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The ever-changing structure of research and development, changes in market 
demands, and the explosion of computing technology, resulted in the need of a book 
to aid professionals to survive these changes. Professionals now have ready access 
to personal computers equipped with spreadsheets and statistical software to create 
experimental designs and subsequent analysis of the data; this access results in a 
faster rate of product development. An important aspect during product develop 
ment in the foods and consumer product industries is the role of sensory evaluation. 
An increasing number of companies requires that products should undergo exten- 
sive sensory tests before they are placed in the market. In several cases, products 
fail because of poor sensory properties, either on the basic tastes, i.e., sweetness, 
sourness, saltiness, bitterness, or in the case of consumer products, on skin-feel, 
fragrance, lather properties, etc. 

In the last decade, a number of publications have been written to address the design 
and analysis of sensory and consumer studies. Unlike the previous publications, this 
book addresses two areas: product optimization incorporating Total Quality con- 
cepts and claims substantiation. Although optimization and Total Quality techniques 
have been known for some time, they have not been used extensively as their 
usefulness and importance would justify. It should be noted, however, that in the 
last few years several corporations in the United States and abroad have changed 
culture to embrace Total Quality. At present, claim substantiation is not well- 
addressed in sensory evaluation. The importance of sensory claims as seen in televi- 
sions, newspapers, and product brochures, justifies the need to increase focus on 
this area in sensory research. 

Briefly, Design and Analysis of Sensory Optimization, provides sensory analysts, 
research professionals, statisticians, and students, the design and techniques of data 
analysis, from the inception of the project to evaluation of prototypes, their sensory 
optimization and selection of the fmal formula for consumer testing, to claims develop 
ment for advertising purposes. The use of Taguchi’s signal-to-noise ratio to select 
robust formulas in terms of consumer perception is discussed. 

The level of this book requires completion of basic statistics. It was written for 
research professionals and others who can analyze their experimental data using a 
personal computer. This book can also be used as a text in applied statistics, as well 
as a reference material for industrial statistician working in consumer product 
industries. 

In this book, several software packages were used in the examples to illustrate 
methods of data analysis: 

vi i 
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SAS (Statistical Analysis System), a trademark of SAS Institute, Inc. 

X-STAT, a trademark of Wiley Professional Software, John Wiley & 

DESIGN-EXPERT, a trademark of Stat-Ease, Inc. 
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Sons, Inc. 
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CHAPTER 1 

INTRODUCTION 

In the last two decades, we have witnessed the specialization of statistical applica- 
tions in various areas. Books have been published aimed at professionals in chemistry, 
biology, engineering, psychology, and many other scientific disciplines. Although 
the statistical assumptions remained intact for each application, some of them are 
not met. In particular, many properties of statistical methods are not satisfied in 
sensory data creating problems in the use of many statistical procedures. As a result, 
special attention is given to the choice of design and analysis of sensory data. 

The wide availability of computing technology, both in hardware and software, 
resulted in an explosion of statistical use never before experienced. This brings 
statistics closer to the statistical users. 

With this in view, the aim of this book is to bring together statistical applications 
and computing to the user in a manner that needs minimal knowledge of statistics 
and computers. This book deals with the application of statistics and computers to 
product optimization, experimental design, and analysis of sensory data. 

1.1 STATISTICAL INFERENCE 

In studying the behavior of a certain population, for example, the car buying habits 
of 20 to 30 years olds, one has to sample this population of interest, since it is im- 
possible to study all members of the population. In order to obtain a representative 
sample of this population, random samples are obtained following an accepted ran- 
dom sampling procedure. Then these samples of individuals are studied based on 
pre-determined characteristics, such as color and type of the cars they purchased, 
price range, etc. Sample statistics are computed for each characteristic. Based on 
these statistics, inductive statements are made about the population being studied. 
The whole process is called statistical inference. Briefly, statistical inference con- 
sists of the following general steps: 

1. Formulation and testing of hypothesis. This involves setting-up of the 
hypotheses, collection of data, choice of a test statistic, and specification of 
a decision rule for accepting or rejecting the null hypothesis. 

1 
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2. Estimation of population parameters by computing sample statistics. Sample 
statistics would be an accurate description of the population parameters if they 
were obtained by an appropriate experimental design. 

Regardless of how the experiment is conducted, sample statistics are subject to 
random variation. Random variation allows one to attach specified amount of con- 
fidence in making statistical inference on the results of experiments. Obviously, if 
the variation is large in the data it would be difficult to make a reliable inference. 
It is in the use of a sound experimental design that variation can be minimized if 
not controlled. Another tool t& Wntrol variation, whether random or systematic, 
is the statistical analysis itself. These tools include covariance analysis, transforma- 
tion, re-expression of data to a standard scale, use of averages to represent observa- 
tions, use of nonparametric statistics, and others. 

1.2 EXPERIMENTAL DESIGN 

The key to a successful outcome in an experiment is the proper planning and ex- 
ecution of the work to be done. The planning and execution of the work belong to 
an area in statistics called experimental design. Briefly, experimental design is an 
organized approach to the collection of experimental data. This approach defines 
the population to be studied, the randomization process, the administration of 
treatments, the sample size requirement, and the method of statistical analysis. The 
rewards of a well-designed study are the reduction of cost of experimentation, the 
ease of interpretation of results, and the procurement of good data to result in a 
useful and meaningful outcome. 

Depending on the reader’s formal training and experience, there are books that 
deal with experimental design and statistical analysis (Cochran and Cox 1957; Federer 
1955; Steel and Torrie 1960; Kempthorne 1952; Kirk 1968). For applications in 
the food and consumer research useful books are by Amerine et al. (1965), Amerine 
and Roessler (1976), Gacula and Singh (1984), Stone and Side1 (1985), O’Mahony 
(1986), Piggott (1986), Meilgaard er al. (1987), and most recently by Moskowitz 
(1988). 

1.3 SAMPLE SIZE 

The number of observations plays a major role in the design of experiments. For 
example, in the planning of a consumer test, one of the key questions sensory analysts 
often ask is the number of panelists to be recruited to provide sufficient sensitivity 
for detecting a difference at the specified significance level. It is important to briefly 
introduce some statistical concepts and terminologies essential for understanding the 
estimation of sample size. 
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In a consumer test, the sensory analyst often desires to determine whether two 
formulations differ with respect to their mean scores on prescribed sensory attributes. 
The statistical formulation of this statement is in terms of the null hypothesis denoted 
by Ho. That is, Ho: p1 - p2 = 0. In other words the null hypothesis states that 
there is no difference between the two population means p1 and p2, other than that 
due to random variation. If HO is not true we reject it, and accept the so-called 
alternative hypothesis, Ha: p1 - p2 # 0. The estimation of p1 and p2 from random 
samples is always subject to uncertainty. Therefore, it is possible to wrongly reject 
H,, and commit a Type I error; the probability of this error being committed is denoted 
by a. On the other hand, it is also possible to wrongly accept Ho and commit a Type 
II error, the probability of which is denoted by p. Table 1.3-1 shows the two types 
of errors. The quantity 1 - a is known as the confidence level of the test and 1 - 0 
is called the power of the test. The power of the test denotes the ability of the test 
statistic to reject a false hypothesis. See Chapter 9 for further discussion. 

There is another point in hypothesis testing that should be mentioned, which is 
the value of the null hypothesis. It is not necessarily equal to zero; any appropriate 
values or equality of parameters can be used in relation to the study. For example, 
the following null hypotheses can be tested with an appropriate experimental design: 

The method of data analysis for testing the above hypotheses follows the experimen- 

In determining the sample size N, we must consider the Type I and Type II errors 
tal design. 

to obtain a sensitive test. A general formula is 

(1.3-1) 

where Z is the standard deviation of the standard normal distribution, u2 is the 
variance, and pl - p2 is the desired difference to be detected; as given by (1.3-1), 
N becomes larger as this difference gets smaller and vice versa. The value for u2 
may be obtained from historical data, and a value of u2 = 0.5 to 1.0 seems ap- 
propriate for rating scales between 5 and 9 categories. Selected values of a and /3 
useful in sample size calculation are shown in Table 1.3-2. 

For example, let us determine the number of panelists needed so that one can detect 
a difference of 0.5 on the 9-point scale with a significance level of a = 0.05 and 
a power of 0.90. Assuming that uz = 1.0, one obtains 

N = [(1.960 + 1.645)212]/0.52 = 52 
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Table 1.3-1 
Two types of errors in hypothesis testing. 

If I€, is: 

True False Decision 

Accept Ho 
Reject I%, 
Note: a = Probability of rejecting the null hypothesis when it is true. 

p = Probability of accepting the null hypothesis when it is false. 

No error (1 - a) 
Type I error a 

Type II error 0 
No error (1 - 0) 

panelists per treatment. In practice, one should recruit more than 52 panelists to 
compensate for “dropouts. ” 

1.4 RANDOMIZATION 

Fisher (1960) in his classic book, Zhe Design of Experiments, stated that randomiza- 
tion is the physical basis of the significance test. This statement is a fundamental 
point in the use of randomization in experimental design-to guarantee that the 
statistical test will have a valid significance level. In general, randomization is defined 
as the random allocation of experimental materials to treatments so that each material 
has an equal chance of being assigned to one of the treatments. In this definition, 
treatment refers to conditions or a combination of conditions from which the ex- 
perimental outcome is to be observed. In sensory/consumer testing, a common form 
of randomization is the random distribution of panelists to a specified group. By 
doing this, the uncontrolled variation among panelists is distributed to treatment 
groups, and the treatment effect is therefore similarly affected, resulting in cancella- 
tion of the effect of variation. Another form is the random ordering of sample presen- 
tation. In a two-product test, systematic randomization is often used for simplicity; 
i.e., the order of sample presentation is alternating, for example, AB, BA, AB, and 
so on. However, the danger of this method is that the pattern of systematic bias 
may follow the alternating sample order to result in a bias estimate of treatment ef- 
fects. This is dangerous particularly in clinical irritation testing, because the judge’s 
evaluation on the subject’s treated skin is done at one sitting; judges may follow 
the AB-BA pattern during evaluation. Furthermore, clinical irritation test is generally 
characterized by a small panel size, and this pattern is likely to occur compared to 
that of larger panel size, such as in consumer testing. When the order of evaluation 
is randomized, the systematic bias becomes a random variation. 

Although the goal of randomization is the same for all experimental designs, to 
isolate and/or distribute random variation in the data, each randomization procedure 
varies with the experimental design. 
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Table 1.3-2 
Selected values of Z, and ZB for sample size calculation. 

a Z, a Z R  

0.01 
0.05 
0.10 

2.576 
1.960 
1.645 

0.10 
0.20 
0.30 

1.645 
1.282 
1.036 

Example 1.4-1 

Let us illustrate the effect of randomization on statistical inference using actual 
experimental data. It is shown in this illustration that without the use of randomiza- 
tion in the design, a wrong conclusion is bound to happen. In a clinical study two 
identical products, denoted by A and B, were compared on the basis of deodorant 
efficacy using 16 panelists. The assignment of products to the right and left armpits 
was randomized. The randomization gave the following assigments: 

Panelist: 1 2 3 4 5 6 7 8 9 10 1 1  12 13 14 15 16 
Right: B B B A A A A B A A A B B B  A B  
Left: A A A B B B B A B B  B A A A  B A  

The judges were instructed to always sniff the right axilla first followed by the left 
axilla. 

Since products A and B are identical, the null hypothesis is Ho: PA - PB = 0. 
If we disregard the randomization schedule in the analysis, we compute the difference 
D between right and left, that is D = Right - Left, instead of D = A - B. The 
result of both calculations is given in Table 1.4-1 for degrees of malodor using a 
7-point intensity scale. Statistically significant comparisons were obtained by the 
Right - Left calculations in days 1 and 3, which are obviously incorrect since prod- 
ucts A and B were identical. In days 1, 3, and 4, the right axilla-the first to be 
sniffed, was perceived to have more malodor than the left axilla. To illustrate, con- 
sider the data for the first four panelists on day 1: 

Panelist 1 2 3 4 
Randomization order B A B A B A A B  

Score 0 0 0  0 1 0 1 0 
Right - Left 0 0 1 1 
A -  B 0 0 - 1  1 

The right axilla, the first to be sniffed, for panelists 3 and 4 were rated higher than 
that of the left axilla. This results in a mean difference of (0 + 0 + 1 + 1)/4 = 
0.5 for the Right - Left calculations. This difference is an example of the so-called 
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Table 1.4-1 
Test of hypothesis comparing two identical products with (A - B) and without (Right - 
Left) considerations of the randomization schedule. 

Comparison Day Mean difference Std. dev. Sig. prob. 

A - B  1 -0.033 0.129 0.334 

A - B  2 -0.067 0.372 0.499 
Right - Left -0.094 0.272 0.188 

A - B  3 -0.033 0.297 0.670 

A - B  4 0.033 0.481 0.792 
Right - Left 0.125 0.465 0.300 

Note: Std. dev. = standard deviation of the difference. 

Right - Left 0.156 0.239 0.020* 

Right - Left 0.219 0.256 0.004* 

Sig. prob. = significance probability. 
* Significant difference. 

position/order bias. The mean difference for the A - B calculation is (0 + 0 - 
1 + 1)/4 = 0.0, a result consistent with the null hypothesis. 

For all the evaluation days, no significant differences were observed for the A 
- B comparisons, in which the calculation was based in accordance with the ran- 
domization schedule. This result strongly demonstrates the physical validity of ran- 
domization in sensory experiments. 

1.5 ANALYSIS OF VARIANCE 

The analysis of variance (ANOVA) is a well-known technique for partitioning 
the total variation of observations into component parts to facilitate the testing of 
various hypotheses of interest. The sources of variation in the analysis of variance 
depend on the experimental design used in the collection of the data. Suppose that 
one is investigating four treatments and the response variable is a chemical analysis 
of water activity in certain food product. Samples from each treatment were secured 
and analyzed for water activity. The first step in the analysis is to write the statistical 
model for each observation as follows: 

Xij = /.A + Ti + Eij (1.5-1) 

i = 1, 2, ..., n 

j = 1, 2, ..., k 

where Xij the observed water activity for the ith treatment and jth observation, p 
the grand mean for all observations, Ti the effect of the ith treatment with constraint 
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Table 1.5-1 
One-way analysis of variance 

Source of Variance DF ss MS F-ratio 

Total N -  1 SSTO 
Between treatments k -  1 SSA MSA MSAIMSE 
Error N - k  SSE MSE 

Note: N = Total number of observations for the entire experiment = n(k). 
k = Number of treatments or groups. 

that CTi = 0, and Eij are random errors assumed to be normally and independently 
distributed with variance d .  

It is seen in Eq. (1 5 1 )  that treatment is the only main source of variation. The 
form of the analysis of variance for this model is shown in Table 1.5-1. When there 
is one main source of variation, we refer to it as one-way ANOVA. Obviously, when 
there is more than one main source, we refer to them as two-way, three-way, and 
so on. 

The main sources of variation are known as main effects and the dependencies 
between main sources are called interaction effects. In this table and the succeeding 
ANOVA tables to be presented, the degrees of freedom are denoted by DF, the sums 
of squares by SS, and the mean squares by MS. Note that MS is obtained by SS/DF. 
As shown in Table 1.5-1 for one-way ANOVA, the DF is found by subtracting 1 
from the total number of observations for the case of total DF, subtracting 1 from 
the number of treatments for the treatment DF, and the error DF obtained by dif- 
ference or N - k. The same principle is used to find DF for other ANOVA tables. 
To determine whether the four treatment effects are significantly different from each 
other, the F-ratio statistic is computed, which is the ratio between the mean square 
of interest and the error mean square. For the ANOVA in Table 1.5-1, the F-ratio 
is F = MSA/MSE. If the F ratio is greater than the tabled F value (Table A, Appen- 
dix), one concludes that at least one treatment mean is significantly different from 
one of them at the specified significance level. 

1.6 MULTIPLE COMPARISON TESTS 

The F ratio statistic, when significant, indicates that at least one treatment mean 
is significantly different from one or more treatment means in the study. To obtain 
a pair-wise comparison of all treatments, one of the many multiple comparison pro- 
cedures is conducted. These procedures are given in several publications such as 
Steel and Torrie (1960), Kirk (1968), Gacula and Singh (1984), and O’Mahony 
(1986). The application of the Duncan’s multiple range test (Duncan 1955) and a 
rank sum multiple comparison test (Dunn-Rankin 1965; Nemenyi 1963) is given 
in this section. 
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Duncan’s Multiple Range Test 

difference of the test known as the shortest significant range denoted by Rp is 
Let p denote the number of means in a subset of k means. For p means, the critical 

Rp = ru,p,DF (m) (1.6-1) 

where r a , p , ~ ~  is tabulated in Table B for a! = 0.05, 0.01 and for several values 
of p and error DF. To determine whether any two means are significantly different, 
the means are first arranged in order of magnitude. Then pairwise mean differences 
dij and their corresponding RP are computed. A significant difference is declared 
when dij > Rp. 

For example assume that the means, in order of magnitudes, are XI > X3 > 
XZ. Then the pairwise differences and their corresponding subset size p are as follows: 

For difference d12, use p = 3 for finding ra,p,DF in Table B since there are three 
means involved in the range; for d13 use p = 2, and so forth. A numerical example 
of the use of Duncan’s multiple range test is given by Example 3.1-1. 

Rank Sum Multiple Comparison Test 

Ranking of items or treatments is a common sensory method for gathering data. 
There are various methods (Dunn 1964; Steel 1961; Tobach et ul. 1967; Wilcoxon 
and Wilcox 1964) for the statistical analysis of rank data that vary in complexity 
from one another. One method is the conversion of ranks into normal scores prior 
to the application of the analysis of variance as illustrated by Larmond (1967), 
Amerine and Roessler (1976), and Gacula and Singh (1984). The Steel procedure 
is another method that is used after the observations have been assigned ranks ac- 
cording to their magnitudes; this procedure is tedious because of the need for re- 
ranking the data for succeeding comparisons, and the statistical tables for test of 
significance is limited for sensory work. Another method is by Kramer (1963) and 
Kramer ef ul. (1974), but it is not recommended because of a questionable method 
used in the calculation of the statistical tables and the ensuing problems of inter- 
pretation of experimental results (Joanes 1985). 

The Nemenyi (1963) and the Dunn-Rankin (1965) multiple comparison test, which 
is based on the distribution of range of rank totals of treatments, is considered here. 
A statistical table of this test for obtaining significance between pairwise comparison 
has been extended by Dunn-Rankin to include 15 treatments and 500 panelists. Table 
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C in the appendix is an abbreviated version of this table. The experimental setup 
for the use of this procedure consists of N panelists ranking k treatments from 1 
through k. The steps are summarized as follows: 

1. Calculate the total of ranks for each treatment and arrange them in descending 
order of magnitude. 

2. Calculate the pairwise differences, dij, between rank totals Ri. For k treatments, 
the total number of pairwise differences is k(k- 1)/2. 

dij = Ri - Rj, i > j (1.6-2) 

3. Consult Table C and declare a significant difference at the a level, if dij is 
greater than the tabled critical value at the indicated number of treatments and number 
of panelists. 

Note that in the first step, if the observed data are not in the form of ranks, they 
are assigned ranks according to their magnitude. Numerical examples of a rank sum 
multiple comparison test are given in Chapters 3 and 7. 

1.7 SOME USEmJL TOOLS FOR DATA ANALYSIS 

Results from the statistical analysis of data are influenced by the method used in 
the analysis. Therefore, it is very important to have an experimental design before 
the experiment is to begin. The method of analysis depends on the experimental 
design used in the collection of the data. When the analysis is completed, the effects 
of the variables in the model are examined and tested for statistical significance. 
This test provides information on whether the effects are real and not due to sampl- 
ing errors. The effects, not due to treatments, that are large may be removed through 
adjustment of data to provide a better estimate of treatment effects that is free from 
extraneous variation. 

In sensory evaluation work it is well-known that the panelist is a major source 
of variability in the data. See for example, the recent work by Finkey er d. (1988), 
which showed that panelist accounted for over 80% of the total variability of irrita- 
tion scores. This variability is mostly the result of the differences on how judges 
used the length of the scale, threshold differences among judges with respect to cer- 
tain stimulus, and most of all the differences in panelist response to skin irritation 
stimuli. These sources of variability may not be important in paired comparison 
analysis, as the statistical evaluation is based on differences (See Chapter 2). Work- 
ing with differences eliminates this source. However, when one is not working with 
differences, a problem may arise especially when the data are subjected to correla- 
tiodregression analysis. To minimize this problem, the data may be re-expressed 
in another scale to remove variabilities due to threshold, scale usage, and differences 
due to panelist response. 
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Deviation From The Mean 

The re-expression of data by deviation from the mean forces the scale origin to 
zero within a particular subset (Gacula et d. 1971). A judge or panelist is an exam- 
ple of a subset, and an average estimated from them is a subset mean. The choice 
of subset mean is critical in the use of this method of analysis because a wrong choice 
may result in the removal of other effects in the model. Consider the simple model, 
Q. (1.7-1): 

Yij = ~c + Ti + Pj + Eij 

i = 1, 2, .., k 

j = 1, 2, .., n 

(1.7-1) 

where Yij are observed scores of the ith treatment and jth panelist; p the grand mean 
across treatments and panelists; Ti the effect of the ith treatment; Pj the effect of 
the jth panelist; and Eij are random errors not accounted for by the model. Table 
1.7-1 shows the layout of the data for model (Eq. 1.7-1). The re-expressed data 
Dij is obtained by subtracting each observation from its corresponding subset mean. 
Thus we have the following equations: 

(1.7-2) 

The resuIting Dkns are the raw data to be used in the statistical analysis. Note that 
for each panelist, the subset mean for the re-expressed data is equal to zero because 
each observation was expressed as a deviation from the subset mean. The use of 
subset mean as a pivot is similar to blocking the effects of panelist in randomized 
complete block design (See Chapter 3). Thus the comparison of treatments is made 
on within panelist basis which is more homogenous than the comparison across 
panelists. 
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Table 1.7-1 
Layout of data for model (Eq. 1.7-1). 

Panelist Treatment Observation Subset mean 
1 

2 

... 

... 

... 
n 

... 

... 

... 
k 

Y11 
Yz1 
Y3l 

Yl2 

Y22 

y 3 2  

... 

... 

... 
Y k n  

M. 1 

M.2 

... 

... 

... 
M.. 

Note: Subscript substituted by a "." indicates summation of values over the subscript. 

Example 1.7-1 

Let us illustrate the re-expression of data by the deviation from the subset mean 
using a portion of the data from an experiment correlating surfactant irritation ob- 
tained subjectively with fiber optic spectroscopy (Crowe et d. 1988). Three solu- 
tions of a surfactant, 0.5 %, 1 .O%, and 2.0% in deionized water were occluded on 
the right forearms of the panelist. After 24 h, the sites on the forearms were evaluated 
for erythema by two judges using a 5-point rating scale where 0 = no redness and 
4 = extremely red. Table 1.7-2 shows the data for four panelists. The erythema 
scores in this table are the average of two judges. The Y values in the table are 
actual measurements and the D values are the re-expressed data using formula, Eq. 
(1.7-2). To obtain the re-expressed data, the mean for each panelist was computed 
across treatments. For panelist 1 the computations for the instrumental data are as 
follows: 

M.I = 0.195 

D11 = 0.183 - 0.195 = -0.012 

D21 = 0.198 - 0.195 = 0.003 

D31 = 0.203 - 0.195 = 0.008 

For erythema scores the result is 
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Table 1.7-2 
Instrumental and erythema data for Example 1.7-1. 

Panelist Treatment Instrumental Score 

Y D Y D 

1 

2 

3 

4 

1 
2 
3 

2 
3 
1 

2 
3 
1 

3 
1 
2 

.183 

.I98 

.203 

,208 
.201 
.221 

.203 

.2  18 

.I78 

.I83 

.I88 

.I73 

- .012 
.003 
.008 

- .002 
- .009 

.01 I 

.003 

.018 
- .022 

.002 
,007 

- .008 

0 
1 
2 

1.5 
2.5 
1 .o 
3 
4 
2 

1.5 
1 .o 
0.5 

- 1.0 
0.0 
1 .o 

-0.170 
0.833 

-0.670 

0.0 
1 .o 

-1.0 

0.50 
0.0 

-0.50 

Note: Treatment 1 = 0.5%. 
Treatment 2 = 1 .O%. 
Treatment 3 = 2.0%. 
Application of treatments to sites on the forearms was done in balanced order. 
Y = actual observed data. 
D = re-expressed data. 

INST V S  SCORE 
INST X 1aE-1 

2.3 + 
I 
1 + 

+ 

Fig. 1.7-1 
Plot of actual data for Example 1.7-1 
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and so on to the other panelists. 
Figures 1.7-1 and 1.7-2 show the plot of the data shown in Table 1.7-2 for the 

actual and re-expressed data, respectively, to demonstrate the effectiveness of the 
technique for removing panelist effect. In this plot, the vertical axis is erythema 
scores and the horizontal axis the instrumental readings. The scatter of points about 
the regression line for the actual data are wider than those of the re-expressed data. 
The squared correlation coefficient for these data was also higher in the re-expressed 
data: 0.33 vs. 0.26 (Tables 1.7-3 and 1.7-4). Notice that the regression equation 
for the re-expressed data has no intercept (constant) because CDij = 0, the result 
of data re-expression. There was also higher significance probability for testing the 
slope of the regression line in the re-expressed data, p = 0.0397 vs. p = 0.0886, 
indicating lower variability in these data. 

Plotting of Data 

The oldest form of data analysis is plotting or graphing. We have illustrated this 
in Example 1.7-1 to study the relationship. Data can be depicted in the form of 
histograms, charts, and plots for two or more variables. For sensory data, histograms 
are very informative because they reveal bimodality of the distribution of judgments; 
they also reveal how the panelist used the length of the scale. 

INSTl US SCORE1 
INSTl X 1BE-2 

3.B + 
I 
1 
I 
I 

1.8 + 
I 
I 
I 
I 

-1.a + 
I 
I 
I +  
I 

-3 .0  + 
-+---------+---------+---------+---------+- 

-1.2 -0.6 -a. 8 0.6 1.8 
SCOREl 12 CQSES PLOTTED 

Fcg. 1.7-2 
Plot of re-expressed data for Example I .7-1. 
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Table 1.7-3 
Output from STATISTIX software for Example 1.7- 1. SCORE AND INST are 
actual measurements. 

~ ~~ ~~ 

UNWEIGHTED LEPST SQUPRES LINEPR REGRESSION OF SCORE 

PREDICTOR 
vaRInaLEs COEFFICIENT STD ERROR STUDENT'S T e 

CONSTPNT -5.5820 3.8542 -1.45 0.1782 
INST 36.90s 19.567 1.89 0.0886 

cnsEs INCLUDED 12 MISSING CASES 0 
DEGREES OF FREEDOM 10 
OVERALL F 3.557 P VALUE 8.0681 
FlDJUSTED R SOUPRED 0.1886 
R SQUARED 0.2624 
RESID. MEW SOUCIRE 1.088 

In curve fitting analysis, it is first recommended to look at the plots of two or 
more variables before attempting to fit the data to a certain model. The scatterplot 
reveals possible form of the relationship between variables, thus saving time and 
effort in statistical modeling or fitting. As a diagnostic tool the scatterplot guides 
the data analyst on whether to use a transformation on the data, or to use a first 
or second degree equation for fitting. Attempts to fit the data to a model and solely 
use the RZ criterion as a measure of goodness of fit without looking at the scatterplot 
could be misleading in the presence of outlying observations. 

When a scatterplot is curvilinear some form of transformation is necessary before 
a useful correlation coefficient can be obtained, because a simple correlation coeffi- 
cient defines a linear relationship. In a regression problem, when the relationship 
is linearized, only two parameters are estimated as opposed to nonlinear with more 
than two parameters to be estimated. The larger the number of parameters to be 
estimated from the data the more chances of introducing errors to the estimated value 
of the dependent variable. 

Plotting is a useful tool in interpreting interactions in analysis of variance. In- 
teractions may be significant but can possibly be due to sampling errors. Thus the 
interpretation of interaction should be carefully done. Contour plotting and its 
usefulness in interpreting results from response surface analysis are discussed in 
Chapter 8. 

Rejection of Outlying Observations 

In the evaluation of data one often encounters unusual observations in the sense 
that they are extremely below or above expectations. These observations are often 
called outlier, wild, or aberrant. If they are truely outliers they should be discarded, 
as inclusion of these data points will affect the outcome of the statistical analysis, 
hence the conclusion of the experiment. In some instances, they are known in advance 
to be an outlying observation, such as the result of instrument malfunction, instru- 
ment miscalibration, or solution contamination. In this case one may discard the 



INTRODUCTION 15 

Table 1.74 
Output from STATISTIX software for Example 1.7-1. SCORE1 and INSTl are 
re-expressed data. 

~ 

uNUEIGHTED LERST SQUFIRES L IkERR REGRESSION OF SCORE1 

NOTE: MODEL FORCED THROUGH O R I G I N  

PREDICTOR 
VClRIABLES COEFFICIENT STD ERROR STUDENT'S T P 

I N S 5 1  37.193 1s. 943 2.33 a. 0397 

CFISES INCLUDED 12 MISSING CASES 0 
DEGREES O F  FREEDOM 1 1  
OVERALL F S. 4 4 2  P VALUE 0.0397 
RDJLSTED R SQUaRED 0.2702 
R SOWRED 0 . 3 3 1 8  
S O I D .  M E W  SWaRE 3 .449E-01  

data with no further statistical test of significance. In another case, the data is 
suspiciously large or small with no apparent reasons, and it is advisable to conduct 
a statistical analysis to determine whether to reject or retain the suspicious data. 

It is important to point out that subjective data obtained from hedonic, preference, 
or acceptability measurement do not contain outlying observations because this type 
of data is an expression of likes and dislikes, and therefore is never wrong. However, 
subjective data from intensity evaluation is subject to aberrant or wild judgment and 
can be discarded by a statistical test. 

TEST PROCEDURES 

In this section, three test procedures are discussed, each procedure being strictly 
applicable to specific situations. 

The r Ratio Test 

This test developed by Dixon (1950, 195 1,1953) computes the ratio of the interval 
between the aberrant and adjacent data to the total range on the assumption that the 
data follows the normal distribution. The critical values of the test for numbers of 
observations ranging from n = 3 to n = 25 are given in Table E. The steps in per- 
forming the procedure are as follows: 

1. If the smallest observation is the suspected outlier, rank the n observations from 
smallest to largest, i.e., 

x, I x2 I.. . 5 Xn 
2. If the largest observation is the suspected outlier, rank the n observations from 

largest to the smallest. 
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3. Compute the r ratio depending on the sample size n: 

r1o = (X2 - Xl)/(Xn - XI), 

rll = (X2 - Xl)/(Xn-l - Xi), 

r21 = (X3 - Xl)/(Xn-l - Xi), 

r22 = (X3 - Xl)/(Xn-2 - Xi), 

for n = 3 to 7 

for n = 8 to 10 

for n = 11 to 13 

for n = 14 to 30 

4. Reject the suspected observation at the specified level of significance if the 
computed ratio exceeds the critical value given in Table E in the Appendix. 

Example 1.7-2. Consider the following scores using the 7-point off-flavor inten- 
sity scale from 10 trained panelists: 

Panelist Score 
1 3 
2 4 
3 1 
4 3 
5 4 
6 3 
7 2 
8 3 
9 2 

10 7 

Here, n = 10, x= 3.20, and S = 1.62. It is suspected that the score 7 given by 
panelist 10 is unusually large. By Step 1, the data are arranged in descending order 
as follows: 

7, 4, 4, 3, 3, 3, 3, 2, 2, 1 
x1 x2 X" 

With n = 10, the r ratio is 

rll = (4 - 7)/(1 - 7) = 0.50 

which exceeds the tabled value of 0.477 (Table E) at the 0.05 level, thus the score 
7 is an outlier. 

For the purpose of illustration, assume that the smallest observation is a suspect. 
Then the data are arranged in the ascending order of magnitude as follows: 

1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 7 
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Then 

rll = (2 - 1)/(7 - 1) = 0.17 

which is obviously not statistically significant and thus the score 1 is not an outlier. 
Note that rejection of outlying observation can be applied not only to individual 

observations but also to estimated mean values from various experiments. For ex- 
ample, estimates of shelf-life of a product conducted at different times of the year 
may contain an outlying estimate which is atypical of the true shelf-life of the pro- 
duct under normal condition of use. Here are some estimates of average shelf-life 
(days) of a product over a 4-year period illustrating extreme variability. 

1978 35, 50 
1979 50, 59 
1980 80, 52 
1981 60, 52 

Are 35 and 80 days aberrant estimates? If the lowest value is included it may 
underestimate the true shelf-life and results in monetary loss to the producer. On 
the other hand, inclusion of the largest value may cause product spoilage on the 
shelves to result in expensive product recall. 

The Grubbs Ratio Test 

Grubbs (1950) and Grubbs and Beck (1972) proposed this method for the rejec- 
tion of the largest or the smallest observation in a sample of size n from a normally 
distributed population. In addition, two largest observations or two smallest 
observations can be tested whether they are outliers. This method, to be denoted 
as the G ratio test, is based on the distribution of the ratio of sums of squares (SS) 
where the numerator of the ratio is the SS without the suspected observation and 
the denominator is the SS when all observations are included. 

Table 1.7-5 shows the SS formulas for computing the various ratios for test of 
significance. Each test ratio is applied one at a time with a corresponding reduction 
in n, if an observation is declared an outlier in the first test. The critical values of 
the test are given in Tables F and G for levels of significance 0.01 to 0.10. The 
computed ratio must be equal to or less than the critical value G at the indicated 
significance level to declare the observation an outlier. 

For testing significance of the largest observation the ratio 

is computed where St, is the SS without the largest observation and S2 is the total 
SS using all observations. Following similar reasoning, the statistic 
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Table 1.7-5 
Formulas for computing sums of squares for the Grubbs Ratio test. 

S2 = C(Xi - X)2, where x = CXih, 

i =  1 , 2  , .., n 

G = C(Xi - Xn)2, where En = CXih - 1, 
i = 1 ,  2, .., n - 1 

- 
St = C(Xi - X1)2, where = C X i h  - 1 ,  

i = 2, 3, .., n 
- - 

S&l,n = C(Xi - Xn-l,n)', where Xn-1.n = CXiln - 2, 
i = 1, 2, .., n - 2 

Sf.2 = C(Xi - where XI,, = CXih - 2, 

i = 3, 4, .., n 

Note: C = summation sign, i.e., sum over the ith observation. 

is computed for testing the smallest observation. Use Table F for this test. 
For testing whether the two largest observations are too large the ratio is 

and the ratio 

is for testing the two smallest observations. Use Table G for this test. The computed 
ratio must be greater than the tabled value to declare statistical significance. 

Example 1.7-3 

The days to failure based on a mean score of 3.5 (7-point intensity scale) for a 
particular packaged food product arranged in the ascending order are as follows: 
49, 56, 59,69, 70,71, 73, 75, 76,78, 101, 110. Determine whether the smallest, 
the the largest, or the two largest observations are aberrant. 

Using the formulas in Table 1.7-5, the following sums of squares are obtained: 

Sz = 3270.96, Sf = 2593.61, Sg = 1850.55 

Sf.2 = 2145.60, Sa-1." = 836.40 

If the smallest observation is suspected to be aberrant, we compute the ratio 
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GI = 2593.61/3270.96 = 0.7929 

which is not significant even at the 10% level since G1 > G at n = 12 (Table F). 
Thus this observation is not an outlier. Table 1.7-6 shows the calculations. 

If the largest observation is suspect, the ratio is 

G n  = 1850.55/3270.96 = 0.5658 

which is also not significant since 0.5658 is greater than the tabled value of 0.5483. 
Note that if the smallest observation was found to be an outlier, and we desire 

to test also for the largest observation, the sample size must be reduced by 1 in com- 
puting Sz. The calculations are illustrated in Table 1.7-7. Note that the calculation 
of St, is now based on n = 10. It is emphasized that a legitimate reason should exist 
that the observation is an outlier, otherwise this statistical tool will be abused resulting 
in obtaining nonrepresentative data. 

To continue with the example, if the two smallest observations are suspect, the 
ratio is 

G1,2 = 2145.60/3270.96 = 0.6560 

which is far from significance even at the 10% level (Table G), thus both observations 
are not outliers. 

To test for the two largest observations, the ratio is 

Gn-1.n = 836.4013270.96 = 0.2557 

which is significant at the 5% level (between 2.5 and 5.0%, n = 12, Table G). 
Hence the observations 101 and 110 are outliers. 

The u Test 

The best method in the sense of power of the test for detecting outliers is the so- 
called u test as discussed by Dixon (1950, 1953). However, this test method depends 
on a past estimate of standard deviation and cannot be used when this estimate is 
not available. The method is used to test the smallest or the largest observation from 
a normally distributed population. 

If the smallest observation XI is the suspected value, we compute the ratio 

or compute 
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Table 1.7-6 
Calculations for rejection of smallest observation by the Grubbs ratio test (Example 1.7-3). 

Sample Observation (Xi - Z)2 (Xi - 5?1)2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

49 
56 
59 
69 
70 
71 
73 
75 
76 
78 

101 
110 

621.01 
321.13 
222.61 

24.21 
15.37 
8.53 
0.85 
1.17 
4.33 

16.65 
733.33 

1301.77 

... 
407.23 
295.15 

51.55 
38.19 
26.83 
10.11 

1.39 
0.03 
3.31 

616.03 
1143.79 

Sum 887 3270.96 2593.6 1 
Mean 73.92 
Mean XI 
Note: GI  = 2593.61/3279.96 = 0.7929, not significant, GI > G (Table F). 

76.18 (excluding observation 49) 

if the largest observation is the suspected value. Here, S is the past estimate of stan- 
dard deviation, XI the smallest observation, X, the largest observation, and x the 
mean of n observations. The u test is particularly useful in analytical analysis/ 
laboratory instrumentation work where n is relatively small. There is a limited use 
of this method in sensory evaluation because of the difficulty in obtaining and main- 
taining an accurate estimate of past standard deviation. 

Appendix Table H gives the critical values of the test reproduced from Nair (1952). 
The critical values should be exceeded by the computed value of u to declare 
significance or rejection of the suspected observation. 

Example 1.7-4 

Consider the shelf-life data obtained over a 4-year period stated earlier where 
= 35, X, = 80, and = 54.75 days based on n = 8 estimates. Past data based 
on v = 10 estimates showed that S = 12. Determine whether the extreme estimates 
are aberrant. The calculations are as follows: 

U I  = (54.75 - 35)/12 = 1.65 

u,, = (80 - 54.75)/12 = 2.10 

At the 1 % significance level, u(n= 8,v= 10) = 3.59 (Table H) which is not exceeded 
by the computed u statistic, hence both extremes are not outliers. 

There is a simple procedure that uses the maximum Z score to detect outliers. 
Outliers are sometimes defined as those values for which the absolute of Z exceeds 
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Table 1.7-7 
Calculations for rejection of largest observation by the Grubbs ratio test when the smallest 
observation was found to be an outlier (Example 1.7-3). 

Sample Observation (Xi - (Xi - 57.12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

... 
56 
59 
69 
70 
71 
73 
75 
76 
78 

101 
110 

... 
407.23 
295.15 

51.55 
38.19 
26.83 
10.11 
1.39 
0.03 
3.31 

24.82 
1143.79 

... 
282.24 
190.44 
14.44 
7.84 
3.24 
0.04 
4.84 

10.24 
27.04 

795.24 
... 

n 11 11 10 
Sum 838 2002.40 1335.60 
Mean 76.18 
Mean Xn 72.80 (excluding observations 49 and 110) 

Note: G. = 1335.60/2001.40 = 0.6670. For n = 1 1  and a = 0.10, the critical value (Table F) is 
0.5204, hence the largest observation is not an outlier. 

3 (Sincich 1986) or 4 (Younger 1979). However, this procedure should not be used 
for small data sets (n < 19) because outliers defined as observations exceeding 4 
standard deviations from the mean cannot exist for a small sample size (Shiffler 1988). 





CHAPTER 2 

DESIGNS FOR COMPARING TWO POPULATIONS 

In a given set of objectives, there are several alternative experimental designs as 
well as methods of statistical analysis. If the objective of the experiment is, for ex- 
ample, to find out whether the addition or substitution of a flavoring compound to 
the current formulation of a product would change the perceived liking, then we 
may compare the current formulation against the current formulation with the flavor- 
ing added to it. In sensory evaluation, the design to determine the effect of flavoring 
on liking is the well-known paired comparison design. It is the most widely used 
design in sensory and consumer testing work. The other design to be discussed in 
this chapter is the group comparison design. 

2.1 PAIRED COMPARISON DESIGN 

The layout of the paired design is shown in Table 2.1 - I .  Returning to our exam- 
ple, let X11, X12, .., X l n  be the observations from the current formulation and X21, 

X22, . . , X2n the observations from the same formulation but with the added flavor- 
ing. These observations are random variables; i.e., they can assume any value of 
the rating scale used in the evaluation of each formulation. Although the experimental 
materials are not necessarily paired, the observations (Xli ,  X2i) are paired in the 
sense that they come from the same panelists, thus they are correlated and have the 
property of a paired observation. In the flavoring example, let p1 denote the popula- 
tion mean for the current formulation and p z  the formulation with the added flavor- 
ing. The null hypothesis for testing the effect of flavoring on liking is 

Ho: p1 - p2 = 0 

and the alternative hypotheses may be one of the following: 

Ha: p1 - p2 f 0 

Ha: p1 - p2 > 0 

Ha: p1 - p2 < 0 

23 
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Table 2.1-1 
Layout of data for a paired comparison design. 

Panelist Xli Xzi 

1 
2 
... 
... 
n 

x11 X2I 

x12 x22  

... ... 

... ... 
Xln Xzn 

Note that the first Ha is a two-sided hypothesis, whereas the last two are one-sided 
hypotheses. To determine whether the alternative hypothesis is one-sided or two- 
sided depends, among other things, on the purpose of the study. Assuming that the 
observed differences, di = Xli - Xzi, are random samples from the population of 
differences that is normally distributed with mean pd and variance d, the Student’s 
paired t statistic is used to test Ho. This is given by 

where d = Cdiln 

sd = dE(di - d)Vn - 1 

Note that in Eq. (2.1-1), pd = p1 - pz = 0, and the degree of freedom is equal 
to n - 1. For a two-sided test, the null hypothesis is rejected if It I > tun, where 
a is the prescribed significance level of the test. See Table 2.1-2 for the rejection 
rule of a one-sided test. Consider an example to illustrate the statistical analysis of 
a paired comparison design. 

Example 2.1-1 

The data shown in Table 2.1-3 are sensory data from a paired comparison test. 
Only the data from 10 panelists are shown for illustration. In this table, we want 
to test whether pl - pz = 0 against p1 - pz # 0, where P I  is estimated by the 
sample mean XI and p2 estimated by ZZ. The first step in the analysis is to compute 
4 and the deviation of di from the mean differencex Then sd = m= 1.101, 
and using Eq. (2.1-1) we obtain 

t = -0.910.348 = -2.586. 

Referring to Table D for 0.05 significance level and 9 DF, we obtain 2.262, which 
is exceeded by 1 tl = 2.586. Hence, reject the null hypothesis and conclude that 
treatment XZ is significantly more well-liked than treatment XI at the 5 %  level. 
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Table 2.1-2 
Rejection rule for the t statistic under various hypotheses. 

There are nonparametric methods to analyze the data in this example that utilize 
only the signs (plus or minus) of the quantity di. These methods are known as the 
sign test (Dixon and Mood 1946) and the Wilcoxon signed rank test (Wilcoxon and 
Wilcox 1964) which are discussed and illustrated in Gacula and Singh (1984). 
However, for sensorykonsumer data where tied observations occur in large numbers 
the paired analysis is recommended over the nonparametric methods. 

2.2 GROUP COMPARISON DESIGN 

There is another design for comparing two populations, known as the group com- 
parison design. This design is oftentimes used in sensory analysis. A test situation 
where group comparison design applies is as follows. Two formulations are to be 
compared through a reference standard. The questionnaire generally used in this 
situation is given in Fig. 2.2-1. There is no score given to the reference standard, 
thus the scores for each formulation denote degree of difference between formula- 
tions and the reference standard. 

Table 2.1-3 
Example for calculating the t statistic for paired comparsion design. 

Panelist Xli Xzi di (di - d)' 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

7 
6 
5 
6 
5 
7 
5 
7 
6 
6 

8 
5 
6 
7 
8 
7 
5 
8 
7 
8 

- 1  
1 

- 1  
- 1  
-3 

0 
0 

-1 
-1 
-2 

0.01 
3.61 
0.01 
0.01 
4.4 1 
0.81 
0.81 
0.01 
0.01 
1.21 

- - - 
Xi = 6.0 Xz = 6.9 d = -0.9 Total = 10.90 
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Let Xli and X2j, i =  1, .., n, j =  1, . ., m, denote the degree of difference observa- 
tions for the first (Xi) and the second (X2) formulations, respectively. In the group 
comparison design, Xli and X2j are independent random variables with population 
means p1 and p2, and variance a: and p;, respectively; pi is estimated by xi, p2 

by x 2 ,  uf by s f ,  and a$ by s t .  For the group comparison to be effective, we 
must have small variation in scores among panelists and must have a fairly 
homogeneous experimental units. The null and the alternative hypotheses for this 
design are as follows: 

Name Date 

Product Set no. 

Sample X i s  a reference sample. The coded samples mey or may not 
be different from Sample X. You are looking for overall flevor dif -  
ferences only. 

Taste Sample X first, then taste each of the coded samples, from left 
to  right. Compare the coded samples against the X sample when 
making your judgment of degree of overall flavor difference. Make 
your judgment on overall flavor differences only and not appear- 
ance or texture differences. 

Difference from Sample codes 
reference 

No difference 

Very s l igh t  difference 

Slight difference 

Moderate difference 

I Large difference I I 
Extremely large difference 

Describe the overall flavor difference, i f  any: 

Fig. 2.2-1 
Score sheet used to obtain the data for Example 2.2-1. 
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Table 2.2-1 
Layout of Observations for the group comparison design. 

... 

... 
XI" 

XZl 

xzz 
... 
... 

X z m  

Sample size 
Mean 
Variance 

n 
XI 

- 

Sf 

m 
xz 
sf 

- 

If the study objective requires a two-sided test, then the appropriate alternative 
hypothesis is Ha: P I  # p2, and so on. 

Table 2.2-1 shows the layout of the data. Note that the number of observations 
between formulations may not necessarily be equal, in contrast to the paired com- 
parison where the number of observations must always be equal being in pairs. The 
test statistic for group comparison design is also the Student's t statistic computed by 

where 

(2.2-1) 

The quantity sp is a pooled standard deviation from both populations. Thus, in the 
use of the independent t statistic, we must assume that ST = s3, and the observations 
from both populations must be normally distributed. Large numbers of panelists, 
over a 100, are generally used in sensory testing so that we may not be concerned 
about the normality assumption. To test Ho: P I  = p2 against one of the alternatives, 
the computed t with n + m - 2 DF is compared to the tabled t at the desired 
significance level a. For a two-sided test, reject HO if I t 1 > tabled t value. For 
a one-sided test, the rejection rules given in Table 2.1-2 apply. 

Example 2.2-1 

For simplicity, consider a small set of data in Table 2.2-2 obtained by using the 
questionnaire in Fig. 2.2-1 to illustrate the statistical analysis of group comparison 
design. Readers may verify the calculations in this table. The pooled standard devia- 
tion is found to be 

sP = J [(1.656)9 + (0.989)9]/18 = 1.150. 
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Table 2.2-2 
Example for the statistical analysis of group comparison design. 

Xli X2j 

3 0 
3 1 
1 1 
4 0 
0 2 
1 3 
1 1 
3 1 
2 2 
1 0 

n = 10 m = 10 
CXzj = 11 CXli = 19 

X I  = 1.9 x2 = 1.1 
sf = 1.656 sl = 0.989 

- - 

sf = [EX$i - (CXli)2/n]/n- 1 = 1.656 
sl = [EX31 - (EX2j)2/m]/m-l = 0.989 

Using Eq. (2.2-1) 

t = (1.9 - l . l ) / [ l . l 5 ~ ]  = 1.556 

is obtained, which is not significant at the 5% level. Therefore, the null hypothesis 
is “accepted,” and it is concluded that the mean of formulation XI is not significantly 
different from the mean of the other formulation. 

It should be added that in this example, the basis of comparison or the frame of 
reference is the standard sample. In monadic testing where the frame of reference 
is the panelists themselves, the data are analyzed in the same manner as in this 
example. 



CHAPTER 3 

COMPLETELY RANDOM AND 
RANDOMIZED COMPLETE BLOCK DESIGN 

In this chapter, the design and statistical analysis used for comparing more than 
two populations are discussed. The completely random (CR) design is discussed first. 

3.1 COMPLETELY RANDOMIZED DESIGN 

The CR design is an extension of the group comparison design discussed in the 
previous section. Therefore, for the CR design to be effective we must also assume 
that the experimental materials to be used in the experiment are homogeneous. We 
must also assume that panelists are uniform in their ratings, which is a difficult 
assumption to meet. These assumptions limit the use of the CR design in sensory 
testing. However, in some situations when we are limited in our options and must 
use the monadic test, then the CR design finds its use. To counteract the variation 
due to panelists, a large number (larger than 100) of panelists is generally required. 
The randomization process for the CR design consists of random assignment of the 
panelists to treatment groups. The statistical model is the same as that of Eq. (1 5 1 )  
which is 

Xij = 1.1 + Ti + Eij, i = l ,  .., k (3.1-1) 

j=1,  .., n 

where Xij the observed value for the ith treatment and jth panelist, Ti the effect of 
the ith treatment, and Eij are random errors assumed to be normally and independently 
distributed with variance d. The variance d includes the variation due to panelists, 
experimental materials, and other errors not controlled by the design. 

The layout of the CR design is shown in Table 3.1-1. In this table XI. refers to 
the total of observations for treatment 1, and so on; X.. is obviously the grand total. 
The analysis of variance table is given in Table 3.1-2 along with the formulas for 
calculating the sums of squares. 
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Table 3.1-1 
Layout for a completely random design. 

Treatment 

Ti T2 ... Ti 
_____ ~ ~~ ~ 

x11 xz1 ... Xi 1 
XI2 XZZ ... Xi2 
... ... ... ... 
... ... ... ... 
Xlj Xzj ... Xij 

Total XI. xz. ... Xi. G = X.. 

Example 3.1-1 

Table 3.1-3 shows smoke intensity data from a monadic test for three formula- 
tions of a food product. The sensory analyst wanted to find out whether there are 
significant differences among formulations with respect to the level of smoke using 
a 7-point scale where 1 denotes “zero amount” and 7 denotes “extremely strong” 
amount. In this table, the calculations of sums of squares are also shown following 
the formulas outlined in Table 3.1-2. The ANOVA table is given in Table 3.14. 
Recall from Chapter 1 that MS was obtained by SS/DF. The F ratio 6.70/1.56 = 
4.29 with 2 numerator DF and 24 denominator DF is significant at the 5 %  level 
(Table A). 

To determine which means are significantly different from each other, the Dun- 
can’s multiple range test at the 5% level is conducted. First, the standard error of 
the mean S, is computed: 

S ,  = -= -9 = 0.416. 

To facilitate the calculation of Rp, tabulate the following with the aid of Appendix 
Table B at (11 = 0.05 and DF = 24: 

P :  
~ O . O Z , ~ , M  : 

% :  

Table 3.1-2 

2 3 

2.92 3.07 

1.21 1.28 

ANOVA for the completely randomize- design assuming equi- number of replications. 

Source of Variance DF Sums of sauares 
~ ~~ ~~ 

Total N - 1 SSTO = Z$ - G2/N, N = 

Error N - k SSE = SSTO - SST 
Between treatments k - 1 SST = [(XI. + X:. + . . .  + Xjf)/n] - GZ/N 
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Table 3.1-3 
Smoke intensity data for three bacon formulations obtained using a 7-point scale. 

Formulations 

1 2 3 

5 7 4 
4 6 5 
6 4 7 
5 7 4 
5 5 4 
7 4 3 
4 7 3 
3 7 4 
4 7 5 

Total 43 54 39 G = 136 
Mean 4.8 6.0 4.3 

Calculations: 
SSTO = [(S)’ + (4)’ + ... + (4)’ + (S)’] - (136)*/27 = 50.96 
SST = [(43)* + (54)’ + (39)’]/9 - (136)’/27 = 13.41 
SSE = 50.96 - 13.41 = 37.55 

Using Eq. (1.6-1) in Chapter 1, the R, is obtained. The pairwise differences be- 
tween means are as follows noting that X2 > XI > X3: 

d23 = 6.0 - 4.3 = 1.7, p = 3 

d21 = 6.0 - 4.8 = 1.2, p = 2 

d13 = 4.8 - 4.3 = 0.5, p = 2 

Since d23 > R, = 1.28, this difference is declared significant. The remaining dif- 
ferences did not exceed the R, of 1.2 1, hence they are declared to be not significant. 

Table 3.1-4 
ANOVA table for Example 3.1 

Source of Variance DF ss MS F-ratio 

Total 26 50.96 
Between formulations 2 13.41 6.70 4.29 
Error 24 37.55 1.56 



32 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

3.2 RANDOMIZED COMPLETE BLOCK DESIGN 

We now discuss the randomized complete block design (RCB). This is the most 
widely used design when there are more than two variables or treatments to be com- 
pared. The RCB is similar to the paired comparison design in the sense that the ex- 
perimental materials within rows are assumed to be homogenous. The fulfillment 
of this assumption will result in improved estimate of treatment effects and random 
errors, because all the treatments within rows are compared in the same experimen- 
tal conditions. In the RCB design, the rows are known as blocks and columns as 
treatments. In statistical terminology, the control of extraneous variation due to rows 
is known as blocking, and in the case of the paired comparison design it is known 
as pairing. The use of blocking and pairing for the reduction of extraneous variation 
is seen often in sensory evaluation work. Panelists generally do not use the scale 
uniformly, some panelists are high raters and some are low raters. By using panelist 
as block, all comparisons are within panelist, which would be more precise because 
panelist variation does not enter in the calculation of treatment differences. 

The statistical model in (3.1-1) can be rewritten to include block effects as follows: 

Xij = /L + Ti + Bj + Eij, i=1,2, .., k (3.2-1) 

j=1,2, .., n 

where Xij, p, and Ti are as defined by (3.1-1); Bj is the effect of blocks, CBj = 
0, and Eij are random errors assumed to be independently and normally distributed; 
these random errors would include variations not accounted for by the model such 
as the interaction between treatments and blocks. The interaction effect can be in- 
cluded in the model if panelists replicate evaluations are available. Table 3.2-1 shows 
the layout for a RCB design without replication, and the corresponding ANOVA 
table given in Table 3.2-2. The order of treatment evaluation within blocks (panelists) 
should be randomized to minimize carry-over effects. 

Table 3.2-1 
Layout for a randomized complete block design. 

Treatment 

1 2 ... k Total Block 

1 XI1 xz I ... x k  1 x. I 
2 XI2 x 2 2  ... XkZ x.2 

... ... ... ... ... ... 

... ... ... ... ... ... 

... ... ... ... ... ... 
n XI" Xzn ... X k n  X." 

Total XI. xz. ... x k .  G 
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Table 3.2-2 
ANOVA table for randomized complete block design assuming equal number of observa- 
tions per treatment. 

Source of 
Variance DF Sums of Squares 

Total N- 1 SSTO = EX; - CF, CF = G2/N 

Blocks 
Error N- k-n+ 1 SSE = SSTO - SST - SSB 

Treatments k- 1 SST = [(xi. + xi. + .. + x:.)/~I - CF 
n- 1 SSB = [(Xfi + X22 + .. + Xf,)/k] - CF 

Example 3.2-1 

The data in Example 3.1-1 will be used to illustrate the statistical analysis of RCB 
design. In this design each row represents a panelist. From Table 3.1-3, it was found 
that SSTO = 50.96 and SST = 13.41. To compute SSB, row totals are needed and 
are found to be: 

X.1 = 16 X.2 = 15 X.3 = 17 

X.4 = 16 X.5 = 14 x.6 = 14 

x.7 = 14 x.8 = 14 X.9 = 16 

Also, CF = (136)2/27 = 685.04. Then using the formulas in Table 3.2-2, 

SSB = [(16)2 + (15)2 + .. + (16)2]/3 - CF = 3.63, 

and SSE = 50.96 - 13.41 - 3.63 = 33.92. 

The ANOVA table is shown in Table 3.2-3. The F ratio 6.71/2.12 = 3.17 did 
not exceed the tabled F = 3.63 with 2 numerator DF and 16 denominator DF. Hence, 
the null hypothesis that there are no significant differences among treatments is “ac- 
cepted.” This finding contradicts the result by the ANOVA using the CR design 
analysis. This is probably due to the reduction in the error DF with a corresponding 
small reduction in S S  error. Note that had the block S S  comprised a large portion 
of the error SS, we may have obtained the same result. Furthermore, the DF is too 
small to obtain a valid comparison between the designs. The standard error of the 
mean is S,  = = 0.49. 

Example 3.2-2 

Suppose that a ranking method was used in Example 3.1-1 to evaluate the three 
product formulations. A rank of 1 was given to the sample with the “least smoke 
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Table 3.2-3 
ANOVA table for Example 3.2-1 

Source of Variance DF ss MS F ratio 

Total 26 50.96 
Treatments 2 13.41 6.7 1 3.17 
Blocks 8 3.63 0.45 0.21 
Error 16 33.92 2.12 

intensity” and a rank of 3 for the sample with the “most smoke intensity.” The 
rank data and the sum of ranks for each formulation are shown in Table 3.2-4. The 
pairwise differences dij are shown at the bottom of this table. Note that in dij, i refers 
to the sample with the larger rank sum and j for the sample with the smaller rank 
sum in a given pair comparison. For k = 3 and n = 9, the critical value for the 
rank sum multiple comparison test at the 5 % level is equal to 10 (Table C). As shown 
by the dijs at the bottom of Table 3 . 2 4 ,  no pairwise comparisons exceeded the critical 
value of the test. Hence, none of the comparisons are significant at the 5 %  level, 
although the comparison between formulations 2 and 3 is significant at the 10% level. 

