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Preface to the First Edition

This monograph is about analysis strategies for regression problems in
which predictors are measured with error. These problems are commonly
known as measurement error modeling or errors-in-variables. There is
an enormous literature on this topic in linear regression, as summarized
by Fuller (1987). Our interest lies almost exclusively in the analysis of
nonlinear regression models, defined generally enough to include gener-
alized linear models, transform-both-sides models, and quasilikelihood
and variance function problems.

The effects of measurement error are well known, and we basically
assume that the reader understands that measurement error in predic-
tors causes biases in estimated regression coefficients, and hence that the
field is largely about correcting for such effects. Chapter 3∗ summarizes
much of what is known about the consequences of measurement error
for estimating linear regression parameters, although the material is not
exhaustive.

Nonlinear errors-in-variables modeling began in earnest in the early
1980s with the publication of a series of papers on diverse topics: Prentice
(1982) on survival analysis; Carroll, Spiegelman, Lan, Bailey, and Abbott
(1984) and Stefanski and Carroll (1985) on binary regression; Armstrong
(1985) on generalized linear models; Amemiya (1985) on instrumental
variables; and Stefanski (1985) on estimating equations. David Byar and
Mitchell Gail organized a workshop on the topic in 1987 at the National
Institutes of Health, which in 1989 was published as a special issue of
Statistics in Medicine. Since these early papers, the field has grown dra-
matically, as evidenced by the bibliography at the end of this book.
Unlike the early 1980s, the literature is now so large that it is difficult to
understand the main ideas from individual papers. Indeed, a first draft
of this book, completed in late 1990, consisted only of the material in
four of the first five chapters. Essentially all the rest of the material has
been developed since 1990. In a field as rapidly evolving as this one, and
with the entrance of many new researchers into the area, we can present
but a snapshot of the current state of knowledge.

This book can be divided broadly into four main parts: Chapters 1–2,

∗ Chapter numbers in this preface refer to the first edition, not the present edition.

3–6, 7–8, and 9–14. In addition, there is Appendix A, a review of relevant
fitting methods and statistical models.

The first part is introductory. Chapter 1 gives a number of applications
where measurement error is of concern, and defines basic terminology of
error structure, data sources and the distinction between functional and
structural models. Chapter 2 gives an overview of the important ideas
from linear regression, particularly the biases caused by measurement
error and some estimation techniques.

The second part gives the basic ideas and techniques of what we
call functional modeling, where the distribution of the true predictor
is not modeled parametrically. In addition, in these chapters it is as-
sumed that the true predictor is never observable. The focus is on the
additive measurement error model, although periodically we describe
modifications for the multiplicative error model. Chapters 3 and 4 dis-
cuss two broadly applicable functional methods, regression calibration
and simulation-extrapolation (SIMEX), which can be thought of as the
default approaches. Chapter 5 discusses a broadly based approach to
the use of instrumental variables. All three of these chapters focus on
estimators which are easily computed but yield only approximately con-
sistent estimates. Chapter 6 is still based on the assumption that the true
predictor is never observable, but here we provide functional techniques
which are fully and not just approximately consistent. This material is
somewhat more daunting in (algebraic) appearance than the approxi-
mate techniques, but even so the methods themselves are often easily
programmed. Throughout this part of the book, we use examples of
binary regression modeling.

The third part of the book concerns structural modeling, meaning that
the distribution of the true predictor is parametrically modeled. Chapter
7 describes the likelihood approach to estimation and inference in mea-
surement error models, while Chapter 8 briefly covers Bayesian model-
ing. Here we become more focused on the distinction between functional
and structural modeling, and also describe the measurement error prob-
lem as a missing data problem. We also allow for the possibility that
the true predictor can be measured in a subset of the study population.
The discussion is fully general and applies to categorical data as well as
to the additive and multiplicative measurement error models. While at
this point the use of structural modeling in measurement error models
is not very popular, we believe it will become more so in the very near
future.

The fourth part of the book is devoted to more specialized topics.
Chapter 9 takes up the study of functional techniques which are ap-
plicable when the predictor can be observed in a subset of the study.
Chapter 10 discusses functional estimation in models with generalized



linear structure and an unknown link function. Chapter 11 describes the
effects that measurement error has on hypothesis testing. Nonparamet-
ric regression and density function estimation are addressed in Chapter
12. Errors in the response rather than in predictors are described in
Chapter 13. In Chapter 14, a variety of topics are addressed briefly:
case-control studies, differential measurement error, functional mixture
methods, design of two-stage studies and survival analysis.

We have tried to design the text so that it can be read at two levels.
Many readers will be interested only in the background material and
in the definition of the specific methods that can be employed. These
readers will find that the chapters in the middle two parts of the text
(functional and structural modeling) begin with preliminary discussion,
move into the definition of the methods, and are then followed by a
worked numerical example. The end of the example serves as a flag that
the material is about to become more detailed, with justifications of the
methods, derivations of estimated standard errors, etc. Those readers
who are not interested in such details should skip the material following
the examples at first (and perhaps last) reading.

It is our intention that the part of the book on functional models
(Chapters 3–6) can be understood at an overview level without an ex-
tensive background in theoretical statistics, at least through the numeri-
cal examples. The structural modeling approach requires that one knows
about likelihood and Bayesian methods, but with this exception the ma-
terial is not particularly specialized. The fourth part of the book (Chap-
ters 9–14) is more technical, and we suggest that those interested mainly
in an overview simply read the first section of each of those chapters.

A full appreciation of the text, especially its details, requires a strong
background in likelihood methods, estimating equations and quasilikeli-
hood and variance function models. For inference, we typically provide
estimated standard errors, as well as suggest use of “the” bootstrap.
These topics are all covered in Appendix A, albeit briefly. For more
background on the models used in this monograph, we highly recom-
mend reading Chapter 1 of Fuller (1987) for an introduction to linear
measurement error models and the first four chapters of McCullagh and
Nelder (1989) for further discussion of generalized linear models, includ-
ing logistic regression.

This is a book about general ideas and strategies of estimation and
inference, not a book about a specific problem. Our interest in the field
started with logistic regression, and many of our examples are based
upon this problem. However, our philosophy is that measurement error
occurs in many fields and in a variety of guises, and what is needed
is an outline of strategies for handling progressively more difficult prob-
lems. While logistic regression may well be the most important nonlinear

measurement error model, the strategies here are applied to a hard-core
nonlinear regression bioassay problem (Chapter 3), a changepoint prob-
lem (Chapter 7), and a 2 × 2 table with misclassification (Chapter 8).
Our hope is that the strategies will be sufficiently clear that they can be
applied to new problems as they arise.

We have tried to represent the main themes in the field, and to ref-
erence as many research papers as possible. Obviously, as in any mono-
graph, the selection of topics and material to be emphasized reflects our
own interests. We apologize in advance to those workers whose work we
have neglected to cite, or whose work should have been better advertised.

Carroll’s research and the writing of this book were supported by
grants from the National Cancer Institute (CA–57030 and CA–61067).
After January 1, 1996, Splus and SAS computer programs (on SPARC
architecture SunOS versions 4 and 5 and for Windows on PCs), which
implement (for major generalized linear models) many of the functional
methods described in this book, can be obtained by sending a message
to qvf@stat.tamu.edu. The body of the text should contain only a valid
return email address. This will generate an automatic reply with instruc-
tions on how to get the software.

Much of Stefanski’s research on measurement error problems has been
supported by grants from the National Science Foundation (DMS–86136-
81 and DMS–9200915) and by funding from the Environmental Monitor-
ing and Assessment Program, U.S. Environmental Protection Agency.

We want to thank Jim Calvin, Bobby Gutierrez, Stephen Eckert, Joey
Lin, C. Y. Wang, and Naisyin Wang for helpful general comments; Donna
Spiegelman for a detailed reading of the manuscript; Jeff Buzas, John
Cook, Tony Olsen, and Scott Overton for ideas and comments related
to our research; and Viswanath Devanarayan for computing assistance
and comments. Rob Abbott stimulated our initial interest in the field
in 1981 with a question concerning the effects of measurement error
in the Framingham Heart Study; this example appears throughout our
discussion. Larry Freedman and Mitch Gail have commented on much
of our work and have been instrumental in guiding us to interesting
problems. Nancy Potischman introduced us to the world of nutritional
epidemiology, where measurement error is of fundamental concern. Our
friend Leon Gleser has been a source of support and inspiration for many
years and has been a great influence on our thinking.

This book uses data supplied by the National Heart, Lung, and Blood
Institute, NIH, DHHS from the Framingham Heart Study. The views
expressed in this paper are those of the authors and do not necessarily
reflect the views of the National Heart, Lung, and Blood Institute or of
the Framingham Study.



Preface to the Second Edition

Since the first edition of Measurement Error in Nonlinear Models ap-
peared in 1995, the field of measurement error and exposure uncertainty
has undergone an explosion in research. Some of these areas are the
following:

• Bayesian computation via Markov Chain Monte Carlo techniques are
now widely used in practice. The first edition had a short and not
particularly satisfactory Chapter 9 on this topic. In this edition, we
have greatly expanded the material and also the applications. Even if
one is not a card-carrying Bayesian, Bayesian computation is a natural
way to handle what we call the structural approach to measurement
error modeling.

• A new chapter has been added on longitudinal data and mixed models,
areas that have seen tremendous growth since the first edition.

• Semiparametric and nonparametric methods are enjoying increased
application. The field of semiparametric and nonparametric regression
(Ruppert, Wand, and Carroll, 2003) has become extremely important
in the past 11 years, and in measurement error problems techniques
are now much better established. We have revamped the old chap-
ter on nonparametric regression and density estimation (Chapter 12)
and added a new chapter (Chapter 13) to reflect the changes in the
literature.

• Methods for handling covariate measurement error in survival anal-
ysis have been developing rapidly. The first edition had a section on
survival analysis in the final chapter, “Other Topics.” This section
has been greatly expanded and made into a separate Chapter 14.

• The area of missing data has also expanded vigorously over the last
11 years, especially due to the work of Robins and his colleagues.
This work and its connections with measurement error now needs a
book-length treatment of its own. Therefore, with some reluctance,
we decided to delete much of the old material on validation data as a
missing data problem.

• We have completely rewritten the score function chapter, both to keep
up with advances in this area and and to make the exposition more
transparent.

The background material in Appendix A has been expanded to make
the book somewhat more self-contained. Technical material that ap-
peared as appendices to individual chapters in the first edition has now
been collected into a new Appendix B.

Carroll’s research has been supported since 1990 by a grant from the
National Cancer Institute (CA57030). The work of Raymond Carroll
partially occurred during multiple visits to Peter Hall at the Centre
of Excellence for Mathematics and Statistics of Complex Systems at
the Australian National University, whose support is gratefully acknowl-
edged, along with the opportunity to take thousands of photos of kanga-
roos (http://www.stat.tamu.edu/∼carroll/compressed kangaroo.jpg).
David Ruppert was supported by the National Science Foundation (DMS
04-538) and the National Institutes of Health (CA57030). Leonard Ste-
fanski also received support from the National Science Foundation and
the National Institutes of Health.

In this second edition, we especially acknowledge our colleagues with
whom we have discussed measurement error problems and worked since
1995, including Scott Berry, Dennis Boos, John Buonaccorsi, Jeff Buzas,
Josef Coresh, Marie Davidian, Eugene Demidenko, Laurence Freedman,
Wayne Fuller, Mitchell Gail, Bobby Gutierrez, Peter Hall, Victor Kipnis,
Liang Li, Xihong Lin, Jay Lubin, Yanyuna Ma, Doug Midthune, Sastry
Pantula, Dan Schafer, John Staudenmayer, Sally Thurston, Tor Toste-
son, Naisyin Wang, and Alan Welsh. Owen Hoffman introduced us to
the problem of radiation dosimetry and the ideas of shared Berkson and
classical uncertainties.

We once again acknowledge Robert Abbott for introducing us to the
problem in 1980, when he brought to Raymond Carroll a referee report
demanding that he explain the impact of measurement error on the
(logistic regression) Framingham data. We would love to acknowledge
that anonymous referee for starting us along the path of measurement
error in nonlinear models.

We also thank Mitchell Gail, one of the world’s great biostatisticians,
for his advice and friendship over the last 25 years.

We are extremely grateful to Rick Rossi for a detailed reading of the
manuscript, a reading that led to many changes in substance and ex-
position. Rick is the only head of a Department of Mathematics and
Statistics who is also a licensed trout-fishing guide.

Finally, and with gratitude, we acknowledge our good friend Leon
Gleser, who, to quote the first edition, has been a source of support

and inspiration for many years and has been a great influence on our

thinking.
Our book Web site is
http://www.stat.tamu.edu/∼carroll/eiv.SecondEdition.



Guide to Notation

In this section we give brief explanations and representative examples
of the notation used in this monograph. For precise definitions, see the
text.

Ân, B̂n components of the sandwich formula
α0 intercept in model for E(X|Z,W)
αw coefficient of W in model for E(X|Z,W)
αz coefficient of Z in model for E(X|Z,W)
β0 intercept in a model for E(Y|X,Z)
βx coefficient of X in model for E(Y|X,Z)
βz coefficient of Z in model for E(Y|X,Z)
β1ZX coefficient of 1 in generalized linear regresssion
∆ indicator of validation data, for example, where X is

observed
dim(β) dimension of the vector β
fX density of X

fY,W,T |Z density of (Y,W,T) given Z

F(·) unknown link function
σ2g(Z,X,B, θ) var(Y|Z,X) in QVF model
G extrapolant function in SIMEX
GQ quadratic extrapolant function
GRL rational linear extrapolant function
γ0,cm intercept in a regression calibration model
γt

z,cm coefficient of Z in a regression calibration
model

γt
w,cm coefficient of W in a regression calibration

model
γ0,em intercept in an error model
γt

x,em coefficient of X in an error model
γt

w,em coefficient of W in an error model
H(v) (1 + exp(−v))−1, for example, the logistic function
h bandwidth in nonparametric regression or

density estimation
In(Θ) Fisher information

k With equal replication, number of replicates for all subjects
ki Number of replicates of ith subject
K(·) kernel used in nonparametric regression or density estimation
κcm σ2

cm/σ2

Λ(·) likelihood ratio
L(·) generalized score function
mX(Z,W, γcm) E(X|Z,W)
mY(Z,X, β) E(Y|Z,X) in QVF (quasilikelihood variance function) model
mY,x(z, x, β) (∂/∂x)mY(z, x, β)
mY,xx(z, x, β) (∂2/∂x2)mY(z, x, β)
π(Y,Z,W, α) probability of selection into a validation study
Ψ, ψ estimating functions
S Y measured with error (S = Y + V)
si(y|Θ) score function
σ2

u variance of U

σ2
X|Z conditional variance of X given Z

σxy the covariance between random variables X and Y
ρxy the correlation between X and Y , which is defined as σxy/(σxσy)
ΣZX covariance matrix between the random vectors Z and X

T observation related to X

Θb(λ) simulated estimator used in SIMEX
Θ(λ) average of the Θb(λ)s
U observation error in an error model
Ub,k pseudo-error in SIMEX
V measurement error in the response
W observation related to X

X covariates measured with error
Y response
Yi· average of Yij over j

[Ỹ|Z̃, X̃,B] density of Ỹ given (Z̃, X̃,B) (Bayesian notation)
Z covariates measured without error
ζ parameter controlling amount of simulated extra

measurement error in SIMEX

If m(x) is any function, then m′(x) and m′′(x) are its first and second
derivatives and m(m) is its mth derivative for m > 2.

For a vector or matrix A, At is its transpose and if A is an invertible
matrix, then A−1 is its inverse.

If a = (a1, . . . , an) is a vector, then ‖a‖ is its Euclidean norm, that is,

‖a‖ =
(∑n

i=1 a2
i

)1/2
.



If X and Y are random variables, then [X] is the distribution or X
and [X|Y ] is the conditional distribution of X given Y. This notation is
becoming standard in the Bayesian literature.
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CHAPTER 1

INTRODUCTION

1.1 The Double/Triple Whammy of Measurement Error

Measurement error in covariates has three effects:

• It causes bias in parameter estimation for statistical models.

• It leads to a loss of power, sometimes profound, for detecting inter-
esting relationship among variables.

• It masks the features of the data, making graphical model analysis
difficult.

We call the first two the double whammy of measurement error. Most of
the statistical methods described in this book are aimed at the first prob-
lem, namely, to correct for biases of estimation caused by measurement
error. Later in this chapter, we will describe an example from radiation
dosimetry and the profound loss of power for detecting risks that occurs
with uncertainties in individual doses. Here, we briefly describe the third
issue, the masking of features.

Consider a regression of a response Y on a predictor X, uniformly
distributed on the interval [−2, 2]. Suppose that the mean is sin(2X)
and the variance σ2

ǫ = 0.10. In the top panel of Figure 1.1, we plot 200
simulated observations from such a model that indicate quite clearly
the sinusoidal aspect of the regression function. However, suppose that
instead of observing X, we observe W, normally distributed with mean
X but with variance 4/9. As we will later describe in Section 3.2.1, this
is an attenuation coefficient of 0.75. Thus, what we observe is not X, but
an unbiased estimate of it, W. In the bottom panel of Figure 1.1, we
plot the observed data Y versus W. Note that the sinusoid is no longer
evident and the main feature of the data has been hidden.

It is also worth noting that the variability about the sinusoid is far
smaller when X is observed than the variability about any curve one
could reasonably guess at when only W is observed. This is one sub-
stantial cause of the loss of power. Finally, if one only observes (Y,W)
and hence the bottom panel of Figure 1.1, it would be essentially impos-
sible to reconstruct the sinusoid, and something different would certainly
be used. This is the bias caused by measurement error.
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Figure 1.1 Illustration of the bias, loss of power, and masking of features
caused by measurement error in predictors. Top panel regression on the true
covariate. Bottom panel regression on the observed covariate.

1.2 Classical Measurement Error: A Nutrition Example

Much of the measurement error literature is based around what is called
classical measurement error, in which the truth is measured with ad-
ditive error, usually with constant variance. We introduce the classical
measurement error model via an example from nutrition.

In the National Cancer Institute’s OPEN study, see Subar, Thomp-
son, Kipnis, et al. (2001), one interest is in measuring the logarithm of
dietary protein intake. True, long-term log-intake is denoted by X, but
this cannot be observed in practice. Instead, the investigators measured
a biomarker of log-protein intake, namely urinary nitrogen, denoted by
W. In this study, 297 subjects had replicated urinary nitrogen mea-
surements. If there were no measurement error, then of course the two
biomarker measurements would be equal, but then, since this is a book
about measurement error, we would not be wasting space. Indeed, in
Figure 1.2 we see that when we plot the second biomarker versus the
first, the correlation is relatively high (0.695), but there clearly is some
variability in the measurements.

In this context, there is evidence from feeding studies that the pro-
tein biomarker captures true protein intake with added variability. Such
situations are often called classical measurement error. In symbols, let
Xi be the true log-protein intake for individual i, and let Wij be the

2

4.5 5 5.5 6 6.5 7

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

First Protein Biomarker, Attenuation = 0.694

S
e
c
o

n
d

 P
ro

te
in

 B
io

m
a
rk

e
r

OPEN data, Protein, Log Scale, Correlation = 0.695

Figure 1.2 OPEN Study data, scatterplot of the logarithm of the first and sec-
ond protein biomarker measurements. The fact that there is scatter means that
the biomarker has measurement error.

jth biomarker log-protein measurement. Then the classical measurement
error model states that

Wij = Xi + Uij . (1.1)

In this model, Wij is an unbiased measure of Xi, so that Uij must have
mean zero, that is, in symbols, E(Uij |Xi) = 0. The error structure of Uij

could be homoscedastic (constant variance) or heteroscedastic. In this
particular example, we will show later, in Section 1.7, that the measure-
ment error structure is approximately normal with constant variance, so
we can reasonably think that Uij |Xi ∼ Normal(0, σ2

u).

1.3 Measurement Error Examples

Nonlinear measurement error models commonly begin with an underly-
ing nonlinear model for the response Y in terms of the predictors. We
distinguish between two kinds of predictors: Z represents those predic-
tors that, for all practical purposes, are measured without error, and X
those that cannot be observed exactly for all study subjects. The distin-
guishing feature of a measurement error problem is that we can observe
a variable W, which is related to an unobservable X. The parameters in
the model relating Y and (Z,X) cannot, of course, be estimated directly
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by fitting Y to (Z,X), since X is not observed. The goal of measurement
error modeling is to obtain nearly unbiased estimates of these parame-
ters indirectly by fitting a model for Y in terms of (Z,W). Attainment
of this goal requires careful analysis. Substituting W for X, but making
no adjustments in the usual fitting methods for this substitution, leads
to estimates that are biased, sometimes seriously, see Figure 1.1. The
problem here is that the parameters of the regression of Y on (Z,W)
are different from those of Y on (Z,X).

In assessing measurement error, careful attention must be given to the
type and nature of the error, and the sources of data that allow modeling
of this error. The following examples illustrate some of the different types
of problems considered in this book.

1.4 Radiation Epidemiology and Berkson Errors

There are many studies relating radiation exposure to disease, including
the Nevada Test Site (NTS) Thyroid Disease Study and the Hanford
Thyroid Disease Study (HTDS). Full disclosure: One of us (RJC) was
involved in litigation concerning HTDS, and his expert report is avail-
able at http://www.downwinders.com/files/htds expert report.pdf, the
plaintiffs’ Web site, at least as of May 2005.

Stevens, Till, Thomas, et al. (1992); Kerber, Till, Simon, et al. (1993);
and Simon, Till, Lloyd, et al. (1995) described the Nevada test site study,
where radiation exposure largely came as the result of above-ground
nuclear testing in the 1950s. Similar statistical issues arise in the Hanford
Thyroid Disease Study: see Davis, Kopecky, Stram, et al. (2002); Stram
and Kopecky (2003); and Kopecky, Davis, Hamilton, et al. (2004), where
radiation was released in the 1950s and 1960s. In the Nevada study,
over 2, 000 individuals who were exposed to radiation as children were
examined for thyroid disease. The primary radiation exposure came from
milk and vegetables. The idea of the study was to relate various thyroid
disease outcomes to radiation exposure to the thyroid.

Of course, once again, since this is a book about measurement er-
ror, the main exposure of interest, radiation to the thyroid, cannot be
observed exactly. What is typical in these studies is to build a large
dosimetry model that attempts to convert the known data about the
above-ground nuclear tests to radiation actually absorbed into the thy-
roid. Dosimetry calculations in NTS were based on age at exposure,
gender, residence history, x-ray history, whether the individual was as a
child breast-fed, and a diet questionnaire filled out by the parent, focus-
ing on milk consumption and vegetables. The data were then input into
a complex model and, for each individual, the point estimate of thyroid
dose and an associated standard error for the measurement error were
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reported. Roughly similar considerations led to the dose estimates and
uncertainties in HTDS.

In both NTS and HTDS, the authors consider analyses taking into
account the uncertainties (measurement error) in dose estimates. Indeed,
both consider the classical measurement error situation in (1.1). The
HTDS study, though, also considered a different type of measurement
error, and based most of their power calculations on it. We will go into
detail on the power and analysis issues; see Section 1.8.2 of this chapter
for power and Section 8.6 for the analysis.

What we see in the classical measurement error model (1.1) is that the
observed dose equals the true dose plus (classical) measurement error.
This, of course, means that the variability of the observed doses will
be greater than the variability of true doses. In HTDS, in contrast, the
authors not only consider this classical measurement error, but they also
turn the issue around; namely, they assumed that the true dose is equal
to the estimated dose plus measurement error. In symbols, this is

Xi = Wi + Ui, (1.2)

where E(Ui|Wi) = 0, so that the true dose has more variability than
the estimated dose; contrast with (1.1). Model (1.2) is called a Berkson

measurement error model, see Berkson (1950).

1.4.1 The Difference Between Berkson and Classical Errors: How to

Gain More Power Without Really Trying

Measurement error modeling requires considerable care. In this section,
we discuss why it is crucial that one understands the seemingly subtle
differences between Berkson and classical errors, and we illustrate some
possible pitfalls when choosing between the two error models. As far as
we are aware, one cannot be put in jail for using the wrong model, but
an incorrect measurement error model often causes erroneous inferences,
which to a statistician is worse than going to jail (okay, we have exag-
gerated). In Section 2.2.2 we provide additional guidance so that the
reader can be confident of choosing the correct error model in his/her
own work.

The difference between Berkson and classical measurement error is
major when one is planning a study a priori, especially when one is
attempting power calculations. There are some technical similarities be-
tween classical and Berkson errors, see Section 3.2.2, but different issues
arise in power calculations. What we will indicate here is that for a given

measurement error variance, if you want to convince yourself that you

have lots of statistical power despite measurement error, just pretend

that the measurement error is Berkson and not classical.
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Suppose that the observed data have a normal distribution with mean
zero and variance σ2

w = 2.0. Suppose also that the measurement error
has variance σ2

u = 1.0. Then, if one assumes a Berkson model, the true
doses have mean zero and variance σ2

x = 3.0. This is so because the
variance of X in (1.2) is the sum of the variance of W (σ2

w = 2.0) and
the variance of the Berkson measurement error U (σ2

u = 1.0). Now, in
major contrast, if one assumes that the measurement error is classical
instead of Berkson, then the variance of X is, from (1.1), the difference

of the variance of W (2.0) and the variance of the classical measurement
error U (1.0), that is, 1.0. In other words, if we assume Berkson error, we
think that the true dose X has variance 3.0, while if we assume classical
measurement error, we think that the variance of the true dose equals
1.0, a feature reflected in Figure 1.3. Now, for a given set of parameter
values of risk, it is generally the case that the power increases when the
variance of true exposure X increases, Hence, assuming Berkson when
the error is classical leads to a grossly optimistic overstatement of power.
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Figure 1.3 A hypothetical example where the observed doses W have mean zero
and variance 2.0, while the measurement errors have mean zero and variance
1.0. Displayed are the distributions of true dose that you think you have if you
think that the errors are Berkson (top) or if you think the errors are classical
(bottom). The much smaller variability of true dose under the classical model
indicates that the power for detecting effects will be much smaller than if the
errors are Berkson.
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Figure 1.4 OPEN Study data, scatterplot of the logarithm of energy (calories)
using a food frequency questionnaire and a biomarker.

Further discussion of differences and similarities between power in
classical and Berkson error models can be found in Section B.1.

1.5 Classical Measurement Error Model Extensions

It almost goes without saying, but we will say it, that measurement error
models can be more complex than the classical additive measurement
error model (1.1) or the classical Berkson error model (1.2). Here we
illustrate some of the complexities of measurement error modeling via
an important nutrition biomarker study.

The study of diet and disease has been a major motivation for nonlin-
ear measurement error modeling. In these studies, it is typical to mea-
sure diet via a self–report instrument, for example, a food frequency
questionnaire (FFQ), some sort of diary, or a 24-hour recall interview. It
has been appreciated for decades that these self-report instruments are
only imperfect measures of long-term dietary intakes, and hence that
measurement error is a major concern.

To understand the profound nature of measurement error in this con-
text, we consider the National Cancer Institute’s OPEN study, which
is one of the largest biomarker studies ever done; see Subar, Kipnis,
Troiano, et al. (2003) and Kipnis, Midthune, Freedman, et al. (2003).
We illustrate this measurement error with energy (caloric) intake mea-
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Figure 1.5 OPEN Study data, histograms of energy (calories) using a
biomarker (top panel) and a food frequency questionnaire (bottom panel). Note
how individuals report far fewer calories than they actually consume.

sures. In the OPEN Study, energy intake was measured by the dietary
history questionnaire, an FFQ described in Subar, Thompson, Kipnis, et
al. (2001). In keeping with our notation, since the FFQ is not the truth,
we will denote by W the log energy intake as measured by the FFQ. In
addition, the investigators obtained a near-perfect biomarker measure
of energy intake using a technique called doubly-labeled water (DLW),
which we call X. DLW is basically what it sounds like: Participants drink
water that is enriched with respect to two isotopes, and urine samples
allow the measurement of energy expenditure.

That true intake X and observed intake W can be very different is
seen in Figure 1.4, where we plot the FFQ versus the biomarker along
with the associated least squares line. The correlation between truth
and observed is only 0.28, indicating that the FFQ is not a very good
measure of energy intake. It is also interesting to note the histograms for
these two instruments; see Figure 1.5. One can see there that the FFQ is
also clearly badly biased downward in general for energy intake, that is,
people eat more calories than they are willing to report (no surprise!).

In this example, because of the biases seen in Figures 1.4 and 1.5 the
FFQ is not an unbiased measure of true energy intake, and hence the
classical measurement error model (1.1) clearly does not hold. A more
reasonable model, promoted in a series of papers by Kipnis et al. (1999,
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2001, 2003), is to allow for bias as well as variance components

Wij = γ0 + γ1Xij + Uij , (1.3)

Uij = ri + ǫij ,

where ri ∼ Normal(0, σ2

r) and ǫij ∼ Normal(0, σ2

ǫ ). In model (1.3), the
linear regression in true intake reflects the biases of the FFQ. The struc-
ture of the measurement error random variables Uij is that they have two
components: a shared component r and a random component ǫ. Kipnis
et al. (1999, 2001, 2003) call the shared component person-specific bias,
reflecting the idea that two people who eat exactly the same foods will
nonetheless systematically report intakes differently when given multiple
FFQs. Fuller (1987) calls the person-specific bias an equation error.

Of course, if γ0 = 0, γ1 = 1, and ri ≡ 0, then we have the standard
classical measurement error model (1.1).

1.6 Other Examples of Measurement Error Models

1.6.1 NHANES

The NHANES-I Epidemiologic Study Cohort data set (Jones, Schatzen,
Green, et al., 1987) is a cohort study originally consisting of 8,596 women
who were interviewed about their nutrition habits and later examined for
evidence of cancer. We restrict attention to a subcohort of 3,145 women
aged 25–50 who have no missing data on the variables of interest.

The response Y indicates the presence of breast cancer. The predictor
variables Z, assumed to be measured without significant error, include
the following: age, poverty index ratio, body mass index, alcohol (Yes,
No), family history of breast cancer, age at menarche, and menopausal
status. We are primarily interested in the effects of nutrition variables
X that are known to be imprecisely measured, for example, “long-term”
saturated fat intake.

If all these underlying variables were observable, then a standard lo-
gistic regression analysis would be performed. However, it is both diffi-
cult and expensive to measure long-term diet in a large cohort. In the
NHANES data, instead of observing X, the measured W was a 24-hour
recall, that is, each participant’s diet in the previous 24 hours was re-
called and nutrition variables computed. That the measurement error is
large in 24-hour recalls has been documented previously (Beaton, Mil-
nor, & Little, 1979; Wu, Whittemore, & Jung, 1986). Indeed, there is
evidence to support the conclusion that more than half of the variability
in the observed data is due to measurement error.

There are several sources of the measurement error. First, there is
the error in the ascertainment of food consumption in the previous 24
hours, especially amounts. Some of this type of error is purely random,
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while another part is due to systematic bias, for example, some people
resist giving an accurate description of their consumption of snacks. The
size of potential systematic bias can be determined in some instances
(Freedman, Carroll, & Wax, 1991), but in the present study we have
available only the 24-hour recall information, and any systematic bias is
unidentifiable.

The major source of “error” is the fact that a single day’s diet does
not serve as an adequate measure of the previous year’s diet. There
are seasonaL differences in diet, as well as day-to-day variations. This
points out the fact that measurement error is much more than simple
recording or instrument error and encompasses many different sources
of variability.

There is insufficient information in the NHANES data to model mea-
surement error directly. Instead, the measurement error structure was
modeled using an external data set, the CSFII (Continuing Survey of
Food Intakes by Individuals) data (Thompson, Sowers, Frongillo, et al.,
1992). The CSFII data contain the 24-hour recall measures W, as well
as three additional 24-hour recall phone interviews. Using external data,
rather than assessing measurement error on an internal subset of the
primary study, entails certain risks that we discuss later in this chapter.
The basic problem is that parameters in the external study may differ
from parameters in the primary study, leading to bias when external
estimates are transported to the primary study.

1.6.2 Nurses’ Health Study

While the OPEN Study focused on the properties of instruments for
measuring nutrient intakes, the real interest is in relating disease and
nutrient intakes. A famous and still ongoing study concerning nutrition
and breast cancer has been considered by Rosner, Willett, & Spiegelman
(1989) and Rosner, Spiegelman, & Willett (1990), namely, the Nurses’
Health Study. The study has over 80,000 participants and includes many
breast cancer cases. The variables are much the same as in the OPEN
study, with the exceptions that (1) alcohol is assessed differently and
(2) a food-frequency questionnaire was used instead of 24-hour recall
interviews. The size of the measurement error in the nutrition variables
is still quite large. Here, X = (long-term average alcohol intake, long-
term average nutrient intake) and W = (alcohol intake measured by
FFQs, nutrient intake measured by FFQs). It is known that W is both
highly variable and biased as an estimator of X.

The Nurses’ Health Study was designed so that a direct assessment of
measurement error is possible. Specifically, 173 nurses recorded alcohol
and nutrient intakes in diary form for four different weeks over the course
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of a year. The average, T, of these diary entries is taken to be an unbiased
estimate of X. We will call T a second measure of X. Thus, in contrast
to NHANES, measurement error was assessed on data internal to the
primary study. Because T is unbiased for X, E(T|W) = E(X|W), so
we can estimate E(X|W) by regressing T on W. Estimating E(X|W)
is the crucial first step in regression calibration, a widely used method
of correcting for measurement error; see Chapter 4.

1.6.3 The Atherosclerosis Risk in Communities Study

The Atherosclerosis Risk in Communities (ARIC) study is a multipur-
pose prospective cohort study described in detail by The ARIC Investiga-
tors (1989). From 1987 through 1989, 15,792 male and female volunteers
were recruited from four U.S. communities (Forsyth County, NC; subur-
ban Minneapolis, MN; Washington County, MD; and Jackson, MS) for a
baseline visit including at-home interviews, clinic examination, and lab-
oratory measurements. Participants returned approximately every three
years for second (1990–1992), third (1993–1995), and fourth (1996–98)
visits. Time to event data were obtained from annual participant in-
terviews and review of local hospital discharge lists and county death
certificates. The “event” was primary coronary kidney disease (CKD).

One purpose of the study was to explain the race effect on the progres-
sion of CKD. In particular, African-Americans have maintained approx-
imately four times the age- and sex-adjusted rate of end-stage renal dis-
ease (ESRD) compared to whites during the last two decades (USRDS,
2003), while the prevalence of decreased kidney function (CKD Stage 3)
in the U.S. is lower among African-Americans than whites. These pat-
terns suggest that that African-Americans progress faster through the
different stages of kidney disease.

In Chapter 14 we investigate the race effect on the probability of
progression to CKD using a survival data approach. An important con-
founder is the baseline kidney function, which is typically measured by
the estimated glomerular filtration rate (eGFR), which is a noisy version
of GFR obtained from a prediction equation. The nature of the adjust-
ment is more complex because of the nonmonotonic relationship between
eGFR and progression probability.

1.6.4 Bioassay in a Herbicide Study

Rudemo, Ruppert, & Streibig (1989) consider a bioassay experiment
with plants, in which eight herbicides were applied. For each of these
eight combinations, six (common) nonzero doses were applied and the
dry weight Y of five plants grown in the same pot was measured. In
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this instance, the predictor variable X of interest is the amount of the
herbicide actually absorbed by the plant, a quantity that cannot be mea-
sured. Here the response is continuous, and if X were observable, then
a nonlinear regression model would have been fit, probably by nonlin-
ear least squares. The four-parameter logistic model (not to be confused
with logistic regression where the response is binary) is commonly used.

However, X is not observable; instead, we know only the nominal
concentration W of herbicide applied to the plant. The sources of error
include not only the error in diluting to the nominal concentration, but
also the fact that two plants receiving the same amount of herbicide may
absorb different amounts.

In this example, the measurement error was not assessed directly. In-
stead, the authors assumed that the true amount X was linearly related
to the nominal amount W with nonconstant variance. This error model,
combined with the approach discussed in Chapter 4, was used to con-
struct a new model for the observed data.

1.6.5 Lung Function in Children

Tosteson, Stefanski, & Schafer (1989) described an example in which
the response was the presence (Y = 1) or absence (Y = 0) of wheeze
in children, which is an indicator of lung dysfunction. The predictor
variable of interest is X = personal exposure to NO2. Since Y is a binary
variable, if X were observable, the authors would have used logistic or
probit regression to model the relationship of Y and X. However, X
was not available in their study. Instead, the investigators were able
to measure a bivariate variable W, consisting of observed kitchen and
bedroom concentrations of NO2 in the child’s home. School-aged children
spend only a portion of their time in their homes, and only a portion
of that time in their kitchens and bedrooms. Thus, it is clear that the
true NO2 concentration is not fully explained by what happens in the
kitchen and bedroom.

While X was not measured in the primary data set, two independent,
external studies were available in which both X and W were observed.
We will describe this example in more detail later in this chapter.

1.6.6 Coronary Heart Disease and Blood Pressure

The Framingham study (Kannel, Neaton, Wentworth, et al., 1986) is a
large cohort study following individuals for the development Y of coro-
nary heart disease. The main predictor of interest in the study is systolic
blood pressure, but other variables include age at first exam, body mass,
serum cholesterol, and whether or not the person is a smoker. In princi-
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ple at least, Z consists only of age, body mass, and smoking status, while
the variables X measured with error are serum cholesterol and systolic
blood pressure. It should be noted that in a related analysis MacMahon,
Peto, Cutler, et al. (1990) consider only the last as a variable measured
with error. We will follow this convention in our discussion.

Again, it is impossible to measure long-term systolic blood pressure
X. Instead, what is available is the blood pressure W observed during a
clinic visit. The reason that the long-term X and the single-visit W differ
is that blood pressure has major daily, as well as seasonal, variation.
Generally, the classical measurement error model (1.1) is used in this
context.

In this experiment, we have an extra measurement of blood pressure
T from a clinic visit taken 4 years before W was observed. Hence, unlike
any of the other studies we have discussed, in the Framingham study we
have information on measurement error for each individual. One can look
at T as simply a replicate of W. However, T may be a biased measure
of X because of temporal changes in the distribution of blood pressure
in the population. Each way of looking at the data is useful and leads
to different methods of analysis.

1.6.7 A-Bomb Survivors Data

Pierce, Stram, Vaeth, et al. (1992) considered analysis of A-bomb sur-
vivor data from the Hiroshima and Nagasaki explosions. They discuss
various responses Y, including the number of chromosomal aberrations.
The true radiation dose X cannot be measured; instead, estimates W
are available. They assume, as an approximation, that W = 0 if and
only if X = 0. They adopt a fully parametric approach, specifying that
when X and W are positive, then W is lognormal with median X and
coefficient of variation of 30%. They assume that if X is positive, it has a
Weibull distribution. In symbols, they propose the multiplicative model

W = XU, log(U) ∼ Normal(µu, σ2

u),

where log(U) is normally distributed with mean zero and variance 0.0862.

1.6.8 Blood Pressure and Urinary Sodium Chloride

Liu & Liang (1992) described a problem of logistic regression where the
response Y is the presence of high systolic blood pressure (greater than
140). However, in this particular study blood pressure was measured
many times and the average recorded, so that the amount of measure-
ment error in the average systolic blood pressure is reasonably small. The
predictors Z measured without error are age and body mass index. The

13



predictor X subject to measurement error is urinary sodium chloride,
which is subject to error because of intra-individual variation over time
and also possibly due to measurement error in the chemical analyses. In
order to understand the effects of measurement error, 24-hour urinary
sodium chloride was measured on 6 consecutive days.

1.6.9 Multiplicative Error for Confidentiality

Hwang (1986) used survey data released by the U. S. Department of
Energy on energy consumption by U. S. households. The exact values
of certain variables, for example, heating and cooling degree days, were
not given since this information might allow the homeowners to be iden-
tified. Instead the Department of Energy multiplied these variables by
computer-generated random numbers. The Department of Energy re-
leased the method for generating the random errors, so this is a rare
case where the error distribution is known exactly.

1.6.10 Cervical Cancer and Herpes Simplex Virus

In this example, the question is whether exposure to herpes simplex virus
increases the risk of cervical cancer. The data are listed in Carroll, Gail,
& Lubin (1993). The response Y is the indicator of invasive cervical
cancer, X is exposure to herpes simplex virus, type 2 (HSV-2) measured
by a refined western blot procedure, and W is exposure to HSV-2 mea-
sured by the western blot procedure. See Hildesheim, Mann, Brinton, et
al. (1991) for biological background to this problem. There are 115 com-
plete observations where (Y,X,W) is observed and 1,929 incomplete
observations where only (Y,W) is observed. There are 39 cases (Y = 1)
among the complete data and 693 cases among the incomplete data.
Among the complete data, there is substantial misclassification, that is,
observations where X 6= W. Also, there is evidence of differential er-
ror, meaning that the probability of misclassification depends on the re-
sponse, that is, P (X = W|X = x,Y = 0) 6= P (X = W|X = x,Y = 1).

1.7 Checking the Classical Error Model

Suppose that the classical error additive measurement error model (1.1)
holds, and that the errors U are symmetric and have constant vari-
ance in both X and any covariates Z measured without error, that is,
var(U|Z,X) = σ2 (a constant). Then, if the instrument W can be repli-
cated, the sample standard deviation of the W-values for an individual
are uncorrelated with the individual means, and they are also uncorre-
lated with Z. Further, suppose that these errors are normally distributed.
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Then differences of the replicates within an individual are normally dis-
tributed. This leads to simple graphical devices:

• Plot the sample standard deviation of the W-values for an individual
against her/his sample mean, call it W. If there are no obvious trends,
this suggests that the measurement error variance does not depend
on X.

• Plot the sample standard deviation of the W-values for an individ-
ual against her/his covariates Z. If there are no obvious trends, this
suggests that the measurement error variance does not depend on Z.

• Form the differences between replications within an individual, and
then form a q-q plot of these differences across individuals. If the
q-q plot shows no evidence of nonnormality, this suggests that the
measurement errors are also roughly normally distributed.
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Figure 1.6 OPEN Study data, plot of the within-individual standard deviation
versus mean of the actual untransformed protein biomarkers. The obvious re-
gression slope indicates that the variance of the measurement error depends on
true protein intake.

For example, consider the protein biomarker in the OPEN study; see
Section 1.2. In Figure 1.6 we plot the standard deviation of the replicates
versus the mean in the original protein scale. The fact that there is an
obvious regression slope and the standard deviation of the biomarker
varies by a factor of four over the range of the biomarker’s mean is
strong evidence that, at the very least, the variance of the measurement
error depends on true intake.

15



5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mean of the Protein Biomarkers

s
.d

. 
o

f 
th

e
 P

ro
te

in
 B

io
m

a
rk

e
rs

OPEN data, Protein, Log Scale, Constant Variance Plot

Figure 1.7 OPEN Study data, plot of the within-individual standard deviation
versus mean of the log protein biomarkers. The lack of any major regression
slope indicates approximately constant variance measurement error.
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Figure 1.8 OPEN Study data, q-q plot of the differences of the log protein
biomarkers. The nearly straight line of the data indicate nearly normally dis-
tributed measurement errors.
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Figure 1.9 Normal q-q plot of the differences between independent Lognor-
mal(0,1) random variables, n = 200.

A standard way to remove nonconstant variability is via a transfor-
mation, and the obvious first attempt is to take logarithms. Figure 1.7
is the standard deviation versus the mean plot in this transformed scale.
In contrast to Figure 1.6, here we see no major trend, suggesting that
the transformation was successful in removing most of the nonconstant
variation. Figure 1.8 gives the q-q plot of the differences: this is not a
perfect straight line, but it is reasonably close to straight, suggesting
that the transformation has also helped make the data much closer to
normally distributed.

Using differences between replicates to assess normality has its pitfalls.
The difference between two iid random variables has a symmetric dis-
tribution even when the random variable themselves are highly skewed.
Thus, nonnormality of measurement errors is somewhat hidden by using
differences. For example, Figure 1.9 is a normal q-q plot of the differ-
ences between 200 pairs of Lognormal(0,1) random variables; see Section
A.2 for the lognormal distribution. Note that the q-q plot shows no sign
of asymmetry. Nonnormality is evident only in the presence of heavier-
than-Gaussian tails.
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1.8 Loss of Power

Classical measurement error causes loss of power, sometimes a profound
loss of power. We illustrate this in two situations: linear regression and
radiation epidemiology.

1.8.1 Linear Regression Example
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Simulation: Loss of Power With Increasing Classical Measurement Error

Figure 1.10 An illustration of the loss of power when there is classical mea-
surement error. When X is observed, the measurement error variance = 0.0,
and the power is 90%. When X is not observed and the measurement error
variance = 1.0, 1/2 of the variability of the observed W is due to noise, and
the power is only 62%. When 2/3 of the variability of W is due to noise, the
power is only 44%.

Here we consider the simple linear regression model

Yi = β0 + βxXi + ǫi,

where β0 = 0.0, βx = 0.69, var(X) = var(ǫ) = 1.0, and the sample
size is n = 20. The results here are based on exact calculations using
the program nQuery Advisor. The slope was chosen so that, when X is

observed, there is approximately 90% power for a one-sided test of the
null hypothesis H0 : βx = 0.

We added classical measurement error to the true Xs using the model
(1.1), where we varied the variance of the measurement errors U from
0.0 to 2.0. When var(U) = 0.0, we are in the case that there is no clas-
sical measurement error, and the power is 90%. When the measurement
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error variance is var(U) = 1.0, this means that the observed predictors
have variance var(W) = var(X) + var(U) = 2.0, and hence 1/2 of the
variability in the observed predictors is due to noise. At the extreme
with var(U) = 2.0, 2/3 of the variability in the observed predictors is
due to noise.

The results are displayed in Figure 1.10. Here we see that while the
power would be 90% if X could be observed, when the measurement
error variance equals the variance of X, and hence 1/2 of the variability
in W is due to noise, the power crashes to 62%. Even worse, when 2/3
of the variability in the observed W is noise, the power falls below 50%.
This is the first of the double whammy of measurement error; see Section
1.1.
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Figure 1.11 The sample size version of Figure 1.10. When there is no mea-
surement error, the sample size needed for 90% power is n = 20. When X is
not observed and the measurement error variance = 1.0, 1/2 of the variability
of the observed W is due to noise, the necessary sample size for 90% power
more than doubles to n = 45. When 2/3 of the variability of W is due to noise,
the required sample size is n > 70.

The flip side of a loss of power due to classical measurement error is
that sample sizes necessary to gain a given power can increase dramati-
cally. The following power calculations were done assuming all variances
are known, and so should be interpreted qualitatively. In Figure 1.11, we
show that while only n = 20 is required for 90% power when there is no
measurement error, when 1/2 of the variability in the observed predictor
W is due to noise, we require at least n = 45 observations, an increase of
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200%! Even more dramatic, when 2/3 of the variability in the observed
predictor W is due to noise, the sample size must increase by over 350%!

1.8.2 Radiation Epidemiology Example

In this section, we describe a second simulation showing the effects of
classical measurement error. In particular, we show that if one assumes
that the measurement error is entirely Berkson but it is partially classi-
cal, then one grossly overestimates power.
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Figure 1.12 Simulation results for radiation epidemiology, with true excess rel-
ative risk 4.0. Displayed are the power for detecting an effect from an analysis
ignoring measurement error when the percentage of the total error that is clas-
sical varies from 0% (all Berkson) to 30% (majority Berkson). Note the very
rapid loss of power that accrues when error become classical in nature. This
simulation study shows that if one thinks that all measurement error is Berk-
son, but 30% is classical, then one overestimates the power one really has.

In the Hanford Thyroid Disease Study (HTDS) litigation, we used
what is called an excess relative risk model. Let Z denote gender, X
denote true but unobservable dose to the thyroid, and Y be some in-
dicator of thyroid disease. Let H(x) = {1 + exp(−x)}−1 be the logistic
distribution function, often simply called the logistic function. Then the
model fit is

pr(Y = 1|X,Z) = H {β0 + βzZ + log(1 + βxX)} . (1.4)
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The parameter βx is the excess relative risk parameter.
In our simulations, we used the model of Reeves et al. (2001) and

Mallick et al. (2002) to simulate true and calculated doses. This model
consists of the variables described above, along with a latent intermediate
variable L between X and W that allows for mixtures of Berkson and
classical error. This model is

log(X) = log(L) + Ub, (1.5)

log(W) = log(L) + Uc; (1.6)

where Ub denotes Berkson-type error, and Uc denotes classical-type er-
ror. The standard classical measurement error model (1.1) is obtained by
setting Ub = 0. The Berkson model (1.2) is obtained by setting Uc = 0.

The simulation assumed that log(L), Ub and Uc were normally dis-
tributed. The details of the simulation were as follows with the values
chosen roughly in accord with data in the HTDS:

• The number of study participants was n = 3, 000, with equal numbers
of men and women. With no dose, (β0, βz) were chosen so that men
had a disease probability of 0.0049, while the disease probability for
women was 0.0098. The excess relative risk βx = 4.0.

• The mean of log(L) = log(0.10).

• The standard deviation of log(W) = log(2.7).

• The variance of the Berkson errors is σ2

b , the variance of the classical

errors is σ2

c , and
√

σ2

b + σ2
c = log(2.3).

• The values of σ2

b and σ2

c were varied to that the total measurement er-
ror that is Berkson is 100%, 90%, 80%, and 70%. Stram and Kopecky
(2003) mention that there is classical uncertainty in HTDS because
of the use of a food frequency questionnaire to measure milk and
vegetable consumption.

• A maximum likelihood analysis ignoring measurement errors was em-
ployed.

The results of this simulation are displayed in Figures 1.12 and 1.13.
Figure 1.12 shows one aspect of the double whammy, namely the pro-
found loss of power when the data are subject to classical measurement
error. Note that the power is 75% when all the measurement error is
Berkson, but when 30% of the total measurement error variance is clas-
sical, the power drops to nearly 40%. In this instance, the practically
important part of this simulation has to do with power being announced.
If one assumes that all uncertainty is Berkson, then one will announce
75% power to detect an excess relative risk of 4.0, and one would ex-
pect to see an effect of this magnitude. However, if in reality 30% of
the measurement error is classical, then the actual power is only 40%,
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and one would not expect to see a statistically significant result. A sta-
tistically nonsignificant result could then easily be misinterpreted as a
lack of effect, rather than the actuality: a lack of power. If you want to
convince yourself that you have lots of statistical power despite measure-
ment error, just pretend that the measurement error is Berkson and not
classical.
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Excess Relative Risk In Radiation Studies: Effects of Classical Errors

Figure 1.13 Simulation results for radiation epidemiology, with true excess
relative risk 4.0. Displayed are the median estimated excess relative risks from
an analysis ignoring measurement error when the percentage of the total error
that is classical varies from 0% (all Berkson) to 30% (majority Berkson). Note
the very rapid bias that accrues when error become classical in nature.

Figure 1.13 shows the other aspect of the double whammy, namely the
bias caused by classical measurement error. Note that the true value of
the excess relative risk is 4.0, and if all uncertainty is Berkson, then the
estimated excess relative risk has median very close to the actual value.
In other words, there is not much bias in parameter estimation in the
Berkson scenario. However, as more of the measurement error becomes
classical, a far different story emerges. Thus, if 30% of the measurement
error variance is classical, one will tend to observe an excess relative
risk of 2.0, half the actual risk. Again, if one assumes all uncertainty is
Berkson, one might well conclude that there is little risk of radiation with
an excess relative risk of 2.0, but in fact the much larger true relative
risk would be masked by the classical measurement error.
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1.9 A Brief Tour

As noted in the preface, this monograph is structured into four parts:
background material, functional modeling where the marginal distribu-
tion of X is not modeled, structural modeling where a parametric model
for the marginal distribution of X is assumed, and specialized topics.
Here we provide another brief overview of where we are going.

It is commonly thought that the effect of measurement error is “bias
toward the null,” and hence that one can ignore measurement error for
the purpose of testing whether a predictor is “statistically significant.”
This lovely and appealing folklore is sometimes true but unfortunately
often wrong. The reader may find Chapters 3 and 10 (especially Section
3.6) instructive, for it is in these chapters that we describe in detail the
effects of ignoring measurement error.

With continuously measured variables, the classical error model (1.1)
is often assumed. The question of how one checks this assumption has not
been discussed in the literature. Section 1.7 suggests one such method,
namely, plotting the intra-individual standard deviation against the mean,
which should show no structure if (1.1) holds. This, and a simple graph-
ical device to check for normality of the errors, are described in Section
8.5. Often, the measured value of W is replicated, and the usual assump-
tion is that the replicates are independent.

Having specified an error model, one can use either functional model-
ing methods (Chapters 4–7) or structural modeling methods (Chapters
8–9). Hypothesis testing is discussed in Chapter 10. Longitudinal data
and mixed models are described briefly in Chapter 11. Density estima-
tion and nonparametric regression methods appear in Chapters 12–13.
The analysis of survival data and cases where the response is measured
with errors occurs in Chapters 14–15.

Bibliographic Notes

The model (1.3) for measurement error of a FFQ actually goes back to
Cochran (1968), who cited Pearson (1902) as his inspiration; see Carroll
(2003). The paper of Pearson is well worth reading for its innovative use
of statistics to understand the biases in self-report instruments, in his
case the bisection of lines. Amusingly, Pearson had a colleague who did
the actual work of measuring the errors made in bisecting 1,500 lines:
“Dr. Lee spent several months in the summer of 1896 in the reduction
of the observations,” one of the better illustrations of why one does not
want to be a postdoc.

Our common notation that X stands for the covariate measured with
error, W is its mismeasured version, and Z are the covariates mea-
sured without error is not, unfortunately, the only notation in use. Fuller
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(1987), for example, used “x” for the covariate measured with error, and
“X” for its mismeasured version. Pierce & Kellerer (2004) use “x” for
the covariate measured with error and “z” for its mismeasured version.
Many authors use “Z” for the mismeasured version of our X, and others
even interchange the meaning of Z and X! Luckily, some authors use
our convention, for example, Tsiatis & Ma (2004) and Huang & Wang
(2001). The annoying lack of a common notation (we, of course, think
ours is the best) can make it rather difficult to read papers in the area.

The program Nquery Advisor is available from Statistical Solutions,
Stonehill Corporate Center, Suite 104, 999 Broadway, Saugus, MA 01906,
http://www.statsol.ie/nquery/nquery.htm. We are not affiliated with
that company.

Tosteson, Buzas, Demidenko, & Karagas (2003) studied power and
sample size for score tests for generalized regression models with covari-
ate measurement error and provide software which, at the time of this
writing, is at http://biostat.hitchcock.org/MeasurementError/Analytics
/SampleSizeCalculationsforLogisticRegression.asp.
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CHAPTER 2

IMPORTANT CONCEPTS

2.1 Functional and Structural Models

Historically, the taxonomy of measurement error models has been based
upon two major defining characteristics. The first is the structure of the
error model relating W to X, and the second is the type and amount of
additional data available to assess the important features of this error
model, for example, replicate measurements as in the Framingham data
or second measurements as in the NHANES study. These two factors,
error structure and data structure, are clearly related, since more so-
phisticated error models can be entertained only if sufficient data are
available for estimation. We take up the issue of error models in detail
in Section 2.2, although it is a recurrent theme throughout the book.

The second defining characteristic is determined by properties of the
unobserved true values Xi, i = 1, . . . , n. Traditionally, a distinction was
made between classical functional models, in which the Xs are regarded
as a sequence of unknown fixed constants or parameters, and classical

structural models, in which the Xs are regarded as random variables. The
trouble with the classical functional models is that one is then tempted
to use the maximum likelihood paradigm to estimate the nuisance pa-
rameters, the Xs, along with the parameters of interest in a regression
model. This approach works in linear regression, but in virtually no other
context, see for example Stefanski & Carroll (1985) for one of the many
of examples where the method fails.

We believe that it is more fruitful to make a distinction between func-

tional modeling, where the Xs may be either fixed or random, but in
the latter case no, or only minimal, assumptions are made about the
distribution of the Xs, and structural modeling, where models, usually
parametric, are placed on the distribution of the random Xs. Besides
the fact that our approach is cleaner, it also leads to more useful meth-
ods of estimation and inference than the old idea of treating the Xs as
parameters.

Likely the most important concept to keep in mind is the idea of ro-
bust model inference. In the functional modeling approach, we make no
assumptions about the distribution of the unobserved Xs. In contrast, in
a typical structural approach, some version of a parametric distribution
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for the Xs is assumed, and concern inevitably arises that the resulting
estimates and inferences will depend upon the parametric model chosen.
Over time, the two approaches have been moving closer to one another.
For example, in a number of Bayesian structural approaches, flexible
parametric models have been chosen, the flexibility helping in terms
of model robustness; see, for example, Carroll, Roeder, & Wasserman
(1999) and Mallick, Hoffman, & Carroll (2002). Tsiatis & Ma (2004)
described a frequentist method that is functional in the sense that the
estimators are consistent no matter what the distribution of X is, but
the method is also structural in the sense that a pilot distribution for
X must be specified. The Tsiatis–Ma approach involves solving an inte-
gral equation, or at least approximating the solution, and either way of
implementation requires major computational effort.

Functional modeling is at the heart of the first part of this book, es-
pecially in Chapters 4, 5, and 7. The key point is that even when the Xs
form a random sample from a population, functional modeling is useful
because it leads to estimation procedures that are robust to misspeci-
fication of the distribution of X. As described in Chapter 8, structural
modeling has an important role to play in applications (see also Chapter
9), but a concern is the robustness of inference to assumptions made
about the distribution of X.

Throughout, we will treat Z1, . . . ,Zn as fixed constants, and our anal-
yses will be conditioned on their values. The practice of conditioning on
known covariates is standard in regression analysis.

2.2 Models for Measurement Error

2.2.1 General Approaches: Berkson and Classical Models

A fundamental prerequisite for analyzing a measurement error problem
is specification of a model for the measurement error process. There are
two general types:

• Error models, including classical measurement error models, where
the conditional distribution of W given (Z,X) is modeled.

• Regression calibrarion models, including Berkson error models, where
the conditional distribution of X given (Z,W) is modeled.

We have already discussed two variants of the classical error model, see
(1.1) for the simplest additive model, and see (1.3) for an example of bi-
ases in the instrument, along with a more complex variance components
structure. Somewhat more generally, we can suppose that the relation-
ship between the measured W and the unobserved X also depends on
the observed predictors Z, as in for example,

W = γ0 + γt
xX + γt

zZ + U, E(U|X,Z) = 0. (2.1)
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Thus, in the OPEN study described in Section 1.5, it is possible that
bias in the FFQ might depend on gender, age, or even body mass index.

In (2.1), the measurement errors U have mean zero given the ob-
served and unobserved covariates, but nothing is said otherwise about
the structure of U. In the OPEN study, the variability might very well
be expected to depend on gender. In addition, nothing is said about
the distributional structure of U, so that, for example, if we have repli-
cated instruments Wij for the ith person, the Uij might have a variance
components structure, as in (1.3).

By a regression calibration model we mean one which focuses on the
distribution of X given (Z,W). We have already described the most
famous case, the Berkson model; see equation (1.2). More generally, one
might be willing to model the distribution of the unobserved covariates
directly as a function of the observed versions, as in

X = γ0 + γt
1
W + γt

2
Z + U, E(U|Z,W) = 0. (2.2)

The Berkson model says that true X is unbiased for nominal W, so that
γ0 = γ2 = 0 and γ1 = 1. Mallick & Gelfand (1996) basically started with
model (2.2), for example.

2.2.2 Is It Berkson or Classical?

Compared to complex undertakings such as rocket science or automotive
repair, determining whether data follow the classical additive measure-
ment error model (1.1) or the standard Berkson error model (1.2) is
generally simple in practice. Basically, if the choice is between the two,
then the choice is classical if an error-prone covariate is necessarily mea-
sured uniquely to an individual, and especially if that measurement can
be replicated. Thus, for example, if people fill out a food frequency ques-
tionnaire or if they get a blood pressure measurement, then the errors
and uncertainties are of classical type. If all individuals in a small group
or strata are given the same value of the error-prone covariate, for exam-
ple, textile workers or miners working in a job classification for a fixed
number of years are assigned the same exposure to dust, but the true
exposure is particular to an individual, as it almost certainly would be,
then the measurement error is Berkson. In the herbicide study, the mea-
sured concentration W is fixed by design and the true concentration X

varies due to error, so that the Berkson model is more appropriate.

Other differences between Berkson and classical error models, which
might help distinguish between them in practice, are that in the classical
model the error U is independent of X, or at least E(U|X) = 0, while
for Berkson errors U is independent of W or at least E(U|W) = 0.
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Therefore, var(W) > var(X) for classical errors and var(X) > var(W)
for Berkson errors.

In practice, the choice is not always between the classical additive
measurement error model (1.1) and the standard Berkson error model
(1.2). As we have seen, with a food frequency questionnaire, as well
as with other instruments based on self-report, more complex models
incorporating biases are required. We still measure quantities unique to
the individual, and the measurements can in principle be replicated, but
biases must be entertained, and the general classical error model (2.1)
is appropriate.

Outside of the Berkson model, the general regression calibration model
(2.2) is typically used in ad hoc ways, simply as a modeling device and
not based on any fundamental considerations. Briefly, as we will see later
in this book, likelihood-type calculations can become fairly simple if one
has a regression calibration model in hand and one can estimate it. For
example, consider the lung function study of Tosteson et al. (1989). In
this study, interest was in the relationship of long-term true NO2 intake,
X, in children on the eventual development of lung disease. The variable
X was not available. The vector W consists of bedroom and kitchen NO2

levels as measured by in situ or stationary recording devices. Certainly,
X and W are related, but children are exposed to other sources of NO2,
for example, in other parts of the house, at school, etc.

The available data consisted of the primary study in which Y and W

were observed, and two external studies, from different locations, study
populations, and investigators, in which (X,W) were observed. In this
problem, the regression calibration model (2.2) seems physically reason-
able, because a child’s total exposure X can be thought of as a sum of
in-home exposure and other uncontrolled factors. Tosteson, Stefanski, &
Schafer (1989) fit (2.2) to each of the external studies, found remarkable
similarities in the estimated regression calibration parameters (γ), and
concluded that the assumption of a common model for all three studies
was a reasonable working assumption.

A general error model (2.1) could also have been fit. However, W here
is bivariate, X is univariate, and implementation of estimates and infer-
ences is simply less convenient here than it is for a regression calibration
model.

2.2.3 Berkson Models from Classical

There is an interesting relationship at a technical level between error
models and regression calibration models; see Chapter 4. This relation-
ship is important in regression calibration where a model for X given
W is needed, but we start with a model for W given X. If one has a
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structural model so that one knows the marginal distribution of X, then
an error model can be converted into a regression calibration model by
Bayes theorem. Specifically,

fX|W(x|w) =
fW|X(w|x)fX(x)

∫
fW|X(w|x)fX(x)dx

,

where fX is the density of X, fW|X is the density of W given X, and
fX|W is the density of X given W. For example, suppose that W =
X + U, where X and U are uncorrelated. Then, as discussed in Section
A.4, the best linear predictor of X given W is (1 − λ)E(X) + λW, and

X = (1 − λ)E(X) + λW + U∗, (2.3)

where λ = σ2

x/(σ2

x+σ2

u) is the attenuation, U∗ = (1−λ){X−E(X)}−λU,
and a simple calculation shows that U∗ and W are uncorrelated. If X

and U are independent and normally distributed, then so are X and
U∗. Attenuation means that the magnitude of a regression coefficient is
biased towards zero, and the attenuation coefficient measures the size of
the attenuation in simple linear regression with classical additive mea-
surement errors; see Section 3.2.1.

Equation (2.3) has the form of a Berkson model, even though the error
model is classical. Note, however, that the slope of X on W is λ, not
1. Therefore, the variance of X is smaller than the variance of W in
keeping with the classical rather than Berkson errors.

2.2.4 Transportability of Models

In some studies, the measurement error process is not assessed directly,
but instead data from other independent studies, called external data

sets, are used. In this section, we discuss the appropriateness of using
information from independent studies and the manner in which this in-
formation should be used.

We say that parameters of a model can be transported from one study
to another if the model holds with the same parameter values in both
studies. Typically, in applications only a subset of the model parameters
need be transportable. Transportability means that not only the model
but also the relevant parameter estimates can be transported without
bias.

In many instances, approximately the same classical error model holds
across different populations. For example, consider systolic blood pres-
sure at two different clinical centers. Assuming similar levels of training
for technicians making the measurements and a similar protocol, for
example, sitting after a resting period, it is reasonable to expect that
the distribution of the error in the recorded measure W does not de-
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pend on the clinical center one enters, or on the technician making the
measurement, or on the value of X being measured, except possibly for
heteroscedasticity. Thus, in classical error models it is often reasonable to
assume that the error distribution of W given (Z,X) is the same across
different populations. However, even here some care is needed because a
major component of the measurement error might be sampling error. If
the populations differ in temporal variation or sampling frequency, then
the error distribution would differ.

Much, much more rarely, the same regression calibration model can
sometimes be assumed to hold across different studies. For example, con-
sider the NO2 study described in Section 1.6.5. If we have two popula-
tions of suburban children, then it may be reasonable to assume that the
sources of NO2 exposure other than the bedroom and kitchen will be ap-
proximately the same, and the error models are transportable. However,
if one study consists of suburban children living in a nonindustrial area
and the second study consists of children living in an inner city near an
industrialized area, the assumption of transportable error models would
be tenuous at best.

2.2.5 Potential Dangers of Transporting Models

The use of independent-study data to assess error model structure carries
with it the danger of introducing estimation bias into the primary study
analysis.

First, consider the regression calibration model for NO2 intake. The
primary data set of Tosteson Stefanski, & Schafer (1989) (Section 1.6.5)
is a sample from Watertown, Massachusetts. Two independent data sets
were used to fit the parameters in (2.2): one from the Netherlands and
one from Portage, Wisconsin. The parameter estimates for this model
in the two external data sets were essentially the same, leading Tosteson
et al. (1989) to conclude that the common regression relationship from
the Dutch and Portage studies was likely to be appropriate for the Wa-
tertown study as well. However, as these authors note in some detail, it
is important to remember that this is an assumption, plausible in this
instance, but still one not to be made lightly. If Watertown were to have
a much different pattern of NO2 exposure than Portage or the Nether-
lands, then the estimated parameters in model (2.2) from the latter two
studies, while similar, might be biased for the Watertown study, and the
results for Watertown hence incorrect.

The issue of transporting results for error models is critical in the
classical measurement error model as well. Consider the MRFIT study
(Kannel et al., 1986), in which X is long-term systolic blood pressure.
The external data set is the Framingham data (MacMahon, Peto, Cut-
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ler, et al., 1990). Carroll & Stefanski (1994) discussed these studies in
detail, but here we use the studies only to illustrate the potential pitfalls
of extrapolating across studies. It is reasonable to assume that classical
measurement error model (1.1) holds with the same measurement error
variance for both studies, which reduces to stating that the distribution
of W given (Z,X) is the same in the two studies. However, the distri-
bution of X appears to differ substantially in the two studies, with the
MRFIT study having smaller variance. Under these circumstances, while
the error model is probably transportable, a regression calibration model
formed from Framingham would not be transportable to MRFIT. The
problem is that, by Bayes’s theorem, the distribution of X given (Z,W)
depends on both the distribution of W given (Z,X) and the distribution
of X given Z, and the latter is not transportable.
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Figure 2.1 Comparison of % calories from fat using a food frequency question-

naire from two studies. Note how the distributions seem very different, calling

into question whether the distribution of true intake can be transported between

studies.

That this is not merely a theoretical exercise is illustrated in Figure
2.1, which shows the distribution of calories from fat (fat density) for two
study populations. In this figure, we plot the observed values W from
two studies: the validation arm of the Nurses’ Health Study (NHS) and a
study done by the American Cancer Society (ACS), both using the same
food frequency questionnaire (FFQ). What we see in this figure is that
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the observed fat density for the ACS study seems to have much more
variability than the data in the NHS. Assuming that the error properties
of the FFQ were the same in the two studies, it would clearly make no
sense to pretend that the distribution of the exact predictor X is the
same in the two studies, that is, the distribution of the exact predictor
is not transportable.

2.2.6 Semicontinuous Variables

Some variables—such as nutrient intakes of food groups, such as red
meat, or environmental exposures—have a positive probability of being
zero and otherwise have a positive continuous distribution. Such vari-
ables have been called semicontinuous by Schafer (1997). An example
is radiation exposure in the atomic bomb survivors study described in
Section 1.6.7. As mentioned in that section, Pierce, Stram, Vaeth, et al.
(1992) assume that W = 0 if and only if X = 0. In many studies, this
assumption is unlikely to hold and is, at best, a useful approximation.

An alternative model was used by Li, Shao, & Palta (2005). These
authors assume that there exists a latent continuous variable V such
that

X = max(0,V) and W = max(0,V + U)

where U is measurement error. When both X and W are positive, then
the usual classical measurement error model W = X + U holds. Notice
that it is possible for X to be zero while W is positive, or vice versa.

2.2.7 Misclassification of a Discrete Covariate

So far in this chapter, it has been assumed that the mismeasured co-
variate is continuously distributed. For discrete covariates, measurement
error means misclassification. A common situation is a binary covariate,
where X and W are both either 0 or 1, for example, the diagnoses of her-
pes simplex virus by the refined western blot and western blot tests dis-
cussed in Section 1.6.10. In such cases, the misclassification model can be
parameterized using the misclassification probabilities pr(W = 1|X = 0)
and pr(W = 0|X = 1); see Section 8.4.

2.3 Sources of Data

In order to perform a measurement error analysis, as seen in (2.1)-(2.2),
one needs information about either W given (X,Z) (classical measure-
ment error) or about X given (Z,W) (regression calibration). In this
section, we will discuss various data sources that allow estimation of
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the critical distributions. These data sources can be partitioned into two
main categories:

• Internal subsets of the primary data.

• External or independent studies.

Within each of these broad categories, there are three types of data, all
of which we assume to be available in a random subsample of the data
set in question:

• Validation data in which X is observable directly. This is the rela-
tively rare circumstance where a measurement error problem is also
a missing data problem.

• Replication data, in which replicates of W are available.

• Instrumental data, in which another variable T is observable in addi-
tion to W.

An internal validation data set is the ideal, because it can be used with
all known techniques, permits direct examination of the error structure,
and typically leads to much greater precision of estimation and inference.
We cannot express too forcefully that if it is possible to construct an in-
ternal validation data set, one should strive to do so. External validation
data can be used to assess any of the models (1.1)–(2.2) in the external
data, but one is always making an assumption when transporting such
models to the primary data.

Usually, one would make replicate measurements if there were good
reason to believe that the replicated mean is a better estimate of X

than a single observation, that is, the classical error model is the target.
Such data cannot be used to test whether W is unbiased for X, as in
the classical measurement error model (1.1), or biased, as in the general
measurement error model (2.1). However, if one is willing to assume
(1.1), then replication data can be used to estimate the variance of the
measurement error U.

Data sets sometimes contain a second measurement T, which may or
may not be unbiased for X, in addition to the primary measurement
W. If T is internal, then it need not be unbiased to be useful. In this
case, T is called an instrumental variable (IV) and can be used in an
instrumental variable analysis provided that T possesses certain other
statistical properties (Chapter 6). If T is external, then it is useful in
general only if it is unbiased for X. In this case, T can be used in a
regression calibration analysis (Chapter 4).

2.4 Is There an “Exact” Predictor? What Is Truth?

We have based our discussion on the existence of an exact predictor
X and measurement error models that provide information about this
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predictor. However, in practice, it is often the case that the term exact

or true needs to be carefully defined prior to discussion of error models.

In almost all cases, one has to take an operational definition for the
exact predictor. In the measurement error literature, the term gold stan-

dard is often used for the operationally defined exact predictor, though
sometimes this term is used for an exact predictor that cannot be op-
erationally defined. In the NHANES study, the operational definition is
the average saturated food intake over a year-long period as measured by

the average of 24-hour recall instruments. One can think of this as the
best measure of exposure that could possibly be determined in practice,
and even here it is extremely difficult to measure this quantity. Having
made this operational definition for X, we are in a position to under-
take an analysis, for clearly the observed measure W is unbiased for
X when measured on a randomly selected day. In this case, the mea-
surement error model (1.1) is reasonable. However, in order to ascertain
the distributional properties of the measurement error, one requires a
replication experiment. The simplest way to take replicates is to per-
form 24-hour recalls on a few consecutive days (see also Section 1.6.8),
but the problem here is that such replicates are probably not condition-
ally independent given the long-term average, and a variance component
model such as (1.3) would likely be required. After all, if one is on an
ice cream jag, several consecutive days of ice cream may show up in the
24-hour recall, even though it is rarely eaten.

This type of replication does not measure the true error, which is
highly influenced by intraindividual variation in diet. Hence, with repli-
cates on consecutive days, estimating the variance of the measurement
error by components-of-variance techniques will underestimate the mea-
surement error.

The same problem may occur in the urinary sodium chloride example
(Section 1.6.8), because the replicates were recorded on consecutive days.
Liu & Liang (1992) suggested that intraindividual variation is an impor-
tant component of variability, and the design is not ideal for measuring
this variation.

If one wants to estimate the measurement error variance consistently,
it is much simpler if replicates can be taken far enough apart in time
that the errors can reasonably be considered independent (see Chapter 4
for details). Otherwise, assumptions must be made about the form of the
correlation structure; see Wang, Carroll, & Liang (1996). In the CSFII
component of the NHANES study, measurements were taken at least
two months apart, but there was still some small correlation between
errors. In the Nurses’ Health Study (Section 1.6.2), the exact predictor
is the long-term average intake as measured by food records. Replicated
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food records were taken at four different points during the year, thus
properly accounting for intraindividual variation.

Using an operational definition for an “exact” predictor is often rea-
sonable and justifiable on the grounds that it is the best one could ever
possibly hope to accomplish. However, such definitions may be contro-
versial. For example, consider the breast cancer and fat controversy. One
way to determine whether changing one’s fat intake lowers the risk of
developing breast cancer is to do a clinical trial, where the treatment
group is actively encouraged to change their dietary behavior. Even this
is controversial, because noncompliance can occur in either the treat-
ment or the control arm. If instead one uses prospective data, as in
the NHANES study, along with an operational definition of long-term
intake, one should be aware that the results of a measurement error anal-
ysis could be invalid if true long-term intake and operational long-term
intake differ in subtle ways. Suppose that the operational definition of fat
and calories could be measured, and call these (FatO,CaloriesO), while
the actual long-term intake is (FatA,CaloriesA). If breast cancer risk is
associated with age and fat intake through the logistic regression model

Pr(Y = 1|FatA,CaloriesA,Age)

= H (β0 + β1Age + β2CaloriesA + β3FatA) ,

where here and throughout the book, H(x) = {1 + exp(−x)}−1 is the
logistic distribution function. Then the important parameter is β3, with
β3 > 0 corresponding to the conclusion that increased fat intake at a
given level of calories leads to increased cancer risk.

However, suppose that the observed fat and calories are actually biased
measures of the long-term average:

FatO = γ1FatA + γ2CaloriesA;

CaloriesO = γ3FatA + γ4CaloriesA.

Then a little algebra shows that the regression of disease on the opera-
tionally defined measures has a slope for operationally defined fat of

(γ4β3 − γ3β2) / (γ1γ4 − γ2γ3) .

Depending on the parameter configurations, this can take on a sign dif-
ferent from β3. For example, suppose that β3 = 0 and there really is no
fat effect. Using the operational definition, a measurement error analysis
would lead to a fat effect of −γ3β2/(γ1γ4 − γ2γ3), which may be nonzero.
Hence, in this instance, there really is no fat effect, but our operational
definition might lead us to find one.

In our experience, researchers in nutrition shy away from terms such
as true intake, because except for a few recovery biomarkers (protein
and energy), the operational definition is not truth. However, the op-
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erational definition, for example, the average of many repeated 24-hour
recalls, is generally clear to subject-matter experts and not particularly
controversial.

2.5 Differential and Nondifferential Error

It is important to make a distinction between differential and nondif-

ferential measurement error. Nondifferential measurement error occurs
when W contains no information about Y other than what is available
in X and Z. The technical definition is that measurement error is non-
differential if the distribution of Y given (X,Z,W) depends only on
(X,Z). In this case, W is said to be a surrogate. In other words, W is
a surrogate if it is conditionally independent of the response given the
true covariates; measurement error is differential otherwise.

For instance, consider the Framingham example of Section 1.6.6. The
predictor of major interest is long-term systolic blood pressure (X), but
we can only observe blood pressure on a single day (W). It seems plau-
sible that a single day’s blood pressure contributes essentially no infor-
mation over and above that given by true long-term blood pressure, and
hence that measurement error is nondifferential. The same remarks ap-
ply to the nutrition examples in Sections 1.6.1 and 1.6.2: Dietary intake
on a single day should not contribute information about overall health
that is not already present in long-term diet intake.

Many problems can plausibly be classified as having nondifferential
measurement error, especially when the true and observed covariates
occur at a fixed point in time and the response is measured at a later
time.

There are two exceptions to keep in mind. First, in case-control or
choice-based sampling studies, the response is obtained first and then
subsequent follow-up ascertains the covariates. In nutrition studies, this
ordering of measurement typically causes differential measurement error.
For instance, here the true predictor would be long-term diet before
diagnosis, but the nature of case-control studies is that reported diet
is obtainable only after diagnosis. A woman who develops breast cancer
may well change her diet, so the reported diet as measured after diagnosis
is clearly still correlated with cancer outcomes, even after taking into
account long-term diet before diagnosis.

A second setting for differential measurement error occurs when W is
not merely a mismeasured version of X, but is a separate variable acting
as a type of proxy for X.

For example, in an important paper with major implications for the
analysis of retrospective studies in the presence of missing data, Satten
& Kupper (1993) described an example of estimating the risk of coro-
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nary heart disease where X is an indicator of elevated LDL (low density
lipoprotein cholesterol level), taking the values 1 and 0 according as the
LDL does or does not exceed 160. For their value W they use total
cholesterol. In their particular data set, both X and W are available,
and it transpires that the relationship between W and Y is differential,
that is, there is still a relationship between the two even after accounting
for X. While the example is somewhat forced on our part, one should be
aware that problems in which W is not merely a mismeasured version
of X may well have differential measurement error.

It is also important to realize that the definition of a surrogate depends
on the other variables, Z, in the model. For example, consider a model in
which Z has two components, say Z = (Z1,Z2). Then it is possible that
W is a surrogate in the model containing both Z1 and Z2 but not in
the model containing only Z1. Buzas et al. (2004) pointed out that this
has implications when different models for the response are considered,
and they gave a simple example illustrating this phenomenon. We next
present a modified version of their algebraic example.

Suppose that X,Z1, ǫ1, ǫ2,U1 and U2 are mutually independent nor-
mal random variables with zero means. Define Z2 = X + ǫ1 + U1,
Y = β1 + βz1

Z1 + βz2
Z2 + βxX + ǫ2, and W = X + ǫ1 +U2. Because of

joint normality, it is straightforward to show that E(Y | Z1,Z2,X,W) =
E(Y | Z1,Z2,X) and consequently that W is a surrogate in the model
containing both Z1 and Z2. However,

E(Y | Z1,X) = β0 + βz1
Z1 + (βz2

+ βx)X,

E(Y | Z1,X,W) = E(Y | Z1,X) + βz2
E(ǫ1 | Z1,X,W). (2.4)

The last expectation in (2.4) is not equal to zero because W depends
on ǫ1. Thus W is not a surrogate in the model that contains only Z1

unless βz2
= 0. So the presence or absence of Z2 in the model determines

whether or not W is a surrogate. The driving feature of this example
is that the measurement error, W − X, is correlated with the covariate
Z2. Problems in which measurement error is correlated with error-free
predictors arise in practice and are amenable to the methods of regres-
sion calibration in Chapter 4 and instrumental variable estimation in
Chapter 6.

The reason why nondifferential measurement error is important is
that, as we will show in subsequent chapters, one can typically estimate
parameters in models for responses given true covariates, even when the
true covariates (X) are not observable. With differential measurement
error, this is not the case: Outside of a few special situations, one must
observe the true covariate on some study subjects. Most of this book
focuses on nondifferential measurement error models.
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2.5.0.1 A Technical Derivation

Here is a little technical argument illustrating why nondifferential mea-
surement error is so useful. With nondifferential measurement error, the
relationship between Y and W is greatly simplified relative to the case of
differential measurement error. In simple linear regression, for example,
it means that the regression in the observed data is a linear regression
of Y on E(X|W), because

E(Y|W) = E {E(Y|X,W)|W}

= E {E(Y|X)|W}

= E(β0 + βxX|W)

= β0 + βxE(X|W).

The assumption of nondifferential measurement error is used to justify
the second equality above. This argument is the basis of the regression
calibration method; see Chapter 4.

2.6 Prediction

In Chapter 3 we discuss the biases caused by measurement error for
estimating regression parameters, and the effects on hypothesis testing
are described in Chapter 10. Much of the rest of the book is taken up
with methods for removing the biases caused by measurement error, with
brief descriptions of inference at each step.

Prediction of a response is, however, another matter. Generally, there

is no need for the modeling of measurement error to play a role in the

prediction problem. If a predictor X is measured with error and one
wants to predict a response based on the error-prone version W of X,
then except for a special case discussed below, it rarely makes any sense
to worry about measurement error. The reason for this is quite simple:
W is error-free as a measurement of itself ! If one has an original set
of data (Y,Z,W), one can fit a convenient model to Y as a function
of (Z,W). Predicting Y from (Z,W) is merely a matter of using this
model for prediction, that is, substituting known values of W and Z

into the regression model for Y on (Z,W); the prediction errors from
this model will minimize the expected squared prediction errors in the
class of all linear unbiased predictors. Predictions with (Z,W) naively
substituted for (Z,X) in the regression of Y on (Z,X) will be biased
and can have large prediction errors.

Another potential prediction method is to use the methodology dis-
cussed throughout this book to estimate the regression of Y on (Z,X)
and then to substitute into this model {Z, E(X|W)}. Though this seems
like a nice idea, it turns out to be equivalent to simply ignoring the mea-
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surement error, that is, to substituting (Z,W) into the fitted model for
the regression of Y on (Z,W).

The one situation requiring that we correctly model the measure-
ment error occurs when we develop a prediction model using data from
one population but we wish to predict in another population. A naive
prediction model that ignores measurement error may not be trans-
portable. In more detail, if Y = β0 + β1X + ǫ in both populations,
then Y = β∗

0
+ λβxW + ǫ∗, where β∗

0
and λ = σ2

x/(σ2

x + σ2

u) may differ
between populations if either σ2

x or σ2

u does. Thus, the regression of Y

on W may be different for the two populations.

Bibliographic Notes

An interesting discussion about the issues of Berkson and classical mod-
eling is given throughout Uncertainties in Radiation Dosimetry and

Their Impact on Dose response Analysis, E. Ron and F. O. Hoffman,
editors, National Cancer Institute Press, 1999. This book, which arose
from a conference on radiation epidemiology, has papers or discussions
by many leading statisticians. Although we have stated (Section 2.2.2)
that “Compared to complex undertakings such as rocket science or au-
tomotive repair, determining whether data follow the classical additive
measurement error model (1.1) or the standard Berkson error model
(1.2) is generally simple in practice,” the conference discussions make it
clear that radiation, where the errors are a complex mixture of classical
and Berkson errors, is a case where it is difficult to sort through what
models to use.
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CHAPTER 3

LINEAR REGRESSION AND

ATTENUATION

3.1 Introduction

This chapter summarizes some of the known results about the effects of
measurement error in linear regression and describes some of the sta-
tistical methods used to correct for those effects. Our discussion of the
linear model is intended only to set the stage for our main topic, nonlin-
ear measurement error models, and is far from complete. A comprehen-
sive account of linear measurement error models can be found in Fuller
(1987).

3.2 Bias Caused by Measurement Error

Many textbooks contain a brief description of measurement error in lin-
ear regression, usually focusing on simple linear regression and arriving
at the conclusion that the effect of measurement error is to bias the
slope estimate in the direction of zero. Bias of this nature is commonly
referred to as attenuation or attenuation to the null.

In fact, though, even this simple conclusion must be qualified, because
it depends on the relationship between the measurement, W, and the
true predictor, X, and possibly other variables in the regression model
as well. In particular, the effect of measurement error depends on the
model under consideration and on the joint distribution of the measure-
ment error and the other variables. In linear regression, the effects of
measurement error vary depending on (i) the regression model, be it
simple or multiple regression; (ii) whether or not the predictor measured
with error is univariate or multivariate; and (iii) the presence of bias
in the measurement. The effects can range from the simple attenuation
described above to situations where (a) real effects are hidden; (b) ob-
served data exhibit relationships that are not present in the error-free
data; and (c) even the signs (±) of estimated coefficients are reversed
relative to the case with no measurement error.

The key point is that the measurement error distribution determines
the effects of measurement error, and thus appropriate methods for cor-
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Figure 3.1 Illustration of additive measurement error model. The left panel dis-

plays the true (Y,X) data, while the right panel displays the observed (Y,W)
data. Note how the true X data plot has less variability and a more obvious

nonzero effect.

recting for the effects of measurement error depend on the measurement
error distribution.

3.2.1 Simple Linear Regression with Additive Error

The basic effects of classical measurement error on simple linear regres-
sion can be seen in Figures 3.1 and 3.2. These effects are the double
whammy of measurement error described in Section 1.1, namely loss
of power when testing and bias in parameter estimation. The third
whammy, masking of features, occurs only in nonlinear models, since
obviously a straight line has no features to mask.

The left panel of Figure 3.1 displays error-free data (Y,X) generated
from the linear regression model Y = β0 + βxX + ǫ, where X has mean
µx = 0 and variance σ2

x = 1, the intercept is β0 = 0, the slope is
βx = 1, and the error about the regression line ǫ is independent of X,
has mean zero and variance σ2

ǫ = 0.25. The right panel displays the error-
contaminated data (Y,W) where W = X + U, and U is independent
of X, has mean zero, and variance σ2

u = 1. This is the classical additive
measurement error model; see Section 1.2. Note how the (Y,X) data are
more tightly grouped around a well delineated line, while the error-prone
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Figure 3.2 Illustration of additive measurement error model. Here we combine

the data in Figure 3.1 and add in least squares fitted lines: The solid line and

solid circles are for the true X data, while the dashed line and empty circles

are for the observed, error-prone W data. Note how the slope to the true X

data is steeper, and the variability about the line is much smaller.

(Y,W) data have much more variability about a much less obvious line.
This is the loss of power through additional variability.

In Figure 3.2 we combine the data sets: The solid circles and solid line
are the (Y,X) data and least squares fit, while the empty circles and
dashed line are the (Y,W) data and their least squares fit. Here we see
the bias in the least squares line due to classical measurement error.

We can understand the phenomena in Figures 3.1–3.2 through some
theoretical calculations. For example, it is well known that an ordinary
least squares regression of Y on W is a consistent estimate not of βx,
but instead of βx∗ = λβx, where

λ =
σ2

x

σ2
x + σ2

u

< 1. (3.1)

Thus ordinary least squares regression of Y on W produces an estimator
that is attenuated to zero. The attenuating factor, λ, is called the reli-
ability ratio (Fuller, 1987). This attenuation is particularly pronounced
in Figures 3.1–3.2.

One would expect that because W is an error-prone predictor, it has
a weaker relationship with the response than does X, as seen in Figure
3.1. This can be seen both by the attenuation and also by the fact that
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the residual variance of this regression of Y on W is

var(Y|W) = σ2
ǫ +

β2
xσ2

uσ2
x

σ2
x + σ2

u

= σ2
ǫ + λβ2

xσ2
u. (3.2)

This facet of the problem is often ignored, but it is important. Measure-
ment error causes a double whammy: Not only is the slope attenuated,
but the data are more noisy, with an increased error about the line.

It is not surprising that measurement error, as another source of error,
increases variability about the line. Indeed, we can substitute X = W−
U into the regression model to obtain the model Y = β0 + βxW +
(ǫ − βxU), with error (ǫ − βxU) that has variance σ2

ǫ + β2
xσ2

u > σ2
ǫ and

covariate W. What may be surprising is that this additional error causes
bias. However, the error and the covariate have a common component U,
which causes them to be correlated. The correlation between the error
and covariate is the source of the bias.

In light of the effects of classical measurement error discussed above,
one might expect that the least squares estimate of slope calculated from
measured (Y,W) is more variable than the slope estimator calculated
from the true (Y,X) data. This is not always the case. Buzas, Stefanski,
and Tosteson (2004) pointed out that the naive estimate of slope can be
less variable than the true data estimator. In fact, for the classical error
model, the variance of the naive estimator is less than the variance of
the true-data estimator asymptotically if and only if β2

xσ2
x/(σ2

x + σ2
u) <

σ2
ǫ /σ2

x, which is possible when σ2
ǫ is large, or σ2

u is large, or β2
x is small. So,

relative to the case of no measurement error, classical errors can result
in more precise estimates of the wrong, that is, biased, quantity. This
phenomenon explains, in part, why naive-analysis confidence intervals
often have disastrous coverage probabilities; not only are they centered
on the wrong value, but they sometimes have shorter length than would
be obtained with the true data. This phenomenon cannot occur with
Berkson errors, for which the variance of the naive estimator is never
less than the variance of the true-data estimator asymptotically.

3.2.2 Regression Calibration: Classical Error as Berkson Error

There is another way of looking at the bias that will give further insight,
namely that by a simple mapping, classical measurement error can be
made into a Berkson model. Define Wblp = (1 − λ)µx + λW, the best
linear predictor of X based on W. Then, by (A.8) of Appendix A,

X = Wblp + U∗, (3.3)
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where U∗ is uncorrelated with W, and varU∗ = λσ2
u. Compare (3.3)

with the formal definition of a Berkson error model (1.2) in Section 1.4.
Effectively, we have a formal transformation of the classical error model
into a Berkson error model, where the observed predictor is now the best
linear predictor of X from W. The calculation leading to (3.3) is at the
heart of the regression calibration method of Chapter 4.

Equation (3.3) has important consequences in fitting the linear re-
gression model and correction for the bias due to classical measurement
error: Little (generally nothing) can be done to eliminate the loss of
power. Substituting (3.3) for X into the regression model, we have

Y = β0 + βx(1 − λ)µx + βxλW + (ǫ + βxU
∗)

= β0 + βxWblp + ǫ + βxU
∗. (3.4)

In (3.4) the error ǫ + βxU
∗ is uncorrelated with the regressor Wblp

and has variance σ2
ǫ + λβ2

xσ2
u in agreement with (3.2). Moreover, the

regression of Y on W has intercept β0 + βx(1 − λ)µx and slope λβx,
which explains the attenuation of the slope and the additive bias of the
intercept.

However, these considerations show a way to eliminate bias. By (3.4),
we have Y = β0 + βxWblp + ǫ + βxU

∗, so if we replace the unknown
X by Wblp, which is known since it depends only on W, then we have
a regression model with intercept equal to β0, slope equal to βx, and
error uncorrelated with the regressor. Therefore, regressing Y on Wblp

gives unbiased estimates of β0 and βx. In fact, regressing Y on Wblp

is equivalent to the method-of-moments correction for attenuation dis-
cussed in Section 3.4.1. Replacing X with its predictor Wblp is the key
idea behind the technique of regression calibration discussed in Chapter
4. Of course, Wblp is “known” only if we know λ and µx. In practice,
these parameters need to be estimated.

3.2.3 Simple Linear Regression with Berkson Error

Suppose that we have linear regression, Yi = β0 + βxXi + ǫi, with
unbiased Berkson error, that is, Xi = Wi + Ui. Then E(Xi|Wi) = Wi

so that E(Yi|Wi) = β0 + βxWi. As a consequence, the naive estimator
that regresses Yi on Wi is unbiased for β0 and βx. This unbiasedness
can be seen in Figure 3.3 which illustrates linear regression with Berkson
errors. In the figure, (Yi,Xi) and (Yi,Wi) are plotted, as well as fits
to both (Yi,Xi) and (Yi,Wi). The Wi are equally spaced on [−1, 3],
Xi = Wi + Ui, Ui = Normal(0, 1), ǫi = Normal(0, 0.5), n = 50, β0 = 1,
and βx = 1.
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Figure 3.3 Simple linear regression with unbiased Berkson errors. Theory

shows that the fit of Yi to Wi is unbiased for the regression of Yi on Xi,

and the two fits are, in fact, similar.

3.2.4 Simple Linear Regression, More Complex Error Structure

Despite admonitions of Fuller (1987) and others to the contrary, it is
a common perception that the effect of measurement error is always to
attenuate the line. In fact, attenuation depends critically on the classi-
cal additive measurement error model. In this section, we discuss two
deviations from the classical additive error model that do not lead to
attenuation.

We continue with the simple linear regression model, but now we make
the error structure more complex in two ways. First, we will no longer
insist that W be unbiased for X. The intent of studying this depar-
ture from the classical additive error model is to study what happens
when one pretends that one has an unbiased surrogate, but in fact the
surrogate is biased.

A second departure from the additive model is to allow the errors
in the linear regression model to be correlated with the errors in the
predictors. This is differential measurement error; see Section 2.5. One
example where this problem arises naturally is in dietary calibration
studies (Freedman et al., 1991). In a typical dietary calibration study,
one is interested in the relationship between a self-administered food
frequency questionnaire (FFQ, the value of Y) and usual (or long-term)
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dietary intake (the value of X) as measures of, for example, the per-
centage of calories from fat in a person’s diet. FFQs are thought to be
biased for usual intake, and in a calibration study researchers will obtain
a second measure (the value of W), typically either from a food diary or
from an interview in which the study subject reports his or her diet in
the previous 24 hours. In this context, it is often assumed that the diary
or recall is unbiased for usual intake. In principle, then, we have simple
linear regression with an additive measurement error model, but in prac-
tice a complication can arise. It is often the case that the FFQ and the
diary or recall are given very nearly contemporaneously in time, as in
the Women’s Health Trial Vanguard Study (Henderson et al., 1990). In
this case, it makes little sense to pretend that the error in the relation-
ship between the FFQ (Y) and usual intake (X) is uncorrelated with
the error in the relationship between a diary or recall (W) and usual
intake. This correlation has been demonstrated (Freedman, Carroll, and
Wax, 1991), and in this section we will discuss its effects.

To express the possibility of bias in W, we write the model as W =
γ0 +γ1X+U, where U is independent of X and has mean zero and vari-
ance σ2

u. To express the possibility of correlated errors, we will write the
correlation between ǫ and U as ρǫu. The classical additive measurement
error model sets γ0 = 0, ρǫu = 0, and γ1 = 1, so that W = X + U.

If (X, ǫ,U) are jointly normally distributed, then the regression of Y

on W is linear with intercept

β0∗ = β0 + βxµx − βx∗(γ0 + γ1µx),

and slope

βx∗ =
βxγ1σ

2
x + ρǫu

√
σ2

ǫ σ2
u

γ2
1σ2

x + σ2
u

. (3.5)

Examination of (3.5), shows that if W is biased (γ1 6= 1) or if there
is significant correlation between the measurement error and the error
about the true line (ρǫu 6= 0), it is possible for |βx∗| > |βx|, an effect
exactly the opposite of attenuation. Thus, correction for bias induced by
measurement error clearly depends on the nature, as well as the extent,
of the measurement error.

For purposes of completeness, we note that the residual variance of
the linear regression of Y on W is

var(Y|W) = σ2
ǫ +

β2
xσ2

uσ2
x − ρ2

ǫuσ2
ǫ σ2

u − 2βxγ1σ
2
xρǫu

√
σ2

ǫ σ2
u

γ2
1σ2

x + σ2
u

.
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3.2.4.1 Diagnostic for Correlation of Errors in Regression and
Measurement Errors

In some cases, there is a simple graphical diagnostic to check whether
the errors in the regression are correlated with the classical measurement
errors. The methods are related to the graphical diagnostics used to
detect whether the additive error model is reasonable; see Section 1.7.
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Figure 3.4 Women’s Health Trial Vanguard Study Data. This is a plot for %

calories from fat of the differences of food records and the differences of food

frequency questionnaires. With replicated Y and W, this plot is a diagnostic

for whether errors in a regression are correlated with the classical measurement

errors.

Specifically, suppose that the error-prone instrument is replicated, so
that we observe Wij = γ0 + γ1Xi + Uij . The difference Wi1 − Wi2 =
Ui1 − Ui2 is “pure” error, unrelated to Xi. Suppose further that the
response is replicated, so that we observe Yij = β0 + βxXi + ri + ǫij ,
where ri is person-specific bias or equation error; see Section 1.5. Then
differences Yi1 − Yi2 = ǫi1 − ǫi2 are the model errors. A plot of the
two sets of differences will help reveal whether the regression errors and
the measurement errors are correlated. This is illustrated in Figure 3.4,
where there appears to be a very strong correlation between the model
errors and the measurement errors. A formal test can be performed by
regressing one set of differences on the other and testing the null hypoth-
esis that the slope is zero. This plotting method and the test assume that
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the covariances of errors separated in time are small. This assumption
seems reasonable if the time separation is at all large.

3.2.5 Summary of Simple Linear Regression

Before continuing with a discussion of the effects of measurement er-
ror in multiple linear regression, we summarize the primary effects of
measurement error in simple linear regression for various types of error
models that we study throughout the book. Table 3.1 displays the im-
portant error-model parameters and linear regression model parameters
for the case that (Y,X,W) are multivariate normal for a hierarchy of
error model types. In all cases, the underlying regression model is

Y = β0 + βxX + ǫ, (3.6)

where X and ǫ are independent and ǫ has mean zero and variance σ2.

3.2.5.1 Differential Error Measurement

The least restrictive type of error model is one in which W is not unbi-
ased and the error is differential. This is also the most troublesome type
of error in the sense that correcting for bias requires the most additional
information or data. The first row in Table 3.1 shows how the parameters
in the regression of Y on W depend on the true-data regression model
parameters, β0, βx, σ2, in this case. Note that to recover βx from the
regression of Y on W one would have to know or be able to estimate the
covariances, σxw and σǫw. Also, with a differential-error measurement it
is possible for the residual variance in the regression of Y on W to be
less than σ2.

