6
Resolution IV fraction — 4 68 7-16
Resolution III fraction 3 5-7 9-15 17-31

Suppose that in the chemical process development experiment described in Problem 6-7,
it was only possible to run a one-half fraction of the 2* design. Construct the design and
perform the statistical analysis, using the data from replicate L.

Suppose that in Problem 6-15, only a one-half fraction of the 2% design could be run.
Construct the design and perform the analysis, using the data from replicate L.

Consider the plasma etch experiment described in Problem 6-18. Suppose that only a one-
half fraction of the design could be run. Set up the design and analyze the data.
Problem 6-21 describes a process improvement study in the manufacturing process of an
integrated circuit. Suppose that only eight runs could be made in this process. Set up an
appropriate 2° 2 design and find the alias structure. Use the appropriate observations from
Problem 6-21 as the observations in this design and estimate the factor effects. What
conclusions can you draw?

Continuation of Problem 8-4. Suppose you have made the eight runs in the 2°72 design
in Problem 8-4. What additional runs would be required to identify the factor effects that
are of interest? What are the alias relationships in the combined design?

R. D. Snee (‘‘Experimenting with a Large Number of Variables,”” in Experiments in
Industry: Design, Analysis and Interpretation of Results, by R. D. Snee, L. B. Hare, and
1. B. Trout, Editors, ASQC, 1985) describes an experiment in which a 2°~1 design with
I = ABCDE was used to investigate the effects of five factors on the color of a chemical
product. The factors are A = solvent/reactant, B = catalyst/reactant, C = temperature,
D = reactant purity, and E = reactant pH. The results obtained were as follows:

e = —0.63 d = 6.79
a= 251 ade = 547
b = —2.68 bde = 3.45
abe = 1.66 abd = 5.68
c= 2.06 cde = 5.22
ace = 122 acd = 4.38
bce = —2.09 bed = 4.30
abc = 193 abcde = 4.05

(a) Prepare a normal probability plot of the effects. Which effects seem active?

(b) Calculate the residuals. Construct a normal probability plot of the residuals and plot
the residuals versus the fitted values. Comment on the plots.

(c) If any factors are negligible, collapse the 2°~' design into a full factorial in the active
factors. Comment on the resulting design, and interpret the results.

An article by J. J. Pignatiello, Jr. and J. S. Ramberg in the Journal of Quality Technology

(Vol. 17, 1985, pp. 198-206) describes the use of a replicated fractional factorial to

investigate the effect of five factors on the free height of leaf springs used in an automotive
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application. The factors are A = furnace temperature, B = heating time, C = transfer
time, D = hold down time, and E = quench oil temperature. The data are shown below:

A B C D E Free Height

- - - - - 7.78 7.78 7.81
+ - - + - 8.15 8.18 7.88
- + - + - 7.50 7.56 7.50
+ + - - 7.59 7.56 1.75
- - + + - 7.54 8.00 7.88
+ - + - - 7.69 8.09 8.06
- + + - - 7.56 7.52 7.44
+ + + + - 7.56 7.81 7.69
- - - + 7.50 7.25 7.12
+ - - + + 7.88 7.88 7.44
- + + + 7.50 7.56 7.50
+ + - - + 7.63 7.75 7.56
- - + + + 7.32 7.44 7.44
+ - + - + 7.56 7.69 7.62
- + + - ~ + 7.18 7.18 7.25
+ + + + + 7.81 7.50 7.59

(a) Write out the alias structure for this design. What is the resolution of this design?

(b) Analyze the data. What factors influence the mean free height?

(c) Calculate the range and standard deviation of the free height for each run. Is there
any indication that any of these factors affects variability in the free height?

(d) Analyze the residuals from this experiment, and comment on your findings.

(e) Is this the best possible design for five factors in 16 runs? Specifically, can you find
a fractional design for five factors in 16 runs with a higher resolution than this one?

An article in Industrial and Engineering Chemistry (‘‘More on Planning Experiments to

Increase Research Efficiency,”” 1970, pp. 60—65) uses a 2°~2 design to investigate the

effect of A = condensation temperature, B = amount of material 1, C = solvent volume,

D = condensation time, and E = amount of material 2 on yield. The results obtained are

as follows:

e =232 ad = 16.9 cd = 23.8 bde = 16.8
ab = 15.5 bc = 16.2 ace = 234 abcde = 18.1

(a) Verify that the design generators used were I = ACE and I = BDE.

(b) Write down the complete defining relation and the aliases for this design.

(c) Estimate the main effects.

(d) Prepare an analysis of variance table. Verify that the AB and AD interactions are
available to use as error.

(e) Plot the residuals versus the fitted values. Also construct a normal probability plot
of the residuals. Comment on the results.

Consider the leaf spring experiment in Problem 8-7. Suppose that factor E (quench oil

temperature) is very difficult to control during manufacturing. Where would you set factors

A, B, C, and D to reduce variability in the free height as much as possible regardless of

the quench oil temperature used?

Construct a 2”72 design by choosing two four-factor interactions as the independent gen-

erators. Write down the complete alias structure for this design. Outline the analysis of

variance table. What is the resolution of this design?
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Consider the 2° design in Problem 6-21. Suppose that only a one-half fraction could be
run. Furthermore, two days were required to take the 16 observations, and it was necessary
to confound the 2°~! design in two blocks. Construct the design and analyze the data.
Analyze the data in Problem 6-23 as if it came from a 2y ' design with I = ABCD. Project
the design into a full factorial in the subset of the original four factors that appear to be
significant.

Repeat Problem 8-12 using / = —ABCD. Does use of the alternate fraction change your

interpretation of the data?

Project the 2{y'! design in Example 8-1 into two replicates of a 22 design in the factors A

and B. Analyze the data and draw conclusions.

Construct a 257> design. Determine the effects that may be estimated if a second fraction

of this design is run with all signs reversed.

Consider the 2%;® design in Problem 8-15. Determine the effects that may be estimated

if a second fraction of this design is run with the signs for factor A reversed.

Fold over the 277 * design in Table 8-19 to produce an eight-factor design. Verify that the

resulting design is a 2%, * design. Is this a minimal design?

Fold over a 2372 design to produce a six-factor design. Verify that the resulting design is

a 2% design. Compare this design to the 2, design in Table 8-10.

An industrial engineer is conducting an experiment using a Monte Carlo simulation model

of an inventory system. The independent variables in her model are the order quantity

(A), the reorder point (B), the setup cost (C), the backorder cost (D), and the carrying cost

rate (E). The response variable is average annual cost. To conserve computer time, she

decides to investigate these factors using a 27; % design with / = ABD and I = BCE.

The results she obtains are de = 95, ae = 134, b = 158, abd = 190, cd = 92, ac = 187,

bce = 155, and abcde = 185.

(a) Verify that the treatment combinations given are correct. Estimate the effects, as-
suming three-factor and higher interactions are negligible.

(b) Suppose that a second fraction is added to the first, for example, ade = 136, e =
93, ab = 187, bd = 153, acd = 139, ¢ = 99, abce = 191, and bcde = 150. How
was this second fraction obtained? Add this data to the original fraction, and estimate
the effects.

(c) Suppose that the fraction abc = 189, ce = 96, bed = 154, acde = 135, abe = 193,
bde = 152, ad = 137, and (1) = 98 was run. How was this fraction obtained? Add
this data to the original fraction and estimate the effects.

Construct a 2°7! design. Show how the design may be run in two blocks of eight obser-

vations each. Are any main effects or two-factor interactions confounded with blocks?

Construct a 272 design. Show how the design may be run in four blocks of eight obser-

vations each. Are any main effects or two-factor interactions confounded with blocks?

Irregular fractions of the 2* [John (1971)]. Consider a 2* design. We must estimate the

four main effects and the six two-factor interactions, but the full 2* factorial cannot be

run. The largest possible block size contains 12 runs. These 12 runs can be obtained from
the four one-quarter replicates defined by I = *AB = *ACD = *BCD by omitting the
principal fraction. Show how the remaining three 2*~ fractions can be combined to es-
timate the required effects, assuming three-factor and higher interactions are negligible.

This design could be thought of as a three-quarter fraction.

Carbon anodes used in a smelting process are baked in a ring furnace. An experiment is

run in the furnace to determine which factors influence the weight of packing material

that is stuck to the anodes after baking. Six variables are of interest, each at two levels:

A = pitch/fines ratio (0.45, 0.55), B = packing material type (1, 2), C = packing material

temperature (ambient, 325°C), D = flue location (inside, outside), E = pit temperature

(ambient, 195°C), and F = delay time before packing (zero, 24 hours). A 2°77 design is



8-24.