Table 3.2-4 
Smoke intensity data for three formulations based on rank scale. 

Panelist 
Formulation 

1 2 3 

2 3 
1 3 
2 1 
2 3 
2 3* 
3 2 
2 3 
1 3 
1 3 

Rank sum 16 24 14 

* Rank based on mean score due to tied observations. 



CHAPTER 4 

INCOMPLETE BLOCK DESIGNS 

In Chapter 3, the complete block design, in which the treatments appeared in each 
block, was discussed. In this chapter we discuss a design in which not all treatments 
will appear in each block. 

When the number of treatments to be compared in a sitting is large, the panelists 
would no longer be effective in their evaluations. Therefore, it is desirable that the 
number of treatments to be evaluated at one time should be reduced. This can be 
accomplished by using incomplete block designs. The applications of incomplete 
block designs to sensory analysis include the papers by Hanson d ul. (1951), Gacula 
and Kubala (1972), Gacula (1978), and Chambers ef uf. (1981). In this chapter, 
the balanced incomplete block (BIB) design and the BIB design augmented with con- 
trol or reference sample in every block are considered. The readers may refer to 
Gacula and Singh (1984) for a comprehensive discussion of the applications of in- 
complete block designs to sensory analysis. 

4.1 BALANCED INCOMPLETE BLOCK DESIGN 

The rationale behind the BIB design is an extension of the RCB design, that is, 
to compare treatments within blocks in order to minimize extraneous variation in 
the comparison. According to Yates (1936), a BIB design has the following 
parameters: 

t = number of treatments, 
k = number of experimental units per block, 
r = number of replications of each treatment, 
b = number of blocks (panelists), 
X = number of blocks in which each pair of treatments are compared. 

These parameters are not independent; hence, the use of BIB design must satisfy 
two equalities, namely, rt = bk = N and (t - 1 )  = r(k - l),  where N is the total 
number of observations in the experiment. A basic BIB design satisfies the above 
equalities which can be verified in the layout in Table 4.1-1 for t = 4, k = 2, b 
= 6, and X = 1 .  Note that r = (t - l)/(k - 1 )  = 3; N = 3(4) = 6(2) = 12. 
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Notations for block totals X.j, treatment totals Xi., and others are also given in Table 
4.1-1 to aid in the computation of sums of squares for ANOVA. 

The basic BIB design is generally repeated p times to increase the number of replica- 
tions. Therefore, r, b, and A are multiplied by p. Cochran and Cox (1957) gave 
an extensive tabulation of BIB designs, and some designs that are useful in sensory 
evaluation are given in Appendix Table M. A theoretical discussion of BIB design 
is given by John (1971, 1980). 

The statistical model for BIB design is 

Xij = p + Ti + Bj + Eij, i = I ,  2, .., t (4.1-1) 
j = 1, 2, .., b 

where Xij, p,  Ti, Bj and Eij are similarly defined as in Eq. (3.2-1). However, due 
to incomplete blocking the sum of squares for treatments is computed differently 
from that of the RCB design. The procedure for estimating treatment effects, ad- 
justed for block effects, is known as the intrablock analysis. Some information on 
treatment effects can be also found from the variation between blocks, and the pro- 
cedure for recovering the information on treatment effects is known as the interblock 
analysis (Yates 1940). If we can assume that block effects are random effects, the 
estimates of treatment effects can be improved by combining the intra- and interblock 
analyses. This assumption is supported by Lundahl and McDaniel(1988). The pro- 
cedure for the combined analysis is discussed by Gacula and Kubala (1972), Cor- 
nell (1974), Seshadri (1963), and Gacula and Singh (1984). Only the intrablock 
analysis is discussed here. Table 4.1-2 displays the intrablock ANOVA table for 
the model given by J2q. (4.1-1), along with formulas for computing various sums 
of squares. In this table, the quantity kQi is determined by 

kQi = H i .  - B(i), i = 1,2, ..., t (4.1-2) 

where B(i) is the total of all observations in the blocks that contain the ith treatment. 
Estimates of the treatment means adjusted for block effects are given by 

Xi = p + ti, i = 1,2, ..., t (4.1-3) 

where p = GIN and ti = kQi/tA. The standard error of Xi is 

SE(Xi) = dk(t - l)MSE/t(k - l)r . (4.1-4) 

Note that MSE = SSE/(N - b - t + 1). 
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Table 4.1-1 
Layout for a balanced incomplete block design. 

Treatments 

Blocks 1 2 3 4 X.i 

1 x11 xz 1 x. I 

2 XI2 x32 x.2 

3 xl3 x 4 3  x.3 

4 X24 X W  x .4 

5 xzs x a 5  x.5 

Xi. XI. xz. x3. x4. G 

Hi. kX1. k x Z .  kx3. x4. 

6 X36 x 4 6  x.6 

kQ1 kQ2 kQ3 kQ4 

Table 4.1-2 
Intrablock ANOVA for balanced incomplete block design. 

Source of Variance DF Sums of Squares 

Total 
Blocks b - 1  SSBL = (CXjlk) - CF 
Treatments adj. for blocks t -  1 SST = CkGltkX 

N -  1 SSTO = CCX; - CF, CF = G2/N 

Error N - b - t + 1  SSE = SSTO - SSBL - SST 

Example 4.1-1 

Consider the sensory data given in Table 4.1-3 for t = 4, k = 2, and p = 2. 
The sums for panelists, treatments, and repetitions can be easily verified. Using treat- 
ment 1, let us illustrate the calculations of HI., BI,  and ~ Q I  as follows. 

kX1. = 2(32) = 64 

B(1) = X.1 + X.z + X.3 + X.7 + X.8 + X.9 

= 1 0 +  1 3 + 9 +  1 3 +  1 3 + 9 = 6 7  

lcQl = 64 - 67 = -3 

Using the formulas given in Table 4.1-2, the various sums of squares are obtained 
as shown below. 
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Table 4.1-3 
Sensory data and calculations for Example 4.1-1 

Treatment 

Rep. 
Panelist 1 2 3 4 X.j sum 

1 5 5 10 
2 7 6 13 
3 5 4 9 
4 6 7 13 
5 6 4 10 
6 8 6 14 69 

7 6 7 13 
8 5 8 13 
9 4 5 9 

10 7 7 14 
1 1  6 5 1 1  
12 7 4 11 71 

Xi. 32 37 43 28 140 = G 
Hi. 64 74 86 56 
hi) 67 71 78 64 
M 2 i  - 3  3 8 - 8  

CF = (140)2/24 = 816.67 

SSTO = (5’ + 7’ + .. + 5’ + 42) - CF = 35.33 

SSBL = [(lo)’ + (13)’ + .. + (11)’ + (11)’]/2 - CF = 19.33 

SST = [(-3)* + (3)’ + (8)2 + (-8)2]/4(2)2 = 9.13 

Since the basic design was repeated twice (p = 2), the variation due to repetition 
must be estimated so that this variation can be separated from the residuahandom 
error. Thus, the sum of squares due to repetition is computed using the formula 

SSR = [(R: + R$)/kb] - CF 

where R1 and R2 are, respectively, the total of observations for the first and second 
repetitions of the basic design. The formula can be readily extended to more than 
two repetitions. For our example, 

SSR = [(69)’ + (71)’/2(6)] - CF = 0.16. 
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Note that SSBL must be adjusted because different panelists were used between 
replications. This adjustment is accomplished by subtracting SSR from SSBL. The 
adjusted SSBL, denoted by SSBL:R, is 

SSBL:R = 19.33 - 0.16 = 19.17 

with p(b - 1) = 2(6 - 1) = 10 DF. Finally 

SSE = SSTO - SSBL:R - SST - SSR = 6.87. 

Table 4.1-4 shows the ANOVA table. Recall that the MS column is obtained by 
dividing the SS column by the DF column, i.e., 19.17110 = 1.92. The F ratio, 
1.92/0.76 = 2.53, did not exceed the tabled F value with 10 numerator DF and 
9 denominator DF. This indicates that the panelists were uniform in their use of 
the rating scale. Of main interest is the F ratio for treatments. The F value of 4.00 
did exceed the tabled F of 3.86, hence, we conclude that at least two treatment ef- 
fects or means differ significantly from each other. 

We illustrate the calculation of the adjusted treatment means for treatment 1. First 
the grand mean is computed, which is p = 140/24 = 5.83. Then tl  = -3/4(2) 
= -0.38. Using Eq. (4.1-3), 

- 
X i  = 5.83 - 0.38 = 5.45 

Xz = 5.83 + 0.38 = 6.21 

X3 = 5.83 + 1.00 = 6.83 

X4 = 5.83 - 1.00 = 4.83 

- 

- 

- 

The standard error of the ith adjusted treatment mean is 

SE(Xi) = J2(3)0.84/4( 1)6 = 0.46. 

Due to repetition, the number of replications per treatment is 2(3) = 6. A multiple 
comparison test on the adjusted treatment means may follow, noting that 0.46 is 
the multiplier for fa,p.DF of the Duncan’s multiple range test. 

4.2 INCOMPLETE BLOCKS AUGMENTED WITH CONTROL 

Data obtained from sensory evaluation techniques are generally correlated with 
quality; i.e., the score a sample receives is highly dependent on the quality of the 
sample to which it is compared in a given set or block. In order to anchor the scores, 
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Table 4.1-4 
Analysis of variance for Example 4.1 

Source of Variance DF SS MS F ratio 

Total 23 35.33 

Panelists within repetition 10 19.17 1.92 2.53 

Error 9 6.87 0.76 

Repetitions 1 0.16 0.16 0.21 

Treatment (Adjusted) 3 9.13 3.04 4.00 

a control or standard sample should be incorporated in a set of treatment comparisons. 
In the balanced incomplete block design, not all the treatments are in each block, 
hence the augmentation of each block with a control should make the comparison 
of treatments, including the control, more sensitive. The idea of augmenting BIB 
designs traces back to the independent work of Basson (1959) and Pearce (1960) 
in plant breeding and field experimentation, respectively. Gacula (1978) described 
this design for food research applications. The recovery of interblock information 
for the augmented BIB design is given by Williams and Jones (1979). 

The construction of the augmented design is achieved by simply adding the con- 
trol sample R to blocks of the BIB design in a manner shown in Table 4.2-1, where 
the letter X denotes the specific treatments that are compared within each block. 
The order of tasting of the three samples from each treatment within each block 
is determined at random and not as shown in the layout. In some sensory applica- 
tions, it may be desirable to have the control sample tasted first and the remaining 
samples tasted in random order. Note that the addition of the control sample modifies 
the parameters t and k to t + 1 and k + 1, respectively. The BIB designs are widely 
catalogued, therefore, the construction of the augmented BIB design is greatly 
facilitated. 

Table 4.2-2 contains the intrablock analysis of variance for an augmented BIB 
design. Because of incomplete blocking, i.e., not all treatments are contained in a 
given block (k < t), the treatment totals Xi. are adjusted for block effects accom- 
plished by calculating 

Qi = Xi. - [B(i)/(k + l)], i = 1,2, .., t + 1 (4.211) 

where BO), as before for the BIB design, refers to block totals in which treatment 
i occurs. The calculation of treatment effects, as well as their standard errors, is 
obtained by the formulas given by Basson (1959) and are given as Eq. (4.2-2) through 
(4.2-7) below. The estimate of effect due to the control sample (tR) is 

tR = [(k + 1)lbkIQ~ (4.2-2) 

where QR is also obtained by Eq. (4.2-1), with standard error 
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Table 4.2-1 
Construction of augmented BIB design with control. 

Basic design for BIB: 
Blocks (Panelists) 

Treatments 1 2 3 4 5 6 Design parameters: 

A X X X t = 4  k = 2  
B X X X r = 3  b = 6  
C x x  X A = l  N = b k = 1 2  
D X x x  

Basic design augmented with control sample R: 
Blocks (Panelists) 

Treatments 1 2 3 4 5 6 Design parameters: 

R x x x x x x  t + l = 5  k + l = 3  
A X X X r = 3  b = 6  
B X X X A = 1 N =  b(k+ 1 ) =  18 
C x x  X 
D X x x  

Table 4.2-2 
Intrablock analysis of variance for a BIB design with control. 

Source of Variance DF Sums of Squares 

Total N - 1 SSTO = CXfm - CF, i = l,Z,.., t + 1 
j = 1,2,.., b 
m = 1,2,.., p 

Repetitions p - 1 SSR = [CRm/@(k + l)]] - C F  
Panelists within repetition p(b - 1) SSBL:R = [EX.?, /(k + I)] - SSR - CF 
Treatments (Adjusted) t SST = CtiQi 
Error BY SSE = SSTO - SSR - SSBL:R - SST 

difference 

The estimate of effect due to the ith treatment is 

ti = (Qi + *\/[(rk + X)/(k + 1)J 
t 

with standard error 

SE(ti) = d(t - 1)2(k + l)MSE/tr(kt - 1)  

(4.24) 

(4.2-5) 
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where MSE is the error mean square obtained from Table 4.2-2. If contrasts be- 
tween the ith treatment and the control sample are desired, the standard error of 
the contrast is 

SE(ti - tR) = d(k + l)(k + t - 2)MSE/r(kt - 1) (4.2-6) 

Similarly, the standard error between the contrast of two treatments is 

SE(ti - tj) = d2(k + l)(t - l)MSE/r(kt - 1) (4.2-7) 

Note that when the basic design is repeated p times, the value of b, r ,  and X where 
these appear in a. (4.2-3) through (4.2-7) should be multiplied by p. 

The adjusted treatment mean is obtained by Xi = p + ti, i = 1, 2, .., t, where 
p is the grand mean excluding the control sample, and the control sample by XR 
= p + tR. Standard multiple comparison procedures, such as the Duncan’s multi- 
ple range test, may be used to conduct multiple comparisons of effects or the ad- 
justed means. 

Example 4.2-1 

A storage test comparing three treatments (t = 3) of bacon and a control sample 
was conducted. Bacon samples were evaluated at various times during the test period 
using a 7-point rating scale where 1 = no off flavor and 7 = very strong off flavor. 
Table 4.2-3 shows the data and the calculations of sums of squares. 

The initial step in the analysis is to calculate the marginal totals and the quantities 
B(i) and Qi, i = 1,2, .., t + 1. For example, for treatment 1: 

B I Z  7 + 8 + 7 + 8 =  30 

Qi = 11 - (30/3) = 1 

From Eq. (4.24), 

ti = [I + (-4.3333/3)]/(10/3) = -0.1333. 

To obtain the adjusted treatment means, first calculate 

p = (46 - 11)/12 = 2.92. 

Then 

- 
Xi = 2.92 - 0.13 = 2.79, 

Xz = 2.92 - 0.73 = 2.19, 
- 
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Table 4.2-3 
Data and calculations for an augmented BIB design with parameters t + 1 = 4, k + 1 = 
3, b = 3, p = 2, pr = 4, pb = 6, and pX = 2. 

Rep. Panelist 1 2 3 R X.j R m  

1 1 3 2 2 7 
2 3 4 1 8 
3 2 3 2 7 22 

II 4 2 2 3 7 
5 3 4 1 8 
6 3 4 2 9 24 

Xi 1 1  9 15 1 1  G = 46 
Bl 30 30 32 46 
Bilk + 1 10 10 10.6667 15.3333 
Qi 1 - 1  4.3333 -4.3333 CQi = 0 

ti -0.1333 -0.7333 0.8667 - 1.0833 

Calculations: 
CF = (46)V18 = 117.5556 
SSTO = (32 + 32 + .. + l 2  + 2 9  - CF = 14.44 
SSR = [(22)’ + (24)*]/9 - CF = 0.22 
SSBL:R = (7’ + 8’ + .. + 8’ + 9’)/3 - SSR - CF = 0.89 
SST = (1)(-.01333) + (- I)(-0.7333) + (4.3333)(0.8667) + (-4.3333)(-1,0833) = 9.05 
SSE = 14.44 - 0.22 - 0.89 - 9.05 = 4.28 

- 
X3 = 2.92 + 0.87 = 3.79, 

XR = 2.92 - 1.08 = 1 . 8 4 .  
- 

The analysis of variance for off flavor is displayed in Table 4.2-4. At 3 numerator 
DF and 9 denominator DF, the 5% tabled F value is 3.86, which is exceeded by 
3.0167/0.4759 = 6.339. Thus, there is evidence to show that at least two means 
are statistically different from each other. The standard errors shown in Table 4.2-4 
are useful in testing for significance of pairwise comparisons of means and in 
calculating confidence interval of mean differences. For example, one can use the 
confidence interval technique to test whether the ith treatment mean is significantly 
different from the control sample mean. This is accomplished by computing the 
interval 

where d = estimated difference between means; Zu/2, ZI . .~ /Z  = normal deviates 
from the standard normal distribution (See Table 1.3-2, Chapter 1); SE = standard 
error appropriately selected from Table 4.2-4; and D = value of the difference be- 
tween means under the null hypothesis, which is equal to zero. Statistical significance 
is declared when the interval does not include zero. 
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Table 4.24 
Analysis of variance of bacon off-flavor. 

Source of Variance DF ss MS F ratio 

Total 17 14.44 
Repetitions 1 0.22 0.22 
Panelists within repetition 4 0.89 0.22 
Treatments (Adjusted) 3 9.05 3.02 6.34 
Error 9 4.28 0.48 

Calculations of standard errors: 

SE(k) = = 0.31 
SE(tR) = m 2  - 0 35 (Eq. 4.2-3) 

(Eq. 4.2-5) 
(Eq. 4.2-6) 
(Eq. 4.2-7) 

For example, consider the mean difference between treatment 1 and the control 
sample. At the 95% confidence interval, 

0.95 - 1.96(0.46) I D 5 0.95 + 1.96(0.46) 

or an interval of (0.05, 1.85). The interval does not include zero, hence the dif- 
ference between the means for treatment 1 and the control is significant at the 5% 
level. 



CHAPTER 5 

CROSSOVER DESIGN 

This chapter presents the design and analysis of two-period crossover studies useful 
in consumer testing work. A crossover design is a plan characterized by the measure- 
ment of the response of panelists from the evaluation of two treatments, each treat- 
ment being evaluated in sequence. Although there are higher order designs that 
extend to more than two periods of evaluations (Balaam 1968; Kershner and Federer 
1981; Laska e? al. 1983), their use in sensory testing is not recommended because 
these designs result in an increased number of samples for evaluation. Furthermore, 
higher order designs require a longer time interval between sensory evaluations, 
hence they become impractical under home-use conditions. 

Crossover designs are extensively used in clinical trials and in other medical 
research areas (Brown 1980; Grizzle 1965; Koch 1972; Jones and Kenward 1989). 

5.1 CROSSOVER DESIGN IN HOME-USE CONSUMER TESTS 

In a typical product home-use study, panelists use one product for certain length 
of time followed by the other product and vice versa. After each use, a question- 
naire is completed by each panelist. The layout of the design is shown in Table 5.1-1. 
In designing a crossover study, two groups of panelists, denoted by 1 and 11, are 
formed. Panelists are assigned to the two groups at random. In the first period, Group 
I uses treatment or product A followed by product B. For the panelists in Group 
II, they will use the products in the reverse order as shown in Table 5.1-1. 

Several statistical models for the analysis of crossover design have been given 
in the literature and we consider a simple model by Hills and Armitage ( 1  979). Each 
observation in Table 5.1-1 can be described by a simple model as follows: 

Group I A: yli = Xli  + Eli 
B: yzi = Yzi + E2i 

Group I1 B: yli = YI; + Eli 
A: yzi = Xzi + Ezi 

i = 1, 2, .., n 

(5.1-1) 

45 
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Table 5.1-1 
Notation and layout of a crossover design. 

Group I Group I1 
Period Treat. Observation Period Treat. Observation 

where yli and y2i are designation for responses in periods 1 and 2 ; Xli and Y2i 

are the observed responses for treatments A and B, respectively, for Group I panelist; 
Yli and X2i are the observed responses for treatments B and A, respectively, for 
Group I1 panelist; Eli and Ezi are the observed responses in the absence of treatment 
effects for periods 1 and 2, respectively, hence they are estimates of random and 
systematic variation. In this book, the effect of systematic variation will be called 
carry-over or order effects. 

There are two important assumptions for the above model. First, the absence of 
treatment by period interaction, that is, the difference between treatments A and 
B is the same regardless of the period sequence in which they were evaluated. The 
plots in Fig. 5.1-1 and 5.1-2 illustrate the presence of interaction in the data. Inter- 
action effect is present when the difference between A and B is not the same from 
period 1 to period 2. On the contrary, Fig. 5.1-3 shows a plot when interaction is 
absent. Second, the absence of order or carry-over effects. To illustrate the presence 
of order effects in the data, consider an extreme hypothetical example given in Table 

I 
I mriod 2 

Fig. 5.1-1 
Hypothetical outcomes to illustrate the presence 
of interaction in crossover design. Difference 
between A and B is larger in period 1 than in 
period 2. 
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I 
1 Rriod 2 

Fig. 5.1-2 
Hypothetical outcomes to illustrate the presence 
of interaction in crossover design. Difference 
between A and B is larger in period 2 than in 
period 1. 

A 

1 

1 period 2 

Fig. 5.1-3 
Hypothetical outcomes to illustrate the absence 
of interaction in crossover design. Difference 
between A and B is the same on both periods. 

5.1-2. Product A, with the larger mean score, is favored when it is used in the order 
(A,B), whereas product B is favored when the order of use was reversed to (B,A). 
In this example, the mean difference between A and B is zero as a result of order 
effects. Assuming that treatment effects are nil, this example also illustrates equal 
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Table 5.1-2 
Hypothetical data to illustrate order effects. 

Order of product use 

(A,B) (B,A) Mean 

A favored in period 1 
B favored in period 2 

A: 6.2 A: 5.0 5.6 
B: 5.0 B: 6.2 5.6 

Mean difference = 0.0 

order effects from A to B and from B to A. It is also possible that treatment and 
order effects are entangled, and they are said to be confounded or inseparable. De- 
pending on the magnitude of the order effects, their influence on the test of hypothesis 
generally leads to erroneous acceptance of the null hypothesis. Let us illustrate the 
estimation and test for significance of treatment and order effects. In this chapter, 
the estimation of these effects when the response is quantitative, such as a rating 
scale, and when the response is binary, such as a “yes” or a “no” scale, will be 
considered. 

5.2 RATING SCALE RESPONSE 

When ratings such as the hedonic scale are used in the evaluation of treatments, 
the method of statistical analysis is similar to the paired comparison analysis discussed 
in Chapter 2. Referring to model Eq. (5.1-11, the estimate of treatment effects is 
obtained by computing mean differences, & and &I, between periods of product 
use. For Group I panelist 

which estimates the difference between treatments A and B for the ith panelist, 
i = 1, 2, .., n. Then the mean difference is 

with variance 

S: = C(dIi - &)*/(n - 1) 

For the Group I1 panelist 

(5.2-2) 

which also estimates the difference between A and B. Likewise, 
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with variance S:I calculated using Eq. (5.2-2). The quantity Eli - Ezi represents 
the carry-over effects for the ith panelist. When this quantity is negligibly small, 
the use of crossover design is unbiased. 

It can be shown that the estimate of treatment effects denoted by TD is 

with standard error 

where nI and n11 are the number of panelists in Groups I and 11, respectively. Notice 
that TD is the average difference of the difference between products or treatments 
in periods 1 and 2. Consequently, if & = &I, then the order effect is zero. Hence, 
the estimate of order effects denoted by Q is simply 

Q = (& - &1)/2 (5.2-6) 

with standard error also given by Eq. (5.2-5). 
To test for significance of TD, the two sample t-test is used which is 

t = T&E (5.2-7) 

with n1 + nII - 2 DF. Replace TD by Q in Eq. (5.2-7) to test for order effects. 
In sensory evaluation, it is suggested that the 20% level of significance should be 
used for testing order effects. Being a preliminary test prior to testing the treatment 
effects, Grizzle (1965) recommends the 10% level for clinical trials. 

Example 5.2-1 

Table 5.2-1 shows a data based on the 9-point hedonic scale to illustrate the calcula- 
tions of treatment and order effects. In this example, Group I panelist used the prod- 
uct in the order (A,B) and Group II panelist used the product in the reversed order 
(B,A). Note that the differences for order (B,A) in Group I1 were computed as 
y2i - yli, i.e., (A - B). As noticed, the calculations in this table follow the paired 
comparison procedure discussed in Chapter 2, separately applied to Groups I and 
II. As shown in Table 5.2-1, the estimate of & is -0.3 and for &I, 0.4. Using 
Eq. (5.24) 

TD = (-0.3 + 0.4)/2 = 0.05 
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Table 5.2-1 
Hedonic data and calculations for Example 5.2-1. 

Group I (Order A,B) 

Panelist Period 1 Period 2 dli = 

Y l i  y2i Y l  - Y2 (dli - XIz 
1 5 6 - 1  0.49 
2 5 5 0 0.09 
3 6 7 - 1  0.49 
4 5 4 1 1.69 
5 6 7 - 1  0.49 
6 7 8 - 1  0.49 
7 7 6 1 1.69 
8 6 6 0 0.09 
9 5 7 -2 2.89 

10 7 6 1 1.69 

Mean 5.9 6.2 -0.3 Sum 10.10 

Group I1 (Order B,A) 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6 
7 
5 
7 
6 
5 
5 
6 
6 
5 

6 
6 
5 
8 
8 
7 
5 
5 
5 
7 

0 
- 1  

0 
1 
2 
2 
0 

- 1  
1 
2 

0.16 
1.96 
0. I6 
0.36 
2.56 
2.56 
0. I6 
I .96 
1.96 
2.56 

Mean 5.8 6.2 0.4 Sum 14.40 

Note: A - B = y ~ i  - yzi. Group I 
A - B = yz; - y ~ i .  Group I1 

as the estimate of treatment effects. The estimate of order effects using Eq. (5.2-6) is 

Q = ( -0 .3  - 0.4)/2 = -0.35. 

Since the estimate of Q is negative, it indicates that the product used second in a 
comparison is favored. This is clearly shown in Fig. 5.2-1, where product B has 
higher mean score in period 1 when seen last (order A,B) and lower mean score 
in period 2 when seen first (order B,A) in the comparison. The same result is observed 
for product A. Is this result due to chance variation? 
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:= 
I Rriod 2 

Fig. 5.2-1 
Plot of mean scores for Example 5.2-1 to i l -  
lustrate order effects. Treatments that were seen 
last have higher mean scores than those seen 
first. 

To test whether TD and Q are significantly different from zero, the pooled stan- 
dard deviation for both groups is to be be computed. From Table 5.2-1, the estimate 
of variance for Group I is 10.10/9 = 1.122 and for Group II, 14.40/9 = I .600. 
Using Eq. (2.2-2, Chapter 2), the estimate of the pooled variance is 

S2 = [(lo - 1)(1.122) + (10 - 1)(1.600)]/18 = 1.361 

Using Eq. (5.2-5) 

SE = (1/2)d(1.361/10) + (1.361110) = 0.261 

Thus. the t statistic for testing treatment effects is 

t = 0.05/0.261 = 0.192 

and for testing order effects 

t = -0.35/0.261 = - 1.341. 

Each t statistic has 10 + 10 - 2 = 18 DF. The tabled t (Table D) at 18 DF and 
5% significance level is 2.101, which is not exceeded by either one of the computed 
t values (sign of computed t should be ignored). Therefore, ihe null hypothesis is 
“accepted” that both treatment and order effects are equal to zero or the effects 
observed are likely due to chance variation. In other words, the data did not provide 
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evidence to show that the mean scores for treatments A and B are different, and 
there is also no evidence that order of product use in this experiment favors either 
the first or the second product evaluated. If order effect was significant, then there 
is a problem because TD is now confounded with Q, and this problem is dealt with 
in Section 5.4. 

5.3 BINARY RESPONSE 

When there are only two possible forms of responses, such as “yes” or “no,” 
“preferred” or “not preferred,” the resulting outcome is called binary data. For 
ease of tabulation of results, the responses are coded by the number 1 for a “yes 
response” and by the number 2 for a “no response.” Binary data obtained from 
a crossover design are summarized in Table 5.3-1. The grand total number of 
responses is denoted by N. Note also that N = nl + n2 = n3 + 14. Estimates of 
treatment effects TD and order effects Q are obtained following the formula by Nam 
(1971): 

TD = (1/4)ln(Y1Yz/Y3Y4) 

Q = (1/4)ln(Y1Y4/YzY3) 

(5.3-1) 

(5.3-2) 

In Eq. (5.3-2), if the resulting value of Q is positive, the product seen or used first 
is favored; if Q is negative, the product used second is obviously favored. 

To test the null hypothesis for order effects, Ho: Q = 0 against its alternative 
I&: Q # 0, a Chi-square statistic with 1 DF is computed as follows. 

(5.3-3) 

where 

The null hypothesis of zero order effects is rejected if the computed x2 is greater 
than the tabled x2 value (Appendix Table I). 

To test the null hypothesis for treatment effect, that is Ho: TD = 0 against Ha: 
TD # 0, use also the formula given by Eq. (5.3-3); however, the tabulation in Table 
5.3-1 should be re-arranged as shown in Table 5.3-2. The changes involved the first 
column and the switching of places for YZ and Y4. Nam (1971) showed that the 
Gart test (Gart 1969) given by Eq. (5.3-3) remains unbiased for testing treatment 
effects regardless of the order effects. 
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Table 5.3-1 
Tabulation of binary responses in a two-period crossover design. 