3.2.5.2 Surrogate Measurement

As defined in Section, 2.5, a surrogate measurement is one for which the
conditional distribution of Y given (X,Z,W) depends only on (X,Z).
In this case, W is also said to be a surrogate. The second row of Table
3.1 shows how the parameters in the regression of Y on W depend on
β0, βx, σ2 when W is a surrogate, with no additional assumptions about
the type of error model. With a surrogate, it is apparent that knowledge
of or estimability of σxw is enough to recover βx from the regression of
Y on W. The residual variance in the regression of Y on W is always
greater than σ2 when W is a surrogate. In this sense, a surrogate is
always less informative than X.
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Error ρ2
xw Intercept Slope Residual

Model Variance

Differential ρ2
xw β0 + βxµx −

βxσxw+σǫw

σ2
w

µw βx

(

σxw

σ2
w

)

+ σǫw

σ2
w

σ2
ǫ + β2

xσ
2
x −

(σxwβx+σǫw)2

σ2
w

Surrogate ρ2
xw β0 + βxµx −

βxσxw

σ2
w

µw βx

(

σxw

σ2
w

)

σ2
ǫ + β2

xσ
2
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xw)
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x

σ2
x+σ2

uc

β0 + βxµx (1 − ρ2
xw) βx

(

σ2
x
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)

σ2
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2
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σ4

L
(σ2

L
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)−1

(σ2

L
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)

β0 + βxµx
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L
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L
+σ2
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)

βx

(

σ2

L

σ2

L
+σ2
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)

σ2
ǫ + β2

xσ
2
x(1 − ρ2

xw)

Berkson
σ2

x−σ2
ub

σ2
x

β0 βx σ2
ǫ + β2

xσ
2
x(1 − ρ2

xw)

No error 1 β0 βx σ2
ǫ

Table 3.1: Table entries are error model squared correlations, and intercepts, slopes and residual variances of the
linear model relating Y to W when (Y,X,W) is multivariate normal for the cases W is: a general differential
measurement, a general surrogate, an unbiased classical-error measurement, an unbiased classical/Berkson mixture
error measurement, an unbiased Berkson measurement, and the case of no error (W = X). Classical error variance,
σ2

uc
; Berkson error variance, σ2

ub
; B/C mixture error model, X = L + Ub, W = L + Uc, Y = β0 + βxX + ǫ.

5
0

3.2.5.3 Classical Error Model

In the classical error model, W is a surrogate and E(W | X) = X, and
we can write W = X + Uc where Uc is a measurement error. Here we
use the subscript c to emphasize that the error is classical and to avoid
confusion with the two error models discussed below. We have already
discussed this model in detail elsewhere, for example, in Sections 1.2 and
2.2. It is apparent from the third row of Table 3.1 that if the reliability
ratio, λ = σ2

x/(σ2
x + σ2

uc
) is known or can be estimated, then βx can be

recovered from the regression of Y on W.

3.2.5.4 Berkson Error Model

In the Berkson error model, W is a surrogate and E(X | W) = W,
and we can write X = W + Ub where Ub is a Berkson error. This
model has been discussed in detail elsewhere, for example, Sections 1.4
and 2.2. It is apparent from the fifth row of Table 3.1 that the regression
parameters are not biased by Berkson measurement error. However, note
that the residual variance in the regression of Y on W is greater than
σ2, a consequence of the fact that for this model W is a surrogate. Both
the unbiasedness and increased residual variation are well illustrated in
Figure 3.3.

3.2.5.5 Berkson/Classical Mixture Error Model

We now consider an error model that was encountered previously (see
Section 1.8.2 ) on the log-scale, and is discussed again at length in Section
8.6. Here we consider the additive version. The defining characteristic is
that the error model contains both classical and Berkson components.
Specifically, it is assumed that

X = L + Ub, (3.7)

W = L + Uc. (3.8)

When Ub = 0, X = L and the classical error model is obtained, whereas
the Berkson error model results when Uc = 0, since then W = L. We
denote the variances of the error terms by σ2

uc
and σ2

ub
. This error model

has features of both the classical and Berkson error models. Note that
there is bias in the regression parameters when σ2

uc
> 0, as in the classical

model. The inflation in the residual variance has the same form as the
other nondifferential error models in terms of ρ2

xw, but ρ2
xw depends on

both error variances for this model.
The error models in Table 3.1 are arranged from most to least prob-

lematic in terms of the negative effects of measurement error. Although
we discussed the Berkson/classical mixture error model last, in the hi-

51



erarchy of error models its place is between the classical and Berkson
error models.

3.3 Multiple and Orthogonal Regression

3.3.1 Multiple Regression: Single Covariate Measured with Error

In multiple linear regression, the effects of measurement error are more
complicated, even for the classical additive error model.

We now consider the case where X is scalar, but there are additional
covariates Z measured without error. The linear model is now

Y = β0 + βxX + βt
zZ + ǫ, (3.9)

where Z and βz are column vectors, and βt
z is a row vector. In Appendix

B.2 it is shown that if W is unbiased for X, and the measurement error U

is independent of X, Z and ǫ, then the least squares regression estimator
of the coefficient of W consistently estimates λ1βx, where

λ1 =
σ2

x|z

σ2
w|z

=
σ2

x|z

σ2
x|z + σ2

u

, (3.10)

and σ2
w|z and σ2

x|z are the residual variances of the regressions of W

on Z and X on Z, respectively. Note that λ1 is equal to the simple
linear regression attenuation, λ = σ2

x/(σ2
x +σ2

u), only when X and Z are
uncorrelated. Otherwise, σ2

x|z < σ2
x and λ1 < λ, showing that collinearity

increases attenuation.
The problem of measurement error–induced bias is not restricted to

the regression coefficient of X. The coefficient of Z is also biased in
general, unless Z is independent of X (Carroll, Gallo, and Gleser, 1985;
Gleser, Carroll, and Gallo, 1987). In Section B.2 it is shown that for the
model (3.9), the naive ordinary least squares estimates not βz but rather

βz∗ = βz + βx(1 − λ1)Γz, (3.11)

where Γt
z is the coefficient of Z in the regression of X on Z, that is,

E(X | Z) = Γ0 + Γt
zZ.

This result has important consequences when interest centers on the
effects of covariates measured without error. Carroll et al. (1985) and
Carroll (1989) showed that in the two-group analysis of covariance where
Z is a treatment assignment variable, naive linear regression produces a
consistent estimate of the treatment effect only if the design is balanced,
that is, X has the same mean in both groups and is independent of
treatment. With considerable imbalance, the naive analysis may lead to
the conclusions that (i) there is a treatment effect when none actually
exists; and (ii) the effects are negative when they are actually positive,
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Figure 3.5 Illustration of the effects of measurement error in an unbalanced

analysis of covariance. The left panel shows the actual (Y,X) fitted functions,

which are the same, indicating no treatment effect. The density function of X

in the two groups are very different, however, as can be seen in the schematic

density functions of X at the bottom. The right panel shows what happens when

there is measurement error in the continuous covariate: Now the observed data

suggest a large treatment effect.

or vice versa. Figure 3.5 illustrates this process schematically. In the left
panel, we show linear regression fits in the analysis of covariance model
when there is no effect of treatment, that is, the two lines are the same.
At the bottom of this panel, we draw schematic density functions for X in
the two groups: The solid lines are the treatment group with smaller X.
The effect of measurement error in this problem is attenuation around
the mean in each group, leading to the right panel, where the linear
regression fits to the observed W are given. Now note that the lines are
not identical, indicating that we would observe a treatment effect, even
though it does not exist.

3.3.2 Multiple Covariates Measured with Error

Now suppose that there are covariates Z measured without error, that
W is unbiased for X, which may consist of multiple predictors, and that
the linear regression model is Y = β0 + βt

xX + βt
zZ + ǫ. If we write Σab

to be the covariance matrix between random variables A and B, then
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naive ordinary linear regression consistently estimates not (βx, βz) but
rather

(
βx∗

βz∗

)
=

(
Σxx + Σuu Σxz

Σzx Σzz

)−1

{(
Σxy

Σzy

)
+

(
Σuǫ

0

)}
(3.12)

=

(
Σxx + Σuu Σxz

Σzx Σzz

)−1

{(
Σxx Σxz

Σzx Σzz

) (
βx

βz

)
+

(
Σuǫ

0

)}
.
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Figure 3.6 Illustration of the effects of correlated measurement error with two

variables measured with error. The true variables are actually uncorrelated,

while the errors are correlated, with correlations ranging from −0.9 to 0.9.
Displayed is a plot of what least squares estimates against the correlation of

the measurement errors. The true value of the parameter of interest is −0.2.

Thus, ordinary linear regression is biased. In Section 3.4, we take up
the issue of bias correction. However, before doing so, it is worth taking
a minute to explore the bias result (3.12). Consider a case of a regression
on two error prone covariates, where the coefficient βx in the regression of
Y on X is (1.0,−0.2)t, and where the components of X are independent
so that Σxx is the identity matrix. Let the variance of the measurement
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errors U both = 1.0, and let their correlation ρ vary from −0.9 to 0.9.
In Figure 3.6 we graph what least squares ignoring measurement error
is really estimating in the second component (−0.2) of βx as ρ varies.
When the correlation between the measurement error is large but nega-
tive, least squares actually suggests that the coefficient is positive when
it really is negative. Equally surprising, if the correlation between the
measurement errors is large and positive, least squares actually suggests
a more negative effect than actually exists.

3.4 Correcting for Bias

As we have just seen, the ordinary least squares estimator is typically
biased under measurement error, and the direction and magnitude of
the bias depends on the regression model, the measurement error distri-
bution, and the correlation between the true predictor variables. In this
section, we describe two common methods for eliminating bias.

3.4.1 Method of Moments

In simple linear regression with the classical additive error model, we
have seen in (3.1) that ordinary least squares is an estimate of λβx,
where λ is the reliability ratio. If the reliability ratio were known, then
one could obtain an unbiased estimate of βx simply by dividing the
ordinary least squares slope β̂x∗ by the reliability ratio.

Of course, the reliability ratio is rarely known in practice, and one has
to estimate it. If σ̂2

u is an estimate of the measurement error variance (this
is discussed in Section 4.4), and if σ̂2

w is the sample variance of the Ws,

then a consistent estimate of the reliability ratio is λ̂ = (σ̂2
w − σ̂2

u)/σ̂2
w.

The resulting estimate is β̂x∗/λ̂.

In small samples, the sampling distribution of β̂x∗/λ̂ is highly skewed,
and in such cases a modified version of the method-of-moments es-
timator is recommended (Fuller, 1987; Section 2.5.1). Fuller’s modifi-
cation depends upon a tuning parameter α. Fuller does not give ex-
plicit advice about choosing α, but in his simulations α = 2 produced
more accurate estimates than the unmodified estimator. As an exam-
ple, in Figure 3.7, in the top panel, we plot the histogram of the cor-
rected estimate when n = 20, X is standard normal, the reliability ratio
= 0.5, and the error about the line in the regression model is 0.25:
The skewness is clear. In the bottom panel, we plot the histogram of
Fuller’s corrected estimator: It is slightly biased downwards, but very
much more symmetric. In this figure, Fuller’s method was defined as fol-
lows. Let σ̂yw and σ̂2

y be the sample covariance between Y and W and
the sample variance of Y, respectively. Define κ̂ = (σ̂2

w − σ̂2
yw/σ̂2

y)/σ̂2
u.
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Figure 3.7 Illustration of the small-sample distribution of the method-of-

moments estimator of the slope in simple linear regression when n = 20 and

the reliability ratio λ = 0.5. The top panel is the usual method-of-moments

estimate, while the bottom panel is Fuller’s correction to it.

Then define σ̂2
x = σ̂2

w − σ̂2
u if κ̂ ≥ 1 + (n − 1)−1, while otherwise

σ̂2
x = σ̂2

w − σ̂2
u{κ̂ − (n − 1)−1}. Then Fuller’s corrected estimate with

his α = 2 is given as (β̂x∗σ̂
2
w)/{σ̂2

x + 2σ̂2
u/(n − 1)}.

The algorithm described above is called the method-of-moments esti-
mator. The terminology is apt, because ordinary least squares and the
reliability ratio depend only on moments of the observed data.

The method-of-moments estimator can be constructed for the general
linear model, not just for simple linear regression. Suppose that W is
unbiased for X, and consider the general linear regression model with
Y = β0 + βt

xX + βt
zZ + ǫ.

The ordinary least squares estimator is biased even in large samples
because it estimates (3.12). When Σuu and Σuǫ are known or can be
estimated, (3.12) can be used to construct a simple method-of-moments
estimator that is commonly used to correct for the bias. Let Sab be the
sample covariance between random variables A and B. The method-of-
moments estimator that corrects for the bias in the case that Σuu and
Σuǫ are known is

(
Sww − Σuu Swz

Szw Szz

)−1 (
Swy − Σuǫ

Szy

)
, (3.13)
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In the case that Σuu and Σuǫ are estimated, the estimates replace the
known values in (3.13). It is often reasonable to assume that Σuǫ = 0,
in which case (3.13) simplifies accordingly.

In the event that W is biased for X, that is, W = γ0 +γxX+U, that
is, the error calibration model, the method-of-moments estimator can
still be used, provided estimates of (γ0, γx) are available. The strategy
is to calculate the estimators above using the error-calibrated variate
W∗ = γ̂−1

x (W − γ̂0).

3.4.2 Orthogonal Regression

Another well publicized method for linear regression in the presence
of measurement error is orthogonal regression; see Fuller (1987, Section
1.3.3). This is sometimes known as the linear statistical relationship (Tan
and Iglewicz, 1999) or the linear functional relationship. However, for
reasons given below, we are skeptical about the general utility of orthog-
onal regression, in large part because it is so easily misused. Although
it is not fundamental to understanding later material on nonlinear mod-
els, we take the opportunity to discuss orthogonal regression at length
here in order to emphasize the potential pitfalls associated with it. The
work appeared as Carroll and Ruppert (1996), but the message is worth
repeating. This section can be skipped by those who are interested only
in estimation for nonlinear models or who plan never to use orthogonal
regression.

Let Y = β0 + βxX + ǫ and W = X + U, where ǫ and U are uncorre-
lated. Whereas the method-of-moments estimator (Section 3.4) requires
knowledge or estimability of the measurement error variance σ2

u, orthog-
onal regression requires the same for the ratio η = σ2

ǫ /σ2
u.

The orthogonal regression estimator minimizes the orthogonal dis-
tance of (Y,W) to the line β0+βxX, weighted by η, that is, it minimizes

n∑

i=1

{
(Yi − β0 − βxxi)

2
+ η (Wi − xi)

2
}

(3.14)

in the unknown parameters (β0, βx, x1, . . . , xn).
In fact, (3.14) is the sum of squared orthogonal distances between the

points (Yi,Wi)
n
1 and the line y = β0 +βxx, only in the special case that

η = 1. However, the term orthogonal regression is used to describe the
method regardless of the value of η < ∞.

The orthogonal regression estimator is the functional maximum like-
lihood estimator (Sections 2.1 and 7.1) assuming that (X1, . . . , Xn) are
unknown fixed constants, and that the errors (ǫ,U) are independent and
normally distributed.

Orthogonal regression has the appearance of greater applicability than
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Wi Yi1 Yi2

−1.8007 −0.5558 −0.9089
−0.7717 0.2076 0.6499
−0.4287 −1.7365 −1.8542
−0.0857 −0.9018 0.2040

0.2572 −0.2312 −0.3097
0.6002 0.2967 0.5072
0.9432 0.5928 1.5381
1.2862 1.2420 1.2599

Table 3.2 Orthogonal regression example with replicated response.

method-of-moments estimation in that only the ratio, η, of the error
variances need be known or estimated. However, it is our experience that
in the majority of problems η cannot be specified or estimated correctly,
and use of orthogonal regression with an improperly specified value of η
often results in an unacceptably large overcorrection for attenuation due
to measurement error.

We illustrate the problem with some data from a consulting problem
(Table 3.2). The data include two measurements of a response variable,
Yi1 and Yi2, and one predictor variable with true value Xi, i = 1, . . . , 8.
The data are proprietary and we cannot disclose the nature of the appli-
cation. Accordingly, all of the variables have been standardized to have
sample means and variances 0 and 1, respectively.

We take as the response variable to be used in the regression analysis,
Yi = (Yi1 + Yi2)/2, the average of the two response measurements.

Using an independent experiment, it had been estimated that σ2
u ≈

0.0424, also after standardization. Because the sample standard devia-
tion of W is 1.0, measurement error induces very little bias here. The
estimated reliability ratio is λ̂ = 1 − 0.0424 ≈ 0.96, and so attenua-
tion is only about 4%. The ordinary least squares estimated slope from
regressing the average of the responses on W is 0.65, while the method-
of-moments slope estimate is λ̂−10.65 ≈ 0.68.

In a first analysis of these data, our client thought that orthogonal
regression was an appropriate method for these data. A components-of-
variance analysis resulted in the estimate 0.0683 for the response mea-
surement error variance. If η is estimated by η̂ = 0.0683/0.0424 ≈ 1.6118,
then the resulting orthogonal regression slope estimate is 0.88.
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The difference in these two estimates, |0.88 − 0.68|, is larger than
would be expected from random variation alone. Clearly, something is
amiss. The method-of-moments correction for attenuation is only λ̂−1 ≈
1.04, whereas,orthogonal regression in effect, produces a correction for
attenuation of approximately 1.35 ≈ 0.88/0.65.

The problem lies in the nature of the regression model error ǫ, which
is typically the sum of two components: (i) ǫM , the measurement error
in determination of the response; and (ii) ǫL, the equation error, that
is, the variation about the regression line of the true response in the
absence of measurement error. See Section 1.5 for another example of
equation error, which in nutrition is called person-specific bias.

If we have replicated measurements, Yij , of the true response, then
Yij = β0 + βxXi + ǫL,i + ǫM,ij , and of course their average is Yi· =
β0 + βxXi + ǫL,i + ǫM,i·. Here and throughout the book, a subscript
“dot” and overbar means averaging. For example, with k replicates,

Yi· = k−1

k∑

j=1

Yij ; ǫM,i· = k−1

k∑

j=1

ǫM,ij .

The components of variance analysis estimates only the variance of the
average measurement error ǫM,i· in the responses, but completely ignores
the variability, ǫL,i, about the line. The net effect is to underestimate η
and thus overstate the correction required of the ordinary least squares
estimate, because var(ǫM,i·)/σ

2
u is used as the estimate of η instead of

the larger, appropriate value {var(ǫM,i·) + var(ǫL,i)} /σ2
u.

The naive use of orthogonal regression on the data in Table 3.2 has
assumed that there is no additional variability about the line in addition
to that due to measurement error in the response, that is, ǫL,i = 0. To
check this, refer to Figure 3.8. Each replicated response is indicated by
a solid and filled circle. Remember that there is little measurement error
in W. In addition, the replication analysis suggested that the standard
deviation of the replicates was less than 10% of the variability of the
responses. Thus, in the absence of equation error we would expect to
see the replicated pairs falling along a clearly delineated straight line.
This is far from the case, suggesting that the equation error ǫL,i is a
large part of the variability of the responses. Indeed, while the replica-
tion analysis suggests that var(ǫM,i·) ≈ 0.0683, a method-of-moments
analysis suggests var(ǫL,i) ≈ 0.4860.

Fuller (1987) was one of the first to emphasize the importance of
equation error. In our experience, outside of some special laboratory
validation studies, equation error is almost always important in linear
regression. In the majority of cases,orthogonal regression is an inappro-
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Figure 3.8 Illustration where the assumptions of orthogonal regression appear

violated. The filled and empty circles represent replicated values of the response.

Note the evidence of equation error because the replicate responses are very

close to each other, indicating little response measurement error, but the circles

do not fall on a line, indicating some type of response error.

priate technique, unless estimation of both the response measurement
error and the equation error is possible.

In some cases, Y and W are measured in the same way, for example,
if they are both blood pressure measurements taken at different times.
Here, it is often entirely reasonable to assume that the variance of ǫM

equals σ2
u, and then there is a temptation to ignore equation error and

hence set η = 1. Almost universally, this is a mistake: Equation error
generally exists. This temptation is especially acute when replicates are
absent, so that σ2

u cannot be estimated and the method-of-moments
estimator cannot be used.

3.5 Bias Versus Variance

Estimates which do not account for measurement error are typically
biased. Correcting for this bias entails what is often referred to as a bias
versus variance tradeoff. What this means is that, in most problems,
the very nature of correcting for bias is that the resulting corrected
estimator will be more variable than the biased estimator. Of course,
when an estimator is more variable, the confidence intervals associated
with it are longer.
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Later in this section we will describe theory, but it is instructive to
consider an extreme case, using the same simulated data as in Figure
3.7 and Section 3.4.1. In this problem, the sample size is n = 20, the
true slope is βx = 1.0 and the reliability ratio is λ = 0.5. The top panel
of Figure 3.9 gives the histogram of Fuller’s modification of the method-
of-moments estimator, while the bottom panel gives the histogram of
the naive method that ignores measurement error. Note how the naive
estimator is badly biased: Indeed, we know it estimates λβx = 0.5, and it
is tightly bunched around this (wrong) value. The method-of-moments
estimator is roughly unbiased, but this correction for bias is at the cost
of a much greater variability (2.7 times greater in the simulation).
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Figure 3.9 Bias versus variance tradeoff in estimating the slope in simple lin-

ear regression. This is an extreme example of simple linear regression, with a

sample size of n = 20 and a reliability ratio of λ = 0.5. The true value of the

slope is βx = 1. The top panel is Fuller’s modification of the correction for at-

tenuation estimate; the bottom is the naive estimate that ignores measurement

error. The former is much more variable; the latter is very badly biased.

3.5.1 Theoretical Bias–Variance Tradeoff Calculations

In this section, we will illustrate the bias versus variance tradeoff theo-
retically in simple linear regression. This material is somewhat technical,
and readers may skip it without any loss of understanding of the main
points of measurement error models.
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Consider the simple linear regression model, Y = β0 + βxX + ǫ, with
additive independent measurement error, W = X + U, under the sim-
plifying assumption of joint normality of X, U, and ǫ. Further, suppose
that the reliability ratio λ in (3.1) is known. We make this assumption
only to simplify the discussion in this section. Generally, in applications
it is seldom the case that this parameter is known, although there are
exceptions (Fuller, 1987).

Let β̂x∗ denote the least squares estimate of slope from the regression
of Y on W. We know that its mean is E(β̂x∗) = λβx. Denote its variance
by σ2

∗.

The method-of-moments estimator of βx, is β̂x,mm = λ−1β̂x∗ and has

mean E(β̂x,mm) = βx, and variance Var(β̂x,mm) = λ−2σ2
∗.

Because λ < 1, it is clear that while the correction-for-attenuation in
β̂x,mm reduces its bias to zero, there is an increase in variability relative

to the variance of the biased estimator β̂x∗. The variability is inflated
even further if an estimate λ̂ is used in place of λ.

The price for reduced bias is increased variance. This phenomenon is
not restricted to the simple model and estimator in this section, but
occurs with almost universal generality in the analysis of measurement
error models. In cases where the absence of bias is of paramount im-
portance, there is usually no escaping the increase in variance. In cases
where some bias can be tolerated, consideration of mean squared error
is necessary.

In the following material, we indicate that there are compromise esti-
mators that may outperform both uncorrected and corrected estimators,
at least in small samples. Surprisingly, outside of the work detailed in
Fuller (1987), such compromise estimators have not been much investi-
gated, especially for nonlinear models.

Remember that mean squared error (MSE) is the sum of the variance
plus the square of the bias. This is an interesting criterion to use, be-
cause uncorrected estimators have more bias but smaller variance than
corrected estimators, and the bias versus variance tradeoff is transparent.
Note that

MSE(β̂x∗) = σ2
∗ + (1 − λ)2β2

x; and

MSE(β̂x,mm) = λ−2σ2
∗. (3.15)

It follows that

MSE
(
β̂x,mm

)
< MSE

(
β̂x∗

)

if and only if

σ2
∗ <

λ2(1 − λ)β2
x

1 + λ
.
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Because σ2
∗ decreases with increasing sample size, we can conclude that

in sufficiently large samples it is always beneficial, in terms of mean
squared error, to correct for attenuation due to measurement error.

Consider now the alternative estimator β̂x,a = aβx∗ for a fixed con-
stant a. The mean squared error of this estimator is a2σ2

∗ +(aλ− 1)2β2
x,

which is minimized when a = a∗ = λβ2
x/(σ2

∗ + λ2β2
x). Ignoring the fact

that a∗ depends on unknown parameters, we consider the “estimator”
β̂x,∗ = a∗βx∗, which has smaller mean squared error than either β̂x,mm

or β̂x∗. Note that as σ2
∗ → 0, a∗ → λ−1.

The estimator β̂x,∗ achieves its mean-squared-error superiority by mak-
ing a partial correction for attenuation in the sense that a∗ < λ−1. This
simple exercise illustrates that estimators that make only partial correc-
tions for attenuation can have good mean-squared-error performance.

Although we have used a simple model and a somewhat artificial esti-
mator to facilitate the discussion of bias and variance, all of the conclu-
sions made above hold, at least to a very good approximation, in general
for both linear and nonlinear regression measurement error models.

3.6 Attenuation in General Problems

We have already seen that, even in linear regression with multiple co-
variates, the effects of measurement error are complex and not easily
described. In this section, we provide a brief overview of what happens
in nonlinear models.

Consider a scalar covariate X measured with error, and suppose that
there are no other covariates. In the classical error model for simple lin-
ear regression, we have seen that the bias caused by measurement error
is always in the form of attenuation, so that ordinary least squares pre-
serves the sign of the regression coefficient asymptotically, but is biased
towards zero. Attenuation is a consequence then of (i) the simple linear
regression model; and (ii) the classical additive error model. Without (i)
and (ii), the effects of measurement error are more complex; we have
already seen that attenuation may not hold if (ii) is violated.

In logistic regression when X is measured with additive error, attenua-
tion does not always occur (Stefanski and Carroll, 1985), but it is typical.
More generally, in most problems with a scalar X and no covariates Z,
the underlying trend between Y and X is preserved under nondiffer-
ential measurement error, in the sense that the correlation between Y

and W is positive whenever both E(Y|X) and E(W|X) are increasing
functions of X (Weinberg, Umbach, and Greenland, 1993). Technically,
this follows because with nondifferential measurement error, Y and W

are uncorrelated given X, and hence the covariance between Y and W

is just the covariance between E(Y|X) and E(W|X).
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Positively, this result says that for the very simplest of problems (scalar
X, no covariates Z measured without error), the general trend in the data
is typically unaffected by nondifferential measurement error. However,
the result illustrates only part of a complex picture, because it describes
only the correlation between Y and W and says nothing about the
structure of this relationship.

For example, one might expect that if the regression, E(Y|X), of Y on
X is nondecreasing in X, and if W = X+U where U is independent of
X and Y, then the regression of Y on W would also be nondecreasing.
But Hwang and Stefanski (1994) have shown that this need not be the
case, although it is true in linear regression with normally distributed
measurement error. However, these results show that making inferences
about details in the relationship of Y and X, based on the observed
relationship between Y and W, is a difficult problem in general.

There are other practical reasons why ignoring measurement error is
not acceptable. First, estimating the direction of the relationship be-
tween Y and X correctly is nice, but as emphasized by MacMahon et al.
(1990) we can be misled if we severely underestimate its magnitude. Sec-
ond, the result does not apply to multiple covariates, as we have noted
in Figure 3.5 for the analysis of covariance and in Figure 3.6 for corre-
lated measurement errors. Indeed, we have already seen that in multiple
linear regression under the additive measurement error model, the ob-
served and underlying trends may be entirely different. Finally, it is also
the case (Sectiob 10.1) that, especially with multiple covariates, one can
use error modeling to improve the power of inferences. In large classes
of problems, then, there is simply no alternative to careful consideration
of the measurement error structure.
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CHAPTER 4

REGRESSION CALIBRATION

4.1 Overview

In this monograph we will describe two simple, generally applicable ap-
proaches to measurement error analysis: regression calibration in this
chapter and simulation extrapolation (SIMEX) in Chapter 5.

The basis of regression calibration is the replacement of X by the
regression of X on (Z,W). After this approximation, one performs a
standard analysis. The simplicity of this algorithm disguises its power.
As Pierce and Kellerer (2004) state, regression calibration “is widely
used, effective (and) reasonably well investigated.” Regression calibra-
tion shares with multiple imputation the advantage as Pierce and Kellerer
note, “A great many analyses of the same cohort data are made for differ-
ent purposes . . . it is very convenient that (once the replacement is made)
essentially the same methods for ongoing analyses can be employed as if
X were observed.” Regression calibration is simple and potentially appli-
cable to any regression model, provided the approximation is sufficiently
accurate. SIMEX shares these advantages but is more computationally
intensive.

Of course, with anything so simple, yet seemingly so general, there
have to be some catches. These are:

• Estimating the basic quantity, the regression of X on (W, Z), is an
art. After all, we do not observe X! There is an active literature on
this topic, reviewed in Sections 4.4 and 4.5.

• No simple approximation can always be accurate. Regression calibra-
tion tends to be most useful for generalized linear models (GLIM),
helpful given the vast array of applications of these models. Indeed,
in many GLIM, the approximation is exact or painfully close to being
exact. We review this issue in Sections 4.8 and B.3.3.

• On the other hand, the regression calibration approximation can be
rather poor for highly nonlinear models, although sometimes fixups
are possible; see Section 4.7, where a unique application to a bioassay
example is made.

The algorithm is given in Section 4.2. An example using the NHANES
data is given in Section 4.3. Basic to the algorithm is a model for
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E(X|Z,W), and methods of fitting such models are discussed in Sections
4.4 and 4.5. Section 4.6 provides brief remarks on calculating standard
errors. The expanded regression calibration approximation in Section
4.7 attempts to improve the basic regression calibration approximation;
the section includes a second example, the bioassay data. Sections 4.8
and 4.9 are devoted to theoretical justification of regression calibration
and expanded regression calibration. Technical details, of which there
are many, are relegated to Appendix B.3.

4.2 The Regression Calibration Algorithm

The regression calibration algorithm is as follows:

• Estimate the regression of X on (Z,W), mX(Z,W, γ), depending on
parameters γ, which are estimated by γ̂. How to do this is described
in Sections 4.4 and 4.5.

• Replace the unobserved X by its estimate mX(Z,W, γ̂), and then run
a standard analysis to obtain parameter estimates.

• Adjust the resulting standard errors to account for the estimation of
γ, using either the bootstrap or sandwich method; consult Appendix
A for the discussion of these techniques.

Suppose, for example, that the mean of Y given (X,Z) can be de-
scribed by

E(Y|Z,W) = mY(Z,X,B) (4.1)

for some unknown parameter B. The replacement of X in (4.1) by its
estimated value in effect proposes a modified model for the observed
data, namely

E(Y|Z,W) ≈ mY {Z,mX(Z,W, γ),B} . (4.2)

It is important to emphasize that the regression calibration model (4.2) is
an approximate, working model for the observed data. It is not necessarily
the same as the actual mean for the observed data, but in many cases
is only modestly different. Even as an approximation, the regression
calibration model can be improved; see Section 4.7 for refinements.

4.3 NHANES Example

The purpose of this section is to give an example of the application of re-
gression calibration to logistic regression. In particular, we will illustrate
the bias versus variance tradeoff exemplified by Figure 3.9 in Section 3.5.

We consider the analysis of the NHANES–I Epidemiologic Study Co-
hort data set (Jones, Schatzen, Green, et al., 1987). The predictor vari-
ables Z that are assumed to have been measured without appreciable
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Figure 4.1 Density estimates of transformed saturated fat for cases and con-
trols: NHANES data.

error are age, poverty index ratio, body mass index, use of alcohol (yes–
no), family history of breast cancer, age at menarche (a dummy variable
taking on the value 1 if the age is ≤ 12), menopausal status (pre or
post), and race. The variable measured with error, X, is long-term aver-
age daily intake of saturated fat (in grams). The response is breast cancer
incidence. The analysis in this section is restricted to 3, 145 women aged
25–50 with complete data on all the variables listed above; 59 had breast
cancer. In general, logistic regression analyses with a small number of
disease cases are very sensitive to misclassification, case deletion, etc.

Saturated fat was measured via a 24-hour recall, that is, a partici-
pant’s diet in the previous 24 hours was recalled and nutrition variables
computed. It is measured with considerable error (Beaton, Milner, and
Little, 1979; Wu, Whittemore, and Jung, 1986), leading to controversy
as regards the use of 24-hour recall to assess breast cancer risk (Prentice,
Pepe, and Self, 1989; Willett, Meir, Colditz, et al., 1987).

Our analysis concerns the effect of saturated fat on risk of breast can-
cer, adjusted for the other variables. To give a first indication of the
effects, we considered the marginal effect of saturated fat. Specifically,
we considered the variable log(5+saturated fat) and computed kernel
density estimates (Silverman, 1986) of this variable for the breast cancer
cases and for the noncases. The transformation was chosen for illustra-
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tive purposes and because it makes the observed values nearly normally
distributed. The results are given in Figure 4.1. Note that this figure
indicates a small marginal but protective effect due to higher levels of
saturated fat in the diet, which is in opposition to one popular hypothe-
sis. Thus we should expect the logistic regression coefficient of saturated
fat to be negative (hence, the higher the levels of fat, the lower the
estimated risk of breast cancer).

Variable Estimate Std. Error p-value

Age /25 2.09 .53 < .001
Poverty index .13 .08 .10
Body mass index / 100 −1.67 2.55 .51
Alcohol .42 .29 .14
Family history .63 .44 .16
Age at menarche −0.19 .27 .48
Premenopausal .85 .43 .05
Race .19 .38 .62
log(5 + saturated fat) −0.97 .29 < .001

Table 4.1 Logistic regression in the NHANES data.

In Table 4.1 we list the result of ignoring measurement error. This
analysis suggests that transformed saturated fat is a highly significant
predictor of risk with a negative logistic regression coefficient. Results in
Chapter 10 show that the p-value is asymptotically valid because there
are no other covariates measured with error.

There are at least two problems with these data that suggest that the
results should be treated with extreme caution.

The first reason is that few epidemiologists would trust the results of a
single 24-hour recall as a measure of long-term daily intake. The second
is that if one also adds caloric intake into the model, something often
done by epidemiologists, then the statistical significance for saturated
fat seen in Table 4.1 disappears, with a p-value of 0.07.

By using data from the Continuing Survey of Food Intake by Individ-
uals (CSFII, see Thompson, Sowers, Frongillo, et al., 1992), we estimate
that over 75% of the variance of a single 24-hour recall is made up of
measurement error. This analysis is fairly involved and was discussed
in too much detail in the first edition: Here, we simply take the esti-
mate as given, namely, that the observed sample variance of W is 0.233,

68

−7 −6 −5 −4 −3 −2 −1 0
0

50

100

150

200

250
Analysis Ignoring Error

−7 −6 −5 −4 −3 −2 −1 0
0

50

100

150

200

250
Regression Calibration Analysis

Figure 4.2 Bootstrap analysis of the estimated coefficient ignoring measure-
ment error (top panel) and accounting for it via regression calibration. Note
how the effect of measurement error is to attenuate the coefficient, and the
effect of correcting for measurement error is to widen confidence intervals.
Compare with Figure 3.9.

and for the additive measurement error model, the measurement error
variance is estimated as σ̂2

u = 0.171. This error variance estimate is rel-
atively close to the value 0.143 formed using a components-of-variance
estimator given by (4.3) below when applied to 24-hour recalls in the
American Cancer Society Cancer Prevention Study II (CPS II) Nutri-
tion Survey Validation Study, which has n = 184 individuals with four
24-hour recalls per individual.

We applied regression calibration to these data, using the “resampling
pairs” bootstrap (Section A.9.2) to get estimated standard errors. The
parameter estimate was −4.67 with an estimated variance of 2.26, along
with an associated percentile 95% confidence interval from −10.37 to
−1.38. What might be most interesting is the results from this boot-
strap, given as histograms in Figure 4.2. There we see the bias versus
variance tradeoff exemplified by Figure 3.9 in Section 3.5. Specifically,
note how the bootstrap, when ignoring measurement error, is tightly
bunched around a far too small estimated value, while the bootstrap
accounting for measurement error is centered at a very different place
and with much more variability.
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4.4 Estimating the Calibration Function Parameters

4.4.1 Overview and First Methods

The basic point of using the regression calibration approximation is that
one runs a favorite analysis with X replaced by its regression on (Z,W).
In this section, we discuss how to do this regression.

There are two simple cases:

• With internal validation data, the simplest approach is to regress X on
the other covariates (Z,W) in the validation data. Of course, this is a
missing data problem, and generally one would then use missing data
techniques rather than regression calibration. Regression calibration
in this instance is simply a poor person’s imputation methodology.
From a practical matter, for a quick analysis we suggest that one
use the X data where it is available, but add in a dummy variable
to distinguish between the cases that X or its regression calibration
versus are used.

• In some problems, for example, in nutritional epidemiology, an unbi-
ased instrument T is available for a subset of the study participants;
see Section 2.3. Here, by definition of “unbiased instrument,” the re-
gression of T on (Z,W) is the same as what we want, the regression
of X on (Z,W). This is the method used by Rosner, Spiegelman and
Willett (1990) in their analysis of the Nurses’ Health Study, see Sec-
tion 1.6.2. In that study, health outcomes and dietary intakes as mea-
sured by a food frequency questionnaire (FFQ) W were observed on
all study participants. On a subset of the study participants, dietary
intakes were assessed by food diaries, T. The investigators assumed
that the diaries were unbiased for usual dietary intake and applied
regression calibration by regressing the intakes from diaries on those
from the FFQ.

With validation data or an unbiased instrument, models for E(X|Z,W)
can be checked by ordinary regression diagnostics such as residual plots.

4.4.2 Best Linear Approximations Using Replicate Data

Here we consider the classical additive error model W = X + U where
conditional on (Z,X) the errors have mean zero and constant covariance
matrix Σuu. We describe an algorithm yielding a linear approximation
to the regression calibration function. The algorithm is applicable when
Σuu is estimated via external data or via internal replicates. The method
was derived independently by Carroll and Stefanski (1990) and Gleser
(1990), and used by Liu and Liang (1992) and Wang, Carroll, and Liang
(1996).

In this subsection, we will discuss using replicates measurements of
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X, that is, replicated W measuring the same X. When necessary, the
convention made in this book is to adjust the replicates a priori so that
they have the same sample means.

Suppose there are ki replicate measurements, Wi1, . . . ,Wiki
, of Xi,

and Wi· is their mean. Replication enables us to estimate the measure-
ment error covariance matrix Σuu by the usual components of variance
analysis, as follows:

Σ̂uu =

∑n
i=1

∑ki

j=1

(
Wij − Wi·

) (
Wij − Wi·

)t

∑n
i=1(ki − 1)

. (4.3)

In (4.3), remember that we are using the “dot and overbar” notation to
mean averaging over the “dotted” subscript.

Write Σab as the covariance matrix between two random variables, and
let µa be the mean of a random variable. The best linear approximation
to X given (Z,W) is

E(X|Z,W) ≈ µx (4.4)

+

(
Σxx

Σzx

)t [
Σxx + Σuu/k Σxz

Σt
xz Σzz

]−1 (
W − µw

Z − µz

)
.

Here is how one can operationalize (4.4) based on observations (Zi,Wi·),

replicate sample sizes ki and estimated error covariance matrix Σ̂uu. We
use analysis of variance formulae. Let

µ̂x = µ̂w =
n∑

i=1

kiWi·/
n∑

i=1

ki; µ̂z = Z·;

ν =

n∑

i=1

ki −

n∑

i=1

k2
i /

n∑

i=1

ki;

Σ̂zz = (n − 1)−1

n∑

i=1

(
Zi − Z·

) (
Zi − Z·

)t
;

Σ̂xz =

n∑

i=1

ki

(
Wi· − µ̂w

) (
Zi − Z·

)t
/ν;

Σ̂xx =

[{
n∑

i=1

ki

(
Wi· − µ̂w

) (
Wi· − µ̂w

)t

}
− (n − 1)Σ̂uu

]
/ν.

The resulting estimated calibration function is

E(Xi|Zi,Wi·) ≈ µ̂w (4.5)

+(Σ̂xx, Σ̂xz)

[
Σ̂xx + Σ̂uu/ki Σ̂xz

Σ̂t
xz Σ̂zz

]−1 (
Wi· − µ̂w

Zi − Z·

)
.

In linear regression, if there are no replicates (ki ≡ 1) but an external
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estimate Σ̂uu is available, or if there are exactly two replicates (ki ≡ 2),

in which case Σ̂uu is half the sample covariance matrix of the differences
Wi1 − Wi2, regression calibration reproduces the classical method-of-
moments estimates, that is, the estimators (3.13) of Section 3.4 with Σuu

estimated from replicates and Σǫu assumed to be 0.
When the number of replicates is not constant, the algorithm can be

shown to produce consistent estimates in linear regression and (approxi-
mately!) in logistic regression. For loglinear mean models, the intercept is
biased, so one should add a dummy variable to the regression indicating
whether or not an observation is replicated.

4.4.3 Alternatives When Using Partial Replicates

The linear approximations defined above are only approximations, but
they can be checked by using the replicates themselves. As is typical, if
only a partial subset of the study has an internal replicate (ki = 2), while
most of the data are not replicated (ki = 1), the partial replicates can
be used to check the best linear approximations to E(X|Z,W) defined
above, by fitting models to the regression of Wi2 on (Zi,Wi1). If nec-
essary, the partial replication data can be used in this way to estimate
E(X|Z,W). A good picture to study is Figure 1.2, where we plot the
log protein biomarkers against one another. The scatterplot suggest a
linear relationship, and a linear model here seems perfectly reasonable.

4.4.4 James–Stein Calibration

Whittemore (1989) also proposed regression calibration in the case that
X is scalar, there is no Z, and the additive error model applies. If σ2

u is
unknown and there are k replicates at each observation, then instead of
the method-of-moments estimate (4.5) of E(X|W), she suggested use of
the James–Stein estimate, namely

W·· +

{
1 −

n − 1

n − 3

n(k − 1)

n(k − 1) + 2

σ̂2
u/k

σ̂2
w

}
(Wi· − W··),

where σ̂2
u is the usual components of variance estimate of σ2

u defined in
(4.3) and σ̂2

w is the sample variance of the terms (Wi·). Typically, the
James–Stein and moments estimates are nearly the same.

4.5 Multiplicative Measurement Error

Until now we have assumed that the measurement errors are additive,
but multiplicative errors are common and require special treatment. Mul-
tiplicative errors can be converted to additive ones by a log transforma-
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tion, and first we discuss when a log transformation should be used.
Then we introduce alternative strategies for use when a log transforma-
tion seems inappropriate.

4.5.1 Should Predictors Be Transformed?

A good example of multiplicative measurement error can be seen in
Figures 1.6, 1.7, and 1.8, as described in Section 1.7. This is a case
where taking logarithms seems to lead to an additive measurement error
model with constant measurement error variance. Other scientists also
find multiplicative measurement errors. Lyles and Kupper (1997) state
that “there is much evidence for this model” (meaning the multiplicative
error model). Pierce, Stram, Vaeth, et al. (1992) study data from Radia-
tion Effects Research Foundation (RERF) in Hiroshima. They state, “It
is accepted that radiation dose–estimation errors are more homogeneous
on a multiplicative than on an additive scale.” Hwang (1986) studied
data on energy consumption and again found multiplicative errors.

While the existence of multiplicative measurement errors is in no
doubt, what to do in that situation is a matter of some controversy.
Indeed, this has nothing to do with measurement error: taking the loga-
rithm of a predictor is a perfectly traditional way to lessen the effects of
leverage in regression. Thus, many authors simply use the transformed
data scale. In most of the nutrition examples of which we are aware, in-
vestigators use the transformed predictor as W and carry out analyses:
It is trivial then to construct relative risks from the lowest to highest
quintiles of a nutrient. Alternatively, they often categorize the observed
data into quintiles and run a test for trend against the quintile indica-
tors. It would not be typical to run logistic regression analyses on the
original scale data, which are often horribly skew. As we will see, mul-
tiplicative measurement error generally means that the largest observed
values are very far from the actual values, often an order of magnitude in
difference. These considerations dictate against using the original data
scale when running an analysis that ignores measurement error.

There are, however, many researchers who prefer to fit a regression
model in the original scale, rather than in a transformed scale. We tend
to have little sympathy, in the absence of data analysis, for assertions
of the type that scientifically one scale is to be preferred. However, it
is important to have the flexibility to fit measurement error models on
the original data scale. In this section, we describe how to implement
regression calibration in the multiplicative context.
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4.5.2 Lognormal X and U

In this section, among other things, we will show that in linear regression
the effect of multiplicative measurement error is to make the observed
untransformed data appear as if they are curved, not linear.

The multiplicative lognormal error model with a scalar X and an
unbiased version of it is

W = XU, log(U) ∼ Normal{−(1/2)σ2
u, σ2

u}. (4.6)

For simplicity, we assume that there are no covariates Z measured with-
out error. If X is also lognormal and independent of U, then regression
calibration takes a simple form. Let µw,log and σ2

w,log be the mean and
variance of log(W), respectively. Let

λ =
var{log(X)}

var{log(W)}
=

σ2
w,log − σ2

u

σ2
w,log

,

and α = µw,log(1 − λ) + (1/2)σ2
u. Then by (A.2) and (A.3)

E(X|W) = Wλ exp
(
α + λσ2

u/2
)
. (4.7)

var(X|W) = W2λ exp (2α)
{
exp(2λσ2

u) − exp(λσ2
u)

}
. (4.8)

Replacing µw,log and σ2
w,log by the sample mean and variance of log(W),

and plugging these values into the forms for α and λ allows one to imple-
ment regression calibration using (4.7). Of course, one needs an estimate
of σ2

u as well. This parameter can be estimated using validation or repli-
cation data by the methods discussed in Section 4.4, but applied to
log(W), log(U), and log(X). Note how the regression calibration func-
tion is nonlinear in W.

The way to derive (4.7) and (4.8) is modestly amusing. Take loga-
rithms of both sides of (4.6) to get log(W) = log(X)+ log(U), and then
use equation (A.9) of Appendix A.4 to find that log(X) = α+λlog(W)+
V where V is Normal(0, λσ2

u), and finally

X = Wλ exp{α + V},

from which (4.7) and (4.8) follow from standard moment generating
properties; see (A.2) of the appendix.

One of the exciting consequences of (4.7) is that if the regression of Y

on X is linear in X, say E(Y|X) = β0 + βxX, then the regression of Y

on the observed W is nonlinear, that is, by (4.7)

E(Y|W) = β0 +
{
βxexp

(
α + λσ2

u/2
)}

Wλ.

Therefore, to obtain an asymptotically unbiased slope estimate, one re-
gresses Y on Wλ exp

(
α + λσ2

u/2
)
. Note that the regression of Y on W

is not linear, even though the regression of Y on X is linear. This is
because the regression of X on W is not linear.
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Figure 4.3 Simulation of multiplicative measurement error: W = XU,
log(X) = Normal(0, 1/4), log(U) = Normal(−1/8, 1/4), Y = (1/2)X +
Normal(0, 0.04), n = 50 observations. The solid line is the fit to the unob-
served X data in asterisks, while the dashed line is the spline fit to the observed
W data in plus signs. Note how the multiplicative error has induced a curve
into what should have been a straight line. Note too the stretching effect of the
measurement error.

Figure 4.3 shows 50 observations of simulated data with multiplicative
lognormal measurement errors and Y linear in X. The data with the true
X values are plotted with asterisks and the data with the surrogates W

are plotted with pluses. A dotted line connects (Yi,Xi) to (Yi,Wi)
for each i = 1, . . . , n. Penalized splines (Ruppert, Wand, and Carroll,
2003) were fit to true covariates and the surrogates and plotted as solid
and dashed lines, respectively. Notice that, as theory predicts, the spline
fit to the true covariates is linear but the spline fit to the surrogates is
curved. One can also see attenuation; the derivative (slope) of the curved
fit to the surrogates is seen to be everywhere less than the slope of the
straight line fit to the true covariates.

Figure 4.4 shows 1,000 observations of simulated data from the same
joint distribution as in Figure 4.3. Only (Yi,Wi) data are plotted, but
penalized spline fits are shown to both (Yi,Wi) and (Yi,Xi) . Figures
4.3 and 4.4 are similar, but, due to the larger sample size, the latter
has more extreme W values and shows the curvature of E(Y|W) more
dramatically.

Figure 4.5 uses the simulated data in Figure 4.4 and shows a plot of Y
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Figure 4.4 Simulation of multiplicative measurement error: n = 1000, W =
XU, log(X) = Normal(0, 1/4), log(U) = Normal(−1/8, 1/4) Y = X/2 +
Normal(0, 0.04). The solid line is the fit to the unobserved X data in asterisks,
while the dashed line if the spline fit to the observed W data in plus signs.

versus Wλ, with λ = 1/2, and a penalized spline fit to it. As predicted
by the theory, the regression of Y on Wλ appears linear.

In this context, regression calibration means replacing the unknown
X by E(X|W) given by (4.7). This is nonlinear regression calibration,
since E(X|W) is nonlinear in W. Notice by formula (4.8) for var(X|W)
that, except when βx = 0, the regression of Y on W is heteroscedastic
even if the regression of Y on X is homoscedastic. In the presence of
heteroscedasticity, ordinary unweighted least-squares is inefficient and,
to gain efficiency, statisticians often use quasilikelihood; see Section A.7.
Lyles and Kupper (1997) proposed a quasilikelihood estimator that was
somewhat superior to nonlinear regression calibration in their simulation
study, especially when the covariate measurement error is large.

In this section, we have focused on the case when X is lognormal, be-
cause of the simplicity of the expressions. The methods described above
should work reasonably well if the unobserved covariate X is roughly
lognormal, but there are no sensitivity studies done to date to confirm
this.

The estimator of E(X|W) in this section assumes that both X and U

are lognormally distributed. Pierce and Kellerer (2004) have described a
method based on a Laplace approximation that is more nonparametric
for the estimation of E(X|W).
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Figure 4.5 Simulation of multiplicative measurement error: n = 1000, W =
XU , log(X) = Normal(0, 1/4), log(U) = Normal(−1/8, 1/4) Y = X/2 +
Normal(0, 0.04). Note: λ = 1/2. The line is a penalized spline fit to the regres-
sion of Y on W

λ, the regression calibration approximation. Theory predicts
that this should be linear.

4.5.3 Linear Regression

Fuller (1984) and Hwang (1986) independently developed a method-of-
moments correction for multiplicative measurement error in linear re-
gression. They make no assumptions that either the measurement errors
or the true predictors are lognormal.

Their basic idea is to regress Y on W (not Wλ) and then make a
method-of-moments correction similar to (3.13):

(
Sww./Muu Swz

Szw Szz

)−1 (
Swy − Σuǫ

Szy

)
, (4.9)

where A./B is coordinate-wise division of equal-size matrices A and B,
that is, (A./B)ij = Aij/Bij , Muu is the second moment matrix of U,
Sww is the sum of cross-products matrix for W, and so forth. In the
following Σuǫ is assumed to be zero. The Fuller–Hwang method is called
the “correction method” by Lyles and Kupper (1997) and is similar to
linear regression calibration defined in Section 4.2, because both meth-
ods are based on regressing Y on either W itself (Fuller–Hwang method)
or a linear function of W (regression calibration). In fact, for scalar X
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the Fuller–Hwang estimator is the same as linear regression calibration
when the calibration function predicts X using a linear function of W

without an intercept, that is, a function of form λW, as discussed in Sec-
tion A.4.2. As shown in that section, λ = 1/E(U2), and therefore one
can show that both the Fuller–Hwang method and regression calibration
without an intercept multiply the ordinary least-squares slope estimate
by E(U2). Thus, the Fuller–Hwang estimator uses a less accurate predic-
tor of X than linear regression calibration when the calibration function
is allowed an intercept, which suggests that the Fuller–Hwang method
might be inferior to the latter. The two estimators have apparently not
been compared, possibly because nonlinear regression calibration seems
more appropriate than either of them.

The Fuller–Hwang estimator is consistent but was found to be badly
biased in simulations of Lyles and Kupper (1999). The bias is still no-
ticeable for n = 10, 000 in their simulations. Iturria, Carroll, and Firth
(1999) found similar problems when linear regression calibration is used
with multiplicative errors.

In addition, Iturria, Carroll, and Firth (1999) studied polynomial re-
gression with multiplicative error. One of their general methods is a
special case of the Fuller–Hwang estimator. Their “partial regression”
estimator assumes lognormality of (X,U) and generalizes the nonlinear
regression calibration estimator discussed earlier. In a simulation with
lognormal X and U, the partial regression estimator is often much more
efficient than the ones that do not assume lognormality. For all these
reasons, we favor our approaches over those of the Fuller–Hwang esti-
mator.

The regression calibration methods of this section are not the only
ways of handling multiplicative errors. For example, the Bayesian anal-
ysis of multiplicative error is discussed in Section 9.5.3.

4.5.4 Additive and Multiplicative Error

A model with both additive and multiplicative error is W = XU1 +U2,
where U1 and U2 are independent errors with variances σ2

u,1 and σ2
u,2,

respectively. This model implies that var(W|X) = X2σ2
u,1 + σ2

u,2. For
sufficiently small values of X, var(W|X) ≈ σ2

u,2, while for sufficiently
large values of X var(W|X) ≈ X2σ2

u,1. This model has been studied by
Rocke and Durbin (2001) and applied by them to gene expression levels
measured by cDNA slides. As far as we are aware, this model has not
been applied as a measurement error model in regression, but research
on this topic seems well worthwhile. A Berkson model that contains
a mixture of additive and multiplicative errors has been proposed by
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Stram and Kopecky (2003) in their study of the Hanford Thyroid Disease
Study.

4.6 Standard Errors

It is possible to provide asymptotic formulae for standard errors (Carroll
and Stefanski, 1990), but doing so is extremely tedious because of the
multiplicity of special cases. Some explicit formulae are given in the
appendix (Section B.3.1) for the case of generalized linear models, and
for models in which one specifies only the mean and variance of the
response given the predictors.

The bootstrap (Section A.9) requires less programming (and mathe-
matics!) but takes more computer time. In the first edition, we remarked
that this can be a real issue because, as Donna Spiegelman has pointed
out, many researchers would prefer to have quick standard errors in-
stead of having to use the bootstrap repeatedly while building models
for their data. However, faster computers and better software are reduc-
ing the time needed to perform bootstrap inference. For example, the
rcal function in STATA uses the bootstrap to obtain standard errors in
“real time,” 1 minute for the ARIC data set.

In its simplest form, the bootstrap can be used to form standard error
estimates, and then t-statistics can be constructed using the bootstrap
standard errors. The bootstrap percentile method can be used for confi-
dence intervals. Approximate bootstrap pivots can be formed by ignoring
the variability in the estimation of the calibration function.

4.7 Expanded Regression Calibration Models

A major purpose of regression calibration is to derive an approximate
model for the observed (Y,Z,W) data in terms of the fundamental
model parameters. The regression calibration method is one means to
this end: Merely replace X by an estimate of E(X|Z,W). This method
works remarkably well in problems such as generalized linear models,
for example, linear regression, logistic regression, Poisson and gamma
regression with loglinear links, etc. However, it is often not appropriate
for highly nonlinear problems.

It is convenient for our purposes to cast the problems in the form of
what are called mean and variance models, often called quasilikelihood
and variance function (QVF) models, which are described in more gener-
ality and detail in (A.35) and (A.36). Readers unfamiliar with the ideas
of quasilikelihood may wish to skip this material at first reading and
continue into later chapters.

Mean and variance models specify the mean and variance of a response
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Y as functions of covariates (X,Z) and unknown parameters. For exam-
ple, in linear regression, the mean is a linear function of the covariates,
and the variance is constant. We write these models in general as

E(Y|Z,X) = mY(Z,X,B) (4.10)

var(Y|Z,X) = σ2 g2(Z,X,B, θ), (4.11)

where g2(Z,X,B, θ) is some nonnegative function and σ2 is a scale pa-
rameter. The parameter vector θ contains parameters in addition to B
that specify the variance function. In some models, for example, linear,
logistic, Poisson and gamma regression, θ is not needed, since there are
no additional parameters.

Of course, since X is not observed, to fit a mean and variance function
model, what we need is the mean and variance of Y given the observed
data. There are two possible approaches:

• Posit a probability model for the distribution of X given (Z,W), then
compute, exactly, E(Y|Z,W) = E{mY(Z,X,B)|Z,W} and

var(Y|Z,W) = var{mY(Z,X,B)|Z,W} + σ2E{g2(Z,X,B, θ)|Z,W).

• Instead of a probability model for the entire distribution, posit a
model for the mean and variance of X given (Z,W) and then do
Taylor series expansions to estimate the mean and variance of the
response given the observed data. These are the expanded regression
calibration approximations.

Regression calibration, in effect, says that X given (Z,W) is com-
pletely specified, with no error, by its mean, so that

E(Y|Z,W) ≈ mY {Z,mX(Z,W, γ),B} ; (4.12)

var(Y|Z,W) ≈ σ2g2 {Z,mX(Z,W, γ),B, θ} . (4.13)

We will show that in some cases, the model can be modified to improve
the fit; see Section 4.7.3 for a striking data application.

An example will help explain the possible need for refined approx-
imations. Consider the simple linear homoscedastic regression model
E(Y|X) = β0 + βxX and var(Y|X) = σ2. Suppose the measurement
process induces a heteroscedastic Berkson model where E(X|W) = W

and var(X|W) = σ2
rcW

2γ , where rc stands for regression calibration. The
regression calibration approximate model states that the observed data
follow a simple linear homoscedastic regression model with X replaced
by E(X|W) = W. However, while this gives a correct mean function,
the actual variance function for the observed data is heteroscedastic:
var(Y|W) = σ2 + σ2

rcβ
2
xW

2γ . Hence the regression calibration model
gives a consistent estimate of the slope and intercept, but the estimate
is inefficient because weighted least squares should have been used. If
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it is important enough to affect the efficiency of the estimates, the het-
eroscedasticity should show up in residual plots.

The preceding example shows that a refined approximation can im-
prove efficiency of estimation, while the next describes a simple situa-
tion where bias can also be corrected; another example is discussed in
the loglinear mean model case in Section 4.8.3. Consider ordinary ho-
moscedastic quadratic regression with E(Y|X) = β0 + βx,1X + βx,2X

2.
Use the same heteroscedastic Berkson model as before. Then the regres-
sion calibration approximation suggests a homoscedastic model with X

replaced by W, while in fact the observed data have mean β0 +βx,1W+
βx,2(W

2 + σ2
rcW

2γ). If the Berkson error model is heteroscedastic, the
regression calibration approximation will lead to a biased estimate of the
regression parameters.

It is important to stress that these examples do not invalidate re-
gression calibration as a method, because the heteroscedasticity in the
Berkson error model has to be fairly severe before much effect will be
noticed. However, there clearly is a need for refined approximations that
take over when the regression calibration approximation breaks down.

4.7.1 The Expanded Approximation Defined

We will consider the QVF models (4.10) and (4.11). We will focus entirely
on the case that X is a scalar. Although the general theory (Carroll and
Stefanski, 1990) does allow multiple predictors, the algebraic details are
unusually complex.

We will to discuss three different sets of approximations:

• A general formula.

• A modification of the general formula that is range preserving, for
example, when a function must be positive.

• A simplification of the formula when functions are not too badly
curved.

4.7.1.1 The General Development

The expanded approximation starts with both the mean and variance of
X given (Z,W):

E(X|Z,W) = mX(Z,W, γ); (4.14)

var(X|Z,W) = σ2
rcV

2(Z,W, γ). (4.15)

We wish to construct approximations to the mean and variance func-
tion of the observed response given the observed covariates. Carroll and
Stefanski (1990) based such approximations on pretending that σ2

rc is
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“small”; if it equals zero, the resulting approximate model is the regres-
sion calibration model.

Here is how the approximation works. Let mY,x and mY,xx be the
first and second derivatives of mY(z, x,B) with respect to x, and let
sx(z, w,B, θ, γ) and sxx(·) be the first and second derivatives of s(z, x,B,
θ) = g2(z, x,B, θ) with respect to x and evaluated at x = E(X|Z =
z,W = w). Defining mX(·) = mX(Z,W, γ) and V (·) = V (Z,W, γ),
simple Taylor series expansions in Section B.3.3 with σ2

rc → 0 yield
the following approximate model, which we call the expanded regression
calibration model:

E(Y|Z,W) ≈ mY {Z,mX(·),B} (4.16)

+(1/2)σ2
rcV

2(·)mY,xx {Z,mX(·),B} ;

var(Y|Z,W) ≈ σ2g2 {Z,mX(·),B, θ} (4.17)

+σ2
rcV

2(·)
{
m2

Y,x(·) + (1/2)σ2sxx(·)
}

.

There are important points to note about the approximate model (4.16)–
(4.17):

• By setting σ2
rc = 0, it reduces to the regression calibration model, in

which we need only estimate E(X|Z,W).

• It is an approximate model that serves as a guide to final model
construction in individual cases. We are not assuming that the mea-
surement error is small, only pretending that it is in order to derive
a plausible model for the observed data in terms of the regression
parameters of interest. In some instances, terms can be dropped or
combined with others to form even simpler useful models for the ob-
served data.

• It is a mean and variance model for the observed data. Hence, the
techniques of model fitting and model exploration discussed in Carroll
and Ruppert (1988) can be applied to nonlinear measurement error
model data.

4.7.1.2 Range-Preserving Modification

One potential problem with the expanded regression calibration model
(4.16)–(4.17) is that it might not be range preserving. For example,
because of the term sxx(·), the variance function (4.17) need not nec-
essarily be positive. If the original function mY(·) is positive, the new
approximate mean function (4.16) need not be positive because of the
term fxx(·). A range-preserving expanded regression calibration model
for the observed data is

E(Y|Z,W) ≈ mY

[
Z, mX(·) +

1

2
σ2

rc

V 2(·)mY,xx(·)

mY,x(·)
,B

]
; (4.18)
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var(Y|Z,W) ≈ σ2
rcm

2
Y,x{Z,mX(·),B}V 2(·) (4.19)

+σ2g2

[
Z,mX(·) +

1

2
σ2

rc

V 2(·)sxx(·)

sx(·)
,B, θ

]
.

4.7.1.3 Models Without Severe Curvature

When the models for the mean and variance are not severely curved, fxx

and sxx are small relative to mY(·) and g2(·), respectively. In this case,
setting κ = σ2

rc/σ
2, the mean and variance functions of the observed

data greatly simplify to

E(Y|Z,W) ≈ mY {Z,mX(·),B}

var(Y|Z,W) ≈ σ2
[
g2 {Z,mX(·),B, θ} + κV 2(·)mY

2
x(·)

]
.

Having estimated the mean function mX(·), this is just a QVF model in
the parameters (B, θ∗), where θ∗ consists of θ, κ and the other parameters
in the function V 2(·). In principle, the QVF fitting methods of Appendix
A can be used.

4.7.2 Implementation

The approximations (4.16) and(4.17) require specification of the mean
and variance functions (4.14) and (4.15). In the Berkson model, the for-
mer is just W and a flexible model for the latter is σ2

rcW
2γ , with γ = 0

indicating homoscedasticity. We will see later in a variety of examples
that, for this Berkson class, the model parameters (B, θ) are often es-
timable via QVF techniques using the approximate models, without the
need for any validation data. The Berkson framework thus serves as an
ideal environment for expanded regression calibration models.

Outside the Berkson class, we have already discussed in Sections 4.4
and 4.5 methods for estimating the conditional mean of X. If possi-
ble, one should use available data to estimate the conditional variance
function. For example, if there are k unbiased replicates in an additive
measurement error model, then the natural counterpart to the best lin-
ear estimate of the mean function is the usual formula for the variance
in a regression, namely var(X|Z,W) = σ2

rc, where if σ2
x is the variance

of X and σ2
u is the measurement error variance,

σ2
rc = σ2

x −
(
σ2

x,Σxz

) [
σ2

x + σ2
u/k Σxz

Σt
xz Σzz

]−1 (
σ2

x,Σxz

)t
.

This can be estimated using the formulae of Section 4.4.2.
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H W Y H W Y H W Y H W Y

0 0 1.51 0 0 1.43 1 1 0.05 1 2 0.06
1 4 0.15 1 8 0.40 1 16 0.76 1 32 0.95
2 1 0.04 2 2 0.07 2 4 0.13 2 8 0.52
2 16 0.79 2 32 1.17 3 1 0.05 3 2 0.26
3 4 0.28 3 8 0.70 3 16 1.05 3 32 1.30
4 1 0.11 4 2 0.42 4 4 0.59 4 8 0.90
4 16 1.08 4 32 1.24 5 1 0.04 5 2 0.06
5 4 0.19 5 8 0.50 5 16 0.84 5 32 1.17
6 1 0.04 6 2 0.04 6 4 0.24 6 8 0.70
6 16 1.21 6 32 1.01 7 1 0.05 7 2 0.08
7 4 0.14 7 8 0.60 7 16 1.20 7 32 1.30
8 1 0.38 8 2 0.64 8 4 0.88 8 8 1.09
8 16 1.50 8 32 1.30

0 0 1.01 0 0 1.34 1 1 0.05 1 2 0.07
1 4 0.09 1 8 0.26 1 16 0.55 1 32 1.21
2 1 0.04 2 2 0.06 2 4 0.19 2 8 1.16
2 16 0.96 2 32 1.13 3 1 0.04 3 2 0.17
3 4 0.33 3 8 0.50 3 16 1.11 3 32 1.20
4 1 0.12 4 2 0.30 4 4 0.41 4 8 1.06
4 16 1.29 4 32 1.17 5 1 0.04 5 2 0.07
5 4 0.19 5 8 0.36 5 16 0.88 5 32 1.16
6 1 0.04 6 2 0.05 6 4 0.22 6 8 0.61
6 16 1.15 6 32 1.39 7 1 0.04 7 2 0.18
7 4 0.27 7 8 0.88 7 16 0.97 7 32 1.26
8 1 0.29 8 2 0.98 8 4 1.12 8 8 1.10
8 16 1.13 8 32 1.31

Table 4.2 The bioassay data. Here Y is the response and W is the nominal
dose time 32. The herbicides H are listed as 1–8, and H = 0 means a zero
dose. The replicates R are separated by horizontal lines. The herbicide pairs
are (1,5), (2,6), (3,7), and (4,8). Continued on next page.
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H W Y H W Y H W Y H W Y

0 0 1.21 0 0 1.10 1 1 0.04 1 2 0.09
1 4 0.12 1 8 0.25 1 16 0.56 1 32 1.04
2 1 0.05 2 2 0.06 2 4 0.14 2 8 0.35
2 16 0.90 2 32 1.12 3 1 0.06 3 2 0.21
3 4 0.37 3 8 0.60 3 16 1.01 3 32 0.70
4 1 0.10 4 2 0.20 4 4 0.47 4 8 0.95
4 16 1.07 4 32 0.93 5 1 0.05 5 2 0.07
5 4 0.09 5 8 0.29 5 16 0.78 5 32 1.05
6 1 0.05 6 2 0.07 6 4 0.16 6 8 0.39
6 16 0.78 6 32 0.97 7 1 0.04 7 2 0.11
7 4 0.24 7 8 0.48 7 16 0.94 7 32 1.30
8 1 0.15 8 2 0.26 8 4 0.60 8 8 0.87
8 16 0.61 8 32 0.98

Table 4.2 continued.

4.7.3 Bioassay Data

Rudemo, Ruppert, and Streibig (1989) described a bioassay problem fol-
lowing a heteroscedastic Berkson error model. In this experiment, four
herbicides were applied either as technical grades or as commercial for-
mulations; thus there are eight herbicides: four pairs of two herbicides
each. The herbicides were applied at the six different nonzero doses 2j−5

for j = 0, 1, . . . , 5. There were also two zero dose observations. The re-
sponse Y was the dry weight of five plants grown in the same pot. There
were three complete replicates of this experiment done at three different
time periods, so that the replicates are a blocking factor. The data are
listed in Table 4.2.

Let Z1 be a vector of size eight with a single nonzero element indicating
which herbicide was applied, and let Z2 be a vector of size four indicating
the herbicide pair. Let Z = (Z1,Z2). For zero doses, Z1 and Z2 may be
defined arbitrarily as any nonzero value. In the absence of measurement
error for doses, and if there were no random variation, the relationship
between response and dose, X, is expected to be

Y ≈ mY(Z,X,B) = β0 +
β1 − β0

1 +

{
X

βt
3Z1

}βt

4
Z2

. (4.20)
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Figure 4.6 Bioassay data. Absolute residual analysis for an ordinary nonlinear
least squares fit. Note the increasing variability for larger predicted values.

Model (4.20) is typically referred to as the four-parameter logistic model.
Physically, the parameters β0 and β1 should be nonnegative, since they
are the approximate dry weight at infinite and zero doses, respectively.

An initial ordinary nonlinear least squares fit to the data with a fixed
block effect had a negative estimate of β0. Figure 4.6 displays a plot
of absolute residuals versus predicted means. Also displayed are box
plots of the residuals formed by splitting the data into six equal-sized
groups ordered on the basis of predicted values. Both figures show that
the residuals are clearly heteroscedastic, with the response variance an
increasing function of the predicted value.
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This problem is exactly of the type amenable to analysis by the
transform-both-sides (TBS) methodology of Carroll and Ruppert (1988);
see also Ruppert, Carroll, and Cressie (1989). Specifically, model (4.20) is
a theoretical model for the data in the absence of any randomness, which,
when fit, shows a pattern of heteroscedasticity. The TBS methodology
suggests controlling for the heteroscedasticity by transforming both sides
of the equation:

h(Y, λ) ≈ h {mY(Z,X,B), λ} , (4.21)

where the transformation family can be arbitrary but is taken here as
the power transformation family:

h(v, λ) = (vλ − 1)/λ if λ 6= 0;

= log(v) if λ = 0.

Of course, the actual dose applied X may be different from the nom-
inal dose applied W. It seems reasonable in this context to consider
the Berkson error model with mean W and variance σ2

rcW
2γ , the het-

eroscedasticity indicating the perfectly plausible assumption that the
size of the error made depends on the nominal dose applied. With this
specification, the regression calibration approximation replaces X by W.
Letting Yij be the jth replicate at the ith herbicide–dose combination,
the TBS-regression calibration model incorporating randomness is

h(Yij , λ) = h {mY(Zi,Wi,B), λ} + ηj + ǫij , (4.22)

where ǫij is the homoscedastic random effect with variance σ2, and ηj

is the fixed block effect. The parameters were fit using maximum likeli-
hood assuming that the errors are normally distributed, as described by
Carroll and Ruppert (1988, Chapter 4). This involves maximizing the
loglikelihood

−
1

2

∑

i,j

(
[h(Yij , λ) − h {mY(Zi,Wi,B), λ} − ηj ]

2

σ2

+log(σ2) − 2(λ − 1)log(Yij)

)
.

The estimated transformation, λ̂ = 0.117, is very near the log trans-
formation. The residual plots are given in Figure 4.7, where we still see
some unexplained structure to the variability, since the extremes of the
predicted means have smaller variability than the centers.

To account for the unexplained variability, we now the consider higher-
order approximate models (4.16) and (4.17). Denoting the left-hand
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Figure 4.7 Bioassay data. Absolute residual analysis for an ordinary
transform-both-sides fit. Note the unexplained structure of the variability.

side of (4.21) by Y∗ and the right-hand side by mY∗(·), and noting
that the four-parameter logistic model is one in which mY,xx/mY is
typically small, the approximate model (4.17) says that Y∗ has mean
h {mY(Z,W,B)} and variance σ2+σ2

rcW
2γ

{
(mY)λ−1(Z,W,B)mY,x(Z,

W,B)
}2

. If we define κ = σ2
rc/σ

2, in contrast to (4.22) an approximate
model for the data is

h(Yij , λ) = h {mY(·), λ} + ηj (4.23)

+ǫij

[
1 + κW

2γ
i

{
(mY)λ−1(·)mY,x(·)

}2
]1/2

,
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Figure 4.8 Bioassay data. Absolute residual analysis for a second-order ap-
proximate transform-both-sides fit.

whereas before ǫij has variance σ2. This is a heteroscedastic TBS model,
all of whose parameters are identifiable and hence estimable from the
observed data. The identifiability of parameters in the Berkson model
is a general phenomenon; see Section 4.9. The likelihood of (4.23) is the
same as before but with σ2 replaced by

σ2
[
1 + κW

2γ
i

{
(mY)λ−1(·)mY,x(·)

}2
]
.

This model was fit to the data, and λ̂ ≈ −1/3 with an approximate
standard error of 0.12. The corresponding residual plots are given in
Figure 4.8. Here we see no real hint of unexplained variability. As a
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further check, we can contrast the models (4.23) and (4.22) by means
of a likelihood ratio test, the two extra parameters being (γ, κ). The
likelihood ratio test for the hypothesis that these two parameters equal
zero had a chi-squared value of over 30 based on two degrees of freedom,
indicating a large improvement in the fit due to allowing for possible
heteroscedasticity in the Berkson error model.

4.8 Examples of the Approximations

In this section, we investigate the appropriateness of the regression cal-
ibration algorithm in a variety of settings.

4.8.1 Linear Regression

Consider linear regression when the variance of Y given (Z,X) is con-
stant, so that the mean and variance of Y when given (Z,X) are β0 +
βt

xX+βt
zZ and σ2, respectively. As an approximation, the regression cal-

ibration model says that the observed data also have constant variance
but have regression function given by E(Y|Z,W) = β0+βt

xmX(Z,W, γ)+
βt

zZ. Because we assume nondifferential measurement error (Section 2.5),
the regression calibration model accurately reproduces the regression
function, but the observed data have a different variance, namely

var(Y|Z,W) = σ2 + βt
xvar(X|Z,W)βx.

Note the difference here: The regression calibration model is a working
model for the observed data, which may differ somewhat from the ac-
tual or true model for the observed data. In this case, the regression
calibration approximation gives the correct mean function, and the vari-
ance function is also correct and constant if X has a constant covariance
matrix given (Z,W).

If, however, X has nonconstant conditional variance, the regression
calibration approximation would suggest the homoscedastic linear model
when the variances are heteroscedastic. In this case, while the least
squares estimates would be consistent, the usual standard errors are in-
correct. There are three options: (i) use least squares and bootstrap by
resampling vectors (Section A.9.2); (ii) use least-squares and the sand-
wich method for constructing standard errors (Section A.6); and (iii)
expand the model using the methods of Section 4.7.

4.8.2 Logistic Regression

Regression calibration is also well established in logistic regression, at
least as long as the effects of the variable X measured with error are not
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“too large” (Rosner, Willett, and Spiegelman, 1989; Rosner, Spiegelman,
and Willett, 1990; Whittemore, 1989). Let the binary response Y fol-
low the logistic model Pr(Y = 1|Z,X) = H (β0 + βt

xX + βt
zZ), where

H(v) = {1 + exp(−v)}−1 is the logistic distribution function. The key
problem is computing the probability of a response Y given (Z,W).
For example, suppose that X given (Z,W) is normally distributed with
mean mX(Z,W, γ) and (co)variance function V (Z,W, γ). Let p be the
number of components of X. As described in more detail in Chapter 8,
the probability that Y = 1 for values of (Z,W) is

∫
H(·) exp

[
−(1/2) {x − mX(·)}

t
V −1(·) {x − mX(·)}

]
dx

(2π)p/2|V (·)|1/2
, (4.24)

where H(·) = H(β0+βt
xx+βt

zZ). Formula (4.24) does not have a closed-
form solution; Crouch and Spiegelman (1990) developed a fast algorithm
that they have implemented in FORTRAN: unfortunately, as far as we
know, this algorithm is not in widespread use. Monahan and Stefanski
(1991) described a different method easily applicable to all standard
computer packages. However, a simple technique often works just as
well, namely, to approximate the logistic by the probit. It is well known
that H(v) ≈ Φ(v/1.7), where Φ(·) is the standard normal distribution
function (Johnson and Kotz, 1970; Liang and Liu, 1991; Monahan and
Stefanski, 1991).

In Figure 4.9 we plot the density and distribution functions of the
logistic and normal distributions, and the reader will note that the lo-
gistic and normal are very similar. With some standard algebra (Carroll,
Bailey, Spiegelman, et al., 1984), one can approximate (4.24) by

Pr(Y = 1|Z,W) ≈ H

[
β0 + βt

xmX(Z,W, γ) + βt
zZ

{1 + βt
xV (Z,W, γ)βx/1.72}

1/2

]
. (4.25)

In most cases, the denominator in (4.25) is very nearly 1, and regres-
sion calibration is a good approximation; the exception is for “large”
βt

xV (·)βx. In general, the denominator in (4.25) means that regression
calibration will lead to estimates of the main risk parameters that are
slightly attenuated.

The approximation (4.25) is often remarkably good, even when the
true predictor X is rather far from normally distributed. To test this,
we dropped Z and computed the approximations and exact forms of
pr(Y = 1|W) under the following scenario. For the distribution of X,
we chose either a standard normal distribution or the chi-squared distri-
bution with one degree of freedom. The logistic intercept β0 and slope
βx were chosen so that there was a 10% positive response rate (Y = 1)
on average, and so that exp {βx(q90 − q10)} = 3, where qa is the ath per-
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Figure 4.9 The standard logistic distribution and density functions compared
to the normal distribution and density functions with standard deviation 1.70.
The point of the graph is to show how close the two are.

centile of the distribution of X. In the terminology of epidemiology, this
means that the “relative risk” is 3.0 in moving from the 10th to the 90th
percentile of the distribution of X, a representative situation.

In Figure 4.10 we plot values of pr(Y = 1|W) against W in the solid
line, for the range from the 5th to the 95th percentile of the distribution
of W. The regression calibration approximation is the dotted line. The
measurement error is additive on the first row and multiplicative on the
second row. The top left plot has W = X + U where (X,U) follow a
bivariate standard normal distribution, while the top right plot differs in
that both follow a chi-squared distribution with one degree of freedom.
The bottom row has W = XU, where U follows a chi-squared distribu-
tion with one degree of freedom; on the left, X is standard normal, while
on the right, X is chi-squared. Note that the solid and dashed lines very
nearly overlap. In all of these cases, the measurement error is very large,
so in some sense we are displaying a worst case scenario. For these four
very different situations, the regression calibration approximation works
very well indeed.
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Figure 4.10 Values of pr(Y = 1|W) are plotted against W in the solid line,
while the regression calibration approximation is the dotted line. The measure-
ment error is additive on the first row and multiplicative on the second row.
The fact that the lines are nearly indistinguishable is the whole point. See text
for more details.

4.8.3 Loglinear Mean Models

As might occur for gamma or lognormal data, suppose E(Y|Z,X) =

exp(β0 + βt
xX + βt

zZ) and var(Y|Z,X) = σ2 {E(Y|Z,X)}
2
. Suppose

that the calibration of X on (Z,W) has mean mX(Z,W, γ), and denote
the moment generating function of the calibration distribution by

E
{
exp(atX)|Z,W

}
= exp

{
atmX(Z,W, γ) + v(a,Z,W, γ)

}
,

where v(·) is a general function which differs from distribution to distri-
bution. If (·) = (Z,W, γ), the observed data then follow the model

E(Y|Z,W) = exp
{
β0 + βt

xmX(·) + βt
zZ + v(βx, ·)

}
;

var(Y|Z,W) = exp
{
2β0 + 2βt

xmX(·) + 2βt
zZ + v(2βx, ·)

}

×
[
σ2 + 1 − exp {2v(βx, ·) − v(2βx, ·)}

]
.
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If the calibration distribution for X is normal with constant covari-
ance matrix Σxx, then v(a, ·) = (1/2)atΣxxa. Remarkably, for β0∗ =
β0 + (1/2)βt

xΣxx|z,wβx, the observed data also follow the loglinear mean
model with intercept β0∗ and a new variance parameter σ2

∗. Thus, the
regression calibration approximation is exactly correct for the slope pa-
rameters (βx, βz)! The conclusion holds more generally, requiring only
that X− mX(Z,W, γ) have distribution independent of (Z,W).

4.9 Theoretical Examples

4.9.1 Homoscedastic Regression

The simple homoscedastic linear regression model is mY(z, x,B) = β0 +
βxx + βzz with g2(·) = V 2(·) = 1. If the variance function (4.15) is
homoscedastic, then the approximate model (4.16)–(4.17) is exact in
this case with E(Y|Z,W) = β0 + βxmX(·) + βzZ and var(Y|Z,W) =
σ2 + σ2

rcβ
2
x, that is, a homoscedastic regression model. One sees clearly

that the effect of measurement error is to inflate the error about the
observed line.

In simple linear regression satisfying a Berkson error model with pos-
sibly heteroscedastic calibration variances σ2

rcW
2γ , the approximations

are again exact: E(Y|Z,W) = β0 + βxW + βzZ and var(Y|Z,W) =
σ2

{
1 + β2

x(σ2
rc/σ

2)W2γ
}
. The reader will recognize this as a QVF model,

where the parameter θ = (γ, κ = σ2
rc/σ

2). As long as γ 6= 0, all the pa-
rameters are estimable by standard QVF techniques, without recourse
to validation or replication data.

This problem is an example of a remarkable fact, namely that in Berk-
son error problems, the approximations (4.16) and (4.17) often lead to an
identifiable model, so that the parameters can all be estimated without
recourse to validation data. Of course, if one does indeed have valida-
tion data, then they can be used to improve upon the approximate QVF
estimators.

4.9.2 Quadratic Regression with Homoscedastic Regression Calibration

Ordinary quadratic regression has mean function E(Y|X) = β0+βx,1X+
βx,2X

2. With homoscedastic regression calibration, the observed data
have mean function

E(Y|W) = (β0 + βx,2σ
2) + βx,1mX(W) + βx,2m

2
X

(W)

= β∗
0 + βx,1mX(W) + βx,2m

2
X

(W).

As illustrated in Section 4.8.3, the regression calibration model accu-
rately reflects the observed data in terms of the slope parameters, but
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it is off by a constant, since its intercept β∗
0 differs from β0. Here, how-

ever, the approximate expanded mean model (4.16) is exact, and β0 can
be estimated as long as one has available an estimate of the calibration
variance σ2; see the previous section.

If the error of X about its conditional mean is homoscedastic and
symmetrically distributed, for example, normally distributed, then the
expanded regression calibration model accurately reflects the form of the
variance function for the observed data. Details are given in Appendix
B.3.2. If the error is asymmetric, then the expanded model (4.17) misses
a term involving the third error moment.

4.9.3 Loglinear Mean Model

The loglinear mean model of Section 4.8.3 has E(Y|X) = exp(β0+βxX),
and variance proportional to the square of the mean with constant of
proportionality σ2. If calibration is homoscedastic and normally dis-
tributed, the actual mean function for the observed data is E(Y|W) =
exp

{
β0 + (1/2)β2

xσ2 + βxmX(W)
}
. The mean model of regression cali-

bration is exp {β0 + βxmX(W)}. Regression calibration yields a consis-
tent estimate of the slope βx but not of the intercept.

In this problem, the range-preserving expanded regression calibration
model (4.18) correctly captures the mean of the observed data. Inter-
estingly, it also captures the essential feature of the variance function,
since both the actual and approximate variance functions (4.19) are a
constant times exp {2β0 + 2βxmX(W)}.

Bibliographic Notes and Software

This regression calibration algorithm was suggested as a general ap-
proach by Carroll and Stefanski (1990) and Gleser (1990). Prentice
(1982) pioneered the idea for the proportional hazard model, where it is
still the default option, and a modification of it has been suggested for
this topic by Clayton (1991); see Chapter 14. Armstrong (1985) suggests
regression calibration for generalized linear models, and Fuller (1987,
pp. 261–262) briefly mentioned the idea. Rosner, Willett and Spiegel-
man (1989) and Rosner, Spiegelman, and Willett (1990) developed the
idea for logistic regression into a methodology particularly popular in
epidemiology.

There is a long history of approximately consistent estimates in non-
linear problems, of which regression calibration and the SIMEX method
(Chapter 5) and are the most recent such methods. Readers should
also consult Stefanski and Carroll (1985), Stefanski (1985), Amemiya
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and Fuller (1988), Amemiya (1985, 1990a, 1990b), and Whittemore and
Keller (1988) for other approaches.

Stata (http://www.stata.com/merror) has code for regression calibra-
tion and SIMEX (see next chapter) for generalized linear models. The
programs allow for known measurement error variance, measurement
error variance estimated by replications, bootstrapping, etc. A detailed
example using the Framingham data along with the data are at the book
Web site:
http://www.stat.tamu.edu/∼carroll/eiv.SecondEdition/statacode.php.
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CHAPTER 5

SIMULATION EXTRAPOLATION

5.1 Overview

In this chapter we describe a measurement error bias-correction method
that shares the simplicity, generality, and approximate-inference charac-
teristics of regression calibration. As the previous chapter indicated, re-
gression calibration is ideally suited for problems in which the calibration
function E(X | W) can be estimated reasonably well and to problems
such as generalized linear models. Simulation extrapolation (SIMEX) is
ideally suited to problems with additive measurement error, and more
generally to any problem in which the measurement error generating
process can be imitated on a computer via Monte Carlo methods.

SIMEX is a simulation-based method of estimating and reducing bias
due to measurement error. SIMEX estimates are obtained by adding
additional measurement error to the data in a resampling-like stage, es-
tablishing a trend of measurement error–induced bias versus the variance
of the added measurement error, and extrapolating this trend back to the
case of no measurement error. The technique was proposed by Cook and
Stefanski (1994) and further developed by Stefanski and Cook (1995),
Carroll, Küchenhoff, Lombard, and Stefanski (1996), Devanarayan (1996),
Carroll and Stefanski (1997), and Devanarayan and Stefanski (2002).
SIMEX is closely related to the Monte Carlo corrected score (MCCS)
method described in Chapter 7, and the interested reader may want
to read the present chapter and the MCCS material in Chapter 7 in
combination.

The fact that measurement error in a predictor variable induces bias in
parameter estimates is counterintuitive to many people. An integral com-
ponent of SIMEX is a self-contained simulation study resulting in graph-
ical displays that illustrate the effect of measurement error on parameter
estimates and the need for bias correction. The graphical displays are
useful when it is necessary to motivate or explain a measurement error
model analysis.

SIMEX is very general in the sense that the bias due to measurement
error in almost any estimator of almost any parameter is readily esti-
mated and corrected, at least approximately. In the absence of measure-
ment error, it is often the case that competing estimators are available
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that are consistent for the same parameter, and only differ asymptoti-
cally with respect to sampling variability. However, these same estima-
tors can be differentially affected by measurement error. In Section 5.3.1
we present such an illustrative example and show how SIMEX clearly
reveals the differences in biases.

The key features of the SIMEX algorithm are described in the con-
text of linear regression in the following section. Detailed descriptions
of the method for different measurement error models are then given,
along with an illustrative application to regression through the origin
using weighted least squares estimation. Next, the SIMEX method is
illustrated for different measurement error models using data from the
Framingham Heart Study. The first four sections are sufficient for the
reader wanting a working knowledge of the SIMEX method. Following
the Framingham example, theoretical aspects of SIMEX estimation are
also described.

5.2 Simulation Extrapolation Heuristics

5.2.1 SIMEX in Simple Linear Regression

We describe the basic idea of SIMEX in the context of simple linear
regression with additive measurement error. In Section 5.3 we show how
to extend SIMEX to nonadditive models and provide additional exam-
ples. Suppose that Y = β0 + βxX + ǫ, with additive measurement error
W = X + U, where U is independent of (Y,X) and has mean zero and

variance σ2
u. The ordinary least squares estimate of βx, denoted β̂x,naive,

consistently estimates βxσ2
x/(σ2

x + σ2
u) (Chapter 3) and thus is biased

for βx when σ2
u > 0. For this simple model, the effect of measurement

error on the least squares estimator is easily determined mathematically,
and simple method-of-moments bias corrections are known (Chapter 3;
Fuller, 1987). Thus, in practice, simple linear regression typically would
not be a candidate for SIMEX analysis. However, we use it here to
show that SIMEX provides essentially the same bias corrections as the
method-of-moments.

The key idea underlying SIMEX is the fact that the effect of measure-

ment error on an estimator can be determined experimentally via simula-

tion. In a study of the effect of radiation exposure on tumor development
in rats, one is naturally led to an experiment in which radiation dose is
varied. Similarly, in a study of the biasing effects of measurement error
on an estimator, one is naturally led to an experiment in which the level
of measurement error is varied. So if we regard measurement error as a
factor whose influence on an estimator is to be determined, we consider
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Figure 5.1 A generic SIMEX plot showing the effect on a statistic of adding
measurement error with variance ζσ2

u to the data when estimating a parameter
Θ. The abscissa (x-axis) is ζ, and the ordinate (y-axis) is the estimated coeffi-
cient. The SIMEX estimate is an extrapolation to ζ = −1. The naive estimate
occurs at ζ = 0.

simulation experiments in which the level of the measurement error, as
measured by its variance, is intentionally varied.

To this end, suppose that in addition to the original data used to
calculate β̂x,naive, there are M − 1 additional data sets available, each
with successively larger measurement error variances, say (1 + ζm)σ2

u,
where 0 = ζ1 < ζ2 < · · · < ζM are known. The least squares estimate
of slope from the mth data set, β̂x,m, consistently estimates βxσ2

x/{σ2
x +

(1 + ζm)σ2
u} (Chapter 3; Fuller, 1987).

We can formulate this setup as a nonlinear regression model, with data
{(ζm, β̂x,m), m = 1, . . . ,M}, dependent variable β̂x,m, and independent
variable ζm. Asymptotically, the mean function of this regression has the
form

E(β̂x,m | ζ) = G(ζ) =
βxσ2

x

σ2
x + (1 + ζ)σ2

u

, ζ ≥ 0.

Note that G(−1) = βx. That is, the parameter of interest is obtained
from G(ζ) by extrapolation to ζ = −1. The significance of ζ = −1 will
become apparent later in this chapter and again in Chapter 7. Heuristi-
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cally, it suffices to see that the measurement error variances in our data
sets are equal to (1 + ζm)σ2

u. Ideally, we would like error-free data sets,
and in terms of ζm this corresponds to having (1 + ζm)σ2

u = 0, and thus
ζm = −1.

SIMEX imitates the procedure described above, as illustrated schemat-
ically in Figure 5.1.

• In the simulation step, additional independent measurement errors
with variance ζmσ2

u are generated and added to the original W data,
thereby creating data sets with successively larger measurement error
variances. For the mth data set, the total measurement error variance
is σ2

u + ζmσ2
u = (1 + ζm)σ2

u.

• Next, estimates are obtained from each of the generated contaminated
data sets.

• The simulation and estimation steps are repeated a large number of
times, and the average value of the estimate for each level of contam-
ination is calculated. These averages are plotted against the ζ values
and a regression technique, for example, nonlinear least squares, is
used to fit an extrapolant function to the averaged, error-contaminated
estimates. See Section 5.3.2 for a discussion of extrapolation.

• Extrapolation to the ideal case of no measurement error (ζ = −1)
yields the SIMEX estimate.

5.3 The SIMEX Algorithm

5.3.1 Simulation and Extrapolation Steps

We now explain the SIMEX algorithm in detail for four combinations of
error models and measured data. In the first, a single measurement for
each case is available and the measurement errors are homoscedastic with
a known, or independently estimated, variance. In the second, a single
measurement for each case is available and the measurement errors are
heteroscedastic with known variances. In the third case, replicate mea-
surements are assumed but no additional assumptions are made about
the error variances, that is, it is not assumed that they are known and
they could be homoscedastic or heteroscedastic. In the fourth case, we
show how the method generalizes to certain multiplicative error models
and give some illustrative examples.

We do not discuss the extrapolation step in detail in any of the four
cases that follow. Once a functional form is selected, fitting the extrap-
olant function and extrapolating are routine applications of linear or
nonlinear regression, using ζ as the independent variable and Θ̂(ζ) given
below in equation (5.3) as the dependent variable. However, the choice
of functional form is important, and we discuss that in Section 5.3.2.
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5.3.1.1 Homoscedastic Errors with Known Error Variance

While SIMEX is a general methodology, it is easiest to understand
when there is only a single, scalar predictor X subject to additive error,
though there could be multiple covariates Z measured without error,
and Wi = Xi +Ui, where Ui is a normal random variable with variance
σ2

u, and is independent of Xi, Zi and Yi. Typically, minor violations of
the assumption of normality of the measurement errors is not critical in
practice. We assume that the measurement error variance, σ2

u, is known
or sufficiently well estimated to regard as known.

SIMEX, like regression calibration, is applicable to general estimation
methods, for example, least-squares, maximum likelihood, quasilikeli-
hood, etc. In this section, we will not distinguish among the methods,
but instead will refer to “the estimator” to mean the chosen estima-
tion method computed as if there were no measurement error. We let Θ
denote the parameter of interest.

The first part of the algorithm is the simulation step. As described
above, this involves using simulation to create additional data sets of
increasingly larger measurement error (1 + ζ)σ2

u. For any ζ ≥ 0, define

Wb,i(ζ) = Wi +
√

ζ Ub,i, i = 1, . . . , n, b = 1, . . . , B, (5.1)

where the computer-generated pseudo errors, {Ub,i}n
i=1, are mutually

independent, independent of all the observed data, and identically dis-
tributed, normal random variables with mean 0 and variance σ2

u. We call
Wb,i(ζ) a remeasurement of Wi, because it is a measurement of Wi in
the same statistical sense that Wi is a measurement of Xi.

Note that var(Wi|Xi) = σ2
u, whereas

var{Wb,i(ζ)|Xi} = (1 + ζ)σ2
u = (1 + ζ)var(Wi|Xi). (5.2)

The error variance in the remeasured data has been inflated by a mul-
tiplicative factor, (1 + ζ) in this case, that equals zero when ζ = −1.
Because E{Wb,i(ζ)|Xi} = Xi, (5.2) implies that the mean squared
error of Wb,i as a measurement of Xi defined as MSE{Wb,i(ζ)} =
E[{Wb,i(ζ) − Xi}2|Xi] converges to zero as ζ → −1. This is the key
property of the simulated pseudo data, or remeasured data.

Having generated the remeasured predictors, we compute the corre-
sponding naive estimates. Define Θ̂b(ζ) to be the estimator when the
{Wb,i(ζ)}n

1 are used, and define the average of these estimators as

Θ̂(ζ) = B−1∑B
b=1Θ̂b(ζ). (5.3)

By design, Θ̂(ζ) is the sample mean of {Θ̂b(ζ)}B
1 , and hence is the aver-

age of the estimates obtained from a large number of experiments with
the same amount of measurement error. The reason for averaging over
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many simulations is that we are interested in estimating the extra bias

due to added measurement error, not in inducing more variability, and
averaging reduces the Monte Carlo simulation variation. It is the points
{ζm, Θ̂(ζm)}M

1 that are plotted as filled circles in Figure 5.1. This is the
simulation component of SIMEX.

Note that the components of Θ̂(ζ) are all functions of the same scalar
ζ, and there is a separate extrapolation step for each component of
Θ̂(ζ). The extrapolation step entails modeling each of the components

of Θ̂(ζ) as functions of ζ for ζ ≥ 0 and extrapolating the fitted models
back to ζ = −1. The vector of extrapolated values yields the simu-
lation extrapolation estimator denoted Θ̂simex. In Figure 5.1, the ex-
trapolation is indicated by the dashed line and the SIMEX estimate
is plotted as a cross. Heuristically, the significance of ζ = −1 follows
from the fact that Θ̂(ζ) is calculated from measurements having vari-
ance var{Wb,i(ζ)|Xi} = (1 + ζ)σ2

u, and we want to extrapolate to the
case in which the error variance in the measurements is zero, that is,
(1 + ζ)σ2

u = 0, or equivalently ζ = −1. Note that although we cannot
add measurement error with negative variance, ζσ2

u = −σ2
u, we can add

error with positive variance, determine the form of the bias as a func-
tion of ζ, and extrapolate to the hypothetical case of adding negative
variance (ζ = −1).

5.3.1.2 Heteroscedastic Errors with Known Error Variances

Suppose now that Wi = Xi +Ui, where Ui is a normal random variable
with variance σ2

u,i, is independent of Xi, Zi and Yi, and σ2
u,i is known.

This is not a common error model, but it provides a useful stepping
stone to other, more common heteroscedastic error models. In addition,
it is appropriate when Wi is the mean of ki ≥ 1 replicate measurements,
each having known variance σ2

u, in which case σ2
u,i = σ2

u/ki.
In this case, the only change in the algorithm is that the remeasure-

ment procedure in (5.1) is replaced by

Wb,i(ζ) = Wi +
√

ζ Ub,i, i = 1, . . . , n, b = 1, . . . , B, (5.4)

where the pseudo errors, {Ub,i}n
i=1, are again mutually independent,

independent of all the observed data, and identically distributed, normal
random variables with mean 0 and variance σ2

u,i. Note that

var{Wb,i(ζ)|Xi} = (1 + ζ)σ2
u,i = (1 + ζ)var(Wi|Xi), (5.5)

and E{Wb,i(ζ)|Xi} = Xi. So just as in the preceding case, we see that
the two variances, var(Wb,i(ζ)|Xi) and var(Wi|Xi), differ by a mul-
tiplicative factor that vanishes when ζ = −1, and consequently that
MSE{Wb,i(ζ)} = E[{Wb,i(ζ)−Xi}2|Xi] → 0 as ζ → −1, the key prop-
erty of the remeasured data.
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The averaged naive estimates, Θ̂(ζ), are calculated in exactly the same
way as for the case of the homoscedastic error model. The SIMEX es-
timator, Θ̂simex, is again obtained by modeling and extrapolation to
ζ = −1, as this is the value of ζ for which (1 + ζ)σ2

u,i = 0 for all i.

5.3.1.3 Heteroscedastic Errors with Unknown Variances and Replicate

Measurements

We now consider an error model that allows for arbitrary unknown het-
eroscedastic error variances. SIMEX estimation for this model was devel-
oped and studied by Devanarayan (1996) and Devanarayan and Stefan-
ski (2002). For this model ki ≥ 2 replicate measurements are necessary
for each subject in order to identify the error variances σ2

u,i. The as-
sumed error model is Wi,j = Xi + Ui,j , where Ui,j , j = 1, . . . , ki, are
Normal(0, σ2

u,i), independent of Xi, Zi and Yi with all σ2
u,i unknown.

With replicate measurements, the best measurement of Xi is the mean
Wi,., and we define the so-called naive estimation procedure as doing
the usual, nonmeasurement error analysis, of the data (Yi,Zi,Wi,.)

n
1 .