8-8 PROBLEMS

353

run, and three replicates are obtained at each of the design points. The weight of packing
material stuck to the anodes is measured in grams. The data in run order are as follows:
abd = (984, 826, 936); abcdef = (1275, 976, 1457); be = (1217, 1201, 890); aof = (1474,
1164, 1541); def = (1320, 1156, 913); cd = (765, 705, 821); ace = (1338, 1254, 1294);
and bef = (1325, 1299, 1253). We wish to minimize the amount of stuck packing material.
(a) Verify that the eight runs correspond to a 2{; > design. What is the alias structure?
(b) Use the average weight as a response. What factors appear to be influential?

(c) Use the range of the weights as a response. What factors appear to be influential?
(d) What recommendations would you make to the process engineers?
A 16-run experiment was performed in a semiconductor manufacturing plant to study the
effects of six factors on the curvature or camber of the substrate devices produced. The

six variables and their levels are shown below:

Firing Firing

Lamination Lamination = Lamination Firing Cycle Dew

Temperature Time Pressure Temperature Time Point

Run ) (s) (tn) O ) O
1 55 10 5 1580 17.5 20
2 75 10 5 1580 29 26
3 55 25 5 1580 29 20
4 75 25 5 1580 17.5 26
5 55 10 10 1580 29 26
6 75 10 10 1580 17.5 20
7 55 25 10 , 1580 17.5 26
8 75 25 10 1580 29 20
9 55 10 5 1620 17.5 26
10 75 10 5 1620 29 20
11 55 25 5 1620 29 26
12 75 25 5 1620 17.5 20
13 55 10 10 1620 29 20
14 75 10 10 1620 17.5 26
15 55 25 10 1620 17.5 20
16 75 25 10 1620 29 26

Each run was replicated four times, and a camber measurement was taken on the substrate.

The data are shown below:

Camber for Replicate (in/in)

Total Mean Standard

Run 1 2 3 4 (10~*infin) (10 *infin)  Deviation
1 0.0167 0.0128 0.0149 0.0185 629 157.25 24.418
2 0.0062 0.0066 0.0044  0.0020 192 48.00 20.976
3 0.0041 0.0043 0.0042 0.0050 176 44.00 4.083
4 0.0073 0.0081 0.0039 0.0030 223 55.75 25.025
5 0.0047 0.0047 0.0040 0.0089 223 55.75 22.410
6 0.0219 0.0258 0.0147 0.0296 920 230.00 63.639
7 0.0121 0.0090 0.0092  0.0086 389 97.25 16.029

8 0.0255 0.0250 0.0226  0.0169 900 225.00 39.42

9 0.0032  0.0023 0.0077  0.0069 201 50.25 26.725
10 0.0078 0.0158 0.0060 0.0045 341 85.25 50.341
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Camber for Replicate (in/in)

Total Mean Standard
Run 1 2 3 4 (10"*infin) (10 *infin)  Deviation
11 0.0043  0.0027 0.0028  0.0028 126 31.50 7.681
12 0.0186 0.0137 0.0158  0.0159 640 160.00 20.083
13 0.0110 0.0086 0.0101 0.0158 455 113.75 31.12
14 0.0065 0.0109 0.0126 0.0071 371 92.75 29.51
15 0.0155 0.0158 0.0145 0.0145 603 150.75 6.75
16 0.0093 0.0124 0.0110 0.0133 460 115.00 17.45
(a) What type of design did the experimenters use?
(b) What are the alias relationships in this design?
(c) Do any of the process variables affect average camber?
Table 8-30 Data for Problem 8-25
A B C D E F Resist Thickness
Run Volume Batch Time,s Speed Acc. Cover Left Center Right Avg. Range
1 5 Batch 2 14 7350 5 Off 4531 4531 4515 4525.7 16
2 5 Batch 1 6 7350 5 Off 4446 4464 4428 4446 36
3 3 Batch 1 6 6650 5 Off 4452 4490 4452 44647 38
4 3 Batch 2 14 7350 20 Off 4316 4328 4308 43173 20
5 3 Batch 1 14 7350 5 Off 4307 4295 4289 4297 18
6 5 Batch 1 6 6650 20 Off 4470 4492 4495 44857 25
7 3 Batch 1 6 7350 5 On 4496 4502 4482 44933 20
8 5 Batch 2 14 6650 20 Off 4542 4547 4538 45423 9
9 5 Batch 1 14 6650 5 Off 4621 4643 4613 46257 30
10 3 Batch 1 14 6650 5 On 4653 4670 4645 4656 25
11 3 Batch 2 14 6650 20 On 4480 4486 4470 44787 16
12 3 Batch 1 6 7350 20 Off 4221 4233 4217 42237 16
13 5 Batch 1 6 6650 5 On 4620 4641 4619 4626.7 22
14 3 Batch 1 6 6650 20 On 4455 4480 4466 4467 25
15 5 Batch 2 14 7350 20 On 4255 4288 4243 4262 45
16 5 Batch 2 6 7350 5 On 4490 4534 4523 45157 44
17 3 Batch 2 14 7350 5 On 4514 4551 4540 4535 37
18 3 Batch 1 14 6650 20 Off 4494 4503 4496 4497.7 9
19 5 Batch 2 6 7350 20 Off 4293 4306 4302 43003 13
20 3 Batch 2 6 7350 5 Off 4534 4545 4512 45303 33
21 5 Batch 1 14 6650 20 On 4460 4457 4436 4451 24
22 3 Batch 2 6 6650 5 On 4650 4688 4656 4664.7 38
23 5 Batch 1 14 7350 20 Off 4231 4244 4230 4235 14
24 3 Batch 2 6 7350 20 On 4225 4228 4208 42203 20
25 5 Batch 1 14 7350 5 On 4381 4391 4376 43827 15
26 3 Batch 2 6 6650 20 Off 4533 4521 4511 45217 22
27 3 Batch 1 14 7350 20 On 4194 4230 4172 41987 58
28 5 Batch 2 6 6650 5 Off 4666 4695 4672 46777 29
29 5 Batch 1 6 7350 20 On 4180 4213 4197 41967 33
30 5 Batch 2 6 6650 20 On 4465 4496 4463 447477 33
31 5 Batch 2 14 6650 5 On 4653 4685 4665 466777 32
32 3 Batch 2 14 6650 5 Off 4683 4712 4677 4690.7 35
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(d) Do any of the process variables affect the variability in camber measurements?
(¢) [Ifitis important to reduce camber as much as possible, what recommendations would
you make?

A spin coater is used to apply photoresist to a bare silicon wafer. This operation usually
occurs early in the semiconductor manufacturing process, and the average coating thick-
ness and the variability in the coating thickness has an important impact on downstream
manufacturing steps. Six variables are used in the experiment. The variables and their
high and low levels are as follows:

Factor Low Level High Level
Final spin speed 7350 rpm 6650 rpm
Acceleration rate 5 20
Volume of resist applied 3cc Scc
Time of spin 14s 6s
Resist batch variation Batch 1 Batch 2
Exhaust pressure Cover off Cover on

The experimenter decides to use a 2°" ' design and to make three readings on resist thick-

ness on each test wafer. The data are shown in Table 8-30.

(a) Verify that this is a 2°~! design. Discuss the alias relationships in this design.

(b) What factors appear to affect average resist thickness?

(c) Because the volume of resist applied has little effect on average thickness, does this
have any important practical implications for the process engineers?

(d) Project this design into a smaller design involving only the significant factors. Graph-
ically display the results. Does this aid in interpretation?

(e) Use the range of resist thickness as a response variable. Is there any indication that
any of these factors affect the variability in resist thickness?

(f) Where would you recommend that the process engineers run the process?

Harry and Judy Peterson-Nedry (two friends of the author) own a vineyard and winery in

Newberg, Oregon. They grow several varieties of grapes and manufacture wine. Harry

and Judy have used factorial designs for process and product development in the wine-

making segment of their business. This problem describes the experiment conducted for

their 1985 Pinot Noir. Eight variables, shown below, were originally studied in this

experiment:

Variable Low Level (—) High Level (+)
A = Pinot Noir clone Pommard Wadenswil
B = Oak type Allier Troncais
C = Age of barrel Old New
D = Yeast/skin contact Champagne Montrachet
E = Stems None All
F = Barrel toast Light Medium
G = Whole cluster None 10%
H = Fermentation temperature Low (75°F max) High (92°F max)

Harry and Judy decided to use a 2§ design with 16 runs. The wine was taste-tested by
a panel of experts on March 8, 1986. Each expert ranked the 16 samples of wine tasted,
with rank 1 being the best. The design and the taste-test panel results are shown in Table
8-31 on page 356.