Order of product use 

A preferred YI Y2 n3 
B preferred Y3 Y4 n4 

Total nl nz N 
~~~~ ~ ~~ 

Note: Y l  = number of panelists preferring A in the order (A.B) 
Yz = number of panelists preferring A in the order (B,A) 
YI = number of panelists preferring B in the order (A,B) 
Y4 = number of panelists preferring B in the order (B,A) 

Table 5.3-2 
Re-arrangement of Table 5.3-1 to accommodate Gart’s test for treatment effect. 

Order of product use 

Note: (1.0) = number of times the product used first was preferred. 
(0,I) = number of times the product used second was preferred. 

In practice, it is recommended to monitor the extent of order effects in sensory 
testing work. Monitoring of order effects serves as a checkpoint on panelist perfor- 
mance and sensory techniques. A larger number of panelists should be used when 
order effect is suspected in the data. 

Example 5.3-1 

A new product had been developed and the research scientist planned to test this 
newly created product against its number one competitor. A home-use study was 
proposed using a total of 180 panelists. Half of the panelists, randomly selected, 
used the products denoted by codes A and B in the order (A,B) and the remaining 
half, numbering 90 panelists, used the product in the order (B,A). Each product 
was used during a 7-day period, and after each use a paired comparison question- 
naire was completed. The resulting data for overall preference is shown in Table 
5.3-3. Note that when product A was used first, 78 panelists preferred A and 12 
preferred B. When product B was used first 54 panelists preferred B over A. Clearly, 
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Table 5.33 
Overall preference data for products A and B. 

Order of product use 

(A31  @,A) Total 

A preferred A: 78 A: 36 114 
B preferred B: 12 B: 54 66 

Total 90 90 1 Rn 

an order effect is indicated. Is this result due to chance? To answer this, the magnitude 
of order effects is computed using Eq. (5.3-2). 

Q = (1/4)1n[(78 x 54)/(12 x 36)] = 0.569. 

To test whether Q is equal to zero, a xz statistic is computed using Eq. (5.3-3). 
The result is 

- 0.5)*/10.51 = 39.99 

which is significant at p c .001 level (Appendix Table I). This result suggests that 
the product used first was significantly preferred over the product used second, an 
indication of the presence of order effects. Although this effect was significant, it 
was not enough to mask the overwhelming preference for product A as shown by 
the last column in Table 5.3-3, 114 for product A and 66 for product B. If the dif- 
ference between products had been small, then the order effects will have a clear 
impact. 

Using Eq. (5.3-1), the estimate of treatment effects is 

TD = (1/4)1n[78 X 36)/(12 X 54)] = 0.367. 

To test Ho: TD = 0, the data are rearranged in the form of Table 5.3-2 resulting 
in n3 = 78 + 54 = 132. Then the Chi-square statistic is 

X' = ( 1  78 - I - 0.5)2/10.61 = 12.58 

which is significant at p C .001 level. Thus, we conclude that the difference in 
preference between products A and B is significant in favor of product A. 
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5.4 ANALYSIS OF DATA WITH CARRY-OVER EFFECTS 

Obviously, the presence of carry-over effects is known only after the study has 
been conducted. If carry-over effects are greatly affecting the estimate of treatment 
effects, it is possible to reanalyze the data using only the first week data from each 
group. In this case, we will lose all the second period data from each group in the 
statistical analysis. The reanalysis of the data is also known as the “first position 
analysis.” The first week data should not contain carry-over effects from either of 
the products evaluated. 

Referring to Eq. (5.1-1), we will only be concerned with comparing the two models 
shown below: 

Note that the difference between Groups I and I1 is a measure of the difference be- 
tween treatments A and B, free of carry-over effects. To avoid confusion in nota- 
tion due to the elimination of period 2 data, let us change yli in Group I to YIi and 
yli in Group I1 to YIIi. Then the final model is 

i = 1, 2, .., n panelists 

Clearly, the above model resembles the comparison of independent populations, 
Group I being one population and Group II the other. The statistical analysis is 
straightforward using the two-sample t-test for group comparison design as discussed 
in Chapter 2. 

There is one point that should be addressed in analyzing only the period 1 data 
from each group - the sensitivity for detecting differences. The fact that there is 
no direct comparison between products A and B, certain amount of sensitivity is 
lost. The evaluation of product A or B is based on the panelist’s perception or frame 
of reference, instead of relative to product A or B. Due to a large variation in the 
frame of reference among panelists, a certain amount of sensitivity of the test will 
be lost. Note also that the elimination of the second period data results in a monadic 
type of data, thus carries with it some concerns in monadic design when not proper- 
ly used as discussed by Gacula (1987). In practice, it is recommended that the first 
position analysis should be conducted routinely as a diagnostic tool for detection 
of order effects and as a check for gross errors in experimental procedures. 
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Example 5.4-1 

Consider the data in Table 5.2-1. Assuming that order effects are large, only the 
data in period 1 are to be analyzed. The output using the STATISTIX software is 
given in Table 5.4-1. The result shows that we fail to reject the null hypothesis in- 
dicating that there is no significant difference (p = 0.7915) between products A 
and B at the 5 %  level. 

Table 5.4-1 
STATISTIX output for analysis of data in Example 5.4-1 

VIEW DATA 

CASE A B 

1 
2 
3 
4 
5 
6 
7 
a 
9 
10 

s * 0000 
s.0000 
6.0000 
s.0000 
6.0000 
7.0000 
7.0000 
6.0000 
s.0000 
7.0000 

6.0000 
7.0000 
s.0000 
7.0000 
6.0000 
s . 0000 
s . 0000 
6.0000 
6.0000 
5.0000 



CHAPTER 6 

FACTORIAL DESIGNS FOR FACTORS AT TWO LEVELS 

Factorial designs are experimental plans used to study the effects of two or more 
factors on process/product attributes, where each level of each factor is varied 
simultaneously with the other factors in the experiment. Factorial designs are covered 
in several articles (Finney 1945, 1946; Davis and Hay 1950; McLean and Ander- 
son 1984; Mullen and Ennis 1985) and books (Cochran and Cox 1957; Statistical 
Eng. Lab. 1957; Box et d. 1978; Steel and Torrie 1960; Gacula and Singh 1984; 
Montgomery 1990a). A widely used factorial design for screening studies is the 2k 
factorial design. This design is the foundation of the response surface method dis- 
cussed in Chapter 8, hence a basic understanding of factorial design is important. 

In this chapter, the 2k design and its fractionation will be discussed to serve as 
a background material for Chapter 8. 

6.1 THE 2k FACTORIAL DESIGNS 

First let us discuss the 22 factorial design, followed by the 23 and other higher 
order factorial designs. 

The 2* Factorial Design 

An experiment that consists of k factors A, B, C, .., each at two levels is called 
a 2k factorial experiment. The two levels are designated as low and high. In a 2k 
factorial design, there are 2k combinations of factor levels. Each combination can 
be viewed as a treatment. For a two factor study, k = 2, the total number of com- 
binations is 22 = 4. Denote each combination or treatment by the following symbols: 

Treatment: 1 2 3 4 

Symbol : (1) a b ab 

In our presentation, a symbol for a factorial combination includes each letter if the 
corresponding factor is at the high level in the combination. For example, the sym- 
bol ab denotes the combination with factors A and B at high level, whereas, the 

57 
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symbol ( 1 )  denotes the combination with all factors at low level. In this notation, 
the response for each treatment combination is denoted by the letter Y. 

The response Y consists of the effects of factors A, B, interaction AB, and the 
residual E (error). When there is no replication, the AB interaction cannot be 
estimated. The statistical model is written as 

y.. ),I - - + Ai + Bj + (AB)ij + Eijl (6.1-1) 
i = 1, 2 (low, high) 

j = 1, 2 (low, high) 

I = 1, 2, . . , r replications 

where Yijl is the observed response, p the overall mean in the experiment, Ai the 
effect of the ith level (high or low) of factor A, Bj the effect of the jth level (high 
or low) of factor B, (AB)ij the effect of the interaction between factors A and B, 
and Eijl the randomhesidual error. The effects are estimated as a deviation from 
the overall mean as shown in Table 6.1-1. Therefore, the following constraints must 
hold: 

CAi = 0, CBj = 0, C(AB)ij = 0 

Because of these constraints, one can estimate the residual from the model above 
by the formula 

which is the difference between the observed and the predicted values. The predicted 
values are obtained by substituting the observed values into the model (see Example 
6.1-1). Most statistical software provides the residual output. In the analysis of fac- 

Table 6.1-1 
Estimation of effects for the statistical model (6.1-1). 

Note: As introduced in Section 1.7 (Chapter l), the dot notation denotes totals across the 
subscript replaced by a dot (.). 
Y,..  = Grand mean. 
Yi.. = Subclass mean response for factor Ai. 
Y.j. = Subclass mean response for factor Bj. 



FACTORIAL DESIGNS FOR FACTORS AT TWO LEVELS 59 

torial experiment, factor effects can be evaluated by plotting the residual Eijl against 
the effects on a normal probability paper. The plotting method is advantageous for 
higher order factorial and fractional factorial designs because there are more data 
points that can be plotted. See Example 6.1-2. 

In product formulation work, researchers are often faced with studies that involved 
several factors. Thus, initially the interest would be on screening of these factors 
by identifying those that have large effects on the desired attributes (response Y). 
These types of studies are the ideal application of 22 factorial design. However, when 
the number of factors is large, the number of factor combinations increases rapidly. 
For example, Table 6.1-2 shows the amount of increase in the number of factor 
combinations with increasing number of factors. The number of factor combina- 
tions can be reduced to a manageable size by the use of fractional factorial design. 
This design is characterized by using only a fraction of the total number of factor 
combinations to be used in the experiment. In the statistical literature (Finney 1945, 
1946) the technique of reducing the number of factor combinations in factorial ex- 
periment is known as confounding. This technique will be illustrated in this chapter. 

Estimate of Average Factor Effects 

Consider a 22 factorial experiment with the spatial configuration shown in Fig. 
6.1-1. The main effect of factor A is defined as the average change in the response 
of factor A when its level is changed from high to low across the levels of factor 
B. In Fig. 6.1-1, the average main effect for factor A is 

A = [(ab - bY21 + [(a - (1))/2] 
High B Low B 

= (ab - b + a - (1))/2 

Table 6.1-2 
Total number of factor (treatment) combinations for 2' factorial design. 

(6.1-3) 

Number of factor interactions Number of 
factors, k 2k 2-factor 3-factor 4-factor 

2 4 2 
3 8 3 1 
4 16 6 4 1 
5* 32 10 10 5 
6* 64 15 20 15 
7* 128 21 35 35 
8* 256 28 56 70 

*Only up to 4-factor interaction is shown. 



60 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

Factor  6 

ab 
0 

Factor  A 

Fig. 6.1-1 
Configuration of a 2 2  factorial design. 

Note the alternating signs of the treatment combinations, the importance of which 
will become evident when we discuss design matrix. Also, it can be shown that a 
half of the average effect is an estimate of regression coefficient for that factor. 

Similarly, the estimate of average main effect for factor B is defined as the average 
change in the response of B when its level is changed from high to low; i.e., 

B = [(ab - a)/2] + [(b - (1))/21 
High A Low A 

= (ab - a + b - a)/2 (6.14) 

The estimate of the interaction effect is based on a similar principle, except now 
it is the average difference in the response of factor A when factor B is at the high 
and low levels. Thus 

AB = [(ab - b)/2] - [(a - (1))/2] 
High B Low B 

= [(ab - b - a + (1)]/2 (6.1-5) 

It can also be obtained by computing the average difference in response of factor 
B when factor A is at the high and low levels as follows. 

AB = [ab - a)/2] - [b - (1))/2] 

= [ab - a - b + (1)]/2 

High A Low A 

(6.1-6) 
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If factors A and B do not interact, the difference in response between the high and 
the low levels of factor B across the levels of factor A will be approximately equal 
and in the same direction (Fig. 6.1-2). Evidently, the two lines will be parallel. If 
the two factors interact, the responses will vary with the levels of factor A; hence, 
the two lines will not be parallel and will often cross, particularly when the interac- 
tion effect is large (Fig. 6.1-3). 

Note that if each treatment combination is replicated r times the denominator for 
Eq. (6.1-3) through (6.1-6) is to be multiplied by r. For example 

A = [ab - b + a - (1)]/2r. 

Let us summarize the results that we have found for estimating average factor 
effects in Table 6.1-3. This table contains the signs of the treatment combinations 
with the coefficient f 1 .  This coefficient was omitted in Eq. (6.1-3) through (6.1-6) 
for simplicity. For example 

A = [(ab - b) + (a - (1)]/2 
+1 - 1  + 1  - 1  

Let us introduce a new term called contrast, defined as the difference between the 
sum of the "+ 1" responses and the sum of the "- 1" responses, i.e., 

Contrast = (Sum of + 1 responses) - (Sum of - 1 responses). 

Response Y 

- I  1 
Factor  A 

Fig. 6.1-2 
Plot to illustrate the absence of interaction between 
factors A and B. 
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Response V 

l 5  I 
10 

I 1 
- 1  

f a c t o r  A 

Fig. 6.13 
Plot to illustrate the presence of interaction between 
factors A and B. 

The coefficients in this table form the design matrix for least squares analysis of 
the data, using one of the many computer software packages in the market. The 
coefficients also facilitate analysis by hand calculator as will be illustrated in Exam- 
ple 6.1-1. It also facilitates generalization of the denominator for estimating sums 
of squares in ANOVA. In the 2k factorial, the sum of squares is obtained by 

SS = (contrast)2/rCc? (6.1-7) 

where Ci is the coefficient of the treatment combinations. In this form, the calcula- 
tion of SS for fractional factorials becomes easy. It is convenient to present the coef- 
ficients of the treatment combinations in tabular form to make the computations of 
average effects and contrasts easier as shown in Table 6.1-3. The treatment com- 
binations are in the so-called standard order; the rows and columns form the design 
matrix that plays an important role in computer analysis by the least squares method. 
For this table, the design matrix is a 4 x 3 (4 rows, 3 columns): 

- 1  - 1  1 

1 - 1  - 1  

- 1  1 - 1  

1 1 1 

A desirable property of the above matrix is its orthogonality, characterized by the 
following: the sum of each column is equal to zero and the sum of the products 
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Table 6.1-3 
Useful form for computing average effects and contrasts for a 2 X 2 factorial experiment. 

Treatment 
combinations 

Factor effect 
A B AB CYi 

(1) 
a 
b 
ab 

- 1  - 1  1 
1 - 1  - 1  

- 1  1 - 1  
1 1 1 

Sum of Dluses 

Sum of minuses 

Contrast 

Average effect 

Note: CYi = Sum of observed responses for each treatment combination, i = 1 ,  2, .., r. 
Contrast = (sum of pluses) - (sum of minuses) 
Average effect = ContrasU2r 
SS = (Contrast)2/rEc: 

N = Total number of observations. 
SSE = Obtain by difference. 

SSTO = EY: - [(CYi)2/N] 

between any two columns is also equal to zero. This property is important to pro- 
vide a unique solution to least squares equation as illustrated in Chapter 8. In this 
table, for a complete 2k factorial design, the divisor of a contrast is r2k and for the 
average effect, r2k-'. 

Example 6.1-1 

In this example, two surfactants known to inhibit the growth of bacteria in soaps 
are evaluated. The first surfactant denoted by factor A is TCC and the second denoted 
by factor B is Peg-6. The data reported in Table 6. I 4  are percentage of bacterial 
reduction from a placebo. Note that the responses for each treatment combination 
were measured at random and not as shown in this table. In fact, the random order 
was: ab, a, b, ( I ) .  

From the information in Table 6.14, the average effects of factors A, B, and 
the AB interaction are: 

A = 72.7/2(2) = 18.18 

B = 29.314 = 7.33 

AB = -10.514 = -2.63 

The sums of squares are: 
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Table 6.1-4 
Data for Example 6.1-1 I 

Treatment Factor effect 
combination A B AB Responses CYi 

(1) - 1  - 1  1 13.0, 8.0 21.0 
a 1 - 1  - 1  32.6, 30.0 62.6 
b - 1  1 - 1  22.4, 18.5 40.9 
ab 1 1 1 38.0, 34.0 72 .O 

Sum pluses 134.6 112.9 93.0 196.5 
Sum minuses 61.9 83.6 103.5 

Contrast 72.7 29.3 -10.5 
~~ ~ 

Ave. effect 18.2 7.3 -2.6 

Note: Contrast for Factor A: 
(62.6 + 72.0) - (21.0 + 40.9) = 72.7 

SSTO = (13.02 + 8.02 + .. + 38.0* + 34.02) - [(196.5)2]/8 
and so on. 

= 813.24 

SSA = (72.6)*/2(4) = 660.66 

SSB = (29.3)*/8 = 107.31 

SSAB = (-10.5)’/8 = 13.78 

Note that these sums of squares are denoted by TYPE I SS on the SAS output (SAS 
1985). The SSE is obtained by difference as 

SSE = SSTO - (SSA + SSB + SSAB) 

= 813.24 - 781.75 = 31.49 

If the design matrix is not orthogonal, it would not be possible to subdivide the various 
SS into component parts as we did in this example. The ANOVA table is shown 
in Table 6.1-5. The analysis showed that factors A and B significantly affected the 
amount of bacterial growth on the test material. As shown by the size of the F-ratio, 
factor A had more effect than factor B; this is also shown by the sizes of their average 
effects given in Table 6.1-4. The interaction effect is not significant, hence we con- 
clude that the effects of the two factors on bacterial reduction are independent; the 
average interaction effect was -2.6,  which is relatively small compared to the main 
effects. 

Let us use this example to calculate the residuals for model (Eq. 6.1-1). The calcula- 
tions should provide the reader with a better understanding of what we have discussed 
in this section. Following the formulas given in Table 6.1-1, the subclass means 
are as follows: 
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Table 6.1-5 
Analysis of variance for Example 6.1-1. 

Source of variance DF ss MS F-ratio 

Total 7 813.24 
A 1 660.66 660.66 83.95** 
B 1 107.31 107.31 13.64** 
AB 1 13.78 13.78 1.75 
Error 4 31.49 7.87 

** p < .01 

AI A2 Mean 

Bi 10.50 31.30 20.90 
BZ 20.45 36.00 28.23 

Mean 15.48 33.65 24.57 

The sum of the effects for factor A is 

CA; = (15.48 - 24.57) + (33.65 - 24.57) 

= -9.08 + 9.08 = 0 

which satisfies the constraints given earlier. Note that the absolute sum of the above 
deviations is the average effects of factor A, 9.08 + 9.08 = 18.18, as shown before 
in this example. Graphically, this looks like this: 

-9.08 0 9.08 
I I I 

It can be shown that half of the average effect is an estimate of the regression coeff- 
cient for factor A in the model (Eq. 6.1-1). Likewise, for factor B and interaction 
AB we have 

-3.66 0 3.66 

- 1.31 0 1.31 

B:  

A B  : 

I I I 

I I I 

Therefore, the model is 

Y = 24.57 + 9.1(A) + 3.7(B) - 1.3(AB) 

Notice that the sign of the coefficients is determined by the sign of the average ef- 
fects. Using the GLM procedure of SAS, this model is given by the ESTIMATE 
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column in the computer output. Using Eq. (6.1-2). the estimate of residual for obser- 
vation 1 is 

Residual = 13.0 - [24.57 + 9.1(-1) + 3.7(-1) - 1.3(1)] 

= 13.0 - 10.47 

= 2.53 

and so on. 

The z3 Factorial Design 

It is now clear that the 23 factorial consists of three factors A, B, and C (k = 3) 
each at two levels, high and low. The number of treatment combinations is 2 x 
2 x 2 = 8, and following the same notation as in the 22 factorial, the 8 treatment 
combinations in the standard order are: 

(1) a b ab c ac bc abc (6.1-8) 

The configuration of these combinations is given in Fig. 6 .14.  Each combination 
represents a vertex of a cube. To locate the treatment combinations in this figure, 
it is useful to first label the vertex for (l), a, b, and c. These vertices would be 
the origin for finding the other treatment combinations. 

The principle for estimating average effects in 2* can be easily extended to higher 
order factorials such as 23. There are four comparisons we need to average to ob- 
tain the main effect of factor A; these are 

abc - bc, ab - b, ac - c, a - (1) 

These comparisons involved the top face and bottom face of the configuration in 
Fig. 6 .14 .  Note that each comparison solves the effect of A by changing its level 
from high to low. Thus, the average of these four comparisons is 

A = [abc - bc + ab - b + ac - c + a - (1)]/4 (6.1-9) 

By arranging the treatment combinations in the standard order, the algebraic sign 
of each effect is obtained which follow a pattern easily remembered in constructing 
a design matrix. For example, for factor A 

A = [-(1) + a - b + ab - c + ac - bc + abc]/4 
- 1  + I  - I  +1  -1 + I  -1  +1 

Similarly, we have the following: 
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Factor B 

I bc 

1 

- 1  

abc 

Factor A 

Factor C 

Fig. 6.1-4 
Configuration of a 2) factorial design. 

B = [abc - ac + ab - a + bc - c + b - (1)]/4 

C = [abc - ab + bc - b + ac - a + c - (1)]/4 

Again, refer to Fig. 6.1-4 for a clear picture of these comparisons. 

configuration in Fig. 6.14. The average AB interaction effect is 
For two-factor interactions, say AB, it involves the front and back faces of the 

AB = (abc - bc) - (ac - c) + (ab - b) - (a - (1))/4 

= [abc - bc - ac + c + ab - b - a + (1)]/4 

High C Low c 

Similarly, we have the following: 

AC = (abc - ab) - (bc - b) + (ac - a) - (c - (1))/4 

= [abc - ab - bc + b + ac - a - c + (1)]/4 

High B Low B 

BC = (abc - ab) - (ac - a) + (bc - b) - (c - (1))/4 

= [abc - ab - ac + a + bc - b - c + (1)]/4 

High A Low A 



68 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

For the ABC interaction, the average difference between any two-factor interac- 
tion for the high and low levels is computed. For example, if we compute the ABC 
interaction at the high and low levels of factor C, the average ABC interaction is 

ABC = (abc - bc) - (ac - c) - (ab - b) + (a - (1))/4 

= [abc - bc - ac + c - ab + b + a - (1)]/4 

High C Low c 

If we use factor B, we have 

ABC = (abc - ab) - (bc - b) - (ac - a) + (c - (1))/4 

= [abc - ab - bc + b - ac + a + c - (1)114 

High B Low B 

which is the same as that using factor C. The same result will be found using factor A. 

Example 6.1-2 

This example is the same as that of Example 6.1-1, except factor C (Peg-12) is 
added at 0.5% (low) and 1 .O% (high) levels to become a 23 factorial. The resulting 
eight treatment combinations, % bacterial reduction, and calculations are shown in 
Table 6.1-6. Looking at the average effects, factors A, B, C, and interaction AC 
appear to be large. 

Let us use the normal probability plot to evaluate these effects. The first step is 
to order the effects from large to small and assign an inverse rank to the effects 
to obtain the plotting point on the vertical axis. For this example, the plotting point, 
(i - 0.5)/7, is used (See Gacula and Singh 1984). The result is given in Table 6.1-7 
and the normal probability plot in Fig. 6.1-5. In the plot, a straight line is drawn 
on the effects that lie between the 20th and 80th percentiles. Those effects that are 
far from the line on either direction have large effects on the response. One can 
immediately see that factors A, B, C, and interaction AC have large effects. Formal 
test of significance on these effects can be done using the analysis of variance. 

An SAS program was written to do the ANOVA and is given in Fig. 6.1-6. In 
the program the predicted values, residuals, and the plot of the observation versus 
residual are requested. The resulting SAS output is shown in Table 6.1-8. As shown 
under the column headed by PR > T, factors A, B, C, and interaction AC were 
significant. The plot of the residual (Fig. 6.1-7) did not exhibit any particular pat- 
tern, suggesting that the observations have homogenous variance, a desirable pro- 
perty to have on a data set. 

The column headed by ESTIMATE contains the regression coefficients for each 
parameter of the statistical model. Thus we have 
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Table 6.1-6 
Data for Example 6.1-2. 

Factor effect 

A B AB C AC BC ABC ri q CY 

( 1 )  
a 
b 
ab 

ac 
bc 
abc 

C 

- 1  -1  1 - 1  1 1 - 1  13.0 8.0 21.0 
1 - I  - 1  - 1  - 1  1 1 32.6 30.0 62.6 

- I  1 - 1  - 1  1 - 1  1 22.4 18.5 40.9 
1 1 1 - I  - 1  - 1  -1  38.0 34.0 72.0 

- 1  - 1  1 1 - 1  - 1  1 16.9 20.1 37.0 
1 - 1  - 1  1 1 - 1  - 1  10.0 12.0 22.0 

- 1  1 - 1  1 - 1  1 - 1  22.0 20.0 42.0 
1 I 1 1 1 1 1 11.0 15.0 26.0 

Sum + 182.6 180.9 156.0 127.0 109.9 151.6 166.5 323.5 
Sum - 140.9 142.6 167.5 196.5 213.6 171.9 157.0 
Contrast: 41.7 38.3 - 11.5 -69.5 - 103.7 -20.3 9.5 

Calculation of sums of squares: 
CF = (323.50)2/16 = 6,540.77 
SSTO = 7,803.39 - 6,540.77 = 1,262.62 
SSA = (41.7)2/2(8) = 108.68 
SSB = (38.3)2/16 = 91.68 
SSC = (69.5)2/16 = 301.89 
SSAB = (- 11.5)'/16 = 8.27 
SSAC = (- 103.7)2/16 = 672.1 I 
SSBC = (-20.3)'/16 = 25.76 
SSABC = (9.5)2/16 = 5.64 

Calculation of average effects: 
A = [(1/(4)(2)]41.7 = 5.22 
B = 38.318 = 4.79 
C = -69.5/8 = -8.69 
AB = -11.5/8 = -1.44 
AC = - 103.7/8 = - 12.96 
BC = -20.3/8 = -2.54 
ABC = 9 3 8  = 1.10 

Notice that the regression coefficients are one-half of the average effects. From this 
equation we can obtain the residual by substituting the observations into the model 
to obtain the so-called predicted value of 9. The residual is simply, observed Y 
- predicted 9.  Note that we have change notation to conform with regression con- 
vention. Here we denote X I  for factor A, X2 for factor B, and X3 for factor C. 
This notation will be used in Chapter 8. 
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-10 - 5  0 5 10 

Fig. 6.1-5 
Normal probability plot. The p value in this plot is significance probability taken 
from Table 6.1-8. 
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Table 6.1-7 
Ordered effects and ploaing point for normal probability plot (Example 6.1-2). 

~ 

Factor Ordered effect Rank i (i - .5)/7 
A 5.22 7 0.929 
B 4.79 6 0.786 
ABC 1.19 5 0.643 
AI3 - 1.44 4 0.500 
BC -2.54 3 0.357 
C -8.69 2 0.214 
AC - 12.96 1 0.07 1 

Note: 
0.929 7 (7 - .5)/7 

0.071 = (1 - .5)/7 
. .  

(SAMPLE J 

1s) 

* 

TIFY~AOAr  

Fig. 6.1-6 
SAS program to analyze the data of Example 6.1-2. SAS is a registered trademark of the 
SAS Institute, Inc. 
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Addition of Center Point in 2k Factorial Design 

A center point in a design is located halfway between the low and high levels. 
Fig. 6.1-8 illustrates this for a 22 factorial design. The main purpose of the center 
point is to estimate the lack of fit of the postulated model to the observed data. In 
Example 6.1-1, we can partition the error sum of squares (SSE) into two parts, one 
part representing the lack of fit (SSFIT) and the other part representing the so-called 
pure error (SSPURE). Thus, 

SSE = SSPURE + SSFIT 

If the lack of fit is large (statistically significant at an 01 level), we conclude that 
one or more effects are not linear, but follow some form of curvature. The SSPURE 
is obtained from the center point observations, hence we can estimate SSFIT by 

SSFIT = SSE - SSPURE 

Note also that SSE can be further improved by replicating the other design points 
(4 vertices) in Fig. 6.1-8. Table 6.1-9 contains the ANOVA table and relevant for- 
mulas for testing the significance of lack of fit. For a numerical example of this 
topic, see Example 8.1-2 (Chapter 8). 

6.2 ONE-HALF FRACTION OF 24 

Suppose that k = 4 factors denoted by A, B, C, and D. The total number of com- 
binations is Z4 = 16. These factor combinations, also called treatments, are as follows: 

Treatment 
1 
2 
3 
4 
5 
6 
7 
8 

Symbol 
(1) 
a 
b 
ab 

ac 
bc 
abc 

C 

Treatment 
9 

10 
11 
12 
13 
14 
15 
16 

Symbol 
d 
ad 
bd 
cd 
abd 
acd 
bcd 
abcd 

Recall the interpretation of each symbol as given in the previous section. Suppose 
that 16 treatments are found to be too large for experimentation, and the researcher 
has decided on using only a half of them or 8 treatments. How do we go about select- 
ing the 8 treatments to be used? In the 24 factorial, there are z4 - 1 effect parameters, 
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Augmentation of a 22 factorial design by a center point. 

in addition to the grand mean p,  to be estimated. If we design an experiment using 
only 8 factor combinations, we cannot estimate all the 16 parameters. But we can 
estimate 8 linear combinations of the effects, each linear combination consisting of 
only 2 effects. The 2 effects in a combination are completely confounded because 
their effects cannot be separately estimated. The effect confounded is the price we 
pay for reducing the number of treatments to be used. However, we have the liberty 
of choosing the effect to be confounded, and generally we confound the effect that 
appears to be not important or difficult to interpret. This effect is usually the highest 
order factor interaction. In this example, the highest order interaction is ABCD. 

Suppose we decide to confound the ABCD interaction with p.  If we use the equality 
sign to denote the confounding and I to denote p in the equation, then we have a 
so-called defining contrast: 

Table 6.1-9 
ANOVA table for 22 factorial with center point. 

Source of variance DF ss MS F-ratio 

Total N - 1 SSTO 
Regression 

bi 1 
b2 1 

Lack of fit M - k SSFIT MSFIT MSFIT/MSPURE 
Pure error N - M - 1 SSPURE MSPURE 

Residual N - k - 1  SSE MSE 

~ ~~ 

Note: N = total number of observations including the number of replications at the center point. 
k = number of factors, k = 2.  
M = 2'. 
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I = ABCD 

The defining contrast, representing the confounding of p with the ABCD effect, 
determines uniquely all the other pairs whose components, called aliases, are con- 
founded. The alias of factor effect A, for example, is obtained from the defining 
contrast as follows: Multiplying both sides of the defining contrast by A, we find 

A = A2BCD, (6.2-1) 

where in the multiplication operation I is treated as unity. Also, the multiplication 
is always further simplified by letting A2 = I, B2 = I, and so on. Therefore, Eq. 
(6.2-1) becomes A = BCD, which means that effect A is confounded with BCD 
interaction. That is, when we measure the effect of A we are actually measuring 
the combined effects of A and BCD. 

Once we have determined the defining contrast, we can write it as a function L, 

where 1, = 1 if factor A appears in the factor combination and 0 otherwise. Likewise, 
l b ,  lC ,  and l d  are the indicator functions for factors B, C, and D. The L is reduced 
to L mod 2. By definition, L mod 2 is the remainder when L is divided by 2. For 
example, we have the following: 

L L m o d 2  

1 1 
2 0 
3 1 
4 0 
5 1 
6 0 

Table 6.2-1 shows the results by the application of Eq. (6.2-2). For factor combina- 
tion ( l ) ,  all factors at low level, the function L is 

For factor combination abcd, 

and so on. 
Finally, factor combinations corresponding to L mod 2 = 0 and L mod 2 = 1 

are separated into two blocks, each block consisting of 8 factor combinations as shown 
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Table 6.2-1 
Construction of a one-half replicate of a 2' factorial with ABCD as the defining contrast. 

Factor 
combination X. x b  X C  x d  L 1m0d2 

(1 )  
a 
b 
ab 

ac 
bc 
abc 
d 
ad 
bd 
cd 
abd 
acd 
bcd 
abcd 

C 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 
1 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
0 
1 
0 
1 
1 

0 
0 
0 
0 
1 
1 
I 
1 
0 
0 
0 
1 
0 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
I 
1 
1 
1 
1 
1 

0 
1 
1 
2 
1 
2 
2 
3 
1 
2 
2 
2 
3 
3 
3 
4 

0 
1 
1 
0 
1 
0 
0 
1 
1 
0 
0 
0 
1 
1 
1 
0 

in Table 6.2-2. The alias pairs were obtained by the application of the confounding 
technique discussed earlier in this chapter. It is a matter of choice which of the two 
blocks to use in the experiment. Note that estimates of main effects (A,B,C,D) are 
confounded with 3-way interactions, and so on. Suppose we elect to use block 2. 
To start the experiment, one would formulate 8 treatments defined by block 2. Treat- 
ment 1 (or a) would consist of factor A at high level and factors B, C, and D at 
low level; treatment 2 (or b) would consist of factor B at high level and factors A, 
C, and D at low level, and so on. The 8 treatments may be too large for simultaneous 
evaluation, hence we may use the incomplete block design discussed in Chapter 4. 

The construction of fractional factorial design for n > 4 is given by Kempthorne 
(1947), Cochran and Cox (1957), Peng (1967), Gacula and Singh (1984), McLean 
and Anderson (1984), Mullen and Ennis (1985), and recently by Montgomery 
( 1990a). 

Example 6.2-1 

In this example, the method of statistical analysis of data obtained from a one-half 
fraction of the Z4 factorial design is illustrated. As shown previously, there are 8 
factor combinations of a half-fraction of z4 factorial design. Suppose a BIB design 
is used to evaluate the 8 treatments (t = 8), where each panelist evaluates only 4 
treatments (k = 4). For t = 8 and k = 4, 14 panelists are needed to complete a 
basic BIB design given in Table 6.2-3. One repetition of the basic BIB design con- 
stitutes one replication of each factor combination. The BIB adjusted means are the 
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Table 6.2-2 
Aliases and one-half replicate of Z4 factorial design. 

Block 1 Block 2 
(L mod 2 = 0) Alias pairs (L mod 2 = 1) Alias pairs 

~~ ~~ 

a A, BCD (1 1 p, ABCD 
ab AB, CD b B, ACD 

AC, BD C C, ABD 
bc BC, AD abc ABC, D 
ad AD, BC d D, ABC 
bd BD, AC abd ABD, C 
cd CD, AB acd ACD, B 
abcd ABCD, p bcd BCD, A 

ac 

raw data to be used in fractional factorial analysis. Once we have these data for 
each factor combination, a table is constructed as shown in Table 6.24, where two 
repetitions of the design were done. The row indicated by sum is the total of the 
adjusted treatment means from the first and second repetitions. The plus coefficient 
(+ 1) and the minus coefficient (- 1) corresponding to the main effects denotes the 
presence and the absence of a factor in the factor combination, respectively. For 
example, factor A has a + 1 coefficient for treatments a, abc, abd, and acd; factor 
B has a - 1 for treatments a, c, d, and acd, and so on. The coefficients for the in- 
teraction factor effects were obtained by algebraic multiplication of the coefficient 
of the factors involved in the interaction. For example, for treatment bcd the coeffi- 

Table 6.2-3 
A basic BIB design for t = 8, k = 4 ,  and b = 14. 

Treatment Corresponding factor 
Panelist number combination 

1 1 2 3 4  a b  C abc 
2 5 6 7 8  d abd acd bcd 
3 1 2 7 8  a b  acd bcd 
4 3 4 5 6  c abc d abd 
5 1 3 6 8  a c  abd bcd 
6 2 4 5 7  b abc d acd 
7 1 4 6 7  a abc abd acd 
8 2 3 5 8  b c  d bcd 
9 1 2 5 6  a b  d abd 

10 3 4 7 8  c abc acd bcd 
11 1 3 5 7  a c  d acd 
12 2 4 6 8  b abc abd bcd 
13 1 4 5 8  a abc d bcd 
14 2 3 6 7  b c  abd acd 
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Table 6.2-4 
Texture data and calculations for Example 6.2-1. 

Treatment: a b c abc d abd a d  bcd 
Repetition 1: 6.9 6.2 6.4 7.2 5.0 7.2 7.8 7.5 Sum of: 
Repetition 2: 7.9 6.9 6.2 7.0 5.5 6.9 7.4 7.0 + - Contrast 

Sum: 14.8 13.1 12.6 14.2 10.5 14.1 15.2 14.5 
Factor effect 

A(BCD) +1 - 1  - 1  +1 - 1  +1 +1 - 1  58.3 50.7 7.6 
B(ACD) -1 + 1  - 1  + I  - 1  +1 -1 +1 55.9 53.1 2.8 
C(ABD) -1 - 1  +1 + I  -1 - 1  + I  + 1  56.5 52.5 4.0 
D(ABC) -1 - 1  - 1  - 1  + 1  + I  + 1  +1 54.3 54.7 -0.4 
AB(CD) - 1  - 1  + 1  +1 +1 +1 - 1  - 1  51.4 57.6 -6.2 
AC(BD) -1 + 1  - 1  + 1  + 1  - 1  +1 - 1  53.0 56.0 -3.0 
BC(AD) + 1  -1 - 1  + 1  $ 1  - 1  -1 + l  54.0 55.0 -1.0 

Calculations: 
G = 14.8 + 13.1 + .. + 15.2 + 14.5 = 109 
CF = (109)’/16 = 742.56 
SSTO = [(6.9)2 + (6.2)’ + .. + (7.4)* + (7.0)2] - CF 

=751.86 - CF = 9.30 

cient for effect BC is the product of the coefficients for B and C, e.g., (+ 1)(+ 1) 
= + 1. These coefficients are also known as design matrix in the statistical literature. 

To determine the sums of squares for each factor effect, contrasts are computed 
by subtracting the sum of the minuses from the sum of the pluses. For example, 
for factor A the contrast is 

(14.8 + 14.2 + 14.1 + 15.2) - (13.1 + 12.6 + 10.5 + 14.5) 

= 58.3 - 50.7 = 7.6 

and so on. Denoting r as the number of observations per factor combination (treat- 
ment), the SS are computed using Eq. (6.1-7). Then 

SSA = (7.6)’/2(8) = 3.61 
SSB = (2.8)’/16 = 0.49 
SSC = (4.0)’/16 = 1.00 
SSD = (-0.4)’/16 = 0.01 
SSAB = (-6.2)’/16 = 2.40 
SSAC = (-3.0)’/16 = 0.56 
SSBC = (- 1.00)*/16 = 0.06 

The ANOVA table is summarized in Table 6.2-5. In this table the alias of an ef- 
fect is shown in parenthesis, i.e., A(BCD). The effects of factors A and C on the 
hedonic response for texture were found significant. These effects include their respec- 
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Table 6.2-5 
Analysis of variance of a one-half Z4 fractional factorial with two observations per factor 
combination. 

Source of variance DF ss MS F ratio 

Total 15 9.30 
A (BCD) 1 3.61 3.61 24.07* * 
B (ACD) 1 0.49 0.49 3.27 
C (ABD) 1 1 .oo 1 .oo 6.67* 
D (ABC) 1 0.01 0.01 0.07 
AJ3 (CD) 1 2.40 2.40 16.00** 

BC (AD) 1 0.06 0.06 0.40 
Error 8 1.17 0.15 

Note: 

AC (BD) 1 0.56 0.56 3.73 

Y i j ~ m p  = /A + Ai + Bj + Ci + Drn + (AB)ij + (ACh + (BC)jl + Eijlmp 
i = 1.2; j = 1,2 ; I = 1,2; m = 1,2; p = 1,2 

*p < .05; **p < .01 

tive alias effects, and there is no way of separating them. If our assumption of a 
negligible 3-way interaction effect holds, then we have confidence on the result of 
the F test for main effects. The AB interaction effect was also found significant, 
on the assumption that the CD interaction effect is nil. The assumption of negligible 
alias effect poses a problem in interpretation of results from fractional factorial ex- 
periments. For effective use of fractional factorial design, the nature of the factors 
being studied should be carefully examined to validate the assumption. 

There are other methods for the statistical analysis of fractional factorial ex- 
periments. One method is by Yates (1937), which is illustrated in Cochran and Cox 
(1957), and the other method is the straightforward application of the analysis of 
variance for multi-classified data. See Kirk (1968) for its application to fractional 
factorial experiments. 

6.3 ONE-HALF AND ONE-FOURTH FRACTION OF 2k 

The procedure for fractionating other 2k factorial designs, as well as their statistical 
analysis, follows the procedure given in the preceding section. Two useful fractional 
factorial plans with k = 5 and k = 6 are discussed here. In sensory evaluation work 
the evaluation of a large number of factors or stimuli (greater than 6) is not recom- 
mended because of the complex nature of how one perceives various mixtures of 
stimuli. In addition, an increased number of confounded effects due to fractionation 
can lead to confusion and problems of interpretation. Other means of decreasing 
the number of factors, such as a preliminary bench top formulation work and the 
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standardization of other controllable factors to acceptable levels, may be used. Table 
6.3-1 gives the one-half fraction of 25 and the one-fourth fraction of 26. The factor 
combinations column in this table is the combinations of factors to be used in the 
formulation work. Note that in Design 2, the estimate of main effect due to factor 
A (treatment a) is confounded with 3 aliases, which are the BCE, BDF, and the 
ACDEF interactions. These aliases were found by the appropriate multiplication 

Table 6.3-1 
Fractional factorial design for a one-half Z5 and a one-fourth 26. 

Factor 
Design combinations Aliases 

Design 1: (1) ABCDE 
k = 5  ae BCD 
1/2 fraction be ACD 
16 treatments ab CDE 
Defining contrast is ABCDE ce ABD 

ac BDE 
bc ADE 
abce D 
de BC 
ad BCE 
bd ACE 
abde C 
cd ABE 
acde B 
bcde A 
abcd E 

Design 2: (1) ABCE, ABDF, CDEF 
k = 6  a BCE, BDF, ACDEF 
1/4 fraction b ACE, ADF, BCDEF 
16 treatments C ABE, ABCDF, DEF 
Defining contrasts are ABCE, d ABCDE, ABF, CEF 

ABDF, and CDEF e ABC, ABDEF, CDF 
f ABCEF, ABD, CDE 
ab CE, DF, ABCDEF 
ac BE, BCDF, ADEF 
ad BCDE, BF, ACEF 
ae BC, BDEF, ACDF 
af BCEF, BD, ACDE 
cd ABDE, ABCF, EF 
cf ABEF, ABCD, DE 
acf BEF, BCD, ADE 
acd BDE. BCF. AEF 
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of the defining contrasts and the factor effect. For example, with the defining con- 
trasts given by the aliases of (l), factor A has the following aliases: 

A X ABCE = AZBCE = BCE 

A X ABDF = AZBDF = BDF 

A X CDEF = ACDEF 

and so on. An extensive tabulation of fractional factorial plans is given in several 
publications (Statistical Eng. Lab. 1957; McLean and Anderson 1984; Mullen and 
Ennis 1985; Montgomery 1990a). 



CHAPTER 7 

SCALING METHODS 

Measuring subjective responses is a fundamental process involved in sensory 
evaluation of consumer products, materials and services. The choice of a scale to 
measure these responses is critical to the outcome and the correct interpretation of 
the results of experiments. In this chapter, the Thurstone-Mosteller model and ranking 
procedures for measuring subjective responses are discussed. 

7.1 SENSORY MEASUREMENTS 

Scaling refers to the processes and techniques used to validate the existence of 
a defined property of an object or event and to establish operational indices of the 
relative magnitudes of the property (Gorden 1977). The assignment of numerals to 
the property of an object is called measurement (Stevens 1946). In this definition, 
the “defined property” corresponds to product attribute, and “object” refers to pro- 
duct or treatment in the context of consumer testing and experimental design. In 
this discussion we may refer to products or treatments as stimuli. In the past several 
decades, scaling methods have proved to be an invaluable tool to sensory analysts 
for quantifying perception of a given stimulus. 

The history of sensory measurements is extremely interesting and well documented 
over several decades. A brief review of sensory measurements is given by Jones 
(1974). For our purposes, it is sufficient to discuss briefly the four classes of sen- 
sory scales as they are basic to the understanding of sensory measurements. There 
are four classes of scales: nominal, ordinal, interval, and ratio. The theory and a p  
plications of these scales are widely discussed (Stevens 1946, 1951; Guilford 1954; 
Torgerson 1958; Baird and Noma 1978). It is generally held that the ordinal and 
the interval scales are the most widely used in consumer testing. 

Nominal Scale 

The nominal scale is the most simple form that deals with the identification and 
classification of objects or stimuli. The numbering of football players for identifica- 
tion is a form of nominal scale. Binary responses such as “perceived” or “not 
perceived,” “yes” or “no,” used in threshold studies for classifying responses are 
another example. 
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Ordinal Scale 

The ordinal scale, typified by the ranking method, is popular because of its simplic- 
ity. It provides rank order of stimuli, but does not provide meaningful distance of 
differences because all differences between ranks are obviously equal to 1. Ordinal 
scale has a true zero point or origin on the scale. In this chapter, we will illustrate 
rank scaling by paired comparison and by the balanced incomplete block design. 

Interval Scale 

The interval scale is typified by the hedonic scale developed by Peryam and Girardot 
(1952). In our discussion, we may use the word category interchangeably with the 
word interval. Interval scaling is considered a direct method of scaling character- 
ized by a fixed point linear representation of categories on the scale. This scale pro- 
vides estimates of the distance between stimuli assuming that the difference between 
scale categories is approximately equal. However, this scale does not possess a true 
zero point. In practice, the number of categories have ranged from 5 through 10. 

SLY-POINT SCALE 

1 2 3 4 5 6 7 8 9  

NINE-POINT SCALE 

fig. 7.1-1 
Linear relationship between the six-point and the nine-point 
hedonic scale. Each line is for individual panelist. 
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UNSTRUCTURED SCALE 

20 

15 

10 

5 

0 

0 1 2 3 4 5 6  

CATEGORY SCALE 

Fig. 7.13 
Linear relationship between unstructured and category scales 
to illustrate invariance property. Each line is for individual 
panelist. 

Furthermore, the number of categories has been found to be invariant (Parducci 1982; 
Gacula 1987), i.e., the scale measures the same property regardless of the length 
of the scale. Figures 7.1-1 and 7.1-2 illustrate the invariance property of rating scale. 

However, one must remember that in general shorter scales (4-point) may not 
provide enough range for discrimination especially for panelists with high sensory 
acuity; on the other hand, longer scales (> 1 1-point) may tend to exaggerate physical 
differences and destroy scale continuum. Individual skills, experience, and under- 
standing of the sensory attributes being measured will contribute to the successful 
choice of measurement scales. See Riskey (1986) for a current review of the use 
of category scales in sensory measurement. 

Ratio Scale 

The ratio scale approaches a true measurement scale such as a ruler. Ratio scale 
has a true zero point and because of this property, it is the only scale with which 
one can say object X is twice as large as object Y or three times as small as Y. 
Thus, this scale measures meaningful distance between objects. Although this scale 
has a solid theoretical foundation, it has some drawbacks in practice. First, it has 
been found difficult to use in field situations such as in consumer testing (Lawless 
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and Malone 1986a,b). Second, its application to complex stimuli has been questioned 
(Giovanni and Pangborn 1983). This scale is exemplified by the magnitude estima- 
tion procedure (Stevens and Galanter 1957) popularized in industrial applications 
by Moskowitz and associates (Moskowitz and Side1 1971; Moskowitz 1977). 

Briefly, in magnitude estimation the task of the panelist is to evaluate a stimulus 
in comparison with another where one of them is assigned a number, for example, 
10. If the stimulus to be evaluated is three times as large, then the panelist gives 
a score of 30; if it is half as large, it is given a score of 5 .  Detailed description 
of the magnitude estimation experimental procedure is described by Moskowitz 
(1977). 

Table 7.1-1 summarizes the statistical properties of the four classes of scales as 
a guide for practitioners in the selection of valid statistical operations. Recent studies 
showed that both ratio and category scales have similar sensitivity to finding perceptual 
differences in various types of consumer products (McDaniel and Sawyer 1981a,b; 
Pearce et al. 1986; Lawless and Malone 1986a,b). 

7.2 THE THURSTONE-MOSTELLER MODEL 

The Thurstone-Mosteller model is an indirect method of scaling where the scale 
values are derived from responses elicited by the stimuli. This method is useful for 
scaling large number of stimuli. In addition to obtaining a scale for each stimulus, 
a multiple comparison to determine significant differences between pairs of stimuli 
can be obtained. The Thurstone-Mosteller model is based on Thurstone’s Law of 
Comparative Judgment (Thurstone 1927; Thurstone and Jones 1957), which equates 
the unknown psychological sensation to the observed frequency of a stimulus. As 
we shall see, the unit of measurement of Thurstone’s law is the standard deviation. 

Let P,, be the observed proportion by which stimulus R1 is judged greater than 
stimulus R,. Also let Z,, denote the value of the standard normal Z such that 

Denote by S ,  and S ,  the mean sensations evoked by stimuli R, and R,, respectively. 
If 7r,, denotes the correlation between the two sensation distributions generated by 
stimuli R1 and R,, then Thurstone’s law of comparative judgment is given by 

S I  - ~2 = ~ 1 2 J a :  + a: - 2p12aia2 (7.2-2) 

where 4 and dz are, respectively, the variance of SI and SZ. The sensation distance 
(SI - S2) is assumed to correspond to the distance between RI  and R2. In Eq. (7.2-2) 
the variance cannot be estimated in advance; hence some simplifications are needed 
that leads to Thurstone’s Case V of the Law of Comparative Judgment. Case V 
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assumes zero correlation and standard deviation equal to 1 .O. Thus Eq. (7.2-2) 
becomes 

s1 - sz = z12 (7.2-3) 

However, Mosteller (1951a,b) showed that one can obtain Eq. (7.2-3) by assuing 
equal standard deviation and correlation between sensations of any two stimuli. As 
clearly given by Eq..(7.2-3), the normal deviate ZIz is the distance between the 
unknown sensations S, and Sz. 

In the form of Eq. (7.2-3), one can scale sensation by the comparison of a stimulus 
i with stimulus j using the paired comparison design. What is in effect perceived 
in this comparison is the order of sensations Xi and Xj. The amount of sensation 
Xi is assumed to be governed by the normal probability model with mean sensation 
Si. The probability that sensation Xi is greater than sensation Xj is given by 

Pij = P(Xi > Xj) = @(Si - Sj) (7.2-4) 

where CP denotes the standard normal cumulative distribution function given in A p  
pendix Table J. Using this table, and denoting Zij as the (Pij)th percentile of the 
standard normal distribution, we can write Eq. (7.2-4) in the form 

Pij = @(Zij) (7.2-5) 

noting that &j = Si - Sj, i = j = 1, 2, .., t 

from Eq. (7.2-3). For t = 3 stimuli, we have the following scale separation from 
a paired comparison experiment: 

2 1 2  = s1 - sz 
z,, = SI - s3 

G3 = sz - s3 

Finally, the estimates of mean scale sensation for the ith stimuli from the above paired 
comparison is 

Si = CZij/t (7.2-6) 

Table 7.2-1 shows the layout of a paired comparison experiment showing the pro- 
portions Pij and their respective normal deviates Zij. If a stimulus is compared to 
itself, the expected value of Pii = 0.50, hence the corresponding Zii = 0 from Table 
J. 
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Table 7.2-1 
Layout of paired comparison experiment showing proportions and normal deviates. 

i , i > j  

1 2 3 ... t j 
Proportion 

1 PI 1 Pl2 PI3 ... Plt 
2 PZ I P22 p23 ... P2t 

... ... ... ... ... ... 

... ... ... ... ... ... 
t Pi 1 Pi2 pi 3 ... Pit 

1 Zll 212 z13 ... Zll 
2 Z2l z 2 2  2 2 3  ... z21 

Normal deviate 

... ... ... ... ... ... 
... 
t 

... ... ... ... ... 
zt1 212 Zt 3 ... Ztl 

Sum z1 z2 z3 ... Zt 
si Zllt Z2lt Z3lt ... Zilt 

Example 7.2-1 

This example illustrates the scaling of stimuli by the Thurstone-Mosteller model. 
Table 7.2-2 contains data on lather characteristics of a personal care product from 
a paired comparison experiment. In this experiment, 40 panelists were used to evaluate 
three treatments denoted by 1, 2, and 3. These treatments were assigned a 3-digit 
code number when they were evaluated. Each panelist evaluated all possible pairs 
of treatments. These pairs were 1 vs. 2, 1 vs. 3, and 2 vs. 3. The order of treatment 
presentation was done at random. In each pair, the panelists indicated which member 
of the pair has the most lather. The results show that 33 panelists indicated that treat- 
ment 1 has more lather than 2, 18 indicated that treatment 1 has more lather than 
3, and finally 10 indicated that treatment 2 has more lather than 3. Based on these 
results, the estimates of the proportions Pij are as follows: 

Plz = 33/40 = 0.825, 

Pi3 = 18/40 = 0.450, 

Pz3 = 10140 = 0.250. 

It is always true that 
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Table 7.2-2 
Paired comparison data (Pij) on lather characteristic of personal care product; t = 3, n = 40. 

~ ~ 

i , i > j  

j 1 2 3 

Proportion Pij 
1 0 0.175 0.550 
2 0.825 0 0.750 
3 0.450 0.250 0 

~ 

Normal deviate Zij 
1 0 -0.935 0.126 
2 0.935 0 0.674 
3 -0.126 -0.674 0 

Sum 
Si 

0.809 -1.609 
0.270 -0.536 

0.800 
0.267 

The above results are collected in Table 7.2-2. 
The next step in the analysis is to transform the Pijs to normal deviates Zijs by 

the aid of Table J. For example, we find that P12 = 0.825 or 82.5% corresponds 
to ZI2 = 0.935, and so on. The value 0.935 is the distance between treatments 1 
and 2 in standard deviation unit. In Table J, when Pij is less than 50.0%, use 1 - 
Pij as the proportion to find Zij with the sign reversed. For example, to find Zzl 
fromP,, = 0.175,usel - 0.175 =0.825which,fromTableJisfoundtobe-0.935 
with sign reversed. Except for the sign, notice the symmetry of the estimates of 
Zij in Table 7.2-2. 

The final step is to add algebraically each column of normal deviates and divide 
the sum by the number of treatments t to obtain the estimates of scale value Si. For 
example, 

SI = (0.935 - 0.126)/3 = 0.270 

estimates the scale value for treatment 1. A negative value denotes a lesser amount 
of lather than a positive value. One may express scale values as a deviation from 
one of the treatments. If there is a control sample in the study, the control can be 
used as an anchor point on the scale continuum. Assuming that treatment 2 is the 
control sample, then 
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1 

0 

91 

-- SI = 0.806 
-- S. = 0.803 

y s2 0 . 0  

S, = 0.270 - (-0.536) = 0.806 

S, = -0.536 - (-0.536) = O.Oo0 

S, = 0.267 - (-0.536) = 0.803 

In this form, the estimated scale values represent the scale separation between 
treatments which may be plotted as shown in Fig. 7.2-1. The significance of pair- 
wise comparisons of treatments may be tested following the procedure given in Gacula 
and Singh (1984). 

7.3 RANKING METHOD 

This section discusses a ranking method of scaling developed by Durn-Rankin 
(1965). The Durn-Rankin method also provides tests of significance of the difference 
between scale values. Although there are other paired comparison methods of scal- 
ing such as the Guilford (1954) and the Bradley-Terry (1952) models, the simplicity 
of ranking procedure generally provides greater appeal to the user. 

The experimental design for obtaining scaling data consists of ranking the stimuli 
from 1 to t or a paired comparison between stimuli totalling t(t - 1)/2 comparisons. 
The steps in scaling by the ranking method are as follows: 

m. 7.2-1 
Scale separation among treatments 
derived from the Thurstone-Mosteller 
model. 
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1. Determine the rank order of stimuli by complete ranking or ranking obtained 
by the method of paired comparison. If the stimuli are ranked in order of preference, 
for example, then values 1,2, . , , t are assigned to the stimuli. In preference studies, 
a stimulus with a rank of 1 would be the most preferred, whereas a rank o f t  would 
be the least preferred. If the ranking is obtained from a paired comparison, a fre- 
quency matrix is constructed containing the number of times that the ith stimulus 
is preferred over the jth stimulus. On a given pair, a value of 1 is assigned to the 
preferred stimulus and a 2 otherwise. 

2. Sum the ranks for each stimulus over all n panelists, and add the total number 
of panelists to each rank sum. A check for the rank sum Ri, i = 1,2, . ., t, is found 
by the formula 

R = n(t)(t + 1)/2 (7.3-1) 

3. Determine the minimum R(min) and maximum R(max) rank sums as well as 
the average rank K as follows: 

- 
R = n(t + 1)/2 
R(min) = n, R(max) = n(t) 

(7.3-2) 
(7.3-3) 

4. Determine the rank sum standard deviation S by 

s = Jn(t)(t + 11/12 (7.34) 

5.  Determine the normalize scale Zi for each stimulus by 

= (Ri - R)/S (7.3-5) 

where i runs from R(min) to R(max). The normalized scale is later converted to 
another scale so that it ranges from 0 to 100 by adding the absolute value of Z(min) 
to &, then dividing each result by the largest new value, and multiplying by 100. 

A multiple comparison of the estimated scales can be made using the original rank 
sum for each stimulus as described in Section 1.6 of Chapter 1. 

Example 7.3-1 

Let us use the data in Example 7.2-1 to illustrate the ranking method of scaling. 
Table 7.3-1 shows the data in the form of frequency matrix. Note that the number 
of panelists (n = 40) is added to the rank sum to obtain Ri. Relevant statistics 
necessary to complete the scaling are as follows: 

CR = 40(3)(3 + 1)/2 = 240 

R(min) = 40 
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Table 7.3-1 
Frequency matrix derived from paired comparison experiment; t = 3, n = 40. 

Frequency i, i > j 

1 ... 7 22 
j 2  33 ... 30 

3 18 10 ... 
Rank sum 
n 

51 17 52 
40 40 40 

Rank Rj 91 57 92 CRi = 240 

Note: i > j denotes that the ith treatment has more lather than the jth treatment in a paired comparison. 

R(max) = 3(40) = 120 

R = 40(3 + 1)/2 = 80 

S = J40(3)(3 + 1)/12 = 6.32 

- 

Substituting the estimates of Ri into Eq. (7.3-5), the normalized scale Zi is obtained. 

R(min) = (40 - 80)/6.32 = -6.33 

Treatment 1 = (91 - 80)/6.32 = 1.74 

Treatment 2 = (57 - 80)/6.32 = -3.64 

Treatment 3 = (92 - 80)/6.32 = 1.90 

R(max) = (120 - 80)/6.32 = 6.33 

From step 5 ,  the absolute value of R(min) is 6.33, hence the largest Zi is 6.33 + 
R(max) = 6.33 + 6.33 = 12.66. Finally, the estimates of scale values for treatments 
1, 2, and 3 are 

Treatment 1 = [(6.33 + 1.74)/12.66]100 = 63.7, 

Treatment 2 = [(6.33 - 3.64)/12.66]100 = 21.2, 

Treatment 3 = [(6.33 + 1.90)/12.66]100 = 65.0. 

Note that the lower and the upper limits of the scale are 0 and 100, respectively. 
The result may be presented on a linear scale continuum shown in Fig. 7.3-1. Clearly, 
treatments 1 and 3 have the most lather. 

The next step in the statistical analysis is the multiple comparison of treatments. 
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100 

TREATnENT 3 = 65.0  $ TREATMENT 1 = 63.7 

0 

Fig. 7.3-1 
Estimates of scale value for three 
treatments obtained by ranking method. 

Remember that the original rank sum for each treatment is to be used. In this exam- 
ple, the absolute value of the pairwise differences are as follows: 

By consulting the critical range table (Appendix Table C) for n = 40, t = 3, 
and significance level of 1 Z , a critical range of 26 is found. This range should be 
equal to or exceeded by dij to declare significance. Since d12 and d23 exceeded the 
critical range of 26, these comparisons are significant. 

Rank Scaling in Balanced Incomplete Block Designs 

In the preceding discussion, the samples were completely compared to each other, 
i.e., AB, AC, BC, in pairs. In sensory studies, when the number of samples is large 
the number of pairwise comparisons becomes prohibitive and impractical for ex- 
perimental execution. Therefore, one may use the balanced incomplete block designs 
discussed in Chapter 4. In this section, we will discuss scaling of stimuli by ranking 
in an incomplete block set-up, where only a k fraction of the total number of stimuli 
t is ranked by each panelist; hence, k C t. We will use the same definition of the 
parameters of balanced incomplete block design as discussed in Chapter 4. 
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The rationale of scaling by ranking is simple, in that if the stimuli are perceptibly 
differentiable then the stimuli can be ranked from 1 to t, and in the case of incomplete 
block design, from 1 to k, where k is the number of stimuli in each block, i.e., 
number of stimuli ranked by each panelist. Since incomplete block designs are bal- 
anced (See Chapter 4), the sum of ranks of the stimuli tends to be the same if the 
stimuli can not be differentiated. Durbin (1951) developed a statistic to test whether 
the rankings are the results of random assignment. The test statistic with t - 1 DF 
is defined by 

T =  12(t - C[Ri - r(k + 1)/2]' 
rt(k - l)(k + 1) 

(7.3-5) 

where Ri is the sum of ranks for the ith stimulus. Note that the letter r in Eq. (7.3-5) 
should be multiplied by p if the basic balanced incomplete block design is repeated 
p times. The null hypothesis of random assignment of ranks is rejected at an a-level 
of significance if T is equal to or greater than the Chi-square value obtained in Ap- 
pendix Table I. An equivalent form of (7.3-5) is given by Skillings and Mack (1981). 

In practice, if T is significant the scale values (sum of ranks) are subjected to a 
multiple comparison test. Skillings and Mack (198 1) developed a multiple comparison 
test for large sample size. Letting dij = Ki - Kj, i > j, be the difference between 
the average rank sums, they showed that if 

dij 2 q,,,,,[Jo( + l)(rk - r + X)/12rz] (7.3-6) 

the difference between the average rank sums is significant at the a-level. The value 
of q,,[,, is given in Appendix Table K for the 1 and 5 %  level of significance. Note 
that in Eq. (7.3-6), the parameters r and X should be multiplied by p, the number 
of repetitions of the basic balanced incomplete block design. 

Example 7.3-2 

Ten prototypes were used to clean a clothing material, after which the treated 
materials were evaluated for overall fabric softness. Using a balanced incomplete 
block design shown in Table 7.3-2, each panelist ranked the clothing materials from 
1 to 4 with 1 being soft and 4, not soft. The design in this table was repeated two 
times (p = 2) and the resulting data are shown in Table 7.3-3. The rank sum in 
this table is simply the sum of the ranks in each each column, and represents the 
scale value of each prototype as perceived by the trained 15-member panel. 

To perform a multiple comparison of the scale values, the Durbin test is to be 
computed. Using Eq. (7.3-3, 
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Table 7.3-2 
Fabric softness test using the balanced incomplete block design; t = 10, k = 4, r = 6, 
b = 15, X = 2. 

Panelist Treatment Order of Sample Presentation 
1 1 2 3  4 2 4  1 3  
2 1 2 5  6 5 1  6 2 
3 1 3 7  8 1 7  3 8 
4 1 4 9 1 0  4 9  1 1 0  
5 1 5 7  9 9 5  1 7  
6 1 6 8 1 0  8 6 1 0  1 
7 2 3 6  9 2 6  3 9 
8 2 4 7 1 0  4 2 1 0  7 
9 2 5 8 1 0  1 0 8  5 2 

10 2 7 8  9 2 7  9 8 
11 3 5 9 1 0  3 9  5 1 0  
12 3 6 7 1 0  1 0 7  3 6 
13 3 4 5  8 5 4  8 3 
14 4 5 6  7 4 7  5 6 
15 4 6 8  9 6 4  8 9 

Note: Design is taken from Cochran and Cox (1957). 
Designs tabulated by Cochran and Cox should be randomized withi panelists (withim blocks). 

which exceeds the Chi-square value of 2 1.666 (Appendix Table I, 9 DF) at the 1 % 
level of significance. Therefore, the estimated scale values are not the result of ran- 
dom variation. The next step is the separation of the prototypes into groups using 
Eq. (7.3-6). Referring to Table K (Appendix) we obtain q.05,lo = 1.86. Therefore 

dij 2 1.86(.\/[2(5)(12)(4) - 12 + 4)]/12(2)36) 

or 

dij 2 1.32, 

where 1.32 is the critical value of the test. Any pairwise differences that are equal 
to or greater than 1.32 are declared significant at the 5% level. It is a matter of 
choice that the 5 % level was used in the multiple comparison test, even though the 
Chi-square test was significant at the 1 % level. The result of the grouping is given 
below. 
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Table 7.3-3 
Rank data obtained by balanced incomplete block for Example 7.3-2. 
Design parameters: t = 10, b = 15, r = 6, A = 2, p = 2. 

Product 

Panelist 1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1 2 3 4 
1 3 2 4 
3 4 2 1 
4 3 1 2 
2 3 1 4 
3 4 1 2 

2 1 4 3 
2 4 3 1 
1 3 4 2 
3 2 4 1 

1 4 3 2 
1 2 4 3 
1 3 2 4 

4 2 3 1 
4 2 3 1 

3 1 2 4 
1 2 3 4 
2 4 3 1 
3 4 1 2 
1 3 2 4 
3 4 2 1 

1 3 4 2 
1 4 3 2 
1 2 4 3 
1 4 3 2 

1 3 2 4 
1 2 4 3 
1 3 2 4 

4 2 3 1 
4 1 2 3 

Rank 
sum 27 20 23 45 31 37 30 33 27 27 

Average 
Ri 2.25 1.67 1.92 3.75 2.58 3.08 2.50 2.75 2.25 2.25 

~~ ~ 

Note: p(r) = 2(6) = 12 replications per prototype. 
p(h) = 2(2) = 4 the number of times that a distinct pair appears in the design. 
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Prototype 
2 
3 
1 
9 

10 
7 
5 
8 
6 
4 

Average rank 
1.67 
1.92 
2.25 
2.25 
2.25 
2.50 
2.58 
2.75 
3.08 
3.75 

Grouping 
a 
a 
ab 
ab 
ab 
abc 
abc 
abc 
bc 

C 

To illustrate, Rs - Rz = 2.75 - 1.67 = 1.08, which is less than 1.32 thus this 
difference is not significant. The grouping is interpreted as follows: Any two average 
ranks with one letter in common are not significantly different, i.e., 2.25 and 3.08 
are not significantly different from one another, because they share a common letter 
"b," but 1.67 and 3.75 are significantly different. 

7.4 TRANSITIVITY PROPERTY OF 
PAIRED COMPARISON 

In a series of paired comparisons the correct choices of the underlying rank order 
depend on the physical distance between stimuli and the acuity of the sensory panels. 
If the perceivable difference between stimuli is well above threshold and the panels 
are adequately sensitive, the so-called transitivity property of paired comparison holds. 
This property is defined by the following: 

If stimulus A > B and B > C, therefore A > C. 

A deviation from transitivity implies that some pairs of stimuli are not distinguishable. 
The deviation from transitivity is called circular triads in the literature (David 1963). 
Circular triad occurs when 

C > A instead of A > C 

This pattern of judgments indicate that the stimuli are not scalable, therefore linear 
ordering is not possible. In practice this implies that the stimuli came from the same 
population. 

In hypothesis testing, circular triads provide the sampling error for test of 
significance. Hence, sufficient replication should be used in an experiment to pro- 
vide accurate estimate of this error. Circular triads can also be used as a measure 
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of inconsistency in the responses of judges/panelist (Slater 1961 ; Gridgeman 1963; 
Bauer 1978). 

7.5 SCALING CONSUMER ACCEPTANCE 

As a scientific discipline consumer acceptance pertains to the processes involved 
in human selection. Selection is generally based on past and present experiences 
of events or situations. Selection is not deterministic, but it is a temporal process 
(stochastic process) influenced by various personal and environmental factors, i.e., 
age, health, and needs. These factors are one of the reasons that consumer accep 
tance of products or services is difficult to measure at one time point. In designing 
a consumer acceptance study, it is very important that the appropriate experimental 
design should be used in order to obtain meaningful results. 

Consumer acceptance can be scaled or measured in relation to other objects or 
products such as in preference testing, i.e.: “Which sample do you prefer?’’ It can 
also be measured in relation to consumer’s frame of reference, such as in monadic 
testing. In other experimental situations, the scaling involves multiple sample 
comparisons. 

Depending on the stage of product development and the intended use of the data, 
consumer acceptance can be measured in a laboratory setting (In-house consumer 
test), home-use setting (Home-use test), or in a central location test (CLT) setting. 
Let us briefly discuss these test procedures. For an in depth discussion of this area, 
one may refer to several marketing and sensory research publications (Amerine ef 
ul. 1965; Ferber 1974; Stone and Side1 1985; Meiigaard ef d. 1987; ASTM 1979). 

In-House Consumer Test 

Measurement of consumer acceptance under laboratory conditions is the cheapest 
way of procuring acceptance information. The in-house consumer test is done by 
consumers coming into the company’s technical center or R&D laboratory to evaluate 
the product. Nally (1987) has discussed the establishment of consumer panels within 
laboratory/technical center. This paper should be consulted for those starting to 
develop a consumer panel data base. 

The in-house test is more controlled and limited in scope. It is more controlled 
because the products to be evaluated are subjected to standardized preparation pro- 
cedures. The advantage of this situation is lower variability in the data due to stan- 
dardization, hence, a good estimate of product differences can be obtained. However, 
this estimate has built-in bias because of the panelists’ knowledge of the laboratory. 
Although the samples are appropriately coded, panelists tend to avoid giving low 
or high ratings. Unfortunately, the magnitude of this bias is not known. 

In-house consumer tests are limited to the evaluation of food, beverage, and other 
similar products where the consumer response is limited to taste, flavor, and ap- 
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pearance characteristics. Obviously, in-house testing is not suitable for evaluation 
of personal care products because panelists must use the products at home. 

HomeUse Test 

In the home-use test, the panelists either pick up the products at the R&D facilities 
or products are sent by a carrier for delivery to panelists’ homes or other designated 
pick-up locations. It is recommended that only two products are to be evaluated by 
panelists in the home-use test in order to obtain reliable responses. Confusion, 
mistakes, and other logistic problems will result if many samples are evaluated. The 
use of incomplete block designs discussed in Chapter 4 are extremely useful in this 
situation. 

The main advantage of this test procedure is that the products are used under nor- 
mal home conditions, and, therefore, the test is more realistic. Uncontrollable fac- 
tors during product use are built into the responses of the consumers, resulting in 
products that are robust. The subject of product robustness is discussed in Chapter 
8. In addition, home-use testing is generally cheaper to conduct. 

Central Location Test 

This test is the most expensive to conduct, and generally is used at the later part 
of product development, i.e., prototypes have been finalized for testing against com- 
petitors or target brand category. However, there is evidence that CLT can be used 
early in product development thereby shortening the development process (Griffin 
and Stauffer 1991). Therefore, descriptive profiling and sensory difference testings 
may be bypassed and can proceed directly to product optimization by experimental 
design as discussed in Chapter 8. Although the initial investment is high by this 
method, the overall cost would be lower than the more traditional testing procedures. 

Contract vendors conduct the CLT for a company. Briefly, the test is conducted 
in several locations, i.e., shopping malls, to obtain the appropriate demographics 
required by the test objectives. In addition to sensory questions, marketing ques- 
tions are included in the questionnaire, i.e., price, purchase intent, and other 
demographic data. 

Questionnaire Design 

An important part of consumer testing is the development of the questionnaire 
used to gather responses. Three important issues must be addressed: type of scale, 
length of the questionnaire, i.e., how many attributes to be included, and the form 
of the questionnaire, which is tied to the experimental design of the proposed study. 
The hedonic scale (like/dislike) is the most widely used in consumer testing. In prac- 
tice, the number of categories on this scale have varied from 7 to 9, i.e. , 1 = dislike 
extremely, 5 = neither like nor dislike, 9 = like extremely. Another popular scale 
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for intensity rating is the 5-point “just right scale,” i.e., 1 = much too weak, 3 
= just right, 5 = much too strong. See Chapter 8 for the use of these scales in 
optimization of products for robustness. 

In this section, we focus on questionnaire design for obtaining consumer responses. 
Figure 7.5-1 shows one form of questionnaire for paired comparison. The panelist 
evaluates the product side-by-side and the questionnaire provides a direct comparison 
of products A and B. The ratings are relative to each other, hence, this design would 
be sensitive to detecting sensory differences. However, it has been argued that this 
design exaggerates differences. The statistical analysis of the data from this design 
is the paired t-test, with the assumption that the differences are normally distributed. 
This assumption is usually satisfied in practice. 

To counteract the argument that differences are exaggerated, one practice is to 
use the sequential monadic questionnaire design (Fig. 7.5-2). Each sample is evaluated 
singly as shown in this figure, with the assumption that panelist can provide ab- 
solute judgment. Here, the frame of reference during evaluation is internal to the 
panelist. However, since the evaluation is adjacent in time the ratings have the pro- 
perty of a paired cornparison, i.e., scores are relative to each other, therefore the 
data are analyzed by the paired t-test. To simplify the logistic of the test, the se- 
quential monadic often uses the paired comparison questionnaire (Fig. 7.5-3). 

Another design is the pure monadic as shown in Fig. 7.54. Each sample is com- 
pletely evaluated by different sets of panelists. The resulting data are analyzed by 

PANELIST 

PRODUCTS SIDE-BY-SLDI 
RANDOMZE ORDER OF 
PRESENTATION 

u 
O @  

b h  

Flg. 7.5-1 
Questionnaire for a paired comparison design. Samples and ques- 
tionnaire form side-by-side. 
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PANELIST E I  

SAKPLE B SECOND 

Fig. 7.5-2 

RANDOMIZE ORDER 
OF PRESENTATION 

QUESTIONNATRE 

Questionnaire for a sequential monadic design. Separate questionnaire form for each 
sample. 

Table 7.5-1 
Mean hedonic scores of sultana fruit evaluated rnonadicaily and by paired comparison (side- 
by-side) using a 9-point scale. 

Monadic design Paired comparison 

Attribute A B Difference A B Difference 

Initial test: 
Color 7.1 7.1 0.0 6.6 7.5 - 0.9* 
Flavor 7.1 7.2 -0.1 6.6 6.9 -0.3 
Texture 7.1 7.4 -0.3 6.6 7.0 -0.4 
Acceptability 7.0 7.3 -0.3 6.6 7.1 -0.5* 

12-months from initial: 
Color 4.8 4.8 0.0 4.5 6.3 - 1.81 
Flavor 5.4 5.9 -0.5 5.3 6.4 -1.1* 
Texture 4.8 5.6 -0.8 5.9 6.4 -0.5* 
Acceptability 4.8 5.5 -0.7 4.7 6.3 -1.6* 

* Difference between means significant at the 5 %  level. Completely different panels were used to evaluate 
samples A and B in the monadic design. Source: McBride (1986). 
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PANELIST I I 
SAHPLE A FIRST 

SAMPLE B SECOND 

RANWMIZE ORDER 
OF PRESENTATION 

F&. 7.53 
Questionnaire for a sequential monadic design with paired comparison questionnaire 
form. 

Table 7.5-2 
Mean scores of samples A and B to illustrate that consumer sensory ratings are not absolute. 

Monadic Paired comparison 

Attribute A A B Difference 

Fragrance of bar 6.8 6.4 6.1 0.3 
Strength of fragrance, % 65.4 55.6 51.5 4.1 
Lather amount, % 79.8 65.7 68.4 -2.7 
Moisturizing your skin 6.4 6.2 6.2 0.0 
Leaving skin soft and smooth 7 .O 6.4 6.4 0.0 
Mildness 7.2 6.1 6.6 -0.5* 

Note: Strength of fragrance and lather amount based on the 5-point just right scale; values reported are 
percentage of panelists falling on the just right category (category 3). The remaining attributes 
based on the 9-point hedonic scale. 
* Significant at the 5% level. 
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S A H P U S  

Rg. 7.54 
Questionnaire for a pure monadic design. Samples and questionnaire 
form are independently completed. 

the independent t-test. Here, the scores are relative to the frame of reference of the 
panelist. There are several assumptions that must be met to make the statistics valid. 
The first is that the ratings are normally distributed and this assumption is often 
violated. Second, the variance of samples A and B is approximately equal (common 
variance). Third, that consumer can reliably render absolute judgments, which is 
suspect. Furthermore, this design may require a larger number of panelists than the 
paired comparison design to counteract panelists variability. Note that in the analysis 
of paired comparison data the panelist variability is discounted by using the within 
panelist variance in the analysis. 

Let us examine the data in Table 7.5-1 to illustrate the differences in the results 
obtained by the paired comparison and by the pure monadic design on the same sam- 
ple. Notice that the differences between products favored sample B in both designs, 
but the paired mmparison showed significant differences. Furthemre, the monadic 
design yielded higher mean scores than the paired comparison, indicating that con- 
sumer judgments are not absolute but are relative. This result is also supported by 
the data in Table 7.5-2. In general, when the products evaluated are highly accep 
table there is a tendency for the monadic ratings to be high and vice versa. This 
phenomenon is known as “regression effect.” Thus in using the monadic design, 
one must be careful in interpreting the data, for it may provide a false and misleading 
acceptance values. In real life situations, although products are used singly, the long 
run selection of products do involve comparative judgments internal to the consumer. 



CHAPTER 8 

PRODUCT OPTIMIZATION 

In this chapter, the optimization of product ingredients with the ultimate goal of 
producing the best product under a given set of criteria is discussed. The optimiza- 
tion principle that will be given here also applies to other forms of applications, 
such as optimization of process controls, transportation routing, and the number of 
cash registers to be installed in a given store. The emphasis in this chapter is on 
graphical solution of optimization problems, particularly in studies where multiple 
attributes are measured. 

Measurement of multiple attributes or responses are common in the food, beverage, 
household, and the personal care industries. For example, in evaluating a food pro- 
duct one looks at simultaneously many attributes such as flavor, texture, color, and 
possibly cost. These attributes may carry different weights in the perception of the 
product to make it acceptable. How should one combine these attributes in order 
to maximize the acceptability of a product? A procedure for combining these at- 
tributes to provide a single measure of acceptability will be given. Some useful ex- 
perimental designs will be discussed and illustrated with examples. Readers may 
refer to Box and Draper (1987), Gacula and Singh (1984), and to Myers (1971) 
for the statistical aspects of optimization methods. 

8.1 PRELIMINARIES 

The word optimization has several meanings depending on the context in which 
the word is used. In general, optimization is a series of steps for obtaining the best 
result under a given set of circumstances. Specific definitions relating to product 
formulation have been reported (Side1 and Stone 1983; Moskowitz 1983; Fishken 
1983), and all definitions similarly led to producing the best product in its class. 
In this section, we give a mathematical definition of optimization as the process 
of finding the conditions that give the maximum or minimum value of a function. 
Once this function is obtained, one can find the best product formulation in its 
class. 

The equation 

is an example of a function. In this equation, Y is known as the dependent variable, 
such as product attributes, X I  is the independent variable, such as product ingre- 
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dients, and BO and Bl are the parameters of the equation to be estimated from the 
experimental data. Note that Y can be a function of several independent variables. 
For example 

Y = Bo + BiXi + B2X2 

Here, Y is a function of variables XI and X2. Figures 8.1-1 and 8.1-2 are graphical 
examples of several functions (Rao 1984). In these figures, the values of Y vary 
with the values of X. The relative maximum and minimum play an important role 
in the effective search for the best product formulation. In some stages of product 
development the services of expert/consultant can simplify the search for the operating 
window where optimization studies can start. 

Test for Adequacy of Statistical Model 

The equation that we have discussed is also called a statistical model that describes 
the relationship between the dependent variable Y and the independent variable X. 
How do we know that such a relationship is adequately described by the model? 
This section will deal with this question. 

The most common models encountered in optimization studies to describe such 
a relationship are the so-called first-order and second-order models. The first-order 
model is given by a simple linear regression relationship 

whereas a second-order model is described by a quadratic regression relationship 
given by 

Y 

f 

I ) X  

Fig. 8.1-1 
Plots of maximum and minimum points of a 
function. 
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where the parameters of the models are defined as follows: 

Bo = the intercept (grand mean), and its estimate is denoted by bo. 
Bi = the linear effect of Xi, and its estimate is denoted by bi, i = 1, .., k. 
&i = the quadratic effect of Xi, and its estimate is denoted by bii, i = 1, 

.., k. 
Bij = the interaction effect of Xi and Xj, and its estimate denoted by bij, 

i < j ,  i = 1, .., k-1 andj  = 1, .., k. 
E = random errors assumed to be normally distributed with mean 0 and 

variance d. This variance is estimated by the error mean square (MSE). 

The analysis of variance tables for the first-order and the second-order models are 
shown in Tables 8.1-1 and 8.1-2, respectively. As discussed in Chapter 6, the error 
(SSE) can be divided into two portions, one due to lack of fit (SSFIT) and the other 
due to experimental error (SSPURE). The lack of fit measures the inadequacy of 
the fitted model, while the experimental error, also known as pure error, measures 
the random error in the data obtained from replicated design points. 

The design for fitting the first order model is the 2k factorial design shown in 
Fig. 8.1-3 for a two-variable design. The fitting of first order model requires only 
2 levels of each variable denoted by high (1) and low (- 1). The SSPURE can be 
obtained by the addition of a center point to the design shown in Fig. 8.1-3 a p  
propriately replicated. The design with the center point is shown in Fig. 8 .14 .  In 
addition, if the factorial design points are also replicated these points can be includ- 
ed in the estimation of SSPURE. 

Y 

I ) X  

Fig. 8.1-2 
Plots of relative and global points of a function: 
Y,, Y2, Y ,  = relative maxima; Y 2  = global max- 
imum; Y4, Y5 = relative minima, Y4 = global 
minimum. 
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Table 8.1-1 
Analysis of variance for the first-order model. 
_ _ _ _ ~ ~  ~~ ~~ 

Source of Variance 

Total 
Linear regression: 

Bi 

BZ . . 
B k  

Error: 
Lack of fit 
Experimental error 

M- 1 SSTO 
k SSR MSR 
1 
1 . . 
1 
M-k- I SS E MSE 
N-k SSFIT MSFIT 
M-N-1 SSPURE MSPURE 

Note: M = total number of observations. 
N = number of factorial design points, excluding the center point. 
k = number of factors or independent variables. 
SSE = SSTO - SSR 
SFIT = SSE - SSPURE 

To test for the adequacy of the fitted model the F-ratio is MSFIT/MSPURE. If 
the F-ratio is significant it indicates that the first-order model is unsatisfactory. Then 
the model should be revised to include interaction effects and the model becomes 
a second-order without the quadratic effects. 

The design for the second-order model must have at least 3 levels of each variable 
to be able to estimate the quadratics plus the interaction and linear effects. Figure 
8.1-5 is an example of a design for the second-order model, which is a 3* factorial 
design as shown in Chapter 6. As will be discussed later, if one rotates this design 
we obtain the central composite design, which is very useful in optimization work. 

Least Squares Estimation of Regression Parameters 

The regression parameters and their corresponding sums of squares (SS) shown 
in Tables 8.1-1 and 8.1-2 can be estimated by the method of least squares. It is con- 
venient to present the least squares normal equations in matrix form given by 

X'Y = (X'X)B (8.1-3) 

where X is the design matrix and Y is a column vector of responses. The design 
matrix can be the actual levels used in the experiment or the coded levels, i.e., I ,  
-1. The actual level can be coded by the formula 

Coded level = (L - C)/S (8.14) 
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1 

-1 

Table 8.1-2 
Analysis of variance for the second-order model. 

0 
3 

0 0 
1 2 

X I  

Source of Variance DF ss MS 

Total M- 1 SSTO 
Linear regression: k SSR MSR 

BI 1 
Bz 1 . . 
Bk 

Bi I 

Bzz 

Quadratic: 

. 
B k k  

Interaction: 
Bit 

B13 . 
0 

B k  - 1.k 

Lack of fit 
Experimental error 

Error: 

1 
k 

1 
1 . . 
1 

1 
1 

k(k- 1)/2 SSI MSI 

. . 
1 

Difference SSE MSE 
N-k SSFIT MSFIT 
M-N-1 SSPURE MSPURE 

Note: M = total number of observations. 
N = number of factorial design points, excluding the center point. 
k = number of factors or independent variables. 
SSE = SSSTO - SSR - SSQ - SSI 
SSFIT = SSE - SSPURE 

0 
4 
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I XI 

where L is the level of interest, C is the middle level, and S is the width between 
the high and the low levels of interest equally spaced. Coded levels take on values 
of - 1, 0, and 1 corresponding to the low, middle, and high levels. 

For example, the matrix for the design in Fig. 8.1-3 with the constant column 
Bo included is 

X. 

1 0 
3 

0 

-1 @ 0 
1 2 

X I  

0 
4 

0 
5 

-1 0 1 

Rg. 8.1-4 
Design points of a 2* factorial with center point. 

xa 

1 

0 

-1 

0 
9 

0 0 
I 8 

0 
6 

0 0 
4 5 

0 
3 

0 0 
1 2 

Fig. 8.1-5 
Design points of a 32 factorial for fitting a second- 
order model. 
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1 -1 - 1  

= [/ -j -:I 
Notice that excluding Bo the rows of matrix X represents the design points of Fig. 
8.1-3. The transpose of matrix X is 

where the columns of matrix X becomes rows of X '. The column vector of responses 
is 

Y =  "1 
Y4 

In most sensory work the responses are means of panelists or judges. Solving for 
B in formula (8.1-3) gives the least squares estimates 

b = (X'X)-'X'Y (8.1-5) 

provided that the design matrix has an inverse or a generalized inverse if necessary. 
It is also known that the variance (Var) of b is the diagonal elements of the variance- 
covariance matrix u2(X'X)-', where u2 is estimated by MSE in the analysis of 
variance. For the design in Fig. 8.1-3, var(b0) = var(b1) = var(b2) = d 4 .  Statistical 
software generally prints out the variance-covariance matrix. 

In this book, we will use either SAS (SAS Institute), STATISTIX (NH Analytical 
Software), DESIGN-EXPERT (Stat-Ease, Inc .) or X-STAT (Wiley Professional Soft- 
ware) to evaluate formula (8.1-3). These commercial software packages require the 
design matrix as input to run the program. 

Denoting the estimates of X'Y by g, then 
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(8.14) 

The above formulas can be extended to include more than two variables. Furthermore 

(8.1-7) SSTO = CYi - [(CYi)'/M], 

SSPURE = C(CY: - [(CYi)Z/r]), i= 1 ,  . . , r  (8.1-8) 

2 
i = l ,  .., M 

where r is the number of replications per design point. Note that SSPURE is summ- 
ed over the M design points. 

If the design point is not replicated, instead the design is augmented such as that 
shown in Fig. 8.1-4 with center point replicated r times, then 

Further reading on lack of fit testing when replications are not available is given 
by Green (1971), Shillington (1979), and Joglekar e? ul. (1989). Let us illustrate 
the estimation of regression parameters by an example. 

Example 8.1-1 

Consider the four design points in Fig. 8.1-3 with observed values of each point 
to be 5.3,  6.0, 6.4, and 7.6, respectively. In matrix form, this is written as a col- 
umn vector Y: 

Likewise, the coordinates of design points 1 ,  2, 3, and 4 are (- 1 , -  l), (1,- l), 
(- 1 ,  l ) ,  and ( 1 ,  l), respectively. Using these coordinates, the design matrix with 
the Bo column of 1s included is 

1 - 1  - 1  
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and multiplying matrix X by its transpose X', we obtain 

Also 

Using Eq. (8.1-5), the least squares estimates of B is 

hence, Y = 6.325 + 0.475X1 + 0.675X2. 
The sum of squares due to regression is from Eq. (8.1-6) 

SSR = 0.475(1.9) + 0.675(2.7) = 2.7250 with k = 2 DF 

and from formula (8.1-7) 

SSTO = 162.81 - [(25.3)*/4] = 2.7875 with M - 1  = 4-1 = 3 DF. 

Also 

SSE = SSTO - SSR = 2.7875 - 2.7250 = 0.0625 with M-k- 1 = 4-2- 1 
= 1 DF. The ANOVA is given in Table 8.1-3. With a limited number of degrees 
of freedom, it is meaningless to compute the F ratio. Using the estimate of error 
one computes the variance-covariance matrix as follows: 
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Table 8.13 
ANOVA for a first-order model with two variables (Example 8.1-1). 

~~ ~ 

Source of Variance DF ss MS 

Total 
Regression: 

bi 
b 

Error 

3 2.7875 
2 2.7250 

1 0.9025 
1 1.8225 

1 0.0625 0.0625 

Note: 2.7250 = 0.9025 + 1.8225 

.25 0 0.0156 

u*(X’X) = 0.0625 1 .: i] = 1.01561 

0.0156 

hence, var(bo) = var(b1) = var(b2) = 0.0156. Notice that the parameters are 
estimated with equal accuracy. The square root of these quantities provides the stan- 
dard error of the regression coefficients, i.e., 

The various calculations that we have done serves as an insight into regression 
analysis and should also aid the reader in understanding the output of computer pro- 
grams. For example, Table 8.1-4 shows the output of our example using STATISTIX. 
There are two things that should be pointed out in this table. The first is the Stu- 
dent’s t statistic, which tests the hypothesis that the regression coefficient is equal 
to zero. The second is the R-square statistic, which indicates the goodness of fit 
of the model to the data. The R-square ranges from 0 to 1 .O with high values in- 
dicating a good fit. In this book, it is recommended that the adjusted R-square should 
be used because they are adjusted for the number of parameters in the model. It 
should be pointed out that R-square values can be increased by including more 
parameters in the model, and when blindly done can lead to misleading results. See 
also Section 8.3. 

Tables 8.1-5 and 8.1-6 show the variance-covariance matrix and the ANOVA table, 
respectively. The reader may compare these results to the manual calculations used 
in this example. 

= 0.12. 

Example 8.1-2 

In this example, the design used in Example 8.1 - 1 is augmented by adding a center 
point replicated 5 times (r = 5 )  with the following observed values: 6.3, 6.0, 5.9, 
6.1, and 6.4. Now one can estimate the pure error to test for the adequacy of the 
model. Using Eq. (8.1-9), 
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Table 8.1-4 
STATISTIX output for Example 8.1-1. 

S T A T I S T I X  3 . 5  
10: TABLE 6 . 1 - 4  

VIEW OATA 

CASE x 1  x 2  V 

1 - 1 . 0 0 0 0  - 1 . 0 0 0 0  5.3000 
2 1 . 0 0 0 0  -1 .0000  6 . 0 0 0 0  
3 -1 .0000 1.0000 6 . L 0 0 0  
L 1.0000 1 . 0 0 0 0  7 . 6 0 0 0  

UNWEIGHTEO LEAST SQUARES L INEAR REGRESSION OF V 

PREDICTOR 
VARIABLES C O E F F I C I E N T  STG ERROR STUDENT’S T 

CONSTANT 6 . 3 2 5 0  1 . 2 5 0 0 E - 0 1  5 0 . 6 0  
x 1  4 . 7 5 0 0 E - 0 1  1 . 2 5 0 0 E - 0 1  3.80 
X2 6 . 7 5 0 0 E - 0 1  1 . 2 5 0 0 E - 0 1  5.40 

R SQUARED 0 . 9 7 7 6  RESID.  MEAN SQUARE (MSE 
AOJIJSTED R SQUARED 0 . 9 3 2 7  STANDARD D E V I A T I O N  

SOURCE OF S S  MS F 

REGRESSION 2 1 . 7 2 5 0  1 . 3 6 2 5  2 1 . 8 0  0.  
RESIDUAL 1 6 .2500E-0 ’2  6 . 2 5 0 0 E - 0 2  
TOTAL 3 2 . 7 8 7 5  

CASES INCLI!DED (I MiSSIfJG C A S E S  0 

- - -  

P 

0 . 0 1 2 6  
0 . 1 6 3 8  
0 . 1 1 6 6  

6 . 2 5 0 E - 0 2  
2 . 5 0 0 E - 0 1  

P 

4 9 7  
- 

Table 8.1-5 
Variance-covariance matrix for Example 8.1-1. Note that the off- 
diagonal should be treated as zeros. 

S T A T I S T I X  3 .S 
I@: E X 8 1 1  

V A R I A N C E  - C O V A R I A N C E  M A T R I X  FOR C O E F F I C I E N T S  

#CONSTANT X 1 x 2  
C O N S T A N T  1 . 562E-02  
X l  - 2 . 1 6 8 E - 1 9  1 . 5 6 2 E - 0 2  
x 2  - 2 . 1 6 8 E - 1 9  8 . 6 7 4 E - 1 9  1 . 5 6 2 E - 0 2  

SSPURE = (6.3’ + .. + 6.4*) - (30.7*/5) 

= 0.1720 



116 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

Table 8.1-6 
ANOVA table for Example 8.1-1 using the STATISTIX software. 

S T A T I S T I X  3 . 5  
ID: E w e t i  

S T E P W I S E  A N A L Y S I S  OF 

I N D I V I D U A L  
SOURCE s s  

CONSTANT 1 6 0 . 0 2  
a 1  9 . 0 2 5 0 E - 0 1  

R E S I D U A L  6 . 2 5 0 0 E - 0 2  
x 2  1 . a 2 2 5  

3 0  DEC 9 1 ,  2 2 : 1 8  

V A R I A N C E  OF V 

CUM C U M U L A T I V E  C U M U L A T I V E  ADJUSTED MALLOW'S 
DF ss US R-SQUARED C P  P - - _  

1 9 . 0 2 5 0 E - 0 1  9 . 0 2 5 0 E - 0 1  - 0 . 0 1 L 3  3 0 . 2  2 
2 2 . 1 2 5 0  1 . 3 6 2 5  0 . 9 3 2 1  3 . 0  3 
3 2 . 7 8 7 5  9 . 2 9 1 7 E - 0 1  

h SQUARE0 0 . 9 1 7 6  R E S I D .  MEAN SQUARE ( M S E )  6 . 2 5 0 E - 0 2  
ADJUSTED R SQUARED 0 . 9 3 2 7  STANOARD D E V I A T I O N  2 . 5 0 0 E - 0 1  

~~~~ ~ 

Using the same procedure in Example 8.1-1, the following sums of squares are 
obtained: 

SSTO = 3.0356, SSR = 2.7250, SSE = 0.3106 

Then 

SSFIT = 0.3106 - 0.1720 = 0.1386. 