Because the variances, σ2
u,i, are unknown, we cannot generate remea-

sured data as in (5.4). However, recall that the key property of the
remeasured data is that the variance of the best measurement of Xi is
inflated by the factor 1+ζ. With replicate measurements, we can obtain
such variance-inflated measurements by taking suboptimal linear combi-
nations of the replicate measurements. This is done using random linear
contrasts.

Suppose that cb,i = (cb,i,1, . . . , cb,i,ki
)t is a normalized contrast vector,∑

j cb,i,j = 0 and
∑

j c2
b,i,j = 1. Define

Wb,i(ζ) = Wi,· + (ζ/ki)
1/2∑ki

j=1cb,i,jWi,j , (5.6)

for i = 1, . . . , n, b = 1, . . . , B. With this definition, a little calculation
indicates that E{Wb,i(ζ)|Xi} = Xi and

var{Wb,i(ζ)|Xi} = (1 + ζ)σ2
u,i/ki = (1 + ζ)var(Wi,·|Xi). (5.7)

Thus the remeasurements Wb,i(ζ) from (5.6) have the same key prop-
erties as the remeasurements in (5.1) and (5.4), that is, the variances of
the error in the remeasurements are inflated by a multiplicative factor
that vanishes when ζ = −1, and MSE{Wb,i(ζ)} → 0 as ζ → −1.

Because we want to average over B remeasured data sets, we need
a way to generate random, replicate versions of (5.6). We do this by
making the contrasts random. We get statistical replicates of Wb,i(ζ)
by sampling cb,i uniformly from the set of all normalized contrast vec-
tors of dimension ki. This is easily accomplished using pseudorandom
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Normal(0, 1) random variables. If Zb,i,1, . . . , Zb,i,ki
are Normal(0, 1), then

cb,i,j =
Zb,i,j − Zb,i,·√∑ki

j=1

(
Zb,i,j − Zb,i,·

)2
, (5.8)

are such that
∑

j cb,i,j = 0 and
∑

j c2
b,i,j = 1. Furthermore, the random

contrast vector cb,i = (cb,i,1, . . . , cb,i,ki
)t is uniformly distributed on the

set of all normalized contrast vectors of dimension ki (Devanarayan and
Stefanski, 2002).

The averaged naive estimates, Θ̂(ζ), are calculated in exactly the same

way as for the previous two cases. Also, the SIMEX estimator, Θ̂simex,
is again obtained by modeling the relationship between Θ̂(ζ) and ζ,
and extrapolating to ζ = −1. Because this version of SIMEX generates
pseudo errors from the observed data (via the random contrasts), we
call it empirical SIMEX to distinguish it from versions of SIMEX that
generate pseudo errors from a parametric normal model, for example,
the Normal(0, σ2

u) model.

5.3.1.4 Nonadditive Measurement Error

Thus far, we have described the SIMEX algorithm for additive measure-
ment error models. However, SIMEX applies more generally and is often
easily extended to other error models (Eckert, Carroll, and Wang, 1997).

For example, consider multiplicative error. Taking logarithms trans-
forms the multiplicative model to the additive model, but as discussed
in Section 4.5, some investigators feel that the most appropriate predic-
tor of Y is X on the original, not log, scale. In regression calibration,
multiplicative error is handled in special ways; see Section 4.5. SIMEX
works more naturally, in that one performs the simulation step (5.1) on
the logarithm of W, and not on W itself. To see this, suppose that the
observed data error model is

log(Wi) = log(Xi) + Ui,

where Ui are Normal(0, σ2
u). The remeasured data are obtained as

log{Wb,i(ζ)} = log(Wi) +
√

ζUb,i,

where Ub,i are Normal(0, σ2
u) pseudorandom variables. Note that upon

transformation

Wb,i(ζ) = exp{log(Wi) +
√

ζUb,i}. (5.9)

In the previous three examples, the key property of the remeasured
data was the fact that variance was increased by the multiplicative factor
1 + ζ — see equations (5.2), (5.5) and (5.7) — and that this multiplier
vanishes when ζ = −1. The multiplicative model has a similar property.
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However, because the error model is not unbiased on the natural scale
(E(Wi|Xi) = Xie

σ2

u
/2 6= Xi), the relevant measure is mean squared

error, not variance. Tedious but routine calculations show that, for the
multiplicative model,

MSE{Wb,i(ζ)|Xi} = c(ζ, σ2
u) MSE{Wi|Xi}, (5.10)

where

c(ζ, σ2
u) =

{eσ2

u
(1+ζ) − 1}2 + eσ2

u
(1+ζ){eσ2

u
(1+ζ) − 1}

{eσ2
u − 1}2 + eσ2

u{eσ2
u − 1} ,

is such that c(0, σ2
u) = 1, c(ζ, σ2

u) is increasing in ζ > 0 for all σ2
u, and

limζ→−1 c(ζ, σ2
u) = 0. Thus (5.10) is the biased error model counterpart

of (5.2), (5.5), and (5.7).
In the multiplicative model used above, Wi is biased for Xi because

Ui is assumed to have a mean of 0. An alternative assumption is that
Wi is unbiased for Xi, which requires that E(Ui) = −σ2

u/2. This as-
sumption was used in Section 4.5.2. Either assumption is plausible but,
unfortunately, neither can be checked without validation data. If one is
certain that E(Ui) = 0, then one might divide Wi by exp(σ2

u/2) to get
a surrogate that is unbiased. However, we did not do this here because,
by definition, the naive analysis is to leave Wi unchanged.

For more general, nonmultiplicative error models, suppose that we
can transform W to an additive model by a transformation H, so that
H(W) = H(X) + U. This is an example of the transform-both-sides
model; see (4.21). If H has an inverse function G, then the simulation
step generates

Wb,i(ζ) = G
{
H(Wi) +

√
ζUb,i

}
.

In the multiplicative model, H = log and G = exp. A standard class of
transformation models is the power family discussed in Section 4.7.3. If
replicate measurements are available, one can also investigate the ap-
propriateness of different transformations; see Section 1.7 for a detailed
discussion. As mentioned there, after transformation the standard devi-
ation of the intraindividual replicates should be uncorrelated with their
mean, and one can find the power transformation which makes the two
uncorrelated.

We now present a simple, yet instructive example with multiplicative
measurement error. In addition to illustrating the SIMEX method in a
nonadditive error model, the example also shows that estimators of the
same parameter can be differentially affected by measurement error, and
that SIMEX provides insight into the differential sensitivity of estimators
to measurement error.
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The true-data model is regression through the origin,

Yi = βXi + ǫi

where the equation errors have mean zero and finite variances, and the
error model for the observed data is additive on the log scale

log(Wi) = log(Xi) + Ui, (5.11)

where Ui are Normal(0, σ2
u) with the error variance assumed known.

We consider five weighted least squares estimators with weights pro-
portional to powers of the predictor. The true-data estimators considered
are

β̂(p) =

∑n
1 YiX

1−p
i∑n

1 X
2−p
i

, (5.12)

for p = 0 (ordinary least squares), p = 1/2, p = 1 (ratio estimation),
p = 3/2, and p = 2 (mean of ratios). The corresponding naive estimators,

β̂(p),naive, are obtained by replacing Xi with Wi in (5.12). In the absence
of measurement error, all five estimators are unbiased, and the choice
among them would be made on the basis of efficiency, as dictated by the
assumed or modeled heteroscedasticity in ǫi.

We generated a data set of size n = 100 from the regression-through-
the-origin model with the ǫi independent and identically distributed
Normal(0, σ2

ǫ ), and the predictors X1, . . . ,Xn distributed as a shifted
and scaled chi-squared, Xi = (χ2

5 + 1)/
√

46 where E(X2
i ) = 1, σ2

ǫ =
0.125, σ2

u = 0.25, and β = 1.0. Then we applied the multiplicative error
model SIMEX procedure (5.9) for each of the five estimators (5.12).

The error-free data pairs (Xi,Yi) are plotted in the top-left panel
of Figure 5.2, and observed data pairs (Wi,Yi) in the top-right panel.
The lower-left panel displays an overlay of the points generated in the
SIMEX simulation step (B = 500) for each of the five estimators. A cor-
responding overlay of the SIMEX extrapolations appears in the lower-
right panel. Quadratic extrapolant functions were used. The five recog-
nizable point plots in the lower left panel and the five curves in the lower
right panel, in order lower to upper, correspond to the estimators with
p = 0, 1/2, 1, 3/2 and 2.

Note that although the five estimators are differentially affected by
measurement error, the SIMEX estimator for each is corrected appro-
priately, as evidenced by the clustering of the extrapolations to ζ = −1
around the true parameter values β = 1 in the lower-right panel. In this
example, the simple quadratic extrapolant adequately adjusts for bias.

Figure 5.2 indicates that measurement error attenuates the weighted
least squares estimators (5.12) with p = 0, 1/2, and 1 (decreasing
curves); expands the estimator (bias away from zero) with p = 2 (in-
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Figure 5.2 Regression through the origin: weighted least squares estimation
with multiplicative measurement error. Top left, true data; top right, observed
data; bottom left, β̂(p)(ζ) estimates calculated in the simulation step (B = 500);
bottom right, extrapolation with quadratic extrapolant; bottom two plots, p =
0, 1/2, 1, 3/2, 2, lower to upper.
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creasing curve); and has no biasing effects on the estimator with p = 1.5
(horizontal curve). Remember that all of the estimators are consistent
with error-free data. Thus, this example shows that bias can depend
on the method of estimation, in addition to showing that expansion is
possible.

For this simple model, we can do the mathematics to explain the
apparent trends in Figure 5.2. Using properties of the normal distri-
bution moment generating function, one can show that as n → ∞,
β̂(p),Naive → β(p) where

β(p) = βexp{(2p − 3)σ2
u/2}. (5.13)

The exponent in (5.13) is negative when p < 1.5 (attenuation), positive
when p > 1.5 (expansion), and equal to zero when p = 1.5 (no bias).
Thus, among the class of weighted least squares estimators (5.12), there

is one estimator that is robust to measurement error: β̂(p) with p = 1.5.
A point we want to emphasize is that the estimators from the SIMEX

extrapolation step revealed the robustness of β̂(1.5) quite convincingly,
and it can do so for more complicated estimators for which mathematical
analysis is intractable. Huang, Stefanski, and Davidian (2006) presented
methods for testing the robustness of estimators to measurement error
using estimates from the SIMEX simulation step. An overview of their
method is given in Section 5.6.3.

Finally, we note that the measurement error robustness of the weighted
least squares estimator with p = 1.5 depends critically on the assumed
error model (5.11). Had we started with an error model for which W is
unbiased for X on the untransformed scale, that is, E(W|X) = X, then
it is readily seen the usual ratio estimator (p = 1) is consistent for β.

5.3.2 Extrapolant Function Considerations

It follows from the results in Stefanski and Cook (1995) that, under
fairly general conditions, asymptotically there is a function of ζ, that,
when extrapolated to ζ = −1, the true parameter is obtained. However,
this function is seldom known, so it is usually estimated by one of a few
simple functional forms. This is what makes SIMEX an approximate
method in practice.

As mentioned previously, SIMEX is closely related to the Monte Carlo
corrected score (MCCS) method described in Chapter 7. In fact, MCCS
is an asymptotically exact-extrapolant version of SIMEX for models sat-
isfying certain smoothness conditions. In other words, MCCS is a version
of SIMEX that avoids extrapolation functions. However, MCCS is both
mathematically and computationally more involved, whereas SIMEX
only requires repeated application of the naive estimation method. Be-
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cause there are certain regression models for which the asymptotic func-
tional forms are known, and these provide good approximate extrapolant
functions for use in other models, SIMEX remains an attractive alterna-
tive to MCCS.

In Section 5.3.4.1, we will define what we mean by non-iid pseudo

errors. In multiple linear regression with these non-iid pseudo errors,
the extrapolant function,

GRL(ζ, Γ) = γ1 +
γ2

γ3 + ζ
=

γ1γ3 + γ2 + γ1ζ

γ3 + ζ
, (5.14)

where Γ = (γ1, γ2, γ3)
t, reproduces the usual method-of-moments esti-

mators; see Section 5.5.1. Because GRL(ζ, Γ) is a ratio of two linear
functions we call it the rational linear extrapolant.

SIMEX can be automated in the sense that GRL(ζ,Γ) can be employed
to the exclusion of other functional forms. However, this is not recom-
mended, especially in new situations where the effects of measurement
error are not reasonably well understood. For one thing, as described
below and seen in Küchenhoff and Carroll (1995), sometimes the ra-
tional linear extrapolant has wild behavior. SIMEX is a technique for
studying the effects of measurement error in statistical models and ap-
proximating the bias due to measurement error. The extrapolation step
should be approached as any other modeling problem, with attention
paid to adequacy of the extrapolant based on theoretical considerations,
residual analysis, and possibly the use of linearizing transformations. Of
course, extrapolation is risky in general even when model diagnostics fail
to indicate problems, and this should be kept in mind.

In many problems of interest the magnitude of the measurement error
variance, σ2

u, is such that the curvature in the best or “true” extrapolant
function is slight and is adequately modeled by either GRL(ζ,Γ) or the
simple quadratic extrapolant,

GQ(ζ,Γ) = γ1 + γ2ζ + γ3ζ
2. (5.15)

An advantage of the quadratic extrapolant is that it is often numer-
ically more stable than GRL(ζ,Γ). Instability of the rational linear ex-
trapolant can occur, for example, when the effects of measurement error
on a parameter are negligible and a constant, or nearly constant, extrap-
olant function is required. Such situations arise, for example, with the
coefficient of an error-free covariate Z that is uncorrelated with W. In
this case, in (5.14) γ2 ≈ 0 and γ3 is nearly unidentifiable. In cases where
GRL(ζ,Γ) is used to model a nearly horizontal line, γ̂1 and γ̂2 are well
determined, but γ̂3 is not. Problems arise when 0 < γ̂3 < 1, for then the
fitted model has a singularity in the range of extrapolation [−1, 0). The
problem is easily solved by fitting GQ(ζ,Γ) in these cases. The quadratic
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extrapolant typically results in conservative corrections for attenuation;
however, the increase in bias is often offset by a reduction in variability.
Of course, problems with the rational linear extrapolant need not be
confined to situations as just described.

Simulation evidence and our experience with applications thus far
suggest that the extrapolant be fit for ζ in the range [0, ζmax], where
1 ≤ ζmax ≤ 2. We denote the grid of ζ values employed by Λ, that is,
Λ = (ζ1, ζ2, . . . , ζM ), where typically ζ1 = 0 and ζM = ζmax.

The quadratic extrapolant is a linear model and thus is easily fit. The
rational linear extrapolant generally requires a nonlinear least squares
program to fit the model. However, it is possible to obtain exact analytic
fits to three points, and this provides a means of obtaining good starting
values.

Let ζ∗0 < ζ∗1 < ζ∗2 and define dij = ai − aj , 0 ≤ i < j ≤ 2. Then fitting
GRL(ζ,Γ) to the points {aj , ζ∗j }2

0 results in parameter estimates

γ̂3 =
d12ζ

∗
2 (ζ∗1 − ζ∗0 ) − ζ∗0d01(ζ

∗
2 − ζ∗1 )

d01(ζ∗2 − ζ∗1 ) − d12(ζ∗1 − ζ∗0 )

γ̂2 =
d12(γ̂3 + ζ∗1 )(γ̂3 + ζ∗2 )

ζ∗2 − ζ∗1

γ̂1 = a0 −
γ̂2

γ̂3 + ζ∗0
.

An algorithm we employ successfully to obtain starting values for fit-
ting GRL(ζ,Γ) starts by fitting a quadratic model to {ζm, θ̂(ζm)}M

1 , where
the ζm are equally spaced over [0, ζmax]. Initial parameter estimates for
fitting GRL(ζ,Γ) are obtained from a three-point fit to (âj , ζ

∗
j )20, where

ζ∗0 = 0, ζ∗1 = ζmax/2, ζ∗2 = ζmax and âj is the predicted value correspond-
ing to ζ∗j from the fitted quadratic model. In our experience, initial values
obtained in this fashion are generally very good and frequently differ in-
significantly from the fully iterated, nonlinear least squares parameter
estimates.

5.3.3 SIMEX Standard Errors

Inference for SIMEX estimators can be performed either via the boot-
strap or the theory of M-estimators (Section A.6), in particular by means
of the sandwich estimator. Because of the computational burden of the
SIMEX estimator, the bootstrap requires considerably more computing
time than do other methods. Without efficient implementation of the
estimation scheme at each step, even with current computing resources
the SIMEX bootstrap may take an inconveniently long (clock) time to
compute. In STATA’s implementation of generalized linear models with
measurement error (see http://www.stata.com/merror), the implemen-
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tation is extremely efficient, and bootstrap standard errors for SIMEX
take place in fast (clock) time. Even with our own implementation, most
bootstrap applications take place in a reasonable (clock) time.

Asymptotic covariance estimation methods based on the sandwich es-
timator are described in Section B.4.2. These are easy to implement
in specific applications but require additional programming. However,
when σ2

u is known or nearly so, the SIMEX calculations themselves ad-
mit a simple standard error estimator. Here, we consider only the case of
homoscedastic measurement error. For the case of heteroscedastic error
and empirical SIMEX, see Devanarayan (1996).

Let τ̂2
b (ζ) be any variance estimator attached to Θ̂b(ζ), for example,

the sandwich estimator or the inverse of the information matrix, and
let τ̂2(ζ) be their average for b = 1, . . . , B. Let s2

∆(ζ) be the sample

covariance matrix of the terms Θ̂b(ζ) for b = 1, . . . , B. Then, as shown
in Section B.4.1, variance estimates for the SIMEX estimator can be
obtained by extrapolating the components of the differences, τ̂ 2(ζ) −
s2
∆(ζ), to ζ = −1. When τ̂ 2(ζ) is estimated by the Fisher information

matrix or sandwich formula, then the extrapolant is called the SIMEX

Information or SIMEX Sandwich variance estimator, respectively.

5.3.4 Extensions and Refinements

5.3.4.1 Modifications of the Simulation Step

There is a simple modification to the simulation step that is sometimes
useful. As described above, the pseudo errors are generated indepen-
dently of (Yi,Zi,Wi)

n
1 as Normal(0, σ2

u) random variables. The Monte

Carlo variance in Θ̂(ζ) can be reduced by the use of pseudo errors con-
strained so that for each fixed b, the sequence (Ub,i)

n
i=1 has mean zero,

population variance σ2
u, that is,

∑n
i=1 U2

b,i = nσ2
u, and its sample correla-

tions with (Yi, Zi, Wi)
n
1 are all zero. We call pseudo errors constrained

in this manner non-iid pseudo errors. In some simple models, such as
linear regression, the Monte Carlo variance is reduced to zero by the use
of non-iid pseudo errors.

The non-iid pseudo errors are generated by first generating indepen-
dent standard normal pseudo errors (U∗

b,i)
n
1 . Next, fit a linear regression

model of the pseudo errors on (Yi,Zi,Wi)
n
1 , including an intercept. The

non-iid pseudo errors are obtained by multiplying the residuals from this
regression by the constant

c =
[
nσ2

u/{(n − p − 1) MSE }
]1/2

,

where MSE is the usual linear regression mean squared error, and p is
the dimension of (Y,Zt,Wt)t.
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5.3.4.2 Estimating the Measurement Error Variance

When the measurement error variance σ2
u is unknown, it must be es-

timated with auxiliary data, as described in Chapter 4; see especially
(4.3). The estimate is then substituted for σ2

u in the SIMEX algorithm,
and standard errors are calculated as described in Section B.4.2.

5.3.5 Multiple Covariates with Measurement Error

So far, it has been assumed that X is scalar. For the case of a multivariate
X, only a minor change is needed. Suppose that Wi = Xi + Ui and Ui

is Normal(0,Σu), that is, Ui is multivariate normal with mean zero and
covariance matrix Σu. Then, to generate the pseudo errors we again use
(5.4) and ζ remains a scalar, the only change being that now Ub,i is
generated as Normal(0,Σu). Note that we again have E{Wb,i(ζ)|Xi} =
Xi and

var{Wb,i(ζ)|Xi} = (1 + ζ)Σu = (1 + ζ)var(Wi|Xi), (5.16)

which is the multivariate counterpart of (5.2). Extrapolation is, in prin-
ciple, the same as in the scalar X case because ζ is a scalar even for
multivariate X. However, the number of remeasured data sets, B, re-
quired to achieve acceptable Monte Carlo estimation precision will gen-
erally need to be larger when there are multiple covariates measured
with error. This is because the Monte Carlo averaging in the simula-
tion step, see (5.3), is effectively a means of numerical integration. As
with any numerical integration method, higher-dimensional integration
requires greater computational effort for comparable levels of precision.
Also, less is known about the general utility of the simple extrapolant
functions, for example, the quadratic, in the multivariate X case, espe-
cially for data with large measurement error variances and either strong
multicollinearity among the X variables or high correlation among the
measurement errors.

5.4 Applications

5.4.1 Framingham Heart Study

We illustrate the methods using data from the Framingham Heart Study,
correcting for bias due to measurement error in systolic blood pressure
and serum cholesterol measurements. The Framingham study consists
of a series of exams taken two years apart. We use Exam #3 as the
baseline. There are 1,615 men aged 31–65 in this data set, with the
outcome, Y, indicating the occurrence of coronary heart disease (CHD)
within an eight-year period following Exam #3; there were 128 cases
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of CHD. Predictors employed in this example are the patient’s age at
Exam #2, smoking status at Exam #1, serum cholesterol at Exam #3,
and systolic blood pressure (SBP) at Exam #3, the last is the average
of two measurements taken by different examiners during the same visit.

In order to illustrate the various SIMEX methods we do multiple anal-
yses. In the first set of analyses, we treat serum cholesterol as error free,
so that the only predictor measured with error is SBP. In these anal-
yses, the error-free covariates Z, are age, smoking status, and serum
cholesterol. For W, we employ a modified version of a transformation
originally due to Cornfield and discussed by Carroll, Spiegelman, Lan,
et al. (1984), setting W = log(SBP − 50). Implicitly, we are defining
X as the long-term average of W. In the final analysis, we illustrate
SIMEX when there are two predictors measured with error: SBP and
serum cholesterol.

5.4.2 Single Covariate Measured with Error

In addition to the variables discussed above, we also have SBP measured
at Exam #2. The mean transformed SBP at Exams #2 and #3 are 4.37
and 4.35, respectively. Their difference has mean 0.02, and standard
error 0.0040, so that the large-sample test of equality of means has p-
value < 0.0001. Thus in fact, the measurement at Exam #2 is not exactly

a replicate, but the difference in means from Exam #2 to Exam #3 is
close to negligible for all practical purposes.

We present two sets of analyses. Both use the full complement of
replicate measurements from Exams #2 and #3. We calculate estimates
and standard errors for the naive method, regression calibration, and
two versions of SIMEX: SIMEX assuming homoscedastic measurement
errors, and empirical SIMEX allowing for possibly heteroscedastic errors.
The regression calibration and homoscedastic SIMEX analyses use a
pooled estimate of σ2

u from the full complement of replicates. In this
case, the large degrees of freedom for estimating σ2

u means that there
is very little penalty in terms of added variability for estimating the
measurement error variance.

5.4.2.1 SIMEX and Homoscedastic Measurement Error

This analysis uses the replicate SBP measurements from Exams #2 and
#3 for all study participants. The transformed data are Wi,j , where
i denotes the individual and j = 1, 2 refers to the transformed SBP
at Exams #2 and #3, respectively. The overall surrogate is Wi,·, the
sample mean for each individual. The model is

Wi,j = Xi + Ui,j ,
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Age Smoke Chol LSBP

Naive .055 .59 .0078 1.70
Sand. .010 .24 .0019 .39
Info. .011 .24 .0021 .41

Reg. Cal. .053 .60 .0077 2.00
Sand.1 .010 .24 .0019 .46
Info.1 .011 .25 .0021 .49
Sand.2 .010 .24 .0019 .46
Bootstrap .010 .25 .0019 .46

SIMEX .053 .60 .0078 1.93
Simex, Sand.3 .010 .24 .0019 .43
Simex, Info.3 .011 .25 .0021 .47
M-est. 4 .010 .24 .0019 .44

Empirical SIMEX5 .054 .60 .0078 1.94
Simex, Sand. .011 .24 .0020 .44
Simex, Info. .012 .25 .0021 .47
M-est. .011 .24 .0020 .44

Table 5.1 Estimates and standard errors from the Framingham data logistic
regression analysis. This analysis assumes that all observations have replicated
SBP. “Naive” = the regression on average of replicated SBP. “Sand.” = sand-
wich standard errors. “Info.” = information standard errors. Also, 1 = calibra-
tion function known; 2 = calibration function estimated; 3 = σ2

u known; 4 = σ2
u

estimated; and 5 = Empirical SIMEX with no assumptions on measurement er-
ror variances (standard errors computed as for regular SIMEX). Here “Smoke”
is smoking status, “Chol” is cholesterol, and “LSBP” is log(SBP−50).

where the Ui,j have mean zero and variance σ2
u. The components of

variance estimator (4.3) is σ̂2
u = 0.01259.

We employ SIMEX using W∗
i = Wi,· and U∗

i = Ui,·. The sample vari-
ance of (W∗

i )n
1 is σ̂2

w,∗ = 0.04543, and the estimated measurement error
variance is σ̂2

u,∗ = σ̂2
u/2 = 0.00630. Thus, the linear model correction for

attenuation, that is, the inverse of the reliability ratio, for these data is
1.16, so that there is only a small amount of measurement error. There
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are 1,614 degrees of freedom for estimating σ̂2
u,∗ and thus, for practical

purposes, the measurement error variance is known.
In Table 5.1, we list the results of the naive analysis that ignores mea-

surement error, the regression calibration analysis, and the SIMEX anal-
ysis. For the naive analysis, “Sand.” and “Info.” refer to the sandwich
and information standard errors discussed in Appendix A; the latter is
the output from standard statistical packages.

For the regression calibration analysis, the first set of sandwich and
information standard errors are those obtained from a standard logistic
regression analysis having substituted the calibration equation for W,
and ignoring the fact that the equation is estimated. The second set
of sandwich standard errors are as described in Section B.3, while the
bootstrap analysis uses the methods of Appendix A.

For the SIMEX estimator, M-estimator refers to estimates derived
from the theory of Section B.4.2 for the case where σ2

u is estimated from
the replicate measurements. Sandwich and Information refer to estimates
defined in Section B.4.1, with τ̂ 2(ζ) derived from the naive sandwich and
naive information estimates, respectively. The M-estimation sandwich
and SIMEX sandwich standard errors yield nearly identical standard
errors because σ2

u is so well estimated.

Figure 5.3 contains plots of the logistic regression coefficients Θ̂(ζ)
for eight equally spaced values of ζ spanning [0, 2] (solid circles). The

points plotted at ζ = 0 are the naive estimates Θ̂naive. For this example,
B = 2000. Because of double averaging over n and B, taking B this
large is not necessary in general (see the related discussion of corrected
scores for linear regression in Section 7.2.1). However, there is no harm
in taking B large, unless computing time is an issue.

The nonlinear least-squares fits of GRL(ζ,Γ) to the components of

{ζm, Θ̂(ζm)}8
1 (solid curves) are extrapolated to ζ = −1 (dashed curves)

resulting in the SIMEX estimators (crosses). The open circles are the
SIMEX estimators that result from fitting quadratic extrapolants, which
are essentially the same as the rational linear extrapolants — not sur-
prising given the small amount of measurement error in this example.

We have stated previously that the SIMEX plot displays the effect of
measurement error on parameter estimates. This is especially noticeable
in Figure 5.3. In each of the four graphs in Figure 5.3, the range of
the ordinate corresponds to a one-standard error confidence interval for
the naive estimate constructed using the information standard errors.
Thus, Figure 5.3 illustrates the effect of measurement error relative to
the variability in the naive estimate. It is apparent that the effect of
measurement error is of practical importance only on the coefficient of
log(SBP − 50).

The SIMEX sandwich and the M-estimator (with σ2
u estimated) meth-
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Figure 5.3 Coefficient extrapolation functions for the Framingham logistic re-
gression modeling. The simulated estimates {β̂(·)(ζm), ζm}8

1 are plotted (solid
circles) and the fitted rational linear extrapolant (solid line) is extrapolated
to ζ = −1 (dashed line), resulting in the SIMEX estimate (cross). Open cir-
cles indicate SIMEX estimates obtained with the quadratic extrapolant. The
coefficient axis labels for Age are multiplied by 102, for Smoking by 101, for
Cholesterol by 103, and for Log(SBP−50) by 100. Naive and SIMEX estimate
values in the graphs are in original units of measurement.

ods of variance estimation yield similar results in this example. The dif-
ference between the SIMEX sandwich and information methods is due
to differences in the naive sandwich and information methods for these
data.

Figure 5.4 displays the variance extrapolant functions fit to the com-
ponents of τ̂2(ζ)−s2

∆(ζ) used to obtain the SIMEX information variances
and standard errors. The figure is constructed using the same conven-
tions used in the construction of Figure 5.3. For these plots, the ranges
of the ordinates are (1/2)v̂ar(naive) to (4/3)v̂ar(naive), where v̂ar(naive)
is the information variance estimate of the naive estimator.
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Figure 5.4 Variance extrapolation functions for the Framingham logistic re-
gression variance estimation. Values of {(τ̂ 2(ζm) − s2

∆(ζm)), ζm}8
1 for each

coefficient estimate (see Section 5.3.3 for definitions of τ̂ 2(ζm) and s2
∆(ζm))

are plotted (solid circles) and the fitted rational linear extrapolant (solid line)
is extrapolated to ζ = −1 (dashed line), resulting in the SIMEX variance es-
timate (cross). Open circles indicate SIMEX variance estimates obtained with
the quadratic extrapolant. Naive variance estimates are obtained via the sand-
wich formula. The coefficient axis labels for Age are multiplied by 104, for
Smoking by 102, for Cholesterol by 106, and for Log(SBP−50) by 101. Naive
and SIMEX estimate values in the graphs are in original units of measurement.

5.4.2.2 Empirical SIMEX and Heteroscedastic Measurement Error

For the analysis in this section, we use the same data as in the previous
analysis. However, the model is now

Wi,j = Xi + Ui,j ,

where the Ui,j have mean zero and variance σ2
u,i. That is, the assumption

of homogeneity of variances is not made, and we use empirical SIMEX
as described in Section 5.3. The results of the analysis are reported in
Table 5.1. For the empirical SIMEX estimator, standard errors were
calculated as described in Devanarayan (1996) and are the empirical
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SIMEX counterparts of the three versions of regular SIMEX standard
errors.

5.4.3 Multiple Covariates Measured with Error

In this section, we consider a model with two predictors measured with
error and use it to illustrate both the SIMEX method and the STATA
computing environment for SIMEX estimation. The true-data model is
similar to that considered in the first analysis in this section. The major
difference is that we now regard serum cholesterol as measured with error
and use the repeat measurements from Exams #2 and #3 to estimate
the measurement error variance.

Preliminary analysis of the duplicate measures of cholesterol indicated
that the measurement error is heteroscedastic with variation increasing
with the mean. In the previous analyses, cholesterol was regarded as error
free, and thus error modeling issues did not arise. Now that we regard
cholesterol as measured with error, it makes sense to consider trans-
formations to simplify the error model structure. In this case, simply
taking logarithms homogenizes the error variance nicely. This changes
our true-data model from the one considered in the preceding section to
the logistic model with predictors Z1 = age, Z2 = smoking status, X1 =
log(cholesterol) at Exam #3, and X2 = log(SBP−50) at Exam #3.

The assumed error model is (W1,W2) = (X1,X2) + (U1,U2), where
(U1,U2) is bivariate normal with zero mean and covariance matrix Σu.
The error covariance matrix was estimated by one-half the sample co-
variance matrix of the differences between the Exam #2 and Exam #3
measurements of X1 and X2, resulting in

Σ̂u =

(
0.00846 0.000673
0.000673 0.0126

)
. (5.17)

The estimated correlation is small, .065, but significantly different from
zero (p-value = .0088), so we do not assume independence of the mea-
surement errors.

The two error variances correspond to marginal reliability ratios of
λ1 = 0.73 and λ2 = 0.76, respectively, for W1 and W2. Thus, in the
absence of strong multicollinearity, we expect the SIMEX estimates of
the coefficients of log(cholesterol) and log(SBP−50) to be approximately
1/λ1 = 1.37 and 1/λ2 = 1.32 times as large as the corresponding naive
estimates.

Following is the STATA code and output for the naive analysis:

. qvf firstchd age smoke lcholest3 lsbp3, family(binomial)

Generalized linear models No. of obs = 1615
Optimization : MQL Fisher scoring Residual df = 1610
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(IRLS EIM) Scale param = 1
Deviance = 824.240423 (1/df) Deviance = .5119506
Pearson = 1458.82744 (1/df) Pearson = .906104
Variance Function: V(u) = u(1-u) [Bernoulli]
Link Function : g(u) = log(u/(1-u)) [Logit]
Standard Errors : EIM Hessian

firstchd Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .056446 .0117413 4.81 0.000 .0334334 .0794585

smoke .572659 .2498046 2.29 0.022 .0830509 1.062267

lcholest3 2.039176 .5435454 3.75 0.000 .9738468 3.104506

lsbp3 1.518676 .3889605 3.90 0.000 .7563275 2.281025

_cons -23.39799 3.413942 -6.85 0.000 -30.0892 -16.70679

The STATA code and output for the SIMEX analysis appear below.
Prior to running this STATA code, the elements of the estimated error
covariance matrix, Σ̂u in (5.17) were assigned to V and are input to
the SIMEX procedure with the command suuinit(V). One subtlety in
STATA is that the order of the predictor-variable variances along the di-
agonal of V, must correspond to the order of the variables measured with
error listed in the STATA simex command. In this example, wcholest is
the first variable measured with error and wlsbp is the second, and so
their error variances are placed in the (1, 1) and (2, 2) components of V
respectively.

. simex (firstchd = age smoke) (wcholest:lcholest3)
(wlsbp:lsbp3), family(binomial) suuinit(V) bstrap seed(10008)
Estimated time to perform bootstrap: 2.40 minutes.

Simulation extrapolation No. of obs = 1615
Bootstraps reps = 199

Residual df = 1610 Wald F(4,1610) = 24.10
Prob > F = 0.0000

Variance Function: V(u) = u(1-u) [Bernoulli]
Link Function : g(u) = log(u/(1-u)) [Logit]

Bootstrap

firstchd Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0545443 .0099631 5.47 0.000 .0350023 .0740863

smoke .5803764 .2638591 2.20 0.028 .0628329 1.09792

wcholest 2.5346 .7278619 3.48 0.001 1.106944 3.962256

wlsbp 1.84699 .4529421 4.08 0.000 .9585718 2.735408

_cons -27.44831 4.231603 -6.49 0.000 -35.74834 -19.14828

STATA also provides SIMEX plots for visually assessing the extrapo-
lation step. The variables Z1 = age and Z2 = smoking status are not
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affected by measurement error much, so we only present the SIMEX
plots for X1 = log(cholesterol) and X2 = log(SBP−50) in Figure 5.5.
Note that whereas we use ζ as the variance inflation factor for SIMEX
remeasured data, the default in STATA is to identify this parameter as
“Lambda.”

Note that with the SIMEX analysis there is substantial bias correction
in the coefficients for the coefficients of log(cholesterol) and log(SBP−50),
but not quite as large as predicted from the inverse marginal reliabil-
ity ratios, c.f., for log(cholesterol) (1.37)(2.04) = 2.79, for log(SBP−50)
(1.32)(1.52) = 2.01. Three factors contribute to the differences. First,
whereas the marginal reliability ratios provide a useful rule of thumb for
determining bias corrections, they do not account for collinearity among
the predictors or for correlation among the measurement errors. The
proper rule-of-thumb multiplier in this case is the inverse of the relia-
bility matrix (Gleser, 1992), but because it is matrix-valued it is not as
readily computed and so not as useful. Second, there is variability in the
SIMEX estimates associated with the choice of B. In STATA the default
is B = 199, but this can be overridden using the breps() command. For
these data, increasing B to 1,000 results in greater corrections for attenu-
ation (we got estimated coefficients for log(cholesterol) and log(SBP−50)
of 2.65 and 1.86, respectively). Recall that for multiple predictors mea-
sured with error, greater replication is necessary. Finally, the default
extrapolant in STATA is the quadratic, which generally results in some-
what less correction for bias than the rational linear extrapolant. Using
the rational-linear extrapolant, we got estimates for log(cholesterol) and
log(SBP−50) of 2.76 and 1.89, respectively.

5.5 SIMEX in Some Important Special Cases

This section describes the bias-correction properties of SIMEX in four
important special cases.

5.5.1 Multiple Linear Regression

Consider the multiple linear regression model

Yi = β0 + βt
zZi + βxXi + ǫi.

In the notation of Section 5.3, Θ = (β0, β
t
z, βx)t. If non-iid pseudo errors

are employed in the SIMEX simulation step, it is readily seen that

Θ̂(ζ) =





n∑

i=1




1 Zt
i Wi

Zi ZiZ
t
i ZiWi

Wi WiZ
t
i W2

i + ζσ2
u








−1

120

Naive Estimate

SIMEX Estimate

1
1
.5

2
2

.5
C

o
e

ff
ic

ie
n

t

−1 0 1 2
Lambda

Naive: 2.039176    SIMEX: 2.5346

Extrapolant: Quadratic  Type: Mean

Simulation Extrapolation: wcholest

Naive Estimate

SIMEX Estimate

1
1
.2

1
.4

1
.6

1
.8

C
o
e
ff
ic

ie
n
t

−1 0 1 2
Lambda

Naive: 1.518676    SIMEX: 1.84699

Extrapolant: Quadratic  Type: Mean

Simulation Extrapolation: wlsbp

Figure 5.5 STATA SIMEX plots for log(cholesterol) (top) and log(SBP−50)
(bottom) for the Framingham logistic regression model with Z1 = age, Z2 =
smoking status, X1 = log(cholesterol), and X2 = log(SBP−50). Note that
where we use ζ, STATA uses “Lambda.”
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×





n∑

i=1




Yi

ZiYi

WiYi






 .

Solving this system of equations we find that

β̂v(ζ) = (VtV)−1VtY (5.18)

− (VtV)−1VtW
(
WtY − WtV(VtV)−1VtY

)

WtW − WtV(VtV)−1VtW + ζσ2
,

β̂x(ζ) =
WtY − WtV(VtV)−1VtY

WtW − WtV(VtV)−1VtW + ζσ2
, (5.19)

where βv = (β0, β
t
z)

t, Vt = (V1,V2, . . . ,Vn) with Vi = (1,Zt
i)

t. All

of the components of Θ̂(ζ) are functions of ζ of the form GRL(ζ, Γ) for
suitably defined, component-dependent Γ = (γ1, γ2, γ3)

t.
It follows that if the models fit in the SIMEX extrapolation step have

the form GRL(ζ,Γ), allowing different Γ for different components, then
SIMEX results in the usual method-of-moments estimator of Θ.

5.5.2 Loglinear Mean Models

Suppose that X is a scalar and that E(Y|X) = exp(β0 + βxX), with
variance function var(Y | X) = σ2exp {θ (β0 + βxX)} for some constants
σ2 and θ. It follows from the appendix in Stefanski (1989) that if (W,X)
has a bivariate normal distribution and generalized least squares is the

method of estimation, then β̂0(ζ) and β̂x(ζ) consistently estimate

β0(ζ) = β0 + (1 + ζ)
µxσ2

uβx + β2
xσ2

xσ2
u/2

σ2
x + (1 + ζ)σ2

u

and

βx(ζ) =
βxσ2

x

σ2
x + (1 + ζ)σ2

u

,

respectively, where µx = E(X), σ2
x = Var(X) and σ2

u = Var(W | X).
The rational linear extrapolant is asymptotically exact for estimating

both β0 and βx.

5.5.3 Quadratic Mean Models

There is already a literature on polynomial regression with additive mea-
surement error; see Wolter and Fuller (1982); Stefanski (1989); Cheng
and Schneeweiss (1998); Iturria, Carroll, and Firth (1999); and Cheng,
Schneeweiss, and Thamerus (2000). Thus, the use of SIMEX in this prob-
lem thus might not be considered in practice, but it is still interesting
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because it is an example where neither the quadratic nor the rational
linear extrapolant provides exact answers.

Consider fitting a quadratic regression model using orthogonal polyno-
mials and least square estimation. Components of the parameter vector
Θ = (β0, βx,1, βx,2)

t are the coefficients in the linear model

Yi = β0 + βx,1(Xi − X) + βx,2(X
2
i − a − bXi) + ǫi, (5.20)

where a = a{(Xi)
n
1} and b = b{(Xi)

n
1} are the intercept and slope,

respectively, of the least squares regression line of X2
i on Xi. Model

(5.20) is a reparameterization of the usual quadratic regression model
Yi = β0 + βx,1Xi + βx,2X

2
i + ǫi. The usual model often has severe

collinearity, but the reparameterized model is orthogonal. The so-called
naive estimator for this model is obtained by fitting the quadratic re-
gression to (Yi, Wi)

n
1 , noting that Wi replaces Xi, i = 1, . . . , n, in the

definitions of a and b.
Let µx,j = E(Xj), j = 1, . . . , 4. We assume for simplicity that µx,1 = 0

and µx,2 = 1. The exact functional form of Θ̂b(ζ) is known for this model

and is used to show that asymptotically, Θ̂(ζ) converges in probability
to Θ(ζ) given by

β0(ζ) = β0,

βx,1(ζ) =
βx,1σ

2
x

σ2
x + δ

,

βx,2(ζ) =
µx,3βx,1δ + (1 + δ)βx,2(µx,4 − 1) − µ2

x,3βx,2

(1 + δ)(µx,4 − 1 + 4δ + 2δ2) − µ2
x,3

,

where δ = (1 + ζ)σ2
u.

Note that both β0(ζ) and βx,1(ζ) are functions of ζ of the form GRL(ζ,Γ),
whereas βx,2(ζ) is not. For arbitrary choices of σ2

u, µx,3, µx,4, βx,1, and
βx,2, the shape of βx,2(ζ) can vary dramatically for −1 ≤ ζ ≤ 2, thereby
invalidating the extrapolation step employing an approximate extrap-
olant. However, in many practical cases, the quadratic extrapolant cor-
rects for most of the bias, especially for σ2

u sufficiently small. When X

is normally distributed, βx,2(ζ) = βx,2/(1 + δ)2, which is monotone for
all ζ ≥ −1 and reasonably well approximated by either a quadratic or
GRL(ζ,Γ) for a limited but useful range of values of σ2

u.

5.6 Extensions and Related Methods

5.6.1 Mixture of Berkson and Classical Error

We now consider the Berkson/classical mixed error model, which was
discussed previously in Section 3.2.5 (see Table 3.1, and also Section
1.8.2 and Section 8.6 for log-scale versions of the model). Recall that
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the defining characteristic is that the error model contains both classical
and Berkson components. Specifically, it is assumed that

X = L + Ub, (5.21)

W = L + Uc. (5.22)

When Ub = 0, the classical error model is obtained, whereas the Berkson
error model results when Uc = 0. The variances of the error terms are
σ2

uc
and σ2

ub
. Some features of this error model, when (X,W) is bivariate

normal, that we will use later are:

E(W | X) = (1 − γx)µx + γxX, where γx =
σ2

x − σ2
ub

σ2
x

;

cov(X,W) = γxσ2
x;

var(W | X) = σ2
w − γ2

xσ2
x;

var(W) = σ2
x − σ2

ub
+ σ2

uc
. (5.23)

Apart from Schafer, Stefanski, and Carroll (1999), SIMEX for this er-
ror model has not been considered and is not as well studied as classical-
error SIMEX. We now show how to implement SIMEX estimation in
this model, assuming that σ2

uc
and σ2

ub
are known. Define

σ̂2
x = s2

w − σ2
uc

+ σ2
ub

, and µ̂x = W, (5.24)

where W and s2
w are the sample mean and variance of the W data.

Then, for 0 ≤ ζ ≤ ζmax where ζmax ≤ ζ∗max = (σ̂2
x − σ̂2

ub
)/σ2

ub
, set

â2 =
σ̂2

x − σ2
ub

(1 + ζ)

(σ̂2
x − σ2

ub
)

,

â3 = +
√

σ̂2
x + σ2

uc
(1 + ζ) − σ2

ub
(1 + ζ) − â2

2(σ̂
2
x + σ2

uc
− σ2

ub
) ,

â1 = (1 − â2)µ̂x. (5.25)

Note that when ζ ≤ ζ∗max the term under the radical sign is nonneg-
ative, and hence â3 is real. Then the bth error-inflated set of pseudo
measurements is defined as

Wb,i(ζ) = â1 + â2Wi + â3Ub,i, i = 1, · · · , n. (5.26)

With the one change that the upper bound of the grid of ζ values must
not exceed ζ∗max, the SIMEX algorithm works the same from this point
on as it does for the case of classical measurement error.

We now show that under the assumption that (X,W) is bivariate nor-
mal, the remeasured data from (5.26) possess, asymptotically, the key
property of remeasured data that we saw for other error models in equa-
tions (5.2), (5.5), (5.7), and (5.10). Let a1, a2, and a3 denote quantities
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defined in (5.25) when s2
w and W are replaced by their asymptotic limits

to σ2
w and µx. Now consider the remeasured random variable

W(ζ) = a1 + a2W + a3U. (5.27)

Noting that E{W(ζ) | X} = a1 + a2E(W | X) and var(W(ζ) | X} =
a2
2var(W | X) + a2

3, and that as ζ → −1, a1 → (1− 1/γx)µx, a2 → 1/γx

and a3 → σ2
x − σ2

w/γ2
x, it follows that as ζ → −1,

E{W(ζ) | X} → X and var{W(ζ) | X} → 0. (5.28)

Thus, just as in the other error models we considered in Section 5.3.1,
the mean squared error MSE{W(ζ)|X} = E[{W(ζ)−X}2|X] converges
to zero as ζ → −1; see (5.10).

5.6.2 Misclassification SIMEX

Küchenhoff, Mwalili, and Lesaffre (2005) developed a general method of
correcting for bias in regression and other estimators when discrete data
are misclassified, called the misclassification SIMEX (MC-SIMEX). In
broad strokes, the method works in much the same way as the SIMEX
methods discussed previously. However, the details of the method dif-
fer, especially the simulation component, which could logically be called
reclassification in the spirit of the term remeasurement used previously.
The method requires that the misclassification matrix Π = (πij) be
known or estimable where

πij = pr(W = i | X = j). (5.29)

Note that the case of no misclassification corresponds to having Π = I,
the identity matrix.

In Section 8.4, we discuss an example of misclassification using max-
imum likelihood methods, when X is binary. In such cases, maximum
likelihood is relatively simple, and there would be little need to use MC-
SIMEX.

In continuous-variable SIMEX, remeasured data are generated in the
sense that W(ζ) is constructed as a measurement of W, in the same man-
ner that W is a measurement of X. With misclassification, all variables
are discrete. Küchenhoff, Mwalili, and Lesaffre (2005) show how to gen-
erate reclassified data in the sense that W(ζ) is constructed as a misclas-
sified version W, in the same manner that W is a misclassified version of
X. Suppose that Π has the spectral decomposition Π = EΛE−1, where Λ
is the diagonal matrix of eigenvalues and E is the corresponding matrix
of eigenvectors. We can now write symbolically W = MC[Π](X), where
the misclassification operation, MC[Π](X), denotes the generation of
the misclassified variable W from the true variable X according to the
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probabilities (5.29). Define Πζ = EΛζE−1. In MC-SIMEX reclassified
data are generated as

Wb,i(ζ) = MC[Πζ ](Wi), (5.30)

where the random reclassification step is repeated b = 1, . . . , B times
for each of the i = 1, . . . , n variables. As in SIMEX, the simulation step
in (5.30) is repeated for a grid of ζ values, 0 ≤ ζ1 < · · · < ζM . Once
the reclassified data are generated, the rest of the SIMEX algorithm is
similar to those discussed previously.

The key idea behind continuous-variable SIMEX is that if W|X ∼
Normal(X, σ2

u) and W(ζ)|W ∼ Normal(W, ζσ2
u), then the conditional

distribution W(ζ)|X ∼ Normal(W, (1 + ζ)σ2
u). The analogous property

for MC-SIMEX is if W = MC[Π](X) and W(ζ) = MC[Πζ ](W), then
W(ζ) = MC[Π1+ζ ](X), where the three preceding equalities denote
equality in distribution. For continuous-variable SIMEX, ζ = −1 corre-
sponds to the case of no measurement error in the sense that (1+ζ)σ2

u =
0. For MC-SIMEX, ζ = −1 corresponds to the case of no misclassifica-
tion in the sense that Π1+ζ = Π0 = I.

The heuristic explanation of why MC-SIMEX works is similar to the
explanation for SIMEX. A statistic calculated from the misclassified
data, say Θ̂ = Θ̂(W1, . . . ,Wn), will converge asymptotically to a lim-
iting value that depends on the matrix Π, say Θ(Π). In the case of no
misclassification, Π = I and the true-data statistic would be consistent,
leading to the conclusion that Θ(I) = Θ0, the true parameter value.
The same statistic calculated from data generated according to (5.30)
will converge to Θ(Π1+ζ). Now, if we could model how Θ(Π1+ζ) de-
pends on ζ, then we could extrapolate the model to ζ = −1, resulting in
limζ→−1 Θ(Π1+ζ) = Θ(Π0) = Θ(I) = Θ0, the true parameter. The ex-
trapolation step does exactly this with the finite-sample data estimates.
Küchenhoff, Mwalili, and Lesaffre (2005) investigated the asymptotic
true extrapolant function for a number of representative models and
concluded that a quadratic extrapolant function and a loglinear extrap-
olant function are adequate for a wide variety of models.

5.6.3 Checking Structural Model Robustness via Remeasurement

In this section, we briefly describe a useful remeasurement method that
has its roots in SIMEX estimation. Huang, Stefanski, and Davidian
(2006) show how to use remeasurement and SIMEX-like plots to check
the robustness of certain model assumptions in structural measurement
error models, such as those described in Chapter 8. The idea is sim-
ple, and we have already seen the essence of it in the weighted least
squares example in Section 5.3.1. In that example, one weighted least
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squares estimator (p = 1.5) was robust to measurement error, and the
robustness was apparent from the horizontal SIMEX plot in Figure 5.2.
The method of Huang, Stefanski, and Davidian (2006) is based on the
fact that if an estimator is not biased by measurement error, then its
SIMEX plot should be linear with zero slope. They developed this idea
for checking robustness of parametric modeling assumptions in struc-
tural measurement error models.

We give an overview of the method for a simple structural model of
the type in equation (8.7). In a structural model, the Xi are regarded
as random variables. If a parametric model is assumed for the density of
X, say fX(x, α̃2), then the density of the observed data is

fY,W (y, w|Θ, α̃2, σ
2
u) =∫

fY |X(y|x,Θ)fW |X(w|x, σ2
u)fX(x, α̃2)dx, (5.31)

where fW |X(w|x, σ2
u) is the Normal(X, σ2

u) density. The corresponding
likelihood for the case σ2

u is known is

L(Θ, α̃2) =

n∏

i=1

fY,W (Yi,Wi|Θ, α̃2, σ
2
u). (5.32)

The appealing features of structural modeling are that inference is based
on the likelihood (5.32) and the estimators are consistent and asymp-
totically efficient as long as the model is correct. However, the Achilles’
heel of structural model is specification of the model for X. If this is
not correct, then maximum likelihood estimators need not be consis-
tent or efficient. Remeasurement provides a method of checking whether
misspecification of the model for X is causing bias in the parameter of
interest θ. The method is based on the observation that if estimators of
Θ based on the model fY,W (y, w|Θ, α̃2, σ

2
u) using data {Yi,Wi} are not

biased by measurement error, then estimators of Θ based on the model
fY,W (y, w|Θ, α̃2, (1 + ζ)σ2

u) using remeasured data {Yi,Wi(ζ)} should
not be biased by measurement error. Alternatively, if fY,W (y, w|Θ, α̃2, σ

2
u)

is a correct model for (Y,W), then fY,W (y, w|Θ, α̃2, (1 + ζ)σ2
u) is nec-

essarily a correct model for (Y,W(ζ)). And in this case, the SIMEX

pseudodata estimators Θ̂(ζ) are consistent for the true Θ for all ζ > 0.

Consequently, the plot of Θ̂(ζ) versus ζ should be flat. Conversely, if the

plot of Θ̂(ζ) versus ζ is not flat, then the model for X is not correct,
assuming the other components of the model are correct.

The suggested procedure is simple. For a given assumed model for X,
generate remeasured data sets and calculate Θ̂(ζ), as described in Sec-
tion 5.3. Then construct a SIMEX plot as in Figure 5.1. If the plot is
a flat line, then the indicated conclusion is that the assumed model for
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X is robust to bias from measurement error. If the plot is not flat, then
the indicated conclusion is that the assumed model for X is not robust.
Subjective determination from the plot is not necessary. Huang, Stefan-
ski and Davidian (2006) proposed and studied a test statistic for making
an objective determination of robustness. A more complete treatment
of the robustness in structural measurement error models and details of
the test statistic for testing robustness can be found in their paper.
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CHAPTER 6

INSTRUMENTAL VARIABLES

6.1 Overview

The methods discussed thus far depend on knowing the measurement
error variance, or estimating it, for example, with replicate measure-
ments or validation data. However, it is not always possible to obtain
replicates, and thus direct estimation of the measurement error variance
is sometimes impossible. In the absence of information about the mea-
surement error variance, estimation of the regression model parameters
is still possible, provided the data contain an instrumental variable (IV),
T, in addition to the unbiased measurement, W = X + U.

In later sections, we state more precisely the conditions required of an
instrument, as they differ somewhat from one model to another. How-
ever, in all cases an instrument must possess three key properties: (i)
T must not be independent of X; (ii) T must be uncorrelated with the
measurement error U = W − X; (iii) T must be uncorrelated with
Y − E(Y | Z,X). In summary, T must be uncorrelated with all the
variability remaining after accounting for (Z,X). It is of some inter-
est that in certain cases, especially linear regression, U can be corre-
lated with the variability remaining after accounting for (Z,X), that is,
Y − E(Y | Z,X), and thus differential measurement error sometimes
can be allowed.

One possible source of an instrumental variable is a second, possi-
bly biased, measurement of X obtained by an independent measuring
method. Thus, the assumption that a variable is an instrument is weaker
than the assumption that it is a replicate measurement. However, the
added generality is gained at the expense of increased variability in bias-
corrected estimators relative to cases where the measurement error vari-
ance is known or directly estimated. More important, if T is assumed to
be an instrument when it is not, that is, if T is correlated with either
U = W−X or Y−E(Y | Z,X), then instrumental variable estimators
can be biased asymptotically, regardless of the size of the measurement

error variance. So falsely assuming a variable is an instrument can lead
to erroneous inferences even in the case of large sample size and small
measurement error; see Sections 6.2.2.1 and 6.5.2.

In the Framingham data analysis of Chapter 5, it was assumed explic-
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itly that transformed blood pressure measurements from successive exam
periods were replicate measurements, even though a test of the replicate
measurements assumption was found to be statistically (although not
practically) significant. The same data can also be analyzed under the
weaker assumption that the Exam #2 blood pressure measurements are
instrumental variables. We do this in Section 6.5 to illustrate the instru-
mental variable methods.

In this chapter, we restrict attention to the important and common
case in which there is a generalized linear model relating Y to (Z,X),
that is, the mean and variance functions depend on a linear function of
the covariates and predictors. Except for the linear model, we also as-
sume that the regression of X on (Z,T,W) is linear, although in Section
6.6 other possibilities are considered. In other words, we assume a re-
gression calibration model (Section 2.2), leading to a hybrid combination
of classical additive error and regression calibration error. Instrumental
variable estimation is introduced in the context of linear models in Sec-
tion 6.2. We then describe an extension of the linear IV estimators to
nonlinear models using regression calibration–like approximations in Sec-
tion 6.3. An alternative generalization of linear model IV estimation due
to Buzas (1997) is presented in Section 6.4. The methods are illustrated
by example in Section 6.5. Section 6.6 discusses other approaches. The
chapter concludes with some bibliographic notes. Additional technical
details are in Appendix B.5.

6.1.1 A Note on Notation

In this chapter it is necessary to indicate numerous regression param-
eters and we adopt the notation used by Stefanski and Buzas (1995).
Consider linear regression with mean β0 + βt

zZ + βt
xX. Then βY |1ZX is

the coefficient of 1, that is, the intercept β0, in the generalized linear re-
gression of Y on 1, Z and X. Also, βt

Y |1ZX = βt
z is the coefficient of Z in

the regression of Y on 1, Z and X. This notation allows representation
of subsets of coefficient vectors, for example,

βt
Y |1ZX = (βY |1ZX , βt

Y |1ZX) = (β0, β
t
z)

and, if the regression of X on (Z,T) has mean α0 + αt
zZ + αt

tT, then

βt
X|1ZT = (βX|1ZT , βt

X|1ZT , βt
X|1ZT ) = (α0, α

t
z, α

t
t).

Also, many of the results in this chapter are best described in terms of
the composite vectors

X̃ = (1,Zt,Xt)t, W̃ = (1,Zt,Wt)t,

T̃ = (1,Zt,Tt)t, Ũ = W̃ − X̃. (6.1)
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Note that those components of Ũ corresponding to the error-free vari-
ables (1,Zt) will equal zero.

6.2 Instrumental Variables in Linear Models

6.2.1 Instrumental Variables via Differentiation

Much intuition about the manner in which an instrumental variable is
used can be obtained by considering the following equations

Y = f(X) + ǫ,

W = X + U,

regarding the scalars Y, X, ǫ, W, and U as mathematical variables.
Differentiating both sides of the top equation with respect to T, us-
ing the chain rule ∂f/∂T = (∂f/∂X)(∂X/∂T), noting that ∂X/∂T =
∂W/∂T − ∂U/∂∂T, and rearranging terms results in

∂W

∂T

∂f

∂X
= ∂Y/∂T + (∂f/∂X)(∂U/∂T) − ∂ǫ/∂T.

Consequently if ∂U/∂T = ∂ǫ/∂T = 0 and ∂W/∂T 6= 0, then

∂f

∂X
=

∂Y/∂T

∂W/∂T
. (6.2)

That is, as long as we know how Y and W change with T, we can
determine the way that f changes with X.

The suggestive analysis above explains the essential features and work-
ings of instrumental variable estimation in linear measurement error
models. If an instrument, T, is such that it is not related to U or ǫ
(∂U/∂T = ∂ǫ/∂T = 0) but is related to X (note that when ∂U/∂T = 0,
then ∂W/∂T = ∂X/∂T and ∂X/∂T 6= 0 =⇒ ∂W/∂T 6= 0), then we
can determine how f varies with X using only the observed variables Y,
W, and T. For linear models, the essential properties of an instrument
are that T is uncorrelated with U and ǫ, and is correlated with X.

The derivation of (6.2) depends critically on the lack of relationships
between T and ǫ, and between T and U, and also on the denominator on
the right-hand side of (6.2) being nonzero. If either of the first two condi-
tions is not met, (6.2) would not be an equality (the statistical analogue
is bias). If the third condition is violated, we get indeterminacy because
of division by zero (the statistical analogue is excessive variability).
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6.2.2 Simple Linear Regression with One Instrument

We first consider simple linear regression with one instrument. Suppose
that Y, W, and T, are scalar random variables such that

Y = βY |1X + XβY |1X + ǫ,

W = X + U, (6.3)

where ǫ and U have mean zero, and all random variables have finite vari-
ances. Define covariances among these variables as follows: cov(T,Y) =
σty, cov(T,X) = σtx, etc. In order to estimate the slope in the regression
of Y on X, that is, βY |1X , we only require that

σtǫ = σtu = 0, and σtx 6= 0. (6.4)

To see this, note that (6.3) implies that

cov(T,Y) = σty = σtxβY |1X + σtǫ

cov(T,W) = σtw = σtx + σtu, (6.5)

so that if (6.4) holds, then

cov(T,Y)

cov(T,W)
=

σtxβY |1X + σtǫ

σtx + σtu
= βY |1X .

Suppose now that (Yi,Wi,Ti) are a sample with the structure (6.3), and
that σ̂ty and σ̂tw are the sample covariances of σty and σtw, respectively.
Then the instrumental variable estimator,

β̂IV
Y |1X =

σ̂ty

σ̂tw
, (6.6)

is a consistent estimator of βY |1X .

6.2.2.1 IV Estimation Potential Pitfalls

We now use this simple model to illustrate our previous warnings about
the potential pitfalls associated with instrumental variable estimation
when the IV assumptions are not satisfied. Because sample covariances
are consistent estimators, we know that as n → ∞,

β̂IV
Y |1X −→

cov(T,Y)

cov(T,W)
=

σtxβY |1X + σtǫ

σtx + σtu
. (6.7)

Consider the right-hand side of (6.7) for various combinations of as-
sumption violations: σtǫ 6= 0; σtu 6= 0; σtx = 0. For example, if σtx 6= 0
and σtu = 0, but σtǫ 6= 0, then the IV estimator has an asymptotic bias
given by σtǫ/σtx, which can have either sign (±) and can be of any mag-
nitude, depending on how close |σtx| is to zero. Clearly, there are other
combinations of assumption violations that also lead to potentially sig-
nificant biases. Note that such biases are possible regardless of the size
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of the measurement error variance. In fact, even when σ2
u = 0, IV esti-

mation can lead to large biases when the IV assumptions are violated.
So the possibility exists that in trying to correct for a small amount of
bias due to measurement error, one could introduce a large amount of
bias due to an erroneous IV assumption. The message should be clear:
Use IV estimation only when there is convincing evidence that the IV

assumptions are reasonable.

Relative to the asymptotic results in the previous paragraph, the po-
tential pitfalls can be even greater with finite samples of data when σtx

is not far from zero. This is because random variation in the denomina-
tor, σ̂tw, of (6.6), can cause it to be arbitrarily close to zero, in which
case the estimator in (6.6) is virtually worthless by dint of its excessive
variability. Fortunately, we can gain insight into whether this is a likely
problem by testing the null hypothesis H0 : σtw = 0. This is most easily
done by testing for zero slope in the linear regression of W on T. In-
strumental variable estimation is contraindicated unless there is strong
evidence that this slope is nonzero (Fuller, 1987, p. 54).

Problems similar to those noted above occur with multiple predictors
measured with error and multiple instrumental variables, although the
linear algebra for diagnosing and understanding them is more involved.
For this more general setting, Fuller (1987, p. 150–154) describes a test
analogous to the regression test described above, and also a small-sample
modification of (6.6) that, in effect, controls the denominator so that it
does not get too close to zero; see Section 6.2.3.1 for details.

6.2.2.2 Technical Generality of the Assumptions

When the IV assumptions (6.4) hold, the consistency of β̂IV
Y |1X is note-

worthy for the lack of other conditions under which it is obtained. Al-
though the representation for Y in (6.3) is suggestive of the common
linear model, consistency does not require the usual linear model as-
sumption that ǫ and X are uncorrelated. Neither are any conditions
required about the relationship between X and the instrument T other
than that of nonzero covariance in (6.4); nor is it required that U and ǫ,
or U and X be uncorrelated. Although very few assumptions are neces-
sary, it does not mean that the various covariances can be arbitrary. The
fact that the covariance matrix of the composite vector (Y,X,W,T)
must be nonnegative definite imposes restrictions on certain variances
and covariances. For example, it is impossible to have corr(T,X) = 0.99,
corr(X,U) = 0.99, and corr(T,U) = 0.
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6.2.2.3 Practical Generality of the Assumptions

The technical generality of the assumptions seems impressive, but as a
practical matter is much less so. The assumption is that T is uncorrelated
with ǫ and U, which in practice is often approximately equivalent to
assuming that T is independent of (ǫ,U). However, T has to be related
to X, and so as a practical matter, X too has to be independent of (ǫ,U).

6.2.3 Linear Regression with Multiple Instruments

We now consider multiple linear regression with multiple instruments,
starting with the case where the number of instruments is the same as the
number of components of X. The case where the number of instruments
exceeds the number of predictors is presented at the end of this section.

Suppose that the scalar Y and the composite vectors W̃ and T̃ in (6.1)
are such that

Y = X̃tβY |X̃ + ǫ,

W̃ = X̃ + Ũ, (6.8)

where ǫ and U have mean zero, and all random variables have finite
second moments.

In what follows, covariances are replaced by uncentered, expected
crossproduct matrices, for example Ω

T̃Y
= E(T̃Y) in place of σty =

cov(T,Y), a consequence of the fact that a column of ones is included

in each of W̃ and T̃. Let dim(·) denote the dimension of the argument.
The multiple linear regression counterparts of assumptions (6.4) are

Ω
T̃ǫ = 0, Ω

T̃Ũ
= 0, and rank(Ω

T̃X̃
) = dim(X̃), (6.9)

The last assumption requires that T and X not be independent. As we
discussed in detail in Section 6.2.2 for the cases of simple linear regres-
sion with one instrument, violations of the key assumptions (assumptions
(6.4) for simple linear regression and (6.9) for multiple linear regression),
can have severe consequences. The case where the instrument is an in-
dependent measurement of X obtained using a second, independent,
method of measurement (possibly biased or with different error vari-
ance) is one where the key assumptions (6.9) can be expected to hold a
priori. Even in such cases, however, the declaration of independence is
seldom infallible. For other cases, often subject matter expertise must be
brought to bear on the problem of determining whether the assumptions
in (6.9) are reasonable.

It follows from (6.8) that

E(T̃Y) = Ω
T̃Y

= Ω
T̃X̃

βY |X̃ + Ω
T̃ǫ,
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E(T̃W̃t) = Ω
T̃W̃

= Ω
T̃X̃

+ Ω
T̃Ũ

. (6.10)

Equation (6.10) is the multiple linear regression counterpart of (6.5).
Note that

(Ωt
T̃W̃

Ω
T̃W̃

)−1Ωt
T̃W̃

Ω
T̃Y

= (Ωt
T̃W̃

Ω
T̃W̃

)−1Ωt
T̃W̃

Ω
T̃X̃

βY |X̃ = βY |X̃ .

Consequently if we replace expectations by averages, so that for example

Ω̂
T̃W̃

= n−1
∑n

i=1 T̃iW̃
t
i , then the instrumental variable estimator,

β̂IV
Y |X̃

= (Ω̂t
T̃W̃

Ω̂
T̃W̃

)−1Ω̂t
T̃W̃

Ω̂
T̃Y

, (6.11)

is a consistent estimator of βY |X̃ .

6.2.3.1 Small Sample Modification

Fuller (1987, p. 150–154) described a small sample modification to handle
the instability that can be caused by the matrix inversion in (6.11). It
solves small sample problems arising with weak predictors, but has less of
an ameliorative effect on problems due to violations of the assumptions
that T and ǫ, and T and U are uncorrelated.

Let V = [Y,W̃], and define S = [Y,W] = T̃(T̃tT̃)−1T̃tV. Let q be

the number of components of T̃. Define

Saa =

[
Saa11 Saa12

Saa21 Saa22

]
= (n − q)−1Vt(V − S).

Let κ be the smallest root of the determinant equation |S tS − κSaa|.
Let α > 0 be a fixed constant, for example, α = 4. Fuller proposed the
estimator

β̂IV
Y |X̃

= {WtW − (κ − α)Saa22}
−1{WtY − (κ − α)Saa21}.

6.2.3.2 Technical Generality of the Result

The consistency of β̂IV
Y |X̃

is again noteworthy for the lack of conditions

under which it is obtained. The only conditions necessary are those in
(6.9), the third of which requires at least as many instruments as vari-
ables measured with error. However, consistency does not require that
any of the expected crossproduct matrices Ω

X̃ǫ, Ω
X̃Ũ

, Ω
Ũǫ equal zero,

although again, as for simple linear regression, the fact the covariance
matrix of the composite vector (Y,X,W,T) must be nonnegative def-
inite imparts certain restriction on these crossproduct matrices. Also,
even though certain instrumental variable estimators can be written as

functions of the linear least squares regressions of Y and W̃ on T̃, the
assumption that these regressions are linear in T̃ is not necessary.
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6.2.3.3 Practical Generality of the Result

As in simple linear regression, for most practical purposes the assump-
tion that T is uncorrelated with ǫ and U means that X is as well.

6.2.3.4 More Instruments than Predictors

Instrumental variable estimation differs somewhat when the number of
instrumental variables exceeds the number of variables measured with
error, the case we now consider. Our presentation parallels that of Sec-
tion 6.2.3. We assume the model in (6.8) and pick up the discussion

with (6.10). The key difference when dim(T̃) > dim(X̃) is that there are
more equations in (6.10) than there are regression coefficients, and we
use generalized inverses in place of ordinary matrix inverses. Considering
(6.10), then for any generalized inverse of Ω

T̃W̃
, say

Ω
−(M)

T̃W̃
= (Ωt

T̃W̃
MΩ

T̃W̃
)−1Ωt

T̃W̃
M, with M nonsingular,

it follows that

Ω
−(M)

T̃W̃
Ω

T̃Y
= Ω

−(M)

T̃X̃
Ω

T̃X̃
βY |X̃ = βY |X̃ .

Consequently if (Yi,Wi,Ti), i = 1, . . . , n is an iid sample satisfying

(6.8), Ω̂
T̃W̃

and Ω̂
T̃Y

are any consistent estimators of Ω
T̃W̃

and Ω
T̃Y

,

and M̂ converges in probability to a nonsingular matrix M , then the
instrumental variable estimator,

β̂
IV,(M̂)

Y |X̃
= Ω̂

−(M̂)

T̃W̃
Ω̂

T̃Y
, (6.12)

is a consistent estimator of βY |X̃ .

One means of generating an estimator of the form (6.12) is to first do

a multivariate regression of W̃i on T̃i and calculate the predicted values
from it, X̂i = β̂t

W̃ |T̃
T̃i. These predicted values are denoted by X̂i because

under the model (6.8), X̂i = β̂t
X̃|T̃

T̃i + Ũ∗
i , where Ũ∗

i = β̂t
Ũ |T̃

T̃i has

mean 0. Thus, apart from the addition of the mean zero vector Ũ∗
i , X̂i

equals the predicted values that would be obtained from the regression
of X̃i on T̃i. With X̂i so defined, the coefficient vector estimate from
the least-squares regression of Yi on X̂i can be written as

β̂
IV,(M̂∗)

Y |X̃
= Ω̂

−(M̂∗)

T̃W̃
Ω̂

T̃Y
,

where M̂−1
∗ = Ω̂

T̃T̃
= (n−1

∑
T̃iT̃

t
i), Ω̂

T̃W̃
= (n−1

∑
T̃iW̃

t
i) and

Ω̂
T̃Y

= (n−1
∑

T̃iYi).

Alternatively, if we replace M̂ with

M̂† = Ω̂−1

T̃T̃
M̂1Ω̂

−1

T̃T̃
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in (6.12) for some other nonsingular matrix M̂1, the resulting estimator
can be written as

β̂
IV,(M̂†)

Y |X̃
= β̂

−(M̂1)

W̃ |T̃
β̂Y |T̃ , (6.13)

where β̂
−(M1)

W̃ |T̃
= (β̂t

W̃ |T̃
M1β̂W̃ |T̃

)−1β̂t
W̃ |T̃

M1 and β̂Y |T̃ is the least squares

coefficient estimate in the regression of Yi on T̃i. Note the similarity of
(6.13) to (6.6).

6.3 Approximate Instrumental Variable Estimation

6.3.1 IV Assumptions

We have taken care to explain the conditions required for instrumen-
tal variable estimation in linear models in order to make it easier to
understand certain of the conditions we invoke for instrumental vari-
able estimation in nonlinear models. Here, we continue to assume that
a parametric model is correctly specified for E(Y | Z,X) and that the
measurement error U is independent of Z.

Whereas lack of correlation is often sufficient when working with first-
and second-moment estimators, for example, as in linear regression, it
generally is replaced by independence when working with more compli-
cated estimators. Thus, for the remainder of this chapter we work under
a stronger set of assumptions than those required for instrumental vari-
able estimation in linear models. These assumptions are the following:

1. T is correlated with X;

2. T is independent of the measurement error U = W − X in the sur-
rogate W;

3. (W,T) is a surrogate for X, in particular E(Yk | Z,X,W,T) =
E(Yk | Z,X) for k = 1, 2. The key point here is that both T and
the measurement error U in the surrogate W are independent of
any variation in the response Y after accounting for (Z,X). In linear
regression, this means that T and U are independent of the residual
error ǫ.

With these assumptions, we can derive an alternative explanation of
instrumental variable estimation in linear models. Note that

E(Y | Z,T) = E{E(Y | Z,X,W,T) | Z,T}

= E{E(Y | Z,X) | Z,T}

= E(βY |1ZX + βt
Y |1ZXZ + βt

Y |1ZXX | Z,T)

= βY |1ZX + βt
Y |1ZXZ + βt

Y |1ZXE(X | Z,T)

= βY |1ZX + βt
Y |1ZXZ + βt

Y |1ZXE(W − U | Z,T)
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= βY |1ZX + βt
Y |1ZXZ + βt

Y |1ZXE(W | Z,T). (6.14)

The key steps in this derivation require that T is a surrogate for X and
that U is independent of T and Z. It follows from (6.14) that if E(W |
Z,T) is linear T, that is, E(W | Z,T) = βW |1ZT +βW |1ZT Z+βW |1ZT T,
then by equating coefficients of T we get that βY |1ZT = βW |1ZT βY |1ZX ,

and consequently that βY |1ZX = β
(−)
W |1ZT βY |1ZT when the βW |1ZT has

the required left inverse β
(−)
W |1ZT .

6.3.2 Mean and Variance Function Models

We consider generalized linear models, and mean–variance models. Ex-
amples of these models are linear, logistic, and Poisson regression. As
described more fully in Sections A.7 and A.8, such models depend on
a linear combination of the predictors plus possibly a parameter θ that
describes the variability in the response. The sections listed above give
details for model fitting when there is no measurement error. It might be
useful upon first reading to think of this chapter simply as dealing with
a class of important models, the details of fitting of which are standard
in many computer programs.

These models can be written in general form as

E(Y|Z,X) = f(βY |1ZX + βt
Y |1ZXZ + βt

Y |1ZXX), (6.15)

var(Y|Z,X) = σ2g2(βY |1ZX + βt
Y |1ZXZ + βt

Y |1ZXX, θ), (6.16)

and include homoscedastic linear regression, where f(v) = v and g ≡
1, and logistic regression where σ2 = 1, f is the logistic distribution
function and g2 is the Bernoulli variance f(1 − f). The only notational
change with other parts of the book is that the parameters β0, βz, and
βx have been replaced by βY |1ZX , βY |1ZX and βY |1ZX , respectively.

In terms of the composite vectors

X̃ = (1,Zt,Xt)t, W̃ = (1,Zt,Wt)t,

T̃ = (1,Zt,Tt)t, Ũ = W̃ − X̃

defined in (6.1) and βY |X̃ = (βY |1ZX , βt
Y |1ZX , βt

Y |1ZX)t, the basic model

(6.15)–(6.16) becomes

E(Y|X̃) = f(βt
Y |X̃

X̃),

var(Y|X̃) = σ2g2(βt
Y |X̃

X̃, θ).

The goal is to estimate βY |X̃ , θ and σ2.

The assumptions that are necessary for our methods are stated more
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precisely in Section B.5.1, but we note here that in addition to the con-
ditions stated in Section 6.1, we also assume that the regression of X

on (Z,T,W) is approximately linear; see (B.27), that is, we assume a
regression calibration model, see Section 2.2. This restricts the applicabil-
ity of the methods below somewhat, but is sufficiently general to encom-
pass many potential applications. Combined with the classical additive
measurement error model for W, these assumptions result in a hybrid
of classical and regression calibration structures, a subject discussed in
more detail in Section 6.6.

We now describe two regression-calibration approximations for use
with instrumental variables.

6.3.3 First Regression Calibration IV Algorithm

This section describes a simple method when the number of instruments
exactly equals the numbers of variables measured with error, and a sec-
ond method for the case dim(T̃) > dim(X̃). In Section B.5.1.1, it is
shown that, to the level of approximation of regression calibration,

E(Y|T̃) = mY{βt
Y |X̃

E(X̃ | T̃)} = f(βt
Y |X̃

βt
X̃|T̃

T̃).

Since W = X+U and since U is independent of (Z,T), the regression of

W̃ on T̃ is the same as the regression of X̃ on T̃, so that β
W̃ |T̃

= βX̃|T̃ ,

and hence it follows that (approximately)

βY |T̃ = β
W̃ |T̃

βY |X̃ . (6.17)

That is, the coefficient of T̃ in the generalized linear regression of Y on
T̃ is the product of βt

Y |X̃
and βt

W̃ |T̃
.

This leads to an extremely simple algorithm:

• Let dz be the number of Z variables, dx be the number of X variables,
and dt be the number of T variables. Perform a multivariate regression

of W̃ on T̃ to obtain β̂t
W̃ |T̃

, which is a matrix with 1+dim(Z)+dim(X)

rows and 1+dim(Z)+dim(T) columns. For j = 1, ..., 1+dim(Z), the

jth row of β̂
W̃ |T̃

has a 1.0 in the jth column and all other elements

equal to zero, reflecting the fact that the regression of Z on (Z,T) has

no error. For k = 1, ...,dim(X), row 1 + dim(Z) + k of β̂
W̃ |T̃

contains

the regression coefficients when regressing the kth element of W on
(Z,T), including the intercept in this regression.

• Then perform a generalized linear regression of Y on the predicted val-
ues β̂t

W̃ |T̃
T̃ to obtain an estimator of βY |X̃ , which we denote β̂IV 1,RC

Y |X̃
.

• This estimator is easily computed, as it requires only linear regressions
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of the components of W̃ on T̃, and then quasilikelihood and variance
function estimation of Y on the “predictors” β̂t

W̃ |T̃
T̃.

The second means of exploiting the basic regression calibration ap-
proximation works directly from the identity (6.17). For a fixed nonsin-

gular matrix M1, let β̂
−(M1)

W̃ |T̃
= (β̂t

W̃ |T̃
M1β̂W̃ |T̃

)−1β̂t
W̃ |T̃

M1. The second

estimator is

β̂
IV 1,(M1)

Y |X̃
= β̂

−(M1)

W̃ |T̃
β̂Y |T̃ , (6.18)

where β̂Y |T̃ is the estimated regression coefficient when the generalized

model is fit to the (Y, T̃) data. Note that (6.18) makes evident the

requirement that β̂
W̃ |T̃

be of full rank. When T and W are the same

dimension, this estimator does not depend on M1 and is identical to
the first estimator, but not otherwise. When there are more instruments
than variables measured with error the choice of M1 matters. In Section
B.5.2.1 we derive an estimate M̂1 that minimizes the asymptotic variance

of β̂
IV 1,(M1)

Y |X̃
. Section B.5.2 gives the relevant asymptotic distribution,

although of course the bootstrap can always be used.

6.3.4 Second Regression Calibration IV Algorithm

The second algorithm exploits the fact that both W and T are surro-
gates. The derivation of the estimator is involved (Section B.5.1.2), but
the estimator is not difficult to compute.

Let dim(Z) be the number of components of Z. Define

β
Y |T̃W̃

= βY |1ZTW ,

β
Y |T̃ W̃

= (01×d, βt
Y |1ZTW )t,

where d = 1 + dim(Z). Then, for a given matrix M2, the second instru-
mental variables estimator is

β̂
IV 2,(M2)

Y |X̃
= β̂

−(M2)

W̃ |T̃
(β̂

Y |T̃W̃
+ β̂

W̃ |T̃
β̂

Y |T̃ W̃
).

When T and W are the same dimension, β̂
IV 2,(M2)

Y |X̃
does not depend on

M2. In Section B.5.2.1, we derive an estimate of M2 that minimizes the

asymptotic variance of β̂
IV 2,(M2)

Y |X̃
for the case dim(T) > dim(W).

6.4 Adjusted Score Method

Buzas (1997) developed an approach to IV estimation that, unlike the
approximate regression calibration approach in Section 6.3, actually pro-
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duces fully consistent estimators in certain important generalized lin-
ear models with scalar predictor X subject to measurement error. The
method is based upon the hybrid of classical and regression calibration
models, a subject discussed in the regression calibration approximation
in Section 6.3.2, and also discussed in more detail in Section 6.6.

In the hybrid approach, along with the measurement error model W =
X+U, we have a regression calibration model for X given (Z,T), where
we write E(X|Z,T) = mX(Z,T, γ). Generally, the parameter γ will have
to be estimated, but this is the beauty inherent in the assumptions of
the hybrid approach, namely, that as long as the measurement error U

is independent of (Z,T), then (possibly nonlinear) regression of W on
(Z,T) will provide an estimate of γ. This is generally done by solving
the least squares equation of the form

n∑

i=1

ψmX
(Wi,Zi,T,γ̂) = 0.

The starting point for Buzas’ method is that along with the regression
parameters βY |1ZX , there may be additional parameters τ . He then sup-
poses that there is a score function that produces consistent estimators
in the absence of measurement error. In his framework, the mean func-
tion is denoted by mY(Z,X, βY |1ZX , τ). The form of the mean functions
of most interest here is where

mY(Z,x;βY |1ZX) =
a1 + a2exp(a5x)

a3 + a4exp(a5x)
,

where a1, . . . , a5 are scalar functions of Z and βY |1ZX , but not x. Note-
worthy in this class are

• The logistic mean model mY(Z,x;βY |1ZX) = 1/{1+exp(−βY |1ZX −
βY |1ZXZ − βY |1ZXx)}, obtained when a1 = a3 = 1, a2 = 0, a4 =
exp(−βY |1ZX − βY |1ZXZ) and a5 = −βY |1ZX .

• The Poisson loglinear mean model mY(Z,x;βY |1ZX) = exp(βY |1ZX +
βY |1ZXZ+βY |1ZXx), obtained when a1 = a4 = 0, a2 = exp(βY |1ZX +
βY |1ZXZ), a3 = 1 and a5 = βY |1ZX .

In these problems, the score function ψ has the form

ψ(Y,Z,X, βY |1ZX , τ) =

{Y − mY(Z,X, βY |1ZX , τ)}g(Z,X, βY |1ZX , τ);

and is such that the estimating equations
∑n

i=1ψ(Yi,Zi,Xi, βY |1ZX , τ) = 0,

produce consistent estimators of βY |1ZX and τ in the absence of measure-
ment error. The class of estimators covered by this setup includes nonlin-
ear least squares (Gallant, 1987), quasilikelihood and variance function
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models (Carroll and Ruppert, 1988), and generalized linear models (Mc-
Cullagh and Nelder, 1989), among others.

Buzas (1997) showed that when the measurement error U is sym-
metrically distributed about zero given (Z,X,T), then a score function
leading to consistent estimation is the following. Define

φ(Z,W,T, βY |1ZX) =

∣∣∣∣
mY,x(Z, E(X | Z,T);βY |1ZX)

mY,x(Z,W;βY |1ZX)

∣∣∣∣
1/2

with mY,x(Z,x;βY |1ZX) = (∂/∂x)mY(Z,x;βY |1ZX). Then the modi-
fied score leading to consistent estimation is

ψIV(Y,Z,W,T, βY |1ZX , τ) =

{Y − mY(Z,W;βY |1ZX)}φ(Z,W,T, βY |1ZX)

× g(Z, E(X | Z,T), βY |1ZX , τ).

Inference can be obtained either by the bootstrap or by using the method
of stacking estimating equations in Section A.6.6, that is, stack ψmX

(·)
below ψIV(·).

Age Smoke Chol LSBP

Naive .056 .573 .0078 1.524
Std. Err. .010 .243 .0019 .364

IV1 .054 .577 .0076 2.002
Std. Err. .011 .244 .0020 .517

IV2 .054 .579 .0077 1.935
Std. Err. .011 .244 .0020 .513

Adj Score .055 .597 .0082 1.930
Std. Err. .011 .250 .0020 .494

Table 6.1 Estimates and standard errors from the Framingham data in-
strumental variable logistic regression analysis. This analysis used the one-
dimensional instrumental variable LSBP = log{(SBP2,1+ SBP2,2)/2 − 50}.
“Smoke” is smoking status and “Chol” is cholesterol level. Standard errors
calculated using the sandwich method.
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6.5 Examples

6.5.1 Framingham Data

We now illustrate the methods presented in this chapter using the Fram-
ingham heart study data from Section 5.4.1, wherein two systolic blood
pressure measurements from each of two exams were used. It was as-
sumed that the two transformed variates

W1 = log{(SBP3,1 + SBP3,2)/2 − 50}

and
W2 = log{(SBP2,1 + SBP2,2)/2 − 50},

where SBPi,j is the jth measurement of SBP from the ith exam, j =
1, 2, i = 2, 3, were replicate measurements of the long-term average
transformed SBP.

Table 6.1 displays estimates of the same logistic regression model fit in
Section 5.4.2.1 with the difference that W2 was employed as an instru-
mental variable, not as a replicate measurement, that is, in the notation
of this section, W = W1 and T = W2.

Because T has the same dimension as W, the estimate β
IV 1,(M1)

Y |X̃
does

not depend on M1 and is equivalent to βIV 1,RC

Y |X̃
. This common estimate

is listed under IV1 in Table 6.1. Also β
IV 2,(M2)

Y |X̃
does not depend on M2

and is listed under IV2 in the table. For the Buzas estimate, a linear
regression model for E(X | Z,T) was used, M(Z,T, γ) = (1,Zt,Tt)γ
with γ̂ obtained by least squares, so that

ψmX
(W,Z,T, γ) = {W − (1,Zt,Tt)γ}(1,Zt,Tt)t.

Table 6.2 displays estimates of the same logistic regression model with
the difference that the instrumental variable T was taken to be the two-
dimensional variate

T = {log(SBP2,1), log(SBP2,2)}. (6.19)

Note the similarity among the estimates in Tables 6.1 and 6.2.
The primary purpose of this second analysis is to illustrate the differ-

ences between the estimators when dim(T) > dim(X), and to emphasize
that T need only be correlated with X, and not a second measurement,
for the methods to be applicable.

However, we also use this model to illustrate further the key assump-
tions (6.9) and to discuss the issues involved in verifying them.

Rewrite the IV model (6.19) as T = (T1,T2). Given our previous
discussions of the Framingham data, it follows that reasonable models
for W and T are

W = X + U,
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Age Smoke Chol LSBP

Naive .056 .573 .0078 1.524
Std. Err. .010 .243 .0019 .364

IV1,RC .054 .577 .0076 1.877
Std. Err. .011 .244 .0020 .481

IV1,(M1) .054 .577 .0076 1.884
Std Err. .011 .244 .0020 .483

IV2,(M2) .054 .579 .0077 1.860
Std. Err. .011 .244 .0020 .484

Adj Score .055 .592 .0082 1.887
Std. Err. .011 .250 .0020 .494

Table 6.2 Estimates and standard errors from the Framingham data in-
strumental variable logistic regression analysis. This analysis used the two-
dimensional instrumental variable {log(SBP2,1), log(SBP2,2)}. “Smoke” is
smoking status and “Chol” is cholesterol level. Standard errors calculated using
the sandwich method.

T1 = a1 + b1X + U1,

T2 = a2 + b2X + U2, (6.20)

where U, U1, and U2 are mutually independent and independent of
Y, X, and Z. These independence assumptions are comparable to those
used previously to justify the various analyses of the Framingham data.
With ǫ replaced by Y−E (Y|Z,X) (because the model for Y is logistic
not linear), the aforementioned independence assumptions ensure the
validity of the first two components of (6.9). Now for the model (6.20)
the crossproduct matrix Ω

T̃X̃
is the 6 × 5 matrix,

Ω
T̃X̃

= E




1 Zt X

Z ZZt ZX

a1 + b1X (a1 + b1X)Zt (a1 + b1X)X
a2 + b2X (a2 + b2X)Zt (a2 + b2X)X




(recall that dim(Z) = 3 and dim(X̃) = 5 for the Framingham data). It
should be obvious that rank(Ω

T̃X̃
) = 5, if and only if at least one of
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b1 and b2 is nonzero. (Okay, we’re kidding about the “obvious” part —
you’ll just have to take our word on this one. However, for those doubting
Thomases among the readers, we suggest that you first consider the case
where the components of X and Z are iid and standardized to mean zero
and variance one, and then extend to the general case.)

This example illustrates the fact that not all instruments need to be
correlated with X, and that if multiple instruments are available (all
satisfying (6.9) of course) there is no harm using them. In fact, as Fuller
(1987, p. 154) notes, adding more instrumental variables can improve
the quality of an IV estimator.

6.5.2 Simulated Data

The instrumental variable results in Table 6.2 are very close to what was
obtained for regression calibration and SIMEX; see Table 5.1 in Section
5.4.1. The reader can then be forgiven for concluding that instrumen-
tal variable analyses are equivalent to corrections for attenuation. The
Framingham data, though, are a special case, because the instrument
is for all practical purposes an unbiased estimate of X with the same
measurement error as that of W. A simulation will help dispel the no-
tion that instrumental variables are always equivalent to corrections for
attenuation. First the simulation. Consider linear regression of Y on X,
with slope βx = 1 and error about the line σ2

ǫ = 1. Let the sample size be
n = 400. Let X = Normal(0, 1), and let the measurement error variance
σ2

u = 1, so that the reliability ratio is λ = 0.50. We consider two cases. In
the first, W is replicated in order to estimate σ2

u, but only the first repli-
cate is used. In the second, we have an instrument T = 0.2X+ ν, where
ν = Normal(0, 1). Here, the instrument does not have a high correlation
with W, so the division inherent in (6.6) is bound to cause a problem.
Then, in 500 simulations, the naive estimator is biased as expected, and
the correction for attenuation and instrumental variable estimators are
nearly unbiased. However, the correction for attenuation estimator had
much less variability than the instrumental variables estimator, either
in its raw form or with the correction for small samples; see Figure 6.1.
Even the corrected form has a variance more than four times greater
than the correction for attenuation.

6.6 Other Methodologies

6.6.1 Hybrid Classical and Regression Calibration

We have seen two examples in which the classical additive measurement
error model relating (W,X) is combined with a parametric regression
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0 1 2

Naive

0 1 2

Correction for Attenuation

0 1 2

IV

0 1 2

IV, Corrected

Figure 6.1 Comparison of methods in simulated data when the instrument is
weak. Top left: naive estimate. Bottom left: correction for attenuation. Top
right: instrumental variables estimator. Bottom right: instrumental variables
with small sample correction.

calibration model relating X to (Z,T); see Section 6.3.2 and 6.4. Several
papers use the same basic modeling strategy.

Hausman, Newey, Ichimura, et al. (1991) consider the polynomial re-
gression model in which the unobserved true X is measured with clas-
sical additive error, while it is related to the instrument though a re-
gression calibration model (Section 2.2). Specifically, their model is that
W = X + U, and that

Y = β0 + βt
zZ +

∑p
j=1βx,jX

j + ǫ;

X = α0 + αt
zZ + αt

tT + ν. (6.21)

Of course, (6.21) is a regression calibration model. Hausman, Newey,
Ichimura, et al. (1991) assume, in effect, that ǫ and U are each indepen-
dent of (Z,T) but that they need not be independent of one another.
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They also assume that ν is independent of (Z,T), but they allow ν and
ǫ to be correlated. Effectively, their method is to compute higher-order
moments of the observed data to show that all parameters can be iden-
tified, and then to estimate these moments.

Schennach (2006) also considers a hybrid version of the classical and
regression calibration approaches when X is scalar and there are no
covariates Z. Her general model also has W = X + U and takes the
form

Y = mY(X,B) + ǫ;

X = mX(T, γ) + ν. (6.22)

She assumes, in effect, that ǫ is independent of (ν,T), that U is inde-
pendent of (ǫ, ν,T), and that ν is independent of T. She notes that it is
possible to extend the model to include Z. The functional forms of mY(·)
and mX(·) are assumed known, with the unknowns being the parameters
(B, γ). Her method is more complex than in the polynomial case.

6.6.2 Error Model Approaches

In the instrumental variable context, hybrid models such as (6.21) and
(6.22) are appealing because their means as a function of (Z,T) can
be estimated simply by regressing W on (Z,T). This has led us to re-
gression calibration as an approximate device (Section 6.3), the adjusted
score method for certain special problems (Section 6.4), and other mod-
eling approaches (Section 6.6.1). All these methods are intrinsically dif-
ferent from the approaches to measurement error modeling when the
error variance is known or can be estimated in other ways, for example,
replication.

Under stronger technical, although not practical, conditions that were
previously discussed, however, it is possible to achieve identifiability of
estimation and also to employ methods from previous and succeeding
chapters, for example, SIMEX; see Carroll, Ruppert, Crainiceanu, et al.
(2004). First consider the case when there is no Z. For scalar X, Carroll,
Ruppert, Crainiceanu, et al. (2004) start with a model that relates the
response to covariates and random error as

Y = G(X,B, ǫ).

This is a completely general model including generalized linear models,
nonlinear models, etc. These authors assume the usual classical additive
error model W = X + U, and they relate the instrument via a general-
ization of the biased classical error model in (2.1) discussed in Section
2.2.1. Specifically, to begin with they assume that

T = α0 + α1X + ν, (6.23)
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and that (ǫ,U, ν,X) are all mutually independent. Then, it follows that

var(U) = σ2
u = var(W) −

cov(W,T)cov(Y,W)

cov(Y,T)
.

One can thus estimate σ2
u by replacing the variance and covariances by

their sample versions and then using one’s favorite estimation method
tuned to the case where an estimate of σ2

u is available. If the model
G(X,B, ǫ) is simple linear regression, this algorithm produces the usual
instrumental variable estimator. It is worth pointing out that this method-
of-moments estimate need not be positive, or smaller than var(W), and
Carroll, Ruppert, Crainiceanu, et al. (2004) suggest placing bounds on
the attenuation.

More generally, we can include Z by writing the model

Y = G(Z,X,B, ǫ);

T = f0(Z) + f1(Z)X + ν,

the latter being a varying coefficient model, with function f0 and f1.
Carroll, Ruppert, Crainiceanu, et al. (2004) show how to estimate σ2

u in
this general model, even when f0 and f1 are modeled nonparametrically:
Once σ2

u is estimated, estimating the model parameter B can be done
by any of the methods discussed elsewhere in this book.

For example, in the Framingham data, it makes sense to use (6.23),
since the instrument is a second, possibly biased, measurement of true
blood pressure. When we applied the method to estimate σ2

u and then
used regression calibration, we obtained estimates and standard errors
that were essentially the same as in Table 6.1.
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sults for very general measurement error models with instrumental vari-
ables, and develop methods for estimating nonlinear measurement error
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CHAPTER 7

SCORE FUNCTION METHODS

7.1 Overview

Regression calibration (Chapter 4) and SIMEX (Chapter 5) are widely
applicable, general methods for eliminating or reducing measurement
error bias. These methods result in estimators that are consistent in
important special cases, such as linear regression and loglinear mean
models, but that are only approximately consistent in general.

In this chapter, we describe methods that are almost as widely ap-
plicable, but that result in fully consistent estimators more generally.
Consistency is achieved by virtue of the fact that the estimators are M-
estimators whose score functions are unbiased in the presence of mea-
surement error. This property is also true of structural model maximum
likelihood and quasilikelihood estimates, as discussed in Chapter 8. The
lack of assumptions about the unknown Xi distinguishes the methods
in this chapter from those in Chapter 8. The methods are functional
methods, as defined in Section 2.1.

However, we do not deal with functional modeling as it is used in the
linear models measurement error setting, for it is not a viable option for
nonlinear measurement error models. Suppose for the sake of discussion
that the measurement error covariance matrix Σuu is known. In the old
classical functional model, the unobservable Xi are fixed constants and
are regarded as parameters. With additive, normally distributed mea-
surement error, functional maximum likelihood maximizes the joint den-
sity of the observed data with respect to all of the unknown parameters,
including the Xi. While this works for linear regression (Gleser, 1981),
it fails for more complex models such as logistic regression (Stefanski
and Carroll, 1985). Indeed, the functional estimator in most nonlinear
models is both extremely difficult to compute and not even consistent
or valid. The methods in this chapter make no assumptions about the
Xi, are often easier computationally, and lead to valid estimation and
inference.

We focus on the case of additive, normally distributed measurement
error, so that W = X+U with U distributed as a normal random vector
with mean zero and covariance matrix Σuu, and two broad classes of
score function methods that have frequent application.
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• The conditional-score method of Stefanski and Carroll (1987) exploits
special structures in important models such as linear, logistic, Poisson
loglinear, and gamma-inverse regression, using a traditional statistical
device, conditioning on sufficient statistics, to obtain estimators.

• The corrected-score method effectively estimates the estimator that
one would use if there were no measurement error.

We start with linear and logistic regression, using these important spe-
cial cases both as motivation for and explanation of the general methods.
Next, the conditional- and corrected-score methods are illustrated with a
logistic regression example in Section 7.2.3. Then, in successive sections,
we describe the conditional-score and corrected-score methods in detail,
covering the basic theory and giving examples for each method.

We warn the reader that the mathematical notation of conditional and
corrected scores is more complex than that of regression calibration and
SIMEX. However, the formulae are simple to program and implement,
with the possible exception of Monte Carlo corrected scores (MCCS),
which require complex variable computation that may not be available in
all programming languages. More important, the methods in this chapter
result in fully consistent estimators under the conditions stated on the
true-data model and the error model, not just approximately consistent,
as is often the case for regression calibration and SIMEX.

7.2 Linear and Logistic Regression

This section introduces the ideas of corrected and conditional scores in
two important problems, namely, linear regression and logistic regres-
sion. In linear regression, of course, we already know how to construct
valid estimation and inferential methods, as described in Section 3.4, so
nothing really new is being done here: The calculations are simply easier
to follow for this case, and those wishing to understand the ideas, espe-
cially the new ideas for corrected scores, will find the linear regression
calculations give useful insight. For logistic regression, these methods
produce consistent, and not just approximately consistent methods.

7.2.1 Linear Regression Corrected and Conditional Scores

Consider the multiple linear regression model with mean E(Y | Z,X) =
β0 +βt

zZ+βt
xX, variance var(Y | Z,X) = σ2, and the classical additive,

nondifferential error model W = X + U with U = Normal(0,Σuu)
where Σuu is known. Write the unknown regression parameter as Θ1 =
(β0, β

t
z, β

t
x)t and Θ = (Θt

1,Θ2)
t with Θ2 = σ2.