(a) What are the alias relationships in the design selected by Harry and Judy?

(b) Use the average ranks () as a response variable. Analyze the data and draw con-
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clusions. You will find it helpful to examine a normal probability plot of the effect
estimates.

(c) Use the standard deviation of the ranks (or some appropriate transformation such as
log 5) as a response variable. What conclusions can you draw about the effects of
the eight variables on variability in wine quality?

(d) After looking at the results, Harry and Judy decide that one of the panel members
(DCM) knows more about beer than he does about wine, so they decide to delete
his ranking. What affect would this have on the results and conclusions from parts
(b) and (¢)?

(e) Suppose that just before the start of the experiment, Harry and Judy discovered that
the eight new barrels they ordered from France for use in the experiment would not
arrive in time, and all 16 runs would have to be made with old barrels. If Harry and
Judy just drop column C from their design, what does this do to the alias relation-
ships? Do they need to start over and construct a new design?

(f) Harry and Judy know from experience that some treatment combinations are unlikely
to produce good results. For example, the run with all eight variables at the high
level generally results in a poorly rated wine. This was confirmed in the March 8,
1986 taste test. They want to set up a new design for their 1986 Pinot Noir using
these same eight variables, but they do not want to make the run with all eight factors
at the high level. What design would you suggest?

In an article in Quality Engineering (‘** An Application of Fractional Factorial Experimental

Designs,”” 1988, Vol. 1, pp. 19-23) M. B. Kilgo describes an experiment to determine

the effect of CO, pressure (A), CO, temperature (B), peanut moisture (C), CO, flow rate

(D), and peanut particle size (E) on the total yield of oil per batch of peanuts (y). The

levels that she used for these factors are as follows:

A, B, E,
Coded Pressure Temp. C, Moisture D, Flow Part. Size
Level (bar) °C) (% by weight) (liters/min) (mm)
-1 415 25 5 40 1.28
1 550 95 15 60 4.05

She conducted the 16-run fractional factorial experiment shown below.

A B c D E y
415 25 5 40 1.28 63
550 25 5 40 4.05 21
415 95 5 40 4.05 36
550 95 5 40 1.28 99
415 25 15 40 4.05 24
550 25 15 40 1.28 66
415 95 15 40 1.28 71
550 95 15 40 4.05 54
415 25 5 60 4.05 23
550 25 5 60 1.28 74
415 95 5 60 1.28 80
550 95 5 60 4.05 33
415 25 15 60 1.28 63
550 25 15 60 4.05 21
415 95 15 60 4.05 44

550 95 15 60 1.28 96
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(a) What type of design has been used? Identify the defining relation and the alias
relationships.

(b) Estimate the factor effects and use a normal probability plot to tentatively identify
the important factors.

(c) Perform an appropriate statistical analysis to test the hypotheses that the factors
identified in part (b) above have a significant effect on the yield of peanut oil.

(d) Fit a model that could be used to predict peanut oil yield in terms of the factors that
you have identified as important.

(e) Analyze the residuals from this experiment and comment on model adequacy.

A 16-run fractional factorial experiment in 10 factors on sand-casting of engine manifolds

was conducted by engineers at the Essex Aluminum Plant of the Ford Motor Company

and described in the article ‘‘Evaporative Cast Process 3.0 Liter Intake Manifold Poor

Sandfill Study,”” by D. Becknell (Fourth Symposium on Taguchi Methods, American

Supplier Institute, Dearborn, ML, 1986, pp. 120-130). The purpose was to determine which

of 10 factors has an effect on the proportion of defective castings. The design and the

resulting proportion of nondefective castings p observed on each run are shown below.

This is a resolution III fraction with generators E = CD, F = BD, G = BC, H = AC,

J = AB, and K = ABC. Assume that the number of castings made at each run in the

design is 1000.

F&T’s
Renm A B C D E F G H J K P arcsinV/p  Modification

1T - - - - + + + + - 0958 1.364 1.363
2 + - - - 4+ + + - - + 1000 1.571 1.555
3 - + - - 4+ - + - + 0977 1419 1.417
4 + + - - + - - - + — 075 1.077 1.076
s - - 4+ - + + + 0958 1.364 1.363
6 + — + — — + - + - — 0958 1.364 1.363
7 - + + - - + - - - 0813 1.124 1.123
g + + + - - + + + + 0906 1.259 1.259
9 - - - + - + + + - 0679 0.969 0.968
o + - + - + - - + 0781 1.081 1.083
11 - + - + - + + - + 1.000 1.571 1.556
2 + + + - + - = + — 089 1.241 1.242
B - - + + + - - + + 0958 1.364 1.363
4 + - + + + - - + - 0.818 1.130 1.130
5 - + + + + + + - - = 0841 1.161 1.160
6 + + + + + + 4+ + + 0955 1.357 1.356

(a) Find the defining relation and the alias relationships in this design.

(b) Estimate the factor effects and use a normal probability plot to tentatively identify
the important factors.

(c) Fit an appropriate model using the factors identified in part (b) above.

(d) Plot the residuals from this model versus the predicted proportion of nondefective
castings. Also prepare a normal probability plot of the residuals. Comment on the
adequacy of these plots.

(e) In part (d) you should have noticed an indication that the variance of the response
is not constant (considering that the response is a proportion, you should have ex-
pected this). The previous table also shows a transformation on p, the arcsin square
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root, that is a widely used variance stabilizing transformation for proportion data
(refer to the discussion of variance stabilizing transformations in Chapter 3). Repeat
parts (a) through (d) above using the transformed response and comment on your
results. Specifically, are the residual plots improved?

There is a modification to the arcsin square root transformation, proposed by Free-
man and Tukey (‘‘Transformations Related to the Angular and the Square Root,”’
Annals of Mathematical Statistics, Vol. 21, 1950, pp. 607-611) that improves its
performance in the tails. F&T’s modification is:

[arcsinVap/(n + 1) + arcsinV(np + D/(n + 1)]/2

Rework parts (a) through (d) using this transformation and comment on the results.
(For an interesting discussion and analysis of this experiment, refer to ‘‘ Analysis of
Factorial Experiments with Defects or Defectives as the Response,” by S. Bisgaard
and H. T. Fuller, Quality Engineering, Vol. 7, 1994-95, pp. 429-443.)

A 16-run fractional factorial experiment in nine factors was conducted by Chrysler Motors
Engineering and described in the article ‘‘Sheet Molded Compound Process Improve-
ment,”” by P. I. Hsieh and D. E. Goodwin (Fourth Symposium on Taguchi Methods,
American Supplier Institute, Dearborn, ML, 1986, pp. 13-21). The purpose was to reduce
the number of defects in the finish of sheet-molded grill opening panels. The design, and
the resulting number of defects, ¢, observed on each run, is shown below. This is
a resolution I fraction with generators £E = BD, F = BCD, G = AC, H = ACD, and

J = AB.
F&T’s
Rm A B C D E F G H J ¢ Ve Modification
1 - - - - + - + - 56 748 7.52
2 + - - - + - + - 17 4.12 4.18
3 - + - - + + - - 2 1.41 1.57
4 + + - - + - + + 4 200 2.12
5 - - + - + + - + + 3 1.73 1.87
6 + - + - + + + - - 4 200 2.12
7 - + + - - - + - 50 7.07 7.12
8 + + + - + + 2 1.41 1.57
9 - - + + + + + 1 1.00 1.21
10 + - - + - + - - - 0 0.00 0.50
11 - + - + + - + + - 3 1.73 1.87
12 + + - + + - - - + 12 346 3.54
13 ~ - + + - - - - + 3 1.73 1.87
14 + - + + - - + + - 4 2,00 2.12
15 - + + + + + - - - 0 0.00 0.50
16 + + + + + + + + + 0 0.00 0.50
(a) Find the defining relation and the alias relationships in this design.
(b) Estimate the factor effects and use a normal probability plot to tentatively identify
the important factors.
(c) Fit an appropriate model using the factors identified in part (b) above.
(d) Plot the residuals from this model versus the predicted number of defects. Also,

prepare a normal probability plot of the residuals. Comment on the adequacy of these
plots.
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8-30.