These sums of squares are collected in the ANOVA Table 8.1-7. Notice that we 
have partitioned the error sum of squares into two components. The F-ratio 

F = 0.0693/0.0430 = 1.611 

Table 8.1-7 
ANOVA table for the augmented design used in Example 8.1-2. 

Source of Variance DF ss MS F-ratio 

Total 
Regression: 

bi 
b2 

Error: 
Lack of fit 
Pure error 

**p < .01 

8 3.0356 
2 2.7270 

1 0.9025 0.9025 17.42** 
1 1.8225 1.8225 35.18** 

2 0.1386 0.0693 1.61 
4 0.1720 0.0430 

0.05 18 6 0.3106 
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with 2 numerator DF and 4 denominator DF is not significant, hence the first-order 
model appears adequate to describe the relationship. The R-square statistics are com- 
puted as follows: 

R-square = 1 - (SSEISSTO) = 1 - (0.310613.0356) 

= 0.8977 

Adjusted R-square = 1 - [(M- l)MSE/SSTO] 

= 1 - [(9-1)0.0518/3.0356] 

= 0.8636 

The linear regression analysis using STATISTIX is given in Table 8.1-8. As ex- 
pected, the regression coefficients did not change from those obtained in Example 

Table 8.1-8 
STATISTIX output for Example 8.1-2. 

STATIST IX  3 . 5  
ID: TABLE 8 . 1 - 8  

VIEW DATA 

CASE X I  x 2  V 

1 - 1 . 0 0 0 0  
2 ! .oooo 
3 - 1 . 0 0 0 0  
4 1.0000 
5 0.0000 
6 0 .0000  
7 0 .0000 
8 0 .0000  
9 0 .0000  

- 1 . oooo  
- 1.0000 

1 . oooo  
1 .oooo 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

5 . 3 0 0 0  
6 . 0 0 0 0  
6 . 4 0 0 0  
7 . 6 0 0 0  
6 . 3 0 0 0  
6 . 0 0 0 0  
5.9000 
6 . 1 0 0 0  
6 . 4 0 0 0  

IJNWEIGHTEO LEAST SQIJARES LINEAR REGRESSION OF V 

PREDICTOR 
VARIABLES COEFFICIENT STD ERROR STUDENT'S T P 

CONSTANT 6 . 2 2 2 2  7 . 5 8 3 6 E - 0 2  82 .05  0.0000 
x 1  4 . 7 5 0 0 E - 0 1  1 .1375E-01  4 .18  0 . 0 0 5 8  
x 2  6 .7500E-01  1 . 1 3 7 5 E - 0 1  5.93 0 . 0 0 1 0  

R SQIJARED 0 . 8 9 7 7  RESID.  MEAN SQUARE ( M S E )  5 .176E-02  
ADJIJSTED R SQUARED 0 .8636  STANDARD DEVIATION 2 . 2 7 5 E - 0 1  

SUJ R C  E OF s s  M S  F P 

RE ?; R E 5 S ION 2 2 . 7 2 5 0  1 .3625  26 .32  0 . 0 0 1 1  
RE S I D  UAL 6 3 . 1 0 5 6 E - 0 1  5 . 1 7 5 9 E - 0 2  
TOTAL 8 3 . 0 3 5 6  

CASES INCLUDED 9 MISSING CASES 0 

- - -  
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8.1-1, since we did not add or delete any observations in points 1, 2, 3, and 4. 
However, the intercept changed as it is an estimate of the grand mean, which now 
includes the center point observations. With the increased number of design points, 
the variances of the regression parameters have decreased (Table 8.1-9): 

Var(b0) = 0.0058, Var(b1) = Var(b2) = 0.0129 

8.2 WHY USE AN OPTIMIZATION TECHNIQUE? 

There are several reasons why one should use an optimization technique in pro- 
duct formulation work. Not only is it a proven technique, its application has been 
greatly facilitated by the availability of computing technology in both hardware and 
software, which were the limiting factors in the past. The advantages of using an 
optimization technique are as follows: 

1. It is fast and cost-effective by avoiding experimental reruns. 
2. It is statistically efficient because the interaction among the independent variables 

and their quadratic effects on the response attributes (dependent variable) can 
be estimated simultaneously. 

3. Optimization method provides a data base to answer direct questions such as 
What if: what if ingredient X becomes expensive and would like to reduce 
the amount in the formulation; what happens to the sensory and/or physical 
characteristics of the product? It is not necessary to run a full pledge experi- 
ment since the data base can provide the required information. However, a 
validation experiment is necessary. 

4. Optimization method provides several potential product formulas for consumer 
evaluation. 

5 .  Optimization method provides R&D direction to meet the changing market 
demands. 

6. Optimization method provides discipline in the conduct of scientific research, 
and most importantly generates quality data. 

Table 8.1-9 
Variance-covariance matrix for Example 8.1-2. Note that the off- 
diagonal values should be treated as zeros. 

V A R I A N C E  - C O V A R I A N C E  M A T R I X  FOR C O E F F I C I E N T S  

CONSTANT X 1  x 2  
CONSTANT 5 . 7 5 1 E - 0 3  
x 1  - 7 . 9 8 1 E - 2 0  1 . 2 9 k E - 0 2  
x 2  - 7 . 9 8 1 E - 2 0  7 . 1 8 3 E - 1 9  1 . 2 9 4 E - 0 2  
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However, there are pitfalls in the use of optimization methods if one is not careful 
during the planning stage of the study. These pitfalls are the following: 

1. Important factors/variables that affect the response have not been correctly iden- 
tified. The investigator should know the function of each ingredient in the for- 
mulation or have some theory about their effects on the response. 

2. The lower and upper levels of the factors have been incorrectly specified. 
Preliminary work is needed if these levels are not available. Some estimates 
may be obtained from existing products and such estimate would be the mid- 
dle level in the design specification. 

3. Over-use of extrapolation of response surface maps without appropriate check 
points. 

4. Use of incorrect statistical model and experimental design. 
5 .  Failure to recognize the presence of large systematic and/or random variation 

6. Failure to recognize that the response function has more than one optimal point 

7. Failure to verify the correctness of the selected optimum formulas against a 

in the response. 

in the response surface. 

control or standard formula. 

The success in the use of optimization methods comes from experience and 
understanding of the biological, physical, or chemical system that one is working 
with. In using sensory measures to obtain responses, it should be emphasized that 
the selected optimum formulas should always be evaluated against a standard or con- 
trol formulation before a final decision is to be made. This part of optimization is 
often overlooked. 

The generalized steps in an optimization study are as follows: 

1. Clearly define the objective of the study. This is perhaps one of the most im- 
portant aspects in optimization work. Limit the objectives of the study, in- 
stead of being carried away to answering a multitude of objectives in the hope 
of saving experimental cost. This tactic usually results in futility. 

2. Identify the variables to be studied. Historical data and information from 
published work are good sources. If they are not available, a preliminary bench 
work should be done. 

3. Identify the response variables, that is, the attributes to be measured. Again, 
limit the attributes to be measured to those relevant to the study, perhaps not 
to exceed 10 attributes, to avoid confusion in sensory evaluation. 

4. Set the lower and upper levels of the variables through preliminary experimen- 
tation or from prior knowledge. 
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5.  Construct the appropriate experimental design. The design should be able to 
provide answers to the test objectives stated in Step 1. 

6. Conduct the experiment following the design, and adjust the design strategy 
if needed. Collect and record the data with care. 

7. Obtain the model for fitting each response variable and test for the adequacy 
of fit of the model to the data. 

8. Construct contour maps and obtain optimum areas. Use the contour overlay 
technique for multi-response study. Review contour maps with the investigator 
to obtain feedbacks of areas where concentration should be directed. 

9. Decide on potential formulations and make the product. Test 2 or 3 experimen- 
tally determined optimal formulations against a standard/control or against 
an established product brand. 

10. Fine-tune optimal formulations, if necessary. 

The number of steps in an optimization procedure can vary to a large degree 
(Fishken 1983; Side1 and Stone 1983; Giovanni 1983; Schutz 1983; Moskowitz 1983). 
As reviewed by LaGrange and Norback (1987), all of these reports have similarities 
which include: (1) an initial development study during which prototypes are developed 
and critical input variables are identified, (2) a screening/product recipe develop 
ment step, which includes the determination of ingredient and processing levels of 
variables, and (3) a formal optimization study, with or without constraints, that in- 
cludes consumer testing, data analysis, reformulation, and implementation. 

As an overview of the various steps involved in the design and analysis of op- 
timization studies, Fig. 8.2-1 is constructed to provide these steps at a glance. Note 
that fractional designs and the data collection designs were discussed in Chapters 
2,4,  and 6. The Thurstone-Mosteller model of analysis was illustrated in Chapter 7. 

8.3 TYPES OF OPTIMIZATION EXPERIMENTS 

Before embarking an optimization experiment, it is important to know the nature 
of the ingredients (independent variables) and the response attributes to be measured. 
The reason for this is that the nature of the ingredients and the responses determines 
the type of optimization design. 

First, determine whether the response depends on the proportion or the amount 
of the ingredient in the formula. For example, will the taste be the same for a 5050 
mixture of sugar and water in a glass as compared to the same mixture in a gallon 
container? If it is the same, then we have the so-called mixture experiment. If they 
are not, we call this type of study a nonmixture experiment. Let us refer to the con- 
figuration in Fig. 8.3-1, and call XI the amount of water and X2 the amount of sugar 
in the mixture. Assume we have the following information: 
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CONTOUR HAPPING 

PRODUCTION AND 
o m m  AREAS 

Fig. 8.2-1 
Steps in design and analysis of optimization studies. 

Design pt. Water, gr. Sugar, gr. 

1 6 2 
2 12 2 
3 6 4 
4 12 4 
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Notice that design points 1 and 4 have the same proportion of water and sugar, which 
is 33.3% sugar. If the response depends only on the proportion of the ingredients 
in the mixture, then we do not need design point 4. The consequence of this result 
is discussed below. 

Nonmixture Experiments 

In this type of experiment the levels of the variables (factors) are unrestricted and 
independent of each other. That is, changing the in-going levels of one variable does 
not affect the levels of the other variables in the formulation. The response attribute 
in nonmixture experiments depends only on the absolute amount used in the for- 
mulation. For example, one may have a formulation as follows: 

Ingredient Amount, lb. 

A 0.5 
B 1.4 
C 0.8 
D 2.0 
E 1.3 

Total 6.0 

One can change the amount of any ingredient without affecting the others. The only 
value affected is the total amount of the mixture, which may either increase or 
decrease depending on whether one is adding or subtracting an amount. 

The experimental designs commonly used for nonmixture experiments are the Box- 
Wilson popularly known as the central composite, Plackett-Burman, and the Box- 
Behnken designs. 

Mixture Experiments 

'Ihis type pertains to experiments wherein the levels of each variable are restricted 
and dependent of each other. That is, the amount of each variable in the mixture 
should total 100%. Thus, changing the in-going levels of a variable in the blend 
will affect the levels of the other variables. By definition, Cornell (1981) stated that 
in the general mixture problem, the response that is measured is a function only 
of the proportions of the ingredients present in the mixture and is not a function 
of the amount of the mixture. However, there are experimental situations where 
the response depends on both the proportion and the amount. The solution to these 
situations are complex and the statistical formulation of the solution is discussed 
by Piepel and Cornell (1987). 

Examples of mixture experiments include the blending of gasoline, cake mixes, 
beverages, aerosols, detergents, and cosmetic products. An example that is familiar 
to many is in textile manufacture: 
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Product Ingredient Percent 

Shirt Polyester 65 
Cotton 35 

Note that if one increases polyester to 70%, one must reduce the cotton to 30%. 
Experimental designs useful in mixture experiments are the simplex and the M c h -  
Anderson (extreme vertices) designs. 

Space Configuration of Nonmixture and Mixture Designs 

l l e r e  are differences in the response surface (mixture space) between the non- 
mixture and mixture designs. Fig. 8.3-1 shows the surface for two variables, which 
is a plane. Note that in the mixture design, only half of the square is the mixture 
space since X I  + XZ = 1.0. The response surface for three variables is given in 
Fig. 8.3-2. The triangle inside the box constitutes the surface of the mixture design. 
Again, note that X I  + X2 + X3 = 1.0. Because of the constraint that the levels 
of all the variables in the blend must equal 1 .O, the regression equation for a func- 

Xa 

0 1 
NON MIXTURE 

x2 

MIXTURE 
x* + x2 = I 

Fig. 8.3-1 
Space configuration of nonmix- 
ture and mixture designs for two 
variables. 



124 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

XI- 
NONMIXTURE 

IX2 

MIXTURE 
x, + x1+  x3 = 1 

Fig. 8.3-2 
Space configuration of nonmixture and mixture 
designs for three variables. Mixture space is the 
triangle shown at the bottom of the figure with ver- 
tices X I ,  X2, and X3. 

tion relating the dependent and the independent variables has no intercept. This con- 
straint also results in regression coefficients interpreted differently. 

Consider a 3-ingredient mixture model given by 

The interpretation of the terms in the right hand side of the equation is summarized 
in Table 8.3-1. It is clear that the size of the regression coefficient is weighted by 
the coordinate of the design point. The contribution of each term to the response 
Yijk decreases with an increased number of ingredient combinations; the regression 
coefficient in the first term is the maximum effect itself; for the second term the 
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Table 8.3-1 
Interpretation of the regression coefficients in mixture design. 

Relation between coefficient 
Term Maximum value of the variable and maximum effect 

BiXj xi = 1 BiXj = 1Bi 

Bijxixj 

BijkXiXjXk 

B..X.X. - 

BijkXiXjXk = (1 127)Bijk 

xixj = (1/2)(1/2) = 1/4 ij I j - (1/4)Bui 

xixjxk = (1 /3)( 1/3)( 113) = 1/27 

effect is 114 of the coefficient, and for the third term it is 1/27. To illustrate, let 
us examine the plot of a two-ingredient design with response Y shown in Fig. 8.3-3. 
The amount of the curvature is given by D = (1/4)b12. 

Note that in mixture experiments, the Bijs and higher orders are not called in- 
teraction in the usual regression terminology because the levels of the independent 
variables are not independent of each other. Positive value of Bij indicates synergism 
of the effect of Xi and Xj, whereas a negative value indicates antagonism between 
them. Also, quadratic and cubic regression coefficients are to be interpreted as 
nonlinear blending effects. Figures 8.3-4-8.3-7 illustrate how to read a configura- 
tion of a mixture space. The figure is self-explanatory. 

How does one evaluate the fit of the mixture model to the observed data? Due 
to the constraint that the proportion of the ingredients in the mixture adds up to 1 .O, 
the mixture model has no intercept and as a result the calculated R-square criterion 
of fit is inflated, which often leads to misleading interpretation (Marquardt and Snee 
1974; Kvalseth 1985). In fact, SAS output from PROC REG provides a warning 
message for the no-intercept model to redefine the R-square (Freund and Littell 1986). 

X I  1 . 5  0 
Xa 0 . 5  1 

Fig. 8.33 
An illustration of quadratic effect in mixture study 
with two variables. 
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A 1.00 

B C 

Fig. 8.3-4 
Values for variable A in the mixture space. 

A 

C 1 .o 

Fig. 8.3-5 
Values for variable B in the mixture space. 

There are other criteria that can be used to supplement the R-square statistic, such 
as the error or residual mean square in the analysis of variance and graphical analysis. 
All these criteria can be used to supplement each other. The examples that will 

follow illustrate the fitting of a model to the observed data. 

Example 8.3-1 

A two-variable mixture experiment was conducted involving two soap bases 
denoted by XI and XZ. Note that mixture study with two variables is known as binary 
blend. The proportion and the response Y of each blend are as follows: 
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&I .oo 

Fig. 8.3-6 
Values for variable C in the mixture space. 

x1 

1.0 
.9 
.8 
.7 
.6 
.5 
.4 
.3 
.2 
.I 
0.0 

x2 

0.0 
.1 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

1 .o 

Y 
21.19 
20.47 
20.48 
19.92 
19.14 
18.25 
17.94 
16.97 
16.22 
15.47 
15.35 

Notice the constraint XI  + X2 = 1.0. The response Y is the percentage of a certain 
fatty acid obtained from gas chromatograph analysis. It is hypothesized that the two 
bases will blend linearly so that the mixture model is 

Y = BIXl + B2X2 + Error. 

However, before this model was used the plot of Y and the blend was done to verify 
the hypothesis (Fig. 8.3-8). The linear model appears appropriate as seen by the 
straight line plot of the data. 

Table 8.3-2 shows the statistical analysis of the data for this example using the 
STATISTIX software. The fitted model is found to be 
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A 

23 . 

20 . 

1 7  . 

l h  

OPTIMIZATION 

Fig. 8.3-7 
An example of a point in the mixture space. This 
point has a coordinate of (A = 0.3, B = 0.5, C 
= 0.2). 

S T A T I S T I X  3 . 5  
I@: E X 8 3 1  

V V S  BLENO 

t 

t t  

t 
t 

t +  

t 

t 

t t  

I 
I I I I 

0 3 6 9 1 2  
BLEND 

1 1  CASES PLOTTE@ 

Fig. 8.3-8 
Plot of response Y vs blend number for Example 
8.3-1. 

with adjusted R-square of 0.9998. Based on the size of the regression coefficients, 
variable X I  is found to have greater effects on the response Y than variable XZ. 
Table 8.3-3 shows a summary output containing the raw data, fitted value of Y, 
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Table 8.3-2 
Regression analysis of the soap base mixture experiment. 

STATISTIX 3 . 5  
I D :  EX831 

UNWEIGHTEO LEAST SQUARES LINEAR REGRESSION OF V 

NOTE: MODEL FORCEC THROUGH ORIGIN 

PREDICTOR 
VARIABLES COEFFICIENT STD ERROR STUDENT'S T P 

x 1  21 .L49 1 .57216-01 136.44 0 .0000 
0 .0000 x2  15 .169 1.5721E-01 96 .49  

R SQUARED 0 .9998 RESID. MEAN SQUARE ( M S E )  7 .767E-02 
ADJUSTED R SQIJARED 0 .9998 STANDARD DEVIATION 2 .7876-01 

SOURCE OF S S  MS F F' 

REGRESSION 2 3730.8  1865.L 2 4 0 1 6 . & 9  0 .0000 
RESIDUAL 9 6 . 9 9 0 5 E - 0 1  7.7672E-02 
TOTAL 10 3731.5  

CASES INCLUOEO 1 1  MISSING CASES 0 

- - -  

Table 8.3-3 
Estimates of fitted (predicted) and residual values for Example 8.3-1. 

STATISTIX 3.5  
ID: E X 8 3 1  

V I E W  OATA 

CASE X1 

1 1 . o o o o  
2 0 . 9 0 0 0  
3 0 . 8 0 0 0  
4 0 . 7 0 0 0  
5 0 . 6 0 0 0  
6 0 . 5 0 0 0  
7 0 .4000 
8 0 . 3 0 0 0  
9 0 . 2 0 0 0  

1 0  0 .1000  
1 1  0.0000 

x 2  

0 .0000  
0 . 1 0 0 0  
0 . 2 0 0 0  
0 . 3 0 0 0  
0.4000 
0.5000 
0 . 6 0 0 0  
0 . 7 0 0 0  
0 . 8 0 0 0  
0.9000 
1.0000 

Y 

2 1 . 1 9 0  
2 0 . 4 7 0  
2 0 . 4 8 0  
1 9 . 9 2 0  
1 9 . 1 4 0  
1 8 . 2 5 0  
1 7 . 9 4 0  
1 6 . 9 7 0  
1 6 . 2 2 0  
1 5 . 4 7 0  
1 5 . 3 5 0  

F I T  

2 1 . 4 4 9  
2 0 . 8 2 1  
2 0 . 1 9 3  
1 9 . 5 6 5  
1 8 . 9 3 7  
1 8 . 3 0 9  
1 7 . 6 8 1  
17 .053 
1 6 . 4 2 5  
15 .797 
1 5 . 1 6 9  

RES 

- 0 . 2 5 9  1 
- 0 . 3 5 1  1 

0 . 2 8 6 9  
0 . 3 5 4 9  
0 . 2 0 2 9  

- 0 . 0 5 9  1 
0 . 2 5 8 9  

- 0 . 0 8 3  1 
- 0 . 2 0 5  1 
- 0 . 3 2 7  1 

0 . 1 8 0 9  

and the residual. The plot of the residual versus Y indicates that the errors are even- 
ly spread across blend suggesting that each observation is subject to the same ran- 
dom variation (Fig. 8.3-9). 
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' S T A T I S T I X  3 . 5  
I D :  E X 8 3 1  

RES V S  Y 
R E S  X JOE-1 

5 1  

* 

t 

* 4 

* 

-4 

14 16 18 20  2 2  

1 1  C A S E S  PLOTTED 
Y 

fig. 8.3-9 
Residual plot for Example 8.3-1. 

Example 8.3-2 

between variables. Hare (1974) reported the following data: 
This is another example of a two-variable mixture problem to illustrate antagonism 

XI x2 Y 
1 0 14.7 
0 1 35.5 

213 113 17.5 
113 213 24 .O 

In this example, XI is the proportion of stearine, X2 the proportion of vegetable 
oil, and Y the solid fat index in 50 F. The STATISTIX output for these data is given 
in Table 8.3-4. The equation is found to be 

Since the nonlinear blending coefficient, - 19.59, is negative it indicates antagonism. 
The size of this effect is indicated by a vertical dash line in Fig. 8.3-10. If this effect 
was positive the nonlinear curve will be above the linear one and indicates synergism. 
The magnitude of antagonism when the proportion of each variable is equal to 0.5 
is ( .5 ) ( .5 ) ( -  19.59) = -4.90, which is considerably less than the linear blending 
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Table 8.3-4 
Regression analysis for mixture experiment to illustrate the nonlinear blending effects 
(x, = X,*X*). 

~ ~~ ~ 

S T A T I S T I X  3.5 
ID: EX832  

VIEW DATA 

CASE x 1  x 2  x3  V 

1 1 .0000  0.0000 0 .0000  1 4 . 7 0 0  
2 0.0000 1.0000 0 .0000 3 5 . 5 0 0  
3 0 . 6 6 7 0  0 . 3 3 3 0  0 . 2 2 2 1  17 .500  
4 0 .3330  0 . 6 6 7 0  0 . 2 2 2 1  2 L . 0 0 0  

S T A T I S T I X  3 . 5  
I D :  EX832  

UNWEIGHTED LEAST SQUARES L I N E A R  REGRESSION OF V 

NOTE: MODEL FORCED THROUGH O R I G I N  

PREDICTOR 
VARIABLES COEFFIC IENT STD ERROR STUDENT'S T P 

0 . 0 1 2 6  X I  1 4 . 7 6 7  2 . 9 2 3 1 6 - 0 1  5 0 . 5 2  
x 2  3 5 . 4 3 3  2 . 9 2 3 1 E - 0 1  1 2 1  - 2 2  0 . 0 0 5 3  
x 3  - 1 9 . 5 8 5  1 . 3 5 0 L  - 1 4 . 5 0  0 . 0 4 3 8  

R SQUARED 1.0000 RESID.  MEAN SQUARE (MSE) 8 . 9 9 6 E - 0 2  
ADJUSTED R SQUARED 0 . 9 9 9 8  STANDARD DEVIAT ION 2 . 9 9 9 E - 0 1  

SOURCE DF ss M S  F P 

REG RE S S  ION 3 2 3 5 8 . 5  7 8 6 . 1 7  8 7 3 9 . 2 1  0 . 0 0 7 9  
RESIDUAL 1 8 . 9 9 5 9 E - 0 2  8 . 9 9 5 9 E - 0 2  
TOTAL 3 3 3 5 8 . 6  

CASES INCLUDED 4 M I S S I N G  CASES 0 

- - -  

effects of either XI or XZ. Note that the size of the linear blending effects is the 
respective linear coefficient in the model. 

Example 8.3-3 

The data for this example is taken from the experiment used in Example 8.3-1, 
except that the response variable is melting temperature of the blend. The temperature 
Y corresponding to the 11 blends are as follows: 32.0,23.9, 31.4,29.6, 25.2,26.7, 
30.7, 27.7, 27.2, 31.7, 33.1. 

The STATISTIX output is given in Table 8.3-5. The equation obtained is Y = 
27.845X1 + 30.191X2 with an adjusted R-square of 0.9887 and a mean square er- 
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Y 

40 

20 

- 19 .6X1Xa  
0 

40 I 
20 

- 19 .6X1Xa  
0 

X I  1 .5 0 
x a o  . 5  1 

Fig. 8.3-10 
Plot of response Y and blend to illustrate an- 
tagonism; X, = percent stearine, Xz = percent 
vegetable oil, Y = percent solids at 50 F. 

Table 8.3-5 
Regression analysis for Example 8.3-3. 

S T A T I S T I X  3 . 5  
I D :  E X 8 3 3  

UNWEIGHTED LEAST SQUAKES L I N E A R  REGRESSION OF Y 

NOTE: MODEL FORCED THROUGH O R I G I N  

P R ED I P TOR 
VARIABLES COEFFICIENT STD ERROR STlJDENT ' S T P 

x 1  2 7 . 8 4 5  1 . 1 5 1 0  15 .90  0.0000 
x 2  3 0 . 1 9 1  1 . 7 5 1 0  1 1 . 2 4  0.0000 

R SQUARED 0 . 9 9 0 7  RESTD. MEAN SQUARE (MSE) 9 . 6 3 6  
ADJUSTED R SQUARED 0 . 9 8 8 7  STANGARO OEVIATION 3 . 1 0 4  

S OIJ RIC E DF ss  MS F P 

REGRESSION 2 9 2 6 8 . 7  h 6 3 4 . 3  4 8 0 . 9 3  0.0000 
RESIDUAL 9 8 6 . 7 2 5  9 . 6 3 6 1  
TOTAL 10 9 3 5 5 . 4  

CASES INCLUDED 11 MISSING CASES 0 

- - -  
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I 
S T A T I S T I X  3.5 
ID: E X 8 3 3  

Y V S  BLENC 
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Fig. 8.3-11 
Plot of melting temperature Y vs blend number for Example 8.3-3. 

ror of 9.636. Although the R-square value is very high, the mean square error is 
also high, which indicates that the model is probably not a good fit. The plot shown 
in Fig. 8.3-1 1 reveals the divergent scatter of the data around the estimated regres- 
sion line. This example demonstrates the inadequacy of the R-square statistic for 
assessing the no-intercept models. The inflated value of R-square is due to the use 
of uncorrected total sums of squares for the dependent variable Y. See Marquardt 
and Snee (1974), Cornell (1981), Draper and Smith (1981), Kvalseth (1985), and 
Freund and Littell (1986) for further reference. 

8.4 PLACKETT AND BURMAN DESIGN 

For simplicity, we shall cover only those designs where each factor is at low and 
high levels. At best, two levels are recommended for screening studies. The Plackett- 
Burman design (Plackett and Burman 1946) is an orthogonal fractional factorial where 
N, the total number of design points, is a multiple of 4; thus, we can have N equal 
to 4, 8, 12, 16, etc. 

The Plackett-Burman design is suitably used to screen a large number of factors 
believed to be affecting important product characteristics or attributes, and is generally 
used during the initial phase of the study. Provided the interaction effects are nil 
or negligible, the Plackett-Burman design is effective for measuring main effects. 
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Being a fractional factorial design, the estimate of main effects will be contaminated 
with the interaction effects. 

In this section, we consider designs with N = 8, 12, 16 for screening at least 
7, 11, and 15 factors, respectively. Table 8.4-1 shows the initial block (design point) 
for obtaining the design matrix of the Plackett-Burman design. In this table, for 
simplicity the coefficient of 1 is not shown, Consider a design with N = 8 points. 
Using the initial block in Table 8.4-1, the remaining blocks of the design are found 
by cyclic enumeration. Writing down the initial block as 

+ + + - + - -  
then the second block is 

- + + + - + -  
and the third block, starting with the last sign of the second block, is 

+ + + - +  _ -  

and so on. The result of the cyclic enumeration is given in Table 8.4-2. The total 
number of blocks is always N = k + 1 where the last block has a minus coefficient 
to provide an orthogonal design matrix. Note that if one is working with only 5 
factors, columns F and G in Table 8.4-2 are deleted and the design would still be 
orthogonal. 

Table 8.4-1 
Initial block for cyclic construction of the Plackett-Burman design. 

No. of factors 
N < k  Initial block 

8 7 + + + - + - -  
12 11 + + - + + + - - -  + -  
16 15 + + + + - + - + + - - + - - -  
20 19 + + - - + + + + - + - + - - - -  + + -  
24 23 + + + + + - + - + + - - + + - - + - + - - - -  
Source: Plackett and Burman (1946) 

The estimate of the effect of each factor is found by a similar procedure discussed 
in Chapter 6 for calculating contrasts. That is, subtracting the sum of the responses 
with the plus sign from the sum of the responses with the minus sign, or in the form 
of a formula 
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Table 8.4-2 
Design matrix for a 7-factor Plackett-Burman design. 

Design Factor 
point A B C D E F G  

Response 
Yi 

+ + + - + - -  
- + + + - + -  
- -  + + + - +  
+ - -  + + + -  
- + - -  + + +  
+ - + - - + +  
+ + - + - - +  
- - - - - - - 

Initial block Y1 
Y2 

Cyclic construction Y3 
Y4 

Y5 

Yl 
Added block Y8 

Y6 

Note: Design points 2-7 obtained by cyclic construction. 

Average main effect = [CY(plus sign) - CY(minus sign)]/N (8.4-1) 

Thus, the estimate of average main effect of factor A is 

and so on. As discussed in Section 8.1, the formula in matrix form for estimating 
factor effects is 

b = (X'X)-lX'Y (8.4-2) 

where X is the design matrix, Y is the vector of responses, and b is the vector of 
parameter estimates. 

The estimates of main effects can be positive or negative. Large value of effects 
indicates large influence of a factor in determining the value of the response. Fac- 
tors with small effects may be left alone in product reformulation or entirely removed 
depending on the situation, i.e., their positive interaction with other ingredients in 
the formula. The statistical significance of effects can be obtained in the form of 
an analysis of variance shown in Table 8.4-3. 

Test of significance for each regression coefficient is obtained by using the t- 
statistic. This is accomplished by first computing the common standard error SE 
from the MSE, 

SE = 

then t = b/SE with N- k- 1 DF. See Table D in the Appendix to determine the 
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Table 8.4-3 
Analysis of variance table for the Placketi-Burman design. 

Source of Variance DF ss MS F-ratio 

Total N- 1 SSTO 
Regression k SSR MSR MSRlMSE 
Residual N- k- 1 SSE MSE 

Note: 

SSR = b’X’Y, see also formula (8.1-6). 
SSTO = r Z t  - (CYi)*/N 

SSE = SSTO - SSR 

significance of t .  Note that when N = 8 and k = 7 the DF is zero. Thus it is sug- 
gested that in this case one may limit the study to 3 or 4 factors, unless the study 
is replicated. 

Example 8.4-1 

Five factors are suspected to affect the lather characteristics of a soap product. 
Due to constraints in equipment and cost, the researcher decides to eliminate two 
of the five factors for inclusion in the final product formulation. Table 8.44 shows 
the design matrix and the average lather score for each formulation (design point). 
The design matrix is taken from Table 8.4-2 for k = 5 factors with the coefficient 
of 1 indicated. In matrix form the solution is 

Table 8.4-4 
Data and calculations for Example 8.4-1 

Formulation A B C D E Y 

1 + I  + I  + I  - 1  + I  7.2 
2 - 1  + I  + I  + I  - 1  6.5 
3 - 1  - 1  + I  + I  + I  4.0 
4 + I  - I  - 1  + I  + I  3.8 
5 - 1  + I  - 1  - 1  + I  4.1 
6 + I  - 1  + I  - I  - 1  3.4 
7 + I  + 1  - 1  + I  - I  6.0 
8 - 1  - 1  - 1  - 1  -1  3.0 

- 
EYi = 38.0 Y = 4.750 E Y f =  197.9 i = 1 ,  2, .., 8 

Calculation of average main effects: 
A = [(7.2 + 3.8 + 3.4 + 6.0) - (6.5 + 4.0 + 4.1 + 3.0)]/8 = 0.350 
B = [(7.2 + 6.5 + 4.1 + 6.0) - (4.0 + 3.8 + 3.4 + 3.0)1/8 = 1.200 
C = [(7.2 + 6.5 + 4.0 + 3.4) - (3.8 + 4.1 + 6.0 + 3.0)]/8 = 0.525 
D = [(6.5 + 4.0 + 3.8 + 6.0) - (7.2 + 4.1 + 3.4 + 3.0)]/8 = 0.325 
E = “7.2 + 4.0 + 3.8 + 4.1) - (6.5 + 3.4 + 6.0 + 3.0)]/8 = 0.025 
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b = (X'X)-')X'Y = ! 
4.750 

0.350 

1.200 

0.525 

0.325 

0.025 

From the estimates of factor effects, it is concluded that the most important factor 
affecting lather is factor B, followed by C, A, D, and E. If factor E is believed 
to be technically nonfunctional, it can be removed from the formula. 

The step-by-step procedure using X-STAT is shown in Table 8.4-5. The default 
of X-STAT is N = 16 design points; this means that the program can handle up 
to 15 factors. STATISTIX and SAS can also be used to analyze the data. Table 8.4-6 
shows the design matrix generated by X-STAT for 11 and 14-factor studies. 

8.5 BOX AND BEHNKEN DESIGN 

In Chapter 4, the incomplete block design was presented and in Chapter 6, the 
2k factorial design was briefly discussed. The Box-Behnken designs (Box and 
Behnken 1960) are incomplete factorials formed by combining two-level factorial 
designs with incomplete block designs in a manner illustrated in Table 8.5-1. The 
resulting design is a rotatable second order used for estimating the coefficients of 
quadratic response surfaces. As shown in Table 8.5-1, the Box-Behnken design re- 
quires three levels of each factor to be studied. These levels are denoted by low 
(- l), medium (0), and high (1). 

Table 8.5-2 shows the design matrix for some useful Box-Behnken designs. The 
row order (Run#) is printed at random, which is a desirable feature of the X-STAT 
software. This software provides analysis for three to seven factors. However, for 
large studies SAS is a better software to use. One disadvantage of this design is 
the large number of design points that results with large number of factors, thus 
its application to product formulation appears limited to three or four factors. For 
example, a 5-factor study requires 46 formulations that are prohibitive to conduct 
in many situations. 



138 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

Table 8.4-5 
Step-by-step analysis for Example 8.4-1 using X-STAT. The X-STAT corn- 
rnands are indicated by asterisk, i.e., * factor. 

* f a c t o r  
FACTOR[ l ] ?  x l  
FACTOR[2]? x2  
FACTOR[ 3 ] ?  x 3  
FACTOR[$]? X 4  
FACTOR[S]? X5 
FACTOR[G]? 
* d e s i g n  p l a c k e t t  
e e x p e r i m e n t  r u n s  * 

.burman 8 
d e f i n e d  

* worksheet  

1 1.000 1.000 1.000 -1.000 1 .ooo 

2 1 . 0 0 0  1 .000 - 1 . 0 0 0  1.000 -1 .000  

3 1 . 0 0 0  - 1 . 0 0 0  1 .000  - 1 . 0 0 0  -1 .000 

4 -1 .000 1 . 0 0 0  -1.000 -1.000 1 .ooo 

5 1 . 0 0 0  - 1 . 0 0 0  - 1 . 0 0 0  1 .ooo 1 .000  

6 - 1 . 0 0 0  -1 .000  1 . ooo  1 . ooo  1 .ooo 

7 - 1 . 0 0 0  1 . 0 0 0  1 .ooo 1.000 -1 .000  

8 - 1 . 0 0 0  - 1 . 0 0 0  - 1 . 0 0 0  - 1 . 0 0 0  -1 .000  
n 

w a i t i n g  

* char y 
* V  

Y[3]? 3.4 
V[4]? 4.1 

Y[1]? 7.2 
Y[2]? 6.0 

V[5]? 3 .8  
Y[6]? 4.0 
Y[7]? 6.5 
Y[8]? 3.0 
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Table 8.4-5 (Continued) 

* f i t  y 
Y: 

standard deviation about the regression = 0.9605 
explained variation about the mean (R-squared) = 89.40% 
condition of  design matrix = 1.000 
model = LINEAR 

* coeff ic ient  y 

139 

Standard Conf i &nce 
Coefficient Term Error T-Value Coef 0 0 

4.750 1 (constant) 0.3396 13.99 94.8% 
0.3500 X 1  0.3396 1.031 58.4% 
1.200 x2 0.3396 3.534 89.2% 
0.5250 X3 0.3396 1.546 72.7% 

0.02500 X5 0.3396 0.0736 18.2% 
0.3250 X4 0.3396 0.9571 s 5 . m  

Confidence figures are based on 2 degrees of freedan * 
waiting 

1.200 x2 
0.5250 X3 
0.3250 X4 
0.02500 X5 

0.3396 3.534 89.2% 
0.3396 1.546 72.7% 
0.3396 0.9571 55.6% 
0.3396 0.0736 18.2% 

Confidence figures are based on 2 degrees of  freedun * anova y 

Source d f  ss MS F-Ratio 

Total (corrected) 7 17.400 

Regression 5 15.555 3.1110 
3.372 ( 1 )  

Residual 2 1.845 0.9225 

( 1 )  Inpl ies 74.6% confidence regression equation i s  nonzero. * 
waiting 
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Table 8.5-1 
Construction of the Box-Behnken design for k = 3 factors (A, B, C). 

Incomplete block: 22 factorial: 
A B C  Xi Xj 

Row 
1 x x  
2 X X 

3 x x  

- 1  - 1  
1 - 1  

- 1  1 
1 1 

Replace row 1 by the factorial matrix and put zeros on others: 
A B C  

- 1  - 1  0 
1 - 1  0 

- 1  1 0 
1 1 0  

Replace row 2 similarly: 
- 1  0 - 1  

1 0 - 1  
- 1  0 1 

1 0 1  
Replace row 3 similarly: 

0 - 1  - 1  
0 1 - 1  
0 - 1  1 
0 1 1  

0 0 0  
0 0 0  
0 0 0  

Center point: 

Note: Xi = factor I ,  ith level. 
Xj = factor 2, jth level. 

8.6 BOX AND WILSON DESIGN 

Since its publication in 1951, the Box-Wilson design (Box and Wilson 1951) is 
the most widely used design in industrial applications for searching optimum operating 
conditions, i.e., optimal areas in contour maps. Some applications of the design in- 
clude those of Jao ef al. (1 982) on meat loaf analog system, McLellan ef d. (1 984) 
on carbonated apple juice study, Diptee el al. (1989) on protein extraction studies 
from brewer’s spent grain, and Galvez et al. (1990) on processing peanut beverage. 



142 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

Table 8.5-2 
Design matrix for 3 (A-C) and 4 (A-D) factors Box-Behnken 
design. 

1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
1;: 
13 
14 
15 

r) 
L 

# CI 

1 1 . ooo 
2 1 . 000 
3 -1 . 0~30 
4 -1.000 

0. 000 
6 0.000 
7 0.000 
8 0. 000 
9 o. 000 

10 1. O(30 
11 1.000 
12 -1.000 
13 -1.000 
14 (3.000 
15 0. ooo 
16 0.000 
17 ( 3 .  000 
18 o. 000 
19 1. 00iJ 
20 1. ooo 
21 -1.0im 
22 -1.000 
23 0. ooo 
24 0. 00C) 
25 0. i j t  j0 
26 0. 000 
27 0. 1:r,Oo 

c 4 

C 

0.000 
0.000 
0.000 
0.000 
1.000 
1.000 

- 1. 000 
-1.00(3 
0.000 
0.000 
0.000 
0.000 
o. 000 
1.000 

-1.000 
1.000 

- 1 .000 
0. 05rij 
1 .000 

- 1 . ooi:, 
1 . 000 

-I . o(jo 
0. 000 
0. 000 
0. (joo 
0. 00CJ 
0. 000 

D 

0.000 
0.000 
0.000 
0.000 
1. oo(:, 

-t.o00 
I .  ooo 

-1.000 
o . ooo 
1.000 

- 1 . ooo 
1.000 

-1.000 
0. ouo 
0.000 
0.000 
0. c m  
0.000 
0. ooo 
0.000 
0.000 
0. oao 
1.000 

- 1 . 000 
1.000 

- 1 . 000 
0. 01:io 
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Like the Box-Behnken design, it is primarily used for the exploration of quadratic 
response surfaces, the most popular being the central composite rotatable design. 
Briefly, this design consists of a 2-level factorial augmented by a replicated center 
point. Figure 8.6-1 shows the configuration of a three-variable composite design 
with M = 15 design points. It can be easily seen that the first eight points corre- 
spond to the coordinates of the 23 factorial. For example, a plane with vertices of 
points 1 ,2 ,  3, and 4 form the four points of the 2* factorial with an additional point 
9 in the center; the diagram is shown in Fig. 8.6-2. The length of the axial portion 
denoted by cx may vary from 1.41 to 4.00 to satisfy orthogonality and/or rotatability 
(Box and Hunter 1957). The choice of the axial length for various number of factors 
is given in Table 8.6-1. The popular choice for orthogonality is a = 2. Table 8.6-2 
shows the design matrix for a three-factor composite design. 

Example 8.6-1 

The purpose of this study was to find the optimum levels of salt and dextrose that 
will result in high consumer acceptance by masking the effect of perceived saltiness 
in the product. Consumer acceptance was measured by liking for saltiness and overall 
flavor. As discussed before, saltiness and overall flavor are called response variables, 
whereas the amounts of salt and dextrose are called variables or factors. 

14 

/ 

e’ 
10 

11 

’i 
12 

FTg. 8.61 
The 15 design points of a three-variable composite design. 
The length of the broken dash line is a. 
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10 

t- 

13 

T L I  

4 
I 

3 I 

11 

12 

Flg. 8.6-2 
Side of a three-factor composite design. The length of the broken 
dash line from the center is a. 

Table 8.6-1 
Composite rotatable designs satisfying orthogonality. 

Number of Factorial Axial Center Total number 
factors points points points of observations 

k kc 2k ko M a 

2 4 4 8 16 1.414 
3 8 6 9 23 1.682 
4 16 8 12 36 2.000 
5 32 10 17 59 2.378 
5( 112) 16 10 10 36 2.000 
6(1/2) 32 12 15 59 2.378 
7( 112) 64 14 222 100 2.828 

Note: M = k, + 2k + ka 
(y = k”4 

Number of factors for k = 5, 6, 7 are 1/2 fractional factorial discussed in Chapter 6. 
Source: Box and Hunter (1957). 

The lower and upper limits of the variables were determined using a model system 
consisting of distilled water as the medium where various amounts of salt and dex- 
trose were added to it. It is important that the levels of these variables must be percep- 
tually distinguishable. Based on the results from the model system, the limits were 
near to the following values: 
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Table 8.6-2 
Design matrix (points) of a three-factor composite design. 

Ingredients 

Formulation x1 xz x3 

- 1  - 1  - 1  
1 - 1  - 1  

- 1  1 - 1  
1 1 - 1  

I - 1  1 
- 1  1 1 

1 1 1  

- 1  -1  1 zk portion 

9 0 0 0  Center point 

10 -2  0 0 
11 2 0 0  
12 0 -2 0 2k portion 
13 0 2 0  
14 0 0 - 2  
15 0 0 2  

Note: k = number of factors (independent variables). 
Formulations 1-8 form the Zk portion. 
Formulation 9 is the center point. 
Formulations 10-15 form the 2’ portion. 

Lower limit Upper limit 

% salt (XI) 1.4 3 .O 
% dextrose (X2) 1.4 10.2 

A 2-factor central composite design was used in the study. With two independent 
variables, the design consists of nine experimental points as shown in Fig. 8.6-3. 
The relationship between the coded levels and the actual levels is given by (See also 
Eq. 8 .14 )  

Xi = (L - C ) / S ,  i =  1 , 2  

where L is the level of interest, C is the center level, and S is the so-called scaling 
factor. For example, when XI = - 1 

XI = (1.8 - 2.2)/0.4 = -1  for salt. 
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2 

1 

0 

-1 

-2 

Xa 

I 

0 8  

0 3  0 4  

0 5  0 9  0 6  

0 1  0 2  

X I  
0 7  

-2 -1 0 1 2 

X+ 1.4 1.8 2.2 2.6 3.0  S = 0 . 4  

CODED LEVEL -2 -1 0 1 ? 
Xn 1.4 3.6 5.8 8.0 10 .2  S = 2 .2  

I 

Fig. 8.6-3 
Coded and actual levels for two-factor composite design. S 
= scaling factor. 

Likewise 

X2 = (3.6 - 5.8)/2.2 = -1 for dextrose. 

Based on the coded levels, the design matrix is shown in Table 8.6-3 as well as 
the matrix corresponding to the actual levels. The coded or the actual levels are 
the input data in most computer programs, thus knowing these levels facilitates com- 
puter analysis. The actual levels provide the experimenter with the level combina- 
tions necessary to make the product. Note that in this table, [Y = f2. Depending 
on the design, other values of [Y may be used (See Table 8.6-1). 

The next step is the sensory evaluation of the nine formulations plus the control 
sample. It is very important in optimization study to include a control sample as 
a base point for comparison. A total of 108 panelists were used to evaluate 10 for- 
mulations (9 test formulations plus the control). To reduce the number of samples 
to be evaluated by each panelist, a balanced incomplete block design augmented with 
a control in every block was used as described in Chapter 4 and in Gacula and Singh 
(1984). Each panelist evaluated two test formulations plus the control using the 9-point 
hedonic scale. The results are shown in Table 8.6-4. 

Using the data in this table, a quadratic model of the form 

Y = BO + BIXI + B2Xz + BIIX? + BzX: + BltX12 + error 
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Table 8.6-3 
Design matrix for a 2-factor composite design for Example 8.6-1. 

Formulation XI x2 XI x 2  

Coded levels 
- 1  - 1  

1 - 1  
- 1  1 

1 1 
- 2  0 

2 0 
0 -2  
0 2 
0 0 

Actual levels 
1.8 3.6 
2.6 3.6 
1.8 8.0 
2.6 8.0 
1.4 5.8 
3.0 5.8 
2.2 1.4 
2.2 10.2 
2.2 5.8 

Table 8.6-4 
Adjusted mean scores for nine formulations and the control. 

Formulation 
~ ~~ 

Saltiness Overall flavor 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Control 

5.70 
6.3 1 
4.90 
5.68 
4.86 
5.54 
5.75 
4.88 
5.63 
6.00 

5.91 
6.40 
5.15 
5.02 
4.80 
5.74 
5.63 
4.94 
5.70 
5.90 

Standard error 0.252 0.288 

Note: Adjusted by intrablock analysis, see Chapter 4. 

was used. This model includes the linear effects BI  and Bz, the quadratic effects 
BII  and B22, the interaction effect B12, and the random error component. The resul- 
tant equations for saltiness and for overall flavor are as follows: 

Saltiness YI  = 5.81 + 0.229X1 - 0.264X2 - 0.141X: 

Overall flavor Y2 = 5.81 + 0.187X1 - 0.293X2 

- 0.113X: + 0 . ~ 3 X i x z  

- 0.129X: - 0.126X: - 0.155Xix2 
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The contour maps based on the above equations are shown in Figures 8.6-4 and 
8.6-5 for saltiness and overall flavor, respectively. Both contour maps depict a 
“mountain.” A contour line may be selected on the map to obtain desirable levels 
of salt and dextrose. For example, for saltiness with a predicted score of around 
6, the optimum levels are 2.5% salt and 1.8% dextrose. For overall flavor, the levels 
are outside the experimental region, but a conservative value would be 3.0% salt 
and 1.4% dextrose. 

Considering the direction of panelist responses, the optimum area is located on 
the lower right corner of the map; thus two formulas were selected on this map for 
consumer test: 

Formula 1 Formula 2 

% salt 2.7 3 .O 
% dextrose 3.2 1.4 

The current formula (Control) contains 1.8% salt and 1.5% dextrose. Note that higher 
level of salt is necessary for microbial stability of the product. 

The data for saltiness and overall flavor can be linearly combined and standardized 
by dividing each term of the linear combination by their respective standard errors. 
In doing so, one contour map is obtained for both responses facilitating a simple 
interpretation of the map. However, there are constraints in combining responses. 
In our example, we are fortunate that both responses have similar contour maps; 
had the map been not similar, it would be difficult to combine them, unless a com- 
promise is made between the two responses. The formula for combining responses is 

where Yi = standardized combined response, Xli = observation in the ith design 
point (i = 1, 2, .., 9) for variable X I ,  MI = grand mean for variable X I .  and SI 
= standard error for variable XI;  similar definition applies to variable XZ. Assum- 
ing the same scale is used, response variable with small standard error relative to 
the other variables would contribute more to the value of Yi. If the standard errors 
among the variables are close to each other, the effect of each variable will be 
weighted equally. 

In our example, the standard error for saltiness is found to be 0.252 and for flavor, 
0.288. Since they are close, for practical purposes both variables contribute equally 
to the value of Yi. Table 8.6-5 shows the SAS program used for the analysis of 
the combined response, and the resulting output shown in Table 8.6-6. The SAS 
program to generate the map in Fig. 8.6-6 is given in Table 8.6-7. 

As shown in Fig. 8.6-6 the results for the combined analysis indicate that For- 
mula 1 falls nicely within the optimum area; the % salt for Formula 2 is on the 
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Table 8.6-5 
SAS program (PROC RSREG) for obtaining an optimization regression equation. 