The ordinary least squares score function for multiple linear regression
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in the absence of measurement error is

ΨLS(Yi,Zi,Xi,Θ) =




{Yi − (1,Zt
i,X

t
i)Θ1}




1
Zi

Xi




(
n − p

n

)
σ2 − {Yi − (1,Zt

i,X
t
i)Θ1}2




. (7.1)

The upper equation is the least squares score function (the so-called
normal equations) for Θ1, the regression parameters. The factor (n−p)/n
with p = dim(Θ1) in the lower equation implements the usual degrees-
of-freedom correction for the estimator of σ2.

7.2.1.1 Linear Regression Conditional Score

We now describe an approach to consistent estimation that requires no
assumptions about the X-variables. The derivation of the method, but
not its validity, assumes normality of the true-regression equation error,
ǫi, as well as the measurement errors Ui. Define

∆i = Wi + YiΣuuβx/σ2. (7.2)

Given Zi and Xi, the random variables Yi and ∆i are linear functions
of jointly normal random vectors and thus are jointly normal, condition-
ally on (Zi,Xi). Consequently, the conditional distribution of Yi given
(Zi,Xi,∆i) is also normal, and standard multivariate-normal calcula-
tions show that

E(Yi | Zi,Xi,∆i) = E(Yi | Zi,∆i) =
β0 + βt

zZi + βt
x∆i

1 + βt
xΣuuβx/σ2

,

var(Yi | Zi,Xi,∆i) = var(Yi | Zi,∆i) =
σ2

1 + βt
xΣuuβx/σ2

. (7.3)

These conditional moments are noteworthy for their lack of dependence
on Xi. We will show in Section 7.3 that this is by design, that is, the
manner in which ∆i is defined ensures that these moments depend only
on the observed data and not on Xi.

It follows from (7.3) that the conditional score,

ΨCond(Yi,Zi,Wi,Θ) =




{Yi − E(Yi | Zi,∆i)}




1
Zi

∆i




σ2 − {Yi − E(Yi | Zi,∆i)}2

var(Yi | Zi,∆i)/σ2




,

has the property that

E {ΨCond(Yi,Zi,Wi,Θ) | Zi,∆i} = 0,
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so its unconditional mean also vanishes. Thus, ΨCond can be used to form
unbiased estimating equations,

∑n
i=1ΨCond(Yi,Zi,Wi,Θ) = 0. (7.4)

However, in practice we estimate the parameters by solving the small-
sample modified estimating equations

∑n
i=1




{Yi − E(Yi | Zi,∆i)}




1
Zi

∆i




(
n − p

n

)
σ2 − {Yi − E(Yi | Zi,∆i)}2

var(Yi | Zi,∆i)/σ2




= 0. (7.5)

The factor (n − p)/n in the equation for σ2 implements the degrees-of-
freedom correction for the estimator of σ2. The asymptotic theory of M-
estimators in Section A.6 can be applied to approximate the distribution
of Θ̂.

7.2.1.2 Linear Regression Corrected Score

We now derive the corrected score for linear regression using the general
method of construction described in Section 7.4. The corrected score for
linear regression is readily obtained using other approaches, hence the
general method of construction is overkill for this case. However, the
development is instructive and readily generalizes to problems of greater
interest.

The general method of constructing corrected scores uses complex
variables and complex-valued functions. Although familiarity with com-
plex variables is helpful to understand how the method works, it is not
essential to using, or even implementing the methods, provided one uses
a programming language with complex number capabilities (GAUSS and
MATLAB have such capabilities, for example). We use the bold Greek
letter iota (ι) to denote the unit imaginary number, ι =

√
−1 , to dis-

tinguish it from the observation index i. Only a few facts about complex
numbers are used in this section: a) ι

2 = −1; b) the real part of com-
plex number is Re(z1 + ιz2) = z1; and c) if f(z1 + ιz2) is a function
of a complex variable, then f(z1 + ιz2) = g(z1, z2) + ιh(z1, z2), where g
and h are both real-valued functions and g is the real part of f , that is,
g(z1, z2) = Re{f(z1 + ιz2)}.

The general method of construction has a similar feel to SIMEX, in
that we use the computer to generate random variables to help in defining
an estimator. In the case of corrected scores, these random variables are
defined as follows.

Now, for b = 1, ..., B, generate random variables Ub,i that are inde-
pendent normal random vectors with mean zero and covariance matrix
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Σuu. Consider the complex-valued random variate,

W̃b,i = Wi + ιUb,i. (7.6)

The Monte Carlo corrected score (MCCS) is obtained in three steps:

1. Replace Xi with W̃b,i in a score function that is unbiased in the
absence of measurement error — for linear least squares regression
this is (7.1).

2. Take the real part, Re(·), of the resulting expression to eliminate the
imaginary part.

3. Average over multiple sets of pseudorandom vectors, b = 1, . . . , B.

For linear regression, these steps result in

Ψ̃MCCS,B(Yi,Zi,Wi,Θ) = B−1∑B
b=1Re

{
ΨLS(Yi,Zi,W̃b,i,Θ)

}

=




{Yi − (1,Zt
i,W

t
i)Θ1}




1
Zi

Wi


 +




0
0

M̂u,iβx




(
n − p

n

)
σ2 − {Yi − (1,Zt

i,W
t
i)Θ1}2

+ βt
xM̂u,iβx




,

where M̂u,i = B−1
∑B

b=1 Ub,iU
T
b,i. Because E(M̂u,i) = Σuu, it follows

that for all i and B,

E
{

Ψ̃MCCS,B(Yi,Zi,Wi,Θ) | Zi,Xi

}
= ΨLS(Yi,Zi,Xi,Θ), (7.7)

and consequently that, if we ignore the degrees-of-freedom correction
factor (n − p)/n in (7.1),

E
{

Ψ̃MCCS,B(Yi,Zi,Wi,Θ)
}

= 0. (7.8)

Equation (7.7) provides insight into how corrected scores work. The cor-

rected score, Ψ̃MCCS,B(Yi,Zi,Wi,Θ), is an unbiased estimator of the
score that would have been be used, ΨLS(Yi,Zi,Xi,Θ), if measurement
error were not present.

It follows from general M-estimator theory (Section A.6) that under
regularity conditions the estimating equations,

∑n
i=1Ψ̃MCCS,B(Yi,Zi,Wi,Θ) = 0, (7.9)

admit a consistent and asymptotically normal sequence of solutions.
We can gain further insight into the workings of corrected scores by

solving (7.9) for the case of linear regression, resulting in

Θ̂1 =
(
M̂1zw,1zw − Ω̃

)
−1

M̂y,1zw,

σ̂2 = (n − p)−1∑n
i=1

{(
Yi − Ŷi

)2

− β̂t
xΣ̂uuβ̂x

}
,
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where

M̂1zw,1zw = n−1∑n
i=1




1 Zt
i Wt

i

Zi ZiZ
t
i ZiW

t
i

Wi WiZ
t
i WiW

t
i


 ,

Ω̃ =




0 0 0

0 0 0

0 0 Σ̂uu


 , Σ̂uu =

(
n−1∑n

i=1M̂u,i

)
,

M̂y,1zw = n−1∑n
i=1Yi




1
Zi

Wi


 , Ŷi = (1,Zt

i,W
t
i)Θ̂1.

Because we are working under the assumption that Σuu is known,
it probably seems odd, and it is certainly inefficient, that these esti-
mators depend on the random matrix Σ̂uu. The sensible strategy is to
replace Σ̂uu with Σuu. Doing so yields, apart from degrees-of-freedom
corrections on the relevant covariance matrices, the usual linear mod-
els, method-of-moments correction for measurement error bias (Fuller,

1987). Practically, the substitution of Σuu for Σ̂uu can also be accom-

plished by taking B large, because Σ̂uu converges to Σuu as B → ∞.
Usually, in practice B does not need to be very large to obtain good
results. This is because the randomness introduced in the construction
of the Monte Carlo corrected scores is subject to double averaging over
n and B. This is apparent in the linear regression corrected-score esti-
mator, as it depends on the Ub,i only via

Σ̂uu = (nB)−1∑n
i=1

∑B
b=1Ub,iU

t
b,i,

and the variances of the components of this random matrix are on the
order of (nB)−1.

Herein lies the advantage of the general theory in Section 7.4. For

many measurement error models, substituting the complex variate W̃b,i

defined in (7.6) for Xi into a score function that is unbiased in the ab-
sence of measurement error, taking the real part, and averaging over
b = 1, . . . , B results in an unbiased score that is a function of the ob-
served data. In the linear model we can shortcut the pseudorandom
number generation and averaging, because all of the expressions involved
depend only on first- and second-order sample moments. The corrected
score in this case is

Ψ̃MCCS(Yi,Zi,Wi,Θ) =
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


{Yi − (1,Zt
i,W

t
i)Θ1}




1
Zi

Wi


 +




0
0

Σuuβx




(
n − p

n

)
σ2 − {Yi − (1,Zt

i,W
t
i)Θ1}2

+ βt
xΣuuβx




.

Note E{Ψ̃MCCS,B(Yi,Zi,Wi,Θ) | Yi,Zi,Wi} = Ψ̃CS(Yi,Zi,Wi,Θ). We

call Ψ̃CS(Yi,Zi,Wi,Θ) a corrected score to distinguish it from the Monte

Carlo corrected score Ψ̃MCCS,B. Corrected scores for certain other simple
common statistical models can be found without using Monte Carlo aver-
aging, and some of these are given in Section 7.4.3. However, whenever
a corrected score exists, the Monte Carlo corrected score estimates it
precisely for B large and avoids the mathematical problem of finding it,
although, of course, at the cost of complex variable computation.

Note that in the above discussion, no assumptions were made about
the true-regression equation error, ǫi = Yi − E(Yi | Zi,Xi), either
in practice or in the derivation. A final important point to note about
the corrected-score method is that no assumptions are made about the
unobserved X variables other than those assumptions that would be
needed to ensure consistent estimation in the absence of measurement
error. This fact follows from the key property (7.7).

7.2.2 Logistic Regression Corrected and Conditional Scores

Now we consider the multiple logistic regression model, pr(Y = 1 |
Z,X) = H(β0 + βt

zZ + βt
xX), where H(t) = 1/{1 + exp(−t)} is the

logistic distribution function, and the classical additive, nondifferential
error model W = X+U with U = Normal(0,Σuu) where Σuu is known.
Write the unknown regression parameter as Θ = (β0, β

t
z, β

t
x)t.

The maximum likelihood score function for multiple logistic regression
in the absence of measurement error is

ΨML(Yi,Zi,Xi,Θ) = [Yi − H{(1,Zt
i,X

t
i)Θ}]




1
Zi

Xi


 . (7.10)

7.2.2.1 Logistic Regression Conditional Score

The conditional-score method for logistic regression is similar to that for
linear regression. We again start by defining

∆i = Wi + YiΣuuβx. (7.11)

Note that the definition in (7.11) differs slightly from that in (7.2), due
to the absence of a variance parameter in logistic regression. Conditioned
on (Zi,Xi), both Yi and Wi have exponential family densities. Standard
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exponential family calculations (a good exercise) show that

E(Yi | Zi,Xi,∆i) = H
(
β0 + βt

zZi + βt
x∆i − βt

xΣuuβx/2
)

= E(Yi | Zi,∆i)

= pr(Yi = 1 | Zi,∆i). (7.12)

As in linear regression, the conditional distribution of Yi given (Zi,∆)
does not depend on Xi. It follows from (7.12) that the conditional score,

ΨCond(Yi,Zi,Wi,Θ) = {Yi − E(Yi | Zi,∆i)}




1
Zi

∆i


 ,

has the property that

E {ΨCond(Yi,Zi,Wi,Θ) | Zi,∆i} = 0,

so its unconditional mean also vanishes. Thus ΨCond can be used to form
unbiased estimating equations,

∑n
i=1ΨCond(Yi,Zi,Wi,Θ) = 0, (7.13)

to which the standard asymptotic theory on M-estimators in Section
A.6 can be applied to approximate the distribution of Θ̂. For issues of
computation, see Section 7.5.

7.2.2.2 Logistic Regression Corrected Score

We now derive the corrected score for logistic regression using the gen-
eral method of construction described in Section 7.4. The logistic model
does not satisfy the smoothness conditions required by the corrected-
score theory. However, Novick and Stefanski (2002) showed that even
though the logistic score does not have the requisite smoothness prop-
erties, the corrected-score method can still be applied, and as long as
the measurement error variance is not large, it produces nearly consis-
tent estimators. In other words, when applied to logistic regression, the
corrected-score method is approximate in the sense of reducing measure-
ment error bias, but the quality of the approximation is so remarkably
good that the bias is negligible in practice.

The method of construction is identical to that for the linear model
with the one exception that ΨML in (7.10) replaces ΨLS in (7.1). With

W̃b,i defined as in (7.6), the corrected score for logistic regression is

Ψ̃MCCS,B(Yi,Zi,Wi,Θ) = B−1∑B
b=1Re

{
ΨML(Yi,Zi,W̃i,Θ)

}
.

Just as we did for the linear model in (7.2.1), it is possible to expand

and simplify the expressions Re{ΨML(Yi,Zi,W̃i,Θ)} to obtain an ex-

pression for Ψ̃MCCS,B in terms of standard functions. However, unlike
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the linear model, the resulting expression is not very enlightening, does
not have a closed-form solution, and its limit as B → ∞ is not easy to
obtain. Expanding and simplifying are also not necessary for comput-
ing purposes, provided the programming software has complex number
capabilities. Because the logistic model is not covered by the mathemat-
ical theory of corrected scores, analogues of neither (7.7) or (7.8) hold
exactly, but both hold to a high degree of approximation.

As with the linear model, estimating equations are formed in the usual
fashion, that is,

∑n
i=1Ψ̃MCCS,B(Yi,Zi,Wi,Θ) = 0,

and large-sample inference uses the standard M-estimation methods in
Section A.6.

7.2.3 Framingham Data Example

We illustrate the corrected- and conditional-score methods for logistic
regression with the Framingham data used in the example of Section
4.3. All of the replicate measurements were used, and thus our variance
estimate is based on 1,614 degrees of freedom and we proceed under the
assumption that the sampling variability in this estimate is negligible,
that is, the case of known measurement error.

Estimates and standard errors are in Table 7.1, for the conditional-
score estimator (7.13), the corrected-score estimators (7.13) with B = 10
and B = 10, 000, and the naive estimates for comparison. These esti-
mates should be compared with those in Table 5.1, where almost the
same answers are obtained. As explained in Section (7.2.2), conditional-
score estimators are fully consistent as long as the logistic model and
normal error model hold, and possess certain asymptotic variance opti-
mality properties. The standard errors in Table 7.1 were computed from
the sandwich-formula variance estimates in Section 7.5.1.

The difference among the three measurement error model estimates
is clearly negligible. The equivalence, to the number of significant digits
presented, of the corrected-score estimators for B = 10 and B = 10, 000
supports the claim made in Section 7.2.1 that B does not need to be
very large to obtain satisfactory results. The similarity between the
conditional-score estimates and the corrected-score estimates supports
the claim that the corrected-score procedure is, for most practical pur-
poses, comparable to consistent methods, even though it is not covered
by the theory in Section 7.4.
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Age Smoke Chol LSBP

Naive .055 .59 .0078 1.71
Std. Err. .010 .24 .0019 .39

Conditional .053 .60 .0078 1.94
Std. Err. .011 .24 .0020 .44

Corrected (B = 10) .054 .60 .0078 1.94
Std. Err. .011 .24 .0020 .44

Corrected (B = 104) .054 .60 .0078 1.94
Std. Err. .011 .24 .0020 .44

Table 7.1 Conditional-score and corrected-score estimates and sandwich
standard errors from the Framingham data logistic regression analyses.
Here “Smoke” is smoking status, “Chol” is cholesterol, and “LSBP” is
log(SBP−50). Two sets of corrected-score estimates were calculated using dif-
ferent levels of Monte Carlo averaging, B = 10 and B = 10, 000.

7.2.3.1 Two Predictors Measured with Error

An appealing feature of the conditional- and corrected-score methods is
the ease with which multiple predictors measured with error are handled.
We now consider the Framingham logistic model for the case in which
both systolic blood pressure and serum cholesterol are measured with
error, first analyzed in Section 5.4.3 using SIMEX.

Recall that when serum cholesterol entered the model as a predic-
tor measured with error, error modeling considerations indicated that
a log transformation was appropriate to homogenize error variances.
Thus, as in Section 5.4.3, the true-data model includes predictors Z1 =
age, Z2 = smoking status, X1 = log(cholesterol) at Exam #3 and
X2 = log(SBP−50) at Exam #3. The error model is (W1,W2) =
(X1,X2)+(U1,U2), where (U1,U2) is bivariate normal with zero mean
and covariance matrix Σu, with error covariance matrix estimate,

Σ̂u =

(
0.00846 0.000673
0.000673 0.0126

)
.

The two error variances result in marginal reliability ratios of λ1 =
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Age Smoke LChol LSBP

Naive .056 .57 2.04 1.52
Std. Err. .011 .24 .52 .37

SIMEX (STATA) .055 .58 2.53 1.85
Std. Err. .010 .26 .73 .45

Conditional .054 .60 2.84 1.93
Std. Err. .011 .25 .72 .47

Corrected (B = 102) .054 .59 2.83 1.92
Std. Err. .011 .25 .72 .47

Corrected (B = 104) .054 .59 2.82 1.92
Std. Err. .011 .25 .72 .47

Table 7.2 Conditional-score and corrected-score estimates and sandwich stan-
dard errors from the Framingham data logistic regression analyses with both
SBP and cholesterol measured with error. Here “Smoke” is smoking sta-
tus, “LChol” is log(cholesterol), and “LSBP” is log(SBP−50). Two sets of
corrected-score estimates were calculated using different levels of Monte Carlo
averaging, B = 100 and B = 10, 000.

0.73 and λ2 = 0.76, respectively for W1 and W2, with linear model
corrections for attenuation of 1/λ1 = 1.37 and 1/λ2 = 1.32. So in the
absence of strong multicollinearity the conditional- and corrected-score
estimators of the coefficients of log(cholesterol) and log(SBP−50) should
be inflated by approximately 37% and 32%, compared to the naive esti-
mates.

The results of the analysis displayed in Table 7.2 are consistent with
expectations. Difference between the conditional- and corrected-score
estimates are negligible, and the bias correction in the estimates is con-
sistent with the reliability ratios reported above, for log(cholesterol),
2.82/2.04 = 1.38 ≈ 1.37 and for log(SBP−50), 1.92/1.52 = 1.26 ≈ 1.32.
For comparison, we include the naive and SIMEX estimates from Section
5.4.3. Recall that the SIMEX estimates are somewhat undercorrected for
bias, as explained in Section 5.4.3.
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As in Table 7.1 for the analysis assuming only ln(SBP−50) is mea-
sured with error, we calculated the Monte Carlo corrected score esti-
mates using two different levels of Monte Carlo averaging. However, for
the present model we took the lower level equal to B = 100, not B = 10
used in Table 7.1. The averaging required in the Monte Carlo corrected
score, see (7.27), is effectively calculating an integral. As with any nu-
merical method of integration, higher-dimensional integration require
greater computational effort. Thus, the more variables measured with
error, the larger one should take B.

7.3 Conditional Score Functions

In this section, we describe the conditional-score estimators of Stefanski
and Carroll (1987) for an important class of generalized linear models.
We first present the basic theory, followed by conditional scores for spe-
cific models. Finally, certain extensions are presented to describe the
range of applications of the conditional-score approach. Once again, we
note that this section, like this chapter as a whole, is heavy with formulae
and algebra, but exhibiting the formulae makes the methods usable.

7.3.1 Conditional Score Basic Theory

7.3.1.1 Generalized Linear Models (GLIM)

Canonical generalized linear models (McCullagh and Nelder, 1989) for
Y given (Z,X) have density or mass function

f(y|z, x,Θ) = exp

{
yη −D(η)

φ
+ c(y, φ)

}
, (7.14)

where η = β0 + βt
zz + βt

xx is called the natural parameter, and Θ =
(β0, β

t
z, β

t
x, φ) is the unknown parameter to be estimated. The mean and

variance of Y are D′(η) and φD′′(η). This class of models includes:

• linear regression: mean = η, variance = φ, D(η) = η2/2, c(y, φ) =
−y2/(2φ) − log(

√
2πφ );

• logistic regression: mean = H(η), variance = H ′(η), φ ≡ 1, D(η) =
−log {1 − H(η)}, c(y, φ) = 0, where H(x) = 1/{1 + exp(−x)};

• Poisson loglinear regression: mean = exp(η), variance = exp(η), φ ≡
1, D(η) = exp(η), c(y, φ) = −log(y!);

• Gamma inverse regression: mean = −1/η, variance = −φ/η, D(η) =
−log(−η), c(y, φ) = φ−1log(y/φ) − log {yΓ(1/φ)}.
If the Xi were observed, then Θ is estimated by solving

∑n
i=1ΨQL(Yi,Zi,Xi) = 0, (7.15)
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where

ΨQL(Yi,Zi,Xi) =




{Yi −D′(ηi)}




1
Zi

Xi




(
n − p

n

)
φ − {Yi −D′(ηi)}2

D′′(ηi)




, (7.16)

where ηi = β0 + βt
zZi + βt

xXi.
For certain models (7.15) produces maximum likelihood estimators

apart from the degrees of freedom correction (n − p)/n. However, in
general it results in quasilikelihood estimators; see Section A.

7.3.1.2 GLIM MEMs and Conditional Scores

Assume now that the measurement error is additive and normally dis-
tributed, with error covariance matrix Σuu. If X is regarded as an un-
known parameter and all other parameters are assumed known, then

∆ = W + YΣuuβx/φ (7.17)

is a sufficient statistic for X (Stefanski and Carroll, 1987). Furthermore,
the conditional distribution of Y given (Z,∆) = (z, δ) is a canonical
generalized linear model of the same form as (7.14) with certain changes.
With (Y,Z,∆) = (y, z, δ), replace x with δ, and η, c, and D with

η∗ = β0 + βt
zz + βt

xδ;

c∗(y, φ, βt
xΣuuβx) = c(y, φ) − (1/2)(y/φ)2βt

xΣuuβx;

D∗(η∗, φ, βt
xΣuuβx)

= φlog

[∫
exp

{
yη∗/φ + c∗(y, φ, βt

xΣuuβx)
}

dµ(y)

]
,

where the last term is a sum if Y is discrete and an integral otherwise.
This means that the conditional density or mass function is

f(y|z, δ,Θ,Σuu) =

exp

{
yη∗ −D∗(η∗, φ, βt

xΣuuβx)

φ
+ c∗(y, φ, βt

xΣuuβx)

}
, (7.18)

where η∗ = β0 + βt
zz + βt

xδ.
The correspondence between (7.14) and (7.18) suggests simply sub-

stituting D∗(η∗, φ, βt
xΣuuβx) for D(η) into (7.15)–(7.16), and solving the

resulting equations replacing ηi by η∗,i = β0 + βt
x∆i + βt

zZi, noting that
∆i depends on βx and φ. This simple idea is easily implemented and
produces consistent estimators.

The conditional mean and variance of Y given (Z,∆) are determined
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by the derivatives of D∗ with respect to η∗, that is,

E(Yi | Zi,∆i) = m(η∗, φ, βt
xΣuuβx) =

∂

∂η∗
D∗;

var(Yi | Zi,∆i) = φv(η∗, φ, βt
xΣuuβx) = φ

∂2

∂η2
∗

D∗. (7.19)

The estimates of Θ = (β0, βx, βz, φ) are obtained by solving
∑n

i=1ΨCond(Yi,Zi,Wi,Θ) = 0,

where

ΨCond(Yi,Zi,Wi,Θ) =


{Yi − E(Yi | Zi,∆i)}




1
Zi

∆i




(
n − p

n

)
φ − {Yi − E(Yi | Zi,∆i)}2

var(Yi | Zi,∆i)/φ




(7.20)

with η∗,i = β0+βt
zZi+βt

x∆i, with ∆i = Wi+YiΣuuβx/φ. Stefanski and
Carroll (1987) discuss a number of ways of deriving unbiased estimating
equations from (7.18) and (7.19). The approach described here is the
simplest to implement.

7.3.2 Conditional Scores for Basic Models

In Sections 7.2.1 and 7.2.2, we presented the conditional scores for linear
and logistic regression, respectively. It is an informative exercise to derive
those formulae from the general theory, and we leave it to the reader to
do so. In this section, we show how to derive the conditional scores in
more complex models.

7.3.2.1 Poisson Regression

Linear and logistic regression are the only common canonical models for
which D′

∗
and D∗

′′ have closed-form expressions. In general, either nu-
merical integration or summation is required to determine the moments
(7.19). For example, for Poisson regression (for which φ ≡ 1),

D∗(η∗, φ, βt
xΣuuβx) = log

{
∞∑

y=0

(y!)−1exp(yη∗ − y2βt
xΣuuβx/2)

}
.

For this model, η∗ = β0 + βt
zZ + βt

x∆ and

E(Yj | Z,∆) =

∑
∞

y=0 yj(y!)−1exp{y(η∗) − y2βt
xΣuuβx/2}

∑
∞

y=0 (y!)−1exp{y(η∗) − y2βtΣuuβx/2} , (7.21)
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and computation of the mean and variance functions requires numerical
summation unless βt

xΣuuβx = 0.

7.3.2.2 Linear and Logistic Models with Interactions

Consider the usual form of the generalized linear model (7.14) with the
difference that η = β0 + βt

zz + βt
xx + xtβxzz where βxz is a dim(X) ×

dim(Z) matrix of interaction parameters. Conditional-score estimation
for this model was studied by Dagalp (2001). The model allows for inter-
actions between the variables measured with error and those measured
without error. In particular, it allows for analysis of covariance models
with some of the covariates measured with error by having Z indicate
group membership. The appropriate elements of βxz can be constrained
to equal zero if the model does not contain all possible interactions.
The full parameter vector is denoted by Θ = (β0, β

t
z, β

t
x, vec∗(βxz)

t, φ)
where vec∗ denotes the operator that maps the non-zero-constrained el-
ements of the parameter matrix reading left to right, and top to bottom
to a column vector. Assuming the normal measurement error model,
W = Normal(X,Σuu), the distribution of the observed data again ad-
mits a sufficient statistic for X,

∆ = W + YΣuu(βx + βxzZ)/φ.

This means that we can obtain unbiased score functions in the same
fashion as with previous models, taking care to include components for
the interaction components. For this model,

ΨCond(Yi,Zi,Wi,Θ) =



{Yi − E(Yi | Zi,∆i)}




1
Zi

∆i

Zi ⊗ ∆




(
n − p

n

)
φ − {Yi − E(Yi | Zi,∆i)}2

var(Yi | Zi,∆i)/φ




, (7.22)

where Zi ⊗∆ represents a column vector of length dim{vec∗(βxz)} con-
taining the product of the kth element of Zi and the rth element of ∆i

if and only if the (r, k) element of βxz in not constrained to equal zero.
Define

ξ = βx + βxzZ.

For linear regression with φ = σ2 the required conditional expectations
are

E(Yi | Zi,∆i) =
β0 + βt

zZ + ξt∆

1 + ξtΣuuξ/σ2
,
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var(Yi | Zi,∆i) =
σ2

1 + ξtΣuuξ/σ2
.

For logistic regression, φ ≡ 1, only the top component of (7.22) is
relevant, and we need only the first conditional moment,

E(Yi | Zi,∆i) = pr(Y = 1 | Zi,∆i) = H(β0 + βt
zZ + ξt∆ − ξtΣuuξ/2),

where H(·) is, as usual, the logistic distribution function.

7.3.3 Conditional Scores for More Complicated Models

The following examples provide a sample of models for which conditional-
score methods have been derived and studied since the first edition in
1995. The models, and the technical details of the derivations and the
score functions, are generally more complicated than those considered
previously. Our intent is to illustrate the range of application of the
conditional-score approach, and we omit many of the mathematical de-
tails, describing only the models and the relevant conditioning sufficient
statistic.

7.3.3.1 Conditional Scores with Instrumental Variables

Buzas and Stefanski (1996c) studied conditional-score estimation for the
generalized linear model in (7.14) with observed predictor following the
additive error model, W = X + U, where U = Normal(0,Σuu), for the
case that Σuu is unknown but an instrument is observed,

T = Normal(γ1 + γzZ + γxX,Ω), (7.23)

where the parameters in (7.23) are also unknown. This is a version of the
model studied in Section 6.3.2, with the additional structure of (7.14)
imposed on the primary model relating Y to X and the multivariate
linear model structure of (7.23). Note that in the most general case with
Z, X, W, and T vector-valued, the regression in (7.23) is multivariate
and γ1, γz, and γx are matrices of the appropriate dimensions. For this
model Buzas and Stefanski (1996c) derive conditional-score functions
under the assumptions that Y, W, and T are conditionally independent
given Z and X, and rank(γx) = dim(X). The latter assumption requires
at least as many instruments as variables measured with error. Under
these assumptions

∆ = W + YΣuuβx/φ + Σuuγt
xΩ−1T

is a sufficient statistic for X when all other parameters are assumed
known. Conditional scores are obtained by conditioning on this statistic.
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7.3.3.2 Proportional Hazards Model with Longitudinal Covariates
Measured with Error

Tsiatis and Davidian (2001) used conditional score techniques to elimi-
nate subject-specific, time-dependent covariate process parameters when
the time-dependent covariate process is measured with error. In their
model, the observed data for each subject includes the time on study Vi,
failure indicator Fi, error-free time-independent covariate Zi, and longi-
tudinal measurements Wi(tij) = Xi(tij) + ǫij , ti1 < · · · < ti,ki

, where
the unobserved time-dependent covariate process is modeled as Xi(u) =
αoi+α1iu and the errors ǫij are independent Normal(0, σ2). The survival
model assumes that the hazard of failure is λi(u) = λ0(u)exp{γXi(u) +
ηtZi}.

Defining X̂i(u) to be the ordinary least squares estimator of Xi(u)
using all of the longitudinal data up to and including time u, the counting
process increment, dNi(u) = I(u ≤ Vi < u + du, Fi = 1, ti2 ≤ u), and
the at-risk process Yi(u)I(Vi ≥ u, ti2 ≤ u), Tsiatis and and Davidian’s

assumptions are such that conditioned on {αi, Yi(u) = 1,Zi}, X̂i(u) =
Normal{αoi + α1iu, σ2θi(u)}, where θi(u) is known. It follows that up

to order du the conditional likelihood of {dNi(u), X̂i(u)} given {Yi(u) =
1, αi,Zi} admits a sufficient statistic for Xi(u) of the form

∆i(u) = X̂i(u) + γσ2θi(u)dNi(u). (7.24)

The statistic ∆i(u) is used to derive conditional estimating equations
free of the αi by conditioning on ∆i. Note the similarity of (7.24) to
(7.17). Because of the formal equivalence between proportional hazard
partial likelihood and logistic regression likelihood, the technical details
of the corrected score for the proportional hazard model are similar to
those for logistic regression.

7.3.3.3 Matched Case-Control Studies with Covariate Measurement
Error

McShane, Midthune, Dorgan, et al. (2001) used the conditional-score
method to derive estimators for matched case-control studies when co-
variates are measured with error. Their study design was a 1 : M
matched case-control study with K strata, where in the absence of mea-
surement error the preferred method of inference is based on the condi-
tional prospective likelihood,

pr
[
Y1, . . . ,Yk | {Xk,Zk, (Tk = 1)}K

k=1

]

=

K∏

k=1

exp
{∑M+1

j=1 Ykj(X
t
kjβx + Zt

kjβz)
}

∑M+1
j=1 exp(Xt

kjβx + Zt
kjβz)

,
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where Yk = (Yk1, . . . , Yk,M+1) is the vector of binary responses for the

M + 1 subjects in the kth stratum, Tk =
∑M+1

j=1 Ykj , (Xt
kj ,Z

t
kj)

t is the
error-free covariate for the jth subject in the kth stratum, and Xk =
(Xt

k1, . . . ,X
t
k,M+1)

t, Zk = (Zt
k1, . . . ,Z

t
k,M+1)

t. The measurement error
model is a Gaussian, nondifferential additive model with Wkj = Xkj +
Ukj , where the model for the errors Ukj allows for multiple additive
components subject to certain restrictions.

With Bk,x = (Yk2β
t
x, . . . , Yk,M+1β

t
x)t, Dkz = (Zt

k2, . . . ,Z
t
k,M+1)

t −
Zt

k1, Dkx = (Xt
k2, . . . ,X

t
k,M+1)

t − Xt
k1, Dkw = (Wt

k2, . . . ,W
t
k,M+1)

t −
Wt

k1, and Dku = Dkw −Dkx, where Σdu,du
= cov(Dku,Dku), McShane

et al. (2001) showed that

∆k = Dkw + Σdu,du
Bk,x

is sufficient for Dkx when Dkx is regarded as a parameter and all other
parameters are assumed known, k = 1, . . . ,K. Thus by conditioning on
the ∆k, estimating equations can be derived that do not depend on the
unobserved Xkj .

7.3.3.4 Joint Models with Subject-Specific Parameters

Joint models are discussed in greater detail in Section 11.7. Here, we con-
sider a particular joint model that is amenable to the conditional score
method. Li, Zhang, and Davidian (2004) adapted the conditional-score
method to joint models with subject-specific random effects. Rather
than model the distribution of the subject-specific effects, they showed
how to derive conditional scores that are free of the subject-specific ef-
fects. In their model the ith subject has observed data: Yi, the primary
response; Zi, the error-free predictors; and longitudinal measurements
Wi = (Wi1, . . . ,Wiki

)t with Wij measured at time tij . The longitudinal
data are assumed to follow the model Wi = DiXi + Ui, where Di is a
ki×q full-rank design matrix depending on tij , Xi is a random, subject-
specific effect modeling features of the ith longitudinal profile, and Ui

are Normal(0, σ2
uI), independent of Xi and across i.

Li, Zhang, and Davidian (2004) assumed that conditioned on (Zi,Xi)
the primary endpoint Yi follows a generalized linear model of the form
(7.14). It follows that

∆i = Dt
iWi + σ2

uYiβx/φ (7.25)

is sufficient for Xi when all other parameters are assumed known. They
then derived and studied conditional score estimators, as well as another
conditional estimator described by Stefanski and Carroll (1987).

It is instructive to reconcile the statistic in (7.25) with the form of the
statistic given in (7.17) for the general model. Starting with the linear
model Wi = DiXi + Ui, multiplication by (Dt

iDi)
−1Dt

i results in the
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unbiased error model W∗

i = Xi +U∗

i where W∗

i = (Dt
iDi)

−1Dt
iWi and

U∗

i = (Dt
iDi)

−1Dt
iUi is Normal{0, (Dt

iDi)
−1σ2

u}. If we now substitute
W∗

i for W and (Dt
iDi)

−1σ2
u for Σuu into the expression for the suffi-

cient statistic given in (7.17), we get ∆∗

i = W∗

i + Y(Dt
iDi)

−1σ2
uβx/φ =

(Dt
iDi)

−1
{
Dt

iWi + σ2
uYiβx/φ

}
In other words, after transforming to

an unbiased error model, the sufficient statistic in (7.25) is a matrix
multiple of the general model sufficient statistic in (7.17). The facts that
the matrix, (Dt

iDi)
−1, is known, and that a known, full-rank multiple

of a sufficient statistic is also sufficient, establish the link between the
general theory statistic (7.17) and the form of the statistic (7.25) used
by Li, Zhang, and Davidian (2004).

7.4 Corrected Score Functions

This section gives the basic theory and the algorithm of corrected score
functions. It applies to any model for which the usual estimator in the
absence of measurement error is an M-estimator. The basic idea is very
simple:

• Let ΨTrue(Y,Z,X,Θ), where Θ is the collection of all unknown pa-
rameters, denote the score function that would be used for estimation
if X were observed. This could be a nonlinear least-squares score, a
likelihood score (derivative of the loglikelihood), etc.

• Because X is not observed and hence ΨTrue(Y,Z,X,Θ) cannot be
used for estimation, we do the next best thing and construct an un-
biased estimator of ΨTrue(Y,Z,X,Θ) based on the observed data.
This new score function is ΨCS(Y,Z,W,Θ). It has the property that
E{ΨCS(Y,Z,W,Θ)} = ΨTrue(Y,Z,X,Θ), and thus is also unbiased.

• The corrected score function, ΨCS(Y,Z,W,Θ), is used for estimation
of Θ, the calculation of standard errors, inference, etc., using the M-
estimation techniques in Section (A.6).

There are basically two ways to find the corrected score function:

1. Be clever! In some cases, one can intuit the corrected score function
exactly. Some examples where this is possible are given in Section
7.4.3.

2. When intuition is lacking, or the corrected score is prohibitively com-
plicated, an alternative is to use the complex variable theory, as we
did in Section 7.2, and let the computer calculate the score function
and solve it. Obviously, if we can be clever, we would not use the
Monte Carlo approach, but the Monte Carlo approach expands the
possible applications of the methodology. We discuss this approach in
detail in Section 7.4.2.
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7.4.1 Corrected Score Basic Theory

The method of corrected scores does not assume a model for the observed
data per se. Rather, it starts with the assumption that there exists an
unbiased score function that produces consistent estimators with error-
free data. This is the true-data score function described above and called
ΨTrue(Y,Z,X,Θ). The true-data score function should have the property
that if X were observable, the score function would be unbiased, that is,

E{ΨTrue(Y,Z,X, θ)|Z,X} = 0.

For the linear and logistic regression models in Sections 7.2.1 and 7.2.2,
ΨTrue was the least squares and maximum likelihood score in (7.1) and
(7.10), respectively.

A corrected score is a function, ΨCS, of the observed data having the
property that it is unbiased for the true-data score function. In symbols,
this means that

E {ΨCS(Y,Z,W,Θ)|Y,Z,X)} = ΨTrue(Y,Z,X,Θ).

It follows from (7.26) and (7.26) that ΨCS is also conditionally unbiased,
that is, E{ΨCS(Y,Z,W,Θ) = 0. Thus, by the general theory of M-
estimation, the estimating equations,

∑n
i=1ΨCS(Yi,Zi,Wi,Θ) = 0,

possess a consistent, asymptotically normally sequence of solutions (Naka-
mura, 1990), whose asymptotic distribution is readily approximated us-
ing the M-estimation techniques in Section A.6.

Note that no assumptions about the Xi are made. Thus, the corrected-
score method provides an attractive approach to consistent estimation
when data are measured with error. The key technical problem is finding
a corrected score satisfying (7.26) for a given ΨTrue. Corrected scores have
been identified for particular models by Nakamura (1990) and Stefanski
(1989), and the results in Gray, Watkins, and Schucany (1973) provide a
means of obtaining corrected scores via infinite series. These calculations
are described in Section 7.4.3. In the absence of such exact results, Novick
and Stefanski (2002) describe a general method of constructing corrected
scores based on simple Monte Carlo averaging. We now outline their
method.

7.4.2 Monte Carlo Corrected Scores

7.4.2.1 The Algorithm

The algorithm is simple, although perhaps with complex numbers simple
is not the most appropriate word. The method is as follows.
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• For b = 1, ..., B, generate random numbers Ub,i that are normally
distributed with mean zero and covariance matrix Σuu.

• Form the complex-valued random variables

W̃b,i = Wi + ιUb,i. (7.26)

where ι =
√
−1.

• Define the Monte Carlo corrected score

ΨMCCS,B(Yi,Zi,Wi,Θ) =

B−1∑B
b=1Re{ΨTrue(Yi,Zi,W̃b,i,Θ)}. (7.27)

• Get an estimator for Θ by solving the corrected-score estimating equa-
tions

∑n
i=1ΨMCCS,B(Yi,Zi,Wi,Θ) = 0.

• As B → ∞, ΨMCCS,B(Yi,Zi,Wi,Θ) → ΨCS(Yi,Zi,Wi,Θ). The num-
ber of generated random variables per subject, B, needs to be large
enough to make this limit approximately correct. Often, however,
rather small values of B suffice.

• The resulting corrected-score estimators are M-estimators to which
the standard asymptotic results in Section A.6 apply.

7.4.2.2 The Theory

A mathematical result on which the corrected-score theory is based is
that for suitably smooth, integrable functions, f(·), the function defined
by

f̃(Wi) = E
[
Re

{
f(W̃b,i)

}
|Xi,Wi

]
(7.28)

does not depend on Xi and is an unbiased estimator of f(Xi), where
Re{} denotes the real part of its argument, that is,

E
{
f̃(Wi)|Xi

}
= f(Xi) (7.29)

(Stefanski, 1989; Stefanski and Cook, 1995). We will not prove the gen-
eral result here. However, verification of (7.29) for the function g(x) =
exp(ctx) is instructive and also provides results that are used later in
this section. First, note that by independence of Ub,i and (Xi,Wi) and
properties of the normal distribution characteristic function,

g̃(Wi) = E
[
Re

{
g(W̃b,i)

}
|Xi,Wi

]

= exp(ctWi)exp(−ctΣuuc/2).
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Now the fact that E{g̃(Wi)|Xi} = g(Xi) follows immediately from
the normal moment generating function identity, E{exp(ctWi)|Xi} =
exp(ctXi + ctΣuuc/2).

The special case g(Xi) = exp(ctXi) is very useful. It follows from the
result for the exponential function that (7.29) also holds for the partial
derivative (∂/∂c)g(Xi) = Xiexp(ctXi) and for higher-order derivatives,
as well. Also, it is clear that (7.29) holds for linear combinations of
exponentials,

∑
j exp(ct

jXi), and their partial derivatives with respect
to cj . These results can be used to find the exact corrected scores in
Section (7.4.3).

It follows from (7.29), that for score functions with components that
are sufficiently smooth and integrable functions of their third argument,

E
[
Re{ΨTrue(Yi,Zi,W̃b,i,Θ)}|(Yi,Xi)

]
= ΨTrue(Yi,Zi,Xi,Θ),

that is, Re{ΨTrue(Yi,Zi,W̃b,i,Θ)} is a corrected score.

The corrected score Re{ΨTrue(Yi,Zi,W̃b,i,Θ)} in (7.30) depends on
the particular generated random vector Zb,i. The preferred corrected

score is E{ΨTrue(Yi,Zi,W̃b,i,Θ)|(Yi,Zi,Wi)}, which eliminates vari-
ability due to Ub,i. The conditional expectation is not always easy to
determine mathematically. However, Monte Carlo integration provides
a simple solution, resulting in the Monte Carlo corrected score (7.27).
The Monte Carlo corrected score possesses the key property,

E{ΨMCCS,B(Yi,Zi,Wi,Θ) | Yi,Zi,Xi} = ΨTrue(Yi,Zi,Xi,Θ),

from (7.30) and converges to the exact conditional expectation desired
as B → ∞, that is,

ΨCS(Yi,Zi,Wi,Θ) = lim
B→∞

ΨMCCS,B(Yi,Zi,Wi,Θ).

Corrected-score estimating equations are formed in the usual fashion as
described above.

7.4.3 Some Exact Corrected Scores

The exponential function g(X) = exp(ctX) is a special case of (7.29)
studied in Section 7.4, and extensions derived from it are useful for
finding exact corrected scores when the true-data score functions are
linear combinations of products of powers and exponential.

7.4.3.1 Likelihoods with Exponentials and Powers

One useful class of models that admit corrected scores contains those
models with log-likelihoods of the form

log {f(y|z, x,Θ)} =
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∑2
k=0

{
ck(y, z,Θ)(βt

xx)k
}

+ c3(y, z,Θ)exp(βt
xx);

see the examples given below. Then, using normal distribution moment
generating function identities, the required function is

Ψ∗(y, z, w,Θ,Σuu) =

∂

∂Θt

[
2∑

k=0

{
ck(y, z,Θ)(βt

xw)k
}
− c2(y, z,Θ)βt

xΣuuβx

+c3(y, z,Θ)exp(βt
xw − .5βt

xΣuuβx)

]
.

Regression models in this class include:

• Normal linear with mean = η, variance = φ, c0 = −(y − β0 −
βt

zz)2/(2φ)− log(
√

φ ), c1 = (y − β0 − βt
zz)/φ, c2 = −(2φ)−1, c3 = 0.

• Poisson with mean = exp(η), variance = exp(η), c0 = y(β0 + βt
zz) −

log(y!), c1 = y, c2 = 0, c3 = −exp(β0 + βt
zz).

• Gamma with mean = exp(η), variance = φexp(2η), c0 = −φ−1(β0 +
βt

zz)+(φ−1−1)log(y)+φ−1log(φ−1)−log
{
Γ(φ−1)

}
, c1 = φ−1, c2 = 0,

c3 = −φ−1yexp(−β0 − βt
zz).

7.4.4 SIMEX Connection

There is a connection between SIMEX and the Monte Carlo corrected-
score method. SIMEX adds measurement error multiple times, computes
the new estimator over each generated data set, and then extrapolates
back to the case of no measurement error. The sequence of operations in
simulation extrapolation is 1) generate pseudo-random, (real-valued) re-

measured data sets as Wb,i(ζ) = Wi +
√

ζΣ
1/2
uu Ub,i; 2) calculate average

estimates from the remeasured data sets; 3) determine the dependence
of the averaged estimates on ζ; and 4) extrapolate to ζ = −1.

The Monte Carlo corrected-score method is obtained more or less by
reordering these operations. It starts with the complex-valued, pseudo-
random data sets. Note that these are obtained by letting ζ → −1 in the

SIMEX remeasured data, limζ→−1 Wb,i(ζ) = Wi + ιΣ
1/2
uu Ub,i. Rather

than calculate an estimate from each complex pseudodata set and aver-
aging, the complex, pseudodata estimating equations are averaged, the
imaginary part is removed, and then the averaged equations are solved,
resulting in a single estimate.

7.4.5 Corrected Scores with Replicate Measurements

The connection to SIMEX described in the previous section extends
even further. In Section 5.3.1, we described a version of the SIMEX al-
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gorithm that automatically accommodates heteroscedastic measurement
error with unknown variances, provided ki ≥ 2 replicate measurements
are available for each true Xi. The key innovation there was that pseudo
data are generated as random linear contrasts of the replicate measure-
ments. Similar methods of generating pseudo errors, with the key change
that ζ = −1, as described in the preceding section, can be used to
construct corrected scores from replicate measurements that automat-
ically handle heteroscedastic measurement error. Here, we present the
approach described in Stefanski, Novick and Devanarayan (2005) for the
case that Xi is a scalar.

Assume that the error model is Wi,j = Xi + Ui,j , where Ui,j , j =
1, . . . , ki, i = 1, . . . , n are independent Normal(0, σ2

u,i), independent of

Xi, Zi, and Yi, with all σ2
u,i unknown. Let Wi and σ̂2

i denote the sample

mean and sample variance of the ith set of replicates, and define

W̃b,i = Wi + ι(ki − 1)1/2σ̂iTb,i, (7.30)

where Tb,i = Vb,1(V
2
b,1 + · · · + V 2

b,ki−1)
−1/2 and the Vb,i are generated as

independent Normal(0, 1) independent of the data.
Stefanski, Novick and Devanarayan (2005) proved a result comparable

to that in (7.28) and (7.29). They showed that if f(·) is a suitably smooth,
integrable function, then

f̃(Wi) = E
[
Re

{
f(W̃b,i)

}
|Xi,Wi

]
(7.31)

does not depend on Xi and is an unbiased estimator of f(Xi), that is,

E
{
f̃(Wi)|Xi

}
= f(Xi).

This result is used to construct corrected scores for the replicate-data,
unknown-heteroscedastic-error-variance model in the same manner that
the result in (7.28) and (7.29) was used to construct them for the known-
error-variance case in Section (7.4.1). The Monte Carlo corrected score
has exactly the same form,

ΨMCCS,B(Yi,Zi,Wi,Θ) = B−1∑B
b=1Re{ΨTrue(Yi,Zi,W̃b,i,Θ)};

the only difference is that W̃b,i is defined in (7.30), as opposed to (7.26).

7.5 Computation and Asymptotic Approximations

Conditional-score and corrected-score estimators are M-estimators, and
thus the usual numerical methods and asymptotic theory for M-estimators
apply to both. We outline the computation and distribution approxima-
tions here for the case where Σuu is known, and when it is estimated
from independent data.
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7.5.1 Known Measurement Error Variance

Let Ψ∗(Y,Z,W,Θ,Σuu) denote either a conditional or corrected score.
Showing the dependence of the score on Σuu will be useful when we deal
with the case of estimated measurement error variance. Suppose that Θ̂∗

is a solution to the estimating equations,

∑n
i=1Ψ∗(Yi,Zi,Wi, Θ̂∗,Σuu) = 0. (7.32)

Then, generally, n1/2(Θ̂∗−Θ) is asymptotically Normal
{
0, A−1B(A−1)t

}
,

where A and B are consistently estimated by

Â = n−1∑n
i=1Ψ∗Θ(Yi,Zi,Wi, Θ̂∗,Σuu)

B̂ = n−1∑n
i=1Ψ∗(Yi,Zi,Wi, Θ̂∗,Σuu)Ψt

∗
(Yi,Zi,Wi, Θ̂∗,Σuu),

with Ψ∗Θ(Y,Z,W,Θ,Σuu) = (∂/∂Θt)Ψ∗(Y,Z,W,Θ,Σuu).

The matrix Â also appears in the Newton–Raphson iteration for solv-
ing (7.32). Starting with an initial estimate Θ̂(0), successive iterates are
obtained via

Θ̂
(k+1)
∗ = Θ̂

(k)
∗ − Â−1n−1∑n

i=1Ψ∗

(
Yi,Zi,Wi, Θ̂

(k)
∗ ,Σuu

)
.

Estimating equations for both conditional- and corrected-score estimates
can have multiple solutions, and thus Newton–Raphson iteration can be
sensitive to starting values. Although the naive estimate is often a rea-
sonable initial estimate, it is sometimes necessary to use a measurement-
error bias-corrected estimate such as regression calibration or SIMEX
estimates; see Small, Wang, and Yang (2000) for a discussion of the
multiple-root problem.

Different estimators of A and B are sometimes used for both the
conditional- and corrected-score methods. For the conditional-score me-
thod, define

a {Z,∆(Θ,Σuu),Θ,Σuu} = E {Ψ∗Θ (·) |Z,∆(Θ,Σuu)} ,

b {Z,∆(Θ,Σuu),Θ,Σuu} = cov {Ψ∗ (·) |Z,∆(Θ,Σuu)} .

Then the alternate estimators are

Â2 = n−1∑n
i=1a

{
Zi,∆i(Θ̂,Σuu), Θ̂,Σuu

}
,

B̂2 = n−1∑n
i=1b

{
Zi,∆i(Θ̂,Σuu), Θ̂,Σuu

}
. (7.33)

Comparable estimates of A and B for corrected scores are substantially
more involved; see Novick and Stefanski (2002).
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7.5.2 Estimated Measurement Error Variance

When Σuu is unknown, additional data are required to estimate it consis-
tently and the asymptotic variance-covariance matrix of the estimators
is altered. Let Ψ∗(Y,Z,W,Θ,Σuu) denote either a conditional score or a

corrected score and Θ̂∗ the estimator obtained by solving the estimating
equations with Σuu replaced by Σ̂uu. Define γ = vech(Σuu), where vech
is the vector-half of a symmetric matrix, that is, its distinct elements.

When an independent estimate of the error covariance matrix is avail-
able, the following method applies. Let γ̂ be an estimate of γ that is
assumed to be independent of Θ̂∗, with asymptotic covariance matrix
Cn(Σuu). If we define

Dn(Θ,Σuu) =
∑n

i=1

∂

∂γt
Ψ(Yi,Zi,Wi,Θ,Σuu) ,

then a consistent estimate of the covariance matrix of Θ̂ is

n−1Â−1
(
Θ̂∗, Σ̂uu

){
B̂

(
Θ̂∗, Σ̂uu

)
+

Dn(Θ̂∗, Σ̂uu)Cn(Σ̂uu)Dt
n(Θ̂∗, Σ̂uu)

}
Â−t

(
Θ̂∗, Σ̂uu

)
,

where Â and B̂ are the matrices estimated in the construction of sandwich-
formulae variance estimates. We have shown their dependence on Θ and
Σuu to emphasize that they are to be computed at the estimated values
Θ̂ and Σ̂uu.

Finally, a problem of considerable importance occurs when there are
ki independent replicate measurements of Xi, Wij = Xi + Uij , j =
1, . . . , ki. A common situation is when ki = 1 for most i, and the re-
mainder of the data have a single replicate (ki = 2). Constructing esti-
mated standard errors for this problem has not been done previously, and
the justification for our results is given in Appendix B.6. The necessary
changes are as follows. In computing the estimates, in the previous defi-
nitions, replace Σuu with Σuu/ki and Wi with Wi·, the sample mean of
the replicates. The estimate of Σuu is the usual components of variance
estimator,

Σ̂uu =

∑n
i=1

∑ki

j=1

(
Wij − Wi·

) (
Wij − Wi·

)t

∑n
i=1(ki − 1)

.

While the above variance estimator has a known asymptotic distribution
(based on the Wishart distribution), it is easier in practice to use the
sandwich estimator of its variance,

Cn(Σ̂uu) =

∑n
i=1did

t
i

{∑n
i=1(ki − 1)}2 ,
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where

di = vech
{(

Wij − Wi·

) (
Wij − Wi·

)t
}
− (ki − 1)vech

(
Σ̂uu

)
.

7.6 Comparison of Conditional and Corrected Scores

Conditional-score and corrected-score methods are both functional meth-
ods, and thus they have in common the fact that neither one requires
assumptions on the Xi for consistency to hold in general. However, they
differ in other important ways, such as underlying assumptions and ease
of computation.

In general, conditional scores are derived under specific assumptions
about both the model for Y given (Z,X) and the error model for W

given X, whereas corrected scores assume only a correct estimating func-
tion if X were observed, and sufficient assumptions on the error model to
enable unbiased estimation of the true-data estimating function. Conse-
quently, when the assumptions underlying the conditional-score method
are satisfied, it will usually be more efficient. Some conditional scores re-
quire numerical summation or integration. In principle, exact corrected
scores also require integration; however, the Monte Carlo corrected score
methods come with a simple, built-in solution to this computational
problem when the required integrals are not analytically tractable, al-
though the simplicity requires complex-variable computation (which not
all will find simple).

A comparison of the two approaches has been made for Poisson re-
gression, which is one of the few models where both methods apply.
For this model, the corrected-score estimator is more convenient be-
cause the corrected score has a closed form expression, whereas the
conditional-score estimator requires numerical summation; see (7.21).
However, the conditional-score estimator is more efficient in some prac-
tical cases (Stefanski, 1989). We also note that, for the Poisson model,
Kukush, Schneeweiss, and Wolf (2004) compared the corrected-score es-
timator to a structural estimator and conclude that the former, while
more variable, is preferred on the basis of insensitivity to structural-
model assumptions, except when the error variance is large.

The conditional-score method and certain extensions thereof have a
theoretical advantage in terms of efficiency. For the canonical generalized
linear models of Section 7.3, Stefanski and Carroll (1987) showed that
any unbiased estimating equation for (β0, β

t
z, β

t
x)t must be conditionally

unbiased given (Z,∆), and from this they deduce that the asymptotically
efficient estimating equations for structural models are based on score
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functions of the form

{Yi − E(Yi | Zi,∆i)}





1
Zi

E(Xi | Zi,∆i)



 .

This result shows that, in general, none of the methods we have proposed
previously is asymptotically efficient in structural models, except when
E(X | Z,∆) is linear in (Z,∆). This is the case in linear regression with
(Z,X) marginally normally distributed, and in logistic regression when
(Z,X) given Y is normally distributed, that is, the linear discriminant
model. The problem of constructing fully efficient conditional-score es-
timators based on simultaneous estimation of E(Xi | Zi,∆i) has been
studied (Lindsay, 1985; Bickel and Ritov, 1987; van der Vaart, 1988),
although the methods are generally too specialized or too difficult to
implement in practice routinely.

Both methods have further extensions not mentioned previously. The
conditional-score method is easily extended to the case that the model
for W given X is a canonical generalized linear model with natural pa-
rameter X. Buzas and Stefanski (1996a) described a simple extension of
corrected-score methods to additive nonnormal error models when the
true-data score function depends on X only through exp(βt

xX) and the
measurement error possesses a moment-generating function. Extensions
to nonadditive models are also possible in some cases. For example, Li,
Palta, and Shao, (2004) studied a corrected score for linear regression
with a Poisson surrogate. Nakamura (1990) showed how to construct
a corrected estimating equation for linear regression with multiplica-
tive lognormal errors. He also suggested different methods of estimating
standard errors.

7.7 Bibliographic Notes

Conditioning to remove nuisance parameters is a standard technique in
statistics. The first systematic application of the technique to general-
ized linear measurement error models appeared in Stefanski and Carroll
(1987), which was based on earlier work by Lindsay (1982). Related
methods and approaches can be found in Liang and Tsou (1992), Liang
and Zeger (1995), Hanfelt and Liang (1995), Hanfelt and Liang (1997),
Rathouz and Liang (1999), and Hanfelt (2003).

The systematic development of corrected-score methods started with
Nakamura (1990) and Stefanski (1989). Further developments and ap-
plications of this method can be found in Buzas and Stefanski (1996a),
Augustin (2004), Kukush, Schneeweiss, and Wolf (2004), Li, Palta, and
Shao (2004), and Song and Huang (2005). A related technique, but one
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that does not possess the same functional-modeling properties as cor-
rected scores, is presented by Wang and Pepe (2000).

Both conditional-score and corrected-score estimating equations can
have multiple solutions. In simpler models we have not found this to be
a problem, but it can be with more complicated models. Small, Wang,
and Yang (2000) discussed the multiple root problem and proposed some
solutions.
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CHAPTER 8

LIKELIHOOD AND
QUASILIKELIHOOD

8.1 Introduction

This chapter describes the use of likelihood methods in nonlinear mea-
surement error models. Prior to the first edition of this text, there were
only a handful of applications of likelihood methods in our context. Since
that time, largely inspired by the revolution in Bayesian computing, con-
struction of likelihood methods with computation by either frequentist
or Bayesian means has become fairly common.

There are a number of important differences between the likelihood
methods in this chapter and the methods described in previous chapters:

• The previous methods are based on additive or multiplicative mea-
surement error models, possibly after a transformation. Typically, few
if any distributional assumptions about the distribution of X are re-
quired. Likelihood methods require stronger distributional assump-
tions, but they can be applied to more general problems, including
those with discrete covariates subject to misclassification.

• The likelihood for a fully specified parametric model can be used to
obtain likelihood ratio confidence intervals. In methods not based on
likelihoods, inference is based on bootstrapping or on normal approx-
imations. In highly nonlinear problems, likelihood-based confidence
intervals are generally more reliable than those derived from normal
approximations and less computationally intensive than bootstrap-
ping.

• Whereas the previous methods require little more than the use of
standard statistical packages, likelihood methods are often computa-
tionally more demanding.

• Robustness to modeling assumptions is a concern for both approaches,
but is generally more difficult to understand with likelihood methods.

• When the simpler methods described previously are applicable, a like-
lihood analysis will generally buy one increased efficiency, that is,
smaller standard errors, albeit at the cost of extra modeling assump-
tions, the old “no free lunch” phenomenon. Sometimes, the gains in
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Step 1: Select the likelihood
models as if X were observed.

Step 2: Select the error
model, e.g., Berkson, classical.
If classical, also select model
for unobserved X given Z.

Step 3: Form the likelihood
function.

Step 4: Compute likelihood
function and maximize.

Figure 8.1 Flowchart for the steps in a likelihood analysis.

efficiency are very minor, as in typical logistic regression; see Ste-
fanski and Carroll (1990b), who contrasted the maximum likelihood
estimate and the conditional scores estimate of Chapter 7. They found
that the conditional score estimates are usually fairly efficient relative
to the maximum likelihood estimate, unless the measurement error
is “large” or the logistic coefficient is “large,” where the definition of
large is somewhat vague. One should be aware, though, that their cal-
culations indicate that situations exist where properly parameterized

maximum likelihood estimates are considerably more efficient than
estimates derived from functional modeling considerations.

Figure 8.1 illustrates the steps in doing a likelihood analysis of a mea-
surement error model. These steps are as follows:

• Step 1: To perform a likelihood analysis, one must specify a para-
metric model for every component the data. Any likelihood analysis
begins with the model one would use if X were observable.

• Step 2: The next crucial decision is the error model that is to be
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chosen. This could be a classical error model, a Berkson model, a
combination of the two, etc. If one has classical components in the
measurement error model, then typically one also needs to specify a
distribution for the unobserved X given the observable covariates Z;
see Section 2.2.3. Much of the grief of a likelihood analysis revolves
around this step.

• Step 3: The likelihood function is constructed using the building
blocks obtained in previous steps.

• Step 4: Now one has to do the sometimes hard slogging to compute
the likelihood function, obtain parameter estimates, do inferences, etc.
Because X is latent, that is, unobservable, this step can be difficult
or time-consuming, because one must integrate out the possibly high
dimensional latent variable.

We organize our discussion of likelihood methods around these four
steps. Except where noted, we assume nondifferential measurement error
(Section 2.5). For a review of maximum likelihood methods in general,
see Appendix A.5.

Fully specified likelihood problems, including problems where X is not
observable or is observable for only a subset of the data, are discussed in
Sections 8.2 and 8.3. The use of likelihood ideas in quasilikelihood and
variance function models (QVF) (Section A.7) is covered in Section 8.8.

8.1.1 Step 1: The Likelihood If X Were Observable

Likelihood analysis starts with an “outcome model” for the distribution
of the response given the true predictors. The likelihood (density or
mass) function of Y given (Z,X) will be called fY |Z,X(y|z, x,B) here,
and interest lies in estimating B.

The form of the likelihood function can generally be specified by
reference to any standard statistics text. For example, if Y is nor-
mally distributed with mean β0 + βt

xX + βt
zZ and variance σ2, then

B = (β0, βx, βz, σ
2) and

fY |Z,X(y|z, x,B) = σ−1φ
[
{(y − (β0 + βt

xx + βt
zz)}/σ

]
,

where φ(v) is the standard normal density function. If Y follows a logistic
regression model with mean H(β0 + βt

xX + βt
zZ), then B = (β0, βx, βz)

and

fY |Z,X(y|z, x,B) = Hy
(
β0 + βt

xx + βt
zz

)

×
{
1 − H

(
β0 + βt

xx + βt
zz

)}1−y
.
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8.1.2 A General Concern: Identifiable Models

The concept of identifiability means that if one actually had an infinite
number of observed data values, then one would know the parameters
exactly, that is, they are identified. When a problem is not identifiable,
it means that a key piece of information is unavailable. For example, in
linear regression with (Y,W,X) all normally distributed, as described
in Section 3.2.1, the parameters are not identifiable because a key piece
of information is absent, namely, the measurement error variance. For
this reason, replication data is needed to help estimate the measurement
error variance.

In nonlinear measurement error models, sometimes the parameters
are identifiable without any extra information other than measures of
(Y,Z,W), that is, without validation or replications. Brown and Mari-
ano (1993) discuss this issue, considering both likelihood and quasilike-
lihood techniques.

A word of warning: One should not be overly impressed by all claims
of identifiability. Many problems of practical importance actually are
identifiable, but only barely so, and estimation without additional data
is not practical. For instance, in linear regression it is known that the
regression parameters can be identified without validation or replication
as long as X is not normally distributed (Fuller, 1987, pp. 72–73). How-
ever, this means that the parameter estimates will be very unstable if X

is at all close to being normally distributed. In binary regression with a
normally distributed calibration, it is known that the probit model is not
identified (Carroll, Spiegelman, Lan, et al., 1984) but that the logistic
model is (Küchenhoff, 1990). The difference between these two models
is so slight (Figure 4.9) that there is really no useful information about
the parameters without some additional validation or replication data.

However, lest we leave you with a glum picture, there are indeed cases
that the nonlinearity in the model helps make identifiability practical; for
example, Rudemo, Ruppert, and Streibig, et al. (1989) describe a highly
nonlinear model that is both identifiable and informative; see Section
4.7.3.

This discussion highlights the Sherlock Holmes phenomenon: Data are
good, but more and different types of data are better.

8.2 Steps 2 and 3: Constructing Likelihoods

Having specified the likelihood function as if X were observable, we now
turn to constructing the form of the likelihood function. This consists
of 1 or 2 steps, depending on whether the error model is Berkson or
classical. In this section, we allow for general error models and for the
possibility that a second measure T is available. A likelihood analysis
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starts with determination of the joint distribution of Y, W, and T given
Z, as these are the observed variates.

To understand what is going on, we first describe the discrete case
when there is neither a covariate Z measured without error nor a second
measure T. We then describe in detail the classical and Berkson models
in turn.

8.2.1 The Discrete Case

First consider a simple problem wherein Y, W, and X are discrete ran-
dom variables; no second measure T is observed; and there are no other
covariates Z. From basic probability, we know that

pr(Y = y,W = w) =
∑

x

pr(Y = y,W = w,X = x)

=
∑

x

pr(Y = y|W = w,X = x)pr(W = w,X = x). (8.1)

When W is a surrogate (nondifferential measurement error, see Section
2.5), it provides no additional information about Y when X is known,
so (8.1) is

pr (Y = y,W = w)

=
∑

x

pr(Y = y|X = x,B)pr(W = w,X = x), (8.2)

where, to achieve a parsimonious model, we have (1) replaced pr(Y =
y|W = w,X = x) by pr(Y = y|X = x) and (2) indicated that typically
one would use a parametric model pr(Y = y|X = x,B) for the latter.
Thus, in addition to the underlying model, we must specify a model for
the joint distribution of W and X. How we do this depends on the model
relating W and X.

8.2.1.1 Classical Case, Discrete Data

For example, in the context of classical measurement error and, for sim-
plicity, assuming no Z, we would specify a model for W given X, and
then a model for X. In other words,

∑

x

pr(Y = y|X = x,B)pr(W = w|X = x)pr(X = x). (8.3)

Equation (8.3) has three components: (a) the underlying “outcome model”
of primary interest; (b) the error model for W given the true covariates;
and (c) the distribution of the true covariates, sometimes called the ex-

posure model in epidemiology. Both (a) and (b) are expected; almost all
the methods we have discussed so far require an underlying model and
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an error model. However, (c) is unexpected, in fact a bit disconcerting,
because it requires a model for the distribution of the unobservable X.
It is (c) that causes almost all the practical problems of implementation
and model selection with maximum likelihood methods.

8.2.1.2 Berkson Case, Discrete Data

The likelihood of the observed data is (8.2) because W is a surrogate.
At this point, however, the analysis changes. When the Berkson model
holds, we write

pr(Y = y,W = w) (8.4)

=
∑

x

pr(Y = y|X = x,B)pr(X = x|W = w)pr(W = w).

The third component of (8.4) is the distribution of W and conveys no
information about the critical parameter B. Thus, we will divide both
sides of (8.4) by pr(W = w) to get likelihoods conditional on W, namely,

pr(Y = y|W = w) =
∑

x

pr(Y = y|X = x,B)pr(X = x|W = w). (8.5)

8.2.2 Likelihood Construction for General Error Models

We now describe the form of the likelihood function for general error
models.

When there are covariates Z measured without error, or when there
are second measures T, (8.3) changes in two ways. The second measure
is appended to W, and all probabilities are conditional on Z. Thus, (8.3)
is generalized to

∑

x

pr(Y = y|Z = z,X = x,B)

×pr(W = w|Z = z,X = x)pr(X = x|Z = z).

In general, in problems where X is not observed but there is a natural
error model, then in addition to specifying the underlying model and
the error model, we must hypothesize a distribution for X given Z. In
summary:

• The error model has a density or mass function which we will denote
by fW,T |Z,X(w, t|z, x, α̃1).

– In many applications, the error model does not depend on z. For
example, in the classical additive measurement error model (1.1)
with normally distributed measurement error, σ2

u is the only com-
ponent of α̃1, there is no second measure T, and the error model
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density is σ−1
u φ {(w − x)/σu}, where φ(·) is the standard normal

density function.

– If W is binary, a natural error model is the logistic where, for
example, α̃1 = (α11, α12, α13) and pr(W = 1|X = x,Z = z) =
H(α11 + α12x + αt

13z).

– Multiplicative models occur when W = XU, where typically U

has a lognormal or gamma distribution with E(U) = 1.

• We use fX|Z(x|z, α̃2) to denote the density or mass function of X given
Z. As might be expected, the latent nature of X makes specifying
this distribution a matter of art. Nonetheless, there are some general
guidelines:

– When X is univariate, generalized linear models (Section A.8) are
natural and useful. For example, one might hypothesize that X is
normally distributed in a linear regression on Z, or that it follows
a gamma or lognormal loglinear model in Z. If X were binary, a
linear logistic regression on Z would be a natural candidate.

– Some model robustness can be gained by specifying flexible distri-
butions for X given Z. One class is to suppose that, depending on
the context, X or log(X) follows a linear regression in Z, but that
the regression errors have a mixture of normals density. Mixtures
of normals can be difficult to work with, and an obvious alternative
is to use the so-called seminonparametric family (SNP) of David-
ian and Gallant (1993, p. 478): see Zhang and Davidian (2001)
for a computationally convenient form of this approach. Davidian
and Gallant’s mixture model generalizes easily to the case that all
components of X are continuous. We point out that Bayesians of-
ten use Dirichlet process mixtures to achieve a seminonparametric
modeling approach.

– For mixtures of discrete and continuous variables, the models of
Zhao, Prentice, and Self (1992) hold considerable promise. Other-
wise, one can proceed on a case-by-case basis. For example, one
can split X into discrete and continuous components. The distri-
bution of the continuous component given the discrete components
might be modeled by multivariate normal linear regression, while
that of the discrete component given Z could be any multivariate
discrete random variable. We would be remiss in not pointing out
that multivariate discrete models can be difficult to specify.

Having hypothesized the various models, the likelihood that (Y = y,W =
w, T = t) given that Z = z is then

fY,W,T |Z(y, w, t|z,B, α̃1, α̃2)
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=

∫
fY |Z,X,W,T (y|z, x, w, t,B)fW,T |Z,X(w, t|z, x, α̃1)

×fX|Z(x|z, α̃2)dµ(x) (8.6)

=

∫
fY |Z,X(y|z, x,B)fW,T |Z,X(w, t|z, x, α̃1)

×fX|Z(x|z, α̃2)dµ(x). (8.7)

The notation dµ(x) indicates that the integrals are sums if X is discrete
and integrals if X is continuous. The assumption of nondifferential mea-
surement error (Section 2.5), which is equivalent to assuming that W

and T are surrogates for X, was used in going from (8.6) to (8.7), and
will be used without mention elsewhere in this chapter. The likelihood
for the problem is just the product over the sample of the terms (8.7)
evaluated at the data.

Of interest in applications is the density function of Y given (Z,W,T),
which is (8.7) divided by its integral or, in the discrete case, sum over
y. This density is an important tool in the process of model criticism,
because it allows us to compute such diagnostics as the conditional mean
and variance of Y given (Z,W,T), so that standard model verification
techniques from regression analysis can be used.

8.2.3 The Berkson Model

In the Berkson model, a univariate X is not observed, but it is related to
a univariate W by X = W + U, perhaps after a transformation. There
are no other covariates. Usually, U is taken to be independent of W and
normally distributed with mean zero and variance σ2

u, but more complex
models are possible. For example, in the bioassay data of Chapter 4, the
variance might be modeled as σ2

uW
2θ.

The additive model is not a requirement. In some cases, it might be
more reasonable to assume that X = WU, where U has mean 1.0 and
is either lognormal or gamma.

The Berkson additive model has an unusual feature in the linear re-
gression problem. Suppose the regression has true mean β0+Xβx +Ztβz

and residual variance σ2
ǫ . Then in the pure Berkson model, we replace

X with W + U, with the following consequences.

• The good news is the following: The observed data have regression
mean β0+Wtβx+Ztβz, the observed data have the correct regression
line, so that the naive analysis yields valid estimates of the regression
line.

• The bad news is that the observed data have residual variance σ2
ǫ +

β2
xσ2

u. This means that the observed data cannot disentangle the true
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residual variance σ2
ǫ from the Berkson error variance σ2

u, so that nei-
ther is identified; see Section 8.1.2.

It can also be shown that the additive Berkson model with homoscedas-
tic errors leads to consistent estimates of nonintercept parameters in log-
linear models and often to nearly consistent estimates in logistic regres-
sion. In the latter case, the exceptions occur with severe measurement
error and a strong predictive effect; see Burr (1988).

In general problems, we must specify the conditional density or mass
function of X given W, which we denote by fX|W (x|w, γ̃). In the usual
Berkson model, γ̃ is σ2

u, and the density is σ−1
u φ {(x − w)/σu}. In a

Berkson model where the variance is proportional to W2θ, the density
is (wθσu)−1φ

{
(x − w)/(wθσu)

}
. The likelihood function then becomes

fY |Z,W (y|z, w,B, γ̃)

=

∫
fY |Z,X(y|z, x,B)fX|W (x|w, γ̃)dµ(x). (8.8)

The likelihood for the problem is the product over the sample of the
terms (8.8) evaluated at the data.

As a practical matter, there is rarely a direct “second measure” in the
Berkson additive or multiplicative models. This means that the parame-
ters in the Berkson model can be estimated only through the likelihood
(8.8). In some cases, such as homoscedastic linear regression described
above, not all of the parameters can be identified (estimated). For non-
linear models, identification usually is possible.

In classical generalized linear models, a likelihood analysis of a ho-
moscedastic, additive Berkson model can be shown to be equivalent to a
random coefficients analysis with random intercept for each study par-
ticipant.

8.2.4 Error Model Choice

Modeling always has options. For example, there is nothing illegal in sim-
ply specifying a model for X given W, as in equation (8.8), or a model
for X given (Z,W), in which case Z is added to the error distribution
in (8.8). One could then simply ignore the detailed aspects of the mea-
surement error models, including such inconvenient things as whether
the measurement error is additive and homoscedastic, etc. One can even
specify reasonably flexible models for such distributions, for example, by
using the Davidian and Gallant models. Mallick and Gelfand (1996) do
just this in a Bayesian context.

This purely empirical approach has the attraction of its empiricism,
but it almost forces one to write down very general models for X given
(W,Z) in order to achieve sensible answers. In addition, there is the
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potential for a loss of information, because the real likelihood is the
likelihood of Y and W given Z, not simply the likelihood of Y given
(W,Z). This may seem like a minor difference, but we suspect that the
difference is not minor. There is little to no literature on whether such an
approach can yield sensible answers when additive–multiplicative error
models hold.

8.3 Step 4: Numerical Computation of Likelihoods

The overall likelihood based on a sample of size n is the product over the
sample of (8.6) when X is unobserved or the product over the sample of
(8.8) in the Berkson model. Typically, one maximizes the logarithm of
the overall likelihood in the unknown parameters. There are two ways
one can maximize the likelihood function. The most direct is to compute
the likelihood function itself, and then use numerical optimization tech-
niques to maximize the likelihood. Below we provide a few details about
computing the likelihood function. The second general approach is to
view the problem as a missing-data problem, and then use missing-data
techniques; see for example Little and Rubin (2002), Tanner (1993), and
Geyer and Thompson (1992).

Computing the likelihoods (8.7) and (8.8) analytically is easy if X

is discrete, as the conditional expectations are simply sums of terms.
Likelihoods in which X has some continuous components can be com-
puted using a number of different approaches. In some problems, the
loglikelihood can be computed or very well approximated analytically,
for example, linear, probit, and logistic regression with (W,X) normally
distributed; see Section B.7.2. In most problems that we have encoun-
tered, X is a scalar or a 2× 1 vector. In these cases, standard numerical
methods, such as Gaussian quadrature, can be applied, although they are
not always very good. When sufficient computing resources are available,
the likelihood can be computed using Monte Carlo techniques (Section
B.7.1). One of the advantages of a Bayesian analysis by simulation meth-
ods is that X can be integrated out as part of the processing of sampling
from the posterior; see Chapter 9.

8.4 Cervical Cancer and Herpes

In the cervical cancer example of Section 1.6.10, (W,Y,X) are all bi-
nary, W is a possibly misclassified version of X, and there is no variable
Z. In principle, MC-SIMEX (Section 5.6.2) could be used, but maximum
likelihood is so simple with binary X that there seems little reason to use
MC-SIMEX here. It would obviously be of interest to compare maximum
likelihood approaches to misclassification of X with MC-SIMEX.
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As mentioned in the introduction to this chapter, maximum likelihood
is a particularly useful technique for treating the problem of misclassi-
fication of a discrete covariate. One reason for this is that numerical
integration of X out of the joint density of Y, X, and W is replaced by
an easy summation. Another reason is that, for a discrete covariate, one
can use a structural model without the need to make strong structural
assumptions, since, for example, a binary random variable must have a
Bernoulli distribution.

The log odds-ratio β is defined by

exp(β) =
pr(X = 1|Y = 1)/pr(X = 1|Y = 0)

pr(X = 0|Y = 1)/pr(X = 0|Y = 0)
(8.9)

=
pr(Y = 1|X = 1)/pr(Y = 0|X = 1)

pr(Y = 1|X = 0)/pr(Y = 0|X = 0)
. (8.10)

Here (8.9) is the odds-ratio for a retrospective study where the disease
status Y is fixed, while (8.10) is the log-odds for a prospective study
where the risk factor X is fixed. The equality of the two odds-ratios
allows one to parameterize either prospectively (in terms of Y given X

and W) or retrospectively (in terms of X and W given Y) and is the
theoretical basis for case-control studies.

This problem is particularly easy to parameterize retrospectively by
specifying the distributions of X given Y, and W given (X,Y). With dif-
ferential measurement error, the six free parameters are αxd = Pr(W =
1|X = x,Y = d) and γd = Pr(X = 1|Y = d), x = 0, 1 and d = 0, 1.

For the validation data where X is observed, the likelihood is

nv∏

i=1

1∏

y=0

1∏

x=0

1∏

w=0

pr(Wi = w,Xi = x|Yi = y)I(Wi=w,Xi=x,Yi=y), (8.11)

where nv is the size of the validation data set. For the nonvalidation
data we integrate out X by a simple summation pr(W = w|Y = y) =
pr(W = w,X = 0|Y = y) + pr(W = w,X = 1|Y = y), and then the
likelihood is

nnv∏

i=1

1∏

y=0

1∏

w=0

pr(Wi = w|Yi = y)I(Wi=w,Yi=y), (8.12)

where nnv = n − nv is the size of the validation data set. The likeli-
hood for the data set itself is the product of (8.11) and (8.12), with all
probabilities expressed in terms of the α’s and γ’s.

A maximum likelihood analysis yielded β̂ = 0.609 (std. error = 0.350).
For nondifferential misclassification, the analysis simplifies in that αx0 =
αx1 = αx, and then β̂ = 0.958 (std. error = 0.237).

The noticeable difference in β̂ between assuming differential and non-
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differential misclassification suggests that, in this example, misclassifi-
cation is differential. In Section 9.9, this issue is further explored by
comparing estimates of α0d = Pr(W = 1|X = x,Y = d) for d = 1 and
d = 0.

8.5 Framingham Data

In this section we describe an example that has classical error structure.
The Framingham heart study was described in Section 1.6.6. Here X,

the transformed long-term systolic blood pressure, is not observable, and
the likelihoods of Section 8.2.2 are appropriate. The sample size is n =
1,615. As before, Z includes age, smoking status, and serum cholesterol.
Transformed systolic blood pressure (SBP) is log(SBP−50).

At Exam #2, the mean and standard deviation of transformed systolic
blood pressure are 4.374 and .226, respectively, while the corresponding
figures at Exam #3 are 4.355 and .229. The difference between mea-
surements at Exam #2 and Exam #3 has mean 0.019 and standard
deviation .159, indicating a statistically significant difference in means
due largely to the sample size (n = 1, 615). However, the following anal-
ysis will allow for differences in the means. The standard deviations are
sufficiently similar that we will assume that the two exams have the same
variability.

We write W and T for the transformed SBP at Exams 3 and 2, re-
spectively. Since Exam #2 is not a true replicate, we are treating it
as a second measure, differing from Exam #3 only in the mean. Thus,
W = X + U and T = α11 + X + V, where U and V are independent
with common measurement error variance σ2

u, and α11 represents the
(small) difference between the two exams.

There is justification for the assumption that transformed systolic
blood pressure can be modeled reasonably by an additive model with
normally distributed, homoscedastic measurement error. We use the
techniques of Section 1.7. The q-q plot of the differences of transformed
systolic blood pressure in the two exams is reasonable, although not
perfect, indicating approximate normality of the measurement errors.
The regression fits of the intraindividual standard deviation versus the
mean are plotted in the original and transformed scale in Figure 8.2.
The trend in the former suggests heteroscedastic measurement errors,
while the lack of pattern in the latter suggests the transformation is a
reasonable one.

Since the transformed systolic blood pressures are themselves approx-
imately normally distributed, we will also assume that X given Z is
normally distributed with mean αt

21Z and variance σ2
x.

Using the probit approximation to the logistic (Section 4.8.2), it is
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Figure 8.2 Framingham systolic blood pressure data. Plot of cubic regres-
sion fits to the regression of intraindividual standard deviation against the
mean. Top figure is in the original scale; bottom is for the transformation
log(SBP−50). The noticeable trend in the top figure suggests that the measure-
ment errors are heteroscedastic in that scale.

possible to compute the likelihood (8.7) analytically; see section B.7.2.
We used this analytical calculation, rather than numerical integration.
When using all the data, the likelihood estimate for systolic blood pres-
sure had a logistic coefficient of 2.013 with an (information) estimated
standard error of 0.496, which is essentially the same as the regression
calibration analysis; compare with Table 5.1.

8.6 Nevada Test Site Reanalysis

This section describes a problem that has a combination of Berkson
and classical measurement errors, and it is one in which the errors are
multiplicative rather than additive.

In Section 1.8.2, we described a simulation study in a model where
part of the measurement error was Berkson and part was classical. The
excess relative risk model (1.4) was used, and here for convenience we
redisplay the model:

pr(Y = 1|X,Z) = H {β0 + βzZ + log(1 + βxX)} . (8.13)

The parameter βx is the excess relative risk parameter. The mixture of
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classical and Berkson error models is given in equations (1.5) and (1.6).
Again, for convenience, we redisplay this multiplicative measurement
error model:

log(X) = log(L) + Ub, (8.14)

log(W) = log(L) + Uc, (8.15)

where Ub denotes Berkson-type error, and Uc denotes classical-type er-
ror. The standard classical measurement error model (1.1) is obtained by
setting Ub = 0. The Berkson model (1.2) is obtained by setting Uc = 0.

In this section, we analyze the Nevada Test Site data, with outcome
variable thyroiditis. The original data and their analyses were described
by Stevens, Till, Thomas, et al. (1992); Kerber et al. (1993); and Simon,
Till, Lloyd, et al. (1995). We use instead a revised version of these data
that have corrected dosimetry as well as corrected health evaluations
(Lyon, Alder, Stone, et al., 2006). In the risk model (8.13), the predictors
Z consisted of gender and age at exposure, while X is the true dose.
The data file gives an estimate for each individual of the total error
variance in the log scale, but does not separate out the Berkson and
classical uncertainties. In this illustration, we assumed that 40% of the
uncertainty was classical, reflecting the important components due to
dietary measurement error.

In these data, Owen Hoffman suggested the use of strata, because it
is known that the doses received by individuals vary greatly, depending
on where they were located. Thus, we fit models (8.14) and (8.15) in five
different strata, namely (a) Washington County, (b) Lincoln County,
(c) Graham County, (d) all others in Utah, and (e) all others. In these
models, log(L) was normally distributed in a regression on gender and
age, with the regression coefficients and the variance about the mean
depending on the strata.

We performed three analyses of these data:

• The first model assumed that all uncertainty was Berkson and em-
ployed regression calibration. Specifically, since log(X) = log(W) +
Ub, with Ub normally distributed with mean zero and known vari-
ance σ2

ub depending on the individual, E(X|W) = Wexp(σ2
ub/2): This

latter value was used in place of true dose.

• The second model assumes that 40% of the uncertainty is classical. We
again implemented regression calibration; see below for the details.

• The third analysis was a maximum likelihood analysis; see below for
details.

The results are described in Figure 8.3. The Berkson analysis yields
an excess relative risk estimate β̂x = 5.3, regression calibration β̂x = 8.7,
and maximum likelihood β̂x = 9.9. The p-value using a likelihood ratio

194

0 5 10 15 20 25 30

Berkson, RegCal

Mixture, RegCal

Mixture, MLE

Nevada Test Site, Thyroiditis

Confidence Interval for Excess Relative Risk

Figure 8.3 Nevada Test Site analysis of the excess relative risk for thyroiditis.
Estimates are the vertical lines, while the horizontal lines are 95% confidence
intervals. Included are a pure Berkson analysis and two analyses that assume
a mixture of classical and independent Berkson measurement errors, with 40%

of the measurement error variance being classical. Note how the classical com-
ponent greatly increases the excess relative risk estimate.

test for the hypothesis of no effect due to radiation is < 10−7. Note
how acknowledging the classical measurement error greatly increases the
estimated excess relative risk, by a factor nearly of two. Of potential
scientific interest is that the upper ends of the confidence intervals shown
in Figure 8.3 change from 11.1 for the pure Berkson analysis to 18.8 for
the mixture of Berkson and classical analysis, indicating the potential
for a much stronger dose effect.

8.6.1 Regression Calibration Implementation

Here is how we implemented regression calibration for the Nevada Test
Site thyroiditis example. Let σ2

i,tot be the variance of the uncertainty in
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true dose for an individual. Then the Berkson error variance for that
individual is σ2

i,ub = 0.6 × σ2
i,tot, while the classical error variance for

that individual is σ2
i,uc = 0.4×σ2

i,tot. We assumed that, for an individual
i who falls into stratum s, log(Li) was normally distributed with mean
α0s +Zt

iα1s and variance σ2
Ls. This means that log(Xi) and log(Wi) are

jointly normally distributed with common mean α0s + Zt
iα1s, variances

σ2
xi = σ2

Ls + σ2
i,ub and σ2

wi = σ2
Ls + σ2

i,uc, respectively, and covariance

σ2
Ls. Define ρi = σ2

Ls/(σxiσwi). By simple algebraic calculations, this
means that log(Xi) given (Wi,Zi) is normally distributed with mean
(α0s +Zt

iα1s)(1−σ2
Ls/σ

2
wi)+(σ2

Ls/σ
2
wi)log(Wi) and variance σ2

xi(1−ρ2
i ).

As in Section 4.5, this is a multiplicative measurement error with a
lognormal structure, and hence it follows that

E(Xi|Wi,Zi) = exp{(α0s + Zt
iα1s)(1 − σ2

Ls/σ
2
wi) + σ2

xi(1 − ρ2)/2}.

It remains to estimate α0s, α1s, and σ2
Ls, and here we use the method

of moments. First note that the regression of log(Wi) on log(Li) for
a person in stratum s is just α0s + Zt

iα1s, so that α0s and α1s can be
estimated by this regression. Since the residual variance for an individual
is σ2

wi = σ2
Ls + σ2

i,uc, if the (known) mean of the classical uncertainties

σ2
i,uc within stratum s is σ2

s , then the mean squared error of the regression

has mean σ2
Ls + σ2

s : Subtracting σ2
s from the observed regression mean

squared error yields a method of moments estimate of σ2
Ls.

8.6.2 Maximum Likelihood Implementation

The implementation of maximum likelihood is fairly straightforward.
The four steps described in Figure 8.1 work as follows. Basically, we are
going to compute the likelihood function for Y and log(W) given Z, and
we will work with the log scale.

The first step, of course, is the regression model (8.13). Write

H{log(X),Z} = H [β0 + βzZ + log{1 + βxexp{log(X)}] .

The the likelihood function if log(X) could be observed is just a typical
logistic likelihood:

[H{log(X),Z}]
Y

[1 −H{log(X),Z}]
1−Y

.

The second step is the error model, which is really of a form described
in (2.1) of Section 2.2. Let ρi∗ = σ2

Ls/σ
2
xi, so that given {log(Xi),Zi},

log(Wi) is normally distributed with mean

µiw|x{Zi, log(Xi)} = (α0s + Zt
iα1s)(1 − σ2

Ls/σ
2
xi) + (σ2

Ls/σ
2
xi)log(Xi)

and variance σ2
iw|x = σ2

wi(1 − ρ2
i∗).

The third step is the distribution of log(X) given Z, which we have
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already done. Remember that log(Xi) is normally distributed with mean
µxi = α0s + Zt

iα1s and variance σ2
xi.

We now just apply (8.7). Let φ(x, µ, σ2) be the normal density func-
tion, with mean µ and variance σ2 evaluated at x. Then, the likelihood
function for Yi and log(Wi) given Zi is

∫
[H{s,Zi}]

Yi [1 −H{s,Zi}]
1−Yi

×φ{log(Wi), µiw|x(Zi, s), σ
2
iw|x}φ(s, µxi, σ

2
xi)ds.

Unfortunately, this likelihood function does not have a closed form.
Rather than computing the integral using Monte Carlo methods (Section
B.7.1), we used numerical quadrature. Specifically, Gaussian quadra-
ture (Thisted, 1988) is a way of approximating integrals of the form∫

g(t)exp(−t2)ds as a sum
∑

j wjg(tj). To apply this, we have to do
a change of variables of the likelihood, namely, to replace s by t =
(s − µxi)/

√
2σ2

xi, so that the likelihood becomes

∫ [
H{µxi + t

√
2σ2

xi,Zi}

]Yi
[
1 −H{µxi + t

√
2σ2

xi,Zi}

]1−Yi

×φ{log(Wi), µiw|x(Zi, µxi + t
√

2σ2
xi), σ

2
iw|x}exp(−t2)dt.

In our implementation, we started from the regression calibration esti-
mates and used the function optimizer “fmincon” in MATLAB.

8.7 Bronchitis Example

This section describes a cautionary tale about identifying Berkson error
models, which we believe are often better analyzed via Bayesian meth-
ods.

In occupational medicine, an important problem is the assessment of
the health hazard of specific harmful substances in a working area. One
approach to modeling assumes that there is a threshold concentration,
called the threshold limiting value (TLV), under which there is no risk
due to the substance. Estimating the TLV is of particular interest in the
industrial workplace. We consider here the specific problem of estimating
the TLV in a dust-laden mechanical engineering plant in Munich.

The regressor variable X is the logarithm of 1.0 plus the average dust
concentration in the working area over the period of time in question,
and Y is the indicator that the worker has bronchitis. In addition, the
duration of exposure Z1 and smoking status Z2 are also measured. Fol-
lowing Ulm (1991), we based our analysis upon the segmented logistic
model

pr(Y = 1|X,Z)
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= H {β0 + βx,1(X − βx,2)+ + βz,1Z1 + βz,2Z2} , (8.16)

where (a)+ = a if a > 0 and = 0 if a ≤ 0. The parameter of primary
interest is βx,2, the TLV.

It is impossible to measure X exactly, and instead sample dust con-
centrations were obtained several times between 1960 and 1977. The re-
sulting measurements are W. There were 1,246 observations: 23% of the
workers reported chronic bronchitis, and 74% were smokers. Measured
dust concentration had a mean of 1.07 and a standard deviation of 0.72.
The durations Z1 were effectively independent of concentrations, with
correlation 0.093, compare with Ulm’s (1991) Figure 3. Smoking status is
also effectively independent of dust concentration, with the smokers hav-
ing mean concentration 1.068, and the nonsmokers having mean 1.083.
Thus, in this example, for likelihood calculations we will treat the Z’s
as if they were independent of X.

A preliminary segmented regression analysis ignoring measurement
error suggested an estimated TLV β̂x,2 = 1.27. We will call this the
naive TLV.

As in Section 8.6, the data really consist of a complex mixture of Berk-
son and classical errors. The classical errors come from the measures of
dust concentration in factories, while the Berkson errors come from the
usual occupational epidemiology construct, wherein no direct measures
of dust exposure are taken on individuals, but instead plant records of
where they worked and for how long are used to impute some version
of dust exposure. In this section, for illustrative purposes, we will as-
sume a pure Berkson error structure. In the first edition of this book, we
reported a much different classical error analysis with a flexible distribu-
tion for X; see also Küchenhoff and Carroll (1995). A Bayesian treatment
of segmented regression can be found in Gössi and Küchenhoff (2001);
in Carroll, Roeder, and Wasserman (1999), who analyzed the Bronchitis
example assuming Berkson errors and a semiparametric error distribu-
tion; in Section 9.5.4, where a classical error model is assumed and either
validation or replication data are available; and in Section 9.7.3, where
the Bronchitis data are analyzed assuming normally distributed Berkson
errors. The likelihood analysis of segmented regression when validation
data are available is discussed by Staudenmayer and Spiegelman (2002),
who assumed a Berkson error model.

8.7.1 Calculating the Likelihood

We have already identified the model if X were observed (Step 1), and
we have decided upon a Berkson error model with measurement error
variance (Steps 2 and 3), so it remains to compute the likelihood function

198

(Step 4). For simplicity, write

H(Y,X,Z,B) = H {β0 + βx,1(X − βx,2)+ + βz,1Z1 + βz,2Z2} .

Let φ(x, µ, σ2) be the normal density function with mean µ and variance
σ2 evaluated at x. Then, as in the Nevada Test Site example in Section
8.6, from (8.8) the likelihood function is

∫
{H(Y, x,Z,B)}Y{1 −H(Y, x,Z,B)}1−Yφ(x, 0, σ2

u)dx

=

∫
{H(Y,W + s(2σ2

u)1/2,Z,B)}Y{1 −H(·)}1−Yexp(−s2)ds,

which can be computed by Gaussian quadrature. Note that the maxi-
mization is supposed to be over B and σ2

u.

8.7.1.1 Theoretical Identifiability

All the parameters, including the Berkson error variance, are identified,
in the sense that if the sample size were infinite, then all parameters
would be known. Küchenhoff and Carroll (1997) showed this fact in
probit regression, and it is generally true in nonlinear models.

8.7.2 Effects of Measurement Error on Threshold Models

It is first of all interesting to understand what the effects of measurement
error are on segmented regression models or threshold models. We made
the point in Section 1.1 that measurement error causes loss of features.
Here, that loss is quite profound. In Figure 8.4, we graph (solid line)
the true probabilities as a function of X in a segmented logistic regres-
sion with intercept β0 = 0, slope βx = 3 and threshold = 0. Note the
abrupt change in the probability surface at the threshold. We also plot
(dashed line) the actual probabilities of the observed data as a function
of W when there is Berkson measurement error with variance σ2

u = 1.
Note how the observed data have smooth probabilities: Indeed, the true
threshold nature of the data have been obliterated by the measurement
error. One can easily imagine, then, that trying to identify the threshold
or the error variance σ2

u is likely to be challenging.

8.7.3 Simulation Study and Maximum Likelihood

We performed a small simulation study to show how difficult it might
be to estimate a threshold model in a Berkson error case. We fit the
threshold model (8.16) to the observed data and used this fit to get
estimates of the parameters. We kept the W and Z data fixed, as
in the actual data, used the naive parameter estimates as the true
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Figure 8.4 The true probabilities (solid line) as a function of X and the ob-
served probabilities (dashed line) as a function of W in segmented Berkson
logistic regression with intercept β0 = 0, slope βx = 3, threshold = 0, and
Berkson measurement error with variance = 1. Note how the observed data
have smooth probabilities, while the true but unobserved data have the abrupt
change at the threshold.

parameters, and generated large Berkson errors X = W + U, where
var(U) = var(W) = 0.72.2 = 0.52. We then generated simulation obser-
vations Y from model (8.16) and ran 200 simulated data sets. We then
fit a maximum likelihood analysis to each simulated data set.

The true TLV in this simulation was βx,2 = 1.27, and the mean of
the estimates across the simulations was 1.21, very nearly unbiased. The
true Berkson error variance was 0.52, while the mean estimate over the
simulations was 0.43, only slightly biased. So, one might ask, “What’s
the problem?” The problem is that in 35% of the simulated data sets, the
MLE for σ2

u = 0! It is, to put it mildly, not very helpful when one knows
that there is Berkson error but an algorithm announces that the Berkson
error does not exist. This is one of those cases where there is technical
identifiability of a parameter, but the free lunch of identifiability is rather
skimpy.

This example also illustrates a problem with maximum likelihood
when the likelihood is maximized at the boundary of the parameter
space. Then the MLE takes a value which is the most extreme case of
plausible values. In contrast, the usual Bayesian estimator, the mean of
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the posterior distribution, will not be this extreme, for example, would
not be equal to zero when estimating a variance.

8.7.4 Berkson Analysis of the Data

If the reader has been paying attention, the previous discussion is ob-
viously leading up to a problem with the analysis. We applied Berkson
measurement error maximum likelihood to the bronchitis data, and the
estimated measurement error variance was σ2

u = 0.0! Of course, the sim-
ulation study showed that this can happen in as many as one third of
data sets, so it is an unfortunate finding but certainly no surprise. In
some sense, this analysis is a cautionary tale that technical identifiabil-
ity does not always lead to practical identifiability. The bioassay data of
Section 4.7.3 are, of course, the counterpoint to this: There are indeed
problems where technical and real identifiability coincide.

8.8 Quasilikelihood and Variance Function Models

Quasilikelihood and variance function (QVF) models are defined in Sec-
tion A.7. In this approach, we model only the mean and variance func-
tions of the response, and not its entire distribution, writing the mean
function as E(Y|Z,X) = mY(Z,X,B) and the variance function as
var(Y|Z,X) = σ2g2(Z,X,B, θ).

Quasilikelihood and variance function techniques require that we com-
pute the mean and variance functions of the observed data (and not the
unobservable data). These are given by

E(Y|Z,W) = E {mY(·)|Z,W} , (8.17)

var(Y|Z,W) = σ2E
{
g2(·)|Z,W

}
+ var {mY(·)|Z,W} . (8.18)

Equations (8.17) and (8.18) define a variance function model. If we knew
the functional forms of the mean and variance functions, then we could
apply the fitting and model criticism techniques discussed in Section A.7.
Note how both (8.17) and (8.18) require an estimate of a model for the
distribution of the unobserved covariate given the observed covariates
and the surrogate.

A QVF model analysis follows the same pattern of a likelihood anal-
ysis. As described in Figure 8.5, the steps required are as follows.

• Step 1: Specify the mean and variance of Y if X were observed.

• Step 2: Specify a model relating W to X that allows identification
of all model parameters. This will have a classical component, so it
is the same as Step 2 for a classical analysis, that is, a model for W
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Step 1: Select the QVF model
mean and variance of Y.