8-31.
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(e)

®

In part (d) you should have noticed an indication that the variance of the response
is not constant (considering that the response is a count, you should have expected
this). The previous table also shows a transformation on c, the square root, that is a
widely used variance stabilizing transformation for count data (refer to the discus-
sion of variance stabilizing transformations in Chapter 3). Repeat parts (a) through
(d) using the transformed response and comment on your results. Specifically, are
the residual plots improved?

There is a modification to the square root transformation, proposed by Freeman and
Tukey (‘‘Transformations Related to the Angular and the Square Root,”” Annals of
Mathematical Statistics, Vol. 21, 1950, pp. 607-611) that improves its performance.
F&T’s modification to the square root transformation is

Ve + Ve + D12

Rework parts (a) through (d) using this transformation and comment on the results.
(For an interesting discussion and analysis of this experiment, refer to ** Analysis of
Factorial Experiments with Defects or Defectives as the Response,”” by S. Bisgaard
and H. T. Fuller, Quality Engineering, Vol. 7, 1994-1995, pp. 429-443.)

An experiment is run in a semiconductor factory to investigate the effect of six factors on
transistor gain. The design selected is the 2%, 2 shown below:

(a)
(b)
(©)
)]

Standard Run

Order Order A B C D E F Gain
1 2 - - - - - - 1455
2 8 + — - - + — 1511
3 5 - + - — + + 1487
4 9 + + - - - + 1596
5 3 - - o+ - 4+ + 1430
6 14 + - + - + 1481
7 11 - + + - - - 1458
8 10 + + + — + - 1549
9 15 - — + - + 1454

10 13 + — - + + + 1517
1 1 — + - + + - 1487
12 6 + + — + — - 1596
13 12 - — + + + - 1446
14 4 + - + + - - 1473
15 7 - + + + - + 1461
16 16 + + + + + + 1563

Use a normal plot of the effects to identify the significant factors.

Conduct appropriate statistical tests for the model identified in part (a).
Analyze the tesiduals and comment on your findings.

Can you find a set of operating conditions that produce gain of 1500 * 257

Heat treating is often used to carbonize metal parts, such as gears. The thickness of the
carbonized layer is a critical output variable from this process, and it is usually measured

by performing a carbon analysis on the gear pitch (the top of the gear tooth). Six factors

were studied in a 2% 2 design: A = furnace temperature, B = cycle time, C = carbon
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concentration, D = duration of the carbonizing cycle, E = carbon concentration of the
diffuse cycle, and F = duration of the diffuse cycle. The experiment is shown below:

Standard Run

Order Order A B C D E F Pitch
1 5 - - - - - - 74
2 7 + - — - + - 190
3 8 - + - — + + 133
4 2 + + - - + 127
5 10 - — + - + + 115
6 12 + - + - — + 101
7 16 - + + - - 54
8 1 + o+ o+ S
9 6 — — — + - + 121

10 9 + - - + + + 188
11 14 — + — + + — 135
12 13 + + - + - - 170
13 11 — - + + + - 126
14 3 + - + + - - 175
15 15 - + + + — + 126
16 4+ + 4+ o+ 4+ 193

(a) Estimate the factor effects and plot them on a normal probability plot. Select a
tentative model.

(b) Perform appropriate statistical tests on the model.

(c) Analyze the residuals and comment on model adequacy.

(d) Interpret the results of this experiment. Assume that a layer thickness of between
140 and 160 is desirable.

8-32.  Five factors are studied in the irregular fractional factorial design of resolution V shown
below:

Standard Run

Order Order A B C D E y
1 1 - - - - - 16.33
2 10 - + - - - 18.43
3 5 + + - - - 27.07
4 4 - - + - - 16.95
5 15 + - + - - 14.58
6 19 - + + - 19.12
7 16 - - - + - 18.96
8 7 + - + - 23.56
9 8 + + - + -~ 29.15
10 3 + - + + - 15.74
11 13 - + + + - 20.73
12 11 + + + + - 21.52
13 12 - — - + 15.58
14 20 + - - — + 21.03
15 9 + + - + 26.78
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Standard Run

Order Order A B C D E y
16 22 + + - + 13.39
17 21 - + + - + 18.63
18 6 + + + - + 19.01
19 23 - - - + + 17.96
20 18 - + - + + 20.49
21 24 + + - + + 29.31
22 17 - + + + 17.62
23 2 + - + + + 16.03
24 14 - + + + + 21.42

(a) Analyze the data from this experiment. What factors influence the response y?
(b) Analyze the residuals. Comment on model adequacy.



Three-Level and
Mixed-Level Factorial
and Fractional

Factorial Designs

The two-level series of factorial and fractional factorial designs discussed in Chapters 6,
7, and 8 are widely used in industrial research and development. There are some exten-
sions and variations of these designs that are occasionally useful, such as the designs for
cases where all the factors are present at three levels. These 3* designs will be discussed
in this chapter. We will also consider cases where some factors have two levels and other
factors have either three or four levels.

9-1 THE 3* FACTORIAL DESIGN
9-1.1 Notation and Motivation for the 3* Design

We now discuss the 3* factorial design; that is, a factorial arrangement with k factors
each at three levels. Factors and interactions will be denoted by capital letters. We will
refer to the three levels of the factors as low, intermediate, and high. There are several
different notations used to represent these factor levels; one possibility is to represent
the factor levels by the digits O (low), 1 (intermediate), and 2 (high). Each treatment
combination in the 3* design will be denoted by & digits, where the first digit indicates
the level of factor A, the second digit indicates the level of factor B, ..., and the kth
digit indicates the level of factor K. For example, in a 3* design, 00 denotes the treatment
combination corresponding to A and B both at the low level, and 01 denotes the treatment
combination corresponding to A at the low level and B at the intermediate level. Figures
9-1 and 9-2 (on the next page) show the geometry of the 3* and the 3> design, respectively,
using this notation.

This system of notation could have been used for the 2 designs presented previously,
with 0 and 1 used in place of the minus and plus 1s, respectively. In the 2* design, we
prefer the 1 notation because it facilitates the geometric view of the design and because
it is directly applicable to regression modeling, blocking, and the construction of frac-
tional factorials.

In the 3* system of designs, when the factors are quantitative, we often denote the
low, intermediate, and high levels by —1, 0, and +1, respectively. This facilitates fitting

363
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Figure 9-1 Treatment combinations in a 3% design.

a regression model relating the response to the factor levels. For example, consider the
32 design in Figure 9-1, and let x, represent factor A and x, represent factor B. A re-
gression model relating the response y to x; and x, that is supported by this design is

y=PBo+ Bixy + Box + Biaxixy + ﬁnx% + Bzzxg + e (9-1)

Notice that the addition of a third factor level allows the relationship between the response
and the design factors to be modeled as a quadratic.

The 3* design is certainly a possible choice by an experimenter who is concerned
about curvature in the response function. However, two points need to be considered:

1. The 3* design is not the most efficient way to model a quadratic relationship;
the response surface designs discussed in Chapter 11 are superior alternatives.

022 122 222
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2= 202
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021 121
© 01
5 111 1
3 N 101
001 201
2 220
® 020 120
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<2 ¢110 210
o+ 0
000 100 200
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Figure 9-2 Treatment combinations in a 3* design.
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2. The 2* design augmented with center points, as discussed in Chapter 6, is an
excellent way to obtain an indication of curvature. It allows one to keep the size
and complexity of the design low and simultaneously obtain some protection
against curvature. Then, if curvature is important, the two-level design can be
augmented with axial runs to obtain a central composite design, as shown in
Figure 6-36. This sequential strategy of experimentation is far more efficient
than running a 3* factorial design with quantitative factors.

9-1.2 The 3% Design

The simplest design in the 3* system is the 3 design, which has two factors, each at
three levels. The treatment combinations for this design were shown in Figure 9-1. Be-
cause there are 3> = 9 treatment combinations, there are eight degrees of freedom be-
tween these treatment combinations. The main effects of A and B each have two degrees
of freedom, and the AB interaction has four degrees of freedom. If there are n replicates,
there will be n3> — 1 total degrees of freedom and 3*(n — 1) degrees of freedom for
error.

The sums of squares for A, B, and AB may be computed by the usual methods for
factorial designs discussed in Chapter 5. Each main effect can be represented by a linear
and a quadratic component, each with a single degree of freedom, as demonstrated in
Equation 9-1. Of course, this is only meaningful if the factor is quantitative.