DATA; 

CARDS; 
INPUT x 1 - X ~  Y; 

- 1  - 1  2.296 
1 - 1  6.529 

- 1  1 -3.431 
1 1 -0.744 

-2 0 -4.782 
2 0  1.183 
0 -2 1.652 

0 0  1.411 
0 2 -4.224 

PROC RSREG; 

TITLE ‘TOTAL STANDARDIZED RESPONSE’; 
MODEL Y = Xl-X2; 

~ ~~~~~ 

Note: PROC RSREG automatically provides a full model, i.e., main effects, interaction effects, and 
quadratic effects are estimated. Solution of optimum combination of factors is automatically 
computed. 

borderline of the area. Since both saltiness and overall flavor were weighted equal- 
ly as a result of their similar standard errors, the resulting total standardized con- 
tour map in Fig. 8.6-6 would optimize simultaneously the two response variables 
in one map. 

The final phase of the optimization study is a consumer test to verify the perfor- 
mance of the selected formulas against the control. In this study, 110 panelists par- 
ticipated in the test. Based on the 9-point hedonic scale, the mean scores obtained 
in the consumer test are as follows: 

Control Formula 1 Formula 2 
Overall flavor 6.75 7.09 7.09 
Saltiness 6.80 7.05 6.70 
Texture 6.82 7.05 7.26* 
Juiciness 6.44 6.95 7.11* 

Notice that Formula 2 is significantly (*p = 0.05) more well-liked in texture and 
juiciness than the control. Based on the mean scores, both Formulas 1 and 2 are 
satisfactory. If manufacturing constraints and other considerations would prevent 
the production of either formula, then the contour map should be consulted noting 
that the formula to be selected is within the optimum area. 
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Table 8.6-7 
SAS program (PROC RSP) for obtaining contour map. 

PROC RSP; 
MODEL Y = 2.502 + 1.572*X1 - 2.063*X2 - l .Ol*Xl*Xl 

- .387*Xl*X2 - .879*X2*X2; 
RANGES X1 = - 2  TO 2 BY .5 

X2 = - 2  TO 2 BY .5 
Y = -5 TO 7 BY 1; 

PLOT X1 *X2; 
TITLE ‘TOTAL STANDARDIZED RESPONSE’; 

8.7 MIXTURE DESIGNS 

The nature of mixture experimentation was introduced in Section 8.3. Many in- 
dustrial products such as detergents, cake mixes, cosmetics, and beverages are made 
by mixing a number of ingredients into a blend. The number of ingredients in a 
given product can go as high as 10 components in one mixture. Recall that in mix- 
ture experiments, the effect of each ingredient is assumed to depend only on their 
relative proportions in the blend or mixture as discussed in Section 8.3. In this sec- 
tion, we discuss several mixture designs useful in product formulation. 

Mixture designs are based on a simplex configuration first used by Claringbold 
(1 955) in a study of the joint action of related hormones in animal experimentation. 
In mathematics, a simplex is an n-dimensional line with vertices and faces. For ex- 
ample, a simplex of dimension 1 is a straight line with 2 vertices; a simplex of dimen- 
sion 2 is a triangle with 3 vertices; and a simplex of dimension 3 is a tetrahedron. 
Figure 8.7-1 shows different types of simplices. Note that the side of a simplex is 
called a face. 

Like the Box-Wilson and the Box-Behnken designs, the use of the mixture designs 
is to obtain optimum formulation of mixtures of ingredients to meet certain objec- 
tives. As such, the interpretation of the results of mixture experiments is in many 
ways similar to the response surface method. However, since the sum of the pro- 
portions for all components in the mixture must equal 1 .O or loo%, the response 
surface designs no longer apply. In this section, we first consider a simple mixture 
problem where all ingredients in the blend are not constrained. They can take on 
values from 0 to 1.0 or 0 to loo%, i.e., 

0 < Xi < 1, i = 1,2, .., q (8.7-1) 

where Xi is the proportion of the ith ingredient in the blend and X I  + X2 + .. + 
x, = 1. 
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S I W L E X  OF D I M E N S I O N  1 

SIMPLEX OF D I N E N S I O N  2 

S I H P L E X  OF D I M E N S I O N  3 

Fig. 8.7-1 
Configuration of simplices 

In most product formulation work, such as in the personal care, household, and 
the food industries, a formulation may consist of 8 or more ingredients. Often one 
may desire to work only with 3 of the 8 ingredients. The constraint that CXi = 1 .O 
can still be achieved by an appropriate scaling so that X I  + XZ + X3 = 1.0. The 
scaling is possible since we are dealing with proportions. 

For example, suppose we have a formulation consisting of only 4 ingredients - 
X I ,  XZ, X3, and X4, and the total is obviously equal to 1.0. Suppose that the first 
two ingredients are to be studied and that they comprise 30% of the total. A simple 
mixture design shown below can be used: 

Blend XI x2 

1 1 .o 0.0 
2 0.0 1 .o 
3 0.67 0.33 
4 0.33 0.67 
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In this example, the remaining ingredients provide the 70% of the total mixture di- 
vided according to the following proportions: X3 = 50% and x4 = 20%. Note that 
the mixture design satisfies the constraint that XI + X2 = 1 .O. Since we are work- 
ing only with 30% of the total mixture, the blend to be formulated should be scaled 
accordingly to reflect the appropriate proportions by multiplying the design coor- 
dinate above by 0.30, resulting in the following formulations: 

Blend x1 x2 x3 x4 

1 0.30 0.0 0.50 0.20 
2 0.0 0.30 0.50 0.20 
3 0.20 0.10 0.50 0.20 
4 0.10 0.20 0.50 0.20 

Note that X1 + X2 + X3 + X4 = 1.0. In producing the product blend, blend 1 
would consist of 30% XI,  0% X2, 50% X3, 20% X4,  and so on. 

Mixture Models 

As a result of the constraint that CXi = 1 .O, mixture model has no constant term 
B,, (intercept) and squared terms BijXT. As shown by Scheffc? (1958). data from the 
mixture experiment can be fitted by a polynomial regression in one of the following 
models: 

Linear: 

Quadratic: 

Special cubic: 

Full cubic: 

E(Y) = CBiXi 

E(Y) = CBiXi + CBijXiXj 

E(Y) = CBiXi + CBijXiXj + CBijkXiXjXk 

E(Y) = CBiXi + CBijXiXj + CBijXiXj(Xi - Xj) + CBijkXiXjXk 

The notation, E(Y), indicates expected value of the response. The interpretation of 
the terms on the right hand side of the model equation is as follows: 

BiXi = response due to the pure components and Bi is the linear coefficient. 
BijXiXj = response due to synergism of the binary mixtures and Bij is the quadratic 

coefficient. 
BijXiXj(Xi - Xj) = response due to synergism of the binary mixtures and Bij 

is the cubic coefficient. 
BijkXiXjXk = response due to synergism of the ternary mixtures for components 

i, j and k; Bijk is the cubic coefficient. 
Note that the pure components and the binary mixtures are needed to estimate 

the coefficients of the quadratic model. Suppose q = 3 ingredients. The mixture 
models can be one of the following: 
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Linear: 

Quadratic: 

Special cubic: 

Full cubic: 

E(Y) = BlXl + BzXz + B3X3 

E(Y) = Linear + B1zXIXz + B I ~ X I X ~  + B z ~ X Z X ~  

E(Y) = Linear + quadratic + B I ~ ~ X I X Z X ~  

E(Y) = Linear + quadratic + special cubic + blZX1Xz(Xl - Xz) 
+ BiSiX3(Xi - X3) + Bz3XzX3(Xz - X3) 

In practice, the linear and the quadratic models are the most useful. The estima- 
tion of the various coefficients of the model can be done using a calculator when 
the observations are taken within the simplex. See numerical examples in Cornell 
(1983) and Snee (1971). However, the wide availability of multiple regression pro- 
grams favors computer analysis. 

Scheffh Simplex-Lattice Design 

The design coordinate for each ingredient in the simplex-lattice design (Scheffd 
1958) is determined by the formula 

Xi = 0, l/m, 2/m, .., 1 

where i = 1, 2, . . , q ingredients. The proportion of each ingredient takes m + 1 
equally spaced values from 0 to 1. A good property of this design is that the equally- 
spaced distribution of points over the simplex provides a desirable form and enough 
points to conduct polynomial regression analysis. 

For example, if m = 3, the possible coordinates of a blend for XI,  XZ, and X3 
are, respectively, 0, 1/3, and 2/3. The total number of design points (Gorman and 
Hinman 1962) is given by 

M = (m + q - l)!/m!(q - l)! 

= q(q+l) .. (q+m-1)/(1)(2) .. (m) 

where the symbol ! denotes a “factorial operation,” i.e., m! = m(m- l)(m-2) 
.. (m). Thus if we have three ingredients (q = 3) the total number of blends in the 
simplex-lattice design is 

M = 3(4)(5)/(1)(2)(3) = 10 

Since the design can have several combinations of q and m, they can be distinguished 
from each other by the name (q,m) lattice design. In our example, this is a (3,3) 
simplex-lattice design and its configuration is given in Fig. 8.7-2c. 
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Figure 8.7-2a shows the diagram of a (3,2) simplex-lattice with six design points 
equally spaced on the faces of the simplex at Xi = 0, 1/2, and 1.0. As shown in 
this figure, design point 1 has a coordinate of (XI, X2, X3) = (1, 0, 0) and likewise 
design point 6 has (XI, Xt, X3) = (1/2,0, 1/2). These points are appropriately col- 
lected to form the design coordinates shown in Table 8.7-1. As discussed in Section 
8.1, these coordinates are used in the least squares estimation of the parameters of 
a postulated model. Together with the measured responses, the design coordinates 
are input data in computer analysis. It is again emphasized to readers the important 
role of design coordinates in statistical analysis of mixture data. 

One model for fitting data from a 3-ingredient simplex-lattice design is the special 
cubic 

Y = BlXl + B2X2 + B3X3 + BlzXlX2 + B I ~ X I X ~  

+ Bz3XtX3 + B123XlXtX3 + Random error 

X I  
1 

5 
Xa X I  

X, 

Xa 

Fig. 8.7-2 
Space configuration of simplex lattice designs. 

X. 
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Table 8.7-1 
Design coordinates for simplex-lattice involving three ingredients. 

Design Point XI x2 x3 

1 1 0 0 
2 0 1 0 
3 0 0 1 
4 1 I2 112 0 
5 0 112 112 
6 112 0 112 

~~~ ~~~ ~~ ~ ~ ~ ~ 

Note: Since there are only 6 design points, only the pure component effects and the binary mixture ef- 
fects can be estimated. 

where, as discussed earlier, B I ,  B2, and B3 are regression coefficients for the pure 
components; Bl2, B13, and B23 are regression coefficients for the quadratic com- 
ponents, and B123 the cubic coefficient. Note that there are seven unknown parameters 
to be estimated, and one must choose a design with more than seven design points 
so that the random errors can be precisely estimated. In this situation, one must also 
consider obtaining replicated observations from each design point. 

Figure 8.7-2b is the diagram of simplex-lattice with four ingredients; the design 
coordinates for this would be a simple extension of the three ingredients simplex- 
lattice. The diagrams in Fig. 8.7-2c and 8.7-2d are still other configurations of the 
design that should provide more observations to estimate higher order coefficients 
if needed. Table 8.7-2 shows the simplex design coordinates for Fig. 8.7-2c. It is 
advantageous to include additional points not specified by the simplex to provide 
better prediction accuracy. The location of these points is in the interior of the simplex 
as specified in Table 8.7-3. Example 8.7-1 illustrates the design and analysis of a 
simplex-lattice experiment. 

Table 8.7-2 
Design coordinates for a 10-point simplex-lattice design. 

Design Point XI x2 x3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
0 
0 

213 
1 I3 
0 
0 

1 I3 
213 
113 

0 
1 
0 

113 
213 
213 
113 
0 
0 

1 I3 

0 
0 
1 
0 
0 

1 I3 
213 
213 
113 
1 I3 
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Table 8.7-3 
Location of the interior points for the simplex-lattice design. 

. . .  . . .  . . .  . . .  

. . .  
1/2q 

. . .  
1 /2q 

Example 8.7-1 

Consider an experiment on skin moisturizing lotion where palmetic acid (XI), 
petrolatum (X2), and olive oil (X3) were studied for their effects on the perceived 
dryness of the skin. A 8-inch unstructured rating scale was used with anchors of 
no dryness (0) on one end and high dryness (8) on the other end. Table 8.7-4 displays 
the average scores from 24 panelists obtained in two sessions. The six formulations 
were evaluated following a hand dryness evaluation procedure. The fitted equation 
was found to be 

The SAS program used to obtain the resultant equation is as follows: 

DATA; 
INPUT X1 X2 X3 Y; 
CARDS; 

1.0 0.0 0.0 5.6 
0.0 1.0 0.0 6.3 
0.0 0.0 1.0 6.4 
0.5 0.5 0.0 5.3 
0.0 0.5 0.5 6.4 
0.5 0.0 0.5 5.3 

PROC GLM; 
MODEL Y = X1 X2 X3 Xl*X2 Xl*X3 X2*X3 / NOINT; 
OUTPUT OUT = POUT PREDICTED = PY1 R=RESIDUAL; 
TITLE ‘SKIN LOTION STUDY’; 
PROC PRINT; 

When there is more than one dependent variable, the model statement becomes 
MODEL Y1 Y2 Y3 . . = X1 X2 X3 etc. The equation for Y can be mapped using 
SYSTAT/SYGRAPH or a complete statistical analysis and contour mapping using 
DESIGN-EXPERT. 
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Table 8.7-4 
Design and data for the skin moisturizing lotion experiment. 

Design Point XI XZ x3 Scores Average 

1 1 0 0 5.1, 6.0 5.6 
2 0 1 0 6.5, 6.0 6.3 
3 0 0 1 6.7, 6.1 6.4 
4 0.5 0.5 0 5.0, 5.5 5.3 
5 0 0.5 0.5 6.0, 6.8 6.4 
6 0.5 0 0.5 4.9, 5.6 5.3 

Scale: 0 = no dryness, 8 = high dryness 

Let us focus our attention to the parameter estimates of the equation. Note that 
the estimates bl, b2, and b3 are, respectively, equal to the average scores of the pure 
components XI, X2, and X3, Since b3 is the largest value among the pure components, 
this indicates that olive oil provides the largest drying effects on the skin, followed 
by petrolatum with b2 = 6.30, and palmetic acid with b~ = 5.60. The binary blend- 
ing effects b12 and b13 have negative synergism (antagonistic effect) indicating that 
when in combination they are perceived to result in lower scores, i.e., low dryness. 
Note that these results only illustrate statistical analysis and should not be experimen- 
tally interpreted. 

What is the best level combination, if any, among the three moisturizing agents? 
A simple procedure is found by examination of the contour diagram in Fig. 8.7-3 
generated by DESIGN-EXPERT. In this figure, we find that one potential combina- 
tion indicated by a filled circle consists of XI  = 0.55, X2 = 0.25, and X3 = 0.20. 
The predicted value of Y for this combination is obtained by substituting the ingre- 
dient levels into the fitted equation as follows: 

Y = 5.60(0.55) + 6.30(0.25) + 6.40(0.20) - 2.60(0.55)(0.25) 

- 2.80(0.55)(0.20) + 0.20(0.25)(0.20) 

= 5.28 

As expected, this is close to the contour line for Y = 5.3 on the map. The same 
result can be obtained for other combinations on this line. 

One of the several excellent features of DESIGN-EXPERT is shown in Fig. 8.74. 
It provides the optimum operating window (low dryness score) as well as the 
undesirable window (high dryness score) where sensory analysts can obtain optimal 
formulas for use in confirmation runs. To facilitate reading this map, a triangular 
grid was drawn into it. Notice that the optimal area is shaded and labeled R L L O .  

Referring back to the example, the three ingredients constitute 25% of the total 
blend. Hence an appropriate adjustment of the ingredient level should be made for 
the final blend. For example, for combination with the predicted response of 5.28, 
the final blend is: 
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DESIGN-EXPERT Analysls A (1.00) 

Model: 
Quadratic 

Response: 
R1 

Varlables: 
A - X l  
6 - X2 
c - x3 

. .  

Fig. 8.7-3 
Contour lines for the lotion experiment generated by DESIGN-EXPERT. Note the decreas- 
ing value of the response with increasing level of ingredient Xl(A). A triangular grid is drawn 
on the map to facilitate reading the coordinates of a point. 

DESIGN-EXPERT Analysls A (1.00) 

Variables: 
A - X1 

0 - x 2  
c - x3 

Fig. 8.7-4 
Optimization map for the lotion experiment showing the operating windows (shaded) for the 
low ( R L L O )  and high ( R L H I )  values of the response. 
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Xi = 0.55(0.25) = 0.1375 
X2 = 0.25(0.25) = 0.0625 
X3 = 0.20(0.25) = 0.0500 
Others = 0.7500 

Total 1 .m 

Note that the adjustment did not change the proportions between the ingredients, 
i.e., X ~ I X I  = 0.25103 = 0.062510.1375 = 112.2. The variance of the predicted 
response Y can be obtained as illustrated by Cornell (1981) in his book and in other 
published papers (Scheffd 1958, 1963; Gorman and Hinman 1962). 

Scheffd Simplex-Centroid Design 

The simplex-centroid design developed by Scheffi (1963) consists of 2q - 1 points 
in the simplex in which the ingredients are present in equal proportion. The design 
coordinates consist of 1, 0, .., 0 for the q pure components, 112, 112, 0, .., 0 for 
the binary mixtures, 113, 113, 0, .., 0 for the ternary mixtures, and llq, llq, 0, 
. . , 0 for the q-nary mixtures (centroid). 

An example of a configuration for simplex-centroid involving three and four in- 
gredients is shown in Fig. 8.7-5 and their corresponding design coordinates given 
in Tables 8.7-5 and 8.7-6. As with the previous mixture designs, one may replicate 
each design point in the simplex to obtain measures of lack of fit and pure error. 
One can also augment the design in Table 8.7-5 by adding three more design points 
as follows (Kurotori 1966; Snee 1971): 

Point XI x2 x3 

8 213 116 116 
9 116 213 116 

10 116 116 216 

The first seven design points will be used to estimate the coefficients for the special 
cubic model and the last three points to estimate lack of fit. The location of the design 
points in the mixture space is given in Fig. 8.7-6. 

In sensory evaluation, the observation on each design point is usually represented 
by the average score of several panelists. 

Example 8.7-2 

Three ingredients denoted by X I ,  X2, and X3, that differ considerably in price, 
are used to enhance the mildness of a liquid product used for bathing and shower- 
ing. These ingredients comprised 6% of the total mixture. 

Using the design in Table 8.7-5, data were collected on each design point, with 
four replications obtained at the centroid. The data are shown in Table 8.7-7. The 
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3 INGREDIENTS X1 

.. 

x .=x,=x,=1/ 3 

X1=Xa=X3=X.= 1 / 1 

x3 
Fig. 8.75 
Mixture space configuration of simplexcentroid design for three and four 
ingredients. 

Table 8.75 
Design coordinates for a 3-ingredient simplex-centroid. 

Design Points XI xz x3 

1 1 0 0 
2 0 1 0 
3 0 0 1 
4 112 112 0 
5 0 112 1 12 
6 112 0 1 12 
7 1 I3  1 I3  113 



PRODUCT OPTIMIZATION 1 65 

Table 8.7-6 
Design coordinates for a 4-ingredient simplex-centroid. 

Design Points x1 x2 x3 x4 

1 1 0 0 0 
2 0 1 0 0 
3 0 0 1 0 
4 0 0 0 1 
5 1 I2 1 12 0 0 
6 0 1 12 1 12 0 
7 0 0 112 1 12 
8 1 I2 0 0 112 
9 0 112 0 1 I2  

10 112 0 1 12 0 
11 1 I3 1 I3 1 I3  0 
12 0 1 I3 113 1 I3 
13 113 1 I3 0 1 I3  
14 113 0 1 I3 113 
15 1 14 1 I4 1 I4 1 I 4  

x2 

/ 7 
0 

/ 
\ 

x3 

Fig. 8.7-6 
Location of the design coordinates for an augmented 
simplex-centroid. 

observations on all the design points were fitted to a quadratic model using the SAS 
program below: 
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Table 8.7-7 
Experimental data for Example 8.7-2. 

Design Point XI XZ x3 Average Score 

1 1 0 0 2.6 
2 0 1 0 4.0 
3 0 0 1 1.9 
4 112 1 12 0 4.5 
5 0 112 112 3.1 
6 1 12 0 112 4.2 
7 113 1 I3 113 2.5 

113 113 113 3.2 
113 1 I3 113 3.0 
1 I3 1 I3 1 I3 2.8 

Note: Rating scale based on a 7-point intensity scale where 1 = low mildness and 7 = high mildness. 

DATA; 
INPUT X1 X2 X3 Y; 
CARDS; 
1.0 0.0 
0.0 1.0 
0.0 0.0 
0.5 0.5 
0.0 0.5 
0.5 0.0 
0.33 0.33 
0.33 0.33 
0.33 0.33 
0.33 0.33 
PROC GLM; 

0.0 2.6 
0.0 4.0 
1.0 1.9 
0.0 4.5 
0.5 3.1 
0.5 4.2  
0.33 2.5 
0.33 3.2 
0.33 3.0 
0.33 2.8 

MODEL Y = X1 X2 X3 Xl*X2 Xl*X3 X2*X3 / NOINT; 
OUTPUT OUT = POUT PREDICTED = PY 1 R= RESIDUAL; 

PROC PRINT; 
TITLE ‘EXAMPLE 8.7- 2’; 

The result is shown in Table 8.7-8. The estimates of parameters of the regression 
equation show that only the linear effects of the ingredients were found significant. 
Ingredient XZ was found to provide the largest positive effect on mildness, followed 
by XI and X3. Although not significant, notice the antagonistic effect of X2 and X3. 
The amount of this effect is (.5)(.5)(-2.87) = -0.72 unit on the rating scale. In 
this calculation, the value 0.5 is the design coordinate for X2 and X3. 
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Table 8.7-8 
Analysis of variance for Example 8.7-2 using SAS. 

Source of variance DF SS Parameter estimates 

Linear: bl 1 59.65 2.77f .78* 
b2 1 35.84 4.17* .78* 
b3 1 7.78 2.07f .78* 

Quadratic: blz 1 0.12 1.333f .37 
b13 1 0.91 4.323k .37 
b23 1 0.45 -2.873f .37 

Residual 4 2.46 

Total 10 107.21 

* p < 0.05 
Note: Parameter estimates f standard error. The mean square error (MSE) is 2.46/4 = 0.62. 

For the purpose of illustration, we investigate whether the model is a good fit 
by breaking the SSE into two parts, one due to lack of fit (SSFIT) and the other 
due to pure error (SSPURE) as discussed in Section 8.1. The pure error can be 
estimated from the observations at the centroid. This is found to be 

SSPURE = (2.5’ + 3.2’ + 3.0’ + 2.82) - [(11.5’)/4] 

= 33.33 - 33.06 = 0.27 

with 4 - 1 = 3 degrees of freedom. The lack of fit SS is therefore 

SSFIT = SSE - SSPURE 

= 2.46 - 0.27 = 2.19 

with 1 DF. Note that SSE is the residual SS in Table 8.7-8. The F-ratio, with 3 
numerator DF and I denominator DF, is 

F-ratio = (2.19/1)/(0.27/3) = 24.33 

which is not significant indicating that the quadratic model provides a good fit of 
the mixture response surface. In fact, the adjusted R-square is 1 - [[9(0.62)]/107.21] 
= 0.95. Since the model is a good fit, we can use the fitted equation for prediction 
purposes such as contour mapping, the result of which is shown in Fig. 8.7-7 and 
the optimization analysis shown in Fig. 8.7-8. The optimum area is located on the 
lower left corner of the map indicated by the shaded area. In this example, X2 is 
the most expensive ingredient, and one must examine the map concentrating M the 
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DESIGN-EXPERT Analysis A (1.00) 

Model: 
Quadratic 

Response: 
R1 

Varlables: 
A - X1 
0 - x2 
c - x3 

Fig. 8.7-7 
Contour lines for Example 8.7-2. 

DESIGN-EXPERT Analysis A (1.00) 

Variables: 
A - X1 
0 - x2  
c - x 3  

Fig. 8.7-8 
Optimization map for Example 8.7-8. 
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combination involving XI and X3. The synergistic effect of these ingredients on 
mildness is (0.5)(0.5)(4.33) = 1.08. The strategy is thus to find a combination with 
high amounts of XI and X3 as a partial substitute for X2. This can be found in Fig. 
8.7-8. 

DESIGNS WITH CONSTRAINTS ON PROPORTION 

In some situations, it is necessary to limit the levels of ingredients in the blend. 
Some may have only a lower limit or an upper limit, and others require both the 
lower and upper limits. In these situations, we are working with a subregion of the 
simplex. In the technical literature, these situations are known as constrained mix- 
ture experimentation. Note that in the previous sections, we have discussed mixture 
designs where the proportions of each ingredient are not bounded hence the entire 
mixture space is explored. In contrast to the constraint given by Eq. (8.7-1), the 
constraint now is 

O < ai 6 Xi < bi < 1, i = 1, 2, .., q (8.7-2) 

where ai is the lower limit of ingredient i and bi is its upper limit. 

Lower Constraint on Proportions 

We begin with a case where the ingredients have lower limits given by 

i.e., the proportion Xi can range from ai to 1. Schefft5 (1958) introduced the idea 
of pseudocomponents to facilitate formulation of mixture experiments with lower 
limits. Pseudocomponent is not a pure component, but is a mixture of several com- 
ponents, although they do not appear to be a mixture as seen by their design co- 
ordinates. The relationship between the pure components Xi, i = 1, 2, .., q, and 
the pseudocomponents X?, is given by a simple linear transformation 

xi = ai + (1 - L)XT (8.7-3) 

where L = Cai, the sum of lower limits for all ingredients in the mixture. From 
Eq. (8.7-3), the relationship below also holds: 
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Example 8.7-3 

An example that has been used several times in the past (Snee 1971 , Cornell 1982) 
to illustrate a mixture experiment with lower limit on proportions is that reported 
by Kurotori (1966). In this experiment pertaining to rocket propellant, three com- 
ponents - binder, oxidizer, and fuel - are blended to find a propellant with a 
modulus of elasticity of 3000. The lower bounds specified in the experiment are 
as follows: 

XI  (binder) 2 0.20 

XZ (oxidizer) 2 0.40 

X3 (fuel) 2 0.20 

Table 8.7-9 shows the design coordinates in terms of pseudocomponents and pure 
components along with elasticity responses for each mixture. Note that the first seven 
points constitute a simplex-centroid and are augmented by the addition of points 11, 
12, and 13. Kurotori (1966) used the added design points to estimate lack of fit of 
the model when the pure error is known. For the purpose of illustration, we have 
modified the problem so that we can estimate the pure error. This was accomplished 
by replicating the centroid four times (r = 4) given by points 7, 8, 9, and 10. To 
reduce the size of elasticity values, the responses were divided by 100, i.e., 2350/100 
= 23.50. This should not affect the results of the statistical analysis. 

The pure components in Table 8.7-9 were obtained using formula (8.7-3). For 
example, for design point 1 

X1 = 0.20 + (1 - 0.80)l = 0.40 

Xz = 0.40 + (1 - 0.80)O = 0.40 

X3 = 0.20 + (1 - 0.80)O = 0.20 

and so on. Note that it is the pure component coordinates that are used to make 
the blend. Using the SAS program given in the previous example, let us fit the data 
to a special cubic model using all the 13 observations. The result is 

The standard error of estimates for parameters of the model are found to be 
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Table 8.7-9 
Design coordinates and elasticity responses for Example 8.7-3 on rocket propellant (Kurotori 
1966, with modification). 

Design Pseudocomponents Pure components Elasticity 
point XI x2 x3 XI x2 x3 Y 

1 1 0 
2 0 1 
3 0 0 
4 112 1 12 
5 1 12 0 
6 0 I12 

7 113 113 
8 1 I 3  113 
9 113 113 

10 113 1 I 3  

0 
0 
1 
0 

112 
1 12 

1 I3 
1 I 3  
1 I3 
1 I3  

0.400 
0.200 
0.200 
0.300 
0.300 
0.200 

0.266 
0.266 
0.266 
0.266 

0.400 
0.600 
0.400 
0.500 
0.400 
0.500 

0.466 
0.466 
0.466 
0.466 

0.200 
0.200 
0.400 
0.200 
0.300 
0.300 

0.266 
0.266 
0.266 
0.266 

23.50 
24.50 
26.50 
24.00 
27.50 
29.50 

30.00 
29. I0 
29.90 
30.10 

11 213 116 1 I6 0.333 0.433 0.233 26.90 
12 116 213 116 0.233 0.533 0.233 27.70 
13 1 I6 116 213 0.233 0.433 0.333 29.80 

Note: Large values of elasticity are desirable. Values coded by Y/lOO. 

These estimates are used to test for the statistical significance of the regression coef- 
ficients, i.e., t = 23.5U0.14 = 167.93, which is significant at the O.OOO1 level. 
The SAS output shows that, except for b12, which is not statistically significant, 
all the regression coefficients were significant (p = .OOOl). 

The residual sum of squares is found to be SSE = 0.1194 with 6 degrees of freedom 
(Table 8.7-10). As done in the previous example, the SSE can be divided into two 
components, one due to lack of fit, and the other due to pure error, each with 3 
degrees of freedom. Using the observations at the centroid, 

SSPURE = (30.00’ + 29.70’ + 29.902 + 30. lo2) - [(119.70)’/4] = 0.0875 

and 

SSFIT = SSE - SSPURE = 0.1 194 - 0.0875 = 0.0319. 

Then the F ratio statistic is 

F = MSFIT/MSPURE = (0.0319/3)/(0.0875/3) = 0.3630 

which is clearly not statistically significant (Table 8.7-10). Therefore, the special 
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Table 8.7-10 
Analysis of variance of the rocket propellant data. 

Source DF ss MS F-ratio 

Pure effect 
bi 
b2 
b3 

biz 

b23 

Cubic effect 
bin 

Residual 
Lack of fit 
Pure error 

Binary effect 

bl3 

Total 

1 

6 
3 
3 

13 

5568.03 
2632.44 
1764.03 

4.74 
17.35 
25.90 

5.69 

0.1194 
0.0319 0.0106 0.3630 
0.0875 0.0292 

10 18.30 

Note: 0.1194 = 0.0319 + 0.0875 

as discussed in the previous section (no intercept model). 
The total DF is equal to the total number of observations because the intercept bo was not estimated 

cubic model is adequate to describe the data, and one may proceed to find the op- 
timum combinations of the independent variables that will yield maximum elasticity. 

The contour map of elasticity is shown in Fig. 8.7-9. The map portrays a moun- 
tain with maximum elasticity predicted at 0.20 binder, 0.30 oxidizer, and 0.50 fuel. 
In terms of pure components, a transformation is necessary using Eq. (8.7-3): 

Binder = 0.20 + (1 - 0.80)0.20 = 0.24 
Oxidizer = 0.40 + (1 - 0.80)0.30 = 0.46 

Fuel = 0.20 + (1 - 0.80)0.50 = 0.30 

Thus, the optimum combination of these components that should give a maximum 
elasticity is 24% binder, 46% oxidizer, and 30% fuel. As indicated in Section 8.1, 
this combination should be confirmed by an independent experiment. In many in- 
stances, refinements of the optimum formula are needed to meet manufacturing 
requirements. 

Lower and Upper Constraints on Proportions 

In practice we often encounter a situation where the ingredients must have lower 
and upper bounds to enable the product to be produced. This constraint on bounds 
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A (1.001 DESIGN-EXPERT Analysls 

Model: 
Special Cubic 

Response: 
R1 

Varlablss: 
A - X1 
B - x2 
c - x3 

Fig. 8.7-9 
Contour map of elasticity responses for the rocket propellant data (Example 8.7-3). 

reduces the size of the mixture space to a subregion of the simplex creating a design 
problem. Solutions to this problem have been reported by McLean and Anderson 
(1966), Snee and Marquardt (1974), and Saxena and Nigam (1977). Let us consider 
the solution by McLean and Anderson, known in the literature as the extreme ver- 
tices design. 

The extreme vertices design describes an irregular hyper-polyhedron with unique 
sets of vertices and centroids to estimate the parameters of the response surface. 
A minimum of q(q + 1)/2 points are needed to estimate the parameters of the 
quadratic model. Additional points may be necessary if an estimate of error and/or 
lack of fit is to be tested. The additional points may come from midpoints of the 
edges of the hyper-polyhedron or replications of existing design points. There are 
two steps for obtaining extreme vertices design. 

Step 1. Write down all possible two level treatment combinations using the ai 
and bj levels for all but one factor, which is left blank, i.e., (al, bz, a3, -, as, 
b) for a six factor (ingredient) study. This procedure generates q(2q-1) possible treat- 
ment combinations (ingredient or component combinations) with one factor's level 
blank in each. 

Step 2. Go through all q(2q'1) possible treatment combinations and fill in those 
blanks that are admissible, i.e., that level (necessarily falling within the constraints 
of the missing factor), which will make the sum of the levels for that treatment com- 
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bination equal to one. Each of the admissible treatment combinations is a vertex; 
however, some vertices may appear more than once. 

These steps are illustrated by the example given below. 

Example 8.7-4 

Consider a 3-ingredient problem (q = 3) where the ingredients are denoted by 
A, B, and C. Then q(2q-') = 3(22) = 12 points. The 12 points are the vertices (which 
appear more than once) of the extreme vertices design. Denote by a minus sign (- ) 
if the ingredient is at the lower bound and a plus sign (+) if the ingredient is at 
the upper bound. Thus for any two-ingredient combination, one point may contain 
all proportions at the lower bound (- , -), another point where all proportions are 
at the upper bound (+ , +), and two more points in the combination (+, -) and 
(-, +). 

Suppose that the following constraints are placed on A, B, and C. 

Lower Upper 
A 0.20 0.60 
B 0.12 0.50 
C 0.10 0.30 

Table 8.7- 11 shows the method of constructing the extreme vertices design for our 
example. For point 1, with (- , -), this corresponds to a proportion of 0.20 for 
A and 0.12 for B and 1 - 0.20 - 0.12 = 0.68 for C. Since the upper bound of 
C is 0.60, this point is not admissible. For point 2, with (+, -), this corresponds 
to 0.60 for A, 0.12 for B and 1 - 0.60 - 0.12 = 0.28. This point is admissible 
because all proportions are within the constraints. 

Of the 12 points, four points were not admissible, three were duplicates (points 
3, 7, 12), and points 2, 8, and 11 clustered to each other. The clustered points can 
be averaged to represent a vertex. Fig. 8.7-10 shows the space configuration of the 
design in which four vertices are apparent. For simplicity, one can take points 6, 
10, 3, and 8 as the vertices of the design. To complete the design, one can examine 
the configuration and locate the midpoints of the faces and a centroid. To avoid con- 
fusion with the previous design points numbering, the midpoints are indicated by 
points 13, 14, 15, 16 and the centroid by 17. For this example, we have a total 
of nine design points to explore the subregion of the simplex. The final extreme 
vertices design is shown in Table 8.7-12. 

8.8 SEARCH FOR OPTIMUM AREAS IN RESPONSE SURFACES 

In Example 8.6-1 of this chapter, maps of response surfaces for two sensory at- 
tributes were evaluated by examination of the magnitude of response for each con- 
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Table 8.7-11 
Construction of an extreme vertices design for three ingredients. 

Factorial Combination Corresponding Proportion 

Point A B C A B C 
- 0.20 0.12 0.68* - - 1 

2 + 0.60 0.12 0.28 
+ 0.20 0.50 0.30 3 

4 + + 0.60 0.50 -0.10* 

- 
- 

0.20 0.70* 0.10 5 
6 + 0.60 0.30 0.10 

+ 0.20 0.50 0.30 7 
8 + + 0.60 0.10 0.30 

- - 
- 

- 

0.78* 0.12 0.10 9 
10 + 0.40 0.50 0.10 

+ 0.58 0.12 0.30 1 1  
12 + + 0.20 0.50 0.30 

- - 
- 

- 

Note: "*" = blank; * = not admissible, outside the simplex. 
Constraints: 0.20 Q A Q 0.60 

0.12 < B Q 0.50 
0.10 < C Q 0.30 

A 

Fig. 8.7-10 
Configuration of extreme vertices design in the subregion of a simplex 
(Example 8 .74) .  
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Table 8.7-12 
Extreme vertices design for three ingredients with lower and upper bounds (Example 8.7-4). 

Design point A B C 

Vertices 
6 0.60 0.30 0.10 

10 0.40 0.50 0.10 
3 0.20 0.50 0.30 
8 0.60 0.10 0.30 

Midpoints 
13 
14 
15 
16 

0.50 0.40 0.10 
0.30 0.50 0.20 
0.40 0.30 0.30 
0.60 0.20 0.20 

Centroid 
17 0.45 0.35 0.20 

Note: By definition, point 17 is not a true centroid because it is not equidistant from the four vertices. 

tour line on the maps. The responses for the two attributes were later linearly com- 
bined, weighted by their respective variances to simplify the search for optimum 
areas. When the attributes cannot be combined because of a dissimilar map of response 
surfaces, one can overlay the maps of the two attributes. In fact, one can overlay 
the maps of several attributes as illustrated in Gacula and Singh (1984) and in Box 
and Draper (1987). The intersection point of two or more optimal contour lines defines 
the coordinates of the optimum level for each ingredient. 

Consider the contour maps in Fig. 8.8-1 and 8.8-2 generated by SAS using the 
procedure PROC RSP. The value of the response for each contour line indicated 
by letters A, B, C, etc., are shown at the bottom of the map. High values of Y1 
are desirable; hence, one should use contour lines E and F with predicted responses 
of 110 and 120, respectively (Fig. 8.8-1). Figure 8.8-2 shows another response 
variable Yz. Both the dependent variables depict entirely different response surfaces; 
thus it is not advisable to obtain a linear combination of them. The Y 1 response depicts 
a “saddle” and Yz, a “basin.” However, one can overlay contour lines E and F 
into the surface of Fig. 8.8-2 and obtain a surface given in Fig. 8.8-3. The three 
filled circles are intersection of contour lines E and D, C and F, and C and E. These 
intersection points provide the coordinates of possible optimal levels of the indepen- 
dent variables. For example, point 1 is expected to give Y1 = 110 and Y2 = 90, 
point 2 to give YI  = 120 and Y2 = 80, and so on. The variance of the predicted 
values is generally difficult to obtain and is not given here. 

Another technique for searching potential areas (operating window) that is often 
overlooked in practice is the examination of the average responses for each design 
point. In some cases, large residual can be an indicator of a maximum or a minimum 
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response; however, it is not a consistent indicator. Note that this technique should 
be used only for a statistically designed optimization study. In the examination of 
the responses, design points with desirable scores are generally good candidates for 
an optimum/minimum response, provided the model is a good fit as shown by a 
high R-square statistic. In the context of optimization, a desirable score would be 
high if the optimal response is the high value on the rating scale, i.e., the 9-point 
hedonic scale (1 = dislike extremely, 9 = like extremely). Likewise, if the optimal 
response is the low value on the scale, then this value is the desirable score, i.e., 
the 7-point off-flavor scale (0 = no off-flavor, 7 = extremely high off-flavor). In 
the following example, we will illustrate this technique using DESIGN-EXPERT. 

Example 8.8-1 

Table 8.8-1 shows the design matrix for XI and XZ and dependent variables YI 
and YZ From a central composite design. The estimates of the regression parameters 
for a quadratic response surface model are shown in Table 8.8-2, and the estimates 
of residuals in Table 8.8-3. 

For both texture and overall liking, design point 2 with high level of XI and low 
level of XZ has the highest average score. This signals that the operating window 
would be located around this area. The contour maps for Y1 (Fig. 8.8-4a) and Y2 
(Fig. 8.8-4b) show that design point 2 indeed lies within the optimum operating win- 
dow. If we overlay these maps, DESIGN-EXPERT will produce the optimization 
map shown in Fig. 8.8-5. Clearly, the shaded area on this map simultaneously op- 
timizes texture and overall liking scores. The optimal levels for both the indepen- 
dent variables are found to be XI = 0.20 and XZ = -0.99 and the value of Y1 
at this point is a maximum at Y1 = 6.74. Result for Y2 should be similar. 

Figure 8 -8-6 illustrates one feature of DESIGN-EXPERT, the normal probability 
plot. In this figure, the residuals are plotted to determine whether they are normally 

Table 8.8-1 
Design matrix for a two-variable central composite design. 

Design point XI X1 YI Y2 

1 - 1  - 1  6.53 6.40 
2 1 - 1  6.82 7.00 
3 - 1  1 6.19 6.10 
4 1 1 6.12 6.30 
5 -2 0 6.09 6.00 
6 2 0 5.85 5.50 
7 0 -2 6.52 6.62 
8 0 2 6.01 6.09 
9 0 0 6.62 6.50 

Note: Y 1 = texture liking, Y2 = overall liking. 
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Table 8.8-2 
Estimates of regression parameters for Y1 and Y2 using the DESIGN-EXPERT 

Parameter Y1 Y2 

Intercept 6.66 f 0.13 6.65 f 0.26 
bi -0.02 f 0.05 -0.02 f 0.10 
bz -0.17 f 0.05 -0.17 f 0.10 
bi I -0.17 f 0.05 -0.22 f 0.10 
b22 -0.10 f 0.05 -0.07 f 0.10 
b12 -0.09 f 0.08 -0.10 f 0.18 

Note: f standard error. 

Table 8.83 
Estimates of predicted and residual obtained from DESIGN-EXPERT. Other statistics in the 
output of this software are excluded for brevity. 

Attribute Design Pt. Actual Predicted Residual 

Y1 

Y2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

6.53 
6.82 
6.19 
6.12 
6.09 
5.85 
6.52 
6.01 
6.62 

6.40 
7.00 
6.10 
6.30 
6.00 
5.50 
6.62 
6.09 
6.50 

6.498 
6.634 
6.334 
6.111 
6.024 
5.937 
6.619 
5.932 
6.661 

6.46 1 
6.628 
6.318 
6.084 
5.822 
5.755 
6.737 
6.050 
6.654 

~~ 

0.032 
0.186 

-0.144 
0.009 
0.066 

-0.087 
-0.099 

0.078 
-0.041 

-0.061 
0.372 

0.216 
0.178 

-0.255 
-0.117 

0.040 
-0.154 

-0.218 

Note: Y1 = Texture liking, Y2 = Overall liking. Residual = Actual - Predicted. 

distributed. If the residuals fall closely along the straight line, they fit the normal 
distribution, and the data in this figure is a good fit for practical purposes. One can 
also plot the residual versus the predicted response to provide a visual analysis of 
the distribution of residuals (Fig.8.8-7). The residuals in this figure appeared to be 
distributed at random, suggesting a homogenous variance in the data. 

If the desirable score in this example is a minimum, then design point 6 would 
be a potential optimal point. Obviously, other points on the optimization map can 
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Model: 
Quadratlc 

Rerponsm: 
R l  

(a) 

Model: 
Quadratlc 

Response: 
R 2  

DESIGN-EXPERT Analyslr 
2.000, / 

DESIGN-EXPERT Analyslr 

x 

-a.ooo -1.333 -0.607 0.000 0.617 1.333 2.00 

x1: Xl 

-"-'I \ \ \ \ \  

DESIGN-EXPEAT Analysls 

XI: x1 

Fig. 8.8-4 
Contour maps for texture (Rl) and overall liking (R2) for Example 8.8-1. 

be selected that meet the desirable score criterion. Again, it should be emphasized 
that the selected points should be validated by a confirmation run. 

8.9 USE OF CONTOUR MAPS IN PRODUCT REFORMULATION 

One of the many advantages of an optimization study by experimental design is 
that the contour maps can be used in reformulation work. In this application, the 
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Fig. 8.8-5 
Optimization map for texture ( R l )  and overall liking (R2) overlayed 
for Example 8.8-1 using the quadratic model. The low (Lo) response 
is 5.8 and the high (Hi), 6.60. 
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Fig. 8.8-6 
Normal probability plot for texture liking. 



184 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

1.646.- Model: 
Oundratlc 

-1.322.- 

Predicted aa R1 

Fig. 8.8-7 
Plot of residual versus predicted response for texture liking. 

contour maps served as a database that contains several formulation options. Ex- 
perience shows that product reformulation is a cycle that provides many challenges 
to individuals in research and marketing. Product reformulation occurs due to a chang- 
ing market demands for certain product extensions, an increaseldecrease in price 
of ingredients, to satisfy consumer needs, elimination of product’s defects, and most 
importantly to be equal to or superior to competitors. 

The example that follows illustrates the use of contour maps in reformulation work. 

Example 8.9-1 

The backgound of this study is as follows. Research and marketing personnel have 
focused concern on carbohydrate and salt levels of a certain canned products. Corn- 
pared to their competitors, the perceived sweetness level of this product was found 
to be low. An optimization study was thus initiated with two variables to be varied, 
namely, % sweetness and % salt. The sweetness level consisted of a combination 
of % dextrose and % sucrose. Using a central composite design, nine formulations 
were made with varying levels of sweetness (0.75-2.75%) and salt (2.0-3.20%). 
An optimum formula was found in this study and was successfully marketed for 
over five years. 

However, a recent audit of the product against competitors showed that the major 
complaint of this product is that of being bland. The initial step in approaching the 
problem was to review the contour maps for overall liking obtained five years ago. 
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This map is shown in Fig. 8.9-1. As can be seen, the map depicts a “saddle” with 
several potential formulas given by contour lines F and G. The marketed formula, 
code R008, came from the area on the lower right comer of the map. This was selected 
because of the consumer concern at that time of high salt level in a product. 

Based on this map (Fig. 8.9-1) a reformulation was made by increasing the salt 
level: one formula code R206 has 2.7% salt and 1.8% sweetness and the other, code 
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RlOl has 3.0% salt and 1.5% sweetness. These formulas are located in the upper 
left quadrant of the map. Notice that the vertical and horizontal axes are standardiz- 
ed, such that for % sweetness a - 2 on the standardized scale corresponds to 0.75 % 
on the actual scale and a 2 corresponds to 2.75%, and so forth; see Fig. 8.6-3. 

The next step was to conduct a consumer test comparing two reformulated for- 
mulas with the current formula (R008) based on saltiness, flavor, and overall liking 
using the 9-point hedonic scale. The result of the consumer test shows that the for- 
mula with the 3.0% salt (code R101) was significantly more well-liked in sweetness 
level over the two other formulas. Based on this result, the current formula was 
ultimately replaced by formula code R101. In this example, it was assumed that 
the production processes did not change during those years. 

8.10 AUGMENTATION OF FRACTIONAL FACTORIAL DESIGN 

In Chapter 6, the fractional factorial design was discussed. It was shown that a 
considerable reduction in the number of experimental runs can be realized by frac- 
tionation. In this section, we illustrate the augmentation of fractional factorial to 
obtain designs for estimating quadratic response surfaces in optimization studies. 
Note that the Box-Wilson design presented in Section 8.6 is an augmented design 
accomplished by the addition of the axial and center points to the design. 

Augmentation of fractional factorial is similarly obtained by the addition of the 
axial and center points in a manner shown below for three independent variables: 

XI x2 x3 
Center point: 0 0 0 
Axial points: -ff 0 0 

ff 0 0 
0 -a 0 
0 a 0 
0 0 -ff 

0 0 ff 

Here, a is the length of the axial point as defined in Section 8.6 and a 0 denotes 
the middle level of the independent variable. The above augmentation pattern can 
be easily generalized to k independent variables. The Plackett-Burman and the Box- 
Behnken designs discussed in Sections 8.4 and 8.5, respectively, can be augmented 
by the above procedure. However, the statistical properties of these augmented 
designs are not fully understood and a theoretical work on these designs is obvious- 
ly needed. In particular, because of the complex nature of the alias structure of frac- 
tional factorial, especially the Plackett-Burman design, a statistician must be con- 
sulted before using them. 
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Hartley (1959) reported an augmented composite design from fractional factorial 
to estimate quadratic response surfaces. Similarly, Westlake (1%5) obtained designs 
based on irregular fractions of factorials and requiring even fewer experimental runs 
than those obtained by Hartley. In this section, we consider Hartley's design and 
display the design matrix to make the augmented designs useful to product formulators 
since the matrix indicates the levels of each ingredient that goes into the formulation 
of the product. 

The Augmented 1/2 Fraction of 2' 

Table 8.10-1 shows the design matrix for a 1/2 fraction of 24 factorial design. 
In this design, the defining contrast I (See Section 6.2) is I = ABC which is not 
the usual recommendation that uses the highest order interaction ABCD. The cen- 
tral goal here is the estimation of response surfaces, hence we want as much as possi- 
ble to estimate the two-factor interactions, in addition to the quadratic effects. This 
goal deviates from that discussed in Section 6.2, wherein the confounding of effects 
is to be minimized, i.e., minimize contamination of main effects with lower order 
interactions or confound higher order interactions to main effects. 

Table 8.10-1 
Augmented Composite design for estimating quadratic response surface for a 1/2 fraction of 
24 factorial design; I = ABC. 

Design Factor 
point combination XI x2 x3 x4 

a 
b 

abc 
ad 
bd 
cd 

abcd 

Center point 

C 

1 
- 1  
- 1  

1 
1 

- 1  
- 1  

1 

0 

- 1  
1 

- 1  
1 

- 1  
1 

- 1  
1 

0 

- 1  - 1  
- 1  - 1  

1 - 1  
1 - 1  

- 1  1 
- 1  1 

1 1 
1 1 

0 0 

10 Axial points -a 0 0 0 
11 a 0 0 0 
12 0 -a 0 0 
13 0 a 0 0 
14 0 0 -a 0 
15 0 0 a 0 
16 0 0 0 -a 
17 0 0 0 a 

Note: Model is Yijkm = BO + BlXl + BZXZ + B3X3 + B4X4 + B M X I X ~  + BuXzX4 + B34X3X.i + 
BIIX: + B ~ z X ! ~  + B~IX:  + BMX: + Eijkm 
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In practice, the two-factor interaction and quadratic terms in the model are generally 
the most important terms that determine the curvature of the response surfaces. The 
design in Table 8.10-1 has the following aliases: all two-factor interactions occur 
in different alias-sets so that all the six interaction effects (AB, AC, AD, BC, BD, 
CD) can be estimated along with the four main effects (A, B, C, D) and all the 
quadratic effects (A2, BZ, C2, D2) as shown below. 

A + BC AD + BCD 
B + AC BD + ACD 
C + AB CD + ABD 
D + ABCD 

Thus, the estimate of the effects of factor A include the effects due to interaction 
BC, and so on. Following the above alias-sets, the statistical model of the response 
surface is 

Notice a change in notation to Xs, i.e., A = XI,  B = X2; also see Section 8.1 of 
this chapter for the definition of the terms on the above model. In the alias-sets, 
three of the two-factor interactions are each confounded with main effects A, B, 
and C. The formulator can assign the factors accordingly, i.e., which two-factor 
interaction to be confounded with a particular main effect. Remember that the let- 
ters A, B, C are merely a label. 

The Augmented 112 and 1/4 Fractions of Z5 
For the 2’ factorial, we consider the 1/2 and the 114 fractions. In the 1/2 fraction, 

using I = ABCDE meets the appropriate alias-sets for estimating the quadratic 
responses and the construction of this fraction is illustrated by Example 8.10-1. For 
the 1/4 fraction, the recommended design matrix is given in Table 8.10-2. Here 
the defining contrast is I = ADE, BCE, ABCD, and all the two-factor interactions, 
the main and quadratic effects can be estimated. The seven alias-sets for this design 
are as follows: 

A + DE AB + CD 
B + CE AC + BD 
C + BE 
D + AE 
E + AD + BC 
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Table 8.162 
Augmented composite design for estimating quadratic response surface for 114 fraction of 
25 factorial; I = ADE, BCE, ABCD. 

~~~~~~ 

Design Factor 
point combination x1 x2 x3 x4 XS 

1 
2 
3 
4 
5 
6 
7 
8 

9 

10 - 19 

ab 
ac 
bd 
cd 
e 

bce 
ade 

abcde 

Center point 

1 1 
1 - 1  

- 1  1 
- 1  - 1  
- 1  - 1  
- 1  1 

1 - 1  
1 1 

0 0 

- 1  - 1  - 1  
1 - 1  - 1  

- 1  1 - 1  
1 1 - 1  

- 1  - 1  1 
1 - 1  1 

- 1  1 1 
1 1 1 

0 0 0 
Axial points 

Note: Model is Yijkmn = Bo + BiXi + BzXz + B3X3 + B4X4 + BjXs + BIIX? + BzzX: + B33X3 
+ BuF: + BJX:  + BIZXIXZ + B I I X I X ~  + Eijkmn 

The Augmented 114 Fraction of 2' 

Table 8.10-3 shows the augmented design for a 1/4 fraction of 26 factorial. Here 
the defining contrast is I = ABC, DEF, ABCDEF. As discussed in Section 6.2 
(Chapter 6) ,  the defining contrast gives the alias of an effect in the statistical model. 
In this table, the aliases of factor A are obtained as follows: 

A x ABC = BC, A x DEF = ADEF, A X ABCDEF = BCDEF 

Therefore in this model, the estimate of effects due to factor A include effects due 
to interactions BC, ADEF, and BCDEF. The design in Table 8.10-3 permits the 
estimation of all the 15 two-factor interactions, some interactions being confounded 
with the six main effects, and the nine remaining aliased or confounded with three- 
factor or higher-order effects. For example, the two-factor alias-sets for the six main 
effects are: 

A + BC D + EF 
B + AC E + DF 
C + AB F + DE 

The other alias-sets can be obtained as illustrated above for factor A; see also Sec- 
tion 6.2. 
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Table 8.10-3 
Augmented composite design for estimating quadratic response surface for a 1/4 fraction of 
26 factorial; I = ABC, DEF, ABCDEF. 

Design Factor 
point combination XI x2 x3 x4 xs X6 

1 ad 1 - 1  - 1  1 - 1  - 1  
2 bd - 1  1 - 1  1 - 1  - 1  
3 cd - 1  - 1  1 1 - 1  - 1  
4 abcd 1 1 1 1 - 1  - 1  
5 ae 1 - 1  - 1  - 1  1 - 1  
6 be. - 1  1 - 1  - 1  1 - 1  
7 ce - 1  - 1  1 - 1  1 - I  
8 abce 1 1 1 - 1  1 - 1  
9 af 1 - 1  - 1  - 1  - 1  1 

10 bf - 1  1 - 1  - 1  - 1  1 
11 cf - 1  - 1  1 - 1  - 1  1 
12 abcf 1 1 1 - 1  - 1  1 
13 adef 1 - 1  - 1  1 1 1 
14 bdef - I  1 - 1  1 1 1 
15 cdef - 1  - 1  1 1 1 1 
16 abcdef 1 1 1 1 1 1 

17 Center point 0 0 0 0 0 0 
18 - 29 Axial mints 

Example 8.10-1 

In this example, the five independent variables are denoted by XI,  XZ, X3, Xq, 
and XS, and the dependent variable by Y 1. Let us follow the fractionation procedure 
discussed in Chapter 6. For a complete factorial with k = 5 variables there are 32 
factorial combinations (Table 8.10-4). This number of combination is obviously pro- 
hibitive in many research situations, thus, we may fractionate these combinations 
to a half to result in two sets, each set with 16 combinations. Confounding the highest 
order interaction results in the defining equation 

Applying this equation to the 32 treatment combinations divides them into 2 sets, 
each combination with either L mod 2 = 1 or 0. If we take L mod 2 = 0, the frac- 
tional factorial combinations are shown in Table 8.10-5. Estimate of effects for AB 
will include effects due to interactions AB and CDE; effect AC will include effects 
due to interactions AC and BDE, and so on. 
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Table 8.10-4 
Factorial combinations for k = 5 independent variables to illustrate confounding and 
fractionation. 

Factor 
combination X.¶ x b  X C  X d  X. L L m o d 2  

(1) 
a 
b 
ab 
C 

ac 
bc 
abC 
d 
ad 
bd 
abd 
cd 
acd 
bcd 
abcd 
e 

be 
abe 

ace 
bce 
abce 
de 
ade 
We 
abde 
cde 
acde 
bcde 
abcde 

ae 

ce 

0 
I 
0 
I 
0 
I 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
1 
I 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
I 
1 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
I 
0 
0 
0 
0 
1 
1 
I 
1 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
I 
I 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
I 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 

0 0 
1 1 
1 1 
2 0 
1 1 
2 0 
2 0 
3 1 
1 1 
2 0 
2 0 
3 1 
2 0 
3 1 
3 1 
4 0 
I 1 
2 0 
2 0 
3 1 
2 0 
3 1 
3 1 
4 0 
2 0 
3 1 
3 1 
4 0 
3 1 
4 0 
4 0 
5 1 

Note: Defining equation L = X. + Xb + X, + Xd + X, 

In this example, L mod 2 = 1 is used and the design matrix for this is given in 
Table 8.10-6. Each factorial combination (formulation) is numbered from 1 to 16 
representing each point of the design. Remember that the numbers 1, - 1, etc., are 
coordinate of each point in the design space configuration. The design matrix which 
consists of these coordinate points is orthogonal to simplify obtaining the regression 
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Table 8.10-5 
Aliases and a one-half fraction of a 2 5  factorial. 

Factorial combinations with Pairs 
L mod 2 = 0 of aliases 

(1) 
ab 

bc 
ad 
w 
cd 
abcd 

be 

abce 
de 
abde 
acde 
bcde 

ac 

ae 

ae 

p ,  ABCDE 
AB, CDE 
AC, BDE 
BC, ADE 
AD, BCE 
BD, ACE 
CD, ABE 
ABCD, E 
AE, BCD 
BE, ACD 
CE, ABD 
ABCE, D 
DE, ABC 
ABDE, C 
ACDE, B 
BCDE, A 

Table 8.10-6 
Design matrix for L mod 2 = 1. 