Step 2: Use the W, Z data only
and maximum likelihood to
estimate via the distribution of
the unobserved X given Z
and W.

Step 3: Form the mean and
variance of the observed data.

Step 4: Compute
quasilikelihood estimates.

Figure 8.5 The steps in a quasilikelihood analysis with measurement error.

given (X,Z) and a model for X given Z. We write the densities given
by these models as fW |Z,X(w|z, x, α̃1) and fX|Z(x|z, α̃2), respectively.

• Step 3: Do a maximum likelihood analysis of the (W,Z) data only
to estimate the parameters α̃1 and α̃2; see below for details.

• Step 4: Form (8.17)–(8.18), the observed data mean and variance
functions, and then apply the fitting methods in Section A.7.

8.8.1 Details of Step 3 for QVF Models

The (reduced) likelihood for a single observation based upon only the
observed covariates is∫

fW |Z,X(W|Z, x, α̃1)fX|Z(x|Z, α̃2)dµ(x),

where again the integral is replaced by a sum if X is discrete. The (W,Z)
data are used to estimate (α̃1, α̃2) by multiplying this reduced likelihood
over the observations, taking logarithms, and then maximizing.
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8.8.2 Details of Step 4 for QVF Models

The density or mass function of X given (Z,W) is then given by

fX|Z,W (x|z, w) =
fW |Z,X(w|z, x, α̃1)fX|Z(x|z, α̃2)∫

fW |Z,X(w|z, v, α̃1)fX|Z(v|z, α̃2)dµ(v)
.

From this, one can obtain (8.17) and (8.18) by integration and either
analytically or numerically. Thus, for example, (8.17) becomes

E(Y|W,Z) =

∫
mY(Z, x,B)fX|Z,W (x|Z,W)dx.

The sandwich method or the bootstrap can be used for inference, al-
though of course one must take into account the estimation of α̃1 and
α̃2, something the bootstrap does naturally.
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CHAPTER 9

BAYESIAN METHODS

9.1 Overview

Over the last two decades, there has been an “MCMC revolution” in
which Bayesian methods have become a highly popular and effective
tool for the applied statistician. This chapter is a brief introduction to
Bayesian methods and their applications in measurement error problems.
The reader new to Bayesian statistics is referred to the bibliographic
notes at the end of this chapter for further reading.

We will not go into the philosophy of the Bayesian approach, whether
one should be an objective or a subjective Bayesian, and so forth. We
recommend reading Efron (2005), who has a number of amusing com-
ments on the differences between Bayesians and Frequentists, and also
on the differences among Bayesians. Our focus here will be how to for-
mulate measurement error models from the Bayesian perspective, and
how to compute them. For those familiar with Bayesian software such as
WinBUGS, a Bayesian analysis is sometimes relatively straightforward.
Bayesian methods also allow one to use other sources of information,
for example, from similar studies, to help estimate parameters that are
poorly identified by the data alone. A disadvantage of Bayesian methods,
which is shared by maximum likelihood, is that, compared to regression
calibration, computation of Bayes estimators is intensive. Another dis-
advantage shared by maximum likelihood is that one must specify a full
likelihood, and therefore one should investigate whether the estimator is
robust to possible model misspecification.

9.1.1 Problem Formulation

Luckily, Bayesian methods start from a likelihood function, a topic we
have already addressed in Chapter 8 and illustrated with a four-step
approach in Figure 8.1.

In the Bayesian approach, there are five essential steps:

• Step 1: This is the same as the first step in a likelihood approach.
Specifically, one must specify a parametric model for every component
of the data. Any likelihood analysis begins with the model one would
use if X were observable.
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Step 1: Select the likelihood
model as if X were observed

Step 2: Select the error model
and select model for X given Z

Step 3: Form the likelihood
function as if X were observed

Step 4: Select priors

Step 5: Compute complete
conditionals. Perform MCMC

Figure 9.1 Five basic steps in performing a Bayesian analysis of a measure-
ment error problem. If automatic software such as WinBUGS is used, the
complete conditionals, which often require detailed algebra, need not be com-
puted.

• Step 2: This step too agrees with the likelihood approach. The next
crucial decision is the error model that is to be chosen. This could be
a classical error model, a Berkson model, or a combination of the two.
If one has classical components in the measurement error model, then
typically one also needs to specify a distribution for the unobserved
X given the observable covariates Z.

• Step 3: The typical Bayesian approach treats X as missing data,
and, in effect, imputes it multiple times by drawing from the condi-
tional distribution of X given all other variables. Thus, at this step,
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the likelihood of all the data, including W, is formed as if X were
available.

• Step 4: In the Bayesian approach, parameters are treated as if they
were random, one of the essential differences with likelihood methods.
If one is going to treat parameters as random, then they need to be
given distributions, called prior distributions. Much of the controversy
among statisticians regarding Bayesian methods revolves around these
prior distributions.

• Step 5: The final step is to compute Bayesian quantities, in particular
the posterior distribution of parameters given all the observed data.
There are various approaches to doing this, most of them revolving
around Markov Chain Monte Carlo (MCMC) methods, often based
on the Gibbs sampler. In some problems, such as with WinBUGS,
users do not actually have to do anything but run a program, and
the appropriate posterior quantities become available. In other cases,
though, either the standard program is not suitable to the problem,
or the program does not work well, in which case one has to tailor the
approach carefully. This usually involves detailed algebraic calculation
of what are called the complete conditionals, the distribution of the
parameters, and the X values, given everything else in the model. We
give a detailed example of this process in Section 9.4.

9.1.2 Posterior Inference

Bayesian inference is based upon the posterior density, which is the
conditional density of unobserved quantities (the parameters and un-
observed covariates) given the observed data, and summarizes all of the
information about the unobservables. For example, the mean, median, or
mode of the posterior density are all suitable point estimators. A region
with probability (1 − α) under the posterior is called a credible set, and
is a Bayesian analog to a confidence region. To calculate the posterior,
one can take the joint density of the data and parameters and, at least
in principle, integrate out the parameters to get the marginal density of
the data. One can then divide the joint density by this marginal density
to get the posterior density.

There are many “textbook examples” where the posterior can be com-
puted analytically, but in practical applications this is often a non trivial
problem requiring high-dimensional numerical integration. The compu-
tational problem has been the subject of much recent research. The
method currently receiving the most attention in the literature is the
Gibbs sampler and related methods such as the Metropolis–Hastings
algorithm (Hastings, 1970; Geman & Geman, 1984; Gelfand & Smith,
1990).
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The Gibbs sampler, which is often called Markov Chain Monte Carlo
(MCMC), generates a Markov chain whose stationary distribution is the
posterior distribution. The key feature of the Gibbs sampler is that this
chain can be simulated using only the joint density of the parameters, the
unobserved X-values and the observed data, for example, the product
of the likelihood and the prior, and not the unknown posterior density
which would require an often intractable integral. If the chain is run
long enough, then the observations in a sample from the chain are ap-
proximately identically distributed, with common distribution equal to
the posterior. Thus posterior moments, the posterior density, and other
posterior quantities can be estimated from a sample from the chain.

The Gibbs sampler “fills in” or imputes the values of the unobserved
covariates X by sampling from their conditional distribution given the
observed data and the other parameters. This type of imputation differs
from the imputation of regression calibration in two important ways.
First, the Gibbs sampler makes a large number of imputations from the
conditional distribution of X, whereas regression calibration uses a single
imputation, namely the conditional expectation of X given W and Z.
Second, the Gibbs sampler conditions on Y as well as W and Z when
imputing values of X, but regression calibration does not use information
about Y when imputing X.

9.1.3 Bayesian Functional and Structural Models

We made the point in Section 2.1 that our view of functional and struc-
tural modeling is that in the former, we make no or at most few as-
sumptions about the distribution of the unobserved X-values. Chapters
5 and 7 describe methods that are explicitly functional, while regression
calibration is approximately functional.

In contrast, likelihood methods (Chapter 8) and Bayesian methods
necessarily must specify a distribution for X in one way or another, and
here the distinction between functional and structural is blurred. Effec-
tively, structural Bayesian likelihood modeling imposes a simple model
on X, such as the normal model, while functional methods specify flexible
distributions for X. We use structural models in this chapter. Examples
of this approach are given by Schmid and Rosner (1993), Richardson
and Gilks (1993), and Stephens and Dellaportas (1992).

There are at least several ways to formulate a Bayesian functional
model. One way would allow the distribution of X to depend on the
observation number, i. Müller and Roeder (1997) used this idea for the
case when X is partially observed. They assume that the (Xi,Zi,Wi)
are jointly normally distributed with mean µi and covariance matrix
Σi, where θi = (µi,Σi) is modeled by a Dirichlet process distribu-
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tion which itself has unknown hyperparameters. Lindley and El Sayyad
(1968) wrote the first Bayesian paper on functional models, covering the
linear regression case. Because of their complexity, we do not consider
Bayesian functional models here.

A second possibility intermediate between functional and hard-core
structural approaches is to specify flexible distributions, much as we
suggested in Section 8.2.2. Carroll, Roeder, and Wasserman (1999) and
Richardson, Leblond, Jaussent, and Green (2002) used mixtures of nor-
mal distributions. Gustafson, Le, and Vallee (2002) used an approach
based on approximating the distribution of X by a discrete distribution.

In this chapter, the Zi’s are treated as fixed constants, as we have
done before in non-Bayesian treatments. This makes perfect sense, since
Bayesians only need to treat unknown quantities as random variables.
Thus, the likelihood is the conditional density of the Yi’s, Wi’s, and any
Xi’s that are observed, given the parameters and the Zi’s. The posterior
is the conditional density of the parameters given all data, that is, the
Zi’s, Yi’s, Wi’s, and any observed Xi’s.

9.1.4 Modularity of Bayesian MCMC

The beauty of the Bayesian paradigm combined with modern MCMC
computing is its tremendous flexibility. The technology is “modular”
in that the methods of handling, for example, multiplicative error, seg-
mented regression and the logistic regression risk model can be combined
easily. In effect, if one knows how to handle these problems separately, it
is often rather easy to combine them into a single analysis and program.

9.2 The Gibbs Sampler

As in Chapter 8, especially equation (8.7), the first three steps of our
Bayesian paradigm result in the likelihood computed as if X were observ-
able. Dropping the second measure T, this likelihood for an individual
observation becomes

f(Y,W,X|Z,Ω) = fY |Z,X(Y|Z,X,B)

×fW |Z,X(W|Z,X, α̃1)fX|Z(X|Z, α̃2),

where Ω is the collection of all unknown parameters. As in the fourth
step of the Bayesian paradigm, we let Ω have a prior distribution π(Ω).
The likelihood of all the ”data” then becomes

π(Ω)

n∏

i=1

f(Yi,Wi,Xi|Zi,Ω).
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To keep this section simple, we have not included the possibility of val-
idation data here, but that could be done with only some additional
effort, mostly notational. To keep notation compact, we will write the
ensemble of Y, X, etc., as Ỹ, X̃, etc. This means that the likelihood can
be expressed as

π(Ω)f(Ỹ,W̃, X̃|Z̃,Ω).

The posterior distribution of Ω is then

f(Ω
∣∣∣Ỹ,W̃, Z̃) =

π(Ω)
∫

f(Ỹ,W̃, x̃|Z̃,Ω)dx̃
∫

π(ω)f(Ỹ,W̃, x̃|Z̃, ω)dx̃dω
. (9.1)

The practical problem is that, even if the integration in x̃ can be ac-
complished or approximated as in Chapter 8, the denominator of (9.1)
may be very difficult to compute. Numerical integration typically fails to
provide an adequate approximation even when there are as few as three
or four components to Ω.

The Gibbs sampler is one solution to the dilemma. The Gibbs sampler
is an iterative, Monte Carlo method consisting of the following main
steps, starting with initial values of Ω:

• Generate a sample of the unobserved X-values by sampling from their
posterior distributions given the current value of Ω, the posterior dis-
tribution of Xi being

f(Xi|Yi,Wi,Zi,Ω) =
f(Yi,Wi,Xi|Zi,Ω)∫
f(Yi,Wi, x|Zi,Ω)dx

. (9.2)

As we indicate below, this can be done without having to evaluate
the integral in (9.2).

• Generate a new value of Ω from its posterior distribution given the
observed data and the current generated X-values, namely,

f(Ω
∣∣∣Ỹ,W̃, Z̃, X̃) =

π(Ω)f(Ỹ,W̃, X̃|Z̃,Ω)
∫

π(ω)f(Ỹ,W̃, X̃|Z̃, ω)dω
. (9.3)

Often, this is done one element of Ω at a time, holding the others
fixed (as described below, here too we do not need to compute the
integral). Thus, for example, if the jth value of Ω is ωj , and the other
components of Ω are Ω(−j), then the posterior in question is simply

f(ωj |Ỹ,W̃, Z̃, X̃,Ω(−j)) (9.4)

=
π(ωj ,Ω(−j))f(Ỹ,W̃, X̃|Z̃, ωj ,Ω(−j))∫

π(ω∗
j ,Ω(−j))f(Ỹ,W̃, X̃|Z̃, ω∗

j ,Ω(−j))dω∗
j

.

• Repeat this many times. Discard the first few of the generated sam-
ples, the so-called burn-in period.
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• Quantities such as the posterior mean and posterior quantiles are es-
timated by the sample mean and quantiles of Ω1,Ω2, . . ., while kernel
density estimates are used to approximate the entire posterior density
or the marginal posterior density of a single parameter or subset of
parameters.

An important point is that the first two steps do not require that
one evaluates the integral in the denominator on the right-hand sides of
(9.2), (9.3), and (9.4).

Generating pseudorandom observations from (9.4) is the heart of the
Gibbs sampler. Often the prior on ωj is conditionality conjugate so that
the full conditional for ωj is in the same parametric family as the prior,
for example, both are normal or both are inverse-gamma; see Section
A.3 for a discussion of the inverse-gamma distribution. In such cases, the
denominator of (9.4) can be determined from the form of the posterior
and the integral need not be explicitly calculated.

If we do not have conditional conjugacy, then drawing from the full
conditional of ωj is more difficult. In this situation, we will use a Metro-
polis–Hastings, step which will be described soon. The Metropolis–Hast-
ings algorithm does not require that the integral in (9.4) be evaluated.

9.3 Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm (MH algorithm) is a very versatile
and flexible tool, and even includes the Gibbs sampler as a special case.
Suppose we want to sample from a certain density, which in applications
to Bayesian statistics is the posterior, and that the density is Cf(·),
where f is known but the normalizing constant C > 0 is difficult to eval-
uate; see, for example, (9.3). The MH algorithm uses f without knowl-
edge of C to generate a Markov chain whose stationary distribution is
Cf(·).

To simplify the notation, we will subsume the unobserved X into Ω;
this involves no loss of generality, since a Bayesian treats all unknown
quantities in the same way. Suppose that the current value of Ω is Ωcurr.
The idea is to generate (see below) a ”candidate” value Ωcand and either
accept it as the new value or reject it and stay with the current value.
Over repeated application, this process results in random variables with
the desired distribution.

Mechanically, one has to have a candidate distribution, which may
depend upon the current value. We write this candidate density as
q(Ωcand|Ωcurr). Gelman, Stern, Carlin, and Rubin (2004) call q(·|·) a
“jumping rule,” since it may generate the jump from Ωcurr to Ωcand.
Thus, a candidate Ωcand is generated from q(·|Ωcurr). This candidate is
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accepted and becomes Ωcurr with probability

r = min

{
1,

f(Ωcand)q(Ωcurr|Ωcand)

f(Ωcurr)q(Ωcand|Ωcurr)

}
. (9.5)

More precisely, a uniform(0,1) random variable V is drawn, and then we
set Ωcurr = Ωcand if V ≤ r.

The popular “random-walk” MH algorithm uses q(Ωcand|Ωcurr) = h(
Ωcand−Ωcurr) for some probability density h. Often, as in our examples,
h(·) is symmetric so that

r = min

{
1,

f(Ωcand)

f(Ωcurr)

}
. (9.6)

The “Metropolis–Hastings within Gibbs algorithm” uses the MH al-
gorithm at those steps in a Gibbs sampler where the full conditional is
difficult to sample. Suppose sampling ωj is one such step. If we generate
the candidate ωj,cand from h(·−ωj,curr) where h is symmetric and ωj,curr

is the current value of ωj , then r in (9.6) is

r = min

{
1,

f(ωj,cand|Ỹ,W̃, Z̃, ωℓ,curr for ℓ 6= j)

f(ωj,curr|Ỹ,W̃, Z̃, ωℓ,curr for ℓ 6= j)

}
.

Often, h is a normal density, a heavy-tailed normal mixture, or a t-
density. The scale parameter of this density should be chosen so that
typical values of ωj,cand are neither too close to nor too far from ωj,curr.
If ωj,cand is too close to ωj,curr with high probability, then the MH algo-
rithm takes mostly very small steps and does not move quickly enough. If
ωj,cand is generally too far from ωj,curr, then the probability of acceptance
is small. To get good performance of the Metropolis within Gibbs algo-
rithm, we might use a Normal(0, σ2) proposal density where σ2 is tuned
to the algorithm so that the acceptance probability is between 25% and
50%. Gelman, Carlin, Stern, and Rubin (2004, p. 306) state that the op-
timal jumping rule has 44% acceptance in one dimension and about 23%
acceptance probability in high dimensions when the jumping and target
densities have the same shape. To allow for occasional large jumps, one
might instead use a heavy-tailed normal mixture of 90% Normal(0, σ2)
and 10% Normal(0, Lσ2), where L might be 2, 3, 5, or even 10. This
density is very easy to sample from, since we need only generate inde-
pendent Z ∼ Normal(0, 1) and U ∼ [0, 1]. Then, we multiply Z by σ or√

L σ according as U ≤ 0.9 or U > 0.9. The Normal(0, Lσ2) component
gives the mixture heavy tails and allows the sampler to take large steps
occasionally. One can experiment with the value of L to see which gives
the best mixing, that is, the least autocorrelation in the sample.

More information on the Gibbs sampler and the MH algorithm can
be found in Roberts, Gelman, and Gilks (1997), Chib and Greenberg
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(1995), Gelman et al. (2004), and in many other books and papers. See
Roberts and Rosenthal (2001) for more discussion about scaling of MH
jumping rules.

9.4 Linear Regression

In this section, an example is presented where the full conditionals are
all conjugate. For those new to Bayesian computations, we will show
in some detail how the full conditionals can be found. In the following
sections, this example will be modified to models where some, but not
all, full conditionals are conjugate.

Suppose we have a linear regression with a scalar covariate X measured
with error and a vector Z of covariates known exactly. Then the first
three steps in Figure 9.1 are as follows. The so-called “outcome model”
for the outcome Y given all of the covariates (observed or not) is

Yi = Normal(Zt
iβz + Xiβx, σ2

ǫ ). (9.7)

Suppose that we have replicates of the surrogate W for X. Then the
so-called “measurement model” is

Wi,j = Normal(Xi, σ
2
u), j = 1, . . . , ki. (9.8)

Finally, suppose that the “exposure model” for the covariate measured
with error, X, given Z is

Xi = Normal(α0 + Zt
iαz, σ

2
x). (9.9)

The term exposure model comes from epidemiology, where X is often
exposure to a toxicant.

For this model, it is possible to have conjugate priors for all of the full
conditionals. The prior we will use is that independently

βx = Normal(0, σ2
β), βz = Normal(0, σ2

βI)

α0 = Normal(0, σ2
α), αz = Normal(0, σ2

αI),

σ2
ǫ = IG(δǫ,1, δǫ,2), σ2

u = IG(δu,1, δu,2), σ2
x = IG(δx,1, δx,2).

As discussed in Section A.3, this prior is conjugate for the full condition-
als. Here IG(·, ·) is the inverse gamma density, and the hyperparameters
σβ and σµ are chosen to be “large” and the δ hyperparameters to be
“small” so that the priors are relatively noninformative. In particular,
because σβ and σµ are large, using a mean of zero for the normal priors
should not have much influence on the posterior. See Section A.3 for the
definition of the inverse gamma distribution and discussion about choos-
ing the hyperparameters of an inverse gamma prior. The unknowns in
this model are (βx, βz, σǫ, σx, σu), (X1, . . . ,Xn), and (α0, αz, σx).

213



Define

Ci =

(
Zi

Xi

)
, Y = (Y1, ...,Yn)t, and β =

(
βz

βx

)
.

The likelihood for a single observation is

f(Yi,Wi,Xi|Zi,Ω) = (2π)−3/2 1

σxσǫσ
ki
u

× exp{−
(
Yi − C

t
iβ

)2
/(2σ2

ǫ )} (9.10)

×exp
{
−

∑ki

j=1(Wi,j − Xi)
2/(2σ2

u) − (Xi − α0 − Zt
iαz)

2/(2σ2
x)

}
.

The joint likelihood is, of course, the product over index i of the terms
(9.10). The joint density of all observed data and all unknown quantities
(parameters and true X’s for nonvalidation data) is the product of the
joint likelihood and the joint prior.

In our calculations, we will use the following:

Rule: If for some p-dimensional parameter θ we have

f(θ|others) ∝ exp
{
−

(
θt

Aθ − 2bθ
)
/2

}

where the constant of proportionality is independent of θ, then f(θ|others)
is Normal(A−1

b,A−1).

To find the full conditional for β, we isolate the terms depending on β
in this joint density. We write the full conditional of β given the others
as f(β|others). This gives us

f(β|others) ∝ exp

{
− 1

2σ2
ǫ

n∑

i=1

(Yi − C
t
iβ)2 − 1

2σ2
β

βtβ

}
, (9.11)

where the first term in the exponent comes from the likelihood and the
second comes from the prior. Let C have ith row C

t
i and let ∆ = σ2

ǫ /σ2
β .

Then (9.11) can be rearranged to

f(β|others) ∝ exp

[
− 1

2σ2
ǫ

{
βt

(
CtC + ∆I

)
β + 2CtYβ

}]
, (9.12)

where Y = (Y1, . . . ,Yn)t. Using the Rule,

f(β|others) = N
({

CtC + ∆I
}−1 CtY, σ2

ǫ

(
CtC + ∆I

)−1
)

. (9.13)

Here we see how the Gibbs sampler can avoid the need to calculate
integrals. The normalizing constant in (9.12) can be found from (9.13)
simply by knowing the form of the normal distribution.

Result (9.13) is exactly what we would get without measurement er-
ror, except that for the nonvalidation data the X’s in C are “filled-in”
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rather than known. Therefore, C will vary on each iteration of the Gibbs
sampler. The parameters ∆ and σǫ will also vary, even if there is no
measurement error.

The full conditional for α = (α0, α
t
z)

t can be found in the same way
as for β. First, analogous to (9.11),

f(α|others) ∝ exp

{
−

∑n
i=1{Xi − (α0 + Zt

iαz)}2

2σ2
x

− αtα

2σ2
α

}
.

Let Di = (1 Zt
i)

t and let D be the matrix with ith row equal to Dt
i . Also,

let η = σ2
x/σ2

α. Then, analogous to (9.13),

f(α|others) = N
{(

DtD + ηI
)−1 DtX, σ2

x

(
DtD + ηI

)−1
}

, (9.14)

where X = (X1, . . . ,Xn)t.

To find the full conditional for Xi, define Wi =
∑ki

J=1 Wi,j/ki. Then

f(Xi|others) ∝ exp
[
−(Yi − Xiβx − Zt

iβz)
2/(2σ2

ǫ )
]

(9.15)

×exp
{
−(Xi − α0 − Zt

iαz)
2/(2σ2

x) − ki(Wi − Xi)
2/(2σ2

u)
}

.

After some algebra and applying the Rule again, f(Xi|others) is seen to
be normal with mean

(Yi − Zt
iβz)(βx/σ2

ǫ ) + (α0 + Zt
iαz)/σ

2
x + Wi/σ

2
W

(β2
x/σ2

ǫ ) + (1/σ2
x) + 1/σ2

W

and variance
{
(β2

x/σ2
ǫ ) + (1/σ2

x) + (1/σ2
W

)
}−1

.

Notice that the mean of this full conditional distribution for Xi given
everything else depends on Yi, so that, unlike in regression calibration,
Yi is used for imputation of Xi.

Now we will find the full conditional for σ2
ǫ . Recall that the prior

is IG(δǫ,1, δǫ,2), where from Appendix A.3 we know that the IG(α, β)
distribution has mean β/(α − 1) if α > 1 and density proportional to
x−(α+1)exp(−β/x). Isolating the terms depending on σ2

ǫ in the joint
density of the observed data and the unknowns, we have

f(σ2
ǫ |others)

∝ (σ2
ǫ )−(δǫ,1+n/2+1) exp

{−δǫ,2 + − 1
2

∑n
i=1(Yi − Xiβx − Zt

iβz)
2

σ2
ǫ

}
,

which implies that

f(σ2
ǫ |others) = IG

[
(δǫ,1 + n/2),

{
δǫ,2 + (1/2)

n∑

i=1

(Yi − Xiβx − Zt
iβz)

2

}]
.
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By similar calculations,

f(σ2
x|others) ∝ (σ2

x)−(δx,1+n/2+1) exp

{−δx,2 − 1
2

∑n
i=1(Xi − µx)2

σ2
x

}
,

so that

f(σ2
x|others) = IG

[
(δx,1 + (n/2)),

{
δx,2 + (1/2)

n∑

i=1

(Xi − µx)2

}]
.

Let MJ =
∑n

i=1 ki/2. Then we have in addition that

f(σ2
u|others)

∝ (σ2
u)−(δu,1+MJ+1) exp

{
−δu,2 − 1

2

∑n
i=1

∑ki

j=1(Wi,j − Xi)
2

σ2
u

}
,

whence

f(σ2
u|others) = IG


(δu,1 + MJ),



δu,2 +

1

2

n∑

i=1

ki∑

j=1

(Wi,j −Xi)
2






 .

The Gibbs sampler requires a starting value for Ω. For βx, βz, and σǫ,
one can use estimates from the regression of Yi on Zi and Xi (validation
data) or W (nonvalidation data). Although there will be some bias,
these naive estimators should be in a region of reasonably high posterior
probability, and bias should not be a problem since they are being used
only as starting values. We start Xi at Wi. Also, µx and σx can be
started at the sample mean and standard deviation of the starting values
of the Xi’s. The replication data can be used to find an analysis of
variance estimate of σ2

u for use as a starting value; see equation (4.3).

9.4.1 Example

We simulated data with the following parameters: n = 200, βt = (β0, βx,
βz) = (1, 0.5, 0.3), αt = (α0, αz) = (1, 0.2), Xi = α0 + αzZi + Vi, where
Vi ∼ Normal(0, σ2

x) with σx = 1. The Zi were independent Normal(1, 1),
and since the analysis is conditioned on their values, their mean and
variance are not treated as parameters. Also,

Yi = β0 + βxXi + βzZi + ǫi, (9.16)

where ǫi = Normal(0, σ2
ǫ ) with σǫ = 0.3, and Wi,j = Normal(Xi, σ

2
u),

with σ2
u = 1. The observed data are (Yi,Zi,Wi,1,Wi,2).

We used Gibbs sampling with 10,000 iterations after a burn-in period
of 2,000 iterations. The prior parameters were σβ = σα = 1000, δǫ,1 =
3, δǫ,2 = 1, δx,1 = 3, δx,2 = 1, and δu,1 = 3, δu,2 = 1. As discussed
in Section A.3, the choice of δǫ,1 = 3 and δǫ,2 = 1 suggests a prior
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Figure 9.2 Every 20th iteration of the Gibbs sampler for the linear regression
example.

guess at σ2
ǫ of δǫ,2/δǫ,1 = 1/3, and that the prior has the amount of

information that would be obtained from 2δǫ,1 = 6 observations. The
same is true of the other δ’s. We experimented with other choices of
these prior parameters, in particular, smaller values of the effective prior
sample size, and found that the posterior was relatively insensitive to
the priors, provided that δǫ,2 is not too large.

Starting values for the unobserved covariates were Xi = Wi = (Wi,1+
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Wi,2)/2. The starting values of the parameters were chosen indepen-
dently: σx, σu, σǫ ∼ Uniform(0.05, 3). The starting value for β and α
were generated from (9.13) and (9.14).

Figure 9.2 shows every 20th iteration of the Gibbs sampler. These are
the so-called trace plots that are used to monitor convergence of the
Gibbs sampler, that is, at convergence, they should have no discernible
pattern. No patterns are observed, and thus the sampler appears to have
mixed well. This subset of the iterations was used to make the plots
clearer; for estimation of posterior means and variance, all iterates were
used. Using all iterates, the sample autocorrelation for βx looks like an
AR(1) process with a first-order autocorrelation of about 0.7. We used a
large number (10,000) of iterations to reduce the potentially high Monte
Carlo variability due to autocorrelation.

To study the amount of Monte Carlo error from Gibbs sampling and
to see if 10,000 iterations is adequate, the Gibbs sampler was repeated
four more times on the same simulated data set but with new random
starting values for σx, σu, and σǫ. The averages of the five posterior
means and standard deviations for βx were 0.4836 and 0.0407. The stan-
dard deviation of the five posterior means, which estimates Monte Carlo
error, was only 0.00093. Thus, the Monte Carlo error of the estimated
posterior means was small relative to the posterior variances, and of
course this error was reduced further by averaging the five estimates.
The results for the other parameters were similar.

It is useful to compare this Bayesian analysis to a naive estimate that
ignores measurement error. The naive estimate from regressing Yi on
Wi and Zi was β̂x = 0.346 with a standard error of 0.0233, so the naive
estimator is only about half as variable as the Bayes estimator, but the
mean square error of the naive estimator will be much larger and due
almost entirely to bias. The estimated attenuation was 0.701, so the bias-
corrected estimate was 0.346/0.701 = 0.494. Ignoring the uncertainty
in the attenuation, the standard error of the bias-corrected estimate is
0.0233/0.701 = 0.0322. This standard error is smaller than the posterior
standard deviation but is certainly an underestimate of variability, and
if we wanted to use the bias-corrected estimator we would want to use
the bootstrap or the sandwich formula to get a better standard error.

In summary, in this example the Bayes estimate of βx is similar to
the naive estimate corrected for attenuation, which coincides with the
regression calibration estimate. The Bayes estimator takes more work to
program but gives a posterior standard deviation that takes into account
uncertainty due to estimating other parameters. The estimator corrected
for attenuation would require bootstrapping or some type of asymptotic
approximation, for example, the delta-method or the sandwich formula
from estimating equations theory, to account for this uncertainty. How-
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ever, for linear regression, Bayesian MCMC is a bit of overkill. The
real strength of Bayesian MCMC is the ability to handle more difficult
problems, for example, segmented regression with multiplicative errors,
a problem that appears not to have been discussed in the literature but
which can be tackled by MCMC in a straightforward manner; see Section
9.1.4.

9.5 Nonlinear Models

The ideas in Section 9.4 can be generalized to complex regression models
in X.

9.5.1 A General Model

The models we will study are all special cases of the following general
outcome model

[Yi|Xi,Zi, β, θ, σǫ] = Normal{m(Xi,Zi, β, θ), σ2
ǫ }, (9.17)

where
m(Xi,Zi, β, θ) = φ(Xi,Zi)

tβ1 + ψ(Xi,Zi, θ)
tβ2 (9.18)

is a linear function in β1, β2 and nonlinear in θ. The functions φ and
ψ may include nonlinear terms in X and Z, as well as interactions,
and may be scalar or vector valued. When ψ ≡ 0, particular cases of
model (9.17) include linear and polynomial regression, interaction mod-
els, and multiplicative error models. An example of nonlinear component
is ψ(Xi,Zi, θ) = |Xi − θ|+, which appears in segmented regression with
an unknown break point location. We assume that the other compo-
nents of the linear model in Section 9.4 remain unchanged and that Xi

is scalar, though this assumption could easily be relaxed. The unknowns
in this model are (β, θ, σǫ, σu), (X1, . . . ,Xn), (α0, αz, σx).

In addition to the priors considered in Section 9.4, we consider a gen-
eral prior π(θ) for θ and assume that all priors are mutually independent.
It is easy to check that the full conditionals f(α|others), f(σ2

x|others),
and f(σ2

u|others) are unchanged, and that

f(σ2
ǫ |others) = IG

[
δǫ,1 + (n/2), δǫ,2 + (1/2)

n∑

i=1

{Yi − m(Xi,Zi, β, θ)}2

]
.

Denoting by C(θ) the matrix with ith row

C
t
i(θ) = [φ(Xi,Zi), ψ(Xi,Zi, θ)],

letting β = (βt
1, β

t
2)

t, and letting ∆ = σ2
ǫ /σ2

β , the full conditional for β

becomes normal with mean {C(θ)tC(θ) + ∆I}−1 C(θ)tY and covariance

matrix {C(θ)tC(θ) + ∆I}−1
.
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By grouping together all terms that depend on θ one obtains

f(θ|others) ∝ exp

[
−

n∑

i=1

{Y(1)
i − ψ(Xi,Zi, θ)β2}2

2σ2
ǫ

]
π(θ), (9.19)

where Y
(1)
i = Yi − φ(Xi,Zi)β1. Since ψ is a nonlinear function in θ,

this full conditional is generally not in a known family of distributions
regardless of how π(θ) is chosen. One can update θ using a random walk
MH step using Normal(θ,Bσ2

θ) as the proposal density, where B is tuned
to get a moderate acceptance rate.

The full conditional for Xi is

f(Xi|others) ∝ exp
[
−{Yi − m(Xi,Zi, β, θ)}2/(2σ2

ǫ )
]

(9.20)

×exp
{
(Xi − α0 − αzZi)

2/(2σ2
x) + ki(Wi − Xi)

2/(2σ2
u)

]
.

To update Xi, we use a random walk MH step with Normal(Xi, B σ2
u/ki)

with the “dispersion” factor, B, chosen to provide a reasonable accep-
tance rate.

We now discuss the details of implementation for polynomial, multi-
plicative measurement error and segmented regression.

9.5.2 Polynomial Regression

A particular case of the outcome model (9.17) is the polynomial regres-
sion in X

Yi = Zt
iβz + Xiβx,1 + · · · + X

p
i βx,p + ǫi, (9.21)

for some p > 1, where ǫi are independent Normal(0, σ2
ǫ ), obtained by

setting φ(Xi,Zi) = (Zt
i,Xi, . . . ,X

p
i ) and ψ(Xi,Zi, θ) = 0. The ith row

of C := C(θ) is C
t
i = φ(Xi,Zi) and β = (βt

z, βx,1, . . . , βx,p)
t. With this

notation, all full conditionals are as described in Section 9.5.1. In partic-
ular, the full conditional of θ in (9.19) is not necessary because ψ = 0.
In this example, the full conditional for Xi is the only nonstandard dis-
tribution and can be obtained as a particular case of (9.20) as

f(Xi|others) ∝ exp
{
−(Yi − C

t
iβ)2/(2σ2

ǫ )
}

(9.22)

×exp
{
−(Xi − α0 − Zt

iαz)
2/(2σ2

x) − ki(Wi − Xi)
2/(2σ2

u)
}

.

The full conditional for Xi is nonstandard because Ci contains powers
of Xi.

To illustrate these ideas, consider the quadratic regression in X

Yi = β0 + βx,1Xi + βx,2X
2
i + βzZi + ǫi, (9.23)

with βx,2 = 0.2 and the other parameters unchanged. To update Xi the
proposal density was Normal(Xi, B σ2

u/ki). After some experimentation,
the “dispersion” factor B was chosen to be 1.5 to get approximately 25%
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acceptance. We found that the performance of the Gibbs sampler was
not particularly sensitive to the value of B, and B equal to 1 or 2.5 also
worked well.

As in the linear example, we used five runs of the Gibbs sampler, each
with 10,000 iterations, and with the same starting value distribution as
before. The posterior means of β0, βx,1, βx,2, and βz were 1.015, 0.493
0.191, and 0.348, close to the true values of the parameters, which were
1.0, 0.5, 0.2, and 0.3. In contrast, the naive estimates obtained by fitting
(9.23) with Xi replaced by Wi were 1.18, 0.427, 0.104, and 0.394, so,
in particular, the coefficient of X2 was biased downward by nearly 50%.
The posterior standard deviations were 0.057, 0.056, 0.027, and 0.040,
while the standard errors of the naive estimates were 0.079, 0.052, 0.021,
and 0.049.

9.5.3 Multiplicative Error

We now show that a linear regression model (9.7) with multiplicative
measurement error is a particular case of model (9.17). As discussed in
Section 4.5, this model is relatively common in applications. Indeed, if
X∗

i = log(Xi) and W∗
i,j = log(Wi,j) then the outcome model becomes

Yi = Zt
iβz + eX

∗

i βx + ǫi,

which can be obtained from (9.17) by setting φ(X∗
i ,Zi) = (Zt

i, e
X

∗

i )
and ψ(X∗

i ,Zi, θ) = 0. The ith row of C := C(θ) is C
t
i = φ(X∗

i ,Zi) and
β = (βt

z, βx)t.
We replace the exposure model (9.9) by a lognormal exposure model

where (9.24) holds with Xi replaced by

X∗
i ∼ Normal(α0 + Zt

iαz, σ
2
x). (9.24)

The measurement model is

[W∗
i,j |Xi] ∼ Normal(X∗

i , σ
2
u), j = 1, . . . , ki, i = 1, . . . , n. (9.25)

With this notation, the full conditionals for this model are the same
as in Section 9.5.1. One trivial change is that Xi is replaced everywhere
by X∗

i , and the full conditional of θ is not needed because ψ = 0.
To illustrate these ideas, we simulated 200 observations with β0 = 1,

βx = 0.3, βz = 0.3, α0 = 0, αz = 0.2, σx = 1, and σu = 1. The Zi

were Normal(−1, 1). We ran the Gibbs sampler with tuning parame-
ter B = 2.5, which gave a 30% acceptance rate. Figure 9.3 shows the
output from one of five runs of the Gibbs sampler. There were 10,500
iterations, of which the first 500 were discarded. One can see that β0

and, especially, βx mix more slowly than the other parameters, yet their
mixing seems adequate. In particular, the standard deviation of the five
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Figure 9.3 Every 20th iteration of the Gibbs sampler for the linear regression
example with multiplicative error.

posterior means for βx was 0.0076 giving a Monte Carlo standard er-
ror of 0.0078/

√
5 = 0.0034, while the posterior standard deviation of

that parameter was 0.0377, about 10 times larger than the Monte Carlo
standard error.

9.5.4 Segmented Regression

A commonly used regression model is a segmented line, that is, two lines
joined together at a knot. This model can be written as

Yi = Zt
iβz + βx,1Xi + βx,2(Xi − θ)+ + ǫi, (9.26)
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where we use the notation a+ = min(0, a), θ is the knot, βx,1 is the
slope of Y on X before the knot, and βx,2 is the change in this slope at
the knot. An intercept could be included in Zt

iβz.
The outcome model (9.26) is a particular case of model (9.17) with

φ(Xi,Zi) = (Zt
i,Xi) and ψ(Xi,Zi, θ) = (Xi − θ)+. The ith row of C(θ)

is C
t
i(θ) = {Zt

i,Xi, (Xi − θ)+}t and β = (βt
z, βx,1, βx,2)

t. With this
notation, all full conditionals are as described in Section 9.5.1.

To illustrate segmented regression with measurement error and un-
known knot location we simulated data with n = 200, J = 2, β0 = 1,
βx = 1, βx,2 = 0.8, βz = 0.1, θ = 1, α0 = 1, αz = 0, σǫ = 0.15,
σx = 1, and σu = 1. The Zi were Normal(1, 1). Since αz = 1, the Xi

were Normal(1, 1) independently of the Zi.
We ran the Gibbs sampler 5 times, each with 10,000 iterations. Start-

ing values for θ were Uniform(0.5, 1.5). In the prior for θ, we used the
Normal(µθ, σ

2
θ) distribution with µθ = W and σθ = 5 s(W), where s(W)

was the sample standard deviation of W1, . . . ,Wn. This prior was de-
signed to have high prior probability over the entire range of observed
values of W. In the proposal density for θ, we used B = 0.01. This
value was selected by trial and error and gave an acceptance rate of 36%
and adequate mixing. The posterior mean and standard deviation of θ
were 0.93 and 0.11, respectively. The Monte Carlo standard error of the
posterior mean was only 0.005.

Figure 9.4 reveals how well the Bayesian modeling imputes the Xi and
leads to good estimates of θ. The top left plot shows the true Xi plotted
with the Yi. The bottom right plot is similar, except that instead of
the unknown Xi we use the imputed Xi from the 10,000th iteration of
the fifth run of the Gibbs sampler. Notice that the general pattern of X

versus Y is the same for the true and the imputed Xi. In contrast, a plot
of Yi and either Wi or Ê(Xi|Wi) = (1− λ̂)Wi + λ̂Wi shows much less

similarity with the (Xi,Yi) plot. Here, λ̂ is the estimated attenuation
and W is the mean of W1, . . . ,Wn.

The plot of the imputed Xi versus Yi shows the existence and lo-
cation of the knot quite clearly, and it is not surprising that θ can be
estimated with reasonably accuracy. Of course, this “feedback” of infor-
mation about the Xi to information about θ works both ways. Accurate
knowledge of θ well helps impute the Xi. One estimates both the Xi and
θ well in this example because their joint posterior has highest probabil-
ity near their true values.

9.6 Logistic Regression

In this section, we assume the same model with nonlinear measurement
error as in Section 9.5 but with a binary outcome. We use the logistic
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Figure 9.4 Segmented regression. Plots of Yi and Xi and three estimator of
Xi. Top left: Y plotted versus the true X. Top right: Y plotted versus the
mean of the replicated W-values. Bottom left: Y plotted versus the regression
calibration estimates of X. Bottom right: Y plotted versus the imputed X in
a single iteration of the Gibbs sampler. Note how the Gibbs sampler more
faithfully reproduces the true X-values.

regression model

log

{
P (Yi = 1|Xi,Zi)

P (Yi = 0|Xi,Zi)

}
= m(Xi,Zi, β, θ),

so the outcome likelihood is proportional to

exp

[
n∑

i=1

Yim(Xi,Zi, β, θ) −
n∑

i=1

log
{
1 + em(Xi,Zi,β,θ)

}]
,

[β, θ|others] ∝ exp

[
n∑

i=1

Yim(Xi,Zi, β, θ) −
n∑

i=1

log
{

1 + em(Xi,Zi,β,θ)
}

−βtβ

2σ2
β

]
π(θ), (9.27)

and

[Xi|others] ∝ exp

[
n∑

i=1

Yim(Xi,Zi, β, θ) −
n∑

i=1

log
{

1 + em(Xi,Zi,β,θ)
}
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+
(Xi − α0 − αzZi)

2

σ2
x

+
(Wi − Xi)

2

σ2
W

]
. (9.28)

To update Xi we use a random-walk MH step with the same Normal(Xi,
B σ2

W
) proposal density as for polynomial regression. To update β we use

a random-walk MH step with proposal density N{β, B ′var(β̂)}, where

var(β̂) is the covariance matrix of the naive logistic regression estimator
using W in place of X and B′ is another tuning constant. A similar
strategy may be applied to update θ when ψ in (9.18) is not identically
zero.

To illustrate the fitting algorithms for logistic regression with mea-
surement error, we simulated data from a quadratic regression similar to
the one in Section 9.5.2 but with a binary response following the logistic
regression model. The intercept β0 was changed to −1 so that there were
roughly equal numbers of 0s and 1s among the Yi. Also, the sample size
was increased to n = 1, 500 to ensure reasonable estimation accuracy for
β. Otherwise, the parameters were the same as the example in Section
9.5.2. The tuning parameters in the MH steps were B = B ′ = 1.5. This
gave acceptance rates of about 52% for the Xi and about 28% for β.

Figure 9.5 show the output from one of the five runs of the Gibbs
sampler. The samplers appear to have converged and to have mixed rea-
sonably well. The posterior mean of β was (−1.18, 0.55, 0.24, 0.30), which
can be compared to β = (−1, 0.5, 0.2, 0.3). The posterior standard devi-
ations were (0.13, 0.17, 0.09, 0.06). The Monte Carlo error, as measured
by the between-run standard deviations of the posterior means, was less
than one-tenth as large as the posterior standard deviations.

9.7 Berkson Errors

The Bayesian analysis of Berkson models is similar to, but somewhat
simpler than, the Bayesian analysis of error models. The reason for the
simplicity is that we need a Berkson error model only for [X|W] or
[X|W,Z]. If, instead, we had an error model [W|X,Z] then, as we have
seen, we would also need a structural model [X|Z].

We will consider nonlinear regression with a continuously distributed
Y first and then logistic regression.

9.7.1 Nonlinear Regression with Berkson Errors

Suppose that we have outcome model (9.17), which for the reader’s con-
venience is

[Yi|Xi,Zi, β, θ, σǫ] = Normal{m(Xi,Zi, β, θ), σ2
ǫ }, (9.29)
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Figure 9.5 Every 20th iteration of the Gibbs sampler for the quadratic logistic
regression example.

but now with Berkson error so that we observe Wi where

Xi = Wi + Ui, E(Ui|Zi,Wi) = 0.

Model (9.29) is nonlinear in general, but includes linear models as a
special case. The analysis in Section 9.5.1, which was based upon repli-
cated classical measurement error and a structural model that says that
X|Z ∼ Normal(α0 + αzZ), must be changed slightly because of the
Berkson errors. The only full conditionals that change are for the Xi.
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Specifically, equation (9.20), which is

f(Xi|others) ∝ exp
[
−{Yi − m(Xi,Zi, β, θ)}2/(2σ2

ǫ )
]

× exp
{
−(Xi − α0 − αzZi)

2/(2σ2
x) − ki(Wi − Xi)

2/(2σ2
u)

}
,

is modified to

f(Xi|others) ∝ exp
[
−{Yi − m(Xi,Zi, β, θ)}2/(2σ2

ǫ )
]

(9.30)

× exp
{
−(Wi − Xi)

2/(2σ2
u)

]
.

Thus, we see two modifications. The term −(Xi −α0 −αzZi)
2/(2σ2

x) in
(9.20), which came from the structural assumption, is not needed and
ki(Wi −Xi)

2 is replaced by (Wi −Xi)
2 since there are no replicates in

the Berkson model. That’s it for changes—everything else is the same!
This analysis illustrates a general principle, which may have been ob-

vious to the reader, but should be emphasized. When we have a Berkson
model that gives [X|Z,W], we do not need a model for marginal density
[W] of W. The Wi are observed so that we can condition upon them.
In contrast, if we have an error model for [W|Z,X], we cannot do a con-
ditional analysis given the Xi since these are unobserved, and therefore
a structural model for [X] or, perhaps, [X|Z] is also needed.

9.7.2 Logistic Regression with Berkson Errors

When errors are Berkson, the analysis of a logistic regression model
described in Section 9.6 changes in a way very similar to the changes
just seen for nonlinear regression. In particular, equation (9.28), which
is

[Xi|others] ∝ exp

[
n∑

i=1

Yim(Xi,Zi, β, θ) −
n∑

i=1

log
{

1 + em(Xi,Zi,β,θ)
}

+
(Xi − α0 − αzZi)

2

σ2
x

+
(Wi − Xi)

2

σ2
W

]
,

becomes

[Xi|others] ∝ exp

[
n∑

i=1

Yim(Xi,Zi, β, θ) −
n∑

i=1

log
{

1 + em(Xi,Zi,β,θ)
}

+
(Wi − Xi)

2

σ2
u

]
. (9.31)

As before, the term (Xi−α0−αzZi)
2/σ2

x in (9.28) came from the struc-
tural model and is not needed for a Berkson analysis, and Wi is replaced
by Wi because there is no replication.
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Figure 9.6 Munich bronchitis data. Histogram of 1,250,000 samples from the
posterior for σu.

9.7.3 Bronchitis Data

We now continue the analysis of the bronchitis data described in Section
8.7. Recall that in that section we found that the MLE of the Berk-
son measurement error standard deviation, σu, was zero. Our Bayesian
analysis will show that σu is poorly determined by the data. Although
σu is theoretically identifiable, for practical purposes it is not identified.
Gustafson (2005) has an extensive discussion of nonidentified models.
He argues in favor of using informative priors on nonidentified nuisance
parameters, such as σu here. The following analysis applies Gustafson’s
strategy to σu.

We will use a Uniform (0.025, 0.4) prior for σu. This prior seems rea-
sonable, since σw is 0.72, so the lower limit of the prior implies very little
measurement error. Also, the upper limit is over twice the value, 0.187,
assumed in previous work by Gössi and Küchenhoff (2001). We will use
a Uniform {1.05min(Wi), 0.95max(Wi)} prior for βx,2. This prior is rea-
sonable since βx,2 is a TLV (threshold limiting value) within the range of
the observed data. The prior on β, the vector of all regression coefficient,
is Normal(0, 106I).

There were five MCMC runs, each of 250,000 iterations excluding a
burn-in of 1,000 iterations. Figure 9.6 is a histogram of the 1,250,000
values of σ2

u from the five runs combined. The posterior is roughly pro-
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portional to the likelihood, since there are uniform priors on σu and βx,2

and a very diffuse prior on β. The histogram is monotonically decreas-
ing, in agreement with the MLE of 0 for σu. However, the posterior is
very diffuse and much larger values of σu are plausible under the poste-
rior. In fact, the posterior mean, standard deviation, 0.025 quantile, and
0.975 quantile of σu were 0.13, 0.098, 0.027, and 0.37, respectively. The
95% credible interval of (0.027, 0.37) is not much different from (0.0344,
0.3906), the interval formed by the 2.5 and 97.5 percentiles of the prior.
Thus, the data provide some, but not much, information about σu.
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Figure 9.7 Trace plots for the Munich bronchitis data.

Figure 9.7 shows trace plots for the first of the five MCMC runs. Trace
plots for the other runs are similar. The mixing for σu is poor, but the
mixing for the other parameters is much better. The poor mixing of σu
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Figure 9.8 Munich bronchitis data. Histogram of 1,250,000 samples from the
posterior for TLV, βx,2.

was the reason we used 250,000 iterations per run rather than a smaller
value, such as 10,000, which was used in previous examples.

We experimented with a Uniform(0, 10) prior for σu and encountered
difficulties. On some runs, the sampler would get stuck at σu = 0 and
Xi = Wi for all i. On runs where this problem did not occur the mixing
was very poor for σu, and fair to poor for the other parameters. We
conclude that a reasonably informative prior on σu is necessary. However,
fixing σu at a single value, as Gössi and Küchenhoff (2001) have done,
is not necessary.

Figure 9.8 is a histogram of the 1,250,000 value of βx,2 from the com-
bined runs with burn-ins excluded. The posterior mean of βx,2 was 1.28,
very close to the naive of 1.27 found in Section 8.7. This is not surprising,
since the simulations in Section 8.7.3 showed that the naive estimator
had only a slight negative bias. The 95% highest posterior density cred-
ible interval was (0.53, 1.73).

9.8 Automatic Implementation

Bayesian analysis for complex models with covariates measured with er-
ror needs to be based on carefully constructed prior, full conditional,
and proposal distributions combined with critical examination of the
convergence and mixing properties of the Markov chains. The MAT-
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LAB programs used in the previous sections are specially tailored and
optimized to address these issues. However, standard software, such as
WinBUGS, may prove to be a powerful additional tool in applications
where many models are explored. We now show how to use WinBUGS
for fitting models introduced in Sections 9.4 and 9.5.

9.8.1 Implementation and Simulations in WinBUGS

We describe in detail the implementation of the linear model in Section
9.4 and note only the necessary changes for the more complex models.
The complete commented code presented in Appendix B.8.1 follows step
by step the model description in Section 9.4.
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Figure 9.9 Every 20th iteration for the WinBUGS Gibbs sampler for the linear
regression example.

The first for loop specifies the outcome, measurement, and exposure
model (9.7), (9.8), and (9.9). Note that Nobservations is the sample
size and that the # sign indicates a comment. The code is structured
and intuitive. For example, the two lines in the outcome model

Y[i]~dnorm(meanY[i],taueps)

meanY[i]<-beta[1]+beta[2]*X[i]+beta[3]*Z[i]

specify that the outcome of the ith subject, Yi, has a normal distribution
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with mean mY (i) = β1 + β2Xi + β3Zi and precision parameter τǫ =
1/σ2

ǫ . It is quite common in Bayesian analysis to specify the normal
distribution in terms of its precision instead of its variance.

The nested for loop corresponding to the replication model

for (j in 1:Nreplications) {W[i,j]~dnorm(X[i],tauu)}

specifies that, conditional on the unobserved exposure, Xi, of the ith

subject the proxies Wi,j are normally distributed with mean Xi and
precision τu = 1/σ2

u. Here Nreplications is the number of replications
and it happened to be the same for all subjects. A different number
of replications could easily be accommodated by replacing the scalar
Nreplications by a vector Nreplications[].

The code corresponding to the measurement error model

X[i]~dnorm(meanX[i],taux)

meanX[i]<-alpha[1]+alpha[2]*Z[i]

specifies that the exposure of the ith subject, Xi, has a normal distribu-
tion with mean α1 + α2Zi and precision parameter τx = 1/σ2

x.
The code for prior distributions

tauu~dgamma(3,1)

taueps~dgamma(3,1)

taux~dgamma(3,1)

specifies that the precision parameters τu, τǫ, τx have independent Gamma
priors with parameters 3 and 1. The dgamma(a,b) notation in WinBUGS
specifies a Gamma distribution with mean a/b and variance a/b2. The
code for prior distributions

for (i in 1:nalphas){alpha[i]~dnorm(0,1.0E-6)}

for (i in 1:nbetas){beta[i]~dnorm(0,1.0E-6)}

specifies that the parameters α1, α2, β1, β2, β3 have independent normal
priors with mean zero and precision 10−6. Here nalphas and nbetas

denote the number of α and β parameters.
The last part of the code contains only definitions of explicit functions

of the model parameters. For example,

sigmaeps<-1/sqrt(taueps)

sigmau<-1/sqrt(tauu)

sigmax<-1/sqrt(taux)

define the standard deviations σǫ = 1/
√

τǫ, σu = 1/
√

τu and σx = 1/
√

τx

for the outcome, replication and exposure models, respectively, and

lambda<-tauu/(tauu+taux)
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Figure 9.10 Squared error for the Bayes and naive methods for estimating the
exposure effect βx in the linear model with measurement error in the model
(9.16).

defines the reliability ratio λ = τu/(τu + τx) = σ2
x/(σ2

x + σ2
u).

To assess the quality of inference based on the WinBUGS program,
we simulated 2,000 data sets from the linear model with measurement
error described in Section 9.4.1. For each data set we used 10,500 simu-
lations based on the WinBUGS program and we discarded the first 500
simulations as burn in.

Figure 9.9 shows every 20th iteration of the Gibbs sampler for one
data set, indicating that the mixing properties are comparable to those
shown in Figure 9.2. However, this is not always the case and Win-
BUGS programs typically need 10 to 100 times more simulations than
expert programs to achieve comparable estimation accuracy. Of course,
the time saved by using WinBUGS instead of writing a program often
compensates for the extra computational time.

Figure 9.10 displays the squared error of the posterior mean of the
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exposure effect βx using Bayes and naive estimators for the linear model
with measurement error introduced in Section 9.4. More precisely, for the

dth data set, d = 1, . . . , 2000, denote by β̂
(B)
x,d the posterior mean of βx

using the WinBUGS program and by β̂
(N)
x,d the MLE of βx in a standard

linear regression, where Xi is replaced by Wi = (Wi1 + Wi2)/2. Then,

the two boxplots in Figure 9.9 correspond to (β̂
(B)
x,d − βx)2 and (β̂

(N)
x,d −

βx)2, respectively.

We also calculated the coverage probabilities of βx by the 90% and
95% equal-tail probability credible intervals obtained from the Bayesian
analysis based on MCMC simulations implemented in WinBUGS. The
true value of the parameter βx was covered for 89.5% and 94.6% of the
data sets by the 90% and 95% credible intervals, respectively. In contrast,
the true value of βx was never covered by the 95% confidence interval of
the naive analysis because of its bias.

9.8.2 More Complex Models

Only minor changes are necessary to fit the quadratic polynomial regres-
sion model in Section 9.5.2. Indeed, the only change is that the specifi-
cation of the mean function of the outcome model becomes

meanY[i]<-beta[1]+beta[2]*X[i]+beta[3]*pow(X[i],2)

+beta[4]*Z[i]

while the number of β parameters in the data nbetas is changed from
3 to 4. Here pow(X[i],2) represents X2

i .

As discussed in Section 9.5.3, the multiplicative measurement error
model is equivalent with an additive measurement error model using a
log exposure scale. This can be achieved by the transformations W∗

i,j =
log(Wi,j) and X∗

i = log(Xi). From a notational perspective in Win-
BUGS, there is no need to use the X∗

i notation instead of the Xi as long
as the data is transformed accordingly. Therefore, the only necessary
change is that the mean function of the outcome model becomes

meanY[i]<-beta[1]+beta[2]*exp(X[i])+beta[3]*Z[i]

where exp(X[i]) represents eX
∗

i and W[i,j] represents W∗
i,j .

To fit the segmented regression model in Section 9.5.4, one needs to
change the mean function of the outcome model to

meanY[i]<-beta[1]+beta[2]*X[i]

+beta[3]*(X[i]-theta)*step(X[i]-theta)

+beta[4]*Z[i]
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where (X[i]-theta)*step(X[i]-theta) represents (Xi − θ)+ because
step(a) in WinBUGS is equal to a if a > 0 and 0 otherwise. One needs
only to add the prior for θ:

theta~dnorm(barWbar,prec.theta)

where barWbar represents the average of all Wij observations and prec.-

theta represents 1/(25σ2
W

) and are part of the data.
WinBUGS uses a rather inefficient simulation algorithm for fitting

complex measurement error models. This is most probably due to the
sampling scheme, which updates one parameter at a time and does not
take advantage of the explicit full conditionals of groups of parameters.
For example, if γ = (γ1, γ2)

t has a full conditional Normal(µγ ,Σγ) with
a very strong posterior correlation, it is much more efficient to sample
directly from Normal(µγ ,Σγ) than to sample γ1 given γ2 and the others
and then γ2 given γ1 and the others.

Therefore, the mixing properties of the Markov chains generated by
WinBUGS should be carefully analyzed using multiple very long chains.
We also found that simple reparameterizations, such as centering and
orthogonalization of covariates, can substantially improve mixing.

While we encourage development, when feasible, of expert programs
along the lines described in Sections 9.4 and 9.5, WinBUGS can be a
valuable additional tool. The main strengths of WinBUGS are

1. Flexibility: Moderate model changes correspond to simple program
changes.

2. Simplicity: Program follows almost literally the statistical model.

3. Robustness: Program is less prone to errors.

4. Operability: Programs can be called from different environments, such
as R or MATLAB.

The main weakness of WinBUGS is that chains may exhibit very poor
mixing properties when parameters have high posterior correlations.
This problem may be avoided by expert programs through the careful
study of full conditional distributions.

9.9 Cervical Cancer and Herpes

So far in this chapter, we have assumed that a continuously distributed
covariate is measured with error. However, Bayesian analysis is straight-
forward when a discrete covariate is misclassified.

In this section, we continue the analysis given in Section 8.4 of the cer-
vical cancer data discussed in Section 1.6.10. In particular, we continue
the retrospective parameterization in Section 8.4 using αxd = Pr(W =
1|X = x,Y = d) and γd = Pr(X = 1|Y = d), x = 0, 1 and d = 0, 1.
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We use beta priors with parameters (axd, bxd) for the α’s and (a∗
d, b

∗
d)

for the γ’s, with the α’s and γ’s being mutually independent. If we impose
the constraints, αx0 = αx1 for x = 0, 1, then we have a four-parameter,
nondifferential measurement error model. The log-odds ratio is related
to the γ’s by

β = log [{γ1/(1 − γ1)} / {γ0/(1 − γ0)}] .

Thus, the posterior distribution of β can be found via transformation
from the posterior distribution of the γ’s.

If we could observe all the X’s, the joint density of the parameters
and all the data would be proportional to

1∏

x=0

1∏

d=0

[
αaxd−1

xd (1 − αxd)
bxd−1

(9.32)

×
n∏

i=1

{
αWi

xd (1 − αxd)
1−Wi

}I(Xi=x,Yi=d)
]

×
1∏

d=0

[
γ

a∗

d−1
d (1 − γd)

b∗d−1
n∏

i=1

{
γXi

d (1 − γd)
1−Xi

}I(Yi=d)
]

.

We can use (9.4) and (9.32) to note that the posterior distribution of
γd is a beta distribution with parameters

∑n
i=1 XiI(Yi = d) + a∗

d and∑n
i=1(1−Xi)I(Yi = d) + b∗d. The posterior distribution of αxd is also a

beta distribution but with parameters
∑n

i=1 WiI(Xi = x,Yi = d)+axd

and
∑n

i=1(1−Wi)I(Xi = x,Yi = d)+ bxd. The conditional distribution
of a missing Xi, given the (Wi,Yi) and the parameters, is Bernoulli
with success probability p1i/(p0i + p1i), where

pxi = γx
Yi

(1 − γYi
)
1−x

αWi

xYi
(1 − αxYi

)
1−Wi .

Thus, in order to implement the Gibbs sampler, we need to simulate
observations from the Bernoulli and beta distributions, both of which
are easy to do using standard programs, so the Metropolis–Hastings
algorithm was not needed.

For nondifferential measurement error, the only difference in these
calculations is that αx0 = αx1 = αx, which have a beta prior with pa-
rameters (ax, bx) and a beta posterior with parameters

∑n
i=1 WiI(Xi =

x) + ax and
∑n

i=1(1 − Wi)I(Xi = x) + bd.
We used uniform priors throughout, so that axd = bxd = a∗

d = b∗d =
1. We ran the Gibbs sampling with an initial burn-in period of 2, 000
simulations, and then recorded every 50th simulation thereafter. The
posterior modes were 0.623 and 0.927, respectively, these being very
close to the maximum likelihood estimates. Note the large difference
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between the estimates for d = 1 and for d = 0, indicating the critical
nature of whether or not the error is assumed to be nondifferential.

This example shows the value of validation data—without it, one is
forced to assume nondifferential error and may, unwittingly, reach erro-
neous conclusions because this assumption does not hold. If at all feasi-
ble, the collection of validation is worth the extra effort and expense.

9.10 Framingham Data

As an illustration, we consider only those males ages 45+ whose choles-
terol values at Exam #3 ranged from 200 to 300, giving a data set of
n = 641 observations. Recall that Y is the indicator of coronary heart
disease. Initial frequentist analysis of this data set showed no evidence
of age or cholesterol effects, so we work only with two covariates, smok-
ing status, Z, and X = log(SBP−50), where SBP is long-term average
systolic blood pressure. The main surrogate W is the measurement of
log(SBP−50) at Exam #3, while the replicate T is log(SBP−50) mea-
sured at Exam #2. Given (Z,X), W and T are assumed independent
and normally distributed with mean X and variance σ2

u; σ2
u = α̃1 in the

general notation of Chapter 8. The distribution of X given Z is assumed
to be normal with mean α0 + αzZ and variance σ2

x|z (α̃2 in the general

notation). We also assume that σ2
x|z is constant, that is, independent of

Z. Let Θ = (σ2
u, α0, αz, σ

2
x|z).

Previous analysis suggested that the measurement error variance is
less than 50% of the variance of the true long-term SBP given smoking
status. We define ∆ = σ2

u/σ2
x|z to be the ratio of these variances and

assume ∆ ∈ (0, 0.5). Restricting the range here makes sense, and we
would not credit an analysis that suggested that the measurement error
variance is larger than the variance of true long-term SBP given smoking
status.

The Bayesian analysis will be based on the original model, so that Y

given (X,Z) is treated as being logistic with mean

H(β0 + βxX + βzZ) .

The unknown parameters are (β0, βx, βz, α0, αz, σ
2
x|z, ∆). The first five

of these are given diffuse (noninformative) locally uniform priors, the
next-to-last has a diffuse inverse Gamma prior, the density functions
being proportional to 1/σ2

x|z, and ∆ has a uniform prior on the interval
between zero and one half.

We use WinBUGS to implement the Bayesian logistic regression model.
The WinBUGS model, together with an R file used for data and output
manipulation, is provided as part of the software files for this book.

Mixing was very good for βz, α0, αz, σ2
x|z, σ2

u, and λ. For these pa-
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Figure 9.11 Every 600th iteration of the Gibbs sampler for Framingham ex-
ample.

rameters 1, 000 burn-in and 10, 000 simulations were enough for accurate
estimation. However, the chains corresponding to β0 and βx were mixing
very slowly, and we ran 310, 000 iterations of the Gibbs algorithm and
discarded the first 10, 000 as burn-in. Figure 9.11 displays every 600th
iteration for the model parameters with similar, but less clear patterns,
for the unthinned chains.

Table 9.1 compares the inference results for the maximum likelihood
analysis, based on the regression calibration approximation with the
Bayesian inference based on Gibbs sampling. Clearly, the two types of
inferences agree reasonably closely on most parameters. The Bayesian
analysis estimates an 8.5% higher effect of SBP βx = 1.91 for Gibbs sam-
pling, compared to βx = 1.76 for maximum likelihood, but the difference
is small relative to the standard errors. Results in Table 9.1 are similar
to the likelihood and regression calibration results given in Section 8.5,
and the differences are easily due to our use here of only 641 of the 1,615
subjects analyzed in Section 8.5.

9.11 OPEN Data: A Variance Components Model

The OPEN Study was introduced in Section 1.2 and Section 1.5, see
Subar, Kipnis, Troiano, et al. (2003) and Kipnis, Midthune, Freedman,
et al. (2003)indexsLongitudinal data. Briefly, each participant completed
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Parameter ML. Boot. Bayes Bayes
est. se p. mean p. std.

β0 −10.10 2.400 −10.78 2.542
βx 1.76 0.540 1.91 0.562
βz 0.38 0.310 0.40 0.302
α0 4.42 0.019 4.42 0.019
10 × αz −0.19 0.210 −0.20 0.217
10 × σ2

x|z 0.47 0.033 0.51 0.032

10 × σ2
u 0.14 0.011 0.16 0.008

λ 0.30 0.031 0.28 0.025

Table 9.1 Framingham data. The effects of SBP and smoking are given by
βx and βz, respectively. The measurement error variance is σ2

u. The mean
of long-term SBP given smoking status is linear with intercept α0, slope αz

and variance σ2

x|z. Also, λ = σ2

u/σ2

x|z. “ML” = maximum likelihood, “se” =
standard error, “Boot.” = bootstrap, “Bayes” =Bayesian inference based on
Gibbs sampling implemented in WinBUGS, “p. mean” = posterior mean, and
“p. std” = posterior standard deviation.
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Figure 9.12 Results of the OPEN Study for Protein intake for females. Plotted
is the posterior density of the attenuation λ, defined in this case as the slope
of the regression of true intake on a single food frequency questionnaire. The
posterior mean is 0.13, with 95% credible interval [0.04, 0.21], roughly in line
with results reported previously.
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up to two food frequency questionnaires (FFQ) which measured reported
Protein intake, and also up to two biomarkers for Protein intake (urinary
nitrogen). Letting Y denote the logarithm of the FFQ, W the logarithm
of the biomarker and X the logarithm of usual intake, the variance com-
ponents model used is

Yij = β0 + βxXi + ri + ǫij , (9.33)

Wij = Xij + Uij ,

where ǫij = Normal(0, σ2
ǫ ), Uij = Normal(0, σ2

u) and ri = Normal(0, σ2
r):

the terms ri is a person-specific bias or equation error, see Section 1.5.
In Chapter 11, we note that (9.33) is a linear mixed model with repeated
measures. We used a subset of the women in the OPEN study for this
analysisindexsLongitudinal data.

The purpose of the OPEN study was to investigate the properties
of the FFQ for use in large cohort studies. In regression calibration,
Chapter 4, in a cohort study we use the regression of usual intake on the
FFQ as the predictor of disease outcome. The slope of this regression is
simply

λregcal = cov(Q,X)/var(Q).

Kipnis, Subar, Midthune, et al. (2003) describe λregcal as the attenuation
factor and note that the regression calibration approximation says that
if the true relative risk is R, then the observed relative risk from the use
of the FFQ will be Rλregcal . For example, a true relative risk of 2 would
appear as 2.4 = 1.32 if the attenuation factor were 0.4 and as 2.2 = 1.15
if the attenuation factor were 0.2. It is thus of considerable interest to
estimate λregcal. The WinBUGS code along with the prior distributions
used is given in Appendix B.8.2.

We plot the posterior density of λregcal in Figure 9.12. The posterior
mean is 0.13, with 95% credible interval [0.04, 0.21], roughly in line with
results reported by Kipnis, Subar, Midthune, et al. (2003). This means
that a true relative risk of 2 for Protein intake will be attenuated to a
relative risk of 20.13 = 1.09 when using the FFQ. As Kipnis, et al. state:
“Our data clearly document the failure of the FFQ to provide a suffi-

ciently accurate report of absolute protein . . . intake to allow detection

of their moderate associations with disease.

Bibliographic Notes

Since the first edition of this book, the literature on Bayesian compu-
tation has exploded. The reader is referred to Gelman, Carlin, Stern, &
Rubin, Gelman, (2004), Carlin & Louis (2000), and Gilks, Richardson, &
Spiegelhalter, (1996) for a thorough introduction. Other important ref-
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erences include two classics, Box & Tiao (1973) and Berger (1985). The
latter has an extensive and excellent theoretical treatment. There is also
now a statistical package for Bayesian computation, called WinBUGS:
we will illustrate the use of WinBUGS in this chapter. The literature
now even includes an excellent book devoted exclusively to the Bayesian
approach to measurement error modeling, especially for categorical data,
see Gustafson (2004).

Good introductions to MCMC are given by Gelman, Carlin, Stern, &
Rubin (2004), Carlin & Louis (2003), and Gilks, Richardson, & Spiegel-
halter (1996).

The mechanics of stopping the Gibbs sampler and whether one should
use one long sequence or a number of shorter sequences are matters of
some controversy and not discussed here; however, we note that Gel-
man & Rubin (1992) and Geyer (1992) give exactly opposite recommen-
dations. There is a large literature on diagnostics for convergence; see
Cowles & Carlin (1996), Polson (1996), Brooks & Gelman (1998), Kass,
Carlin, Gelman, & Neal (1998), and Mengersen, Robert, & Guihenneuc-
Jouyaux (1999). Kass et al. (1998) is an interesting panel discussion of
what is actually done in practice by three Bayesian experts, Carlin, Gel-
man, and Neal: Kass, though also an expert, is the moderator so we do
not learn about his views or experiences. This discussion is quite inter-
esting and well worth reading, unless you are already a Bayesian expert
yourself, and probably even in that case. It seems that the experts do not
use sophisticated convergence diagnostics, because they feel that these
can be misleading. However, they all look at trace plots of various pa-
rameters, such as Figure 9.2. Carlin and Gelman monitor R̂ (Gelman
& Rubin, 1992), which compares the estimated posterior variance from
several chains combined to the average posterior variance from the in-
dividual chains. R̂ close to 1 means that the chains have mixed. Carlin
and Neal also compute autocorrelations of various parameters; high au-
tocorrelations are a sign of slow mixing. Neal also suggests looking at
the log posterior density, which will be neither steadily increasing nor
steadily decreasing if the chain has converged.

Alternatives to the Metropolis–Hastings algorithm have been pro-
posed, though they seem less used in practice. For example, Smith &
Gelfand (1992) discuss the rejection method and the weighted bootstrap
method. Ritter & Tanner (1992) and references therein discuss ways of
drawing samples from (9.4), including the griddy Gibbs sampler, which
effectively discretizes the components of Ω in a clever way; this can be
useful since sampling from a multinomial distribution is trivial.
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CHAPTER 10

HYPOTHESIS TESTING

10.1 Overview

In this chapter, we discuss hypothesis tests concerning regression pa-
rameters when X is measured with error. In Section 3.3.1 we argued,
in the context of some special cases, that naive tests for the regression
coefficients of Z are not valid in general when X is measured with error
and X is correlated with Z. In particular, we illustrated this in Figure
3.5, where we graphically illustrated a two-group, unbalanced analysis
of covariance, showing that if X has a different distribution in the two
groups, then the treatment effect test is invalid in the naive test, where
W is simply substituted for X. In this chapter, we give a more detailed
and thorough account of testing when X is measured with error.

To keep the exposition simple, we focus on linear regression. However,
the results of Sections 10.2.1, 10.2.3, and 10.5 hold in general, and the
results of Sections 10.2.2 and 10.4 hold to a good approximation for
all generalized linear models, including logistic regression, whenever the
regression calibration approximation is reasonable. More generally, the
same can be said of any problem for which the mean and variance of
the response depends only upon a linear combination of the predictors,
which we assume throughout this chapter. We also assume nondifferen-
tial, additive measurement error, W = X + U.

10.1.1 Simple Linear Regression, Normally Distributed X

In Section 3.2.1 we discussed the effects of measurement error on estima-
tion in the simple linear regression model; see especially equation (3.4).
Recall that the model is Y = β0 + βxX + ǫ, where X has mean µx and
variance σ2

x = 1, and the error about the regression line ǫ is independent
of X, has mean zero and variance σ2

ǫ . Suppose that instead of X we
observe W = X + U, where U is independent of X, has mean zero, and
variance σ2

u = 1. The attenuation is σ2

x/(σ2

x +σ2

u). As we described, if X

is normally distributed, the observed regression of Y on W is the linear
model with intercept β0 + βxµx(1− λ), slope λβx, and residual variance
σ2

ǫ + λβ2

xσ2

u.
Now consider testing the null hypothesis of no effect due to X: H0 :
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βx = 0. Since the observed data have slope λβx, if the null hypothesis
is true, then in the observed data the slope is also zero. In other words,
with nondifferential error in this simple setup, no relationship between
Y and X means no relationship between Y and the observed W. This
has two consequences for the naive test that ignores the measurement
error:

• Since the observed data have zero slope under the null hypothesis, the
naive test is valid, in the sense that its level (Type I error) is correct.

• Because X is normally distributed, the observed data actually follow
a linear model. Hence, the naive test is efficient in this special case.
Of course, this efficiency only holds for normally distributed X.
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Figure 10.1 This illustrates the power of a 5%-level test for the null hypothesis
of zero slope in a simple linear regression when X is normally distributed,
n = 20, and σ2

x
= σ2

ǫ
= σ2

u
= 1. Compared are the naive test that ignores

measurement error (solid line) and the test that accounts for measurement
error by estimating the standard deviation of the method of moments estimator
via the bootstrap (dashed line).

To illustrate these points, we did a small simulation study similar to
that in Section 1.8.1, with n = 20 observations and µx = 0, σ2

x = σ2

ǫ =
σ2

u = 1. In this simulation, σ2

u was assumed known. We varied βx and in-
vestigated the power of two tests. The first is the naive test, which is the
efficient test because X, U, and ǫ are all normally distributed. The other
test is one based upon accounting for measurement error. Specifically, as
in Section 3.4.1, we computed the Fuller’s corrected estimator (Fuller,
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1987, Section 2.5.1), and computed its standard error using 3, 000 boot-
strap simulations. We then modified the simulations so that the level of
each test was exactly 0.05. The comparison of the two methods is dis-
played in Figure 10.1, where we see that the naive test has the greater
power, as predicted by the theory.

The loss of power by the test that corrects for measurement error is
due to Fuller’s correction and its bootstrap standard error. Using the
Fuller correction seems reasonable since it provides an estimator with
good finite-sample properties, in particular, less finite-sample bias than
simply dividing the naive estimator by λ̂. However, if one divides the
naive estimator and its standard error by λ̂, then, though the estimate
of βx may be unstable in small samples, the t-statistic corrected in this
way would be the same as the naive t-statistic because the λ̂’s would
cancel. Thus, this less sophisticated correction would, ironically, result
in the naive test and hence be efficient.
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Figure 10.2 This illustrates the effects of measurement error in a simple linear
regression when X is normally distributed, n = 20, and σ2

x
= σ2

ǫ
= σ2

u
= 1,

and for different values of βx. The dotted line reflects the true value of βx.
Compared are the naive estimate of the slope ignoring measurement error (solid
line) and the estimate that accounts for measurement error (dashed line). Note
the severe small-sample bias in the naive estimate, as well as the near lack of
small-sample bias for the measurement error estimate. The point here is that
if estimation and inference about βx are of interest, then measurement error
needs to be accounted for.
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Figure 10.1 might cause one to think that measurement error can be
safely ignored. This is certainly true provided the model is simple linear
regression, all random variables are normally distributed, and the only
interest is in testing the null hypothesis of zero slope. As a cautionary
note, in Figure 10.2 we illustrate once again the effects of measurement
error on estimation. In this figure, we show that the naive estimate is
very severely biased, when the correction for attenuation with Fuller’s
modification has almost no small-sample bias.

10.1.2 Analysis of Covariance
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Figure 10.3 This illustrates the effects of measurement error in unbalanced
analysis of covariance, when X is normally distributed, n = 20, and σ2

x
=

σ2

ǫ
= σ2

u
= 1, and for different values of ∆, the difference in the mean of

X between the true groups. Compared are the mean estimates of the treatment
effect ignoring measurement error (solid line) and accounting for measurement
error (dashed line). Note the increased bias of the naive estimate of treatment
effect as the imbalance between the two groups increases. The dashed line shows
that the correction results in only a slight negative bias, which is small-sample
effect.

It is, of course, not always true that the Type-I error of the naive
test is the nominal 5%. Consider, for example, the analysis of covariance
model described in Section 3.3.1 and Figure 3.5. Consider a situation
of two-group analysis of covariance where in the first group, X is nor-
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mally distributed with mean µ1 and variance σ2

x = 1, and in the second
group, X is normally distributed with mean µ2 and variance σ2

x = 1. The
measurement error variance is σ2

u = 1, and the residual mean square is
σ2

ǫ = 1. The difference in the mean of X in the two groups is ∆ = µ2−µ1,
with larger values of ∆ reflecting increased imbalance between the two
groups. In symbols,

Y = β0 + βxX + βzZ + ǫ,

where Z is the dummy variable indicating group assignment and the
mean of X given Z = z is µz.
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Figure 10.4 This illustrates the effects of measurement error in unbalanced
analysis of covariance, when X is normally distributed, n = 20, and σ2

x
=

σ2

ǫ
= σ2

u
= 1, and for different values of ∆, the difference in the mean of X

between the true groups. Compared are the Type I errors of the naive test for
treatment effect ignoring measurement error (solid line) and the Type I error of
the test that accounts for measurement error (dashed line). Note the increased
level of the naive test as the imbalance between the two groups increases.

As described in Section 3.3.1, when ignoring measurement error, the
effect of measurement error in X is to bias the estimate of the treatment
effect βz. This is illustrated in Figure 10.3, which is the result of a
simulation study with 1, 000 replications, where we display the mean
estimate of treatment effect βz as a function of the difference in the mean
of X in the two groups, ∆ = µ2 − µ1, both ignoring and accounting for
measurement error. The latter method uses Fuller’s modification of the
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correction for attenuation. Note the severe bias of the naive estimate
for larger values of ∆ and the corresponding near lack of bias in the
correction for attenuation.

The bias in treatment effect when ignoring measurement error also
leads to invalid tests, that is, the usual test that ignores measurement
error has Type I error greater than the nominal 5%. In Figure 10.4,
we plot the Type I error as a function of ∆ ignoring and accounting for
measurement error: The latter uses a t-test with standard error estimated
by 1, 000 bootstrap simulations.

The analysis of covariance illustrates that hypothesis testing in the
measurement error context is not fully straightforward. Understanding
when the naive test that ignores measurement error is valid and attains
its nominal Type I error is thus of considerable importance.

10.1.3 General Considerations: What Is a Valid Test?

Assuming that one or more of the estimation methods described in the
previous chapters is applicable, the simplest approach to hypothesis test-
ing forms the required test statistic from the parameter estimates and
their estimated standard errors. Such tests are justified whenever the
estimators themselves are justified. However, this approach to testing is
only possible when the indicated methods of estimation are possible, and
thus require either knowledge of the measurement error variance or the
presence of validation data or replicate measurements or instrumental
variables, etc.

There are certain situations in which naive hypothesis tests are justi-
fied and thus can be performed without additional data or information
of any kind. Here naive means that we ignore measurement error and
substitute W for X in a test that is valid when X is observed. This chap-
ter studies naive tests, describing when they are and are not acceptable,
and indicates how supplementary data, when available, can be used to
improve the efficiency of naive tests.

We use the criterion of asymptotic validity to distinguish between
acceptable and nonacceptable tests. We say a test is asymptotically valid
if its Type I error rate approaches its nominal level as the sample size
increases. Asymptotic validity, which we shorten to validity, of a test is
a minimal requirement for acceptability.

10.1.4 Summary of Major Results

The main results on the validity of naive tests under nondifferential
measurement error are as follows:

• The naive test of no effects due to X is valid.
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• The naive test of no effects due to (Zt,Xt)t is valid, that is, that none
of the covariates affects Y.

• The naive test of no effects due to Z is not valid in general but is
valid under some restrictive assumptions.

• The naive test of no effects due to a specified subvector of X, for
example, the first component of X, is not valid in general.

• When Y follows a generalized linear model (Section A.8) in Z and
X, then we show that the efficient score test of no effects due to
X is easily obtained: One takes the efficient score test when X is
observed and replaces X by a parametric estimate of E(X|Z,W). Put
another way, a null hypothesis test based on regression calibration is
(asymptotically) efficient.

These results are obtained using the regression calibration approxima-
tion, which takes the regression model for Y given Z and X and replaces
X by E(X|Z,W). Recall that throughout this chapter we assume that
response depends only upon a linear combination of the predictors, for
example, as in a generalized linear model.

10.2 The Regression Calibration Approximation

In linear regression, the mean of the response given the true covariates
is β0 + βt

zZ + βt
xX. Under the additional assumption that the possibly

multivariate regression of X on Z and W is linear, that is,

E(X | Z,W) = α0 + αt
zZ + αt

wW,

we have that the observed data also have a linear mean, namely

E(Y | Z,W) = β0 + βt
xα0 + (βt

z + βt
xαt

z)Z + βt
xαt

wW. (10.1)

Equation (10.1) is the starting point for our discussion of testing. One
of the assumptions of our measurement error model is that αt

w is an
invertible matrix.

A naive analysis of the data fits a linear model as well. We write this
model as

E(Y | Z,W) = γ0 + γt
zZ + γt

wW. (10.2)

It is the correspondence between the naive model (10.2) and the actual
model (10.1) that is of interest here.

The assumption made above that αt
w is invertible is not onerous. In

the case of classical multivariate measurement error where W = X+U,
if the conditional covariance matrix of X given Z, Σx|z, is invertible then

αt
w = Λz = Σx|z(Σx|z + Σu)−1,
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so αt
w is invertible whenever Σx|z is invertible, that is, whenever we

do not have complete collinearity of the components of (XZ). This is
a minimal assumption for βx to be estimable even when there is no
measurement error.

10.2.1 Testing H0 : βx = 0

Here we show that the naive test of no effect due to any of the predictors
measured with error is asymptotically valid, a point illustrated for simple
linear regression in Section 10.1.1. The result though holds in general,
and not just for linear regression.

A comparison of (10.1) and (10.2) shows that βx = 0 implies that
αwβx = 0, which in turn implies that γw = 0. The converse is also true,
namely that γw = 0 implies that βx = 0 because αw is invertible.

Because γw = 0 if βx = 0, it follows that the naive test, that is, the
test of H0 : γw = 0, is a valid test of H0 : βx = 0.

Although γw = 0 only if βx = 0, this reverse implication, though
perhaps interesting, is not necessary for the validity of the naive test.

10.2.2 Testing H0 : βz = 0

Here we show that in linear regression, the naive tests for effects due
to Z is typically invalid, except under special circumstances, a point
illustrated for the analysis of covariance in Section 10.1.2.

Further comparison of (10.1) and (10.2) shows that βz = 0 implies that
γz = 0, only if αzβx = 0. It follows that the naive test of H0 : βz = 0 is
valid if X is unrelated to Y in the model (10.7), that is, βx = 0, or if Z

is unrelated to X, that is, αz = 0.
In generalized linear models, the naive test is valid when Z and X are

independent, at least approximately, at the level of the regression cali-
bration approximation. Gail, Wieand, and Piantadosi (1984) and Gail,
Tan, and Piantadosi (1988) showed that when the regression calibration
approximation fails for logistic regression, then the naive test is no longer
even approximately valid.

The general conclusion is that the test of H0 : βz = 0 is invalid,
although there are certain situations in which it is valid.

10.2.3 Testing H0 : (βt
x, βt

z)
t = 0

A final comparison of (10.1) and (10.2) shows that (βt
x, βt

z)
t = 0 if and

only if (γt
w, γt

z)
t = 0, so the naive test that none of the covariates affects

Y is valid in general.
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10.3 Illustration: OPEN Data

In many nutrition studies, the response Y is binary (disease or not),
in which case logistic regression is the likely model choice. If pr(Y =
1|Z,W) = H(β0 + βt

zZ + βt
xX), then following (10.1) the regression

calibration approximation is that

pr(Y = 1 | Z,W) = H
{
β0 + βt

xα0 + (βt
z + βt

xαt
z)Z + βt

xαt
wW

}
.(10.3)

Some of these concepts can be illustrated numerically in the OPEN
data; see Section 1.2. Recall here that Z is the logarithm of energy
(caloric) intake as measured by the doubly labeled biomarker, which
we are taking as measured without error.

A standard practice is to take X to be the logarithm of protein density,
which is the percentage of calories coming from protein. Effectively, this
is simply the logarithm of the ratio of protein intake to energy intake. The
surrogate for X is W, the logarithm of the ratio of the protein biomarker
to energy intake. The interpretation is rather nice: If we change X, then
we are changing the relative composition of what we eat.

Using the methods for regression calibration in Section 4.4.2, that is,

equation (4.4), we obtain the estimate that ̂E(X|W,Z) = α̂0 + α̂wW +
α̂zZ ≈ −0.42 + 0.54W + 0.06Z, and that the estimated correlation be-
tween X and Z is −0.15. If we inspect (10.1), we see that when we ignore
measurement error, the slope in the regression of a response Y on (W,Z)
has an approximate coefficient βz + 0.06βx for Z. This suggests that if
there is no real energy effect (βz = 0), then since the observed data
should manifest a slope of only approximately 0.06βx, we are unlikely to
conclude incorrectly that there is an energy effect when we ignore mea-
surement error, unless βx is large and hence X is a very strong predictor
of the response.

10.4 Hypotheses about Subvectors of βx and βz

There are situations in which interest focuses on testing for effects due to
some subset of the predictors measured with error, or due to some subset
of the error-free covariates. That is, if X = (Xt

1
,Xt

2
)t, βx = (βt

x,1, β
t
x,2)

t,
and Z = (Zt

1
,Zt

2
)t, βz = (βt

z,1, β
t
z,2)

t, then we may be interested in
testing H0 : βx,1 = 0 or H0 : βz,1 = 0.

We have already seen that for testing H0 : βz = 0, the naive test is
not valid in general, and it follows from similar reasoning that the same
is true of naive tests of H0 : βz,1 = 0. Therefore, we restrict attention to
naive tests of H0 : βx,1 = 0.

Suppose now that βt
xX = βt

x,1X1 + βt
x,2X2 and that

E(X1 | Z,W1,W2) = α1,0 + αt
1,zZ + αt

1,w1
W1 + αt

1,w2
W2;
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E(X2 | Z,W1,W2) = α2,0 + αt
2,zZ + αt

2,w1
W1 + αt

2,w2
W2, (10.4)

where W = (Wt
1
,Wt

2
)t is partitioned as is X.

With these changes (10.1) becomes

E(Y | Z,W) = β0 + βt
x,1α1,0 + βt

x,2α2,0

+(βt
z + βt

x,1α
t
1,z + βt

x,2α
t
2,z)Z + (βt

x,1α
t
1,w1

+ βt
x,2α

t
2,w1

)W1

+(βt
x,1α

t
1,w2

+ βt
x,2α

t
2,w2

)W2, (10.5)

and in a naive analysis of the data the mean model

E(Y | Z,W) = γ0 + γt
zZ + γt

w1
W1 + γt

w1
W2 (10.6)

is fit to the observed data.
Comparing (10.5) and (10.6) shows that βx,1 = 0 implies that γw1

= 0
only if α2,w1

βx,2 = 0. It follows that the naive test of H0 : βx,1 = 0 is
valid only if α2,w1

βx,2 = 0. If X2 is related to Y, then βx,2 is nonzero.
If X2 is related to W1 in (10.4), then α2,w1

is nonzero. This is the case
whenever some components of X1 are correlated with some components
of X2.

For example, consider the NHANES study introduced in Chapter 1
and discussed in more detail in Chapter 4. Let X be the vector of true
total caloric intake (TC = X1) and saturated fat (SF = X2), and let
Z denote nondietary variables. The naive test for a SF effect simply
substitutes observed TC and SF intake for true TC and SF intake, and
it is a valid test provided there is no risk of breast cancer due to TC
(βx,1 = 0) or when the regression of true SF intake on observed SF,
observed TC and non-dietary variables has no component due to TC
(α2,w1

= 0).
In general, the conclusion is that the test of H0 : βx,1 = 0 is invalid,

although there are certain situations in which it is valid.

10.4.1 Illustration: Framingham Data

The Framingham Heart Study was introduced in Section 1.6.6 and de-
scribed in more detail in Sections 5.4.1, 6.5, 7.2.3, 8.5, and 9.10. Here we
consider two variables measured with error, namely transformed systolic
blood pressure (X1) and the logarithm of cholesterol (X2). The variables
Z measured without error in this example are age and smoking status:
Age was normalized to have mean zero and variance one.

Using the replicates of blood pressure and cholesterol, we find an esti-
mate of the measurement error covariance matrix using equation (4.3) as
follows: The measurement error variance for transformed systolic blood
pressure was 0.0126, that for transformed cholesterol was 0.0085, and the
correlation of the measurement errors was estimated as 0.0652, that is,
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essentially zero. The variances of transformed blood pressure and choles-
terol were 0.0525 and 0.0316, respectively, with a correlation of 0.0966.
In other words, both transformed blood pressure and transformed choles-
terol and their measurement errors are essentially independent. The cor-
relations of observed blood pressure and cholesterol with age and smok-
ing status were also modest. When we used the regression calibration
formula (4.5), we found the following regressions:

E(X1 | Z,W1,W2) ≈ 1.0686 + (0.0131,−0.0041)Z

+ 0.7459W1 + 0.0076W2;

E(X2 | Z,W1,W2) ≈ 1.4298 + (0.0022, 0.0013)Z

+ 0.0059W1 + 0.7310W2.

As is seen here, effectively regression calibration of transformed systolic
blood pressure on all the variables is essentially the same as regression
calibration using the blood pressure measurements alone, and similarly
for cholesterol. In particular, we see that effectively, α1,z ≈ 0, α1,w2

≈ 0,
α2,z ≈ 0 and α2,w1

≈ 0, so that in practice the naive test for systolic
blood pressure is very nearly valid.

10.5 Efficient Score Tests of H0 : βx = 0

In this section, we assume that Y given Z and X follows a general-
ized linear model (Section A.8). In particular, the mean and variance
functions for these models are in the form

E(Y|Z,X) = mY(Z,X,B) = mY(β0 + βt
zZ + βt

xX); (10.7)

var(Y|Z,X) = σ2g2(Z,X,B, θ)

= σ2g2(β0 + βt
zZ + βt

x, θ). (10.8)

We show that the naive score test of H0 : βx = 0, while asymptotically
valid in general, is not generally an efficient score test. However, we do
find a test that is asymptotically equivalent to the efficient score test
and show that under certain conditions this test is equal to the naive
score test.

Recall that the naive test simply substitutes W for X. We show that
if a parametric model for E(X|Z,W) is appropriate, say E(X|Z,W) =
mX(Z,W, α), and if α̂ is a n1/2-consistent estimator of α, then the
test that substitutes mX(Z,W, α̂) for X is asymptotically an efficient
score test. It must be emphasized that this result about substituting
mX(Z,W, α̂) for X requires the assumption of a generalized linear model.

The validity of naive null tests for predictors measured with error, and
the efficiency for generalized linear models of tests which replace X by
E(X|Z,W), was shown by Tosteson and Tsiatis (1988). For the special
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case of models with canonical link functions, the efficiency of tests that
replace X by E(X|Z,W) follows from the form of the efficient score
for generalized linear measurement error models given in Stefanski and
Carroll (1987).

It follows from these results that the only time the naive test of
H0 : βx = 0 in generalized linear models is equivalent to the efficient
score test occurs when E(X|Z,W) is independent of Z and linear in
W. Moreover, Tosteson and Tsiatis (1988) showed that the asymptotic
relative efficiency (ARE) of the naive test to the efficient score test is
always less than 1, unless the two tests are equivalent. They also showed
that, for the special case where X is univariate and Z is not present, this
ARE is {corr (E(X|W),W)}2. Thus, the naive test can be arbitrarily
inefficient if E(X|W) is sufficiently nonlinear in W.

The mathematical arguments supporting these statements are given
in the following subsection. This subsection is fairly technical and can
be omitted on first reading.

10.5.1 Generalized Score Tests

To define a generalized score test of H0 : βx = 0, let Hi(α) be any random
vector depending on (Zi,Xi,Wi) and the parameter α and having the
same dimension as Xi. Possible choices of Hi(α) are discussed later.
Define

L(β0, βz, α, θ) =

1√
n

n∑

i=1

Hi(α)di(β0, βz, θ)
{
Yi − mY(β0 + βt

zZi)
}

, (10.9)

where di used here and ci used below are defined by

di(β0, βz, θ) = m′
Y

(β0 + βt
zZi)/g

2(β0 + βt
zZi, θ)

ci(β0, βz, θ) = di(β0, βz, θ)m
′
Y

(β0 + βt
zZi).

Our test statistic is based on L with the parameters β0, βz, α, and θ
replaced by estimators. Also define

C1(β0, βz, α, θ) = n−1

n∑

i=1

Hi(α)Ht
i (α)ci(β0, βz, θ);

C2(β0, βz, α, θ) = n−1

n∑

i=1

Hi(α)(1, Zt
i)

tci(β0, βz, θ);

C3(β0, βz, α, θ) = n−1

n∑

i=1

(1, Zt
i)

t(1, Zt
i)ci(β0, βz, θ);

D(β0, βz, α, θ) = C1 − C2C
−1

3
Ct

2
,
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where in the last equation the dependence of C1, C2, and C3 on (β0, βz, α, θ)
has been suppressed for brevity.

Let θ̂ be any n1/2-consistent estimate of the variance parameter θ; see
Section A.7 or Carroll and Ruppert (1988, Chapter 3) for some methods
of estimating θ. If α is unknown, for example, when

Hi(α) = E(X|Z,W) = m(Z,W, α),

then we assume a n1/2-consistent estimator of α. Methods of estimating
α are discussed in Chapter 4. The quasilikelihood and variance function
(QVF) estimates of (β0, βz), (β̂0, β̂z), satisfy

0 =

n∑

i=1

(1, Zt
i)

tdi(β̂0, β̂z, θ̂)
{
Yi − mY(β̂0 + β̂t

zZi)
}

.

With dim(Z) denoting the dimension of Z, define

σ̂2 = {n − 1 − dim(Z)}−1

n∑

i=1

{
Yi − mY(β̂0 + β̂t

zZi)
}2

g2(β̂0 + β̂t
zZi, θ̂)

.

We consider test statistics of the form

σ̂−2Lt(β̂0, β̂z, α̂, θ̂)D−1(β̂0, β̂z, α̂, θ̂)Lt(β̂0, β̂z, α̂, θ̂). (10.10)

When X is observable, then setting Hi(α) = Xi in (10.9) results in
(10.10) being the usual score test statistic of H0 : βx = 0. The naive score
test statistic is obtained by setting Hi(α) = Wi in (10.9). We show in
this section that when E(X|Z,W) = m(Z,W, α), then setting Hi(α) =
m(Zi,Wi, α) in (10.9) results in a test statistic that is asymptotically
equivalent to the efficient score test statistic.

We now show that under the hypothesis H0 : βx = 0, the test statistic
in (10.10) is asymptotically chi-square with degrees of freedom equal to
the common dimension of Hi(α), Xi and βx. It follows from Carroll and
Ruppert (1988, Chapter 7) that to order op(1), under H0

√
n

(
β̂0 − β0

β̂z − βz

)
≈ C−1

3√
n

n∑

i=1

(
1
Zi

)
di

{
Yi − mY(β0 + βt

zZi)
}

,

where the dependence of C3 and di on the parameters has been sup-
pressed. Since E(Yi|Zi,Wi) = E(Yi|Zi,Xi) = mY(β0 + βt

zZi) under
the null hypothesis, it is straightforward to show that to order op(1),

Lt(β̂0, β̂z, α̂, θ̂) ≈ 1√
n

n∑

i=1

di

×
{
Yi − mY(β0 + βt

zZi)
} {

Hi(α) − C2C
−1

3

(
1
Zi

)}
, (10.11)
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and Lt(β̂0, β̂z, α̂, θ̂) is hence asymptotically multivariate normal with
mean zero and covariance matrix σ2D(β0, βz, α, θ). In (10.11) di = di(β0,
βz, θ). It follows that (10.10) has the indicated chi-square distribution.

It remains to show that for generalized linear models, substituting
E(X|Z,W) for Hi(α) in (10.10) results in a test that is asymptoti-
cally equivalent to the efficient score test. The argument is adapted from
Tosteson and Tsiatis (1988).

The density or mass function of a generalized linear model uses the
exponential family density given by (A.41). Write ξ = g(η) with η =
β0 + βt

xx + βt
zz. Using the assumption of nondifferential measurement

error (conditional independence so that Y and W are independent given
X and Z), the density or mass function of the observed data is

fY|Z,W(y|z, w) =

∫
fY|Z,X(y|z, x)fX|Z,W(x|z, w)dµ(x)

=

∫
exp

[
yg(η) − C {g(η)}

φ
+ c(y, φ)

]
fX|Z,W(x|z, w)dµ(x).