The two-factor interaction AB may be partitioned in two ways. The first method
consists of subdividing AB into the four single-degree-of-freedom components corre-
sponding to AB;.;, ABrxg, ABpx1, and ABg.o. This can be done by fitting the terms
Biax1Xs, BrasX1X3, Bi12X1x,, and By12,x7x3, respectively, as demonstrated in Example 5-5.
For the tool life data, this yields SS4z,,, = 8.00, SSap, .., = 42.67, SS4p,,, = 2.67, and
SSABQX o = 8.00. Because this is an orthogonal partitioning of AB, note that §5,5 =
SSan,., T SSan,., T SSasy,., t SSas,,., = 61.34.

The second method is based on orthogonal Latin squares. Consider the totals of
the treatment combinations for the data in Example 5-5. These totals are shown in Figure
9-3 as the circled numbers in the squares. The two factors A and B correspond to the
rows and columns, respectively, of a 3 X 3 Latin square. In Figure 9-3, two particular
3 X 3 Latin squares are shown superimposed on the cell totals.

These two Latin squares are orthogonal; that is, if one square is superimposed on

|.9LOLe] 06,06
1,00l I,0,0,®
HoIRCIRCIERCINCIRS

Figure 9-3 Treatment combination totals from Example 5-5 with two orthogonal
Latin squares superimposed.
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the other, each letter in the first square will appear exactly once with each letter in the
second square. The totals for the letters in the (a) square are Q = 18, R = —2, and
S = 8, and the sum of squares between these totals is [18% + (—=2)* + 8%1/(3)(2) —
[24%/(9)(2)] = 33.34, with two degrees of freedom. Similarly, the letter totals in the (b)
square are @ = 0, R = 6, and S = 18, and the sum of squares between these totals is
[0 + 6% + 18%)/(3)(2) — [24%/(9)(2)] = 28.00, with two degrees of freedom. Note that
the sum of these two components is

33.34 + 28.00 = 61.34 = SS4;p

with 2 + 2 = 4 degrees of freedom.

In general, the sum of squares computed from square () is called the AB component
of interaction, and the sum of squares computed from square (b) is called AB*> com-
ponent of interaction. The components AB and AB? each have two degrees of freedom.
This terminology is used because if we denote the levels (0, 1, 2) for A and B by x, and
x,, respectively, then we find that the letters occupy cells according to the following
pattern:

Square (a) Square (b)
Q:x; +x =0(@mod3) Q:x + 2x, =0 (mod 3)
Rix, +x=1(mod3) S§:x; +2x; =1 (mod3)
S:x; +x,=2(mod3) R:x + 2x, =2 (mod 3)

Il

For example, in square (b), note that the middle cell corresponds to x; = 1 and x, = 1;
thus, x, + 2x, = 1 + (2)(1) = 3 = 0 (mod 3), and Q would occupy the middle cell.
When considering expressions of the form A”B?, we establish the convention that the
only exponent allowed on the first letter is 1. If the first letter exponent is not 1, the entire
expression is squared and the exponents are reduced modulus 3. For example, A®B is the
same as AB” because

A’B = (A’B)* = A'B® = AB®

The AB and AB> components of the AB interaction have no actual meaning and are
usually not displayed in the analysis of variance table. However, this rather arbitrary
partitioning of the AB interaction into two orthogonal two-degree-of-freedom compo-
nents is very useful in constructing more complex designs. Also, there is no connection
between the AB and AB® components of interaction and the sums of squares for
AB;«;, AB; o, ABgx:, and AByx .

The AB and AB* components of interaction may be computed another way. Consider
the treatment combination totals in either square in Figure 9-3. If we add the data by
diagonals downward from left to right, we obtain the totals =3 + 4 — 1 = 0, =3 +
10— 1 =6,and 5 + 11 + 2 = 18. The sum of squares between these totals is
28.00 (AB?). Similarly, the diagonal totals downward from right to left are 5 + 4 —
1=8,-3+2—1=—2,and —3 + 11 + 10 = 18. The sum of squares between these
totals is 33.34 (AB). Yates called these components of interaction the I and J components
of interaction, respectively. We use both notations interchangeably; that is,

I(AB) = AB?
J(AB) = AB
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9-1.3 The 3* Design

Now suppose there are three factors (A, B, and C) under study, and each factor is at three
levels arranged in a factorial experiment. This is a 3* factorial design, and the experi-
mental layout and treatment combination notation were shown previously in Figure 9-2.
The 27 treatment combinations have 26 degrees of freedom. Each main effect has 2
degrees of freedom, each two-factor interaction has 4 degrees of freedom, and the three-
factor interaction has 8 degrees of freedom. If there are n replicates, there are n3° — 1
total degrees of freedom and 3*(n — 1) degrees of freedom for error.

The sums of squares may be calculated using the standard methods for factorial
designs. In addition, if the factors are quantitative the main effects may be partitioned
into linear and quadratic components, each with a single degree of freedom. The two-
factor interactions may be decomposed into linear X linear, linear X quadratic, quadratic
X linear, and quadratic X quadratic effects. Finally, the three-factor interaction ABC can
be partitioned into eight single-degree-of-freedom components corresponding to linear
X linear X linear, linear X linear X quadratic, and so on. Such a breakdown for the
three-factor interaction is generally not very useful.

It is also possible to partition the two-factor interactions into their I and J compo-
nents. These would be designated AB, AB?, AC, AC?, BC, and BC?, and each component
would have two degrees of freedom. As in the 3 design, these components have no
physical significance.

The three-factor interaction ABC may be partitioned into four orthogonal two-
degrees-of-freedom components, which are usually called the W, X, Y, and Z components
of the interaction. They are also referred to as the AB’C?, AB*C, ABC?, and ABC com-
ponents of the ABC interaction, respectively. The two notations are used interchangeably;
that is,

W(ABC) = AB’C”?

X(ABC) = AB°C
Y(ABC) = ABC?
Z(ABC) = ABC

Note that no first letter can have an exponent other than 1. Like the I and J components,
the W, X, Y, and Z components have no practical interpretation. They are, however, useful
in constructing more complex designs.

EXAMPLE O-1 +cvvceeeoceesoceesatctaateasaacesusscsnnssonnsscsasssonsss

A machine is used to fill 5-gallon metal containers with soft drink syrup. The variable
of interest is the amount of syrup loss due to frothing. Three factors are thought to
influence frothing: the nozzle design (A), the filling speed (B), and the operating pressure
(C). Three nozzles, three filling speeds, and three pressures are chosen and two replicates
of a 3’ factorial experiment are run. The coded data are shown in Table 9-1 on page 368.

The analysis of variance for the syrup loss data is shown in Table 9-2 on page 368.
The sums of squares have been computed by the usual methods. We see that the filling
speed and operating pressure are statistically significant. All three two-factor interactions
are also significant. The two-factor interactions are analyzed graphically in Figure 9-4
on page 369. The middle level of speed gives the best performance, nozzle types 2 and
3, and either the low (10 psi) or high (20 psi) pressure seem most effective in reducing
syrup loss.
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Table 9-1 Syrup Loss Data for Example 9-1 (units are cubic centimeters — 70)
Nozzle Type (4)

1 2 3
Pressure (in psi) Speed (in RPM) (B)

(&) 100 120 140 100 120 140 100 120 140
10 —35 —45 —40 17 —65 20 -39 —55 15
—25 —60 15 24 —58 4 =35 -67 -30
15 110 —10 80 55 —55 110 90 —-28 110
75 30 54 120 —44 44 113 —26 135
20 4 —40 31 -23 -64 —20 —30 —61 54
5 =30 36 =5 —62 =31 —55 -52 4

Example 9-1 illustrates a situation where the three-level design often finds some
application; one or more of the factors is qualitative, naturally taking on three levels,
and the remaining factors are quantitative. In this example, suppose that there are only
three nozzle designs that are of interest. This is clearly, then, a qualitative factor that
requires three levels. The filling speed and the operating pressure are quantitative factors.
Therefore, we could fit a quadratic model such as Equation 9-1 in the two factors speed
and pressure at each level of the nozzle factor.

Table 9-3 (on the facing page) shows these quadratic regression models. The B8’s in
these models were estimated using a standard linear regression computer program. (We
will discuss least squares regression in more detail in Chapter 10.) In these models, the
variables x, and x, are coded to the levels —1, 0, +1 as discussed previously, and we
assumed the following natural levels for pressure and speed:

Coded Level Speed (psi) Pressure (rpm)

-1 100 10
0 120 15
+1 140 20

Table 9-3 presents models both in terms of these coded variables and in terms of the
natural levels of speed and pressure.