Factorial 
combination Point XI x2 x3 xl XS 
a 1 1 -1 -1 -1 - 1  
b 2 -1  1 -1 - 1  -1  
C 3 -1  -1  1 - 1  - 1  
abC 4 I 1 1 - 1  - 1  
d 5 -1  -1 -1 1 - 1  
abd 6 1 1 - 1  1 - 1  
acd 7 1 - 1  1 1 - 1  
bcd 8 -1  I 1 1 - 1  
e 9 -1 -1 - 1  - 1  1 
abe 10 1 1 - 1  -1  1 
ace 1 1  1 -1  1 -1  1 
bce 12 - 1  1 1 -1  1 
ade 13 1 - 1  - 1  I 1 
We 14 -1 1 - 1  I 1 
cde 15 - 1  - 1  I 1 I 
abcde 16 1 1 1 1 1 

Center point 17 0 0 0 0 0 

Axial points 18-27 
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equation. In Table 8.10-6 formulation 1 (Point 1) consists of variable XI at the high 
level denoted by 1 and all the remaining variables at the low level denoted by - 1, 
and so on. 

The design in Table 8.10-6 is augmented by the addition of a center point and 
five axial points corresponding to each independent variable. That is, a total of 2k 
+ 1 points is added or 11 points in our example. Thus the total number of formula- 

Table 8.10-7 
Design matrix, responses, and SAS program to analyze the data for Example 8.10-1. 

DATA; 
TITLE ‘OPTIMIZATION STUDY OF A HOUSEHOLD PRODUCT’; 

CARDS; 
INPUT X1-X5 Y1; 

1 -1  -1  -1 -1  8.56 
-1  1 -1  - 1  -1 6.72 
-1 -1  1 -1 -1 7.30 

1 1 1 -1 -1 10.84 
-1 -1 -1 1 -1 8.87 

1 1 -1  1 - 1  12.46 
1 - 1  1 1 -1  12.13 

-1 1 1 1 -1 9.55 
-1 -1 -1 -1 1 6.67 

1 1 -1 -1 1 9.84 
1 -1 1 -1 1 11.05 

-1  1 1 -1  1 8.74 
1 -1  -1 1 1 11.33 

-1 1 -1  1 1 9.01 
-1 -1 1 1 1 6.91 

1 1 1 1 1 10.74 
0 0 0 0 0 10.28 

-2 0 0 0 0 5.65 
2 0 0 0 0 11.43 
0 -2 0 0 0 9.33 
0 2 0 0 0 10.40 
0 0 -2 0 0 9.31 
0 0 2 0 0 10.33 
0 0 0 -2 0 6.47 
0 0 0 2 0 10.97 
0 0 0 0 -2 10.00 
0 0 0 0 2 10.21 

PROC GLM; 
MODEL Y1 = X1 X2 X3 X4 X5 Xl*Xl X2*X2 X3*X3 X4*X4 X5*X5 

Xl*X2 Xl*X3 X2*X3 XI*X4 X2*X4 X3*X4 XI*X5 X2*X5 
m * x 5  x4*x5; 

OUTPUT OUT = POUT PREDICTED = PY1 RESIDUAL = RES; 
PROC PRINT; 



194 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

tions for a 5-variable study is 16 + 11 = 27. The resulting design matrix along 
with the value of each response for each design point is shown with the SAS pro- 
gram in Table 8.10-7. Note that point 17 represents the center point of the design 
where all the five variables are set at the middle level. Also, the length of the axial 
point is 01 = f 2. The estimates of parameters of the model as will as the predicted 
responses are given in Table 8.10-8. Notice that in the parameter estimates, the main 
effects are confounded with the 4-factor interactions and the 2-factor interactions 
are confounded with the 3-factor interactions. These confounding patterns meet our 
goal to estimate the curvature of the response surface. In this example, a high response 
value is desirable and an inspection of the predicted values (PY 1) reveals some in- 
teresting formulations. For example, the following formulations (Obs) are poten- 
tially promising: 

Formula 
6 
7 

11 
13 

Predicted Response 
12.46 
12.18 
10.94 
11.49 

Contour maps around these formu.rtions shoull be explored. 
In a well-designed experiment, one usually finds one or more design points close- 

ly meeting the criteria of response and the selected point can be used as a preliminary 
formula. In this case, a considerable amount of time and money is saved in the op 
timization process. 

8.11 PRECAUTION ON FRACTIONAL FACTORIAL DESIGNS 

We have discussed in Chapter 6 and in the previous section how to reduce the 
number of design points or treatment combinations to minimize cost of experimen- 
tation. It was indicated that this reduction results in loss of information through con- 
founding of unimportant effects. There is no way, other than conducting an experi- 
ment, to verify that the assumed unimportant effects are in fact truly unimportant, 
since they are confounded to other effects in the model. This assumption is the ma- 
jor precaution in the use of fractional factorial designs, particularly in screening 
studies, i.e., estimation of main (factor) effects. To minimize the consequence of 
this assumption, one must use a fractional design where higher order interaction 
effects, i.e., 3-factor interaction, are confounded to the main effects. The software 
DESIGN-EASE provides a more complete tabulation of fractional factorial as well 
as the full factorial designs. In this section, the above assumption will be examined 
using sensory data from an optimization study. 
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Table 8.10-8 
A partial SAS output for Example 8.10-1. 

O P T I M I Z A T I O N  OF A HOUSEHOLO PWCWlCT 

DENERAL L I N E A R  YOOELS PROCEDURE 

M P E H K N T  VARIABLE: Y1 

T FOA HO: PR B I T 1  STD ERRaR OF 
PARANETER ESTINATE PARANETER=O ESTIMATE 

INTERCEPT 
X I  
I 2  
x3 
x 4  
xs 
X l ' X l  
X2*X2 
X3.X3 
X 4 ' X I  
XS'XS 
X1*X2 
X1*X3 
XI*X4 
Xl'XS 
X2'13 
X2*X4 
X2.XS 
X3*X4 
X3'XS 
X 4 ' X S  

OBS 

1 z 
3 
4 
5 

7 
8 
9 

I0 
11 
12 
13 
14 
1s 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

-0.16375000 
-0.49375000 

O P T I M I Z A T I O N  

X l  x2 x3  x4 

1 - 1  - 1  - 1  
- 1  1 - 1  - I  
- 1  - I  1 - 1  

1 1  1 - 1  
- 1  - 1  - 1  1 

1 1 - 1  1 
1 - 1  1 1 

- 1 1 1 1  
- 1  - 1  - 1  - I  

1 I - I  - I  
1 - 1  1 - 1  

- 1  1 1 - 1  
1 - I  - I  1 

- 1  1 - 1  1 
- 1  - 1  1 1 

1 1 1 1  
0 0 0 0  

- 2 0 0 0  
2 0 0 0  
0 - 2  0 0 
0 2 0 0  
0 0 - 2  0 
0 0 2 0  
0 0 0 - 2  
0 0 0 2  
0 0 0 0  
0 0 0 0  

24.32 
13.09 

3 .14  
2.54 
8 . 8 1  

- 0 . 7 5  
-3 .06  
-0 .24  
- 0 . 3 3  
- 2 . 6 7  

0.27 
-1 .84  

0 . 7 1  
0 . 7 8  
0 .04  

-0 .06  
-0 .02  
-0. I 8  
- 4 . 5 1  
- 1 . 3 9  
- 4 . 2 0  

OF A mX16Em)CO 

xs Y I  

- 1  8 .56  
- 1  6 . 7 2  
- 1  7 . 3 0  
- 1  10.84 
- 1  8 .87  
- 1  12.46 
- 1  12.13 
- 1  9.55 

1 6 . 6 7  
I 9.81  
1 11.05 
1 8 .74  
I 11.33  
1 9 . 0 1  
1 6 .91 
1 10 .74  
0 10 .28  
0 5 .65  
0 11.43 
0 9.33 
0 10.40 
0 9 .11  
0 10.33 
0 6 .47  
0 10 .97  

- 2  10.00 
2 10.21 

0.0001 
0.0001 
0.0202 
0.0443 
0.0001 
0.4832 
0 .0223 
0.8201 
0.7502 
0 .0368 
0.7939 
0.1153 
0.5027 
0.4668 
0.9674 
0.9512 
0.9837 
0.8624 
0.004 1 
0.2128 
0.0057 

pRoo(ICT 

PY 1 

8.3169 
6 .4461 
7.0711 

10.5753 
8.9094 

12.4636 
12.1786 

9.5678 
6.5536 

10.9428 
8.6019 

I I . 4 9 I l  
9.1403 
7 .0853 

10.8794 
10.0778 
5 .7461 

11.5361 
9.3644 

10.5678 
9 . 4 1 4 4  

10.4078 
7.1311 

10.5111 
10.3494 
1 0 . 0 6 2 I  

9.6678 

0.41441850 
0. OY5Y lY24 
O.OY5YIY24 
0.095Y1924 
O.OYSYlY24 
O.OYSYIY24 

RES 

0.24306 
0.27389 
0.22889 
0.26472 

-0.03944 
-0.00361 
-0.04861 
-0.01178 

0 .11639 
0 .15722  
0.10722 
0.13806 

-0.16111 
-0.13028 
-0.17528 
-0.13944 

0.20222 
-0.0961 1 
-0 .10611 
-0.03444 
-0.16778 
-0.12444 
-0.07178 
-0.66111 

0.45889 
-0.34944 

0.14722 

Using the confounding and fractional techniques given in Chapter 6, it can be shown 
that the following two sets of treatment combinations result from a one-half fraction 
of 2' using the ABC interaction as the defining contrast: 

Set 1 
a 
b 

abc 
C 

Set 2 
(1) 
ab 
ac 
bc 
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In Set 1, factor A is confounded with the BC interaction, B with the AC interaction, 
and C with the AB interaction. Note that the ABC interaction is confounded with 
the grand mean p. The confounding of effects is easily seen by considering the design 
matrix below: 

p A B AB C AC BC ABC 

a + + -  - - - + +  
b + - + -  - + - +  
C + -  - + + -  - +  
abc + + + + + + + +  

For simplicity, the coefficient of 1 is omitted. The heading of this matrix (first row) 
are effects to be estimated if a full factorial (nonfractional) is used. Notice that the 
coefficients for p and ABC are identical since they are confounded; likewise, for 
A and BC, and so on. If one uses Set 2, the result will be the same except for signs. 
Thus, A = -BC, B = -AC, and C = -AB and the sums of squares of these 
effects will also be the same. 

Let us change notation by using X I  for A, XZ for B and X3 for factor C. If Set 
1 is used in the optimization experiment, the model will be 

Y = Bo + BlXl + BZXZ + B3X3 + error 

However, because of confounding the expected values (E) of the regression coeffi- 
cients are 

E(Bi) = Bi + B23 

E(Bz) = Bz + B I ~  

E(B3) = B3 + Biz 

That is, the regression coefficients for the main effects are confounded with the in- 
teraction regression coefficients. Unless theoretical and/or historical data are 
available, one must conduct Set 2 experiment to verify the magnitude of the interac- 
tion regression coefficients. 

Example 8.11-1 

We can evaluate fractional factorial designs from data obtained from a full fac- 
torial experiment since each treatment combination is independent of the others. Let 
us use the data from a smoked ham optimization with three independent variables 
XI,  X2, and X3. In this example, the dependent variable Y is overall liking measured 
on a 150-mm unstructured line scale with larger values denoting an increasing lik- 
ing for the product. 
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A central composite design with 15 design points was used in this study. Table 
8.1 1-1 displays the design matrix and the average sensory score Y computed from 
a balanced incomplete block design. Notice that design points 1-8 represent the 23 
factorial design, point 9 the center point, and points 10-15 the axial points. In the 
statistical analysis, the first 8 points was split into two representing Sets 1 and 2 
as discussed at the beginning of this section. Three models were fit to the data, one 
for the central composite design (full model), and the remaining fractional models 
for Set 1 and Set 2. 

The equation to be solved for the unknown regression parameters for Set 1 data is: 

30 XI x2 x3. 
1 1 -1 -1 
1 -1 1 - 1  
1 - 1  -1 1 
1 1 1 1 
1 0 0 0 
1 -2  0 0 
1 2 0 0 
1 0 -2  0 
1 0 2 0 
1 0 0 -2  
1 0 0 2 

Y 

75 
72 

LOO 
92 
75 
99 
80 
90 
79 
80 

‘90 - 

8 -  

Table 8.11-1 
Design matrix and overall liking data from a central composite design optimization study. 

Design point Xl XZ x3 Y 
1 -1  - I  - 1  70 
2 1 - 1  - 1  90 
3 -1  1 - 1  75 
4 1 1 -1  98 
5 -1  -1 1 72 
6 1 - 1  I 90 
7 - 1  1 1 101 
8 1 I 1 100 

9 0 0 0 92 
10 -2 0 0 75 
11 2 0 0 101 
12 0 -2 0 80 
13 0 2 0 90 
14 0 0 -2 79 
15 0 0 2 80 

Note: Column of Is for Bo is omitted. 
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Notice that we used design points 2, 3, 5, 8 for the factorial portion of the design 
matrix given in Table 8.1 1-1. For Set 2, design points 1,4,  6, and 7 will be used. 
All the three models will use the center and the axial design points. The result for 
Set 1 is 

b = (X’X)-’X’Y = 

I .  

bo 
bi 
b2 
b3 
bi 1 

b22 

b33 . .  

-1.13 
- 1.63 

Table 8.11-2 summarizes the results for the three models. The genetal observation 
of the estimates is that they appear to be similar, all models showing that XI and 
XZ were the major factors for overall liking of the product. Since the interaction 
effects were not statistically significant, the estimates of main effects are likely to 
be unbiased. 

Table 8.11-3 shows the predicted values obtained from the three models. These 
predicted values were obtained by substituting the observed values into the fitted 
equation. The residual estimates provide information on how good is the fractional 
factorial in predicting the results from the full model when certain interaction ef- 

Table 8.11-2 
Estimates of regression parameters for the full and fractional factorial models (Set 1 and Set 2). 

Parameter Full model Set 1 Set 2 

bo 
bi 
bz 
b3 

bi 1 

bL2 

b33 

bi 2 

bL3 

b13 

93.00 91.00 94.38 

6.75** 7.58** 5.42* 
4.50** 2.75* 4.92* 
2.00 0.75 2.08 

- 1.38 -1.13 - 1.55 
- 1.88 -1.63 -2.05 
-3.25 -3.00* -3.42 

-2.00 
-3.25 

3.25 

R-square 0.89 0.92 0.76 

Note: Estimates of b12, bl3, and b23 for Sets 1 and 2 are confounded with bl, b, and b3. 
* p Q .10 
** p < .01 
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Table 8.11-3 
Observed, predicted, and residual values for the three models. 

Predicted Residual Design 
mint Observed Full Set 1 Set 2 Full Set 1 Set 2 

1 
2 
3 
4 
5 
6 
7 
8 

9 

10 
1 1  
12 
13 
14 
15 

70 
90 
75 
98 
72 
90 

101 
100 

92 

75 
99 
80 
90 
79 
80 

71 75 
95 89 
78 80 
94 96 
75 76 
86 90 
95 90 
98 % 

93 91 94 

74 71 77 
101 102 99 
77 79 76 
95 90 96 
76 78 77 
84 81 85 

~ ~~ 

- 1  -5  
- 5  1 
-3 -5 

- 3  -4 
4 2 

4 0 
6 1 1  
2 4 

- 1  1 -2 

1 -4 -2 
-2 -3 0 

3 1 4 
- 5  0 - 6  

3 1 2 
-4 - 1  -5  

~ 

Note: Residual = observed - predicted. 
Design point: 4 = high X I  and XZ. low X3 

7 = high XZ and X3, low XI 
8 = all variables at high level 

11 = extreme XI, middle level for X2 and X3 

fects are negligible. At this stage of the analysis, we may find potential formula- 
tions based on high mean scores such as design points 4, 7, 8, and 11. It is likely 
that optimal formulas may be found in these neighboring areas. These formulas can 
be searched in the contour maps shown in Fig. 8.11-1 for the three models. Since 
the effect of X3 was not significant, it is appropriate to plot X I  and XZ and hold 
X3 at the middle level, X3 = 0. 

The similarity among the contour maps in Fig. 8.11-1 points to the usefulness 
of fractional factorial in optimization studies. For example, the combination (XI = 
0.0, XZ = - 1.2) gives an overall liking response of between 85 and 90 units on 
the scale for the full (Fig. 8.11-la) and the fractional models (Fig. 8.11-1b, c). 

8.12 OPTIMIZATION OF DISCRETE VARIABLES 

It is common in product development that one deals with discrete variables such 
as, color of package, shape of container, type of fragrance, and many others. These 
classes of variables can be simultaneously included in an optimization of continuous 
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variables. Note that continuous variables can assume quantitative levels. In a regres- 
sion analysis terminology, discrete variables are called dummy or indicator variables. 

This section illustrates the technique and data analysis of optimization study that 
includes both continuous and discrete variables. The method of data analysis is a 
direct application of multiple regression. Moskowitz (1983, 1984) presented a 
nonstatistical discussion of discrete variable optimization as applied to food and 
cosmetic products. References that discussed indicator variables include the books 
by Neter et al. (1974) and by Draper et al. (198 1). 

Discrete Variable Optimization 

The optimization that we have discussed so far pertains to continuous variables, 
such as the levels of salt in a formulation. In other situations, one works only with 
discrete variables. Let us illustrate a discrete variable optimization by way of an 
example. This example also illustrates a technique of data analysis using mean scores 
from an incomplete block design to estimate interaction effects between discrete 
variables. 

Example 8.12-1 

A household product formula has been developed that meets several performance 
criteria. The next step in the development process is the selection of color and 
fragrance to be used on the finished product. It was decided to conduct a consumer 
test to determine the best combination of color and fragrance type as perceived by 
users of the product. 

Two colors, blue and white, and two types of fragrances denoted by A and B are 
to be optimized. In an optimization work aimed at competing with existing products 
in the marketplace it is always recommended to include a control sample in the com- 
parison, preferably the market leader. In this study, a 2 X 2 factorial design was 
used that gives the following color by fragrance combinations: 

Formula Color Fragrance 

1 white A 
2 white B 
3 blue A 
4 blue B 

Formula 5 was denoted the control sample. A home-use test was conducted using 
a balanced incomplete block design augmented with a control sample so that all the 
four formulas were compared in the presence of the control sample. 

Table 8.12-1 shows the basic design of the home-use test. Note that with p repeti- 
tions of the basic design, the design parameters b, rl, and X were multiplied by p. 
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Table 8.12-1 
Basic design for the color-fragrance study. 

Formula Control 

Panelist 1 2 3 4 5 

1 X X X 

2 X X X 

3 X X X 

4 X X X 

5 X X X 

6 X X X 

Design parameters: t+ 1 = 5 
b = 6  
r, = 3 
r c = b = 6  
A =  1 

As shown in this table, each panelist evaluated two formulas plus the control during 
a 3-day test period, one product per day. The control sample was always used first 
without the knowledge of the panelists and the order of use for the remaining samples 
was randomized. The products were scored after each use on a 9-point hedonic scale. 
For the purpose of illustration, the data from three repetitions (p = 3) of the basic 
design were used. Table 8.12-2 shows the data for overall liking along with rele- 
vant calculations following the formulas given in Table 4.2-2 for the analysis of 
variance (Chapter 4), and likewise for the estimation of treatment effects ti. The 
analysis of variance table is given in Table 8.12-3. The effects of treatments (in- 
cluding the control) were statistically significant at the 1 % level. Multiple comparison 
of means is not done here because it is irrelevant in optimization. The adjusted means 
by the intrablock analysis for the four formulas and the control are as follows (See 
Chapter 4 for calculations of adjusted means): 

Formulas Adjusted Means 
1 (white/A) 6.0 
2 (white/B) 6.7 
3 (blue/A) 5.3 
4 (blue/B) 7.5 
5 (control) 6.3 

Based on the above means, Formula 4 is found to be the optimal combination of 
color and fragrance consisting of blue and the B fragrance. 

Let us examine how the panelists assign relative importance of color and fragrance 
in their perception of these variables. This is accomplished by first analyzing the 
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Table 8.12-2 
Overall liking data for Example 8.12-1. Design parameters: t+  1 = 5, k+ 1 = 3, P = 3, 
pb = 18, pr = 9, pX = 3 

Control Formula 

Panelist 5 1 2 3 4 X.j R m  

1 6 5 6 17 
2 7 6 6 19 
3 5 6 8 19 
4 7 6 4 17 
5 6 7 8 21 
6 8 6 8 22 115 

7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 

6 
7 
6 
7 
5 
6 

6 
5 
6 
7 
6 
6 

5 7 
6 
7 

7 
6 

6 7 
7 
6 

7 
6 

6 
7 

6 
7 

5 7 

6 
7 

5 
7 

6 8 

18 
19 
20 
20 
18 
18 113 

19 
18 
19 
19 
19 
20 114 

Xi. 112 54 59 50 67 G= 342 
hi) 342 168 168 172 176 
B(i,/k+ 1 114 56 56 57.3333 58.6667 
Qi -2 -2 -7.3333 8.3333 CQi=O 
ti -.1167 -.3571 .3571 -1.1190 1.1190 

Calculations: 
CF = (342)*/54 = 2166.0 
SSTO = (62 + 5’ + . . + 62 + 87 - 2166 = 42.0 
SSR = [(11Y + 1132 + 1142)/18] - 2166 = 0.1111 
SSBL:R = [(17’ + 19’ + . . + 192 + 202)/3] - SSR - CF = 9.2222 
SST = (-.3571)(-2) + . . + (-.1167)(-2) = 19.5498 
SSE = 42.0 - 0.1111 - 9.2222 - 19.5498 - 13.1169 

data by repetition. The adjusted means obtained are used as the observations for 
the analysis of variance. The adjusted means are shown in Table 8.124.  Recall that 
t j  are estimates of treatment (formula) effects. Using the adjusted means as the 
response variable Y, the analysis of variance model is 
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Table 8.12-3 
Analysis of variance for the color-fragrance study. 
~ 

Source of Variance DF ss MS F-ratio 

Total 53 42.oooO 
Repetition 2 0.1111 0.0556 0.14 

Treatment (adjusted) 4 19.5498 4.8875 1 1.92* 
Error 32 13.1 169 0.4099 

Panelist within repetition 15 9.2222 0.6148 1 .so 

*p < 0.01 

Table 8.12-4 
Estimates of treatment effects and adjusted means by repetition. 

Repetition Formula Effect ti Adjusted Mean 

I 1 - .So00 5.83 
2 .3571 6.69 
3 - 1.3571 4.98 
4 1.5000 7.83 
I - so00 5.83 
2 .5000 6.83 
3 - .9286 5.40 
4 .9286 7.26 

I - .0714 6.43 
2 .2 I43 6.71 
3 - 1.07 14 5.43 
4 .9286 7.43 

where p is the grand mean, Ci the effects of color, Fj the effects of fragrance type, 
(CF)ij the interaction effects of color and fragrance on perceived liking of the prod- 
uct, and fijk the random error effects. The main interest in this analysis is the estimate 
of interaction effects. 

Table 8.12-5 shows the analysis of variance of the adjusted means in Table 8.12-4. 
Fragrance was found to be the driving force in overall liking (p < 0.OOOl). Color 
effect across fragrance types was not significant due to the significant color x fragrance 
interaction (p < 0.001), indicating that the perception of color and fragrance in 
a product is highly dependent of each other. Because of this interaction, the effects 
of color and fragrance should be evaluated simultaneously as shown in Fig. 8.12-1, 
i.e., with fragrance A, the white color was more well-liked than the blue color, 
whereas with fragrance B, the blue color was more well-liked. The adjusted mean 
for the control sample is 6.3, which is considerably lower than the mean of the 
bluelfragrance B combination of 7.5, thus this combination (Formula 4) is the choice 
in the optimization process. 
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Table 8.12-5 
Analysis of variance of adjusted treatment means to estimate the interaction effects 
between color and fragrance. 

~~ 

Source of Variance DF ss MS F-ratio 

Total 11 8.8166 
Fragrance 1 6.5269 6.5269 95.05* 
Color 1 O.oo00 O.oo00 0.00 
Fragrance x color 1 1.7404 1.7404 25.35* 
Error 8 0.5493 0.0687 

*p < .001 

OVERALL LIKING 

Fig. 8.12-1 
A plot of the interaction between fragrance type and 
color of product. 

Optimization of Discrete and Continuous Variables 

We will now discuss a problem where the variables in the optimization include 
both discrete and continuous. The statistical solution is again a direct application 
of the multiple linear regression technique. Let us consider an example. 

Example 8.12-2 

A 2 x 2 factorial design with center point was conducted for a laundry aid prod- 
uct. The configuration of this design is shown in Fig. 8.12-2. Table 8.12-6 gives 
the design matrix and the response variable Y instrumentally obtained and expressed 
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0 

0 

L X I  
10 15 20 

Fig. 8.12-2 
A 2 x 2 factorial design with center point for Ex- 
ample 8.12-2. 

Table 8.12-6 
Design matrix for the laundry aid study to illustrate the design and analysis. 

Coded Level Actual Level Design 
point XI xz x3 XI xz x3 Y 

1 - 1  - 1  0 10 4 0 60.0 
2 1 - 1  0 20 4 0 54.1 
3 - 1  1 0 10 10 0 71.3 
4 1 1 0 20 10 0 71.7 
5 0 0 0 15 7 0 64.3 

1 - 1  - 1  1 10 4 1 61.1 
2 1 - 1  1 20 4 1 59.8 
3 - 1  1 1 10 10 1 75.7 
4 1 1 1 20 10 1 77.9 
5 0 0 0 15 7 1 68.6 

Note: The constant column & of 1's is omitted. Generally, computer package requires only the above 
matrix as input. 

as a percentage of product performance during use. Note that the factorial design 
is repeated twice to accommodate the discrete variable X3 with coefficient of 0 for 
container shape A and 1 for container shape B. The remaining variables, XI  and 
XZ, are ingredients for enhancing the performance of the product. 

The regression equation is obtained by the least squares Eq. (8.1-5), b = 
(X'X)- 'X'Y, where X is the design matrix in Table 8.12-6 and Y is the vector 
of responses. In this example, the actual level was used in the least squares analysis 
to avoid the problem of a singular matrix. This problem arises because the column 
for the discrete variable in the design matrix is not orthogonal, i.e., column does 
not sum to zero. 
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X =  

bo x1 xz x3 

, 1  20 4 0 
1 10 10 0 
1 20 10 0 
1 1 5 7 0  
1 1 0 4 1  
1 2 0 4 1  
1 10 10 1 
1 20 10 1 
1 1 5 7 1  

rl 10 4 O- 

L 
0 0 0 0 0 1 1 1 1 1  ‘I X I =  [ 1 1 1 1 1 1 1 1 1  
10 20 10 20 15 10 20 10 20 15 
4 4 1 0 1 0  7 4 4 1 0 1 0  7 

Y =  
61.1 

Then 

56.613 

b = (X’X)-’X’Y = 
4.340 
0.082 

The output based on the STATISTIX package is shown in Tables 8.12-7 and 8.12-8. 
Note that the & column is the interaction of X I  and XZ obtained through the 
TRANSFORMATION command. Table 8.12-8 contains the variance-covariance 
matrix obtained by the formula az(X’X). This matrix is used to compute standard 
errors of the regression coefficients. In the above formula, uz is estimated by the 
error mean square in the regression analysis, which is found to be 1.581. From the 
variance-covariance matrix, we obtained the following standard errors: 
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Table 8.12-7 
Least squares analysis for the data in Table 8.124. Note that X4 = XI X XZ, the in- 
teraction between XI and XZ. 

VIEU DATFI 

CASE x 1  x2 x3 V x4 

1 10.000 
2 20.080 
3 10.800 
4 20.000 
3 lS.088 
6 18.800 
7 20.800 
8 10.000 
9 20.888 

18 lS.000 

4.0000 
4.0080 
10.000 
10.000 
7.8000 
4.0000 
4.8080 
10.000 
10. @OO 
7.0000 

0.0000 
0.0000 
0.0000 
0.0-0 
0.0000 
1.0000 
1.0800 
1.0000 
I. 0080 
1.0000 

60.000 
54.100 
71.380 
71.700 
64.300 
61. 100 
59.8@0 
75.700 
77.900 
68.600 

40.00e 
B0.600 
100.00 
200.00 
10s. 00 
40.000 
80.000 
100.08 

10s. 00 
2a0. a0 

UNWEIQHTED LEAST SOUFIRES LINEFIR REGRESSION OF Y 

PREDICTOR 
VRRIFIBLES COEFFICIENT STD ERROR STUDENT'S T P 

CONSTFINT 56.613 3.5855 1s. 79 0.0000 
--------- ---------- ----..---- ----------- ------ 
x 1  -6.8667E-0 1 2.2572E-01 -3.04 8.0287 
x2 1. 3417 4.68638-01 2.86 0.0353 
x3 4.3400 7.95299E-01 5.46 0.0828 
x4 8. 1667E-02 2.9639E-02 2.76 0.0401 

CFISES INCLUDED l@ MISSING CASES 0 
DEGREES OF FREEDOM 5 
OVERC\LL F 04.76 P WLUE 0.0001 
CIDJUSTED R SOUFIRED 0.9738 
R SOURRED 8.9855 
RESID. NEFIN SOUARE 1.S5.81 

SE(b0) = d E E  = 3.586 
SE(b1) = dG%S = 0.226 
SE(b2) = &XG = 0.469 
SE(b3) = dFBS = 0.795 
SE(b1z) = = 0.030 

See also Table 8.12-7. In Table 8.12-8, one finds the residual (RES) of each design 
point calculated by Y - FIT. 

As shown in Table 8.12-7, the estimates of regression parameters were all signifi- 
cant (P column, p < 0.05). To evaluate the effects of container on product perfor- 
mance, one substitutes the value 0 or 1 into the fitted regression equation. For ex- 
ample, X3 = 0 for container A; if we choose XI = 16.0 and XZ = 5.5 as indicated 
in Fig. 8.12-3a, we obtain 
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Y = 56.61 - 0.687(16.0) + 1.342(5.5) + 4.340(0) + 0.082(16.0)(5.5) 
= 60.2%. 

For container B, X3 = 1, and upon substitution into the equation we obtain Y = 
64.6% (Fig. 8.12-3b). Therefore, container B is to be selected because it is 4.3% 
more in performance than A. Since container is a discrete variable, the difference 
in performance between containers is its regression coefficient in the model. The 
contour maps in Fig. 8.12-3 also provide other choices of the leek of XI  and XZ 
that give the desired product performance. It also provides the levels that should 
be avoided, for they would result in poor performance. The slight curvature of the 
contour lines is the contribution of the interaction effects in the model. 

Table 8.12-8 
Variance-covariance matrix and estimates of predicted values (FIT) and residuals (RES). 
Note: -7.642E-01 = -0.7642, 5.095E-02 = 0.05095, and so on. 

VFIRIFINCE - COVFIRIFINCE MFITRIX FOR COEFFIC IENTS 

X I  
Xi? 
x3 
x 4  

CFISE 

1 
2 
3 
4 
9 
6 
7 
8 
9 

10 

CONSTFINT X I  re x3 x 4  
CONSTFINT 12.86 

-7.642€-@1 S.09JE-02 
-1.537 9.224E-01 2. 1%E-01 
-3.162E-01 5.560E-17 1.342E-16 6.325E-01 

9.E24E-02 -6.149E-83 -1.318E-02 -7.629E-18 8.784E-04 

VIEW DFITA 

X I  x 2  x3 Y x4 RES F I T  

10. 080 
28. 008 
18. 080 
B0.088 
1 5. 080 
10. 088 
28.080 
18.080 
20. 000 
15.088 

4.0088 
4.0888 
10.000 
18. 800 
7.0000 
4. 80e8 
4. 8000 
10.080 
18. 800 
7.0880 

0. 0800 
0.0080 
0.0088 
8.0808 
0. 0ln00 
I .  0080 
1.0000 
1.0000 
1.8008 
1. 0880 

68. 880 
54.188 
71.380 
71.708 
64.388 
61. 180 

75.700 
77.980 
68.608 

39. am 

48.880 
80.888 
108. 08 
200. 08 
185.08 
40.008 
88.080 
lea. 88 
288.88 
185. 88 

1.6208 58.388 
-0.6888 54.788 
-0. 83lh0 7 I. 33yI 
-0.9388 72.630 

-1.6288 62.720 
8.6088 59.120 
0. 8388 75.678 
8. 93liryI 76.978 

-8. 8208 68.620 

0. 82uIa 64.  +0a 

8.13 OPTIMIZATION FOR ROBUSTNESS 

We have discussed in the past sections the traditional approach to product optimiza- 
tion that emphasizes statistical modeling of responses and control/isolation of ex- 
traneous variations by statistical design. Because of this emphasis, we may develop 
products and processes that require special conditions before they can perform 
satisfactorily at the hands of the consumer. In other words, the products are not 
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robust and are sensitive to environmental factors during use. A robust product must 
be insentive to these factors, and robustness is one of the central concepts of total 
quality. 

Dr. Genichi Taguchi pioneered a method by designing quality into products and 
processes, the results of which are documented in his book on quality engineering 
(Taguchi 1986). This method is aimed at producing robust products and manufac- 
turing processes at low cost or without increasing cost. The success of this method 
in engineering and manufacturing is well-documented; however certain statistical 
aspects of the Taguchi methods have been criticized by statisticians (Box et ul. 1988, 
Montgomery 1991a). Taguchi defined quality as the loss imparted by the producther- 
vice to the customer or society. The traditional definition includes fitness for use 
(Juran 1980), conformance to requirements (Crosby 1979), and meeting the expec- 
tations of customer (Feigenbaum 1991). It appears that the traditional definition of 
quality is positive, i.e., measures customer satisfaction, while Taguchi uses the 
negative approach, i.e., losses to the customer. Note that in practice product negatives 
are more actionable than “product positives. ” 

In this section, we introduce the Taguchi method as another tool for optimization. 
It is not intended to be a complete presentation of the method, but rather to show 
that a hybrid between the traditional approach to optimization and the Taguchi method 
can be a valuable tool for R&D and manufacturing. 

The Taguchi Method 

The Taguchi approach to obtain robustness of products and processes is a sound 
concept for achieving quality. The central concept of the Taguchi method is based 
on the following: 

1. Robustness of products, services, and processes. This implies that 
a product should perform consistently in various conditions of use 
by the consumer. 

2. Use of experimental design that incorporates both the assignable 
(controllable) and unassignable (uncontrollable) causes of variation. 
Taguchi contends that to accomplish robustness, these two causes of 
variation should be included in the experimental design. 

3. Use of target value instead of the traditional process specifications. 
This concept has a strong bearing in manufacturing processes. Taguchi 
contends that it is difficult to obtain process variability, i.e., stan- 
dard deviation, during normal production, but one can obtain variabil- 
ity as a deviation from the target value. Furthermore, the deviation 
from target value can be translated into a society/consumer monetary 
loss, the measure of which is given by the loss function statistic. It 
is this measure that the Taguchi method was able to link engineering 
results to management thinking, i.e., profit and loss. 
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Let us discuss the techniques that Taguchi recommends to achieve the central basis 
of his method. The focus of this section will be on R&D formulation problems and 
the use of sensory data to define perceived quality. 

'Qps of Quality Characteristics 

Quality characteristic in the Taguchi method can be viewed as a response variable 
as discussed in Section 8.1. Taguchi (Taguchi and Wu 1979; Taguchi 1986) classified 
the response variable into five types, but only three of these will be given here because 
of their applicability to R&D formulation work and in sensory testing. In sensory 
testing, the term perceived quality is used to denote the subjectivity of the measure- 
ment process. The three types of quality characteristics are given below. 

1. Nominal-Is-Best. This is a characteristic with specific quantitative target value. 
Examples are viscosity measurements in shampoo and conditioner, which should 
not be too low or too high; the level of fragrance in bar soaps; and the amount of 
salt in a food product. 

2. Smaller-Is-Better. This is a Characteristic where the target value of the response 
is zero or at its minimum. The amount of moisture loss on the skin is an example. 
For a skin moisturizer, the product should keep moisture losses from the skin to 
a minimum. 

3. Larger-Is-Better. Here the desired characteristic has the largest value. Ex- 
amples are percentage yield, length of shelf-life, acceptance/preference values, and 
others. Here, we want to maximize the value of the response. 

A unique idea of the Taguchi method is that the quality characteristic should be 
measured as a function of the controllable factors rather than its symptoms (response). 
For example, in studying the clearance between the door and the body of a car, 
the clearance should be nominal to provide an easy opening of the door and at the 
same time prevent undue friction. Here, one measures the distance between the door 
and the body as a quality characteristic and the distanceklearance is a function of 
quality. One does not measure the friction, which is the symptom; rather one measures 
the cause of the symptom. 

Problems with Perceived Quality Characteristics 

It is known that sensory quality is primarily a fbnction of the ingredients in the 
formula. In sensory evaluation and consumer testing, the symptoms of quality are 
the one being measured because of the poor physical correlation between function 
and consumer acceptance. This contradicts Taguchi's basic idea of quality measure- 
ment. Attempts to measure hedonic values by instrumentation have not been 
successful. 
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In the absence of physical correlates with sensory quality, consumer studies use 
humans as instruments to measure perceived quality characteristics. It is known that 
only the consumer can meaningfully measure hedonic values, and this is where in- 
strumentation has failed. Figure 8.13-1 shows an approach to using perceived quality 
to fit into the Taguchi method. The establishment of parameter design of the prod- 
ucts is done by consumer feedback. Once established, these parameters become the 
target value to monitor product quality, and at this stage one can go directly from 
point A to point D. The drawback of this approach is that consumer feedback is 
inherently subject to large variability. However, there is a wide tolerance of con- 
sumer product acceptance that may compensate for this variation. Note also that 
there is no wrong answer in hedonic responses, and thus one must inevitably face 
this variability. 

A R 
I I 

f 
C 

Select optimal formulas 
via sensory I consumer 
test results. 

Poor 
Correlation 

c 
1.0.. Instron, GC. to define 
parameter values for 
functional characteristics 

Monitor product quality 
bared on tolerance 
values obtained in D 

Fig. 8.13-1 
Use of consumer feedback as a quality measure for the Taguchi 
method. 
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When the parameter design is completely specified, the variation in the amount 
of ingredients going into the product during manufacture should be minimized from 
the target value. This is where instrumentation analysis comes into the whole total 
quality process. 

The Measurement of Quality 

The quality of a product or process should be optimized in terms of cost and con- 
sumer acceptance. The initial step in quality work is to set the parameter design 
defined by Taguchi as the parameter values of a product or process so that the resulting 
product is functional with a high level of performance and is minimally sensitive 
to noise. In product formulation work, the parameter values are the amount of each 
ingredient in the product established by appropriate formulation design. The op 
timization of parameter values is evaluated by Taguchi’s signal-to-noise ratio, denoted 
in this book by SNR, and by the loss function statistic denoted by L. The SNR p r e  
vides the optimal parameter values, and the L statistic provides a measurement of 
quality as a loss to society. The SNR and L values are therefore directly related 
to the measurement of quality. 

In the measurement of quality through parameter design, the controllable and the 
uncontrollable factors are built into the product. The controllable factors are those 
factors that can be controlled or varied by the experimenter, such as ingredients 
in the formula. The uncontrollable factors are the noise affecting the functional 
characteristics of the product, such as consumer abuse during product usage, water 
hardness, temperature, humidity, manufacturing imperfection, product deteriora- 
tionhtability, and others; these are noise factors beyond the control of the manufac- 
turer and to control these factors is obviously futile and not recommended. This 
is one example of the uniqueness of the Taguchi approach to total quality. 

There are experimental designs that can be used to obtain an optimal parameter 
design of a product. They are as follows: 

1. Taguchi’s orthogonal array (Taguchi and Konishi 1987). 
2. Full factorial and fractional factorial designs as discussed in Chapter 6. 
3. Plackett-Burman design discussed in Section 8.4. 
4. Central composite design discussed in Section 8.6. 
5. Mixture design discussed in Section 8.7. 

The orthogonal arrays, fractional factorial, and the Plackett-Burman designs are 
related in many ways, but such relationships are not discussed here. See Bullington 
d al. 1990; Kacker er d. 1990, 1991; Montgomery 1991). We briefly discuss the 
orthogonal arrays together with examples. 

Orthogonal Arrays. Taguchi’s orthogonal array design has a sound mathematical 
basis (Kacker er al. 1990, 1991) with similarities to fractional factorial designs. The 



218 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

confusion between the orthogonal array and the traditional fractional factorial designs 
Stems from equating the two designs to be the same, instead of being similar in nature. 

A catalogue of orthogonal arrays is found in Taguchi and Konishi (1987), and 
the most commonly used of these arrays are shown in the appendix Table N. The 
convention for naming arrays is L,(bC) where 

a = number of experimental runs, i.e., number of formulations. 
b = number of levels of each factor, i.e., low and high; low, medium, 

c = number of columns in the array, i.e., number of factordingredients 
and high. 

to be studied. 

The letter L derives from the Latin square design because of its mathematical con- 
nection to Latin square. See Gacula and Singh (1984), among others, for a discus- 
sion of the Latin square design. 

Consider an L4(23) orthogonal array: 

Formula A B C 

1 1 1 1  
2 1 2 2  
3 2 1 2  
4 2 2 1  

To study the effects of three factors A, B, and C, one can run four test formulas 
where each factor is varied in a balanced arrangement, that is, they are orthogonal; 
each factor with two levels (1 = low, 2 = high) occurring equally often. The above 
array is called the inner array (IA) of the design. It can be shown that this array 
is similar to a 1/2 fraction of the 23 factorial design. 

The uniqueness of the Taguchi design is the following: 
1. Any column can be deleted without destroying the design. 
2. The columns are merely a label, thus the factor can be assigned to any column 

to facilitate execution of the experiment. For example, if a factor is difficult to change 
or manipulate, this factor should be the first column in the array, followed by the 
second most difficult to change, and so on. 

3. Inclusion of noise factors in the design. These factors are called outer array 
(OA). The inclusion of noise factors in the design results in products/processes to 
be robust and put less emphasis on randomization in the execution of the experi- 
ment. However, this book recommends the use of randomization as part of the ex- 
perimental design. If a product is to be used by both males (M) and females (F), 
then sex is an example of a noise factor. Another example of a noise factor is water 
hardness. More than one noise factor can be included in a design; however, the 
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number of experimental runs becomes large. Remember that noise factors are those 
factors that cannot be controlled by the manufacturer when the product is at the hands 
of the consumer. In our example, the resulting design is as follows: 

Inner array Outer array 

no. A B C  M F 
Formula 

~~ ~- 

1 1 1 1  ml  fl 
2 1 2 2  m2 f2 
3 2 1 2  m3 f3 
4 2 2 1  m4 f4 

The outer array are observed values of the response for each sex. Note that with 
two noise factors, the total number of runs becomes eight, i.e., number of test for- 
mulas x number of noise factors. In this design, formula 1 has all factors at the 
low level, formula 2 has factor A at the low level and the remaining factors B and 
C at the high level, and so on. The SNR is computed for each formula across sex 
to determine the formula that is most insensitive (robust) to sex differences. 

The Larger-Is-Better. The success of the Taguchi method leans heavily on the choice 
of quality characteristic to be measured. In larger-is-better, the target value m = 
00. The L function for one unit is given by 

and for more than one unit 

L(y) = k(MSD) 

where 

k = (consumer loss Ao)(consumer tolerance 
MSD = Mean squared deviation 

= C(l/yS/n, i = 1, .. n units 

Note that the mean squared deviation is the inverse of the observation y resulting 
in a quadratic curve for the loss function. The relationship of the terms in Eiq. (8.13-1) 
is shown in Fig. 8.13-2. Notice that as the value of y increases, the consumer loss 
A,, decreases. This is obvious because we are targeting a larger value (m) of the 
characteristic. Likewise, as the value of y decreases, the loss to the customer 
increases. 

For large sample size n, MSD can be approximated by 
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Fig. 8.13-2 
Loss function for “larger-is-better.” 

MSD = (1/y2)[1 + (3s2/yz)J 

where y and s2 are sample mean and sample variance, respectively. A better ap- 
proximation of MSD is reported by Maghsoodloo (1990). 

The signal-to-noise ratio, in decibel unit db, is obtained by the formula 

SNR = - lOlog(MSD) (8.13-2) 

which is the negative of the logarithm of MSD calculated for each run (treatment 
combination). In this ratio, we want to maximize the effect of the treatment (signal) 
and minimize the noise (random/systematic error), hence, large values of SNR are 
to be desired. Since the appropriate sample size n plays an important role in the 
accurate estimation of MSD, it is suggested that the traditional method for calculating 
sample size should be considered, i.e., see Gacula and Singh (1984). 

Scales for Perceived Quality 

The most popular scale of measurement to obtain consumer acceptance of pro- 
ducts/services is the hedonic scale (Peryam and Girardot 1952). This scale defines 
the psychological states of like and dislike on a linear scale with like on the upper 
end and dislike on the lower end of the scale. Variations in the number of categories 
on the scale have been reported, but the 9-point scale is recommended in this book. 
See Gacula and Singh (1984), Stone and Side1 (1984), and Meilgaard et d. 1987) 
for further reading. 

Table 8.13-1 shows the hedonic scale and the corresponding SNR for each category. 
Obviously, the desired target score is “larger-is-better.” See Fig. 8.13-3 for the 
plot of scale y and SNR. 
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Table 8.13-1 
The 9-point hedonic scale as used in the Taguchi method for larger-is- 
better quality characteristic. 

Scale category, y 1 ly* SNR 

1: dislike extremely 
2: dislike very much 
3: dislike moderately 
4: dislike slightly 
5: neither like nor dislike 
6 like slightly 
7: like moderately 
8: like very much 
9: like extremely 

I .oooo 
0.2500 
0.1111 
0.0625 
0.0400 
0.0278 
0.0204 
0.0156 
0.0123 

0 
6.021 
9.543 

12.041 
13.979 
15.560 
16.904 
18.069 
19.101 

Note: SNR = - lOlog[(f/y*)/n], where n = I ,  

Another scale used to obtain consumer feedback for intensity of a characteristic 
is the so-called just right scale. In this book, the 5-point scale is recommended. Table 
8.13-2 shows the scale along with its corresponding SNR and the plot shown in Fig. 
8.13-4. In this scale the target value is category 3 (m = 3), hence belongs to Taguchi’s 
“nominal-is-better” quality characteristic to be discussed later. 

Example 8.13-1 

Let us use the data of Example 6.1-1 (Chapter 6) with modification as shown in 
Table 8.13-3. In this table, A and B are the controllable factors and SI and S2 are 
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Table 8.13-2 
The 5-point just right scale as used in the Taguchi method for nominal- 
is-better quality characteristic. 

Scale category, y (y - 3)* + k SNR 

1: much too strong 4.0 f 0.25 -6.284 
2: too strong 1.0 + 0.25 -0.969 

4: too weak 1.0 + 0.25 -0.969 
5: much too weak 4.0 + 0.25 - 6.284 

3: just right 0.0 + 0.25 6.021 

Note: SNR = -log[C(y - 3)2/n], where n = 1 .  The constant k is used to 
avoid taking the logarithm of zero which is undefined. The value of k 
can range from 0.1 to 1 .O. 

SNR 

6 

4 

2 

0 

- 2  

- 4  

- 6  

1 2 3 4 5  
SCALE CATEGORY 

Fig. 8.13-4 
The plot of scale value and SNR for the just- 
right scale. 

the uncontrollable factors (noise). The noise factors are types of bacteria. When prod- 
ucts are used by the consumer, manufacturers do not have control of the kind of 
bacteria that the consumer are exposed to, hence one must develop a robust product 
that can control as many as possible of the bacterial types. In this example, the quality 
characteristic is the percentage of bacterial reduction from placebo, the larger reduc- 
tion the better. 

As shown in Table 8.13-3, run #4 with an SNR = 31.08 db is the largest, thus 
this run, which consists of the high levels of both factors (A2B2), is the optimal 
formulation for the control of bacterial growth. 

Although it is difficult to assign dollar value, let us do so for the sake of illustra- 
tion. Suppose that for every 5% decrease in effectiveness results in $1.00 loss to 
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Table 8.133 
Calculations for Example 8.13- 1 to illustrate the larger-is-better quality 
characteristic. 

~ ~ ~ ~ 

Controllable factors Noise factors 

Run A B AB 51 52 

1 - 1  - 1  - 1  13.0 8.0 
2 1 - 1  1 32.6 30.0 
3 - 1  1 1 22.4 18.5 
4 1 1 - 1  38.0 34.0 

Sum of (- 1) 61.9 83.3 93.0 
Sum of (+1) 134.6 112.9 103.5 

Contrast 72.7 29.6 10.5 

Calculation of mean squared deviation: 
MSDl = [1(1/13.0*) + (1/8.02)]/2 = 0.01111 
MSDz = 0.00102 
MSD3 = 0.00245 
MSD4 = 0.00078 

Calculation of signal-to-noise ratio: 
SNRl = - 101Og(0.01111) = 19.55 
SNRz = 29.91 
SNR3 = 26.11 
SN% = 31.08 

the customer, what is the loss function? Here, A. = $1 .OO and yo = 5 % , therefore 
for run #I the loss is 

L(y1) = 1 .00(5z)(0.01 11 1) 

= $0.28 per unit 

For the optimal run (#4), 

L(y4) = 1 .00(52)(0.00078) 

= $0.02 per unit 

The result is clear: the consumer will lose only 2 cents per unit using the optimal 
formula, whereas loss is 28 cents for the worst formula. If a company sells 1 ,(1oo,OOO 
units a year, then the loss to society (customer) for the worst formula (#1) is 

1,000,000(0.28) = $280,000. 

The design matrix of this example is 4 on the Taguchi orthogonal array design: 
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L.4 B A AB 

1 1 1 1 
2 1 2 2 
3 2 1 2 
4 2 2 1 

Sum Low: 1 83.3 61.9 93.0 
Sum high:2 112.9 134.6 103.5 

~ ~~ 

Delta 29.6 72.7 10.5 

In the Taguchi notation, the low level is denoted by 1 and the high level by a 2, 
and this corresponds to - 1 and 1 on the factorial design notation, respectively. Notice 
that the absolute value of delta is called contrast in the factorial design terminology. 

The Smaller-is-Better. In the smaller-is-better quality characteristic, the target 
value or the ideal value for y is m = 0, or the smallest value on a measurement 
scale. The loss function for one unit is 

and for more than one unit 

L(y) = (AoIy3MSD 

where 

MSD = (y: + y2 2 + .. + yWn 

V YO 0 

Fig. 8.13-5 
Loss function for “smaller-is-better.” 
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and for large n, MSD can be approximated by MSD = pz + s2 

where y2 is the mean squared and ss the sample variance calculated by C(yi - y)%. 
Fig. 8.13-5 shows the loss function for this characteristic. Again, it is quadratic 
in y and is a mirror image of the larger-is-better. The closer the value of y to m, 
the lesser is the loss to the customer. 

The signal-to-noise ratio is the same in form to that of the larger-is-better which is 

SNR = - lOlog(MSD) 

In relation to the loss function, the SNR is a decreasing function of L(y); i.e., larger 
values of SNR will always lead to smaller values of loss per unit. Since y can be 
less than 1.0, the SNR values can be either positive or negative, and large value 
of SNR is again desirable. The linear scale representation is given below: 

-20 -10 0 10 20 
I 1 1 

I I I I I 

Thus, an SNR of - 10 is better than an SNR of -20; an SNR of 20 would be the 
best on the above representation. 

Example 8.13-2 

This example deals with percentage weight loss of beef feeders. The cattle feeder 
desires to minimize weight loss of beef feeders during transit on its way to the buyer. 
The buyer deducts weight loss during transit in calculating the final weight of the 
animal for payment to the producer. Reducing the weight loss benefits both the p r e  
ducer and the buyer. There are four factors considered important: 

A = Ratio of concentrate to roughage in the feed, 50150 vs 70130. 
B = Days on feeding test, 120 vs 130 days. 
C = Tranquilizers during transit, 10 mg vs 50 mg daily. 
D = Type of rations, pellets vs meal. 

The noise factor is the distance of travel, NI = short and N2 = long. 
Table 8.13-4 shows the percentage weight loss during transit of 16 beef feeders. 

In this table, design matrix for both the fractional factorial (1/2 of Z4) and the 
orthogonal array (L8) are shown. Notice that the columns for the array in this table 
correspond to columns 4, 2, 1, and 7 of Lg. 

The largest SNR is SNRs = 4.81, which consists of the treatment combination 
AzBzC~D~. On this basis, the optimum combination consists of all factors at high 
level with an average weight loss during transit of 0.57%. The delta values indicate 
that factor D is the most important factor affecting weight loss. Based on the SNR 
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Table 8.134 
Percentage weight loss of beef feeders to illustrate the smaller-the-better quality characteristic. 

Fractional factorial Inner array Outer array 

LS A B C D  A B C D  NI NZ Sum 
- - - -  
+ - - +  
- + - +  
f + - -  

+ +  
+ - + -  
- + + -  
+ + + +  

- -  

1 1 1 1  1.31 1.25 2.53 
2 1 1 2  0.83 0.98 1.89 
1 2 1 2  1.09 0.78 1.87 
2 2 1 1  1.29 1.17 2.46 
1 1 2 2  0.97 0.80 1.77 
2 1 2 1  1.16 1.29 2.45 
1 2 2 1  1.21 1.31 2.52 
2 2 2 2  0.53 0.61 1.14 

Sum of low level 
Sum of high level 

Delta 

8.69 8.64 8.75 9.96 
7.94 7.99 7.88 6.67 

0.85 0.65 0.87 3.29 

Calculation of mean squared deviation: 
MSDl = [(1.31)2 + (1.25)2]/2 = 1.64 
MSD2 = 0.82 
MSD3 = 0.90 
MSD4 = 1.52 

MSDs = 0.79 
MSD6 = 1.50 
MSD7 = 1.59 
MSDs = 0.33 

Calculation of signal-to-noise ratio: 
SNRi = -1OIOg(1.64) = -2.15 
SNRz = 0.86 SNRa = - 1.76 
SNR3 = 0.46 SNR7 = -2.01 
S N h  = - 1.82 SNRs = 4.81 

SNRs = 1.02 

and the delta values, one may conclude that the optimum factor combination may 
be AIBICZD~ and/or A2BzCzD2, and confirmation runs should be done on these 
combinations. 

Assuming that for every weight loss of 1 .O% results in a $12.00 loss, the L func- 
tion for the worst SNR is 

L(y) = (12.0/1.02)1.64 = $19.68 

and for the best SNR is 

L(y) = (12.0/1.02)0.33 = $3.96. 

It is clear that reducing the variability by optimizing the treatment combinations results 
in cost savings to both the producer and the buyer, and indirectly to the consumer 
through lower production costs. 
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The Nominal-Is-Best. The loss function L(y) for nominal-is-best (aim for target) 
is shown in Fig. 8.13-6. The target value m is the nominal value of y,  i.e., m = 
y .  The loss function is 

L(y) = (Ao/y:)(y - mI2 

which generalizes to 

L(y) = (Ao/y:)(MSD) 

for more than one unit, where MSD is given by 

MSD = [(yl - m)2 + (yz - m)2 + .. + (yi 

i = 1, 2, .., n 

For large sample size 

MSD = s’, + (y - 

(8.13-5) 

ml21/n, 

An important result at this point is that the larger-is-better, the smaller-is-better, 
and the nominal-is-best measure both the variability (MSD) of the response and the 
closeness of the mean response (y) to the target value. 

The signal-to-noise ratio is 

SNR = - lOlog(s: + (y - m)2) 

= - lOlog(MSD) 

Fig. 8.13-6 
Loss function for “nominal-is-best.’’ 
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Example 8.13-3 

Five factors denoted by A, B, C, D, and E are ingredients believed to enhance 
the flavor of a beverage product. A 5-factor Plackett-Burman design was used to 
evaluate the effects of these ingredients on sweetness. The 5-point just-right scale 
(1 = much too weak, 3 = just right, and 5 = much too sweet) was used by 10 
expert judges to evaluate each sample for sweetness. In this scale the target value 
m = 3. Table 8.13-5 shows the design matrix and the response under two noise 
factors: N1 = refrigerated vs N2 = frozen; these factors are suitably a noise because 
the manufacturer intends to produce a product that will perform satisfactorily to either 
storage conditions. 

The use of means on scales with the middle category as the optimal is not recom- 
mended, because variables can have a mean of equal to 3.0 (just right) but one of 
them may have a wider range than the other. This is clearly shown in this example. 
Based on the mean scores, run #5 hits the target value of 3.0; the observations for 
this run range from 2 to 4. Run #2 with a mean of 3.2, although not exactly on 

Table 8.13-5 
Beverage study to illustrate nominal-is-better and the just-right scale. 

Factor Noise 

Run# A B C D E NI N2 Total Mean 

1 1 1 - 1  
1 1 - 1  1 
1 - 1  1 - 1  

-1 1 -1 - 1  
1 - 1  -1  1 

-1 -1  1 1 
- 1 1 1 1  
-1 - 1  -1 -1 

1 
- 1  
- 1  

1 
1 
1 

-1 
-1 

3 2 3 4 3  3 3 3 2 3  
3 3 3 4 3  3 3 3 4 3  
3 3 3 3 3  2 3 4 3 2  
3 2 2 2 3  2 3 2 2 3  
4 3 3 3 3  2 3 4 3 2  
2 3 2 2 3  2 3 2 3 3  
2 2 3 2 3  3 2 2 2 2  
3 2 3 2 2  2 2 2 2 3  

~ 

29 2.9 
32 3.2 
29 2.9 
24 2.4 
30 3.0 
25 2.5 
23 2.3 
23 2.3 

LOW 
High 

Delta 

95 107 109 105 
120 131 106 110 

25 24 3 5 

107 
108 

1 

Run # 
1 
2 
3 
4 
5 
6 
7 
8 

MSD 

0.1340 
0.1014 
0.1340 
0.1944 
0.1290 
0.1806 
0.1524 
0.1524 

SNR 
8.7290 
9.9396 (most robust) 
8.7290 
7.11 30 (least robust) 
8.8941 
7.4328 
8.1702 
8.1702 

Note: Delta = High - Low, i.e., 120 - 95 = 25 
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target has a range of 3 to 4, obviously with lower variability than run #5. The lower 
variability for run #2 results in higher signal-to-noise ratio, therefore it is the op- 
timal combination of the five factors. 