Write h(y, z) = exp ([yg(β0 + βt
zz) − C {g(β0 + βt

zz)}] /φ). Since c(y, φ)
does not depend on βx, the likelihood score used in construction of the
efficient score statistic is

∂

∂βx
log

{
fY|Z,W(y|z, w)

} ∣∣∣∣
βx=0

=
1

h(y, z)

∂

∂βx

∫
fY|Z,X(y|z, x)fX|Z,W(x|z, w)dµ(x)

∣∣∣∣
βx=0

=
1

h(y, z)

[∫
fX|Z,W(x|z, w)fY|Z,X(y|z, x)

× ∂

∂βx
log

{
fY|Z,X(y|z, x)

}
dµ(x)

]

βx=0

=

∫
fX|Z,W(x|z, w)

∂

∂βx
log

{
fY|Z,X(y|z, x)

} ∣∣∣∣
βx=0

dµ(x)

= g′(β0 + βt
zz)

[
y − C′

{
g(β0 + βt

zz)
}]

×
∫

(x/φ)fX|Z,W(x|z, w)dµ(x)

=
1

φ

[
y − C′

{
g2(β0 + βt

zz)
}]

g′(β0 + βt
zz)E(X|Z = z,W = w). (10.12)

If X were observable, the only difference in these calculations would
be that X would replace E(X|Z,W) in (10.12). Hence, the efficient score
test for the observed data is obtained by substituting E(X|Z,W) for X.
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For the case studied above in Section 10.5.1 there is a parametric model,
E(X|Z, W) = m(Z,W, α). As mentioned before, n1/2-consistent esti-
mation of α is possible by the methods in Chapter 4. It is also possible to
constructed asymptotically efficient or nearly efficient score tests based
on nonparametric estimates of E(X|Z,W). Stefanski and Carroll (1990a,
1991) constructed semiparametric tests that achieve full or nearly full
efficiency when W is unbiased for X and its measurement error variance
is known or independently estimated. Sepanski (1992) used nonparamet-
ric regression techniques to construct efficient tests when there exists an
independent validation data set or an independent data set containing
an unbiased instrumental variable.

The ROC curve is commonly used to assess the ability of a marker
to diagnose the presence of a disease or other condition, for example, in
Reiser (2000), serum creatine kinease is used to diagnose when a woman
is a carrier of DMD (Duchenne muscular dystrophy). Reiser (2000) dis-
cusses the estimation of ROC curves when the marker is measured with
error.
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CHAPTER 11

LONGITUDINAL DATA AND

MIXED MODELS

This chapter is concerned with mixed models and longitudinal/clustered
data structures, ones that are more complex than simple random sam-
pling. That is, in previous chapters we have described situations in which
the observed data are (Yi,Wi,Zi) for individuals i = 1, ..., n.

Actually, we have already described a simple example of such a more
complex data structure, namely the OPEN data as analyzed in Section
9.11. As seen there, we had repeated measures Yij on each individual,
rather than just a single observation Yi. Repeated measures are a type
of clustered data and can be analyzed using mixed model technology.

This chapter is meant to give the reader an overview of some of the
developments in mixed models with covariate measurement error. The
linear mixed model (LMM) has, of course, been the format for most of
the advances, but more recent developments have focused on nonlinear
mixed models. Book-length treatments of mixed models are given by
many authors, including Verbeke and Molenberghs (2000); McCulloch
and Searle (2001); Ruppert, Wand, and Carroll, (2003); and Demidenko
(2004).

11.1 Mixed Models for Longitudinal Data

11.1.1 Simple Linear Mixed Models

Longitudinal data arise when a sample of subjects is followed over a
period of time and, for each subject, some or all variables are measured at
multiple time points. The subjects are often called clusters. Longitudinal
data are a special type of clustered data, one where time is an important
component. Both longitudinal data and clustered data models are often
analyzed by mixed model technology.

Mixed effects models are a natural extension of linear and generalized
linear models for modeling clustered data. The simplest example of a
mixed model is the mixed balanced one-way ANOVA model, where a
single variable, call it Y, is measured at J time points for each of I
subjects. Thus, the data are Yij , i = 1, . . . , I and j = 1, . . . , J . The
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model is






Yij = µ + bi + ǫij ;
bi ∼ Normal(0, σ2

b );
ǫij ∼ Normal(0, σ2

ǫ ).
(11.1)

This model can be viewed as a compromise between two fixed effect
models: one that assumes equal intercepts for all subjects (σ2

b = 0) and
one that assumes a different intercept for each subject (effectively, σ2

b =
∞), and the estimate of bi is a weighted average of Y ··, the grand average
of all Yij , and Y i·, the average of all Yij in the ith sample. The mixed
model with 0 < σ2

b < ∞ allows each subject to have a different intercept
but assumes that the intercepts are similar, with the degree of similarity
increasing as σ2

b decreases.
An attractive property of model (11.1) is that observations in the same

subject are correlated with correlation coefficient ρ = σ2
b/(σ2

b + σ2
ǫ ). In

a mixed model framework, the random coefficients bi, i = 1, . . . , I are
called random effects, their variance is called a variance component, and
ρ is called the within-subject, or within-cluster, correlation.

Note how the OPEN data model (9.33) is a generalization of (11.1). It
has the random effect (there called ri and referred to as person-specific
bias), but instead of a mean common to all individuals, it has a linear
regression mean structure.

11.1.2 The General Linear Mixed Model

The general linear mixed model is (no surprise!) a generalization of the
simple mixed model (11.1). In the general linear mixed model, the mean
µ+bi for each individual is replaced by a regression with random effects.
Specifically, keeping to the notation of this book,

Yij = β0 + Xt
ijβx + Zt

ijβz + At
ijbi + ǫij , (11.2)

where the random effects bi that vary between subjects are assumed to
have a normal distribution with mean zero and covariance matrix D(θ),
depending on a parameter θ: in symbols, bi ∼ Normal{0,D(θ)}. In
addition, the ǫij are mutually independent with mean zero and variance
σ2

ǫ . The regression parameters βx and βz that are constant between
subjects are called fixed effects. The parameters in θ are called variance

components or, more generally when D(θ) is not diagonal, covariance

components.
In what follows, except for the example described in Section 11.8.1,

the covariates Zij and Aij are assumed to be observed without error.
A major reason for distinguishing between them, rather than putting
them into a single vector Zij as done elsewhere in this book, is that
the regression coefficients of Aij , namely bi, are random effects. Often
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many, if not all, covariates without error are in both Zij and Aij ; see
the examples in Section 11.2.3.

Note that marginally, the mean is our old friend β0+Xt
ijβx+Zt

ijβz, but
the random effects bi induce correlations among the observations within
an individual. Thus, the variance of Yij is At

ijD(θ)Aij + σ2
ǫ , while the

covariance between Yij and Yik is At
ijD(θ)Aik.

11.1.3 The Linear Logistic Mixed Model

Mixed models are, of course, not confined to the linear model. For ex-
ample, suppose that the response Yij is binary. Then the linear logistic
mixed model is the natural modification of (11.2),

pr(Yij = 1|bi) = H(β0 + Xt
ijβx + Zt

ijβz + At
ijbi), (11.3)

where, as usual, H(·) is the logistic distribution function.
The major differences between the linear mixed model (11.2) and the

logistic mixed model (11.3) are (a) computation and (b) in interpreta-
tion of the fixed effects. Using the probit approximation to the logistic
distribution function (Section 4.8.2), we see that marginally,

pr(Yij = 1) ≈ H

{

β0 + Xt
ijβx + Zt

ijβz

(1 + At
ijD(θ)Aij/2.9)1/2

}

. (11.4)

Because the Aij can depend upon Zij , the interpretation of, for example,
βx as the effect of changing Xij is no longer correct; see Heagerty and
Kurland (2001) for discussion.

11.1.4 The Generalized Linear Mixed Model

These ideas extend naturally to more complex models for longitudinal
data and generate the flexible class of generalized linear mixed models
(GLMMs). In a generalized linear mixed model, given the random ef-
fects bi, the responses Yij are assumed to have a distribution (normal,

binomial, etc.), whose mean is given as µbi

ij,x, where for some function
g(·),

g(µbi

ij,x) = β0 + Xt
ijβx + Zt

ijβz + At
ijbi. (11.5)

Here µbi

ij,x is the expected value of Yij , the jth measured response on the
ith subject and Xij , Zij , and Aij are covariate vectors of dimension p1,
p2, and q, respectively.

In the linear mixed model, g(·) is the identity function, while in the lo-
gistic mixed mode, g(·) is the inverse of the logistic distribution function,
etc.
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11.2 Mixed Measurement Error Models

The generalized linear mixed measurement error model (GLMMeM)
model of Wang, Lin, Gutierrez, et al. (1998) starts with (11.5), but now
allows for measurement error in the Xij .

In a GLMMeM, Xij is not observed; instead one observes Wij that is
related to Xij . The analytic closed-form bias calculations in Wang, Lin,
Gutierrez, et al. (1998) are obtained under the assumption of classical
additive errors, that is,

Wij = Xij + Uij , (11.6)

where the Uij are independent Normal(0,Σu), but (11.6) was not needed
by these authors for numerical bias calculations, estimation, or inference.

11.2.1 The Variance Components Model Revisited

It is instructive to consider the OPEN study data model (9.33). In our
random effects notation, we have that Xij ≡ Xi, Yij = β0 + β1Xi +
bi + ǫij , Wij = Xi + Uij . As it transpires, the observed data become a
combination of two linear mixed models, and the unobserved Xi become
random effects. To see this, let µx be the population mean of X and
let σ2

x be the population variance of X. Let µy = β0 + βxµx, and write
∆xi = Xi − µx. Then the observed data consist of two linear mixed
models:

Yij = µy + (βx∆xi + bi) + ǫij ;

Wij = µx + ∆xi + Uij .

The complication is that the two linear mixed effect models are corre-
lated because ∆xi occurs in both of them. It is an interesting exercise to
combine these two linear mixed models into a single linear mixed model,
although the notation is nasty.

There are two main points to this exercise:

• With effort, a linear mixed model with measurement error in covari-
ates can first be turned into two linear mixed models with correlated
components, and then with notational wizardry be turned into a sin-
gle, albeit more complex, linear mixed model.

• Although it is a little difficult to see from this example, the fact that
the variance of X shows up in the random effects here means that
when handling a GLMMeM model, the variance structure of the co-
variates measured with error must be taken into account. The next
subsection makes this more explicit.
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11.2.2 General Considerations

An important general principle is that, under the assumption of additive
error and a normal structural model, the effect of measurement error on
a GLMM relating Yij to Xij and Zij is to create a new GLMM relat-
ing Yij to Wij and Zij . Stated differently, under the assumptions of
additive error and a normal structural model, a GLMMeM in the true
covariates becomes a GLMM in the observed covariates. The important
consequence of this principle is that analytic expressions for bias and
bias-correction can be found by comparing the parameters of the GLM-
MeM to those of the GLMM.

A more precise expression of this principle is given by Wang, Lin,
Gutierrez, et al. (1998) Suppose that Xij is scalar, and define the vector
Xi = (Xi1, . . . ,Xini

)t, and define Zi, Wi, and Ui similarly. Suppose
that

Xi = 1iη0 + Ziηz + exi,

where 1i is an ni × 1 vector of ones and exi given Zi is Normal(0,Σxxi).
Also define Λi = Σxxi{Σxxi + cov(Ui)}

−1. Then

Xi = (Ii − Λi)(1iη0 + Ziηz) + ΛiWi + b∗

i , (11.7)

where b∗

i is independent of bi and Wi. It follows from (11.7) that

Xij = α0j + ηt
zZ

t
iαzj + Wt

iαwj + Ct
ijb

∗

i (11.8)

for some α0j , αzj , αwj , and Cij .
It follows from (11.5) and (11.8) that the observed data (Yi|Wi,Zi)

follow the GLMM with mean

g(µ
b

∗

i

ij,w) = (β0 + α0jβx) + Wt
iαwjβx + (ηt

zZ
t
iαzjβx + Zt

ijβz)

+ (At
ijbi + Ct

ijβxb
∗

i ). (11.9)

Note specifically how the variance structure of the Xij becomes an im-
portant consideration when properly handling a GLMMeM.

11.2.3 Some Simple Examples

To illustrate LMMs, GLMMs, and GLMMeMs, this section contains sev-
eral simple, hypothetical examples. Suppose that on the j th yearly visit
of the ith subject to a clinic we observe the subject’s systolic blood pres-
sure Yij and age Zij , and that there is a linear relationship between
these two variables with a subject-specific intercept and slope. Then a
suitable LMM is

Yij = β0 + Zijβz + Aijbi + ǫij , (11.10)

where Aij = ( 1 Zij ) and bi = ( b0,i bz,i )t. Here β0 and βz are the
average intercept and slope across the population of all potential subjects
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and b0,i and bz,i are the deviations of the ith subject’s intercept and slope
from average. The matrix of covariance components is

D(θ) =

[

var(b0,i) cov(b0,i, b1,i)
cov(b0,i, b1,i) var(b1,i)

]

,

and θ = {var(b0,i), var(b1,i), cov(b0,i, b1,i)}
t contains the unique compo-

nents of D. Now suppose that Yij is also related to a true nutrient
intake, Xij , over the previous year. If the regression coefficient for Xij is
a fixed effect, that is, independent of the subject, then the relationship
between Yij , Xij , and Zij could be modeled by the LMM

Yij = β0 + Xijβx + Zijβz + Aijbi + ǫij . (11.11)

If the true intake is unobserved and the observed intake is Wij , then we
have a linear mixed measurement error model (LMMeM, a special case
of a GLMMeM).

As mentioned above, for additive errors and a normal structural model,
measurement error’s effect on a GLMM for Yij , Xij , and Zij is to induce
a new GLMM relating Yij to Wij and Zij . To illustrate this principle,
we use the fact that if Xij is Normal(µz, σ

2
x) and independent of Zij ,

if the Xij are mutually independent, and if the classical additive error
model (11.6) holds, then we have a regression calibration model

Xij = γ0 + λWij + b∗

ij , (11.12)

where the b∗

ij are mutually independent and independent of Wij , γ0 =
(1−λ)µx, and λ is the attenuation; see Section 2.2.1. Substituting (11.12)
into (11.11), one obtains

Yij = (β0 + βxγ0) + Wijγ1βx + Zijβz + Aijbi + ǫ∗ij , (11.13)

where ǫ∗ij = βxb
∗

ij + ǫij . Clearly, (11.13) is an LMM.

Comparing the parameters in (11.11) to those in (11.13) gives analyti-
cal expressions for the asymptotic biases of the naive estimator, because
the naive estimator will be consistent for the parameters in (11.13). For
the fixed effects, these biases are the same as discussed in Chapter 3. The
naive estimator of the covariance components matrix D is unbiased, since
the random effects part of the model remains Aijbi. The only variance
component for which the naive estimator is biased is σ2

ǫ , since the “error”
in (11.13) is ǫ∗ij = βxb

∗

ij + ǫij , so that the naive estimator is consistent

for β2
xvar(b∗

ij) + σ2
ǫ . This is an example of another general principle:

Naive estimates of variance parameters typically are either unbiased or
biased upward, because the variation included by measurement error is
not modeled and so is attributed to the random effects or error.
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11.2.4 Models for Within-Subject X-Correlation

The unbiasedness of the naive estimator of D in this example is due
to the restrictive assumption that the Xij are mutually independent;
this assumption is called the “homogenous model” by Wang et al. In
many examples, there will be within-subject correlation between the
Xij , and this correlation causes D11 to be biased upward. Wang, Lin,
Gutierrez, et al. (1998) have a “heterogenous” model for use in such
examples. As should be clear from our discussion, and as is made explicit
in Wang et al. (1998, Section 4), if the homogeneous model is fit when the
heterogeneous model holds, then biases occur, both in the fixed effects
and in the random effects. Hence, as mentioned previously, in fitting a
mixed model with measurement error, it is important to consider the
structure of the X-variables within each individual.

11.3 A Bias-Corrected Estimator

An early study of measurement error in longitudinal modeling is Toste-
son, Buonaccorsi, and Demidenko (1998). These authors assume that
for the ith subject, one observes a t-dimensional vector Yi of responses,
which corresponds to a t-dimensional vector Xi of true covariate values.
The observed covariates values are Wi = Xi + Ui, where the measure-
ment error vector Ui has t iid Normal(0, σ2

u) components. In their ex-
ample, Yi contains five yearly observed plasma beta-carotene levels and
Wi contains the corresponding values of observed beta-carotene intakes
measured by food frequency questionnaires (FFQ) given at the same
times as the plasma beta-carotene assays. Thus, Xi is defined as the
corresponding true beta-carotene intakes, each over the year prior to the
FFQ.

An important feature of their model is that they assume neither val-
idation data nor replication of the measurements. For example, in their
application one never observes true intakes of beta-carotene and no sub-
ject fills out more that one FFQ at any yearly visit. Of course, one could
have some subjects complete two FFQs at some visits, but these would
not be true replicates because their errors would be highly correlated.
We have seen that measurement error models are usually not identified
in the absence of validation or replication data. However, for longitudinal
data, the repeated measurements can substitute for replication and, as
will be seen, allow parameter identifiability, at least if one is willing to
put structure on the mean of the X-values. See also Higgins, Davidian,
and Giltinan (1997), who noted the same point. The independence of
the measurement errors if, of course, an assumption in itself.

265



The model of Tosteson et al. for Yi given Xi is

Yi = µ + ΓXi + Zvi + ǫi, (11.14)

where Γ is a parameter matrix, Z is a known design matrix, and vi is
a Normal(0,Ω) random effect where Ω is unknown. In addition, ǫi is
Normal(0, σ2

ǫ ).
They found that the naive estimator of Γ is attenuated by the factor

ΣT (ΣT + σ2
u
I)−1, but at this level of generality it is apparently not

possible to get explicit results for the bias of the naive estimator of the
(co)variance component matrix Ω.

Many of their further results assume that Γ = γI, where I is the t× t
identity matrix and γ is a scalar parameter.

They assume a structural model

Xi = µX + Rφi, (11.15)

where R is a known t×q design matrix, q < t, and φi is a Normal(0,ΩT )
random effect. The assumption that q < t is crucial and implies that
the (co)variance component matrix ΩT has only q(q + 1)/2, rather than
t(t + 1)/2 unique components. This dimension-reduction identifies the
parameters of the model, even though there are no replicate measure-
ments of the components of Xi.

Typical choices of R are R1 = (1 1 · · · 1)t and

R2 =

(

1 1 · · · 1
1 2 · · · t

)t

. (11.16)

Using R1 implies that components of Xi are constant, each equaling
µX+φi. In this case, the components of Wi are true replicates. However,
this assumption is often suspect, and then R2 might be more reasonable,
since R2 implies that the components of Xi follow a linear time trend.
Note that R2 can be used only if t ≥ 3, since q = 2 for R2.

Under the assumption that Z = R, Tosteson et al. obtained explicit
results for the bias of the naive estimator of Ω, the matrix of (co)variance
components of the random effects, vi. In particular, they found that the
naive estimator of Ω is positively biased, since it is estimating both Ω
and extra variability due to measurement error.

Tosteson et al. reparameterized their model into two parameter vec-
tors: one for the marginal density of Wi and the other for the condi-
tional density of Yi given Wi; this is different from our discussion in
Section 11.2.1. Doing this allows all parameters to be estimated by stan-
dard methods using currently available software; they used SAS PROC
MIXED, though S-PLUS or R could be used. They mentioned that this
“bias corrected” estimator is not the MLE, but they conjectured that
it is highly efficient. Their conjecture turned out to be false, since they
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showed in Buonaccorsi, Demidenko, and Tosteson (2000) that maximum
likelihood and pseudo likelihood estimators can be considerably more
efficient.

11.4 SIMEX for GLMMEMs

Wang, Lin, Gutierrez, et al. (1998) have studied the SIMEX method for
estimation of the parameter in a GLMMeM. They found the SIMEX is
straightforward to apply and effective for removing measurement error
induced bias. They used the quadratic extrapolation function. SIMEX
is, of course, applied to some naive estimator, that is, an estimator that
would be used if there were no measurement error. For GLMMs there
are several possible choice for the naive estimator. Wang et al. (1998)
used the corrected penalized quasilikelihood method (CPQL) of Breslow
and Lin (1995) and Lin and Breslow (1996).

11.5 Regression Calibration for GLMMs

As we have seen in Chapter 4, regression calibration is a simple and
effective method for estimating the parameters in a GLM with covariate
measurement error. However, a naive application of regression calibra-
tion is not suitable for GLMMeMs (Wang, Lin, and Gutierrez, 1999).
The reason for this is that substituting E(X|W,Z) for X in a GLMM
correctly specifies that fixed-effects structure, but not the random-effects
structure. Therefore, the bias of the naive estimators of variance com-
ponents is not corrected properly by regression calibration. Wang, Lin,
Gutierrez, et al. (1998) stated that since, in general models such as logis-
tic regression, fixed-effects parameters and variance components are not
orthogonal, the fixed-effects parameters estimates will also be biased.

Despite these difficulties, Buonaccorsi, Demidenko, and Tosteson (2000)
have found regression calibration suitable and, in fact, highly efficient for
estimation of fixed-effects in linear mixed models, a special case in which
fixed-effects parameters and variance components are orthogonal. More-
over, in the context of linear mixed models, they showed how one can
correct the bias of the regression calibration estimates of the variance
components. The “corrected regression calibration” method equals the
pseudomaximum likelihood estimator discussed in Section 11.6.

It is worth reiterating the point made in Section 11.2.4, namely, that
regression calibration requires that the within-subject correlation struc-
ture of the X-values be properly specified.
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11.6 Maximum Likelihood Estimation

Buonaccorsi, Demidenko, and Tosteson (2000) continued the study of the
linear mixed models in Tosteson, Buonaccorsi, and Demidenko (1998)
and compared the bias-corrected estimator in Tosteson et al. (1998)
with the maximum likelihood and pseudomaximum likelihood estima-
tors. They partitioned the parameters into two vectors: θ1, which con-
tains the parameters in the model for [Y|X,Z], and θ2, which contains
the parameters in the model for [W|X,Z]. The likelihood for the ob-
served data is the product of the likelihood f(Y|W,Z; θ1, θ2) for Y

given (W,Z) and the likelihood f(W|Z; θ2) for W given Z. Maximum
likelihood maximizes the product f(Y|W,Z; θ1, θ2)f(W|Z; θ2). Pseudo-
maximum likelihood (Gong and Samaniego, 1981) estimates θ2 by max-
imizing f(W|Z; θ2) and then maximizes f(Y|W,Z; θ1, θ2) over θ1 with
θ2 held fixed at this prior estimate. They showed that the pseudomax-
imum likelihood estimator equals their corrected regression calibration
estimator mentioned in Section 11.5.

In a study of efficiency, Buonaccorsi, Demidenko, and Tosteson (2000)
showed that the pseudomaximum likelihood has nearly the same effi-
ciency as full maximum likelihood, but the bias-corrected estimator in
Tosteson et al. (1998) has a noticeably lower efficiency.

11.7 Joint Modeling

As discussed in Section 7.3.3.4, joint modeling (Wang, Wang, and Wang,
2000) refers to the use of subject-specific random-effects parameters
from a mixed model as covariates in a second model. Typically, the
random-effects parameters serve as a summary of a series of measure-
ments thought to be related to the outcome in the second model. For
example, researchers have investigated child-specific linear trends in BMI
(body mass index) between 3 and 5 years of age and related these pa-
rameters to adult obesity. Wang, Wang, and Wang (2000) found that
both the initial BMI at age 3 and the slope of the linear trend between
3 and 5 years of age had a significant effect on the risk of adult obesity.
Clearly, relating the risk of adult obesity to the subject-specific inter-
cept and slope of BMI is a more insightful analysis than relating the risk
directly to numerous measurements of BMI taken on each individual.
The intercepts and slopes are comparable across individuals, while the
BMI measurements themselves may not be taken at the same age for all
individuals and therefore may not be directly comparable.

In another application of joint modeling, Li, Zhang, and Davidian
(2004) presented an example where progesterone levels (PDG) in women,
as well as a number of baseline covariates, are related to bone mineral
density (BMD) in the hip. PDG varies over the menstrual cycle. Al-
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though subjects vary in cycle length, the cycle were standardized to 28
days. During the 28-day standard cycle, log PDG stays constant dur-
ing the first 14 days and then rises linearly for 7 days before decreasing
linearly at the same rate for the remaining 7 days. Thus, the pattern
of PDG fluctuation can be described by two parameters: the intercept,
which is the baseline level during the first 14 days, and the slope, which
is the linear rate of increase or decrease during the last 14 days. Al-
though this general pattern is constant across women, the intercept and
slope parameters are subject-specific. Li et al. used these parameters as
covariates in a model where the response Y is absence of osteopenia,
which is defined as BMD above the 33rd percentile. However, the inter-
cept and slope for any subject are unknown and only longitudinal PDG
measurements are available, so the intercept and slope are estimated
with error. Li et al. (2004) use several of the estimators discussed in this
section and find that the subject-specific intercept is not related to the
absence of osteopenia (p ≈ 0.5, depending slightly upon the method) but
the subject-specific might be (0.07 ≤ p ≤ 0.11 for the various methods).
As in the previous example, regressing the absence of osteopenia on the
intercept and slope is a better summary of the data than relating the
absence of osteopenia directly to the PDG values.

A number of estimators have been developed for joint modeling. Wang,
Wang, and Wang (2000) proposed a pseudoexpected estimating equation
estimator (EEE) (Wang and Pepe, 1999), a regression calibration estima-
tor (RC), and a refined regression calibration estimator. They found that
the RC estimator was biased in nonlinear models. The EEE estimator
performs well but requires numerical integration. The refined RC estima-
tor does not require numerical integration and its performance is close to
that of the EEE estimator. Li, Zhang, and Davidian (2004) proposed two
functional estimators, the sufficiency estimator and the conditional score
estimator, both based upon Stefanski and Carroll (1987); see Section
7.3.3.4. Li, Zhang, and Davidian (2005) studied two flexible structural
estimators, maximum likelihood and maximum pseudolikelihood, using
the seminonparametric (SNP) structural model. Full maximum likeli-
hood requires numerical integration, and Li et al. used Gauss–Hermite
quadrature, though Monte Carlo integration could be used.

11.8 Other Models and Applications

11.8.1 Models with Random Effects Multiplied by X

Previously, we have assumed that the random effects bi have covariate
vectors Aij that are observed exactly. This need not be the case, of
course.

Liang, Wu, and Carroll (2003) considered the varying coefficient linear
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mixed model, where random effects multiply X as well as on Z. While
they worked in great generality and included the use of regression splines
(Section 12.2.2 and Chapter 13), their essential idea can be seen in the
varying coefficient model, namely,

Yij = β0i + Xt
ijβxi + Zt

ijβzi + ǫij .

This is a simple linear regression model, where the regression lines de-
pend on the individual or cluster. If we define Aij = (1,Xt

ij ,Z
t
ij)

t, then
the model becomes a linear mixed model:

Yij = β0 + Xt
ijβx + Zt

ijβz + bi0 + Xt
ijbix + Zt

ijbiz + ǫij

= β0 + Xt
ijβx + Zt

ijβz + At
ijbi + ǫij . (11.17)

If we now substitute (11.12) into (11.17), we see that the observed data
no longer follow a standard mixed model, because now the random effects
bi in (11.17) are multiplied by the induced random effects b∗

ij in (11.12).
Liang et al. (2003) fit this model using regression calibration.

11.8.2 Models with Random Effects Depending Nonlinearly on X

Higgins, Davidian, and Giltinan (1997) and Wu (2002) describe an non-
linear mixed effects model where the random effects themselves depend
on covariates measured with error. The general form of the model is that

Yij = mY(Zij ,Bij) + ǫij ;

Bij = d(Xij , βx,bi),

for known functions mY(·) and d(·). Note here how the random effects
Bij depend on a subject-level random effect bi as well as the true but
unobserved covariates Xij . It is assumed that Wij = Xij + Uij , where
the measurement errors Uij are independent with variance σ2

u. As in
Section 11.3, there are no replicate data to understand the measurement
error properties, so a model is used along the lines of (11.15). For ex-
ample, Wu assumed that Xij = Z∗

ij(µX + αi), where Z∗

ij are observed
and αi are independent random effects. Higginset al. used a regression
calibration approach to fit the models, while Wu used the EM-algorithm.

11.8.3 Inducing a True-Data Model from a Standard Observed Data

Model

Throughout this book, we have taken a common approach:

• Begin with a model for the data as if X could be observed, the so-
called underlying true-data model.

• Specify the error model properties.
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• Measurement error then induces a model for the observed data. This
observed data model may be more or less standard.

• Use this observed data model to estimate the underlying true-data
model.

Zidek, Le, Wong, et al. (1998) and Zidek, White, Le, et al. (1998) took
exactly the opposite approach, in a clustered-data situation. Specifically,
they specified a standard GLMM for the observed data, and then, by
Taylor series expansion and the like attempt to approximate the under-
lying true-data model. The advantage of their approach is that standard
models for observed data are, at least in principle, easier to check. The
disadvantage of course is that it is easily possible that the underlying
true-data model derived by their approach may be nearly unrecogniz-
able, except if approximations are made to do so.

Fairly roughly, in their particular instance, Zidek, Le, Wong, et al.
(1998) started with a model in which they specified the mean E(Wij |Zi)
and cov(Wij ,Wik|Zi) = Gik, where Zi is the collection of observed
Z-values for the ith person. Let Wi be the collection of observed W-
values for the ith person. In our parlance, this is basically specifying the
regression of X on Z as well as the measurement error variance. They
then assumed a model for the observed data: For some parameter α, a
known function G, and letting Aij depend on (Zij ,Wij), their model is

Vij = β0 + Wt
ijβw + Zt

ijβz + At
ij(Wij ,Zij)bi;

E(Yij |Wi,Zi,bi) = mY(Vij); (11.18)

cov(Yij ,Yik|Wi,Zi,bi) = G(α,Vij). (11.19)

With all the nonlinearities in this model, the hard part clearly is to go
from this model for the observed data to the underlying true-data model.
If one were willing to make the assumption that the random effects bi

were independent of the W-values and the Z-values, this can be done
directly by numerical integration. Zidek et al. instead used various clever
Taylor series approximations to obtain and approximate version of the
underlying true-data model.

11.8.4 Autoregressive Models in Longitudinal Data

Schmid, Segal, and Rosner (1994) have an interesting early discussion
of measurement error in the longitudinal linear mixed model when data
within a person have an autoregressive error structure. Specifically, they
allowed covariates (Zi,ps,Xi,ps) that are person-specific but do not vary
with time, and covariates (Zij,tv,Xij,tv) that vary with time, so that in
our notation Xij = (Xi,ps,Xij,tv), Wij = (Wi,ps,Wij,tv) and Zij =
(Zi,ps,Zij,tv). As seen, for example, in Section 11.2.3, one must specify

271



correctly the variance components structure of the measurement errors
in Wij and the variance components structure of the true covariates Xij

in order to obtain valid inferences. Schmid et al. found that when this is
done, the maximum likelihood estimate is nearly unbiased and has good
inference properties such as confidence intervals.

11.9 Example: The CHOICE Study

The Choices for Healthy Outcomes in Caring for ESRD (CHOICE) study
is a multicenter prospective study to investigate treatment choices and
outcomes of dialysis care among patients beginning dialysis. Its ratio-
nale and design have been reported by Powe, Klag, Sadler, et al. (1996).
Briefly, the CHOICE study recruited 1,041 incident dialysis patients
from 81 DCI (Dialysis Clinic Inc.) clinics between 1995 and 1998. Eli-
gibility criteria for CHOICE study included ability to provide informed
consent for participation, age older than 17 years, and ability to speak
English or Spanish. Patients were enrolled a median of 45 days from ini-
tiation of chronic dialysis (98% within 4 months), 54% of the cohort had
diabetes at baseline and 51% of the cohort died by December 1, 2001.

Dialysis population is subject to high risk of inflammation. The white
blood cell (WBC) count and the C-reactive protein (CRP) are both in-
flammatory markers but may reflect different physiologic changes. How
WBC correlates with CRP after the initiation of dialysis remains un-
known. We use the CHOICE data to describe the longitudinal associ-
ation between WBC and CRP and examine whether dynamic changes
are different between hemo and peritoneal dialysis.

Because dialysis patients have a high death rate, a complete analysis
would require the joint modeling of the survival and biomarker pro-
cesses. However, for illustration purposes we focus only on subjects who
have died during the study. We further restrict our data set to those
subjects who have at least one WBC and one CRP measure during the
same visit. Our subset of the data contained 373 subjects from 28 dialysis
clinics. The analysis of these data is complicated by the expected nonlin-
ear longitudinal trajectory of the biomarkers after initiation of dialysis,
clustering of observations within subject and of subjects within clinics,
and measurement error in CRP. Information on the CRP measurement
error is available from a blinded duplicate CRP assay conducted on 42
subjects.
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11.9.1 Basic Model

The following mixed model was used for fitting the data:














Yijc ∼ Normal{fD(i)(tij) + Zt
iβz + Xijβx + ric, σ

2
ǫ }

Wij ∼ Normal(Xij , σ
2
u)

ric ∼ Normal(sc, σ
2
r)

sc ∼ Normal(µs, σ
2
s),

(11.20)

where Yijc is the (log) white blood cell count for subject i at the visit j
at the clinic c. The temporal effect is captured by the functions fD(i)(tij),
where D(i) is the dialysis type indicator for subject i. Both functions,
f0(t) and f1(t), were modeled as linear regression splines, that is, piece-
wise linear functions, with three knots at 5, 10, 15 months after initia-
tion of chronic dialysis. The two covariates, Zi, that were not subject
to measurement error were age at baseline and sex. CRP was subject
to measurement error and true (log) CRP was denoted by Xij , while
observed (log) CRP was denoted by Wij . The subject-level random ef-
fect ric is assumed to have a normal distribution with mean equal to
the clinic level mean sc and variance σ2

r , while the clinic means were
assumed to have a normal distribution with mean equal to the overall
mean and variance σ2

s . A useful measure to describe the sources of resid-
ual variability is R = σ2

r/(σ2
r + σ2

s), which is the fraction of within and
between clinic variability attributable to within clinic variability.

11.9.2 Naive Replication and Sensitivity

In order to understand the measurement error variance σ2
u, we need some

version of a replication study. The subtlety here is that there are two
sources of measurement error. The first is that what we measure is short-
term (log) CRP, and CRP at a specific time does not fully characterize
the average CRP, much as the OPEN protein biomarker measured short-
term protein intake. The second source of measurement error is the assay
variability, that is, the error that the laboratory makes in biochemically
measuring a sample. In most cases, the assay variability is small relative
to the variability of the short-term measurement around its long-term
average, and if only assay variability is taken into account, little correc-
tion for measurement error will be made.

Suppose, for example, that all one considers is laboratory variability.
Then a replication model is

{

W
(r)
lk ∼ Normal(X

(r)
l , σ2

u)

X
(r)
l ∼ Normal(µ

(r)
x , σ2

x),
(11.21)

where (r) indicates that these data come from a separate replication
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study. Here W
(r)
lk , k = 1, 2 are the two lab results of the same sam-

ple from subject l = 1, . . . , 42. The joint analysis of models (11.20) and
(11.21) was done using Bayesian inference based on MCMC sampling, as
described in Chapter 9. What we can expect, of course, is that labora-
tory/assay variability will be small relative to biological variability and
the variability of (log) CRP in the population, so that little correction
for measurement error will occur.

To show this, Table 11.1 displays posterior medians and 95% credible
intervals for several parameters of interest, based on 100,000 simulations
from the joint distribution after discarding 10,000 burn-in samples. Not
surprisingly, there is a strong, statistically significant correlation between
(log) WBC and (log) CRP. Also, even after adjusting for CRP the effect
of age is statistically significant and indicates smaller WBC correspond-
ing to older subjects. Sex was not statistically significant. Another in-
teresting finding is that most of the residual variability (∼ 95%) is due
to between-subject variability, with roughly 5% variability being due
to between-clinic variability. Reflecting good measurement calibration
of the (log) CRP, the posterior mean of the reliability parameter was
0.9994 with a confidence interval [0.9989, 0.9997]. This reliability is of

course misleading because it reflects only the precision of measuring
(log) CRP in a given blood sample and does not incorporate potential
short term biological variability of (log) CRP. Because no direct data
were available to assess the biological measurement error due to using
one blood sample to represent the short term (log) CRP average, we
conducted a sensitivity analysis using several smaller levels of reliability.
Table 11.1 shows results if the biological reliability of (log) CRP were
λ = 0.9 and λ = 0.8. Interestingly, none of the parameter inferences
changes significantly, with the exception of the (log) CRP parameter,
which changes by 18% from 0.074 to 0.087.

The top plot in Figure 11.1 displays the posterior means of f0(t) (solid
line) and f1(t) (dashed line) for t ≤ 30 months, corresponding to hemo
and peritoneal dialysis, respectively. The bottom plot displays the pos-
terior mean and 95% pointwise confidence intervals of f1(t) − f0(t).

11.9.3 Accounting for Biological Variability

As described in Section 11.3, one way to get at the biological variabil-
ity (measurement error) in longitudinal studies is by assuming a simple
and reasonable model for the variable observed without error. Moreover,
measurement error variance is identifiable as long as the number of de-
grees of freedom in the measurement error model is smaller than the
number of observations per subject. We illustrate this methodology here
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CRP Sex Age R

λ > .999 Point est. .074 -.044 -.0027 .953
Std. Err. .005 .031 .0012 .033

λ = .9 Point est. .080 -.045 -.0029 .953
Std. Err. .005 .031 .0012 .033

λ = .8 Point est. .087 -.045 -.0029 .952
Std. Err. .006 .031 .0012 .033

Table 11.1 Estimates and standard errors from the CHOICE data Bayesian
analysis using the longitudinal model (11.20) that also accounts for clustering.
“CRP” is the (log) CRP and “R” is R = σ2

r
/(σ2

r
+ σ2

s
), which is the fraction

of within and between clinic variability attributable to within clinic variability.
Standard errors are obtained from the simulation algorithm. Different values
of λ indicate the corresponding reliability, with λ > .999 corresponding to
data that takes into account only laboratory measurement error and λ = .8, .9
corresponding to hypothetical levels of biological reliability.

by assuming the following model,






Yijc ∼ Normal{Zt
iβz + Xijβx + ric, σ

2
ǫ }

ric ∼ Normal(sc, σ
2
r)

sc ∼ Normal(µs, σ
2
s),

(11.22)

where information about the unobserved process Xij and measurement
error variance is obtained from the model







Wij ∼ Normal(Xij , σ
2
u)

Xij = fD(i)(tij) + vi

vi ∼ Normal(µv, σ2
v).

(11.23)

Here the true unobserved (log) CRP process is assumed to be a dialysis-
specific regression spline with three knots and subject specific random
intercepts. The rest of the variability in the observed (log) CRP is as-
sumed to be measurement error with variance σ2

u. Note that σ2
u is es-

timable from the model without using the replicated lab data, which was
not used in this model.

Table 11.2 reports posterior means and standard errors for several
parameters of interest. Interestingly, the point estimator relating (log)
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Figure 11.1 Comparison of trajectories of (log) WBC for hemo and peritoneal
dialysis patients adjusted for (log) CRP, age and sex. Top: adjusted population
(log) WBC trajectories for Hemodialysis (solid line) and peritoneal dialysis
(dashed line). Bottom: difference between adjusted population (log) WBC tra-
jectories (peritoneal-hemo) with pointwise 95% confidence intervals.

WBC to (log) CRP when biological measurement error is taken into
account is 0.101, or 36% larger than the estimator based only on labo-
ratory measurement error reported in Table 11.1. The standard error of
the (log) CRP estimator has also increased from 0.005 to 0.014, or 180%.
This is essentially due to much larger estimated biological measurement
error variance, with a posterior mean equal to 0.91, which corresponds
to a posterior reliability of 0.51 for the (log) CRP data. Results were
practically unchanged for the other parameters.
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Wang and Davidian (1996) were among the first authors to study the
effects of measurement error on variance component estimators. They
studied Berkson models and found that even a modest amount of mea-
surement error could seriously bias the estimates of intrasubject vari-
ability.
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son, Buonaccorsi, and Demidenko (1998) discovered that if a mismea-
sured covariate X is observed longitudinally, then a structural model for
X with dimension less than the number of X-observations per subject
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CRP Sex Age R

Point est. .101 -.043 -.0028 .954
Std. err. .014 .032 .0013 .032

Table 11.2 Estimates and standard errors from the CHOICE data Bayesian
analysis using the longitudinal model (11.22) with biological measurement error
model (11.23) that also accounts for clustering. “CRP” is the (log) CRP and
“R” is R = σ2

r
/(σ2

r
+ σ2

s
), which is the fraction of within and between clinic

variability attributable to within clinic variability. Standard errors are obtained
from the simulation algorithm.

allows all parameters to be identified. Li, Shao, and Palta (2005) have
another interesting application of this important concept, and they used
a structural model different from that of Tosteson et al.; see also Wu
(2002).

The functional estimators for joint modeling in Li, Zhang, and David-
ian (2004) are extended to multivariate longitudinal data by Li, Wang,
and Wang (2005).

Ko and Davidian (2000) studied a two-component nonlinear model
for longitudinal data. In the first component of the model, a vector of
responses on a subject depends on covariates and a subject-specific pa-
rameter. In the second component of the model, the subject-specific pa-
rameters depend on covariates, random effects, and fixed effects. Some of
the covariates in the second component are measured with error. Ko and
Davidian presented an example from an AIDS clinical trial that shows
the flexibility of this methodology.
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CHAPTER 12

NONPARAMETRIC

ESTIMATION

In this chapter, we give an overview of two nonparametric estimation
problems that are of interest in their own right and also arise as sec-
ondary problems in regression calibration and hypothesis testing. The
first problem is the estimation of the density of a random variable X,
while the second is the nonparametric estimation of a regression, both
when X is measured with error.

12.1 Deconvolution

12.1.1 The Problem

The fundamental problem of deconvolution is that of estimating the
density of X when W = X + U is observed and the density of U is
known. Closely related is the problem of estimating the regression func-
tion, m(w) = E(X | W = w), when only W = X+U is observed and the
density of U is known. The latter estimation problem is encountered in
both regression calibration (Chapter 4) and hypothesis testing (Chapter
10).

There are at least three reasons for trying to understand the density
function of X. Suppose that X is a continuous, scalar random variable,
and that there are no covariates Z measured without error.

• Sometimes, the distribution of the latent X is of intrinsic interest, for
example, in nutritional epidemiology, where X represents the usual
intake of foods. In this case, let fX(x) be its density function. Then
the distribution function is pr(X ≤ c) =

∫ c

−∞
fX(x)dx.

• When X is unobservable, likelihood methods (Chapter 8) require a
model for the density of X. Regression calibration (Chapter 4) consists
of the usual analysis but with X replaced by

m(W) = E(X|W) =
1

fW (W)

∫
xfX(x)fw|x(W|x)dx

=
1

fW (W)

∫
xfX(x)fU (W − x)dx. (12.1)
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• In Section 10.5, it was shown that when testing for the effect of the
covariate measured with error, replacing X with an estimate of its
regression m(W) on W yields the hypothesis test with the highest
local power (asymptotically).

Estimating the density function, fX , of X is thus critical.

12.1.2 Fourier Inversion

The density function fW is the convolution of fX and fU ,

fW (w) =

∫
fX(x)fU (w − x)dx, (12.2)

and we thus refer to the problem of estimating fX in the absence of
parametric assumptions as deconvolution.

When both fW and fU are known, fX is recovered by Fourier inversion.
Letting φa denote the characteristic function of the random variable A,
for example, φw(t) =

∫
eitwfW (w)dw, we have that φx(t) = φw(t)/φu(t).

Then by Fourier inversion,

fX(x) =
1

2π

∫
e−itxφx(t)dt =

1

2π

∫
e−itx φw(t)

φu(t)
dt.

Even if, as we will now suppose, the density function fU of U is known,
the problem is complicated by the fact that the density of W is unknown
and must be estimated. For the deconvolution problem under these as-
sumptions, estimators with known rates of convergence were first ob-
tained by Stefanski and Carroll (1986, 1990c), Carroll and Hall (1988)
and Liu and Taylor (1989).

12.1.3 Methodology

We now describe a solution to the deconvolution problem. Statisticians
have studied kernel density estimates of fW of the form

f̂w(w) = (nh)−1
∑n

i=1
K {(Wi − w)/h} ,

where K(·) is a density function and h is the bandwidth, both chosen by

the user. The function f̂w is itself a density function, with characteristic
function φ̂w. It has long been known that for estimation of fW (w) the
choice of kernel is relatively unimportant, and ease of use commonly
dictates the choice of K(·), for example, the standard normal density or
a density with bounded support.

It transpires that for commonly used kernels, the estimated density
f̂X(x) cannot be deconvolved, in that the integral encountered in Fourier
inversion is not defined. Stefanski and Carroll (1986, 1990c) showed that
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for certain smooth kernels, Fourier inversion of f̂X(x) is possible; see also
Stefanski (1989). With an appropriately smooth kernel, the estimator,

f̂x(x) =
1

2π

∫
e−itx φ̂w(t)

φu(t)
dt,

exists, and for suitable choice of bandwidth is consistent for fX(x). The

deconvoluting kernel density estimator, f̂x(x), integrates to one but is
not always positive. It has the alternative representation

f̂x(x) = (nh)−1
∑n

i=1
K∗{(Wi − x)/h, h},

where the deconvoluting kernel is

K∗(t, h) =
1

2π

∫
eity φK(y)

φu(y/h)
dy.

The deconvoluting kernel density estimator has pointwise mean squared
error

MSE = E
{

f̂x(x) − fX(x)
}2

∼ ch4 + (2πhn)−1

∫ {
φK(t)

|φu(t/h)|

}2

dt;

where c = (1/4)

∫
x2K(x)dx

∫ {
f

′′

X(x)
}2

dx.

12.1.4 Properties of Deconvolution Methods

The best bandwidth, in the sense of minimizing MSE asymptotically,
and the best MSE depend on the error density through its character-
istic function φu. It is well known that in the absence of measurement
error (U ≡ 0), when fX has two continuous derivatives the best MSE
converges to zero at the rate n−4/5. However, for nondegenerate U, con-
vergence rates are much slower in general. The best rate of convergence
depends on the tail behavior of |φu(t)|, with lighter tails resulting in
slower rates of convergence. The tail behavior of |φu(t)| is in turn re-
lated to the smoothness of fU (u) at u = 0, with smoother densities
having characteristic functions with lighter tails.

For example, if U is normally distributed, then

|φu(t)| = exp(−σ2
ut2/2)

is extremely light tailed, and the mean squared error converges to 0
at a rate no faster than the exceedingly slow rate of {log(n)}−2

. The
implication is that with normally distributed errors, it is not possible
to estimate the actual value of fX(x) well. However, detailed analyses
by Wand (1998) indicate that, for lower levels of measurement error,
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deconvolving density estimators can perform well for reasonable sample
sizes.

If U has a more peaked density function than the normal, then |φu(t)|
does not diminish to 0 as rapidly, and the deconvoluting kernel density
estimator has better asymptotic performance. For example, consider the
Laplace distribution with density function fU (u) = (1/σu

√
2)exp(−

√
2|u|

/σu). In this case φu(t) = 2/(2 + σ2
ut2), and the optimal mean squared

error converges to zero at the rate n−4/9, tolerably close to the rate in
the absence of measurement error, that is, n−4/5.

The fact that smoothness of the error density determines how well
fX can be estimated is a disconcerting nonrobustness result. An open
problem, of course, is how to construct deconvolution estimates that are
adaptive to the amount of smoothness of the measurement error density.

We note that the slow rate of convergence of f̂X(x) is intrinsic to
the deconvolution problem, and not specific to the deconvoluting kernel
density estimator, which is known to achieve the best rate of convergence
in general (Carroll and Hall, 1988; Stefanski and Carroll, 1990c).

However, rates of convergence are not always fully informative with
regard to the adequacy of f̂x(x) for estimating the basic shape of fX(x).
As shown in the examples below, despite the slow pointwise rate, the
estimator itself can provide useful information about shape.

In applications, calculation of f̂x(x) requires specification or estima-
tion of a bandwidth h. Stefanski and Carroll (1990c) described a band-
width estimator when the improper sinc kernel, K(t) = (πt)−1sin(t),
is used. Stefanski (1990) showed that for a large class of kernels and a
large class of error densities that includes the normal densities, the mean
squared error is minimized asymptotically by a known sequence of band-

widths — the optimal bandwidth is h = hG = σu {log(n)}−1/2
for nor-

mal (Gaussian) error. For Laplace measurement error and the kernel with
characteristic function φK(t) = (1−t2)3 when |t| ≤ 1 and zero otherwise,
Fan, Truong, and Wang (1991) suggested taking hL = (1/2)σun−1/9.

Fan and Truong (1993) and Carroll and Hall (2004) also considered
the use of the deconvoluting kernel function K∗(t, h) = φ(x){1−σ2

u(x2−
1)/(2h2)}, which is the deconvoluting kernel when the errors have a
Laplace density and the basic kernel function is the standard normal
density φ(x). Carroll and Hall (2004) were more interested in regression
function estimation and called their method Taylex; see also Section
12.2.7.

12.1.5 Is It Possible to Estimate the Bandwidth?

Not withstanding the previous comments, the fact that deconvolution is
hard theoretically means that things that are hard to do in easy problems
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will be nigh well impossible in this context. Specifically, we refer to the
problem of actually estimating the bandwidth.

A simple example will suffice to make the point. Later on, we will
study the Framingham data; see Section 12.1.9. These data have 1, 615
observations with a reliability ratio of about 0.75, so this is hardly a
nasty example. We applied both of the default methods described above
to these data. Figure 12.1 is the result, and it is amusing. The default
deconvolution method appropriate for Laplace errors is so wild that it
swamps the default deconvolution method appropriate for Gaussian er-
rors as well as the best-fitting normal approximation. We removed this
totally ridiculous estimate and replotted, see Figure 12.2: This is not
much better!

The point is that one should be wary, maybe even suspicious, of meth-
ods of automatic bandwidth selection in deconvolution kernel methods.
We tend to think that the better method is to vary the bandwidth from
smallest to larger and stop when the graph becomes reasonably smooth.
The best that one can hope to get out of this is a look at shape.
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Figure 12.1 Density estimates of untransformed SBP in Framingham. Four es-
timates are considered here, but the wildly varying one uses the kernel function
with characteristic function φK(t) = (1− t2)3 when |t| ≤ 1 and zero otherwise,
and the default bandwidth (1/2)σun−1/9. The only real purpose of this figure
is to show that automatic bandwidth selection for deconvolution is very hard.
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Figure 12.2 Density estimates of untransformed SBP in Framingham. Three
estimates are considered here: the best normal approximation (solid line), the
Taylex method (dashed line), and the deconvoluting estimator, which uses the
sinc function with a default bandwidth (dot-dashed line).

12.1.6 Parametric Deconvolution

12.1.6.1 Likelihood Methods

Nonparametric deconvolution is not the only way to estimate the density
of X in an additive model.

If one has a parametric model in mind for X, for example, Weibull,
gamma, skew-normal, skew-t, mixtures of normals (Wasserman and Roeder,
1997; Carroll, Maca, and Ruppert, 1999), the SNP (seminonparametric)
family (Zhang and Davidian, 2001), etc., then the density/likelihood
function for the observed W is given by the fundamental convolution
equation (12.2). Assuming that the integration can be done, for exam-
ple, numerically for maximum likelihood, via MCMC for Bayes, we can
then estimate the unknown parameters and hence obtain an estimate of
the density for X.

This simple prescription can be more or less easy, depending on the
flexibility of the parametric family involved. After all, the basic fact is
that if no assumptions are made, then it is very difficult to assess the
density function accurately: This suggests that even flexible parametric
methods may have numerical difficulties.
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12.1.6.2 Moment Methods

We can also learn something about the first four moments of X without
numerical integration, useful, for example, if one wants to employ the
Pearson or Johnson family of densities. Suppose that W = X+U, where
U is normally distributed with mean zero and variance σ2

u. The mean of
W is µx = E(X); the variance of W is σ2

w = σ2
x + σ2

u. Let κ3x and κ4x

be the skewness and kurtosis of X, being 0 and 3, respectively, if X is
normally distributed. Then the skewness and kurtosis of W are related
to the skewness and kurtosis of X as follows:

κ3w = κ3xσ3
x/σ3

w;

κ4w = (κ4xσ4
x + 6σ2

xσ2
u + 3σ4

u)/σ4
w, (12.3)

from which the skewness and kurtosis of X can be extracted.

With replicates, one can push this through even further, making min-
imal distributional assumptions about U, and then fit a parametric dis-
tribution for X via method of moments. To be specific, suppose that in
a sample of size n, one observes replicate observations Wi,j = Xi +Ui,j

(i = 1, . . . , n and j = 1, 2), where it is assumed only that the distribution
of the errors is symmetrically distributed about zero, something which
often can be achieved by transformation.

Let µ̂w = W·· (the mean), and for k = 2, 3, 4 define sw,k to be the

sample mean of the terms
(
Wi,· − µ̂w

)k
. For k = 2, 4 define su,k to be

the sample mean of the terms {(Ui,1 − Ui,2)/2}k
. The term sw,k is an

estimate of the kth central moment of the Wi,·’s, while under symmetry
su,k is an estimate of the kth moment of (Ui,1 −Ui,2)/2, which because
of symmetry is the same as the kth moment of (Ui1+Ui2)/2 = W i·−Xi.

By equating moments we find the following consistent estimates of the
moments of the distribution of X,

E(X) = µx ≈ µ̂w;

E(X − µx)2 ≈ sw,2 − su,2;

E(X − µx)3 ≈ sw,3;

E(X − µx)4 ≈ sw,4 − su,4 − 6(sw,2 − su,2)su,2.

12.1.6.3 The SNP Family

In the case of additive normally distributed measurement error, the SNP
(seminonparametric) distribution has a ready form. The SNP density for
X in the scalar case with K ≤ 2, location µ and scale σx is given as

fX(x) = σ−1
x φ{(x − µ)/σx}GK{(x − µ)/σx},
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where GK(x) = (
∑K

j=0
ajx

j)2. If K = 0, this is just the normal density
function with mean µ and standard deviation σx. For K > 0, there are
constraints on the aj that make this a density function. For example, if
K = 1, we can write a0 = sin(α) and a1 = cos(α), where −π/2 ≤ α ≤
π/2 is a free parameter. Similarly, if K = 2, then define c1 = sin(α1),
c2 = cos(α1)sin(α2) and c3 = cos(α1)cos(α2), where (α1, α2) are the free
parameters such that −π/2 ≤ α1, α2 ≤ π/2. Let A be the 3 × 3 matrix
with diagonal elements (1, 1, 3), with element (1, 3) and element (3, 1)
equal to 1.0, and equal to 0.0 elsewhere. Let B be the symmetric square
root of A. Then (a0, a1, a2)

t = B−1(c1, c2, c3)
t.
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Figure 12.3 Simulation of the SNP family for parametric deconvolution with
K = 2 and normally distributed X and U. The mean and variance of X are
3.24 and 0.052, respectively, while the variance of U is 0.171. The solid line is
the SNP fit with K = 2, while the dashed line is the normal fit. Displayed are
nine simulated data sets: The fits should all look normal, but do not.

Let the measurement error have variance σ2
u, and make the definitions

λ = σ2
x/(σ2

x +σ2
u), θ = (λσ2

u/σ2
x)1/2, η = λ1/2(w−µ)/σx, and κ = λ1/2η.

Then, the density function of the observed W is given as

fW (w) = (λ/σ2
x)1/2φ(η)

∫
φ(z)G(κ + θz)dz, (12.4)

where φ(·) is the standard normal density function. When K = 1, this
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can be computed exactly as

fW (w) = (λ/σ2
x)1/2φ(η)

{
(a0 + a1λ

1/2η)2 + θ2a2
1

}
.

For K = 2,

fW (w) = (λ/σ2
x)1/2φ(η)

{
(a0 + a1κ + a2κ

2)2 + 3a2
2θ

4

+(θa1 + 2θκa2)
2 + 2a2θ

2(a0 + a1κ + a2κ
2)

}
.

For any of K = 0, 1, 2, the idea is to use maximum likelihood to estimate
the parameters.

Of course, nothing comes for free in deconvolution problems. To see
this, we generated nine data sets with n = 3, 145 observations, mean
3.24, X normally distributed with variance 0.052, and U normally dis-
tributed with variance 0.171, in line with the NHANES example in Sec-
tion 12.1.10. This is a lot of measurement error! We fit the SNP dis-
tribution with K = 2 to do a parametric deconvolution. In this case,
remember, X is normally distributed, but five of the nine fits are very
nonnormal, with one suggesting a t-density (bottom right, ignore the
extra modes) and the others being noticeably multimodal, even though
the SNP family with K = 2 includes the normal distribution. The point
is that one should not overinterpret things like multiple modes when
doing deconvolution with a flexible family of distributions.

This example is a little unfair, because SNP fits almost always come
equipped with mention of model selection. In Figure 12.4 we have plotted
the fits to the same nine simulated data sets as in Figure 12.3, with the
exception that we have allowed K = 0, the correct model, and K = 1
as well as K = 2, and let the model be chosen by AIC, which penalizes
slightly towards the correct normal model. Here, AIC selected the normal
model in eight of the nine data sets.

12.1.7 Estimating Distribution Functions

The pessimistic nature of the results for density estimation with normally
distributed error extends to estimating quantiles of the distribution of X,
for example, pr(X ≤ x). Here the optimal achievable rate of convergence

is of the order {log(n)}−3
, hardly much of an improvement! This casts

doubt on the feasibility of estimating quantiles of the distribution of X

without making parametric assumptions.
There are at least two alternatives to a full-blown likelihood analy-

sis. The moment-matching method described previously starts from a
model for the density function of X, but makes no assumptions about
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Figure 12.4 Simulation of the SNP family for parametric deconvolution with
K chosen by AIC and normally distributed X and U. The mean and variance
of X are 3.24 and 0.052, respectively, while the variance of U is 0.171. The
solid line is the SNP fit with K = 2, while the dashed line is the normal fit. In
contrast to Figure 12.3, which always used a flexible model, the use of AIC to
penalize toward the normal model works reasonably well here.

the density of U. Its output is an estimated density function that yields
estimated quantiles.

Alternatively, with no model for the density of X but a good model
for the error density of U, the SIMEX method can be applied. Previous
applications of SIMEX have been to estimated parameters and non-
parametric regression estimates, but here the basic input is an empirical
distribution function (possibly presmoothed). Stefanski and Bay (1996)
studied SIMEX methods for deconvoluting finite-population distribution
functions.

12.1.8 Optimal Score Tests

While estimating a density function nonparametrically is difficult in the
presence of measurement error, estimating smooth functionals of the
unknown density, for example, m(w) = E(X|W = w), is often not as
difficult.

For estimating m(w), we can simply replace fX and fW in (12.1) by
their estimators. Stefanski and Carroll (1991) showed that this substi-
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Figure 12.5 Density estimates of untransformed SBP in Framingham. Two
estimates are considered here: the best normal approximation (solid line), the
Taylex method (dashed line), with bandwidth chosen by eye to be as small as
possible but still be smooth.

tution works, in the sense that the resulting estimate of m(w) when
substituted into the score test typically achieves the same local power
as if m(w) were a known function.

The reason for this is that m(w) is much easier to estimate than
fX , because of the extra integration in (12.1). In fact, with normally
distributed measurement errors, the rate of convergence for estimating
m(w) is of order n−4/7, while for Laplace error the rate is the usual
nonparametric one, that is, n−4/5 (Stefanski and Carroll, 1991).

12.1.9 Framingham Data

We applied deconvoluting kernel density estimation techniques to the
Framingham data, for untransformed systolic blood pressure (SBP),
rather than using the transformation log(SBP − 50). We used SBP at
Exam #2 only to estimate the measurement error variance, but decon-
volved SBP measured at Exam #3 (W). In the original scale, observed
SBP had mean 130.01, variance 395.65, and the estimated measurement
error variance was 83.69. This leads to an estimate of the variance for
long-term SBP (X) of 311.96.
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Figure 12.6 Density estimates of untransformed SBP in Framingham. Three
estimates are considered here: the best normal approximation (dashed line),
the SNP fit with K = 2 (solid line) and the best fitting t-density (dotted line).

Figure 12.5 shows the best-fitting normal distribution, along with
the Taylex deconvoluting kernel fit (Carroll and Hall, 2004), where the
bandwidth was chosen by eye to be as small as possible while retaining
smoothness. The only real point of interest here is that the deconvolut-
ing kernel fit picks up the skewness inherent in the untransformed SBP
data, thus correctly suggesting that the data should be transformed. The
parametric deconvolution fit using the SNP distribution is given in Fig-
ure 12.6, along with the best-fitting t-density and the best-fitting normal
density. Here, the skewness we know to exist is exhibited by the lonely
little mode over on the right.

12.1.10 NHANES Data

The NHANES data (Chapter 4) exhibit considerably more measurement
error, and consequently deconvolution is much harder. For these data
we have earlier derived the variances σ̂2

w = 0.223, σ̂2
u = 0.171 and σ̂2

x =
0.052.

We used the same methods as for the Framingham data. Figure 12.7
gives the best-fitting normal density, along with the deconvolution den-
sity estimates for normal and Laplace errors, with bandwidths selected to
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Figure 12.7 Density estimates of transformed saturated fat in NHANES. Three
estimates are considered here: the best normal approximation (solid line),
Gaussian deconvolution (dashed line), and Laplace deconvolution (dotted line),
both with bandwidth selected by eye. There is a clear suggestion of symmetry
in the data, but not much else.

be smooth but small. The sample skewness of W is nearly zero (−0.05),
and this is reflected in the near symmetry of the plots.

Figure 12.8 gives the best fitting normal, the best-fitting t-density,
and the SNP density with k = 2 as parametric deconvolution methods.
There is a suggestion on the latter two that the data are somewhat like
a t-density, here with about 5 degrees of freedom. The sample kurtosis
is 3.32, where a kurtosis of 3 applies for the normal distribution. If the
kurtosis of X is denoted by κ4x, then in the additive error model with
normally distributed errors the kurtosis for W is given by (12.3). Sub-
stituting sample estimates of (κ4w, σ2

x, σ2
u, σ2

w) and solving for κ4x, the
kurtosis for X is estimated to be approximately 9.0, indicating about
5.0 degrees of freedom since the kurtosis of a t-density is 3 + 6/(r − 4),
where r is the degrees of freedom.

12.1.11 Bayesian Density Estimation by Normal Mixtures

If the reader is unfamiliar with Bayesian estimation, then Chapter 9
should be read before this section.
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Figure 12.8 Density estimates of transformed saturated fat in NHANES. Three
estimates are considered here: the best normal approximation (dashed line), the
SNP fit with K = 2 (solid line), and the best fitting t-density (dotted line).

Wasserman and Roeder (1997) proposed a Bayesian method for non-
parametric density estimation. They assume that the density fX of X1,
. . . ,Xn is a normal mixture

fX(x) =

k∑

i=1

piφ{(x − µi)/σi}/σi, pi ≥ 0,

n∑

i=1

pi = 1, k ≤ L,

where L is a known upper bound for the number of components and φ
is the Normal(0, 1) density. Since any smooth density can be closely ap-
proximated by a normal mixture, this method is nonparametric, that is,
it is appropriate even if fX is not exactly a normal mixture. Wasserman
and Roeder described how k, p1, . . . , pk, µ1, . . . , µk, and σ1, . . . , σk can
be estimated by a Gibbs sampler. Carroll, Maca, and Ruppert (1999)
showed that this Gibbs sampler can be applied when X1, . . . ,Xn are ob-
served with measurement error, that is, one observes W1, . . . ,Wn where
Wi = Xi+Ui and Ui is Normal(0, σ2

u) for a known σu; of course, in prac-
tice one substitutes an estimate for σu. The only modification needed to
accommodate the measurement error is a simple idea used repeatedly
in Chapter 9: During the MCMC the unobserved Xi are sampled from
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their full conditionals. Given these imputed values, the other steps of
the Gibbs sampler are exactly the same as when the Xi are observed.

12.2 Nonparametric Regression

Nonparametric regression has become a rapidly developing field as re-
searchers have realized that parametric regression is not suitable for
adequately fitting curves to all data sets that arise in practice.

Nonparametric regression entails estimating the mean of Y as a func-
tion of X,

E(Y|X = x0) = mY(x0), (12.5)

without the imposition of mY belonging to a parametric family of func-
tions. We focus on the local-polynomial, kernel-weighted regression and
spline estimators of mY.

The most promising approach we know of for nonparametric regres-
sion with measurement error is a Bayesian methodology using splines and
MCMC introduced by Berry, Carroll, and Ruppert (2002) and its fre-
quentist counterpart, which was introduced by Ganguli, Staudenmayer,
and Wand (2005). The algorithm is given also in Ruppert, Wand and
Carroll (2003, Chapter 15.3) in a somewhat easier-to-digest form. We
will discuss this methodology in detail in Chapter 13. In the present
chapter, earlier and simpler estimators will be discussed.

12.2.1 Local-Polynomial, Kernel-Weighted Regression

When X is observable, the local, order-p polynomial estimator is β̂0(x),
the solution for β0 to the weighted least squares problem minimizing,

∑n
i=1

{
Yi −

∑p
j=1

βj(Xi − x)j
}2

Kh(Xi − x). (12.6)

Here h is called the bandwidth, K is a kernel function such that
∫

K(u)
du = 1, and Kh(u) = h−1K(u/h). The function K(·) and the bandwidth
h are under the control of the investigator, and in practice the latter is
the more important.

Problem (12.6) is a straightforward weighted least squares problem,
and hence is easily solved numerically. The local least squares estimator
of mY(x) is then

m̂Y(x, h) = β̂0(x), (12.7)

while for j ≤ p, the estimator of the jth derivative of mY(x) is j!β̂j(x).
Estimator (12.7) has had long use in time series analysis, and is a spe-
cial case of the robust, local regression estimators in Cleveland (1979).
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Cleveland and Devlin (1988) discussed practical implementation and pre-
sented several interesting case studies where local regression data analy-
sis is considerably more insightful than classic linear regression analysis.
Ruppert and Wand (1994) described the asymptotic theory of these esti-
mators. R-code is available, see http://web.maths.unsw.edu.au/∼wand.

As in parametric problems, ignoring measurement error causes in-
consistent estimation of mY(x). The regression calibration and SIMEX
methods of Chapters 4 and 5 provide simple means for constructing ap-
proximately consistent estimators of mY(x) in the case that W = X+U,
where U has mean zero. Hastie and Stuetzle (1989) describe an alterna-
tive method for an orthogonal regression problem, wherein it is assumed
that the conditional variances of Y and W given X are equal; we have
already commented (Section 3.4.2) on the general lack of applicability
of such an assumption.

In this section, we describe algorithms for nonparametric regression
taking measurement error into account.

12.2.2 Splines

Low-degree polynomials are effective for approximating a smooth func-
tion in small regions. However, if we wish to approximate a smooth
function over a large region, polynomial approximation typically does
not work well. One can increase the polynomial order to gain degrees
of freedom, but higher-order polynomials can be highly oscillatory and
changing the coefficients to increase the accuracy of the approximation in
one location changes the polynomial globally and may decrease accuracy
elsewhere. The solution to this problem is to piece together a number of
low-degree polynomials. A pth degree spline with knots κ1, . . . , κK is a
piecewise polynomial function s with polynomial form changing at each
knot in such a way that the jth derivative of s is continuous everywhere
for j ≤ p − 1. In practice, generally p is 1, 2, or 3.

There are many ways to parameterize a spline. Usually, one works with
a spline basis. Given a fixed degree and knots, one can find 1 + p + K
basis functions, collectively called a basis, such that any spline with this
degree and knots is a linear combination of these basis functions. There
are many, in fact, infinitely many, bases, and we can work with whichever
one we like. One basis that is easy to understand is the truncated power
function basis. The pth degree truncated power function with knot κi is
(x − κi)

p
+ which is defined to be zero if x ≤ κi and (x − κi)

p if x > κi.
The truncated power basis of degree p and knots κ1 < . . . < κK is
{1, x, . . . , xp, (x − κ1)

p
+, . . . , (x − κK)p

+}, and an arbitrary spline with
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this degree and knots can be written as

s(x) =

p∑

k=0

βkxk +

K∑

k=1

bk(x − κk)p
+. (12.8)

If a spline is fit by ordinary least squares, then the number and loca-
tions of the knots have a tremendous effect on the fit, and there is a large
literature on the so-called adaptive splines where the knots are chosen to
provide the most accurate estimate; see Stone, Hansen, Kooperberg, et
al. (1997) and Hansen and Kooperberg (2002). An alternative to adap-
tive knot selection is to use a large number of knots and to place a penalty
on the “roughness” of the fit. For example, cubic smoothing splines use a
knot at every unique value of x and penalize the integral of the squared
second derivative of the fit. This penalty reduces the curvature of the
fit.

Ruppert, Wand, and Carroll (2003) introduce a simple penalty that is
convenient for our purposes. They fit s(x) in (12.8) to data {(Xi,Yi)}n

i=1

by minimizing

n∑

i=1

[
Yi −

{
p∑

k=0

βkX
k
i +

K∑

i=k

bi(Xi − κk)p
+

}]2

+ λ

K∑

k=1

b2
k. (12.9)

The knots can be equally spaced or spaced so that there are roughly
an equal number of the unique values of the Xi between each pair of
adjacent knots. The number of knots is generally between 5 and 20. The
exact number of knots has little effect on the fit, because the penalty
prevents overfitting (Ruppert, 2002). The spline minimizing (12.9) is
called a penalized spline. The smoothing parameter λ has a crucial influ-
ence on the fit and must be chosen appropriately. Data-based methods
for selecting λ include generalized crossvalidation, REML, and Bayesian
estimation; see Ruppert, Wand, and Carroll (2003).

12.2.3 QVF and Likelihood Models

Local polynomial nonparametric regression is easily extended to like-
lihood and quasilikelihood and variance function (QVF) models. The
reason is that local polynomial regression can be looked at in two ways
that permit immediate generalization. First, as seen in (12.6), local poly-
nomial regression estimation of mY(x0) at a value x0 is equivalent to
a weighted maximum likelihood estimate of the intercept in the model,
assuming that Y is normally distributed with mean β0 + β1(X − x0),
constant variance, and with the weights Kh(X−x0). Thus, in other gen-
eralized linear models (logistic, Poisson, gamma, etc.), the suggestion
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is to perform a weighted likelihood analysis with a mean of the form
h {β0 + β1(X − x0)} for some function h(·).

Extending local polynomial nonparametric regression to QVF models
is also routine. As seen in (12.7), local linear regression is a weighted
QVF estimate based on a model with mean β0+β1(X−x0) and constant
variance, and with extra weighting Kh(X−x0). The suggestion in general
problems is to do the QVF analysis with argument β0 + β1(X−x0) and
extra weighting Kh(X − x0).

12.2.4 SIMEX for Nonparametric Regression

Use of SIMEX in nonparametric regression follows the same ideas as in
parametric problems. We require an additive error model W = X + U,
where U is independent of X with variance σ2

u. Sometimes, a transfor-
mation of the original surrogate is required to achieve additivity and
homoscedasticity. The SIMEX algorithm for nonparametric regression
is as follows:

(a) Fix values for λ ∈ Λ = (0 < λ1 < . . . < λM ).
(b) For b = 1, . . . , B, let ǫib be the non-iid pseudoerrors.
(c) Define Wib(λ) = Wi + σuλ1/2ǫib.
(d) For b = 1, . . . , B and λ ∈ Λ, compute the nonparametric regres-

sion estimate (12.7) by regressing Yi on Wib(λ). Call the resulting

estimate f̂(x, b, λ).

(e) Let f̂(x, λ) be the sample mean of the terms f̂(x, b, λ).

(f) For each x, extrapolate the values f̂(x, λ) as a function of λ back

to λ = −1, resulting in the SIMEX estimator f̂(x).

12.2.4.1 SIMEX Applied to Local Polynomial Regression

An interesting problem is how best to choose the smoothing parameter.
The smoothing parameter determines how one trades off smoothing bias
and variance; smaller bandwidths give more variance but less smooth-
ing bias. For the case of local polynomial regression, Carroll, Maca, and
Ruppert (1999) applied Ruppert’s (1997) EBBS (empirical bias band-
width selector) method to the naive estimates in step (d), but doing
this resulted in final SIMEX estimators that were undersmoothed. This
problem was addressed by Staudenmayer and Ruppert (2004), who no-
ticed that the undersmoothing occurred because the SIMEX extrapolant
used to estimate f(x) is much more variable than the naive estimators
of f(x) in step (d) to which EBBS was being applied. They developed
an asymptotic theory for the SIMEX extrapolant so that EBBS could be
applied to the SIMEX estimator itself, rather than to the naive estima-
tors fed into SIMEX. With the Staudenmayer and Ruppert bandwidth,
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the SIMEX estimator is smoother and has smaller mean squared error
than SIMEX with the “naive” bandwidth used by Carroll, Maca, and
Ruppert (1999).

12.2.4.2 SIMEX Applied to Penalized Splines

Carroll, Maca, and Ruppert (1999) also applied SIMEX to penalized
splines and found that the SIMEX/splines estimator performed quite
similarly to SIMEX/local polynomial estimator and was inferior to their
structural spline estimator, which will be discussed in Section 12.2.6.

12.2.5 Regression Calibration

In 1995, regression calibration made some sense for nonparametric re-
gression, since there was little in the way of a literature. Now there
is more, and we do not think regression calibration should be used in
this context. At best, in its expanded form, it will be able to capture
quadratic functions, but fitting quadratics is not the intent of the field.

12.2.6 Structural Splines

A more sophisticated application of the regression calibration idea was
proposed by Carroll, Maca, and Ruppert (1999). The spline regression
model

Yi =

p∑

k=0

βkX
k
i +

K∑

i=k

bi(Xi − κk)p
+ + ǫi, (12.10)

implies that

E(Yi|Wi) =

p∑

k=0

βkE(Xk
i |Wi) +

K∑

i=k

biE{(Xi − κk)p
+|Wi}. (12.11)

If we can estimate each of the conditional expectations in (12.11), then
we can fit this equation to the Yi to estimate the parameters in (12.10).
Fortunately, estimation of these conditional expectations is a straightfor-
ward application of Bayesian density estimation methodology of Section
12.1.11, as will be explained in the next paragraph. Fitting (12.11) is
an example of regression calibration if we think of Xi, . . . ,X

p
i , (Xi −

κ1)
p
+, . . . , (Xi −κK)p

+ as a p+K dimensional set of covariates measured
with error.

When the MCMC algorithm in Section 12.1.11 is run, each Xi is
imputed from its conditional distribution given Wi and the parameters.
Thus, if for any function g we average g(Xi) over the imputed values of
Xi from an MCMC sample, then we estimate E{g(Xi)|Wi}. If this is
done for g(x) equal to each of x, . . . , xp, (x − κ1)

p
+, . . . , (x − κK)p

+ and
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for i = 1, . . . , n, then these quantities can be used as the covariates to
fit (12.11).

Since the methodology of Section 12.1.11 is based on a flexible nor-
mal mixture model for the density of X, the algorithm described in the
present section was called the “structural spline” method by Carroll,
Maca, and Ruppert (1999). In their simulation experiment, the struc-
tural spline estimates had substantially smaller mean squared errors
than SIMEX applied to either local polynomial estimation or penalized
splines. However, Berry, Carroll, and Ruppert (2002) found that a fully
Bayesian model outperformed the structural spline estimator. Their fully
Bayesian approach is described in Chapter 13.

12.2.7 Taylex and Other Methods

12.2.7.1 Globally Consistent Methods via Deconvolution

A globally consistent deconvoluting kernel regression function estimate
can be obtained by replacing the kernel in (12.6) with a deconvolut-
ing kernel (Fan and Truong, 1993), resulting in what we refer to as a
deconvoluting kernel, local regression estimator.

However, the bandwidth selection problem associated with this ap-
proach is by no means trivial, and the rates of convergence for the re-
sulting estimators are the same as for the density estimation problem.
Moreover, in a simulation study of Carroll, Maca, and Ruppert (1999),
the deconvoluting kernel estimate was applied with the ideal “oracle”
bandwidth that minimized the mean squared error, and even then it
was inferior to SIMEX and structural splines.

All the deconvolution methods described to this point require that the
distribution of the measurement error distribution be known, except up
to a scale parameter such as a variance. Schennach (2004) developed a
method that allows the measurement error distribution to be completely
unknown, as long as there are replicates of W, that is, Wij = Xi + Uij

for j = 1, 2. One can easily see how this is can be in the most important
special case of additive symmetric errors Uij , because there is a special
trick that applies. In this case, Wi· = Xi + Ui· = Xi + (Ui1 + Ui2)/2,
while (Wi1 − Wi2)/2 = (Ui1 − Ui2)/2. Here is the trick: Because of
symmetry of the errors, the distributions Ui2 and −Ui2 are the same,
and thus the distributions of of (Ui1 + Ui2)/2 and (Ui1 − Ui2)/2 are
the same. This means that (Wi1 − Wi2)/2 can be used to estimate
the density function of Ui·. Of course, the slow rates of convergence for
deconvolution methods do not get any better once one has to estimate
the error distribution.
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Figure 12.9 The control data in the baseline change example.

12.2.7.2 Taylex

Carroll and Hall’s (2004) Taylex method (for Taylor Series Expansion)
is in the class of deconvolution estimators, with the deconvoluting kernel
function K∗(t, h) = φ(x){1−σ2

u(x2 − 1)/(2h2)}. However, and crucially,
they do not advertise the method as globally consistent, but merely ap-
proximately consistent for relatively small measurement error. They used
the following bandwidth selection algorithm. They first fitted local lin-
ear regression with local bandwidths computed Ruppert’s (1997) EBBS
methodology, using the Taylex kernel with σ2

u = 0. Then the mean of
the EBBS bandwidths was computed, and the bandwidth actually used
was the average EBBS bandwidth multiplied by 0.75. Calculations by
Staudenmayer and Ruppert (2004) show that there is a bias term of
order O(σ4

u) in the regression estimate, and holding this fixed suggests
that the bandwidth should be of order smaller than the usual h−1/5. The
0.75 correction is an ad hoc means of accomplishing this.

12.3 Baseline Change Example

We analyze data originally analyzed by Berry, Carroll, and Ruppert
(2002). Unfortunately, we do not have permission to discuss the study
details here, or to make the data publicly available. The data have been
transformed and rescaled and have had random noise added.
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Figure 12.10 Local quadratic kernel regression fits to the baseline change con-
trols data, along with a quadratic fit. All methods ignore measurement error.

Essentially, there is a treatment group and a control group, which are
evaluated using a scale at baseline (W) and at the end of the study (Y).
Smaller values of both indicate more severe disease. The scale itself is
subject to considerable error because it is based on a combination of
self-report and clinic interview. The study investigators estimate that in
their transformed and rescaled form, the measurement error variance is
approximately σ2

u = 0.35.
A preliminary Wilcoxon test applied to the observed change from base-

line, Y −W , indicated a highly statistically significant difference between
the two groups.

The main interest focuses on the population mean change from base-
line ∆(X) = mY(X)−X for the two groups, and most importantly the
difference between these two functions. Here we describe results only for
the control group. The data are given in Figure 12.9.

Preliminary nonparametric regression analysis of the data ignoring
measurement error indicates possible nonlinearity in the data: A quadratic
regression is marginally statistically significant (p ≈ 0.03). When we cor-
rected the quadratic fits for measurement error (Cheng and Schneeweiss,
1998) and bootstrapped the resulting parameter estimates, both p-values
exceeded 0.20, although the fitted functions had substantial curvature.
In Figure 12.10, we plot local quadratic kernel estimates with three band-
widths, along with a quadratic regression, all ignoring measurement er-
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Figure 12.11 A naive local quadratic fit (solid line) and a SIMEX local
quadratic fit (dashed line) for the baseline change controls data.

ror. As is typical of kernel methods, the smallest bandwidth has the least
smooth character.

We then applied SIMEX to both the local polynomial fits and to the
quadratic fit. In Figure 12.11, we used the middle of the three band-
widths and display the naive and SIMEX fits. One can see that the
“bumps,” or less colloquially the local features, in the naive fit are ex-
aggerated somewhat in the SIMEX fit. Figure 12.12 gives the SIMEX
local quadratic fit and the SIMEX global quadratic fit.

12.3.1 Discussion of the Baseline Change Controls Data

Figure 12.12 is difficult to interpret without the scientific context, which
we are not at liberty to discuss. However, we can note that the people
in the study are controls, that is, not given a treatment. The higher the
change from baseline, the more the patient has improved by the end of
the study. Since these are untreated patients, what this figure shows is a
placebo effect, sometimes a rather strong one. Both the local quadratic
SIMEX fit and the global quadratic SIMEX fit suggest that the placebo
effect is confined away from those doing best or worst at baseline. In the
context of the actual study, this is not so far-fetched. In contrast, the
naive fits (Figure 12.10) suggest that those who are doing the worst at
baseline (lowest values) have a strong placebo effect.
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Figure 12.12 A SIMEX local quadratic fit (solid line) and SIMEX global
quadratic fit (dashed line) to the baseline change controls data.
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CHAPTER 13

SEMIPARAMETRIC

REGRESSION

13.1 Overview

Semiparametric models combine parametric and nonparametric submod-
els. For example, in a semiparametric regression model the effects of
some, but not all, covariates are modeled nonparametrically. In this chap-
ter we will take a Bayesian viewpoint, mostly for the pragmatic reason
that we have found that a Bayesian analysis is easiest to implement.

This chapter considers three main topics. In the first, primary topic,
the effect of X on the response is modeled nonparametrically and the
effect of Z is modeled parametrically. The second topic considered is
the opposite: the effect of X on the response is modeled parametrically
and the effect of Z is modeled nonparametrically. Finally, the third topic
considers the case that both X and Z are modeled parametrically by a
nonlinear form, but the distribution of X is treated nonparametrically.

13.2 Additive Models

For concreteness, we will focus on the additive model where Zi is a vector
of observed covariates with linear effects and Xi is an unobserved scalar
covariate with an effect of unknown form. Thus, we will use the model

Yi = s(Xi) + βt
zZi + ǫi, (13.1)

where s is smooth, but otherwise unknown. Model (13.1) is additive

because the effects of Xi and the components of Zi are added together;
there are no interaction terms that would be functions of two or more
covariates. We will use a spline model given by (12.8) and repeated here
as

s(x) =

p∑

k=0

βkxk +

K∑

k=1

bk(x − κk)p
+. (13.2)

As discussed in Section 12.2.2, κ1 < . . . < κK are knots and (x − κi)
p
+

is defined to be zero if x ≤ κi and (x − κi)
p if x > κi. The degree p is

typically 1, 2, or 3 and there are between five and 20 knots. The knots
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are usually at “equally spaced” quantiles of the Wi, for example, at the
deciles if K = 9.

Model (13.1) is one of many spline models discussed in detail in Rup-
pert, Wand, and Carroll (2003), which deals mostly with covariates with-
out error but has a chapter on measurement error. Readers not familiar
with semiparametric regression may wish to consult that reference. Once
the analysis of (13.1) is understood, it can be extended to many other
models, for example, ones where the effects of some components of Zi

are also modeled via splines or where Xi has several components.

13.3 MCMC for Additive Spline Models

As seen in Chapter 9, sampling from the posterior for a regression model
with covariate measurement error is nearly identical to sampling from the
same model without covariate measurement error. The main difference
is that there is an extra step where the unknown values of the Xi for
nonvalidation data are imputed.

By combining (13.1) and (13.2) we arrive at the model

Yi =

p∑

k=0

βkX
k
i +

K∑

k=1

bk(Xi − κk)p
+ + βt

zZi + ǫi. (13.3)

Clearly, (13.3) is a linear model, albeit a somewhat complicated one.
In Section 9.4, we used nearly flat, that is, noninformative priors, for
the regression coefficients of a linear model. This strategy will not work
well for model (13.3), because of the large number of coefficients. What is
needed is a method for shrinking the spline coefficients b1, . . . , bK toward
zero to prevent overfitting. This shrinkage can be accomplished by using
a more informative prior for b1, . . . , bK while continuing to use a flat
prior for the other coefficients. To separate the two types of regression
coefficients, we will rewrite (13.3) as

Yi = βt
zxm1(Xi,Zi) + bt

xm2(Xi) + ǫi, (13.4)

where

m1(Xi,Zi) = (1,Xi, . . . ,X
p
i ,Z

t
i),

m2(Xi) = {(Xi − κ1)
p
+, . . . , (Xi − κK)p

+}, (13.5)

βzx = (β0, . . . , βp, β
t
z)

t,

and bx = (b1, . . . , bK)t.

We will use the prior

[βzx] = Normal(0, σ2
βI) (13.6)

where σ2
β is “large,” say 106. The prior for bx is hierarchical: given a
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prior variance σ2
b , bx is Normal(0, σ2

bI), and σ2
b is IG(δb,1, δb,2), where IG

stands for the inverse-Gamma distribution defined in Section A.3. Using
the [ · ] notation described in the Guide to Notation, we can write this
prior as

[bz|σ
2
b ] = Normal(0, σ2

bI), and [σ2
b ] = IG(δb,1, δb,2). (13.7)

As discussed in Section 9.4, for the prior to be noninformative the values
of δb,1 and δb,2 should be small. For δb,1, “small” means small relative
to the sample size. Since δb,2 is a prior guess about the variance of the
bk, and since spline coefficients are often quite small, it is crucial that
δb,2 be sufficiently small. Put differently, δb,2 should be small relative
to typical values of the b2

k. Depending on the application, δb,2 = 10−8

or even smaller may be necessary to prevent overfitting, which in this
context is the same as undersmoothing. The reason for this is that the
spline coefficients are typically very small, though how small depends
upon the number of knots and the scaling of X (Crainiceanu, Ruppert,
and Wand, 2005).

Besides the prior on the regression coefficients, we need a prior on σ2
ǫ ,

the variance of ǫ1, . . . , ǫn. We also need an error model for W|X or a
Berkson model for X|W, and, in the case of an error model, a structural
“exposure” model for X|W. Of course, we need priors on these models
as well. Each of these models and priors is chosen in the same manner
as in Chapter 9.

The full conditionals are the same as in Section 9.4 for error models
or Section 9.7 for Berkson models, except for σ2

b which did not appear
in models studied in Chapter 9. It is not difficult to show that the full
conditional for σ2

b is

f(σ2
b |others) = IG{δb,1 + K/2, δb,2 + (1/2)

K∑

k=1

b2
k}. (13.8)

Here again, we see that δb,2 will dominate the posterior if it is large

relative to
∑K

k=1
b2
k.

13.4 Monte Carlo EM-Algorithm

Ganguli, Staudenmayer, and Wand (2005) developed a Monte Carlo EM-
algorithm for the structural nonparametric regression problem, in the
model

Yi =

p∑

k=0

βkX
k
i +

K∑

k=1

bk(Xi − κk)p
+ + ǫi. (13.9)

Their algorithm is relatively simple, although like the Bayesian approach
in Section 13.3, a Metropolis–Hastings step is required; see Section 9.3.
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We refer to this approach as the GSW-EM (Ganguli, Staudenmayer,
Wand-EM) algorithm. The algorithm is given also in Ruppert et al.
(2003, Chapter 15.3), although their σ2

v is our σ2
u and their σ2

u is our σ2
b .

13.4.1 Starting Values

The GSW-EM algorithm starts with estimates of µx = E(X), σ2
x =

var(X) and E(X|W); see, for example, Section 4.4 for the regression
calibration calculations. Define V to be the n × (p + 1) matrix with ith

row given as (1,Xi, . . . ,X
p
i ), and define Z to be the n×K matrix with

ith row m2(Xi) given by (13.5). Let Y, X , W, and E be the n×1 vectors
with ith element Yi, Wi, Xi and ǫi, respectively. Then the model can
be written as

Y = Vβx + Zbx + E ,

where cov(bx) = σ2
bI and cov(E) = σ2

ǫ I. This is a standard linear
mixed model, and replacing Xi with its regression calibration estimate
E(Xi|Wi), REML is used to obtain starting values for (βx, bx, σ2

b , σ2
ǫ ).

13.4.2 Metropolis–Hastings Fact

The density of (X1, ...,Xn) given bx,Y,W is proportional to

exp

{
−

1

2σ2
ǫ

‖Y−Vβx−Zbx‖
2−

1

2σ2
x

‖V−µx1‖
2−

1

2σ2
u

‖W−V‖2

}
. (13.10)

Here ‖ · ‖ is the Euclidean norm; see the Guide to Notation. As a re-
sult, generating conditional quasi-random variates from X ’s conditional
distribution can be done using the Metropolis–Hastings algorithm. This
fact is also used by Berry, Carroll, and Ruppert (2002).

13.4.3 The Algorithm

We now specify the complete algorithm:

(1) Set t = 0.

(2) Use the Metropolis–Hastings algorithm, applied one element at a
time, to draw m samples from the distribution of Xi given (bx,Y,W)
evaluated at the current estimates of (βx, bx, σ2

b , σ2
ǫ ). Call these sam-

ples (X1i, ...,Xmi). This is the most time-consuming step in the EM
algorithm. The choice of the number of samples m is a problem that
remains difficult to solve. In their calculations, Ganguli, Stauden-
mayer, and Wand started with m = 50 and increased m by 10 for
each interaction of the EM algorithm, to a maximum of 500.
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Figure 13.1 Classical error simulation with sine function. Solid line: true func-
tion. The true X-observations are plotted: note how the true function is readily
estimated if X were observable.

(3) Define

P =

[
VtV VtZ
ZtV ZtZ + (σ2

ǫ /σ2
b )I

]
.

The value of P is unknown and must be imputed, because we do not
observe V.

(4) Define C = [V,Z]. With the results from step 2, compute Monte Carlo
estimates of the conditional expectations of P , CtY, and CtC given

(Y,W, bx). We denote estimates of these quantities by P̂ , ĈtY and ĈtC.

For example, P̂ is computed by defining Vj to be the same as V except
that the true X-values are replaced by their jth Metropolis–Hastings
generated value. Then an upper-left block of P̂ is m−1

∑m

j=1
Vt

jVj ,

and upper-right block is m−1
∑m

j=1
Vt

jZ, and so forth.

(5) Holding the estimates from the previous step fixed, run several it-
erations of an update scheme. For instance, using the standard EM
algorithm to compute REML estimates (for example Dempster, Ru-
bin, and Tsutakawa, 1981), the nested updates are as follows. First,

update βx and bx as {βt
x, bt

x}
t = P̂−1ĈtY. Then, update σ2

b as σ2
b =

K−1{bt
xbx + σ2

ǫ trace(P̂−1). Finally, update σ2
ǫ as follows. Define D =
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{βt
x, bt

x}
t and let the current value be σ2

ǫ,curr. Then

σ2
ǫ = n−1{YtY − 2(ĈtY)tD + DtĈtCD} + n−1σ2

ǫ,currtrace(Ĉ
tCP̂−1).

(6) Update µx and σx from their current µx,curr and σ2
x,curr using stan-

dard point estimates based on the Monte Carlo data from Step 2.
Specifically, µx is the mean across all the values of components of
(X1i, ...,Xmi). Also, σ2

x is the mean across all components of (Xji −
µx,curr)

2.

We terminate the algorithm after plots of the current estimates of the
regression function appear to stabilize

−6 −4 −2 0 2 4 6
−2

−1.5

−1
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Simulated Data, Classical Errors

Observed Predictor

Y

Figure 13.2 Classical error simulation with sine function. Figure 13.1 gives
the true-X data along with the observed responses, where the sine function is
obvious. Here we plot the responses Y against the observed values W of the
mean of the two mismeasured covariates. Note the lack of features in the data,
where the sine function is masked.
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Figure 13.3 Classical error simulation with sine function. Solid line: true func-
tion. Dashed line: naive spline estimate that ignores measurement error. Dot-
dashed line: measurement error spline fit by EM-algorithm of Ganguli, et al.
(2005). Dotted line: 5-knot Bayesian fit.

13.5 Simulation with Classical Errors

We simulated data with replicated classical errors, Wij = Xi + Uij ,
j = 1, 2, and a sinusoidal regression function Yi = sin(Xi) + ǫi. In
the simulation Xi = Normal(0.0, 4.0), Ui = Normal(0.0, 4.0), ǫi =
Normal{0, (0.2)2}, and n = 200. The actual data and the true regression
are given in Figure 13.1, where the true function is apparent.

To see what is going on, we first plot the observed data (Wi,Yi).
Once again we see the double-whammy of classical measurement error
described in Section 1.1: in contrast to the true data in Figure 13.1, the
observed data are clearly more variable about any version of a line, hence
the loss of power, and the true function is now no longer apparent, hence
the loss of features. The idea that one can recreate the true line given in
Figure 13.1 from the observed data in Figure 13.2 is daunting.

In Figure 13.3 we see a plot of a Bayes estimate, the true regression
function, a naive fit and the EM-algorithm fit of Ganguli, et al. (2005)
defined in Section 13.4. The Bayes estimator and the naive fit used five
knots at quantiles of the W. The Bayes estimator that had σ2

x and σ2
ǫ

had IG(1, 1) priors, µx and the β’s had Normal(0, 100) priors, and σ2
b

had an IG(0.01, 100) prior.

The naive fit was a penalized spline fit of Wi to Yi and shows clear
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Figure 13.4 A plot of the imputed Xi versus Yi. The imputed Xi are from the
from the last iteration of the Gibbs sampler. Notice the sinusoidal pattern of
the true regression function (solid curve labelled “true”) is quite evident here,
although it was largely hidden in the plot of Wi versus Yi in Figure 13.2.

bias, both being attenuated toward zeros and having its peaks somewhat
mislocated. The Bayes fit, and the EM-algorithm, can virtually recreate
the correct function, somewhat remarkable in light of the observed data
in Figure 13.2.

The Bayes estimate is the mean of 5,000 iterations of a Gibbs sampler,
after a burn-in of 5,000 iterations. Because a spline is a linear model, but
with a hierarchical prior for the regression coefficients given by (13.6)
and (13.7), the Gibbs sampler was the same as used for linear regression
with classical errors in Section 9.4, except that there was an extra step
for sampling σ2

b using (13.8).

The Gibbs sampler used the naive penalized spline fit to get starting
values for the parameters. The starting value for Xi was Wi. The spline
was of degree p = 2 with five knots placed so that there was approxi-
mately an equal number of Wi between each adjacent pair. The knot
locations are not considered to be unknown parameters and the knots
were kept fixed during the Gibbs sampler.

The power of the Gibbs sampler is that it uses both Yi, Wi and
knowledge of the regression function to impute Xi. The result is that
often Xi is estimated with remarkable accuracy. This accuracy can be
seen in Figure 13.4, which is a plot of Yi against the imputed Xi from
the last iteration of the Gibbs sampler. The shape of the true regression
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function is quite obvious, much more so than in the plot of Yi against
Wi.
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Figure 13.5 Bayes estimates with Berkson errors. “Bayes, C” is the Bayes
estimate for a given C.

13.6 Simulation with Berkson Errors

Berkson errors were simulated with Wi equally spaced on (−1, 1), Xi =
Wi + Ui, where Ui = Normal{0, (0.2)2}, Yi = sin(5Xi) + ǫi with ǫi =
Normal{0, (0.2)2}, and n = 300.

In the case of classical errors, we used knots at quantiles of the Wi.
Since the Wi are more dispersed than the Xi when the errors are clas-
sical, the knots should cover the range of the Xi. In the case of Berkson
errors, this might not be true. Therefore, we simulated a set of Xi by
adding Normal(0, σ̃2

u) random variates to the Wi. Here, σ̃2
u is the mean

of the prior on σ2
u. The knots were at quantiles of these simulated Xi.

There were 10 knots.
The prior on σ2

u was IG(1/2, Cσ2
u/2) where C was 1/4, 1, and 4 cor-

responding to prior guesses of σ2
u equal to 1/4, 1, or 4 times the true

value. Since the prior effective sample size is 1, the value of C should
not be too important. The Bayes estimates of s(x) = sin(5x) are shown
in Figure 13.5. In Figure 13.6 we see the naive spline fit of Y to W, the
ideal spline fit of Y to X, the Bayes estimator with C = 1, and the true
curve.
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Figure 13.6 Berkson errors. True curve (sin(5x)), Bayes estimate with C =1
(Bayes), ideal spline fit using true covariates (x-y), and naive spline fit (w-y).

In Figure 13.7 we see the trace plots for σu for the three values of
C. One can see that σu can be rather accurately estimated despite the
lack of replication. It is interesting that σu is so well estimated here. In
linear regression, σu is not identified. For some nonlinear models, such
as segmented binary regression, σu is theoretically identified but there
is so little information about σu in the data that, for practical purposes,
it is not identified; see the Munich bronchitis example in Section 9.7.3.
Here, we have two things going for us when we estimate σu:

• The response is continuous not binary.

• The true curve is very nonlinear.

13.7 Semiparametrics: X Modeled Parametrically

The other variant of semiparametric regression is when the effect of
X on Y is modeled parametrically but at least a component of Z is
modelled nonparametrically. For example, Liang, Härdle, and Carroll
(1999) considered the partially linear model

E(Y|X,Z) = Xtβx + θ(Z),

where θ(·) is an unknown function. Similar to (13.12), the approach is
a correction for attenuation. Let Σuu be the covariance matrix of the
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measurement errors. An infeasible estimator is

β̂infeas = [n−1

n∑

i=1

{Wi − E(W|Zi)}{Wi − E(W|Zi)} − Σt
uu]−1

×n−1

n∑

i=1

{Wi − E(W|Zi)}{Yi − E(Y|Zi)}. (13.11)

Liang et al. simply replace E(W|Z) and E(Y|Z) with any convenient
nonparametric regression, which is feasible because these are all observed
quantities. They used kernels because it is easy to prove results for ker-
nels, but splines, etc., can be used as well.

Liang and Wang (2005) considered the partially linear single index
model where now Z is multivariate and

E(Y|X,Z) = Xtβx + θ(Ztβz).

This is a harder problem, and they developed a clever two-step approach
wherein they first estimated βx without having to worry about βz, and
then updated to get an estimate of βz. Specifically, Y −E(Y|Z) = {X−
E(X|Z)}tβx, which is a partially linear model as described above, so that
βx is easily estimated. They then noted that E(Y|Z) − E(Xt|Z)βx =
θ(Ztβz), which is a standard single-index model, for which a host of
solutions are known.
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13.8 Parametric Models: No Assumptions on X

There has been a great deal of recent activity about parametric response
models that attempt to correct for measurement error under minimal
assumptions about the latent variable X or the measurement error when
observing W = X+U. In this section, we try to summarize this research
concisely, much of it being theoretical in nature. It is probably too soon
to tell how this recent literature will affect the practice in the area,
because some of the methods are computationally complex or rely on
the use of characteristic functions.