Table 9-2  Analysis of Variance for Syrup Loss Data

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy P-Value
A, nozzle 993.77 2 496.89 1.17 0.3256
B, speed 61,190.33 2 30,595.17 71.74 <(0.0001
C, pressure 69,105.33 2 34,552.67 81.01 <0.0001
AB 6,300.90 4 1,575.22 3.69 0.0383
AC 7,513.90 4 1,878.47 4.40 0.0222
BC 12,854.34 4 3,213.58 7.53 0.0025
ABC 4,628.76 8 578.60 1.36 0.2737
Error 11,515.50 27 426.50

Total 174,102.83 53
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Figure 9-4 Two-factor interactions for Example 9-1.

Table 9-3 Regression Models for Example 9-1

Nozzle Type x, = Speed (), x, = Pressure (P) in Coded Units
) § =221+ 3.5x + 16.3x, + 51.7x2 — 71.8x2 + 2.9x,x,
§ = 1217.3 — 31.2565 + 86.017P + 0.129175> — 2.8733P2 + 0.02875SP
2 § =256 — 22.8x, — 12.3x, + 14.1x% — 56.9x2 — 0.7x,x,
¥ = 180.1 — 9.475S + 66.75P + 0.0355° — 2.2767P% — 0.0075SP
3 ¥ =15.1 + 203x; + 5.9x, + 75.8x7 — 94.9x3 + 10.5x,x,
9 = 1940.1 — 40.058S + 102.48P + 0.189585% — 3.7967P2 + 0.105SP
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Figure 9-5 shows the response surface contour plots of constant syrup loss as a
function of speed and pressure for each nozzle type. These plots reveal considerable
useful information about the performance of this filling system. Because the objective is
to minimize syrup loss, nozzle type 3 would be preferred as the smallest observed con-
tours (—60) appear only on this plot. Filling speed near the middle level of 120 rpm and
either the low or high pressure levels should be used.

When constructing contour plots for an experiment that has a mixture of quantitative
and qualitative factors, it is not unusual to find that the shapes of the surfaces in the
quantitative factors are very different at each level of the qualitative factors. This is
noticeable to some degree in Figure 9-5, where the shape of the surface for nozzle type
2 is considerably elongated in comparison to the surfaces for nozzle types 1 and 3. When
this occurs, it implies that the optimum operating conditions (and other important con-
clusions) in terms of the quantitative factors are very different at each level of the qual-
itative factors.

We can easily show the numerical partitioning of the ABC interaction into its four
orthogonal two-degree-of-freedom components using the data in Example 9-1. The gen-
eral procedure has been described by Cochran and Cox (1957) and Davies (1956). First,
select any two of the three factors, say AB, and compute the / and J totals of the AB
interaction at each level of the third factor C. These calculations follow:

A Totals
C B 1 2 3 1 J
100 —60 41 -74 -198 -222
10 120 —105 —123 —122 —-106 -79
140 -25 24 —15 —155 —158
100 185 175 203 331 238
15 120 20 -99 —54 255 440
140 134 154 245 377 285
100 9 -28 —85 -59 —144
20 120 —-70 —-126 —113 -74 —40
140 67 -51 58 —206 —155

The I(AB) and J(AB) totals are now arranged in a two-way table with factor C, and the
I and J diagonal totals of this new display are computed:

Totals Totals
C I(AB) 1 J C J(AB) I J
10 —198 —106 —155 —149 41 10 —222 -79 —158 63 138

15 331 255 377 212 19 15 238 440 285 62 4
20 —59 74  —206 102 105 20 -—144 —40 -—155 40 23

The I and J diagonal totals computed above are actually the totals representing the
quantities I[/(AB) X C] = AB>C?, JII(AB) X C] = AB*C, I[J(AB) X C] = ABC?, and
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Figure 9-5 Contours of constant syrup loss (units: cc — 70)
as a function of speed and pressure for nozzle types 1, 2, and
3, Example 9-1.
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JIJ(AB) X C] = ABC, or the W, X, Y, and Z components of ABC. The sums of squares
are found in the usual way; that is,
I[I(AB) X C)] = AB*C* = W(ABC)
_ (—149)* + (212)% + (102)* B (165)*

" S, = 380411
JI(AB) X C]1 = AB*C = X(ABC)
2 2 2 2
_ @D + (9P + (1057 (1657 _ , .
18 54

I[J(AB) X C] = ABC? = Y(ABC)

(637 + (62 + (40> (1658 _

= T o = 1877
JIJ(AB X C] = ABC = Z(ABC)

_ U387+ (4P + @ (65 _ o

18 54

Although this is an orthogonal partitioning of SSzc, We point out again that it is not
customarily displayed in the analysis of variance table. In subsequent sections, we discuss
the occasional need for the computation of one or more of these components.

9.1.4 The General 3* Design

The concepts utilized in the 3> and 3 designs can be readily extended to the case of k
factors, each at three levels, that is, to a 3* factorial design. The usual digital notation is
employed for the treatment combinations, so 0120 represents a treatment combination in
a 3* design with A and D at the low levels, B at the intermediate level, and C at the high
level. There are 3* treatment combinations, with 3* — 1 degrees of freedom between
them. These treatment combinations allow sums of squares to be determined for X main
effects, each with two degrees of freedom; (%) two-factor interactions, each with four
degrees of freedom; . . .; and one k-factor interaction with 2* degrees of freedom. In
general, an h-factor interaction has 2h degrees of freedom. If there are n replicates, there
are n3* — 1 total degrees of freedom and 3“(n — 1) degrees of freedom for error.

Sums of squares for effects and interactions are computed by the usual methods for
factorial designs. Typically, three-factor and higher interactions are not broken down any
further. However, any h-factor interaction has 2"~ orthogonal two-degrees-of-freedom
components. For example, the four-factor interaction ABCD has 247! = 8 orthogonal
two-degrees-of-freedom components, denoted by ABCD?, ABC’D, AB°CD, ABCD,
ABC?D?, AB>C*D, AB*CD?, and AB>*C>D?. In writing these components, note that the
only exponent allowed on the first letter is 1. If the exponent on the first letter is not 1,
then the entire expression must be squared and the exponents reduced modulus 3. To
demonstrate, consider

A’BCD = (A®BCDY* = A*B’C°D? = AB’C*D?
These interaction components have no physical interpretation, but they are useful in
constructing more complex designs.

The size of the design increases rapidly with k. For example, a 3° design has 27
treatment combinations per replication, a 3* design has 81, a 3° design has 243, and so

on. Therefore, frequently only a single replicate of the 3* design is considered, and higher-
order interactions are combined to provide an estimate of error. As an illustration, if
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three-factor and higher interactions are negligible, then a single replicate of the 3> design
provides 8 degrees of freedom for error, and a single replicate of the 3* design provides
48 degrees of freedom for error. These are still large designs for k = 3 factors, and,
consequently, not too useful.

9-2 CONFOUNDING IN THE 3* FACTORIAL DESIGN

Even when a single replicate of the 3" design is considered, the design requires so many
runs that it is unlikely that all 3* runs can be made under uniform conditions. Thus,
confounding in blocks is often necessary. The 3* design may be confounded in 3” in-
complete blocks, where p < k. Thus, these designs may be confounded in three blocks,
nine blocks, and so on.

9-2.1 The 3* Factorial Design in Three Blocks

Suppose that we wish to confound the 3* design in three incomplete blocks. These three
blocks have two degrees of freedom among them; thus, there must be two degrees of
freedom confounded with blocks. Recall that in the 3* factorial series each main effect
has two degrees of freedom. Furthermore, every two-factor interaction has four degrees
of freedom and can be decomposed into two components of interaction (e.g., AB and
AB?), each with two degrees of freedom; every three-factor interaction has eight degrees
of freedom and can be decomposed into four components of interaction (e.g., ABC, ABC?,
ABC, and AB*C?), each with two degrees of freedom; and so on. Therefore, it is con-
venient to confound a component of interaction with blocks.
The general procedure is to construct a defining contrast

L= a1 X, + [65%.%) + .-+ [e 7% 9% (9'2)

where a; represents the exponent on the ith factor in the effect to be confounded and x;
is the level of the ith factor in a particular treatment combination. For the 3* series, we
have @; = 0, 1, or 2 with the first nonzero o; being unity, and x; = 0 (low level), 1
(intermediate level), or 2 (high level). The treatment combinations in the 3* design are
assigned to blocks based on the value of L (mod 3). Because L (mod 3) can take on only
the values O, 1, or 2, three blocks are uniquely defined. The treatment combinations
satisfying L = 0 (mod 3) constitute the principal block. This block will always contain
the treatment combination 00 . . . 0.