Due to the aforementioned problem in using means, the frequency for the just- 
right category is the appropriate value to use to compare treatments/products. For 
example, the least robust run is #4 with SNR = 7.1 130 and the percentage of scores 
on the just-right category is 4/10 = 40.0%. For run #2, it is 8/10 = 80.0%. 

The Use of Signal-to-Noise Ratio in Formula Selection 

The ultimate goal of testing various product formulas by the consumer is to ob- 
tain a high quality product under various conditions of use. That is, we want a robust 
product as measured by consumer feedback. For example, we want a product that 
scores high on most, if not all, sensory attributes. In this book, the Taguchi philosophy 
has been extended to sensory/consumer research. In this extension, the sensory 
characteristics are defined as “noise factors” as shown in Fig. 8.13-7. The unique- 

Product / Formula 

Nz = overall liking 

Consumer Feedback 

N i .  N z ,  ... ,Ni 
I = 1, 2, ... , k sensory 

attributes 

Compute signal-to-noise 
ratio by formula and by 
attribute. Large ratios 
denote robustness 
(desirable) 

Fig. 8.13-7 
Central concept of the extension of Taguchi’s method to for- 
mula selection in consumer research. 
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ness of this extension is obtaining the SNR by product formula and by attribute. 
The SNR by formula provides measurement of product robustness against sensory 
attributes, whereas the SNR by attribute provides consistency of individual consumer 
responses. In both cases, we want to maximize the value of SNR. 

Figure 8.13-8 depicts what is meant by a robust product. The axial arm represents 
an attribute, and the length of the arm represents the mean score measured from 
the origin with value of 1 and a maximum of 9 for the 9-point hedonic scale. A 
perfectly robust product always forms a circle, i.e., all attributes are at the max- 
imum. However, this is unattainable in practice. Plotting mean scores inside the 
circle forms the so-called cobweb diagram (Stone et ul. 1974), which has been very 
useful in the presentation of results. Cliff and Wild (1990) have discussed SAS pro- 
grams to generate these diagrams. It can also be drawn by Microsoft Draw (Microsoft 
Corp. 1992) as shown in Fig. 8.13-8. It is obvious in this figure that if a product 
is deficient in one or more attributes, a dented circle will result. 

The traditional approach to product selection has been the use of significance 
testing. An improved approach is to combine significance testing and Total Quality 
methods of Genichi Taguchi. Products may not be significantly different, but they 
may differ in quality due to one of them having lower variability. To provide a tool 

I '  

? 

CONSUMER FEEDBACK 

Fig. 8.13-8 
Depiction of a robust product with consumer feedback defind as 
"noise." 
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for deciding which product should be selected, the SNR can be used. As applied 
to sensory research, the SNR can results in the following cases: 

Case 1: Low mean and low SNR. 
Case 2: Low mean and high SNR. 
Case 3: High mean and low SNR. 
Case 4: High mean and high SNR. 

Case 1 is obviously undesirable; it did not meet the total quality goals (high mean 
and high SNR). Case 2 indicates low variation in the data meeting the goal for high 
SNR, but did not meet the other goal on high means (larger-is-better). In this situa- 
tion, product reformulation is needed. However, if this was a process manufactur- 
ing study, high SNR should be the basis for decision and later on improve on the 
process mean. Case 3 indicates the presence of high variation in the data, which 
is likely due to consumer segmentation. When this case occurs, the decision should 
be based solely on mean score or analyze the data by segments/subgroups; one should 
examine the cause of segmentation. Case 4 is the ultimate goal. It meets both goals 
for “larger-is-better’’ perceived quality characteristic and low variation (high SNR). 
In consumer testing, a high mean generally denotes a high SNR in the absence of 
segmentation. 

In looking at the SNR by attributes, one must examine the frequency distribution 
to facilitate proper interpretation of the result. The SNR statistic is extremely sen- 
sitive to values very distant from the target. For example, a hedonic distribution 
with one rating falling in the “dislike extremely” category of the scale will have 

Table 8.13-6 
Frequency distribution for overall liking to illustrate the sensitivi- 
ty of SNR to observations far from the target (larger-is-better). 

Scale category Product A Product B 

1: 
2: 
3: 
4: 
5: 
6 
I :  
8: 
9: 

dislike extremely 
dislike very much 
dislike moderately 
dislike slightly 
neither like nor dislike 
like slightly 
like moderately 
like very much 
like extremely 

1 
0 
4 
4 

19 
18 
31 
40 
12 

0 
0 
5 
8 

22 
22 
32 
25 
17 

Mean score 6.80 6.62 
SNR 14.71 15.37 

Note: Mean scores for overall liking are not significantly different from 
each other. 
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a large impact on lowering the value of the SNR (Table 8.13-6). If this rating is, 
in fact, an outlier it should be excluded from the computation. When this situation 
occurs, the SNR by averages and the SNR by attributes often do not agree. In Table 
8.13-6, although the mean score for Product A was higher than that of Product B, 
the SNR is slightly lower because of that one rating falling in the extreme category. 
When this rating is excluded from the computation, the SNR changed from 14.71 
to 15.81 indicating that Product A is now a better quality than Product B. The presence 
of outlier in the data, especially those outliers well beyond the target, can severely 
distort the reliability of SNR. In particular, when the rank order of means and SNR 
is in disagreement one must examine the frequency distribution to search for outly- 
ing observations or possible segmentation, i.e., multi-modal distribution. 

Let us consider the data in Table 8.13-7. Notice that three panelists rated Product 
A in the dislike extremely category, while none rated Product B in that category. 
Also, their mean scores are the same. As a decision maker, which product would 
you choose? For the hedonic scale, the quality characteristic is “larger-is-better,” 
and the scores in the dislike extremely category is obviously off target. The SNR 
is found to be 12.9 for Product A and 15.2 for Product B, a result which clearly 
indicates that Product B is perceived to be of better quality. As a decision maker, 
one should choose Product B, even though the product means were not statistically 
different from each other. 

Assume that the frequency distribution for Product A can be projected to a larger 
population, i.e., there will be 3 consumers for every 100 that dislike the product 
extremely. For 100,OOO consumers, this translates to 1,OOO of them disliking Pro- 
duct A. This is evidently the penalty for not meeting customers’ expectations. 

In another case, it is possible to have a product with slightly higher mean, but 
of lower quality compared to a product with lower mean. This is shown in Table 

Table 8.13-7 
Frequency distribution for fragrance liking to illustrate the use of 
SNR for quality decision. 

Scale category Product A Product B 

1 dislike extremely 3 
2 dislike very much 
3 dislike moderately 
4 dislike slightly 
5 neither like nor dislike 
6 like slightly 
7 like moderately 
8 like very much 

1 
5 

10 
9 

16 
26 
44 

9 like extremely 16 

Mean scores 6.8 
SNR 12.9 

0 
3 
2 

11 
7 

21 
35 
33 
18 

6.8 
15.2 



PRODUCT OPTIMIZATION 233 

8.13-8 for Products B and C. Products A and B are at parity (not statistically dif- 
ferent at the 5% level), but A is of better quality; similarly, Products B and C are 
at parity, but C a better quality. Again, as a decision maker Product C would be 
chosen over B on the basis of quality. 

Table 8.13-8 
Frequency distribution for softness of skin after application 
of products A, B, and C. 

Scale category A B C 

1 1 
2 1 1 
3 3 
4 7 5 9 
5 8 5 11 
6 7 12 13 
7 23 32 19 
8 41 32 40 
9 14 11 5 

Mean scores 
SNR 

7.3a 6.9ab 6.8b 
16.51 14.38 15.62 

Note: Means with one letter in common are not significantly dif- 
ferent from each other by the Bonferroni multiple comparison test 
(5% level). 

Table 8.13-9 
Hedonic mean scores for 10 sensory attributes and signal-to-noise ratio by products. 

Product 

Attribute 1 2 3 4 

1. Fragrance before use 7. la 7.0ab 6.9ab 6.7b 
2. Fragrance during use 7.0 7.0 6.8 6.8 
3. Clean feeling after use 7.2 7.2 7.1 7.1 
4. Lather 7.5 7.6 7.2 7.3 
5. Rinsing clean 7.2 7.1 7.2 7.1 
6. Not drying skin 6.9 6.6 6.7 6.9 
7. Moisturizing skin 6.6 6.3 6.4 6.7 
8. Scent of skin 7.0 7.1 6.8 6.9 
9. Feel of skin 6.7 6.6 6.7 6.8 

10. Overall liking 7.0 6.8 6.7 6.8 

Signal-to-noise ratio 
Rank 

16.92 16.80 16.71 16.79 
1 2 4 3 

Note: Means with one letter in common are not significantly different at the 10% level by the Bonferroni 
multiple comparison test. 
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Table 8.13-10 
Signal-to-noise ratio by attribute for Example 8.134 

Attribute 

Product 

1 2 3 4 

1. Fragrance before use 
2. Fragrance during use 
3. Clean feeling after use 
4. Lather 
5. Rinsing clean 
6. Not drying skin 
7. Moisturizing skin 
8. Scent of skin 
9. Feel of skin 

10. Overall liking 

16.21* 
15.60 
16.28 
16.46* 
14.55 
13.39* 
13.04* 
15.81* 
13.81 
15.36* 

15.56* 
16.16* 
16.64* 
17.19* 
14.90 
11.80 
12.10 
15.03 
14.03* 
15.10 

14.14 
15.87* 
15.96 
14.60 
15.80* 
12.77 
12.53 
13.48 
12.81 
13.28 

14.79 
15.34 
16.32* 
16.15 
16.33* 
15.49* 
14.29* 
15.99* 
14.71* 
15.60* 

No. of times on top 2* / total 6/10 5/10 2/10 7/10 

1 
: Product 1 

2 

3 .  

4 -  

7 

9 

0 

5 

Fig. 8.13-9 
Cobweb diagram for Products 1 and 3 to illustrate robustness. 
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Example 8.13-4 

This example illustrates the use of signal-to-noise ratio in product/formula selec- 
tion. Table 8.13-9 shows the mean scores for 10 sensory attributes obtained from 
a consumer test (N = 110) using the 9-point hedonic scale. Of the 10 attributes, 
only in “fragrance before use” were the four products significantly differentiated, 
Product 1 being more well-liked than Product 4. Numerically, the results tend to 
favor Product 1. Since the significance testing indicates an inconclusive result for 
product selection, the SNR can provide further information about the quality of each 
product as a basis for selection. 

Using Eq. (8.13-2), the SNR based on means was computed and the results given 
at the bottom of this table. Although the SNRs were close, one can conclude that 
Product 1 with higher SNR should be selected. That is, it meets Case 4 of high means 
and high SNR (low variability). Products 2 and 4 are close alternative selections. 
In fact, Product 4 showed low variability (higher SNR) in consumer responses by 
attribute (Table 8.13-10). Product 3 should not be considered. 

Fig. 8.13-9 shows the cobweb diagram for Products 1 and 3 to illustrate the strik- 
ing differences between them. Although the diagram is dented, it shows that Prod- 
uct 1 is relatively robust. 





CHAPTER 9 

CLAIM SUBSTANTIATION 

We have discussed various experimental designs and their analyses useful in sen- 
sory testing and other research areas. In Chapter 8, experimental procedures were 
presented for obtaining an optimal formulation of products. Now we will compare 
an optimal product formula against a competitor or against a product class, the result 
of which will be used for advertising purposes. When we collect data for this pur- 
pose we are conducting a claim substantiation study. Results from this study can 
also be used to challenge competitors. Briefly, claim substantiation is defined as 
a statement of facts supported by evidence. This evidence is usually quantitative in 
nature and capable of being replicated under specified conditions. It is therefore evi- 
dent that statistics and experimental design play a major role in furnishing evidence 
for establishing claims. 

In this chapter, we present the statistical design and analysis to support claims 
substantiation. Although the design and analysis have been given in the previous 
chapters, our aim in Chapter 8 is to put these techniques in another framework for 
claims support. 

9.1 CLAIM SUBSTANTIATION GUIDELINES 

When one submits a claim for a product to television networks and newspapers, 
among others, it can be challenged by competitors through the National Advertising 
Division (NAD) of the Council of Better Business Bureaus (CBBB), a self-regulatory 
system for the industry. The evaluation of claims is based on its own review and 
evaluation of advertiser’s substantiation and, when necessary, on consultation with 
technical experts. More importantly, an advertising claim is subject to government 
agencies standards, such as the Federal Trade Commission (FTC) and state govern- 
ments, each of which may enforce differing standards. For example, as reviewed 
by Zelek (1990), FTC has stated that six factors should be taken into account in 
determining whether an advertiser has a reasonable basis of substantiation for adver- 
tising claims: 

1. The product involved. Clearly, certain products require higher levels of substan- 
tiation. These include food, drugs and potentially hazardous products. 

2. The type of claim. Where health or dietary claims are concerned, the level 
of substantiation for a reasonable basis will increase. 

23 7 
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3. The benefits of a truthful claim. Where the benefits of a true claim are poten- 
tially great, less substantiation will be necessary. 

4. The consequences of a false claim. As might be expected, where the potential 
consequences of a false claim are great, a higher level of substantiation will be 
required. 

5. The ease of developing the necessary substantiation. When data required for 
substantiation is technically difficult or costly to generate, less will be required. 

6. The amount of substantiation experts in the field would think is reasonable. 
As a rule, the substantiation must meet contemporary professional standards for 
evaluating the claim. 

Claim substantiation cases and their resolutions are published in NAD Case Report, 
a CBBB publication. This publication is highly recommended reading material for 
sensory professionals involved in claim substantiation. An example of a substantia- 
tion challenge involving house paint (CBBB, Inc. 1990) is given in Fig. 9.1-1. The 
role of statistics, sensory, and experimental design is clearly evident in this challenge. 

The results of exploratory research work should not be used for claims. Often- 
times, when the result of exploratory research is promising, it is being used for con- 
venience to support a claim. This use of the result is generally unacceptable. To 
avoid litigation and post-claim substantiation costs, exploratory results should be 
repeated for the sole purpose of substantiation. 

For example, when an exploratory experiment results in an optimal formula, a 
confirmatory laboratory experiment should be conducted using the paired comparison 
design for the purpose of claim substantiation. This comparison may include the 
optimal formula 1 vs. competitor 1, optimal formula 1 vs. competitor 2, and so on. 
If instrumentation data are part of the claim, these data should also be collected us- 
ing the paired comparison design. However, in order to make a strong case for the 
laboratory data, i.e., trained paneliexpert data, it should be supported by actual use 
of the product by the consumer. The consumer test methods discussed in Chapter 
7 can be used for this purpose. 

Another common exploratory research is through a focus group. Results from a 
consumer focus group is not acceptable for claims because the information obtained 
is qualitative. The result should be confirmed by a quantitative research, i.e., CLT, 
RGT (Research Guidance Test). 

In providing general guidance on the definition of good consumer research, the 
courts and other authorities have embraced the views of the research community, 
which are summarized below (Zelek 1990). In fact, this guideline applies to all types 
of research activities. 

1. A properly defined universe. The target consumer should be clearly identified. 
2. A representative sample of that universe. Accepted sampling procedure should 

3. Clear, precise and nonleading questioning. This specifically applies to survey 
be followed. 

research. 
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PPC INDUSTRIES. INC. 
Lucite H o w  & Trim Paint 
Young & Rubicam/San Francisco 

Basis or Inquiry: A magazine advertisement claimed: "In 
an independent test. monitoring 350 homes across the na- 
tion for 24 years. Lucite House & Trim paint consistently 
resisted cracking and peeling longer than comparable paints 
from Glidden. Dutch Boy. Sherwin Williams and Benjamin 
Moore." The advertisement featured a photograph of an ex- 
terior wall with one side showing paint failure and labeled 
"Glidden," and the other side showing no failure and lakled 
"Lucite House & Trim hint." The advertising was brought 
to NAD's attention try the Glidden Company. The challenger 
stated its belief that the testing featured in the advertisement 
may MH reflect current product performance and that the 
photograph represented an atypical result. NAD initiated an 
inquiry under NAD/NARE procedures, effective April I .  199Q 

Decision: The advertiser provided reports of an ongoing paint 
performance program which compares its paint to competitive 
products. The program was commenced in 1966 and has con- 
tinued through changes in ownership of the Lucite brand. 
Periodically a number of homes are ainted by independent 
contractors. in regions with mrying cEmates, using commer- 
cially available samples of the adveniser's paint and a com- 
petitive paint on adjacent sections of each home. Independent 
expen evaluators annually rate the performance of each sec- 
tion for cracking, peeling and flaking using a modified ASTM 
scale. Results indicated a significant performance advantage 
for the advertiser's brand compared to the challenger's brand 
and other competitive brands in each attribute. Comparisons 
of the most recently painted homes confirmed the earlier 
results. The advertiser stated that the photograph in the 
advertisement accurately depicted product performance on 
an actual test home. 

The challenger queried several aspects of the design and 
results of the test study including the selection of houscs with 
chronic problems, possible bias by the evaluators, the 
modified rating scale, and the tact that the photograph exag- 
gerated the differences in the paints estimated by the modified 
ASTM scale. 

In its review, NAD rrcognizcd that the design was appropriate 
for a stress test of durability of the brands in real-life situa- 
tions and that the consistency of the results throughout the 
test period provided confidence that the observed differences 
were meaningful. 

NAD agreed the claims wen substantiated. (#283UC, c l o d  
I1/21/90) 

Fig. 9.1-1 
An example of a substantiation challenge. 

4. Sound interview procedures followed by competent interviewers with no 

5 .  Accurate reporting of the results. 
6. Appropriate statistical analysis of the data. 
7. The objectivity of the entire process. 

knowledge of the purpose of the study. This also applies to survey research. 
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9.2 TESTING OF CLAIMS HYPOTHESIS 

The conventional approach for testing hypothesis in scientific work has been to 
set the null hypothesis equal to zero. For example, when studying the effects of a 
certain flavoring additive on sensory characteristics of products one may use the 
symbols p1 and p2 to denote, respectively, the mean of scores without and with the 
flavoring additive to formulate a null hypothesis 

Ho: pi - p2 = 0. 

The H, states that there is no effect of flavoring additive. An alternative hypothesis is 

&:p1 - p2 # 0. 

which states that the difference between mean scores is not equal to zero, i.e., could 
be positive or negative. Based on the sign of the mean difference, one may either 
conclude superiority or inferiority of one treatment over the other. A process for 
reaching a decision about the validity of H, or Ha is called testing of hypothesis. 
In reaching a decision, one may commit the so-called Type 1 and Type II errors 
due to sampling variations as discussed in Section 1.3 of Chapter 1. In the conven- 
tional approach, it is not appropriate to prove the null hypothesis, rather one disproves 
it. To prove a null hypothesis is irrelevant as one does not know with certainty the 
value of the null hypothesis; it is a claim that the investigator suspects is false. Hence, 
on the basis of statistical evidence the null hypothesis is proved either false or has 
insufficient evidence to disprove it. In his 1935 classic book, The Design of&- 
perirnenfs, Fisher wrote the following: 

In relation to any experiments we may speak of this hypothesis as the null 
hypothesis and it should be noted that the null hypothesis is never proved or 
established, but is possibly disproved, in the course of experimentation. Every 
experiment may be said to exist only in order to give the facts a chance of disprov- 
ing the null hypothesis. 

If we fail to reject the null hypothesis at a specified significance level, one con- 
cludes that there is no real difference between treatment means or that the observa- 
tions possibly came from the same population. Note that one cannot conclude that 
the mean values are equivalent. In practice, failure to reject the null hypothesis is 
generally given less attention and at times the results are shelved, particularly when 
it is desirable to show a difference. On the other hand, the rejection of the null 
hypothesis attracts further inquiry and a search for a plausible explanation of the 
outcome is pursued that may lead to hrther experimentation. This is the general 
course of action encountered in many research studies. 
In other experimental situations, the “acceptance” of the null hypothesis is the 

desired result. This situation leads to a logical conflict with the traditional approach 
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of disproving the null. Furthermore, the experimental design can be faulty, resulting 
in erroneous acceptance of the hypothesis. Therefore, the formulation of the null 
hypothesis and its analysis must be revised to accommodate the desired result. Such 
revision has been the subject of several investigations in clinical trials (Westlake 
1972, 1976; Metzler 1974; Dunnett and Gent 1977; Blackwelder 1982). These revi- 
sions are as follows: 

1. Use of the confidence interval method instead of test of significance. 
2. Formulation of the null hypothesis with a specified difference. 
3. Use of power of the test. 
4. Use of a control chart that sets limits based on a specified number of standard 

deviations, i.e., 3 sigmas. 

These revisions provide procedures to support claims for parity, superiority or in- 
feriority. These procedures are discussed and illustrated by examples in the suc- 
ceeding sections. 

9.3 EXPERIMENTAL DESIGN AND CLAIM SUPPORT 

The key to successful claim substantiation is the use of a correct experimental 
design to support the claim hypothesis. As a review, an experimental design is a 
structured plan conceived before the experiment is to begin; this plan includes clear 
statement of purpose of the study, how treatmentshnterventions are to be applied, 
the number of experimental units to be used, i.e., number of panelistdjudges, ac- 
countability in the conduct of the experiment, the unit of measurement to be used 
to generate the data, development of the questionnaire, and the determination of 
the population to be sampled (Gacula 1987). All aspects of this plan are important 
and must be thoroughly understood by the members of the project team. 

An example of a claim is: “You can’t beat the taste of diet Sprite” (NAD Case 
#2501). This is a superiority claim and must be compared to all products in its class 
or category. The sensory attributes to define taste in the claim must be fully stated 
in the design. To maintain the same value of Type I error in all product comparisons, 
the paired comparison design should be used as opposed to comparing all products 
in a randomized complete block design. The reason for this is that in a series of 
independent paired comparisons, the confidence level of each comparison is always 
1.0 - Type I error, thus all product comparisons have obviously the same con- 
fidence level. In this claim, all product comparisons must be statistically significant 
at the a level of significance to support the superiority claim. 

Another example is the implied superiority claim in the context of Wyckham (1987), 
such as “No other cereal you can buy has more natural food fiber than Kellogg’s 
All-Bran. ” This claim entails very extensive chemical testing of all breakfast cereals 
in the market. The design consists of obtaining random samples of each brand for 
chemical analysis. To support this claim, the differences in fiber content between 
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Kellogg’s and the other brands must be statistically significant at the Q level by the 
independent t-test or some other test statistics. 

The easiest to substantiate are claims that do not involve the competitors directly, 
such as “Brand X fights cavities effectively or Brand X is an antibacterial agent.” 
To support this claim, one must only show that the product is significantly effective 
at the Q level when compared to a placebo. A simple group comparison design is 
used for this type of a claim and the data analyzed by an independent t-test or other 
appropriate nonparametric test. 

On the other hand, a parity or similarity claim such as “NutraSweetrM tastes just 
like sugar” (NAD Case #2490) involves comprehensive chemical testings and sen- 
sory evaluations. Although no product brands are compared, one has to provide data 
that show the active ingredient of NutraSweetTM to have a close identity with natural 
sugars on both taste and biochemical aspects. Note that the desired result of this 
claim is the acceptance of the null hypothesis. The statistical procedure to support 
this claim is given in the next Section 9.4. 

9.4 TEST FOR EQUIVALENCE AND SUPERIORITY 

For two treatments to be compared under the conventional null hypothesis, the 
Student’s t statistic is usually used as the test statistic for the rejection or acceptance 
of the null. Rejection of the null hypothesis does not indicate the practicality of the 
size of difference between treatments, rather it only indicates that the difference is 
not equal to zero or there is evidence of the presence of real effects. 

In other situations, such as in clinical bioequivalence or bioavailability studies the 
interest is in the acceptance of the null hypothesis, i.e., the new drug is as effective 
as the standard drug. The use of the conventional hypothesis testing in this situation 
leads to difficulties of interpretation because the desired result is the acceptance of 
the null, hence the popular test of significance procedure no longer applies. In this 
respect, it has been suggested that the confidence interval test is more appropriate 
(Westlake 1972; Metzler 1974; Shirley 1976; Blackwelder 1982). As stated by 
Cochran (1983), a confidence interval relates to the question “How large is the dif- 
ference?” In this book, procedures used to validate the acceptance of the null will 
be called a test for equivalence or parity. 

Associated with the confidence interval of a parameter is the degree of confidence 
that the length of the interval will include the true value of the parameter. If the 
interest is in the difference between mean values of two populations, and if the 
hypothesized difference lies within this interval, then the mean values are said to 
be equivalent at a confidence level of ( 1  - a)lOO% where Q is the level of significance 
test determined in advance of the experiment. Suppose we test the hypothesis, H,: 
p1 - p2 = p ~ .  The confidence interval for the difference p~ between population 
means pi and p2 is known to be 
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or simply 

(9.4- 1) 

where d is the estimate of PD, the difference between sample means from the two 
populations, t is a value obtained from the t distribution at CY level of significance 
and appropriate degrees of freedom, and SE is the standard error of obtained 
by S / a ,  where S is the standard deviation of d. For large N, the t distribution 
approaches the standard normal distribution of Z with mean zero and variance 1; 
for example, for CY = 0.05, the value of Z = 1.960 (Appendix Table L). Thus Eq. 
(9.4-1) can be written as d Zu12(SE). In order for the confidence interval method 
to be valid, the samples must be taken independently from each population. Moreover, 
the samples must be sufficiently large to compensate for the lack of normality and 
other distributional assumptions. The decision rule for test of equivalence is stated 
below: 

Ifthe interval Of pD includes zero, one concludes that the two treatment 
mans are equivalent with a confidence level of (1 - C Y ) ~ O O % .  Ifinpar- 
ticular PD = 0, then the means are considered nearly equal. 

Although the interval includes PD, there are other important factors that should 
be considered for supporting an equivalency position. The first factor is the power 
of the test, defined in several books (Dixon and Massey 1957; Quenouille 1965; 
Gacula and Singh 1984; Lehmann 1986) as the probability of rejecting the null 
hypothesis when it is false, or conversely, the probability of rejecting the null 
hypothesis when the alternative is true. Since in a parity position one desires the 
acceptance of the null, one needs a powerful test to reject the null hypothesis when 
it is false. Probabilities associated with the power of the test range from 0.0 to 1 .O, 
with higher values indicating a powerful test. The power of a test can be calculated 
at any point in the alternative hypothesis and can be plotted for ease of examination. 
The test with the acceptable power is used to support equivalence or parity. Since 
power is the probability of rejecting the null hypothesis when it is wrong, the more 
the power of a test, the better it is. 

The second factor is the experimental design that specifies the sample size, ran- 
domization, replication, control of variation, and experimental execution. With a 
good experimental design, one can feel reasonably certain that a statistically non- 
significant result is evidence of parity. 

The use of a plot similar to a quality control chart can also be used to support 
parity by plotting individual replication of the experiment. See Schilling (1982) and 
Ryan (1989) for the construction of a quality control chart. Three standard devia- 
tions are recommended as the parity limits because we assumed under the null 



2fM DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

Po 

hypothesis that we are dealing with one population. Note that a three-standard devia- 
tion limit includes about 99% of observations in the population. If majority of the 
differences fall within the parity limits, then there is evidence of equivalence. The 
basic rationale of the application of control chart is sampling. If each replication 
represents a random sample from the same population with similar mean and variance, 
then most of the differences should fall within the specified parity limits. Figure 
9.4-1 shows a control chart for substantiating a parity position. Equation (9.4-1) 
can be used to obtain the width of the parity limits, such that a 95% confidence 
Limit is h f 2.O(SE) and a 99% confidence limit is f 3.O(SE). We call the chart 
in Fig. 9.4-1 a h control chart to indicate that mean differences are plotted. 

The decision rule for superiority claim can be stated as follows: 

Zone significantly different from p o  

SENSORY EQUIVALENCE ZONE 

Ifthe lower limit of the confidence interval of the difference is equal to 
or greater than zero, the treatment or product with the larger mean k 
declared superior at the (1 - a)loO% level of confidence. 

Note that the result of the confidence interval analysis can also be interpreted as 
a test of significance at the a level (Natrella 1960; Barr 1969; Jones and Karson 
1972; Cochran 1983). In particular, Gacula and Singh (1984) applied the confidence 
interval significance test in paired comparison of scale values obtained by the 
Thurstone-Mosteller model. The interpretation of the result is the same as in the 
conventional hypothesis testing. 

f 

I Zone significantly different from po 

- 
0 TEST NUMBER 

Fig. 9.4-1 
A chart to support the position of sensory 
equivalence (parity) or superiorityhnferiority . 
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Calculation of Power of the Test 

As stated earlier, although a nonsignificant result may indicate parity, we need 
to know the power of the test, for it indicates the probability of rejecting the null 
hypothesis when it is false. In substantiating a parity position, it is desirable that 
this probability should be high for the alternative hypothesis. Unfortunately, the power 
of the test cannot be adequately estimated before the study because of the necessity 
of knowing the estimate of variance in the data, and this variance comes only from 
the study itself. As stated earlier, power ranges from 0.0 (no power) to 1.0 (high 
power). A power of 0.50 may be a reasonable value as the lower limit on the follow- 
ing basis. If we plot the power function on the vertical axis and the critical value 
[Z,,,(SE)] on the horizontal axis, the power at the critical value is 0.50 regardless 
of a level and sample size. The choice of the size of power also depends on the 
severity of the consequence of an erroneous conclusion. In general, one must aim 
at higher power so that the study can withstand scientific and legal challenges. 

In clinical trials involving drug safety and efficacy, a power of 0.90 has been 
reported (Frieman ef al. 1978). Because of the high risk involved in clinical trials 
for making a wrong decision, the sample size of the study is determined in advance 
of the experiment by calculating the sample size based on the variance of historical 
data. The aim in this calculation is to obtain a power close to 1.0. 

It is known in the statistical literature that three factors can increase the power 
of the test. These factors are as follows: 

1. Type I error a. A test with large Type I error, i.e., 0.10,0.20, will have more 
power. Thus, it is a trade-off between the significance level Q and the power. For 
a fixed sample sue test, it is not possible to have a high significance level and ex- 
pect to increase the power. The relationship between the power of the test and 
significance level Q or Type I error can be seen below: 

Type I error Confidence level Power of test 

0.01 0.99 Low 
0.05 0.95 
0.10 0.90 
0.20 0.80 High 

I 
From the information above, it is evident that a compromise should be made be- 
tween significance level and power. 

2. Sample size. In sensory and consumer testing, sample size refers to the number 
of panelists or judges, computed to provide an adequate protection from the risks 
of a and 0 errors. The larger the sample size, the smaller the Type I (a) and Type 
II (0) risks. Once the compromise between the significance level and the power is 
made, the power of the test can be further increased with larger sample size. 
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3. Setting a reasonable difference between the value of the null and the alternative 
hypotheses. This factor is simply formulating a hypothesis with a specified difference. 
This factor is especially important for testing parity. In the absence of a method 
for specifying the difference, one resorts to determination of the difference based 
on historical data. For example, one may use the estimate of random error as the 
specified difference, or one can also use a fraction of the standard error of the mean 
or difference. 

The power of the test can be computed by 

Power = 1 - p  (9.4-2) 

where 0 is the probability (P) of committing the Type 11 error. Assuming that we 
are sampling from a normal distribution and desire to test 

against 

then 

0 = P(accepting H,, when p1 - pz # PO).  

Here, is the probability of incorrectly accepting the null hypothesis when in fact 
the alternative is true. An understanding of both Type I and 11 errors can be obtained 
from graphical illustration in Fig. 9.4-2. The first step is to find the critical value 
Z of the test statistic Z = (%I - %z - po)/SE that divides the distribution into 
the so-called acceptance and rejection regions (Fig. 9.4-2a). If the value of Z lies 
in the rejection region, we reject the null hypothesis (Ho); conversely, if it lies in 
the acceptance region we accept it. 

The rejection region is specified once the level of significance 01 of the test is known, 
usually comprising 5 or 1% of the area under the normal curve. In Fig. 9.4-2a, 
for (Y = 0.05, the distance from 0 to Zc is 1.645 (obtained from Appendix Table 
K) by the following reasoning. The probability (Y of making a Type I error is 0.05; 
therefore, the probability of correctly accepting the null is 0.95. The area under 
the curve below 0 is 0.500, and between 0 and ZE it is 0.450 (see Appendix Table 
L). This probability (0.450) is equivalent to a Zc (critical value) value of 1.645. 
Thus, any Z value greater than 1.645 is in the rejection region where 01 < 0.05. 

But suppose that the alternative hypothesis Ha is true, i.e.. P I  - pz = p~ > po. 
Then the distribution looks like that given in Fig. 9.4-2b. The area to the left of 
& is the Type I1 error 0, and the area to the right is the power of the test, hence 
power = 1 - 0. In the form of a formula, 
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0 zc 

ACCEPTANCE REGION REJECTION REGION 

Fig. 9.4-2 
Standard normal distribution of random variable Z with mean 0 
and variance 1 illustrating the area corresponding to the (Y and /3 
errors when the alternative hypothesis is actually true with mean p ~ .  

Power = P(Z > Zc given p1 - p2 = p ~ )  

(9.4-3) 

where a, denotes the cumulative distribution function of the standard normal ran- 
dom variable Z with mean zero and variance 1. The areas associated with the stan- 
dard normal distribution are given in Appendix Table L. Examples for calculating 
the Type I1 error and consequently the power of the test will be given in the follow- 
ing sections. 

Sensory Equivalence 

Many claims substantiation in the personal care, household, and the food industries 
uses the human basic senses as the measuring instruments; specifically, the human 
basic senses of taste, sight, feel, and smell. In this section, a sensory equivalence 
is proposed to denote equivalence or parity in one or more of the basic senses bet- 
ween products. Obviously, sensory equivalence is used to support product parity. 
One unique application is the specification of a certain score on a rating scale that 
should be satisfied in a monadic evaluation for product acceptance. 

During product development and reformulation, prototypes are monadically 
evaluated. It is common to establish a base point on the scale, such as a 6.0 on the 
9-point hedonic scale to be the value of the null hypothesis: 
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Ho: po = 6.0 

Ha: po # 6.0 

Although the above formulation is two-sided, one may formulate the one-sided, Ha: 

Using the confidence interval test, if the interval of p ,  includes 6.0, then one may 
conclude sensory equivalence between the product and the perceived value of the 
null hypothesis. As discussed earlier, if more statistical evidence is required the power 
of the test can be computed or the number of tests (replication) increased and the 
result of each test plotted on a control chart (Fig. 9.4-1). The use of the control 
chart is useful because of the dynamic nature of consumer responses. 

< 6.0 or Ha: p, > 6.0, depending on the experimental problem. 

Example 9.4-1 

Marketing research desires that the prototype of a product recently developed by 
R&D (Research and Development) should have an average score of at least 6.0 on 
the 9-point hedonic scale before further consumer testing can proceed. A monadic 
test with 100 panelists was conducted with the following result for “overall liking” 
of the product: 

Mean 5.2 
Standard deviation 1.4 

In this example, H,: po 2 6.0 and Ha: po < 6.0. For large sample size (N > 30) 
one may use Za,2 to approximate ta,2 in Eq. (9.4-1) for any o values. At the 95% 
confidence level, the value of Za,2 is 1.960 (Table L). That is, the area o/2 = 0.5000 
- 0.4750 = 0.025 corresponds to Z = 1.960. Thus the 95% confidence interval 
is, from Eq. (9.4-1) 

5.2 f 1 . 9 6 0 ( 1 . 4 / a )  = 5.2 f 0.27 

resulting in an interval of 4.9 to 5.5, which can also be written as (4.9, 5.5). The 
interval does not include 6.0, therefore, one concludes that the prototype is not at 
parity with the perceived value of the null hypothesis. In fact, it is significantly in- 
ferior from the perceived value of the null at the 1.0 - 0.95 = 0.05 significance 
level. Note that only in the confidence interval test can one perform this operation 
to obtain the level of significance. This operation should not be used in other test 
procedures involving more than two means, such as in multiple comparison tests, 
because the significance level increases with the number of means. A statistician 
should be consulted. 

Let us calculate the power of the test when the observed result x is actually true; 
i.e., we reject the null and accept the alternative hypothesis. First we calculate the 
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critical value X, on the % scale corresponding the cut-off point - 1.960 on the Z 
scale. Since Z = [(x - 6 .0 ) / (1 .4 /m,  we find X, to be 6.0 - 1.960(0.27) = 
5.47 (Fig. 9.4-3a). Then, using Table L to obtain the probability of Type I1 error, 
which is 0.159, we have using Eq. (9.4-3) 

Power = 1 - +[(5.47 - 5.20)/0.27] 

= 1 - a(1.00) = 1 - (0.5000 - 0.3413) 

= 1 - 0.159 

= 0.841 

This result is reasonable because the difference between the null value of 6.0 and 
the alternative value of 5.2 is quite large; hence the power should be relatively large, 
suggesting the falsity of the null. See Fig. 9.4-3b for the graphical illustration of 
the result. 

Suppose that the observed mean is 6.10 (Fig. 9.4-4b) instead of 5.20 (Fig. 9.4-3b). 
What is the power of the test? Note that the value of Ha is shifted to the right of 
&. Corresponding to the cutoff point 1.960 on the Z scale, the cutoff point on 
the X scale is 

X, = 6.0 + 1.96(0.27) = 6.53 

and 

/ I \ H, : /.lo - 5.20 

Fig. 9.4-3 
Normal distribution curves for data from Example 
9.4-1 showing the area of Type II error when the alter- 
native hypothesis is true. 



250 DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION 

I - 
6.1 , X 

-57 6.5 

Fig. 9.4-4 
Normal distribution curves for data from Example 9.4-1 
showing the area of Type II error when the value of the alter- 
native hypothesis is close to the null hypothesis. 

Power = 1 - { 1 - @[(6.53 - 6.10)/0.27]} 

= 1 - [ l  - @(1.593)] 

= 1 - [l  - (0.5000- 0.4441)] 

= 1 - 0.944 = 0.056 

Again this result is reasonable because the value of 6.1 is close to null value of 6.0 
and the power should be low (Fig. 9.4-4b) suggesting that the null is true. When 
the alternative is 6.50, the power is 0.457 (Fig. 9.4-4c). If we further increase the 
value of the alternative to 6.7, the power of the test becomes 0.764. This example 
clearly illustrates that as the value of Ha moves away farther from Ho the power 
of the test approaches 1.0. 

Example 9.4-2 

In a consumer study product A was compared to the leading brand product B. 
Using the paired comparison design the mean values for overall liking are as follows: 
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A B 

No. of panelists, N 92 92 
Mean, 6.1 5.9 

The standard deviation of the difference is computed to be 1.10. Thus the standard 
error is SE = l.lO/d@ = 0.1 1 .  The 95 % confidence interval of the difference is 

(6.1 - 5.9) f 1.960(0.11) = 0.20 f 0.22 

or an interval of (-0.02, 0.42). Since the interval includes zero, one concludes at 
the 95% confidence level that products A and B are sensorially equivalent. Note 
that the lower limit of the confidence interval is close to zero, and one may suspect 
the parity or equivalency conclusion. Therefore the power of the test should be com- 
puted. In this example it is apparent that the value of the null is zero, hence the 
critical value X, is 0.0 + 1.960(0.11) = 0.22. Note that X, is to the right of po 
(Fig. 9.4-5), therefore 

Power = 1 - [l - a((0.22 - 0.20)/0.11)] 

= 1 - [l - a(0.182)] 

= 1 - [l - (0.5000 - 0.0714)] 

= 1 - (1 - 0.428) 

= 0.428 

- 

Fig. 9.4-5 
Illustration of paired comparison test (Example 
9.4-2) showing the area of Type II error /3 when 
power of test is low. 
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The power is less than 0.50, thus this result is a suspect to support parity. The con- 
clusion of parity should be suspended until additional consumer test data are available. 

Example 9.4-3 

The results of four central location tests (CLT) and one conducted by R&D are 
given in Table 9.4-1. The question is: Is product A sensorially at parity with prod- 
uct B? The pooled standard error of difference for this study was found to be 0.123. 
The 99% confidence interval of the sensory equivalence zone is 3(0.123) = k0.37. 
This interval defines the entire width of the zone on the chart. 

Table 9.4-1 
Overall ling mean scores for products A and B to illustrate the position of sensory equivalence. 

Product CLTl CLT2 CLT3 CLM R&D 

A 5.7f 1.9 5.5k2.0 5.9f2.0 5.6f2.1 5.4f 1.7 
B 5.8f 1.8 5.9f 1.6 5.7f2.1 5.4f 1.9 5.4f 1.8 

A-B -0.1 -0.4 0.2 0.2 0.0 

N 96 101 90 82 100 

Note: R&D = Research and development personnel. 

Using this interval, the plot of the difference A - B is shown in Fig. 9.4-6. It 
is seen that 4/5 of the differences lie in the zone of sensory equivalence, and for 
practical purposes this is an evidence of product parity. Perhaps, the data for CLT2 
may be examined to see if this result is due to location difference (assignable cause) 
in product preference or strictly sampling variations (unassignable causes). The chart 
also could be interpreted to indicate that 1 % of the time an average difference can 
be erroneously classified as out of the parity zone. 

Sample Size and Power of the Test 

As stated earlier, the number of observations N plays a major role in the power 
of the test by lowering the standard error of the mean. Recall that SE = S/<N where 
S is the standard deviation of the observations. The formula for computing power 
of the test can also be written as 

Power = 1 - +[((PI - pz)/SE) + Z,] (9.4-4) 

where Z, is the standard normal deviation corresponding to the area of the normal 
curve at (11. In the form of Eq. (9.4-4), one can vary N and fix (11 at certain level 
in computing the power. 
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Fig. 9.4-6 
Control chart to substantiate sensory equivalence be- 
tween two products at the 95 % confidence level. Note: 
The width of the zone is * u where u estimated by 
the standard error of difference SE. 

Let us use the statistics of Example 9.4-2 to illustrate the effect of N on power 
of the test. Using Eq. (9.4-4) the power was calculated for N = 41, 92, 184 with 
a equal to 0.05 and its corresponding Z, = 1.960 (Table L). The result is shown 
in Table 9.4-2. The power of the test for rejecting a false null hypothesis increases 
as the value of the alternative hypothesis moves away from the null regardless of 

Table 9.4-2 
The effect of sample s u e  on the power of the test with pro- 
bability of Type I error fixed at 5 %. 

Power 

KA - KB N = 4 1  N = 9 2  N=184 

0.00 0.025 0.025 0.025 
0.05 0.048 0.064 0.090 
0.10 0.084 0.138 0.234 
0.15 0.138 0.256 0.457 
0.20 0.213 0.413 0.695 
0.25 0.306 0.586 0.870 
0.30 0.414 0.743 0.959 
0.35 0.530 0.861 0.991 
0.40 0.643 0.936 0.999 
0.45 0.744 0.975 1 .Ooo 
0.50 0.828 0.992 1 .Ooo 

Note: This test is one-sided.cr12 = 0.0512 = 0.025, Za,z = 1.960, 
standard deviation of difference = 1.10. PO = PA - PB 
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the sample size. However, the power converges to 1.0 faster with larger sample 
sizes. For example, if p~ = 0.45 the power for N = 41, 92, 184 are, respectively, 
0.744, 0.975, and 1.0. Note in this table that when the null hypothesis is true, p~ 
= 0, both the Type I error a and the power of the test have the same value equal 
to 0.025 regardless of N. 

9.5 NULL HYPOTHESIS WITH SPECIFIED DIFFERENCE 

One method of improving the support of parity is by specifying a difference in 
the formulation of the null hypothesis (Blackwelder 1982; Blackwelder and Chang 
1984). For example, FDA (Federal Drug Administration) requires a 1-log reduc- 
tion by the CADE handwashing procedure (Cade 1951) for antimicrobial efficacy. 
The null hypothesis may be written as 

and the alternative 

Here po is the average microbial population at the beginning of the test (no treat- 
ment applied) and p l  is the average count after the treatment has been applied. The 
decision rule using the confidence interval test for the above hypotheses is as follows: 

If the lower limit of the interval is equal to or greater than 1-log, one concludes 
that the required reduction for antimicrobial efficacy has been satisfied. On the other 
hand, if the interval includes a value less than 1 then the difference did not meet 
the l-log reduction. 

The choice of the specified difference depends on the experimental problem. The 
specification of the difference minimizes doubts in a claim that an inappropriate ex- 
perimental design was used to support the acceptance of the null hypothesis. This 
specification also provides the appropriate sample size to obtain the desired power 
of the test. 

Example 9.5-1 

This example illustrates the computational procedure for testing the null hypothesis 
with a specified difference to guarantee product equivalence or superiority. The a p  
proach here is to decide how close the difference between products would be before 
one can guarantee that the products are sensorially equivalent. The sensory analyst 
will proceed to do a full central location test only if the small scale consumer test 
will result in a sensory equivalence with a specified difference p~ = 0.25 on the 
9-point hedonic scale. In practice, this difference is close to 1 standard error generally 
observed in sensory evaluation work. For this example, let us use the partial data 
in Table 9.5-1 with 10 panelists. 
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The null and alternative hypotheses for this study are as follows: 

Ho: pi 2 p2 + 0.25 
Ha: pi < p2 + 0.25 

Here, p1 is estimated by % I ,  the mean value for product 1, and pz estimated 
by %, the mean value for product 2. The estimated average difference between 
products under the null i s 2  = 6.60 - 5.70 - 0.25 = 0.650 with a standard error 
of difference (SE) of 0.314. Using Eq. (9.4-1), the 95% confidence interval is 

0.650 f 2.262(0.314) = 0.650 f 0.710 

or an interval of -0.06 to 1.36. Since this interval includes zero, the two products 
are sensorially equivalent. The sensory analyst had strong evidence that if a central 
location test is to be conducted there is a very good chance that product 1 should 
perform equally or even better than product 2 due to the inclusion of the specified 
difference in the null hypothesis. 

What is the power of the test under the null hypothesis? From Eq. (9.4-4), 

Power = 1 - cP[(.650/0.314) - 2.2621 
= 1 - +(-2.058) = 0.98 

indicating that the null hypothesis is most likely true because of the low power for 
the alternative hypothesis, thus demonstrating the parity claim overwhelmingly. 

Table 9.5-1 
Sensory data for Example 9.5-1 to illustrate the computa- 
tion for testing of null hypothesis with a specified difference. 

Panelist Product 1 Product 2 d 

1 7 5 1.75 
2 5 5 -0.25 
3 8 6 1.75 
4 6 7 - 1.25 
5 7 6 0.75 

6 6 5 0.75 
7 7 6 0.75 
8 6 6 -0.25 
9 7 6 0.75 

10 7 5 1.75 

Mean 6.60 5.70 0.65 
Std. dev. 0.84 0.67 0.99 

Note: d = (Product I )  - (Product 2) - 0.25 





APPENDIX 

TABLE 
A 
B 
C 

D 
E 
F 
G 

H 

I 
J 

K 

L 
M 
N 

STATISTICAL TABLES 

The F distribution 
Significant ranges for the Duncan’s multiple range test 
Critical ranges for the two-way classification comparing all possible pairs of 
items: Rank sum multiple comparison test 
The t distribution 
Critical values for testing extreme observations: The r ratio test 
Critical values of the Grubbs ratio test for testing largest/smallest observation 
Critical values of the Grubbs ratio test for testing two largestltwo smallest 
observations 
Critical values of the u test for testing largest/smallest observation with known 
standard deviation on v degrees of freedom 
The Chi-square distribution 
The cumulative normal distribution function: cumulative proportions to unit 
normal deviates 
The upper percentile points for q,,, for the range of independent normal ran- 
dom variable 
Areas of the normal curve 
Tables of balanced incomplete block designs for block size k = 2 
Some popular Taguchi orthogonal array designs 