Before 1995, there was only one set of literature available that yielded
globally consistent estimation, namely, the conditional and corrected
methods described in Chapter 7, and that only for special cases, such
as linear and logistic regression and under strong parametric assump-
tions about the measurement error distribution. The newest literature
expands the models that can be considered. When replications of W are
available, assumptions about the error distribution may also sometimes
be avoided.

13.8.1 Deconvolution Methods

13.8.1.1 Least Squares Methods

Suppose that the mean of Y given X is given as mY(X,B). Remember
that fX(·) is the unknown density function of X, fW|X(·) is the density
function of W given X, and fW (·) is the density function of W. Then,
as described in (12.1) in Section 12.1, the mean of Y given an observed
W is

mY|W(W,B, fX , fW , fW |X) =
1

fW (W)

∫
mY(x,B)fX(x)fW |X(W|x)dx.

The obvious approach then is to do some form of least squares. Let ω(W)
be a weight function. Then, assuming that all the density functions are
known, one way to estimate B is to minimize

n∑

i=1

ω(Wi){Yi − mY|W(Wi,B, fX , fW , fW |X)}2.

To implement this idea, one has to produce estimates for the density
functions (fX , fW , fW |X). For example, suppose that W = X + U,
where U is normally distributed with mean zero and known variance
σ2

u, so that fW |X(w|x) = σ−1
u φ{(w − x)/σu}, where φ(·) is the standard

normal density function. Let f̂X be the deconvoluting kernel density
estimator defined in Section 12.1, let f̂W be the corresponding regular
kernel density estimator. Then it would be tempting to estimate B by
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minimizing

n∑

i=1

ω(Wi){Yi − m(Wi,B, f̂X , f̂W , fW |X)}2.

This line of attack has been taken, for example, by Taupin (2001). She
allowed the unknown mean function f(X,B) to have different amounts of
smoothness, and showed that if it is smooth in any standard sense, then
the algorithm will produce estimates of B that have parametric rates of
convergence, although standard error estimates were not obtained.

13.8.1.2 Partially Linear Models

Liang (2000) used deconvolution methods in the partially linear model
where E(Y|X,Z) = Ztβ + θ(X), where θ(·) is an unknown function.
This is the same model as (13.1) that we analyzed in Sections 13.2 and
13.3 using splines. Liang started with the infeasible “estimator”

β̂infeas =

[
n−1

n∑

i=1

{Zi − E(Z|Xi)}{Zi − E(Z|Xi)}
t

]−1

×n−1

n∑

i=1

{Zi − E(Z|Xi)}{Yi − E(Y|Xi)}. (13.12)

He then replaced E(Z|Xi) and E(Y|Xi) by deconvoluting kernel regres-
sion estimators. For normally distributed measurement errors, he derived
a limiting normal distribution for the resulting estimate of β, under the
restriction that Z and X were independent.

Zhu and Cui (2003) considered the same model, except that they al-
lowed Z to also be observed with error independent of the error in X.
They doid not require that X and Z be independent. Their method is
effectively a correction for attenuation version of the infeasible estimate.

13.8.2 Models Linear in Functions of X

Schennach (2004a) considered models of the form

E(Y|Z,X) = Ztβz + h(X)βx,

She noted that B = (βt
z, β

t
x)t can be recovered as

B =

[
E(ZZt) E{Zht(X)}

E{h(X)Zt} E{h(X)ht(X)}

]−1

[E(ZtY), E{ht(X)Y}]t.

Her work is striking because the measurement error distribution need
not be specified. Indeed, she allowed for a second measurement, T =
X + V, where V has mean zero and is independent of everything else
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(her conditions are actually somewhat weaker than this). No assumptions
are made about the distribution of either the measurement error U or
the measurement error V. She showed how to go about estimating the
moments necessary to identify B, and derived the limiting distribution
of her estimator.

While Schennach’s approach uses characteristic function, this is not
deconvolution in any sense. However, Schennach (2004b) used much the
same approach to develop a deconvoluting kernel density estimator with-
out assumptions about the distribution of the measurement errors; see
also Section 12.2.7.

13.8.3 Linear Logistic Regression with Replicates

Huang and Wang (2001) considered linear logistic regression when there
are replicated error prone measures, so that Wij = Xi +Uij is observed
for j = 1, 2. Although we believe that simple regression calibration is
generally quite well suited to this problem, at least for the purpose of
having a complete asymptotic theory, there is a need to have consistent,
and not just approximately consistent, estimation procedures. Of course,
if the measurement errors are normally distributed, we have already
described such a methodology; see Chapter 7.

Huang and Wang made no assumptions about the distribution of the
measurement errors or about the distribution of X. Their notation is
somewhat difficult to decipher (sometimes too much generality detracts
from otherwise excellent papers), but in the case of two replicates, works
like this. Define

Ψi1(β0,B) =
∑

j 6=k

{Yi − 1 + Yiexp(−β0 − Zt
iβz − Wt

ijβx)}(1,W t
ik)t;

Ψi2(β0,B) =
∑

j 6=k

{Yi + (Yi − 1)exp(β0 + Zt
iβz + Wt

ijβx)}(1,W t
ik)t.

For j = 1, 2, let β̂0j and B̂j be a solution to 0 =
∑n

i=1
Ψij(β0,B),

and let Λ̂ be the sample covariance matrix of the terms {Ψi1(β̂01, B̂1)

and {Ψi2(β̂02, B̂2) when combined. Then estimate B by minimizing the
quadratic form

[ ∑n

i=1
Ψi1(β01,B)∑n

i=1
Ψi1(β02,B)

]t

Λ̂

[∑n

i=1
Ψi1(β01,B)∑n

i=1
Ψi1(β02,B)

]
.

Huang and Wang derived the limiting distribution of the estimator and
also allowed for the possibility that there are more than two replicates.
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13.8.4 Doubly Robust Parametric Modeling

The approaches outlined in this section have been more or less ad hoc,
some of them with fairly daunting computational issues.

Tsiatis and Ma (2004) avoided the ad hoc nature of the approach
by developing a modern semiparametric approach to the problem. They
started with a full parametric model for Y given (X,Z) in terms of a
parameter B, and they assumed that the distribution of W given X is
completely known, or is known except for a parameter. Their methodol-
ogy has the following features:

• They first specify a candidate distribution for X, which may or may
not be correct.

• Their method, which is not maximum likelihood for this candidate
distribution, provides a consistent estimate of the parameter B, no
matter what the actual distribution of X is.

• Their method is also the most efficient approach among all methods
that are consistent in the above sense. Thus, for example, for canonical
exponential families with normally distributed measurement error,
their method reduces to the conditional score method described in
Section 7.2.2.

Tsiatis and Ma applied their methodology to the logistic model that is
quadratic in X, with impressive improvement in bias reduction compared
even to their version of regression calibration (similar but not the same
as the one proposed in this book), much less the naive method.

The methodology can be briefly summarized as follows. Suppose that
a density function f∗

X|Z(x|z) has been hypothesized as the density for

X given Z. Let S(Y,X,Z,B) be the score function if X were observable,
that is the derivative of the loglikelihood function. Define S∗(Y,W,Z,B) =
E∗{S(Y,X,Z,B)|Y,W,Z}, where the superscript means that the ex-
pectation is taken with respect to the hypothesized model. Then there is
a function a(X,Z) with the property that it solves the integral equation

E{S∗(Y,W,Z,B)|X,Z} = E [E∗{a(X,Z)|Y,W,Z}|X,Z] . (13.13)

Further define

Seff(Y,W,Z,B) = S∗(Y,W,Z,B) − E∗{a(X,Z)|Y,W,Z}.

Then, Tsiatis and Ma proposed to estimate B by solving the equation
0 =

∑
i Seff(Yi,Wi,Zi,B).

Theoretically, this approach has a great deal to be said for it. One can
use best guesses to get something near a maximum likelihood solution,
but still have robustness against specifying the model for X incorrectly.
The practical difficulties are the following:
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• First, one has to be able to compute S∗(Y,W,Z,B), which requires
numerical integration, but then of course so too does maximum like-
lihood.

• More of an issue is actually solving the integral equation (13.13). In
their Section 4.2, Tsiatis and Ma (2004) came up with an approximate
solution. Specifically, they discretized X, stating that it takes on a
finite number of values, and then they specified the probability of
these values given X. In their example, they allowed X to take on
15 different values, and made the probabilities of X given Z to be
proportional to the density function of X given Z at these 15 values.
They then solved (13.13) in this discrete setting, which is little more
than solving linear equations with somewhat messy input arguments.

The Tsiatis and Ma methodology has considerable potential. How-
ever, more numerical work will be needed in order to understand how to
discretize, and more important, it would be very useful if multipurpose
software could be developed.
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Berry, Carroll, and Ruppert (2002) developed the Bayesian spline method-
ology for nonparametric regression with covariate measurement error
that is the basis for this chapter. Mallick, Hoffman, and Carroll (2002)
developed semiparametric methods for Berkson errors in the Nevada
Test Site example, although in their case they knew the variance of the
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Berkson errors with unknown Berkson error variance is new.

It has long been known that, in parametric problems, the Berkson
error variance in the model X = W + U is identified if the true re-
gression function is not linear; see, for example, Rudemo, Ruppert, and
Streibig (1989) in Section 4.7.3. These results apply to our approach,
which are flexible and nonlinear parametric methods, hence semipara-
metric. In purely nonparametric regression problems, identifiability of
the measurement error variance and hence of the regression function is
harder. Delaigle et al. (2006) pointed out that with Berkson errors, if
the true regression function is mY(·), then what we estimate is γ(W) =
E{mY(W+U)}, and identifiability of the true regression function means
we need to be able to recover it from γ(·). This can be tricky, since in
Berkson models X is more variable than W. An interesting theoretical
issue is whether one can hope to recover the true function mY(·) beyond
the range of the observed W-values. At first, this seems difficult, if not
impossible, but simulation results suggest otherwise, at least partly; see
Figure 13.5, where the estimates follow the true function beyond the
W-values.
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CHAPTER 14

SURVIVAL DATA

Survival analysis has developed from the analysis of life tables in actu-
arial sciences and has enjoyed remarkable success with modern applica-
tions in medicine, epidemiology, and the social sciences. The popularity
of survival analysis models, such as the Cox proportional hazards model,
is probably surpassed only by the popularity of standard linear regres-
sion models.

Survival data are the product of a continuous death process coupled
with a censoring mechanism. Typically, the death rate depends on a
number of factors, and time to death is only partially observed for those
subjects with censored observations. Standard analyses of survival data
assume that all covariates affecting survival rates are observed without
error. However, in many applications some of the covariates are subject
to measurement error or are available without error only for a subsample
of the population.

14.1 Notation and Assumptions

Like most research areas in statistics, survival analysis has several stan-
dard sets of notations. In this chapter, we will follow notation intro-
duced by Miller (1998). Assume that n subjects are observed over time
and their failure times T1, . . . ,Tn are subject to right censoring and
C1, . . . ,Cn are the corresponding censoring times. Let

δi = I(Ti < Ci)

be the failure indicator and

Yi = min(Ti,Ci)

be the time to failure or censoring for subject i. Denote by

Ri = {j : Yj ≥ Yi}, (14.1)

the risk set when the event corresponding to subject i occurs. Ri is the
index set for those subjects who have not failed and are uncensored at
the time the ith subject fails or is censored. The at-risk indicator process
for the ith subject is defined as

Yi(t) = I(Yi ≥ t).
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We assume that the survival probability for each subject depends on
covariates that are subject to measurement error, Xi, as well as on co-
variates that are not, Zi. The covariate Xi is measured through the usual
classical measurement error model

Wi = Xi + Ui, (14.2)

where the distribution of Ui is known or estimable. We also assume that
(Ti,Xi,Ci,Ui) are iid random vectors, Ci is independent of (Ti,Xi),
and Ui is independent of (Ti,Xi,Ci). The observed data are the vectors
(Yi, δi,Wi,Zi), where (Yi, δi) is a proxy observation for (Ti,Ci) and
Wi is a proxy observation for Xi.

The distribution of the failure time, Ti, is completely described by
the hazard rate

λi(t|Xi,Zi) = lim
dt↓0

P (t < Ti < t + dt|Xi,Zi)

dtP (Ti > t|Xi,Zi)

and can be interpreted as the instantaneous risk that the time Ti of
an event equals t conditional on no events for subject i prior to time t.
The proportional hazards model introduced by Cox (1972) is the most
commonly used model for the hazard rate and assumes that

λi(t|Xi,Zi) = λ0(t)exp(βt
xXi + βt

zZi), (14.3)

where λ0(·) is an unspecified baseline hazard function that does not de-
pend on the covariate values. The baseline cumulative hazard function
is Λ0(t) =

∫ t

0
λ0(s)ds. In the standard regression case when Xi are ob-

served, Cox (1972) suggested that inference on βx and βz be based on
the log partial likelihood function

l(βx, βz) =

n∑

i=1

δi


βt

xXi + βt
zZi − log





∑

j∈Ri

exp(βt
xXj + βt

zZj)






 ,

(14.4)
which does not depend on λ0(·). An alternative strategy is to use the log
of the full likelihood of the model (14.3)

L(βx, βz) =
∑n

i=1 δi [βt
xXi + βt

zZi + log{λ0(Yi)}]

−eβt
xXi+βt

zZi
∫

Yi

0
λ0(s)ds.

(14.5)

14.2 Induced Hazard Function

When X is unobservable and instead we observe a surrogate W, Prentice
(1982) introduced the induced hazard function for the Cox regression
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model as

λ (t|Z,W) = E [λ (t|X,Z) |T ≥ t,Z,W]

= λ0(t)exp (βt
zZ)E {exp(βt

xX|T ≥ t,Z,W)} .
(14.6)

As shown by Prentice (1982) and by Pepe, Self, and Prentice (1989),
the difficulty is that the conditional expectation in (14.6) for the observed
data depends upon the unknown baseline hazard function λ0. This de-
pendence is due to the conditioning on (T ≥ t). The induced hazard
function does not factor into a product of an arbitrary baseline hazard
and a term that depends only on observed data and an unknown param-
eter, and the methodology for proportional hazards regression cannot be
applied without modification.

An important simplification occurs when the failure events are rare,
that is, when the probability of survival beyond time t, P (T ≥ t), is
close to 1. The rare-event assumption implies that the hazard (14.6) of
the observed data can be approximated by

λ∗ (t|Z,W) = λ0(t)exp
(
βt

zZ
)
E

{
exp(βt

xX|Z,W)
}

. (14.7)

A special case that leads directly to regression calibration is when
X given Z and W is normally distributed with mean m(Z,W, γ) and
with constant covariance matrix Σ. In this case the approximate hazard
function is, from (14.7),

λ∗ (t|Z,W) = λ∗
0(t)exp

{
βt

xm (Z,W, γ)
}

,

where λ∗
0(t) = λ0(t)exp(0.5βt

xΣβx), which is still arbitrary since λ0 is
arbitrary.

14.3 Regression Calibration for Survival Analysis

One of the first applications of regression calibration was proposed by
Prentice (1982) for estimating the parameters in a Cox model. The idea
of regression calibration is to replace the covariate of interest by its
conditional mean E(X|Z,W) = m (Z,W, γ) and is a first-order bias-
correction method.

14.3.1 Methodology and Asymptotic Properties

The procedure starts by estimating X by mX (Z,W, γ̂), where γ̂ is an
estimator of γ that could be obtained as in Section 4.4. The next step
is to maximize the log partial likelihood (14.4), where Xi is replaced

by X̂i = mX (Z,W, γ̂). If X∗
i = mX (Z,W, γ), then the approximate

regression calibration Cox model assumes that the hazard function for
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the observed data is

λ(t|X∗
i ,Zi) = λ∗

0(t)exp(β∗
x

t
X∗

i + β∗
z

t
Zi). (14.8)

Under the regularity conditions in Wang, Wang, and Carroll (1997) one
can show that the parameter estimator obtained by maximizing (14.4)

with Xi replaced by X̂i is a consistent, asymptotically normal, estimator
of β∗

x. Because model (14.8) is just an approximation of the true model,
these results are only approximate for the parameter, βx, of the true
model. In practice, model (14.8) is often a good approximation of model
(14.6).

A major advantage of regression calibration is that, after fitting a
reasonable model for E(Xi|Zi,Wi), one can use existent software de-
signed for proportional hazards models, such as R or S–plus (coxph()
and survreg() functions) or SAS (PHREG procedure), to produce first-
order bias-corrected estimators of the parameters of a Cox model with
covariates subject to measurement error.

14.3.2 Risk Set Calibration

Clayton (1991) proposed a modification of regression calibration that
does not require events to be rare. If the X’s were observable, and if Xi

is the covariate associated with the ith event, in the absence of ties the
usual proportional hazards regression would maximize

k∏

i=1

exp(βt
xXi)∑

j∈Ri
exp(βt

xXj)
,

where Ri is the risk set (14.1) at the time when failure or censoring of
subject i occurs. Clayton suggested using regression calibration within
each risk set, Ri, given in (14.1). He assumed that the true values X

within the ith risk set are normally distributed with mean µi and variance
σ2

x, and that within this risk set W = X + U, where U is normally
distributed with mean zero and variance σ2

u. Neither σ2
x nor σ2

u depends
upon the risk set in his formulation. Given an estimate σ̂2

u, one can
construct an estimate of σ̂2

x just as in the equations following (4.4).
Clayton thus modified regression calibration by using it within each

risk set. Within each risk set, he applied the formula (4.5) for the best
unbiased estimate of the X’s. Specifically, in the absence of replication,
for any member of the ith risk set, the estimate of the true covariate X

is

X̂ = µ̂i +
σ̂2

x

σ̂2
x + σ̂2

u

(W − µ̂i) ,

where µ̂i is the sample mean of the W’s in the ith risk set.
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As with regression calibration in general, the advantage of Clayton’s
method is that no new software need be developed, other than calculat-
ing the means within risk sets. Formula (4.5) shows how to generalize
this method to multivariate covariates and covariates measured without
error.

14.4 SIMEX for Survival Analysis

The simulation–extrapolation (SIMEX) procedure proposed by Cook
and Stefanski (1994) and presented in detail in Chapter 5 is a general
methodology that extends naturally to survival analysis. For simplicity
of presentation, we consider the case when only one variable is measured
with error.

The essential idea is to simulate new data by adding increasing amounts
of noise to the measured values Wi of the error prone covariate Xi, com-
pute the estimator on each simulated data set, model the expectation
of the estimator as a function of the measurement error variance, and
extrapolate back to the case of no measurement error. More precisely, if
σ2

u is the variance of the measurement error, then for each ζ on a grid
of points between [0, 2] we simulate

Wb,i(ζ) = Wi +
√

ζUb,i, b = 1, . . . , B, (14.9)

where Ub,i are normal, mean zero, independent random variables with
variance σ2

u, and B is the number of simulations for each value of ζ. The
measurement error variance of the contaminated observations Wb,i(ζ) is
(1+ ζ)σ2

u, and the case of no measurement error corresponds to ζ = −1.
By replacing Xi with Wb,i(ζ) in the hazard function (14.3), we obtain

λi

{
t|Wb,i(ζ),Zi

}
= λ0(t)exp

{
βt

xWb,i(ζ) + βt
zZi

}
, (14.10)

and either the partial likelihood (14.4) or the full likelihood (14.5) could

be used to produce estimators β̂b
x(ζ) and β̂b

z(ζ). For each level of added
noise ζ one obtains

β̂x(ζ) =
1

B

B∑

b=1

β̂b
x(ζ), β̂z(ζ) =

1

B

B∑

b=1

β̂b
z(ζ) .

A quadratic or rational extrapolant, as described in Section 5.3.2, can
then be used to obtain the estimated values corresponding to ζ = −1.

For the case of multivariate failure time data, Greene and Cai (2004)
have established the consistency and asymptotic normality of the SIMEX
estimator when the measurement error variance and an exact extrap-
olant are known. Li and Lin (2003a) have used SIMEX coupled with
the EM algorithm to provide inference for clustered survival data when
some of the covariates are subject to measurement error.
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The ideas extend to the case in which more than one predictor is prone
to measurement error. Suppose Wi = Xi + Ui with Ui independent
Normal(0,Ω), where Ω is a known positive definite q×q variance matrix.
If Ω1/2 is its positive square root, then remeasured data is generated as

Wb,i(ζ) = Wi +
√

ζ Ω1/2 Ub,i(ζ),

where Ub,i(ζ) are independent Normal(0, Iq) vectors and ζ is a positive
scalar. Note that

Cov
{
Wb,i(ζ)

}
= (1 + ζ)Ω,

which converges to the zero matrix as ζ → −1. After this, the rest of the
simulation and extrapolation steps are conceptually similar.

14.5 Chronic Kidney Disease Progression

To illustrate the regression calibration and SIMEX methodologies in
survival analysis, we analyze time-to-event data, where the event is de-
tection of primary coronary kidney disease (CKD). Primary CKD could
be viewed as the least severe phase of kidney disease and is typically de-
fined in relationship to the estimated glomerular filtration rate (eGFR)
of the kidney. Primary CKD is defined as either achievement of followup
eGFR < 60 or a post baseline CKD hospitalization or death (Marsh-
Manzi, Crainiceanu, Astor, et al., 2005).

Specifically, we are interested in testing whether African-Americans
are at higher risk of CKD progression. Data were obtained from the
Atherosclerosis Risk in Communities (ARIC) study, a large multipur-
pose epidemiological study conducted in four U.S. communities (Forsyth
County, NC; suburban Minneapolis, MN; Washington County, MD; and
Jackson, MS). A detailed description of the ARIC study is provided by
the ARIC investigators (1989). In short, from 1987 through 1989, 15, 792
male and female volunteers aged 45 through 64 were recruited from these
communities for a baseline and three subsequent visits. For the purpose
of this study, all primary CKD events up to January 1, 2003 were in-
cluded and the time-to-event data were obtained from annual participant
interviews and review of local hospital discharge lists and county death
certificates.

The estimated glomerular filtration rate (eGFR) is a measure of kidney
function and characterizes the different stages of kidney disease. eGFR is
subject to measurement error, and the measurement error variance was
estimated from a different replication study. We consider Cox models
for time-to-CKD events and we include eGFR, an indicator of African-
American race, age at baseline visit, and sex as covariates.
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Figure 14.1 Baseline estimated glomerular filtration rate (eGFR) for African-
Americans (solid line) and others (dashed line).

14.5.1 Regression Calibration for CKD Progression

Regression calibration is a first-order bias-reduction method that works
well when the covariates subject to measurement error enter the model
linearly. Because eGFR has a nonlinear effect on survival probability,
in this section we consider only subjects with baseline eGFR less than
120. This is done only to illustrate regression calibration. One is primar-
ily interested in the relationship between survival and eGFR over the
entire range of eGFR, and in Section 14.5.2 we model this nonlinear re-
lationship with a spline and correct for measurement error with SIMEX.
Several subjects were omitted from our analyses due to missing data
or baseline eGFR values smaller than 60, indicating decreased baseline
kidney function. This reduced the number of subjects from 15, 792 to
15, 080 in our full data set and 13, 359 in the reduced data set (eGFR <
120).

Figure 14.1 shows the estimated probability density of baseline eGFR
for African-Americans compared to others, indicating better baseline
kidney function for African-Americans. We considered a Cox model de-
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eGFR AA Age Sex

Naive −0.061 0.55 0.075 −0.01
SE 0.0022 0.061 0.0048 0.052

Reg. Cal. −0.105 0.84 .064 0.024
SE 0.0038 0.064 0.0049 0.052

Table 14.1 Estimates and standard errors (SE) of risk factors using a reduced
ARIC data set (13, 359 subjects) corresponding to eGFR < 120 and events
observed from first to second visit. Naive, regression on observed eGFR; “AA”
is African-American race.

scribing the time to primary CKD events with covariates eGFR, an in-
dicator of African-American race, sex, and age. Table 14.1 compares
results of the naive analysis, which uses the observed eGFR values, with
the regression calibration, which uses the means of eGFR conditional on
the observed eGFR and the other covariates. Not accounting for mea-
surement error in eGFR would decrease the size of the effect of eGFR
by 42% and of the African-American race indicator by 35%, and would
increase the effect of age by 17%. The effect of sex on CKD progression
was not statistically significant under either the naive or the regression
calibration procedure.

The measurement error variance was estimated using data from the
Third National Health and Nutrition Examination Survey (NHANES
III). Duplicate eGFR measurements were obtained for each of 513 par-
ticipants aged 45 to 64 with eGFR ≥ 60 from two visits at a median of
17 days apart (Coresh et al., 2002). The estimated measurement error
variance was σ̂2

u = 77.56, was treated as a constant in our analyses, and
corresponded to a reliability of 0.80 for eGFR when all subjects with
eGFR ≥ 60 were considered and only 0.60 for eGFR of subjects with
60 ≤ eGFR < 120.

14.5.2 SIMEX for CKD Progression

Given the nonlinear relationship in the full data set between eGFR and
the hazard ratio, we fit the following Cox proportional hazard model

λi(t) = λ0(t) exp{mY(eGFRi) + β2AAi + β3Agei + β4Sexi}, (14.11)
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AA Age Sex

Naive 0.50 0.070 0.011
SE 0.059 0.0047 0.051

SIMEX 0.63 0.054 0.061
SE 0.062 0.0049 0.052

Table 14.2 Estimates and standard errors (SE) of risk factors using all sub-
jects with eGFR > 60 (15, 080 subjects) using events up to 2002. Naive is the
regression using the observed eGFR; “AA” is African-American race.

where mY(·) is a function of the eGFR, and AA denotes the African-
American race. We used a linear spline with four equally spaced knots
between eGFR = 70 and eGFR = 165. More precisely,

mY(x) = β1x +
4∑

k=1

αk(x − κk)+, (14.12)

where κk, k = 1, . . . , 4 are the knots of the spline and a+ is equal to
a if a > 0 and 0 otherwise. In this parameterization, the αk parameter
represents the change in the slope of the log hazard ratio at knot κk

corresponding to eGFR. The proportional hazard model (14.11) using
the linear spline (14.12) with fixed knots to describe the effect of eGFR
is linear in the α and β parameters but it is nonlinear in the variable
measured with error.

Following the SIMEX methodology described in Chapter 5, we simu-
lated data sets using

eGFRb,i(ζ) = eGFRi +
√

ζUb,i, i = 1, . . . , n, b = 1, . . . , B, (14.13)

where Ub,i are normal, mean zero, independent random variables with
variance σ2

u, where σ2
u is the variance of the measurement error asso-

ciated with eGFR. We used 10 values for ζ on an equally spaced grid
between 0.2 and 2 and B = 50 simulated data sets for each value of ζ.
The entire program was implemented in R and run in approximately 5
minutes on a PC (3.6GHz CPU, 3.6Gb RAM), with more than 99% of
the computation time being dedicated to fitting the 500 Cox models,
each with 15, 080 observations.

Models were fit by replacing eGFRb,i(ζ) for eGFRi in model (14.13).
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Figure 14.2 Coefficient and variance extrapolation curves for the ARIC sur-
vival modeling. The simulated estimates are based on 50 simulated data sets
and are plotted as solid circles. The fitted quadratic extrapolant (solid line) is
extrapolated to ζ = −1 (dashed line), resulting in the SIMEX estimate (open
circle).

If β̂b
k(ζ), k = 2, 4 are the parameter estimates, then

β̂k(ζ) =
1

B

B∑

b=1

β̂b
k(ζ), k = 2, 3, 4

are the estimated effects for noise level (1 + ζ)σ2
u. Figure 14.2 displays

β̂k(ζ) in the left column as filled black circles. The parameter estimates
are obtained using a quadratic extrapolant evaluated at ζ = −1, which
corresponds to zero measurement error variance. A similar method is
applied for the variance of the parameter estimates presented in the
right column. The only difference is that we extrapolate separately the
sampling and the measurement error variability, as described in Section
B.4.1. Table 14.2 provides a comparison between the naive and SIMEX
estimates showing that ignoring measurement error would artificially
decrease the effect of African-American race by 21% and increase the
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effect of age by 30%. The effect of sex on progression to primary CKD
was not statistically significant under either the naive or the SIMEX
procedure.

To obtain the SIMEX estimator of the eGFR effect, we estimated the
function mY(·) on an equally spaced grid of points xg, g = 1, . . . , G =
100, between the minimum and maximum observed eGFR. For each level
of added noise, ζσ2

u, the SIMEX estimator at each grid point, xg, is

m̂Y(xg, ζ) =
1

B

B∑

b=1

m̂b
Y

(xg, ζ),

where m̂b
Y

(xg, ζ) is the estimated function at xg using the bth simulated
data set obtained as in (14.13) at the noise level (1+ζ)σ2

u. For every grid
point we then used a quadratic linear extrapolant to obtain the SIMEX
estimator m̂Y(xg, ζ = −1). The solid lines in Figure 14.3 represent the
estimated function mY(·), m̂Y(xg, ζ), for ζ = 0, 0.4, 0.8, 1.2, 1.6, 2, with
higher values of noise corresponding to higher intercepts and less shape
definition. The bottom dashed line is the SIMEX estimated curve.

The nonmonotonic shape of all curves is clear in Figure 14.3, with
unexpected estimated increase in CKD hazard for very large values of
eGFR. Such results should be interpreted cautiously for two reasons.
First, the apparent increase may not be statistically significant, since
there are only 30 CKD cases with baseline eGFR > 140 and 14 with
baseline eGFR > 150. The total number of CKD cases in our data set
was 1, 605. Second, eGFR is not a direct measure of the kidney function
and is typically obtained from a prediction equation, with creatinine as
an important predictor. Creatinine is produced by muscles and is filtered
out of the body by the kidney. Thus, lower values of creatinine typically
predict better kidney function. However, very low values of creatinine,
which would predict very large values of eGFR, could also be due to
lack of muscular mass which, in turn, is associated with higher CKD in-
cidence. In short, very low values of creatinine may occur either because
the kidney does amazing filtration work or because the subject already
has other serious problems and lacks muscular mass. The latter mech-
anism may actually be the one that is providing the increasing pattern
corresponding to eGFR > 140, irrespective of its statistical significance.

14.6 Semi and Nonparametric Methods

Semiparametric models usually refer to a combination of parametric,
richly parameterized, and nonparametric models. Survival models with
covariate measurement error have three main components that may be
modeled semi or nonparametrically:
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Figure 14.3 Linear spline fits with K = 4 knots. Function estimators based on
50 simulated data sets corresponding to ζ = 0, 0.4, 0.8, 1.2, 1.6, 2 are plotted as
solid lines, with larger values of noise corresponding to higher intercepts. The
SIMEX estimate is the dashed line.

1. The conditional expectation E {exp(βt
xX|T ≥ t,Z,W)}.

2. The distribution function of X.

3. The baseline hazard function λ0(t).

Various parametric and nonparametric methods depend on which com-
ponent or combination of components is modeled nonparametrically, as
well as on the choice between partial or full likelihood function.

14.6.1 Nonparametric Estimation with Validation Data

When the rare-failure assumption introduced in Section 14.2 does not
hold, approximating E {exp(βt

xX|T ≥ t,Z,W)} by E {exp(βt
xX|Z,W)}

may lead to seriously biased estimates (Hughes, 1993). One way to avoid
this problem is to estimate E {exp(βt

xX|T ≥ t,Z,W)} nonparametri-
cally.

Assuming the existence of a validation sample, Zhou and Pepe (1995)
proposed a nonparametric estimator of E {exp(βt

xX|T ≥ t,Z,W)} when
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(Z,W) are categorical. If V and V̄ are the sets of indices corresponding
to validation and nonvalidation data, respectively, then

êi(t|βx) =

∑
j∈V Yj(t)I {Zj = Zi,Wj = Wi} exp(βt

xXj)∑
j∈V Yj(t)I {Zj = Zi,Wj = Wi}

(14.14)

is a simple nonparametric estimator of E {exp(βt
xXi|Ti ≥ t,Zi,Wi)}.

The estimator êi(t) is easy to calculate and represents the average of
exp(βt

xXj) over those subjects in the validation data that are still at risk
at time t and share the same observed covariate values (Zj ,Wj) with
the ith subject. The induced hazard function with the partial likelihood
replaced by an estimator is

λ̂(t|Wi,Zi) = λ0(t)exp(βt
zZi) {exp(βxXi)I(i ∈ V ) + êi(t|βx)I(i /∈ V )} .

Zhou and Pepe (1995) suggested maximizing the following estimator of
the log partial likelihood:

EPL(βx, βz) =
n∑

i=1

δi


log{Ĥi(βx, βz)} − log{

∑

j∈Ri

Ĥj(βx, βz)}


 ,

(14.15)

where Ĥi(βx, βz) = exp(βt
zZi) {exp(βxXi)I(i ∈ V ) + êi(Yi|βx)I(i /∈ V )}

is the estimated relative risk of subject i. Because the Ĥi(βx, βz) is a
weighted average of hazard ratios of subjects in the validation sample,
standard Cox regression software cannot be used to maximize (14.15).
One possible solution would be to maximize (14.15) directly using non-
linear optimization software.

A more serious limitation of the procedure occurs when the condi-
tional distribution [X|Z,W] depends on three or more discrete covari-
ates. In this situation, it is difficult to estimate the conditional distribu-
tion [X|Z,W] well from a validation sample that is usually small. This
could have severe effects on the variability of the parameter estimate.
Also, in practice, the conditional distribution [X|Z,W] often depends
on continuous covariates.

A similar nonparametric estimator using kernel smoothing was pro-
posed by Zhou and Wang (2000) when (Z,W) are continuous. If K(·) is a

multivariate kernel function, then the conditional relative risk Ĥi(t|βx, βz)
= E {exp(βt

xXi + βt
zZi|Ti ≥ t,Zi,Wi)} can be estimated as

Ĥi(t|βx, βz)

=

∑
j∈V Yj(t)Kh

{
(Zt

i,W
t
i)

t − (Zt
j ,W

t
j)

t
}

exp(βt
xXj + βt

zZj)∑
j∈V Yj(t)Kh

{
(Zt

i,W
t
i)

t − (Zt
j ,W

t
j)

t
} , (14.16)

where Kh(·) = K(·/h) and h is the kernel bandwidth size. Therefore,
for a subject i that is not in the validation data, that is, i /∈ V , the
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estimated hazard ratio Ĥi(t|βx, βz) is a weighted sum of all hazard ratios

Ĥj(t|βx, βz) of subjects in the validation data that are still at risk at time
t. The weights assigned to the hazard ratio of each subject depend on
the distance between the observed covariates (Zt

i,W
t
i)

t for subject i and
(Zt

j ,W
t
j)

t in the validation data.

As in the case of discrete covariates, maximizing the function EPL(βx,
βz) from equation (14.15) can be used to estimate (βx, βz). Maximiz-
ing EPL(βx, βz) requires a separate nonlinear maximization algorithm.
However, writing the code should be straightforward because derivatives
of Ĥi(βx, βz) can be calculated as weighted sums of the derivatives of
Hj(βx, βz), j ∈ V , with the weights being calculated only once.

The main problem is that the estimators of the induced hazard func-
tion will depend heavily on the bandwidth size h of the kernel function.
Since typical conditions for asymptotic consistency provide no informa-
tion about the choice of bandwidth for finite samples, careful data de-
pendent tuning is usually necessary. This problem is especially difficult
when there two or more covariates (Z,W), because the typically small
validation data would be used for tuning of the smoothing parameters of
a multivariate kernel. Another limitation of the methods in this section
is that they require a validation sample that, in many applications, is
not available.

14.6.2 Nonparametric Estimation with Replicated Data

Huang and Wang (2000) have proposed a nonparametric approach for
the case when replicated proxy observations are available for each sub-
ject. They assumed that for each variable prone to measurement error,
Xi, there are at least two proxy measurements, Wi1,Wi2 linked to Xi

through a classical additive measurement error model

Wij = Xi + Uij , j = 1, 2,

where Uij are mutually independent and independent of all other vari-
ables. The approach is nonparametric because it does not require spec-
ification of the baseline hazard function, λ0, or the distribution of Uij .
However, the proportional hazard function is modeled parametrically.

If Xi were observed without error, then a consistent, asymptotically
normal estimator of (βt

x, βt
z) can be obtained by solving the score equa-

tion

∂l(βx, βz)

∂βx∂βz
= 0,

where l(βx, βz) is the log partial likelihood function defined in (14.4).
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The score function is

∂l(βx,βz)
∂βx∂βz

=
∑n

i=1 δi

{
[Xi,Zi]

−
∑

j∈Ri
[Xj ,Zj ]exp(βt

xXj+βt
zZj)∑

j∈Ri
exp(βt

xXj+βt
zZj)

}
,

(14.17)

where [X,Z] denotes the matrix obtained by binding the columns of X

and Z. The naive approach would replace Xi with (Wi1 +Wi2)/2, while
the regression calibration would replace Xi with E[Xi|Wi1,Wi2,Zi].
Huang and Wang (2000) proposed replacing the score function (14.17)
with

∂l̃(βx, βz)

∂βx∂βz
=

n∑

i=1

δi

{
Ai −

∑
j∈Ri

Bj (βx, βz)∑
j∈Ri

Cj (βx, βz)

}
, (14.18)

where

Ai =
[Wi1,Zi] + [Wi1,Zi]

2
,

Bj (βx, βz) =
[Wi1,Zj ] exp(βt

xWi2) + [Wi2,Zj ] exp(βt
xWi1)

2
exp(βt

zZj)

and

Cj (βx, βz) =
exp(βt

xWi1) + exp(βt
xWi1)

2
exp(βt

zZj).

Huang and Wang (2000) showed that the estimator obtained by max-
imizing (14.18) is consistent and asymptotically normal. When more
than two replicates are available the formulas for Ai, Bj (βx, βz) and
Cj (βx, βz) are slightly more complicated by taking averages over all
replicates instead of just two.

A potential problem with this approach is that the approximate score
function (14.18) can be evaluated only for those subjects i that have
repeated measurements. Therefore, serious losses of efficiency may occur
when replication data are available for only a small subsample. Biased
estimators may occur when the subset of subjects with replicated data
is not a random subsample of the original population sample.

14.6.3 Likelihood Estimation

Likelihood estimation is a different approach to estimation in the context
of survival analysis with measurement error. Under the assumptions in
Section 14.1, the likelihood associated with one observation, i, in the
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Cox model is

∫
{λ(Yi|x,Zi)}

δiexp

{
−

∫ Yi

0

λ(u|x,Zi)du

}
f(Wi, x|Zi)dx, (14.19)

where f(w, x|z) = f(w|x, z)f(x) is the joint conditional density function
of the random variables W and X given Z. It is assumed that X is
independent of Z. If t1, . . . , tm are all the unique failure times then the
full likelihood function can be written as

L =
∏n

i=1

[
∫ ∏m

j=1 λ0(tj)
I(Yi=tj)exp{δi(β

t
xx + βt

zZi)}

× exp
[
−exp{δi(β

t
xx + βt

zZi)}
∑m

j=1 λ0(tj)I(tj ≤ Yi)
]

×f(Wi|x,Zi)f(x|θ)dx

]
,

(14.20)
where βx, βz, λ0(t1), . . . , λ0(tm), θ are treated as unknown parameters.
Hu, Tsiatis, and Davidian (1998) assumed that the conditional density
f(w|x, z) is known and used parametric, semi and nonparametric models
for f(x|θ).

The parametric model assumes that X has a normal distribution with
parameters θ = (µx,Σx), which in many applications is a reasonable
assumption. When this assumption is not reasonable one can often find
a transformation of the observed proxies, W, that would be consistent
with the normality assumption. While Hu, Tsiatis, and Davidian (1998)
called this a fully parametric method, the baseline hazard function is
not parameterized. Thus, the procedure requires maximization over a
large number of parameters and could be considered nonparametric with
respect to the hazard function.

An important feature of this methodology is that existent software
developed for fitting nonlinear mixed effect models, such as the FOR-
TRAN program Nlmix (Davidian and Gallant, 1993) or the R function
nlme, can be adapted to maximize (14.20). This can be done by treating
the unobserved variables Xi as independent normal random effects and
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using the following conditional distribution
∏m

j=1 λ0(tj)
I(Yi=tj)exp {δi(β

t
xXi + βt

zZi)}

× exp
[
−exp{δi(β

t
xXi + βt

zZi)}
∑m

j=1 λ0(tj)I(tj ≤ Yi)
]

× f(Wi|Xi,Zi).

These functions work well when the integral in equation (14.20) is low
dimensional, that is, when the number of variables subject to measure-
ment error is small.

The normality assumption can be further relaxed by considering a
more general family of distributions for the unobserved variables Xi.
For the case when only one variable is observed with error, Hu et al.
(1998) used the semi-nonparametric (SNP) class of smooth densities of
Gallant and Nychka (1987),

f(x|θ) =
1

C(θ)

(
1 + a1x + . . . + aKxK

)2 1

σx
exp

{
−

(x − µx)2

2σ2
x

}
,

(14.21)
where θ = (a1, . . . , aK , µx, σx) and C(θ) is a constant that ensures∫

f(x|θ)dx = 1. The class of smooth densities (14.21) contains the nor-
mal densities as a particular case when a1 = . . . = aK = 0. Because the
number of monomials, K, is unknown and can theoretically be very large,
the family of distributions (14.21) can be viewed as a nonparametric fam-
ily. However, in practice, it is very rare that K ≥ 3 is necessary. When
K is small, maximizing (14.20) when f(x|θ) has the form (14.21) could
provide a useful sensitivity analysis to the specification of the marginal
distribution of X. Alternatively, the robustness of the specification can
be checked using the remeasurement method of Huang, Stefanski, and
Davidian (2006) (see also Section 5.6.3). The FORTRAN program Nlmix

(Davidian and Gallant, 1993) can handle random effect distributions of
the type (14.21).

The fully nonparametric approach of Hu et al. (1998) for modeling
f(x|θ) uses a binning strategy similar to histogram estimation. More
precisely, a set of locations x1, . . . , xK is fixed, where K << n is the
number of support points of the approximate distribution. The proba-
bility mass function of X is represented as

f(x|θ) =

K∏

k=1

p
I(X=xk)
k , (14.22)

where θ = (K,x1, . . . , xK , p1, . . . , pK), pk = P (X = xk), k = 1, . . . ,K

and
∑K

k=1 pk = 1. While, in principle, one could maximize the likelihood
over θ, λ0(t1), . . . , λ0(tm), βx and βz this is a not a realistic approach.
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Hu, Tsiatis, and Davidian (1998) fixed K to be moderately large (K =
20) and x1, . . . , xK equally spaced on the range of observed values of W.
For θ = (p1, . . . , pK), Hu et al. proposed an EM algorithm to maximize
(14.20) and provided a simulation study comparing these methods with
regression calibration.

Somewhat unexpectedly, regression calibration performs remarkably
well even in small samples (n = 100) when the distribution of X is nor-
mal and the attenuation factor is moderate or small. The full likelihood
analysis using the normal distribution performed well even when the
distribution of X was not normal. From a practical perspective, apply-
ing normalizing transformations to the observed W and using regression
calibration may be a very good first step of the analysis. As discussed
by Hu et al. (1998), applying a likelihood-based method may be com-
putationally prohibitive for realistic data sets. A reasonable alternative
could be to apply these methods to a random subsample of the data as
a sensitivity analysis.

One limitation of the methods described in this section is that the
distribution of X is not allowed to depend on observed covariates Z. An-
other limitation is that the methods are designed for one variable subject
to measurement error, and they do not easily generalize to multiple cor-
related variables. Lastly, the computational burden seems prohibitive for
data sets with thousands of observations and multiple covariates.

14.7 Likelihood Inference for Frailty Models

Random effects models have been discussed in Chapter 11. Random
effects have also been used in survival analysis with clustered data, but
in this context they are called frailties. In this section, we will use the
notation introduced in Section 14.1 but use a pair of indices (i, j) instead
of the single index i, where i = 1, . . . , I is the cluster index, and j =
1, . . . , J is the observation index within cluster.

Conditional on the cluster-specific frailty, the proportional hazards
function follows a Cox model (14.3):

λij (t|Xij ,Zij , bi) = λ0(t) exp
(
βt

xXij + βt
zZij + bi

)
, (14.23)

where Xij are variables subject to measurement error, Zij are observed
without measurement error, and bi is the cluster specific frailty. In ad-
dition to the standard assumptions for survival analysis we will assume
that bi are iid Normal(0, σ2

b ), independent of failure, censoring, and mea-
surement error processes. We assume that the proxy variables Wij follow
a classical additive measurement error model

Wij = Xij + Uij ,
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where Uij are mean zero measurement error variables, independent of
Tij , Cij , Xij and bi.

A full likelihood approach was proposed by Li and Lin (2000) for fitting
model (14.23), assuming normality of the frailty and [X|W,Z] distribu-
tions. They used an EM algorithm to maximize the marginal likelihood
by treating the frailties and the covariates observed with error as miss-
ing data. The “complete data” for the ith cluster are the observed data
(Zij ,Wij) and the unobserved (Xij , bi). The complete data likelihood
for this cluster is

Li(Θ;Xij , bi,Zij ,Wij) = {λij(t|Xij ,Zij , bi)}
δij ×

exp

{
−

∫ Yi

0

λ(u|Xij ,Zij , bi)du

}
φ(bi, σ

2
b )φ(Xij |Wij ,Zij , θ), (14.24)

where φ(bi, σ
2
b ) is the normal density of bi with mean zero and variance

σ2
b and φ(Xij |Wij ,Zij) is the conditional normal density of Xij given

(Wij ,Zij). Here Θ is the vector of all parameters and includes the pa-
rameters of the proportional hazard function, (βx, βz); the parameter of
the random effects model, σ2

b ; the parameter of the conditional distri-
bution [X|W,Z], θ; and the set of all jumps in the integrated baseline
hazard function, ∆Λ0(t).

Of course, the complete data likelihood cannot be used directly for esti-
mation since it contains unobserved data. Instead, one uses the marginal
likelihood of the observed data, which is obtained by integrating out the
unobserved quantities, that is

L(Θ) =

I∏

i=1

∫ 



J∏

j=1

Li(Θ, ;Xij , bi,Zij ,Wij)dXij



 dbi.

The EM algorithm of Li and Lin (2000) usesd Monte Carlo simulations
to perform these integrations at the E-step. A full likelihood analysis
requires an estimate of the baseline hazard, and Li and Lin used a non-
parametric maximum likelihood estimator.
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(1995) and Zhou and Wang (2000) proposed nonparametric estimators
of the induced hazard function. For data with at least two replicates,
Huang and Wang (2000) proposed a consistent nonparametric estimator
based on a modification of the partial likelihood score equation. Au-
gustin (2004) showed that Nakamura’s (1992) methodology of adjusting
the likelihood can be applied to the Breslow likelihood to provide an ex-
act corrected likelihood. This result circumvented the impossibility result
derived by Stefanski (1989) for the partial likelihood. Hu, Tsiatis, and
Davidian (1998) have proposed likelihood maximization algorithms for
parametric and nonparametric specifications of the distribution of the
unobserved variables. Greene and Cai (2004) established the asymptotic
properties of the SIMEX estimators for models with measurement er-
ror and multivariate failure time data. Hu and Lin (2004) introduced a
modified score equation and established the asymptotic properties of the
estimators for multivariate failure time data. Li and Lin (2000, 2003a)
used the EM algorithm and SIMEX, respectively, to provide maximum
likelihood estimators for frailty models with variables observed with er-
ror. Song and Huang (2005) compared the conditional score estimation of
Tsiatis and Davidian (2001) with Nakamura’s (1992) parametric adjust-
ment. Tadesse, Ibrahim, Gentleman, et al. (2005) discussed the Bayesian
analysis of times to remission using as covariates gene expression levels
measured by microarrays.

Surrogate markers are outcomes that are correlated with the outcome
of primary interest, for example CD4 counts have been used as a surro-
gate marker for survival times in AIDS clinical trials (Dafni and Tsiatis,
1998). The advantage of a surrogate marker is that it can indicate rel-
atively rapidly whether a treatment is effective, for example an AIDS
treatment can be judged effective relatively quickly if it causes a sig-
nificant increase in CD4 counts, whereas effectiveness based on survival
times might not be evident until enough deaths have occurred, which
might take years. In the meantime, patients would be deprived of a new
and effective treatment. A surrogate marker is an outcome, that is a
variable depending upon treatment, as well as a covariate for predicting
the primary outcome. Dafni and Tsiatis (1998) discussed methodology
for handling surrogate outcomes measured with error.
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CHAPTER 15

RESPONSE VARIABLE ERROR

15.1 Response Error and Linear Regression

In preceding chapters, we have focused primarily on problems associated
with measurement error in predictor variables. In this chapter, we con-
sider problems that arise when a true response is measured with error.
Since in previous chapters we have designated X as a covariate measured
with error, to emphasize that we are not combining response error and
covariate error, we will not use X in this chapter.

Abrevaya and Hausman (2004) state “Classical measurement error
(that is, additive error uncorrelated with the covariates) in the dependent
variable is generally ignored in regression analysis because it simply gets
absorbed into the error residual.” It is interesting to consider this claim.
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Figure 15.1 An illustration of response error in linear regression with unbi-
ased classical measurement error. The solid line is the data without response
measurement error, while the dashed line is the observed data with response
measurement error. Note the increased variability about the line when there is
response error.
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Figure 15.2 The fitted least squares lines in the data from Figure 15.1. The
left panel is the fitted least squares without response measurement error, while
the right panel is the fitted least squares line with response measurement error.
Note the lack of bias due to this type of response measurement error.

We generated linear regression data so that the true Z values were
equally spaced on the interval [−2, 2], the intercept β0 = 0.0, and the
slope βz = 1. The error about the line was σ2

ǫ = 1, so that Y =
Normal(Z, 1). We then added to Y normally distributed response er-
ror with variance σ2

v = 3, that is we observe S = Y + V, where V =
Normal(0, 3.0). Note that the measurement error in the response is three

times the error about the line. If the measurement error were this large
and had been in the predictors, we know that the effect on the fitted
lines would be enormous.

What happens, though, when the measurement error is in the re-
sponse? The remark of Abrevaya and Hausman is illustrated in Figures
15.1, 15.2, and 15.3. In Figure 15.1, we show a typical set of data gener-
ated with and without response error. The obvious feature we see here
is that the unbiased measurement error in the response increases the
variability of the observe data about the line.

Figure 15.2 delves a little deeper, displaying the actual fitted lines.
The remarkable thing here is that, even though the data with response
measurement error have four times the variability about the line as the
data without response measurement error, the two lines are very simi-
lar. Figure 15.3 is the results of 200 simulated data sets, showing that
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Figure 15.3 Two hundred simulated data sets without (left panel) and with
(right panel) measurement error in the setup of Figure 15.1. Note that re-
sponse measurement error that is classical and unbiased simply increases the
variability of the least squares fitted lines, without affecting bias.

unbiased response measurement error simply increases the variability of
the fitted lines.

We now make the following conclusions, the first of which is supported
by the exercise with simulated data that we have just undertaken:

• In linear regression with unbiased and homoscedastic response mea-
surement error, the response measurement error increases the vari-
ability of the fitted lines without causing bias.

• We now go on to make a far stronger conclusion. In linear or nonlinear
regression that has homoscedastic errors about the true line, the only
effects of adding unbiased, homoscedastic response measurement error
is to increase the variability of the fitted lines and surfaces, and to
decrease power for detecting effects. All tests, confidence intervals,
etc. are perfectly valid: they are simply less powerful.

The argument for the last very strong statement is perfectly simple.
Suppose that without response error, Y has mean mY(Z,B) and vari-
ance σ2. Now suppose that we observe S, which is just Y with additive
error σ2

v . Then the observe response S has mean mY(Z,B) and variance
σ2

new = σ2 + σ2
v . Thus, the observed data have the same mean and a

constant, but larger variance.
There is one caveat. For strongly nonlinear models, the larger response

variance has further implications. Inference for nonlinear models is often
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Figure 15.4 Normal plots of β̂ for an exponential regression model with differ-
ent amounts of measurement error in the response.

based on approximation of the model by a linear one using a Taylor
expansion of the parameter, β, about its true value, β0, for example

Yi = mY(Zi, β) + ǫi ≈ mY(Zi, β0) + f ′(Zi, β0)(β − β0) + ǫi.

The error in the Taylor approximation decreases to zero as β approaches
β0.

An increase in response variance causes β̂ to vary more about β0, which
makes the approximation less accurate. This can be seen in Figure 15.4,
which has normal plots of β̂ from 250 simulations of the model

Yi = exp(−βZi) + ǫi + Ui, i = 1, . . . , 200,

where Z1. . . . , Z200 are equally spaced on [0, 1], β = 2, σǫ = 1/4, and
σu = 0, 0.5, 1, and 1.5, respectively, in the four panels starting at the
top left. Notice that larger values of σu increase not only the variability
of β̂ but also its skewness. Because the errors are normally distributed,
β̂ would have an exact normal distribution if the model were linear.
Deviation from normality increases with σu, because larger values of σu

increase the effect of the nonlinearity in the model. This problem does
not occur, of course, if the model is linear.
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15.2 Other Forms of Additive Response Error

15.2.1 Biased Responses

If S is not unbiased for Y, then regression of it on the observed predictors
leads to biased estimates of the main regression parameters. For example,
suppose Y given Z follows a normal linear model with mean β0 + βt

zZ

and variance σ2
ǫ , while S given (Y,Z) follows a normal linear model with

mean γ0 +γ1Y and variance σ2
v . Here S is biased, and the observed data

follow a normal linear model with mean γ0 +β0γ1 + γ1β
t
zZ and variance

σ2
v + γ2

1σ2
ǫ . Thus, instead of estimating βz, naive regression ignoring

measurement error in the response estimates γ1βz.
There is an obvious solution to this problem, namely, to change S

so that it is unbiased, that is use (S − γ0)/γ1. The careful reader will
note that when a writer says things are obvious, he/she means something
different. Clearly (a better word!), the problem here is to obtain informa-
tion about (γ0, γ1). In a series of papers, Buonaccorsi (1991, 1996) and
Buonaccorsi and Tosteson (1993) discussed how to do just this. Here, we
give a brief overview of what they proposed.

15.2.1.1 Validation Data

Suppose that validation data are available on a simple random subsample
of the primary data. The idea neatly breaks down into a series of steps:

• Use the validation subsample data to obtain estimates of B, the pa-
rameters relating Y and Z, and (γ0, γ1): call the former B̂1.

• Create an estimated unbiased response as (S − γ̂0)/γ̂1 and run your

favorite analysis to get a second estimate B̂2.

• Estimate the joint covariance matrix of these estimates using the boot-
strap, and call it Σ.

• Form the best weighted combination of the two estimates, namely

B̂ = (J tΣ−1J)−1J tΣ−1(B̂t
1, B̂

t
2)

t,

where J = (I, I) and I is the identity matrix with the same number
of rows as there are elements in B.

• Use (J tΣ̂−1J)−1 as the estimated covariance matrix for the combined

estimate B̂.

15.2.1.2 Alloyed Gold Standard

In some (presumably fairly rare) cases, one might not have validation
data, but instead, for a random subsample of the primary data, one
might have two independent replicate unbiased measurements of Y; call
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them (S1∗,S2,∗). These unbiased replicates are in addition to the biased
surrogate S measured on the main study sample.

In this case, we use the same algorithm as for validation data, with
the following changes:

• Use the unbiased response (S1,∗ + S2,∗)/2 to get B̂1.

• Estimate (γ0, γ1) using measurement error methods (!) as described
in Chapter 3, because the replication data follow the model,

S = γ0 + γ1Y + V;

Sj,∗ = Y + Uj,∗ for j = 1, 2,

where U1,∗ and U2,∗ are independent with mean zero. This is a linear
regression measurement error model with response S and “true co-
variate” Y and with replicate measurements S1,∗ and S2,∗ of Y. The
methods reviewed in Chapter 3 are used to estimate (γ0, γ1).

15.2.2 Response Error in Heteroscedastic Regression

Weighted least squares and generalized least squares approaches are of-
ten used when the data exhibit nonconstant variances, that is are het-
eroscedastic. We call such models QVF models (Sections 8.8 and A.7),
because they combine aspects of quasilikelihood and variance function
modeling. Sections 8.8 and A.7 describes what these models are, and
how to fit and make inference about them. Of course, we like to think
of Carroll and Ruppert (1988) as the authoritative text on the topic.

Briefly, additive unbiased response measurement error in a heterosce-
dastic regression simply changes the form of the variance function. Once
one keeps track of the change, then the methods of Section A.7 apply.

15.2.2.1 A Simple Case

To see this in a simple case, suppose that the regression function one
wants to fit to Y is linear: β0 + βzZ, but that the variance about the
true line is σ2

ǫZ
α. If Y were observed and α were known, one would

simply perform a weighted least squares regression with weights Z−α:
Section A.7 shows how to estimate α.

Now suppose, however, that instead of observing Y, one observed
S = Y+V, where V has mean zero and variance σ2

v . Then we are simply
adding variability, so that S has the same linear regression function as
does Y, but the variance becomes σ2

v + σ2
ǫZ

α. The form of the variance
function has changed by the addition of the response error variance σ2

v .
However, Section A.7 is so general that the methods described there
apply to the new model for S.
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15.2.2.2 General Case

Luckily, the general case is the simple case, just with more general
notation. Now the regression function for Y is something general like
mY(Z,B), and the variance function for Y is something general like
σ2

ǫ g2(Z,B, θ). The rule, though, remains the same: if there is additive,
unbiased response error, the regression function remains the same, the
variance function changes, and Section A.7 shows how to cope with the
change. As before, if we observe S = Y+V, where V has mean zero and
variance σ2

v , then the new variance function is just σ2
v + σ2

ǫ g2(Z,B, θ).

15.2.2.3 Ignoring Heteroscedasticity

We think it is silly, but many people ignore nonconstant variability and
fit unweighted regressions, with the variance for the regression function
parameters fixed up by devices like the bootstrap (Section A.9) or the
sandwich method (Section A.6).

Why silly?

• Not accounting properly for variability leads to a decrease in efficiency
for estimating the regression parameter B. In effect, this means throw-
ing away data just for sport. Few investigators have enough data that
they are willing to throw some away to entertain the statistician.

• Not all of statistics is estimating regression parameters. It is often
important to understand the variability in order to make inferences
about predictions and calibrations. This ihas been demonstrated in
striking detail by Carroll (2002) and in a series of examples by Carroll
and Ruppert (1988).

15.3 Logistic Regression with Response Error

15.3.1 The Impact of Response Misclassification

In logistic regression, response error is misclassification. There are two
primary differences with regression models having a continuous response
and additive response measurement error:

• Additive measurement error makes no sense. The error occurs when a
positive response Y = 1 is transmuted into a negative response S = 0,
and vice versa.

• Misclassification is biased response error, and the bias needs to be
accounted for.

Thus, consider a logistic regression model that has probability of re-
sponse

pr(Y = 1|Z) = H(β0 + βt
zZ), (15.1)
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Figure 15.5 Illustration of the effect of misclassification of the response in
logistic regression. Solid line: the true probability of response. Dashed line: the
observed probability of response when cases (noncases) are classified incorrectly
20% (30%) of the time.

where H(·) is the logistic distribution function. Pretend that misclassifi-
cation does not depend on Z, and that we classify individuals correctly
with probabilities

pr(S = 1|Y = 1,Z) = π1;

pr(S = 0|Y = 0,Z) = π0.

The observed data no longer follow the logistic model (15.1), but instead
have the more complex form

pr(S = 1|Z) = (1 − π0) + (π1 + π0 − 1)H(β0 + βt
zZ). (15.2)

Figure 15.5 gives an illustration of the impact of misclassification of
the response. In this setting, those who actually have a response Y = 1
are correctly classified with probability 80%, while those who did not
have a response, that is Y = 0, are correctly classified with probability
70%. The logistic intercept is −1.0 and the slope is 1.0. One can see
that the effect of response misclassification is to bias the true line badly,
somewhat along the lines of an attenuation. The difference between the
major impact of misclassification of the response here and the near null
impact of unbiased response error in linear regression (Figure 15.2) is
profound and important.
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Also, response misclassification can lead to major biases in parameter
estimates. In our case, the true slope is βz = 1, but the response mis-
classification makes logistic regression think that the slope is more along
the lines of 0.40, a major difference.

This illustration indicates that response misclassification does need to
be accounted for.

15.3.2 Correcting for Response Misclassification

The profound impact of response misclassification in logistic regression
has led to the development of many interesting statistical methods,
see among many others Palmgren and Ekholm (1982, 1987), Ekholm
and Palmgren (1987), Copas (1988), Neuhaus (2002), Ramalho (2002),
Prescott and Garthwaite (2002), and Paulino et al. (2003).

15.3.2.1 Unknown Misclassification Probabilities

If one believes the misclassification probabilities are independent of the
covariates, then estimating all the parameters (π1, π0, β0, βz) can be done
via maximum likelihood or Bayesian approaches. Let the probability
model (15.2) be denoted as Ψ(S,Z, π0, π1, β0, βz). Then the loglikelihood
function to be maximized is just

n∑

i=1

[
Silog{Ψ(S,Z, π0, π1, β0, βz)} (15.3)

+(1 − Si)log{1 − Ψ(S,Z, π0, π1, β0, βz)}
]
.

Maximization of this loglikelihood can be done via many devices, includ-
ing the method of scoring, iteratively reweighted least squares and the
EM-algorithm.

The major practical issue is that the classification probabilities are
only very weakly identified by the data, that is they are difficult to
estimate with any precision, and that difficulty carries over to estima-
tion of the underlying risk function. Copas (1988) states that “accurate
estimation of (the misclassification parameters) is very difficult if not
impossible unless n is extremely large.” This is one of the classic cases
where parameters may be identified theoretically but not in any practi-
cal sense; see also Section 8.1.2. Copas (1988) and Neuhaus (2002) both
basically concluded that the best one can hope to do is a sensitivity
analysis for plausible values of the misclassification probabilities.

Paulino et al. (2003), in a slightly different context, addressed the
problem of lack of practical identifiability of the misclassification proba-
bilities via the Bayesian route, using informative prior distributions that
were developed with the help of a subject-matter expert.
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We next describe situations in which there is information about the
misclassification probabilities.

15.3.2.2 Known Misclassification Probabilities

In the presumably rare event that the classification probabilities π1 and
π0 are known, maximizing the loglikelihood (15.3) in (β0, βz) is simple
using iteratively reweighted least squares.
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Figure 15.6 Illustration of the effect of misclassification of the response in
logistic regression. Solid line: density estimate of the estimated slopes in a
simulation study of the logistic regression when there is no misclassification.
Dashed line: density estimate with misclassification, when the misclassification
probabilities are known. The observed probability of response with cases (non-
cases) are classified incorrectly 20% (30%) of the time. Note the profound loss
of information due to response misclassification.

Figure 15.6 describes a simulation study of the same logistic model
described previously when the number of observations is n = 500. It
contrasts the density function of the logistic regression slope estima-
tor if there were no misclassification (solid line) versus what happens
when there is misclassification, but the misclassification probabilities
are known. The point of this figure is to note that if the classification
probabilities are known, then one can indeed construct an approximately
consistent estimate of the true slope (in contrast, if one ignores the mis-
classification, one thinks that the slope is 0.40, not the correct 1.00), but
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that the effect of misclassification is to increase greatly the variability of
the fitted logistic slope.

15.3.2.3 Validation Data

In some cases, there might be validation data, that is Y may be observ-
able on a subset of the study. In this case, one can directly estimate the
classification probabilities.
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Figure 15.7 Illustration of the effect of misclassification of the response in lo-
gistic regression, when there is 20% validation done completely at random.
Solid line: density estimate of the slope in the logistic regression for the vali-
dation data. Dashed line: density estimate for the MLE. Dotted line: density
estimate for pseudolikelihood.

One possibility is to estimate π1 (π0) as the fraction of those in the val-
idation study who are correctly classified among those whose true value
is Y = 1 (Y = 0), pretend that these are known, and then maximize the
(now pretend) likelihood (15.3). This approach is called pseudolikelihood,
a methodology that has a long and honorable history in statistics. There
are two major difficulties with such an approach:

• It is invalid, leading to biased estimation and inference, if selection
into the validation study depends on the observed values of S or Z,
as might reasonably happen.

• It is inefficient, because in this case a proper likelihood analysis can
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be undertaken that uses the observed Y values effectively. A detailed
derivation of the likelihood function is delayed until Section 15.4 be-
low. See also Prescott and Garthwaite (2002) for a Bayesian treat-
ment.

In Figure 15.7, we display what happens to the complete data esti-
mate, the pseudolikelihood estimate, and the maximum likelihood esti-
mate of the slope when there is 20% randomly selected validation. The
complete data estimate, also called the complete-cases estimate, uses
only the cases that have all variables measured, that is only the valida-
tion data. All the methods are consistent estimates, and there is little
to choose between them.
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Figure 15.8 Illustration of the effect of misclassification of the response in
logistic regression, when selection into the validation study depends on S and
Z. Solid line: density estimate of the slope in the logistic regression for the
validation data. Dashed line: density estimate for the MLE. Dotted line: density
estimate for pseudolikelihood. The actual slope is 1.0: note the bias in all but
the MLE.

However, in Figure 15.8 validation is more complex and depends on
both S and Z. If S = 1 and Z > 0, we observe Y with probability 0.05.
If S = 1 and Z ≤ 0, we observe Y with probability 0.15. If S = 0 and
Z > 0, we observe Y with probability 0.20. If S = and Z ≤ 0, we observe
Y with probability 0.40. This figure shows that only the maximum like-
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Validation Data
Z S Y Count
0 0 0 19
0 0 1 5
0 1 0 7
0 1 1 14
1 0 0 28
1 0 1 27
1 1 0 8
1 1 1 24

Nonvalidation Data
0 0 – 47

Table 15.1 GVHD data set. Here Y = 1 if the patient develops chronic GVHD
and = 0 otherwise, while S = 1 if the patient develops acute GVHD. The
predictor Z = 1 if the patient is aged 20 or greater, and zero otherwise.

lihood estimate is unbiased, with the complete data estimates and the
pseudolikelihood estimates incurring substantial bias.

15.3.2.4 Example

In this section, we present an example where selection into the validation
study depends on the mismeasured response. We compare the maximum
likelihood estimate with the naive use of the complete data. The latter
is not valid and appears to be seriously biased in this case.

Pepe (1992) and Pepe et al. (1994) described a study of 179 aplastic
anemia patients given bone marrow transplants. The objective of the
analysis is to relate patient age to incidence of chronic graft versus host
disease (GVHD). Patients who develop acute GVHD, which manifests
itself early in the post transplant period,are at high risk of developing
chronic GVHD. Thus, in this example Y is chronic GVHD, S is acute
GVHD, and Z = 0, 1 depending on whether or not a patient is less than
20 years of age. The data are given in Table 15.1. A logistic regression
model for Y given Z is assumed.

The selection process as described by Pepe et al. (1994) is to select only
1/3 of low risk patients (less than 20 years old and no acute GVHD) into
the validation study, while following all other patients. Thus, π(S,Z) =
1/3 if S = 0 and Z = 0, otherwise π(S,Z) = 1. Note that, here, selection
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Validation Data MLE

β̂z 0.66 1.13
Standard Error 0.37 0.38

p-value 0.078 0.004

Table 15.2 Analysis of GVHD data set, with the validation data analysis and
the maximum likelihood analysis. In this data set, selection depends on both
Z and S, so that an analysis based only upon the validation data will lead to
biased estimates and inference.

into the validation study depends on both S and Z, so that an ordinary
logistic regression analysis on the completed data (∆ = 1) will be invalid.

We performed the following analyses: (i) use of validation or complete
data only, which is not valid in this problem because of the nature of
the selection process, but is included for comparison, and (ii) maximum
likelihood. The results of the two analyses are listed in Table 15.2. We
see that the validation data analysis is badly biased relative to the valid
maximum likelihood analysis, with markedly different significant levels.

15.3.2.5 Repeats and Multiple Instruments

We have seen above that there is very little information about the mis-
classification probabilities if we only observe S, while validation data in
which Y is observed does provide such information. Going from nothing
to everything is a large gap!

Suppose that there is no validation study component. In some cases,
experiments done by others in which Y is observed provide information
about the misclassification, along with standard error estimates. Using
these estimates provides a means of estimation of the underlying logistic
regression model, with standard errors that can be propagated through
by drawing bootstrap samples from the previous study and the current
study separately.

In other cases, replication of S can be used to gain information about
the misclassification probabilities. For example, if Y and S are binary,
and if the misclassification probability is the same for both values of
Y, then two independent replicates of S per person suffice to identify
the misclassification probability. Otherwise, at least three independent
replicates are necessary for identification. Whether technical identifiabil-
ity results in practical identifiability is not clear, and one has to expect
that in the absence of a strong prior distribution on the misclassification
rates, the effect of misclassification will be to lower power greatly.
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15.4 Likelihood Methods

In this section, we describe the technical details of likelihood methods
for response measurement error. As seen in Section 15.3, one has to
be careful to separate out theoretical identifiability of parameters from
actual identifiability, the latter meaning that there is enough information
about the parameters in the observed data to make their estimation
practical.

15.4.1 General Likelihood Theory and Surrogates

Let fS|Y,Z(s|y, z, γ) denote the density or mass function for S given
(Y,Z). We will call S a surrogate response if its distribution depends
only on the true response, that is fS|Y,Z(s|y, z, γ) = fS|Y(s|y, γ). All
the models we have considered in detail to this point are for surrogate
responses.

In the case of a surrogate response, a very pleasant thing occurs.
Specifically, if there is no relationship between the true response Y and

the predictors, then neither is there one between the observed response S

and the predictors. Thus, if one’s only goal is to check whether there is
any predictive ability in any of the predictors, and if S is a surrogate,
then using the observed data provides a valid test. However, like every-
thing having to do with measurement error, a valid test does not mean
a powerful test: measurement error in the response lowers power.

This definition of a surrogate response is the natural counterpart to
a surrogate predictor, because it implies that all the information in the
relationship between S and the predictors is explained by the underlying
response.

In general, that is for a possibly nonsurrogate response, the likelihood
function for the observed response is

fS|Z(s|z,B, γ) =∑

y

fY|Z(y|z,B)fS|Y,Z(s|y, z, γ). (15.4)

If Y is a continuous random variable, the sum is replaced by an integral.
If S is a surrogate, then fS|Y(s|y, γ) replaces fS|Y,Z(s|y, z, γ) in (15.4)

showing that if there is no relationship between the true response and
the predictors, then neither is there one between the observed response
and the predictors. The reason for this is that under the stated condi-
tions, neither term inside the integral depends on the predictors: the first
because Y is not related to Z, and the second because S is a surrogate.
However, if S is not a surrogate, then there may be no relationship be-
tween the true response and the covariates, but the observed response
may be related to the predictors.
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It follows that if interest lies in determining whether the predictors
contain any information about the response, one can use naive hypothesis
tests and ignore response error only if S is a surrogate. The resulting
tests have asymptotically correct level, but decreased power relative to
tests derived from true response data. This property of a surrogate is
important in clinical trials; see Prentice (1989).

Note that one implication of (15.4) is that a likelihood analysis with
mismeasured responses requires a model for the distribution of response
error. We have already seen an example of this approach in Section 15.3.

Just as in the predictor-error problem, it is sometimes, but not al-
ways, the case that the parameters (B, γ) are identifiable, that is can be
estimated from data on (S,Z) alone. We have seen two examples of this:
(a) in regression models with a continuous response and additive unbi-
ased measurement error, the parameters in the model for the mean are
identified; and (b) logistic regression when S is a surrogate. Of course,
in the latter case, as seen in Section 15.3.2, the identifiability is merely
a technical one, not practical.

15.4.2 Validation Data

We now suppose that there is a validation subsample obtained by mea-
suring Y on units in the primary sample selected with probability π(S,Z).
The presence (absence) of validation data on a primary-sample unit is
indicated by ∆ = 1 (0). Then, based on a primary sample of size n, the
likelihood of the observed data for a general proxy S is

n∏

i=1

[
{f(Si|Yi,Zi, γ)f(Yi|Zi,B)}

∆i ×

{f(Si|Zi,B, γ)}
1−∆i

]
, (15.5)

where f(Si|Zi,B, γ) is computed by (15.4) and we have dropped the
subscripts on the density functions for brevity.

The model for the distribution of S given (Y,Z) is a critical component
of (15.5). If S is discrete, then one approach is to model this conditional
distribution by a polytomous logistic model. For example, suppose the
levels of S are (0, 1, . . . ,S). A standard logistic model is

pr(S ≥ s|Y,Z) = H(γ0s + γ1Y + γt
2Z), s = 1, . . . ,S.

When S is not discrete, a simple strategy is to categorize it into S levels,
and then use the logistic model above.

As described above, likelihood analysis is, in principle, straightfor-
ward. There are two obvious potential drawbacks, namely that one has
to worry about the model for the measurement error and then one has to
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compute the likelihood. These are little different from what is required
for any likelihood problem.

15.5 Use of Complete Data Only

We have downplayed descriptions of the very large literature when there
is a gold standard for a covariate X measured with error. This huge
literature, which includes both the missing data likelihood literature
and the missing data semiparametric literature, tends to be technical
and entire books can, and have been, written about them.

In the case that the response Y can be observed on a subset of the
study data, the literature is much smaller and more manageable. Here-
with we make a few remarks on methods that use the validation data
only, throwing away any of the data when Y is not observed. It is not
entirely clear why one would do this instead of performing a complete
likelihood or Bayesian analysis, except in the case of logistic regression
with a surrogate where selection depends only on S, in which case the
various validation data analyses are simple variants of logistic regression.
Given the availability of logistic regression software, this is certainly a
useful simplification.

In what follows, selection into the validation study occurs with prob-
ability π(S,Z). Let ∆ = 1 denote selection into the validation study.

15.5.1 Likelihood of the Validation Data

The validation data have the likelihood function for a single observation
given by

f(Y,S|Z,∆ = 1) =
π(S,Z)f(S|Y,Z, γ)f(Y|Z,B)∑
s

∑
y π(s,Z)f(s|y,Z, γ)f(y|Z,B)

, (15.6)

where again if S or Y are continuous, the sums are replaced by integrals.
Here are a few implications of (15.6):

• If selection into the validation study is completely at random, or if
it simply depends on the predictors but not S, then one can run the
standard analysis on the (Y,Z) data and ignore S entirely. Checking
this is a small math calculation.

• In general, (15.6) cannot be simplified, and in particular, using the
standard analysis on the observed (Y,Z) data leads to bias; see Figure
15.8.

• Logistic regression has a very special place here. If S is a binary
surrogate, and if selection into the validation study depends on S
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only, then running a logistic regression ignoring the very existence
of S leads to valid inference about the nonintercept parameters see
Tosteson and Ware (1990).

15.5.2 Other Methods

In some problems, it can occur that there are two data sets; a primary
one in which (S,Z) are observed (∆ = 0), and an independent data set
in which (Y,Z) are observed (∆ = 1). This may occur when Y is a
sensitive endpoint such as income, and S is reported income. Because
of confidentiality concerns, it might be impossible to measure Y and S

together. In such problems, the likelihood is

n∏

i=1

{f(Yi|Zi,B)}
∆i {f(Si|Zi,B, γ)}

1−∆i .

15.6 Semiparametric Methods for Validation Data

As we have suggested, likelihood methods can potentially be troublesome
because they might be sensitive to the assumed distribution for the mis-
measured response. This has led to a small literature on semiparametric
methods, which attempt in various guises to model the distribution of S

given Y and the covariates nonparametrically.

15.6.1 Simple Random Sampling

Suppose that selection into the second stage validation study is by simple
random sampling, that is, all possible samples of the specified sample size
are equally likely. Pepe (1992) constructed a pseudolikelihood method
similar in spirit to that of Carroll and Wand (1991) and Pepe and Flem-
ing (1991) for the mismeasured covariate problem with validation data.
The basic idea is to use the validation data to form a nonparametric es-
timator f̂S|Y,Z of fS|Y,Z. One then substitutes this estimator into (15.4)

to obtain an estimator f̂S|Z(s|z,B) and then maximizes

n∏

i=1

{f(Yi|Zi,B)}
∆i

{
f̂(Si|Zi,B)

}1−∆i

.

This approach requires an estimator of fS|Y,Z. Here are a few com-
ments:

• If all the random variables are discrete, the nonparametric estimator
of the probability that S = s given (Y,Z) = (y, z) is the fraction in the
validation study which have S = s among those with (Y,Z) = (y, z),
although we prefer flexible parametric models in this case.
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• Problems that have continuous components of (S,Y,Z) are more
complicated. For example, suppose that S is continuous, but the other
random variables are discrete. Then the density function of S in each

of the cells formed by the various combinations of (Y,Z) must be es-
timated. Even in the simplest case that (Y,Z) are binary, this means
estimating four density functions using validation data only. While the
asymptotic theory of such a procedure has been investigated (Pepe,
1992), we know of no numerical evidence indicating that the den-
sity estimation methods will work adequately in finite samples, nor is
there any guidance on the practical problems of bandwidth selection
and dimension reduction when two or more components of (S,Y,Z)
are continuous.

• In practice, if S is not already naturally categorical, then an alterna-
tive strategy is to perform such categorization, fit a flexible logistic
model to the distribution of S given the other variables, and maximize
the resulting likelihood (15.5).

15.6.2 Other Types of Sampling

Pseudolikelihood can be modified when selection into the second stage of
the study is not by simple random sampling. The estimating equations
for the EM-algorithm maximizing (15.5) are

0 =

n∑

i=1

∆i {Ψ1(Yi,Zi,B) + Ψ2(Si,Yi,Zi, γ)}

+
n∑

i=1

(1 − ∆i)E {Ψ1(Yi,Zi,B)

+ Ψ2(Si,Yi,Zi, γ)|Si,Zi} ,

where

Ψ1 = ((∂/∂B)log(fY|Z)t, 0t)t,

Ψ2 = (0t, (∂/∂γ)log(fS|Y,Z)t)t.

The idea is to use the validation data to estimate

E {Ψ1(Yi,Zi,B)|Si,Zi}

and then solve

0 =
n∑

i=1

[∆iΨ1(Yi,Zi,B)+

(1 − ∆i)Ê {Ψ1(Yi,Zi,B)|Si,Zi}
]
.

For example, suppose that (S,Z) are all discrete. Now define Iij to
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equal one when (Sj ,Zj) = (Si,Zi) and zero otherwise. Then

Ê {Ψ1(Yi,Zi,B)|Si,Zi} =

∑n

j=1
∆jΨ1(Yj ,Zj ,B)Iij∑n

j=1
∆jIij

.

In other cases, nonparametric regression can be used. In the discrete
case, Pepe et al. (1994) derived an estimate of the asymptotic covariance

matrix of B̂ as A−1(A + B)A−t, where

A = −

n∑

i=1

∆i(∂/∂BT )Ψ1(Yi,Zi, B̂)

−
n∑

i=1

(1 − ∆i)

∑n

j=1
∆j(∂/∂BT )Ψ1(Yj ,Zj , B̂)Iij∑n

j=1
∆jIij

;

B =
∑

s,z

n(s, z)n2(s, z)

n1(s, z)
r(s, z, B̂),

n1(s, z), n2(s, z), and n(s, z) are the number of validation, nonvalida-

tion and total cases with (S,Z) = (s, z), and where r(s, z, B̂) is the

sample covariance matrix of Ψ1(Y,Z, B̂) computed from observations
with (∆,S,Z) = (1, s, z).
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classified.
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APPENDIX A

BACKGROUND MATERIAL

A.1 Overview

This Appendix collects some of the technical tools that are required for
understanding the theory employed in this monograph. The background
material is, of course, available in the literature, but often widely scat-
tered, and one can use this chapter as a brief tour of likelihood, quasi-
likelihood and estimating equations.

Section A.2 and A.3 discuss the normal and lognormal, respectively,
gamma and inverse-gamma distributions. Section A.4 discusses predic-
tion of an unknown random variable by another random variable and
introduces “best prediction,” which can be considered a population ana-
log to regression; conversely, regression is the sample analog of best pre-
diction. Section A.5 reviews likelihood methods, which will be familiar
to most readers. Section A.6 is a brief introduction to the method of
estimating equations, a widely applicable tool that is the basis of all
estimators in this book. Section A.8 defines generalized linear models.
The bootstrap is explained in Section A.9, but one need only note while
reading the text that the bootstrap is a computer-intensive method for
performing inference.

A.2 Normal and Lognormal Distributions

We say that X is Normal(µx, σ2
x) if it is normally distributed with mean

µx and variance σ2
x. Then the density of X is φ{(x − µx)/σx} where φ

is the standard normal pdf

φ(x) =
1√
2π

exp
(
−x2/2

)
, (A.1)

and the CDF of X is Φ{(x − µx)/σx}, where Φ(x) =
∫ x

−∞
φ(u)du is the

standard normal CDF.
We say that the random vector X = (X1, . . . ,Xp)

t has a joint multi-
variate normal distribution with mean (vector) µx and covariance matrix
Σx if X has density

1

(2π)p/2|Σx|1/2
exp

{
−(1/2)(X − µx)tΣ−1

x (X − µx)
}

.
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The random variable X is said to have a Lognormal(µx, σ2
x) distribu-

tion if log(X) is Normal(µx, σ2
x). In that case

E(X) = exp(µx + σ2
x/2), and (A.2)

var(X) = exp(2µx){exp(2σ2
x) − exp(σ2

x)}. (A.3)

A.3 Gamma and Inverse-Gamma Distributions

A random variable X has a Gamma(α, β) distribution if its probability
density function is

βα

Γ(α)
xα−1exp(−βx), x > 0.

Here, Γ(·) is the gamma function, α > 0 is a shape parameter, and
β−1 > 0 is a scale parameter. A word of caution is in order—some
authors denote the scale parameter by β, in which case their β is the
reciprocal of ours. The expectation of this distribution is α/β, while its
variance is α/β2. The chi-square distribution with n degrees of freedom is
the Gamma(n/2, 1/2) distribution and arises as a sampling distribution
in Gaussian models.

If X is Gamma(α, β), then the distribution of X−1 is called Inverse-
Gamma(α, β), abbreviated as IG(α, β). Then α is the shape parameter
of X and β is its scale (not inverse scale) parameter. The density of X−1

is
βα

Γ(α)
x−(α+1)exp(β/x), x > 0.

The mode of the IG(α, β) density is β/(α + 1), and the expectation is
β/(α − 1) for α > 1. For α ≤ 1, the expectation is infinite.

The inverse Gamma distribution is the conjugate prior for variance
parameters in many Gaussian models. As a simple case, suppose that
X1, . . . ,Xn are iid Normal(0, σ2). Then the likelihood is

(
1√
2πσ

)n

exp

(
−

∑n
i=1 X2

i

2σ2

)
.

Therefore, if the prior on σ2 is IG(α, β), then the joint density of σ2,X1,
. . . , Xn is proportional to the IG(α + n/2, β +

∑n
i=1 X2

i /2) density. It
follows that the posterior distribution of σ2 is IG(α+n/2, β +

∑
X2

i /2).
The parameters α and β in the prior have this interpretation: The

prior is equivalent to 2α observations with sum of squares equal to 2β,
which, if actually observed, would give a prior variance estimate of β/α.
Thus, an Inverse-Gamma(α, β) prior can be viewed as a prior guess at
the variance of β/α based on 2α observations. A value of α that is
small relative to n/2 is “noninformative.” Also, the value of β has little
influence relative to the data only when it is small relative to

∑n
i=1 X2

i .
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Because
∑n

i=1 X2
i can be arbitrarily small, there can be no choice of β

that is “noninformative” in all situations. For example, β = 0.001, which
seems “small,” will completely dominate the likelihood if

∑n
i=1 X2

i =
0.0001. Since the Xi are observed in the present example, one should
be aware when β is large relative to

∑n
i=1 X2

i . However, in the case
of a prior on the variance of unobservable random effects, more care
is required. Otherwise, the prior might dominate the likelihood. At the
very least, one should reconsider the choice of β unless it is smaller than
the posterior mean of this variance.

A.4 Best and Best Linear Prediction and Regression

A.4.1 Linear Prediction

Let X and Y be any two random variables. If the value of Y is unknown
but X is known and is correlated with Y , then we can estimate or “pre-
dict” Y using X. The best linear predictor of Y is γ0 + γxX, where γ0

and γx are chosen to minimize the mean square error

E{Y − (γ0 + γxX)}2 = [E{Y − (γ0 + γxX)}]2 + var(Y − γxX). (A.4)

On the right-hand side of (A.4), the first term is squared bias and the
second is variance. The variance does not depend on γ0, so the optimal
value of γ0 is µy − γxµx, which eliminates the bias. The variance is

σ2
y + γ2

xσ2
x − 2γxσxy,

where σxy is the covariance between X and Y , and an easy calculus exer-
cise shows that the variance is minimized by γx = σxy/σ2

x. In summary,
the best linear predictor of Y based on X is

Ŷ = µy +
σxy

σ2
x

(X − µx). (A.5)

The prediction error is

Y − Ŷ = (Y − µy) − σxy

σ2
x

(X − µx), (A.6)

where σxy is the covariance between X and Y . It is an easy calculation
to show that the prediction error is uncorrelated with X and that

var(Y − Ŷ ) = σ2
y(1 − ρ2

xy). (A.7)

There is an intuitive reason for this—if the error were correlated with W ,
then the error itself could be predicted and therefore we could improve
the predictor of Y , but we know that this predictor cannot be improved
since it was chosen to be the best possible.

As an illustration, consider the classical error model W = X+U , where
X and U are uncorrelated and E(U) = 0. Then σxw = σ2

x, σxw/σ2
w = λ
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(the attenuation), and µw = µx, so the best linear predictor of X given
W is

X̂ = µx + λ(W − µx) = (1 − λ)µx + λW (A.8)

and
X = µx + λ(W − µx) + U∗, (A.9)

where the prediction error U∗ = X − X̂ is uncorrelated with W and has
variance σ2

x(1 − λ), since λ = ρ2
xw because σxw = σ2

x.
So far, we have assumed the ideal situation where µx, σxy, and σ2

x

are known. In practice, they will generally be unknown and replaced by
estimates. If we observe an iid sample, (Yi,Xi), then we use the sample
means, variances, and covariances and γ̂x = σ̂xy/σ̂2

x and γ̂0 = Y − γ̂xX
are the usual ordinary least-squares estimates with

γ̂x =

∑n
i=1(Yi − Y )(Xi − X)∑n

i=1(Xi − X)2
.

If we have more than one X-variable, then the best linear predictor of
Y given X = (X1, . . . ,Xp) is

Ŷ = µy + ΣyxΣ−1
x (X − µx), (A.10)

where Σyx = (σY X1
, . . . , σY Xp

) and Σx is the covariance matrix of X.
If the means, variances, and covariances are replaced by their analogs
from a sample, (Yp,Xi1, . . . ,Xip), i = 1, . . . , n, then (A.10) becomes the
ordinary least-squares estimator.

Equation (A.10) remains valid when Y is a vector. Then

Σyx = E
[
{(Y − E(Y )} {(X − E(X)}t

]
. (A.11)

As an illustration of the vector Y case, we will generalize (A.8) to the
case where

W = X + U

with W, X, and U all vectors. Then Σw = Σx + Σu and

X̂ = µx + Λ(W − µx) = (I − Λ)µx + ΛW, (A.12)

where I is the identity matrix and

Λ = Σx(Σx + Σu)−1. (A.13)

Here, we are assuming that (Σx + Σu) is invertible, which will hold if
Σx is invertible since Σu must be positive semidefinite. Note that Λ is a
multivariate generalization of the attenuation λ.

If the distribution of X depends on Z, then (A.12) is replaced by

X̂ = µx + (Σx Σxz )

(
Σx + Σu Σxz

Σt
xz Σz

)−1 {(
W
Z

)
−

(
µx

µz

)}
,

(A.14)
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where Σxz = E [{X − µx}{Z − µz}t]. When W is replicated, (A.14) gen-
eralizes to (4.4).

A.4.2 Best Linear Prediction without an Intercept

Prediction without an intercept is inferior to prediction with an inter-
cept, except in the rare case where the intercept of the best linear pre-
dictor is zero. So you no doubt are wondering why we are bothering you
with this topic. The reason is that this material is needed to understand
the Fuller–Hwang estimator discussed in Section 4.5.3. You should read
this section only if you are reading Section 4.5.3.

If X and Y are scalars and we predict Y by a linear function of X
without an intercept, that is, with a predictor of form λX, then a simple
calculation shows that the mean squared error (MSE) of prediction is
minimized by λ = E(XY )/E(X2).

From a sample of {(Yi,Xi)}n
i=1 pairs, ŶNI can be estimated by linear

regression without an intercept. Here the subscript “NI” reminds us that
the prediction is done with “no intercept.” The estimate of λ is

λ̂ =

∑n
i=1 YiXi∑n
i=1 X2

i

.

As an example, consider the multiplicative error model W = XU with
true covariate X and surrogate W , where X and U are independent and
E(U) = 1. We need to predict X using W , so now X plays the role
played by Y in the previous three paragraphs and W plays the role of
X. Then E(W 2) = E(X2) E(U2) and, assuming that var(U) 6= 0, one
has that λ = 1/E(U2) < 1 since E(U2) > {E(U)}2 = 1. The best linear

predictor of X without an intercept is X̂NI = λW . The predictor X̂NI will
have at least as large an MSE of prediction as the best linear predictor
with an intercept. One problem with prediction without an intercept is
that it is biased in the sense that E(X̂NI) = λE(X) 6= E(X), assuming

that var(U) 6= 0. This is because X̂NI attenuates towards zero, whereas

from (A.9) we see that X̂ shrinks W towards µx.

A.4.3 Nonlinear Prediction

If we do not constrain the predictor to be linear in X, then the predictor
minimizing the MSE over all functions of X is the conditional mean of
Y given X, that is, the best predictor of Y given X is Ŷ = E(Y |X).

There are some circumstances in which E(Y |X) is linear in X, in
which case the best predictor and the best linear predictor coincide. For
example, this happy situation occurs whenever (Y,X) is jointly normally
distributed. Another case in which the best predictor is linear in X occurs
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when the linearity is a consequence of modeling assumption, for example,
if it assumed that Y = β0 + βt

xX + ǫ, where ǫ is independent of X.
Finding the best predictor E(Y |X) requires knowledge of the joint

distribution of (Y,X), not simply means, variance, and covariances. In
practice, E(Y |X) is estimated by nonparametric regression. There are
many techniques for nonparametric regression, for example, smoothing
splines, local polynomial regression such as LOESS, and fixed-knot pe-
nalized splines (Ruppert et al., 2003). When X is multivariate, one typ-
ically uses dimension-reduction techniques such as additive models or
sliced-inverse regression to avoid the so-called curse of dimensionality.

A.5 Likelihood Methods

A.5.1 Notation

Denote the unknown parameter by Θ. The vector of observations, in-
cluding response, covariates, surrogates, etc., is denoted by (Ỹi, Zi) for
i = 1, ..., n, where, as before, Zi is the vector of covariates that is ob-
servable without error and Ỹi collects all the other random variables
into one vector. The data set (Ỹi,Zi), i = 1, ..., n, is the aggregation
of all data sets, primary and external, including replication and valida-
tion data. Thus, the composition of Ỹi will depend on i, for example,
whether the ith case is a validation case, a replication case, etc. We

emphasize that Ỹi is different from the response Yi used throughout the

book, and hence the use of tildes. The Ỹi are assumed independent, with
the density of Ỹi depending both on Zi and on the type of data set the
ith case came from and denoted by fi(ỹ|Θ). We assume that fi has two
continuous derivatives with respect to Θ. The loglikelihood is

L(Θ) =
∑n

i=1log{fi(Ỹi|Θ)}.

A.5.2 Maximum Likelihood Estimation

In practice, maximum likelihood is probably the most widely used method
of estimation. It is reasonably easy to implement, efficient, and the ba-
sis of readily available inferential methods, such as standard errors by
Fisher information and likelihood ratio tests. Also, many other common
estimators are closely related to maximum likelihood estimators, for ex-
ample, the least squares estimator, which is the maximum likelihood
estimator under certain circumstances, and quasilikelihood estimators.
In this section, we quickly review some of these topics.

The maximum likelihood estimator (MLE), denoted by Θ̂, maximizes
L(Θ). Under some regularity conditions, for example in Serfling (1980),
the MLE has a simple asymptotic distribution. The “likelihood score”
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or “score function” is si(y|Θ) = (∂/∂Θ)log{fi(y|Θ)}. The Fisher infor-
mation matrix, or expected information, is

In(Θ) = −∑n
i=1E{(∂/∂Θt)si(Ỹi|Θ)} (A.15)

=
∑n

i=1E{si(Ỹi|Θ)st
i(Ỹi, |Θ)}. (A.16)

In large samples, the MLE is approximately normally distributed with
mean Θ and covariance matrix I−1

n (Θ), whose entries converge to 0 as
n → ∞. There are several methods of estimating In(Θ). The most obvi-

ous is In(Θ̂). Efron and Hinkley (1978) presented arguments in favor of
using instead the observed Fisher information matrix, defined as

În = −∑n
i=1

∂

∂Θt
si(Ỹi|Θ̂), (A.17)

which is an empirical version of (A.15). The empirical version of (A.16)
is

B̂n =
∑n

i=1si(Ỹi|Θ̂)st
i(Ỹi|Θ̂),

which is not used directly to estimate In, but is part of the so-called
sandwich formula, Î−1

n B̂−1
n Î−1

n , used to estimate I−1
n (Θ). As discussed

in Section A.6, the sandwich formula has certain “robustness” properties
but can be subject to high sampling variability.

A.5.3 Likelihood Ratio Tests

Suppose that the dimension of Θ is dim(Θ) = p, that ϕ is a known
function of Θ such that dim{ϕ(Θ)} = p1 < p, and that we wish to
test H0 : ϕ(Θ) = 0 against the general alternative that ϕ(Θ) 6= 0. We
suppose that rank{(∂/∂Θt)ϕ(Θ)} = p1, so that the constraints imposed
by the null hypothesis are linearly independent; otherwise p1, is not
well defined, that is, we can add redundant constraints and increase p1

without changing H0, and the following result is invalid.
Let Θ̂0 maximize L(Θ) subject to ϕ(Θ) = 0, and define LR = {L(Θ̂)−

L(Θ̂0)}, the log likelihood ratio. Under H0, 2 × LR converges in distri-
bution to the chi-squared distribution with p1 degrees of freedom. Thus,
an asymptotically valid test rejects the null hypothesis if LR exceeds
χ2

p1
(α)/2, the (1 − α) quantile of the chi-squared distribution with p1

degrees of freedom.

A.5.4 Profile Likelihood and Likelihood Ratio Confidence Intervals

Profile likelihood is used to draw inferences about a single component of
the parameter vector. Suppose that Θ = (θ1,Θ2), where θ1 is univariate.
Let c be a hypothesized value of θ1. To test H0 : θ1 = c using the theory
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of Section A.5.3, we use ϕ(Θ) = θ1 − c and find Θ̂2(c) so that {c, Θ̂2(c)}
maximizes L subject to H0. The function Lmax(θ1) = L{θ1, Θ̂2(θ1)} is
called the profile likelihood function for θ1—it does not involve Θ2 since
the log likelihood has been maximized over Θ2. Then, LR = L(Θ̂) −
Lmax(c) where, as before, Θ̂ is the MLE. One rejects the null hypothesis
if LR exceeds χ2

1(α).
Inference for θ1 is typically based on the profile likelihood. In partic-

ular, the likelihood ratio confidence region for θ1 is the set

{θ1 : Lmax(θ1) > L(Θ̂) − χ2
1(α)/2}.

This region is also the set of all c such that we cannot reject the null
hypothesis H0 : θ1 = c. The confidence region is typically an interval,
but there can be exceptions. An alternative large-sample interval is

θ̂1 ± Φ−1(1 − α/2)se(θ̂1), (A.18)

where se(θ̂1) is the standard error of θ̂1, say from the Fisher information
matrix or from bootstrapping, as in Section A.9. For nonlinear models,
the accuracy of (A.18) is questionable, that is, the true coverage proba-
bility is likely to be somewhat different than (1− α), and the likelihood
ratio interval is preferred.

A.5.5 Efficient Score Tests

The efficient score test, or simply the “score test,” is due to Rao (1947).
Under the null hypothesis, the efficient score test is asymptotically equiv-
alent to the likelihood ratio test, for example, the difference between the
two test statistics converges to 0 in probability. The advantage of the
efficient score test is that the MLE needs to be computed only under
the null hypothesis, not under the alternative, as for the likelihood ratio
test. This can be very convenient when testing the null hypothesis of
no effects for covariates measured with error, since these covariates, and
hence measurement error, can be ignored when fitting under H0.

To define the score test, start by partitioning Θ as (Θt
1,Θ

t
2)

t, where
dim(Θ1) = p1, 1 ≤ p1 ≤ p. We will test the null hypothesis that H0 :
Θ1 = 0. Many hypotheses can be put into this form, possibly after
reparameterization. Let S(Θ) =

∑n
i=1 si(Ỹi|Θ) and partition S into S1

and S2 with dimensions p1 and (p − p1), respectively, that is,

S(Θ) =

(
S1(Θ)
S2(Θ)

)
=

(
(∂/∂Θ1)

∑n
i=1log{fi(y|Θ)}

(∂/∂Θ2)
∑n

i=1log{fi(y|Θ)}

)
.

Note that, in general, S1(Θ) depends on both Θ1 and Θ2, and similarly

for S2(Θ). Let Θ̂0 = (0t, Θ̂t
0,2)

t be the MLE of Θ under H0. Notice that

S2(Θ̂0) = 0 since Θ̂0,2 maximizes the likelihood over Θ2 when Θ1 = 0.
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The basic idea behind the efficient score test is that under H0 we expect
S1(Θ̂0) to be close to 0, since the expectation of S(Θ) is 0 and Θ̂0 is
consistent for Θ.

Let I11
n be the upper left corner of (In)−1 evaluated at Θ̂0. The effi-

cient score test statistic measures the departure of S1(Θ̂0) from 0 and is
defined as

Rn = S1(Θ̂0)
tI11

n S1(Θ̂0) = S(Θ̂0)I
−1
n S(Θ̂0).