For example, suppose we wish to construct a 3* factorial design in three blocks.
Either component of the AB interaction, AB or AB*, may be confounded with blocks.
Arbitrarily choosing AB?, we obtain the defining contrast

L= x; + 2X2
The value of L (mod 3) of each treatment combination may be found as follows:
00: L=10)+20)=0=0(@mod3) 11: L=1(1)+ 2(1) =3 = 0 (mod 3)
0I: L=10)+2(1)=2=2(mod3) 21: L=1(2)+ 2(1) =4 =1 (mod 3)
02: L=10)+22)=4=1(mod3) 12: L=1(1)+ 22) =5 =2 (mod 3)
10: L=11)+20)=1=1(@mod3) 22: L=12)+ 22) =6 =0 (mod 3)
200 L=1(2) + 20) =2 = 2 (mod 3)

The blocks are shown in Figure 9-6 on the next page.
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Block 1 Block 2 Block 3
00 10 01
1 21 12
22 02 20

{a) Assignment of the treatment
combinations to blocks

— e}
2 02 12 22
4]
5L
g 01 1 21
L e =Block 1
o =Block 2
o+ ) @ = Block 3
00 10 20
| | J
0 1 2
Factor A

(b) Geometric view

Figure 9-6 The 32 design in three blocks with AB?
confounded.

The elements in the principal block form a group with respect to addition modulus
3. Referring to Figure 9-6, we see that 11 + 11 = 22, and 11 + 22 = 00. Treatment
combinations in the other two blocks may be generated by adding, modulus 3, any
element in the new block to the elements of the principal block. Thus, for block 2 we
use 10 and obtain

10 + 00 = 10 10 + 11

21 and 10 +22=02
To generate block 3, using 01 we find
01 + 00 = 01 01 + 11

I
—_
3]
5

o

01 +22=20

EXAMPLE 9.2 «+cecceeerenssaccensen Creeeesasiiieacens ceeeanciaaians cees

We illustrate the statistical analysis of the 3% design confounded in three blocks by using
the following data, which come from the single replicate of the 32 design shown in Figure
9-6.

Block 1 Block 2 Block 3

0= 4 10=-2 0o1= 5
11 = -4 21= 1 12= -5
2= 0 02= 8 20= 0

Block Totals = 0 7 0

Using conventional methods for the analysis of factorials, we find that S, = 131.56 and
SSp = 0.22.
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Table 9-4 Analysis of Variance for Data
in Example 9-2

Source of Sum of Degrees of

Variation Squares Freedom
Blocks (AB?) 10.89 2

A 131.56 2

B 0.22 2

AB 2.89 2
Total 145.56 8

We also find that

0)* + (7)* + (0  (7)?
SSBlocks = () (3) () _%

However, SSgi.c is €xactly equal to the AB* component of interaction. To see this, write
the observations as follows:

= 10.89

Factor B
0 1 2
4 5 8
Factor A 1 -2 -4 -5
2 0 1 0

Recall from Section 9-1.2 that the I or AB* component of the AB interaction may be
found by computing the sum of squares between the left-to-right diagonal totals in the
above layout. This yields

O+ O+ @ (P

= = 10.8
SSAB2 3 9 9

which is identical to SSgiocks-

The analysis of variance is shown in Table 9-4. Because there is only one replicate,
no formal tests can be performed. It is not a good idea to use the AB component of
interaction as an estimate of error.

We now look at a slightly more complicated design—a 3 factorial confounded in
three blocks of nine runs each. The AB*C? component of the three-factor interaction will
be confounded with blocks. The defining contrast is

L =x + 2x;, + 2x;

It is easy to verify that the treatment combinations 000, 012, and 101 belong in the
principal block. The remaining runs in the principal block are generated as follows:

(1) 000 (4) 101 + 101 = 202 (7) 101 + 021 = 122

(2) 012 (5) 012 + 012 = 021 (8) 012 + 202 = 211
(3) 101 (6) 101 + 012 = 110 9 021 + 202 = 220
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To find the runs in another block, note that the treatment combination 200 is not in the
principal block. Thus, the elements of block 2 are

(1) 200 + 000 = 200 (4) 200 + 202 = 102 (7) 200 + 122 = 022
(2) 200 + 012 = 212 (5) 200 + 021 = 221 (8) 200 + 211 = 111
(3) 200 + 101 = 001 (6) 200 + 110 = 010 (9) 200 + 220 = 120

Notice that these runs all satisfy L = 2 (mod 3). The final block is found by observing
that 100 does not belong in block 1 or 2. Using 100 as above yields

(1) 100 + 000 = 100 4) 100 + 202 = 002 (7) 100 + 122 = 222
(2) 100 + 012 = 112 (5) 100 + 021 = 121 (8) 100 + 211 = 011
(3) 100 + 101 = 201 (6) 100 + 110 = 210 9 100 + 220 = 020

The blocks are shown in Figure 9-7.

Block 1 Block 2 Block 3
000 200 100
012 212 112
101 001 201
202 102 002
021 221 121
110 010 210
122 022 222
211 111 011
220 120 020

(a) Assignment of the treatment
combinations to blocks

e =Block 1 022 132 22,2
o =Block 2
o = Block 3
012 0112 212
2+ 0024 ) Lzoz
o 021 121 =
011
g o111 211
K4 1L 101
001 201
2 220
‘Q, 020 120
& 010
<% ®110 210
o 0 o—
000 100 200
| | ]
0 1 2
Factor A

(b) Geometric view
Figure 9-7 The 3° design in three blocks with AB>C” confounded.
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Table 9-5 Analysis of Variance for a 3> Design

with AB*C? Confounded
Degrees of
Source of Variation Freedom
Blocks (AB*C?) 2
A 2
B 2
C 2
AB 4
AC 4
BC 4
Error (ABC + AB*C + ABC?) 6
Total 26

The analysis of variance for this design is shown in Table 9-5. Using this confound-
ing scheme, information on all the main effects and two-factor interactions is available.
The remaining components of the three-factor interaction (ABC, AB*C, and ABC?) are
combined as an estimate of error. The sum of squares for those three components could
be obtained by subtraction. In general, for the 3* design in three blocks, we would always
select a component of the highest-order interaction to confound with blocks. The re-
maining unconfounded components of this interaction could be obtained by computing
the k-factor interaction in the usual way and subtracting from this quantity the sum of
squares for blocks.

9.2.2 The 3* Factorial Design in Nine Blocks

In some experimental situations it may be necessary to confound the 3* design in nine
blocks. Thus, eight degrees of freedom will be confounded with blocks. To construct
these designs, we choose two components of interaction and, as a result, two more will
be confounded automatically, yielding the required eight degrees of freedom. These two
are the generalized interactions of the two effects originally chosen. In the 3* system, the
generalized interactions of two effects (e.g., P and Q) are defined as PQ and PQ” (or
P?Q).

The two components of interaction initially chosen yield two defining contrasts

L1 = 01X, + Oy Xo + ...+ X, — U (mOd 3) u = O, 1, 2 (9_3)
Ly = Bixy + Boxo + -+ + Bixy = h (mod 3) h=01,2

where {a;} and {3;} are the exponents in the first and second generalized interactions,
respectively, with the convention that the first nonzero «; and B, are unity. The defining
contrasts in Equation 9-3 imply nine simultaneous equations specified by the pair of
values for L, and L,. Treatment combinations having the same pair of values for (L, L,)
are assigned to the same block.

The principal block consists of treatment combinations satisfying L, = L, = 0 (mod
3). The elements of this block form a group with respect to addition modulus 3; thus,
the scheme given in Section 9-2.1 can be used to generate the blocks.



378 CHAPTER 9 3-LEVEL, MIXED-LEVEL, AND FRACTIONAL FACTORIAL DESIGNS

As an example, consider the 3* factorial design confounded in nine blocks of nine
runs each. Suppose we choose to confound ABC and AB’D*. Their generalized
interactions

(ABCYAB*D? = A’B*CD? = (A’B’CD?*? = AC’D
(ABCYAB?D?? = A*B°CD* = B*CD = (B°CD)* = BC*D?

are also confounded with blocks. The defining contrasts for ABC and AB>D? are

Li=x +x + x (9-4)
Lz = X + 2)(,'2 + 2.X4

The nine blocks may be constructed by using the defining contrasts (Equation 9-4)
and the group-theoretic property of the principal block. The design is shown in Figure
9-8.