257 



258 APPENDIX 

Table A 
The F distribution 

~~~~ 

DF for 
denominator 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
120 
00 

5 %  Level 

DF for numerator 

1 2 3 4 5 6 8 1 2 2 4 0 0  

161.4 199.5 215.7 224.6 230.2 234.0 238.9 243.9 249.0 254.3 
18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50 
10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53 
7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63 
6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36 
5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67 
5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23 
5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93 
5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71 
4.96 4.10 3.71 3.48 3.33 3.22 3.01 2.91 2.74 2.54 
4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40 
4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30 
4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21 
4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13 
4.54 3.68 3.29 3.06 2.90 2.19 2.64 2.48 2.29 2.07 
4.49 3.63 3.24 3.01 2.85 2.14 2.59 2.42 2.24 2.01 
4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96 
4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92 
4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88 
4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84 
4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81 
4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78 
4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76 
4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73 
4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 I . %  1.71 
4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69 
4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67 
4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65 
4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64 
4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62 
4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51 
4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39 
3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25 
3.84 2.99 2.60 2.37 2.21 2.10 1.94 1.75 1.52 1.00 
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Table A (cont.) 

1 %  Level 

DF for 
denominatclr 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
16 
17 
I8 
19 
a0 
21 
22 
23 
24 
25 
26 

28 
29 
30 
40 
a 
120 

n 

W 

DF for numerator 

1 2 3 4 5 6 8 12 24 OD 

4052 4999 5403 5625 5764 5859 5982 6106 6234 6366 
98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.46 99.50 
34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12 
21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46 
16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.02 
13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88 
12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65 
11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86 
10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31 
10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91 
9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60 
9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36 
9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16 
8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00 
8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87 
8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75 
8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65 
8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57 
8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49 
8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42 
8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36 
7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31 
7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26 
7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21 
7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17 
7.72 5.53 4.46 4.14 3.82 3.59 3.29 2.96 2.58 2.13 
7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10 
7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06 
7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03 
7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01 
7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80 
7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60 
6.85 4.79 3.95 3.48 3.17 2.% 2.66 2.34 1.95 1.38 
6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00 

Source: Merrington, M. and Thompson, C. 1943. Tables of percentage points of the inverted be.ta(F) 
distribution. Biometrika 33:73-99. Reproduced with permission of the Biometrika Trustees. 
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Table B 
Significant ranges for Duncan’s multiple range test 

DF 
error 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
22 
24 
26 
28 

30 
40 
a 

100 
00 

5% Level 

p = 2  3 4 5 6 7 8 9 10 

18.0 18.0 18.0 
6.09 6.09 6.09 
4.50 4.50 4.50 
3.93 4.01 4.02 

3.64 3.14 3.19 
3.46 3.58 3.64 
3.35 3.41 3.54 
3.26 3.39 3.41 
3.20 3.34 3.41 

3.15 3.30 3.37 
3.11 3.27 3.35 
3.08 3.23 3.33 
3.06 3.21 3.30 
3.03 3.18 3.27 

3.01 3.16 3.25 
3.00 3.15 3.23 
2.98 3.13 3.22 
2.91 3.12 3.21 
2.96 3.11 3.19 

2.95 3.10 3.18 
2.93 3.08 3.17 
2.92 3.07 3.15 
2.91 3.06 3.14 
2.90 3.04 3.13 

2.89 3.04 3.12 
2.86 3.01 3.10 
2.83 2.98 3.08 
2.80 2.95 3.05 
2.11 2.92 3.02 

18.0 18.0 
6.09 6.09 
4.50 4.50 
4.02 4.02 

3.83 3.83 
3.68 3.68 
3.58 3.60 
3.52 3.55 
3.41 3.50 

3.43 3.46 
3.39 3.43 
3.36 3.40 
3.35 3.38 
3.33 3.31 

3.31 3.36 
3.30 3.34 
3.28 3.33 
3.21 3.32 
3.26 3.31 

3.25 3.30 
3.24 3.29 
3.22 3.28 
3.21 3.21 
3.20 3.26 

3.20 3.25 
3.17 3.22 
3.11 3.20 
3.12 3.18 
3.09 3.15 

18.0 18.0 
6.09 6.09 
4.50 4.50 
4.02 4.02 

3.83 3.83 
3.68 3.68 
3.61 3.61 
3.56 3.56 
3.52 3.52 

3.47 3.47 
3.44 3.45 
3.42 3.44 
3.41 3.42 
3.39 3.41 

3.38 3.40 
3.37 3.39 
3.36 3.38 
3.35 3.31 
3.35 3.31 

3.34 3.36 
3.32 3.35 
3.31 3.34 
3.30 3.34 
3.30 3.33 

3.29 3.32 
3.27 3.30 
3.24 3.28 
3.22 3.26 
3.19 3.23 

18.0 18.0 
6.09 6.09 
4.50 4.50 
4.02 4.02 

3.83 3.83 
3.68 3.68 
3.61 3.61 
3.56 3.56 
3.52 3.52 

3.41 3.47 
3.46 3.46 
3.44 3.46 
3.44 3.45 
3.42 3.44 

3.42 3.43 
3.41 3.43 
3.40 3.42 
3.39 3.41 
3.39 3.41 

3.38 3.40 
3.31 3.39 
3.31 3.38 
3.36 3.38 
3.35 3.31 

3.35 3.31 
3.33 3.35 
3.31 3.33 
3.29 3.32 
3.26 3.29 
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Table B (cont.) 

1 %  Level 

DF 
erra 

1 
2 
3 
4 

5 
6 
1 
8 
9 

10 
11 
12 
13 
14 

I5 
16 
17 
18 
19 

XI 
22 
24 
26 
28 

30 
40 
60 
100 
00 

p = 2  3 4 5 6 1 8 9 10 

90.0 90.0 90.0 90.0 
14.0 14.0 14.0 14.0 
8.26 8.5 8.6 8.1 
6.51 6.8 6.9 1.0 

5.10 5.96 6.11 6.18 
5.24 5.51 5.65 5.13 
4.95 5.22 5.31 5.45 
4.14 5.00 5.14 5.23 
4.60 4.86 4.99 5.08 

4.48 4.13 4.88 4.% 
4.39 4.63 4.11 4.86 
4.32 4.55 4.68 4.16 
4.26 4.48 4.62 4.69 
4.21 4.42 4.55 4.63 

4.11 4.31 4.50 4.58 
4.13 4.34 4.45 4.54 
4.10 4.30 4.41 4.50 
4.01 4.21 4.38 4.46 
4.05 4.24 4.35 4.43 

4.02 4.22 4.33 4.40 
3.99 4.11 4.28 4.36 
3.96 4.14 4.24 4.33 
3.93 4.11 4.21 4.30 
3.91 4.08 4.18 4.28 

3.89 4.06 4.16 4.22 
3.82 3.99 4.10 4.11 
3.16 3.92 4.03 4.12 
3.11 3.86 3.98 4.06 
3.64 3.80 3.90 3.98 

90.0 
14.0 
8.8 
7.1 

6.26 
5.81 
5.53 
5.32 
5.11 

5.06 
4.94 
4.84 
4.14 
4.10 

4.64 
4.60 
4.56 
4.53 
4.50 

4.41 
4.42 
4.39 
4.36 
4.34 

4.32 
4.24 
4.11 
4.11 
4.04 

90.0 90.0 90.0 90.0 
14.0 14.0 14.0 14.0 
8.9 8.9 9.0 9.0 
1.1 1.2 1.2 1.3 

6.33 6.40 6.41 6.3 
5.88 5.95 6.00 6.0 
5.61 5.69 5.73 5.8 
5.40 5.41 5.51 5.5 
5.25 5.32 5.36 5.4 

5.13 5.20 5.24 5.28 
5.01 5.06 5.12 5.15 
4.92 4.96 5.02 5.01 
4.84 4.88 4.94 4.98 
4.18 4.83 4.81 4.91 

4.12 4.11 4.81 4.84 
4.61 4.12 4.16 4.79 
4.63 4.68 4.12 4.15 
4.59 4.64 4.68 4.11 
4.56 4.61 4.61 4.61 

4.53 4.58 4.61 4.65 
4.48 4.53 4.51 4.60 
4.44 4.49 4.53 4.51 
4.41 4.46 4.50 4.53 
4.39 4.43 4.41 4.51 

4.36 4.41 4.45 4.48 
4.30 4.34 4.31 4.41 
4.23 4.21 4.31 4.34 
4.11 4.21 4.25 4.29 
4.09 4.14 4.11 4.20 

Source: Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11:l-42. Reproduced with 
permission of The Biometric Society. 
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Table C 
Critical ranges for the two-way classification comparing all possible pairs of items 
(treatments): Rank sum multiple comparison test 

Number of treatments 

N C Y  3 4 5 6 7 8 9 10 11 12 13 14 I5 

5 

6 

7 

8 

9 

10 

I 1  

12 

13 

14 

15 

16 

17 

- 

.01 
.05 
.I0 

.01 
.05 
.I0 

.01 
.05 
.I0 

.01 
.05 
.I0 

.01 
.05 
.10 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.10 

.01 

.05 

.I0 

~~ ~~ ~ 

9 12 16 19 23 26 29 33 37 40 44 47 51 
8 11 14 17 20 23 26 30 34 37 40 43 47 
7 10 13 16 19 22 25 * 28 32 35 38 42 45 

10 14 17 21 25 29 33 37 41 45 49 53 57 
9 12 15 19 22 26 29 33 37 41 43 48 52 
8 11 14 17 20 24 27 31 34 38 42 45 49 

11 15 19 23 27 31 36 40 44 49 53 58 62 
9 13 16 20 24 28 32 36 40 44 48 52 56 
8 11 15 18 22 26 29 33 37 41 45 49 53 

12 16 20 25 29 34 38 43 47 52 57 62 67 
10 14 17 21 25 30 34 38 42 47 51 56 60 
9 12 16 20 24 27 31 36 40 44 48 52 57 

12 17 22 26 31 36 41 46 51 56 61 66 71 
10 14 18 23 27 31 36 40 45 50 54 59 64 
9 13 17 21 25 29 33 38 42 47 51 55 60 

13 18 23 28 33 38 43 49 54 59 65 70 75 
11 15 19 24 28 33 38 43 47 52 57 62 67 
9 13 18 22 26 31 35 40 44 49 54 58 63 

14 19 24 29 35 40 46 51 57 62 68 74 78 
I 1  15 20 25 30 35 40 45 50 55 60 65 71 
10 14 18 23 27 32 37 42 46 51 56 61 66 

14 20 25 31 36 42 48 54 59 65 71 77 83 
12 16 21 26 31 36 41 47 52 58 63 68 74 
10 15 19 24 29 33 38 43 48 54 59 64 69 

15 21 26 32 38 44 50 56 62 68 74 80 87 
12 17 22 27 32 38 43 49 54 60 65 71 77 
11 15 20 25 30 35 40 45 50 56 61 67 72 

16 21 27 33 39 45 52 58 64 71 77 84 90 
13 17 23 28 34 39 45 50 56 62 68 74 80 
I 1  16 21 26 31 36 41 47 52 58 63 69 75 

16 22 28 34 41 47 54 60 67 73 80 87 94 
13 18 24 29 35 40 46 52 58 64 70 76 83 
11 16 21 27 32 37 43 48 54 60 66 72 77 

16 23 29 36 42 49 56 62 69 76 83 90 97 
13 18 24 30 36 42 48 54 60 67 73 79 86 
12 17 22 27 33 38 44 50 56 62 68 74 80 

17 23 30 37 43 50 57 64 71 79 86 93 100 
14 19 25 31 37 43 50 56 62 69 75 82 88 
12 17 23 28 34 40 46 52 58 64 70 76 82 
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Table C (cont.) 

263 

N a  3 4 5 6 7 8 9 10 I 1  12 13 14 15 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

.01 

.05 

.I0 

.01 
.05 
.10 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 
.05 
.I0 

.01 

.05 

.I0 

.01 
.05 
.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

17 24 31 38 45 52 59 66 74 81 
14 20 26 32 38 45 51  57 64 71 
12 18 23 29 35 41 47 53 59 66 

18 25 32 39 46 53 61 68 76 83 
14 20 27 33 39 46 52 59 66 73 
13 18 24 30 36 42 48 54 61 67 

18 25 33 40 47 55 62 70 78 85 
15 21 27 34 40 47 54 61 68 75 
13 19 25 31 37 43 49 56 62 69 

19 26 33 41 48 56 64 72 79 87 
15 21 28 35 41 48 55 62 69 16 
13 19 25 31 38 44 51 57 64 71 

19 27 34 42 49 57 65 73 81 89 
16 22 29 35 42 49 56 64 71 78 
14 20 26 32 39 45 52 59 66 72 

20 27 35 43 51 59 67 75 83 91 
16 22 29 36 43 50 58 65 72 80 
14 20 26 33 39 46 53 60 67 74 

20 28 36 44 52 60 68 76 85 93 
16 23 30 37 44 51 59 66 74 82 
14 20 27 34 40 47 54 61 68 76 

21 28 36 44 53 61 70 78 87 95 
17 23 31 38 45 52 60 68 75 83 
15 21 27 34 41 48 55 63 70 77 

21 29 37 45 54 62 71 80 88 97 
17 24 31 38 46 54 61 69 77 85 
15 21 28 35 42 49 56 64 71 79 

21 30 38 46 55 63 72 81 90 99 
17 24 32 39 47 55 62 70 78 87 
15 22 29 36 43 50 57 65 73 80 

22 30 39 47 56 65 74 83 92 101 
18 25 32 40 48 56 64 72 80 88 
I5 22 29 36 44 51 59 66 74 82 

22 31 39 48 57 66 75 84 93 103 
18 25 33 41 49 57 65 73 81 90 
16 23 30 37 44 52 60 67 75 83 

23 31 40 49 58 67 76 86 95 104 
18 26 33 41 49 58 66 74 83 91 
16 23 30 38 45 53 61 68 76 85 

23 32 41 50 59 68 77 87 97 106 
18 26 34 42 50 58 67 75 84 93 
16 23 31 38 46 54 62 70 78 86 

88 
77 
72 

91 
80 
74 

93 
82 
76 

95 
84 
18 

98 
86 
79 

100 
88 
81 

102 
89 
83 

104 
91 
85 

106 
93 
86 

108 
95 
88 

110 
97 
90 

112 
98 
91 

I14 
100 
93 

116 
102 
94 

96 103 
84 91 
78 85 

98 106 
86 93 
80 87 

101 109 
89 96 
83 89 

104 112 
91 98 
85 92 

106 114 
93 101 
87 94 

108 117 
95 103 
89 96 

111 119 
97 105 , 
90 98 

113 122 
99 107 
92 100 

115 124 
101 109 
94 102 

117 127 
103 111 
96 104 

120 129 
105 113 
98 106 

122 131 
107 116 
99 108 

124 133 
109 117 
101 109 

126 136 
110 119 
103 I l l  
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N 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

.01 

.05 

.10 

.01 

.05 

.10 

.01 

.05 

.I0 

.01 

.05 

.10 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.10 

.01 

.05 

.10 

.01 

.05 

.I0 

.01 

.05 

.I0 

.Q1 

.05 

.I0 

3 

23 
19 
16 

24 
19 
17 

24 
19 
17 

24 
20 
17 

25 
20 
17 

25 
20 
I8 

25 
20 
18 

26 
21 
I8 

26 
21 
I8 

26 
21 
19 

27 
21 
19 

27 
22 
19 

27 
22 
19 

28 
22 
19 

4 

32 
27 
24 

33 
27 
24 

33 
27 
24 

34 
28 
25 

34 
28 
25 

35 
29 
25 

35 
29 
26 

35 
29 
26 

36 
30 
26 

36 
30 
27 

37 
30 
27 

37 
31 
27 

38 
31 
28 

38 
31 
28 

- 5 6 7  

41 50 60 
35 43 51 
31 39 47 

42 51 61 
35 43 52 
32 39 47 

42 52 61 
36 44 53 
32 40 48 

43 53 62 
36 45 53 
33 41 49 

44 53 63 
37 45 54 
33 41 49 

44 54 64 
37 46 55 
33 42 50 

45 55 65 
38 46 56 
34 42 51 

45 56 66 
38 47 56 
34 43 51 

46 56 67 
39 48 57 
35 43 52 

47 57 68 
39 48 58 
35 44 53 

47 58 68 
40 49 58 
36 44 53 

48 58 69 
40 49 59 
36 45 54 

48 59 70 
40 50 60 
36 45 55 

49 60 71 
41 51 60 
37 46 55 

8 

69 
59 
54 

70 
60 
55 

71 
61 
56 

72 
62 
57 

73 
63 
58 

74 
64 
59 

75 
65 
59 

76 
66 
60 

77 
66 
61 

78 
67 
62 

79 
68 
62 

80 
69 
63 

81 
70 
64 
82 
70 
65 

- 9 

79 
68 
63 

80 
69 
64 
81 
70 
64 
82 
71 
65 

83 
72 
66 

85 
73 
67 

86 
74 
68 

87 
75 
69 

88 
76 
70 

89 
77 
71 

90 
78 
72 

91 
79 
72 

92 
80 
73 

93 
81 
74 

- 10 

88 
17 
71 

90 
78 
72 

91 
79 
73 

92 
80 
74 

94 
81 
75 

95 
82 
76 

96 
84 
71 

98 
85 
78 

99 
86 
79 

100 
87 
80 

101 
88 
81 

102 
89 
82 

104 
90 
83 

105 
91 
84 

~ 

11 

98 
85 
79 

100 
87 
80 

101 
88 
81 

103 
89 
83 

104 
91 
84 

105 
92 
85 

I07 
93 
86 

108 
94 
87 

110 
95 
88 

111 
97 
89 

112 
98 
91 

114 
99 
92 

115 
100 
93 

116 
101 
94 

- 12 

108 
94 
87 

110 
96 
89 

111 
97 
90 

113 
99 
91 

114 
100 
93 

116 
101 
94 

113 
103 
95 

119 
104 
96 

121 
I05 
98 

122 
107 
99 

124 
I08 
100 

125 
109 
101 

127 
111 
102 

128 
I12 
104 

- 13 

118 
103 
96 

120 
105 
97 

121 
106 
99 

123 
108 
100 

125 
109 
102 

127 
111 
103 

128 
I12 
104 

130 
114 
106 

I32 
I15 
107 

133 
117 
108 

135 
118 
110 

137 
120 
111 

138 
121 
112 

140 
122 
114 

- 14 

128 
112 
104 

130 
114 
106 

132 
116 
108 

134 
117 
109 

136 
119 
111 

137 
121 
112 

139 
122 
114 

14 1 
124 
115 

143 
125 
117 

145 
127 
118 

146 
129 
120 

148 
130 
121 

150 
132 
122 

152 
133 
124 

- 15 

138 
121 
113 

140 
123 
115 

142 
125 
117 

144 
127 
118 

146 
129 
120 

148 
130 
122 

150 
132 
123 

152 
134 
125 

1 54 
136 
126 

156 
137 
128 

158 
139 
129 

160 
141 
131 

162 
142 
133 

163 
144 
134 

- 
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N u  3 4 

46 .01 28 
.05 22 
.I0 20 

47 .01 28 
.05 23 
.I0 20 

48 .01 29 
.05 23 
.I0 20 

49 .01 29 
.05 23 
.I0 20 

50 .01 29 
.05 23 
.I0 21 

51 .01 29 
.05 24 
.I0 21 

52 .01 30 
.05 24 
.I0 21 

53 .OI 30 
.05 24 
.I0 21 

54 .01 30 
.05 24 
.I0 21 

55 .01 31 
.05 25 
.I0 22 

56 .01 31 
.05 25 
.I0 22 

57 .01 31 
.05 25 
.I0 22 

58 .01 31 
.05 25 
.I0 22 

59 .01 32 
.05 25 
.I0 22 

39 
32 
28 

39 
32 
29 

39 
32 
29 

40 
33 
29 

40 
33 
30 

41 
33 
30 

41 
34 
30 

41 
34 
30 

42 
34 
31 

42 
35 
31 

43 
35 
31 

43 
35 
32 

43 
36 
32 

44 
36 
32 

5 

49 
41 
37 

50 
42 
38 

50 
42 
38 

51 
43 
38 

51 
43 
39 

52 
44 
39 

52 
44 
40 

53 
44 
40 
53 
45 
40 

54 
45 
41 

54 
46 
41 

55 
46 
42 

55 
46 
42 

56 
47 
42 

- 6 

60 
51 
46 

61 
52 
47 

62 
52 
47 

62 
53 
48 

63 
53 
48 

64 
54 
49 

64 
54 
49 

65 
55 
50 

65 
55 
50 

66 
56 
51 

67 
56 
51 

67 
57 
52 

68 
57 
52 

68 
58 
53 

- 
- 

7 

72 
61 
56 

72 
62 
56 

73 
62 
57 

74 
63 
58 

75 
64 
58 

75 
64 
59 

76 
65 
59 

77 
66 
60 

77 
66 
60 

78 
67 
61 

79 
67 
62 

80 
68 
62 

80 
69 
63 

81 
69 
63 

- 8 

83 
71 
65 

84 
72 
66 

85 
73 
67 

86 
73 
67 

86 
74 
68 

87 
75 
69 

88 
76 
69 

89 
76 
70 

90 
77 
71 

91 
78 
71 

91 
79 
72 

92 
79 
73 

93 
80 
73 

94 
81 
74 

- 9 

94 
81 
75 

95 
82 
76 

96 
83 
17 

97 
84 
77 

98 
85 
78 

99 
86 
79 

100 
87 
80 

101 
87 
80 

I02 
88 
81 

103 
89 
82 

104 
90 
83 

105 
91 
83 

I06 
91 
84 

107 
92 
85 

- 10 I 1  12 13 14 15 

106 118 129 141 153 165 
92 102 113 124 135 145 
85 95 105 115 125 136 

107 119 131 143 155 167 
93 104 114 125 136 147 
86 96 106 116 127 137 

108 120 132 144 157 169 
94 105 115 126 137 149 
87 97 107 117 128 138 

109 121 134 146 158 171 
95 106 117 128 139 150 
88 98 108 119 129 140 

110 123 135 147 160 172 
96 107 118 129 140 152 
88 99 109 120 131 141 

112 124 136 149 161 174 
97 108 119 130 142 153 
89 100 110 121 132 143 

113 125 138 150 163 176 
98 109 120 132 143 155 
90 101 111 122 133 144 

114 126 139 152 164 177 
99 110 121 133 144 156 
91 102 112 123 134 145 

115 127 140 153 166 179 
I00  111 122 134 146 158 
92 103 114 125 136 147 

116 129 141 154 168 181 
100 112 124 135 147 159 
93 104 115 126 137 148 

117 130 143 156 169 182 
101 113 125 137 148 161 
94 105 116 127 138 150 

118 131 144 157 171 184 
102 114 126 138 150 162 
94 105 117 128 139 151 

119 132 145 159 172 186 
103 115 127 139 151 163 
95 106 118 129 141 152 

120 133 147 160 174 187 
104 116 128 140 152 165 
96 107 119 130 142 153 
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N 
60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

a 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.10 

.01 

.05 

.10 

.01 

.05 

.I0 

.O 1 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

3 

32 
26 
22 
32 
26 
23 
32 
26 
23 
33 
26 
23 
33 
27 
23 
33 
27 
23 
33 
27 
24 
34 
27 
24 
34 
27 
24 
34 
28 
24 
34 
28 
24 
35 
28 
24 
35 
28 
25 

35 
28 
25 

- 4 
44 
36 
32 
44 
37 
33 
45 
37 
33 
45 
37 
33 
45 
38 
33 
46 
38 
34 
46 
38 
34 
47 
38 
34 
47 
39 
34 
47 
39 
35 
48 
39 
35 

48 
40 
35 

48 
40 
35 
49 
40 
36 

5 

56 
47 
43 
57 
48 
43 
57 
48 
43 
58 
48 
44 
58 
49 
44 
59 
49 
44 
59 
50 
45 
60 
50 
45 
60 
50 
45 
60 
51 
46 
61 
51 
46 
61 
51 
46 
62 
52 
47 
62 
52 
47 

- 6 
69 
58 
53 
70 
59 
53 
70 
59 
54 
71 
60 
54 
71 
60 
55 
72 
61 
55 
72 
61 
56 
73 
62 
56 
73 
62 
56 
74 
63 
57 
74 
63 
57 
75 
64 
58 
76 
64 
58 
76 
64 
59 

- 7 
82 
70 
64 
82 
70 
64 

83 
71 
65 
84 
72 
65 
84 
72 
66 
85 
73 
66 
86 
73 
67 
86 
74 
67 
87 
74 
68 
88 
75 
68 
88 
75 
69 
89 
76 
69 
89 
76 
70 
90 
77 
70 

- 8 

95 
81 
75 
95 
82 
75 
96 
83 
76 
97 
83 
76 
98 
84 
77 
98 
85 
78 
99 
85 
78 

100 
86 
79 

101 
87 
79 

101 
87 
80 
102 
88 
81 
103 
88 
81 

104 
89 
82 
104 
90 
82 

9 10 11 12 13 14 

108 121 134 148 161 175 
93 105 117 129 141 154 
86 97 108 120 131 143 

109 122 135 149 163 176 
94 106 118 130 143 155 
86 98 109 121 132 144 

110 123 137 150 164 178 
95 107 119 131 144 156 
87 98 110 122 133 145 

110 124 138 151 165 179 
95 108 120 132 145 157 
88 99 111 123 134 146 

111 125 139 153 167 181 
96 108 121 133 146 159 
88 100 112 124 136 148 
112 126 140 154 168 182 
97 109 122 134 147 160 
89 101 113 125 137 149 
113 127 141 155 169 184 
98 110 123 135 148 161 
90 102 113 126 138 150 

114 128 142 156 170 185 
98 111 124 136 149 162 
90 102 114 126 139 151 
115 129 143 157 172 186 
99 112 124 137 150 164 
91 103 115 127 140 152 
116 130 144 158 173 188 
100 113 125 138 152 165 
92 104 116 128 141 153 
116 131 145 160 174 189 
101 113 126 139 153 166 
92 105 117 129 142 154 
117 132 146 161 175 190 
101 114 127 140 154 167 
93 105 118 130 143 156 

118 132 147 162 177 192 
102 115 128 141 155 168 
94 106 119 131 144 157 
119 133 148 163 173 193 
103 116 129 142 156 170 
94 107 119 132 145 158 

15 

189 
166 
155 

190 
168 
156 
192 
169 
157 
193 
170 
159 
195 
172 
160 
196 
I73 
161 
198 
1 74 
1 62 
199 
I76 
164 

20 1 
177 
I65 
202 
178 
166 
204 
179 
167 
205 
181 
168 
207 
182 
1 70 
208 
183 
171 

- 
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Table C (cont.) 

74 

75 

76 

n 

78 

79 

80 

81 

82 

83 

84 

85 

86 

m 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.10 

.01 

.05 

.10 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 
.05 
.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.01 

.05 

.I0 

.OI 

.05 

.I0 

.01 

.05 

.10 

N a  3 4 5 6 7 8 9 10 11 12 13 14 15 

35 49 63 77 91 105 120 134 149 164 179 194 210 
29 40 52 
25 36 47 

36 49 63 
29 41 53 
25 36 48 

36 50 63 
29 41 53 
25 36 48 

36 50 64 
29 41 54 
25 37 48 

36 50 64 
29 41 54 
26 37 49 

37 51 65 
29 42 54 
26 37 49 

37 51 65 
30 42 55 
26 37 49 

37 51 66 
30 42 55 
26 38 49 

37 51 66 
30 42 55 
26 38 50 

38 52 66 
30 43 56 
26 38 50 

38 52 67 
30 43 56 
27 38 50 

38 52 67 
31 43 56 
27 39 51 

38 53 67 
31 43 57 
27 39 51 

38 53 68 
31 44 57 
27 39 51 

65 
59 

77 
65 
59 

78 
66 
60 

78 
66 
60 

79 
67 
60 

79 
67 
61 

80 
67 
61 

80 
68 
62 

81 
68 
62 

81 
69 
62 

82 
69 
63 

82 
70 
63 

83 
70 
64 

83 
70 
64 

77 
71 

91 
78 
71 

92 
79 
72 

93 
79 
72 

93 
80 
73 

94 
80 
73 

94 
81 
74 

95 
81 
74 

96 
82 
74 

96 
82 
75 

97 
83 
75 

97 
83 
76 

98 
84 
76 

98 
84 
77 

90 
83 

106 
91 
83 

106 
92 
84 

107 
92 
84 

108 
93 
85 

109 
93 
86 

109 
94 
86 

110 
94 
87 

110 
95 
87 

111 
96 
88 

112 
96 
88 

I13 
97 
89 

113 
97 
89 

114 
98 
90 

103 
95 

I20 
104 
96 

121 
105 
96 

122 
105 
97 

123 
106 
98 

124 
107 
98 

124 
I07 
99 

125 
108 
100 

126 
109 
100 

127 
109 
101 

127 
110 
101 

I28 
111  
102 

129 
111 
103 

130 
112 
103 

117 130 143 157 
108 120 133 146 

135 150 165 180 
117 131 144 158 
108 121 134 147 

136 151 166 182 
118 132 145 159 
109 122 135 148 

137 152 167 183 
119 132 146 160 
110 123 136 149 

138 153 168 184 
120 133 147 161 
110 123 136 150 

139 154 170 185 
120 134 148 162 
111 124 137 151 

140 155 171 186 
121 135 149 163 
112 125 138 152 

141 156 172 187 
122 136 150 164 
113 126 139 153 

141 157 173 189 
123 137 151 165 
113 126 140 153 

142 158 174 190 
123 138 152 166 
114 127 141 154 

143 159 175 191 
124 138 153 167 
115 128 142 155 

144 160 176 192 
125 139 154 168 
115 129 142 156 

145 161 177 193 
126 140 155 169 
116 130 143 157 

146 162 178 194 
126 141 155 170 
117 130 144 158 

171 
159 

196 
172 
160 

197 
173 
161 

198 
174 
162 

200 
175 
163 

20 1 
176 
164 

202 
177 
165 

203 
179 
166 

205 
1 80 
167 

206 
181 
168 

207 
182 
I69 

208 
183 
170 

209 
184 
171 

21 1 
185 
I72 

185 
172 

21 I 
186 
173 

212 
I87 
1 74 

2 14 
188 
175 

215 
189 
176 

217 
191 
178 

218 
192 
179 

219 
193 
180 

22 1 
194 
181 

222 
I95 
182 

223 
197 
183 

225 
I98 
184 

226 
199 
185 

227 
200 
186 
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N u  3 4 5 6 7 8 9 10 11 12 13 14 15 

88 .01 
.05 
.10 

89 .01 
.05 
.I0 

90 .01 
.05 
.10 

91 .01 
.05 
.10 

m .01 
.05 
.I0 

93 .01 
.05 
.10 

91 .01 
.05 
.10 

95 .01 
.05 
.10 

% .01 
.05 
.I0 

97 .01 
.05 
.10 

98 .01 
.05 
.10 

99 .01 
.05 
.10 

100 .01 
.05 
.10 

105 .01 
.05 
.10 

110 .01 
.05 
.10 

39 53 68 83 99 115 130 146 163 179 195 
31 44 57 71 85 98 113 127 142 156 171 
27 39 52 64 77 90 104 117 131 145 159 

39 54 69 84 99 115 131 147 164 180 196 
31 44 58 71 85 99 113 128 142 157 172 
27 39 52 65 78 91 104 118 132 146 160 

39 54 69 84 100 116 132 148 164 181 198 
31 44 58 72 85 100 114 129 143 158 173 
28 40 52 65 78 91 105 119 132 147 161 

39 54 69 85 101 117 133 149 165 182 199 
32 45 58 72 86 100 115 129 144 159 174 
28 40 52 65 78 92 105 119 133 147 162 

40 55 70 85 101 117 133 150 166 183 200 
32 45 59 72 86 101 115 130 145 160 175 
28 40 53 66 79 92 106 120 134 148 163 

40 55 70 86 102 118 134 151 167 184 201 
32 45 59 73 87 101 116 131 146 161 176 
28 40 53 66 79 93 107 121 135 149 163 

40 55 71 86 102 118 135 151 168 185 202 
32 45 59 73 87 102 116 131 146 162 177 
28 41 53 66 80 93 107 121 135 150 164 
40 55 71 87 103 119 136 152 169 186 203 
32 46 59 73 88 102 117 132 147 162 178 
28 41 54 67 80 94 108 122 136 151 165 

40 56 71 87 103 120 136 153 170 187 204 
32 46 60 74 88 103 118 133 148 163 179 
28 41 54 67 81 94 108 122 137 151 166 

41 56 72 88 104 120 137 154 171 188 205 
33 46 60 74 89 103 118 133 149 164 180 
29 41 54 67 81 95 109 123 138 152 167 

41 56 72 88 104 121 138 155 172 189 206 
33 46 60 75 89 104 119 134 149 165 181 
29 41 54 68 81 95 109 124 138 153 168 

41 57 72 89 105 122 138 155 172 190 207 
33 47 61 75 90 104 120 135 150 166 182 
29 42 55 68 82 % 110 124 139 154 169 

41 57 73 89 105 122 139 156 173 191 208 
33 47 61 75 90 105 120 135 151 167 182 
29 42 55 68 82 % 111 125 140 154 169 

42 58 75 91 108 125 143 1M) 178 195 213 
34 48 63 77 92 108 123 139 155 171 187 
30 43 56 70 84 99 113 128 143 158 174 

43 60 76 93 1 1 1  128 146 164 182 200 218 
35 49 64 79 94 110 126 142 158 175 191 
30 44 58 72 86 101 116 131 146 162 178 

212 229 
186 201 
173 187 

213 230 
187 202 
174 189 

214 231 
188 203 
175 190 

215 232 
189 205 
176 191 

217 234 
190 206 
177 192 

218 235 
191 207 
178 193 

219 236 
192 208 
179 194 
220 237 
193 209 
180 193 

221 239 
194 210 
181 196 

222 240 
195 211 
182 197 

224 241 
196 212 
183 198 

225 242 
197 213 
184 199 

226 244 
198 214 
185 200 

231 250 
203 220 
189 205 

237 256 
208 225 
194 210 

Source: Dunn-Rankin, Peter. 1965. The true probability distribution of the range of rank totals and its 
application to psychological scaling. Ph.D. Dissertation, The Florida State University, Tallahassee, Florida, 
Reproduced with permission of the author. 
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Table D 
The t distribution 

DF 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
W 

1 .Ooo 
,816 
.765 
.741 

.727 

.718 

.711 

.706 

.703 
,700 

.697 

.695 

.694 

.692 

.691 

,690 
.689 
.688 
,688 
.687 

.686 

.686 

.685 

.685 
,684 

.684 

.684 

.683 
,683 
.683 

.681 
,679 
.677 
,674 

.SO .40 .30 .20 .I0 .05 .02 .01 .001 

1.376 1.%3 3.078 6.314 12.706 31.821 63.657 636.619 
1.061 
.978 
,941 

,920 
.906 
.896 
.889 
383 
,879 

376 
373 
.870 
.868 
.866 

,865 
363 
.862 
361 
.860 

.859 

.858 

.858 

.857 

.856 

.856 
,855 
.855 
,854 
.854 

.85 1 

.848 

.845 

.842 

1.386 
1.250 
1.190 

1.156 
1.134 
1.119 
1.108 
1.100 
1.093 

1.088 
1.083 
1.079 
1.076 
1.074 

1.071 
1.069 
1.067 
1.066 
1.064 

1.063 
1.061 
I .060 
1.059 
I .058 

I .058 
1.057 
1.056 
1.055 
1.055 

1.050 
1.046 
1.041 
1.036 

1.886 
I .638 
1.533 

1.476 
1.440 
1.415 
1.397 
1.383 
1.372 

I .363 
1.356 
1.350 
I .345 
1.341 

1.337 
1.333 
1.330 
1.328 
1.325 

1.323 
1.321 
1.319 
1.318 
1.316 

1.315 
1.314 
1.313 
1.311 
1.310 

1.303 
1.296 
1.289 
1.282 

2.920 
2.353 
2.132 

2.015 
1.943 
1.895 
1.860 
1.833 
1.812 

I .796 
I .782 
1.771 
1.761 
1.753 

1.746 
1.740 
1.734 
1.729 
1.725 

1.721 
I .717 
1.714 
1.711 
1.708 

1.706 
1.703 
1.701 
1.699 
1.697 

1.684 
1.671 
1.658 
1.645 

4.303 
3.182 
2.776 

2.571 
2.447 
2.365 
2.306 
2.262 
2.228 

2.201 
2.179 
2.160 
2.145 
2.131 

2.120 
2.110 
2.101 
2.093 
2.086 

2.080 
2.074 
2.069 
2.064 
2.060 

2.056 
2.052 
2.048 
2.045 
2.042 

2.201 
2.000 
1.980 
1.960 

6.965 
4.541 
3.747 

3.365 
3.142 
2.998 
2.8% 
2.821 
2.764 

2.718 
2.681 
2.650 
2.624 
2.602 

2.583 
2.567 
2.552 
2.539 
2.528 

2.518 
2.508 
2.500 
2.492 
2.485 

2.479 
2.473 
2.467 
2.462 
2.457 

2.423 
2.390 
2.358 
2.326 

9.925 
5.841 
4.604 

4.032 
3.707 
3.499 
3.355 
3.250 
3.169 

3.106 
3.055 
3.012 
2.977 
2.947 

2.921 
2.898 
2.878 
2.861 
2.845 

2.831 
2.819 
2.807 
2.797 
2.787 

2.779 
2.771 
2.763 
2.756 
2.750 

2.704 
2.660 
2.617 
2.576 

31.598 
12.924 
8.610 

6.869 
5.959 
5.408 
5.041 
4.781 
4.587 

4.437 
4.318 
4.221 
4.140 
4.073 

4.015 
3.%5 
3.922 
3.883 
3.850 

3.819 
3.792 
3.767 
3.745 
3.725 

3.707 
3.690 
3.674 
3.659 
3.646 

3.551 
3.460 
3.373 
3.291 

Source: Table generated using a SAS program written by R.W. Washam II, The Dial Technical and 
Administrative Center, Scottsdale, Arizona. 
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Table E 
Critical values for testing extreme observations: The r ratio test 

Statistic n 

3 
4 

r1o 5 
6 
7 

8 
9 

10 
rl I 

11 
rz I 12 

13 

14 
15 
16 

rzz 17 
18 
19 
20 
21 
22 
23 
24 
25 

Critical values 

.30 20 .10 .05 .02 .01 .005 

.684 .78 1 386 ,941 .976 .988 ,994 

.47 1 .560 .679 ,765 .846 .889 .926 

.373 .45 1 3 7  .642 .729 ,780 .82 1 

.3 18 .386 .482 .560 .644 .698 .740 

.281 .344 .434 SO7 .586 .637 .680 

.3 18 .385 .479 .554 .63 1 .683 ,725 

.288 .352 .441 .512 3 7  .635 .677 

.265 .325 .409 .477 .551 .597 .639 
~ ~~ ~- ~~ ~~ 

.39 I .442 5 1  7 576 .638 .679 .713 

.370 .4 19 .490 .546 .605 .642 .675 
-35 1 .399 .467 ,521 .578 .615 .649 

.370 .42 1 .492 ,546 .602 .64 1 .674 

.353 .402 .472 .525 .579 .616 .647 

.338 .386 .454 SO7 3 9  .595 .624 

.325 .373 .438 ,490 .542 .577 .605 

.3 14 .36 1 .424 .475 .527 S61 .589 

.304 .350 ,412 .462 .5 14 .547 .575 

.295 .340 .401 .450 SO2 .535 .562 

.287 ,331 ,391 .440 .491 .524 .55 1 

.280 .323 .382 .430 .481 .5 14 .541 

.274 .316 .374 ,421 .472 SO5 S32 

.268 .3 10 .367 .413 .464 .497 .524 

.262 .304 ,360 .406 .457 ,489 .5 16 

Source: Dixon, W.J. 1953. Processing data for outliers. Biornetrics 974-89. Reproduced with permis- 
sion of the Biometric Society. 
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Table F 
Critical values of the Grubbs ratio test for testing largestlsmallest observation 

n 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1% 2.5% 5 %  10% 
~ ~~ 

.ooo1 .ooo7 ,0027 .0109 

.0100 .0248 .0494 .0975 

. w 2  .0808 ,1270 ,1984 

.o928 .I453 .2032 ,2826 

.1447 .2066 .2696 .3503 

.1948 ,2616 .3261 A050 
,241 I .3101 .3742 .4502 
,2831 .3526 .4154 ,4881 
.3211 .3901 ,451 1 5204 
.3554 .4232 .4822 .5483 
.3864 ,4528 so97 5727 
.4145 ,4792 ,5340 5942 
.440 I SO30 3 5 9  .6134 
.4634 S246 s755 ,6306 
.4848 S442 ,5933 .6461 
. 5 w  S621 ,6095 .6601 
S225 ,5785 ,6243 .6730 
,5393 ‘5937 .6379 ,6848 
3 4 8  . a 7 6  .6504 .6958 
,5692 ,6206 .662 I .7058 
,5827 .6327 ,6728 .7151 
s953 . a 3 9  .6829 .7238 
.6071 ,6544 ,6923 .7319 

Source: Grubbs. F.E. 1950. Sample criteria for testing outlying observations. Annals Math. Stat. 21:27-58. 
Reproduced with permission. 
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V 

DF 

Table G 
Critical values of the Grubbs ratio test for testing two largestltwo smallest observation 

10% points 

n = 3  4 5 6 7 8 9 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1% 2.5% 5 %  10% 

.m .o002 .0008 .003 1 

.0035 .oO90 .0183 .0376 
,0186 ,0349 .0565 .092 1 
.0440 .0708 ,1020 .1479 
.0750 .1101 ,1478 ,1994 
.I082 ,1492 .I909 .2454 
.I415 ,1865 .2305 .2863 
.I736 ,2212 .2666 .3226 
.2044 ,2536 .2996 ,3552 
.2333 .2836 .3295 .3843 
.2605 .3112 .3568 ,4106 
,2859 .3367 .3818 .4345 
.3098 .3603 .4048 ,4562 
.332 I .3822 .4259 .4761 
.3530 .4025 .4455 ,4944 
,3725 .4214 ,4636 5113 
.3909 .4391 .4804 5269 

Source: Grubbs, F.E. 1950. Sample criteria for testing outlying observations. Annals Math. Stat. 21: 
27-58. Reproduced with permission. 

Table H 
Critical values of the u test for testing largestlsmallest observation with known standard 
deviation on v degrees of freedom 

10 
I 1  
12 
13 
14 

15 
16 
17 
I8 
19 

20 
24 
30 
40 

60 
120 
00 

1.68 1.93 
1.66 1.91 
1.65 1.89 
1.63 1.87 
1.62 1.85 

1.61 1.84 
1.61 1.83 
1.60 1.82 
1.59 1.82 
1.59 1.81 

1.58 1.80 
1.57 1.78 
1.55 1.77 
1.54 1.75 

1.52 I .73 
1.51 1.71 
1 .so 1.70 

2.11 2.25 2.36 2.46 2.54 
2.08 2.21 2.32 2.42 2.49 
2.05 2.19 2.29 2.38 2.46 
2.04 2.16 2.27 2.36 2.43 
2.02 2.14 2.25 2.33 2.41 

2.00 2.13 2.23 2.31 2.39 
1.99 2.12 2.22 2.30 2.37 
1.98 2.10 2.20 2.28 2.35 
1.97 2.09 2.19 2.27 2.34 
1.97 2.09 2.18 2.26 2.33 

I . %  2.08 2.17 2.25 2.32 
1.94 2.05 2.15 2.22 2.29 
1.92 2.03 2.12 2.20 2.26 
1.89 2.01 2.09 2.17 2.23 

1.87 1.98 2.07 2.14 2.20 
1.85 1.96 2.05 2.12 2.18 
1.83 1.94 2.02 2.09 2.15 
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V 

DF 

10 
I 1  
12 
13 
14 

15 
16 
17 
18 
19 

20 
24 
30 
40 

60 
120 
m 

Table H (cont.) 

5 %  points 

n = 3  4 5 6 7 8 9 

2.02 2.29 2.49 2.63 2.75 2.85 2.93 
1.99 2.26 2.44 2.58 2.70 2.79 2.87 
1.97 2.22 2.40 2.54 2.65 2.75 2.83 
1.95 2.20 2.38 2.51 2.62 2.71 2.79 
1.93 2.18 2.35 2.48 2.59 2.68 2.76 

1.92 2.16 2.33 2.46 2.56 2.65 2.73 
1.90 2.14 2.31 2.44 2.54 2.63 2.70 
1.89 2.13 2.30 2.42 2.52 2.61 2.68 
1.88 2.12 2.28 2.41 2.51 2.59 2.66 
1.87 2.11 2.27 2.39 2.49 2.58 2.65 

1.87 2.10 2.26 2.38 2.48 2.56 2.63 
1.84 2.07 2.23 2.35 2.44 2.52 2.59 
1.82 2.04 2.20 2.31 2.40 2.48 2.55 
1.80 2.02 2.17 2.28 2.37 2.44 2.51 

1.78 1.99 2.14 2.25 2.33 2.41 2.47 
1.76 1.97 2.11 2.21 2.30 2.37 2.43 
1.74 1.94 2.08 2.18 2.27 2.33 2.39 

V 

DF 

2.5% points 

n = 3  4 5 6 7 8 9 

10 
11 
12 
13 
14 

15 
16 
17 
I8 
19 

20 
24 
30 
40 

60 
120 
m 

2.36 2.64 2.84 2.99 3.10 3.20 3.28 
2.31 2.59 2.78 2.93 3.04 3.14 3.22 
2.28 2.55 2.74 2.88 2.99 3.08 3.16 
2.25 2.52 2.70 2.84 2.95 3.04 3.12 
2.23 2.49 2.67 2.80 2.91 3.00 3.08 

2.20 2.46 2.64 2.77 2.88 2.91 3.04 
2.19 2.44 2.62 2.75 2.85 2.94 3.01 
2.17 2.42 2.60 2.73 2.83 2.92 2.99 
2.16 2.41 2.58 2.71 2.81 2.89 2.91 
2.15 2.39 2.56 2.69 2.79 2.87 2.95 

2.14 2.38 2.55 2.67 2.77 2.86 2.93 
2.10 2.34 2.50 2.62 2.72 2.80 2.87 
2.07 2.30 2.46 2.58 2.67 2.75 2.82 
2.04 2.27 2.42 2.53 2.62 2.70 2.76 

2.01 2.23 2.38 2.49 2.58 2.65 2.71 
I .98 2.20 2.34 2.45 2.53 2.60 2.66 
1.95 2.16 2.30 2.41 2.49 2.56 2.61 
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V 

DF 
I %  points 

n = 3  4 5 6 7 8 9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
24 
30 
40 

60 
120 
m 

V 

DF 

2.76 3.05 3.25 3.39 3.50 3.59 3.67 
2.71 3.00 3.19 3.33 3.44 3.53 3.61 
2.67 2.95 3.14 3.28 3.39 3.48 3.55 
2.63 2.91 3.10 3.24 3.34 3.43 3.51 
2.60 2.87 3.06 3.20 3.30 3.39 3.47 

2.57 2.84 3.02 3.16 3.27 3.35 3.43 
2.55 2.81 3.00 3.13 3.24 3.32 3.39 
2.52 2.79 2.97 3.10 3.21 3.29 3.36 
2.50 2.77 2.95 3.08 3.18 3.27 3.34 
2.49 2.75 2.92 3.06 3.16 3.24 3.31 

2.47 2.73 2.91 3.04 3.14 3.22 3.29 
2.43 2.68 2.85 2.97 3.07 3.15 3.22 
2.38 2.62 2.79 2.91 3.01 3.08 3.15 
2.34 2.57 2.73 2.85 2.94 3.02 3.08 

2.30 2.52 2.68 2.79 2.88 2.95 3.01 
2.25 2.48 2.62 2.73 2.82 2.89 2.95 
2.22 2.43 2.57 2.68 2.76 2.83 2.88 

0.5% points 

n = 3  4 5 6 7 8 9 

Table H (cont.) 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
24 
30 
40 

60 
120 
OD 

3.03 3.32 3.52 3.65 3.76 3.85 3.92 
2.98 3.27 3.46 3.60 3.71 3.79 3.86 
2.93 3.22 3.41 3.55 3.66 3.74 3.81 
2.89 3.18 3.37 3.50 3.61 3.70 3.77 
2.86 3.14 3.33 3.46 3.57 3.66 3.73 

2.83 3.11 3.29 3.43 3.53 3.62 3.69 
2.80 3.08 3.26 3.39 3.50 3.58 3.66 
2.77 3.05 3.23 3.36 3.47 3.55 3.62 
2.75 3.02 3.21 3.34 3.44 3.53 3.60 
2.73 3.00 3.18 3.31 3.42 3.50 3.57 

2.72 2.98 3.16 3.29 3.39 3.48 3.55 
2.66 2.92 3.09 3.22 3.32 3.40 3.47 
2.60 2.86 3.02 3.15 3.25 3.32 3.39 
2.55 2.79 2.96 3.08 3.17 3.25 3.31 

2.50 2.73 2.89 3.01 3.10 3.17 3.23 
2.45 2.67 2.83 2.94 3.02 3.09 3.15 
2.40 2.62 2.76 2.87 2.95 3.02 3.07 
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V 

DF 

0.1% points 

n = 3  4 5 6 7 8 9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
24 
30 
40 

60 
120 
00 

3.54 3.84 4.04 4.17 4.28 4.35 4.40 
3.49 3.80 3.99 4.12 4.23 4.30 4.36 
3.45 3.75 3.94 4.07 4.19 4.26 4.31 
3.41 3.71 3.90 4.03 4.14 4.22 4.28 
3.38 3.67 3.86 4.00 4.10 4.18 4.24 

3.35 3.64 3.83 3.96 4.06 4.15 4.21 
3.32 3.51 3.80 3.93 4.03 4.12 4.18 
3.29 3.58 3.77 3.90 4.00 4.09 4.15 
3.27 3.55 3.74 3.88 3.98 4.06 4.12 
3.25 3.53 3.72 3.85 3.95 4.03 4.10 

3.23 3.51 3.70 3.83 3.93 4.01 4.08 
3.16 3.44 3.62 3.75 3.85 3.93 4.00 
3.08 3.36 3.53 3.66 3.76 3.84 3.90 
3.01 3.27 3.44 3.57 3.66 3.74 3.81 

2.93 3.19 3.35 3.47 3.56 3.64 3.70 
2.85 3.10 3.26 3.37 3.46 3.53 3.59 
2.78 3.01 3.17 3.28 3.36 3.43 3.48 

Source: Nair, K.R. 1952. Tables of percentage points of the studentized extreme deviate from the sam- 
ple mean. Biometrika 31: 189-191. Reproduced with permission. 
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Table I 
The Chi-square distribution 

DF 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

S O  .30 .20 .10 .05 .02 .01 .001 

0.455 
1.386 
2.366 
3.357 
4.351 

5.348 
6.346 
7.344 
8.343 
9.342 

10.341 
11.340 
12.340 
13.339 
14.339 

15.338 
16.338 
17.338 
18.338 
19.337 

20.337 
21.337 
22.337 
23.337 
24.337 

25.336 
26.336 
27.336 
28.336 
29.336 

1.074 
2.408 
3.665 
4.878 
6.064 

7.231 
8.383 
9.524 

10.656 
11.781 

12.899 
14.01 I 
15.119 
16.222 
17.322 

18.418 
19.511 
20.601 
21.689 
22.775 

23.858 
24.939 
26.018 
27.096 
28.172 

29.246 
30.319 
31.391 
32.461 
33.530 

1.642 
3.219 
4.642 
5.989 
7.289 

8.558 
9.803 

1 I .030 
12.242 
13.442 

14.631 
15.812 
16.985 
18.151 
19.311 

20.465 
21.615 
22.760 
23.900 
25.038 

26.171 
27.301 
28.429 
29.553 
30.675 

31.795 
32.912 
34.027 
35.139 
36.250 

2.706 
4.605 
6.251 
7.779 
9.236 

10.645 
12.017 
13.362 
14.684 
15.987 

17.275 
18.549 
19.812 
21.064 
22.307 

23 342 
24.769 
25.989 
27.204 
28.412 

29.615 
30.813 
32.007 
33.1% 
34.382 

35.563 
36.741 
37.916 
39.087 
40.256 

3.841 
5.991 
7.815 
9.488 

11.070 

12.592 
14.067 
15.507 
16.919 
18.307 

19.675 
21.026 
22.362 
23.685 
24.9% 

26.2% 
27.587 
28.869 
30.144 
31.410 

32.671 
33.924 
35.172 
36.415 
37.652 

38.885 
40.113 
41.337 
42.557 
43.773 

5.412 
7.824 
9.837 

11.668 
13.388 

15.033 
16.622 
18.168 
19.679 
21.161 

22.618 
24.054 
25.472 
26.873 
28.259 

29.633 
30.995 
32.346 
33.687 
35.020 

36.343 
37.659 
38.968 
40.270 
41.566 

42.856 
44.140 
45.419 
46.693 
47.962 

6.635 
9.210 

11.345 
13.277 
15.086 

16.812 
18.475 
20.090 
21.666 
23.209 

24.725 
26.217 
27.688 
29.141 
30.578 

32.000 
33.409 
34.805 
36.191 
37.566 

38.932 
40.289 
41.638 
42.980 
44.314 

45.642 
46.963 
43.278 
49.588 
50.892 

10.827 
13.815 
16.266 
18.467 
20.515 

22.457 
24.322 
26.125 
27.877 
29.588 

31.264 
32.909 
34.528 
36.123 
37.697 

39.252 
40.790 
42.312 
43.820 
45.315 

46.797 
48.268 
49.728 
51.179 
52.620 

54.052 
55.476 
56.893 
58.302 
59.703 

Source: Table generated using a SAS program written by R.W. Washam 11, The Dial Technical and 
Administrative Center, Scottsdale, Arizona. 
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Table J 
The cumulative normal distribution function; cumulative proportions to unit normal 
deviates 

Ri,jL% 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

Decimal fraction of P(i,j) 

.o . I  .2 .3 .4 .5 .6 .7 .8 .9 

O.Oo0 
0.025 
0.050 
0.075 
0.100 
0.126 
0.151 
0.176 
0.202 
0.228 
0.253 
0.279 
0.305 
0.332 
0.358 
0.385 
0.412 
0.440 
0.468 
0.4% 
0.524 
0.553 
0.583 
0.613 
0.643 
0.674 

0.003 
0.028 
0.053 
0.078 
0.103 
0.128 
0.154 
0.179 
0.204 
0.230 
0.256 
0.282 
0.308 
0.335 
0.361 
0.388 
0.415 
0.443 
0.470 
0.499 
0.527 
0.556 
0.586 
0.616 
0.646 
0.678 

0.005 
0.030 
0.055 
0.080 
0.105 
0.131 
0.156 
0.181 
0.207 
0.233 
0.259 
0.285 
0.311 
0.337 
0.364 
0.391 
0.418 
0.445 
0.473 
0.502 
0.530 
0.559 
0.589 
0.619 
0.650 
0.681 

0.008 
0.033 
0.058 
0.083 
0.108 
0.133 
0.159 
0.184 
0.210 
0.235 
0.261 
0.287 
0.313 
0.340 
0.366 
0.393 
0.421 
0.448 
0.476 
0.504 
0.533 
0.562 
0.592 
0.622 
0.653 
0.684 

0.010 
0.035 
0.060 
0.085 
0.111 
0.136 
0.161 
0.187 
0.212 
0.238 
0.264 
0.290 
0.316 
0.342 
0.369 
0.3% 
0.423 
0.451 
0.479 
0.507 
0.536 
0.565 
0.595 
0.625 
0.656 
0.687 

0.013 
0.038 
0.063 
0.088 
0.113 
0.138 
0.164 
0.189 
0.215 
0.240 
0.266 
0.292 
0.319 
0.345 
0.372 
0.399 
0.426 
0.454 
0.482 
0.510 
0.539 
0.568 
0.598 
0.628 
0.659 
0.690 

0.015 
0.040 
0.065 
0.090 
0.116 
0.141 
0.166 
0.192 
0.217 
0.243 
0.269 
0.295 
0.321 
0.348 
0.375 
0.402 
0.429 
0.457 
0.485 
0.513 
0.542 
0.571 
0.601 
0.631 
0.662 
0.693 

0.018 
0.043 
0.068 
0.093 
0.118 
0.143 
0.169 
0.194 
0.220 
0.246 
0.272 
0.298 
0.324 
0.350 
0.377 
0.404 
0.432 
0.459 
0.487 
0.516 
0.545 
0.574 
0.604 
0.634 
0.665 
0.697 

0.020 
0.045 
0.070 
0.095 
0.121 
0.146 
0.171 
0.197 
0.222 
0.248 
0.274 
0.300 
0.327 
0.353 
0.380 
0.407 
0.434 
0.462 
0.490 
0.519 
0.548 
0.577 
0.607 
0.637 
0.668 
0.700 

0.023 
0.048 
0.073 
0.098 
0.123 
0.148 
0.174 
0.199 
0.225 
0.251 
0.277 
0.303 
0.329 
0.356 
0.383 
0.410 
0.437 
0.465 
0.493 
0.522 
0.550 
0.580 
0.610 
0.640 
0.671 
0.703 
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Table J (cont.) 
The cumulative normal distribution function: cumulative proportions to unit normal 
deviates 

P(i,j),% 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

.o .I .2 .3 .4 .6 .7 .8 .9 .5 

0.706 
0.739 
0.772 
0.806 
0.842 
0.878 
0.915 
0.954 
0.994 
1.036 
1.080 
I .  126 
I .  I75 
1.227 
1.282 
1.341 
1.405 
1.476 
1.555 
1.645 
1.751 
1.881 
2.054 
2.326 

0.710 
0.742 
0.776 
0.810 
0.845 
0.882 
0.919 
0.958 
0.999 
1.041 
1.085 
1.131 
1.180 
I .232 
1.287 
1.347 
1.412 
1.483 
1.563 
1.655 
1.762 
1.896 
2.075 
2.366 

0.713 
0.745 
0.779 
0.813 
0.849 
0.885 
0.923 
0.962 
1.003 
1 .045 
1.089 
1.136 
1.185 
1.237 
1.293 
1.353 
1.419 
1.491 
1.572 
1.665 
1.774 
1.911 
2.097 
2.409 

0.716 
0.749 
0.782 
0.817 
0.852 
0.889 
0.927 
0.966 
1.007 
1.049 
1.094 
1.141 
1.190 
1.243 
1.299 
1.359 
1.426 
1.499 
1.580 
I .675 
1.787 
1.927 
2.120 
2.457 

0.719 
0.752 
0.786 
0.820 
0.856 
0.893 
0.931 
0.970 
1.011 
1.054 
1.098 
I .  I46 
1. I95 
1.248 
I .305 
I .366 
1.433 
1 .so6 
1.589 
1.685 
1.799 
I .943 
2.144 
2.512 

0.722 
0.755 
0.789 
0.824 
0.860 
0.896 
0.935 
0.974 
1.015 
1.058 
1. I03 
I .  150 
1 .zoo 
1.254 
1.311 
1.372 
1.440 
1.514 
I .598 
1.695 
1.812 
I .960 
2.170 
2.576 

0.726 
0.759 
0.793 
0.827 
0.863 
0.900 
0.938 
0.978 
1.019 
1.063 
I .  108 
1.155 
I .206 
I .259 
1.317 
1.379 
I .447 
1 .522 
1.607 
1.706 
1.825 
1.977 
2.197 
2.652 

0.729 
0.762 
0.7% 
0.831 
0.867 
0.904 
0.942 
0.982 
1.024 
1.067 
1.112 
1.160 
1.211 
I .265 
1.323 
1.385 
I .454 
I .530 
1.616 
1.717 
1.838 
1.995 
2.226 
2.748 

0.732 
0.765 
0.800 
0.834 
0.871 
0.908 
0.946 
0.986 
1.028 
1.07 1 
1.117 
1. I65 
1.216 
1.270 
I .329 
1.392 
1.461 
I .538 
1.626 
1.728 
1.852 
2.014 
2.257 
2.878 

0.736 
0.769 
0.803 
0.838 
0.874 
0.912 
0.950 
0.990 
1.032 
I .076 
1.122 
1.170 
1.221 
1.276 
1.335 
1.398 
1.468 
1.546 
I .635 
1.739 
1.866 
2.034 
2.290 
3.090 

Source: Table generated by a SAS program written by R.W. Washam II, The Dial Technical and Ad. 
rninistrative Center, Scottsdale, Arizona. 
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Table K 
The upper percentile points for qU,, for the range of independent n o d  random variable 

Number of treatments 

a 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

0.01 0.19 0.43 0.66 0.87 1.05 1.20 1.34 1.47 1.58 1.68 1.77 1.86 1.93 
0.05 0.43 0.76 1.03 1.25 1.44 1.60 1.74 1.86 1.97 2.07 2.16 2.24 2.32 

Source: Pearson, E.S. and Hartley, H.O. 1954. Biornetrika Tables for Statisticians, Vol. 1, Cambridge 
University Press. Reproduced with permission of the Biometrika Trustees. 
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Table M 
Tables of balanced incomplete block designs for block size k = 2 

Some useful guides in designing a consumer test using the balanced incomplete block designs 
is given in this table. The terms in the formulas are defined in Chapter 4. In addition, q is 
always equal to 2 to account for order of sample presentation, i.e., AB, BA. The term p 
is the number of repetitions of the basic design. In practice, the size of p is determined by 
the desired number of judgments per sample, the desired number of judgments per pair, and 
cost consideration especially for large t. The order of product use as well as assignment of 
product pairs to the panelist were done at random using a SAS program. Products are denoted 
by letters A, B, C, etc. 

Basic design: t = 3, b = t(t-1) = 3, r = t - 1 = 2, 
X =  l , q = 2 , p = 2 5  

pbq = 25(3)2 = 150 panelists are needed plus dropouthonresponse allowance 

prq = 25(2)2 = 100 judgments per sample 
pXq = 25(1)2 = 50 judgments per pair 

Design: Repeat design in multiples of bq = 6 

Panelist Order of Product Use 
1 AC 
2 BC 
3 AB 
4 BA 
5 CB 
6 CA 

Basic design: t = 4, b = 6, r = 3, X = 1 
q = 2 , p = 2 5  

pbq = 25(6)2 = 300 panelists 

prq = 25(3)2 = 150 judgments per sample 
pA2 = 25(1)2 = 50 judgments per pair 

Design: Repeat design in multiples of bq = 12 

Panelist 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Order of Product Use 
DC 
BD 
DA 
AD 
CB 
AC 
DB 
AB 
CD 
BA 
CA 
BC 
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Table M (cont.) 

Basic design: t = 5 ,  b = 10, r = 4,  A = 1 
q = 2 , p = 2 5  

pbq = 25(10)2 = 500 panelists 

prq = 25(4)2 = 200 judgments per sample 

pXq = 25(1)2 = 50 judgment per pair 

Design: Repeat design in multiples of bq = 20 

Panelist 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Order of Product Use 
CA 
AB 
AC 
BE 
EB 
BD 
EA 
CD 
CE 
DB 
DA 
CB 
BC 
AE 
DC 
AD 
EC 
DE 
BA 
ED 

Basic design: t = 6, b = 15, r = 5, A = 1 
q = 2 , p = 2 0  

pbq = 20(15)2 = 600 panelists 

prq = 20(5)2 = 200 judgments per sample 

pq = 20(1)1 = 40 judgments per pair 

Design: Repeat design in multiples of bq = 30 

Panelist 
1 
2 
3 
4 
5 
6 
7 
8 

Order of Product Use 
AF 
DE 
FA 
DA 
EA 
DF 
FD 
CD 
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Table M (cont.) 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

CF 
CE 
FC 
AE 
FE 
DC 
EF 
ED 
AB 
BF 
EB 
EC 
BA 
BD 
FB 
BE 
BC 
AD 
CB 
DB 
AC 
CA 

Basic design: t = 7, b = 21, r = 6, X = 1 
q = 2 , p =  15 

pbq = 15(21)2 = 630 panelists 

prq = 15(6)2 = 180 judgments per sample 

pXq = 15(1)2 = 30 judgments per pair 

Design: Repeat design in multiples of bq = 42 

Panelist 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Order of Product Use 
EG 
CD 
FE 
CB 
BG 
EF 
GC 
GD 
EA 
DB 
BA 
FA 
FD 



APPENDIX 2 85 

Table M (cont.) 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

GE 
BC 
DC 
GA 
FG 
EB 
CA 
FC 
DG 
AE 
AD 
AC 
BF 
GF 
CG 
DA 
BD 
DE 
ED 
EC 
DF 
BE 
AG 
CE 
AB 
CF 
GB 
FB 
AF 

Basic design: t = 8, b = 28, r = 7, X = 1 
q = 2 , p =  15 

pbq = 15(28)2 = 840 panelists 

prq = 15(7)2 = 210 judgments per sample 

pXq = 15(1)2 = 30 judgments per pair 

Design: Repeat design in multiples of bq = 56 

Panelist Order of Product Use 
1 GA 
2 DB 
3 AE 
4 BA 
5 DF 
6 EH 
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Table M (cont.) 

7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

HF 
GE 
CG 
HG 
AB 
BF 
CH 
AD 
FD 
AF 
FB 
DE 
CD 
BE 
CA 
BC 
BD 
BG 
FA 
GD 
DA 
GB 
CB 
DC 
FH 
HE 
EC 
HA 
HB 
GC 
AG 
ED 
AH 
EF 
FC 
HD 
EB 
FG 
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Table M (cont.) 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

CF 
DG 
EG 
BH 
HC 
CE 
FE 
AC 
GF 
EA 
DH 
GH 
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Table N 
Some popular Taguchi orthogonal array designs 

First column pertains to the number of treatment conditions, runs or formulations. The re- 
maining columns pertain to controllable factors. 

L, Design: L4(2)) 

Treatment A B C 

1 1 1 1 
2 1 2 2 

3 2 1 2 
4 2 2 1 

Note: For two factors A and B. the C column becomes 
the A X B interaction. For three factors, the A x 
B interaction is confounded with factor C. 

L8 Design: LS(Z7) 

Treatment A B C D E F G 

1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 

3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 

5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 

7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

LIZ Design: Ll2(2I1) 

Treatment A B C D E F G H I J K 

1 1 1 1 1 1 1 1 1 1 1 1  
2 1 1 1 1 1 2 2 2 2 2 2  
3 1 1 2 2 2 1 1 1 2 2 2  
4 1 2 1 2 2 1 2 2 1 1 2  
5 1 2 2 1 2 2 1 2 1 2 1  
6 1 2 2 2 1 2 2 1 2 1 1  
7 2 1 2 2 1 1 2 2 1 2 1  
8 2 1 2 1 2 2 2 1 1 ! 2  
9 2 1 1 2 2 2 1 2 2 1 1  

10 2 2 2 1 1 1 1 2 2 1 2  
11 2 2 1 2 1 2 1 1 1 2 2  
12 2 2 1 1 2 1 2 1 2 2 1  

Note: This design is a specially designed array, in that interactions are distributed more or less 
uniformly to all columns. It should not be used to analyze interactions. It is useful in optimization 
studies (See Chapter 8, Section 8.10). 
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Table N (cont.) 

Design: L9(3*) 

Treatment A B C D 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 

4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 1 

7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

Note: 1 = low level, 2 = medium level, 3 = high level 

Source: Taguchi, G. and Konishi, S. 1987. Taguchi Methods: Orthogonal Arrays and Linear Graphs. 
American Supplier Institute, Inc., Dearborn, Michigan. Reproduced with permission of the 
American Supplier Institute. 
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