The equality holds because S2(Θ̂0) = 0.
Under H0, Rn asymptotically has a chi-squared distribution with p1

degrees of freedom, so we reject H0 is Rn exceeds (1 − α) chi-squared
quantile, χ2

p1
(α). See Cox and Hinkley (1974, Section 9.3) for a proof of

the asymptotic distribution.

A.6 Unbiased Estimating Equations

All of the estimators described in this book, including the MLE, can
be characterized as solutions to unbiased estimating equations. Under-
standing the relationship between estimators and estimating equations is
useful because it permits easy and routine calculation of estimated stan-
dard errors. The theory of estimating equations arose from two distinct
lines of research, in Godambe’s (1960) study of efficiency and Huber’s
(1964, 1967) work on robust statistics. Huber’s (1967) seminal paper
used estimating equations to understand the behavior of the MLE un-
der model misspecification, but his work also applies to estimators that
are not the MLE under any model. Over time, estimating equations be-
came established as a highly effective, unified approach for studying wide
classes of estimators; see, for example, Carroll and Ruppert (1988) who
use estimating equation theory to analyze a variety of transformation
and weighting methods in regression.

This section reviews the basic ideas of estimating equations; See Hu-
ber (1967), Ruppert (1985), Carroll and Ruppert (1988), McLeish and
Small (1988), Desmond (1989), or Godambe (1991) for more extensive
discussion.

A.6.1 Introduction and Basic Large Sample Theory

As in Section A.5, the unknown parameter is Θ, and the vector of ob-
servations, including response, covariates, surrogates, etc., is denoted by
(Ỹi,Zi) for i = 1, ..., n. For each i, let Ψi be a function of (Ỹi,Θ) taking
values in p-dimensional space (p = dim(Θ)). Typically, Ψi depends on i
through Zi and the type of data set the ith case belongs to, for example,
whether that case is validation data, etc. An estimating equation for Θ
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has the form

0 = n−1∑n
i=1Ψi(Ỹi,Θ). (A.19)

The solution, Θ̂, to (A.19) as Θ ranges across the set of possible param-
eter values is called an M-estimator of Θ, a term due to Huber (1964).
In practice, one obtains an estimator by some principle, for example,
maximum likelihood, least squares, generalized least squares, etc. Then,
one shows that the estimator satisfies an equation of form (A.19) and
Ψi is identified. The point is that one doesn’t choose the Ψi’s directly;
but rather, they are defined through the choice of an estimator.

In (A.19), the function Ψi is called an estimating function and depends
on i through Zi. The estimating function (and hence the estimating
equation) is said to be conditionally unbiased if it has mean zero when
evaluated at the true parameter, that is,

0 = E
{

Ψi(Ỹi,Θ)
}

, for i = 1, ..., n. (A.20)

As elsewhere in this book, expectations and covariances are always con-
ditional upon {Zi}n

1 .
If the estimating equations are unbiased, then under certain regularity

conditions Θ̂ is a consistent estimator of Θ. See Huber (1967) for the
regularity conditions and proof in the iid case. The basic idea is that for
each value of Θ the right-hand side of (A.19) converges to its expectation
by the law of large numbers, and the true Θ is a zero of the expectation
of (A.19). One of the regularity conditions is that the true Θ is the only

zero, so that Θ̂ will converge to Θ under some additional conditions.
Moreover, if Θ̂ is consistent, then by a Taylor series approximation

0 ≈ n−1∑n
i=1Ψi(Ỹi,Θ) +

{
n−1∑n

i=1

∂

∂Θt
Ψi(Ỹi,Θ)

}
(Θ̂ − Θ),

where Θ now is the true parameter value. Applying the law of large
numbers to the term in curly brackets, we have

Θ̂ − Θ ≈ −An(Θ)−1n−1∑n
i=1Ψi(Ỹi,Θ), (A.21)

where An(Θ) is given by (A.23) below. Define A−t
n (Θ) =

{
A−1

n (Θ)
}t

.

Then Θ̂ is asymptotically normally distributed with mean Θ and covari-
ance matrix n−1A−1

n (Θ)Bn(Θ)A−t
n (Θ), where

Bn(Θ) = n−1∑n
i=1cov

{
Ψi(Ỹi,Θ)

}
; (A.22)

An(Θ) = n−1∑n
i=1E

{
∂

∂Θt
Ψi(Ỹi,Θ)

}
. (A.23)

See Huber (1967) for a proof. There are two ways to estimate this covari-
ance matrix. The first uses empirical expectation and is often called the
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sandwich estimator or a robust covariance estimator (a term we do not
like—see below); in the former terminology, Bn is sandwiched between
the inverse of An. The sandwich estimator uses

Ân = n−1∑n
i=1

∂

∂Θt
Ψi(Ỹi, Θ̂); (A.24)

B̂n = n−1∑n
i=1Ψi(Ỹi, Θ̂)Ψt

i(Ỹi, Θ̂). (A.25)

Note that B̂n is a sample covariance matrix of {Ψi(Ỹi, Θ̂)}n
i=1, since Θ̂

solves (A.19).
The second method, called the model-based expectation method, uses

an underlying model to evaluate (A.22) and (A.23) exactly, and then sub-

stitutes the estimated value Θ̂ for Θ, that is, uses A−1
n (Θ̂) Bn(Θ̂)A−t

n (Θ̂).
If Ψi is the likelihood score, that is, Ψi = si, where si is defined

in Section A.5.2, then Θ̂ is the MLE. In this case, both Bn(Θ) and

An(Θ) equal the Fisher information matrix, In(Θ). However, Ân and

B̂n are generally different, so the sandwich method differs from using
the observed Fisher information.

As a general rule, the sandwich method provides a consistent estimate
of the covariance matrix of Θ̂, without the need to make any distribution
assumptions. In this sense it is robust. However, in comparison with the
model-based expectation method, when a distributional model is reason-
able the sandwich estimator is typically inefficient, which can unneces-
sarily inflate the length of confidence intervals (Kauermann and Carroll,
2001). This inefficiency is why we do not like to call the sandwich method
“robust.” Robustness usually means insensitivity to assumptions at the
price of a small loss of efficiency, whereas the sandwich formula can lose
a great deal of efficiency.

A.6.2 Sandwich Formula Example: Linear Regression without

Measurement Error

As an example, consider ordinary multiple regression without measure-
ment errors so that Yi = β0 + βt

zZi + ǫi, where the ǫ’s are independent,
mean-zero random variables. Let Z∗

i = (1, Zt
i)

t and Θ = (β0, β
t
z)

t. Then
the ordinary least squares estimator is an M-estimator with Ψi(Yi,Θ) =
(Yi − β0 − βt

zZi)Z
∗
i . Also,

∂

∂Θt
Ψi(Yi,Θ) = −Z∗

i (Z
∗

i )
t,

An = −n−1∑n
i=1Z

∗

i (Z
∗

i )
t, (A.26)

and if one assumes that the variance of ǫi is a constant σ2 for all i, then

Bn = −σ2An. (A.27)
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Notice that An and Bn do not depend on Θ, so they are known exactly
except for the factor σ2 in Bn. The model-based expectation method
gives covariance matrix −σ2A−1

n , the well known variance of the least
squares estimator. Generally, σ2 is estimated by the residual mean square.

The sandwich formula uses Ân = An and

B̂n = n−1∑n
i=1(Yi − β̂0 − β̂t

zZi)
2Z∗

i (Z
∗

i )
t. (A.28)

We have not made distributional assumptions about ǫi, but we have
assumed homoscedasticity, that is, that var(ǫi) ≡ σ2. To illustrate the
“robustness” of the sandwich formula, consider the heteroscedatic model
where the variance of ǫi is σ2

i depending on Zi. Then Bn is no longer
given by (A.27) but rather by

Bn = n−1∑n
i=1σ

2
i Z

∗

i (Z
∗

i )
t,

which is consistently estimated by (A.28). Thus, the sandwich formula
is heteroscedasticity consistent. In contrast, the model-based estimator
of Bn, which is σ̂2An with An given by (A.26), is inconsistent for Bn.

This makes model-based estimation of the covariance matrix of Θ̂ incon-
sistent.

The inefficiency of the sandwich estimator can also be seen in this
example. Suppose that there is a high leverage point, that is, an obser-
vation with an outlying value of Zi. Then, as seen in (A.28), the value

of B̂n is highly dependent upon the squared residual of this observation.
This makes B̂n highly variable and indicates the additional problem that
B̂n is very sensitive to outliers.

A.6.3 Sandwich Method and Likelihood-Type Inference

Less well known are likelihood ratio-type extensions of sandwich stan-
dard errors; see Huber (1967), Schrader and Hettmansperger (1980),
Kent (1982), Ronchetti (1982), and Li and McCullagh (1994). This the-
ory is essentially an extension of the theory of estimating equations,
where the estimating equation is assumed to correspond to a criterion
function, that is, solving the estimating equation minimizes the criterion
function.

In the general theory, we consider inferences about a parameter vector
Θ, and we assume that the estimate Θ̂ maximizes an estimating criterion,
ℓ(Θ), which is effectively the working log likelihood, although, it need
not be the logarithm of an actual density function. Following Li and
McCullagh (1994), we refer to exp(ℓ) = exp(

∑
ℓi) as the quasilikelihood

function. (Here, ℓi is the log quasilikelihood for the ith case and ℓ is the
log quasilikelihood for the entire data set.) Define the score function, a
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type of estimating function, as

Ui(Θ) =
∂

∂Θ
ℓi(Θ|Ỹi),

the score covariance,

Jn =
∑n

i=1E{Ui(Θ)Ui(Θ)t}, (A.29)

and the negative expected hessian,

Hn = −∑n
i=1E

{
∂

∂Θt
Ui(Θ)

}
. (A.30)

If ℓ were the true log likelihood, then we would have Hn = Jn, but this
equality usually fails for quasilikelihood. As in the theory of estimating
equations, the parameter Θ is determined by the equation E{Ui(Θ)} = 0
for all i (conditionally unbiased), or possibly through the weaker con-
straint that

∑n
i=1 E{Ui(Θ)} = 0 (unbiased).

We partition Θ = (γt, ηt)t, where γ is the p-dimensional parameter
vector of interest and η is the vector of nuisance parameters. Partition
H, omitting the subscript n for ease of notation, similarly as

H =

(
Hγγ Hγη

Hηγ Hηη

)
,

and define Hγγ·η = Hγγ −HγηH−1
ηη Hηγ .

Let Θ̂0 = (γt
0, η̂

t
0)

t denote the maximum quasilikelihood estimate sub-
ject to γ = γ0. We need the large sample distribution of the log quasi-
likelihood ratio,

L(γ0) = 2{ℓ(Θ̂) − ℓ(Θ̂0)}.
The following result is well known under various regularity conditions.

For the basic idea of the proof, see Kent (1982).

Theorem: If γ = γ0, then, as the number of independent observa-

tions increases, L(γ0) converges in distribution to
∑p

k=1 λkWk, where

W1, ...,Wp are independently distributed as χ2
1, and λ1, ..., λp are the

eigenvalues of Hγγ·η(H−1JH−1)γγ .

To use this result in practice, either to perform a quasilikelihood ratio
test of H0 : γ = γ0 or to compute a quasilikelihood confidence set for γ0,
we need to estimate the matrices H and J . If all data are independent,
an obvious approach is to replace the theoretical expectations in (A.29)
and (A.30) with the analogous empirical averages.

We also need to compute quantiles of the distribution of
∑

k λ̂kWk.
Observe that if p = 1, the appropriate distribution is simply a scaled
χ2

1 distribution. If p > 1, then algorithms given by Marazzi (1980) and
Griffiths and Hill (1985) may be used. A quick and simple way to do
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the computation is to simulate from the distribution of
∑

k λ̂kWk, since
chi-squared random variables are easy to generate.

A.6.4 Unbiased, but Conditionally Biased, Estimating Equations

It is possible to relax (A.20) to

0 =
∑n

i=1E
{

Ψi(Ỹi, Θ̂)
}

,

and then the estimating function and estimating equation are not con-
ditionally unbiased, but are still said to be unbiased. The theory of con-
ditionally unbiased estimating equations carries over without change to
estimating equations that are merely unbiased.

A.6.5 Biased Estimating Equations

The estimation methods described in Chapters 4, 5, and 6 are approx-
imately consistent, in the sense that they consistently estimate a value
that closely approximates the true parameter. These estimators are formed
by estimating equations such as (A.19), but the estimating functions are
not unbiased for the true parameter Θ. Usually there exists Θ∗, which
is close to Θ and which solves

0 =
∑n

i=1E
{

Ψi(Ỹi,Θ∗)
}

. (A.31)

In such cases, Θ̂ is still asymptotically normally distributed, but with
mean Θ∗ instead of mean Θ. In fact, the theory of Section A.6.4 is
applicable since the equations are unbiased for Θ∗. If

0 = E
{

Ψi(Ỹi,Θ∗)
}

, for i = 1, ..., n,

then the the estimating functions are conditionally unbiased for Θ∗ and
the sandwich method yields asymptotically correct standard error esti-
mators.

A.6.6 Stacking Estimating Equations: Using Prior Estimates of Some

Parameters

To estimate the regression parameter, B, in a measurement error model,
one often uses the estimates of the measurement error parameters, α,
obtained from another data set. How does uncertainty about the mea-
surement error parameters affect the accuracy of the estimated regres-
sion parameter? In this subsection, we develop the theory to answer this
question. The fact that such complicated estimating schemes can be eas-
ily analyzed by the theory of estimating equations further illustrates the
power of this theory.
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We work generally in that α and B can be any parameter vectors in a
statistical model, and we assume that both α̂ and B̂ are M-estimators.
Suppose that that α̂ solves the estimating equation

0 =
∑n

i=1φi(Ỹi, α), (A.32)

and B̂ solves

0 =
∑n

i=1Ψi(Ỹi,B, α̂), (A.33)

with α̂ in (A.33) fixed at the solution to (A.32). The estimating func-
tions in (A.32) and (A.33) are assumed to be conditionally unbiased.

Since (α̂, B̂) solves (A.32) and (A.33) simultaneously, the asymptotic

distribution of (α̂, B̂) can be found by stacking (A.32) and (A.33) into a
single estimating equation:

(
0
0

)
= n−1∑n

i=1

(
φi(Ỹi, α)

Ψi(Ỹi,B, α)

)
. (A.34)

One then applies the usual theory to (A.34). Partition An = An(Θ),
Bn = Bn(Θ), and A−1

n BnA−t
n according to the dimensions of α and B.

Then the asymptotic variance of B̂ is n−1 times the lower right submatrix
of A−1

n BnA−t
n . After some algebra, one gets

var(B̂) ≈ n−1A−1
n,22

{
Bn,22 − An,21A

−1
n,11Bn,12

−Bt
n,12A

−t
n,11A

t
n,21 + An,21A

−1
n,11Bn,11A

−t
n,11A

t
n,21

}
A−t

n,22,

where

An,11 =
∑n

i=1E
{ ∂

∂αt
φi(Ỹi, α)

}
,

An,21 =
∑n

i=1E
{ ∂

∂αt
Ψi(Ỹi,B, α)

}
,

An,22 =
∑n

i=1E
{ ∂

∂Bt
Ψi(Ỹi,B, α)

}
,

Bn,11 =
∑n

i=1φi(Ỹi, α)φt
i(Ỹi, α),

Bn,12 =
∑n

i=1φi(Ỹi, α)Ψt
i(Ỹi, α,B), and

Bn,22 =
∑n

i=1Ψi(Ỹi, α,B)Ψt
i(Ỹi, α,B).

As usual, the components of An and Bn can be estimated by model-
based expectations or by the sandwich method.
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A.7 Quasilikelihood and Variance Function Models (QVF)

A.7.1 General Ideas

In the case of no measurement error, Carroll and Ruppert (1988) de-
scribed estimation based upon the mean and variance functions of the
observed data, that is, the conditional mean and variance of Y as func-
tions of (Z,X). We will call these QVF methods, for quasilikelihood and
variance functions. The models include the important class of generalized
linear models (McCullagh and Nelder, 1989; Section A.8 of this mono-
graph), and in particular linear, logistic, Poisson, and gamma regression.
QVF estimation is an important special case of estimating equations.

The typical regression model is a specification of the relationship be-
tween the mean of a response Y and the predictors (Z,X):

E(Y|Z,X) = mY(Z,X,B), (A.35)

where mY(·) is the mean function and B is the regression parameter.
Generally, specification of the model is incomplete without an accompa-
nying model for the variances,

var(Y|Z,X) = σ2g2(Z,X,B, θ), (A.36)

where g(·) is called the variance function and θ is called the variance

function parameter. We find it convenient in (A.36) to separate the vari-
ance parameters into the scale factor σ2 and θ, which determines the
possible heteroscedasticity.

The combination of (A.35) and (A.36) includes many important spe-
cial cases, among them:

• Homoscedastic linear and nonlinear regression, with g(z, x,B, θ) ≡ 1.
For linear regression, mY(z, x,B) = β0 + βt

xx + βt
zz.

• Generalized linear models, including Poisson and gamma regression,
with

g(z, x,B, θ) = mY
θ(z, x,B)

for some parameter θ. For example, θ = 1/2 for Poisson regression,
while θ = 1 for gamma and lognormal models.

• Logistic regression, where mY(z, x,B) = H(β0 + βt
xx + βt

zz), H(v) =
1/{1 + exp(−v)}, and since Y is Bernoulli distributed, g2 = mY(1 −
mY), σ2 = 1, and there is no parameter θ.

Model (A.35)–(A.36) includes examples from fields including epidemi-
ology, econometrics, fisheries research, quality control, pharmacokinetics,
assay development, etc. See Carroll and Ruppert (1988, Chapters 2-4)
for more details.
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A.7.2 Estimation and Inference for QVF Models

Specification of only the mean and variance models (A.35)–(A.36) allows
one to construct estimates of the parameters (B, θ). No further detailed
distributional assumptions are necessary. Given θ, B can be estimated
by generalized (weighted) least squares (GLS), a term often now referred
to as quasilikelihood estimation. The conditionally unbiased estimating

function for estimating B by GLS is

Y − mY(Z,X,B)

σ2g2(Z,X,B, θ)
mYB(Z,X,B), (A.37)

where

fB(Z,X,B) =
∂

∂B f(Z,X,B)

is the vector of partial derivatives of the mean function. The conditionally

unbiased estimating equation for B is the sum of (A.37) over the observed
data.

To understand why (A.37) is the GLS estimating function, note that
the nonlinear least squares (LS) estimator, which minimizes

∑n
i=1{Y − mY(Z,X,B)}2,

solves
∑n

i=1{Y − mY(Z,X,B)}mYB(Z,X,B) = 0. (A.38)

The LS estimator is inefficient and can be improved by weighting the
summands in (A.38) by reciprocal variances; the result is (A.37).

There are many methods for estimating θ. These may be based on
true replicates if they exist, or on functions of squared residuals. These
methods are reviewed in Chapters 3 and 6 of Carroll and Ruppert (1988);
see also Davidian and Carroll (1987) and Rudemo et al. (1989). Let (·)
stand for the argument (Z,X,B). If we define

R(Y, ·, θ, σ) = {Y − mY(·)} / {σg(·, θ)} , (A.39)

then one such (approximately) conditionally unbiased score function for
θ (and σ) given B is

{
R2(Y, ·, θ, σ) − n − dim(B)

n

}
∂

∂ (σ, θ)
t log{σg(·, θ)}, (A.40)

where dim(B) is the number of components of the vector B. The (ap-
proximately) conditionally unbiased estimating equation for θ and σ is
the sum of (A.40) over the observed data. The resulting M-estimator
is closely related to the REML estimator used in variance components
modeling; see Searle, Casella, and McCulloch (1992).
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As described by Carroll and Ruppert (1988), (A.37)–(A.40) are weighted
least squares estimating equations, and nonlinear regression algorithms
can be used to estimate the parameters.

There are two specific types of covariance estimates, depending on
whether or not one believes that the variance model has been approx-
imately correctly specified. We concentrate here on inference for the
regression parameter B, referring the reader to Chapter 3 of Carroll and
Ruppert (1988) for variance parameter inference. Based on a sample of

size n, B̂ is generally asymptotically normally distributed with mean B
and covariance matrix n−1A−1

n BnA−1
n , where if (·) stands for (Zi,Xi,B),

An = n−1∑n
i=1 {mYB(·)} {mYB(·)}t {

σ2g2(·, θ)
}−1

;

Bn = n−1∑n
i=1 {mYB(·)} {mYB(·)}t E {Yi − mY(·)}2

σ4g4(·, θ) .

The matrix Bn in this expression is the same as (A.22) in the general
theory of unbiased estimating equations. The matrix An is the same as
(A.23), but it is simplified somewhat by using the fact that E(Y|Z,X) =
f(Z,X,B).

If the variance model is correct, then E {Yi − mY(Zi,Xi,B)}2
=

σ2g2(Zi, Xi,B, θ), An = Bn and an asymptotically correct covariance

matrix is n−1Â−1
n , where (·) stands for (Zi,Xi, B̂) and

Ân = n−1∑n
i=1 {mYB(·)} {mYB(·)}t

{
σ̂2g2(·, θ̂)

}−1

.

If one has severe doubts about the variance model, one can use the
sandwich method to estimate E {Yi − mY(·)}2

, leading to the covari-

ance matrix estimate Â−1
n B̂nÂ−1

n , where

B̂n = n−1∑n
i=1 {mYB(·)} {mYB(·)}t {Yi − mY(·)}2

σ̂4g4(·, θ̂)
.

In some situations, the method of Section A.6.3 can be used in place of
the sandwich method.

With a flexible variance model that seems to fit the data fairly well,
we prefer the covariance matrix estimate n−1Â−1

n , because it can be
much less variable than the sandwich estimator. Drum and McCullagh
(1993) basically come to the same conclusion, stating that “unless there
is good reason to believe that the assumed variance function is sub-
stantially incorrect, the model-based estimator seems to be preferable
in applied work.” Moreover, if the assumed variance function is clearly
inadequate, most statisticians would find a better variance model and
then use n−1Â−1

n with the better-fitting model.
In addition to formal fitting methods, simple graphical displays exist
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to evaluate the models (A.35)–(A.36). Ordinary and weighted residual
plots with smoothing can be used to understand departures from the
assumed mean function, while absolute residual plots can be used to
detect deviations from the assumed variance function. These graphical
techniques are discussed in Chapter 2, section 7 of Carroll and Ruppert
(1988).

A.8 Generalized Linear Models

Exponential families have density or mass function

f(y|ξ) = exp

{
yξ − C(ξ)

φ
+ c(y, φ)

}
. (A.41)

With superscripted (j) referring to the jth derivative, the mean and
variance of Y are µ = C′(ξ) and φC′′(ξ), respectively. See, for example,
McCullagh and Nelder (1989).

If ξ is a function of a linear combination of predictors, say ξ = Xi (η)
where η = (β0 + βt

xX + βt
zZ), then we have a generalized linear model.

Generalized linear models include many of the common regression mod-
els, for example, normal, logistic, Poisson, and gamma. Consideration
of specific models is discussed in detail in Chapter 7. Generalized linear
models are mean and variance models in the observed data, and can be
fit using QVF methods.

If we define L = (C′ ◦ Xi)
−1, then L(µ) = η; L is called the link

function since it links the mean of the response and the linear predictor,
η. If Xi is the identity function, then we say that the model is canonical;
this implies that L = (C′)−1, which is called the canonical link function.
The link function L, or equivalently Xi, should be chosen so that the
model fits the data as well as possible. However, if the canonical link
function fits reasonably well, then it is typically used, because doing so
simplifies the analysis.

A.9 Bootstrap Methods

A.9.1 Introduction

The bootstrap is a widely used tool for analyzing the sampling variabil-
ity of complex statistical methods. The basic idea is quite simple. One
creates simulated data sets, called bootstrap data sets, whose distribu-
tion is equal to an estimate of the probability distribution of the actual
data. Any statistical method that is applied to the actual data can also
be applied to the bootstrap data sets. Thus, the empirical distribution
of an estimator or test statistic across the bootstrap data sets can be
used to estimate the actual sampling distribution of that statistic.
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For example, suppose that Θ̂ is obtained by applying some estimator
to the actual data, and Θ̂(m) is obtained by applying the same estimator
to the mth bootstrap data set, m = 1, ...,M , where M is the number
of bootstrap data sets that we generate, and let Θ̄ be the average of
Θ̂′, ..., Θ̂(m). Then, the covariance matrix of Θ̂ can be estimated by

v̂ar(Θ̂) = (M − 1)−1
M∑

m=1

(
Θ̂(m) − Θ̄

)(
Θ̂(m) − Θ̄

)t

. (A.42)

Despite this underlying simplicity, implementation of the bootstrap
can be a complex, albeit fascinating subject. There are many ways to
estimate the probability distribution of the data, and it is not always
obvious which way is most appropriate. Bootstrap standard errors are
easily found from (A.42), and these can be plugged into (A.18) to get
“normal theory” confidence intervals. However, these simple confidence
intervals are not particularly accurate, and several improved bootstrap
intervals have been developed. Comparing bootstrap standard errors and
confidence intervals with traditional methods and comparing the various
bootstrap intervals with each other requires the powerful methodology
of Edgeworth expansions. Efron and Tibshirani (1993) give an excellent,
comprehensive account of bootstrapping theory and applications. For
more mathematical theory, including Edgeworth expansions, see Hall
(1992). Here we give enough background so that the reader can un-
derstand how the bootstrap is applied to obtain standard errors in the
examples.

A.9.2 Nonlinear Regression without Measurement Error

To illustrate the basic principles of bootstrapping, we start with nonlin-
ear regression without measurement error. Suppose that Yi = mY(Zi,B)+
ǫi, where the Zi are, as usual, covariates measured without error, and
the ǫi’s are independent with the density of ǫi possibly depending on
Zi. There are at least three distinct methods for creating the bootstrap
data sets. Efron and Tibshirani (1993) call the first two methods resam-

pling pairs and resampling residuals. The third method is a form of the
parametric bootstrap.

A.9.2.1 Resampling Pairs

Resampling pairs means forming a bootstrap data set by sampling at
random with replacement from {(Yi,Zi)}n

i . The advantage of this method
is that it requires minimal assumptions. If ǫi has a distribution depend-
ing on Zi in the real data, then this dependence is captured by the
resampling, since the (Yi,Zi) pairs are never broken during the resam-
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pling. Therefore, standard errors and confidence intervals produced by
this type of bootstrapping will be asymptotically valid in the presence of
heteroscedasticity or other forms on nonhomogeneity. Besides this type
of robustness, another advantage of resampling pairs is that it is easy to
extend to more complex situations, such as measurement error models.

The disadvantage of resampling pairs is that the bootstrap data sets
will have different sets of Zi’s than the original data. For example, if
there is a high leverage point in the original data, it may appear several
times or not at all in a given bootstrap data set. Therefore, this form of
the bootstrapping estimates unconditional sampling distributions, not
sampling distributions conditional on the Zi’s. Some statisticians will
object to this, asking, “Even if the Zi’s are random, why should I care
that I might have gotten different Zi’s than I did? I know the values of
the Zi’s that I got, and I want to condition upon them.” We feel that this
objection is valid. However, as Efron and Tibshirani (1993) point out,
often conditional and unconditional standard errors are nearly equal.

A.9.2.2 Resampling Residuals

The purpose behind resampling residuals is to condition upon the Zi’s.
The ith residual is ei = Yi − mY(Zi, B̂), where B̂ is, say, the nonlinear
least squares estimate. To create the mth bootstrap data set we first
center the residuals by subtracting their sample mean, ē, and then draw

{e(m)
i }n

i=1 randomly, with replacement, from {(ei − ē)}n
i . Then we let

Y
(m)
i = mY(Zi, B̂)+e

(m)
i . The mth bootstrap data set is {(Y (m)

i ,Zi)}n
i=1.

Notice that the bootstrap data sets have the same set of Zi’s as the
original data, so that bootstrap sampling distributions are conditional
on the Zi’s. By design, the distribution of the ith “error” in a bootstrap
data set is independent of Zi. Therefore, resampling residuals is only
appropriate when the ǫi’s in the actual data are identically distributed,
and is particularly sensitive to the homoscedasticity assumption.

A.9.2.3 The Parametric Bootstrap

The parametric bootstrap can be used when we assume a parametric
model for the ǫi’s. Let f be a known mean-zero density, say the stan-
dard normal density, φ. Assume that the density of ǫi is in the scale
family mY(·/σ)/σ, σ > 0, and let σ̂ be a consistent estimator of σ,
say the residual root-mean square if f is equal to φ. Then, as when

resampling residuals, the bootstrap data sets are {(Y(m)
i ,Zi)}n

i , where

Yi = mY(Zi, B̂) + e
(m)
i , but now the ǫ

(m)
i s are, conditional on the ob-

served data, iid from f(·/σ̂)/σ̂. Like resampling residuals, the parametric
bootstrap estimates sampling distributions that are conditional on the
Zi’s and requires that the ǫi’s be independent of the Zi’s. In addition,
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like other parametric statistical methods, the parametric bootstrap is
more efficient when the parametric assumptions are met, but possibly
biased otherwise.

A.9.3 Bootstrapping Heteroscedastic Regression Models

Consider the QVF model

Yi = mY(Zi,B) + σg(Zi,B, θ)ǫi,

where the ǫi’s are iid. The assumption of iid errors holds when Yi

given Zi is normal, but this assumption precludes logistic, Poisson, and
gamma regression, for example. This model can be fit by the methods
of section A.7.2. To estimate the sampling distribution of the QVF esti-
mators, bootstrap data sets can be formed by resampling from the set of
pairs {(Yi,Zi)}n

i , as discussed for nonlinear regression models in Section
A.9.2.

Resampling residual requires some reasonably obvious changes from
Section A.9.2. First, define the ith residual to be

ei =
Yi − mY(Zi, B̂)

σ̂g(Zi, B̂, θ̂)
− ē,

where ē is defined so that the ei’s sum to 0. To form mth bootstrap data

set, let {e(m)
i }n

i=1 be sampled with replacement from the residuals and
then let

Y
(m)
i = mY(Zi, B̂) + σ̂g(Zi, B̂, θ̂)e

(m)
i .

Note that e
(m)
i is not the residual from the ith of the original observa-

tions, but is equally likely to be any of the n residuals from the origi-
nal observations. See Carroll and Ruppert (1991) for further discussion
of bootstrapping heteroscedastic regression models, with application to
prediction and tolerance intervals for the response.

A.9.4 Bootstrapping Logistic Regression Models

Consider the logistic regression model without measurement error,

pr(Yi = 1|Zi) = H(β0 + βT
z Zi),

where, as elsewhere in this book, H(v) = {1 + exp(−v)}−1. The general
purpose technique of resampling pairs works here, of course. Resam-
pling residuals is not applicable, since the residuals will have skewness
depending on Zi so are not homogeneous even after weighting as in Sec-
tion A.9.3. The parametric bootstrap, however, is easy to implement. To
form the mth data set, fix the Zi’s equal to their values in the real data
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and let Y
(m)
i be Bernoulli with

pr(Y
(m)
i = 1|Zi) = H(β̂0 + β̂t

zZi).

A.9.5 Bootstrapping Measurement Error Models

In a measurement error problem, a typical data vector consists of Zi and
a subset of the following data: the response Yi, the true covariates Xi,
{wi,j : j = 1, ..., ki} which are replicate surrogates for Xi, and a second
surrogate Ti. We divide the total collection of data into homogeneous
data sets, which have the same variables measured on each observation
and are from a common source, for example, primary data, internal
replication data, external replication data, and internal validation data.

The method of “resampling pairs” ignores the various data subsets,
and can often be successful (Efron, 1994). Taking into account the data
subsets is better called “resampling vectors,” and consists of resampling,
with replacement, independently from each of the homogeneous data
sets. This ensures that each bootstrap data set has the same amount
of validation data, data with two replicates of w, data with three repli-
cations, etc., as the actual data set. Although in principle we wish to
condition on the Zi’s and resampling vectors does not do this, resampling
vectors is a useful expedient and allows us to bootstrap any collection of
data sets with minimal assumptions. In the examples in this monograph,
we have reported the “resampling pairs” bootstrap analyses, but because
of the large sample sizes, the reported results do not differ substantially
from the “resampling vectors” bootstrap.

Resampling residuals is applicable to validation data when there are
two regression models: one for Yi given (Zi,Xi) and another for wi given
(Zi,Xi). One fits both models and resamples residuals from the first to

create the bootstrap Y
(m)
i ’s and from the second to create the w

(m)
i ’s.

This method generates sampling distributions that are conditional on
the observed (Zi,Xi)’s.

The parametric bootstrap can be used when the response, given the
observed covariates, has a distribution in a known parametric family.
For example, suppose one has a logistic regression model with internal
validation data. One can fix the (Zi,Xi,wi) vectors of the validation
data and create bootstrap responses as in Section A.9.4, using (Zi,Xi)
in place of Zi. Because wi is a surrogate, it is not used to create the
bootstrap responses of validation data. For the nonvalidation data, one
fixes the (Zi,wi) vectors. Using regression calibration as described in
Chapter 4, one fits an approximate logistic model for Yi given (Zi,wi)
and again creates bootstrap responses distributed according to the fitted
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model. The bootstrap sampling distributions generated in this way are
conditional on all observed covariates.

A.9.6 Bootstrap Confidence Intervals

As in Section A.5.4, let Θt = (θ1,Θ
t
2), where θ1 is univariate, and sup-

pose that we want a confidence interval for θ1. The simplest bootstrap
confidence interval is “normal based.” The bootstrap covariance matrix
in (A.42) is used for a standard error

se(θ̂1) =

√
v̂ar(Θ̂)11.

This standard error is then plugged into (A.18), giving

θ̂1 ± Φ−1(1 − α/2)se(θ̂1). (A.43)

The so-called percentile methods replace the normal approximation

in (A.43) by percentiles of the empirical distribution of {(θ̂(m)
1 − θ̂1)}M

1 .
The best of these percentile methods are the so-called BCa and ABC
intervals, and they are generally more accurate than (A.43) in the sense
of having a true coverage probability closer to the nominal (1 − α); see
Efron and Tibshirani (1993) for a full description of these intervals.

Hall (1992) has stressed the advantages of bootstrapping an asymptot-
ically pivotal quantity, that is, a quantity whose asymptotic distribution
is independent of unknown parameters. The percentile-t methods used
the “studentized” quantity

t =
θ̂1 − θ1

se(θ̂1)
, (A.44)

which is an asymptotic pivot with a large-sample standard normal dis-
tribution for all values of θ. Let se(m)(θ̂1) be the standard error of θ̂1

computed from the mth bootstrap data set and let

t(m) =
θ̂
(m)
1 − θ̂1

se(m)(θ̂1)
.

Typically, se(m)(θ̂1) will come from an expression for the asymptotic

variance matrix of Θ̂ (for example, the inverse of the observed Fisher
information matrix given by (A.17)) rather than bootstrapping, since
the latter would require two levels of bootstrapping: an outer level for
{t(m)}M

1 and, for each m, an inner level for calculating the denominator
of t(m). This would be very computationally expensive, especially for the
nonlinear estimators in this monograph. Let t1−α be the (1−α) quantile
of {|t(m)|}M

1 . Then the symmetric percentile-t confidence interval is

θ̂1 ± se(θ̂1) t1−α. (A.45)
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Note that se(θ̂1) is calculated from the original data in the same way

that se(m)(θ̂1) is calculated from the mth bootstrap data set.
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APPENDIX B

TECHNICAL DETAILS

This Appendix is a collection of technical details that will interest some,
but certainly not all, readers.

B.1 Appendix to Chapter 1: Power in Berkson and Classical

Error Models

In Chapter 1, we emphasized why it is important not to mix up Berkson
and classical error models when calculating power. In this section, we
discuss what is common between these two error models with regard to
power.

In the normal linear model with (Y,W,X,U) jointly normal, if W is
a surrogate (nondifferential error model), then power is a function of the
measurement error model only via the squared correlation between W

and X, ρ2
xw = σ2

x/σ2
w (classical) or ρ2

xw = σ2
w/σ2

x (Berkson), and thus is
the same for classical and Berkson error models with equal correlations.
So whether the error model is Berkson or classical, the loss of power is
the same provided ρ2

xw is the same in the two models. This is also true of
noncalibrated measurements, that is, ones with biases and multiplicative
constants (for example, W = α0 + αxX + U). So when comparing the
effects of measurement error on loss of power across different types of
measurement error models, the squared correlation is the most relevant
quantity on which to focus the discussion. Looking at variances is not
very meaningful because var(U) is not comparable across error models,
and it depends on whether or not we have calibrated measurements, but
correlations are comparable across error types. See Buzas, Tosteson, and
Stefanski (2004) for further discussion.

The explanation of the effects of measurement error on power in terms
of correlations has some useful implications for designing studies. The
most useful of which is that one should try to make an educated guess
(or estimate) of the squared correlation between W and X, as this is the
most relevant quantity.

This discussion also shows why assuming a Berkson model when a
classical model holds can lead to an inflated estimate of power. Suppose
we have an estimate of σ2

u and estimate σ2
w from the observed Wi. Define

f(x) = (x − σ2
u)/x = 1 − σ2

u/x, x > 0, and note that f is strictly

385



increasing. If one assumes Berkson error, then ρ2
xy is estimated by f(σ2

w+
σ2

u). If classical errors are assumed, then ρ2
xy is estimated by f(σ2

w). Since
f is strictly increasing, for fixed estimates of σ2

u and σ2
w, the estimate

of ρ2
xy is larger for the Berkson error model than for the classical error

model. The point here is that although the power would be the same for
the two models if they had the same values of ρ2

xy, for fixed values of σ2
u

and σ2
w, ρ2

xy is larger when Berkson errors are assumed.

B.2 Appendix to Chapter 3: Linear Regression and

Attenuation

Here we establish (3.10) and (3.11) under the assumption of multivari-
ate normality. Taking expectations of both sides of (3.9) conditional on
(X,Z) leads to the identity

E(Y | W,Z) = β0 + βxE(X | W,Z) + βt
zZ. (B.1)

Under joint normality the regression of X on (W,Z) is linear. To facili-
tate the derivation, we parameterize this as

E(X | W,Z) = γ0 + γw {W − E(W | Z)} + γt
z {Z− E(Z)} . (B.2)

Because of the orthogonalization in (B.2) it is immediate that

γw =
E (E [X {W − E(W | Z)} | Z])

E
(
E

[
{W − E(W | Z)}2 | Z

])

=
E {E(XW | Z) − E(X | Z)E(W | Z)}

σ2
w|z

, (B.3)

where σ2
w|z = var(W | Z).

Now because U is independent of Z, E(W | Z) = E(X | Z), E(XW |
Z) = E(X2 | Z), and the numerator in (B.3) is just σ2

x|z. Independence

of U and Z also implies that σ2
w|z = σ2

x|z + σ2
u. It follows that

γw =
σ2

x|z

σ2
w|z

=
σ2

x|z

σ2
x|z + σ2

u

, (B.4)

as claimed.
Suppose now that E(X | Z) = Γ0 + Γt

zZ. As noted previously, E(W |
Z) = E(X | Z), and thus E(W | Z) = Γ0 + Γt

zZ also.
Again, because of the orthogonalization in (B.2), it is immediate that

γz = Γz.
If we now replace E(W | Z) with Γ0 + Γt

zZ in (B.2) and substitute
the right-hand side of (B.2) into (B.1), and then collect coefficients of Z
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using the definition of (B.4), we find that the coefficient of Z in (B.1) is

βt
z∗ = βt

z + βx(1 − λ1)Γ
t
z. (B.5)

B.3 Appendix to Chapter 4: Regression Calibration

B.3.1 Standard Errors and Replication

As promised in Section 4.6, here we provide formulae for asymptotic
standard errors for generalized linear models, wherein

E(Y|Z,X) = f(β0 + βt
xX + βt

zZ);

var(Y|Z,X) = σ2g2(β0 + βt
xX + βt

zZ).

Let f ′(·) be the derivative of the function f(·), and let B = (β0, β
t
x, βt

z)
t.

We will use here the best linear approximations of Section 4.4.2. Let n
be the size of the main data set, and N − n the size of any independent
data set giving information about the measurement error variance Σuu.
Let ∆ = 1 mean that the main data set is used, and ∆ = 0 otherwise.
Remember that there are ki replicates for the ith individual and that
ν =

∑n
i=1 ki −

∑n
i=1 k2

i /
∑n

i=1 ki.

Make the definitions α = (n − 1)/ν, Σ̂wz = Σ̂xz, Σ̂zw = Σ̂t
wz, Σ̂ww =

Σ̂xx + αΣ̂uu, rwi = (Wi· − µw), rzi = (Zi − µz), and

µ̂w =
∑N

i=1∆ikiWi·/
∑N

i=1∆iki; µ̂z = n−1∑N
i=1∆iZi; (B.6)

Ψ1i∗ =




0 0 0
0 (nki/ν)rwir

t
wi (nki/ν)rwir

t
zi

0 (nki/ν)rzir
t
wi {n/(n − 1)}rzir

t
zi


 ;

Ψ1i = Ψ1i∗ − Vi;

Vi =




0 0 0
0 bi1 bi2

0 bt
i2 bi3


 ;

bi1 = Σxx
nki

ν



1 − 2ki/

∑

j

∆jkj +
∑

j

∆jk
2
j /(

∑

j

∆jkj)
2





+Σuu(n/ν)(1 − ki/
∑

j

∆jkj);

bi2 = Σxz(n/ν)(ki − k2
i /

∑

j

∆jkj); bi3 = Σzz.

In what follows, except where explicitly noted, we assume that the
data have been centered, so that µ̂w = 0 and µ̂z = 0. This is accom-
plished by subtracting the original values of the quantities (B.6) from
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the W’s and Z’s, and has an effect only on the intercept. Reestimating
the intercept after “uncentering” is described at the end of this section.

The analysis requires an estimate of Σuu. For this we only assume that
for some random variables Ψ2i and Ψ3i, if

Ŝ =




0 0 0
0 Σ̂uu 0
0 0 0


 ; S =




0 0 0
0 Σuu 0
0 0 0


 ,

then

Ŝ − S =




0 0 0
0 Σ̂uu − Σuu 0
0 0 0




≈ n−1∑N
i=1 {∆iΨ2i + (1 − ∆i)Ψ3i} . (B.7)

For example, if the estimator comes from an independent data set of size
N − n, then Ψ2i = 0 and

Ψ3i =




0 0 0
0 ψ3i 0
0 0 0


 , where

ψ3i =

∑ki

j=1

(
Wij − Wi·

) (
Wij − Wi·

)t − (ki − 1)Σuu

n−1
∑N

l=1(1 − ∆l)(kl − 1)
.

If the estimate of Σuu comes from internal data, then Ψ3i = 0 and

Ψ2i =




0 0 0
0 ψ2i 0
0 0 0


 , where

ψ2i =

∑ki

j=1

(
Wij − Wi·

) (
Wij − Wi·

)t − (ki − 1)Σuu

n−1
∑N

l=1 ∆l(kl − 1)
.

Now make the further definitions

D̂ =




1 0 0
0 Σ̂ww Σ̂wz

0 Σ̂zw Σ̂zz


 ;

ĉi =
{

D̂ − (α − k−1
i )Ŝ

}−1

.

Let D and S be the limiting values of D̂ and Ŝ. Let I be the identity

matrix of the same dimension as B. Define Ri = (1,W
t

i·,Z
t
i)

t and Q̂i =

(D̂−αŜ)ĉiRi. Using the fact that the data are centered, it is an easy but

crucial calculation to show that Q̂i = (1, Ê(Xt
i|Zi,Wi·),Z

t
i)

t, that is, it
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reproduces the regression calibration estimates. Now make the following
series of definitions:

ŝi =
{

f ′(Q̂t
iB̂)/g(Q̂t

iB̂)
}2

;

Â1n = n−1∑N
i=1∆iQ̂iQ̂

t
iŝi;

ri =
{
Yi − f(Qt

iB)
}

f ′(Qt
iB)Qi/g

2(Qt
iB);

din1 = n−1
N∑

j=1

∆jsjQjR
t
jcjΨ1i {I − cj(D − αS)}B;

din2 = n−1
N∑

j=1

∆jsjQjR
t
jcjΨ2i

{
(α − k−1

j )(D − αS)cj − αI
}
B;

din3 = n−1
N∑

j=1

∆jsjQjR
t
jcjΨ3i

{
(α − k−1

j )(D − αS)cj − αI
}
B;

ein = ∆i(ri − din1 − din2) − (1 − ∆i)din3.

Here and in what follows, si, Qi, ci, A1n, etc. are obtained by removing
the estimates in each of their terms. Similarly, r̂i, d̂in1, d̂in2, êin, etc. are
obtained by replacing population quantities by their estimates.

We are going to show that

B̂ − B ≈ A−1
1n n−1∑N

i=1ein, (B.8)

and hence a consistent asymptotic covariance matrix estimate obtained
by using the sandwich method is

n−1Â−1
1n Â2nÂ−1

1n , where (B.9)

Â2n = n−1∑N
i=1

{
∆i

(
r̂i − d̂in1 − d̂in2

) (
r̂i − d̂in1 − d̂in2

)t

+(1 − ∆i)d̂in3d̂
t

in3

}
. (B.10)

The information-type asymptotic covariance matrix uses

Â2n,i = Â2n + Â1n − n−1∑N
i=1∆ir̂ir̂

t
i . (B.11)

It is worth noting that deriving (B.9) and (B.11) takes considerable
effort, and that programming it is not trivial. The bootstrap avoids both
steps, at the cost of extra computer time.

To verify (B.8), note by the definition of the quasilikelihood estimator
and by a Taylor series, we have the expansion

0 = n−1/2∑N
i=1∆i

{
Yi − f(Q̂t

iB̂)
}

f ′(Q̂t
iB̂)Q̂i/g

2(Q̂t
iB̂)

≈ n−1/2∑N
i=1∆i

{
ri − siQi

(
Q̂t

iB̂ − Qt
iB

)}
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≈ n−1/2∑N
i=1∆i

{
ri − siQi

(
Q̂i − Qi

)t

B
}

(B.12)

−A1nn1/2
(
B̂ − B

)
.

However, by a standard linear expansion of matrices,

Q̂i − Qi =
{

(D̂ − αŜ)ĉi − (D − αS)ci

}
Ri

≈
{

(D̂ − D) − α(Ŝ − S)
}

ciRi

−(D − αS)ci

{
(D̂ − D) − (α − k−1

i )(Ŝ − S)
}

ciRi

= {I − (D − αS)ci} (D̂ − D)ciRi

+
{
(α − k−1

i )(D − αS)ci − αI
}

(Ŝ − S)ciRi.

However, n1/2(D̂ − D) ≈ n−1/2
∑N

i=1∆iΨ1i, and substituting this to-
gether with (B.7) means that

n−1/2∑N
i=1∆i

{
ri − siQi

(
Q̂i − Qi

)t

B
}

≈ n−1/2∑N
i=1∆iri

−n−1/2∑N
i=1∆isiQiR

t
icin

−1
N∑

j=1

∆jΨ1j {I − ci(D − αS)}B

−n−1/2∑N
i=1∆isiQiR

t
icin

−1
N∑

j=1

{∆jΨ2j + (1 − ∆j)Ψ3j}

×
{
(α − k−1

i )(D − αS)ci − αI
}
B.

If we interchange the roles of i and j in the last expressions and inset
into (B.12), we obtain (B.8).

While the standard error formulae have assumed centering, one can
still make inference about the original intercept that would have been
obtained had one not centered. Letting the original means of the Zi’s and
Wi·’s be µ̂z,o and µ̂w,o, the original intercept is estimated by β̂0+β̂t

xµ̂w,o

+β̂t
zµ̂z,o. If one conditions on the observed values of µ̂z,o and µ̂w,o, then

this revised intercept is the linear combination atB̂ = (1, µ̂t
z,o, µ̂

t
z,o)B̂,

and its variance is estimated by n−1atÂ−1
1n Â2nÂ−1

1n a.
If Σuu is known, or if one is willing to ignore the variation in its esti-

mate Σ̂uu, set din2 = din3 = 0. This may be relevant if Σ̂uu comes from
a large, careful independent study, for which only summary statistics are
available (a common occurrence).

In other cases, W is a scalar variable, Σuu cannot be treated as known
and one must rely on an independent experiment that reports only an
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estimate of it. If that experiment reports an asymptotic variance ξ̂/n
based on a sample of size N −n, then Ψ3i is a scalar and simplifications
result which enable a valid asymptotic analysis. Define

dn4 = n−1∑N
j=1∆j ŝjQ̂jR

t
j ĉj

{
(α − k−1

j )(D̂ − αŜ)ĉj − αI
}
B̂.

Then, in (B.10) replace n−1
∑

i(1−∆i)d̂in3d̂
t

in3 with dn4d
t

n4nξ̂/(N −n).

B.3.2 Quadratic Regression: Details of the Expanded Calibration Model

Here we show that, as stated in Section 4.9.2, in quadratic regression,
if X given W is symmetrically distributed and homoscedastic, the ex-
panded model (4.17) accurately summarizes the variance function. Let
κ = E

{
(X − m)4|W

}
, which is constant because of the homoscedastic-

ity.∗ Then, if r = X − m, the variance function is given by

var(Y|W) = σ2 + β2
x,1var(X|W) + β2

x,2var(X
2|W)

+2βx,1βx,2cov
{
(X,X2)|W

}

= σ2 + β2
x,1σ

2 + β2
x,2E

{
X4 − (m2 + σ2)2|W

}

+2βx,1βx,2E
[
r
{
r2 + 2mr − σ2

}
|W

]

= σ2 + β2
x,1σ

2 + β2
x,2(κ + 4m2σ2 − σ4) + 4βx,1βx,2mσ2

= σ2
∗ + σ2(βx,1 + 2βx,2m)2,

where σ2
∗ = σ2 + β2

x,2κ − σ4. The approximation (4.17) is of exactly the
same form. The only difference is that it replaces the correct σ2

∗ with σ2,
but this replacement is unimportant since both are constant.

B.3.3 Heuristics and Accuracy of the Approximations

The essential step in regression calibration is the replacement of X with
E(X|W,Z) = m(Z,W, γ) in (4.10) and (4.11), leading to the model
(4.12)–(4.13). This model can be justified by a “small-σ” argument, that
is, by assuming that the measurement error is small. The basic idea is
that under small measurement error, X will be close to its expectation.
However, even with small measurement error, X may not be close to W,
so naively replacing X with W may lead to large bias, hence the need
for calibration. For simplicity, assume that X is univariate. Let X =
E(X|Z,W) + V, where E(V|Z,W) = 0 and var(V|Z,W) = σ2

X|Z,W .

Let m(·) = m(Z,W, γ). Let fx and fxx be the first and second partial
derivatives of f(z, x,B) with respect to x. Assuming that σ2

X|Z,W is small,

∗ More precisely, in addition to a constant variance, we are also assuming a constant
kurtosis, as is true if, for example, X given W is normally distributed.
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and hence that V is small with high probability, we have the Taylor
approximation:

E(Y|Z,W) = E
{

E(Y|Z,W,X)
∣∣∣Z,W

}

≈ E
{
f(Z,m(·),B) + fx(Z,m(·),B)V

+(1/2)fxx(Z,m(·),B)V2
∣∣∣Z,W

}

= f {Z,m(·),B} + (1/2)fxx {Z,m(·),B}σ2
X|Z,W .

Model (4.12) results from dropping the term involving σ2
X|Z,W , which

can be justified by the small-σ assumption. This term is retained in the
expanded regression calibration model developed in Section 4.7.

To derive (4.13), note that

var(Y|Z,W) = var
{

E(Y|Z,W,X)
∣∣∣Z,W

}
(B.13)

+E
{

var(Y|Z,W,X)
∣∣∣Z,W

}
.

The first term on the right-hand side of (B.13) is

var{f(Z,X,B)|Z,W} ≈ var{fx(Z,m(·),B)V|Z,W}
= f2

x {Z,m(·),B}σ2
X|Z,W ,

which represents variability in Y due to measurement error and is set
equal to 0 in the regression calibration approximation, but is used in
the expanded regression calibration approximation of Section 4.7. Let
sx and sxx be the first and second partial derivatives of g2(z, x,B, θ)
with respect to x. The second term on the right-hand side of (B.13) is

E{σ2g2(Z,X,B, θ)|Z,W} ≈ σ2g2(Z,m(·),B, θ)

+
1

2
sxx(Z,m(·),B, θ)σ2

X|Z,W .

Setting the term involving σ2
X|Z,W equal to 0 gives the regression calibra-

tion approximation, while both terms are used in expanded regression
calibration.

B.4 Appendix to Chapter 5: SIMEX

The ease with which estimates can be obtained via SIMEX, even for
very complicated and nonstandard models, is offset somewhat by the
complexity of the resulting estimates, making the calculation of standard
errors difficult or at least nonstandard. Except for the computational
burden of nested resampling schemes, SIMEX is a natural candidate
for the use of the bootstrap or a standard implementation of Tukey’s
jackknife to calculate standard errors.
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We now describe two methods of estimating the covariance matrix
of the asymptotic distribution of Θ̂simex that avoid nested resampling.
We do so in the context of homoscedastic measurement error. The first
method uses the pseudo estimates, Θ̂b(ζ), generated during the SIMEX
simulation step in a procedure akin to Tukey’s jackknife variance es-
timate. Its applicability is limited to situations in which σ2

u is known
or estimated well enough to justify such an assumption. The second
method exploits the fact that Θ̂simex is asymptotically equivalent to
an M-estimator and makes use of standard formulae from Appendix A.
This method requires additional programming but has the flexibility to
accommodate situations in which σ2

u is estimated and the variation in
σ̂2

u is not negligible.

B.4.1 Simulation Extrapolation Variance Estimation

Stefanski and Cook (1995) establish a close relationship between SIMEX
inference and jackknife inference. In particular, they identified a method
of variance estimation applicable when σ2

u is known that closely parallels
Tukey’s jackknife variance estimation. We now describe the implemen-
tation of their method of estimating var(Θ̂simex).

It is convenient to introduce a function T to denote the estimator
under study. For example, T {(Yi,Zi,Xi)

n
1} is the estimator of Θ when

X is observable, and T {(Yi,Zi,Wi)
n
1} is the naive estimator.

For theoretical purposes we let

Θ̂b(ζ) = T
{

(Yi,Zi,Wi +
√

ζUb,i)
n
1

}
,

we redefine

Θ̂(ζ) = E
{

Θ̂b(ζ) | (Yi,Zi,Wi)
n
1

}
. (B.14)

The expectation in (B.14) is with respect to the distribution of (Ub,i)
n
i=1

only, since we condition on the observed data. It can be obtained as the
limit as B → ∞ of the average {Θ̂1(ζ)+ · · ·+Θ̂B(ζ)}/B. In effect, Θ̂(ζ)
is the estimator obtained when computing power is unlimited.

We now introduce a second function, Tvar to denote an associated
variance estimator, that is,

Tvar{(Yi, Zi, Xi)
n
1} = v̂ar(Θ̂true) = v̂ar[T {(Yi, Zi, Xi)

n
1}],

where Θ̂true denotes the “estimator” calculated from the “true” data
(Yi, Zi, Xi)

n
1 .

We allow T to be p-dimensional, in which case Tvar is (p × p)-matrix
valued, and variance refers to the variance–covariance matrix. For ex-
ample, Tvar could be the inverse of the information matrix when Θ̂true
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is a maximum likelihood estimator. Alternatively, Tvar could be a sand-
wich estimator for either a maximum likelihood estimator or a general
M-estimator (Appendix A).

We use τ2 to denote the parameter var(Θ̂true), τ̂2
true to denote the

true variance estimator Tvar{(Yi, Zi, Xi)
n
1}, and τ̂2

naive to denote the

naive variance estimator Tvar{(Yi, Zi, Wi)
n
1}.

Stefanski and Cook (1995) show that

E{Θ̂simex | (Yi, Zi, Xi)
n
1} ≈ Θ̂true, (B.15)

where the approximation is due to both a large-sample approximation
and to use of an approximate extrapolant function. We will make use
of such approximations without further explanation; see Stefanski and
Cook (1995) for additional explanation.

It follows from Equation (B.15) that

var(Θ̂simex) ≈ var(Θ̂true) + var(Θ̂simex − Θ̂true). (B.16)

Equation (B.16) decomposes the variance of Θ̂simex into a component

due to sampling variability, var(Θ̂true) = τ2, and a component due to

measurement error variability, var(Θ̂simex − Θ̂true).
SIMEX estimation can be used to estimate the first component τ 2.

That is,

τ̂2
b (ζ) = Tvar[{Yi, Zi, Wb,i(ζ)}n

1 ]

is calculated for b = 1, . . . , B, and upon averaging and letting B → ∞,
results in τ̂2(ζ). The components of τ̂ 2(ζ) are then plotted as functions
of ζ, extrapolant models are fit to the components of {τ̂ 2(ζm), ζm}M

1

and the modeled values at ζ = −1 are estimates of the corresponding
components of τ 2.

The basic building blocks required to estimate the second component
of the variance, var(Θ̂simex − Θ̂true), are the differences

∆b(ζ) = Θ̂b(ζ) − Θ̂(ζ), b = 1, . . . , B. (B.17)

Define

s2
∆(ζ) = (B − 1)−1∑B

b=1∆b(ζ)∆t
b(ζ), (B.18)

that is, the sample variance matrix of {Θ̂b(ζ)}B
b=1. Its significance stems

from the fact that

var(Θ̂simex − Θ̂true) = − lim
ζ→−1

var{Θ̂b(ζ) − Θ̂(ζ)}; (B.19)

see Stefanski and Cook (1995). The minus sign on the right-hand side

of (B.19) is not an misprint; var{Θ̂b(ζ)− Θ̂(ζ)} is positive for ζ > 0 and
zero for ζ = 0, so the extrapolant is negative for ζ < 0.
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The variance matrix s2
∆(ζ) is an unbiased estimator of the conditional

variance var{Θ̂b(ζ) − Θ̂(ζ) | (Yi,Zi,Wi)
n
1} for all B > 1 and converges

in probability to its conditional expectation as B → ∞. Since E{Θ̂b(ζ)−
Θ̂(ζ) | (Yi,Zi,Wi)

n
1} = 0, it follows that unconditionally E{s2

∆(ζ)} =

var{Θ̂b(ζ) − Θ̂(ζ)}.
Thus, the component of variance we want to estimate is given by

var(Θ̂simex − Θ̂true) = − lim
ζ→−1

E{s2
∆(ζ)}.

This can be (approximately) estimated by fitting models to the compo-
nents of s2

∆(ζ) as functions of ζ > 0 and extrapolating the component
models back to ζ = −1. We use ŝ2

∆(−1) to denote the estimated variance
matrix obtained by this procedure.

In light of (B.16), the definition of τ 2, and (B.19) the difference,

τ̂2
simex − ŝ2

∆(−1), is an estimator of var{Θ̂simex}. In practice, sepa-

rate extrapolant functions are not fit to the components of both τ̂ 2(ζ)
and s2

∆(ζ); rather, the components of the difference, τ̂ 2(ζ) − s2
∆(ζ), are

modeled and extrapolated to ζ = −1.
In summary, for SIMEX estimation with known σ2

u, the simulation

step results in Θ̂(ζ), τ̂2(ζ) and s2
∆(ζ) for ζ ∈ Λ. The model extrapolation

of Θ̂(ζ) to ζ = −1, Θ̂simex, provides an estimator of Θ, and the model
extrapolation of (the components of) the difference, τ̂ 2(ζ) − s2

∆(ζ) to

ζ = −1 provides an estimator of var(Θ̂simex). It should be emphasized
that the entire procedure is approximate in the sense that it is generally
valid only in large samples with small measurement error.

There is no guarantee that the estimated covariance matrix so ob-
tained is positive definite. This is similar to the nonpositivity problems
that arise in estimating components-of-variance. We have not encoun-
tered problems of this nature, although there is no guarantee that they
will not occur. If it transpires that the estimated variance of a linear
combination, say γtΘ̂, is negative, a possible course of action is to plot,
model, and extrapolate directly the points [γt{τ̂2(ζm)−s2

∆(ζm}γ, ζm]M1 ,
though there is also no guarantee that its extrapolation will be nonneg-
ative.

B.4.2 Estimating Equation Approach to Variance Estimation

This section is based on the results in Carroll, Küchenhoff, Lombard,
and Stefanski (1996). Assuming iid sampling, these authors showed that
the estimate of Θ is asymptotically normally distributed and proposed
an estimator of its asymptotic covariance matrix. We highlight the main
points of the asymptotic analysis in order to motivate the proposed vari-
ance estimator.
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We describe the application of SIMEX in the setting of M-estimation,
that is, using unbiased estimating equations (Appendix A), assuming
that in the absence of measurement errors, M-estimation produces con-
sistent estimators.

The estimator obtained in the absence of measurement error is denoted
Θ̂true and solves the system of equations

0 = n−1∑n
i=1Ψ(Yi,Zi,Xi, Θ̂true). (B.20)

This is just a version of (A.19) and is hence applicable to variance func-
tion and generalized linear models. In multiple linear regression, Ψ(·)
represents the normal equations for a single observation, namely,

Ψ(Y,Z,X,Θ) = (Y − β0 − βt
zZ − βxX)(1,Zt,Xt)t.

In multiple logistic regression, with H(·) being the logistic distribution
function,

Ψ(Y,Z,X,Θ) =
{
Y − H

(
β0 + βt

zZ + βxX
)}

(1,Zt,Xt)t.

The solution to (B.20) cannot be calculated, since it depends on the
unobserved true predictors. The estimator obtained by ignoring mea-
surement error is denoted by Θ̂naive and solves the system of equations

0 = n−1∑n
i=1Ψ(Yi,Zi,Wi, Θ̂naive).

For fixed b and ζ and large n, a standard linearization (Appendix A)
shows that

n1/2
{

Θ̂b(ζ) − Θ(ζ)
}
≈ −A−1{σ2

u, ζ,Θ(ζ)}

× n−1/2∑n
i=1Ψ{Yi,Zi,Wb,i(ζ),Θ(ζ)}, (B.21)

where A{σ2
u, ζ,Θ(ζ)} = E [ΨΘ{Y, Z, Wb,i(ζ),Θ(ζ)}], and

ΨΘ{Y, Z, Wb,i(ζ),Θ} = (∂/∂Θt)Ψ{Y, Z, Wb,i(ζ),Θ}.

Averaging (B.21) over b results in the asymptotic approximation

n1/2
{

Θ̂(ζ) − Θ(ζ)
}
≈ −A−1(·)

× n−1/2∑n
i=1χB,i{σ2

u, ζ, Θ(ζ)}, (B.22)

where χB,i{σ2
u, ζ,Θ(ζ)} = B−1

∑B
b=1Ψ{Yi, Zi, Wb,i(ζ),Θ(ζ)}, and A−1(·)

= A−1{σ2
u, ζ,Θ(ζ)}. The summands χB,i(·) in (B.22) are independent

and identically distributed with mean zero.
Let Λ = {ζ1, . . . , ζM} denote the grid of values used in the extrapola-

tion step. Let Θ̂∗(Λ) denote {Θ̂t(ζ1), . . . , Θ̂
t(ζM )}t, which we also denote

vec{Θ̂(ζ), ζ ∈ Λ}. The corresponding vector of estimands is denoted by
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Θ∗(Λ). Define

ΨB,i(1){σ2
u,Λ,Θ∗(Λ)} = vec[χB,i{σ2

u, ζ,Θ(ζ)}, ζ ∈ Λ]

A11{σ2
u,Λ,Θ∗(Λ)} = diag[A{σ2

u, ζ, Θ(ζ)}, ζ ∈ Λ].

Then, using (B.22), the joint limit distribution of n1/2{Θ̂∗(Λ)−Θ∗(Λ)}
is seen to be multivariate normally distributed with mean zero and co-
variance Σ, where

Σ = A−1
11 (·)C11

{
σ2

u,Λ,Θ∗(Λ)
} {

A−1
11 (·)

}t
(B.23)

C11

{
σ2

u,Λ,Θ∗(Λ)
}

= Cov
[
ΨB,1(1)

{
σ2

u,Λ,Θ∗(Λ)
}]

. (B.24)

Define G∗(Λ,Γ∗) = vec [{G(ζm,Γj)}m=1,...,M, j=1,...,p], where Γ∗ =
(Γt

1, . . . ,Γ
t
p)

t and Γj is the parameter vector estimated in the extrap-

olation step for the jth component of Θ̂(ζ), j = 1, . . . , p.

Define R(Γ∗) = Θ̂∗(Λ)−G∗(Λ,Γ∗). The extrapolation steps results in

Γ̂∗, obtained by minimizing Rt(Γ∗)R(Γ∗). The estimating equation for

Γ̂∗ has the form 0 = s(Γ∗)R(Γ∗) where st(Γ∗) = {∂/∂(Γ∗)t}R(Γ∗). With
D(Γ∗) = s(Γ∗)st(Γ∗), standard asymptotic results show that

n−1/2(Γ̂∗ − Γ∗) ≈ N{0, Σ(Γ∗)},
where Σ(Γ∗) = D−1(Γ∗)s(Γ∗)Σst(Γ∗)D−1(Γ∗) and Σ is given by (B.23).

Now Θ̂simex = G∗(−1, Γ̂∗) and thus by the ∆ method, the
√

n -normalized
SIMEX estimator is asymptotically normal with asymptotic variance,

G∗
Γ∗(−1,Γ∗)Σ(Γ∗){G∗

Γ∗(−1,Γ∗)}t

where G∗
Γ∗(ζ,Γ∗) = {∂/∂(Γ∗)t}G∗(ζ,Γ∗).

Note that the matrix C11(·) in (B.24) is consistently estimated by

Ĉ11(·), the sample covariance matrix of [ΨB,i(1){σ2
u,Λ, Θ̂∗(Λ)}]n1 . Also,

A11(·) is consistently estimated by Â11(·) = diag{Âm(·)} for m = 1, . . . ,M ,
where

Âm(·) = (nB)−1∑n
i=1

∑B
b=1ΨΘ{Yi, Zi, Wb,i(ζm), Θ̂(ζm)}.

The indicated variance estimator is

n−1G∗
Γ∗(−1, Γ̂∗)Σ̂(Γ̂∗){G∗

Γ∗(−1, Γ̂∗)}t, (B.25)

where D̂(Γ̂∗) = s(Γ̂∗)st(Γ̂∗) and

Σ̂(Γ̂∗) = D̂−1(Γ̂∗)s(Γ̂∗)Σ̂st(Γ̂∗)D̂−1(Γ̂∗);

Σ̂ = Â−1
11 (·)Ĉ−1

11 (·)
{
Â−1

11 (·)
}t

.

When σ2
u is estimated, the estimating equation approach is modified

by the inclusion of additional estimating equations employed in the es-
timation of σ̂u

2
. We illustrate the case in which each Wi is the mean of
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two replicate measurements, Wij , j = 1, 2 where

Wij = Xi + Ui,j , j = 1, 2, i = 1, . . . , n.

With replicates, Wi is replaced by W∗
i = Wi,. and σ2

u by σ2
u,∗ = σ2

u/2.
Let

Ψ(i)2(σ
2
u,∗, µ) =

{
(Di − µ)2 − σ2

u,∗

Di − µ

}
,

where Di = (Wi1 − Wi2)/2. Then solving
∑

Ψi(2)(σ
2
u,∗, µ) = 0, results

in the estimators µ̂ = D and σ̂2
u,∗ = (n− 1)s2

d/n, where s2
d is the sample

variance of (Di)
n
1 and consistently estimates σ2

u,∗.
By combining ΨB,i(1) and Ψi(2) into a single estimating equation and

applying standard theory, the covariance matrix of the joint distribution
of Θ̂∗(Λ), σ̂2

u,∗, and µ̂ is

n−1

{
A11(·) A12(·)

0 A22(·)

}−1 {
C11(·) C12(·)
Ct
12(·) C22(·)

} {
A11(·) A12(·)

0 A22(·)

}−t

,(B.26)

where{
C11(·) C12(·)
Ct
12(·) C22(·)

}
= C∗(·) = cov

[
ΨB,1(1)

{
σ2

u,∗,Λ,Θ∗(Λ)
}

Ψ1(2)

(
σ2

u,∗, µ
)

]
,

A12{σ2
u,∗,Λ,Θ∗(Λ)}

= n−1∑n
i=1E[

∂

∂(σ2
u,∗, µ)

ΨB,i(1)

{
σ2

u,∗,Λ,Θ∗(Λ)
}
],

and

A22

(
σ2

u,∗, µ
)

= n−1∑n
i=1E

{
∂

∂(σ2
u,∗, µ)

Ψi(2)

(
σ2

u,∗, µ
)}

= −n−1∑n
i=1E

{
1 2(Di − µ)
0 1

}
= −

{
1 0
0 1

}
.

Estimating these quantities via the sandwich method is straightforward.
For A12(·) remove the expectation symbol and replace

{
σ2

u,∗,Θ∗(Λ), µ
}

by the estimates
{

σ̂2
u,∗, Θ̂∗(Λ), µ̂

}
. The covariance matrix C∗(·) can be

estimated by the sample covariance matrix of the vectors
[

ΨB,i(1)

{
σ̂2

u,∗,Λ, Θ̂∗(Λ)
}

Ψi(2)

(
σ̂2

u,∗, µ̂
)

]
.

These estimates are substituted into (B.26), thereby obtaining an esti-

mate of the joint covariance matrix of Θ̂∗(Λ), σ̂2
u,∗, and µ̂. The submatrix

corresponding to the components of Θ̂∗(Λ) is now employed in (B.25) in

place of Σ̂.
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B.5 Appendix to Chapter 6: Instrumental Variables

B.5.1 Derivation of the Estimators

In this section, we derive the estimators presented in Section 6.3. We
start with the following assumptions:

E(X | Z,T,W) = βt
X|1ZTW + βt

X|1ZTW Z +

βt
X|1ZTW T + βt

X|1ZTW W; (B.27)

E(X − W | Z,X,T) = 0; (B.28)

E(Y | Z, T, W) = E
{
E(Y | Z, X) | Z, T, W

}
. (B.29)

We have discussed each of these previously. Note that (B.27) and (B.28)
imply that E(X | Z,T) = E(W | Z,T) and also that βW |1ZT = βX|1ZT ,
βW |1ZT = βX|1ZT , and βW |1ZT = βX|1ZT .

B.5.1.1 First Regression Calibration Instrumental Variable Algorithm

The first algorithms are simple to describe once (6.17) is justified, which
we do now. Making use of the fact that T is a surrogate, (B.29) and the
standard regression calibration approximation results in the approximate
model

E(Y|T̃) = f{βt
Y |X̃

E(X̃ | T̃)} = f(βt
Y |X̃

βt
X̃|T̃

T̃), (B.30)

var(Y|T̃) = σ2g2{βt
Y |X̃

E(X̃ | T̃), θ} (B.31)

= σ2g2(βt
Y |X̃

βt
X̃|T̃

T̃, θ).

It follows from (B.30)–(B.31) that the coefficient of T̃ in the generalized

linear regression of Y on T̃ is βt
Y |T̃

= βt
Y |X̃

βt
X̃|T̃

. By (B.28) β
W̃ |T̃

=

βX̃|T̃ , and (6.17) follows.

B.5.1.2 Second Regression Calibration Instrumental Variable Algorithm

The derivation of the second algorithm is somewhat involved, but the
estimator is relatively easy to compute. Remember that the strategy is
to exploit the fact that both W and T are surrogates.

Making use of the fact that both T and W are surrogates, applica-
tion of the standard regression calibration approximation produces the
approximate model

E(Y|T̃,W̃) = f{βt
Y |X̃

E(X̃ | T̃,W̃)}, (B.32)

var(Y|T̃,W̃) = σ2g2{βt
Y |X̃

E(X̃ | T̃,W̃), θ}. (B.33)

Under the linear regression assumption (B.27), there exist coefficient
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matrices βt
X̃|T̃W̃

and βt
X̃|T̃ W̃

, such that

E(X̃ | T̃,W̃) = βt
X̃|T̃W̃

T̃ + βt
X̃|T̃ W̃

W̃. (B.34)

Taking conditional expectations of both sides of (B.34) with respect to

T̃ and using the fact that E(X̃ | T̃) = βt
X̃|T̃

T̃ results in the identity

βt
X̃|T̃

T̃ = βt
X̃|T̃W̃

T̃ + βt
X̃|T̃ W̃

βt
W̃ |T̃

T̃.

Equating coefficients of T̃ and using the fact that β
W̃ |T̃

= βX̃|T̃ , we find

that

βt
X̃|T̃

= βt
X̃|T̃W̃

+ βt
X̃|T̃ W̃

βt
X̃|T̃

. (B.35)

Solving (B.35) for βt
X̃|T̃W̃

and then substitution into (B.34) shows that

E(X̃ | T̃,W̃) = (I − βt
X̃|T̃ W̃

)βt
X̃|T̃

T̃ + βt
X̃|T̃ W̃

W̃. (B.36)

By convention, βt
Y |T̃ W̃

is the regression coefficient of (T̃t, W̃t)t in the

generalized linear regression of Y on T̃ and W̃. The indicated model is
overparameterized ,and thus the components of βt

Y |T̃ W̃
are not uniquely

determined. Although other specifications are possible, we define the
components of β

Y |T̃ W̃
uniquely as

β
Y |T̃W̃

= βY |1ZTW ,

β
Y |T̃ W̃

= (01×d, βt
Y |1ZTW )t,

where d = 1 + dim(Z). Let H1 and H2 be the matrices that define
β

Y |T̃W̃
and β

Y |T̃ W̃
in terms of βY |1ZTW , so that β

Y |T̃W̃
= H1βY |1ZTW

and β
Y |T̃ W̃

= H2βY |1ZTW . Also note that because T̃ = (1,Zt,Tt)t, our

notation allows us to write βt
Y |1ZTW = βt

Y |T̃W
.

Substitution of (B.36) into (B.32) and equating coefficients of T̃ and

W̃ results in the two equations:

βt
Y |T̃W̃

= βt
Y |X̃

(I − βt
X̃|T̃ W̃

)βt
X̃|T̃

, (B.37)

βt
Y |T̃ W̃

= βt
Y |X̃

βt
X̃|T̃ W̃

. (B.38)

Postmultiplying (B.38) by βt
X̃|T̃

and adding the resulting equation to

(B.37) results in the single equation,

β
Y |T̃W̃

+ βX̃|T̃ β
Y |T̃ W̃

= βX̃|T̃ βY |X̃ ,

which, upon using the definitions of H1 and H2 and the identity βX̃|T̃ =
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β
W̃ |T̃

, is shown to be equivalent to

H1βY |T̃W + β
W̃ |T̃

H2βY |T̃W = β
W̃ |T̃

βY |X̃ .

Let β̂Y |T̃W be the estimated regression parameter from the gener-

alized linear regression of Y on (1,Z,T,W), and let β̂
W̃ |T̃

be as be-

fore. Under the identifiability assumption that for a given matrix M2,
(β̂t

W̃ |T̃
M2β̂W̃ |T̃

) is asymptotically nonsingular, it follows that the esti-

mator (6.19), namely,

β̂
IV 2,(M2)
Y |1X = β̂

−(M2)

W̃ |T̃
(H1β̂Y |T̃W + β̂

W̃ |T̃
H2β̂Y |T̃W ),

is approximately consistent for βY |X̃ .

When T and W are the same dimension, β̂
IV 2,(M2)
Y |1X does not depend

on M2. In Section B.5.2.1, we derive an estimate M̂2 that minimizes the

asymptotic variance of β̂
IV 2,(M2)
Y |1X for the case dim(T) > dim(W).

B.5.2 Asymptotic Distribution Approximations

We first derive the asymptotic distributions assuming that M1 and M2

are fixed and that M-estimation is used in the generalized linear and
linear regression modeling steps. We then show how to estimate M1 and
M2 for efficient asymptotic inference.

Let ψ denote the score function for the generalized linear model under
consideration (6.17)–(6.17). This score function has as many as three
components, the first corresponding to the unknown regression param-
eter, the second and third to the parameters in the variance function.
All of the components are functions of the unknown parameters, the
response variable and the vector of covariate/predictor variables. For
example, with logistic regression there are no variance parameters and
ψ(y, x, β) = {y − H(βtx)}x where H(t) = 1/ {1 + exp(−t)}.

Let
ψ1i = ψ

{
Yi, T̃i, βY |T̃ , σ2

1 , θ1

}

denote the ith score function employed in fitting the approximate model
(B.30)–(B.31) to (Yi, T̃i)

n
1 . Let

ψ2i = ψ
{
Yi, (T̃

t
i,W

t
i)

t, βY |T̃W , σ2
2 , θ2

}

denote the ith score function employed in fitting the approximate model

(B.32)–(B.33) to
{
Yi, (T̃

t
i,W

t
i)

t
}n

1
. Note that each fit of the generalized

linear model produces estimates of the variance parameters as well as
the regression coefficients. These are denoted with subscripts as above,
for example, σ2

1 , θ1, etc.
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Let ψ3i denote the ith score function used to estimate vec(β
W̃ |T̃

), for

example, for least squares estimation

ψ3i =
(
W̃i − βt

W̃ |T̃
T̃i

)
⊗ T̃i,

and let
ψ4i = ψ

{
Yi, (β

t
W̃ |T̃

T̃i), β
IV 1,RC

Y |X̃
, σ2

3 , θ3

}
.

Finally, define ψ5i and ψ6i as

ψ5i =
(
βt

W̃ |T̃
M1βW̃ |T̃

)
β

IV 1,(M1)

Y |X̃
− βt

W̃ |T̃
M1βY |T̃ ,

and

ψ6i =
(
βt

W̃ |T̃
M2βW̃ |T̃

)
β

IV 2,(M2)

Y |X̃

−βt
W̃ |T̃

M2(H1βY |T̃W + β
W̃ |T̃

H2βY |T̃W ).

Note that neither ψ5i nor ψ6i depends on i.
Define the composite parameter

Θ =

{
βt

Y |T̃
, σ2

1 , θt
1, β

t
Y |T̃W

, σ2
2 , θt

2, vec
t
(
βt

W̃ |T̃

)
, (B.39)

(
βIV 1,RC

Y |X̃

)t

, σ2
3 , θt

3,
(
β

IV 1,(M1)

Y |X̃

)t

,
(
β

IV 2,(M2)

Y |X̃

)t
}t

,

and the ith composite score function

ψi(Θ) =
(
ψt

1i, ψ
t
2i, ψ

t
3i, ψ

t
4i, ψ

t
5i, ψ

t
6i

)t
. (B.40)

It follows that Θ̂ solves
∑n

i=1ψi(Θ̂) = 0dim(Θ)×1,

showing that Θ̂ is an M-estimator. Thus, under fairly general conditions
Θ̂ is approximately normally distributed in large samples and the theory
of Chapter A applies.

An estimate of the asymptotic covariance matrix of Θ̂ is given by
the sandwich formula Â−1

n B̂n(Â−1
n )t, where Ân =

∑n
i=1ψiΘ(Θ̂) with

ψiΘ(Θ) = ∂ψi(Θ)/∂Θt, and B̂n =
∑n

i=1ψi(Θ̂)ψt
i(Θ̂). Note that because

we are fitting approximate (or misspecified) models, information-based

standard errors, that is, standard errors obtained by replacing Ân and
B̂n with model-based estimates exploiting the information identity, are
generally not appropriate.

Let Ω̂ = Â−1
n B̂n(Â−1

n )t and let Ω̂i,j , i, j = 1, . . . , 12 denote the (i, j)th

submatrix of Ω̂ corresponding to the natural partitioning induced by
the components of Θ in (B.39). It follows that Ω̂8,8, Ω̂11,11, and Ω̂12,12
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are estimates of the variance matrices of the asymptotic distributions of

β̂IV 1,RC
Y |1X , β̂

IV 1,(M1)
Y |1X , and β̂

IV 2,(M2)
Y |1X , respectively.

B.5.2.1 Two-Stage Estimation

When T and W have the same dimension, the estimators (6.18) and
(6.19) do not depend on M1 and M2. However, when there are more
instruments than predictors measured with error it is possible to iden-
tify and consistently estimate matrices M1 and M2 which minimize the
asymptotic variance matrix of the corresponding estimators. We give the
results first and then sketch their derivations.

For an asymptotically efficient estimator (6.18), replace M1 with

M̂1,opt = Ω̂1,1 − Ω̂1,7Ĉ
t − ĈΩ̂7,1 + ĈΩ̂7,7Ĉ

t)−1,

where Ĉ = Id
T̃
⊗

(
β̂

IV 1,(I)
Y |1X

)t

, Id
T̃

is the identity matrix of dimension

dT̃ = dim(T̃ ), and β̂
IV 1,(I)
Y |1X is the estimator obtained by setting M1 equal

to Id
T̃
.

For an asymptotically efficient estimator (6.19), replace M2 with

M̂2,opt =

{
(H1 + β̂

W̃ |T̃
)Ω̂4,4(H1 + β̂

W̃ |T̃
)t +

(H1 + β̂
W̃ |T̃

)Ω̂4,7D̂
t + D̂Ω̂7,4(H1 + β̂

W̃ |T̃
)t + D̂Ω̂7,7D̂

t

}−1

,

where D̂ = Id
T̃
⊗ (H2β̂Y |T̃W )t − Id

T̃
⊗ β̂

IV 2,(I)
Y |1X )t and β̂

IV 2,(I)
Y |1X is the

estimator obtained by setting M2 equal to Id
T̃
.

We now describe the main steps in the demonstrations of the asymp-
totic efficiency of M̂1,opt and M̂2,opt.

The argument for M̂1,opt and the estimator (6.18) is simpler and is
given first. We start with a heuristic derivation of the efficient estimator.

Consider the basic identity in (6.17), βY |T̃ = β
W̃ |T̃

βY |X̃ . Replacing

βY |T̃ with β̂Y |T̃ − (β̂Y |T̃ − βY |T̃ ) and β
W̃ |T̃

with β̂
W̃ |T̃

− (β̂
W̃ |T̃

− β
W̃ |T̃

)

and rearranging terms shows that this equation is equivalent to

β̂Y |T̃ = β̂
W̃ |T̃

βY |X̃ + (β̂Y |T̃ − βY |T̃ ) − (β̂
W̃ |T̃

− β
W̃ |T̃

)βY |X̃ .

This equation has the structure of a linear model with response vector
β̂Y |T̃ , design matrix β̂

W̃ |T̃
, regression parameter βY |X̃ , and equation er-

ror (β̂Y |T̃ − βY |T̃ ) − (β̂
W̃ |T̃

− β
W̃ |T̃

)βY |X̃ . Let Σ denote the covariance

matrix of this equation error. The best linear unbiased estimator of βY |X̃

in this pseudolinear model is

(β̂t
W̃ |T̃

Σ−1β̂
W̃ |T̃

)−1β̂t
W̃ |T̃

Σ−1β̂Y |T̃ ,
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which is exactly (6.18) with M1 = Σ−1. Note that the estimator M̂1,opt
is a consistent estimator of Σ−1.

Showing that the heuristic derivation is correct and that there is no
penalty for using an estimated covariance matrix is somewhat more in-
volved, but entails nothing more than linearization via Taylor series ap-
proximations and ∆-method arguments.

Let M̂1 be a consistent estimator of the matrix M1. Expanding the

estimating equation for β̂
IV 1,(M̂1)
Y |1X around the true parameters results in

the approximation

√
n

{
β̂

IV 1,(M̂1)
Y |1X − βY |X̃

}
≈ β

−(M1)

W̃ |T̃
(ǫ2 − Cǫ3) ,

where

ǫ2 =
√

n
(
β̂Y |T̃ − βY |T̃

)
,

ǫ3 =
√

n
{

vec
(
β̂

W̃ |T̃

)
− vec

(
β

W̃ |T̃

)}
,

C = Id
T̃
⊗ βt

Y |X̃
.

This Taylor series approximation is noteworthy for the fact that it is the
same for M1 known as it is for M1 estimated. Consequently, there is no
penalty asymptotically for estimating M1.

Thus, with AVAR denoting asymptotic variance, we have that

AVAR
{√

n β̂
IV 1,(M̂1)
Y |1X

}
= β

−(M1)

W̃ |T̃
{AVAR (ǫ2 − Cǫ3)}

(
β
−(M1)

W̃ |T̃

)t

.

That this asymptotic variance is minimized when

M1 = {AVAR (ǫ2 − Cǫ3)}−1

is a consequence of the optimality of weighted-least squares linear re-
gression.

Let M̂2 be a consistent estimator of the matrix M2. Expanding the

estimating equation for β̂
IV 2,(M̂2)
Y |1X around the true parameters results in

the approximation

√
n

{
β̂

IV 2,(M̂2)
Y |1X − βY |X̃

}
≈ β

−(M2)

W̃ |T̃

{(
H1 + β

W̃ |T̃
H2

)
ǫ1 + Dǫ3

}
,

where

ǫ1 =
√

n
(
β̂Y |T̃W − βY |T̃W

)
,

D = Id
T̃
⊗

(
H2βY |T̃W

)t

− Id
T̃
⊗ βt

Y |X̃
.

As before, estimating M2 does not affect the asymptotic distribution of
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the parameter estimates. From the approximation we find that

AVAR
(√

n β̂
IV 2,(M̂2)
Y |1X

)
=

β
−(M2)

W̃ |T̃

[
AVAR

{(
H1 + β

W̃ |T̃
H2

)
ǫ1 + Dǫ3

}](
β
−(M2)

W̃ |T̃

)t

,

which is minimized when

M2 =
[
AVAR

{(
H1 + β

W̃ |T̃
H2

)
ǫ1 + Dǫ3

}]−1

.

B.5.2.2 Computing Estimates and Standard Errors

The two-stage estimates are only slightly more difficult to compute than
the first-stage estimates. Here, we describe an algorithm that results in
both estimates.

Note that for fixed matrices M1 and M2 all of the components of Θ̂
in (B.39) either are calculated directly as linear regression or general-
ized linear regression estimates, or are simple transformations of such
estimates. So for fixed M1 and M2, obtaining Θ̂ is straightforward.

Asymptotic variance estimation is most easily accomplished by first
programming the two functions

G1(Θ) =
∑n

i=1ψi(Θ),

G2(Θ) =
∑n

i=1ψi(Θ)ψi(Θ)t,

where ψi(Θ) is the ith composite score function from (B.40). Although

we do not actually solve G1(Θ) = 0 to find Θ̂, it should be true that

G1(Θ̂) = 0. This provides a check on the programming of G1.

Numerical differentiation of G1 at Θ = Θ̂ results in the matrix Ân.
Alternatively, analytical derivatives of ψi(Θ) can be used, but these

are complicated and tedious to program. Evaluation of G2 at Θ = Θ̂
is the matrix B̂n. The covariance matrix of Θ̂ is then found as Ω̂ =
Â−1

n B̂n(Â−1
n )t.

The algorithm described above is first used with M1 and M2 set to
the identity matrix of dimension dim(T̃), resulting in the first-stage
estimates and estimated asymptotic covariance matrix. Next, M1 and
M2 are set to M̂1,opt and M̂2,opt, respectively, as described in Section
B.5.2.1. A second implementation of the algorithm results in the second-
stage estimates and estimated asymptotic covariance matrix.
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B.6 Appendix to Chapter 7: Score Function Methods

B.6.1 Technical Complements to Conditional Score Theory

We first justify (7.18). The joint density of Y and W is the product of
(7.14) and the normal density, and hence is proportional to

∝ exp

{
yη −D(η)

φ
+ c(y, φ) − (1/2)(w − x)tΣ−1

uu (w − x)

}

∝ exp
{
y(β0 + βt

zz)/φ + c(y, φ) −
(1/2)wtΣ−1

uuw + xtΣ−1
uu (w + yΣuuβx/φ

}
,

where by ∼ we mean terms that do not depend on y or w. Now set δ =
w + yΣuuβx/φ and make a change of variables (which has Jacobian 1).
The joint density of (Y,∆) given (Z,X) is thus seen to be proportional
to

∝ exp
{
y(β0 + βt

xδ + βt
zz)/φ + c(y, φ) − (1/2)(y/φ)2βt

xΣuuβx

}

= exp
{
yη∗/φ + c∗(y, φ, βt

xΣuuβx)
}

. (B.41)

The conditional density of Y given (Z,X,∆) is (B.41) divided by its
integral with respect to y, which is necessarily in the form (7.18) as
claimed, with

D∗(η∗, φ, βt
xΣuuβx) =

φlog[

∫
exp

{
yη∗/φ + c∗(y, φ, βt

xΣuuβx)
}

dµ(y)], (B.42)

where as before the notation means that (B.42) is a sum if Y is discrete
and an integral otherwise.

B.6.2 Technical Complements to Distribution Theory for Estimated

Σuu

Next we justify the estimated standard errors for Θ̂ when there is par-
tial replication. Recall that with normally distributed observations, the
sample mean and the sample covariance matrix are independent. Hence,
Σ̂uu and γ̂ = vech(Σ̂uu) are independent of all the terms (Yi,Zi,Xi,Ui·)
and also independent of (Yi,Zi,Wi·). By a Taylor series expansion,

An(·)
(
Θ̂ − Θ

)
≈

∑n
i=1 {ΨC(Yi,Zi,Wi,Θ,Σuu)} + Dn(Θ,Σuu) (γ̂ − γ) .

Because the two terms in the last sum are independent, the total covari-
ance is the sum of the two covariances, namely, Bn(·) = Dn(·)Cn(·)Dt

n(·),
as claimed.
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B.7 Appendix to Chapter 8: Likelihood and Quasilikelihood

B.7.1 Monte Carlo Computation of Integrals

If one can easily generate observations from the conditional distribution
of X given Z (error model) or given (Z,W) (calibration model), an
appealing and easily programmed Monte Carlo approximation due to
McFadden (1989) can be used to compute likelihoods. The error model
likelihood (8.7) can be approximated as follows. Generate on a computer
a sample (Xs

1, · · · ,Xs
N ) of size N from the density f(x|z, α̃2) of X given

Z = z. Then for large enough N ,

fY,W |Z(y, w|Z,B, α̃1, α̃2) (B.43)

≈ N−1∑N
i=1fY |Z,X(y|z,Xs

i ,B)fW |Z,X(w|z,Xs
i , α̃1).

The dependence of (B.43) on α̃2 comes from the fact that the distribution
of X given Z depends on α̃2.

We approximate

fY |Z,W (y|z, w,B, γ̃)

=

∫
fY |Z,X(y|z, x,B)fX|Z,W (x|z, w, γ̃)dµ(x) (B.44)

by generating a sample (Xs
1, · · · ,Xs

N ) of size N from the distribution
fX|Z,W (x|z, w, γ̃) of X given (Z = z,W = w). Then for large enough N ,

fY |Z,W (y|z, w,B, γ̃) ≈ N−1∑N
i=1fY |Z,X(y|z,Xs

i ,B).

This “brute force” Monte Carlo integration method is computing in-
tensive. There are two reasons for this. First, one has to generate random
observations for each value of (Yi,Zi,Wi), which may be a formidable
task if the sample size is large. Second, and somewhat less important,
maximum likelihood is an iterative algorithm, and one must generate
simulated X’s at each iteration. Brown and Mariano (1993) suggested
that N must be fairly large compared to n1/2 in order to eliminate the
effects of Monte Carlo variance. They also suggested a modification that
will be less computing intensive.

There is a practical matter with using things such as (B.43). Specif-
ically, if (B.43) is computed at each stage of an iterative process with
different random numbers, then optimization routines will tend to get
confused unless N is very, very large. If, for example, X given Z is
normally distributed, a better approach is to generate a fixed but large
number N of standard normals once, and then simply modify these fixed
numbers at each iteration to have the appropriate mean and variance.
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B.7.2 Linear, Probit, and Logistic Regression

B.7.2.1 Linear Regression

In some cases, the required likelihoods can be computed exactly or very
nearly so. Suppose that W and T are each normally distributed unbiased
replicates of X, being independent given X, and each having covariance
matrix Σuu. Suppose also that X itself is normally distributed with mean
γtZ and covariance matrix Σxx. As elsewhere, all distributions are con-
ditioned on Z. In this case, in order to allow for an intercept, the first
element of Z equals 1.0.

In normal linear regression where the response has mean β0 + βt
xX +

βt
zZ and variance σ2, the joint distribution of (Y,W,T) given Z is mul-

tivariate normal with means β0+βt
xγtZ+βt

zZ, γtZ and γtZ, respectively,
and covariance matrix

Σy,w,t =




σ2 + βt
xΣxxβx βt

xΣxx βt
xΣxx

Σxxβx Σxx + Σuu Σxx

Σxxβx Σxx Σxx + Σuu


 .

B.7.2.2 Distribution of X Given the Observed Data

For probit and logistic regression, we compute the joint density using
the formulas fY,W |Z = fY |Z,W fW |Z and fY,W,T |Z = fY |Z,W,T fW,T |Z .
This requires a few preliminary calculations.

First, consider W alone. Our model says that W given Z is normally
distributed with mean αt

21Z and covariance matrix Σxx + Σuu. Define
Λw = Σxx(Σxx +Σuu)−1, m(Z,W) = (I−Λw)γtZ+ΛwW and Σx|z,w =
(I − Λw)Σxx. From linear regression theory, for example, see Section
A.4, X given (Z,W) is normally distributed with mean m(Z,W) and
covariance matrix Σx|z,w.

Next, consider W and T together. Our model says that given Z they
are jointly normally distributed with common mean γt

1Z, common indi-
vidual covariances (Σxx + Σuu), and cross-covariance matrix Σxx. If we
define

Λw,t = (Σxx,Σxx)

[
Σxx + Σuu Σxx

Σxx Σxx + Σuu

]−1

= (Σxx,Σxx)Γ−1
w,t,

then X given (Z,W,T) is normally distributed with mean and covari-
ance matrix given by

m(Z,W,T) = γtZ

+Λw,t

{
(W − γtZ)t, (T − γtZ)t

}t

Σx|z,w,t = Σxx − Λw,t(Σxx,Σxx)t,

respectively.
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B.7.2.3 Probit and Logistic Regression

Now we return to probit and logistic regression. In probit regression, ex-
act statements are possible. We have indicated that given either (Z,W)
or (Z,W,T), X is normally distributed with mean m(·) and covariance
matrix Σx|·, where Σx|·is either Σx|z,w or Σx|z,w,t, and similarly for m(·).
From the calculations in Section B.3, it follows that

pr(Y = 1|Z,W,T) = Φ

[
β0 + βt

xm(·) + βt
zZ

(1 + βt
xΣx|·βx)1/2

]
.

For logistic regression (Section 4.8.2), a good approximation is

pr(Y = 1|Z,W,T) ≈ H

[
β0 + βt

xm(·) + βt
zZ

(1 + βt
xΣx|·βx/1.72)1/2

]
; (B.45)

see also Monahan and Stefanski (1992).
Write Θ = (B,Σuu, α21,Σxx) and r(W) = r(W, α21) = (W − αt

21Z).
Using (B.45), except for a constant in logistic regression, the logarithm
of the approximate likelihood for (Y,W,T) given Z is

ℓ(Y,Z,W,T,Θ) = −(1/2)log {det (Γw,t)} (B.46)

+Ylog {H(·)} + (1 − Y)log {1 − H(·)}
−(1/2)

{
rt(W), rt(T)

}
Γ−1

w,t

{
rt(W), rt(T)

}t
.

A similar result applies if only W is measured, namely,

ℓ(Y,Z,W,Θ) = −(1/2)log {det (Σxx + Σuu)}
+Ylog {H(·)} + (1 −Y)log {1 − H(·)}
−(1/2)rt(W, γ1) (Σuu + Σxx)

−1
r(W, γ1).

B.8 Appendix to Chapter 9: Bayesian Methods

B.8.1 Code for Section 9.8.1

model

{#BEGIN MODEL

for (i in 1:Nobservations)

{#BEGIN FOR i in 1:Nobservations

#Outcome model

Y[i]~dnorm(meanY[i],taueps)

meanY[i]<-beta[1]+beta[2]*X[i]+beta[3]*Z[i]

#Replication model

for (j in 1:Nreplications) {W[i,j]~dnorm(X[i],tauu)}
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#Exposure model

X[i]~dnorm(meanX[i],taux)

meanX[i]<-alpha[1]+alpha[2]*Z[i]

}#END FOR i in 1:Nobservations

#Noninformative priors on the model parameters

tauu~dgamma(3,1)

taueps~dgamma(3,1)

taux~dgamma(3,1)

#Priors for alpha and beta

for (i in 1:nalphas){alpha[i]~dnorm(0,1.0E-6)}

for (i in 1:nbetas){beta[i]~dnorm(0,1.0E-6)}

#Deterministic transformations: standard deviations

sigmaeps<-1/sqrt(taueps)

sigmau<-1/sqrt(tauu)

sigmax<-1/sqrt(taux)

#Deterministic transformation: attenuation

lambda<-tauu/(tauu+taux)

}#END MODEL

B.8.2 Code for Section 9.11

model

{#BEGIN MODEL

for (i in 1:Nobservations)

{#BEGIN for i in 1:Nobservations

#Outcome model (repeated observations of FFQ)

logFFQ1[i]~dnorm(meanlogFFQ[i],taueps)

logFFQ2[i]~dnorm(meanlogFFQ[i],taueps)

#Model for mean of log FFQ

meanlogFFQ[i]~dnorm(meanmeanlogFFQ[i],taur)

#Define the fixed effects part of the mean FFQ

meanmeanlogFFQ[i]<-beta[1]+beta[2]*X[i]

#Biomarker model for log protein

logprotein1[i]~dnorm(X[i],tauu)
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logprotein2[i]~dnorm(X[i],tauu)

X[i]~dnorm(meanX[i],taux)

meanX[i]<-alpha[1]+alpha[2]*AGE[i]+alpha[3]*BMI[i]

}#END for i in 1:Nobservations

#Define lambda (a noninformative prior is assigned)

tauu<-lambda*taux/(1-lambda)

#Noninformative priors on the model parameters

lambda~dunif(0,1)

taueps~dgamma(3,0.1)

taux~dgamma(3,0.1)

taur~dgamma(3,0.1)

#Define the signal attenuation

attenuation<-beta[2]/(pow(beta[2],2)+taux/taur+taux/taueps)

#Priors for the fixed effects

for (i in 1:nalphas){alpha[i]~dnorm(0,1.0E-6)}

for (i in 1:nbetas){beta[i]~dnorm(0,1.0E-6)}

#Deterministic transformations (obtain variances)

sigma2eps<-1/taueps

sigma2x<-1/taux

sigma2u<-1/tauu

sigma2r<-1/taur

}#END MODEL
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