For the 3* design in nine blocks, there will be four components of interaction con-
founded. The remaining unconfounded components of these interactions can be deter-
mined by subtracting the sum of squares for the confounded component from the sum
of squares for the entire interaction. The method described in Section 9-1.3 may be useful
in computing the components of interaction.

9.2.3 The 3 Factorial Design in 3 Blocks

The 3* factorial design may be confounded in 37 blocks of 3* 7 observations each, where
p < k. The procedure is to select p independent effects to be confounded with blocks.
As a result, exactly (3° — 2p — 1)/2 other effects are automatically confounded. These
effects are the generalized interactions of those effects originally chosen.

As an illustration, consider a 37 design to be confounded in 27 blocks. Because p =
3, we would select three independent components of interaction and automatically con-
found [3* — 2(3) — 1}/2 = 10 others. Suppose we choose ABC>DG, BCE*FG, and
BDEFG. Three defining contrasts can be constructed from these effects, and the 27 blocks

Block 1 Block 2 Block 3 Block4 Block5 Block 6 Block 7 Block 8 Block 9

0000 0001 2000 0200 0020 0010 1000 0100 0002
0122 0120 2122 0022 0112 0102 1122 0222 0121
0211 0212 2211 0111 0201 0221 1221 0011 0210
1021 1022 0021 0221 101 1001 2021 1121 1020
1110 111 0110 1010 1100 1120 2110 1210 1112
1202 1200 0202 1102 1222 1212 2202 1002 1201
2012 2010 1012 2212 2002 2022 0012 2112 2011
2101 2012 1101 2001 2121 211 0101 2201 2100
2220 2221 1220 2120 2210 2200 0220 2020 2222
(L,, L,)=1(0,0) 0,1 (2,2) (2,0) (2,1) (1,2) (1,1 (1,00 0,2)

Figure 9-8 The 3* design in nine blocks with ABC, AB>D?, AC*D, and BC*D* confounded.
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can be generated by the methods previously described. The other 10 effects confounded
with blocks are

(ABC*DG)(BCE*F*G) = AB°DE’F°G*

(ABC°DGYBCE’F*G)* = AB*C*DE*F*G® = ACDEF
(ABC°DGYBDEFG) = AB*C*D*EFG*

(ABC*DG)(BDEFG)* = AB’C*D’E*F*G® = AC*E°F?
(BCE*F’G)(BDEFG) = B°CDE*F*G* = BC*D*G
(BCE’F*G)(BDEFG)* = B’CD’E*F*G’ = CD’EF
(ABC*DG)(BCE*F’G)(BDEFG) = AB*C°D’E°F*G® = AD?
(ABC*DG)*(BCE*F*G)(BDEFG) = A’B*C°D*G"* = AB’CG”
(ABC*DG)(BCE*F*G)*(BDEFG) = ABCD’E*F’G
(ABC*DG)(BCE*F*G)(BDEFG)* = ABC’D’E*F*G* = ABEFG

This is a huge design requiring 3’ = 2187 observations arranged in 27 blocks of 81
observations each.

9.3 FRACTIONAL REPLICATION OF THE 3* FACTORIAL DESIGN

The concept of fractional replication can be extended to the 3* factorial designs. Because
a complete replicate of the 3* design can require a rather large number of runs even for
moderate values of k, fractional replication of these designs is of interest. As we shall
see, however, some of these designs have unattractive alias structures.

9.3.1 The One-Third Fraction of the 3* Factorial Design

The largest fraction of the 3* design is a one-third fraction containing 3*~' runs. Con-
sequently, we refer to this as a 3*"! fractional factorial design. To construct a 3*"
fractional factorial design select a two-degrees-of-freedom component of interaction
(generally, the highest-order interaction) and partition the full 3* design into three blocks.
Each of the three resulting blocks is a 3*~! fractional design, and any one of the blocks
may be selected for use. f AB“2C** . . . K* is the component of interaction used to define
the blocks, then I = AB*2C* ... K™ is called the defining relation of the fractional
factorial design. Each main effect or component of interaction estimated from the 3*~!
design has two aliases, which may be found by multiplying the effect by both I and I*
modulus 3.

As an example, consider a one-third fraction of the 3’ design. We may select any
component of the ABC interaction to construct the design, that is, ABC, AB?C, ABC?, or
AB?*C?. Thus, there are actually 12 different one-third fractions of the 3* design defined
by

x; + aox, + azxs = u (mod 3)

where & = 1 or 2 and u = 0, 1, or 2. Suppose we select the component of AB*C>. Each
fraction of the resulting 3°~' design will contain exactly 3> = 9 treatment combinations
that must satisfy

x; + 2x + 2x3 = u (mod 3)
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where u = 0, 1, or 2. It is easy to verify that the three one-third fractions are as shown
in Figure 9-9.
If any one of the 3°~' designs in Figure 9-9 is run, the resulting alias structure is

A = A(AB’C?) = A’B’C* = ABC

A = A(AB’C?? = A’B*C* = BC

B = B(AB’C?) = AB°C* = AC?

B = B(AB’C* = A’B°C* = ABC?

C = C(AB’C?) = AB’C® = AB®

C = C(AB’C?’ = A’B*C’° = AB’C
AB = AB(AB’C?) = A’B’C? = AC
AB = AB(AB*C?? = A’B°C* = BC*

Consequently, the four effects that are actually estimated from the eight degrees of
freedom in the design are A + BC + ABC, B + AC* + ABC? C + AB* + AB’C, and
AB + AC + BC?. This design would be of practical value only if all the interactions
were small relative to the main effects. Because the main effects are aliased with two-
factor interactions, this is a resolution III design. Notice how complex the alias relation-
ships are in this design. Each main effect is aliased with a component of interaction. If,
for example, the two-factor interaction BC is large, this will potentially distort the esti-
mate of the main effect of A and make the AB + AC + BC? effect very difficult to
interpret. It is very difficult to see how this design could be useful unless we assume that
all interactions are negligible.

Design 1 Design 1 Design 1
u=0 u=1 u=2
000 100 200
012 112 212
101 201 001
202 002 102
021 121 221
110 210 010
122 222 022
211 011 m
220 020 120

{a) Treatment combinations

|
. L
P
A A
7

!
L
R +_~_h__
!
Ju

(b} Geometric view

Figure 9-9 The three one-third fractions of the 3* design with defining relation I = AB*C’.
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Before leaving the 3j; ' design, note that for the design with u = 0 (see Figure 9-9)
if we let A denote the row and B denote the column, then the design can be written as

000 012 021
101 110 122
202 211 220

which is a 3 X 3 Latin square. The assumption of negligible interactions required for
unique interpretations of the 377! design is paralleled in the Latin square design. How-
ever, the two designs arise from different motives, one as a consequence of fractional
replication and the other from randomization restrictions. From Table 4-13 we observe
that there are only twelve 3 X 3 Latin squares and that each one corresponds to one of
the twelve different 3°~" fractional factorial designs.

The treatment combinations in a 3* ' design with the defining relation I =
AB*C* - - - K can be constructed using a method similar to that employed in the 2¢~7
series. First, write down the 3*~! runs for a full three-level factorial design in k — 1
factors, with the usual 0, 1, 2 notation. This is the basic design in the terminology of
Chapter 8. Then introduce the kth factor by equating its levels x, to the appropriate
component of the highest-order interaction, say AB“*C* - - - (K — 1)*-!, through the
relationship

X = Pixy + Boxo + -+ Bioixiy (9-5)

where B, = (3 — apa; (mod 3) for 1 =< i =< k — 1. This yields a design of the highest
possible resolution.

As an illustration, we use this method to generate the 3{y ' design with the defining
relation I = AB’CD shown in Table 9-6. It is easy to verify that the first three digits of
each treatment combination in this table are the 27 runs of a full 3 design. This is the
basic design. For AB’CD, we have @, = a3 = a, = 1 and @, = 2. This implies that
Bi=0G—Da(mod3)=0C—1)1)=2,8=0- Da@mod3)=0CG - DHQ2) =
4 =1 (mod 3), and B; = (3 — Daz (mod 3) = (3 — 1)1) = 2. Thus, Equation 9-5
becomes

Xg = 2x; + x; + 2x5 9-6)

The levels of the fourth factor satisfy Equation 9-6. For examp